Active Information Acquisition

He He
University of Maryland, College Park
Paul Mineiro & Nikos Karampatziakis
Microsoft Cloud and Information Services Lab

Overview

Dynamically seek information needed most

- Adaptive: selection of next information depends on past information and intermediate predictions
- Cost-efficient: stop and output results as soon as enough information has been acquired

Problem formulation

- State: information acquired so far and intermediate predictions
- Action: get a new piece of information or stop (and output current prediction)
- Loss: task loss + \(\lambda \cdot \) information cost

Method

Our goal is to learn

- Task predictor: takes in partial input, outputs (intermediate) prediction
- Information selector: takes in a state representation, outputs the next action

Learning to Search (Daumé III et al, 2014)

- An imitation learning framework via online cost-sensitive classification
- Explore by rolling in with learned policy; assign credit by rolling out with the reference policy
- Reference policy: greedily choose the next action that yields the minimum immediate loss
- Jointly learn the task predictor and the information selector

Problem formulation

- When to stop: sentiment classification on Amazon book reviews
 - Read a review from the beginning; 2 actions (stop and continue)
 - Task predictor: bag-of-words; one-against-all (5 classes)
- Where to focus: image recognition on PASCAL VOC 2011
 - Divide an image into 5x5 patches; reveal one patch at a time; 26 actions (patch ID and stop)
 - Patch aggregation: linear logistic regression using patch features from last layer of CNN
 - Baseline: heuristically selected patches (going from middle to outer part)

TL;DR

- When to stop: sentiment classification on Amazon book reviews
 - Read a review from the beginning; 2 actions (stop and continue)
 - Task predictor: bag-of-words; one-against-all (5 classes)

TB;DL

- Where to focus: image recognition on PASCAL VOC 2011
 - Divide an image into 5x5 patches; reveal one patch at a time; 26 actions (patch ID and stop)
 - Patch aggregation: linear logistic regression using patch features from last layer of CNN
 - Baseline: heuristically selected patches (going from middle to outer part)

Low budget: focus on the middle part; less dynamic
High budget: explore outer part; more dynamic