Stability for t-intersecting families of permutations

David Ellis

August 19, 2009

Abstract

A family of permutations $A \subset S_n$ is said to be t-intersecting if any two permutations in A agree on at least t points, i.e. for any $\sigma, \pi \in A$, $|\{i \in [n] : \sigma(i) = \pi(i)\}| \geq t$. It was proved by Friedgut, Pilpel and the author in [6] that for n sufficiently large depending on t, a t-intersecting family $A \subset S_n$ has size at most $(n - t)!$, with equality only if A is a coset of the stabilizer of t points (or ‘t-coset’ for short), proving a conjecture of Deza and Frankl. Here, we first obtain a rough stability result for t-intersecting families of permutations, namely that for any $t \in \mathbb{N}$ and any positive constant c, if $A \subset S_n$ is a t-intersecting family of permutations of size at least $c(n - t)!$, then there exists a t-coset containing all but at most a $O(1/n)$-fraction of A. We use this to prove an exact stability result: for n sufficiently large depending on t, if $A \subset S_n$ is a t-intersecting family which is not contained within a t-coset, then A is at most as large as the family $D = \{\sigma \in S_n : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = j \text{ for some } j > t + 1\} \cup\{(1 t + 1), (2 t + 1), \ldots, (t t + 1)\}$ which has size $(1 - 1/e + o(1))(n - t)!$. Moreover, if A is the same size as D then it must be a ‘double translate’ of D, meaning that there exist $\pi, \tau \in S_n$ such that $A = \pi D \tau$. The $t = 1$ case of this was a conjecture of Cameron and Ku and was proved by the author in [5]. We build on the methods of [5], but the representation theory of S_n and the combinatorial arguments are more involved. We also obtain an analogous result for t-intersecting families in the alternating group A_n.

1 Introduction

We work first on the symmetric group S_n, the group of all permutations of $\{1, 2, \ldots, n\} = [n]$. A family of permutations $A \subset S_n$ is said to be t-intersecting if any two permutations in A agree on at least t points, i.e. for
any \(\sigma, \pi \in \mathcal{A}, |\{i \in [n] : \sigma(i) = \pi(i)\}| \geq t \). Deza and Frankl \cite{Deza} conjectured that for \(n \) sufficiently large depending on \(t \), a \(t \)-intersecting family \(\mathcal{A} \subset S_n \) has size at most \((n-t)!\); this became known as the Deza-Frankl conjecture. It was proved in 2008 by Friedgut, Pilpel and the author in \cite{Friedgut2008} using eigenvalue techniques and the representation theory of the symmetric group; it was also shown in \cite{Friedgut2008} that equality holds only if \(\mathcal{A} \) is a coset of the stabilizer of \(t \) points (or ‘\(t \)-coset’ for short). In this paper, we will first prove a rough stability result for \(t \)-intersecting families of permutations. Namely, we show that for any fixed \(t \in \mathbb{N} \) and \(c > 0 \), if \(\mathcal{A} \subset S_n \) is a \(t \)-intersecting family of size at least \(cn > n! \), then there exists a \(t \)-coset \(\mathcal{C} \) such that \(|\mathcal{A} \setminus \mathcal{C}| \leq \Theta((n-t-1)!)) \), i.e. \(\mathcal{C} \) contains all but at most a \(O(1/n) \)-fraction of \(\mathcal{A} \).

We then use some additional combinatorial arguments to prove an exact stability result: for \(n \) sufficiently large depending on \(t \), if \(\mathcal{A} \subset S_n \) is a \(t \)-intersecting family which is not contained within a \(t \)-coset, then \(\mathcal{A} \) is at most as large as the family

\[
\mathcal{D} = \{ \sigma \in S_n : \sigma(i) = i \forall i \leq t, \sigma(j) = j \text{ for some } j > t + 1 \}
\]

\[
\cup \{(t+1), (2t+1), \ldots, (tt+1)\}
\]

which has size \((1-1/e+o(1))(n-t)!\). Moreover, if \(\mathcal{A} \) is the same size as \(\mathcal{D} \), then it must be a ‘double translate’ of \(\mathcal{D} \), meaning that there exist \(\pi, \tau \in S_n \) such that \(\mathcal{A} = \pi \mathcal{D} \tau \). Note that if \(\mathcal{F} \subset S_n \), any double translate of \(\mathcal{F} \) has the same size as \(\mathcal{F} \), is \(t \)-intersecting iff \(\mathcal{F} \) is and is contained within a \(t \)-coset of \(S_n \) iff \(\mathcal{F} \) is; this will be our notion of ‘isomorphism’.

In other words, if we demand that our \(t \)-intersecting family \(\mathcal{A} \subset S_n \) is not contained within a \(t \)-coset of \(S_n \), then it is best to take \(\mathcal{A} \) such that all but \(t \) of its permutations are contained within some \(t \)-coset.

One may compare this with the situation for \(t \)-intersecting families of \(r \)-sets. We say a family \(\mathcal{A} \subset [n]^{(r)} \) of \(r \)-element subsets of \([n] \) is \(t \)-intersecting if any two of its sets contain at least \(t \) elements in common, i.e. \(|x \cap y| \geq t \) for any \(x, y \in \mathcal{A} \). Wilson \cite{Wilson} proved using an eigenvalue technique that provided \(n \geq (t+1)(r-t+1) \), a \(t \)-intersecting family \(\mathcal{A} \subset [n]^{(r)} \) has size at most \((r-1)^{\binom{n-t}{r-t}} \), and that for \(n > (t+1)(r-t+1) \), equality holds only if \(\mathcal{A} \) consists of all \(r \)-sets containing some fixed \(t \)-set. Later, Ahlswede and Khachatrian \cite{Ahlswede} characterized the \(t \)-intersecting families of maximum size in \([n]^{(r)} \) for all values of \(t, r \) and \(n \) using entirely combinatorial methods based on left-compression. They also proved that for \(n > (t+1)(r-t+1) \), if \(\mathcal{A} \subset [n]^{(r)} \) is \(t \)-intersecting and non-trivial, meaning that there is no \(t \)-set contained in all of its members, then \(\mathcal{A} \) is at most as large as the family

\[
\{x \in [n]^{(r)} : \{t \} \subset x, x \cap \{t+1, \ldots, r+1\} \neq \emptyset \} \cup \{r+1\} \setminus \{i : i \in [t]\}
\]
if $r > 2t + 1$, and at most as large as the family

$$\{ x \in [n]^r : |x \cap [t + 2]| \geq t + 1 \}$$

if $r \leq 2t + 1$. This had been proved under the assumption $n \geq n_1(r, t)$ by Frankl [7] in 1978. Note that the first family above is ‘almost trivial’, and is the natural analogue of our family D.

The $t = 1$ case of our result was a conjecture of Cameron and Ku and was proved by the author in [5]. We build on the methods of [5], but the representation theory of S_n and the combinatorial arguments required are more involved.

We also obtain analogous results for t-intersecting families of permutations in the alternating group A_n. We use the methods of [6] to show that for n sufficiently large depending on t, if $\mathcal{A} \subset A_n$ is t-intersecting, then $|\mathcal{A}| \leq (n-t)!/2$. Interestingly, it does not seem possible to use the methods of [6] to show that equality holds only if \mathcal{A} is a coset of the stabilizer of t points. Instead, we deduce this from a stability result. Using the same techniques as for S_n, we prove that if $\mathcal{A} \subset A_n$ is t-intersecting but not contained within a t-coset, then it is at most as large as the family

$$\mathcal{E} = \{ \sigma \in A_n : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = (n-1)n(j) \text{ for some } j > t+1 \}$$

$$\cup \{(1 \ t+1)(n-1)n, (2 \ t+1)(n-1)n, \ldots, (t \ t+1)(n-1)n\}$$

which has size $(1 - 1/e + o(1))(n-t)!/2$; if \mathcal{A} is the same size as \mathcal{E}, then it must be a double translate of \mathcal{E}, meaning that $\mathcal{A} = \pi \mathcal{E} \tau$ for some $\pi, \tau \in A_n$.

2 Background

In [6], in order to prove the Deza-Frankl conjecture, we constructed (for n sufficiently large depending on t) a weighted graph Y which was a real linear combination of Cayley graphs on S_n generated by conjugacy-classes of permutations with less than t fixed points, such that the matrix A of weights of Y had maximum eigenvalue 1 and minimum eigenvalue

$$\omega_{n,t} = -\frac{1}{n(n-1)\ldots(n-t+1) - 1}$$

The 1-eigenspace was the subspace of $\mathbb{C}[S_n]$ consisting of the constant functions. The direct sum of the 1-eigenspace and the $\omega_{n,t}$-eigenspace was the subspace V_t of $\mathbb{C}[S_n]$ spanned by the characteristic vectors of the t-cosets of S_n. All other eigenvalues were $O(|\omega_{n,t}|/n^{1/6})$; this can in fact be improved to
$O(|\omega_{n,t}|/n)$, but any bound of the form $o(|\omega_{n,t}|)$ will suffice for our purposes. We then appealed to a weighted version of Hoffman’s bound (Theorem 11 in [6]):

Theorem 1. Let A be a real, symmetric, $N \times N$ matrix with real eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N$ (where $\lambda_1 > 0$), such that the all-1’s vector f is an eigenvector of A with eigenvalue λ_1, i.e. all row and column sums of A equal λ_1. Let $X \subset [N]$ such that $A_{x,y} = 0$ for any $x, y \in X$. Let U be the direct sum of the subspace of constant vectors and the λ_N-eigenspace. Then

$$|X| \leq \frac{|\lambda_N|}{\lambda_1 + |\lambda_N|} N$$

and equality holds only if the characteristic vector v_X lies in the subspace U.

Applying this to our weighted graph Y proved the Deza-Frankl conjecture:

Theorem 2. For n sufficiently large depending on t, a t-intersecting family $A \subset S_n$ has size $|A| \leq (n-t)!$.

Note that equality holds only if the characteristic vector v_A of A lies in the subspace V_t spanned by the characteristic vectors of the t-cosets of S_n. It was proved in [3] that the Boolean functions in V_t are precisely the disjoint unions of t-cosets of S_n, implying that equality holds only if A is a t-coset of S_n.

We also appealed to the following cross-independent weighted version of Hoffman’s bound:

Theorem 3. Let A be as in Theorem 1, and let $\nu = \max(|\lambda_2|, |\lambda_N|)$. Let $X, Y \subset [N]$ such that $A_{x,y} = 0$ for any $x \in X$ and $y \in Y$. Let U be the direct sum of the subspace of constant vectors and the $\pm \nu$-eigenspaces. Then

$$|X||Y| \leq \left(\frac{\nu}{\lambda_1 + \nu} N\right)^2$$

and equality holds only if $|X| = |Y|$ and the characteristic vectors v_X and v_Y lie in the subspace U.

Applying this to our weighted graph Y yielded:

Theorem 4. For n sufficiently large depending on t, if $A, B \subset S_n$ are t-cross-intersecting, then $|A||B| \leq ((n-t)!)^2$.

4
This will be a crucial tool in our stability analysis. Note that if equality holds in Theorem 4, then the characteristic vectors \(v_A \) and \(v_B \) lie in the subspace \(V_t \) spanned by the characteristic vectors of the \(t \)-cosets of \(S_n \), so by the same argument as before, \(A \) and \(B \) must both be equal to the same \(t \)-coset of \(S_n \).

We will need the following ‘stability’ version of Theorem 1:

Lemma 5. Let \(A, X \) and \(U \) be as in Theorem 4. Let \(\alpha = |X|/N \). Let \(\lambda_M \) be the negative eigenvalue of second largest modulus. Equip \(\mathbb{C}^N \) with the inner product:

\[
\langle x, y \rangle = \frac{1}{N} \sum_{i=1}^{N} \bar{x}_i y_i
\]

and let

\[
||x|| = \sqrt{\frac{1}{N} \sum_{i=1}^{N} |x_i|^2}
\]

be the induced norm. Let \(D \) be the Euclidean distance from the characteristic vector \(v_X \) of \(X \) to the subspace \(U \), i.e. the norm \(||P_{U^\perp}(v_X)|| \) of the projection of \(v_X \) onto \(U^\perp \). Then

\[
D^2 \leq \frac{(1 - \alpha)|\lambda_N| - \lambda_1 \alpha}{|\lambda_N| - |\lambda_M|} \alpha
\]

For completeness, we include a proof:

Proof. Let \(u_1 = f, u_2, \ldots, u_N \) be an orthonormal basis of real eigenvectors of \(A \) corresponding to the eigenvalues \(\lambda_1, \ldots, \lambda_N \). Write

\[
v_X = \sum_{i=1}^{N} \xi_i u_i
\]

as a linear combination of the eigenvectors of \(A \); we have \(\xi_1 = \alpha \) and

\[
\sum_{i=1}^{N} \xi_i^2 = ||v_X||^2 = |X|/N = \alpha
\]

Then we have the crucial property:

\[
0 = \sum_{x,y \in X} A_{x,y} = v_X^\top A v_X = \sum_{i=1}^{N} \lambda_i \xi_i^2 \geq \lambda_1 \xi_1^2 + \lambda_N \sum_{i: \lambda_i = \lambda_N} \xi_i^2 + \lambda_M \sum_{i>1: \lambda_i \neq \lambda_N} \xi_i^2
\]
Note that
\[\sum_{i > 1: \lambda_i \neq \lambda_N} \xi_i^2 = D^2 \]
and
\[\sum_{i: \lambda_i = \lambda_N} \xi_i^2 = \alpha - \alpha^2 - D^2 \]
so we have
\[0 \geq \lambda_1 \alpha^2 + \lambda_N (\alpha - \alpha^2 - D^2) + \lambda_M D^2 \]
Rearranging, we obtain:
\[D^2 \leq \frac{(1 - \alpha)|\lambda_N| - \lambda_1 \alpha}{|\lambda_N| - |\lambda_M|} \alpha \]
as required. \(\Box \)

Our weighted graph \(Y \) has \(\lambda_N = \omega_{n,t} \) and \(|\lambda_M| = O(|\omega_{n,t}|/n^{1/6}) \), so applying the above result to a \(t \)-intersecting family \(A \subset S_n \) gives:
\[\|P_{V_t^\perp}(v_A)\|^2 \leq (1 - |A|/(n-t)!)(1 + O(n^{1/6}))|A|/n! \tag{1} \]
Next, we find a formula for the projection \(P_{V_t}(v_A) \) of the characteristic vector of \(A \) onto the subspace \(V_t \) spanned by the characteristic vectors of the \(t \)-cosets of \(S_n \). But first, we need some background on non-Abelian Fourier analysis and the representation theory of the symmetric group.

Background from non-Abelian Fourier analysis

We now recall some information we need from [6]. [Notes for algebraists are included in square brackets and may be ignored without prejudicing the reader’s understanding.]

If \(G \) is a finite group, a representation of \(G \) is a vector space \(W \) together with a group homomorphism \(\rho : G \to \text{GL}(W) \) from \(G \) to the group of all automorphisms of \(W \), or equivalently a linear action of \(G \) on \(W \). If \(W = \mathbb{C}^m \), then \(\text{GL}(W) \) can be identified with the group of all complex invertible \(m \times m \) matrices; we call \(\rho \) a complex matrix representation of degree (or dimension) \(m \). [Note that \(\rho \) makes \(\mathbb{C}^m \) into a \(\mathbb{C}G \)-module of dimension \(m \).]

We say a representation \((\rho,W)\) is irreducible if it has no proper sub-representation, i.e. no proper subspace of \(W \) is fixed by \(\rho(g) \) for every \(g \in G \). We say that two (complex) representations \((\rho,W)\) and \((\rho',W')\) are equivalent if there exists a linear isomorphism \(\phi : W \to W' \) such that \(\rho'(g) \circ \phi = \phi \circ \rho(g) \ \forall g \in G \).
For any finite group G, there are only finitely many equivalence classes of irreducible complex representations of G. Let $(\rho_1, \rho_2, \ldots, \rho_k)$ be a complete set of pairwise non-equivalent complex irreducible matrix representations of G (i.e. containing one from each equivalence class of complex irreducible representations).

Definition 1. The (non-Abelian) Fourier transform of a function $f : G \to \mathbb{C}$ at the irreducible representation ρ_i is the matrix

$$\hat{f}(\rho_i) = \frac{1}{|G|} \sum_{g \in G} f(g) \rho_i(g)$$

Let V_{ρ_i} be the subspace of functions whose Fourier transform is concentrated on ρ_i, i.e. with $\hat{f}(\rho_j) = 0$ for each $j \neq i$. [Identifying the space $\mathbb{C}[G]$ of all complex-valued functions on G with the group module $\mathbb{C}G$, V_{ρ_i} is the sum of all submodules of the group module isomorphic to the module defined by ρ_i; it has dimension $\dim(V_{\rho_i}) = (\dim(\rho_i))^2$. The group module decomposes as

$$\mathbb{C}G = \bigoplus_{i=1}^{k} V_{\rho_i}$$

Write $\text{Id} = \sum_{i=1}^{k} e_i$, where $e_i \in V_{\rho_i}$ for each $i \in [k]$. The e_i’s are called the primitive central idempotents of $\mathbb{C}G$; they are given by the following formula:

$$e_i = \frac{\dim(\rho_i)}{|G|} \sum_{g \in G} \chi_{\rho_i}(g^{-1}) g$$

They are in the centre $Z(\mathbb{C}G)$ of the group module, and satisfy $e_i e_j = \delta_{i,j}$. Note that V_{ρ_i} is the two-sided ideal of $\mathbb{C}G$ generated by e_i. For any $x \in \mathbb{C}G$, the unique decomposition of x into elements of the V_{ρ_i}’s is given by $x = \sum_{i=1}^{k} e_i x$.]

A function $f : G \to \mathbb{C}$ may be recovered from its Fourier transform using the Fourier Inversion Formula:

$$f(g) = \sum_{i=1}^{k} \dim(\rho_i) \text{Tr} \left(\hat{f}(\rho_i) \rho_i(g^{-1}) \right)$$

where $\text{Tr}(M)$ denotes the trace of the matrix M. It follows from this that the projection of f onto V_{ρ_i} has g-coordinate

$$P_{V_{\rho_i}}(f)_g = \frac{\dim(\rho_i)}{|G|} \sum_{h \in G} f(h) \text{Tr}(\rho_i(h g^{-1})) = \frac{\dim(\rho_i)}{|G|} \sum_{h \in G} f(h) \chi_{\rho_i}(h g)$$

where $\chi_{\rho_i}(g) = \text{Tr}(\rho_i(g))$ denotes the character of the representation ρ_i.

7
Background on the representation theory of S_n

A partition of n is a non-increasing sequence of positive integers summing to n, i.e., a sequence $\alpha = (\alpha_1, \ldots, \alpha_k)$ with $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_l \geq 1$ and $\sum_{i=1}^{l} \alpha_i = n$; we write $\alpha \vdash n$. For example, $(3, 2, 2) \vdash 7$; we sometimes use the shorthand $(3, 2, 2) = (3, 2^2)$.

The cycle-type of a permutation $\sigma \in S_n$ is the partition of n obtained by expressing σ as a product of disjoint cycles and listing its cycle-lengths in non-increasing order. The conjugacy-classes of S_n are precisely

$$\{\sigma \in S_n : \text{cycle-type}(\sigma) = \alpha\}_{\alpha \vdash n}.$$

Moreover, there is an explicit 1-1 correspondence between irreducible representations of S_n (up to isomorphism) and partitions of n, which we now describe.

Let $\alpha = (\alpha_1, \ldots, \alpha_l)$ be a partition of n. The Young diagram of α is an array of n dots, or cells, having l left-justified rows where row i contains α_i dots. For example, the Young diagram of the partition $(3, 2^2)$ is

$\bullet \bullet \bullet$

$\bullet \bullet$

\bullet

If the array contains the numbers $\{1, 2, \ldots, n\}$ in some order in place of the dots, we call it an α-tableau; for example,

$\begin{array}{c}
6 & 1 & 7 \\
5 & 4 \\
3 & 2
\end{array}$

is a $(3, 2^2)$-tableau. Two α-tableaux are said to be row-equivalent if for each row, they have the same numbers in that row. If an α-tableau s has rows $R_1, \ldots, R_l \subset [n]$ and columns $C_1, \ldots, C_k \subset [n]$, we let $R_s = S_{R_1} \times S_{R_2} \times \ldots \times S_{R_l}$ be the row-stabilizer of s and $C_s = S_{C_1} \times S_{C_2} \times \ldots \times S_{C_k}$ be the column-stabilizer.

An α-tabloid is an α-tableau with unordered row entries (or formally, a row-equivalence class of α-tableaux); given a tableau s, we write $[s]$ for the tabloid it produces. For example, the $(3, 2^2)$-tableau above produces the following $(3, 2^2)$-tabloid
Consider the natural left action of S_n on the set X^α of all α-tabloids; let $M^\alpha = \mathbb{C}[X^\alpha]$ be the corresponding permutation module, i.e. the complex vector space with basis X^α and S_n action given by extending this action linearly. Given an α-tableau s, we define the corresponding α-polytabloid

$$e_s := \sum_{\pi \in C_s} \epsilon(\pi) \pi[s]$$

We define the Specht module S^α to be the submodule of M^α spanned by the α-polytabloids:

$$S^\alpha = \text{Span}\{e_s : s \text{ is an } \alpha\text{-tableau}\}.$$

A central observation in the representation theory of S_n is that the Specht modules are a complete set of pairwise non-isomorphic, irreducible representations of S_n. Hence, any irreducible representation ρ of S_n is isomorphic to some S^α. For example, $S^{(n)} = M^{(n)}$ is the trivial representation; $M^{(1^n)}$ is the left-regular representation, and $S^{(1^n)}$ is the sign representation S.

We say that a tableau is standard if the numbers strictly increase along each row and down each column. It turns out that for any partition α of n,

$$\{e_t : t \text{ is a standard } \alpha\text{-tableau}\}$$

is a basis for the Specht module S^α.

Given a partition α of n, for each cell (i, j) in its Young diagram, we define the ‘hook-length’ $(h^\alpha_{i,j})$ to be the number of cells in its ‘hook’ (the set of cells in the same row to the right of it or in the same column below it, including itself) — for example, the hook-lengths of $(3, 2^2)$ are as follows:

$${5 \quad 4 \quad 1}
{3 \quad 2}
{2 \quad 1}$$

The dimension f^α of the Specht module S^α is given by the following formula

$$f^\alpha = n! / \prod (\text{hook lengths of } [\alpha])$$

From now on we will write $[\alpha]$ for the equivalence class of the irreducible representation S^α, χ_α for the irreducible character χ_{S^α}, and ξ_α for
the character of the permutation representation M^α. Notice that the set of α-tabloids form a basis for M^α, and therefore $\xi_\alpha(\sigma)$, the trace of the corresponding permutation representation at σ, is precisely the number of α-tabloids fixed by σ.

We now explain how the permutation modules M^β decompose into irreducibles.

Definition 2. Let α, β be partitions of n. A generalized α-tableau is produced by replacing each dot in the Young diagram of α with a number between 1 and n; if a generalized α-tableau has β_i’s ($1 \leq i \leq n$) it is said to have content β. A generalized α-tableau is said to be semistandard if the numbers are non-decreasing along each row and strictly increasing down each column.

Definition 3. Let α, β be partitions of n. The Kostka number $K_{\alpha, \beta}$ is the number of semistandard generalized α-tableaux with content β.

Young’s Rule states that for any partition β of n, the permutation module M^β decomposes into irreducibles as follows:

$$M^\beta \cong \bigoplus_{\alpha \vdash n} K_{\alpha, \beta} S^\alpha$$

For example, $M^{(n-1,1)}$, which corresponds to the natural permutation action of S_n on $[n]$, decomposes as

$$M^{(n-1,1)} \cong S^{(n-1,1)} \oplus S^{(n)}$$

and therefore

$$\xi^{(n-1,1)} = \chi^{(n-1,1)} + 1$$

Let V_α be the subspace of $\mathbb{C}[S_n]$ consisting of functions whose Fourier transform is concentrated on $[\alpha]$; equivalently, V_α is the sum of all submodules of $\mathbb{C}S_n$ isomorphic to the Specht module S^α.

We call a partition of n (or an irreducible representation of S_n) ‘fat’ if its Young diagram has first row of length at least $n - t$. Let $F_{n,t}$ denote the set of all fat partitions of n; note that for $n \geq 2t$,

$$|F_{n,t}| = \sum_{s=0}^{t} p(s)$$

where $p(s)$ denotes the number of partitions of s. This grows very rapidly with t, but (as will be crucial for our stability analysis) it is independent of n for $n \geq 2t$. Note that $\{[\alpha] : \alpha \text{ is fat}\}$ are precisely the irreducible constituents of the permutation module $M^{(n-t,1^t)}$ corresponding to the action
of S_n on t-tuples of distinct numbers, since $K_{\alpha,(n-t,1^t)} \geq 1$ iff there exists a semistandard generalized α-tableau of content $(n-t,1^t)$, i.e. iff $\alpha_1 \geq n-t$.

Recall from [6] that V_t is the subspace of functions whose Fourier transform is concentrated on the ‘fat’ irreducible representations of S_n; equivalently,

$$V_t = \bigoplus_{\text{fat } \alpha} V_\alpha \tag{3}$$

The projection of $u \in \mathbb{C}[S_n]$ onto V_α has σ-coordinate

$$P_{V_\alpha}(u)_\sigma = \frac{f_\alpha}{n!} \sum_{\pi \in S_n} u(\pi) \chi_\alpha(\pi \sigma^{-1})$$

and therefore the projection of u onto V_t has σ-coordinate

$$P_{V_t}(u)_\sigma = \frac{1}{n!} \sum_{\text{fat } \alpha} f_\alpha \sum_{\pi \in S_n} u(\pi) \chi_\alpha(\pi \sigma^{-1}) \tag{4}$$

3 Stability

We are now in a position to prove our rough stability result:

Theorem 6. Let $t \in \mathbb{N}, c > 0$ be fixed. If $A \subset S_n$ is a t-intersecting family with $|A| \geq c(n-t)!$, then there exists a t-coset C such that $|A \setminus C| \leq O((n-t-1)!)$.

In other words, if $A \subset S_n$ is a t-intersecting family of size at least a constant proportion of the maximum possible size $(n-t)!$, then there is some t-coset containing all but at most a $O(1/n)$-fraction of A.

To prove this, we will first prove the following weaker statement:

Lemma 7. Let $t \in \mathbb{N}, c > 0$ be fixed. If $A \subset S_n$ is a t-intersecting family of size at least $c(n-t)!$, then there exist i and j such that all but at most $O((n-t-1)!)$ permutations in A map i to j.

In other words, a large t-intersecting family is almost contained within a 1-coset. Theorem 6 will follow easily from this by an inductive argument.

Given distinct i_1, \ldots, i_t and distinct j_1, \ldots, j_t, we will write

$$\mathcal{A}_{i_1 \mapsto j_1, i_2 \mapsto j_2, \ldots, i_t \mapsto j_t} := \{ \sigma \in A : \sigma(i_k) = j_k \ \forall k \in [t] \}$$

To prove Lemma 7 we will first observe from (1) that if $A \subset S_n$ is a t-intersecting family of size at least $c(n-t)!$ then the characteristic vector
\(v_A \) of \(A \) is close to the subspace \(V_t \) spanned by the characteristic vectors of the \(t \)-cosets. We will use this, combined with representation-theoretic arguments, to show that there exists some \(t \)-coset \(C_0 \) such that

\[
|A \cap C_0| \geq \omega((n - 2t)!) \]

—without loss of generality, \(C_0 = \{ \sigma \in S_n : \sigma(1) = 1, \ldots, \sigma(t) = t \} \), so

\[
|A_{1 \rightarrow t, 2 \rightarrow 2, \ldots, t \rightarrow t}| \geq \omega((n - 2t)!) \]

Note that the average size of the intersection of \(A \) with a \(t \)-coset is

\[
|A| / n(n - 1) \ldots (n - t + 1) = \Theta((n - t)!/n!) \]

We only know that \(A \cap C_0 \) has size \(\omega \) of the average size. This statement would at first seem to weak to help us. However, for any distinct \(j_1 \neq 1, j_2 \neq 2, \ldots, \) and \(j_t \neq t \), the pair of families

\[
A_{1 \rightarrow j_1, 2 \rightarrow j_2, \ldots, t \rightarrow j_t}
\]

is \(t \)-cross-intersecting, so we may compare their sizes. In detail, we will deduce from Theorem 3 that

\[
|A_{1 \rightarrow j_1, 2 \rightarrow j_2, \ldots, t \rightarrow j_t}| \leq ((n - 2t)!)^2
\]

giving \(|A_{1 \rightarrow j_1, \ldots, t \rightarrow j_t}| \leq o((n - 2t)!). \) Summing over all choices of \(j_1, \ldots, j_t \) will show that all but at most \(o((n - t)! \) permutations in \(A \) fix some point of \([t]\), enabling us to complete the proof.

Proof of Lemma 7:
Let \(A \subset S_n \) be a \(t \)-intersecting family of size at least \(c(n - t)! \); write \(\delta = 1 - c < 1 \). From (1), we know that the Euclidean distance from \(v_A \) to \(V_t \) is small:

\[
||P_{V_t}(v_A)||^2 \leq \delta(1 + O(n^{1/6}))|A|/n!
\]

From (1), the projection of \(v_A \) onto \(V_t \) has \(\sigma \)-coordinate:

\[
P_{V_t}(v_A)_{\sigma} = \frac{1}{n!} \sum_{\alpha} f_{\alpha} \sum_{\pi \in A} \chi_{\alpha}(\pi \sigma^{-1})
\]

Write \(P_\sigma = P_{V_t}(v_A)_{\sigma} \); then

\[
\frac{1}{n!} \left(\sum_{\sigma \in A} (1 - P_\sigma)^2 + \sum_{\sigma \notin A} P_\sigma^2 \right) \leq \delta(1 + O(1/n^{1/6}))|A|/n!
\]

12
i.e.
\[
\sum_{\sigma \in A} (1 - P_\sigma)^2 + \sum_{\sigma \notin A} P_\sigma^2 \leq \delta (1 + O(1/n^{1/6})) |A|
\]
Choose \(C > 0 : |A|(1 - 1/n)\delta(1 + C/n^{1/6}) \geq \text{RHS}\); then the subset
\[
S := \{\sigma \in A : (1 - P_\sigma)^2 < \delta(1 + C/n^{1/6})\}
\]
has size at least \(|A|/n\). Similarly, \(P_\sigma^2 < 2\delta/n\) for all but at most
\[
n|A|(1 + O(1/n)) / 2
\]
permutations \(\sigma \notin A\). Provided \(n\) is sufficiently large, \(|A| \leq (n - t)!\), and therefore the subset \(T = \{\sigma \notin A : P_\sigma^2 < 2\delta/n\}\) has size
\[
|T| \geq n! - (n - t)! - n(n-t)!(1 + O(1/n)) / 2
\]
The permutations \(\sigma \in S\) have \(P_\sigma\) close to 1; the permutations \(\pi \in T\) have \(P_\pi\) close to 0. Using only our lower bounds on the sizes of \(S\) and \(T\), we may prove the following:

Claim: There exist permutations \(\sigma \in S\), \(\pi \in T\) such that \(\sigma^{-1}\pi\) is a product of at most \(h = h(n)\) transpositions, where \(h = \sqrt{2(t+2)(n-1)\log n}\).

Proof of Claim: Define the transposition graph \(H\) to be the Cayley graph on \(S_n\) generated by the transpositions, i.e. \(V(H) = S_n\) and \(\sigma \pi \in E(H)\) iff \(\sigma^{-1}\pi\) is a transposition. We use the following isoperimetric inequality for \(H\), essentially the martingale inequality of Maurey:

Theorem 8. Let \(X \subset V(H)\) with \(|X| \geq \gamma n!\) where \(0 < \gamma < 1\). Then for any \(h \geq h_0 := \sqrt{1/2(n-1)\log \frac{1}{\gamma}}\),
\[
|N_h(X)| \geq \left(1 - e^{-2(h-h_0)^2/n-1}\right) n!
\]

\(\square\)

For a proof, see for example [10]. Applying this to the set \(S\), which has \(|S| \geq (1 - \delta)(n - t)!/n \geq \frac{n!}{n^{t+2}}\) (provided \(n\) is sufficiently large), with \(\gamma = 1/n^{t+2}\), \(h = 2h_0\), gives \(|N_h(S)| \geq (1-n^{-(t+2)})n!\), so certainly \(N_h(S) \cap T \neq \emptyset\), proving the claim.
We now have two permutations \(\sigma \in A, \pi \notin A \) which are ‘close’ to one another in \(H \) (differing in only \(O(\sqrt{n \log n}) \) transpositions) such that

\[
P_\sigma > 1 - \sqrt{\delta (1 + C/n^{1/6})}, \quad P_\pi < \sqrt{2 \delta / n}
\]

and therefore

\[
P_\sigma - P_\pi > 1 - \sqrt{\delta} - O(1/n^{1/12})
\]

Hence, by averaging, there exist two permutations \(\rho, \tau \) that differ by just one transposition and satisfy

\[
P_\rho - P_\tau > (1 - \sqrt{\delta} - O(1/n^{1/12}))/h \geq 1 - \sqrt{\delta} - O(1/n^{1/12})
\]

i.e.

\[
\sum_{\alpha \in \mathcal{F}_{n,t}} \frac{f^\alpha}{n!} \left(\sum_{\pi \in A} \chi_\alpha(\pi \rho^{-1}) - \sum_{\pi \in A} \chi_\alpha(\pi \tau^{-1}) \right) \geq \frac{1 - \sqrt{\delta} - O(1/n^{1/12})}{\sqrt{2(t + 2)n \log n}}
\]

By double translation, we may assume without loss of generality that \(\rho = \text{Id}, \tau = (1 2) \). So we have:

\[
\sum_{\alpha \in \mathcal{F}_{n,t}} \frac{f^\alpha}{n!} \left(\sum_{\pi \in A} \chi_\alpha(\pi) - \sum_{\pi \in A} \chi_\alpha(\pi(1 2)) \right) \geq \frac{1 - \sqrt{\delta} - O(1/n^{1/12})}{\sqrt{2(t + 2)n \log n}}
\]

The above sum is over \(|\mathcal{F}_{n,t}| = \sum_{s=0}^{t} p(s) \) partitions \(\alpha \) of \(n \); this grows very rapidly with \(t \), but is independent of \(n \) for \(n \geq 2t \). By averaging, there exists some \(\alpha \in \mathcal{F}_{n,t} \) such that

\[
\frac{f^\alpha}{n!} \left(\sum_{\pi \in A} \chi_\alpha(\pi) - \sum_{\pi \in A} \chi_\alpha(\pi(1 2)) \right) \geq \frac{1 - \sqrt{\delta} - O(1/n^{1/12})}{\sqrt{2(t + 2)n \log n} \sum_{s=0}^{t} p(s)} = \Omega(1/\sqrt{n \log n})
\]

Recall that the ‘fat’ irreducible representations \([\alpha] : \alpha \in \mathcal{F}_{n,t}\) are precisely the irreducible constituents of \(M^{(n-t,1^t)} \), so very crudely, for each fat \(\alpha \),

\[
f^\alpha \leq \dim(M^{(n-t,1^t)}) = n(n - 1) \ldots (n - t + 1)
\]

Hence,

\[
\sum_{\pi \in A} \chi_\alpha(\pi) - \sum_{\pi \in A} \chi_\alpha(\pi(1 2)) \geq \Omega(1/\sqrt{n \log n})(n - t)!
\]
But for any \(\alpha \in F_{n,t} \), we may express the irreducible character \(\chi_\alpha \) as a linear combination of permutation characters \(\xi_\beta : \beta \in F_{n,t} \) using the following ‘determinantal formula’ (see [8]). For any partition \(\alpha \) of \(n \),

\[
\chi_\alpha = \sum_{\pi \in S_n} \epsilon(\pi) \xi_{\alpha - \text{id} + \pi}
\]

Here, for \(\alpha = (\alpha_1, \ldots, \alpha_l) \vdash n \), we set \(\alpha_i = 0 \) (\(l < i \leq n \)), we think of \(\alpha \), \(\text{id} \) and \(\pi \) as sequences of length \(n \), and we define addition and subtraction of these sequences pointwise. In general,

\[
\alpha - \text{id} + \pi = (\alpha_1 - 1 + \pi(1), \alpha_2 - 2 + \pi(2), \ldots, \alpha_n - n + \pi(n))
\]

will be a sequence of \(n \) integers with sum \(n \), i.e. a composition of \(n \). If \(\lambda \) is a composition of \(n \) with all its terms non-negative, then let \(\lambda \) be the partition of \(n \) produced by ordering the terms of \(\lambda \) in non-increasing order, and define \(\xi_\lambda = \xi_\lambda' \); if \(\lambda \) has a negative term, we define \(\xi_\lambda = 0 \). If \(\alpha \in F_{n,t} \), then as \(\alpha_1 \geq n-t \), any composition occurring in the above sum has first term at least \(n-t \), and therefore \(\xi_\beta \) can only occur in the above sum if \(\beta \in F_{n,t} \).

Observe further that since \(\alpha \) has at most \(t+1 \) non-zero parts, \(\alpha_i = 0 \) for every \(i > t+1 \), and therefore any permutation \(\pi \in S_n \) with \(\xi_{\alpha - \text{id} + \pi} \neq 0 \) must have \(\pi(i) \geq i \) for every \(i > t+1 \), so must fix \(t+2, t+3, \ldots, \) and \(n \). Therefore, the above sum is only over \(\pi \in S_{\{1, \ldots, t+1\}} \), i.e.

\[
\chi_\alpha = \sum_{\pi \in S_{t+1}} \epsilon(\pi) \xi_{\alpha - \text{id} + \pi} \forall \alpha \in F_{n,t}
\]

Therefore, \(\chi_\alpha \) is a \((\pm 1)\)-linear combination of at most \((t+1)!\) permutation characters \(\xi_\beta \) (\(\beta \in F_{n,t} \)), possibly with repeats. Hence, by averaging, there exists some \(\beta \in F_{n,t} \) such that

\[
\left| \sum_{\pi \in A} \xi_\beta(\pi) - \sum_{\pi \in A} \xi_\beta(\pi(1 2)) \right| \geq \Omega(1/\sqrt{n \log n})(n-t)!/(t+1)! = \Omega(1/\sqrt{n \log n})(n-t)!
\]

Without loss of generality, we may assume that the above quantity is positive, i.e.

\[
\sum_{\pi \in A} \xi_\beta(\pi) - \sum_{\pi \in A} \xi_\beta(\pi(1 2)) \geq \Omega(1/\sqrt{n \log n})(n-t)!
\]
Let \(T_\beta \) be the set of \(\beta \)-tabloids; the LHS is then
\[
\#\{ (T, \pi) : T \in T_\beta, \pi \in \mathcal{A}, \pi(T) = T \} - \#\{ (T, \pi) : T \in T_\beta, \pi \in \mathcal{A}, \pi(1 \ 2)(T) = T \}
\]
Interchanging the order of summation, this equals
\[
\sum_{T \in T_\beta} (\#\{ \pi \in \mathcal{A} : \pi(T) = T \} - \#\{ \pi \in \mathcal{A} : \pi(1 \ 2)(T) = T \})
\]
The above summand is zero for all \(\beta \)-tabloids \(T \) with 1 and 2 in the first row of \(T \) (as then \((1 \ 2)T = T\)). Write \(\beta = (n-s, \beta_2, \ldots, \beta_l) \), where \(0 \leq s \leq t \).

The number of \(\beta \)-tabloids with 1 not in the first row is
\[
s(n-1)(n-2) \cdots (n-s+1) / \prod_{i=2}^t \beta_i!
\]
and therefore the number of \(\beta \)-tabloids with 1 or 2 below the first row is at most
\[
2s(n-1)(n-2) \cdots (n-s+1) / \prod_{i=2}^t \beta_i! \leq 2t(n-1)(n-2) \cdots (n-s+1)
\]
\[
= 2t(n-1)! / (n-s)!
\]

Hence by averaging, for one such \(\beta \)-tabloid \(T \),
\[
\#\{ \pi \in \mathcal{A} : \pi(T) = T \} - \#\{ \pi \in \mathcal{A} : \pi(1 \ 2)(T) = T \} \geq \Omega(1 / \sqrt{n \log n}) \frac{(n-s)!}{2t(n-1)!} (n-t)!
\]
and therefore the number of permutations in \(\mathcal{A} \) fixing \(T \) satisfies
\[
\#\{ \pi \in \mathcal{A} : \pi(T) = T \} \geq \Omega(1 / \sqrt{n \log n}) \frac{(n-s)!}{2t(n-1)!} (n-t)!
\]

Without loss of generality, we may assume that the first row of \(T \) consists of the numbers \{ \(s+1, \ldots, n \} \). There are \(\beta_2! \beta_3! \cdots \beta_l! \leq s! \leq t! \) permutations of \([s] \) fixing the \(2^{nd}, 3^{rd}, \ldots, \) and \(t^{th} \) rows of \(T \); any permutation fixing \(T \) must agree with one of these permutations on \([s] \). Hence, there exists a permutation \(\rho \) of \([s] \) such that at least
\[
\Omega(1 / \sqrt{n \log n}) \frac{(n-s)!}{2t(n-1)! t!} (n-t)!
\]

16
permutations in A agree with ρ on $[s]$. Without loss of generality, we may assume that $\rho = \text{Id}_{[s]}$, so the number of permutations in A fixing $[s]$ pointwise satisfies

$$|A_{1 \mapsto 1, \ldots, s \mapsto s}| \geq \Omega(1/\sqrt{n \log n}) \frac{(n-s)!/(n-t)!}{2t(n-1)!}$$

$$= \Omega(1/\sqrt{n \log n}) \frac{(n-s)!/(n-t)!}{(n-1)!}$$

We may write $A_{1 \mapsto 1, \ldots, s \mapsto s}$ as a disjoint union

$$A_{1 \mapsto 1, \ldots, s \mapsto s} = \bigcup_{j_{s+1}, \ldots, j_t > s \text{ distinct}} A_{1 \mapsto 1, \ldots, s \mapsto s+1 \mapsto j_{s+1}, \ldots, t \mapsto j_t}$$

and there are $(n-s)(n-s-1) \ldots (n-t+1)$ choices of j_{s+1}, \ldots, j_t, so by averaging, there exists a choice such that

$$|A_{1 \mapsto 1, \ldots, s \mapsto s+1 \mapsto j_{s+1}, \ldots, t \mapsto j_t}| \geq \Omega(1/\sqrt{n \log n}) \frac{(n-t)!}{(n-1)!}$$

We now show that each $A_{1 \mapsto 1, \ldots, t \mapsto t}$ is small using Theorem 4. Let $J = \{j_1, \ldots, j_t\}$. Notice that $\mathcal{E} := A_{1 \mapsto 1, \ldots, t \mapsto t} \cup \ldots \cup A_{t \mapsto t}$ and $\mathcal{F} := A_{1 \mapsto j_1, \ldots, t \mapsto j_t}$ is a t-cross-intersecting pair of families, so for any $\sigma \in \mathcal{E}$ and $\pi \in \mathcal{F}$, there are t distinct points $i_1, i_2, \ldots, i_t > t$ such that $\sigma(i_k) = \pi(i_k) \notin [t] \cup J$ for each $k \in [t]$. But then

$$(1 \ j_1)(2 \ j_2) \ldots (t \ j_t)\pi(i_k) = \sigma(i_k) \quad \text{for each} \ k \in [t]$$
so letting $\mathcal{G} := (1 \ j_1)(2 \ j_2) \ldots (t \ j_t) \mathcal{F}$, the pair of families \mathcal{E}, \mathcal{G} fix $[t]$ pointwise and t-cross-intersect on $\{t + 1, t + 2, \ldots, n\}$. Deleting $1, \ldots, t$ we obtain a t-cross-intersecting pair $\mathcal{E}', \mathcal{G}'$ of subsets of $S_{\{t+1,...,n\}}$. By Theorem 4,

$$|A_{1-1,...,t-t}||A_{1-j_1,...,t-j_t}| = |\mathcal{E}||\mathcal{G}| = |\mathcal{E}'||\mathcal{G}'| \leq ((n - 2t)!)^2$$

Since

$$|A_{1-1,...,t-t}| \geq \omega((n - 2t)!))$$

we have

$$|A_{1-j_1,...,t-j_t}| \leq o((n - 2t)!)$$

There are $\leq n(n - 1)(n - 2) \ldots (n - t + 1)$ possible choices of j_1, \ldots, j_t, and therefore the number of permutations in \mathcal{A} with no fixed point in $[t]$ satisfies

$$|A \setminus (A_{1-1} \cup A_{2-2} \cup \ldots \cup A_{t-t})| \leq o((n - 2t)!n(n - 1) \ldots (n - t + 1) = o((n - t)!$$

Since $|\mathcal{A}| \geq c(n - t)!$, we have

$$|A_{1-1} \cup A_{2-2} \cup \ldots \cup A_{t-t}| \geq (c - o(1))(n - t)!$$

By averaging, there exists some $i \in [t]$ such that

$$|A_{i-i}| \geq (c - o(1))(n - t)!/t$$

We may assume that $i = 1$, so $|A_{1-1}| \geq (c - o(1))(n - t)!/t$. Now, using the same trick as before, we may use Theorem 4 to show that $|A \setminus A_{1-1}| \leq O((n - t - 1)!$. Indeed, write $A \setminus A_{1-1}$ as a disjoint union

$$A \setminus A_{1-1} = \bigcup_{j \neq 1} A_{1-j}$$

We will show that each A_{1-j} is small. Notice as before that the pair of families A_{1-1}, $(1 \ j)A_{1-j}$ fixes 1 and t-cross-intersects on the domain $\{2, \ldots, n\}$, so Theorem 4 gives

$$|A_{1-1}||A_{1-j}| \leq ((n - t - 1)!)^2$$

Since $|A_{1-1}| \geq \Omega((n - t)!)$, we obtain $|A_{1-j}| \leq O((n - t - 2)!$, and therefore

$$|A \setminus A_{1-1}| = \sum_{j \neq 1} |A_{1-j}| \leq O((n - t - 1)!$$

proving Lemma 7.
Proof of Theorem 6.
By induction on t. The $t = 1$ case is the same as that of Lemma 7. Assume the theorem is true for $t - 1$; we will prove it for t. Let $A \subseteq S_n$ be a t-intersecting family of size at least $c(n - t)!$. By Lemma 7 there exist i and j such that $|A \setminus A_{i \mapsto j}| \leq O((n - t - 1)!)$.

Without loss of generality we may assume that $i = j = 1$, so $|A \setminus A_{1 \mapsto 1}| \leq O((n - t - 1)!)$.

Hence, $|A_{1 \mapsto 1}| \geq |A| - O((n - t - 1)!)$. Deleting 1 from each permutation in $A_{1 \mapsto 1}$, we obtain a $(t - 1)$-intersecting family $A' \subseteq S_{\{2, 3, \ldots, n\}}$ of size $\geq c(n - t)!$. Choose any positive constant $c' < c$; then provided n is sufficiently large, we have $|A'| \geq c'(n - t)!$.

By the induction hypothesis, there exists a $(t - 1)$-coset C' of $S_{2, 3, \ldots, n}$ such that $|A' \setminus C'| \leq O((n - t - 1)!)$. Then if C is the t-coset obtained from C' by adjoining $1 \mapsto 1$, we have $|A \setminus C| \leq O((n - t - 1)!)$.

This completes the induction and proves Theorem 6.

□

We now use our rough stability result to prove an exact stability result. First, we need some more definitions.

Let d_n be the number of derangements of $[n]$ (permutations of $[n]$ without fixed points). It is well known that $d_n = (1/e + o(1))n!$.

Following Cameron and Ku [3], given a permutation $\rho \in S_n$ and $i \in [n]$, we define the i-fix of ρ to be the permutation ρ_i which fixes i, maps the preimage of i to the image of i, and agrees with ρ at all other points of $[n]$, i.e.

$$
\rho_i(i) = i; \quad \rho_i(\rho^{-1}(i)) = \rho(i); \quad \rho_i(k) = \rho(k) \forall k \neq i, \rho^{-1}(i)
$$

In other words, $\rho_i = \rho(\rho^{-1}(i))$. We inductively define

$$
\rho_{i_1, \ldots, i_t} = (\rho_{i_1, \ldots, i_{t-1}})_{i_t}
$$

Notice that if σ fixes j, then σ agrees with ρ_j wherever it agrees with ρ.

Theorem 9. For n sufficiently large depending on t, if $A \subseteq S_n$ is a t-intersecting family which is not contained within a t-coset, then A is no larger than the family

$$
D = \{ \sigma \in S_n : \sigma(i) = i \forall i \leq t, \sigma(j) = j \text{ for some } j > t + 1 \}
\cup \{(1 t + 1), (2 t + 1), \ldots, (t t + 1)\}
$$

which has size $(n - t)! - d_{n-t} - d_{n-t-1} + t = (1 - 1/e + o(1))(n - t)!$. If A is the same size as D, then A is a double translate of D, i.e. $A = \pi D \tau$ for some $\pi, \tau \in S_n$.

\]
Proof. Suppose \(\mathcal{A} \subset S_n \) is a \(t \)-intersecting family which is not contained within a \(t \)-coset, and has size

\[
|\mathcal{A}| \geq (n-t)! - d_{n-t} - d_{n-t-1} + t = (1 - 1/e + o(1))(n-t)!
\]

Applying Theorem 6 with any constant \(c \) such that \(0 < c < 1 - 1/e \), we see that (provided \(n \) is sufficiently large) there exists a \(t \)-coset \(\mathcal{C} \) such that

\[
|A \setminus C| \leq O(1/n)(n-t)!
\]

By double translation, without loss of generality we may assume that \(C = \{ \sigma \in S_n : \sigma(1) = 1, \ldots, \sigma(t) = t \} \). We have:

\[
|A \cap C| \geq (n-t)! - d_{n-t} - d_{n-t-1} + t - O(1/n)(n-t)!
= (1 - 1/e + o(1))(n-t)!
\]

(5)

We now claim that every permutation in \(A \setminus C \) fixes exactly \(t-1 \) points of \([t]\). Suppose for a contradiction that \(A \) contains a permutation \(\tau \) fixing at most \(t-2 \) points of \([t]\). Then every permutation in \(A \cap C \) must agree with \(\tau \) on at least 2 points of \([t+1, \ldots, n]\), so

\[
|A \cap C| \leq \binom{n-t}{2}(n-t-2)! = \frac{1}{2}(n-t)!
\]

contradicting (5), provided \(n \) is sufficiently large.

Since we are assuming that \(\mathcal{A} \) is not contained within a \(t \)-coset, \(A \setminus C \) contains some permutation \(\tau \); \(\tau \) must fix all points of \([t]\) except for one. By double translation, we may assume that \(\tau = (1 \ t + 1) \). We will show that under these hypotheses, \(A = D \).

Every permutation in \(A \cap C \) must \(t \)-intersect \((1 \ t + 1)\) and must therefore have at least one fixed point \(> t+1 \), i.e. \(A \cap C \) is a subset of the family

\[
\mathcal{E} := \{ \sigma \in S_n : \sigma(i) = i \ \forall i \in [t], \ \sigma(j) = j \text{ for some } j > t+1 \}
\]

which has size

\[
(n-t)! - d_{n-t} - d_{n-t-1}
\]

We now make the following observation:

Claim: \(A \setminus C \) may only contain the transpositions \(\{(i \ t + 1) : i \in [t]\} \).

Proof of Claim:
Suppose for a contradiction that \(A \setminus C \) contains a permutation \(\rho \) not of this
form. Then $\rho(j) \neq j$ for some $j \geq t + 2$. We will show that there are at least d_{n-t-1} permutations in E which fix j and disagree with ρ at every point of $\{t+1, t+2, \ldots, n\}$, and therefore cannot t-intersect ρ. Let l be the unique point of $[t]$ not fixed by ρ. If σ fixes both l and j, then σ agrees with $\rho_{j,l} = (\rho_j)_l$ wherever it agrees with ρ. Notice that $\rho_{j,l}$ fixes $1, 2, \ldots, t$ and j.

There are exactly d_{n-t} permutations in E which fix j and disagree with $\rho_{j,l}$ at every point of $\{t+1, t+2, \ldots, n\}$; each disagrees with ρ at every point of $\{t+1, t+2, \ldots, n\}$. So none t-intersect ρ, so none are in A, and therefore $|A \cap C| \leq |E| - d_{n-t-1} = (n-t)! - d_{n-t} - 2d_{n-t-1}$.

Since we are assuming that $|A| \geq (n-t)! - d_{n-t} - d_{n-t-1} + t$, this means that $|A \setminus C| \geq d_{n-t-1} + t = (1/e + o(1))(n-t-1)!$.

Notice that for any $m \leq n$ we have the following trivial upper bound on the size of an m-intersecting family $H \subset S_n$:

$$|H| \leq \binom{n}{m} (n-m)! = n!/m!$$

since every permutation in H must agree with a fixed permutation in H in at least m places.

Hence, $A \setminus C$ cannot be $(\log n)$-intersecting and therefore contains two permutations π, τ agreeing on at most $\log n$ points. The number of permutations fixing $[t]$ pointwise and agreeing with both π and τ at one of these log n points is therefore at most $(\log n)(n-t-1)!$. All other permutations in $A \cap C$ agree with π and τ at two separate points of $\{t+1, \ldots, n\}$, and by the above argument, the same holds for π_p and τ_q, where p and q are the points of $[t]$ shifted by π and τ respectively. The number of permutations in C that agree with π_p and τ_q at two separate points of $\{t+1, \ldots, n\}$ is at most $((1-1/e)^2 + o(1))(n-t)!$ (it is easily checked that given two fixed permutations, the probability that a uniform random permutation agrees with them at separate points is at most $(1-1/e)^2 + o(1)$, which implies that

$$|A \cap C| \leq ((1-1/e)^2 + o(1))(n-t)! + (\log n)(n-t-1)! = ((1-1/e)^2 + o(1))(n-t)!$$

contradicting (5), provided n is sufficiently large. This proves the claim.

Since we are assuming $|A| \geq |E| + t$, we must have equality, so $A = D$, proving Theorem 9. □

21
Similar arguments give the following stability results for \(t \)-cross-intersecting families. Say two pairs of families \((A, B), (C, D)\) in \(S_n\) are isomorphic if there exist permutations \(\pi, \rho \in S_n\) such that \(A = \pi C \rho \) and \(B = \pi D \rho \). We have:

Theorem 10. If \(n \) sufficiently large depending on \(t \), if \(A, B \subset S_n\) are \(t \)-cross-intersecting but not both contained within the same \(t \)-coset, then

\[
\min(|A|, |B|) \leq (n-t)! - d_{n-t} - d_{n-t-1} + t
\]

with equality iff \((A, B)\) is isomorphic to the pair of families

\[
\{\sigma : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = \tau(j) \ \text{for some} \ j > t + 1\} \cup \{(i \ t + 1) : i \in [t]\}
\]

\[
\{\sigma : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = j \ \text{for some} \ j > t + 1\} \cup \{(1 i \tau(1)) : i \in [t]\}
\]

where \(\tau(1) \neq 1 \) and if \(t \geq 2 \), \(\tau \) fixes \(2, 3, \ldots, t \) and at least two points \(J > t + 1 \), whereas if \(t = 1 \), \(\tau \) intersects \((1 2)\).

Theorem 11. For \(n \) sufficiently large depending on \(t \), if \(A, B \subset S_n\) are \(t \)-cross-intersecting but not both contained within the same \(t \)-coset, then

\[
|A||B| \leq ((n-t)! - d_{n-t} - d_{n-t-1})(n-t)! + t
\]

with equality iff \((A, B)\) is isomorphic to the pair of families

\[
\{\sigma \in S_n : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = j \ \text{for some} \ j > t + 1\}
\]

\[
\{\sigma \in S_n : \sigma(i) = i \ \forall i \leq t\} \cup \{(1 t + 1), (2 t + 1), \ldots, (t t + 1)\}
\]

The proofs are very similar to the proof of Theorem 9 and we omit them.

4 The Alternating Group

We now turn our attention to the alternating group \(A_n\), the index-2 subgroup of \(S_n\) consisting of the even permutations of \(\{1, 2, \ldots, n\}\). The following may be deduced from the proof of the Deza-Frankl conjecture in [6]:

Theorem 12. For \(n \) sufficiently large depending on \(t \), if \(A \subset A_n\) is \(t \)-intersecting, then \(|A| \leq (n-t)!/2\).

Remark: This implies the Deza-Frankl conjecture. To see this, let \(A \subset S_n\) be \(t \)-intersecting; then \(A \cap A_n \) and \((A \setminus A_n)(1 2) \) are both \(t \)-intersecting families of permutations in \(A_n\), so by Theorem 12 both have size at most \((n-t)!)/2\). Hence,

\[
|A| = |A \cap A_n| + |A \setminus A_n| \leq (n-t)!
\]
Proof. Recall that in [6], we constructed a weighted graph Y_{even} which was a real linear combination of Cayley graphs on S_n generated by conjugacy-classes of \textit{even} permutations with less than t fixed points, and whose matrix of weights had maximum eigenvalue 1 and minimum eigenvalue

$$\omega_{n,t} = -\frac{1}{n(n-1)\ldots(n-t+1)-1}.$$

Clearly, Y_{even} has no (non-zero) edges between A_n and $S_n \setminus A_n$. Let Y_1 be the weighted subgraph of Y_{even} induced on A_n, and Y_2 the weighted subgraph induced on $S_n \setminus A_n$. Notice that the map

$$\phi : A_n \to S_n \setminus A_n; \quad \sigma \mapsto (1 \, 2)\sigma$$

is a graph isomorphism from Y_1 to Y_2. To see this, note that

$$\phi(\sigma)(\phi(\pi))^{-1} = ((1 \, 2)\sigma)((1 \, 2)\pi)^{-1} = (1 \, 2)\sigma\pi^{-1}(1 \, 2)$$

which is conjugate to $\sigma\pi^{-1}$. Since Y_{even} is a linear combination of Cayley graphs generated by conjugacy-classes of S_n, the edge $\phi(\sigma)\phi(\pi)$ has the same weight in Y_{even} as the edge $\sigma\pi$. Hence, Y_{even} is a disjoint union of the two isomorphic subgraphs Y_1 and Y_2, so the eigenvalues of Y_{even} are the same as those of Y_1 (with double the multiplicities). Applying Theorem 1 to Y_1 proves Theorem 12.

Our next aim is to show that equality holds in Theorem 12 only if A is a coset of the stabilizer of t points. As for S_n, we will call these families the ‘t-cosets of A_n’.

Let W_t be the subspace of $\mathbb{C}[A_n]$ spanned by the characteristic vectors of the t-cosets of A_n. It is easily checked that W_t is the direct sum of the 1 and $\omega_{n,t}$-eigenspaces of Y_1. Hence, by Theorem 1 if equality holds in Theorem 12 then the characteristic vector v_A of A lies in the subspace W_t.

We would like to show that the Boolean functions which are linear combinations of the characteristic functions of the t-cosets of A_n are precisely the characteristic functions of the disjoint unions of t-cosets of A_n. To do this for S_n in [6], it was first proved that if a non-negative function $f : S_n \to \mathbb{R}_{\geq 0}$ is a linear combination of the characteristic functions of the t-cosets of S_n, then it can be expressed as a linear combination of them with non-negative coefficients. However, this is not true in the case of A_n, even for $t = 1$:

23
Claim: There exists a non-negative function in W_1 which cannot be written as a non-negative linear combination of the characteristic functions of the 1-cosets of A_n.

Proof of Claim: Let $w_{i \rightarrow j}$ be the characteristic function of the 1-coset \{\(\sigma \in A_n : \sigma(i) = j\)\}. We say a real $n \times n$ matrix B represents a function $f \in W_1$ if f can be written as a linear combination of $w_{i \rightarrow j}$’s with coefficients given by the matrix B, i.e.

$$f = \sum_{i,j=1}^{n} b_{i,j} w_{i \rightarrow j}$$

or equivalently,

$$f(\sigma) = \sum_{i=1}^{n} b_{i,\sigma(i)} \quad \forall \sigma \in A_n$$

It is easy to see that, provided $n \geq 4$, any function $f \in W_1$ has a unique extension to a function $\tilde{f} \in V_1$. Hence, if B and C are two matrices both representing f, they must both represent the same function $\tilde{f} : S_n \rightarrow \mathbb{R}$, and therefore

$$\sum_{i=1}^{n} b_{i,\sigma(i)} = \sum_{i=1}^{n} c_{i,\sigma(i)} \quad \forall \sigma \in S_n$$

Now let f be the function represented by the matrix

$$B = \begin{pmatrix}
1 & -1/2 & 1 & 1 & \ldots & 1 \\
-1/2 & 1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 0 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots & \\
1 & 1 & \ldots & 0
\end{pmatrix}$$

This takes only non-negative values on A_n, since

$$\sum_{i=1}^{n} b_{i,\sigma(i)} \geq 0 \quad \forall \sigma \in A_n$$

but if τ is the transposition $(1 2)$, then

$$\sum_{i=1}^{n} b_{i,\tau(i)} = -1$$
Hence, any matrix C representing the same function as B must also have

$$\sum_{i=1}^{n} c_{i,\tau(i)} = -1$$

and therefore cannot have non-negative entries. Therefore, f is a non-negative function in W_1 that cannot be written as a non-negative linear combination of the $w_{i,j}$’s, proving the claim.

Instead, we obtain our desired characterization of equality in Theorem 12 from a stability result for t-intersecting families in A_n.

Let e_n, o_n denote the number of respectively even/odd derangements of $[n]$. It is well known that $e_n - o_n = (-1)^{n-1}(n-1) \forall n \in \mathbb{N}$; combining this with the fact that $d_n = (1/e + o(1))n!$ gives $e_n = (1/(2e) + o(1))n!$, $o_n = (1/(2e) + o(1))n!$.

We now prove the following analogue of Theorem 9:

Theorem 13. For n sufficiently large depending on t, if $A \subset A_n$ is a t-intersecting family which is not contained within a t-coset of A_n, then A cannot be larger than the family

$$B = \{ \sigma \in A_n : \sigma(i) = i \ \forall i \leq t, \ \sigma(j) = (n-1)n(j) \text{ for some } j > t+1 \}$$

$$\cup \{(1 \ t + 1)(n-1) \ n, (2 \ t + 1)(n-1) \ n, \ldots, (t \ t + 1)(n-1) \ n \}$$

which has size $(n-t)!/2 - o_{n-t} - o_{n-t-1} + t = (1 - 1/e + o(1))(n-t)!/2$.

If A is the same size as B, then A is a double translate of B, meaning that $A = \pi B \tau$ for some $\pi, \tau \in A_n$.

Proof. Let $A \subset A_n$ be a t-intersecting family which is not contained within a t-coset of A_n and has size

$$|A| \geq (n-t)!/2 - o_{n-t} - o_{n-t-1} + t = (1 - 1/e + o(1))(n-t)!/2.$$

Applying Theorem 6 with any constant c such that $0 < c < (1 - 1/e)/2$, we see that (provided n is sufficiently large) there exists a t-coset C such that

$$|A \setminus C| \leq O(1/n)(n-t)!$$

By double translation, without loss of generality we may assume that $C = \{ \sigma \in A_n : \sigma(1) = 1, \ldots, \sigma(t) = t \}$. We have:

$$|A \cap C| \geq (n-t)!/2 - o_{n-t} - o_{n-t-1} + t - O(1/n)(n-t)!$$

$$= (1 - 1/e + o(1))(n-t)!/2$$

$$= (1 - 1/e + o(1))(n-t)!/2$$ \hspace{1cm} (6)
We now claim that every permutation in $A \setminus C$ fixes exactly $t - 1$ points of $[t]$. Suppose for a contradiction that A contains a permutation τ fixing at most $t - 2$ points of $[t]$. Then every permutation in $A \cap C$ must agree with τ on at least 2 points of $\{t+1, \ldots, n\}$, so

$$|A \cap C| \leq \binom{n-t}{2} (n-t-2)!/2 = \frac{1}{2} (n-t)!/2$$

contradicting (6), provided n is sufficiently large.

Since we are assuming that A is not contained within a t-coset, $A \setminus C$ contains some permutation τ; τ must fix all points of $[t]$ except for one. By double translation, we may assume that $\tau = (1 \ t+1)(n-1 \ n)$. We will show that under these hypotheses, $A = B$. Every permutation in $A \cap C$ must agree with $(n-1 \ n)$ at some point $\geq t+2$, i.e. $A \cap C$ is a subset of the family

$$\mathcal{E} := \{\sigma \in A_n : \sigma(i) = i \ \forall i \in [t], \ \sigma(j) = (n-1 \ n)(j) \ \text{for some } j \geq t+2\}$$

which has size

$$(n-t)!/2 - o_{n-t} - o_{n-t-1}$$

We now make the following observation:

Claim: $A \setminus C$ may only contain the permutations $\{(i+1)(n-1) : i \in [t]\}$.

Proof of Claim:

Suppose for a contradiction that $A \setminus C$ contains a permutation ρ not of this form. Then $\rho(j) \neq (n-1 \ n)(j)$ for some $j \geq t+2$, so by a very similar argument to in the proof of Theorem 6 there are at least $\min(e_{n-t-1}, o_{n-t-1})$ even permutations which fix $1, 2, \ldots, t$ and agree with $(n-1 \ n)$ at j (and are therefore in \mathcal{E}) and also disagree with ρ at all points of $\{t+1, t+2, \ldots, n\} \setminus \{j\}$. Since ρ has exactly $t - 1$ fixed points in $[t]$, none of these permutations can t-intersect ρ, and therefore

$$|A \cap C| \leq |\mathcal{E}| - \min(e_{n-t-1}, o_{n-t-1})$$

$$= (n-t)! - o_{n-t} - o_{n-t-1} - \min(e_{n-t-1}, o_{n-t-1})$$

Since we are assuming that $|A| \geq (n-t)! - o_{n-t} - o_{n-t-1} + t$, this means that

$$|A \setminus C| \geq \min(e_{n-t-1}, o_{n-t-1}) + t = (1/e + o(1))(n-t-1)!/2$$

26
Notice that for any $m < n$ we have the following trivial upper bound on the size of an m-intersecting family $H \subset A_n$:

$$|H| \leq \binom{n}{m} (n-m)!/2 = n!/(2m!)$$

since every permutation in H must agree with a fixed permutation in H in at least m places.

Hence, $A \setminus C$ cannot be $(\log n)$-intersecting and therefore contains two permutations π, τ agreeing on at most $\log n$ points. The number of permutations in C which agree with π and τ at one of these $\log n$ points is clearly at most $(\log n)(n - t - 1)!/2$. All other permutations in $A \cap C$ agree with π and τ at two separate points of $\{t+1, \ldots, n\}$, and therefore the same holds for π_p and τ_q, where p and q are the unique points of $[t]$ shifted by π and τ respectively. The number of permutations in C that agree with π_p and τ_q at two separate points of $\{t+1, \ldots, n\}$ is at most $((1 - 1/e)^2 + o(1))(n - t)!/2$ (it is easily checked that given two fixed permutations, the probability that a uniform random even permutation agrees with them at separate points is at most $(1 - 1/e)^2 + o(1)$), which implies that

$$|A \cap C| \leq ((1 - 1/e)^2 + o(1))(n - t)!/2 + (\log n)(n - t - 1)!/2$$

contradicting (6), provided n is sufficiently large. This proves the claim.

Since we are assuming $|A| \geq |E| + t$, we must have equality, so $A = B$, proving Theorem 13.

References

[1] R. Ahlswede, L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European Journal of Combinatorics 18 (1997) 125-136.

[2] R. Ahlswede, L. H. Khachatrian, The complete nontrivial intersection theorem for systems of finite sets, Journal of Combinatorial Theory Series A, 76 (1996) 121-138.

[3] P.J. Cameron, C.Y. Ku, Intersecting Families of Permutations, European Journal of Combinatorics 24 (2003) 881-890.

[4] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, Journal of Combinatorial Theory Series A 22 (1977) 352-360.
[5] D. Ellis, A proof of the Cameron-Ku conjecture, submitted.

[6] D. Ellis, E. Friedgut, H. Pilpel, Intersecting Families of Permutations, submitted; available online at: http://www.ma.huji.ac.il/~ehudf/docs/tintersectingfinal.pdf.

[7] P. Frankl, On intersecting families of finite sets, Journal of Combinatorial Theory Series A 24 (1978) 146-161.

[8] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications Volume 16, Addison Wesley, 1981.

[9] G. James, M. Liebeck, Representations and Characters of Groups, CUP 2001.

[10] C. McDiarmid, On the method of bounded differences, Surveys in Combinatorics, ed. J. Siemons, London Mathematical Society Lecture Note Series 141, CUP 1989, pp. 148-188.

[11] R. M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica 4 (1984) 247-257.