Hazard analysis and social vulnerability to predict the loss population is affected by natural disaster of landslides in the Pesisir Selatan District of West Sumatra

Triyatno¹*, Isril Berd², Idris³ and Viola Putra³
¹Graduate Program of Environmental Science, Universitas Negeri Padang, Indonesia
²Lecturer of Fakultas Teknologi Pertanian, Universitas Andalas, Indonesia
³Lecturer Faculty of Economic, Universitas Negeri Padang, Indonesia

*triyatno@fis.unp.ac.id

Abstract. Pesisir Selatan District is one of the areas in West Sumatra that often experiences natural disasters of landslides. Natural disasters of landslides that occur in this area often cause losses in the form of property or human lives and disruption of road access to other areas. The aims of this research were to analyze the hazard of landslides based on land characteristics, analyze the carrying capacity of the region based on landslide hazards, analyze social vulnerability, and analyze prediction of Population loss. The method used in this study is a survey method with a geomorphological approach. Data used in the form of primary data and secondary data. The technical analysis used is in the form of scoring to analyze landslide hazards and GIS used to analyze the carrying capacity of the region, vulnerability, and exposed populations. The results showed that the hazard of landslides in the study area was divided into three, namely low, medium, and high hazards. The hazard of low landslides is generally found in plain areas near the coast. This area is formed due to the results of sedimentation processes from both rivers and the sea. The hazard of moderate landslides is generally found in hilly areas, and the hazard of high landslides is generally found in hilly or mountainous areas. The hazard of landslides is caused by physical characteristics in the form of high rainfall, steep slopes to very steep slope, high rock weathering. Social vulnerability in the research area is divided into two parts, namely low and medium. Low social vulnerability is caused by the ratio of male population more than female population, ratio of vulnerable groups, ratio of poor Population, and a ratio of disabled Population. Social vulnerability is being caused by a greater number of female populations, ratios of vulnerable groups, and disabled Population. The prediction of population loss found in the Lakitan Tengah area is in Lengayang Subdistrict, which is 11,869 Population.

1. Introduction
The West Sumatra region is an area that has the potential to be hit by natural disasters in the form of earthquakes, tsunamis, volcanic eruptions, floods, flash floods, landslides and coastal abrasions. The potential for disasters in the West Sumatra region is due to the fact that this region is located on the west coast of Sumatra Island and crosses the equator, causing this area to have high rainfall, weathered rock conditions, regional morphology from the plains to the mountains. The occurrence of natural disasters from year to year tends to increase both in number and intensity so that losses incurred by an
event of natural disasters tend to increase also from the following year, both property losses and human lives.

The West Sumatra region that has the potential for natural disasters is the Pesisir Selatan District. The Pesisir Selatan District area often experiences natural disasters such as coastal abrasion, floods, flash floods, and landslides. The potential for natural disasters in the region of the Pesisir Selatan District is largely determined by physical conditions such as geology, geomorphology, hydrology, soil conditions, land use and land cover. Natural disaster occurrences of landslides in the Pesisir Selatan Regency often occur during the rainy season, high rainfall and supported by easily weathered rocks and thick soil solum cause this area has considerable potential for landslides to occur.

The natural disaster occurrence of landslides that occurred in the Pesisir Selatan District has caused many losses in the form of disruption of transportation routes, loss of property and loss of human life. The high impact of losses caused by natural disasters of landslides in this region is mostly caused by cutting slopes for road construction or settlements. Settlement patterns in this area generally fall on the plain or in mountainous areas such as those found in the Painan and Bayang Utara regions. The aims of this article are to analyze the landslide hazard, carrying capacity of regions based on landslide hazard levels to predict social vulnerability and population loss which can result in high loss of property and human lives.

2. Methodology
This type of research is in the form of quantitative research using a geomorphological approach [1, 2, 3, 4]. The method used in this study is a survey method to analyze the level of hazard of landslides. Landslide hazard levels were analyzed based on geomorphological units in the form of land units and social vulnerability of landslides obtained by analyzing satellite images in the form of Ikonos images to see the distribution of settlements found in areas that have potential or hazard of landslides [1, 5, 6, 7].

The type of data used in this study is primary data and secondary data. Primary data in the form of data obtained directly in the field are in the form of data on land characteristics, namely geological, geomorphological, soil, hydrology and land use conditions [8, 9, 10], Data The secondary data used in this study is population data obtained from BPS data of the Pesisir Selatan District in Figures, basic maps of a 1:250,000 scale geological map, 1:250,000 scale geomorphological maps, 1:150,000 scale maps, scale land use maps 1:250,000.

The stages of research carried out in the form of pre-field stages, field stages, and post-field stages. The details of the activities carried out in this study are as follows;

2.1. Pre-field stage
Activities carried out in the pre-field stage in the form of preparation of data needed in the field in the form of literature studies on the hazard and social vulnerability of landslides of natural disasters, preparing basic maps for guidance in the field, and determining sample points for field data collection. Analyzing satellite imagery in the form of an Ikonos image to determine the distribution of residential settlements in areas that have the potential for landslides.

2.2. Field stage
The activities carried out at the field stage were in the form of matching sample point maps with actual conditions in the field, and continued with field data collection in the form of land characteristics data that included geological, geomorphological, soil, hydrological and land use data. Taking documentation of research in areas that have the potential for natural disaster landslides.

2.3. Post-field stage
The activities carried out in the post-field stage are to classify field data, tabulate field data, analyze field data, and produce map results and research reports.
3. Data analysis
To determine the hazard of landslides that occurred in the study area, a formula was formulated by [1, 3, 11] as follows;

\[I = \frac{c - b}{k} \] (1)

Information;
I: large range of class intervals
b: lowest number
c: highest number
k: number of classes desired

Based on the formula above, the interval of the landslide hazard class in the study area is as follows;

\[I = \frac{56 - 14}{3} = \frac{42}{3} = 14 \] (2)

Information:
the highest number of physical characteristics determining landslide hazards 56 (c)
number of lowest physical characteristics determinant of landslide hazard 14 (b)
desired number of classes 3 (k)

To determine the social vulnerability of natural disasters, landslides in the Pesisir Selatan District area use a formula that refers to Perka No. 2 BNPB 2012, in DDRI 2013 as follows;

\[
K_s = 0.6 \times \left(\frac{0.01 \times RJK + 0.1 \times RK + 0.1 \times RPC + 0.1 \times KR}{\log(\frac{KP}{0.01})} \right)
\] (3)

Information:
Ks: social vulnerability
KP: population density
RJK: sex ratio
RPC: ratio of disabled population
KR: vulnerable group

To determine the number of loss population, based on analysis of landslide hazard data, social vulnerability of the community, and population.

4. Result and Discussion
Hazard of landslides is an event that often occurs during the rainy season and usually occurs in areas that have a slope of more than 15% with weathered material on it [12, 5, 13, 14]. The hazard of landslides that occur in the Pesisir Selatan District is a natural process of slope evolution towards common levels [15, 12, 14]. The hazard of landslides that occur in Pesisir Selatan district can be seen from the characteristics of the land in the form of geological, geomorphological, soil, hydrological and land use conditions [15, 16]. For more details on the characteristics of the land in the research area can be seen in the following Table 1, Table 2, Table 3.
Table 1. Land Characteristics for Landslides Natural Disasters Pesisir Selatan District

No	Location	Slope (%)	Relief/Topography	Slope Shape	Slope Length (m)	Altitude Relief (m)	Soil Texture	Soil Permeability cm / hour	Depth soil (cm)	Structure Rock	Structure Level Weathering Rock	Depth weathering Rock (cm)	Groundwater Spring	Groundwater Depth ground water (cm)
1	Mauro Sri Tapan	95	Ir	203	78	ld	ld	15.3	2.10	Mr	S	2.35	A	501
2	Padang	2	Dr	63	5	lp	lp	18.9	39	Dt	R	60	Ta	160
3	Ampulu Tapan	98	Ir	98	2	lh	lh	31.4	73	Mr	R	142	A	53
4	Bukit Suburung Batu Br. Kapas	30	Ir	144	96	lb	lb	23.9	40	Mr	R	81	A	87
5	Bukit Tuai Br. Kapas	63	Dt	134	83	lp	lp	35.9	22	Mr	R	33	A	76
6	Kampung Jambak Br. Kapas	2	Dt	57	3	ld	ld	29.8	25	Dta	R	93	Ta	145
7	Bukit Pulai	98	Ir	141	88	ld	ld	38.5	31	Mr	R	46	Ta	63
8	Bukit Timbulkin Painan	54	Ir	132	73	ld	ld	15.1	27	Msf	K	59	A	68
9	Bukit Vila Painan	99	Ir	133	86	lp	lp	25.7	81	Msf	K	141	A	165
10	Bukit Gunung Paar Baru	35	Ir	93	91	ld	ld	13.0	13	Mr	R	130	Ta	143
11	Sibingkeh	48	Ck	15	95	ld	ld	13.8	117	Mr	S	126	Ta	166
12	Sibingkeh	99	Ir	80	98	lp	lp	29.3	30	Mr	S	84	A	30
13	Kerto Pulai, tanusan	85	Ir	153	76	lp	lp	31.4	48	Mr	S	78	A	142

Source: Results of Field Measurement and Data Analysis in 20018

Information:

D = data
H = scor

Slope shape
Ir = irregular
Dr = plain
Ck = concave

Land use
Sbl = scrub bush
Ld = farm
Kc = mixed farm
Pm = settlement
Ht = forest
Sw = paddy field

Table 2. Land Characteristics Scorr for Landslides Natural Disasters Pesisir Selatan District

No	Location	Slope (%)	Relief/Topography	Slope Shape	Slope Length (m)	Altitude Relief (m)	Soil Texture	Soil Permeability cm / hour	Depth soil (cm)	Structure Layer Rock	Structure Level Weathering Rock	Depth weathering Rock (cm)	Groundwater Spring	Groundwater Depth ground water (cm)
1	Mauro Sri Tapan	4	4	3	4	4	4	4	3	4	4	4	4	1
2	Padang	1	1	2	1	4	4	2	1	2	2	2	1	2
3	Ampulu Tapan	4	4	3	4	4	4	4	3	4	2	3	4	4
4	Bukit Suburung Batu Br. Kapas	3	4	3	3	4	4	4	2	2	2	2	4	4
5	Bukit Tuai Br. Kapas	4	1	3	3	4	4	1	4	2	2	1	4	4
6	Kampung Jambak Br. Kapas	1	1	2	1	4	4	1	1	2	2	1	4	4
7	Bukit Pulai	4	4	3	3	4	4	2	4	2	2	1	4	4
8	Bukit Timbulkin Painan	4	4	3	3	4	4	3	2	3	2	3	4	4
9	Bukit Gunung Paar Baru	3	4	3	3	4	4	1	4	2	3	1	4	4

Source: Results of Field Measurement and Data Analysis in 2018
Table 3. Land Characteristics of Pesisir Selatan District

No	Location	Land use	Rain fall mm/month	Landslide Hazard
		D H	D H	
1	Muaro Siri Tapan	Sbl 2	48 4	48 High
2	Padang Kejai Tapan	Ld 2	38 3	28 Low
3	Ampalu Tapan	Kc 2	40 3	45 High
4	Bukit Subarang Batu	Sbl 2	45 4	
	Bt. Kapas			
5	Bukit Tuiak Bt.kapas	Ht 1	40 3	39 Medium
6	Kampung Jambak	Sw 3	35 3	27 Low
	Bt.Kapas			
7	Bukit Pulai	Kc 2	40 3	27 Low
8	Bukit Pincuran Boga Painan	Kc 2	44 3	43 High
9	Bukit Timbulun	Pm 4	48 4	48 High
	Painan			
10	Bukit Vila Painan	Kc 2	46 4	46 High
11	Bukit Gaung, Pasar Baru	Kc 2	39 3	38 Medium
12	Sibingkeh	Ht 1	41 3	40 Medium
13	Siguntur	Ht 1	46 4	46 High
14	Koto Pulai, tarusan	Pm 4	49 4	49 High

Source: Results of Field Measurement and Data Analysis in 2018

Based on the table above the hazard of landslides that occur in the study area can be divided into several parts, namely; high, medium and low. The hazard of landslides in this study area is determined by the characteristics of the land in the form of weathered geological conditions and rock structures that follow the slope direction and the weathering depth of rocks more than 100 cm. The morphometry of the slopes of the study area starts from 0% - 45% with slope lengths varying from 53 m to 203 m, this causes the shape of slopes that vary from flat to irregular or irregular which can cause the amount of water that can be accommodated in the slope segment which has a concave shape [13, 17, 18]. Land use in the study area is in the form of shrubs, mix farm, rice fields, forests and settlements, this variation in land use causes the hazard of landslides in the study area to also vary such as in residential areas that cut slopes to establish buildings. Slope cutting activity causes the amount of water that enters the soil, causing increased mass of soil mass [14, 17, 19].

The hazard of landslides in the study area can be divided by three classes, namely low, medium and high. The hazard of low landslides is generally found in plain areas located near the coast or alluvial plains. This area is generally formed due to the sedimentation process resulting from the erosion process in the upstream section. The hazard of low landslides is generally found in hilly areas that have slopes of 25% - 45% and spread almost everywhere throughout the study area while the hazard level of high landslides is generally found in areas that have slopes of more than 45% and in areas that have experienced rock weathering levels go on. In the slope segment there are generally springs which trigger landslides. For more details, see the following table 4.
Subdistrict	Village	Percentage of Low Hazard Area	Percentage of medium Hazard Area	Percentage of high Hazard Area
Basa Ampek Balai Tapan	Ampang Tulak Tapan	49.38	31.76	18.86
Basa Ampek Balai Tapan	Batang Arah Tapan	77.73	21.28	0.99
Basa Ampek Balai Tapan	Binjai Tapan	61.91	36.97	1.11
Basa Ampek Balai Tapan	Kebun Tapan	99.62	0.36	0.02
Batang Kapas IV Koto Hilie		35.11	56.72	8.17
Batang Kapas IV Koto Mudiek		17.27	56.02	26.71
Batang Kapas Koto Nan Duo IV		59.93	36.62	3.44
Batang Kapas Koto Nan Tigo IV		64.12	32.13	3.75
Bayang Gurun Panjang		67.16	18.14	14.70
Bayang Koto Barakap		47.34	46.04	6.62
IV Nagari Bayang Utara	Koto Ranah	7.02	61.04	31.93
IV Jurai Bungo Pasang Salido		37.46	37.22	25.31
IV Jurai Lempo		22.39	53.23	24.38
Koto XI Tarusan Ampang Pulai		68.64	24.99	6.36
Koto XI Tarusan Barung Barung Balantai		16.02	70.28	13.69
Koto XI Tarusan Barung Barung Balantai Selatan		24.4	64.75	10.86
Koto XI Tarusan Batu Hampar		67.18	26.41	6.41
Koto XI Tarusan Duku		20.52	64.50	14.98
Koto XI Tarusan Kapuh		73.53	15.28	11.19
Koto XI Tarusan Kapuh Utara		64.18	30.02	5.80
Lengayang Kambang		21.98	54.27	23.75
Lengayang Kambang Timur		15.06	60.77	24.18
Lengayang Kambang Utara		22.65	65.53	11.82
Lengayang Lakitan Tengah		24.22	61.52	14.26
Linggo Sari Baganti Aie Haji		41.48	52.92	5.60
Linggo Sari Baganti Lagan Hilir Punggasan		80.09	19.67	0.24
Linggo Sari Baganti Lagan Mudik Punggasan		43.01	53.11	3.88
Pancung Soal Inderapura Selatan		38.6	37.07	24.34
Pancung Soal Inderapura timur		49	33.66	17.35
Pancung Soal Inderapura utara		40.4	47.50	12.10
Pancung Soal Kudo-kudo inderapura		99.21	0.79	0.00
Sutera Amping parak		91.49	7.04	1.47
Sutera Amping parak timur		46.23	47.81	5.96

Source: Data Analysis in 2018
Based on the table above the percentage of the area that has a low, medium and high landslide hazard varies, this is caused by several factors including slope, soil characteristics, geology, morphology and land use. The highest percentage of landslide hazards is highest in the Bayang Utara area, which is 92.98% of the total area. This shows that the Bayang Utara area has a topography in the form of mountains and hills that have a slope of more than 45%, and have areas that have the potential for landslides only around 7.02% of the total area. Areas that have low landslide hazards are found in the Tapan Kubu area, which are 99.62% of the area and Kudo-Kudo Inderapura is 99.21% of the total area. This area is a plain area which is mostly in the form of sediment, for more details can be seen in the following picture.

![Landslide Hazard Map Pesisir Selatan District West Sumatera](image)

Figure 1. Landslide Hazard Map Pesisir Selatan District West Sumatera

Social vulnerability shows the level of social fragility of a community in the event of a natural disaster in the form of a landslide. The social vulnerability of the study area was seen from the percentage of population density, sex ratio, ratio of vulnerable groups, poor population, and ratio of disabled population. For more details, see the following table 5.
Table 5. Social Vulnerability and Prediction Population loss of Landslide Hazards in Pesisir Selatan District

Subdistrict	Village	Sex Ratio	Percentage of Vulnerable Groups	Percentage of Poor Population	Social Vulnerability	Social class vulnerability	Amount of moderate Population loss Prediction	Amount of high Population loss Prediction	Total of Population loss Prediction	
Basso Ampek Buluh Tapan	Ampung Tekah Tapan	1.02	0.23	0.1	0.01	15.57	Low	8	3	11
Basso Ampek Buluh Tapan	Batang Arul Tapan	0.99	0.14	0.07	0.01	42.57	Medium	255	421	676
Basso Ampek Buluh Tapan	Binga Tapan	0.96	0.2	0.09	0.01	31.94	Low	132	-	132
Basso Ampek Buluh Tapan	Koto Tapan	0.99	0.25	0.11	0.01	0.14	Low	-	-	-
Butang Kapat	Koto Hilse	0.97	0.12	0.07	0.00	46.25	Medium	876	314	1,190
Butang Kapat	Koto Medrek	0.95	0.11	0.06	0.00	40.80	Medium	246	270	516
Butang Kapat	Koto Non	0.97	0.25	0.13	0.01	43.18	Medium	423	318	740
Butang Kapat	Koto Non	0.99	0.46	0.19	0.01	36.48	Medium	73	191	264
Buyang	Gunan Panjang	0.91	0.27	0.11	0.02	41.81	Medium	320	280	600
Buyang	Buyang	0.91	0.2	0.09	0.01	20.81	Low	24	-	24
IV Nagari Buyang Utara	Koto Ranah	0.89	0.54	0.33	0.05	38.24	Medium	90	254	344
IV Jvari	Buyang Siallo	0.94	0.53	0.14	0.03	37.11	Medium	199	92	292
IV Jvari	Lempo	0.96	0.16	0.06	0.01	54.36	Medium	1,827	2,307	4,134
Koto XI Tarusan	Mampung Pulu	1.03	0.07	0.03	0.00	52.88	Medium	1,403	1,891	3,294
Koto XI Tarusan	Buyang	0.96	0.2	0.08	0.01	51.48	Medium	2,516	136	2,652
Koto XI Tarusan	Buyang	0.9	0.23	0.09	0.01	31.79	Low	129	-	129
Koto XI Tarusan	Barong	0.92	0.26	0.1	0.01	0.13	Low	-	-	-
Koto XI Tarusan	Koto	0.93	0.1	0.05	0.01	45.77	Medium	651	456	1,107
Koto XI Tarusan	Pula	0.93	0.16	0.07	0.01	38.21	Medium	81	265	346
Koto XI Tarusan	Koto	1	0.5	0.17	0.03	28.07	Low	-	72	72
Lenggayang	Kambang	0.93	0.23	0.11	0.01	54.30	Medium	889	3,200	4,089
Lenggayang	Kambang	0.94	0.15	0.08	0.01	57.90	Medium	1,572	5,540	7,112
Lenggayang	Kambang	0.94	0.16	0.08	0.01	55.68	Medium	1,543	3,517	5,060
Lenggayang	Koto	1.02	0.37	0.17	0.01	61.27	Medium	2,394	9,475	11,869
Linggo Sari Bugantii	Air Haji	0.96	0.64	0.24	0.01	36.55	Medium	197	69	266
Linggo Sari Bugantii	Lago Ilir Punggasan	0.99	0.63	0.24	0.01	0.19	Low	-	-	-
Linggo Sari Bugantii	Lago Ilir Punggasan	0.98	0.93	0.29	0.01	35.48	Medium	224	-	224
Pancung Soal	Indrapura Siallo	1.01	0.02	0.08	0.01	46.58	Medium	420	833	1,252
Pancung Soal	Indrapura Siallo	1	0.01	0.05	0.00	33.33	Low	115	49	164
Pancung Soal	Koto-Koto Indrapura Siallo	0.99	0.02	0.03	0.01	42.52	Medium	485	187	672
Satra	Amping pasak	0.98	0.27	0.13	0.01	32.89	Low	14	138	153
Satra	Amping pasak	1.04	0.6	0.22	0.01	44.21	Medium	393	467	861

Source: Data Analysis in 20018
Based on the table above the highest percentage of sex ratios is found in the Ampiang Parak Timur which is 1.04 area and Inderapura Timur which is 1.02, indicating that in this area the male population is more than the female population. The ratio of the percentage of male population and the smallest percentage is found in the Barung-Barung Balantai Selatan area, which is 0.9, which means that in this area there are more female residents, this is if a landslide occurs, this area must be priority in action mitigation.

The percentage ratio of the highest vulnerable groups in the Punggasan Langan Mudik area in Linggo Sari Baganti District is 0.93, indicating that this area has a population that is less than 12 years old and a population of more than 60 years old, which causes this area to be more vulnerable in the event of a natural disaster landslides. The highest percentage ratio of poor Population is found in the Koto Ranah area of Bayang Utara District which is 0.33, this indicates that this area has more poor Population than other regions. The high rate of poverty in this area is due to the fact that some Population depend on agricultural and forest products. The percentage ratio of the disabled population in the study area is very small, ranging from 0.00 to 0.05, this indicates that in terms of the disabled population the study area does not have a high value. This means that if a natural disaster occurs, landslides in the research area do not cause a burden to the community, especially when they carry out the evacuation process.

The level of social vulnerability in the research area can be divided into two parts, namely low and medium social vulnerability. The level of social vulnerability is generally found in regions that have a low percentage ratio of male and female population, namely the male population is less than the female population and has a high percentage ratio of vulnerable groups of more than 0.1, this is shows that in this area the population is less than 12 years and more than 60 years is higher and the percentage ratio of the poor is higher. Low social vulnerability in the study area shows a greater male and female population ratio, namely the male population is greater than the female population and has a lower ratio of vulnerable groups and has a smaller ratio of poor Population.

The Population loss is a prediction of the number of Population living in the area who have the hazard of moderate and high landslides. The highest prediction of Population loss is in the Lakitan Tengah of Lengayang District, which is 11,869 Population, because most residents choose a place to live in a hilly area that has a hazard of moderate and high landslides. In general, Population in this area have livelihoods as farmers, so they are closer to going to work in the landfarm or paddy fields. Population who live in this area generally choose a place to stay near the hilly foot area by cutting slopes. The Population loss prediction to landslide hazards in the lowest research area is 0 Population, this means that in areas that have a moderate and high landslide hazard there are no residents. In this area generally in the form of forests or mixed farm, the community generally lives in the plains area.

5. Conclusion
Based on the description on landslide hazards in the study area, some conclusions can be drawn as follows;
1. The landslide hazard in the study area can be divided into three parts, namely the hazard of low, medium and high landslides. This difference in the level of landslide hazard is caused by the physical characteristics of an area in the form of; geological conditions, morphology, soil, hydrology, and land use,
2. The level of social vulnerability in the research area can be divided into two parts, namely low and medium. Low social vulnerability is generally found in regions that have a higher percentage ratio of males than females, the composition of vulnerable groups that are low or have few vulnerable groups, and the ratio of the percentage of disabled Population is small and has a small ratio of poor Population,
3. The highest number of settlements in the Lakitan Tengah area is 11,869 Population and the lowest is 0 in the Lagungg Hilir Punggasan, Batu Hampar and Tapan Kubu areas.
6. Suggestion
Based on the description above about the landslide hazards in the area of Pesisir Selatan District to reduce the impact of losses that will be caused by a landslide natural disaster event, the suggestions that can be taken are as follows;
1. to reduce the hazard of landslides in this area, it should be noted that the causes of landslides are in the form of physical characteristics of the area.
2. to reduce the hazards of landslides in this area it is necessary to increase the social vulnerability of the community, especially in areas of high landslide hazards that have residents,
3. to reduce the number of Population loss to the research area, there should be a regulation on land use for settlements, especially in areas that have the hazard of moderate and high landslide.

References
[1] Ainon N O, Wan M, Naim W M and Noraini S 2012 GIS Based Multi-Criteria Decision Making for Landslide Hazard Zonation. Asia Pacific International Conference on Environment-Behaviour Studies, Salamis Bay Conti Resort Hotel, Famagusta, North Cyprus, 7-9 December 2011 Procedia - Social and Behavioral Sciences 35: 595 – 602
[2] Mardyatno 2001 Risiko Longsoran Daerah Samigaluh Tesis (Yogyakarta: Fakultas Geografi, Universitas Gadjah Mada)
[3] Federica C, Francesca S, Piernicola L, Claudia V, Francesco C, Osvaldo B 2016 A Geomechanical Approach to Landslide Hazard Assessment: the Multiscalar Method for Landslide Mitigation. VI Italian Conference of Researchers in Geotechnical Engineering – Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale, CNRIG 2016. Procedia Engineering 158: 452 – 457
[4] Yueping Y, Bin L, Wenpei W, Liangtong Z, Yang G, Nan Z, Hongqi C, Tiankui L and Aiguo L 2016 Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization Journal Engineering 2: 230–249
[5] Henky N, Dhandhun W, Gilang A D, Ahmad C, Bachtiar W M and Ajeng L 2015 Geomorphometric Characteristics of Landslides in the Tinalah Watershed, Menoreh Mountains, Yogyakarta, Indonesia The 5th Sustainable Future for Human Security Procedia Environmental Sciences 28: 578 – 586
[6] Carlo T S, Samuele S, Nicola C, Filippo C 2016 Geomorphic Indexing of Landslide Dams Evolution Journal Engineering Geology 208: 1–10
[7] Filippo C, Veronica T and Daniela L 2016 Spatial Patterns of Landslide Dimension: A Tool for Magnitude Mapping Journal Geomorphology 273: 361–373
[8] Marten G Andrée B S, Eva K, Brian M, Jeremy G. Venditti , Alain G , and Kelsey W 2018 Sensitive Clay Landslide Detection and Characterization in and Around Lakelse Lake, British Columbia, Canada Journal Sedimentary Geology 364: 217–227
[9] Raymond W.M. Cheung, K.Y. Choi 2013 Landslide Disaster Prevention and Mitigation Through Works in Hong Kong Journal of Rock Mechanics and Geotechnical Engineering 5: 354–365
[10] Ryley A B, and W Andy T 2016 Loss of Slope Support due to Base Liquefaction:Comparison of 1g and Centrifuge Landslide Flume Experiments. Soils and Foundations 56(2): 251–264
[11] Triyatno dan Erna J 2012 Pemetaan Zonasi Bahaya dan Risiko Longsoran di Daerah Ngarai Sianok Jurnal Pelangi 4 (2) ISSN: 2252-7168
[12] Ari T, Caterina M and Kerstin J 2015 A Fast and Efficient Algorithm to Map Prerequisites of Landslides in Sensitive Clays Based on Detailed Soil and Topographical in Formation Journal Computers & Geosciences 75: 88–95
[13] Maryam I 2011 ‘ A Comparative Study of Fuzzy Logic Approach for Landslide Susceptibility Mapping Using GIS: An Experience of Karaj DAM Basin in Iran. The 2nd International Geography Symposium GEOMED 2010 Procedia Social and Behavioral Sciences 19: 668–
[14] Hasali H, Rangali R S Sb, N L Deshapriyac and Lal S 2018 Landslide Susceptibility Mapping Using Logistic Regression model (a Case Study in Badulla District, Sri Lanka) 7th International Conference on Building Resilience; Using scientific knowledge to Inform Policy and Practice in Disaster Risk Reduction, ICBR2017, 27 – 29 November 2017, Bangkok, Thailand. *Procedia Engineering* **212**:1046–1053

[15] Keren D, Zhenhong L, Roberto T, Guoxiang L, Bing Y, Xiaowen W, Haiqin C, Jiajun C and Julia S 2016 Monitoring Activity at the Daguangbao Mega-Landslide (China) Using Sentinel-1 TOPS Time Series Interferometry *Journal Remote Sensing of Environment* **186**: 501–513

[16] Suzuki, Tetsuo F, and Takeshi T M 2014 Peak and Residual Strength Characteristics of Cement-Treated Soil Cured Under Different Consolidation Conditions *Journal Soils and Foundations* **54**: 687–698

[17] Shruti N, K.S. Sajinkumar, Thomas O, V.J. Anuja, Rinu A. Samuel, and C. Muraleedharan 2017 Early Warning System for Shallow Landslides Using Rainfall Threshold and slope stability analysis *Journal Geoscience Frontiers* xxx: 1-12

[18] Takashi T, A.M.R.G.Athapaththua, Takashi H, and Masaki K 2015 Investigation of Landslide Calamity due to Torrential Rainfall in Shobara City Japan *Journal Soils and Foundations* **55**(5): 1305–1317

[19] Takashi T, Seiji K, Shota N, Masahiro K, Shinji N and Nao Y K, 2014 Landslide and Mudflow Disaster in Disposalsite of Surplus Soil at Higashi-Hiroshima due to Heavy Rain Fall in 2009 *Journal Soils and Foundations* **54**: 621–638