Blockchain technology is a database that is operated by multiple parts and forms a chain structure through hash index. The blockchain uses multiple nodes and distributes multiple accesses to data, thereby reducing the dependence on the central Internet server and avoiding the possibility of damage to the central server point due to data and data loss. Encryption technology is used to ensure its integrity and ensure that the data files stored in the blockchain are not tampered with or deleted maliciously. Blockchain technology has inherent advantages in supply chain finance with its technical attributes such as nontampering, distributed ledger, and traceability and has great potential to build trust to solve the main problems of supply chain finance, which is conducive to promoting financial development in the Beibu Gulf region. This article mainly introduces the application research of blockchain technology in supply chain finance in the Beibu Gulf region and intends to provide some ideas for the development of supply chain finance in the Beibu Gulf region combined with blockchain technology. This article proposes the application research methods of blockchain technology in supply chain finance in the Beibu Gulf region, including blockchain technology, supply chain financial risk evaluation on the blockchain, and supply chain finance game for relevant experiments. The experimental results of this article show that the average processing time of the algorithm of the designed blockchain supply chain financial system is 4.10 seconds, the algorithm processing efficiency is faster, and the relevant risks can be better assessed.

1. Introduction

In order to make the development of supply chain finance reasonable and controllable, it is necessary to improve the ability to control supply chain financing through emerging technologies. The development of supply chain financing will form cross-industry, cross-regional, cross-departmental, and in-depth alliances with the government, and industry associations and funds will form an economic ecological platform to provide effective services to different entities, improve the operational efficiency of the supply chain, and promote the development of the business environment. And this stage is inseparable from technologies such as blockchain, the Internet, and the Internet of Things. Blockchain technology has attracted more and more attention. At present, blockchain technology is gradually applied in the field of supply chain finance. Its technical characteristics play a practical role in the field of supply chain finance, which can improve the trust relationship in supply chain finance and enhance the huge financing ability of supply chain.

In today’s economic globalization, economic integration and financial integration have become more and more important. In this context, the development of regional finance has become an inevitable trend of economic development. The Guangxi Beibu Gulf Economic Zone is located on the southwest coast of China. It is an important transportation hub from China to ASEAN countries during the construction of the China-ASEAN Free Trade Area. It is an important member of the Pan-Beibu Gulf Economic Zone and the Pan-Pearl River Delta Economic Zone. Under the external environment full of opportunities and challenges, it is extremely important for Beibu Gulf Economic Zone to make use of its internal advantages and overcome its disadvantages to carry out regional supply chain economic cooperation.

Kshetri evaluated the role of blockchain in enhancing the security of the Internet of Things (IoT), which covers the key
underlying mechanism related to blockchain-IoT security relationship. From a security perspective, Kshetri focused on blockchain-based solutions, which are superior to the current IoT ecosystem in many aspects, which mainly rely on centralized cloud servers. Through practical applications and practical examples, Kshetri believes that the decentralized nature of the blockchain may cause malicious participants to be less sensitive to manipulation and forgery. In addition, Kshetri specifically considered how a blockchain-based identity and access management system can deal with some key challenges related to IoT security, and detailed analysis and description of the blockchain's ability to track insecure sources in the supply chain related to IoT devices. This research lacks experimental data support and is not practical [1].

Gelsomino et al. categorized the research on supply chain finance so far according to main themes and methods, proposed directions for future research, and completed a related literature review, which puts forward two main points: a financing-oriented view and a focus on finance institutions providing short-term solutions involving accounts payable and accounts receivable; and a supply chain-oriented view that may not involve financial institutions, but focuses on accounts payable, accounts receivable, inventory, and sometimes even fixed assets optimization of working capital in financing. Gelsomino LM believes that this review accurately represents the content of supply chain finance research published within the specified time frame and has identified the most important issues that need to be addressed in future research. In addition, Gelsomino LM found, based on the research deficiencies found in the literature, four key issues that are marked and hoped to be resolved in future research. This study only carried out theoretical discussion, without relevant experiments, and lacked persuasiveness [2]. Yao believes that shopping companies must optimize the integration of their supply chain resources to provide service capabilities, improve customer experience, and introduce satisfactory customized services. These companies need to determine how to achieve effective supply chain resource integration based on different customized service models, improve their resource utilization, and solve special problems in the shopping process. Yao explored the dynamic balance between supply and demand service capabilities by analyzing the characteristics and service modes of supply chain resource integration in shopping companies. The discussion of these capabilities not only considered traditional optimization goals, but also looked at general services, emergency services, and strategies. From the perspective of potential capabilities, the applicability of resources is evaluated to achieve effective supply chain resource integration. Yao JM regards the consistency of the ability target orientation of resource partners as an important optimization goal and evaluates this consistency by identifying the ability characteristic factors and introducing them into the supply chain resource integration. He also proposed an optimization model and an improved ant algorithm to solve the supply chain resource integration process. This research procedure is relatively complicated and not suitable for popularization in practice [3].

The innovations of this article are to (1) propose algorithms for supply chain financial risk evaluation and supply chain financial game on blockchain for research; (2) research on blockchain-based IoT technology; (3) design the Beibu Gulf supply chain financial system architecture.

2. Methods for the Application of Blockchain Technology in Supply Chain Finance in Beibu Gulf Region

2.1. Blockchain Technology

2.1.1. Blockchain Definition. Blockchain is well known to mankind and can be understood as a universally distributed decentralized and intelligent platform in the network [4]. Any node in the blockchain has a copy of the database, and each block created is encrypted and stored with transaction information details; and when each block is created, and the block is completed and transmitted to all nodes in the blockchain, the time stamp is created, and all nodes are notified universally. After each node updates the database, the encrypted information cannot be changed. Even if the data of a certain node is destroyed, the node will not be used because the information of most other nodes is inconsistent [5].

The official definition of blockchain is as follows: blockchain is a new way of applying computer technology, such as distributed data storage, point-to-point transmission, consensus mechanism, and encryption algorithms. The blockchain is essentially a decentralized database. At the same time, as the basic technology of Bitcoin, it is a series of data blocks related to encryption. The data block contains a batch of Bitcoin transaction information, which is used to verify the validity of the information and create the next block [6]. The blockchain is composed of multiple blocks, which are automatically formed according to the creation time. It is not based on other institutions to provide credit ratings but uses encryption and computer science as a means to ensure security to create a corresponding secure public database. The blocking chain was found to be a technical means to make decentralized data accounts safe and public [7].

2.1.2. Features of Blockchain

(i) Decentralization. Decentralization is the core feature of blockchain, and it is also impossible to achieve with other technologies. Information transmission, distributed storage, maintenance, and other operations in the blockchain no longer need to be processed by the central server but rely on the common maintenance of each node in the network node [8].

(ii) Distributed Ledger and Storage. Due to the decentralization of the blockchain, each node adopts distributed accounting storage; that is, each node has a general ledger. After each node uploads and downloads the information, a new block is created through encryption. The establishment of each block will be notified to all nodes on the chain through broadcast, and the generation of this block will be recorded together. All the ledgers of all nodes are updated once to maintain the consistency of all the node ledgers [9].
(iii) **Smart Contract.** The smart contract is formed by the system program setting. It can complete the recognition, judgment, generation behavior, execution, and other procedures by starting a certain condition. It does not require human setting operations, automatically generates the business of adding data, and cannot modify or delete other data, effectively avoiding the interference caused by the external environment [10].

(iv) **Traceability.** The blockchain adds a time stamp to the generation of each block by adding a time stamp and expands the blockchain according to the sequence of generation time. Time is unique, so after adding the time stamp, double recording can be avoided, and the time stamp cannot be tampered with or deleted after it is generated [11].

(v) **Security.** Each information processing of the blockchain will be encrypted by the hash algorithm in asymmetric cryptography to generate a string of fixed-length characters, supplemented with a time stamp, and jointly ensure uniqueness [12].

2.2. Evaluation of Supply Chain Financial Risks on Blockchain

2.2.1. Judgment Matrix

In the analytic hierarchy process, if there are \(n \) influencing factors of \(I \) in the criterion layer, that is, there are \(n \) factors in the sublevel of \(I \), then the corresponding judgment matrix affecting criterion \(I \) is an \(n \times n \) matrix. According to the construction of the judgment matrix of the analytic hierarchy process, in the level analysis of the supply chain financial risk on the blockchain, it can be assumed that the total risk of the system is 1, and the first-level indicator of the supply chain financial risk evaluation on the blockchain is \(I_{1} = \{I_1, I_2, \ldots, I_l\} \), and the second-level indicator is \(I_{m} = \{I_{m1}, I_{m2}, \ldots, I_{mn}\} \) [13]. The importance of each influencing factor to the upper level can be determined by quantitative indicators. For any secondary index, its judgment matrix is the matrix formed by comparing the various influencing factors below the index [14]. Suppose that the order of the judgment matrix of \(I_{m} \) is \(m \), and \(I_{c,d} \) is the importance ratio of the third-level index \(I_{inc} \) and the third-level index \(I_{inm} \) to the second-level index \(I_{int} \), and the following relationship exists:

\[
I_{c,d} > 0, \\
I_{dc} = \frac{1}{I_{c,d}}, \\
I_{cc} = I_{d,d} = 1, \\
c = (b_{c,d})_{mm} = \begin{bmatrix}
\begin{array}{cccc}
 b_{11} & b_{12} & \cdots & b_{1m} \\
 b_{21} & b_{22} & \cdots & b_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{m1} & b_{m2} & \cdots & b_{mm}
\end{array}
\end{bmatrix}.
\]

2.2.2. Calculation of Relative Weight

In the second step of calculating the relative weight, suppose that the third-level indicator of supply chain financial risk on the blockchain is \(I_{int1}, I_{int2}, \ldots, I_{intm} \), and the corresponding second-level indicator is \(I_{in} \) weight \(W_{int1}, W_{int2}, \ldots, W_{intm} \) [15]. Using geometric average method for calculation, the formula is as follows.

First, calculate the product \(M_{c} \) of each row of the matrix:

\[
M_{c} = \prod_{d=1}^{m} b_{c,d}, \quad (c = 1, 2, \ldots, m).
\]

Then, calculate the \(m \)-th root \(W_{c} \) of \(M_{c} \):

\[
W_{inc} = \sqrt[m]{M_{c}}.
\]

Perform vector normalization:

\[
W_{inc} = \frac{\sum_{c=1}^{m} W_{c}}{\sum_{c=1}^{m} \sum_{c=1}^{m} W_{c}} = \sqrt{\frac{\prod_{d=1}^{m} b_{c,d}}{\sum_{c=1}^{m} \prod_{d=1}^{m} b_{c,d}}} \quad (c = 1, 2, \ldots, m).
\]

2.2.3. Consistency Test of Judgment Matrix

The third step is the consistency test. The rationality of the judgment matrix depends on the consistency test. The consistency test can avoid the strong randomness of the judgment matrix without losing the significance of its judgment [16]. Firstly, the new matrix \(CV \) is obtained by multiplying the judgment matrix and the relative weight coefficient vector, and then the maximum eigenvalue \(\lambda_{\text{max}} \) of the CV is calculated, and then the value of the consistency index (C.I.) is calculated. When the order of the matrix is greater than 2, the value of C.I. is calculated:

\[
\lambda_{\text{max}} = \frac{1}{m} \sum_{c=1}^{m} CV_{c} = \frac{m}{m-1} \sum_{c=1}^{m} \frac{CV_{c}}{MC_{c}} = \frac{1}{m} \sum_{c=1}^{m} \sum_{d=1}^{m} b_{cd} v_{dc}.
\]

It is generally believed that as long as the value of C.I. is not greater than 0.1, the consistency is considered acceptable. If it is greater than 0.1, it is considered that the consistency is not good enough. Some evaluations may be random and not considered seriously. However, when the order of the matrix increases, its consistency tends to decrease; that is, it will be greater than 0.1, so the randomness index (RIndm Index, RI) is generally used to check the consistency of the judgment matrix. RI is a function of the order \(n \) of the matrix. It increases as the order increases. The order of the matrix is brought into the table of RI values, and the corresponding value is obtained to calculate the value of the consistency ratio C.R. [17, 18].

\[
\text{C.R.} = \frac{\text{C.I.}}{\text{RI}}.
\]

2.3. Supply Chain Finance Game

Calculate the expected benefits of different decision-making core enterprises and obtain their comprehensive expectations:
\(E_{x_2} = y_2(R_1 b_2 + v) + (1 - y_2)(R_2 b_2) \),
(8)

\(E_{1-x_2} = y_2[R_1(b_1 + b_2) - p_1] + (1 - y_2)[R_2(1 + b_2) - p_2] \),
(9)

\[\mathcal{E}_{x_2} = x_2E_{x_2} + (1 - x_2)E_{1-x_2}. \]
(10)

Calculate the expected returns of financial institutions in different decision-making and obtain their comprehensive expectations:

\(E_{x_2} = x_2(aR_1b_3 + l_1 - c_3) + (1 - x_2)(aR_2b_3 - l_2 - c_4), \)
(11)

\(E_{1-x_2} = x_2(aR_2b_3 - l_2 - c_4) + (1 - x_2)(p_2 - l_2 - c_5 - c_6), \)
(12)

\[\mathcal{E}_{y_2} = y_2E_{y_2} + (1 - y_2)E_{1-y_2}. \]
(13)

According to the evolutionary game theory and the above results, the replication dynamic equations of core enterprises and financial institutions are obtained:

\[F(x_2) = \frac{dx_2}{dt} = x_2(E_{x_2} - \mathcal{E}_{x_2}), \]
(14)

\[F(y_2) = \frac{dy_2}{dt} = y_2(E_{y_2} - \mathcal{E}_{y_2}). \]
(15)

Establish the replication dynamic equation of the above core enterprises and financial institutions together, and record:

\[M = aR_1b_3 - p_1 + c_5 - aR_2b_3 + p_2 - c_6, \]
(16)

\[N = c_3 + c_5 + p_2 - p_1 - l_1 - l_2 - c_4 - c_6. \]
(17)

Get a two-dimensional dynamic system \(S_2 \):

\[
\begin{align*}
\frac{dx_2}{dt} &= x_2(1 - x_2)[y_2(R_2 - R_1 + p_1 - p_2 + v) + (p_2 - R_2)], \\
\frac{dy_2}{dt} &= y_2(1 - y_2)(Mx_2 + N).
\end{align*}
\]
(18)

Analyze the two-dimensional dynamic system, study the dynamic changes of the strategic choices of core enterprises and financial institutions, and explore the evolutionary path and law of the two parties in the regulatory game [19, 20].

The method part of this article uses the above method to study the application of blockchain technology in supply chain finance in the Beibu Gulf region. The specific process is shown in Table 1.

3. Application Research Experiment of Blockchain Technology in Supply Chain Finance in Beibu Gulf

3.1. Research on Internet of Things Technology Based on Blockchain

3.1.1. New Block Structure Design

Blockchain is fundamentally different from traditional transaction networks and has a variety of special characteristics [21]. Their key functions include encryption (asymmetric encryption), hashing, chaining blocks, and smart contracts. Blockchain transactions represent the interaction between two parties. For encrypted currencies, transactions represent the transmission of encrypted currencies between blockchain users. These transactions can also refer to the transmission or recording of messages. Each block in the blockchain can contain one or more transactions, and the block structure is designed according to the block’s things [22].

The general blockchain is a decentralized, distributed, and public number composed of blocks. In general, each block is connected to a collection of transactions with a time stamp. It can be seen that this technology allows nodes to exchange data by creating transactions. Each transaction depends on another transaction. The output of one transaction is referenced as input in another transaction, thereby creating a chain structure in it [23].

The essence of the blockchain is a distributed database (account book). The block header is equivalent to the index of the data account book, and the block body records specific transactions. For the Internet of Things environment, the traditional block is no longer suitable for the Internet of Things environment. The block design does not match this direction, resulting in a large amount of redundancy at the data structure level, which will inevitably lead to a waste of resources for operations such as fast access to the chain and update of the new area [24]. For example, the block structure of Ethereum is more suitable for money transactions and does not pay attention to physical devices. This creates a certain conflict with the environment of a large number of physical devices such as the Internet of Things. Due to the particularity of the IoT environment, IoT devices may not have high computing power. Compared with the computing and storage capabilities required as an Ethereum node, to be applied to the IoT environment, it is necessary to reduce computing overhead and reduce calculations and power dependence [25].

3.1.2. Authentication Interaction Based on New Blocks

The transaction authentication and interaction process of the entire system is divided into two steps, zero-knowledge entry chain and secondary authentication during interaction. The zero-knowledge proof, such as entering the chain, is a necessary condition for joining this IoT blockchain system, and the second identity authentication occurs when two gateway nodes exchange data [26].

The first time the new gateway node enters the chain it uses a zero-knowledge proof algorithm to write information such as the device number, Diffie-Helman field, and envelope encryption public key into the blockchain. This time authentication is necessary. The zero-identification proof of the more commonly used and constant data can ensure that important data cannot be tampered with. At the same time, these data are likely to be used extensively and frequently in future gateway node communication. Data disclosure in advance is helpful for mutual trust and communication security between gateway nodes. After the data is written, the second authentication is to use the data of the first
authentication to perform the second authentication when interacting between blocks (gateway nodes). Take out the relevant information and necessary cryptographic data of the other party from the blockchain, and then you can carry out secure data interaction [27].

3.2. Architecture Design of Financial System of Beibu Gulf Supply Chain

3.2.1. Overall System Architecture

The system is divided into financial basic platform and business service platform from the overall architecture design. The financial basic platform mainly includes the blockchain layer and the financial service layer. The blockchain layer is based on the Hyperledger Fabric project to build a basic blockchain technology network layer, which is used to carry data services such as data security storage and data synchronization in the Beibu Gulf region and financial services. The layer mainly includes service interface, operation, and maintenance platform backend, and operation and maintenance platform front-end. The service interface is a service layer that provides business service platforms in the Beibu Gulf region to quickly access the blockchain network layer for data interaction; the operation and maintenance platform provides services including blocks operation and maintenance operations required by the chain network and financial service layer. The business service platform mainly includes the backend of supply chain finance and the front end of supply chain finance; its main role is to serve as the platform layer for carrying various business processes in the financial business, and different functional modules can be added according to the specific business to meet different functional needs.

3.2.2. Blockchain Network Architecture and Its Module Docking

The blockchain network in the Beibu Gulf region mainly connects to the service interface module together with the service interface to provide blockchain services to the backend of the supply chain finance. The blockchain network includes member management, blockchain services, chain code services, and distributed ledger modules. Member management includes member registration, member review, and member authentication functions; blockchain services implement underlying consensus management and p2p communication management functions; chain code services implement chain code containers and chain code deployment functions; distributed ledgers store data in the business process. The service interface includes four functional modules: Fabric-SDK, authority management, certificate management, and dispatch control, which provide an interface for the backend of supply chain finance to implement the package and call of certificates and permissions. Among them, scheduling control is the entrance to the backend call of supply chain finance, calling certificate management and authority management to determine user identity and authority, and calling SDK according to the result to realize the requested function; authority management is responsible for managing role authority and functional authority in the supply chain system; certificate manages the certificate-related operations of platform customers.

3.2.3. Chain Code Implementation

In Hyperledger Fabric, smart contracts are also called chain codes. The chain code in the system described in this article is the supply chain business logic that controls the core enterprises, suppliers, and banks in the blockchain network to exchange information or execute transactions. Set up and get data in the blockchain ledger or World State database by calling the chain code. Hyperledger Fabric currently supports Golang and Java to develop chain code. Since Hyperledger Fabric is developed in Golang language, the system described in this article uses Golang language that is closer to Hyperledger Fabric to develop chain code. The chain code development environment relies mainly on Docker container and Golang language.

This experimental part proposes that the above steps are used in the application research experiment of blockchain technology in supply chain finance in the Beibu Gulf region. The specific process is shown in Figure 1.

4. Application Research and Analysis of Blockchain Technology in Supply Chain Finance in Beibu Gulf

4.1. Analysis on the Financial Development of Beibu Gulf City Group

(1) Among the many quantitative evaluation indicators for the spatial agglomeration identification of the financial industry, the location entropy index can measure the agglomeration level of the urban financial industry development from multiple perspectives in geographic space, reflecting the overall concentration characteristics of the urban financial industry space. Based on this, this paper selects two indicators, the location entropy index and the industrial city agglomeration index, and uses the statistical data from 2016 to 2020 to determine the degree of spatial agglomeration of the financial industry in the Beibu Gulf city cluster, as shown in Table 2 and Figure 2.
On the whole, the financial agglomeration level of the Beibu Gulf urban agglomeration shows a downward trend; from the numerical value of the agglomeration degree, Nanning, which has a higher degree of agglomeration, has a downward trend in financial agglomeration; due to the decline of the traditional industries in these cities, the emerging industries have not yet developed. Under the dual effects of the decrease in the inflow of external financial resources and the outflow of internal financial resources, the concentration of the urban financial industry has shown a continuous downward trend.

As can be seen from the chart, Nanning in the Beibu Gulf Economic Zone has the highest GDP and the strongest economic strength. Nanning is the economic center of the whole district, with the largest number of financial institutions, complete financial services, a high level of electronics, and the most complete financial system.

4.2. Experiment Analysis

(1) Checking whether the judgment matrix is consistent is a necessary prerequisite to ensure better hierarchical ranking, because an important criterion for evaluating whether the importance ranking of the subelements in the judgment matrix is correct is whether the matrix is correct. It has logical regularity. In the actual evaluation process, inconsistent errors often appear, because the evaluator can only make a rough judgment and cannot guarantee that the judgment is sufficiently rational. Therefore, it is extremely necessary to check the consistency of the judgment matrix. Only when the judgment matrix satisfies the principle of consistency and is logically reasonable, can the result be further analyzed; otherwise, the wrong conclusion will be drawn. The specific operation to check whether the judgment matrix has consistency is as follows: first, calculate the consistency index; then, obtain the corresponding average random consistency index by looking up the table; finally, calculate the consistency ratio value and make a judgment. The value of the average random consistency index needs to be
obtained by looking up the table. The first- to fourteenth-order average random consistency indexes are shown in Table 4 and Figure 4.

When the consistency ratio value is less than 0.1, the judgment matrix meets the principle of consistency and can be accepted and analyzed in the next step; when the consistency ratio value is greater than 0.1, it can be concluded that the judgment matrix does not meet the principle of consistency. It must be further revised before it can be used in the result analysis. Finally, the index weight value of each expert is calculated and averaged, and the unified weight of each index is finally determined.

(2) The value of the random consistency index (R.I.) is shown in Table 5 and Figure 5.

When R.I. is greater than or equal to 0.1, it reflects that the consistency of the judgment matrix is relatively poor, and the judgment matrix must be reformulated. When R.I. is less than 0.10, it reflects the consistency of the judgment matrix and proves that the judgment matrix is available. The financial risk indicators of the supply chain on the blockchain all pass the consistency test required by the analytic hierarchy process.

(3) The number of times that malicious nodes are selected as master nodes under different weight coefficients in the blockchain consensus mechanism is shown in Table 6 and Figure 6.

It can be seen that when the weight of ownership is not 0, three factors are considered comprehensively. If the weight of the historical consensus score is not much greater than the percentage of the node’s remaining power, the ratio of the number of nodes successfully participating in the consensus to the total number of consensuses The weight, the number

Table 3: GDP and industrial structure of central cities in Beibu Gulf Economic Zone in 2020 (100 million yuan).

City	GDP	First industry	Secondary industry	Tertiary industry
Nanning	3671.12	692.46	1567.21	1411.45
Beihai	1126.45	326.72	394.17	405.56
Qinzhou	987.13	309.24	318.09	359.80
Fangchenggang	1045.07	378.05	354.69	312.33
Yulin	745.06	258.37	267.13	219.56
Chongzuo	659.18	201.56	243.48	214.14

Figure 2: The financial location entropy index of the Beibu Gulf urban agglomeration from 2016 to 2020.

Figure 3: GDP and industrial structure of central cities in the Beibu Gulf Economic Zone in 2020 (100 million yuan).
of times the malicious node is selected as the master node will be the same as the algorithm in this paper. When the weight of the historical consensus score is much greater than the percentage of the remaining power of the node, as well as the weight of the ratio of the number of times the node successfully participates in the consensus to the total number of consensus, the number of times malicious nodes are selected as the master node is significantly reduced.

(4) For the blockchain supply chain financial system, in addition to factors that affect system performance such as CPU consumption and IO response speed, it is often necessary to consider the delay of the client initiating transactions, the processing delay of the consensus algorithm, and so on. Since blockchain-based systems use cryptographic techniques such as one-way hash functions, asymmetric encryption, etc., such calculations consume extremely high CPU. In addition, because, in most consensus algorithms, there is a process in which multiple nodes in the entire system participate in the consensus voting, this process will generate a large amount of network communication, so the performance of the system

| Table 4: Average random consensus index. |
|----------------------|--------|--------|--------|--------|--------|--------|--------|
| Matrix order | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Average random consistency index | 0.12 | 0.51 | 0.74 | 1.23 | 1.32 | 1.39 | 1.44 |

| Matrix order | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| Average random consistency index | 1.54 | 1.59 | 1.62 | 1.65 | 1.68 | 1.71 | 1.73 |

| Table 5: R.I. Value. |
----------------------	--------	--------	--------	--------	--------	--------	--------	
Matrix order	1	2	3	4	5	6	7	8
R.I.	0.00	0.02	0.49	0.57	0.93	1.17	1.29	1.36

| 9 | 10 |
| R.I. | 1.44 | 1.48 |

![Figure 4: Average random consensus index and matrix order.](image)

![Figure 5: R.I. Value.](image)
depends largely on the processing efficiency of the algorithm. The algorithm processing efficiency of the blockchain supply chain financial system in this paper is shown in Table 7 and Figure 7.

It can be seen from the data calculation in the chart that the average processing time of the algorithm in the blockchain supply chain financial system is 4.10 seconds. If the algorithm processing time is shorter, and the efficiency is faster. It can be better applied in the system to better evaluate the related risks and make more suitable decisions.

5. Conclusions

Supply chain finance is mainly to provide financial solutions for small- and medium-sized enterprises or small- and microenterprises. This business mainly uses core enterprises as credit endorsements to serve their upstream and downstream enterprises, so as to realize the cooperative development between logistics companies, banks, and enterprises. The distributed deployment of the blockchain can ensure that any node in the network saves the same copy information. The data of each node in the network will be encrypted by algorithms and data, marked with a timestamp. This feature allows financial institutions to unique and true data can be obtained at the postloan management stage. The characteristics of the blockchain also guarantee the traceability, anticounterfeiting, identity authentication, and other issues in the financial transaction process.

The Beibu Gulf region should keep up with the pace of the times, cater to the development trend of my country’s supply chain finance, speed up the resolution of the difficult and expensive financing problems of Guangxi’s small- and medium-sized enterprises, and actively accelerate the win-win cooperation with Internet technology companies, supply chain companies, and logistics companies. Small- and medium-sized enterprises in the region and even across the country provide high-quality and efficient financial services, which effectively enhance the financial transaction capabilities, core competitiveness, and risk control capabilities of the Beibu Gulf region in Guangxi and increase resources and profit for the development of the Beibu Gulf region.

This article first analyzes the main business models of supply chain finance and the status quo of the development

Consensus times	Algorithm	$k_1 = 0.01, k_2 = k_3 = 0.37$	$k_1 = k_2 = k_3 = 0.33$	$k_1 = 0.87, k_2 = k_3 = 0.01$
10	0	0	0	0
20	15	14	13	12
30	28	26	19	22
40	24	23	27	25
50	36	29	25	23
60	42	31	29	28
70	38	37	36	34
80	48	45	44	41
90	54	52	49	47
100	61	57	50	49

Figure 6: Comparison of the number of times that malicious nodes were selected as master nodes under different weight coefficients.

Experiment times	Processing time (s)
1	4.37
2	3.92
3	4.26
4	4.07
5	3.87

Figure 7: Processing time of the algorithm.
of supply chain financial services by major domestic commercial banks and proposes the necessity of developing supply chain financial services in the Beibu Gulf region of Guangxi; blockchain can connect banks and other financial institutions, core enterprises. The upstream and downstream enterprises at all levels in the supply chain are connected to realize information sharing. Supply chain finance effectively alleviates the problem of information asymmetry in supply chain finance.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Guangdong Ocean University Cunjin College Innovation and Strengthening School Project: The application of blockchain technology in supply chain finance of Beibu Gulf Region (Project No: C20CXQX006).

References

[1] N. Kshetri, “Can blockchain strengthen the internet of things?” *IT Professional*, vol. 19, no. 4, pp. 68–72, 2017.
[2] L. M. Gelsomino, R. Mangiaracina, and A. Perego, “Supply chain finance: a literature review,” *International Journal of Physical Distribution & Logistics Management*, vol. 46, no. 4, pp. 348–366, 2016.
[3] J. M. Yao, “Supply chain resources integration optimisation in B2C online shopping,” *International Journal of Production Research*, vol. 55, no. 17-18, pp. 1–16, 2017.
[4] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” *Harvard Business Review*, vol. 95, no. 1, pp. 118–127, 2017.
[5] S. Underwood, “Blockchain beyond bitcoin,” *Communications of the ACM*, vol. 59, no. 11, pp. 15–17, 2016.
[6] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial internet of things,” *Journal of Software Engineering and Applications*, vol. 09, no. 10, pp. 533–546, 2016.
[7] J. J. Sikorski, J. Haughton, and M. Kraft, “Blockchain technology in the chemical industry: machine-to-machine electricity market,” *Applied Energy*, vol. 195, pp. 234–246, 2017.
[8] J. Goebel, H. P. Keeler, and A. E. Krzesinski, “Blockchain technology: the selfish-miner strategy in the presence of propagation delay,” *Performance Evaluation*, vol. 104, pp. 23–41, 2016.
[9] B. Lee and J.-H. Lee, “Blockchain-based secure firmware update for embedded devices in an Internet of Things environment,” *The Journal of Supercomputing*, vol. 73, no. 3, pp. 1152–1167, 2017.
[10] A. Dorri, S. S. M. Steger, and R. Jurdak, “Blockchain: a distributed solution to automotive security and privacy,” *IEEE Communications Magazine*, vol. 55, no. 12, pp. 119–125, 2017.
[11] E. Mengelkamp, B. Notheisen, and C. Beer, “A blockchain-based smart grid: towards sustainable local energy markets,” *Computer Science-Research and Development*, vol. 33, no. 1-2, pp. 207–214, 2018.
[12] S. Ølnes, M. J. Ubacht, and M. Janssen, “Blockchain in government: benefits and implications of distributed ledger technology for information sharing,” *Government Information Quarterly*, vol. 34, no. 3, pp. 355–364, 2017.
[13] J. Sun, J. Yan, and K. Z. K. Zhang, “Blockchain-based sharing services: what blockchain technology can contribute to smart cities,” *Financial Innovation*, vol. 2, no. 1, pp. 1–9, 2016.
[14] H. Subramanian, “Decentralized blockchain-based electronic marketplaces,” *Communications of the ACM*, vol. 61, no. 1, pp. 78–84, 2017.
[15] Y. Guo, J. C. Wang, and G. Q. Z. AfriyieWang, “A distinct mitogenome of peanut worm *Sipunculus nudus* (*Sipuncula, Sipunculidae*) from Beibu Gulf,” *Mitochondrial DNA Part B*, vol. 5, no. 2, pp. 1839–1840, 2020.
[16] J. Wang, J. S. Jiang, and S. L. P. ZhangXie, “Effects of wave-current interaction on the waves, cold-water mass and transport of diluted water in the Beibu Gulf,” *Acta Oceanologica Sinica*, vol. 39, no. 1, pp. 25–40, 2020.
[17] W. Bai, H. J. Hu, and P. a. Peng, “Climatic and human impact on the environment: insight from the tetraether lipid temperature reconstruction in the Beibu Gulf, China,” *Quarterly International*, vol. 536, pp. 75–84, 2020.
[18] L. Zhang, “Credit evaluation of medium and small sized enterprises during supply chain finance based on BP neural network,” *Revista De La Facultad De Ingenieria*, vol. 32, no. 3, pp. 776–784, 2017.
[19] S. D. Lekkakos and A. Serrano, “Supply chain finance for small and medium sized enterprises: the case of reverse factoring,” *International Journal of Physical Distribution & Logistics Management*, vol. 46, no. 4, pp. 367–392, 2016.
[20] R. Pellegrino, N. Costantino, and D. Tauro, “Supply chain finance: a supply chain-oriented perspective to mitigate commodity risk and pricing volatility,” *Journal of Purchasing & Supply Management*, vol. 25, no. 2, pp. 118–133, 2018.
[21] P. Y. Brunet, V. Babich, and T. Aouam, “Supply chain finance: overview and future directions,” *Foundations & Trends in Technology Information & Operations Management*, vol. 10, no. 3–4, pp. 237–252, 2017.
[22] J. He, X. J. Wang, and X. Jiang, “The effects of long memory in price volatility of inventories pledged on portfolio optimization of supply chain finance,” *Journal of Mathematical Finance*, vol. 06, no. 01, pp. 134–155, 2016.
[23] M. Wang, “Research on the evolution of supply chain finance mode in the “Internet+” era,” *Open Journal of Social Sciences*, vol. 4, no. 3, pp. 130–136, 2016.
[24] C.-L. Zhang, “Risk assessment of supply chain finance with intuitionistic fuzzy information,” *Journal of Intelligent & Fuzzy Systems*, vol. 31, no. 3, pp. 1967–1975, 2016.
[25] Y. Yu, “Research on the impact of five science and technology plans of guangdong province on industrial innovation chain,” *Open Journal of Business and Management*, vol. 7, no. 01, pp. 124–134, 2019.
[26] J. Peng, “Recognition on the food security strategy in China from the perspective of industrial chain,” *Agriculture, Forestry and Fisheries*, vol. 6, no. 4, pp. 138–144, 2017.
[27] R. Matindi, P. M. Masoud, and S. Q. LiuKent, “Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes,” *International Journal of Industrial Engineering Computations*, vol. 9, no. 3, pp. 265–288, 2018.