Introgression of two chromosome regions for leaf photosynthesis from an *indica* rice into the genetic background of a *japonica* rice

Shunsuke Adachi¹,²,³, Leticia Z. Baptista¹, Tomohiro Sueyoshi¹, Kazumasa Murata⁴, Toshio Yamamoto², Takeshi Ebitani⁴, Taiichiro Ookawa¹ and Tadashi Hirasawa¹,*

¹ Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183–8509, Japan
² Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi 332-0012, Japan
³ National Institute of Agrobiological Sciences, Tsukuba 305–8602, Japan
⁴ Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939–8153, Japan

* To whom correspondence should be addressed. E-mail: hirasawa@cc.tuat.ac.jp

Received 27 August 2013; Revised 2 December 2013; Accepted 22 January 2014

Abstract

Increases in rates of individual leaf photosynthesis (Pₙ) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between *indica* cultivar Habataki, with one of the highest recorded values of Pₙ, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect Pₙ. The present study examined the combined effect of qCAR4 and qCAR8 on Pₙ in the genetic background of Koshihikari. The pyramided near-isogenic line NIL(qCAR4+qCAR8) showed higher Pₙ than both NIL(qCAR4) and NIL(qCAR8), equivalent to that of Habataki despite being due to only two out of the four QTLs. The high Pₙ of NIL(qCAR4+qCAR8) may be attributable to the high leaf nitrogen content, which may have been inherited from NIL(qCAR4), to the large hydraulic conductance due to the large root surface area from NIL(qCAR4), and to the high hydraulic conductivity from NIL(qCAR8). It might be also attributable to high mesophyll conductance, which may have been inherited from NIL(qCAR4). The induction of mesophyll conductance and the high leaf nitrogen content and high hydraulic conductivity could not be explained in isolation from the Koshihikari background. These results suggest that QTL pyramiding is a useful approach in rice breeding aimed at increasing Pₙ.

Key words: Hydraulic conductance, leaf nitrogen content, Oryza sativa, photosynthesis, quantitative trait locus, stomatal conductance.

Introduction

Increasing the rates of leaf photosynthesis (Pₙ) should increase the yield potential of rice (*Oryza sativa* L.), since Pₙ affects dry matter production via photosynthesis within the canopy (Long et al., 2006; Murchie et al., 2009). The use of natural genetic variation in photosynthesis within species can be an effective strategy for crop improvement (Flood et al., 2011). Wide variations in Pₙ among rice cultivars have been shown in a number of studies (Murata, 1961; Takano and Tsunoda, 1971; Cook and Evans, 1983; Yeo et al., 1994; Osada, 1995; Xu et al., 1997; Masumoto et al., 2004; Kanemura et al., 2007; Jahn et al., 2011). However, most of the natural genetic resources have yet to be tapped.

Quantitative genetics is useful in assessing the genetic factors underlying the variation in photosynthesis and in designing breeding programmes (Flood et al., 2011). The complete genome sequence of rice and many DNA markers are already available (IRGSP, 2005). Several advanced populations, including backcrossed inbred lines and chromosome segment
substitution lines, have been developed to facilitate the genetic analysis of rice (Yamamoto et al., 2009; Fukuoka et al., 2010). Recent improvements in the quantification of photosynthesis have reduced measurement times while maintaining accuracy in the field (Long and Bernacchi, 2003). These advances facilitate the identification of quantitative trait loci (QTLs) and isolation of the underlying genes. In recent studies, several QTLs for \(P_n \) have been identified in rice (Teng et al., 2004; Hu et al., 2009; Takai et al., 2010; Gu et al., 2012), and one gene has been isolated (Takai et al., 2013).

The combination of multiple QTLs—QTL pyramiding—offers a straightforward and useful way for improving target traits in rice (Wang et al., 2012). To evaluate the precise effects of the combination of QTLs, it is necessary to develop near-isogenic lines (NILs), which carry a single target QTL in a unique genetic background to eliminate background noise, and to cross these NILs (Ashikari and Matsuoka, 2006; Hospital, 2009). However, there has been limited effort so far to develop NILs for rice \(P_n \) (Gu et al., 2012) and no attempt to evaluate the effect of pyramiding QTLs on \(P_n \).

It is widely acknowledged that \(P_n \) is closely related to leaf nitrogen content (LNC) in rice, because large amounts of N are invested in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary CO\(_2\)-fixation enzyme (Cook and Evans, 1983; Makino et al., 1992). Wide varietal differences in LNC have been observed even at the same rate of N application (Kanemura et al., 2007; Hirasawa et al., 2010). \(P_n \) is also affected by the diffusion of CO\(_2\) from the atmosphere to the chloroplasts. Varietal differences in stomatal conductance \((g_s) \) have been observed even at a small vapour pressure deficit (Ohsumi et al., 2008; Hirasawa et al., 2010). Since \(g_s \) decreases as leaf water potential decreases, the hydraulic conductance from roots to leaves \((C_h) \), which controls the water balance in plants, would affect the value of \(g_s \) (Hirasawa et al., 1989; Hirasawa and Ishihara, 1992; Brodribb et al., 2007). Mesophyll conductance \((g_m) \), with respect to the diffusion of CO\(_2\) from the intercellular airspace to the chloroplasts, might also be important to improving rice \(P_n \) (Makino, 2011). Recent studies report genetic differences in \(g_m \) among Oryza species (Scafaro et al., 2011) and rice lines (Adachi et al., 2013). In addition to Rubisco content, LNC is associated with also \(g_s \) and \(g_m \) (Makino et al., 1988; Ishihara, 1995; Li et al., 2009). To clarify factors underlying the differences in \(P_n \) among rice cultivars and lines, the influences of differences in LNC should be considered carefully.

The \(P_n \) of young, newly expanded leaves ranges between \(\sim 20 \) and \(\sim 30 \, \mu\text{mol} \, \text{CO}_2 \, \text{m}^{-2} \, \text{s}^{-1} \) among rice cultivars at an ambient CO\(_2\) concentration of 370–400 \(\mu\text{mol} \, \text{mol}^{-1} \) under light-saturating and unstressed conditions (Kanemura et al., 2007; Hirasawa et al., 2010; Jahn et al., 2011). The high-yielding indica cultivar Habataki has one of the highest recorded rates of \(P_n \) among rice cultivars, at 30–33 \(\mu\text{mol} \, \text{m}^{-2} \, \text{s}^{-1} \) (Asanuma et al., 2008). In contrast, Koshihikari, the most popular cultivar in Japan, has a relatively low \(P_n \) of 25–28 \(\mu\text{mol} \, \text{m}^{-2} \, \text{s}^{-1} \).

In previous studies using introgression lines derived from a cross between Koshihikari and Habataki, this study group identified four QTLs \((q\text{CAR}4, q\text{CAR}5, q\text{CAR}8, q\text{CAR}11) \) on chromosome 5, \(q\text{CAR}8 \) on chromosome 8, and \(q\text{CAR}11 \) on chromosome 11, Habataki alleles of which increased \(P_n \) (Sueyoshi et al., 2009; Adachi et al., 2011). The present work developed a pyramided line, NIL\((q\text{CAR}4+q\text{CAR}8)\), by crossbreeding NIL\((q\text{CAR}4)\) and NIL\((q\text{CAR}8)\), each of which has a single chromosome segment from Habataki substituted in the genetic background of Koshihikari, and quantified the effects on the rate of leaf photosynthesis and on processes related to photosynthesis.

Materials and methods

Plant materials

Four QTL-NILs carrying a single chromosome segment from Habataki in the genetic background of Koshihikari were developed (Fig. 1; Sueyoshi et al., 2009; Adachi et al., 2011). NIL\((q\text{CAR}4)\), which carries a chromosome segment from Habataki on the long arm of chromosome 4, was crossed with NIL\((q\text{CAR}8)\), with a segment from the short arm of chromosome 8, and plants homozygous for Habataki in both regions were selected, to create the line NIL\((q\text{CAR}4+q\text{CAR}8)\). \(F_2 \) progeny were used in field experiments and \(F_3 \) progeny were used in pot experiments.

Cultivation of rice plants

Plants were grown at the university farm (35° 40’ N 139° 28’ E). In the field experiment, seedlings at the fourth-leaf stage were transplanted into the paddy field (alluvial clay loam) at a density of 22.2 hills m\(^{-2}\) (30 × 15 cm), with one plant per hill. As a basal dressing, manure was applied at 15 t ha\(^{-1}\) and inorganic fertilizer was applied at 30 kg N, 60 kg P\(_2\)O\(_5\), and 60 kg K\(_2\)O ha\(^{-1}\). One-third of the total N was applied as nitrogen sulphate, one-third as LP-50 elution-controlled urea (Chisso Asahi Fertilizer, Tokyo, Japan), and one-third as LPS-100 elution-controlled urea. No topdressing was applied.

In the pot experiment, plants were grown outdoors in 12-l pots filled with a 1:1 (v/v) mixture of paddy soil and upland soil (diluvial volcanic ash) at a density of three hills per pot, three plants per hill. Basal fertilizer was applied at 1.0 g N, 1.0 g P\(_2\)O\(_5\), and 1.0 g K\(_2\)O per pot, and additional N was applied at 0.5 g per pot at booting stage when the flag leaves had fully expanded. To examine the relationship between \(P_n \) and LNC, different amounts of N were applied to Koshihikari and Habataki at booting stage: at 0.25, 0.5, 1.0 or 2.0 g to Koshihikari and 0, 0.25 or 0.5 g to Habataki.

Plants were also grown in 3-l pots in a growth chamber (Koitotron, Koito Manufacturing, Tokyo, Japan) under a 12/12 light/dark cycle (28/23 °C, relative humidity 60/80%, and a photosynthetic photon flux density (PPFD) at the top of the canopy of 1000 \(\mu\text{mol} \, \text{m}^{-2} \, \text{s}^{-1} \)). Basal fertilizer was applied at 0.5 g N, 0.5 g P\(_2\)O\(_5\), and 0.5 g K\(_2\)O per pot. No topdressing was applied.

Gas exchange measurements

Leaf gas exchange was measured with a portable gas-exchange system (LI-6400, LI-COR, Lincoln, NE, USA); flag leaves were measured at the full heading stage. The CO\(_2\) assimilation rate \((A_{\text{ra}}) \) and stomatal conductance \((g_s) \) were measured at an ambient CO\(_2\) concentration of 370 \(\mu\text{mol} \, \text{mol}^{-1} \), a PPFD of 2000 \(\mu\text{mol} \, \text{m}^{-2} \, \text{s}^{-1} \), a leaf-to-air vapour pressure difference of 1.3–1.6 kPa, and an air temperature of 30 °C. The CO\(_2\) assimilation rate at an intercellular CO\(_2\) concentration \((C) \) of 280 \(\mu\text{mol} \, \text{mol}^{-1} \) \((A_{\text{ra}}) \) was also measured by changing the ambient CO\(_2\) concentration. Plants were examined from 08:30 to 11:00, when the photosynthetic rate was close to the daily maximum (Hirasawa and Ishihara, 1992; Ishihara, 1995). Measurements were made at the full heading stage. The measurement for each leaf was conducted once a day and was repeated on
day 2 or 3 and the mean of measurements calculated. Between five and seven leaves were used for each replicate.

Determination of nitrogen content and dry matter weight

The leaves were collected immediately after completion of the gas exchange measurements and were stored at –80 °C. The area of an 80-mm-long segment cut from the centre of the leaf was measured with a leaf area meter (AAM-9; Hayashi Denko, Tokyo, Japan). The segments were dried at 80 °C for 24 h to determine the nitrogen content with a CN analyser (MT700 Mark II, Yanako, Kyoto, Japan) and the dry matter weight.

Determination of hydraulic conductance and conductivity

The hydraulic conductance of the plants grown in 3-l pots, from the soil through the roots to the leaves (C_p, 10$^{-8}$ m3 s$^{-1}$ MPa$^{-1}$) was calculated as U_w \((\Psi_s - \Psi_l)\) (Hirasawa and Ishihara, 1991), where U_w (10^{-8} m3 s$^{-1}$) is the water uptake rate of the whole plant, Ψ_s (MPa) is the water potential of the soil immediately outside the root, and Ψ_l (MPa) is the average water potential of the uppermost three leaves. Since plants were grown under submerged conditions and the water potential of the soil solution was high compared with Ψ_l and was kept constant, Ψ_s could be regarded as 0. Measurements were made in a controlled-environment chamber (air temperature 28 °C, air vapour pressure deficit 1.5 kPa, PPFD at the top leaves 1000μmol m$^{-2}$ s$^{-1}$). U_w was determined from the rate of weight loss of the pot over 20 min after a steady state had been reached. To prevent evaporation from the surface of the pot, the top was covered with polystyrene foam and the gap between the foam and the stem was sealed with oil clay. After measurement of U_w, Ψ_l of the uppermost three leaves was measured in a pressure chamber (model 3005, Soil Moisture Equipment, Santa Barbara, CA, USA). Measurements were conducted under the steady-state condition where the transpiration rate is equal to U_w. It is reported that the transpiration rate and g_s do not influence hydraulic conductance when the transpiration rate is high (Fiscus, 1975; Hirasawa and Ishihara, 1991; Stiller et al., 2003). The U_w per leaf area was sufficiently high (>2.0 mmol m$^{-2}$ s$^{-1}$) to eliminate the effect of the difference in water uptake rate on C_p. After roots had been washed gently in water, the root surface area of the total root system (S_r) was measured with an image analyser (Win-Rhizo REG V 2004 b, Regent, PQ, Canada). For comparing root hydraulic conductivity, the hydraulic conductivity of a plant (L_p, 10$^{-8}$ m s$^{-1}$ MPa$^{-1}$), defined as hydraulic conductance per root surface area (Steudle and Peterson, 1998).

Results

Leaf photosynthesis

The CO$_2$ assimilation rate at an ambient CO$_2$ concentration of 370 μmol mol$^{-1}$ (A_{370}) in the four NILs were significantly higher than that in Koshihikari—by 23% in NIL(qCAR4), 11% in NIL(qCAR5), 17% in NIL(qCAR8), and 9% in NIL(qCAR11) and significantly smaller than that in Habataki—7, 21, 12, and 13%, respectively (Fig. 2), indicating that the combination of the two QTLs additively increased leaf photosynthesis. Interestingly, A_{370} in NIL(qCAR4+qCAR8) was comparable to that in Habataki despite being due to only two out of the four QTLs. Similar results were obtained in the pot experiments.

Leaf nitrogen content

In the field experiment, LNC was significantly higher in NIL(qCAR4) (by 27%) than in Koshihikari, but LNC in NIL(qCAR8) was similar to that in Koshihikari (Table 1). LNC in NIL(qCAR4+qCAR8) was higher than that in Koshihikari (by 24%) and similar to those in NIL(qCAR4) and Habataki. In the pot experiment, not only NIL(qCAR4)
but also NIL(qCAR8) showed higher LNC than Koshihikari. LNC in NIL(qCAR4+qCAR8) was even higher than that in NIL(qCAR4) (Table 1).

Dry matter weight per leaf area

In the field experiment, dry matter weight per leaf area (LMA) in Habataki was similar to that in Koshihikari (Table 1). LMA was significantly higher in NIL(qCAR4) (by 14%) than in Koshihikari, but LMA in NIL(qCAR8) was similar to that in Koshihikari. LMA in NIL(qCAR4+qCAR8) was higher than that in Koshihikari (by 12%) and similar to that in NIL(qCAR4). Similar results were obtained in the pot experiment.

Stomatal conductance and hydraulic conductance

In the field experiment, \(g_s \) was 24% higher in NIL(qCAR4) and 29% higher in NIL(qCAR8) than in Koshihikari (Table 1). It was 52% higher in NIL(qCAR4+qCAR8) than in Koshihikari and was higher than those in both NIL(qCAR4) and NIL(qCAR8), but still lower than that in Habataki. Similar results were obtained in the pot experiment.

\(\bar{C}_p \) was significantly higher in Habataki than in Koshihikari (Fig. 3A). It was significantly higher in NIL(qCAR4) (by 43%) and NIL(qCAR8) (by 40%) than in Koshihikari. It was 84% higher in NIL(qCAR4+qCAR8) than in Koshihikari, and was higher in NIL(qCAR4+qCAR8) than in NIL(qCAR4) (P=0.07) and NIL(qCAR8) (P=0.05), but still lower than in Habataki.

\(\bar{C}_p \) is related to \(S_t \) and \(L_p \) (Steudle and Peterson, 1998). The high value of \(S_t \) in Habataki contributed to the high \(\bar{C}_p \) in Habataki (Fig. 3A, B). \(S_t \) in NIL(qCAR8) was similar to that in Koshihikari, while that in NIL(qCAR4) was higher (although not significantly) than that in Koshihikari (Fig. 3B). \(S_t \) in NIL(qCAR4+qCAR8) was higher than that in Koshihikari and similar to that in NIL(qCAR4). \(L_p \) in Habataki was lower than that in Koshihikari (Fig. 3C). \(L_p \) in NIL(qCAR4) was similar to that in Koshihikari, while \(L_p \) in NIL(qCAR8) was higher (although not significantly) than that in Koshihikari. \(L_p \) in NIL(qCAR4+qCAR8) was higher than that in Koshihikari and similar to that in NIL(qCAR8). These results indicate that the elevated \(\bar{C}_p \) in NIL(qCAR4+qCAR8) resulted from

Table 1. CO\(_2\) assimilation rate at a PPFD of 2000 \(\text{mol m}^{-2} \text{s}^{-1} \) and an ambient CO\(_2\) concentration of 370 \(\text{mol mol}^{-1} \), leaf nitrogen content, dry matter weight per leaf area, and stomatal conductance of plants grown in the field and in 12-l pots

	\(A_{370} \) (\(\mu\text{mol CO}_2 \text{ m}^{-2} \text{s}^{-1} \))	LNC (g m\(^{-2}\))	LMA (g m\(^{-2}\))	\(g_s \) (mol H\(_2\)O m\(^{-2}\) s\(^{-1}\))
Field				
Koshihikari	23.5 ± 1.1\(^c\)	1.46 ± 0.15\(^b\)	58.4 ± 4.1\(^b\)	0.66 ± 0.06\(^c\)
NIL(qCAR4)	29.0 ± 0.1\(^{a,b}\) (123)	1.85 ± 0.06\(^c\) (127)	66.7 ± 1.8\(^b\) (114)	0.82 ± 0.07\(^b\) (124)
NIL(qCAR8)	27.4 ± 1.4\(^b\) (117)	1.59 ± 0.15\(^{a,b}\) (109)	59.1 ± 1.2\(^b\) (101)	0.85 ± 0.06\(^c\) (129)
NIL(qCAR4+qCAR8)	31.0 ± 1.2\(^c\) (132)	1.81 ± 0.17\(^{a}\) (124)	65.2 ± 0.4\(^b\) (112)	1.01 ± 0.05\(^b\) (152)
Habataki	31.5 ± 0.9\(^c\) (133)	1.85 ± 0.07\(^d\) (126)	57.6 ± 0.5\(^d\) (99)	1.82 ± 0.12\(^d\) (274)
Pots				
Koshihikari	22.5 ± 1.5\(^c\)	1.35 ± 0.06\(^b\)	55.8 ± 1.1\(^c\)	0.55 ± 0.05\(^c\)
NIL(qCAR4)	28.5 ± 0.8\(^c\) (129)	1.67 ± 0.11\(^b\) (124)	63.6 ± 2.8\(^b\) (115)	0.82 ± 0.03\(^c\) (151)
NIL(qCAR8)	26.1 ± 0.8\(^c\) (117)	1.54 ± 0.06\(^c\) (115)	57.4 ± 1.1\(^d\) (104)	0.70 ± 0.02\(^d\) (128)
NIL(qCAR4+qCAR8)	31.0 ± 0.5\(^c\) (139)	1.91 ± 0.12\(^c\) (142)	64.2 ± 3.1\(^c\) (116)	0.87 ± 0.04\(^c\) (159)
Habataki	31.5 ± 1.8\(^c\) (141)	1.80 ± 0.06\(^d\) (133)	53.8 ± 1.1\(^d\) (97)	1.81 ± 0.15\(^d\) (331)

Values are means±SD (\(n=3–6\)). Different superscript letters indicate significant differences between rice lines (\(P<0.05\), Tukey’s test). Values in parentheses are percentages relative to Koshihikari. \(A_{370} \): CO\(_2\) assimilation rate at an ambient CO\(_2\) concentration of 370 \(\text{mol mol}^{-1} \); \(g_s \): stomatal conductance; LMA, dry matter weight per leaf area; LNC, leaf nitrogen content.
simultaneous increases of S_n, which may have been inherited from NIL(qCAR4), and L_p, from NIL(qCAR8).

Relationship between P_n and LNC

A_{370} was always higher in Habataki than in Koshihikari at a given LNC and it increased with increases in LNC in both cultivars (Fig. 4A). A_{370} was also higher in NIL(qCAR4), NIL(qCAR8), and NIL(qCAR4+qCAR8) than in Koshihikari at the same LNC. It is possible to estimate photosynthetic activity without considering the effect of g_s by measuring P_n at identical C_i (von Caemmerer and Farquhar, 1981). There was no difference in A_{370} between Koshihikari and Habataki at all levels of LNC examined (Fig. 4B). This indicates that the difference in A_{370} was entirely due to the differences in LNC and g_s between Koshihikari and Habataki (Supplementary Fig. S1 available at JXB online). A_{370} in NIL(qCAR8) was similar to that in Koshihikari at the same LNC, while A_{370} in NIL(qCAR4) and NIL(qCAR4+qCAR8) was higher than that in Koshihikari at given values of LNC. This indicates that factors other than LNC and g_s are related to the high A_{370} in both NIL(qCAR4) and NIL(qCAR4+qCAR8).

Discussion

Pyramiding of qCAR4 and qCAR8, which are QTLs for leaf photosynthesis, additively increased P_n in rice. Similar approaches have yielded additive increases in number of grains (Ashikari et al., 2005; Ando et al., 2008), grain yield (Ohsumi et al., 2011; Wang et al., 2012), grain quality (Wang et al., 2012), plant height (Wang et al., 2012), and heading date (Shibaya et al., 2011; Wang et al., 2012). This is the first report to show that QTL pyramiding is effective at improving rice leaf photosynthesis.

Habataki has one of the highest recorded values of P_n among rice cultivars, and at least four QTLs for leaf photosynthesis are associated with the difference in P_n between Koshihikari and Habataki (Asanuma et al., 2008; Sueyoshi et al., 2009; Adachi et al., 2011). Because A_{370} in NIL(qCAR4+qCAR8), with two of the four QTLs, was the same as in Habataki, with all four QTLs (Table 1), the possible reasons for the high A_{370} need to be discussed from both genetic and physiological viewpoints.

Possible reasons for the high rate of leaf photosynthesis in the pyramided line

LNC strongly affects P_n because it is closely related to the content of Rubisco (Makino et al., 1992). A difference in Rubisco content is a key factor in varietal differences in the capacity for leaf photosynthesis in rice (Hubbart et al., 2007; Hirasawa et al., 2010). In addition, the diffusion of CO$_2$ from the atmosphere to the chloroplasts, which is regulated by g_s and g_{m}, is another important determinant (Ohsumi et al., 2008; Hirasawa et al., 2010; Makino, 2011). The high P_n of Habataki might result from the high LNC, due to its elevated capacity for N accumulation, and from the high g_s, due to the large hydraulic conductance of plants, in turn due to the large root surface area compared with Koshihikari (Adachi et al., 2011).

In the field experiment, the higher LNC in NIL(qCAR4+qCAR8) would have contributed to the higher A_{370} than that in Koshihikari (Table 1). The high LNC may have been inherited from NIL(qCAR4), because the values of LNC in these two NILs were similar and reached the level of Habataki. In a preliminary study, NIL(qCAR5) and NIL(qCAR11) also showed higher LNC.
than Koshihikari (data not shown). This result suggests that at least three QTLs are involved in the difference in LNC between Koshihikari and Habataki. The large increase in LNC in NIL(qCAR4+qCAR8) and NIL(qCAR4) cannot be explained in isolation from the Koshihikari background: that is, there might be other QTLs, the Koshihikari alleles of which increase LNC, or genetic interactions between qCAR4 and other unknown QTLs. The detailed genetic mechanisms should be examined in future research. In the pot experiment, LNC in NIL(qCAR8) was also higher than that in Koshihikari. This suggests that qCAR8 is also associated with LNC under some growing conditions. The interaction between genes related to photosynthesis and the environment would be another subject to study.

The high gs in NIL(qCAR4+qCAR8) may also have contributed to the higher A370 than in Koshihikari (Table 1). gs was additionally increased by the combination of qCAR4 and qCAR8. Although gs in Habataki was significantly higher than that in NIL(qCAR4+qCAR8), a greater gs might not increase photosynthesis in rice further (Hirasawa et al., 1988), as Habataki had a much greater gs but no greater A370. The critical water potential for stomatal closure is very much higher in rice than in other crop plants (Hirasawa, 1999). The value of gs in Koshihikari was already decreased by the reduction in leaf water potential because of its low Cp even when the vapour pressure deficit was as low as ~1.5 MPa, whereas the higher gs in Habataki was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance (Adachi et al., 2011). This is clear because water-stress-relaxation treatments increased A370 and gs in Koshihikari leaves to the same level as in Habataki at similar LNC but had no effect in Habataki leaves (Adachi et al., 2011). This means that rice gs is affected markedly by Cp (Taylaran et al., 2011). Because the NILs in this research were derived from the cross between Koshihikari and Habataki and the measurement conditions of both A370 and Cp were exactly the same as in Adachi et al. (2011) and Taylaran et al. (2011), the connection between Cp and gs may be the case with the rice lines in this research. The combination of NIL(qCAR4) and NIL(qCAR8) may have resulted in the higher Cp in NIL(qCAR4+qCAR8) than in Koshihikari (Fig. 3A) and thus in the high gs. The even greater Cp in Habataki might thus explain the far larger gs than that of NIL(qCAR4+qCAR8). These assumptions should be tested by further water-stress-relaxation experiments.

The high Cs in NIL(qCAR4) is attributable to the high S\textsubscript{i}d whereas the high Cp in NIL(qCAR8) is attributable to the high Lp (Fig. 3B, C). The higher Cs in NIL(qCAR4+qCAR8) seems to result from the combination of both. This result also suggests that it is possible to improve S\textsubscript{i} and Lp simultaneously in rice breeding. C\textsubscript{p} was lower in NIL(qCAR4) than in Habataki on account of its smaller S\textsubscript{i}. This suggests that other QTLs are associated with the difference in S\textsubscript{i} between Koshihikari and Habataki. Although L\textsubscript{p} in Habataki was somewhat lower than that in Koshihikari, L\textsubscript{p} in NIL(qCAR8) was even higher than that in Koshihikari, which seems to be a result of the combination of the Habataki chromosome segment with the Koshihikari background. It is known that LMA is also related to LNC (Ninemets et al., 1999). However, the correlation
coefficient between these two parameters in this study was not high (0.53 for paddy and 0.47 for pots), suggesting that the LNC was primarily controlled by factors other than LMA. This study cannot rule out the possibility that differences in the Michaelis–Menten constant, the maximum carboxylation rate, and the activation state of Rubisco are associated with the difference in A_{370} (Ishikawa et al., 2011), although these traits seem to be similar among rice cultivars (Makino et al., 1987). Further studies should clarify which traits are related to the high A_{370} in NIL(qCAR4) and NIL(qCAR4+qCAR8).

The flowering time of NIL(qCAR8) and NIL(qCAR4+qCAR8) was 7 days earlier than that of Koshihikari, while that of NIL(qCAR4) was similar to that of Koshihikari. This indicates that the genetic region of qCAR8 includes genes associated with flowering time. The causal link between flowering and photosynthesis is unknown at this time and should be examined in future research.

Potential for further enhancement of photosynthesis beyond Habataki

Despite having only two out of the four QTLs, NIL(qCAR4+qCAR8) had the same A_{370} as Habataki. This phenomenon may be explained by the combined effect of the two Habataki chromosome segments in the Koshihikari genetic background. The process of photosynthesis is complex and is controlled by many genes (Shi et al., 2005). Its improvement might be a challenging task (Flood et al., 2011). However, the current results suggest that it is possible to increase P_n to the highest level known by introducing a small number of genes from donor plants if the right combinations of cultivars are selected. It might be possible to develop a rice with a P_n even higher than that of Habataki if the additional QTLs for P_n on chromosomes 5 and 11 (Fig. 2) were stacked into NIL(qCAR4+qCAR8). To test this hypothesis, this study group is developing rice lines that carry multiple QTLs for P_n in the genetic background of Koshihikari.

Conclusion

The P_n of NIL(qCAR4+qCAR8) was as high as that of Habataki, even though the NIL had only two of the four known QTLs for P_n. The high values of LNC, S_n and possibly g_m found in NIL(qCAR4) and of L_p in NIL(qCAR8) combined in NIL(qCAR4+qCAR8) to increase P_n. The increases in some of these traits cannot be explained in isolation from the Koshihikari genetic background. These results suggest that QTL pyramiding is a powerful approach in breeding of rice for increased P_n, and it should be possible to develop rice with even higher capacity for photosynthesis by stacking other QTLs into NIL(qCAR4+qCAR8).

Supplementary material

Supplementary data are available at JXB online. Supplementary Fig. S1. Relationships between leaf N content and stomatal conductance in flag leaves.

Acknowledgements

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (nos 23658014 and 25252007) and from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, QTL-1002).

References

Adachi S, Nakae T, Uchida M, et al. 2013. The mesophyll anatomy enhancing CO$_2$ diffusion is a key trait for improving rice photosynthesis. Journal of Experimental Botany 64, 1061–1072.

Adachi S, Tsuru Y, Nito N, Murata K, Yamamoto T, Ebihata T, Ookawa T, Hirasaki T. 2011. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. Journal of Experimental Botany 62, 1927–1938.

Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M. 2008. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theoretical and Applied Genetics 116, 881–890.

Asanuma S, Nito N, Ookawa T, Hirasaki T. 2008. Yield, dry matter production and ecophysiological characteristics of rice cultivar, Habataki compared with cv. Sasanishiki. Japanese Journal of Crop Science 77, 474–480.

Ashikari M, Matsuoka M. 2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science 11, 344–350.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian G, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309, 741–745.

Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144, 1890–1898.

Cook M, Evans L. 1983. Some physiological aspects of the domestication and improvement of rice (Oryza spp.). Field Crops Research 6, 219–238.

Fiscus EL. 1975. The interaction between osmotic- and pressure-induced water flow in plant roots. Plant Physiology 55, 917–922.

Flood PJ, Harbison J, Aarts MGM. 2011. Natural genetic variation in plant photosynthesis. Trends in Plant Science 16, 327–335.

Fukuo S, Nonoue Y, Yano M. 2010. Germplasm enhancement by developing advanced plant materials from diverse rice accessions. Breeding Science 60, 509–517.

Gu J, Yin X, Struik PC, Stomph TJ, Wang H. 2012. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. Journal of Experimental Botany 63, 455–469.

Hanba YT, Miyazawa SI, Terashima I. 1999. The influence of leaf thickness on the CO$_2$ transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology 13, 632–639.

Hirasawa T. 1999. Physiological characterization of the rice plant for tolerance of water deficit. In: Ito O, O’Tool J, Hardy B, eds, Genetic improvement of rice for water-limited environments. Los Baños, Philippines: International Rice Research Institute, pp 89–98.

Hirasawa T, Iida Y, Ishihara K. 1988. Effect of leaf water potential and air humidity on photosynthetic rate and diffusive conductance in rice plants. Japanese Journal of Crop Science 57, 112–118.

Hirasawa T, Iida Y, Ishihara K. 1989. Dominant factors in reduction of photosynthetic rate affected by air humidity and leaf water potential in rice plants. Japanese Journal of Crop Science 58, 383–389.

Hirasawa T, Ishihara K. 1991. On resistance to water transport in crop plants for estimating water uptake ability under intense transpiration. Japanese Journal of Crop Science 60, 174–183.

Hirasawa T, Ishihara K. 1992. The relationship between resistance to water transport and the midday depression of photosynthetic rate in rice plants. In: Murata N, ed, Research in photosynthesis, vol. IV. Dordrecht, Netherlands: Kluwer Academic Publishers, pp 283–286.
Hirasawa T, Ozawa S, Taylaran RD, Oooka T. 2010. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Production Science 13, 53–57.

Hospier B. 2009. Challenges for effective marker-assisted selection in rice. Genetics 136, 301–310.

Hu SP, Zhou Y, Zhang L, Zhu XD, Li L, Luo LJ, Liu GL, Zhou QM. 2009. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryz a sativa) under water stress and well-watered conditions. Journal of Integrative Plant Biology 51, 879–888.

Hubbart S, Peng S, Horton P, Chen Y, Murchie EH. 2007. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. Journal of Experimental Botany 58, 3439–3438.

IRGSP (International Rice Genome Sequencing Project). 2005. The map-based sequence of the rice genome. Nature 436, 793–800.

Ishihara K. 1995. Leaf structure and photosynthesis. In: Matsu et al., Kumazawa K, Ishi R, Ishihara K, Hirata H, eds, Science of the rice plant 2. Physiology. Tokyo: Food and Agriculture Policy Research Center, pp 491–511.

Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H. 2011. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiology 156, 1603–1611.

Jehn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE. 2011. Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiology 155, 157–168.

Kanemura T, Homma K, Ohsumi A, Shiraiwa T, Horie T. 2007. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynthesis Research 94, 23–30.

Li Y, Gao YX, Xu XM, Shen QR, Guo SW. 2009. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany 60, 2351–2360.

Long SP, Bernacchi CJ. 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54, 2393–2401.

Long SP, Zhu XG, Naidu SL, Ort DR. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29, 315–330.

Makino A. 2011. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology 155, 125–129.

Makino A, Mae T, Ohira K. 1987. Variations in the contents and kinetic properties of ribulose-1,5-bisphosphate carboxylases among rice species. Plant and Cell Physiology 28, 799–804.

Makino A, Mae T, Ohira K. 1988. Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/ oxygenase and the relationship to photosynthetic gas exchange. Planta 174, 30–38.

Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B. 1992. Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2 transfer resistance. Plant Physiology 100, 1737–1743.

Masumoto C, Ishii T, Kataoka S, Hatanaka T, Uchida N. 2004. Enhancement of rice leaf photosynthesis by crossing between cultivated rice, Oryza sativa, and wild rice species, Oryza rufipogon. Plant Production Science 7, 252–259.

Montpied P, Granier A, Dreyer E. 2009. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L) canopy. Journal of Experimental Botany 60, 2407–2418.

Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, Fukushima K, Maeshima M, Okada M. 2008. Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant and Cell Physiology 49, 1294–1305.

Murata Y. 1961. Studies on the photosynthesis of rice plants and its culture significance. Bulletin of the National Institute of Agricultural Sciences 89, 1–169.

Murchie EH, Pinto M, Horton P. 2009. Agriculture and the new challenges for photosynthesis research. New Phytologist 181, 532–552.

Niinemets Ü, Tenhunen J, Canta N, Chaves M, Faria T, Pereira J, Reynolds J. 1999. Interactive effects of nitrogen and phosphorus on the deceleration potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Global Change Biology 5, 455–470.

Ohsumi A, Hamasaki A, Nakagawa H, Homma K, Horie T, Shiraiwa T. 2008. Response of leaf photosynthesis to vapor pressure difference in rice (Oryza sativa L) varieties in relation to stomatal and leaf internal conductance. Plant Production Science 11, 184–191.

Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M. 2011. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Research 120, 68–75.

Osada A. 1995. Photosynthesis and respiration in relation to nitrogen responsiveness. In: Matsu et al. Kumazawa K, Ishi R, Ishihara K, Hirata H, eds, Science of the rice plant 2. Physiology. Tokyo: Food and Agriculture Policy Research Center, pp 696–703.

Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushima K, Matsunami T, Kitagawa Y. 2011. Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant, Cell and Environment 34, 1150–1163.

Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ. 2011. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant, Cell and Environment 34, 1999–2008.

Shi T, Bibby TS, Jiang L, Irwin AJ, Falkowski PG. 2005. Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Molecular Biology and Evolution 22, 2179–2189.

Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M. 2011. Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theoretical and Applied Genetics 123, 1133–1143.

Steudle E, Peterson CA. 1998. How does water get through roots? Journal of Experimental Botany 49, 775–788.

Stiller V, Lafitte HR, Sperry JS. 2003. Hydraulic properties of rice and the response of gas exchange to water stress. Plant Physiology 132, 1698–1706.

Sueyoshi T, Asanuma S, Tsuru Y, Murata K, Ebihara T, Oooka T, Hirasawa T. 2009. Estimation and characterization of a quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Japanese Journal of Crop Science 78 (Suppl. 1), 216–217.

Takai T, Adachi S, Taguchi-Shiroma F, et al. 2013. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Scientific Reports 3, 2149.

Takai T, Kondo M, Yano M, Yamamoto T. 2010. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3, 172–180.

Takano Y, Tsunoda S. 1971. Curvilinear regression of the leaf photosynthetic rate on leaf nitrogen content among strains of Oryza species. Japanese Journal of Breeding 21, 69–76.

Taylaran RD, Adachi S, Oooka T, Usuda H, Hirasawa T. 2011. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. Journal of Experimental Botany 62, 4067–4077.

Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L. 2004. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135, 1–7.

Terashima I, Miyazawa SI, Hanba YT. 2001. Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. Journal of Plant Research 114, 93–105.

von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387.

Wang P, Xing Y, Li Z, Yu S. 2012. Improving rice yield and quality by QTL pyramiding, Molecular Breeding 29, 903–913.

Xu YF, Oooka T, Ishihara K. 1997. Analysis of the photosynthetic characteristics of the high-yielding rice cultivar Takanari. Japanese Journal of Crop Science 66, 616–623.

Yamamoto T, Yonemaru J, Yano M. 2009. Towards the understanding of complex traits in rice: substantially or superficially? DNA Research 16, 141–154.

Yeo ME, Yeo AR, Flowers TJ. 1994. Photosynthesis and photosorpiration in the genus Oryza. Journal of Experimental Botany 45, 553–560.