Chemical Composition and Antibacterial Activity of the Essential Oil Isolated From Flos Lonicerae (Flower Buds of Lonicera macranthoides Hand.-Mazz.)

Sun Tao¹, Shi Yun², Mao Yinxue¹, Yang Xin¹, and Qin Kunming¹,³

Abstract
Flos Lonicerae (FL, flower buds of Lonicera macranthoides Hand.-Mazz.) is a traditional Chinese medicinal herb that is officially listed in the Chinese Pharmacopoeia. The aim of this study was to screen the chemical composition and to study the antibacterial activity of essential oils of Flos Lonicerae. The chemical composition of the essential oils was investigated using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated by the disc diffusion method to determine minimum inhibitory concentration (MIC). The major compounds of Flos Lonicerae essential oils were linalool (10.4%), palmitic acid (8.0%), geraniol (6.9%), hexanal (2.5%), and α-terpineol (2.2%). Flos Lonicerae essential oils demonstrated antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The results of this study suggest that the essential oils of Flos Lonicerae have an interesting antimicrobial effect and may be a new potential source for a natural antimicrobial applied in the pharmaceutical field.

Keywords
flos lonicerae, essential oils, GC-MS, antibacterial activity, natural antimicrobial

Received: March 16th, 2021; Accepted: March 17th, 2021.

Flos Lonicerae (FL), the dried flower buds of 4 major species of the genus Lonicera (Caprifoliaceae), is a traditional Chinese medicinal herb that is officially listed in the Chinese Pharmacopoeia.¹ The dried buds of Lonicera hypoglauca, L. confusa, L. fulvotomentosa, and L. macranthoides are all referred to as Flos Lonicerae (Shanyinhua in Chinese). It has been used in traditional Chinese medicine for centuries for the treatment of infection by exopathogenic wind-heat or epidemic febrile diseases at the early stage, sores, carbuncles, furuncles, and swelling.²³ These conditions are essentially inflammatory processes involving heat, redness, pain, and swelling, which are often attributed to external pathogenic factors, such as bacteria and viruses. FL is also often used as a raw material for the production of various health care products, such as tea, wine, and cola, which are commonly sold in Asian markets.

A number of phytochemical studies have reported that Flos Lonicerae contains flavonoids, organic acids, iridoids, sapo- nins, and essential oils.⁴⁶ Several studies on essential oils (EOs) from different parts of Lonicera macranthoides Hand.-Mazz., such as leaves and aerial parts collected from various places, have reported the presence of linalool, geraniol, and α-terpineol.⁷⁹ However, there are no earlier studies on the chemical composition and biological activity of the essential oil (EO) of Flos Lonicerae. Furthermore, within scientific literature, essential oils have been reported to show multiple antibacterial activities.¹⁰ They have proven their effectiveness in comparison with conventional antibiotics used to treat several ailments.¹¹ Moreover, essential oils have also demonstrated antimicrobial activity against pathogenic bacteria.¹² In this study, we aimed to investigate the chemical composition of essential oils obtained from Flos Lonicerae collected in China by the use of GC-MS. In addition, the antibacterial activities of the essential oils against pathogenic bacteria, like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were tested by the disc diffusion method.

¹School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
²College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
³Nanjing Haiyuan Prepared Slices of Chinese Crude Drugs Co. Ltd, Nanjing, China

Corresponding Author:
Qin Kunming, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
Email: qinkm123@126.com
Results

Essential Oil Yield and Chemical Composition

In this investigation, the essential oil yield of Flos Lonicerae was measured as 1.0% (v/w). Huang reported that the oil yield of ranged from 0.2% to 0.3% on a dry matter basis. The yield of oil in the present study was higher than that reported in the previous study, but there are many factors which can influence the yield. Through GC-MS analysis of the hydrodistilled essential oil of Flos Lonicerae, 66 compounds were successfully identified, representing 67.3% of the total oil. The chemical composition of the essential oil of Flos Lonicerae was mainly alcohols (26.8%), acids (14.0%), aldehydes (8.4%), and esters (5.3%). The major compounds included linalool (10.4%), palmitic acid (8.0%), geraniol (6.9%), hexanal (2.4%), and α-terpineol (2.2%). In Table 1, a comprehensive list of the constituents of the essential oil of Flos Lonicerae is presented.

Earlier studies on the chemical composition of the EOs of Flos Lonicerae pointed out the predominance of alcohols and acids. The essential oil from Flos Lonicerae collected in Guizhou Province has been reported to be mainly composed of linalool, α-terpineol and geraniol, which is in agreement with the findings of our study. Huang et al. have reported on the essential oils of Flos Lonicerae collected at different periods and from different locations of Guizhou Province. Fifty-seven compounds were identified, among which linalool accounted for 21.9% to 30.0%. However, there are 2 biphenyl derivatives, such as peak 43 and 48, which are missing in the previous research. These compounds may come from the drug itself, or from the external environment. In future studies, we will undertake further study on the origin of these compounds.

Disc Diffusion Test

The antibacterial activities of the EOs of Flos Lonicerae were quantitatively assessed by calculations of the inhibition zones. Table 2 shows the antibacterial inhibition zones (including the diameter of the paper disc) of the EOs of Flos Lonicerae, Amoxicillin, and DMSO, against the 3 tested microorganisms (E. coli, S. aureus, and P. aeruginosa). S. aureus was extremely sensitive to FL essential oil (25%, v/v), with an average diameter of 13.5 mm. It was also sensitive to amoxicillin with an average diameter of 24.6 mm. Measured inhibition diameters of essential oils of 25%, 50%, 75%, and 100% (v/v) against E. coli and S. aureus were larger than against P. aeruginosa, with significant differences (P < 0.05). Further, S. aureus was extremely sensitive to 100% of EOs, with an average diameter of 21.0 mm. P. aeruginosa showed some sensitivity to the essential oil at 50% concentration (v/v), but failed to show any sensitivity at 25% (v/v). Inhibition diameters of essential oil of 75% and 100% (v/v) were larger than those of amoxicillin against P. aeruginosa. DMSO did not show any inhibition to growth of any of the 3 bacteria, and its average inhibition diameters were significantly less than those of EOs (P < 0.05). In light of these promising results, it is necessary to undertake further studies on a larger spectrum of antimicrobial strains. The isolation of the essential oil components is in progress.

Determination of MIC

Through the disc diffusion test, we were not able to establish the most inhibited between Gram-negative and Gram-positive bacteria, and in what concentration. Therefore, we decided to calculate the minimal inhibitory concentration (MIC). The results are expressed as means and shown in Table 2. The MIC of the EOs of Flos Lonicerae against S. aureus (20.0 µL/mL) was lower than that of E. coli and P. aeruginosa (37.0 and 71.0 µL/mL, respectively). Furthermore, the results revealed that the essential oils of Flos Lonicerae have a bactericidal effect against Gram positive bacterial strains and a bacteriostatic effect against Gram negative bacteria. In order to determine the mechanism of action of the essential oils against the pathogenic bacteria, several researchers have attempted to correlate antibacterial activity with components of the essential oils. It has been suggested that antibacterial activity is closely associated with high concentrations of linalool and α-terpineol. However, the relationship between most other chemical compounds and bacterial activity is complex and not easily predictable. Some authors believe that essential oils have an effect against the cell membrane of microorganisms. Indeed, linalool exhibits antimicrobial potential. Linalool was active against pathogenic S. aureus and E. coli at very low concentrations (0.3%). Many authors have demonstrated the antimicrobial activity of essential oils, but their mechanism of action has not been studied in great detail. Further research is required to determine the relationship between the antibacterial activity of essential oils and various chemical constituents.

Discussion

Essential oils have shown considerable antimicrobial activity against a wide variety of bacteria, fungi, and viruses. Many claims have been made regarding essential oils and their pharmacological or medicinal properties. This study has highlighted the antibacterial effect of the essential oils of Flos Lonicerae and their chemical composition. The essential oils of Flos Lonicerae contain high amounts of linalool, palmitic acid, geraniol, and α-terpineol. These essential oils demonstrated considerable antibacterial activity and were very effective in inhibiting S. aureus ATCC 25923, with an average minimal inhibitory concentration of 20.0 µL/mL. Flos Lonicerae is traditionally recognized as an antibacterial agent and has been scientifically proven by several studies as having strong antimicrobial potential. We suggest that further research should be undertaken to explore the antibacterial activity of essential oils of Flos Lonicerae against a wider spectrum of bacterial pathogens, and to also evaluate other in vivo pharmacological activities.
Peak no.	Retention time (min)	Chemical compound	RI	RI*	Molecular formula	Area%
1	2.5	Hexanal	788	788	C₆H₁₂O	2.4
2	2.8	2,4-Dimethylheptane	823	823	C₇H₁₄O	0.1
3	3.3	(E)-2-Hexenal	840	840	C₇H₁₄O	1.0
4	3.3	(Z)-3-Hexen-1-ol	855	855	C₆H₁₀O	1.4
5	3.5	1-Hexanol	862	863	C₆H₁₄O	1.8
6	4.0	2-Heptanone	876	875	C₇H₁₄O	0.1
7	4.2	Heptanal	889	889	C₇H₁₄O	0.3
8	4.9	4-Carene	952	952	C₁₀H₁₆	0.1
9	5.3	Camphene	954	954	C₁₀H₁₆	0.1
10	5.6	Benzaldehyde	960	961	C₆H₈O	1.8
11	6.4	6-Methyl-5-hepten-2-one	962	963	C₆H₁₂O	0.2
12	6.5	2-Pentylfuran	977	977	C₆H₁₂O	1.1
13	6.8	(Z)-2-(2-Pentenyl)furan	1003	1001	C₆H₁₂O	0.2
14	6.9	Octanal	1004	1004	C₈H₁₆O	0.2
15	7.6	p-Cymene	1020	1020	C₁₀H₁₄	0.1
16	7.7	Limonene	1025	1027	C₁₀H₁₄	0.4
17	8.4	(Z)-β-Ocimene	1029	1029	C₁₀H₁₄	0.1
18	10.0	Tetrahydrodicyclopentadiene	1027	1027	C₁₀H₁₆	0.6
19	10.1	3,5-Octadien-2-one	1048	1048	C₆H₁₄O	0.8
20	10.5	Linalool	1085	1085	C₁₀H₁₆	10.4
21	12.4	Lilac aldehyde A	1145	1145	C₁₀H₁₄O₂	0.3
22	12.8	(E)-2-Nonenal	1149	1149	C₁₀H₁₄O	0.5
23	13.0	Lilac aldehyde D	1167	1169	C₁₀H₁₄O₂	0.2
24	13.4	Terpinen-4-ol	1170	1170	C₁₀H₁₄O	0.5
25	14.0	α-Terpineol	1177	1179	C₁₀H₁₄O	2.2
26	14.4	Estragole	1180	1180	C₁₀H₁₄O	0.1
27	14.7	Decanal	1185	1185	C₁₀H₁₄O	0.3
28	15.7	Geraniol	1255	1255	C₁₀H₁₄O	6.9
29	16.6	Ionone	1258	1257	C₁₁H₁₈	0.1
30	17.5	(E)-Citral	1272	1272	C₁₀H₁₄O	0.3
31	17.6	1-Decanal	1278	1279	C₁₀H₁₄O	1.2
32	18.0	Anethole	1283	1283	C₁₀H₁₂O	0.9
33	19.3	4-Vinylguaiacol	1295	1295	C₁₀H₁₄O₂	0.2
34	19.4	2E,4E-Decadienal	1318	1318	C₁₀H₁₂O	0.9
35	21.1	Eugenol	1362	1362	C₁₀H₁₄O₂	0.8
36	21.6	Geranic acid	1355	1355	C₁₀H₁₄O₂	0.6
37	22.2	β-damascenone	1365	1366	C₁₃H₁₈O	2.1
38	23.1	Methylcinnamaldehyde	1410	1410	C₁₁H₁₄O₂	0.2
39	25.4	Hexadecane	1600	1600	C₁₆H₃₄	0.1
40	26.3	β-Ionone	1485	1487	C₁₃H₂₄O	0.5
41	26.9	Pentadecane	1500	1500	C₁₅H₃₂	0.3
42	27.7	Myristine	1519	1517	C₁₅H₂₄O₃	0.4
43	28.2	2,2'-Dimethylbiphenyl	1546	1546	C₁₄H₁₁O₂	0.2
44	29.4	(E)-Nerolidol	1557	1554	C₁₃H₂₆O₂	0.2
45	29.8	Dodecanolic acid	1567	1567	C₁₂H₂₆O₂	1.5
46	30.5	Cedrol	1589	1589	C₁₃H₂₄O₂	0.2
47	31.2	1,2-Epoxyoctadecane	1900	1900	C₁₈H₃₀O₂	0.2
48	33.4	1,1'-Biphenyl, 2,2',5,5'-tetramethyl-	1663	1663	C₁₈H₃₀O₂	0.4
49	34.9	Tetradecane	1614	1614	C₁₄H₂₈O₂	0.2
50	35.3	Tridecanoic acid methyl ester	1631	1631	C₁₄H₂₈O₂	0.2
51	36.5	Benzyl benzoate	1759	1759	C₁₄H₁₄O₂	0.4
Materials and Methods

Plant Material and Essential Oils Extraction

The plant material was obtained during its flowering period, between March and July 2019, from Longhui Country, Hunan Province, China. The plants were kept in paper bags to protect them from light and moisture. The plant material (Lonicera macranthoides Hand.-Mazz.) was identified by Prof. Dr Jianwei Chen from the School of Pharmacy, Nanjing University of Chinese Medicine, China. A voucher specimen has been deposited at the Herbarium of the Nanjing Haiyuan Prepared Slices of Chinese Crude Drugs Co. Ltd, Nanjing, China. Extraction of essential oil from the flower bud was done by hydrodistillation in a Clevenger-type apparatus for 5 hours. The essential oil was measured directly in the extraction burette, and the extraction yield (%) was calculated as the volume (mL) of essential oil per 100 g of plant material. The oil was then dried over anhydrous sodium sulfate (Na₂SO₄), and stored in a refrigerator until further analysis. Hydrodistillation was performed at least 3 times, and the mean values of the extraction yields were recorded.

Analysis of the Essential Oils

The GC-MS test was conducted using a Shimadzu GC-2010 instrument equipped with an HP-5 capillary column (30 m x 0.25 mm i.d., film thickness 0.25 µm; Agilent, USA). The retention times were converted to RI* values using literature data. The chemical compounds identified are listed in Table 1, along with their RI, RI*, molecular formulae, and area%. The abbreviations used are RI*, retention index from literature.

Table 1. Measured Inhibition Diameters (Mm) of the Disc Diffusion Test and MICs of Flos Lonicerae Essential Oil Against the Test Microorganisms (N = 3).

Microorganism	Inhibition diameters (mm)	Flos Lonicerae EOs	Amoxicillin	DMSO	MIC (µL/mL)
	25% 50% 75% 100%	25 µg/disc 100%			
Escherichia coli ATCC 25922	11.5 12.8 14.8 16.5	10.5 5.5	36.0		
	11.4 12.8 15.2 16.8	11.8 5.4	40.0		
	12.4 13.6 16.0 17.4	10.4 5.1	35.0		
	11.8 13.1 15.3 16.9	10.9 5.3	37.0		
Staphylococcus aureus (G+) ATCC 25923	13.7 19.4 17.7 21.4	23.5 5.9	20.0		
	12.8 15.6 19.1 21.1	24.7 5.3	18.0		
	14 17.1 18 20.6	25.5 5.5	22.0		
	13.5 17.4 18.3 21.0	24.6 5.6	20.0		
Pseudomonas aeruginosa (G-) ATCC 27853	8.7 10.1 10.8 12.3	9.8 5.6	65.0		
	9.5 9.7 10.9 11.5	9.5 5.3	78.0		
	8.6 8.8 11.2 11.8	9.7 5.7	70.0		
	8.9 9.5 11.0 11.9	9.7 5.5	71.0		
Bacterial Strains

To test the antibacterial activity of the essential oils of Flos Lonicerae, we used ATCC (American Type Culture Collection) strains of 3 pathogenic bacteria obtained from LMJHP (Laboratory of Microbiology, Jiangsu Haisheng Pharmaceutical Co. Ltd, Nanjing, China.), namely *Escherichia coli* ATCC 25922 (*E. coli*), *Pseudomonas aeruginosa* ATCC 27853 (*P. aeruginosa*) and *Staphylococcus aureus* ATCC 25923 (*S. aureus*).

Disc Diffusion Method

The antibacterial activity was evaluated using the disc diffusion method, with some modifications. Dilutions of the EOs were made in sterile glass using dimethyl sulfoxide (DMSO). The dilutions were: 25%, 50%, 75%, and 100% (v/v) for a final volume of 1 ml. Firstly, the Mueller-Hinton Petri dishes were inoculated with bacterial strains at 0.5 McFarland turbidity, and each essential oil was tested against each bacterial strain. Then, discs of 6 mm diameter were placed in groups of 4 in the Petri dishes and were then soaked with 20 µL of each essential oil dilution. Amoxycillin discs (25 µg/disc) were used as a positive control and discs soaked with DMSO as a negative control. The treated Petri dishes were then incubated at 37 °C for 18-24 h. The diameter of the inhibition zone was then measured in mm. The bacterial sensitivity to each essential oil dilution was classified based on the diameter of the inhibition zone as follows: Diameter < 8 mm: Not sensitive, 9 < Diameter < 14 mm: Sensitive, 15 < Diameter < 19 mm: Very sensitive, and Diameter > 20 mm: Extremely sensitive. Each experiment was carried out in triplicate and the mean diameters of the inhibition zones were recorded.

Determination of Minimum Inhibitory Concentration (MIC)

A broth macrodilution susceptible assay was employed for the determination of the MIC. All tests were performed in a Mueller-Hinton broth (MHB) medium. A total of 11 assay tubes were prepared, and 10 ml of MHB was dispensed in the first tube and 5 ml in the other tubes. The inoculum suspensions of the bacterial strains were prepared from 24 broth cultures and adjusted to obtain a final density of 106 CFU/mL. A solution of the essential oil in DMSO (10%) was prepared and added to the first tube, and then 2-fold serial dilutions were undertaken in the 9 consecutive tubes before adding 20 ml of the inoculum. The last tube, which contained only 5 ml of MHB and 20 ml of the inoculum, was used as a negative control. The assay tubes were then incubated at 37 °C for 24 hours.

Statistical Analysis

Conventional statistical methods were used to calculate the means of 3 performed antibacterial assays. To assess the significant differences between the means, covariance analysis (ANOVA) was applied to the data (P < 0.05). The differences between the sizes of the inhibition zones were determined using the LSD test.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by the Open-end Funds of Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening (No.HY201704), Nanjing Science and Technology Plan Project (No.201812021) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

ORCID ID

Mao Yinxue https://orcid.org/0000-0003-2348-3167

References

1. Pharmacopoeia of the People's Republic of China. *Ministry of Public Health of the People's Republic of China: China Pharmaceutical Technology Press; 2015:30e221.
2. Li Y, Cai W, Weng X, et al. Lonicerae Japonicae flos and lonicerae flos: a systematic pharmacology review. *Evid Based Complement Alternat Med*. 2015;2015:1-16. doi:10.1155/2015/905063
3. Yang Q-R, Zhao Y-Y, Hao J-B, Li W-D. Research progress on chemical constituents and their differences between lonicerae
Japonicae flos and lonicerae flos. *Zhongguo Zhong Yao Za Zhi*. 2016;41(7):1204-1211. doi:10.4268/cjcmmm20160708

4. Zhu HC, Liu Q, Jiang JJ, et al. Determination of chemical constituents in *Lonicera maackii* with HPLC-DAD-ESI-Q-TOF/MS. *Zhong Cao Yao*. 2017;48(11):2300-2305. doi:10.7501/j.issn.0253-2670.2017.11.025

5. Xiao P, Duan MH, Yao XH, Zhao CJ, YJ F. Green extraction of five target phenolic acids from *Lonicerae japonicae* Flos with deep eutectic solvent. *Sep Purif Technol*. 2016;157:249-257. doi:10.1016/j.seppur.2015.10.065

6. Liu N-na, Liu W, Wang D-jie, et al. Purification and partial characterization of polyphenol oxidase from the flower buds of *Lonicera japonica* Thunb. *Food Chem*. 2013;138(1):478-483. doi:10.1016/j.foodchem.2012.10.103

7. Tong QZ, Zhou RB, Luo YL, YS H, WH Q. Analysis of volatile oils of *Lonicera macranthoides* in Hunan province by GC-MS. *Chin Tradit Pat Med*. 2005;27:52-55. doi:10.3969/j.issn.1001-1528.2005.01.017

8. He B, Feng WY, Tian J, CH L, HB A. Analysis of chemical composition of volatile oil in luzhou *Flos Lonicerae* by GC-MS. *Lishizhen Med Mater Medica Res*. 2007;18:2368-2369. doi:10.3969/j.issn.1008-0805.2007.10.018

9. Huang LH, Wang DP, Chen X. Study on constituents of essential oil from the bud of *Lonicera fulvotomentosa*. *Guizhou Sci*. 2011;29:44-47. doi:10.3969/j.issn.1003-6563.2011.02.011

10. Haba E, Bouhdid S, Torrego-Solana N, et al. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against *Candida albicans* and methicillin-resistant *Staphylococcus aureus*. *Int J Pharm*. 2014;476(1-2):134-141. doi:10.1016/j.ijpharm.2014.09.039

11. Giovannini D, Gismondi A, Basso A, et al. *Lavandula angustifolia* Mill. essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to *Staphylococcus aureus*. *Immunol Invest*. 2016;45(1):11-28. doi:10.3109/08820139.2015.1085392

12. Al Jahid A, Elamrani A, Lahou F, et al. Chemical composition and antibacterial activity of the essential oil isolated from the seeds of Moroccan *Artemisia campestris*. *J Essent Oil Bear Pl*. 2017;20(2):375-384. doi:10.1080/0972606X.2016.1266969

13. Huang LH, Wang DP, Zhan SM, Chen X. Study on constituents of essential oil from the bud of *Lonicera fulvotomentosa*. *Guizhou Sci*. 2011;29:44-47. doi:10.3969/j.issn.1003-6563.2011.02.011

14. Cuillas A-B, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Thymus mastichina L. essential oils from Murcia (Spain): composition and antioxidant, antienzymatic and antimicrobial bioactivities. *PLoS One*. 2018;13(1):e0190790. doi:10.1371/journal.pone.0190790

15. Lyu Y, Ren H, Yu M, Li X, Li D, Mu C. Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. *Carbohydr Polym*. 2017;174:1095-1105. doi:10.1016/j.carbpol.2017.07.033

16. Racoti A, Burtress AJ, Binner E, Dodds C, Trifan A, Calinescu I. Microwave assisted hydro-distillation of essential oils from fresh ginger root (*Zingiber officinale* Roscoe). *J Essent Oil Res*. 2017;29(6):471-480. doi:10.1080/10412905.2017.1360216

17. Kirimer N, Mokhtarzadeh S, Demirci B, Goger F, Khawar KM, Demirci F. Phytochemical profiling of volatile components of *Lavandula angustifolia* Miller propagated under in vitro conditions. *Ind Crops Prod*. 2017;96:120-125. doi:10.1016/j.indcrop.2016.11.061

18. Huang L, Li J, Wang D, Chen X. Comparison of volatile oil composition of *Lonicera fulvotomentosa* in different storage periods. *J Cent South Univ For Technol*. 2011;31:113-118. doi:10.1007/s10570-010-9464-0