ELLiptic fibrations on the modular surface
associated to $\Gamma_1(8)$

Marie JOSÉ Bertin & Odile Lecacheux

Abstract. We give all the elliptic fibrations of the $K3$ surface associated to the modular group $\Gamma_1(8)$.

1. Introduction

Stienstra and Beukers [26] considered the elliptic pencil
\[xyz + \tau(x + y)(x + z)(y + z) = 0 \]
and the associated $K3$ surface \mathcal{B} for $\tau = t^2$, double cover of the modular surface for the modular group $\Gamma_0(6)$. With the help of its L-series, they remarked that this surface should carry an elliptic pencil exhibiting it as the elliptic modular surface for $\Gamma_1(8)$ and deplored it was not visible in the previous model of \mathcal{B}.

Later on, studying the link between the logarithmic Mahler measure of some $K3$ surfaces and their L-series, Bertin considered in [3] $K3$ surfaces of the family
\[(Y_k) \quad X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} = k. \]
For $k = 2$, Bertin proved that the corresponding $K3$ surface Y_2 is singular (i.e. its Picard rank is 20) with transcendental lattice
\[
\begin{pmatrix}
2 & 0 \\
0 & 4
\end{pmatrix}.
\]
Bertin noticed that Y_2 was nothing else than \mathcal{B}, corresponding to the elliptic fibration $X + Y + Z = s$ and $1/\tau = (s - 1)^2$. Its singular fibers are of Dynkin type $A_{11}, A_5, 2A_1$ and Kodaira type $I_{12}, I_6, 2I_2, 2I_1$. Its Mordell-Weil group is the torsion group $\mathbb{Z}/6\mathbb{Z}$.

Using an unpublished result of Lecacheux (see also section 7 of this paper), Bertin showed also that Y_2 carries the structure of the modular elliptic surface for $\Gamma_1(8)$. In that case, it corresponds to the elliptic fibration of Y_2 with parameter $Z = s$. Its singular fibers are of Dynkin type $2A_7, A_3, A_1$ and Kodaira type $2I_8, I_4, I_2, 2I_1$. Its Mordell-Weil group is the torsion group $\mathbb{Z}/8\mathbb{Z}$.

Interested in $K3$ surfaces with Picard rank 20 over \mathbb{Q}, Elkies proved in [8] that their transcendental lattices are primitive of class number one. In particular, he gave in [9] a list of 11 negative integers D for which there is a unique $K3$ surface X over \mathbb{Q} with Néron-Severi group of rank 20 and discriminant $-D$ consisting entirely of classes of divisors defined over \mathbb{Q}. For $D = -8$, he gave an explicit model of an

Date: January 26, 2013.

Key words and phrases. Modular Surfaces, Niemeier lattices, Elliptic fibrations of $K3$ surfaces.
elliptic fibration with $E_8 (= II^*)$ fibers at $t = 0$ and $t = \infty$ and an $A_1 (= I_2)$ fiber at $t = -1$

$$y^2 = x^3 - 675x + 27(27t - 196 + \frac{27}{t}).$$

For this fibration, the Mordell-Weil group has rank 1 and no torsion.

Independently, Schütt proved in [20] the existence of $K3$ surfaces of Picard rank 20 over \mathbb{Q} and gave for the discriminant $D = -8$ an elliptic fibration with singular fibers A_3, E_7, E_8 (I_4, III^*, I^*) and Mordell-Weil group equal to (0). For such a model, you can refer to [21].

Recall also that Shimada and Zhang gave in [23] a list, without equations but with their Mordell-Weil group, of extremal elliptic $K3$ surfaces. In particular, there are 14 extremal elliptic $K3$ surfaces with transcendental lattice

$$\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}.$$

At last, we mention Beukers and Montanus who worked out the semi-stable, extremal, elliptic fibrations of $K3$ surfaces [4].

As announced in the abstract, the aim of the paper is to determine all the elliptic fibrations with section on the modular surface associated to $\Gamma_1(8)$ and give for each fibration a Weierstrass model. Thus we recover all the extremal fibrations given by Shimada and Zhang and also fibrations of Bertin, Elkies, Schütt and Stienstra-Beukers mentioned above.

The paper is divided in two parts. In the first sections we use Nishiyama’s method, as explained in [18] and [22], to determine all the elliptic fibrations of $K3$ surfaces with a given transcendental lattice. The method is based on lattice theoretical ideas. We prove the following theorem

Theorem 1. There are 30 elliptic fibrations with section, distinct up to isomorphism, on the elliptic surface

$$X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} = 2.$$

They are listed in Table 1 with the rank and torsion of their Mordell-Weil group. The list consists of 14 fibrations of rank 0, 13 fibrations of rank 1 and 3 fibrations of rank 2.

In the second part, i.e. sections 7 to 10, we first explain that Y_2 is the modular surface associated to the modular group $\Gamma_1(8)$. From one of its fibrations we deduce that it is the unique $K3$ surface X over \mathbb{Q} with Néron-Severi group of rank 20 and discriminant -8, all of its classes of divisors being defined over \mathbb{Q}.

Then, for each fibration, we determine explicitly a Weierstrass model, with generators of the Mordell-Weil group.

We first use the 8-torsion sections of the modular fibration to construct the 16 first fibrations. Their parameters belong to a special group generated by 10 functions on the surface. This construction is similar to the one developed for $\Gamma_1(7)$ by Harrache and Lecacheux in [13]. The next fibrations are obtained by classical methods of gluing and breaking singular fibers. The last ones are constructed by adding a vertex to the graph of the modular fibration.

The construction of some of the fibrations can be done also for the other $K3$ surfaces Y_k of the family. Thus we hope to find for them fibrations of rank 0 and perhaps...
obtain more easily the discriminant of the transcendental lattice for singular $K3$
members.

2. Definitions

An integral symmetric bilinear form or a lattice of rank r is a free \mathbb{Z}-module S of
rank r together with a symmetric bilinear form

$$b: S \times S \rightarrow \mathbb{Z}$$

$$(x, x') \mapsto b(x, x').$$

Tensoring by \mathbb{R} we get the real bilinear form $S_{\mathbb{R}}$ associated to S.
If S is a non-degenerate lattice, we write the signature of S, $\text{sign}(S) = (t_+, t_-)$. An
indefinite lattice of signature $(1, t_-)$ or $(t_+, 1)$ is called an hyperbolic lattice.
A homomorphism of lattices $f: S \rightarrow S'$ is a homomorphism of the abelian groups
such that $b'(f(x), f(y)) = b(x, y)$ for all $x, y \in S$.
An injective (resp. bijective) homomorphism of lattices is called an embedding (resp. an isometry). The group of isometries of a lattice S into itself is denoted by $O(S)$ and called the orthogonal group of S.
An embedding $i: S \rightarrow S'$ is called primitive if $S'/i(S)$ is a free group.
A sublattice is a subgroup equipped with the induced bilinear form. A sublattice S'
of a lattice S is called primitive if the identity map $S' \rightarrow S$ is a primitive embedding.
The primitive closure of S inside S' is defined by

$$S = \{x \in S'/mx \in S \text{ for some positive integer } m\}.$$

A lattice M is an overlattice of S if S is a sublattice of M such that the index
$[M : S]$ is finite.
Two embeddings $i: S \rightarrow S'$ and $i': S \rightarrow S'$ are called isomorphic if there exists an
isometry $\sigma \in O(S')$ such that $i' = \sigma \circ i$.
By $S_1 \oplus S_2$ we denote the orthogonal sum of two lattices defined in the standard way.
We write S^n for the orthogonal sum of n copies of a lattice S. The orthogonal
complement of a sublattice S of a lattice S' is defined in the usual way and is denoted by $(S)^\perp$,

$$(S)^\perp = \{x \in S'/b(x, y) = 0 \text{ for all } y \in S\}.$$

If $e = (e_1, \ldots, e_r)$ is a \mathbb{Z}-basis of a lattice S, then the matrix $G(e) = (b(e_i, e_j))$
is called the Gram matrix of S with respect to e.
For every integer m we denote by $S[m]$ the lattice obtained from a lattice S by
multiplying the values of its bilinear form by m.
A lattice S is called even if $x^2 := b(x, x)$ is even for all x from S. In this case the
map $x \mapsto x^2$ is a quadratic form on S and from it we can recover the symmetric
bilinear form on S.
For any integer n we denote by $\langle n \rangle$ the lattice $\mathbb{Z}e$ where $e^2 = n$.

3. Discriminant forms

Let L be a non-degenerate lattice. The dual lattice L^* of L is defined by

$$L^* = \{x \in L \otimes \mathbb{Q}/ b(x, y) \in \mathbb{Z} \text{ for all } y \in L\}$$

Obviously L^* is an overlattice of L but its form takes non-integer values too. The canonical bilinear form on L^* induced by b is denoted by the same letter.
The discriminant group G_L is defined by

$$G_L := L^*/L.$$

This group is finite if and only if L is non-degenerate. In the latter case, its order is equal to the absolute value of the lattice determinant $|\det(G_e)|$ for any basis e of L.

A lattice L is unimodular if G_L is trivial. Let G_L be the discriminant group of a non-degenerate lattice L. The bilinear form of L extends naturally to a \mathbb{Q}-valued symmetric bilinear form on L^* and induces a symmetric bilinear form $b_L: G_L \times G_L \to \mathbb{Q}/\mathbb{Z}$.

If L is even, then b_L is the symmetric bilinear form associated to the quadratic form $q_L: G_L \to \mathbb{Q}/2\mathbb{Z}$ defined by $q_L(x + L) = x^2 + 2\mathbb{Z}$.

The latter means that $q_L(na) = n^2q_L(a)$ for all $n \in \mathbb{Z}$, $a \in G_L$ and $b_L(a, a') = \frac{1}{2}(q_L(a + a') - q_L(a) - q_L(a'))$, for all $a, a' \in G_L$, where $\frac{1}{2} : \mathbb{Q}/2\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ is the natural isomorphism.

The pair (G_L, b_L) (resp. (G_L, q_L)) is called the discriminant bilinear (resp. quadratic) form of L.

4. Root lattices

In this section we recall only what is needed for the understanding of the paper. For proofs and details one can refer to Bourbaki [5] and Martinet [14]. Let L be a negative-definite even lattice. We call $e \in L$ a root if $q_L(e) = -2$. Put $\Delta(L) := \{e \in L/q_L(e) = -2\}$. Then the sublattice of L spanned by $\Delta(L)$ is called the root type of L and is denoted by L_{Root}.

If $e \in \Delta(L)$, then an isometry R_e of L is defined by $R_e(x) = x + b(x, e)e$.

We call R_e the reflection associated with e. The subgroup of $O(L)$ generated by R_e ($e \in \Delta(L)$) is called the Weyl group of L and is denoted by $W(L)$.

The lattices A_m ($m \geq 1$), D_n ($n \geq 4$), E_p ($p = 6, 7, 8$) defined by the following Dynkin diagrams are called the root lattices: we use Bourbaki’s definitions [5].

All the vertices a_j, d_k, e_l are roots and two vertices a_j and a_j' are joined by a line if and only if $b(a_j, a_j') = 1$.

Denote e_i the vectors of the canonical basis of \mathbb{R}^n with the usual scalar product.

4.1. A_l^*/A_l. We can represent A_l by the set of points in \mathbb{R}^{l+1} with integer coordinates whose sum is zero.

Set $a_i = e_i - e_{i+1}$ and define

$$\alpha_l = e_1 - \frac{1}{l+1} \sum_{j=1}^{l+1} e_j = \frac{1}{l+1} \sum_{j=1}^{l} (l-j+1)a_j.$$
\(A_n = \langle a_1, a_2, \ldots, a_n \rangle \)

\[a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_n \]

\(D_l = \langle d_1, d_2, \ldots, d_l \rangle \)

\[d_1 \quad d_{l-2} \quad d_{l-3} \quad \cdots \quad d_l \]

\(E_p = \langle e_1, e_2, \ldots, e_p \rangle \)

\[e_1 \quad e_3 \quad e_4 \quad \cdots \quad e_p \]

One can show that

\[A_l^* = \langle A_l, \alpha_l \rangle, \quad A_l^*/A_l \simeq \mathbb{Z}/(l+1)\mathbb{Z} \quad \text{and} \quad q_{A_l}(\alpha_l) = \left(-\frac{l}{l+1} \right). \]

4.2. \(D_l^*/D_l \). We can represent \(D_l \) as the set of points of \(\mathbb{R}^l \) with integer coordinates of even sum and define

\[\delta_l = \frac{1}{2} \left(\sum_{i=1}^l \epsilon_i \right) = \frac{1}{2} \left(\sum_{i=1}^{l-2} i d_i + \frac{1}{2} (l-2) d_{l-1} + \frac{1}{2} l d_l \right) \]

\[\bar{\delta}_l = \epsilon_1 = \sum_{i=1}^{l-2} d_i + \frac{1}{2} (d_{l-1} + d_l) \]

\[\tilde{\delta}_l = \delta_l - \epsilon_l = \frac{1}{2} \left(\sum_{i=1}^{l-2} i d_i + \frac{1}{2} l d_{l-1} + \frac{1}{2} (l-2) d_l \right) \]

One can show that

\[D_l^* = \langle \epsilon_1, \ldots, \epsilon_l, \delta_l \rangle. \]

Then, for \(l \) odd

\[D_l^*/D_l \simeq \mathbb{Z}/4\mathbb{Z} = \langle \delta_l \rangle, \quad \bar{\delta}_l \equiv 2 \delta_l \quad \text{and} \quad \tilde{\delta}_l \equiv 3 \delta_l \ \text{mod.} \ D_l \]

and for \(l \) even

\[D_l^*/D_l \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \]

the 3 elements of order 2 being the images of \(\delta_l, \tilde{\delta}_l \) and \(\bar{\delta}_l \).

Moreover,

\[q_{D_l}(\delta_l) = \left(-\frac{l}{4} \right), \quad q_{D_l}(\bar{\delta}_l) = (-1), \quad b_{D_l}(\delta_l, \bar{\delta}_l) = -\frac{1}{2}. \]

4.3. \(E_6^*/E_6 \). We can represent \(E_6 \) as a lattice in \(\mathbb{R}^8 \) generated by the 6 vectors \(e_i \),

\[e_1 = \frac{1}{2} (\epsilon_1 + \epsilon_8) - \frac{1}{2} \left(\sum_{i=2}^7 \epsilon_i \right), \quad e_2 = \epsilon_1 + \epsilon_2, \quad e_i = \epsilon_{i-1} - \epsilon_{i-2}, \quad 3 \leq i \leq 6. \]

Denote

\[\eta_6 = -\frac{1}{3} (2 \epsilon_1 + 3 \epsilon_2 + 4 \epsilon_3 + 6 \epsilon_4 + 5 \epsilon_5 + 4 \epsilon_6). \]

Then
6 MARIE JOSÉ BERTIN & ODILE LECACHEUX

\[E_6^* = \langle E_6, \eta_6 \rangle, \; E_6^*/E_6 \simeq \mathbb{Z}/3\mathbb{Z}, \; q_{E_6}(\eta_6) = \left(\frac{4}{3} \right). \]

4.4. \(E_7^*/E_7 \). We can represent \(E_7 \) as a lattice in \(\mathbb{R}^8 \) generated by the 6 previous vectors \(e_i \) and \(e_7 = \epsilon_6 - \epsilon_5 \).

Denote \(\eta_7 = \frac{1}{2}(2e_1 + 3e_2 + 4e_3 + 6e_4 + 5e_5 + 4e_6 + 3e_7) \), then

\[E_7^* = \langle E_7, \eta_7 \rangle, \; E_7^*/E_7 \simeq \mathbb{Z}/2\mathbb{Z}, \; q_{E_7}(\eta_7) = \left(\frac{3}{2} \right). \]

4.5. \(E_8^*/E_8 \). We can represent \(E_8 \) as the subset of points with coordinates \(\xi_i \) satisfying

\[2\xi_i \in \mathbb{Z}, \; \xi_i - \xi_j \in \mathbb{Z}, \; \sum_{i=1}^{\infty} \xi_i \in 2\mathbb{Z}. \]

Then \(E_8^* = E_8 \) and \(E_8^*/E_8 = (0) \).

5. Elliptic fibrations

Before giving a complete classification of the elliptic fibrations on the K3 surface \(Y_2 \), we recall briefly some useful facts concerning K3 surfaces. For more details see [1] [28].

5.1. K3 surfaces and elliptic fibrations. A K3 surface \(X \) is a smooth projective complex surface with

\[K_X = \mathcal{O}_X \quad \text{and} \quad H^1(X, \mathcal{O}_X) = 0. \]

If \(X \) is a K3 surface, then \(H^2(X, \mathbb{Z}) \) is torsion free. With the cup product, \(H^2(X, \mathbb{Z}) \) has the structure of an even lattice. By the Hodge index theorem it has signature \((3,19)\) and by Poincaré duality it is unimodular and \(H^2(X, \mathbb{Z}) = U^3 \oplus E_8(-1)^2 \).

The Néron-Severi group \(NS(X) \) (i.e. the group of line bundles modulo algebraic equivalence), with the intersection pairing, is a lattice of signature \((1, \rho(X) - 1)\), where \(\rho(X) \) is the Picard number of \(X \). The natural embedding \(NS(X) \hookrightarrow H^2(X, \mathbb{Z}) \) is a primitive embedding of lattices.

If \(C \) is a smooth projective curve over an algebraically closed field \(K \), an elliptic surface \(\Sigma \) over \(C \) is an smooth surface with a surjective morphism

\[f : \Sigma \to C \]

such that almost all fibers are smooth curves of genus 1 and no fiber contains exceptional curves of the first kind.

The morphism \(f \) defines an elliptic fibration on \(\Sigma \).

We suppose also that every elliptic fibration has a section and so a Weierstrass form. Thus we can consider the generic fiber as an elliptic curve \(E \) on \(K(C) \) choosing a section as the zero section \(\bar{O} \). In the case of K3 surfaces, \(C = \mathbb{P}^1 \).

The singular fibers were classified by Néron [15] and Kodaira [10]. They are union of irreducible components with multiplicities; each component is a smooth rational
ELLIPTIC FIBRATIONS ON THE MODULAR SURFACE ASSOCIATED TO \(\Gamma_1(8) \)

The singular fibers are classified in the following Kodaira types:

- two infinite series \(I_n \) \((n > 1)\) and \(I_n^* \) \((n \geq 0)\)
- five types \(III, IV, II^*, III^*, IV^* \).

The dual graph of these components (a vertex for each component, an edge for each intersection point of two components) is an extended Dynkin diagram of type \(\tilde{A}_n, \tilde{D}_l, \tilde{E}_p \).

Deleting the zero component (i.e. the component meeting the zero section) gives the Dynkin diagram graph \(A_n, D_l, E_p \). We draw the most useful diagrams, with the multiplicity of the components, the zero component being represented by a circle.

The trivial lattice \(T(X) \) is the subgroup of the Néron-Severi group generated by the zero section and the fibers components. More precisely, the trivial lattice is the orthogonal sum

\[
T(X) = \langle \bar{O}, F \rangle \oplus_{v \in S} T_v
\]

where \(\bar{O} \) denotes the zero section, \(F \) the general fiber, \(S \) the points of \(C \) corresponding to the reducible singular fibers and \(T_v \) the lattice generated by the fiber components except the zero component.

From this formula we can compute the determinant of \(T(X) \). From Shioda’s results on height pairing \cite{Shioda} we can define a positive-definite lattice structure on the Mordell-Weil lattice \(MWL(X) := E(K(C))/E(K(C))_{tor} \) and get the following proposition.

Proposition 1. Let \(X \) be a K3 surface or more generally any elliptic surface with section. We have the relation

\[
|\text{disc}(NS(X))| = \text{disc}(T(X))\text{disc}(MWL(X))/|E(K)_{tor}|^2.
\]

Moreover since \(X \) is a K3 surface, the zero section has self-intersection \(\bar{O}^2 = -\chi(X) = -2 \). Hence the zero section \(\bar{O} \) and the general fiber \(F \) generate an even unimodular lattice, called the hyperbolic plane \(U \).

The trivial lattice \(T(X) \) of an elliptic surface is not always primitive in \(NS(X) \). Its primitive closure \(\bar{T}(X) \) is obtained by adding the torsion sections. The Néron-Severi lattice \(NS(X) \) always contains an even sublattice of corank two, the frame \(W(X) \)

\[
W(X) = \langle \bar{O}, F \rangle^+ \subset NS(X).
\]
Lemma 1. For any elliptic surface X with section, the frame $W(X)$ is a negative-definite even lattice of rank $\rho(X) - 2$.

Hence, the Néron-Severi lattice of a K3 surface is an even lattice. One can read off, the Mordell-Weil lattice, the torsion in the Mordell-Weil group MW and the type of singular fibers from $W(X)$ by

$$\text{MW}L(X) = W(X)/W(X)_{\text{root}} \quad (\text{MW})_{\text{tors}} = W(X)_{\text{root}}/W(X)_{\text{root}}$$

$$T(X) = U \oplus W(X)_{\text{root}}.$$

We can also calculate the heights of points from the Weierstrass equation [11] and test if points generate the Mordell-Weil group, since $\text{disc}(\text{NS}(X))$ is independant of the fibration.

5.2. Nikulin and Niemeier’s results.

Lemma 2. (Nikulin [17], Proposition 1.4.1) Let L be an even lattice. Then, for an even overlattice M of L, we have a subgroup M/L of $G_L = L^*/L$ such that q_L is trivial on M/L. This determines a bijective correspondence between even overlattices of L and subgroups G of G_L such that $q_L|_G = 0$.

Lemma 3. (Nikulin [17], Proposition 1.6.1) Let L be an even unimodular lattice and T a primitive sublattice. Then we have

$$G_T \simeq G_{T^\perp} \simeq L/(T \oplus T^\perp), \quad q_{T^\perp} = -q_T.$$

In particular, $\det T = \det T^\perp = [L : T \oplus T^\perp]$.

Theorem 2. (Nikulin [17] Corollary 1.6.2) Let L and M be even non-degenerate integral lattices such that

$$G_L \simeq G_M, \quad q_L = -q_M.$$

Then there exists an unimodular overlattice N of $L \oplus M$ such that

1) the embeddings of L and M in N are primitive
2) $L^\perp_N = M$ and $M^\perp_N = L$.

Theorem 3. (Nikulin [17] Theorem 1.12.4) Let there be given two pairs of nonnegative integers, $(t_{(+)}, t_{(-)})$ and $(l_{(+)}, l_{(-)})$. The following properties are equivalent:

a) every even lattice of signature $(t_{(+)}, t_{(-)})$ admits a primitive embedding into some even unimodular lattice of signature $(l_{(+)}, l_{(-)})$;

b) $l_{(+)}/l_{(-)} \equiv 0 \pmod{8}$, $t_{(+)} \leq l_{(+)}, t_{(-)} = l_{(-)}$ and $t_{(+)}/t_{(-)} \leq l_{(+)}/l_{(-)}$.

Theorem 4. (Niemeier [16]) A negative-definite even unimodular lattice L of rank 24 is determined by its root lattice L_{root} up to isometries. There are 24 possibilities for L and L/L_{root} listed below.
ELLiptic Fibrations on the modular surface associated to \(\Gamma_1(8) \)

\(L_{\text{Root}} \)	\(L / L_{\text{Root}} \)	\(L_{\text{Root}} \)	\(L / L_{\text{Root}} \)
\(E_8 \)	\((0) \)	\(D_{16}^{12} \oplus A_7^{12} \)	\(\mathbb{Z}/4 \mathbb{Z} \oplus \mathbb{Z}/8 \mathbb{Z} \)
\(E_8 \oplus D_{16} \)	\(\mathbb{Z}/2 \mathbb{Z} \)	\(A_{6}^{6} \)	\(\mathbb{Z}/3 \mathbb{Z} \oplus \mathbb{Z}/9 \mathbb{Z} \)
\(E_7^{12} \oplus D_{10} \)	\((\mathbb{Z}/2 \mathbb{Z})^{12} \)	\(A_{4}^{4} \)	\(\mathbb{Z}/5 \mathbb{Z} \)
\(E_7 \oplus A_{17} \)	\(\mathbb{Z}/6 \mathbb{Z} \)	\(A_{6}^{6} \)	\(\mathbb{Z}/13 \mathbb{Z} \)
\(D_{24} \)	\(\mathbb{Z}/22 \mathbb{Z} \)	\(D_{8}^{8} \)	\((\mathbb{Z}/2 \mathbb{Z})^{6} \)
\(D_{12}^{12} \)	\((\mathbb{Z}/2 \mathbb{Z})^{12} \)	\(D_{4} \oplus A_{3}^{12} \)	\(\mathbb{Z}/22 \mathbb{Z} \oplus (\mathbb{Z}/6 \mathbb{Z})^{2} \)
\(D_{6}^{6} \)	\((\mathbb{Z}/2 \mathbb{Z})^{6} \)	\(A_{4}^{4} \)	\((\mathbb{Z}/7 \mathbb{Z})^{2} \)
\(D_{6} \oplus A_{5}^{5} \)	\(\mathbb{Z}/22 \mathbb{Z} \oplus \mathbb{Z}/10 \mathbb{Z} \)	\(0 \)	\(A_{24} \)

The lattices \(L \) defined in theorem 4 are called **Niemeier lattices**.

5.3. **Nishiyama’s method.** Recall that a K3 surface may admit more than one elliptic fibration, but up to isomorphism, there is only a finite number of elliptic fibrations [23].

To establish a complete classification of the elliptic fibrations on the K3 surface \(Y_2 \), we use Nishiyama’s method based on lattice theoretic ideas [13]. The technique builds on a converse of Nikulin’s results.

Given an elliptic K3 surface \(X \), Nishiyama aims at embedding the frames of all elliptic fibrations into a negative-definite lattice, more precisely into a Niemeier lattice of rank 24. For this purpose, he first determines an even negative-definite lattice \(M \) such that

\[
q_M = -q_{NS(X)}, \quad \text{rank}(M) + \rho(X) = 26.
\]

By theorem 2, \(M \oplus W(X) \) has a Niemeier lattice as an overlattice for each frame \(W(X) \) of an elliptic fibration on \(X \). Thus one is bound to determine the (in-equivalent) primitive embeddings of \(M \) into Niemeier lattices \(L \). To achieve this, it is essential to consider the root lattices involved. In each case, the orthogonal complement of \(M \) into \(L \) gives the corresponding frame \(W(X) \).

5.3.1. **The transcendental lattice and argument from Nishiyama paper.** Denote by \(T(X) \) the transcendental lattice of \(X \), i.e. the orthogonal complement of \(NS(X) \) in \(H^2(X, \mathbb{Z}) \) with respect to the cup-product,

\[
T(X) = NS(X) \perp \subset H^2(X, \mathbb{Z}).
\]

In general, \(T(X) \) is an even lattice of rank \(r = 22 - \rho(X) \) and signature \((2, 20 - \rho(X))\).

Let \(t = r - 2 \). By Nikulin’s theorem 3, \(T(X)[-1] \) admits a primitive embedding into the following indefinite unimodular lattice:

\[
T(X)[-1] \hookrightarrow U^t \oplus E_8.
\]

Then define \(M \) as the orthogonal complement of \(T(X)[-1] \) in \(U^t \oplus E_8 \). By construction, \(M \) is a negative-definite lattice of rank \(2t + 8 - r = r + 4 = 26 - \rho(X) \).

By lemma 3 the discriminant form satisfies

\[
q_M = -q_{T(X)[-1]} = q_{T(X)} = -q_{NS(X)}.
\]

Hence \(M \) takes exactly the shape required for Nishiyama’s technique.
5.3.2. Torsion group. First we classify all the primitive embeddings of M into L_{root}. Denote $N := M^\perp$ in L_{root} and $W = M^\perp$ into L.

If M satisfies $M_{\text{root}} = M$, we can apply Nishiyama’s results [18]. In particular,

- M primitively embedded in L_{root} \iff M primitively embedded in L
- N/N_{root} is torsion-free.

Notice that the rank r of the Mordell-Weil group is equal to $\text{rk}(W) - \text{rk}(W_{\text{root}})$ and its torsion part is $W_{\text{root}}/W_{\text{root}}$.

We need also the following lemma.

Lemma 4.

1. If $\det N = \det M$, then the Mordell-Weil group is torsion-free.
2. If $r = 0$, then the Mordell-Weil group is isomorphic to W/N.
3. In general, there are the following inclusions

$$W_{\text{root}}/W_{\text{root}} \subset W/N \subset L/L_{\text{root}}.$$

6. Elliptic fibrations of Y_2

Theorem 5. There are 30 elliptic fibrations with section, unique up to isomorphism, on the elliptic surface Y_2. They are listed with the rank and torsion of their Mordell-Weil groups on the table 1.

Proof. We follow Nishiyama’s method. Since

$$T(Y_2) = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix},$$

we get, by Nishiyama’s computation [18], $M = D_5 \oplus A_1$. Thus we have to determine all the primitive embeddings of M into the root lattices and their orthogonal complements.

6.1. The primitive embeddings of $D_5 \oplus A_1$ into root lattices.

Proposition 2. There are primitive embeddings of $D_5 \oplus A_1$ only into the following L_{root}:

$$E_8^{\oplus 3}, E_8 \oplus D_{16}, E_7^{\oplus 2} \oplus D_{10}, E_7 \oplus A_{17}, D_6^{\oplus 3}, D_9 \oplus A_{15}, E_6^{\oplus 4}, A_{11} \oplus E_6 \oplus D_7, D_6^{\oplus 4}, D_6 \oplus A_9^{\oplus 2}, D_5^{\oplus 2} \oplus A_7^{\oplus 2}.$$

Proof. The assertion comes from Nishiyama’s results [18]. The root lattice A_1 can be primitively embedded in all A_n, D_l and $E_p, n \geq 1, l \geq 2, p = 6, 7, 8$.

The root lattice D_5 can be primitively embedded only in $D_l, l \geq 5$ and $E_p, p = 6, 7, 8$.

The root lattice $D_5 \oplus A_1$ can be primitively embedded only in $D_l, l \geq 7, E_7$ and E_8.

The proposition follows from theorem 4 and the previous facts.

Proposition 3. Up to the action of the Weyl group, the primitive embeddings are given in the following list

- $A_1 = \langle a_n \rangle \subset A_n$
- $A_1 = \langle d_l \rangle \subset D_l, l \geq 4$
- $A_1 = \langle e_1 \rangle \subset E_p, p = 6, 7, 8$
| L_{Root} | L/L_{Root} | Reducible fibers | Rk | Tors. |
|-----------------|-----------------|-----------------|-----|------|
| E_8^3 | (0) | $A_1 \subset E_8$ $D_5 \subset E_8$ $E_7 A_3 E_8$ 0 (0) | | |
| | | $A_1 \oplus D_5 \subset E_8$ $A_1 E_8 E_8$ 1 (0) | | |
| E_6D_{16} | $\mathbb{Z}/2\mathbb{Z}$ | $A_1 \subset E_8$ $D_5 \subset D_{16}$ $E_7 D_{11}$ 0 (0) | | |
| | | $A_1 \oplus D_5 \subset E_8$ $A_1 D_{16}$ 1 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $D_5 \subset E_8$ $A_1 \subset D_{16}$ $A_3 A_1 D_{14}$ 0 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $A_1 \oplus D_5 \subset D_{16}$ $E_8 A_1 D_9$ 0 (0) | | |
| $E_7^2D_{10}$ | $(\mathbb{Z}/2\mathbb{Z})^2$ | $A_1 \subset E_7$ $D_5 \subset D_{10}$ $E_7 D_{6} D_{5}$ 0 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $A_1 \subset E_7$ $D_5 \subset E_7$ $D_6 A_1 D_{10}$ 1 (0) | | |
| | | $A_1 \oplus D_5 \subset E_7$ $E_7 D_{10}$ 1 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $A_1 \oplus D_5 \subset D_{10}$ $E_7 E_7 A_1 A_3$ 0 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $D_5 \subset E_7$ $A_1 \subset D_{10}$ $A_1 A_1 D_{8} E_7$ 1 $\mathbb{Z}/2\mathbb{Z}$ | | |
| E_7A_{17} | $\mathbb{Z}/6\mathbb{Z}$ | $A_1 \oplus D_5 \subset E_7$ $A_1 \subset A_{17}$ $A_1 A_{15}$ 2 (0) | | |
| D_{24} | $\mathbb{Z}/2\mathbb{Z}$ | $D_5 \subset E_7$ $A_1 \subset A_{17}$ $A_1 A_{15}$ 2 (0) | | |
| | | $A_1 \oplus D_5 \subset D_{24}$ $A_1 D_{17}$ 0 (0) | | |
| D_{12}^2 | $(\mathbb{Z}/2\mathbb{Z})^2$ | $A_1 \subset D_{12}$ $D_5 \subset D_{12}$ $A_1 D_{10} D_7$ 0 $\mathbb{Z}/2\mathbb{Z}$ | | |
| | | $A_1 \oplus D_5 \subset D_{12}$ $A_1 D_{5} D_{12}$ 0 $\mathbb{Z}/2\mathbb{Z}$ | | |
| D_8^3 | $(\mathbb{Z}/2\mathbb{Z})^3$ | $A_1 \subset D_8$ $D_5 \subset D_8$ $A_1 D_6 A_3 D_8$ 0 $(\mathbb{Z}/2\mathbb{Z})^2$ | | |
| | | $A_1 \oplus D_5 \subset D_8$ $A_1 D_6 D_8$ 1 $\mathbb{Z}/2\mathbb{Z}$ | | |
| D_9A_{15} | $\mathbb{Z}/8\mathbb{Z}$ | $A_1 \oplus D_5 \subset D_9$ $A_1 A_1 A_1 A_{15}$ 0 $\mathbb{Z}/4\mathbb{Z}$ | | |
| | | $D_5 \subset D_9$ $A_1 \subset A_{15}$ $D_4 A_{13}$ 1 (0) | | |
| E_6^3 | $(\mathbb{Z}/3\mathbb{Z})^2$ | $A_1 \subset E_6$ $D_5 \subset E_6$ $A_5 E_6 E_6$ 1 $\mathbb{Z}/3\mathbb{Z}$ | | |
| $A_11E_6D_7$ | $\mathbb{Z}/12\mathbb{Z}$ | $A_1 \subset E_6$ $D_5 \subset D_7$ $A_5 A_1 A_1 A_{11}$ 0 $\mathbb{Z}/6\mathbb{Z}$ | | |
| | | $A_1 \subset A_{11}$ $D_5 \subset D_7$ $A_9 A_1 E_6$ 1 (0) | | |
| | | $A_1 \oplus D_5 \subset D_7$ $A_{11} E_6 A_1$ 0 $\mathbb{Z}/3\mathbb{Z}$ | | |
| | | $A_1 \subset A_{11}$ $D_5 \subset E_6$ $A_9 D_7$ 2 (0) | | |
| | | $D_5 \subset E_6$ $A_1 \subset D_7$ $A_{11} A_1 D_7$ 1 $\mathbb{Z}/4\mathbb{Z}$ | | |
| D_8^2 | $(\mathbb{Z}/2\mathbb{Z})^4$ | $A_1 \subset D_6$ $D_5 \subset D_6$ $A_1 D_4 D_6 D_6$ 1 $(\mathbb{Z}/2\mathbb{Z})^2$ | | |
| $D_6A_0^2$ | $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ | $D_5 \subset D_6$ $A_1 \subset A_9$ $A_7 A_9$ 2 (0) | | |
| $D_5^2A_5^2$ | $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ | $D_5 \subset D_5$ $A_1 \subset D_5$ $A_1 A_3 A_7 A_7$ 0 $\mathbb{Z}/8\mathbb{Z}$ | | |
| | | $D_5 \subset D_5$ $A_1 \subset A_7$ $D_5 A_5 A_7$ 1 (0) | | |

Table 1. The elliptic fibrations of Y_2
Proposition 4. We get the following results about the orthogonal complements of the difference of notations between Nishiyama and us.

Proof. These assertions come from Nishiyama’s computations [18]. Just be careful of the difference of notations between Nishiyama and us. □

\(D_5 \oplus A_1 = \langle d_{l-1}, d_l, d_{l-2}, d_{l-3}, d_{l-4} \rangle \oplus \langle d_l \rangle \subset D_l, \ l \geq 7\)

\(D_5 \oplus A_1 = \langle e_2, e_5, e_4, e_3, e_1 \rangle \oplus \langle e_7 \rangle \subset E_n, \ n \geq 7.\)

(1)

\[
(A_1)_{D_4}^{\perp} = L_{n-2}^2 = \begin{pmatrix}
-2 \times 3 & 2 & 0 & \ldots & 0 \\
2 & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & A_{n-2}
\end{pmatrix}
\]

with \(\det L_{n-2}^2 = 2(n+1)\)

(2)

(\(A_1\))_{D_4}^{\perp} = A_1^{\leq 3}

(\(A_1\))_{D_n}^{\perp} = A_1 \oplus D_{n-2}, \ n \geq 5

(3)

\((A_1)_{A_5}^{\perp} = (\langle a_7 \rangle)_{A_5}^{\perp} = \langle a_7 + 2a_6, a_5, a_4, a_3, a_2, a_1 \rangle\)

\(a_7 \in (A_1)_{A_7}^{\perp} \text{ but } ka_7 \notin ((A_1)_{A_7}^{\perp})_{\text{root}} = A_5\)

(4)

\((A_1)_{A_6}^{\perp} = (\langle a_9 \rangle)_{A_6}^{\perp} = \langle a_9 + 2a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1 \rangle\)

\(a_9 \in (A_1)_{A_9}^{\perp} \text{ but } ka_9 \notin ((A_1)_{A_9}^{\perp})_{\text{root}} = A_7\)

(5)

\((A_1)_{A_{11}}^{\perp} = (\langle a_{11} \rangle)_{A_{11}}^{\perp} = \langle a_{11} + 2a_{10}, a_9, a_8, a_7, a_6, a_5, a_4, a_3, a_2, a_1 \rangle\)

\(a_{11} \in (A_1)_{A_{11}}^{\perp} \text{ but } ka_{11} \notin ((A_1)_{A_{11}}^{\perp})_{\text{root}} = A_9\)

(6)

\((A_1)_{D_7}^{\perp} = (d_5) \oplus (d_5 + d_6 + 2d_4 + d_3, d_2, d_1) = A_1 \oplus D_4\)

\(\tilde{d_6} \text{ and } \tilde{d_6} \in (A_1)_{D_6}^{\perp}, \ \delta_6 \notin (A_1)_{D_6}^{\perp}\)

(7)

\((A_1)_{D_7}^{\perp} = (d_7)_{D_7}^{\perp} = (d_6) \oplus (d_6 + d_7 + 2d_5 + d_4, d_4, d_3, d_2, d_1) = A_1 \oplus D_5\)

\(3\delta_7 \in (A_1)_{D_7}^{\perp}\)

(8)

\((A_1)_{D_{10}}^{\perp} = (d_{10})_{D_{10}}^{\perp} = (d_9) \oplus (d_9 + d_{10} + 2d_8 + d_7, d_7, d_6, d_5, d_4, d_3, d_2, d_1) = A_1 \oplus D_8\)

\(2\delta_{10} \in A_1 \oplus D_8\)

(9)

\((A_1)_{E_6}^{\perp} = (e_1)_{E_6}^{\perp} = \langle e_1 + e_2 + 2e_3 + 2e_4 + e_5, e_6, e_4, e_2 \rangle = A_5\)

\(3\eta_6 \in A_5\)
(10) \[(A_1)_{E_7}^1 = (e_1 + e_2 + 2e_3 + 2e_4 + e_5, e_6, e_5, e_4, e_2) = D_6 \]
\[2\eta_7 \in (A_1)_{E_7}^1 \]

(11) \[(A_1)_{E_6}^1 = E_7 \]

(12) \[(D_5)_{D_1}^1 = D_{1-5} \]
\[D_1 = (-4) \quad D_2 = A_1 \oplus D_3 = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \simeq A_3 \]

(13) \[(D_5)_{D_6}^1 = \langle d_5 + d_6 + 2d_4 + 2d_3 + 2d_2 + 2d_1 \rangle = \langle (-4) \rangle \]
\[\delta_6 \text{ and } \delta_6 \notin (D_5)_{D_6}^1, \quad \delta_6 \in (D_5)_{D_6}^1 \]

(14) \[(D_5)_{E_6}^1 = \langle e_2, e_5, e_4, e_3, e_1 \rangle_{E_6} = \langle 3e_2 + 2e_1 + 4e_3 + 6e_4 + 5e_5 + 4e_6 \rangle = \langle (-12) \rangle \]
\[3\eta_6 = (-12) \]

(15) \[(D_5)_{E_7}^1 = \langle 2e_1 + 2e_2 + 3e_3 + 4e_4 + 3e_5 + 2e_6 + e_7 \rangle \]
\[\oplus \langle e_2 + e_3 + 2e_4 + 2e_5 + 2e_6 + 2e_7 \rangle \]
\[= A_1 \oplus (-4) \]
\[\eta_7 \in (D_5)_{E_7}^1, \quad 2\eta_7 \notin A_1 \]

(16) \[(D_5)_{E_6}^1 = A_3 \]

(17) \[(D_5 \oplus A_1)_{D_7}^1 = A_1 = (d_6 + d_7 + 2d_5 + 2d_4 + 2d_3 + 2d_2 + d_1) \]

(18) \[(D_5 \oplus A_1)_{D_8}^1 = \langle d_1 + d_6 + 2d_5 + 2d_4 + 2d_3 + d_2 \rangle \]
\[\oplus \langle d_7 + d_8 + 2d_6 + 2d_5 + 2d_4 + 2d_3 + 2d_2 \rangle \]
\[= A_1 \oplus (-4) \]
\[4\delta_8 \notin (D_5 \oplus A_1)_{D_8}^1, \quad \delta_8 \notin A_1 \]

(19) \[(D_5 \oplus A_1)_{D_9}^1 = A_1 \oplus A_1 \oplus A_1 \]
\[= (d_8 + d_9 + 2d_7 + 2d_6 + 2d_5 + 2d_4 + d_3) \]
\[\oplus (d_8 + d_9 + 2d_7 + 2d_6 + 2d_5 + 2d_4 + 2d_3 + 2d_2 + d_1) \oplus (d_1) \]
\[(D_5 \oplus A_1)_{D_{10}}^1 = A_1 \oplus A_3 \]
\[(D_5 \oplus A_1)_{D_{12}}^1 = A_1 \oplus D_5 \]
\[(D_5 \oplus A_1)_{D_{16}}^1 = A_1 \oplus D_9 \]
\[(D_5 \oplus A_1)_{D_{24}}^1 = A_1 \oplus D_{17} \]

(20) \[(D_5 \oplus A_1)_{E_7}^1 = \langle 3e_2 + 2e_1 + 4e_3 + 6e_4 + 5e_5 + 4e_6 + 2e_7 \rangle = \langle (-4) \rangle \]
\[2\eta_7 \notin (D_5 \oplus A_1)_{E_7}^1 \]
\[(D_5 \oplus A_1)_{E_8} = A_1 \oplus (-4) = (3e_2 + 2e_1 + 4e_3 + 6e_4 + 5e_5 + 4e_6 + 3e_7 + 2e_8) + (3e_2 + 2e_1 + 4e_3 + 6e_4 + 5e_5 + 4e_6 + 2e_7)\]

Proof. The orthogonal complements are given in Nishiyama [18] and the rest of the proof follows immediately from the various expressions of $\eta_7, \eta_6, \delta_1, \bar{\delta}, \delta$ and α_m given in section 4.

□

Once the different types of fibrations are known, we get the rank of the Mordell-Weil group by 5.3.2. To determine the torsion part we need to know appropriate generators of L/L_{root}.

6.2. Generators of L/L_{root}

By lemma 1, a set of generators can be described in terms of elements of L^*/L. We list in the following table the generators fitting to the corresponding W. We restrict to relevant L_{root} according to proposition 2. For convenience, the generators are given modulo L_{root}.

L_{root}	L/L_{root}
E_8^3	$(\{0\})$
E_8D_{16}	$\langle \delta_{16}\rangle \simeq \mathbb{Z}/2\mathbb{Z}$
$E_2^2D_{10}$	$\langle \eta_7^{(1)} + \delta_{10}, \eta_7^{(2)} + \delta_{10}\rangle \simeq (\mathbb{Z}/2\mathbb{Z})^2$
E_7A_{17}	$\langle \eta_7 + 3\alpha_{17}\rangle \simeq \mathbb{Z}/6\mathbb{Z}$
D_8^3	$\langle \delta_8^{(1)} + \delta_8^{(2)} + \delta_8^{(3)}, \delta_8^{(1)} + \delta_8^{(2)} + \delta_8^{(3)} + \delta_8^{(4)}\rangle \simeq (\mathbb{Z}/2\mathbb{Z})^4$
D_9A_{15}	$\langle \delta_9 + 2\alpha_{15}\rangle \simeq \mathbb{Z}/8\mathbb{Z}$
E_6^4	$\langle \eta_6^{(1)} + \eta_6^{(2)} + \eta_6^{(3)} + \eta_6^{(4)}\rangle \simeq (\mathbb{Z}/3\mathbb{Z})^2$
$A_{11}E_6D_7$	$\langle \alpha_{11} + \eta_6 + \delta_7\rangle \simeq \mathbb{Z}/12\mathbb{Z}$
D_6^4	$\langle \delta_6^{(1)} + \delta_6^{(2)} + \delta_6^{(3)} + \delta_6^{(4)}, \delta_6^{(1)} + \delta_6^{(2)} + \delta_6^{(3)} + \delta_6^{(4)}\rangle \simeq (\mathbb{Z}/2\mathbb{Z})^4$
$D_9A_0^4$	$\langle \delta_9 + 5\alpha_9, \delta_9 + \alpha_9^{(1)} + 2\alpha_9^{(2)}\rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$
$D_5^2A_7^2$	$\langle \delta_5^{(1)} + \delta_5^{(2)} + 2\alpha_7^{(1)}, \delta_5^{(1)} + \delta_5^{(2)} + \alpha_7^{(1)} + \alpha_7^{(2)}\rangle \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$

If the rank is 0, we apply lemma 4 (1) and (2) to determine the torsion part of the Mordell-Weil group. Thus we recover the 14 fibrations of rank 0 exhibited by Shimada and Zhang [23]. For the other 16 fibrations we apply proposition 5 and lemma 4 (3). Recall that $\det W = 8$ and the torsion group is $W_{\text{root}}/W_{\text{root}}$.

6.3. $L_{\text{root}} = E_8D_{16}$

$L/L_{\text{root}} = \langle \delta_{16} + L_{\text{root}}\rangle \simeq \mathbb{Z}/2\mathbb{Z}$.
6.3.1. *Fibration* A_1D_{16}. It is obtained from the primitive embedding $D_5 \oplus A_1 \subset E_8$. Since by proposition 5 (21) $(D_5 \oplus A_1)_{E_8} = A_1 \oplus (-4)$, we get $\det N = 8 \times 4$, so $W/N \simeq \mathbb{Z}/2\mathbb{Z}$ and $L/L_{\text{root}} = (\delta_{16} + L_{\text{root}})$. Since $2\delta_{16} \in D_{16} = W_{\text{root}}$, thus $\delta_{16} \in \overline{W}_{\text{root}}$ and

$$\overline{W}_{\text{root}}/W_{\text{root}} = \mathbb{Z}/2\mathbb{Z}.$$

6.4. $L_{\text{root}} = E_7^2D_{10}$.

$$L/L_{\text{root}} = \langle \eta_7^{(1)} + \delta_{10}, \eta_7^{(2)} + \bar{\delta}_{10} \mod L_{\text{root}} \rangle \simeq (\mathbb{Z}/2\mathbb{Z})^2$$

6.4.1. *Fibration* $A_1D_5D_{10}$. It is obtained from the primitive embeddings $A_1 \subset E_7^{(1)}$ and $D_5 \subset E_7^{(2)}$. Since by proposition 5 (10) and (15) $(A_1)_{E_7^{(1)}} = D_6$ and $(D_5)_{E_7^{(2)}} = A_1 \oplus (-4)$, we get $\det N = 8 \times 4^2$ and $W/N \simeq (\mathbb{Z}/2\mathbb{Z})^2 \simeq L/L_{\text{root}}$. By proposition 5 (15), $\eta_7^{(1)} \in (D_5)_{E_7^{(1)}} = A_1 \oplus (-4)$, but $2\eta_7 \notin A_1$ and by proposition 5 (10) $2\eta_7^{(1)} \in (A_1)_{E_7^{(1)}} = D_6$. So

$$\overline{W}_{\text{root}}/W_{\text{root}} = \langle \eta_7^{(1)} + \delta_{10} + W_{\text{root}} \rangle \simeq \mathbb{Z}/2\mathbb{Z}.$$

6.4.2. *Fibration* $E_7^3D_{10}$. It is obtained from $D_5 \oplus A_1 \subset E_7^{(1)}$. Since by proposition 5 (20) $(D_5 \oplus A_1)_{E_7^{(1)}} = (-4)$, we get $\det N = 8 \times 4$ so $W/N \simeq \mathbb{Z}/2\mathbb{Z}$. Again by proposition 5 (20), $2\eta_7^{(1)} \notin (D_5 \oplus A_1)_{E_7^{(1)}}$ and we get $W/N = \langle \eta_7^{(2)} + \bar{\delta}_{10} + N \rangle$. Since $2\eta_7^{(2)} \in E_7$ and $2\delta_{10} \in D_{10}$, it follows

$$\overline{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/2\mathbb{Z}.$$

6.4.3. *Fibration* $2A_1D_8E_7$. It is obtained from the primitive embeddings $A_1 \subset D_{10}$ and $D_5 \subset E_7^{(1)}$.

By proposition 5 (8) and (15), we get $(A_1)_{D_{10}} = A_1 \oplus D_8$ and $(D_5)_{E_7^{(1)}} = A_1 \oplus (-4)$, so $\det N = 8 \times 4^2$ and $W/N \simeq (\mathbb{Z}/2\mathbb{Z})^2 \simeq L/L_{\text{root}}$. By proposition 5 (15), $2\eta_7^{(1)} \notin A_1$ and by proposition 5 (8) $2\delta_{10} \in A_1 \oplus D_8$ so

$$\overline{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/2\mathbb{Z}.$$

6.5. $L_{\text{root}} = E_7A_{17}$.

$$L/L_{\text{root}} = \langle \eta_{17} + 3\alpha_{17}, L_{\text{root}} \rangle \simeq \mathbb{Z}/6\mathbb{Z}$$

6.5.1. *Fibration* A_{17}. It is obtained from the primitive embedding $D_5 \oplus A_1 \subset E_7$. By proposition 5 (20), $(D_5 \oplus A_1)_{E_7} = (-4)$, so $\det N = 8 \times 9$ and $W/N \simeq \mathbb{Z}/3\mathbb{Z} = \langle 6\alpha_{17} + N \rangle$.

Moreover, since $18\alpha_{17} \in A_{17}$, $6\alpha_{17} \in \overline{W}_{\text{root}}$ so

$$\overline{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/3\mathbb{Z}.$$
6.5.2. **Fibration** A_1A_{15}. It is obtained from the primitive embeddings $D_5 \subset E_7$ and $A_1 \subset A_{17}$. By proposition 5 (15) and (1), $(D_5)_{E_6} = A_1 \oplus (-4)$ and $(A_1)_{A_{17}} = L_{17}^2$ with $\det L_{17}^2 = 2 \times 18$, so $\det N = 8 \times 6^2$ and $W/N \simeq \mathbb{Z}/6\mathbb{Z} \simeq L/L_{\text{root}}$.

But, by lemma 1, $W_{\text{root}} = A_1A_{15}$ has no overlattice. Hence
\[
\overline{W}_{\text{root}}/W_{\text{root}} \simeq (0).
\]

6.6. $L_{\text{root}} = D_9^3$.
\[
L/L_{\text{root}} = \langle \delta_9 + \alpha_{15} + L_{\text{root}} \rangle \simeq \mathbb{Z}/8\mathbb{Z}
\]

6.6.1. **Fibration** $A_1D_8D_8$. It comes from the primitive embedding $D_5 \oplus A_1 \subset D_8^{(1)}$. By proposition 5 (18), $(D_5 \oplus A_1)_{D_8} = A_1 \oplus (-4)$ so $\det N = 8 \times 4^2$ and $W/N \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

By proposition 5 (18), $4\delta_8 \notin (D_5 \oplus A_1)_{D_8}$ so $W/N = (\nu_8 + \delta_8) \delta_8$, so $\det N \simeq \mathbb{Z}/2\mathbb{Z}$.

Again by proposition 5 (18) $\nu_8 \notin A_1$, so only $2(\delta_8 + \delta_8) \delta_8 \delta_8 \delta_8 \in W_{\text{root}}$ and
\[
\overline{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/2\mathbb{Z}.
\]

6.7. $L_{\text{root}} = D_9A_{15}$.
\[
L/L_{\text{root}} = \langle \delta_9 + 2\alpha_{15} + L_{\text{root}} \rangle \simeq \mathbb{Z}/8\mathbb{Z}
\]

6.7.1. **Fibration** D_4A_{13}. It comes from the primitive embeddings $D_5 \subset D_9$ and $A_1 \subset A_{15}$. By proposition 5 (12) and (1), $(D_5)_{D_9} = D_4$, $(A_1)_{A_{15}} = L_{13}^2$ with $\det L_{13}^2 = 2 \times 16$ so $\det N = 8 \times 16$ and $W/N \simeq \mathbb{Z}/4\mathbb{Z}$.

But by lemma 1, $W_{\text{root}} = D_4A_{13}$ has no overlattice since $q_{A_{13}}(\alpha_{13}) = (-\frac{1}{15})$ and $q_{D_4}(\delta_4) \in \mathbb{Z}$. Hence
\[
\overline{W}_{\text{root}}/W_{\text{root}} \simeq (0).
\]

6.8. $L_{\text{root}} = E_6^3$.
\[
L/L_{\text{root}} = \langle \eta_6 + \eta_6 + \eta_6 + \eta_6 + \eta_6 + \eta_6 \rangle \mod L_{\text{root}} \simeq (\mathbb{Z}/3\mathbb{Z})^2
\]

6.8.1. **Fibration** $A_6E_6E_6$. We can suppose the primitive embeddings $A_1 \subset E_6^{(1)}$ and $D_5 \subset E_6^{(2)}$.

By proposition 5 (9) and (14), $(A_1)_{E_6} = A_5$ and $(D_5)_{E_6} = (-12)$ so $\det N = 8 \times 9^2$ and $W/N = (\mathbb{Z}/3\mathbb{Z})^2$.

By proposition 5 (9), $3\eta_6 \in A_5$ so $2\eta_6 + \eta_6 \eta_6 \in W_{\text{root}}$ but $\eta_6 + \eta_6 + \eta_6 \notin \overline{W}_{\text{root}}$ by proposition 5 (14). Hence
\[
\overline{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/3\mathbb{Z}.
\]

6.9. $L_{\text{root}} = A_{11}E_6D_7$.
\[
L/L_{\text{root}} = \langle \alpha_{11} + \eta_6 + \delta_7 + L_{\text{root}} \rangle \simeq \mathbb{Z}/12\mathbb{Z}
\]
6.9.1. **Fibration** $A_9A_1A_1E_6$. It follows from the primitive embeddings $A_1 \subset A_{11}$ and $D_5 \subset D_7$.

By proposition 5 (5) and (12), $(A_1)_{A_{11}}^\perp = L_2^3$, det $L_2^3 = 2 \times 12$, $(D_5)_{D_7}^\perp = D_2 \simeq A_1^{\oplus 2}$ so det $N = 8 \times 6^2$ and $W/N \simeq \mathbb{Z}/6\mathbb{Z} = (2\alpha_{11} + 2\eta_6 + 2\delta_7 + N)$.

Since $k(2\alpha_{11}) \notin A_9$ by proposition 5 (5), we get

$$\mathbb{W}_{\text{root}}/W_{\text{root}} = (0).$$

6.9.2. **Fibration** A_9D_7. By lemma 1, it follows that $W_{\text{root}} = A_9D_7$ has no overlattice since $q_{A_9}(\alpha_9) = (-\frac{1}{10})$ and $q_{D_7} = (-\frac{7}{4})$. Hence

$$\mathbb{W}_{\text{root}}/W_{\text{root}} = (0).$$

6.9.3. **Fibration** $A_{11}A_1D_5$. It comes from the primitive embeddings $D_5 \subset E_6$ and $A_1 \subset D_7$.

By proposition 5 (14) and (7), $(D_5)_{E_6}^\perp = (-12)$ and $(A_1)_{D_7}^\perp = A_1 \oplus D_5$, so det $N = 8 \times 12^2$ and $W/N \simeq \mathbb{Z}/12\mathbb{Z} \simeq L/L_{\text{root}}$.

Since $W_{\text{root}} \cap E_6 = 0$, we get also $\mathbb{W}_{\text{root}} \cap E_6 = 0$.

Now $3\alpha_{11} + 3\delta_7 \in \mathbb{W}_{\text{root}}$ since $3\delta_7 \equiv \delta_7$ and $4(3\alpha_{11} + 3\delta_7) \in W_{\text{root}}$. Hence

$$\mathbb{W}_{\text{root}}/W_{\text{root}} \simeq \mathbb{Z}/4\mathbb{Z}.$$

6.10. $L_{\text{root}} = D_6^4$.

$L/L_{\text{root}} = (\delta_6^{(1)}, \delta_6^{(4)}, \delta_6^{(3)}, \delta_6^{(1)}, \delta_6^{(3)}, \delta_6^{(4)}, \delta_6^{(1)}, \delta_6^{(2)}) \mod L_{\text{root}} \simeq (\mathbb{Z}/2\mathbb{Z})^4$

6.10.1. **Fibration** $A_1D_4D_6D_6$. We assume the primitive embeddings $A_1 \subset D_6^{(1)}$ and $D_5 \subset D_6^{(2)}$.

By proposition 5 (13) and (6), $(A_1)_{D_6}^\perp = A_1 \oplus D_4$, $(D_5)_{D_6}^\perp = (-4)$, so det $N = 8 \times 8^2$ and $W/N \simeq (\mathbb{Z}/2\mathbb{Z})^3$.

After enumeration of all the elements of L/L_{root}, since by proposition 5 (13) and (6) $\delta_6^{(2)} \in (D_5)_{D_6}^\perp$ and only $\delta_6^{(1)}$ or $\delta_6^{(1)} \in (A_1)_{D_6}^\perp$, we get $W/N = \{\delta_6^{(1)}, \delta_6^{(4)}, \delta_6^{(3)}, \delta_6^{(1)}, \delta_6^{(3)}, \delta_6^{(4)}, \delta_6^{(1)}, \delta_6^{(2)}\}$ \(\simeq (\mathbb{Z}/2\mathbb{Z})^3\)

As $2\delta_6^{(2)} \notin W_{\text{root}}$ and $2\delta_6^{(1)} \notin A_1 \oplus D_4$, it follows

$$\mathbb{W}_{\text{root}}/W_{\text{root}} = \{\delta_6^{(1)}, \delta_6^{(4)}, \delta_6^{(1)}, \delta_6^{(3)}, \delta_6^{(3)}, \delta_6^{(4)}, 0\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

6.11. $L_{\text{root}} = D_6A_9^2$.

$L/L_{\text{root}} = \langle \delta_6 + 5\alpha_9^{(2)}, \delta_6 + \alpha_9^{(1)} + 2\alpha_9^{(2)} \rangle \mod L_{\text{root}} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$
6.11.1. Fibration A_7A_9. We assume the following primitive embeddings $D_5 \subset D_6$ and $A_1 \subset A_9^{(1)}$.

By proposition 5 (13) and (4), $(D_5)_{f_D_6} = (-4)$, $(A_1)_{f_{A_9}} = L_2^2$, det $L_2^2 = 2 \times 10$ so det $N = 8 \times 10^2$ and $|W : N| = 10$.

Enumerating the elements of L/L_{root} and since $\delta_6 \notin (D_5)_{f_D_6}$ by proposition 5 (13), we get

$$\displaystyle W/N = \{ \alpha_9^{(1)} + 7\alpha_9^{(2)}, 2\alpha_9^{(1)} + 4\alpha_9^{(2)}, 3\alpha_9^{(1)} + \alpha_9^{(2)}, 4\alpha_9^{(1)} + 8\alpha_9^{(2)}, 5\alpha_9^{(1)} + 5\alpha_9^{(2)}, 6\alpha_9^{(1)} + 2\alpha_9^{(2)}, 7\alpha_9^{(1)} + 9\alpha_9^{(2)}, 8\alpha_9^{(1)} + 6\alpha_9^{(2)}, 9\alpha_9^{(1)} + 3\alpha_9^{(2)}, 0 \}$$

$$\displaystyle \simeq \mathbb{Z}/10\mathbb{Z}$$

Since $k\alpha_9^{(1)} \notin A_7$ by proposition 5 (4), it follows

$$\displaystyle \overline{W}_{\text{root}}/W_{\text{root}} = (0).$$

6.12. $L_{\text{root}} = D_5^2A_9^2$.

$L/L_{\text{root}} = (2\alpha_7^{(1)} + \delta_5^{(1)} + 3\alpha_7^{(2)}, \alpha_7^{(1)} + \delta_5^{(2)} + 2\delta_5^{(2)})$mod. $L_{\text{root}} \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$

6.12.1. Fibration $D_5A_5A_7$. We assume the following primitive embeddings $D_5 \subset D_5^{(2)}$ and $A_1 \subset A_1^{(1)}$.

By proposition 5 (3), $(A_1)_{f_{A_9}} = L_2^3$, det $L_2^3 = 2 \times 8$ so det $N = 8 \times 8^2$ and $|W : N| = 8$.

Now enumerating the elements of L/L_{root} and since $\delta_5^{(2)}$ does not occur in W, we get $W/N = \langle 5\alpha_7^{(1)} + \alpha_7^{(2)} + 3\delta_5^{(1)} + N \rangle$. Since by proposition 5 (3) $k\alpha_7^{(1)} \notin A_5$, it follows

$$\displaystyle \overline{W}_{\text{root}}/W_{\text{root}} = (0).$$

\Box

7. Equations of fibrations

In the next sections we give Weierstrass equations of all the elliptic fibrations. We will use the following proposition ([19] p.559-560 or [22] Prop. 12.10).

Proposition 5. Let X be a K3 surface and D an effective divisor on X that has the same type as a singular fiber of an elliptic fibration. Then X admits a unique elliptic fibration with D as a singular fiber. Moreover, any irreducible curve C on X with $D.C = 1$ induces a section of the elliptic fibration.

First we show that one of the fibrations is the modular elliptic surface with base curve the modular curve $X_1(8)$ corresponding to modular group $\Gamma_1(8)$. As we see in the Table 1, it corresponds to the fibration $A_1, A_3, 2A_7$. The Mordell-group is a torsion group of order 8. We determine a graph with the singular fibers $I_2, I_4, 2I_8$ and the 8-torsion sections. Most divisors used in the previous proposition can be drawn on the graph.

From this modular fibration we can easily write a Weierstrass equation of two other fibrations of parameters k and v. From the singular fibers of these two fibrations we obtain the divisors of a set of functions on Y_2. These functions generate a group whose horizontal divisors correspond to 8-torsion sections. These divisors lead to more fibrations.
If X is a $K3$ surface and

$$\pi : X \to \mathbb{C}$$

an elliptic fibration, then the curve C is of genus 0 and we define an **elliptic parameter** as a generator of the function field of C. The parameter is not unique but defined up to linear fractional transformations.

From the previous proposition we can obtain equations from the linear system of D. Moreover if we have two effective divisors D_1 and D_2 for the same fibration we can choose an elliptic parameter with divisor $D_1 - D_2$. We give all the details for the fibrations of parameter t and ψ.

For each elliptic fibration we will give a Weierstrass model numbered from 1 to 30, generally in the two variables y and x. Parameters are denoted with small latin or greek letters. In most cases we give the change of variables that converts the defining equation into a Weierstrass form. Otherwise we use standard algorithms to obtain a Weierstrass form (see for example [6]). From a Weierstrass equation we get the singular fibers, using [27] for example, thus the corresponding fibration in Table 1; so we know the rank and the torsion of the Mordell-Weil group. If the rank is > 0 we give points and heights of points, which, using the formula of Proposition 1, generate the Mordell-Weil lattice. Heights are computed with Weierstrass equations as explained in [11]. Alternatively we can compute heights as in [24] and [13].

7.1. Equation of the modular surface associated to the modular group $\Gamma_1(8)$

We start with the elliptic surface

$$X + \frac{1}{X} + Y + \frac{1}{Y} = k.$$

From Beauville’s classification [2], we know that it is the modular elliptic surface corresponding to the modular group $\Gamma_1(4) \cap \Gamma_0(8)$. Using the birational transformation

$$X = \frac{-U(U-1)}{V} \quad \text{and} \quad Y = \frac{V}{U-1}$$

with inverse

$$U = -XY \quad \text{and} \quad V = -Y(XY + 1)$$

we obtain the Weierstrass equation

$$V^2 - kUV = U(U-1)^2.$$

The point $Q = (U = 1, V = 0)$ is a 4–torsion point. If we want A with $2A = Q$ to be a rational point, then $k = -s - 1/s + 2$. It follows

$$V^2 + (s + \frac{1}{s} - 2)UV = U(U-1)^2.$$

and

$$X + \frac{1}{X} + Y + \frac{1}{Y} + s + \frac{1}{s} = 2$$

The point $A = (U = s, V = -1 + s)$ is of order 8. We obtain easily its multiples

\[
\begin{array}{cccccccc}
A & 2A & 3A & 4A & 5A & 6A & 7A \\
(X, Y) & (-s, 1) & (\infty, 0) & (1, \frac{1}{s}) & (0, 0) & (\frac{1}{s}, 1) & (0, \infty) & (1, -s)
\end{array}
\]
Thus we get an equation for the modular surface Y_2 associated to the modular group $\Gamma_1(8)$

$$Y_2 : X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} - 2 = 0,$$

and the elliptic fibration

$$(X, Y, Z) \mapsto Z = s.$$

Its singular fibers are

s	Type
0	I_8
∞	I_8
1	I_4
-1	I_2
$3 + 2\sqrt{2}$	I_1
$3 - 2\sqrt{2}$	I_1

7.2. Construction of the graph from the modular fibration. At $s = s_0$, we have a singular fiber of type I_{n_0}. We denote $\Theta_{s_0,j}$ with $s_0 \in \{0, \infty, 1, -1\}$, $j \in \{0, \ldots, n_0 - 1\}$ the components of a singular fiber I_{n_0} such that $\Theta_{i,j} = 0$ if $i \neq k$ and

$$\Theta_{i,j} = \begin{cases}
1 & \text{if } |k - j| = 1 \text{ or } |k - j| = n_0 - 1 \\
-2 & \text{if } k = j \\
0 & \text{otherwise}
\end{cases}$$

the dot meaning the intersection product. By definition, the component $\Theta_{k,0}$ is met by the zero section (0). The n_0-gone obtained can be oriented in two ways for $n_0 > 2$. For each s_0 we want to know which component is cut by the section (A), i.e. the index $j(A, s_0)$ such that $A.\Theta_{s_0,j(A, s_0)} = 1$. For this, we compute the local height for the prime $s - s_0$ with the Weierstrass equation. Since this height is also equal to $\frac{j(A, s_0)(n_0 - j(A, s_0))}{n_0}$ we can give an orientation to the n_0-gone by choosing $0 \leq j(A, s_0) \leq \frac{n_0}{2}$. Hence we get the following results: $j(A, 0) = 3$, $j(A, s_0) = 1$ for $s_0 \neq 0$.

For the other torsion-sections (iA) we use the algebraic structure of the Néron model and get $(iA).\Theta_{0,j} = 1$ if $j = 3i \mod 8$, $(iA).\Theta_{0,j} = 0$ if $j \neq 3i$. For $s_0 \in \{\infty, 1, -1\}$ we have $(iA).\Theta_{s_0,j} = 1$ if $i = j \mod n_0$.

Remark 1. We can also compute $j(A, s_0)$ explicitly from equation of section using a new Weierstrass equation fitting with Néron theorem ([15] Theorem 1 and prop. 5 p 96).

Now we can draw the following graph. The vertices are the sections (iA) and the components $\Theta_{s_0,i}$ with $s_0 \in \{0, \infty, 1, -1\}$, $j \in \{0, 1, \ldots, n_0\}$. Two vertices B and C are linked by an edge if $B.C = 1$. For simplicity the two vertices $\Theta_{-1,0}$, $\Theta_{-1,1}$ and the edge between them are not represented. The edges joining $\Theta_{-1,0}$ and (jA), j even are suggested by a small segment from (jA), and also edges from $\Theta_{-1,1}$ to (iA), i odd.
7.3. Two fibrations. For the two fibrations to be considered we use the following factorizations of the equation of the surface:

\[(X + Y)(XY + 1)Z + XY(Z - 1)^2 = 0\]
\[(X + ZY)(XZ + Y) + (X + Y)(Y - 1)(X - 1)Z = 0\]

7.3.1. Fibration of parameter \(k\). The parameter of the first one is \(k = X + Y\). Eliminating for example \(X\), we obtain an equation of degree 2 in \(Y\) and \(Z\); easily we have the equation

\[y^2 - x\left(k^2 - 2k + 2\right)y = x(x - 1)(x - k^2)\]

with the birational transformation

\[Z = \frac{y}{k(x - 1)}, \quad Y = -\frac{yk}{-y + x^2 - x}\]

with inverse
\[y = \frac{Zk \left(ZkY - Zk^2 - Y \right)}{Y}, \quad x = \frac{Zk \left(Y - k \right)}{Y}. \]

The singular fibers of this fibration are
- at \(k = 0 \) of type \(I_1^* \)
- at \(k = \infty \) of type \(I_{12} \)
- at \(k = 2 \) of type \(I_2 \)
- at \(k = 4 \) of type \(I_1 \)
- at \(k = 2i \) of type \(I_1 \)
- at \(k = -2i \) of type \(I_1 \)

The rank of the Mordell-Weil group is one. The point \((x = 1, y = 0)\) is a non-torsion point of height \(\frac{4}{3} \); the point \((0, 0)\) is a two-torsion point and \((k, k)\) is of order 4.

7.3.2. **Fibration of parameter \(v \).** This fibration is obtained from the parameter \(v = \frac{X + ZY}{Y - 1} \). Eliminating \(Y \) and using the birational transformation
\[x = \frac{v \left(v + X \right) \left(-v - 1 + Z \right)}{Z}, \quad y = -\frac{v \left(x - v^2 - v^3 \right)}{Z} \]
we get the equation
\[y^2 + (v + 1)^2yx - v^2(1 + 2v)y = (x - v)(x - v^2)(x - v^2 - v^3). \]

The singular fibers of this fibration are
- at \(v = 0 \) of type \(I_8 \)
- at \(v = \infty \) of type \(I_{10} \)
- at \(v = v_0 \), \(v_0 \) denotes a root of the polynomial \(t^6 - 5t^4 + 39t^2 + 2 \).

The Mordell-Weil group is of rank two; the two points \((0, v^3), (v, 0)\) are generators of the Mordell-Weil group (the determinant of the heights matrix is \(\frac{1}{10} \)). The Mordell-Weil torsion-group is 0.

7.4. **Divisors.** In this section we study the divisors of some functions. Using the elliptic fibration \((X, Y, Z) \mapsto Z = s\) we can compute the horizontal divisor of the following functions. We denote \((f)_h\) the horizontal divisor of \(f \); then we have

\[
\begin{align*}
(X)_h &= -(0) - (2A) + (4A) + (6A) \\
(Y)_h &= -(0) - (6A) + (4A) + (2A) \\
(X - 1)_h &= -(0) - (2A) + (3A) + (7A) \\
(Y - 1)_h &= -(0) - (6A) + (A) + (5A) \\
(X + s)_h &= -(0) - (2A) + (2A) \\
(Y + s)_h &= -(0) - (6A) + 2(7A) \\
(X + 1/s)_h &= -(0) - (2A) + 2(5A) \\
(Y + 1/s)_h &= -(0) - (6A) + 2(3A) \\
(X + Y)_h &= -(2A) - (6A) + 2(4A) \\
(X + sY)_h &= -(0) - (2A) - (6A) + (A) + (3A) + (4A)
\end{align*}
\]
Proposition 6. The horizontal divisors of the 7 functions $X, Y, X - 1, Y - 1, Y + s, X + Y, X + sY$ generate the group of principal divisors with support in 8-torsion sections.

Proof. If we write f_1, f_2, \ldots, f_7 for these functions, then the determinant of the matrix $(m_{i,j})$ with $m_{i,j} = \text{ord}_{iA}(f_j), 1 \leq i, j \leq 7,$ is equal to 8. □

We use the following notations: $\text{Div}(f)$ for the divisor of the function f on the surface, $(f)_0$ for the divisor of the zeros of f and $(f)_\infty$ for the divisor of the poles. We get

\[
\text{Div}(Z) = \sum_{i=0}^{7} \Theta_{0,i} - \sum_{i=0}^{7} \Theta_{\infty,i}
\]

\[
(Z - 1)_0 = \sum_{i=0}^{3} \Theta_{1,i}
\]

\[
(Z + 1)_0 = \sum_{i=0}^{1} \Theta_{-1,i}.
\]

Since X, Y, Z play the same role, the elliptic fibrations $(X, Y, Z) \mapsto X$ and also $(X, Y, Z) \mapsto Y$ have the same property for the singular fibers: two singular fibers of type I_8 for $X = 0, \infty$ and $Y = 0, \infty$, one singular fiber of type I_4 for $X = 1, Y = 1$. Then we can represent on the graph the divisor of X, drawing two disjoint 8-gones going through $(0), (2A)$ and $(4A), (6A)$ and a disjoint 4-gone through $(3A), (7A)$. We have

\[
\text{Div}(X) = -(0) - \Theta_{\infty,0} - \Theta_{\infty,1} - \Theta_{\infty,2} - (2A) - \Theta_{0,6} - \Theta_{0,7} - \Theta_{0,0} + (4A) + \Theta_{\infty,4} + \Theta_{\infty,5} + \Theta_{\infty,6} + (6A) + \Theta_{0,2} + \Theta_{0,3} + \Theta_{0,4}
\]

\[
(X - 1)_0 = (3A) + \Theta_{1,3} + (7A) + \Theta_{-1,1}.
\]

A similar calculation for Y gives

\[
\text{Div}(Y) = -(0) - \Theta_{\infty,0} - \Theta_{\infty,7} - \Theta_{\infty,6} - (6A) - \Theta_{0,2} - \Theta_{0,1} - \Theta_{0,0} + (4A) + \Theta_{\infty,4} + \Theta_{\infty,3} + \Theta_{\infty,2} + (2A) + \Theta_{0,6} + \Theta_{0,5} + \Theta_{0,4}.
\]

\[
(Y - 1)_0 = (A) + \Theta_{1,1} + (5A) + \Theta_{-1,1}.
\]

The fibration $(X, Y, Z) \mapsto k = X + Y$ has singular fibers of type I_7^*, I_{12} at $k = 0$ and $k = \infty$, so we can write the divisor of $X + Y$. By permutation we have also the divisors of $Y + Z$ and $X + Z$.
\[
\text{Div}(X + Y) = -(2A) - \Theta_{\infty,2} - \Theta_{\infty,1} - \Theta_{\infty,0} - \Theta_{\infty,7} - \Theta_{\infty,6}
\]
\[
-(6A) - \Theta_{0,6} - \Theta_{0,7} - \Theta_{0,0} - \Theta_{0,1} - \Theta_{0,2}
\]
\[
+ \Theta_{\infty,4} + \Theta_{0,4} + 2(4A) + 2\Theta_{1,0} + \Theta_{1,1} + \Theta_{1,2}
\]
\[
\text{Div}(X + Z) = -(0) - \Theta_{\infty,0} - \Theta_{\infty,7} - \Theta_{\infty,6} - \Theta_{\infty,5} - \Theta_{\infty,4}
\]
\[
- \Theta_{\infty,3} - \Theta_{\infty,2} - (2A) - \Theta_{0,6} - \Theta_{0,7} - \Theta_{0,0}
\]
\[
+ \Theta_{1,1} + \Theta_{-1,1} + 2(A) + 2\Theta_{0,3} + \Theta_{0,2} + \Theta_{0,4}
\]
\[
\text{Div}(Y + Z) = -(0) - \Theta_{\infty,0} - \Theta_{\infty,1} - \Theta_{\infty,2} - \Theta_{\infty,3} - \Theta_{\infty,4}
\]
\[
- \Theta_{\infty,5} - \Theta_{\infty,6} - (6A) - \Theta_{0,0} - \Theta_{0,1} - \Theta_{0,2}
\]
\[
+ \Theta_{1,3} + \Theta_{-1,1} + 2(7A) + 2\Theta_{0,5} + \Theta_{0,4} + \Theta_{0,6}.
\]

At last the fibration \((X, Y, Z) \mapsto v = \frac{(X + ZY)}{(Y - 1)}\) has two singular fibers of type \(I_8, I_{12}\) at \(v = 0\) and \(v = \infty\); thus it follows
\[
\text{Div}\left(\frac{X + ZY}{Y - 1} \right) = (3A) + \Theta_{1,0} + \Theta_{1,3} + 4A + \Theta_{0,4} + \Theta_{0,3} + \Theta_{0,2} + \Theta_{0,1}
\]
\[
-(2A) - \Theta_{\infty,2} - \Theta_{\infty,1} - \Theta_{\infty,0} - \Theta_{\infty,7} - \Theta_{\infty,6} - \Theta_{\infty,5} - (5A) - \Theta_{0,7} - \Theta_{0,6}.
\]

8. Fibrations from the Modular Fibration

We give a first set of elliptic fibrations with elliptic parameters belonging to the multiplicative group of functions coming from Proposition 6 plus \(Z\) and \(Z \pm 1\). The first ones come from some easy linear combination of divisors of functions. The others, like \(t\), come from the following remark. We can draw, on Figure 1, two disjoint subgraphs corresponding to singular fibers of the same fibration. We give all the details only in the case of parameter \(t\).

8.0.1. Fibration of parameter \(a\). This fibration is obtained with the parameter \(a = \frac{X-1}{X+1}\). Eliminating \(Z\) in the equation and doing the birational transformation
\[
Y = -\frac{y(1 + a)}{x + xa - 1}, \quad X = \frac{x(x + xa - 1)}{y(1 + a)}
\]
with inverse
\[
y = \frac{Y(XY + XYa + 1)}{1 + a}, \quad x = -XY
\]
we get
\[
y^2 - \frac{(x - 1)y}{(1 + a)a} = x(x - \frac{1}{1 + a})^2.
\]
The singular fibers of this fibration are
\[
\begin{align*}
at \quad a &= 0 \quad \text{of type} \quad I_8 \\
at \quad a &= \infty \quad \text{of type} \quad I_1^* \\
at \quad a &= -1 \quad \text{of type} \quad I_6 \\
at \quad a &= a_0 \quad \text{of type} \quad I_1
\end{align*}
\]
with \(a_0\) root of the polynomial \(16X^3 + 11X^2 - 2X + 1\).
The point $(x = \frac{1}{d^2}, y = 0)$ is of height $\frac{1}{2d}$. The torsion-group of the Mordell-Weil group is 0.

8.0.2. Fibration of parameter d. This fibration is obtained with parameter $d = XY$ which also is equal to $-x$ in the previous Weierstrass equation. Eliminating X and making the birational transformation

$$y = -(d + 1)Y(d^2 - x), x = -ZYd(d + 1)$$

we get

$$y^2 - 2dyx = x(x - d^2)(x - d(d + 1)^2).$$

The singular fibers are

- at $d = 0$ of type I_2^*
- at $d = \infty$ of type I_4^*
- at $d = 1$ of type I_2
- at $d = -1$ of type I_0^*

The three points of abscisses $0, d + d^2, d^3 + d^2$ are two-torsion points. The point $(d^2, 0)$ is of height 1.

8.0.3. Fibration of parameter p. This fibration is obtained with $p = \frac{(XY + 1)Z}{X} = \frac{Vs}{U}$ which is also equal to x/d^2 with notation of the previous fibration. We start from the equation in U, V and eliminating V and making the birational transformation

$$s = \frac{xp(p + 1)}{y + xp}, U = \frac{x}{p(p + 1)}$$

we obtain

$$y^2 = x(x - p)(x - p(p + 1)^2).$$

The singular fibers are

- at $p = 0$ of type I_2^*
- at $p = \infty$ of type I_4^*
- at $p = -2$ of type I_2
- at $p = -1$ of type I_4

The Mordell-Weil group is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$.

8.0.4. Fibration of parameter w. Using the factorisation of the equation of Y_2

$$(Z + X)(X + Y)(X - 1) = X(YZ + X)(X + Y + Z - 1)$$

we put $w = X + Y + Z - 1 = \frac{(X + Y)(X + Z)(X - 1)}{X(YZ + X)}$. Eliminating Z in the equation of Y_2 and doing the birational transformation

$$x = -(1 - Y + wY)(1 - X + wX), y = -(w - 1)Xx$$

we obtain the equation

$$y^2 + w^2(x + 1)y = x(x + 1)(x + w^2).$$
The singular fibers are

- at $w = 0$ of type I_6
- at $w = \infty$ of type I_{12}
- at $w = 1$ of type I_2
- at $w = -1$ of type I_2
- at $w = \pm 2i\sqrt{2}$ of type I_1

The Mordell-Weil group is isomorphic to $\mathbb{Z}/6\mathbb{Z}$, generated by $(x = -w^2, y = 0)$.

8.0.5. Fibration of parameter b. We put $b = \frac{XY}{Z}$. Eliminating Z in the equation of Y^2 and using the birational transformation

\[
x = -\frac{b(Y + b)(X + b)}{X}, \quad y = -Yb(x - (b + 1)^2)
\]

we obtain the equation

\[
y^2 + 2(b + 1)xy + b^2(b + 1)^2y = x(x + b^2)(x - (b + 1)^2)
\]

or with $z = x + y$

\[
z^2 + 2bzx + b^2(b + 1)^2z = x^3.
\]

The singular fibers are

- at $b = 0$ of type IV^*
- at $b = \infty$ of type IV^*
- at $b = -1$ of type I_6
- at $b = b_0$ of type I_1

with b_0 root of the polynomial $27b^2 + 46b + 27$. The Mordell-Weil group is of rank 1, the point $(x = -b^2, y = 0)$ is of height $\frac{4}{3}$ and the torsion-group is of order 3.

8.0.6. Fibration of parameter r. Let $r = \frac{(X + Z)(Y + Z)}{ZX}$, r is also equal to x in the fibration of parameter b. Eliminating Y in the equation of Y^2 and doing the birational transformation.

\[
x = -\frac{(rX - X - Z)r}{Z}, \quad y = -\frac{X(x - r^3)x(r - 1)}{-r^2 + x}
\]

we obtain the equation

\[
y^2 + 2(r - 1)xy = x(x - 1)(x - r^3).
\]

The singular fibers are

- at $r = 0$ of type I_2^*
- at $r = \infty$ of type I_6^*
- at $r = 1$ of type I_2
- at $r = \pm 2i$ of type I_1

The Mordell-Weil group is of rank 1, the point $(1,0)$ is of height 1. The torsion group is of order 2, generated by $(0,0)$.
8.0.7. Fibration of parameter e. Let $e = \frac{YX}{YZ}$. e is also equal to $-\frac{x}{x^2}$, where x is from equation (9). Eliminating Y from the equation of Y^2 and doing the birational transformation

$$y = \frac{-(2e^2 + e + x)(e(x - 2e - 1)(x - (e + 1)))}{(2e + 1)(e + 1)}, x = \frac{-e(2e + 1)(-Ze + X)}{X + Z}$$

we obtain the equation

$$(10) \quad y^2 = x(x^2 - e^2(e - 1)x + e^3(2e + 1)).$$

The singular fibers are

- at $e = 0$ of type III^*
- at $e = \infty$ of type I_4
- at $e = -1$ of type I_2
- at $e = -1/2$ of type I_2
- at $e = -1$ of type I_1

The Mordell-Weil group is of rank 1, the point $(e, e^3 + e^4)$ is of height 1. The torsion group is of order 2, generated by $(0, 0)$.

8.0.8. Fibration of parameter f. Let $f = \frac{Y(X + Z)(Z + Y)}{X^2X}$, f is also equal to $-x$ where x is from (9). We start from (9) and use the transformation

$$y = \frac{V'}{x(x - 1)}, r = -\frac{U'}{x(x - 1)}$$

we obtain the equation

$$(11) \quad V'^2 - 2fV'U' - 2f^2(f - 1)V' = U'^3 + f^4(f - 1)^3.$$

The singular fibers are

- at $f = 0$ of type III^*
- at $f = \infty$ of type III^*
- at $f = 1$ of type I_4
- at $f = 32/27$ of type I_1

The Mordell-Weil group is 0.

8.0.9. Fibration of parameter g. Let $g = \frac{XY}{Z^2}$. Eliminating Y in the equation of Y^2 and using the birational transformation

$$y = \frac{-((g^2 - 1)(-gXZ - gZ^2 - X^2 + gXZ^2))}{Z(X + Z)^2}, -x = \frac{g(g + 1)(Zg + X)}{X + Z}$$

we obtain the equation

$$(12) \quad y^2 = x^3 + 4g^2x^2 + g^3(g + 1)^2x.$$

The singular fibers are

- at $g = 0$ of type III^*
- at $g = \infty$ of type III^*
- at $g = -1$ of type I_4
- at $g = 1$ of type I_2

The Mordell-Weil group is of order 2.
8.0.10. Fibration of parameter h. Let $h = \frac{(Y + Z)Y^2}{X^2(X + Z)}$, we can see that $h = \frac{x}{(g + 1)}$, with x from (12). We start from (12) and if $y = (g + 1)z$ we obtain a quartic equation in z and g with rational points $g = -1, z = \pm 2h$. Using standard transformation we obtain

$$y'^2 + \left(h - \frac{1}{h} - 8\right)x'y' - \frac{96}{h}y' = \left(x' - \frac{1}{4}(h^2 + \frac{1}{h^2}) + 4h + \frac{8}{h} + \frac{1}{2}\right) \left(x'^2 - \frac{256}{h}\right)$$

or also

$$(13) \quad y^2 = x^3 - \frac{25}{3}x - h - \frac{1}{h} - \frac{196}{27}.$$

The singular fibers are

- at $h = 0$ of type II^*
- at $h = \infty$ of type II^*
- at $h = -1$ of type I_2
- at $h = h_0$ of type I_1

where h_0 is a root of the polynomial $27h^2 - 446h + 27$. The Mordell-Weil group is of rank 1 without torsion.

The point $(1/16 \cdot \frac{1}{(h - 1)(h + 1)}(h^4 + 24h^3 + 126h^2 + 24h + 1))$ is of height 4. We recover Elkies’ result [9] cited in the introduction.

8.0.11. Fibration of parameter t. On the graph (Figure 11), we can see two singular fibers of type I_4^* of a new fibration (Figure 2). They correspond to two divisors D_1 and D_2 with

$$D_1 = \Theta_{\infty,4} + (3A) + 2\Theta_{\infty,3} + 2\Theta_{\infty,2} + 2\Theta_{\infty,1} + 2\Theta_{\infty,0} + 2(0) + \Theta_{0,0} + \Theta_{1,0}$$

$$D_2 = (7A) + \Theta_{0,6} + 2\Theta_{0,5} + 2\Theta_{0,4} + 2\Theta_{0,3} + 2\Theta_{0,2} + 2(6A) + \Theta_{\infty,6} + \Theta_{1,2}.$$

We look for a parameter of the new fibration as a function t with divisor $D_1 - D_2$.

ELLIPTIC FIBRATIONS ON THE MODULAR SURFACE ASSOCIATED TO Γ₁(8)

Figure 2. Two singular fiber I^*_4

Let E_s and T_s be the generic fiber and the trivial lattice of the fibration of parameter s. For this fibration we write $D_i = \delta_i + \Delta_i$ with $i = 1, 2$ where δ_i is an horizontal divisor and Δ_i a vertical divisor. More precisely we have $\delta_1 = (3A) + 2(0)$ and $\delta_2 = (7A) + 2(6A)$, and the classes of δ_i and D_i are equal mod T_s. If $K = \mathbb{C}(s)$ recall the isomorphism: $E_s(K) \sim NS(Y_2)/T_s$. So the class of $\delta_1 - \delta_2$ is 0 in $NS(Y_2)/T_s$; thus there is a function $t_0 = \frac{X^2(Y+Z)}{(X-1)(X+Y)}$ with divisor $\delta_1 - \delta_2$. We can choose t as $t = t_0Z^a(Z-1)^b$. The rational integers a and b can be computed using the divisors of section 7.4. We find $a = 0$, $b = 1$ and we can take $t = \frac{X^2(Y+Z)(Z-1)}{(X-1)(X+Y)}$. We have also

$$t = -X\frac{Y\left(Z^2 - Z + YZ + 1\right)Z}{(Z-1)(YZ+1)} - \frac{Z^2(Y+1)}{(Z-1)(YZ+1)}.$$

Eliminating X in the equation of Y_2 and then doing the birational transformation

$$Z = \frac{W}{WT+1}, Y = \frac{-(WT^2 + T + 1)}{WT + 1}$$

of inverse

$$T = \frac{Y + 1}{Z - 1}, W = \frac{-Z(Z-1)}{YZ + 1}$$

we obtain an equation of degree 2 in T. After some classical transformation we get a quartic with a rational point corresponding to $(T = -1 + t, W = 0)$ and then
using a standard transformation we obtain
\[y^2 = x^3 + t(t^2 + 1 + 4t)x^2 + t^4x. \]

The singular fibers are
- at \(t = 0 \) of type \(I_1^* \)
- at \(t = \infty \) of type \(I_1^* \)
- at \(t = -1 \) of type \(I_2 \)
- at \(t = t_0 \) of type \(I_1 \)

where \(t_0 \) is a root of the polynomial \(Z^2 + 6Z + 1 \).

The singular fibers are
- at \(t = 0 \) of type \(I_{10} \)
- at \(t = \infty \) of type \(I_{12}^* \)
- at \(t = -1 \) of type \(I_2 \)
- at \(t = t_0 \) of type \(I_1 \)

with \(t_0 \) root of the polynomial \(16x^5 - 32x^4 - 24x^3 - 23x^2 + 12x - 2 \). The Mordell-Weil group is of rank 2, without torsion; the two points \((-l^3, 0)\) and \((-l^2, 0)\) are independent and the determinant of the matrix of heights is equal to \(\frac{1}{5} \).

9. A second set of fibrations: gluing and breaking

9.1. Classical examples. In the next section we give fibrations obtained using Elkies idea given in [7] page 11 and explained in [12] Appendix A. If we have two fibrations with fiber \(F \) and \(F' \) satisfying \(F \cdot F' = 2 \) the authors explain how we get a parameter from a Weierstrass equation of one fibration. Decomposing \(F' \) into vertical and horizontal component, \(F' = F'_h + F'_v \) they use \(F'_h \) to construct a function on the generic fiber.

9.1.1. Fibration of parameter \(o \). Starting with a fibration with two singular fibers of type \(II^* \) and the \((0)\) section we obtain a fibration with a singular fiber of type \(I_{12}^* \). Starting from (13) we take \(x \) as new parameter. For simplicity, let \(o = x + \frac{5}{3} \), we get
\[y^2 = x^3 + (o^3 - 5o^2 + 2)x^2 + x. \]

The singular fibers are
- at \(o = 0 \) of type \(I_2 \)
- at \(o = \infty \) of type \(I_{12}^* \)
- at \(o = 1 \) of type \(I_1 \)
- at \(o = 5 \) of type \(I_1 \)
- at \(o = o_0 \) of type \(I_1 \)

where \(o_0 \) is a root of \(x^2 - 4x - 4 \). The Mordell-Weil group is of rank 1, the torsion group is of order 2.
The point \(\left(\frac{1}{16} (o - 4)^2 (o - 2)^2, \frac{1}{64} (o - 4) (o - 2) (o^4 - 4 o^3 - 20 o^2 + 96 o - 80) \right) \) is of height 4.

9.1.2. Fibration of parameter \(q \). We start with a fibration with singular fibers of type \(II^* \) and \(III^* \), join them with the zero-section and obtain a singular fiber of type \(I^*_1 \) of a new fibration. We transform the equation (11) to obtain

\[
y'^2 = x'^3 + \left(\frac{5}{3} - \frac{2f}{f} \right)x' + f + \frac{5}{3f} - \frac{70}{27}.
\]

We take \(x' \) as the parameter of the new fibration; more precisely, for simplicity, let \(q = x' - \frac{1}{3} \). We obtain

\[
y^2 = x^3 + (q^3 + q^2 + 2q - 2)x^2 + (1 - 2q)x.
\]

The singular fibers are

- at \(q = 0 \) of type \(I_4 \)
- at \(q = \infty \) of type \(I^*_10 \)
- at \(q = \frac{1}{2} \) of type \(I_2 \)
- at \(q = q_0 \) of type \(I_1 \)

where \(q_0 \) is a root of \(X^2 + 2X + 5 \). The Mordell-Weil group is of order 2.

9.2. Fibration with singular fiber of type \(I_n \) with \(n \) great. We start with a fibration with two fibers \(I^*_n \) and \(I^*_m \) and a two-torsion section. Gluing them, we can construct a fibration with a singular fiber of type \(I^*_n + m + 8 \). The parameter will be \(\frac{x}{t} \) in a good model of the first fibration. We can also start from a fibration with two singular fibers of type \(I^*_n \) and \(I_2 \) and a two-torsion section, join them with the zero-section and obtain a new fibration with a singular fiber of type \(I^*_n + 6 \) or \(I^*_n + 7 \).

9.2.1. Fibration of parameter \(m \). We start from the fibration with parameter \(t \). With the two-torsion section and the two singular fibers of type \(I^*_4 \), we can form a singular fiber of of type \(I_{16} \) of a new fibration (Figure 3).

\[
\text{Figure 3. } I^*_4, I^*_4 \rightarrow I_{16}
\]

From the equation (14) we get

\[
y'^2 = x'^3 + \left(t + \frac{1}{t} + 4 \right)x'^2 + x'.
\]

Let \(m = \frac{y'}{x} \), we obtain

\[
y^2 + (m - 2)(m + 2)yx = x(x - 1)^2.
\]
The singular fibers are

- at $m = 0$ of type I_2
- at $m = \infty$ of type I_{16}
- at $m = \pm 2$ of type I_2
- at $m = \pm 2\sqrt{2}$ of type I_1

The Mordell-Weil group is cyclic of order 4 generated by $(x = 1, y = 0)$.

9.2.2. Fibration of parameter n. With a similar method, we can start from a fibration with two singular fibers of type I_2^* and I_6^*, a two-torsion section and join them to have a fiber of type I_{16}.

From the equation (9) we obtain

$$y'^2 = x'^3 + (r - 1 + \frac{2}{r})x'^2 - \frac{x'}{r}.$$

Let $n = \frac{y'}{x'}$. The Weierstrass equation is

$$(19) \quad y^2 + (n^2 - 1)yx - y = x^3 - 2x^2.$$

The singular fibers are

- at $n = 0$ of type I_2
- at $n = \infty$ of type I_{16}
- at $n = n_0$ of type I_1

where n_0 is a root of the polynomial $2x^6 - 9x^4 - 17x^2 + 125$. The Mordell-Weil group is of rank 2. The determinant of the matrix of heights of the two points $(1 \pm t, 0)$ is $\frac{3}{8}$.

9.2.3. Fibration of parameter j. Instead of the two-torsion section we can use the section of infinite order $(-t, -2t)$ in the fibration of parameter t.

\[\text{Figure 4. $I_6^*, I_2^* \rightarrow I_{16}$}\]
In (14), let $U' = x + t, V' = y + 2t$ and take the parameter $\frac{V'}{U'}$. For simplification let $j = \frac{V'}{U'} - 2 = \frac{y + 2t}{x + t}$; the new fibration obtained has a 3-torsion point which can be put in $(0, 0)$. So it follows

\[y^2 - (j^2 + 4j)x y + j^2 y = x^3.\]

The singular fibers are

- at $j = 0$ of type IV^*
- at $j = \infty$ of type I_{12}
- at $j = -1$ of type I_2
- at $j = j_0$ of type I_1

where j_0 is a root of the polynomial $(x^2 + 10x + 27)$. The Mordell-Weil group is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

9.2.4. Fibration of parameter c. We start from the fibration of parameter o with the equation (10). For $o = 0$ we have a singular fiber of type I_2, the singular point of the bad reduction is $(x = 1, y = 0)$ so we put $x = 1 + u$ and obtain the equation

\[y^2 = u^3 + (-1 - 5o^2 + o^3)u^2 + 2o^2(o - 5)u - o^2(o - 5).\]

The two-torsion section cut the singular fiber I_2 on the zero component, as shown on Figure 6.

Let $c = \frac{y}{x}$ with y, x from the equation (10), we have easily the Weierstrass equation of the fibration. After some translation we can suppose the three-torsion point is $(0, 0)$; we get
\[(21) \quad y^2 + (c^2 + 5)yx + y = x^3.\]

The singular fibers are
\[
\begin{align*}
\text{at } c = \infty & \text{ of type } I_{18} \\
\text{at } c = c_0 & \text{ of type } I_1
\end{align*}
\]

where \(c_0\) is a root of the polynomial \((x^2 + 2)(x^2 + x + 7)(x^2 - x + 7)\). The rank of the Mordell-Weil group is one. The height of \((x = \frac{1}{4}(c^4 + c^2 + 1), y = \frac{1}{8}(c^2 - c + 1)^3)\) is equal to 4.

9.3. **Fibrations with singular fiber of type** \(I_{18}^\ast\). In this paragraph we obtain new fibrations by gluing two fibers of type \(I_{18}^\ast\) and \(I_1^\ast\) to obtain, with the zero section, a singular fiber of type \(I_{p+q+4}^\ast\) or \(I_{p+4}^\ast\).

9.3.1. **Fibration of parameter** \(u\). We start from the fibration with parameter \(t\). With the two singular fibers of type \(I_{18}^\ast\), and the 0-section, we can form a singular fiber of type \(I_8^\ast\) of a new fibration (Figure 7).

\[
\frac{y^2}{x^2t'^2} = \frac{x}{t'^2} + t + \frac{t^2}{x} + \frac{1}{t} + 4
\]

Taking \(u = \frac{x}{t'^2} + t\) as the new parameter, we obtain

\[(22) \quad y'^2 = x'^3 + u(u^2 + 4u + 2)x'^2 + u'^2x'.\]

The singular fibers are
\[
\begin{align*}
\text{at } u = 0 & \text{ of type } I_{18}^\ast \\
\text{at } u = \infty & \text{ of type } I_8^\ast \\
\text{at } u = -2 & \text{ of type } I_2 \\
\text{at } u = -4 & \text{ of type } I_1
\end{align*}
\]

The Mordell-Weil group is of order 2.
9.3.2. Fibration of parameter i. We start from the fibration of parameter s and from equation (11). With the two singular fibers of type I^*_8 and I^*_1, and the 0 section, we can form a singular fiber of type I^*_13 of a new fibration. We seek for a parameter of the form $\frac{3}{s^2} + \frac{k}{s}$, with k chosen to have a quartic equation. We see that $k = 1$ is a good choice so the new parameter is $i = \frac{3}{s^2} + \frac{k}{s}$ and a Weierstrass equation is

\[
y^2 = x^3 + (i^3 + 4i^2 + 2i)x^2 + (-2i^2 - 8i - 2)x + i + 4.
\]

The singular fibers are

- at $i = \infty$ of type I^*_13
- at $i = -\frac{5}{2}$ of type I^*_2
- at $i = i_0$ of type I^*_1

where i_0 is a root of the polynomial $4x^3 + 11x^2 - 8x + 16$. The Mordell-Weil group is 0.

9.4. Breaking. In this paragraph we give a fibration obtained by breaking a singular fiber I^*_{18} and using the three-torsion points as for the fibration of parameter t.

9.4.1. Fibration of parameter ψ.

We start with the fibration (21) of parameter c and 3-torsion sections. We represent the graph of the singular fiber I^*_{18}, the zero section and two 3-torsion sections (Figure 8). On this graph we can draw two singular fibers III^* and I^*_6. The function x of (21) has the horizontal divisor $-2(0) + P + (-P)$ if P denotes the 3-torsion point and we can take it as the parameter ψ of the new fibration. We get the equation

\[
y^2 = x^3 - 5x^2\psi^2 - \psi x^2 - \psi^5x.
\]

The singular fibers are

- at $\psi = \infty$ of type I^*_6
- at $\psi = -\frac{5}{2}$ of type III^*
- at $\psi = -\frac{1}{4}$ of type I^*_1
- at $\psi = \psi_0$ of type I^*_1
with ψ_0 root of the polynomial $x^2 + 6x + 1$. The Mordell-Weil group is of rank 1. The height of the point

$$(1/4 \ (\psi^2 + 3 \psi + 1)^2, -1/8 \ (\psi^2 + 3 \psi + 1) \ (\psi^4 + 6 \psi^3 + \psi^2 - 4 \psi - 1))$$

is 4. The torsion-group is of order 2.

10. Last set

From the first set of fibrations we see that not all the components of singular fibers defined on \mathbb{Q} appear on the graph of the Figure 1. We have to introduce some of them to construct easily the last fibrations. For example, we start with the fibration of parameter $p = 6$. Using the Figure 1 we see only 3 components of the singular fiber I_4 for $p = -1$ i.e. $\Theta_{0,1}, \Theta_{0,2}, \Theta_{0,3}$. The fourth is the rational curve named $\Theta_{p,-1,3}$ parametrized by

$$X = 4 \ (w + 1) \ w \ 1 + 3 \ w^2, \ Y = 1/4 \ 1 + 3 \ w^2 \ (-1 + w) \ w, \ Z = -2 \ (-1 + w) \ (w + 1) \ 1 + 3 \ w^2.$$

![Diagram of fibrations](image)

Figure 9. Fibration of parameter p: three singular fibers

The four components $\Theta_{0,0}, \Theta_{0,4}, 4A, 3A$ are sections of the fibration of parameter p which cut the singular fibers following the previous figure.

10.1. From fibration of parameter p.
10.1.1. *Fibration of parameter δ*. On the Figure 9 we can see the divisor ∆,
\[\Delta = 6\Theta_{\infty,0} + 5\Theta_{\infty,7} + 4\Theta_{\infty,6} + 3\Theta_{\infty,5} + 2\Theta_{\infty,4} + \Theta_{\infty,3} + 3\Theta_{\infty,1} + 40 + 2\Theta_{0,0}. \]
The divisor ∆ corresponds to a fiber of type II^*. Using the equation (6) and the previous remark, we can calculate the divisors of $p, p + 1$ and $Up(p + 1)$. The poles of $\delta := Up(p + 1)$ give the divisor ∆. Note δ is equal to the x of equation (6). From the zeros of δ we get a fiber of type I_2.

\[2A + 2\Theta_{1,2} + \Theta_{1,3} + \Theta_{1,1} + 2 \sum_{i=0}^{6} \Theta_{0,i} + \Theta_{0,2} + \Theta_{p,-1,3}. \]

After an easy calculation we get a Weierstrass equation of the fibration
\begin{equation}
(25)
 y^2 = x^3 + \delta (1 + 4\delta) x^2 + 2\delta^4 x + \delta^7.
\end{equation}
The singular fibers are

- at $\delta = 0$ of type I_5^*
- at $\delta = \infty$ of type II^*
- at $\delta = -2$ of type I_2
- at $\delta = -4/27$ of type I_1

The Mordell-Weil group is equal to 0.

10.1.2. *Fibration of parameter π*. On the previous figure (Figure 9) we can see the singular fiber
\[\Theta_{\infty,1} + \Theta_{\infty,7} + 2\Theta_{\infty,0} + 2(0) + 2\Theta_{0,0} + 2\Theta_{0,7} + 2\Theta_{0,6} + (2A) + 2\Theta_{1,2} + \Theta_{1,1} + \Theta_{1,3}. \]

Using the previous calculation for δ we see that it corresponds to a fibration of parameter $\pi = \frac{Up(p + 1)}{p}$. The zeros of π correspond to a fiber of type I_5^*. After an easy calculation we have a Weierstrass equation of the fibration
\begin{equation}
(26)
 y^2 = x^3 + \pi(\pi^2 - 2\pi - 2) x^2 + \pi^2(2\pi + 1)x.
\end{equation}
The singular fibers are

- at $\pi = 0$ of type I_5^*
- at $\pi = \infty$ of type I_5
- at $\pi = -\frac{4}{2\pi + 1}$ of type I_2
- at $\pi = 4$ of type I_1

The Mordell-Weil group is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

10.1.3. *Fibration of parameter μ*. From the fibration of parameter p we can also join the I_4^* and I_2^* fibers. Let $\mu = \frac{y}{p^2 - p(p + 1)}$, with y, x from equation (6). After an easy calculation we obtain a Weierstrass equation of the fibration of parameter μ
\begin{equation}
(27)
 y^2 + \mu^2(x - 1)y = x(x - \mu^2)^2.
\end{equation}
The singular fibers are

- at $\mu = 0$ of type IV^*
- at $\mu = \infty$ of type I_{10}
- at $\mu = \pm 1$ of type I_2
- at $\mu = \mu_0$ of type I_1.
where μ_0 is a root of the polynomial $2x^2 - 27$. The rank of the Mordell-Weil group is 1, the torsion group is 0. The height of point $(\mu^2, 0)$ is equal to $\frac{1}{15}$.

Remark 2. This fibration can also be obtained with the method of the first set and the parameter $\frac{X(Y - 1)(Z - 1)(YZ + X)}{(X - 1)(X + Z)(X + Y)}$ or with parameter $\frac{(Ux - 1)s}{s - 1}$.

10.1.4. **Fibration of parameter α.** Let $\alpha = \frac{y}{x(y - p)}$. After an easy calculation we have a Weierstrass equation of the fibration of parameter α

$$y^2 + (\alpha^2 + 2)yx - \alpha^2 y = x^2(x - 1).$$

The singular fibers are

- at $\alpha = 0$ of type I_0^*
- at $\alpha = \infty$ of type I_{14}
- at $\alpha = \alpha_0$ of type I_1

where α_0 is a root of the polynomial $2x^4 + 13x^2 + 64$. The Mordell-Weil group is of rank one, the torsion group is 0. The height of $(0, 0)$ is $\frac{1}{7}$.

10.2. **From fibration of parameter δ.** We redraw the graph of the components of the singular fibers and sections of the fibration of parameter δ, and look for subgraphs.

10.2.1. **Fibration of parameter β.** We can see the subgraph corresponding to a singular fiber of type I_2^*.

To get a parameter β corresponding to this fibration we do the transformation $x = u + \delta^3$ in equation (25) and obtain a new equation

$$y^2 - u^3 - \delta(\delta + 1)(3\delta + 1)u^2 - \delta^4(\delta + 2)(3\delta + 2)u - \delta^7(\delta + 2)^3.$$

The point $(0, 0)$ is singular mod δ and mod $\delta + 2$. By calculation we see that $\beta = \frac{u}{\delta^3(\delta + 2)}$ fits. We have a Weierstrass equation

$$y^2 = x^3 + 2\beta^2(\beta - 1)x^2 + \beta^3(\beta - 1)^2x.$$
The Mordell-Weil group is of order 2. The singular fibers are

\[
\begin{align*}
\text{at } & \beta = 0 & \text{of type } & III^* \\
\text{at } & \beta = \infty & \text{of type } & I_2^* \\
\text{at } & \beta = 1 & \text{of type } & I_1^* \\
\end{align*}
\]

10.2.2. **Fibration of parameter \(\phi \).** We can see the subgraph corresponding to a singular fiber of type \(I_7^* \).

As previously, we start with the equation in \(y, u \) and seek for a parameter of the form \(\phi' = \frac{u}{\phi (\delta + 2)} + \frac{\delta}{\phi} \). We choose \(a' \) to get an equation \(y^2 = P(u) \) with \(P \) of degree \(\leq 4 \); we find \(a = \frac{1}{2} \). Let \(\phi = \phi' + 1 \), a Weierstrass equation is then

\[
y^2 = x^3 + 2 \phi^2 (4 \phi - 7) x^2 - 4 \phi^3 (-3 \phi + 8 \phi^2 - 4) x + 8 (3 + 4 \phi) \phi^6.
\]

The singular fibers are

\[
\begin{align*}
\text{at } & \phi = 0 & \text{of type } & III^* \\
\text{at } & \phi = \infty & \text{of type } & I_2^* \\
\text{at } & \phi = \phi_0 & \text{of type } & I_1 \\
\end{align*}
\]

where \(\phi_0 \) is a root of the polynomial \(8x^2 - 13x + 16 \). The Mordell-Weil group is 0. The next table gives the correspondence between parameters and elliptic fibrations.
Parameter	Singular Fibers	Type of Reducible Fibers	Rank	Torsion
1 – s	2I_8, I_4, I_2, 2I_1	A_1, A_3, A_7, A_7	0	8
2 – k	I_5^1, I_12, I_2, 3I_1	A_{11}, A_1, D_5	1	4
3 – v	I_8, I_{10}, 6I_1	A_7, A_9	2	0
4 – a	I_8, I_1, I_6, 3I_1	D_5, A_5, A_7	1	0
5 – d	2I_8, I_2, I_0	A_1, D_4, 2D_6	1	2 × 2
6 – p	I_3, I_4, I_2, I_4	A_1, D_6, A_3, D_8	0	2 × 2
7 – w	I_6, I_{12}, 2I_2, 2I_1	A_5, A_1, A_1 A_11	0	6
8 – b	2IV^*, I_6, I_2	A_5, E_6, E_6	1	3
9 – r	I_6^*, I_2, I_2, I_2	D_6, A_1, D_10	1	0
10 – e	III^*, I_7^*, I_2, I_1	A_1, A_1, D_10, E_7	1	2
11 – f	III^*, II^*, I_4, I_1	E_7, A_3, E_6	0	0
12 – g	2III^*, I_4, I_2	E_7, E_7, A_1, A_3	0	2
13 – h	2II^*, I_2, I_2	A_1, E_8, E_8	1	0
14 – t	2I_1, I_2, 2I_1	A_1, D_8, D_8	1	2
15 – l	I_{10}, I_3, 5I_1	A_9, D_7	2	0
16 – o	I_{12}, I_3, 4I_1	A_1, D_{16}	1	2
17 – q	I_{10}, I_4, I_2, I_2	A_3, A_1, D_{14}	0	2
18 – m	I_{16}, 3I_2, 2I_1	A_1, A_1, A_1, A_15	0	4
19 – n	I_{16}, I_2, 6I_1	A_1, A_{15}	2	0
20 – j	IV^*, I_{12}, I_2, 2I_1	A_{11}, E_6, A_1	0	3
21 – c	I_{18}, 6I_1	A_{17}	1	3
22 – u	I_6^*, I_1, I_2, I_1	A_1, D_5, D_{12}	0	2
23 – i	I_{10}, I_3, 3I_1	A_{1}, D_{17}	0	0
24 – ψ	III^*, I_6^*, 3I_1	E_7 D_{10}	1	2
25 – δ	I_5^*, II^*, I_2, 2I_1	E_5, A_1 D_9	0	0
26 – π	I_3^*, I_6^*, I_2, I_1	A_1, D_{10}, D_7	0	2
27 – μ	IV^*, I_{10}, 2I_2, 2I_1	A_9, A_1, A_1, E_6	1	0
28 – α	I_5^*, I_{14}, 4I_1	D_4, A_{13}	1	0
29 – β	III^*, I_7^*, I_7^*	E_7, D_6, D_5	0	2
30 – φ	III^*, I_7^*, 2I_1	E_7, D_{11}	0	0

References

[1] W. Barth, K. Hulek, C. Peters, A. van de Ven, *Compact complex surfaces. Second edition*, Erg. der Math. und ihrer Grenzgebiete, 3. Folge, Band 4. Springer (2004), Berlin.

[2] A. Beauville, *Les familles stables de courbes elliptiques sur \mathbb{P}^1 admettant quatre fibres singulières*, C. R. Acad. Sci. Paris Sér. I Math. t. 294 (1982), 657-660.

[3] M. J. Bertin, *Mahler’s measure and L-series of K3 hypersurfaces*, in Mirror Symmetry V, Proceedings of the BIRS Workshop on Calabi-Yau Varieties and Mirror Symmetry, AMS/IP, Studies in Advanced Mathematics, S.-T. Yau (ed.).

[4] F. Beukers & H. Montanus, *Explicit calculation of elliptic K3-surfaces and their Belyi-maps*, Number theory and polynomials, London Math. Soc. Lecture note Ser., 352, Cambridge Univ. Press, Cambridge (2008), 33-51.

[5] N. Bourbaki, *Groupes et algèbres de Lie*, Chap.4, 5, 6, Masson, Paris (1981).

[6] J. W. S. Cassels, *Lectures on elliptic curves*, London Math. Soc. Student texts 24, Camb. Univ. Press (1991).

[7] N. D. Elkies, *Three lectures on elliptic surfaces and curves of high rank*, preprint (2007), arXiv: 0709.2908.
ELLIPTIC FIBRATIONS ON THE MODULAR SURFACE ASSOCIATED TO $\Gamma_1(8)$

[8] N. D. Elkies, *The maximal Mordell-Weil rank of an elliptic K3 surface over $\mathbb{Q}(t)$*, Talk at the Conference on Birational Automorphisms of Compact Complex Manifold and Dynamical Systems at Nagoya University, Aug. 28, 2007.

[9] N. D. Elkies, *Mordell-Weil generators for singular Shioda-Inose surfaces over \mathbb{Q}*, http://www.math.harvard.edu/~elkies/K3_2081.html

[10] K. Kodaira, *On compact analytic surfaces I-III*, Ann. of Math., 71 (1960), 111-152; 77 (1963), 563-626; 78 (1963), 1-40.

[11] M. Kuwata, *The canonical height and elliptic surfaces*, Journal of Number Theory, Volume 36, Issue 2, October 1990, 201-211.

[12] A. Kumar, *Elliptic fibration on a generic jacobian Kummer surface*, preprint arXiv:1105.1715v1

[13] T. Harrache & O. Lecacheux, *Étude des fibrations elliptiques d’une surface K3*, J. théorie des nombres de Bordeaux, 23 n1 (2011), 183-207.

[14] J. Martinet, *Les réseaux parfaits des espaces euclidiens*, Masson, Paris, (1996).

[15] A. Néron, *Modèles minimaux des variétés abéliennes sur les corps locaux et globaux*, Inst. Hautes Études Sci. Publ. Math. No. 21 (1964).

[16] H.-V. Niemeier, *Definite quadratische Formen der Dimension 24 und Diskriminante 1*, J. Number Theory 5 (1973), 142-178.

[17] V. V. Nikulin, *Integral symmetric bilinear forms and some of their applications*, Math. USSR Izv. 14, No. 1 (1980), 103-167.

[18] K.-I. Nishiyama, *The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups*, Japan. J. Math. 22 (1996), 293-347.

[19] I.-I. Piatetski-Shapiro, I.-R. Shafarevich, *Torelli’s theorem for algebraic surfaces of type K3*, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530-572.

[20] M. Schütt, *K3 surfaces with Picard rank 20 over \mathbb{Q}*, Algebra and Number Theory 4 (2010), No. 3, 335-356.

[21] M. Schütt, *Elliptic fibrations of some extremal K3 surfaces*, Rocky Mountain Journal of Mathematics 37 (2007), No. 2, 609-652.

[22] M. Schütt, T. Shioda, *Elliptic surfaces*, Algebraic geometry in East Asia - Seoul 2008, Advanced Studies in Pure Mathematics 60 (2010), 51-160.

[23] I. Shimada, D. Q. Zhang, *Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces*, Nagoya Math. J. 161 (2001), 23-54.

[24] T. Shioda, *On the Mordell-Weil lattices*, Comm. Math. Univ. St. Pauli 39 (1990), 211-240.

[25] H. Sterk, *Finiteness results for algebraic K3 surfaces*, Math. Z., 180 (4) (1985), 507-513.

[26] J. Stienstra & F. Beukers, *On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3 surfaces*, Math. Ann. 271 (1985), no. 2, 269-304.

[27] J. Tate, *Algorithm for determining the type of a singular fibre in an elliptic pencil*, in: Modular functions of one variable IV (Antwerpen 1972), Lect. Notes in Math. 476 (1975), 33-52.

[28] N. Yui, *Arithmetic of Certain Calabi-Yau Varieties and Mirror Symmetry*, IAS/Park City Mathematics Series, Vol. 9, (2001), 509-569.

E-mail address: bertin@math.jussieu.fr, lecacheux@math.jussieu.fr

Current address: Université Pierre et Marie Curie (Paris 6), Institut de Mathématiques, 4 Place Jussieu, 75005 PARIS, France