Online Adaptation of Two-Parameter Inverter Model in Sensorless Motor Drives

Jiahao Chen, Member, IEEE, Jie Mei, Member, IEEE, Xin Yuan, Member, IEEE, Yuefei Zuo, Member, IEEE, Jingwei Zhu, and Christopher H. T. Lee, Senior Member, IEEE

Abstract—This article designs parameter adaptation algorithms for online simultaneous identification of a two-parameter sigmoid inverter model for compensating inverter nonlinearity to reduce the voltage error in flux estimation for a position sensorless motor drive. The inverter model has two parameters, \(a_2 \) and \(a_3 \), where \(a_3 \) is “plateau voltage” and \(a_3 \) is a shape parameter that mainly accounts for the stray capacitor effect. Parameter \(a_3 \) is identified by the \((6k \pm 1)\)th order harmonics in measured current. Parameter \(a_2 \) is identified by the amplitude mismatch of the estimated active flux. It is found that the classic linear flux estimator, i.e., the hybrid of voltage model and current model, cannot be used for \(a_2 \) identification. This article proposes to use a saturation function based nonlinear flux estimator to build an effective indicator for \(a_2 \) error. The coupled identifiability of the two parameters is revealed and analyzed, which was not seen in literature. The concept of the low current region where the two-way coupling between \(a_2 \) and \(a_3 \) occurs is established. In theory, it is suggested to stop the inverter identification in the low current region. However, the experimental results in which dc bus voltage variation and load change are imposed have shown the effectiveness of the proposed online inverter identification and compensation method, even in low current region.

Index Terms—Active flux estimator, inverter nonlinearity model, parameter estimation, permanent magnet motor.

I. INTRODUCTION

T
HE voltage source inverter along with the pulselwidth modulation (PWM) plays a significant role in commercialized adjustable speed motor drives. Fig. 1 shows a typical three-phase three-wire inverter topology with three half-bridges. Given the fact that inverter terminal voltage sensors are absent in most motor drives, when the motor drives are operating in position sensorless mode, the commanded controller voltage \(u_{xg}^* \) will be used instead of the actual terminal voltage \(u_{xg} \) for state (e.g., active flux \(1 \)) observation, where \(g \) denotes the center of the dc bus capacitor and \(x \) is the phase name placeholder, \(x = a, b, c \).

In practice, nonideal properties of the power switches, i.e., dead-time, turn-ON/OFF time, conduction voltage drop, and stray capacitor, will result in an undesired inverter voltage drop \(D_x(\tau_x) \) as a nonlinear function of phase current \(\tau_x \); thus, the inverter’s actual terminal voltage \(u_{xg} \) is

\[
u_{xg} = u_{xg}^* - D_x
\]

which motivates the need of a feedforward compensation term \(D_x \) to cancel the inverter voltage drop \(D_x \), and, hence, the commanded inverter voltage \(u_{xg}^* \) should be

\[
u_{xg}^* = u_{xg}^* + \hat{D}_x
\]

which results in the compensation error as follows:

\[
u_{xg} - u_{xg} = (u_{xg}^* - D_x) - u_{xg}^* = \hat{D}_x - \hat{D}_x \triangleq -\hat{D}_x.
\]

The voltage error \(\hat{D}_x \) influences the performance of model-based position sensorless drive in at least two aspects. First, the fundamental component in \(\hat{D}_x \) will cause errors in both the amplitude and angle of the estimated active flux. Second, the \((6k \pm 1)\)th order harmonics in \(\hat{D}_x \) will cause fluctuation in both position and speed estimation. In addition, deteriorated performance due to \(\hat{D}_x \) is also observed in magnetic saliency based sensorless drives [2]–[4].
The compensation voltage \hat{D}_x can be obtained using various methods, which can be classified into datasheet model [2], offline measurement, and online compensation. The offline measurement is often executed at motor standstill, and the inverter voltage–current characteristics, i.e., the U-I curve, are recorded for lookup table (LUT) or curve fitting purposes [3], [5], [6]. Particularly in [3], both current amplitude and angle dependencies of D_x are measured and stored as a 2-D LUT. Besides, it is also possible to obtain the U-I curve when motor is running, e.g., at 16.67-Hz stator frequency, using repetitive control, which results in a U-I curve that additionally includes the hysteresis effect [7, Fig. 14].

As a matter of fact, inverter characteristics depend not only on load current but also on temperature [8]. Moreover, the dc bus voltage is not always stiff, especially for applications involving batteries. Even though the dc bus voltage can be measured, there is a nonlinear mapping between U-I curve and dc bus voltage, especially at low currents. The above facts motivate the need of online compensation.

Online compensation methods can be classified into invasive methods and noninvasive methods. Invasive methods involve additional excitation to the motor. In a rotating carrier signal injection-based sensorless drive, voltage error’s negative effect on the position estimation can be detected from the positive-sequence carrier current [4]. In [9], the dead-time is identified online by actively switching between continuous PWM and discontinuous PWM.

The noninvasive methods are further divided into inverter-model-free methods [10]–[13] and online parameter adaptation. For example, the inverter voltage drop D_x can be reproduced by a time-delay control based disturbance observer [10] without using any inverter model. The disturbance observer method is reported to have deteriorated performance at higher speeds [11], and it relies on measured speed for calculating electromotive force (EMF). Sensorless inverter-model-free compensation can be achieved through iterative learning [12], given the fact that the harmonics in estimated d-axis EMF are periodic. In [13], the compensation based on single noise canceler is designed to minimize the measured sixth-order current harmonics caused by imperfect compensation. However, the inverter-model-free property means the compensation could be exact only at steady state, and there will be undesired transients in compensation voltage whenever motor operating condition changes.

In order to achieve inverter-model-based online compensation in sensorless drive, online parameter adaptation is proposed, for which an inverter model is indispensable.

1) In [14], [17], and [18], the square waveform compensation voltage $\hat{D}_x(\text{sign}(i_x); a_2)$ depends on current polarity and is modeled with a single plateau voltage parameter a_2. The plateau voltage a_2 can be extracted from the commanded d-axis voltage that regulates the d-axis current to zero against the disturbance voltage caused by the inverter, if the d-axis position is available [17], [18]. This idea is later modified and tested in a sensorless drive [14].

2) In [15], a saturation function model $\hat{D}_x(i_x; a_2, k_S)$ is used, where the slope k_S is assumed known, and a_2 is identified online by applying recursive least square method to the q-axis voltage equation.

3) A trapezoidal voltage model $\hat{D}_x(\theta_1; a_2, \theta_1)$ is proposed by Park and Sul [16], which is mapped to the current phasor angle θ_x for compensating online the inverter voltage drop. This model depends on two parameters, i.e., the ramp region angle θ_1 and the plateau voltage a_2. By assuming a_2 is known, the θ_1 is updated to minimize the sixth-order current harmonics [16] or the sum of 6th- and 12th-order harmonics [19] in a synchronous dq-frame.

The key take-away here is that the inverter can be modeled with only two parameters, i.e., plateau voltage a_2 and shape parameter, e.g., θ_1 or k_S. The plateau voltage parameter a_2 is equal to $3V'$ with the distortion voltage V' defined in [20], and the shape parameter mainly accounts for effect of stray capacitor [21, Section 7.1.3], [22].

Table I summarizes the differences among different online parameter adaptation methods. The method in [14] relies solely on plateau voltage a_2, but the current polarity-based compensation voltage is prone to suffering large voltage error when wrong polarity is detected, especially for motor with small inductance (e.g., high speed motor). In literature, only the researches in [16] and [19] have identified the shape parameter, but it has two main issues that need improvement. First, there exists undesired transient process in θ_1 whenever there is a change in current vector amplitude. This phenomenon implies that the optimal value of θ_1 is a function of current amplitude and is closely related to the fact that the shape of trapezoidal voltage is solely determined by θ_1 regardless of current amplitude values. Second, the fundamental voltage error is a function of θ_1. That is, as θ_1 keeps increasing, there will be more and more loss in the fundamental component of the trapezoidal voltage, as shown in [16, Fig. 8].

Motivated by the two issues regarding the trapezoidal voltage method [16], this article proposes 1) to use current value based inverter model $\hat{D}_x(i_x)$ instead of the current phasor angle based inverter model $\hat{D}_x(\theta_1)$ and 2) to identify online a_2 for compensating fundamental voltage error. Conventionally, a_2 is calculated from voltage equation and the current derivative must be properly dealt with. For example, [15] uses the q-axis voltage equation as an identification model so that the q-axis current derivative can be neglected, while the time-delay approach [10] uses the $\alpha\beta$-frame voltage equations to calculate the disturbance voltage so that the current derivative needs to be approximated with numerical differentiation plus low-pass filter. This article, however, integrates the voltage equation and proposes to use a dedicated adaptive nonlinear flux estimator for online identification of a_2. Compared to [15], our proposed method does not rely on the knowledge of speed and does not assume the shape parameter is known. Compared to [10], our proposed method does not need to implement pure differentiation.

Aside from the classification-based literature review above, it should be pointed out that the inverter nonlinearity compensation is really hardware-related. For example, some inverter shows very steep change in D_x (i.e., very large $\frac{dD_x}{di_x}$) near $i_x = 0$ (see, e.g., [23]); and in this case, extra care must be taken to obtain the correct current polarity, for example, by instantaneous back
calculation [23] or by current prediction at switching instant [21, Section 7.1.4]. This article, on the other hand, studies the general problem of online adaptation of inverter model parameters.

The contributions of this article are 1) to analyze the parameter identifiability of an inverter model with respect to motor operating conditions, 2) to analyze the coupled identifiability for the two inverter parameters, and 3) to propose a complete parameter adaptation scheme using coherent demodulation (CD) and a modified saturation-based flux estimator.

Table I

Adap Table I Summary of Different Online Parameter Adaptation Methods tion method	Compensation voltage model	Unknown parameter(s)	Parameter error indicator(s)	Known parameter	Dependent variable	Compensation voltage type
Cheng et al. [14]	$D_x(\text{sign}(x_t); \alpha_2)$	δ_2	δ-axis voltage command $u_{\delta 3}$	i_{δ}	Current polarity $\text{sign}(x_t)$ based	
Inoue et al. [15]	$D_x(\text{sign}(x_t); \alpha_3)$	δ_2	γ-axis voltage equation	i_{γ}	Current value i_{δ} based	
Park & Sul [16]	$D_x(\text{sign}(x_t); \alpha_3)$	δ_2	Current harmonics $I_{\delta 3}$	α_3	Current phasor angle θ_{δ} based	
Proposed	$D_x(i^*_{\delta}; \alpha_2, \alpha_3)$	α_2, α_3	Flux ampl. error B and $I_{\delta 3}$	-	i_{γ}	i^*_{δ} based

![Fig. 2. Shape of compensation voltage $\hat{D}_x(t) = \hat{D}_x(i^*_{\delta}; 1, 10)$ from (4) in time domain when i^*_{δ} is a 50-Hz sinusoidal, i.e., $i^*_{\delta} = I^*_{\delta} \sin(50 \text{Hz} \times 2\pi t)$. (a) $I^*_{\delta} = 1 \text{A}$. (b) $I^*_{\delta} = 0.2 \text{A}$ (plots are drawn at the same scale).](image)

II. PROPOSED ONLINE COMPENSATION METHOD

Let $\hat{\delta}$ and $\hat{\gamma}$ denote the estimated and commanded value, respectively. Assuming the current control error $i_\delta - i^*_{\delta}$ can be neglected, the proposed current value dependent compensation voltage

$$\hat{D}_x(i^*_{\delta}; \hat{\alpha}_2, \hat{\alpha}_3) = \hat{\alpha}_2 \tanh \left(\frac{\hat{\alpha}_3}{2} i^*_{\delta} \right) = \hat{\alpha}_2 \left(\frac{2}{1 + e^{-\hat{\alpha}_3 i^*_{\delta}}} \right) - 1$$

(4)

is equipped with two online parameter adaptation algorithms (PAAs) for updating the plateau voltage estimate $\hat{\alpha}_2$ and the sigmoid shape parameter estimate $\hat{\alpha}_3$.

The α_2-PAA is driven by estimated flux amplitude error

$$s_{\alpha 2} = -\gamma_{\alpha 2} m B$$

$$B \triangleq K_{\text{Active}} - \frac{1}{\tau_{\psi 2} s + 1} \| \psi_{\beta 2} \|$$

(5a)

(5b)

where $s = \frac{d}{dt}$ is differential operator; $\psi_2 = [\psi_{\alpha 2}, \psi_{\beta 2}]^T \in \mathbb{R}^2$ is the output of an active flux estimator; B is defined as the dc bias in the estimated active flux modulus $K_{\text{Active}} \triangleq \| \psi_2 \|$ with respect to the motor’s active flux parameter K_{Active}; the motor operating mode variable m equals 1 for motoring and equals -1 for regeneration; $\gamma_{\alpha 2}$ is adaptation gain; $\tau_{\psi 2}$ is the time constant of the low-pass filter.

The α_3-PAA is driven by current harmonics (cf., [16] and [19])

$$s_{\alpha 3} = -\gamma_{\alpha 3} (w_6 I_6 + w_{12} I_{12} + w_{18} I_{18})$$

$$I_{\delta 3} \triangleq i_\delta \cos \theta^*_{\alpha} + i_\gamma \sin \theta^*_{\alpha}$$

$$\theta^*_{\alpha} = \theta_d + \arctan2 (i^*_{\gamma}, i^*_{\delta}) - \frac{3 \pi}{2}$$

(6a)

(6b)

(6c)

(6d)

where $I_6, I_{12},$ and I_{18} denote the amplitudes of the 6th-, 12th-, and 18th-order harmonic current that are obtained from the CD in (6b) with $h = 6, 12,$ and 18; $w_6, w_{12},$ and w_{18} are constant weights; (6c) shows that the sum of harmonic currents $I_{\Sigma h}$ is obtained by transforming $\alpha\beta$-frame current $i = [i_{\alpha}, i_{\beta}]^T$ into the direct axis defined by the phase a current’s commanded phasor angle θ^*_{α} [19]; (6d) shows that θ^*_{α} depends on the dq-frame current commands $i^*_{\delta}, i^*_{\gamma}$, and ψ_2’s angle: $\theta_d \triangleq \arctan2 (\psi_{\gamma 2}, \psi_{\alpha 2})$; $\gamma_{\alpha 3}$ is the adaptation gain; and $\tau_{\psi 2}$ is the time constant of the low-pass filter.

A. Two-Parameter Identifiability of α_2 and α_3

The desired system behaviors due to parameter mismatch are that the fundamental voltage error is only caused by $\hat{\alpha}_2$ error and that the $(6k \pm 1)$th-order harmonic voltage error is solely due to $\hat{\alpha}_3$ error. Unfortunately, the identifiability of the two parameters α_2 and α_3 is coupled. As a result, the adaptation gains $\gamma_{\alpha 2}$ and $\gamma_{\alpha 3}$ should be carefully designed, and both PAAs for α_2 and α_3 should be suspended when commanded phase current amplitude $I_{\delta 3}$ is too low or more specifically when $I_{\delta 3} < 6/\alpha_3$.

1) Motivation for α_3-Identifiability: The identifiability of shape parameter α_3 depends on the harmonics in the measured $I_{\Sigma h}$. On the one hand, the identifiability of the parameter α_3 relies on the sinusoidal back EMF assumption, in a sense that the $(6k \pm 1)$th-order harmonics detected in measured current are solely due to inverter voltage error. On the other hand, the α_3-identifiability will become weak during low current region (LCR) because the compensation voltage has no $(6k \pm 1)$th-order harmonics anymore when $I_{\delta 3}$ is too low. The time-domain shape of the phase compensation voltage $D_x(i^*_{\delta}; \hat{\alpha}_2, \hat{\alpha}_3)$ depends on both its shape parameter $\hat{\alpha}_2$ and the commanded load current $i^*_{\delta}(t)$. As shown in Fig. 2(a), when $I_{\delta 3}$ is large, D_x in time domain is rich in harmonic contents so that error in $\hat{\alpha}_3$ causes remarkable current amplitude ripple and α_3 can be identified. On the other hand, when $I_{\delta 3}$ is very low in Fig. 2(b), D_x in time domain looks like a pure sinusoidal so that the error in $\hat{\alpha}_2$ would cause very limited $6k$th-order harmonics in the measured
large. After \hat{a}_2 fast converges, the convergence of \hat{a}_3 is then guaranteed by its single-parameter identifiability.

4) **Loss of a_2-Identifiability in Low $\hat{a}_3 I_x^*$ Region:** Unfortunately, the decoupled identification is not effective for all working conditions. According to Fig. 3(a), for a fixed \hat{a}_2 value, the fundamental component in $D_x(t)$ drastically decreases as $\hat{a}_3 I_x^*$ reduces below 6 and is equal to 95% × 1.21\hat{a}_2 when $\hat{a}_3 I_x^*$ = 6. It is desired that the fundamental component in $D_x(t)$ always equals 1.21\hat{a}_2 for any $\hat{a}_3 I_x^*$. However, when $\hat{a}_3 I_x^*$ < 6 (i.e., when current is low), erroneous \hat{a}_3 will lead to biased \hat{a}_2 results. This is because during low $\hat{a}_3 I_x^*$ region, erroneous \hat{a}_3 is also causing fundamental voltage error in D_x.

As a result, during low $\hat{a}_3 I_x^*$ region, both \hat{a}_2 error and \hat{a}_3 error could lead to fundamental error in D_x for state observation, which means the two-parameter identifiability becomes coupled in terms of the flux amplitude error (or fundamental voltage error). Since we cannot differentiate the fundamental voltage error contribution between \hat{a}_2 and \hat{a}_3, the PAA should stop when $\hat{a}_3 I_x^*$ < 6.

B. Main Proposition

Taking the two-parameter identifiability into account, this article proposes to stop both PAAAs when the normalized commanded current peak value $\hat{a}_3 I_x^*$ is less than 6, which corresponds to the situation where the fundamental component of $D_x(t)$ has reduced down to 95% due to reduction in $\hat{a}_3 I_x^*$.

Main Proposition: The PAAAs (5a) and (6a) should be implemented with their adaptation gains satisfying the following requirements:

- (Fast \hat{a}_2 convergence) $\gamma_{a2} \gg \gamma_{a3}$, if $\gamma_{a2}, \gamma_{a3} \neq 0$, (7a)
- (Loss of a_2-identifiability) $\gamma_{a2} = 0$, if $\hat{a}_3 I_x^* < 6$, (7b)
- (Loss of a_3-identifiability) $\gamma_{a3} = 0$, if $\hat{a}_3 I_x^* < 6$. (7c)

In summary, the two-parameter identifiability is revealed in terms of the single-parameter identifiability and the **decoupled identifiability** for each parameter as follows. The a_2 parameter identifiability is understood by the following.

1) The fact that \hat{a}_2 error will cause fundamental error in D_x that leads to flux amplitude error B.
2) The assumption that current $\hat{a}_3 I_x^*$ is large enough such that there is less than 5% reduction in fundamental component of $D_x(t)$ at any fixed \hat{a}_2 value, as is indicated in Fig. 3(a). This imposes (7b).

The a_3 parameter identifiability is understood by the following.

1) The fact that when current $\hat{a}_3 I_x^*$ is large enough, \hat{a}_3 error will cause harmonics error in D_x that will lead to remarkable harmonics in the measured $I_{\Sigma h}$ (6c); but when current $\hat{a}_3 I_x^*$ becomes lower and lower, the harmonics contents gradually vanish, as shown in Fig. 3(b).
2) The assumption that \hat{a}_3 has almost converged such that the harmonics detected in the measured $I_{\Sigma h}$ are mainly due to \hat{a}_3 error rather than \hat{a}_2 error. This imposes (7a).

Note that from Fig. 3(b), (7c) can be relaxed to a value lower than 6 if only a_3 is being identified. However, since
a2-identifiability assumes perfect knowledge of a2, a3-PAA should be also suspended when a2-PAA stops to update.

III. NONLINEAR ACTIVE FLUX ESTIMATOR

The PAA (5a) for a2 relies on a flux estimator that can convert voltage error \(\Delta u \text{dc} \) into nonzero dc bias \(B \) in \(||\psi_2|| \). According to our study, the classical linear flux estimator (e.g., the voltage model and current model fusion method [24]) fails to produce nonzero dc bias \(B \) (which implies that \(a2 = 0 \) cannot be identified from \(B \) when the drive is regenerating \((m = -1)\) and \(a2 < a2 \) in Fig. 4(a) or when the drive is motoring \((m = 1)\) and \(a2 > a2 \) in Fig. 4(b). This undesired phenomenon is due to the proportional–integral (PI) correction terms used in the flux estimator. The PI correction is always active and is forcing the amplitude mismatch between voltage model and current model to be zero, which is to blame for the \(B = 0 \) phenomenon.

As an alternative, we propose to use a nonlinear flux estimator whose saturation correction action is not always triggered. In particular, the saturation function based flux estimator that originates in [25] is modified for producing a nonzero \(B \). The key is that the nonlinear flux estimator behaves as a pure integrator as long as the flux estimate component \(\psi_2 \) (or \(\psi_{2,\text{offset}} \)) is within the range \([-\ell, \ell]\).

A. Saturation Function Based Flux Estimator

A saturation function Sat(\(\cdot \)) is added to the voltage model active flux estimator that is corrected by an offset voltage estimate \(\hat{u}_{\text{offset}} = [\hat{u}_{\alpha,\text{offset}}, \hat{u}_{\beta,\text{offset}}]^T \)

\[
\psi_2 = \text{Sat}\left(\frac{1}{s} \left(u^* - R \hat{i} - \hat{u}_{\text{offset}} \right) - L_q \hat{i} \right)
\]

(8)

where \(u^* = [u'_a, u'_b]^T \) is \(\alpha\beta \)-frame voltage command, \(i = [i_a, i_b]^T \) is measured \(\alpha\beta \)-frame current, \(R \) is stator resistance, \(L_q \) is \(q \)-axis inductance, and Sat\([x_\alpha, x_\beta]^T\) limits its input vector’s components \(x_\alpha, x_\beta \) within the range \([-\ell, \ell]\), i.e.,

\[
\text{Sat}\left([x_\alpha, x_\beta]^T\right) = \begin{bmatrix}
\min(\max(x_\alpha, -\ell), \ell) \\
\min(\max(x_\beta, -\ell), \ell)
\end{bmatrix}.
\]

(9)

Ideally, the limit \(\ell \) is set to \(K_{\text{Active}} \). To understand the working principles of (8), consider an example scenario, where the \(\alpha \)-axis offset voltage error \(\hat{u}_{\alpha,\text{offset}} = u_{\alpha,\text{offset}} - \hat{u}_{\alpha,\text{offset}} \) exists and is negative. After integration, the negative \(\hat{u}_{\alpha,\text{offset}} \) will lower the entire waveform of \(\psi_2 \), such that the lower bound \((-\ell)\) is reached, as shown in Fig. 5. From Fig. 5, the lower bound saturation time \(t_{\alpha,\text{sat,} \min} \) and the upper bound saturation time \(t_{\alpha,\text{sat,} \max} \) are used to denote the time instants of the flux estimate zero-crossings, and the \(\alpha \)-axis flux estimate extrema are defined by

\[
\begin{align*}
\psi_{\alpha,\text{min}} &= \min_{t \in [t_0, t_2]} \psi_2(t) \\
\psi_{\alpha,\text{max}} &= \max_{t \in [t_0, t_2]} \psi_2(t)
\end{align*}
\]

(10)

which will be used to build the offset voltage estimate \(\hat{u}_{\alpha,\text{offset}} \) to close a feedback loop that eliminates the unknown dc bias \(u_{\alpha,\text{offset}} \) in the calculated EMF.

B. Proposed Exact Offset Voltage Calculation Method

This article proposes to exploit the “saturation time” to directly compute the value of offset voltage error. Graphical definitions of the saturation time concept are presented in Fig. 5, where \(t_{\alpha,\text{sat,} \min} \) denotes the time duration when \(\psi_2 \) reaches the lower bound \((-\ell)\) within \([t_0, t_2]\). Since in Fig. 5, only the lower bound \((-\ell)\) is reached; so the lower bound saturation time \(t_{\alpha,\text{sat,} \min} \neq 0 \) and the upper bound saturation time \(t_{\alpha,\text{sat,} \max} = 0 \). With \(\alpha \)-axis saturation times available, the \(\alpha \)-axis offset voltage error can be directly calculated as

\[
\hat{u}_{\alpha,\text{offset}} = \frac{1}{t_2 - t_0 - t_{\alpha,\text{sat,} \min} - t_{\alpha,\text{sat,} \max}} \left(\frac{1}{2} (\psi_{\alpha,\text{min}} + \psi_{\alpha,\text{max}}) \right)
\]

(11)

which means that “it takes \((t_2 - t_0 - t_{\alpha,\text{sat,} \min} - t_{\alpha,\text{sat,} \max})\) for the uncompensated offset voltage \(\hat{u}_{\alpha,\text{offset}} \) to contribute to a flux dc bias of \(\frac{1}{2} (\psi_{\alpha,\text{min}} + \psi_{\alpha,\text{max}}) \) \([\text{Wb}] \) in the \(\alpha \)-axis flux estimate \(\psi_2 \).”

Finally, our proposed offset voltage estimate for \(\alpha \)-axis is

\[
\hat{u}_{\alpha,\text{offset}} = \frac{k_i}{s} \hat{u}_{\alpha,\text{offset}} = \frac{k_i}{s} \left(\frac{1}{t_2 - t_0 - t_{\alpha,\text{sat,} \min} - t_{\alpha,\text{sat,} \max}} \right) \left(\frac{1}{2} (\psi_{\alpha,\text{min}} + \psi_{\alpha,\text{max}}) \right)
\]

(12)

with \(k_i \) being a positive scalar. The analysis for \(\beta \)-axis is the same as \(\alpha \)-axis, and \(\hat{u}_{\beta,\text{offset}} \) is defined accordingly. This means the nonlinear flux estimator only introduces componentwise correction, while the flux amplitude based correction used in the conventional linear flux estimator depends on both \(\alpha \)-axis and \(\beta \)-axis components of the flux estimate.
Fig. 6. Simulated speed-sensored control against positive load with \hat{a}_2 error. The proposed Nonlinear flux estimation (8) is implemented but not used for control. (a) $\hat{a}_2 = 0.8a_2$, (b) $\hat{a}_2 = 1.2a_2$. Note that \hat{a}_2 can be identified if mB has the same sign of $(\hat{a}_2 - a_2)$.

Fig. 7. Photo of the two tested inverters. Power switches are at the bottom of the printed circuit board for effective heat dissipation.

C. Simulated Waveforms of DC Bias B

The simulation results of ψ_2 from (8) using \hat{u}_{offset} from (12) are shown in Fig. 6. It is observed that “the \hat{a}_2 error indicator,” mB, is negative when $\hat{a}_2 = a_2 - \hat{a}_2 > 0$ in Fig. 6(a), while mB is positive when $\hat{a}_2 < 0$ in Fig. 6(b). This reveals the working principle of the PAA (5a), i.e., to update \hat{a}_2 by driving the error indicator mB to zero.

IV. INVERTER CHARACTERISTICS MEASUREMENT

Two self-built inverters shown in Fig. 7 are tested in this section and will be referred to as “INV1” and “INV2” in the sequel.

1) INV1 uses the 600 V, 30 A, insulated-gate bipolar transistor based intelligent power module, FNB43060T2 from ON semiconductor.

2) INV2 uses the 1200 V, 120 A, silicon carbide metal-oxide-semiconductor field-effect transistor, CAS120M12BM2 from Cree.

A. Offline Measurement and Curve Fitting Results

The U-I curves of INV1 and INV2 are measured at $V_{dc} = 150$ V, 300 V, as shown in Fig. 8. The measured data are fitted to function $f(i_x; a_1, a_2, a_3) = a_1 i_x + D_x(i_x; a_2, a_3)$. If the fitting error is small enough, we can use D_x from (4) with the fitted a_2 and a_3 as the inverter model at a certain dc bus voltage in replacement of an LUT, for both INV1 and INV2. However, the fitted a_1 values annotated in Fig. 8 are found to be much larger than motor nominal resistance ($R = 1.1 \Omega$), and compensation using the fitted a_2 and a_3 leads to deteriorated sensorless control performance.

B. Low Current Region and Current Rating Matching

From Fig. 8, it is found that a_2 increases and a_3 decreases as the dc bus voltage V_{dc} gets higher. Besides, INV2, whose current rating is four times as large as that of INV1, has much smaller a_3 value and has much wider LCR, up to approximately 1.5 A at $V_{dc} = 300$ V. Here, LCR means the i_x range (denoted by $[0, I_{\text{LCR}}]$) in which $D_x(i_x)$ is not a horizontal line. According to the parametric Fourier analysis in Fig. 3, the upper bound of LCR can be estimated by the equation: $a_3 I_{\text{LCR}} = 6$. When $V_{dc} = 300$ V, the I_{LCR} values of INV1 and INV2, based on the curve fitting results, are 0.3 and 1.5 A, respectively, which can be visually justified with Fig. 8. The upper bounds of the LCRs of INV1 and INV2 are approximately 1.0% and 1.25% of the rated current of the power switches, respectively. The above fact implies that the proposed PAA should be generally applicable if the inverter current rating and the motor current
Fig. 10. Experimental sensorless operation using the proposed PAAs at various dc bus voltages of V_{dc}. (a) $\omega_{ob} = 30$ rad/s. (b) $\omega_{ob} = 150$ rad/s. The load motor provides constant torque current of 3 A.

Fig. 11. Experimental sensorless operation by using the proposed PAAs at different loads with $\omega_{ob} = 150$ rad/s. The load motor’s torque current switches between 1.5 and 3 A every 8 s.

rating are well matched, in which case the motor’s phase peak current I_x^* will be larger than I_{LCR} only to fight against friction torque. For this ideal situation, the mechanism to avoid parameter adaptation during loss of two-parameter identifiability in our main proposition will not be needed.

V. EXPERIMENTAL VALIDATION OF THE PROPOSED PAAS

This article investigates the challenging situation where the motor’s peak current I_x^* is near I_{LCR}, such that normalized peak current $a_3I_x^*$ is near 6. This is achieved by using a test motor whose rated current is much lower than the inverter current rating. By doing this, we are going to show that (7b) and (7c) in our main proposition are conservative, and the PAAs are found to be effective down to much lower current than $\hat{a}_3I_x^* = 6$.

A. Test Bench Setup

INV1 and INV2 drive two 750 W, 3 Arms, 4 pole pairs, 3-phase surface-mounted permanent magnet servo motors whose shafts are mechanically coupled. A dc power supply is used as the shared dc bus for both inverters. The period of the space vector pulsewidth modulation (SVPWM) is $T_{PWM} = 0.1$ ms. Dead-time is 5 μs in Figs. 10 and 11.

INV2 drives the test motor, and INV1 drives the load motor. The parameters of the two motors are: $R_L = 1.1\Omega$, d-axis inductance $L_d = 5$ mH = L_q, and permanent magnet flux linkage $K_E = 0.1$ Wb. By definition, we have $K_{active} = K_E + (L_d - L_q)i_d [1]$. The load motor is vector controlled with a fixed speed command of ~300 r/min and its speed regulator output limit $i_q^{* \max}$ is set to 3 A in Fig. 10 and is switched between 3 and 1.5 A every 8 s in Fig. 11.

B. Block Diagram and System Synthesis

The block diagram of the PAAs-based inverter voltage drop compensation scheme is shown in Fig. 9. The SVPWM module outputs gate signals to control the inverter based on the input voltage command u^{**} as well as the measured V_{dc}. Amplitude-invariant Clarke transformation converts phase quantities u^{*x}, $x = a, b, c$, into u^{**}, where u^{**} consists of the torque controller’s output voltage u^{*}_{z} and the compensation voltage \hat{D}_{z}. Note that \hat{D}_{z} is a function of phase current command i_x^* and is parameterized by the two inverter parameters,
\(\hat{a}_2\) and \(\hat{a}_3\), where \(\hat{a}_2\) is updated by PAA in (5a) and \(\hat{a}_3\) by PAA in (6a).

The PAA for \(\hat{a}_2\) relies on \(\hat{K}_{\text{active}}\), the amplitude of the active flux estimate \(\psi_2\) in (8), and the preidentified parameter \(K_{\text{Active}}\). The PAA for \(\hat{a}_3\) depends on the detection of the 6th-, 12th-, and 18th-order current harmonics in \(I_{2h}\), the direct-axis component of measured current \(I_d\) in the commanded current vector-oriented frame from (6b). The total computational cost for executing the two PAAs in a digital signal processor with system clock frequency of 200 MHz is 4.3 \(\mu s\) and becomes 3.1 \(\mu s\) if \(w_{12} = w_{18} = 0\).

Finally, a critically damped cascaded speed observer (see, e.g., [26]) tuned by its observer bandwidth parameters \(\omega_{\theta d}, \omega_{\theta q}\) is implemented to reconstruct electrical speed \(\hat{\omega}_r\) from \(\dot{\theta}_d\).

C. Adaptation of Two Parameters at Various \(V_{\text{dc}}\) Values

The experimental results of sensorless operation with PAAs using INV1 at various \(V_{\text{dc}}\) values are shown in Fig. 10, where experimentally recorded waveforms at different speed observer bandwidths (\(\omega_{\text{ob}}\)) are compared.

1) Low Speed Observer Bandwidth: Fig. 10(a) corresponds to the case of the low speed observer bandwidth \(\omega_{\text{ob}} = 30\ \text{rad}/s\). At the beginning (\(t = 0\)) when \(V_{\text{dc}} = 50\ \text{V}\), position error \(\hat{\theta}_d = \theta_d - \hat{\theta}_d\) is oscillating and is peaking over 0.5 rad because initial values of \(\hat{a}_2\) and \(\hat{a}_3\) are erroneous. The oscillation in \(\hat{\theta}_d\) is reduced when the motor is loaded at \(t = 3\ \text{s}\) and is minimized at \(t = 7\ \text{s}\) when the PAAs are applied to update \(\hat{a}_2\) and \(\hat{a}_3\). At \(t = 14, 19,\) and \(25\ \text{s}\), \(V_{\text{dc}}\) is increased to 100, 150, and 300 V, respectively. It can be seen that large \(V_{\text{dc}}\) change (from 150 to 300 V) causes a large oscillation in both \(\hat{\theta}_d\) and the encoder measured speed signal \(\omega_r\). After \(t = 30\ \text{s}\), \(V_{\text{dc}}\) decreases to 150, 100, and 50 V in order. The waveform of \(\hat{a}_2\) shows analogy to that of \(V_{\text{dc}}\).

When \(\omega_{\text{ob}} = 30\ \text{rad}/s\) is relatively low, the speed controller’s load disturbance rejection ability is poor, but the sensorless system shows robustness against sudden voltage error \(\hat{D}_x\) caused by step change in \(V_{\text{dc}}\), such that the oscillation in speed waveform quickly diminishes in Fig. 10(a).

2) High Speed Observer Bandwidth: Fig. 10(b) further shows the results when \(\omega_{\text{ob}} = 150\ \text{rad}/s\). When \(\omega_{\text{ob}}\) is large, the load rejection ability is improved, but the robustness against voltage error disturbance is degraded. On the one hand, the spike in actual speed waveform is almost eliminated when load is applied at \(t = 3\ \text{s}\). On the other hand, the system falls into severe oscillation for approximately 4 s, when \(V_{\text{dc}}\) steps from 150 to 300 V. The oscillation is caused by the slow convergence of \(\hat{a}_2\) as well as the oscillation in \(\hat{a}_3\) waveform because the identifiability of \(\hat{a}_2\) and \(\hat{a}_3\) is coupled in terms of current harmonics if \(\hat{a}_2\) does not quickly converge, as is analyzed in Section II-A3.

D. Adaptation of Two Parameters Against Load Changes

The experiment in Fig. 10 is continued with the \(V_{\text{dc}}\) value fixed at 150 V, but the load motor’s torque current now switches between 1.5 and 3 A every 8 s to test the PAAs’ behavior under load change;

1) when load motor torque current is 1.5 A, the test motor current is about \(I_x = 0.5\ A\);
2) when load motor torque current is 3 A, the test motor current is about \(I_x = 1.5\ A\)

as shown in the first waveform in Fig. 11. Recall that the LCR upper bound of the test inverter, INV1, is \(I_{\text{LCR}} = 1.5\ A\). In other words, the experiment in Fig. 11 further investigates the effectiveness of the proposed PAAs under the nonideal situation where peak current \(I_x \approx 0.5\ A\), which is less than \(I_{\text{LCR}} = 1.5\ A\).

When \(t \in [0, 33]\ \text{s}\), the nominal value of resistance \(R = 1.1\ \Omega\) is used (in 8). It is observed that \(\hat{a}_2\) converges to different values corresponding to different loads. This is an expected behavior because \(\hat{a}_2\) and \(\hat{a}_3\) are coupled when motor peak current \(I_x\) is lower than \(I_{\text{LCR}} = 1.5\ A\). By “coupled,” we mean that both \(\hat{a}_2\) and \(\hat{a}_3\) can affect the fundamental voltage component in \(D_x\).

E. Robustness Against Stator Resistance Error

As a bonus advantage, the proposed PAAs-based online inverter voltage drop compensation in Fig. 1 can also reject the disturbance in flux estimation caused by resistance error and keep the sensorless system stable when an erroneous \(\hat{R}\) is used.

When \(t \in [33, 100]\ \text{s}\) in Fig. 11, the resistance value used in (8) is detuned to be 50\% and 200\% of the nominal value, at \(t = 33\ \text{s}\) and \(t = 60\ \text{s}\), respectively. At the instant when the resistance detuning happens, the \(\hat{\theta}_d\) waveform shows some spikes but converges to zero quickly. With the aid of the online adaptation of \(\hat{a}_2\) and \(\hat{a}_3\) and the associated voltage compensation \(\hat{D}_x\), the sensorless system does not lose stability. Particularly, \(\hat{a}_2\) converges to a higher value when used resistance \(\hat{R}\) is too small and converges to a lower value when used resistance \(\hat{R}\) is too large.

VI. DISCUSSION

This section provides discussion on experiment in terms of disturbance study, comparative study, and sensitivity study.

A. Analysis of the Disturbances

Disturbances are observed in the profiles of position error \(\hat{\theta}_d\), speeds \(\omega_r, \hat{\omega}_r\), and q-axis current \(i_q\) in Figs. 10 and 11. We are now going to investigate the transient disturbances via zoomed-in plots and study the steady-state periodic disturbances with Fourier analysis.

1) Transient Disturbances: To show the profiles of transient disturbances, the zoomed-in plots of Figs. 10 and 11 are presented in Figs. 12 and 13.

In Fig. 12, when \(V_{\text{dc}}\) voltage step changes to 150 V, a large voltage error \(\hat{D}_x\) results, which disturbs the position error \(\hat{\theta}_d\). As \(\hat{a}_2\) and \(\hat{a}_3\) are updated, \(\hat{\theta}_d\) converges toward zero, and the compensation voltages \(\hat{D}_a\) and \(\hat{D}_b\) decrease remarkably in magnitude. The actual speed \(\omega_r\) is drastically disturbed when \(\omega_{\text{ob}}\) is low in Fig. 12(a) but stays close to speed command when \(\omega_{\text{ob}}\) is high in Fig. 12(b). The comparison shows that the robustness of sensorless speed control is dependent on \(\omega_{\text{ob}}\).
Fig. 12. Zoomed-in plot of (a) Fig. 10(a) and (b) Fig. 10(b) showing the transient details when dc bus voltage drops.

Fig. 13. Zoomed-in plot of Fig. 11 when motor torque current changes.

Fig. 14. Fourier analysis of the steady-state waveforms in Fig. 11 when \(i_q = 1.5\, \text{A} \). Note the synchronous frequency is 13.3 Hz.

In Fig. 13, when load changes, there is an undesired transient disturbance in \(\hat{\theta}_d, \hat{\omega}_r \), and \(\hat{\omega}_r \), which is caused by the voltage error corresponding to the transients of \(\hat{a}_2 \) and \(\hat{a}_3 \). Current amplitude \(I_x \) is within LCR of the inverter; so \(a_2 \) and \(a_3 \) cannot be accurately identified because the parameter identifiability of \(a_2 \) and \(a_3 \) is coupled in LCR.

2) Steady-State Periodic Disturbances: The Fourier analysis of steady-state waveforms in Fig. 11 is shown in Fig. 14. From Fig. 14, the following observations can be made.

1) The speed disturbance at synchronous frequency \((f_1 = 13.3\, \text{Hz}) \) is due to dc offset in measured current [25].

2) The speed disturbance at \(2f_1, 4f_1, \) and \(6f_1 \) is due to stator manufacturing tolerances [27].

3) The speed disturbance at \(4.5f_1 = 60\, \text{Hz} \) is due to rotor manufacturing tolerances, which implies that the four-pole-pair servo motor has 18 slots, resulting in the \((k \times \frac{18}{4})\)-th-order harmonics in speed [27].

4) The speed disturbance at \(2.25f_1 = 30\, \text{Hz} \) is due to stator and rotor manufacturing tolerances, according to our finite element simulation studies of an 18-slot, eight-pole motor with both manufacturing tolerances at both stator teeth and rotor magnets.

5) The speed disturbance at \(11.6, 15, \) and \(23.2\, \text{Hz} \) is due to sensorless control because those harmonics are absent in \(\omega_r \) when motor is controlled using encoder.

B. Comparative Study

This subsection conducts comparative study to further highlight the advantages of the proposed online adaptation method. To this end, we have implemented the trapezoidal compensation voltage method proposed in [19] for comparison. The experimental results are shown in Figs. 15 and 16. When implementing the method in [19], a fixed plateau voltage \(\hat{a}_2 \) is used, which is only accurate at \(V_{dc} = 150\, \text{V} \); its shape parameter, i.e., the ramp region angle \(\theta_t \in [0^\circ, 25^\circ] \) is defined in [19].

From Fig. 15, when \(i_q \approx -2\, \text{A} \) and \(\theta_t = 19^\circ \), it is observed that the peak-to-peak value of position error \(\hat{\theta}_d \) of the proposed method is approximately 0.2 rad, which is almost half of that of the existing method. This is because large \(\theta_t \) is causing much loss in fundamental component of \(\hat{D}_x \). A step load change is applied at \(t \approx 6.3\, \text{s} \), and both methods show similar performance as \(i_q \) has become large enough for INV2, which can be understood by the fact that when current is high enough, the shape of the compensation voltage for both methods will approach a square waveform.

Fig. 15 shows that a change in the shape parameter (\(\hat{a}_3 \) or \(\theta_t \)) often leads to a change in fundamental component of \(\hat{D}_x \). For our proposed method, the fundamental voltage error is actively compensated by online adaptation of \(\hat{a}_2 \), but for the method from [19], the fundamental voltage error is not controlled and becomes larger when \(\theta_t \) is larger, causing larger peak-to-peak value of \(\hat{\theta}_d \) in Fig. 15(b).

In Fig. 16(a), for the proposed method, the peak-to-peak value of \(\hat{\theta}_d \) is less than 0.4 rad, and there is no apparent difference before and after \(V_{dc} \) changes because the change in distortion...
voltage D_x is compensated by online adaptation of \hat{a}_2. As a comparison, in Fig. 16(b), θ_t is updated to mitigate voltage error due to erroneous plateau voltage when V_{dc} drops to 100 V, but the sensorless system falls into oscillation giving a peak-to-peak value of $\tilde{\theta}_d$ that is over 1.2 rad.

C. Sensitivity Study

This subsection discusses experimental behavior due to L_q-uncertainty, dead-time settings, and speed commands.

1) **Parameter Uncertainty in L_q**: In Section VI-B, we have chosen to use the peak-to-peak value of position error $\tilde{\theta}_d$ as performance metric, rather than the mean value of $\tilde{\theta}_d$. This is because the mean value of $\tilde{\theta}_d$ is dependent on uncertainty in L_q. As is shown in Fig. 17(a), when the q-axis inductance value \hat{L}_q we used in the controller is different from the actual one L_q, position error $\tilde{\theta}_d$ will result.

The experimental measurement of L_q-uncertainty is shown in Fig. 17(b), where the mean position error is plotted against the L_q-uncertainty under two different current levels. The influence of L_q-uncertainty on position estimation accuracy is found to be dependent on motor current.

Another issue due to L_q-uncertainty we find from Fig. 17(a) is that the projection of i to d'-axis is not zero, denoted by $i_{d'}$, meaning that there is a change in the actual active flux amplitude $K_{Active} = K_E + (L_d - L_q)i_d$ if $L_d \neq L_q$. This will affect our saturation function based flux estimator whose limit ℓ is calculated as $\ell = K_E + (L_d - L_q) \times 0$ A. From Fig. 17(b), it is found that the \hat{L}_q value that minimizes the mean position error is 7.5 mH which is larger than L_d. This implies that ℓ is not equal to K_{Active} in our experiment. But the test motor has small inductance; so the change in K_{Active} is ignored in our study.

2) **Different Dead-Time Settings**: More experimental results are performed to record estimated \hat{a}_2, \hat{a}_3 values under different dead-time settings, as shown in Fig. 18. It is found that both \hat{a}_2, \hat{a}_3 increase as the dead-time increases. According to [20], one realizes the slope of the curves in Fig. 18(a) is approximately proportional to V_{dc} times dead-time.
3) Lowest Operating Speed: According to our experiment, the sensorless drive is able to stably operate down to 100 r/min when \(i_q \) is 3 A, or 150 r/min when \(i_q \) is 4 A.

VII. CONCLUSION

This article followed the design process for a generic parameter adaptive system.

1) Model the phenomenon based on the physics or at least provide an approximated way of representation.
2) Decide which parameters need to be identified online.
3) Study the single parameter-identifiability. The most intuitive way is to look at which variables show “abnormal behaviors” when the single parameter is erroneous. The PAAs are dynamics to minimize the error indicators.
4) If there is more than one unknown parameter, the coupled identifiability must be analyzed. Luckily, if there is only one-way coupling, prioritized adaptation rates should suffice; whereas, unfortunately, if there is two-way coupling, it is suggested to not simultaneously identify these two parameters.
5) Close the loop by using the online updated parameters. This procedure was executed in this article as follows.

1) The inverter voltage drop is modeled using sigmoid function for engineering purposes.
2) The plateau voltage \(a_2 \) due to dead-time and the shape parameter \(a_3 \) due to stray capacitor are to be identified.
3) The error indicators, i.e., \(mB \) and \(I_{2hA} \), are built upon the abnormally behaved variables, i.e., \(\hat{q}_2 \) and \(i \). In particular, it is revealed that a nonlinear flux estimator must be used to build an effective error indicator \(mB \). PAAs are designed to reduce \(mB \) and \(I_{2hA} \).
4) When motor’s peak current \(I_p \) is within inverter’s LCR, two-way coupling becomes severe; but if \(I_p \) is large enough, it is valid to assume that only one-way coupling exists between the identifiability of \(a_2 \) and \(a_3 \).
5) The identified \(\hat{a}_2 \) and \(\hat{a}_3 \) are used to compensate inverter voltage drop.

The proposed PAAs-based inverter compensation scheme improves the robustness of sensorless algorithm against not only voltage error but also resistance error. It was theoretically suggested to suspend the PAAs when operating in inverter’s LCR. However, as have been shown with experimental results, given the fact that the inverter current rating is 120 A and the motor current rating is only 3 Arms, the PAAs still work, even though the inverter parameters might never converge to their actual values anymore. This result raises a question to engineers designing the adaptive system—which is more desired, the accurate parameter identification or the robustness against uncertainty (of dc bus voltage and stator resistance)? This article pointed out that both accuracy and robustness can be preserved by selecting a motor whose current rating matches inverter’s current rating.

REFERENCES

[1] I. Boldea, M. C. Paicu, and G. Andreescu, “Active flux concept for motion-sensorless unified AC drives,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2612–2618, Sep. 2008.
[2] D. E. Salt, D. Drury, D. Holliday, A. Griffo, P. Sangha, and A. Dinu, “Compensation of inverter nonlinear distortion effects for signal-injection-based sensorless control,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2084–2092, Sep./Oct. 2011.
[3] R. Rauta, C. Curana, C. S. Staines, J. Cilia, M. Sumner, and G. M. Asher, “Analysis and compensation of inverter nonlinearity effect on a sensorless PMSM drive at very low and zero speed operation,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4065–4074, Dec. 2010.
[4] L. M. Gong and Z. Q. Zhu, “A novel method for compensating inverter nonlinearity effects in carrier signal injection-based sensorless control from positive-sequence carrier current distortion,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1283–1292, May/Jun. 2011.
[5] Q. Wang et al., “An offline parameter self-learning method considering inverter nonlinearity with zero-axis voltage,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 14098–14109, Dec. 2021.
[6] W. Sun, J. Gao, X. Liu, Y. Yu, G. Wang, and D. Xu, “Inverter nonlinear error compensation using feedback gains and self-tuning estimated current error in adaptive full-order observer,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 472–482, Jan./Feb. 2016.
[7] S. Bolognani, L. Peretti, and M. Zigliotto, “Repetitive-control-based self-commissioning procedure for inverter nonidealities compensation,” IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1587–1596, Sep./Oct. 2008.
[8] S. Bolognani and M. Zigliotto, “Self-commissioning compensation of inverter non-idealities for sensorless AC drive applications,” in Proc. Power Electronics, Mach. Drives, Int. Conf. (Conf. Publ. No. 487), Jun. 2002, pp. 30–37.
[9] J.-H. Lee and S.-K. Sul, “Compensation of nonlinearity of inverter through estimation of dead time effect,” in Proc. 9th Int. Power Electron. Motion Control Conf. (IPEMC2020-ECCE Asia), 2020, pp. 572–577.
[10] H.-S. Kim, K.-H. Kim, and M.-J. Youn, “On-line dead-time compensation method based on time delay control,” IEEE Trans. Control Syst. Technol., vol. 11, no. 2, pp. 279–285, Mar. 2003.
[11] H.-S. Kim, H.-T. Moon, and M.-J. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336–1345, Nov. 2003.
[12] Y. Wang, Y. Xu, and J. Zou, “ILC-based voltage compensation method for PMMS sensorless control considering inverter nonlinearity and sampling current dc bias,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5980–5989, Jul. 2020.
[13] Z. Tang and B. Akin, “A new LMS algorithm based deadtime compensation method for PMMS FOC drives,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6472–6484, Nov./Dec. 2018.
[14] D. Liang, J. Li, R. Qu, and W. Kong, “Adaptive second-order sliding-mode observer for PMMS sensorless control considering VSI nonlinearity,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 9994–9904, Oct. 2018.
[15] Y. Inoue, K. Yamada, S. Morimoto, and M. Sanada, “Effectiveness of voltage error compensation and parameter identification for model-based sensorless control of PMSM,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 213–221, Jan./Feb. 2009.
[16] Y. Park and S. K. Sul, “A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4837–4846, Dec. 2012.
[17] S.-H. Hwang and J.-M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1–10, Mar. 2010.
Jiahao Chen (Member, IEEE) received the B.Sc. and Ph.D. degrees in electrical engineering from Zhejiang University, Hangzhou, China, in 2014 and 2019, respectively. In 2018, he was a Visiting Scholar with the University of Wisconsin-Madison, Madison, WI, USA, for one year, where he was involved in the design and development of electrical machines and drives. His research interests include electric machines, drives, and direct-drive technologies.

Jie Mei (Member, IEEE) received the B.S. degree in electrical engineering from the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, in 2015, and the Ph.D. degree in electrical engineering from the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, in 2021. He is currently a Research Specialist with the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. His research interests include electric machines, multilevel systems, and electric vehicle technologies.

Xin Yuan (Member, IEEE) was born in Heilongjiang, China, in 1990. He received the B.S. degree from Beijing Union University, Beijing, China, in 2013, and the M.S. degree from the North China University of Technology, Beijing, China, in 2016, both in electrical engineering. He received the Ph.D. degree in electrical engineering from the Beijing Institute of Technology, Beijing, China, in 2020. He is currently a Research Fellow with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. He was a Research Associate with PEMC Group, University of Nottingham, Nottingham, U.K., from 2019 to 2020. His research interests include ac motor drives, power converters, multiphase motor drives, and fault-tolerant strategy of motor.

Yuefei Zuo (Member, IEEE) received the B.Sc. and Ph.D. degrees in electrical engineering and automation from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2010 and 2016, respectively. He has been a Lecturer with Jiangsu University, Zhenjiang, China, since 2016. He is currently a Postdoctoral Research Fellow with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. His research interests include power electronics, electric machines and drives, and advanced control strategies.

Jingwei Zhu received the B.Sc. degree in electrical engineering and automation from Zhejiang University, Hangzhou, China, in 2015 and the M.Phil. degree in electrical engineering from The Hong Kong Polytechnic University, Hong Kong, in 2018. He is currently working toward the Ph.D. degree in electrical and electronic engineering with Nanyang Technological University, Singapore. He was the Edward R. Felber Power Fellowship Scholar with the University of Wisconsin-Madison, Madison, WI, USA, from 2018 to 2019, where he worked with the Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC). From 2019 to 2020, he was a Research Associate with the Center for System Intelligence and Efficiency (CSIE), Nanyang Technological University. His research interests include motor design and optimization, power electronics, bearingless motors, and direct-drive techniques. Mr. Zhu is the Recipient of the 2018 Edward R. Felber Power Fellowship award by the University of Wisconsin-Madison.

Christopher H. T. Lee (Senior Member, IEEE) received the B.Eng. (First Class Hons.) and Ph.D. degrees in electrical engineering from the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong. He currently serves as an Assistant Professor with Nanyang Technological University, Singapore and an Honorary Assistant Professor with The University of Hong Kong. He was a Postdoctoral Fellow and then a Visiting Assistant Professor with Massachusetts Institute of Technology, Cambridge, MA, USA. His research interests include electric machines and drives, renewable energies, and electromechanical propulsion technologies. In these areas, he has authored or coauthored one book, three book chapters, and more than 100 referred papers. Dr. Lee is the recipient of many awards, including NRF Fellowship, Nanyang Assistant Professorship, Li Ka Shing Prize (the best Ph.D. thesis prize), and Croucher Foundation Fellowship. He is an Associate Editor for IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE TRANSACTIONS ON ENERGY CONVERSION, IEEE Access, and IET Renewable Power Generation. He is a Chartered Engineer in Hong Kong.