THE ROLE OF BRST CHARGE AS A GENERATOR OF GAUGE TRANSFORMATIONS IN QUANTIZATION OF GAUGE THEORIES AND GRAVITY

T. P. Shestakova
Department of Theoretical and Computational Physics, Southern Federal University,
Ul. Surge, 5, Rostov-on-Don 344090, Russia.
E-mail: shestakova@sfedu.ru

In the Batalin-Fradkin-Vilkovisky approach to quantization of gauge theories a principal role is given to the BRST charge which can be constructed as a series in Grassmannian (ghost) variables with coefficients given by generalized structure functions of constraints algebra. Alternatively, the BRST charge can be derived making use of the Noether theorem and global BRST invariance of the effective action. In the case of Yang-Mills fields the both methods lead to the same expression for the BRST charge, but it is not valid in the case of General Relativity. It is illustrated by examples of an isotropic cosmological model as well as by spherically-symmetric gravitational model which imitates the full theory of gravity much better. The consideration is based on Hamiltonian formulation of General Relativity in extended phase space. At the quantum level the structure of the BRST charge is of great importance since BRST invariant quantum states are believed to be physical states. Thus, the definition of the BRST charge at the classical level is inseparably related to our attempts to find a true way to quantize gravity.

Keywords: BRST charge, gauge transformations, Noether theorem, physical states, quantization of gravity.

1 Introduction

In the Batalin-Fradkin-Vilkovisky (BFV) approach to quantization of gauge theories [1–3] a principal role is given to the BRST charge since BRST invariant quantum states are believed to be physical states. As I shall demonstrate, in the case of gravity one meets the problem how the BRST charge should be defined and, therefore, what are physical states. The aim of my talk is to attract attention to this problem.

Let me start from well-known things. In the BFV approach the BRST charge can be constructed as a series in Grassmannian (ghost) variables with coefficients given by generalized structure functions of constraints algebra [4]:

$$\Omega_{BFV} = \int d^3x \left(c^\alpha U^{(0)}_\alpha + c^\gamma c^{(1)\alpha}_\gamma \rho_\alpha + \ldots \right)$$

(1)

c^\alpha, \rho_\alpha are the BFV ghosts and their conjugate momenta, U^{(n)} are nth order structure functions, while zero order structure functions U^{(0)}_\alpha = G_\alpha are Dirac constraints. In quantum theory physical states are those annihilated by the BRST charge \(\Omega\):

$$\Omega|\Psi\rangle = 0.$$

(2)

It can be proved that the condition (2) is equivalent to the quantum version of constraints:

$$\hat{G}_\alpha|\Psi\rangle = 0.$$

(3)

The proof [4] is essentially based upon the statement that any set of constraints is equivalent (at the classical level) to another set of strongly commuting constraints. Then the expansion (1) is reduced to the first term only. The proof is formal and ignores such problems as operator ordering. However, we shall not discuss its details here.

Let us note that there exist another way to construct the BRST charge making use of global BRST symmetry and the Noether theorem. In the case of Yang-Mills fields this method leads to the same expression for the BRST charge as the BFV prescription (1). For example, let us consider the Faddeev-Popov action for the Yang-Mills fields in the Lorentz gauge

$$S_{YM} = \int d^4x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - i \bar{\theta}_a \partial^\mu D_\mu \theta^a \right] + \pi_a \partial^\mu A^a_\mu$$

(4)

where \(\bar{\theta}_a, \theta^a\) are the Faddeev-Popov ghosts, \(D_\mu\) is a covariant derivative. The action is known to be BRST invariant. A direct demonstration of this fact can be found in any modern textbook on quantum field theory. The action (4) includes second derivatives, and to construct the BRST charge one should used the Noether theorem generalized for theories with high order derivatives. In our case we have

$$\delta \Omega_{Noether} = \int d^4x \left[\frac{\partial L}{\partial (\partial_0 \phi^a)} \delta \phi^a + \frac{\partial L}{\partial (\partial_0 \partial_\mu \phi^a)} \delta (\partial_\mu \phi^a) - \partial_\mu \left(\frac{\partial L}{\partial (\partial_0 \partial_\mu \phi^a)} \right) \delta \phi^a \right].$$

(5)

\(\phi^a\) stands for field variables and ghosts. It gives the
expression
\[\Omega_{YM} = \int d^3x \left(-\theta^a D_a \rho_a - i\pi_a \mathcal{P} + \frac{1}{2} \mathcal{P}_a g f_{a\mu} \theta^\mu \theta^\nu \right) \]
which coincides exactly with that obtained by the BFV prescription (1) after replacing the BFV ghosts by the Faddeev-Popov ghosts; \(\rho_a, \pi_a, \mathcal{P}_a \) are momenta conjugate to \(A^a, \theta_a, \theta^a \). But the situation in the gravitational theory is different.

2 The BRST charge in the case of gravity

In the case of gravity we deal with space-time symmetry, and we should take into account explicit dependence of the Lagrangian and the measure on space-time coordinates. The expression (5) should be modified as

\[\Omega_{\text{grav}} = \int d^3x \left[\frac{\partial L}{\partial (\dot{\theta}^a \phi^a)} \delta \dot{\theta}^a + \frac{\partial L}{\partial (\dot{\phi}^a \phi^a)} \delta \dot{\phi}^a - \frac{\partial L}{\partial \phi^a} \delta \phi^a \right]. \]

We shall start from the simplest isotropic model with the action [5]:

\[S_{\text{isotr}} = \int dt \left[-\frac{1}{2} \dot{a}^2 - \frac{1}{2} N a + \lambda \left(\dot{N} - \frac{df}{da} \dot{a} \right) + \theta \frac{d}{dt} \left(\dot{N} \dot{\theta} - \dot{\theta} \dot{N} + \frac{df}{da} \dot{a} \theta \right) \right]. \]

\[\delta g_{\mu\nu} = \eta^\lambda \partial_\lambda g_{\mu\nu} + g_{\mu\lambda} \partial_\nu \eta^\lambda + g_{\nu\lambda} \partial_\mu \eta^\lambda \]

(12)

taking into account a chosen parametrization of gravitational variables. For example,

\[\delta N = \{ N, \Omega_{\text{isotr}} \} = -\frac{\partial H}{\partial \pi} - \mathcal{P} = -\dot{N} \dot{\theta} - N \dot{\theta}, \]

(13)

where \(\delta g_{\mu\nu} \) and \(\delta g_{\lambda\nu} \) are ghost momenta. In the approach as well as the Dirac quantization scheme.

The BRST charge constructed according to the BFV prescription (1) reads

\[\Omega_{\text{BFV}} = -T \theta - \pi \mathcal{P}, \]

(14)

where \(T \) is the Hamiltonian constraint,

\[T = -\frac{1}{2a} p^2 - \frac{1}{2} Na. \]

(15)

The condition for physical states (2) leads to the Wheeler-DeWitt equation

\[\hat{T} \Psi = 0. \]

(16)

The BFV charge (14) fails to produce a correct transformation for the gauge variable \(N \). At the same time, the condition (2) with the Noether charge (10), under the requirement of hermicity of Hamiltonian operator, does not lead to the Wheeler-DeWitt equation.

We face the contradiction: on the one hand, at the classical level we have a mathematically consistent formulation of Hamiltonian dynamics in extended phase space which is equivalent to the Lagrangian formulation of the original theory, and the BRST generator constructed in accordance with the Noether theorem, that produces correct transformations for all degrees of freedom. On the other hand, at the quantum level our approach appears to be not equivalent to the BFV approach as well as the Dirac quantization scheme.

The investigation of more complicated models has confirmed the said above. Let us consider the generalized spherically-symmetric gravitational model [8] with
the metric

\[ds^2 = \left[-N^2(t, r) + (N'(t, r))^2 V^2(t, r) \right] dt^2 + 2N'(t, r) V(t, r) dtdr + V^2(t, r) dr^2 + W^2(t, r) \left(d\theta^2 + \sin^2 \theta d\phi^2 \right). \]

(17)

where \(N^r = N^1 \) is the only component of the shift vector. The model has two constraints and imitates the full theory of gravity much better. One can check that the sum of gauge-fixing and ghost parts of the action

\[S_{\text{gauge}} = \int \! dt \! \int \! dr \left[\lambda_0 \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \right] \]

\[+ \lambda_r \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \right]; \]

\[S_{\text{ghost}} = \int \! dt \! \int \! dr \left[\theta_0 \frac{d}{dt} \left(-\dot{N} \dot{\theta}^0 - N' \theta^r \right) \right. \]

\[- N \ddot{\theta}^0 + N N' \left(\theta^r \right)' \]

\[- \frac{\partial f}{\partial W} \left[-\dot{W} \ddot{\theta}^0 - V' \theta^r - V(\theta^r)' - V N'(\theta^r)' \right] \]

\[- \frac{\partial f}{\partial W} \left[-\dot{W} \ddot{\theta}^0 - V' \theta^r - V(\theta^r)' - V N'(\theta^r)' \right] \]

\[+ \theta_r \frac{d}{dt} \left(-\dot{N} \dot{\theta}^0 - N' \theta^r \right) \]

\[+ N N'(\theta^r)' + N \frac{V^2}{\dot{V}^2} (\theta^r)' + (N')^2 (\theta^r)' \]

\[- \frac{\partial f}{\partial W} \left[-\dot{W} \ddot{\theta}^0 - V' \theta^r - V(\theta^r)' - V N'(\theta^r)' \right] \]

\[- \frac{\partial f}{\partial W} \left[-\dot{W} \ddot{\theta}^0 - V' \theta^r - V(\theta^r)' - V N'(\theta^r)' \right] \]

\[(19) \]

is not invariant under BRST transformations. To ensure its BRST invariance we have to add to the action the following terms (compare with (9)):

\[S_2 = \int \! dt \! \int \! dr \left[\dot{\theta}_0 \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \theta^r \right] \]

\[+ \frac{d}{dt} \left[\dot{\theta}_0 \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \theta^r \right] \]

\[+ \frac{d}{dr} \left[\dot{\theta}_0 \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \theta^r \right] \]

\[+ \frac{d}{dr} \left[\dot{\theta}_0 \left(\dot{N} - \frac{\partial f}{\partial \dot{V}} \dot{V} - \frac{\partial f}{\partial \dot{W}} \dot{W} \right) \theta^r \right]. \]

(20)

The BRST charge constructed according to the Noether theorem (7) for the spherically-symmetric model is

\[\Omega_{\text{spher}} = \int \! dr \left[-\mathcal{H} \theta^0 - P_V \dot{V} \theta^r - P_N \frac{\partial f}{\partial V} \dot{V} \theta^r \right. \]

\[- P_N \frac{\partial f}{\partial V} \dot{V} \theta^r - P_N \frac{\partial f}{\partial W} \dot{W} \theta^r \]

\[- P_N \frac{\partial f}{\partial W} \dot{W} \theta^r - P_V \dot{V} \theta^r \]

\[- P_N \frac{\partial f}{\partial V} \dot{V} \theta^r - P_N \frac{\partial f}{\partial V} \dot{V} \theta^r \]

\[- \dot{P}_\theta (\theta^0)' \theta^r - \dot{P}_\theta (\theta^r)' \theta^r - P_N P_\theta \]

\[- P_N P_\theta - \frac{N W V'(\theta^r)'}{V} \right]. \]

(21)

\(\mathcal{H} \) is a Hamiltonian density in extended phase space, its explicit form is given in [8]. It has been also demonstrated in [8] based on the equivalence of the Lagrangian and Hamiltonian dynamics for this model that the BRST charge (21) generates correct transformations (in the sense explained above) for physical, gauge and ghost degrees of freedom. Nevertheless, its structure differs from that of the BFV charge.

Nothing prevents us from constructing Hamiltonian dynamics in extended phase space and the BRST charge for the full gravitational theory following the method outlined above. One can use a gauge condition in a general form, \(f^\mu(g_{\lambda\lambda}) = 0 \). Its differential form introduces the missing velocities and actually extends phase space, so that the gauge fixing and ghost parts of the action will be

\[S_{\text{gauge}} = \int \! d^4 x \lambda_\mu \frac{d}{dt} f^\mu(g_{\lambda\lambda}) = \int \! d^4 x \lambda_\mu \left(\frac{\partial f^\mu}{\partial g_{\lambda\lambda}} g_{\lambda\lambda} \right. \]

\[+ 2 \frac{\partial f^\mu}{\partial g_{\lambda\nu}} g_{\lambda\nu} + \frac{\partial f^\mu}{\partial g_{\lambda\lambda}} g_{\lambda\lambda} \right) \];

\[S_{\text{ghost}} = - \int \! d^4 x \theta_\mu \frac{d}{dt} \left[\frac{\partial f^\mu}{\partial g_{\lambda\lambda}} \partial_\nu g_{\lambda\lambda} \theta^\nu \right. \]

\[+ g_{\lambda\nu} \partial_\lambda \theta^\nu + g_{\nu\nu} \partial_\lambda \theta^\nu \].

(22) (23)

It is not difficult to check that the additional term ensuring BRST invariance of the action in this general case reads (compare with (9), (20)):

\[S_3 = \int \! d^4 x \partial_\mu \left[\dot{\theta}_0 \frac{d}{dt} f^\mu(g_{\lambda\lambda}) \theta^\rho \right]. \]

(24)

The calculation of the BRST charge for the full gravitational theory is rather tedious and has not been finished yet. However, relying upon the two models discussed above, we can expect that the structure of the BRST charge may also be different from the one predicted by Batalin, Fradkin and Vilkovisky.
3 Discussion

Therefore, one should inquire about a physical meaning of the selection rules (2) (in the BFV approach) or (3) (in the Dirac approach) as well as asymptotic boundary conditions. In quantum field theory with asymptotic states their meaning is quite clear: in asymptotic states interactions are negligible, and these states must not depend on gauge and ghost variables which are considered as non-physical. But ghost fields cannot be excluded in an interaction region. In the gravitational theory, except some few situations, we need to explore states inside the interaction region. The simplest example of a system without asymptotic states is a closed universe, not to mention a universe with more complicated topology. Also, we would like to reach a better understanding of quantum processes in the neighborhood of a black hole. Then, what would be a definition of physical states in such cases? To my mind, today we have no satisfactory answer for this question, though mathematics provides reasonable grounds to put it. The definition of physical states seems to be very important for our searching for a true way to quantize Gravity.

Acknowledgement

I am grateful to the Organizing Committee of QFTG 2014 for the invitation to give a talk at the conference and financial support.

References

[1] Fradkin E. S. and Vilkovisky G. A. 1975 Phys. Lett. B 55 224.
[2] Batalin I. A. and Vilkovisky G. A. 1977 Phys. Lett. B 69 309.
[3] Fradkin E. S. and Fradkina T. E. 1978 Phys. Lett. B 72 343.
[4] Hennaux M. 1985 Phys. Rep. 126 1.
[5] Shestakova T. P. 2011 Class. Quantum Grav. 28 055009 [arXiv:1102.0097 [gr-qc]].
[6] Savchenko V. A., Shestakova T. P. and Vereshkov G. M. 2001 Gravitation & Cosmology 7 18 [arXiv:gr-qc/9810035 [gr-qc]].
[7] Savchenko V. A., Shestakova T. P. and Vereshkov G. M. 2001 Gravitation & Cosmology 7 102 [arXiv:gr-qc/9810035 [gr-qc]].
[8] Shestakova T. P. 2014 Gravitation & Cosmology 20 67 [arXiv:1302.4875 [gr-qc]].

Received 04.10.2014

T. P. Shestakova

ROLL BRST ZARYADA KAK GENERATORA KALIBROWOCHNYH PREOBRAZOVANII
V KVAZIROBLYACHNIH TEORIYKH I GRAVITACII

В подходе Баталии-Фрадкина-Вилковского (БФВ) к квантованию калибровочных теорий принципиальной роль отводится BRST-заряду, который строится в виде разложения по степеням граисмовских (духовых) переменных, причем коэффициенты разложения представляют собой обобщенные структурные функции алгебры связей. С другой стороны, BRST-заряд можно построить, используя теорему Нетер и глобальную BRST-инвариантность эффективного действия. В случае космологией Янга-Миллсса оба метода приводят к одинаковым выражениям для BRST-заряда, но это не справедливо в случае общей теории относительности. Сказанное иллюстрируется примерами известной космологической модели, а также геометрической-симметричной гравитационной модели, которая гораздо лучше воспроизводит структуру поля теории гравитации. Обсуждение основывается на гамильтоновой формулировке общей теории относительности в фазовом пространстве. На квантовом уровне структура BRST-заряда чрезвычайно важна, поскольку именно BRST-инвариантные квантовые состояния рассматриваются как физические состояния. Таким образом, определение BRST-заряда на классическом уровне неразрывно связано с попытками найти правильный подход к квантованию гравитации.

Ключевые слова: BRST-заряд, калибровочные преобразования, теорема Нетер, физические состояния, квантование гравитации.

Shestakova T. P., кандидат физико-математических наук, доцент.
Южный федеральный университет.
ул. Энергетиков, 5, 344000 Ростов-на-Дону, Россия.
E-mail: shestakova@sfedu.ru