Fast and accurate long-read assembly with wtdbg2

Jue Ruan and Heng Li

Existing long-read assemblers require thousands of central processing unit hours to assemble a human genome and are being outpaced by sequencing technologies in terms of both throughput and cost. We developed a long-read assembler wtdbg2 (https://github.com/ruanjue/wtdbg2) that is 2–17 times as fast as published tools while achieving comparable contiguity and accuracy. It paves the way for population-scale long-read assembly in future.

De novo sequence assembly reconstructs a sample genome from relatively short sequence reads. It is essential to the study of new species and structural genomic changes that often fail mapping-based analysis, as the reference genome may lack the regions of interest. With the rapid advances in single-molecule sequencing technologies by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), we are able to sequence reads of 10–100 kilobases (kb) at low cost. Such long reads resolve main repeat classes and contiguity and accuracy. It paves the way for population-scale long-read assembly in future.

We evaluated wtdbg2 v.2.5 on four datasets along with CANU-1.8 (ref. 1), FALCON-180831 (ref. 1), Flye-2.3.6 (ref. 1), MECAT-180314 (ref. 1) and Ra-190327 (Table 1, see Supplementary Table 1 for more datasets). We used minimap2 to align assembled contigs to the reference genome and to collect metrics. Depending on datasets, wtdbg2 is 2–17 times as fast as the closest competitors. Its contiguity and assembly accuracy are generally comparable to other assemblers. Wtdbg2 assemblies sometimes cover fewer reference genomes, which is a weakness of wtdbg2, but its contigs tend to have fewer duplicates (metric ‘% genome covered more than once’ in Table 1). The low redundancy rate is particularly evident for the Col-0/Cvi-0 Arabidopsis thaliana dataset that has a relatively high heterozygosity of ~1%. On a Musa schizocarpa (banana) ONT dataset sequenced to 45-fold coverage1, wtdbg2 delivers a 507 Mb assembly with 1.0 Mb N50. While this is not as good as the published result, it is larger and more contiguous than the Flye and Ra assemblies (Methods).

For samples close to the reference genome, we also compared the consensus accuracy before and after signal-based polishing14 when applicable. Without polishing, CANU, Flye and MECAT tend to produce better consensus sequences. This is probably because they perform at least two rounds of error correction or the consensus

1Agricultural Genomics Institute, Chinese Academy of Agriculture Sciences, Shenzhen, China. 2Peng Cheng Laboratory, Shenzhen, China. 3Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA. 4Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 5Broad Institute, Cambridge, MA, USA. E-mail: ruanjue@cac.as.cn, hli@jimmy.harvard.edu
step, while wtdbg2 applies one round of consensus only. After Quiver polishing, the consensus accuracy of all assemblers is very close and notably higher than the accuracy of consensus without polishing. This observation reconfirms that polishing consensus is still necessary and suggests that the pre-polishing consensus accuracy is not obviously correlated with post-polishing accuracy.

In the past, Quiver was taking a small fraction of total assembly time, but it is now several times slower than wtdbg2 (7 wall-clock hours for C. elegans and 37 wall-clock hours for CHM1) and becomes the new bottleneck. This calls for future improvement to the polishing step.

We assembled four additional human datasets (Table 2). Wtdbg2 finishes each assembly in <2 d on a single computer. This performance broadly matches the throughput of a PromethION machine. In comparison, Flye and CANU required ~5,000 and ~40,000 central processing unit (CPU) hours, respectively, to assemble NA12878 (refs. 2,18). For this sample, wtdbg2 uses 235 Gb memory, less than half of memory used by Flye. Partly due to the relatively low memory footprint, wtdbg2 is scalable to huge nonhuman genomes. It can assemble axolotl, with a 32 Gb genome, in 2 d using 1.2 terrabytes of memory. The NG50 is 392 kb, longer than the published assembly.

Ten years ago, when the Illumina sequencing technology entered the market, the sheer volume of data effectively decommissioned all aligners and assemblers developed earlier. History repeats itself. Affordable population-scale long-read sequencing is on the horizon. Wtdbg2 is an assembler that is able to keep up with the throughput and the cost. With heterozygote-aware consensus algorithms and

Table 1 | Evaluating long-read assemblies

Dataset	Metric	CANU	FALCON	Flye	MECAT	Ra	Wtdbg2
Caenorhabditis elegans	Total length (≥ 50 kbp)	106.5 Mb	100.8 Mb	102.0 Mb	102.1 Mb	108.1 Mb	104.8 Mb
Bristo reference strain	% reference genome covered	99.58	99.16	99.29	99.51	99.55	99.37
PacBio x80	% genome covered more than once	0.33	0.25	0.15	0.35	0.69	0.13
	NG75 (75% ref. in contigs longer than NG75)	1,884,280	935,802	1,275,590	1,424,674	1,320,829	2,255,274
	NG50 (50% ref. in contigs longer than NG50)	2,677,990	1,629,544	1,926,198	2,113,456	2,047,105	3,596,268
	NGA50 (50% ref. in alignments longer than NGA50)	1,283,814	980,062	1,087,075	1,119,713	1,019,386	1,365,602
	No. of alignment breakpoints	681	192	284	278	724	177
	BUSCO (% complete single-copy genes)	98.2%	88.1%	98.4%	97.0%	90.9%	97.5%
	No. of substitutions/1 Mb (pre-/post-polish)	64.1 / 62.2	233.2 / 50.1	61.6 / 57.6	65.9 / 62.8	309.9 / 66.8	83.8 / 60.3
	No. of insertions/1 Mb (pre-/post-polish)	31.1 / 22.4	592.7 / 19.4	29.8 / 21.8	43.9 / 21.9	3,012.2 / 24.3	110.6 / 20.8
	No. of deletions/1 Mb (pre-/post-polish)	152.8 / 55.1	1,822.7 / 56.7	381.4 / 56.9	366.0 / 57.9	144.1 / 53.1	343.0 / 57.7
	Wall-clock time over 32 CPUs (pre-polish)	9 h 30 m	2 h 06 m	2 h 58 m	3 h 08 m	2 h 23 m	26 m
Drosophila melanogaster	Total length (≥ 50 kbp)	135.0 Mb	130.7 Mb	126.5 Mb	127.4 Mb	127.4 Mb	
ISO1 ref. strain	% reference genome covered	91.74	89.40	86.35	89.34	86.35	89.34
ONT x32	% genome covered more than once	1.19	0.14	0.68	0.22	0.68	0.22
NG75	714,013	1,367,004	685,943	1,752,322			
NG50	4,298,595	6,016,667	1,898,336	10,631,323			
NGA50	1,837,928	2,210,468	1,700,400	2,989,107			

Continued
phased assembly planned for future, wtdbg2 and upcoming tools might fundamentally change the current practices on sequence data analysis.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-019-0669-3.

Received: 25 January 2019; Accepted: 5 November 2019; Published online: 9 December 2019
References

1. Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. *Nat. Methods* **13**, 1050–1054 (2016).
2. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. *Nat. Biotechnol.* **37**, 540–546 (2019).
3. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* **27**, 722–736 (2017).
4. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. *Bioinformatics* **32**, 2103–2110 (2016).
5. Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. *Nat. Methods* **14**, 1072–1074 (2017).
6. De Coster, W. et al. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. *Genome Res.* **29**, 1178–1187 (2019).
7. Myers, G. Efficient local alignment discovery amongst noisy long reads. in *WABI* vol. 8701. (eds. D. G. Brown & B. Morgenstern) 52–67, https://doi.org/10.1007/978-3-662-44753-6_5 (Springer, 2014).
8. Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. *Nat. Biotechnol.* **33**, 623–630 (2015).
9. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100 (2018).
10. Chaisson, M. J., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. *Nat. Rev. Genet.* **16**, 627–640 (2015).
11. Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. *J. Mol. Biol.* **147**, 195–197 (1981).
12. Ye, C., Ma, Z. S., Cannon, C. H., Pop, M. & Yu, D. W. Exploiting sparseness in de novo genome assembly. *Bioinformatics* **33**(Suppl 6), S1 (2017).
13. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.* **18**, 821–829 (2008).
14. Lee, C., Grasso, C. & Sharlow, M. F. Multiple sequence alignment using partial order graphs. *Bioinformatics* **18**, 452–464 (2002).
15. Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. *Nat. Plants* **4**, 879–887 (2018).
16. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. *Nat. Methods* **10**, 563–569 (2013).
17. Watson, M. & Warr, A. Errors in long-read assemblies can critically affect protein prediction. *Nat. Biotechnol.* **37**, 124–126 (2019).
18. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nat. Biotechnol.* **36**, 338–345 (2018).
19. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. *Nature* **554**, 50–55 (2018).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Methods

The wtdbg2 algorithm. Wtdbg2 reads all input sequences into memory and encodes each base with 2 bits. By default, it selects a quarter of k-mers based on their hash code and counts their occurrences using a hash table with 46-bit key to store a k-mer and 17-bit value to store its count. Wtdbg2 filters out a k-mer occurring once or over 1,000 times in reads, and then scans the reads again to build a hash table for the remaining k-mers and their positions in bins.

For all-versus-all read alignment, wtdbg2 traverses each read, from the longest to the shortest, and uses the hash table to retrieve the reads that share k-mers with the read in query. It takes each bin as a base pair and applies Smith–Waterman-like dynamic programming between binned sequences, penalizing gaps and mismatching bins that do not share k-mers. Wtdbg2 retains alignments no shorter than 8 x 256 bp. After finishing alignments for all reads, wtdbg2 frees the hash table but keeps the all-versus-all alignments in memory (alignments are also written to disk as intermediate results).

At this step, wtdbg2 drops base sequences. It only sees binned sequences and the alignments between them. On an L-long binned sequence B = b1...bL, a K-bin Bk = bkbk+1...bk+k−1 is a K-long subsequence starting at the ith position on B. If binned sequences B and B' can be aligned, we can infer the overlap length between K-bins Bk and Bk', by lifting their coordinates between the two sequences based on the alignment. We say two K-bins Bk and Bk' are equivalent if the overlap length between them is K (that is, the two bins are completely aligned). Using the all-versus-all alignment, wtdbg2 collects a maximal nonredundant set Ω of K-bins such that no K-bin in Ω is equivalent to others. For each K-bin in Ω, its coverage is defined as the number of equivalent K-bins in all reads. Wtdbg2 records the locations and coverage of each Ω-bin.

Two K-bins in Ω may have an overlap up to K-1 bins. The vertex set V of FBG is intended to be an Ω subset in which no Ω-bins overlap with each other. To construct V, wtdbg2 traverses each nonredundant K-bin in the descending order of their initial coverage. Given a K-bin Bk, wtdbg2 reduces its coverage by deducting the number of Ω-bins already in V that overlap with Bk. If the reduced coverage is ≥2 and higher than half of the initial coverage, Bk will be added to V; otherwise it will be ignored. After the construction of V, wtdbg2 adds an edge between two K-bins if they are located on the same read. There are often multiple edges between two K-bins. Wtdbg2 retains one edge and keeps the count. An edge covered by <3 reads is discarded. This generates FBG. The coverage thresholds can be adjusted on the wtdbg2 command line.

Assembling evaluation datasets. With wtdbg2, we specified the genome size and sequence technology on the command line, which automatically applies multiple options. Specifically, we used `-xr: -100m' for C. elegans, `_sxq: -I25m' for A. thaliana, `_xsg: -I14m' for D. melanogaster A strain, `_xsg: -I14m' for the ISO1 strain, `_xsg: -I14m' for CHMI, `_xon: -I40m' for human NA12878 and NA19240 ONT reads, `_xsg: -I30m' for HG00733, `_xcsg: -I30m' for NA24385 and `_xsg: -I30m' for the axolotl dataset. Here, option `-x' specifies the preset, `-t' uses homopolymer-compressed (HPC) 21-mer. Both `-sq' and `-on' apply 15-mer to genomes smaller than 1 Gb but use HPC 19-mer for larger genomes. Note that 4^15 = 1Gb. We change the type of k-mers for larger genomes to avoid nonspecific seed hits, which reduce the performance. We use shorter k-mers for Nanopore data due to their higher error rates and relatively low coverage in our evaluation. Increasing k-mer length for Nanopore helps to resolve paralogous regions but reduces alignment sensitivity and leads to more fragmented assemblies for data at ~30-fold coverage.

For CANU, Flye and MECAT, we similarly specified the genome size and the sequencing technology only. The FALCON configure file for assembling C. elegans is provided as Supplementary Data. The FALCON A. thaliana assembly was downloaded at http://bit.ly/pbpubdat. We are using AC:GCA_000983455.1 for the CANU CHMI assembly and AC:GCA_001297185.1 for the FALCON CHMI assembly.

Assembling the M. schizocarpa (banana) dataset. The authors who produced the dataset failed to run CANU, so we skipped CANU and MECAT (which is based on CANU). This is a nanopore dataset to which FALCON is not applicable. We used wtdbg2’s nanopore preset for large genome for assembly (`-xon: -600m -k0 -p19') and got an 507 Mb assembly with N50 = 1.0 Mb for contigs longer than 100k.

Flye assembled a 505 Mb genome with N50 = 300k. The authors of the dataset managed to get N50 = 2.1 Mb with Ra on all raw reads. However, with Ra, we could only produce a small assembly of 490 Mb at 643K N50. Instead, we get the best contiguity with miniasm, which generated a 520 Mb assembly with N50 = 1.9Mb.

Wtdbg2 is roughly ten times as fast as Flye and Ra.

Evaluating assemblies. To count alignment breakpoints, we mapped all assemblies to the corresponding reference genomes with minimap2 under the option `-paf-no-hit -caxam20 -r2k -e1000,500`. We used the companion script paftools.js to collect various metrics (command line: `paftools.js asmstat -q50000 -d.1`, where `-q` sets the minimum contig length and `-d` sets the max sequence divergence). To count substitutions and gaps, we applied a different minimap2 setting `--caxam5 -c -r2k`.

This setting introduces more alignment breakpoints but avoids poorly aligned regions harboring spuriously high number of differences that are likely caused by large-scale variations and skew the counts. We used `paftools.js call` to call variations.

Reported preliminary data. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

C. elegans and A. thaliana Ler-0 reads are available at the PacBio public datasets portal: http://bit.ly/pbpubdat. We downloaded SRR5439404 for the D. melanogaster A strain, SRR6702663 for the D. melanogaster reference ISO1 strain, ERR2571284 through ERR2571362 for M. schizocarpa (banana; MinION reads only), PRJNA378970 for axolotl, SRX7159636 for HG00733, and ERR2631600 and ERR2631601 for NA19240. CHM1 reads were acquired from SRP044331 (http://bit.ly/chm1pfc4 for raw signals), NA12878 reads from http://bit.ly/na12878ont (release 5) and NA24385 from http://bit.ly/NA24385cscs. For the A. thaliana Col-0/ Cvi-0 dataset, the FASTQ files at SRA (AC: PRJNA314706) were not processed properly. J. Chin, the first author of the paper describing the dataset, provided us with reprocessed raw reads, which are now hosted at public file transfer protocol (FTP) site ftp://ftp.dfcic.harvard.edu/pub/hli/col0-cvi0/. The CHM1 CANU and FALCON assemblies and the axolotl assembly are available at NCBI (GCA_000983455.1, GCA_001297185.1 and GCA_000983455.1, respectively). All the evaluated assemblies generated by us can be obtained at ftp://ftp.dfcic.harvard.edu/pub/hli/wtdbg2/. The FTP site also provides the detailed command lines and the FALCON configuration files.

Code availability

The wtdbg2 source code is hosted by GitHub at: https://github.com/ruanjue/wtdbg2.

Acknowledgements

We are grateful to T. Chen for providing the properly processed raw reads for the A. thaliana Col-0/Cvi-0 dataset. We thank C. Ye from University of Maryland for frequent and fruitful discussion in the development of wtdbg and thank A. Li and S. Wu from CAAS for the help in polishing assemblies. We also thank the reviewers whose comments have helped us to improve wtdbg2. This study was supported by Natural Science Foundation of China (grant nos. 31571353 and 31822029 to J.R.) and by the US National Institutes for Health (grant no. R01-HG010040 to H.L.).

Author contributions

J.R. conceived the project, designed the algorithm and implemented wtdbg2. H.L. contributed to the development and drafted the manuscript. Both authors evaluated the results and revised the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41592-019-0669-3.

Correspondence and requests for materials should be addressed to J.R. or H.L.

Peer review information Nicole Rusk and Lin Tang were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a □ Confirmed
☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☐ The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☐ A description of all covariates tested
☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☐ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☐ Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection: No software is used for data collection.

Data analysis: Wtdbg2-2.5, minimap2-2.15, CANU-1.8, FALCON-180831, Flye-2.3.6, MECAI-180334 and Ra-190327

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the ‘Nature Research guidelines for submitting code & software’ for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All the evaluated assemblies [except those publicly available in GenBank] can be obtained at ftp://ftp.dfci.harvard.edu/pub/hli/wtdbg/. The FTP site also provides the detailed command lines and configuration files.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☒ Life sciences
☐ Behavioural & social sciences
☐ Ecological, evolutionary & environmental sciences
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Not applicable as the study does not include any statistical analysis
Data exclusions	No data were excluded from analysis
Replication	Not applicable. The study uses deterministic algorithms without statistical analysis.
Randomization	Not applicable as no statistical analysis is involved.
Blinding	Not applicable as no data acquisition or statistical analysis is involved.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☒	Animals and other organisms
☒	Human research participants
☒	Clinical data

Methods

n/a	Involved in the study
☒	ChiP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging