Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer

L Quaye1, H Song2, SJ Ramus1, A Gentry-Maharaj1, E Høgdall3, RA DiCioccio4, V McGuire5, AH Wu6, DJ Van Den Berg7, MC Pike8, E Wozniak1, JA Doherty9, MA Rossing7, RB Ness8, KB Moysich4, C Høgdall9, J Blaakaer10, The Ovarian Cancer Association Consortium, DF Easton11, BAJ Ponder2, IJ Jacobs1, U Menon1, AS Whitemore4, S Krüger-Kjaer13, CL Pearce6, PDP Pharoah2 and SA Gayther*,1

1Gynaecological Oncology Department, UCL EGA Institute for Women’s Health, University College London, London, UK; 2Strangeways Research Laboratory, CR-UK Department of Oncology, University of Cambridge, Cambridge, UK; 3Department of Vrhus, Hormones and Cancer, Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark; 4Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA; 5Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA; 6Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA; 7JD Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 8Department of Epidemiology and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; 9Gynaecology Clinic, The Juliane Marie Centre, Righshospitalet, University of Copenhagen, Denmark; CR-UK; 10Department of Gynaecology and Obstetrics, Aarhus University Hospital, Skejby, Aarhus, Denmark; 11Department of Oncology, Strangeways Research Laboratory, Genetic Epidemiology Unit, University of Cambridge, Cambridge, UK

Low–moderate risk alleles that are relatively common in the population may explain a significant proportion of the excess familial risk of ovarian cancer (OC) not attributed to highly penetrant genes. In this study, we evaluated the risks of OC associated with common germline variants in five oncogenes (BRAF, ERBB2, KRAS, NMI and PIK3CA) known to be involved in OC development. Thirty-four tagging SNPs in these genes were genotyped in ~1800 invasive OC cases and 3000 controls from population-based studies in Denmark, the United Kingdom and the United States. We found no evidence of disease association for SNPs in BRAF, KRAS, ERBB2 and PIK3CA when OC was considered as a single disease phenotype; but after stratification by histological subtype, we found borderline evidence of association for SNPs in KRAS and BRAF with mucinous OC and in ERBB2 and PIK3CA with endometrioid OC. For NMI, we identified a SNP (rs11683487) that was associated with a decreased risk of OC (unadjusted \(P\)dominant = 0.004). We then genotyped rs11683487 in another 1097 cases and 1792 controls from an additional three case–control studies from the United States. The combined odds ratio was 0.89 (95% confidence interval (CI): 0.80–0.99) and remained statistically significant (\(P\)dominant = 0.032). We also identified two haplotypes in ERBB2 associated with an increased OC risk (\(P\)global = 0.034) and a haplotype in BRAF that had a protective effect (\(P\)global = 0.005). In conclusion, these data provide borderline evidence of association for common allelic variation in the NMI with risk of epithelial OC.

British Journal of Cancer (2009) 100, 993–1001. doi:10.1038/sj.bjc.6604947 www.bjcancer.com

Published online 24 February 2009
© 2009 Cancer Research UK

Keywords: risk of ovarian cancer; polymorphism; oncogene; association studies

Globally, ovarian cancer (OC) is responsible for approximately 125,000 deaths each year (Parkin et al., 2005). The risk to first-degree relatives of an OC case is increased above population rates (Stratton et al., 1997) and twin studies suggest that genes are more important than shared environment (Lichtenstein et al., 2000); however, most cases occur without any obvious evidence of inherited susceptibility (i.e., they appear to be sporadic). The two highly penetrant susceptibility genes BRCA1 and BRCA2 are responsible for approximately half of all families containing two or more ovarian cancer cases (Ford et al., 1998; Gayther et al., 1999; Ramus et al., 2007), but these genes account for less than 40% of the familial excess risk of OC (Antoniou and Easton, 2006). The remaining familial risks are thought to be due to combinations of multiple alleles that confer moderate- or low-penetrance susceptibility (Pharoah et al., 2002).

The most widely used approach to identify moderate/low-risk susceptibility alleles for cancer has been to study candidate genes in biologically relevant pathways. Proto-oncogenes are essential for normal cell function, particularly in the regulation of cell division, proliferation, survival, motility and apoptosis. Activating mutations or amplification of these genes generally elevates growth factor production and stimulates cell mitosis leading to neoplastic transformation (Rhim, 1988; Høgdall et al., 2003a). To date, few studies have reported on the OC risks associated with germline genetic variation in proto-oncogenes. A variant of borderline significance has been reported in the putative oncogene AURKA.
(earlier known as STK15) (Dicicco et al., 2004). However, this was not confirmed in a larger consortium study (Ramus et al., 2008). Most of the oncogenes known to be altered in OC development have not yet been studied.

Of the oncogenes known to be involved in OC, KRAS is the most frequently mutated (Forbes et al., 2006). KRAS functions in the receptor tyrosine kinase pathway (Geminigiani et al., 2003) and several other genes that function in this pathway are mutated in multiple tumour types (Cuatrecasas et al., 1997). Activating mutations of KRAS appear to be an early event in OC development, but predominantly tumours of the mucinous histological subtype (Geminigiani et al., 2003). Mutations in codons 12 and 13 have been detected in approximately 50% of mucinous OCs (Geminigiani et al., 2003). Mutations in codon 12 were first described in melanomas, and the resulting mutation creates a downstream effector of KRAS and is critical in the transduction of cell growth signals (Cuatrecasas et al., 1998). Overexpression of BRAF has been found in a variety of cancers, and mutations have been reported in 12% of OCs (Geminigiani et al., 2003; Russell and McCluggage, 2004; Sieben et al., 2004).

PIK3CA is the catalytic subunit of the lipid kinase phosphatidylinositol-3-kinase (PIK), which is involved in the regulation of cell proliferation, adhesion transformation, survival, apoptosis and motility (Volinia et al., 1994; Fruman et al., 1998; Cantley, 2002). The helical and kinase domains of PIK3CA are hotspots for mutations, which have been found in multiple tumour types including ovary, breast, lung, brain, colon and stomach (Müller et al., 2007). PIK3CA mutations have been shown to correlate with increased gene expression in several OC cell lines. Detectable amplification of the gene has also been shown in 58% of ovarian tumours using fluorescence in situ hybridisation (Shayesteh et al., 1999).

The human epidermal growth factor receptor-2 gene, ERBB2 (HER-2/neu), is a transmembrane protein that acts as a growth factor receptor and is involved in cell proliferation and cell differentiation (Wu et al., 2004). Breast, prostate, lung, gastrointestinal, kidney, liver and bladder cancers have all shown an elevated expression of ERBB2 (Wu et al., 2004). For OC, 20–30% of primary stage III/IV tumours show ERBB2 overexpression (Hellstrom et al., 2001). Protein expression using antibody staining on a subset of ovarian tumours from the MALOVA study showed that 39% of the carcinomas overexpressed ERBB2 (Hodgall et al., 2003b).

The MYC family of proto-oncogenes, including NMYC and MYC, and their interacting partners, are transcription factors that have a well-documented role in tumourigenesis. MYC overexpression caused by gene amplification induces uncontrolled hyper-proliferation and occurs in ~35% of epithelial OCs. Another gene, the NMYC and STAT (N) interacting (NMI), which interacts with NMYC, MYC, MAX, FOS, other transcription factors (Zhu et al., 1999) and BRCA1 (Li et al., 2002), is overexpressed in human leukemias and other cancers (Bao and Zervos, 1996).

The aim of this study was to evaluate the risks of OC associated with common genetic variation in five of the candidate oncogenes described above – BRAF, ERBB, KRAS, NMI and PIK3CA – using a SNP-tagging approach. To do this, we genotyped 34 common tagging SNPs (tSNPs) in 1816 invasive epithelial OC cases and 3000 unaffected controls from five different protein kinase pathway studies from the United States, United Kingdom and Denmark as part of a multicentre collaboration. We then evaluated one positive finding in a further 1097 cases and 1712 controls from three other US studies.

Materials and methods

Study individuals

In the first stage of this study, we genotyped OC cases and controls from five different populations. These were (1) The Danish MALOVA study (446 cases and 1221 controls); (2) The UK SEARCH study (730 cases and 855 controls); (3) The Genetic Epidemiology of Ovarian Cancer Study (GEOCS; previously FROC) from Stanford, CA, USA (327 cases and 429 controls); (4) The USC (A) study from Los Angeles, CA, USA (197 cases and 224 controls); and (5) the UKOPS study from the United Kingdom (116 cases and 271 controls). In stage 2, a putative positive association was followed up in three other case–control studies: (1) The USC (B) study, CA, USA (237 cases and 360 controls); (2) The DOVE study, Seattle, WA, USA (584 cases and 716 controls); and (3) The HOPE study, Pittsburgh, USA (276 cases and 636 controls). USC (A) and (B) are subsets of the same USC population. The USC (A) samples were collected between 2000 and 2004 and USC (B) samples were collected from 1993 to 1999. All study individuals were non-Hispanic Whites. Details for several of these studies have been published before (Dicicco et al., 2004; Pearce et al., 2005; Song et al., 2006, 2007; Gathcher et al., 2007; Rossing et al., 2007) and are summarised in Table 1. Local ethics committee approval was given for the collections and genotyping in all individuals.

Candidate gene and tSNP selection

We chose to analyse candidate oncogenes for which there is evidence that the genes were amplified or mutated in OCs. The genes we chose to examine initially were BCL2, BRAF, MYC, CTNNB1, EGFR, ERBB2, FGFR3, HRAS, KIT, MDM2, NMI and PIK3CA. Some of these genes were excluded if no HapMap genotyping data were available, if the gene was poorly tagged or if there were < 3 tSNPs or > 15 tSNPs in the genes. We used data from the CEPH population, from The International HapMap Project Data Rel 20/phase II Jan06 (www.hapmap.org), Haplovie version 3.32 (Barrett et al., 2005) and Tagger (de Bakker et al., 2005) to select tSNPs that capture common genetic variation in each candidate gene, and putative regulatory regions up and downstream of the gene (within 5 kb), with a minimum squared correlation of 0.8 ($r^2 \geq 0.8$). The multi-marker (aggressive) tagging option of Tagger was used to select tSNPs. If a selected tSNP failed assay design or genotyping, an alternative tagging SNP was chosen.

Genotyping SNPs

A combination of iPLEX (Sequenom Inc., Hamburg, Germany) and TaqMan ABI 7900HT Sequence Detection System (Applied Biosystems, Warrington, UK) was used to genotype the samples as described earlier (Zhao et al., 2006). The MALOVA and SEARCH samples were genotyped by a combination of TaqMan and iPLEX; UKOPS, USC and GEOCS were genotyped with TaqMan only. Genotyping with iPLEX was performed at the Sequenom laboratory in Hamburg, Germany. TaqMan genotyping of stage 1 samples was performed at the Gynaecological Cancer Research Laboratories, University College London, and Strangeways Research Laboratory, University of Cambridge (both UK). For stage 2, samples were genotyped by TaqMan at the Keck School of Medicine, University of Southern California, USA. Genotyping was repeated for studies/plates when call rates were below 90%, if there were discordant duplicate samples or if negative controls tested positive (Song et al., 2006, 2007; Gathcher et al., 2007).

Statistical methods

Deviation from Hardy–Weinberg equilibrium (HWE) was assessed in controls within study populations using the standard χ^2 test. Unconditional logistic regression was used to assess the relationship between each tSNP and risk of OC for each study and pooled across studies (stratified by study), with the primary test of association being a test for trend (P_{trend}). The per-allele odds ratio and odds ratios for the heterozygote and rare homozygote relative to the common homozygote were estimated by stratified logistic regression. The programme TagSNPs (Stram et al., 2003) was used.
RESULTS

Forty SNPs were selected to tag the common genetic variation in \textit{BRAF}, \textit{ERBB2}, \textit{KRAS}, \textit{NMI} and \textit{PIK3CA}. Six of these (\textit{PIK3CA}: rs1607237, rs6443624 and rs3729692; \textit{KRAS}: rs11047912 and rs17388893; \textit{BRAF}: rs11771946) failed assay design, manufacture or genotype testing and could not be efficiently tagged by any of the tagSNPs. Heterogeneity between study strata was accounted for by unconditional logistic regression and including an interaction term for study strata.

TagSNPs implements an expectation−substitution approach to account for the uncertainty caused by the unphased genotype data (Stram et al., 2003). The genotype data for GEOCS, MALOVA, SEARCH, UKOPS and USC (A) samples were used in this analysis. Unconditional logistic regression was used to test the association between each haplotype relative to the most common haplotype (Zaykin et al., 2002; Stram et al., 2003). Haplotypes that occurred with a frequency of 2% or greater in the combined data were considered common, and those with less than 2% frequency were pooled together as rare haplotypes.

Table 1 Ovarian cancer case–control populations included in this study

Population*	Total	Age	Participation rate (%)	Ascertainment	Controls	Total	Age	Participation rate (%)	Ascertainment
MALOVA (Denmark)	1221	35–79	67	Random selection of females from the computerised Central Population Register.	446	35–79	79	Incident cases diagnosed between 1994 and 1999 from municipalities of Copenhagen and Frederiksberg and surrounding counties.	
SEARCH (UK)	855	39–77	84	Selected from the EPIC-Norfolk cohort of 25,000 individuals based in the same geographical regions as the cases.	730	21–74	69	Cases from East Anglian West Midlands and Trent regions of England. Prevalent cases diagnosed between 1991 and 1998; incident cases diagnosed 1998 onwards.	
GEOCS (USA)	429	19–66	75	Random-digit dial identification from study area. Frequency matched to cases for race/ethnicity and 5-year age group.	327	23–64	75	Consecutive cases diagnosed from 1997 to 2002 in Greater Bay Area Cancer Registry San Francisco.	
USC (A) (USA)	224	21–78	73	Neighbourhood recruited controls, frequency matched to cases for age and ethnicity from 2000 to 2004.	197	18–84	73	Rapid case ascertainment through Los Angeles Cancer Surveillance programme from 2000 to 2004.	
UKOPS (UK)	271	50–76	97	Apparently healthy postmenopausal women from the general population participating in the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). All women followed up for cancers through the Office of National Statistics.	116	35–86	86	Incident cases from 10 gynaecological oncology National Health Service centres throughout the United Kingdom, from January 2006 onwards.	
Total (stage 1)	**3000**							**1816**	
USC (B) (USA)	360	21–78	73	Controls recruited from same neighbourhoods as cases from 1993 to 1999, frequency matched to cases for age and ethnicity.	237	18–84	73	Cases recruited through the Los Angeles Cancer Surveillance programme from 1993 to 1999.	
DOVE (USA)	716	35–74	82	Random-digit dial identification from study area. Frequency matched to cases for race/ethnicity and 5-year age group.	584	35–74	75	Cases diagnosed with primary invasive ovarian cancer between 2002 and 2005 from a 13-county area of Western Washington state.	
HOPE (USA)	636	25–80	81	Identified in same regions as cases. Frequency matched for age and ethnicity. All participants undergo home interviews.	276	25–80	69	Variable source including physician offices cancer registries and pathology databases from counties of Western PA Eastern OH and Western NY.	
Total (stage 2)	**1792**							**1097**	
TOTAL (stages 1 and 2)	**4712**							**2913**	

*All samples are population based. All individuals are non-hispanic Whites.

tSNPs in oncogenes and ovarian cancer susceptibility
L Quaye et al

© 2009 Cancer Research UK

British Journal of Cancer (2009) 100 (6), 993–1001
other SNP. Therefore, we were able to genotype 34 SNPs in total (Table 2). The tSNPs were selected using HapMap Data Rel 20/phase II on NCBI B35 assembly, dbSNP b125. For all five genes, we captured 176 of 188 (94%) common SNPs with \(r^2 > 0.8 \). Tagging efficiencies were the same using the most recent HapMap data release (HapMap Data Rel 21a/phase II on NCBI B35 assembly dbSNPb125), which captured 199 of 212 (94%) of the common SNPs with \(r^2 > 0.8 \).

This panel of SNPs was genotyped in five different OC case–control studies from the United Kingdom (SEARCH and UKOPS), United States (GEOCS and USC (A)) and Denmark (MALOVA). Combined, these studies comprised 1816 invasive epithelial OC cases and 3000 unaffected female controls. For most tSNPs, genotype distributions in controls were consistent with HWE in all populations in which genotyping passed quality control criteria. For one SNP (rs2699905), controls from GEOCS, SEARCH and UKOPS deviated significantly from HWE \((P < 0.01) \). Seven tSNPs (rs2952155, rs11047917, rs11551174, rs10487888, rs2865084, rs1733832 and rs289831) could not be genotyped for GEOCS, UKOPS and USC (A) because Taqman assays for these tSNPs failed assay manufacture. This is reflected in the variable numbers of cases and/or controls that were successfully genotyped for each tSNP, listed in Table 3.

Association between genotype frequencies and OC risk

We found no evidence of association between tSNPs or multi-marker haplotypes in \textit{BRAF}, \textit{ERBB2}, \textit{KRAS} and \textit{PIK3CA} and susceptibility to invasive epithelial OC (Table 3 and Supplementary Table 1). A SNP in NMI \((\text{rs}11683487) \) showed evidence of association with reduced risk of OC \((\text{hazard odds ratio (OR) 0.89, 95\% confidence interval (CI) 0.71 – 1.02}, P_{\text{trend}} = 0.038) \) (Table 3). The best-fitting genetic model for this SNP was a dominant model \((P < 0.004) \) (rare allele carriers vs common allele homozygotes OR 0.81 (95\% CI 0.71 – 0.94)). There was no statistically significant heterogeneity across studies for any SNP.

The association with \text{rs}11683487 was investigated further by performing a second stage of genotyping in three additional populations from the United States (USC (B); DOVE and HOPE) \((\text{Table 1}) \). Together, these three studies comprised an additional 1097 cases and 1712 controls. There was no association between \text{rs}11683487 and the risk of OC in the samples used for validation on their own \((P_{\text{dominant}} = 0.92; OR = 1.01 (0.85 – 1.20)) \). After combining the data from both stages, the association with \text{rs}11683487 was weaker, but still statistically significant \((P_{\text{dominant}} = 0.032; OR = 0.89 (0.80 – 0.99); \text{Figure 1A}; \text{Supplementary Table 2}) \). Earlier studies have shown that different histological subtypes of OC have different genetic and biological backgrounds and are associated with different aetiological pathways. Therefore, we stratified cases by histological subtype and repeated the analyses. In the combined sample set, there were 859 OC cases of the serous histological subtype, 274 endometrioid cases, 192 mucinous cases and 138 clear-cell cases. We found no additional evidence of genetic associations in the serous subtype, but we did find borderline evidence of association for one SNP each in the \textit{ERBB2} and \textit{PIK3CA} genes with endometrioid OC and for three SNPs each in the \textit{BRAF} and \textit{KRAS} genes and one SNP in the NMI gene, all associated with mucinous OC. These data are summarised in Table 4.

We performed tests of association with common haplotypes for the five genes. There was no evidence of association with OC risk for haplotypes in \textit{KRAS} and \textit{PIK3CA} (Table 5). We found statistically significant haplotype effects for \textit{BRAF}, \textit{ERBB2} and NMI. Two haplotypes from \textit{ERBB2} were associated with an increased OC risk, \text{h}233 \((OR = 1.17 (1.02 – 1.34), P = 0.022) \) and \text{h}411 \((OR = 1.19 (1.03 – 1.37), P = 0.016) \), respectively. A haplotype in \textit{BRAF}, \text{h}333423241, was associated with a decrease in the risk of OC \((OR = 0.81 (0.68 – 0.95), P = 0.012) \). Global tests of association were significant for \textit{BRAF} \((P = 0.005) \) and \textit{ERBB2} \((P = 0.034) \). The association observed with the NMI haplotype was fully explained by the single tSNP association.

DISCUSSION

Somatic alterations that activate proto-oncogenes and drive cells towards unregulated proliferation are a well-documented feature of all cancers. It has also become clear that different combinations of oncogenes contribute to the development of different tumour types. \textit{BRAF}, \textit{ERBB2}, \textit{KRAS} and \textit{PIK3CA} are all oncogenes shown to be involved in OC development, and NMI interacts with the oncogenes \textit{NMYC}, \textit{MYC}, \textit{MAX} and \textit{FOS}. NMI has also been shown to form a complex with \textit{MYC} and \textit{BRCA1} and therefore may play a role in breast cancer and OC \((\text{Li et al.}, 2002) \). In this study, we evaluated the association between 34 tSNPs in these genes and the risk of invasive epithelial OC using a case–control study design. To our knowledge, none of these genes has been investigated before for their association with invasive OC.

Table 2: tSNPs identified after genotyping in ovarian cancer cases and controls

HapMap data	Gene	All SNPs	Criteria SNPs	Tagging SNPs	SNPs genotyped	SNPs captured \(r^2 > 0.8 \)	SNPs captured \(r^2 > 0.8 \) (%)	SNPs captured \(r^2 > 0.5 \)
Release 20*	BRAF	158	75	9	8	72/75	72/75	6/6
	ERBB2	16	6	3	3	6/6	6/6	2/2
	KRAS	59	46	11	9	42/46	42/46	10/10
	NMI	45	25	6	6	25/25	25/25	8/8
	PIK3CA	53	36	11	8	33/36	33/36	2/2
Total		331	188	40	34	176/188	176/188	94/94
Release 21a	BRAF	164	75	9	8	72/75	72/75	6/6
	ERBB2	26	11	5	3	9/11	9/11	2/2
	KRAS	69	55	11	9	50/55	50/55	9/9
	NMI	52	32	6	6	32/32	32/32	10/10
	PIK3CA	60	39	11	8	36/39	36/39	9/9
Total		371	212	42	34	199/212	199/212	94/94

\(\text{SNP} = \text{single-nucleotide polymorphism. Criteria SNPs: minor allele frequency} \geq 0.05; \text{Hardy–Weinberg equilibrium} \geq 0.01. \) The captured SNPs refer to the number and proportion of criteria SNPs covered by the HapMap release. *The tagging SNPs were selected using HapMap Data Release 20. **The genes were retagged using the new HapMap data release (21a), and the proportion of SNPs that were captured by the SNPs genotyped was determined.
We found borderline evidence for a statistically significant association with disease risk for a tSNP, rs11683487, in intron 1 of the NMI gene. The common allele (G) occurs in the Caucasian population with a frequency of approximately 58% and we observed that the rare allele (T) was associated with a decreased risk of OC. The association for rs11683487 may be a false positive. Where the prior probability of association is low, very stringent significance levels are required to ensure that a detected association is true positive. Genome-wide significance is generally considered to be \(P < 10^{-8} \) (Thomas et al., 2005). False-positive associations due to population stratification is also possible, but this seems an unlikely explanation for data from multiple studies from different populations in which the analyses were restricted to white subjects.

If the association we identified in NMI is real, then this could be either due to a direct causal effect of the tSNP or because the SNP is in linkage disequilibrium with the true causal variant, possibly in a different gene. NMI enhances the transcription of several other genes altered in OCs (MYC, N-MYC) when it is induced by interleukin-2 and interferon-\(\gamma \). The role of MYC amplification in ovarian and other cancers is well established. A detailed mapping of SNPs at a locus on chromosome 8q, near MYC, has recently provided substantial evidence that this locus is associated with susceptibility to breast, prostate and ovarian cancer (Ghousasaini et al., 2008). A further link comes from the finding that NMI forms a complex with MYC and BRCA1 (Li et al., 2002).

The NMI SNP rs11683487 tags eight other SNPs with \(r^2 > 0.8 \), one of which is a non-synonymous coding SNP (rs1048135) tagged with an \(r^2 = 1 \), and the rare (G) allele codes for leucine instead of proline. We examined whether there is any evidence supporting the role of these SNPs in abrogating NMI function. The programme PMut (Ferrer-Costa et al., 2005) predicted that the rare allele (rs11683487) is in linkage disequilibrium with the true causal variant, possibly in a different gene. NMI enhances the transcription of several other genes altered in OCs (MYC, N-MYC) when it is induced by interleukin-2 and interferon-\(\gamma \). The role of MYC amplification in ovarian and other cancers is well established. A detailed mapping of SNPs at a locus on chromosome 8q, near MYC, has recently provided substantial evidence that this locus is associated with susceptibility to breast, prostate and ovarian cancer (Ghousasaini et al., 2008). A further link comes from the finding that NMI forms a complex with MYC and BRCA1 (Li et al., 2002).

The NMI SNP rs11683487 tags eight other SNPs with \(r^2 > 0.8 \), one of which is a non-synonymous coding SNP (rs1048135) tagged with an \(r^2 = 1 \), and the rare (G) allele codes for leucine instead of proline. We examined whether there is any evidence supporting the role of these SNPs in abrogating NMI function. The programme PMut (Ferrer-Costa et al., 2005) predicted that the rare allele (rs11683487) is in linkage disequilibrium with the true causal variant, possibly in a different gene. NMI enhances the transcription of several other genes altered in OCs (MYC, N-MYC) when it is induced by interleukin-2 and interferon-\(\gamma \). The role of MYC amplification in ovarian and other cancers is well established. A detailed mapping of SNPs at a locus on chromosome 8q, near MYC, has recently provided substantial evidence that this locus is associated with susceptibility to breast, prostate and ovarian cancer (Ghousasaini et al., 2008). A further link comes from the finding that NMI forms a complex with MYC and BRCA1 (Li et al., 2002).

The NMI SNP rs11683487 tags eight other SNPs with \(r^2 > 0.8 \), one of which is a non-synonymous coding SNP (rs1048135) tagged with an \(r^2 = 1 \), and the rare (G) allele codes for leucine instead of proline. We examined whether there is any evidence supporting the role of these SNPs in abrogating NMI function. The programme PMut (Ferrer-Costa et al., 2005) predicted that the rare allele (rs11683487) is in linkage disequilibrium with the true causal variant, possibly in a different gene. NMI enhances the transcription of several other genes altered in OCs (MYC, N-MYC) when it is induced by interleukin-2 and interferon-\(\gamma \). The role of MYC amplification in ovarian and other cancers is well established. A detailed mapping of SNPs at a locus on chromosome 8q, near MYC, has recently provided substantial evidence that this locus is associated with susceptibility to breast, prostate and ovarian cancer (Ghousasaini et al., 2008). A further link comes from the finding that NMI forms a complex with MYC and BRCA1 (Li et al., 2002).
to detect a dominant allele with a frequency of 0.1 that confers a relative risk of 1.3. It is therefore unlikely that the common tagged variants in these genes contribute significantly to OC risk. However, we cannot rule out the possibility that associations exist for the known poorly tagged variants. With the most recent HapMap data (release 21a), of the 212 common variants, 199 were tagged with $r^2 > 0.8$ and 205 with $r^2 > 0.5$. Furthermore, even though tSNPs based on HapMap data are likely to tag most of the common SNPs, there is a possibility that other unknown common variants were poorly tagged, or that less common variants in these genes that influence disease susceptibility exist.

We must also consider the possibility that common variants within these genes confer susceptibility to specific subtypes of OC. There is evidence in the literature that the genetic changes associated with OC development differ for different histological subtypes (reviewed in Elmsary and Gayther, 2005). For example, somatic activating KRAS mutations are found to some extent in most OC subtypes, but are much more common in mucinous ovarian tumours. Also, germline BRCA1 and BRCA2 mutations tend to predispose to serous OCs (Lakhani et al., 2004). We found some evidence of association with disease risk for different histological subtypes, for SNPs in all five of the oncogenes studied, and it is perhaps interesting that SNPs in the KRAS gene and its downstream effector BRAF were associated with mucinous OC. However, the sample sizes after subtype stratification meant that these studies had insufficient power to detect associations at stringent levels of statistical significance, and so the data must be treated with caution. Much larger sample sizes, gathered through the ovarian cancer association consortium (OCAC), will be needed to establish if any of these associations are real.

Haplotype analysis identified significant associations in BRAF, ERBB2 and NMI. The association between the NMI haplotype and risk of OC is explained by the single SNP rs11683487. The global test of haplotype effect was statistically significant for BRAF and ERBB2. Interestingly, the two haplotypes in ERBB2, which are significantly associated with increased risk of OC, contain the opposite allele at each SNP loci. Using HapMap data we evaluated whether these two putative risk haplotypes in ERBB2 shared an untagged common variant, but this was not the case. It is possible that there is an as-yet-unidentified variant that tags both haplotypes. There may be an allele that is found only in the mucinous subtype (reviewed in Elmasry and Gayther, 2005). For example, mutations are found to some extent in KRAS and it is perhaps interesting that SNPs in the MIR15A gene and its downstream effector BRAF were associated with mucinous OC.

This study is one of the several in the published literature to use the multi-centre OCAC to follow-up on putative susceptibility alleles for OC (e.g., Gayther et al., 2007; Pearce et al., 2008; Ramus et al., 2008). These studies highlight the importance of consortia for validating suggested genetic associations from case-control studies and for identifying novel susceptibility loci for the disease. In addition to dramatically increasing the power of association studies, another role of consortia like the OCAC, has been to implement stringent data quality and genotyping guidelines, which are likely to minimise reports of false-positive associations.

![Table 4](image)

Table 4 Genetic associations identified in the BRAF, KRAS, ERBB2, NMI and PIK3CA after histological subtype stratification

Gene	SNP	Controls	Cases	HetOR	HomOR	P_{trend}
Endometrioid subtype						
ERBB2	rs1801200	2916	263	1.16 (0.88–1.52)	1.71 (1.05–2.76)	0.0389
PIK3CA	rs2865084	2039	183	1.60 (1.03–2.50)	0.30 (0.22–0.42)	0.0344
Mucinous subtype						
BRAF	rs10487888	2694	180	1.32 (0.86–2.03)	1.61 (1.03–2.53)	0.0357
	rs1267622	2880	187	0.67 (0.48–0.94)	0.71 (0.35–1.43)	0.0278
KRAS	rs1769523	2901	186	0.47 (0.26–0.86)	0.79 (0.10–6.08)	0.0191
	rs12822857	2901	187	0.74 (0.53–1.04)	0.63 (0.41–0.96)	0.0232
	rs6487464	2895	192	0.61 (0.44–0.85)	0.76 (0.50–1.18)	0.0379
	rs10842514	2885	188	1.13 (0.78–1.64)	2.02 (1.35–3.01)	0.0006
NMI	rs11683487	2565	154	0.67 (0.47–0.96)	0.62 (0.39–0.99)	0.0269

SNP = single-nucleotide polymorphism.
In conclusion, we genotyped 34 tSNPs that tag the common variants in BRAF, ERBB2, KRAS, NMI and PIK3CA in OC cases and controls. We found borderline evidence of a statistically significant association with invasive OC, for a SNP in PIK3CA. We found borderline evidence of a statistically significant association with invasive OC, for a SNP in NMI and haplotypes in BRAF and ERBB2. Further studies will be needed to confirm if this genetic risk association is real or not.

ACKNOWLEDGEMENTS

This study was undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. LQ is funded by the MRC. SJR is funded by the Wellbeing of Women, DFE is a Principal Research Fellow of Cancer Research UK and PDPP is a Senior Clinical Research Fellow of Cancer Research UK. BAJP is a Gibb Fellow. Genotyping was funded by a Cancer Research UK project grant (no. C8804/A7058). The UKOPS study is funded by the OA Foundation. Additional support was provided by The Roswell Park Alliance and the National Cancer Institute (CA71766 and Core Grant CA16056) (GEOCs study); NIH Grant RO1 CA87538 (the DOVE study); NCI grants K07-CA80668 and R01CA905023, and Department of Defence Grant DAMD17-02-1-0069 (The HOPE project); and the California Cancer Research Program grants 00-0389V-20170 and 2110200, US Public Health Service grants CA14089, CA17054, CA36436, N01-PC-67010 and R03-CA113148, and California Department of Health Services sub-contract 050-E8709 as part of its statewide cancer reporting programme (University of Southern California). We thank Joan MacIntosh, Hannah Munday, Barbara Perkins, Claire Jordan, Kristy Driver, Mitul Shah, the local general practices and nurses and the East Anglian Cancer Registry for recruitment of the Search cases: the EPIC-Norfolk investigators for recruitment of the Search controls, and Craig Luccarini and Don Conroy for expert technical assistance. We thank all members of the research team, including research nurses, research scientists, data entry personnel and consultant gynaecological oncologists, for their help in establishing the UKOPS case–control collection and Andy Ryan and Jeremy Ford for data and sample management. We also thank Debby Bass, Shari Hutchison, Carylln Jackson, Jessica Kopsic and

Table 5: Haplotype analysis results for BRAF, ERBB2, KRAS, NMI and PIK3CA.

Gene	Haplotype	Frequency in controls (%)	OR (95% CI)	P-value*	Global P-value
BRAF	h13142341	21.5	1.00		
	h13122341	19.4	0.88 (0.76–1.01)	0.07	
	h13122331	11.8	0.96 (0.82–1.12)	0.57	
	h13342341	10.3	0.81 (0.68–0.95)	0.012	0.005
	h33341344	6.8	0.94 (0.78–1.13)	0.49	
	h33342344	6.1	1.15 (0.95–1.39)	0.14	
ERBB2	h231	53.6	1.00		
	h233	16.10	1.17 (1.02–1.34)	0.022	
	h411	16.3	1.19 (1.03–1.37)	0.016	0.034
KRAS	h132	52.1	1.00 (0.9–1.11)	0.99	
	h134	9.5	0.89 (0.77–1.04)	0.15	
	h14	15.1	1.03 (0.91–1.16)	0.67	0.16
NMI	h314	30.6	1.00 (0.82–1.20)	0.9	
	h22242	12.9	1.00 (0.85–1.17)	0.98	
	h22222	5.4	0.81 (0.65–1.01)	0.06	0.56
	h22322	5.4	1.01 (0.82–1.25)	0.91	
	h22242	4.3	0.82 (0.64–1.05)	0.11	
	h24222	10.6	0.98 (0.84–1.14)	0.77	
	h24322	3.2	0.94 (0.70–1.27)	0.69	
	h23424	45.9	1.00		
PIK3CA	h23443	33.7	1.11 (1.003–1.22)	0.043	
	h24143	5.7	1.05 (0.84–1.33)	0.67	0.26
	h43222	11.8	1.09 (0.95–1.25)	0.22	
	h423212	48.2	1.00 (0.91–1.1)	0.39	
	h4232124	10.2	0.94 (0.81–1.09)	0.39	
	h42412134	14.8	1.01 (0.89–1.14)	0.91	
	h4212124	9.7	0.98 (0.84–1.14)	0.79	
	h44432324	4.0	1.02 (0.82–1.28)	0.84	
	h4434324	6.6	0.94 (0.79–1.12)	0.5	
	h4121524	3.9	1.20 (0.97–1.48)	0.102	

CI = confidence interval; MAF = minor allele frequency; OR = odds ratio. In the haplotypes, the numbers correspond to nucleotides: 1 = A, 2 = C, 3 = G, 4 = T. SNP order in haplotypes is 3’ – 3’ of the genes – BRAF: rs10487888, rs1733832, rs1267622, rs3241712, rs17695623, rs1761747, rs17623382 and rs944385; ERBB2: rs2952153, rs2952155 and rs1801200; KRAS (block 1): rs1205531, rs12822857 and rs10842508; NMI (block 2): rs12579073, rs10842513, rs467964, rs10842514 and rs10749717; PIK3CA: rs265084, rs6721239, rs1517586, rs6944389, rs2677760.

*Compared with common haplotype. Bold text indicates positive results, either by P-value or CI ranges that do not cross 1.00.
REFERENCES

Antoniou AC, Easton DF (2006) Risk prediction models for familial breast cancer. *Future Oncol* 2: 257 – 274

Bao J, Zervos AS (1996) Isolation and characterization of Nmi, a novel partner of Myc proteins. *Oncogene* 12: 2171 – 2176

Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* 21: 263 – 265

Cantley LC (2002) The phosphoinositide 3-kinase pathway. *Science* 296: 1655 – 1657

Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. *Proteins* 62: 1115 – 1132

Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Condit J, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Marks JR, Garcia-Closas M, Brinton L, Lissowska J, Peplonska B, Easton DF, Scott RJ, Maugard CM, Vasen H, Seitz S, Cannon-Albright LA, Schofield PD, Ponder BA, Eeles RA, Easton DF, Dunning AM (2008) Multiple loci for ovarian cancer and BRCA2 carriers. *Clin Cancer Res* 14: 2473 – 2481

Hogdall EV, Hogdall CK, Blaakaer J, Christensen L, Bock JE, Vuust J, Guld E, Kjaer SK (2003a) K-ras alterations in Danish ovarian tumour patients. From the Danish ‘Malova’ Ovarian Cancer study. *Gynecol Oncol* 89: 31 – 36

Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Bock JE, Guld E, Norgaard-Pedersen B, Hogdall CK (2003b) Distribution of HER2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. *Cancer* 98: 66 – 73

Lakhan SR, Maneek S, Penault-Llorca F, Flanagan A, Arnout L, Merrett S, McGuffog L, Steele D, Devilee P, Klijn JG, Meijeirs-Heijboer H, Radice P, Pilotti S, Nevanlinna H, Rutzow R, Sobol H, Jacquemier J, Lyonet DS, Neuhauß SL, Weber B, Wagner T, Winquist R, Bignon YJ, Monti F, Schmitt F, Lenoir G, Seitz S, Hamman U, Pharoah P, Lane G, Ponder B, Bishop DT, Easton DF (2004) Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. *Future Oncol* 2: 317 – 321

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. *N Engl J Med* 343: 78 – 85

Muller CI, Miller CW, Hofmann WK, Gross ME, Walsh CS, Kawamata N, Luong QT, Koeffler HP (2007) Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. *Leuk Res* 31: 27 – 32

Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. *CA Cancer J Clin* 55: 74 – 108

Pearce CL, Hirschhorn JN, Wu AH, Burtt NP, Stram DO, Young S, Kolonen LN, Henderson BE, Altschuler D, Pike MC (2005) Clarifying the PROGINS allele association in ovarian and breast cancer risk: a haplotype-based analysis. *J Natl Cancer Inst* 97: 59 – 69

Pearce CL, Wu AH, Gaylor SA, Bale AE, Australian Cancer Study (Ovarian Cancer) and Australian Cancer Study Group, Beck PA, Breeley J, Chanock S, Cramer DW, DiCicco R, Edwards R, Frederiksen ZS, Garcia-Closas M, Goode EL, Green AC, Hartmann LC, Hogdall E, Kjaer SK, Lissowska J, McGuire V, Modugno F, Moysich K, Ness RB, Rusch IS, Risch HA, Sellers TA, Song H, Stram DO, Terry KL, Webb PM, Whittemore AS, Zheng W, Pharoah PD, Chennevix-Trench G, Pike MC, Schildkraut J, Berchuck A, Ovarian Cancer Association Consortium (2008) Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the Ovarian Cancer Association Consortium pooled analysis. *Br J Cancer* 98: 282 – 288

Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA (2002) Polymorphic susceptibility to breast cancer and implications for prevention. *Nat Genet* 31: 33 – 36

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

Mary Hartley for the HOPE project. Finally, we would like to express our profound thanks to all of the study participants who contributed to this research.
