Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered *Escherichia coli*

Wei Liu¹,²,³, Rubing Zhang¹,³, Ning Tian¹, Xin Xu¹, Yujing Cao¹, Mo Xian¹,*, and Huizhou Liu¹,*

¹CAS Key Laboratory of Bio-Based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao, China; ²Key Laboratory of Green Process and Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing, China; ³University of Chinese Academy of Sciences; Beijing, China

Keywords: Biosynthesis, engineered *Escherichia coli*, geraniol, PhoA, Phosphatase

Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate *in vitro*. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from *Saccharomyces cerevisiae*, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from *Escherichia coli*. The results show that just PhoA from *E. coli* can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in *vivo*, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from *Abies grandis* were co-overexpressed in *E. coli* with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered *E. coli* and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geraniol (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol.

Introduction

The monoterpene geraniol, which is emitted from flowers, has an important role in flavor and fragrance industries due to its pleasant rose-like odor.¹ Geraniol also exhibits huge potential in pharmacy and agrochemistry.²,³ Fractional distillation of plant essential oils is the major method for geraniol manufacture, but high cost and other limitations, such as weather dependence and plant diseases, limited the supplies of geraniol.⁴ Converting renewable resources into monoterpene products by engineered microorganisms was interesting technology and developed quickly recently year, which have the advantages of fast growth, no need for land during their growth and sustainable development.⁵,⁶

Geraniol is likely to be synthesized from geranyl diphosphate (GPP), the universal precursor of all monoterpenes, which can be produced from both the methylerythritol 4-phosphate pathway and the mevalonate (MVA) pathway in plants.⁷,⁸ Although many microorganisms carry out the methylerythritol 4-phosphate pathway or MVA pathway to supply the intermediates dimethylallyl pyrophosphate and isopentenyl pyrophosphate, they are unable to produce the monoterpenes because of the absence of monoterpene synthase. In recent year, Iijima et al.⁹ first purified and characterized geraniol synthase (GES) from peltate glands of *Ocimum basilicum* as a member of the terpene synthase family and proved that GES can catalyze geraniol formation from GPP by the addition of a hydroxyl group to a carbocation intermediate. Then, the generation of geraniol by GES has been demonstrated in engineered microbial and a recent study proved that geraniol could be generated at a level of 0.185 mg l⁻¹ by simply over-expressing GES in *E. coli*.¹⁰ However, the structure of geraniol, whose carbon skeleton is identical to that of its precursor GPP, hypothetically allows for an alternative mechanism of simply breaking the phosphoester bond by a phosphatase to generate geraniol.⁹ Moreover, geraniol formation via endogenous dephosphorylation of GPP has been observed in engineered *E. coli* and yeasts.¹¹,¹² But, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. The catalysis ability of phosphatases toward geraniol formation was investigated in this study, and it will show a new option for geraniol biosynthesis.

Results and Discussion

Phosphatases activity on geranyl diphosphate (GPP)

With the aim to study the catalysis ability of phosphatases to form geraniol from GPP, 4 different types of phosphatases genes
were studied. These four phosphatases were bifunctional diacylglycerol diphosphate phosphatase (DPP1) from *Saccharomyces cerevisiae*, lipid phosphate phosphatase (LPP1) from *Saccharomyces cerevisiae*, ADP-ribose pyrophosphatase (NudF) from *E. coli* and alkaline phosphatase (PhoA) from *E. coli*. The crude protein samples taken from cells were analyzed by SDS-PAGE. The theoretical molecular mass of DPP1, LPP1, NudF and PhoA were known as 32 kDa, 30 kDa, 23 kDa and 52 kDa, which were determined from their amino acids. The results of SDS-PAGE show that all phosphatases were expressed and matched their theoretical molecular mass respectively (Fig. 1). Then, the crude proteins were used to detect the phosphatase activity toward GPP in vitro. The GC-MS result of reaction shows that only PhoA can act on geranyl diphosphate to form geraniol (Fig. 2), while geraniol was not detected in catalysis reactions by the crude proteins of DPP1, LPP1 and NudF. The control also didn’t detect the generation of geraniol. Each reaction does 3 parallels.

This result shows the different catalysis ability of phosphatase. DPP1 and LPP1 were proved to produce geranylgeraniol by removing the phosphate of geranylgeranyl diphosphate. However, they cannot use GPP as substrate to form geraniol in this study, which is consistent with the result no significant increase in geraniol formation by overexpressed DPP1 in vivo, as proved by Oswald. NudF can remove the pyrophosphate from IPP and DMAPP to form prenol and isoprenol by introducing NudF into the strain that employed the whole MVA pathway, but not useful in this reaction. Alkaline phosphatase (PhoA) is a nonspecific phosphomonoesterase which can remove the inorganic phosphate to form corresponding alcohols. The PhoA activity was studied and proved with other phosphorylated substrates, such as 4-nitrophenyl phosphate and p-nitrophenyl phosphate, but this paper first proves the catalysis ability of PhoA with GPP as substrate in vitro, and our finding opens the door to biosynthesis of geraniol with alkaline phosphatase.

Utilization of PhoA in the bioproduction of geraniol from glucose in *E. coli*

In order to biosynthesize geraniol from glucose by phosphatase, sufficient GPP should be obtained in *E. coli*. Considering the limited supply of IPP and DMAPP from the native methylerythritol 4-phosphate pathway, the heterologous MVA pathway and gene GPPS2 from *Abies grandis* were co-overexpressed in *E. coli*, which have been confirmed can provide sufficient GPP in our pervious study (Fig. 3). To simplify the task of engineering a 7-gene pathway, they were separated into 2 operons and cloned into 2 compatible plasmids. The gene *phoA* was introduced into plasmid pYJM26, which made up of genes GPPS2 and upper portion of MVA pathway with pACYC184 as vector. The resulting plasmid was named as pLWG9. The other plasmid named pYJM14 contains bottom portion of MVA pathway. The plasmids pLWG9 and pYJM14 were transformed into *E. coli* BL21 (DE3) strain simultaneously, resulting in strain LWG9. Growing in 100 ml shake-flask, about 5.3 ± 0.2 mg/l geraniol was produced from glucose when LWG9 was grown in 100 ml shake flask for 48 h at pH 7, 180 rpm and 30°C. As control, strain LWG10 was constructed by transforming plasmids pYJM26 and pYJM14 into *E. coli* BL21 (DE3). Geraniol production was not detected during 48 h of culture by strain LWG10, though geraniol via endogenous dephosphorylation of GPP has been observed in *E. coli* with supplementation of mevalonate, which bearing both GPPS mutated form *E. coli* and bottom portion of MVA pathway. The failure of geraniol production by strain LWG10 might be ascribed to that the supply of GPP by whole MVA pathway from glucose was lower than by the bottom portion of MVA pathway from mevalonate and the low native PhoA catalytic activity limited the conversion of GPP to geraniol in *E. coli*.

Fed-batch fermentation was carried out using the engineered *E. coli* strain LWG9. As is shown in Figure 4, geraniol production increased rapidly from 0 h to 10 h after induction and reached 98.7 mg/l at 14 h of culture with an average productivity of 16.7 mg g cdw⁻¹ h⁻¹. Then, geraniol production keeps relatively stable till 32 h of culture. Considering that geraniol could be dehydrogenated and transformed into other geranoids in *E. coli* by YigB, geranoids were analyzed by GC-MS. Geraniol, the oxidative product of geraniol, was detected after 6 h of culture, while nerol, the *cis*-isomer of geraniol, was detected after 24 h of culture in this study. Geraniol, geraniol and nerol formations were sequentially observed during culture, which is consistent with the geranioid formation mechanism that geraniol and nerol are formed via geraniol as proposed by Iijima et al. and Zhou et al. Moreover, considering the mechanism of phosphatase, it is hard to form nerol and geraniol directly from GPP,
which supported above geranioid formation mechanism from another aspect. At 28 h of culture, the total geranioid production was increased to 151.9 mg/l while the geraniol production reached 99.3 mg/l and the geraniol dehydrogenation rate in strain LWG9 was 1.88 mg l⁻¹ h⁻¹. The conversion efficiency of glucose to geranioid (gram to gram) just reached 0.51%.

Although the ability of PhoA to form geraniol was proved in this study, the geraniol production and productivity need to be improved in the future. The main reason for the poor status of strain LWG9 may lie in the low activity of wild type of PhoA. Meanwhile, overexpression of many heterologous genes may be another reason. To resolve the above-mentioned problems, many possible improvements can be used to enhance geraniol production. One approach is to mutate and screen the high activity PhoA for geraniol production. The previous studies about PhoA including the structural and mutant studies will provide a large amount of data for PhoA optimizing. Another approach is engineering of the host including: employing a chromosome integration technique to decrease the cell growth burden on the host that results from overexpression of heterologous genes.

Conclusions

In conclusion, the catalysis ability of phosphatases with GPP as substrate to produce geraniol was first studies. Four different types of phosphatases, DPP1, LPP1, NudF and PhoA were screened and only PhoA from *E. coli* can form geraniol from GPP *in vitro*. Moreover, a new pathway with PhoA for geraniol formation was verified in the reaction catalysis by alkaline phosphatase PhoA from *E. coli*. The experiment was performed in triplicate.
bioproduction from glucose was established in engineered \emph{E. coli} and 5.3 mg/l geraniol was biosynthesized under shake-flask culture. Finally, we also evaluated the fed-batch fermentation of geraniol and a maximum concentration of 99.3 mg/l was reached. This study provided a new sustainable production strategy for geraniol in \emph{E. coli}.

\section*{Materials and Methods}

\subsection*{Medium and culture conditions}

The Luria Broth (LB) medium (10 g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract) was used for gene cloning and shake-flask fermentation. For geraniol production, recombinant strains were cultured in shake-flask or fed-batch fermentation with the medium (pH 7) containing glucose 20 g/l, K$_2$HPO$_4$ 9.8 g/l, beef extract 5 g/l, ferric ammonium citrate 0.3 g/l, citric acid monohydrate 2.1 g/l, MgSO$_4$ 0.06 g/l and 1 ml trace element solution which includes (NH$_4$)$_6$Mo$_7$O$_{24}$$\cdot$4H$_2$O 0.37 g/l, ZnSO$_4$$\cdot$7H$_2$O 0.29 g/l, H$_3BO_4$ 2.47 g/l, CuSO$_4$$\cdot$5H$_2$O 0.25 g/l, and MnCl$_2$$\cdot$4H$_2$O 1.58 g/l. Appropriate antibiotics were added to the culture medium according to selectable marker gene of each plasmid listed in Table 1 at the following concentration: ampicillin (Amp, 100 mg/ml), kanamycin (Kan, 50 mg/ml), and chloramphenicol (Cm, 34 mg/ml).

\subsection*{Strains and plasmids}

All strains and plasmids used in this study are listed in Table 1. Four different phosphatase genes, alkaline phosphatase (\textit{PhoA}) gene from \emph{E. coli}, ADP-ribose pyrophosphatase (\textit{NudF}) gene, bifunctional diacylglycerol diphosphate phosphatase (\textit{DPP1}) gene and lipid phosphate phosphatase (\textit{LPP1}) gene were cloned into \textit{pCOLADuet-1} creating \textit{pYY11}, \textit{pYY12}, \textit{pYY13} and \textit{pYY16} respectively in our previous study, and \textit{LWG2}, \textit{LWG3}, \textit{LWG4}, \textit{LWG5} were formed by transferred these plasmid into \emph{E. coli BL21 (DE3)} separately.

For geraniol production from glucose, plasmids of the whole pathway for geraniol synthesis were constructed. Plasmid \textit{pYJM26} and \textit{pYJM14}, which harboring the heterologous mevalonate pathway and geranyl diphosphate synthase gene from \emph{Abies grandis}, were constructed in our lab’s early study. The \textit{phoA} gene was cloned into \textit{pCOLADuet-1} creating \textit{pYY11}, \textit{pYY12}, \textit{pYY13} and \textit{pYY16} respectively in our previous study, and \textit{LWG2}, \textit{LWG3}, \textit{LWG4}, \textit{LWG5} were formed by transferred these plasmid into \emph{E. coli BL21 (DE3)} separately.

\begin{table}[h]
\centering
\caption{Strains and plasmids used in this study}
\begin{tabular}{lll}
\hline
\textbf{Name} & \textbf{Relevant characteristics} & \textbf{References} \\
\hline
\textbf{Strains} & & \\
BL21(DE3) & F-ompT hsdS\textsubscript{B} (r\textsubscript{B}– m\textsubscript{B}–) gal dcm rne131 \lambda(DE3) & Invitrogen \\
LWG2 & \textit{E. coli} BL21(DE3)/ \textit{pYY11} & This study \\
LWG3 & \textit{E. coli} BL21(DE3)/ \textit{pYY12} & This study \\
LWG4 & \textit{E. coli} BL21(DE3)/ \textit{pYY13} & This study \\
LWG5 & \textit{E. coli} BL21(DE3)/ \textit{pYY16} & This study \\
LWG9 & \textit{E. coli} BL21(DE3)/ \textit{pLWG9, pYJM14} & This study \\
LWG10 & \textit{E. coli} BL21(DE3)/ \textit{pYJM26, pYJM14} & This study \\
\textbf{Plasmids} & & \\
pACYCDuet-1 & P15A (pACYC184), Cmr & Novagen \\
pLWG9 & pACYCDuet-1 carrying \textit{mvaE} and \textit{mvaS} from \textit{Enterococcus faecalis}, \textit{GPPS2} from \textit{Abiesgrandis}, \textit{phoA} from \textit{Escherichia coli}, Cmr & This study \\
pYY11 & pCOLADuet-1 carrying \textit{phoA} from \textit{Escherichia coli}, Kanr & 14 \\
pYY12 & pCOLADuet-1 carrying \textit{DPP1} from \textit{Saccharomyces cerevisiae}, Kanr & 14 \\
pYY13 & pCOLADuet-1 carrying \textit{LPP1} from \textit{Saccharomyces cerevisiae}, Kanr & 14 \\
pYY16 & pCOLADuet-1 carrying \textit{nudF} from \textit{Escherichia coli}, Kanr & 17 \\
pYJM26 & pACYCDuet-1 carrying \textit{mvaE} and \textit{mvaS} from \textit{Enterococcus faecalis}, \textit{GPPS2} from \textit{Abiesgrandis}, Cmr & 17 \\
pYJM14 & pTrcHis2B carrying \textit{ERG12, ERG8, ERG19} and \textit{IDI1} from \textit{Saccharomyces cerevisiae}, Ampr & 17 \\
\hline
\end{tabular}
\end{table}
gene was PCR-amplified from plasmid DNA of pYY11 with the primer sets phoA-rbs-F (GGAAGATCTAGGAGTAAAAATTGCGGACACCAAAATGCGCTGTC) and phoA-R (CACCCTGAGTTATTTGACCCAGAGGAGGC). The PCR product was digested with BglII and XhoI respectively and then ligated into the corresponding sites of pYJM26 cut with the same restriction enzymes, creating pLWG9. The pLWG9 and pYJM14 were transformed into the BL21 (DE3) competent cell to form LWG9.

Enzyme extraction and assay
The four strains LWG2, LWG3, LWG4 and LWG5 were cultured in LB broth respectively. When the OD_{600} of the bacterial culture reached 0.6–0.8, the cells were induced by IPTG at a final concentration of 0.1 mM and further incubated at 30°C for 4 h–6 h. Cells were harvested by centrifugation at 6000 g for 5 min, washed with distilled water, and then resuspended in reaction buffer of each enzyme. All the extraction procedures were carried out at 4°C. The cells were sonicated on ice for 10 min (3 s pulse on, 3 s pulse off, 40 W, Sonics VCX130, China). The corresponding supernatants were then analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and prepared for activity assays.

The phosphatase activity toward geranyl diphosphate (GPP) was assayed as the formation of geraniol. The activity of alkaline phosphatase (PhoA) was measured as described by Kojima et al.18 with the following modification: the incubation mixture contained 1 M Tris-Cl, pH 8.0, 10 mM MgSO4, 50 μM ZnSO4, 5 μM GPP and the enzyme extract (about 0.5 mg protein), incubated for 30 min at 37°C. The activity of bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) were assayed using a modification of existing methods.13,19 The assay mixture (100 μl) was comprised of citrate buffer (120 mM, pH 4.3), 5 mM MgCl2, the enzyme extract (about 0.5 mg protein), and 5 μM GPP and was incubated for 30 min at 37°C. The activity of ADP-ribose pyrophosphatase (NudF) was measured as described by Dunn et al.20 with the following modification: the incubation mixture contained 50 mM Tris-Cl (pH 8.0), 2 mM MgCl2, 5 μM GPP and the enzyme extract (about 0.5 mg protein) and was incubated for 15 min at 37°C. The products of the reactions were analyzed by GC-MS. Every reaction has 3 parallels and cell extract with empty pCOLADuet-1 was used as control.

Shake-flask cultures
A single colony of LWG9 was grown up in LB broth overnight at 37°C. The culture was used to inoculate the same medium (1:100 dilution) and grown at 37°C until the culture reached an OD_{600} of 0.6–0.8. IPTG was added to a final concentration of 0.1 mM and the culture was further incubated at 30°C for 48 h at 180 rpm. The samples were added with the same volume of ethyl acetate, vortexed briefly, and centrifuged to separate the phases and the organic phase was analyzed by GC-MS. The strain LWG10 was used as control. The experiment was performed in triplicate.

Fed-batch fermentation
The strain LWG9 grew up overnight at 37°C in 100 ml of fermentation medium. The overnight culture was used to inoculate a 5L fermentor (BIOSTAT Bplus MO 5 L, Sartorius, Germany) containing 2L fermentation medium. The temperature was maintained at 30°C, the pH was maintained at 7.0 via automated addition of ammonia. The stirring speed was first set at 400 rpm and then linked to the dissolved oxygen (DO) concentration to maintain a 20% saturation of DO. The expression of plasmid-born exogenous genes for geraniol production was initiated at an OD_{600} about 20 by adding IPTG at a final concentration of 1 mM. During the course of fermentation, the residual glucose was measured using a glucose analyzer (SBA-40D, China) and was maintained below 1 g/l by adding 70% glucose solution during the course of fermentation. To harvest geranoid from the culture broth during fermentation, 2-phase culture was carried out by adding 200 ml isopropyl myristate at 4 h after induction. The samples were collected on time and the organic phase was separated by centrifugation at 13000 rpm for 10 min, then added with 10 volume of ethyl acetate and analyzed by GC-MS.

Geraniol characterization by GC-MS
Putative geraniol products were identified by GC-MS. A HP-INNOWAX capillary column (30 m×0.25 mm; 0.25 μm film thickness; Agilent Technologies) was used. The separation conditions were an initial column temperature of 50°C for 1 min, an increase of 10°C/min to 250°C, where it was held for 5 min. Peak identification was based on a relative retention time and total ion mass spectral comparison with an external standard (Sigma-Aldrich, USA). The peak areas were converted into geraniol or nerol concentrations in comparison with standard curves plotted with set of known concentrations of standards.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This work was financially supported by Qingdao Institute of Bioenergy and Bioprocess Technology Director Innovation Foundation for Young Scientists, National High Technology Research and Development Program of China (863 Program, No. 2013AA050703–2), National Natural Science Foundation of China (No. 51378157), and Taishan Scholars Climbing Program of Shandong (No.tsptd20150210).

References
1. Chen W, Viljoen AM. Geraniol – a review of a commercially important fragrance material. S Afr J Bot 2010; 76:643-51; http://dx.doi.org/10.1016/j.sajb.2010.05.008
2. Carnesecchi S, Bras-Gonzalves R, Bradaia A, Zeisel M, Goss F, Poupon M-F, Raul F. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 2004; 215:53-9; PMID:15374632; http://dx.doi.org/10.1016/j.canlet.2004.06.019
3. Polo MP, Cresp R, de Bravo MG. Geraniol and simvastatin show a synergistic effect on a human
hepatocarcinoma cell line. Cell Biochem Funct 2011; 29:452-8; PMID:21735455; http://dx.doi.org/10.1002/cbf.1772

4. Chang MC, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2006; 2:674-81; PMID:17108985; http://dx.doi.org/10.1038/nchembio836

5. Clomburg JM, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2010; 86:6419-34; PMID:20143230; http://dx.doi.org/10.1002/cbf.1772

6. Leonard E, Lim KH, Saw PN, Koffas MA. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 2007; 73:3877-86; PMID:17468269; http://dx.doi.org/10.1128/AEM.00200-07

7. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Product Rep 1999; 16:565-74; PMID:10584331; http://dx.doi.org/10.1039/a709175c

8. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343:425-30; PMID:2010919; http://dx.doi.org/10.1038/343425a0

9. Iijima Y, Gang DR, Fridman E, Pichersky E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 2004; 134:570-9; PMID:14657409; http://dx.doi.org/10.1104/pp.103.032946

10. Fischer MJ, Meyer S, Claudel P, Perzin M, Gintelinger JF, Geritz C, Masson JE, Wercz-Reinhartd D, Hugue- ney P, Karst F. Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems. J Biotechnol 2013; 163:24-9; PMID:23108028; http://dx.doi.org/10.1016/j.jbiotec.2012.10.012

11. Oswald M, Fischer M, Dirringer N, Karst F. Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 2007; 7:413-21; PMID:17096665; http://dx.doi.org/10.1111/j.1567-1364.2006.00172.x

12. Zhou J, Wang C, Yoon S-H, Jang H-J, Choi E-S, Kim S-W. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotechnol 2014; 169:42-50; PMID:24269531; http://dx.doi.org/10.1016/j.jbiotec.2013.11.009

13. Tokuhiro K, Muramatsu M, Ohno C, Kawaguchi T, Okuta S, Muramoto N, Hira M, Takahashi H, Kondo A, Sakurada E, et al. Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2009; 75:5536-43; PMID:19592534; http://dx.doi.org/10.1128/AEM.00277-09

14. Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, Jiang X, Cheng T, Liu W, Xu X, et al. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels 2013; 6:57; PMID:23618128; http://dx.doi.org/10.1186/1754-6834-6-57

15. Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol 1991; 218:449-64; PMID:210919; http://dx.doi.org/10.1016/0022-2836(91)90724-K

16. Iijima Y, Wang G, Fridman E, Pichersky E. Analysis of the enzymatic formation of citral in the glands of sweet basil. Arch Biochem Biophys 2006; 448:141-9; PMID:16150417; http://dx.doi.org/10.1016/j.abb.2005.07.026

17. Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 2013; 6:60; PMID:23631625; http://dx.doi.org/10.1186/1754-6834-6-60

18. Kosjuma M, Ayake K, Ueda H. Importance of terminal residues on circularly permuted Escherichia coli alkaline phosphatase with high specific activity. J Biosci Bioeng 2005; 100:197-202; PMID:16158264; http://dx.doi.org/10.1263/jbb.100.197

19. Bansal VS, Vaidya S. Characterization of 2 Distinct Allyl Pyrophosphatase Activities from Rat-Liver Microsomes. Arch Biochem Biophys 1994; 315:393-9; PMID:7986083; http://dx.doi.org/10.1006/abbi.1994.1516

20. Dunn CA, O’Handley SF, Frick DN, Bessman MJ. Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 1999; 274:32318-24; PMID:10542272; http://dx.doi.org/10.1074/jbc.274.45.32318