Sex Prediction by Analysis of the Morphological Characteristics of Macerated Skulls

Predicción Sexual Mediante Análisis de las Características Morfológicas de Cráneos Macerados

Nilton Alves1,2,3; Naira Figueiredo Deana4; Javier González3; Pamela Hernández3 & Francisco Ceballos3

ALVES, N.; DEANA, N. F.; GONZÁLEZ, J.; HERNÁNDEZ, P. & CEBALLOS, F. Sex prediction by analysis of the morphological characteristics of macerated skulls. Int. J. Morphol., 38(4):815-819, 2020.

SUMMARY: The skull is a reliable structure for determining the sex of an adult individual; it is generally resistant in adverse conditions, allowing it to be used for the analysis of sexual dimorphism. In the present study we analysed 10 non-metric characteristics of skulls of Brazilian adult individuals in order to: Determine the strength of association between sex and the morphological characteristics of the skull, the morphological characteristic(s) with greatest diagnostic influence for sex, and analyse whether the morphological characteristics of the skull predict sex. The study included 179 macerated skulls of Brazilian adults, (69 female, 110 male). The sex of all the skulls included was identified. The investigators were calibrated prior to analysis and all the evaluations were carried out under blinding. Pearson's Chi-squared test was used. The sensitivity and specificity were analysed and a ROC curve was constructed. Binary logistic regression was carried out. The SPSS v.22 software was used, with a significance threshold of 5 %. All the characteristics analysed presented statistically significant differences (p<0.05). The frontal profile, the superciliary arch and the glabella presented the greatest sensitivity, best balance between sensitivity and specificity and greatest area under curve. The regression model with the frontal profile, superciliary arch and mastoid process was significant [X2(2) = 115,728 p=0.000, R2 Negelkerke=0.657], and presented correct sex classification in 90 % of cases (Males: 87.4 %; Females: 83.1 %). In unknown individuals for whom the skull is present, non-metric analysis of the frontal profile, superciliary arch, mastoid process and glabella can be used as instruments for sex identification.

KEY WORDS: Sex determination; Morphological characteristics; Macerated skulls; Brazilians.

INTRODUCTION

Determining sex from bones or bone fragments is necessary in cases when the remains are in a state which makes identification of an unknown individual difficult (Krishan et al., 2016). Sex is usually determined by a metrical approach, based on the size of a structure, or a non-metrical approach based on the presence or degree of expression of dimorphic sexual characteristics (Lewis & Garvin, 2016). According to the literature, the pelvis presents the greatest reliability for determining sex, and the skull is the next best indicator (Bass, 2005). The skull presents bone structures with a high degree of sexual dimorphism, allowing accuracy of up to 94 % (Krogman & Iscan, 1986); the mastoid process and the glabella are the morphological characteristics which allow sex to be determined with the greatest accuracy (Walker, 2008). It should be noted that the accuracy of a characteristic will depend on the degree of dimorphism shown for the reference collection (McDowell et al., 2012); we must therefore consider that a determined characteristic may present a greater or lesser degree of dimorphism depending on the population of origin.

In the present study we analysed 10 non-metric characteristics of skulls of Brazilian adult individuals in order to: determine the strength of association between sex and the morphological characteristics of the skull; determine the morphological characteristic(s) with greatest diagnostic power for sex; and finally, analyse whether the morphological characteristics of the skull predict sex.
MATERIAL AND METHOD

The study included 179 macerated skulls of Brazilian adults of both sexes, of whom 69 were female and 110 male. They belonged to the Department of Morphology and Genetics, UNIFESP (Brazil). Only skulls with information on sex and nationality were included. Skulls with fractures or malformations were excluded. Researchers were calibrated before carrying out the analysis; they were blinded during the evaluations.

The morphological characteristics were analysed following the classification of Walrath et al. (2004), in a modified version (Table I).

Statistical analysis. The association between sex and the variables analysed was evaluated by Pearson's chi-squared test, and the strength of association between sex and the morphological characteristics was assessed by the Phi coefficient (\(\phi\)). The strength of association was interpreted as suggested by Cohen (1988), being classified as small (0.10), medium (0.30), large (0.50) or very large (\(\geq 0.70\)). The sensitivity and specificity were analysed for each variable and a ROC curve was constructed to analyse the best diagnostic test. A hierarchical binary logistic regression was carried out to determine whether the morphological characteristics of the skull can predict sex. The SPSS v.22 software was used, with a significance threshold of 5 %.

RESULTS

Strength of association between sex and the morphological characteristics of the skull. All the characteristics analysed presented statistically significant differences (\(p<0.05\)). In the strength of association analysis, the frontal profile and the superciliary arch presented the highest degrees of association, both classified as having a large strength of association. All the other characteristics analysed presented a strength of association smaller than 0.500, and were therefore classified as having a medium strength of association (Table II).

Analysis of the sensitivity, specificity and ROC curve. The frontal profile, the superciliary arch and the glabella presented the greatest sensitivity and the best balance between sensitivity and specificity; the shape of the orbit presented the least sensitivity (Table III). The frontal profile was the variable presenting the greatest area under curve (AUC), followed by the superciliary arch and the glabella; this result showed that these three characteristics presented the greatest power for diagnosing sex. The frontal and parietal eminences, the shape of the orbit, and the zygomatic process of the temporal bone were the characteristics with the smallest AUC; they presented a value very close to 0.500, showing their low power for diagnosing sex (Table III, Fig. 1).

Binary logistic regression. The correct sex classification obtained from each morphological characteristic analysed is described in Table IV. All the characteristics presented a statistically significant value, except the shape of the orbit and the zygomatic process of the temporal bone. The frontal profile was the only characteristic which presented a combined percentage higher than 80 % for sex classification, with a prognosis for sex identification of 44.4 %. It was the morphological characteristic with the greatest ability to predict sex. The superciliary arch, the glabella and the frontal eminence presented correct
In the binary logistic regression analysis, the model containing the frontal profile, superciliary arch and mastoid process was significant \(\chi^2(2) = 115.728 \), \(p=0.000 \), \(R^2 \text{ Nagelkerke}=0.657 \). The percentage of correct sex classification using these three morphological characteristics was 87.4 %, with 83.1 % for females and 90.0 % for males.

Table II. Degree of association between sex and morphological characteristics.

Morphological characteristics	\(\chi^2 \)	p-value	Phi _
Frontal profile	0.000	0.602	
Superciliary arch	0.000	0.588	
Glabella	0.000	0.490	
Zygomatic bone	0.000	0.335	
External occipital protuberance	0.000	0.326	
Mastoid process	0.003	0.275	
Nuchal plane	0.005	0.268	
Frontal and parietal eminences	0.013	0.246	
Zygomatic process of the temporal bone	0.041	0.214	
Shape of the orbit	0.041	0.188	

Table III. Sensitivity, specificity and Area Under Curve (AUC) for the morphological characteristics of the skull.

Morphological characteristics	Sensitivity	Specificity	AUC
Frontal profile	84.5%	74.6%	0.809
Superciliary arch	92.6%	43.0%	0.792
Glabella	89.1%	50.0%	0.756
External occipital protuberance	78.0%	52.1%	0.672
Mastoid process	78.5%	56.4%	0.653
Zygomatic bone	75.8%	54.4%	0.652
Nuchal plane	73.7%	43.4%	0.632
Zygomatic process of the temporal bone	66.7%	38.2%	0.578
Frontal and parietal eminences	69.1%	44.7%	0.557
Shape of the orbit	65.4%	56.5%	0.541

Table IV. Correct sex classification.

Morphological characteristics	\(R^2 \text{ Nagelkerke} \)	Female	Male	Total	p-value
Frontal profile	0.444	74.6%	84.7%	80.9%	0.000
Superciliary arch	0.438	94%	64.9%	75.8%	0.000
Glabella	0.300	76.5%	72.1%	73.7%	0.000
Frontal and parietal eminences	0.369	33.8%	94.5%	71.3%	0.000
External occipital protuberance	0.148	23.9%	91.8%	66.1%	0.000
Zygomatic bone	0.118	55.2%	72.1%	65.7%	0.000
Mastoid process	0.098	40.3%	78.2%	63.8%	0.002
Nuchal plane	0.014	0%	98.2%	60.5%	0.004
Shape of the orbit	0.037	19.7%	91.0%	64.4%	0.087
Zygomatic process of the temporal bone	0.026	0%	100%	62.4%	0.064

DISCUSSION

In some situations, for example when bodies are exposed to heat, distortion of the soft tissues occurs, hindering sex determination (Gonçalves et al., 2013); it is necessary to identify the sex from bones or bone fragments which have resisted heat or other disaster situations. The skull is a reliable structure for determining the sex of an
adult individual (Best et al., 2018); it is generally resistant to adverse conditions, allowing it to be used for the analysis of sexual dimorphism. The degree of sexual dimorphism differs between populations due to environmental factors; however, regardless of the population, males tend to have stronger muscles and more robust joints (Bigoni et al., 2010). Previous studies in Brazilian individuals by our research team have shown some skull structures that can be used as predictors of sex in the identification of unknown individuals from bone remains. Some examples are metric analysis of the height of the piriform aperture (Alves et al., 2019), the bigonial breadth, mandibular ramus height and bicondilar breadth (Alves & Deana, 2019); and non-metric analysis of the mandible by evaluation of the shape of the chin (Deana & Alves, 2017).

The advantage of analysis based on non-metric features is that it can be used to analyse bone fragments; furthermore it does not require special equipment, which makes evaluation easier. The principal disadvantage is that it is a subjective criterion, and it is important for the evaluator to have suitable experience with the evaluation method used to identify sex (Lewis & Garvin).

In this investigation we analysed 10 morphological characteristics of the skull, making 3 different comparisons: we analysed the strength of association between morphological characteristics and sex; we determined the morphological characteristics with the greatest power of sex diagnosis; and we analysed the morphological characteristics. In the three analyses carried out, the frontal profile was the variable which showed the greatest reliability for sex diagnosis, followed by the supraciliary arch. Suazo et al. (2009) observed that the frontal profile presented an accuracy of 80.14 %, with a higher percentage of correct diagnoses for females (84.94 %) than males (77.65 %); this corroborates the findings of our study, showing that the frontal profile is a reliable indicator for determining sex. In the same study, Suazo et al., found an accuracy of 78.79 % for sex diagnosis using the supraciliary arch, with correct diagnosis of a larger number of male skulls (79.21 %) than female (77.89 %). In another study, Ramsthaler et al. (2010) reported 85 % accuracy for this characteristic, indicating that it presented great sexual dimorphism. In our study, the supraciliary arch proved to be a reliable indicator for determining sex, with combined correct sex classification of 75.8 % and a higher percentage of male skulls correctly diagnosed than female skulls.

Analysis by hierarchical binary logistic regression in our study showed correct sex classification of 90 % (87.4 % for males and 83.1 % for females) using 3 characteristics: frontal profile, supraciliary arch and mastoid process. The results reported by Garvin et al. (2014) differ from ours, showing that the glabella and the mastoid process are the most reliable features for determining differences in sex. In another study, an analysis of skulls from the Pretoria Bone Collection, Krüger et al. (2015) found similar results to those of Garvin et al. These authors reported 80 % accuracy (94 % in males and 67 % in females) in sex determination using the glabella and the mastoid process; however the highest accuracy (84 % combined, 92 % in males and 76 % in females) was found using the 3 characteristics: glabella, mastoid process and chin (Krüger et al.). In a study with CT scans, Ramsthaler et al., obtained correct classification of 96 %, with the highest accuracy rates given by the supraorbital ridge, the glabella, the mastoid process and the supraorbital margins. Williams & Rogers (2006) showed that the mastoid process presents great sexual dimorphism, with accuracy of up to 92.0 %. Suazo et al. indicate that the mastoid process was the most accurate indicator (84.75 %), with good balance between sensitivity and specificity (92.09 % / 80.00 %). In our study the mastoid process presented a significant association with sex, being classified with minor strength (Phi f= 0.275), a sensitivity of 78 %, a specificity of 56.4 % and AUC=0.653. Although it did not present a better performance than other diagnostic tests, this characteristic presented correct sex classification of 63.8 %; it was a significant characteristic in the hierarchical binary logistic regression model.

Fig. 1. ROC curve for morphological characteristics of the skull.
Non-metric analysis of the glabella has been reported in previous studies to be a good sex identifier when used with other morphological characteristics of the skull (Garvin et al.; Krüger et al.; Ramsthaler et al.), or as a single identifier, with up to 96.7% correct sex classification (Lewis & Garvin). In our study, the glabella was excluded from the binary logistic regression analysis of the model because it lacked statistical significance; however in the other two statistical analyses applied, this variable proved to be a good diagnostic power for sex (AUC=0.756); it was also significantly associated with sex with a medium strength of association (Phi f= 0.490). This corroborates previous studies showing that the glabella is a reliable indicator for identifying sex (Garvin et al.; Krüger et al.; Lewis & Garvin; Ramsthaler et al.).

In conclusion, all morphological characteristics of the skulls analysed, presented sexual dimorphism, however the frontal profile and the superciliary arch presented the highest degree of association with sex and the greatest power of sex diagnosis from skull samples. Sex determination using 3 morphological characteristics presented 90% correct sex classification and 65.7% sex prediction. In unknown individuals for whom the skull is present, non-metric analysis of the frontal profile, superciliary arch, mastoid process and glabella may be used for sex identification.

REFERENCES

Alves, N. & Deana, N. F. Sex prediction from metrical analysis of macerated mandibles of Brazilian adults. Int. J. Morphol., 37(4):1375-81, 2019.
Alves, N.; Deana, N. F.; Ceballos, F.; Hernández, P. & González, J. Sex prediction by metric and non-metric analysis of the hard palate and the pyriform aperture. Folia Morphol. (Warsz.), 78(1):137-44, 2019.
Bass, W. Human Osteology: A Laboratory and Field Manual. 5th ed. Columbia, Missouri Archaeological Society, 2005.
Best, K. C.; Garvin, H. M. & Cabo, L. L. An investigation into the relationship between human cranial and pelvic sexual dimorphism. J. Forensic Sci., 63(4):990-1000, 2018.
Bigoni, L.; Velemínská, J. & Bruzek, J. Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex. Homo, 61(1):16-32, 2010.
Deana, N. F. & Alves, N. Nonmetrical sexual dimorphism in mandibles of Brazilian individuals. Biomed. Res. (India), 28(9):4233-8, 2017.
Garvin, H. M.; Sholts, S. B. & Mosca, L. A. Sexual dimorphism in human cranial trait scores: effects of population, age, and body size. Am. J. Phys. Anthropol., 154(2):259-69, 2014.
Gonçalves, D.; Thompson, T. J. & Cunha, E. Osteometric sex determination of burned human skeletal remains. J. Forensic Leg. Med., 20(7):906-11, 2013.
Krishan, K.; Chatterjee, P. M.; Kanchan, T.; Kaur, S.; Baryah, N. & Singh, R. K. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 261:165-e1-8, 2016.
Krogman, W. & Iscan, M. The Human Skeleton in Forensic Medicine. Springfield (Illinois), Charles C. Thomas, 1986.
Krüger, G. C.; L’Abbé, E. N.; Stull, K. E. & Kenyhercz, M. W. Sexual dimorphism in cranial morphology among modern South Africans. Int. J. Legal Med., 129(4):869-75, 2015.
Lewis, C. J. & Garvin, H. M. Reliability of the Walker cranial nonmetric method and implications for sex estimation. J. Forensic Sci., 61(3):743-51, 2016.
McDowell, J. L.; L’Abbé, E. N. & Kenyhercz, M. W. Nasal aperture shape evaluation between black and white South Africans. Forensic Sci. Int., 222(1–3):397.e1-6, 2012.
Ramsthaler, F.; Kettner, M.; Gehl, A. & Verhoff, M. A. Digital forensic osteology: morphological sexing of skeletal remains using volume-rendered cranial CT scans. Forensic Sci. Int., 195(1-3):148-52, 2010.
Saiguz, G. I. C.; Zavando, M. D. A. & Smith, R. L. Performance evaluation as a diagnostic test for traditional methods for forensic identification of sex. Int. J. Morphol., 27(2):381-6, 2009.
Walker, P. L. Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol., 136(1):39-50, 2008.
Walrath, D. E.; Turner, P. & Bruzek, J. Reliability test of the visual assessment of cranial traits for sex determination. Am. J. Phys. Anthropol., 125(2):132-7, 2004.