Supplementary Information

Diversity, Bioactivity Profiling and Untargeted Metabolomics of the Cultivable Gut Microbiota of Ciona intestinalis

Caroline Utermann 1, Vivien A. Echelmeyer 1, Ernest Oppong-Danquah 1, Martina Blümel 1, and Deniz Tasdemir 1,2*

1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
2 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
* Corresponding author (dtasdemir@geomar.de)

Supplementary Figures
Figure S1. Venn diagram of exclusive and shared peaks of three Streptomyces sp. extracts (CHG40-GYM, CHG48-GYM, CHG64-GYM) and one N. prasina extract (CKG58-GYM).
Figure S2. Putatively identified compounds detected in crude extracts of microorganisms associated with the gut of C. intestinalis.
Figure S3. FBMN of Streptomyces sp. extract CHG48-GYM.
Figure S4. FBMN of Micromonospora sp. extract CKG20-GYM.
Figure S5. FBMN of Bacillus sp. extract CKG24-GYM.
Figure S6. FBMN of Trichoderma sp. extracts CHG34-CAG and CHG34-PDA.
Figure S7. FBMN of Fusarium sp. extracts CHG38-CAG and CHG38-PDA.
Figure S8. FBMN of Penicillium sp. extracts CKG23-CAG and CKG23-PDA.
Figure S9. Experimental (black) and library (green) MS/MS spectra of bonactin (14), putatively identified in Streptomyces sp. extract CHG48-GYM.
Figure S10. Experimental (black) and library (green) MS/MS spectra of homononactyl homononactate (18), putatively identified in Streptomyces sp. extract CHG48-GYM.
Figure S11. Annotated MS/MS spectra of putatively novel lipopeptides detected in Trichoderma sp. extracts CHG34-CAG and CHG34-PDA.
Figure S12. Comparative metabolome analyses of Penicillium sp. extracts CKG23-CAG and CKG23-PDA.

Supplementary Tables
Table S1. Taxonomic classification of microbial strains isolated from the gut of C. intestinalis sampled in Helgoland and Kiel Fjord.
Table S2. Antimicrobial and anticancer activities (% inhibition at a test concentration of 100 µg/mL) of microbial crude extracts.
Table S3. Statistical comparison of chemically distinct bacterial crude extracts.
Table S4. Statistical comparison of chemically distinct fungal crude extracts.
Table S5. Putatively identified compounds produced by Streptomyces sp. extract CHG48-GYM.
Table S6. Putatively identified compounds produced by Micromonospora sp. extract CKG20-GYM.
Table S7. Putatively identified compounds produced by Bacillus sp. extract CKG24-GYM.
Table S8. Putatively identified compounds produced by Trichoderma sp. extracts CHG34-CAG and CHG34-PDA.
Table S9. Putatively identified compounds produced by Fusarium sp. extracts CHG38-CAG and CHG38-PDA.
Table S10. Putatively identified compounds produced by Penicillium sp. extracts CKG23-CAG and CKG23-PDA.

Supplementary References 1-65
Figure S1. Venn diagram of exclusive and shared peaks of three *Streptomyces* sp. extracts (CHG40-GYM, CHG48-GYM, CHG64-GYM) and one *N. prasina* extract (CKG58-GYM).
Figure S2. Putatively identified compounds detected in crude extracts of microorganisms associated with the gut of C. intestinalis. Chemical structures are labelled with their respective peak number (see Tables S5-S10).
Figure S2. (continued)
Figure S3. FBMN of *Streptomyces* sp. extract CHG48-GYM. The width of edges represents the cosine similarity between two nodes. See Table S5 for putatively annotated compounds.
Figure S4. FBMN of *Micromonospora* sp. extract CKG20-GYM. The width of edges represents the cosine similarity between two nodes. The FBMN was generated with edges having cosine score above 0.8. See Table S6 for putatively annotated compounds.
Figure S5. FBMN of *Bacillus* sp. extract CKG24-GYM. The width of edges represents the cosine similarity between two nodes. See Table S7 for putatively annotated compounds.
Figure S6. FBMN of *Trichoderma* sp. extracts CHG34-CAG and CHG34-PDA. The width of edges represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: light green: CHG34-CAG, dark green: CHG34-PDA. ISF: abundant in source fragments of detected metabolites. See Table S8 for putatively annotated compounds.
Figure S7. FBMN of *Fusarium* sp. extracts CHG38-CAG and CHG38-PDA. The width of edges represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: light blue: CHG38-CAG, dark blue: CHG38-PDA. See Table S9 for putatively annotated compounds.
Figure S8. FBMN of *Penicillium* sp. extracts CKG23-CAG and CKG23-PDA. The width of edges represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: light purple: CKG23-CAG, dark purple: CKG23-PDA. See Table S10 for putatively annotated compounds.
Figure S9. Experimental (black) and library (green) MS/MS spectra of bonactin (14), putatively identified in *Streptomyces* sp. extract CHG48-GYM. The spectral match was generated by the online platform GNPS [1].

Figure S10. Experimental (black) and library (green) MS/MS spectra of homononactyl homononactate (18), putatively identified in *Streptomyces* sp. extract CHG48-GYM. The spectral match was generated by the online platform GNPS [1].
Figure S11. Annotated MS/MS spectra of putatively novel lipopeptides detected in *Trichoderma* sp. extracts CHG34-CAG and CHG34-PDA. The putative amino acid sequences were predicted based on the experimentally determined MS/MS fragmentation pattern of m/z 770.5386 [M+H]+ (103; top) and m/z 754.5423 [M+H]+ (105; bottom; here shown for extract CHG34-PDA). Ala: alanine, Gly: glycine, Leu/Ile: (iso)leucine, Leuol/Ileol: (iso)leucinol, Oc: octanoyl, Ser: serine, Val: valine.
Figure S12. Comparative metabolome analyses of Penicillium sp. extracts CKG23-CAG and CKG23-PDA. (a) Venn diagram of shared and exclusive peaks detected in extract CKG23-CAG (light purple) and CKG23-PDA (dark purple). (b) Zearalenone cluster produced by Penicillium sp. isolate CKG23 (see Figure S8 for full FBMN). The width of edges represents the cosine similarity between two nodes. (c) Putatively annotated metabolites of the zearalenone cluster are displayed with their \textit{m/z} values and observed adducts. Compound numbers are in accordance with Table S10.
Table S1. Taxonomic classification of microbial strains isolated from the gut of *C. intestinalis* sampled in Helgoland and Kiel Fjord. Strain codes are based on the respective sampling location and sampled tissue (CHG = *C. intestinalis* from Helgoland, gut; CKG = *C. intestinalis* from Kiel Fjord, gut). The three closest related strains are given according to the BLAST search [2]. RG = risk group (according to TRBA 460 and TRBA 466). Acc. no.: Accession number.

Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
CHG1	MB	MW065489	16S	Uncultured *Vibrio* sp.	MG554543.1	*Vibrio* sp. (Vibrionales)	1
				Uncultured *Vibrio* sp.	MG554505.1		
				Vibrio owensii	CP025797.1		
CHG2	MB	MW065490	16S	*Ruegeria* sp.	KY363633.1	*Ruegeria atlantica* (Rhodobacterales)	1
				Ruegeria sp.	KX833139.1		
				Ruegeria atlantica	JN128252.1		
CHG3	MB	MW065491	16S	Bacterium b1cb16	EF207071.1	*Shewanella* sp. (Alteromonadales)	1
				Shewanella piezotolerans	MF975607.1		
					CP000472.1		
CHG4	MB	MW065492	16S	*Citrobacter amalonaticus*	MG238567.1	*Citrobacter* sp. (Enterobacterales)	2
				Citrobacter farmeri	CP022695.1		
				Citrobacter sp.	LT556085.1		
CHG5	MB	MW065493	16S	*Shewanella woodyi*	NR_114412.1	*Shewanella woodyi* (Alteromonadales)	1
				Shewanella woodyi	NR_074846.1		
				Shewanella woodyi	CP000961.1		
CHG6	TSB	MW065494	16S	*Shewanella schlegeliana*	MG388302.1	*Shewanella* sp. (Alteromonadales)	1
				Shewanella sairae	AB274769.1		
				Shewanella schlegeliana	AB274767.1		
CHG7	TSB	MW065495	16S	*Shewanella putrefaciens*	MG976650.1	*Shewanella* sp. (Alteromonadales)	2
				Shewanella hafniensis	MF612155.1		
				Shewanella xiamenensis	MF033476.1		
CHG8	TSB	MW065496	16S	*Shewanella* sp.	KJ748462.1	*Shewanella* sp. (Alteromonadales)	2
				Shewanella sp.	KJ748460.1		
				Shewanella algae	KX218308.1		
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	----------	----------	--------------------------------	---------------------------------	---------------------------------------	-----
CHG9	TSB	MW065497	16S	*Escherichia coli*	CP025753.1	*Escherichia coli* (Enterobacterales)	2
				Escherichia coli	CP025747.1		
				Escherichia coli	CP025739.1		
CHG10	CMN	MW065498	16S	*Vibrio alginolyticus*	KY229785.1	*Vibrio sp.* (Vibrionales)	2
				Vibrio alginolyticus	JN188414.1		
				Vibrio alginolyticus	KY684259.1		
CHG11	CMN	MW065499	16S	*Ruegeria sp.*	KY363633.1	*Ruegeria atlantica* (Rhodobacterales)	1
				Ruegeria sp.	KX833139.1		
				Ruegeria atlantica	HQ908680.1		
CHG12	CMN	MW065500	16S	Uncultured bacterium clone	KX078089.1	*Shewanella sp.* (Alteromonadales)	1
				SanDiego.a2585	KF799676.1		
				Uncultured bacterium clone	KF799675.1		
				SanDiego.a2547			
CHG16	WSP	MW065501	16S	*Vibrio sp.*	MK533523.1	*Vibrio sp.* (Vibrionales)	1
				Vibrio sp.	MK533517.1		
				Vibrio owensii	CP033138.1		
CHG19	WSP	MW064137	ITS	Fungal sp. isolate whc1	MH465392.1	*Arthrinium sp.* (Xylariales)	1
				Arthrinium arundinis	KX778674.1		
				Arthrinium sacchari	KX778672.1		
CHG20	WSP	MW065502	16S	*Citrobacter freundii*	CP027849.1	*Citrobacter freundii* (Enterobacterales)	2
				Citrobacter freundii complex	CP026231.1		
				Citrobacter freundii	CP011657.1		
CHG21	WSP	MW065503	16S	*Citrobacter braakii*	MH368419.1	*Citrobacter braakii* (Enterobacterales)	2
				Citrobacter sp.	MH368123.1		
				Citrobacter braakii	CP022049.2		
CHG22	WSP	MW064138	ITS	Uncultured *Penicillium clone*	KT581734.1	*Penicillium hoeksii* (Eurotiales)	1
				WPW-OTU-32	NR_137913.1		
				Penicillium hoeksii	KX305048.1		
				Penicillium hoeksii			
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	---------	----------	-------------------------------	-------------------------------	---------------------------------------	-----
CHG24	WSP	MW064139	ITS	Aspergillus niger Fungal sp. SNB-LAPI-7-61 Aspergillus niger	MG647867.1 KU977335.1 MH050790.1	Aspergillus sp. (Eurotales)	2
CHG25	WSP	MW064140	ITS	Penicillium expansum Penicillium sp. Penicillium ulaiense	MF303721.1 KP403971.1 LN871568.1	Penicillium sp. (Eurotales)	1
CHG26	WSP	MW064141	ITS	Uncultured Galactomyces clone P71B Geotrichum candidum Geotrichum candidum	MG193553.1 MH680587.1 MF782775.1	Galactomyces candidum (Saccharomycetales)	1
CHG28	WSP	MW064142	ITS	Trichoderma harzianum Trichoderma sp. Trichoderma harzianum	MF871539.1 MH285106.1 KY750434.1	Trichoderma sp. (Hypocreales)	1
CHG29	PDA	MW064143	ITS	Uncultured Didymella clone 191_K9ov Stagonosporopsis cucurbitacearum	KF525844.1 KY430454.1 KU168143.1	Phoma sp. (Pleosporales)	1
CHG32	TSB	MW065504	16S	Vibrio ruminonis Vibrio sp. Vibrio owensii	AP018685.1 MG262453.1 MH368433.1	Vibrio sp. (Vibrionales)	1
CHG34	WSP	MW064144	ITS	Trichoderma sp. Trichoderma harzianum Trichoderma harzianum	MF871539.1 KY750434.1	Trichoderma sp. (Hypocreales)	1
CHG35	PDA	MW064145	ITS	Penicillium sp. Penicillium antarcticum Penicillium atrovenetum	KY401117.1 KP016829.1 KF679753.1	Penicillium sp. (Eurotales)	1
CHG38	WSP	MW064146	ITS	Fusarium graminearum Fusarium graminearum Fusarium graminearum	MK079896.1 MK079895.1 MK079894.1	Fusarium sp. (Hypocreales)	1
CHG39	WSP	MW065505	16S	Bacillus subtilis Bacillus subtilis Bacillus velezensis	MG977677.1 MG976620.1 MG970354.1	Bacillus sp. (Bacillales)	1
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	----------	----------	--------------------------------	---------------------------------	--	-----
CHG40	TSB	MW065506	16S	Streptomyces sp.	KY613504.1	Streptomyces sp. (Streptomycetales)	1
				Streptomyces parvus	KY213676.1		
				Streptomyces lavendulae	KY213666.1		
CHG41	TSB	MW065507	16S	Bacillus licheniformis	KY886241.1	Bacillus licheniformis (Bacillales)	1
				Uncultured bacterium clone OTU3	KP975259.1		
				Streptomyces sp.	KC522129.1		
CHG42	TSB	MW065508	16S	Shewanella algae	NR_114236.1	Shewanella sp. (Alteromonadales)	2
				Shewanella alga	NR_117771.1		
				Shewanella halodatis	NR_117770.1		
CHG43	MB	MW065509	16S	Vibrio splendidus	MH010050.1	Vibrio sp. (Vibrionales)	2
				Vibrio sp.	MG788349.1		
				Vibrio anguillarum	CP023433.1		
CHG44	MB	MW064147	ITS	Aspergillus oryzae	MH625703.1	Aspergillus sp. (Eurotiales)	2
				Aspergillus oryzae	MH578599.1		
				Aspergillus flavus			
CHG47	WSP	MW064148	ITS	Arthrinium sp.	MH059547.1	Arthrinium sp. (Xylariales)	1
				Arthrinium sp.	MH059539.1		
				Arthrinium arundinis	MK256947.1		
CHG48	WSP	MW065510	16S	Streptomyces sp.	MG637270.1	Streptomyces sp. (Streptomycetales)	1
				Streptomyces pratensis	MG637268.1		
				Streptomyces pratensis	MK484235.1		
CHG49	PDA	MW064175	18S	Uncultured fungus clone nco40d10c1	KC670836.1	Pleosporaceae (Pleosporales)	1
				Uncultured fungus clone nco40a09c1	KC670799.1		
				Pyrenophora tritici-repentis	U42486.1		
CHG52	WSP	MW064149	ITS	Penicillium cosmopolitanum	MH864385.1	Penicillium sp. (Eurotiales)	1
				Penicillium cosmopolitanum	MH864384.1		
				Penicillium cosmopolitanum	MH864377.1		
CHG53	PDA	MW064150	ITS	Trichoderma sp.	MH794211.1	Trichoderma sp. (Hypocreales)	1
				Trichoderma sp.	MH284929.1		
				Trichoderma koningii	KX343123.1		
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	---------	----------	---------------------------------	---------------------------------	--	-----
CHG56	TSB	MW064151	ITS	Aspergillus nidulans	MG459155.1, MH041155.1, MG991576.1	Aspergillus sp. (Eurotiales)	1
CHG59	PDA	MW064152	ITS	Tamaricola sp.	MG977427.1, MG977425.1, KU714703.1	Tamaricola sp. (Pleosporales)	1
CHG60	TSB	MW064153	ITS	Peroneutypa sp.	MF359647.1, EU436688.1, JQ922161.1	Peroneutypa sp. (Xylariales)	1
CHG61	TSB	MW065511	16S	Uncultured bacterium clone	FN434816.1, MG554532.1, CP022468.1	Vibrio sp. (Vibrionales)	2
CHG64	TSB	MW065512	16S	Streptomyces microflavus	MG855947.1, MH251131.1, MH250821.1	Streptomyces sp. (Streptomycetales)	1
CKG1	MB	MW065513	16S	Pseudomonas sp.	KX621130.1, KJ814609.1, DQ005209.1	Pseudomonas sp. (Pseudomonadales)	1
CKG2	MB	MW065514	16S	Rhodococcus sp.	MG515722.1, LN867321.1, NR_145614.1	Rhodococcus sp. (Corynebacteriales)	2
CKG3	MB	MW065515	16S	Shewanella sp.	FR821223.1, FR744880.1, KX271676.1	Shewanella sp. (Alteromonadales)	1
CKG4	MB	MW065516	16S	Vibrio sp.	MG788349.1, CP023433.1, CP023293.1	Vibrio sp. (Vibrionales)	2
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	---------	----------	---------------------------------	---------------------------------	--	-----
CKG5	MB	MW065517	16S	Nocardiopsis alba	MH843138.1	Nocardiopsis sp. (Streptosporangiales)	1
					MH843137.1		
					MH843136.1		
CKG6	MB	MW065518	16S	Shewanella aestuarii	KX271676.1	Shewanella aestuarii (Alteromonadales)	1
					KX271675.1		
					KX271674.1		
CKG7	MB	MW065519	16S	Vibrio owensii	LC369696.1	Vibrio sp. (Vibrionales)	1
					MG896198.1		
					MG896189.1		
CKG8	MB	MW065520	16S	Vibrio sp.	MG788349.1	Vibrio sp. (Vibrionales)	2
					CP023433.1		
					CP023293.1		
CKG9	CMN	MW065521	16S	Vibrio sp.	MG788349.1	Vibrio sp. (Vibrionales)	2
					CP023433.1		
					CP023293.1		
CKG10	CMN	MW065522	16S	Uncultured Vibrio sp. clone HH101354	MG554532.1	Vibrio sp. (Vibrionales)	2
					MG554529.1		
					CP022446.1		
CKG11	CMN	MW065523	16S	Shewanella aestuarii	KX271676.1	Shewanella aestuarii (Alteromonadales)	1
					KX271675.1		
					KX271674.1		
CKG12	TSB	MW065524	16S	Vibrio owensii	MG896198.1	Vibrio sp. (Vibrionales)	1
					CP026321.1		
					KY655411.1		
CKG13	TSB	MW065525	16S	Uncultured marine bacterium isolate	KJ814609.1	Pseudomonas sp. (Pseudomonadales)	1
				TGGGE gel band 22TGGGE1	JQ012964.1		
				Pseudomonas sp.	MG687270.1		
CKG14	TSB	MW065526	16S	Shewanella sp.	FR821223.1	Shewanella sp. (Alteromonadales)	1
					FR744880.1		
					KX271676.1		
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	---------	----------	--------------------------------	---------------------------------	--	-----
CKG15	TSB	MW065527	16S	Shewanella sp.	MF045123.1	Shewanella (Alteromonadales)	1
CKG16	TSB	MW064154	ITS	Eutypa lata	MF359647.1	Eutypa lata (Xylariales)	1
CKG19	TSB	MW065528	16S	Bacillus pumilus	CP027034.1	Bacillus sp. (Bacillales)	2
CKG20	TSB	MW065529	16S	Micromonospora sp.	EU437811.1	Micromonospora sp. (Micromonosporales)	1
CKG21	CMN	MW065530	16S	Bacillus hwajinpoensis	MG651497.1	Bacillus hwajinpoensis (Bacillales)	1
CKG22	PDA	MW064155	ITS	Penicillium antarcticum	MH828228.1	Penicillium sp. (Eurotiales)	1
CKG23	WSP	MW064156	ITS	Penicillium antarcticum	MH828228.1	Penicillium sp. (Eurotiales)	1
CKG24	WSP	MW065531	16S	Bacillus subtilis	KC428745.1	Bacillus sp. (Bacillales)	1
CKG25	WSP	MW064157	ITS	Geotrichum candidum	KF713521.1	Galactomyces candidum (Saccharomycetales)	1
CKG27	WSP	MW065532	16S	Bacillus muralis	MF506797.1	Bacillus sp. (Bacillales)	2
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	-----------------	---------	----------	---------------------------------	---------------------------------	--	----
CKG29	WSP	MW065533	16S	*Bacillus amyloliquefaciens*	MG136848.1	*Bacillus* (Bacillales)	1
				Bacillus amyloliquefaciens	MG136846.1		
				Bacillus subtilis	MG977677.1		
CKG30	WSP	MW065534	16S	*Bacillus pumilus*	CP027034.1	*Bacillus* (Bacillales)	2
				Bacillus pumilus	KY623354.1		
				Bacillus zhongzhouensis	MG937731.1		
CKG31	PDA	MW065535	16S	*Vibrio* sp.	LC416561.1	*Shewanella kairetica* (Alteromonadales)	1
				Shewanella sp.	MH333258.1	*Shewanella kairetica* (Alteromonadales)	
					KX078089.1		
CKG32	WSP	MW064158	ITS	*Fusarium graminearum*	MF800908.1	*Fusarium* (Hypocreales)	1
				Fusarium graminearum	KY466827.1	*Fusarium* (Hypocreales)	
				Fusarium graminearum	KY466825.1		
CKG33	WSP	MW064159	ITS	*Mucor hiemalis*	HQ845045.1	*Mucor hiemalis* (Mucorales)	1
				Mucor hiemalis	HM037964.1	*Mucor hiemalis* (Mucorales)	
				Mucor hiemalis	HM037963.1		
CKG36	TSB	MW065536	16S	*Bacillus sp.*	CP020437.2	*Bacillus* (Bacillales)	2
				Bacillus cereus	MG977683.1	*Bacillus* (Bacillales)	
				Bacillus cereus	MG966498.1		
CKG37	CMN	MW064160	ITS	*Sarocladium strictum*	MH880255.1	*Sarocladium strictum* (Hypocreales)	1
				Sarocladium strictum	LC314675.1	*Sarocladium strictum* (Hypocreales)	
				Sarocladium strictum	MF663649.1		
CKG38	CMB	MW065537	16S	*Pseudomonas sp.*	KT710819.1	*Pseudomonas anguilliseptica* (Pseudomonadales)	1
				Pseudomonas sp.	KT710818.1	*Pseudomonas anguilliseptica* (Pseudomonadales)	
				Pseudomonas sp.	JX177684.1		
CKG39	TSB	MW065538	16S	*Bacillus licheniformis*	MG980062.1	*Bacillus* (Bacillales)	1
				Bacillus licheniformis	MG280960.1	*Bacillus* (Bacillales)	
				Bacillus licheniformis	MG189544.1		
CKG40	WSP	MW065539	16S	Uncultured *Klebsiella* sp. clone JXS1-28	JN873189.1	*Klebsiella* (Enterobacterales)	2
				Klebsiella sp.	KM873628.1	*Klebsiella* (Enterobacterales)	
				Raoultella ornithinolytica	CP010557.1		
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	----------	----------	-------------------------------	---------------------------------	--	----
CKG42	WSP	MW064161	ITS	*Elaphocordyceps* sp.	KC237381.1	*Elaphocordyceps* sp. (Hypocreales)	1
					KC237380.1		
					KX034386.1		
CKG43	WSP	MW065540	16S	*Bacillus subtilis*	MG928427.1	*Bacillus* sp. (Bacillales)	1
				Bacillus siamensis	KY962351.1		
					KY962340.1		
CKG44	WSP	MW064162	ITS	Uncultured *Neonectria coccinea* AEW3_110	KJ022022.1	*Neonectria coccinea* (Hypocreales)	1
					KF823598.1		
					KC660506.1		
CKG45	WSP	MW064163	ITS	*Purpureocillium lilacinum*	KY007618.1	*Purpureocillium lilacinum* (Hypocreales)	2
					MH865347.1		
					MH865301.1		
CKG46	TSB	MW065541	16S	*Nocardiopsis* sp.	MK045298.1	*Nocardiopsis prasina* (Streptosporangiales)	1
				Nocardiopsis prasina	MF594115.1		
					MF170851.1		
CKG47	CMN	MW065542	16S	*Vibrio* sp.	MG788349.1	*Vibrio* sp. (Vibrionales)	2
				Vibrio anguillarum	CP023433.1		
					CP023293.1		
CKG49	WSP	MW064164	ITS	*Mucor circinelloides*	MH911362.1	*Mucor circinelloides* (Mucorales)	1
					KC329629.1		
					JX241658.1		
CKG50	CMN	MW065543	16S	*Sporosarcina* sp.	KX108967.1	*Sporosarcina* sp. (Bacillales)	1
				Sporosarcina sp.	KT368976.1		
					KF800793.1		
CKG51	CMN	MW064165	ITS	*Penicillium polonicum*	KY978579.1	*Penicillium* sp. (Eurotiales)	1
					KY993979.1		
					KY092668.1		
CKG52	CMN	MW065544	16S	*Vibrio* sp.	MG788349.1	*Vibrio* sp. (Vibrionales)	2
				Vibrio anguillarum	CP023433.1		
					CP023293.1		
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	----------	----------	---------------------------------	----------------------------------	--	----
CKG53	CMN	MW065545	16S	*Streptomyces* sp.	MK134635.1	*Streptomyces* sp. (Streptomycetales)	2
CKG54	CMB	MW064176	18S	*Cordyceps farinosa* Fungal sp. J271 Isaria farinosa	MH857775.1 KC242713.1 KC242708.1	*Cordyceps farinosa* (Hypocreales)	1
CKG55	MB	MW065546	16S	*Nocardiopsis alba* Nocardiopsis alba Nocardiopsis alba	MH333283.1 MF321814.1 MF321809.1	*Nocardiopsis alba* (Streptosporangiales)	1
CKG57	CMB	MW064166	ITS	*Aaosphaeria arxii* Arthopyrenia sp. Massarina igniaria	MH861193.1 KU747910.1 KR534712.1	*Arthopyrenia* sp. (Pleosporales)	1
CKG58	CMB	MW065547	16S	*Nocardiopsis* sp.	MK045298.1 MF594115.1 MF170851.1	*Nocardiopsis* prasina (Streptosporangiales)	1
CKG60	MB	MW065548	16S	*Enterobacter* sp.	MF429589.1 MH392488.1 MG75538.1	*Citrobacter* sp. (Enterobacterales)	2
CKG62	PDA	MW064167	ITS	*Trichoderma* sp. *Trichoderma* hirae *Trichoderma* harzianum	MK290992.1 MK288146.1 MK209008.1	*Trichoderma* sp. (Hypocreales)	1
CKG63	WSP	MW064168	ITS	*Penicillium* psychrosexualis *Penicillium* psychrosexualis *Penicillium* psychrosexualis	MH864839.1 MH864838.1 MH864787.1	*Penicillium* sp. (Eurotiales)	1
CKG64	CMB	MW064169	ITS	*Penicillium* polonicum *Penicillium* polonicum *Penicillium* polonicum	MK271277.1 MK267441.1 MK07720.1	*Penicillium* sp. (Eurotiales)	1
CKG66	CMB	MW064170	ITS	Uncultured fungus clone ZB042802405(86) Fungal sp. strain PS14 *Acrostalagmus* luteolbus	MF962944.1 MH456880.1 KT824244.1	*Acrostalagmus* luteolbus (Hypocreales)	1
Strain code	Isolation medium	Acc. no.	Amplicon	Closest related species (BLAST)	Acc. no. closest related species	Lowest taxonomic classification (order)	RG
-------------	------------------	-----------	----------	---------------------------------	----------------------------------	---	----
CKG67_I	CMB	MW064171	ITS	Purpureocillium lilacinum	LC413751.1	Purpureocillium lilacinum (Hypocreales)	2
				Purpureocillium lilacinum	MF996819.1		
				Purpureocillium lilacinum	KF706346.1		
CKG67_II	WSP	MW065549	16S	Nocardiosis alba	MH333283.1	Nocardiosis alba (Streptosporangiales)	1
				Nocardiosis alba	MH071379.1		
				Nocardiosis alba	MF321814.1		
CKG68	WSP	MW064172	ITS	Purpureocillium lilacinum	MH865347.1	Purpureocillium lilacinum (Hypocreales)	2
				Purpureocillium lilacinum	MH865301.1		
				Purpureocillium lilacinum	MH865154.1		
CKG70	TSB	MW064173	ITS	Plectosphaerella cucumerina	MH791266.1	Plectosphaerella cucumerina (Glomerellales)	1
				Fungal sp. strain S255T	KU839553.1		
				Fungal sp. strain S255S	KU839552.1		
CKG71	TSB	MW064174	ITS	Sarocladium strictum	KY465763.1	Sarocladium strictum (Hypocreales)	1
				Fungal sp. strain S254T	KU839539.1		
				Fungal sp. strain S254S	KU839538.1		
Table S2. Antimicrobial and anticancer activities (% inhibition at a test concentration of 100 µg/mL) of microbial crude extracts. Inhibition values are given as average values of the two biological and two technical replicates. Some bacterial isolates were only cultivated on MB medium, since they did not grow on GYM medium. Extracts selected by the bioactivity selection criterion (see Section 2.3.) are highlighted in blue. MRSA: Methicillin-resistant *Staphylococcus aureus*, Efm: *Enterococcus faecium*, Ab: *Acinetobacter baumannii*, Ec: *Escherichia coli*, Kp: *Klebsiella pneumoniae*, Psa: *Pseudomonas aeruginosa*, Ca: *Candida albicans*, Cn: *Cryptococcus neoformans*, A375: Malignant melanoma, A549: Lung carcinoma, HCT116: Colon cancer, MB231: Breast cancer; “-”: Inhibition ≤20%; in bold: Inhibition values ≥80%; AC: extract was selected based on high anticancer activity (inhibition ≥80%); AM: extract was selected based on high antimicrobial activity (inhibition ≥80%).

Strain	Identification	Medium	MRSA	Efm	Ab	Ec	Kp	Psa	Ca	Cn	A375	A549	HCT116	MB231	Selected?
CHG2	*Ruegeria atlantica*	MB	73	-	-	-	-	-	-	-	-	-	-	-	36
CHG3	*Shewanella sp.*	MB	92	52	-	-	-	-	-	-	-	-	-	-	
CHG5	*Shewanella woodyi*	MB	95	78	-	-	-	-	-	-	-	-	-	-	
CHG6	*Shewanella sp.*	GYM	100	92	-	-	-	-	-	-	-	-	-	-	
CHG12	*Shewanella sp.*	MB	88	100	-	-	-	-	-	-	-	-	-	-	26
CHG16	*Vibrio sp.*	MB	98	100	-	-	-	-	-	-	-	-	-	-	
CHG19	*Arthrinium sp.*	CAG	-	-	-	-	-	65	-	71	78	75	78		
		PDA	-	-	-	-	-	26	-	53	25	44			
CHG22	*Penicillium hoeksi*	CAG	85	-	-	-	-	-	-	25	31	25	29		
		PDA	84	-	-	-	-	-	-	63	48	59	48		
CHG25	*Penicillium sp.*	CAG	99	100	98	100	100	100	-	98	93	98	92	Yes (AC)	
		PDA	98	84	97	100	100	100	99	99	98	99	95	Yes (AC)	
CHG26	*Galactomyces candidum*	CAG	96	33	-	-	-	-	-	-	-	-	-		
		PDA	54	-	-	-	-	-	-	-	-	-	-		
CHG29	*Phoma sp.*	CAG	-	-	-	-	-	-	-	-	-	-	-		
		PDA	-	-	-	-	-	-	-	-	-	-	-		
CHG32	*Vibrio sp.*	MB	79	-	-	-	-	-	-	-	-	-	-		
CHG34	*Trichoderma sp.*	CAG	41	-	-	-	-	24	-	97	96	95	93	Yes (AC)	
		PDA	94	100	-	-	-	100	92	98	99	99	98	Yes (AC & AM)	
CHG35	*Penicillium sp.*	CAG	100	100	99	99	100	84	-	21	72	93	95	64	Yes (AC)
Strain	Identification	Medium	MRSA	Efm	Ab	Ec	Kp	PsA	Ca	Cn	A375	A549	HCT116	MB231	Selected?
----------	----------------------	--------	------	-----	----	----	----	-----	----	----	------	------	---------	-------	-------------
CHG38	Fusarium sp.	PDA	98	74	98	98	100	77	-	-	89	98	98	72	Yes (AC)
		CAG	100	100	-	-	-	92	96	98	65	93	40		
CHG39	Bacillus sp.	GYM	97	100	-	-	-	-	-	-	69	73	48	69	
		MB	96	94	-	-	-	-	-	-	30	29	-	31	
CHG40	Streptomyces sp.	GYM	100	100	-	-	-	61	37	98	99	98	99		Yes (AC)
		MB	100	87	-	-	-	-	-	-	51	51	55	61	
CHG41	Bacillus licheniformis	GYM	69	-	-	-	-	-	-	-	62	33	38	51	
		MB	66	-	-	-	-	-	-	-	25	33	-	33	
CHG48	Streptomyces sp.	GYM	100	100	-	-	-	100	97	98	92	88	93		Yes (AC & AM)
		MB	100	100	-	-	-	72	71	69	71	74			
CHG49	Pleosporaceae	CAG	99	84	97	100	100	100	38	53	99	95	98	94	Yes (AC)
		PDA	98	68	98	100	100	82	28	-	97	97	98	53	
CHG52	Penicillium sp.	CAG	92	88	-	-	-	30	-	-	30	33	-		
		PDA	95	96	-	-	-	-	-	-	72	71	69	71	
CHG53	Trichoderma sp.	CAG	-	-	-	-	-	-	-	-	20	-	-		
		PDA	-	-	-	-	-	-	-	-	-	-	-		
CHG56	Aspergillus sp.	CAG	67	-	-	-	-	-	22	26	34	34	46		
		PDA	70	-	-	-	-	-	30	37	34	34	59		
CHG59	Tamariccola sp.	CAG	92	-	36	-	-	-	-	-	-	-	-		
		PDA	91	-	37	-	-	-	-	-	-	-	-		
CHG60	Peroneutypa sp.	CAG	35	-	33	-	-	-	-	-	47	35	46		
		PDA	32	-	-	-	-	-	33	36	25	-	-		
CHG64	Streptomyces sp.	GYM	100	97	-	-	-	99	98	99	98	98	98		Yes (AC)
		MB	100	98	-	-	-	58	23	50					
CKG5	Nocardiopsis sp.	GYM	-	46	-	-	-	-	-	-	29	-	48	-	
CKG6	Shewanelia aestuarii	MB	100	94	-	-	-	-	-	-	-	-	-	-	
Strain	Identification	Medium	MRSA	Efm	Ab	Ec	Kp	Psa	Ca	Cn	A375	A549	HCT116	MB231	Selected?
---------	-------------------------	--------	------	-----	----	----	----	-----	----	----	------	------	---------	-------	-----------
CKG7	Vibrio sp.	MB	34	-	-	-	-	-	-	-	-	-	-	-	-
CKG12	Vibrio sp.	MB	100	74	-	-	-	-	-	-	-	-	-	-	-
CKG13	Pseudomonas sp.	MB	35	-	-	-	-	-	-	-	-	-	-	-	-
CKG15	Shewanella colwelliana	MB	100	100	-	-	-	-	-	-	-	-	-	-	-
CKG16	Eutypa lata	CAG	46	-	31	-	-	-	-	26	34	33	-	-	Yes (AC)
		PDA	-	-	29	-	-	-	-	33	26	32	-	-	
CKG20	Micromonospora sp.	GYM	100	100	-	-	-	-	98	100	99	100	-	-	Yes (AC)
		MB	53	-	-	-	-	-	-	-	-	-	-	-	
CKG21	Bacillus hwajinpoensis	GYM	65	-	-	-	-	-	-	-	20	-	-	-	
		MB	100	100	-	-	-	-	-	-	-	-	-	-	
CKG23	Penicillium sp.	CAG	100	98	100	100	100	89	-	-	97	98	98	97	Yes (AC)
		PDA	100	100	98	100	100	75	-	41	95	98	77	92	Yes (AC)
CKG24	Bacillus sp.	GYM	100	100	-	-	-	-	94	72	98	63	34	-	Yes (AC & AM)
		MB	100	100	-	-	-	-	-	51	54	43	59		
CKG25	Galactomyces candidum	CAG	100	100	100	100	100	85	-	-	96	99	92	82	Yes (AC)
		PDA	99	99	100	100	100	93	-	-	98	99	99	93	Yes (AC)
CKG31	Shewanella kaireticia	GYM	100	100	34	-	-	-	-	-	27	26	25		
		MB	100	100	34	-	-	-	-	-	20	-	-	-	
CKG32	Fusarium sp.	CAG	100	100	-	-	-	-	89	40	61	20	29	-	Yes (AM)
		PDA	99	86	-	-	-	60	-	21	-	-	-	-	
CKG33	Mucor hiemalis	CAG	62	-	-	-	-	-	-	-	27	27	48		
		PDA	77	-	-	-	-	-	-	-	-	-	-	-	
CKG37	Sarocladium strictum	CAG	100	94	-	38	-	-	-	-	-	-	-	-	
		PDA	95	47	-	41	-	-	-	78	48	58	56		
CKG38	Pseudomonas anguilliseptica	GYM	100	100	-	-	-	-	85	49	68	24	91	88	Yes (AC & AM)
		MB	100	97	-	-	-	-	80	73	-	-	-	-	Yes (AM)
CKG39	Bacillus sp.	GYM	-	-	-	-	-	-	-	-	-	-	-	-	
		MB	37	-	-	-	-	-	-	-	-	-	-	-	
Strain	Identification	Medium	MRSA	Efm	Ab	Ec	Kp	Psa	Ca	Cn	A375	A549	HCT116	MB231	Selected?
----------	---------------------------------	--------	------	-----	-----	-----	-----	-----	-----	-----	------	------	--------	-------	-------------
CKG42	*Elaphocordyces* sp.	CAG	76	-	-	-	-	-	37	-	-	-	-	-	
		PDA	82	66	-	-	-	35	38	26	-	-	-	-	
CKG43	*Bacillus* sp.	GYM	92	100	-	-	-	-	38	-	24	-	-	-	
		MB	94	100	-	-	-	-	26	-	-	-	-	-	
CKG44	*Neonectria coccinea*	CAG	54	-	-	-	-	-	24	-	-	-	28	-	
		PDA	-	-	-	-	-	-	-	-	-	-	-	-	
CKG49	*Mucor circinelloides*	CAG	89	98	-	-	-	-	21	35	44	22	-	-	
		PDA	100	100	-	-	-	-	66	37	79	43	-	-	
CKG50	*Sporosarcina* sp.	GYM	100	96	-	-	-	-	-	-	-	-	-	-	
		MB	100	98	-	-	-	-	-	-	-	-	20	-	
CKG54	*Cordyceps farinosa*	CAG	98	95	-	-	-	-	56	-	30	-	-	-	
		PDA	99	97	-	-	-	-	52	24	42	-	-	-	
CKG57	*Arthopyrenia* sp.	CAG	66	-	-	-	-	-	-	-	-	-	-	-	
		PDA	52	-	-	-	-	-	-	-	-	-	-	-	
CKG58	*Nocardiosis prasina*	GYM	81	98	-	-	-	-	81	54	99	99	99	98	Yes (AC & AM)
		MB	100	99	-	-	-	-	31	26	-	38	-	61	
CKG62	*Trichoderma* sp.	CAG	30	-	-	-	-	-	88	-	28	-	-	-	
		PDA	70	100	-	31	-	-	93	74	98	98	99	98	Yes (AC & AM)
CKG63	*Penicillium* sp.	CAG	96	25	26	-	-	21	36	-	45	50	30	64	
		PDA	76	22	84	71	82	59	-	51	80	49	77	-	Yes (AC)
CKG64	*Penicillium* sp.	CAG	-	-	-	-	-	37	-	-	21	-	37	-	
		PDA	70	-	-	-	-	-	-	-	34	30	45	-	
CKG66	*Acrostalagmus luteolalus*	CAG	100	100	86	28	-	22	-	-	87	89	83	89	Yes (AC)
		PDA	87	51	-	-	-	-	-	-	25	70	-	-	
CKG70	*Plectosphaerella* cucumerina	CAG	56	-	-	-	-	-	-	-	-	-	-	-	
		PDA	69	-	-	-	-	-	-	-	-	-	-	-	
Table S3. Statistical comparison of chemically distinct bacterial crude extracts. ANOSIM was based on Euclidean distance. Group 1 included the following extracts: *Pseudomonas anguilliseptica* extracts CKG38-GYM and CKG38-MB and *Streptomyces* sp. extracts CHG40-GYM and CHG64-GYM.

Comparison	R value	p value
All	1	0.0001
Group 1 x Group 2 (CHG48-GYM, CKG58-GYM)	1	0.0022
Group 1 x Group 3 (CKG20-GYM)	1	0.0229
Group 1 x Group 4 (CKG24-GYM)	1	0.0232

Table S4. Statistical comparison of chemically distinct fungal crude extracts. ANOSIM was based on Euclidean distance. Group 1 included the following extracts: *Acrostalagmus luteoalbus* extract CKG66-CAG, *Galactomyces candidum* extracts CKG25-CAG and CKG25-PDA, *Penicillium* sp. extracts CHG25-CAG, CHG25-PDA, CHG35-CAG, CHG35-PDA, CKG23-CAG and CKG63-PDA and *Pleosporaceae* extracts CHG49-CAG and CHG49-PDA.

Comparison	R value	p value
All	0.8363	0.0001
Group 1 x Group 2 (CHG34-CAG, CHG34-PDA, CKG62-PDA)	0.9369	0.0001
Group 1 x Group 3 (CHG38-CAG, CHG38-PDA, CKG32-CAG)	0.6822	0.0001
Group 1 x Group 4 (CKG23-PDA)	0.9996	0.0055
Table S5. Putatively identified compounds produced by *Streptomyces* sp. extract CHG48-GYM. Putative annotations were based on the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e3); Ref = reference(s).

No.	m/z value	Adduct	Rt (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref
1	225.1104	[M+H]+	3.07	1.8	C₉H₁₀N₂O₄	181.1201, 164.1114, 141.9593, 97.9700	4	n.a.			
2	208.0976	[M+H]+	3.1	1	C₈H₁₀N₂O₃	190.0865, 166.0866, 164.1073, 146.0968, 135.0804, 131.0732, 122.0962, 118.0657	3	Streptazolin	Oxazolidone alkaloid	*Streptomyces viridochromogenes* [4]	
3	250.1422	[M+Na]+	3.53	1.2	C₈H₁₀N₂O₃	138.053	3	Streptenol E	Acetamide	*Streptomyces* sp. [5]	
4	239.1261	[M+H]+	3.72	2.1	C₈H₁₀N₂O₃	216.0758, 210.1890, 198.0604, 195.1371, 172.0880, 155.0949, 141.9587	4	n.a.			
5	620.235	[M+H]+	3.96	1.1	C₃₀H₃₈N₃O₁₅	142.1230, 98.0971	4	n.a.			
6	604.2402	[M+H]+	4.04	1.3	C₂₀H₂₄N₂O₁₀	572.0979, 142.1230, 124.1113, 98.0970, 79.0555	3	Platensimycin	Diterpenoid glycoside	*Streptomyces platensis* [6]	
7	366.1893	[M+Na]+	4.12	0	C₈H₁₀N₂O₃	308.1821, 290.1734, 270.1647, 252.1608, 224.1649, 198.0766, 180.0642, 172.0899, 166.1217, 154.1225, 152.0704, 142.0490, 137.0591, 114.0552, 109.1009	3	Alpinamide A	Linear polypeptide	*Streptomyces* sp. [7]	
8	253.1415	[M+H]+	4.28	0.8	C₂₀H₂₄N₂O₁₀	228.0977, 209.1505, 205.6684, 186.9429, 182.0896, 165.6180	4	n.a.			
9	253.142	[M+H]+	4.44	2.8	C₂₀H₂₄N₂O₁₀	210.0668, 195.9134, 170.9937	4	n.a.			
10	308.1867	[M+H]+	4.76	1.6	C₂₀H₂₄N₂O₁₀	252.1580, 198.0758, 180.0665, 172.0796, 166.1222, 152.0706, 142.0513, 137.0609, 109.1020	4	n.a.			
11	713.2711	[M+H]+	5.5	0.1	C₂₀H₂₄N₂O₁₀	142.1232, 98.0974	4	n.a.			
12	387.238	[M+H]+	5.7	-0.8	C₂₀H₂₄N₂O₁₀	165.1388, 167.1079, 143.0687, 125.0604, 121.1022, 111.0808, 93.0695	2	Nonactyl nonactoate	Nonactic acid polypeptide	*Streptomyces* sp. [8]	
13	558.1771	[M+H]+	6.01	-1.1	C₂₀H₂₄N₂O₁₀	174.0918, 162.0919	4	n.a.			
14	401.254	[M+H]+	6.24	0.2	C₂₀H₂₄N₂O₁₀	199.1332, 181.1228, 167.1066, 143.0703, 125.0966, 111.0810, 107.0859	2	Bonactin	Nonactic acid polypeptide	*Streptomyces* sp. [9]	
15	421.2201	[M+Na]+	6.35	0.9	C₂₀H₂₄N₂O₁₀	239.1254, 223.0950	4	n.a.			
16	413.2513	[M+Na]+	6.42	-0.5	C₂₀H₂₄N₂O₁₀	227.1261, 209.1144	4	n.a.			
17	309.1684	[M+H]+	6.62	2.9	C₂₀H₂₄N₂O₁₀	265.1174, 221.1151, 207.0990	4	n.a.			
18	415.2705	[M+H]+	6.82	2.2	C₂₀H₂₄N₂O₁₀	199.1374, 181.1226, 163.1117, 143.0700, 139.1125, 135.1168, 125.0959, 107.0853, 81.0709	2	Homononactyl homononactate	Nonactic acid polypeptide	*Streptomyces griseus* [10]	
19	321.1682	[M+H]+	6.89	2.2	C₂₀H₂₄N₂O₁₀	221.1566	4	n.a.			
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref
-----	-----------	-------------	---------------------	-----	-------------	--	----	-------------------------	----------------	-------------------	-----
20	312.1967	[M+H]⁺	7.49	1	C₂₀H₂₅NO₂	216.1390, 200.1078, 188.1083, 172.1142, 162.0898, 151.1139	4	n.a.			
21	807.395	[M+H]⁺	7.73	-2.4	C₄₆H₅₄N₄O₉	789.3856, 771.2729, 434.1707, 396.1556, 378.1438, 336.1355, 297.1229, 285.1239	4	n.a.			
22	289.175	[M+Na]⁺	7.93	-1	C₂₀H₂₅No	Nf	4	n.a.			
23	585.3634	[M+H]⁺	8.12	-0.9	C₂₀H₂₅O₁₀	199.1380, 185.1173, 181.1227, 167.1063, 143.0731, 125.0962, 111.0792, 93.0702	4	n.a.			
24	352.1552	[M+H]⁺	8.4	0.9	C₂₀H₂₅No	174.0921, 162.0919	4	n.a.			
25	807.3981	[M+H]⁺	8.56	1.5	C₄₆H₅₄N₄O₉	789.3876, 771.2750, 434.1710, 396.1559, 378.1448, 365.1138, 336.1154, 297.1230, 285.1233	4	n.a.			
26	621.3619	[M+Na]⁺	8.6	0.6	C₂₀H₂₅O₁₀	423.2351, 419.2396, 225.1102, 221.1153	4	n.a.			
27	684.3649	[M+H]⁺	8.87	0	C₂₀H₂₅No	273.1241, 174.0922, 162.0919	4	n.a.			
28	560.4683	[M+H]⁺	9.06	0.7	C₂₀H₂₅No	542.4562, 524.4463	4	n.a.			
29	546.4896	[M+H]⁺	9.87	1.8	C₂₀H₂₅No	528.4788, 510.4700	4	n.a.			
30	783.4903	[M+H]⁺	10.09	1	C₂₀H₂₅O₂	199.1337, 185.1174, 181.1226, 167.1068, 143.0703, 125.0961, 111.0809	4	n.a.			
31	797.5042	[M+H]⁺	10.48	-1.1	C₂₀H₂₅O₃	199.1342, 181.1236, 167.1073, 143.0718, 125.0973, 107.0860	4	n.a.			
32	811.5203	[M+H]⁺	10.85	-0.6	C₂₀H₂₅O₃	Nf	4	n.a.			
33	737.4476	[M+H]⁺	11.77	0	C₂₀H₂₅O₂	MS6: 185.1191, 167.1073, 149.0946, 143.0683, 121.1022, 111.0811	2	Nonactin	Nonactic acid polyketide	Streptomycetes spp.	[11]
Table S6. Putatively identified compounds produced by *Micromonospora* sp. extract CKG20-GYM. Putative annotations were based on the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. Different isomers with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data; IC: Identification confidence level [3]; Ref = reference(s).

No.	m/z value	Adduct	Rt (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref
34	243.1348	[M+H]+	2.47	1.2	C11H15N4O6	201.1239, 165.1032, 154.0877, 137.1081, 100.0399	4	n.a.			
35	218.1417	[M+H]+	3.2	5	C11H14N4	162.9784, 150.0785	4	n.a.			
36	280.124	[M+H]+	4.17	-6.1	C8H11N4O6	262.1132, 196.0661	4	n.a.			
37	197.118	[M+H]+	5.67	1	C6H11O	158.9618, 117.9348, 96.9611	4	n.a.			
38	420.3119	[M+H_2O]+	6.8	1.2	C7H14NO6	378.2967, 332.2931, 315.2679, 229.1942, 203.1753, 175.1504, 149.1352, 135.1159, 107.0873	4	n.a.			
39	369.218	[M+H]+	7.48	0.5	C6H11N4O6	256.0851	4	n.a.			
40	479.2547	[M+H]+	7.72	0.2	C8H13NO6	287.0663, 275.0670, 259.0480	4	n.a.			
41	466.2933	[M+H]+	7.85	-0.2	C7H12NO6P	325.2744, 294.2796	4	n.a.			
42	454.2929	[M+H]+	8.08	-1.1	C7H12NO6P	313.2740, 282.2794	2	1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine Glycero-phospholipid In cell membranes of all organisms			
43	330.2435	[M+H]+	8.11	0.6	C6H11N4O6	312.2322	4	n.a.			
44	463.2597	[M+H]+	8.2	0	C8H13NO6	271.0725, 259.0725, 243.0536	2	Diazepinomicin Phenazine alkaloid Micromonospora sp. [12]			
45	480.3098	[M+H]+	8.38	1.7	C8H15NO6P	339.2955, 308.2907	2	1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine Glycero-phospholipid In cell membranes of all organisms			
46	479.2547	[M+H]+	8.62	0.2	C8H13NO6	258.0409, 240.0301, 146.0241, 112.0401	4	n.a.			
47	408.0832	[M+H]+	8.78	0	C8H13NO6	390.0728, 372.0690, 362.0768, 349.0473, 344.0468, 321.0529, 259.0353, 245.0565, 233.0566, 176.0353	4	n.a.			
48	411.2281	[M+H]+	8.9	-0.7	C8H13NO6	393.2157, 383.2320, 285.0869, 271.0714, 259.0710, 243.0767	3	Diazaquinomycin D Phenazine alkaloid Streptomyces sp. [13]			
49	619.4077	[M+H]+	8.93	1	C8H15NO6	427.3684, 400.3203, 376.3233, 305.2831, 297.1194, 280.0945, 279.1076, 262.0820, 252.0987, 224.1024, 220.0929, 208.1091, 202.0814, 193.0606, 167.0832, 149.0701, 123.0920, 121.0773, 109.1015, 96.0452	4	n.a.			
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref
-----	-----------	--------	-----------	-----	------------	-----------------------	----	-------------------------	----------------	-------------------	-----
50	482.325	[M+H]^+	9.09	0.8	C_23H_48NO_7P	341.3052, 310.3102	2	1-stearoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine	Glycero-phospholipid	In cell membranes of all organisms	
51	607.4077	[M+H]^+	9.27	1	C_32H_54N_4O_7	388.3211, 297.1197, 293.2846, 280.0937, 252.0986, 220.0934, 202.0833, 167.0821, 149.0676, 121.0761	2	Rakicidin A	Cyclic depsipeptide	Micromonospora sp.	[14]
52	621.4227	[M+H]^+	9.73	0	C_33H_56N_4O_7	402.3372, 350.3409, 307.2997, 297.1193, 280.0944, 252.0985, 220.0929, 167.0816, 149.0691, 121.0767	2	Rakicidin B	Cyclic depsipeptide	Micromonospora sp.	
53	635.4383	[M+H]^+	10.19	-0.2	C_34H_58N_4O_7	416.3523, 364.3604, 321.3148, 297.1199, 280.0939, 252.0980, 220.0930, 202.0839, 167.0817, 149.0708, 121.0757	2	Rakicidin E	Cyclic depsipeptide	Micromonospora sp.	[15]
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref
-----	-----------	----------	---------------------	-------	--	---	----	------------------------	-----------------	------------------	-------
54	367.0508	[M+H]⁺	3.63	-1.4	C₈H₉O₃	287.0525, 258.0562, 241.9696, 238.0435, 188.0169, 168.9262, 164.9999, 146.9907	4	n.a.			
55	424.2082	[M+H]⁺	3.71	-0.5	C₉H₁₀N₀O₅	407.1817, 390.1540, 330.1343, 274.0708, 250.1446, 232.1337, 215.1069, 195.0942	2	Amicoumacin-A	Isocoumarin	Bacillus subtilis	[16]
56	439.2083	[M+H]⁺	4.12	0.7	C₁₀H₁₁N₀O₅	422.1824, 250.1440, 232.1337, 215.1070, 176.0702, 159.0444, 149.0598	4	n.a.			
57	255.1207	[M+H]⁺	4.25	0.4	C₇H₆N₀O₅	195.9121	4	n.a.			
58	250.1127	[M+H]⁺	5.04	-4.4	C₉H₁₀N₀O₅	194.0496, 182.0501	4	n.a.			
59	392.1711	[M+H]⁺	5.43	0.5	C₁₀H₁₂N₀O₅	276.1247, 250.1441, 232.1328, 215.1074, 159.0440, 149.0598, 125.0238	3	Bacilloumacin D	Isocoumarin	Bacillus sp.	[17]
60	390.1556	[M+H]⁺	5.55	0.8	C₁₀H₁₁N₀O₅	250.1441, 232.1340, 215.1073, 159.0442, 123.0087	3	Antibiotic AI-77-F or -H	Isocoumarin	Bacillus spp.	F: [18], H: [19]
61	1071.5811	[M+H]⁺	6.05	-2.8	C₁₄H₁₅N₀O₄	535.5373, 455.3136, 437.3194, 392.1351, 354.2751, 341.2750, 323.2671, 313.1513, 299.2645, 295.1353, 278.1133, 260.1039, 250.1231, 212.1082, 208.1156, 198.2230, 167.0809, 136.0747	3	Bacillolmycin F2	Cyclic lipopeptide	Bacillus subtilis	[20], [21]
62	1085.5974	[M+H]⁺	6.45	-1.9	C₁₄H₁₅N₀O₄	680.4345, 663.4116, 645.3961, 618.3965, 566.3553, 549.3728, 531.3541, 507.3527, 469.3383, 451.3282, 406.1735, 392.1518, 389.1400, 375.1311, 368.2910, 355.2957, 351.2631, 323.1372, 313.2847, 295.1401, 278.1146, 277.1303, 275.1039, 268.2650, 264.0987, 261.0894, 260.1024, 250.1191, 243.1082, 233.0928, 216.0986, 212.2379, 209.0939, 208.1094, 198.0890, 180.1048, 184.1085, 167.0820, 136.0761	3	Bacillolmycin F3	Cyclic lipopeptide	Bacillus subtilis	[20], [21]
63	1099.6122	[M+H]⁺	6.88	-2.7	C₁₄H₁₅N₀O₄	694.4479, 677.4232, 660.3998, 632.4120, 580.4044, 563.3820, 545.3659, 483.3513, 465.3430, 406.1723, 392.1563, 389.1466, 382.3062, 375.1307, 369.3107, 365.2799, 351.2957, 337.2988, 327.3002, 323.1351, 313.1502, 299.2888, 295.1408, 278.1149, 275.1031, 264.0986, 261.0898, 250.1187, 233.0918, 226.2534, 212.1035, 209.0947, 188.1048, 184.1090, 167.0815, 136.0763	3	Bacillolmycin F5	Cyclic lipopeptide	Bacillus subtilis	[20], [21]
64	781.4157	[M+H]⁺	7.08	-0.8	C₇H₆O₂	557.3537, 539.3503, 419.2196, 405.2093, 401.2106, 399.1993, 389.2074, 373.2114, 371.2022, 367.1888, 365.1761, 359.2000, 351.1960, 349.1813, 343.2067, 341.1881, 335.2000, 333.1837, 331.1708, 323.1975, 321.1785, 305.1885, 303.1775, 209.0880, 188.1048, 184.1090, 167.0815, 136.0763	3	Aurantinin B	Polyketide glycoside	Bacillus aurantius	[22]

Table S7. Putatively identified compounds produced by *Bacillus* sp. extract CKG24-GYM. Putative annotations were based on the accurate mass, the predicted putative molecular formulae (MF), the retention time (R_t), the fragmentation pattern and the biological origin. *Parent mass out of detection limit (>1200 Da) and therefore, the ppm error and fragmentation pattern were not determined; *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e⁺); Ref = reference(s).
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref	
65	746.4219	[M+2H]⁺	7.14	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-5	Cyclic lipopeptide	Bacillus sp.	[23]	
66	739.4143	[M+2H]⁺	7.14	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-6	Cyclic lipopeptide	Bacillus sp.	[23]	
67	663.3561	[M+H]⁺	7.24	-0.6	C₆₇H₄₀N₁₀O₂ or C₆₇H₄₀N₁₀O₂	501.3020, 421.1306, 365.1053	4	n.a.	Cyclic lipopeptide	Bacillus sp.	[23]	
68	753.4296	[M+2H]⁺	7.37	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	a: SNA 60-367-12, b: SNA 60-367-13	Cyclic lipopeptide	Bacillus sp.	[23]	
69	738.4238	[M+2H]⁺	7.56	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-17	Cyclic lipopeptide	Bacillus sp.	[23]	
70	738.4249	[M+2H]⁺	7.64	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-18	Cyclic lipopeptide	Bacillus sp.	[23]	
71	731.4171	[M+2H]⁺	7.64	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-19	Cyclic lipopeptide	Bacillus sp.	[23]	
72	745.4335	[M+2H]⁺	7.82	n.a.^a	C₆₇H₁₁₂N₂₂O₃₂	n.a.^a	3	SNA 60-367-23	Cyclic lipopeptide	Bacillus sp.	[23]	
73	512.3693	[M+H]⁺	8.25	-1.4	C₆₇H₄₀N₁₀O₂ or C₆₇H₄₀N₁₀O₂	268.2627, 115.0873, 102.0553, 84.0438	4	n.a.	Cyclic lipopeptide	Bacillus sp.	[23]	
74	1008.6603	[M+H]⁺	10.24	0.6	C₆₇H₄₀N₁₀O₂	455.3112, 441.2708, 437.3002, 427.3160, 409.3047, 395.2667, 342.2245, 328.1873, 324.2168, 314.2333, 283.2020, 245.1858, 229.1185, 227.1759, 212.2019, 201.1239, 199.1811, 195.1743, 185.1657, 183.1133, 154.1599, 86.0973	3	Anteiso-C₆₇-[Leu]⁷-surfactin	Cyclic lipopeptide	Bacillus subtilis	[24]	
75	1064.5789	[M+H]⁺	10.29	0.4	C₆₇H₄₀N₁₀O₂-Cl or C₆₇H₄₀N₁₀O₂-CP	NF	4	n.a.	Cyclic lipopeptide	Bacillus subtilis	[25]	
76	994.6426	[M+H]⁺	10.41	-1.4	C₆₇H₄₀N₁₀O₂	455.3094, 441.2723, 437.2990, 432.2255, 328.1864, 324.2165, 314.2322, 296.2226, 285.1454, 283.2004, 269.1878, 231.1687, 229.1176, 227.1760, 215.1026, 212.2016, 201.1236, 199.1812, 195.1743, 185.1639, 86.0975	3	Lipopeptide NO	Cyclic lipopeptide	Bacillus subtilis	[25]	
77	1022.6801	[M+H]⁺	10.64	4.7	C₆₇H₄₀N₁₀O₃	469.3278, 451.3170, 441.2706, 423.3218, 395.2657, 356.2436, 342.2031, 338.2332, 328.1876, 310.2383, 296.1983, 285.1457, 283.2006, 269.1866, 267.2441, 255.1708, 245.1868, 229.1192, 227.1763, 215.1034, 213.1604, 209.1902, 201.1241, 199.1811, 185.1653, 183.1132, 170.1181, 154.1593, 86.0974	3	Iso-C₆₇-[Val]⁷-surfactin	Cyclic lipopeptide	Bacillus subtilis	[24]	
No.	m/z value	Adduct	R_n (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref	
-----	-----------	--------	--------------------	-----	-------------	----------------------	----	------------------------	----------------	------------------	-----	
78	1078.5947	[M+H]⁺	10.66	0.5	C₃H₇N₂O₅C_l or C₃H₇N₂O₅C_l	NF	4	n.a.				
79	1022.6746	[M+H]⁺	10.76	-0.7	C₃H₇N₂O₃	469.3280, 451.3169, 441.2711, 423.3229, 395.2647, 356.2435, 342.2023, 338.2322, 328.1869, 310.2381, 296.1968, 285.1455, 283.2013, 269.1865, 255.1701, 245.1868, 234.1360, 229.1189, 227.1762, 215.1383, 209.1903, 201.1242, 199.1811, 185.1656, 183.1134, 154.1593, 86.0974	3	n-C₁₅-[Leu⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
80	1064.5792	[M+H]⁺	10.78	0.7	C₃H₇N₂O₅C_l or C₃H₇N₂O₅C_l	NF	4	n.a.				
81	1008.6598	[M+H]⁺	10.8	0.1	C₃H₇N₂O₃	469.3280, 451.3174, 441.2707, 427.3165, 395.2650, 356.2438, 342.2028, 338.2325, 328.1869, 310.2381, 296.1968, 285.1455, 283.2013, 269.1865, 255.1698, 253.2272, 243.1342, 231.1708, 229.1192, 227.1756, 213.1611, 201.1238, 199.1807, 185.1652, 86.0971	3	n-C₁₅-[Leu⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
82	1036.692	[M+H]⁺	10.95	1	C₃H₇N₂O₃	483.3431, 465.3328, 455.3480, 441.2714, 437.3377, 395.2664, 370.2592, 352.2489, 342.2029, 328.1875, 324.2541, 311.1967, 296.1978, 285.1458, 283.2004, 269.1868, 267.2441, 255.1722, 253.2282, 245.1872, 240.2331, 229.1195, 227.1764, 215.1037, 213.1607, 210.1243, 199.1815, 185.1657, 183.1137, 170.1186, 154.1597, 86.0977	3	Anteiso-C₁₄-[Leu⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
83	1092.6073	[M+H]⁺	10.97	0.1	C₃H₇N₂O₅C_l or C₃H₇N₂O₅C_l	NF	4	n.a.				
84	1022.6751	[M+H]⁺	11.16	-0.2	C₃H₇N₂O₃	483.3442, 465.3320, 441.2701, 395.2653, 370.2591, 356.2491, 342.2023, 328.1870, 324.2528, 296.1963, 285.1446, 283.2008, 269.1873, 255.1707, 240.2331, 231.1708, 229.1192, 227.1765, 215.1028, 213.1597, 210.1245, 199.1814, 185.1651, 183.1138, 154.1593, 86.0979	3	Anteiso-C₁₅-[Val⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
85	1036.6903	[M+H]⁺	11.18	-1.2	C₃H₇N₂O₃	483.3438, 465.3333, 455.3474, 441.2715, 437.3364, 395.2658, 370.2595, 352.2492, 342.2029, 328.1875, 324.2541, 311.1971, 296.1976, 285.1454, 283.2013, 269.1869, 267.2441, 255.1713, 245.1871, 240.2327, 229.1191, 227.1764, 223.2063, 215.1031, 213.1602, 201.1242, 199.1816, 185.1657, 183.1132, 170.1179, 154.1593, 86.0977	3	n-C₁₅-[Leu⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
86	1036.687	[M+H]⁺	11.48	-3.8	C₃H₇N₂O₃	497.3574, 483.3420, 479.3447, 465.3322, 455.3483, 441.2713, 395.2702, 384.2736, 370.2983, 366.2633, 356.2750, 352.2485, 342.2026, 338.2686, 326.2470, 324.2563, 311.1976, 296.1982, 293.1538, 285.1451, 283.2004, 269.1870, 255.1698, 253.2272, 243.1342, 231.1708, 229.1192, 227.1762, 215.1383, 209.1903, 201.1242, 199.1811, 185.1656, 183.1134, 154.1593, 86.0974	3	Anteiso-C₁₄-[Ile⁷]-surfactin	Cyclic lipopeptide	Bacillus pumilus	[24]	
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Ref	
-----	-----------	---------	-----------	-----	-------------	----------------------	----	-------------------------	----------------	------------------	-----	
87	1064.7209	[M+H]^+	11.65	-1.3	CaH_9O_7N_3	511.3743, 493.3648, 483.3786, 441.2816, 398.2912, 395.2643, 380.2790, 352.2855, 342.2029, 328.1868, 296.1967, 285.1422, 283.2024, 268.2642, 255.1717, 245.1867, 233.2294, 229.1197, 227.1754, 215.1038, 201.1240, 199.1813, 185.1668, 183.1134, 154.1599, 86.0986	3	KMM 1364E	Cyclic lipopeptide	Bacillus pumilus	[26]	
Table S8. Putatively identified compounds produced by *Trichoderma* sp. extracts CHG34-CAG and CHG34-PDA. Putative annotations were based on the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin.

- Different isomers with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data;
- Parent mass out of detection limit (>1200 Da) and therefore, the ppm error and fragmentation pattern were not determined;
- *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e-1); Ref = reference(s).

No.	m/z value	Adduct	Rt (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
88	237.132	[M+H]^+	4.51	2.1	C_{13}H_{16}O_{4}	195.9131, 167.4925, 165.0561, 141.9551, 139.0753, 125.0237, 123.0437, 113.0982	3	Trichosorbidin E	Sorbicillinoid	*	CAG, PDA	[27]
89	410.218	[M+H]^+	5.22	0.2	C_{21}H_{31}O_{7}	242.0663, 224.0546, 124.0363	4	n.a.	CAG			
90	562.3585	[M+Na]^+	5.23	0.7	C_{27}H_{49}N_{5}O_{6}	320.1957	4	n.a.	CAG			
91	473.1602	[M+H]^+	5.42	0.4	C_{25}H_{38}O_{7}	455.1462, 445.1667, 399.1955, 371.1277, 367.1292, 353.1223, 343.1312, 325.1264, 321.1159, 315.1418, 301.1224, 293.1167, 279.0644, 277.1200, 275.0994, 269.0819, 265.1256, 253.0858, 247.1097	4	n.a.	CAG			
92	451.2694	[M+H]^+	5.52	-0.4	C_{28}H_{24}O_{7}	289.2172, 271.2065, 217.1958, 215.1443, 205.1220, 197.1335, 187.1477, 185.1332, 182.1101, 171.1170, 169.1024, 159.1187, 157.1004, 155.0854, 151.1133, 147.1177, 145.1024, 137.0966, 133.1015, 131.0863, 127.0398, 119.0860, 105.0706, 99.0446	4	n.a.	PDA			
93	473.1603	[M+H]^+	5.69	0.6	C_{25}H_{38}O_{7}	455.1467, 445.1640, 427.1577, 399.1955, 381.1467, 371.1253, 353.1160, 343.1339, 325.1219, 321.1107, 303.1307, 293.1172, 279.0655, 275.1062, 269.0769, 265.1217, 253.0830, 247.1122, 243.0975, 241.0873, 231.1372, 224.0547, 195.9114, 143.0857, 129.0681	4	n.a.	CAG			
94	391.2457	[M+Na]^+	5.96	-0.8	C_{16}H_{20}O_{4}	359.219	4	n.a.	CAG			
95	259.1335	[M-H2O]^+	6.36	0.4	C_{16}H_{20}O_{4}	241.1224, 223.1130, 213.1285, 197.1323, 195.1142, 185.1317, 180.0920, 171.1167, 169.1014, 167.0865, 165.0684, 157.1010, 155.0842, 145.1008, 143.0855, 141.0714, 129.0699, 105.0713	4	n.a.	CAG			
96	277.144	[M+H]^+	6.6	0	C_{16}H_{20}O_{4}	231.1372, 201.0457, 195.9114, 143.0857, 129.0681	4	n.a.	CAG			
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------	-------------------	-----	-------------	-----------------------	----	------------------------	----------------	-------------------	--------	-----
97	331.1521	[M+H]⁺	6.76	0.6	C₆H₁₀N₄O₃	299.1237, 211.1088, 189.1274, 133.0657	4	n.a.		CAG		
98	588.39	[M+H]⁺	6.86	0	C₆H₁₀N₄O_*	423.2950, 253.1597, 251.1447, 235.1489, 225.1640, 223.1465, 148.0973, 130.0874, 102.0919	4	n.a.		CAG, PDA		
99	189.1278	[M+H]⁺	6.87	0.5	C₆H₁₀O	171.1169, 147.1166, 145.1010, 133.0649, 105.0698	4	n.a.		CAG		
100	439.3324	[M+H]⁺	7.11	-0.2	C₆H₁₀N₄O₂	279.2345, 209.1549, 173.1328, 161.1080, 149.1325, 137.1328, 109.1021, 95.0867, 81.0709	4	n.a.		CAG, PDA		
101	344.3164	[M+H]⁺	7.4	-0.3	C₆H₁₀N₄O_*	344.3129, 300.2899, 282.2793, 270.2758, 264.2762, 252.2674, 88.0771	4	n.a.		CAG, PDA		
102	345.1677	[M+Na]⁺	7.76	-0.3	C₆H₁₀O_*	Nf	4	n.a.		CAG		
103	770.5386	[M+H]⁺	7.79	-0.8	C₆H₁₀N₄O_*	453.3084, 354.2396, 326.2451, 300.2278, 241.1562, 184.1345, 143.1185, 86.0972	4	n.a.		CAG, PDA		
104	1197.756	[M+Na]⁺	7.93	-2.3	C₆H₁₀N₄O₃	983.5846, 955.5931, 897.5527, 870.5408, 843.5667, 757.4554, 730.4795, 645.4308, 547.3153, 489.2869, 462.2697, 403.2706	3	Trichoderminde C Peptaibol	Trichoderma viride	CAG, PDA	[28]	
105	754.5424	[M+H]⁺	8.12	-2.4	C₆H₁₀N₄O_*	453.2956, 354.2416, 326.2400, 241.1605, 184.1328, 86.0979	3	n.a.		CAG, PDA		
106	498.379	[M+H]⁺	8.29	-1	C₆H₁₀N₄O_*	480.3684, 236.1504	4	n.a.		CAG, PDA		
107	751.9497	[M+2Na]⁺	8.29	-0.7	C₆H₁₀N₄O₃	n.a.[*]	3	Tv29-145-Vc Peptaibol	Trichoderma viridus	CAG, PDA	[29]	
108	836.4872	[M+H]⁺	8.29	0.5	C₆H₁₀N₄O₃	369.2141, 256.1304	4	n.a.		CAG, PDA		
109	623.4496	[M+H]⁺	8.29	0	C₆H₁₀N₄O_*	324.2295, 215.1763, 211.1452, 183.1501	4	n.a.		CAG, PDA		
110	1197.7583	[M+Na]⁺	8.39	-0.3	C₆H₁₀N₄O₃	1179.7465, 955.5943, 897.5522, 870.5408, 757.4554, 645.4308, 547.3153, 489.2869, 462.2697, 403.2706	3	Trichorizin-II Peptaibol	Trichoderma harzianum	CAG, PDA	[30]	
111	553.3351	[M+H]⁺	8.41	0.2	C₆H₁₀N₄O_*	355.1985, 256.1306, 228.1352, 128.0710, 102.0919	4	n.a.		PDA		
112	623.4495	[M+H]⁺	8.41	-0.2	C₆H₁₀N₄O_*	324.2296, 215.1762, 211.1454, 183.1503	4	n.a.		CAG, PDA		
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------	-------------------	-----	------------	----------------------	----	-------------------------	----------------	-------------------	--------	----
113	961.6072	[M+H]⁺	8.41	-0.1	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	355.1985, 256.1304	4	n.a.			CAG, PDA	
114	345.168	[M+Na]⁺	8.45	0.6	C₉H₁₂N₃O₆	n.a.	4	n.a.			CAG	
115	623.4493	[M+H]⁺	8.45	-0.5	C₉H₁₂N₃O₆*	324.2290, 215.1765, 211.1449, 183.1499	4	n.a.			CAG, PDA	
116	553.335	[M+H]⁺	8.45	0	C₉H₁₂N₃O₆*	355.1923, 256.1304, 228.1354, 128.0707, 101.0713	4	n.a.			CAG, PDA	
117	837.4725	[M+H]⁺	8.45	0.4	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	370.1981, 257.1146, 128.0712	4	n.a.			CAG, PDA	
118	623.4493	[M+H]⁺	8.52	-0.5	C₉H₁₂N₃O₆*	324.2288, 215.1760, 211.1449, 183.1497	4	n.a.			CAG, PDA	
119	758.9578	[M+2Na]⁺	8.52	-0.4	C₉H₁₂N₃O₆	n.a.	3	Tv29-145-VI Peptaibol	Trichoderma virens	CAG, PDA		
120	850.5023	[M+H]⁺	8.52	-0.2	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	383.2293, 270.1457, 142.0862	4	n.a.			CAG, PDA	
121	874.5392	[M+2H]⁺	8.59	1.7	C₉H₁₂N₃O₆	n.a.	3	Trichorzin MA-2 Peptaibol	Trichoderma harzianum	CAG, PDA	[31]	
122	1136.6675	[M+H]⁺	8.59	-0.4	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	397.1981, 257.1146, 128.0712	4	n.a.			CAG, PDA	
123	623.4504	[M+H]⁺	8.67	-0.8	C₉H₁₂N₃O₆*	324.2294, 215.1759, 211.1451, 183.1497	4	n.a.			CAG, PDA	
124	975.6241	[M+H]⁺	8.67	-0.2	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	369.2148, 270.1460	4	n.a.			CAG, PDA	
125	874.5398	[M+2H]⁺	8.78	1.7	C₉H₁₂N₃O₆	n.a.	3	Trichokindin Ia Peptaibol	Trichoderma harzianum	CAG, PDA	[32]	
126	1136.6686	[M+H]⁺	8.78	0.6	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	697.3896, 484.2784, 399.2252, 286.1411, 268.1303 197.0926	4	n.a.			CAG, PDA	
127	623.4493	[M+H]⁺	8.85	-1	C₉H₁₂N₃O₆*	324.2296, 215.1763, 211.1452, 183.1502	4	n.a.			CAG, PDA	
128	975.6257	[M+H]⁺	8.85	0.1	C₉H₁₂N₃O₆ or C₉H₁₂N₃O₆*	369.2148, 256.1304	4	n.a.			CAG, PDA	
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------------	---------------------	-------	--	---	----	------------------------	-----------------	-------------------	--------	-----
129	976.6094	[M+H]⁺	8.96	-0.2	C₈₀H₇₇N₁₃O₈[*]	370.1984, 342.2027, 257.1147	4	n.a.			CAG,	PDA
130	623.4506	[M+H]⁺	8.98	-0.5	C₃₀H₅₄N₁₀O₂[*]	324.2290, 296.1980, 215.1765, 211.1454, 183.1500	4	n.a.			CAG,	PDA
131	867.5361	[M+2H]⁺	8.98	n.a.⁺	n.a.⁺	n.a.⁺	4	n.a.			CAG,	PDA
132	892.5373	[M+H+Na]⁺	8.98	n.a.⁺	n.a.⁺	n.a.⁺	4	n.a.			CAG,	PDA
133	892.5372	[M+H+Na]⁺	9.04	n.a.⁺	n.a.⁺	n.a.⁺	4	n.a.			CAG,	PDA
134	909.527	[M+2H]⁺	9.04	-0.9	C₈₀H₇₇N₁₃O₈[*]	n.a.⁺	3	Trichobrachin B-I	Peptaibol	Trichoderma longibrachiatum	CAG,	
135	989.6424	[M+H]⁺	9.04	1.1	C₈₀H₇₇N₁₃O₈ or C₈₀H₇₇N₁₃O₈[*]	383.2299, 270.1472	4	n.a.			CAG,	PDA
136	623.4505	[M+H]⁺	9.04	-0.6	C₈₀H₇₇N₁₃O₈[*]	324.2296, 211.1455, 183.1503	4	n.a.			CAG,	PDA
137	623.4506	[M+H]⁺	9.08	-0.3	C₈₀H₇₇N₁₃O₈[*]	324.2294, 211.1452, 183.1503	4	n.a.			CAG,	PDA
138	892.5372	[M+H+Na]⁺	9.08	n.a.⁺	n.a.⁺	n.a.⁺	4	n.a.			CAG,	PDA
139	989.6392	[M+H]⁺	9.08	0.6	C₈₀H₇₇N₁₃O₈ or C₈₀H₇₇N₁₃O₈[*]	383.2303, 270.1464	4	n.a.			CAG,	PDA
140	892.5383	[M+H+Na]⁺	9.15	n.a.⁺	n.a.⁺	n.a.⁺	4	n.a.			CAG,	PDA
141	623.4499	[M+H]⁺	9.21	0.5	C₈₀H₇₇N₁₃O₈[*]	324.2297, 215.1770, 211.1457, 183.1502	4	n.a.			CAG,	PDA
142	990.6248	[M+H]⁺	9.21	0.9	C₈₀H₇₇N₁₃O₈[*]	384.2148, 356.2190, 271.1308, 142.0871	4	n.a.			CAG,	PDA
143	874.5402	[M+2H]⁺	9.25	1.7	C₈₀H₇₇N₁₃O₈[*]	n.a.⁺	3	Trichokindin Ib	Peptaibol	Trichoderma harzianum	CAG,	
144	874.5392	[M+2H]⁺	9.38	1.7	C₈₀H₇₇N₁₃O₈[*]	n.a.⁺	3	Trichokindin Ia	Peptaibol	Trichoderma harzianum	CAG,	
145	1136.6674	[M+H]⁺	9.38	-0.4	C₈₀H₇₇N₁₃O₈ or C₈₀H₇₇N₁₃O₈[*]	697.3872, 484.2768, 399.2243, 286.1408, 268.1303, 197.0931	4	n.a.			CAG,	PDA
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	-----------------	---------------------	------	-------------	-----------------------	----	------------------------	----------------	------------------	--------	------
146	1164.6991	[M+H]⁺	9.41	-0.1	C₂₈H₄₂O₅ or C₂₆H₃₆N₂O₃	498.2934, 399.2248, 286.1414, 268.1305, 197.0930	4	n.a.	Peptaibol	Trichoderma harzianum	CAG, PDA	
147	881.5459	[M+2H]⁺	9.5	0.4	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin IIb	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
148	844.5923	[M+2H]⁺	9.57	n.a.^a	n.a.^a	n.a.^a	4	n.a.	Peptaibol	Trichoderma harzianum	CAG, PDA	
149	873.55	[M+2H]⁺	9.57	2.2	C₁₄H₁₄N₂O₂	n.a.^a	3	Neoatroviridin B	Peptaibol	Trichoderma atroviride	CAG, PDA	[34]
150	881.5432	[M+2H]⁺	9.57	0.4	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin IIIa/b	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
151	881.547	[M+2H]⁺	9.61	0.4	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin IV	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
152	902.5486	[M+2H]⁺	9.61	n.a.^a	n.a.^a	n.a.^a	4	n.a.	Peptaibol	Trichoderma harzianum	CAG, PDA	
153	913.543	[M+2Na]²⁺	9.61	n.a.^a	n.a.^a	n.a.^a	4	n.a.	Peptaibol	Trichoderma harzianum	CAG, PDA	
154	881.5477	[M+2H]⁺	9.74	0.4	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin Va/b	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
155	888.5443	[M+2H]⁺	9.99	-0.8	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin VI	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
156	891.5471	[M+H+Na]²⁺	9.99	n.a.^a	C₁₄H₁₄N₂O₂	n.a.^a	3	Neoatroviridin D	Peptaibol	Trichoderma atroviride	CAG, PDA	[34]
157	888.555	[M+2H]⁺	10.14	-0.8	C₁₄H₁₄N₂O₂	n.a.^a	3	Trichokindin VII	Peptaibol	Trichoderma harzianum	CAG, PDA	[32]
158	916.5155	[M+2H]⁺	10.14	n.a.^a	n.a.^a	n.a.^a	4	n.a.	Peptaibol	Trichoderma harzianum	CAG, PDA	
159	481.2935	[M+Na]⁺	10.33, 10.39	1	C₁₄H₁₂O₅	423.2865, 355.2252	3	Ergokonin B	Ergosterol	Trichoderma koningii	CAG, PDA	[35]
160	873.5497	[M+2H]⁺	10.33	2.2	C₁₄H₁₄N₂O₂	n.a.^a	3	Neoatroviridin C	Peptaibol	Trichoderma atroviride	CAG, PDA	[34]
161	895.5413	[M+2H]⁺	10.39	n.a.^a	n.a.^a	n.a.^a	4	n.a.	Peptaibol	Trichoderma atroviride	CAG, PDA	
Table S9. Putatively identified compounds produced by *Fusarium* sp. extracts CHG38-CAG and CHG38-PDA. Putative annotations were based on the accurate mass, predicted putative molecular formulae (MF), the retention time (R_t), the fragmentation pattern and the biological origin. *MF with best ppm error; IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e); Ref = reference(s).

No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
162	235.0614	[M+H]^+	2.97	3.4	C5H7O3N	217.0504, 193.0493, 189.0548, 175.0385, 161.0598, 151.0394, 149.0594, 125.0603, 111.0084	3	Diploquinone A	Naphthoquinone	*Diploodia mutila*	PDA	[36]
163	277.0715	[M+H]^+	3.09	1.1	C5H7O3N	259.0608, 235.0603, 231.0657, 217.0498, 193.0496, 191.0697, 123.0438	3	Norjavanicin	Naphthoquinone	*Fusarium sp.*	PDA	[37]
164	235.0977	[M+H]^+	3.52	3	C5H7O3N	217.0866, 191.0711, 176.0474, 163.0749, 151.0393, 135.0808	2	Aloesol	Chromone	*Fusarium sp.*	PDA	[38]
165	233.0820	[M+H]^+	3.63	2.6	C5H7O3N	217.0872, 191.0711, 151.0393	2	Macrocarpone C	Chromone	*Fusarium tricinctum*	PDA	[39]
166	279.0881	[M+H]^+	3.7	4.3	C5H7O3N	261.0784, 243.0665, 219.0644, 201.0530, 191.0708, 177.0186, 173.0605, 163.0770	3	(-)-Citreoisocoumarin	Isocoumarin	*Fusarium tricinctum*	PDA	[39]
167	191.0710	[M+H]^+	3.97	1	C5H7O3N	176.0488, 151.0390, 149.9310, 135.0444, 110.0086	4	n.a.			PDA	
168	359.1109	[M+Na]^+	4.37	0.6	C5H7O3N	324.5316, 322.0607, 291.0259, 271.0585, 253.8915, 252.3335	3	3-O-Ethylidihydrofusarubin A or B	Naphthoquinone	*Fusarium solani*	PDA	[40]
169	339.1803	[M+H]^+	4.58	-1.5	C5H7O3N	303.1549, 285.1486, 267.1371, 259.1721, 257.1524, 229.0869, 217.0846, 215.0682, 189.0564, 177.0592, 175.0392, 167.0347, 161.0622, 149.0613, 135.1176	2	2'-hydroxyzearalanol	Zearalenone (Macrolide)	*Penicillium sp.*	CAG	[41]
170	249.0768	[M+H]^+	5.46	2	C5H7O3N	217.0504, 192.0427, 153.0183	4	n.a.			PDA	
171	259.0615	[M+H]^+	5.66	3.5	C5H7O3N	244.0369, 231.0674, 213.0604, 191.0726	3	Huperxanthone B	Xanthone	*Aspergillus versicolor*	PDA	[42]
172	384.3954	[M+H]^+	5.96	0	C5H7O3N	367.3683, 296.2959	4	n.a.			PDA	
173	629.3642	[M+Na]^+	6.23	0.6	C5H7O3N	557.3420, 387.2336	4	n.a.			CAG, PDA	
174	690.2125	[M+H]^+	6.56	1.6	C5H7O3N	373.0741, 355.0630	4	n.a.			CAG	
175	412.4270	[M+H]^+	6.59	0.7	C5H7O3N	324.3275	4	n.a.			PDA	
176	319.1553	[M+H]^+	6.63	2.5	C5H7O3N	301.1441, 283.1342, 265.1237, 255.1386, 241.0873, 231.0662, 229.0860, 227.0712, 217.0859, 215.0706, 213.0561, 205.0868	2	Zearalenone	Zearalenone (Macrolide)	*Fusarium graminearum*	CAG	[43]

Medium: PDA, CAG; **Ref**: reference(s).
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
177	575.1199	[M+H]⁺	7.32	1.6	C₉H₆O₄	287.0563, 274.0464, 259.0613	4	n.a.	Zearalanone (Macrolide)	Fusarium spp.	CAG, PDA	
178	273.0771	[M+H]⁺	7.43	2.9	C₉H₆O₄	258.0524, 255.0665, 230.0581, 227.0702	3	n.a.	Fusarium equiseti	PDA [44]		
179	303.1605	[M-H₂O]⁺	7.47	3	C₉H₆O₄	285.1493, 229.0855, 215.0695, 205.0511, 191.0348, 163.0399	2	n.a.	Zearalanone	Fusarium equiseti	PDA [45]	
180	289.1786	[M+Na]⁺	7.91	2.1	C₉H₆O₄	Nf	4	n.a.			PDA	
181	691.4647	[M+H]⁺	8.95	0.1	C₁₉H₁₂O₄*	659.4388, 482.3079, 377.3063, 359.2942, 331.2989, 313.2980, 303.2622, 263.2337, 235.2063, 232.1362, 220.1098, 181.0634, 172.1087, 164.0696, 155.0792, 147.0751, 130.0498, 121.1051	4	n.a.			CAG	
182	659.4385	[M+H]⁺	9.07	0.2	C₁₉H₁₂O₄*	428.3166, 377.3065, 359.2950, 331.2991, 303.2691, 263.2368, 232.1301, 215.1033, 185.0930, 172.1086, 164.0710, 155.0815, 147.0771, 130.0506	3	n.a.	Fusaristatin A	Fusarium sp.	CAG, PDA	[46]
183	695.3956	[M+H]⁺	9.52	1.2	C₉H₆O₄	379.3360, 309.2571, 295.2407, 253.1958, 239.1786, 213.1648, 201.1647, 199.1482, 187.1492, 185.1322, 173.1342, 171.1174, 161.1311, 159.1167, 157.1026, 149.1328, 147.1171, 145.1016, 143.0850, 133.1014, 131.0849	4	n.a.			PDA	
184	437.3425	[M+H]⁺	10.67	1.1	C₉H₆O₄	401.3213, 381.2794, 367.2639, 353.2500, 341.2487, 339.2319, 327.2321, 315.2170, 307.2427, 267.2122, 225.1645, 211.1495, 197.1337, 183.1170, 169.1021, 157.1024	4	n.a.			CAG, PDA	
185	737.4779	[M-H₂O]⁺	10.82	-0.3	C₉H₆O₄*	701.4548, 593.3277, 575.3162, 567.3481, 441.2057, 381.2049, 263.1950, 215.1449, 295.1334, 293.1901, 275.1901, 267.1755, 249.1637, 225.1637, 209.1335, 201.0553, 199.0755, 195.1171, 183.1152	4	n.a.			CAG	
186	468.3607	[M+H]⁺	11.44	0.8	C₉H₆O₄	437.3426, 393.2792, 365.2496, 352.2406, 339.2327, 337.2165, 319.2072, 307.2425, 293.2269, 265.1950, 251.1812, 249.1646, 237.1648, 235.1481, 223.1490, 211.1495	4	n.a.			CAG	
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------	---------------------	-----	------------	-----------------------	----	------------------------	----------------	------------------	--------	-----
187	793.5020	[M+H]⁺	11.54	0.5	C₄₇H₆₄N₆O₅	761.4775, 743.4667, 651.4027	4	n.a.	CAG			
188	755.4899	[M+H]⁺	11.54	1.6	C₄₈H₆₆O₇	n.a.	4	n.a.	CAG			
189	437.3420	[M+H]⁺	11.59	0	C₄₈H₆₆O₇	419.3311, 401.3185, 381.2783, 357.1451, 335.2753, 313.2141, 299.2004, 275.1782, 259.1690, 223.1484, 211.1479, 195.1165, 183.1165, 169.1019, 159.1168, 145.0999	4	n.a.	PDA			
190	436.3340	[M+H]⁺	11.68	-0.2	C₄₈H₆₆O₇	421.3112, 385.2896, 365.2484, 337.2177, 323.2018, 317.2274, 311.2021, 301.1965, 297.1866, 261.1650, 235.1489, 209.1336, 195.1180	4	n.a.	CAG, PDA			
191	437.3424	[M+H]⁺	11.69	0.9	C₄₈H₆₆O₇	421.3102, 419.3308, 401.3206, 385.2891, 337.2167, 323.2014, 317.2267, 313.2159, 311.2007, 301.1959, 297.1853, 275.1794, 263.1789, 261.1641, 259.1678, 253.1947, 249.1632, 235.1488, 223.1482, 221.1327, 211.1463, 209.1327, 197.1323, 195.1172, 183.1167, 169.1006	4	n.a.	PDA			
192	753.4741	[M+H]⁺	11.82	-0.4	C₄₉H₆₀N₄O₃	735.4622, 656.3732, 638.3626, 623.3362, 605.3292, 587.3196, 565.3297, 523.2813, 521.2742, 509.2715, 497.2628, 495.2540, 481.2378, 477.2425, 469.2356, 467.2224, 463.2249, 459.2343, 455.2342, 421.1327, 201.0557, 199.0752, 195.1175	4	n.a.	CAG			
193	436.3335	[M+H]⁺	11.93	-1.3	C₄₈H₆₆O₇	421.3098, 403.2995, 393.2770, 385.2880, 340.2391, 325.2155, 323.2359, 321.2568, 319.2407, 307.2062, 293.2261, 279.2098, 265.1939, 251.1783, 249.1631, 237.1637, 235.1479, 225.1630, 223.1380, 211.1479, 208.1323, 197.1318, 195.1164, 184.1246, 169.1005, 155.0851	4	n.a.	CAG, PDA			
Table S10. Putatively identified compounds produced by *Penicillium* sp. extracts CKG23-CAG and CKG23-PDA. Putative annotations were based on the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. *Different isomers with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data; *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e-4); Ref = reference(s).

No.	m/z value	Adduct	Rt (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
194	245.082	[M+H]+	1.24	2.4	C₈H₁₀O₅	227.071, 217.0888, 209.0590, 199.0762, 189.0916, 185.0596, 181.0651, 175.0771, 173.0607, 171.0809, 161.0699, 157.0655, 153.0705, 151.0388, 147.0443, 143.0853, 135.0447, 123.0446, 107.0495	3	3-methylbisnoryangonin	Styrylpyrone	Penicillium glabrum	CAG, PDA	[47]
195	157.0059	[M+H]+	2.14	1.9	C₈H₅O₆Cl	129.0107, 121.0266, 101.0160, 94.0412	4	n.a.				CAG
196	233.082	[M+H]+	2.84	2.6	C₈H₁₀O₅	194.9339, 191.0710, 187.0742, 173.0589, 149.0604, 147.0451, 123.0438, 121.0669, 183.0296, 165.0552	4	n.a.				PDA
197	325.1292	[M+H]+	3.46	1.5	C₈H₁₀O₅	289.1072, 247.0972, 233.0819, 231.0644, 227.1076, 213.0559, 191.0341, 189.0549, 183.0296, 165.0552	3	11,12-Dihydroxycurvularin	Zearalenone (Macrolide)	Penicillium citreus-viride	PDA	[48]
198	327.1235	[M+H]+	3.9	0.9	C₈H₁₀O₅	309.1131, 294.0894, 285.0765	3	1,7-Dihydroxy-2-methoxy-3-prenylxanthone	Xanthone	Phomopsis sp.	CAG	[49]
199	309.1345	[M+H]+	4	2.3	C₈H₁₀O₅	273.1129, 255.1038, 231.1031, 229.1228, 215.0716, 213.0914, 201.0553, 189.0924, 187.0768, 177.0551, 173.0400, 173.0602, 161.0605, 149.0605	3	(3S,7S)-7-hydroxyresorcylic acid	Zearalenone (Macrolide)	Penicillium sp.	PDA	[50]
200	273.0409	[M+H]+	4.12	3.7	C₈H₁₀O₅	245.0457, 227.0340, 217.0508, 199.0397	3	2,8-dihydroxy-9-oxo-9H-xanthene-6-carboxylic acid	Xanthone	Arthrinium arundinis	PDA	[51]
201	399.1813	[M+H]+	4.55, 4.875	1.3	C₈H₁₀O₅	381.1706, 363.1587, 355.1514, 352.1281, 348.1369, 339.1246, 327.1208, 311.0899	3	Sceo-penicitrolin A	Xanthone	Penicillium citrinum	CAG	[52]
202	289.0717	[M+H]+	4.57	1.7	C₈H₁₀O₅	274.0483, 270.0526, 246.0534, 243.0657, 204.0488	3	Drimiopsin I	Xanthone	Penicillium sp.	PDA	[53]
203	511.2927	[M+H]+	4.96	1.4	C₈H₁₀O₅	265.1557, 247.1459, 219.1503, 199.1437, 171.1505, 166.0866, 120.0811, 72.0825	2	Bilaid A	Tetrapeptide	Penicillium sp.	PDA	[54]
204	447.2936	[M+Na]+	5.22	0.4	C₈H₁₀O₅	Nf	4	n.a.	CAG	PDA	[50]	
205	309.1343	[M+H]+	5.25	1.6	C₈H₁₀O₅	291.1229, 273.1129, 255.1022, 245.1183, 231.0663, 227.1073, 217.0497, 213.0556, 207.0497, 195.0292, 193.0501, 191.0343, 183.0296, 165.0552, 149.0605	3	(3S,7R)-7-hydroxyresorcylic acid	Zearalenone (Macrolide)	Penicillium sp.	PDA	[50]
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------	------------------	-----	-------------	----------------------	----	------------------------	----------------	-------------------	--------	-----
206	457.2601	[M+H]⁺	5.47	-0.7	C₃H₇N₂O₅	440.2370, 439.2495, 399.2179, 385.2024, 382.1911, 381.1940, 368.1750, 340.1801, 326.1655, 323.1541, 309.1378, 299.1517, 297.1387, 255.1489, 238.1450, 210.1285, 198.1156, 197.1081, 185.0918, 181.0893, 168.0813, 159.0927	2	Communesin A	Indole alkaloid	*Penicillium* sp.	CAG	[55]
207	427.1757	[M+H]⁺	5.47	0	C₄H₉O₃	381.1703, 363.1595, 354.1459, 348.1355, 339.1234, 326.1150, 321.1122, 311.0921, 308.1045, 297.0759	4	n.a.			CAG	
208	293.1393	[M+H]⁺	5.97	1.4	C₃H₇O₃	275.1283, 257.1166, 239.1059, 231.1375, 229.1258, 215.0709, 205.0494, 201.0546, 189.0547, 187.0414, 179.0341, 177.0546, 175.0888, 173.0599, 163.0749, 161.0593, 151.0390, 149.0599, 99.0811, 81.0702	3	Dihydroresorcylide	Zearealenone (Macrolide)	*Penicillium expansum*	CAG, PDA	[56]
209	529.2708	[M+H]⁺	6	1.1	C₇H₁₁N₂O₃	331.1811, 201.1068, 185.0722, 130.0658	3	Chaetoglobosin D	Cytochalasin alkaloid	*Penicillium expansum*	CAG	[57]
210	509.2773	[M+H]⁺	6.11	-0.8	C₇H₁₁N₂O₅	311.1388, 283.1449, 263.1399, 247.1446, 235.1447, 219.1502, 199.1440, 171.1498, 136.0762, 120.0815	4	n.a.			PDA	
211	357.1341	[M+H]⁺	6.22	0.8	C₇H₁₁O₃	342.1103, 327.0872, 315.0868, 313.0717, 301.0714, 286.0481, 257.0454, 229.0506	4	n.a.			PDA	
212	529.27	[M+H]⁺	6.29	-0.4	C₇H₁₁O₃	200.1071, 198.0916, 185.0718, 174.0925, 174.1057, 170.1037	2	Chaetoglobosin A	Cytochalasin alkaloid	*Penicillium chrysogenum*	CAG	[58]
213	307.1551	[M+H]⁺	6.38	2	C₇H₁₁O₃	265.1435, 201.1277, 155.0864, 135.0807, 133.1008, 131.0864, 105.0695	3	Expansolide A or B	Sesquiterpenoid	*Penicillium expansum*	CAG	[59]
214	707.2095	[M+H]⁺	6.42	-1	C₇H₁₁N₂O₅	668.0617, 602.0138, 584.0034, 573.0614, 365.0998, 296.0298, 275.0551	4	n.a.			PDA	
215	313.1084	[M+H]⁺	6.64	2.6	C₇H₁₁O₃	297.0678, 271.0612, 257.0456, 229.0503	4	n.a.			PDA	
216	289.0716	[M+H]⁺	6.72	1.4	C₇H₁₁O₃	274.0482, 270.0525, 265.0518, 243.0680, 232.0370, 228.0296, 200.0479	3	Drimiopsin H	Xanthone	*Penicillium* sp.	PDA	[53]
217	305.1296	[M+H]⁺	6.72	2	C₇H₁₁N₂O₅	277.1343, 254.1274, 220.1120, 187.0869, 152.0810	4	n.a.			CAG	
218	339.0871	[M+H]⁺	6.85	0.6	C₇H₁₁O₃	324.0636, 321.0758, 311.0922, 296.0687, 293.0815, 283.0966, 269.0456, 265.0869, 249.0918	4	n.a.			PDA	
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
------	-----------	--------	-------------------	-----	------------	----------------------	----	-------------------------	----------------	------------------	--------	-----
219	509.2922	[M+H]⁺	7.04	1	C₂₂H₂₄N₂O₂	491.2809, 451.2503, 437.2342, 381.1972, 367.1808, 357.2074, 343.1924, 340.1916, 326.1661, 323.1545, 309.1391, 255.1501, 253.1346, 197.1083, 185.1085, 183.0922, 159.0922, 95.0501	2	Communesin B	Indole alkaloid	Penicillium sp.	CAG	[55]
220	357.1341	[M+H]⁺	7.05	0.8	C₂₁H₁₉O₆	341.1023, 327.0877, 313.1076, 311.0921, 301.0721, 286.0482, 273.0771, 258.0528, 247.0608, 230.0600	n.a.	PDA				
221	359.1135	[M+H]⁺	7.22, 7.71^a	1.1	C₂₂H₂₄O₅	341.1030, 326.0796, 323.0922, 313.1078, 302.0749, 271.0614, 257.0455	3	Penixanthone D	Xanthone	Penicillium sp.	PDA	[60]
222	487.27	[M+H]⁺	7.22	0.8	C₂₁H₁₉O₆	395.2227, 377.2127, 367.2277, 349.2178, 243.1752, 225.1640, 215.1806, 185.1337, 183.1183, 175.1487, 171.1180, 161.1338, 151.0396	n.a.	PDA				
223	319.1455	[M+H]⁺	7.28	2.5	C₂₁H₂₄O₅	291.1506, 234.1290, 201.1029, 188.0718, 132.0817, 91.0551	4	n.a.	CAG			
224	307.1552	[M+H]⁺	7.42	2.1	C₂₀H₁₈O₅	289.1434, 271.1339, 243.1392, 229.0860, 193.0503, 191.0710, 189.0561, 175.0766, 165.0543, 163.0751	3	a: 5-oxolasiodiplodin, b: 7-oxolasiodiplodin	Zearalenone (Macrolide)	a: Lasiodiplodia theobromae, b: Lasiodiplodia sp.	PDA	[62], [63]
225	355.1188	[M+H]⁺	7.54	1.7	C₂₀H₁₈O₅*	339.0874, 325.0719, 311.0926	4	n.a.	PDA			
226	357.1346	[M+H]⁺	8	2.2	C₂₀H₁₈O₅	342.1128, 327.0954, 315.0874, 313.0724, 301.0730, 286.0486, 281.0819, 273.0769, 258.0534, 255.0661, 247.0605	4	n.a.	PDA			
227	711.2451	[M+H]⁺	8.12	-0.6	C₂₁H₂₄N₂O₅*	679.2186, 636.2005, 356.1266, 341.1040, 327.1239, 232.0929	4	n.a.	PDA			
228	367.2253	[M+Na]⁺	8.13	1.1	C₂₀H₁₈O₅	320.1843, 252.0905, 242.1019, 234.1131, 224.0923, 198.1151, 149.0231, 138.0189	4	n.a.	CAG			
229	389.2327	[M+H]⁺	8.39	-0.3	C₂₀H₁₈O₅	Nf	4	n.a.	CAG			
230	865.5916	[M+H]⁺	8.8	0.1	C₂₁H₂₄N₂O₅*	594.4034, 526.3393, 481.3192, 413.2555, 408.3224, 368.2338, 340.2582, 300.1718, 295.2392, 272.1769, 267.2441, 227.1761, 199.1817, 159.0919	4	n.a.	CAG			
231	500.3957	[M+H]⁺	8.95	1.2	C₂₁H₂₄N₂O₅*	482.3847, 256.1509, 144.1026	n.a.	PDA				
232	371.1132	[M+H]⁺	9.49	0.3	C₂₀H₁₈O₅	339.0872, 329.1029, 311.0927, 296.0686, 287.0599, 283.0973, 273.0402, 269.0455, 265.0868, 255.0296, 241.0500	3	Chaetoxanthone A	Xanthone	Chaetomium sp.	PDA	[64]
No.	m/z value	Adduct	R_t (min)	ppm	Putative MF	Fragmentation pattern	IC	Putative identification	Chemical family	Biological origin	Medium	Ref
-----	-----------	--------	---------------------	-----	-------------	-----------------------	----	------------------------	----------------	-------------------	--------	-----
233	467.0751	[M+H]⁺	9.49	-0.4	C₂₄H₆N₁₀O₂	426.0487, 423.0406, 421.0434, 412.9966, 405.0294, 403.0327, 390.0050, 388.0096, 385.0206, 371.9950, 369.9992	4	n.a.			PDA	
234	279.233	[M+H]⁺	9.66	2.1	C₁₈H₃₀O₂	261.2221, 223.1700, 209.1532, 201.0458, 195.1395, 191.1436, 187.1490, 177.1271, 173.1328, 163.1481, 159.1174, 151.1479, 149.1330, 147.1175, 145.1004, 137.1334, 135.1168, 131.0853, 123.1168, 121.1018, 109.1015, 107.0859, 95.0860, 93.0696, 81.0707	4	n.a.			PDA	
235	279.2333	[M+H]⁺	9.74	3.2	C₁₈H₃₀O₂	261.2222, 223.1702, 209.1537, 201.0462, 195.1386, 191.1434, 187.1488, 177.1286, 173.1329, 163.1490, 159.1176, 151.1487, 149.1335, 147.1167, 145.1022, 137.1334, 135.1173, 133.1024, 131.0863, 123.1177, 121.1020, 109.1017, 107.0863, 95.0861, 93.0698, 81.0708, 79.0556	4	n.a.			PDA	
236	343.1188	[M+H]⁺	9.82	1.7	C₁₉H₁₈O₆	327.0860, 313.0720, 301.0718, 287.0565, 275.0558, 259.0612, 233.0453, 213.0556	3	Umbilicaxanthone A	Xanthone	Umbilicaria proboscidea		
237	843.3354	[M+H]⁺	9.82	0	C₄₄H₃₄N₂₀O₅ or C₄₆H₄₆N₆O₁₀	364.0936	4	n.a.			PDA	
238	714.4153	[M+H]⁺	10.44	-0.7	C₄₆H₄₆N₆O₁₀	696.4050, 571.2720	4	n.a.			PDA	
239	850.4537	[M+H]⁺	10.93	0.8	C₄₆H₄₆N₆O₁₀	377.3211, 341.1031, 326.0794, 313.1082	4	n.a.			PDA	
References

1. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828-837, doi:10.1038/nbt.3597.

2. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403-410, doi:10.1016/S0022-2836(05)80360-2.

3. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211-221, doi:10.1007/s11306-007-0082-2.

4. Drautz, H.; Zähner, H.; Kupfer; Keller-Schierlein, W. 164. Stoffwechselprodukte von Mikroorganismen, 205. Mitteilung. Isolierung und Struktur von Streptazolin. Helv. Chim. Acta 1981, 64, 1752-1765, doi:10.1002/hlca.19810640605.

5. Puder, C.; Loya, S.; Hizi, A.; Zeeck, A. New co-metabolites of the streptazolin pathway. J. Nat. Prod. 2001, 64, 42-45, doi:10.1021/np000377i.

6. Paulus, C.; Rebets, Y.; Zapp, J.; Ruckert, C.; Kalinowski, J.; Luzhetskyy, A. New alpiniamides from Streptomyces sp. IB2014/011-12 assembled by an unusual hybrid non-ribosomal peptide synthetase Trans-AT polyketide synthase enzyme. Front. Microbiol. 2018, 9, 1959, doi:10.3389/fmicb.2018.01959.

7. Fleck, W.F.; Ritzau, M.; Heinze, S.; Gräfe, U. Isolation of dimeric nonactic acid from the nonactin-producing Streptomyces spec. JA 5909-1. J. Basic Microbiol. 1996, 36, 235-238, doi:10.1002/jobm.3620360405.

8. Schumacher, R.W.; Talmage, S.C.; Miller, S.A.; Sarris, K.E.; Davidson, B.S.; Goldberg, A. Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. J. Nat. Prod. 2003, 66, 1291-1293, doi:10.1021/np020594e.

9. Huang, H.; Lan, X.; Wang, Y.; Tian, L.; Fang, Y.; Zhang, L.; Zhang, K.; Zheng, X. New bioactive derivatives of nonactic acid from the marine Streptomyces griseus derived from the plant Salicornia sp. Phytochem. Lett. 2015, 12, 190-195, doi:10.1016/j.phytol.2015.04.001.

10. Jeong, S.Y.; Shin, H.J.; Kim, T.S.; Lee, H.S.; Park, S.K.; Kim, H.M. Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J. Antibiot. 2006, 59, 234-240, doi:10.1038/ja.2006.33.

11. Charan, R.D.; Schlingmann, G.; Janso, J.; Bernan, V.; Feng, X.; Carter, G.T. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J. Nat. Prod. 2004, 67, 1431-1433, doi:10.1021/np040042r.

12. Maskey, R.P.; Grun-Wollny, I.; Laatsch, H. Isolation and structure elucidation of diazaquinomycin C from a terrestrial Streptomyces sp. and confirmation of the akashin structure. Nat. Prod. Res. 2005, 19, 137-142, doi:10.1080/14786410410001704741.

13. McBrien, K.D.; Berry, R.L.; Lowe, S.E.; Neddermann, K.M.; Bursuker, I.; Huang, S.; Klohr, S.E.; Leet, J.E. Rakicidins, new cytotoxic lipopeptides from Micromonospora sp. fermentation, isolation and characterization. J. Antibi. 1995, 48, 1446-1452, doi:10.7164/antibiotics.48.1446.

14. Oku, N.; Matoba, S.; Yamazaki, Y.M.; Shimasaki, R.; Miyanaga, S.; Igarashi, Y. Complete stereochemistry and preliminary structure-activity relationship of rakicidin A, a hypoxia-selective cytotoxin from Micromonospora sp. J. Nat. Prod. 2014, 77, 2561-2565, doi:10.1021/np500276c.
Iida, A.; Sanekata, M.; Wada, S.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Asami, K. Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem. Pharm. Bull. 1995, 43, 392-397, doi:10.1248/cpb.43.392.

Goulard, C.; Hlimi, S.; Rebuffat, S.; Bodo, B. Trichorozins HA and MA, antibiotic peptides from Trichoderma harzianum. I. Fermentation, isolation and biological properties. J. Antibiot. 1995, 48, 1248-1253, doi:10.7164/antibiotics.48.1248.

Iida, A.; Sanekata, M.; Fujita, T.; Tanaka, H.; Enoki, A.; Fuse, G.; Kanai, M.; Rudewicz, P.J.; Tachikawa, E. Fungal metabolites. XVI. Structures of new peptaibols, trichokinds I-VII, from...
the fungus *Trichoderma harzianum*. *Chem. Pharm. Bull.* **1994**, *42*, 1070-1075, doi:10.1248/cpb.42.1070.

33. Mohamed-Benkada, M.; Montagu, M.; Biard, J.F.; Mondeguer, F.; Verite, P.; Dalgalarondon, M.; Bissett, J.; Pouchus, Y.F. New short peptaibols from a marine *Trichoderma* strain. *Rapid Commun. Mass Spectrom.* **2006**, *20*, 1176-1180, doi:10.1002/rcm.2430.

34. Oh, S.U.; Yun, B.S.; Lee, S.J.; Kim, J.H.; Yoo, I.D. Atroviridins A-C and neotroviridins A-D, novel peptaibol antibiotics produced by *Trichoderma atroviride* F80317. *I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot.* **2002**, *55*, 557-564, doi:10.7164/antibiotics.55.557.

35. Augustiniak, H.; Forche, E.; Reichenbach, H.; Wray, V.; Gräfe, U.; Höfle, G. Isolierung und Strukturaufklärung von Ergokonin A und B; zwei neue antifungische Sterol-Antibiotika aus *Trichoderma koningii*. *Liebigs Ann. Chem.* **1991**, *1991*, 361-366, doi:10.1002/jlac.199119910163.

36. Reveglia, P.; Savocchia, S.; Billones-Baaijens, R.; Masi, M.; Cimmino, A.; Evidente, A. Diploquinones A and B, two new phytotoxic tetrasubstituted 1,4-naphthoquinones from *Diplodia mutila*, a causal agent of grapevine trunk disease. *J. Agr. Food Chem.* **2018**, *66*, 11968-11973, doi:10.1021/acs.jafc.8b05004.

37. Chilton, W.S. Isolation and structure of norjavanicin. *J. Org. Chem.* **1968**, *33*, 4299-4300, doi:10.1021/jo01275a074.

38. Trisuwan, K.; Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi *Fusarium* spp. *PSU-F14 and PSU-F135*. *J. Nat. Prod.* **2010**, *73*, 1507-1511, doi:10.1021/np100282k.

39. Ola, A.R.; Thomy, D.; Lai, D.; Brotz-Oesterhelt, H.; Proksch, P. Inducing secondary metabolite production by the endophytic fungus *Fusarium tricinctum* through coculture with *Bacillus subtilis*. *J. Nat. Prod.* **2013**, *76*, 2094-2099, doi:10.1021/np400589h.

40. Kurobane, I.; Vining, L.C.; McInnes, A.G.; Gerber, N.N. Metabolites of *Fusarium solani* related to dihydrofusarubin. *J. Antibiot.* **1980**, *33*, 1376-1379, doi:10.7164/antibiotics.33.1376.

41. Yang, X.; Khong, T.T.; Chen, L.; Choi, H.D.; Kang, J.S.; Son, B.W. 8'-hydroxyzearalanone and 2'-hydroxyzearalanol: Resorcylic acid lactone derivatives from the marine-derived fungus *Penicillium* sp. *Chem. Pharm. Bull.* **2008**, *56*, 1355-1356, doi:10.1248/cpb.56.1355.

42. Ma, T.-T.; Shan, W.-G.; Ying, Y.-M.; Ma, L.-F.; Liu, W.-H.; Zhan, Z.-J. Xanthones with α-glucosidase inhibitory activities from *Aspergillus versicolor*, a fungal endophyte of *Huperzia serrata*. *Helv. Chim. Acta* **2015**, *98*, 148-152, doi:10.1002/hlca.201400165.

43. Stob, M.; Baldwin, R.S.; Tuite, J.; Andrews, F.N.; Gillette, K.G. Isolation of an anabolic, uterotrophic compound from corn infected with *Gibberella zeae*. *Nature* **1962**, *196*, 1318, doi:10.1038/1961318a0.

44. Hawas, U.W.; Farrag, A.R.H.; Ahmed, E.F.; Abou El-Kassem, L.T. Cytotoxic effect of *Fusarium equiseti* fungus metabolites against N-Nitrosodimethylamine- and CCL4-induced hepatocarcinogenesis in rats. *Pharm. Chem. J.* **2018**, *52*, 326-333, doi:10.1007/s11094-018-1816-3.

45. Richardson, K.E.; Hagler, W.M.; Mirocha, C.J. Production of zearalenone, α- and β-zearalenol, and α- and β-zearalanol by *Fusarium* spp. in rice culture. *J. Agr. Food Chem.* **1985**, *33*, 862-866, doi:10.1021/jf00065a024.

46. Shiono, Y.; Tsuchinari, M.; Shimanuki, K.; Miyajima, T.; Murayama, T.; Koseki, T.; Laatsch, H.; Funakoshi, T.; Takanami, K.; Suzuki, K. Fusaristatins A and B, two new cyclic lipopeptides from an endophytic *Fusarium* sp. *J. Antibiot.* **2007**, *60*, 309-316, doi:10.1038/ja.2007.39.

47. Hammerschmidt, L.; Wray, V.; Lin, W.; Kamilova, E.; Proksch, P.; Aly, A.H. New styrylpyrones from the fungal endophyte *Penicillium glabrum* isolated from *Punica granatum*. *Phytochemistry.* **2012**, *5*, 600-603, doi:10.1016/j.phytochem.2012.06.003.

48. Lai, S.; Shizuri, Y.; Yamamura, S.; Kawai, K.; Furukawa, H. New curvularin-type metabolites from the hybrid strain ME 0005 derived from *Penicillium citreo-viride* B. *IFO 4692 and 6200*. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 1048-1050, doi:10.1246/bcsj.64.1048.
49. Huang, Z.; Yang, R.; Yin, X.; She, Z.; Lin, Y. Structure elucidation and NMR assignments for two xanthone derivatives from a mangrove endophytic fungus (No. ZH19). Magn. Reson. Chem. 2010, 48, 80-82, doi:10.1002/mrc.2539.

50. Li, F.; Sun, W.; Zhang, S.; Gao, W.; Lin, S.; Yang, B.; Chai, C.; Li, H.; Wang, J.; Hu, Z.; et al. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. Chin. Chem. Lett. 2020, 31, 197-201, doi:10.1016/j.cclet.2019.04.036.

51. Liao, Z.-J.; Tian, W.-J.; Liu, X.-X.; Jiang, X.; Wu, Y.; Lin, T.; Chen, H.-F. A new xanthone from an endophytic fungus of Anoectochilus roxburghii. Chem. Nat. Compd. 2018, 54, 267-269, doi:10.1007/s10600-018-2320-4.

52. Yang, S.-Q.; Li, X.-M.; Li, X.; Li, H.-L.; Meng, L.-H.; Wang, B.-G. New citrinin analogues produced by coculture of the marine algal-derived endophytic fungal strains Aspergillus sydowii EN-534 and Penicillium citrinum EN-535. Phytochem. Lett. 2018, 25, 191-195, doi:10.1016/j.phytol.2018.04.023.

53. Zhuang, Y.-B.; Yin, H.; Zhang, X.-W.; Zhou, W.; Liu, T. Three new xanthones from the fungus Penicillium sp. NH-7-1. Helv. Chim. Acta 2015, 98, 699-703, doi:10.1002/hlca.201400296.

54. Dekan, Z.; Sianati, S.; Yousf, A.; Sutcliffe, K.J.; Gillis, A.; Mallet, C.; Singh, P.; Jin, A.H.; Wang, A.M.; Mohammadi, S.A.; et al. A tetrapeptide class of biased analogues from an Australian fungus targets the micro-opioid receptor. Proc. Natl. Acad. Sci. USA 2019, 116, 22353-22358, doi:10.1073/pnas.1908662116.

55. Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993, 34, 2355-2358, doi:10.1016/s0040-4039(00)77612-x.

56. Zhang, P.; Meng, L.-H.; Mándi, A.; Li, X.-M.; Kurthán, T.; Wang, B.G. Structure, absolute configuration, and conformational study of resorcylic acid derivatives and related congeners from the fungus Penicillium brocae. RSC Adv. 2015, 5, 39870-39877, doi:10.1039/c5ra02203g.

57. Andersen, B.; Smedsgaard, J.; Frisvad, J.C. Penicillium expansum: Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J. Agr. Food Chem. 2004, 52, 2421-2428, doi:10.1021/jf035406k.

58. Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172, doi:10.3390/md14100172.

59. Massias, M.; Rebuffat, S.; Molho, L.; Chiaroni, A.; Riche, C.; Bodo, B. Expansolides A and B: Tetra cyclic sesquiterpene lactones from Penicillium expansum. J. Am. Chem. Soc. 1990, 112, 8112-8115, doi:10.1021/ja00178a039.

60. Huang, J.; She, J.; Yang, X.; Liu, J.; Zhou, X.; Yang, B. A new macrolide and two new polycyclic chromones from the fungus Penicillium sp. SCSIO041218. Molecules 2019, 24, 1686, doi:10.3390/molecules24091686.

61. Cheng, Z.; Xu, W.; Wang, Y.; Bai, S.; Liu, L.; Luo, Z.; Yuan, W.; Li, Q. Two new meroterpenoids and two new monoterpenoids from the deep sea-derived fungus Penicillium sp. YPGA11. Fitoterapia 2019, 133, 120-124, doi:10.1016/j.fitote.2018.12.022.

62. Matsuura, H.; Nakamori, K.; Omer, E.A.; Hatakeyama, C.; Yoshihara, T.; Ichihara, A. Three lasiodiplodins from Lasiodiplodia theobromae IFO 31059. Phytochemistry 1998, 49, 579-584, doi:10.1016/s0031-9422(98)00267-2.

63. Li, J.; Xue, Y.; Yuan, J.; Lu, Y.; Zhu, X.; Lin, Y.; Liu, L. Lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318. Nat. Prod. Res. 2016, 30, 755-760, doi:10.1080/14786419.2015.1062762.

64. Pontius, A.; Krick, A.; Kehraus, S.; Brun, R.; Konig, G.M. Antiprotozoan activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 2008, 71, 1579-1584, doi:10.1021/np800294q.

65. Řezanka, T.; Jáchymová, J.; Dembitsky, V.M. Prenylated xanthone glucosides from Ural’s lichen Umbilicaria proboscidea. Phytochemistry 2003, 62, 607-612, doi:10.1016/s0031-9422(02)00539-3.