Supplementary Information

Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates

Hanna Tarhonskaya1, Radoslaw P. Nowak1,2, Catrine Johansson1,3, Aleksandra Szykowska2, Anthony Tumber3, Rebecca L. Hancock1, Pauline Lang1, Emily Flashman1, Udo Oppermann2, Christopher J. Schofield1* and Akane Kawamura1*

1Chemistry Research Laboratory, University of Oxford, Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
2Structural Genomic Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.
3Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Windmill Road, Oxford, OX3 7LD, United Kingdom.

†These authors contributed equally to this work.
*To whom correspondence should be addressed: christopher.schofield@chem.ox.ac.uk, akane.kawamura@chem.ox.ac.uk
Figure S1. Determination of kinetic parameters for KDM5B with H3K4me2(1-21). A. Conditions: 1 µM KDM5B was incubated with different concentrations of 2OG, 5 µM H3K4me2(1-21), 10 µM Fe(II), 500 µM L-ascorbate in 50 mM HEPES 150 mM NaCl (pH 7.5). B. Conditions: 0.6 µM KDM5B was incubated with 10 µM 2OG, various concentrations of H3K4me2(1-21), 10 µM Fe(II), 500 µM L-ascorbate in 50 mM HEPES 150 mM NaCl pH 7.5. Error bars represent standard deviations for triplicate assays. The levels of methylated and demethylated peptides were analysed by MALDI-TOF-MS.
Figure S2. Inhibition of KDM5B by TCA cycle intermediates. A. pyruvate, B. succinate, C. fumarate, D. malate, E. D-2HG, F. L-2HG, G. oxaloacetate, H. citrate. Assay conditions: 0.6 µM KDM5B was incubated with 3 µM 2OG, 5 µM H3K4me2(1-21), 10 µM Fe(II), 500 µM L-ascorbate in 50 mM HEPES 50 mM NaCl (pH 7.5). Error bars represent standard deviations for triplicate assays. The levels of methylated and demethylated peptides were analysed by MALDI-TOF-MS.
Figure S3: Views from the crystal structures of KDM5B in complex with inhibitors occupying the 2OG binding pocket. Active site of KDM5B (green) in complex with 2OG (yellow) (PDB ID 5FUP) overlaid with (A) KDM5B:KDOAM25A complex (PDB ID 5A3N, silver and magenta respectively) and (B) KDM5A:CPI-455 complex (PDB ID 5A3N, silver and cyan respectively). Metal ions are shown as purple and orange spheres, and water molecules in the KDM5B:KDOAM25 complex as grey spheres. Amino acid residues are labelled as in PDB ID 5FUP. Note the overlap of the inhibitor and 2OG binding sites.
Table S1. Results of K_i determination for succinate using GraphPad Prism 5.0.

The data were globally fitted using a competitive inhibition model.

Competitive inhibition	Best-fit values	Std. Error	95% Confidence Intervals	Goodness of Fit
K_m	3.006 3.006 3.006 3.006 3.006	0.5003 0.5003 0.5003 0.5003 0.5003	1.989 to 4.023	0.9523
I	30.00 30.00 30.00 30.00 30.00	5.583 5.583 5.583 5.583 5.583	15.42 to 38.13	0.9085
K_i	26.77 26.77 26.77 26.77 26.77	0.0001377 0.0001377 0.0001377 0.0001377 0.0001377	0.004170 to 0.004170 to 0.004170 to 0.004170 to 0.004170 to	0.9725
V_{max}	0.004450 0.004450 0.004450 0.004450 0.004450	0.0001377 0.0001377 0.0001377 0.0001377 0.0001377	0.004730 0.004730 0.004730 0.004730 0.004730	0.9713

Number of points Analyzed: 9 9 9 10
Table S2. Results of K_i determination for oxaloacetate using GraphPad Prism 5.0. The data were globally fitted using a competitive inhibition model.

Competitive inhibition	Best-fit values	Std. Error	95% Confidence Intervals	Goodness of Fit	Constraints	
	K_m	I	K_i	V_{max}		
	5.905	$= 0.0$	54.00	0.006615	$K_m > 0.0$ and shared	$K_m > 0.0$ and shared
	5.905	$= 15.00$	54.00	0.006615	$K_m > 0.0$ and shared	
	5.905	$= 50.00$	54.00	0.006615	$K_m > 0.0$ and shared	
	5.905	$= 100.0$	54.00	0.006615	$K_m > 0.0$ and shared	
	$I = 0.0$	6.109	0.0002073	4.860 to 6.950	$K_m > 0.0$ and shared	
	$I = 15.00$	6.109	0.0002073	4.860 to 6.950	$K_m > 0.0$ and shared	
	$I = 50.00$	6.109	0.0002073	4.860 to 6.950	$K_m > 0.0$ and shared	
	$I = 100.0$	6.109	0.0002073	4.860 to 6.950	$K_m > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	2.669e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	3.110e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	1.220e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	8.780e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	8.780e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	8.780e-007	$V_{max} > 0.0$ and shared	
	$V_{max} > 0.0$	0.007042	0.007042	8.780e-007	$V_{max} > 0.0$ and shared	

Degrees of Freedom	26
R square	0.9869
Absolute Sum of Squares	2.669e-007, 1.782e-007, 3.110e-007, 1.220e-007, 8.780e-007
Sy.x	0.0001838

Number of points Analyzed: 7, 7, 7, 8
Table S3. Results of determination of 2OG K_m^{app} in the presence of different concentrations of succinate and oxaloacetate. The data were analysed by non-linear regression using GraphPad Prism 5.0.

Succinate, μM	$V_{m^{\text{app}}}$, μM/s	$K_{m^{\text{app}}}$, μM	Oxaloacetate, μM	$V_{m^{\text{app}}}$, μM/s	$K_{m^{\text{app}}}$, μM			
0	0.0043	3.4	0	0.0062	5.0			
30	0.0044	4.0	15	0.0066	7.2			
100	0.0046	19.5	50	0.0070	15.0			
300	0.0046	44	100	0.0069	18.5			
2OG	ZUP	Succinate	Fumarate	Oxaloacetate	Pyruvate	Malate	D-2HG	L-2HG
---------	-----	-----------	----------	--------------	----------	--------	-------	-------
Wavelength (Å)	0.9173	0.9173	0.9173	0.9795	0.9795	0.9795	0.9795	0.9173
Resolution range (Å)	71.17	71.07-2.1	64.28-2.47	57.07-1.87	57.13-2.03	61.57-1.86	61.57-1.86	47.88-1.89
	-2.15	(2.175-2.558)	-2.47	(1.937-1.87)	(2.103-2.03)	(1.926-1.86)	(1.926-1.86)	(1.958-1.89)
	-2.27	(2.1)	-2.15	-1.87	-1.87	-1.87	-1.87	-2.05
	-2.15	(2.15)	-2.47	-1.87	-1.87	-1.87	-1.87	-2.05
Space group	P 6 2 2	P 6 2 2	P 6 2 2	P 6 2 2	P 6 2 2	P 6 2 2	P 6 2 2	P 6 2 2
Unit cell	α 142.34	142.14	141.68	141.68	141.68	141.68	142.29	142.08
	β 142.34	142.14	141.68	141.68	141.68	141.68	142.29	142.08
	γ 152.26	90.90	90.90	90.90	90.90	90.90	152.47	151.41
	90.120	120	120	120	120	120	90.120	90.120
Completeness (%)	623357	1057061	1057061	1488447	1173428	1516065	1438569	1108750
Unique reflections	623357	1057061	1057061	1488447	1173428	1516065	1438569	1108750
Multiplicity	193	193	193	193	193	193	193	193
Compleness (%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Mean l/σ(l)	29.51	19.90	10.31	15.89	15.64	15.85	15.78	15.78
Wilson B-factor	38.12	45.47	57.76	40.40	40.40	35.77	41.76	41.76
R-merge (%)	0.06963	0.1085	0.2032	0.1285	0.1285	0.1153	0.1097	0.1344
R-work (%)	0.07154	0.1114	0.2102	0.1636	0.1184	0.1126	0.1472	0.1472
CC1/2	1 (0.954)	0.999	0.994	0.999	0.999	0.999	0.999	0.999
CC*	1 (0.988)	1	0.999	0.999	0.999	0.999	0.999	0.999
R-work‡	0.1830	0.1977	0.2097	0.2432	0.2334	0.2566	0.2566	0.2566
R-free§	0.2259	0.2337	0.2333	0.2333	0.2333	0.2333	0.2333	0.2333
Number of non-hydrogen atoms	4263	3935	3855	4242	3904	4161	4266	4256
macromolecules	3708	3667	3727	3750	3762	3770	3768	3762
ligands	66	50	60	72	69	68	73	73
water	489	218	68	420	73	323	425	421
Protein residues	454	465	452	453	453	453	453	453
RMS (bonds) ††	0.008	0.009	0.009	0.008	0.008	0.008	0.008	0.008
RMS (angles) ††	1.09	1.10	1.20	1.06	1.18	1.10	1.10	1.10
Ramachandran favored (%)	98	97	96	98	98	98	97	98
Ramachandran outliers (%)	0	0.22	0.44	0	0	0	0.44	0.22
Clashscore	5.14	4.12	5.93	3.74	4.12	5.98	4.25	7.58
Average B-factor (‡)	44.80	50.10	65.30	44.40	48.10	43.40	43.50	48.30
macromolecules	43.20	50.00	65.20	43.30	47.80	42.80	42.80	47.10
ligands	47.90	53.80	77.10	49.70	54.40	49.40	47.70	54.50
solvent	56.00	50.90	56.20	53.50	56.70	48.80	53.70	57.80

Statistics for the highest-resolution shell are shown in parentheses.

† $R_{merge} = \frac{\sum_{kkl} \sum_{i} |I_i(hkl) - \langle I(hkl)\rangle|}{\sum_{kkl} \sum_{i} I_i(hkl)}$, where $I_i(hkl)$ is the intensity of the ith measurement of reflection hkl and $\langle I(hkl)\rangle$ is the mean value of $I(hkl)$ for all i measurements.

‡ $R_{work} = \frac{\sum_{kkl} |F_{obs} - F_{calc}|}{\sum_{kkl} |F_{calc}|}$, where F_{obs} is the observed structure factor and F_{calc} is the calculated structure factor.

§ R_{free} is the same as R_{free} except calculated with a subset (5%) of data that were excluded from the refinement calculations.

†† Engh Huber (1991).