On optimal values of α for the analytic Hartree-Fock-Slater method

Rajendra R. Zope
Department of Chemistry, George Washington University, Washington DC, 20052

Brett I. Dunlap
Code 6189, Theoretical Chemistry Section, US Naval Research Laboratory Washington, DC 20375
(Dated: November 15, 2018)

We have examined the performance of the analytic Hartree-Fock-Slater (HFS) method for various α values and empirically determined the optimal α value by minimizing the mean absolute error (MAE) in atomization energies of the G2 set of molecules. At the optimal α the HFS method's performance is far superior with the MAE of 14 kcal/mol than that of the local density approximation (MAE \sim 36 kcal/mol) or the Hartree-Fock theory (MAE \sim 78 kcal/mol). The HFS exchange functional with $\alpha = 0.7091$ performs significantly better than the Kohn-Sham exchange functional for equally weighted atoms H-Kr. We speculate that use of this single α value may be useful in parametrization of empirical exchange-correlation functionals.

PACS numbers:
Keywords: analytic density functional theory, exchange potential, Slater’s $X\alpha$, Hartree-Fock-Slater

The problems with numerical integration in quantum mechanical calculations are well known.\cite{1,2} Thus, all ab initio electronic structure calculations can be divided into two classes. In the first class, historically called ab initio, all quantum mechanical matrix elements are computed to machine precision.\cite{2} The second class of electronic structure calculations require numerical integration and machine-precision matrix elements are totally impractical, and thus, except for atoms, machine-precision energies are out of the question. Until very recently this second class included almost all density-functional calculations.\cite{4} Recently, fully analytic Hartree-Fock-Slater (HFS) variant of the density functional theory (DFT) was implemented using Gaussian basis sets.\cite{5} This approach employs fitting of the potential to integrable functional form, rather than by fitting or integration on numerical grid. The technique is computationally very efficient in comparison with the grid-based implementation and provides smooth potential energy surfaces and exact energy gradients.\cite{6} We have recently extended this scheme to allow for the atom-dependent exchange parameters that scale the exchange potential by means of a muffin-tin (MT)-like approach.\cite{7} In our method matrix elements are computed to machine accuracy. Further, in contrast to earlier MT implementation, here the energy is both meaningful and stationary. One can require that atoms dissociate into their exact experimental rather than approximate Hartree-Fock (HF) electronic energies. This approach\cite{8} when applied to a standard set of molecules that are used in performance tests of DFT models yields results that are intermediate between either the local density approximation (LDA) or the HF approximation and more sophisticated hybrid or generalized gradient approximations (GGA).\cite{9}

In the HFS\cite{5} model, the nonlocal exchange potential in the Hartree-Fock method is replaced by a local exchange potential that is given by

$$v_x(\vec{r}) = -\frac{3}{2} \left(\frac{3}{\pi}\right)^{1/3} \frac{1}{\rho} \alpha^{1/3}.$$ \hspace{1cm} (1)

Here, the parameter α, called Slater’s statistical exchange parameter, is unity. Similar expression for the exchange energy of the homogeneous electron gas was obtained earlier by Dirac.\cite{9} Later, Gáspár and Kohn-Sham\cite{10} (GKS) obtained the value of $2/3$ for α by variationally minimizing the total energy functional. In the following years, α was taken purely as an adjustable parameter to obtain desired atomic properties.\cite{11,12,13,14,15} The first\cite{16} HFS calculations with meaningful numerically integrated total energies used a uniform α value of 0.7. Since then the HFS method has come to mean this α value. Later, the electronic structure calculations using the LDA by showed that the LDA give similar but not superior binding energies to the HFS method. Several studies since then have shown that the LDA has a general tendency to overbind.\cite{17}

HF theory being analytic allows cheap geometry optimization despite its N^3 cost. In an analytic method one optimizes tens of linear-combination-of-atomic-orbital parameters per atom, rather than hundreds of plane-waves per pseudoatom, or thousands of numerical integration points per all-electron atom. With or without the MT-like advance, an N^3 analytic method might prove to be a practical geometry-optimization tool if appropriate choice(s) of the exchange parameter(s) is(are) made. In this article we assess the performance of analytic HF model for the GKS and the Slater values of α by computing the mean absolute error (MAE) in atomization energies of a set of 56 molecules (G2 set). We then determine the optimal value of α by minimizing the MAE for the G2 set of molecules. The calculations are performed for various basis sets in order to study the basis set dependence of the optimal α value. Our calculations show that the analytic HFS model with the optimal α
value performs better than the HF theory or the LDA and hence provides a computationally efficient scheme to study large systems at modest accuracy. Furthermore, by minimizing the MAE between the HF and the HFS total energies for atoms H through Kr, we find that best performance of the exchange functional in Eq. (1) is obtained for $\alpha = 0.7091$.

Our calculations in the Slater-Roothaan (SR) method require using the Gaussian basis sets to fit the orbitals and the Kohn-Sham potential. We have used the valence triple-ζ (TZ) 6-311G** basis set and the DGAuss** basis set (DZVP) for the orbitals. The s-type fitting bases are obtained by scaling the s-part of the orbital basis. For the non-zero angular momentum components the resolution-of-the-identity-J (RI-J) and A2 basis sets are used for the Kohn-Sham potential fitting. Thus, four sets 6311G**/RI-J, 6311G**/A2, DZVP/RI-J, and DZVP/A2 of bases were used for optimizing the α value. The molecules were optimized using the Broyden-Fletcher-Goldhar-Shanno (BFGS) algorithm. The α minimization was performed using powerful Perl scripts that drive the analytic DFT code.

Our first attempt to determine the optimal α is based on the atomic calculation. These calculations are numerical and therefore are free from the basis sets effects. Here we minimize the MAE in the HF and the HFS total energies for atoms H through Ar. The minimum occurs for $\alpha = 0.7267$ with the MAE of 0.101 a.u. The optimal α value decreases slightly to 0.7091 when the target set is extended to include the atoms up to krypton. At this value the MAE is 0.33 au. These errors are an order of magnitude smaller than the MAE (2.38 a.u.) for the $\alpha = 2/3$. The exchange functional in Eq. (1) with $\alpha = 0.7091$ is therefore better approximation than the GKS functional, at least for the atomic systems.

We now examine the performance of the HFS model for the GKS and Slater α values. The performance of the analytic HFS model in prediction of the atomization energies for the G2 set of molecules is given in Table I. The computation of atomization energies is a stringent test for computational models and has been routinely used in the appraisal of the computational models. The G2 set of molecules used in the performance analysis is the set is extended to include the atoms up to krypton. At this value the MAE is 0.33 au. These errors are an order of magnitude smaller than the MAE (2.38 a.u.) for the $\alpha = 2/3$. The exchange functional in Eq. (1) with $\alpha = 0.7091$ is therefore better approximation than the GKS functional, at least for the atomic systems.

In Table II we have summarized the results of present calculations. In comparison with the LDA or HF the analytic HFS model performance is significantly better. Its performance is even better than the SR-HF or the SR-Exact-Atomic models. These models are similar to the present one but make use of atom dependent α, which in case of SR-HF and SR-Exact-Atomic uses α values that give the HF atomic and the exact energies for atomic systems, respectively. The overall improvement in the performance obtained here by minimizing the MAE in atomization energies also suggest that the SR model can also be similarly improved by multidimensional minimization of MAE in the α space. There are several density functional computational schemes that use the generalized gradient approximation (GGA), the hybrid GGA or meta GGA(see for example, Ref. [10]). The accuracies of these models for the G2 set range from 3-8 kcal/mol, but to date they require numerical treatment. Although its analytic implementation is computationally most efficient, the optimal values can also be used in any existing density functional code, albeit with some reduction in computational performance. It should also be borne in mind that the G2 set used in obtaining optimal α value contains small molecules consisting of atoms belonging to the first and second rows of the periodic table.

We have also examined the performance of the analytic HFS model for the extended G2 set containing 148 molecules. Reoptimizing the α in order to minimize the MAE for this larger G2 set moves optimal α significantly far in the direction of the GKS’s α value. The analysis of errors for individual molecules in this dataset shows
TABLE I: The atomization energies D_0 (kcal/mol) for the 56 set of molecules for two different basis sets. The two basis sets chosen are I: 6-311G**/RII, II: DZVP/A2. The α values are Gaspar-Kohn-Sham’s alpha (=0.66666667), Slater’s alpha (=1.0000), and the optimal α for which mean absolute error is minimum. The last column contains the exact values.

α	Basis I	Basis I	Basis I	Basis II	Basis II	Basis II	Exact
	0.666667	1.0000	0.70650	0.666667	1.0000	0.69800	
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
α							
TABLE II: The mean absolute error (MAE) (kcal/mol) in the atomization energy of 56 molecules belonging to the G2 set is compared within different models. The numbers for the SR-HF and SR-Exact-Atomic are for the Slater-Roothaan model with Hartree-Fock α values and the α values that give the exact-atomic (See text for more details). The results of the more complex PBE GGA functional are also included for comparison.

Model	Basis	MAE
Hartree-Fock theory	78 Ref. 25	
LDA	36 Ref. 30	
PBE	8 Ref. 30	
SR-HF	6-311G**/RI-J 16 Ref. 8	
SR-HF	DZVP/A2 16 Ref. 8	
SR-Exact-Atomic	6-311G**/RI-J 19 Ref. 8	
SR-Exact-Atomic	DZVP/A2 18 Ref. 8	
HFS (Uniform α)	6-311G**/RI-J 14 (Present work)	
HFS (Uniform α)	DZVP/A2 13 (Present work)	

that this occurs due to the presence of a large percent of molecules containing fluorine in the extended G2 dataset. The errors for these molecules are lowered by decreasing the α value below 0.7. This is consistent with our earlier finding that the exact atomization of fluorine dimer is obtained for much smaller α value of 0.3. This again brings out the limitation of the uniform α HFS method and shows that the analytic SR method has a scope for improvement. It appears from the minimization of errors of the G2 and the extended G2 data sets and error analysis, as well as from the minimization of the total total atomic energies that overall the value close to 0.7 is probably the right choice for the optimal α in the uniform α calculations.

To summarize, the performance appraisal of the analytic Hartree-Fock-Slater method is carried out for various α values using the G2 database of 56 molecules. The α value that gives the best performance is determined by minimizing the mean absolute errors in the atomization energies of the G2 set of molecules. It is shown that the analytic HFS model performs better than the LDA or HF as well as the SR method that uses atom dependent α which give the exact HF or experimental atomic energies. Further, by minimizing the MAE in the HF and the HFS total energies it is shown that the local exchange functional performs significantly better for $\alpha = 0.7091$ than the Gaspar-Kohn-Sham exchange functional. The MAE in former is an order of magnitude smaller than the MAE for the GKS exchange functional.

Analytic DFT, even at this stage of development, is remarkably accurate.

The Office of Naval Research, directly and through the Naval Research Laboratory, and the Department of Defense’s High Performance Computing Modernization Program, through the Common High Performance Computing Software Support Initiative Project MBD-5, supported this work.
N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001).