Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus

Alija Bajro Mujic,*1 Alan Kuo,† Andrew Tritt,† Anna Lipzen,† Cindy Chen,† Jenifer Johnson,† Aditi Sharma,† Kerrie Barry,† Igor V. Grigoriev,† and Joseph W. Spatafora*

*Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 and †Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458

ABSTRACT Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)—the first genomes available for Basidiomycota truffles—and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus. Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.

KEYWORDS fungal mating pheromone isoprenylcysteine carboxyl methyltransferase Boletales ectomycorrhizae truffle Genetics of Sex
(Heitman et al. 2013), except for primary homothallic (completely self-compatible). There are currently no ECM fungal species demonstrated to possess a primary homothallic breeding system with the possible exception of Sistotrema brinknaniit (Ullrich and Raper 1975; Moncalvo et al. 2006).

The recent development of next generation sequencing technologies has allowed for novel approaches to the study of fungal genetics (Martin et al. 2011). To date, only ECM Agaricomycetes to have its mating type (MAT) loci characterized with these techniques is the heterothallic tetrapolar mushroom *L. bicolor* (Niculita-Hirzel et al. 2008). In this study, we leverage these technologies to investigate the breeding systems of the ECM Agaricomycetes *Rhizopogon vinicolor* and *R. vesiculosus* (Basidiomycota, Boletales), which have been the focus of population genetics and ecology studies (Kretzer et al. 2003, 2005; Beller et al. 2010, 2012; Dunham et al. 2013; Mujic et al. 2016). Species of *Rhizopogon* produce hypogeous fruiting bodies, also called false truffles, which achieve spore dispersal when they are excavated and consumed by mammals (Maser et al. 1978; Maser and Maser 1988). It is likely that most *Rhizopogon* species possess a heterothallic breeding system because *R. roseolus*—the only *Rhizopogon* species with a known breeding system—is known to be heterothallic bipolar (Kawai et al. 2008). *R. vinicolor* and *R. vesiculosus* are sister species that share a sympatric distribution in the Pacific Northwest of North America, and grow in association with only a single ECM host species: *Pseudotsuga menziesii* (Douglas fir) (Molina and Trappe 1994). When co-occurring in a stand of *Pseudotsuga*, they can often be detected in near equal frequencies as both ECM root tips and fruiting bodies (Kretzer et al. 2003, 2005; Dunham et al. 2013). Despite similarities, these species display different life histories and population structures. *R. vesiculosus* produces larger genets on average (Kretzer et al. 2003, 2005; Beller et al. 2012; Dunham et al. 2013), producing more and larger sporocarps per genet than *R. vinicolor*, and shows patterns of inbreeding within a range of 120 meters (Dunham et al. 2013). Effects of localized inbreeding are observable at the landscape scale, with populations of *R. vesiculosus* showing increased levels of population differentiation over shorter distances than those of *R. vinicolor* (Kretzer et al. 2005).

Several hypotheses have been proposed to explain the patterns of population structure observed in *R. vinicolor* and *R. vesiculosus*. Differential rates of secondary homothallism, i.e., the production of heterokaryotic binucleate basidiospores, is one possible explanation. However, both species produce binucleate spores at near equal and relatively low rates (1–2%) (Dunham et al. 2013), which are typical of outcrossing ECM Agaricomycetes (Horton 2006). It is possible that *R. vesiculosus* is more likely to mate with close relatives because of its larger genet size, and higher production of sporocarps per genet (Dunham et al. 2013), or that *R. vinicolor* is under selective pressure from interspecies competition with *R. vesiculosus* to outcross more readily (Mujic et al. 2016). However, without further knowledge of the breeding system and the number of MAT alleles operating in these two fungi, we cannot conclusively determine the source of observed population structure in their natural populations.

Here, we report the first published genome sequences of truffle-forming Basidiomycota, *R. vinicolor* and *R. vesiculosus*, with particular emphasis upon the gene content and synteny of the regions surrounding their MAT loci. Sequencing and analysis of these genomes was performed with the intention of testing two hypotheses: (1) the differential population structure of *R. vinicolor* and *R. vesiculosus* is correlated with differences in the genetic content and organization of MAT loci. (2) Decreased heterozygosity resulting from localized inbreeding in *R. vesiculosus* is detectable as a reduced rate of nonsynonymous SNP mutation in dikaryotic genome assemblies. In order to test these hypotheses, we have produced detailed maps of gene content and organization surrounding the A-locus homeodomain transcription factor *(HD)* genes and B-locus lipopeptide pheromone precursor and pheromone receptor genes (we refer to precursor and receptor genes collectively as P/R) typical of the MAT loci in the Agaricomycetes. We have also developed a novel analytical pipeline to characterize rates of SNP mutation within heterokaryotic genome assemblies. This pipeline utilizes inputs of predicted protein coding genes and SNP mutations determined from previously existing software to analyze the expected effect of SNPs upon the amino acid sequences of proteins. Here, we demonstrate this method as an effective means of characterizing the heterozygosity of genome assemblies generated from heterokaryotic samples.

MATERIALS AND METHODS

Culture conditions, tissue harvest, and nucleic acid extraction

Tissue cultures of *R. vinicolor* and *R. vesiculosus* were derived from fresh sporocarps collected during the summer of 2011 from a field site located on Mary’s Peak in the Oregon Coast Range. Coordinates and ecological properties of this site are detailed in Dunham et al. (2013). Each sporocarp was cleaned of adhering debris using a damp cloth, and divided into two hemispheres using a flame sterilized scalpel. Small sections (1 mm3) of clean dikaryotic tissue from the internal basidiospore bearing region (gleba) were then transferred using sterile technique to 60 mm Petri dishes of modified Melin-Norkrans media (MMN) (Kennedy et al. 2011), and incubated at 25° until growth was observed. Successful tissue cultures were screened for healthy growth, and a single culture of both *R. vinicolor* and *R. vesiculosus* was selected for genome sequencing. The sporocarps used to derive these cultures were accessioned into the fungal herbarium collections of Oregon State University (OSU) under the accession numbers OSC # 147973 (*R. vinicolor*, AM-OR11-026) and OSC # 148003 (*R. vesiculosus*, AM-OR11-056). Tissue was grown for DNA extraction using a single growth medium for each species, and tissue was grown for RNA extraction using four separate growth media for each species to maximize the diversity of RNA transcripts harvested. Full details of culture conditions, growth media, and nucleic acid extraction can be found in Supplemental Material, File S1. DNA extractions were quantified using a Qubit fluorometer (Life Technologies, Grand Island, NY), and multiple extracts of each isolate were combined and precipitated with 95% ethanol to produce a single concentrated DNA solution for genome sequencing. RNA extractions were quantified using a Qubit fluorometer, and quality was accessed using a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE). RNA extractions from each of the four growth conditions were combined in equal proportions for each isolate to create a single pooled RNA extraction for transcriptome sequencing.

Genome sequencing and assembly

Full details of genomic and transcriptomic library construction can be found in File S1. Illumina library construction, sequencing, and annotation of the *R. vinicolor* genome and transcriptome were conducted at the United States Department of Energy Joint Genome Institute (DOE-JGI) (Walnut Creek, CA). The *R. vinicolor* genome and transcriptome libraries were multiplexed with other sequencing projects into pools of two libraries, and each pooled set was sequenced on a single lane of an Illumina HiSeq2000 sequencer flowcell at the DOE-JGI using a TruSeq SBS sequencing kits, v3, following a 2 × 150 indexed run recipe. Genome reads were QC filtered for artifact/process contamination and subsequently assembled together with Velvet (Zerbino and Birney 2008). The resulting assembly was used to simulate a long mate-pair
library with insert 3000 ± 300 bp, which was then assembled together with the original Illumina library with AllPathsLG (Gnerre et al. 2011). RNA-seq data were used as input for de novo assembly of RNA contigs. Reads were assembled into consensus sequences using Rnnotator (Martin et al. 2010). Both inputs were used to annotate genomes with the DOE-JGI Annotation pipeline, and release data in the DOE-JGI fungal genome portal MycoCosm (http://jgi.doe.gov/fungi; Grigoriev et al. 2014).

Illumina library construction, sequencing, assembly, and annotation of the R. vesiculosus genome and transcriptome were performed at OSU. Illumina sequencing of R. vesiculosus libraries was performed on an Illumina HiSeq 2000 at the OSU Central Services Laboratory (CSL) in the Center for Genome Research and Biocomputing (CGRB). The genomic DNA library was sequenced on a full flow cell lane using a 2 × 100 bp cycle, and Illumina version 2 chemistry. The RNAseq library was sequenced on 1/8 of a flowcell lane using a 1 × 50 bp cycle and Illumina version 3 chemistry. Raw Illumina reads were trimmed and quality filtered using the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and custom Perl scripts. De novo genome assembly of DNA reads was performed using VELVET (Zerbino and Birney 2008), and de novo transcriptome assembly was performed using TRINITY (Grabherr et al. 2011). Gene annotation of R. vesiculosus was performed using the MAKER pipeline (Cantarel et al. 2008) with R. vesiculosus transcriptome data and reference EST and protein homology data downloaded from the DOE-JGI MycoCosm portal for four closely related members of order Boletales (R. vinicolor, Boletus edulis, Suillus brevipes, and Su. luteus).

Synteny analyses

To determine the organization of genomic regions containing the A-locus HD and B-locus P/R genes of R. vinicolor and R. vesiculosus, we used a multistep reference-guided approach. First, we identified contigs in the genome assemblies of R. vinicolor and R. vesiculosus that contained genes with predicted MAT function. Genes of known MAT function in other fungi were used as queries in BLASTP searches of custom BLAST databases of R. vinicolor and R. vesiculosus predicted gene models. The A-locus HD genes of Agaricomycetes are consistently found in close proximity to the gene encoding the mitochondrial intermediate peptidase (MIP) protein (James et al. 2013). The reference sequences used as queries in A-locus protein BLAST searches were the HD genes of R. roseolus (GenBank accession #: BAL45602, BAL45603) and MIP gene of Suillus pictus (GenBank accession #: AJ179596). B-locus P/R genes of Agaricomycetes are typically found in close association with one another as functional “cassettes” containing a pheromone receptor and one or more pheromone precursors (Casselton and Olesnicky 1998; Brown and Casselton 2001). B-locus protein BLAST searches used pheromone receptor genes of Coprinopsis cinerea (GenBank accession #: AAO17256) and Serpula lacrymans (GenBank accession #: EGO31061), which are known to function in mating recognition (Stajich et al. 2010; Skrede et al. 2013) as well as a pheromone precursor gene of C. cinerea (C. cinerea phb3.2, Stajich et al. 2010).

We characterized the gene content and arrangement of R. vinicolor and R. vesiculosus assembly contigs that contained the A-locus HD genes with the MIP gene flanking their position as well as contigs containing P/R gene cassettes. All of the genes identified on these contigs were used as queries in BLAST searches to identify homologous genomic regions in reference fungal genomes available on the DOE-JGI MycoCosm. Homologous proteins were identified in reference genomes as the top BLAST hit to Rhizopogon proteins with e-values ≥ 1e−20. Sequence composition of pheromone precursor genes is highly divergent within and between taxa, and, while the transmembrane domains of pheromone receptor genes are relatively conserved in Agaricomycetes, not all fungal species contain homologs of the same pheromone receptor genes (James et al. 2006, 2013; Kües 2015). Thus, we used the VISTA synteny browser available through the DOE-JGI MycoCosm to perform visual inspection of gene annotations in the putative MAT regions identified by BLAST searches, and performed additional BLAST searches of candidate protein sequences from the B-locus regions of R. vesiculosus. We did not readily identify pheromone precursor genes in Rhizopogon genomes or in reference genomes using BLAST searches. DOE-JGI genome annotation included automatic PFAM domain searches that identified most fungal mating pheromone domains, but nearly all pheromone precursor genes were absent from DOE-JGI predicted gene models. To resolve pheromone precursor gene boundaries, we designed a custom Perl script (pheromone_seeker.pl, File S2) that uses regular expression pattern matching to search for open reading frames containing the terminal −CAAX prenylation motifs (C = Cysteine residue, A = any aliphatic residue, X = any amino acid residue) that are typical of fungal B-locus pheromone precursor genes (Caldwell et al. 1995; Casselton and Olesnicky 1998). The gene content of MAT gene containing regions identified in reference genomes were visually inspected to confirm conserved gene synteny with the A and B MAT regions identified in Rhizopogon genomes.

Published reference genomes were chosen from both bipolar and tetrapolar species and covered as much taxonomic breadth within
Agaricomycetes as possible while still retaining enough genomic synteny to allow for alignment. For the A-locus region, we chose reference genomes from *Su. luteus* (Boletales:Suillaceae, DOE-JGI taxon ID: Suil1, Kohler et al. 2015), *S. lacrymans* (Boletales:Serpulaceae, DOE-JGI taxon ID: SerlaS7_9_2, Eastwood et al. 2011), *L. bicolor* (Agaricales: Hydnangiaceae, DOE-JGI taxon ID: Lachi2, Martin et al. 2008; Niculita-Hirzel et al. 2008), *C. cinerea* (Agaricales:Psathyrellaceae, DOE-JGI taxon ID: Copc1, Stajich et al. 2010), and *Phanerochaete chrysosporium* (Polyporales:Phanerochaetaceae, DOE-JGI taxon ID: Phchr2, Ohm et al. 2014; Niculita-Hirzel et al. 2008) that are available for download and review in the DOE-JGI MycoCosm. Reference genomes for the B-locus region were the same as those chosen for the A-locus, with the exclusion of *P. chrysosporium* and the addition of *Paxillus involutus* (Boletales:Paxillaceae, DOE-JGI taxon ID: Paxin1, Kohler et al. 2015), *Su. brevipes* (Boletales:Suillaceae, DOE-JGI taxon ID: Suib1, Branco et al. 2015), *Su. granulatus* (Boletales:Suillaceae, DOE-JGI taxon ID: Suig1, unpublished and used by permission of author), *Rhizopogon salebrosus* (Boletales:Suillaceae, DOE-JGI taxon ID: Rsis1, unpublished and used by permission of author), *Rhizopogon sulcatus* (Boletales:Suillaceae, DOE-JGI taxon ID: Rscu1, unpublished and used by permission of author), *Rhizopogon tinctorius* (Boletales:Sclerodermataceae, DOE-JGI taxon ID: Pisi1, Kohler et al. 2015), *Pisolithus microcarpus* (Boletales:Sclerodermataceae, DOE-JGI taxon ID: Pism1, Kohler et al. 2015), and *Coniophora puteana* (Boletales: Coniophoraceae, DOE-JGI taxon ID: Conp1, Floudas et al. 2012). For annotation of the region surrounding the A-locus, a reference region of ~400 kb centered on the HD genes was chosen from the genome assembly of *S. lacrymans*. All predicted proteins falling within this region were identified and used as BLAST queries against the *Rhizopogon* genomes and reference genomes. Mapping of gene coordinates and compilation of protein sequences was performed manually, or with the use of custom Perl scripts (protein_coordinates.pl, protein_select_by_contig.pl, select_by_contig_region.pl, File S3, File S4, and File S5). Reference based annotation of the region surrounding the B-locus in *Rhizopogon* genomes was performed upon a region of ~80 kb centered around reference P/R genes in *S. lacrymans*. To enhance the clarity of Figure 3 Su. granulatus and *P. tinctorius* genomes were omitted from B-locus synteny analyses because *Su. lacrymans* was nearly identical to selected genomes of *Suillus* and *P. tinctorius* was divergent in gene content in regions surrounding P/R genes. *Rhizopogon* genomes sequenced in this study and some of the reference genomes were fragmented into several contigs in the areas surrounding the MAT A and B loci. We conducted genomic alignments of putative MAT A and B locus regions using MAUVE (Darling et al. 2004) to facilitate the reconstruction of fragmented genomes, and final synteny maps were visualized using CHROMOMAPPER (Niculita-Hirzel and Hirzel 2008). The nucleotide sequences of *MAT* genes identified from *R. vinicolor* and *R. vesiculosus* genomes were extracted from contigs using custom Perl scripts (protein_coordinates.pl, select_by_contig_region.pl, File S3 and File S4). These sequences were used in additional BLAST searches of the *R. vinicolor* and *R. vesiculosus* genomes to locate additional MAT gene alleles that may have assembled on contigs separate from the main MAT loci.

Phylogenetic analyses

To confirm the homology of pheromone receptor homologs, we conducted phylogenetic analysis of all putative B-locus pheromone receptor genes identified in this study along with several reference sequences of pheromone receptor genes known to function in mating recognition in Agaricomycetes. Alignment of raw amino acid sequence was performed using MUSCLE with default settings (Edgar 2004), and the variable C terminal regions of these proteins were trimmed from alignments. Phylogenetic analysis was conducted using the maximum likelihood algorithm implemented in RAxML 7.2.6 with the PROTGAMMAGTR model of evolution, and 1000 bootstrap replicates (Stamatakis 2006). In the synteny analysis of the region surrounding the B-locus, we discovered several homologs of genes encoding putative isoprenyl cysteine methyltransferase (ICMT) proteins—a family of proteins that function in post-translational modification of pheromone precursor genes (Caldwell et al. 1995). The copy number and placement of these ICMT genes within Boletales genomes was correlated with breeding system, but orthology of these genes was unclear. To clarify this relationship a phylogenetic analysis was conducted upon an ICMT gene homolog amino acid alignment using the methods outlined above.

Heterozygosity

The genomes of *R. vinicolor* and *R. vesiculosus* were sequenced using DNA extracted from dikaryotic tissue, and heterozygosity in the form of indels and single nucleotide polymorphisms (SNP) were visible in the assembly pile-up file generated by VELVET. SNPs were identified by creating alignments of trimmed and quality filtered Illumina reads to the consensus sequence of the de novo assemblies using BOWTIE2 (Langmead and Salzberg 2012). Pileup files were generated from BOWTIE2 alignments using SAMtools (Li et al. 2009), and final SNP calls were performed using VARSSCAN2 (Koboldt et al. 2012). SNPs were predicted by VARSSCAN2 under default settings, with the exception of a threshold P-value cutoff of 1×10⁻⁴. The rate of synonymous vs. nonsynonymous mutations in each genome was determined using a custom Perl script (SNP_Density_calc.pl, File S6). Similar methods estimating heterozygosity from haplotypic SNPs in a diploid assembly have been applied to *Candida albicans* (Jones et al. 2004), human (Venter et al. 2001), and *Anopheles* (Holt et al. 2002) genome assemblies. Our script streamlines this analysis by utilizing output from existing software packages, and quantifies genome-scale heterozygosity by characterizing SNP distribution and the rate of nonsynonymous mutation between haplotypes of a single fungal individual. This script is applicable to any polyploid assembly for which gene models are available in AUGUSTUS (Stanke et al. 2008), MAKER, or DOE-JGI .gff3 file format.

Table 2 Summary of SNP mutations identified between the haplotypes of dikaryotic *Rhizopogon* genome assemblies

	R. vinicolor	*R. vesiculosus*
Total SNPs	483,084	439,805
Percent of genome in SNPs	1.30%	1.00%
SNPs in intergenic regions	402,084/83.2%	395,390/89.9%
SNPs in genic regions	81,000/16.8%	44,415/10.1%
SNPs in exons	54,064/11.2%	29,580/6.7%
Synonymous exonic SNPs	24,694/5.1%	15,058/3.4%
Nonsynonymous exonic SNPs	29,370/6.1%	14,522/3.3%

Percent value for SNPs in rows 3–7 denote the percent represented by the row of all SNP mutations identified within a genome.
Figure 1. Synteny map for the highly conserved ~130 kbp region surrounding the genes for the A-locus HD proteins of both *R. vinicolor* and *R. vesiculosus* and reference genomes. Each gene is represented by an arrow showing the direction of transcription. Gene color follows a heat map from yellow (gene represented in one genome) to red (gene represented in all genomes). HD1 genes are highlighted in blue and HD2 genes are highlighted in green. Gene acronyms are in reference to James et al. (2004b). The bottom scale is in nucleotide basepairs. For clarity, only genes present in *Rhizopogon* and *Suillus* genomes are shown in other genomes.

Data availability

The *Rhizopogon* tissue cultures sequenced in this study are accessioned in the Center for Forest Mycology Research (CFMR) culture collection (US Forest Service, Madison, WI) under the numbers AM-OR11-026 (*R. vinicolor*) and AM-OR11-056 (*R. vesiculosus*). The genome assemblies and gene annotations for the *R. vesiculosus* and *R. vinicolor* draft genomes are available through the National Center for Biotechnology Information (NCBI) GenBank under accession numbers LVVM00000000. Both genomes are available through the DOE-JGI Mycocosm portal (http://jgi.doe.gov/fungi). The assembled genomes of *R. vinicolor* and *R. vesiculosus* are highlighted in green. The genome assemblies are available in the Center for Forest Mycology Research (CFMR) culture collection in the Center for Forest Mycology Research (CFMR) culture collection (US Forest Service, Madison, WI) under the numbers AM-OR11-026 (*R. vinicolor*) and AM-OR11-056 (*R. vesiculosus*). The genome assemblies and gene annotations for the *R. vesiculosus* and *R. vinicolor* draft genomes are available through the National Center for Biotechnology Information (NCBI) GenBank under accession numbers LVVM00000000 (*R. vesiculosus*) and LYZ20000000 (*R. vinicolor*). Both genomes are available through the DOE-JGI Mycocosm portal (http://jgi.doe.gov/fungi). Amino acid alignment files and tree files are available at Treebase (http://treebase.org) under the study ID TB2:S19165. File S1 contains detailed methods for tissue culture conditions, nucleic acid extractions, and genome sequencing and assembly. All Perl scripts written as a part of this study are available in File S2, File S3, File S4, File S5, and File S6. File S7 contains coordinates of all A-locus and B-locus regions gene models identified from all genomes examined in this study. File S8 contains captions for all supplementary files. Table S1 contains coordinates predicted gene models, as well as BLAST hits to the nucleotide sequences of B-locus region gene models that are present together on small contigs unlinked to the primary B-locus contigs in *R. vinicolor* and *R. vesiculosus* genomes. The data presented in this supplementary table likely represent partially assembled alleles of B-locus region genes.

RESULTS AND DISCUSSION

Genome assembly statistics

The assembled genomes of *R. vinicolor* and *R. vesiculosus* were 36.1 and 42.2 Mbp, respectively, with the *R. vinicolor* assembly possessing the higher average genome coverage, and a lower degree of fragmentation (Table 1). The assembly of *R. vesiculosus* was 6.1 Mbp larger than that of *R. vinicolor*, with much of this additional genome size accounted for by intergenic regions of the assembly. Both assemblies contained a high proportion of sequence data within predicted protein coding regions with 23.1 Mbp (63.9%) of the *R. vinicolor* genome and 20.6 Mbp (48.9%) of the *R. vesiculosus* genome within the boundaries of predicted exons or introns. Table 1 presents a comparison of genome assembly statistics. We quantified genome assembly completeness using the default benchmarking algorithm implemented in CEGMA (Parra et al. 2007). Results of CEGMA benchmarking were similar between the two assemblies, with *R. vinicolor* possessing 235 complete CEGs (94.76% completeness), and *R. vesiculosus* possessing 236 complete CEGs (95.16% completeness).

Repeatmasker (http://repeatmasker.org) was used as a component of the MAKER annotation pipeline to identify repetitive elements in *R. vesiculosus*, and found 14,632 elements totaling 3.44 Mbp in length (8.1% of genome length). Repetitive elements were identified in *R. vinicolor* using the DOE-JGI annotation pipeline and 3253 elements totaling 0.96 Mbp in length (2.7% of genome length) were found in *R. vinicolor*. The majority of repetitive elements in both species were contained within the intergenic areas of the assembly with 12,683 elements totaling 3.16 Mbp (14.8% of the intergenic region of assembly) in *R. vesiculosus* and 2106 elements totaling 0.78 Mbp in length (6% of the intergenic region of assembly) in *R. vinicolor*. A greater percent content of repetitive elements in the *R. vesiculosus* assembly explains, in part, the greater length of this assembly. The two assemblies differ in length primarily with respect to the length of the assembled intergenic regions (*R. vinicolor* 13 Mbp vs. *R. vesiculosus* 21.6 Mbp) with genomic regions similar in length (*R. vinicolor* 23.1 Mbp vs. *R. vesiculosus* 20.6 Mbp).

Heterozygosity within dikaryons

We utilized the presence of SNPs in assemblies as a means of measuring heterozygosity in each dikaryotic individual. A reduced rate of
Figure 2 Synteny map for the region surrounding the genes for the A-locus HD proteins of *R. vinicolor* and *R. vesiculosus* and reference genomes. Each gene is represented by an arrow showing the direction of transcription. Gene color follows a heat map from yellow (gene represented in one genome) to red (gene represented in all genomes). Contig breaks for *R. vinicolor*, *R. vesiculosus*, and *Su. luteus* are shown as vertical black bars. Contigs were assembled into the scaffolds shown here based upon synteny with the genome of the closest relative that lacked a break at the same location. The genes encoding HD1 proteins are marked in blue, and the genes encoding HD2 proteins are marked in green. The phylogenetic relationships shown at the left of the figure are adapted from Hibbett (2006). Note that the gaps depicted by the stars and diamond are not drawn to scale. (A) Highlighted synteny of the conserved region shown in Figure 1, as well as the area at the far 3' end of the characterized region. (B) Highlighted synteny of the region 3' of the genes encoding HD proteins in Boletales and Polyporales genomes that is translocated to the 5' side of the genes encoding HD proteins in Agaricales genomes. Note that this region is inverted in *S. lacrymans* relative to other genomes.
Figure 3 Synteny map for B-locus region surrounding the pheromone precursor and pheromone receptor genes identified in R. vinicolor, R. vesiculosus, R. salebrosus, Su. luteus, Su. brevipes, Pisolithus microcarpus, P. involutus, C. puteana, S. lacrymans, L. bicolor, and C. cinerea. The genome assembly present in genic regions. Note that the gaps depicted are not drawn to scale. The bottom scale is in nucleotide basepairs. The Cladogram depicting species relationships is adapted from phylogenies published by Kohler et al. (2015) and Binder and Hibbett (2006). Cladogram labels: (A) Agaricales, (B) Boletales.

It is expected that heterozygosity between dikaryotic nuclei (haplotypes) should be most evident in nonconserved intergenic regions, or in genes that are expected to have highly divergent alleles, such as the MAT loci. Genome assembly in such variable regions of dikaryotic genome assemblies is methodologically challenging, and divergent regions can be assembled as a single haplotype, a consensus sequence combining sequences of both haplotypes, broken into multiple contigs where the divergent haplotypes terminate the ends of two contigs, or fail to assemble altogether (Jones et al. 2004). The genome assembly of R. vesiculosus is 6.1 Mbp larger than that of R. vinicolor, and, although the number of predicted gene models is similar between these assemblies, the percentage of the R. vinicolor assembly present in genic regions (63.9%) is greater than in the R. vesiculosus assembly (48.9%). This suggests that we have assembled a greater proportion of the intergenic genome regions of R. vesiculosus than we have in R. vinicolor. The reduced assembly of R. vinicolor in intergenic regions would be consistent with a higher rate of heterozygosity within this individual, which may have caused assembly failure of intergenic regions. A more complete assembly of noncoding regions in R. vesiculosus is likely due to reduced overall heterozygosity, and is not surprising, given that the individual sequenced in this study was drawn from a population that shows signs of inbreeding (Dunham et al. 2013).

Gene content and syntenyny of the A-locus
All of the genomes examined possessed a single, divergently transcribed, pair of HD genes, except for C. cinerea, which possessed two pairs of divergently transcribed HD genes, and one additional HD1 gene in
close proximity (Figure 1, Stajich et al. 2010). The A-locus regions of \textit{R. vinicolor}, \textit{R. vesiculosus}, and \textit{Su. luteus} were assembled as multiple contigs, and were arranged into putative scaffolds here based upon MAUVE alignments with contiguous assemblies of homologous regions in other genomes (Figure 2; a complete listing of all genes identified from A-locus regions can be found in File S7). No additional alleles of HD genes were found assembled on any contigs separate from the primary MAT A region contigs. However, the 5’ and 3’ regions of the \textit{R. vesiculosus} HD2 gene are broken into two partial gene models at the ends of two contigs (Figure 2 and File S7). It is likely that these partial gene models represent partial assemblies of HD2 alleles, and that the assembly of a complete allele failed due to highly divergent sequences between alleles at the region of the contig break.

Our analyses showed a high level of gene conservation between the Rhizopogon genomes and reference genomes for a 400 kbp region containing the genes encoding HD proteins. The genomic region beginning at \textasciitilde100 kbp 5’ and extending to 30 kbp 3’ of the genes encoding HD proteins in both Rhizopogon species shows the highest level of gene conservation and synteny with homologous regions of all reference genomes (Figure 1), as observed in other Agaricomycetes (James et al. 2004b, 2006, 2013; Niculita-Hirzel et al. 2008). The genes for the HD proteins in both Rhizopogon genomes are flanked 5’ by the gene encoding the MIP protein, and 3’ by the gene encoding the beta-flanking (\textit{beta-fg}) protein; a gene organization that is consistent for nearly all characterized Agaricomycetes (James et al. 2004a, 2013; James 2007; Kües et al. 2011) with limited exceptions (Skrede et al. 2013; Ohm et al. 2010; Van Peer et al. 2011; Kües et al. 2015).

The genomic region beginning 35 kbp 3’ of the genes for the HD proteins in both Rhizopogon species contains several blocks of genes that are conserved in reference genomes, but possess a translocated and/or inverse orientation relative to Rhizopogon species. This block of translocated genes possesses conserved synteny within the gene cluster, and shares a common point of recombination \textasciitilde100 kbp 3’ of the genes for the HD proteins in Rhizopogon species (Figure 2). A greater degree of synteny is shared by Rhizopogon species, \textit{Suillus} species, and \textit{P. chrysosporium} in this region as compared to the Agaricales reference genomes \textit{L. bicolor} and \textit{C. cinerea}. In Agaricales reference genomes, a 120 kbp region beginning at this point is translocated \textasciitilde300 kb to the 5’ side of the genes encoding the HD proteins, with several inversions of gene blocks within this translocation. In addition to translocations in \textit{C. cinerea} and \textit{L. bicolor}, we also noted a major inversion in this neighboring region of the A-locus in \textit{S. lacrymans} relative to other genomes examined. Inversions and translocations near the A-locus have previously been observed within order Agaricales for both \textit{Flammulina velutipes} and \textit{Schizophyllum commune} relative to an ancestral arrangement in \textit{L. bicolor} and \textit{C. cinerea} (Van Peer et al. 2011). Given our findings, and those of Van Peer et al. (2011), it seems likely that gene rearrangements are common in Agaricomycetes fungi in the regions adjacent to the A-locus. Our findings indicate that \textit{L. bicolor} and \textit{C. cinerea} possess a derived gene arrangement surrounding the A-locus relative to the Polyporales and Boletales species examined in this study. The evolutionary forces favoring gene rearrangements in the areas surrounding A-locus HD genes are unclear. However, strong balancing selection is known to function in the HD genes of \textit{C. cinerea} (May et al. 1999), and it is possible that recombination near the HD genes may function to break linkage of surrounding regions with the HD genes.

Gene content and synteny of the B-locus

All genomes examined possess a B-locus region containing pheromone receptor genes in close proximity to pheromone precursor genes. Synteny between the B-locus regions is somewhat conserved at the ordinal level, with most species showing at least some synteny of P/R and nonmating type genes with other members of their order (Figure 3; a complete listing of the gene content from all B-locus regions examined can be found in File S7). The major exceptions are \textit{P. involutus}, which shows low synteny with other Boletales genomes surrounding the P/R genes, \textit{C. puteana}, which possesses a major inversion of the region 3’ of P/R genes, and \textit{P. tinctorius} (File S7), which possesses two B-locus subloci that map to separate contigs. There was only limited synteny observed in the region of the B-locus between orders. This is consistent with previous studies of B-locus synteny, which found low levels of synteny between Agaricales and Polyporales species, as well as distantly
Table 3: Boletales genomes examined at the B-locus region

Species	Number of Contigs	Karyotic State of Genomic DNA	Source Genome Reference
Rhizopogon vesiculosus	2	Dikaryotic	This study
Rhizopogon vinicolor	2	Dikaryotic	This study
Rhizopogon salebrosus	1	Dikaryotic	This study
Suillus brevipes	2	Bipolar (Fries and Neumann 1990)	Fries and Neumann 1990
Suillus luteus	2	Bipolar (Ainsworth and Rayner 1990)	Ainsworth and Rayner 1990
Coniophora puteana	1	Monokaryotic	Fries and Neumann 1990
Phallus tuberinus	1	Monokaryotic	S. commune (Van Peer et al. 2011)
Paxillus involutus	1	Tetrapolar (Fries and Neumann 1990)	Fries and Neumann 1990
Pisolithus tinctorius	1	Tetrapolar (Kope and Forin 1990)	Kope and Forin 1990
Serpula lacrymans	1	Tetrapolar (Floudas et al. 2012)	Floudas et al. 2012

The B-locus regions of R. vesiculosus, R. vinicolor, and P. involutus were assembled as multiple unlinked contigs, and were arranged into putative scaffolds by the same methods used for A-locus regions (Figure 3, File S7, and Table 3). It is possible the P/R genes identified at the ends of putatively adjacent R. vinicolor contigs (pheromone receptors RsSTE3.3_2 and RsSTE3.4_2, and associated pheromone precursors) represent separately assembled alleles of the same P/R cassette rather than unique genes. Though RsSTE3.3_2 and RsSTE3.4_2 are inferred to be members of separate phylogenetic clades that both contain genes of known mating function (Figure 5), this is not evidence that they represent unique genes, because alleles of pheromone receptor genes from the same genomic location in both S. commune (Van Peer et al. 2011) and C. cinerea (Kües 2015) have been demonstrated to group in disparate phylogenetic clades. However, we believe that RsSTE3.3_2 and RsSTE3.4_2 represent unique genes due to syntenic arrangement of nonmating type genes in the region surrounding the B-locus of R. vesiculosus and R. vinicolor.

Many of the pheromone precursor genes identified in this study were not initially recognized by either the DOE-JGI or MAKER gene annotation pipelines, and ~50% of the pheromone precursor genes discussed here were identified only by the use of our custom Perl pattern matching script, which searched for open reading frames with terminal -CAAX motifs. However, all the pheromone precursor genes identified in DOE-JGI and MAKER annotation pipelines were also identified by our Perl script. The pheromone precursor genes identified in Rhizopogon genomes contain both –CAAX and two residue “ER” motifs 10–15 residues 5’ of the –CAAX motif (Table 4) that support their role in mating recognition (Riquelme et al. 2005, Kües 2015). The –CAAX motif of fungal pheromone precursor genes is known to flag peptides for isoprenyl modification and the prenyl moiety incorporated into the modified protein is strongly influenced by the final “X” residue of the –CAAX motif (Caldwell et al. 1995). The pheromone precursor genes identified from Rhizopogon species are all terminated by residues that target them for farnesylation (Table 4, Caldwell et al. 1995), consistent with findings for other characterized fungal pheromones (Casselton and Olesnicky 1998; Brown and Casselton 2001; Michaelis and Barrowman 2012). We created custom BLAST databases of assembled Rhizopogon transcriptome data, and found that all putative pheromone precursor genes from R. vinicolor and R. vesiculosus were present in the population of transcripts, with the exception of phb3.3 in R. vesiculosus and phb2.1 in R. vinicolor.

All Boletales genomes, except Pisolithus species, possessed an ICMT homolog immediately 3’ of the B-locus. ICMT is a family of proteins responsible for activation of pheromone mating function by the addition of a methyl group to the C terminal cysteine of mature fungal mating pheromones (Caldwell et al. 1995). ICMT is represented by a single copy immediately 3’ of the P/R genes in R. vesiculosus, R. salebrosus, Su. brevipes,
and the bipolar Boletales reference genomes, *Su. luteus*, *Su. granulatus*, and *C. puteana*. *C. puteana* possesses an additional two ICMT genes near the B-locus, but they are located 130 kbp downstream of the B-locus region in association with an inverted and translocated gene cluster typically found in close proximity to the B-locus in other Boletales genomes. *R. vinicolor* possesses two copies of ICMT genes near the B-locus and contains only genes that are typically associated with the B-locus region in other Boletales references (Figure 3).

In *R. vinicolor*, the B-locus region is broken into separate contigs at the location of the ICMT pair, and each contig contains distinct alleles of ICMT genes (Figure 3 and File S7). This suggests that the assembly process terminated in this region due to the presence of divergent alleles between haplotypes—an assembly artifact previously observed in the diploid genome assembly of the yeast *Candida albicans* (Jones et al. 2004). BLAST searches of the *R. vinicolor* genome using the nucleotide sequence of the *R. vesiculosus* B-lobe as the query failed to identify any sequence homolgy to the ICMT genes.

Figure 5 Maximum likelihood phylogram of pheromone receptor genes inferred using RAxML with 1000 bootstrap replicates and the PROTGAMMAGTR model of evolution. Bootstrap support values >60% are shown. Pheromone receptor genes derived from non-Rhizopogon Boletales genomes compared in Figure 4 are color coded by species. *Rhizopogon* genes are color coded by species, and *R. vinicolor* and *R. vesiculosus* genes are further distinguished by dark blue and green arrows, respectively. Major groups of pheromone receptor genes as identified by James et al. (2004b), Riquelme et al. (2005), and Kües (2015) are here amended, and are denoted at the right margin. Black arrows mark genes of known mating function in *F. velutipes* (Van Peer et al. 2011), *L. bicolor* (Niculita-Hirzel et al. 2008), *S. lacrymans* (Skrede et al. 2013), *S. commune* (Ohm et al. 2010), and *C. cinerea* (O’Shea et al. 1998; Halsall et al. 2000; Riquelme et al. 2005; Stajich et al. 2010). Boletales taxa with known bipolar breeding systems are marked with stars, and those with known tetrapolar breeding systems are marked with diamonds.

and the bipolar Boletales reference genomes, *Su. luteus*, *Su. granulatus*, and *C. puteana*. *C. puteana* possesses an additional two ICMT genes near the B-locus, but they are located 130 kbp downstream of the B-locus region in association with an inverted and translocated gene cluster typically found in close proximity to the B-locus in other Boletales genomes. *R. vinicolor* possesses two copies of ICMT genes near the B-locus and contains only genes that are typically associated with the B-locus region in other Boletales references (Figure 3).

In *R. vinicolor*, the B-locus region is broken into separate contigs at the location of the ICMT pair, and each contig contains distinct alleles of ICMT genes (Figure 3 and File S7). This suggests that the assembly process terminated in this region due to the presence of divergent alleles between haplotypes—an assembly artifact previously observed in the diploid genome assembly of the yeast *Candida albicans* (Jones et al. 2004). BLAST searches of the *R. vinicolor* genome using the nucleotide sequence of the *R. vesiculosus* B-locus...
The predicted N terminal couplat of mature pheromones (acid ER domain) and the C terminal -CAAX motif are presented in underlined boldface for each sequence.

region ICMT gene (Rves056.07665) as query identified two partial ICMT alleles on small contigs of the R. vinicolor genome assembly (Table S1). One of these putative alleles is located within a DOE-JGI gene model with predicted ICMT function (DOE-JGI protein ID# 750934), but both contigs containing putative ICMT alleles lack gene models or BLAST hits matching any other B-locus region genes. Initial BLAST searches of both R. vinicolor and R. vesiculosus identified many genes throughout both genomes with predicted ICMT activity, and it is not possible to determine if these putative ICMT alleles on small contigs in R. vinicolor represent alleles of B-locus region ICMT genes or other ICMT genes unlinked to the B-locus.

BLAST searches utilizing nucleotide sequences of Rhizopogon B-locus region genes as queries revealed likely alleles of these genes assembled on small contigs unlinked to the B-locus region in both R. vinicolor and R. vesiculosus (Table S1). The genes RVSTE3.1 and RVUP28, which are found flanking one another in the B-locus regions of both R. vinicolor and R. vesiculosus (Figure 3 and File S7), produced BLAST hits adjacent to one another on small contigs separated from the B-locus of both R. vinicolor and R. vesiculosus. In R. vesiculosus these BLAST hits partially aligned to predicted gene models with the same relative transcriptional direction recorded for these genes on the primary B-locus contig. However, gene model predictions on this short contig (11.7 kbp) are truncated; producing no high quality BLAST matches to GenBank database proteins and only limited “nontcoplasmic” domain hits in Interproscan (https://www.ebi.ac.uk/interpro/). BLAST matches of RVSTE3.1 and RVUP28 alternate alleles in the genome assembly of R. vinicolor show similar concordance with expected transcriptional orientation, and the BLAST hit of RVSTE3.1 overlaps an existing gene model (DOE-JGI protein ID# 699818) with a “STE3 mating receptor” activity predicted by Interproscan. We identified a putative pheromone precursor gene on the same short R. vinicolor contig using our Perl pheromone pattern matching script. Additionally, a short contig (1.3 kbp) was identified from the R. vinicolor assembly that contained a high quality BLAST match to the transmembrane domains region of the RVSTE3.1 gene from R. vesiculosus (MAKER ID: Rves056.07660). This match falls within a truncated gene model with a PFAM predicted STE domain. It is possible that the regions on short contigs identified through BLAST searches for alternate alleles do represent true B-locus alleles of both R. vinicolor and R. vesiculosus. However, because of the truncated or otherwise low quality nature of the pheromone receptor gene models on these contigs, they were not included in phylogenetic or syntenic analyses.

Evolution of B-locus pheromone receptors and ICMT genes

Phylogenetic inference of the evolutionary relationships between pheromone receptor genes (Figure 5) indicate that both *Rhizopogon* species possess pheromone receptor genes belonging to two ancient MAT pheromone receptor clades (Figure 5: clades 1 and 2) shared among many Agaricomycetes (James et al. 2013; Kües 2015), as well as two later diverging subclades of clade 1 receptors (Figure 5) previously identified in *Pleurotus* species, *C. cinerea*, *Caprinopsis disseminata*, *F. velutipes*, and *Lentinula edodes* (James et al. 2004b, 2006; Riquelme et al. 2005; Van Peer et al. 2011; Wu et al. 2013). Based upon phylogenetic topology, and placement of genes of known mating function, we have further divided previously defined subclades of clade 1 into four total clades, with previously defined subclade 1 here represented by clades 1A, 1B, and 1C, and previously defined subclade 2 represented by clade 1D (Figure 5). *R. vinicolor* and *R. vesiculosus* both possess pheromone receptor homologs in both clades 1 and 2, and clade 1 subclades. However, *R. vinicolor* possesses two clade 2 pheromone receptors and four clade 1 pheromone receptors, whereas *R. vesiculosus* possesses one and three, respectively. Clade 1B is the only clade that lacks genes of known mating function (Figure 5), and it is likely that pheromone receptor homologs in this clade all lack mating function. Clade 1C possesses many Agaricales homologs of known mating function, as well as an *R. vinicolor* homolog, but lacks homologs from most of the Boletales fungi, most notably all bipolar Boletales and *R. vesiculosus*.

The three bipolar Boletales species also lacked homologs within other subclades of pheromone receptor gene clade 1, with *C. puteana* lacking homologs in subclades 1A and 1C, *Su. granulatus* in 1C and 1D, and *S. luteus* in all subclades inferred to possess mating-type function (subclades 1A, 1C, and 1D). *S. luteus* possesses two paralogs in pheromone receptor gene clade 2, though the tetrapolar species *P. involutus* and *S. lacrymans* also possess multiple paralogs in this clade (Figure 5). The B-locus of *S. brevipes* possesses near identical gene content and synteny with *S. luteus* (Figure 3 and Figure 5), lending support to a bipolar breeding system in *S. brevipes*. The tetrapolar Boletales possess homologs in all pheromone receptor clades inferred to have mating type function, as well as multiple paralogs within many pheromone receptor clades, with the exception of *S. lacrymans* and *Pisolithus*
species, which lack homologs in clade 1C. Overall, the pheromone receptor phylogeny of Figure 5 supports the reduced number of pheromone receptor homologs in *R. vesiculosus*, *R. salebrosus*, *Su. brevipes*, and the bipolar species as a result of a loss of pheromone receptor genes in these species, rather than an expansion in *R. vinicolor* and the tetrapolar species. An exception to this trend is seen in *P. tinctorius*, which appears to have an expanded set of clade 1D homologs.

We identified homologs of *ICMT* genes in close proximity to *B*-locus *P/R* genes in all Boletales genomes except *Pisolithus* species. While *ICMT* genes were not found near the *B*-locus of *Pisolithus* or Agaricales species, homologs of *ICMT* genes were identified from these genomes in other locations by performing BLAST searches with *R. vinicolor* *ICMT* genes as queries (Rhivil DOE-JGI protein ID#: 724114, 747032). The best characterized *ICMT* protein known to function in mating-type recognition is the product of the pheromone maturation factor *STE14* from *Saccharomyces cerevisiae* (Caldwell et al. 1995), and additional *ICMT* genes were identified from all genomes by performing BLAST searches with a sequence of *STE14* as query (GenBank Accession #: P32584). The amino acid sequences of top scoring BLAST hits were aligned with *Rhizopogon* *ICMT* genes, and results of phylogenetic analysis are presented as an unrooted phylogram in Figure 6.

Phylogenetic analysis reveals that the pairs of *B*-locus region *ICMT* genes in *R. vinicolor* as well as those in tetrapolar Boletales reference genomes all cluster taxonomically. This indicates that duplication of *B*-locus region *ICMT* genes may have occurred within species. While *C. puteana* lacks a second *ICMT* gene in immediate proximity to *P/R* genes it does possess additional *ICMT* duplicates 130 kb 3' of the *B*-locus region—a feature unique to this species. The single *ICMT* gene of *R. vesiculosus* (MAKER ID: 7665) groups with a pair of the *R. vinicolor* *ICMT* homologs identified upon a single contig (DOE-JGI protein ID#: 724114, 747032) (Figure 6). The pattern of *ICMT* duplication observed in these taxa is more consistent with a duplication of *ICMT* paralogs within taxa rather than a loss of *ICMT* genes in *R. vesiculosus*, *R. salebrosus*, and bipolar Boletales. All top BLAST hits to *STE14* were not in genetic proximity to the *B*-locus of their genomes. Figure 6 shows that *STE14* is grouped with 100% bootstrap support with all of its top BLAST hits from all genomes save for the hit identified from *C. puteana* (Conpu1 DOE-JGI protein ID#: 165642). Instead, the *STE14* BLAST hit in *C. puteana* groups with 95% bootstrap support, with other *C. puteana* *ICMT* genes located.
in the genomic translocation 130 kbp from the B-locus region. All C. puteana ICMT genes have greater phylogenetic similarity with Boletales B-locus region ICMT genes than with STE14 (Figure 6).

Duplicate copies of the B-locus region ICMT gene in R. vinicolor, S. lacrymans, and P. involutus, and the lack of this duplicate in R. vesculosus, R. salebrosus, and C. puteana may confer differential pheromone maturation pathways in these fungi. While gene duplication has been demonstrated as a potential source of genomic incompatibility resulting in reproductive isolation between sister taxa (Lynch and Force 2000), it is unlikely that specification between R. vinicolor and R. vesculosus was spurred by loss or gain of gene duplicates in the mating pheromone maturation pathway. Rather, a lack of paralogs could account for differential mating behavior leading to the observed pattern of reduced effective population size in R. vesculosus (Dunham et al. 2013; Kretzer et al. 2005).

Conclusion

In this study, we have examined the putative MAT loci from all available genomes of Boletales fungi with a known breeding system. Comparison of B-loci from heterothallic bipolar and tetrapolar Boletales species reveals a pattern of reduced gene content in bipolar genomes (Figure 4 and Figure 5), and we hypothesize that loss of genetic diversity and function at the B-locus region may be associated with the transition from tetrapolar to bipolar breeding systems in the Boletales. We have demonstrated differential gene content of R. vinicolor and R. vesculosus MAT B-loci, which provides a degree of support for our hypothesis that differences in the MAT loci of R. vinicolor and R. vesculosus may underlie observed differences in the population structure of these fungi. The B-locus of R. vinicolor shows the most similarity to that of the tetrapolar Boletales, with multiple B-locus region ICMT homologs (Figure 3 and Figure 6), pheromone receptor homologs in all phylogenetic clades with an additional paralog in clade 2 (Figure 5), and a greater number of pheromone precursor genes flanking pheromone receptor genes (Figure 3, Figure 4 and Table 4). R. vesculosus possesses fewer homologs within pheromone receptor clades inferred to possess mating type function (Figure 5), fewer pheromone precursor genes (Figure 3, Figure 4 and Table 4), and only a single B-locus region ICMT gene (Figure 3 and Figure 6). Taken together, the features of the R. vinicolor B-locus are consistent with the features of tetrapolar Boletales, whereas R. vesculosus possesses features, i.e., reduced gene diversity, at its B-locus that are intermediate between bipolar and tetrapolar Boletales (Figure 4). Several partial pheromone receptor genes were found on short contigs separate from the primary B-locus contigs in the genomes of both R. vinicolor and R. vesculosus. These partially assembled genes may represent highly divergent alleles of the B-locus pheromone receptors, providing support for a heterothallic breeding system in both R. vinicolor and R. vesculosus.

It is hypothesized that bipolar breeding systems in Agaricomycetes have been derived multiple times from tetrapolar ancestors (Hibbett and Donoghue 2001; Nieuwenhuis et al. 2013). This transition has been observed in Basidiomycota through genetic linkage of the A and B MAT loci in Ustilago hordei (Ustilaginomyctocina, Ustilaginaceae) (Bakkeren and Kronstad 1994), and through a loss of specificity or function of B-locus P/R genes in C. disseminatus (James et al. 2006). The observation of fewer pheromone receptor genes in bipolar Boletales genomes compared to tetrapolar Boletales genomes is consistent with a loss of function and subsequent loss of genetic diversity. The reduction in B-locus P/R gene content in R. vesculosus compared to R. vinicolor is not as drastic as the difference between R. vinicolor and the bipolar species Su. luteus, Su. granulatus, and C. puteana. This might indicate that R. vesculosus has lost some mating type pheromone receptor specificity in recent evolutionary history (e.g., drift associated with reduced effective population size). It is also possible that we have selected a strain of R. vesculosus for genome sequencing that simply possesses a deletion of P/R genes in both of its B-locus alleles or that our genome assembly was biased for only one B-locus allele that lacked P/R genes. The P/R genes of the Agaricomycetes MAT B-loci are highly variable between haplotypes, and lack, or truncation, of particular pheromone precursor genes has been observed for some C. cinerea B-locus haplotypes (Riquelme et al. 2005; Kues et al. 2015). However, it is more likely that R. vesculosus truly possesses reductions in pheromone receptor genes, since these reductions are also observed in the bipolar species Su. luteus, Su. granulatus, and C. puteana.

Regardless of the breeding systems (heterothallic bipolar vs. heterothallic tetrapolar) operating in R. vinicolor and R. vesculosus, further study of MAT alleles from additional strains is required to determine the mating systems (the degree of diploid selling or outcrossing, sensu Billiard et al. 2012) operating in these fungi. We hypothesize here that a change in the genomic structure of MAT loci governing the breeding systems of R. vinicolor and R. vesculosus may affect their rates of outcrossing. However, an increased number of MAT alleles in a fungal population can also increase the degree of outcrossing within that population without any change in the breeding system (Nieuwenhuis et al. 2013). Thus, it is also likely that the differential population structure in natural populations of R. vinicolor and R. vesculosus may be the product of higher allelic diversity at the MAT loci of R. vinicolor. The strain of R. vinicolor used in genome sequencing was drawn from a more readily outcrossing population than that of R. vesculosus (Dunham et al. 2013; Kretzer et al. 2005), and this would likely function to maintain and increase the allelic diversity of R. vinicolor MAT loci in this population (Nieuwenhuis et al. 2013).

ACKNOWLEDGMENTS

The authors thank Sara Branco, Tom Bruns, Francis Martin, Matthew Smith, and two anonymous reviewers for their invaluable comments and suggestions in the preparation of this manuscript. They are also thankful to Rytas Vilgalys, Sara Branco, Tom Bruns, and Francis Martin for allowing the inclusion of Su. granulatus, Su. brevipes, Su. luteus, R. salebrosus, and P. involutus genomes in our analyses prior to the publication of these genomes. Financial support for sequencing of the R. vesculosus genome was provided under National Science Foundation (NSF) grant DEB-0732993, ATOL: AFTOL2—resolving the evolutionary history of the Fungi. Financial support for sequencing of the R. vinicolor genome was provided by the 1000 Fungal Genomes Project of the United States Department of Energy Joint Genome Institute.

LITERATURE CITED

Ainsworth, A. M., and A. D. M. Rayner, 1990 Mycelial interactions and outcrossing in the Coniophora puteana complex. Mycol. Res. 94(5): 627–634.

Bakkeren, G., and J. W. Kronstad, 1994 Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in Basidiomycetous smut fungi. Proc. Natl. Acad. Sci. USA 91(15): 7085–7089.

Beiler, K. J., D. M. Durall, S. W. Simard, S. A. Maxwell, and A. M. Kretzer, 2012 Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185(2): 543–553.

Beiler, K. J., S. W. Simard, V. LeMay, and D. M. Durall, 2013 Vertical partitioning between sister species of Rhizopogon fungii on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21(24): 6105–6132.

Billiard, S., M. López-Villavicencio, M. E. Hood, and T. Giraud, 2012 Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J. Evol. Biol. 25: 1020–1038.
Maser, C., and Z. Maser, 1988 Interactions among squirrels, mycorrhizal fungi, and coniferous forests in Oregon. Great Basin Nat. 48(3): 358–369.

Maser, C., J. M. Trappe, and R. A. Nussbaum, 1978 Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59(4): 799–809.

May, G., F. Shaw, H. Badrane, and X. Vekemans, 1999 The signature of balancing selection: fungal mating compatibility gene evolution. Proc. Natl. Acad. Sci. USA 96(16): 9172–9177.

Michaelis, S., and J. Barrowman, 2012 Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol. Mol. Biol. Rev. 76(3): 626–651.

Molina, R., and J. M. Trappe, 1994 Biology of the ectomycorrhizal genus, Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol. 126(4): 653–675.

Moncalvo, J.-M., R. H. Nilsson, B. Koster, S. M. Dunham, T. Bernauer et al., 2006 The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98(6): 937–948.

Mujic, A. B., D. M. Durrall, J. W. Spatafora, and P. G. Kennedy, 2016 Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytol. 209(3): 1174–1183.

Niculita-Hirzel, H., and A. H. Hirzel. 2008 Visualizing the gene order conservation among genomes with ChromoMapper. Int. J. Comput. Intell. Bioinformatics Syst. Biol. 1.

Niculita-Hirzel, H., J. Labbé, A. Kohler, F. Le Tacon, F. Martin et al., 2008 Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol. 180(2): 329–342.

Nieuwenhuis, B. P. S., S. Billiard, S. Vuilleumier, E. Petit, M. E. Hood et al., 2013 Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity 111: 445–455.

Ohm, R. A., J. F. de Jong, L. G. Lugones, A. Aerts, E. Kothe et al., 2010 Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol. 28(9): 957–963.

Ohm, R. A., R. Riley, A. Salamov, B. Min, I. G. Choi et al., 2014 Genomics of wood-degrading fungi. Fungal Genet. Biol. 72: 82–90.

O’Shea, S. F., P. T. Chaure, J. R. Halsall, N. S. Olesnicky, A. Leibbrandt et al., 1998 A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148: 1081–1090.

Parra, G., K. Bradnam, and I. Korf, 2007 CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23(9): 1061–1067.

Riquelme, M. P., M. P. Challenger, L. A. Casselton, and A. J. Brown, 2005 The origin of multiple B mating specificities in Coprinus cinereus. Genetics 170: 1105–1119.

Sales, N. L. P., S. C. da Silva Rosado, D. de Carvalho, and A. M. de Souza, 2015 Breeding of monokaryotic genitors of symbiotic fungus Pisolithus microcarpus for genetic studies. Cerne 9(2): 205–212.

Skrede, I., S. Maurice, and H. Kauzerud. 2013 Molecular characterization of sexual diversity in a population of Serpula lacrymans, a tetrapolar basidiomycete. G3 3(2): 145–152.

Stajich, J. E., S. K. Wilke, D. Ahren, C. H. Au, B. W. Birren et al., 2010 Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl. Acad. Sci. USA 107(26): 11889–11894.

Stamatakis, A., 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690.

Stanke, M., M. Diekhans, R. Baertsch, and D. Haussler, 2008 Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24(5): 637–644.

Ullrich, R. C., and J. R. Raper, 1975 Primary homothallism—relation to heterothallism in the regulation of sexual morphogenesis in Sistotrema. Genetics 80: 311–321.

Van Peer, A. F., S. Y. Park, P. G. Shin, K. Y. Jang, Y. B. Yoo et al., 2011 Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 6(7): e22249.

Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural et al., 2001 The sequence of the human genome. Science 291(5507): 1304–1351.

Wu, L., A. Van Peer, W. Song, H. Wang, M. Chen et al., 2013 Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene 531(2): 270–278.

Zerbino, D. R., and E. Birney, 2008 Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821–829.

Communicating editor: A. Rokas