An empirical evaluation of alternative methods of estimation for Permutation Entropy in time series with tied values

Francisco Traversaro
ITBA

Marcelo Risk
CONICET-ITBA

Osvaldo Rosso and Francisco O. Redelico
CONICET-HIBA
(Dated: February 26, 2018)

Bandt and Pompe introduced Permutation Entropy in 2002 for Time Series where equal values, \(x_t = x_{t'} = t\), were neglected and only inequalities between the \(x_t\) were considered. Since then, this measure has been modified and extended, in particular in cases when the amount of equal values in the series can not be neglected, (i.e heart rate variability (HRV) time series). We review the different existing methodologies that treats this subject by classifying them according to their different strategies. In addition, a novel Bayesian Missing Data Imputation is presented that proves to outperform the existing methodologies that deals with type of time series. All this facts are illustrated by simulations and also by distinguishing patients suffering from Congestive Heart Failure from a (healthy) control group using HRV time series.

I. INTRODUCTION

In the seminal article of Bandt and Pompe \([1]\), when introducing Permutation Entropy it is stated as a condition for the estimation that the data of the time series is continuous, hence the probability of two equal values is equal to zero. In the rare event that ties exists, the suggestion is whether to ignore the patterns with ties, or to add small random perturbation. Unfortunately, that condition does not hold for many time series. Discrete time series with repeated values may occur by two reasons. Either the time series comes from a discrete data generator process, (e.g. a Poisson autoregressive model where the marginal probability distribution follows a Poisson member family \([2]\)), or when the data of the generator process is continuous but only a coarse version of the actual realization is observed as a consequence of lack of precision of the data measuring device. The latter is the case of the heart rate frequency (HRV) time series. This contribution deals with the changes necessary to analyse both kind of data, but emphasizes in the case when the Bandt and Pompe hypothesis of continuous data holds despite the deficiencies in the observation process. Several papers suggest modification in the estimation of Permutation Entropy to cope with repeated values. They either do this extending the symbolic alphabet presented by Bandt and Pompe, \([3]\) or giving new rules to sort data, mostly to analyse HRV time series \([4]\). We propose a new strategy to cope with this issue. This methodology uses the information of the actual time series to deal with patterns with ties. It assumes that this patterns are actually coming from suitable versions of the original patterns without ties and so they will contribute to the count of these patterns using an a priori probability distribution. It can be seen as a Bayesian Methodology.

This contribution has a twofold objective. The first is to introduce a new method to deal with tied values and the second is to do an exhaustive exploration of all the methods presented. The paper reads as follows, Section II presents the two different existing mappings from real values to symbols, Section III reviews the different methodologies in the literature for calculating the Permutation Entropy of time series with repeated values and presents a novel and improving methodology, Section IV reviews the performance, in terms of the Mean Square Error (MSE) and Bias, of these strategies, Section V shows a real application of classifying ECG signal, and finally Section VI is devoted to conclusions.

II. ORDINAL PATTERNS AND THE MAPPINGS TO A SYMBOLIC ALPHABET

Let \(\{X_t\}_{t \in T}\) be a realization of a data generator process in form of a real valued time series of length \(T\), at first assuming \(P(x_{t_1} = x_{t_2}) = 0 \ \forall t_1 \neq t_2\) (i.e there is not equal values in the time series). If the \(\{X_t\}_{t \in T}\) attain infinitely many values, it is common to replace them by a symbol sequence \(\{(\pi_i)\}_t\) with finitely many symbols, and calculate source entropy for the \(\{(\pi_i)\}_t\) \([1]\). Let \(X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1})\) with \(0 \leq t \leq T - m + 1\) be the embedded vectors of length \(m\) of the time series \(\{X_t\}_{t \in T}\). Let \(S_{m \geq 2}\) the symmetric group of order \(m\) form by all possible permutation of order \(m\), \(\pi_i = (i_1, i_2, \ldots, i_m) \in S_m \ (i_j \neq i_k \forall j \neq k\) so every element in \(\pi_i\) is unique). We will call an element \(\pi_i\) in \(S_m\) a symbol. Then \(X_m(t)\) can be mapped to a symbol \(\pi_i\) in \(S_m\). This mapping should be defined in a way that preserves the desired relation between the elements \(x_t\) in \(X_m(t)\); and all \(t \in T\) that shares this pattern has to be mapped to the same element of \(\pi_i \in S_m\).
In the literature that encompass Permutation Entropy there are two ways to define the mapping between \(X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1})\) to \(\pi_t = (i_1, i_2, \ldots, i_m) \in S_m\) (i.e. mapping patterns onto symbols):

1. Permutating the ranks: ordering the ranks (eq. 1) of the \(x_t\) in \(X_m(t)\) in chronological order (i.e. Rank Permutation) [5–7].

2. Permutating the time indexes: ordering the time indexes according to the ranks of \(x_t\) in \(X_m(t)\) (i.e. Chronological Index Permutation) [1, 3, 4].

A. Rank Permutation Mapping

For a given but otherwise arbitrary \(t\), the \(m\) number of real values \(X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1})\) are mapped onto their rank. The rank function is defined as:

\[
R(x_{t+n}) = \sum_{k=0}^{m-1} I(x_{t+k} \leq x_{t+n}) \tag{1}
\]

where \(I\) is the indicator function (i.e \(I(Z) = 1\) if \(Z\) is true and 0 otherwise), \(x_{t+n} \in X_m(t)\) and \(1 \leq R(x_{t+n}) \leq m\). So the rank \(R(\min(x_{t+k})) = 1\) and \(R(\max(x_{t+k})) = m\). The complete alphabet is all the possible permutation of the ranks.

Hence, any vector \(X_m(t)\) is uniquely mapped onto \(\pi_t = (R(x_1), R(x_{t+1}), \ldots, R(x_{t+m-1})) \in S_m\). This means that each value \(x_t\) in \(X_m(t)\) is replaced for its rank.

For example, let us take the series with seven values [1], and embedding dimension \(m = 3\):

\[
X_t = (4, 7, 9, 10, 6, 11, 3) \quad T = 7 \tag{2}
\]

\(X_3(1) = (4, 7, 9)\) and \(X_3(2) = (7, 9, 10)\) represents the permutation \(\pi = 123\) since \(R(x_1) = 1\), \(R(x_2) = 2\), \(R(x_3) = 3\). \(X_3(3) = (9, 10, 6)\) and \(X_3(4) = (6, 11, 3)\) correspond to the permutation \(\pi = 231\) since \(R(x_1) = 2\), \(R(x_2) = 3\), \(R(x_3) = 1\).

With this Rank Rank Permutation Mapping one simply maps each value \(x_t\) in \(X_m(t)\) placing its rank \(R(x_t)\) in \(\{1, 2, \ldots, m\}\) in chronological order in \(\pi_t\) in \(S_m\). In Figure 1 an illustrative drawing of this mapping for all alternatives in \(m = 3\) is presented. It can be seen that the indexes of the vertical axis are fixed, ordered by amplitude (i.e ranks), and they are mapped onto the time axis. The resultant symbol can be obtained reading the labels in the horizontal axis from left to right (in chronological order). This method is used by [5–7] among others.

B. Chronological Index Permutation Mapping

Again, for a given but otherwise arbitrary \(t\), the \(m\) number of real values \(X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1})\) can be rearranged in increasing order respect to their amplitude. In order to do the mapping to \(\pi_t = (i_1, i_2, \ldots, i_m) \in S_m\), \((i_1, i_2, \ldots, i_m)\) must comply that \(x_{i_1+1} < x_{i_2+1} < \cdots < x_{i_m+1}\). Thus, the time indexes are ordered according to their amplitude. The complete alphabet is all the possible permutation of these chronological indexes.

Let's take the previous series as an example:

\[
X_3(1) = (4, 7, 9)\) and \(X_3(2) = (7, 9, 10)\) represents the permutation \(\pi = 123\) since \(x_{i_1+1} < x_{i_2+1} < x_{i_3+1}\).

\(X_3(3) = (9, 10, 6)\) and \(X_3(4) = (6, 11, 3)\) correspond to the permutation \(\pi = 312\) since \(x_{i_3+3} < x_{i_1+1} < x_{i_2+2}\).

With this Chronological Index Permutation Mapping one simply maps each value \(x_t\) in \(X_m(t)\) ordering its time index \(t \in \{1, 2, \ldots, m\}\) according to the increasing amplitude (rank) of each \(x_t\) in \(X_m(t)\). In Figure 2 an illustrative drawing of this mapping for all alternatives in \(m = 3\) is presented. It can be seen that the indexes of the time axis are fixed in chronological order, and they are mapped onto the vertical (amplitude) axis. The resultant symbol can be obtained reading the labels in the vertical axis from bottom to top (in the direction of the increasing amplitude).

This method is used by [1, 3, 4] among others.

As the main goal of these methodologies is to define a set of different symbols \(\pi_t \in S_m\) with an unambiguous rule for mapping between real valued embedded vectors \((X_m)\) to these symbols, permutating the ranks according to time, or permutating the time indexes according to the ranks have the same mathematical value. Figures 1 and 2 reveal that the mappings differ in 2 out of 6 symbols, and as \(m\) increases so does the differences between both mappings. While these differences between these mappings have no effects in the the calculation of Permutation Entropy with no ties, they play an important role when the alphabet needs to be extended [3] to calculate \(H(m)\), or when local quantifiers (e.g the Fisher’s information) make use of this symbolic dynamics [8–11].

![FIG. 1. Rank Permutation Mapping](image1)

All symbols for \(m = 3\) are shown. With this Rank Alphabet one simply maps each value \(x_t\) in \(X_m(t)\) placing its rank \(R(x_t)\) in \(\{1, 2, \ldots, m\}\) in chronological order in \(\pi_t\) in \(S_m\). It can be seen that the indexes of the vertical axis are fixed, ordered by amplitude (i.e ranks), and they are mapped onto the time axis. For each pattern \(X_3(t) = (x_t, x_{t+1}, x_{t+2})\), the resultant symbol can be obtained reading the labels in the horizontal axis from left to right (in chronological order).
III. PERMUTATION ENTROPY ALGORITHMS

The Shannon Entropy of order $m \geq 2$ is defined as

$$H(m) = -\sum_{i=1}^{m} p(\pi_i) \log(p(\pi_i)).$$ \hspace{1cm} (3)

When the $p(\pi_i)$ are calculated according the Bandt & Pompe distribution this Shannon entropy is called the Permutation Entropy [1]. A mapping from $X_m(t)$ to $\pi_i \in S_m$ is made for $\forall t \in T$ according to one of the strategies suggested in the previous Section. $\{X_t\}_{t \in T}$ will lead to $T - m + 1$ symbols (π) so:

$$p(\pi_i) = \frac{|\{t | 0 \leq t \leq T - m; (x_t, x_{t+1}, \ldots, x_{t+m-1})\} \text{ has type } \pi|}{T - m + 1} \hspace{1cm} (4)$$

With the condition $P(x_{t+k} = x_{t+j}) = 0 \forall t \neq t_2$ all the embedding vectors $X_m(t)$ has m unique values (no ties), and both mappings mentioned in the previous Section lead to the same result of the permutation entropy for each time series $\{X_t\}_{t \in T}$.

That condition may not comply in several real world time series, so a substantial amount of embedding vectors $X_m(t)$ of these time series could have tied values and the mapping from these $X_m(t)$ to $\pi_i \in S_m$ can not be made in neither of the ways presented in Section II. For this reason, different methodologies were developed to handle with time series with tied values.

In essence there are two strategies of dealing with the issue of ties. The first one assumes that the process is indeed continuous so the patterns with ties are in fact missing data deriving from non tied values patterns wrongly observed. The second one makes no such assumption and extends the alphabet in order to ignore the restriction $i_k \neq i_j \forall i \neq j$ for $\pi_i = (i_1, i_2, \ldots, i_m) \in S_m$ and lets $i_k = i_j$ for $i \neq j$. These types of alphabets have more symbols than $m!$, and varies significantly according if they were constructed with the order based alphabet or the rank based alphabet. In table V all possible patterns for $m = 3$ are shown in the first column, and their mapping for every methodology are presented.

A. Extended alphabets: Modified Permutation-entropy algorithm

If equal values may represent a feature state of the system under study, mapping equal values in $\{x_t\}$ to equal representation in a symbol π could be considered.

1. S.1.- Chronological extended alphabet

In [3] this modified Permutation Entropy is presented. First like the original order based alphabet, the values of $X_m(t)$ can be sorted in increasing order: $x_{t+i_1-1} \leq x_{t+i_2-1} \leq \cdots \leq x_{t+m-1}$. Normally, when there is no equality x_{t+i_1-1} is represented by i_1. However, when equality happens, equal values are mapped to the same symbol, which is the smallest index i_1 of these equal values, e.g., if $x_{t+i_1-1} = x_{t+i_2-1}$ and $i_1 < i_2$, both x_{t+i_1-1} and x_{t+i_2-1} are represented by i_1. The corresponding permutation symbol of the pattern $X_m(t)$ is defined as: $\pi_i = (i_1, i_2, \ldots, i_j, i_j, \ldots, i_m)$.

For example, lets take the series:

$$X_t = (2, 5, 1, 2, 7, 1, 1, 3, 1) \quad T = 9$$

and take the vector $X_5(1) = (2, 5, 1, 2, 7)$ this led to the symbol $\pi_1 = (31125)$. $X_3(6) = (1, 1, 3)$ and $X_3(7) = (1, 3, 1, 1)$ map into the symbol $\pi_1 = (113)$ and $p_i_1 = (1112)$ respectively. This modified order based alphabet results in more possible symbols for each embedding dimension m so it characterizes more system states than the original PE method.

2. S.2.- Rank extended alphabet

Again like the original rank based alphabet, $X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1})$ can be mapped onto $\pi_i = (R(x_{t+1}), R(x_{t+2}), \ldots, R(x_{t+m})) \in S_m$. If ties exist, those observations get the same rank, that is the lowest rank of all that equal values. We will take the above time series as an example. Again take the vector $X_5(1) = (2, 5, 1, 2, 7)$ this led to the symbol $\pi_1 = (24125)$. $X_3(6) = (1, 1, 3)$ and $X_3(7) = (1, 3, 1, 1)$ map into the symbol $\pi_1 = (113)$ and $\pi_1 = (1411)$ respectively. This modified rank based alphabet results in more possible symbols for each embedding dimension m than the original rank alphabet and even more possible symbols than the order based extended alphabet, see Table I.
TABLE I. Number of symbols π_i per embedding dimension m for each alphabet studied in this paper. While for the regular alphabet this quantity is always $m!$, the number of symbols of the order based extended alphabet is much larger (See [3] for the explicit formula). The rank based extended alphabet exceed in quantity both alphabets.

Alphabet	$m=3$	$m=4$	$m=5$	$m=6$
Regular alphabet	6	24	120	720
Chronological extended alphabet	13	73	501	4051
Rank extended alphabet	13	75	541	4683

B. Imputation for missing data algorithms

If one assumes that the process is indeed of continuous data then the patterns with ties are in fact missing data deriving from non tied values patterns wrongly observed. Missing data are a common problem in all types of research fields and there are various methods of handling with missing data, that can be divided into two major strategies: the first is to eliminate all the observation that are incomplete (and work only with the complete cases), and the second one is to impute the missing data with a suitable value[12]. For all the following examples the rank based alphabet will be used.

1. S.3.- Complete Cases

This method was originally suggested in [1] and it is analogue to a complete case analysis in the missing value statistic theory. It is simply to eliminate the patterns that contain tied values. For example for $m=3$ the series $X_3 = (2, 5, 1, 2, 7, 1, 3, 1)$ and $m = 3$, only the patterns $X_3(1) = (2, 5, 1), X_3(2) = (5, 1, 2), X_3(3) = (1, 2, 7), X_3(4) = (2, 7, 1)$ are mapped onto $\pi = (231), \pi = (312), \pi = (123), \pi = (231)$ respectively and $X_3(5) = (7, 1, 1), X_3(6) = (1, 1, 3), X_3(7) = (1, 3, 1)$ are eliminated. Then compute the $p^{*}(\pi_i)$ for all the remaining vectors.

2. S.4.- Time Ordered Imputation

This is one of the most used techniques used to deal with repeated values. It is used in [4, 13–16] among others. It simply states that if $x_{t_1} = x_{t_2}$ and $t_1 < t_2$ then $x_{t_1} < x_{t_2}$. Following the previous example, $X_3(1) = (2, 5, 1), X_3(2) = (5, 1, 2), X_3(3) = (1, 2, 7), X_3(4) = (2, 7, 1)$ are equally mapped since they do not have equal values and $X_3(5) = (7, 1, 1)$ is mapped to $\pi = (312), X_3(6) = (1, 1, 3)$ to $\pi = (123)$. Finally $X_3(7) = (1, 3, 1)$ is mapped to $\pi_i = (132)$. Then compute the resulting $p^{*}(\pi_i)$.

3. S.5.- Random Imputation

In [1], they recommend to numerically break equalities by adding small perturbations. The amplitude of this perturbation should be less than the minimum difference between two different values of the pattern. This means, by our example, that $X_3(5) = (7, 1, 1)$ should be mapped either to $\pi = (312) or \pi = (321)$, with probability 1/2 each, since the perturbation is white noise, but never to other symbol than those because no matter the result of the random perturbation the first value should have always the highest rank. Following the example, $X_3(6) = (1, 1, 3)$ is going to be mapped either to $\pi = (123) or \pi = (213)$ and finally $X_3(7) = (1, 3, 1)$ is mapped either to $\pi_i = (132) or \pi = (231)$ with the same probability. For instance, for $m = 3$, if all three values of the pattern are equal (e.g. $X_3(t_k) = (7, 7, 7)$), any one of the six symbols could appear, each with probability 1/6. Then compute the resulting $p^{*}(\pi_i)$.

4. S.6.- Bayesian Imputation

Random Imputation suggests that independently of the time series in study, as patterns with equal values are the result of a coarse observation of patterns without ties in the original series, they should be mapped to the symbols correspondent to those original patterns with the same probability. It is shown that in most situations, simple techniques for handling missing data (such as complete cases or random imputation) in other research areas produces biased results [12], and there are more sophisticated techniques that give much better results. With these techniques, missing data for a subject are imputed by a value that is predicted using the subject’s other, known characteristic. We propose a method which is similar to the random imputation but instead of adding a random perturbation that maps with equal probabilities to each suitable symbol, this probabilities are originated with a previous known Probability Distribution Function, and are not necessary equal. The PDF proposed as a prior distribution is the one resulting of computing the $p(\pi_i)\forall i$ for the complete cases. See subsection III B 1.

There are seven steps to follow:

1. Define the embedding dimension m. That leads to $S_m = \{\pi_i\}$ all the $m!$ possible permutations of $(1, 2, \ldots, m)$.
2. Map $X_m(t) \forall t$ to their corresponding $\pi_i \in S_m$ according to their rank (section II A).
3. If there is any ties in $X_m(t)$ for any t, eliminate the vector (section III B 1).
4. Calculate the $p^{*}(\pi_i)$ (equation 4).
5. Repeat the procedure of mapping every $X_m(t) \forall t$ to their corresponding $\pi_i \in S_m$ according to their
rank, but do not eliminate the vectors $X_m(t)$ with repeated values.

6. For each vector $X_m(t)$ with repeated values do the mapping to a suitable π_i but with probability $p^*(\pi_i)$ for each π_i.

7. Calculate the new $p(\pi_i)$

$X_t = (2, 5, 1, 2, 7, 1, 1, 3, 1, 2, 4, 5, 1, 3, 2, 4, 2, 1, 0)$ is illustrated in Fig. 3 as an example of the Bayesian Imputation. Table III B 4 maps every pattern $X_3(t)$ of this time series for all the methodologies listed on this contribution.

![Fig. 3](image-url)

FIG. 3. The above plot shows the complete time series $X_t = (2, 5, 1, 2, 7, 1, 1, 3, 1, 2, 4, 5, 1, 3, 2, 4, 2, 1, 0)$. The middle plot computed the Bandt Pompe’s PDF eliminating patterns $X_3(t)$ with repeated values for $m = 3$, using the remaining 12 complete cases. The third plot shows the resulting PDF with all 19 cases, imputing to the patterns with ties a suitable symbol. But the probability of choosing that symbol is according to the previously calculated PDF using complete cases methodology.

$X_3(t)$	Chron. Ext.	Rank Ext.	Comp. Cases	Time Ord.	Rand. Imp.	Bayesian Imp.
2 1 3	2 3 1 2 1 3	2 3 1 2 1 3	2 3 1 2 1 3	2 3 1 2 1 3	2 3 1 2 1 3	2 3 1 2 1 3
5 1 2	5 2 1 2 1 3	5 2 1 2 1 3	5 2 1 2 1 3	5 2 1 2 1 3	5 2 1 2 1 3	5 2 1 2 1 3
1 2 7	1 2 7 1 2 3	1 2 7 1 2 3	1 2 7 1 2 3	1 2 7 1 2 3	1 2 7 1 2 3	1 2 7 1 2 3
2 7 1	2 7 1 2 1 3	2 7 1 2 1 3	2 7 1 2 1 3	2 7 1 2 1 3	2 7 1 2 1 3	2 7 1 2 1 3
7 1 1	7 1 1 2 1 3	7 1 1 2 1 3	7 1 1 2 1 3	7 1 1 2 1 3	7 1 1 2 1 3	7 1 1 2 1 3
1 1 3	1 1 3 1 1 3	1 1 3 1 1 3	1 1 3 1 1 3	1 1 3 1 1 3	1 1 3 1 1 3	1 1 3 1 1 3
1 3 1	1 3 1 2 3 1	1 3 1 2 3 1	1 3 1 2 3 1	1 3 1 2 3 1	1 3 1 2 3 1	1 3 1 2 3 1
3 1 7	3 1 7 3 1 2	3 1 7 3 1 2	3 1 7 3 1 2	3 1 7 3 1 2	3 1 7 3 1 2	3 1 7 3 1 2
1 2 9	1 2 9 1 2 3	1 2 9 1 2 3	1 2 9 1 2 3	1 2 9 1 2 3	1 2 9 1 2 3	1 2 9 1 2 3
2 9 3	2 9 3 2 9 1	2 9 3 2 9 1	2 9 3 2 9 1	2 9 3 2 9 1	2 9 3 2 9 1	2 9 3 2 9 1
3 5 7	3 5 7 3 1 2	3 5 7 3 1 2	3 5 7 3 1 2	3 5 7 3 1 2	3 5 7 3 1 2	3 5 7 3 1 2
4 2 2	4 2 2 4 2 1	4 2 2 4 2 1	4 2 2 4 2 1	4 2 2 4 2 1	4 2 2 4 2 1	4 2 2 4 2 1
4 2 1	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3
4 2 1	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3	4 2 1 4 2 3
2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3
2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3	2 1 3 2 1 3

TABLE II. Different mappings for the example $X_t = (2, 5, 1, 2, 7, 1, 1, 3, 1, 2, 4, 5, 1, 3, 2, 4, 2, 1, 0)$. Extending the alphabet implies that repeated values in $X_3(t)$ are patterns that represent the nature of the process, so they are represented with a symbol π_i with some equal elements. The four methodologies on the right assume that $X_3(t)$ with repeated values are a particular case of missing data. Complete Cases removes that patterns and calculate $p^*(\pi_i)$ without them. Time Ordered Imputation assumes that the value that first appear is the lower valued. At last, Random Imputation and Bayesian Imputation replace the missing data element with a suitable value, the first imputes a random suitable symbol while the second takes account of the original structure using the probabilities $p^*(\pi_i)$ of Complete Cases for imputing the value.

IV. NUMERICAL RESULTS

In this Section the above strategies for missing data imputation are evaluated using data from simulated chaotic processes. In order to get a reproducible set of time series, all maps presented in [17] were simulated using the initial conditions presented therein. All those series presented none, or negligible amount, patterns $X_m(t)$ with ties. These time series will be referred as the original time series. After that, each original time series was truncated up to one decimal resolution, leading to a coarse version of those original time series. Due to that finite resolution, this coarse versions have an amount of patterns with tied values that can not be considered negligible.
The simulation consists in 39 time series generated by different chaotic processes, and each one was simulated for a length of \(n = (5000, 10000, 30000, 90000) \), all those series presented none, or a negligible amount, patterns \(X_m(t) \) with ties, and for each series the Permutation Entropy, \(H(m) \), was calculated for embedding dimension \(m = \{3, 4, 5, 6\} \). For those initial condition, as the series is deterministic, the \(H(m) \), \(m = \{3, 4, 5, 6\} \) are the actual Permutation Entropies of the process. Next, these series are truncated to one decimal, so the amount of patterns \(X_m(t) \) with ties are not negligible any more. All the strategies enunciated in Sections III A and III B are used separately for each truncated series to compute the \(p(\pi_i) \), and their respective \(\hat{H}(m) \), \(m = \{3, 4, 5, 6\} \).

This yields to quantify how well each strategy estimates the actual Permutation Entropy (\(H(m) \)) comparing the result of each original time series with their respective Permutation Entropy calculated with all the above methodologies over the coarse version.

In Figure 4 the results for each length \(n \) of the series is shown faceting with the embedding dimension \(m \). The truncated series were grouped by their percentage of patterns \(\{X_m(t)\} \) with ties over the all the patterns (i.e. the ratio of missing values over the total, this ratio shall be referred to as ‘repeated ratio’ this point onwards). To quantify the behaviour of the estimator, the Mean Square Error, defined as \(E\left(\left(\hat{H}(m) - H(m)\right)^2\right) \), is used. In each figure the Mean Square Error (MSE) was plotted against those groups for every embedding dimension \(m \). The repeated ratio depends not only of the structure of the time series but also of the embedding dimension \(m \). Figure 5 focus on the particular case of \(n = 90000 \).

Time Order Imputation and Bayesian Imputation consistently beat the other methodologies for every embedding dimension \(m \) and for all the repeated ratios as the MSE is the lowest in all the cases. As for the Bias of the estimation for each algorithm Fig. 6 shows the difference between the estimation and the real value, \(\hat{H}(m) - H(m) \), for \(n = 90000 \). The different chaotic maps are ordered by increasing amount of repeated values. Methodologies that use extended alphabet tend to sub estimate the entropy, specially when the embedding dimension is small. Random Imputation methodology over estimates the entropy as it create noise and this is more evident when the imputation is made over a time series with a large number of repeated values. Time Ordered Imputation and Bayesian Imputation have similar performance, and both outperform Complete Cases Methodology. In Fig 7, time series were grouped by the level of their Permutation Entropy in the original process, and the error \(\hat{H}(m) - H(m) \), for every methodology was calculated. As stated before, Random Imputation proposed in the seminal paper always increases the value of the estimator \(\hat{H}(m) \), and overestimate \(H(m) \). It is much more noticeable when the \(H(m) \) of the original series is low valued. Extending the alphabet always underestimate the Permutation Entropy, doing a poorly job for High values of \(H(m) \). In Complete Cases, \(H(m) \) underestimates low values of \(H(m) \), but when the \(H(m) \) is high is not biased. This is even more evident for the case \(m = 6 \). Bayesian Inputation and Time Ordered Inputation outperforms the other methodologies for every level of \(H(m) \).

V. REAL APPLICATION

We applied the presented strategies to classify using heart rate time series from a (healthy) control group and from patients suffering from Congestive Heart Failure (CHF). The data have been collected from internet data bases: NSR2DB Normal Sinus Rhythm RR interval database for the healthy patients and CHF2DB Congestive Heart failure RR interval database, for the patients suffering from CHF, from http://www.physionet.org/cgi-bin/atm/ATM. For each database, 15 series were taken, each one with approximately 100000 observations. In HRV series (RRIintervals i.e the interval from the peak of one QRS complex to the peak of the next one as shown on an electrocardiogram (ECG)) the case of equal values appears very frequently due to limited sampling frequency of the ECG. So due to the high frequency of equal values in HRV series, these are good examples for testing the methodologies presented in Sections III A and III B.

In fig. 8 the mean of the calculated Permutation Entropies \(\hat{H}(m) \) are plotted for each type of patient, those suffering from CHF (i.e. Congestive) and those who do not (i.e. Normal) along with its standard error. The plot is divided by each methodology and for every embedding dimension \(m = \{3, 4, 5, 6\} \). In fig. 9 the boxplot of the calculated Permutation Entropies are plotted for each type of patient, so the shape and outliers, among other features can be appreciated. A Mann-Whitney test was conducted in all those cases for assessing the difference between the two populations. This test can detect differences in shape and spread as well as just differences in medians. The resultant p-values are shown in table III. Eliminating the patterns with repeated values (Complete Cases) is the methodology that best separates the mean but will not work well as a classifier. As can be seen in Fig. 7, this methodology underestimates the Permutation Entropy for low levels of \(H(m) \) but has no bias when the \(H(m) \) is near one. In this sample Complete Cases works fine, but it can result in several misclassification, labelling as normal patients the ones suffering from Congestive Heart Failure due to the artificially long tailed distribution, as can be seen in 9, generated by this relation within the \(H(m) \) level and it bias. Random Imputation also separates the mean but suffers from this relation too. However in this case, \(\hat{H}(m) \) overestimate \(H(m) \) when it is low but this does not happen for high levels of \(H(m) \), so it would result in a misclassification, labelling as Congestive the patients that are healthy. Extending the alphabet does not perform well in this prob-
does not depend on the length of the series.

does not depend on the length of the series.

\begin{figure}
\centering
\begin{subfigure}{0.5\textwidth}
\includegraphics[width=\textwidth]{chart1}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\includegraphics[width=\textwidth]{chart2}
\end{subfigure}
\caption{The MSE is plotted for different ratios of patterns with less for every methodology evaluated in section III and}
\end{figure}
The alignment of the lines is such that the text is difficult to read. The text seems to be discussing statistical methods and the concept of entropy. There are references to section II and section III, but the content is not clear due to the orientation and alignment issues.
could be under consideration, but noticing that the assumptions made by Bandt & Pompe are not complied.

Furthermore, as stated in section II, \(X_m(t) = (x_t, x_{t+1}, \ldots, x_{t+m-1}) \) can be mapped to an element \(\pi_i \) in \(S_m \). This mapping should be defined in a way that preserves the desired relation between the elements \(x_t \) in \(X_m(t) \); and all \(t \in T \) that shares this pattern has to mapped to the same element of \(\pi_i \in S_m \). But is also highly desirable that every \(\pi_i \in S_m \) represents an unique desired structure in \(X_m(t) \), leading to a "bijective" mapping between pattern structures and symbols. When the alphabet is extended using the order (i.e. *order based alphabet*) as implemented in Bian *et al.* [3] this desirable condition does not comply for every embedding dimension \(m \). Even more, as \(m \) increases the number of different structures of the patterns \(X_i(m) \) that maps onto the same symbol increases. In fact, this number is quantified in table I by the difference between the amount of symbols in the rank extended alphabet and the order extended alphabet. For example for \(m = 4 \) there are 73 symbols in the *chronological extended alphabet* and 75 symbols in the *rank extended alphabet*. This is because in the *chronological extended alphabet* \(X_4(t_1) = (1, 4, 1, 4) \) and \(X_4(t_2) = (1, 4, 4, 1) \) are both mapped to \(\pi_i = (1122) \) and \(X_4(t_3) = (4, 1, 4, 1) \) and \(X_4(t_4) = (4, 1, 1, 4) \) are both mapped to \(\pi_i = (2211) \). It can be easily seen in table VI, that \(X_4(t_1) \) and \(X_4(t_2) \) have a completely different relation between their elements, but yet they are mapped to the same symbol, and the same occurs with \(X_4(t_3) \) and \(X_4(t_4) \). In the *rank extended alphabet* \(X_4(t_1), X_4(t_2), X_4(t_3), X_4(t_4) \) are mapped to four different symbols \(((1313), (1331), (3131), (3113)) \) at least preserving the distinct structures of the patterns.

Extending the alphabet proves not to be a fine tool in order to estimate the Permutation Entropy of the original series, at least if one assume that the repeated values are due to observational problems. In the case this methodology is used we recommend not to implement it as is proposed by Bian *et al.* [3], but with the Extended Rank Alphabet that preserves the dynamical structure of the embedded vectors \(X_i(m) \).

When dealing with Bandt & Pompe Permutation Entropy values with ties should be treated as missing values. Eliminating all the patterns with ties (Complete Cases methodology) is a good estimator of \(H(m) \) as long as the length of the time series is much larger than the amount of deleted cases, so even though those cases are not negligible, its elimination does not affect the dynamics of the process. When this is not the case, with this methodology, the bias of \(H \) is not constant along the actual value of \(H(m) \) leading to unwanted properties of that estimator.

Random Imputation method overestimates the entropy as it adds random noise to the series in order to break equalities, but it also mask forbidden patterns, by inducing those missing patterns to appear, concealing this dynamical property. The two remaining methodologies, Time Ordered Imputation and Bayesian Imputation, prove to be good estimators of \(H(m) \) in every condition, but we recommend to use the Bayesian Imputation methodology as it does not incur to artificial ordering.

Table III

Embedding Dimension	Bayesian Imputation	Random Imputation	Complete Cases	Time Ordered Imputation
3	0.0502	0.0555	0.0408	0.0555
4	0.0295	0.0502	0.0814	0.0975
5	0.0209	0.0329	0.0555	0.1261
6	0.0086	0.0234	0.0009	0.0674

Table IV

Pattern	Chronological Extended Alphabet	Rank Extended Alphabet	\(X_4(t) \)
1122	1313	\(X_4(t_1) \)	
1331		\(X_4(t_2) \)	
2211	3131	\(X_4(t_3) \)	
3113		\(X_4(t_4) \)	

A Mann-Whitney test was conducted in all those cases for assessing the difference between the two populations. This test can detect differences in shape and spread as well as just differences in medians. Bayesian Imputation is the optimum classifier since it does a great job separating the populations and obtains the lowest p-values.
FIG. 6. The difference between the estimation and the real value \(\hat{H}(m) - H(m) \), for \(n = 90000 \) is shown. The color code is as follows: red for Bayesian Imputation, blue for Random Imputation, green for the Chronological Extended Alphabet, purple for the Rank Extended Alphabet, orange for the Complete Cases methodology and finally yellow for the Time Ordered Imputation. The different maps in are ordered in increasing amount of repeated values. Extending alphabet methodologies tend to sub estimate the entropy, specially when the embedding dimension is small. Random Imputation methodology over estimate the entropy as it create noise, this is more evident when the imputation is made over a large amount of values. Time Ordered Imputation and Bayesian Imputation have similar performance, and both outperforms Complete Cases Methodology.
FIG. 7. The difference between the estimation and the real value is plotted. Time series were grouped by the level of their Permutation Entropy in the original process, and the error $\hat{H}(m) - H(m)$, for every methodology was calculated. As stated before, Random Imputation proposed in the seminal paper always increases the value of the estimator $\hat{H}(m)$, and overestimate $H(m)$. It is much more noticeable when the $H(m)$ of the original series is low valued. Extending the alphabet always underestimate the Permutation Entropy, doing a poorly job for High values of $H(m)$. In Complete Cases, $\hat{H}(m)$ underestimates low values of $H(m)$, but when the $H(m)$ is high is not biased. This is even more evident for the case $m = 6$. Bayesian Imputation and Time Ordered Imputation outperforms the other methodologies for every level of $H(m)$.
FIG. 8. The mean of the calculated Permutation Entropies $\hat{H}(m)$ are plotted for each type of patient, those suffering from CHF (i.e. Congestive) and those who do not (i.e. Normal) along with its standard error. The plot is divided by each methodology and for every embedding dimension $m = \{3, 4, 5, 6\}$. In this sample Complete Cases works fine separating the means, but it can result in several misclassification because of the shape of the PDF of each group (See 9). Random Imputation also separates the means of both groups, but suffers from the same problematic. Extending the alphabet does not perform well as a classifier in this problematic. Bayesian Imputation and Time Ordered Imputation are excellent classifiers since they do great job separating the mean populations.
FIG. 9. A boxplot for each type of patient, those suffering from CHF (i.e. Congestive) and those who do not (i.e. Normal) is drawn, divided by each methodology and for every embedding dimension \(m = \{3, 4, 5, 6\} \) so not only the mean and the dispersion is noticed but also the shape. In this sample Complete Cases works fine, but it can result in several misclassification, labelling as normal patients the ones suffering from Congestive Heart Failure due to the artificial long tailed distribution of this last group. Random Imputation also suffers from the different shapes on the probability distribution function of the groups so does not perform well as a classifier. Extending the alphabet does not distinguish between the two populations. Bayesian Imputation is the optimum classifier since it does a great job separating the populations and obtains the lowest p-values in the test (table III).
TABLE V. All possible patterns for $m = 3$ are shown in the first column, and their mapping for every methodology are presented. For Random Imputation if a pattern has a repeated value, it is mapped randomly to a suitable symbol. If the length of the series is large, the frequency of each suitable symbol is the same with probability 1. Instead, for the Bayesian imputation, the probabilities used in order to choose a suitable symbol are derived for the Complete Cases methodology, taking account of the structure of the Time Series, preserving, for example, the missing patterns.

PATTERN	Chrono. Ext.	Rank Ext.	C. Cases	Time Ordered	Random Imputation	Bayesian Imputation
	π_i	π_i	π_i	#	to anyone	$p = p(\pi_i)$
111	X	to 123	$p = 1/6$	to anyone	$p = p(\pi_i)$	
112	X	to 132	$p = 1/2$	to 132	$p = p(132)$	
113	X	to 123	$p = 1/2$	to 123	$p = p(123)$	
122	X	to 123	$p = 1/2$	to 123	$p = p(123)$	
123			123	123		
132	132	132	132	132		
211	X	to 213	$p = 1/2$	to 213	$p = p(213)$	
213			213	213		
221	X	to 312	$p = 1/2$	to 312	$p = p(312)$	
311			311	311		
312			312	312		
321			321	321		
[1] C. Bandt and B. Pompe, Physical review letters 88, 174102 (2002).
[2] E. McKenzie, Advances in Applied Probability, 822 (1988).
[3] C. Bian, C. Qin, Q. D. Ma, and Q. Shen, Physical Review E 85, 021906 (2012).
[4] U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, and N. Wessel, Computers in biology and medicine 42, 319 (2012).
[5] C. Bandt, ArXiv e-prints (2014).
[6] M. Riedl, A. M"uller, and N. Wessel, The European Physical Journal Special Topics 222, 249 (2013).
[7] C. Bandt and F. Shiha, Journal of Time Series Analysis 28, 646 (2007).
[8] M. Martin, F. Pennini, and A. Plastino, Physics Letters A 256, 173 (1999).
[9] C. Vignat and J.-F. Bercher, Physics Letters A 312, 27 (2003).
[10] O. Rosso, F. Olivares, and A. Plastino, Papers in Physics 7 (2015).
[11] O. A. Rosso, L. D. Micco, A. Plastino, and H. A. Larrondo, Physica A: Statistical Mechanics and its Applications 389, 4604 (2010).
[12] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons, Journal of Clinical Epidemiology 59, 1087 (2006).
[13] M. Matilla-Garca, M. R. Marn, and M. I. Dore, Physica A: Statistical Mechanics and its Applications 398, 280 (2014).
[14] Y. Cao, W.-w. Tung, J. B. Gao, V. A. Protopopescu, and L. M. Hively, Phys. Rev. E 70, 046217 (2004).
[15] P. M. Saco, L. C. Carpi, A. Figliola, E. Serrano, and O. A. Rosso, Physica A: Statistical Mechanics and its Applications 389, 5022 (2010).
[16] L. Zunino, D. Prez, A. Kowalski, M. Martn, M. Garavaglia, A. Plastino, and O. Rosso, Physica A: Statistical Mechanics and its Applications 387, 6057 (2008).
[17] O. A. Rosso, F. Olivares, L. Zunino, L. De Micco, A. L. L. Aquino, A. Plastino, and H. A. Larrondo, The European Physical Journal B 86, 116 (2013).
[18] J. M. Amig, S. Zambrano, and M. A. F. Sanjun, EPL (Europhysics Letters) 79, 50001 (2007).
[19] J. M. Amig, S. Zambrano, and M. A. F. Sanjun, EPL (Europhysics Letters) 83, 60005 (2008).
[20] L. C. Carpi, P. M. Saco, and O. Rosso, Physica A: Statistical Mechanics and its Applications 389, 2020 (2010).