Data Article

2-(1,3-Oxazolin-2-yl)pyridine and 2,6-bis (1,3-oxazolin-2-yl) pyridine

Wioletta Ochędzam-Siodłak *, Anna Bihun-Kisiel, Dawid Siodłak, Anna Poliwoda, Blażej Dziuk

Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland

ABSTRACT

The data presented in this article are related to research articles “Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization (Ochędzam-Siodłak et al., 2018). For the title compounds, 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box), the single-crystal X-ray diffraction measurement together with NMR, GC, MS, DSC analysis, like also the method of crystallization are presented.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Chemistry
More specific subject area	Organic Chemistry, Ligands for Catalysts
Type of data	Figures, tables, text file.
	X-ray (table, figures), GC–MS (Figures), 13C NMR (figures), DSC (figures), synthesis (text)

 DOI of original article: https://doi.org/10.1016/j.eurpolymj.2018.07.019

* Corresponding author.

E-mail address: wsiodlak@uni.opole.pl (W. Ochędzam-Siodłak).

https://doi.org/10.1016/j.dib.2018.09.129

2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired
X-ray (Xcalibur diffractometer), NMR (Bruker Ultrashield spectrometer 400 MHz, solvent DMSO-d6), GC–MS (Hewlett Packard HP7890 A GC system), DSC (2010 TA calorimeter)

Data format
X-ray (analyzed), GC–MS (raw), NMR (raw), DSC (raw)

Experimental factors
Crystallization at room temperature. Py-ox - highly anhydrous toluene/hexane mixture, Py-box - DMSO-d6 in NMR tube.

Experimental features
Highly anhydrous condition for crystals are required.

Data source location
City: Opole, Country: Poland, Latitude: N 50°40'23.981", Longitude: E 17°55'53.173', (Lat,Long: 50.673328, 17.93143699999996),

Data accessibility
The Cambridge Crystallographic Data Centre no. CCDC 1815355 and CCDC 1580983 (http://www.ccdc.cam.ac.uk/conts/retrieving.html, email: deposit@ccdc.cam.ac.uk.).

Value of the data
- X-Ray structural information for Py-ox and Py-box compounds not coordinated by metal atom is presented.
- Conformation and association pattern in the crystal state is shown.
- Crystallization methods are shown.
- Purification for Py-ox is improved.

1. Data

The presented compounds, 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box), are commonly applied as ligands for complexes with transition metals: cobalt [2], rhenium [3], platinum and palladium [4,5] for Py-ox, as well as copper [6,7], ruthenium [8–11], rhodium [12], manganese [13], silver [14], nickel [15], cobalt [16], terbium [17], and iron [18], in the case of Py-box. Some of them reveal catalytic properties. In our work, the Py-ox and Py-box compounds were applied as ligands for titanium and vanadium complexes, which turned out to be active in polymerization of ethylene and copolymerization of ethylene with norbornene [1]. The X-Ray information for Py-ox and Py-box compounds can be important for comparative studies, to show differences between these compounds not coordinated by metal atom and applied as ligands. It can help to understand dependence between the structure and activity of the designed complexes. The presented crystallization methods are worth to notice. The improved method of purification enable to obtain the studied compound of high quality.

2. Experimental design, materials and methods

2.1. Synthesis

2.1.1. 2-(1,3-oxazolin-2-yl)pyridine (Py-ox)

The synthesis was performed mainly according to Stokes et al. [19]. The crude product was subjected to flash chromatography using the MeOH: AcOEt (1:4) mixture as eluent. Yield 60%. Elemental analysis C_{8}H_{8}N_{2}O results: calculated C 64.85%, H 5.44%, N 18.91%, experimental C 64.92%, H 5.45%, N 19.09%. 1H NMR (400 MHz, DMSO-d6) δ 8.65 (1H, J = 4.5 Hz, d), 7.99 (1H, J = 8.0 Hz, d), 7.93 (1H, J = 7.8 Hz, td), 7.54 (1H, m), 4.45 (2H, J = 9.6 Hz, t), 4.00 (2H, J = 9.6 Hz, t). 13C NMR (400 MHz, DMSO-d6) δ 162.98, 149.53, 146.52, 137.09, 125.90, 123.80, 67.66, 54.61. GC–MS M $^{+}$ 148 m/e. Melting temperature 57.0 (54.6–60.0) °C.
2.1.2. 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box)

The synthesis was performed mainly according to Zhu et al. [20]. Yield 76%. Elemental analysis C_{11}H_{11}N_{3}O_{2} results: calculated C 64.82%, H 5.10%, N 19.34%, experimental: C 64.88%, H 5.12%, N 19.39%.

^{1}H NMR (400 MHz, DMSO-d6) \(\delta \) 8.11 (2H, \(J_{1} \) = 1.2 Hz, \(J_{2} \) = 7.2 Hz, t), 8.02 (1H, \(J_{1} \) = 6.4 Hz, \(J_{2} \) = 2.4 Hz, q), 4.45 (4H, \(J \) = 9.6 Hz, t), 4.01 (4H, \(J \) = 9.6 Hz, t).

^{13}C NMR (400 MHz, DMSO-d6) \(\delta \) 163.10, 147.01, 138.46, 126.00, 68.28, 55.13. GC–MS M^{+} 217 m/e. Melting temperature 160.6 (159.4–163.0) °C.

2.2. Crystallization

2.2.1. 2-(1,3-oxazolin-2-yl)pyridine (Py-ox)

The crystals were obtained at room temperature from highly anhydrous toluene/hexane mixture. The solvents were freshly distilled over sodium. The highly anhydrous conditions are crucial. All operations were performed in a glove-box filled with argon. Py-ox (20 mg) was placed in a 5 ml snap cap vial with plastic cap and dissolved in toluene (1 ml). Then, hexane (1 ml) was added and the solution was left to stand at room temperature for a week.

2.2.2. 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box)

The crystals of appropriate quality were obtained at room temperature from DMSO-d6 solution by long standing time in NMR tube. All operations were performed in a glove-box filled with argon. DMSO-d6 solvent from sealed glass ampoules was applied. Py-box (15 mg) and DMSO-d6 (0.6 ml) was placed in NMR tube and the cap was sealed by a parafilm. The solution was left to stand at room temperature for a month.

2.3. X-ray

The single-crystal X-ray diffraction experiments were performed at 293.0(1)K on the Xcalibur diffractometer, equipped with a CCD area detector and a graphite monochromator for the MoK\(\alpha \)
radiation. The reciprocal space was explored by \(\omega \) scans with detector positions at 60 mm distance from the crystal. The diffraction data processing of studied compounds (Lorentz and polarization corrections were applied) were performed using the CrysAlis CCD [21,22]. Both structures Py-ox and Py-box were solved in the C2 and P2/n space group respectively, by direct methods and refined by a

Fig. 2. Association of molecule in the crystal structure. Hydrogen contacts are marked by dashed lines. The numbers of atoms and distances are omitted for clarity. All geometric parameters are in Table 2.

Fig. 3. The crystal packing scheme of the title compounds. A view along the c axis of the crystals packing.
Table 1
X-ray experimental details for 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl) pyridine (Py-box).

	Py-ox	Py-box	
Chemical formula	C_8H_8N_2O	C_{11}H_{12}N_3O_2	
M_r	148.16	217.23	
Crystal system, space group	Monoclinic, C2	Monoclinic, P2/n	
a, b, c (Å)	10.2571 (7), 10.0159 (6), 14.4647 (9)	6.4904 (8), 6.5835 (11), 11.9080 (19)	
β (°)	97.497 (6)	94.215 (13)	
V (Å³)	1473.31 (16)	507.45 (13)	
Z	8	2	
Measurement temperature	293.0(1)	293.0(1)	
µ (mm⁻¹)	0.09	0.10	
Crystal size (mm)	0.4 × 0.3 × 0.2	0.5 × 0.4 × 0.3	
Crystal colour	Colourless		
Crystal description	Plate		
Data collection			
Radiation wavelength	0.71073		
Radiation type	MoKα		
Source	fine-focus sealed tube		
Measurement device type	Xcalibur		
Detector area resolution	1024 × 1024 with blocks 2 × 2		
Absorption correction	–		
No. of measured, independent and observed	5,034, 2786, 1587	3,172, 993, 459	
	reflections		
R_{int}	0.018	0.048	
(sin θ/λ)_{max} (Å⁻¹)	0.617	0.616	
Refinement			
R(F^2) > 2σ(F^2), wR(F^2), S	0.030, 0.077, 0.86	0.057, 0.173, 0.87	
No. of reflections	2786	993	
No. of parameters	200	75	
No. of restraints	1	0	
Δρ_{max}, Δρ_{min} (e Å⁻³)	0.11, –0.09	0.22, –0.18	

Table 2
Selected geometric parameters (Å, °) for Py-ox and Py-box molecules.

Structure 2 (Py-ox)

N1A-C2A	1.386 (7)	C5B-H5B	0.9300
N1A-C6A	1.394 (6)	C7A-N8A	1.292 (7)
C2A-C3A	1.367 (8)	C7A-O11A	1.314 (6)
C2A-H2A	0.9300	C6B-C7B	1.478 (7)
N1B-C6B	1.360 (6)	N8A-C9A	1.423 (7)
N1B-C2B	1.393 (7)	C7B-N8B	1.289 (6)
C3A-C4A	1.400 (8)	C7B-O11B	1.292 (7)
C3A-H3A	0.9300	C9A-C10A	1.518 (8)
C2B-C3B	1.344 (9)	C9A-H9AA	0.9700
C2B-H2B	0.9300	C9A-H9AB	0.9700
C4A-C5A	1.307 (8)	N8B-C9B	1.427 (7)
C4A-H4A	0.9300	C10A-O11A	1.470 (7)
C3B-C4B	1.361 (9)	C10A-H10A	0.9700
C3B-H3B	0.9300	C10A-H10B	0.9700
C5A-C6A	1.335 (6)	C9B-C10B	1.513 (8)
C5A-H5A	0.9300	C9B-H9BA	0.9700
C4B-C5B	1.345 (7)	C9B-H9BB	0.9700
C4B-H4B	0.9300	O11B-C10B	1.488 (6)
C6A-C7A	1.464 (7)	C10B-H10C	0.9700
C5B-C6B	1.342 (6)	C10B-H10D	0.9700
C2A-N1A-C6A	116.2 (5)	C5B-C6B-C7B	119.1 (5)
Table 2 (continued)

Structure 2 (Py-ox)

Bond/Angle	Structure 2 (Py-ox)	Structure 1 (Py-Box)
C3A-C2A-N1A	122.5 (6)	N1B-C6B-C7B
C3A-C2A-H2A	118.8	C7A-N8A-C9A
N1A-C2A-H2A	118.8	N8B-C7B-O11B
C6B-N1B-C2B	115.8 (5)	N8B-C7B-C6B
C2A-C3A-C4A	116.1 (6)	O11B-C7B-C6B
C2A-C3A-H3A	122.0	N8A-C9A-C10A
C4A-C3A-H3A	122.0	N8A-C9A-H9AA
C3B-C2B-N1B	121.2 (6)	C10A-C9A-H9AA
C3B-C2B-H2B	119.4	N8A-C9A-H9AB
N1B-C2B-H2B	119.4	C10A-C9A-H9AB
C5A-C4A-C3A	123.3 (6)	H9AA-C9A-H9AB
C5A-C4A-H4A	118.3	C7B-N88-C9B
C3A-C4A-H4A	118.3	O11A-C10A-C9A
C2B-C3B-C4B	120.0 (6)	O11A-C10A-H10A
C2B-C3B-H3B	120.0	C9A-C10A-H10A
C4B-C3B-H3B	120.0	O11A-C10A-H10B
C4A-C5A-C6A	119.6 (6)	C9A-C10A-H10B
C4A-C5A-H5A	120.2	H10A-C10A-H10B
C6A-C5A-H5A	120.2	N88-C9B-C10B
C5B-C4B-C3B	120.2 (6)	N88-C9B-H9BA
C5B-C4B-H4B	119.9	C10B-C9B-H9BA
C3B-C4B-H4B	119.9	N88-C9B-H9BB
C5A-C6A-N1A	122.4 (5)	C10B-C9B-H9BB
C5A-C6A-C7A	118.1 (5)	H9BA-C9B-H9BB
N1A-C6A-C7A	119.6 (5)	C7A-O11A-C10A
C6B-C5B-C4A	119.1 (5)	C7B-O11B-C10B
C6B-C5B-H5B	120.5	O11B-C10B-C9B
C4B-C5B-H5B	120.5	O11B-C10B-H10C
N8A-C7A-O11A	118.1 (5)	C9B-C10B-H10C
N8A-C7A-C6A	122.8 (5)	O11B-C10B-H10D
O11A-C7A-C6A	119.1 (6)	C9B-C10B-H10D
C5B-C6B-N1B	123.6 (5)	H10C-C10B-H10D

Symmetry code(s): (i) \(-x+1/2, y, -z+1/2\).

Structure 1 (Py-Box)

Bond/Angle	Structure 2 (Py-ox)	Structure 1 (Py-Box)
N1-C2	1.355 (3)	C5-O9
N1-C2	1.355 (3)	N6-C7
C2-C3	1.381 (4)	C7-C8
C2-C5	1.468 (4)	C7-H7A
C3-C4	1.380 (4)	C7-H7B
C3-H3	0.9300	C8-O9
C4-C3\(^i\)	1.380 (4)	C8-H8A
C4-H4	0.9300	C8-H8B
C5-N6	1.293 (3)	N6-C7-C8
C2\(^i\)-N1-C2	116.0 (4)	N6-C7-C8
N1-C2-C3	123.4 (3)	N6-C7-H7A
N1-C2-C5	116.5 (3)	C8-C7-H7A
C3-C2-C5	120.0 (2)	N6-C7-H7B
C4-C3-C2	119.5 (3)	C8-C7-H7B
C4-C3-H3	120.2	H7A-C7-H7B
C2-C3-H3	120.2	O9-C8-C7
C3\(^i\)-C4-C3	118.1 (4)	O9-C8-H8A
C3\(^i\)-C4-H4	121.0	C7-C8-H8A
C3-C4-H4	121.0	O9-C8-H8B
N6-C5-O9	118.1 (2)	C7-C8-H8B
N6-C5-C2	121.0 (3)	H8A-C8-H8B
O9-C5-C2	120.9 (2)	C5-O9-C8
C5-N6-C7	106.9 (2)	

\(^i\) Symmetry code(s): (i) \(-x+1/2, y, -z+1/2\).
full-matrix least-squares method using SHELXL14 program [23,24]. The H atoms were found based on geometrical parameters. In both structures H atoms were refined using a riding model. The structure drawings were prepared using SHELXTL and Mercury programs [25] (Figs. 1–3 and Tables 1,2).

2.3.1. 2-(1,3-oxazolin-2-yl)pyridine (Py-ox)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) bd203_c

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: bd203_c

Bond precision: C-C = 0.0084 A	Wavelength=0.71073
Cell:	
a=10.2571(7)	b=10.0159(6)
c=14.4647(9)	
alpha=90	beta=97.497(6)
gamma=90	
Temperature: 293 K	
Calculated Volume 1473.32(16)	Reported Volume 1473.31(16)
Space group C 2	C 2
Hall group C 2y	C 2y
Moiety formula C8 H8 N2 O	C8 H8 N2 O
Sum formula C8 H8 N2 O	C8 H8 N2 O
Mr 148.16	148.16
Dx,g cm⁻³ 1.336	1.336
Z 8	8
Mu (mm⁻³) 0.092	0.092
F000 624.0	624.0
F000’ 624.25	
h,k,l max 12,12,17	12,12,17
Nref 2899[1538]	2786
Tmin,Tmax 0.997,0.998	
Tmin’ 0.996	

Correction method= Not given

Data completeness 1.81/0.96 θ(max)= 25.997

R(reflections)= 0.0304(1587) wR2(reflections)= 0.0771(2786)

S = 0.863 Npar= 200

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
Alert level B

Description	Value
PLAT111_ALERT_2_B ADDSYM Detects New (Pseudo) Centre of Symmetry	100 %Fit
PLAT112_ALERT_2_B ADDSYM Detects New (Pseudo) Symm. Elem	100 %Fit
PLAT113_ALERT_2_B ADDSYM Suggests Possible Pseudo/New Space Group	C2/c Check
PLAT230_ALERT_2_B Hirshfeld Test Diff for N8B --C7B	8.3 s.u.
PLAT230_ALERT_2_B Hirshfeld Test Diff for N8B --C9B	8.2 s.u.

Alert level C

Description	Value
STRVA01_ALERT_4_C Flack parameter is too small	
From the CIF: _refine_ls_abs_structure_Flack -1.100	
From the CIF: _refine_ls_abs_structure_Flack_su 1.000	
PLAT230_ALERT_2_C Hirshfeld Test Diff for O11A --C10A	5.2 s.u.
PLAT230_ALERT_2_C Hirshfeld Test Diff for N8A --C7A	5.2 s.u.
PLAT230_ALERT_2_C Hirshfeld Test Diff for C3A --C4A	7.0 s.u.
PLAT230_ALERT_2_C Hirshfeld Test Diff for O11B --C10B	5.8 s.u.
PLAT234_ALERT_4_C Large Hirshfeld Difference N8A --C9A	0.17 Ang.
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of O11A Check	
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of N1A Check	
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of C9A Check	
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of O11B Check	
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C10A Check	
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00842 Ang.
PLAT411_ALERT_2_C Short Inter H...H Contact H3A ...H3A	2.12 Ang.
1-x,y,1-z = 2_656 Check	
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & Stth/L= 0.600	2 Report
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density.	0 Info

Alert level G

Description	Value
PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High	1.000 Report
PLAT199_ALERT_3_G Reported _cell_measurement_temperature (K)	293 Check
PLAT200_ALERT_3_G Reported _diffrn_ambient_temperature (K)	293 Check
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O11A	106.8 Degree
PLAT399_ALERT_2_G Deviating C-O-C Angle From 120 for O11B	106.0 Degree
PLAT720_ALERT_2_G Number of Unusual/Non-Standard Labels	4 Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	3 Note

Alert level

- **A**: Most likely a serious problem - resolve or explain
- **B**: A potentially serious problem, consider carefully
- **C**: Check. Ensure it is not caused by an omission or oversight
- **G**: General information/check it is not something unexpected

Alert type

- **1**: CIF construction/syntax error, inconsistent or missing data
- **2**: Indicator that the structure model may be wrong or deficient
- **3**: Indicator that the structure quality may be low
- **4**: Improvement, methodology, query or suggestion
- **5**: Informative message, check
2.3.2. 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) BD162_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: BD162_a

Bond precision: C-C	0.0045 Å	Wavelength	0.71073
Cell:	a=6.4904(8)	b=6.5835(11)	c=11.9080(19)
alpha=90	beta=94.215(13)	gamma=90	
Temperature:	293 K		
Volume	507.45(13)	507.45(13)	
Space group	P 2/n	P 2/n	
Hall group	-P 2yac	-P 2yac	
Moiety formula	C11 H11 N3 O2		C11 H11 N3 O2
Sum formula	C11 H11 N3 O2	C11 H11 N3 O2	
Mr	217.23	217.23	
Dx, g cm⁻³	1.422	1.422	
Z	2	2	
Mu (mm⁻¹)	0.101	0.101	
F000	228.0	228.0	
F000’	228.10		
h,k,lmax	8,8,14	8,8,14	
Nref	992	993	
Tmin, Tmax	0.995, 0.997	0.995	
Tmin’	0.995		

Correction method= Not given

Data completeness= 1.001 Theta(max)= 25.982

R(reflections)= 0.0572(459) wR2(reflections)= 0.1732(993)

S = 0.870 Npar= 75

The following ALERTS were generated. Each ALERT has the format
`test-name_ALERT_alert-type_alert-level`.
Click on the hyperlinks for more details of the test.
Alert level C

PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 46 %
PLAT241_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of 09 Check
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.7 Note
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0045 Ang.
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 13.338 Check
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density. 0 Info

Alert level G

PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.10 Report
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check
PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature (K) 293 Check
PLAT398_ALERT_2_G Deviating C-O-C Angle from 120 Deg for O9 105.9 Degree
PLAT953_ALERT_1_G Reported (CIF) and Actual (FCF) Hmax Differ by . 1 Units

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
6 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

PLATON version of 13/08/2017; check.def file version of 27/07/2017

Datablock BD162_a - ellipsoid plot

Prob = 50
Temp = 293
2.4. NMR

Bruker Ultrashield spectrometer 400 MHz, solvent DMSO-d6, TMS standard. Concentration: 15 mg in 0.6 ml (Figs. 4–7).

Fig. 4. 1H NMR spectrum for 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) in DMSO-d6.

Fig. 5. 13C NMR spectrum for 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) in DMSO-d6.
2.5. GC–MS

Hewlett Packard HP7890 A GC system, equipped with 7000 GC/MS triple-quadrupol and HP-5 capilar 300 m × 0.32 mm column with 0.25 μm dimethylpolysiloxane stationary phase, dopped by 5% of phenylpolysiloxane (Figs. 8–11).

2.6. DSC

The melting temperatures were measured by differential scanning calorimetry DSC 2010 TA instrument calorimeter equipped with an automated sampler. The data were collected with the heat/cool/heat cycle at a heating rate of 10 °C/min under a nitrogen atmosphere (Figs. 12 and 13).
Fig. 8. GC analysis of 2-(1,3-oxazolin-2-yl)pyridine (Py-ox).

Fig. 9. MS analysis of 2-(1,3-oxazolin-2-yl)pyridine (Py-ox).
Fig. 10. GC analysis of 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box).

Fig. 11. MS analysis of 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box).
References

[1] W. Ochędzan-Siodłak, A. Bihun-Kisiel, D. Siodłak, A. Poliwoda, B. Dziuk, Titanium and vanadium catalysts with oxazoline ligands for ethylenenorbornene (co)polymerization, Eur. Polym. J. 106 (2018) 148–155.

[2] J. Guo, H. Liu, J. Bi, C. Zhang, H. Zhang, C. Bai, Y. Hu, X. Zhang, Pyridine-oxazoline and quinoline-oxazoline ligated cobalt complexes: synthesis, characterization, and 1,3-butadiene polymerization behaviors, Inorganica Chim. Acta 435 (2015) 305–312.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.129.
[3] J.K. Nganga, C.R. Samanamu, J.M. Tanski, C. Pacheco, C. Saucedo, V.S. Batista, K.A. Grice, M.Z. Ertem, A.M. Angeles-Boza, Electrochemical reduction of CO$_2$ catalyzed by Re(pyridineoxazoline)(CO)$_3$Cl, Complexes Inorg. Chem. 56 (2017) 3214–3226.

[4] N. Paschke, A. Röndigs, H. Poppenborg, J.E.A. Wolff, B. Krebs, Reaction of the diaqua(2-(pyridin-2-yl)-2-oxazoline)platinum(II) and -palladium(II) dications with the model nucleobases 1-methylthymine and 1-methyluracil: syntheses, spectroscopic properties and X-ray crystal structures, Inorganica Chim. Acta 264 (1997) 239–248.

[5] B.S. Fedorov, N.I. Golovina, G.V. Strukov, V.V. Kedrov, G.N. Boiko, G.V. Shilov, L.S. Barinova, R.F. Trofimova, L.O. Atovmyan, Synthesis and the crystal structures of N-(2-nitroxyethyl)isonicotinamide and its complexes with PdCl$_2$ and PtCl$_2$ as potential antitumor medicines, Russ. Chem. Bull. 50 (2001) 520–524.

[6] H.W. Kuai, X.C. Cheng, D.H. Li, T. Hu, X.H. Zhu, Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)-containing ligands, J. Solid State Chem. 228 (2015) 65–75.

[7] Y.Y. Zhu, C. Cui, N. Li, B.W. Wang, Z.M. Wang, S. Gao, Constructing a series of azide-bridged CuII magnetic low-dimensional coordination polymers by using Pybox ligands, Eur. J. Inorg. Chem. 17 (2013) 3101–3111.

[8] D. Doberer, C. Slugovec, R. Schmid, K. Kirchner, K. Mereiter, Coordination chemistry of 2,6-bis(oxazolinyl)-pyridine ruthenium complexes, Monatsh. Chem. 130 (1999) 717–723.

[9] Y.H. Zhang, O. Kurihara, K. Murata, K. Aoki, Chiral rutheniumII/CO$_2$ bis(oxazolinyl)pyridine complexes of α,β-unsaturated carbonyl compounds: enantioface-selective coordination of olefins, Organometallics 19 (2000) 1025–1034.

[10] H. Nishiyama, Y. Itoh, Y. Sugawara, H. Matsumoto, K. Aoki, K. Itoh, Chiral rutheniumII/bis(2-oxazolin-2-yl)pyridine complexes. Asymmetric catalytic cyclopropanation of olefins and diacactates, Bull. Chem. Soc. Jpn. 68 (1995) 1247–1262.

[11] H. Nishiyama, E. Niwa, T. Inoue, Y. Ishima, K. Aoki, Novel metallacycle complexes from bis(oxazolinyl)pyridine – rhodium (i) species and diynes, Organometallics 21 (2002) 2572–2574.

[12] J. Guo, B. Wang, J. Bi, C. Zhang, H. Zhang, C. Bai, Y. Hu, X. Zhang, Synthesis, characterization and crystal structure of Ni(Pybox)(SCN)$_2$(CH$_3$OH), Huaxue Yanjiu Yu Yingyong(Chem. Res. Appl.) 23 (2011) 1525 (Chin).

[13] J. Gao, B. Wang, J. Bi, C. Zhang, H. Zhang, C. Bai, Y. Hu, X. Zhang, Synthesis, characterization and 1,3-butadiene polymerization studies of cobalt dichloride complexes bearing pyridine bisoxazoline ligands, Polymer 59 (2016) 124–132.

[14] M. Dehne-Coutures-Dias, P.S. Barber, S. Viswanathan, D.T. de Lill, A. Rollett, G. Ling, S. Altun, Para-derivatized pybox ligands as sensitizers in highly luminescent LnIII complexes, Inorg. Chem. 49 (2010) 8848–8861.

[15] Y.Y. Zhu, H.Q. Li, Z.Y. Ding, X.J. Lu, L. Zhao, Y.S. Meng, T. Liu, S. Gao, Spin transitions in a series of [Fe(pybox)$_2$]$^{2+}$ complexes modulated by ligand structures, counter anions, and solvents, Inorg. Chem. Front. 3 (2016) 1624–1636.

[16] B.J. Stokes, S.M. Opra, M.S. Sigman, Palladium-catalyzed allylic cross-coupling reactions of primary and secondary homoallylic electrophiles, J. Am. Chem. Soc. 134 (2012) 11408–11411.

[17] Y.Y. Zhu, C. Cui, N. Li, B.W. Wang, Z.M. Wang, S. Gao, Constructing a series of azide-bridged CuII magnetic low-dimensional coordination polymers by using pybox ligands, Eur. J. Inorg. Chem. 17 (2013) 3101–3111.