INDECOMPOSABLE EXPPLICIT ABELIAN GROUP

SAHARON SHELAH

Dedicated to Laszlo Fuchs for his ninetieth birthday

Abstract. For every λ we give an explicit construction of an Abelian group with no non-trivial automorphisms. In particular the group absolutely has no non-trivial automorphisms, hence is absolutely indecomposable. Earlier we knew a stronger existence theorem but only up to a quite large cardinal which was a necessary restriction. In another direction the construction does not use the axiom of choice.

Date: August 8, 2013.

2010 Mathematics Subject Classification. Primary: 03C60, 20K30; Secondary: 20K20, 13C99, 03E55, 03E75, 03C75.

Key words and phrases. Abelian groups, rigid, endo-rigid, indecomposable, construction, set theory, non-structure theory.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 1053/11). The author thanks Alice Leonhardt for the beautiful typing. Publication 1023.
§ 0(A). Background.

Laszlo Fuchs in [Fuc73], continuing work of Corner [Cor69], proved that there are torsion free indecomposable, moreover, endo-rigid Abelian groups G of quite large cardinality (up to the first inaccessible) and ask if it can be done in all. Endo-rigid means that every endomorphism f of G is $x \mapsto \lambda$ or is $x \mapsto ax$ for some $a \in \mathbb{Z}$ (and is onto if $a \in \{1, -1\}$); indecomposable means that $G = G_1 \oplus G_2 \Rightarrow G_1 = 0 \lor G_2 = 0$. The indecomposability was the original question, but endo-rigid is much stronger.

It is very fitting that this work is dedicated to Laszlo: he has been the father of modern Abelian group theory; his book [Fuc73] makes me in 1973, start to work on Abelian groups, (in [Sh:44]); this work was motivated by thinking of a paper suitable to be contributed to a volume in his honour; and last but not least the problem on the existence of indecomposable and endo rigid Abelian groups was the first I had started to work on reading his book. Meanwhile Fuchs [Fuc74] has succeeded to prove existence of indecomposable Abelian groups up to the first measurable cardinal.

The question was solved by the author ([Sh:44]); and see on the subject Trlifaj-Göbel [GT12], but the proof was less explicit: it used stationary subsets of regular uncountable cardinals. We may wonder: is this non-effectiveness necessary? How can we phrase this as an explicit problem? Moreover, we call a family G of Abelian groups endo-rigid when if $G_1, G_2 \in G$ and $h \in \text{Hom}(G_1, G_2)$ then $G_1 = G_2$ and h is a multiplication by an integer. In fact the proof in [Fuc73] is by building by induction on λ such family G_λ of 2^λ Abelian groups each of cardinality λ.

We may look at model theory essentially replacing “isomorphic” by “almost isomorphic”, that is isomorphisms by potential isomorphisms, i.e. isomorphism in some forcing extension (= generic extension). In [Sh:12] we have suggested to reconsider a major theme in model theory, that of counting the number of isomorphism types. Recall that M, N are almost-isomorphic if M, N have (the same vocabulary and) the same $\mathbb{L}_{\infty, \aleph_0}$-theory, equivalently are isomorphic in some forcing extension. For a theory T let $\dot{I}_{\infty, \aleph_0}(\lambda, T)$ be the number of models of T of cardinality λ up to almost isomorphism, i.e. $|\{M/\equiv_{\mathbb{L}_{\infty, \aleph_0}}: M \text{ a model of } T \text{ of cardinality } \lambda\}|$. This behaves nicely ([Sh:12]): if T has cardinality $\leq \lambda$, is first order or is just $\subseteq \mathbb{L}_{\lambda^+, \aleph_0}$ of cardinality $\leq \lambda$ then $\dot{I}_{\infty, \aleph_0}(\lambda, T) \leq \theta < \mu \Rightarrow \dot{I}_{\infty, \aleph_0}(\mu, T) \leq \dot{I}_{\infty, \aleph_0}(\theta, T)$, (recently on $\dot{I}_{\infty, \aleph_0}(\cdot, T)$ for \aleph_1-stable T, see a work of Laskowski-Shelah [LwSh:1010]). In [Sh:12] we also define “M is ai-rigid, i.e. $a \neq b \in M \Rightarrow (M, a) \not\equiv_{\mathbb{L}_{\infty, \aleph_0}} (N, a)$” and have downward LST theorem for it. Generally on almost isomorphism and $\mathbb{L}_{\infty, \aleph_0}$ see Barwise [Bar75]. Later Nadel [Nad94] ask more specifically about the number of torsion free Abelian groups up to being almost isomorphic. He suggested further to consider homomorphisms, in particular for Abelian groups; that is, maybe we cannot find absolutely-rigid Abelian groups of arbitrarily large cardinal. In fact Nadel approach was to look at old constructions, he pointed out that the original constructions of Fuchs in [Fuc73] were absolute and the ones in [Fuc74] [Sh:44] were not. Fuchs one used infinite products (which are explicit but not absolute) and [Sh:44] use stationary sets.

For “endo-rigid” the answer is that we cannot construct when some specific mild large cardinal exists by Eklof-Shelah [EkSh378], see Eklof-Mekler [EM02].
INDECOMPOSABLE EXPLICIT ABELIAN GROUP

Ch.IV,§3,pg.487], i.e. \(\lambda = \kappa(\omega) \) the first \(\omega \)-Erdős cardinal. If \(\lambda \geq \kappa(\omega) \) then for every sequence \((\langle G_\alpha, a_\alpha \rangle : \alpha < \lambda) \) for some \(\alpha < \beta < \lambda \), in some \(V^P \), \(G_\alpha \) is embeddable into \(G_\beta \): moreover if \(x_\gamma \in G_\gamma \) for \(\gamma < \lambda \) then for some \(\alpha < \beta < \lambda \), in some \(V^P \) there is an embedding of \(G_\alpha \) into \(G_\beta \) mapping \(x_\alpha \) to \(x_\beta \), (so \((\forall \alpha)(G_\alpha = G) \) is allowed). This explains why [Fuc74] gets only indecomposable (not endo-rigid).

It was claimed there ([EkSh:678], [EM02]) that for every \(\lambda \) there are absolutely indecomposable Abelian groups, but the proof was withdrawn.

A problem left open was solved by Göbel-Shelah [GbSh:880]: if \(\lambda < \kappa(\omega) \) then there are absolutely endo-rigid Abelian groups and using it Fuchs-Göbel [?] does much more. That is, for smaller \(\lambda \), there is a family of \(2^\lambda \) Abelian groups of cardinality \(\lambda \) which is absolutely endo-rigid. It is explicitly pointed out there that this gives absolutely an indecomposable Abelian group in any such cardinal.

All this still left open the question about the existence of indecomposable ones; we have made several wrong tries.

Another interpretation of “more explicit construction” is “provable without the axiom of choice”. We may also ask for more: no epimorphism (for monomorphisms we cannot). Also there are many works on such problems on \(R \)-modules and we may wonder on the situation for \(R \)-modules.

§ 0(B). The Results.

Our main result is that there is an explicit construction of Abelian groups of any cardinality \(\lambda \) which are absolutely indecomposable, moreover, absolutely has no non-trivial epimorphism. Also the axiom of choice is not needed and we get \(2^\lambda \) many, pairwise absolutely non-isomorphic. We deal with modules but only as long as it does not complicate the proof.

However, note that (by absoluteness)

\((*)\) assume \(V \) is a model of \(ZF \) only. If in \(L \), \(G \) is absolutely endo-rigid (or indecomposable) \textbf{then} this holds also in \(V \).

So by [GbSh:880] we can deduce the existence of an endo-rigid \(G \) of cardinality \(\lambda \) when \(\lambda \) is not too large. Similarly here.

Remark 0.1. Clearly we can use only finitely many primes, and weaken the demand on being primes and in \(R \), but we delay this. It seems that we may look for \(R \)-modules with distinguished finitely many (or just four) submodules as in [CM90], [GbSh:880] and [FG08] and characterization of the ring of onto endomorphisms and consider non-well orderable rings, but again this is delayed.

§ 0(C). Preliminaries.

Notation 0.2. 1) \(R \) denotes a ring with unit, i.e. \(1_R \).
2) Let \(\tau_R \) be the vocabulary of any left \(R \)-module.
3) \(R^+ = R \setminus \{0_R\} \).
4) Let \(Q = Q_R \) be the field of quotients of \(R \) when \(R \) is commutative torsion free.
5) For \(M \) and \(R \)-module let \(\text{inv}(R) = \{a \in R : a \text{ is invertible}\} \) and \(\text{epi}(M) = \{a \in R : aM = M\} \).
Definition 0.3. 1) We say R is torsion free when $a \cdot b = 0 = a = 0 \lor b = 0$.
2) We say an R-module is torsion free when $M \models "ax = 0"$ implies $a = 0_R \lor x = 0_M$.

Definition 0.4. 1) For M an R-module we say $X \subseteq M$ is pure when $ax \in X$ and $a \neq 0_R$ implies $x \in X$.
1A) Similarly for a torsion free R-module, R a torsion free ring.
2) For a torsion free Abelian group G and $A \subseteq G$ let $PC(A)$ be the minimal pure subgroup of G which includes A.
3) For a formula $\varphi(x)$ in the vocabulary τ and τ-model M, let $\varphi(M) = \{ a \in M : M \models "\varphi[a]" \}$.
4) For an R-module M and $X \subseteq M$ the set affinely generated by A in M is $\{ \sum_{\ell \leq n} a_\ell z_\ell : a_\ell \in R, z_\ell \in X$ for $\ell \leq n$ and $\sum_{\ell \leq n} a_\ell = 1_R \}$.
5) We say $\bar{x} = \langle x_s : s \in I \rangle$ is a basis of the R-module M when:
 - $x_s \in M \setminus \{0_M\}$ and \bar{x} is with no repetitions
 - if $\langle s_\ell : \ell \leq n \rangle$ and $\ell \leq n \Rightarrow a_\ell \in R^+$ then $\sum_{\ell \leq n} a_\ell s_\ell \neq 0$
 - M is the pure closure of $\sum_{s \in I} Rx_s$.

Definition 0.5. 1) We say a group or any structure M is absolutely rigid in $\psi(x)$ or in $\psi(M)$ when: $\psi(x) \in \text{L}_{\infty, \aleph_0}$ and in every forcing extension $V^\mathbb{P}$ of V, every automorphism of M is trivial on $\psi(M)$ which means it is $x \mapsto cx$ for $x \in \psi(M)$ where $c \in \mathbb{Q}_R$ and so necessarily $c\psi(M) = \psi(M)$.
1A) We add “strictly” when above the $c \in R$ is invertible (in R).
2) If above $\psi(x) = (x = x)$ so $\psi(M) = M$ then we may omit the “in $\psi(M)$”.
3) For an R-module M we say M is semi-rigid in $X \subseteq M$ when for every automorphism f of M we have $x \in X \Rightarrow f(x) \in PC_M(\{x\})$. We may write $\bar{x} = \langle x_\alpha : \alpha < \alpha_* \rangle$ instead $\{x_\alpha : \alpha < \alpha_* \}$. We define “absolutely semi-rigid in X” similarly.
§ 1. Constructing absolutely rigid Abelian groups

Below we can choose \(R = \mathbb{Z} \) and the assumptions on \(R \) we use are chosen just such that the proof is not more complicated.

Main Claim 1.1. \(M \) is absolutely semi-rigid in \(\bar{x} \) when:

\((*)\) (a) \(R \) is a commutative torsion free ring (so with unit \(1_R \)), so \(a, b \in R^+ \Rightarrow a \cdot b \in R^+ \)

(b)\(\alpha \) \(\psi_1(x), \psi_2(x) \in \mathbb{L}_{\infty, \aleph_0}(\tau_R) \)

(c)\(M \) is an \(R \)-module, torsion free

(d)\(M \) is a submodule of \(M \) with universe \(\psi_1(M) \) and \(M_1 \cap M_2 = \{0\} \)

(e)\(\bar{x} = (x_\alpha : \alpha < \lambda) \) is a basis of \(M_1 \) so with no repetitions

(f) \(\bar{g} = (g_\alpha : \alpha < \lambda, i < \lambda) \) is a basis of \(M_2 \)

\(\gamma \) \(\bar{x} \) is a basis of \(M_1 \) so with no repetitions

\(\gamma \) \(\bar{g} = (g_\alpha : \alpha < \lambda) \) where \(g_\alpha : \lambda \to \lambda \)

\(\beta \) \(\alpha_0 < \ldots < \alpha_n < \lambda \) and \(k \leq n \) then \(\text{for some } \varepsilon < \lambda, \varepsilon \in \text{Rang}(g_{\alpha_k}) \) but \(\ell \leq n \land \ell \neq k \Rightarrow \varepsilon \notin \text{Rang}(g_{\alpha_k}) \)

\(\gamma \) \(\text{Rang}(g_{\alpha}) \) is unbounded in \(\lambda \)

\(\delta \) \(\text{if } \varepsilon < \lambda \text{ then } \varphi_2(M) = \text{PC}_M(\{x_\alpha + y_{\alpha,i} : \alpha < \lambda, i < \lambda \text{ are such that } g_\alpha(i) \geq \varepsilon \}) \).

Proof. So assume that \(P \) is a forcing notion and in \(V^P \) we have an automorphism \(f \) of \(G \) such that \(f|\psi_1(M) \) is not the identity. Now \(\{x_\alpha : \alpha < \lambda\} \) is a basis of \(\psi_1(M) \), i.e. of \(M_1 \) and \(M \) is torsion free so also \(\psi_1(M) \) is torsion free, hence

\(\exists_1 f \{x_\alpha : \alpha < \lambda\} \) is not the identity.

Next, the crucial point

\[\exists_2 \text{ for every } \alpha < \lambda, f(x_\alpha) \in \text{PC}(\{x_\alpha\}). \]

Why? \(f \) is an automorphism of \(M \) hence \(M \models \psi_1[f(x_\alpha)] \land f(x_\alpha) \neq 0 \). Recalling that \(\bar{x} \) is a basis of \(M_1 \) we can find \(a_0 < \ldots < a_n < \lambda \) and \(a_0, \ldots, a_n, b \in R^+ \) such that

\[(*)_{2.1} \text{ bf}(x_\alpha) = a_0 x_{\alpha_0} + \ldots + a_n x_{\alpha_n}. \]

If \(n = 0 \land a_0 = \alpha \) we are done so assume that this fails hence for some \(k \leq n \) we have \(\alpha_k \neq \alpha \). There is \(\varepsilon \) such that

\[(*)_{2.2} \varepsilon < \lambda \text{ and } \varepsilon \in \text{Rang}(g_{\alpha_k}) \text{ but } \varepsilon \notin \text{Rang}(g_{\alpha_k}) \text{ and } \ell \leq n \land \ell \neq k \Rightarrow \varepsilon \notin \text{Rang}(g_{\alpha_k}). \]

Why? If \(\alpha \in \{\alpha_\ell : \ell \leq n\} \) we apply clause \((*)_{2.1}(\beta)\) to \(\langle \alpha_\ell : \ell \leq n \rangle \) and \(k \) to find \(\varepsilon \). If \(\alpha \notin \{\alpha_\ell : \ell \leq n\} \) let \(\alpha_{n+1} = \alpha \) and apply clause \((*)_{2.2}(\beta)\) to \(\langle \alpha_\ell : \ell \leq n + 1 \rangle \) and \(k \) to find \(\varepsilon \).

For \(\zeta < \lambda \) and \(z \in M_1 \) let \(A^M_{\zeta,z} := \{t \in M_2 : z + t \in N_\zeta\} \).

\footnote{We do not ask, e.g. \(g_{\alpha_\ell}(\varepsilon) > g_{\alpha_\ell}(\varepsilon) \) for \(\ell \leq n, \ell \neq k! \)}
\((*)_{2.3} \) \(A^M_{\zeta,z} \) is definable in \(M\) from \(z\)

hence

\((*)_{2.4} \) \(f\) maps \(A^M_{\zeta,x_\alpha}\) onto \(A^M_{\zeta,f(x_\alpha)}\) for \(\zeta < \lambda, \alpha < \lambda\).

Next

\((*)_{2.5} \) \(A^M_{\zeta,x_\alpha} = A^M_{\zeta+1,x_\alpha} \).

[Why? Recall \(\varphi_\zeta(M) = N_\zeta\) is the sub-module of \(M\) which is \(\text{PC}(\{x_\beta + y_\beta,i : \beta, i < \lambda, g_\alpha(i) \geq \zeta\})\) hence is a sub-module of \(M_1 + M_2\). For every \(\zeta < \lambda\) and \(t \in M_2\) we have \(t \in A^M_{\zeta,x_\alpha} \Leftrightarrow x_\alpha + t \in N_\zeta \Rightarrow M \models \varphi_\zeta(x_\alpha + t) \Leftrightarrow x_\alpha + t \in \text{PC}(\{x_\beta + y_\beta,i : \beta < \lambda, i < \lambda\})\).

As \(\langle x_\zeta, \gamma < \lambda \rangle \varphi_\gamma(y_\gamma,i : \beta, i < \lambda\) is independent in \(M\), necessarily also \(\langle x_\zeta + y_\zeta,i : \beta, i < \lambda\) is independent in \(M\) so for \(t \in M_2\) we get \(t \in A^M_{\zeta,x_\alpha} \Leftrightarrow x_\alpha + t \in \text{PC}(\{x_\alpha + y_\alpha,i : g_\alpha(i) \geq \zeta\})\). But for \(\zeta \in \{\varepsilon, \varepsilon + 1\}\) in the right side we get the same condition (as \(\varepsilon \notin \text{Rang}(g_\alpha)\)). So the left sides are equivalent too, i.e. \(t \in A^M_{\zeta,x_\alpha} \Rightarrow t \in A^M_{\zeta+1,x_\alpha}\) as promised.]

\((*)_{2.6} \) (a) if \(c \in R^+\) and \(x \in M_1\) and \(A^M_{\varepsilon,x} = A^M_{\varepsilon+1,x}\) then \(A^M_{\varepsilon,x} = A^M_{\varepsilon+1,x}\) e.g., for \((c,x) = (b,x_\alpha)\)

(b) \(A^M_{\varepsilon,bx_\alpha} = A^M_{\varepsilon+1,bx_\alpha}\).

[Why? Clause (a) holds by the proof of \((*)_{2.5}\) replacing \(x_\alpha\) by \(bx_\alpha\) except in “\(\text{PC}(\{x_\alpha + y_\alpha,i : g_\alpha(i) \geq \zeta\})\)” recalling \(M\) is torsion free. Clause (b) then follows.]

\((*)_{2.7} \) \(A^M_{\varepsilon,x} \neq A^M_{\varepsilon+1,x}\) when \(x = \sum_{\ell \leq n} a_\ell x_{a_\ell}\).

[Why? First, \(x \in M_1 = \psi_1(M)\); second, let \((i_\ell : \ell \leq n)\) be such that \(\ell \leq n \Rightarrow i_\ell \notin \lambda\) and \(g_\alpha(i_k) = \varepsilon\) and \(\ell \leq n, \ell \neq k \Rightarrow g_\alpha(i_k) > \varepsilon\); this is possible: for \(\ell = k\) by the choice of \(k\) and \(\varepsilon\), and for \(\ell \neq k\) because \(\text{Rang}(g_\beta)\) is an unbounded subset of \(\lambda\).

So

- \(x_{a_\ell} + y_{a_\ell,i_\ell} \notin N_\varepsilon\) for \(\ell \leq n\)
- \(x_{a_\ell} + y_{a_\ell,i_\ell} \notin N_{\varepsilon+1}\) for \(\ell \leq n, \ell \neq k\); recalling \(\varepsilon \notin \text{Rang}(\alpha_k)\)
- \(x_{a_k} + y_{a_k,i_k} \notin N_{\varepsilon+1}\) recalling \(g_\alpha(i_k) = \varepsilon\).

Hence as \(a_k \neq 0_R^\varepsilon\):

- \(\sum_{\ell \leq n} a_\ell x_{a_\ell} + \sum_{\ell \leq n} a_\ell y_{a_\ell,i_\ell} \notin N_{\varepsilon+1}\) \(\setminus N_\varepsilon\).

Hence recalling \(x = \sum_{\ell \leq n} a_\ell x_{a_\ell}\) we conclude

- \(\Sigma a_\ell y_{a_\ell,i_\ell} \in A^M_{\varepsilon,x} \setminus A^M_{\varepsilon+1,x}\).

So \((*)_{2.7}\) holds indeed.]

But recalling that \(bf(x_\alpha) = \sum_{\ell \leq n} a_\ell y_{a_\ell,i_\ell}\) so by \((*)_{2.7}\)

\((*)_{2.8} \) \(bf(x_\alpha) \in A^M_{\varepsilon,x} \setminus A^M_{\varepsilon+1,x}\)

and this contradicts \((*)_{2.6}(b)\), because \(f(bx_\alpha) = bfg(x_\alpha)\), so we are done proving \(\boxplus_2\) hence the main claim. \(\square\)
Claim 1.2. M is absolutely semi-rigid in $\psi_1(M)$ when

(*) as in [1,1] but replacing clause (d)(\(\beta\)) by (d)(\(\beta\)''), replacing clause (f) by (f)' and adding clause (g) where:

(d) \((\beta)'\) \(\langle y_{\alpha,i} : \alpha < \lambda, i < \lambda \rangle y_*\) is a basis of \(M_2\)

(f)' if \(\varepsilon < \lambda\) then \(\varphi_\varepsilon(M) = \text{PC}_M(\{x_\alpha + y_\alpha, : \alpha < \lambda, i < \lambda\})\)

(g) \(\varphi_\lambda(x) \in \mathbb{L}_{\infty,\aleph_0}(\tau_R)\) and \(N_\lambda := \varphi_\lambda(M) = \text{PC}_M(\{x_\alpha + y^\ast : \alpha < \lambda\})\) so a pure sub-module.

Proof. Let \(\mathbb{P}\) and \(f\) be as in the proof of Claim [1,1]. By the proof of Claim [1,1] we have \(\alpha < \lambda \Rightarrow f(x_\alpha) \in \text{PC}_M(\{x_\alpha\})\).

Let \(a, b \in R^+\) be such that \(f(ax_0) = bx_0\), easily it suffices to prove:

\(\oplus\) if \(\alpha < \lambda\) then \(f(ax_\alpha) = bx_\alpha\).

Why \(\oplus\) holds? If not, there are \(a_\ast, b_1, b_2 \in R^+\) and \(\alpha_1 < \alpha_2\) such that \(f(a_\ast x_\alpha_1) = b_2 x_\alpha_1\) for \(\ell = 1, 2\) and \(\alpha_1 < \alpha_2, b_1 \neq b_2\). So \(f(a_\ast x_\alpha_1 - a_\ast x_\alpha_2) = b_1 x_\alpha_1 - b_2 x_\alpha_2\). Also we know \(x_\alpha_1 + y_\ast \in \varphi_\lambda(M)\) hence \(a_\ast x_\alpha_1 - a_\ast x_\alpha_2 \in \varphi_\lambda(M)\) hence \(a_\ast b_1 x_\alpha_1 - a_\ast b_2 x_\alpha_2 = f(a_\ast x_\alpha_1 - a_\ast x_\alpha_2) \in \varphi_\lambda(M)\). But \(x_\alpha_1 + y_\ast \in \varphi_\lambda(M)\) hence \(a_\ast b_1 x_\alpha_1 + a_\ast b_2 y_\ast \in \varphi_\lambda(M)\) for \(\ell = 1, 2\) so by subtracting \((a_\ast b_1 x_\alpha_1 - a_\ast b_2 x_\alpha_2) + (a_\ast b_1 - a_\ast b_2)y_\ast \in \varphi_\lambda(M)\).

By the last two sentences \((a_\ast b_1 - a_\ast b_2)y_\ast \in \varphi_\lambda(M)\); but \(b_1 \neq b_2\) so \(a_\ast b_1 - a_\ast b_2 \neq 0\) hence \(y_\ast \in \varphi_\lambda(M)\) contradicting clause (g) of the assumption. \(\square\)

Conclusion 1.3. The model M is an absolutely rigid when:

(*)(a) R is a commutative torsion free ring with 1_R

(b) M is a torsion free R-module

(c) for some \(\bar{\psi} = (\psi_\ell : \ell < \iota_\ast)\) we have

(α) \(\psi_\ell \in L_{\infty,\aleph_0}(\tau_R)\)

(β) \(M_\ell = \psi(M)\) is a sub-module of \(M\)

(γ) \(M = \text{PC}_M(\bigcup M_\ell)\)

(δ) for every \(\ell\) there are \(j < \iota_\ast\) and \(\bar{\varphi}_\ell = \langle \varphi_\ell, \varepsilon : \varepsilon < \lambda \rangle\) such that \(M, \psi_\ell, \psi_j, \bar{\varphi}_\ell, \bar{\varphi}_\lambda\) satisfies the assumptions of [1,2] for \(M, \psi_1, \psi_2, \bar{\varphi}, \bar{\varphi}_\lambda\)

(ε) if \(c \in R^+\) is not invertible then for some \(\ell < \iota_\ast\) we have \(cM_\ell \neq M_\ell\)

(ζ) if \(0 \leq u \leq \iota_\ast\) then for some \(t_1 \in u_*\) and \(t_2 \in u \setminus u\) there are no automorphism \(\pi\) of \(\text{PC}_M(M_{t_1} \cup M_{t_2})\) and \(c_1 \neq c_2 \in \mathbb{Q}_R\) such that \(x \mapsto c_1x\) induce the automorphism \(\pi|_{M_\ell}\) of \(M_\ell\) for \(\ell = 1, 2\).

Proof. Let \(f\) be an automorphism of \(M\) in the universe \(\mathbb{V}_\mathbb{P}\) for some forcing notion \(\mathbb{P}\).

By [1,2] for every \(\ell < \iota_\ast\) for some \(c \in \mathbb{Q}_R\) we have \(c_* M_\ell = M\) and \(x \in M_\ell \Rightarrow f(x) = c_* x\). If \(\langle c_\ell : \ell < \iota_\ast\rangle\) is constant we are done by (*)\((c)\)(ε) so toward contradiction we assume it is not and so \(u := \langle \ell < c_* : c_\ell \neq c_0 \rangle\) is \(\neq \iota_\ast\) and \(\neq \emptyset\).

By (*)\((c)\)(ζ) we get a contradiction. \(\square\)

Theorem 1.4. Assume $R = \mathbb{Z}$ or just R is a commutative torsion free ring with 1 and has infinitely many primes. Then for every \(\lambda\) there is an absolutely rigid R-module of cardinality \(\lambda + |R|\).
Proof. Let \(p_\ell,q_\ell,n (\ell < \omega , n < \omega) \) be pairwise distinct primes of \(R \).
For each \(\ell \) we let
\[
(*)_1 \quad \psi_\ell(x) = \bigwedge_n (p_\ell^n | x) , \text{ of course } p_\ell^n \text{ is the } n\text{-th power of } p_\ell \\
(*)_2 \text{ we define } \varphi_\ell,\varepsilon,k(x_0, x_1) \text{ by induction on }\varepsilon \text{ as follows} \\
(\text{a) if } \varepsilon = 0 : \varphi_\ell,\varepsilon,k(x_0, x_1) = (\psi_\ell,k(x_0) \land \psi_{\ell+1,k}(x_1) \land _m ((q_\ell,k)^m | (x_0 + x_1)) \\
(\text{b) if } \varepsilon > 0, \varphi_\ell,\varepsilon,k(x_0, x_1) = \bigwedge_\zeta < \varepsilon \varphi_\ell,\zeta,k(x_0, x_1) \land \bigwedge_\zeta <\varepsilon (\exists x_2)(\varphi_\ell,\varepsilon,k+1(x_1, x_2) \\
(*)_3 \text{ for } \varepsilon \leq \lambda \text{ let } \varphi_\ell,\varepsilon(x) = \bigvee_{b \in R} (\exists x_0, x_1) (bx = x_0 + x_1 \land \varphi_\ell,\varepsilon,0(x_0, x_1)).
\]

The rest should be clear. \\[\square\]

Theorem 1.5. (ZF)
1) For every cardinal \(\lambda \) there is such an absolutely rigid Abelian group of cardinality \(\lambda \).
2) Moreover, if \(A \subseteq \mathcal{P}(\lambda), \aleph_0 \leq |A| = |A|^{\omega} \), then there is such a group of power \(|A| \).
3) Similarly for \(R\)-modules when \(R \) is as in [1.4] and \(R \) is well orderable.

Proof. Should be clear. \\[\square\]

So we can

Theorem 1.6. For every \(\lambda \), there are \(2^\lambda \) absolutely rigid, pairwise absolutely non-isomorphic Abelian groups of cardinality \(\lambda \).

Proof. Obvious by the proof. \\[\square\]

Recall that we cannot exclude embeddings (= mono-morphisms). So we may wonder what about the epimorphisms?

Claim 1.7. If \(f \) is an endomorphism of \(M \) which maps \(\varphi_0(M) \) onto \(\varphi_0(M) \) then \(f |\varphi_0(M) \) is one-to-one provided that:

\[
(*) \begin{align*}
(a) & \text{ R is a commutative torsion free ring with } 1_R \\
(b) & \text{ M is a torsion free } R\text{-module} \\
(c) & \varphi_\varepsilon(x) \in \mathbb{L}_{\infty,\aleph_0}^\mathcal{P}(\tau_R) \text{, for } \varepsilon \leq \varepsilon_* \text{ where } ep \text{ stands for existential positive} \\
& \text{ (or just generated from the atomic formulas by } \exists \text{ and } \land) \\
(d) & (\varphi_\varepsilon(M) : \varepsilon \leq \varepsilon_*) \text{ is } \subseteq\text{-decreasing continuous of sub-modules of } M \\
(e) & \varphi_{\varepsilon_*}(M) = \{0_M\} \\
(f) & \varphi_\varepsilon(M)/\varphi_{\varepsilon+1}(M) \text{ is torsion free of rank } 1, \text{ so isomorphic to some sub-} R\text{-module of } \mathbb{Q}_R \text{ (= the field of fractions of } R) \text{ considered as an } R\text{-module} \\
(g) & x_\varepsilon \in \varphi_\varepsilon(M) \setminus \varphi_{\varepsilon+1}(M) \text{ for } \varepsilon < \varepsilon_* \\
(h) & \varphi_0(M) = PC_M(\{x_\varepsilon : \varepsilon < \varepsilon_*\}).
\end{align*}
\]

Remark 1.8. E.g. for \(R = \mathbb{Z} \), we can use in (f) “finite rank torsion free”.

Proof. For \(\varepsilon < \varepsilon_* \) let \(y_\varepsilon := f(x_\varepsilon) \). As \(\varphi_\varepsilon(x) \in \mathbb{L}_{\infty,\aleph_0}(\tau_R) \) is existential positive, clearly \(f \) maps \(\varphi_\varepsilon(M) \) into \(\varphi_\varepsilon(M) \), hence \(y_\varepsilon \in \varphi_\varepsilon(M) \).

The main point is:
Why is \((\ast)\) sufficient?

If \(x \in \varphi_0(M) \setminus \{0_M\}\) then by clause (h) of the assumption for some \(b \in R^+, n\) and \(\varepsilon_0 < \ldots < \varepsilon_n < \varepsilon_\ast\) and \(a_\ell \in R^+\) for \(\ell \leq n\) we have \(M \models bx = \sum_{\ell \leq n} a_\ell x_{\varepsilon_\ell}\)

hence \(bf(x) = \sum_{\ell \leq n} a_\ell f(x_{\alpha_\ell}) = a_0 y_{\varepsilon_0} + \varphi_{\varepsilon_0+1}(M)\). As \(a_0 \in R^+\), by clause (g) clearly \(y_{\varepsilon_0} \in \varphi_{\varepsilon_0}(M_{\varepsilon_0}) \setminus \varphi_{\varepsilon_0+1}(M)\) and by clause (f) of the assumption, \(a_0 y_{\varepsilon_0} \not\in \varphi_{\varepsilon_0+1}(M)\) hence by the previous sentence \(bf(x) \neq 0_M\) hence \(f(x) \neq 0_M\). So we have proved that \(f\) maps any non-zero member of \(\varphi_0(M)\) into a non-zero member of \(\varphi_0(M)\), hence \(f|\varphi_0(M)\) is one-to-one as promised.

Why is \((\ast)\) true?

Toward contradiction, assume \(Y \neq \emptyset\) and let \(\zeta\) be the first member of \(Y\). As we are assuming “\(f\) maps \(\varphi_0(M)\) onto \(\varphi_0(M)\)” there is \(z \in \varphi_0(M)\) such that \(f(z) = x_\zeta\). As \(z \in \varphi_0(M)\) by clause (h) of the assumption of the claim we can find \(b \in R^+, n\) and \(\varepsilon_0 < \ldots < \varepsilon_n < \varepsilon_\ast\) and \(a_0, \ldots, a_n \in R^+\) such that \(M \models bz = \sum_{\ell \leq n} a_\ell x_{\varepsilon_\ell}\); now applying \(f\) we have \(M \models bx_\zeta = \sum_{\ell \leq n} a_\ell y_{\varepsilon_\ell}\).

Case 1: \(\varepsilon_0 < \zeta\)

Note that \(bx_\zeta \in \varphi_\zeta(M) \subseteq \varphi_{\varepsilon_0+1}(M)\) and \(\ell > 0 \Rightarrow a_\ell y_{\varepsilon_\ell} \in \varphi_{\varepsilon_\ell}(M) \subseteq \varphi_{\varepsilon_0+1}(M)\) so as \(bx_\zeta = \sum_{\ell \leq n} a_\ell y_{\varepsilon_\ell}\) we get \(a_0 y_{\varepsilon_0} \in \varphi_{\varepsilon_0+1}(M)\) and as \(a_0 \in R^+\) by clause (f) we get \(y_{\varepsilon_0} \in \varphi_{\varepsilon_0+1}(M)\) hence contradiction to \(\varepsilon_0 < \zeta = \min(Y)\).

Case 2: \(\varepsilon_0 \geq \zeta\)

On the one hand as \(b \in R^+\) clearly \(bx_\zeta \not\in \varphi_{\zeta+1}(M)\). On the other hand \(\varepsilon_\ell > \zeta \Rightarrow a_\ell y_{\varepsilon_\ell} \in \varphi_{\varepsilon_\ell}(M) \subseteq \varphi_{\varepsilon_0+1}(M)\) and \(\varepsilon_\ell = \zeta \Rightarrow \ell = 0 \Rightarrow y_{\varepsilon_\ell} = y_\zeta \in \varphi_\zeta(M)\) hence \(\sum_{\ell \leq n} a_\ell y_{\varepsilon_\ell} \in \varphi_\zeta(M)\). Together we get a contradiction to \(M \models bx_\zeta = \sum_{\ell \leq n} a_\ell y_{\varepsilon_\ell}\). \(\square\)

Conclusion 1.9. Theorem 1.4, 1.5 we can strengthen “no automorphism” to “no endomorphism which is onto”.

Proof. Easy by 1.8 and the proof of 1.4, 1.5. \(\square\)
References

[Bar73] Jon Barwise, Back and forth through infinitary logic, Studies in Model Theory, Math. Assoc. Amer., Buffalo, N.Y., 1973, pp. 5–34, MAA Studies in Math., Vol. 8.
[Cor69] A. L. S. Corner, Endomorphism algebras of large modules with distinguished submodules, Journal of Algebra 11 (1969), 155–185.
[EM02] Paul C. Eklof and Alan Mekler, Almost free modules: Set theoretic methods, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002, Revised Edition.
[FG08] Laszlo Fuchs and Rüdiger Göbel, Modules with absolute endomorphism rings, Israel J. Math. 167 (2008), 91–109.
[Fuc73] Laszlo Fuchs, Infinite Abelian Groups, vol. I, II, Academic Press, New York, 1970, 1973.
[Fuc73] ———, Infinite Abelian Groups, vol. I, II, Academic Press, New York, 1970, 1973.
[Fuc74] László Fuchs, Indecomposable abelian groups of measurable cardinalities, Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abelianii, INDAM, Rome, 1972), Academic Press, London, 1974, pp. 233–244.
[GM90] Rüdiger Göbel and Warren May, Four submodules suffice for realizing algebras over commutative rings, Journal of Pure and Applied Algebra 65 (1990), 29–43.
[GT12] Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, vol. i, ii, de Gruyter Expositions in Mathematics, Walter de Gruyter, 2012.
[Nad94] M.E. Nadel, Scott heights of abelian groups, Journal of Symbolic Logic 59 (1994), 1351–1359.
[Sh:11] Saharon Shelah, On the number of non-almost isomorphic models of T in a power, Pacific Journal of Mathematics 36 (1971), 811–818.
[Sh:12] ———, The number of non-isomorphic models of an unstable first-order theory, Israel Journal of Mathematics 9 (1971), 473–487.
[Sh:44] ———, Infinite abelian groups, Whitehead problem and some constructions, Israel Journal of Mathematics 18 (1974), 243–256.
[EkSh:678] Paul C. Eklof and Saharon Shelah, Absolutely rigid systems and absolutely indecomposable groups, Abelian groups and modules (Dublin, 1998), Trends in Mathematics, Birkhäuser, Basel, 1999, math.LO/0010264, pp. 257–268.
[Sh:797] Saharon Shelah, Nice infinitary logics, Journal of the American Mathematical Society 25 (2012), 395–427, 1005.2806.
[Sh:F808] Absolutely indecomposable.
[GbSh:880] Ruediger Goebel and Saharon Shelah, Absolutely Indecomposable Modules, Proceedings of the American Mathematical Society 135 (2007), 1641–1649, 0711.3011.
[LwSh:1016] Michael C. Laskowski and Saharon Shelah, Borel completeness of some aleph-stable theories, Fundamenta Mathematicae.