EICHLER-SHIMURA ISOMORPHISM FOR COMPLEX HYPERBOLIC LATTICES

INKANG KIM AND GENKAI ZHANG

ABSTRACT. We consider the cohomology group $H^1(\Gamma, G, \rho)$ of a discrete subgroup $\Gamma \subset G = SU(n, 1)$ and the symmetric tensor representation ρ on $S^k \mathbb{C}^{n+1}$. We give an elementary proof of the Eichler-Shimura isomorphism that harmonic forms $H^1(\Gamma, G, K, \rho)$ are $(0, 1)$-forms for the automorphic holomorphic bundle induced by the representation $S^k \mathbb{C}^n$ of K.

1. INTRODUCTION

Let B be the unit ball in \mathbb{C}^n considered as the Hermitian symmetric space $B = G/K$ of $G = SU(n, 1)$, $n > 1$. Let Γ be a cocompact torsion free discrete subgroup of G and ρ a finite dimensional representation of G, and $X = \Gamma \backslash B$. The representation ρ of G defines also one for $\Gamma \subset G$. The first cohomology $H^1(\Gamma, G, \rho)$ is of substantial interests and appears naturally in the study of infinitesimal deformation of Γ in a bigger group $G' \supset G$; see [4, 3, 1]. It is a classical result of Ragnunathan [7] that the cohomology group $H^1(\Gamma, G, \rho)$ vanishes except when $\rho = \rho_k$ is the symmetric tensor $S^k(\mathbb{C}^{n+1})$ (or ρ'_k on $S^k(\mathbb{C}^{n+1})$). In a recent work [4] it is proved that realizing $H^1(\Gamma, B, \rho)$ as harmonic forms, it consists of $(0, 1)$ forms for the symmetric tensor of the holomorphic tangent bundle of $X = \Gamma \backslash B$. The proof in [4] uses a Hodge vanishing theorem and the Koszul complex. In the present paper we shall give a rather elementary proof of the result. We will prove that any harmonic form with values in $S^m(\mathbb{C}^{n+1})$ is $(0, 1)$-form taking values in $S^m(\mathbb{C}^n)$. Let \mathcal{L}^{-1} be the line bundle on X defined so that $\mathcal{L}^{-(n+1)}$ is the canonical line bundle \mathcal{K}. More precisely we shall prove the following, the notations being explained in §2,

Theorem 1.1. Let Γ be a torsion free subgroup of G acting properly discontinuously on B.

1. Let $\alpha \in A^1(\Gamma, B, \rho_m)$ be a harmonic form. Then α is a $(0, 1)$ form on $\Gamma \backslash B$ with values in the symmetric tensor $S^m TX \otimes \mathcal{L}^{-m}$ of the holomorphic tangent bundle TX.

2. Let $\alpha \in A^1(\Gamma, B, \rho'_m)$ be a harmonic form. Then α is a $(1, 0)$-form on $\Gamma \backslash B$ with values in the symmetric tensor $S^m T'X$ of the holomorphic cotangent bundle $T'X$.

Research partially supported by STINT-NRF grant (2011-0031291). Research by G. Zhang is supported partially by the Swedish Science Council (VR). I. Kim gratefully acknowledges the partial support of NRF grant (2010-0024171) and a warm support of Chalmers University of Technology during his stay.
and α is symmetric in all $m + 1$ variables. In particular α is naturally identified with a section of the bundle $S^{m+1}T'X \otimes L^m$.

Corollary 1.2. Let Γ be as above and assume that $\Gamma \setminus B$ is compact then we have

$$H^1(\Gamma, \rho_m) = H^1(\Gamma \setminus B, S^mTX \otimes L^{-m}), \quad H^1(\Gamma, \rho'_m) = H^0(\Gamma \setminus B, S^{m+1}T'X \otimes L^m),$$

where the cohomology on the right hand side are the Dolbeault cohomology of $\bar{\partial}$-closed $(0, 1)$ forms of the holomorphic vector bundles.

The case $n = 1$, namely a Riemann surface $\Gamma \setminus B$, is slightly different. In that case the group cohomology $H^1(\Gamma, \rho_{2j})$ of the $2j$-th power of the defining representation of $\Gamma \subset SU(1, 1)$ will have both holomorphic and antiholomorphic components, $H^{(1,0)}(\Gamma, \rho_{2j}), H^{(0,1)}(\Gamma, \rho_{2j})$, the holomorphic part $H^{(1,0)}(\Gamma, \rho_{2j})$ corresponds to $H^{(1,0)}(\Gamma, \rho_{2j}) = H^{(1,0)}(\Gamma \setminus B, K^{j+1}) = H^0(\Gamma \setminus B, K^{j+1})$ of the tensor power of the canonical line bundle. This is known as the Eichler-Shimura correspondence; see [9, THÉORÈME 1] where a concrete construction was given. We can also follow our proof and get an elementary proof of this result; see Remark 3.8.

Our proof is a bit tricky but it is still very akin to the variation of Hodge structures; conceptually we are treating explicitly the filtration of holomorphic bundles defined by the central action of K. It is stated in [4] that the results can be derived from the work of Deligne and Zucker [12, 13]. We note here that results of this type that $(0, q)$-forms in the group cohomology $H^q(\Gamma, B, \rho)$ are actually $(0, q)$-forms for a corresponding automorphic bundle have been obtained much earlier by Matsushima and Murakami [5, 6], and presumably one can prove the above result by combining the results of [5, 6] and by proving certain vanishing theorem of $(r, p - s)$-forms in $H^p(\Gamma, G, \rho)$. But our method is down-to-earth hence we expect that our method can apply to various situations. We will investigate further applications in a near future.

2. Preliminaries

Let $V = \mathbb{C}^{n+1}$ be equipped with the Hermitian inner product (Jv, v) of signature $(n, 1)$, where J is the diagonal matrix $J = \text{diag}(1, \cdots, 1, -1)$ and (v, v) the Euclidean form in \mathbb{C}^{n+1}. We write $V = V_1 \oplus \mathbb{C}e_{n+1}$ with V_1 being the Euclidean space \mathbb{C}^n with an orthonormal basis $\{e_k, k = 1, \ldots, n\}$. Let $G = SU(n, 1)$ be the group of linear transformations on V preserving the Hermitian form. The maximal compact subgroup of G is

$$K = \left\{ \begin{bmatrix} A & 0 \\ 0 & e^{i\theta} \end{bmatrix} : A \in U(n), e^{i\theta} \det A = 1 \right\} = U(n),$$

the identification with $U(n)$ being the natural one. The Lie algebra $\mathfrak{g} = \mathfrak{su}(n, 1)$ consists of matrices X such that $X^*J + JX = 0$. The symmetric space G/K can be realized as
the unit ball \(B \) in \(V_1 = \mathbb{C}^n \), \(B = G/K \) with \(x_0 = 0 \) being the base point. Let \(\mathfrak{g} = \mathfrak{k} + \mathfrak{p} \) be the Cartan decomposition of \(\mathfrak{g} \) and the subspace \(\mathfrak{p} = \{ \xi_v; v \in \mathbb{C}^n \} \) with
\[
\xi_v = \begin{pmatrix} 0 & v \\ \bar{v} & 0 \end{pmatrix}.
\]
The tangent space \(T_{x_0}(B) \) at \(x_0 \) will be identified with \(\mathfrak{p} = \mathbb{C}^n \) as real spaces.

The center of the maximal compact subalgebra \(\mathfrak{k} = \mathfrak{u}(n) \) is
\[
H_0 = (n+1)^{-1} \sqrt{-1} \text{diag}(1, \cdots, 1, -n),
\]
which defines the complex structure on \(B \), and we have
\[
\mathfrak{sl}(n+1) = \mathfrak{sl}(n) + \mathbb{C}H_0 + \mathfrak{p}^+ + \mathfrak{p}^-.
\]
Then the holomorphic and anti-holomorphic tangent space \(\mathfrak{p}^\pm \) consists of upper triangular, respectively lower triangular matrices. We denote
\[
(2.1) \quad \xi_v^+ = \frac{1}{2}(\xi_v - i\xi_{iv}) = \xi_v = \begin{pmatrix} 0 & v \\ 0 & 0 \end{pmatrix} \in \mathfrak{p}^+, \quad \xi_v^- = \frac{1}{2}(\xi_v + i\xi_{iv}) = \begin{pmatrix} 0 & 0 \\ \bar{v} & 0 \end{pmatrix} \in \mathfrak{p}^-,
\]
the \(\mathbb{C} \)- and \(\overline{\mathbb{C}} \)-linear components of \(\xi_v \).

Let \(V_1 = \mathbb{C}^n \) be the defining representation and \(\det(A) \) the determinant representation of \(U(n) \). We take the diagonal elements as Cartan algebra of \(\mathfrak{gl}(n, \mathbb{C}) \) and the upper triangular matrices as positive root vectors. Denote \(\omega_1, \cdots, \omega_{n-1} \) the fundamental representations of \(U(n) \), so that \(\omega_1 = V_1 \) is the defining representation above and \(\omega_{n-1} \) the dual representation.

As complex representation of \(\mathfrak{u}(n) \) we have
\[
\mathfrak{p}^+ = \omega_1 \otimes \det = V_1 \otimes \det, \quad \mathfrak{p}^- = \omega_{n-1} \otimes \det^{-1}.
\]
This entails that, for \(A \in U(n) \),
\[
A(\xi_{v_1}^+ \wedge \cdots \wedge \xi_{v_n}^+) = (\det A)^n A\xi_{v_1}^+ \wedge \cdots \wedge A\xi_{v_n}^+ = (\det A)^{n+1}(\xi_{v_1}^+ \wedge \cdots \wedge \xi_{v_n}^+).
\]
Hence
\[
(2.2) \quad K_X^{-1} = \wedge^n \mathfrak{p}^+ = (\det)^{n+1}
\]
and \(\mathcal{L} = \det \).

We shall just identify \(\mathfrak{p}^+ \) with \(V_1 \), \(\mathfrak{p}^+ = V_1 \), when the center action of \(U(n) \) is irrelevant.

The defining representation \(V \) of \(\mathfrak{l} \) under \(\mathfrak{u}(n) \) is
\[
V = V_1 + \det^{-1}
\]
We shall consider its symmetric representation \((S^m(V), \rho_m) \) of \(G \) and \(\mathfrak{g} \). Note that we have
\[
(2.3) \quad W = S^m(V) = \bigoplus_{k=0}^m W_k = \bigoplus_{k=0}^m S^k(V_1) \otimes e_{n+1}^{m-k},
\]
and we make the identification of the spaces
\[
W_k = S^k(V_1) \otimes e_{n+1}^{m-k} = S^k(V_1)
\]
whenever the factor \(e_{n+1}^{m-k} \) is irrelevant.

Note that the Euclidean inner product on \(V \) induces one on \(W = S^m(V) \) and the above decomposition is an orthogonal decomposition. Note also that action of \(\rho_m(X) \) is Hermitian for \(X \in p \) and skew Hermitian for \(\xi \in \mathfrak{t} \).

A representation of \(G \) on a finite dimensional complex vector space defines also a vector bundle over the quotient space \(\Gamma \backslash B \) and we recall briefly its construction. Let \((W, \rho) \) be a finite dimensional representation of \(G \) on a complex vector space \(W \). Eventually we shall only consider \(W = S^k(V) \) as above and its dual \(S^k(V') \). We fix on \(W \) a positive definite Hermitian form so that \(\Gamma \) acts unitarily. Let \(\Gamma \) be a torsion free discrete subgroup of \(G \). The restriction of \(\rho \) on \(\Gamma \) will also be written as \(\rho \). Suppose \(\Gamma \) acts properly discontinuously on \(B \). We recall the known construction of vector bundle \(E_{\rho} \) on \(\Gamma \backslash B \), following the exposition \([8]\) and also some notations there. Let \(\Gamma \times K \) acts on \(G \times W \) by \((\gamma, k)(g, w) := (\gamma g k^{-1}, \rho(\gamma) w) \). Then \(E_{\rho} = G \times W / \Gamma \times K \) is a holomorphic vector bundle on \(\Gamma \backslash B \). The de Rham operator \(d \) is well-defined on \(E_{\rho} \) and we let \(\Delta_{\rho} = dd^* + d^* d \) be the corresponding Hodge Laplacian operator on space of \(p \)-forms on \(E_{\rho} \). We choose its standard realizations as \(W \)-valued \(p \)-forms on \(G \) as follows. Let \(A^p(\Gamma, B, \rho) \) be the space of \(W \)-valued \(p \)-forms \(\alpha \) on \(G \) satisfying

(a): \(\alpha(\gamma g) = \alpha(g), \gamma \in \Gamma \).

(b): \(\rho(k) \alpha(\gamma g k^{-1}) = \alpha(g), \quad k \in K \).

(c): \(\iota(Y)\alpha = 0, Y \in \mathfrak{t} \).

Here \(\iota(Y) \) is the pairing of \(Y \in \mathfrak{g} \) as left-invariant vector fields on \(G \) (by differentiation from right) with a \(p \)-form \(\alpha \) on \(G \), \(\iota(Y)\alpha(Z_1, \ldots, Z_{p-1}) = \alpha(Y, Z_1, \ldots, Z_{p-1}) \). Equivalently it can be realized as \(p \)-forms on \(\Gamma \backslash G \) satisfying (b) – (c) above. With some abuse of notation we denote \(\Delta_{\rho} \) the corresponding Hodge Laplacian on \(A^p(\Gamma, B, \rho) \).

We shall also need the automorphic bundle defined by representations of \(K \). So let \((V, \tau) \) be a representation of the complexification of \(K_\mathbb{C} \) and we fix as above a Hermitian inner product on \(V \) so that \(K \) acts unitarily. The group \(\Gamma \times K \) acts on \(G \times V \) by \((\gamma, k)(g, w) = (\gamma g k^{-1}, \tau(k) w) \). Then \(\mathcal{E}_{\rho_1} = \Gamma \times K \backslash G \times V \) defines a holomorphic vector bundle over \(\Gamma \backslash B \). The \(p \)-forms on the vector bundle can be realized as the space \(A^p(\Gamma, B, \tau) \) (again with some abuse of notation) of \(p \)-forms on \(\Gamma \backslash G \) satisfying

(b'): \(\tau(k) \alpha(\gamma g k^{-1}) = \alpha(g), \quad k \in K \).

(c'): \(\iota(Y)\alpha = 0, Y \in \mathfrak{t} \).

3. The Eichler-Shimura Isomorphism

As indicated in \([3, 4]\) the part (2) of our theorem is a consequence of (1), so we shall only prove (1).

For any real linear map \(A : p \to W \) from \(p \) to any complex vector space \(W \) we let

\[
A^+(\xi_v) = \frac{1}{2}(A(\xi_v) - iA(\xi_{iv})), \quad A^-(\xi_v) = \frac{1}{2}(A(\xi_v) + iA(\xi_{iv}))
\]
be the \(\mathbb{C} \)-linear and respectively \(\overline{\mathbb{C}} \)-linear components. In particular for any complex representation \((W, \rho)\) of \(G \) and \(g \) we have

\[
\rho^\pm(\xi_v) = \rho(\xi_v^\pm),
\]

where \(\xi_v^\pm \) are defined in (2.1). Let now \(\rho = \rho_m \) be the representation \(S^m(V) \) and \(\rho^m \) the dual representation \(S^m(V') \) of \(g \). We start now with a few simple observations formulated only \(\rho = \rho_m \); the corresponding ones hold for \(\rho^m \).

Denote by

\[
P_k : W \to W_k = S^k(V_1) \otimes e_{m-k}^{n+1}
\]

the orthogonal projection onto the component \(W_k \) in (2.3), and write

\[
\alpha = \sum_{k=0}^m \alpha_k
\]

the corresponding decomposition for \(\alpha \in W = \sum_{k=0}^m W_m \).

Let \(\{X_j\} \) be an orthogonal basis of \(p \) viewed as tangent vectors on \(\Gamma \setminus G \) at a fixed point \(\Gamma g \) and \(\{e_j\} \) the corresponding orthonormal basis of \(V_1 \). An arbitrary vector in \(\{X_j\} \) will be written as \(Y_i \). Let \(T = T_\rho \) and \(T^* = T_\rho^* \) be the operator defined on \(A^1(\Gamma, B, \rho) \) as follows.

\[
T_\rho(Y_1, Y_2) = \rho(Y_1)\alpha(Y_2) - \rho(Y_2)\alpha(Y_2)
\]

\[
T^*_\rho \alpha = \sum_{j=1}^n \rho(X_j)\alpha(X_j)
\]

We recall the following result [8, Corollary 7.50]

Proposition 3.1. Suppose \(\alpha \in A^1_0(\Gamma, B, \rho) \) is harmonic, \(\Delta_\rho \alpha = 0 \). Then \(T_\rho \alpha = 0 \) and \(T^*_\rho \alpha = 0 \).

This can be restated as the following (which is also proved in [3] for \(k = 2 \) by using matrix computations).

Corollary 3.2. Suppose \(\alpha \in A^1_0(\Gamma, B, \rho) \) satisfies \(T_\rho \alpha = 0 \) and \(T^*_\rho \alpha = 0 \). Then the \(W \)-valued \(\mathbb{R} \)-bilinear form \((X, Y) \mapsto \rho(X)\alpha(Y) \) is symmetric

\[
(3.1) \quad \rho(\xi_v)\alpha(\xi_u) = \rho(\xi_u)\alpha(\xi_v),
\]

and trace free

\[
(3.2) \quad \sum_j (\rho(\xi_{e_j})\alpha(\xi_{e_j}) + \rho(\xi_{ie_j})\alpha(\xi_{ie_j})) = 0.
\]

Our theorem will be an easy consequence of the following proposition, whose proof is based on a few elementary lemmas.

Proposition 3.3. (1) Suppose \(\alpha \in \text{Hom}_\mathbb{R}(p, W) \) satisfies \(T_\rho \alpha = T^*_\rho \alpha = 0 \). Then \(\alpha \) is \(\overline{\mathbb{C}} \)-linear and takes value in \(W_m = S^m V_1 \), that is, \(\alpha = \alpha_m = \alpha^-_m \in \text{Hom}_\overline{\mathbb{C}}(p^-, W_m) \).
(2) Suppose $\alpha \in \text{Hom}_{k}(p, W')$ satisfies $T_{\rho'} \alpha = T_{\rho}^{*} \alpha = 0$. Then α is C-linear and takes value in $S^{m}(V_{1}')$. Moreover as an element in $(p^{+})' \otimes S^{m}(V_{1}') = (V_{1})' \otimes S^{m}(V_{1}')$, it is symmetric in all variables, i.e., an element in $S^{m+1}(V_{1})$, the leading component in $(V_{1})' \otimes S^{m}(V_{1}')$.

Denote $u^{i}v^{j-i}$ the symmetric tensor power of u and v normalized by
\[
(u + v)^{j} = \otimes^{j}(u + v) = \sum_{i=0}^{j} \binom{j}{i} u^{i}v^{j-i}.
\]

Note that the representation $\rho = \rho_{m}$ is the symmetric tensor $S^{m}(\mathbb{C}^{n+1})$ throughout the paper.

Lemma 3.4.

(1) Let $1 \leq k \leq m - 1$. Then for any $0 \neq \xi_{v} \in p$,
\[
\rho(\xi_{v}) : W_{k} \rightarrow W_{k+1} + W_{k-1}, \quad \rho(\xi_{v}^{+}) : W_{k} \rightarrow W_{k+1}, \quad \rho(\xi_{v}^{-}) : W_{k} \rightarrow W_{k-1},
\]
and on each space it is nonzero. Moreover if $w \in W_{k}$ and $\rho(\xi_{v}^{+})w = 0$ or $\rho(\xi_{v}^{-})w = 0$ for all $\xi_{v}^{\pm} \in p^{\pm}$ then $w = 0$.

(2) The restriction $\rho(\xi_{v})|_{W_{n}} : W_{n} \rightarrow W_{n-1}$ on the top component W_{m} of W is \mathbb{C}-linear in ξ_{v}, $\rho(\xi_{v})|_{W_{n}} = \rho^{\bot}(\xi_{v})|_{W_{n}}$, and $\rho(\xi_{v})|_{W_{0}} = \rho^{\bot}(\xi_{v})|_{W_{0}}$ on the bottom component is \mathbb{C}-linear in ξ_{v}, $\rho(\xi_{v})|_{W_{0}} = \rho^{\bot}(\xi_{v})|_{W_{0}}$.

Proof. The defining representation ρ_{1} is just the matrix multiplication and we have $\rho_{1}(\xi_{v})u = \langle u, v \rangle e_{n+1}$ for $u \in V_{1}$, and $\rho_{1}(\xi_{v})e_{n+1} = v$. Thus $\rho_{1}(\xi_{v}^{+})u = 0$, $\rho_{1}(\xi_{v}^{-})u = \langle u, v \rangle e_{n+1}$, $\rho_{1}(\xi_{v})e_{n+1} = v$, and $\rho_{1}(\xi_{v}^{+})e_{n+1} = v$, $\rho_{1}(\xi_{v}^{-})e_{n+1} = 0$. Taking the tensor power we find
\[
\rho(\xi_{v}^{\pm})e_{n+1}^{k} = ke_{n+1}^{k-1}, \quad \rho(\xi_{v}^{\pm})e_{j}^{k} = k\theta_{j}e_{n+1}^{k-1}, \quad 1 \leq j \leq n,
\]
which are non-zero if $v_{j} \neq 0$. First note that
\[
k\rho^{\bot}(\xi_{v})e_{k-1} = \rho^{\bot}(\xi_{kv}), \quad k \in K, v \in V_{1}.
\]
If $\rho(\xi_{v}^{\pm})w = 0$ for all $\xi_{v}^{\pm} \in p^{\pm}$ and for a fixed $w \neq 0$, then
\[
k\rho(\xi_{v}^{\pm})e_{k-1} = \rho(\xi_{kv}^{\pm})w = 0
\]
for all $k \in K$. Hence it is zero for all $\rho(k^{-1})w$, and therefore zero for $w = e_{j}^{k}, j = 1, \ldots, n$, contradicting the previous claim. \(\square\)

The space $\text{Hom}_{\mathbb{C}}(p^{-}, W_{j})$ of \mathbb{C}-linear forms β on p^{-}, $\beta = \beta^{-}$ will be identified with the tensor product $(p^{-})' \otimes W_{j}$. Recall [11] that the tensor product is decomposed under K as
\[\text{(3.3)}\]
\[
\text{Hom}_{\mathbb{C}}(p^{-}, W_{j}) = (p^{-})' \otimes S^{j}(V_{1}) \otimes e_{n+1}^{m-j} \equiv (S^{j+1}(V_{1}) \otimes e_{n+1}^{m-j}) \oplus (S^{j-1,1}(V_{1}) \otimes e_{n+1}^{m-j})
\]
with the corresponding highest weights
\[
\omega_{1} \otimes j\omega_{1} = (j + 1)\omega_{1} + ((j - 1)\omega_{1} + \omega_{2}).
\]
Lemma 3.5. Suppose $\beta = \beta^+$ is $S^m(V'_1)$-valued \mathbb{C}-linear form on p^+. If $\rho(\xi^+_v)\beta(\xi^+_u) = \rho(\xi^+_v)\beta(\xi^+_u)$ then β as an element in $(p^+) \otimes S^m(V'_1)$ is symmetric in all $m + 1$ variables.

Proof. The statement is equivalent to that $\beta(\xi^+_v)(\xi^+_u, \cdots, \xi^+_u)$ is symmetric in all $m + 1$ variables. However the equality $\rho(\xi^+_v)\beta(\xi^+_u) = \rho(\xi^+_v)\beta(\xi^+_u)$ implies that it is symmetric in the first two variables and thus is symmetric in all $m + 1$ variables. More precisely, viewing $\rho(\xi^+_v)\beta(\xi^+_u)$ and $\rho(\xi^+_v)\beta(\xi^+_u)$ as elements in $S^m(V'_1)$,

$$\rho(\xi^+_v)\beta(\xi^+_u)(e_{n+1}, \cdots, e_{n+1}) = \beta(\xi^+_v)(\rho(\xi^+_v)e_{n+1}, \cdots, \rho(\xi^+_v)e_{n+1}) = \rho(\xi^+_v)\beta(\xi^+_u)(e_{n+1}, \cdots, e_{n+1}) = \beta(\xi^+_v)(\rho(\xi^+_v)e_{n+1}, \cdots, \rho(\xi^+_v)e_{n+1}).$$

Hence from $\rho(\xi^+_v)e_{n+1} = u$ and $\rho(\xi^+_v)e_{n+1} = v$ and identifying $p^+ = V_1$, we get

$$\beta(\xi^+_u, \cdots, \xi^+_u) = \beta(\xi^+_u, \cdots, \xi^+_u).$$

□

Lemma 3.6. If $\rho^-(\xi_u)\beta^-(\xi_v) = \rho^-(\xi_v)\beta^-(\xi_u)$ then β is in the first component $S^{j+1}(V_1)$ in the above decomposition (3.3).

Proof. Note that the relation $\rho^-(\xi_u)\beta^-(\xi_v) = \rho^-(\xi_v)\beta^-(\xi_u)$ is invariant under the K-action, since

$$\rho(k)\rho^-(\xi_v)\rho(k^{-1}) = \rho^-(\xi_{kv}), \quad k \in K, v \in V_1$$

and

$$\rho(k)\beta(gk^{-1}) = \beta(g)$$

for all $k \in K$, which results in

$$\rho(k)\rho^-(\xi_v)\beta(gk^{-1}) = \rho^-(\xi_{kv})\beta(g).$$

Thus if β^- satisfies the relation so is its component in $((j - 1)\omega_1 + \omega_2)$. We prove any element in $((j - 1)\omega_1 + \omega_2)$ satisfying the relation must be zero. This space is an irreducible representation of K we need only to check the relation for its highest weight vector. The highest weight vector of $((j - 1)\omega_1 + \omega_2)$ in $V_1 \otimes S^j(V_1)$ is

$$\beta = \epsilon_2 \otimes \epsilon_1^j - \epsilon_1 \otimes (\epsilon_1^{j-1} \epsilon_2)$$

where ϵ_i is a dual vector to ξ^-_{i} in p^-. We check the relation

$$\rho^-(\epsilon_{e_2})\beta(\epsilon_1) = \rho^-(\epsilon_{e_1})\beta(\epsilon_{e_2}).$$

The left hand side is $-\epsilon_1^{j-1} e_{n+1}$ whereas the right hand side is $j \epsilon_1^{j-1} e_{n+1}$, and the relation is not satisfied. □

For simplicity we denote $\xi_j = \epsilon_{e_j}$ where $\{e_k\}$ is an orthogonal basis of V_1. Observe that for any $\beta \in \text{Hom}_{\bar{p}}(p^-, W_j)$ we have

$$\rho(\xi^+_v)\beta \in \text{Hom}_{\bar{p}}(p^-, W_{j+1}).$$
Lemma 3.7. Suppose $1 \leq j < m$. The map

$$T : \text{Hom}(\mathfrak{p}^-, W_j) \equiv (j + 1)\omega_1 \oplus ((j - 1)\omega_1 + \omega_2) \to W_{j+1}, \quad \beta \mapsto \sum_{k=1}^{n} \rho(\xi_k^+)\beta(\xi_k^-)$$

is up to non-zero constant an isometry on the space $(j + 1)\omega_1$.

Proof. It is clear that T is a K-intertwining map from $\text{Hom}(\mathfrak{p}^-, S^j(V_1))$ into W_{j+1}. By Schur’s lemma it’s either zero or an isometry up to non-zero constant on the irreducible space $(j + 1)\omega_1$. To find the constant we take $\beta = \varepsilon_1 \otimes e_1^m - j$ where ε_1 is the dual form of $\xi_{e_j}^-$. It is indeed in the first component $(j + 1)\omega_1$ and is actually the highest weight vector. Then by direct computation we find

$$T\beta = (m - j)\varepsilon_1^j e_1^{m-j-1},$$

which is nonzero.

We prove now Proposition 3.3.

Proof. We shall prove by induction that all $\alpha_j = 0$ for $k \leq m - 1$. Let $1 \leq k \leq m - 1$. Taking the k-th component of (3.1) we get

$$\rho^+(\xi_u)\alpha_{k-1}^+(\xi_u) = \rho^+(\xi_v)\alpha_{k-1}^+(\xi_u),$$

(3.4)

$$\rho^-(\xi_u)\alpha_{k+1}^-(\xi_u) = \rho^-(\xi_v)\alpha_{k+1}^-(\xi_u),$$

(3.5)

$$\rho^+(\xi_u)\alpha_{k-1}^-(\xi_u) = \rho^+(\xi_v)\alpha_{k-1}^-(\xi_u).$$

(3.6)

We prove first that $\alpha_0 = 0$. Consider the 1-component of the identity

$$T^*_\rho \alpha = \sum_j \left(\rho(\xi_{e_j})\alpha(\xi_{e_j}) + \rho(\xi_{e_{e_j}})\alpha(\xi_{e_{e_j}}) \right) = 0$$

(3.7)

and write each term in terms of their \mathbb{C}-linear and $\overline{\mathbb{C}}$-linear parts. Note that bilinear \mathbb{C}-linear and bilinear $\overline{\mathbb{C}}$-linear terms have their sum zero. Also on the component W_0 the action $\rho(\xi_u) = \rho(\xi_u^+) = \mathbb{C}$-linear, by Lemma 3.4. Thus

$$\sum_j \left(\rho^+(\xi_{e_j})\alpha_{0}^-(\xi_{e_j}) + \rho^-(\xi_{e_j})\alpha_{2}^+(\xi_{e_j}) \right) = 0.$$

But by the equality of (3.6) for $k = 1$ we have $\rho(\xi_{e_j})\alpha_{2}^+(\xi_{e_j}) = \rho(\xi_{e_j})\alpha_{0}^-(\xi_{e_j})$. Namely

$$2 \sum_j \rho(\xi_{e_j})\alpha_{0}^-(\xi_{e_j}) = 0.$$

(3.8)

Taking inner product with $e_1 e_{n+1}^{m-1} \in W_1$, and using the fact that

$$\langle \rho(\xi_{e_j})\alpha_{0}^-(\xi_{e_j}), e_1 e_{n+1}^{m-1} \rangle = \langle \alpha_{0}^-(\xi_{e_j}), \rho(\xi_{e_j})(e_1 e_{n+1}^{m-1}) \rangle = \langle \alpha_{0}^-(\xi_{e_j}), e_{n+1}^m \rangle$$

and

$$\langle \rho(\xi_{e_j})\alpha_{0}^-(\xi_{e_j}), e_1 e_{n+1}^{m-1} \rangle = \langle \alpha_{0}^-(\xi_{e_j}), \rho(\xi_{e_j})(e_1 e_{n+1}^{m-1}) \rangle = 0, j \neq 1,$$

we see that $\langle \alpha_{0}^-(\xi_{e_1}), e_{n+1}^m \rangle = 0$, namely $\alpha_{0}^-(\xi_{e_1}) = 0$. By the K-invariance of above relation (3.8) we may replace e_1 by any e_j, and get $\alpha_{0}^-(\xi_{e_j}) = 0$, i.e., $\alpha_{0}^- = 0$ and α_0
is \mathbb{C}-linear, $\alpha_0 = \alpha_0^*$. Now $W_0 = \mathbb{C}e_{m+1}^n$ is one-dimensional and α_0 is thus of the form $\alpha_0(\xi_u) = \langle u, u_0 \rangle e_{m+1}^n$ for some $u_0 \in V_1$. Now the relation (3.4) implies that

$$\langle u, u_0 \rangle ve_{m-1}^{n+1} = \langle v, u_0 \rangle ue_{m-1}^{n+1}$$

for all $u, v \in V_1$. This is impossible unless $u_0 = 0$ since $\dim V_1 > 1$, i.e., $\alpha_0 = 0$.

Taking the 0-th component of the equality $\rho(\xi_u)\alpha(\xi_v) = \rho(\xi_v)\alpha(\xi_u)$ we get

$$\rho^-(\xi_u)\alpha_1(\xi_v) = \rho^-(\xi_v)\alpha_1(\xi_u).$$

Changing v to iv we find

$$\rho^-(\xi_u)\alpha_1(\xi_{iv}) = -i\rho^-(\xi_v)\alpha_1(\xi_u).$$

Summing the two results in

$$\rho^-(\xi_u)(\alpha_1(\xi_{iv}) + i\alpha_1(\xi_v)) = 0.$$

Taking inner product with $e_{m+1}^n \in W_0$ we have

$$0 = \langle (\rho^-(\xi_u)(\alpha_1(\xi_{iv}) + i\alpha_1(\xi_v)), e_{m+1}^n \rangle = \langle \alpha_1(\xi_{iv}) + i\alpha_1(\xi_v), \rho^+(\xi_u)e_{m+1}^n \rangle$$

for all u. Thus $\alpha_1(\xi_{iv}) + i\alpha_1(\xi_v) = 0$, namely α_1 is \mathbb{C}-linear, $\alpha_1 = \alpha_1^*$. Furthermore it follows from Lemma 3.6 that α_1 is an element in the component $S^2(V_1)$ in $(p^-) \otimes S^1(V_1)$.

We take now the 0-component of the identity (3.7) using again the fact that α_1 is \mathbb{C}-linear, and find

$$0 = \sum_j (\rho^+(\xi_{e_j})\alpha_1(\xi_{e_j}) + \rho^+(\xi_{ie_j})\alpha_1(\xi_{ie_j})) = 2 \sum_j \left(\rho^+(\xi_{e_j})\alpha_1(\xi_{e_j})\right).$$

But α_1 is in the component $2\omega_1 = S^2(V_1)$ and Lemma 3.7 implies that $\alpha_1 = 0$.

Using the above procedure successively we prove then that $\alpha_j = 0$ for $j \leq m - 2$. Consequently we have $\alpha_{m-1}^+ = 0$ and $\alpha_{m-1} = \alpha_{m-1}^-$. Taking the trace of $(m-2)$-th component of (3.2) we have again $\sum_j \rho^+(\xi_{e_j})\alpha_{m-1}^- (\xi_{e_j}) = 0$ and $\alpha_{m-1} = 0$ by the same arguments.

Finally we consider the $(m-1)$-th component of the equality $\rho(\xi_u)\alpha(\xi_v) = \rho(\xi_v)\alpha(\xi_u)$ we get

$$\rho^-(\xi_u)\alpha_{m}(\xi_v) = \rho^-(\xi_v)\alpha_{m}(\xi_u)$$

Replacing u by iu gives

$$-i\rho^-(\xi_u)\alpha_{m}(\xi_v) = \rho^-(\xi_v)\alpha_{m}(\xi_{iu}).$$

Thus

$$\rho^-(\xi_u)\alpha_{m}(\xi_u) = \frac{1}{2} \rho^-(\xi_v) \left(\alpha_{m}(\xi_u) - i\alpha_{m}(\xi_{iu})\right) = 0.$$

This holds for all $\xi_v \in p$. Thus $\alpha_{m}(\xi_u) = 0$ by Lemma 3.4 and α_m is \mathbb{C}-linear. Finally $\alpha_m \in S^{m+1}V_1$ is a consequence of Lemma 3.5.

We prove now Theorem 1.1 and Corollary 1.2.
Proof. The statements in Theorem 1.1 follows from Proposition 3.3. Indeed if \(\alpha \in A^1(\Gamma, B, \rho_m) \) then by the conditions in \(\S 2 \) it can be represented locally as a differential harmonic form. But then it will have values in \(S^m\mathbb{C}^n \) by Proposition [3.3] By the relation \(\mathbb{C}^n = p^+ \otimes \det^{-1} \) we have

\[
S^m(\mathbb{C}^n) = (p^+)^m \otimes (\det)^{-m} = S^mTX \otimes L^{-m},
\]

proving that \(\alpha \) is a \((0, 1)\)-section of \(S^mTX \otimes L^{-m} \). The proof of the second one is similar. The claim that \(\alpha \) is \(\mathbb{C} \)-linear is precisely that \(\alpha \) is a \((0, 1)\)-form. This proves the first part, and the second part follows similarly from Proposition 3.3 (2).

Let \(\alpha \) be a harmonic form representing an element \(H^1(\Gamma, \rho) \). Write \(\alpha = \sum_{k=0}^m \alpha_k \) according to the decomposition \((2.3)\). It follows then from above that \(\alpha_k = 0 \) for \(k < m \), i.e. \(\alpha = \alpha_m \). The isomorphism of \(H^1(\Gamma, \rho) \) and \(H^1(\Gamma \backslash B, S^mTX \otimes L^{-m}) \) is then a consequence of [5 Proposition 4.2 and Theorem 6.1]. The second isomorphism is proved similarly.

\[\square\]

Remark 3.8. In the case of \(n = 1 \) with Riemann surface \(\Sigma = \Gamma \backslash B \), the group cohomology \(H^1(\Gamma, \rho_m) \) will not descend to \((0, 1)\)-form on \(\Gamma \backslash B \). The line bundle \(L = K^{-\frac{j}{2}} \) is the square root (constructed using the action of \(K, B = G/K \)) of the tangent bundle. Consider for simplicity \(m = 2j \). It has a decomposition as \(H^1(\Gamma, \rho_m) = H^{(1,0)}(\Gamma, \rho_m) + H^{(0,1)}(\Gamma, \rho_m) \), and two components are dual to each other with \(H^{(0,1)}(\Sigma, K^{-j}) \).

This can also be derived from our computations above. Indeed in the proof of Proposition 3.3 we take \(\alpha \) an element in \(H^{(0,1)}(\Gamma, \rho_m) \), i.e., \(\mathbb{C} \)-linear form, and we can then derive from the same arguments that all components except \(\alpha_{2j} \) are zero, which is equivalent to that \(\alpha = \alpha_{2j} \) is a \((0, 1)\)-section of \(K^{-j} \). That is \(H^{(0,1)}(\Gamma, \rho_m) = H^{(0,1)}(\Gamma \backslash B, K^{-j}) \) with is dual to \(H^0(\Gamma \backslash B, K^{j+1}) \) by Serre duality.

References

[1] W. Goldman and J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495-520.
[2] I. Kim and P. Pansu, Local Rigidity in quaternionic hyperbolic space, Journal of European Math Society, 11 (2009), no 6, 1141-1164.
[3] I. Kim, B. Klingler and P. Pansu, Local quaternionic rigidity for complex hyperbolic lattices, J. Inst. Math. Jussieu 11 (2012), no. 1, 133-159
[4] B. Klingler, Local rigidity for complex hyperbolic lattices and Hodge theory, Invent. Math., 184 (2011), no.3, 455–498.
[5] Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. Math. 78 (1963), 329-416.
[6] Y. Matsushima and S. Murakami, On certain cohomology groups attached to Hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1-35.
[7] M. S. Raghunathan, On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103–139. MR 0173730 (30 #3940)
[8] Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234 (58 #22394a)
[9] G. Shimura, Sur les intégrales attachées aux formes automorphes J. Math. Soc. Japan, 11 (1959), 291–311.
[10] A. Weil, Discrete subgroups of Lie groups, II, Ann. of Math 75 (1962), 97-123.
[11] D.P. Zelobenko, Compact Lie groups and their representations, Transl. Math. Monographs, 40, Amer. Math. Soc, Providence, Rhode Island, 1973.

[12] S. Zucker, *Hodge theory with degenerating coefficients. L₂ cohomology in the Poincare metric.* Ann. Math. (2) **109** (1979), 415-476.

[13] S. Zucker, *Locally homogeneous variations of Hodge structure.* Enseign. Math. (2) **27** (1982), 243-276.

School of Mathematics, KIAS, Heogiro 85, Dongdaemun-gu Seoul, 130-722, Republic of Korea

E-mail address: inkang@kias.re.kr

Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, Göteborg University, SE-412 96 Göteborg, Sweden

E-mail address: genkai@chalmers.se