Successful Microsurgical Scalp Replantation Utilizing Loupe Magnification

Mustafa Chopan, MD, Mark Leyngold, MD, and Jessica Ching, MD

Abstract: Total scalp avulsion is a rare injury that poses a unique reconstructive challenge. Microsurgical replantation is considered the first-line choice; yet anastomotic efforts may be strained to find suitable recipient and target vessels. Concomitant injuries may also delay or hinder operative intervention. These complex scenarios are difficult to navigate and necessitate multidisciplinary input to optimize outcomes. As such, the authors present an illustrative case report of a total scalp avulsion injury that underwent successful microsurgical replantation. This report highlights the novel use of loupe magnification in scalp replantation and reviews technical and clinical nuances that facilitate a favorable reconstruction.

Key Words: Microsurgery, replantation, scalp replantation

Total scalp avulsion is a rare, devastating injury that poses a formidable challenge to reconstructive surgeons. Given its unique hair-bearing properties, the scalp should be replaced in kind; however, suitable alternatives are lacking in these difficult cases as orthotopic autologous transfer in any form (ie, skin grafts, regional/distant flaps, hair transplantation) results in significant alopecia. As such, microsurgical replantation is considered the first-line choice if the amputated part is available. These complex scenarios are difficult to navigate and necessitate multidisciplinary care to not only ensure patient safety but also optimize reconstructive outcomes. Herein we present a case report of a total scalp avulsion that underwent successful microsurgical replantation. The clinical study highlights the novel use of loupe magnification during microvascular surgery and reviews technical and clinical nuances that facilitate a successful reconstruction.

CLINICAL REPORT

A 43-year-old female was rushed to our hospital after a total scalp avulsion. The injury occurred while at work from hair entanglement in rotary machinery. The amputated part was appropriately transferred with the patient in a plastic bag placed on ice, and included the forehead, upper eyelid skin, and right superior auricle (Fig. 1A-C).

The operation began with exploration for recipient superficial temporal arteries and veins in the amputated scalp. Two pairs of superficial temporal bundles were identified upon incising the aponeurosis. Another team began exploring for corresponding donor vessels. Right sided superficial temporal artery (STA) had good inflow without any gross intimal damage. Left STA had a "cork-screw" appearance with intimal damage; thus, it was resected to proximal healthy vessel. Satisfactory inflow was next confirmed after papaverine and heparin irrigation of the vessels. Good caliber recipient and donor veins without significant intimal damaged were dissected and prepared for microvascular anastomosis. The scalp was next inset with anchoring sutures to the galea. Both venous anastomoses were coupled without needing vein graft with 3 mm Synovis coupler (Synovis Micro Companies Alliance Inc., Birmingham, AL). Arterial anastomoses were hand sewn with an interrupted 8-O nylon BV130-5 needle (Ethicon Inc., Cornelia, GA) under 3.5× loupe magnification. A 3 cm interpositional reverse greater saphenous vein graft was required for left sided arterial anastomosis. Evidence of reperfusion was noted immediately after completion of right sided arterial anastomosis with subdermal bleeding and an audible external Doppler signals over the forehead after completion of all anastomoses. Total of 4 anastomosis were performed (2 arterial and 2 venous) during replantation (Fig. 1D-C).

A small portion of posterior scalp was discarded which was attached to the main piece by a narrow skin bridge. Integra was utilized for a small occipital defect that had viable pericranium at its base. Two penrose drains were placed and cuticular closure was finalized. A compression dressing was placed to reduce swelling. Overall, total operative time was 6.5 hours and total ischemia time was estimated to be 10 hours with at least 6 hours of cold ischemia.

RESULTS

The entire replanted scalp survived with partial necrosis of the right superior auricle and small portions of occipital skin. The occipital defect required 2 additional debridements and split-thickness skin grafting. She went on to develop some hypertrophic scarring of her neck and posterior scalp scars. Overall, she recovered well and was very happy with her outcome. (Fig. 2A-C)

DISCUSSION

The replantation of amputated parts has enjoyed considerable success since the advent and widespread adoption of microsurgical
In our experience, anticoagulation is not without its own set of complications. Prophylactic leeching is likely not indicated and should be initiated when venous congestion initially presents itself. Lastly, the replanted specimen may exhibit signs of marginal necrosis, particularly at the site of traumatic avulsion and zone of adherence of the occiput. The posterior scalp frequently exhibits delayed healing and necrosis after replantations also due to venous congestion and poor regional perfusion, especially if STA’s or other anterior feeding vessels are utilized.

CONCLUSIONS

Microvascular total scalp replantation is the gold standard and should be attempted during scalp avulsive injuries. It can be safely performed solely with loupes magnification and requires sound surgical judgement, technical proficiency, and multidisciplinary approach in caring for these patients.

REFERENCES

1. Herrera F, Buntic R, Brooks D, et al. Microvascular approach to scalp replantation and reconstruction: a thirty-six year experience. Microsurgery 2012;32:591–597
2. Wei FC, Tay SKL. Principles and techniques of microvascular surgery. In: Gurtner GC, ed. Plastic Surgery. Vol. 1. Amsterdam, Netherlands: Elsevier; 2018:444–472
3. Efano IJ, Montoya IJ, Huang KN, et al. Microvascular replantation of head and neck amputated parts: a systematic review. Microsurgery 2017;37:699–706
4. Mithani SK, St-Hilaire H, Brooke BS, et al. Predictable patterns of intracranial and cervical spine injury in cranioaxillofacial trauma: analysis of 4786 patients. Plast Reconstr Surg 2009;123:1293–1301
5. Wilhelmi BJ, Kang RH, Movassaghi K, et al. First successful replantation of face and scalp with single-artery repair: model for face and scalp transplantation. Ann Plast Surg 2003;50:535–540
6. Cheng K, Zhou S, Jiang K, et al. Successful microsurgical replantation of the avulsed scalp: report of 20 cases. Plast Reconstr Surg 1996;97:1099–1106
7. Nasr S, Karaaltin M, Erdem A. Total scalp replantation: surgical tricks and pitfalls. J Craniofac Surg 2015;26:1192–1195
8. Ehanire T,Singhal D, Mast B, et al. Safety of microsurgery under loupes versus microscope: a head-to-head comparison of 2 surgeons with similar experiences. Ann Plast Surg 2018;80(6 Suppl 6):S340–S342
9. Serletti JM, Deuber MA, Guidera PM, et al. Comparison of the operating microscope and loupes for free microvascular tissue transfer. Plast Reconstr Surg 1995;95:270–276

The Development of Frontal and Sphenoid Sinuses After Full-House Endoscopic Sinus Surgery in a Child

Kazuhiro Nomura, MD, PhD, Yuki Numano, MD, and Mitsuru Sugawara, MD, PhD

Abstract: Although endoscopic sinus surgery (ESS) is a standard procedure for adults and is considered a safe and effective procedure in children as well, some uncertainty remains when it comes to children, especially with regard to the future facial and sinus development. Overall, limited ESS does not affect sinus development, and extended ESS does not affect facial features. However,