Original article
Scand J Work Environ Health 2000;26(4):331-337
doi:10.5271/sjweh.550

Hormone-dependent cancer and adverse reproductive outcomes in farmers' families - effects of climatic conditions favoring fungal growth in grain
by Kristensen P, Andersen A, Irgens LM

Key terms: breast cancer; climatic conditions; cryptorchidism; endometrial cancer; farmer’s family; fungal growth; grain; hormone-dependent cancer; hypospadias; male; mediated spontaneous abortion; mycotoxin; ovarian cancer; reproductive outcome

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/10994799
Hormone-dependent cancer and adverse reproductive outcomes in farmers' families — effects of climatic conditions favoring fungal growth in grain

by Petter Kristensen, MD,1 Aage Andersen,2 Lorentz M Irgens, MD3

Kristensen P, Andersen A, Irgens LM. Hormone-dependent cancer and adverse reproductive outcomes in farmers' families — effects of climatic conditions favoring fungal growth in grain. Scand J Work Environ Health 2000;26(4):331-337.

Objectives The impact of grain farming and climate on late-term abortion among female farmers, male genital birth defects among their sons, and hormone-dependent cancer among male and female farmers and their adult children was investigated.

Methods National registers were cross-matched in Norway and 246 043 male and female farmers born in 1925—1971 were identified, as were their 264 262 children, born in 1952—1980, in agricultural censuses and in the population register. The subjects were followed in the Cancer Register through 1995. Farmers' births, conceived in 1973—1991, were identified, and the prevalences of late-term abortion in mothers and hypospadias and cryptorchidism in their sons at birth were examined. Exposure, defined as the combination of grain farming and categories of seasonal or cumulative warnings, was based on data in agricultural censuses and on local, seasonal, field fungal warnings. Estimated adjusted rate ratios or prevalence ratios served as the measures of association.

Results Categories of high exposure were associated with reproductive outcomes and cancer among female farmers, the strongest occurring for late-term abortion (ratio 2.6, 95% confidence interval [95% CI] 1.6—4.3). Exposure associations for ovarian and breast cancer, and male genital defects, were more moderate. Endometrial cancer was associated with grain farming (ratio 2.0, 95% CI 1.4—2.8) across all levels of fungal warnings. Exposure associations for cancer were strongest for premenopausal, parous women. Exposure was not associated with cancer among male farmers or children.

Conclusions Climatic conditions favoring fungal growth in grain were associated with hormone-dependent adverse outcomes among female farmers; the results are consistent with hormonal effects of inhaled mycotoxins during pregnancy.

Key terms breast cancer, cryptorchidism, endometrial cancer, hypospadias, mycotoxins, ovarian cancer, spontaneous abortion.

The hypothesis that exposure to endocrine-disrupting xenobiotics and natural toxins causes adverse health effects as a result of hormone modulation has attracted wide attention (1—3). Male reproductive performance, genital birth defects, testicular cancer, prostate cancer, and breast cancer have been main concerns. Except for conflicting results in breast cancer studies (4—6) the epidemiologic evidence is scarce. Ovarian and endometrial cancer have rarely been considered in this respect (7, 8). Occurrences of several of these outcomes have increased; therefore man-made chemicals have been suspected culprits. Several natural toxins also have endocrine-modulating properties (2, 3), and the mycotoxin zearalenone produced by Fusarium field fungi has received attention (2, 3, 9). Zearalenone and other mycotoxins have been identified in grain, and are recognized problems in grain harvests under difficult climatic conditions (10—12).

We have earlier studied perinatal outcomes and cancer among Norwegian farmer families (13—16) and found that very preterm delivery was associated with poor regional harvest conditions on grain farms (13). In our present study, we have investigated associations between meteorological conditions on grain farms, and several hormone-dependent reproductive outcomes and cancers in the earlier established family cohort. We used

1 National Institute of Occupational Health, Oslo, Norway.
2 The Cancer Registry of Norway, Institute of Epidemiological Cancer Research, Oslo, Norway.
3 Medical Birth Registry of Norway, University of Bergen, Bergen, Norway.

Reprint requests to: Dr Petter Kristensen, National Institute of Occupational Health, POB 8149 Dep, N—0033 Oslo, Norway. [E-mail: petter.kristensen@stami.no]
fungal warnings based on local climate data in the growing seasons and updated the cancer data by extending follow-up through 1995. The study hypothesis was that conditions favoring fungal growth and mycotoxin formation constitute a risk for hormone-dependent adverse outcomes.

Material and methods

Statistics Norway conducted 3 agricultural and 2 horticultural censuses during 1969—1989, and these censuses resulted in computerized data files. By means of the personal identification number assigned to all Norwegian residents, we identified farm holders, born in 1925—1971, in the censuses, as well as spouses, born in 1925—1971, and their children, born in 1952—1991, in a linkage with the Central Population Register. These farm holders, spouses, and children were followed for incident cancer in the Cancer Register. We linked the file of farmers and spouses to the Medical Birth Register of Norway to identify their births. The establishment of the cohort and linking procedures have been described in more detail elsewhere (13—16). On the basis of these linking procedures we established 6 analysis files: a file of mothers (late-term abortion study), their newborn sons (hypospadias and cryptorchidism), female farmers (cancer), male farmers (cancer), farmers’ daughters (cancer), and farmers’ sons (cancer).

Exposure

We linked information about grain farming provided in the agricultural and horticultural censuses to all the study populations.

Reproductive outcomes

The Medical Birth Register of Norway, comprising since 1967 birth notifications for all deliveries from 16 completed weeks of gestation, provided data on the reproductive outcomes under study, namely, late-term abortion defined as stillbirth during 16—27 completed weeks of gestation and genital birth defects (hypospadias and cryptorchidism) among the boys.

We identified 101 192 births with exposure information (conceptions between June 1973 and May 1991, see the Analysis section). On the basis of these births, the following 2 analysis files were prepared: 56 720 women with singleton pregnancies (late-term abortion investigation) and 52 062 newborn boys (investigation of hypospadias and cryptorchidism) recognized at birth; table 1).

Cancer

Case reporting to The Cancer Registry of Norway includes both clinical and pathological data and has been mandatory since 1952. In the linkage and follow-up we identified incident cases of breast adenocarcinoma (female farmers, daughters), ovarian adenocarcinoma (female farmers, daughters), endometrial adenocarcinoma (female farmers), testicular cancer (male farmers, sons) and prostate cancer (male farmers).

The follow-up of cancer among the male and female farmers born in 1925—1971 started 1 January in the year of the first agricultural census participation, but not before the attained age of 20 years. Children born in 1952—1980 were followed from the date of their 15th birthday. Follow-up continued through 1995 or to the time of death or emigration, whichever occurred first. Thus the oldest farmers were 70 years old and the oldest children were
43 years old at the end of the follow-up. In an attempt to avoid bias from a selective loss of unidentified dead children or spouses in the population register (14, 15), the children were not followed before 1971 and spouses not before 1986.

The 4 populations contributing person-years were 109 752 female farmers (1 024 344 person-years), 136 291 male farmers (2 023 903 person-years), 128 578 daughters (1 716 867 person-years), and 135 684 sons (1 810 263 person-years; table 1).

Analysis
The analyses were performed with the Epicure software package (18). We computed prevalences for those at risk of reproductive outcomes (per 1000 mothers for late-term abortion and per 10 000 male offspring for birth defects). Cancer incidence rates were calculated per 100 000 person-years at risk.

The exposure under study was the combination of grain farming and late blight warnings. We constructed time-specific and cumulative variables on the basis of the warning counts allocated to each farm during 18 seasons. For reproductive outcomes, the warning count in a specific season was assigned to pregnancies or births conceived between June in the same season and May of the next year. Thus conceptions between June 1973 and May 1991 were studied. Time of conception was based on information on the first day of the last menstrual period in the Medical Birth Register. For cancer, we used the cumulative number of years with more than 1 warning, divided into quartiles according to the distribution among grain farmers (0, 1–2, 3–5 and ≥6 years). Examples of the distributions of season-specific warnings and the number of years with more than 1 warning are provided in table 1.

We used ratio estimates as measures of association, prevalence ratios for reproductive outcomes, and rate ratios for cancer. The ratios were computed in contingency tables that were stratified by potential confounders, and Poisson regression models controlled for these variables.

An initial analysis showed that maternal age (<20, 20–34, ≥35 years) and calendar year (5-year intervals) were associated with late-term abortion and birth defects. Age (5-year intervals) and calendar year (5-year intervals) were associated with all the cancers under study; in addition, parity (0, 1–2, 3, ≥4) influenced female cancers. Hence, we deemed adjustment relevant and controlled for these variables in the analyses. Reproductive patterns, which could influence risks of adverse reproductive outcomes and reproductive cancer, vary in different parts of Norway. Furthermore, both grain farming and late blight warnings were dependent on farm location and pesticide application. Therefore we adjusted for geographic region (5 regions) and an indicator of pesticide use. Pesticide use was defined as having spent money on pesticides (1969 census) or having pesticide spraying equipment on the farm (1979 census). Approximately 40% of the subjects in the different analysis files used pesticides; about 4% did not participate in the 1969 or 1979 census.

We also performed analyses in separate strata of maternal age and parity. Female reproductive cancer risk is dependent on childbirth and hormonal status (6–8); therefore we had a specific interest of investigating the heterogeneity of exposure effects across categories of parity and age in relation to menopause.

Results
Reproductive outcomes
A total of 395 women (7.0 per 1000) experienced late-term abortion. The prevalence of the grain farmers was moderately higher than that of the nongrain farmers, 7.8 and 6.7, respectively. Grain farmers had increasing prevalence ratios of late-term abortion in association with seasonal warnings (≥3 warnings, ratio 2.6, 95% confidence interval (95% CI) 1.6–4.3) (table 2).

The prevalence ratio for hypospadias was increased in the category of grain farming with ≥2 warnings in the season of conception (table 2). The prevalence of

Table 2. Associations between the combination of grain farming and number of season-specific late blight warnings and selected reproductive outcomes for the 56 720 Norwegian female farmers who conceived between June 1973 and May 1991 and their 52 062 sons at birth. (95% CI = 95% confidence interval)

Exposure category	Cases (N)	Prevalencea	Prevalence ratiob	95% CI
Late-term abortion				
Nongrainf	276	6.7	1.0	
Grain				
0 warnings	51	7.1	1.4	1.0–1.9
1 warning	31	6.3	1.2	0.8–1.8
2 warnings	19	10.2	1.8	1.1–2.9
≥3 warnings	18	13.0	2.6	1.6–4.5
Nongrainf	103	25.8	1.0	
Grain				
0 warnings	19	31.2	1.0	0.5–1.7
1 warning	8	22.3	0.8	0.4–1.7
≥2 warnings	13	50.7	1.8	0.9–3.4
Cryptorchidism				
Nongrainf	88	22.1	1.0	
Grain				
0 warnings	6	9.9	0.3	0.1–0.7
1 warning	11	30.8	0.9	0.5–1.8
≥2 warnings	11	43.0	1.2	0.6–2.4

a Late-term abortion per 1000 women; birth defects per 10 000 male births.
b Adjusted for maternal age, calendar year, region and pesticide use.
c Reference group.
Table 3. Associations between the combined exposure of grain farming and number of years with ≥2 late blight warnings and hormone-dependent cancer in the Norwegian farming population. (95% CI = 95% confidence interval)

Exposure category	Cases	Incidence rate	Rate ratio	95% CI
Endometrial adenocarcinoma, female farmers				
Nongrain	171	25.2	1.0	.
Grain				
0 years	30	28.2	1.1	0.7—1.7
1–2 years	23	36.3	1.4	0.9—2.4
3–5 years	31	34.7	1.5	1.0—2.3
≥6 years	26	29.9	1.4	0.8—2.2
Ovarian adenocarcinoma, female farmers				
Nongrain	635	93.6	1.0	.
Grain				
0 years	79	74.2	1.0	0.7—1.3
1–2 years	64	100.9	1.3	1.0—1.8
3–5 years	72	80.5	1.2	0.9—1.5
≥6 years	71	81.7	1.4	1.0—1.7
Breast adenocarcinoma, female farmers				
Nongrain	26	122.1	1.0	.
Grain				
0 years	20	8.9	1.0	0.6—1.8
1–2 years	13	9.9	1.0	0.5—2.0
3–5 years	14	7.3	0.7	0.4—1.4
≥6 years	23	12.1	1.2	0.7—2.0
Testicular cancer, farmers				
Nongrain	114	8.9	1.0	.
Grain				
0 years	20	8.9	1.0	0.6—1.8
1–2 years	13	9.9	1.0	0.5—2.0
3–5 years	14	7.3	0.7	0.4—1.4
≥6 years	23	12.1	1.2	0.7—2.0
Prostate cancer, farmers				
Nongrain	499	38.8	1.0	.
Grain				
0 years	72	32.0	1.0	0.7—1.3
1–2 years	50	38.3	1.2	0.9—1.6
3–5 years	49	25.5	0.8	0.6—1.0
≥6 years	51	26.9	0.8	0.6—1.2
Ovarian adenocarcinoma, daughters				
Nongrain	55	4.4	1.0	.
Grain				
0 years	5	3.5	0.5	0.2—1.5
1–2 years	0	0.0	—	.
3–5 years	0	0.0	—	.
≥6 years	5	3.9	0.7	0.2—1.9
Breast adenocarcinoma, daughters				
Nongrain	55	4.4	1.0	.
Grain				
0 years	1	0.7	0.1	0.0—1.1
1–2 years	4	5.1	1.2	0.4—3.6
3–5 years	3	2.5	0.6	0.2—2.1
≥6 years	3	2.3	0.5	0.1—1.8
Testicular cancer, sons				
Nongrain	193	14.7	1.0	.
Grain				
0 years	15	10.0	0.8	0.4—1.4
1–2 years	15	17.6	1.3	0.7—2.3
3–5 years	11	8.5	0.6	0.3—1.1
≥6 years	22	16.3	1.2	0.7—2.1

a Incidence density (cases per 100 000 person-years).

Table 4. Associations between endometrial and ovarian adenocarcinoma among Norwegian female farmers and the combined exposure of grain farming and number of years with ≥2 late blight warnings, by parity and age.

Exposure category	Cases	Incidence rate	Rate ratio	95% CI
Endometrial adenocarcinoma, parous farmers				
Nongrain	91	16.0	1.0	.
Grain				
0–2 warning years	32	22.7	1.6	1.0—2.7
≥3 warning years	50	32.3	2.6	1.5—4.1
Endometrial adenocarcinoma, nulliparous farmers				
Nongrain	34	31.4	1.0	.
Grain				
0–2 warning years	12	41.2	1.7	0.7—3.9
≥3 warning years	9	41.4	1.5	0.6—3.8
Ovarian adenocarcinoma, parous farmers, attained age 20–49 years				
Nongrain	47	14.3	1.0	.
Grain				
0–2 warning years	18	20.7	1.6	0.8—3.2
≥3 warning years	27	27.6	2.5	1.3—4.7
Ovarian adenocarcinoma, nulliparous farmers or attained age ≥50 years				
Nongrain	124	35.4	1.0	.
Grain				
0–2 warning years	35	42.3	1.1	0.7—1.7
≥3 warning years	30	38.5	1.0	0.6—1.7
Breast adenocarcinoma, parous farmers, attained age 20–49 years				
Nongrain	207	63.2	1.0	.
Grain				
0–2 warning years	43	49.4	1.0	0.7—1.5
≥3 warning years	62	63.5	1.6	1.1—2.3
Breast adenocarcinoma, nulliparous farmers or attained age ≥50 years				
Nongrain	428	122.1	1.0	.
Grain				
0–2 warning years	100	120.8	1.2	0.9—1.5
≥3 warning years	81	103.0	1.0	0.8—1.4

* Incidence density (cases per 100 000 person-years).

* Adjusted for age, calendar year, parity, region and pesticide use, except for endometrial cancer analysis in nulliparous farmers (adjusted for age, calendar year, region, and pesticide use).

* Reference group.
slightly associated with grain farming (adjusted rate ratio 1.2, 95\% CI 1.0—1.4). The crude rates for breast adenocarcinoma were low in most of the grain-warning strata in comparison with those of the nongrain farmers (table 3). However, pesticide use was a confounder, and the adjusted rate ratios were slightly increased (ratios 1.2—1.3).

Contrary to the results for female farmers, we found no positive exposure associations with testicular and prostate cancer among the male farmers, breast adenocarcinoma and ovarian adenocarcinoma among the daughters, or testicular cancer among the sons (table 3).

The exposure associations for female farmers were dependent on parity and age, being stronger for parous women during premenopausal age (table 4). For endometrial adenocarcinoma, the association was stronger for parous than for nulliparous women. The rate ratio for parous grain farmers with ≥3 warning years was 2.6 (95\% CI 1.5—4.1); the incidence rate in this stratum was in fact higher than for nulliparous nongrain farmers. An even stronger exposure association was found for parous women aged 20—49 years, but the estimate was based on few cases (data not shown).

For ovarian adenocarcinoma, the exposure association was almost entirely restricted to parous women who were followed before 50 years of age (≥3 warning years, rate ratio 2.5, 95\% CI 1.3—4.7) (table 4). The same association was also found for breast adenocarcinoma (≥3 warning years, rate ratio 1.6, 95\% CI 1.1—2.3), but the crude rate was not increased in a comparison with the nongrain farmers.

Discussion

This study provides evidence that weather conditions in grain farming are associated with late-term abortion and ovarian adenocarcinoma among female farmers. A more moderate association was found for breast adenocarcinoma. Endometrial cancer was associated with grain farming across all the strata of fungal warnings. Exposure associations were stronger for cancer among premenopausal parous women. The support of a similar exposure association for genital birth defects among male offspring was more limited. There was no indication of exposure associations with study cancers among the male farmers and their sons and daughters. The late-term abortion result is in accord with earlier findings in the same population, for which a crude regional assessment of harvest conditions was applied (13). We are not aware of other epidemiologic studies supporting these results, with the exception of an increased incidence of ovarian cancer among premenopausal paper pulp workers who were potentially exposed to fungi (19).

In addressing these novel findings, we must first consider noncausal explanations. Complete participation was made possible by the unique identification number assigned to all national residents, but our study shares the limitations that have been found for most register-based studies with respect to exposure data quality.

The grain farming variable was based on cross-sectional census data. However, the resulting misclassification was likely to be limited since nearly 90\% of those who cultivated grain according to 1 census reported grain farming in all the censuses. *Fusarium* and *Fusarium* toxins are widespread in Norwegian grain (10), and the relation between climate and toxin levels in grain (12) suggests that our warning variables were useful indicators of fungal growth and mycotoxin formation. Furthermore, *Fusarium* growth and mycotoxin formation have been demonstrated in storage silos under realistic conditions (20). The climate in Norway requires that grain be stored and dried indoors from the harvest in August—October until December—January. Grain handling during harvest, storage, drying and mill delivery can involve dust inhalation (21). However, our data on exposure opportunity do not indicate actual levels or the exact timing of exposure. The cumulative warning variable was a particular problem, reflecting an average of over 18 years. We were not able to investigate effects of time-specific prenatal exposure on cancer in the sons and daughters because the study cancers were few among subjects born in 1973—1991. The exposure misclassification in our study was likely to be independent of outcome; therefore the effect would be conservative, attenuating true associations and dose-response gradients.

The results may have been confounded by determinants not fully accounted for. For female farmers, we lacked data on some reproductive parameters (age at menarche, first birth and menopause, interpregnancy intervals, breast feeding), obesity, diet, and the use of oral contraceptives. Compared with the general population, the farming population in Norway is rather conservative in lifestyle and reproductive patterns, and there are no indications of distinct differences within this population concerning these potential confounders. Therefore we do not consider them to be likely explanations of the stronger exposure associations observed, but such factors could possibly explain weak associations, for example, the breast cancer results.

Pesticide use is a particular concern that could have had a complex influence on our results. Fungicides, herbicides, and growth regulators, of which some have weak endocrine-disrupting properties (2, 3), are more likely to be applied under climatic conditions that favor fungal growth. At the same time, the use of pesticides alters fungal and mycotoxin formation. Our pesticide use indicator was correlated with fungal warnings, and it was negatively associated with late-term abortion and the study.
cancers among female farmers and positively associated with cryptorchidism. Accordingly, pesticide-use adjustment strengthened the exposure associations for the cancers, in particular breast adenocarcinoma, and weakened the exposure associations for cryptorchidism. One speculative interpretation would be that pesticides counteract the exposure effects on cancer and are truly related to male genital birth defects in accordance with earlier results from our study population (16) and also results from other studies (22, 23).

Given that the reported exposure effects truly were causal, they could still apply to factors other than endocrine-disrupting mycotoxins. After a difficult harvest, grain dust not only contains fungi and mycotoxins, but also organic matter, mites, bacteria, and endotoxins (21). Several of these constituents, including mycotoxins, have immunologic effects (9, 21), and these effects could be relevant for reproductive cancer (6—8) and pregnancy outcome (24).

The inferential problem with obscure exposure indicators is partly compensated by the opportunity to investigate several outcomes in the same family cohort, and therefore interpretations of risk patterns are possible for outcomes where common causes might be plausible.

Pregnancy is a strong protective factor for cancer of the breasts, ovariess, and endometrium (6—8). Thus the stronger exposure-cancer associations for parous women of premenopausal age are interesting and could be important from an inferential point of view. The results could be interpreted as hormonal alterations during pregnancy that cause late-term abortion and reduce or eliminate the protective effect of pregnancy on the study cancers. Although mycotoxins (as well as other grain dust constituents) have recognized immunologic and endocrine effects, we are not aware of any single mechanism of action from those constituents that could explain the combined results. The exposure-cancer associations among farmers’ daughters were negative, but there were few cases and wide confidence intervals. These results suggest that the same exposure factors that could have an impact among adult farmers were not active in prenatal or early life.

This is the first report of such associations, and further evidence is warranted. There is a need for a better identification, characterization and toxicologic assessment of potential endocrine-disrupting constituents in grain dust and actual exposure data of these constituents in grain handling.

Acknowledgments

We thank Leif Sundheim at the Norwegian Crop Research Institute for his assessment of the farm exposure data, Aage Johansen at the Cancer Registry, Ole-Henrik Edland at the Medical Birth Registry of Norway, and Anne Snellingen Bye at Statistics Norway for their file preparation and linking, and Einar Frøsund at the Norwegian Crop Research Institute for his electronic preparation of the late blight warning data.

The study received funding from The Research Council of Norway (grant 103542/110).

References

1. Sharpe RM, Stakkelbak NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 1993;341:1392—5.
2. Golden RJ, Noller KL, Titus-Ernstoff L, Kaufman RH, Mittedorf R, Stillman R, et al. Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit Rev Toxicol 1998;28:109—227.
3. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guilette LJ, et al. Male reproductive health and environmental xenestrogens. Environ Health Perspect 1996;104 suppl 4:741—803.
4. Safe SH. Is there an association between exposure to environmental estrogens and breast cancer? Environ Health Perspect 1997;105 suppl 3:675—8.
5. Høyer ÅP, Grandjean P, Jørgensen T, Brock JW, Hartvig HB. Organochlorine exposure and risk of breast cancer. Lancet 1998;352:1816—20.
6. Kelsey JL. Breast cancer epidemiology: summary and future directions. Epidemiol Rev 1993;15:256—63.
7. Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. JNCI 1998;90:1774—86.
8. Grady D, Ernst RL. Endometrial cancer. In: Schottenfeld D, Fraumeni JF Jr, editors. Cancer epidemiology and prevention. 2nd ed. New York (NY): Oxford University Press, 1996: 1058—89.
9. Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Reg Toxicol Pharmacol 1987; 7:253—306.
10. Sundheim L, Nagayama S, Kavamura O, Tanaka T, Brodal G, Ueno O. Trichothenes and zearalenone in Norwegian barley and wheat. Norw J Agric Sci 1988;2:49—59.
11. Langseth W, Stenwig H, Sogn L, Mo E. Growth of moulds and production of mycotoxins in wheat during drying and storage. Acta Agric Scand, Sect B, Soil Plant Sci 1993; 43:52—7.
12. Langseth W, Olsen E. The occurrence of deoxynivalenol in Norwegian cereals — differences between years and districts. Acta Agric Scand, Sect B, Soil Plant Sci 1997;47:176—84.
13. Kristensen P, Jorgensen LM, Andersen A, Bye AS, Sundheim L. Gestational age, birth weight, and perinatal death among births to Norwegian farmers, 1967—1991. Am J Epidemiol 1997;146:329—38.
14. Kristensen P, Andersen A, Jørgensen LM, Bye AS, Sundheim L. Cancer in offspring of parents engaged in agricultural activities in Norway: incidence and risk factors in the farm environment. Int J Cancer 1996;65:39—50.
15. Kristensen P, Andersen A, Jørgensen LM, Laake P, Bye AS. Incidence and risk factors of cancer among men and women in Norwegian agriculture. Scand J Work Environ Health 1996;
Kristensen et al

22:14—26.

16. Kristensen P, Irgens LM, Andersen A, Bye AS, Sundheim L. Birth defects among offspring of Norwegian farmers, 1967—1991. Epidemiology 1997;8:537—44.

17. Forsund E. Late blight forecasting in Norway 1957—1980. EPPO Bull 1983;13:255—8.

18. Preston DL, Lubin JH, Pierce DA, McConney ME. Epicure. Seattle (WA): Hirosoft International Corporation, 1993.

19. Langseth H, Andersen A. Cancer incidence among women in the Norwegian pulp and paper industry. Am J Ind Med 1999;36:108—13.

20. Langseth W, Stenwig H, Sogn L, Mo E. Growth of moulds and production of mycotoxins in wheat during drying and storage. Acta Agric Scand, Sect B, Soil Plant Sci 1993;43:32—7.

21. Lacey J, Dutkiewicz J. Bioaerosols and occupational lung disease. J Aerosol Sci 1994;25:1371—404.

22. Weidner IS, Møller H, Jensen TK, Skakkebæk NE. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ Health Perspect 1998;106:793—6.

23. Restrepo M, Muñoz N, Day N, Parra JE, Hernandez C, Blettner M, et al. Birth defects among children born to a population occupationally exposed to pesticides in Colombia. Scand J Work Environ Health 1990;16:239—46.

24. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal—fetal relationship: is successful pregnancy a T₁/2 phenomenon? Immunol Today 1993;14:353—6.

Received for publication: 5 October 1999