Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Is there a role for SARS-CoV-2 antigen testing in the post-containment strategy?

Etienne Brochota,b,∗

a Department of Virology, Amiens University Medical Center, Amiens, France
b Unité de Recherche Agents Infectieux, Résistance, et Chimiothérapie, UR4294, Jules Verne University of Picardie, France

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
PCR assays
Performance assays

ABSTRACT

Background: With the availability and widespread deployment of antigenic tests for SARS-CoV-2 during the second epidemic wave in Europe, the performance of such tests in real-life situations is beginning to become available.

Objectives: The question of the role of these tests during periods of low circulation of the virus has been legitimately raised.

Study design: We addressed this question by analyzing the results of more than 16,000 SARS-CoV-2 PCRs during the first half of 2020 in a French region heavily affected by COVID-19. We were thus able to calculate and extrapolate the theoretical sensitivity of the antigenic tests for various periods during and after the first epidemic wave.

Results: As the PCR-positivity rate of nasopharyngeal swabs declined over time, the proportion of samples with low Ct levels also decreased. Thus, the calculation of the analytical sensitivity of the antigenic tests ranged from 70 to 80% when the percentage of PCR positivity was > 1%, but fell below this score when it was lower.

Conclusions: The performance and relevance of antigenic tests appears to be more limited during phases of low circulation of the virus. This may have a negative impact on the effectiveness of isolation, testing, and contact tracing strategies.

1. **Background**

During the second wave of COVID-19, which Europe has been experiencing since October 2020, the arrival of rapid antigen immunoassay diagnostics (RADs) conducted at the point of care (POC) has reduced the pressure on testing laboratories while identifying SARS-CoV-2 infections more quickly, especially those of superspreaders. Data concerning real-life situations is scarce and the performance of such antigenic assays is heterogeneous, with specificity close to 100% for the best, but sensitivity varies among manufacturers [1–3]. The sensitivity of such tests, which is an intrinsic performance criterion of any assay, is normally fixed. However, in the case of SARS-CoV-2 RADs, the reference technique to which they are compared is real-time PCR, with a qualitative result in most cases. Thus, the sensitivity of these RADs is a function of the samples tested and, in particular, the Ct levels (cycle threshold) of the PCR. For those with the best performance, manufacturers show sensitivities of 90%. However, under real-life conditions with samples of varying Ct levels, the sensitivity is approximately 95%, 83%, 57%, and 8% for Ct levels < 20, between 20 and 25, between 25 and 30, and between 30 and 35, respectively [4].

2. **Objectives**

Thus, antigenic tests have a role to play in association with the PCR technique in the test, trace, and isolation strategy when circulation of the virus in the population is high. However, the search for the few infected individuals using such tests during periods of low circulation of the virus has been called into question.

3. **Study design**

We addressed this question, by studying the raw PCR Ct levels over several weeks from the end of February 2020, during the first wave, in a university hospital in Northern France that was strongly affected by COVID-19. We analyzed all nasopharyngeal swab samples, excluding the tests obtained after a first positive test. The total weekly analysis over the first half of 2020 represents more than 16,000 samples, of which 2050 were positive (13%).

∗ Corresponding author at: Department of Virology, Amiens University Medical Center, France.

E-mail address: etienne.brochot@u-picardie.fr

https://doi.org/10.1016/j.jcvp.2021.100009

Received 19 December 2020; Accepted 18 February 2021
2667-0380/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
4. Results

We started the search for SARS-CoV-2 by PCR during week 10, with 30% positive tests, reaching a maximum of 39.4% positivity during week 13. A progressive decrease in the rate of positivity was observed with the implementation of the first confinement in France, resulting in <1% positive tests during the summer of 2020 (Fig. 1). The distribution of Ct scores obtained during the period of the study showed a greater proportion of samples with a Ct > 25 when the PCR test positivity rate fell below 1%. Thus, the raw values for the Ct of the SARS-CoV-2 PCR followed the same trend as the decrease in positivity rates, resulting in a higher proportion of tests with a high Ct. We thus extrapolated the sensitivity scores of the antigenic tests performed during the same period. The sensitivity varied between 70 and 80% for the period during which >5% of the tests were positive. However, the sensitivity of the antigenic tests to identify the few infected individuals in the population decreased when the positivity rate was lower during the post-confinement period.

5. Discussion

Recent data from the group of Didier Raoult were obtained on the infectivity of 3790 samples in cell culture [5], according to the Ct obtained by PCR. Persistence of infectivity was demonstrated for 70% of the samples with a Ct of 25, 20% for those with a Ct of 30, and <3% for those with a Ct of 35. Comparison of these data with the obtained sensitivity data of the antigenic tests according to PCR Ct levels raises the question of the strategy of screening populations in a situation in which the circulation of the virus is low. Ct values > 25 may correspond to three situations for which the distinction is not always simple: either an early ascending or late descending phase of viral replication or the control of contamination. The first two situations are important to consider and should not be neglected in considering the effectiveness of isolation, testing, and contact tracing strategies. However, the value of using such antigenic tests for optimal control of SARS-CoV-2 after an epidemic wave appears to be more limited. These data should be taken into consideration in recommendations by the health authorities of each country to ensure that the use of SARS-CoV-2 antigenic tests is appropriate and effective.

Declaration of Competing Interest

The author has no conflict of interest to declare.

Funding

No funding.

References

[1] E. Albert, I. Torres, F. Bueno, D. Huntley, E. Molla, M.Á. Fernández-Fuentes, et al., Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centers, Clin. Microbiol. Infect. (2020), doi:10.1016/j.cmi.2020.11.004.

[2] M. Linares, R. Pérez-Tanoira, A. Carrero, J. Romanyk, F. Pérez-Garcia, P. Gómez-Herruz, et al., Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms, J. Clin. Virol. 133 (2020) 104659, doi:10.1016/j.jcv.2020.104659.

[3] V.M. Gorman, V.C. Hange, T. Bleicker, M.L. Schmidt, B. Mühlemann, M. Zuchowski, et al., Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests, Infectious Diseases (except HIV/AIDS), 2020, doi:10.1101/2020.11.12.2023092.

[4] S. Fourati, E. Audureau, S. Chevalier, J.-M. Pawlotsky, Évaluation de la performance diagnostique des tests rapides d’orientation diagnostique antigéniques, 2020 https://www.asph.fr/contente/evaluation-de-la-performance-diagnostique-des-tests-rapides-orientation-diagnostique.

[5] R. Jaafar, S. Abefri, N. Wurtz, C. Grimaldier, V.T. Hoang, P. Colson, et al., Correlation between 3790 qPCR positives samples and positive cell cultures including 1941 SARS-CoV-2 isolates, Clin. Infect. Dis. (2020), doi:10.1093/cid/ciaa1491.