Modeling of the behavior of U, Eu, Pu, Am when heating of radioactive graphite in the carbon dioxide atmosphere

N M Barbin1,2,3, I A Sidash1, D I Terentev1 and S G Alekseev1

1Ural Institute of State Fire Service of EMERCOM of Russia, 620062 Ekaterinburg, Russia
2Ural Agrarian State University, Ekaterinburg, 620075 Russia
3Ural Federal University, Yekaterinburg, 620002, Russia

NMBarbin@mail.ru

Abstract. Reactors with gas heat transfer agent have the greatest energy conversion efficiency. They are considered to be the safest. Graphite as part of them is used as moderator and neutron reflector and carbon dioxide can be used as heat transfer. There is a possibility of graphite burning in a carbon dioxide atmosphere at high temperature while the out-project accident. In this project we study the behavior of U, Eu, Pu, Am while heating the radioactive graphite in a carbon dioxide atmosphere by thermodynamic modeling. By thermodynamic modeling the partition of uranium, europium, plutonium and americium at equilibrium phases were obtained.

Reactors with gas heat transfer agent have the greatest energy conversion efficiency. They are considered to be the safest. Graphite as part of them is used as moderator and neutron reflector and carbon dioxide can be used as heat transfer. There is a possibility of graphite burning in a carbon dioxide atmosphere at high temperature while the out-project accident [1].

In this project we study the behavior of U, Eu, Pu, Am while heating the radioactive graphite in a carbon dioxide atmosphere by thermodynamic modeling.

Full-scale experiments do not always give reliable information at high temperatures due to their complexity and measurements errors. So, calculations were made by thermodynamic modeling using TERRA software which is used for studying systems with complex chemical composition in high temperature conditions.

The software is used to calculate phase composition, thermodynamic and transport properties of arbitrary systems.

The calculation of phase composition and characteristics of equilibrium was made according to reference database for properties of individual substances. The basis of information in the database are thermodynamic, thermophysical and thermochemical properties of individual substances systemized in the Institute of High Temperatures of the Russian Academy of Sciences (database INVATERMO), by national US Bureau of Standards, calculated in Moscow State Technical University using molecular calorimetric and spectrochemical data, published in reference books.
Thermodynamic modeling is successfully used in materials science, physics and fire and explosion safety [2-9].

By thermodynamic modeling the partition of uranium, europium, plutonium and americium at equilibrium phases were obtained.

The uranium phase distribution is shown in Fig. 1. In the temperature range of 373-2273K uranium is in form of condensed U$_3$O$_5$. While increasing of the temperature to 2273-3273K there will be decreasing of condensed U$_3$O$_5$, increasing of vaporous UO$_3$ (~ 60%) and increasing of ionized UO$_3^-$ (~ 30%), UO$_2^+$ (~ 6%).

![Figure 1. Distribution of uranium by phases](image)

The europium phase distribution is shown in Fig. 2. There is decreasing of condensed EuCl$_2$, increasing of condensed EuOCl and condensed Eu$_2$O$_3$ in the temperature range from 373 to 1173K. Ranging from 1173 K to 1573 K a condensed EuCl$_2$ decreases, a condensed Eu$_2$O$_3$ increases and a condensed EuOCl decreases and appears condensed EuO. A further increase in temperature to 2173 K leads to decreasing of condensed Eu$_2$O$_3$, appearing and increasing of vaporous EuO. When the temperature increases to 3373 K europium is in form of vapor EuO (~ 80%), in the form of ionized Eu$^+$ (~ 15%) and in the form of vapor Eu (~ 5%).
Figure 2. Distribution of europium by phases

The plutonium phase distribution is shown in Fig. 3. At the temperature up to 1873 K almost all plutonium is in the form of condensed PuO$_2$. By increasing the temperature to 2673 K a condensed PuO$_2$ disappears and appears the vaporous PuO$_2$. With the further increasing of temperature a vaporous PuO$_2$ decreases to 94%, PuO increases up to 3.6% and an atomic PuO$^+$ increases up to 2.3%.

Figure 3. Distribution of plutonium by phases

The americium phase distribution is shown in Fig. 4. At a temperature up to 873 K all the americium is in form of condensed AmO$_2$. A further increasing in temperature up to 2673 K leads to reducing of condensed AmO$_2$ (~18%), increasing of condensed Am$_2$O$_3$ (~78%) and appearing of Am vapors (~6%). By increasing in temperature up to 3073 K Am vapors increase to 100%, decreases a condensed Am$_2$O$_3$ and condensed AmO$_2$. In the temperature range from 3073 K to 3373 K americium is in the form of vaporous Am.
The minimum set of basic reactions was written based on the obtained temperature dependences of the radionuclide distribution by phases and numerical simulation results.

\[
\begin{align*}
U_3O_5^{(cond.)} + 4CO_2 & = 3UO_3 + 4CO \\
U_3O_5^{(cond.)} + 4CO_2 & = 3UO_3 + 3CO^+ + CO \\
PuO_2^{(cond.)} & = PuO_2 \\
PuO_2 & = PuO + O \\
PuO - e^- & = PuO^+ \\
2AmO_2^{(cond.)} + CO & = Am_2O_3^{(cond.)} + CO_2 \\
Am_2O_3^{(cond.)} & = 2Am + 3O \\
AmO_2^{(cond.)} & = Am + O_2 \\
EuCl_2^{(cond.)} + CO_2 & = EuOCl_1^{(cond.)} + ClCO \\
EuOCl_1^{(cond.)} + CO & = EuO^{(cond.)} + ClCO \\
Eu_2O_3^{(cond.)} & = 2EuO + O \\
EuO^{(cond.)} + CO & = Eu + CO_2 \\
Eu - e^- & = Eu^+
\end{align*}
\]

The equilibrium constants of reactions (see Table 2) were determined using concentrations (in mole fractions) of the condensed and gas phase components found in model calculations. Constants are presented in an analytical form:

\[
Lnk_i = A + \frac{B}{T}
\]

The coefficients A and B for the equation have been calculated by least square method and are consolidated in Table 1.
Table 1. Coefficients of equilibrium constants

Reaction	Temperature range	A	B	The value of the approximation R^2
(1)	2073-2973	80,887	-286743,441	1
(2)	2073-2973	57,663	-572327,017	1
(3)	1773-2473	36,169	-77919,521	1
(4)	2673-3273	16,167	-72351,592	1
(5)	2373-3273	9,659	6249,95	0.9941
(6)	1873-2573	15,899	-19978,125	0.9879
(7)	2573-2873	74,974	-352085,43	1
(8)	2373-2973	40,142	-160956,748	1
(9)	673-1073	0,592	-35127,719	1
(10)	1173-1773	5,549	-48077,823	1
(11)	1773-2273	52,285	-205775,396	1
(12)	2073-2273	11,021	-54214,274	0.9999
(13)	2373-2873	19,454	-14997,528	0.9967

The paper presents the computer modeling results for thermal processes with the involvement of U, Eu, Pu and Am during the radioactive graphite heating in the carbon dioxide atmosphere. Temperature dependence diagrams have been obtained as the result of the modeling for the radionuclide distribution by phases in the considered system. Typical reactions and temperature intervals, in which they are observed, have been identified. Temperature intervals of the radionuclide transition from the solid oxide-salt solution to a gas phase have been found. Equilibrium constants have been calculated.

Increasing of the temperature leads to increasing of the constant of balance for all reactions except the reaction (5).

References
[1] Beckman I N 2005 *The nuclear industry* (Moscow: Publishing House of the Lomonosov Moscow State University) p 503
[2] Barbin N M, Kobelev A M, Terent’ev D I and Alekseev S G Thermophysical characteristics of radioactive graphite – water vapor system *MATEC Web of Conferences*. (2017)115
[3] Moiseev G K Vyatkin G P and Barbin N M 2002 *Application of the thermodynamic modeling for studying of interactions involving the ionic melts* (Chelyabinsk: South Ural State University Publishing House) p 116
[4] Kolbin T S Barbin N M Terentiev D I and Alekseev S G The behaviour of Eu, Pu, Am radionuclide at burning radioactive graphite in an oxygen atmosphere. Computer experiments *EPJ Web of Conferences*. (2015)01013
[5] Barbin N M, Sidash I A, Terentiev D I and Alekseyev S G *Fire and explosion safety* 11 52
[6] Sidash I A, Terentiev D I Barbin N M and Alekseyev S G Porhachev M Y *Technosphere safety* 1 72
[7] Sidash I A, Terentiev D I Barbin N M and Alekseyev S G Porhachev M Y *Ninth International Thermophysical school* 1 67
[8] Barbin N M, Sidash I A, Terentiev D I and Alekseyev S G *Engineering Physics* 10 27
[9] Barbin N M, Sidash I A, Terentiev D I and Alekseyev S G Computer modeling of thermal processes involving calcium, strontium and cesium during radioactive graphite heating in the carbon dioxide atmosphere. Nuclear Energy and Technology. (2017) http://dx.doi.org/10.1016/j.nucet.2017.05.006