David’s Trick

Sy D. Friedman

M.I.T.

In David [82] a method is introduced for creating reals \(R \) which not only code classes in the sense of Jensen coding but in addition have the property that in \(L[R] \), \(R \) is the unique solution to a \(\Pi^1_2 \) formula. In this article we cast David’s “trick” in a general form and describe some of its uses.

Theorem. Suppose \(A \subseteq \text{ORD} \), \(\langle L[A], A \rangle \models \text{ZFC}+0\# \) does not exist and suppose that for every infinite cardinal \(\kappa \) of \(L[A] \), \(H^L[A]_\kappa = L_\kappa[A] \) and \(\langle L_\kappa[A], A \cap \kappa \rangle \models \varphi \). Then there exists a \(\Pi^1_2 \) formula \(\psi \) such that:

(a) If \(R \) is a real satisfying \(\psi \) then there is \(A \subseteq \text{ORD} \) as above, definable over \(L[R] \) in the parameter \(R \).

(b) For some tame, \(\langle L[A], A \rangle \)-definable, cofinality-preserving forcing \(P \), \(P \models \exists R \psi(R) \).

Moreover if \(A \) preserves indiscernibles then \(\psi \) has a solution in \(L[A,0\#] \), preserving indiscernibles.

Remark

(1) We require that \(H^L[A]_\kappa \) equal \(L_\kappa[A] \) for infinite \(L[A] \)-cardinals solely to permit cofinality-preservation for \(P \); if cofinality-preservation is dropped then such a requirement is unnecessary, by coding \(A \) into \(A^* \) with this requirement and then applying our result to \(A^* \).

(2) A class \(A \) preserves indiscernibles if the Silver indiscernibles are indiscernible for \(\langle L[A], A \rangle \). It follows from the technique of Theorem 0.2 of Beller-Jensen-Welch [82] (see Friedman [98]) that if \(A \) preserves indiscernibles then \(A \) is definable from a real \(R \in L[A,0\#] \), preserving indiscernibles.

*Research supported by NSF Contract #9625997-DMS
Proof. Our plan is to create an \(\langle L[A], A \rangle \)-definable, tame, cofinality-preserving forcing \(P \) for adding a real \(R \) such that whenever \(L_\alpha [R] \models ZF^- \) there is \(A_\alpha \subseteq \alpha \), definable over \(L_\alpha [R] \) (via a definition independent of \(\alpha \)) such that \(L_\alpha [R] \models \) for every infinite cardinal \(\kappa \), \(H_\kappa = L_\kappa [A_\kappa] \) and \(\varphi \) is true in \(\langle L_\kappa [A_\alpha], A_\alpha \cap \kappa \rangle \). This property \(\psi \) of \(R \) is \(\Pi^1_2 \) and gives us (a), (b) of the Theorem. The last statement of the Theorem will follow using Remark (2) above.

\(P \) is obtained as a modification of the forcing from Friedman [97], used to prove Jensen’s Coding Theorem (in the case where \(0^\# \) does not exist in the ground model). The following definitions take place inside \(L[A] \).

Definition (Strings). Let \(\alpha \in \text{Card} = \text{the class of all infinite cardinals}. \) \(S_\alpha \) consists of all \(s : [\alpha, |s|) \to 2 \) such that \(|s| \) is a multiple of \(\alpha \) and:

(a) \(\eta \leq |s| \to L_\delta[A \cap \alpha, s \upharpoonright \eta] \models \text{Card} \eta \leq \alpha \text{ for some } \delta < (\eta^+)^L \cup \omega_2. \)

(b) If \(\mathcal{A} = \langle L_\beta[A \cap \alpha, s \upharpoonright \eta], s \upharpoonright \eta \rangle \models (ZF^- \text{ and } \eta = \alpha^+) \) then over \(\mathcal{A}, s \upharpoonright \eta \) codes a predicate \(A(s \upharpoonright \eta, \beta) = A^* \subseteq \beta \text{ such that } A^* \cap \alpha = A \cap \alpha \text{ and for every cardinal } \kappa \text{ of } L_\beta[A^*], H^L_\kappa[A^*] = L_\kappa[A^*] \text{ and } \langle L_\kappa[A^*], A^* \cap \kappa \rangle \models \varphi. \)

Remark When in (b) above we say that \(s \upharpoonright \eta \) codes \(A^* \) we are referring to the canonical coding from the proof of Theorem 4 of Friedman [97] of a subset of \(\beta \) by a subset of \((\alpha^+)^A = \eta \) (relative to \(A \cap \alpha \)).

The remainder of the definitions from the proof of Theorem 4 of Friedman [97] remain the same in the present context. We now verify that he proofs of the lemmas from Friedman [97] can successfully accommodate the new restriction (clause (b)) on elements of \(S_\alpha \).

Lemma 1 (Distributivity for \(R^* \)). Suppose \(\alpha \in \text{Card}, s \in S_{\alpha^+}. \) Then \(R^* \) is \(\alpha^+ \)-distributive in \(A^* \).

Proof. Proceed as in the proof of Lemma 5 of Friedman [97]. The only new point is to verify that in the proof of the Claim, \(t_\lambda \) satisfies clause (b) (of the new definition of \(S_\alpha \)). The fact that \(s \) belongs to \(S_{\alpha^+} \) and that \(t_\lambda \) codes \(H_\lambda \) imply that clause (b) holds for \(t_\lambda \) whenever \(\beta \) is at most \(\mu_\lambda = \text{the height of } H_\lambda \). But as \(|t_\lambda| \) is definably singular over \(L_{\mu_\lambda}[t_\lambda] \) these are the only \(\beta \)'s that concern us. \(\Box \)
Lemma 2 (Extendibility of P^s). Suppose $p \in P^s$, $s \in S_\alpha$, $X \subseteq \alpha$, $X \in A^s$. Then there exists $q \leq p$ such that $X \cap \beta \in A^q$ for each $\beta \in \text{Card} \cap \alpha$.

Proof. Proceed as in the proof of Lemma 6 of Friedman [97]. In the definition of q, the only instances of clause (b) to check are for s_β when Even $(Y \cap \beta)$ codes s_β, s_β satisfying clause (a) of the definition of membership in S_β. But the embedding $\bar{A}_\beta \to A$ is Σ_1-elementary and instances of clause (b) refer to ordinals less than the height of A; so the fact that s belongs to S_α implies that s_β belongs to S_β. □

Lemma 3 (Distributivity for P^s). Suppose $s \in S_{\beta^+}$, $\beta \in \text{Card}$.

(a) If $\langle D_i \mid i < \beta \rangle \in A^s, D_i$ i^+ dense on P^s for each $i < \beta$ and $p \in P^s$ then there is $q \leq p$, q meets each D_i.

(b) If $p \in P^s$, f small in A^s then there exists $q \leq p$, $q \in \Sigma_f^p$.

Proof. Proceed as in the proof of Lemma 7 of Friedman [97]. In the Claim we must verify that p^λ_μ satisfies clause (b). But once again this is clear by the Σ_1-elementary of $\bar{H}_\lambda(\gamma)$ and the fact that $L_{\bar{\mu}}[A \cap \gamma, p^\lambda_\mu] \models |p^\lambda_\mu|$ is Σ_1-singular, where $\bar{\mu} =$ height of $\bar{H}_\lambda(\gamma)$.

The argument of the proof of Lemma 3 can also be applied to prove the distributivity of P, observing that when building sequences of conditions $\langle p^i \mid i < \lambda \rangle$, λ limit to meet an $\langle L[A], A \rangle$-definable sequence of dense classes, one has that p^λ_μ codes $\bar{H}^\lambda(\gamma)$ of height $\bar{\mu}$, where $L_{\bar{\mu}+1}[A \cap \gamma, p^\lambda_\mu] \models |p^\lambda_\mu|$ is not a cardinal. Thus there is no additional instance of clause (b) to verify beyond those considered in the proof of Lemma 3.

Thus P is tame and cofinality-preserving. The final statement of the Theorem also follows, using Remark (2) immediately after the statement of the Theorem. □

Applications

(1) Local Π_2^1-Singletons. David [82] proves the following: There is an L-definable forcing P for adding a real R such that R is a Π_2^1-singleton in every set-generic extension of $L[R]$ (via a Π_2^1 formula independent of the set-generic extension). This is accomplished as follows: One can produce an
L-definable sequence $\langle T(\kappa) \ | \ \kappa \text{ an infinite } L\text{-cardinal} \rangle$ such that $T(\kappa)$ is a κ^{++}-Suslin tree in L for each κ and the forcing $\prod T(\kappa)$ for adding a branch $b(\kappa)$ through each $T(\kappa)$ (via product forcing, with Easton support) is tame and cofinality-preserving. Now for each n let $X_n \subseteq \omega^L$ be class-generic over L, X_n codes a branch through $T(\kappa)$ iff κ is of the form $(\aleph_L^\lambda + n)$, λ limit. The forcing $\prod P_n$, where P_n adds X_n, can be shown to be tame and cofinality-preserving. Finally over $L[\langle X_n \ | \ n \in \omega \rangle]$ add a real R such that $n \in R$ iff R codes X_n. Then one has that in $L[R]$, $n \in R$ iff $T(\aleph_L^{\lambda+n})$ is not $\aleph_L^{\lambda+n}$-Suslin for sufficiently large λ. Clearly this characterization will still hold in any set-generic extension of $L[R]$. David’s trick is used to strengthen this to a Π^1_2 property of R.

(2) A Global Π^1_2-Singleton. Friedman \cite{Friedman} produces a Π^1_2-singleton R, $0 <_L R < L 0^\#$. This is accomplished as follows: assume that one has an index for a $\Sigma_1(L)$ classification $(\alpha_1 \cdots \alpha_n) \mapsto r(\alpha_1 \cdots \alpha_n)$ that produces $r(\alpha_1 \cdots \alpha_n) \in 2^{<\omega}$ for each $\alpha_1 < \cdots < \alpha_n$ in ORD such that $R = \cup \{r(i_1 \cdots i_n) \ | \ i_1 < \cdots < i_n \text{ in } I = \text{Silver indiscernibles }\}$. For each $r \in 2^{<\omega}$ there is a forcing $Q(r)$ for “killing” all $(\alpha_1 \cdots \alpha_n)$ such that $r(\alpha_1 \cdots \alpha_n)$ is incompatible with r. No $(i_1 \cdots i_n)$ from I^n can be killed. Now build R such that $r \subseteq R$ iff R codes a $Q(r)$-generic. Then R is the unique real with this property. David’s trick is used to strengthen this to a Π^1_2 property.

(3) New Σ^1_3 facts. Friedman \cite{Friedman} shows that if M is an inner model of ZFC, $0^\# \notin M$, then there is a Σ^1_3 sentence false in M yet true in a forcing extension of M. This is accomplished as follows: let $\langle C_\alpha | \alpha \text{ L-singular} \rangle$ be a \Box-sequence in L; i.e., C_α is CUB in α, $\ot C_\alpha < \alpha$, $\bar{\alpha} \in \lim C_\alpha$ $\Rightarrow C_\alpha = C_\alpha \cap \bar{\alpha}$. Define $n(\alpha) = 0$ if $\ot C_\alpha$ is L-regular and otherwise $n(\alpha) = n(\ot C_\alpha) + 1$. Then for some n, $\{\alpha \ | \ n(\alpha) = n\}$ is stationary in M. And for each n, there is a tame forcing extension of M in which $\{\alpha \ | \ n(\alpha) \leq n\}$ is non-stationary, and is in fact disjoint from the class of limit cardinals. David’s trick is used to strengthen the latter into a Σ^1_3 property.
References

[82] R. David, A Very Absolute \(\Pi^1_2 \)-Singleton, *Annals of Pure and Applied Logic* **23** pp. 101-120.

[82] A. Beller, R. Jensen, P. Welch, *Coding the Universe*, book, *Cambridge University Press*

[90] S. Friedman, The \(\Pi^1_2 \) Singleton Conjecture, *Journal of the American Mathematical Society*, Vol.3, No.4, pp. 771-791.

[97] S. Friedman, Coding without Fine Structure, *Journal of Symbolic Logic*, Vol.62, No.3, pp. 808-815.

[98] S. Friedman, New \(\Sigma^1_3 \) Facts, to appear.

[99] S. Friedman, *Fine Structure and Class Forcing*, book, in preparation.