Scale-Free Networks Emerging from Weighted Random Graphs

Tomer Kalisky, Sameet Sreenivasan, Lidia A. Braunstein, Sergey V. Buldyrev, Shlomo Havlin, and H. Eugene Stanley

1Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel
2Center for Polymer Studies and Department of Physics Boston University, Boston, MA 02215, USA
3Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
4Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA

(Dated: August 31, 2018)

Abstract

We study Erdős-Rényi random graphs with random weights associated with each link. We generate a new “Supernode network” by merging all nodes connected by links having weights below the percolation threshold (percolation clusters) into a single node. We show that this network is scale-free, i.e., the degree distribution is \(P(k) \sim k^{-\lambda} \) with \(\lambda = 2.5 \). Our results imply that the minimum spanning tree (MST) in random graphs is composed of percolation clusters, which are interconnected by a set of links that create a scale-free tree with \(\lambda = 2.5 \). We show that optimization causes the percolation threshold to emerge spontaneously, thus creating naturally a scale-free “supernode network.” We discuss the possibility that this phenomenon is related to the evolution of several real world scale-free networks.

PACS numbers: 89.75.Hc,89.20.Ff

*Electronic address: kaliskt@mail.biu.ac.il
Scale-free topology is very common in natural and man-made networks. Examples vary from social contacts between humans to technological networks such as the World Wide Web or the Internet [1, 2, 3]. Scale-free (SF) networks are characterized by a power law distribution of connectivities \(P(k) \sim k^{-\lambda} \), where \(k \) is the degree of a node and the exponent \(\lambda \) controls the broadness of the distribution. Many networks are observed to have values of \(\lambda \) around 2.5. For values of \(\lambda < 3 \) the second moment of the distribution \(\langle k^2 \rangle \) diverges, leading to several anomalous properties [4].

In many real world networks there is a “cost” or a “weight” associated with each link, and the larger the weight on a link, the harder it is to traverse this link. In this case, the network is called “weighted” [5]. Examples can be found in communication and computer networks, where the weights represent the bandwidth or delay time, in protein networks where the weights can be defined by the strength of interaction between proteins [6, 7] or their structural similarity [8], and in sociology where the weights can be chosen to represent the strength of a relationship [9, 10].

In this Letter we introduce a simple process that generates random scale-free networks with \(\lambda = 2.5 \) from weighted Erdős-Rényi graphs [11]. We further show that the minimum spanning tree (MST) on an Erdős-Rényi graph is related to this network, and is composed of percolation clusters, which we regard as “super nodes”, interconnected by a scale-free tree. We will see that due to optimization this scale-free tree is dominated by links having high weights — significantly higher than the percolation threshold \(p_c \). Hence, the MST naturally distinguishes between links below and above the percolation threshold, leading to a scale-free “supernode network”. Our results may explain the origin of scale-free degree distribution in some real world networks.

Consider an Erdős-Rényi (ER) graph with \(N \) nodes and an average degree \(\langle k \rangle \), thus having a total of \(N \langle k \rangle / 2 \) links. To each link we assign a weight chosen randomly and uniformly from the range \([0, 1]\). We define black links to be those links with weights below a threshold \(p_c = 1/\langle k \rangle \) [11]. Two nodes belong to the same cluster if they are connected by black links [Fig. 1(a)]. From percolation theory [12] follows that the number of clusters of \(s \) nodes scales as a power law, \(n_s \sim s^{-\tau} \), with \(\tau = 2.5 \) for ER networks [13]. Next, we merge all nodes inside each cluster into a single “supernode” [14]. We define a new “supernode network” [Fig. 1(b)] of \(N_{sn} \) supernodes [15]. The links between two supernodes [see Figs. 1(a) and 1(b)] have weights larger than \(p_c \).
The degree distribution $P(k)$ of the supernode network can be obtained as follows. Every node in a supernode has the same (finite) probability to be connected to a node outside the supernode. Thus, we assume that the degree k of each supernode is proportional to the cluster size s, which obeys $n_s \sim s^{-2.5}$. Hence $P(k) \sim k^{-\lambda}$, with $\lambda = 2.5$, as supported by simulations shown in Fig. 2.

We next show that the minimum spanning tree (MST) on an ER graph is related to the supernode network, and therefore also exhibits scale-free properties. The MST on a weighted graph is a tree that reaches all nodes of the graph and for which the sum of the weights of all the links (total weight) is minimal. Also, each path between two sites on the MST is the optimal path in the “strong disorder” limit \cite{16, 17}, meaning that along this path the maximum barrier (weight) is the smallest possible \cite{15, 17, 18}.

Standard algorithms for finding the MST \cite{19} are Prim’s algorithm, which resembles invasion percolation, and Kruskal’s algorithm, which resembles percolation. An equivalent algorithm to find the MST is the “bombing algorithm” \cite{17, 18}. We start with the full ER network and remove links in order of descending weights. If the removal of a link disconnects the graph, we restore the link and mark it “gray” \cite{20}; otherwise the link [shown dotted in Fig. 1(a)] is removed. The algorithm ends and an MST is obtained when no more links can be removed without disconnecting the graph.

In the bombing algorithm, only links that close a loop can be removed. Because at criticality loops are negligible \cite{11, 12} for ER networks ($d \to \infty$), bombing does not modify the percolation clusters — where the links have weights below p_c. Thus, bombing modifies only links outside the clusters, so actually it is only the links of the supernode network that are bombed. Hence the MST resulting from bombing is composed of percolation clusters connected by gray links [Fig. 1(c)].

From the MST of Fig. 1(c) we now generate a new tree, the MST of the supernode network, which we call the “gray tree”, whose nodes are the supernodes and whose links are the gray links connecting them [see Fig. 1(d)]. Note that bombing the original ER network to obtain the MST of Fig. 1(c) is equivalent to bombing the supernode network of Fig. 1(b) to obtain the gray tree, because the links inside the clusters are not bombed. We find [Fig 3(a)] that the gray tree has also a scale-free degree distribution $P(k)$, with $\lambda = 2.5$—the same as the supernode network \cite{21}. We also find [Fig. 3(b)] the average path length ℓ_{gray} scales as $\ell_{\text{gray}} \sim \log N_{\text{sn}} \sim \log N$ \cite{15, 22}. Note that even though the gray tree is scale-free, it is not
ultra-small p_c, since the length does not scale as $\log \log N$.

Next we show that our optimization of the MST, which leads to the gray tree, yields a
significant separation between the weights of the links inside the supernodes and the links
connecting the supernodes. We consider each pair of nodes in the original MST of N nodes
[Fig. 1(c)] and calculate the typical path length ℓ_{typ}, which is the most probable path length
on the MST. For each path of length ℓ_{typ} we rank the weights on its links in descending
order. For the largest weights (“rank 1 links”), we calculate the average weight $\bar{w}_{r=1}$ over
all paths. Similarly, for the next largest weights (“rank 2 links”) we find the average $\bar{w}_{r=2}$
over all paths, and so on up to $r = \ell_{\text{typ}}$. The inset in Fig. 4 shows \bar{w}_r as a function of
rank r for three different network sizes $N = 8000$, 16000, and 32000. In Fig. 4 we plot
the difference in consecutive average weights, $\Delta \bar{w}_r \equiv \bar{w}_r - \bar{w}_{r-1}$ as a function of \bar{w}_r. We
see that weights below p_c (black links inside the supernodes) are uniformly distributed and
approach one another as N increases. As opposed to this, weights above p_c (“gray links”) are not
uniformly distributed, due to the bombing algorithm, and are independent of N.
The latter links with the highest weights can be associated with gray links from very small
clusters [Figs. 1(a) and 1(c)]. These links almost cannot be bombed due to limited number
of exits from small clusters, and therefore do not change with N. Moreover, because of the
abundance of small clusters ($n_s \sim s^{-\tau}$), large clusters are connected mostly to small clusters
(through links with relatively large weights).

We thereby obtain a scale-free network with $\lambda = 2.5$, which is not very sensitive to the
precise value of the threshold used for defining the supernodes. For example, the scale-free
degree distribution shown in Fig. 3(a) for a threshold of $p_c + 0.01$ corresponds to having
only four largest weights on the optimal paths [see Fig. 4]. This means that mainly very
small clusters, connected with high-weight links to large clusters, dominate the scale-free
distribution $P(k)$ of the MST of the supernode network (gray tree). Hence, the optimization
process on an ER graph causes a significant separation between links below and above p_c
to emerge spontaneously in the system, and by merging nodes connected with links of low
weights, a scale-free network can arise.

The process described above may be related to the evolution of some real world networks.
Consider a homogeneous network with many components whose average degree $\langle k \rangle$ is well
defined. Suppose that the links between the components have different weights, and that
some optimization process separates the network into nodes which are well connected (i.e.,
connected by links with low weights) and nodes connected by links having much higher weights. If the well-connected components merge into a single node, this results in a new heterogeneous supernode network with components that vary in size, and thus in number of outgoing connections.

An example of a real world network whose evolution may be related to this model is the protein folding network, which was found to be scale-free with $\lambda \approx 2.3$. The nodes are the possible physical configurations of the system and the links between them describe the possible transitions between the different configurations. We assume that this network is optimal because the system chooses the path with the smallest energy barrier from all possible trajectories in phase space. It is possible that the scale-free distribution evolves through a similar procedure as described above for random graphs: adjacent configurations with close energies (nodes in the same cluster) cannot be distinguished and are regarded as a single supernode, while configurations (clusters) with high barriers between them belong to different supernodes.

A second example is computer networks. Strongly interacting computers (such as computers belonging to the same university) are likely to converge into a single domain, and thus domains with various sizes and connectivities are formed. This network might be also optimal, because packets destined to an external domain are presumably routed through the router which has the best connection to the target domain.

To summarize, we have seen that any weighted random network hides an inherent scale-free “supernode network”. We showed that the minimum spanning tree, generated by the bombing algorithm, is composed of percolation clusters connected by a scale-free tree of “gray” links. Most of the gray links connect small clusters to large ones, thus having weights well above the percolation threshold that do not change with the original size of the network. Thus the optimization in the process of building the MST distinguishes between links with weights below and above the threshold, leading to a spontaneous emergence of a scale-free “supernode network”. We raise the possibility that in some real world networks, nodes connected well merge into one single node, and through a natural optimization a scale-free network emerges.
Acknowledgments

We thank the ONR, ONR-Global, the Israel Science Foundation and the Israeli Center for Complexity Science for financial support. We thank R. Cohen, E. Perlsman, A. Rosenfeld, Z. Toroczkai, S. Galam, D. Stauffer, P. L. Krapivsky and O. Riordan for useful discussions.

[1] R. Albert and A.-L. Barabási, Rev. of Mod. Phys. 74, 47 (2002).
[2] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks - From Biological Nets to the Internet and WWW (Oxford University Press, 2003).
[3] R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet : A Statistical Physics Approach (Cambridge University Press, 2004).
[4] Cohen et. al, Phys. Rev. Lett. 85, 4626 (2000); R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 (2003).
[5] A. Barrat, M. Barthlemy, and A. Vespignani, Phys. Rev. Lett 92, 228701 (2004).
[6] B. Schwikowski, P. Uetz, and S. Fields, Nature Biotechnology 18, 1257 (2000).
[7] A. C. F. Rao, J. Mol. Biol. 342, 299 (2004).
[8] N. V. Dokholian, B. Shakhnovich, and E. I. Shakhnovich, PNAS 99, 13132 (2002).
[9] A.-L. Barabási, Linked: The new science of networks (Perseus Books Group, 2002).
[10] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
[11] P. Erdős and A. Rényi, Publ Math Inst Hungar Acad Sci 5, 17 (1960).
[12] A. Bunde and S. H. (editors), Fractals and Disordered Systems (Springer, New York, 1996).
[13] ER networks can be regarded as having an infinite dimension since space does not play any role.
[14] This is done by the following algorithm: we follow all links of the network. If there exists a link between any two nodes with weight smaller than $p_c = 1/(k)$, we identify the nodes as belonging to the same cluster.
[15] S. Sreenivasan et al., Phys. Rev. E 70, 046133 (2004) showed that the number of clusters, and therefore the number of supernodes N_{sn}, scales as $N/2$ for $N \to \infty$.
[16] M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett. 72, 2320 (1994); Phys. Rev. Lett. 76, 3754 (1996).
[17] R. Dobrin and P. M. Duxbury, Phys. Rev. Lett. 86, 5076 (2001).

[18] L. A. Braunstein, S. V. Buldyrev, R. Cohen, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 91, 168701 (2003).

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (MIT Press, 2001).

[20] A. S. Ioselevich and D. S. Lyubshin, JETP 79, 286 (2004).

[21] MSTs on scale-free networks were found to retain the original network's degree distribution.

[22] Although Braunstein et al. [18] found that the length of the optimal path is $\ell_{\text{opt}} \sim \log^{\lambda-1} N$ for SF networks with $\lambda < 3$ in the strong disorder limit, this is valid only when multiple links between nodes do not exist. For SF networks that have multiple links, such as in our case [Fig. 1(b)], we find a shorter optimal path: $\ell_{\text{opt}} \sim \log N$ for $\lambda < 3$.

[23] Similar results can also be obtained for graphs embedded in two or three dimensions, with different power law exponents.

[24] G. J. Szabo, M. Alava, and J. Kertesz, Physica A 330, 31 (2003).

[25] P. Macdonald, E. Almaas, and A. Barabasi, cond-mat/0405688 (2004).
FIG. 1: Sketch of the “supernode network”. (a) The original ER network, partitioned into percolation clusters whose sizes s are power-law distributed, with $n_s \sim s^{-\tau}$ where $\tau = 2.5$ for ER graphs. The “black” links are the links with weights below p_c, the “dotted” links are the links that are removed by the bombing algorithm, and the “gray” links are the links whose removal will disconnect the network (and therefore are not removed even though their weight is above p_c). (b) The “supernode network”: the nodes are the clusters in the original network and the links are the links connecting nodes in different clusters (i.e., “dotted” and “gray” links). The supernode network is scale-free with $P(k) \sim k^{-\lambda}$ and $\lambda = 2.5$. Notice the existence of self loops and of double connections between the same two supernodes. (c) The minimum spanning tree (MST), composed of black and gray links only. (d) The MST of the supernode network (“gray tree”), which is obtained by bombing the supernode network (thereby removing the “dotted” links), or equivalently, by merging the clusters in the MST to supernodes. The gray tree is scale-free, with
FIG. 2: The degree distribution of the supernode network of Fig. 1(b), where the supernodes are the percolation clusters, and the links are the links with weights larger than p_c (\bigcirc). The distribution exhibits a scale-free tail with $\lambda \approx 2.5$. If we choose a threshold less than p_c, we obtain the same power law degree distribution with an exponential cutoff. The different symbols represent slightly different threshold values: $p_c - 0.03$ (□) and $p_c - 0.05$ (△). The original ER network has $N = 50,000$ and $\langle k \rangle = 5$. Note that for $k \approx \langle k \rangle$ the degree distribution has a maximum.
FIG. 3: (a) The degree distribution of the “gray tree” (the MST of the supernode network, shown in Fig. 1(d)), in which the supernodes are percolation clusters and the links are the gray links. Different symbols represent different threshold values: p_c (○), $p_c + 0.01$ (□) and $p_c + 0.02$ (△). The distribution exhibits a scale-free tail with $\lambda \approx 2.5$, and is relatively insensitive to changes in p_c. (b) The average path length ℓ_{gray} on a the gray tree as a function of original network size. It is seen that $\ell_{\text{gray}} \sim \log N_{\text{sn}} \sim \log N$.
FIG. 4: The inset shows, for an ER graph with $\langle k \rangle = 5$, the average weights \bar{w}_r along the optimal paths, sorted according to their rank. The main figure shows $\Delta \bar{w}_r \equiv \bar{w}_{r+1} - \bar{w}_r$, where \bar{w}_r is the mean weight for rank r, vs. the weights along the optimal path. Different symbols represent different system sizes: $N = 8000$ (○), $N = 16,000$ (□) and $N = 32,000$ (△). Below $p_c = 0.2$, $\Delta \bar{w}_r$ decreases for increasing N, while weights \bar{w}_r well above p_c do not change with N.