Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Atherosclerosis is the main pathological basis of cardiovascular diseases and it is closely associated with hyperlipidemia, endothelial injury, macrophage-derived foam cells formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota. Various symptomatic treatments, that are currently used to inhibit atherosclerosis, need to be administered in long term and their adverse effects cannot be ignored. Berberine (BBR) has beneficial effects on atherosclerosis through regulating multiple aspects of its progression. This review highlights the recent advances in understanding the anti-atherosclerosis mechanism of BBR. BBR alleviated atherosclerosis by attenuation of dyslipidemia, correction of endothelial dysfunction, inhibition of macrophage inflammation and foam cell formation, activation of macrophage autophagy, regulation of the proliferation and migration of VSMCs, attenuation of platelet aggregation, and modulation of gut microbiota. This review would provide a modern scientific perspective to further understanding the molecular mechanism of BBR attenuating atherosclerosis and supply new ideas for atherosclerosis management.

Keywords: atherosclerosis, berberine, molecular mechanism, cell targets, gut microbiota

HIGHLIGHTS
1) Berberine attenuated atherosclerosis by regulating dyslipidemia.
2) Berberine alleviated atherosclerosis by affecting cellular targets, including ameliorating endothelial injury, inhibiting the formation of macrophage-derived foam cells, regulating the proliferation and migration of vascular smooth muscle cells, and suppressing platelet aggregation.
3) Berberine restrained atherosclerosis by modulating gut microbiota.

INTRODUCTION
According to the World Health Organization (WHO), an estimated 17.9 million people died of cardiovascular diseases, accounting for 30% of the total mortality worldwide (WHO, 2020). Atherosclerosis is the main pathological basis of cardiovascular diseases (Benjamin et al., 2019). The complex pathological mechanisms are developed by various factors, such as hyperlipidemia, endothelial injury, macrophage-derived foam cells formation, proliferation and migration of vascular smooth muscle cells (VSMCs), platelet aggregation, and altered gut microbiota (Tabas et al., 2015;
Atherosclerosis is initiated primarily by the accumulation of low-density lipoprotein cholesterol (LDL-C) in the vessel wall and subsequently intensified by oxidized low-density lipoprotein (oxLDL) (Marchio et al., 2019). Circulating oxLDL, increased chemokines together with the expression of adhesion proteins trigger the recruitment of immune cells, particularly monocytes (Buckley and Ramji, 2015). The monocytes then differentiate into macrophages, which engulf oxLDL and lead to foam cell formation—the hallmark of atherosclerosis (McLaren et al., 2011; Buckley and Ramji, 2015; Tabas and Bornfeldt, 2016). Subsequently, necrosis or apoptosis of foam cells, proliferation and migration of VSMCs coupled with chronic inflammatory response result in lesion development and atherosclerosis complications (McLaren et al., 2011; Buckley and Ramji, 2015; Basatemur et al., 2019).

Clinically, drugs used for symptomatic treatment mainly include lipid-lowering drugs (statins and niacins), antiplatelet and thrombolytic drugs (aspirin and urokinase), and anticoagulant drugs (warfarin). For atherosclerosis patients with ischemic symptoms, treatment of vasodilators and β-blockers such as phentolamine and propranolol can also be applied. Atherosclerosis can be effectively attenuated by these drugs, but the adverse effects of these drugs have been widely documented after long-term therapy. For example, statins can cause liver injury, myopathy, and rhabdomyolysis that cannot be ignored and there is an urgent need to develop new therapies (Björnsson, 2017; Liu et al., 2019).

The Nobel Prize in Physiology or Medicine in 2015 was awarded to Youyou Tu for the discovery of qinghaosu (artemisinin) and to William C. Campbell and Satoshi Omura awarded to Youyou Tu for the discovery of qinghaosu (artemisinin) and to William C. Campbell and Satoshi Omura in 2015; Marchio et al., 2019). With the growing use of alternative herbal medicines for atherosclerosis management, BBR, as a bright new star, could alleviate atherosclerosis through regulating serum lipid profile.

According to the studies of Kong et al., orally administered BBR reduced the serum TC, TG, and LDL-C in hypercholesterolemic patients after a 3-months treatment. BBR activated extracellular signal-regulated kinase (ERK) and increased the mRNA stability of low-density lipoprotein receptor (LDLR), thus exhibited lipid-lowering effects in hyperlipidimic hamsters and HepG2 cells (Kong et al., 2004). This finding is consistent with a recent study conducted by Zhou et al., who suggested that BBR and its metabolites increased the LDLR mRNA and protein and had beneficial effects on inhibiting cellular lipid accumulation (Zhou et al., 2014). Clinical trials indicated that BBR increased plasma HDL-C and reduced TC, TG, and LDL-C after three months of administration (1.0 g daily) in subjects with low cardiovascular risk and patients with dyslipidemia and type 2 diabetes (Zhang et al., 2008; Derosa et al., 2013). The combination of BBR and simvastatin reduced serum LDL-C (46.2%) more effectively than that of BBR (26.8%) or simvastatin (28.3%) administered alone. This role might be attributed to the up-regulatory effects on LDLR expression of BBR, which is distinct from the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase with statins (Kong et al., 2008). Another study by Brusq et al. demonstrated that BBR inhibited lipid synthesis in HepG2 cells through the activation of adenosine monophosphate-activated protein kinase (AMPK) in addition to upregulating the LDLR (Brusq et al., 2006). Recent studies showed that BBR could alleviate hyperlipidemia partly by promoting intracellular cholesterol efflux and decreasing cholesterol uptake by enterocytes (Wang et al., 2014; Li et al., 2015; Ma et al., 2020a).

BERBERINE ATTENUATED ATHEROSCLEROSIS BY REGULATING DYSLIPIDEMIA

Hyperlipidemia, characterized by declined high-density lipoprotein (HDL) and increased total cholesterol (TC), triglyceride (TG), and LDL-C levels in serum, is a major risk factor of atherosclerosis. LDL-C plays a primary role in the formation of atherosclerosis plaque (Botham and Wheeler-Jones, 2013; Marchio et al., 2019). With the growing use of alternative herbal medicines for atherosclerosis management, BBR, as a bright new star, could alleviate atherosclerosis through regulating serum lipid profile.

According to the studies of Kong et al., orally administered BBR reduced the serum TC, TG, and LDL-C in hypercholesterolemic patients after a 3-months treatment. BBR activated extracellular signal-regulated kinase (ERK) and increased the mRNA stability of low-density lipoprotein receptor (LDLR), thus exhibited lipid-lowering effects in hyperlipidimic hamsters and HepG2 cells (Kong et al., 2004). This finding is consistent with a recent study conducted by Zhou et al., who suggested that BBR and its metabolites increased the LDLR mRNA and protein and had beneficial effects on inhibiting cellular lipid accumulation (Zhou et al., 2014). Clinical trials indicated that BBR increased plasma HDL-C and reduced TC, TG, and LDL-C after three months of administration (1.0 g daily) in subjects with low cardiovascular risk and patients with dyslipidemia and type 2 diabetes (Zhang et al., 2008; Derosa et al., 2013). The combination of BBR and simvastatin reduced serum LDL-C (46.2%) more effectively than that of BBR (26.8%) or simvastatin (28.3%) administered alone. This role might be attributed to the up-regulatory effects on LDLR expression of BBR, which is distinct from the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase with statins (Kong et al., 2008). Another study by Brusq et al. demonstrated that BBR inhibited lipid synthesis in HepG2 cells through the activation of adenosine monophosphate-activated protein kinase (AMPK) in addition to upregulating the LDLR (Brusq et al., 2006). Recent studies showed that BBR could alleviate hyperlipidemia partly by promoting intracellular cholesterol efflux and decreasing cholesterol uptake by enterocytes (Wang et al., 2014; Li et al., 2015; Ma et al., 2020a).
BERBERINE ALLEVIATED ATHEROSCLEROSIS BY AFFECTING CELLULAR TARGETS

Endothelial Cells
Vascular endothelium, the inner layer of the cardiovascular system, is a major regulator of vascular homeostasis in healthy individuals (Gimbrone and Garcia-Cardena, 2016). The healthy endothelium function mainly as a mechanical barrier between blood vessel walls and plasma molecules. Besides, it can respond to physical and chemical stimuli by producing numerous factors that regulate leukocyte attachment, vascular tone, thromboresistance, vessel wall inflammation, and VSMCs proliferation (Deanfield et al., 2007). Endothelial cell dysfunction plays a vital role in atherosclerosis lesion initiation and progression.

Berberine Suppressed Endothelial Proinflammation
A spectrum of factors lead to endothelial dysfunction, which results in the expression of endothelial-leukocyte adhesion molecules [e.g., vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1], secreted chemokines [e.g., monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8)] and other effector proteins (Gimbrone and Garcia-Cardena, 2016). These events bring about the recruitment of numerous inflammatory cells and trigger vascular inflammation.

BBR was reported to dramatically decrease oxLDL-stimulated adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) by suppressing the expression of VCAM-1 and ICAM-1 (Huang et al., 2013). The results from Wang et al. showed that BBR attenuated the production of adhesion molecules and suppressed monocyte attachment to endothelial cells. Therefore, the hyperglycemia-induced endothelial injury was prevented partly by activating the AMPK signaling cascade (Wang et al., 2009b). Ko et al. revealed that BBR dose-dependently suppressed angiotensin II-induced U937 cells adhesion to HUVECs and mRNA expression of C-C chemokine receptor 2 (CCR-2) in U937 monocytes and MCP-1 in HUVECs, thus effectively alleviated angiotensin II-induced inflammation.

FIGURE 2 | Atheroprotective effect and key molecular mechanism of Berberine (Fang et al., 2018). Berberine attenuated atherosclerosis by regulating dyslipidemia and gut microbiota. Meanwhile, Berberine alleviated atherosclerosis by affecting cellular targets, including ameliorating endothelial injury, inhibiting the formation of foam cells derived from macrophages, regulating the proliferation and migration of vascular smooth muscle cells and suppressing platelet aggregation. Annotations: ↓, reduction/down-regulation/inactivation; ↑, induction/up-regulation/activation.
endothelial inflammation (Ko et al., 2007). HMC05, an extract containing BBR, inhibited attachment of monocytes to endothelial cells dose-dependently via decreasing the levels of VCAM-1, ICAM-1, MCP-1, and CCR-2 after tumor necrosis factor-α (TNF-α) induction, which was similar to that of BBR (Lee et al., 2011).

Berberine Inhibited Endothelial Cell Apoptosis
Apoptosis of vascular endothelial cells contributes to atherosclerosis development. The endothelial cells undergo apoptosis when exposed to various environmental changes, such as elevated oxLDL, blood glucose, and reactive oxygen species (ROS), decreased nitric oxide, and low shear stress (Paone et al., 2019).

BBR down-regulated the expression of proliferating cell nuclear antigen, nuclear factor κB (NF-κB), and lectin-like oxLDL receptor-1. Meanwhile, BBR inactivated phosphatidylinositol 3 kinase (PI3K)/Akt serine/threonine kinase (Akt), ERK1/2, and p38 mitogen-activated-protein kinase (MAPK) signaling pathways. Thus, BBR protected against oxLDL-caused endothelial dysfunction (Wang et al., 2009b; Caliceti et al., 2017; Xu et al., 2017). Pretreatment of BBR suppressed lipopolysaccharide (LPS)-induced apoptosis in HUVECs by blocking the c-Jun N-terminal kinase-mediated signaling pathway (Guo et al., 2016). BBR also alleviated high-glucose-mediated endothelial damage and enhanced vasodilation via activating AMPK signaling cascade (Wang et al., 2009b).

Berberine Attenuated Oxidative Stress
Oxidative stress is the imbalance of excessive ROS generation and inactivated antioxidant defense systems. ROS generators in the vessel wall include nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, mitochondrial enzymes, and uncoupled endothelial nitric oxide synthase (eNOS). The antioxidant enzymes in atherosclerosis contain superoxide dismutase, catalase, glutathione peroxidase, and paraoxonases (Förstermann et al., 2017).

BBR treatment ameliorated CD31⁺/CD42⁺ microparticles-induced endothelial dysfunction through decreasing oxidative stress in HUVECs (Cheng et al., 2013). Studies conducted by Wang et al. (2009b), Zhang et al. (2013) demonstrated that BBR alleviated endothelial injury induced by high glucose and palmitate partly via activation of the AMPK signaling cascade and reduced generation of ROS. BBR could reduce intracellular ROS levels induced by TNF-α (Caliceti et al., 2017) and endothelial progenitor cells dysfunction caused by TNF-α could be improved by BBR via PI3K/Akt/eNOS signaling pathway (Xiao et al., 2014). Furthermore, HMC05, an extract containing BBR, markedly inhibited the production of ROS and dose-dependently attenuated TNF-α-induced adhesion of monocytes to endothelial cells (Lee et al., 2011).

Berberine Activated Nitric Oxide Signaling Pathway
Nitric oxide (NO) produced by nitric oxide synthase (NOS) in endothelial cells is of great importance in regulating vascular tone. Neuronal NOS, eNOS, and inducible NOS are related to the production of NO. Neuronal NOS and eNOS function as anti-atherosclerosis factors, whereas inducible NOS is likely to play a pro-atherosclerosis role (Li et al., 2014). BBR showed atheroprotective effects by affecting the NO signaling pathway.

It was demonstrated that phosphorylation of eNOS at Ser1177 was enhanced by BBR dose-dependently, leading to an increased eNOS protein expression and NO production (Wang et al., 2009b). Zhang et al. (2013) reported that BBR considerably upregulated eNOS expression and NO levels in palmitate-treated HUVECs and ameliorated endothelial dysfunction. Bu-Shen-Ning-Xin Decoction, a Chinese herbal compound containing BBR, upregulated NO synthesis via estrogen receptor β pathway. Subsequently, NO suppressed apoptosis and NFκB activity in endothelial cells and inhibited atherosclerosis progression (Wang et al., 2013). Elevated circulating endothelial microparticles (EMPs) are tightly linked to endothelial dysfunction. The diminished eNOS protein expression mediated by EMPs was markedly inhibited by BBR in HUVECs. Furthermore, BBR-induced decline in circulating CD31⁺/CD42⁺ microparticles contributed to the improvement of endothelial function in healthy subjects (Wang et al., 2009a; Cheng et al., 2013).

Macrophages
Macrophages play critical roles in the initiation and progression of atherosclerosis. The inflammatory responses and macrophage- derived foam cell formation are the principal events in atherosclerosis (Moore et al., 2013; Tabas and Bornfeldt, 2016). BBR can achieve its atheroprotective functions by affecting the behavior of macrophages, such as inhibition of macrophage inflammation, foam cell formation, and activation of macrophage autophagy.

Anti-Inflammation
Macrophages constitute the most prominent inflammatory cells in atherosclerosis lesions. Activated macrophages produce a series of inflammation-related factors such as interleukin-1β (IL-1β), TNF-α, interleukin-6 (IL-6), IL-8, MCP-1, matrix metalloproteinase-9 (MMP-9), and so on, which initiate inflammation to induce atherosclerosis (Kleemann et al., 2008). BBR significantly downregulated the expression of proinflammatory genes such as IL-1β, IL-6, MCP-1, inducible NOS, cyclooxygenase-2, and MMP-9 through AMPK activation in macrophages (Jeong et al., 2009). In oxLDL-induced macrophages, BBR markedly upregulated miR150-5p level and decreased P2X7R-mediated extracellular matrix metalloproteinase inducer (EMMPRIN) and MMP-9 expression (Lu et al., 2021). In LPS-stimulated macrophages (RAW264.7), BBR treatment potently suppressed the expression of inflammatory cytokines such as TNF-α, IL-6, and MCP-1 through inhibition of NF-κB signaling via sirtuin 1-dependent mechanisms (Zhang et al., 2017). According to the study by Chen et al., BBR inhibited acetylated low-density lipoprotein-induced TNF-α, MCP-1, and IL-6 expression through peroxisome proliferator-activated receptor γ signaling pathway in macrophages (Chen et al., 2008). BBR tremendously inhibited TNF-α and IL-6 expression stimulated with an HIV
protease inhibitor by modulating endoplasmic reticulum stress signaling pathways in murine macrophages (Zha et al., 2010). BBR reduced the expression of MMP-9 and EMMPRIN by suppressing the activation of p38 and NF-κB signaling pathways in human THP-1 macrophages (Huang et al., 2011; Huang et al., 2012b). BBR alleviated NLR Family Pyrin Domain Containing 3 inflammation activation by reducing IL-1β secretion via NF-κB inhibition in macrophages (Jiang et al., 2017). HMC05 containing BBR suppressed the activation of NF-κB and subsequently inhibited the secretion of TNF-α and IL-1β in LPS stimulated RAW264.7 cells (Kim et al., 2007). In mouse RAW264.7 macrophages and primary hepatocytes, BBR significantly downregulated the proinflammatory cytokines (TNF-α, IL-6, IL-1β, and MCP-1) via suppressing the protein expression of endoplasmic reticulum stress genes (Wang et al., 2020b).

Berberine Inhibited Foam Cell Formation

Foam cell formation is a hallmark at the initial stage of atherosclerosis. The augmented ox-LDL influx and accumulation of cholesterol esters in intimal macrophages are responsible for this issue. Macrophages express a series of scavenger receptors (SR) with affinity to oxLDL, such as SR class A type I, CD36, and LOX-1. ATP-binding cassette transporters ABCA1 and ABCG1 and SR class B type I (SR-BI) in macrophages are involved in reverse cholesterol transporters ABCA1 and ABCG1 and SR class B type I (SR-BI) in macrophages are involved in reverse cholesterol transport (Muller et al., 2011; Scherz-Shouval and Elazar, 2011; Shao et al., 2006; Doran et al., 2008; Chistiakov et al., 2015). Studies confirmed that BBR could suppress the proliferation and migration of VSMCs to attenuate atherosclerosis.

Angiotensin II and heparin-binding epidermal growth factor were enormously inhibited by BBR via delaying or partially inactivating the Akt signaling pathway, which inhibited the proliferation and migration of VSMCs (Lee et al., 2006). Lysophosphatidylcholine induced VSMCs proliferation and migration, which triggered the intimal thickening in atherosclerosis lesions. BBR inhibited lysophosphatidylcholine-stimulated VSMCs proliferation and migration via suppression of ROS generation and ERK1/2 signaling pathway (Cho et al., 2005). BBR inhibited platelet-derived growth factor (PDGF)-induced VSMCs growth via activation of AMPK/p3/p21Cip1 signaling pathway and suppressed PDGF-stimulated migration via inhibition of Ras, Cell Division Cycle 42, and Rac Family Small GTPase 1 (Liang et al., 2008). Mechanical injury-induced VSMCs growth was prevented by BBR treatment through mitogen-activated protein kinase/ERK activation, early growth response gene, c-Fos, Cyclin D1, and PDGF subunit A expression, protein disulfide isomerase activation as well as phosphorylation of MAPKs (Liang et al., 2006; Wang et al., 2020a). BBR disrupted the binding of p27, p21 with S-phase kinase-associated protein-2, and induced G0/ G1 phase arrest, which attenuated the proliferation of A7r5 induced by PDGF (Liu et al., 2011). Liu et al. found that BBR exerted anti-migratory properties in human VSMCs, possibly by downregulating MMP-2/9 and urokinase-type plasminogen activator and inhibiting AP-1 and NF-κB signaling pathways (Liu et al., 2014). BBR treatment dose-dependently inhibited VSMCs migration induced by upregulations of MMP-3 and MMP-9 via decreasing the phosphorylation of Akt at Ser473 with C. pneumoniae infection (Ma et al., 2015). HMC05, containing BBR and hesperidin in large quantities, protected VSMCs against oxidative stress by increasing NADPH: quinone oxidoreductase-1 gene expression via the regulation of Ras homolog family member A and/or Ras (Gum et al., 2014).

Platelets

Impaired regulation of platelet activation/aggregation is a prime cause of arterial thrombosis, this vital complication of...
atherosclerosis triggering myocardial infarction and stroke (Schafer and Bauersachs, 2008). The platelet activation and apoptosis would induce vascular occlusions and atherothrombotic events. BBR could inhibit these events by suppressing platelet aggregation and superoxide production via regulating NADPH oxidase, aldose reductase, and glutathione reductase in platelets with excess glucose. In addition, BBR inhibited platelet adhesive property and apoptosis induced by high glucose (Paul et al., 2019). BBR significantly inhibited rabbit platelet aggregation by suppressing the synthesis of thromboxane A2 (Huang et al., 2002). Molecular docking studies indicated that BBR interacted with thrombin by hydrogen bond and π-π interactions. Direct binding studies, competitive binding assay, and platelet aggregation assay demonstrated that BBR was a thrombin inhibitor showing direct activity in inhibiting platelet aggregation (Wang et al., 2017).

BERBERINE REDUCED Atherosclerosis BY AFFECTING GUT MICROBIOTA

The gut microbiota and its metabolites play a critical role in atherosclerosis development (Mantziaris and Kolios, 2019). Trimethylamine (TMA), produced by gut microbiota, was converted to trimethylamine-N-oxide (TMAO) via flavin-containing monooxygenase form 3 (FMO3) in the liver (Schmitt et al., 2017; Mantziaris and Kolios, 2019; Tang et al., 2019). It has been found that the BBR treatment reduced high-fat diet feeding-induced FMO3 expression and altered the composition of gut microbiota (Shi et al., 2018). The synthesis of TMA and TMAO were inhibited remarkably in choline-fed ApoE−/− and C57BL/6J mice by BBR via suppressing choline-to-TMA conversion. However, a slight increment was observed in chow-fed mice, indicating that BBR might decrease TMA production by gut microbiota only when the choline was overdosed (Li et al., 2021). There was a piece of evidence that BBR directly changed the bacterial community composition and function by reducing Clostridium spp. and subsequently activated farnesoid X receptor signaling (Tian et al., 2019). BBR treatment markedly increased Akkermansia spp. abundance in HFD-fed ApoE−/− mice, contributing to the anti-atherosclerotic properties of BBR (Zhu et al., 2018). In line with those findings, replenishment with Akkermansia significantly reduced atherosclerosis induced by a high-fat diet by attenuating the aortic and systemic metabolic inflammatory response (Li et al., 2016). A previous study revealed that BBR stimulated the gut bacteria-derived polyamines and enhanced mucus secretion in the colon of mice, exhibiting Akkermansia-promoting effects (Dong et al., 2021). According to the study of Wu et al., the abundance of Alistipes, Allobaculum, Blautia, Roseburia, and Turicibacter were significantly increased, and the abundance of Bilophila was altered after BBR treatment. Thus, the metabolism of lipid, glycans and the synthesis of short-chain fatty acids were promoted and the production of TMAO was reduced (Wu et al., 2020).

CONCLUDING REMARKS

Herbal medicines represent indispensable roles in new drug discovery, and they are relatively safe since herbs have been used for thousands of years in clinical practice. The atheroprotective effects of BBR have been explored during the past decades. We reviewed its anti-atherosclerotic effects from the perspective of molecular targets. Numerous evidences suggested that BBR had great therapeutic potential to attenuate atherosclerosis through lipid modification, anti-inflammatory, anti-oxidant, anti-apoptosis, anti-proliferative, anti-platelet aggregation, and gut microbiota modulatory activities. Among them, anti-inflammatory was the dominant factor. BBR significantly inhibited the expression of inflammatory factors and adhesion molecules, thus played anti-inflammatory role both in macrophages and endothelial cells.

Although a lot of knowledge has been gained in understanding the BBR-mediated atheroprotective potential, there are numerous questions ahead. The poor aqueous solubility and low dissolution of BBR lead to low oral bioavailability (< 1%) and have limited its clinical application (Liu et al., 2010). However, the poor bioavailability of BBR and its favorable atheroprotective effects are not contradictory. On the one hand, poorly absorbed BBR remained inside the gastrointestinal tract for a long time. It interacted comprehensively with the gut microbiota, which contributed to the anti-atherosclerosis effects of BBR by regulating the gut microbiota. On the other hand, BBR could convert into multiple metabolites. Many metabolites have anti-atherosclerotic effects, some metabolites showed even more potent anti-atherosclerotic effects than BBR (Cho, 2011; Cao et al., 2013; Wu et al., 2014; Zhou et al., 2014; Ning et al., 2015). In addition, various approaches have been explored to enhance its oral bioavailability (Mujtaba et al., 2021). BBR-trapped solid lipid nanoparticles and micelles had shown anti-hyperlipidemic and anti-atherosclerosis effects in animals (Ma et al., 2020b; Sailor et al., 2021). Some BBR analogs and derivatives also exhibited anti-atherosclerosis properties (Feng et al., 2017a; Feng et al., 2017b). Our understanding of BBR has been deepening by chemical, pharmacological, and system biological approaches (Liu et al., 2013). Especially, with the help of network pharmacology, computer-assisted molecular docking and genomic, and metabolomic profiling approaches, novel anti-atherosclerosis mechanisms/targets of BBR will be identified. In short, BBR could be a promising candidate for atherosclerosis management.

AUTHOR CONTRIBUTIONS

LX and XZ summarized the literature and wrote this manuscript. A-HL, H-JL, C-XH, and WQ collected and analyzed references. DZ, P-QL, and LZ drew figures. H-LC planned the framework and polished the manuscript. All authors contributed significantly to the manuscript.
REFERENCES

Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., and Mallat, Z. (2019). Vascular Smooth Muscle Cells in Atherosclerosis. Nat. Rev. Cardiol. 16 (12), 727–744. doi:10.1038/s41569-019-0227-9

Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., et al. (2019). Heart Disease and Stroke Statistics–2019 Update: A Report From the American Heart Association. Circulation 139 (10), e56–e528. doi:10.1161/CIR.0000000000006589

Björnsson, E. S. (2017). Hepatotoxicity of China (U1932130); the Key Program of Shaanxi FUNDING Xing et al. Atheroprotective Effects of Berberine

Chistiakov, D. A., Orekhov, A. N., and Bobryshev, Y. V. (2015). Vascular Smooth Muscle Cell in Atherosclerosis. Acta Physiol. 214 (1), 33–50. doi:10.1111/apha.12466

Cho, B. J., Im, E. K., Kwon, J. H., Lee, K. H., Shin, H. J., Oh, J., et al. (2005). Berberine Inhibits the Production of Lysophosphatidylcholine-Induced Reactive Oxygen Species and the ERK1/2 Pathway in Vascular Smooth Muscle Cells. Mol. Cell 20 (3), 429–434.

Cho, Y.-J. (2011). Anti-atherosclerotic Effect of Jatrohorrhine from Phellodendron Amurense in Lipopolysaccharide-Stimulated RAW264.7 Cells. J. Appl. Biol. Chem. 54 (2), 114–119. doi:10.3839/jabc.2011.020

Deanfield, J. E., Halcox, J. P., and Rabelink, T. J. (2007). Endothelial Function and Dysfunction. Circulation 115 (10), 1285–1295. doi:10.1161/CIRCULATIONAHA.106.652859

Derosa, G., D’Angelo, A., Bonaventrura, A., Bianchi, L., Romano, D., and Maffioli, P. (2013). Effects of Berberine on Lipid Profile in Subjects with Low Cardiovascular Risk. Expert Opin. Biol. Ther. 13 (4), 475–482. doi:10.1517/14712958.2013.776037

Dong, C., Yu, J., Yang, Z., Zhang, F., Su, W., Fan, Q., et al. (2021). Berberine, a Potential Prebiotic to Indirectly Promote Akkermansia Growth through Stimulating Gut Mucin Secretion. BioMed. Pharmacother. 139, 111595. doi:10.1016/j.biopha.2021.111595

Doran, A. C., Meller, N., and McNamara, C. A. (2008). Role of Smooth Muscle Cells in the Initiation and Early Progression of Atherosclerosis. Artery 28 (5), 812–819. doi:10.1161/ATVBAHA.107.159327

Fan, X., Wang, J., Hou, J., Lin, C., Bensoussan, A., Chang, D., et al. (2015). Berberine Alleviates Ox-LDL Induced Inflammatory Factors by Up-Regulation of Autophagy via AMPK/mTOR Signaling Pathway. J. Transl Med. 13, 92. doi:10.1186/s12967-015-0450-z

Fang, J., Little, P. J., and Xu, S. (2018). Atheroprotective Effects and Molecular Targets of Tanshinones Derived from Herbal Medicine Danshen. Med. Res. Rev. 38 (1), 201–228. doi:10.1002/med.21438

Feng, M., Kong, S.-Z., Wang, Z.-X., He, K., Zou, Z.-Y., Hu, Y.-R., et al. (2017a). The Protective Effect of Cotispine on Experimental Atherosclerosis ApoE−/− Mice Is Mediated by MAPK/NF-kB-dependent Pathway. Biomed. Pharmacother. 93, 721–729. doi:10.1016/j.biopha.2017.07.002

Feng, M., Zou, Z., Zhou, X., Hu, Y., Ma, H., Xiao, Y., et al. (2017b). Comparative Effect of Berberine and its Derivative 8-cetylberberine on Attenuating Atherosclerosis in ApoE−/− Mice. Int. Immunopharmacol 43, 195–202. doi:10.1016/j.intimp.2016.12.001

Feng, X., Sureda, A., Jafari, S., Memariani, Z., Tewari, D., Annunziata, G., et al. (2019). Berberine in Cardiovascular and Metabolic Diseases: from Mechanisms to Therapeutics. Theranostics 9 (7), 1923–1931. doi:10.7150/thno.30787

Forstermann, U., Xia, N., and Li, H. (2017). Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 120 (4), 713–735. doi:10.1161/CIRCRESAHA.116.309326

Gimbrone, M. A., Jr., and Garcia–Cardeña, G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 118 (4), 620–636. doi:10.1161/CIRCRESAHA.115.306301

Guo, J., Wang, L., Wang, L., Qian, S., Zhang, D., Fang, J., et al. (2016). Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling. Evidence-Based Complement. Altern. Med. 2016, 1–11. doi:10.1155/2016/6983956

Guo, J., Wang, L., Wang, L., Qian, S., Zhang, D., Fang, J., et al. (2016). Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling. Evidence-Based Complement. Altern. Med. 2016, 1–11. doi:10.1155/2016/6983956

Huang, C. G., Chu, C. Z., Wu, S. J., Jiang, H., and Jiao, B. H. (2002). Effect of Berberine on Arachidonic Acid Metabolism in Rabbit Platelets and Endothelial Cells. Thromb. Res. 106 (4–5), 223–227. doi:10.1016/s0049-3848(02)00133-0
in Peritoneal Macrophages. *Aging* 13 (5), 7096–7119. doi:10.18632/aging.202566
Zhou, Y., Cao, S., Wang, Y., Xu, P., Yan, J., Bin, W., et al. (2014). Berberine Metabolites Could Induce Low Density Lipoprotein Receptor Up-Regulation to Exert Lipid-Lowering Effects in Human Hepatoma Cells. *Fitoterapia* 92, 230–237. doi:10.1016/j.fitotec.2013.11.010
Zhu, L., Zhang, D., Zhu, H., Zhu, J., Weng, S., Dong, L., et al. (2018). Berberine Treatment Increases Akkermansia in the Gut and Improves High-Fat Diet-Induced Atherosclerosis in Apoe−/− Mice. *Atherosclerosis* 268, 117–126. doi:10.1016/j.atherosclerosis.2017.11.023
Zimetti, F., Adorni, M. P., Ronda, N., Gatti, R., Bernini, F., and Favari, E. (2015). The Natural Compound Berberine Positively Affects Macrophage Functions Involved in Atherogenesis. *Nutr. Metab. Cardiovasc. Dis.* 25 (2), 195–201. doi:10.1016/j.numecd.2014.08.004

Conflict of Interest: Authors A-HI and H-LC were employed by the Shaanxi Pharmaceutical Holding Group Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Xing, Zhou, Li, He, Qin, Zhao, Li, Zhu and Cao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
GLOSSARY

Akt AKT serine/threonine kinase
AMPK adenosine monophosphate-activated protein kinase
BBR berberine
CCR-2 C-C chemokine receptor 2
EMPs endothelial microparticles
eNOS endothelial nitric oxide synthase
ERK extracellular signal-regulated kinase
HDL high-density lipoprotein
HUVECs human umbilical vein endothelial cells
ICAM-1 intercellular adhesion molecule-1
IL-8 interleukin-8
IL-1β interleukin-1β
IL-6 interleukin-6
LDL-C low-density lipoprotein cholesterol
LDLR low-density lipoprotein receptor
LPS lipopolysaccharide
MAPK mitogen-activated-protein kinase
MCP-1 monocyte chemoattractant protein-1
MMP-9 matrix metalloprotease-9
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor κB
NOS nitric oxide synthase
oxLDL oxidized low-density lipoprotein
PCNA proliferating cell nuclear antigen
PDGF platelet-derived growth factor
PI3K phosphatidylinositol 3 kinase
ROS reactive oxygen species
SR scavenger receptors
TC total cholesterol
TG triglyceride
TMA trimethylamine
TMAO trimethylamine-N-oxide
TNF-α tumor necrosis factor-alpha
VCAM-1 vascular cell adhesion molecule-1
VMSCs vascular smooth muscle cells
WHO World Health Organization