Catenated Oligomeric Circular DNA Molecules from Mitochondria of Malignant and Normal Mouse and Rat Tissues

David R. Wolstenholme, John D. McLaren, Katsuro Koike, and Elaine L. Jacobson. From the Division of Biology, Kansas State University, Manhattan, Kansas 66506 and the Department of Biology, University of Utah, Salt Lake City, Utah 84112. The present address of Dr. Wolstenholme and Mr. McLaren is the latter. Dr. Koike's present address is the Laboratory of Biophysics, Institute of Medical Science, University of Tokyo, Tokyo, Japan. Dr. Jacobson's present address is the Laboratory of Molecular Biology, Mayo Clinic, Rochester, Minnesota.

Introduction

Mitochondrial DNA (mtDNA) of all metazoan species examined, from nematode worms to man, is in the form of circular molecules with species-specific contour lengths of 4.5-6.0 µm (for recent reviews see Swift and Wolstenholme, 1969; Borst and Kroon, 1969; Rabinowitz and Swift, 1970, Wolstenholme et al., 1971). A number of oligomeric forms of circular mtDNA have been described. A circular molecule twice the normal contour length (circular dimer) has been found to distinguish mtDNA of a number of human granulocytic leukemic leukocytes from mtDNA of normal leukocytes and to account for as much as 48% of the molecules observed in such leukemic mtDNAs (Clayton and Vinograd, 1967, 1969). Similar molecules have been observed in mtDNA from mouse L cells (Nass, 1969a, b; 1970, Kasamatsu et al., 1971) in mtDNA from human and beef thyroid (Paoletti et al., 1972) and in low frequency (<0.1% of molecules examined) in normal rat liver mtDNA (Kirschner, R. H., and D. R. Wolstenholme, unpublished).

Molecules consisting of two interlocked 5 µm circles (catenated dimers) have been found to account for up to 10% of the molecules observed in mtDNA of a variety of normal tissues (Clayton et al., 1968, Pikó et al., 1968). In HeLa cell mtDNA, as well as catenated dimers forms comprising as many as seven interlocked 5 µm circles were found (Hudson and Vinograd, 1967). Such catenated trimers and higher oligomers have been shown to occur with a variety of frequencies in mtDNA from normal tissues (Clayton et al., 1968, Paoletti et al., 1972), cells in culture, and tumors (Nass, 1969a, b; 1970).

Higher frequencies of both circular dimers and catenated dimers and higher oligomers of mtDNA have been found in mtDNA of mouse L cells in the stationary phase of growth, after starvation for methionine or phenylalanine, after treatment with cycloheximide or chloramphenicol (Nass, 1969b) or puromycin (Nass, 1970), and after transformation of hamster kidney cells with polyoma virus (Nass, 1970). Treatment of chick fibroblasts and Ehrlich mouse ascites tumor cells with cycloheximide was also reported to result in mtDNA with higher frequencies of catenated dimers and higher oligomers (Nass, 1970).

We have determined the frequencies of different multiple circular forms in mtDNA from cells of some hepatomas and normal liver of mice and rats. The results are the subject of the present report.

Material and Methods

Tumors

Chang rat solid and ascites hepatomas (Chang et al., 1967) and Novikoff rat ascites hepatoma (Novikoff, 1957) were obtained from Drs. Carl F. Tesmer and Jeffrey P. Chang, M. D. Anderson Hospital and Tumor Institute, Houston, Texas. Ehrlich mouse ascites hepatoma was obtained from Dr. Peter M. M. Rae, the Whitman Laboratory, University of Chicago. All rats used in the present
study were female albino's weighing 150-300 g. All mice used were mature albino females. Both the rats and mice were obtained from Sasco Company, Omaha, Nebraska.

Rat ascites cells were grown in the peritoneal cavity of rats and maintained by syringe passage of 1.0 ml of ascites fluid every 7 days. Cells used for the preparation of mtDNA were harvested on given days after infection. Chang solid hepatomas were maintained in subcutaneous pockets on the backs of rats (Chang et al., 1967). A piece of tumor was excised from a rat, placed in 10 vol of isotonic saline, and broken up in a Waring Blendor (5 s, slow speed, Waring Products Div., Dynamics Corp of America, New Hartford, Conn.). The cell suspension so produced was squeezed through two layers of muslin, and 5 ml was injected into a previously formed subcutaneous air pocket of about 50 ml capacity on the back of the rat. Intraperitoneal solid tumors were produced by injecting 10 ml of this cell suspension into the peritoneal cavity of a rat. Both the back and peritoneal solid tumors grew at varying rates and were therefore harvested when the rats showed given weight gains.

Mouse ascites cells were grown in the peritoneal cavity of mice and maintained by syringe passage of 0.1 ml ascites fluid every 14 days. Cells used for the preparation of mtDNA were taken either on the 20th day after infection or when a batch of simultaneously infected mice showed a given weight gain. Solid tumors were produced by injecting 0.1 ml of ascites fluid from a mouse 20 days after infection with tumor cells, subcutaneously on the backs of mice. The tumors were harvested 20 days after infection.

Preparation of Mitochondria

Rats and mice were sacrificed by cranial fracture. Solid Chang tumors were excised, taking care not to include associated normal tissues, and immersed in 10 vol of a buffer (homogenizing medium) containing 0.3 M sucrose, 1 mM disodium ethylenediaminetetraacetate (EDTA) and 0.01 M Tris (tris[hydroxymethyl]-aminomethane)-HCl (pH 7.4) at 4°C and mitochondria were then prepared as described by Kirshner et al. (1968). Mitochondria were similarly prepared from cells of different tumors but with the following modifications. Cells of Novikoff rat ascites hepatomas and of Chang rat ascites hepatomas were broken open by the procedure described in Wolstenholme et al. (1973).

Cells of both solid and ascites Ehrlich mouse hepatomas were broken open by suspending the cells in homogenizing medium and subjecting them to two strokes at top speed in a Potter-Elvehjem homogenizer.

DNA Extraction and Purification

DNA was extracted from mitochondria as described previously (Kirshner et al., 1968). Each mtDNA was finally purified by elution from a column of methylated albumin kieselguhr (Sueoka and Cheng, 1962).

Electron Microscopy

MtDNAs were prepared for electron microscopy by the aqueous protein monolayer technique of Freifelder and Kleinschmidt (1965), and rotary shadowed with platinum-palladium, exactly as described by Wolstenholme and Gross (1968). MtDNA from a mouse ascites hepatoma was also prepared for electron microscopy by the formamide protein monolayer technique following the procedure of Davis et al. (1971), as described by Wolstenholme et al. (1973). This preparation was then shadowed from one direction at an angle of about 8° with 10 mg platinum:palladium (80:20) wire evaporated from a 25 m tungsten wire at a mean distance of 10 cm from the grids in a Kinney model KSE-2 vacuum evaporating unit (Kinney Vacuum Co., Boston, Mass.), and then rotary shadowed under otherwise identical conditions. Finally, carbon was evaporated onto the grids to ensure stability of the membranes in the electron beam.

All grids were examined in a Hitachi HU-11B electron microscope or in a Siemens Elmiskop 101 electron microscope at a magnification of approximately × 6000. Shadowed molecules were photographed (using projector pole piece 2 in the Hitachi, and projector polepiece 1 in the Siemens) at an original magnification of × 12,000. Exact calibrations were made for each microscope using a diffraction grating replica (Ernest F. Fullam, Inc., Schenectady, N. Y., 2160 lines/mm). Measurements of molecules were made on positive prints using a map graphed (using projector pole piece 2 in the Hitachi, and projector polepiece 1 in the Siemens) at an approximate magnification of × 150,000.

For each of two mtDNA preparations, one from Ehrlich mouse ascites hepatoma cells and the other from Novikoff rat ascites hepatoma cells, aqueous protein monolayers were prepared for electron microscopy using two different DNA concentrations. Grids were oriented in the electron microscope so that movement of a stage control could result in a scan of a grid in a direction perpendicular to a grid bar. Relative field densities of molecules in the different protein monolayer preparations of a single mtDNA were estimated from counting the number of molecules which passed under a point on the electron microscope screen when three scans of each of six grid squares were made for each protein monolayer preparation. These scannings were done at a magnification of × 6000.
RESULTS

It was determined by electron microscope examination that more than 90% of at least one preparation of mtDNA from each of the different malignant and normal tissues used in these experiments was circular. Each of the mtDNAs comprised highly twisted or supercoiled circular molecules and open circular molecules in various proportions (Tables II and III) as has been found for mtDNAs of other metazoans (see reviews of Swift and Wolstenholme, 1969, Wolstenholme et al., 1971). The supercoiled form of mtDNA has been shown to be a covalently closed molecule (Kroon et al., 1966; Dawid and Wolstenholme, 1967; Clayton and Vinograd, 1967), that is, phosphodiester bonds are found throughout the lengths of the two nucleotide strands of the molecule (Vinograd and Lebowitz, 1966). As a single phosphodiester bond break converts the supercoiled form of mtDNA to the open circular form (Dawid and Wolstenholme, 1967), the proportion of molecules in the supercoiled form in a mtDNA preparation is an indication of the maximal random hydrolysis by endodeoxyribonuclease (DNase) to which that mtDNA has been subjected.

Most of the circular DNA from each tissue examined had a unimodal contour length of about 5 μm (Fig 1, Table I). Observed differences between contour lengths of circular mtDNA molecules of malignant and normal tissues of the same species did not exceed 5% (Table I)

In mtDNA from all of the tissues examined, forms were found which apparently comprised two attached 5 μm circles (Tables II and III, Figs. 2 and 3). Between 6 and 8% by weight of normal mouse liver mtDNA was in this form (Table I). In contrast, 15–22% of the mtDNA from Ehrlich mouse hepatoma cells was accounted for by dimeric forms. In addition, up to 19% of the circular mtDNA from Ehrlich hepatoma was in the form of molecules apparently comprising between three and seven joined 5 μm circles (Fig 4). Such higher oligomers were either not found or were rare in mtDNA prepared from normal mouse liver.

In order to test the accuracy of visually scoring molecules as the various oligomeric forms, a number of dimers, trimers, tetramers, and pentamers from a preparation of Ehrlich hepatoma mtDNA were visually scored and each molecule was photographed and measured. The lengths were compared with the mean length of the molecules scored as monomers. The results which are summarized in Fig 1, indicated the scoring to be accurate and also confirmed that these molecules were multiples of the unit length molecule.

The frequencies of the different oligomeric forms in two electron microscope preparations of an Ehrlich hepatoma mtDNA sample which had relative field densities of approximately 1:8 were found to be similar (Table II). Similar frequencies of the different forms were also found when this same mtDNA was prepared for electron microscopy in the presence of formamide. These findings indicate that the observed associations of molecules are due to some kind of bonding rather than to simple overlapping of the molecules when the DNA-protein monolayers were formed.

By shadowing DNA molecules in protein monolayer preparations with a heavy metal, first from one direction and then while rotating the specimen, Hudson and Vinograd (1967) demonstrated that the bonding between the component molecules of dimeric forms of HeLa cell mtDNA was apparently topological; that is, the dimers comprise two monomers interlocked like links in a chain. MtDNA from Ehrlich hepatoma cells was shadowed in a similar way. In suitably oriented oligomers, the component molecules also appeared to be interlocked (Figs 2 and 3). This interlocking was found to be more easily demonstrated in

Table I	Contour Lengths of Circular DNA Molecules Classified as Monomers, from Mitochondria of Hepatomas and of Normal Liver of Mice and Rats	
	Mean contour length in microns	Number of molecules measured
Mouse		
Ehrlich ascites hepatoma	4.86 ± 0.02	50
Normal liver	4.83 ± 0.03	50
Rat		
Chang solid (intrapertoneal) hepatoma	4.94 ± 0.04	50
Novikoff ascites hepatoma	4.70 ± 0.04	50
Normal liver	4.95 ± 0.02	50

The standard error of each mean contour length is given.

Brief Notes 249
Table II

Frequencies of Different Forms of Circular DNA Molecules from Mitochondria of Ehrlich Mouse Hepatoma Cells and from Normal Mouse Livers

	Total circular molecules examined	Percentage of circular molecules as catenated	Percentage weight of circular DNA as								
		Dmers	Tetramers	Pentamers	Hexamers	Septamers	Supercycled circles	Catenated dimers	Catenated higher oligomers		
Ehrlich mouse hepatoma	Ascites										
(1) 20 day	827	13.8 ± 2.4*	3.4 ± 1.2	1.6 ± 0.9	0.6 ± 0.5	0.1 ± 0.2	0	74 ± 2.6	21.5	15.7	
(2) 20 day	927	9.0 ± 1.9	1.9 ± 0.9	1.0 ± 0.6	0.1 ± 0.2	0	0	72.4 ± 2.7	15.4	9.2	
(3) 25% weight gain											
(a)	857	12.6 ± 2.2	4.0 ± 1.3	1.7 ± 0.9	0.6 ± 0.5	0.2 ± 0.3	0	62.1 ± 2.9	19.5	18.0	
(b)	850	13.2 ± 2.2	4.5 ± 1.4	2.1 ± 1.0	0.4 ± 0.4	0.1 ± 0.2	0.1 ± 0.2	63.3 ± 2.8	20.2	19.2	
(c)	875	11.3 ± 2.1	3.7 ± 1.3	1.5 ± 0.8	0.8 ± 0.6	0.2 ± 0.3	0.1 ± 0.2	61.5 ± 2.9	17.7	18.0	
Solid subcutaneous	(back)	828	13.8 ± 2.4	2.4 ± 1.0	1.6 ± 0.9	0.7 ± 0.6	0.1 ± 0.2	0.1 ± 0.2	66.3 ± 2.9	21.6	14.7
Normal mouse liver	(1)	1002	3.0 ± 1.1	0	0	0	0	89.9 ± 1.8	5.8	0	
(2)	1052	4.3 ± 1.2	0.1 ± 0.2	0	0	0	0	65.2 ± 2.8	8.2	0.1	

Entries 1 and 2 for the Ehrlich ascites hepatoma represent mtDNA from hepatomas of two different batches of eight and 14 mice, respectively. The weight gain of the former batch of mice over the 20 day infection period was not determined. The weight gain of the latter batch over the same time period was approximately 31%. Entry 3 represents mtDNA from a group of 91 mice which underwent a 25% weight gain over an 11 day infection period. Entries a and b represent two different protein monolayer preparations at relative field densities of DNA molecules of approximately 118, respectively. Entry c represents the same preparation of DNA prepared for electron microscopy in the presence of formamide. Entries 1 and 2 for normal mouse liver represent mtDNA from the livers of two different batches of 15 adult mice. The entry for Ehrlich solid hepatomas represents mtDNA from hepatomas grown subcutaneously in the backs of 30 mice which underwent a weight gain of approximately 32% over a period of 13 days.

* 95% confidence limits calculated according to the procedure given in Clayton et al. (1968).
Table III

Frequencies of Different Forms of Circular DNA Molecules from Mitochondria of Two Rat Hepatomas and from Normal Rat Livers

	Total circular molecules examined	Percentage of circular molecules as catenated	Percentage weight of circular DNA as					
		Dimer	Trimer	Tetramer	Pentamer	Supercoupled circles	Catenated dimers	Catenated higher oligomers
Chang rat hepatoma								
Ascites, 7 day	1114	4.6 ± 1.2^*	0.3 ± 0.3	0.1 ± 0.2	0	55.2 ± 2.9	8.7	1.1
Solid								
Intraperitoneal	1016	9.1 ± 1.8	1.1 ± 0.6	0.4 ± 0.4	0 ± 0.2	52.1 ± 2.9	16.2	4.7
Subcutaneous^b	1026	6.0 ± 1.5	1.2 ± 0.7	0.1 ± 0.2	0 ± 0.2	81.8 ± 2.3	11.1	4.1
Subcutaneous^c	1059	2.7 ± 1.0	1.0 ± 0.6	0	0	78.7 ± 2.4	5.2	2.7
Subcutaneous^d	1174	0.9 ± 0.5	0	0	0	71.0 ± 2.6	19	0
Novikoff rat ascites								
hepatoma								
5 day	1157	4.5 ± 1.2	0.5 ± 0.4	0.1 ± 0.2	0	80.5 ± 2.2	8.5	1.7
7 day	1032	4.3 ± 1.2	0.1 ± 0.2	0.1 ± 0.2	0.1 ± 0.2	74.6 ± 2.6	8.1	1.2
8 day (a)	1104	3.9 ± 1.1	0.1 ± 0.2	0	0	91.7 ± 1.6	7.8	0.3
(b)	1057	4.2 ± 1.2	0.1 ± 0.2	0 ± 0.2	0	90.5 ± 1.7	8.0	0.6
Normal rat liver								
(1)	1039	4.0 ± 1.2	0.1 ± 0.2	0	0	51.3 ± 2.9	7.8	0.3
(2)	1202	1.1 ± 0.6	0	0	0	95.0 ± 1.4	2.0	0

95% confidence limits calculated according to the procedure given in Clayton et al. (1968).

The superscript letters associated with the solid Chang rat hepatoma entries indicate the following: a, an intraperitoneal tumor weighing 71 g; b, two subcutaneous back tumors averaging 35 g; c, a subcutaneous back tumor weighing 53 g; d, a subcutaneous back tumor weighing 200 g harvested 15 min post mortem. Entries 1 and 2 for normal rat liver represent mtDNA from livers of two different batches of five rats.

mtDNAs prepared for electron microscopy in the presence of formamide.

The frequencies of the different oligomeric forms of mtDNA molecules from rat hepatoma cells and from normal rat liver cells are shown in Table III. MtDNA from both the Novikoff hepatomas and Chang hepatomas taken from living rats were distinguished from normal rat liver mtDNA by the presence of tetrameric and pentameric forms (Fig 5). Substantially more mtDNA from these Chang hepatomas was in the trimeric form than in either Novikoff hepatoma or normal rat liver mtDNAs. The frequencies of catenated dimers was about the same in Novikoff hepatoma mtDNAs (average 4.2%; range 3.9-4.5%) as in one of the normal rat liver mtDNAs (4.0%). The frequencies of dimeric forms of Chang hepatoma mtDNA molecules from living animals varied from 2.7-9.1%.

In one Chang hepatoma removed 15 min post mortem, the frequency of catenated dimers was lower than that found in either of the normal rat liver mtDNAs examined, and no higher oligomeric forms were observed. The absence of oligomeric forms seems more likely to be related to the stage of tumor growth than to random hydrolysis by DNase since 71% of the circular DNA in this preparation appeared as supercoiled circles (Table III).

The frequencies of the different oligomeric forms...
in two electron microscope preparations of a single sample of Novikoff hepatoma mtDNA which had relative field densities of approximately 1:6 were again found to be similar (Table III) indicating that in this mtDNA also, the observed associations of molecules was not due to simple overlapping.

Not a single double-sized circular molecule (the circular dimers of Clayton and Vinograd, 1967) was observed in any of the mouse or rat mtDNAs examined in the present study.

DISCUSSION

Each of the rodent tumor mtDNAs examined was distinguished from mtDNA of normal livers of the respective host animal by the presence of tetrameric and pentameric, and in the case of the Ehrlich hepatoma, higher oligomeric forms. It is clear from our data, however, that a high proportion of higher oligomeric forms is not a feature common to all tumors. Also, the frequency of these forms is not positively correlated with the speed of tumor growth. Novikoff ascites hepatoma, the mtDNA of which differs very little from normal rat
liver mtDNA with respect to oligomeric forms, kills rats in 6–8 days, having increased in cell mass by at least 70 times. The highest frequency of oligomeric forms was found in mtDNA from mouse Ehrlich hepatoma which takes at least twice as long to kill its host, having increased proportionally in cell mass about the same as the Novikoff hepatoma.

It seems unlikely considering the low frequencies of catenated oligomers in Novikoff hepatoma mtDNAs, that these forms have a basic causal effect in the production of malignant cell growth in rodents. This is worth mentioning, because of the proposal of Clayton et al. (1969) and Clayton and Vinograd (1969), that a significant relationship exists between the formation and presence of the circular dimer and neoplasia in man.

The present finding that up to 39% of Ehrlich hepatoma mtDNA was in the form of catenated dimers and higher oligomers is in marked contrast to the value of 9.4% found by Nass (1970) for Ehrlich mouse ascites mtDNA. The different values might result from use of different strains of either tumor cells or mice in the two experiments. In the present case, the amount of this mtDNA in the form of higher oligomers was between 88 and 192 times that found in normal mouse liver.

The fate of catenated dimeric and higher oligomeric forms of mtDNA is not known. The present observation that multiple forms were in low frequency in a terminal Chang hepatoma mtDNA in which replication may have ceased, but in which there had apparently not been extensive random hydrolysis by DNase (71% of the DNA was in the form of supercoiled circles) would be explained if catenated oligomers could separate into their component circular molecules.

We are indebted to Drs. Jeffrey P. Chang and Carl F. Tessmer for generously providing us with original stocks of Novikoff and Chang rat hepatomas, and Dr. Peter M. M. Rae for providing the original stock of Ehrlich mouse ascites hepatoma. We also wish to thank Kay Curry, Janice A. Hunter, and Christine L. Rosenberg for technical assistance and Drs. J. E. Manning, L. M. Okun, and D. H. Parma for reading the manuscript.

This investigation was supported by National Institutes of Health Grant no GM-18375 and American Cancer Society Grants nos. E-531 and NP-41A. D. R. Wolstenholme is the recipient of a Research Career Development Award (1-K4-GM-70, 104) from the National Institutes of Health. E. L. Jacobson was the recipient of a Predoctoral Traineeship from the National Aeronautics and Space Administration.

Received for publication 26 May 1972, and in revised form 6 September 1972.

REFERENCES

Borst, P., and A. M. Kroon. 1969. Mitochondrial DNA: physiochemical properties, replication, and genetic function. Int. Rev. Cytol. 26:106.

Chang, J. P., C. W. Gillery, Jr., and K. Ichinoe. 1967. Establishment of transplantable hepatomas induced by 3′-methyl-4-dimethylaminoazobenzene with special reference to the histologic features of the transplants of early passages. Cancer Res. 27:2065.

Clayton, D. A., C. A. Smith, J. M. Jordan, M. Teplitz, and J. Vinograd. 1968. Occurrence of complex mitochondrial DNA in normal tissues. Nature (Lond.). 220:576.

Clayton, D. A., C. A. Smith, and J. Vinograd. 1969. Complex mitochondrial DNA in normal and neoplastic tissue. Fed. Proc. 28:552.

Clayton, D. A., and J. Vinograd. 1967. Circular dimer and catenate forms of mitochondrial DNA in human leukemic leucocytes. Nature (Lond.). 216:552.

Clayton, D. A., and J. Vinograd. 1969. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 62:1077.

Davis, R. W., M. Simon, and N. Davidson. 1971. Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. Methods Enzymol 21:413.

Dawid, I. B., and D. R. Wolstenholme. 1967. Ultracentrifuge and electron microscope studies on the structure of mitochondrial DNA. J. Mol. Biol. 28:233.

Freifelder, D., and A. K. Kleinschmidt. 1965. Single strand breaks in duplex DNA of coliphage T7 as demonstrated by electron microscopy. J. Mol. Biol. 14:271.

Hudson, B., and J. Vinograd. 1967. Catenated circular DNA molecules in HeLa cells. Nature (Lond.). 216:647.

Kasamatsu, H., D. Roberson, and J. Vinograd. 1971. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. U. S. A. 68:2252.

Kirschner, R. H., D. R. Wolstenholme, and N. J. Gross. 1968. Replicating molecules of circular mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A. 60:1466.

254 Brief Notes
Kroon, A. M., P. Borst, E. F. J. Vanbruggen, and G. J. C. M. Ruttenberg. 1966 Mitochondrial DNA from sheep heart. *Proc Natl. Acad. Sci. U. S. A.* 56:1836.

Nass, M. M. K. 1969a Mitochondrial DNA, II. Structure and physicochemical properties of isolated DNA. *J. Mol. Biol.* 42:920.

Nass, M. M. K. 1969b. Reversible generation of circular dimer and higher multiple forms of mitochondrial DNA. *Nature (Lond.)* 223:1124.

Nass, M. M. K. 1970. Abnormal DNA patterns in animal mitochondria. Ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. *Proc. Natl. Acad. Sci. U. S. A.* 67:1926.

Novikoff, A. B. 1957. A transplantable rat liver tumor induced by 4-dimethylaminoazobenzene. *Cancer Res.* 17:1010.

Paolelli, C., G. Rieu, and J. Piaireault. 1972. Circular oligomers in mitochondrial DNA of human and beef nonmalignant thyroid glands. *Proc. Natl. Acad. Sci. U. S. A.* 69:2447.

Pené, L., D. G. Blair, A. Tyler, and J. Vinograd. 1968. Cytoplasmic DNA in the unfertilized sea urchin egg: Physical properties of circular mitochondrial DNA and the occurrence of catenated forms. *Proc. Natl. Acad. Sci. U. S. A.* 59:238.

Rabinowitzz, M., and H. Swift. 1970. Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. *Physiol. Rev.* 50:376.

Sukova, N., and T. Y. Czern. 1962. Fractionation of nucleic acids with the methylated albumen column. *J. Mol. Biol.* 4:161.

Swift, H., and D. R. Wolstenholme. 1969. Mitochondria and chloroplasts: nucleic acids and the problem of biogenesis. In *Handbook of Molecular Cytology* A. Lima-de-Faria, editor. North Holland Publishing Company, Amsterdam. 972-1046.

Vinozrad, J., and J. Lerovitzz. 1966. Physical and topological properties of circular DNA. *J. Gen Physiol.* 49:103.

Wolstenholme, D. R., and N. J. Gross. 1968. The form and size of mitochondrial DNA of the red bean, Phaseolus vulgaris. *Proc. Natl. Acad. Sci. U. S. A.* 61:249.

Wolstenholme, D. R., K. Koike, and P. Cochran-Fouts. 1973. Single strand-containing replicating molecules of circular mitochondrial DNA. *J. Cell Biol.* 56:230.

Wolstenholme, D. R., K. Koike, and H. C. Renger. 1971. Form and structure of mitochondrial DNA. In *Oncology 1972. A. Cellular and molecular mechanisms of carcinogenesis. B. Regulation of gene expression.* R. L. Clark, R. W. Cumley, J. E. McCoy, and M. M. Copeland, editors. Year Book Medical Publishers, Inc., Chicago. 1527-546.