Effect of CD59-targeted multi-directional intervention on transmembrane apoptotic signal transduction of cervical cancer HeLa cells

Tao Wei¹,², Mei-Hua Gao¹, Ying Li³

¹Department of Immunology, Medical College of Qingdao University, Qingdao 266071, P. R. China
²Department of Medical Affairs, Qingdao Women and Children’s Hospital, Qingdao 266000, P. R. China
³Department of Blood Transfusion, The affiliated hospital of Qingdao university, Qingdao 266000, P. R. China

Summary

Objective: With GPI-anchored protein CD59 as the target, the effect of the abnormal expression of the CD59 gene on the proliferation and apoptosis of cervical cancer HeLa cells was studied to investigate the mechanism of the malignant proliferation of cervical cancer cells.

Materials and Methods: Recombinant plasmid pSUPER-siCD59 (CD59 RNA interference) was transfected into HeLa cells via liposome transfection. The plasmid expressed green fluorescent proteins that enabled the observation of the transfection efficiency and was separately transfected. The co-transfection of a pIRES-WTCD59 (wild-type CD59) plasmid, pIRES-MCD59 (with CD59W40 active site mutation) plasmid, and pLeGFP plasmid helped the direct observation of the transfection efficiency, which was examined via an inverted fluorescence microscope at 24, 48, and 72 hours after transfection. Then, the stable transfected cell lines were screened by G418. Western blot, RT-PCR, and immunofluorescence were used to detect the gene and protein expression of CD59 in the stably transfected HeLa cell lines, and the differences were evaluated. The short peptide seal specific to CD59 was exerted on the HeLa cells. Cell proliferation was detected by MTT colorimetric assay, and apoptosis was detected by TUNEL and flow cytometry.

Results: The proliferation activity of the HeLa cells with CD59 RNAi, CD59W40 active site mutations, and the short peptide seal specific to CD59 significantly decreased. In particular, the proliferation activity of the HeLa cells treated with a high dose of the short peptide seal specific to CD59 was significantly reduced, while the proliferation activity of the HeLa cells with a high expression of CD59 was significantly enhanced.

Conclusion: As an inhibitory regulatory protein in the terminal stage of complement regulation, CD59 can promote the proliferation of cervical cancer HeLa cells via inhibiting the dissolution effect of the complement on the cells, promoting transmembrane activation signal transduction, and inhibiting apoptotic signal transduction. Thus, this study provides a new avenue for the clinical treatment of cervical cancer.

Key words: CD59 knockout; Short-peptide seal; RNAi; HeLa cell; Proliferation; Apoptosis.

Introduction

A complement is a tightly regulated system of proteins that protects hosts from infection by microorganisms or tumor growth. Complement-mediated immune responses act in the assembly of membrane attack complexes (MACs) at the cell membrane, forming a pore that leads to osmotic lysis [1, 2]. A MAC is formed by the self-assembly of C5b, C6, C7, C8, and multiple C9 molecules. Therefore, to limit damage to host tissues, it is essential to strictly control the activation. First identified as a regulator of the complement terminal, CD59 acts by binding to the C8/C9 components, thus preventing the formation of a MAC to interfere with C9 membrane insertion, polymerization, and pore formation [3-5]. The precursor of human CD59 is a single peptide composed of 128 amino acids deduced from its cDNA sequence [6, 7]. The mature protein consists of 77 amino acids arranged in a single cysteine-rich domain composed of two antiparallel β-sheets, five protruding surface loops, and a short helix [8-10].

The CD59-anchored membrane protein is a complement regulatory protein that plays a regulatory role in the assembly of the complement MAC. It prevents the formation of MAC by binding with C8 and C9, thereby inhibiting the dissolution effect of its complement to histocytes [11-13]. Studies have revealed that CD59 is highly expressed in various tumor cells, e.g., colorectal, ovarian, and prostate cancer cells, playing an important role in escaping from the tumor cells’ immune surveillance [14-16]. Its expression has also been implicated in tumorigenesis and the provision of cancer cells with protection from monoclonal antibody immunotherapy [17-19]. Thus, knowledge of the CD59 binding interface may also assist with the rational design of molecules that inhibit CD59 function and enhance cancer cells’ susceptibility to antibody therapy. Previous studies on the CD59 binding interface have indicated that residues 1-41 inhibit MAC formation much more strongly than 42-77 [20], and its C8 (C5b-8) and/or C9 (C5b-9) binding site is located in the vicinity of a hydrophobic groove on the membrane distal face of the protein centered around residue...
W40 and close to the helix [21-23].

In this study, HeLa cells were transfected with a plasmid with the CD59W40 mutation, a plasmid with a deleted W40 site, and a plasmid with a silenced CD59 gene (wild-type CD59 plasmid) to compare the expression of the CD59 gene and the sensitivity of cells to complement lysis and apoptosis induction with a normal or abnormal W40 site. The complement lysis- and apoptosis-inhibiting effects of the CD59 molecule and active site of the CD59 gene were studied to determine new targets for cervical cancer treatment.

Materials and Methods

Reagents

A CD59W40 point mutation and deletion mutation were induced by overlap extension PCR, and two routine primers and two reverse complementary primers were designed for each. Using the established CD59cDNA as a template, PCR was conducted three times for the site-directed mutagenesis and amplification of the mutant gene. Clonal vector PMD18-T-Vector was recombined and cleaved via monorestriction endonuclease enzyme EcoRI, and the eukaryotic expression vector pIRES was recombined. The recombinant plasmid was transfected into Chinese hamster ovary (CHO) cells using a cationic liposome. Then, the stable transfected cell clones were screened by G418. The cells with high CD59 mutant protein expression were screened by fluorescence immunohistochemistry, enzyme immunoassay, and immunoblotting.

The anti-complement activities of M1CD59 and M2CD59, as well as the functional differences between the wild-type CD59 and control groups, were measured by dye release assay. In brief, CHO cells (2 x 10^5/ml, transfected by wild-type CD59, M1CD59, M2CD59, and empty pIRES plasmids) were seeded in 96-well plastic plates. After BCECF fluorescence dye was added, rabbit anti-CHO antibody and fresh normal human serum of different dilutions were used. The normal human serum was obtained from the blood of healthy volunteers in the laboratory. The supernatant and fission products were collected, respectively, and read in a Cary Eclipse fluorimeter with the excitation filter set at 503 nm and emission filter at 530 nm. The remaining cells were lysed with 0.05 ml PBS containing 0.1% Triton X-100 during 30-min incubation at room temperature; then, the lysate for the release assay was read again. The mean and standard deviations were determined from the triplicate samples. The % lysis = [supernatant fluorescence release/(supernatant fluorescence release + detergent fluorescence release)] x 100.

Three pairs of single-stranded oligonucleotides encoding CD59 shRNA were designed and synthesized. After annealing, the double-stranded oligonucleotides were linked to the linear pSUPER expression vector to construct the recombinant plasmid. Then, using the independent sequences as the control, packaging cell line Phoenix A was transfected via lipofection, and the virus supernatant was collected and used to infect HeLa cells. Western blot and RT-PCR were used to screen the most efficient siCD59 (CD59 RNA interference) sequence.

One day prior to transfection, HeLa cells were digested with 0.25% trypsin, centrifuged, and counted. The cells were inoculated on 24-well plates at a density of 2 x 10^5/well, and 500 µl/well of RPMI 1640 medium containing 10% fetal bovine serum was added. Then, the plasmid and Lipofectamine 2000 were balanced at room temperature. Next, 0.8 µg of plasmid and 2 µL of Lipofectamine 2000 were mixed with 50 µl of serum-free RPMI 1640 medium. Five minutes later, the solution was slowly added to the plasmid suspension and incubated at room temperature for 20 min. Subsequently, the cells were washed by RPMI 1640 medium twice, and 400 µl of RPMI 1640 base culture medium was added to each suspension. The incubated plasmid suspension was added at a dose of 100 µl/well. Each was mixed well and marked, and a blank control group was set. Finally, the cells were cultured at 37 °C with 5% CO_2 for 24–48 hours.

Within 24–48 hours after the cells were transfected with plasmids expressing green fluorescent protein (pSUPER-
Table 1. — Comparison of sequence between mutant CD59 and wild type CD59.

Items	37	38	39	40	41	42	43	44	45	46
Human CD59	N	K	C	W	K	F	E	H	C	N
M1	N	K	C	W	K	F	E	H	C	N
	N	K	W	W	W	F	E	H	C	N

Figure 3. — Expression of GFP effected by plasmid transfection of CD59-siRNA; expression of CD59 mRNA effected by recombinant plasmid transfection of pSUPER-siCD59 (1: the pSUPER-siCD59 group; 2: the normal group; 3: the pSUPER group).

siCD59 plasmid, empty pSUPER plasmid, and pLeGFP plasmid, the cells were observed under a fluorescence microscope, and the positive rate of the green fluorescent protein was calculated.

When the cells were in the logarithmic growth phase, the medium was sucked and discarded, the cells were rinsed with PBS three times, and TRIzol lysis solution was added. The cells were scraped down with a scraper, mixed with the TRIzol lysis solution, and left standing at room temperature for five minutes. Then, the mixture was transferred into a centrifuge tube and chloroform was added; the mixture was vigorously shaken for 15 s until no phase separation was observed and left standing for five minutes. Next, the mixture was centrifuged at 4 °C at 12,000 rpm for 15 min. The supernatant was transferred to another centrifuge tube; an equivalent volume of isopropanol was added, and the mixture was shaken up and down to mix, left standing at room temperature for 10 min, and centrifuged at 4 °C at 12,000 rpm for 10 min. Then, the supernatant was discarded. The cells were washed with and precipitated in 75% alcohol. The precipitate was dried at room temperature, and 50 μl RNase-free water was added to fully dissolve the RNA precipitate. The purity of the RNA extract was determined. Following this, 6 μl of total RNA was obtained, and 1 μl of Oligo (dT) was added until the total volume reached 12 μl; the mixture was mixed carefully and incubated at 65 °C for five minutes in a PCR machine before being removed and immediately placed on ice. Next, 4 μL of 5X RT buffer, 3 μl of dNTP mixture, 1 μL of RNase inhibitor, 3 μL of DEPC-treated water, and 1 μL of reverse transcriptase were successively added, and the total volume reached 25 μl. After being shaken, the mixture was incubated in a PCR machine at 42 °C for 60 min, incubated at 70 °C for five minutes, cooled down on ice, and reserved at –80 °C. Next, 3 μl of cDNA template was added to the reaction solution. CD59 primer sequences: upstream, TGGACAATCACAATGGGAATC; downstream, TGCTGCCAGAAATGGAGTCAC. GAPDH primer sequences: upstream CGGGAAACTGTGGCGTGAT; downstream, AGTGGGTGTCGCTGTTGAAGT. Reaction conditions of PCR: pre-denaturation at 94 °C for two minutes, denaturation at 94 °C for 30 s, annealing at 47 °C for one minute, and extension at 68 °C for two minutes. Steps 2–4 were repeated for 40 cycles, followed by extension at 68 °C for seven minutes. Next, the reaction products were mixed with ethidium bromide and underwent 1% agarose gel electrophoresis; the fluorescence signal was determined, and the ratio of CD59/GAPDH was calculated.

Cells were digested by trypsin and subcultured in 24-well bio-cytoculture plates with a cover glass at a density of 2 × 10^5 cells/well. The reagents were added after the HeLa cells became adherent in the short peptide seal specific to the CD59 group and cultured at 37 °C with 5% CO_2 for six or eight hours. Next, the cells were fixed with 4% paraformaldehyde and washed twice with 0.01 M of PBS (pH 7.2). Then, 3% H_2O_2 was added; the mixture stood at room temperature for 10 min and was then washed with distilled water three times. TdT and DIG-dUTP were added, and the cells were incubated in the wet box at 37 °C for two hours. The membrane was washed with 0.01 M of TBS three times. The cells were blocked with bovine serum albumin for 30 min; then, biotinylated mouse anti-digoxin antibody was added and incubated at 37 °C for 30 min. The membrane was again washed with 0.01 M of TBS three times. Afterward, horseradish peroxidase-labeled goat anti-mouse IgG antibody was added and incubated at 37 °C for 30 min. The membrane was washed with 0.01 M of TBS four times. DAB chromogenic agent was added, and the membrane was left standing at room temperature for 30 min. Then, it was washed, and the cells were slightly re-stained with hematoxylin. Next, the cells were
Table 2. — Difference of gene sequence between recombinant vector pIRES-M1CD59 and pIRES-M2CD59 coding W40W40.

Primer Sequences	251:TTTGATGCGTGTCTCATTACCAAAGCTGGG 251: GATTTTGATGCGTGTCTCATTACCAAAGCT	TTACAAGTGATAAACAAGTG; 301: TTGGAAGTTTGAGCAGTGCAATTTCA	ACGACGTCACAACC CGCTTGGAGGG TTCAACGACGTCACAACCCGCTTGA
M1CD59 primer	251:TTTGATGCGTGTCTCATTACCAAAGCT	GGGTTACAAGTGTATAACAAGTG; 33bp mismatched TGGTGGTGG instead of TGTTGGAAG	dehydrated, treated with xylene until they became transparent, and sealed before being observed under a microscope. The cells with brownish-yellow particles in the nuclei were considered positive, i.e., apoptotic. Following this, the cells in each group were digested and transferred into a centrifuge tube and washed with 0.01 M of PBS (pH 7.2) three times. Then, 100 µl/tube of Guava Nexin reagent was added to each group and incubated at room temperature in the dark for 20 min. The apoptotic rate was detected using flow cytometry. The data were analyzed using the statistical software SPSS 13.0. All data were expressed as the mean ± standard deviation.

Results

The CD59 mutant gene was successfully obtained via PCR site-directed mutagenesis, and the recombinant eukaryotic expression vector system of pIRES-M1CD59 and pIRES-M2CD59 was established using the CHO cells. While pIRES-M1CD59 had the W40 site knocked out, pIRES-M2CD59 had a mutation in the W40 site (Tables 1 and 2, Figure 1). The fluorescent dye release test revealed that anti-complement activity decreased in the pIRES-M1CD59 transfection CHO cells and that the cytolyis rate was higher in the pIRES-M1CD59 transfection CHO cells than in the pIRES-WTCD59 (wild CD59 recombinant plasmid) transfection CHO cells (p < 0.01). Meanwhile, the anti-complement activity was higher and the cytolyis rate lower in the pIRES-M2CD59 transfection CHO cells than in the pIRES-WTCD59 transfection CHO cells (p < 0.05). The mutant M1CD59 loosened its inhibitory function on the complement, while M2CD59 enhanced its inhibitory effect on the complement, suggesting that W40 is the active site of CD59 (Figure 2).

Phoenix A cells were transfected with pSUPER-siCD5, pIRES-WT CD59, and pIRES-MCD59. The green fluorescent cells were counted, and the transfection efficiency of each recombinant vector was calculated under an inverted fluorescence microscope after 48 hours. The results revealed that the transfection rates of all recombinant vectors were > 70%. The RT-PCR results revealed that all cell groups presented with bands of CD59 mRNA (267 bp) and house-keeping gene GAPDH mRNA (509 bp), while the level of CD59 mRNA expression in the cells transfected with pSUPER-siCD5 (CD59-silenced recombinant plasmid) was significantly lower than in the control cells and cells transfected with pSUPER (empty vector plasmid; p < 0.05, Figure 3). Furthermore, the CD59 mRNA expression level in the cells transfected with pIRES-WT CD59 and pIRES-MCD59 was significantly higher compared with the control cells and cells transfected with pIRES (empty vector plasmid; p < 0.05, Figure 4). However, the difference in the expression level between the control cells and cells transfected with pSUPER and pIRES was not statistically significant (Table 3).

The CD59 monoclonal antibody was used to cross-link with the stimulated HeLa cells in each group. The TUNEL results revealed that typical apoptotic cells were...
found in the pUPER-siCD59–transfected group (Figure 5), whose apoptosis rate was significantly higher than that of the pIRES-WTCD59–transfected, pIRES-MCD59–transfected, and control groups. After the short peptide seal specific to CD59 was exerted on the HeLa cells, the apoptosis rate significantly increased with the increase in dosage (Figures 6 and 7). The apoptosis rate of the HeLa cells exerted by the short peptide seal was higher than in the HeLa cells transfected with pSUPER-siCD59, revealing that the apoptosis-promoting effect of the short peptide seal specific to CD59 on the HeLa cells was superior to that of the CD59 interference plasmid pSUPER-siCD59 (Figure 7).

Discussion

The CD59 GPI-anchored membrane protein, also known as the CD59 complement regulatory protein, plays a key regulatory role in the assembly of MACs. It can effectively prevent the formation of a MAC by binding with complement proteins C8 and C9, thereby inhibiting the dissolution of the complement on histocytes [24, 25].

The terms RNAi, post-transcriptional gene silencing, inhibition, and co-inhibition are frequently found in studies of multiple pathways. In essence, they all refer to the RNAi reaction caused by impaired dsRNA and dsRNA expressed by homologous sequence mRNA. The common trait among these molecules is that they are highly conservative in their evolution and exist in a variety of organisms, such as plants, fungi, and animals [26, 27]. Moreover, RNAi has many functions, including growth regulation, gene expression silencing, and virus and transposon invasion prevention [28-30]. In this study, based on the characteristics of the expression of CD59 molecules in the cervical cancer HeLa cell line, the expression of CD59 in the HeLa cells was intervened with using the CD59RNA interference plasmid pSUPER-siCD59 and CD59 22-peptide short peptide seal HSACDLMLHPM-linker-MPHMPLDCASH. Furthermore, serving as controls, two kinds of plasmids highly expressing CD59 (wild-type CD59-pIRES-WTCD59 and CD59-pIRES-MCD59, a mutant type with a mutation at the CD59W40 active site) were transfected into HeLa cells, and the effects of these various interferences in CD59 expression on the cells’ apoptosis were detected and compared. The results revealed that intervention in the CD59 expression in the HeLa cells using the CD59RNA interference plasmid and short peptide seal promoted the apoptosis of the cells to a certain extent; the effect of the short peptide seal was superior to that of the RNA interference plasmid. Although the intervention by the two plasmids that highly expressed CD59 had opposite results, the cell proliferation was faster than that in normal HeLa cells, and no apoptosis was observed. As CD59 is an inhibitor of the MACs assembled by C5b-9, when its expression is low, its inhibition effect on the formation of the MACs decreases; hence, the dissolution effect of the complement on the HeLa cells fully works, affecting cell proliferation and inducing apoptosis. The up-
regulation of CD59 expression can produce the opposite
effect [31, 32]. This phenomenon may also be related to
Fas-mediated cell death; Fas can produce pro-apoptotic sig-
ning by binding with a specific antigen while being me-
diated by caspase-3 and bel-2. As the protein expression
of CD59 in the HeLa cell membrane decreases, the protein
expression of Fas also decreases; hence, the apoptosis sig-
nal transduction it mediates decreases. This manifestation
is rapid cell proliferation, and apoptotic cells are rare. How-
ever, the detailed mechanism remains to be explored.

In this study, the expression of the CD59 molecule in tu-
mor cells and that of its products were intervened with us-
ning gene knockout, gene silencing, and a short peptide seal
to observe the changes in the cells’ sensitivity to the disso-
lution and apoptosis induction of the complement. It was
confirmed that CD59 inhibited the complement’s activity
and apoptosis. As the active site of CD59, the mutation or
deletion of W40 or the sealing of the W40-related epitope
of the CD59 molecule could make these cells susceptible
to being dissolved through the complement or undergoing
apoptosis.

Acknowledgments
Thanks to all the peer reviewers and editors for their
opinions and suggestions.

Conflict of Interest
The authors report no conflicts of interest in this work.

Submitted: July 02, 2019
Accepted: September 18, 2019
Published: October 15, 2020

References

[1] Müller-Eberhard H.J.: “Molecular Organization and Function of the Complement System”. Annu. Rev. Biochem., 1988, 57, 321-347.
[2] Esser A.F.: “The membrane attack complex of complement. Assem-
ly, structure and cytotoxic activity”. Toxocolgy, 1994, 87, 229-
247.
[3] Meri S., Morgan B.P., Davies A., Daniels R.H., Olavesen M.G.,
Waldmann H., et al.: “Human protectin (CD59), an 18,000-20,000
MW complement lysis restricting factor, inhibits C5b-8 catalysed
insertion of C9 into lipid bilayers”. Immunology, 1990, 711-9.
[4] Watts M.J., Dankert J.R., Morgan B.P.: “Isolation and characteri-
ation of a membrane-attack-complex-inhibiting protein present in
human serum and other biological fluids”. Biochem. J., 1990, 265,
471-477.
[5] Farkas I., Baranyi L., Ishikawa Y., Okada N., Ohata C., Budai D., et
al.: “CD59 blocks not only the insertion of C9 into MAC but inhibits
ion channel formation by homologous C5b-8 as well as C9-9”. the
Journal of Physiology, 2002, 539, 537-545.
[6] Davies A., Simmons D.L., Hale G., Harrison R.A., Tighe H., Lach-
mann P.J., et al.: “CD59, an LYN-like protein expressed in human
lymphoid cells, regulates the action of the complement membrane
attack complex on homologous cells.” the Journal of Experimental
Medicine, 1989, 170, 637-646.
[7] Sugita Y., Tobe T., Oda E., Tomita M., Yasukawa K., Yamaji
N., et al.: “Molecular cloning and characterization of MACF1,
an inhibitor of membrane channel formation of complement”. J.
Biochem. (Tokyo), 1990, 106, 555-557.
[8] Fletcher C.M., Harrison R.A., Lachmann P.J., Neuhaus D.: “Struc-
ture of a soluble, glycosylated form of the human complement regu-
laratory protein CD59”. Structure, 1994, 2, 185-199.
[9] Kieffer B., Driscoll P. C., Campbell I. D., Willis A. C., van der
Merwe P. A., Davis S. J.: “Three-Dimensional Solution Structure
of the Extracellular Region of the Complement Regulatory Protein
CD59, a New Cell-Surface Protein Domain Related to Snake Venom
Neurotoxins”. Biochemistry (Mosc.), 1994, 33, 4471-4482.
[10] Petranka J., Zhao J., Norris J., Tweedy N.B., Ware R.E., Sims P.J.,
et al.: “Structure-Function Relationships of the Complement Regu-
latory Protein, CD59”. Blood Cells. Mol. Dis., 1996, 22, 281-296.
[11] Smith J.S., Brewer N.T., Saslow D., Alexander K., Chernofsky
M.R., Crosby R., et al.: “Recommendations for a national agenda
to substantially reduce cervical cancer”. Cancer Causes & Amp: Con-
trol : CCC, 2014, 24, 1585-1593.
[12] Kammers T., Hemmi H., Gajic M., Storm G.: “Tumour-targeted
nanomedicines: principles and practice”. Br. J. Cancer, 2008, 99,
392-397.
[13] Penate Medina O., Haikola M., Tahtinen M., Simpura I., Kaikuni
S., Valtaven H., et al.: “Liposomal Tumor Targeting in Drug De-
livery Utilizing MMP-2- and MMP-9-Binding Ligands”. Journal of
Drug Delivery, 2011, 2011, 1-9.
[14] Molek P., Strulek B., Bratkovic T.: “Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors”.
Molecules, 2011, 16, 857-887.
[15] Wittrup A., Lieberman J.: “Knocking down disease: a progress re-
port on siRNA therapeutics”. Nature Reviews Genetics, 2015, 16,
543-552.
[16] Sharieli A., Zoldan J., Adameo A., Sim W. Y., Cho N., Jackson E.,
et al.: “A vector-free microfluidic platform for intracellular delivery”.
Proc. Natl. Acad. Sci. U. S. a., 2013, 110, 2082-2087.
[17] Chen S., Caragine T., Cheung N.K., Tomlinson S.: “CD59 ex-
pressed on a tumor cell surface modulates decay-accelerating fac-
tor expression and enhances tumor growth in a rat model of human
neuroblastoma”. Cancer Res, 2017, 60, 3013-3113.
[18] Gelderman K.A., Tomlinson S., Ross G.D., Gorter A.: “Comple-
ment function in mAb-mediated cancer immunotherapy”. Trends
Immunol., 2004, 25, 158-164.
[19] Huang Y., Smith C.A., Song H., Morgan B.P., Abagyan R., Tomlin-
son S.: “Insights into the human CD59 complement binding inter-
face toward engineering new therapeutics”. the Journal of Biologi-
cal Chemistry, 2005, 280, 34073-34079.
[20] Nakano Y., Yokai T., Kikuta N., Toke T., Oda E., Miura N., et al.: “Determination of the active site of CD59 with synthetic peptides”. Mol Immunol., 1995, 32, 241-247.
[21] Bodian D.L., Davis S.J., Morgan B.P., Rushmere N.K.: “Mutu-
al Analysis of the Active Site and Antibody Epitopes of the Complement-inhibitory Glycoprotein, CD59”. J. Exp. Med., 1997,
185, 507-516.
[22] Yu J., Abagyan R., Dong S., Gilbert A., Nussenzweig V., Tomlin-
son S.: “Mapping the active site of CD59”. the Journal of Experimental
Medicine, 1997, 185, 745-753.
[23] BRANNEN C., SODETZ J.: “Incorporation of human complement
C8 into the membrane attack complex is mediated by a binding site
located within the C8(3) MACP domain”. Mol. Immunol., 2007, 44,
960-965.
[24] De Groot A.S., Martin W.: “Reducing risk, improving outcomes: Bioengineering less immunogenic protein therapeutics”. Clin. Im-
nunol., 2009, 131, 189-201.
[25] Liu J., Liu J., Chu L., Wang Y., Duan Y., Feng L., et al.: “Novel
peptide-dendrimer conjugates as drug carriers for targeting nonsmall
cell lung cancer”. Int. J. Nanomedicine, 2011, 659-69.
[26] Lee T., Lin C., Kuo S., Chang D., Wu H.: “Peptide-Mediated Tar-
geting to Tumor Blood Vessels of Lung Cancer for Drug Delivery”. Cancer Res., 2007, 67, 10958-10965.
[27] Yang W., Luo D., Wang S., Wang R., Chen R., Liu Y., et al.: “TMT1P1, a Novel Tumor-Homing Peptide Specifically Targeting Neuro-
metastases”. Clin. Cancer Res., 2008, 14, 5494-5502.
[28] Chen B., Cao S., Zhang Y., Wang X., Liu J., Hui X., et al.: “A novel
peptide (GX1) homing to gastric cancer vasculature inhibits
angiogenesis and cooperates with TNF alpha in anti-tumor therapy”.
Biochem. Biophys. Res. Commun., 2009, 163.
[29] Wu X., Yan Q., Huang Y., Huang H., Su Z., Xiao J., et al.: “Isolation
of a novel basic FGF-binding peptide with potent antiangiogenetic
activity”. J. Cell. Mol. Med., 2010, 14, 351-356.
[30] Negi S.S., Braun W.: “Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences”. Bioinformatics and
Biology Insights, 2009, 2, BBI.002745.
[31] Waisberg J., De Souza Viana L., Affonso Junior R.J., Silva S.R.M., Denadai M.V.A., Margeotto F.B., et al.: “Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer”. *Anticancer Res.*, 2014, 34, 5599-5607.

[32] Howell R.C., Revskaya E., Pazo V., Nosanchuk J.D., Casadevall A., Dadachova E.: “Phage Display Library Derived Peptides that Bind to Human Tumor Melanin as Potential Vehicles for Targeted Radionuclide Therapy of Metastatic Melanoma”. *Bioconjug. Chem.*, 2007, 18, 1739-1748.

Corresponding Author:
MEI-HUA GAO, Ph.D
Department of Immunology, Medical College of Qingdao University,
Room 305, Boya Building, No. 308 Ningxia Road,
Qingdao 266071 (China)
e-mail: gaomh14632@163.com