Green mining policy for environmental protection and sustainable development

Sunghyok Ro1,2 · Deru Yan 1,* and Sewon Kim1,
1School of Humanities and Low, Northeastern University, Shenyang, China
2Institute of Ferrous Mining, State academy of sciences, Pyongyang, DPRK
*yanderu2005@126.com

Abstract: Environmental protection is an inevitable choice for the sustainable development of human society. According to EPA data, 21\% of global greenhouse gas emissions come from the industrial areas. The mining is one of the main source of greenhouse gas emissions. To achieve sustainable economic development and ecological environmental protection, the mining industry must be green. The developed countries have taken policies related to green mining since the 1970s and have already achieved great results. At present, the developing countries such as China have also adopted a series of various legal and institutional measures related to the mining, but it is still not perfect compared with the developed countries, and there are still serious environmental pollution problems. Therefore, this paper will discuss the causes of the environmental problems in mining and the green mining policies of some developed countries, and analyze the current situation of China's mining industry. Finally, this paper proposed a green mining policy model for in developing countries such as China for environmental protection and sustainable development.

1. Introduction
Mining is the oldest and the most important, but it is the hardest industry after agriculture in the world. As a result, environmental problems in the mining industry have persisted for 700 years. In the process of ore mining, processing and smelting, a large amount of dust and exhaust gas are generated. These gases contain harmful substances and pollute the atmosphere. The amount of water used in mine production is very large, which means that a large amount of industrial wastewater needs to be discharged and it destroys the groundwater resources. In addition, a vast amount of solid waste and tailings pollute the land and forests.

Due to the extensive human mining activities in the last century, the current crisis of depletion of resources has resulted. In particular the United States, Canada and Australia took the lead in mineral production and consumption.

The purpose of this paper is to present a green mining policy model for environmental protection and sustainable economic development in the developing countries based on the examples of the developed countries in mining.

The following is a brief introduction in the past history of the mining activities of these countries and the environmental damage resulted in.
1.1 The United States of America

American mining industry began to develop in the 1800s and entered a rapid development stage in the 1880s. After the Second World War, the new scientific and technological revolution marked by the development of atomic energy technology, aerospace technology, and computer technology has prospered and it has promoted the further development of the American economy. During this period, these technological developments and social transformations increased the demand for metals and mineral products and also accelerated the development of mining. Below Table 1 shows 15 types of mining output in the United States over the past 20 years.

Mineral species	Unit	1991	1993	1995	1997	1999	2001	2003	2005	2007	2009	2010
Petroleum	million tons	369	340	326	321	293	355	344	319	315	334	345
Natural gas	billion m³	501	522	526	535	528	555	541	511	540	593	611
Coal (bitumen)	million tons	900	856	932	984	992	102	971	1025	1029	973	967
Iron steel (pigiron)	thousand tons	445	486	514	501	479	423	409	372	363	180	268
Aluminum	thousand tons	412	369	337	360	378	264	270	248	255	173	173
Copper	thousand tons	163	180	185	194	160	134	112	114	117	120	113
Cadmium	tons	1676	1094	1266	2059	1185	680	670	1470	735	633	637
Gold	tons	294	331	317	362	341	335	277	256	238	223	228
Silver	tons	1855	1645	1564	2182	1951	1740	1239	1225	1281	1238	1280
Titanium	thousand tons	250	300	-	-	400	500	500	500	400	300	200
Lead	thousand tons	476	362	393	458	520	466	460	436	444	405	369
Zinc	thousand tons	546	513	644	632	843	842	767	747	803	735	748
Molybdenum	hundreds tons	534	368	580	601	424	376	335	569	570	478	560
Plaster	hundred thousand tons	140	158	166	186	188	163	167	211	179	94	90

(Source: British Geological Survey)

1.2 Canada

It is characterized by a large variety of mineral products and high production output. At present, there are nearly 300 kinds of metal and non-metallic minerals in Canada, of which about 60 kinds have commercial mining value.

After one hundred years of development, the number of mineral products produced in Canada increased from 25 in 1867 to 65 in 1966, and Canadian mining output increased from 502.7 million US dollars in 1946 to 8466 million US dollars in 1973. The output of oil, natural gas, iron ore, lead, zinc, nickel, potassium salts, and gypsum has basically continued to increase.
Mineral species	Unit	1991	1993	1995	1997	1999	2001	2003	2005	2007	2009	2010
Petroleum	million tons	82	88	96	103	102	112	125	127	136	134	141
Natural gas	Billion m3	129	155	176	184	194	205	200	176	174	156	151
Coal (bitumen)	million tons	399	353	386	412	365	341	266	307	323	277	337
Iron steel (pig iron)	hundred thousand tons	827	863	846	867	886	830	906	886	949	556	827
Aluminum	thousand tons	182	231	217	233	239	258	279	289	308	303	296
Copper	thousand tons	811	733	726	656	614	633	557	595	596	494	525
Cadmium	thousand tons	1829	1888	2349	2260	2091	1493	1759	1727	1388	1299	1357
Gold	thousand tons	176	153	152	171	159	160	141	120	102	97	98
Silver	thousand tons	1339	896	1284	1224	1231	1320	1310	1124	860	631	596
Titanium	thousand tons	200	210	220	240	250	230	190	210	250	200	240
Lead	thousand tons	276	213	210	186	161	154	81	79	75	69	65
Zinc	thousand tons	116	100	112	107	101	106	729	67	63	70	65
Molybdenum	hundred thousand tons	192	188	182	190	186	194	163	199	255	137	158
Plaster	hundred thousand tons	670	771	825	894	931	833	892	827	764	354	272

(Source: British Geological Survey)

1.3 Australia

Mining is an important part of the Australian national economy and accounts for about 7% of the gross domestic product (GDP). Mining development process of Australia can be divided in four stages. The first stage is from the settlement to the mid-20th century, summarized the early history of the mining industry. The second stage is from the 1950s to the 1970s, during which time a world-scale mining industry emerged in Australia. The third stage is the integration and growth process of the mining industry in the 1980s. The fourth stage is the most detailed stage in the 1990s, during which "globalization" has played a major influence.

Mineral species	Unit	1991	1993	1995	1997	1999	2001	2003	2005	2007	2009	2010
Petroleum	million tons	288	263	270	300	270	340	270	214	215	215	248
Natural gas	Billion m3	217	244	298	299	307	325	332	371	399	423	450
Coal (bitumen)	million tons	165	180	193	217	234	267	281	308	325	347	356
Iron steel (pig iron)	hundred thousand tons	565	677	786	788	747	730	800	621	635	437	600
2. Impact of mining development on the natural environment and Sustainable development of the economy

There is no doubt that the mining activities at that time fully supplied the resources necessary for regional economic development and contributed decisively to creating a high-tech world like today. But at the same time, it also brought a series of environmental problems and the risk of resource depletion, which not only caused serious impacts and damages to the local natural environment, but also increasingly severe impacts on the ecological environment.

In the past, mining development has resulted in the deterioration of the natural environment in the vast majority of mines due to its rough operation, institutional backwardness, short-term profit pursuits, and neglect of sustainable development.

According to Bureau's research, more than 30 states in the United States mine coal and operate a basic economy, causing damage to 7 million acres of land[1]. Although it has not yet collapsed but the sunk danger area is about 5.2 million acres. Of these, 500,000 acres are located in densely populated urban areas, so it’s more dangerous. For example, the Illinois Geological Survey has published about 330 million homes in this area are all in danger of collapsing. According to the American Research Conference Ground Failure Hazard, at least 75 billion U.S. dollars were lost in debris flows and collapses caused by mining operations between 1925 and 1975. The cost of collapse losses is three times higher than the combined cost of floods, hurricanes, tornadoes and earthquakes.

It is reported that as of 2002, there were more than 3,500 dams caused by mining waste in the world. These dams often collapse, leading to the outflow of many harmful substances and causing environmental damage. For example, Canadian mining produces approximately 650 million tons of waste annually. A dam collapsed in April 1998, a huge outflow of harmful substances, including 528 million gallons of pyrite tailings and one billion gallons containing heavy metals flowed into the river. Many areas around the river were polluted, more than 7,000 acres were damaged and the total loss was $ 225 million[2].

If underground mining is not operated properly, it may also change the storage structure of groundwater sources and cause destructive effects on groundwater systems. In addition, various harmful substances such as cyan are used in the smelting process and the waste causes environmental pollution. In fact, environmental damage from the mining development is a serious problem.

Aluminum	Ten thousand tons	123	138	130	149	172	180	186	190	196	194	193
Copper	Thousand tons	320	411	379	558	711	896	830	935	871	854	870
Cadmium	Thousand tons	1076	951	838	632	462	416	673	358	351	370	350
Gold	Tons	242	243	253	313	299	280	282	263	247	222	260
Silver	Tons	1180	1092	939	1106	1720	1970	1868	2417	1880	1633	1880
Titanium	Thousand tons	148	180	198	223	198	202	201	203	234	145	131
Lead	Thousand tons	579	535	455	531	681	759	688	767	641	566	712
Zinc	Thousand tons	102	103	94	103	116	152	148	137	151	129	148
Molybdenum	Hundred tons	68	72	103	123	125	205	191	189	184	166	170
Plaster	Hundred thousand tons	181	209	184	189	380	322	366	388	389	343	327

(Source: British Geological Survey)
3. Green mining policies of some developed countries

Due to the recent increased interest in the quality of the environment in American society for decades, the government has adopted regulations concerned with the environmental protection. It is stipulated that the original levels of land, air and water must be maintained during mine production, and the mines shall remain in their original state after the pit is closed. From the strict demands on environmental protection, the US mining industry spends billions of dollars a year to comply with standard ecological environmental recovery rules such as improving air and water quality and restoring land[3][4].

The Canadian mining administration is divided into federal and provincial levels. There is a division of labor and collaboration between the two levels. Except for issues related to the public interest or inter-provincial coordination such as the environment and mine reclamation, they perform their duties in accordance with their respective legislative authority.

In the environmental management of the mining, the federal government is responsible for environmental science and technology, environmental protection, health issues, information and statistics on national mining activities.

The functions of the local mining management department include the entire process of mineral resource exploration, development, mining and construction management, purification and mine closure.

The specific details of the Canadian government's implementation of green mining policies include mining area restoration and mine environmental evaluation systems, reducing pollutant emissions, innovation and continuous improvement in waste management, ecosystem risk management, and mine closures, etc.

Australian mining companies are required by law to develop a mine environmental protection and closure plan when developing mines and it must be approved by the government. Australia has also set up a "Mine Closing Fund", which is mainly funded by the payment of mining enterprises for ecological restoration, facility demolition, and industrial transformation after the mine is closed. If the enterprise completes the related work of closing the pit in accordance with the standards, the paid funds will be returned[5][7].

4. Current status of China's mining industry

China is richer in mineral types and larger in volume than other countries. It has already discovered 171 types of minerals and identified 158 reserves. At present, China's primary energy and the major minerals consumptions such as iron, copper, and aluminum accounts for about 20% and 40% of the world, respectively. In 2016, the total amount of ore mined exceeded 30 billion tons. Compared with 2011, the output of coal and iron ore decreased and increased in the output of natural gas, bauxite, and gold. The production of petroleum, nickel, titanium was basically flat.

No	Mineral type	unit	2011 production	2016 production	No	Mineral type	unit	2011 production	2016 production
1	Coal	Hundred million t	37.6	34.1	11	Molybdenum	Metal tens of thousands t	8.7	9.1
2	Petroleum	Hundred million t	2.0	2.0	12	Antimony	Metal tens of thousands t	12.4	10.8
3	Natural gas	Hundred million m³	1053.4	1368.3	13	Gold	Metal t	302.0	394.9
4	Iron	Hundred million t	13.3	12.8	14	Fluorite	Ten thousands t	655.0	370.0
5	Copper	Metal t	126.7	185.1	15	Phosphate	P₂O₅30%	0.8	1.4
Since China needs to proceed with industrialization based on the development and utilization of material resources, it is still necessary to consume a lot of mineral resources in order to maintain sustainable and stable growth of the national economy.

Due to the mining development started late relatively, China is experiencing the pain of environmental destruction only today which already experienced in the mining developed countries.

Statistic data shows that the area of land collapsed by mining in China has reached 2 million hectares, and it is still increasing at a rate of 25,000 hectares every year[6]. There are 40 cities were damaged by mining collapse and 25 of them were severely. The amount of waste rocks and tailings is 300 million tons per year, and the land which directly destroyed and deposited is 140,000km²–200,000 km², which is increased by 200km² every year. A total of 1.4 billion tons of mining wastewater and waste liquid were discharged into the rivers, causing serious pollution. Tailings emissions from copper, lead, tin, zinc and other mining companies in 2001 reached 31 million tons in Yunnan province. And it is increasing at an annual rate of 12%, resulting in the destruction of forests and vegetation, loss of topsoil, frequent debris flow, river siltation, and environmental degradation. In Shandong province, the total of the mining area is 8050km², the ground subsidence of the mined area is 332km² and the destroyed area by open-pit mining area is 205km². In addition, in Hebei and Shanxi provinces, the waste-rock and tailings due to the mining development has been destroyed vast area of the natural environment seriously.

5. Suggestions for Green mining policymodel
Mineral resources are the foundation and basic driving force for economic development. It never imagine that economic development without resources. Although the developing countries such as China have been enacting a series of legislation and policies on green mining, but as shown in Table 4, there is no basic decay trend of the mineral production. If it continue to the current state of mineral production, the resources of China will be depleted in decades. This will have a serious impact on sustainable economic development. From that, we proposes the green mining policy suggestions and a model to protecting the natural environment and ensuring sustainable economic development.
Fig. 1 is the schematic diagram of the green mining policy model proposed in this paper. The main actors of the green mining policy model are government and mining enterprises. The government also includes relevant departments related to mining such as the ministry of agriculture and forestry (Government and Association in Fig.1). When a company applies for mining development, it reviews and ratifies whether the development plan satisfies all the requirements including the environmental protection act. The government also monitors and controls the company's production activities in accordance with the environmental protection act and the sustainable development principles. In addition, the government should enact a certain incentive system (Encourage in Fig.1) to provide financial support to companies, and at the same time, admire outstanding companies to raise public attention. The government must prohibit ratification or strict penalties for companies that violate the standard requirements in the mine development or operation process that do not meet the requirements of the Environmental Protection Act and the sustainable economic development.

The enterprise must submit a development application when a company proceeds with mining development detailing the environmental damage caused by the development, its countermeasures, and the restoration plan after the operation is completed. The application for development should be made in consideration of the requirements of the Environmental Protection Act as well as the requests of the government and the relevant departments. The application must also be revised and reconfirmed with the comments of the local population. Companies should apply scientific operating methods to their operations to maximize resource utilization and recycling rates and must ensure clean production. Thus, it must be secured to minimize environmental damage and ensure sustainable development (Scientific operation, High efficiency and Clean production in Fig.1).

It is necessary to use resources highly and many types of minerals must be secured in order to develop to the developed countries. The rapid economic growth of China is mainly based on the proliferation in the supply of mineral resources. Therefore, resource management strategies should be rationalized and green mining policies must actively implemented to ensure material foundation to ensure sustainable development.

6. Summary
In this paper, we have described the history of mining activities in the last century and the environmental problems, the crisis of resource depletion resulted from it in some countries. In addition, we have listed the green mining policies in these countries for environmental protection and sustainable economic development. This paper has proposed a green mining policy model to be taken in the developing countries for environmental protection and sustainable economic development.
References

[1] David K. Ingram, OVERVIEW OF MINE SUBSIDENCE INSURANCE PROGRAMS IN THE UNITED STATES, International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburgh, PA, April 24-29, 1994.

[2] David M. Chambers, Long-term Risk of Tailings Dam Failure, Alaska Park Science - Volume 13 Issue 2: Mineral and Energy Development.

[3] Gordon Morris Bakken. The Mining Law of 1872: Past, Politics, and Prospects [M]. Albuquerque: University of New Mexico, 2008.

[4] Timothy J. LeCain. Mass Destruction: the Men and Giant Mines that Wired America and Scarred the Planet [M]. New Brunswick: Rutgers University, 2009.

[5] Duane A. Smith. Mining America: The Industry and the Environment 1800-1980 [M]. Niwot: University of Colorado, 1993.

[6] Wang Shijun, The research on the mining problems from mining right system perspective, China University of Geosciences, 2005, 14(4).

[7] Environment Protection and Biodiversity Conservation Act 1999.

[8] Wang Xuefeng et al, Green Mining Principle, Achieving sustainable mining development[J]. Land and Resources Technology Management, 2006(6).

[9] Kang Jitian, Selection of Mining Legislation to Protect the Mining Environment in Foreign Countries[J]. Environmental Science and Management, 2008(08).

[10] CAO Xianzhen. Construction of Green Mining in Foreign Countries and Reference Mean to our Country, CONSERVATION AND UTILIZATION OF MINERAL RESOURCES Issues 5-6 Dec. 2011.

[11] Hu Debin, Environmental protection management of foreign mines and its enlightenment to China, Chinese Mining, Issue 2, 2004.