The genome sequence of the red-headed cardinal beetle, *Pyrochroa serraticornis* (Scopoli, 1763) [version 1; peer review: 3 approved]

Duncan Sivell¹, Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Department of Life Sciences, Natural History Museum, London, UK

Abstract

We present a genome assembly from an individual male *Pyrochroa serraticornis* (the red-headed cardinal beetle; Arthropoda; Insecta; Coleoptera; Pyrochroidae). The genome sequence is 249 megabases in span. The majority (97.92%) of the assembly is scaffolded into 10 chromosomal pseudomolecules, with the X and Y sex chromosome assembled.

Keywords

Pyrochroa serraticornis, red-headed cardinal beetle, genome sequence, chromosomal, Coleoptera

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status	1	2	3
version 1	✓	✓	✓

1. **Jan Veenstra**, University of Bordeaux, Pessac, France
2. **Yeon Soo Han**, Chonnam National University, Cheongju-si, South Korea
3. **Manee M Manee**, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Sivell D: Investigation, Resources, Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Sivell D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Sivell D, Natural History Museum Genome Acquisition Lab, Darwin Tree of Life Barcoding collective et al. The genome sequence of the red-headed cardinal beetle, *Pyrochroa serraticornis* (Scopoli, 1763) [version 1; peer review: 3 approved] Wellcome Open Research 2021, 6:316 https://doi.org/10.12688/wellcomeopenres.17362.1

First published: 23 Nov 2021, 6:316 https://doi.org/10.12688/wellcomeopenres.17362.1
Species taxonomy

Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Coleoptera; Polyphaga; Cucujiformia; Pyrochroidae; Pyrochroa; *Pyrochroa serraticornis* (Scopoli, 1763) (NCBI:txid346838).

Background

Pyrochroa serraticornis (Coleoptera, Pyrochroidae), the red-headed cardinal beetle, is a medium-large (10–18 mm) dorsoventrally flattened beetle with serrate (female) to pectinate (male) antennae, soft elytra and has an abdomen that widens towards its posterior end. The red head, pronotum and elytra contrast against the black underside, legs and antennae, making this a conspicuous beetle in the field. As with other Pyrochroidae this beetle has a tarsal formula of 5-5-4 with penultimate tarsomeres bilobed (Cooter, 1991; Unwin, 1984).

Pyrochroa serraticornis is widespread across Wales and most of England, with a sparser distribution in northern and southwestern English counties (Alexander *et al.*, 2015; Brock, 2019; Buck, 1954). As a result of its general ubiquity this beetle has been illustrated in many of the popular insect guides (Brock, 2019; Burton, 1968; Chinery, 1993; Lewington, 2019; McGavin, 2005). *P. serraticornis* is common in woodlands, hedgerows and boundary habitats where there is a supply of decaying wood for the larvae. Adults are often found on herbaceous vegetation within these habitats.

The larvae live under the bark of various tree species where they feed on other insects, fungal hyphae and decaying cambium (Hůrka, 2005). (Buck, 1954) highlights oak and beech as host trees while Cooter (1991) adds elm (*Ulmus* spp.) and a rare observation of swarming males also occurred around an elm stump (Constantine, 1995). Duffy (1946) reported she often found larvae “in rotten oak logs, felled elms, willows, pear trees etc.”.

Pyrochroa larvae are distinctive, dorsoventrally flattened with forward pointing jaws and two prongs (urogomphi) extending backwards from a sclerotised plate at the end of the abdomen (Cooter, 1991; Duffy, 1946). Mollini *et al.* (2021) report that larvae of *Pyrochroa serraticornis* in central Italy are morphologically different to larvae described from Britain, raising the possibility that across Europe there may be more than one species within this taxon. The genome sequence presented here can be used to investigate whether *P. serraticornis*, as we currently recognise it, actually contains more than one species.

Genome sequence report

The genome was sequenced from one male *P. serraticornis* collected from Wigmore Park, Luton, UK (latitude 51.88378, longitude -0.36861422). A total of 26-fold coverage in Pacific Biosciences single-molecule long reads and 125-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 44 missing/missjoins and removed 2 haplotypic duplications, reducing the assembly length by 0.15% and the scaffold number by 32.76%, and increasing the scaffold N50 by 65.39%.

The final assembly has a total length of 249 Mb in 39 sequence scaffolds with a scaffold N50 of 37.2 Mb (Table 1). The majority, 97.92%, of the assembly sequence was assigned to 10 chromosomal-level scaffolds, representing 8 autosomes (numbered by sequence length), and the X and Y sex chromosome (Figure 1—Figure 4; Table 2). The assembly has a BUSCO v5.1.2 (Manni *et al.*, 2021) completeness of 99.5% (single 98.1%, duplicated 1.4%) using the endopterygota_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

| Table 1. Genome data for *Pyrochroa serraticornis*, icPyrSerr1.1. |
|---------------------|---------------------|---------------------|
| **Project accession data** | Assembly identifier | icPyrSerr1.1 |
| Species | *Pyrochroa serraticornis* |
| Specimen | icPyrSerr1 |
| NCBI taxonomy ID | NCBI:txid346838 |
| BioProject | PRJEB43530 |
| BioSample ID | SAMEA7524259 |
| Isolate information | Male, thorax |
| **Raw data accesses** | PacificBiosciences SEQUEL II | ERR6412361 |
| | 10X Genomics Illumina | ERR6054493-ERR6054496 |
| | Hi-C Illumina | ERR6054497 |
| **Genome assembly** | Assembly accession | GCA_905333025.1 |
| Accession of alternate haplotype | GCA_905333035.1 |
| Span (Mb) | 249 |
| Number of contigs | 83 |
| Contig N50 length (Mb) | 13.0 |
| Number of scaffolds | 39 |
| Scaffold N50 length (Mb) | 37.2 |
| Longest scaffold (Mb) | 50.5 |
| BUSCO* genome score | C:99.5%(S:98.1%,D:1.4%),F:0.1%,M:0.4%,n:2124 |

BUSCO scores based on the endopterygota_odb10 BUSCO set using v5.1.2. C= complete [S=single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/icPyrSerr1.1/dataset/CAJOSL01/busco.
Figure 1. Genome assembly of *Pyrochroa serraticornis*, icPyrSerr1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 249,414,617 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest scaffold present in the assembly (50,529,459 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (37,181,734 and 13,582,945 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the endopterygota_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/icPyrSerr1.1/dataset/CAJOSL01/snail.

Methods
A single male *P. serraticornis* was collected from Wigmore Park, Luton, UK (latitude 51.88378, longitude -0.36861422) by Duncan Sivell, Natural History Museum, using a net. The sample was identified by the same individual, and stored at 4°C for 2 hours before preservation on dry ice. Unfortunately, as this specimen was collected during a COVID-19 lockdown, no image was captured prior to preservation.

DNA was extracted at the Tree of Life laboratory, Wellcome Sanger Institute. The icPyrSerr1 sample was weighed and dissected on dry ice with tissue set aside for Hi-C sequencing.
Thorax tissue was disrupted using a Nippi Powermasher fitted with a BioMasher pestle. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X
Figure 3. Genome assembly of Pyrochroa serraticornis, icPyrSerr1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/icPyrSerr1.1/dataset/CAJOSL01/cumulative.

ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud DNA sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the WSI on Pacific Biosciences SEQUEL II and Illumina HiSeq X instruments. Hi-C
Table 2. Chromosomal pseudomolecules in the genome assembly of *Pyrochroa serraticornis*, icPyrSerr1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
HG995152.1	1	50.53	33.8
HG995153.1	2	39.27	33.9
HG995154.1	3	37.18	34.4
HG995155.1	4	23.67	34.7
HG995156.1	5	23.09	34.6
HG995157.1	6	21.99	34.7
HG995158.1	7	21.72	35.1
HG995159.1	8	13.58	34.2
HG995160.1	X	11.35	34.1
HG995161.1	Y	1.83	34.9
HG995162.1	MT	0.02	17.8
-	Unplaced	5.18	37.9

Genome assembly

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation (Howe et al., 2021) was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Ethics/compliance issues

The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to,
the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1.0	Ullano-Silva et al., 2021
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpg/PretextView
BlobToolKit	2.6.2	Challis et al., 2020

Data availability

European Nucleotide Archive: Pyrochroa serraticornis. Accession number PRJEB43530; https://identifiers.org/ena.ebi.mbl/PRJEB43530.

The genome sequence is released openly for reuse. The *P. serraticornis* genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the Natural History Museum Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.4790043.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5377053.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.

References

Alexander K, Dodd S, Denton JS: A Review of the Beetles of Great Britain: The Darkling Beetles and Their Allies Species Status No. 18. Natural England Commissioned Report NECR. 2015; 148.

Brock PD: A Comprehensive Guide to Insects of Britain and Ireland. Pisces Publications, 2019.

Burton J: The Oxford Book of Insects. Oxford U.P, 1968.

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361-74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: HiGlass: Web-Based Visual Evaluating genome assemblies. Bioinformatics. 2016; 32(16): 2508-10. PubMed Abstract | Publisher Full Text | Free Full Text

Chinery M: Collins Guide to the Insects of Britain and Western Europe. London: Collins, 1993.

Constantine B: Swarming of Pyrochroa serraticornis (Scopoli) (Pyrochroidae) on an elm stump. The Coleopterist. 1995; 4(1): 2. Reference Source

Cooter J: A Coleopterist’s Handbook. (3rd Edition), Amateur Entomologists Society,1991. Reference Source

Duffy EA: Notes on the British species of Pyrochroa (Col., Pyrochroidae) with a key to their first-state larvae. Entomologists Monthly Magazine. 1946; 82: 92-93.

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907. 2012. Reference Source

Ghurye J, Bie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guarn D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896-98. PubMed Abstract | Publisher Full Text | Free Full Text

Hůrka K: Beetles of the Czech and Slovak Republics. Kabourek, 2005. Reference Source

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual
Exploration and Analysis of Genome Interaction Maps. *Genome Biol.* 2018; 19(1): 125. [PubMed Abstract](#) | [Publisher Full Text](#) | [Free Full Text](#)

Lewington R: *Guide to Garden Wildlife* (2nd Edition). Bloomsbury USA, 2019. [Reference Source](#)

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Mol Biol Evol.* 2021; 38(10): 4647–54. [PubMed Abstract](#) | [Publisher Full Text](#) | [Free Full Text](#)

McGavin G: *Insects and Spiders*. Dorling Kindersley, 2005.

Molfini M, Giulio AD, Mancini E, et al.: Larval Features Illuminating Adult Taxonomy? Case Study in the European Cardinal Beetle Species of the Genus Pyrochroa (Coleoptera: Pyrochroidae: Pyrochroinae). *Zootaxa.* 2021; 4966(3): 337348. [PubMed Abstract](#) | [Publisher Full Text](#) | [Free Full Text](#)

Rao SS, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. *Cell.* 2014; 159(7): 1665–80. [PubMed Abstract](#) | [Publisher Full Text](#) | [Free Full Text](#)

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. Zenodo. 2021. [Publisher Full Text](#)

Unwin DM: *A Key to the Families of British Coleoptera and Strepsiptera*. *Field Studies.* 1984; 6(1): 149–97.
The study involves constructing a genome assembly of the red-headed cardinal beetle, *Pyrochroa serraticornis*. The assembled genome spans 249 megabases, with 97.92% scaffolded into 10 chromosomal pseudomolecules, including the X and Y sex chromosomes. A combination of PacBio and Illumina sequencing reads was used. This high-quality genome data is significant for understanding the genetic makeup of this species and potentially identifying more than one species within this taxon.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics, genomics and evolutionary biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Yeon Soo Han
Chonnam National University, Cheongju-si, Chungcheongbuk-do, South Korea

The manuscript on "The genome sequence of the red-headed cardinal beetle, *Pyrochroa serraticornis*" is well written and organized with a solid data sets, and thus valuable for the future readers in general and scientific community. It thus appears that it may worth to be acceptable. However, I recommend the authors to rewrite the biological significance of the genome data on *Pyrochroa serraticornis* described in this manuscript.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Insect molecular biology, Functional genomics of the beetle insect, *Tenebrio molitor*, Transcriptomics and Genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Jan Veenstra
INClA, UMR 5287, CNRS, University of Bordeaux, Pessac, France

This short and succinct manuscript describes the genome sequence of *Pyrochroa serraticornis*,
commonly known as the red-headed cardinal beetle. The combined use of PacBio and Illumina sequencing on a single male yielded a high quality genome assembly for one haplotype, while contigs for the alternative haplotype have also been assembled. There is really not much more to say, except that one is impressed by the technical advances made over the last two decades that makes it possible to so readily obtain such high quality data. It would have been nice if all the Coleoptera genomes I analyzed two years ago for neuropeptide genes would have been of the same quality.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.