SUBDIFFERENTIAL OF THE JOINT NUMERICAL RADIUS

PRIYANKA GROVER AND SUSHIL SINGLA

Abstract. An expression for the subdifferential of the joint numerical radius is obtained. Its applications to the best approximation problems in the joint numerical radius are discussed.

1. Introduction

Let $M_{p,q}(\mathbb{C})$ be the set of $p \times q$ matrices over \mathbb{C} with a given norm. Let $f : M_{p,q}(\mathbb{C}) \to \mathbb{R}$ be a continuous convex function. Let $A \in M_{p,q}(\mathbb{C})$. The subdifferential of f at A, denoted by $\partial f(A)$, is defined as

$$\partial f(A) = \{ C \in M_{p,q}(\mathbb{C}) : f(B) \geq f(A) + \text{Re trace}((B - A)^*C) \text{ for all } B \in M_{p,q}(\mathbb{C}) \}.$$

The right hand derivative of f and the subdifferential of f are related as follows. For $B \in M_{p,q}(\mathbb{C})$,

$$\lim_{t \to 0^+} \frac{f(A + tB) - f(A)}{t} = \max \{ \text{Re trace}(C^*A) : C \in \partial f(A) \}. \quad (1.1)$$

Characterizations of subdifferentials of matrix norms has been of interest to many mathematicians. Let $M_n(\mathbb{C})$ be the set of $n \times n$ matrices over \mathbb{C}. For $A \in M_n(\mathbb{C})$, let $s_1(A) \geq \cdots \geq s_n(A)$ be the singular values of A. Let $\| \cdot \|$ denote a unitarily invariant norm on $M_n(\mathbb{C})$ (that is, for any unitary matrices U and U', we have $\| UAU' \| = \| A \|$). Then there is a unique symmetric gauge function Φ on \mathbb{R}^n such that $\| A \| = \Phi((s_1(A), \ldots, s_n(A))$ for every $A \in M_n(\mathbb{C})$. In [21 Theorem 3.1, Theorem 3.2], it was shown that for $A \in M_n(\mathbb{C})$,

$$\partial \| A \| = \{ U \text{diag}(d_1, \ldots, d_n)U^* : A = U\Sigma U^* \text{ is a singular value decomposition of } A, \sum s_i(A)d_i = \| A \| = \Phi((s_1, \ldots, s_n)), \Phi^*((d_1, \ldots, d_n)) = 1 \}. \quad (1.2)$$

This was an improvement of Theorem 2 of [17], where an expression of $\partial \| \cdot \|$ was given in $M_n(\mathbb{R})$. In [18, Theorem 1], the above result was proved using a different approach. Let $\| \cdot \|$ be the operator norm (or the spectral norm) on $M_n(\mathbb{C})$, defined as:

$$\| A \| = \max \{ \| Au \| : \| u \| = 1 \}. \quad (1.3)$$

The operator norm is a unitarily invariant norm and we have the following. For $A \in M_n(\mathbb{C})$,

$$\partial \| A \| = \text{co} \{ uv^* : \| u \| = \| v \| = 1, Av = \| A \| u \}, \quad (1.4)$$

where $\text{co}(S)$ denotes the convex hull of a set S. For $1 \leq k \leq n$, the Ky Fan k-norm $\| \cdot \|_{(k)}$ is defined as

$$\| A \|_{(k)} = s_1(A) + \cdots + s_k(A). \quad (1.5)$$

2010 Mathematics Subject Classification. 15A60, 58C20, 47A12.

Key words and phrases. Subdifferential set, Gateaux derivative, Joint numerical range, trace class, Birkhoff-James orthogonality.
The subdifferential set of the Ky Fan k-norms on $\mathbb{M}_n(\mathbb{C})$ was obtained in Theorem 2.7 of [5]. Another useful norm on $\mathbb{M}_n(\mathbb{C})$ is the *numerical radius*, defined as

$$w(A) = \max_{||x||=1} |\langle x, Ax \rangle|.$$

More generally, we consider the *joint numerical radius* of a tuple of matrices defined as follows. Let $A_1, \ldots, A_d \in \mathbb{M}_n(\mathbb{C})$. Let $A = (A_1, \ldots, A_d) : \mathbb{C}^n \to (\mathbb{C}^n)^d$ be defined as $Ax = (A_1x, \ldots, A_dx)$ for all $x \in \mathbb{C}^n$. The joint numerical radius of A is defined as

$$\omega(A) = \max_{x \in \mathbb{C}^n, ||x||=1} \left(\sum_{k=1}^d |\langle x|A_kx \rangle|^2 \right)^{1/2}.$$

For $x \in \mathbb{C}^n$, let $x \otimes x$ be the rank one operator on \mathbb{C}^n defined as $x \otimes x(y) = \langle y|x \rangle x$ for all $y \in \mathbb{C}^n$. We will use the same symbol $x \otimes x$ for the rank one operator as well as its matrix representation. Let $0 = (0, \ldots, 0) \in \mathbb{M}_n(\mathbb{C})^d$. The main result of this paper is as follows.

Theorem 1.1. Let $A \in \mathbb{M}_n(\mathbb{C})^d \setminus \{0\}$. Then

(a) the subdifferential of $\omega(\cdot)$ at A is given by

$$\partial \omega(A) = \text{co} \left\{ \frac{1}{\omega(A)} \left(\langle x|A_1x \rangle x \otimes x, \ldots, \langle x|A_dx \rangle x \otimes x \right): ||x|| = 1, \right\}$$

(1.2)

$$\omega(A) = \left(\sum_{k=1}^d |\langle x|A_kx \rangle|^2 \right)^{1/2},$$

and

(b) for $B \in \mathbb{M}_n(\mathbb{C})^d$,

$$\lim_{t \to 0^+} \frac{\omega(A + tB) - \omega(A)}{t} = \frac{1}{\omega(A)} \max_{||x||=1, \omega(A) = \left(\sum_{k=1}^d |\langle x|A_kx \rangle|^2 \right)^{1/2}} \text{Re} \left(\sum_{k=1}^d \langle x|A_kx \rangle \langle x|B_kx \rangle \right).$$

For $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d$ and $B = (B_1, \ldots, B_d) \in \mathbb{M}_n(\mathbb{C})^d$, let $\lambda B = (\lambda_1B_1, \ldots, \lambda_dB_d)$. As a consequence of Theorem 1.1, we obtain the following result.

Corollary 1.1. Let $A = (A_1, \ldots, A_d)$, $B = (B_1, \ldots, B_d) \in \mathbb{M}_n(\mathbb{C})^d$. Then

(1.3)

$$\omega(A + \lambda B) \geq \omega(A)$$

if and only if there exist h unit vectors $x_1, \ldots, x_h \in \mathbb{C}^n$ with $\omega(A) = \left(\sum_{k=1}^d |\langle x_1|A_kx_1 \rangle|^2 \right)^{1/2}$ for all $1 \leq i \leq h$ and there exist h positive numbers $t_1, \ldots, t_h > 0$ with $t_1 + \cdots + t_h = 1$ such that

$$\sum_{i=1}^h t_i \langle x_i|A_kx_i \rangle \overline{\langle x_i|B_kx_i \rangle} = 0$$

for all $1 \leq k \leq d$.

When $d = 1$, the sufficiency of the above condition was given in [11, Theorem 2.11]. In Section 3, we give proofs of Theorem 1.1 and Corollary 1.1. We also obtain analogous results for the *joint operator norm*. Finally, we end with some remarks in Section 3.
To prove Theorem 1.1 we will need the following propositions from the subdifferential calculus.

Proposition 2.1. Let $T_1 : M_{p,q}(\mathbb{C}) \to M_{r,s}(\mathbb{C})$ be a linear map. Let $B \in M_{r,s}(\mathbb{C})$. Let $T_2 : M_{p,q}(\mathbb{C}) \to M_{r,s}(\mathbb{C})$ be the affine map defined as $T_2(A) = T_1(A) + B$. Let $g : M_{r,s}(\mathbb{C}) \to \mathbb{R}$ be a continuous convex function. Then for $A \in M_{p,q}(\mathbb{C})$,

$$\partial (g \circ T_2)(A) = T_1^* \partial g(T_2(A)).$$

Proposition 2.2. Let J be a compact set in some metric space. Let $\{f_j\}_{j \in J}$ be a collection of continuous convex functions from $M_{p,q}(\mathbb{C})$ to \mathbb{R} such that for $A \in M_{p,q}(\mathbb{C})$, the maps $j \to f_j(A)$ are upper semi-continuous. Let $f : M_{p,q}(\mathbb{C}) \to \mathbb{R}$ be defined as $f(A) = \sup\{f_j(A) : j \in J\}$. Let $J(A) = \{j \in J : f_j(A) = f(A)\}$. Then

$$\partial f(A) = \text{co} (\cup \{\partial f_j(A) : j \in J(A)\}).$$

The proofs of these can be found in Theorem 4.2.1 and Theorem 4.4.2 of [9]. In this book the author deals with real valued convex functions on Euclidean space \mathbb{R}^n. The same proofs can be extended to real valued continuous convex functions on a normed space also (see [22] for more detail). Now we prove Theorem 1.1.

Proof of Theorem 1.1.

(a) In [11], it was shown that $\omega(A)$ can also be expressed as

\begin{equation}
\omega(A) = \max_{x \in \mathbb{C}^n, \|x\|=1} \max_{(\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d, \|(\lambda_1, \ldots, \lambda_d)\|=1} \left| \sum_{k=1}^d \lambda_k \langle x | A_k x \rangle \right|.
\end{equation}

Let $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{C}^d$ and let $x \in \mathbb{C}^n$. Let $C = (C_1, \ldots, C_d) \in M_n(\mathbb{C})^d$. Let $T_{x,\lambda} : M_n(\mathbb{C})^d \to \mathbb{C}$ be the linear map defined as

$$T_{x,\lambda}(C) = \sum_{k=1}^d \lambda_k \langle x | C_k x \rangle.$$

Let $z \in \mathbb{C}$. Let $g : \mathbb{C} \to \mathbb{R}$ be the map defined as $g(z) = |z|$. Let $f_{x,\lambda} : M_n(\mathbb{C})^d \to \mathbb{R}$ be the map defined as $f_{x,\lambda} = g \circ T_{x,\lambda}$. Let J be the compact set $\{(x, \lambda) \in \mathbb{C}^n \times \mathbb{C}^d : \|x\| = 1, \|\lambda\| = 1\}$. Note that for $C \in M_n(\mathbb{C})^d$, the map $(x, \lambda) \to f_{x,\lambda}(C)$ is continuous. Now (2.1) can be rewritten as

$$\omega(A) = \max \{ f_{x,\lambda}(A) : (x, \lambda) \in J \}.$$

Let $J(A) = \{(x, \lambda) \in J : f_{x,\lambda}(A) = \omega(A)\}$. By Proposition 2.2

$$\partial \omega(A) = \text{co} (\cup \{ \partial f_{x,\lambda}(A) : (x, \lambda) \in J(A)\}).$$
Let \((x, \lambda) \in J(A)\). Then \(\sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \neq 0\). By Proposition 2.1 we get

\[
\partial f_{x, \lambda}(A) = T_{x, \lambda}^* \partial g(T_{x, \lambda}(A))
\]

\[
= T_{x, \lambda}^* \partial g \left(\sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \right)
\]

\[
= \left\{ T_{x, \lambda} \left(\sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \right) \right\} .
\]

Now \(T_{x, \lambda}^* : \mathbb{C} \to M_n(\mathbb{C})^d\) is the unique map satisfying

\[
(2.2) \quad \text{trace}[(T_{x, \lambda}^*(z))^*C] = \sum_z T_{x, \lambda}(C).
\]

If \(T_{x, \lambda}^*(z) = (T_1, \ldots, T_d)\), then (2.2) gives

\[
\sum_{k=1}^{d} \text{trace}(T_k^* C_k) = \sum_{k=1}^{d} \sum \lambda_k \langle x | C_k x \rangle.
\]

This implies that for \(z \in \mathbb{C}\), \(T_{x, \lambda}^*(z) = z \left(\overline{\lambda}_1 x \otimes x, \overline{\lambda}_2 x \otimes x, \ldots, \overline{\lambda}_d x \otimes x \right)\). So

\[
\partial f_{x, \lambda}(A) = \left\{ \sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \left(\overline{\lambda}_1 x \otimes x, \overline{\lambda}_2 x \otimes x, \ldots, \overline{\lambda}_d x \otimes x \right) \right\} .
\]

This gives

\[
(2.3) \quad \partial \omega(A) = \co \left\{ \sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \overline{\lambda}_1 x \otimes x, \ldots, \overline{\lambda}_d x \otimes x) : (x, \lambda) \in J(A) \right\} .
\]

For each \((x, \lambda) \in J(A)\), we have

\[
\left(\sum_{k=1}^{d} |\langle x | A_k x \rangle|^2 \right)^{1/2} \leq \omega(A) = \left(\sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \right) \leq \left(\sum_{k=1}^{d} |\langle x | A_k x \rangle|^2 \right)^{1/2} .
\]

The last inequality follows by the Cauchy-Schwarz inequality. Hence

\[
\left| \sum_{k=1}^{d} \lambda_k \langle x | A_k x \rangle \right| = \left(\sum_{k=1}^{d} |\langle x | A_k x \rangle|^2 \right)^{1/2} \left(\sum_{k=1}^{d} |\lambda_k|^2 \right)^{1/2} .
\]

By the condition of equality in the Cauchy-Schwarz inequality, there exists \(\alpha \in \mathbb{C}\) such that \((\overline{\lambda}_1, \ldots, \overline{\lambda}_d) = \alpha (\langle x | A_1 x \rangle, \ldots, \langle x | A_d x \rangle)\). This gives \(\alpha = \left(\sum_{k=1}^{d} |\langle x | A_k x \rangle|^2 \right)^{-1/2} \). Substituting the value of \(\overline{\lambda}_k\) in (2.3), we get (1.2).
Using Theorem [1.1] we give the proof of Corollary [1.1]. The idea is similar to [3, Theorem 2.6] and [6, Theorem 1].

Proof of Corollary [1.1]. Without loss of generality, let $A \neq 0$. Let $T_1 : \mathbb{C}^d \to M_n(\mathbb{C})^d$ be the linear map defined as $T_1(\lambda) = \lambda B$. Let $T_2 : \mathbb{C}^2 \to M_n(\mathbb{C})^2$ be defined as the affine map $L(\lambda) = T_1(\lambda) + A$ for all $\lambda \in \mathbb{C}^d$. It is easy to see that

$$\omega(A + \lambda B) \geq \omega(A)$$

for all $\lambda \in \mathbb{C}^d$ if and only if $\lambda \in \mathbb{C}^d$. By Proposition [2.1], we get

$$\omega(A + \lambda B) \geq \omega(A)$$

if and only if $0 \in T_1^* \partial \omega(A)$.

The map $T_1^* : M_n(\mathbb{C})^d \to \mathbb{C}^d$ is given by $T_1^*(C) = (\text{trace}(C_1B_1), \ldots, \text{trace}(C_dB_d))$ for all $C = (C_1, \ldots, C_d) \in M_n(\mathbb{C})^d$. Therefore

$$T_1^* \partial \omega(A) = \text{co} \left\{ \frac{1}{\omega(A)} \left(\langle x|B_ix\rangle \langle x|A_1x\rangle, \ldots, \langle x|B_dx\rangle \langle x|A_dx\rangle \right) : \|x\| = 1, \right\}$$

(2.5)

The result follows by substituting (2.5) in (2.4).

Let $(X, \| \cdot \|)$ be a normed space. An element $x \in X$ is said to be *Birkhoff-James* orthogonal to a subspace W in $\| \cdot \|$ if

$$\|x + y\| \geq \|x\|$$

for all $y \in W$.

If W is a one-dimensional subspace generated by z and (2.6) is satisfied, then we say that x is orthogonal to z. For $(M_n(\mathbb{C})^d, \omega(\cdot))$, (1.3) is equivalent to saying that A is orthogonal to the subspace $\{ \lambda B : \lambda \in \mathbb{C}^d \}$ in $\omega(\cdot)$. In the proof of Corollary [1.1] if we take $T_1 : \mathbb{C} \to H^d$ to be the linear map defined as $T_1(\lambda) = \lambda B$ and $T_2 : \mathbb{C} \to H^d$ to be the affine map $T_2(\lambda) = T_1(\lambda) + A$, then we get the following characterization of orthogonality in $(M_n(\mathbb{C})^d, \omega(\cdot))$.

Theorem 2.1. Let $A = (A_1, \ldots, A_d), B = (B_1, \ldots, B_d) \in M_n(\mathbb{C})^d$. Then A is orthogonal to B if and only if there exist h unit vectors $x_1, \ldots, x_h \in H$ with $\omega(A) = \left(\sum_{k=1}^{d} \langle x_i|A_kx_i\rangle^2 \right)^{1/2}$ for all $1 \leq i \leq h$ and there exist h positive numbers $t_1, \ldots, t_h > 0$ with $t_1 + \cdots + t_h = 1$ such that

$$\sum_{k=1}^{d} \sum_{i=1}^{h} t_i \langle x_i|A_kx_i\rangle \langle x_i|B_kx_i\rangle = 0.$$

The joint operator norm of A is equal to sup

$$\left\{ \left(\sum_{k=1}^{d} \|A_kx\|^2 \right)^{1/2} : x \in \mathbb{C}^n, \|x\| = 1 \right\}.$$

For the joint operator norm, an analogous result to Theorem [2.1] was proved in [3, Corollary 3.4]. A bounded linear map T from a finite dimensional space X to a Banach space Y can...
be identified with the continuous function from the unit sphere S_X of X to Y, defined by $\tilde{T}(x) = T(x)$ for all $x \in S_X$. Let $C(S_X, Y)$ denote the space of continuous functions from S_X to Y with the supremum norm $\| \cdot \|_{\infty}$. Then we have $\|T\| = \|\tilde{T}\|_{\infty}$. In particular, the space $M_n(\mathbb{C})$ equipped with the joint operator norm is isometrically isomorphic to a closed subspace of $C(S_{\mathbb{C}^n} \times (\mathbb{C}^n)^d)$. In [14], this identification was used to give an alternate proof of orthogonality to one dimensional subspaces in $M_n(\mathbb{C})$ given in [2] Theorem 1. We use this identification to prove the following result for the joint operator norm, analogous to Corollary 1.1.

Theorem 2.2. Let $A, B \in M_n(\mathbb{C})$. Then

$$\|A + \lambda B\| \geq \|A\| \quad \text{for all } \lambda \in \mathbb{C}^d$$

if and only if there exist h unit vectors $x_1, \ldots, x_h \in \mathbb{C}^n$ with $\|Ax_i\| = \|A\|$ for all $1 \leq i \leq h$ and there exist h positive numbers $t_1, \ldots, t_h > 0$ with $t_1 + \cdots + t_h = 1$ such that

$$\sum_{i=1}^{h} t_i \langle A_k x_i | B_k x_i \rangle = 0 \quad \text{for all } 1 \leq k \leq d.$$

Moreover, we have $1 \leq h \leq 2d + 1$.

Proof. If $A \in \mathbb{C}^d B$, then the theorem holds trivially and $A = 0$ if it satisfies any of the conditions stated. So, without loss of generality, $A \notin \mathbb{C}^d B$. By [13, Theorem 1.6, p. 201], A is orthogonal to $\mathbb{C}^d B$ if and only if there exist h functionals $f_1, f_2, \ldots, f_h \in ((\mathbb{C}^n)^d)^*$ of unit norm with $1 \leq h \leq 2d + 1$, h unit vectors $x_1, \ldots, x_h \in \mathbb{C}^n$ and $t_1, \ldots, t_h > 0$ with $\sum_{i=1}^{h} t_i = 1$ such that

$$f_i(Ax_i) = \|A\| \quad \text{for all } 1 \leq i \leq h$$

and

$$\sum_{i=1}^{n} t_i f_i(\lambda B x_i) = 0 \quad \text{for all } \lambda \in \mathbb{C}^d.$$

By the Riesz Representation Theorem, there exist unit vectors $y_1, \ldots, y_h \in \mathcal{H}$ such that for $1 \leq i \leq h$, $f_i(x) = \langle y_i | x \rangle$ for all $x \in \mathcal{H}$. So (2.8) is equivalent to the condition $\langle y_i | Ax_i \rangle = \|A\|$. By the condition of equality in the Cauchy-Schwarz inequality, this is equivalent to $y_i = \frac{1}{\|A\|} Ax_i$. So $\|Ax_i\| = \|A\|$. Thus (2.9) is equivalent to $\sum_{i=1}^{h} t_i \langle Ax_i | \lambda B x_i \rangle = 0$ for all $\lambda \in \mathbb{C}^d$, that is, for $1 \leq k \leq d$, $\sum_{i=1}^{h} t_i \langle A_k x_i | B_k x_i \rangle = 0$. \hfill \square

Let \mathcal{H}, \mathcal{K} be Hilbert spaces. Let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ be the space of bounded operators from \mathcal{H} to \mathcal{K}. The notation $\mathcal{B}(\mathcal{H})$ stands for $\mathcal{B}(\mathcal{H}, \mathcal{H})$. In Theorem 2.8 of [11], the following characterization is obtained. Let $A \in \mathcal{B}(\mathcal{H})$ be such that $\|A\| = 1$, the set $\{ x \in \mathcal{H} : \|Ax\| = \|A\| \}$ is the unit ball of a finite dimensional subspace \mathcal{H}_1 of \mathcal{H} and $\|A\|_{\mathcal{H}_1} < \|A\|$. Then for any subspace \mathcal{W} of $\mathcal{B}(\mathcal{H})$, A is orthogonal to \mathcal{W} if and only if there exist unit vectors $x_1, \ldots, x_h \in \mathcal{H}_1$ with $\|Ax_i\| = \|A\|$ for all $1 \leq i \leq h$ and there exist $t_1, \ldots, t_h > 0$ with $\sum_{i=1}^{h} t_i = 1$ such that $\sum_{i=1}^{h} t_i \langle Ax_i | Bx_i \rangle = 0$ for all $B \in \mathcal{W}$. Along the lines of the proof of Theorem 2.2 above, we get the following generalization of this.
Theorem 2.3. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be such that the set $\{x \in \mathcal{H} : \|Ax\| = \|A\|\}$ is the unit ball of a finite dimensional subspace \mathcal{H}_1 of \mathcal{H} and $\|A\|_{\mathcal{H}_1} < \|A\|$. Then for any subspace $\mathcal{W} \subset \mathcal{B}(\mathcal{H}, \mathcal{K})$, A is orthogonal to \mathcal{W} if and only if there exist unit vectors $x_1, \ldots, x_h \in \mathcal{H}_1$ with $\|Ax_i\| = \|A\|$ for all $1 \leq i \leq h$ and there exist $t_1, \ldots, t_h > 0$ with $\sum_{i=1}^{h} t_i = 1$ such that

$$\sum_{i=1}^{h} t_i \langle Ax_i, Bx_i \rangle = 0 \text{ for all } B \in \mathcal{W}. \text{ Moreover, } 1 \leq h \leq 2 \dim(\mathcal{W}) + 1.$$

Since the vectors x_1, \ldots, x_h can be chosen to be linearly independent, $\dim(\mathcal{H})$ is also a bound on h. Theorem 1 of [6] and Theorem 8.4 of [20] are special cases of Theorem 2.3. In both the papers, the bound on h was shown to be $\dim(\mathcal{H})$ and we have been able to find a better bound on h. A generalization of the above theorem without any condition on A can be found in [16, Theorem 1.3]. When \mathcal{W} is a one dimensional subspace, a characterization of orthogonality was first proved in [10, Lemma 2.2]. It was motivated by the proof of [4, Lemma 9.14]. An alternate proof of this can be found in [2, Remark 3.1]. For a detailed survey on orthogonality to subspaces and its applications, see [7, 8] and the references therein.

3. Remarks

Remark 1. Let X be a reflexive Banach space and Y be a Banach space. Let $\mathcal{K}(X, Y)$ be the space of compact operators from X to Y with the operator norm. For $x \in X$ and a subspace \mathcal{W} of X, let $\text{dist}(x, \mathcal{W}) = \inf \{\|x - w\| : w \in \mathcal{W}\}$. Theorem 2.2 also holds for $A \in \mathcal{K}(X, Y)$ such that $\text{dist}(A, \mathcal{K}(X, Y)) < \|A\|$. This can be seen from [19, Lemma 3.1] and the proof of Corollary [13]. An expression for the subdifferential set of the norm function in $\mathcal{B}(X, Y)$ for a reflexive Banach space X was also obtained in [19, Theorem 3.2].

Remark 2. Birkhoff-James orthogonality is closely related to the notion of norm parallelism. In a normed space, an element x is said to be norm parallel to another element y if there exists $\lambda \in \mathbb{C}$ such that $|\lambda| = 1$ and $\|x + \lambda y\| = \|x\| + \|y\|$. Let $A, B \in M_n(\mathbb{C})^d$. Then by [13, Theorem 2.4] and Theorem 2.1, we get that A is norm parallel to B in the joint numerical radius if and only if there exists a unit vector $x \in \mathbb{C}^n$ such that $|\sum_{k=1}^{d} \langle x | B_k x \rangle \langle x | A_k x \rangle| = \omega(A)\omega(B)$. The same characterization also holds for $A, B \in \mathcal{B}(\mathcal{H}, \mathcal{H}^d)$ for a Hilbert space \mathcal{H}. The proof can be done along the lines of the proof of [12, Theorem 2.2].

References

[1] H. Baklouti, K. Feki, On joint spectral radius of commuting operators in Hilbert spaces, Linear Algebra Appl. 557 (2018) 455-463.
[2] R. Bhatia, P. Semrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), 77–85.
[3] T. Bhattacharyya, P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013), 350–358.
[4] K. R. Davidson, Nest algebras, Triangular forms for operator algebras on Hilbert space, Pitman Research Notes in Mathematics Series, 191, New York, 1988.
[5] P. Grover, Orthogonality of matrices in the Ky Fan k-norms, Linear Multilinear Algebra 65 (2017), 496–509.
[6] P. Grover, Orthogonality to matrix subspaces, and a distance formula, Linear Algebra Appl. 445 (2014), 280–288.
[7] P. Grover, S. Singla, Best approximations, distance formulas and orthogonality in C^*-algebras, *J. Ramanujan Math. Soc.* 36 (2021), 85–91.

[8] P. Grover, S. Singla, *Birkhoff-James orthogonality and applications: A survey*. Operator Theory, Functional Analysis and Applications, eds. M. A. Bastos, L. Castro, A. Y. Karlovich, Oper. Theory Adv. Appl., Birkhäuser Cham, 282 (2021), 293–315.

[9] J.B. Hiriart-Urruty, C. Lemaréchal, *Fundamentals of Convex Analysis*, Springer, 2000.

[10] B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, *J. London Math. Soc.* (2) 47 (1993), 516–532.

[11] A. Mal, K. Paul, Birkhoff-James orthogonality to a subspace of operators defined between Banach spaces, *J. Operator Theory* 85 (2021), 463–474.

[12] M. Mehrazin, M. Amyari, A. Zamani, Numerical radius parallelism of Hilbert space operators, *Bull. Iranian Math. Soc.* 46 (2020), 821–829.

[13] M. S. Moslehian, A. Zamani, Norm-parallelism in the geometry of Hilbert C^*-modules, *Indag. Math.* 27 (2016) 266–281.

[14] S. Roy, T. Senapati, D. Sain, Orthogonality of bilinear forms and application to matrices, *Linear Algebra Appl.* 615 (2021), 104–111.

[15] I. Singer, *Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces*, Springer, 1970.

[16] S. Singla, Gateaux derivative of C^* norm, *Linear Algebra Appl.* 629 (2021), 208-218.

[17] G. A. Watson, Characterization of the subdifferential of some matrix norms, *Linear Algebra Appl.* 170 (1992), 33–45.

[18] G. A. Watson, On matrix approximation problems with Ky Fan k norms, *Numer. Algorithms* 5 (1993), 263–272.

[19] P. Wójcik, Birkhoff orthogonality in classical M-ideals, *J. Aust. Math. Soc.* 103 (2017), 279–288.

[20] K. Ziętak, From the strict Chebyshev approximant of a vector to the strict spectral approximant of a matrix, *Banach Center Publ.*, 112 Polish Acad. Sci. Inst. Math. Warsaw, 2017.

[21] K. Ziętak, Subdifferentials, faces, and dual matrices, *Linear Algebra Appl.*, 185 (1993), 125–141.

[22] C. Zălinescu, *Convex analysis in general vector spaces*, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

Department of Mathematics, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, U.P. 201314, India.

Email address: priyanka.grover@snu.edu.in, ss774@snu.edu.in