FACTORS OF SOME LACUNARY q-BINOMIAL SUMS

HAO PAN

Abstract. In this paper, we prove a divisibility result for the lacunary q-binomial sum

$$\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k \choose l)} \left[\frac{n}{k} \right] _q \left[\frac{(k - r)/c}{l} \right] _q.$$

1. Introduction

Suppose that p is a prime. A classical result of Fleck asserts that

$$\sum_{k \equiv r \pmod{p}} (-1)^k \binom{n}{k} \equiv 0 \pmod{p^{\left\lfloor \frac{n - p - 1}{p-1} \right\rfloor}}, \tag{1.1}$$

where $\left\lfloor x \right\rfloor = \max\{z \in \mathbb{Z} : z \leq x\}$ is the floor function. In 1977, Weisman generalized Fleck’s congruence to prime power moduli in the following way:

$$\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \equiv 0 \pmod{p^{\left\lfloor n/p^\alpha - 1 - \frac{\nu_p(n!)}{p-1} \right\rfloor}). \tag{1.2}$$

In 2009, with help of ψ-operator in Fontaine’s theory of (ϕ, Γ)-modules, Sun [6] and Wan [9] obtained a polynomial-type extension of (1.1) and (1.2):

$$\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \left(\frac{(k - r)/p^\alpha}{l} \right) \equiv 0 \pmod{p^{\left\lfloor \frac{n - p - 1 - \frac{\nu_p(n!)}{p-1} - l}{p-1} \right\rfloor}}. \tag{1.3}$$

On the other hand, motivated by the homotopy exponents of the special unitary group SU(n), Davis and Sun [3, 8] proved another two congruences with a little different flavor:

$$e \sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \left(\frac{(k - r)/p^\alpha}{l} \right)^l \equiv 0 \pmod{p^{\nu_p(n/p^\alpha)!}}, \tag{1.4}$$

$$\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \left(\frac{(k - r)/p^\alpha}{l} \right) \equiv 0 \pmod{p^{\left\lfloor \frac{n - p - 1 - l}{p-1} - \nu_p(l)! \right\rfloor}}. \tag{1.5}$$

2010 Mathematics Subject Classification. Primary 11B65; Secondary 05A30, 05A10.

Key words and phrases. q-binomial coefficient, cyclotomic polynomial, Lucas congruence.

The author is supported by National Natural Science Foundation of China (Grant No. 10901078).
where \(\nu_p(x) = \max\{i \in \mathbb{N} : p^i \mid x\} \) is the \(p \)-adic order of \(x \). Notice that neither (1.4) nor (1.5) could be deduced from (1.3), though (1.4) and (1.5) are often weaker than (1.3) provided \(l \) is small.

In this paper, we shall consider the \(q \)-analogues of (1.4) and (1.5). For an integer \(n \), as usual, define the \(q \)-integer

\[
[n]_q = \frac{1 - q^n}{1 - q}.
\]

And define the \(q \)-binomial coefficient

\[
\begin{align*}
\binom{n}{k}_q &= \frac{[n]_q \cdot [n-1]_q \cdots [n-k+1]_q}{[k]_q \cdot [k-1]_q \cdots [1]_q}, \\
\binom{n+1}{k}_q &= q^k \binom{n}{k}_q + \binom{n}{k-1}_q.
\end{align*}
\]

In particular, we set \([n]_0 = 1 \) and \([n]_k = 0 \) for \(k < 0 \). It is easy to see \([n]_k \) is a polynomial in \(q \) since

\[
\binom{n+1}{k}_q = q^k \binom{n}{k}_q + \binom{n}{k-1}_q.
\]

Let \(\mathbb{Z}[q] \) denote the polynomial ring in \(q \) with integral coefficients. Then we have the following \(q \)-analogue of (1.3).

Theorem 1.1. For \(n, c \in \mathbb{Z}^+ \) and \(r, h \in \mathbb{Z} \), the lacunary \(q \)-binomial sum

\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)_q + hk} \binom{n}{k}_q \left[\frac{(k - r)/c}{l}\right]_{q^c}
\]

is divisible by

\[
\prod_{d \mid c} \Phi_d(q)^{[n/d] - [l/c/d]} \prod_{b \mid c \atop b < c} \Phi_b(q)^{[n/b] - [r/b] - ([n-r]/b)}
\]

over \(\mathbb{Z}[q] \), where \(\Phi_d \) is the \(d \)-th cyclotomic polynomial.

Since \(\Phi_p^\alpha(q) = [p]_{q^{p^\alpha-1}} \) for prime \(p \), we may get

\[
\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k q^{(k)_q + hk} \binom{n}{k}_q \left[\frac{(k - r)/p^\alpha}{l}\right]_{q^{p^\alpha}} \equiv 0 \mod \prod_{j=\alpha}^{\infty} \Phi_{p^j}(q)^{[n/p^j] - [l/p^{j-\alpha}] - ([n-r]/p^j)}.
\]

(1.6)

Note that

\[
\nu_p(n!) = \sum_{j=2}^{\infty} \left\lfloor \frac{n}{p^j} \right\rfloor,
\]

(1.7)
and for $1 \leq j \leq \alpha - 1$

$$\left\lfloor \frac{n}{p^j} \right\rfloor - \left\lfloor \frac{r}{p^j} \right\rfloor - \left\lfloor \frac{n-r}{p^j} \right\rfloor = \left\lfloor \{r\}_{p^{\alpha-1}} + \{n-r\}_{p^{\alpha-1}} \right\rfloor - \left\lfloor \{r\}_{p^{\alpha-1}} \right\rfloor - \left\lfloor \{n-r\}_{p^{\alpha-1}} \right\rfloor,$$

where $\{r\}_{p^{\alpha-1}}$ denotes the least non-negative residue of r modulo $p^{\alpha-1}$. Substituting $q = 1$ in (1.6), we can get the following stronger version of (1.5) [8, (1.1)]:

$$\nu_p \left(\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \frac{(k-r)/p^\alpha}{l} \right) \geq \nu_p \left(\left\lfloor \frac{n}{p^{\alpha-1}} \right\rfloor ! \right) - \nu_p (l!) + \tau_p (\{r\}_{p^{\alpha-1}}, \{n-r\}_{p^{\alpha-1}}),$$

(1.8)

where

$$\tau_p (a, b) = \text{ord}_p \left(\binom{a+b}{a} \right).$$

We shall prove Theorem 1.1 in the next section. For the advantage of q-congruences, our proof of Theorem 1.1 is even simpler than the original one of (1.5).

Remark. Quite recently, some Fleck type q-congruences also have been established by Schultz and Walker [5].

2. Proofs of Theorem 1.1

Let $\mathbb{Q}[q]$ denote the polynomial ring in q with rational coefficients. Note that the greatest common divisor of all coefficients of $\Phi_d(q)$ is 1. By a well-known result of Gauss, if $\Phi_d(q)$ divides $F(q) \in \mathbb{Z}[q]$ over $\mathbb{Q}[q]$, then $\Phi_d(q)$ also divides $F(q)$ over $\mathbb{Z}[q]$. So below we don’t distinguish the q-congruences over $\mathbb{Z}[q]$ and $\mathbb{Q}[q]$.

Lemma 2.1. $(\zeta^r q^h; q)_n$ is divisible by $\Phi_d(q)^{[n/d]}$ for any $r, s \in \mathbb{Z}$, where $\zeta = e^{2\pi \sqrt{-1}/d}$.

Proof. We know that

$$\Phi_d(q) = \prod_{\substack{k=1 \\ (k,d)=1}}^d (1 - \zeta^k q).$$

For any k with $(k, d) = 1$, let $0 \leq e_k < d$ be the integer such that $e_k k \equiv r \pmod{d}$. Then we have $1 - \zeta^r \zeta^{-e_k k} = 0$, i.e., $1 - \zeta^k q$ divides $1 - \zeta^r q^j$ if $j \equiv e_k \pmod{d}$. Thus

$$(\zeta^r q^h; q)_n = \prod_{j=h}^{n+h-1} (1 - \zeta^r q^j)$$

is divisible by $(1 - \zeta^k q)^{[n/d]}$. \hfill \Box
Lemma 2.2.
\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{(\frac{k}{2}) + \frac{hk}{2}} \binom{n}{k}_q \equiv 0 \pmod{\prod_{c|d} \Phi_d(q)^{\lfloor n/d \rfloor}}. \tag{2.1}
\]

Proof. In view of the \(q\)-binomial theorem (cf. [2, Corollary 10.2.2(c)]),
\[
\sum_{k=0}^{n} (-1)^k q^{\frac{k}{2}} \binom{n}{k}_q x^k = (x; q)_n.
\]
So letting \(\zeta = e^{2\pi \sqrt{-1}/c}\),
\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{\frac{k}{2}} + \frac{hk}{2} \binom{n}{k}_q = \frac{1}{c} \sum_{k=0}^{n} (-1)^k q^{\frac{k}{2}} + \frac{hk}{2} \binom{n}{k}_q \sum_{t=0}^{c-1} \zeta^{-rt} = \frac{1}{c} \sum_{t=0}^{c-1} \zeta^{-rt} (\zeta^h; q)_n.
\]
Thus (2.1) immediately follows from Lemma 2.1, since \(\zeta\) is also a \(d\)-th root of unity if \(c | d\). \(\square\)

Lemma 2.3.
\[
\binom{n}{k}_q = \prod_{1 < d \leq n} \Phi_d(q)^{\lfloor n/d \rfloor - \lfloor k/d \rfloor - \lfloor (n-k)/d \rfloor}.
\]

Proof. Clearly
\[
[n]_q! = \prod_{j=1}^{n} [j]_q = \prod_{j=1}^{n} \prod_{d > 1 \text{gcd}(d,j)} \Phi_d(q) = \prod_{1 < d \leq n} \Phi_d(q)^{\lfloor n/d \rfloor - \lfloor k/d \rfloor - \lfloor (n-k)/d \rfloor}. \tag{2.2}
\]
Hence
\[
\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!} = \prod_{1 < d \leq n} \Phi_d(q)^{\lfloor n/d \rfloor - \lfloor k/d \rfloor - \lfloor (n-k)/d \rfloor}.
\]

Proof of Theorem 1.1. We shall prove
\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{\frac{k}{2}} \binom{n}{k}_q \frac{(k-r)/c}{l} q^c \equiv 0 \pmod{\prod_{c|d} \Phi_d(q)^{\lfloor n/d \rfloor - \lfloor l/c/d \rfloor}}. \tag{2.3}
\]
by using an induction on \(l\). The case \(l = 0\) follows from Lemma 2.2. Assume that \(l \geq 1\) and (2.3) holds for the smaller values of \(l\). Compute

\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n \\ k \end{array} \right]_q \left[\begin{array}{c} (k-r)/c \\ l \end{array} \right]_{q^c} = \sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n \\ k \end{array} \right]_q \cdot q^{-r} \left[\frac{[k]_q - [r]_q}{[c]_q[l]_q} \right] \left[\begin{array}{c} (k-r)/c - 1 \\ l-1 \end{array} \right]_{q^c}
\]

\[
= \frac{q^{-r}[n]_q}{[lc]_q} \sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right]_q \left[\begin{array}{c} (k-r)/c \\ l-1 \end{array} \right]_{q^c}
\]

\[
= \frac{q^{-r}[n]_q}{[lc]_q} \sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n \\ k \end{array} \right]_q \left[\begin{array}{c} (k-r)/c \\ l-1 \end{array} \right]_{q^c}
\]

Note that \([lc]_q\) is divisible by or prime to \(\Phi_d(q)\) according to whether \(d \mid lc\) or not. By the induction hypothesis, we obtain that

\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right]_q \left[\begin{array}{c} (k-r)/c \\ l-1 \end{array} \right]_{q^c} = 0 \pmod{\prod_{c \mid d} \Phi_d(q)^{(n-1)/d+\lfloor l(1-c/d)\rfloor-1/d\lfloor lc\rfloor}},
\]

and

\[
\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k)/2+hk} \left[\begin{array}{c} n \\ k \end{array} \right]_q \left[\begin{array}{c} (k-r)/c \\ l-1 \end{array} \right]_{q^c} = 0 \pmod{\prod_{c \mid d} \Phi_d(q)^{(n/d)\lfloor 1/(d/c)\rfloor-1/d\lfloor lc\rfloor}},
\]

where for an assertion \(A\) we adopt the notation \(1_A = 1\) or 0 according to whether \(A\) holds or not. Thus by noting that for arbitrary positive integers \(s\) and \(t\)

\[
1_{l|s} = \left\lfloor \frac{s}{t} \right\rfloor - \left\lfloor \frac{s-1}{t} \right\rfloor,
\]

(2.3) is concluded.

On the other hand, with help of Lemma 2.3

\[
\left[\begin{array}{c} n \\ k \end{array} \right]_q \equiv 0 \pmod{\prod_{b \mid c} \Phi_b(q)^{(n/b)\lfloor r/b\rfloor-\lfloor(n-r)/b\rfloor}}
\]

5
whenever $k \equiv r \pmod{c}$, since for any $b \mid c$

$$\left\lfloor \frac{n}{b} \right\rfloor - \left\lfloor \frac{k}{b} \right\rfloor - \left\lfloor \frac{n-k}{b} \right\rfloor = \left\lfloor \frac{n}{b} \right\rfloor - \left\lfloor \frac{r}{b} \right\rfloor - \left\lfloor \frac{n-r}{b} \right\rfloor.$$

All are done. \hfill \square

It is easy to check that

$$[l]_{q^e}[l-1]_{q^e} \cdots [2]_{q^e}[1]_{q^e} = \prod_{1<j \leq l} \Phi_j(q^e)^{[l/j]} \equiv 0 \pmod{\prod_{c \mid d, d > c} \Phi_d(q)^{\lfloor n/d \rfloor}}$$

and

$$[k]_{q^e}[k-1]_{q^e} \cdots [k-l+1]_{q^e} = q^{-(l)}[k]_{q}(\lfloor k \rfloor_{q} - [1]_{q}) \cdot ([k]_{q} - [l-1]_{q}).$$

So applying a simple induction on l, we can deduce the q-analogue of (1.4):

Corollary 2.1.

$$\sum_{k \equiv r \pmod{c}} (-1)^k q^{(k^2/2)} \cdot \frac{n}{k} \cdot q^{n/c} \cdot \left\lfloor \frac{n-r}{c} \right\rfloor_{q^e}$$

is divisible by

$$\Phi_c(q)^{[n/c]-l} \cdot \prod_{c \mid d, d > c} \Phi_d(q)^{[n/d]} \cdot \prod_{b \mid c, b < c} \Phi_b(q)^{[n/b]-[r/b]-\lfloor (n-r)/b \rfloor}.$$

In particular, for prime p,

$$\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k q^{(k^2/2)} \cdot \frac{n}{k} \cdot q^{n/p^\alpha} \cdot \left\lfloor \frac{n-r}{p^\alpha} \right\rfloor_{q^e}$$

is divisible by

$$[p]_{q^e}^{[n/p^\alpha]-l} \prod_{j=0}^{\alpha-1} [p]_{q^e}^{[n/p^{j+1}]} \cdot \prod_{j=1}^{\alpha-1} [p]_{q^e}^{[n/p^{j}] - [r/p^{j}] - \lfloor (n-r)/p^{j} \rfloor}.$$

Substituting $q = 1$, we obtain the improvement of (1.4) [3, Theorem 5.1]:

$$\nu_p \left(\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \left(\frac{n}{k} \cdot \left\lfloor \frac{n-r}{p^\alpha} \right\rfloor \right) \right) \geq \max \{ \nu_p([n/p^\alpha]!) - l, \nu_p([n/p^\alpha]!) + \tau_p(\{r\}_{p^\alpha-1}, \{n-r\}_{p^\alpha-1}) \}.$$

(2.4)
3. Lucas type and Wolstenholme-Ljunggren type q-congruences

Let

$$T_{p^\alpha,l}(n,r) = \frac{lp^l}{[n/p^\alpha-1]!} \sum_{k \equiv r \pmod{p^\alpha}} (-1)^k \binom{n}{k} \binom{(k-r)/p^\alpha}{l}.$$

In [8], Sun and Davis established the following Lucas type congruence:

$$T_{p^\alpha+1,l}(pn+s,pr+t) \equiv (-1)^t \binom{s}{t} T_{p^\alpha,l}(n,r) \pmod{p}, \quad (3.1)$$

where p is a prime, $\alpha \geq 1$, $n,r \geq 0$ and $0 \leq s,t \leq p-1$. Now we may give a q-analogue of (3.1). For $b,c \geq 1$ with $b \mid c$, define

$$T_{c,l}(n,r; q) = \frac{[l]_q!\Phi_c(q)^l}{[n/c]_q!\Phi_c(q)^[n/c]} \sum_{k \equiv r \pmod{c}} (-1)^k \binom{k}{c} \binom{(k-r)/c}{l} q^c,$$

where $[n]_q! = [n]_q[n-1]_q \cdots [1]_q$.

Theorem 3.1. Let $b \geq 2$ and $n,r,s,t \geq 0$ be integers with $0 \leq s,t \leq b-1$. Suppose that c is a positive multiple of b. Then

$$T_{b^\alpha,l}(bn+s,br+t; q) \equiv (-1)^t \binom{s}{t} T_{c,l}(n,r; q^b) \pmod{\Phi_b(q)}. \quad (3.2)$$

Proof. By the q-Lucas congruence (cf. [4, Proposition 2.2]), we have

$$\binom{bn+s}{br+t}_q \equiv \binom{n}{r}_q \binom{s}{t}_q (\pmod{\Phi_b(q)}). \quad (3.3)$$

Since $q^b \equiv 1 (\pmod{\Phi_b(q)})$, (3.3) can be rewritten as

$$\binom{bn+s}{br+t}_q \equiv \binom{n}{r}_q \binom{s}{t}_q (\pmod{\Phi_b(q)}). \quad (3.4)$$

On the other hand, we have

$$(-1)^{bk+t} q^{(bk+t)/2} \equiv (-1)^{k+t} q^{(k+t)/2} (\pmod{\Phi_b(q)}). \quad (3.5)$$

In fact, since $q^{(bk+t)/2} = q^{bk(2k+2t-1)/2 + (k+t)/2}$, (3.5) easily follows when b is odd. And if b is even, then

$$q^{b/2} = \frac{1-q^b}{1-q^{b/2}} - 1 \equiv -1 (\pmod{\Phi_b(q)}).$$

Thus (3.5) is also valid for even b. Since $b \mid c$, it is not difficult to see that $\Phi_{bc}(q) = \Phi_c(q^b)$. Also, $[j]_{q^c} = (1-q^{jc})/(1-q^c)$ is prime to $\Phi_b(q)$ for any $j \geq 1$.

Hence,

\[
T_{bc}(bn+s, br+t; q) = \frac{[l]_{q^c}!\Phi_{bc}(q)^l}{\left[\left[(bn + s)/c\right] \right]_{q_{bc}/k!} \sum_{bk+t \equiv br+t \pmod{bc}} (-1)^{bk+t} q^{(bk+t)/2} \left(\frac{bn + s}{bk + t}\right)_{q \left(\frac{(bk + t) - (br + t)}{bc}\right)}}_{q^{bc}}
\]

\[
= \frac{[l]_{q^c}!\Phi_{c}(q)^l}{\left[\left[nb/c\right] \right]_{q_{c}/k!} \sum_{k \equiv r \pmod{c}} (-1)^{k+t} q^{b(k+t)/2} \left(\frac{n}{k}\right)_{q^{l}} \left(\frac{k - r}{c}\right)}_{q^c}
\]

\[
= (-1)^{t} q^{(l)/2} \left[\frac{s}{t}\right]_{q} T_{c,l}(n, r; q^b) \pmod{\Phi_b(q)}.
\]

\[
\Box
\]

Furthermore, define

\[
T_{c,l}(n, r; q, z) = \frac{[l]_{q^c}!\Phi_{c}(q)^l}{\left[\left[nb/c\right] \right]_{q_{c}/k!} \sum_{k \equiv r \pmod{c}} (-1)^{k} z^k q^{k/2} \left(\frac{n}{k}\right)_{q^{l}} \left(\frac{k - r}{c}\right)}_{q^c}.
\]

Then we also have

\[
T_{bc}(bn+s, br+t; q, z) \equiv (-1)^{t} z^t q^{(l)/2} \left[\frac{s}{t}\right]_{q} T_{c,l}(n, r; q^b, z^b) \pmod{\Phi_b(q)}.
\] (3.6)

Below we consider the special case that \(s = t = 0\). We need the following \(q\)-analogue of the Wolstenholme-Ljunggren congruence.

Lemma 3.1.

\[
\left[\frac{bn}{bm}\right] \left[\frac{n}{m}\right]_{q^b} \equiv \left((-1)^{b-1} q^{\left(\frac{b}{2}\right)}\right)^{(n-m)m} + \frac{(b^2 - 1)nm(n-m)}{24} (1-q^b)^2 \pmod{\Phi_b(q)^3}.
\] (3.7)

Proof. By Andrews’ discussions in \([1]\), we have

\[
\frac{(q^{j+b}; q)_{b-1} - (-1)^{j+b-1} q^{\left(\frac{b}{2}\right)} (q; q)_{b-1}}{(1-q^{j+b})(1-q^b)} \equiv \frac{(b^2 - 1)b}{24} \pmod{\Phi_b(q)},
\] (3.8)

though he only proved (3.8) when \(b\) is prime. Noting that \((q; q)_{b-1} \equiv b \pmod{\Phi_b(q)}\) and \(1-q^b \equiv j(1-q^b) \pmod{\Phi_b(q)^2}\), (3.8) can be rewritten as

\[
\frac{(q^{j+b}; q)_{b-1}}{(q; q)_{b-1}} \equiv (-1)^{j+b-1} q^{\left(\frac{b}{2}\right)} + \frac{(b^2 - 1)j(1+1)}{24} (1-q^b)^2 \pmod{\Phi_b(q)^3},
\]
It follows that
\[
\begin{align*}
\left[\frac{[bn]}{[bm]}\right]_q/\left[\frac{m}{n}\right]_{q^b} &= \prod_{j=m-n}^{m-1} \left((q^{j+1}; q)_{b-1}/(q; q)_{b-1}\right) \\
&\equiv (-1)^{(b-1)(n-m)m} q^{\left(\frac{b}{b}\right)(n-m)} \left(1 + \frac{(b^2 - 1)mn(n-m)}{24} (1 - q^b)^2\right) \pmod{\Phi_b(q)^3}.
\end{align*}
\]

In view of \((3.5)\), we get \((3.7)\).

Thus,
\[
\begin{align*}
\left[\frac{[\ell]}{[\ell]}\right]_{q^{\ell}} &\equiv \left[\frac{[\ell]}{[\ell]}\right]_{q^{\ell}} \prod_{k=R}^{m} \left(-1\right)^{b_k} z^{b_k} \left[\frac{[bn]}{[bk]}\right] q^{\left(\frac{b}{b}\right) \left[\frac{m}{n}\right]_{q^b}} \\
&\equiv \left[\frac{[\ell]}{[\ell]}\right]_{(q^{\ell})^{\ell}} \sum_{k=R}^{m} \left(-1\right)^{b_k} z^{b_k} q^{n_k} \left[\frac{n}{k}\right] q^{\left(\frac{k-r}{c}\right) \left[\frac{m}{n}\right]_{q^b}} \\
&\equiv \frac{(b^2 - 1)n}{24} \sum_{k=R}^{m} \left(-1\right)^{b_k} z^{b_k} (1 - q^{b_k}) (1 - q^{n_k}) \left[\frac{n}{k}\right] q^{\left(\frac{k-r}{c}\right) \left[\frac{m}{n}\right]_{q^b}} \pmod{\Phi_b(q)^3}.
\end{align*}
\]

That is,

Theorem 3.2. Suppose that \(b, c \ge 2\) and \(b \mid c\). Then for \(n, r \ge 0\),
\[
\begin{align*}
\frac{1}{(1 - q^b)^2} \cdot (T_{bc, l}^{(b)}(bn, br; q, z) - (-1)^{(b-1)n} T_{c, l}^{(b)}(n, r; q^b, z^b q^{n(\frac{b}{b})}))) \\
&\equiv - \frac{1}{[\ell]_{q^{\ell}}!} \cdot \frac{(b^2 - 1)n^2(n - 1)}{24} \cdot z^b T_{c, l}^{(b)}(n - 2, r - 1; q^b, z^b) \pmod{\Phi_b(q)}.
\end{align*}
\]

In particular,
\[
\begin{align*}
T_{b, l}^{(b)}(bn, br; q, z) - (-1)^{(b-1)n} T_{b, l}^{(b)}(n, r; q^b, z^b q^{n(\frac{b}{b})}) \\
&\equiv - \frac{(b^2 - 1)n}{24} \cdot z^b (1 - q^b)^2 T_{b, l}^{(b)}(n - 2, r - 1; q^b, z^b) \pmod{\Phi_b(q)^3}.
\end{align*}
\]

4. From q-congruences to integer congruences

In \([3]\), Sun and Davis conjectured that
\[
\frac{p^l}{[n/p]!} \sum_{k=R}^{m} \left(-1\right)^{k} \left(\frac{pn}{pk}\right) \left(\frac{k-r}{p}\right)^l \equiv \frac{p^l}{[n/p]!} \sum_{k=R}^{m} \left(-1\right)^{k} \left(\frac{n}{k}\right) \left(\frac{k-r}{p}\right)^l \pmod{p^3} \tag{4.1}
\]

for prime $p \geq 5$. This conjecture was confirmed by Sun in [7], with help of some arithmetical properties of the Stirling numbers of the second kind.

Define

$$S_{c,l}^{(b)}(n, r; q, z) = \frac{\Phi_b(q)^l}{[(nb/c)]_{q^p}} \sum_{k \equiv r \pmod{c}} (-1)^k z^k q^{(k)} \left[\begin{array}{c} n \\ k \end{array}\right]_q [(k - r)/c]_{q^p}^l.$$

Using the similar discussions as above, we also can obtain that

\[
S_{bc,l}^{(b)}(bn + s, br + t; q, z) \equiv (-1)^t z^t q^{(t)} \left[\begin{array}{c} s \\ t \end{array}\right] q^{(t)} S_{c,l}^{(b)}(n, r; q, z) \pmod{\Phi_b(q)},
\]

and

\[
\frac{1}{1 - q^p} \cdot \left(S_{bc,l}^{(b)}(bn, br; q, z) - (-1)^{(b-1)n} S_{c,l}^{(b)}(n, r; q, z, q^n) \right) \equiv - \frac{(n - 2)b/c!}{[nb/c]!} \cdot \frac{(b^2 - 1)n^2(n - 1)}{24} \cdot z^b S_{c,l}^{(b)}(n - 2, r - 1; q^b, z^b) \pmod{\Phi_b(q)}.
\]

In particular, for prime $p \geq 5$,

\[
\sum_{k \equiv r \pmod{p^\alpha}} (-1)^k q^{(k)} \left[\begin{array}{c} n \\ k \end{array}\right]_q [(k - r)/p^\alpha]_{q^p}^l \equiv \sum_{k \equiv r \pmod{p^\alpha}} (-1)^k q^{nk(p)^\alpha} \left[\begin{array}{c} n \\ k \end{array}\right]_q [(k - r)/p^\alpha]_{q^p}^l + \frac{(p^2 - 1)n[p]_{q^p}^{p^\alpha}}{24[n/p^\alpha]_{q^p}^{p^\alpha}} \sum_{k \equiv r \pmod{p^\alpha}} (-1)^k (1 - q^{kp})(1 - q^{(n-k)p}) \left[\begin{array}{c} n \\ k \end{array}\right]_q [(k - r)/p^\alpha]_{q^p}^l \pmod{[p]_q^3}.
\]

However, one might doubt whether (4.4) surely implies (4.1), since neither side of (4.4) is a polynomial in q. So we need to give an explanation how to deduce (4.1) from (4.4) by substituting $q = 1$.

Let $L(q)$ and $R(q)$ denote the left side and the right side of (4.4) respectively. Let

\[
F(q) = \frac{[n/p^\alpha]_{q^p}^{p^\alpha}!}{\prod_{j \geq \alpha + 1}[p]_{q^p}^{[n/p^\alpha]}!}.
\]

Then clearly $F(q) \in \mathbb{Z}[q]$ in view of (2.2). And from Corollary 2.1 we also know that $F(q) L(q), F(q) R(q) \in \mathbb{Z}[q]$. Hence there exists a polynomial $H(q) \in \mathbb{Z}[q]$ such that

\[
F(q) L(q) - F(q) R(q) = [p]_q^3 H(q).
\]
Substituting \(q = 1 \), we get
\[
F(1)L(1) \equiv F(1)R(1) \pmod{p^3}.
\]
But by (1.7),
\[
F(1) = \frac{\lfloor n/p^\alpha \rfloor!}{p^{\sum_{j \geq \alpha+1} \lfloor n/p^j \rfloor}}
\]
is not divisible by \(p \). Thus (4.1) is concluded.

Acknowledgment. I am grateful to Professor Zhi-Wei Sun for his helpful suggestions on this paper.

References

[1] G. E. Andrews, *q-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher*, Discrete Math., 204(1999), 15-25.

[2] G. E. Andrews, R. Askey and R. Roy, *Special Functions*, Cambridge University Press, Cambridge, 1999.

[3] D. M. Davis and Z. W. Sun, *A number-theoretic approach to homotopy exponents of \(SU(n) \)*, J. Pure Appl. Algebra, 209(2007), 57-69.

[4] J. Désarménien, *Un analogue des congruences de Kummer pour les \(q \)-nombres d’Euler*, European J. Combin., 3(1982) 19-28.

[5] A. Schultz and R. Walker, *A generalization of the Gaussian formula and a \(q \)-analog of Fleck’s congruence*, preprint, arXiv:1202.0199.

[6] Z. W. Sun, *Polynomial extension of Fleck’s congruence*, Acta Arith., 122(2006), 91-100.

[7] Z.W. Sun, *Combinatorial congruences and Stirling numbers*, Acta Arith., 126(2007), 387-398.

[8] Z. W. Sun and D. M. Davis, *Combinatorial congruences modulo prime powers*, Trans. Amer. Math. Soc., 359(2007), 5525-5553.

[9] D. Wan, *Combinatorial congruences and \(\psi \)-operators*, Finite Fields Appl., 12(2006), 693-703.

[10] C. S. Weisman, *Some congruences for binomial coefficients*, Michigan Math. J., 24(1977), 141-151.

E-mail address: haopan79@yahoo.com.cn

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China