Quantum Fluctuations in Dipolar Bose Gases

Aristeu Lima1 and Axel Pelster2

1 Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2 Hanse-Wissenschatsskolleg, Lehmkuhlenbusch 4, 27733 Delmenhorst, Germany

Abstract

We investigate the influence of quantum fluctuations upon dipolar Bose gases by means of the Bogoliubov-de Gennes theory. Thereby, we make use of the local density approximation to evaluate the dipolar exchange interaction between the condensate and the excited particles. This allows to derive the Bogoliubov spectrum analytically in the limit of large particle numbers. After discussing the condensate depletion and the ground-state energy correction, we derive quantum corrected equations of motion for harmonically trapped dipolar Bose gases by using superfluid hydrodynamics. These equations are subsequently applied to investigate the equilibrium configuration, the low-lying oscillation frequencies, and the time-of-flight dynamics. We find that both atomic magnetic [1–3] and molecular electric [4–6] dipolar systems offer promising scenarios for detecting beyond mean-field effects.

Bogoliubov-de Gennes theory [7,8]

- Hamilton operator (creation and annihilation)
 \[H = \int d^3x \Psi \bar{\Psi} \left(-\frac{\mathbf{H}_0^2}{2M} + U_0(x) \right) \]
- Free Hamiltonian and trapping potential
 \[H_0 = -\frac{\hbar^2 \nabla^2}{2M} + U_0(x), \quad U_0(x) = \frac{M}{2} \alpha^2 (x^2 + y^2 + \zeta^2) \]
- Interaction (s-wave, dipole and relative interaction strength)
 \[V_{\text{int}}(x) = \frac{\hbar^2 \beta_{\text{int}}}{M} \left(1 - \frac{x^2 + y^2 + \zeta^2}{\lambda^2} \right) + \epsilon_{\text{int}} = \frac{\hbar^2 \beta_{\text{int}}}{M} + \epsilon_{\text{int}} \]
- Bogoliubov equation (mean-field and quantum fluctuations)
 \[\Psi(x) = \hat{\Psi}(x) + \delta \hat{\Psi}(x) \]
- Fluctuation decomposition (Bogoliubov amplitudes)
 \[\delta \hat{\Psi}(x) = \sum \left(U_{\text{int}}(x) \hat{a}_n + V_{\text{int}}(x) \right) \]
- Bogoliubov-de Gennes equation
 \[\int d^3y \left(H_{\text{int}}(x, y) \hat{\Psi'}(y) + H_{\text{int}}(x, y) \right) \left(U_{\text{int}}(y) \hat{\Psi'}(y) + V_{\text{int}}(y) \right) = \epsilon_{\text{int}} \left(U_{\text{int}}(y) \right) \]
 with
 \[H_{\text{int}}(x, y) = \delta(x-y) H_{\text{int}}(y) + \Psi(x) \Psi'(y) \]
- Hamiltonian
 \[H_{\text{int}}(x) = H_0 - \mu + \int d^3x \Psi(x) V_{\text{int}}(x) \Psi(x) \]
- Semicalssical approximation [9]
 \[\epsilon_{\text{int}} \approx \epsilon_{\text{int}}(x, k), \quad U_{\text{int}} \rightarrow U(x, k) e^{ikx}, \quad V_{\text{int}} \rightarrow V(x, k) e^{ikx} \]

Local density approximation for the exchange interaction [10,11]
\[I_{\text{ex}} = \int d^3y H_{\text{int}}(x, y) \phi(y) \]
\[\approx \phi(x) \| \phi(x) \| g_{\text{int}}(x) \left[1 + e_{\text{int}} \left(2 \cos^2 \theta - 1 \right) \right] \]

Semiclassical Bogoliubov spectrum
\[\epsilon_{\text{int}}(x, k) = \epsilon_{\text{int}}(x) - \epsilon_{\text{int}}(k) \]

with the abbreviation \[\epsilon_{\text{int}}(x, k) = \int d\lambda \lambda^2 \] and the Bogoliubov amplitudes
\[U(x, k)^2 = V(x, k)^2 = \frac{1}{2} \left(\epsilon_{\text{int}}(x, k) - \epsilon_{\text{int}}(k) \right) \]

Condensate depletion
\[\hat{n}(x) - n_0(x) = \frac{\hat{\Psi}^\dagger(x) \hat{\Psi}(x)}{\hbar^2} \sqrt{\frac{m \hbar^2}{2 \pi}} \]

Ground-state energy correction
\[\Delta E[\hat{\Psi}] = \frac{64}{35} \frac{\hbar^2}{m} \| \hat{\Psi} \|^2 \]

Auxiliary functions
\[\hat{Q}(x) = \int d\lambda \left(1 - x + \lambda^2 \right)^{1/2} \]

Variational superfluid hydrodynamics [7,8,12]

- Action
 \[\mathcal{A}[\hat{\Psi}, \hat{\Psi}^\dagger] = -\int dt \left(\hat{\Psi}^\dagger \hat{\Psi} \right) \left(\frac{\hat{\Psi}^\dagger \hat{\Psi}}{2} + \hat{\Psi} \hat{\Psi}^\dagger \right) \]
- Mean-field energy density
 \[e_{\text{MF}}[n] = \frac{\int d^3x \left(\hat{\Psi}^\dagger \hat{\Psi} \right)}{\int d^3x} \left(\frac{m}{2} \frac{n(x)}{2} \right) \]

- Ansatz
 \[n(x, t) = \frac{\int d^3x \left(\hat{\Psi}^\dagger \hat{\Psi} \right)}{\int d^3x} \left(\frac{m}{2} \frac{n(x)}{2} \right) \]

- Equations of motion with quantum corrections
 \[R_L = -i \omega \frac{\hbar^2}{4} \frac{\hbar^2}{M} \frac{\hbar^2}{M} \]
 \[R_L = -i \omega \frac{\hbar^2}{4} \frac{\hbar^2}{M} \frac{\hbar^2}{M} \]

- Auxiliary functions
 \[f_1(x) = \frac{1 + 2x^2}{2x^2} \]

Beyond mean-field aspect ratio [7,8]

- First order correction
 \[R_L = \frac{\hbar^2}{4} \frac{\hbar^2}{M} \frac{\hbar^2}{M} \] \[\Rightarrow \kappa = \kappa^2 (1 + \delta \kappa) \]

- Low-Lying excitations [7,8]
 \[\lambda = \kappa \]

Time-of-flight dynamics [7]

- Set \(\omega = 0 \) in the equations of motion

Acknowledgements

This work was financially supported by the German Research Foundation (DFG) within project KL256/33-1.
Quantum Fluctuations in Dipolar Bose Gases

Aristeu Lima1 and Axel Pelster2

1 Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2 Hanse-Wissenschaftskolleg, Lehmkühlenbusch 4, 27733 Delmenhorst, Germany

References

[1] M. Lu, S. H. Youn, and B. L. Lev, Trapping ultracold dysprosium: A highly magnetic gas for dipolar physics. Phys. Rev. Lett. \textbf{104}, 083001 (2010).
[2] M. Lu, N. Q. Brueckl, S. H. Youn, and B. L. Lev, Strongly Dipolar Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett. \textbf{107}, 190401 (2011).
[3] T. Lahaye, T. Koch, B. Frohlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, and T. Pfau, Strong dipolar effects in a quantum ferrofluid. Nature \textbf{448}, 672 (2007).
[4] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotlochegov, P. S. Julienne, D. S. Jin, and J. Ye, A high phase-space-density gas of polar molecules. Science \textbf{322}, 231 (2008).
[5] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Dipolar collisions of polar molecules in the quantum regime. Nature \textbf{464}, 1124 (2010).
[6] L. D. Cas and J. Ye. Focus on cold and ultracold molecules. New J. Phys. \textbf{11}, 015009 (2009).
[7] A. R. P. Lima and A. Pelster. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A \textbf{84}, 043604(R) (2011).
[8] A. R. P. Lima and A. Pelster. Beyond Mean-Field Low-Lying Excitations of Dipolar Bose Gases. arXiv:1111.0900.
[9] S. Giorgini, L. P. Pitaevskii, and S. Stringari. Thermodynamics of a trapped Bose-condensed gas. J. Low Temp. Phys. \textbf{109}, 389 (1997).
[10] E. Timmermans, P. Tommasini, and K. Huang. Variational thomas-fermi theory of a nonuniform Bose condensate at zero temperature. Phys. Rev. A \textbf{55}, 3645 (1997).
[11] S. Rous, D. C. E. Bortolotti, and J. L. Bohn. Bogoliubov modes of a dipolar condensate in a cylindrical trap. Phys. Rev. A \textbf{74}, 033623 (2006).
[12] A. Gritti, T. Nikuni, and E. Zaremba. Bose-Condensed Gases at Finite Temperatures. Cambridge University Press (2009).
[13] D. H. J. O'Dell, S. Giovanazzi, and C. Eberlein. Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. Phys. Rev. Lett. \textbf{92}, 250401 (2004).
[14] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell. Exact solution of the Thomas-Fermi equation for a trapped Bose-condensate with dipole-dipole interactions. Phys. Rev. A \textbf{71}, 033618 (2005).
[15] K. Glumm, A. Pelster, B. Kleinert, and T. Pfau. Critical temperature of weakly interacting dipolar condensates. Phys. Rev. Lett. \textbf{98}, 090407 (2007).
[16] K. Glumm and A. Pelster. Bose-Einstein condensation temperature of dipolar gas in anisotropic harmonic trap Phys. Rev. A \textbf{76}, 023604 (2007).
[17] A. R. P. Lima and A. Pelster. Collective motion of polarized dipolar Fermi gases in the hydrodynamic regime. Phys. Rev. A \textbf{81}, 023608(R) (2010).
[18] A. R. P. Lima and A. Pelster. Dipolar Fermi gases in anisotropic traps. Phys. Rev. A \textbf{81}, 063629 (2010).