Coefficient Bounds For Subclass of m-fold Symmetric Bi-Univalent Functions Sense of Yamakawa

Saibah Siregar1, Mohd Nazran Mohammed Pauzi2 and Maslina Darus3

1. University of Selangor, Bestari Jaya, 45600, Selangor-Darul Ehsan, Malaysia
E-mail: 1.saibah@unisel.edu.my
2. School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, DE, Bangi UKM, 43600
E-mail: 2.nazran@unisel.edu.my
3. School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, DE, Bangi UKM, 43600
E-mail: 3.maslina@ukm.edu.my

Abstract. In this paper we introduce a new subclass $A_{\alpha}^{\Sigma,m}$ of the bi-univalent function sense of Yamakawa in which both f and f^{-1} are m-fold symmetric analytic functions. The coefficient bounds for $|a_{m+1}|$ and $|a_{2m+1}|$ of the subclass $A_{\alpha}^{\Sigma,m}$ also determined.

1. Introduction

Let A denote the class of functions f that are analytic in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ and and normalized by the conditions $f(0) = 0 = f'(0) - 1$ and having the form as follow

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$ (1)

Duren [4] ensures that the image of U under every univalent function $f \in A$ contains the disk of radius $\frac{1}{4}$ as stated in the Koebe one quarter theorem. Thus every univalent function f has an inverse f^{-1} satisfying

$$f^{-1}(f(z)) = z, \quad (z \in U)$$

and

$$f(f^{-1}(w)) = w, \quad (|w| < r_0(f), \ r_0(f) \geq \frac{1}{4})$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 +$$

A function $f \in A$ is said to bi-univalent in U if both $f(z)$ and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent in U given by (1). For a brief history and interesting examples
in the class Σ, see [10].

Brannan and Taha [1] (see also [13]) introduced certain subclasses of bi-univalent function class Σ similar to the familiar subclasses $S^\ast(\alpha)$ and $K(\alpha)$ of starlike and convex functions of order α ($0 \leq \alpha < 1$), respectively (see [2]). Thus, following Brannan and Taha [1] (see also [13]), a function $f \in A$ is in the class $S^\ast_C(\alpha)$ of strongly bi-starlike functions of order α ($0 \leq \alpha < 1$) if each of the following conditions is satisfied:

$$f \in \Sigma \text{ and } \left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, \ z \in U)$$

and

$$\left| \arg \left(\frac{g'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, \ w \in U),$$

where g is the extension of f^{-1} to U. The classes $S^\ast_C(\alpha)$ and $K^\ast(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding (respectively) to the function classes $S^\ast(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S^\ast_C(\alpha)$ and $K^\ast(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ (for detail, see [1, 13] and [6]). Some several researchers which as motivator in Bi-univalent are Saibah [8], [9] and [7].

A simple argument shows that $f \in S_m$ is characterized by having a power series of the form below:

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}. \quad (z \in U, \ m \in \mathbb{N} = \{1, 2, 3, \ldots \}).$$ (2)

The normalized form of f given by (2), the series expansion for f^{-1} can be obtained as follows

$$g(w) = w - a_{m+1} w^{m+1} + (m + 1)a_{m+1}^2 - a_{2m+1}^2 \ w^{2m+1}$$

$$- \frac{1}{2} (m + 1)(3m + 2)a_{m+1}^3 - (3m + 2)a_{m+1}a_{2m+1} + a_{3m+1}^2 \ w^{3m+1} + \ldots$$ (3)

where $f^{-1} = g$. The class of m-fold symmetric bi-univalent functions in U is denoted by Σ_m.

The result of this research also motivated by Sümmer Eker, [12], Serap Bulut [3] and Srivastava [11] in their research about coefficient bounds for subclasses of m-fold symmetric bi-univalent functions.

The function $f \in A$ is starlike p-valent with negative coefficient in unit disc U, denote by $T_o(p, n)$, if satisfied

$$\left(\frac{zf'(z)}{f(z)} \right) > 0, \quad z \in U.$$

Lets consider Yamakawas class $T(p, n, \alpha)$.

Definition 1.1 Yamakawa [14] A function $f \in T(p, n)$ is said to be a member of the class $T(p, n, \alpha)$ if it satisfies the inequality

$$\text{Re} \left\{ \frac{f(z)}{zf'(z)} \right\} > \alpha, \quad (z \in U),$$

where $0 \leq \alpha < 1$.

Since

$$\text{Re} \left\{ \frac{f(z)}{zf'(z)} \right\} > \alpha \Rightarrow \text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in U), \quad (0 \leq \alpha < 1).$$

$T(p, n, \alpha)$ is a subclass of $T_o(p, n)$.
2. Preliminary Result

Lemma 2.1 If \(p \in P \) then \(|p_m| \leq 2 \) and \(|q_m| \leq 2 \) for \(m \in N \), where the Caratheodory class \(P \) is the family of all functions \(p \) analytic in \(U \) for which \(\Re p(z) > 0 \),

\[
p(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \ldots
\]

for \(z \in U \).

3. Coefficient bounds for the function class \(A^\alpha_{\Sigma,m} \)

Definition 3.1 A function \(f \) given by (2) is said to be in the class \(A^\alpha_{\Sigma,m} \) \((0 < \alpha \leq 1, m \in N) \) if the following conditions are satisfied

\[
f \in \Sigma \text{ and } \left| \arg \left(\frac{f(z)}{zf'(z)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, \, z \in U) (4)
\]

and

\[
\left| \arg \left(\frac{g(w)}{wg'(w)} \right) \right| < \frac{\alpha \pi}{2}, \quad (0 < \alpha \leq 1, \, w \in U) (5)
\]

where the function \(g \) is given by

\[
g(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_3^2 - 5a_2 a_3 + a_4) w^4 + \ldots
\]

Firstly, we state the following result as below.

Theorem 3.1 Let \(f(z) \) given by (2) be in the class \(A^\alpha_{\Sigma,m} \) \((0 < \alpha \leq 1, m \in N) \). Then

\[
|a_{m+1}| \leq \frac{2\alpha}{\sqrt{m^2(1-3\alpha)} - 2\alpha m} \quad (7)
\]

and

\[
|a_{2m+1}| \leq \frac{2\alpha^2(m+1)}{m^2} - \frac{\alpha}{m} \quad (8)
\]

Proof. It follows from (4) and (5) that

\[
\frac{f(z)}{zf'(z)} = \left[p(z) \right]^\alpha
\]

and for its inverse map, \(g = f^{-1} \), we have

\[
\frac{g(w)}{wg'(w)} = \left[q(w) \right]^\alpha
\]

where \(p(z) \) and \(q(w) \) satisfy the following inequalities:

\[
\Re (p(z)) > 0 \quad (z \in U) \quad \text{and} \quad \Re (q(w)) > 0 \quad (w \in U). \quad (11)
\]

Furthermore, the functions \(p(z) \) and \(q(w) \) have the form

\[
p_m(z) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \ldots \in P
\]

and

\[
q_m(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \ldots \in P
\]
respectively.

Comparing the corresponding coefficients of (9) and (10) yields

\[-m a_{m+1} = \alpha p_m \]
\[(-4m) a_{2m+1} = 2\alpha p_{2m} + \alpha(\alpha - 1)p_m^2 + 2\alpha p_m(m + 1)a_{m+1} \]
\[m a_{m+1} = \alpha q_m \]
\[4m \left[-(m + 1)a_{m+1}^2 + a_{2m+1} \right] = 2\alpha q_{2m} + \alpha(\alpha - 1)q_m^2 - 2\alpha q_m(m + 1)a_{m+1} \]
(17)

From (14) and (16), we get the equation below

\[p_m = -q_m \]
(18)

and

\[2m^2 a_{m+1}^2 = \alpha^2(p_m^2 + q_m^2). \]
(19)

Also, from (15) and (17), we will obtain

\[-4m(m + 1)a_{m+1}^2 - 2\alpha p_{2m} - \alpha(\alpha - 1)p_m^2 = 2\alpha q_{2m} + \alpha(\alpha - 1)q_m^2 \]
(20)

A rearrangement together with the second identity in (19) and (20), we get as equation below,

\[-4m(m + 1)a_{m+1}^2 = 2\alpha(p_{2m} + q_{2m}) + \alpha(\alpha - 1)(p_m^2 + q_m^2). \]
(21)

And by the short calculation (19) and (21), we obtain

\[a_{m+1} = \frac{\alpha^2(p_{2m} + q_{2m})}{m^2(1 - 3\alpha) - 2\alpha m}. \]
(22)

According to Lemma 2.1, \(|p_m| \leq 2\) and \(|q_m| \leq 2\) for \(m \in N\). Now, taking the absolute value of (22) and applying the Lemma 2.1 for coefficients \(p_{2m}\) and \(q_{2m}\) we obtain

\[|a_{m+1}| \leq \frac{2\alpha}{\sqrt{m^2(1 - 3\alpha) - 2\alpha m}}. \]

This gives the desired estimate for \(|a_{m+1}|\) as asserted (7). Next, in order to determine the bound on \(|a_{m+1}|\), by subtracting (17) from (15), we can get

\[2(-4m)a_{2m+1} - (-4m)(m + 1)a_{m+1} = 2\alpha(p_{2m} - q_{2m}) + \alpha(\alpha - 1)(p_m^2 - q_m^2) \]

By substituting the value of \(a_{m+1}^2\) from (19) and observing that \(p_m^2 = q_m^2\) it follows that

\[2(-4m)a_{2m+1} - (-4m)(m + 1)a_{m+1} \frac{\alpha^2(p_m^2 + q_m^2)}{2m^2} = 2\alpha(p_{2m} - q_{2m}) \]

\[2(-4m)a_{2m+1} - \frac{(-4m)(m + 1)\alpha^2(p_m^2)}{m^2} = 2\alpha(p_{2m} - q_{2m}) \]

\[2m^2(-4m)a_{2m+1} = 2m^2\alpha(p_{2m} - q_{2m}) + (-4m)(m + 1)\alpha^2(p_m^2) \]

\[a_{2m+1} = \frac{\alpha(p_{2m} - q_{2m})}{-4m} + \frac{\alpha^2(m + 1)p_m^2}{2m^2} \]

Apply the lemma 2.1 for coefficients \(p_m, p_{2m}\) and \(q_{2m}\), we will have

\[|a_{2m+1}| \leq \frac{2\alpha^2(m + 1)}{m^2} - \frac{\alpha}{m}. \]

This complete the proof of Theorem 3.1. If \(m = 1\) that means the result is first-fold, as follow.
Corollary 3.1 Let f given by (2) be in the class $A_{\alpha,1}^\alpha$ ($0 < \alpha \leq 1$). Then

$$|a_2| \leq \frac{2\alpha}{\sqrt{(1-5\alpha)}}$$

and

$$|a_3| \leq \alpha(1-4\alpha).$$

References

[1] Brannan, D A and Taha T S 1986 in S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Math. Anal. Appl., Kuwait; February 18-21, 1985, in KFAS Proceeding Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxpord, 1988, pp 53- 60; see also Studia Univ. Babeş-Bolyai Math., 31(2)(1986), 70–77

[2] Brannan D A, Clunie J and Kirwan W E 1970 Canad. J. Math. 22 476-85

[3] Bulut S. 2016 Turkish J. Math. 40, 1386-97.

[4] Duren, P L 1983 Univalent functions. Grundlehren der Mathematischen Wissenschaften, New York: Springer.

[5] Frasin B A and Aouf M K 2011 Appl. Math. Letters 24 156973.

[6] Lewin M 1967 Proc. Amer. Math. Soc. 18 63-8

[7] Porwal S and Darus M 2013 J. Egyptian Math. Soc. 21(3) 190-3.

[8] Siregar S and Raman S 2012 Int. J. Adv. Sci. Engineering, Infor. Tech. 16-18

[9] Siregar S and Darus M 2014 AIP Conference Proceedings 1602, 893 (2014); https://doi.org/10.1063/1.4882590

[10] Srivastava H M, Misra A K and Gochhayat P 2010 Appl. Math. Letters 23 1188-92

[11] Srivastava H M, Sivasubramanian S and Sivakumar R 2014 Tbilisi Mathematics Journal 7 1-10

[12] Sümer E S 2016 Turkish J. Math. 40 641-46.

[13] Taha T S 1981 Topics in Univalent Function Theory, Ph.D Thesis, University of London

[14] Yamakawa R 1992 Current Topics in Analytic Function Theory (H.M. Srivastava and S. Owa, Editors) (World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong)393-402.