Face scale rating of perceived exertion during cardiopulmonary exercise test

Shinichiro Morishita, Atsuhiro Tsubaki, Satoshi Nashimoto, Jack B Fu, Hideaki Onishi

ABSTRACT

Objective This study aimed to investigate the correlation between the face scale and heart rate (HR), exercise load and oxygen uptake (VO₂) during cardiopulmonary exercise testing.

Methods This was a prospective, observational study of face scale rating of perceived exertion (RPE) and HR, exercise load and VO₂ during cardiopulmonary exercise testing. A total of 30 healthy college men and 21 healthy college women were included. Subjects performed a cardiopulmonary exercise test with ramps and an increment increase in workload of 20 W/min. We recorded the responses of subjects using a face scale for RPE, HR, exercise load and VO₂ every minute during the cardiopulmonary exercise test.

Results In men, there was a significant positive correlation between the face scale RPE and HR (r=0.856, p<0.01), exercise load (r=0.888, p<0.01) and VO₂ (r=0.878, p<0.01) during the cardiopulmonary exercise test. Similarly, in women, there was a significant positive correlation between the face scale RPE and HR (r=0.885, p<0.01), exercise load (r=0.908, p<0.01) and VO₂ (r=0.895, p<0.01) during the cardiopulmonary exercise tests.

Conclusion The face scale proposed in this study was related to physiological parameters, which suggests that it may be used to determine the intensity of exercise in healthy adults.

INTRODUCTION

Aerobic exercise is a low-intensity to high-intensity exercise that depends primarily on the aerobic energy-generating process. It includes activities that increase breathing and heart rate (HR) such as walking, jogging, swimming and biking exercises. Aerobic exercise can be used in patients with various diseases such as cardiovascular disease, chronic obstructive pulmonary disease, stroke, Parkinson’s disease, cancer and diabetes. It helps maintain cardiorespiratory and muscular fitness in addition to flexibility in healthy adults. Since there is a positive correlation between HR and exercise intensity in individuals performing aerobic exercise using HR monitoring devices, HR is often used to determine the intensity of aerobic exercise. In addition, ratings of perceived exertion (RPE), such as the Borg scale, are often used as an alternative to HR to determine aerobic exercise intensity. However, the Borg scale can be challenging for the elderly and children who may have difficulty understanding numbers and instrumental words such as ‘somewhat strong’ for perceived exertion. In contrast, the face scale was used to assess pain in patients using a face scale instead of the RPE to determine exercise load for elderly and children subjects. Because this scale has the face illustration, it may be easily to understand for elderly and children subjects.

What are the new findings?

- We found that the face scale rate of perceived exertion (RPE) tended to increase with exercise load.
- The face scale RPE is easy to understand perceived exertion during exercise; furthermore, this scale was usable to determine the intensity of exercise.

How might it impact on clinical practice in the near future?

- Face scale RPE may be was preferred over the Borg scale to determine exercise load for elderly and children subjects.
- Because this scale has the face illustration, it may be easily to understand for elderly and children subjects.

Correspondence to Shinichiro Morishita; pompomori@yahoo.co.jp

To cite: Morishita S, Tsubaki A, Nashimoto S, et al. BMJ Open Sport & Exercise Medicine 2018;4:e000474. doi:10.1136/bmjsem-2018-000474

This study was partially supported by grants from the Ministry of Health, Labour and Welfare, Japan. The funding body had no role in the study design, data collection, analysis and interpretation, or writing the manuscript.

Conflict of interest statement

None.

Accepted 21 November 2018
face scale RPE and HR, exercise load and \(\dot{V}O_2 \) during cardiopulmonary exercise. A total of 30 healthy college men and 21 healthy college were included. Subjects performed cardiopulmonary exercise tests with ramp exercise protocols to determine the \(\dot{V}O_2 \). Each participant provided written informed consent after receiving information regarding the potential risks, study objectives, measurement techniques and benefits associated with the study. Our protocol consisted of a 4 min rest, 4 min warm-up, cardiopulmonary exercise and 2 min cool-down. A ramp programme with an incremental increase in workload of 20 W/min was employed using stationary bicycles (Aerobike 75XLIII; Konami, Tokyo, Japan) with ECG (DS-7520, Fukuda Dentshi, Tokyo, Japan), and an exhaled gas analyzer (AE-310S; Minato Medical Science, Osaka, Japan). All subjects were instructed to maintain a cadence of 50 rotations per minute (rpm) during the cardiopulmonary exercise test. Exhaustion was defined as follows (1): a plateau in oxygen consumption (\(\dot{V}O_2 \)); (2) respiratory exchange ratio >1.1; (3) HR values near the age-predicted maximal heart rate, calculated as 220 – (0.65×age); and (4) a decrease in the cycling cadence to <50 rpm, despite strong verbal encouragement. The highest value obtained for \(\dot{V}O_2 \) was considered the \(\dot{V}O_2 \) peak. We evaluated HR using ECG, exercise load (watts) and \(\dot{V}O_2 \) using an exhaled gas analyzer every minute during cardiopulmonary exercise test and at the end of the exercise test. All subjects were asked ‘how hard you feel you are working’ using the face scale RPE and their responses were recorded. Additionally, we determined anaerobic thresholds (ATs) using the \(\dot{V}O_2 \) method during the cardiopulmonary exercise tests.

The outcomes were reported as a mean and SD or median. Spearman’s rank correlation coefficients (\(\rho \)) were calculated to evaluate the correlation between the face scale RPE and HR, watts, and \(\dot{V}O_2 \) every minute during the cardiopulmonary exercise tests. Statistical analyses were performed using SPSS V.19.0J. \(P \) values<0.05 were considered statistically significant.

RESULTS

All subjects performed the cardiopulmonary exercise test. Table 1 shows characteristics of subjects stratified by sex, results of the cardiopulmonary exercise tests at rest, AT and at the end.

In men, there was a significant positive correlation between the face scale RPE and HR (\(\rho=0.856, p<0.01 \)), exercise load (\(\rho=0.888, p<0.01 \)) and \(\dot{V}O_2 \) (\(\rho=0.878, p<0.01 \)) during the cardiopulmonary exercise testing. Similarly, in women, there was a significant positive correlation between the face scale RPE and HR (\(\rho=0.885, p<0.01 \)), exercise load (\(\rho=0.908, p<0.01 \)) and \(\dot{V}O_2 \) (\(\rho=0.895, p<0.01 \)) during cardiopulmonary exercise testing.

Table 1 Characteristics of subjects (n=51)

Characteristics	Men (n=30)	Women (n=21)
Age, years (SD)	21 (1.1)	20.9 (0.3)
Median	21	21
Height, cm (SD)	171.9 (5.7)	158.8 (4.9)
Body weight, kg (SD)	63.2 (5.7)	50.8 (4.9)
Cardiopulmonary exercise testing		
At rest		
Face scale RPE	0.3 (0.8)	0.3 (0.7)
HR (beat/min)	82.9 (11.9)	88.5 (13.7)
Exercise load (W)	0	0
\(\dot{V}O_2 \) (mL/kg/min)	4.1 (0.5)	3.9 (0.3)
Anaerobic threshold		
Face scale RPE	3.5 (1.6)	4.4 (1.5)
HR (beat/min)	128.8 (13.0)	139.2 (20.5)
Exercise load (W)	97.7 (14.4)	75.7 (13.3)
\(\dot{V}O_2 \) (mL/kg/min)	18.0 (2.9)	16.9 (3.1)
End of test (maximum)		
Face scale RPE	9.1 (1.1)	8.3 (1.5)
HR (beat/min)	184 (12.2)	174.7 (13.5)
Exercise load (W)	192.3 (79.1)	125.6 (20.6)
\(\dot{V}O_2 \) (mL/kg/min)	37.9 (5.3)	26.4 (4.1)
DISCUSSION

This study showed that in both sexes of healthy college subjects there was a positive correlation between the face scale RPE and physiological outcomes during cardiopulmonary exercise testing. Limited data are available on the use of face scale RPE in cardiopulmonary exercise tests. Similar to our results, a previous study that compared the RPE scale using facial images and the Borg scale during exercise in both young adults and children reported that facial RPE was positively correlated to exercise load and HR in both groups. Our study reported that face scale RPE during cardiopulmonary exercise testing was positively correlated to HR and exercise load; in addition, face scale RPE was positively correlated to VO$_2$ during cardiopulmonary exercise in young adults. In our study, the correlation coefficient (p) between the face scale and HR, exercise load and VO$_2$ were 0.8–0.9 during cardiopulmonary exercise, which indicates a high positive correlation. The face scale RPE may be correlated to oxygen uptake not only HR and exercise load during cardiopulmonary exercise testing. The OMNI scale is often used to assess perceived exertion in children during exercise. It was initially developed for children who have difficulty understanding the association between written words and exercise intensity. However, it comprises pictures that are displayed on a line with a 20–25° slope. In contrast, the face scale RPE used in this study is easy to understand and highly correlated to physiological exercise parameters. Thus, it may be used to determine the exercise load.

This study was limited to investigating the correlation between the face scale RPE and HR, exercise load and VO$_2$ in healthy adults and did not include elderly or children subjects. Thus future studies are warranted for investigating the correlation between the face scale and physiological parameters during cardiopulmonary exercise in elderly and children subjects.

CONCLUSION

In this study, we investigated the correlation between the face scale RPE and HR, exercise load and VO$_2$ during cardiopulmonary exercise in healthy adults. Our results showed that there was a significant positive correlation between the face scale RPE and HR, exercise load and VO$_2$. This suggests that it may be used to determine the intensity of physical exercise in healthy adults.

PERSPECTIVE

We found that the face scale rate of perceived exertion tended to increase with exercise load. The face scale rate of perceived exertion was usable in both men and women to determine the intensity of exercise. The face scale rate of perceived exertion may be used as an alternative to heart rate to determine exercise load. Face scale may be preferred over the Borg scale to determine exercise load for elderly and children subjects. Because this scale has the face illustration, it may be easily to understand for elderly and children subjects.

Acknowledgements The authors are grateful to the study participants and physical therapy students Sho Kojima and Yuta Inagaki for helping in the measuring data.

Contributors SM, AT and HO were responsible for the data collection and data analysis. SN and JBF interpreted the data and wrote the first draft of the paper. All authors contributed to the final paper.

Funding This study was partly supported by a Grant-in-Aid for Niigata University of Health and Welfare as well as the M.D. Anderson Cancer Center support grant CA 016672.

Competing interests None declared.

Patient consent for publication Not required.
REFERENCES

1. Whelton SP, Chin A, Xin X, et al. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. *Ann Intern Med* 2002;136:493–503.

2. Antal R, O’Toole M. Guidelines of the American College of Obstetricians and Gynecologists for exercise during pregnancy and the postpartum period. *Br J Sports Med* 2003;37:6–12.

3. Hill AM, Buckley JD, Murphy KJ, et al. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. *Am J Clin Nutr* 2007;85:1267–74.

4. Borghi-Silva A, Arena R, Castello V, et al. Aerobic exercise training improves autonomic nervous control in patients with COPD. *Respir Med* 2009;103:1503–10.

5. Stoller O, de Bruin ED, Knols RH, et al. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. *BMC Neurol* 2012;12:45.

6. Goodwin VA, Richards SH, Taylor RS, et al. The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. *Mov Disord* 2008;23:631–40.

7. Segal RJ, Reid RD, Courneya KS, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. *J Clin Oncol* 2009;27:344–51.

8. Dixit S, Maiya A, Shastry B. Effect of aerobic exercise on quality of life in population with diabetic peripheral neuropathy in type 2 diabetes: a single blind, randomized controlled trial. *Qual Life Res* 2014;23:1629–40.

9. Zheng G, Xia R, Zhou W, et al. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med* 2016;50:1443–50.

10. Emerenziani GP, Gallotta MC, Meucci M, et al. Effects of aerobic exercise based upon heart rate at aerobic threshold in obese elderly subjects with type 2 diabetes. *Int J Endocrinol* 2015;2015:1–7.

11. Astokorki AH, Mauger AR. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. *Scand J Med Sci Sports* 2017;27:309–17.

12. Weston M, Batterham AM, Tew GA, et al. Patients awaiting surgical repair for large abdominal aortic aneurysms can exercise at moderate to hard intensities with a low risk of adverse events. *Front Physiol* 2016;7.

13. Hill AM, Buckley JD, Murphy KJ, et al. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. *Am J Clin Nutr* 2007;85:1267–74.

14. Segal RJ, Reid RD, Courneya KS, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. *J Clin Oncol* 2009;27:344–51.

15. Herr KA, Mobily PR, Kohout FJ, et al. Evaluation of the faces pain scale for use with the elderly. *Clin J Pain* 1998;14:29–38.

16. McGrath PA, Seifert CE, Speechley KN, et al. A new analogue scale for assessing children’s pain: an initial validation study. *Pain* 1996;64:435–43.

17. Wong DL, Baker CM. Pain in children: comparison of assessment scales. *Oklahoma Pediatrics* 1988;33:8.

18. Myers J, Bellin D. Ramp exercise protocols for clinical and cardiopulmonary exercise testing. *Sports Med* 2000;30:23–9.

19. Rupp T, Thomas R, Perrey S, et al. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. *Eur J Appl Physiol* 2008;102:153–63.

20. Hopker JG, Jobson SA, Pandit JJ. Controversies in the physiological basis of the ‘anaerobic threshold’ and their implications for clinical cardiopulmonary exercise testing. *Anaesthesia* 2011;66:111–23.

21. Chen YL, Chiou WK, Tseng YT, et al. A rating of perceived exertion scale using facial expressions for conveying exercise intensity for elderly people with Parkinson disease. *J Sci Med Sport* 2014;17:249–54.

22. Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. *Malawi Med J* 2012;24:69–71.

23. Robertson RJ, Moyna NM, Sward KL, et al. Gender comparison of RPE at absolute and relative physiological criteria. *Med Sci Sports Exerc* 2000;32:2120–9.

24. Borg GA. Psychophysical bases of perceived exertion. *Med Sci Sports Exerc* 1982;14:377–81.