The force awakens: metastatic dormant cancer cells

So-Yeon Park1,2 and Jeong-Seok Nam1,2

Abstract
Recurrent cancer that spreads to distant sites is the leading cause of disease-related death among cancer patients. Cancer cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. These dormant cancer cells (DCCs) are rarely detectable with current diagnostic systems. Moreover, they can interpret homeostatic signals from the microenvironment, thereby evading immune surveillance and chemotherapy. Eventually, DCCs can reawaken in response to signals, which are not yet fully understood, resulting in recurrence and metastasis. Therefore, understanding the biology of DCC reawakening is key to preventing metastasis. Over the last decade, a growing body of literature has revealed the mechanisms involved in cancer dormancy and reawakening. The cytotoxic activity of immune cells can cause cancer cells to enter a dormant state, and chronic inflammation can reactivate cancer proliferation at distant sites. Upon the binding of circulating DCCs to extracellular molecules, various signaling cascades are activated and reinitiate cell proliferation. In the present review, we attempt to consolidate the existing literature to provide a framework for the understanding of this crucial step in cancer progression.

Introduction
The primary treatment for cancer is the surgical removal of cancer cells, which is often combined with chemoradiotherapy to kill surgically inaccessible cancer cells throughout the body. However, even patients who are considered clinically free of cancer cells after initial treatment frequently relapse with distant metastasis. Such metastatic outgrowth rapidly becomes uncontrollable with chemoradiation and manages to seed additional metastatic colonies, resulting in the disruption of vital organ function. Although the clinical importance of metastasis is therefore apparent, its underlying mechanisms remain unclear.

Metastasis is considered a series of linear events, termed the invasion–metastasis cascade1. The initiation step of metastasis begins when cancer cells at the primary tumor growth site foster basement membrane degradation and enter the underlying interstitial matrix2. During this process, cancer cells usually promote vascularization in tumor tissues to sculpt a permissive microenvironment for cancer cell proliferation and gain access to the bloodstream3. Once cancer cells successfully penetrate into the blood or lymphatic circulatory system, they can disseminate throughout the body. In circulation, cancer cells are likely to exhibit mitotic arrest through reversible G0-G1 arrest, termed quiescence, in which they remain viable but do not increase. These dormant cancer cells (DCCs) are more susceptible to antiproliferative drugs. More recently, these circulating DCCs have been shown to evade immune surveillance by expressing programmed death ligand 1 (PDL-1); thus, they can persist for an extended period4,5. At some point, DCCs reach distant organs and infiltrate into the stroma, although they cannot grow into macroscopic lesions until they escape dormancy. This period is termed “metastatic cancer dormancy” and occurs between initial therapy and metastatic relapse. Eventually, in response to microenvironmental...
cues, DCCs gain the ability to re-enter the cell cycle and adapt to their new microenvironment, thereby progressing to metastatic outgrowth. Therefore, understanding the biology of DCC reawakening is key to preventing metastasis.

A growing body of research has provided insight into the molecular mechanisms of cellular dormancy and reactivation. Central to these mechanisms is crosstalk between cancer cells and their microenvironment, which is affected by complex interactions between cancer cells and stromal cells and surrounding extracellular matrix (ECM) components, as well as host immunity. After a long period in the bloodstream, DCCs eventually reach distant organs and encounter a new composition of ECM produced from the local stromal cells. Then, the binding of membrane receptors on DCCs activates various signaling cascades, driving cell cycle promotion and breaking dormancy. Meanwhile, the host immune system initially acts as a tumor suppressor but eventually favors cancer progression and promotes metastatic outgrowth by reactivating DCCs. In the present review, we focused on these cellular and acellular factors that reawaken DCCs and contribute to metastasis.

Primary molecular mechanisms underlying cancer cell dormancy

An overwhelming amount of evidence supports the notion that extracellular signal-regulated kinase (ERK) activation has a determinant role in whether cancer cells will proliferate or enter a state of dormancy.Persistently proliferating cancer cells exhibit constitutive ERK activation, which permits Go-G1-S phase transition and cell division. During ERK-induced proliferation, a high level of p38 mitogen-activated protein kinase (p38) activity functions as an inhibitory regulator of ERK and prevents cell proliferation by inducing G0-G1 arrest or triggering senescence and apoptosis. Indeed, a luciferase reporter system visualized the in vivo ERK and p38 MAPK activities and provided direct evidence of p38/ERK activity as an indicator of DCCs in various types of cancer, including breast cancer, prostate cancer, melanoma, and fibrosarcoma. Cancer cells with p38_{low}/ERK_{high} activity were highly proliferative in vivo, whereas those with p38_{high}/ERK_{low} activity were incapable of proliferation without increased apoptosis, suggesting that they were dormant in vivo. Meanwhile, multiple pharmacological and genetic interventions that change the balance of p38/ERK activity in favor of ERK were able to break in vivo dormancy and induce cancer growth. Thus, it seems that regulatory factors that can change the signaling balance between ERK and p38 activities have a profound influence on whether cancer cells grow or remain dormant.

Transforming growth factor-β2 (TGF-β2) is secreted from bone marrow-derived cells and thus is relatively abundant. TGF-β2 binds to its receptors, TGF-β receptor-I (TGF-βRI) and TGF-β receptor-II (TGF-βRII), on cancer cell membranes and induces p38_{high}/ERK_{low} signaling. The subsequent activation of Smad1/5 increases the expression of DEC2/SHARP1 and p27 and downregulates cyclin-dependent kinase 4 (CDK4), which collectively facilitates the transition into cellular quiescence. The production of TGF-β1/2 is increased during osteoblast differentiation, along with that of bone morphogenetic protein (BMP) family proteins. Both TGF-β1 and BMP-3b induce cancer cell quiescence. TGF-β_{-RII} participates in both TGF-β1- and BMP-3b-induced dormancy and activates the phosphorylation of retino-blastoma through p38 MAPK activation. On the other hand, in the lung, where stromal TGF-β2 secretion is low, ERK activation is restored, and DCCs transition into a highly proliferative state, fueling multiorgan metastasis. Therefore, upon the exit of DCCs from bone marrow, the lack of growth factors can shift the balance of p38 MAPK and ERK activities toward ERK activation, creating a permissive microenvironment for metastatic outgrowth.

The urokinase plasminogen activator (uPA) system has been implicated in a shift from cancer dormancy to proliferation by mediating EGFR signaling. Numerous types of cells, including epithelial cells, immune cells, and fibroblasts, produce and secrete uPA. uPA binds to its receptor (uPAR) and initiates a proteolytic cascade, resulting in the conversion of plasminogen into plasmin. Plasmin degrades a wide range of extracellular components through its proteolytic activity and activates other enzymatic proteins, such as metalloproteinases, thereby promoting cancer invasion. Independent of catalytic activity, the uPAR–uPA interaction leads to the activation of integrin and epidermal growth factor receptor (EGFR) signaling, which consecutively activates ERK1/2 and lowers p38 activities, promoting mitotic cascades. However, DCCs have been reported to express a low level of uPAR; thus, they exhibit a low level of integrin and EGFR activation, resulting in a p38_{high}/ERK_{low} activity ratio. Additionally, p38_{high}/ERK_{low} facilitates G0-G1 arrest by regulating a variety of transcription factors (TFs), such as FOXM1 and c-Jun. Therefore, this combinatorial regulation of TFs by p38_{high}/ERK_{low} activity is responsible for the quiescence program in DCCs.

Additional studies have suggested that high p38 activity is linked to the survival of DCCs and related to endoplasmic reticulum (ER) stress. High p38 activity inhibits Bax activation by increasing the expression of the ER chaperone Bip/Grp78, thereby rendering DCCs highly resistant to chemotherapy. The activating transcription factor 6α (ATF6α), which is translocated from the ER to the nucleus...
to serve as a TF upon ER stress, is persistently activated in DCCs in a p38-dependent manner. ATFTα transcriptionally induces Rheb, a small GTPase, and transduces survival signals such as mTOR and downstream S6K and S6RP phosphorylation. Knockdown of ATFTα or Rheb by RNA interference was sufficient to induce apoptosis in DCCs and remove DCCs during their quiescent phase. This suggests that high p38 activity causes growth arrest in DCCs and simultaneously may activate the dormancy-specific survival signaling pathways that enable DCCs to resist microenvironmental and genotoxic stress.

Furthermore, some kinds of stroma-derived ligands are known to induce cancer cell dormancy in multiple types of cancer. For example, growth arrest-specific protein 6 (GAS6) has been shown to induce dormancy in several kinds of cancer cells that infiltrate the bone marrow. GAS6 is known to bind to the Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases, thereby activating multiple downstream signaling pathways, including mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. In particular, GAS6 promotes the transition of cancer cells into DCCs in the bone marrow. Mechanistically, osteoblasts secrete GAS6 upon their contact with leukemia cells, and the binding of GAS6 to Mer on the surface of leukemia cells facilitates the entry of leukemia cells into G0/G1 arrest. Similarly, in bone marrow, GAS6 from osteoblasts activates TAM family receptors on prostate cancer cells and switches on dormancy in proliferative cancer cells. Additionally, BMP7, produced from bone stromal cells, can induce dormancy in prostate cancer cells by activating p38 signaling.

Mechanistically, binding of BMP7 to its receptor BMP receptor 2 (BMPR2) on prostate cancer cells activates p38 signaling; in turn, it induces reversible growth arrest by increasing the expression of the cell cycle inhibitor p21 and the metastasis suppressor gene NDRG1 (N-myc downstream-regulated gene 1). These data together show that many of these dormancy-inducing cytokines from the stroma can promote the p38^{high}/ERK^{low} state in the absence of proliferative signaling, resulting in G0 cell cycle arrest and cancer dormancy.

Breaking of cellular dormancy by microenvironmental cues

Integrins are transmembranous heterodimeric glycoproteins that mediate cell-to-cell and cell-to-ECM signaling cascades. Integrin signaling activates multiple intermediaries, including cytosolic tyrosine kinases, and is involved in the regulation of cell proliferation, survival, and motility in both cancer and normal healthy cells. Numerous studies have provided evidence that integrin signaling, particularly β1 integrin, is a critical regulator in the switch from cellular dormancy to metastatic growth in vitro and in vivo. Loss of β1 integrin signaling by downregulation of the uPA-uPAR interaction appears to promote the shift from a proliferative to a dormant state in cancer cells. The inhibition of β1 integrin signaling by antibody treatment induced the growth arrest of mammary cancer cells in a three-dimensional basement membrane assay. The removal of the anti-β1 integrin antibody reversed cell cycle arrest and reinitiated cancer cell growth. Focal adhesion kinase (FAK) is a downstream molecule of β1 integrin and has been implicated in the regulation of cancer cell dormancy. In a mouse mammary tumor virus (MMTV) transgenic breast cancer mouse model, the Cre-loxP-mediated deletion of β1-integrin results in a decrease in FAK phosphorylation, reduced cell proliferation, and growth arrest of tumor burden in vivo. Similarly, the growth ability of a highly metastatic D2A1 mammary carcinoma was significantly dependent on the presence of fibronectin, β1 integrin signaling, and downstream phosphorylation of the myosin complex in three-dimensional cell culture, suggesting that the upregulation of β1 signaling enabled DCCs to re-enter the cell cycle.

An additional in vivo study revealed that metastatic outgrowth of the mouse mammary cancer cell lines D2.0R and D2A1 was dependent on β1-integrin signaling. Binding of collagen to integrin receptors resulted in FAK/SRC activation and subsequent ERK phosphorylation. Integrin-mediated ERK activation induced cell proliferation, driving metastatic outgrowth. These data suggest that the interaction between β1-integrin/FAK and the MAPK pathway is essential for cancer cell growth. Meanwhile, noncanonical discoidin domain receptor 1 (DDR) signaling is also activated by binding to collagen, and it is known to activate cancer cell proliferation at metastatic sites. Mechanistically, tetraspanin transmembrane 4 L six family member 1 (TM4SF1) couples DDR1 to syntenin 2 and then activates protein kinase C alpha (PKCα). Activated PKCα subsequently phosphorylates Janus kinase 2 (JAK2) to drive noncanonical DDR1 signaling through phosphorylation of signal transducer and activator of transcription 3 (STAT3). In cancer, constitutive activation of STAT3 increases the transcription of cell cycle regulators, such as c-Myc and cyclin D, and promotes cancer cell proliferation. Consistently, histopathologic analysis of metastatic murine breast cancer cells has identified that micrometastatic tissues are surrounded by collagen. In metastatic tissues, the majority of cancer cells apart from collagen are dormant, whereas those nearby collagen are proliferative. These findings indicate the interaction between DCCs and the ECM microenvironment influences cancer cell behavior and metastatic reactivation.

Furthermore, Wnt signaling has been implicated as a mediator during ECM-induced DCC reactivation. Wnt signaling is known to control diverse biological processes and is a well-known proliferation inducer. Wnt activation...
promotes G1-to-S progression through both transcriptional and nontranscriptional regulation of cyclin D1, cyclin E1, and c-myc. Therefore, inhibition of Wnt signaling by secretion of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) is one mechanism by which cancer cells enter quiescence. Tenasin C, initially produced by metastasis-initiating cancer cells and later secreted from stromal fibroblasts, is known to support the metastatic outgrowth of breast cancer cells by promoting Wnt signaling. Tenasin C binds to syndecan-4, a coreceptor of the Wnt receptor Frizzled-7, thereby enhancing Wnt signaling activation and facilitating metastatic colonization. Additionally, periostin has the ability to recruit Wnt ligands; thus, it can increase the presentation of Wnt ligands to cancer cells. Periostin is mainly produced from stromal fibroblasts upon TGF-β activation and can be secreted from endothelial tip cells that reside in new vascular sprouts. Thus, periostin is abundant in micro-metastatic lesions undergoing neoangiogenesis and is a profound factor for a permissive microenvironment of cancer metastasis. Moreover, both tenasin C and periostin can foster integrin signaling through an indirect pathway; they coassemble with fibronectin and modulate its adhesiveness and stiffness, which collectively increase the integrin signaling capacity.

Collectively, these facts suggest that the ECM components from metastasis-initiating cancer cells and stromal cells may sculpt a permissive niche, facilitating the activation of signaling pathways that support metastatic cell proliferation.

Chronic inflammation awakens dormant cells

Growing evidence has suggested that chronic inflammation is involved in cancer development. For example, patients with inflammatory bowel disease are at higher risk of colorectal cancer development. Hepatitis and fatty liver disease correlate with the incidence of liver cancer development. Acid reflux esophagitis can cause esophageal cancer. Chronic *Helicobacter* infection is the leading cause of stomach cancer. During inflammation, free radicals such as reactive oxygen and nitrogen species (RONS) increase and induce double-strand breaks in DNA, which are potently mutagenic if not accurately and promptly repaired, thereby facilitating the transformation of normal healthy cells to cancer cells. Moreover, free radicals can trigger a wide range of signaling pathways, including MAPK/ERK, PI3K/Akt, and IκB kinase/nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), that lead to cancer malignancy. However, not all individuals who have experienced chronic inflammatory diseases eventually develop cancer in their lifetime. In situ carcinoma can be found in the lesion without any chronic inflammation. These phenomena raised the question about whether a cause-effect relationship exists between chronic inflammation and cancer. One of the possible explanations for this conflicting evidence may be that reawakening DCCs could be a key factor for cancer development from chronic inflammation. For instance, chronic inflammation supports angiogenesis, which breaks cancer dormancy by supplying sufficient oxygen and nutrients and facilitates cancer growth. Moreover, there is a strong correlation between inflammation and recurrence of cancer, including recurrence of endometrial, oral, and breast cancer. The escape of cancer from dormancy can be induced by the inflammatory cytokine interferon-gamma (IFN-γ). In addition, the correlation between the high levels of serum inflammatory cytokines and cancer recurrence supports this hypothesis. In a cohort consisting of 734 breast cancer patients, high levels of circulating acute-phase proteins (APPs) were positively correlated with distant recurrence. Additionally, C-reactive protein (CRP) and interleukin 6 (IL-6), other serum inflammatory markers, have shown their possibilities as posttreatment prognostic monitoring factors for predicting the risk of cancer recurrence and patient death. Hepatocyte CRP secretion is controlled by interleukin 6 (IL-6). The synthesis of CRP is stimulated by interleukin-1 (IL-1) and tumor necrosis factor (TNF). A rise in serum levels of CRP often reflects tissue damage. Collectively, these data support the hypothesis that inflammation can be the DCC reawakening factor and therefore can function as a cancer-promoting factor.

Chronic inflammation can induce epigenetic alterations and DNA mutations in tumor suppressor genes, thereby facilitating carcinogenesis. Fortunately, the immune system can recognize these mutant protein antigens of cancer cells and can attack cancer cells, serving as a critical mechanism of metastatic dormancy, so-called immunologic cancer dormancy. For instance, CD8+ T cells have a cytostatic effect on cancer cells, thereby allowing early disseminated cancer cells to stay in a dormant state at metastatic sites. In some experimental models, removal of CD8+ T cells resulted in outgrowth of DCCs and induced cancer recurrence. However, chronic inflammation can also facilitate other mechanisms that promote the reactivation of DCCs. For instance, studies in a pancreatic cancer mouse model demonstrated that circulating cancer cells underwent epithelial to mesenchymal transition (EMT) and seeded metastatic colonies in the liver. In this process, the rate of EMT and invasive potential were highest at the sites of inflammation. On the other hand, treatment with dexamethasone, an immunosuppressive drug, abrogated EMT and cancer invasiveness. These results imply that inflammation can be a cancer progression factor by facilitating the EMT process in cancer cells. Similarly, localized inflammation in the lungs can trigger cancer cell escape from dormancy,
which leads to the development of macroscopic metastases. During this process, Zeb1 expression, a strong inducer of EMT, was required for cancer cells to escape dormancy. On the other hand, depletion of neutrophils via the administration of antibodies against the lymphocyte antigen 6 complex, locus G (Ly6G) abrogated the reactivation of DCCs.

The interaction between cancer cells and myeloid cells has also been implicated in cancer progression. For instance, inflammatory monocytes with Ly6C expression can facilitate the extravasation of cancer cells in the lung by secreting chemokine C-C-motif ligand 2 (CCL2) and vascular endothelial growth factor. Then, macrophages bind to cancer cells and increase the survival of cancer cells. In this procedure, vascular cell adhesion protein 1 on cancer cells binds to β1-integrin-positive macrophages, and this interaction activates Akt signaling in cancer cells and allows them to evade TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Together, these mechanistic roles of myeloid cells are related to metastasis-promoting effects. However, whether the interaction between myeloid cells and cancer cells switches on the growth of DCCs has not yet been sufficiently demonstrated.

The differentiation of monocytes into metastasis-associated macrophages (MAMs) can promote the metastatic outgrowth of cancer cells. The metastasis-promoting role of MAMs is more complicated and related to their participation in sculpting a more fibrotic metastatic microenvironment. In a genetic mouse model of pancreatic ductal adenocarcinoma (PDAC), MAMs secreted granulin in the liver, and granulin induced the transformation of resident hepatic stellate cells into myofibroblasts. In turn, myofibroblasts secreted peroxisome, which created a fibrotic microenvironment that was more favorable for integrin sningling activation. Then, activated integrin signaling led to DCC reactivation and promoted the proliferation of cancer cells at the metastatic lesion. Therefore, the development of a more fibrotic metastatic microenvironment by MAMs can function as a prometastatic factor by awakening DCCs.

The involvement of natural killer (NK) cells in cancer dormancy and reactivation has not yet been determined, and instead, it has been elucidated that DCCs are more resistant to the cytotoxicity of NK cells. In a “latency-competent cancer model” where dormant clones were selected from an in vivo experimental metastasis assay, DCCs were confirmed to activate the p38 and self-renewal pathways through Sox2/9. Sox2 was also shown to facilitate DKK1 secretion and thereby inhibit Wnt signaling as well as downstream proliferative pathways. Once DCCs enter dormancy via DKK1, they are able to avoid NK cell-mediated cell death, while DCCs with low DKK1 expression are still proliferative and susceptible to NK cell cytotoxicity.

Recently, a growing body of evidence has highlighted the potential role of CD4 and CD8 T cells in cancer dormancy maintenance. DCCs were far less susceptible to adaptive immunity and showed low expression of cancer antigen. Additionally, dormant leukemia cells were confirmed to express PDL-1, which allows them to avoid T cell-mediated cytotoxicity. These findings indicate that DCCs can escape antitumor activity, thereby surviving for an extended period. Additionally, an in vivo xenograft model using dormant murine breast cancer cell clones selected with constitutive treatment of doxorubicin has revealed that both CD8 and CD4 T cells are involved in chemotherapy-mediated dormancy as well. Chemotherapy treatment activated IFN signaling in cancer cells through an autocrine and self-sustained increase in TF and interferon regulatory factor 7. IRF7/IFN signaling promoted the expansion of CD4 and CD8 T cells and prevented the mobilization of CD11b+Gr1+ myeloid-derived suppressor cells. Collectively, these effects facilitate immune cytotoxicity, resulting in immune-mediated cancer dormancy.

More recently, neutrophils have attracted significant attention because of their DCC-reawakening activity. Exposure to tobacco smoke or the nasal instillation of lipopolysaccharide induced chronic lung inflammation and converted DCCs to aggressively growing cancer cells, resulting in an increase in metastasis. In this process, neutrophils mediated the DCC reawakening through the formation of neutrophil extracellular traps (NETs), which are scaffolds of chromatin, including cytotoxic enzymes and proteases that are released into the extracellular space. Mechanistically, two proteases, neutrophil elastase and matrix metalloproteinase 9 (MMP9), were secreted from NETs and sequentially cleaved and remodeled laminin. In turn, the remodeled laminin activated integrin α3β1 signaling in DCCs and promoted their proliferation. Treatment with antibodies against NET-remodeled laminin prevented the awakening of DCCs and reduced metastasis.

Summary and direction of future research

In inhospitable microenvironments, cancer cells may enter a state of dormancy to protect themselves against apoptotic and antiproliferative treatments so that the fittest may survive. The existence of DCCs has led to the emergence of therapy resistance, and most importantly, the cells may resume growth, raising the risk of lethal metastatic outbreaks even after a long latency period of months to years. For these reasons, DCCs have been attracting significant interest as a therapeutic target for improving clinical outcomes. The removal of DCCs in combination with antiproliferative treatment is one therapeutic option; however, cellular and surface markers for DCCs are mostly unavailable at present. An overwhelming number of reports
propose that DCC reawakening is the final step of the metastatic outbreak, so blocking the factors responsible for this process is key to preventing poor clinical outcomes. Although a variety of signaling cascades are linked to the breaking of dormancy, these signaling networks eventually lead to a change in the balance between p38 and ERK activities in favor of ERK. Therefore, if we can finely modulate the balance of p38 and ERK, we may be able to induce permanent dormancy and prevent metastasis, which will mark a new era of cancer treatment.

In the present review, we provide an overview of the cellular and acellular mechanisms that break the dormancy-permissive p38high/ERKlow status (Fig. 1). During their journey in the blood and lymphatic stream, DCCs do not interact with local cells or the ECM. However, once they reach an organ, they encounter a new combination of ECM, growth factors, and cytokines produced from local stromal and immune cells. The binding of fibronectin to integrins has a fundamental role in shifting the balance of p38 and ERK activities in favor of ERK. Additionally, other ECM components, such as tenascin C and peristin secreted from resident stromal cells, can foster the binding of fibronectin and integrins and can therefore act as substantial DCC-reawakening factors. In addition, chronic inflammation can initiate the regrowth of DCCs through integrin activation. Macrophages promote the secretion of fibronectin from nearby fibroblasts and sculpt a more fibrotic metastatic microenvironment, thereby fostering the binding of fibronectin to integrin on DCCs. Additionally, neutrophils participate in ECM remodeling by secreting proteinase enzymes, sequentially activating integrin signaling, and reawakening DCCs. Other immune cells, such as monocytes and myeloid cells, have functional involvement in triggering escape from dormancy in multiple experimental models, although their necessity in integrin signaling activation has not yet been tested. Several target molecules that are involved in DCC reawakening are currently under clinical
Target	Drug	Strategy	Clinical trial	Treatment	Current status	Disease	Clinical results
Integrin β1	ATN-161	Non-RGD-based integrin-binding peptide	Phase I/II (NCT00352213)	Combinatory (with carboplatin)	Completed	Recurrent malignant glioma	All of the treatment-related adverse events were grade 2 or lower.
Integrin α5β1	Volociximab	Chimeric monoclonal antibody against integrin α5β1	Phase II (NCT00131651)	Single	Terminated	Advanced renal cell carcinoma	Unposted
Integrin α2	E7820	Oral inhibitor of integrin alpha-2 expression (sulfonamide-based small molecule)	Phase II (NCT00369395)	Single	Terminated	Metastatic melanoma	Terminated because of insufficient clinical activity.
Integrin αv	Intetuzumab (CNTO-95)	Panintegrin αv antibody	Phase I (NCT0078637)	Single	Completed	Neoplasms, lymphoma, malignant cancers	Unposted
Integrin αv	Abituzumab	Panintegrin αv antibody	Phase I (NCT01087047)	Single	Completed	Solid tumors	Unposted
Integrin αvβ3	Etratuzumab (MEDI-522)	Humanized higher-affinity variants derived from murine antibody LM609	Phase I (NCT00027729)	Single	Completed	Advanced colorectal cancer	Unposted

Clinical results:
- E7820 decreases integrin alpha-2 in surrogate tissues and is associated with stable disease.
- E7820 treatment was safe and tolerable in 2/3 of patients.
- Limited efficacy in locally advanced or metastatic colorectal carcinoma.
- E7820 combined with cetuximab is well tolerated. A single partial response was observed in a total of seven KRAS-mutant patients.
- Treatment resulted in shorter progression-free survival without additional toxicity.
- CNTO-95 showed a favorable safety profile and nonsignificant effects on overall survival.
- It was tolerable despite hypersensitivity reactions.
- A trend toward improved overall survival was observed.
- Although progression-free survival was not significantly extended, abituzumab appears to have specific activity in prostate cancer-associated bone lesions.

Additional notes:
- Approximately one-quarter of patients displayed adverse events of grade 2 or lower.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
- Phase I/II treatment was safe and tolerable in 2/3 of patients.
- Phase I/II treatment was safe and tolerable in 2/3 of patients.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
- Treatment was well tolerated, and dose-limiting toxicities were not observed. Approximately one-quarter of patients displayed stable disease.
| Target | Drug | Strategy | Phase I/II (NCT) | Treatment | Current status | Disease | Clinical results |
|-----------------|------------|---|------------------|---|------------------|--|------------------|
| Integrin αv | MK-0429 | An equipotent inhibitor of multiple αv integrins | | Combinatory (with docetaxel, prednisone, zoledronic acid) | Completed | Metastatic androgen-independent prostate cancer | Unposted |
| Integrin αvβ3 | Cilengitide (EMD121974) | A constrained cyclic pentapeptide based on the RGD sequence | | Single or combinatorial (with dacarbazine) | Completed | Metastatic melanoma | Unposted |
| uPA | WX-671 | Orally available prodrug of WX-UK1 | | Combinatory (with gemcitabine) | Completed | Advanced solid tumors | Dose-limiting toxicity was not observed⁷⁶ |
| uPA | WX-UK1 | A serine protease inhibitor that inhibits uPA as well as other serine proteases | | Combinatory (with gemcitabine) | Completed | Locally advanced pancreatic cancer that cannot be removed by surgery | More patients achieved a partial response with WX-671 combination therapy than with standard of care⁷⁶. |
| FAK | GSK2256098 | A tyrosine kinase inhibitor working at the autophosphorylation site (Fyr 397) of FAK | | Combinatory (with trametinib) | Completed | Advanced solid tumors | Trametinib exposure was increased in combination with GSK2256098. Clinical efficacy was limited in combinatorial therapy. The safety profile was acceptable⁷⁶. |

Table 1 continued...

Target	Drug	Strategy	Phase I/II (NCT)	Treatment	Current status	Disease	Clinical results
uPA	WX-671	Orally available prodrug of WX-UK1		Single	Completed	Advanced solid tumors	Dose-limiting toxicity was not observed⁷⁶
uPA	WX-UK1	A serine protease inhibitor that inhibits uPA as well as other serine proteases		Single	Completed	Locally advanced pancreatic cancer that cannot be removed by surgery	More patients achieved a partial response with WX-671 combination therapy than with standard of care⁷⁶.
FAK	GSK2256098	A tyrosine kinase inhibitor working at the autophosphorylation site (Fyr 397) of FAK		Single	Completed	Advanced solid tumors	Trametinib exposure was increased in combination with GSK2256098. Clinical efficacy was limited in combinatorial therapy. The safety profile was acceptable⁷⁶.

Park and Nam *Experimental & Molecular Medicine* (2020) 52:569–581 576

Official journal of the Korean Society for Biochemistry and Molecular Biology
Target	Drug	Strategy	Clinical trial	Treatment	Current status	Disease	Clinical results
PKC	LXS196	Small-molecule inhibitor for PKC	Phase II (NCT03727780)	Combinatory (with pacitaxel)	Recruiting	Recombinant pancreatic ductal adenocarcinoma	Unposted
PKC	LXS196	Small-molecule inhibitor for PKC	Phase I (NCT02601378)	Single or combinatorial (with HDM201)	Active, not recruiting	Metastatic uveal melanoma	Unposted
JAK2	Pacritinib (SB1518)	Macro cyclic pyrimidine-based JAK2 inhibitor	Phase I (NCT02342353)	Combinatory (with erlotinib)	Terminated (drug shortage)	EGFR-mutant NSCLC	Unposted
JAK2	Pacritinib (SB1518)	Macro cyclic pyrimidine-based JAK2 inhibitor	Phase I (NCT02323607)	Combinatory (with chemotherapy)	Completed	Acute myeloid leukemia, FLT3 mutations	Unposted
JAK2	Pacritinib (SB1518)	Macro cyclic pyrimidine-based JAK2 inhibitor	Phase I (NCT03601819)	Single	Re-routed	Relapsed/refractory lymphoproliferative disorders	Unposted
JAK2	Pacritinib (SB1518)	Macro cyclic pyrimidine-based JAK2 inhibitor	Phase II (NCT02277093)	Single	Terminated (FDA issued a clinical hold as pacritinib had increased side effects)	Refractory colorectal cancer	Post
Target Drug	Strategy	Clinical trial	Treatment	Current status	Disease	Clinical results	
-------------	----------	----------------	-----------	----------------	---------	-----------------	
Pacritinib	Small-molecule inhibitor of JAK1/2	Phase II (NCT02532010)	Combinatory (with decitabine or cytarabine)	Terminated (initially by the sponsor and later due to financial constraints)	Advanced myeloid malignancies	Older patients with acute myeloid leukemia	Pacritinib showed clinical activity in myelofibrosis with tolerable side effects86.
Ruxolitinib	Small-molecule inhibitor of JAK1/2	Phase II (NCT01877005)	Single	Completed	Hodgkin's lymphoma	Unposted	
		Phase II (NCT02876302)	Combinatory (with preoperative chemotherapy)	Recruiting	Triple-negative inflammatory breast cancer		
		Phase II (NCT01423604)	Combinatory (with capcitabine)	Completed	Pancreatic cancer		
		Phase II (NCT01854216)	Combinatory (with exemestane)	Completed	Estrogen receptor-positive breast cancer	Unposted	
		Phase I/II (NCT02046532)	Combinatory (with trastuzumab)	Active, not recruiting	Metastatic HER2-positive breast cancer		
		Phase I/II (NCT02041429)	Combinatory (with preoperative chemotherapy)	Active, not recruiting	Triple-negative inflammatory breast cancer		
		Phase II (NCT03153982)	Single	Recruiting	Operable head and neck cancer		
		Phase II (NCT00674479)	Single	Completed	Advanced hematologic malignancies		
		Phase II (NCT02155465)	Combinatory (with erlotinib)	Completed	EGFR-mutant lung adenocarcinoma with acquired resistance to erlotinib		
		Phase I (NCT01702064)	Combinatory (with nilotinib)	Completed	Chronic myeloid leukemia		
AZD1480 ATP-competitive inhibitor of JAK1 and 2 kinases		Phase I (NCT01219543)	Single	Terminated (compound development discontinued)	Solid tumors, advanced solid malignancies, advanced hepatocellular carcinoma, EGFR- and/or ROS-mutant non-small-cell lung cancer, lung carcinoma metastasis, gastric cancer		
		Phase I (NCT01112397)	Single	Terminated (decision to stop development of AZD1480)	Solid tumors		
Park and Nam	WP1066	Phase I (NCT01904123)	Single	Recruiting	Recurrent malignant glioma, progressive metastatic melanoma in the brain		
OC1602	STAT3 antisense oligonucleotide	Phase I (NCT03327147)	Combinatory (with acalabrutinib)	Recruiting	Relapsed/refractory aggressive non-Hodgkin's lymphoma		
		Phase I (NCT03421353)	Combinatory (with duralumab or chemotherapy)	Active, not recruiting	Advanced solid tumors		
		Phase I (NCT01839604)	Single	Completed	Advanced/metastatic hepatocellular carcinoma		
		Phase I (NCT01563302)	Single	Completed	Advanced cancers		
OPB-51602		Phase I (NCT02038017)	Single	Terminated (because of locally advanced nasopharyngeal carcinoma)			

Table 1 continued
investigation for cancer therapy or prevention as single or combinatory agents (Table 1). Although some of the trials have been terminated because of limited efficacy and intolerable side effects, some have shown promising clinical results, such as a significant trend toward improved disease-free survival and tumor reduction with minimal side effects. Therefore, further investigation into the microenvironmental cues that favor integrin and p38\text{low}/ERK\text{high} activity would broaden the current knowledge of DCC-reawakening factors.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) through a grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. NRF-2017R1E1A1A01075125). Additionally, this work was supported by a grant from the Cell Logistics Research Center of the National Research Foundation of Korea (NRF-2016R1A5A1007318) and by a Gwangju Institute of Science and Technology (GIST) Research Institute (GRI) grant funded by the GIST in 2020.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 December 2019 Revised: 3 March 2020 Accepted: 19 March 2020.

Published online: 16 April 2020
References

1. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
2. Fried, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).
3. De Palma, M., Bizatto, D. & Pietra, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457 (2017).
4. Brown, J. A. et al. TGF-β-induced quiescence mediates chemoresistance of tumor-propagating cells in squamous cell carcinoma. Cell Stem Cell 21, 650–664 (2017).
5. Gonzalez, H., Robles, I. & Werb, Z. Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEMS J. Bact. 285, 654–664 (2018).
6. Chambard, J.-C., Leffroy, R., Pouysségur, J. & Lemosmand, P. βFIP implication in cell cycle regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1773, 1299–1310 (2007).
7. Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8, 1168–1175 (2009).
8. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossovski, L. Erk MAPK activity as a determinant of tumor growth and dormancy; regulation by p38MAPK. Cancer Res. 63, 1684–1695 (2003).
9. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279 (2007).
10. Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in malignant cells. Cell Res. 12, 9 (2002).
11. Sosa, M. S., Aviar-Valderas, A., Bragado, P., Wei, H.-C. & Aguirre-Ghiso, J. A. ERK1/2 and p38/β/δ signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin. Cancer Res. 17, 5850–5857 (2011).
12. Bragado, P. et al. TGF-β2 dictates disseminated tumor cell fate in target organs through TGF-βⅢ and p38β signaling. Nat. Cell Biol. 15, 1331 (2013).
13. Pronier, C., Baker, D., ten Dijke, P. & Retina, L. TGF-β family signaling pathways in cellular dormancy. Trends Cancer 5, 66–78 (2018).
14. Liu, D., Ghiso, J. A., Estrada, Y. & Ossovski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1, 445–457 (2002).
15. Mahmood, N., Mihalikou, C. & Rabban, S. A. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic and therapeutic applications. Front. Oncol. 8, 24 (2018).
16. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossovski, L. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. cell 12, 893–897 (2001).
17. Heits, M. M. et al. Individual development and uPA-receptor expression of disseminated tumor cells in bone marrow: a reference to early systemic disease in solid cancer. Nat. Med. 1, 1035 (1995).
18. Adam, A. P. et al. Computational identification of a p38(SAPK)-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 69, 5664–5672 (2009).
19. Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38α-induced up-regulation of BIP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).
20. Schewe, D. M. & Aguirre-Ghiso, J. A. ATF6α/β-Rheb-MTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl Acad. Sci. U. S. A. 105, 10519–10524 (2008).
21. Cummings, C. T., DeWinkle, D., Earp, H. S. & Graham, D. K. Molecular pathways: MERTK-signaling in cancer. Clin. Cancer Res. 19, 5275–5280 (2013).
22. Shiina, Z., Tsujimoto, B., Koitani, K. & Horiguchi, Y. Downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).
23. Shibue, T. & Weinberg, R. A. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl Acad. Sci. U. S. A. 106, 10290–10295 (2009).
24. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cancer cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).
25. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).
26. Boyerinas, B. et al. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121, 4821–4831 (2013).
27. Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical dendritic domain receptor 1 signaling. Cell 166, 47–62 (2016).
28. Lecarpentier, Y., Schussler, O., HEBERT, J.-L. & VALLEE, A. Multiple targets of the canonical WNT/beta-catenin signaling in cancers. Front. Oncol. 9, 1248 (2019).
29. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).
30. Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266 (2018).
31. Liu, G.-Y. & Storz, P. Reactive oxygen species in cancer. Free Radiol. Res. 44, 479–496 (2010).
32. Teng, M. W., Swann, J. B., Koebel, C. M., Schreiber, R. D. & Smyth, M. J. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–993 (2008).
33. Machida, H. et al. Significance of monocyte counts at recurrence on survival outcome of women with endometrial cancer. Int. J. Gynecologic Cancer 27, 302–310 (2017).
34. Okubo, M. et al. M2-polarized macrophages contribute to neovascularization, leading to relapse of oral cancer following radiation. Sci. Rep. 6, 27548 (2016).
35. Bowers, L. W. et al. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin–aromatase interactions. Cancer Res. 74, 4446–4457 (2014).
36. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).
37. Hallermalm, K. et al. Modulation of the tumor cell phenotype by IFN-γ results in resistance of uveal melanoma cells to granule-mediated lysis by cytotoxic lymphocytes. J. Immunol. 180, 3766–3774 (2008).
38. Nampyo, P., Shovallever, L., Czerniecek, B. J. & Kosik, G. K. Helper 1-type cytokines induce apoptosis and loss of HER-family oncodriver expression in murine and human breast cancer cells. Oncotarget 10, 6006 (2019).
39. Payne, K. K. et al. Tumor-reactive immune cells protect against metastatic tumor and induce immuneedouting of indolent but not quiescent tumor cells. J. Leukoc. Biol. 100, 625–635 (2016).
40. Kmesic, M., Payne, K. K., Wang, X.-Y. & Manjili, M. H. IFN-γ is a key determinant of CD8+ T cell-mediated tumor elimination or tumor escape and relapse in FVB mice. PLoS ONE 8, e82544 (2013).
41. Cole, S. W. Chronic inflammation and breast cancer recurrence. J. Clin. Oncol. 27, 3418 (2009).
42. Toyama, Y. et al. C-reactive protein as predictor of recurrence in patients with rectal cancer undergoing chemoradiotherapy followed by surgery. Anticancer Res. 33, 5065–5074 (2013).
43. Shrestya, S. et al. Serum C-reactive protein is an important and powerful prognostic biomarker in most adult solid tumors. PLoS ONE 13, e020555 (2018).
44. Duffy, S. A. et al. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer Interdisciplinary J. Am. Cancer Soc. 113, 750–757 (2008).
45. Manjili, M. H. The inherent premise of immunotherapy for cancer dormancy. Cancer Res. 74, 6745–6749 (2014).
46. Baxevans, C. N. & Perez, S. A. Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the dormant tumor state. Vaccine 33, 597–619 (2015).
47. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Investig. 120, 2030–2039 (2010).
66. Ricart, A. D. et al. Volociximab, a chimeric monoclonal antibody that speci
62. Albrengues, J. et al. Neutrophil extracellular traps produced during in
1. Lan, Q. et al. Type I interferon/IRF7 axis instigates chemotherapy-induced
58. Nielsen, S. R. et al. Macrophage-secreted granulin supports pancreatic cancer
63. Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor
cell dormancy awakening dormant cancer cells in mice. Cancer Biol. Ther. 5, 729–735 (2006).
64. Serft, D. & Zeliev, A. R. Adaptive stress responses during tumor metastasis and
dormancy. Trends Cancer 2, 429–442 (2016).
69. Carlinioca, M. et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-
PHSON-NH2), a beta integrin antagonist, in patients with solid tumors. Br. J. Cancer 94, 1621–1626 (2006).
70. Ricart, A. D. et al. Volociximab, a chimeric monoclonal antibody that specifi-
cally binds α5β1 integrin: a phase I, pharmacokinetic, and biological correlative
study. Clin. Cancer Res. 14, 7924–7929 (2008).
71. Bell-McGuinn, K. M. et al. A phase II, single-arm study of the anti-α5β1 integrin
antibody volociximab as monotherapy in patients with platinum-resistant advanced epitelial ovarian or primary peritoneal cancer. Gynecologic Oncol. 121, 273–279 (2011).
72. Mita, M. et al. Phase I study of E7820, an oral inhibitor of integrin α2
expression with antiangiogenic properties, in patients with advanced malign-
nancies. Clin. Cancer Res. 17, 193–200 (2011).
73. Kerkaar, B. M. et al. A phase I, dose escalation, pharmacodynamic, pharma-
cokinetic, and food-effect study of a 2 integrin inhibitor E7820 in patients with advanced solid tumors. Investigational N. Drugs 34, 329–337 (2016).
74. Sawyer, M. et al. Phase II study of E7820 in combination with cetuximab in
subjects (pts) with metastatic and refractory colorectal cancer (CRC). J. Clin. Oncol. 28, 3357–3357 (2010).
75. Heidenreich, A. et al. A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human αv integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castratio-resistant prostate cancer. Ann. Oncol. 24, 329–336 (2013).
76. O’Day, S. et al. A Randomised, phase II study of Intetumumab, an anti-alpha v-
integrin mAb, alone and with dacarbazine in stage IV melanoma. Br. J. Cancer 105, 346–352 (2011).
77. Tabernero, J. et al. Abstract C119: Investigation of the anti-angiogenic effects of
dabituzumab in patients with colorectal or ovarian cancer and liver meta-
tases using dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI), aARoG:EORTC. Int. Cont. Mol Targets Cancer Therapeut. 14, C119.
78. Eliez, E. et al. Abituzumab combined with cetuximab plus irinotecan versus
cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase III POSEIDON trial. Ann. Oncol. 26, 132–140 (2015).
79. Hussain, M. et al. Differential effect on bone lesions of targeting integrins:
randomized phase II trial of abituzumab in patients with metastatic castratio-
resistant prostate cancer. Clin Cancer Res. 22, 3192–3200 (2016).
80. Hersey, P. et al. A phase II, randomized, open-label study evaluating the
antitumor activity of MEI-522, a humanized monoclonal antibody directed
against the human alpha v beta 3 (αvβ3) integrin:cdcarcabine (DTC) in
patients with metastatic melanoma (MM). J. Clin. Oncol. 23, 7507–7507 (2005).
81. Rosenthal, M. A. et al. Evaluation of the safety, pharmacokinetics and treatment
effects of an αvβ3 integrin inhibitor on bone turnover and disease activity in
men with hormone-refractory prostate cancer and bone metastases. Asia-Pac. J. Clin. Oncol. 6, 42–48 (2010).
82. Alva, A. et al. Phase II study of cki3 (EMD 121974, NSC 707544) in
patients with non-metastatic castration resistant prostate cancer, NC16735. A
study by the DOD/PFC prostate cancer clinical trials consortium. Investigational N. Drugs 30, 749–757 (2012).
83. Heinemann, V. et al. Phase II randomised proof-of-concept study of the
urokinase inhibitor upamostat (WX-671) in combination with gemcitabine
compared with gemcitabine alone in patients with non-resectable, locally
advanced pancreatic cancer. Br. J. Cancer 108, 766–770 (2013).
84. Mak, G. et al. A phase Ib dose-finding, pharmacokinetic study of the focal
adhesion kinase inhibitor GS2256098 and trametinib in patients with
advanced solid tumors. Br. J. Cancer 120, 975–981 (2019).
85. Soria, J.-C. et al. A phase I, pharmacokinetic and pharmacodynamic study
of GS2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann. Oncol. 22, 2268–2274 (2016).
86. Aung, K. L. et al. A phase II trial of GSK2256098 and trametinib in patients with
advanced pancreatic ductal adenocarcinoma (PDAC) (IMOBILITY-002 Trial, NCT02428270). J. Clin Oncol 36, 408 (2018).
87. Jones, S. F. et al. A phase I study of V5-6063, a second-generation focal
adhesion kinase inhibitor, in patients with advanced solid tumors. Investigational N. drugs 33, 1100–1107 (2015).
88. Patel, M. R. et al. Phase I/1b study of the FAK inhibitor defactinib (V5-6063) in
combination with weekly paclitaxel for advanced ovarian cancer. J. Clin. Oncol. 32, 5521 (2017).
89. Gerber, D. E. et al. Phase 2 study of the focal adhesion kinase inhibitor
defactinib (V5-6063) in previously treated advanced KRAS mutant non-small cell lung cancer. Lung Cancer 139, 60–67 (2020).
90. Ventsoves, S. et al. Phase I/2 study of pacritinib, a next generation AK2/FLT3
inhibitor, in myelofibrosis or other myeloid malignancies. J. Hematol. Oncol. 9, 137 (2016).
91. Hurwitz, H. I. et al. Randomized, double-blind, phase II study of ruvustinib or
placebo in combination with capcitabine in patients with metastatic pan-
creatic cancer for whom therapy with gemcitabine has failed. J. Clin Oncol. 33, 4039 (2015).
92. Sweet, K. et al. A phase I clinical trial of ruvustinib in combination with nilotinib
in chronic myeloid leukemia patients with molecular evidence of disease. Leuk. Res. 74, 89–96 (2018).
93. Guerra, V. A. et al. A phase III study of ruvustinib (INCB18424) for patients
with chronic myeloid leukemia with minimal residual disease while on therapy
with imatinib. Blood 134, 5906 (2019).
94. Reilly, M. J. et al. STAT3 antisense oligonucleotide AZD9150 in a subset of
patients with heavily pretreated lymphoma: results of a phase 1b trial. J. Immunother. Cancer 6, 1–10 (2018).
95. Ogura, M. et al. Phase I study of OPB-S1602, an oral inhibitor of signal
transducer and activator of transcription 3, in patients with relapsed/
refractory hematological malignancies. Cancer Sci. 106, 896–901 (2015).
96. Wong, A. et al. A phase I and biomarker study of OPB-S1602, a novel signal
transducer and activator of transcription 3, in patients with relapsed/
refractory hematological malignancies. Ann. Oncol. 26, 1005–1005 (2015).
97. Limburg, P. J. et al. Randomized phase II trial of sulindac for lung cancer chemoprevention. Lung Cancer 79, 254–261 (2013).
98. Chen, E. Y. et al. A phase II study of celexobib with irinotecan, 5-
fluorouracil, and leucovorin in patients with previously untreated advanced or metastatic colorectal cancer. Ann. Oncol. 41, 1193–1198 (2018).
99. Edelman, M. J. et al. Phase III randomized, placebo-controlled, double-blind
trial of celexobib in addition to standard chemotherapy for advanced
non-small-cell lung cancer with cyclo-oxygenase-2 overexpression: CALGB
30801 (Alliance). J. Clin Oncol. 35, 2184 (2017).
100. Coombes, R. et al. A phase III, multicenter, double-blind, randomized
trial of celexobib versus placebo in primary breast cancer patients:
Randomized European Celexobib Trial (REACT). J. Clin Oncol. 29, TP511S–TP511S (2011).
101. Coombes, R. et al. Abstract G53-03: A phase III multicentre double blind
randomised trial of celexobib versus placebo in primary breast cancer
patients (REACT – Randomised EuropeAn celexobib trial). Cancer Res. 78, G53-03 (2018).