Warming and Predation Alter Consumer Coexistence

Peiyu Zhang
Institute of Hydrobiology Chinese Academy of Sciences

Huan Zhang
Institute of Hydrobiology Chinese Academy of Sciences

Huan Wang
Institute of Hydrobiology Chinese Academy of Sciences

Michelle C. Jackson
University of Oxford

Min Zhang
Huazhong Agriculture University College of Science

Jun Xu (✉ xujun@ihb.ac.cn)
Institute of Hydrobiology Chinese Academy of Sciences

Research Article

Keywords: warming, coexistence, predation, species, snails, aeruginosa, swinhoei, biomass

DOI: https://doi.org/10.21203/rs.3.rs-459469/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Understanding how species coexist is a key question in ecology, with implications for conserving biodiversity. Species coexistence is affected by multiple factors, including climate warming and the presence of predators, yet most studies consider these 'stressors' in isolation. The interactive effects of warming and predation on species coexistence have not been explored. Here, we constructed simplified shallow lake food webs in 24 large mesocosm ponds and applied a crossed design to simulate warming (+4.5°C) and predation (by crucian carp Carassius auratus). We monitored population responses of two common snails, Bellamya aeruginosa and Radix swinhoei over 200 days. We predicted that warming will alter the phenology of the snails, and that this will combine with predation to reduce their abundance. Warming advanced the reproduction of R. swinhoei by 21.5 days and reduced biomass and density of both snails. The advance in R. swinhoei phenology suppressed the slower growing B. aeruginosa population, reducing coexistence. Warming and predation combined in an additive manner to decrease the biomass of B. aeruginosa. In contrast, the two drivers synergistically decreased the biomass and density of R. swinhoei because of enhanced pressure from the fish on their preferred snail prey under warming, due to rising metabolic demands. Therefore, snail coexistence was further reduced with fish presence under warming. In conclusion, future continuous warming and strong predation might undermine the coexistence of the gastropods, thereby changing food web structures in shallow freshwater ecosystems.

Introduction

Understanding factors and processes that shape species coexistence is a central question in community ecology. The framework of modern coexistence theory has been widely used to clarify the conditions for species coexistence (Barabas et al. 2018; Chesson 2000, 2018; Pande et al. 2020), which points out the mechanisms of promoting species coexistence via minimizing average fitness differences (equalizing) and increasing niche differences (stabilizing) (Letten et al. 2017). Without niche differences, the species with higher average fitness will eventually exclude the others. However, all species coexistences occur in changing environments, temporally and spatially, as environmental variation promotes species coexistence (Chesson 1994; Kuang and Chesson 2008). To coexist, different species might respond nonlinearly to fluctuating limiting factors, or via storage effects, such as resource partitioning (Levine and HilleRisLambers 2009), differential vulnerability to predators (Chesson and Kuang 2008) or pathogens (Bagchi et al. 2014), occupation of different microhabitats (Schlägel et al. 2020; Silvertown 2004), or phenological separation (Usinowicz et al. 2017). However, our planet has been experiencing unprecedented changes due to anthropogenic activities (Steffen et al. 2015), yet it remains to be explored how this affects species coexistence and what the consequences of changes in coexistence are for entire ecosystems (Thakur et al. 2017).

Previous studies have demonstrated that the warming associated with climate change will alter phenology (Thackeray et al. 2016), distribution patterns (Parmesan and Yohe 2003), species interactions (Schaum et al. 2018; Zhang et al. 2020), and food web structure (O’Gorman et al. 2019; Schwarz et al. 2020).
Climate warming can also affect species coexistence directly through physiological impacts or indirectly via alterations in food web interactions (Reuman et al. 2014). Indirect cascading effects via species interactions (e.g. phenological mismatch, changing in resource availability or predation) generally have greater impacts than direct ones (Ockendon et al. 2014). Temperature plays a key role because warming will change the vital rates of individuals, and species usually have limited thermal tolerance (Rohr et al. 2018; Sunday et al. 2012). There are two key mechanisms by which warming will alter coexistence: (i) shifting phenology and (ii) increasing metabolic demands. The first predicts that populations will differ in their temporal responses to warming: acclimation capacities to the changing temperatures will differ among (Pinsky et al. 2019; Rohr et al. 2018) and within (Dahlke et al. 2020) species. For instance, stenothermal species might be more sensitive to warming than eurythermal species (Dahlke et al. 2020; Pörtner et al. 2005), and early-season species might shift more in time than later-season species (Wolkovich et al. 2012). Therefore, warming might increase the phenological mismatch between coexisting species, thus reducing the degree of competition strength between them (Chmura et al. 2019) (Fig. 1, mechanism i). The latter mechanism refers to the greater metabolic demands which individuals experience at higher temperatures.

For ectothermic herbivores which share the same resource, warming should enhance competition, because ingestion rates of heterotrophs generally increase more rapidly with rising temperature than the growth rates in autotrophs (Grainger et al. 2018; O'Connor 2009; Schaum et al. 2018; West and Post 2016). Therefore, effects of warming on coexistence of two competing species might not only be caused by increasing phenological mismatch, but also via enhancing competition on basal resource (Fig. 1, mechanism ii).

Predators are generally assumed to have negative effects on prey abundance, and the strength of this effect can differ greatly among prey species (Karakoc et al. 2020; Paine 1966). Coexistence of competing prey species will be promoted when the predators are either specialists on the more competitive species, or generalists via density or frequency-dependent predation (Ishii and Shimada 2012; Karakoc et al. 2020; Saleem et al. 2012). However, studies also showed that predation can undermine coexistence if it is particular strong (Bonsall and Hassell 1997; Chase et al. 2002), or if the rarer species is inefficient in resource consumption (Holt 1977). Eventually, species with the highest tolerance of predation will outcompete the others. Therefore, effects of predation on coexistence of competing species might be caused by the selective feeding by the predator (Fig. 1, mechanism iii).

Warming can affect the phenology of both predators and prey with implications for the effect of the predator on prey abundance (Zhang et al. 2018). Furthermore, warming will elevate the metabolic demands of predators which might strengthen the predator-prey interactions (Thakur et al. 2018; Thakur et al. 2017) and undermine prey coexistence (Thakur et al. 2017). Therefore, in addition to shifts in phenology and selective feeding, warming and predation might interactively enhance the pressure of a predator on its prey (Fig. 1, mechanism iv), with implications for prey coexistence.
Here we test the predictions that (1) Warming will alter the phenology and competition of two primary consumers; (2) Predation will reduce the abundance of the primary consumers; (3) Warming and predation will interactively increase the competition between primary consumers, reducing coexistence. To test these hypotheses, we used freshwater gastropods and their fish predators. Gastropods play key roles in aquatic ecosystems by contributing to nutrient cycling and water quality, particularly due to their role as algal grazers (Böhm et al. 2020; Strong et al. 2008). However, to our knowledge, no studies have investigated how warming and predation interact to alter their coexistence.

Materials And Methods

Study species

The targeted two gastropods *Bellamya aeruginosa* and *Radix swinhoei* are widespread in China, and commonly found to coexist in shallow aquatic ecosystems (Cai et al. 2018). *B. aeruginosa* is a branchiate gastropod (Gu et al. 2015), which feeds on sediment organic detritus, algae and bacteria (Liu et al. 1993). *B. aeruginosa* is a food resource for some fish (e.g. black carp, *Mylopharyngodon piceus*) and is also consumed by humans (Ma et al. 2010). The species is gonochoristic and ovoviviparous. The minimum temperature for the breeding of the snail is 16–18°C, and the optimal temperature is around 26°C (Chen and Song 1975). The reproductive cycle is about 6 months, and the snails can live for a few years. Adult females are gravid all year round and can release their newborn continuously in the breeding season (Ma et al. 2010).

R. swinhoei is a common pulmonated gastropod, which prefers habitat with macrophytes, and feeds on detritus, macrophytes, algae and even dead animal bodies (Li et al. 2005; Qi 1998; Zhi et al. 2020). It is hermaphrodite and allogamous, and it can breed multiple times a year (Qi 1998). Radix genus are generally cold-adapted gastropods (Pfenninger et al. 2006). Such as *R. balthica*, which prefers an optimum temperature of 16–20°C, and fails to reproduce over 24°C (Johansson et al. 2016; Johansson and Laurila 2017). The average life-span is about 30 weeks for *Radix spp.* (Lam 1994).

Experiment set-up

24 mesocosms (each of 2500 L in volume, diameter of 1.5 m, height of 1.4 m) at Huazhong Agricultural University, Wuhan, China, were used to simulate shallow lake ecosystems. Top layer sediment was collected from Lake Liangzi (N 30°11′3″, E114°37′59″), which is a mesotrophic lake, with TN and TP of the water column in that area of about 0.43 mg L⁻¹ and 0.023 mg L⁻¹, respectively (Li et al. 2018). The location is rich of macrophytes, such as *Potamogeton crispus, Hydrilla verticillate, Ceratophyllum demersum* and *Trapa* sp. (Zhang et al. 2016). All mesocosms were filled with 10 cm of homogenized sediment on the bottom, and water were filled up to 1 m depth.

We used a fully-factorial design with two factors crossed - warming and predation - resulting in four treatments: Control (C), normal temperature with no fish; warming treatment (W), + 4.5°C higher than the temperature in the control; predation treatment (F), with a 60 g common carp (*Cyprinus carpio*); and
warming and predation treatment (WF). The temperature increase + 4.5°C was chosen to simulate the possible warming that could happen in this region at the end of this century (IPCC 2014), and temperature was manipulated automatically using two temperature sensors and a heating element controlled by a computer (Wang et al. 2020). Common carp is a typical omnivorous species which coexist with the two snails in water bodies in China, and the biomass of the fish in the mesocosms (equal to 340 kg ha\(^{-1}\)) is within the range found in the lakes at this region (Gao et al. 2014; He et al. 2019), and fish of this size could consume juvenile snails (Zhu et al. 2017). All fish were commercially obtained in a local aquarium shop. There were six replicates for each treatment, and all four treatments were randomly assigned to 24 mesocosms.

The experiment ran from February 2, 2015 to November 18, 2015. To indicate how the treatments affect the water quality during the experiment, water samples were collected once a week to analyze total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl. a), and turbidity. Methods for TN, TP and Chl. a analysis referred to the PRC National Standards. TN was first digested by alkaline potassium persulfate, and analyzed by UV spectrophotometry (UV-2800, Unico, China, GB 11894-89). TP was measured by ammonium molybdate spectrophotometric method (GB 11893-89). Chlorophyll-a was determined by filtering a certain amount of water on Whatman GF/C filters and spectrophotometric analysis after acetone extraction (HJ 897–2017). Turbidity was measured by a portable WGZ-2B turbidity meter (Xinrui, Shanghai, China). Periphyton Chl. a was measured by hanging a tile (10*10 cm\(^2\)) in the middle of each mesocosm, weekly took out, brushed off the algae and extracted in acetone solution for 24 h, then analyzed by spectrophotometry. The biomass of the periphyton was expressed as the concentration of Chl. a per square centimeter area.

The density and biomass of snails were monitored once a week from March 14, 2015 to October 25, 2015. Snails were collected by vertically placing a tube (1.5 m in height, 4.5 cm in outside diameter, a total surface area of 0.1413 m\(^2\)) attached to the wall of the mesocosm, the bottom of the tube was inserted into the sediment. The tube was taken out once a week, collected all snails, blotted dry, counted and weighted the snails to 0.0001g, and then released them back to the mesocosms.

Analyses

To analyze effects of warming, fish predation and their interaction on snail biomass, water quality, Chl. a concentrations in the water column and periphyton, multiple linear mixed effect models (LME) were deployed, with sampling date as a random factor. These dependent variables were log-transformed to increase the normality of the distribution. Normality and homoscedasticity of the dependent variables were assessed visually by plotting model residuals versus fitted values and in quantile-quantile plots of the model residuals. As the densities of both snails were count data, and as such a Poisson link function was applied to the generalized linear mixed effect model (GLMM). The effects of warming and predation were considered additive if models excluding their interaction term had lower AIC values. For the non-additive interactions, interaction effect sizes (\(F\)-values) were subtracted from the sum of the main effect sizes producing values representing the difference between additive and interactive effects, following
previous studies (Jackson et al. 2020; Lakeman-Fraser and Ewers 2014). If the value was positive, then the relationship was considered to be antagonistic (the effect of the drivers were reduced when acting interactively); if however, the value was negative, then the relationship was considered to be synergistic (the effect of the drivers were increased when acting interactively) (Table S1). All linear mixed models were performed using the lme4 package (Bates et al. 2015).

To assess the distribution patterns of the biomass and density of the snails over time, data from each mesocosm were fitted with a six parameters Weibull function using the cardidates package, which is designed for peak curve fitting (Rolinski et al. 2007). Not all peak curve fittings were trustable. Only the results of the biomass and density of *R. swinhoei* and some of *B. aeruginosa* in the control and warming treatments without fish present fitted well, as the fitted results for the rest did not match their trends well (Table S2). The heights and timing of peaks between control and warming treatments of *R. swinhoei* were compared using independent t-tests. Normality and homogeneity of variance were checked by shapiro test and F-test, respectively. To indicate the relative competition between the two snails in all treatments, normalized data (data were divided by the maximum value of each snail in each mesocosm to diminish their different scales) of the two snails were plotted together. All statistics were performed in R version 3.6.2 (Team 2019).

Results

Treatment manipulation

Daily averaged temperature was 4.25 ± 0.42 (n = 223, total number of days, mean ± sd) higher in the warmed mesocosms (Fig. 2a). Warming decreased the concentration of Chl. a in the water column, but increased concentration in periphyton samples (Table 1). Adding fish predators to the systems significantly increased turbidity, and concentrations of Chl. a in the water column and periphyton (Table 1 and Fig. 2b,c,d). In the warming treatments, adding fish predators increased the turbidity more than warming alone. Warming and fish predation also interactively affected the Chl. a concentration in the water column (Table 1 and Fig. 2c). Data of TN and TP can be found in Fig. S1. No significant increase of biomass of fish was found at the end of the experiment.

Snail response

In all treatments, snail biomass was dominated by *B. aeruginosa*. Snail density was dominated by *R. swinhoei*, but only when no fish were present (Fig. 3). Both warming and predation significantly decreased the biomass and density of the two snails, and the effects of predation was stronger than that of warming (Table 1 and Fig. 3). The combined effects of warming and predation were additive for the biomass of *B. aeruginosa* (AIC value was smaller in the model without interactive factor, Table S1), while the effects were antagonistic for density of *B. aeruginosa* ($\Delta F = 20.4$). The effects of warming were amplified under fish predation on both biomass ($\Delta F = -4.0$) and density ($\Delta F = -220.4$) of *R. swinhoei* (Table S1).
The average timing of peak density in *R. swinhoei* was 21.5 days earlier in the warming treatment (without fish) than in the control (Welch t-test, Table S3). However, the peak densities of *R. swinhoei* were not significantly different between warming treatment and control. The peak biomass and average time of peak biomass of *R. swinhoei* did not differ significantly under control and warming treatment without fish (Table S3). The time of peak biomass and density of *B. aeruginosa* varied largely within treatments, and the variations increased with warming (without fish) compared to control, some were advanced (n = 4) and one was delayed (n = 1) (Table S2 and Fig. S2). No clear peaks of the two snails could be detected in the treatments with fish present.

The overlaps between the two snails shifted with warming and predation. Peaks of biomass and density of *B. aeruginosa* were found reduced and shifted under warming without fish present, and clear pits were observed in biomass and density of *B. aeruginosa* when these peaks reached for *R. swinhoei* in the warming treatment without fish (Fig. S3). In the ambient treatment with fish present, peaks of biomass and density of *B. aeruginosa* were advanced, while the biomass and density of *R. swinhoei* increased over time and the highest values occurred at the end of the experiment. In the warming treatment with fish present, the biomass and density of *B. aeruginosa* decreased over time, and the highest values occurred at the beginning of the experiment, while the biomass and density of *R. swinhoei* were always low and increased gradually (Fig. S3). These imply that both snails were suppressed more under warming with fish present, particularly for *R. swinhoei*.

Discussion

Our results show that warming and fish predation interact to alter the phenology and demography of aquatic snails. The biomass and density of both snails declined with warming and adult *B. aeruginosa* dominated in the fish predation treatment. Warming and fish predation combined in an additive manner to decrease the biomass of *B. aeruginosa*, while its density declined less than expected (i.e., there was an antagonistic interaction between the stressors). Warming and fish predation interacted to amplify their independent effects on the biomass and density of *R. swinhoei*, causing a decline larger than expected by an additive response (i.e., a synergistic interaction). Both warming and predation induced higher periphyton biomass due to a trophic cascade. We discuss the underlying mechanisms and implications for freshwater ecosystems below.

Warming effects on coexistence of snails

In our study, warming significantly advanced the peak of reproduction of *R. swinhoei* by 21.5 days. Past studies have shown that warming advances the phenology of species across different trophic levels including plants (Zhang et al. 2016), algae (Hansson et al. 2013), zooplankton (Velthuis et al. 2017) and fish (Tao et al. 2018), with the phenology of primary consumers generally advanced more than other trophic levels (Thackeray et al. 2016). In our study, the advanced days of reproduction for *R. swinhoei* was almost the same amount of days earlier in warming treatments than in the ambient when temperature reached >24°C. Species in this genus (*Radix spp.*) are normally cold-adapted species.
(Pfenninger et al. 2006) and, therefore, when temperature reached > 24°C, the snails fail to reproduce (Johansson et al. 2016; Johansson and Laurila 2017). In contrast, no consistent peaks of biomass and density could be detected for B. aeruginosa, which could be attributed to the different life-history traits of the snail. B. aeruginosa has a much higher upper-limited thermal tolerance, as its optimal reproduction temperature is ~ 26°C (Chen and Song 1975), and the snail has a life span which can last for a few years. Furthermore, the female can be gravid all year round and release offspring continuously in the breeding season (Ma et al. 2010). Field investigations have also found multiple different peaks of abundance and biomass for B. aeruginosa throughout the year (Chen 1987; Gong et al. 2009; Yan et al. 2000). However, the time of peak biomass and density of B. aeruginosa did show differences between the ambient and warming treatment without sh present, which indicates that warming still altered the phenology of the snail, while the effect was inconsistent, could either be advanced or delayed. This might be because the effects of warming on the snail were different among ages.

Warming decreased the biomass and density of both snails, and there are two key reasons which can explain these changes linked to phenology and feeding rates. Firstly, warming altered the phenology of both snails. R. swinhoei is hermaphrodite and its reproductive cycle can be completed in eight weeks, whereas B. aeruginosa is gonochoristic and ovoviviparous, and its reproductive cycle is about 6 months (Ma et al. 2010). During the growing season of R. swinhoei, this species can reproduce faster and dominate in abundance, while the B. aeruginosa will respond slower to rising temperatures from spring to summer. In the warming treatments, the advancement of reproduction by R. swinhoei strongly suppress the population of B. aeruginosa, as clear pits were observed in biomass and density of B. aeruginosa when these peaks reached for R. swinhoei in the warming treatment (Fig. S3). This might be because that R. swinhoei depleted algal food resources in the growing season, thus reducing fecundity of B. aeruginosa. In our study, the standing biomasses of periphyton were very low in both ambient and warming treatment in the early growing season. These indicate that a strong grazing pressure on periphyton by the snails in the early growing season. Furthermore, the phenology of periphyton does not advance at the same rate as consumers with warming (Thackeray et al. 2016) and, therefore, there are less resources available when the snails reproduce in a warmer world. The competition between the two snails was strong, and R. swinhoei was more competitive in the growing season. In addition, top-down pressure might be enhanced with warming (Schaum et al. 2018), which means that an even stronger competition could happen between the two snails due to limited food source. Therefore, snail density and biomass both decreased due to warming.

Predation effects on coexistence of snails

As expected, the biomass and density of the two snails were suppressed in the presence of fish (Karakoc et al. 2020; Paine 1966). The predation effects were particularly strong on R. swinhoei and the juveniles of both snails. This is because crucian carp can only prey on snails smaller than their jaw gape, hence, they substantially eliminated the juveniles of both snails. Furthermore, the adult individual biomass was larger in B. aeruginosa (can reach 5.77 g) than in R. swinhoei (hardly larger than 1.5 g), and shell toughness was much higher in B. aeruginosa than in Radix spp. snail (Zhu et al. 2013; Zhu et al. 2017).
Therefore, we observed adult *B. aeruginosa* dominated in the predation treatment, particularly in the beginning, since *R. swinhoei* was preferentially consumed by the fish. These indicate that predation increased the relative competence of *B. aeruginosa* over *R. swinhoei* at the early time and the competence shifted over time.

The presence of fish strongly disturbed the water promoting the growth of periphyton. We expected this higher turbidity and periphyton biomass to partly alleviate the predation effect from the fish, due to both declining visibility and increase food resources for the snail. However, in our study, the density of fish added to the system was high (Gao et al. 2014), and no such effects were observed. Under a strong predation pressure, *B. aeruginosa* might exclude *R. swinhoei* in the ecosystem eventually by undermining the balance of coexistence in the competing species (Bonsall and Hassell 1997; Chase et al. 2002).

Interactive effects of warming and predation on snails

Warming and predation combined additively to decrease the biomass of *B. aeruginosa*, and antagonistically to decrease its density. This suggests warming and predation combined to mitigate one another’s independent effects on this species. This might be because warming increased the availability of algal resources for the snails with fish presence, which partly alleviate the predation effect from the fish. In contrast, there was a synergistic interaction between warming and predation on *R. swinhoei*, resulting in large declines in its biomass and density. Top-down control by predators on prey is enhanced by warming (Hansson et al. 2013). Here, the crucian carp exerted stronger pressure on *R. swinhoei*, the preferred food (Zhu et al. 2017) under warming. This caused a significant amplified interaction of warming and predation on the growth and reproduction of *R. swinhoei*. Warming has also shown to affect attack rate, handling time and predation success (Twardochleb et al. 2020). However, in our study, the prey are rather slow-moving species, the impacts of warming on the predation was mainly determined by the increased feeding rate, and the prey are unlikely to develop strongly avoidant mechanisms against predation in one or two generations. In a longer period, continuous warming and strong predation might eventually undermine the coexist of the two snail species, excluding *R. swinhoei*.

Implications for aquatic ecosystems

In our study, warming and predation interactively enhance the competition between the two snails, decreasing the biomass and density of both snails, resulting in higher growth of periphyton. The trophic cascading effects could have substantial impacts on aquatic food webs. With the decrease of gastropods, fish population might decrease over time (Nagelkerken and Connell 2015), but periphyton growth increase, resulting in bottom heavy trophic pyramid. This might hinder the nutrient cycle and energy transfer in the aquatic ecosystem (Nagelkerken et al. 2020). Furthermore, continuous warming and strong predation might undermine the coexistence of the two snails, eventually causing local extinction of the less dominate species (Fig. 4). The loss of key primary consumer not only decreases biodiversity, but might also weaken the stability of aquatic food webs (Ives and Cardinale 2004; Nagelkerken et al. 2020). Particularly in shallow lakes with strong anthropogenic activities, as eutrophication, chemical pollution and habitat destruction are common in these areas (Birk et al. 2020;
Steffen et al. 2015). These might interactively alter the shallow aquatic ecosystem from a health state to a nuisance state, leading to loss in ecosystem functions and services (Scheffer et al. 2001). Future studies should investigate more on how warming could affect species coexistence in other model systems in longer time, and how these will further alter food web structures in ecosystems.
Table 1
Effects of warming and predation on the measured response variables and snail biomass and density.
Water turbidity, Chl. a concentrations in the water column and periphyton, and snail biomass are analyzed
by linear mixed effect models, and snail densities are analyzed by generalized linear mixed effects
models with a Poisson link function. Bold number indicates a significant level of < 0.05.

Parameters	Factor	Estimate	se	t/z	p	
Measured response variables	log(Turbidity + 1)	Intercept	1.50	0.11	13.47 < 0.0001	
		Warming	-0.08	0.10	-0.76 0.4455	
		Fish	1.19	0.10	11.82 < 0.0001	
		Warming*Fish	1.09	0.14	7.63 < 0.0001	
	log(Chl. a + 1)	Intercept	1.75	0.05	33.97 < 0.0001	
		Warming	-0.18	0.07	-2.78 0.0054	
		Fish	0.61	0.07	9.22 < 0.0001	
		Warming*Fish	0.50	0.09	5.30 < 0.0001	
	log(Periphyton + 1)	Intercept	1.24	0.07	18.35 < 0.0001	
		Warming	0.64	0.08	8.45 < 0.0001	
		Fish	0.83	0.08	11.04 < 0.0001	
		Warming*Fish	0.01	0.11	0.05 0.9582	
B. aeruginosa	Log(Biomass + 0.01)	Intercept	1.56	0.26	6.00 < 0.0001	
		Warming	-1.09	0.34	-3.20 0.0014	
		Fish	-1.83	0.34	-5.35 < 0.0001	
		Warming*Fish	-0.02	0.48	-0.05 0.9625	
Density	Intercept	1.82	0.08	22.01 < 0.0001		
	Warming	-0.29	0.04	-6.66 < 0.0001		
Parameters	Factor	Estimate	se	t/z	p	
-----------	-------------------------	----------	-----	-------	---------	
	Fish	-1.38	0.06	-21.54	< 0.0001	
	Warming*Fish	-0.22	0.10	-2.14	0.0327	
R. swinhoei	Log(Biomass + 0.01)	Intercept	-0.42	0.26	-1.60	0.1095
	Warming	-0.79	0.23	-3.35	0.0008	
	Fish	-2.79	0.23	-11.90	< 0.0001	
	Warming*Fish	0.60	0.33	1.80	0.0714	
Density	Intercept	2.74	0.33	8.23	< 0.0001	
	Warming	-0.54	0.02	-27.39	< 0.0001	
	Fish	-3.02	0.06	-54.61	< 0.0001	
	Warming*Fish	0.89	0.07	12.22	< 0.0001	

References

1. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506(7486):85-88. https://doi.org/10.1038/nature12911

2. Barabas G, D'Andrea R, Stump SM (2018) Chesson's coexistence theory. Ecol. Monogr. 88(3):277-303. https://doi.org/10.1002/ecm.1302

3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1-48. https://doi.org/10.18637/jss.v067.i01

4. Birk S, Chapman D, Carvalho L, Spears BM, Andersen HE, Argillier C, Auer S, Baattrup-Pedersen A, Banin L, Beklioğlu M, Bondar-Kunze E, Borja A, Branco P, Bucak T, Buijse AD, Cardoso AC, Couture RM, Cremona F, de Zwart D, Feld CK, Ferreira MT, Feuchtmayr H, Gessner MO, Gieswein A, Globevnik L, Graeber D, Graf W, Gutiérrez-Cánovas C, Hangaru J, İşkin U, Järvinen M, Jeppesen E, Kotamäki N, Kuijper M, Lemm JU, Lu S, Solheim AL, Mischke U, Moe SJ, Nõges P, Nõges T, Ormerod SJ, Panagopoulos Y, Phillips G, Posthuma L, Pouso S, Prudhomme C, Rankinen K, Rasmussen JJ, Richardson J, Sagouis A, Santos JM, Schäfer RB, Schinegger R, Schmutz S, Schneider SC, Schütling L, Segurado P, Stefanidis K, Sures B, Thackeray SJ, Turunen J, Uyarra MC, Venohr M, von der Ohe PC, Willby N, Hering D (2020) Impacts of multiple stressors on freshwater biota across spatial scales and
ecosystems. Nature Ecology & Evolution 4(8):1060-1068. https://doi.org/10.1038/s41559-020-1216-4

5. Böhm M, Dewhurst-Richman NI, Seddon M, Ledger SEH, Albrecht C, Allen D, Bogan AE, Cordeiro J, Cummings KS, Cuttelod A, Darrigran G, Darwall W, Fehér Z, Gibson C, Graf DL, Köhler F, Lopes-Lima M, Pastorino G, Perez KE, Smith K, van Damme D, Vinarski MV, von Proschwitz T, von Rintelen T, Aldridge DC, Aravind NA, Budha PB, Clavijo C, Van Tu D, Gargominy O, Ghamizi M, Haase M, Hilton-Taylor C, Johnson PD, Kebapçı Ü, Lajtner J, Lange CN, Lepitoki DAW, Martínez-Ortí A, Moerkens EA, Neubert E, Pollock CM, Prié V, Radea C, Ramirez R, Ramos MA, Santos SB, Slapnik R, Son MO, Stensgaard A-S, Collen B (2020) The conservation status of the world’s freshwater molluscs. Hydrobiologia. https://doi.org/10.1007/s10750-020-04385-w

6. Bonsall MB, Hassell MP (1997) Apparent competition structures ecological assemblages. Nature 388(6640):371-373. https://doi.org/10.1038/10834

7. Cai Y, Zhang M, Xu J, Heino J, Burridge C (2018) Geographical gradients in the biodiversity of Chinese freshwater molluscs: Implications for conservation. Divers. Distrib. 24(4):485-496. https://doi.org/10.1111/ddi.12695

8. Chase JM, Abrams PA, Grover JP, Diehl S, Chesson P, Holt RD, Richards SA, Nisbet RM, Case TJ (2002) The interaction between predation and competition: a review and synthesis. Ecol. Lett. 5(2):302-315. https://doi.org/10.1046/j.1461-0248.2002.00315.x

9. Chen Q (1987) A preliminary study on the population dynamics and annual production of Bellamya Aeruginosa (Reeve) in Lake Dong Hu, Wuhan. Acta Hydrobiologica Sinica 11(2):117-130.

10. Chen Q, Song G (1975) A preliminary study on reproduction and growth of the snail, Bellamya aeruginosa (Veeve). Acta hydrobiologica sinica 5(4):519-534.

11. Chesson P (1994) Multispecies competition in variable environments. Theor. Popul. Biol. 45(3):227-276. https://doi.org/10.1006/tpbi.1994.1013

12. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343

13. Chesson P (2018) Updates on mechanisms of maintenance of species diversity. J. Ecol. 106(5):1773-1794. https://doi.org/10.1111/1365-2745.13035

14. Chesson P, Kuang JJ (2008) The interaction between predation and competition. Nature 456(7219):235-238. https://doi.org/10.1038/nature07248

15. Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH (2019) The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89(1):e01337. https://doi.org/10.1002/ecm.1337

16. Dahlke FT, Wohlrab S, Butzin M, Poertner H-O (2020) Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369(6499):65-70. https://doi.org/10.1126/science.aaz3658

17. Gao J, Liu Z, Jeppesen E (2014) Fish community assemblages changed but biomass remained similar after lake restoration by biomanipulation in a Chinese tropical eutrophic lake. Hydrobiologia 724(1):127-140. https://doi.org/10.1007/s10750-013-1729-9
18. Gong Z, Li Y, Xie P (2009) Population dynamics and production of Bellamya aeruginosa (Reeve) (Mollusca: Viviparidae) in Lake Donghu, Wuhan. J. Lake Sci. 21(3):401-407.

19. Grainger TN, Rego Al, Gilbert B (2018) Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. The American Naturalist 191(2):197-209. https://doi.org/10.1086/695688

20. Gu QH, Husemann M, Ding B, Luo Z, Xiong BX (2015) Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: weak divergence across large geographic distances. Ecology and Evolution 5(21):4906-4919. https://doi.org/10.1002/ece3.1673

21. Hansson L-A, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Björk J, Nilsson PA, Brönmark C (2013) Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Change 3(3):228-233. https://doi.org/10.1038/nclimate1689

22. He H, Han Y, Li Q, Jeppesen E, Li K, Yu J, Liu Z (2019) Crucian carp (Carassius carassius) strongly affect C/N/P stoichiometry of suspended particulate matter in shallow warm water eutrophic lakes. Water 11(3):524. https://doi.org/10.3390/w11030524

23. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12(2):197-229. https://doi.org/10.1016/0040-5809(77)90042-9

24. IPCC (2014) Climate Change 2014: Synthesis Report. Cambridge University Press, IPCC, Geneva, Switzerland.

25. Ishii Y, Shimada M (2012) Learning predator promotes coexistence of prey species in host-parasitoid systems. Proceedings of the National Academy of Sciences 109(13):5116-5120. https://doi.org/10.1073/pnas.1115133109

26. Ives AR, Cardinale BJ (2004) Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429(6988):174-177. https://doi.org/10.1038/nature02515

27. Jackson MC, Fourie HE, Dalu T, Woodford DJ, Wasserman RJ, Zengeya TA, Ellender BR, Kimberg PK, Jordaan MS, Chimimba CT, Weyl OLF, Allen D (2020) Food web properties vary with climate and land use in South African streams. Funct. Ecol. 34(8):1653-1665. https://doi.org/10.1111/1365-2435.13601

28. Johansson MP, Ermold F, Kristjansson BK, Laurila A (2016) Divergence of gastropod life history in contrasting thermal environments in a geothermal lake. J. Evol. Biol. 29(10):2043-2053. https://doi.org/10.1111/jeb.12928

29. Johansson MP, Laurila A (2017) Maximum thermal tolerance trades off with chronic tolerance of high temperature in contrasting thermal populations of Radix balthica. Ecology and Evolution 7(9):3149-3156. https://doi.org/10.1002/ece3.2923

30. Karakoc C, Clark AT, Chatzinotas A (2020) Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol. Lett. 23(6):983-993. https://doi.org/10.1111/ele.13500

31. Kuang JJ, Chesson P (2008) Predation-competition interactions for seasonally recruiting species. The American Naturalist 171(3):E119-E133. https://doi.org/10.1086/527484
32. Lakeman-Fraser P, Ewers RM (2014) Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships? Proceedings of the Royal Society B 281(1787):20140687. https://doi.org/10.1098/rspb.2014.0687
33. Lam PKS (1994) Intraspecific life-history variation in Radix plicatulus (gastropoda, pulmonata, lymnaeidae). J. Zool. 232435-446. https://doi.org/10.1111/j.1469-7998.1994.tb01584.x
34. Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87(2):161-177. https://doi.org/10.1002/ecm.1242
35. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461(7261):254–257. https://doi.org/10.1038/nature08251
36. Li C, Wang T, Zhang M, Xu J (2018) Maternal environment effect of warming and eutrophication on the emergence of curled pondweed, Potamogeton crispus L. Water 10(9):1285. https://doi.org/10.3390/w10091285
37. Li Y, Yu D, Xu X, Xie Y (2005) Light intensity increases the susceptibility of Vallisneria natans to snail herbivory. Aquat. Bot. 81(3):265-275. https://doi.org/10.1016/j.aquabot.2005.01.005
38. Liu YY, Zhang WZ, Wang YX (1993) Medical malacology. China Ocean Press, Beijing.
39. Ma T, Gong S, Zhou K, Zhu C, Deng K, Luo Q, Wang Z (2010) Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity. Journal of Environmental Sciences 22(2):304-313. https://doi.org/10.1016/s1001-0742(09)60109-1
40. Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences 112(43):13272-13277. https://doi.org/10.1073/pnas.1510856112
41. Nagelkerken I, Goldenberg SU, Ferreira CM, Ullah H, Connell SD (2020) Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369(6505):829-832. https://doi.org/10.1126/science.aax0621
42. O’Connor MI (2009) Warming strengthens an herbivore-plant interaction. Ecology 90(2):388-398. https://doi.org/10.1890/08-0034.1
43. O’Gorman EJ, Petchey OL, Faulkner KJ, Gallo B, Gordon TA, Neto-Cerejeira J, Ölafsson JS, Pichler DE, Thompson MS, Woodward G (2019) A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9(8):611-616. https://doi.org/10.1038/s41558-019-0513-x
44. Ockendon N, Baker DJ, Carr JA, White EC, Almond RE, Amano T, Bertram E, Bradbury RB, Bradley C, Butchart SH, Doswald N, Foden W, Gill DJ, Green RE, Sutherland WJ, Tanner EV, Pearce-Higgins JW (2014) Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biol. 20(7):2221-2229. https://doi.org/10.1111/gcb.12559
45. Paine RT (1966) Food web complexity and species diversity. The American Naturalist 100(910):65-75. https://doi.org/10.1086/282400
46. Pande J, Fung T, Chisholm R, Shnerb NM (2020) Mean growth rate when rare is not a reliable metric for persistence of species. Ecol. Lett. 23(2):274-282. https://doi.org/10.1111/ele.13430
47. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37-42. https://doi.org/10.1038/nature01286

48. Pfenninger M, Cordellier M, Streit B (2006) Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol. Biol. 6100. https://doi.org/10.1186/1471-2148-6-100

49. Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569(7754):108-111. https://doi.org/10.1038/s41586-019-1132-4

50. Pörtner HO, Lucassen M, Storch D (2005) Metabolic biochemistry: its role in thermal tolerance and in the capacities of physiological and ecological function. Fish Physiology 2279-154. https://doi.org/10.1016/S1546-5098(04)22003-9

51. Qi Z (1998) Economic mollusca of China. China Agriculture Press, Beijing.

52. Reuman DC, Holt RD, Yvon-Durocher G (2014) A metabolic perspective on competition and body size reductions with warming. J. Anim. Ecol. 83(1):59-69. https://doi.org/10.1111/1365-2656.12064

53. Rohr JR, Civitello DJ, Cohen JM, Roznik EA, Sinervo B, Dell AI (2018) The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21(9):1425-1439. https://doi.org/10.1111/ele.13107

54. Rolinski S, Horn H, Petzoldt T, Paul L (2007) Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153(4):997-1008. https://doi.org/10.1007/s00442-007-0783-2

55. Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A (2012) Predator richness increases the effect of prey diversity on prey yield. Nature Communications 31305. https://doi.org/10.1038/ncomms2287

56. Schaum CE, Student Research T, Ffrench-Constant R, Lowe C, Olafsson JS, Padfield D, Yvon-Durocher G (2018) Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams. Global Change Biol. 24(4):1793-1803. https://doi.org/10.1111/gcb.14033

57. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413(6856):591-596. https://doi.org/10.1038/35098000

58. Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, Hausmann SL, Herde A, Hofer H, Joshi J, Kramer-Schadt S, Litwin M, Lozada-Gobilard SD, Müller MEH, Müller T, Nathan R, Petermann JS, Pirhofer-Walzl K, Radchuk V, Rillig MC, Roeleke M, Schäfer M, Scherer C, Schiro G, Scholz C, Teckentrup L, Tiedemann R, Ullmann W, Voigt CC, Weithoff G, Jeltsch F (2020) Movement-mediated community assembly and coexistence. Biol. Rev. 95(4):1073-1096. https://doi.org/10.1111/brv.12600

59. Schwarz B, Barnes AD, Thakur MP, Brose U, Ciobanu M, Reich PB, Rich RL, Rosenbaum B, Stefanski A, Eisenhauer N (2017) Warming alters the energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7(12):895-900. https://doi.org/10.1038/s41558-017-0002-z
60. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol. Evol. 19(11):605-611. https://doi.org/10.1016/j.tree.2004.09.003

61. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, De Vries W, de Wit CA (2015) Planetary boundaries: Guiding human development on a changing planet. Science 347(6223):1259855. https://doi.org/10.1126/science.1259855

62. Strong EE, Gargominy O, Ponder WF, Bouchet P (2008) Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595:149-166. https://doi.org/10.1007/s10750-007-9012-6

63. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2(9):686-690. https://doi.org/10.1038/NCLIMATE1539

64. Tao J, He D, Kennard MJ, Ding C, Bunn SE, Liu C, Jia Y, Che R, Chen Y (2018) Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Global Change Biol. 24(5):2093-2104. https://doi.org/10.1111/gcb.14050

65. Team RC (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

66. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, Carvalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall SJ, Harrington R, Pearce-Higgins JW, Hoyle TT, Kruuk LE, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535(7611):241-245. https://doi.org/10.1038/nature18608

67. Thakur MP, Griffin JN, Kunne T, Dunker S, Fanesi A, Eisenhauer N (2018) Temperature effects on prey and basal resources exceed that of predators in an experimental community. Ecology and Evolution 8(24):12670-12680. https://doi.org/10.1002/ece3.4695

68. Thakur MP, Kunne T, Griffin JN, Eisenhauer N (2017) Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proceedings of The Royal Society B 284(1851):20162570. https://doi.org/10.1098/rspb.2016.2570

69. Twardochleb LA, Treakle TC, Zarnetske PL (2020) Foraging strategy mediates ectotherm predator–prey responses to climate warming. Ecology 101(11):e03146. https://doi.org/10.1002/eco.3146

70. Usinowicz J, Chang-Yang C-H, Chen Y-Y, Clark JS, Fletcher C, Garwood NC, Hao Z, Johnstone J, Lin Y, Metz MR, Masaki T, Nakashizuka T, Sun IF, Valencia R, Wang Y, Zimmerman JK, Ives AR, Wright SJ (2017) Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550(7674):105-108. https://doi.org/10.1038/nature24038

71. Veltkuijms M, Domis LNdS, Frenken T, Stephan S, Kazanjian G, Aben R, Hilt S, Kosten S, van Donk E, Van de Waal DB (2017) Warming advances top-down control and reduces producer biomass in a freshwater plankton community. Ecosphere 8(1):e01651. https://doi.org/10.1002/ecs2.1651

72. Wang T, Xu J, Molinos JG, Li C, Hu B, Pan M, Zhang M (2020) A dynamic temperature difference control recording system in shallow lake mesocosm. MethodsX 7100930. https://doi.org/10.1016/j.mex.2020.100930
73. West DC, Post DM (2016) Impacts of warming revealed by linking resource growth rates with consumer functional responses. J. Anim. Ecol. 85(3):671-680. https://doi.org/10.1111/1365-2656.12491

74. Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485(7399):494-497. https://doi.org/10.1038/nature11014

75. Yan Y, Liang Y, Wang H (2000) Annual production of Bellamya aeruginosa in Houhu Lake, Wuhan. J. Lake Sci. 12(1):68-72.

76. Zhang H, Urrutia-Cordero P, He L, Geng H, Chaguaceda F, Xu J, Hansson LA (2018) Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton. Global Change Biol. 24(10):4747-4757. https://doi.org/10.1111/gcb.14371

77. Zhang P, Bakker ES, Zhang M, Xu J (2016) Effects of warming on Potamogeton crispus growth and tissue stoichiometry in the growing season. Aquat. Bot. 12813-17.
https://doi.org/10.1016/j.aquabot.2015.08.004

78. Zhang P, van Leeuwen CH, Bogers D, Poelman M, Xu J, Bakker ES (2020) Ectothermic omnivores increase herbivory in response to rising temperature. Oikos 1291028-1039.
https://doi.org/10.1111/oik.07082

79. Zhi Y, Liu Y, Li W, Cao Y (2020) Responses of four submerged macrophytes to freshwater snail density (Radix swinhoei) under clear-water conditions: A mesocosm study. Ecology and Evolution 107644-7653. https://doi.org/10.1002/ece3.6489

80. Zhu T-b, Zhang L-h, Cheng Q-w, Li W, Zhang T-l (2013) Primary studies on the morphology and shell strength of four species of gastropods in the Liangzi Lake, Hubei. Journal of Hydroecology 34(05):91-95. https://doi.org/10.15928/j.1674-3075.2013.05.017

81. Zhu TB, Zhang LH, Zhang TL, Wang YP, Hu W, Ringø E, Zhu ZY (2017) Effects of sustained predation by fast-growing transgenic common carp (Cyprinus carpio Linnaeus, 1758) on gastropods in artificial environments. J. Appl. Ichthyol. 33(1):22-28. https://doi.org/10.1111/jai.13130

Figures
Figure 1

Possible mechanisms of warming and predation and their interactive effects on the coexistence of two competing species. (i) Shifting in phenology; (ii) increasing top-down control on resource; (iii) preferred feeding on one prey species; and (iv) enhancing top-down control on both prey. Solid arrow indicates energy transfer pathway, dashed arrow indicates competition, and red and blue arrows indicate an enhanced interaction and an unaffected interaction, respectively.
Figure 2

Daily averaged temperature, water turbidity, and Chl. a concentrations in the water column and periphyton changed over time in different treatments. In panel a, the horizontal dotted and dashed lines indicate temperature of 16°C and 24°C, respectively. When the averaged temperature started to go above 24°C, the days were 113 and 134 for the warming and ambient treatments, and these are indicated by vertical red and blue lines, respectively. Panel b, c and d share the same legend. Vertical bars are standard errors. C for control, W for warming, F for predation and WF for warming and predation.
Figure 3

Biomass and density of the two snails changed over time in different treatments. Biomass (a) and density (b) of B. aeruginosa, and biomass (c) and density (d) of R. swinhoei. The curves were fitted from the loess model in R package ggplot2. Vertical bars are standard errors. The vertical lines in panel d indicate the time of the peak density, which extracted from the fitted Weibull-functions, and the time of peak for the warming treatment without fish was 21 days earlier than the control. C for control, W for warming, F for predation and WF for warming and predation. Please note that the y-axis is on different scales for each species.
Figure 4

Summary diagram of warming and predation stress on the coexistence of the two gastropods and resulting impacts on periphyton biomass. Over the longer term, R. swinhoei might be excluded from the coexistence and the food web structure will be simplified.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx