Synbiotic Therapy Prevents Nosocomial Infection in Critically Ill Adult Patients: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials Based on a Bayesian Framework

Cong Li1,2,3,4, Ling Liu1,2, Zhiwei Gao1,2, Junwei Zhang1,2, Hui Chen1,2,6, Shaolei Ma1,2, Airan Liu1,2, Min Mo1,2, Changde Wu1,2, Dongyu Chen1,2,7, Songqiao Liu1,2, Jianfeng Xie1,2, Yingzi Huang1,2, Haibo Qiu1,2 and Yi Yang1,2*

1 Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China, 2 Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China, 3 Emergency Medicine Department of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China, 4 Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China, 5 Department of Emergency, The Affiliated Huaian NO.1 People’s Hospital of Nanjing Medical University, Hua’an, China, 6 Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China, 7 Department of Intensive Care Medicine, Yancheng City NO.1 People’ Hospital, Yancheng, China

Background: The efficacy of synbiotics, probiotics, prebiotics, enteral nutrition or adjuvant peripheral parenteral nutrition (EPN) and total parenteral nutrition (TPN) in preventing nosocomial infection (NI) in critically ill adults has been questioned. We conducted a systematic review and network meta-analysis (NMA) of randomized controlled trials (RCTs) to evaluate and rank the effectiveness of these therapies on NI amongst critically ill adults.

Methods: Four electronic databases were systematically searched up to June 30, 2019 for RCTs comparing the administration of probiotics, prebiotics, synbiotics, EPN and TPN in critically ill adults. The primary outcome was NI. The relative efficacy of all outcomes was determined by a Bayesian framework with random effects NMA. We estimated the odds ratio (OR) and mean difference (MD) and ranked the comparative effects of all regimens with the surface under the cumulative ranking probabilities. The study has been registered on PROSPERO (CRD42019147032).

Results: Fifty-five RCTs (7,119 patients) were identified. Primary outcome showed that synbiotics had the best effect in preventing NI than EPN (OR 0.37; 95% CrI 0.22–0.61), probiotics followed (OR 0.52; 95% CrI 0.34–0.77), whereas TPN significantly increased NI (OR 2.29; 95% CrI 1.48–3.67). Subgroup analysis showed that TPN significantly increased NI in intensive care unit (ICU) patients (OR 1.57; 95% CrI 1.01–2.56) and severe acute pancreatitis (SAP) patients (OR 3.93; 95% CrI 1.74–9.15). Secondary outcomes showed that synbiotics were more effective in preventing hospital-acquired pneumonia (HAP) (OR 0.34; 95% CrI 0.11–0.85), catheter-related bloodstream infection (OR 0.08;
Nosocomial infection (NI) is a common and serious complication in patients with critical illness (1, 2). Patients admitted to the intensive care unit (ICU) are especially susceptible to NI because of their critical illnesses and conditions, such as mechanical ventilation (MV) (3), intracranial hemorrhage (1), severe trauma, severe acute pancreatitis (SAP), complex surgery (2), and extracorporeal membrane oxygenation (ECMO) (4). Intestinal microbiota dysbiosis suggested that gastrointestinal dysfunction plays an important role in the pathogenesis of NI in critically ill patients (5–9). It can result in an increase in susceptibility to NI and significantly affect clinical outcomes (10–15).

Probiotics are live microorganisms that exert beneficial effects by protecting against pathogens, improving intestinal barrier function and inducing host immunomodulation (16). Prebiotics are a substrate that are selectively utilized by host microorganisms maintaining gut homeostasis and improving health outcomes (17–23). Enteral nutrition or aden peripheral parenteral nutrition (EPN) and total parenteral nutrition (TPN) have the functions of protecting the intestinal barrier and providing adequate nutrient substrates, respectively (24). Therefore, all above therapies can partially improve intestinal microbiota dysbiosis, and are widely used in the treatment of NI in critically ill adults (17, 25).

Nonetheless, the advantages of probiotics, prebiotics, synbiotics, EPN and TPN on preventing NI in critically ill patients have been a topic of major debate. Majority of randomized controlled trials (RCTs) performed in critically ill adults have failed to show significant improvement in NI with probiotics, prebiotics and synbiotics therapies (26–34) or have even showed an increased risk of mortality (35). Moreover, RCTs have highlighted the higher risk of bacteremia and fungemia infection resulting from probiotics and synbiotics in immuno-compromised critical patients (33, 35–37).

Many previous conventional meta-analyses have already examined the risks and benefits of probiotics or synbiotics compared with EPN in critically ill adults (38–42). However,
all these meta-analyses were restricted to pairwise comparisons, and only the pooled risk ratio (RR) or odds ratio (OR) were calculated. There was heterogeneity between the included trials, and the relative merit of candidate therapies could not be informed through a direct comparison. Network meta-analyses (NMAs) can not only address this limitation but also improve precision by combining direct and indirect estimates (43). Therefore, this systematic review and NMA aimed to evaluate and rank probiotics, prebiotics, synbiotics, EPN and TPN to determine their effects on improving NI of critically ill adult patients. The results of this study will provide a new scientific basis for the debate on the efficacy of synbiotics and other treatments in the improvement of prognosis in critically ill adult patients.

METHODS

Approval
This literature was written according to the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) Statement Extension Statement (44). This study was registered on the international prospective register of systematic reviews (PROSPERO CRD42019147032).

Inclusion Criteria
Participants: critically ill patients (≥16 years). If the study population was unclear, we considered a mortality rate higher than 5% in the control group to be consistent with critical illness (42). Interventions: probiotics, prebiotics, synbiotics, EPN and TPN. Primary outcome: NI. Secondary outcomes: hospital-acquired pneumonia (HAP), ventilator-associated pneumonia (VAP), bloodstream infections (BSIs), catheter-related bloodstream infection (CRBSI), urinary tract infection (UTI), sepsis, diarrhea, ICU and hospital mortality, ICU and hospital LOS and duration of MV. Study design: RCT.

Exclusion Criteria
The trial did not report outcome variables. The trial was a duplicate publication.

Search Strategy and Study Selection
We conducted a systematic literature search for clinical trials in Pubmed, Embase, Cochrane (CENTRAL) and Web of Science electronic medical databases until June 30, 2019. There was no language restriction. The specific search terms were used for each database, and the details of the search strategy were modified with a combination of relevant terms as proposed by Cochrane for systematic reviews of RCTs (45). The following MeSH terms were used to search for relevant literature: “critically ill” OR “synbiotic” OR “probiotic” OR “prebiotic” OR “enteral nutrition” OR “parenteral nutrition” OR “nosocomial infection” combined with RCTs.

Five reviewers selected studies for inclusion by screening the titles and abstracts of the literature independently. Thereafter, they reviewed the full texts carefully according to the inclusion and exclusion criteria to determine the final inclusion of articles. Any discrepancies between reviewers were resolved by a consensus after a discussion with a sixth reviewer.

Definition of Interventions
Probiotics are live microorganisms that may confer health benefits on the host when administered in adequate amounts (16, 17). Prebiotics are substrates that are selectively utilized by host microorganisms and confer a health benefit (16, 18). By contrast, synbiotics are composed of probiotics and prebiotics (Supplementary File 3). The US Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN) criteria (46) were used to diagnose NI including HAP, VAP, BSIs, CRBSI, UTI, intraabdominal infection, gastroenteritis system infection and surgical site infection (Supplementary Table 2.3). We used definitions of diarrhea as defined by the authors in their original articles. From all trials, we combined hospital mortality where reported. If the mortality time frame was not specified as either ICU or hospital, it was presumed to be the latter.

Data Extraction
For duplicate studies, we included only the research with the most informative and complete data. Five investigators extracted independently all the available data from each study. These data included characteristics of study, details of patients enrolled, type and dose of intervention and details of primary and secondary outcomes. Disagreements among the three investigators were resolved by a consensus after discussing with a sixth reviewer.

Assessment of Risk of Bias (ROB) and Quality
We assessed each included studies’ ROB in accordance with the Cochrane collaboration risk of bias tool (45). A summary of the ROB was documented as low, unclear or high. Studies were classified as having low ROB if none was rated as high ROB, and three or less were rated as unclear risk. Studies had moderate ROB if one was rated as high ROB or none was rated as high ROB but four or more were rated as unclear risk. All other cases were assumed to pertain to high ROB.

Publication bias was assessed using the comparison-adjusted funnel plots (47, 48).

Additionally, we assessed the certainty of evidence contributing to network estimates with the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system (high, moderate, low and very low) (49).

Quantitative Data Statistical Analysis
All data were conducted according to the Cochrane Handbook. In pairwise meta-analysis and NMA, dichotomous and continuous variables were analyzed using OR and mean differences (MD), respectively.

The study effect sizes were assessed using a Bayesian framework with a random effects NMA model (50, 51). Dichotomous outcomes used the binomial likelihood, and continuous outcomes used the normal likelihood. Four Markov chains were adopted for initial value setting. The initial update iteration number of the model and the continuous update iteration number were set as 20,000 and 50,000, respectively. The
first 20,000 annealing times were used to eliminate the influence of the initial value, and sampling was started from 20,001 times. The initial and continuous iteration numbers of the model increased if the convergence of models was not satisfactory. A potential scale reduction factor approaching 1 indicated that the model convergence was satisfactory (52).

The treatment for each outcome was ranked by using the surface under the cumulative ranking curve (SUCRA) (53).

Heterogeneity variance was considered to measure the extent of a cross-sectional study and within-comparison variability on treatment effects. $I^2 < 25\%$ and $I^2 > 75\%$ indicate low and high heterogeneity, respectively (54–56). Statistically significant heterogeneity was set at $I^2 > 50\%$, and the sources of heterogeneity were discussed.

A statistical evaluation of inconsistency was assessed by the design-by-treatment test (55, 57) and node splitting.
Inconsistencies were found between direct and indirect comparison evidence when \(P < 0.05 \).

The transitivity assumption underlying NMA was evaluated by comparing the distribution of clinical and methodological variables that could act as effect modifiers across treatment comparisons (53, 58).

This study evaluated whether treatment effects for the primary outcome are robust in subgroup analyses by using ICU patients, MV patients, trauma patients, initial time of nutrition therapy, doses, study year, and quality. In view of the fact that European Society for Clinical Nutrition and Metabolism (ESPEN), Society of Critical Care Medicine (SCCM), and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) recommend that the initial time of early EN therapy is within 48 h (24, 25), we divided the subgroup of initial nutritional therapy into two groups: within 48 h and beyond 48 h. The average number of obligate anaerobes of normal people was around 10 \([\log_{10} \text{CFUs}/\text{g of feces}]\) (59–61). Therefore, we defined the dose of probiotics that was >2 \(10^{10} \text{CFU} \text{per day as high dose and the rest as moderate to low doses.} \)

The sensitivity of our conclusions was evaluated by analyzing only datasets of studies with high quality.

All statistical analyses were performed with Review Manager 5.3, stata (version 14.0) and R software (version 3.6.1). Network plots and comparison-adjusted funnel plots of NMA were performed by means of JAGS software (gemtc 0.8-2 and rjags 4-10 package) in R. Graphs of SUCRA were obtained using the ggplot2 3.2.1 package in R.

RESULTS

Search Results and Characteristics of the Studies

The searches identified 7,468 articles, and 731 potentially eligible articles were retrieved in full text. Overall, 55 RCTs (comprising...
TABLE 1 | Description of included studies.

ID	Author	Year	Country	Diseases	Design	N	Mean age (SD)	Male (%)	APACHE II Score	SOFA Score	Intervention	
1	Braga et al. (62)	1995	Italy	SICU patients undergoing curative surgery for gastric or pancreatic cancer	SC/OP	50	60.3 (7.8)	NR	NR	NR	EN	
2	Kudsk et al. (63)	1996	America	ICU patients with severe trauma	SC/OP	33	33 (3)	61	NR	NR	EN	
3	Bleichner et al. (64)	1997	France	Critical patients in ICU	MC/DB	64	61.6 (12.3)	70	NR	NR	Probiotics+EN	
4	Falcão De Arruda and De Aguilar-Nascimento (65)	2004	Brazil	ICU patients with TBI	SC/DB	10	27 (20)	100	NR	NR	Synbiotics+EN	
5	Jain et al. (27)	2004	United of kingdom	Critical patients in ICU	SC/DB	45	72 (11.1)	58	NR	NR	Symbiotics+EN	
6	Lu et al. (66)	2004	China	Critical patients with severe burns	SC/DB	20	36.05 (5.16)	85	NR	NR	Symbiotics+EN	
7	Sun et al. (67)	2004	China	Severe acute pancreatitis patients with organ failure	SC/OP	50	46.7 (16.25)	56	NR	NR	EN	
8	Klarin et al. (68)	2005	Sweden	Critical patients in ICU	SC/OP	8	70.9 (34.81)	33	17 (11.9)	NR	Probiotics+EN	
9	McNaught et al. (28)	2005	United of kingdom	Critical patients in ICU	SC/DB	52	71 (45.93)	63	12 (5.2)	NR	Probiotics+EN	
10	Morrow et al. (69)	2005	America	MV patients	SC/DB	19	51	71 (43.7)	51	12 (6.7)	NR	EN
11	Kotzampassi et al. (70)	2006	Greece	SICU patients with severe multiple trauma	MC/DB	35	52.9 (19)	80	19.36 (2.7)	NR	Symbiotics+EN	
12	Petrov et al. (71)	2006	Russia	Severe acute pancreatitis patients with organ failure	SC/OP	35	55.9 (18)	83	19.36 (2.1)	NR	Placebo+EN	
13	Spindler-Vesel et al. (72)	2006	United of kingdom	SICU patients with severe multiple trauma	SC/DB	26	48 (22.59)	78	13.5 (5.6)	NR	Symbiotics+EN	
14	Abdulmeguid and Hassan (73)	2007	Greece	MV > 2 days critical patients in ICU	SC/OP	40	35 (20.8)	58	12 (8.4)	NR	EN	
15	Alberda et al. (74)	2007	Canada	ICU patients	SC/DB	10	60.4 (17.9)	50	18.2 (4.2)	NR	Probiotics+EN	
16	Casas et al. (75)	2007	Spain	Severe acute pancreatitis patients with organ failure	SC/OP	11	61.2 (16.6)	77	NR	NR	EN	
17	Karakan et al. (76)	2007	Turkey	Severe acute pancreatitis patients with organ failure	SC/DB	15	47.3 (16.8)	40	9.4 (3.7)	NR	Prebiotics+EN	

(Continued)
ID	Author	Year	Country	Diseases	Design	N	Mean age (SD)	Male (%)	APACHE II Score	SOFA Score	Intervention	
18	Olah et al. (77)	2007	Ireland	Severe acute pancreatitis patients with organ failure	SC/DB	33	47.5 (43.7)	82	NR	NR	Symbiotics+EN	
						29	46.0 (45.19)	17	NR	NR	Prebiotics+EN	
19	Sramek et al. (78)	2007	Czech	Critical patients in ICU	SC/OP	15	55 (19.26)	69	24 (4.44)	NR	Symbiotics+EN	
						11	NR	NR	Prebiotics+EN	EN		
						144	59.0 (15.5)	57	8.4 (4.5)	1.9	EN	
20	Besselink et al. (53)	2008	Netherlands	Patients with predicted severe acute pancreatitis	MC/DB	152	60.4 (16.5)	59	8.6(4.4)	2.1(2.0)	Probiotics+EN	
						144	59.0 (15.5)	57	8.4(4.5)	1.9(1.6)	EN	
21	Forestier et al. (79)	2008	France	Critical patients in ICU	SC/DB	102	60 (4.07)	64	NR	NR	Probiotics+EN	
22	Klarin et al. (80)	2008	Sweden	Critical patients in ICU	MC/DB	22	65.5 (44.44)	59	22	16.3	Symbiotics+EN	
						22	64 (60.37)	59	11	20	Prebiotics+EN	
23	Doley et al. (81)	2009	India	Severe acute pancreatitis patients with organ failure	SC/OP	25	38.4 (13.8)	NR	≥8	EN	Placebo+EN	
						25	41.1 (11.3)	NR	≥8	EN	TPN	
24	Giamarellos- Bourboulis et al. (82)	2009	Greece	SICU patients with severe multiple injuries	MC/DB	36	55.9	NR	19.36	NR	Symbiotics+EN	
25	Knight et al. (26)	2009	United of kingdom	MV patients	SC/DB	130	49.5 (19.6)	62	17 (8.1)	NR	Symbiotics+EN	
						129	50.0 (18.5)	62	17	7.4	Placebo+EN	
26	Moses et al. (83)	2009	India	ICU patients with acute organophosphate poisoning needing invasive mechanical ventilatory support	SC/OP	29	29.41 (11.8)	76	NR	NR	Placebo+EN	
27	Barraud et al. (84)	2010	France	MV patients	SC/DB	87	59.1 (15.9)	39	NR	9 (4.6)	TPN	
						30	50.83 (12.4)	73	NR	NR	Probiotics+EN	
						80	61.8 (15.5)	44	NR	9.7	Placebo+EN	
28	Frohmader et al. (85)	2010	Australia	Critical patients in ICU	SC/DB	20	60.8 (15.6)	65	22.2	8.9	NR	Probiotics+EN
29	Morrow et al. (29)	2010	America	MV patients	SC/DB	73	67.5 (31.11)	33	22.7	7.5	NR	Placebo+EN
						73	61.5 (26.67)	46	23.7	8.0	NR	Prebiotics+EN
30	Ferrie and Daley (86)	2011	Australia	Critically ill patients with diarrhea	SC/SB	18	562 (19.4)	44	27.7	8.3	NR	Symbiotics+EN
31	Tan et al. (87)	2011	China	ICU patients with severe TBI	SC/DB	26	40.5 (13.0)	73	14.5 (3.6)	6.5	NR	Probiotics+EN
						26	40.8 (12.8)	81	14.3	3.6	6.3	EN
32	Hayakawa et al. (88)	2012	Japan	MV patients	SC/OP	31	74 (14.4)	51	NR	NR	Symbiotics+EN	
						16	75 (7)	75	NR	NR	EN	
33	Malan et al. (89)	2012	America	Critical patients in SICU	SC/DB	36	60	59	16.7	NR	Probiotics+EN	

(Continued)
ID	Author et al.	Year	Country	Diseases	Design	N	Mean age (SD)	Male (%)	APACHE II Score	SOFA Score	Intervention
34	Plaudis et al. (90)	2012	Latvia	Severe acute pancreatitis patients with organ failure	SC/OP	30	NR	37	8.8 (3.6)	NR	Symbiotics + EN
						28	NR	37	8.6 (4.9)	NR	Prebiotics + EN
						32	NR	37	6.8 (4.3)	NR	EN
35	Cui et al. (91)	2013	China	Severe acute pancreatitis patients with organ failure	SC/OP	23	44.9 (19.3)	70	≥8	≥8	NR
						25	≥8	NR	EN		Prebiotics + EN
						22	≥8	NR	EN		TPN
36	Elke et al. (92)	2013	Germany	ICU patients with severe sepsis or septic shock	SC/OP	32	NR	62	20 (5.8)	7 (3.6)	EN
37	Tan et al. (93)	2013	China	SICU patients with severe TBI	SC/DB	26	40.5 (13.0)	73	14.8 (3.6)	NR	Prebiotics + EN
						26	40.8 (12.8)	81	14.3 (3.6)	NR	EN
38	Wang et al. (94)	2013	China	ICU patients with severe acute pancreatitis	SC/DB	62	42.6 (13.8)	52	12.88 (3.19)	12.63 (3.67)	NR
						61	43.7 (13.7)	52	13.27 (2.88)	12.55 (2.6)	NR
						60	41.7 (11.4)	57	14.3 (3.6)	12.55 (2.6)	EN
39	Lopez de Toro et al. (95)	2014	Spain	ICU patients with multi-organ failure	SC/DB	46	68.5 (19.26)	68.5	20 (8.1)	9 (3.0)	Symbiotics + EN
						43	70 (14.07)	68	22 (5.9)	6 (2.2)	EN
40	Sanaie et al. (96)	2014	Iran	Critical patients in ICU	SC/DB	20	33.60 (5.50)	65	22.8 (4.73)	12.25 (2.57)	Prebiotics + EN
						20	35.60 (5.03)	70	22.45 (4.57)	12.55 (2.6)	EN
41	Zhu et al. (34)	2014	China	Severe acute pancreatitis patients with organ failure	SC/DB	20	43.5 (17.5)	55	≥8	≥8	NR
42	Fu et al. (97)	2015	China	Patients with severe acute pancreatitis	SC/OP	36	48.9 (12.2)	53	≥8	≥8	NR
						19	42.0 (16.5)	53	11.4 (4.9)	NR	Placebo + EN
43	Kim et al. (98)	2015	South Korea	ICU patients after living donor liver transplantation	SC/OP	17	52 (7)	88	12.3 (5.1)	NR	TPN
						19	52 (5.5)	95	NR	NR	EN
44	Rongrungruang et al. (99)	2015	Thailand	MV patients	SC/OP	75	68.95 (18.45)	60	19.98 (6.89)	NR	Prebiotics + EN
						75	73.9 (13.16)	57	19.41 (7.04)	NR	EN
45	Fan et al. (100)	2016	China	NICU patients with severe TBI	SC/OP	80	41.22 (16.77)	51	NR	NR	TPN
						40	41.56 (15.10)	53	NR	NR	Placebo + EN
46	Malik et al. (101)	2016	Malaysia	Critical patients in ICU	SC/DB	24	60 (14.4)	67	22.12 (6.0)	NR	Prebiotics + EN
						25	55 (17.7)	68	23 (8.9)	NR	Placebo + EN
47	Zarinfar et al. (102)	2016	Iran	MV patients	SC/DB	30	NR	NR	NR	NR	TPN
						30	NR	NR	NR	NR	Placebo + EN
48	Zeng et al. (32)	2016	China	MV patients	MC/OP	118	50.2 (18.2)	62	14.7 (3.9)	16.6 (4.3)	Prebiotics + EN
						117	54.8 (17.9)	56	16.6 (4.3)	EN	TPN
49	Alberda et al. (103)	2018	Canada	Critical patients in ICU	SC/OP	16	59.9 (15.6)	75	25.5 (5.39)	25.9 (9.70)	Prebiotics + EN
						16	57.5 (15.0)	63	NR	NR	EN
7,119 patients) from 24 countries all over the world carried out between 1995 and 2019 were included (Figure 1). A total of 49 articles were published in English, 5 were in Chinese and 1 was in Spanish. Twenty-four (45%) of 55 trials recruited patients from Europe, 23 (42%) from Asia, 6 (15%) from the America and 2 (3%) from Oceania. Sample sizes varied greatly from 17 to 2410, with a mean of 60 participants (SD = 53). The mean age was 53 years old (SD = 12) for both men and women. Of these participants, 4,358 (61%) of 7,119 of the sample population were male. Eleven (20%) of 55 studies randomly assigned participants to three or more groups. Nine (16%) of 55 studies were multi-center studies, 32 (58%) of 55 studies were double-blind studies and 21 (38%) were open-label studies. Mixed diseases in ICU were the most included diseases, followed by MV support, patients with SAP, severe multiple trauma, victims of brain trauma alone and severe burns. Twenty seven (49%) of 55 studies were of high quality. Nineteen (35%) of 55 studies were of moderate quality (Figures 2, 3). A description of the included studies, interventions, and outcomes is presented in Tables 1–3. The details of the design, management description and antibiotics are shown in Supplementary File 2.

Primary Outcome

The primary analysis was based on the 43 studies comprising 6,215 patients. Figure 4 displays the network of eligible comparisons for NI. All treatment had at least one EPN-controlled trial. Only probiotic therapy was not directly compared with probiotic and TPN therapy in the network. Table 4 shows the results of NMA for NI. In terms of preventing the efficacy of NI, probiotic (OR 0.52; 95% CrI 0.34–0.77) therapy were associated with lower morbidity than EPN. By contrast, TPN was worse than EPN (OR 2.29; 95% CrI 1.48–3.67). Figure 5 shows the SUCRA ranking curve of NI. Symbiotic treatment was the best choice in preventing NI, whereas TPN was the worst.

Secondary Outcomes

The network of eligible comparisons for secondary outcomes is presented in Supplementary Files 5, 6. Figure 6 presents the results of NMA for secondary outcomes. In terms of improving the efficacy of HAP, CRBIS, UTI and sepsis, symbiotic therapy was more effective than EPN, and the results of the network were OR 0.24; 95% CrI 0.05–0.94. By contrast, TPN was worse than EPN on shortening of hospital LOS (MD −3.93; 95% CrI −7.98 to −0.02). In terms of preventing the efficacy of diarrhea, probiotics were more effective than EPN (OR 2.29; 95% CrI 1.48–3.67). Figure 5 shows the SUCRA ranking curve of NI. Symbiotic treatment was the best choice in preventing NI, whereas TPN was the worst.

Direct Meta-Analysis

The forest plot of the pairwise and network effect estimate on NI is shown in Figure 5. The detailed results of all outcomes in pairwise meta-analysis are shown in Supplementary Files 5, 6.
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
1 Braga et al. (62)	SICU patients undergoing curative surgery for gastric or pancreatic cancer	50	EN	Impart + standard formula	25 kcal/kg.day⁻¹
2 Kudsk et al. (63)	ICU patients with severe trauma	27	TPN	Isonitrogenous isocaloric	Mean 1,400 kcal/day NR
3 Bleichner et al. (64)	Critical patients in ICU	64	EN	**Probiotics:** S. boulardii **EN:** Intact protein standard diet without fiber or lactose	500 mg QID
		64	Placebo+EN	**Placebo:** Powder was indistinguishable from the S. boulardii powder **EN:** Intact protein standard diet without fiber or lactose	500 mg QID
4 Falcão De Arruda and De Aguilar-Nascimento (65)	ICU patients with TBI	10	Symbiotics+EN	Fermented milk (Lactobacillus johnsonii)	Fermented milk 240 ml QD
		10	EN	**Probiotics (Trevis™):** L. acidophilus, L. bulgaricus, Bifidobacterium lactis Bb-12, Streptococcus thermophilus	NR
		45	Symbiotics+EN	**Prebiotics:** oligofructose **EN:** NR	Probiotic 4 × 10⁹ cfu TID
		45	Placebo+EN	**Placebo:** Sucrose powder **EN:** NR	Prebiotic 7.5 g BID
5 Jain et al. (27)	Critical patients in ICU	45	Symbiotics+EN	**Probiotics:** Pediococcus pentosaceus, Lactobacillus paracasei subsp paracasei, Lactobacillus plantarum, L. lactis, L. paracasei subsp paracasei, Streptococcus thermophilus	Probiotic 4 × 10¹⁰ cfu QD
		51	EN	**Prebiotics:** Proviva (L. plantarum 299v)	Prebiotic 10 g QD
		20	Prebiotics+EN	**Prebiotics:** Betaglucan, Inulin, Pectin, Resistant starch **EN:** Nutrison Fibre	10 g QD
7 Sun et al. (67)	Critical patients with severe burns	50	EN	Flicare	NR
8 Klarin et al. (68)	Critical patients in ICU	50	TPN	Harris-Benedict formula	125–146 kJ/kg
		8	Probiotics+EN	**Probiotics:** Lactobacillus plantarum 299v	Probiotic 5 × 10¹⁰ cfu Q6 3 days
		7	EN	**Prebiotics:** Probiotics: 2.5 × 10⁹ cfu QDF	NR
		52	Probiotics+EN	**Prebiotics:** Betaglucan, Inulin, Pectin, Resistant starch **EN:** Nutrison Fibre	NR
9 McNaught et al. (28)	Critical patients in ICU	51	EN	EN	NR
		19	Probiotics+EN	Lactobacillus GG	1 × 10⁹ cfu BID
		21	Placebo+EN	Inactive plant starch inulin	Prebiotic 4 × 10⁹ cfu QD
10 Morrow et al. (69)	MV patients	35	Symbiotics+EN	Syntobi 2000 Forte **Probiotics:** Pediococcus pentosaceus 5–33:3, L. paracasei subsp paracasei 19, L. plantarum 2:362	Prebiotic 10 g QD
		30	Placebo+EN	**Placebo:** Peptamen	Daily 30 kcal/kg and 1.5 g/kg of protein (ideal body weight)
11 Kotzampassi et al. (70)	SICU patients with severe multiple trauma	35	EN	Peptamen	
		34	TPN	10% dextrose solution, 10% amino acid solution, and 10% fat emulsion	

(Continued)
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
13 Spindler-Vesel et al.	SICU patients with severe multiple trauma	26	Symbiotics+EN	Symbiotic 2000 Probiotics: Lactobacillus: Pedicoccus pentosaceus 5–33:3, Lactococcus rafinolactis 32–77:1, Lactobacillus paracasei subsp paracasei 19, Lactobacillus plantarum 2362 Prebiotics: Glucan, inulin, pectin, resistant starch	Probiotic 4 × 10^10 cfu QD Prebiotic 10 g QD
29	Prebiotics+EN	2.2 g per 100 mL			
58 EN	Nutricomp peptide Alitraq: Glutamine, arginine, α-linolenic acid	1.55 g glutamine, 446 mg arginine, 154 mg α-linolenic acid per 100 mL			
14 Spindler-Vesel et al.	MV > 2 days critical patients in ICU	40	EN	NR	NR
40	TPN	Identical amounts of fat, carbohydrate, and protein.			
15 Alberda et al.	Critical patients in ICU	10	Probiotics+EN	VSL#3: Lactobacillus, Bifidobacterium, Streptococcus salivarius subsp. Thermophilus	Probiotics: 4.5 × 10^11 cfu BID EN: 25–30 kcal/kg, 1.2–1.5 g/kg protein
18 EN	Jevity Plus	25–30 kcal/kg, 1.2–1.5 g/kg protein			
16 Casas et al.	Severe acute pancreatitis patients with organ failure	11	EN	PEPTISORB	1.5–2 g proteins/kg/day and 30–35 kcal/kg/day
11 TPN	NR	1.5–2 g proteins/kg/day and 30–35 kcal/kg/day			
17 Karakan et al.	Severe acute pancreatitis patients with organ failure	15	Probiotics+EN	Multifiber: Soluble fibers and insoluble fibers	2.4 g per day
15	EN	No prebiotics, no placebo	2,000 kcal/d		
18 Otah et al.	Severe acute pancreatitis patients with organ failure	33	Symbiotics+EN	Synbiotic 2000 Forte Probiotics: Pedicoccus pentosaceus 5–33:3, Leuconostoc mesenteroides 32–77:1, L. paracasei subsp 19, L. plantarum 2.362 Prebiotics: Inulin, oat bran, pectin, resistant starch	Probiotic 4 × 10^10 cfu QD Prebiotic 10 g QD
29	Prebiotics+EN	Plant fibers (Betaglucan, inulin, pectin, resistant starch)	10 g QD		
19 Sramek et al.	Critical patients in ICU	15	Symbiotics+EN	Synbiotic 2000 Forte Probiotics: Pedicoccus pentosaceus 5–33:3, Leuconostoc mesenteroides 32–77:1, L. paracasei subsp 19, L. plantarum 2.362 Prebiotics: Inulin, oat bran, pectin, resistant starch, inulin, oat bran, pectin, resistant starch	Probiotic 4 × 10^10 cfu QD Prebiotic 10 g QD
11 Prebiotics+EN	Tea	NR	Probiotic 10^10 cfu totally daily		
20 Besselink et al.	Patients with predicted severe acute pancreatitis	152	Probiotic+EN	Probiotic (Ecologic 641): six different strains of freeze-dried, viable bacteria: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus salivarius, Lactococcus lactis, Bifidobacterium bifidum, Bifidobacterium lactis EN: Nutrison Multi Fibre	Probiotic 10^6 cfu BID
144 EN	Nutrison Multi Fibre	NR			
21 Forestier et al.	Critical patients in ICU	102	Probiotics+EN	Probiotics: Lactobacillus casei rhamnosus	10^6 cfu BID
106 Placebo+EN	Placebo: Growth medium without bacteria	NR			
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
------------------------	--	----	--------------	--	---
Klarin et al. (80)	Critical patients in ICU	22	Symbiotics + EN	Probiotics: 299 Lactobacillus plantarum 8 × 10^8 cfu/ml Prebiotics: Oatmeal	Probiotics: given as 6 × 100 ml doses every 12 h and after 50 ml given BID
		22	Prebiotics + EN	Probiotics: Oatmeal	Same oatmeal gruel mixed with lactic acid
Dooley et al. (81)	Severe acute pancreatitis patients with organ failure	25	EN	NR	2,500–2,700 kcal/day, 120–130 g/day of protein
		25	TPN	NR	2,500–2,700 kcal/day, 120–130 g/day of protein
Giamarellos-Bourboulis et al. (82)	SICU patients with severe multiple injuries	36	Symbiotics + EN	Syngiotic 2000 Forte Probiotics: Pediococcus pentoseceus 5–33:3, Leuconostoc mesenteroides 32–77:1, L. paracasei ssp 19, L. plantarum 2,362 Prebiotics: Inulin, oat bran, pectin, resistant starch EN: Intestamin	Probiotic: 4 × 10^{10} cfu QD Prebiotic: 10 g QD
Knight et al. (26)	MV patients	130	Symbiotics + EN	Syngiotic 2000 Forte Probiotics: Pediococcus pentoseceus 5–33:3, Leuconostoc mesenteroides 32–77:1, L. paracasei ssp 19, L. plantarum 2,362 Prebiotics: Inulin, oat bran, pectin, resistant starch EN: Nutrison Energy	Probiotic: 4 × 10^{10} cfu BID Prebiotic: 10 g BID
Moses et al. (83)	ICU patients with acute organophosphate poisoning needing invasive mechanical ventilatory support	29	EN	Hypocaloric EN	Maximum of 1,000 cal/d and protein 28.32 g
		30	TPN	Glucose and electrolyte	Maximum of 1,000 cal/d and protein 28.32 g
Barraud et al. (84)	MV patients	87	Probiotics + EN	Probiotics: Ergyphilus Lactobacillus rhamnosus GG, Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium bifidum EN: Fresubin	Probiotics: 2 × 10^{11} cfu QD EN: 30–35 kcal/kg
		80	Placebo + EN	Placebo: Excipient EN: Fresubin	Placebo: NR EN: 30–35 kcal/kg
Frohmader et al. (85)	Critical patients in ICU	20	Probiotics + EN	Probiotics (VSL#3): Lactobacillus, Bifidobacterium, Streptococcus salivarius subsp. Thermophilus EN: Isosource or Renal or Diabetic Resource (Novartis, Melbourne, Australia)	Probiotics: 4.5 × 10^{11} cfu BID EN: 25 to 35 cal/kg per day and 0.8 to 1.5 g protein per kilogram per day
		25	Placebo + EN	Placebo: Free of fiber and prebiotic additives EN: Isosource or Renal or Diabetic Resource (Novartis, Melbourne, Australia)	Placebo: BID EN: 25 to 35 cal/kg per day and 0.8 to 1.5 g protein per kilogram
Morrow et al. (29)	MV patients	73	Probiotics + EN	Probiotics: Lactobacillus rhamnosus GG EN: NR	Probiotics: 2 × 10^{9} cfu BID
		73	Prebiotics + EN	Probiotics: Inulin EN: NR	BID
Ferrie and Daley (88)	Critically ill patients with diarrhea	18	Symbiotics + EN	Probiotics: Lactobacillus rhamnosus GG Prebiotics: inulin powder EN: standard feeding formula, which is a 1-calorie per mL oat fiber-containing formula	Probiotics: 10^{10} cfu QD Prebiotic: 280 mg QD

(Continued)
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
Tan et al. (87)	ICU patients with severe TBI	26	Probiotics+EN	Prebiotics: Inulin powder **EN**: standard feeding formula, which is a 1-calorie per mL oat fiber-containing formula	Prebiotic: 280 mg QD
				Prebiotic: 280 mg QD per day **EN**: 30 kcal/kg body weight/day	
31					
Hayakawa et al. (88)		31	Synbiotics+EN	Probiotics: (Yakult): 1 x 10⁸ cfu/g Bifidobacterium breve strain Yakult, 1 x 10⁹ cfu/g Lactobacillus casei strain Shirota **Prebiotics**: galactooligosaccharides **EN**: Medef (100 kcal, protein 4.5 g, fat 2.8 g, carbohydrate 14.2 g, dietary fiber 1.2 g in 100 ml) (Ajinomoto)	Probiotics: 1 g TID **EN**: According to the patient's requirements
32	MV Patients	31	Synbiotics+EN	Prebiotics: 10⁹ cfu per day **EN**: 30 kcal/kg body weight/day	
Malian et al. (89)	Critical patients in SICU	36	Probiotics+EN	Probiotics: Lactobacillus GG **EN**: NR	NR
33				Placebo: **NR** **EN**: **NR**	
Plaudis et al. (90)	Severe acute pancreatitis patients with organ failure	30	Synbiotics+EN	Probiotics: 10 g BID **EN**: 2,500 kcal/day	
				Prebiotic: 10 g BID **EN**: According to the patient's requirements **EN**: NR	
Cui et al. (91)	Severe acute pancreatitis patients with organ failure	23	Probiotics+EN	Prebiotics: Bifidobacterium **EN**: Peptisorb, Nutrison Fibre	Prebiotics: 10 g BID **EN**: 2,500 kcal/day
35					
Elke et al. (92)	ICU patients with severe sepsis or septic shock	328	EN	**NR**	**NR**
36					
Tan et al. (93)	SICU patients with severe TBI	26	Probiotics+EN	**Prebiotics**: Golden Bifid: 0.5 x 10⁸ cfu/g Bifidobacterium longum, 0.5 x 10⁷ cfu/g Lactobacillus bulgaricus, 0.5 x 10⁷ cfu/g Streptococcus thermophilus **EN**: Standard formula	**Prebiotics**: 0.5 g TID **EN**: 2 g proteins/kg/d and 35 kcal/kg/d
Wang et al. (94)	ICU patients with severe acute pancreatitis	62	Probiotics+EN	**Prebiotics**: Bacillus subtilis 1.8 x 10⁸ cfu/g, Enterococcus faecium 2.0 x 10⁸ cfu/g **EN**: PEPTISORB	**EN**: 2 g proteins/kg/d and 35 kcal/kg/d
38					

(Continued)
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
Lopez de Toro et al.	ICU patients with multi-organ failure	60	TPN	TPN	2 g proteins/kg/d and 35 kcal/kg/d, A ratio of 120:1 of non-protein calories-to-nitrogen
Sanaie et al. (96)	Critical patients in ICU	46	Synbiotics+EN	Probiotics (Drink Simbiotic): streptococcus Thermophilus, lactobacillus bulgaricus, Lactobacillus casei, lactobacillus acidophilus, bifidobacterium, Escherichia coli, coliformes Prebiotics: NR	Max 4.8 × 10⁹ cfu/ml
Zhu et al. (34)	Severe acute pancreatitis patients with organ failure	20	Probiotics+EN	Probiotics: Clostridiun Butyricum (miiyarisan) EN: NR	Probiotics: 9.0 × 10⁹ cfu BID EN: Energy requirements 25–30 kcal/kg and protein 1.2–1.5 g/kg.
Fu et al. (97)	Patients with severe acute pancreatitis	36	Probiotics+EN	Probiotics: live combined bacillus subtilis and enterococcusfaaecium EN: Peptisorb, Nutrison Fibre	Energy requirements 25–30 kcal/kg and protein 1.2–1.5 g/kg.
Kim et al. (98)	ICU patients after living donor liver transplantation	17	EN	Mediwell RTH 500	0.7 × 10⁶ cfu BID The same capsule type and amount
Rongrungruang et al.	MV patients	75	Probiotics+EN	Probiotics: Lactobacillus casei (Yakult) (Shirota strain) EN: NR	NR
Fan et al. (100)	NICU patients with severe TBI	80	EN	Nutrison Fibre	NR
Malik et al. (101)	Critical patients in ICU	24	Probiotics+EN	Probiotics: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus lactis, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium infantis EN: Osmolite 1 cal (standard formula), Glucerna (glucose intolerance formula), Peptamen (semi elemental formula), and Novasource Renal (electrolyte and fluid restriction).	NR
Zarinfar et al. (102)	MV patients	30	Probiotics+EN	Probiotics: Lactobacillus GG Placebo: NR	3 g BID EN

Continued...
Author	Diseases	N	Intervention	Details of intervention	Dose or volume of intervention
Zeng et al. (32)	MV patients	118	Probiotics+EN	Probiotics: Medilac-S; Bacillus subtilis 4.5 × 10^9 cfu/g and Enterococcus faecalis 0.5 × 10^9 cfu/g. EN: NR	Probiotics: 0.5 g TID EN: NR
Alberda et al. (103)	Critical patients in ICU	16	Probiotics+EN	Probiotics: Lactobacillus casei (Danactive)	1 × 10^10 cfu BID
Faziaty et al. (104)	ICU patients with multiple trauma	20	Prebiotics+EN	Prebiotics: b-glucon EN: high-protein enteral diet (20% protein, 30% lipid, and 50% carbohydrate)	3 g QD 25–30 kcal/kg
Kooshki et al. (105)	MV patients	30	Prebiotics+EN	Prebiotics: Ferugreek seed powder EN: NR	3 g BID
Reigner et al. (106)	MV patients	1,202	EN	Isosmotic, isocaloric, normal-protein, polymeric preparations	Daily calorie target in kcal/kg of actual bodyweight was 20–25 during the first 7 days then 25–30 from day 8 to extubation.
Shimizu et al. (107)	Patients MV for ≥72 h and diagnosed sepsis	35	Synbiotics+EN	Probiotics: Yakult BL Seichoysaku: 1 × 10^9 cfu/g B. breve strain /g and 1 × 10^8 cfu/g L. casei strain Shirota Prebiotics: galactooligosaccharides (Oligomate S-HP) EN: Standard polymeric diet Glucerna®-Ex 1 kcal/mL; 51:17:32 ratio of carbohydrate, protein, and fat; 370 mOsm/L; fiber 1.4 g/100 mL	Probiotics: 3 g QD Prebiotics: 10 g QD EN: 25–30 kcal/kg ideal body weight per day as the calorie goal
Tuncay et al. (108)	Critical patients in NICU	23	Prebiotics+EN	Prebiotics: Fructo-oligosaccharides (Jevity, 1 kcal/ml) EN: Standard formula (Osmolite, 1 kcal/ml)	Prebiotics: 5.3 g QD 1 g/kg/day EN: 30–40 ml/kg/day 1 g/kg/day and 30–40 ml/kg/day
Mahmoodpoor et al. (31)	MV patients	48	Probiotics+EN	Probiotics: Lactocare; Lactobacillus species (casei, acidophilus, rhamnosus, bulgaricus), Bifidobacterium species (breve, longum), Streptococcus thermophilus. EN: Standard formula (1 kcal/mL; Ensure)	Probiotics: 10^10 cfu BID EN: 25 kcal/kg

CFU, colony forming units; EN, enteral nutrition; GCS, Glasgow coma scale; MV, mechanical ventilation; NG, nasogastric; NJ, nasojejunal; NR, not reported; OG, orogastric; PN, parenteral nutrition; TBI, traumatic brain injuries; TPN, total parenteral nutrition.
Intervention	Nosocomial Infection (n/N)	Diarrhea	Mortality (n/N)	Mean LOS (SD)
	Total HAP VAP BI CRBIS UTI Sepsis Hospital ICU	Hospital ICU MV		
1 EN	6/50 NR	NR NR NR	14.3 (5.0) NR NR NR	
TPN	4/27 NR	NR NR NR	19.3 (7.3) NR NR NR	
2 EN	16/33 2/33 5/33 8/33 NR NR 2/33 NR 25.7 (8.8) 7.7 (2.8) 3.9 (2.3)			
TPN	13/19 4/19 8/19 4/19 NR 0/19 NR 34.9 (6.0) 15.7 (4.9) 9.0 (4.2)			
Probiotics+EN	NR	NR NR NR	18/64 NR NR NR	
Placebo+EN	NR	NR NR NR	24/64 NR NR NR	
4 Synbiotics+EN	5/10 0/10 3/10 0/10 NR NR 2/10 NR 11.1 (10) 7.7 (10.3) 3.9 (2.3)			
Placebo+EN	10/10 NR	NR NR NR	22 (37.0) 7.7 (2.8) 3.9 (2.3)	
3 Probiotics	NR	NR NR NR	25.7 (8.8) 7.7 (2.8) 3.9 (2.3)	
Placebo	NR	NR NR NR	34.9 (6.0) 15.7 (4.9) 9.0 (4.2)	
5 Synbiotics+EN	16/33 5/33 8/33 NR NR NR NR NR NR NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
Placebo+EN	26/45 8/45 3/45 13/45 NR NR NR NR NR NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
6 Synbiotics+EN	8/20 2/20 3/20 4/20 NR NR NR NR NR NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
Placebo+EN	11/20 NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
7 EN	NR	NR NR NR	18/50 7.5 (20.5) 9.5 (15.2)	
TPN	NR	NR NR NR	30.2 NR NR NR	
Probiotics+EN	6/8 5/8 0/8 3/8 2/8 NR NR 2/8 NR 12 (24.4) NR NR			
EN	5/7 2/7 3/7 3/7 1/7 NR NR 2/7 NR 11 (33.3) NR NR			
Probiotics+EN	21/52 NR NR NR NR NR NR NR NR NR	25.7 (8.8) 7.7 (2.8) 3.9 (2.3)		
EN	22/51 NR NR NR NR NR NR NR NR NR	25.7 (8.8) 7.7 (2.8) 3.9 (2.3)		
10 Probiotics+EN	2/19 0/19 2/19 0/19 NR NR NR NR NR NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
Placebo+EN	7/21 NR 10/21 NR NR NR NR NR NR NR NR	15 (12.5) 5 (8.1) 4 (3.7) NR		
11 Synbiotics+EN	17/35 19/35 NR 13/35 6/35 6/35 5/35 5/35 5/35 NR	27.7 (15.2) 16.7 (9.5)		
Placebo+EN	23/30 24/30 NR 20/30 13/30 12/30 10/30 NR 10/30 NR	41.3 (20.5) 29.7 (16.15)		
12 EN	7/35 2/35 NR 0/35 2/35 NR NR 6/35 NR 2/35 NR NR NR			
TPN	25/34 2/34 NR 5/34 4/34 NR 1/34 12/34 NR NR NR NR			
13 Synbiotics+EN	5/26 4/26 NR 0/26 0/26 0/26 NR NR 2/26 2/26 NR	12 (9.4) 11 (8.3) NR NR		
Prebiotics+EN	17/29 12/29 NR 2/29 0/29 0/29 NR NR 2/29 2/29 NR	12 (9.4) 11 (8.3) NR NR		
EN	29/58 22/58 NR 2/58 2/58 1/58 NR NR 3/58 3/58 NR	12 (9.4) 11 (8.3) NR NR		
Prebiotics+EN	2/19 NR	12 (9.4) 11 (8.3) NR NR		
14 EN	14/40 NR	12 (9.4) 11 (8.3) NR NR		
TPN	20/40 NR	12 (9.4) 11 (8.3) NR NR		
Probiotics+EN	0/10 NR	12 (9.4) 11 (8.3) NR NR		
EN	0/18 NR	12 (9.4) 11 (8.3) NR NR		
Prebiotics+EN	3/15 NR	12 (9.4) 11 (8.3) NR NR		
17 EN	3/15 NR	12 (9.4) 11 (8.3) NR NR		
Prebiotics+EN	9/33 2/33 NR NR 3/33 3/33 NR 2/33 NR 14.9 NR NR			
Prebiotics+EN	15/33 4/29 NR NR 3/29 5/29 NR 6/29 NR 19.7 NR NR			
19 Synbiotics+EN	9/15 NR NR NR NR NR NR NR NR	14 (16.3) NR NR		
Prebiotics+EN	4/10 NR	14 (16.3) NR NR		
20 Probiotics+EN	46/152 24/152 NR 32/152 1/152 1/152 25/152 24/152 NR 28.9 (41.5) 6.6 (17.1) NR			
EN	41/144 16/144 NR 22/144 NR 2/144 2/144 NR 28/144 NR 9/144 NR	23.5 (25.9) 3 (9.3) NR		
Probiotics+EN	24/102 NR	NR NR NR		
Prebiotics+EN	24/106 NR	NR NR NR		
Placebo+EN	15/106 NR	NR NR NR		
22 Synbiotics+EN	11/22 7/22 NR 2/22 1/22 2/22 NR NR 3/22 2/22 NR	5.5 (14.4) 4.4 (12.0) NR NR		
Prebiotics+EN	16/22 9/22 NR 3/22 3/22 1/22 NR NR 2/22 2/22 NR	5.5 (14.4) 4.4 (12.0) NR NR		
EN	16/25 NR NR 5/25 NR NR 4/25 NR 5/25 NR 42 (23.3) 10 (11) NR			
TPN	15/25 NR NR 8/25 NR NR 3/25 NR 4/25 NR 36 (14.3) 15 (15) NR			
Prebiotics+EN	NR	NR NR NR		
24 Synbiotics+EN	NR NR 15/36 5/36 6/36 5/36 NR NR NR	5 (5.9) 6 (5.1) NR NR		
EN	NR NR 16/36 13/36 NR 11/36 13/36 NR NR NR	NR NR NR		
Synbiotics+EN	12/130 NR 12/130 NR NR NR NR NR NR NR NR	19 (20.7) 6 (5.9) 5 (5.1) NR		

(Continued)
TABLE 3 | Continued

Intervention	Nosocomial Infection (n/N)	Diarrhea	Mortality (n/N)	Mean LOS (SD)										
	Total	HAP	VAP	BI	CRBIS	UTI	Sepsis	Hospital	ICU	ICU	MV			
Placebo+EN	17/129	NR	17/129	NR	NR	NR	NR	9/129	42/129	34/129	18 (18.52)	7 (8.14)	5 (5.92)	693188
26 EN	17/29	NR	12/29	NR	3/29	2/29	NR	0/29	3/29	NR	15 (7.8)	10.5 (5.2)	12 (6.3)	
TPN	19/30	NR	10/30	NR	4/30	5/30	NR	1/30	3/30	NR	12 (5.6)	8 (5.6)	10 (5.9)	
27 Probiotics+EN	30/87	NR	23/87	NR	3/87	4/87	NR	48/87	27/87	21/87	26.6 (22.3)	18.7 (12.4)	NR	
Placebo	NR	5/20	NR	7.3 (5.7)	6 (5.2)									
28 Probiotics+EN	NR	3/25	NR	8.1 (4.4)	6.7 (5.25)									
29 Probiotics+EN	13/73	NR	13/73	NR	NR	NR	NR	46/73	13/73	NR	21.7 (17.4)	14.8 (11.8)	9.6 (7.2)	
Prebiotics	NR	0/26	NR	10.7 (7.3)	NR									
30 Probiotics+EN	NR	1/25	NR	10.4 (3.9)	NR									
31 Probiotics+EN	NR	12/22	NR	25.8 (6.4)	NR									
EN	15/26	NR	1/7	13/19	NR	1/26	0/26	NR	5/26	NR	14 (2)	14 (2)		
32 Synbiotics+EN	5/31	NR	5/31	NR										
EN	3/16	NR	3/16	NR										
33 Synbiotics+EN	NR													
Prebiotics	NR													
34 Synbiotics+EN	NR													
EN	12/32	NR	7/32	NR	1/32	NR	NR	NR	NR	NR	NR			
35 Prebiotics	NR													
EN	5/25	NR	1/25	NR	3 (1.2)	NR	NR	NR	NR	NR	NR			
36 EN	183/328	NR	183/328	NR										
TPN	NR													
37 Probiotics+EN	NR													
EN	NR													
38 Probiotics+EN	NR													
EN	13/61	NR	13/61	NR										
39 Synbiotics+EN	NR													
EN	24/60	NR	24/60	NR										
40 Probiotics+EN	NR													
EN	13/43	NR	13/43	NR										
41 Probiotics+EN	NR													
EN	5/20	NR	5/20	NR										
42 Probiotics+EN	NR													
EN	6/19	NR	6/19	NR										
43 TPN	NR													
44 TPN	NR													
45 Probiotics+EN	NR													
EN	14/75	NR	14/75	NR										
46 Probiotics+EN	NR													
EN	13/40	NR	13/40	NR										
47 Probiotics+EN	NR													
EN	25/118	NR	25/118	NR										
48 Probiotics+EN	NR													
EN	NR													

(Continued)
TABLE 3 | Continued

Intervention	Nosocomial Infection (n/N)	Diarrhea	Mortality (n/N)	Mean LOS (SD)															
	Total	HAP	VAP	BI	CRBIS	UTI	Sepsis	Hospital	ICU	Hospital	ICU	MV							
Probiotics + EN								1/16	1/16	79.56	11.38	NR							
EN								10/16	2/16	39.38	15.31	15.96							
Prebiotics + EN								5/20	0/20	NR	NR	NR	1/20	2/20	2/20	79.56	11.38	NR	
Placebo + EN								25/37	5/37	NR	NR	NR	2/23	2/23	15.2	15.2	NR		
Synbiotics + EN								7/30	7/30	NR	1/30	2/30	NR	10/30	6/30	NR	27.4	17.6	NR
EN								10/20	4/20	NR	3/20	4/20	NR	10/20	4/20	NR	24.1	14.2	NR
Prebiotics + EN								17/30	7/30	NR	7/30	NR	NR	1/30	2/30	NR	24.1	14.2	NR
Placebo + EN								35/35	5/35	NR	5/35	NR	NR	3/35	2/35	NR	28.7	23.4	NR
Synbiotics + EN								23/37	18/37	NR	5/37	3/37	NR	2/23	2/23	NR	23.4	22.2	NR
EN								8/48	7/48	NR	4/48	3/48	NR	3/48	1/48	NR	14.2	11.6	8.75
Prebiotics + EN								54/54	6/54	NR	6/54	NR	NR	21.1	18.6	12.08	12.08	7.125	
Placebo + EN								55/55	6/55	NR	6/55	NR	NR	21.1	18.6	12.08	12.08	7.125	

Bi, Bloodstream infection; CRBIS, Catheter-related bloodstream infection; EN, enteral nutrition; HAP, hospital acquired pneumonia; LOS, length of stay; MV, Mechanical ventilation; NR, not reported; SD, standard deviation; TPN, Total parenteral nutrition; UTI, Urinary tract infection; VAP, Ventilator-associated Pneumonia.

Network Heterogeneity, Inconsistency, and Transitivity

The analysis of heterogeneity (Supplementary File 7) revealed moderate-to-high global heterogeneity in NI ($I^2 = 62.02\%$), VAP ($I^2 = 54.33\%$), CRBIS ($I^2 = 79.14\%$), diarrhea ($I^2 = 91.11\%$), hospital LOS ($I^2 = 98.56\%$), ICU LOS ($I^2 = 79.47\%$) and duration of MV ($I^2 = 86.10\%$).

In the analysis of inconsistency (Supplementary File 8), there was no global inconsistency in all outcomes except diarrhea ($p = 0.0018$). Inconsistencies were found between direct and indirect comparisons of probiotic therapy and EPN for NI ($p = 0.04143$), synbiotic and probiotic therapy for CRBIS ($p = 0.03569$), synbiotic therapy and EPN for CRBIS ($p = 0.04404$), prebiotic therapy and EPN for CRBIS ($p = 0.02783$), synbiotic and prebiotic therapy for UTI ($p = 0.04033$), synbiotic therapy and EPN for UTI ($p = 0.03591$), prebiotic therapy and EPN for UTI ($p = 0.02783$), synbiotic and prebiotic therapy for diarrhea ($p = 0.01030$), probiotic therapy and EPN for diarrhea ($p = 0.01008$), and probiotic therapy and TPN for hospital LOS ($p = 0.04520$).

In the assessment of transitivity (Supplementary File 9), most of the comparisons had similar mean age, but there were a few comparisons with relatively low or high age. Meta-regressions of mean age did not show that they affected the network estimates, although results from such analyses might suffer from ecological bias.

Subgroup and Sensitivity Analyses for Primary Outcome

Subgroup analysis of the diseases (Table 5) revealed a significant effect on the therapeutic effect of synbiotic therapy except MV patients and patients with initial time of nutrition therapy beyond 48 h, while TPN was shown to increase the morbidity of NI in different disease subgroups except MV patients (OR 1.31 95%
TABLE 4 | Results from pairwise meta-analyses and network meta-analyses on nosocomial infection.

Synbiotics	–	1.90 (0.94, 3.90)	2.50 (1.50, 4.60)	–	
Probiotics	0.71 (0.38, 1.34)	2.90 (0.79, 11.11)	1.60 (1.10, 2.40)	8.30 (2.90, 25.21)	
Prebiotics	0.57 (0.32, 1.01)	0.84 (0.44, 1.60)	Prebiotics	2.10 (1.00, 4.70)	–
–	0.37 (0.22, 0.61)	0.52 (0.34, 0.77)	0.65 (0.35, 1.15)	EPN	2.00 (1.30, 3.30)
–	0.16 (0.08, 0.31)	0.23 (0.12, 0.39)	0.28 (0.13, 0.58)	0.44 (0.27, 0.68)	TPN

Data are the ORs (95% CrI) in the column-defining treatment compared with the row-defining treatment. With treatment as the boundary, the lower left part of the table is the result of network meta-analyses, and the upper right part of the table is the result of pairwise meta-analyses. For network meta-analyses, ORs lower than 1 favor the column-defining treatment (e.g., column 1 vs. row 4 in the lower left part of the table (synbiotics vs. EPN) is the result of network meta-analyses; OR 0.37 95% CrI 0.22–0.61, so is favor the synbiotics). For pairwise meta-analyses, ORs higher than 1 favor the row-defining treatment. (e.g., column 4 vs. row 1 in the upper right part of the table (EPN vs. synbiotics) is the result of pairwise meta-analyses (OR 2.50 95% CrI 1.50–4.60), so is favor the synbiotics). To obtain ORs for comparisons in the opposite direction, reciprocals should be taken. Significant results are in bold and underscored. OR, odds ratio; CrI, credible interval; EPN, Enteral nutrition or adjuvant peripheral parenteral nutrition; TPN, Total parenteral nutrition.

![Rankogram and SUCRA ranking curve for nosocomial infection.](image)

FIGURE 5 | Rankogram and SUCRA ranking curve for nosocomial infection. (A) Rankogram for nosocomial infection. A = Synbiotics, B = Probiotics, C = Prebiotics, D = EPN, E = TPN. (B) SUCRA ranking for nosocomial infection. The number on the X-axis represents the rank. As the number goes up, the rating goes down. EPN, Enteral nutrition or adjuvant peripheral parenteral nutrition; TPN, Total parenteral nutrition.

In addition, we found that the heterogeneity and consistency in different disease subgroups were not statistically significant. Amongst RCTs over the last 10 years, high-quality studies and doses were used in our NMA. They were found to have no material impact on the relative treatment effects (Supplementary File 13).
FIGURE 6 | Forest plot of the effect estimate for each active intervention vs. EPN on secondary outcomes. Estimates are presented as odds ratios (OR) and 95% CrI. OR < 1 favors the treatment. BSIs, Bloodstream infections; CrI, credible interval; CRIBS, Catheter-related bloodstream infection; EPN, Enteral nutrition or adjuvant peripheral parenteral nutrition; HAP, Hospital acquired pneumonia; TPN, Total parenteral nutrition; LOS, length of stay; MV, Duration of Mechanical ventilation; UTI, urinary tract infection; VAP, Ventilator-associated pneumonia.

The sensitivity analysis was evaluated based on high-quality studies, and the results did not change substantially (Supplementary File 14).

Risk of Bias Assessments and Grade for the Primary Outcome
In summary (Supplementary File 4), 1 (2%) of 55 trials was rated as high risk of bias, 23 (42%) trials were deemed moderate and 31 (56%) were considered low. We did not find publication bias for the network of outcomes, except duration of MV, hospital and ICU LOS (Supplementary File 10).

GRADE judgments for primary outcome were assessed and reported in Table 6. The certainty of evidence for the relative treatment effects of NI varied. It was high and moderate for most of the comparisons involving synbiotics, probiotics and prebiotics and low for most comparisons involving EPN and TPN. When subgroup analysis was performed, the GRADE between all comparisons and ranking of treatment was raised to at least moderate. Details of GRADE for secondary outcomes are presented in Supplementary File 11.

DISCUSSION
This study was based on the analysis of 55 RCTs enrolling 7,119 patients. Results indicated that synbiotic therapy was the best regimen in preventing NI in critically ill patients, while TPN exerted adverse curative effects amongst all the studied treatments. The sensitivity analyses for NI were consistent with the previous conclusions. Subgroup analysis based on disease did not show significant heterogeneity between the included trials, and GRADE was moderate or high. These results further confirmed that the model was relevant and robust, making it applicable for use in clinical practice. Moreover, this analysis found that synbiotic therapy was the best regimen in improving HAP, CRIBS, UTI and sepsis. Probiotic and prebiotic treatments were the best regimens in shortening the duration of MV.
TABLE 5 | Subgroup analyses for nosocomial infection in different populations.

	Overall patients	ICU patients	MV patients	SAP patients	Trauma patients	Nutrition therapy within 48 h	Nutrition therapy beyond 48 h
	OR (95% CrI) Rank	OR (95% CrI) Rank					
Synbiotics	0.37 (0.22, 0.61) 1	0.45 (0.26, 0.71) 1	0.41 (0.15, 1.07) 2	0.12 (0.02, 0.81) 1	0.13 (0.013, 0.81) 1	0.40 (0.23, 0.68) 1	0.18 (0.01, 2.50) 1
Probiotics	0.52 (0.34, 0.77) 2	0.54 (0.36, 0.78) 2	0.49 (0.24, 0.90) 1	0.63 (0.20, 1.61) 3	0.38 (0.01, 12.54) 2	0.52 (0.33, 0.77) 2	0.52 (0.07, 2.99) 2
Prebiotics	0.65 (0.35, 1.15) 3	0.76 (0.41, 1.34) 3	0.70 (0.22, 1.80) 3	0.32 (0.06, 1.59) 2	0.66 (0.05, 5.99) 3	0.67 (0.35, 1.19) 3	1.00 (0.04, 22.96) 3
EPN	Reference 4	Reference 4	Reference 4	Reference 4	Reference 4	Reference 4	Reference 4
TPN	2.29 (1.48, 3.67) 5	1.57 (1.01, 2.56) 5	1.31 (0.51, 3.87) 5	3.93 (1.74, 9.15) 5	–	–	1.78 (1.04, 3.16) 5
Number of studies	42	32	12	11	5	34	8
Participants	6,215	5,414	3,726	996	290	5,641	601

CrI, credible interval; EPN, Enteral nutrition or adjuvant peripheral parenteral nutrition; MV, Mechanical ventilation; OR, odds ratio; SAP, Severe acute pancreatitis; TPN, Total parenteral nutrition. Bold indicate statistical significance.
Nature of the evidence	Study limitations	Imprecision	Inconsistency	Indirectness	Publication bias	Confidence	Downgrading due to
A vs. B	Indirect estimated	No downgrade	No downgrade	No downgrade	No downgrade	High	–
A vs. C	Mixed estimated	No downgrade	No downgrade	No downgrade	No downgrade	Moderate	Study limitations
A vs. D	Mixed estimated	No downgrade	No downgrade	Downgrade because pair heterogeneity χ^2 = 68.7%	No downgrade	Low	Inconsistency
A vs. E	Indirect estimated	No downgrade	No downgrade	No downgrade	No downgrade	Low	Study limitations
B vs. C	Mixed estimated	No downgrade	No downgrade	No downgrade	No downgrade	High	Inconsistency
B vs. D	Mixed estimated	No downgrade	No downgrade	No downgrade	No downgrade	Moderate	Inconsistency
B vs. E	Mixed estimated	No downgrade	No downgrade	No downgrade	No downgrade	High	–
C vs. D	Mixed estimated	No downgrade	No downgrade	Downgrade because pair heterogeneity χ^2 = 57.4%	No downgrade	Very low	Study limitations
C vs. E	Indirect estimated	No downgrade	No downgrade	No downgrade	No downgrade	Moderate	Study limitations
D vs. E	Mixed estimated	No downgrade	No downgrade	No downgrade	No downgrade	Moderate	Inconsistency
Ranking of treatments	Mixed estimated	No downgrade	No downgrade	Downgrade because global heterogeneity χ^2 = 62.02%	No downgrade	Low	Study limitations

A, Synbiotic; B, Probiotic; C, Prebiotic; D, Enteral nutrition or adjuvant peripheral parenteral nutrition; E, Total parenteral nutrition.

The results of the largest and most updated systematic review and meta-analysis demonstrated that probiotics are associated with a significant reduction in ICU-acquired infections and in the incidence of VAP. In addition, probiotics appeared to be more effective in reducing NI in patients at high risk of death than in patients at low and medium risk. However, such findings were limited by clinical heterogeneity and potential publication bias (42).

Although the mechanisms synbiotics were more effective than prebiotics and probiotics in preventing NI have not yet been clarified, the underlying mechanism areas discussed as follows: Firstly, synbiotics improve gut microbiota. Synbiotics not only increase the number of administered bacteria but also increase their genus groups and other microbiota, which could lead to the maintenance of gut microbiota (107). Secondly, synbiotics generate nutritional support for host epithelial cells. Synbiotic therapy had significantly increased levels of short-chain fatty acids are utilized mainly by intestinal epithelial cells as energy sources, The increased levels of short-chain fatty acids, especially acetate which might attenuate inflammation to reduce NI (60, 113). Thirdly, synbiotics maintain gut epithelial barrier. Increased levels of acetate and lactate might inhibit intraluminal toxins and maintain tight junctions (109). Finally, synbiotics regulate immune system function. Synbiotics regulates the innate and adaptive immune systems to reduce systemic inflammation and promote extra-intestinal organ function (109). These changes indicated that synbiotic therapy could have beneficial effects on reduce the development of NI (114, 115).
There were several strengths in this study. Firstly, this study was the first analysis using NMA to examine the effectiveness and determine the best choice of symbiotic regimen in improving NI in critically ill patients. This work helped us better assess the relative effects of treatment comparators in the absence of head-to-head trials. Secondly, our study is the most updated evaluation of the overall effects of symbiotic therapy in critically ill patients. It contained new suitable trials published on this topic since 1995 by focusing on NI. Thirdly, our study is the largest assessment of symbiotic therapy that included 55 RCTs published in both English and non-English languages from 24 countries, enrolling 7,119 patients. Fourthly, this study examined several relevant clinical outcomes in a heterogenous ICU patient population, including mixed ICU patients, MV patients, trauma patients, SAP patients and postoperative patients. Therefore, the results of this study helped reduce heterogeneity and potential publication bias and could be applied to a broad group of critically ill patients. Overall, all these factors increased the validity and robustness of our results.

Several limitations were still present in drawing strong treatment inferences. Firstly, the definitions of some diarrhea included in our study were inconsistent because they are based on criteria of frequency, consistency (116), weight, duration and a combination of frequency and consistency. Such variations are rather vague and subject to different interpretations. There are at least 14 different definitions (117). Making those different definitions consistent is difficult. We were also unable to perform further grouping analysis because of the limited number of studies. Analogously, the definition of prebiotics more or less overlapped with the definition of dietary fiber. In addition, some studies did not provide the accurate definitions of study outcomes. We acknowledge potential misclassification and inconsistency, which is one of the reasons why we downgraded the GRADE of those secondary outcomes. Moreover, the variety of synbiotic strains and length of administration of therapy amongst the different trials weakened any possible clinical conclusions and recommendations. Given the limited number of studies evaluating each endpoint, we were unable to perform subgroup analysis for all clinical outcomes. A further limitation is that the quality of many comparisons was assessed as low or very low level of evidence for hospital LOS, ICU LOS, and duration of MV. Hence, the inferences from current findings were weakened. Lastly, the generalizability of results was limited to other populations as nearly 90% of all studies came from Asia and Europe countries. In addition to the above limitations, we acknowledge potential heterogeneity among critically ill patients in different trials. We have conducted subgroup analysis from many aspects such as different diseases populations, initial time of nutrition therapy, and strive to minimize heterogeneity.

A multicentre, concealed, randomized, stratified, blinded, controlled trial (111) to evaluate the effect of probiotics on VAP and other ICU-acquired infections in 2,650 critically ill patients is ongoing in Canada, USA and Saudi Arabia (clinical trials. gov. registration NCT02462590). REViSe Trials are also ongoing in North America, Australia and Saudi Arabia. The results of these trials will provide further information about the curative effect on symbiotics in the ICU.

CONCLUSION

This systematic review and NMA provide evidence that synbiotic therapy ranked first over probiotics, prebiotics, EPN and TPN to prevent NI in critically ill adult patients. Conversely, TPN therapy significantly increased NI in the critically ill compared with other therapies. Physicians in critical care and related disciplines should consider the use of synbiotics as an adjunctive therapy to improve NI amongst critically ill adult patients. At the same time, the duration of TPN alone should be reduced to decrease NI, especially in ICU and SPA patients. However, on the basis of current data, there is not currently sufficient evidence to make a final strong recommendation for synbiotic therapy to be utilized in the improvement of NI in the critically ill. Numerous questions remain unanswered about a variety of synbiotic strains, wide range of daily doses and duration of therapy; such topics can be addressed in future work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CL, YY, and HQ had the idea for and designed the study. YH, LL, SL, and JX supervised the study. CL, ZG, JZ, HC, SM, AL, MM, DC, and CW did search clinical trials, study select, data extract, and statistical analysis. CL wrote the manuscript. All authors contributed to acquisition, analysis, interpretation of data, revised the report, and approved the final version before submission.

FUNDING

This study was funded by the National Natural Science Foundation of China (81971888) and the Notice of the National Health Commission medical and health science and technology development research center (2020ZX09201015).

ACKNOWLEDGMENTS

The authors would like to thank Wei Chang, Qin Sun, Fei Peng, and Shi Zhang from the department of Critical Care Medicine, Zhongda Hospital affiliated to Southeast University for their helpful and continuous support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.693188/full#supplementary-material
REFERENCES

1. Jaradat RW, Lahlouh AB, Alishgorn OY, Alshabbour BA, Balusha AA. Nosocomial infections among patients with intracranial hemorrhage: a retrospective data analysis of predictors and outcomes. Clin Neurol Neurosurg. (2019) 182:158–66. doi: 10.1016/j.clneurol.2019.05.016

2. Baviaskar AS, Khatib KL, Rajpal D, Dongare HC. Nosocomial infections in surgical intensive care unit: a retrospective single-center study. Int J Crit Illn Inj Sci. (2019) 9:16–20. doi: 10.4103/ijcillis.IJcillis_57_18

3. Spalding MC, Cripps MW, Minshall CT. Ventilator-associated pneumonia: new definitions. Crit Care Clin. (2017) 33:277–92. doi: 10.1016/j.ccc.2016.12.009

4. MacLaren G, Schlappbach LJ, Aiken AM. Nosocomial infections during extracorporeal membrane oxygenation in neonatal, pediatric, and adult patients: a comprehensive narrative review. Pediatr Crit Care Med. (2019) 21:283–90. doi: 10.1097/PCC.00000000000002190

5. Reintam Blaser A, Preiser JC, Fruhwald S, Wilmer A, Wernerman J, Benstoem C, et al. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine. Critical Care. (2020) 24:224. doi: 10.1186/s13054-020-02889-4

6. Latorre M, Krishnareddy S, Freedberg DE. Microbiome as mediator: Do systemic infections start in the gut? World J Gastroenterol. (2015) 21:10487–10492. doi: 10.3748/wjg.v21.i37.10487

7. Asrani VM, Brown A, Huang W, Bissett I, Windsor JA. Gastrointestinal dysfunction in critical illness: a review of scoring tools. J Parenter Enteral Nutr. (2020) 44:182–96. doi: 10.1002/jpen.1679

8. Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and ‘dysbiosis therapy’ in critical illness. Curr Opin Crit Care. (2016) 22:347–53. doi: 10.1097/MCC.0000000000000321

9. Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol. (2008) 83:461–6. doi: 10.1189/jlb.0607372

10. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. Sepsis in European intensive care units: results of the SOAP study. Intensive Care Med. (2006) 32:2323–9. doi: 10.1007/j.10277.1999.01754

11. Kallel H, Dammak H, Bahloul M, Ksibi H, Chelly H, Ben Hamida C, et al. Nosocomial infection among patients with intracranial hemorrhage: a retrospective data analysis of predictors and outcomes. Clin Neurol Neurosurg. (2019) 182:158–66. doi: 10.1016/j.clneurol.2019.05.016

12. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Intensive Care Med. (2006) 32:2323–9. doi: 10.1007/j.10277.1999.01754

13. Siegel T, Mikaszewska-Sokolewicz M, Mayzner-Zawadzka E. Epidemiology of infections at the intensive care unit. Pol Merkur Lekarski. (2004) 20:309–14. doi: 10.1097/00003246-200112000-00012

14. Rosenthal VD, Guzman S, Orellano PW. Nosocomial infections during extracorporeal membrane oxygenation in neonatal, pediatric, and adult patients: a comprehensive narrative review. Pediatr Crit Care Med. (2019) 21:283–90. doi: 10.1097/PCC.00000000000002190

15. Bercault N, Boulain T. Mortality rate attributable to ventilator-associated pneumonia: new definitions. Crit Care Clin. (2017) 33:277–92. doi: 10.1016/j.ccc.2016.12.009

16. Latorre M, Krishnareddy S, Freedberg DE. Microbiome as mediator: Do systemic infections start in the gut? World J Gastroenterol. (2015) 21:10487–10492. doi: 10.3748/wjg.v21.i37.10487

17. Asrani VM, Brown A, Huang W, Bissett I, Windsor JA. Gastrointestinal dysfunction in critical illness: a review of scoring tools. J Parenter Enteral Nutr. (2020) 44:182–96. doi: 10.1002/jpen.1679

18. Wischmeyer PE, McDonald D, Knight R. Role of the microbiome, probiotics, and ‘dysbiosis therapy’ in critical illness. Curr Opin Crit Care. (2016) 22:347–53. doi: 10.1097/MCC.0000000000000321

19. Alverdy JC, Chang EB. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol. (2008) 83:461–6. doi: 10.1189/jlb.0607372

20. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. Sepsis in European intensive care units: results of the SOAP study. Intensive Care Med. (2006) 32:2323–9. doi: 10.1007/j.10277.1999.01754

21. Kallel H, Dammak H, Bahloul M, Ksibi H, Chelly H, Ben Hamida C, et al. Nosocomial infection among patients with intracranial hemorrhage: a retrospective data analysis of predictors and outcomes. Clin Neurol Neurosurg. (2019) 182:158–66. doi: 10.1016/j.clneurol.2019.05.016

22. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. Sepsis in European intensive care units: results of the SOAP study. Intensive Care Med. (2006) 32:2323–9. doi: 10.1007/j.10277.1999.01754
markers in critically ill patients: a randomized, double-blind, placebocontrolled trial. *J Res Med Sci.* (2014) 19:827–33.

87. Fu Y-H, Jian-Bo W, Gui-Liang W, Ping W, Min G, Ming H, et al. Effect of enteral nutrition on cytokine production and plasma endotoxin in patients with severe acute pancreatitis. *World Clin J Digestol.* (2015) 23:1174.

88. Kim JM, Joo JW, Kim HL, Kim SH, Rha M, Sinn DH, et al. Early enteral feeding after allowing donor liver transplantation prevents infectious complications: a prospective pilot study. *Medicine.* (2015) 94:e1771. doi: 10.1097/MD.0000000000001771

89. Rongrungruang Y, Krajang Wittaya D, Pholtaworkulchai K, Tiengtrim S, Thamlikiti V. Randomized controlled study of probiotics containing *Lactobacillus casei* (Shirota strain) for prevention of ventilator-associated pneumonia. *J Med Assoc Thai.* (2015) 98:253–9.

90. Fan M-C, Qiao-ling W, Wei F, Yun-xia J, Lian-dai L, Sun P, et al. Early enteral combined with parenteral nutrition treatment for severe traumatic brain injury: effects on immune function, nutritional status and outcomes. *Chin Med Sci J.* (2016) 31:213–20. doi: 10.1016/S1001-9294(17)30003-2

91. Malik AA, Rajandram R, Tah PC, Hakumat Rai VR, Chin KF. Microbial cell preparation in enteral feeding in critically ill patients: a randomized, double-blind, placebo-controlled clinical trial. *J Crit Care.* (2016) 32:182–88. doi: 10.1016/j.jcc.2015.12.008

92. Zarinfar N, Sharafkhalah M, Amiri M, Rafeie M. Probiotic effects in prevention from ventilator-associated pneumonia. *Kooomesh.* (2016) 7:803–13.

93. Alberay H, C, Maruschak S, Hower T, Journault N, Kutsogiannis D. Feasibility of a *Lactobacillus casei* drink in the intensive care unit for prevention of antibiotic associated diarrhea and *Clostridium difficile*. *Nutrients.* (2018) 10:539. doi: 10.3390/nu10050539

94. Fazlati Z, Chrenni H, Shariatpanahi ZV. Effect of β-glucan on serum levels of IL-12, hs-CRP and clinical outcomes in multiple-trauma patients: a prospective randomized study. *Turk J Trauma Emerg Surg.* (2016) 24:287–93. doi: 10.5505/tjtes.2017.34514

95. Kooshti AZK, Zarghi A, Rad M, Tabaraie Y. Probiotic prophylaxis of ventilator-associated pneumonia: a randomized clinical trial. *Biomed Res Ther.* (2018) 5:2287–95. doi: 10.15419/bmrr.2018.55.442

96. Reigner J, Boismé Helms J, Brissard L, Lascarrou J-B, Ait Hssain A, Angel N, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, openlabel, parallel-group study (NUTRIREA-2). *Lancet.* (2019) 391:133–43. doi: 10.1016/S0140-6736(17)32146-3

97. Shimizu K, Yamada T, Ogura H, Mohri T, Kiguchi T, Fujiy M, et al. Symbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. *Crit Care.* (2018) 22:239. doi: 10.1186/s13054-018-2167-x

98. Toncay P, Arpaci F, Doganay M, Erdem D, Sahna A, Ergun H, et al. Use of standard enteral formula versus enteric formula with prebiotic content in nutrition therapy: a randomized controlled trial conducted among neuro-critical care patients. *Clin Nutr ESPEN.* (2018) 25:26–36. doi: 10.1016/j.clnesp.2018.03.123

99. Davison JM, Wismeyer PE. Probiotic and symbiotic therapy in the critically ill: state of the art. *Nutrition.* (2019) 59:29–36. doi: 10.1016/j.nut.2018.07.017

100. Lherm T, Monet C, Nougier B, Soulier M, Larbi D, Le Gall C, et al. Seven cases of fungemia with *Saccharomyces boulardii* in critically ill patients. *Intens Care Med.* (2002) 28:797–801. doi: 10.1007/s00134-002-2167-x

101. Johnstone J, Heels-Ansdell D, Thabane L, Meade M, Marshall J, Lauzier F, et al. Evaluating probiotics for the prevention of ventilator-associated pneumonia: a randomised placebo-controlled multicentre trial protocol and statistical analysis plan for PROSPect. *BMJ Open.* (2019) 9:e025228. doi: 10.1136/bmjopen-2018-025228

102. Morrow LE, Gogineni V, Malesker MA. Symbiotics and probiotics in the critically ill after the PROPATRIA trial. *Curr Opin Clin Nutr Metab Care.* (2012) 15:147–50. doi: 10.1097/MCN.0b013e32834f7ec8

103. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y. Probiotic bifidobacteria prevent mice from lethal infection with Shiga toxinproducing *Escherichia coli* O157:H7. *Infect Immun.* (2004) 72:2240–7. doi: 10.1128/IAI.72.4.2240-2247.2004

104. Asahara T, Takahashi A, Yuki N, Kaji R, Takahashi T, Nomoto K. Protective effect of a symbiotic against multidrug-resistant *Acinetobacter baumannii* in...
a murine infection model. *Antimicrob Agents Chemother.* (2016) 60:3041–50. doi: 10.1128/AAC.02928-15

115. Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, et al. Synbiotics decrease the incidence of septic complications in patients with severe SIRS: a preliminary report. *Digest Dis Sci.* (2008) 54:1071–8. doi: 10.1007/s10620-008-0460-2

116. De Brito-Ashurst I, Preiser JC. Diarrhea in critically ill patients: the role of enteral feeding. *JPEN J Parenteral Enteral Nutr.* (2016) 40:913–23. doi: 10.1177/0148607116651758

117. Bliss DZ, Guenter PA, Settle RG. Defining and reporting diarrhea in tube-fed patients—what a mess! *Am J Clin Nutr.* (1992) 55:753–9. doi: 10.1093/ajcn/55.3.753

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Liu, Gao, Zhang, Chen, Ma, Liu, Mo, Wu, Chen, Liu, Xie, Huang, Qiu and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.