Efflux pump-mediated drug resistance in *Burkholderia*

Nicole L. Podnecky¹†, Katherine A. Rhodes¹,² and Herbert P. Schweizer¹,²*

¹ Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO, USA, ² Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida, Gainesville, FL, USA

Several members of the genus *Burkholderia* are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all *Burkholderia* species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of *Burkholderia* species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as *Acinetobacter baumannii* and *Pseudomonas aeruginosa*. Although efflux pumps have been described in several *Burkholderia* species, they have been best studied in *Burkholderia cenocepacia* and *B. pseudomallei*. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in *B. cenocepacia*, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in *B. pseudomallei*, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim + sulfamethoxazole. Several strains of the host-adapted *B. mallei*, a clone of *B. pseudomallei*, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. *B. thailandensis* is closely related to *B. pseudomallei*, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of *B. pseudomallei*. An efflux pump in *B. vietnamiensis* plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in *Burkholderia* drug resistance.

Keywords: *Burkholderia*, antibiotics, resistance, efflux pump, adaptation

The Genus *Burkholderia*

The genus *Burkholderia* comprises metabolically diverse and adaptable Gram-negative bacteria that are able to thrive in different, often adversarial, environments. Their metabolic versatility and adaptability is in part due to the coding capacity provided by large (7–9 Mb) genomes consisting of several chromosomes and in some species, e.g., *Burkholderia cenocepacia*, plasmids (Holden et al., 2004, 2009; Agnoli et al., 2012). Many members of the genus are clinically significant pathogens.
with renowned virulence potential (Tegos et al., 2012) and drug resistance (Burns, 2007). In contrast to most other Gram-negative pathogens, *Burkholderia* species are intrinsically polymyxin resistant and therefore colistin cannot be used as drug of last resort (Loutet and Valvano, 2011). Despite clinical significance and recognized antibiotic resistance of *Burkholderia* species, characterization of efflux pumps lags significantly behind other non-.enteric Gram-negative pathogens such as *Acinetobacter bauman- nii* and *Pseudomonas aeruginosa* (Nikaido and Pages, 2012). Many *Burkholderia* efflux systems have homologs in other Gram-negatives, including *A. baumannii* and *P. aeruginosa*, and it is now generally believed that the multidrug resistance exhibited by these opportunistic pathogens is largely attributable to the existence of similar efflux pumps in these organisms (Poole, 2001; McGowan, 2006). As with other Gram-negative bacteria, the relative roles that individual efflux pumps play in intrinsic or acquired antibiotic resistance in the respective *Burkholderia* species are in many instances difficult to discern for various reasons: (1) a subset of the pumps found in any organism usually exhibits a considerable degree of substrate promiscuity, i.e., they recognize and extrude chemically and structurally diverse compounds, which leads to similar multidrug resistance profiles; (2) many of the efflux systems are not expressed at significant levels in wild-type strains under laboratory conditions and there exists a significant knowledge gap regarding the environmental conditions under which efflux genes are expressed; and (3) well characterized clinical or laboratory isolates expressing or lacking the respective efflux pumps often do not exist or are difficult to obtain (Mima and Schweizer, 2010; Coenye et al., 2011; Biot et al., 2013; Buroni et al., 2014). In this review we will summarize the current state of knowledge of efflux pumps and their roles in antibiotic resistance in the genus *Burkholderia*, which have been characterized to various degrees in a few representative organisms.

Burkholderia cepacia Complex

The *Burkholderia cepacia* complex (BCC) currently comprises 17 closely related species (Mahenthiralingam et al., 2005; Vanlaere et al., 2009; Vandamme and Dawyndt, 2011). Some BCC members exhibit beneficial aspects such as use in biocontrol, a practice that has since been abandoned because of the risk of infection of compromised individuals (Kang et al., 1998). Many are opportunistic pathogens, being particularly problematic for cystic fibrosis patients and immune compromised individuals. *B. cenocepacia* and *B. multivorans* account for 85% of all BCC infections (Drevinek and Mahenthiralingam, 2010). BCC infections are difficult to treat because of intrinsic antibiotic resistance and persistence in the presence of antimicrobials (Golini et al., 2004; Peeters et al., 2009; Rajendran et al., 2010; Jassem et al., 2011). *B. vietnamiensis* belongs to the BCC group and sporadically infects cystic fibrosis patients (Jassem et al., 2011).

Burkholderia pseudomallei

Burkholderia pseudomallei is a saprophyte and opportunistic pathogen endemic to tropical and subtropical regions of the world, and recent studies suggest that is more widespread than previously thought (Wiersinga et al., 2006, 2012, 2015; Currie et al., 2010). Since the U.S. anthrax attacks in 2001 the bacterium has received increasing attention because of its biothreat potential (Cheng et al., 2005), a history dating back to its use with malicious intent in a Sherlock Holmes short story (Vora, 2002). In the U.S. it is a strictly regulated Tier 1 select agent, which must be handled in approved biosafety level 3 (BSL-3) laboratories. The bacterium is the etiologic agent of melioidosis, a difficult-to-treat multifactuated disease (Wiersinga et al., 2006, 2012). The disease affects at-risk patients, including those suffering from cystic fibrosis (Schulin and Steinmetz, 2001; Holland et al., 2002), non-cystic fibrosis bronchiectasis (Price et al., 2013), and diabetes (Simpson et al., 2003). *B. pseudomallei* infections are recalcitrant to antibiotic therapy because of the bacterium's intrinsic resistance due to expression of resistance determinants such as β-lactamase and efflux pumps, as well as contributing factors such as both intracellular and biofilm lifestyles (Schweizer, 2012b).

Burkholderia mallei

Burkholderia mallei is an obligate zoonotic pathogen and the etiologic agent of glanders, which has been used as a bioweapon (Cheng et al., 2005; Whitlock et al., 2007). This bacterium likely diverged from *B. pseudomallei* upon introduction into an animal host approximately 3.5 million years ago (Losada et al., 2010; Song et al., 2010). The ensuing in-host evolution through massive expansion of insertion (IS) elements, IS-mediated gene deletion, and genome rearrangement, and prophage elimination is likely also responsible for the generally increased antibiotic susceptibility of *B. mallei* when compared to *B. pseudomallei*, presumably due to inactivation of resistance determinants (Nierman et al., 2004).

Burkholderia thailandensis

Burkholderia thailandensis is closely related to *B. pseudomallei* (Brett et al., 1998). Although *B. thailandensis* has sporadically been shown to cause human disease (Glass et al., 2006), it is generally considered non-pathogenic and has often been used as a surrogate for antimicrobial compound and vaccine efficacy studies because the bacterium can be handled at BSL-2. Some strains are more closely related to *B. pseudomallei* than others. For instance, unlike the widely used *B. thailandensis* prototype strain E264 (Brett et al., 1998), strain E555 expresses the same capsular polysaccharide as *B. pseudomallei* (Sim et al., 2010). Since capsular polysaccharide is a potent immunogen this similarity was exploited in a vaccine study, which showed that immunization with live cells of this avirulent strain protects mice from challenge with a virulent *B. pseudomallei* strain (Scott et al., 2013).

Efflux Pumps and Drug Resistance

Early reports provided mostly indirect evidence that *B. cenoce- pacia* efflux pumps play a role in drug efflux. The synergy between reduced outer membrane permeability and efflux was cited as a common theme of the increased resistance that non-fermenting Gram-negative bacteria like *A. baumannii*, *P. aeruginosa*, and *B. (ceno)cepa- cia* display (Hancock, 1998). An analysis
of the DsbA–DsbB disulfide bond formation system revealed that dsbA and dsbB mutation resulted increased susceptibilities to a variety of antibiotics (Hayashi et al., 2000). This led to the conclusion that the DsbA–DsbB system might be involved in the formation of a multidrug resistance system. Another early report described an outer membrane lipoprotein involved in multiple antibiotic (chloramphenicol, trimethoprim, and ciprofloxacin) resistance (Burns et al., 1996). This protein, OpcM, is the outer membrane channel of an efflux pump of the resistance nodulation cell division (RND) family that was subsequently named CeoAB–OpcM, which was shown to be inducible by salicylate and chloramphenicol (Nair et al., 2004). Efflux was also shown early on to play a role in fluoroquinolone resistance (Zhang et al., 2001).

Genome analysis and homology searches led to identification of an additional 14 open reading frames encoding putative components RND family efflux pumps (Guglierame et al., 2006). A summary of pertinent features of at least partially characterized B. cenocepacia RND efflux pumps and their relationships to RND systems in other Burkholderia species is presented in Table 1.

| TABLE 1 | Partially characterized resistance nodulation cell division (RND) efflux pumps in Burkholderia species. |

Species	Efflux pump	Gene names	Gene annotation	Major substrates	Reference	
Burkholderia cenocepacia	RND-1	NA	BCA50691–BCAS5093	Non-detectable	Buroni et al. (2009)	
	RND-3	NA¹	BCAL1674–BCAL1676	Nalidixic acid, ciprofloxacin, tobramycin, chlorhexidine³	Buroni et al. (2009, 2014), Coenye et al. (2011)	
	RND-4	NA²	BCAL2820–BCAL2822	Aztreonam, chloramphenicol, fluoroquinolones, tobramycin	Bazzini et al. (2011b)	
	RND-8	NA	BCAM0991–BCAM0992	Tobramycin³	Buroni et al. (2014)	
	RND-9	NA	BCAM1945–BCAM1947	Tobramycin, chlorhexidine³	Coenye et al. (2011), Buroni et al. (2014)	
	RND-10	ceoAB-opcM⁴	BCAM2551–BCAM2549	Chloramphenicol, fluoroquinolones, trimethoprim	Nair et al. (2004)	
	B. pseudomallei	AmrAB-OpRA	amrAB-opRA	BPSL1804–BPSL1802	Aminoglycosides, macrolides, cethromycin	Moore et al. (1999), Mima et al. (2011)
	BpeAB-OpRB	bpeAB-opRB	BPSL0814–BPSL0816	Chloramphenicol, fluoroquinolones, macrolides, tetracyclines⁵	Chan et al. (2004), Mima and Schweizer (2010)	
	BpeEF-OpRC	bpeEF-opRC	BPSS0292–BPSS0294	Chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim⁶	Kumar et al. (2006), Schweizer (2012a,b)	
	B. thailandensis	AmrAB-OpRA	amrAB-opRA	BTH_I2445–BTH_I2443	Aminoglycosides, macrolides, tetracyclines	Biot et al. (2013)
	BpeAB-OpRB	bpeAB-opRB	BTH_I0680–BTH_I0682	Tetracyclines	Biot et al. (2013)	
	BpeEF-OpRC	bpeEF-opRC	BTH_I2106–BTH_I2104	Chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim/sulfamethoxazole	Biot et al. (2011, 2013)	
	B. vietnamiensis	AmrAB-OpRM	amrAB-opRM	Bcep1808_1574–Bcep1808_1576	Aminoglycosides	Jassem et al. (2014)

NA, not applicable
¹Corresponds to B. pseudomallei amrAB-opRA
²Corresponds to B. pseudomallei bpeAB-opRB
³Sessile (biofilm grown) cells only
⁴Corresponds to B. pseudomallei bpeEF-opRC
⁵Low-level resistance in de-repressed (ΔbpeR) strains
⁶High-level resistance in regulatory mutants, e.g., bpeT carboxy-terminal mutations
RND-3 and RND-4 play important roles in resistance to various antibiotics, including ciprofloxacin and tobramycin, in planktonic populations; (2) RND-3, RND-8, and RND-9 protect from the antimicrobial effects of tobramycin in biofilm cells; and (3) RND-8 and RND-9 do not play a role in ciprofloxacin resistance (Buroni et al., 2014). An emerging theme from these studies is that RND-3 seems to play a major role in B. cenocepacia’s intrinsic drug resistance. It was suggested that mutations in the RND-3 regulator-encoding gene may be responsible for this pump’s prevalent overexpression and accompanying high-level antibiotic resistance in clinical BCC isolates (Tseng et al., 2014).

Studies aimed at assessing chlorhexidine mechanisms in B. cenocepacia J2315 confirmed the differential roles that RND pumps play in biofilm versus planktonically grown cells. RND-4 contributed to chlorhexidine resistance in planktonic cells, whereas RND-3 and RND-9 played a role in chlorhexidine resistance in sessile cells (Coenye et al., 2011). Mutational analyses of 2-thiopyridine resistant mutants showed that RND-4 confers resistance to an anti-tubercular 2-thiopyridine derivative (Scoffone et al., 2014). The involvement of efflux pumps in tigecycline resistance was inferred from the potentiating effects of the efflux pump inhibitor (EPI) MC-207,110 on tigecycline’s anti-B. cenocepacia activity (Rajendran et al., 2010).

Efflux pumps belonging to other families may also contribute to B. cenocepacia’s drug resistance. Experiments with an immunodominant antigen in cystic fibrosis patients infected with B. cenocepacia identified a drug efflux pump, BcrA, which is a member of the major facilitator superfamily (MFS). It was shown to confer tetracycline and nalidixic acid resistance when expressed in E. coli (Wigfield et al., 2002). Upregulation of an efflux pump resulted in resistance to the phosphonic acid antibiotic fosfomycin (Messiaen et al., 2011). This pump is a homolog of Fsr, a member of the MFS, which was previously shown to confer fosfomycin resistance on E. coli (Fujisaki et al., 1996; Nishino and Yamaguchi, 2001).

Other Functions of B. cenocepacia RND Efflux Pumps

As with other Gram-negative bacteria, the function of B. cenocepacia efflux pumps extends beyond antibiotic resistance. In B. cenocepacia, these systems are involved in modulation of virulence-associated traits such as quorum sensing, biofilm formation, chemotaxis, and motility, as well as general physiological functions (Buroni et al., 2009; Bazzini et al., 2011a,b). A proteomic analysis of the effects of RND-4 gene deletion revealed about 70 differentially expressed proteins, most of which were associated with cellular functions other than drug resistance. This suggests that RND-4 plays a more general role in B. cenocepacia’s biology (Gamberi et al., 2013). Aside from the key role that efflux, especially RND-mediated efflux, plays in adaptation to antibiotic exposure (Bazzini et al., 2011b; Sass et al., 2011; Tseng et al., 2014), survival of Burkholderia species in various niche environments and accompanying conditions, e.g., the cystic fibrosis airways (Mira et al., 2011), marine habitats (Maravic et al., 2012), oxygen levels (Hemsley et al., 2014), exposure to noxious chemicals (Rushton et al., 2013), and other ecological niches (Liu et al., 2015), involves to various degrees changes in efflux pump expression.

Burkholderia pseudomallei

Efflux Pumps and Drug Resistance

Initially, the presence of genomic DNA sequences in B. pseudomallei that hybridize with the multidrug resistance efflux gene oprM of P. aeruginosa was interpreted as evidence that efflux-mediated multidrug efflux systems may also be present in B. pseudomallei (Bianco et al., 1997). A recent survey of documented B. pseudomallei antibiotic resistance mechanisms indeed showed that efflux is the dominant mechanism affecting most classes of antibiotics (Schweizer, 2012b). Sequenced B. pseudomallei genomes encode numerous efflux systems, but with other non-enteric bacteria only RND pumps have to date been shown to confer resistance to clinically significantly antibiotics. The K96243 and other B. pseudomallei genomes encode at least 10 RND systems, seven of which are encoded by chromosome 1 and three by chromosome 2 (Holden et al., 2004; Figure 1A). Although RND operon distribution is conserved amongst diverse B. pseudomallei strains, locations on the respective chromosomes may vary because of chromosome rearrangements. Bioinformatic analyses indicate that not all of the RND operons encode drug efflux pumps. For instance, one system seems to encode components of a general secretion (Sec) system. Although the presence of many RND systems can be detected in clinical and environmental isolates at the transcriptional (Kumar et al., 2008) and protein level (Schell et al., 2011), this expression is not necessarily linked to increased drug resistance. Meaningful studies to address their function are complicated because isogenic progenitor and/or comparator strains are generally not available. Further hindering efflux pump characterization are select agent guidelines, which restrict certain methods, such as selection of spontaneous drug resistant mutants that may display altered efflux expression profiles. These investigations are now facilitated by the availability of several B. pseudomallei strains, for instance Bp82 (Propst et al., 2010), which are excluded from select agent rulings. To date three RND drug efflux pumps – AmrAB-OprA, BpeAB-OprB, and BpeEF-OprC – have been characterized in some detail (Figure 1B). There is evidence that small molecule compounds such as MC-207,110, phenothiazine antipsychotics, and antihistaminic drugs like promazine can be used to potentiate antibiotic efficacy, primarily by inhibition of RND efflux pumps (Chan et al., 2007b).

AmrAB-OprA

The AmrAB-OprA efflux pump was the first efflux pump described in B. pseudomallei (Moore et al., 1999). It is responsible for this organism’s high-level intrinsic aminoglycoside and macrolide resistance (Moore et al., 1999; Viktorov et al., 2008). Rare (~1 in 1,000) naturally occurring aminoglycoside susceptible B. pseudomallei isolates have previously been identified (Trunck et al., 2009; Podin et al., 2014). They do not
express the AmrAB-OprA pump either due to regulatory mutations (Trunck et al., 2009), point mutations affecting the AmrB RND transporter amino acid sequence (Podin et al., 2014), or because the entire amrAB-oprM operon is missing due to a genomic deletion (Trunck et al., 2009). Although the AmrAB-OprA efflux pump is expressed in prototype strains, exposure to antimicrobials can select for unknown mutations that cause its over-expression resulting in increased resistance. For instance, prototype strain 1026b is moderately susceptible [minimal inhibitory concentration (MIC) 4–8 μg/mL] to the ketolide cethromycin and exposure to this compound readily selects for highly resistant (MIC > 128 μg/mL) derivatives due to AmrAB-OprA over-expression (Mima et al., 2011). To date, AmrAB-OprA expression is the sole reported aminoglycoside and macrolide resistance mechanism observed in B. pseudomallei.

AmrAB is closely related to P. aeruginosa MexXY, which is expressed in some aminoglycoside resistant mutants and together with OprM constitutes a functional efflux pump (Mine et al., 1999; Sobel et al., 2003; Morita et al., 2012). MexXY associates with the mexAB-oprM encoded OprM outer channel protein because the mexXY operons of most P. aeruginosa strains do not encode a cognate outer membrane channel protein. However, some strains, e.g., P. aeruginosa PA7, encode a mexAB-oprA operon akin and functionally equivalent to B. pseudomallei amrAB-oprA (Morita et al., 2012).

BpeAB-OprB

The BpeAB-OprB efflux pump was first described in strain KHW from Singapore (Chan et al., 2004) and subsequently characterized in Thai strain 1026b (Mima and Schweizer, 2010). It is not significantly expressed in wild-type strains. BpeAB-OprB expression is regulated by BpeR and bpeR mutants exhibit low-level chloramphenicol, fluoroquinolone, tetracycline, and macrolide resistance (Chan et al., 2004; Chan and Chua, 2005; Mima and Schweizer, 2010). Although the original studies with strain KHW indicated a role of BpeAB-OprB in aminoglycoside resistance (Chan et al., 2004), these results could not be confirmed with strain 1026b (Mima and Schweizer, 2010). At present, the observed differences in BpeAB-OprB substrate spectrum between strains KHW and 1026b are not understood. Because of the low levels of resistance bestowed by BpeAB-OprB and naturally occurring antibiotic resistant BpeAB-OprB over-expressing mutants have yet to be identified, the clinical significance of this pump remains unclear.

Although BpeAB-OprB is related to P. aeruginosa MexAB-OprM (Poole et al., 1993; Li et al., 1995; Mima and Schweizer, 2010), the respective features are quite divergent. While P. aeruginosa MexAB-OprM is widely expressed and responsible for this bacterium’s intrinsic resistance to numerous antibacterial compounds (Poole et al., 1993; Li et al., 1995; Poole, 2001), B. pseudomallei BpeAB-OprB is not widely expressed and does seem to play only a minor role in this bacterium’s resistance to antimicrobials.

BpeEF-OprC

BpeEF-OprC was first identified as a chloramphenicol and trimethoprim efflux pump by expression in an efflux-compromised P. aeruginosa strain (Kumar et al., 2006). This pump is not expressed in B. pseudomallei wild-type strains, but only regulatory mutants. For instance, it is constitutively expressed in naturally occurring bpeT mutants (Hayden et al., 2012; Figure 2). When expressed, BpeEF-OprC confers high-level resistance to chloramphenicol, fluoroquinolones, tetracyclines, and trimethoprim. It is responsible for widespread trimethoprim resistance in clinical and environmental B. pseudomallei isolates (Podnecky et al., 2013). Pump expression is inducible by some pump substrates, which when present at sub MIC levels may lead to cross-resistance with other pump substrates (Schweizer, 2012a).

BpeEF-OprC is related to P. aeruginosa MexEF-OprN (Koehler et al., 1997), which shares properties such as substrate profiles and selection of pump-expressing regulatory mutants by chloramphenicol as previously demonstrated with both P. aeruginosa MexEF-OprN (Koehler et al., 1997) and B. thailandensis BpeEF-OprC (Biot et al., 2011).
P. aeruginosa regulation in bacteria. Numerous studies with Quorum sensing is an important determinant of virulence factor Other Functions of Podnecky et al., 1998; Pearson et al., 1999; Koehler et al., 2001; Aendekerk of cell-to-cell signaling molecules and their inhibitors (Evans and thus several virulence traits by being involved in transport cate the involvement of several RND pumps in quorum sensing Pumps its ability to invade Madin–Darby canine kidney (MDCK) cells aeruginosa efflux pump whose expression it regulates (Tian et al., 2009). A
factors, albeit independent of the function of the MexEF-OprN efflux pump regulator, MexT, modulates expression of virulence (1) for the secretion of the acylhomoserine lactones produced by
mallei strains are susceptible to aminoglycosides. In the ATCC 23344 prototype strain this susceptibility results from a 50 kb chromosomal deletion encompassing the amrAB-oprA operon (Nierman et al., 2004). Strains NCTC10229 and NCTC10247 are likely aminoglycoside susceptible because only remnants of the amrAB-oprA operon are present (Winsor et al., 2008). Genes and operons encoding other efflux pumps, including BpeAB-OprB and BpeEF-OprC, are present but whether they encode functional efflux systems remains to be established.

Burkholderia mallei

In part due to ongoing in host evolution of this obligate pathogen, B. mallei is generally more susceptible to antimicrobials than its progenitor B. pseudomallei. For instance, many B. mallei strains are susceptible to aminoglycosides. In the ATCC 23344 prototype strain this susceptibility results from a 50 kb chromosomal deletion encompassing the amrAB-oprA operon (Nierman et al., 2004). Strains NCTC10229 and NCTC10247 are likely aminoglycoside susceptible because only remnants of the amrAB-oprA operon are present (Winsor et al., 2008). Genes and operons encoding other efflux pumps, including BpeAB-OprB and BpeEF-OprC, are present but whether they encode functional efflux systems remains to be established.

Burkholderia thailandensis

One study indicated the presence of an MFS efflux pump, with an associated regulatory protein of the multiple antibiotic resistance regulator (MarR) family (Grove, 2010). However, expression of the efflux pump was only responsive to urate, xanthine, and hypoxanthine and thus the significance of this transporter in B. thailandensis’ antibiotic resistance, if any, is unclear.

In contrast, the contributions of RND pumps to this bacterium’s antibiotic resistance have been established. It was shown that chloramphenicol exposure selects for expression of an RND efflux pump, BpeEF-OprC, that also extrudes fluoroquinolones, tetracycline, and trimethoprim (Biot et al., 2011). Doxycycline selection resulted in mutants that either over-expressed AmrAB-OprA or BpeEF-OprC, and exhibited the multidrug resistance profiles associated with expression of these efflux pumps (Biot et al., 2013). Mutational analysis of these mutants suggested that BpeAB-OprB could at least partially substitute for absence of either AmrAB-OprA or BpeEF-OprC. Unlike other Gram-negative bacteria, cell envelope properties, efflux pump repertoire, and resulting drug resistance profile make B. thailandensis suitable as a B. pseudomallei BSL-2 surrogate for drug efficacy studies (Schweizer, 2012c).

Burkholderia vietnamiensis

Transposon mutagenesis studies aimed at identification of polymyxin B susceptible mutants identified a gene encoding a NorM multidrug efflux protein (Fehlner-Gardiner and Valvano, 2002). While norM expression in an E. coli acrAB deletion mutant complemented its norfloxacin susceptibility, its inactivation in B. vietnamiensis only affected susceptibility to polymyxin but not other antibiotics.

Other Functions of *B. pseudomallei* Efflux Pumps

Quorum sensing is an important determinant of virulence factor regulation in bacteria. Numerous studies with *P. aeruginosa* indicate the involvement of several RND pumps in quorum sensing and thus several virulence traits by being involved in transport of cell-to-cell signaling molecules and their inhibitors (Evans et al., 1998; Pearson et al., 1999; Koehler et al., 2001; Aendekerk et al., 2005; Hirakata et al., 2009; Tian et al., 2009). At least one efflux pump regulator, MexT, modulates expression of virulence factors, albeit independent of the function of the MexEF-OprN efflux pump whose expression it regulates (Tian et al., 2009). A *P. aeruginosa* MexAB-OprM deletion strain is also compromised in its ability to invade Madin–Darby canine kidney (MDCK) cells (Hirakata et al., 2009). Based on these findings with *P. aeruginosa*, several studies with *B. pseudomallei* explored the effects of efflux on quorum sensing and virulence. Studies with strain KHW showed that the BpeAB-OprB efflux pump was required: (1) for the secretion of the acyl homoserine lactones produced by this strain; quorum-sensing systems (Chan et al., 2007a); and (2) secretion of several virulence-associated determinants, including siderophore and biofilm formation (Chan and Chua, 2005), but these observations could not be confirmed with strain 1026b (Mima and Schweizer, 2010). Cell invasion of and cytotoxicity toward human A549 lung epithelial and THP-1 macrophage cell lines were significantly reduced in a KHW BpeAB-deficient strain (Chan and Chua, 2005). Adherence to A549 cells and virulence in the BALB/c mouse intranasal infection model were not affected in the AmrAB-OprA deficient Bp340 mutant, a derivative of strain 1026b (Campos et al., 2013). BALB/c mouse intranasal infection studies also showed that in addition to AmrAB-OprA, BpeAB-OprB, and BpeEF-OprC were not required for virulence (Propst, 2011; Schweizer, 2012a). The AmrAB-OprA efflux pump is also not required for efficient killing of *Caenorhabditis elegans* by *B. pseudomallei* (O’Quinn et al., 2001). The BpeAB-OprB pump has been implicated in being involved in spermidine homeostasis in strain KHW with exogenous spermidine and N-acetyl spermidine activating bpeA transcription (Chan and Chua, 2010).
Unlike other *Burkholderia* species, including most BCC members, the majority of environmental and clinical *B. vietnamiensis* isolates are aminoglycoside susceptible (Jassem et al., 2011). Aminoglycoside resistance as a result of chronic infection or *in vitro* exposure to aminoglycosides is the result of the AmrAB-OprM efflux pump, which is most likely a homolog of *B. pseudomallei* and *B. thailandensis* AmrAB-OprA (Jassem et al., 2011, 2014). Of note is the observation that efflux pump expression in mutants that acquired resistance during infection was due to missense mutations in the *amrAB-oprM* regulator *amrR*, but not those mutants derived from antibiotic pressure *in vivo* (Jassem et al., 2014).

Burkholderia Efflux Pump Mutants as Experimental Tools

The high-level intrinsic antibiotic resistance of many *Burkholderia* species complicates their genetic manipulation, use in studies of intracellular bacteria with the aminoglycoside protection assay, and drug efficacy studies. It has been shown that efflux-compromised mutants of *B. cenocepacia* and *B. pseudomallei* greatly facilitate genetic manipulation of these species, as well as cell invasion studies using the aminoglycoside protection assay (Dubarry et al., 2010; Hamad et al., 2010; Campos et al., 2013). Efflux-compromised strains of *B. thailandensis* and *B. pseudomallei* strains have also proved useful for study of the efflux propensity of novel antimicrobial compounds (Liu et al., 2011; Mima et al., 2011; Teng et al., 2013; Cummings et al., 2014).

Conclusion

Burkholderia species are well adapted to life in diverse, often adversarial, environments including those containing antimicrobials. This adaptation is facilitated by large genomes that bestow on the bacteria the ability to either degrade or expel noxious chemicals. As a result, opportunistic infections by pathogenic members of this species are difficult to treat because of intrinsic antibiotic resistance and persistence in the presence of antimicrobials. Resistance is in large part attributable to efflux pump expression, mostly members of the RND family. While the last decade has seen significant progress in study of drug efflux in *Burkholderia* species, progress still lags significantly behind other opportunistic pathogens, e.g., *P. aeruginosa* and *A. baumannii*, where efflux pumps also play significant roles in intrinsic and acquired drug resistance.

There are some unique aspects of efflux systems in *Burkholderia* species that are without parallel and studies of these may shed light on unique physiological functions of efflux pumps in these organisms. For instance, the first gene in the *bpeEF-oprC* operon, *lpE*, is co-transcribed with the genes encoding the BpeEF-OprC efflux pump components (Nair et al., 2004, 2005). Its deletion neither affects efflux pump function nor specificity for known antibiotic substrates. It is highly conserved throughout the *Burkholderia* genus and found in all sequenced genomes (Winsor et al., 2008). Based on homology, LpE probably is an enzyme of the alpha/beta hydrolase family, recently annotated as a putative lipase/carboxyl esterase, and its conservation throughout the genus suggests an adaptation or survival benefit in a niche environment. The unique association of this enzyme with BpeEF-OprC and its role in *Burkholderia* biology warrant further studies of this enzyme.

When reviewing the *B. cenocepacia* efflux pump literature it becomes evident that efflux pump nomenclature in this species, especially that of the RND family is non-uniform and confusing (for instance CeaOB-OpcM, RND-1 to RND-16, BCA gene names, Mex1, orf, etc.), which makes comparisons with other Gram-negative bacteria unnecessarily cumbersome. As with other Gram-negative bacteria, the nomenclature initiated in *B. cenocepacia* by Dr. Jane Burns’ laboratory in the early 2000s, i.e., CeaOB-OpcM (Nair et al., 2004), would make the most sense and it is a pity that it was not followed in subsequent studies.

Author Contributions

NP, KR, and HS contributed to all aspects of the work, including, but not limited to, conception and design, acquisition and analysis of data, writing the manuscript, and final approval of the version to be published.

Acknowledgments

The authors acknowledge the contributions of several talented graduate students (Katie Propst, Kyoung-Hee Choi, Lily Trunck, Carolina Lopez) and postdocs (Takehiko Mima, Ayush Kumar, Nawarat Somprasong) to efflux pump research performed in the Schweizer laboratory. We acknowledge Dr. Hillary Hayden from the University of Washington for providing sequence information on *B. pseudomallei* strains 354b and 354e. Work in the HPS laboratory was supported by grant AI065357 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and contract HDTRA1-08-C-0049 from the United States Defense Threat Reduction Agency.

References

Aendekerk, S., Diggle, S. P., Song, Z., Hoiby, N., Cornelis, P., Williams, P., et al. (2005). The MexGHII-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in *Pseudomonas aeruginosa* via 4-quinolone-dependent cell-to-cell communication. *Microbiology* 151, 1113–1125. doi: 10.1099/mic.0.7631-0

Agnoli, K., Schwager, S., Uehlinger, S., Vergunst, A., Viteri, D. F., Nguyen, D. T., et al. (2012). Exposing the third chromosome of *Burkholderia cepacia* complex strains as a virulence plasmid. *Mol. Microbiol.* 83, 362–378. doi: 10.1111/j.1365-2958.2011.07937.x

Bazzini, S., Udine, C., and Riccardi, G. (2011a). Molecular approaches to pathogenesis study of *Burkholderia cenocepacia*, an important cystic fibrosis opportunistic bacterium. *Appl. Microbiol. Biotechnol.* 92, 887–895. doi: 10.1007/s00253-011-3616-5
system in *Burkholderia vietnamiensis*. Proc. Natl. Acad. Sci. U.S.A. 101, 5161–5165. doi: 10.1073/pnas.0401800101

Koehler, T., McIver, H. M., and Schweizer, H. P. (2009). *The Analysis of Burkholderia pseudomallei Virulence and Antimicrobial Resistance*. In: *Burkholderia: multidrug resistance to the maximum*. Nair, B. M., Joachimiak, L. A., Chattopadhyay, S., Montano, I., and Burns, J. L. (2010). APH-3.1 class II aminoglycoside resistance in the genus *Burkholderia*. Antimicrob. Agents Chemother. 54, 3113–3120. doi: 10.1128/AAC.01434-10

McGowan, J. E. Jr. (2006). Resistance in non-fermenting gram-negative bacteria: multidrug resistance to the maximum. *Am. J. Infect. Control* 34, S29–S37; discussion S64–S73.

Messiaen, A. S., Verbruggen, T., Declerck, C., Ortmann, R., Schlitzer, M., Nelis, H., et al. (2011). Resistance of *Burkholderia cepacia* complex to fosfomycin and fosfomycin derivatives. *Int. J. Antimicrob. Agents* 38, 261–264. doi: 10.1016/j.ijantimicag.2011.04.020

Mima, T., and Schweizer, H. P. (2010). The BpeAB-OpbE efflux pump of *Burkholderia pseudomallei* 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. *Antimicrob. Agents Chemother.* 54, 3113–3120. doi: 10.1128/AAC.01803-09

Mima, T., Schweizer, H. P., and Xu, Z.-Q. (2011). In vitro activity of cethromycin against *Burkholderia pseudomallei* and investigation of mechanism of resistance. *J. Antimicrob. Chemother.* 66, 73–78. doi: 10.1093/jac/dkq391

Mine, T., Morita, Y., Kataoka, A., Mizushima, T., and Tsuchiya, T. (1999). Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* 43, 415–417.

Mira, N. P., Madeira, A., Moreira, A. S., Coutinho, C. P., and Sa-Correia, I. (2011). Genomic expression analysis reveals strategies of *Burkholderia cepacia* to adapt to cystic fibrosis patients’ airways and antimicrobial therapy. *PLoS ONE* 6:e28831. doi: 10.1371/journal.pone.0028831

Moore, R. A., Deshazer, D., Reckseidler, S., Weissman, A., and Woods, D. E. (1999). Efflux-mediated aminoglycoside and macrolide resistance in *Burkholderia pseudomallei*. *Antimicrob. Agents Chemother.* 43, 465–470.

Morita, Y., Tomida, J., and Kawamura, Y. (2012). *MexY* multidrug efflux system of *Pseudomonas aeruginosa*. *Front. Microbiol.* 3:408. doi: 10.3389/fmicb.2012.00408

Nair, B. M., Cheung, K. J. Jr., Griffith, A., and Burns, J. L. (2004). Salicylate induces an antibiotic efflux pump in *Burkholderia cepacia* complex genomovar III (B. cepacia). *J. Clin. Invest.* 113, 464–473. doi: 10.1122/jci200419710

Nair, B. M., Joachimiak, L. A., Chattopadhyay, S., Montano, I., and Burns, J. L. (2005). Conservation of a novel protein associated with an antibiotic efflux operon in *Burkholderia cepacia* FCMS Microbiol. Lett. 245, 337–344. doi: 10.1016/j.femsle.2005.03.027

Nierman, W. C., Deshazer, D., Kim, H. S., Tettelin, H., Nelson, K. E., Feldblum, T., et al. (2004). Structural flexibility in the *Burkholderia mallei* genome. *Proc. Natl. Acad. Sci. U.S.A.* 101, 14246–14251. doi: 10.1073/pnas.0403033101

Nikaido, H., and Pages, J. M. (2002). Active efflux and diffusion are involved in transport of *Pseudomonas aeruginosa* cell-to-cell signals. *J. Bacteriol.* 184, 5803–5812. doi: 10.1128/JB.184.20.5803-5812.2001

O’Quinn, A. L., Wiegand, E. M., and Jeddell, J. A. (2001). *Burkholderia pseudomallei* kills the nematode *Caenorhabditis elegans* using an endotoin-mediated paralysis. *Cell Microbiol.* 3, 381–393. doi: 10.1046/j.1462-5822.2001.00118.x

Pearson, J. P., Van Delden, C., and Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of *Pseudomonas aeruginosa* cell-to-cell signals. *J. Bacteriol.* 181, 1203–1210.

Peeters, E., Nelis, H. J., and Coenye, T. (2009). In vitro activity of ceftriaxone, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile *Burkholderia cepacia* complex bacteria. *J. Antimicrob. Chemother.* 64, 801–809. doi: 10.1093/jac/dkp253

Peeters, K., Fondl, M., Papaleo, M. C., Maida, I., Buroni, S., Pasca, M. R., et al. (2010). Exploring the HME and HAE1 efflux systems in the genus *Burkholderia*. *BMC Biol.* 10:164. doi: 10.1186/1471-2148-10-164

Podnecky, N. L., Wuthienkanun, V., Peacock, S. J., and Schweizer, H. P. (2013). The BpeEF-OpbC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental *Burkholderia pseudomallei* isolates. *Antimicrob. Agents Chemother.* 57, 4381–4386. doi: 10.1128/AAC.00660-13

Poole, K. (2001). Multidrug efflux pumps and antimicrobial resistance in *Pseudomonas aeruginosa* and related organisms. *J. Mol. Microbiol. Biotechnol.* 3, 255–264.

Poole, K., Krebes, K., McNally, C., and Neshat, S. (1993). Multiple antibiotic resistance in *Pseudomonas aeruginosa*: evidence for involvement of an efflux operon. *J. Bacteriol.* 175, 7363–7372.

Price, E. P., Sarovich, D. S., Price, E. P., Kaestli, M., Mayo, M., Hii, K., et al. (2014). *Burkholderia pseudomallei* isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. *Antimicrob. Agents Chemother.* 58, 162–166. doi: 10.1128/AAC.01842-13

Price, E. P., Sarovich, D. S., Mayo, M., Tuanoy, A., Drees, K. P., Kaestli, M., et al. (2013). Within-host evolution of *Burkholderia pseudomallei* over a twelve-year chronic carriage infection. *MBio* 4:4. doi: 10.1128/mBio.00388-13

Propst, K. L. (2011). The Analysis of *Burkholderia pseudomallei* Virulence and Efficacy of Potential Therapeutics. Ph.D. Dissertation, Colorado State University, Fort Collins, CO.

Propst, K. L., Mima, T., Choi, K. H., Dow, S. W., and Schweizer, H. P. (2010). *Burkholderia pseudomallei* DeltaupM mutant is avirulent in immune competent and immune deficient animals: candidate strain for exclusion from select agent lists. *Infect. Immun.* 78, 3136–3143. doi: 10.1128/IAI.01313-09
Rajendran, R., Quinn, R. F., Murray, C., McCulloch, E., Williams, C., and Ramage, G. (2010). Efflux pumps may play a role in tigecycline resistance in Burkholderia species. Int. J. Antimicrob. Agents 36, 151–154. doi: 10.1016/j.ijantimicag.2010.03.009

Rushton, L., Sass, A., Baldwin, A., Dowson, C. G., Donohue, D., and Mahenthiralingam, E. (2013). Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob. Agents Chemother. 57, 2972–2980. doi: 10.1128/AAC.00140-13

Sass, A., Marchbank, A., Tullis, E., Lipuma, J. J., and Mahenthiralingam, E. (2011). Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cepacia complex observed by global gene expression analysis. BMC Genomics 12:373. doi: 10.1186/1471-2164-12-373

Schell, M. A., Zhao, P., and Wells, L. (2011). Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions. J. Proteome Res. 10, 2417–2424. doi: 10.1021/pr1012398

Schulkin, T., and Steinmetz, I. (2001). Chronic melioidosis in a patient with cystic fibrosis. J. Clin. Microbiol. 39, 1676–1677. doi: 10.1128/JCM.39.4.1676-1677.2001

Schweizer, H. P. (2012b). Mechanisms of antibiotic resistance in different Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol. 7, 1389–1399. doi: 10.2217/fmb.11.116

Schweizer, H. P. (2012c). When it comes to drug discovery not all Gram-negative species are created equal: Burkholderia cepacia complex. Future Microbiol. 7, 581–583. doi: 10.2217/fmb.11.2033.x

Scofone, V. C., Spadaro, F., Udine, C., Makarov, V., Fondi, M., Fani, R., et al. (2014). Mechanism of resistance to an antibacterial 2-thiopyridine derivative that is also active against Burkholderia cepacia complex. Antimicrob. Agents Chemother. 58, 2415–2417. doi: 10.1128/AAC.02438-13

Scott, A. E., Laws, T. R., D’elia, R. V., Stokes, M. G., Nandi, T., Williamson, E. D., et al. (2013). Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a mann-heptose capsule. Clin. Vaccine Immunol. 20, 1041–1047. doi: 10.1128/CVI.00113-13

Sim, B. M., Chotranti, N., Ooi, W. F., Nandi, T., Tewhey, R., Wuthiekanun, V., et al. (2010). Genomic acquisition of a capsular polysaccharide virulence determinant in the Burkholderia cepacia complex. Genome Biol. 11:R89. doi: 10.1186/gb-2010-11-8-r89

Simpson, A. J., Newton, P. N., Cheriauk, W., Chaowagul, W., and White, N. J. (2003). Diabetes mellitus, insulin, and melioidosis in Thailand. Clin. Infect. Dis. 36, e71–e72. doi: 10.1086/367861

Sobel, M. L., Mckay, G. A., and Poole, K. (2003). Contribution of the MexXY efflux pump in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47, 3202–3207. doi: 10.1128/AAC.47.10.3202-3207.2003

Song, H., Hwang, J., Y.-H., Ulrich, R. L., Yu, Y., Nierman, W. C., et al. (2010). The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog. 6:e1000922. doi: 10.1371/journal.ppat.1000922

Tegos, G. P., Haynes, M. K., and Schweizer, H. P. (2012). Dissecting novel virulent determinants in the Burkholderia cepacia complex. Virulence 3, 234–237. doi: 10.4161/viru.19844

Teng, M., Hilgers, M. T., Cunningham, M. L., Borchardt, A., Locke, J. B., Abraham, S., et al. (2013). Identification of bacteria-selective threonyl-tRNA synthetase substrate inhibitors by structure-based design. J. Med. Chem. 56, 1748–1760. doi: 10.1021/jm301756m

Tian, Z. X., Mac Aogain, M., O’Connor, H. F., Fargier, E., Mooij, M. J., Adams, C., et al. (2009). MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb. Pathog. 47, 237–241. doi: 10.1016/j.micpath.2009.08.003

Truckenbrod, S. P., Tsai, W. C., Liang, C. Y., Lin, Y. S., Huang, J. W., Chang, C. Y., et al. (2014). The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity. PLoS ONE 9:e104986. doi: 10.1371/journal.pone.0104986