Deshima 2.0: Rapid Redshift Surveys and Multi-line Spectroscopy of Dusty Galaxies

M. Rybak1,2 · T. Bakx3,4 · J. Baselmans1,5 · K. Karatsu1,5 · K. Kohno6,7 · T. Takekoshi6,8 · Y. Tamura3 · A. Taniguchi3 · P. van der Werf2 · A. Endo1

Received: 1 November 2021 / Accepted: 8 April 2022 / Published online: 5 May 2022
© The Author(s) 2022

Abstract
We present a feasibility study for the high-redshift galaxy part of the Science Verification Campaign with the 220–440 GHz deshimA 2.0 integrated superconducting spectrometer on the ASTE telescope. The first version of the deshimA 2.0 chip has been recently manufactured and tested in the lab. Based on these realistic performance measurements, we evaluate potential target samples and prospects for detecting the [CII] and CO emission lines. The planned observations comprise two distinct, but complementary objectives: (1) acquiring spectroscopic redshifts for dusty galaxies selected in far-infrared/mm-wave surveys; (2) multi-line observations to infer physical conditions in dusty galaxies.

Keywords (sub)mm astronomy · Spectroscopy · High-redshift universe · Galaxies · Integrated superconducting spectrometer

M. Rybak
m.rybak@tudelft.nl

1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
2 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
3 Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
4 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
5 SRON – Netherlands Institute for Space Research, Niels Bohrweg 4, 2333 CA Leiden, The Netherlands
6 Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
7 Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
8 Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan

Springer
1 Introduction

Throughout cosmic history, more than half of all the stars form in dust-obscured galaxies [1–3]. Due to their massive dust reservoirs, these dusty star-forming galaxies (DSFGs) are often invisible in the optical/near-IR part of the spectrum but bright in the far-infrared (FIR) to (sub)-mm wavelengths. Consequently, thousands of DSFGs have been identified in wide-field continuum surveys in the 0.1–2.0 mm regime [2–4].

However, studies of DSFGs suffer from a considerable redshift bottleneck. This is because sub-mm continuum observations probe the Rayleigh-Jeans tail of the dust thermal emission (which peaks at ≥1 THz rest-frame) and thus provide only weak constraints on the redshift. Moreover, the optical and near-IR spectroscopy is often inefficient due to the high extinction in DSFGs, particularly in the FIR-brightest sources [2]. However, robust redshifts are a prerequisite for emission line follow-up with interferometers such as ALMA [5].

Consequently, (sub)mm-wave spectroscopy has become the key to obtaining robust spectroscopic redshifts for dusty galaxies at high redshift. This is chiefly through the rotational emission line of 12CO and the fine-structure transition of C$^+$, the 158-μm [CII] line (rest-frame frequency $f_0 = 1900.5$ GHz). Typically, these are conducted using heterodyne receivers via spectral scans, requiring multiple instrument tunings.

Alternatively, several dedicated wide-band instruments have been developed: e.g., grating spectrometers such as the now-defunct Z-Spec [6, 7] at the Caltech Submillimeter Observatory (CSO; 190–305 GHz) or wideband heterodyne receivers such as the ZSpectrometer [8] at the Green Bank Telescope (26.5–40 GHz) and the Redshift Search Receiver (RSR [9], 73–111 GHz) on the Large Millimeter Telescope. While these have allowed redshift measurements out to $z \simeq 6$ [10], mainly using the CO emission lines, due to the relative faintness of these lines, such observations are limited to the rare, very bright galaxies. Critically, the bright [CII] fine-structure line—ideal for rapid redshift measurements due to its brightness—is generally beyond the reach of these instruments.

To properly exploit the [CII] line for redshift measurements, wideband spectroscopy must be extended to higher frequencies, i.e. the 350-GHz and 400-GHz atmospheric windows. These frequency bands are particularly promising for spectroscopic confirmation of DSFGs, because the number density of DSFGs (and thus [CII] emitters) peaks between $z \simeq 2–4$ [11], corresponding to [CII] being redshifted to 380–600 GHz.

Here, we demonstrate the performance of deshima (DEep Spectroscopic Highbredshift MApper), a mm-wave integrated superconducting spectrometer (ISS) [12, 13], which combines superconducting filterbank with an array of microwave kinetic inductance detectors (MKIDs) on a single chip. Several other MKID spectrometers are currently under development, e.g., CONCERTO [14, 15] (130–310 GHz), and Super-Spec [16, 17] (190–310 GHz). deshima’s octave-wide bandwidth and high-frequency capability make it ideally suited for rapid redshift measurements.
2 Deshima 2.0: Instrument Description

The Deshima 1.0 prototype achieved the first light in 2017 [13, 18]. Deshima offered an instantaneous bandwidth of 335–377 GHz with $R \sim 380$. These observations demonstrated the spectroscopy of point sources (post-AGB star IRC+10216 and a merging galaxy pair VV 114) and spectroscopic mapping of extended regions (the Orion KL star-forming region and a nearby galaxy NGC 253). However, the limited chip coupling efficiency ($\sim 2\%$) and large overheads did not allow science-grade observations of high-z DSFGs).

In 2022, an upgraded Deshima 2.0 spectrometer will be installed at the ASTE (Atacama Submillimeter Telescope Experiment) 10-meter telescope [19] in the Atacama desert, Chile, at an altitude of 4860 metres. Deshima 2.0 will provide an instantaneous frequency coverage of 220–440 GHz at $R \simeq 500$ ($\Delta v \simeq 600$ km/s). Besides the significantly expanded bandwidth, major upgrades between Deshima 1.0 and Deshima 2.0 include a leaky-lens antenna [20], improved filter design, and a sky-position chopper\(^1\). Together, these upgrades result in a factor 4–8 improvement in sensitivity over Deshima 1.0. Further sensitivity improvements could be achieved by explicitly modelling the instrument and atmospheric noise, rather than simply subtracting the on- and off-source spectra [22].

The first version of the Deshima 2.0 on-chip filterbank has been recently manufactured and tested in the lab [21]. The filters cover almost the entire target bandwidth, with a mean peak coupling efficiency of 14%, increasing up to 30–50% for some channels (target: $\sim 30\%$). The main source of discrepancy between the current and target sensitivity is uneven channel spacing, which reduces the coupling efficiency of individual channels.

In Fig. 1, we show the current and target Deshima 2.0 sensitivity compared to Z-Spec [23] at the CSO on Mauna Kea, and the current suite of receivers on the 12-m Atacama Pathfinder EXperiment (APEX) telescope\(^2\). Compared to the Z-Spec, Deshima 2.0 has is $1.5–2.0 \times$ less sensitive at a given precipitable water vapor (PWV) value. However, ASTE has more favourable weather conditions (PWV = 0.6 mm corresponds to the top 25th annual percentile for ASTE, but only the 10th percentile for Mauna Kea [24]). Deshima 2.0 is thus competitive with Z-Spec, with the added advantage of covering the 305–440 GHz range.

Compared to APEX, Deshima 2.0 is currently $4–5 \times$ less sensitive; further improvements might reduce this discrepancy by a factor of 2. At that point, science goals that would require four or more APEX tunings will be more economically achieved with Deshima 2.0. For such applications, Deshima 2.0 will be directly competitive with APEX.

\(^1\) For a detailed summary, see the contribution by Taniguchi et al., in this volume [21].

\(^2\) nFLASH230, SEPIA345, nFLASH460. The sensitivity calculations are based on https://www.apex-telescope.org/heterodyne/calculator/ns/index.php.

Springer
3 Deshima 2.0: Science Verification Campaign Targets

The primary targets for Deshima are DSFGs with large apparent FIR luminosity (i.e., \(L_{8-1100\mu m} \) of few \(\times 10^{13} L_\odot \)), many of which are strongly gravitationally lensed. In fact, hundreds of strongly lensed dusty galaxies were discovered in wide-field continuum surveys at FIR and sub-mm wavelengths with Herschel [25–27] and Planck satellites [28] and the South Pole Telescope [29] (SPT).

Fig. 2 shows the redshift and apparent FIR luminosity distribution of DSFGs from the SPT and Planck samples (virtually all with spectroscopic redshifts) and the Herschel-selected high/low-redshift samples. For comparison, we show the limiting FIR luminosity of sources for which the CO (5–4), (10–9), (13–12) and the [CII] line can be detected at 5\(\sigma \) level in 5-hr on source (\(\sim 12 \) hr total with overheads). These are based on empirical CO–FIR relations from Kamenetzky et al. [30] for CO (5–4), Greve et al. [31] for CO (10–9) and (13–12), and \(L_{[\text{CII}]}/L_{\text{FIR}} \) ratio of \(10^{-3} \), typical for DSFGs [32, 33]. The CO (and [CII]) luminosities in individual galaxies can deviate from these trends by up to 1 dex [30, 31, 34, 35]; large-sample surveys with Deshima 2.0 will further constrain the range of CO excitation in DSFGs.

3.1 Spectroscopic Redshifts for Bright Herschel-Selected Galaxies

One of the primary aims of the Deshima 2.0 Science Verification Campaign is to demonstrate the rapid redshift acquisition capability. The atmospheric windows and bandwidth of Deshima offer two promising regions for efficient redshift searches.
Firstly, at lower-redshift \((z \sim 0.5 - 2.0) \), the large bandwidth of \textsc{deshima} offers multiple-line detections of galaxies. Counterintuitively, finding robust redshifts of lower-redshift dust-obscured galaxies is challenging. While the spectral lines suffer less from the cosmological dimming, wider bandwidths are necessary to cover the entire possible redshift space. In addition, the SPT and \textit{Planck} surveys select DSFGs at \(z \gtrsim 2 \), while \textit{Herschel} redshift follow-up prioritises high-\(z \) targets. The \textit{Herschel} catalogues have thus left \(\sim 4000 \) \(z \sim 1 \) targets unexplored. As \(z \leq 1 \) DSFGs have low lensing probability \cite{36}, this sample presents a population of intrinsically-bright galaxies after the peak of the cosmic star-forming activity \cite{1}, i.e. when galaxy-wide quenching should be in full effect. \textsc{deshima}’s 220-GHz bandwidth will allow fast redshift acquisition for these sources, removing degeneracies in redshift due to the wide spacing of the CO lines at low redshift \cite{37}.

As for the high-redshift end, while most bright DSFGs have secure spectroscopic redshifts, a large population of DSFGs with lower apparent luminosities remains unexplored. Namely, the \(\geq 1000 \) deg\(^2\) \textit{Herschel} footprint \cite{38, 39} provides a sample of \(\approx 2000 \) “500-\(\mu \)m risers”: DSFGs with flux density peaking at/beyond 500-\(\mu \)m. A 500-\(\mu \)m rising colour selection, relative to 250 and 350 \(\mu \)m, promises to select the highest-redshift \textit{Herschel} candidates \cite{40}, with \(z_{\text{phot}} \geq 3.5 \). A major advantage of \textsc{deshima} 2.0 is the wideband spectroscopy in the 385-440 GHz band (interrupted by the 425-GHz telluric line), corresponding to the lower half of ALMA Band 8. This enables \[\text{CII}]\ observations at \(z = 3.3 - 3.9 \), the epoch when the \[\text{CII}]\ luminosity function is predicted to peak \cite{11}.
We expect to invest a total of 400 hr for both the low- and high-redshift goal (200 hr per goal); this should yield robust redshifts for $\sim 15 - 20$ galaxies each.

3.2 Multi-line Spectroscopy of Bright Lensed DSFGs

In addition to measuring redshifts, mm-wave spectroscopy provides critical insights into the physical conditions in DSFGs. Namely, observations of multiple chemical species (e.g., CO, C$^+$, C, O, dust continuum) can be linked to the underlying physical conditions (e.g., gas density and temperature, irradiation, turbulence) using chemical and radiative transfer modelling. For example, the [CII] 158-µm line is a sensitive probe of the far-UV irradiation. The excitation of CO rotational lines is primarily driven by gas density [41, 42], but the $J_{\text{upp}} \geq 8$ CO lines are sensitive to non-thermal gas excitation, such as heating by X-rays and cosmic rays or turbulence, which might be significant in intensely star-forming DSFGs. Indeed, recent studies point towards highly excited CO rotational lines in strongly lensed DSFGs [35, 43]. Depending on the complexity of the data, the models can range from static, 1-D gas slabs [44–47] to fully 3-D models [48] and might incorporate time evolution.

Deshima’s octave-wide bandwidth will allow simultaneous observations of multiple emission lines in the bright DSFGs. Such multi-line spectroscopy is critical for constraining different physical properties. However, previous studies with wide-band spectrometers such as Z-Spec were limited to a handful of very bright sources [49–51]; Deshima 2.0 will expand this approach to a much larger sample of DSFGs. In particular, with the exception of the brightest Planck-selected sources, the high-excitation CO emission in DSFGs remains almost completely unexplored. Deshima 2.0 should detect the high-J CO lines in the bright Planck and SPT DSFGs in only a few hours on-source.
As a demonstration, Fig. 3 shows a simulated spectrum of J1329+2243, the most FIR-luminous source at $z \geq 3$ from the samples considered in Fig. 2, with extensive archival CO observations [35]. We adopt a nominal chip design with 347 frequency channels spanning the 220–440 GHz range ($R = 500$). The response function of individual filters follows a Lorentzian profile with a peak coupling efficiency of 13.6% (based on the laboratory tests of the DESHIMA 2.0 chip) We assume PWV = 0.6 mm, source elevation of 40 degrees, and a total on-source time of 3 hr. Even with such a short integration, we expect robust detections of multiple CO lines. Moreover, we will cover the potentially bright H$_2$O and H$_2$O$^+$ lines.

Finally, we note that due to the relatively low spectral resolution ($R \sim 500$), several emission lines might blend together: particularly CO(7–6) and [CI](2–1) (rest-frame frequency separation $\Delta f_0 = 2.69$ GHz, $\Delta v \sim 1000$ km/s) and CO(9–8) and OH$^+$ ($\Delta f_0 = 3.86$ GHz, $\Delta v \sim 1100$ km/s). The latter pair is particularly susceptible to blending as OH$^+$ often traces the out-/in-flowing gas and might be seen in absorption [43, 52]; consequently, the CO(9–8) flux measured from $R \sim 500$ spectra might be significantly over/underestimated.

4 Conclusions

We have presented the high-redshift extragalactic science case for the DESHIMA 2.0 integrated superconducting spectrometer, which will be mounted at the 10-m ASTE telescope in 2022. Thanks to its combination of an octave-wide bandwidth, access to high frequencies and competitive sensitivity, DESHIMA 2.0 will allow science-grade observations of high-redshift galaxies. The first integrated chip has been manufactured and tested in the lab. In terms of sensitivity, DESHIMA 2.0 is already competitive with the Z-Spec grating spectrometer, and might become competitive with APEX.

The upcoming Science Verification Campaign will: (1) measure redshifts for ~ 30 Herschel-selected galaxies at $z \sim 1$ and $z \geq 4$; (2) obtain multi-line spectroscopy of 5–10 strongly lensed DSFGs to study the physical conditions in these extreme sources. These figures are conservative; with further sensitivity improvements, the campaign can be expanded significantly. These DESHIMA 2.0 observations will pave the way for future large-scale spectroscopic campaigns with ultra-wideband, multi-pixel MKID spectrometers [53] on, e.g., the planned 50-m AtLAST telescope [54] which will determine redshifts and physical properties of thousands of DSFGs.

Acknowledgements M. R. is supported by the NWO Veni project “Under the lens” (VI.Veni.202.225). J. B. is supported by the European Research Council ERC (ERC-CoG-2014 - Proposal #648135 MOSAIC). Y. T. and T. B. are supported by NAOJ ALMA Scientific Research (Grant No. 2018-09B). T. T. was supported by MEXT Leading Initiative for Excellent Young Researchers (Grant No. JPMXS0320200188). The ASTE telescope is operated by the National Astronomical Observatory of Japan (NAOJ).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line.
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. P. Madau, M. Dickinson, Cosmic star-formation history. ARA&A 52, 415–486 (2014). https://doi.org/10.1146/annurev-astro-081811-125615
2. C.M. Casey, D. Narayanan, A. Cooray, Dusty star-forming galaxies at high redshift. Phys. Rep. 541, 45–161 (2014). https://doi.org/10.1016/j.physrep.2014.02.009
3. J.A. Zavala, C.M. Casey, S.M. Manning, M. Aravena, M. Bethermin, K.I. Caputi, D.L. Clements, E. da Cunha, P. Dey, S.L. Finkelstein, S. Fujimoto, C. Hayward, J. Hodge, J.S. Kartaltepe, K. Knudsen, A.M. Koekemoer, A.S. Long, G.E. Magdis, A.W.S. Man, G. Popping, D. Sanders, N. Scoville, K. Sheth, J. Staguhn, S. Toft, E. Treister, J.D. Vieira, M.S. Yun, The evolution of the IR luminosity function and dust-obscured star formation over the past 13 billion years. ApJ 909(2), 165 (2021). https://doi.org/10.3847/1538-4357/abdb27
4. J.E. Geach, J.S. Dunlop, M. Haipern, I. Smail, P. van der Werf, D.M. Alexander, O. Almaini, I. Aretxaga, V. Arumugam, V. Asboth, M. Banerji, J. Beanlands, P.N. Best, A.W. Blain, M. Birchshaw, E.L. Chapin, S.C. Chapman, C.-C. Chen, A. Chrysostomou, C. Clarke, D.L. Clements, C. Conselice, K.E.K. Coppin, W.I. Cowley, A.L.R. Danielson, S. Eales, A.C. Edge, D. Farrah, A. Gibb, C.M. Harrison, N.K. Hine, D. Hughes, R.J. Ivison, M. Jarvis, T. Jenness, S.F. Jones, A. Karim, M. Koprowski, K.K. Knudsen, C.G. Lacey, T. Mackenzie, G. Marsden, K. McAlpine, R. McMahon, R. Meijering, M.J. Michalowski, S.J. Oliver, M.J. Page, J.A. Peacock, D. Rigopoulou, E.I. Robinson, I. Roseboom, K. Rotermund, D. Scott, S. Serjeant, C. Simpson, J.M. Simpson, D.J.B. Smith, M. Spaans, F. Stanley, J.A. Stevens, A.M. Swinbank, T. Targett, A.P. Thompson, E. Valiante, D.A. Wake, T.M.A. Webb, C. Willott, J.A. Zavala, M. Zemcov, The SCUBA-2 cosmology legacy survey: 850 µm maps, catalogues and number counts. Mon Not R Astronom Soc 465(2), 1789–1806 (2016)
5. J.A. Hodge, E. da Cunha, High-redshift star formation in the Atacama large millimetre/submillimetre array era. R. Soc. Open Sci. 7(12), 200556 (2020). https://doi.org/10.1098/rsos.200556
6. B.J. Naylor, P.A.R. Ade, J.J. Bock, C.M. Bradford, M. Dragovan, L. Duband, L. Earle, J. Glenn, H. Matsuhara, H. Nguyen, M. Yun, J. Zmuidzinas, Z-Spec: a broadband direct-detection millimeter-wave spectrometer, in Millimeter and Submillimeter Detectors for Astronomy, ed. by T. Phillips, J. Zmuidzinas (International Society for Optics and Photonics, SPIE, 2003), vol 4855, pp 239–248. https://doi.org/10.1117/12.459419
7. C.M. Bradford, P.A.R. Ade, J.E. Aguirre, J.J. Bock, M. Dragovan, L. Duband, L. Earle, J. Glenn, H. Matsuhara, B.J. Naylor, H.T. Nguyen, M. Yun, J.Zmuidzinas, Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. by C.M. Bradford, P.A.R. Ade, J.E. Aguirre, J.J. Bock, M. Dragovan, L. Duband, L. Earle, J. Glenn, H. Matsuhara, B.J. Naylor, H.T. Nguyen, M. Yun, J.Zmuidzinas (2004), vol. 5498, pp 257. https://doi.org/10.1117/12.552182
8. A.I. Harris, A.J. Baker, P.R. Jewell, K.P. Rauch, S.G. Zonak, K. O’Neil, A.L. Shelton, R.D. Norrod, J. Ray, G. Watts, The spectrometer: an ultra-wideband spectrometer for the green bank telescope, in From Z-Machines to ALMA: (sub)Millimeter Spectroscopy of Galaxies, ed. by A.J. Baker, J. Glenn, A.I. Harris, J.G. Mangum, M.S. Yun (Astronomical Society of the Pacific Conference Series, 2007), vol. 375, p. 82
9. N. Erickson, G. Narayanan, R. Goeller, R. Grosslein, An Ultra-Wideband Receiver and Spectrometer for 74–110 GHz, in From Z-Machines to ALMA: (Sub)Millimeter Spectroscopy of Galaxies, ed. by, A. J. Baker, J. Glenn, A. I. Harris, J. G. Mangum, M. S. Yun (Astronomical Society of the Pacific Conference Series, 2007), vol. 375, p. 71
10. J.A. Zavala, A. Montañá, D.H. Hughes, M.S. Yun, R.J. Ivison, E. Valiante, D. Wilner, J. Spilker, I. Aretxaga, S. Eales, V. Avila-Reese, M. Chávez, A. Cooray, H. Dannerbauer, J.S. Dunlop, L. Dunne, A.I. Gómez-Ruiz, M.J. Michalowski, G. Narayanan, H. Nayyeri, I. Oteo, D.R. González, D. Sánchez-Argüelles, F.P. Schoierb, S. Serjeant, M.W.L. Smith, E. Terlevich, O. Vega, A. Villa, P.
van der Werf, G.W. Wilson, M. Zeballos, A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing. Nat. Astron. 2, 56–62 (2018). https://doi.org/10.1038/s41550-017-0297-8
11. G. Popping, E. van Kampen, R. Decarli, M. Spaans, R.S. Somerville, S.C. Trager, Sub-mm emission line deep fields: CO and [CI] luminosity functions out to z = 6. MNRAS 461(1), 93–110 (2016). https://doi.org/10.1093/mnras/stw1323
12. A. Endo, K. Karatsu, A.P. Laguna, B. Mirzaei, R. Huiting, D.J. Thoen, V. Murugesan, S.J.C. Yates, J. Bueno, N. van Marrewijk, S. Bosma, O. Yurduseven, N. Llombart, J. Suzuki, M. Naruse, P.J. de Visser, P.P. van der Werf, T.M. Klapwijk, J.J.A. Baselmans, Wideband on-chip terahertz spectrometer based on a superconducting filterbank. J. Astron. Telesc. Instrum. Syst. 5, 035004 (2019). https://doi.org/10.1117/1.JATIS.5.3.035004
13. A. Endo, K. Karatsu, Y. Tamura, T. Oshima, A. Taniguchi, T. Takekoshi, S. Asayama, T.J.L.C. Bakx, S. Bosma, J. Bueno, K.W. Chin, Y. Fujii, K. Fujita, R. Huiting, S. Ikarashi, T. Ishida, S. Ishii, R. Kawabe, T.M. Klapwijk, K. Kohno, A. Kouchi, N. Llombart, J. Maekawa, V. Murugesan, S. Nakatsubo, M. Naruse, K. Ohtawara, A.P. Laguna, J. Suzuki, K. Suzuki, D.J. Thoen, T. Tsukagoshi, T. Ueda, P.J. de Visser, P.P. van der Werf, S.J.C. Yates, Y. Yoshimura, O. Yurduseven, J.J.A. Baselmans, First light demonstration of the integrated superconducting spectrometer. Nat. Astron. 3, 989–996 (2019). https://doi.org/10.1038/s41550-019-0850-8
14. A. Monfardini, A. Beelen, A. Benoit, J. Bounny, M. Calvo, A. Catalano, J. Goupy, G. Lagache, P. Ade, E. Barria, M. Béthermin, O. Bourrion, G. Bres, C. De Breuck, F.X. Desert, G. Duvauchelle, A. Fasano, T. Fenouillet, J. Garcia, G. Garde, C. Hoarau, W. Hu, J.C. Lambert, F. Levy-Bertrand, A. Lundgren, J. Macías-Pérez, J. Marpaud, G. Pisano, N. Ponthieu, L. Prieur, S. Roni, S. Roudier, D. Tourres, C. Tucker, M. Cantzler, F. Caro, M. Diaz, C. Duran, F. Montenegro, M. Navarro, R. Olguín, F. Palma, R. Parra, J. Santana, CONCERTO at APEX: installation and technical commissioning (2021). arXiv:2106.14028
15. A. Catalano, P. Ade, M. Aravena, E. Barria, A. Beelen, A. Benoit, M. Béthermin, J. Bounny, O. Bourrion, G. Bres, C. De Breuck, M. Calvo, F.X. Désert, C. A Durán, G. Duvauchelle, L. Erraud, A. Fasano, T. Fenouillet, J. Garcia, G. Garde, J. Goupy, C. Groppi, C. Hoarau, W. Hu, G. Lagache, J.C. Lambert, J.P. Leggeri, F. Levy-Bertrand, J. Macías-Pérez, H. Mani, J. Marpaud, M. Marton, P. Mauuskopf, A. Monfardini, G. Pisano, N. Ponthieu, L. Prieur, G. Raffin, S. Roni, S. Roudier, D. Tourres, C. Tucker, L. Vivargent, CONCERTO at APEX: Installation and first phase of on-sky commissioning (2021). arXiv:2110.14984
16. E. Shirokoff, P.S. Barry, C.M. Bradford, C. Chattopadhyay, P. Day, S. Doyle, S. Hailey-Dunsheath, M.I. Hollister, A. Kovács, C. McKenney, et al., Mkid development for superspc: an on-chip, mm-wave, filter-bank spectrometer. Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy VI (2012). https://doi.org/10.1117/12.927070
17. K.S. Karkare, P.S. Barry, C.M. Bradford, S. Chapman, S. Doyle, J. Glenn, S. Gordon, S. Hailey-Dunsheath, R.M.J. Janssen, A. Kovács, et al., Full-array noise performance of deployment-grade superspc mm-wave on-chip spectrometers. J. Low Temp. Phys. 199(3-4), 849–857 (2020)
18. T. Takekoshi, K. Karatsu, J. Suzuki, Y. Tamura, T. Oshima, A. Taniguchi, S. Asayama, T.J.L.C. Bakx, J.J.A. Baselmans, S. Bosma, J. Bueno, K.W. Chin, Y. Fujii, K. Fujita, R. Huiting, S. Ikarashi, T. Ishida, S. Ishii, R. Kawabe, T.M. Klapwijk, K. Kohno, A. Kouchi, N. Llombart, J. Maekawa, V. Murugesan, S. Nakatsubo, M. Naruse, K. Ohtawara, A.P. Laguna, J. Suzuki, K. Suzuki, D.J. Thoen, T. Tsukagoshi, T. Ueda, P.J. de Visser, P.P. van der Werf, S.J.C. Yates, Y. Yoshimura, O. Yurduseven, J.J.A. Baselmans, First light demonstration of the integrated superconducting spectrometer. Nat. Astron. 3, 989–996 (2019). https://doi.org/10.1038/s41550-019-0850-8
19. H. Ezawa, R. Kawabe, K. Kohno, S. Yamamoto, The atacama submillimeter telescope experiment (ASTE), in Ground-Based Telescopes, ed. by J.M. Oechsmann Jr. (International Society for Optics and Photonics, SPIE, 2004), vol. 5489, pp. 763–772
20. S. Hähnle, O. Yurduseven, S. van Berkel, N. Llombart, J. Bueno, S.J.C. Yates, V. Murugesan, D.J. Thoen, A.Neto, J.J.A. Baselmans, An ultrawideband leaky lens antenna for broadband spectroscopic imaging applications. IEEE Trans. Antennas Propag. 68(7), 5675–5679 (2020). https://doi.org/10.1109/TAP.2019.2963563
21. A. Taniguchi, T.J.L.C. Bakx, J.J.A. Baselmans, R. Huiting, K. Karatsu, N. Llombart, M. Rybak, T. Takekoshi, Y. Tamura, H. Akamatsu, S. Brackenhoff, J. Bueno, B.T. Buijendorp, S. Dabironerez, A.-K. Doing, Y. Fujii, K. Fujita, M. Gouwerok, S. Hähnle, T. Ishida, S. Ishii, R. Kawabe, T. Kitayama, K. Kohno, A. Kouchi, J. Maekawa, K. Matsuda, V. Murugesan, S. Nakatsubo, T. Oshima, A.P. Laguna, D.J. Thoen, P.P. van der Werf, Stephen J.C. Yates, A. Endo, DESHIMA 2.0: development
of an integrated superconducting spectrometer for science-grade astronomical observations (2021a). arXiv:2110.14656

22. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021b). https://doi.org/10.3847/1538-3881/ac117

23. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

24. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

25. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

26. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

27. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

28. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

29. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

30. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

31. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

32. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

33. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

34. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

35. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

36. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

37. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

38. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711

39. A. Taniguchi, Y. Tamura, S. Ikeda, T. Takekoshi, R. Kawabe, A data-scientific noise-removal method for efficient submillimeter spectroscopy with single-dish telescopes. AJ 162(3), 111 (2021a). arXiv:2110.14656

40. H. Inami, M. Bradford, J. Aguirre, L. Earle, B. Naylor, H. Matsuura, J. Glenn, H. Nguyen, J.J. Bock, J. Zmuidzinas, Y. Ohyama, A broadband millimeter-wave spectrometer Z-spec: sensitivity and ULIRGs, in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, ed. by W.D. Duncan, W.S. Holland, S. Withington, J. Zmuidzinas (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008), vol. 7020, p. 70201T. https://doi.org/10.1117/12.788711
far-ultraviolet fields drive the [CII]/Far-infrared deficit in z
1-3 dusty, star-forming galaxies. ApJ 802(2), 81 (2015). https://doi.org/10.1088/0004-637X/802/2/81

K.C. Harrington, A. Weiss, M.S. Yun, B. Magelli, C.E. Sharon, T.K.D. Leung, A. Vishwaksen, Q.D. Wang, D.T. Frayer, E.F. Jiménez-Andrade, D. Liu, P. García, E. Romano-Díaz, D. Liu, P. García, E. Romano-Díaz, J.D. Lowenthal, H. Messias, J. Puschnig, G.J. Stacey, P. Torne, F. Bertoldi, Turbulent gas in lensed planck-selected starbursts at z ~ 1-3.5. ApJ 908(1), 95 (2021). https://doi.org/10.3847/1538-4357/abcc01

A. Weiß, C. De Breuck, D.P. Marrone, J.D. Vieira, J.E. Aguirre, K.A. Aird, M. Aravena, M.L.N. Ashley, B.A. Benson, M. Béthermin, A.D. Biggs, L.E. Bleem, J.J. Bock, M. Bothwell, C.M. Bradford, M. Brodwin, J.E. Carlstrom, C.L. Chang, S.C. Chapman, T.M. Crawford, A.T. Crites, T. de Haan, M.A. Dobbs, E.B. Fomalont, C.D. Fassnacht, E.M. George, M.D. Gladders, A.H. González, T.R. Greve, N.W. Halverson, Y.D. Hezaveh, F.W. High, G.P. Holder, W.L. Holzapfel, S. Hoover, J.D. Hrubes, T.R. Hunter, R. Keisler, A.T. Lee, E.M. Leitch, M. Lueker, D. Luong-Van, M. Malkan, V. McIntyre, J.J. McMahon, J. Mehl, K.M. Menten, S.S. Meyer, L.M. Mocanu, E.J. Murphy, T. Natoli, S. Padin, T. Plagge, C.L. Reichardt, A. Rest, J. Ruel, J.E. Ruhl, K. Sharon, K.K. Schaffer, L. Shaw, E. Shirokoff, J.S. Spilker, B. Stalder, Z. Staniszewski, A.A. Stark, K. Story, K. Vanderlinde, N. Welikala, R. Williamson, Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 495(7441), 344–347 (2013). https://doi.org/10.1038/nature12001

J. Kamenetzky, N. Rangwala, J. Glenn, P.R. Maloney, A. Conley, L'CO/L_FIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive. ApJ 829(2), 93 (2016). https://doi.org/10.3847/0004-637X/829/2/93

M. Rybak, G.C. Rivera, J.A. Hodge, I. Smail, F. Walter, M. Béthermin, C.M. Bradford, M.S. Bothwell, J.E. Carlstrom, S.C. Chapman, C.D. Fassnacht, A.H. Gonzalez, T.R. Greve, Y. Hezaveh, W.L. Holzapfel, K. Husband, J. Ma, M. Malkan, D.P. Marrone, K. Menten, E.J. Murphy, C.L. Reichardt, J.S. Spilker, A.A. Stark, M. Strandet, N. Welikala, The nature of the [CII] emission in dusty star-forming galaxies from the SPT survey. MNRAS 449, 2883–2900 (2015). https://doi.org/10.1093/mnras/stv372

B. Gullberg, C. De Breuck, J.D. Vieira, A. Weiß, J.E. Aguirre, M. Aravena, M. Béthermin, C.M. Bradford, M.S. Bothwell, J.E. Carlstrom, S.C. Chapman, C.D. Fassnacht, A.H. Gonzalez, T.R. Greve, Y. Hezaveh, W.L. Holzapfel, K. Husband, J. Ma, M. Malkan, D.P. Marrone, K. Menten, E.J. Murphy, C.L. Reichardt, J.S. Spilker, A.A. Stark, M. Strandet, N. Welikala, The nature of the [CII] emission in dusty star-forming galaxies from the SPT survey. MNRAS 449, 2883–2900 (2015). https://doi.org/10.1093/mnras/stv372
Papadopoulos, E. Pons, R. Scipioni, M. Vaccari, S. Oliver. HELP: a catalogue of 170 million objects, selected at 0.36–4.5 μm, from 1270 deg² of prime extragalactic fields. MNRAS 490 (1), 634–656 (2019). https://doi.org/10.1093/mnras/stz2509

39. R. Shirley, K. Duncan, M.C. Campos Varillas, P.D. Hurley, K. Malek, Y. Roehilly, M.W.L. Smith, H. Aussel, T. Bakx, V. Buat, D. Burgarella, N. Christopher, S. Duivenvoorden, S. Eales, A. Efstathiou, E.A.G. Solares, M. Griffin, M. Jarvis, B. Lo Faro, L. Marchetti, I. McCheyne, A. Papadopoulos, K. Penner, E. Pons, M. Prescott, E. Rigby, H. Rottgering, A. Saxena, J. Scudder, M. Vaccari, L. Wang, S.J. Oliver, HELP: the herschel extragalactic legacy project. MNRAS 507 (1), 129–155 (2021). https://doi.org/10.1093/mnras/stab1526

40. R.J. Ivison, A.J.R. Lewis, A. Weiss, V. Arumugam, J.M. Simpson, W.S. Holland, S. Maddox, L. Dunne, V. Valiante, P. van der Werf, A. Omont, H. Dannerbauer, Ian Smail, F. Bertoldi, M. Bremer, R.S. Bussmann, Z.Y. Cai, D.L. Clements, A. Cooray, G. De Zotti, S.A. Eales, C. Fuller, J. Gonzalez-Nuevo, E. Ibar, M. Negrello, I. Oteo, I. Pérez-Fournon, D. Riechers, J. A. Stevens, A.M. Swinbank, J. Wardlow, The space density of luminous dusty star-forming galaxies at z > 4: SCUBA-2 and LABOCA imaging of ultrared galaxies from herschel-ATLAS. ApJ 832(1), 78 (2016). https://doi.org/10.3847/0004-637X/832/1/78

41. G.J. Stacey, N. Geis, R. Genzel, J.B. Lugten, A. Poglitsch, A. Sternberg, C.H. Townes, The 158 micron [CII] line: a measure of global star formation activity in galaxies. ApJ 373, 423 (1991). https://doi.org/10.1086/170062

42. D.J. Hollenbach, A.G.G.M. Tielens. Photodissociation regions in the interstellar medium of galaxies. Rev. Mod. Phys. 71, 173–230 (1999). https://doi.org/10.1103/RevModPhys.71.173

43. D.A. Riechers, A. Cooray, I. Pérez-Fournon, R. Neri, The GADOT galaxy survey: dense gas and feedback in Herschel-selected starburst galaxies at redshifts 2 to 6. ApJ 913(2), 141 (2021). https://doi.org/10.3847/1538-4357/abf6d7

44. M.J. Kaufman, M.G. Wolfire, D.J. Hollenbach, M.L. Luhman, Far-infrared and submillimeter emission from galactic and extragalactic photodissociation regions. ApJ 527, 795–813 (1999). https://doi.org/10.1086/308102

45. M.J. Kaufman, M.G. Wolfire, D.J. Hollenbach, [Si II], [Fe II], [CII], and H₂ emission from massive star-forming regions. ApJ 644, 283–299 (2006). https://doi.org/10.1086/503596

46. F.F.S. van der Tak, J.H. Black, F.L. Schöier, D.J. Jansen, E.F. van Dishoeck, A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. A&A 468, 627–635 (2007). https://doi.org/10.1051/0004-6361:20066820

47. M.W. Pound, M.G. Wolfire, The photo dissociation region toolbox, in Astronomical Data Analysis Software and Systems XVII, volume 394 of Astronomical Society of the Pacific Conference Series, ed. by R.W. Argyle, P.S. Bunclark, J.R. Lewis (2008), p. 654

48. T.G. Bisbas, T.A. Bell, S. Viti, J. Yates, M.J. Barlow, 3D-PDR: a new three-dimensional astrochemistry code for treating photodissociation regions. MNRAS 427(3), 2100–2118 (2012). https://doi.org/10.1111/1365-2966.2012.22077.x

49. C.M. Bradford, J.E. Aguirre, R. Aikin, J.J. Bock, L. Earle, J. Glenn, H. Inami, P.R. Maloney, H. Matsuhara, B.J. Naylor, H.T. Nguyen, J. Zmuidzinas, The warm molecular gas around the cloverleaf quasar. ApJ 705(1), 112–122 (2009). https://doi.org/10.1088/0004-637X/705/1/112

50. C.M. Bradford, A.D. Bolatto, P.R. Maloney, J.E. Aguirre, J.J. Bock, J. Glenn, J. Kamenetzky, R. Lupu, H. Matsuhara, E.J. Murphy, B.J. Naylor, H.T. Nguyen, K. Scott, J. Zmuidzinas, The water vapor spectrum of APM 08279+5255: X-ray heating and infrared pumping over hundreds of parsecs. ApJL 741(2), L37 (2011). https://doi.org/10.1088/2041-8205/741/2/L37

51. R.E. Lupu, K.S. Scott, J.E. Aguirre, I. Aretxaga, R. Auld, E. Barton, A. Beelen, F. Bertoldi, J.J. Bock, D. Bonfield, C.M. Bradford, S. Buttiglione, A. Cava, D.L. Clements, J. Cooke, A. Cooray, H. Dannerbauer, A. Dariush, G. De Zotti, L. Dunne, S. Dye, S. Eales, D. Frayer, J. Fritz, J. Glenn, D.H. Hughes, E. Ibar, R.J. Ivison, M.J. Jarvis, J. Kamenetzky, S. Kim, G. Lagache, L. Leeuw, S. Maddox, P.R. Maloney, H. Matsuhara, E.J. Murphy, B.J. Naylor, M. Negrello, H. Nguyen, A. Omont, E. Pascale, M. Pohlen, E. Rigby, G. Rodighiero, S. Serjeant, D. Smith, P. Temi, M. Thompson, I. Valtchanov, A. Verma, J.D. Vieira, J. Zmuidzinas, Measurements of CO redshifts with Z-spec for lensed submillimeter galaxies discovered in the H-ATLAS Survey. ApJ 757(2), 135 (2012). https://doi.org/10.1088/0004-637X/757/2/135

52. K.M. Butler, P.P. van der Werf, M. Rybak, T. Costa, P. Cox, A. Weiß, M.J. Michalowski, D.A. Riechers, D. Rigopoulou, L. Marchetti, S. Eales, I. Valtchanov, Resolved neutral outflow from a lensed dusty star forming galaxy at z=2.09 (2021). arXiv:2104.10077
53. J. Geach, M. Banerji, F. Bertoldi, M. Bethermin, C.M. Casey, C.-C. Chen, D.L. Clements, C. Cicone, F. Combes, C. Conselice, A. Cooray, K. Coppin, E. Daddi, H. Dannerbauer, R. Dave, M. Doherty, J.S. Dunlop, A. Edge, D. Farrah, M. Franco, G. Fuller, T. Garratt, W. Gear, T.R. Greve, E. Hatziminaoglou, C.C. Hayward, R.J. Ivison, R. Kawabe, P. Klaassen, K.K. Knudsen, K. Kohno, M. Koprowski, C.D.P. Lagos, G.E. Magdis, B. Magnelli, S.L. McGee, M. Michalowski, T. Mroczkowski, O. Noroozian, D. Narayanan, S. Oliver, D. Riechers, W. Rujopakarn, D. Scott, S. Serjeant, M.W.L. Smith, M. Swinbank, Y. Tamura, P. van der Werf, E. van Kampen, A. Verma, J. Vieira, J. Wagg, F. Walter, L. Wang, A. Wootten, M.S. Yun, The case for a ‘sub-millimeter SDSS’: a 3D map of galaxy evolution to z 10. BAAS 51(3), 549 (2019)

54. P. Klaassen, T. Mroczkowski, S. Bryan, C. Groppi, K. Basu, C. Cicone, H. Dannerbauer, C. De Breuck, W.J. Fischer, J. Geach, E. Hatziminaoglou, W. Holland, R. Kawabe, N. Sehgal, T. Stanke, E. van Kampen, The atacama large aperture submillimeter telescope (atlast) (2019). arXiv:1907.04756

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.