ON THE DRINFELD TWIST FOR QUANTUM $sl(2)$

Ludwik Dąbrowski
SISSA, Via Beirut 2-4, Trieste, Italy.
E-MAIL: DABROW@SISSA.IT

Fabrizio Nesti
SISSA, Via Beirut 2-4, Trieste, Italy.
E-MAIL: NESTI@SISSA.IT

Pasquale Siniscalco
SISSA, Via Beirut 2-4, Trieste, Italy.
E-MAIL: SINIS@SISSA.IT

Abstract

An isomorphism, up to a twist, between the quasitriangular quantum enveloping algebra $U_h(sl(2))$ and the (classical) $U(sl(2))[[h]]$ is discussed. The universal twisting element \mathcal{F} is given up to the second order in the deformation parameter h.

SISSA 130/96/FM
1 Introduction

In 1989 Drinfeld showed by cohomological arguments that, as a formal series in a deformation parameter \(h \), all the quantum symmetries (quasitriangular Hopf algebras) \(U_h(g) \), where \(g \) is a semisimple Lie algebra, are isomorphic with \(U(g)[[h]] \), up to a twist \(\mathcal{F} \) [1, 2]. He also posed a problem (cf. [2]) to find a concrete pair \((m, \mathcal{F})\), consisting of an isomorphism \(m \) and a universal twisting element \(\mathcal{F} \). This turns out to be a formidable task, which as far as we know, is not yet solved in general. The only case when it has been performed concerns the q-deformed Heisenberg algebra \(\mathcal{H}_q(1) \) [3]. The next important case to be investigated is the quantum deformation of \(sl(2) \) (as a matter of fact \(\mathcal{H}_q(1) \) can be obtained from it by a contraction). As far as \(U_h(sl(2)) \) is regarded, a candidate for the isomorphism \(m \) is actually known [4]. Also, a series of related particular matrix solutions for the twist element \(\mathcal{F} \) were reported, namely \(\mathcal{F} \) in the representations \(\frac{1}{2} \otimes j \), where \(\frac{1}{2} \) denotes the fundamental representation and \(j \) denotes the irreducible \((2j+1)\)-dimensional representation of \(sl(2) \) [3, 4], (see also [4]). Moreover, in [4] a sort of a ‘semi-universal’ form of \(\mathcal{F} \) has been given, i.e. the expression for \((\frac{1}{2} \otimes \text{id})(\mathcal{F})\). However, the universal element \(\mathcal{F} \) itself has not been known beyond the first order in the deformation parameter \(h \) (the first order coefficient being given by the classical \(r \)-matrix \(r \)). In this letter, we investigate and report the solution up to the second order in \(h \). In the subsequent sections we separately discuss the problem on the levels of algebra, Hopf algebra and quasitriangular Hopf algebra.

It is worth to mention that evaluating \(\mathcal{F} \) in the representation \(\rho_L \otimes \rho_L \), where \(\rho_L \) is the representation of \(sl(2) \) in terms of the left-invariant vector fields on \(SL(2) \), one obtains a quantization of the Lie-Poisson bracket on \(SL(2) \) given by \(r \) [4]. In particular, the second coefficient of \((\rho_L \otimes \rho_L)(\mathcal{F})\) provides an interesting second order (bi)differential operator on \(SL(2) \).

2 Algebra level

We start by specifying our conventions about Lie algebra \(sl(2) \). The generators are \(H, E, F \) with the commutation relations:

\[
[H, E] = E, \quad [H, F] = -F, \quad [E, F] = H.
\] (2.1)

As a consequence we have the following exchange relations between any polynomial \(\phi(H) \) in \(H \) and the powers of \(E \) and \(F \):

\[
\phi(H)E^n = E^n\phi(H + n), \quad \phi(H)F^n = F^n\phi(H - n).
\] (2.2)
The quadratic Casimir element in the universal enveloping algebra $U(sl(2))$ is

\[I = 2EF + H(H-1) = 2FE + H(H+1) = j(j+1) \, . \] (2.3)

A possible basis for the enveloping algebra is provided by the set \{${H^l}E^mF^n$\}, but using the relations (2.3) we can pass to the basis given by \{${H^a}P^bE^c \oplus H^dI^eF^f$\}. This basis will be more suitable for our computations.

Next, the generators J^+, J^-, J^0 of the q-deformed algebra obey the following commutation relations:

\[[J^0, J^+] = J^+, \quad [J^0, J^-] = -J^-, \quad [J^+, J^-] = \frac{1}{2}[2J^0] \, . \] (2.4)

where \([x]\), the q-analogue of x, is defined as:

\[[x] = \frac{q^x - q^{-x}}{q - q^{-1}} \, . \] (2.5)

The ‘deforming maps’ introduced in [4], provide (cf.[10]) an isomorphism m between $U_h(sl(2))$ and $U(sl(2))[h]$ which is given by mapping the generators J^0, J^+, J^- to the following combinations of H, E, F

\[J^0 \rightarrow H, \quad J^+ \rightarrow \phi^+ E, \quad J^- \rightarrow \phi^- F = F\phi^+ \, , \] (2.6)

where

\[\phi^\pm = \sqrt{\frac{(j \pm H)(1 + j \mp H)}{(j \pm H)[1 + j \mp H]}} \, . \] (2.7)

We remark that (2.7) is a well defined expression, as the inverse and square root operations are admissible in the h-adic topology. In fact, with $q = e^h$, we can write the expansion in h up to the second order as

\[\phi^\pm = 1 + \frac{1}{12}h^2 (2I + 2H(H \mp 1) - 1) + o(h^3) \doteq 1 + h^2 \phi^+_2 + o(h^3) \, . \] (2.8)

It will be useful to mention [11], that any other isomorphism m' can differ at most by a similarity via an invertible element $M \in U(sl(2))[h]$, i.e.

\[m' = MmM^{-1} \, . \] (2.9)

We conclude this section with few remarks. Note that (2.6) is in fact valid also for the *-algebras $U_h(su(2))$ and $U(su(2))[h]$, since it fulfills the relevant hermicity condition. In this respect, more general isomorphisms belonging to the one-parameter family introduced in [4] do not satisfy such a hermicity requirement. In addition, they are not suitable for our purposes since the coefficients of the expansion in h are not polynomial in the generators.
3 Hopf algebra level

The enveloping algebra $U(sl(2))[[h]]$ with relations \((2.1)\) when equipped with the usual coproduct
\[
\Delta(x) = 1 \otimes x + x \otimes 1, \quad \forall x \in sl(2), \tag{3.10}
\]
becomes a Hopf algebra. In the quantum case, the coproduct in $U_h(sl(2))$ is defined as:
\[
\Delta_q(J^0) = 1 \otimes J^0 + J^0 \otimes 1,
\]
\[
\Delta_q(J^\pm) = J^\pm \otimes q^{J^0} + q^{-J^0} \otimes J^\pm. \tag{3.11}
\]
(The counit and coinverse are not needed for our purposes).

The main part of Drinfeld Theorem guarantees that these two classical and quantum coproducts are related via a twist by an invertible $F \in (U(sl(2)) \otimes U(sl(2)))[[h]]$.

More precisely, defining
\[
\tilde{\Delta}_q = (m \otimes m) \circ \Delta_q \circ m^{-1} \tag{3.12}
\]
we have
\[
\tilde{\Delta}_q(x) = F \Delta(x) F^{-1}, \quad \forall x \in U(sl(2))[[h]] \tag{3.13}
\]
It is sufficient (and necessary) to verify this equation by substituting for x the image by m of the generators J^0, J^+, J^-. We remark that there is no loss of generality in restricting ourselves to a specific isomorphism \((2.6)\). Indeed, had we used another isomorphism m', it turns out from \((2.9)\) that the corresponding F' would be given by $(M \otimes M)\tilde{\Delta}_q(M)F$.

As it is known (cf. \[9\]) a particular solution up to first order in h is just $F = 1 + hr$, where
\[
r = F \otimes E - E \otimes F \tag{3.14}
\]
is the standard classical r-matrix. More generally and up to order two in h we write
\[
F = F_0 + hF_1 + h^2F_2 + o(h^3), \tag{3.15}
\]
with F_i belonging to $U(sl(2)) \otimes U(sl(2))$.

Using \((2.8)\), we obtain the following coupled system of equations to solve by recursion:
\[
[\mathcal{F}_0, \Delta H] = 0,
\]
\[
[\mathcal{F}_0, \Delta E] = 0,
\]
\[
[\mathcal{F}_0, \Delta F] = 0. \tag{3.16}
\]
\[
[\mathcal{F}_1, \Delta H] = 0,
\]
\[
[\mathcal{F}_1, \Delta E] = (E \otimes H - H \otimes E)\mathcal{F}_0,
\]
\[
[\mathcal{F}_1, \Delta F] = (F \otimes H - H \otimes F)\mathcal{F}_0. \tag{3.17}
\]
\[[\mathcal{F}_2, \Delta H] = 0 \, , \]
\[[\mathcal{F}_2, \Delta E] = (E \otimes H - H \otimes E)\mathcal{F}_1 - \mathcal{F}_0 \Delta \phi_2^+ \Delta E \]
\[+ \left(\frac{1}{2} E \otimes H^2 + \frac{1}{2} H^2 \otimes \phi_2^+ E + \phi_2^+ E \otimes 1 + 1 \otimes \phi_2^+ E \right) \mathcal{F}_0 \, , \]
\[[\mathcal{F}_2, \Delta F] = (F \otimes H - H \otimes F)\mathcal{F}_1 - \mathcal{F}_0 \Delta \phi_2^+ \Delta F \]
\[+ \left(\frac{1}{2} F \otimes H^2 + \frac{1}{2} H^2 \otimes \phi_2^+ F + \phi_2^+ F \otimes 1 + 1 \otimes \phi_2^+ F \right) \mathcal{F}_0 . \]

(3.18)

Besides \(\mathcal{F}_0 = 1 \otimes 1 \), any arbitrary polynomial \(f_0 \) in the variables \((I \otimes 1, 1 \otimes I, \Delta I)\) satisfies equations (3.16). Due to linearity of the equation we can write then:

\[\mathcal{F}_0 = 1 \otimes 1 + f_0 . \]

(3.19)

As regards \(\mathcal{F}_1 \), besides the solution \(\tilde{\mathcal{F}}_1 = r \) of the equations (3.17) (with \(f_0 = 0 \)), a solution for the general case is given by

\[\mathcal{F}_1 = \tilde{\mathcal{F}}_1 (1 \otimes 1 + f_0) + f_1 , \]

(3.20)

with \(f_1 \) being a solution of (3.16).

Similarly for \(\mathcal{F}_2 \): if one finds a particular solution \(\tilde{\mathcal{F}}_2 \) of (3.18) (with \(f_0 = f_1 = 0 \)), the most general one is given by

\[\mathcal{F}_2 = \tilde{\mathcal{F}}_2 (1 \otimes 1 + f_0) + \tilde{\mathcal{F}}_1 f_1 + f_2 , \]

(3.21)

with \(f_2 \) solution of (3.16).

The possibility of adding pure kernel (i.e. satisfying the homogeneous equations (3.16)) terms \(f_1 \) and \(f_2 \) comes from the fact that the last two equations for \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are linear non homogeneous, whose associated homogeneous ones are the last two equations in (3.16).

Now we proceed to exhibit the aforementioned particular solutions \(\tilde{\mathcal{F}}_i \) of this set of equations. In \(U(sl(2)) \otimes U(sl(2)) \) we use the basis

\[\{ H^{a_1} I^{b_1} E^{c_1} \oplus H^{a_2} I^{b_2} E^{c_2} \} \otimes \{ H^{a_2} I^{b_2} E^{c_2} \oplus H^{a_2} I^{b_2} E^{c_2} \} . \]

In order to simplify the notation, for any \(x \in U(sl(2)) \) we set \(x_1 = x \otimes 1, x_2 = 1 \otimes x \). From \([\mathcal{F}_i, \Delta H] = 0\), for all \(i \), it is easily seen that any \(\mathcal{F}_i \) is of the form \(\mathcal{F}_i = a_d E_i^d F_i^d + b_d E_i^d F_i^d \), where \(a_d \) and \(b_d \) are polynomials in \(H_1, H_2, I_1, I_2 \).

We’ve already mentioned that \(\tilde{\mathcal{F}}_0 = 1 \) is a solution for equations (3.16).

Next we pass to the first order term. For simplicity we drop the index \(i = 1 \) in the following formulae and define

\[\delta_1(a_k) = a_k(H_1, H_2, I_1, I_2) - a_k(H_1 - 1, H_2, I_1, I_2) , \]
\[\delta_2(a_k) = a_k(H_1, H_2, I_1, I_2) - a_k(H_1, H_2 - 1, I_1, I_2) , \]
and similarly for \(b_k \). The equations (3.17) give the following system of coupled partial difference equations for the coefficients \(a_i \) and \(b_i \):

\[
\begin{align*}
\delta_1(a_{n-1}) &= -\frac{1}{2}(I_2 + H_2 - H_2^2)\delta_2(a_n) + (nH_2 + \frac{n^2-n}{2})a_n, \\
\delta_2(a_{n-1}) &= -\frac{1}{2}(I_1 - H_1 - H_1^2)\delta_1(a_n(H_1+1, H_2-1)) + (nH_1 - \frac{n^2-n}{2})a_n(H_1, H_2-1), \\
\delta_1(b_{n-1}) &= -\frac{1}{2}(I_2 - H_2 - H_2^2)\delta_2(b_n(H_1-1, H_2+1)) + (nH_2 - \frac{n^2-n}{2})b_n(H_1-1, H_2), \\
\delta_2(b_{n-1}) &= -\frac{1}{2}(I_1 + H_1 - H_1^2)\delta_1(b_n) + (nH_1 + \frac{n^2-n}{2})b_n. \\
\end{align*}
\]

for any \(n \geq 2 \), whereas for \(n = 1 \) we have:

\[
\begin{align*}
\delta_1(a_0 + b_0) &= -\frac{1}{2}(I_2 + H_2 - H_2^2)\delta_2(a_1) + H_2a_1 + H_2, \\
\delta_1(a_0 + b_0) &= -\frac{1}{2}(I_2 - H_2 - H_2^2)\delta_2(b_1(H_1-1, H_2+1)) + H_2b_1(H_1-1, H_2) - H_2, \\
\delta_2(a_0 + b_0) &= -\frac{1}{2}(I_1 - H_1 - H_1^2)\delta_1(a_1(H_1+1, H_2-1)) + H_1a_1(H_1, H_2-1) + H_1, \\
\delta_2(a_0 + b_0) &= -\frac{1}{2}(I_1 + H_1 - H_1^2)\delta_1(b_1) + H_1b_1 - H_1. \\
\end{align*}
\]

In order to find a particular solution of this system of equations, one can fix a couple \(\{N, K\} \) such that \(a_n = b_k = 0, \forall n \geq N \) and \(\forall k \geq K \), in order to set the maximum degree for the polynomials in \(E_1^+F_2^+ \) and \(E_2^+F_1^+ \), and then solve recursively the equations for the lower degree terms by partial finite integration.

By making a minimal choice, putting \(a_n = b_n = 0 \), for any \(n \geq 2 \), we recover the solution:

\[
\tilde{\mathcal{F}}_1 = r, \\
\]

with \(r \) given by (3.14). Consistently with what we explained in the previous section, had we decided to fix our cut-off at higher degree terms we would have adjoined to \(\tilde{\mathcal{F}}_1 \) some \(f_1 \) solution of the pure kernel part.

As regards \(\mathcal{F}_2 \), the structure of the equations for \(a_l \) and \(b_l \) remains unchanged for \(n \geq 3 \), whereas for \(n = \{2, 1\} \) some extra term appear, due to \(\phi_2^+ \) and \(\phi_2^- \).

We skip the explicit (and lengthy) form of them, and we just give the expression for a particular solution:

\[
\tilde{\mathcal{F}}_2 = \frac{1}{2}(I \otimes H^2 + H^2 \otimes I) + \frac{1}{3}(E \otimes HF - HE \otimes F + HF \otimes E - F \otimes HE) \\
+ \frac{1}{6}H \otimes H(1 - 3P) - \frac{11}{24}P + \frac{1}{2}((1 + P)^2 - 1 - 2I \otimes I), \\
\]

where

\[
P = 2(E \otimes F + F \otimes E + H \otimes H)
\]

is the Cartan-Killing metric.

Applying representations of \(sl(2) \) we can obtain explicit matrix expressions for \(\tilde{\mathcal{F}} \). It
turns out that our particular solution \tilde{F}, when composed with $\frac{1}{2} \otimes \text{id}$, reproduces the semi-universal solution presented in [3] in terms of 2×2 matrices with coefficients in $U(sl(2))[\hbar]$ (up to the second order in \hbar). Thus, as a consequence it also coincides with the matrix solutions in the representations $\frac{1}{2} \otimes j$.

We remark that in the literature one may find often other properties of the twisting element F. For instance, F may be supposed to satisfy the

i) ‘normalization’ condition

$$(\varepsilon \otimes \text{id})(F) = (\text{id} \otimes \varepsilon)(F) = 1,$$

sometimes also expressed as $F(x, 0) = F(0, y) = 1$. With the standard definition of counit ε this implies $F_0 = 1$, i.e. $f_0 = 0$.

ii) unitarity condition $\sigma(F)F = 1$. In our case F fulfills this condition in the particular representation $\frac{1}{2} \otimes \frac{1}{2}$, but not in general.

iii) condition $(F \otimes \text{id})(\Delta \otimes \text{id})F = (\text{id} \otimes F)(\text{id} \otimes \Delta)F$. In our case F does not fulfill it, not even in a representation (except the trivial one). We remark that this condition is a stronger requirement with respect to the coassociativity of the twisted coproduct, which in our case follows directly from the definition.

4 Quasitriangular Hopf algebra level

From the Drinfeld theorem, the quantum universal R-matrix

$$R_q = q^{2j_0 \otimes j^0} \sum_{n=0}^{\infty} q^{-n(n-1)/2} \frac{2^n(1-q^{-2})^n}{[n]!} (q^{j_0} J^+ \otimes q^{-j_0} J^-)^n,$$

and the undeformed universal R-matrix, though not the simple $1 \otimes 1$ but rather,

$$R = q^P,$$

with P given by (3.26), should be related by the isomorphism up to a twist. Thus, setting

$$\tilde{R}_q \doteq (m \otimes m)(R_q),$$

F is supposed to verify the equation

$$\tilde{R}_q F = \sigma(F) R,$$

where σ is the flip operator and $[n]! \doteq [n][n-1] \ldots 1$.

We have the following expansions

$$R = 1 + \hbar R^{(1)} + \hbar^2 R^{(2)} + o(\hbar^3)
= 1 + \hbar(2E \otimes F + 2F \otimes E + 2H \otimes H)
+ \hbar^2(-H \otimes H - 2E \otimes F - 2F \otimes E + 2E^2 \otimes F^2 + 2F^2 \otimes E^2
- 2E \otimes HF - 2HF \otimes E + 2F \otimes HE + 2HE \otimes F + 4HE \otimes HF + 4HF \otimes HE
+ 3H^2 \otimes H^2 + I \otimes I - I \otimes H^2 - H^2 \otimes I),$$
\[\widetilde{R}_q = 1 + hR_q^{(1)} + h^2 R_q^{(2)} + o(h^3) \]
\[= 1 + h(4E \otimes F + 2H \otimes H) + h^2(2H^2 \otimes H^2 - 4E \otimes F - 4E \otimes HF + 8E^2 \otimes F^2 + 4HE \otimes F + 8HE \otimes HF) . \] (4.33)

At the zero-order in \(h \), choosing \(f_0 = 0 \), (4.31) is identically satisfied \((1 = 1)\).

At the order one we have the following equation:
\[\sigma(f_1) - f_1 = R_q^{(1)} - R^{(1)} - \left(\sigma(\widetilde{F}_1) - \widetilde{F}_1 \right) . \] (4.34)

It comes from direct computations that the right-hand-side is zero, which implies that \(f_1 \) must be symmetric.

At the second order we obtain
\[\sigma(f_2) - f_2 = \widetilde{F}_2 - \sigma(\widetilde{F}_2) - \sigma(\widetilde{F}_1)R^{(1)} + R_q^{(1)} \widetilde{F}_1 + R_q^{(2)} - R^{(2)} . \] (4.35)

Again the right-hand-side is zero, and hence also \(f_2 \) must be symmetric.

Since, in particular, \(f_1 \) and \(f_2 \) can be equal to zero, we have that our particular solution \(\widetilde{F} \) satisfies (4.31).

5 Conclusions

In accordance with the theorem of Drinfeld, we have exhibited an isomorphism from \(U_h(sl(2)) \) to \(U(sl(2))[[h]] \) and (up to the second order in \(h \)) a class of universal twisting elements \(F \in (U(sl(2)) \otimes U(sl(2)))[[h]] \). Such \(F \) perform a gauge transformation (twist) from the ordinary coproduct and from the universal R-matrix \(R = q^P \) in \(U(sl(2))[h] \) to their quantum counterparts in \(U_h(sl(2)) \).

We have identified a particular universal element \(\widetilde{F} \) in this class which, after applying the representation \(\frac{1}{2} \) to its first leg, coincides with the ‘semi-universal’ solution in [8] (up to the second order in \(h \)). Consequently, it also coincides with the known matrix solutions in the representations \(\frac{1}{2} \otimes j \).

The computation of the higher order terms, with the help of ‘Mathematica’, is in progress.
References

[1] V.G. Drinfeld “Quasi-Hopf Algebras and Knizhnik-Zamolodchikov equations” Res. Rep. Phys., 1989, Springer

[2] V.G. Drinfeld “Quasi-Hopf Algebras” Leningrad Math. J. 1990 1 (6) 1419–1457

[3] M. Bonechi, R. Giachetti, E. Sorace & M. Tarlini Commun. Math. Phys. 1995 169 (243) 627–634

[4] T.L. Curtright & C.K. Zachos “Deforming maps for quantum algebras” Phys. Lett. B 1990 3 (243) 237–244

[5] T.L. Curtright “Deformations, Coproducts, and U” in Quantum Groups T.L. Curtright, D.B. Fairlie & C.K. Zachos eds World Scientific 1991

[6] C.K. Zachos “Quantum Deformations” in Quantum Groups T.L. Curtight, D.B. Fairlie & C.K. Zachos eds. World Scientific 1991

[7] R.A. Engeldinger “On the Drinfeld-Kohno Equivalence of groups and Quantum Groups” Prep. LMU-TPW 95-13 (q-alg/9509001)

[8] T.L. Curtright, G.I. Ghandour, C.K. Zachos “Quantum algebra deforming maps, Clebsch-Gordan coefficients, coproducts, R and U matrices” J. Math. Phys. 1991 32 (3) 676–688

[9] L.A. Takhtajan “Lectures on Quantum Groups” in Introduction to quantum group and integrable massive models of quantum field theory M. Ge & B. Zhao eds. World Scientific 1989

[10] L. Dąbrowski “Drinfeld twisting and nonstandard quantum groups” in Proc. 10th Naz.Conv.Gen.Rel., Bardonecchia 1992; 661-665, World Scientific

[11] C. Kassel Quantum Groups Springer-Verlag 1995