Data-driven control via Petersen’s lemma

Andrea Bisoffia, Claudio De Persisa, Pietro Tesib

aENTEG and J.C. Willems Center for Systems and Control, University of Groningen, 9747 AG Groningen, The Netherlands
bDINFO, University of Florence, 50139 Florence, Italy

Abstract

We address the problem of designing a stabilizing closed-loop control law directly from input and state measurements collected in an open-loop experiment. In the presence of noise in data, we have that a set of dynamics could have generated the collected data and we need the designed controller to stabilize such set of data-consistent dynamics robustly. For this problem of data-driven control with noisy data, we advocate the use of a popular tool from robust control, Petersen’s lemma. In the cases of data generated by linear and polynomial systems, we conveniently express the uncertainty captured in the set of data-consistent dynamics through a matrix ellipsoid, and we show that a specific form of this matrix ellipsoid makes it possible to apply Petersen’s lemma to all of the mentioned cases. In this way, we obtain necessary and sufficient conditions for data-driven stabilization of linear systems through a linear matrix inequality. The matrix ellipsoid representation enables insights and interpretations of the designed control laws. In the same way, we also obtain sufficient conditions for data-driven stabilization of polynomial systems through (convex) sum-of-squares programs. The findings are illustrated numerically.

Key words: data-based control, optimization-based controller synthesis, analysis of systems with uncertainty, robust control of nonlinear systems, linear matrix inequalities, sum-of-squares

1 Introduction

Motivation and Petersen’s lemma

Data-driven control design is a relevant methodology to tune controllers whenever modelling from first principles is challenging, the model parameters are possibly redundant and cannot be unambiguously identified through suitable experiments, while (possibly large) datasets can be obtained from the process to be controlled. Thanks to the technological trend that measurements are increasingly easier to access and retrieve, using data to directly design controllers has witnessed a renewed surge in interest in recent years [11,10,34,3,13,4,41].

These recent developments have been drawing results from classical areas of control theory such as behavioural theory [10,13,16], set-membership system identification, and robust control [4,11]. A pivotal role in many of these developments has been played by the so-called fundamental lemma by Willems et al. [43, Thm. 1]; qualitatively speaking, this result shows that for a linear system, controllability and persistence of excitation ensure that its representation through dynamical matrices \((A, B)\) is equivalent to a representation through a finite-length trajectory; however, such trajectory is assumed not to be affected by noise. The inevitable presence of noise in data, then, prevents from representing equivalently the actual system and induces rather a set of systems that could have generated the noisy data for a given bound on the noise, i.e., the set of systems consistent with data. This set, which we call \(\mathcal{C}\), plays a central role since control design must therefore target all systems in \(\mathcal{C}\), which are indistinguishable from each other based on data.

A natural way to address this uncertainty induced by noisy data is via robust control tools; e.g., system level synthesis [15,44,1], Young’s inequality for matrices [13], matrix generalizations of the S-procedure [41,18], Farkas’s lemma [11,12], linear fractional transformations [4,5]. We advocate here the use of another robust control tool for data-driven control, Petersen’s lemma [31,32]. This lemma, whose strict and nonstrict versions we report later in Facts 1 and 2, can be seen as a matrix elimination method since, instead of verifying for all matrices bounded in norm a certain inequality, one
can equivalently verify another inequality where such matrices do not appear. The utility of Petersen’s lemma in the realm of robust control has been featured in [35,26,24]. Petersen’s lemma underpins the data-based results of this work, as detailed next.

Contributions

Our main contributions are the following. (C1) We bring Petersen’s lemma to the attention as a powerful tool for data-driven control. (C2) For linear systems, we provide by it necessary and sufficient conditions for quadratic stabilization, which are alternative to those in [41]. These conditions take the convenient form of linear matrix inequalities. (C3) We give several insights on the design conditions and, in particular, establish connections with certainty equivalence and robust indirect control, which have been extensively investigated for stochastic noise models, e.g., [15,18,39]. (C4) For polynomial systems, we obtain new sufficient conditions for data-driven control with respect to [12,20]. These conditions are tractably relaxed into alternate (convex) sum-of-squares programs.

Relations with the literature

We assume an upper bound on the norm of the noise sequence, which is the so-called unknown-but-bounded noise paradigm [21]. This makes our approach different from those considering stochastic noise descriptions [15,34,18,39] and similar in nature to set-membership identification and control [19,30,38]. The use of robust control tools to counteract the uncertainty induced by unknown-but-bounded noise is quite natural and has been pursued in [4,5,12,13,20,41]. Next, we compare with these works referring to our aforementioned contributions (C1)-(C4).

(C1) The use of Petersen’s lemma differentiates our approach from those in [13,4,5,41], which also address data-driven stabilization of linear systems (besides H_2, H_∞ or quadratic performance). In [6], we used Petersen’s lemma only as a sufficient condition [6, Fact 1] to obtain a data-driven controller for structurally different bilinear systems.

(C2) For linear systems in discrete time, [41] provided necessary and sufficient conditions for data-based stabilization as we do here. The differences are illustrated in detail in Section 4.3. In a nutshell, here we operate under an easy-to-enforce condition stemming from persistence of excitation instead of under a generalized Slater condition, and the former (but not the latter) can be seamlessly satisfied also in the relevant special case of ideal data (i.e., without noise).

(C3) For the considered noise setting, the uncertainty set C consists in a matrix ellipsoid, whose center is the (ordinary) least-squares estimate of the system dynamics, and whose size depends on the noise bound. This justifies why certainty-equivalence control can be expected to work well in regimes of small uncertainty (small noise), which agrees with recent works on performance of certainty-equivalence control for linear quadratic control [29,17]. On the other hand, this also explains why robust design is generally needed to have stability guarantees, which is also the main idea behind the robust indirect control approaches [15,18,39] under a stochastic noise description. On a related note, we introduced the notion of matrix ellipsoid in [7], which had however a quite different focus and research question.

(C4) Data-driven control of polynomial systems was proposed also in [20,12]. As in [20], we use Lyapunov methods to obtain sufficient conditions for data-based global asymptotic stabilization. Whereas [20] parametrizes the Lyapunov function in a specific way, the present data-based conditions parallel naturally the classical model-based ones in [25] since they correspond to enforcing those model-based conditions (through Petersen’s lemma) for all systems consistent with data, which leads to succinct derivations. Due to this natural parallel, the present approach appears to be extendible with appropriate modifications to other cases where Lyapunov-like conditions occur, as we do for local asymptotic stabilization in Corollary 3. On the other hand, [12] follows a radically different approach. Instead of Lyapunov functions, it uses density functions by Ranter [33] to give a necessary and sufficient condition for data-based stabilization, which however needs to be relaxed into a quadratically-constrained quadratic program through sum of squares and then into a semidefinite program through moment-based techniques for tractability.

Structure

In Section 2, we recall Petersen’s lemma, formulate the problem and derive some properties of the set C. In Section 3 we provide our main results for linear systems and comment the results in Section 4. In Section 5 we provide our main result for polynomial systems. All results are exemplified numerically in Section 6.

2 Preliminaries and problem setting

2.1 Notation and Petersen’s lemma

For a vector a, $|a|$ denotes its 2-norm. For a matrix A, $\|A\|$ denotes its induced 2-norm, which is equivalent to the largest singular value of A; moreover, for a scalar $a > 0$, $\|A\| \leq a I$ if and only if $A^T A \preceq a^2 I$ where I is the identity matrix. For matrices A, B and C of compatible dimensions, we abbreviate $ABC(AB)^\top$ to $AB-C[\cdot]^\top$, where the dot in the second expression clarifies unambiguously that AB are the terms to be transposed. For matrices $A = A^\top$, B, $C = C^\top$, we also abbreviate the symmetric matrix $\begin{bmatrix}A & B \\ C^\top & C \end{bmatrix}$ as $A \oplus B$ or $[B^\top \ C]$. For a positive semidefinite matrix A, $A^{1/2}$ denotes the unique positive semidefinite root of A. For a matrix A, A^\dagger denotes the Moore-Penrose generalized inverse of A, which is uniquely determined by certain axioms [22, p. 453, 7.3.P7]. For positive integers n, r and the set \mathcal{P} of polynomials $p: \mathbb{R}^n \to \mathbb{R}$ (resp., the set \mathcal{P}_m of matrix polynomials $P: \mathbb{R}^n \to \mathbb{R}^{r \times r}$), the set $\mathcal{S} \subset \mathcal{P}$ (resp., $\mathcal{S}_m \subset \mathcal{P}_m$) denotes the set of sum-of-squares polynomials (resp., the
set of sum-of-squares matrix polynomials) in the variable \(x \in \mathbb{R}^n \); see [9] and references therein for more details on these and other sum-of-squares notions.

Petersen’s lemma is the essential tool we use to address data-driven control design. First, we present in the next fact a version where inequalities are strict.

Fact 1 (Strict Petersen’s lemma) Consider matrices \(C \in \mathbb{R}^{n \times n} \), \(E \in \mathbb{R}^{n \times p} \), \(F \in \mathbb{R}^{p \times q} \), \(G \in \mathbb{R}^{q \times n} \) with \(C = C^T \) and \(F = F^T \geq 0 \), and let \(F \) be

\[
F := \{ F \in \mathbb{R}^{p \times q} : F^T F \preceq \overline{F} \}. \tag{1}
\]

Then,

\[
C + EFG + G^T F E \prec 0 \text{ for all } F \in F \tag{2a}
\]

if and only if there exists \(\lambda > 0 \) such that

\[
C + \lambda E E^T + \lambda^{-1} G^T F G \prec 0. \tag{2b}
\]

For \(F = I \), one obtains the original version by I. R. Petersen in [32, 31], and the version in Fact 1 proposes a slight extension where the bound \(F \) is any positive semidefinite matrix. For this version, then, we give the proof in the appendix for completeness. Although one could prove Fact 1 with S-procedure arguments as some authors do for nonstrict versions [35, 26], we follow the original proof strategy of [32, 31].

Second, we present in the next fact a version of Petersen’s lemma where inequalities are nonstrict.

Fact 2 (Nonstrict Petersen’s lemma) Consider matrices \(C \in \mathbb{R}^{n \times n} \), \(E \in \mathbb{R}^{n \times p} \), \(F \in \mathbb{R}^{p \times q} \), \(G \in \mathbb{R}^{q \times n} \) with \(C = C^T \) and \(F = F^T \geq 0 \), and let \(F \) be defined as in (1). Suppose additionally \(E \neq 0 \), \(F > 0 \) and \(G \neq 0 \). Then,

\[
C + EFG + G^T F E \preceq 0 \text{ for all } F \in F \tag{3a}
\]

if and only if there exists \(\lambda > 0 \) such that

\[
C + \lambda E E^T + \lambda^{-1} G^T F G \preceq 0. \tag{3b}
\]

Moreover, (3b) implies (3a) without the assumption \(E \neq 0 \), \(F > 0 \) and \(G \neq 0 \).

For \(F = I \), one obtains precisely the nonstrict versions of Petersen’s lemma in [35, 32] and [26, 32]; for completeness we then report the proof of Fact 2 in the appendix.

The additional assumption with respect to Fact 1 (i.e., \(E \neq 0 \), \(F \succ 0 \) and \(G \neq 0 \)) is due to having nonstrict inequalities and is needed to obtain the specific form (3b). Indeed, with \(F > 0 \), Fact 2 would hold also for either \(E \neq 0 \), \(G = 0 \) or \(E = 0 \), \(G \neq 0 \) if \(\lambda \geq 0 \) is allowed (instead of \(\lambda > 0 \)) and (3b) is replaced by, respectively, either

\[
\begin{bmatrix}
C + \lambda E E^T & G^T F^{1/2} \\
F^{1/2} G & -\lambda I
\end{bmatrix} \preceq 0 \text{ or } \begin{bmatrix}
C + \lambda E E^T & F G \\
E & -\lambda I
\end{bmatrix} \preceq 0;
\]

Fact 2 is trivially true if \(E = 0 \) and \(G = 0 \).

2.2 Problem formulation

Consider a discrete-time linear time-invariant system

\[
x^{\dagger} = Ax + Bu + d \tag{4}
\]

where \(x \in \mathbb{R}^n \) is the state, \(u \in \mathbb{R}^m \) is the input, \(d \in \mathbb{R}^n \) is a disturbance, and the matrices \(A \), \(B \), and \(\Delta \) are unknown to us. At the same time and with the same meaning for the quantities \(x \), \(u \) and \(d \), consider the continuous-time linear time-invariant system

\[
\dot{x} = Ax + Bu + d. \tag{5}
\]

The modifications required for the continuous-time case are limited, and this allows us to treat it in parallel to the discrete-time case. Instead of relying on model knowledge given by \(A \), \(B \), and \(\Delta \), we perform an experiment on the system by applying an input sequence \(u(t_0), u(t_1), \ldots, u(t_{T-1}) \) of \(T \) samples, so that by (4)/(5)

\[
x(t_{i+1})/\dot{x}(t_i) = A_x x(t_i) + B_x u(t_i) + d(t_i).
\]

We measure the state response \(x(t_0), x(t_1), \ldots, x(t_{T-1}) \) and, in discrete time, the shifted state response \(x(t_1), x(t_2), \ldots, x(t_T) \) or, in continuous time, the state-derivative response \(\dot{x}(t_0), \dot{x}(t_1), \ldots, \dot{x}(t_{T-1}) \). The disturbance sequence \(d(t_0), d(t_1), \ldots, d(t_{T-1}) \) affects the evolution of the system and is unknown to us, hence data are noisy. We collect the noisy data in the matrices

\[
U_0 := [u(t_0) \ u(t_1) \cdots u(t_{T-1})] \tag{6a}
\]

\[
X_0 := [x(t_0) \ x(t_1) \cdots x(t_{T-1})] \tag{6b}
\]

\[
X_1 := [\dot{x}(t_0) \ \dot{x}(t_1) \cdots \dot{x}(t_{T-1})] \text{ in discrete time, or } \tag{6c}
\]

\[
X_1 := [\dot{x}(t_0) \ \dot{x}(t_1) \cdots \dot{x}(t_{T-1})] \text{ in continuous time.} \tag{6d}
\]

We can also arrange the unknown disturbance sequence as

\[
D_0 := [d(t_0) \ d(t_1) \cdots d(t_{T-1})], \tag{6e}
\]

so that \(D_0 \) and data in (6) satisfy

\[
X_1 = A_x X_0 + B_x U_0 + D_0 \tag{7}
\]

since (4) (in discrete time) or (5) (in continuous time) is the underlying data generation mechanism. In the former case, we have \(t_0, t_1, \ldots, t_T \) equal to, respectively, 0, 1, \ldots, \(T \); in the latter case, \(t_0, t_1, \ldots, t_{T-1} \) are sampled periodically at 0, \(T_s \), \ldots, \((T-1) \cdot T_s \) for some sampling time \(T_s \), although this is not necessary.

We operate under a certain disturbance model. Specifically, we assume that the disturbance sequence \(D_0 \) has bounded energy, i.e., \(D_0 \in \mathcal{D} \) where, for some matrix \(\Delta \),

\[
\mathcal{D} := \{ D \in \mathbb{R}^{n \times T} : DD^T \preceq \Delta \Delta^T \}. \tag{8}
\]
As we said, D_0 is unknown to us and the only a-priori knowledge on it is given by the set \mathcal{D}, and in particular the knowledge of the positive semidefinite bound $\Delta \Delta^\top$. This disturbance model enforces an energy bound on the disturbance since it constrains the whole disturbance sequence, unlike an instantaneous disturbance bound [7]. Energy bounds are used in [13,4,41,5] and many other works. In fact, model (8) is quite general as it can capture signal-to-noise-ratio conditions [13], over-approximate instantaneous bounds [7], and can also be used to have probabilistic bounds for Gaussian noise [14].

With data (6) and set \mathcal{D} in (8), we introduce the set \mathcal{C} of matrices consistent with data

$$\mathcal{C} := \{(A,B) : X_1 = AX_0 + BU_0 + D, D \in \mathcal{D}\}, \quad (9)$$
i.e., the set of all pairs (A,B) of dynamical matrices that could generate data X_1, X_0 and U_0 based on (4) or (5) while keeping the disturbance sequence in the set \mathcal{D}. This is elucidated by comparing (9) with the similar (7). We note that $D_0 \in \mathcal{D}$ is precisely equivalent to $(A_*,B_*) \in \mathcal{C}$.

Remark 1 In the language of set-membership identification [30], we have two prior assumptions, the first one on the class of dynamical systems (4) or (5) and the second one on the noise (8). The set \mathcal{C} in (9) corresponds to the feasible systems set [30, Def. 1]. We noted that $(A_*,B_*) \in \mathcal{C}$. This corresponds to validation of prior assumptions [30, Def. 2].

Our objective is to design a state feedback controller

$$u = Kx$$

that makes the closed-loop matrix $A_* + B_*K$ Schur stable (i.e., all its eigenvalues have magnitude less than 1) in discrete time, or Hurwitz stable (i.e., all its eigenvalues have real part less than 0) in continuous time. However, we lack the knowledge of (A_*,B_*) and the disturbance d induces uncertainty in data, which results into a set \mathcal{C} of matrices consistent with data. Our objective becomes then to stabilize robustly all matrices $A + BK$ for $(A,B) \in \mathcal{C}$; in other words, in discrete time,

$$\text{find } K, \quad P = P^\top > 0 \quad \text{s.t.} \quad (A+BK)P(A+BK)^\top - P < 0 \text{ for all } (A,B) \in \mathcal{C}. \quad (10a)$$
or, in continuous time,

$$\text{find } K, \quad P = P^\top > 0 \quad \text{s.t.} \quad (A+BK)P+(A+BK)^\top < 0 \text{ for all } (A,B) \in \mathcal{C}. \quad (11a)$$

Both (10) and (11) are quadratic stabilization problems. Achieving the objective of robust stabilization of all matrices $A + BK$ for $(A,B) \in \mathcal{C}$ (hence, also of $A_* + B_*K$) guarantees bounded-input bounded-state stability of $x^+ = (A_* + B_*K)x + d$ or $\dot{x} = (A_* + B_*K)x + d$ by [2, Thm. 9.5].

2.3 Reformulations of set \mathcal{C} and properties

We perform some rearrangements of \mathcal{C}. We substitute in (9) the definition of set \mathcal{D} in (8) and obtain

$$\mathcal{C} = \{(A,B) : X_1 = AX_0 + BU_0 + D, D \in \mathbb{R}^{n \times T}, \quad \begin{bmatrix} I & D \end{bmatrix} \begin{bmatrix} -\Delta \Delta^\top & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} D^\top \end{bmatrix} \preceq 0 \}. \quad (12)$$

In this expression we substitute $D = X_1 - AX_0 - BU_0$ in the matrix inequality and collect $[I \ A \ B]$ on the left and its transpose on the right of the matrix inequality: then, \mathcal{C} rewrites equivalently as

$$\mathcal{C} = \{(A,B) : \begin{bmatrix} I & A & B \end{bmatrix} \begin{bmatrix} C & B^\top \\ B & A \end{bmatrix} \begin{bmatrix} s \end{bmatrix} \preceq 0 \} \quad (12)$$

where we rearrange (A,B) as the matrix $[A \ B]$ from (12) to (13) and define

$$\begin{bmatrix} C & B^\top \\ B & A \end{bmatrix} := \begin{bmatrix} X_1 & -\Delta \Delta^\top & -X_1 \end{bmatrix} \begin{bmatrix} X_0 \\ U_0 \end{bmatrix} \begin{bmatrix} X_0 \\ U_0 \end{bmatrix}^\top \begin{bmatrix} X_0 \\ U_0 \end{bmatrix} \begin{bmatrix} X_0 \\ U_0 \end{bmatrix}^\top. \quad (14)$$

Remark 2 For given matrices $R = R^\top$, $Q = Q^\top \succ 0$, S, one can consider a disturbance model $\mathcal{D}' := \{D \in \mathbb{R}^{n \times T} : \begin{bmatrix} I & D \end{bmatrix} \begin{bmatrix} R & S^\top \\ S & Q \end{bmatrix} \begin{bmatrix} I \\ D^\top \end{bmatrix} \preceq 0 \}$ more general than \mathcal{D} in (8), as in [4,41,5]. With \mathcal{D}', one can still carry out the derivations for a set \mathcal{C}' similar to (12), with slightly different expressions of A', B', C'. Nonetheless, (8) is general enough to capture interesting classes of noise, see the discussion after (8).

We make the next assumption on matrix $[X_0 \ U_0]$ in (14).

Assumption 1 Matrix $[X_0 \ U_0]$ has full row rank.

Assumption 1 is related to persistence of excitation as we illustrate in Section 4.1, and can be checked directly from data. If its condition does not hold, it can typically be enforced by collecting more data points (i.e., adding more columns to $[X_0 \ U_0]$). An immediate consequence of Assumption 1 for A in (14) is $A \succ 0$.

The set \mathcal{C} in (13) can be regarded as a matrix ellipsoid, i.e., a natural extension of the standard (vector) ellipsoid...
\[z \in \mathbb{R}^p : c + b^T z + z^T b + z^T az \leq 0. \]

In fact, if a scalar system with \(n = m = 1 \) is considered, \(C \) reduces to a standard ellipsoid with \(Z \in \mathbb{R}^2 \). The interpretation of \(C \) as a matrix ellipsoid (introduced in \[7\]) to compute a size for this set) proves useful here since it enables a final simple reformulation of \(C \) as

\[C = \{ [A, B] = Z^\top : (Z - Z_c)^\top A(Z - Z_c) \preceq Q \} \tag{15} \]

where, by \(A \succ 0 \) from Assumption 1, we define

\[Z_c := -A^{-1}B, \quad Q := B^\top A^{-1}B - C, \tag{16} \]

as can be verified by substituting (16) into (15) and expanding all products to obtain (13). We will further discuss later in Section 4.2 the interpretation of some of the parameters \(A, B, C, Z_c, Q \) of \(C \). The matrix-ellipsoid parametrizations of \(C \) in (13), (15) and (19) (given below) are analogous to the parametrizations of a standard ellipsoid as, respectively, a quadratic form \([8, \text{Eq. (3.8)}]\), as a center and shape matrix and as a linear transformation of a unit ball \([8, \text{Eq. (3.9)}]\). We report the sign definiteness of \(A \) and \(Q \) in the next lemma.

Lemma 1 Under Assumption 1, \(A \succ 0 \) and \(Q \succeq 0 \).

Proof. \(A \succ 0 \) from Assumption 1 by \([22, \text{Thm. 7.2.7(c)}]\). As for \(Q, A \succ 0 \) allows defining

\[Q_p := \begin{bmatrix} X_0^\top \\ U_0 \end{bmatrix} \begin{bmatrix} X_0 & X_0^\top \\ U_0 & U_0^\top \end{bmatrix}^{-1} \begin{bmatrix} X_0 \\ U_0 \end{bmatrix}. \]

\(Q_p \) is a projection matrix, i.e., \(Q_p^2 = Q_p \) as one verifies immediately. Then, (16) and (14) yield

\[Q = X_1 Q_p X_1^\top - X_1 X_1^\top + \Delta \Delta^\top. \tag{17} \]

Write (7) as \(X_1 = [A, B, [X_0^\top & U_0^\top] + D_0; this expression and \(Q_p \), being a projection matrix shows that \(Q_p [X_0^\top - X_1^\top = Q_p([X_0^\top & A, B, [X_0^\top & D_0^\top]) - ([X_0^\top & A, B, [X_0^\top & D_0^\top] = (Q_p - I) D_0^\top. \] Using this expression in (17) yields

\[Q = D_0(Q_p - I) D_0^\top + \Delta \Delta^\top \geq -D_0 D_0^\top + \Delta \Delta^\top \geq 0 \tag{18} \]

since \(Q_p \succeq 0 \) and \(D_0 \in D \) (i.e., \(D_0 D_0^\top \preceq \Delta \Delta^\top \)). ∎

From \(A \succ 0 \), we have the next desirable property of \(C \).

Lemma 2 Under Assumption 1, \(C \) is bounded with respect to any matrix norm.

Proof. Consider \(C \) in (15), which is nonempty as \(Z_c \in C \). \(Z \in C \) if and only if for all \(v \in \mathbb{R}^p, v^\top (Z - Z_c)^\top A(Z - Z_c) v \leq v^\top Q v \). Denote \(\lambda_{\text{min}}(A) \) the minimum eigenvalue of (symmetric) \(A \). By Lemma 1, this implies

\[\sqrt{\lambda_{\text{min}}(A)} [(Z - Z_c) v] \leq |Q^{1/2} v| \quad \text{for all \(v \)}: |v| = 1 \]
\[\Rightarrow \sqrt{\lambda_{\text{min}}(A)} \sup_{|v| = 1} |(Z - Z_c) v| \leq \sup_{|v| = 1} |Q^{1/2} v| \]
\[\Rightarrow \|Z - Z_c\| \leq \lambda_{\text{min}}(A)^{-1/2} \|Q^{1/2}\| \]
\[\Rightarrow \|Z\| \leq \|Z_c\| + \lambda_{\text{min}}(A)^{-1/2} \|Q^{1/2}\| \]

where we used the definition of induced 2-norm and the reverse triangle inequality in the second and third implication, respectively. All quantities on the right hand side are finite, so each \(Z \in C \) has bounded 2-norm. Recall that any two matrix norms are equivalent \([22, \text{p. 371}]\), so for any given pair of matrix norms \(\| \cdot \|_a \) and \(\| \cdot \|_b \), there is a finite constant \(C_{ab} > 0 \) such that \(\|M\|_a \leq C_{ab} \|M\|_b \) for all matrices \(M \). Hence, boundedness of \(C \) with respect to the induced 2-norm implies boundedness of \(C \) with respect to any other norm, as needed proving. □

3 Data-driven control for linear systems

So far, we have rewritten the set \(C \) of dynamical matrices \((A, B) \) consistent with data as (15). To derive the main result from Petersen’s lemma, a final reformulation of \(C \) is needed. We define

\[E := \{ Z_c + A^{-1/2} \Upsilon Q^{1/2} : \Upsilon \| \Upsilon \| \leq 1 \}, \tag{19} \]

and show that it coincides with \(C \) in the next proposition.

Proposition 1 For \(A \succ 0 \) and \(Q \succeq 0, C = E \).

Proof. It is sufficient to prove \(E \subseteq C \) and \(C \subseteq E \). \((E \subseteq C) \) Suppose \(Z \in E \), i.e., \(Z = Z_c + A^{-1/2} \Upsilon Q^{1/2} \) for some matrix \(\Upsilon \) with \(\| \Upsilon \| \leq 1 \). Hence, \((Z - Z_c)^\top A(Z - Z_c) = (A^{-1/2} \Upsilon Q^{1/2})^\top A(A^{-1/2} \Upsilon Q^{1/2}) = Q^{1/2} \Upsilon^\top \Upsilon Q^{1/2} \preceq Q \). Thus \(Z \in C \).

\((C \subseteq E) \) Suppose \(Z \in C \), i.e.,

\[(Z - Z_c)^\top A(Z - Z_c) \preceq Q. \tag{20} \]

We need to find a matrix \(\Upsilon \) with \(\| \Upsilon \| \leq 1 \) such that \(Z = Z_c + A^{-1/2} \Upsilon Q^{1/2}, \) i.e.,

\[\Upsilon Q^{1/2} = A^{1/2}(Z - Z_c). \tag{21} \]

If \(Q^{1/2} = 0 \), we have the trivial solution \(\Upsilon = 0 \). Otherwise, \(Q^{1/2} \) has \(p \in \{1, \ldots, n\} \) positive eigenvalues that define \(A_p := \text{diag}(\lambda_1, \ldots, \lambda_p) \succ 0 \). Since \(Q^{1/2} \) is symmetric, there exists a real orthogonal matrix \(T \) (i.e., \(T^\top T = TT^\top = I \)) such that

\[Q^{1/2} = T \Lambda T^\top := T \begin{bmatrix} A_p & 0 \\ 0 & 0 \end{bmatrix} T^\top, \tag{22} \]
which is an eigendecomposition of $Q^{1/2}$ and admits $\Lambda = \Lambda_p$ if $p = n$ (i.e., $Q^{1/2} \succ 0$). Writing $T =: [T_1 \ T_2]$ yields
\[
\begin{bmatrix}
T_1^T \ T_1 \\
T_2^T \ T_2
\end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \text{ and } T_1 T_1^T + T_2 T_2^T = I \tag{23}
\]
from $T^T T = I$ and $T T^T = I$. Select
\[
\Upsilon = A^{1/2}(Z - Z_c) T_1 \Lambda_p^{-1} T_1^T \tag{24}
\]
(which reduces to $A^{1/2}(Z - Z_c) Q^{-1/2}$ if $p = n$). We first show $\|\Upsilon\| \leq 1:
\[
\Upsilon^T \Upsilon = T_1 \Lambda_p^{-1} T_1^T (Z - Z_c) A^{1/2} A^{1/2} (Z - Z_c) T_1 \Lambda_p^{-1} T_1^T \tag{20}
\]
\[
\leq T_1 \Lambda_p^{-1} T_1^T \cdot Q \cdot [\alpha_0] \cdot [\alpha_0]^T = T_1 \Lambda_p^{-1} T_1^T [t, t_2]. \tag{22}
\]
\[
\leq T_1 \Lambda_p^{-1} T_1^T \cdot T_1 \Lambda_p^{-1} T_1^T \tag{23}
\]
\[
= T_1 \Lambda_p^{-1} T_1^T \cdot T_1 \Lambda_p^{-1} T_1^T \tag{23}
\]
Then, we show that (21) holds. (21) is equivalent to
\[
\mathbf{Q}^{1/2} (T_1, T_2) \mathbf{Q}^{1/2} = A^{1/2} (Z - Z_c) \tag{25a}
\]
\[
\Leftrightarrow (TT_1, \alpha_0) = A^{1/2} (Z - Z_c) T = A^{1/2} (Z - Z_c) T_1, \tag{25b}
\]
\[
\Leftrightarrow (\Upsilon T_1, \alpha_0) = A^{1/2} (Z - Z_c) T_1, 0 = A^{1/2} (Z - Z_c) T_2. \tag{27}
\]
If we show the last two equalities, we have shown (21) and completed the proof. The first equality holds by the selection of Υ since $\Upsilon T_1 \Lambda_p^{-1} T_1^T (Z - Z_c) T_1 \Lambda_p^{-1} T_1^T \leq \ker(A^{1/2}(Z - Z_c)).$ The second equality holds since the columns of T_2 are in ker $Q^{1/2}$ and ker $Q^{1/2} \subseteq \ker(A^{1/2}(Z - Z_c)).$ The columns of T_2 are in ker $Q^{1/2}$ because $Q^{1/2} T_2 = \begin{bmatrix} [0_0] \ T_2 \end{bmatrix} T_2 = \begin{bmatrix} [0_0] \ T_2 \end{bmatrix} = 0,$ ker $Q^{1/2} \subseteq \ker(A^{1/2}(Z - Z_c))$ because, if v satisfies $Q^{1/2} v = 0$, then $0 = v^T Q v \geq v^T (Z - Z_c) A (Z - Z_c) v = A^{1/2} (Z - Z_c) v^2$, hence $A^{1/2} (Z - Z_c) v = 0.$

Considering $Q \succ 0$ rather than $Q \succeq 0$ is motivated since it allows us to include seamlessly the relevant special case of ideal data, namely, when the disturbance is not present. This corresponds indeed to $\Delta = 0$ and $D = \{0\}$ in (8) and $Q = 0$ in (18) by $D_0 \in D$. With the equivalent parametrization E of set C and Petersen's lemma in Fact 1, we reach the next main result.

Theorem 1 For data given by U_0, X_0, X_1 in (6) satisfying Assumption 1 and yielding A, B, C in (14), feasibility of (10) is equivalent to feasibility of
\[
\text{find } \ Y, P = P^T > 0 \tag{29a}
\]
\[
\begin{bmatrix}
-P - C & 0 \\
0 & -P
\end{bmatrix}
\begin{bmatrix}
P & Y \\
Y & -A
\end{bmatrix} \prec 0. \tag{25b}
\]

If (25) is solvable, the controller gain is $K = Y P^{-1}.$

Proof. Thanks to Proposition 1, (10b) is equivalent to the fact that for all $(A, B) \in \mathcal{E}
\[
(A + BK) P (A + BK)^T - P
\]
\[
= \begin{bmatrix} A B \ I \\ K \end{bmatrix} P P^{-1} P \begin{bmatrix} A B \\ K \end{bmatrix}^T - P \prec 0.
\]
Finding $P = P^T > 0, K$ so that this matrix inequality holds for all $(A, B) \in \mathcal{E}$ is equivalent to finding $P = P^T > 0, Y$ so that
\[
\begin{bmatrix}
-P & -[A B] [\nu] \\
-[[\nu]]^T & -P
\end{bmatrix} < 0 \text{ for all } (A, B) \in \mathcal{E}, \tag{26}
\]
by $P > 0$ and Schur complement. Note that, as claimed in the statement, Y and K are related by $Y = K P$, and Y is preferred over K as decision variable since $K P$ makes the matrix inequality nonlinear. $(A B) = Z^T \in \mathcal{E}$ if and only if $Z = Z_c + A^{-1/2} \mathbf{Y} Q^{1/2}$ for some Y with $Y^T Y \preceq I$, by the parametrization in (19). Hence, (26) is true if and only if (27), which is displayed below over two columns, holds for all Y with $Y^T Y \preceq I$. (27) is written in a way that enables applying Petersen's lemma in Fact 1 with respect to the uncertainty Y. Indeed, simple computations yield that (27) holds for all Y with $Y^T Y \preceq I$ if and only if there exists $\lambda > 0$ such that
\[
\begin{bmatrix}
-P + \lambda^{-1} Q & -Z_c^T[\nu] \\
-[[\nu]]^T Z_c & -P + \lambda [[\nu]]^T A^{-1} [\nu]
\end{bmatrix} < 0. \tag{28}
\]
In summary, we have so far that (10) is the same as
\[
\text{find } Y, P = P^T > 0, \lambda > 0 \text{ subject to (28)}. \tag{29a}
\]
Multiply both sides of (28) by $\lambda > 0$ and “absorb” it in P and Y, so that (29) is actually equivalent to
\[
\text{find } Y, P = P^T > 0 \tag{30a}
\]
\[
\begin{bmatrix}
-P + Q & -Z_c^T[\nu] \\
-[[\nu]]^T Z_c & -P + [[\nu]]^T A^{-1} [\nu]
\end{bmatrix} < 0. \tag{30b}
\]
Substitute in (30b) Z_c and Q as in (16) to obtain
\[
\begin{bmatrix}
-P + B^T A^{-1} B - C & B^T A^{-1} [\frac{P}{\lambda}]^T \\
[\frac{P}{\lambda}]^T A^{-1} B & -P + [\frac{P}{\lambda}]^T A^{-1} [\frac{P}{\lambda}]
\end{bmatrix} = \begin{bmatrix}
-P - C & 0 \\
0 & -P
\end{bmatrix} + \begin{bmatrix}
B^T \\
0
\end{bmatrix} A^{-1} \begin{bmatrix}
B [\frac{P}{\lambda}]^T
\end{bmatrix} < 0.
\]

Take a Schur complement of this inequality and replace by it the one in (30b) to make (30) equivalent to (25). □

Similarly, we use the set E in (19) and Petersen’s lemma reported in Fact 1 to resolve (11) in the next theorem.

Theorem 2 For data given by U_0, X_0, X_1 in (6) satisfying Assumption 1 and yielding A, B, C in (14), feasibility of (11) is equivalent to feasibility of

\[
\begin{aligned}
\text{find} & \quad Y, P = P^T > 0 \\
\text{s.t.} & \quad \begin{bmatrix}
-C & B^T - [P]^T \\
B - [P] & -A
\end{bmatrix} < 0.
\end{aligned}
\]

If (31) is solvable, the controller gain is $K = Y P^{-1}$.

Proof. Thanks to Proposition 1, (11b) is equivalent to the fact that for all $(A, B) \in E$

\[
(A + BK)P + P(A + BK)^T = A \begin{bmatrix} I \\ K \end{bmatrix} + \begin{bmatrix} I \\ K \end{bmatrix} A^T < 0.
\]

Finding K, $P = P^T > 0$ so that this matrix inequality holds for all $(A, B) \in E$ is equivalent to finding Y, $P = P^T > 0$ so that

\[
\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} P \\ Y \end{bmatrix} + \begin{bmatrix} P \\ Y \end{bmatrix} A^T < 0 \quad \text{for all} \quad (A, B) \in E.
\]

Suppose that the set C is given directly in the form (15) as a matrix-ellipsoid over-approximation of a less tractable set that is derived from data, which we discuss in Section 4.4. For this case, a better alternative to Theorems 1-2 is the next corollary.

Corollary 1 For the set $C = \{ [A] B \} = Z^T : (Z - Z_c)^T A (Z - Z_c) \preceq Q \}$ as in (15), assume $A > 0$ and $Q \succeq 0$. Then, feasibility of (10) (resp., (11)) is equivalent to feasibility of (25) (resp., (31)). If (25) (resp., (31)) is solvable, the controller gain is $K = Y P^{-1}$.

Proof. Proposition 1 is true under $A > 0$ and $Q \succeq 0$, and only Proposition 1 is used in Theorems 1-2. □

Remark 3 The conditions in Theorems 1-2 depend on the parametrization of C through A, B, C in (12). Alternatively, we can give conditions depending on the parametrization of C through A, Z_c, Q in (15) as

\[
\begin{bmatrix}
-P + Q & -Z_c^T [\frac{P}{\lambda}]^T \\
-Z_c^T & 0
\end{bmatrix} < 0
\]

and

\[
\begin{bmatrix}
-Z_c^T & -P \\
0 & -A
\end{bmatrix} + Q [\frac{P}{\lambda}] + Q [\frac{P}{\lambda}]^T < 0.
\]
\[
(Z_c + A^{-1/2}YQ^{1/2})^\top [\mathbf{P}'] + [\mathbf{P}']^\top (Z_c + A^{-1/2}YQ^{1/2}) = Z_c^\top [\mathbf{P}'] + [\mathbf{P}']^\top Z_c + [\mathbf{P}']^\top A^{-1/2}YQ^{1/2} + Q^{1/2}Y^\top A^{-1/2}[\mathbf{P}'] < 0
\]

(37) and (38) are equivalent forms of (25b) and (31b), respectively, and can be obtained from (30b) and (36b) by taking Schur complements. These two conditions can be more convenient numerically.

4 Discussion and interpretations

This section is devoted to giving an overall interpretation of the previous developments.

4.1 Assumption 1 and persistence of excitation

Assumption 1 is intimately related to the notion of persistence of excitation, as we now motivate. With full details in [14, §4.2], the result [43, Cor. 2], which was given in the ideal case without disturbance \(x^+ = A_x + Bu\), can show for the present case

\[
x^+ = Ax + Bu + d = Ax + [Bu ~ I] [\begin{bmatrix} u \\ d \end{bmatrix}] \]

that: (i) controllability of \((A_x, Bu)\), (ii) an input sequence persistently exciting of order \(n + 1\) and (iii) a disturbance sequence persistently exciting of order \(n + 1\) imply together that \([X_0 ~ U_0]\) has full row rank and so has \([X_0 ~ U_0]\), as required in Assumption 1. In the ideal case, (i) and (ii) imply that \([X_0 ~ U_0]\) has full row rank [43, Cor. 2]. In other words, Assumption 1 holds under a persistently exciting disturbance and the same conditions of the ideal case, which include a persistently exciting input.

4.2 Ellipsoidal uncertainty, least squares and certainty-equivalence control

From (37) and (38), the discrete- and continuous-time stability conditions of Theorems 1 and 2 are equivalent to

\[
\begin{bmatrix}
-P & -Z_c^\top [\mathbf{P}'] \\
-\mathbf{P}'^\top Z_c & -P
\end{bmatrix} + \begin{bmatrix}
\mathbf{Q} & 0 \\
0 & \mathbf{A}^{-1} \mathbf{P}'
\end{bmatrix} < 0 \quad \text{and} \quad \begin{bmatrix}
\mathbf{P}' \\
\mathbf{Y}
\end{bmatrix}^\top Z_c + Z_c^\top \begin{bmatrix}
\mathbf{P}' \\
\mathbf{Y}
\end{bmatrix} + \begin{bmatrix}
\mathbf{Q} & \mathbf{P}' \\
\mathbf{P}' & \mathbf{A}^{-1} \mathbf{P}'
\end{bmatrix} < 0
\]

respectively, with \(A\) as in (14) and \(Z_c, Q\) as in (16). The matrix \(Z_c\) appears only in the first term of the two matrix inequalities and it represents the center of the uncertainty set \(C\), see (15). On the other hand, the matrices \(A, Q\) appearing in the second term of the two matrix inequalities determine the size of the uncertainty; in particular, the size of \(C\) is given by \((\det Q)^{n+m}/2(\det A)^{-n/2}\),

\footnote{See [43, p. 327] or [13, Def. 1] for a definition.}

see [7, §2.2]. By Lemma 1, the second terms in (39) and (40) are positive semidefinite, and this means that the design problem can be interpreted as the problem of finding a controller that robustly stabilizes the dynamics associated with the center \(Z_c\) of the uncertainty set \(C\), where the uncertainty increases with the noise bound \(\Delta\), see the expression of \(Q\) in (18).

Quite interestingly, the center \(Z_c\) of the uncertainty set \(C\) coincides with the (ordinary) least-squares estimate of the system dynamics, i.e., with the solution \((A_{ls}, B_{ls})\) to

\[
\begin{array}{l}
\min_{(A, B)} \|X_1 - AX_0 - BU_0\|_F^2 \\
\text{subject to}
\end{array}
\]

where \(\cdot \|F\) denotes the Frobenius norm. Indeed,

\[
[A_{ls} \ B_{ls}] := \arg \min_{(A, B)} \|X_1 - AX_0 - BU_0\|_F^2
\]

\[
= X_1 [X_0 \ U_0]^\top = (-A^{-1}B)^\top = Z_c^\top,
\]

see [42, §2.6]. This justifies why certainty-equivalence control works well in regimes of small uncertainty (when \(\Delta\) is small), in agreement with what has been recently observed in [29,17]. On the other hand, this also explains why with noisy data robust control is generally needed, which is also the main idea behind the robust indirect control approaches [15, 18, 39] under a stochastic noise description. Besides the noise description, a difference between our work and [15, 18, 39] is that our approach is direct in the sense that solving (25) or (31) does not require to explicitly constructing any estimate of the system dynamics, which is distinctive of indirect methods.

4.3 Comparison with alternative conditions in [41]

Sections 4.1 leads us to a comparison with the approach based on a matrix S-procedure in [41]. We recall its main result for data-based stabilization [41, Thm. 14], and rephrase it for the context of this paper in the next fact.

Fact 3 [41, Thm. 14] Assume that the generalized Slater condition

\[
\begin{bmatrix}
I \\
\mathbf{Z}
\end{bmatrix}^\top \begin{bmatrix}
C & \mathbf{B}^\top \\
\mathbf{B} & \mathbf{A}
\end{bmatrix} \begin{bmatrix}
I \\
\mathbf{Z}
\end{bmatrix} < 0
\]

holds for some \(\mathbf{Z} \in \mathbb{R}^{(n+m) \times n}\). Then, there exist a feedback gain \(K\) and a matrix \(P = P^\top > 0\) such that \((A + BK)P + (A + BK)^\top P < 0\) for all \((A, B) \in C\) if and only if the next program is feasible

\[
\begin{array}{l}
\text{find} \quad P = P^\top > 0, Y, \alpha \geq 0, \beta > 0 \\
\text{s. t.} \quad \begin{bmatrix}
-P + \beta I & 0 \\
0 & \mathbf{P}' P^{-1} \mathbf{P}'^\top
\end{bmatrix} - \alpha \begin{bmatrix}
\mathbf{C} & \mathbf{B}^\top \\
\mathbf{B} & \mathbf{A}
\end{bmatrix} \leq 0,
\end{array}
\]
If \(P \) and \(Y \) are a solution to it, then \(K = YP^{-1} \) is a stabilizing gain for all \((A, B) \in \mathcal{C} \).

Fact 3 and Theorem 1 are two alternative approaches since both propose a necessary and sufficient condition for quadratic stabilization; indeed, (25b) in Theorem 1 is equivalent, by Schur complement and changing sign to off-diagonal terms, to

\[
\begin{bmatrix}
-P & 0 \\
0 & [\frac{P}{Y}] P^{-1} [\frac{P}{Y}]^\top
\end{bmatrix} - \begin{bmatrix}
C & B^\top \\
B & A
\end{bmatrix} \prec 0.
\]

There are some interesting differences, though. Fact 3 operates under a Slater condition, whereas Theorem 1 under Assumption 1. The Slater condition can capture the case of an bounded set \(\mathcal{C} \), which cannot occur with Assumption 1 (see Lemma 2); by contrast, the Slater condition cannot capture the case of ideal data [40, §II.C], which requires different arguments [40]. We believe the approach through Petersen’s lemma is appealing due to the conceptual insights it provides on the data-based control laws, which we have expounded in this section, and to its ease of applicability beyond the linear systems of Section 3, as we show for polynomial systems in Section 5.

4.4 \(\mathcal{C} \) as an ellipsoidal over-approximation

As (9) shows, we have derived set \(\mathcal{C} \) based on the disturbance bound in \(\mathcal{D} \) and the relation data need to satisfy. On the other hand, the matrix-ellipsoid form (15) of set \(\mathcal{C} \) can be fruitfully used as an over-approximation of sets of matrices consistent with data that are not matrix ellipsoids, since ellipsoidal sets are generally better tractable. In that case, as long as matrices \(A \) and \(Q \) in (15) satisfy \(A \succ 0 \) and \(Q \succeq 0 \), one can use directly Corollary 1. We describe succinctly a relevant case when this could be done based on [7], to which we refer the reader for a more elaborate discussion.

With the definitions for \(i = 0, 1, \ldots, T – 1 \)

\[
\mathcal{C}_i \triangleq x(t_{i+1}) \text{ or } \mathcal{C}_i \triangleq \dot{x}(t_i), \quad x_i \triangleq x(t_i), \quad v_i \triangleq u(t_i)
\]

that embed discrete or continuous time, consider the disturbance model \(\mathcal{D}_i \triangleq \{d \in \mathbb{R}^n : |d|^2 \leq \delta \}. \) The corresponding set of matrices consistent with all data points \(i = 0, \ldots, T – 1 \) is \(\mathcal{I} := \bigcap_{i=0}^{T-1} \{ (A, B) : x_i = Ax_i + Bu_i + d, d \in \mathcal{D}_i \} \) and, due to the intersection, its size remains equal or decreases with \(T \). \(\mathcal{I} \) is not a matrix ellipsoid and the results in Section 3 cannot be applied to it. Still, a matrix ellipsoid \(\mathcal{C} \subset \mathcal{I} \) as in (12) can be readily obtained; its parameters \(A, B, C := B^\top A^{-1} B - I \) follow from the optimization problem

\[
\begin{align}
\text{min.} \quad \log \det A & \quad \text{(over } A, B, \tau_1, \ldots, \tau_{T-1} \text{)} \quad (41a) \\
s. t. \quad \begin{bmatrix}
-I & -\sum_{i=0}^{T-1} \tau_i \gamma_i & * & * \\
B & -\sum_{i=0}^{T-1} \tau_i \beta_i & -\sum_{i=0}^{T-1} \tau_i \alpha_i & * \\
0 & 0 & -A
\end{bmatrix} & \preceq 0 \\
A \succ 0, \quad \tau_i \geq 0 & \text{ for } i = 0, 1, \ldots, T – 1 \quad (41b)
\end{align}
\]

with data-related quantities

\[
\gamma_i := -\delta \mathcal{I} + x_i^2 \mathcal{I}^\top, \quad \beta_i := -\begin{bmatrix} x_i \\ v_i \end{bmatrix} \mathcal{I}^\top, \quad \alpha_i := \begin{bmatrix} x_i \\ v_i \end{bmatrix}^\top \quad (42)
\]

for \(i = 0, \ldots, T – 1 \). (This optimization problem is the natural extension to matrix ellipsoids of the one in [8, §3.7.2] for classical ellipsoids.) A feasible solution to (41) guarantees by construction \(A \succ 0 \) and \(Q = B^\top A^{-1} B - C = I \succeq 0 \) (by the selection of \(\mathcal{C} \)); hence, Corollary 1 can be applied to this \(\mathcal{C} \). A very desirable feature of this \(\mathcal{C} \), inherited from \(\mathcal{D}_i \), is that its size generally decreases with \(T \), and this requires, in turn, a lesser degree of robustness in the design of the controller if one collects more data. In summary, when an instantaneous disturbance model \(\mathcal{D}_i \) is given, the results of Section 3 cannot be applied to the corresponding set \(\mathcal{I} \) but can be to the set \(\mathcal{C} \) obtained by (41). The tightness of the over-approximation is problem-dependent, and it might be convenient to work directly with \(\mathcal{I} \) at the expense of an increase in the computational complexity [7].

5 Data-driven control for polynomial systems

We illustrate in this section that Petersen’s lemma proves useful also for polynomial systems, if applied pointwise. As an important class of a nonlinear input-affine system, consider the polynomial system

\[
\dot{x} = f(x) + g(x) u + d = A_x Z(x) + B_x W(x) u + d \quad (43)
\]

where \(x \in \mathbb{R}^n \) is the state, \(u \in \mathbb{R}^m \) is the input, \(d \in \mathbb{R}^n \) is a disturbance; \(x \mapsto Z(x) \in \mathbb{R}^n \) is a known regressor vector of monomials of \(x \) and \(x \mapsto W(x) \in \mathbb{R}^{m \times n} \) is a known regressor matrix of monomials of \(x \); the rectangular matrices \(A_x \in \mathbb{R}^{n \times n} \) and \(B_x \in \mathbb{R}^{n \times M} \) with the coefficients of the regressors are unknown to us. The selection of the regressors \(Z \) and \(W \) is a key aspect for feasibility of the optimization-based control law, and we comment this in detail in Section 6.3. We will handle data-driven control conditions for (43) through a sum-of-squares relaxation; since sum-of-square tools are most commonly used for continuous-time systems, we consider directly the continuous-time case in (43).

As in Section 2.2, we perform an experiment on the system by applying an input sequence \(u(t_0), \ldots, u(t_{T-1}) \) of \(T \) samples and measure the state and state-derivative sequences \(x(t_0), \ldots, x(t_{T-1}) \) and \(\dot{x}(t_0), \ldots, \dot{x}(t_{T-1}) \). The unknown disturbance sequence \(d(t_0), \ldots, d(t_{T-1}) \)
affects the evolution of the system, leading to noisy data. We collect the data points in the matrices

\[V_0 := \begin{bmatrix} W(x(t_0))u(t_0) & \cdots & W(x(t_{t-1}))u(t_{t-1}) \end{bmatrix} \]

(44a)

\[Z_0 := \begin{bmatrix} Z(x(t_0)) & \cdots & Z(x(t_{t-1})) \end{bmatrix} \]

(44b)

\[X_1 := \begin{bmatrix} \dot{x}(t_0) & \cdots & \dot{x}(t_{t-1}) \end{bmatrix} . \]

(44c)

With the unknown disturbance sequence in \(D_0 := \begin{bmatrix} d(t_0) & \cdots & d(t_{t-1}) \end{bmatrix} \), data satisfy

\[X_1 = A_x Z_0 + B_x V_0 + D_0. \]

As in Section 2.2, the set of matrices consistent with \(D \) with the unknown disturbance sequence in \(\tilde{D}_0 = \begin{bmatrix} \tilde{d}(t_0) & \cdots & \tilde{d}(t_{t-1}) \end{bmatrix} \) is

\[\tilde{C} := \{(A, B) : X_1 = A Z_0 + B V_0 + D, D \in \mathbb{D} \}. \]

We can then follow closely the rationale of Section 2.3, and we briefly outline only the key steps. The set \(\tilde{C} \) can be reformulated as

\[\tilde{C} = \{(A, B) : \begin{bmatrix} I & A & B \end{bmatrix} \begin{bmatrix} \tilde{C} & B \tilde{B}^T \end{bmatrix} \begin{bmatrix} x \end{bmatrix}^T \leq 0 \} \]

\[\begin{bmatrix} \tilde{C} & B \tilde{B}^T \end{bmatrix} := \begin{bmatrix} X_1 X_1^T - \Delta \Delta^T - X_1 \begin{bmatrix} Z_0 \end{bmatrix}^T \begin{bmatrix} Z_0 \end{bmatrix} + \begin{bmatrix} Z_0 \end{bmatrix} \begin{bmatrix} Z_0 \end{bmatrix}^T \end{bmatrix}. \]

The next assumption is analogous to Assumption 1.

Assumption 2 Matrix \(\begin{bmatrix} Z_0 \end{bmatrix} \) has full row rank.

\(\tilde{A} \succ 0 \) by Assumption 2, and \(\tilde{C} \) can be rewritten as

\[\tilde{C} = \begin{bmatrix} \begin{bmatrix} A & B \end{bmatrix} = Z^T : (Z - \tilde{Z}_c)^T \tilde{A} (Z - \tilde{Z}_c) \leq \tilde{Q} \} \]

(45)

\[\tilde{Z}_c := -\tilde{A}^{-1} \tilde{B}, \tilde{Q} := \tilde{B}^T \tilde{A}^{-1} \tilde{B} - \tilde{C}. \]

The logical steps of Lemma 1, Lemma 2 and Proposition 1 can be repeated in the same way after replacing \(\begin{bmatrix} X_0 \end{bmatrix} \) with \(\begin{bmatrix} Z_0 \end{bmatrix} \), so their results are summarized in the next lemma without proof.

Lemma 3 Under Assumption 2, we have: \(\tilde{A} \succ 0, \tilde{Q} \succeq 0, \tilde{C} \) is bounded with respect to any matrix norm, and

\[\tilde{C} = \begin{bmatrix} \tilde{Z}_c + \tilde{A}^{-1/2} \bar{Q} \tilde{A}^{-1/2} \end{bmatrix} : \| \bar{Y} \| \leq 1. \]

(46)

As in Section 3, the matrix-ellipsoid parametrization in (46) is key to apply Petersen’s lemma, which allows us to obtain the next result for data-driven control of the polynomial system in (43).

Proposition 2 Let Assumption 2 hold. Given positive definite\(^2\) polynomials \(\ell_1, \ell_2 \) with \(\ell_1 \) radially unbounded\(^3\) suppose there exist polynomials \(V, k, \lambda \) with \(V(0) = 0 \) and \(k(0) = 0 \) such that for each \(x \)

\[V(x) - \ell_1(x) \geq 0 \]

(47)

\[\begin{bmatrix} \ell_2(x) + \frac{\partial V}{\partial x}(x) Z_c^T \begin{bmatrix} Z(x) & \begin{bmatrix} Z(x) \end{bmatrix} W(x) k(x) \end{bmatrix} \end{bmatrix} - \lambda(x) I \end{bmatrix} \leq 0 \]

(48)

\[\lambda(x) > 0. \]

(49)

Then, the origin of

\[\dot{x} = A Z(x) + B W(x) k(x) =: f_{A,B}(x) \]

is globally asymptotically stable for all \((A, B) \in \tilde{C} \), and in particular for \((A_x, B_x) \in \tilde{C} \), i.e., for the closed loop \(\dot{x} = f_{A_x, B_x}(x) \).

Let us comment the conditions and the conclusion of Proposition 2. Condition (47) imposes positive definiteness and radial unboundedness of the Lyapunov function \(V \); condition (49) is the positivity of the multiplier used in Petersen’s lemma; condition (48) imposes decrease of the Lyapunov function for all \((A, B) \in \tilde{C} \). In particular, suppose \(Z_c^T = [A_x, B_x] \) in (48); then, the block (1,1) alone of the matrix in (48) would express a model-based condition for global asymptotic stability of \(\dot{x} = A_x Z(x) + B_x W(x) \). The conclusion is global asymptotic stability of the closed loop \(\dot{x} = f_{A,B}(x) \) for all \((A, B) \in \tilde{C} \). Similarly to the linear case (see comment below (10)-(11)), this is relevant for the closed loop with disturbance \(\dot{x} = f_{A_x, B_x}(x) + d \) obtained from (43) because global asymptotic stability guarantees input-to-state stability with “small disturbances” as shown in [36, Thm. 2], to which we refer for precise characterizations.

Proof of Proposition 2. Note first that since \(Z(0) = 0 \) (\(Z \) is a regressor of monomials of \(x \)) and \(k(0) = 0 \), the origin is an equilibrium of \(f_{A,B}(x) \) for all \((A, B) \in \tilde{C} \). Then, the proof consists of showing that \(V \) is a Lyapunov function for all systems \(\dot{x} = f_{A,B}(x), (A, B) \in \tilde{C} \). Specifically, we show that (i) \(V \) is positive definite and radially unbounded, and (ii) its derivative along solutions satisfies

\[\nabla V(x), f_{A,B}(x) = \frac{\partial V}{\partial x}(x) \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} Z(x) \end{bmatrix} W(x) k(x) \leq -\ell_2(x) \forall x, V(A, B) \in \tilde{C}. \]

(50)

If the previous properties (i)-(ii) hold, classical Lyapunov theory [25, Thm. 4.2] yields the conclusion of the theorem. Positive definiteness of \(V \) follows from \(V(0) = 0 \), (47) and \(\ell_1 \) positive definite; radial unboundedness

\(^2\) That is, zero at zero and positive elsewhere.

\(^3\) That is, \(\ell_1(x) \to +\infty \) as \(|x| \to +\infty \).
of V follows from (47) and ℓ_1 radially unbounded. We then address the derivative along solutions of V. Set $[A, B] = Z^T \in \bar{C}$ in (50) and substitute the parametrization of Z from (46); (50) holds if and only if, for each x,

$$-\ell_2(x) \geq (\nabla V(x), f_{A,B}(x)) = \frac{\partial V}{\partial x}(x)Z_c^T \left[\frac{Z(x)}{W(x)k(x)} \right] + \left[\frac{Z(x)}{W(x)k(x)} \right]^T \tilde{A}^{-1/2} \tilde{Y}^{1/2} \frac{\partial V}{\partial x}(x)^T$$

and (51) holds or, equivalently, that for each x, there exists $1/\lambda(x) > 0$ such that (52) holds. Apply Fact 2 pointwise (i.e., for each x) to (52) with E and G^T corresponding respectively to $Z(x) / W(x)k(x)$ and $\partial V / \partial x(x)$, yielding $1/\lambda(x) > 0$ such that (52) holds implies that for each x, (51) holds or, equivalently, that for each x, (50) holds. All properties required of V have been shown, and the conclusion of the proposition follows.

When writing the Lyapunov derivative along solutions as in (50) and substituting the expression of \tilde{C} as in (51), the utility of Petersen’s lemma beyond the case of linear systems becomes clear. We use the nonstrict version of it in Fact 2 (instead of the strict version in Fact 1) in view of the next sum-of-squares relaxation and the subsequent numerical implementation, where only nonstrict inequalities can effectively be implemented. Polynomial positivity in the conditions of Proposition 2 is impractical to verify, so we turn them into sum-of-squares conditions in the next theorem.

Theorem 3 Let Assumption 2 hold. Given positive definite polynomials ℓ_1, ℓ_2 with ℓ_1 radially unbounded and a positive scalar c, suppose there exist polynomials V, k, λ with $V(0) = 0$ and $k(0) = 0$ such that

$$V - \ell_1 \in \mathcal{S}$$

$$-\ell_2 + \frac{\partial V}{\partial x}(x)Z_c^T \left[\frac{Z(x)}{W(x)k(x)} \right] - \frac{A}{\lambda(x)^2} \frac{\partial V}{\partial x}(x)W(x)k(x) \lambda \lambda - \ell_1 \in \mathcal{S}.$$

Then, (47)-(49) and the conclusion of Proposition 2 hold.

Proof. (53a) and (53c) imply (47) and (49), respectively. Call $x \mapsto Q(x)$ the matrix polynomial in (53b), so that (53b) rewrites $Q \in \mathcal{S}_m$. By definition of \mathcal{S}_m, we have that for each x, $Q(x) \preceq 0$, i.e., (48). □

Let us comment Theorem 3. Quantities Z and W are the known regressors; \tilde{C}, A, Q are obtained from data X_1, Z_0, V_0; ℓ_1, ℓ_2 and ℓ_λ are design parameters; finally, V, k, λ are decision variables. Then, the blocks (1,1), (3,1) and (1,3) of the matrix in (53b) entail products between decision variables, which make condition (53b) bilinear and the feasibility program in (53) not convex. A suboptimal strategy that is widely adopted in the sum-of-squares literature, see [23], is to alternately solve for W with k and λ fixed, and solve for k and λ with V fixed. We illustrate this strategy in Section 6.

As in Section 3, when the set \bar{C} is given directly in the form (45) as a matrix-ellipsoid over-approximation of a less tractable set (see the discussion in Section 4.4), a better alternative to Theorem 3 is the next corollary.

Corollary 2 Let $\tilde{A} \succ 0$ and $\tilde{Q} \succeq 0$ hold for the set $\bar{C} = \{ [A, B] = Z^T : (Z - Z_c)^T \tilde{A}(Z - Z_c) \preceq \tilde{Q} \}$ in (45). Given positive definite polynomials ℓ_1, ℓ_2 with ℓ_1 radially unbounded and a positive scalar c, suppose there exist polynomials V, k, λ with $V(0) = 0$ and $k(0) = 0$ satisfying (53). Then, (47)-(49) and the conclusion of Proposition 2 hold.

In the next section, we obtain \bar{C} as described in Section 4.4 and, in particular, through the optimization problem in (41). This provides a set \bar{C} directly in the form (45), so we will apply Corollary 2.

Finally, we follow up on the comparison with [20] discussed in Section 1. As the proof of Proposition 2 shows, the data-based conditions (47)-(49) correspond naturally to enforcing model-based conditions [25, Thm. 4.2] for all systems consistent with data. This makes this approach extendible to other cases such as local asymptotic stability. Indeed, if we consider [25, Thm. 4.1], we obtain the next corollary.

Corollary 3 Let Assumption 2 hold. Given positive definite polynomials ℓ_0, ℓ_1, ℓ_2 and a positive scalar c yielding $\mathcal{D}_c := \{ x \in \mathbb{R}^n : \ell_0(x) \leq c \}$, suppose there exist polynomials s_1, s_2, V, k, λ with $V(0) = 0$ and $k(0) = 0$ such that for each x

$$s_1(x) \geq 0, s_2(x) \geq 0,$$

$$V(x) - \ell_1(x) + s_1(x)(\ell_0(x) - c) \geq 0$$

$$\left\{ \ell_2(x) + \frac{\partial V}{\partial x}(x)Z_c^T \left[\frac{Z(x)}{W(x)k(x)} \right] - s_2(x)(\ell_0(x) - c) \right\} \star \star \star \leq 0$$

$$\tilde{A}^{-1/2} \left[\frac{Z(x)}{W(x)k(x)} \right] - \lambda(x)I \star \leq 0$$

$$\lambda(x) \geq 0.$$

Then, the origin of $\dot{x} = f_{A,B}(x)$ is locally asymptotically stable for all $(A, B) \in \bar{C}$, and in particular for (A_*, B_*).

Then, (47)-(49) and the conclusion of Proposition 2 hold.
The proof would follow the same rationale as the proof of Proposition 2, so we sketch only the key steps to highlight that the conditions (54)-(57) in Corollary 3 follow naturally from [25, Thm. 4.1], (54) and (55) imply that $V(x) \geq \ell_1$ for all $x \in D$, and give [25, Eq. (4.2)]. To have [25, Eq. (4.4)], we would like to impose for all $(A, B) \in \tilde{C}$ that $(V(x), f_A(x)) \leq -\ell_2(x)$ for all $x \in D_c$. This is implied by the fact that for all x, for all Υ with $\|\Upsilon\| \leq 1$, $\ell_2(x) + \frac{\partial V}{\partial x}(x)(\dot{\Upsilon} + A^{-1/2}\Upsilon Q) - s_2(x)(\ell_0(x) - c) \leq 0$. This condition is indeed obtained from (54), (56)-(57) and Petersen’s lemma. With Corollary 3, it is immediate to write its sum-of-squares relaxation for decision variables s_1, s_2, V, k, λ in the same way we wrote Theorem 3 with Proposition 2.

6 Numerical examples

In this section we consider as a running example the system in [25, Example 14.9], i.e.,

$$
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
x_1^2 - x_1^3 + x_2 \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} u + d. \quad (58)
$$

This continuous-time polynomial system can be cast in the form in (43). We consider it as such in Section 6.3 to illustrate Theorem 3; we consider its linearization

$$
\dot{x} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} x + \begin{bmatrix}
0 \\
1
\end{bmatrix} u + d =: A^c x + B^c u + d \quad (59)
$$

in Section 6.2 to illustrate Theorem 2; we consider a discretization of (59) for sampling time τ.

$$
x^+ = (I + \tau A^c)x + \tau B^c u + d =: A^d x + B^d u + d \quad (60)
$$

in Section 6.1 to illustrate Theorem 1. We emphasize that these systems are used only for data generation, but the vector fields in (58)-(60) are not known to the data-based schemes. For $\delta > 0$, the disturbance d in (58)-(60) is taken as $(\sqrt{\delta} \cos(2\pi t), \sqrt{\delta} \sin(2\pi t))$, where t corresponds to integer multiples of τ, in discrete time. Hence, d satisfies $|d|^2 \leq \delta$. From this bound on d, the disturbance sequence D in (8) satisfies then the bound $DD^\top \leq \delta I$. For the linear systems (59)-(60), we convert the bound on d into $\Delta := \sqrt{T\delta} I$ in (8); for the polynomial system (58), we retain the bound on d and consider \tilde{C} as an ellipsoidal over-approximation of the type described in Section 4.4. We solve all numerical programs using YALMIP [27] with its sum-of-squares functionality [28], MOSEK ApS and MATLAB® R2019b.

6.1 Linear system in discrete time

Consider (60) with $\tau = 0.5, T = 100$ and $\delta = 0.1$. The experiment generating data U_0, X_0 and X_1 in (6) is depicted in Fig. 1. A uniform random variable in $[-1, 1]$

![Fig. 1. Experiment yielding data from (60): input and state. Dots on the curve of u indicate the discrete-time instants.](image)

is used as input u. Matrices X_0 and U_0 satisfy Assumption 1. Using the semidefinite program in Theorem 1, a controller $K = \begin{bmatrix} -0.1521 & -1.3475 \end{bmatrix}$ is designed, whose stabilization properties are certified by a Lyapunov function $x^\top P^{-1}x = x^\top \begin{bmatrix} 0.0043 & 0.0115 \\ 0.0115 & 0.1006 \end{bmatrix} x$. The resulting closed-loop solutions for $d = 0$ and the level sets of this Lyapunov function are depicted in Fig. 2.

6.2 Linear system in continuous time

Consider (59) with $T = 100$ and $\delta = 0.1$. The experiment generating data U_0, X_0 and X_1 in (6) is depicted in Fig. 3. A sweeping sine with minimum & maximum frequency 0 & 0.8 and amplitude 2 is used as input u. Matrices X_0 and U_0 satisfy Assumption 1. The times $t_0, t_1, \ldots, t_{T-1}$ when state and state derivative are evaluated for X_0 and X_1 are uniformly spaced by $5/100$. Using the semidefinite program in Theorem 2, a controller $K = \begin{bmatrix} -21.4762 & -9.2835 \end{bmatrix}$ is designed, whose stabilization properties are certified by a Lyapunov function $x^\top P^{-1}x = x^\top \begin{bmatrix} 0.5214 & 0.1430 \\ 0.1430 & 0.0590 \end{bmatrix} x$. The resulting closed-loop
Consider (58) with $T = 1000$ and $\delta = 0.01$. Input and disturbance of the experiment generating data V_0, Z_0 and X_1 in (44) take the same form as in Section 6.2 with times t_0, t_1, t_2, t_3, t_4, t_5, uniformly spaced by $5/T = 5/1000$. Since (58) is now nonlinear unlike (59), these input and disturbance result in a different state evolution x, which is reported in Fig. 5.

Whereas the setup of the semidefinite programs in Theorems 1 and 2 is quite straightforward, the setup of the sum-of-squares program from Theorem 3 is less so, and we illustrate its most relevant aspects.

1) The selection of the regressors Z and W in (43) is a key step. On one hand, the system is unknown and some of the monomials in the regressors may not appear in the “true” vector fields; on the other hand, the more the monomials and the associated unknown coefficients are, the larger the uncertainty typically is in such coefficients and a too large uncertainty affects feasibility of the sum-of-squares program in a critical way. Therefore, a parsimonious number of monomials is desirable; which monomials should be taken can be determined by trial and error by solving the program with different selections of regressors. We select here $Z(x) := (x_2, x_2^2, x_2^3, x_2^4)$ and $W(x) := 1$, which determine from (43) and (58)

$$[A_\ast \mid B_\ast] := \begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}.$$

2) The numerical experiment is likewise important. Intuitively, the richer the data, the better; for this reason we selected as input a sweeping sine. Moreover, when the set \mathcal{C} is obtained as an ellipsoidal over-approximation as described in Section 4.4, the size of \mathcal{C}, the associated uncertainty, and the degree of robustness required in the design of the controller all decrease with T, in general; hence, more data points T enlarge the feasibility set of the sum-of-squares program in (53). We obtain the ellipsoidal over-approximation $\tilde{\mathcal{C}}$ by solving the optimization problem (41) with (42) and, for $i = 0, \ldots, T - 1$,

$$x_i^0 := \dot{x}(t_i), \ k_i := Z(x(t_i)) \ u_i := W(x(t_i)) u(t_i).$$

$\tilde{\mathcal{C}}$ is then defined by the matrices $\tilde{A}, \tilde{B}, \tilde{C} := \tilde{B}^T A^{-1} \tilde{B} - I$ returned by (41) or, alternatively, by $Q = I$ and $Z_c := -A^{-1}B$. Matrix Z_c is especially relevant as the center of the ellipsoid $\tilde{\mathcal{C}}$. For the experiment in Fig. 5, we obtain

$$Z_{c}^+ = \begin{bmatrix}
0.9569 & 1.0243 & 0.0000 & -1.0084 & -0.0627 \\
-0.0160 & 0.0146 & -0.0346 & -0.0037 & 0.0334 \\
0.0009 & 0.0010 & 0.0011
\end{bmatrix},$$

which should be compared against $[A_\ast \mid B_\ast]$.

3) To solve the sum-of-square program of Theorem 3, we commented after it that we adopt the common practice of solving alternately two sum-of-square programs. Specifically, we first solve (53b) and (53c) with respect to the controller k and multiplier λ with fixed Lyapunov function V; with the returned controller and multiplier, we solve (53a) and (53b) with respect to V with fixed k and λ. To start up this procedure, we need an initial guess for V. In keeping with the data-based approach, we use the quadratic Lyapunov function that Theorem 2 returns for the linearized system with same disturbance level, in this case $x^T [0.0278 0.0127] x$. (This correspond to an experiment with small signals in a neighborhood of
the origin, so that the linear approximation is trustworthy: the theoretical legitimacy of such an initial guess is based on [13, Thm. 6].) The initialization of V is all the more important whenever the feasibility set is small. In the specific example, we run 15 iterations of this procedure (solving a total of 30 sum-of-squares programs).

4) Finally, we mention two aspects regarding the solution of the two alternate programs above. An important aspect for feasibility of each of those is the selection of the minimum & maximum degrees of polynomials, as lucidly explained in [37, Appendix]. In this example we select the minimum & maximum degrees for V, k, λ as respectively 2 & 4, 1 & 3, 0 & 4. A minor aspect is that we can take in (53) the parameter ℓ_2 as decision variable for greater flexibility since ℓ_2 appears linearly anyway; when we solve for k and λ, we also solve for ℓ_2 and capture that it needs to be positive definite by imposing $\ell_2 \in \mathcal{S}$ (minimum & maximum degrees equal to 2 & 4).

With this procedure and design parameters $\ell_1(x) := 10^{-3}(x_1^2 + x_2^2)$ and $\ell_2 := 10^{-2}$, the obtained V, k, λ are in the next table; the corresponding closed-loop solutions for $d = 0$ and the level sets of V are depicted in Fig. 6.

Qty	Expression
V	$4.0698 x_1^2 + 4.3023 x_1 x_2 + 3.5364 x_2^2 + 0.003475 x_1^3$ + $0.02465 x_1^3 x_2 - 0.01500 x_1 x_2^2 + 0.001575 x_1 x_2^3$ + $0.008769 x_1^4 + 0.003686 x_1^2 x_2 + 0.01263 x_1^2 x_2^2$ + $0.0006249 x_1 x_2^3 + 0.02465 x_2^4$
k	$-1.0291 x_1 - 1.7292 x_2 - 0.8793 x_1^2 + 0.2927 x_1 x_2 - 0.07565 x_2^2$ - $0.5511 x_1^3 - 1.6307 x_1^2 x_2 + 0.08336 x_1 x_2^2 - 2.5235 x_2^3$
λ	$0.04905 - 0.006151 x_1 + 0.002003 x_2 + 0.1106 x_1^2$ + $0.004398 x_1 x_2 + 0.1123 x_2^2$

References

[1] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni. System level synthesis. Annual Reviews in Control, 47:364–393, 2019.

[2] P. J. Antsaklis and A. N. Michel. Linear Systems. Birkhäuser, 2006.

[3] G. Baggio, V. Katewa, and F. Pasqualetti. Data-driven minimum-energy controls for linear systems. IEEE Control Systems Letters, 3(3):589–594, 2019.

[4] J. Berberich, A. Romer, C. W. Scherer, and F. Allgöwer. Robust data-driven state-feedback design. In Proc. Amer. Control Conf., 2020.

[5] J. Berberich, C. W. Scherer, and F. Allgöwer. Combining prior knowledge and data for robust controller design. arXiv preprint arXiv:2009.05253, 2020.

[6] A. Bisco, C. De Persis, and P. Tesi. Data-based stabilization of unknown bilinear systems with guaranteed basin of attraction. Systems & Control Letters, 145:104788, 2020.

[7] A. Bisco, C. De Persis, and P. Tesi. Trade-offs in learning controllers from noisy data. Systems & Control Letters, 2021.

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory. SIAM, 1994.

[9] G. Chesi. LMI techniques for optimization over polynomials in control: a survey. IEEE Trans. Autom. Control, 55(11):2500–2510, 2010.

[10] J. Coulson, J. Lygeros, and F. Dörrler. Data-enabled predictive control: In the shallows of the DeePC. In Proc. Eur. Control Conf., 2019.

[11] T. Dai and M. Sznaier. A moments based approach to designing MIMO data driven controllers for switched systems. In Proc. IEEE Conf. Decision and Control, 2018.

[12] T. Dai and M. Sznaier. A semi-algebraic optimization approach to data-driven control of continuous-time nonlinear systems. IEEE Control Systems Letters, 5(2):487–492, 2021.

[13] C. De Persis and P. Tesi. Formulas for data-driven control: Stability, optimality and robustness. IEEE Trans. Autom. Control, 65(3):909–924, 2020.

[14] C. De Persis and P. Tesi. Low-complexity learning of linear quadratic regulators from noisy data. Automatica, 128, 2021.

[15] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. On the sample complexity of the linear quadratic regulator. Found. Comput. Math., 20:633–679, 2020.

[16] F. Dörrler, J. Coulson, and I. Markovsky. Bridging direct & indirect data-driven control formulations via regularizations and relaxations. arXiv preprint arXiv:2101.01273, 2021.

[17] F. Dörrler, P. Tesi, and C. De Persis. On the certainty-equivalence approach to direct data-driven LQR design. arXiv preprint arXiv:2109.06643, 2021.

[18] M. Ferizbegovic, J. Umenberger, H. Hjalmarsson, and T. B. Schön. Learning robust LQ-controllers using application oriented exploration. IEEE Control Systems Letters, 4(1):19–24, 2019.

[19] E. Fogel. System identification via membership set constraints with energy constrained noise. IEEE Trans. Autom. Control, 24(5):752–758, 1979.

[20] M. Guo, C. De Persis, and P. Tesi. Data-driven stabilization of nonlinear polynomial systems with noisy data. Provisionally accepted to IEEE Trans. Autom. Control, arXiv preprint arXiv:2011.07833, 2020.

[21] H. Hjalmarsson and L. Ljung. A discussion of “unknown-but-bounded” disturbances in system identification. In Proc. IEEE Conf. Decision and Control, pages 535–536, 1993.

[22] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 2013.

[23] Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard. Positive Polynomials in Control, chapter Control applications of sum of squares programming. Springer, 2005.
Appendix

A Proof of Fact 1

To give the proof, we need some auxiliary results. The first one is in the next fact.

Fact 4 ([32, Lemma A.4]) Consider matrices A, C, B in \(\mathbb{R}^{n \times r} \) with A = A\(^\top \) ⊳ 0, C = C\(^\top \) ⊳ 0 and B = B\(^\top \) < 0. Suppose further that

\[
(w^\top Bw)^2 - 4w^\top Awv^\top Cv > 0 \text{ for all } w \in \mathbb{R}^r \setminus \{0\}.
\]

Then \(\lambda^2 A + \lambda B + C < 0 \) for some \(\lambda > 0 \).

By [22, Thm. 7.2.10], \(\bar{F} = \bar{F}\(^\top \) \) is positive semidefinite if and only if there exists a s-by-q matrix \(\Phi \) such that \(\bar{F} = \Phi\(^\top \) \Phi \); hence, \(\bar{F} \) in (1) rewrites as

\[
\bar{F} := \{F \in \mathbb{R}^{p \times q} : F^\top F \preceq \Phi^\top \Phi\}.
\]

The second auxiliary result is in essence [31, Lemma 3.1], of which however we need a slight extension to handle, in the set \(\mathcal{F} \) in (A.2), the condition \(F^\top F < \Phi^\top \Phi \) (with positive semidefinite bound) instead of \(F^\top F \preceq I \), which appears in [31, Lemma 3.1]. This is done in the next lemma, for which we present also a short proof to account for the required modification.

Lemma 4 For vectors x in \(\mathbb{R}^p \), y in \(\mathbb{R}^q \) and set \(\mathcal{F} \) in (A.2), max\(_{F \in \mathcal{F}} \langle x^\top F y \rangle^2 = |x|^2 |\Phi y|^2 \).

Proof. By Cauchy-Schwarz’s inequality and (A.2),

\[
|x^\top F y| \leq |x||F y| = |x|\sqrt{y^\top F^\top F y} \leq |x|\sqrt{y^\top \Phi^\top \Phi y},
\]

that is, \(|x^\top F y| \leq |x||\Phi y| \). From this relation we have that the statement is true if \(x = 0 \) or \(\Phi y = 0 \). The proof is complete if, for \(x \neq 0 \) and \(\Phi y \neq 0 \), we obtain \(F \in \mathcal{F} \) such that \(|x^\top F y| = |x||\Phi y| \), as we do in the rest of the proof. Since \(x \neq 0 \) and \(\Phi y \neq 0 \), take the specific selection

\[
F := x^\top \Phi^\top \Phi/(|x||\Phi y|).
\]

First, we show \(F \in \mathcal{F} \). Indeed,

\[
F^\top F = \Phi^\top (\Phi y x^\top x y^\top \Phi^\top) \Phi = \Phi^\top (\Phi y y^\top \Phi^\top) \Phi/|\Phi y|^2
\]

and \(F \in \mathcal{F} \) because \(\Phi y y^\top \Phi^\top \preceq |\Phi y|^2 I \) (for all \(v \in \mathbb{R}^q \), \(v^\top (\Phi y y^\top \Phi^\top) v \leq |\Phi y|^2 |v|^2 \)). Second,

\[
(x^\top F y)^2 = \left(x^\top xy^\top \Phi^\top \Phi y \right)^2 = |x|^2 |\Phi y|^2
\]

so we have also shown \(|x^\top F y| = |x||\Phi y| \).
With Fact 4 and Lemma 4, we can prove Fact 1. The direction \((2b) \implies (2a)\) is easy since for all \(F \in \mathcal{F}\) in (A.2),
\[
0 > C + \lambda EE^T + \lambda^{-1} G^T \Phi^T \Phi G \\
\geq C + \lambda EE^T + \lambda^{-1} G^T F^T FG \quad \text{(by \(\lambda > 0\))}
= C + EF G + G^T F^T E^T \\
+ (\sqrt{\lambda} E^T - \sqrt{\lambda^{-1}} FG) (\sqrt{\lambda} E^T - \sqrt{\lambda^{-1}} FG) \\
\geq C + EF G + G^T F^T E^T.
\]

We turn then to the direction \((2a) \implies (2b)\). (2a) is equivalent to the fact that for all \(x \neq 0\) and for all \(F \in \mathcal{F}\),
\[
x^T C x + 2 x^T E F G x < 0 \quad \text{and to the fact that for all} \\
\text{for } x \neq 0, x^T C x + 2 \max_{F \in \mathcal{F}} (x^T F G x) = x^T C x + \\
2 \max_{F \in \mathcal{F}} |x^T F G x| \quad \text{because there exists a value of} \ F \in \mathcal{F},
\]
namely \(F = 0\), that makes \(x^T E F G x\) nonnegative. Apply Lemma 4 and obtain that for all \(x \neq 0, x^T C x + \\
2 |x^T E F G x| < 0\) for all \(x \neq 0\) equivalent to the fact that for all \(x \neq 0, (x^T C x)^2 > 4 |x^T E F G x|^2\).

This relation corresponds to (A.1) and the hypothesis of Fact 4 is verified. Hence, we conclude from Fact 4 that
\[
\lambda^2 EE^T + \lambda C + G^T \Phi^T \Phi G < 0 \quad \text{for some} \ \lambda > 0,
\]
which is equivalent to \(\lambda^2 EE^T + \lambda C + G^T \Phi^T \Phi G < 0\) and (2b).

\[\text{B Proof of Fact 2}\]

We start with some preliminary claims. We report (a version of) the classical nonstrict S-procedure.

Fact 5 ([8], p. 23)* Let \(T_0\) and \(T_1\) be \(n\)-by-\(n\) symmetric matrices and assume there is some \(\zeta_0\) such that \(\zeta_0^T T_1 \zeta_0 > 0\).
\[
\zeta^T T_0 \zeta > 0 \quad \text{for all} \ \zeta \quad \text{such that} \ \zeta^T T_1 \zeta > 0
\]
if and only if

there exists \(\tau_1 \geq 0\) such that \(T_0 - \tau_1 T_1 \geq 0\).

As noted in the proof of Fact 1, \(\overline{\mathcal{F}} = \Phi^T \Phi\) for some \(s\)-by-\(q\) matrix \(\Phi\) and \(\mathcal{F}\) rewrites as
\[
\mathcal{F} = \{F \in \mathbb{R}^{p \times q}; F^T F \preceq \Phi^T \Phi\}.
\]

(3a) is equivalent to
\[
x^T (C + EFG + G^T F^T E^T) x \leq 0
\]
for all \(x \in \mathbb{R}^n\) and \(F \in \mathbb{R}^{p \times q}\) with \(F^T F \preceq \Phi^T \Phi\).

(3b) is equivalent, by Schur complement, to
\[
\text{there exists } \lambda > 0: 0 \succeq \begin{bmatrix} C + \frac{1}{\lambda} G^T \Phi^T \Phi G & E \\ E^T 0 \end{bmatrix} \\
= \begin{bmatrix} C & E \\ E^T 0 \end{bmatrix} + \frac{1}{\lambda} \begin{bmatrix} G^T \Phi^T \Phi G & 0 \\ 0 & -I \end{bmatrix} \quad \text{(B.1b)}
\]

We can now prove the two directions of implication.

\((\Leftarrow)\) Assume that \((3b)\) holds, or, equivalently, \((B.1b)\). We have then that for some \(\lambda > 0\)
\[
[x^T ; y^T] \begin{bmatrix} C & E \\ E^T 0 \end{bmatrix} + \frac{1}{\lambda} \begin{bmatrix} G^T \Phi^T \Phi G & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq 0 \quad \forall (x,y).
\]

(B.2)

Consider now arbitrary \(x\) and \(F\) such that \(F^T F \preceq \Phi^T \Phi\). Select \(y = FG x\) in (B.2), and obtain that for each \(x\) and \(F\) such that \(F^T F \preceq \Phi^T \Phi\)
\[
0 \geq \begin{bmatrix} x^T \\ FG x \end{bmatrix} \begin{bmatrix} (C + EFG + G^T F^T E^T) x + 1^T G^T \Phi^T \Phi G x \\ (E^T 0)^T \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq 0
\]

since \(\lambda > 0\) and \(F^T F \preceq \Phi^T \Phi\). In summary, we have shown that if \((3b)\) or, equivalently, \((B.1b)\) hold, then for each \(x\) and \(F\) with \(F^T F \preceq \Phi^T \Phi\), \(x^T (C + EFG + G^T F^T E^T) x \leq 0\), i.e., \((B.1a)\) or, equivalently, \((3a)\) hold.

Since we have shown this without invoking \(E \neq 0\) or \(F \neq 0\) or \(G \neq 0\), we have also proven the last statement of Fact 2.

\((\Rightarrow)\) First, we show that if \((B.1a)\) holds, then
\[
x^T C x + x^T E y + y^T E^T x \leq 0
\]
for all \((x,y); y^T y \leq x^T G^T \Phi^T \Phi G x.
\]

(B.3)

Consider arbitrary \(x\) and \(y\) that satisfy \(y^T y \leq x^T G^T \Phi^T \Phi G x\), i.e., \(|y|^2 \leq |\Phi G x|^2\). For such \(x\) and \(y\)
we can select \(F\) such that \(y = (y_1, \ldots, y_p) = FG x\) and \(F^T F \preceq \Phi^T \Phi\). Indeed, if \(\Phi G x = 0\), \(y = 0\) and \(F = 0\) in (B.1a) implies that (B.3) holds; \(\Phi G x \neq 0\), select
\[
F = \begin{bmatrix} y_1 \frac{x^T G^T \Phi^T \Phi (FG x)^T}{|FG x|^2} \\ \vdots \\ y_p \frac{x^T G^T \Phi^T \Phi (FG x)^T}{|FG x|^2} \end{bmatrix}
\]
which verifies \(FG x = y\) and
\[
F^T F = \frac{y^T y}{|FG x|^2} \Phi^T \Phi (FG x)^T \Phi^T \Phi = \Phi^T \Phi
\]
since \(x\) and \(y\) satisfy \(y^T y \leq x^T G^T \Phi^T \Phi G x\). We have shown that for all \(x\) and \(y\) such that \(y^T y \leq x^T G^T \Phi^T \Phi G x\), we can select \(F\) such that \(y = FG x\) and \(F^T F \preceq \Phi^T \Phi\), so that (B.1a) applies and gives
\[
0 \geq x^T C x + x^T EFG x + x^T G^T \Phi^T \Phi G x.
\]
\[= x^\top C x + x^\top E y + y^\top E^\top x, \]
i.e., (B.3) holds as we wanted to show.

Second, we apply Fact 5 to (B.3) or, better, to its equivalent version given for variable \(z := (x, y) \) as
\[
\begin{bmatrix}
C & E \\
E^\top & 0
\end{bmatrix} z \leq 0 \quad \forall z : \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} z \leq 0. \tag{B.4}
\]

We start verifying the assumption of Fact 5 that \(z^\top_0 \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} z_0 < 0 \) for some \(z_0 \). Suppose not by contradiction: i.e., for all \(z_0, z^\top_0 \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} z_0 \geq 0. \)
Then, for all \(x_0, \begin{bmatrix} x_0 \\
0
\end{bmatrix}^\top \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix} x_0 \\
0
\end{bmatrix} = -|\Phi G x_0|^2 \geq 0; \) i.e., for all \(x_0, \Phi G x_0 = 0. \) We now use that since \(F > 0, \Phi \) can be taken as the square root \(F^{1/2} \) of \(F \), which satisfies \(F^{1/2} > 0 \) [22, Thm. 7.2.6] and is invertible. Hence, it must be \(G x_0 = 0 \) for all \(x_0 \) and this is a contradiction since \(G \neq 0 \) by assumption and has thus at least a nonzero element which makes \(G x_0 \neq 0 \) for a suitable \(x_0 \) (e.g., a unit versor). Therefore, there is \(z_0 \) such that \(z^\top_0 \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} z_0 < 0, \) we can apply Fact 5 to (B.4) and, by it, there exists \(\lambda \geq 0 \) such that
\[
0 \geq \begin{bmatrix}
C & E \\
E^\top & 0
\end{bmatrix} - \lambda \begin{bmatrix}
-G^\top \Phi^\top \Phi G & 0 \\
0 & I
\end{bmatrix} = \begin{bmatrix}
C + \lambda G^\top \Phi^\top \Phi G & E \\
E^\top & -\lambda I
\end{bmatrix}.
\]
If \(\lambda = 0, \) we must have \(E = 0, \) which contradicts the assumption; hence, the existing \(\lambda \) is positive. By replacing \(\lambda > 0 \) with \(1/\lambda > 0, \) the last condition proves (B.1b) or, equivalently, (3b).