Therapeutic potential of the nitrite-generated NO pathway in vascular dysfunction

Michael Madigan* and Brian Zuckerbraun
University of Pittsburgh, Pittsburgh, PA, USA

INTRODUCTION
The Nobel Prize in physiology or medicine was awarded to Drs. Furchgott, Ignarro, and Murad in 1998 for their work in identifying nitric oxide (NO), previously recognized as endothelium-derived relaxing factor, as a biologic mediator of the cardiovascular system. Since that time, NO has been extensively researched and has been linked to numerous physiological and pathological processes within the cardiovascular system. Vascular dysfunction is the root cause of a variety of important disease processes, including myocardial infarction, stroke, peripheral vascular disease, pulmonary hypertension, and wound healing. This constellation of pathology imposes a significant financial burden on the healthcare system and produces significant morbidity and mortality in those affected. The underlying pathophysiology of vascular dysfunction occurs in numerous forms, and often involves a combination of dysregulated endothelial cell NO production, increased proliferation and migration of smooth muscle cells, increased formation of intimal and medial plaques, impaired collateral vessel generation, and reduced angiogenesis.

THE L-ARGININE/NITRIC OXIDE PATHWAY
Three nitric oxide synthases (NOSs), nNOS (neuronal), iNOS (inducible), and eNOS (endothelial), were identified and initially thought to be the sole producers of NO within the cardiovascular system (1). Both nNOS and eNOS are calcium-dependent and constitutively active, while iNOS is induced under inflammatory conditions and is calcium-independent. All three isoforms metabolize l-arginine, NADPH, and oxygen to l-citrulline, NADP, and NO (2) (Figure 1). l-arginine may alternatively be metabolized by arginase to l-ornithine and urea. When the supply of l-arginine is limited, metabolism via arginase may effectively reduce production of NO (3).

It has been suggested that the shunting of l-arginine away from the NOS/NO pathway toward the arginase/l-ornithine pathway contributes to certain vascular pathology (4–7) (Figure 2). Expression of arginase in the vascular wall is induced under pro-inflammatory conditions, as well as by reactive oxygen species (ROS) and reactive nitrogen species (RNS) (8). Increased arginase activity has been associated with hypertension and coronary vascular dysfunction (9–11). Also, direct vascular injury induces a local inflammatory response. Arginase is upregulated in the vessel wall after balloon injury in the rat carotid injury model. Polyamines generated through the l-ornithine pathway form the building blocks necessary for smooth muscle cell proliferation and neointimal hyperplasia in the rat carotid injury model.

Endothelial NOS is highly expressed in endothelial cells at baseline. Its metabolism of l-arginine to NO is thought to be a major contributor to plasma nitrite levels, which play an important role in baseline vasodilation (14, 15). In addition to regulating baseline vasomotor tone, eNOS is thought to help limit platelet adhesion and thrombosis (16, 17). After vessel injury iNOS is upregulated in arterial smooth muscle cells and eNOS is upregulated in the endothelium resulting in increased NO production (18). Under pathological conditions, the increased NO activity may not translate into increased NO production. Reduced NO bioavailability through eNOS “uncoupling” is a contributing factor to reduced local NO in atherosclerosis, pulmonary hypertension, and vessel injury (7, 19). Tetrahydrobiopterin (BH4) is an essential cofactor for the enzymatic production of NO via NOSs (20). Uncoupling occurs under conditions of reduced BH4 availability where eNOS produces superoxide anions rather than NO (21, 22) (Figure 3). In addition, ROS are produced by NADPH oxidase and XOR (23, 24). ROS have been recognized as contributing to vascular dysfunction, through mechanisms including endothelial dysfunction, vascular smooth muscle cell growth, lipid peroxidation, and inflammation (25).

Nitric oxide (NO) generated through L-arginine metabolism by endothelial nitric oxide synthase (eNOS) is an important regulator of the vessel wall. Dysregulation of this system has been implicated in various pathological vascular conditions, including atherosclerosis, angiogenesis, arteriogenesis, neointimal hyperplasia, and pulmonary hypertension. The pathophysiology involves a decreased bioavailability of NO within the vessel wall by competitive utilization of L-arginine by arginase and “eNOS uncoupling.” Generation of NO through reduction of nitrate and nitrite represents an alternative pathway that may be utilized to increase the bioavailability of NO within the vessel wall. We review the therapeutic potential of the nitrate/nitrite/NO pathway in vascular dysfunction.

Keywords: nitrate, nitrite, nitric oxide, pulmonary hypertension, neointimal hyperplasia, peripheral vascular disease, atherosclerosis, review
NO under these conditions may help restore the NO deficiency attributed to uncoupling.

NITRATE/NITRITE REDUCTION TO NITRIC OXIDE

While nitrate and nitrite were long thought of as stable end-products of NO metabolism, recent evidence supports nitrate and nitrite as potential sources of NO under appropriate conditions (12, 26–29) (Figure 4). As opposed to the NOS enzymes, which require oxygen as a substrate for NO generation, nitrite-generated production of NO has been shown to occur more readily under acidic and hypoxic conditions (113, 30–32). Nitrate/nitrite reduction has been shown to occur via deoxygenated hemoglobin, myoglobin, enzymatic, and non-enzymatic means (33–37). A class of molybdenum-containing enzymes, including xanthine oxidoreductase (XOR), aldehyde oxidase (AOX), and sulfite oxidase (SUOX), have been identified as enzymes that may facilitate the reduction of nitrate and nitrite to NO at the molybdenum-containing site (38). We and others have shown that XOR in particular is present within the vessel wall and tissue and contributes to NO production in intimal hyperplasia, pulmonary hypertension, and ischemia-reperfusion (12, 26, 39).

While L-arginine is a significant contributor to plasma nitrite production through the L-arginine/NOS/NO/nitrite pathway, plasma nitrite levels are also dependent on oral consumption of nitrate and nitrite (40). The Mediterranean diet, which has been associated with a lower risk of atherosclerosis and coronary artery disease, adds credence to the importance of oral nitrate/nitrite-derived NO in vascular biology (41, 42). The Mediterranean diet, known for its high content of nitrate-rich leafy green vegetables, has also been found to lower the blood pressure of healthy volunteers (40, 43). The nitrate/nitrite/NO pathway through oral ingestion is thought to rely on a symbiotic relationship with natural oral flora. Nitrate is concentrated within the salivary glands and salivary bacteria reduce nitrate to nitrite in the oral cavity (44). Once nitrite reaches the stomach, it is reduced to NO by protonation due to the stomach’s low pH (45). NO then may act locally by enhancing mucosal blood flow to the stomach (45–47). Nitrite is also absorbed in the stomach where it enters the bloodstream (48). Due to its relative stability, nitrite then has the ability to circulate to other areas in the body and undergo reduction to NO under acidic and hypoxic conditions (33). Acting in this way, circulating nitrite has been described as a “storage pool” for NO within the body (27).

Historically, there has been concern that oral nitrate/nitrite consumption may increase the risk of some cancers, including esophageal, stomach, and colon cancer. Some epidemiological studies have suggested that high oral intake of nitrate/nitrite correlates with increased risk of gastrointestinal malignancy, though
L-arginine may be competitively metabolized by arginase to L-citrulline and urea, reducing production of nitric oxide and contributing to vascular dysfunction.

Nitric oxide has been shown to serve many vasoprotective properties that occur after vessel injury, including reduction of platelet deposition, decrease in leukocyte adhesion, inhibition of smooth muscle contraction, and prevention of smooth muscle proliferation. Nitric oxide is produced by the enzyme nitric oxide synthase (NOS) in response to various stimuli, such as shear stress, endothelial shear stress, and shear stress-related growth factors.

Nitric oxide is rapidly converted to nitrite by nitric oxide reductase (NOR) in the presence of oxygen. Nitrite can then be converted to nitric oxide by nitric oxide reductase (NOR) in the presence of oxygen. This process is known as the nitrate/nitrite/NO pathway and is responsible for the vasoactive properties of nitrite.

Nitric oxide also has anti-inflammatory properties and can inhibit the production of inflammatory cytokines. Nitric oxide can also prevent the activation of macrophages and neutrophils, which can help to reduce inflammation.

Nitric oxide is also involved in the regulation of blood pressure. Nitric oxide can cause vasodilation by relaxing smooth muscles in the walls of blood vessels. This can help to reduce blood pressure and improve blood flow.

Nitric oxide is an important molecule in the body and plays a role in many physiological processes. Understanding the role of nitric oxide in the body is important for developing new treatments for diseases such as cardiovascular disease and inflammatory conditions.
FIGURE 3 | Endothelial nitric oxide synthase uncoupling results in reduced production of nitric oxide as well as production of superoxide anions. NADPH oxidase and xanthine oxidase also contribute to production of superoxide anions.

muscle cell proliferation and migration, and induction of vasodilation (55). One of the initial responses to endothelial disruption is platelet activation and plug formation. NO and NOS expression are associated with decreased platelet adhesion at the vessel wall (56, 57). NO has been shown to be a potent inhibitor of platelet adhesion, reducing thrombosis within the vessel lumen (58, 59). NO mediates platelet adhesion through upregulation of platelet-soluble guanylate cyclase production of cyclic GMP. Nitrate and nitrite-supplemented diets increase bleeding times in mice, and there is an inverse relationship between blood nitrate/nitrite levels and platelet function (60). After platelet deposition, neutrophils and macrophages begin to infiltrate the vessel wall. NO inhibits leukocyte adhesion and the subsequent vessel inflammatory response after injury (61, 62). Once the inflammatory response sets in, smooth muscle cells infiltrate the medial layer and begin proliferating. The resulting thickened medial layer narrows the lumen and stiffens the vessel wall. NO acts to reduce the smooth muscle cell response in multiple ways. NO was first recognized as the substance responsible for calcium-dependent relaxation of the vascular smooth muscle cells (63). NO upregulates soluble guanylate cyclase within cells and leads to increased cyclic GMP. Cyclic GMP then interacts with protein kinases to lower cytoplasmic calcium, which results in vasodilation (64). Also, it has been shown in culture that NO reversibly arrests the cell cycle of vascular smooth muscle cells (65). NO inhibits smooth muscle proliferation within the vessel wall via a p21 dependent mechanism (66–68). Overall, NO reduces smooth muscle cell migration and proliferation, which can lead to atherosclerosis and neointimal hyperplasia (69).

NITRIC OXIDE AND ATHEROSCLEROSIS

Atherosclerosis resulting in coronary artery disease and stroke are the leading causes of death in the developed world (70). Atherosclerotic plaques are formed when the endothelial layer is damaged and cholesterol accumulates within the vessel wall. Macrophages are recruited to the site of injury, form foam cells, and release cytokines leading to an inflammatory response (71). Smooth muscle cells then migrate and proliferate within the vessel wall, eventually leading to an organized plaque (72). Repeated vessel wall injury causes thrombosis and narrowing of the lumen, which leads to ischemia of the tissue bed supplied by the vessels.

While atherosclerosis is a multifactorial process, dysregulation of the arginine/NOS balance contributes to the development of atherosclerotic disease (73). For instance, iNOS inhibition in the apolipoprotein E knockout mouse model for atherosclerosis accelerates the progression of atherosclerotic disease in these mice (74). Restoring the balance of NO production at multiple points along the pathway reduces formation of atherosclerotic plaques. L-Arginine supplementation has been shown to improve vasodilation in cholesterol-fed rabbits and monkeys and reduce the progression of atherosclerosis (75–77). Also, exogenous expression of iNOS in the arteries reduces the injury response.
FIGURE 4 | Nitrite reduction by xanthine oxidoreductase, myoglobin, hemoglobin, and protonation results in nitric oxide production, especially under conditions of hypoxia and acidemia.
NITRIC OXIDE AND NEOINTIMAL HYPERPLASIA

Neointimal hyperplasia is an exaggerated inflammatory healing response after vascular injury. Of particular interest is neointimal hyperplasia after balloon angioplasty and vascular stent deployment, since this may limit therapeutic success. After vessel injury, platelets adhere to the vessel wall denuded of endothelium and generate a cascade of events leading to leukocyte chemotaxis, extracellular matrix modification, endothelial cell apoptosis, and vascular smooth muscle cell migration and proliferation (55). NO has been shown to limit neointimal hyperplasia through multiple levels. Similar to atherosclerosis, NO modulates neointimal hyperplasia through inhibition of platelet aggregation, decreased leukocyte chemotaxis, and reduced vascular smooth muscle cell proliferation while stimulating that of endothelial cells (57–59, 62, 65, 67, 98, 99). The effects of NO may be limited by l-arginine shunting away from eNOS to arginase under pathological conditions. Arginase metabolism of l-arginine leads to the production of polyamines utilized in cell proliferation, and the expression of arginase I is increased in the proliferation of rat aortic smooth muscle cells (100). It has been demonstrated that arginase I activity is increased within the vessel wall after carotid balloon injury in rats, and that inhibition of arginase decreases neointimal hyperplasia in that model (13). Furthermore, Alef et al. (5) demonstrated that nitrite-supplemented drinking water acts to reduce intimal hyperplasia in the rat carotid injury model, and that this NO is generated through XOR.

NITRIC OXIDE AND PULMONARY ARTERIAL HYPERTENSION

Pulmonary hypertension is a vascular disease characterized by hypoxia, pulmonary vasoconstriction, increased vascular resistance, vessel remodeling, thrombosis, and right ventricular strain (7, 101). Multiple etiologies likely contribute to the development of pulmonary hypertension, but all involve increased vascular resistance as a prominent factor. NO, an important regulator of pulmonary vascular resistance, acts as a vasorelaxing agent within the pulmonary arterial system as well as a protective agent against smooth muscle cell proliferation within the vessel wall (102, 103). It has been proposed that NO may act as a “hypoxic buffer” that leads to vasodilation under hypoxic conditions, such as occurs in pulmonary hypertension (104, 105). This theory proposes that increased nitrite reduction to NO helps to counterbalance the hypoxic pulmonary vasoconstriction by generating a vasodilatory signal. Inhaled nitrite is being utilized in pulmonary hypertension as a direct means of delivering NO to the pulmonary vasculature (106). Also, dietary nitrite in mice increases pulmonary dilation, inhibits vascular remodeling, and decreases right ventricular hypertrophy. This effect was reduced in eNOS knockout mice and after allopurinol treatment (26). In a rat model of pulmonary hypertension, it has been shown that inhaled nitrite reverses the effect of hypoxia-induced pulmonary hypertension through creation of NO via XOR (103).

Investigation into the l-arginine/nitrite/NO pathway in pulmonary hypertension has led to conflicting results as far as the importance of this system. Variation in eNOS expression has been observed in human tissue studies, despite consistently elevated eNOS in animal studies (107–109). Inducible NOS has also been shown to be increased in some studies (110). The upregulation of the NOs may be a compensatory response to upregulated arginase activity. Like other vascular disorders, arginase activity has been shown to be increased in pulmonary hypertension (111). Increased arginase may have a dual role of decreasing l-arginine metabolism to NO as well as polyamine-induced increases in smooth muscle cell proliferation within the vessel walls (7).

SUMMARY

Nitric oxide is an important regulator of vascular function. An imbalance in NO production in relation to ROSs, RNSs, and other inflammatory mediators is associated with many forms of vascular dysfunction, including atherosclerosis, peripheral arterial disease, neointimal hyperplasia, and pulmonary hypertension. The recently discovered nitrate/nitrite/NO pathway is an alternative means of delivering NO to areas of deficiency. In order to harness this pathway as a therapeutic, efficient delivery to the affected tissues must be accomplished. Because of its relatively stable nature and the recognition that nitrate, nitrite, hemoglobin, and myoglobin within the blood act as a ‘storage pool’ of NO, a variety of potential delivery options to areas of vascular dysfunction exist, including dietary supplementation, inhalation, and direct intravenous infusion.

REFERENCES

1. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci (2009) 14:1–18.
2. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthase structure, function, and inhibition. Biochem J (2001) 357(Pt 3):593–615. doi:10.1042/0062-6021:35705935
3. Li H, Meiningner CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart 0, Bryan NS, et al. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline synthesis in endothelial cells. Am J Physiol Endocrinol Metab (2001) 280:E75–82.
4. Allen JD, Giordano T, Kevil CG. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide (2012) 26:217–22. doi:10.1016/j.niox.2012.03.003
5. Alef MJ, Vallabhaneni R, Carchman E, Morris SMJr, Shiva S, Wang Y, et al. Nitrite-generated NO circumvents eNOS in animal studies (107–109). Inducible NOS has also been shown to be increased in some studies (110). The upregulation of the NOs may be a compensatory response to upregulated arginase activity. Like other vascular disorders, arginase activity has been shown to be increased in pulmonary hypertension (111). Increased arginase may have a dual role of decreasing l-arginine metabolism to NO as well as polyamine-induced increases in smooth muscle cell proliferation within the vessel walls (7).

SUMMARY

Nitric oxide is an important regulator of vascular function. An imbalance in NO production in relation to ROSs, RNSs, and other inflammatory mediators is associated with many forms of vascular dysfunction, including atherosclerosis, peripheral arterial disease, neointimal hyperplasia, and pulmonary hypertension. The recently discovered nitrate/nitrite/NO pathway is an alternative means of delivering NO to areas of deficiency. In order to harness this pathway as a therapeutic, efficient delivery to the affected tissues must be accomplished. Because of its relatively stable nature and the recognition that nitrate, nitrite, hemoglobin, and myoglobin within the blood act as a ‘storage pool’ of NO, a variety of potential delivery options to areas of vascular dysfunction exist, including dietary supplementation, inhalation, and direct intravenous infusion.

REFERENCES

1. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci (2009) 14:1–18.
2. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthase structure, function, and inhibition. Biochem J (2001) 357(Pt 3):593–615. doi:10.1042/0062-6021:35705935
3. Li H, Meiningner CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart 0, Bryan NS, et al. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline synthesis in endothelial cells. Am J Physiol Endocrinol Metab (2001) 280:E75–82.
4. Allen JD, Giordano T, Kevil CG. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide (2012) 26:217–22. doi:10.1016/j.niox.2012.03.003
5. Alef MJ, Vallabhaneni R, Carchman E, Morris SMJr, Shiva S, Wang Y, et al. Nitrite-generated NO circumvents eNOS in animal studies (107–109). Inducible NOS has also been shown to be increased in some studies (110). The upregulation of the NOs may be a compensatory response to upregulated arginase activity. Like other vascular disorders, arginase activity has been shown to be increased in pulmonary hypertension (111). Increased arginase may have a dual role of decreasing l-arginine metabolism to NO as well as polyamine-induced increases in smooth muscle cell proliferation within the vessel walls (7).
Nitrile-generated NO

Madigan and Zuckerbraun

Physical Heart Circ Physiol (2001) 281(3):11981–6.

Khosr J, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, et al. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation (2005) 111:2126–33. doi:10.1161/01.CIR.0000164270.68409.a

Stroh D, Sou P, Rosen GM. Oxygen reduction by organic nitrates. J Biol Chem (2001) 276:15533–6. doi:10.1074/jbc.R100112200

Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med (2012) 52(9):1970–86. doi:10.1016/j.freeradbmed.2012.02.041

Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension. Hypertension (2004) 44:248–52. doi:10.1161/01.HYP.0000138070.47616.9d

Baliga MS, Rabin AB, Ghosh SM, Trinder SL, Macallister SJ, Ablin AJ, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation (2012) 125(23):2922–32. doi:10.1161/CIRCULATIONAHA.112.100586

Dejam A, Hunter CJ, Schechter AN, Gladwin M. Emerging role of nitrite in human biology. Blood Cells Mol Dis (2004) 32(3):423–9. http://dx.doi.org/10.1016/j.bcmd.2004.02.002

Dejam A, Hunter CJ, Schechter AN, Gladwin M. Emerging role of nitrite in human biology. Blood Cells Mol Dis (2004) 32(3):423–9. http://dx.doi.org/10.1016/j.bcmd.2004.02.002

Gladwin MT, Rabin AB, Ghosh SM, Trinder SL, Macallister SJ, Ablin AJ, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation (2012) 125(23):2922–32. doi:10.1161/CIRCULATIONAHA.112.100586

Dejam A, Hunter CJ, Schechter AN, Gladwin M. Emerging role of nitrite in human biology. Blood Cells Mol Dis (2004) 32(3):423–9. http://dx.doi.org/10.1016/j.bcmd.2004.02.002

Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitric oxide function of deoxynitroglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res (2007) 100(5):654–61.

30. Huang Z, Shiva S, Kim-Shapiro DB, Patel RP, Ringwood LA, I SHanson GK, Geng YJ, Holm J, Härthling P, Weidhaas A, Jennische E. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med (1994) 180(2):733–8. doi:10.1084/jem.180.2.733

31. Reithardt R, Junji RP, Moens AL. Tackling endothelial dysfunction by modulating NO/cGMP uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endoceradiol Metab (2012) 302:E184–95. doi:10.1152/ajpendo.00540.2011

32. Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol (2001) 281(3):11981–6.

33. Khosr J, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, et al. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation (2005) 111:2126–33. doi:10.1161/01.CIR.0000164270.68409.a

34. Stroh D, Sou P, Rosen GM. Oxygen reduction by organic nitrates. J Biol Chem (2001) 276:15533–6. doi:10.1074/jbc.R100112200

35. Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med (2012) 52(9):1970–86. doi:10.1016/j.freeradbmed.2012.02.041

36. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension. Hypertension (2004) 44:248–52. doi:10.1161/01.HYP.0000138070.47616.9d

37. Baliga MS, Rabin AB, Ghosh SM, Trinder SL, Macallister SJ, Ablin AJ, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation (2012) 125(23):2922–32. doi:10.1161/CIRCULATIONAHA.112.100586

38. Dejam A, Hunter CJ, Schechter AN, Gladwin M. Emerging role of nitrite in human biology. Blood Cells Mol Dis (2004) 32(3):423–9. http://dx.doi.org/10.1016/j.bcmd.2004.02.002

39. Gladwin MT, Rabin AB, Ghosh SM, Trinder SL, Macallister SJ, Ablin AJ, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation (2012) 125(23):2922–32. doi:10.1161/CIRCULATIONAHA.112.100586

40. Dejam A, Hunter CJ, Schechter AN, Gladwin M. Emerging role of nitrite in human biology. Blood Cells Mol Dis (2004) 32(3):423–9. http://dx.doi.org/10.1016/j.bcmd.2004.02.002

41. Gladwin MT, Rabin AB, Ghosh SM, Trinder SL, Macallister SJ, Ablin AJ, et al. Dietary nitrate ameliorates pulmonary hypertension: cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation (2012) 125(23):2922–32. doi:10.1161/CIRCULATIONAHA.112.100586

42. Reithardt R, Junji RP, Moens AL. Tackling endothelial dysfunction by modulating NO/cGMP uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endoceradiol Metab (2012) 302:E184–95. doi:10.1152/ajpendo.00540.2011

43. Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol (2001) 281(3):11981–6.
54. Hunter CJ, Dejam A, Blood Med
70. World Health Organization. World health statistics 2012. WHO Library Cataloguing-in-Publications Data. (2012). Accessed from www.who.int/gho/publications/world_health_statistics/2012/en/
65. Sarkar R, Gordon D, Stanley FC, Webb RC. Cell cycle effects of nitric oxide on vascular smooth muscle cells. Am J Physiol (1997) 272:H1180–8.
67. Kibbe MR, Li J, Nie S, et al. Inducible nitric oxide synthase (NOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate. J Vasc Surg (2000) 31:124–28. doi:10.1067/mva.2000.105006
68. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest (1989) 85(5):1774–7. doi:10.1172/JCI114081
59. Radomski MW, Palmer RM, Moncada S. An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A (1990) 87(13):5193–7. doi:10.1073/pnas.87.13.5193
60. Park JW, Piknova B, Huang PL, Nagouchi CT, Scheckter AN. Effect of blood nitrite and nitrate levels on murine platelet function. PLA2 ONe (2013) (2E):055699. doi:10.1371/journal.pone.0055699
56. Radomski MW, Palmer RM, Tsihlis ND, Kibbe MR. Oxidant stress-related selective pulmonary vasodilator. Am J Physiol Heart Circ Physiol (2000) 279(s1):H1101–11. doi:10.1152/hcphysiol.2000.279.s11010-005-1810-4
69. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest (1989) 85(5):1774–7. doi:10.1172/JCI114081
70. World Health Organization. World health statistics 2012. WHO Library Cataloguing-in-Publications Data. (2012). Accessed from www.who.int/gho/publications/world_health_statistics/2012/en/
61. Hickey MJ, Sharkey KA, Sihota EG, Reinhardt PH, Macmicking JD, Nathan C, et al. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte–endothelium interactions in endotoxemia. FASEB J (1997) 11:95–6.
62. Kubota P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A (1991) 88:4651–5. doi:10.1073/pnas.88.11.4651
63. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (1987) 327:524–6. doi:10.1038/327524a0
57. Yan ZQ, Yokota T, Zhang W, Hansson GK. Expression of inducible nitric oxide synthase inhibits platelet adhesion and restores blood flow in the injured artery. Circ Res (1996) 79:38–44. doi:10.1161/01.RES.79.1.38
58. de Graaf IC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sijmma HJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation (1992) 85(6):2284–90. doi:10.1161/01.CIR.85.6.2284
51. National Toxicology Program. Toxicology and carcinogenesis of sodium nitrite (CAS NO. 76-32-0) in F344/N rats and B6C3F1 mice (drinking water studies). Natl Toxicol Program Tech Rep Ser (2001) 495:7–273.
52. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans: ingested nitrates and nitrites. IARC (2006). Available at: http://monographs.iarc.fr/EN/G Monographs/vol94/mono94-6.pdf
53. Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nutr Toxicol (2010) 22(2):136–40. doi:10.1080/01924251.2010.900.007
54. Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF. Inhaled nebulized nitrate is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med (2004) 10(6):1122–7. doi:10.1038/nm1109
55. Ahanchi SS, Thilis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg (2007) 45(Suppl A):A64–73. doi:10.1016/j.jvs.2007.02.027
56. Moncada MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet (1987) 2(8567):1057–8. doi:10.1016/S0140-6736(87)91481-4
57. Yan ZQ, Yokota T, Zhang W, Hansson GK. Expression of inducible nitric oxide synthase inhibits platelet adhesion and restores blood flow in the injured artery. Circ Res (1996) 79:38–44. doi:10.1161/01.RES.79.1.38
68. Garg UC, Haldar MR. Oxidant stress-related selective pulmonary vasodilator. Am J Physiol 272:H1180–8.
69. Ishida A, Susaguri T, Kosaka C, Nojima H, Ogata J. Induction of the cyclindependent kinase inhibitor p21(cyclinDep1/Waf1) by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem (1997) 272:10050–7. doi:10.1074/jbc.272.15.10050
71. Fazio S, Linton MF. The pathogenesis of atherosclerosis: a multifac- torial process. Exp Clin Cardiol (2002) 7(1):40–55.
72. Bayo D, Oberweger DE, Lim HK. Endothelial arginase II and atherosclerosis. Korean J Anesthesiol (2011) 61(3):113–8. doi:10.4097/kjae.2011.61.3
73. Singh RB, Menga SA, Xu YJ, Arneja AS, Dhalia NS. Pathogen- esis of atherosclerosis: a multifac- torial process. Exp Clin Cardiol (2002) 7(1):40–55.
74. Garg H, Guidry E, Bryan NS. Dietary nitrate prevents hyper- cholesterolemic microvascular inflammation and reverses endothelial dysfunction. Am J Physiol Heart Circ Physiol (2009) 296:H1281–8. doi:10.1152/ajpheart.01291.2008
75. Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Atheroscler Thromb Vasc Biol (2004) 24(6):998–1005. doi:10.1160/ATV.000001520112.80079.96
76. Obara Y, Peterson TE, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation (1995) 92(4):898–903. doi:10.1161/01.CIR.92.4.898
77. Cathcart M. Regulation of superoxide anion produc- tion by NADPH oxidase in monocytes/macrophages. Atheroscler Thromb Vasc Biol (2004) 24(3):263–8. doi:10.1161/01.ATV.0000099776.47306.12
78. Dammert S, Haendeler J, Galie J, Lemmer AM. Oxi- dized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases. A mechanistic clue to the ‘response to injury’ hypothesis. Circulation 2006;112:221–4. doi:10.1161/01.CIR.112.4.221
Nitrite-generated NO

Kumar D, Branch BG, Pattillo CB, Hood J, Thoma S, Simpson S, et al. Chronic sodium nitrite therapy augments ischemia-induced angiogenesis and arteriogenesis. Proc Natl Acad Sci U S A (2008) 105(21):7540–5. doi:10.1073/pnas.0711480105

Ismen JS, Shiva S, Gladwin MT. Thrombospondin-1-CD47 blockade and exogenous nitrite enhance ischæmic tissue survival, blood flow and angiogenesis via coupled NO-eGMP pathway activation. Nitric Oxide (2009) 21(1):52–62. doi:10.1016/j.niox.2009.05.005

Bi SC, Pattillo CB, Pardue S, Kolluru GK, Docherty J, Goyette A, et al. Nitrite anion stimululates ischemic arteriogenesis involving NO metabolism. Am J Physiol Heart Circ Physiol (2012) 303:H178–88. doi:10.1152/ajpheart.00186.2010

Hendgen-Cotta UB, Luedike P, Totzeck M, Kopp M, Schich P, A Stock, P, et al. Dietary nitrite supplementation improves revascularization in chronic ischemia. Circulation (2012) 126:1983–92. doi:10.1161/CIRCULATIONAHA.112.119292

Peterson J, Carlstrom M, Schreiber O, Phillipson M, Christofferson G, Jagare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrite are abolished by anti- septic mouthwash. Free Radic Biol Med (2009) 46(8):1068–75. doi:10.1016/j.freeradbiomed.2009.09.011

Kapil V, Haydar SM, Pearl V, Lundberg JØ, Wörtinger B, Aghulvala A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med (2013) 55:93–100. doi:10.1016/j.freeradbiomed.2012.11.013

Guo JP, Panday MM, Consigny PM, Lefer AM. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am J Physiol (1995) 269:H1221–32.

Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger JH, et al. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase 1/2 activation in postcapillary endothelial cells. J Biol Chem (1998) 273(7):4220–6. doi:10.1074/jbc.273.7.4220

Wei LH, Wu G, Morris SM, Ignauro LI. Elevated arginase 1 expression in rat aortic smooth muscle cells increases cell proliferation. Proc Natl Acad Sci U S A (2001) 98(16):9260–4. doi:10.1073/pnas.161249898

Sparacino-Watkins CE, Lai YC, Gladwin MT. Nitrate-nitrite-nitric oxide pathway in pulmonary arterial hypertension therapeutics. Circulation (2012) 125(23):2824–6. doi:10.1161/CIRCULATIONAHA.112.107821

Frostell C, Fratacci MD. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation (1991) 83:2038–47. doi:10.1161/01.CIR.83.6.2038

Zuckerbraun BS, Shiva S, I fedigbo E, Mathier MA, Mollen KP, Rao J et al. Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation (2010) 121(1):98–109. doi:10.1161/CIRCULATIONAHA.109.891077

Gladowt MT, Schoecher AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, et al. The emerging biology of the nitrite anion. Nat Chem Biol (2005) 1(6):308–14. doi:10.1038/nchembio.1105–308

Totzeck M, Hendgen-Cotta UB, Luedike P, Berekbrink M, Klare JP, Steinhoff HJ, et al. Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation (2012) 126(3):325–34. doi:10.1161/CIRCULATIONAHA.111.078155

Bloch KD, Ichinose F, Roberts J III., Zapol WM. Inhaled NO as a therapeutic agent. Cardiovasc Res (2007) 75(2):339–48. doi:10.1016/j.cardiores.2007.04.014

Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med (1995) 333(4):214–21. doi:10.1056/NEJM199507273330403

Rieder RM, Cool GD, Geraci MV, Wang J, Abman SH, Wright L, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med (1999) 159(6):1925–32. doi:10.1164/ajrccm.159.6.9804054

Xue C, Johns RA. Endothelial nitrite oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med (1995) 333(4):1642–4. doi:10.1056/NEJM199512143332416

Hampl V, Bilbova J, Banasov A, Uhlík J, Miková D, Hnilicka O, et al. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol (2006) 290(1):L11–20. doi:10.1152/ajplung.00023.2005

Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB (2004) 18(14):1746–8.

Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol (2012) 590:6297–305. doi:10.1113/jphysiol.2012.2246762

Li H, Samuslow L, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction. J Biol Chem (2001) 276:24482–9. doi:10.1074/jbc.M101648200

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 April 2013; accepted: 17 June 2013; published online: 02 July 2013.

Citation: Madigan M and Zuckerbraun B (2013) Therapeutic potential of the nitrite-generated NO pathway in vascular dysfunction. Front. Immunol. 4:174. doi: 10.3389/fimmu.2013.00174

This article was submitted to Frontiers in Inflammation, a specialty of Frontiers in Immunology. Copyright © 2013 Madigan and Zuckerbraun. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and sub- ject to any copyright notices concerning any third-party graphics etc.