NUMERICAL RADIUS INEQUALITIES OF 2×2 OPERATOR MATRICES

PINTU BHUNIA AND KALLOL PAUL

Abstract. Several upper and lower bounds for the numerical radius of 2×2 operator matrices are developed which refine and generalize the earlier related bounds. In particular, we show that if B, C are bounded linear operators on a complex Hilbert space, then

$$\frac{1}{2} \max \{\|B\|, \|C\|\} + \frac{1}{4} \|B + C^*\| - \|B - C^*\| \leq w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \leq \frac{1}{2} \max \{\|B\|, \|C\|\} + \frac{1}{2} \max \left\{ r_{\frac{1}{2}}(|B||C^*|), r_{\frac{1}{2}}(|B^*||C|) \right\},$$

where $w(\cdot)$, $r(\cdot)$ and $\|\cdot\|$ are the numerical radius, spectral radius and operator norm of a bounded linear operator, respectively. We also obtain equality conditions for the numerical radius of the operator matrix $\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$. As an application of results obtained, we show that if B, C are self-adjoint operators then

$$\max \left\{ \|B + C\|^2, \|B - C\|^2 \right\} \leq \|B^2 + C^2\| + 2w(|B||C|).$$

1. Introduction

Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let $\mathcal{B}(\mathcal{H})$ be the collection of all bounded linear operators on \mathcal{H}. As usual the norm induced by the inner product $\langle \cdot, \cdot \rangle$ is denoted by $\|\cdot\|$. For $A \in \mathcal{B}(\mathcal{H})$, let $\|A\|$ be the operator norm of A, i.e., $\|A\| = \sup_{\|x\|=1} \|Ax\|$. For $A \in \mathcal{B}(\mathcal{H})$, A^* denotes the adjoint of A and $|A|, |A^*|$ respectively denote the positive part of A, A^*, i.e., $|A| = (A^*A)^{\frac{1}{2}}, |A^*| = (AA^*)^{\frac{1}{2}}$. The real part and the imaginary part of A are denoted by $\Re(A)$ and $\Im(A)$ respectively so that $\Re(A) = \frac{A + A^*}{2}$ and $\Im(A) = \frac{A - A^*}{2i}$. The numerical range of A, denoted by $W(A)$, is defined as $W(A) = \{ \langle Ax, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}$. It is well known that $W(A)$ is a compact subset of \mathbb{C}. The famous Toeplitz-Hausdorff theorem states that the numerical range is a convex set. The numerical radius of A, denoted by $w(A)$, is defined as $w(A) = \sup_{\|x\|=1} |\langle Ax, x \rangle|$. The numerical radius is a norm on $\mathcal{B}(\mathcal{H})$ satisfying

$$\frac{1}{2} \|A\| \leq w(A) \leq \|A\|, \quad (1.1)$$

2010 Mathematics Subject Classification. 47A12, 47A30.

Key words and phrases. Numerical radius; Operator norm; Bounded linear operator; Hilbert space; Operator matrix.

First author would like to thank UGC, Govt. of India for the financial support in the form of Senior Research Fellowship.
and so the numerical radius norm is equivalent to the operator norm. The inequality (1.1) is sharp, \(w(A) = \|A\| \) if \(A \) is normal and \(w(A) = \frac{\|A\|}{2} \) if \(A^2 = 0 \). The spectral radius of \(A \), denoted as \(r(A) \), is defined as \(r(A) := \sup_{\lambda \in \sigma(A)} |\lambda| \), where \(\sigma(A) \) is the spectrum of \(A \). Since \(\sigma(A) \subseteq \overline{W(A)} \), \(r(A) \leq w(A) \). For further basic properties on the numerical range and the numerical radius of bounded linear operators, we refer to [15]. Various refinements of (1.1) have been obtained recently, a few of them are in [7, 8, 9, 10, 11].

The direct sum of two copies of \(\mathcal{H} \) is denoted by \(\mathcal{H} \oplus \mathcal{H} \). If \(A, B, C, D \in \mathcal{B}(\mathcal{H}) \), then the operator matrix
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]
can be considered as an operator on \(\mathcal{H} \oplus \mathcal{H} \), and is defined by
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} x = \begin{bmatrix}
A x_1 + B x_2 \\
C x_1 + D x_2
\end{bmatrix}, \forall x = \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \in \mathcal{H} \oplus \mathcal{H}.
\]

In this paper, we obtain several upper and lower bounds for the numerical radius of \(2 \times 2 \) operator matrices. The bounds obtained here improve and generalize the earlier related bounds. We also obtain equality conditions for the numerical radius of \(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix} \), where ‘0’ denotes the zero operator on \(\mathcal{H} \). An application of some of our obtained bounds, we give norm inequalities for sums and differences of self-adjoint operators.

2. Main results

We begin this section with the following well known lemmas. The first lemma can be found in [17, Lemma 2.1].

Lemma 2.1. Let \(A, B, C, D \in \mathcal{B}(\mathcal{H}) \). Then
\[
(1) \quad w\left(\begin{bmatrix}
A & 0 \\
0 & D
\end{bmatrix} \right) = \max\{w(A), w(D)\}.
\]
\[
(2) \quad w\left(\begin{bmatrix}
A & B \\
B & A
\end{bmatrix} \right) = \max\{w(A + B), w(A - B)\}.
\]

In particular, \(w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix} \right) = w(B) \).

The second lemma can be proved easily.

Lemma 2.2. Let \(A, D \in \mathcal{B}(\mathcal{H}) \). Then
\[
\left\| \begin{bmatrix}
A & 0 \\
0 & D
\end{bmatrix} \right\| = \left\| \begin{bmatrix}
0 & A \\
D & 0
\end{bmatrix} \right\| = \max\{\|A\|, \|D\|\}.
\]

The third lemma can be found in [16, pp. 75-76] which is a mixed Schwarz inequality.

Lemma 2.3. Let \(A \in \mathcal{B}(\mathcal{H}) \). Then
\[
|\langle Ax, x \rangle| \leq \langle |A|x, x \rangle \rangle^{1/2} \langle |A^*|x, x \rangle \rangle^{1/2}, \forall x \in \mathcal{H}.
\]

The fourth lemma involving positive operators can be found in [20, Cor. 2].

Lemma 2.4. Let \(A, B \in \mathcal{B}(\mathcal{H}) \) be positive. Then
\[
\|A + B\| \leq \max\{\|A\|, \|B\|\} + \|A^{1/2} B^{1/2}\|.
\]
Our first result can be stated as the following theorem.

Theorem 2.5. Let $B, C \in \mathcal{B}(\mathcal{H})$. Then

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \leq \frac{1}{2} \max\{\|B\|, \|C\|\} + \frac{1}{2} \max\left\{ r^{\frac{1}{2}}(\|B\|\|C^*\|), r^{\frac{3}{2}}(\|B^*\|\|C\|) \right\}. $$

This inequality is sharp.

Proof. Let $x \in \mathcal{H} \oplus \mathcal{H}$ with $\|x\| = 1$. Then from Lemma 2.3 we have that

$$\left\langle\left[\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right] x, x \right\rangle \leq \left\langle\left[\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right] x, x \right\rangle^{\frac{1}{2}} \left\langle\left[\begin{array}{cc} 0 & C^* \\ B^* & 0 \end{array} \right] x, x \right\rangle^{\frac{1}{2}} \leq \frac{1}{2} \left(\left\langle\left[\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right] x, x \right\rangle + \left\langle\left[\begin{array}{cc} 0 & C^* \\ B^* & 0 \end{array} \right] x, x \right\rangle \right) = \frac{1}{2} \left\langle\left[\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right] + \left[\begin{array}{cc} 0 & C^* \\ B^* & 0 \end{array} \right] \right\rangle x, x \right\rangle \leq \frac{1}{2} w\left(\begin{bmatrix} |C| + |B^*| & 0 \\ 0 & |B| + |C^*| \end{bmatrix}\right) \leq \frac{1}{2} \max\{\|\|C\| + |B^*||, \|\|B\| + |C^*||\}. $$

By considering the supremum over all $\|x\| = 1$, we get

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \leq \frac{1}{2} \max\{\|\|C\| + |B^*||, \|\|B\| + |C^*||\}. \quad (2.1)$$

Now it follows from Lemma 2.4 that

$$\|\|C\| + |B^*|| \leq \max\{\|B\|, \|C\|\} + \|\|C\|^{\frac{1}{2}}|B^*|^{\frac{1}{2}}\|$$

and

$$\|\|B\| + |C^*|| \leq \max\{\|B\|, \|C\|\} + \|\|B\|^{\frac{1}{2}}|C^*|^{\frac{1}{2}}\|. $$

Hence, from (2.1) we get,

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \leq \frac{1}{2} \max\{\|B\|, \|C\|\} + \frac{1}{2} \max\{\|\|B\|^{\frac{1}{2}}|C^*|^{\frac{1}{2}}\|, \|\|C\|^{\frac{1}{2}}|B^*|^{\frac{1}{2}}\|\}. $$

If $A, B \in \mathcal{B}(\mathcal{H})$ are positive, then $r^{\frac{1}{2}}(AB) = \|A^{1/2}B^{1/2}\|$, (see [6, Lemma 2.5]). Therefore,

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \leq \frac{1}{2} \max\{\|B\|, \|C\|\} + \frac{1}{2} \max\left\{ r^{\frac{1}{2}}(|B||C^*|), r^{\frac{1}{2}}(|C||B^*|) \right\}. $$

This is the required inequality. To show that the inequality is sharp, we consider $C = 0$ so that $w\left(\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}\right) \leq \frac{\|B\|}{2}$, which is actually equal. \qed
Remark 2.6. In particular, considering $B = C$ in Theorem 2.5 and using Lemma 2.1, we get the inequality (see [6, Th. 2.1])

$$w(B) \leq \frac{1}{2} \|B\| + \frac{1}{2} r^\frac{1}{2}(\|B\|).$$

Thus Theorem 2.5 generalizes [6, Th. 2.1].

We next obtain a lower bound for the numerical radius of the operator matrix $
\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}$.

Theorem 2.7. Let $B, C \in B(\mathcal{H})$. Then

$$w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}\right) \geq \frac{1}{2} \max\{\|B\|, \|C\|\} + \frac{1}{4} \|B + C^*\| - \|B - C^*\|.$$

Proof. We note that for any bounded linear operator T, $w(T) \geq \|\Re(T)\|$ and $w(T) \geq \|\Im(T)\|$. So we have, $w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}\right) \geq \|\frac{B+C^*}{2}\|$ and $w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}\right) \geq \|\frac{B-C^*}{2}\|$. Then

$$w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}\right) \geq \frac{1}{2} \max\{\|B + C^*\|, \|B - C^*\|\}$$

$$= \frac{1}{4}(\|B + C^*\| + \|B - C^*\|) + \frac{1}{4} \|B + C^*\| - \|B - C^*\|$$

$$\geq \frac{1}{4} \|(B + C^*) \pm (B - C^*)\| + \frac{1}{4} \|B + C^*\| - \|B - C^*\|.$$

This implies that

$$w\left(\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}\right) \geq \frac{1}{2} \max\{\|B\|, \|C\|\} + \frac{1}{4} \|B + C^*\| - \|B - C^*\|.$$

This completes the proof. \qed

Remark 2.8. In particular, considering $B = C$ in Theorem 2.7, we get

$$w(B) \geq \frac{\|B\|}{2} + \frac{1}{4} \|B + B^*\| - \|B - B^*\|.$$

Clearly, this is an improvement of the first inequality in (1.1), i.e., $w(B) \geq \frac{\|B\|}{2}$.

Next, we need the following lemma, known as Buzano’s extension of Schwarz inequality (see [12]).

Lemma 2.9. If $x, y, e \in \mathcal{H}$ with $\|e\| = 1$, then

$$|\langle x, e \rangle \langle e, y \rangle| \leq \frac{1}{2} (\|x\| \|y\| + |\langle x, y \rangle|).$$

Using the above lemma we prove the following theorem.
Theorem 2.10. If $B, C \in B(\mathcal{H})$, then

$$w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \leq \frac{1}{4} \max \left\{ \|B\|^2 + |C^*|^2, \|B^*\|^2 + |C|^2 \right\} + \frac{1}{2} \max \left\{ w(|B||C^*|), w(|C||B^*|) \right\}.$$

This inequality is sharp.

Proof. Let $x \in \mathcal{H} \oplus \mathcal{H}$ with $\|x\| = 1$. Then,

$$\left| \left\langle \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} x, x \right\rangle \right|^2 \leq \left\langle \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} x, x \right\rangle \left\langle \begin{bmatrix} 0 & C^* \\ B^* & 0 \end{bmatrix} x, x \right\rangle, \text{ by Lemma 2.3}$$

$$= \left\langle \begin{bmatrix} |B| & 0 \\ 0 & |C| \end{bmatrix} x, x \right\rangle \left\langle \begin{bmatrix} |B^*| & 0 \\ 0 & |C^*| \end{bmatrix} x, x \right\rangle$$

$$\leq \frac{1}{2} \left\langle \begin{bmatrix} |C|^2 & 0 \\ 0 & |B|^2 \end{bmatrix} x, x \right\rangle \left\langle \begin{bmatrix} |B^*|^2 & 0 \\ 0 & |C^*|^2 \end{bmatrix} x, x \right\rangle$$

$$+ \frac{1}{2} \left\langle \begin{bmatrix} |B^*| & 0 \\ 0 & |C^*| \end{bmatrix} x, x \right\rangle \left\langle \begin{bmatrix} |C| & 0 \\ 0 & |B| \end{bmatrix} x, x \right\rangle$$

$$\leq \frac{1}{4} \left(\left\langle \begin{bmatrix} |C|^2 & 0 \\ 0 & |B|^2 \end{bmatrix} x, x \right\rangle + \left\langle \begin{bmatrix} |B^*|^2 & 0 \\ 0 & |C^*|^2 \end{bmatrix} x, x \right\rangle \right)$$

$$+ \frac{1}{2} \left\langle \begin{bmatrix} |B^*||C| & 0 \\ 0 & |C^*||B| \end{bmatrix} x, x \right\rangle$$

$$= \frac{1}{4} \left(\left\langle \begin{bmatrix} |C|^2 + |B^*|^2 & 0 \\ 0 & |B|^2 + |C^*|^2 \end{bmatrix} x, x \right\rangle + \left\langle \begin{bmatrix} |B^*|^2 & 0 \\ 0 & |C^*|^2 \end{bmatrix} x, x \right\rangle \right)$$

$$+ \frac{1}{2} \left\langle \begin{bmatrix} |B^*||C| & 0 \\ 0 & |C^*||B| \end{bmatrix} x, x \right\rangle$$

$$\leq \frac{1}{4} \max \{ \| |C|^2 + |B^*|^2 \|, \| |B|^2 + |C^*|^2 \| \} + \frac{1}{2} \max \{ w(|B^*||C|), w(|C^*||B|) \}.$$
Taking supremum over all \(x \in \mathcal{H}, \|x\| = 1 \), we get

\[
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \leq \frac{1}{4} \max \{ \| |B|^2 + |C^*|^2\|, \| |B^*|^2 + |C|^2\| \} \\
+ \frac{1}{2} \max \{ w(|B||C^*|), w(|C||B^*|) \}.
\]

To show that the inequality is sharp, we consider \(C = 0 \). Then we get,

\[
w^2 \left(\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix} \right) \leq \frac{1}{4} \| B \|^2, \text{ which is actually equal. This completes the proof.} \]

\[\square\]

Remark 2.11. In particular, considering \(B = C \) in Theorem 2.10 and using Lemma 2.1, we get the inequality [3, Th. 2.5]

\[
w^2(B) \leq \frac{1}{4} \| |B|^2 + |B^*|^2\| + \frac{1}{2} w(|B||B^*|).
\]

Thus Theorem 2.10 generalizes [3, Th. 2.5].

Our next result reads as follows.

Theorem 2.12. Let \(B, C \in \mathcal{B}(\mathcal{H}) \). Then

\[
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \geq \frac{1}{4} \max \{ \| |B|^2 + |C^*|^2\|, \| |B^*|^2 + |C|^2\| \} \\
+ \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2 \).
\]

Proof. We note that for any bounded linear operator \(T \), \(w(T) \geq \|\Re(T)\| \) and \(w(T) \geq \|\Im(T)\| \). So we have, \(w \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \geq \|\frac{B + C^*}{2}\| \) and \(w \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \geq \|\frac{B - C^*}{2}\| \).
\[\| \frac{B - C^*}{2i} \|. \] Then,
\[
\begin{aligned}
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) & \geq \frac{1}{4} \max \{ \| B + C^* \|^2, \| B - C^* \|^2 \} \\
& = \frac{1}{8} (\| B + C^* \|^2 + \| B - C^* \|^2) + \frac{1}{8} (\| B + C^* \|^2 - \| B - C^* \|^2) \\
& = \frac{1}{2} \left(\left\| \frac{B + C^*}{2} \right\|^2 + \left\| \frac{B - C^*}{2i} \right\|^2 \right) \\
& + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2 \\
& = \frac{1}{2} \left(\left\| 2 \mathbb{R} \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \right\|^2 + \left\| 2 \mathbb{I} \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \right\|^2 \right) \\
& + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2 \\
& \geq \frac{1}{2} \left(\left\| 2 \mathbb{R} \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \right\|^2 + \left\| 2 \mathbb{I} \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \right\|^2 \right) \\
& + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2 \\
& = \frac{1}{4} \left\| \begin{bmatrix} |C|^2 + |B|^2 & 0 \\ 0 & |B|^2 + |C|^2 \end{bmatrix} \right\|^2 \\
& + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2 \\
& = \frac{1}{4} \max \{ \| |B|^2 + |C|^2 \|, \| |B^*|^2 + |C|^2 \| \} \\
& + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2.
\end{aligned}
\]

This completes the proof. \(\square \)

The following necessary condition for the equality of \(w \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \) follows from Theorem 2.12.

Proposition 2.13. If \(B, C \in \mathcal{B}(\mathcal{H}) \), then
\[
\begin{aligned}
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) &= \frac{1}{4} \max \{ \| |B|^2 + |C|^2 \|, \| |B^*|^2 + |C|^2 \| \} \\
& \quad + \frac{1}{8} \| B + C^* \|^2 - \| B - C^* \|^2.
\end{aligned}
\]

implies that \(\| B + C^* \| = \| B - C^* \|. \)
Remark 2.14. In [4, Th. 2.2], the authors obtained that
\[
\begin{pmatrix}
0 & B \\
C & 0
\end{pmatrix}
\geq \frac{1}{4} \max \left\{ \|B\|^2 + |C^*|^2, \|B\|^2 + |C|^2 \right\}.
\]
Clearly, Theorem 2.12 refines [4, Th. 2.2].

Our next improvement of [4, Th. 2.2] is as follows.

Theorem 2.15. If \(B, C \in B(\mathcal{H})\), then
\[
\begin{pmatrix}
0 & B \\
C & 0
\end{pmatrix}
\geq \frac{1}{8} \max \left\{ \|B + C^*\|^2, \|B - C^*\|^2 \right\} + \frac{1}{2} \|B - C\| \|B - C^*\|
\geq \frac{1}{4} \max \left\{ \|B\|^2 + |C^*|^2, \|B\|^2 + |C|^2 \right\}.
\]
The inequalities are sharp.

Proof. Let \(S = \begin{pmatrix}
0 & B \\
C & 0
\end{pmatrix}\). First inequality follows from \(w(S) \geq \|\Re(S)\|\) and \(w(S) \geq \|\Im(S)\|\). We next prove the second inequality. Clearly,
\[
\frac{1}{8} \|S\|^2 + |S^*|^2 = \frac{1}{2} \|\Re^2(S) + \Im^2(S)\|.
\]
Now, from Lemma 2.4, we get
\[
\|\Re^2(S) + \Im^2(S)\| \leq \max\{\|\Re^2(S)\|, \|\Im^2(S)\|\} + \|\Re(S)\| \|\Im(S)\|
= \max\{\|\Re(S)\|^2, \|\Im(S)\|^2\} + \|\Re(S)\| \|\Im(S)\|.
\]
Hence, we have
\[
\frac{1}{8} \|S\|^2 + |S^*|^2 \leq \frac{1}{2} \max\{\|\Re(S)\|^2, \|\Im(S)\|^2\} + \frac{1}{2} \|\Re(S)\| \|\Im(S)\|
\leq \frac{1}{2} \max\{\|\Re(S)\|^2, \|\Im(S)\|^2\} + \frac{1}{2} \|\Re(S)\| \|\Im(S)\|
= \frac{1}{2} \max\{\|\Re(S)\|^2, \|\Im(S)\|^2\} + \frac{1}{2} \|\Re(S)\| \|\Im(S)\|.
\]
This implies that
\[
\frac{1}{4} \max\left\{ \|B\|^2 + |B^*|^2, \|B\|^2 + |C^*|^2 \right\} \leq \frac{1}{2} \max\left\{ \left| \frac{B + C^*}{2} \right|^2, \left| \frac{B - C^*}{2i} \right|^2 \right\}
\]
that is,
\[
\frac{1}{4} \max\left\{ \|B\|^2 + |C^*|^2, \|B\|^2 + |C|^2 \right\} \leq \frac{1}{8} \max\left\{ \|B + C^*\|^2, \|B - C^*\|^2 \right\}
+ \frac{1}{8} \|B + C^*\| \|B - C^*\|.
\]
This is the second inequality of the theorem. To show that the inequalities are sharp, we consider \(C = 0 \). Then we get \(w^2 \left(\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix} \right) \geq \frac{1}{4} \| B \|^2 \), which is actually equal. This completes the proof. □

The following sufficient condition for the equality of \(w \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \) follows from Theorem 2.10 and Theorem 2.15.

Proposition 2.16. Let \(B, C \in \mathcal{B}(\mathcal{H}) \). If \(|B||C^*| = |B^*||C| = 0 \), then
\[
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) = \frac{1}{4} \max \left\{ \|B\|^2 + |C^*|^2, \|B^*\|^2 + |C|^2 \right\}.
\]

Remark 2.17. In particular, considering \(B = C \) in Theorem 2.15 and using \(w \left(\begin{bmatrix} 0 & B \\ B & 0 \end{bmatrix} \right) = w(B) \), we get
\[
w^2(B) \geq \frac{1}{8} \left[\max \left\{ \|B + B^*\|^2, \|B - B^*\|^2 \right\} + \|B + B^*\||B - B^*\| \right]
\geq \frac{1}{4} \|B\|^2 + |B^*|^2.
\]
Thus Theorem 2.15 generalizes [5, Th. 2.10].

For next result we need the following lemma (see [4, Th. 2.4]).

Lemma 2.18. If \(A, B \in \mathcal{B}(\mathcal{H}) \), then
\[
\|A + B\|^2 \leq 2 \max \left\{ \|A\|^2 + \|B\|^2, \|A^*\|^2 + \|B^*\|^2 \right\}.
\]

Theorem 2.19. If \(B, C \in \mathcal{B}(\mathcal{H}) \), then
\[
w^2 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \geq \frac{1}{4\sqrt{2}} \left[\|B + C^*\|^4 + \|B - C^*\|^4 \right]^\frac{1}{2}
\geq \frac{1}{4} \max \left\{ \|B\|^2 + |C^*|^2, \|B^*\|^2 + |C|^2 \right\}.
\]

The inequalities are sharp.

Proof. Let \(\mathcal{S} = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \). First inequality follows from \(w(\mathcal{S}) \geq \|\Re(\mathcal{S})\| \) and \(w(\mathcal{S}) \geq \|\Im(\mathcal{S})\| \). We next prove the second inequality. Clearly,
\[
\frac{1}{4} \|\mathcal{S}\|^2 + |\mathcal{S}^*|^2 = \frac{1}{2} \|\Re^2(\mathcal{S}) + \Im^2(\mathcal{S})\|.
\]
Now, from Lemma 2.18, we have
\[
\|\Re^2(\mathcal{S}) + \Im^2(\mathcal{S})\| \leq \sqrt{2} \|\Re^4(\mathcal{S}) + \Im^4(\mathcal{S})\|^\frac{1}{2}
\leq \sqrt{2} \left[\|\Re(\mathcal{S})\|^4 + \|\Im(\mathcal{S})\|^4 \right]^\frac{1}{2}.
\]
Hence, we have
\[
\frac{1}{4} \|\mathcal{S}\|^2 + |\mathcal{S}^*|^2 \leq \frac{1}{\sqrt{2}} \left[\|\Re(\mathcal{S})\|^4 + \|\Im(\mathcal{S})\|^4 \right]^\frac{1}{2}.
\]
This implies that
\[
\frac{1}{4} \left\| \begin{bmatrix} |C|^2 + |B^*|^2 & 0 \\ 0 & |B|^2 + |C^*|^2 \end{bmatrix} \right\| \leq \frac{1}{\sqrt{2}} \left(\left\| \frac{B + C^*}{2} \right\|^4 + \left\| \frac{B - C^*}{2i} \right\|^4 \right)^{\frac{1}{2}},
\]
that is,
\[
\frac{1}{4} \max \left\{ \left\| |B|^2 + |C^*|^2 \right\|, \left\| |B^*|^2 + |C|^2 \right\| \right\} \leq \frac{1}{4\sqrt{2}} \left(\left\| B + C^* \right\|^4 + \left\| B - C^* \right\|^4 \right)^{\frac{1}{2}}.
\]
This is the second inequality of the theorem. To show that the inequalities are sharp, we consider \(C = 0 \). Then we get
\[
\omega^2 \left(\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix} \right) \geq \frac{1}{4}\left\| B \right\|^2,
\]
which is actually equal. This completes the proof. \(\square \)

Remark 2.20. In particular, considering \(B = C \) in Theorem 2.19, we get the inequality (see [5, Th. 2.13])
\[
\omega^2(B) \geq \frac{1}{4\sqrt{2}} \left(\left\| B + B^* \right\|^4 + \left\| B - B^* \right\|^4 \right)^{\frac{1}{2}} \geq \frac{1}{4}\left\| B \right\|^2 + \left\| B^* \right\|^2
\]
and so Theorem 2.19 is a generalization of [5, Th. 2.13].

For our next result we need the following lemmas.

Lemma 2.21. ([21, p. 20]). Let \(A \in \mathcal{B}(\mathcal{H}) \) be positive, i.e., \(A \geq 0 \). Then
\[
\langle Ax, x \rangle^r \leq \langle A^r x, x \rangle,
\]
for all \(r \geq 1 \) and for all \(x \in \mathcal{H} \) with \(\|x\| = 1 \).

Lemma 2.22. Let \(x, y, e \in \mathcal{H} \) with \(\|e\| = 1 \). Then we have, for \(0 \leq \alpha \leq 1 \)
\[
\left| \langle x, e \rangle \langle e, y \rangle \right|^2 \leq \frac{1 + \alpha}{4} \|x\|^2 \|y\|^2 + \frac{1 - \alpha}{4} \|\langle x, y \rangle\|^2 + \frac{1}{2} \|x\| \|y\| \|\langle x, y \rangle\|.
\]

Proof. From Lemma 2.9, we have
\[
\left| \langle x, e \rangle \langle e, y \rangle \right|^2 \leq \frac{1}{4} \left(\|x\| \|y\| + \|\langle x, y \rangle\| \right)^2
\]
\[
\quad = \frac{1}{4} \left(\|x\|^2 \|y\|^2 + 2 \|x\| \|y\| \|\langle x, y \rangle\| + \|\langle x, y \rangle\|^2 \right)
\]
\[
\quad = \frac{1}{4} \left(\|x\|^2 \|y\|^2 + 2 \|x\| \|y\| \|\langle x, y \rangle\| + \alpha \|\langle x, y \rangle\|^2 + (1 - \alpha) \|\langle x, y \rangle\|^2 \right)
\]
\[
\quad \leq \frac{1}{4} \left(\|x\|^2 \|y\|^2 + 2 \|x\| \|y\| \|\langle x, y \rangle\| + \alpha \|x\|^2 \|y\|^2 + (1 - \alpha) \|\langle x, y \rangle\|^2 \right)
\]
\[
\quad \leq \frac{1 + \alpha}{4} \|x\|^2 \|y\|^2 + \frac{1 - \alpha}{4} \|\langle x, y \rangle\|^2 + \frac{1}{2} \|x\| \|y\| \|\langle x, y \rangle\|,
\]
as desired. \(\square \)

Now, we are in a position to prove our next result.
Theorem 2.23. If $B, C \in \mathcal{B}(\mathcal{H})$, then for $0 \leq \alpha \leq 1$, we have

$$w^4 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \leq \frac{1 + \alpha}{8} \max \left\{ \|B\|^4 + \|C^*\|^4, \|B^*\|^4 + \|C\|^4 \right\} + \frac{1 - \alpha}{4} w^2(BC), w^2(CB) \right\} + \frac{1}{4} \max \left\{ \|B\|^2 + \|C^*\|^2, \|B^*\|^2 + \|C\|^2 \right\} \times \max \{w(BC), w(CB)\}.$$

Proof. Let $S = \left[\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right]$. Let $x \in \mathcal{H} \oplus \mathcal{H}$ with $\|x\| = 1$. Then it follows from Lemma 2.22 that

$$|\langle Sx, x \rangle|^4 = |\langle Sx, x \rangle\langle x, S^*x \rangle|^2 \leq \frac{1 + \alpha}{8} \|Sx\|^2 \|S^*x\|^2 + \frac{1 - \alpha}{4} |\langle S^2x, x \rangle|^2 + \frac{1}{2} \|Sx\| \|S^*x\| |\langle S^2x, x \rangle| \leq \frac{1 + \alpha}{8} (\|S\|^4 + \|S^*\|^4) + \frac{1 - \alpha}{4} |\langle S^2x, x \rangle|^2 + \frac{1}{4} (\|S\|^2 + \|S^*\|^2) |\langle S^2x, x \rangle|,$$

using Lemma 2.21

$$= \frac{1 + \alpha}{8} \left(\begin{array}{cc} |C|^4 + |B^*|^4 & 0 \\ 0 & |B|^4 + |C^*|^4 \end{array} \right) x, x \right\} + \frac{1 - \alpha}{4} \left(\begin{array}{cc} BC & 0 \\ 0 & CB \end{array} \right) x, x \right\}^2 + \frac{1}{4} \left(\begin{array}{cc} |C|^2 + |B^*|^2 & 0 \\ 0 & |B|^2 + |C^*|^2 \end{array} \right) x, x \right\} |\left(\begin{array}{cc} BC & 0 \\ 0 & CB \end{array} \right) x, x \right\} \leq \frac{1 + \alpha}{8} \sum \left(\begin{array}{cc} |C|^4 + |B^*|^4 & 0 \\ 0 & |B|^4 + |C^*|^4 \end{array} \right) x, x \right\} + \frac{1 - \alpha}{4} \sum \left(\begin{array}{cc} BC & 0 \\ 0 & CB \end{array} \right) x, x \right\} \leq \frac{1 + \alpha}{8} \max \{ \|B\|^4 + \|C^*\|^4, \|B^*\|^4 + \|C\|^4 \} + \frac{1 - \alpha}{4} \max \{w^2(BC), w^2(CB)\} + \frac{1}{4} \max \{\|B\|^2 + \|C^*\|^2, \|B^*\|^2 + \|C\|^2 \} \times \max \{w(BC), w(CB)\}.$$
Taking supremum over all \(x \in \mathcal{H}, \|x\| = 1 \), we get
\[
\begin{aligned}
\quad w^4 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right) \\
\quad \leq \frac{1 + \alpha}{8} \max \left\{ \| |B|^4 + |C^*|^4\|, \| |B^*|^4 + |C|^4\| \right\} \\
\quad + \frac{1 - \alpha}{4} \max \left\{ w^2(BC), w^2(CB) \right\} \\
\quad + \frac{1}{4} \max \left\{ \| |B|^2 + |C^*|^2\|, \| |B^*|^2 + |C|^2\| \right\} \times \max \left\{ w(BC), w(CB) \right\}.
\end{aligned}
\]
\[
\square
\]

In particular, considering \(B = C \) in Theorem 2.23, we get the following corollary.

Corollary 2.24. If \(B \in \mathcal{B}(\mathcal{H}) \), then for \(0 \leq \alpha \leq 1 \),
\[
w^4(B) \leq \frac{1 + \alpha}{8} \| |B|^4 + |B^*|^4\| + \frac{1 - \alpha}{4} w^2(B^2) + \frac{1}{4} \| |B|^2 + |B^*|^2\| w(B^2).
\]

Remark 2.25. For every \(0 \leq \alpha \leq 1 \), we have
\[
w^4(B) \leq \frac{1 + \alpha}{8} \| |B|^4 + |B^*|^4\| + \frac{1 - \alpha}{4} w^2(B^2) + \frac{1}{4} \| |B|^2 + |B^*|^2\| w(B^2)
\leq \frac{1 + \alpha}{8} \| |B|^4 + |B^*|^4\| + \frac{1 - \alpha}{4} \| B^2 \| + \frac{1}{4} \| |B|^2 + |B^*|^2\| B^2
\leq \frac{1 + \alpha}{8} \| |B|^4 + |B^*|^4\| + \frac{1 - \alpha}{4} \left\| \frac{|B|^2 + |B^*|^2}{2} \right\|
\quad + \frac{1}{4} \| |B|^2 + |B^*|^2\| \left\| \frac{|B|^2 + |B^*|^2}{2} \right\| B^2 \| \leq \frac{1}{2} \| |B|^2 + |B^*|^2\|
\leq \frac{1 + \alpha}{8} \| |B|^4 + |B^*|^4\| + \frac{1}{8} \| |B|^4 + |B^*|^4\|
\quad + \frac{1}{4} \| |B|^4 + |B^*|^4\|, \quad \left\| \frac{|B|^2 + |B^*|^2}{2} \right\| \leq \frac{|B|^4 + |B^*|^4}{2}
\leq \frac{1}{2} \| |B|^4 + |B^*|^4\|.
\]

Hence, Corollary 2.24 refines the earlier related inequality \(w^4(B) \leq \frac{1}{2} \| |B|^4 + |B^*|^4\| \), (see [14], for \(r = 2 \)).

We next obtain the following estimation for an upper bound of the numerical radius of general \(2 \times 2 \) operator matrices, i.e.,
\[
w \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right).
\]

Theorem 2.26. If $A, B, C, D \in \mathcal{B}(\mathcal{H})$, then for $0 \leq \alpha \leq 1$

$$w^4 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 8 \max \left\{ w^4(A), w^4(D) \right\} + (1 + \alpha) \max \left\{ \|B\|^4 + \|C^*\|^4, \|B^*\|^4 + \|C\|^4 \right\} + 2(1 - \alpha) \max \left\{ w^2(BC), w^2(CB) \right\} + 2 \max \left\{ \|B\|^2 + \|C^*\|^2, \|B^*\|^2 + \|C\|^2 \right\} \times \max \left\{ w(BC), w(CB) \right\}.$$

Proof. Let $x \in \mathcal{H} \oplus \mathcal{H}$ with $\|x\| = 1$. Now have by convexity of $f(t) = t^4$,

$$\left| \left\langle \begin{bmatrix} A & B \\ C & D \end{bmatrix} x, x \right\rangle \right|^4 \leq \left(\left| \left\langle \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} x, x \right\rangle \right|^4 + \left| \left\langle \begin{bmatrix} 0 & B \\ 0 & D \end{bmatrix} x, x \right\rangle \right|^4 \right)^4 \leq 8 \left(\left| \left\langle \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} x, x \right\rangle \right|^4 + \left| \left\langle \begin{bmatrix} 0 & B \\ 0 & D \end{bmatrix} x, x \right\rangle \right|^4 \right)^4 \leq 8w^4 \left(\begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} \right) + 8w^4 \left(\begin{bmatrix} 0 & B \\ 0 & D \end{bmatrix} \right) = 8 \max \left\{ w^4(A), w^4(D) \right\} + 8w^4 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right).$$

Taking supremum over all $x \in \mathcal{H}, \|x\| = 1$ we have,

$$w^4 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 8 \max \left\{ w^4(A), w^4(D) \right\} + 8w^4 \left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} \right).$$

Therefore, by using Theorem 2.23, we get

$$w^4 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 8 \max \left\{ w^4(A), w^4(D) \right\} + (1 + \alpha) \max \left\{ \|B\|^4 + \|C^*\|^4, \|B^*\|^4 + \|C\|^4 \right\} + 2(1 - \alpha) \max \left\{ w^2(BC), w^2(CB) \right\} + 2 \max \left\{ \|B\|^2 + \|C^*\|^2, \|B^*\|^2 + \|C\|^2 \right\} \times \max \left\{ w(BC), w(CB) \right\}.$$

\[\square \]

Remark 2.27. It follows from [13] that $w(CB) \leq \frac{1}{2} \|B\|^2 + \|C^*\|^2$ and $w(BC) \leq \frac{1}{2} \|B^*\|^2 + \|C\|^2$. Therefore, clearly it follows that the inequality obtained in Theorem 2.26 is stronger than the recently obtained inequality [2, Th. 3.1], that is,

$$w^4 \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq 8 \max \left\{ w^4(A), w^4(D) \right\} + (1 + \alpha) \max \left\{ \|B\|^4 + \|C^*\|^4, \|B^*\|^4 + \|C\|^4 \right\} + (3 - \alpha) \max \left\{ \|B\|^2 + \|C^*\|^2, \|B^*\|^2 + \|C\|^2 \right\} \times \max \left\{ w(BC), w(CB) \right\}.$$
3. Application

As application of results obtained bounds in Section 2, we develop some norm inequalities for sums and differences of self-adjoint operators. Note that if $B, C \in \mathcal{B}(\mathcal{H})$ are positive then $w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) = \frac{\|B+C\|}{2}$, (see [1, Cor. 3]). Now we prove the following proposition, though it is known the proof given here is simple and different.

Proposition 3.1. If $B, C \in \mathcal{B}(\mathcal{H})$ are positive, then

(i) $\|B - C\| \leq \|B + C\|,$

(ii) $\max\{|\|B\||, |\|C\||\} \leq \frac{\|B + C\|}{2} + \frac{\|B - C\|}{2}.$

Proof. From the first inequality in 2.19, we have

$$\frac{\|B + C\|^2}{4} \geq \frac{1}{4\sqrt{2}} \left[\|B + C\|^4 + \|B - C\|^4\right]^{\frac{1}{2}}.$$

This implies that $\|B - C\| \leq \|B + C\|,$ i.e, (i). Now from Theorem 2.7 we have,

$$\frac{\|B + C\|}{2} \geq \frac{1}{2} \max\{|\|B\||, |\|C\||\} + \frac{1}{4}(\|B + C\| - \|B - C\|).$$

Therefore, using (i) we have,

$$\frac{\|B + C\|}{2} \geq \frac{1}{2} \max\{|\|B\||, |\|C\||\} + \frac{1}{4}(\|B + C\| - \|B - C\|).$$

This completes the proof of (ii). \square

Next we prove the following.

Theorem 3.2. Let $B, C \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Then,

$$\max\left\{\|B + C\|^2, \|B - C\|^2\right\} \leq \|B^2 + C^2\| + 2w(|\|B||\|C||).$$

Proof. We have

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \geq \Re\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right)$$

and

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \geq \Im\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right)$$

so that

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \geq \left\|\frac{B + C}{2}\right\|$$

and

$$w\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right) \geq \left\|\frac{B - C}{2}\right\|$$

respectively. Therefore,

$$\frac{1}{4} \max\left\{\|B + C\|^2, \|B - C\|^2\right\} \leq w^2\left(\begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}\right).$$
Hence, using Theorem 2.10 we get
\[
\max\left\{ \|B + C\|^2, \|B - C\|^2 \right\} \leq \|B^2 + C^2\| + 2w(\|B\|||C|).
\]
This completes the proof.

\[\square\]

Remark 3.3. (i) It follows from the triangle inequality of the numerical radius that if \(B, C \in \mathcal{B}(\mathcal{H})\) are self-adjoint, then
\[
\max\left\{ \|B + C\|^2, \|B - C\|^2 \right\} \leq \|B^2 + C^2\| + 2w(BC).
\]

(ii) Clearly, if \(B, C\) are positive then the inequalities in Theorem 3.2 and Remark 3.3(i) are same. In [18], Kittaneh proved that if \(B, C \in \mathcal{B}(\mathcal{H})\) are positive, then
\[
\|B + C\| \leq \frac{1}{2} \left[\|B\| + \|C\| + \sqrt{\left(\|B\| - \|C\|\right)^2 + 4\|B^{1/2}C^{1/2}\|^2} \right].
\]

In the example given below, we note that the bound obtained in Theorem 3.2 (for positive operators) is better than that in [18]. Consider \(B = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}\) and \(C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\). Then, Theorem 3.2 gives \(\|B + C\| \leq 5\), whereas [18] gives \(\|B + C\| \leq 3 + \sqrt{5}\).

Remark 3.4. Let \(B, C \in \mathcal{B}(\mathcal{H})\) be self-adjoint. It follows from Theorem 3.2 and Remark 3.3(i) that if \(\|B + C\| = \|B\| + \|C\|\), then
\[
(i) \quad \|B^2 + C^2\| = \|B\|^2 + \|C\|^2,
\]
\[
(ii) \quad w(|B||C|) = \|BC\| = \|B\|||C|\| = w(BC).
\]

The converse of the above result does not hold, in general. As for example consider \(B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) and \(C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\). Then we see that \(\|B^2 + C^2\| = \|B\|^2 + \|C\|^2 = 2\) and \(w(|B||C|) = \|BC\| = \|B\|||C|\| = w(BC) = 1\), but \(0 = \|B + C\| \neq \|B\| + \|C\| = 2\). We note that (see [18]) when \(B, C\) are positive, then \(\|B + C\| = \|B\| + \|C\|\) if and only if \(\|BC\| = \|B\|||C|\|\).

References

1. A. Abu-Omar and F. Kittaneh, Numerical radius inequalities for \(n \times n\) operator matrices, Linear Algebra Appl. 468 (2015) 18-26.
2. W. Bani-Domi and F. Kittaneh, Refined and generalized numerical radius inequalities for \(2 \times 2\) operator matrices, Linear Algebra Appl. 624 (2021) 364-386.
3. P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math. 167 (2021) 102959. https://doi.org/10.1016/j.bulsci.2021.102959
4. P. Bhunia, S. Bag and K. Paul, Bounds for zeros of a polynomial using numerical radius of Hilbert space operators, Ann. Funct. Anal. 12, 21 (2021). https://doi.org/10.1007/s43034-020-00107-4
5. P. Bhunia and K. Paul, Refinements of norm and numerical radius inequalities, Rocky Mountain J. Math. (2021) (to appear).
6. P. Bhunia and K. Paul, Furtherance of Numerical radius inequalities of Hilbert space operators, (2021). arXiv:2102.01953v1 [math.FA]
7. P. Bhunia and K. Paul, Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2020.1781037
8. P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities of operator matrices with applications, Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1634673
9. P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra Appl. 573 (2019) 166-177.
10. S. Bag, P. Bhunia and K. Paul, Bounds of numerical radius of bounded linear operators using t-Aluthge transform, Math. Inequal. Appl. 23(3) (2020) 991-1004.
11. P. Bhunia, K. Paul and R.K. Nayak, Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices, Math. Inequal. Appl. 24(1) (2021) 167-183.
12. M.L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem, Mat. Univ. e Politech. Torino. 31 (1974) 405-409 (in Italian).
13. S.S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009) 269-278.
14. M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II, Stud. Math. 182 (2007) 133-140.
15. K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer, New York, 1997.
16. P.R. Halmos, A Hilbert space problems book, Springer Verlag, New York, 1982.
17. O. Hirzallah, F. Kittaneh, K. Shebrawi, Numerical radius inequalities for certain 2×2 operator matrices, Integral Equ. Oper. Theory 71 (2011) 129-147.
18. F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory 48 (2002) 95-103.
19. F. Kittaneh, Norm inequalities for sums and differences of positive operators, Linear Algebra Appl. 383 (2004) 85-91.
20. F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143 (1997) 337-348.
21. B. Simon, Trace ideals and their applications, Cambridge University Press, 1979.

(BHUNIA) DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA 700032, WEST BENGAL, INDIA
Email address: pintubhunia5206@gmail.com

(PAUL) DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA 700032, WEST BENGAL, INDIA
Email address: kalloldada@gmail.com;kallol.paul@jadavpuruniversity.in