Tree Decomposed Graph Neural Network

Yu Wang
tyler.derr@vanderbilt.edu
Vanderbilt University

ABSTRACT
Graph Neural Networks (GNNs) have achieved significant success in learning better representations by performing feature propagation and transformation iteratively to leverage neighborhood information. Nevertheless, iterative propagation restricts the information of higher-layer neighborhoods to be transported through and fused with the lower-layer neighborhoods, which unavoidably results in feature smoothing between neighborhoods in different layers and can thus compromise the performance, especially on heterophily networks. Furthermore, most deep GNNs only recognize the importance of higher-layer neighborhoods while yet to fully explore the importance of multi-hop dependency within the context of different layer neighborhoods in learning better representations. In this work, we first theoretically analyze the feature smoothing between neighborhoods in different layers and empirically demonstrate the variance of the homophily level across neighborhoods at different layers. Motivated by these analyses, we further propose a tree decomposition method to disentangle neighborhoods in different layers to alleviate feature smoothing among these layers. Moreover, we characterize the multi-hop dependency via graph diffusion within our tree decomposition formulation to construct Tree Decomposed Graph Neural Network (TDGNN), which can flexibly incorporate information from large receptive fields and aggregate this information utilizing the multi-hop dependency. Comprehensive experiments demonstrate the superior performance of TDGNN on both homophily and heterophily networks under a variety of node classification settings. Extensive parameter analysis highlights the ability of TDGNN to prevent over-smoothing and incorporate features from shallow layers with deeper multi-hop dependencies, which provides new insights towards deeper graph neural networks. The implementation of TDGNN is available at https://github.com/YuWVandy/TDGNN.

KEYWORDS
graph neural networks, tree decomposition, multi-hop dependency

1 INTRODUCTION
Graph representation learning has recently emerged as a powerful strategy for node classification [7, 9, 12, 31], graph classification [9, 30, 35, 39] and link prediction [1, 42] on graph-structured data. As the generalization of deep learning to the graph domain, Graph Neural Networks (GNNs) have become one of the most promising paradigms [26], which adopts a neighborhood aggregation scheme to learn node representations by utilizing both the node features and the graph topology [12, 31, 34]. A typical GNN architecture for node classification consists of two stages: propagation/aggregation and transformation. First, messages are propagated from neighboring nodes to their corresponding center nodes and then aggregated together. Afterwards, the aggregated messages are transformed by the transformation layer to extract useful node representations. These two stages are packed together and termed as one layer of graph convolution. Deep GNNs iteratively perform multiple graph convolutions to obtain a larger receptive field and thus incorporate information of neighborhoods in higher layers [3, 8, 17, 25].

Although GNNs have gained significant achievements, a common challenge faced by GNNs is known as the over-smoothing problem [2, 15]: the performance of GNNs degrades when stacking multiple graph convolution layers. Most popular models, such as GCN [12] and GAT [31], achieve their best performance with 2-layer graph convolutions. Such shallow architectures limit their ability to extract information from higher-layer neighborhoods. However, stacking multiple layers to increase the receptive field tends to fuse representations of nodes from different classes and thus make them indistinguishable due to iterative propagation [17]. Earlier works have found that the stationary point that node representations converge to is determined by node degrees and their features [15, 27]. However, these works focus on the theoretical analysis of the steady state in the limit of propagation while yet to provide effective solutions to solve the over-smoothing problem.

Stepping further, several methods propose deep GNNs to incorporate higher-layer neighborhood information through iterative propagation [13, 14, 25, 34]. For example, GCNII [3] applies an initial residual connection and identity mapping to enable GCN to express a \(K \)-th-order polynomial filter with arbitrary coefficients. Nevertheless, more recently, it has been analyzed that the performance degradation due to over-smoothing is because the entanglement of feature transformation and propagation [17]. Building upon this, DAGNN [17] proposes to decouple the feature propagation and transformation, and learn node representations by adaptively incorporating information from larger receptive fields. However, the propagation in all of previous deep models is executed iteratively so that the information of higher-layer neighborhoods is restricted to be transported through and fused with the lower-layer neighborhoods and then propagated to their corresponding center nodes, which unavoidably informs feature smoothing between neighborhoods in different layers.
Therefore, although different deep GNNs [3, 4, 8, 17] develop their own techniques, their core component is to apply multiple graph convolutions (mixed-order propagation [8]) to incorporate more neighborhood information from a broader neighboring range. As a result, the importance of depth of GNNs has raised significant concern while the importance of width of GNNs is rarely researched. It is shown in [8] that the mixed order propagation rule enables their model to incorporate more local information but does not clarify the relationship between the propagation rule and the local information. Additionally, in [32], they observe that nodes can not only attend to their immediate neighbors but can also extract useful information from their multi-hop neighboring context. However, this work considers this multi-hop neighboring context in a specific attention framework. Different from previous works, we propose the general concept of multi-hop dependency as a measurement of the width of GNNs, and empirically demonstrate its importance in learning node representations.

In view of the challenge that features of higher-layer neighborhoods are over-smoothed with the lower-layer neighborhoods and noticing the importance of the multi-hop dependency, we propose an effective framework, termed as Tree Decomposed Graph Neural Network (TDGNN), to learn node representations from larger receptive fields without causing feature over-smoothing between different layers of neighborhoods and allow flexible layer configurations to avoid under-performance on heterophily networks. Our major contributions are listed as follows:

- Motivated by our theoretical analysis on feature smoothing and empirically demonstration of the variance of the homophily level across neighborhoods in different layers, we propose a tree decomposition method to disentangle features of neighborhoods in different layers, which can help alleviate the problem of feature smoothing and provides more flexible layer configurations for complex networks.
- We capture and maintain the importance of multi-hop dependency in learning better representations within our tree decomposition method by characterizing this multi-hop dependency by graph diffusion, which ultimately leads to the construction of proposed Tree Decomposed Graph Neural Network (TDGNN).
- We conduct experiments in both semi-supervised and full-supervised settings and on both homophily and heterophily network datasets to comprehensively demonstrate the superiority of our proposed TDGNN framework over existing methods. Additionally, we perform a parameter analysis to better understand and contrast TDGNN to prior GNNs.

The rest of the paper is organized as follows. In Section 2, we define necessary notations and briefly introduce the supervised node classification problem and GNNs. We present our proposed TDGNN framework in Section 3, which consists of the tree decomposition procedure to disentangle feature information of neighborhoods in different layers, the graph diffusion procedure to model multi-hop dependencies, and layer aggregation procedure to enable adaptive combination of aggregated representations of different layers. In Section 4, experiments are performed to evaluate the effectiveness of our framework. Related work is then presented in Section 5. Finally, we conclude and discuss future work in Section 6.

2 PRELIMINARIES

In this section, we first introduce the notations and definitions that are used throughout this paper, and then provide a brief background on the supervised node classification problem and GNNs.

2.1 Notations

Let \(G = (V, E, X) \) denote an unweighted and undirected network, where \(V = \{v_1, v_2, ..., v_n\} \) is the set of \(n \) nodes (i.e., \(n = |V| \)), \(E \subseteq V \times V \) is the set of \(m \) edges (i.e., \(m = |E| \)) between nodes in \(V \) with \(e_{ij} \) denoting the edge between the node \(v_i \) and node \(v_j \), and \(X \in \mathbb{R}^{nxd} \) denotes the node feature matrix, where each row \(x_i \in \mathbb{R}^d \) represents the feature vector of node \(v_i \) and \(d \) is the dimension of node features. The topological information of the whole network \(G \) is described by the adjacency matrix \(A \in \mathbb{R}^{nxn} \), where \(A_{ij} = 1 \) if an edge exists between node \(v_i \) and node \(v_j \) (i.e., if \(e_{ij} \in E \)), and \(A_{ij} = 0 \) otherwise. The diagonal matrix of node degrees are noted as \(D = D^+ \in \mathbb{R}^{nxn} \), where the degree of the node \(v_i \) is calculated by \(D_{ii} = \sum_j A_{ij} \). Additionally, let \(A = A + I \) represent the adjacency matrix with added self-loops and similarly let \(D \) represent the diagonal degree matrix with the diagonal element 1. \(N_i \) is the neighborhood node set of the center node \(v_i \), which is given by \(N_i = \{ v_j | e_{ij} \in E \} \). We then extend this definition by using \(N_i^l \) to denote the \(l \)-th layer neighborhood nodes of the center node \(v_i \), which includes all nodes that can be reached from the center node \(v_i \) in exactly \(l \) hops.

2.2 Supervised Node Classification Task

In this work, we focus on the node classification task and leave the application of our framework on other tasks, such as link prediction, as one future work. More specifically, we consider the transductive node classification problem where we are provided with the labeled node set \(V' \subset V \) associated with the node label matrix \(Y \in \mathbb{R}^{|V'|x|C|} \) with \(C \) number of classes, the goal is to learn a mapping \(F: \mathbb{R}^{nxd} \times \mathbb{R}^{nxn} \rightarrow \mathbb{R}^{nxC} \), which takes as input the feature matrix \(X \) and adjacency matrix \(A \), and outputs the predicted \(C \)-dimensional node representation \(Z \in \mathbb{R}^{nxC} \).

2.3 Graph Neural Networks

Typically, most graph neural networks (GNNs) can be decomposed into two operational procedures: (1) neighborhood propagation and aggregation, and (2) feature transformation. The neighborhood propagation and aggregation can be formalized as follows:

\[
\hat{h}_i^l = \text{AGGREGATION}^l(h_{i}^{l-1}, \{ h_{j}^{l-1} | j \in N_i \}), \tag{1}
\]

where representations of neighborhoods at the previous layer \(\{ h_{j}^{l-1} | j \in N_i \} \) are propagated to the center node \(v_i \) and further fused with its own representation \(h_{i}^{l-1} \) from the previous layer via \(\text{AGGREGATION}^l \) function at layer \(l \) to get the partial representation \(\hat{h}_i^l \). Note that \(h_{i}^{0} \) of node \(v_i \) is initialized as the original node feature \(x_i \). Then, after the aggregation procedure, the \(\text{TRANSFORMATION}^l \) function at layer \(l \) is applied on \(\hat{h}_i^l \) to get the representation \(h_i^l \) of node \(v_i \) at layer \(l \) and defined as follows:

\[
h_i^l = \text{TRANSFORMATION}^l(\hat{h}_i^l), \tag{2}
\]
where we can denote the node representations at lth layer for all the nodes in the network as $H_l \in \mathbb{R}^{n \times d_l}$, where the ith row corresponds to the representation of the node v_i at layer l (i.e., $H_l \in \mathbb{R}^{d_l}$).

Most graph convolutions, such as GCN [12], GraphSAGE [10], GAT [31], GIN [35], and SGC [34], can be obtained under this framework by adopting and configuring different functions in AGGREGATION and TRANSFORMATION. For instance, the vanilla GCN model suggests using $\tilde{H}^l = \tilde{A}H^{l-1}$ in AGGREGATION followed by $H^l = \sigma(\tilde{H}^lW^l)$ in TRANSFORMATION, where $\tilde{A} = \text{D}^{-\frac{1}{2}}\text{A}\text{D}^{-\frac{1}{2}}$ is the renormalized adjacency matrix to prevent gradient explosion, $W^l \in \mathbb{R}^{d_{l-1} \times d_l}$ represents the weight matrix at layer l transforming features of dimension d_{l-1} to d_l, and σ is ReLU. Although GNNs may differ in their unique AGGREGATION and TRANSFORMATION designs, most graph convolutions employ an iterative propagation to increase their receptive field and incorporate information of neighborhoods in higher layers. However, such iterative propagation inevitably causes feature smoothing between neighborhoods in different layers. Furthermore, the enhanced performance caused by leveraging iterative feature propagation guides us to pay more attention to the importance of higher-layer neighborhoods while the effect of multi-hop dependency still remains unclear.

Next, having defined the basic notations, background, and discussed some of the challenges for supervised node classification and basic GNNs, we present our proposed framework with the purpose of alleviating the feature smoothing between neighborhoods in different layers and incorporating the multi-hop dependency.

3 THE PROPOSED FRAMEWORK

In this section, we design a Tree Decomposed Graph Neural Network (TDGNN) by mainly solving the two challenges mentioned in Section 1, which are feature smoothing between neighborhoods in different layers and lack of considering the multi-hop dependency in GNNs. For the first challenge, we theoretically show the feature smoothing between different layers when applying iterative propagation and further propose a tree decomposition method to disentangle neighborhood information in different layers. For the second challenge, we formalize the definition of the multi-hop dependency and characterize it through a graph diffusion process.

Combining the tree decomposition method to disentangle the neighborhood information on different layers and the graph diffusion to model the multi-hop dependency, we propose TDGNN. We also introduce two mechanisms to aggregate node representations of each layer, TDGNN-s that directly sums the representations of all layers together, and TDGNN-w that assigns learnable weights and adaptively combines the node representations of each layer. The whole framework is shown in Figure 3, which has three main components: tree decomposition to handle feature smoothing between different neighborhood layers, graph diffusion to model multi-hop dependency, and aggregation to combine representations of different layers. Next, we describe each of these components in detail.

3.1 Tree Decomposition

The basic assumption in GNNs is that the neighborhood information of the center node leveraged by applying feature propagation and aggregation can enhance the prediction performance of the center node itself [36]. Such an assumption is justified by the core network property, homophily, where linked nodes tend to share similar features and typically belong to the same class [24, 44]. However, the level of homophily might be completely different among different networks or even vary among different subgraphs within the same network. One extreme situation would be the heterophily network where linked nodes are likely from different classes or have dissimilar features [21, 45].

In Figure 1, we show the level of homophily across different neighborhood layers in the Cora and Texas datasets. More specifically, the level of homophily is measured by distributions of the ratio of neighborhoods N^l in different neighborhood layers l that share the same class as (in Figure 1(a) and Figure 1(c)) and have similar embeddings to (in Figure 1(b) and Figure 1(d)) their corresponding center nodes, which are obtained from feeding node features only through the transformation layers in a pre-trained 2-layer GCN [12] without introducing any bias from feature propagation. In the Cora dataset, it can be observed that the majority of neighbors among their lth-layer neighborhoods have the same class as their corresponding center nodes, but the number of center nodes that have most of their neighborhoods sharing the same class as themselves decreases as the layer increases. Furthermore,
the embeddings of these neighborhoods on the 1st-layer, on average, have high similarity to their corresponding center nodes. This demonstrates the high homophily of the Cora dataset on low layers and propagating features of nodes in these low layers fuses embeddings of nodes in the same class and thus makes embeddings of different classes more separable. However, even for this extreme homophily layer in this strong homophily Cora dataset [37], not all of the nodes in the 1st-layer have all of their neighborhoods sharing the same label with themselves and this strong homophily becomes progressively weaker as we reach further out to higher layers. For example, only around 10% of the nodes in the 3rd-layer have all their neighborhoods sharing the same class and over half of the nodes in the 10th-layer have nearly all neighborhoods different from themselves. Even worse, in Texas dataset, even for low layers, most of the neighborhoods have different classes from their center nodes, especially for nodes on the 1st-layer, almost all nodes belong to different classes from their center nodes, which demonstrates the strong heterophily of the Texas dataset. Propagating features of nodes in such low layers to their center nodes fuses embeddings of nodes in different classes and makes those nodes indistinguishable, which results in learning worse node representations. Such feature smoothing among different layers is unavoidable as long as the procedure of iterative propagation is taken, that is: during iterative feature propagation, the information of neighborhoods in higher layers has to be transported through and fused with the information of neighborhoods in lower layers and then propagated to their corresponding center nodes.

If we take the most popular GNN-variant, a 2-layer GCN, as an example (for simplicity), then after 2-layer graph convolutions, the representation of the node \(v_i\) is:

\[
\begin{align*}
\mathbf{h}_i^2 &= \sigma(\mathbf{h}_i^0 \mathbf{W}_0^0) \mathbf{W}_1^1 \frac{1}{(d_i + 1)^2} + \sum_{j \in N_i} \frac{1}{(d_j + 1)(d_j + 1)} \sum_{j \in N_i} \frac{1}{d_i + d_j + 2} \left(\frac{1}{(d_i + 1)^{1.5} (d_j + 1)^{1.5}} \right) \\
&+ \sum_{j \in N_i} \sigma(\mathbf{h}_j^0 \mathbf{W}_0^0) \mathbf{W}_1^1 \frac{1}{(d_i + 1)^{1.5} (d_j + 1)^{1.5}} \\
&+ \sum_{j \in N_i} \sigma(\mathbf{h}_k^0 \mathbf{W}_0^0) \mathbf{W}_1^1 \frac{1}{(d_i + 1)^{1.5} (d_j + 1)^{1.5}} \\
&+ \sum_{j \in N_i} \sum_{k \in \{N_j \cap N_i\}} \sigma(\mathbf{h}_k^0 \mathbf{W}_0^0) \mathbf{W}_1^1 \frac{1}{(d_i + 1)^{1.5} (d_j + 1)^{1.5}}.
\end{align*}
\]

which consists of three components corresponding to the feature information of neighborhoods in the 0th-, 1st-, and 2nd-layer. Eq. 3 intuitively shows that the representation of node \(v_i\) after two iterative graph convolutions contains the information of both 1st- and 2nd-layer neighborhood information, which will compromise the performance on Texas dataset since the feature and class information of the 1st-layer is of great difference from their corresponding center nodes according to Figure 1(a) and Figure 1(b). Even for the Cora dataset, where the feature and class information of the 1st-layer neighborhoods is similar to their corresponding center nodes, still some center nodes have neighborhoods in the 1st-layer different from themselves and for these nodes, incorporating their neighborhood information might compromise their predictions.

Thus, based on our analysis, to advance the frontier of GNNs to be able to selectively leverage neighborhood information in different layers, we propose a tree decomposition method. More specifically, our proposed method disentangles neighborhoods in different layers and connects them directly with their corresponding center nodes. These direct connections allow the propagation of higher-layer neighborhoods’ features to their corresponding center nodes without any interference of lower-layer neighborhoods along the way. Furthermore, this tree decomposition procedure enables more flexible layer configurations of neighborhoods. For example in Figure 2, we decompose the computational tree in GNNs of the center node \(v_1\). Then in the training process, we selectively propagate features of nodes in different layers: propagating along 1st-layer subgraph, along 2nd-layer subgraph, and along both of these two subgraphs. The choice depends on the network homophily of different layers and is determined by hyperparameter-tuning. The adjacency matrix of the \(k\)th-layer subgraph \(T_k\) obtained from tree decomposition can be computed by the difference between corresponding powers of the normalized adjacency matrices with added self-loops and formalized as follows:

\[
T_k = \text{sign}(\hat{\Lambda}^k) - \text{sign}(\hat{\Lambda}^{k-1}) + I, \tag{4}
\]

\[
\text{sign}(\hat{\Lambda}^k)_{ij} = \begin{cases}
1, & \text{if } \hat{\Lambda}_ij^k > 0 \\
0, & \text{if } \hat{\Lambda}_ij^k = 0,
\end{cases} \tag{5}
\]

where \(\hat{\Lambda}^0 = I\) is the identity matrix and \(\hat{\Lambda} = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}}\) is the renormalized adjacency matrix as previously defined. The equivalence between \(T_k\) and the \(k\)th-layer subgraph including the self-loop can be easily proven, so we omit the details for brevity.

3.2 Multi-hop dependency

Although the tree decomposition could avoid the issue of feature smoothing between different layers, we also lose the multi-hop dependency captured by the original iterative propagation which might cause over-smoothing [8]. Two nodes have multi-hop dependency if they are connected by a path in the network and specifically \(k\)-hop dependency is defined as two nodes that are connected by at least one simple path with length \(k\). For example in Figure 2, features of node \(v_2\) cannot only be propagated along the edge \(v_2 \rightarrow v_1\)
Figure 3: An illustration of the proposed Tree Decomposed Graph Neural Network (TDGNN). For brevity, the pipeline to generate the prediction for only one node is presented.

We first apply a Multilayer Perceptron (MLP) network to the original feature matrix X to get the initial representations of nodes H^0 [13, 17]. Then, we decompose the whole network by calculating the adjacency matrix T^k of the k^{th}-layer tree based on Eq. 4 and Eq. 5. This k^{th}-layer subgraph contains only edges between center nodes and their corresponding k^{th}-layer neighborhood nodes including a self-loop. Since here we consider the neighborhood nodes up to L-th layer, the k is from 1 to L. Next we utilize graph diffusion to calculate the multi-hop dependency $E^{k,K}$ based on Eq. 6 and K is the predefined maximum hop of dependency we consider. Afterwards, we propagate the initial node representations H^0 along edges in each subgraph following each corresponding adjacency matrix T^k with the corresponding edge weight from multi-hop dependency $E^{k,K}$ to get representations H^k for each layer k based on Eq. 8. We collect representations from each layer and aggregate them together using two aggregation mechanisms to get the final representations Z based on Eq. (9). The first aggregation mechanism is to directly sum up the representations of all layers together. The second aggregation mechanism is to assign learnable weights and adaptively combine the representations of each layer. The corresponding two versions of our model are termed as TDGNN-s and TDGNN-w, respectively. Ultimately, Z is employed to compute the
cross-entropy loss for all labeled nodes as:

\[\mathcal{L} = - \sum_{\forall i \in \mathcal{V}_l} \sum_{j=1}^{C} Y_{ij} \log \hat{Z}_{ij}, \]

where \(\hat{Z} \) is the probability distribution of each node belonging to each class and is obtained by applying softmax on the final representation \(Z \). Note that \(\mathcal{V}_l \subset \mathcal{V} \) is the set of training nodes with known label information as previously defined and \(C \) is the total number of classes to be predicted.

In summary, our model decouples representation transformation from propagation [17], which enlarges the receptive fields without introducing more trainable parameters. Obtaining low dimensional representations before propagation follows is the idea of predicting than propagating [13], which makes the training process of TDGNN computationally efficient. Additionally, the tree decomposition pre-processing allows more flexible choice of utilizing and combining different layers to propagate features. The multi-hop dependency enables feature propagation along paths of various lengths, which conforms to other recent work [32]. Furthermore, applying learnable weight coefficients equips TDGNN with the ability to flexibly select an effective receptive field based on a specific network and generate adaptive representations.

3.4 Complexity Analysis

In comparison to vanilla GCN, the additional computational load mostly comes from the tree decomposition and the graph diffusion. Since tracking down the corresponding \(L \)-layer subgraphs is equivalent to calculating the difference between corresponding powers of the normalized adjacency matrices with added self-loops by Eq. 4, which is exactly given by graph diffusion, the time for the tree decomposition could be saved. The time complexity for performing graph diffusion process is \(O(Kn^3) = O(n^{3.81}) \) due to \(K \) times matrix multiplication and can be reduced approximately to \(O(n^{2.38}) \) if using the Strassen algorithm [29] or even further to \(O(n^{2.39}) \) [5]. Moreover, in practice real-world graphs are extremely sparse and thus sparse matrix multiplication methods [40] could also be used to further improve computational efficiency. Notably, both of the tree decomposition and the graph diffusion are preprocessing outside of the training, which significantly reduces the computational load of the whole framework.

For the space complexity, the bottleneck would be saving diffusion matrices \(\hat{A}^k, k = 1, 2, ..., K \), and the adjacency matrices of each subgraph \(\hat{T}^k, k = 1, 2, ..., K \), which leads to \(O(Kn^2) \) and constitutes a severe threat for networks of large scale. However, as we highlighted before and demonstrate in Figure 4, since higher-layer neighborhoods may have completely different features from their corresponding center nodes and incorporating their information gain little benefits in learning better representation, we could only consider lower-layer neighborhoods [41] and thus keep only the first few adjacency matrices. On the other hand, most of the real-world networks have the small-world property that most nodes can be reached from every other node by a small number of hops [18], which confirms and helps justify why we can remove the higher-layer adjacency matrices. Moreover, we could apply the same strategy as GraphSAGE [10] where we sample nodes from center node’s local neighborhood via random walk and propagate features among these sampled nodes [41]. Since this work mainly focuses on disentangling neighborhoods to avoid feature smoothing between different layers and characterizing the multi-hop dependency, the aforementioned is left as one future direction.

4 EXPERIMENTS

In this section, we conduct extensive node classification experiments to evaluate the superiority of our proposed TDGNN model. We begin by introducing the datasets and experimental setup we employed. Then, we compare TDGNN with prior baselines and some state-of-the-art (SOTA) deep GNNs.

4.1 Experimental Settings

4.1.1 Datasets. We evaluate the performance of our TDGNN model and baseline models with node classification on multiple real-world datasets. More specifically, we use the three standard citation network datasets Cora, Citeseer, and Pubmed [28] for semi-supervised node classification [38], where nodes correspond to documents associated with the bag-of-words as the features and edges correspond to citations. For full-supervised node classification, in addition to the three citation networks we include three extra web network datasets, Cornell, Texas, and Wisconsin [24], where nodes and edges represent web pages and hyperlinks, and one actor co-occurrence network dataset, Actor [24], where nodes and edges represent actors and their co-occurrence in the same movie. Table 1 contains the basic network statistics for each of these datasets.

4.1.2 Baselines. To evaluate the effectiveness of TDGNN, we choose the following representative supervised node classification baselines including SOTA GNN models.

- **MLP** [19]: 2-layer multilayer perceptron with dropout and ReLU non-linearity, which is empirically shown in other works to perform well on non-homophily network datasets [45].
- **GCN** [12]: GCN is one of the most popular graph convolutional models and our proposed model is modified based on it.
- **GAT** [31]: Graph attention network employs attention mechanism to pay different levels of attention to nodes within the neighborhood set, and is widely used as a GNN baseline.
- **SGC** [34]: Simple graph convolution network removes non-linearities and collapsing weight matrices between consecutive layers, which obtains the comparable accuracy and yields orders of magnitude speedup over GCN. We note that SGC collapses the traditional GNN aggregation tree such that the center node receives the features directly from the flattened neighborhood while being weighted according to the higher-order neighborhood information.
- **APPNP** [13]: APPNP links GCN and PageRank to derive an improved propagation scheme based on personalized PageRank, which incorporates higher-order neighborhood information and meanwhile keeps the local information.
- **Geom-GCN** [24]: Geom-GCN explores to capture long-range dependencies in non-homophily networks. It uses the geometric relationships defined in the latent space to build structural neighborhoods for aggregation. Since Geom-GCN is mainly designed for non-homophily networks, we only report its performance in full-supervised node classification where three non-homophily networks are included.
Table 1: Statistics of datasets.

Networks	Nodes	Edges	Features	Classes	Train/Val/Test
Homophily					
Cora	2708	5429	1433	7	140/500/1000
Citeseer	3327	4732	3703	6	120/500/1000
Pubmed	19717	44338	500	3	60/500/1000
Non-					
homophily					
Cornell	183	295	1703	5	45%/32%/20%
Texas	218	309	1703	5	45%/32%/20%
Wisconsin	251	499	1703	5	45%/32%/20%
Actor	7660	33544	931	5	45%/32%/20%

Table 2: Summary of semi-supervised classification accuracy (% ± stdev over Cora, Citeseer, and Pubmed datasets.

Method	Fixed	Random	Fixed	Random	Fixed	Random	Avg. Rank
GCN	81.50 ± 0.79 (0-2)	79.91 ± 1.64 (0-2)	71.42 ± 0.48 (0-2)	68.78 ± 2.01 (0-2)	79.12 ± 0.46 (0-2)	77.84 ± 2.36 (0-2)	7.17
GAT	83.10 ± 0.40 (0-2)	80.80 ± 1.60 (0-2)	70.80 ± 0.50 (0-2)	69.90 ± 1.70 (0-2)	79.10 ± 0.40 (0-2)	77.80 ± 2.10 (0-2)	7.00
SGC	82.63 ± 0.01 (0-2)	80.18 ± 1.57 (0-2)	72.10 ± 0.14 (0-2)	69.33 ± 1.90 (0-2)	79.24 ± 0.10 (0-2)	76.74 ± 2.84 (0-2)	6.83
APPNP	83.34 ± 0.56 (0-10)	82.26 ± 1.39 (0-10)	72.22 ± 0.50 (0-10)	70.53 ± 1.57 (0-10)	80.14 ± 0.24 (0-10)	79.54 ± 2.23 (0-10)	3.83
DAGNN	84.88 ± 0.49 (0-10)	83.47 ± 1.18 (0-10)	73.39 ± 0.57 (0-9)	70.87 ± 1.44 (0-10)	80.51 ± 0.42 (0-20)	79.52 ± 2.19 (0-20)	2.33
GCNII	85.57 ± 0.45 (0-64)	82.58 ± 1.68 (0-64)	73.24 ± 0.61 (0-32)	70.04 ± 1.72 (0-10)	80.00 ± 0.48 (0-16)	79.03 ± 1.63 (0-16)	3.83
TDGNNS	85.35 ± 0.49 (0-4)	83.84 ± 1.45 (0-6)	73.78 ± 0.60 (0-8)	71.27 ± 1.71 (0-8)	80.20 ± 0.33 (0-5)	80.01 ± 1.96 (0-5)	1.33
TDGNNSw	84.42 ± 0.59 (0-4)	83.43 ± 1.35 (0-6)	72.14 ± 0.49 (0-6)	70.32 ± 1.57 (0-6)	80.12 ± 0.44 (0-5)	79.77 ± 2.04 (0-5)	3.67

- **DAGNN** [17]: Deep adaptive graph neural network first decouples the representation transformation from propagation so that large receptive fields can be applied without suffering from performance degradation. Then, it utilizes an adaptive adjustment mechanism, which adaptively balances the information from local and global neighborhoods for each node.

- **GCNII** [3]: GCNII employs residual connection to retain part of the information from the previous layer and adds an identity mapping to ensure the non-decreasing performance as the GNN model goes deeper (i.e., successfully adds more layers).

For baselines that have multiple variants (Geom-GCN, GCNII), we only choose the best for each dataset and denote it as model*.

4.1.3 Parameter Settings
We implement our proposed TDGNN and some necessary baselines using Pytorch [23] and Pytorch Geometric [22], a library for deep learning on graph-structured data built upon Pytorch. For DAGNN*, and GCNII, we use the original code from the authors’ github repository. We aim to provide a rigorous and fair comparison between different models on each dataset by tuning hyperparameters for all models individually. The number of hidden unit is searched from {16, 32, 64, 128}, the dropout rate is searched from [0, 0.5, 0.8], the weight decay is searched from [1e-4, 2e-2], the training epochs is searched from [300, 500, 1000, 1500, 3000, 4000] and the learning rate is set to be 0.01. We find that some baselines even achieve better results than their original reports. Note that in this work, we do not treat the random seed as a hyperparameter and therefore, the random seed fixed in previous models for reproducing results, if any, is reset to be totally random to remove any potential bias and thus allow for more generalized comparison. For reproducibility, codes of all of our models and corresponding hyperparameter configurations for results in Table 2-3 are publicly available.3

4.2 Semi-supervised Node Classification
For the semi-supervised node classification task, we apply the fixed split following [38] and random training/validation/testing split on Cora, Citeseer, and Pubmed, with 20 nodes per class for training, 500 nodes for validation and 1000 nodes for testing. For each model, we conduct 100 runs and report the mean classification accuracy with the standard deviation in both the fixed and random splitting cases. Table 2 reports the best mean accuracy with the standard deviation over different data splits where the best model per benchmark is highlighted in bold and the number in parentheses corresponds to layers of neighborhoods utilized at which the best performance is achieved. For example, (0-4) means the corresponding performance is achieved when we use neighborhood of layers up to 4 and 0-layer neighborhoods correspond to using center nodes themselves.

We observe that TDGNNS performs the best in terms of the average rank through all datasets and across both random and fixed splits, which suggests the comprehensive superiority of TDGNNS to other baselines. Specifically, our TDGNNS model outperforms the representative baselines including GCN, GAT, SGC, and APPNP across all datasets by significant margins. Compared with two recent deep GNN models, DAGNN and GCNII*, TDGNNS can still achieve the comparable or even better performance. Especially when the data split is random, TDGNNS outperforms all other models, which demonstrates the strong robustness of TDGNNS (in terms of dataset splits). It is also worthwhile to note that our TDGNNS model achieves the SOTA performance with relatively shallow layers compared with DAGNN and GCNII*. On Cora dataset, the best performance is achieved when layers are used up to 4 and 6 for our TDGNNS model, respectively, in fixed and random data splitting, while DAGNN and GCNII require up to 10 and 64 layers to achieve the best, which demands heavy computation and thus are time inefficient. On Citeseer dataset, our model also utilizes up to the most shallow layers compared with DAGNN and GCNII to achieve the SOTA performance. Surprisingly, the weighted version of our model, TDGNNS-w, has poorer performance than TDGNNS while still outperforms most of the baselines. This is
because the weight coefficients \(\{ h_0, h_1, \ldots, h_L \} \) are only decided by training nodes and the suitable weights for combining aggregated features \(\{ H_0, H_1, \ldots, H_L \} \) and getting good predictions on training and validation nodes might not be suitable for testing nodes, which inspires future work for a layer aggregation mechanism that enables node-adaptive layer combination.

4.3 Full-supervised Node Classification

For the full-supervised node classification task, we evaluate our TDGNN model and existing GNNs using 7 datasets: Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin, and Act. For each dataset, we use 10 random splits (48%/32%/20% of nodes per class for training/validation/testing) from [24]. We conduct 100 runs with each split evaluated 10 times and report the mean accuracy with the standard deviation in Table 3. We note that here the numbers in the parentheses again correspond to layers of neighborhoods utilized (e.g., \((0,3-5) \) means the corresponding performance is achieved when we use neighborhoods of layers 3 to 5 and 0-layer neighborhoods corresponding to the center nodes themselves.)

First, we observe from Table 3 that TDGNN-w has the best average rank across the two types of networks (i.e., homophily and heterophily) with TDGNN-w’s ranks second. Next, we observe that TDGNN-w significantly outperforms the baselines across the heterophily networks. However, both variants of TDGNN are slightly outperformed on the homophily networks in this full-supervised setting (whereas in most homophily networks under the semi-supervised setting TDGNN-w performs the best). Thus, to better understand the inner workings of TDGNN, we next perform a detailed parameter analysis.

4.4 Parameter Analysis

Here we compare the performance of TDGNN with other baselines when utilizing neighborhoods in different layers. Furthermore, we perform a parameter analysis of TDGNN by varying the neighborhood layers \((L) \) and the multi-hop dependencies \((K) \).

First, to demonstrate the strength of the TDGNN-w model in shallow layers, we visualize the performance of each model using layers from up to 1 to 10 in Figure 4. For the Cora and Citeseer datasets, our model achieves around 84% and 73% using only the first 2-layer neighborhoods and the first three-layer neighborhoods, respectively. Compared to two SOTA deep GNNs where DAGNN achieves the same level performance using 5 layers and 7 layers, and GCNIIN achieves using 8 layers and at least 32 layers, our model can leverage less neighborhood information to achieve comparable performance, which clearly validates the importance of considering multi-hop dependency. This further to some extent raises the concern over whether we need deep GNNs to incorporate higher-layer neighborhood information in homophily networks, or if shallow feature information aggregated according to higher-order multi-hop dependencies provides sufficient information. Besides, the continued high-level performance as model depth increases demonstrates the higher resilience of TDGNN’s against over-smoothing.

Second, we vary the maximum layer of neighborhoods and the multi-hop dependency to study their effect on the performance of the proposed two models: TDGNN-s on two representative homophily networks and TDGNN-w on two representative heterophily networks. Both of the maximum layer of the neighborhoods and the length of the multi-hop dependency are selected from \{1, 2, 3, 5, 10\} due to the small-world theory that two nodes will be connected through few series of intermediaries [18]. Figure 5 visualizes the averaged accuracy across 10 runs for various layers and dependency configurations. For two homophily networks, including extra neighborhood layers significantly increase the model performance for lower-layers and such boosting effect becomes progressively weaker as more and more higher-layer neighborhood layers are included, e.g., the performance increases from 79.85 to 84.00 and from 71.50 to 72.85 for Cora and Citeseer when including the 2nd-layer neighborhood while only from 84.00 to 85.06 and from 72.85 to 73.28 when including the 3rd-layer. This weaker boost as the layer number increases is also in line with the decreasing homophily level as observed in Figure 1. In comparison, for heterophily networks, in Figures 5c and 5d we can observe a more significant need for the decoupling of neighborhood layers since increasing the receptive field (i.e., increasing the maximum layer of neighborhoods) is not always advantageous. Similarly including deeper multi-hop dependencies is not always a clear advantage.

*We reuse the results reported in [37] for Geom-GCN. ‘N/A’ indicate the corresponding layers are not reported in the paper.

Table 3: Summary of full-supervised classification accuracy (%) ± stddev over 8 datasets.

Method	Cora	Citeseer	Pubmed	Cornell	Tez	Wisc	Act.	Avg. Rank
MLP	75.78±1.84 (0)	73.81±1.74 (0)	86.90±0.37 (0)	80.97±6.33 (0)	81.32±4.19 (0)	85.38±3.95 (0)	36.60±1.25 (0)	5.57
GCN	86.97±1.32 (0-2)	76.37±1.47 (0-2)	88.19±0.48 (0-2)	58.57±3.57 (0-2)	58.68±4.64 (0-2)	53.14±6.25 (0-2)	28.65±1.38 (0-2)	8.14
GAT	87.30±1.01 (0-2)	75.55±1.32 (0-2)	85.33±0.48 (0-2)	61.89±5.05 (0-2)	58.38±6.63 (0-2)	55.29±4.09 (0-2)	28.45±0.89 (0-2)	8.00
SGC	87.07±1.20 (0-2)	76.01±1.78 (0-2)	85.11±0.52 (0-2)	58.68±3.75 (0-2)	60.43±5.11 (0-2)	53.49±5.13 (0-2)	27.76±1.46 (0-2)	8.57
Geom-GCNN	85.35±1.57 (0-2)	78.02±1.15 (0-2)	89.95±0.47 (N/A)	60.54±3.67 (0-2)	66.76±2.72 (N/A)	64.51±3.66 (N/A)	31.63±1.15 (N/A)	5.86
APPNP	86.76±1.74 (0-10)	77.08±1.56 (0-10)	88.45±0.42 (0-10)	74.59±6.11 (0-10)	74.30±4.74 (0-10)	81.10±2.93 (0-10)	34.36±1.09 (0-10)	5.43
DAGNN	87.26±1.42 (0-10)	76.47±1.54 (0-10)	87.49±0.63 (0-20)	80.97±6.33 (0)	81.32±4.19 (0)	85.38±3.95 (0)	36.60±1.25 (0)	4.71
GCNIIN	88.27±1.31 (0-64)	77.06±1.67 (0-64)	90.26±0.41 (0-64)	76.70±5.40 (0-16)	77.08±5.84 (0-32)	80.94±4.94 (0-16)	35.18±1.30 (0-64)	3.71
TDGNN-s	88.26±1.32 (0-4)	76.64±1.54 (0-8)	89.13±0.39 (0-1)	80.97±6.33 (0)	82.95±4.59 (0-4-5)	85.47±3.88 (0, 4-5)	36.70±1.28 (0, 3-4)	2.86
TDGNN-w	88.01±1.32 (0-5)	76.58±1.40 (0-2)	89.22±0.41 (0-1)	82.92±6.61 (0, 2-6)	83.00±4.50 (0, 2)	85.57±3.78 (0, 3-5)	37.11±0.96 (0, 3-4)	2.14

* Note that although [24] reports that the ratios are 60%/20%/20%, but this is different from the actual data splits shared on their GitHub [37].
we study the feature smoothing between different layers, show that we believe that the increased performance obtained by TDGNN variety of complex networks.

5 RELATED WORK

Over-smoothing Problem and Deep GNNs

Over-smoothing derives from stacking multiple propagation layers resulting in feature information of nodes among different classes becoming indistinguishable. Previous work [16, 43] have proven that over-smoothing is a common phenomenon in many GNNs and smoothness among nodes from the same class is helpful for node classification. In [6], they discovered that noisy topology information results in feature over-smoothing and may lead to node misclassification. The smoothing in GNNs was later classified into two kinds by the information-to-noise ratio [2]. In this work, we study the feature smoothing between different layers, show that such type of smoothing inevitably happens when employing an iterative propagation framework and that it can be solved by tree decomposition.

Deep GNNs are related to over-smoothing and have the primary goal to incorporate higher-layer neighborhood information through iterative propagation. For example, SGC [34] and S^2GC [25] attempt to capture higher-layer neighborhood information by applying Kth power of the graph convolution in a single neural network layer. APPNP [13] replaces the power of the graph convolution with the Personalized PageRank [20] and GDC [14] further extends APPNP by generalizing Personalized PageRank to an arbitrary graph diffusion process. There are also more recent methods, such as GCNII [3] and DAGNN [17], which we have used as baselines for TDGNN since they have outperformed previously mentioned deep GNNs.

5.2 GNNs on Heterophily Networks

Heterophily has recently been raised as an important issue since it breaks the traditional network homophily assumption that is widely adopted in many GNNs. More specifically, in a heterophily (i.e., non-homophily) network, the concept that linked nodes are likely from different classes or have dissimilar features is initially recognized within the context of GNNs in [24]. Zhu et al. [45] proposes a set of effective designs that allow GNNs to generalize to challenging heterophily settings, and Chen et al. [3] leverages initial residual connection and identity mapping to enable GCN to express a Kth order polynomial filter with arbitrary coefficients, which achieves great progress in both homophily and heterophily networks. In comparison, our work demonstrates that the poor performance of GNNs on heterophily networks is caused by feature smoothing between neighborhoods in different layers. By decomposing the computational tree of center nodes and increasing the depth of the GNNs, we can selectively devise suitable layer configurations to boost the model performance on heterophily network.

6 CONCLUSION

In this paper, we theoretically analyze the feature smoothing of neighborhoods in different layers and propose a tree decomposition method that disentangles neighborhoods of different layers and thus allows more flexible layer configuration. Moreover, our work provides the first theoretical and empirical analysis that unveils the importance of multi-hop dependency in learning better node representations and discloses its connection with graph diffusion. Based on these insights, we design our Tree Decomposed Graph Neural Network (TDGNN) model with two variants, TDGNN-s and TDGNN-w, which simultaneously address the problem of feature smoothing between different layers and incorporate the multi-hop dependency. Extensive experiments demonstrate that TDGNN outperforms representative baselines on a wide range of real-world datasets across network types (including homophily and heterophily) and various node classification task settings.

For future work, we plan to devise a node-adaptive layer aggregation mechanism which can optimize the configurations of representations from different layers in a node specific way. Such optimization could be realized by applying policy-based reinforcement learning. Furthermore, self-supervised learning (SSL) could be utilized to pre-train the MLP in our framework, which could enhance the capability of our model to embed more useful feature and topology information from diverse datasets, since SSL has recently been shown effective on GNNs [11, 33].
