A Multiparametric Quon Algebra

Hery Randriamaro *

May 17, 2019

Abstract

The quon algebra is an approach to particle statistics introduced by Greenberg in order to provide a theory in which the Pauli exclusion principle and Bose statistics are violated by a small amount. In this article, we generalize these models by introducing a deformation of the quon algebra generated by a collection of operators a_i, $i \in \mathbb{N}^*$, on an infinite dimensional module satisfying the $q_{i,j}$-mutator relations $a_i a_j^\dagger - q_{i,j} a_j^\dagger a_i = \delta_{i,j}$. The realizability of our model is proved by means of the Aguiar-Mahajan bilinear form on the chambers of hyperplane arrangements. We show that, for suitable values of $q_{i,j}$, the module generated by the particle states obtained by applying combinations of a_i's and a_i^\dagger's to a vacuum state $|0\rangle$ is an indefinite-Hilbert module. Furthermore, studying the matrix of that bilinear form permits us to establish the conjecture of Zagier.

Keywords: Quon Algebra, Indefinite-Hilbert Module, Hyperplane Arrangement

MSC Number: 05E15, 81R10

1 Introduction

Denote by $\mathbb{C}[q_{i,j}]$ the polynomial ring $\mathbb{C}[q_{i,j} \mid i, j \in \mathbb{N}^*]$ with variables $q_{i,j}$. The quons are particles whose annihilation and creation operators obey the quon algebra which interpolates between fermions and bosons. By multiparametric quon algebra A, we mean the free algebra $\mathbb{C}[q_{i,j}]\{a_i \mid i \in \mathbb{N}^*\}$ subject to the anti-involution \dagger exchanging a_i with a_i^\dagger, and to the commutation relations

$$a_i a_j^\dagger = q_{i,j} a_j^\dagger a_i + \delta_{i,j},$$

where $\delta_{i,j}$ is the Kronecker delta.

That algebra is a generalization of the deformed quon algebra studied by Meljanac and Svrtan subject to the restriction $q_{i,j} = \tilde{q}_{i,j}$ [5, § 1.1]. Their algebra is in turn a generalization of the quon algebra introduced by Greenberg [4] which is subject to the commutation relations $a_i a_j^\dagger = q a_j^\dagger a_i + \delta_{i,j}$ obeyed by the annihilation and creation operators of the quon particles, and generating a model of infinite statistics. Finally, the quon algebra is a generalization of the classical Bose and Fermi algebras corresponding to the restrictions $q = 1$ and $q = -1$ respectively, as well as of the intermediate case $q = 0$ suggested by Hegstrom and investigated by Greenberg [3].

*Lot II B 32 bis Faravohitra, 101 Antananarivo, Madagascar
E-mail: hery.randriamaro@gmail.com
In a Fock-like representation, the generators of A are the linear operators $a_i, a_i^\dagger : V \to V$ on an infinite dimensional $\mathbb{C}[q_{i,j}]$-vector module V satisfying the commutation relations

$$a_i a_j^\dagger = q_{i,j} a_j^\dagger a_i + \delta_{i,j},$$

and the relations

$$a_i |0\rangle = 0,$$

where a_i^\dagger is the adjoint of a_i, and $|0\rangle$ is a nonzero distinguished vector of V. The a_i's are the annihilation operators and the a_i^\dagger's the creation operators.

Define the $q_{i,j}$-conjugate \tilde{P} of a monomial $P = \mu \prod_{u \in [n]} q_{i_u,j_u} \in \mathbb{C}[q_{i,j}]$, where $\mu \in \mathbb{C}$, by

$$\tilde{P} := \tilde{\mu} \prod_{s \in [n]} q_{i_s,j_s} \quad \text{with} \quad \tilde{\mu} = \bar{\mu}, \quad \text{and} \quad \tilde{q}_{i_s,j_s} = q_{j_s,i_s},$$

and the $q_{i,j}$-conjugate of a monomial sum $Q = P_1 + \cdots + P_k \in \mathbb{C}[q_{i,j}]$ by $\tilde{Q} = \tilde{P}_1 + \cdots + \tilde{P}_k$.

Define an indefinite inner product on V by a map $\langle \cdot , \cdot \rangle : V \times V \to \mathbb{C}[q_{i,j}]$ such that, for $\mu \in \mathbb{C}$, and $u, v, w \in V$, we have

- $(\mu u, v) = \mu (u, v)$ and $(u + v, w) = (u, w) + (v, w)$,
- $(u, v) = \overline{(v, u)}$,
- and, if $u \neq 0$, $(u, u) \neq 0$.

Let H be the submodule of V generated by the particle states obtained by applying combinations of a_i's and a_i^\dagger's to $|0\rangle$, that is $H := \{ a|0\rangle \mid a \in A \}$. The aim of this article is to prove the realizability of that model through the following theorem.

Theorem 1.1. Under the condition $|q_{i,j}| < 1$, the module H is an indefinite-Hilbert module for the map $\langle \cdot , \cdot \rangle : H \times H \to \mathbb{C}[q_{i,j}]$ defined, for $\mu, \nu \in \mathbb{C}[q_{i,j}]$, and $a, b \in A$, by

$$\langle \mu a|0\rangle , \nu b|0\rangle \rangle := \mu \nu \langle 0|a b^\dagger|0\rangle \quad \text{with} \quad \langle 0|0\rangle = 1,$$

and where the usual bra-ket product $\langle 0|a b^\dagger|0\rangle$ is subject to the defining relations of A.

The indefinite inner product of Theorem 1.1 becomes an inner product when the matrix representing (\cdot , \cdot) is diagonalizable. Theorem 1.1 is particularly a generalization of the realizability of the deformed quon algebra model established by Meljanac and Svrtan [5, Theorem 1.9.4], which in turn is a generalization of the realizability of the quon algebra model established by Zagier [7, Theorem 1].

To prove Theorem 1.1, we first show with Lemma 3.1 that

$$B := \{ a_{i_1}^\dagger \cdots a_{i_n}^\dagger |0\rangle \mid (i_1, \ldots , i_n) \in (\mathbb{N}^+)^n, \ n \in \mathbb{N} \}$$

is a basis of H, so that we can assume

$$H = \left\{ \sum_{i=1}^{n} \mu_i b_i \mid n \in \mathbb{N}^*, \mu_i \in \mathbb{C}[q_{i,j}], b_i \in B \right\}.$$
The infinite matrix associated to the map of Theorem 1.1 is \(M := ((b, a))_{a,b \in B} \).

Let \(\left\{ \frac{N^*}{n} \right\} \) be the set of multisets of \(n \) elements in \(N^* \). We prove with Lemma 3.2 that

\[
M = \bigoplus_{n \in N^*} \bigoplus_{I \in \left\{ \frac{N^*}{n} \right\}} M_I \quad \text{with} \quad M_I = \left(\langle 0 | a^{\dagger}(n) \cdots a^{\dagger}(1) a^{\dagger} \cdots a^{\dagger}(n) | 0 \rangle \right) \sigma^{\dagger} \sigma^t \in \mathcal{S}_I,
\]

where \(\mathcal{S}_I \) is the permutation set of the multiset \(I \). For example,

\[
M_{[3]} = \begin{pmatrix}
1 & q_{3,2} & q_{2,1} & q_{2,1} q_{3,1} & q_{3,1} q_{2,1} & q_{3,1} q_{2,1} q_{3,1} \\
q_{2,3} & 1 & q_{2,1} q_{3,1} & q_{2,1} q_{3,1} q_{2,3} & q_{3,1} & q_{3,1} q_{2,1} \\
q_{1,2} & q_{1,2} q_{3,2} & 1 & q_{3,1} & q_{3,2} q_{1,2} q_{3,1} & q_{3,2} q_{3,1} \\
q_{1,2} q_{3,2} & q_{1,3} & q_{2,3} q_{1,1} q_{2,3} & q_{2,3} q_{1,2} & 1 & q_{2,1} \\
q_{1,3} q_{2,3} & q_{1,3} q_{2,3} & q_{2,3} q_{2,1} & q_{2,3} q_{1,2} & q_{2,3} & 1
\end{pmatrix}.
\]

Proposition 2.1 and Lemma 3.3 permits us to deduce that, if \(J \in \left(\frac{N^*}{n} \right) \subseteq \left\{ \frac{N^*}{n} \right\} \), then

\[
\det M_J = \prod_{K \in \mathbb{C}^I} \left(1 - \prod_{\{s,t\} \in (K)} q_{s,t} \right)^{(\# K - 2)! (n - \# K + 1)!}.
\]

For example, \(\det M_{[3]} = (1 - q_{1,2} q_{2,1})^2 (1 - q_{1,3} q_{3,1})^2 (1 - q_{2,3} q_{3,2})^2 (1 - q_{1,2} q_{2,1} q_{3,1} q_{2,3} q_{3,2}) \).

That determinant was independently computed by Meljanac and Svrtan for the specialization \(q_{i,j} = \bar{q}_{i,j} \) [5 Theorem 1.9.2], by Duchamp et al. for the specialization \(q_{i,j} = q_{j,i} \) [2 § 6.4.1], and by Zagier for the specialization \(q_{i,j} = \bar{q}_{j,i} \) [7 Theorem 2].

Moreover, consider the multiset \(I = \{ i_1, \ldots, i_1, i_2, \ldots, i_2, \ldots, k_1, \ldots, k_k \} \in \left\{ \frac{N^*}{n} \right\} \). For \(s \in [n] \), let \(\tilde{s} := i_j \) if \(s \in [p_j + p_j - 1 + \cdots + p_1] \setminus [p_j - 1 + \cdots + p_1] \). Suppose that the generators of \(A \) satisfy the commutation relations \(a_s a_t^\dagger = q_{s,t} a_t a_s + \delta_{s,t} \). In that case, if we regard \(M_{[n]} \) as the matrix representing a linear map \(\alpha : M \to M \) on a module \(M \), then, we prove with Proposition 2.2 and Lemma 3.3 that \(M_I \) is the matrix representing \(\alpha \) restricted to a submodule \(N \subseteq M \) such that \(\alpha(N) = N \).

Therefore, we can infer that, for every \(I \in \left\{ \frac{N^*}{n} \right\} \), \(M_I \) is nonsingular for \(|q_{i,j}| < 1, i, j \in N^* \).

When, for special values of the \(q_{i,j} \)'s, \(M_{[n]} \) is diagonalizable, then \(M_I \) becomes positive definite. Indeed, as \(M_I \) is the identity matrix if \(q_{i,j} = 0 \), for every \(i, j \in N^* \), we deduce by continuity that \(M_I \) is positive definite. For these suitable values of \(q_{i,j} \), \(M \) becomes a positive definite matrix or, in other terms, the map in Theorem 1.1 becomes an inner product on \(H \). It is the case of the algebras investigated by Meljanac and Svrtan, and Zagier since, with their models, \(M_{[n]} \) is a hermitian matrix, that is consequently diagonalizable.

To finish, we establish the conjecture of Zagier [7 § 1] in Section 4:

Proposition 1.2. Let \(n \in N^* \), and assume that the generators of \(A \) satisfy the commutation relations \(a_s a_t^\dagger = q a_t^\dagger a_s + \delta_{s,t} \). Then, each entry of \(M_{[n]}^{-1} \) is an element of

\[
\prod_{i \in [n-1]} \frac{\mathbb{C}[q]}{(1 - q^{2+i})}.
\]

3
2 Hyperplane Arrangements

We establish two results we need concerning the hyperplane arrangement associated to the permutation group of n elements to prove Theorem 1.1.

Recall that a hyperplane in the space \mathbb{R}^n is a $(n-1)$-dimensional linear subspace, and a hyperplane arrangement is a finite set of hyperplanes. For a hyperplane H, denote its two associated open half-spaces by H^+ and H^-, and let $H^0 := H$. A face of a hyperplane arrangement \mathcal{A} is a subset of \mathbb{R}^n having the form

$$F := \bigcap_{H \in \mathcal{A}} H^{\epsilon_H(F)}$$

with $\epsilon_H(F) \in \{+,0,-\}$.

A chamber of \mathcal{A} is a face in $F_{\mathcal{A}}$ whose sign sequence contains no 0. Denote the set of \mathcal{A}-chambers by $C_{\mathcal{A}}$. For two chambers $C, D \in C_{\mathcal{A}}$, the set of half-spaces containing C but not D is $H_{C,D} := \{H^{\epsilon_H(C)} \mid H \in \mathcal{A}, \epsilon_H(C) = -\epsilon_H(D)\}$. Assign a variable h^ε_H, $\varepsilon \in \{+,-\}$, to every half-space H^ε. We work with the polynomial ring $R_\mathcal{A} := \mathbb{Z}[h^\varepsilon_H \mid H \in \mathcal{A}, \varepsilon \in \{+,-\}]$.

The module of $R_\mathcal{A}$-linear combinations of chambers is $M_{\mathcal{A}} := \left\{ \sum_{C \in C_{\mathcal{A}}} x_CC \mid x_C \in R_\mathcal{A}\right\}$.

Define the bilinear form $v : M_{\mathcal{A}} \times M_{\mathcal{A}} \to R_\mathcal{A}$ for chambers $C, D \in C_{\mathcal{A}}$ by

$$v(C, C) = 1 \quad \text{and} \quad v(C, D) = \prod_{H^\varepsilon \in H_{C,D}} h^\varepsilon_H \quad \text{if} \ C \neq D.$$

That bilinear form derives from the distance function on the chambers of hyperplane arrangements introduced by Aguiar and Mahajan [1, § 8.1.1].

From v, we define the linear map $\gamma : M_{\mathcal{A}} \to M_{\mathcal{A}}$, for a chamber $D \in C_{\mathcal{A}}$, by

$$\gamma(D) := \sum_{C \in C_{\mathcal{A}}} v(D, C) C.$$

Let $x = (x_1, \ldots, x_n)$ be a variable of \mathbb{R}^n. We mainly investigate the hyperplane arrangement associated to the permutation group S_n of n elements

$$\mathcal{A}_n = \{ H_{i,j} \mid i, j \in [n], i < j \} \quad \text{with} \quad H_{i,j} = \{ x \in \mathbb{R}^n \mid x_i = x_j \}.$$

The set of \mathcal{A}_n-chambers is

$$C_{\mathcal{A}_n} = \{ C_{\sigma} \mid \sigma \in S_n \} \quad \text{with} \quad C_{\sigma} := \{ x \in \mathbb{R}^n \mid x_{\sigma(1)} < x_{\sigma(2)} < \cdots < x_{\sigma(n)} \}.$$

For $i, j \in [n]$ with $i \neq j$, assign the variable $q_{i,j}$ to the half-space $\{ x \in \mathbb{R}^n \mid x_i < x_j \}$. On the hyperplane arrangement \mathcal{A}_n, we work with the polynomial ring $R_{\mathcal{A}_n} := \mathbb{Z}[q_{i,j} \mid i, j \in [n]]$, and the module of $R_{\mathcal{A}_n}$-linear combinations of chambers $M_{\mathcal{A}_n} := \left\{ \sum_{\sigma \in S_n} x_\sigma C_{\sigma} \mid x_\sigma \in R_{\mathcal{A}_n}\right\}$.

Restricted on \mathcal{A}_n, v becomes the bilinear form $v_n : M_{\mathcal{A}_n} \times M_{\mathcal{A}_n} \to R_{\mathcal{A}_n}$ defined, for chambers $C_{\sigma}, C_\tau \in C_{\mathcal{A}_n}$, by

$$v_n(C_{\sigma}, C_\tau) = \prod_{\{i,j\} \in {[n]\choose 2}, i < j} q_{\sigma(i),\sigma(j)}^{-1} \tau^{-1} \sigma(i) > \tau^{-1} \sigma(j) \tau^{-1} \sigma(j)$$

and γ the linear map $\gamma_n : M_{\mathcal{A}_n} \to M_{\mathcal{A}_n}$ defined, for a chamber $C_\tau \in C_{\mathcal{A}_n}$, by

$$\gamma_n(C_\tau) := \sum_{\sigma \in S_n} v_n(C_\tau, C_{\sigma}) C_{\sigma}.$$
Proposition 2.1. For an integer \(n \geq 2 \), we have
\[
\det \gamma_n = \prod_{I \in \binom{\{s,t\}}{2}} \left(1 - \prod_{\{i,j\} \in \binom{\{s,t\}}{2}} q_{i,j}q_{j,i} \right)^{(\#I - 2)! \left(n - \#I + 1 \right)!}.
\]

Proof. We first discuss about the general case of hyperplane arrangements. A flat of \(\mathcal{A} \) is an intersection of \(\mathcal{A} \)-hyperplanes. Denote the set of \(\mathcal{A} \)-flats by \(L_{\mathcal{A}} \). The weight of a flat \(E \in L_{\mathcal{A}} \) is the monomial
\[
b_E := \prod_{H \in \mathcal{A}} h_H^+, h_H^-, \]
and, if we choose a hyperplane \(H \) containing \(E \), the multiplicity \(\beta_E \) of \(E \) is half the number of chambers \(C \in \mathcal{C}_H \) which have the property that \(E \) is the minimal edge containing \(C \cap H \). Aguiar and Mahajan proved that [1, Theorem 8.11]
\[
\det \gamma = \prod_{E \in L_{\mathcal{A}}} (1 - b_E)^{\beta_E}.
\]

Now, concerning \(\mathcal{A}_n \), let \(L'_{\mathcal{A}_n} = \{ E \in L_{\mathcal{A}_n} \mid \beta_E \neq 0 \} \). For a subset \(I \subseteq [n] \) with \(#I \geq 2\), denote by \(E_I \) the edge \(\bigcap_{\{i,j\} \in \binom{I}{2}} H_{i,j} \). Randriamaro proved that [6, Lemma 3.2 - 3.3]
\[
L'_{\mathcal{A}_n} = \{ E_I \mid I \subseteq [n], \#I \geq 2 \} \quad \text{and} \quad \beta_{E_I} = (\#I - 2)! (n - \#I + 1)!.
\]

\[
\]

Take a partition \(\lambda = (p_1, \ldots, p_k) \in \text{Par}(n) \) of \(n \). Denote by \(\mathcal{S}_\lambda \) the subgroup \(\prod_{i \in [k]} \mathcal{S}_{\lambda_i} \) of \(\mathcal{S}_n \), where \(\mathcal{S}_{\lambda_i} \) is the permutation group of the set \([p_i + p_{i-1} + \cdots + p_1] \setminus [p_i + p_{i-1} + \cdots + p_1] \).

Consider the multiset \(I_\lambda = \{1, \ldots, 1, 2, \ldots, 2, \ldots, k, \ldots, k\} \). Denote by \(\mathcal{S}_{I_\lambda} \) the permutation set of the multiset \(I_\lambda \). For \(s \in [n] \), define \(\hat{s} := i \) if \(s \in [p_i + p_{i-1} + \cdots + p_1] \setminus [p_i + p_{i-1} + \cdots + p_1] \).

Let \(p : \mathcal{S}_n \to \mathcal{S}_{I_\lambda} \) be the projection \(p(\sigma) := \sigma(1) \sigma(2) \ldots \sigma(n) \). For \(\hat{\sigma} \in \mathcal{S}_{I_\lambda} \), define the element \(C_\hat{\sigma} := \sum_{\sigma \in p^{-1}(\hat{\sigma})} C_\sigma \in M_{\mathcal{A}_n} \). Denote by \(M_{\mathcal{A}_n}^\lambda \) the submodule
\[
M_{\mathcal{A}_n}^\lambda := \left\{ \sum_{\hat{\sigma} \in \mathcal{S}_{I_\lambda}} x_{C_\hat{\sigma}} C_\hat{\sigma} \mid x_{C_\hat{\sigma}} \in R_{\mathcal{A}_n} \right\}.
\]

For \(s, t \in [n] \) with \(s \neq t \), assign the variable \(q_{s,t} \) to the half-space \(\{ x \in \mathbb{R}^n \mid x_s < x_t \} \).

Proposition 2.2. Let \(n \in \mathbb{N}^+ \), and \(\lambda \in \text{Par}(n) \). Then, \(\gamma_n(M_{\mathcal{A}_n}^\lambda) = M_{\mathcal{A}_n}^\lambda \).

Proof. If \(\sigma \in \mathcal{S}_n \) such that \(p(\sigma) = \hat{\sigma} \in \mathcal{S}_{I_\lambda} \), then \(p^{-1}(\hat{\sigma}) = \mathcal{S}_{I_\lambda} \). Let \(\nu \sigma \in \mathcal{S}_{I_\lambda} \), and \(\hat{\tau} \in \mathcal{S}_{I_\lambda} \).
If \(p(\tau) = \dot{\tau} \),

\[
 v_n(C_{\dot{\tau}}, C_{\sigma}) = \sum_{\varphi \in S} v_n(C_{\varphi \tau}, C_{\sigma})
\]

\[
 = \sum_{\varphi \in S} \prod_{\{i,j\} \in \binom{[n]}{2}} q_{\varphi \tau}(i), q_{\varphi \tau}(j)
\]

\[
 = \sum_{\varphi \in S} \prod_{\{i,j\} \in \binom{[n]}{2}} q_{\tau}(i), q_{\tau}(j)
\]

\[
 = \sum_{\varphi \in S} \prod_{\{i,j\} \in \binom{[n]}{2}} q_{\tau}(i), q_{\tau}(j)
\]

\[
 = \sum_{\varphi \in S} \prod_{\{i,j\} \in \binom{[n]}{2}} q_{\tau}(i), q_{\tau}(j)
\]

Hence,

\[
 \gamma_n(C_{\dot{\tau}}) = \sum_{\sigma \in S_n} v_n(C_{\dot{\tau}}, C_{\sigma}) C_{\sigma}
\]

\[
 = \sum_{\sigma \in S_{I\lambda}} \sum_{\varphi \in S} v_n(C_{\dot{\tau}}, C_{\sigma}) C_{\sigma}
\]

\[
 = \sum_{\sigma \in S_{I\lambda}} \sum_{\varphi \in S} v_n(C_{\dot{\tau}}, C_{\sigma}) C_{\sigma}
\]

\[
 = \sum_{\sigma \in S_{I\lambda}} v_n(C_{\dot{\tau}}, C_{\sigma}) \sum_{\varphi \in S} C_{\sigma}
\]

\[
 = \sum_{\sigma \in S_{I\lambda}} v_n(C_{\dot{\tau}}, C_{\sigma}) C_{\sigma}.
\]

\[\square\]

3 The Bra-Ket Product on \(\mathbf{H} \)

We prove some useful properties of the map in Theorem 1.1. We particularly connect it to the bilinear form \(v_n \) on \(M_{A_n} \).

Lemma 3.1. The vector space generated by our particle states is

\[
 \mathbf{H} = \left\{ \sum_{i=1}^{n} \mu_i b_i \mid n \in \mathbb{N}^*, \mu_i \in \mathbb{C}[q_{i,j}], b_i \in \mathbf{B} \right\}.
\]

Proof. Let \(i \in \mathbb{N}^* \). We have,

\[
 a_i a_j^\dagger \ldots a_l^\dagger = q_{i,j_1} \ldots q_{i,j_l} a_j^\dagger \ldots a_l^\dagger a_i
\]

\[
 + \sum_{u \in [l]} q_{i,j_1} \ldots q_{i,j_{u-1}} a_j^\dagger \ldots a_{j_{u-1}}^\dagger a_{j_{u-1}} \ldots a_j^\dagger
\]
where the hat over the \(u \)th term of the product indicates that this term is omitted. So
\[
\mathbf{a}_i \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger |0\rangle = \sum_{u \in [t]} \sum_{j_u = 1} q_{i,j_1} \cdots q_{i,j_{u-1}} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_u}^\dagger \cdots \mathbf{a}_{j_t}^\dagger |0\rangle.
\]
Thus, one can recursively remove every annihilation operator \(\mathbf{a}_i \) of an element \(\mathbf{a}(0) \in \mathbf{H} \).

Lemma 3.2. Let \((i_1, \ldots, i_s) \in (\mathbb{N}^+)^s \) and \((j_1, \ldots, j_t) \in (\mathbb{N}^+)^t \). If, as multisets, \(\{i_1, \ldots, i_s\} \) is different from \(\{j_1, \ldots, j_t\} \), then \(\langle 0 | \mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger |0\rangle = 0 \).

Proof. Suppose that \(v \) is the smallest integer in \([s]\) such that \(i_v \notin \{j_1, \ldots, j_t\} \cup \{i_1, \ldots, i_{v-1}\} \). Then
\[
\mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger = P \mathbf{a}_{i_{v-1}} + Q \mathbf{a}_{i_v}
\]with \(P, Q \in \mathbf{A} \).

We deduce that \(\mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger \) is a multiset permutation of \((i_1, \ldots, i_s) \setminus \{j_1, \ldots, j_u\} \). Then
\[
\mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger = \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_u}^\dagger P' + \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger Q'
\]with \(P', Q' \in \mathbf{A} \).

And \(\langle 0 | \mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger \rangle = \langle 0 | \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_u}^\dagger P' + \langle 0 | \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_t}^\dagger Q' = 0 \).

Therefore, we just need to investigate the product \(\langle 0 | \mathbf{a}_{i_1} \cdots \mathbf{a}_{i_s} \mathbf{a}_{j_1}^\dagger \cdots \mathbf{a}_{j_n}^\dagger |0\rangle \) where \((j_1, \ldots, j_n)\) is a multiset permutation of \((i_1, \ldots, i_n)\).

Lemma 3.3. Let \(\sigma, \tau \in \mathfrak{S}_n \), and \(C_\sigma, C_\tau \in C_{A_n} \) their associated chambers. Then,
\[
\langle 0 | \mathbf{a}_{\sigma(1)} \cdots \mathbf{a}_{\sigma(n)} \mathbf{a}_{\tau(1)}^\dagger \cdots \mathbf{a}_{\tau(n)}^\dagger |0\rangle = v_n(C_\sigma, C_\tau).
\]

Proof. We have
\[
\langle 0 | \mathbf{a}_{\sigma(1)} \cdots \mathbf{a}_{\sigma(n)} \mathbf{a}_{\tau(1)}^\dagger \cdots \mathbf{a}_{\tau(n)}^\dagger |0\rangle = \prod_{s \in [n]} \prod_{\tau^{-1} \circ \sigma(s) > \tau^{-1} \circ \sigma(t)} q_{\sigma(s), \sigma(t)}
\]
\[
= \prod_{\{s,t\} \in \binom{n}{2}} q_{\sigma(s), \sigma(t)}
\]
\[
= v_n(C_\sigma, C_\tau).
\]

For \(s, t \in [n] \) with \(s \neq t \), assign the variable \(q_{s,t} \) to the half-space \(\{x \in \mathbb{R}^n \mid x_s < x_t\} \).

Lemma 3.4. Let \(\lambda \in \text{Par}(n) \), and \(\bar{\sigma}, \bar{\tau} \in \mathfrak{S}_{I_\lambda} \). Then, for every \(\tau \in \text{p}^{-1}(\bar{\tau}) \),
\[
\langle 0 | \mathbf{a}_{\bar{\sigma}(1)} \cdots \mathbf{a}_{\bar{\sigma}(n)} \mathbf{a}_{\tau(1)}^\dagger \cdots \mathbf{a}_{\tau(n)}^\dagger |0\rangle = v_n(C_\bar{\sigma}, C_\bar{\tau}).
\]

7
Proof. We have

\[
\langle 0 \mid a_{\sigma(n)} \cdots a_{\sigma(1)} \, a_{\tau(1)} \cdots a_{\tau(n)} \, 0 \rangle = \sum_{\sigma \in S_n} \prod_{s \in [n]} \prod_{t \in [n] \setminus [s]} q_{\sigma(s), \tau_{\sigma(t)}} \\
= \sum_{\sigma \in S_n} \prod_{\{s,t\} \in \binom{[n]}{2}} \tau_{\sigma(s), \tau_{\sigma(t)}}.
\]

For every \(\sigma \in p^{-1}(\hat{\sigma}) \), and \(\tau \in p^{-1}(\hat{\tau}) \), we have, on one side,

\[\hat{\sigma} = \hat{\tau} \circ v \iff \mathcal{G}_\lambda \sigma = \mathcal{G}_\lambda \tau v \iff v \in \tau^{-1} \mathcal{G}_\lambda \sigma.\]

On the other side, if id is the identity permutation, there exists \(\varphi \in \mathcal{G}_\lambda \) such that \(v = \tau^{-1} \varphi \sigma \), and

\[\hat{\tau} \circ v(t) = \hat{\tau} \circ \tau^{-1} \varphi \sigma(t) = \text{id} \circ \varphi \sigma(t) = \text{id} \circ \sigma(t) = \hat{\sigma}(t).\]

Then,

\[
\langle 0 \mid a_{\sigma(n)} \cdots a_{\sigma(1)} \, a_{\tau(1)} \cdots a_{\tau(n)} \, 0 \rangle = \sum_{\sigma \in \mathcal{G}_\lambda} \prod_{\{s,t\} \in \binom{[n]}{2}} q_{\sigma(s), \sigma(t)} \\
= \nu_n(C_\sigma, C_\tau)
\]

\[\square\]

4 The Conjecture of Zagier

To prove the conjecture of Zagier, we first have to come back to the general case of hyperplane arrangements. The set \(F_A \) of \(A \)-faces forms the Tits monoid with the product \(FG \) defined, for \(F, G \in F_A \), by

\[\epsilon_H(FG) = \begin{cases}
\epsilon_H(F) & \text{if } \epsilon_H(F) \neq 0, \\
\epsilon_H(G) & \text{otherwise}.
\end{cases}\]

It is also a meet-semilattice with partial order \(\preceq \) defined, for \(F, G \in F_A \), by

\[F \preceq G \iff \epsilon_H(F) = \epsilon_H(G) \text{ whenever } \epsilon_H(F) \neq 0.\]

Denote by \(O \) the face in \(F_A \) such that, for every \(H \in A \), \(\epsilon_H(O) = 0 \). The rank of a face \(F \in F_A \) is \(\text{rk } F := \dim \bigcap_{H \in A, F \subseteq H} - \dim O \). A nested face is a pair \((F, G)\) of faces in \(F_A \) such that \(F \prec G \).

For a nested face \((F, G)\), a flag from \(F \) to \(G \) is a sequence \((F = F_0 \prec F_1 \cdots \prec F_k = G)\) of faces in \(F_A(F,G) \) such that, for \(i \in [k] \), we have \(\text{rk } F_i = \text{rk } F_{i-1} + 1 \). Denote the set of flags from the face \(F \) to the face \(G \) by \(F_A^{(F,G)} \).

For a face \(F \in F_A \), define the monomial \(b_F := \prod_{H \subseteq F \subseteq H} h^+_H h^-_H \), in particular \(b_F = 0 \) if \(F \in C_A \).
For a flag $K = (F_0 \prec F_1 \prec \cdots \prec F_k) \in F_{\mathcal{A}}^{[F,G]}$, define the polynomial $\Delta_K := \prod_{i \in [k]} (1 - b_{F_i})$, and the set of polynomial fractions $\text{Frac}(F,G) := \left\{ \frac{p}{\Delta_K} \ \middle| \ p \in R_{\mathcal{A}}, \ K \in F_{\mathcal{A}}^{[F,G]} \right\}$.

Proposition 4.1. Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n. Each entry of $\gamma^{-1} : M_{\mathcal{A}} \to M_{\mathcal{A}}$ is an element of $\bigcup_{C \in C_{\mathcal{A}}} \text{Frac}(O,C)$.

Proof. As $\det \gamma$ is a polynomial in $R_{\mathcal{A}}$ with constant term 1, γ is consequently invertible. For a chamber $D \in C_{\mathcal{A}}$, and a nested face (A,D), define $m(A,D) := \sum_{C \in C_{\mathcal{A}}} v(D,C) C$.

We prove by backward induction that $m(A,D) = \sum_{C \in C_{\mathcal{A}}} x_C \gamma(C)$ with $x_C \in \text{Frac}(A,D)$.

We have $m(D,D) = \gamma(D) = \frac{\gamma(D)}{1 - b_D}$.

The opposite of a face $F \in F_{\mathcal{A}}$ is the face \tilde{F} such that, for every $H \in \mathcal{A}$, $\epsilon_H(\tilde{F}) = -\epsilon_H(F)$. For a nested face (F,G), define the set of faces $F_{\mathcal{A}}^{(F,G)} := \{ K \in F_{\mathcal{A}} \mid F \preceq K \preceq G \}$. If we assign a variable x_C to each chamber $C \in C_{\mathcal{A}}$, a more general formulation of the Witt identity states that [1, Proposition 7.30]

$$\sum_{F \in F_{\mathcal{A}}^{(A,D)}} (-1)^{rk F} \sum_{C \in C_{\mathcal{A}}} x_C = (-1)^{rk D} \sum_{C \in C_{\mathcal{A}}} x_C.$$

That formulation applied to $x_C = v(D,C) C$ yields

$$\sum_{F \in F_{\mathcal{A}}^{(A,D)}} (-1)^{rk F} m(F,D) = (-1)^{rk D} \sum_{C \in C_{\mathcal{A}}} v(D,C) C.$$

Since $v(D,C) = v(D,AC) v(AC,C) = v(D,AD) v(AD,C)$, then

$$\sum_{F \in F_{\mathcal{A}}^{(A,D)}} (-1)^{rk F} m(F,D) = (-1)^{rk D} v(D,AD) \sum_{C \in C_{\mathcal{A}}} v(AD,C) C = (-1)^{rk D} v(D,AD) m(A,AD).$$

So, $m(A,D) - (-1)^{rk D - rk A} v(D,AD) m(A,AD) = \sum_{F \in F_{\mathcal{A}}^{(A,D)} \setminus \{A\}} (-1)^{rk F - rk A + 1} m(F,D)$. By induction hypothesis, for every $C \in C_{\mathcal{A}}$, there exists $a_C \in \bigcup_{F \in F_{\mathcal{A}}^{(A,D)} \setminus \{A\}} \text{Frac}(F,D)$, such that

$$\sum_{F \in F_{\mathcal{A}}^{(A,D)} \setminus \{A\}} (-1)^{rk F - rk A + 1} m(F,D) = \sum_{C \in C_{\mathcal{A}}} a_C \gamma(C).$$
Remark that, for every $F \in F_A^{(A,D)}$, we have $b_F = b_{A,F}$, which means that

$$\bigcup_{F \in F_A^{(A,D)} \setminus \{A\}} \text{Frac}(F, A\hat{D}) = \bigcup_{F \in F_A^{(A,D)} \setminus \{A\}} \text{Frac}(F, D).$$

So, since $A \leq A\hat{D}$ and $A(A\hat{D}) = D$, by remplacing D with $A\hat{D}$, we note that, for every $C \in C_A$, there exists also $e_C \in \bigcup_{F \in F_A^{(A,D)} \setminus \{A\}} \text{Frac}(F, D)$, such that

$$m(A, A\hat{D}) - (-1)^{rk A\hat{D}} v(A\hat{D}, D) m(A, D) = \sum_{C \in C_A} e_C \gamma(C).$$

Therefore,

$$m(A, D) - (-1)^{rk D} v(D, A\hat{D}) m(A, A\hat{D}) = \sum_{C \in C_A} a_C \gamma(C)$$

$$m(A, D) - v(D, A\hat{D}) v(A\hat{D}, D) m(A, D) = \sum_{C \in C_A} (a_C + (-1)^{rk D} v(D, A\hat{D}) e_C) \gamma(C)$$

$$m(A, D) = \sum_{C \in C_A} a_C + (-1)^{rk D} v(D, A\hat{D}) e_C \gamma(C),$$

with $\frac{a_C + (-1)^{rk D} v(D, A\hat{D}) e_C}{1 - b_A} \in \bigcup_{F \in F_A^{(A,D)}} \text{Frac}(F, D) = \text{Frac}(A, D)$.

For every chamber $D \in C_A$, we have $m(O, D) = D$. So, there exist $x_C \in \text{Frac}(O, D)$ such that $D = \sum_{C \in C_A} x_C \gamma(C)$, and $\gamma^{-1}(D) = \sum_{C \in C_A} x_C C$. Therefore, each entry of γ^{-1} is an element of

$$\bigcup_{C \in C_A} \text{Frac}(O, C).$$

We can deduce the conjecture of Zagier.

Corollary 4.2. Let $n \geq 2$, and suppose that $q_{i,j} = q_{j,i} = q$. Then, each entry of γ_n^{-1} is an element of

$$\prod_{i \in [n-1]} (1 - q^{2i+1}).$$

Proof. Let $(O = F_0 \prec F_1 \prec \cdots \prec F_{n-1} = C_o) \in F_{A_n}^{(O[C_o])}$, $i + 1 \in [n]$, and $j \in [n]$ such that $j \leq i + 1$. The face F_i has the form

$$F_i = \{ x \in \mathbb{R}^n \mid x_{\sigma(1)} < \cdots < x_{\sigma(j)} = x_{\sigma(j+1)} = \cdots = x_{\sigma(j+n-i-1)} < \cdots < x_{\sigma(n)} \}.$$

Then, $b_{F_i} = \prod_{\{k,l\} \in \binom{\{1,2\}}{2}} q_{k,l} q_{l,k}$ with $I_i = \{ \sigma(j), \sigma(j+1), \ldots, \sigma(j+n-i-1) \}$. If $q = q_{k,l} = q_{l,k}$, then $b_{F_i} = q^{(n-i-1)^2 + (n-i-1)}$, and each entry of γ_n^{-1} is an element of

$$\prod_{i \in [n-1]} (1 - q^{2i+1}).$$

$$\square$$
References

[1] M. Aguiar, S. Mahajan, *Topics in Hyperplane Arrangements*, Mathematical Surveys and Monographs 226, 2017.

[2] G. Duchamp, A. Klyachko, D. Krob, J.-Y. Thibon, *Noncommutative Symmetric Functions III: Deformations of Cauchy and Convolution Algebras*, Discrete Math. Theor. Comput. Sci. (1) (1997), 159–216.

[3] O. Greenberg, *Example of Infinite Statistics*, Phys. Rev. Lett. (64) 7 (1990), 705–708.

[4] O. Greenberg, *Particles with small Violations of Fermi or Bose Statistics*, Phys. Rev. D (43) 12 (1991), 4111–4120.

[5] S. Meljanac, D. Svrtan, *Study of Gram Matrices in Fock Representation of Multiparametric Canonical Commutation Relations, extended Zagier’s Conjecture, Hyperplane Arrangements and Quantum Groups*, Math. Commun. (1) 1 (1996).

[6] H. Randriamaro, *Computing the Varchenko Determinant of a Bilinear Form*, Irish Math. Soc. Bulletin (82) (2018), 79–90.

[7] D. Zagier, *Realizability of a Model in Infinite Statistics*, Comm. Math. Phys. (147) (1992), 199–210.