(m, n)-Hyperideals in ordered semihypergroups

A. Mahboob*, N.M. Khan, and B. Davvaz

Abstract. In this paper, first we introduce the notions of an (m, n)-hyperideal and a generalized (m, n)-hyperideal in an ordered semihypergroup, and then, some properties of these hyperideals are studied. Thereafter, we characterize (m, n)-regularity, (m, 0)-regularity, and (0, n)-regularity of an ordered semihypergroup in terms of its (m, n)-hyperideals, (m, 0)-hyperideals and (0, n)-hyperideals, respectively. The relations \(I_m, I_n, H_m^n, \) and \(B_m^n \) on an ordered semihypergroup are, then, introduced. We prove that \(B_m^n \subseteq H_m^n \) on an ordered semihypergroup and provide a condition under which equality holds in the above inclusion. We also show that the (m, 0)-regularity [(0, n)-regularity] of an element induce the (m, 0)-regularity [(0, n)-regularity] of the whole \(H_m^n \)-class containing that element as well as the fact that (m, n)-regularity and (m, n)-right weakly regularity of an element induce the (m, n)-regularity and (m, n)-right weakly regularity of the whole \(B_m^n \)-class and \(H_m^n \)-class containing that element, respectively.

* Corresponding author

Keywords: Ordered semihypergroups, (m, n)-hyperideals, (m, 0)-hyperideals, (0, n)-hyperideals.

Mathematics Subject Classification [2010]: 20N20.

Received: 5 April 2019, Accepted: 12 June 2019.
ISSN: Print 2345-5853, Online 2345-5861.
© Shahid Beheshti University
1 Introduction and preliminaries

By an ordered semigroup, we mean an algebraic structure \((S, \cdot \leq)\), which satisfies the following conditions: (1) \(S\) is a semigroup with respect to the multiplication \(\cdot\); (2) \(S\) is a partially ordered set by \(\leq\); (3) if \(a\) and \(b\) are elements of \(S\) such that \(a \leq b\), then \(ac \leq bc\) and \(ca \leq cb\) for all \(c \in S\). Many authors, especially Alimov [1], Clifford [2–4], Hion [13], Conrad [5], and Kehayopulu [15] studied such semigroups with some restrictions.

In 1934, Marty [21] introduced the concept of a hyperstructure and defined hypergroup. Later on several authors studied hyperstructure in various algebraic structures such as rings, semirings, semigroups, ordered semigroups, \(\Gamma\)-semigroups and Ternary semigroups, etc. The concept of a semihypergroup is a generalization of the concept of a semigroup and many classical notions such as of ideals, quasi-ideals and bi-ideals defined in semigroups and regular semigroups have been generalized to semihypergroups (see [8, 9] for other related notions and results on semihypergroups). In [14], Heidari and Davvaz introduced the notion of an ordered semihypergroup as a generalization of the notion of an ordered semigroup. Davvaz et al. in [6, 7, 14, 22, 23, 25, 26] studied some properties of hyperideals and bi-hyperideals in ordered semihypergroups. Lajos [16] introduced the concept of \((m, n)\)-ideals in semigroups (see also [17–19]). In [12], the authors defined the notion of an \((m, n)\)-quasi-hyperideal in a semihypergroup and investigated several properties of these \((m, n)\)-quasi-hyperideals.

A hyperoperation on a non-empty set \(H\) is a map \(\circ : H \times H \to \mathcal{P}^*(H)\) where \(\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}\) (the set of all non-empty subsets of \(H\)). In such a case, \(H\) is called a hypergroupoid. Let \(H\) be a hypergroupoid and \(A, B\) be any non-empty subsets of \(H\). Then

\[A \circ B = \bigcup_{a \in A, b \in B} a \circ b. \]

We shall write, in whatever follows, \(A \circ x\) instead of \(A \circ \{x\}\) and \(x \circ A\) instead of \(\{x\} \circ A\), for any \(x \in H\). Also, for simplicity, throughout the paper, we shall write \(A^n\) for \(A \circ A \circ \cdots \circ A\) \(n\) – copies of \(A\) for any \(n \in \mathbb{Z}^+\). Also the integers \(m, n\) will stand for positive integers throughout the paper until and unless otherwise specified. Moreover, the hypergroupoid \(H\) is called a semihypergroup if, for all \(x, y, z \in H\),

\[(x \circ y) \circ z = x \circ (y \circ z) \]
that is,

\[\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v. \]

A non-empty subset \(T \) of a semihypergroup \(H \) is called a subsemihypergroup of \(H \) if \(T \circ T \subseteq T \).

Let \(H \) be a non-empty set, the triplet \((H, \circ, \leq) \) is called an ordered semihypergroup if \((H, \circ) \) is a semihypergroup and \((H, \leq) \) is a partially ordered set such that

\[x \leq y \Rightarrow x \circ z \leq y \circ z \text{ and } z \circ x \leq z \circ y \]

for all \(x, y, z \in H \). Here, if \(A \) and \(B \) are non-empty subsets of \(H \), then we say that \(A \leq B \) if for every \(a \in A \) there exists \(b \in B \) such that \(a \leq b \).

Let \(H \) be an ordered semihypergroup. For a non-empty subset \(A \) of \(H \), we denote \((A] = \{x \in H \mid x \leq a \text{ for some } a \in A\} \). A non-empty subset \(A \) of \(H \) is called idempotent if \(A = (A \circ A) \). A non-empty subset \(A \) of \(H \) is called left (right)-hyperideal \[7\] of \(H \) if \(H \circ A \subseteq A \) \((A \circ H \subseteq A) \) and \((A] \subseteq A \). A non-empty subset \(J \) of \(H \) is called a hyperideal of \(H \) if \(J \) is both a left hyperideal and a right hyperideal of \(H \). A subsemihypergroup (non-empty subset) \(B \) of an ordered semihypergroup \(H \) is called a bi-hyperideal (generalized bi-hyperideal) of \(H \) if \(B \circ H \circ B \subseteq B \) \((B] \subseteq B \). An ordered semihypergroup \(H \) is called regular (left-regular, right-regular) \[7\] if for each \(x \in H \), \(x \in (x \circ H \circ x)(x \in (H \circ x \circ x), x \in (x \circ x \circ H)) \).

Lemma 1.1. \[7\] Let \(H \) be an ordered semihypergroup and \(A, B \) be any non-empty subsets of \(H \). Then the following conditions hold:

(i) \(A \subseteq (A] \);
(ii) \(A \subseteq B \Rightarrow (A] \subseteq (B] \);
(iii) \((A] \circ (B] \subseteq (A \circ B] \);
(iv) \((A] \circ (B]) = (A \circ B] \);
(v) \((A] \cup (B] = (A \cup B] \).

\[2\] \((m, 0) \)-hyperideals, \((0, n) \)-hyperideals and \((m, n) \)-hyperideals in ordered semihypergroups

In this section, the notions of \((m, n) \)-hyperideals and generalized \((m, n) \)-hyperideals in ordered semihypergroups are introduced. Moreover, important some properties of these hyperideals are studied.
Definition 2.1. Let H be an ordered semihypergroup and m, n be the positive integers. Then a subsemihypergroup (respectively, non-empty subset) A of H is called an (respectively, generalized) (m, n)-hyperideal of H if

(i) $A^m \circ H \circ A^n \subseteq A$; and

(ii) $(A] \subseteq A$.

Note that in Definition 2.1, if $m = 1 = n$, then A is called a (generalized) bi-hyperideal of H. Moreover, a (generalized) bi-hyperideal of an ordered semihypergroup H is an (generalized) (m, n)-hyperideal of H for all positive integers m and n. It is clear that, for positive integers m and n, the notion of (generalized) (m, n)-hyperideal of H is a generalization of the notion of (generalized) bi-hyperideal of H. The following example shows that a generalized (m, n)-hyperideal of H need not be an (m, n)-hyperideal and generalized bi-hyperideal of H.

Example 2.2. Let $H = \{a, b, c, d\}$. Define the hyperoperation \circ and order \leq on H as follows:

\circ	a	b	c	d
a	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
b	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
c	$\{a\}$	$\{a\}$	$\{a\}$	$\{a, b\}$
d	$\{a\}$	$\{a\}$	$\{a, b\}$	$\{a, b, c\}$

$\leq: = \{(a, a), (b, b), (c, c), (d, d), (a, b)\}$.

The covering relation \prec and the figure of H are as follows:

$\prec: = \{(a, b)\}$

Then H is an ordered semihypergroup. The subset $\{a, d\}$ of H is a generalized (m, n)-hyperideal of H for all integers $m, n \geq 2$ which is neither an (m, n)-hyperideal nor a generalized bi-hyperideal of H.
Definition 2.3. [20] Let H be an ordered semihypergroup and m, n be positive integers. Then a subsemihypergroup A of H is called an $(m,0)$-hyperideal (respectively, $(0,n)$-hyperideal) of H if

(i) $A^m \circ H \subseteq A$ (respectively, $H \circ A^n \subseteq A$); and

(ii) $(A] \subseteq A$.

In Definition 2.3, if $m = 1 = n$, then A is called a right hyperideal (left hyperideal) of H. Clearly, each right hyperideal (respectively, left hyperideal) of H is an $(m,0)$-hyperideal for each positive integer m (respectively, $(0,n)$-hyperideal for each positive integer n), that is, the notion of an $(m,0)$-hyperideal ($(0,n)$-hyperideal) of H is a generalization of the notion of a right hyperideal (respectively, left hyperideal) of H. Conversely, an $(m,0)$-hyperideal (respectively, $(0,n)$-hyperideal) of H need not be a right hyperideal (respectively, left hyperideal) of H. We illustrate it by the following example.

Example 2.4. Let $H = \{a, b, c, d\}$. Define the hyperoperation \circ and order \leq on H as follows:

\[
\begin{array}{c|cccc}
\circ & a & b & c & d \\
\hline
a & \{a\} & \{a\} & \{a\} & \{a\} \\
b & \{a\} & \{a\} & \{a\} & \{a\} \\
c & \{a\} & \{a\} & \{a, b\} & \{a, b\} \\
d & \{a\} & \{a\} & \{a, b\} & \{a\} \\
\end{array}
\]

$\leq := \{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c)\}$.

The covering relation \prec and the figure of H are as follows:

$\prec := \{(a, b), (a, c)\}$

[Diagram showing the covering relation with vertices labeled a, b, c, d and edges connecting b to a, c, d, and c to a]
Then H is an ordered semihypergroup. It is easy to verify that the subset $A = \{a, d\}$ of H is an $(m, 0)$-hyperideal and a $(0, n)$-hyperideal of H for all integers $m, n \geq 2$, but it is neither a right hyperideal nor a left hyperideal of H.

Remark 2.5. Let H be an ordered semihypergroup, $m \geq 2$ be any positive integer and B be any non-empty subset of H. Then $(B^m \cup B \circ H \circ B^m]$ is a (generalized) bi-hyperideal of H. Indeed, $(B^m \cup B \circ H \circ B^m] \circ (B^m \cup B \circ H \circ B^m] \subseteq ((B^m \cup B \circ H \circ B^m) \circ (B^m \cup B \circ H \circ B^m)] = (B^m \circ B^m \cup B \circ H \circ B^m \cup B \circ B^m \circ B \circ H \circ B^m \circ B \circ H \circ B^m \subseteq (B \circ H \circ B^m] \subseteq (B^m \cup B \circ H \circ B^m]$ and $(B^m \cup B \circ H \circ B^m] \circ H \circ (B^m \cup B \circ H \circ B^m] \subseteq (B^m \cup H \cup B \circ B^m \circ H \circ (B^m \cup B \circ H \circ B^m] \subseteq (B \circ H \circ B^m] \subseteq (B^m \cup B \circ H \circ B^m]$.

Note that in Remark 2.5, if $m = 1$, then $(B \cup B \circ H \circ B)$ is a generalized bi-hyperideal of H which is not a bi-hyperideal of H. Thus $(B^m \cup B \circ H \circ B^m)$ is a generalized bi-hyperideal of H for each positive integer m.

Theorem 2.6. Let B be a non-empty subset of an ordered semihypergroup H and let $m \geq 2$ be any positive integer. Then the following are equivalent:

(i) B is a $(1, m)$-hyperideal of H;

(ii) B is a left hyperideal of some bi-hyperideals of H;

(iii) B is a bi-hyperideal of some left hyperideals of H;

(iv) B is a $(0, m)$-hyperideal of some right hyperideals of H;

(v) B is a right hyperideal of some $(0, m)$-hyperideals of H.

Proof. (i) \Rightarrow (ii) Let B be a $(1, m)$-hyperideal of H. So $B \circ B \subseteq B, (B] \subseteq B$ and $B \circ H \circ B^m \subseteq B$. Therefore, $(B^m \cup B \circ H \circ B^m] \circ B = (B^m \cup B \circ H \circ B^m] \circ (B] \subseteq (B^m+1 \cup B \circ H \circ B^m+1] \subseteq (B^m+1 \cup B \circ H \circ B^m] \subseteq (B] = B$. If $b \in B$, then $h \in (B^m \cup B \circ H \circ B^m]$ such that $h \leq b$. As $h \in H$ and B is a $(1, m)$-hyperideal of H, $h \in B$. Hence, B is a left hyperideal of the bi-hyperideal $(B^m \cup B \circ S \circ B^m]$ of H.

(ii) \Rightarrow (iii) Let B be a left hyperideal of a bi-hyperideal A of H. So $B \subseteq A, A \circ B \subseteq B$ and $A \circ H \circ A \subseteq A$. Therefore, $B \circ B \subseteq A \circ B \subseteq B$ and $B \circ (B \cup H \circ B] \circ B = (B] \circ (B \cup H \circ B] \circ (B] \subseteq (B \circ (B \cup H \circ B] \circ B] \subseteq (B^3 \cup H \circ B^2] \subseteq (A^2 \circ B \cup A \circ H \circ A \circ B] \subseteq (A \circ B \cup A \circ H \circ A \circ B] \subseteq (B \cup A \circ B] \subseteq (B] = B$. Let $b \in B, h \in (B \cup H \circ B]$ such that $h \leq b$. As $b \in B \subseteq A, b \in A$. So $h \in A$. Thus $h \in B$. Hence, B is a bi-hyperideal of the left hyperideal $(B \cup H \circ B]$ of H.

(iii) \Rightarrow (iv) Let B be a bi-hyperideal of a left hyperideal L of H. Then $B \subseteq L$, $B \circ L \circ B \subseteq B$ and $H \circ L \subseteq L$. Therefore, $(B \cup B \circ H) \circ B^m \subseteq (B \cup B \circ H) \circ (B^m) \subseteq (B \cup B \circ H \circ B^m) \subseteq (B \cup B \circ (H \circ B^m) \circ B) \subseteq (B \cup B \circ B \circ H \circ B \circ B^m) = (B \cup B \circ (H \circ L) \circ B) \subseteq (B \cup B \circ B \circ L \circ B) = (B) = B$. Let $b \in B$, $h \in (B \cup B \circ H)$ such that $h \leq b$. As $B \subseteq L$, $b \in L$. So $h \in L$ and, thus, $h \in B$. Hence, B is a $(0,m)$-hyperideal of the right hyperideal $(B \cup B \circ H]$ of H.

(iv) \Rightarrow (v) Let B be a $(0,m)$-hyperideal of a right hyperideal R of H. So $B \subseteq R$, $R \circ B^m \subseteq B$ and $R \circ H \subseteq R$. Therefore, $B \circ (B \cup H \circ B^m) \subseteq (B \cup H \circ B^m) \subseteq (B \cup B \circ H \circ B^m) \subseteq (B \cup B \circ B \circ H \circ B^m) = (B) = B$. Let $b \in B$, $h \in (B \cup H \circ B^m)$ be such that $h \leq b$. As $B \subseteq R$, $b \in R$. So $h \in R$ which implies that $h \in B$. Hence, B is a right hyperideal of the $(0,m)$-hyperideal $(B \cup H \circ B^m]$ of H.

(v) \Rightarrow (i) Let B be a right hyperideal of a $(0,m)$-hyperideal A of H. Thus $B \subseteq A$, $B \circ A \subseteq B$ and $H \circ A^m \subseteq A$. Therefore, $B \circ H \circ B^m \subseteq B \circ H \circ A^m \subseteq B \circ A \subseteq B$. Let $b \in B$, $h \in H$ be such that $h \leq b$. As $B \subseteq R$, we have $b \in R$. Therefore, $h \in R$ and, thus, $h \in B$. Hence, B is a $(1,m)$-hyperideal of H.

Definition 2.7. Let H be an ordered semihypergroup, m,n be positive integers and A be any (generalized) (m,n)-hyperideal of H. Then A is said to be a minimal (generalized) (m,n)-hyperideal of H if for every (generalized) (m,n)-hyperideal B of H, $B \subseteq A$ implies $B = A$.

Similarly, a minimal $(m,0)$-hyperideal and a minimal $(0,n)$-hyperideal of H may be defined.

Lemma 2.8. Let H be an ordered semihypergroup, $m \geq 2$ be any positive integer and B be a non-empty subset of H. Then B is a minimal (generalized) $(m,m-1)$-hyperideal of H if and only if B is a minimal (generalized) bi-hyperideal of H.

Proof. Let H be an ordered semihypergroup and B be a minimal $(m,m-1)$-hyperideal of H. Since $(B^m \circ H \circ B^{m-1}] \circ (B^m \circ H \circ B^{m-1}] \subseteq (B^m \circ H \circ B^{m-1}]$, $((B^m \circ H \circ B^{m-1}] \circ (B^m \circ H \circ B^{m-1}] \circ (B^m \circ H \circ B^{m-1}] \subseteq (B^m \circ H \circ B^{m-1}]$ and $(B^m \circ H \circ B^{m-1}] \subseteq (B^m \circ H \circ B^{m-1}]$. Therefore, $(B^m \circ H \circ B^{m-1}]$ is a $(m,m-1)$-hyperideal of H such that $(B^m \circ H \circ B^{m-1}] \subseteq B$. So by minimality of $(m,m-1)$-hyperideal B of H, $(B^m \circ H \circ B^{m-1}] = B$. Now $B \circ B =
\((B^m \circ H \circ B^{m-1}) \circ (B^m \circ H \circ B^{m-1}) \subseteq ((B^m \circ H \circ B^{m-1}) \circ (B^m \circ H \circ B^{m-1})) \subseteq (B^m \circ H \circ B^{m-1}) = B\) and \(B \circ H \circ B = (B^m \circ H \circ B^{m-1}) \circ H \circ (B^m \circ H \circ B^{m-1}) \subseteq (B^m \circ H \circ B^{m-1}) = B\). Therefore, \(B\) is bi-hyperideal of \(H\). It remains to show that \(B\) is a minimal bi-hyperideal of \(H\), so assume that \(A\) is any bi-hyperideal of \(H\) contained in \(B\). Therefore, \(A\) is \((m, m - 1)\)-hyperideal of \(H\). Since \(B\) is a minimal \((m, m - 1)\)-hyperideal of \(H\), \(B = A\). Hence, \(B\) is a minimal bi-hyperideal of \(H\). For the converse, assume that \(B\) is a minimal bi-hyperideal of \(H\). As \(B^m \circ H \circ B^{m-1} = B \circ (B^m \circ H \circ B^{m-2}) \circ B \subseteq B \circ H \circ B \subseteq B\), \(B\) is an \((m, m - 1)\)-hyperideal of \(H\). To show that \(B\) is a minimal \((m, m - 1)\)-hyperideal of \(H\), let \(A\) be any \((m, m - 1)\)-hyperideal of \(H\) such that \(A \subseteq B\). As \((A^m \circ H \circ A^{m-1}) \circ (A^m \circ H \circ A^{m-1}) \subseteq ((A^m \circ H \circ A^{m-1}) \circ (A^m \circ H \circ A^{m-1})) \subseteq (A^m \circ H \circ A^{m-1})\) and \((A^m \circ H \circ A^{m-1}) \circ H \circ (A^m \circ H \circ A^{m-1}) \subseteq ((A^m \circ H \circ A^{m-1}) \circ H \circ (A^m \circ H \circ A^{m-1})) \subseteq (A^m \circ H \circ A^{m-1})\), \((A^m \circ H \circ A^{m-1})\) is a bi-hyperideal of \(H\). Since \(B\) is a minimal bi-hyperideal of \(H\) and \((A^m \circ H \circ A^{m-1}) \subseteq B\), \((A^m \circ H \circ A^{m-1}) = B\). As \((A^m \circ H \circ A^{m-1}) \subseteq A\), \(B \subseteq A\). Now, as \(A \subseteq B\), we have \(A = B\). Hence, \(B\) is a minimal \((m, m - 1)\)-hyperideal of \(H\).

Theorem 2.9. Let \(H\) be an ordered semihypergroup and \(\{A_i \mid i \in I\}\) be a set of \((m, n)\)-hyperideals of \(H\). If \(\bigcap_{i \in I} A_i \neq \emptyset\), then \(\bigcap_{i \in I} A_i\) is an \((m, n)\)-hyperideal of \(H\).

Proof. Assume that \(\bigcap_{i \in I} A_i \neq \emptyset\). Let \(x, y \in \bigcap_{i \in I} A_i\). Then, \(x, y \in A_i\) for each \(i \in I\). As for each \(i \in I\), \(A_i\) is an \((m, n)\)-hyperideal, \(x \circ y \subseteq A_i\). Therefore, \(x \circ y \subseteq \bigcap_{i \in I} A_i\). Thus, \(\bigcap_{i \in I} A_i\) is a subsemihypergroup of \(H\). Next we show that \((\bigcap_{i \in I} A_i)^m \circ H \circ (\bigcap_{i \in I} A_i)^n \subseteq \bigcap_{i \in I} A_i\). We have

\[
(\bigcap_{i \in I} A_i)^m \circ H \circ (\bigcap_{i \in I} A_i)^n \\
\subseteq (A_i)^m \circ H \circ (A_i)^n \quad \text{(as } \bigcap_{i \in I} A_i \subseteq A_i, \forall i \in I) \\
\subseteq A_i \quad \text{(as } A_i\text{'s are } (m, n)\text{-hyperideals).}
\]

Thus \((\bigcap_{i \in I} A_i)^m \circ H \circ (\bigcap_{i \in I} A_i)^n \subseteq \bigcap_{i \in I} A_i\). Finally, we show that \((\bigcap_{i \in I} A_i)^m \subseteq \bigcap_{i \in I} A_i\). Let \(a \in \bigcap_{i \in I} A_i\), \(h \in H\) such that \(h \leq a\). As \(a \in A_i\) for each \(i \in I\) and \(A_i\)'s
are \((m, n)\)-hyperideals, \(h \in A_i\) for each \(i \in I\). Therefore, \(h \in \bigcap_{i \in I} A_i\), as required.

Theorem 2.10. [20] Let \(H\) be an ordered semihypergroup. Then the following conditions hold:

(i) Let \(\{L_i \mid i \in I\}\) be a set of \((m, 0)\)-hyperideals of \(H\). If \(\bigcap_{i \in I} L_i \neq \emptyset\), then \(\bigcap_{i \in I} L_i\) is an \((m, 0)\)-hyperideal of \(H\).

(ii) Let \(\{R_i \mid i \in I\}\) be a set of \((0, n)\)-hyperideals of \(H\). If \(\bigcap_{i \in I} R_i \neq \emptyset\), then \(\bigcap_{i \in I} R_i\) is a \((0, n)\)-hyperideal of \(H\).

Let \(H\) be an ordered semihypergroup and \(A\) be any non-empty subset of \(H\). We denote \(P = \{J \mid J\) is an \((m, n)\)-hyperideal of \(H\) containing \(A\}\). Clearly, \(P \neq \emptyset\) since \(H \in P\). Let \([A]_{m,n} = \bigcap_{J \in P} J\). As \(A \subseteq J\) for each \(J \in P\), \([A]_{m,n} \neq \emptyset\). By Theorem 1.9, \([A]_{m,n}\) is an \((m, n)\)-hyperideal of \(H\) containing \(A\). The \((m, n)\)-hyperideal \([A]_{m,n}\) is called the \((m, n)\)-hyperideal of \(H\) generated by \(A\).

Similarly, \([A]_{m,0}\) and \([A]_{0,n}\) are called \((m, 0)\)-hyperideal and \((0, n)\)-hyperideal of \(H\) generated by \(A\), respectively.

Theorem 2.11. Let \(H\) be an ordered semihypergroup and \(A\) be a non-empty subset of \(H\). Then

\[
[A]_{m,n} = (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n]
\]

for any positive integers \(m, n\).

Proof. Clearly \((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n] \neq \emptyset\). Now we have

\[
\begin{align*}
&= (\bigcup_{i=1}^{m+n} A^i) \circ (\bigcup_{i=1}^{m+n} A^i) \cup (\bigcup_{i=1}^{m+n} A^i) \circ A^m \circ H \circ A^n \cup (A^m \circ H \circ A^n) \circ (\bigcup_{i=1}^{m+n} A^i) \\
&\subseteq (\bigcup_{i=1}^{m+n} A^i) \circ (\bigcup_{i=1}^{m+n} A^i) \cup (A^m \circ H \circ A^n) \circ (\bigcup_{i=1}^{m+n} A^i) \\
&\subseteq (\bigcup_{i=1}^{m+n} A^i) \circ (\bigcup_{i=1}^{m+n} A^i) \cup (A^m \circ H \circ A^n)
\end{align*}
\]

(1).

Let \(x \in (\bigcup_{i=1}^{m+n} A^i) \circ (\bigcup_{i=1}^{m+n} A^i)\). Then, \(x \in z_1 \circ z_2\) for some \(z_1, z_2 \in \)
\[\bigcup_{i=1}^{m+n} A^i. \] Then, \(z_1 = A^p, z_2 = A^q \) for some \(1 < p, q \leq m + n \). There are two cases arising. If \(p + q \leq m + n \), then \(z_1 \circ z_2 \subseteq \bigcup_{i=1}^{m+n} A^i \). If \(m + n \leq p + q \), then \(z_1 \circ z_2 \subseteq A^m \circ H \circ A^n \). Therefore, in both cases \(z_1 \circ z_2 \subseteq \bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \). As \(x \in z_1 \circ z_2, x \in \bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \). Thus, \((\bigcup_{i=1}^{m+n} A^i) \circ (\bigcup_{i=1}^{m+n} A^i) \subseteq \bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \). Therefore, from (1), \((\bigcup_{i=1}^{m+n} A^i) \cup A^m \circ H \circ A^n \circ (\bigcup_{i=1}^{m+n} A^i) \subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \circ A) \). Hence, \((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \) is a subsemihypergroup of \(H \) containing \(A \). We have

\[
\left(\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \right)^m \circ H \\
= (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ \left(\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \right) \circ H \\
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ \left(\bigcup_{i=1}^{m+n} A^i \circ H \cup A^m \circ H \circ A^n \circ H \right) \\
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ (A \circ H) \\
= (A^m \circ H).
\]

Similarly, \(H \circ ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^n) \subseteq (H \circ A^n) \). Therefore, we have

\[
((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^m \circ H \circ ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^n) \\
\subseteq (A^m \circ H \circ A^n) \\
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n).
\]

Also \((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \). Therefore, \((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \) is an \((m, n) \)-hyperideal of \(H \) containing \(A \). It follows that \([a]_{m,n} \subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \). For the reverse inclusion, let \(x \in (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \), that is, there exist \(z \in \bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n \)
such that \(x \leq z \). If \(z \in \bigcup_{i=1}^{m+n} A^i \), then \(z = A^p \) for some \(1 \leq p \leq m + n \).

Therefore, \(x \in [A]_{m,n} \). If \(z \in A^m \circ H \circ A^n \), then

\[
A^m \circ H \circ A^n \subseteq ([A]_{m,n})^m \circ H \circ ([A]_{m,n})^n \subseteq [A]_{m,n}.
\]

Therefore, \(z \in [A]_{m,n} \) implies \(x \in [A]_{m,n} \). Hence, \([A]_{m,n} = (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \), as required.

Theorem 2.12. [20] Let \(H \) be an ordered semihypergroup and \(A \) be any non-empty subset of \(H \). Then:

(i) \([A]_{m,0} = (\bigcup_{i=1}^{m} A^i \cup A^m \circ H)\);

(ii) \([A]_{0,n} = (\bigcup_{i=1}^{n} A^i \cup H \circ A^n)\).

Theorem 2.13. Let \(H \) be an ordered semihypergroup and \(A \) be a non-empty subset of \(H \). Then

\[
(([A]_{m,n})^m \circ H \circ ([A]_{m,n})^n) = (A^m \circ H \circ A^n)
\]

for any positive integers \(m, n \).

Proof. We have

\[
([A]_{m,n})^m \circ H
= ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^m \circ H
= ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \circ H
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ (\bigcup_{i=1}^{m+n} A^i \circ H \cup A^m \circ H \circ A^n \circ H
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-1} \circ (A \circ H)
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-2} \circ ((\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n) \circ (A \circ H)
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-2} \circ (\bigcup_{i=1}^{m+n} A^i \circ A \circ H \cup A^m \circ H \circ A^n \circ A \circ H
\subseteq (\bigcup_{i=1}^{m+n} A^i \cup A^m \circ H \circ A^n)^{m-2} \circ (A^2 \circ H)
= (A^m \circ H].

Similarly, \(H \circ ([A]_{m,n})^n \subseteq H \circ A^n \). Therefore, \((([A]_{m,n})^m \circ H \circ ([A]_{m,n})^n) \subseteq (A^m \circ H \circ A^n) \). The reverse inclusion is obvious, that is, \((A^m \circ H \circ A^n) \subseteq (([A]_{m,n})^m \circ H \circ ([A]_{m,n})^n) \). Hence, \((([A]_{m,n})^m \circ H \circ ([A]_{m,n})^n) = (A^m \circ H \circ A^n) \).

\[\text{Theorem 2.14. } [20] \text{ Let } H \text{ be an ordered semihypergroup and } A \text{ be a non-empty subset of } H. \text{ Then}
\]

(i) \(([A]_{m,0})^m \circ H = (A^m \circ H) \) for any positive integer \(m \).

(ii) \(H \circ ([A]_{0,n})^n = (H \circ A^n) \) for any positive integer \(n \).

3 \((m,n)\)-regularity in ordered semihypergroups

In this section, we characterize \((m,n)\)-regular, \((m,0)\)-regular and \((0,n)\)-regular ordered semihypergroup in terms of its \((m,n)\)-hyperideals, \((m,0)\)-hyperideals and \((0,n)\)-hyperideals.

Definition 3.1. Let \(H \) be an ordered semihypergroup and \(m, n \) be non-negative integers. An element \(a \) of \(H \) is said to be an \((m,n)\)-regular element if \(a \in (a^m \circ H \circ a^n) \). The ordered semihypergroup \(H \) is said to be \((m,n)\)-regular if each element of \(H \) is \((m,n)\)-regular, equivalently, for each subset \(A \) of \(H \) we have \(A \subseteq (A^m \circ H \circ A^n) \). Here, \(A^0 \circ H = H \circ A^0 = H \).

It is clear from Definition 3.1 that, for each non-negative integers \(m \) and \(n \) every \((m,n)\)-regular ordered semihypergroup is \((r,s)\)-regular \((r \leq m, s \leq n \) are non-negative integers\). In particular, for any positive integers \(m \) and \(n \), an \((m,n)\)-regular ordered semihypergroup is regular. Indeed, \(a \in (a^m \circ H \circ a^n) \subseteq (a \circ H \circ a) \). On the other hand, for each positive integer \(m \), an \((m,0)\)-regular ordered semihypergroup need not be a regular ordered semihypergroup.

Proposition 3.2. Let \(H \) be an \((m,n)\)-regular ordered semihypergroup and \(A \) be a generalized \((m,n)\)-hyperideal of \(H \) for any positive integers \(m, n \). Then \(A \) is an \((m,n)\)-hyperideal of \(H \).
Proof. Let \(a, b \in A \). Since \(H \) is an \((m, n)\)-regular ordered semihypergroup, there exist \(x, y \in H \) such that \(a \leq a^m \circ x \circ a^n, b \leq b^m \circ y \circ b^n \). Therefore, \(a \circ b \leq a^m \circ x \circ a^n \circ b^m \circ y \circ b^n = a^m \circ (x \circ a^n \circ b^m \circ y) \circ b^n \subseteq A^n \circ H \circ A^m \subseteq A \) whence \(a \circ b \subseteq (A] = A \). Thus \(A \) is a subsemihypergroup of \(H \). Hence, \(A \) is an \((m, n)\)-hyperideal of \(H \).

\((m, n)\)-Hyperideals in ordered semihypergroups

Theorem 3.3. Let \(H \) be an ordered semihypergroup and \(m, n \) be non-negative integers. The set of all \((m, 0)\)-hyperideals, \((0, n)\)-hyperideals, and \((m, n)\)-hyperideals will be denoted by \(I_{(m, 0)} \), \(I_{(0, n)} \) and \(I_{(m, n)} \), respectively. Then, we have

(i) \(H \) is \((m, 0)\)-regular if and only if \(I_{(m, 0)} \) is \((m, 0)\)-regular;
(ii) \(H \) is \((0, n)\)-regular if and only if \(I_{(0, n)} \) is \((0, n)\)-regular;
(iii) \(H \) is \((m, n)\)-regular if and only if \(I_{(m, n)} \) is \((m, n)\)-regular.

Proof. (i) When \(m = 0 \), the statement holds trivially because \(H \) is the only \((0, 0)\)-hyperideal of \(H \). So, let \(m \neq 0 \) and \(A \in I_{(m, 0)} \). Therefore \((A^m \circ H) \subseteq A \). As \(S \) is \((m, 0)\)-regular, \(A \subseteq (A^m \circ H) \). Thus, \(A = (A^m \circ H) \). Since \(H \in I_{(m, 0)} \), \(A \) is a \((m, 0)\)-regular element of \(I_{(m, 0)} \). Hence \(I_{(m, 0)} \) is \((m, 0)\)-regular. For the converse, assume that \(I_{(m, 0)} \) is \((m, 0)\)-regular. Take any \(a \in S \). As \([a]_{m, 0} \) is in \(I_{(m, 0)} \) and \(I_{(m, 0)} \) is \((m, 0)\)-regular, there exists \(B \in I_{(m, 0)} \) such that \([a]_{m, 0} = ([a]_{m, 0})^m \circ B \subseteq ([a]_{m, 0})^m \circ H \subseteq (([a]_{m, 0})^m \circ H) \). By Theorem 2.14, \(([a]_{m, 0})^m \circ H = (a^m \circ H) \). As \(\{a\} \subseteq [a]_{m, 0} \), we have \(a \in (a^m \circ H) \). Hence \(H \) is \((m, 0)\)-regular.

(ii) On the similar lines to (i), we may prove (ii).

(iii) If \(m = n = 0 \), then the statement is true because \(I_{(0, 0)} = \{H\} \). If \(m \neq 0 \) and \(n = 0 \) or \(m = 0 \) and \(n \neq 0 \), then the statement follows by (i) and (ii), respectively. So, let \(m \neq 0, n \neq 0 \) and \(A \in I_{(m, n)} \). Therefore \((A^m \circ H \circ A^n) \subseteq A \). As \(H \) is \((m, n)\)-regular, \(A \subseteq (A^m \circ H \circ A^n) \). Thus, \(A = (A^m \circ H \circ A^n) \). Since \(H \in I_{(m, n)} \), \(A \) is an \((m, n)\)-regular element of \(I_{(m, n)} \). Hence, \(I_{(m, n)} \) is \((m, n)\)-regular. For the converse, assume that \(I_{(m, n)} \) is \((m, n)\)-regular and \(a \in H \). As \([a]_{m, n} \) is in \(I_{(m, n)} \) and \(I_{(m, n)} \) is \((m, n)\)-regular, there exists \(B \in I_{(m, n)} \) such that \([a]_{m, n} = ([a]_{m, n})^m \circ B \circ ([a]_{m, n})^n \subseteq ([a]_{m, n})^m \circ H \circ ([a]_{m, n})^n \subseteq (([a]_{m, n})^m \circ H \circ ([a]_{m, n})^n) \). By Theorem 4.1, we have \((([a]_{m, n})^m \circ H \circ ([a]_{m, n})^n) = (a^m \circ H \circ a^n) \). As \(\{a\} \subseteq [a]_{m, n} \), \(a \in (a^m \circ H \circ a^n) \). This implies that \(a \) is an \((m, n)\)-regular element of \(H \). Hence, \(H \) is \((m, n)\)-regular.
Lemma 3.4. [20] Let H be an ordered semihypergroup. If the sets of all $(m,0)$-hyperideals and $(0,n)$-hyperideals are denoted by $I_{(m,0)}$ and $I_{(0,n)}$ respectively, then

(i) H is $(m,0)$-regular if and only if $R = (R^m \circ H)$ (\forall R \in I_{(m,0)})$, where m is any positive integer;

(ii) H is $(0,n)$-regular if and only if $L = (H \circ L^n)$ (\forall L \in I_{(0,n)})$, where n is any positive integer.

Theorem 3.5. Let H be an ordered semihypergroup and m, n be non-negative integers. The set of all (m,n)-hyperideals will be denoted by $I_{(m,n)}$. Then H is (m,n)-regular if and only if $A = (A^m \circ H \circ A^n)$ for all $A \in I_{(m,n)}$.

Proof. If $m = n = 0$, then the statement is true because $I_{(0,0)} = \{H\}$. If $m \neq 0$ and $n = 0$ or $m = 0$ and $n \neq 0$, then the statement follows by Lemma 3.4. So, let $m \neq 0, n \neq 0$ and $A \in I_{(m,n)}$. Then, by definition of (m,n)-regularity, we have $A \subseteq (A^m \circ H \circ A^n)$ and, by definition of (m,n)-hyperideal, we have $(A^m \circ H \circ A^n) \subseteq (A) = A$. Hence, $A = (A^m \circ H \circ A^n)$.

For the converse, assume that $A = (A^m \circ H \circ A^n)$ for each $A \in I_{(m,n)}$. Take any $a \in H$, so $[a]_{m,n} \in I_{(m,n)}$. From Theorem 4.1 and by the assumption, $[a]_{m,n} = (([a]_{m,n})^m \circ H \circ [a]_{m,n}) = (a^m \circ H \circ a^n)$. As $\{a\} \subseteq [a]_{m,n}$, $a \in (a^m \circ H \circ a^n)$. Hence, H is (m,n)-regular.

Theorem 3.6. Let H be an ordered semihypergroup and m, n be non-negative integers. Then, H is (m,n)-regular if and only if $L \cap R = (R^m \circ L^n)$ for each $(0,0)$-hyperideal R and for each $(0,n)$-hyperideal L of H.

Proof. The statement is trivially true for $m = 0 = n$. If $m = 0$ and $n \neq 0$ or $m \neq 0$ and $n = 0$, then the result follows by Lemma 3.4. So, let $m \neq 0, n \neq 0$, R be any $(m,0)$-hyperideal and L be any $(0,n)$-hyperideal of H. Therefore $R^m \circ L^n \subseteq (R^m \circ H) \subseteq (R) = R$ and $(R^m \circ L^n) \subseteq (H \circ L^n) \subseteq (L) = L$. Therefore, $(R^m \circ L^n) \subseteq R \cap L$. As H is (m,n)-regular, we have

\[(R \cap L)^m \circ H \circ (R \cap L)^n \]
\[\subseteq (R^m \circ H \circ L^n)
\[\subseteq (R^m \circ H \circ L^{n-1} \circ (L^m \circ H \circ L^n)) \text{ (as } H \text{ is } (m,n)-\text{regular})
\[= (R^m \circ H \circ L^{n-1} \circ L^m \circ H \circ L^n) \text{ (by Lemma 1.1)}
\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ (L^m \circ H \circ L^n) \circ H \circ L^n) \text{ (as } H \text{ is } (m,n)-\text{regular})
\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ (L^m \circ H \circ L^n) \circ H \circ L^n)) \text{ (as } H \circ L^n \subseteq (H \circ L^n))\]
\((m, n) \)-Hyperideals in ordered semihypergroups

\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ (L^m \circ H \circ L^n \circ H \circ L^n)] \quad \text{(by Lemma 1.1)} \]
\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ L^m \circ H \circ L^n \circ H \circ L^n] \quad \text{(by Lemma 1.1)} \]
\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ L^m \circ H \circ L^n \circ H \circ L^n \circ L^m \circ H \circ L^n \circ H \circ L^n) \]
\[\vdots \]
\[\subseteq (R^m \circ H \circ L^{n-1} \circ L^{m-1} \circ L^{m-1} \circ \cdots \circ L^{m-1} \circ (L^m \circ H \circ L^n) \]
\[\circ (H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[\subseteq (R^m \circ H \circ L^{n-1} \circ (L^{m-1})^{n-1} \circ L^m \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[= (R^m \circ H \circ (L^{n-1} \circ L^{mn-m-n+1} \circ L^m) \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[= (R^m \circ (H \circ L^m) \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[\subseteq (R^m \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[\subseteq (R^m \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[\subseteq (R^m \circ H \circ L^n \circ H \circ L^n \circ \cdots \circ H \circ L^n) \]
\[\subseteq (R^m \circ (H \circ L^n)^n) \]
\[\subseteq (R^m \circ L^n). \]

Therefore, \(L \cap R = (R^m \circ L^n) \).

Conversely, assume that \(L \cap R = (R^m \circ L^n) \) for each \((m, 0)\)-hyperideal \(R \) and for each \((0, n)\)-hyperideal \(L \) of \(H \). Let \(a \in S \). As \([a]_{m,0}\) is an \((m, 0)\)-hyperideal and \(H \) is a \((0, n)\)-hyperideal of \(H \), we have

\[[a]_{m,0} = [a]_{m,0} \cap H = \left((\{a\}_{m,0})^m \circ H^n \right) \]
\[\subseteq ((\{a\}_{m,0})^m \circ H) = (a^m \circ H) \quad \text{(by Theorem 2.14)} \]

Similarly, \([a]_{0,n} \subseteq (H \circ a^n)\). As \((a^m \circ H)\) and \((H \circ a^n)\) are an \((m, 0)\)-hyperideal and \((0, n)\)-hyperideal of \(H \), by hypothesis we get

\[\{a\} \subseteq [a]_{m,0} \cap [a]_{0,n} \subseteq (a^m \circ H) \cap (H \circ a^n) \]
\[= ((a^m \circ H)^m \circ (H \circ a^n)^n) \quad \text{(by hypothesis)} \]
\[\subseteq (a^m \circ H \circ a^n). \]

Hence, \(H \) is \((m, n)\)-regular. \(\square \)

Theorem 3.7. Let \(H \) be an ordered semihypergroup and \(m, n \) be positive integers (either \(m \geq 2 \) or \(n \geq 2 \)). Then, the following are equivalent:
(i) Each \((m,n)\)-hyperideal of \(H\) is idempotent;
(ii) For each \((m,n)\)-hyperideals \(A, B\) of \(H\), \(A \cap B \subseteq (A^m \circ B^n)\);
(iii) \([a]_{m,n} \cap [b]_{m,n} \subseteq ([a]_{m,n})^m \circ ([b]_{m,n})^n \forall a, b \in H\);
(iv) \([a]_{m,n} \subseteq ([a]_{m,n})^m \circ ([a]_{m,n})^n \forall a \in H\);
(v) \(H\) is \((m,n)\)-regular.

Proof. (i) \(\Rightarrow\) (ii) Assume that each \((m,n)\)-hyperideal of \(H\) is idempotent. Let \(A\) and \(B\) be any \((m,n)\)-hyperideals of \(H\). As \(A \cap B\) is an \((m,n)\)-hyperideal of \(H\), we have

\[
A \cap B = ((A \cap B)^2) = ((A \cap B) \circ ((A \cap B))^2) = ((A \cap B)^3) = \cdots = ((A \cap B)^{m+n}) = ((A \cap B)^m \circ (A \cap B)^n) \subseteq (A^m \circ B^n).
\]

(ii) \(\Rightarrow\) (iii) and (iii) \(\Rightarrow\) (iv) are obvious.

(iv) \(\Rightarrow\) (v) Take any \((m,n)\)-hyperideal \(A\) of \(H\). As \(H\) is (\(m,n\))-regular, \(a \in A\). Then, by (iv), we have

\[
[a]_{m,n} \subseteq ([a]_{m,n})^m \circ ([a]_{m,n})^n \\
\subseteq ([a]_{m,n})^m \circ ([a]_{m,n})^{n-1} \circ ([a]_{m,n})^m \circ ([a]_{m,n})^n \\
= ([a]_{m,n})^m \circ ([a]_{m,n})^{n-1} \circ ([a]_{m,n})^m \circ ([a]_{m,n})^n \ (\text{by Lemma 1.1}) \\
\subseteq ([a]_{m,n})^m \circ H \circ ([a]_{m,n})^n \\
= ([a]_{m,n})^m \circ H \circ ([a]_{m,n})^n \ (\text{by Lemma 1.1}) \\
= (a^m \circ H) \circ ([a]_{m,n})^n \ (\text{by Theorem 4.1}) \\
= (a^m \circ (H \circ [a]_{m,n})) \ (\text{by Lemma 1.1}) \\
= (a^m \circ (H \circ a^n)) \ (\text{by Theorem 4.1}) \\
= (a^m \circ H \circ a^n) \ (\text{by Lemma 1.1})
\]

As \(\{a\} \subseteq [a]_{m,n}, a \in (a^m \circ H \circ a^n)\). Hence \(H\) is \((m,n)\)-regular.

(v) \(\Rightarrow\) (i) Take any \((m,n)\)-hyperideal \(A\) of \(H\). As \(H\) is \((m,n)\)-regular and \(A\) is an \((m,n)\)-hyperideal, \(A = (A^m \circ H \circ A^n)\). Now

\[
(A \circ A) = ((A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n)) \subseteq (A^m \circ H \circ A^n) = A
\]
and

\[
A = (A^m \circ H \circ A^n) = ((A^m \circ H \circ A^n))^m \circ H \circ A^n \\
= (A^m \circ H \circ A^n) \cdots \circ (A^m \circ H \circ A^n) \circ H \circ A^n \\
= (A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n) \circ \ldots \circ (A^m \circ H \circ A^n) \circ H \circ A^n
\]
\((A^m \circ H \circ A^n) \circ \cdots \circ (A^m \circ H \circ A^n) \circ H \circ A^n\)

\(\subseteq ((A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n) \circ H \circ A^n) \)
\(\subseteq ((A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n) \circ H \circ (H \circ A^n)) \)
\(\subseteq ((A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n) \circ (H \circ A^n) \circ (H \circ A^n)) \)
\(\subseteq ((A^m \circ H \circ A^n) \circ (A^m \circ H \circ A^n) \circ (H \circ A^n) \circ (H \circ A^n)) \)
\(= (A \circ A) \).

Therefore, \(A = (A \circ A) \). Hence, each \((m, n)\)-hyperideal of \(H \) is an idempotent.

The following example shows that the condition \(m \geq 2 \) or \(n \geq 2 \) in Theorem 3.7 is necessary.

Example 3.8. [24] Let \(H = \{a, b, c, d, e\} \). Define a hyperoperation \(\circ \) on \(H \) by the table

\(\circ \)	\(a \)	\(b \)	\(c \)	\(d \)	\(e \)
\(a \)	\{a\}	\{a\}	\{a\}	\{a\}	\{a\}
\(b \)	\{a\}	\{a, b\}	\{a\}	\{a, d\}	\{a\}
\(c \)	\{a\}	\{a, e\}	\{a, c\}	\{a, c\}	\{a, e\}
\(d \)	\{a\}	\{a, b\}	\{a, d\}	\{a, d\}	\{a, b\}
\(e \)	\{a\}	\{a, e\}	\{a\}	\{a, c\}	\{a\}

and the order \(\leq \) on \(H \) as \(\leq := \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e)\} \). The covering relation \(\prec \) and the figure of \(H \) are as

\(\prec := \{(a, b), (a, c), (a, d), (a, e)\} \)

Now, \((H, \circ, \leq) \) is a regular ordered semihypergroup. One may easily check that \(A = \{a, e\} \) is a bi-hyperideal of \(H \), but \(A \neq (A^2) \).
4 Relations \mathcal{I}_n, $m\mathcal{I}$, \mathcal{H}_m^n and B_m^n on ordered semihypergroups

In this section, the relations \mathcal{I}_n, $m\mathcal{I}$, \mathcal{H}_m^n and B_m^n on an ordered semihypergroup are introduced. Then, some related properties of these relations are studied.

Definition 4.1. Let H be an ordered semihypergroup and m, n be positive integers. We define the relations \mathcal{I}_n, $m\mathcal{I}$, \mathcal{H}_m^n and B_m^n as

\[
\mathcal{I}_n = \{(a, b) \in S \times S \mid [a]_{0,n} = [b]_{0,n}\};
\]

\[
m\mathcal{I} = \{(a, b) \in S \times S \mid [a]_{m,0} = [b]_{m,0}\};
\]

\[
\mathcal{H}_m^n = m\mathcal{I} \cap \mathcal{I}_n;
\]

\[
B_m^n = \{(a, b) \in S \times S \mid [a]_{m,n} = [b]_{m,n}\}.
\]

Clearly, all the relations defined above are equivalence relations on H.

Lemma 4.2. Let H be an ordered semihypergroup and $a, b \in H$ be $m\mathcal{I}$-related (respectively, \mathcal{I}_n-related). Then, $(a^m \circ H) = (b^m \circ H)$ (respectively, $(H \circ a^n) = (H \circ b^n)$).

Proof. Suppose that $(a, b) \in m\mathcal{I}$. Then, by definition, $[a]_{m,0} = [b]_{m,0}$, i.e. $(\bigcup_{i=1}^m a_i \cup a^m \circ H) = (\bigcup_{i=1}^m b_i \cup b^m \circ H)$. Therefore, $\{a\} \subseteq (\bigcup_{i=1}^m b_i \cup b^m \circ H)$ and $\{b\} \subseteq (\bigcup_{i=1}^m a_i \cup a^m \circ H)$. Thus, $(a^m \circ H) \subseteq ((\bigcup_{i=1}^m b_i \cup b^m \circ H)^m \circ H) = ((b^m \circ H)^m \circ H)$ (by Theorem 4.1). Similarly, from $\{b\} \subseteq (\bigcup_{i=1}^m a_i \cup a^m \circ H)$, we have $(b^m \circ H) \subseteq (a^m \circ H)$. Hence $(a^m \circ H) = (b^m \circ H)$. Similarly, we may show that $(a, b) \in \mathcal{I}_n$ implies $(H \circ a^n) = (H \circ b^n)$. \hfill \Box

Lemma 4.3. Let H be an ordered semihypergroup and $a, b \in H$ be \mathcal{H}_m^n-related. Then, $(a^m \circ H) = (b^m \circ H)$, $(H \circ a^n) = (H \circ b^n)$ and $(a^m \circ H \circ a^n) = (b^m \circ H \circ b^n)$.

Proof. Suppose that $(a, b) \in \mathcal{H}_m^n$. Then, by definition, $(a, b) \in m\mathcal{I}$ and $(a, b) \in \mathcal{I}_n$. By Lemma 4.1, $(a^m \circ H) = (b^m \circ H)$ and $(H \circ a^n) = (H \circ b^n)$. Therefore, we have $(a^m \circ H \circ a^n) = ((a^m \circ H) \circ a^n) = ((b^m \circ H) \circ a^n) = (b^m \circ H \circ a^n) = (b^m \circ (H \circ a^n)) = (b^m \circ (H \circ b^n)) = (b^m \circ H \circ b^n)$.

\hfill \Box

Lemma 4.4. Let H be an ordered semihypergroup. Then, $B_m^n \subseteq \mathcal{H}_m^n$.

(m, n)-Hyperideals in ordered semihypergroups

Proof. Let \((a, b) \in B_m^n\). Then, \([a]_{m,n} = [b]_{m,n}\), i.e. \(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\) = \(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\). So \(a^i \subseteq \bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\) and \(b^i \subseteq \bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\) for each \(i \in \{1, 2, \ldots, m + n\}\). It follows that \(\bigcup_{i=1}^{m+n} a^i \subseteq \bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\) and \(\bigcup_{i=1}^{m+n} b^i \subseteq \bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\).

Now \((a^m \circ H) \subseteq (((\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n)^m \circ H) \cup (b^m \circ H)) \subseteq (((\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n)^m \circ H) \cup (b^m \circ H))\). Therefore, by Theorem 4.1, \((a^m \circ H) \subseteq (b^m \circ H)\) and \((b^m \circ H) \subseteq (a^m \circ H)\). Now

\[
[a]_{m,0} = \left(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H\right)
\]

\[
\subseteq \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup a^m \circ H\] (since \(\bigcup_{i=1}^{m+n} a^i \subseteq \bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\))

\[
\subseteq \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup (a^m \circ H)\] (as \(a^m \circ H \subseteq (a^m \circ H)\))

\[
\subseteq \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup (b^m \circ H)\] (as \((a^m \circ H) \subseteq (b^m \circ H)\))

\[
= \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup (b^m \circ H)\] (by Lemma 1.1)

\[
= \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup (b^m \circ H)\] (by Lemma 1.1)

\[
\subseteq \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H \circ b^n\right) \cup (b^m \circ H)\] (since \(\bigcup_{i=1}^{m+n} b^i \subseteq \bigcup_{i=1}^{m+n} b^i \cup b^m \circ H\))

\[
= \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H\right)\] (as \(b^m \circ H \circ b^n \subseteq (b^m \circ H)\))

\[
= [b]_{m,0};
\]

and

\[
[b]_{m,0} = \left(\bigcup_{i=1}^{m+n} b^i \cup b^m \circ H\right)
\]

\[
\subseteq \left(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\right) \cup (b^m \circ H)\] (since \(\bigcup_{i=1}^{m+n} b^i \subseteq \bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\))

\[
\subseteq \left(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\right) \cup (b^m \circ H)\] (as \(b^m \circ H \subseteq (b^m \circ H)\))

\[
\subseteq \left(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n\right) \cup (a^m \circ H)\] (as \((b^m \circ H) \subseteq (a^m \circ H)\))
\[=((\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^m \cup a^m \circ H) \] (by Lemma 1.1)
\[=(\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^m \cup a^m \circ H) \] (by Lemma 1.1)
\[\subseteq (\bigcup_{i=1}^{m} a^i \cup a^m \circ H \cup a^m \circ H \circ a^n \cup a^m \circ H) \] (since \[\bigcup_{i=1}^{m+n} a^i \subseteq \bigcup_{i=1}^{m} a^i \cup a^m \circ H \]
\[\subseteq (\bigcup_{i=1}^{m} a^i \cup a^m \circ H) \] (as \[a^m \circ H \circ a^n \subseteq a^m \circ H \])
\[=[a]_{m,n} \] (as \[a \circ b \circ a \circ b \subseteq a \circ b \circ a \circ b \]).

Therefore, \([a]_{m,0} = [b]_{m,0} \). Similarly, one can show that \([a]_{0,n} = [b]_{0,n} \). Thus, \((a, b) \in \mathcal{H}_m \). Hence, \(\mathcal{B}_m^m \subseteq \mathcal{H}_m^m \).

Theorem 4.5. Let \(H \) be an \((m, n)\)-regular ordered semihypergroup. Then, \(\mathcal{B}_m^m = \mathcal{H}_m^m \).

Proof. Let \((a, b) \in \mathcal{H}_m^m \). Therefore, by Lemma 4.2, \((a^m \circ H \circ a^n) = (b^m \circ H \circ b^n) \). As \(S \) is \((m, n)\)-regular, \(a \in (a^m \circ H \circ a^m) \) and \(b \in (b^m \circ H \circ b^n) \). So \(a^i \subseteq (a^m \circ H \circ a^m) \) for each \(i \in \{1, 2, \ldots, m + n\} \), it follows that \(\bigcup_{i=1}^{m+n} a^i \subseteq (a^m \circ H \circ a^m) \). Thus, \([a]_{m,n} = (\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^m) = (a^m \circ H \circ a^m) \) and similarly \([b]_{m,n} = (b^m \circ H \circ b^n) \). Thus, \([a]_{m,n} = [b]_{m,n} \), i.e. \((a, b) \in \mathcal{B}_m^m \). This implies that \(\mathcal{H}_m^m \subseteq \mathcal{B}_m^m \). Hence, by Lemma 4.3, \(\mathcal{B}_m^m = \mathcal{H}_m^m \).

Lemma 4.6. If \(B_x \) and \(B_y \) are two \((m, n)\)-regular \(\mathcal{B}_m^n \)-classes contained in the same \(\mathcal{H}_m^n \)-class of ordered semihypergroup \(H \), then \(B_x = B_y \).

Proof. As \(x \) and \(y \) are \((m, n)\)-regular elements of \(H \), \(x \in (x^m \circ H \circ x^n) \) and \(y \in (y^m \circ H \circ y^n) \), \(\{x\}^i \subseteq (x^m \circ H \circ x^n) \) and \(\{y\}^i \subseteq (y^m \circ H \circ y^n) \) for each \(i \in \{1, 2, \ldots, m + n\} \). It follows that \(\bigcup_{i=1}^{m+n} x^i \subseteq (x^m \circ H \circ x^m) \) and \(\bigcup_{i=1}^{m+n} y^i \subseteq (y^m \circ H \circ y^n) \). Therefore, \([x]_{m,n} = (x^m \circ H \circ x^n) \) and \([y]_{m,n} = (y^m \circ H \circ y^n) \). Since \(x \) and \(y \) are contained in the same \(\mathcal{H}_m^n \)-class, by Lemma 4.2, \((x^m \circ H \circ x^n) = (y^m \circ H \circ y^n) \). So \([x]_{m,n} = [y]_{m,n} \). Therefore, \(xB_{m,y}^n \). Hence, \(B_x = B_y \).

5 \((m, 0)\)-regularity \([(0, n)\)-regularity\] and \((m, n)\)-right weakly regularity of a \(\mathcal{B}_m^n \)-class, \(\mathcal{Q}_m^n \)-class and \(\mathcal{H}_m^n \)-class

In this section, the \((m, 0)\)-regular, \((0, n)\)-regular, \((m, n)\)-regular and \((m, n)\)-right weakly regular class of the relations \(\mathcal{H}_m^n \) and \(\mathcal{B}_m^n \) are studied.
Lemma 5.1. An \mathcal{H}^n_m-class H of an ordered semihypergroup is $(m,0)$-regular $[(0,n)]$-regular if it contains an $(m,0)$-regular $[(0,n)]$-regular element.

Proof. Let a be an $(m,0)$-regular element and c be an element of \mathcal{H}^n_m-class H. This implies $[b]_{m,0} = [a]_{m,0}$ and $a \in (a^m \circ H)$. Therefore, $\{a\}^i \subseteq (a^m \circ H)$ for each $i \in \{1,2,\ldots,m\}$. Then $\bigcup_{i=1}^m a^i \subseteq (a^m \circ H)$ implies $[\bigcup_{i=1}^m a^i] \subseteq (a^m \circ H) = (a^m \circ H)$. Thus, $[b]_{m,0} = [a]_{m,0} = (\bigcup_{i=1}^m a^i \cup a^m \circ H) = (\bigcup_{i=1}^m a^i \cup (a^m \circ H) = (a^m \circ H)$. So b is an $(m,0)$-regular element of \mathcal{H}^n_m-class H. Hence, the \mathcal{H}^n_m-class H is $(m,0)$-regular. The dual statement follows on the similar lines.

Lemma 5.2. An \mathcal{H}^n_m-class H of an ordered semihypergroup is (m,n)-regular if it contains an (m,n)-regular element.

Proof. The proof is similar to the proof of Lemma 5.1.

Lemma 5.3. A \mathcal{B}^n_m-class B of an ordered semihypergroup is (m,n)-regular if it contains an (m,n)-regular element.

Proof. Let $a \in B$ be an (m,n)-regular element and $b \in B$. Then, $a \in (a^m \circ H \circ a^n)$ so that $\{a\}^i \subseteq (a^m \circ H \circ a^n)$ for each $i \in \{1,2,\ldots,m+n\}$, so $\bigcup_{i=1}^{m+n} a^i \subseteq (a^m \circ H \circ a^n)$ implies $[\bigcup_{i=1}^{m+n} a^i] \subseteq ((a^m \circ H \circ a^n) = (a^m \circ H \circ a^n)$. Since $a,b \in B$, $[b]_{m,n} = [a]_{m,n} = (\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n) = (\bigcup_{i=1}^{m+n} a^i \cup (a^m \circ H \circ a^n) = (a^m \circ H \circ a^n)$. By Lemmas 4.3 and 4.2, we have $[a^m \circ H \circ a^n] = (b^m \circ H \circ b^n)$, so $b \in (b^m \circ H \circ b^n)$. Thus, b is an (m,n)-regular element of B. Hence, B is (m,n)-regular.

Definition 5.4. Let H be an ordered semihypergroup and m,n be positive integers. An element a of H is said to be an (m,n)-right weakly regular element if $a \in (a^m \circ H \circ a^n \circ H)$. The ordered semihypergroup H is said to be (m,n)-right weakly regular if each element of H is (m,n)-right weakly regular, equivalently, for each subset A of H, $A \subseteq (A^m \circ H \circ A^n \circ H)$.

Lemma 5.5. A \mathcal{B}^n_m-class B of an ordered semihypergroup H is (m,n)-right weakly regular if it contains an (m,n)-right weakly regular element.

Proof. Let $a \in B$ be an (m,n)-right weakly regular element and $b \in B$. Then, $a \in (a^m \circ H \circ a^n \circ H)$. This implies that $\{a\}^i \subseteq (a^m \circ H \circ a^n \circ H)$.
for each $i \in \{1,2,\ldots,m+n\}$, so $\bigcup_{i=1}^{m+n} a^i \subseteq (a^m \circ H \circ a^n \circ H)$ implies
\[(\bigcup_{i=1}^{m+n} a^i) \subseteq ((a^m \circ H \circ a^n \circ H)] = (a^m \circ H \circ a^n \circ H). \]
So, $(a^m \circ H \circ a^n] \subseteq ((a^m \circ H \circ a^n \circ H)] \circ H \circ ((a^m \circ H \circ a^n \circ H)] \subseteq (a^m \circ H \circ a^n \circ H).$

Since $a, b \in B$, $[b]_{m,n} = [a]_{m,n} = (\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H \circ a^n] = (\bigcup_{i=1}^{m+n} a^i] \cup (a^m \circ H \circ a^n] \subseteq (\bigcup_{i=1}^{m+n} a^i] \cup (a^m \circ H \circ a^n \circ H] = (a^m \circ H \circ a^n \circ H] \subseteq (\bigcup_{i=1}^{m+n} a^i] \cup (a^m \circ H \circ a^n \circ H] = (a^m \circ H \circ a^n \circ H] \subseteq (b^m \circ H \circ b^n \circ H] \subseteq (b^m \circ H \circ b^n \circ H].$ Therefore, b is an (m,n)-right weakly regular element of B. Hence, B is (m,n)-right weakly regular.

Corollary 5.6. An ordered semihypergroup H is (m,n)-regular ((m,n)-right weakly regular) if and only if each B^m_n-class of H contains an (m,n)-regular ((m,n)-right weakly regular) element.

Lemma 5.7. An H^m_n-class H of an ordered semihypergroup is (m,n)-right weakly regular if it contains an (m,n)-right weakly regular element.

Proof. Let a be an (m,n)-right weakly regular element and b be an element of H^m_n-class H. Then, $a \in (a^m \circ H \circ a^n \circ H).$ This gives that $\{a\}^i \subseteq (a^m \circ H \circ a^n \circ H)$ for each $i \in \{1,2,\ldots,m+n\}$, and so $\bigcup_{i=1}^{m+n} a^i \subseteq (a^m \circ H \circ a^n \circ H)$ implies $\bigcup_{i=1}^{m+n} a^i \subseteq ((a^m \circ H \circ a^n \circ H] = (a^m \circ H \circ a^n \circ H)$. Therefore, $(a^m \circ H) \subseteq ((a^m \circ H \circ a^n \circ H] \circ H = (a^m \circ H \circ a^n \circ H) \subseteq (a^m \circ H \circ a^n \circ H].$ Since $a, b \in H$, $[b]_{m,0} = [a]_{m,0} = (\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H] = (\bigcup_{i=1}^{m+n} a^i \cup a^m \circ H] = (a^m \circ H) \subseteq (a^m \circ H \circ a^n \circ H].$ So, by Lemma 4.2, $(a^m \circ H \circ a^n] = (b^m \circ H \circ b^n]$. This implies that $[b]_{m,0} \subseteq (a^m \circ H \circ a^n \circ H] = (a^m \circ H \circ a^n \circ H] = (b^m \circ H \circ b^n] \circ H = (b^m \circ H \circ b^n] \circ H = (b^m \circ H \circ b^n \circ H].$ Therefore, $b \in (b^m \circ H \circ b^n \circ H]$ and thus, b is an (m,n)-right weakly regular element of H^m_n-class H. Hence, H is (m,n)-right weakly regular.

Corollary 5.8. An ordered semihypergroup H is (respectively, $(m,0)$-regular, $(0,n)$-regular, (m,n)-regular) (m,n)-right weakly regular if and only if each H^m_n-class of H contains a (respectively, $(m,0)$-regular, $(0,n)$-regular, (m,n)-regular) (m,n)-right weakly regular element.

6 Conclusion

The main purpose of the present paper is to introduce the equivalence relations mI, nB^m_n and H^m_n on an ordered semihypergroup and enhance the un-
understanding of different classes of ordered semihypergroups (\((m, n)\)-regular, \((m, 0)\)-regular, \((0, n)\)-regular, \((m, n)\)-right weakly regular) by considering the structural influence of the equivalence relations \(mI, I_n, B^n_m, \) and \(H^n_m\). In particular, if we take \(m = 1 = n\), the equivalence relations \(mI, I_n\) and \(H^n_m\) are reduced to the equivalence relations \(R, L\) and \(H\) in ordered semihypergroup, respectively, which mimic the definition of the usual Green’s relations \(R, L\) and \(H\) in plain semihypergroups [11]. Also when we take \(m = 1 = n\) in Theorems 1.9, 1.11, 4.1, 3.6, and 4.2, and Lemmas 4.1, 4.2, 4.3, 4.3, 5.1, and 5.2, then we obtain all the results for bi-hyperideals in an ordered semihypergroup and some characterizations of regular ordered semihypergroups, which is the main application of the results presented in this paper.

References

[1] Alimov, N.G., *On ordered semigroups*, Izv. Akad. Nauk SSSR Ser. Math. 14 (1950), 569-576.

[2] Clifford, A.H., *Naturally totally ordered commutative semigroups*, Amer. J. Math. 76 (1954), 631-646.

[3] Clifford, A.H., *Totally ordered commutative semigroups*, Bull. Amer. Math. Soc. (N.S.) 64 (1958), 305-316.

[4] Clifford, A.H., *Ordered commutative semigroups of the second kind*, Proc. Amer. Math. Soc. 9 (1958), 682-687.

[5] Conrad, P., *Ordered semigroups*, Nagoya Math. J. 16 (1960), 51-64.

[6] Changphas, T. and Davvaz, B., *Bi-hyperideals and quasi-hyperideals in ordered semihypergroups*, Ital. J. Pure Appl. Math. 35 (2015), 493-508.

[7] Changphas, T. and Davvaz, B., *Properties of hyperideals in ordered semihypergroups*, Ital. J. Pure Appl. Math. 33 (2014), 425-432.

[8] Davvaz, B., “Semihypergroup Theory”, Elsevier, 2016.

[9] Davvaz, B., *Some results on congruences in semihypergroups*, Bull. Malays. Math. Sci. Soc. 23 (2000), 53-58.

[10] Davvaz, B. and Leoreanu-Fotea, V., *Binary relations on ternary semihypergroups*, Comm. Algebra 38 (2010), 3621-3636.

[11] Hasankhani, A., *Ideals in a semihypergroup and Green’s relations*, Ratio Math. 13 (1999), 29-36.
[12] Hila, K., Davvaz, B., and Naka, K., *On quasi-hyperideals in semihypergroups*, Comm. Algebra 39 (2011), 4183-4194.

[13] Hion, Y.V., *Ordered semigroups*, Izv. Akad. Nauk SSSR Ser. Math. 21 (1957), 209-222.

[14] Heidari, D. and Davvaz, B., *On ordered hyperstructures*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73(2) (2011), 85-96.

[15] Kehayopulu, N., *On regular, regular duo ordered semigroups*, Pure Math. Appl., 5(2) (1994), 161-176.

[16] Lajos, S., *Generalized ideals in semigroups*, Acta Sci. Math. (Szeged) 22 (1961), 217-222.

[17] Lajos, S., *Notes on (m,n)-ideals I*, Proc. Japan Acad. Ser. A Math. Sci. 39 (1963), 419-421.

[18] Lajos, S., *Notes on (m,n)-ideals II*, Proc. Japan Acad. Ser. A Math. Sci. 40 (1964), 631-632.

[19] Lajos, S., *Notes on (m,n)-ideals III*, Proc. Japan Acad. Ser. A Math. Sci. 41 (1965), 383-385.

[20] Mahboob, A., Khan, N.M., and Davvaz, B., *Structural properties for (m,n)-quasi-hyperideals in ordered semihypergroups*, Tbilisi Math. J. 11(4) (2018), 145-163.

[21] Marty, F., *Sur une generalization de la notion de group*, Proceedings of the 8th Congress des Mathematiciens Scandinaves (1934), 45-49.

[22] Omidi, S. and Davvaz, B., *A short note on the relation N in ordered semihypergroups*, Gazi Univ. J. Sci. 29(3) (2016), 659-662.

[23] Pibaljommee, B. and Davvaz, B., *On fuzzy bi-hyperideals in ordered semihypergroups*, J. Intell. Fuzzy Syst. 28 (2015), 2141-2148.

[24] Pibaljommee, B., Wannatong, K., and Davvaz, B., *An investigation on fuzzy hyperideals of ordered semihypergroups*, Quasigroups Related Systems 23 (2015), 297-308.

[25] Tang, J., Davvaz, B., and Luo, Y.F., *Hyperfilters and fuzzy hyperfilters of ordered semihypergroups*, J. Intell. Fuzzy Syst. 29(1) (2015), 75-84.

[26] Tang, J., Davvaz, B., and Xie, X.Y., *An investigation on hyper S-posets over ordered semihypergroups*, Open Math. 15 (2017), 37-56.
Ahsan Mahboob
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Email: khanahsan56@gmail.com

Noor Mohammad Khan
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Email: nm_khan123@yahoo.co.in

Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran.
Email: dawvaz@yazd.ac.ir
