Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Narrative Review

Maternal nutrients and effects of gestational COVID-19 infection on fetal brain development

M. Camille Hoffman a, b, Robert Freedman b, *, Amanda J. Law a, b, c, d, Alena M. Clark e, Sharon K. Hunter b

a Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA
b Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA
c Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA
d Department of Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA
e Department of Nutrition and Dietetics, Campus Box 93, University of Northern Colorado, Greeley, CO, 80639, USA

A R T I C L E I N F O

Article history:
Received 20 April 2021
Accepted 20 April 2021

Keywords:
Coronavirus
Choline
Pregnancy
Fetal development
Vaccine
COVID-19

S U M M A R Y

Background & aims: Maternal gestational infection is a well-characterized risk factor for offsprings’ development of mental disorders including schizophrenia, autism, and attention deficit disorder. The inflammatory response elicited by the infection is partly directed against the placenta and fetus and is the putative pathogenic mechanism for fetal brain developmental abnormalities. Fetal brain abnormalities are generally irreversible after birth and increase risk for later mental disorders. Maternal immune activation in animals models this pathophysiology. SARS-CoV-2 produces maternal inflammatory responses during pregnancy similar to previously studied common respiratory viruses.

Method: Choline, folic acid, Vitamin D, and n-3 polyunsaturated fatty acids are among the nutrients that have been studied as possible mitigating factors for effects of maternal infection and inflammation on fetal development. Clinical and animal studies relevant to their use in pregnant women who have been infected are reviewed.

Results: Higher maternal choline levels have positive effects on the development of brain function for infants of mothers who experienced viral infections in early pregnancy. No other nutrient has been studied in the context of viral inflammation. Vitamin D reduces pro-inflammatory cytokines. Active folic acid metabolites decrease anti-inflammatory cytokines. N-3 polyunsaturated fatty acids have no effect.

Conclusions: Vitamin D and folic acid are already supplemented in food additives and in prenatal vitamins. Despite recommendations by several public health agencies and medical societies, choline intake is often inadequate in early gestation when the brain is forming. A public health initiative for choline supplements during the pandemic could be helpful for women planning or already pregnant who also become exposed or infected with SARS-CoV-2.

© 2021 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Offspring of women pregnant during previous influenza pandemics have been found to have a higher incidence of mental illnesses including schizophrenia, autism spectrum disorders, and attention deficit disorders [1,2]. A study of 57 Chinese infants whose mothers had COVID-19 infections, 53 in the third trimester, found that the offspring at 3 months of age had decreased motor, communication, and social development [3]. Women infected
earlier in pregnancy had elective abortions. A study of 464 U.S. women with common viral and bacterial upper respiratory infections in the second trimester found the relative risk for schizophrenia spectrum disorders was >2 in the offspring [4]. There was no increase in risk with first or third trimester infections. For 8700 Norwegian women with fever in the second trimester, the relative risk for autism spectrum disorder was 1.4 in the offspring [5]. For 4300 Danish women with fevers between 9 and 16 weeks gestation, the relative risk for attention deficit disorder was 1.3 in the offspring [6]. A major period of brain development occurs from 9 to 16 weeks. Family history, indicative of presumptive genetic risk, interacts synergistically with the risk conveyed by maternal gestational infection [7]. Assessment of banked gestational serum samples and blood spots from pregnant women whose offspring later developed schizophrenia or autism demonstrated increased concentration of cytokines and C-reactive protein (CRP), which are biochemical indicators of the maternal inflammatory response [8–12].

Maternal immune activation is a widely used animal model for the pathophysiology of maternal infection during pregnancy. To mimic viral infection without otherwise sickening the dam, polyinosinic-polycytidylic acid (poly I:C), a double-stranded RNA similar to the double-stranded RNA produced during viral infections, is injected into the dam. To similarly mimic bacterial infection, lipopolysaccharide, the endotoxin of gram-negative bacteria, is injected. Poly I:C and lipopolysaccharide activate Toll-Like-Receptors on macrophages and other maternal cells [13,14]. Both exposures result in increased plasma concentrations of Interleukin-6 (IL-6) and other pro-inflammatory cytokines [15,16]. The placental chorio villi’s fetal Hofbauer macrophages are activated [17]. The damage to fetal brain depends on the timing of the exposure during gestation. For example, embryonic day 10–12 exposure of mice results in damage to the developing basal ganglia. The offspring have decreased prepulse inhibition and latent inhibition defects similar to those seen in autism and schizophrenia [15]. Offspring of dams with null mutation of the IL-6 gene do not exhibit behavioral changes from maternal immune activation [18].

The effect of the SARS-CoV-2 infection on fetal development was initially predicted by the U.S. Centers for Diseases Control (CDC) to be similar to the effect of other respiratory coronaviruses [19]. The possibility of placental transfer of the virus in severe cases has been raised; however this is unlikely for most women [20]. Maternal CRP plasma concentration is increased above reference levels in SARS-CoV-2 infected pregnant women, consistent with an inflammatory response (Table 1).

Effects of the inflammatory response from maternal SARS-CoV-2 infection on the brain development of fetuses that could predispose them to later mental illness will not be known for decades, but it seems likely that future epidemiologists will catalog the incidence of schizophrenia, autism, and attention deficit disorder in offspring. This paper reviews evidence for specific nutritional actions that families, their clinicians, and public health authorities can take to prevent the COVID-19 pandemic from becoming yet one more landmark study for the adverse effects of maternal inflammation on the fetus and increased risk for mental illness later in life.

2. Literature search

A Medline search for (Nutrients OR Vitamins OR Choline OR Folic Acid OR fatty acids, omega 3) AND pregnancy AND (coronavirus infection OR “double-stranded RNA” found only one study [21]. Searches in Clinical Nutrition, Clinical Nutrition ESPEN, and American Journal of Clinical Nutrition found no articles. A broader search for (Nutrients OR Vitamins OR Choline OR Folic Acid OR fatty acids, omega 3) AND pregnancy AND (Viral diseases OR Respiratory Tract Infections) found an additional 7 studies, all of which investigated the effects of prenatal Vitamin D, folic acid, or fish oil supplements on infant respiratory wheezing. In the animal model literature, a search for (Nutrients OR Vitamins OR Choline OR Folic Acid OR fatty acids, omega 3) AND the keyword Maternal Immune Activation found 3 studies. Others were found in a search for Maternal Immune Activation only. Table 2 is a selection of more relevant animal studies. Table 3 includes all human studies that were retrieved.

3. Results

3.1. Maternal gestational COVID-19 as a fetal inflammatory challenge

The inflammatory response induced by SARS-CoV-2 infection can be measured as elevation above normal values in maternal plasma or serum CRP concentration [22–27]. CRP concentrations in pregnant women with symptomatic SARS-CoV-2 infections have been reported for 174 women in China and 79 in Spain and Israel (Table 1). All studies found a significant increase in CRP in women with SARS-CoV-2 infection, compared to women in the same clinical setting who were not infected. The samples were generally taken in the third trimester. CRP concentrations over 10 mg/L are considered pathological [22]. Mean values in SARS-CoV-2 infected women across the studies ranged from 5.1 to 20.6 mg/L.

Vaccination produces an inflammatory reaction that is smaller than viral infection, but nonetheless measurable. Twelve participants in the Phase 2 trial of BNT162b2, the current Pfizer vaccine, had CRP levels measured before, one day after, and 8 days after their immunization at the dose approved for public emergency use. CRP levels rose for all participants after vaccination, generally by 3 mg/L. Of the 12 participants, 3 had levels exceeding 5 mg/L, the upper boundary of the reference level, with the highest value 23 mg/L. All CRP levels returned to pre-vaccination levels at 8 days. Levels were not reported after the 21-day booster immunization [28]. The Moderna Phase 2 vaccine trial did not report CRP responses.

3.2. Effects of nutrients in maternal immune activation animal models

Gestational n-3 polyunsaturated fatty acids deficiency was associated with higher IL-6 levels in maternal plasma, placenta, and fetal brain and decreased Y-maze performance, a memory test, in offspring [29]. Supplementation of dietary docosahexaenoic acid to three times control levels in another study decreased the maternal IL-6 response and prevented the adverse effect of gestational Poly I:C on offspring social behavior with other mice [30]. Postnatal supplementation with an enriched n-3 polyunsaturated fatty acid diet decreased global gene methylation, but not for genes targeted for their importance in brain function, a GABA transaminase and guanine nucleoside binding protein in GABAB receptors [31].

Vitamin D pretreatment blocked adverse effects of Poly I:C on social behavior, anxiety behaviors such as abnormal digging, and tone conditioning, a memory function [32]. There was no effect on maternal or fetal pro-inflammatory cytokines, however. Decreased IL-6 response to lipopolysaccharide is reported in isolated placenta ex vivo after Vitamin D treatment [33].

Folic acid administered before lipopolysaccharide inflammation moderately decreased preterm delivery; no other effects were reported [34].

 Dietary choline supplementation, 5 times control levels, decreased Poly I:C-stimulated increase in fetal IL-6. The offspring had fewer anxiety-related behaviors. Null mutation of Chnra7, the gene for the α7-nicotinic acetylcholine receptor subunit that is
activated by choline, prevented response to choline [35]. A similar study found that choline supplementation attenuates the cytokine response to lipopolysaccharide inflammation and inhibits NF-κB signaling in placenta mononuclear cells and AKT phosphorylation. Choline decreased α7-nicotinic acetylcholine receptors in placenta, which are predominantly expressed in macrophages [36].

3.3. Interacting effects of maternal gestational infection and nutrition on offspring outcome

Human trials of choline and Vitamin D supplementation are ongoing during the COVID-19 pandemic, but most children of women infected in the first year of the pandemic have not yet reached the age at which they can be initially assessed [37,38]. Published data are available from children whose mothers experienced common viral respiratory infections, many of which are also coronaviruses (Table 3). The children in these studies are too young to have developed diagnosable mental illnesses. However, their parents can rate their child’s attention, social behavior, and other aspects of behavior and temperament using rating scales that identify childhoo precursors of later problems in school and psychopathology, including schizophrenia [39–41].

In the only study of choline and folic acid in mothers with viral respiratory infection, 43 women reported viral infection [21]. A comparison group of 53 women had neither viral nor bacterial infections. Viral infection was associated with increased CRP, 11.0 mg/L (SEM 1.4) in infected women versus 7.5 mg/L (SEM 1.2) in uninfected women, \(P = 0.047 \) [42]. Women were provided nutritional information and encouraged to eat foods with higher choline content but were not given choline supplements or monitored for choline levels soothability. The highest 20%ile of choline levels, had significantly higher (better) 3-month IBQ-R scores on the Regulation dimension, compared to infants of mothers who had \(<7.5 \) mg/L. The infants of mothers with SARS-CoV-2 (mg/L) not significantly different from infected mothers, P = 0.047 [42]. Women were provided nutritional information and encouraged to eat foods with higher choline content but were not given choline supplements or monitored for choline levels soothability. The highest 20%ile of choline levels, had significantly higher (better) 3-month IBQ-R scores on the Regulation dimension, compared to infants of mothers who had \(<7.5 \) mg/L. The IBQ-R Orientation/Regulation Index includes duration of attention, enjoyment of quiet play, cuddliness and engagement with parents, and soothability.

Infants of mothers who contracted viral infections and had choline levels \(\geq 7.5 \) μM, the highest 20%ile of choline levels, had significantly higher (better) 3-month IBQ-R scores on the Regulation dimension and specifically the duration of attention scale in the Regulation dimension, compared to infants of mothers who had viral infections and had choline levels \(<7.5 \) μM (Fig. 1).

Thirty of the children whose mothers had viral or bacterial infections were re-assessed at 4 years of age using the Child Behavior Checklist ½–5 year version (CBCL) [44]. Problems in Attention half year version (CBCL ½–5) were significantly decreased for the children of mothers who also had higher gestational choline concentrations at 16 weeks gestation. Ratings \(\geq 92 \)nd percentile on the Attention

Table 1

Country	N	C-reactive Protein (CRP) in mothers with SARS-CoV-2 (mg/L)	Gestational Age at Birth	Citation
China	60 cases 120 controls	20.16 ± 41.96 infected versus 8.87 ± 20.4 uninfected	17% < 37 weeks gestation compared to 7.5% of uninfected, \(P = 0.06 \)	Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19 patients: an updated case–control study. Front Cell Infect Microbiol. 2020; 10:560,859. doi:10.3389/fcimb.2020.560859.
China	106 cases 71/106 cases and 8/8 severe cases	>10.0	2 cases <34 weeks, 3 cases 34–37 weeks, 3 cases >37 weeks	Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med. 2020 18; 382(25):e100. doi:10.1056/NEJMoa2009226.
China	8 cases 6/8 cases >10.0	5.10 ± 7.64	20.6, range 5.6–41.01	Pereira A, Cruz-Melguizo S, Adrien M, Fuentes L, Marin E, Perez-Medina T. Clinical course of coronavirus disease-2019 in pregnancy. Acta Obstet Gynecol Scand. 2020; 99:839–47. https://doi.org/10.1111/aogs.13921.
Spain	8 case 10.25,15.63	17.8 (range 0.8–147.4)	10.25 increased offspring schizophrenia odds ratio = 1.58, 95% CI = 1.04 –2.40, \(P = 0.03 \).	Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395(10,226):809–15. doi:10.1016/S0140-6736(20)30630-3.
Spain	60	20.6, range 5.6–41.01		Mohr-Sasson A, Chayo J, Bart Y, Meyer R, Sivan E, Mazaki-Tovi S et al. Laboratory characteristics of pregnant compared to non-pregnant women infected with SARS-CoV-2. Arch Gynecol Obstet. 2020; 302:629–34. doi:10.1007/s00404-020-05655-7.
Israel	11			Canetta S, Sourander A, Surcel HM, Hinkka-Yli-Salomäki S, Levissiak J, Kellendonk C et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry. 2014; 171(9):960–8. doi:10.1176/appi.ajp.2014.13121579.
Finland	777 cases 777 controls	At 11 weeks gestation CRP ≥10 mg/L increased offspring schizophrenia odds ratio = 1.58, 95% CI = 1.04 –2.40, \(P = 0.03 \).		Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014; 19(2):259–64. doi:10.1038/mp.2012.197.
Finland	677 cases 677 controls	At 11 weeks gestation CRP ≥9.55 mg/L increased offspring autism odds ratio = 1.80, 95% CI = 1.09–2.97, \(P = 0.02 \).		Zerho O, Traglia M, Yoshida C, Heuer LS, Ashwood P, Delorenze GN et al. Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: the early markers for autism study. Transl Psychiatry. 2016 Apr; 6(4):e783. doi:10.1038/tp.2016.46.
U.S.	500 cases 580 controls	At 16–19 weeks gestation CRP 4.391–10.25 increased offspring autism OR 1.33 (0.47–3.80) not significant		
Deficit Hyperactivity Disorder (ADHD) scale occurred in 8 of the 83 children between ages 40 and 48 months. Ratings at this level are generally associated with children referred for clinical evaluations [45]. Seven of these 8 children were from mothers who had gestational choline concentrations <7.5 μM CBCL1/2–5 ratings were also acquired for children whose mothers participated in a randomized, placebo-controlled trial of phosphatidylcholine supplementation 6300 mg/day, equivalent to 900 mg choline. Among the 9 children whose mothers had gestational infections, Attention and Aggression problems were significantly lower if the mothers had received the phosphatidylcholine supplement [46]. Similar severity of childhood problems in Attention were rated retrospectively on the CBCL1/2–5 by parents of offspring who developed schizophrenia in later life [41]. Choline levels ≥2.5 μM are within 1 standard deviation of mean reached with 6300 mg supplementation.

None of the other maternal nutrients have been specifically assessed in the context of the effects of maternal viral or bacterial infection on offspring's outcome. Investigations have primarily focused on the maternal inflammatory milieu, independent of infection. Effects of Vitamin D deficiency on inflammation have been investigated. Increased placenta pathology and increased rates of bacterial vaginosis have been found [47,48]. However, higher levels of Vitamin D have also been associated with increased IL-6 plasma concentrations [49]. n-3 polyunsaturated fatty acid supplements did not affect placental inflammatory cytokines [50]. Folic acid metabolites, specifically 5-methyltetrahydrofolate, did not affect pro-inflammatory cytokines, but did decrease concentrations of anti-inflammatory cytokines [51]. Multiple micro-nutrients did not affect serum markers of inflammation, including CRP [52].

4. Discussion

Research into the pathogenic effects of SARS-CoV-2 for fetal brain development and its possible interaction with maternal nutrition will not be conclusive until long after the pandemic is over. The research reviewed in this paper suggests that higher levels of maternal choline, together with other nutrients, might mitigate some of the effects of infection on fetal brain development, based on experience with other respiratory viruses and animal models. Otherwise, based on historical experience with previous pandemics, SARS-CoV-2 infection of the mother can be predicted to significantly affect the offspring's later cognitive and behavioral development and eventually the risk for mental illness. Several individuals who received a vaccine had substantial CRP elevation, with levels as high as those observed in infected women. Vaccination protocols for pregnant women might include provisions to encourage maternal choline and other prenatal vitamins' adequacy.
Table 3

Maternal infection and inflammation and nutrients in human gestation.

Nutrient	Subjects	Findings	Reference
Choline	N = 43 women with 1st trimester viral infection, N = 53 no infection	For infants of mothers with choline levels ≥7.5 µM, there was no effect of viral infection on IBQ-R Regulation, compared to infants of mothers who were not infected. Physiological development of newborns’ cerebral inhibition was adversely affected in mothers with higher CRP and IL-6 plasma levels at 16 wks gestation. Higher maternal choline levels diminished this effect.	Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrrwa A, Camille Hoffman M. Maternal choline and respiratory coronavirus effects on fetal brain development. J Psychiatr Res 2020; 128:1–4. doi:10.1016/j.jpsychires.2020.05.019. Hunter SK, Hoffman MC, D’Alessandro A, Noonan K, Wyrrwa A, Freedman R et al. Male fetus susceptibility to maternal inflammation: C-reactive protein and brain development. Psychological Medicine 2019; doi:10.1017/S0033291719003313 [Epub ahead of print]. Zhang Q, Chen H, Wang Y, Zhang C, Tang Z, Li H, Huang X, Ouyang F, Huang H, Liu Z. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin Nutr 2019; 38:1921–1926. doi:10.1016/j.clnu.2018.06.978.
Vitamin D	N = 2648 high risk women with placenta examination	Pathological placenta changes in women with lowest quartile Vitamin D at 13 wks gestation, compared to highest quartile.	Akoh CC, Pressman EK, Cooper E, Queena RA, Pillittere J, O’Brien KO. Low Vitamin D is associated with infections and proinflammatory cytokines during pregnancy. Reprod Sci 2018; 25:414–423. doi:10.1177/193371917715124.
Omega-3 fatty acids	N = 51 women with n-3 fatty acid supplements at 20 weeks gestation	Placenta inflammatory cytokines not affected by supplement	Keelan JA, Mas E, DVaz N, Dunstan JA, Li S, Barden AE et al. Effects of maternal n-3 fatty acid supplementation on placental cytokines, pro-resolving lipid mediators and their precursors. J Reprod Immunol 2015; 107:52–58. doi: 10.1016/j.jri.2014.09.054
Folate	N = 417 women 9.5 weeks gestation	5-methyltetrahydrofolate, 65% of folate vitamins, had no relation to cervical fluid inflammatory cytokines and negative relation to anti-inflammatory cytokines	Simhan HN, Himes KP, Venkataramanan R, Bodnar LM. Maternal serum folate species in early pregnancy and lower genital tract inflammatory milieu. Am J Obstet Gynecol 2011; 205:61.e1–7. doi:10.1016/j.ajog.2011.02.029.
Multiple micronutrients	N = 740 women at 32 weeks gestation after folic acid, iron, zinc, and multivitamin supplements	Serum markers of inflammation, α1-acid glycoprotein and C-reactive protein, were not significantly decreased by any of the supplements.	Christian P, Jiang T, Khatri SK, LeClerc SC, Shrestha SR, West KP Jr. Antenatal supplementation with micronutrients and biochemical indicators of status and subclinical infection in rural Nepal. Am J Clin Nutr 2006; 83:788–94. doi:10.1093/ajcn/83.4.788.

![Fig. 1. Offspring IBQ-R Orienting/Regulation at 3 months of age in relation to maternal viral infection and plasma choline concentration during early gestation, marginal means and standard errors.](image)

*P = 0.005 for viral infection versus no infection with maternal choline <7.5 µM; **P = 0.002 for maternal choline ≥7.5 µM versus <7.5 µM with maternal viral infection. Maternal viral infection×choline F_{1,73} = 13.22, P = 0.001.
Vitamin D and folic acid are already in optimal amounts in standard prenatal vitamin formulations.

Maternal plasma concentrations of choline >7.5 μM, associated with better development of attention and other orienting/regulation capabilities in early childhood, are within one standard deviation of the mean concentration in women receiving phosphatidylcholine supplementation. Over 80% of supplemented women would thus be expected to have this range of concentrations, but it was obtained by only 20% of women from diet alone [21]. The European Food Safety Authority (EFSA) and U.S. Food and Drug Administration (FDA) recommend daily choline intake, 480 and 550 mg respectively during pregnancy (Table 4). Recent FDA guidance explicitly makes no recommendation for or against supplements [53]. Higher choline intake is also recommended during lactation. Calf’s liver, beef, egg yolks, salmon and soybeans are potential sources of choline, but dietary surveys in many countries find that women fail to eat sufficient amounts [54–59]. For example, a recent survey of 90 US. women estimated dietary intake 318 ± 68 mg, with no woman reaching the recommended amount [60]. Thus for many pregnant women, increased choline intake from diet or supplements would not only benefit fetal development, but also overcome deficiency that is associated with increased incidence of non-alcoholic fatty liver and muscle damage during pregnancy [61].

Moderate increases of choline in diets do not raise choline levels, but supplements raise levels and can overcome effects of polymorphisms in PEMT, the gene for phosphatidylethanolamine transferase, that otherwise lower choline levels [62–64]. Choline and phosphatidylcholine, or lecithin, are widely available as health supplements without prescription. Citicoline, an inosine–choline combination, is also available. A comparison of choline levels reached with supplements studied in clinical trials suggests that any of the formulations studied can facilitate adequate levels for many or most women (Table 5) [65–67].

The issue of whether increasing choline intake through diet or supplements can cause atherogenesis by increasing concentrations of potentially toxic trimethylamine oxide (TMAO) is controversial [68]. Choline is metabolized by some gut microorganisms to trimethylamine, the precursor of TMAO. Most dietary choline is in the form of phosphatidylcholine, which is relatively impervious to bacterial decomposition. Three eggs per day for 4 weeks in 38 young adults raised fasting plasma choline concentration to over 8 μM and did not raise TMAO levels [69]. Higher choline-containing diets >486 mg/day were not associated with increased risk of cardiovascular disease in 14,430 middle aged men and women in the 14-year Atherosclerosis Risk in Communities study [70]. Phosphatidylcholine supplements containing 600 mg choline in 37 healthy men did not increase plasma or urinary TMAO, whereas choline bitartrate containing 600 mg raised plasma TMAO 3-fold [67]. A pharmaceutical company is developing an inhibitor of bacterial production of trimethylamine and commissioned a systematic review of effects of choline and

Table 4: Current daily recommended values of selected nutrients for pregnant women.

Nutrient	European Food Safety Authority [73]	U.S. Food and Drug Administration [53]	World Health Organization [74,75]
Folate	600 μg dietary food equivalents or 400 μg folic acid supplement	600 μg dietary food equivalents or 400 μg folic acid supplement	400 μg folic acid supplement
Vitamin D	15 μg	15 μg	5 μg if deficiency suspected, e.g., low sunlight exposure
Choline	480 mg	550 mg	Not considered
Alpha Linoleic Acid a	1.4 g	1.6 g	Not considered
Linoleic Acid b	13 g	17 g	Not considered

a General recommendations, not specifically for pregnant women.

b WHO recommends daily iron 30–60 mg supplementation for all pregnant women. European Food Safety Authority and U.S. Food and Drug Administration recommend supplemental iron only for women with evidence for iron deficiency.

Table 5: Effects of phosphatidylcholine and choline supplements on plasma choline concentration in pregnant women.

Supplement and gestational week initiated	Choline μM first post supplement concentration, mean ± std. deviation	% Predicted plasma concentration >7.5 μM	Reference
Phosphatidylcholine 5400 mg at 18 weeks	13.7 ± 4.2	93	Fischer LM, da Costa KA, Galanko J, Sha W, Stephenson B, Vick J et al. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr. 2010; 92(2):336–46. doi: 10.3945/ajcn.2010.29459.
Phosphatidyl-choline 6300 mg at 17 weeks	15.2 ± 8.1	83	Ross RG, Hunter JK, Hoffman MC et al. Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. Am J Psychiatry. 2016; 173:509–516. doi:10.1176/appi.ajp.2015.15091188
Choline bitartrate 2.5 g at 23 weeks	10.7 ± 4.2	78	Jacobson SW, Carter RC, Molteno CD, Meintjes EM, Senekal MS, Lindninger NM et al. Feasibility and acceptability of maternal choline supplementation in heavy drinking pregnant women: a randomized, double-blind, placebo-controlled clinical trial. Alcohol Clin Exp Res. 2018; 42(7):1315–26. doi:10.1111/acer.13768.
Choline chloride 550 mg at 27 weeks	8.2 ± 1.2	72	Yan J, Jiang X, West AA, Perry CA, Malysheva OV, Devapala S et al. Maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS ONE. 2012; 7:e43448. doi:10.1371/journal.pone.0043448.
No supplement, 16 weeks concentration	7.1 ± 1.9	42	Wu BT, Dyer RA, King DJJ, Richardson KJ, Innis SM. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS ONE. 2012; 7:e43448. doi:10.1371/journal.pone.0043448.

a Estimated % is based on the assumption of a normal distribution.
choline and phosphatidylcholine supplements in fetal development [71, 72].

The nutritional needs and metabolic physiology of human pregnancy are different from the nutritional needs and metabolic physiology of middle-aged men and women. Current evidence supports phosphatidylcholine from diet or supplements as a safe, effective nutrient to support fetal development.

5. Conclusions

Experience from other pandemics predicts that the COVID-19 pandemic is likely to increase the risk for schizophrenia, autism, attention deficit disorder, and other behavioral and cognitive problems in offspring whose mothers are infected during gestation. Higher maternal choline plasma levels are associated with more normal fetal development in all mothers and, in particular, mothers who are infected, but most women have lower choline plasma levels and dietary intake below currently recommended amounts. More widespread availability of phosphatidylcholine supplements for pregnant women may help mitigate the risks from SARS-CoV-2 infection to their fetuses. The time course of fetal and child development prohibits assessment of effectiveness of nutrient intervention in pregnant women may help mitigate the risks from SARS-CoV-2 infection to their fetuses. The time course of fetal and child development prohibits assessment of effectiveness of nutrient intervention in the placenta, but by then the opportunity to positively impact fetal brain development will have passed. The cost of providing prenatal choline or phosphatidylcholine supplements to women is quite low compared to the lifetime cost of caring for a child who later develops mental illness.

Statement of authorship

All authors planned and discussed the results of this study. All authors have approved the final article.

Funding

National Institute of Child Health and Human Development (K12HD001271-11 to M.C.H.); National Center for Advancing Translational Sciences (UL1 TR001082); The Institute for Children’s Mental Disorders; The Anschutz Foundation.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgement

The late Randal G. Ross conceptualized the study of prenatal choline supplementation in infection and other conditions.

References

[1] Mednick SA, Machon RA, Huttonen MO, Bonnett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 1988;45:189–92.
[2] O’Callaghan E, Sham P, Taki T, Glover M, Murray RM. Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet 1991;337:1248–50.
[3] Wang Y, Chen L, Wu T, Shi H, Li Q, Jiang H, et al. Impact of COVID-19 in pregnancy on mother’s psychological status and infant’s neurobehavioral development: a longitudinal cohort study in China. BMJ Med 2020;18(1):347. https://doi.org/10.1136/bmjmed-2020-005915.
[4] Brown AS, Schaefer CA, Wyatt RJ, Guo J, Wang C, Fuo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020 Mar 7;395(10226):809–15.
[5] Ortuza Molina E, Hernandez Paizos R, Pola Guillen M, Pascual Pedreno A, Rodriguez Rodriguez E, Hernandez Martinez A. COVID-19 infection in symptomatic pregnant women at the midpoint of the pandemic in Spain: a retrospective analysis. Geneclin Pol Med 2020;91:755–63.
[6] Perera A, Cruz-Meloquiz S, Adrien M, Fuentes L, Marin E, Perez-Medina T. Clinical course of coronavirus disease-2019 in pregnancy. Acta Obset Gynecol Scand 2020;99:839–47.
[7] Mohr-Saason A, Choye J, Birt Y, Meyer R, Swain E, Mazaki-Tovi S, et al. Laboratory characteristics of pregnant compared to non-pregnant women infected with SARS-CoV-2. Arch Gynecol Obstet 2020 Sep;302(3):629–34. https://doi.org/10.1007/s00404-020-05655-7.
[8] Sahin U, Muik A, Derovichanss E, Vogler L, Kranz LM, Vorwerk M, et al. Coronavirus disease 2019 (COVID-19) and pregnancy. Can J Clin Pharmacol 2020;27:88–94.
[9] Labrousse VF, Feyroul Q, Amadieu C, Aubert A, Sere A, Coutureau E, et al. COVID-19 infection in symptomatic pregnant women: a retrospective review of medical records. Lancet 2020 Mar 7;395(10226):809–15.
[10] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) and pregnancy. 2020. https://www.cdc.gov/coronavirus/2019-ncov/special-topics/pregnancy-faq.html. [Accessed 6 March 2020].
[11] Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero? more definitive evidence is needed. J Am Med Assoc 2020;323:1788–9.
[12] Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, et al. Maternal choline and respiratory coronavirus effects on fetal brain development. J Paediatr Child Health Res 2020;128:1–4.
[13] Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19 patients: an updated case-control study. Front Cell Infect Microbiol 2020;10:560899. https://doi.org/10.3389/fcimb.2020.560899.
[14] Chen H, Guo J, Wang C, Fuo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020 Mar 7;395(10226):809–15.
[15] Chen H, Guo J, Wang C, Fuo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020 Mar 7;395(10226):809–15.
[16] Ortuza Molina E, Hernandez Paizos R, Pola Guillen M, Pascual Pedreno A, Rodriguez Rodriguez E, Hernandez Martinez A. COVID-19 infection in symptomatic pregnant women at the midpoint of the pandemic in Spain: a retrospective analysis. Geneclin Pol Med 2020;91:755–63.
[17] Perera A, Cruz-Meloquiz S, Adrien M, Fuentes L, Marin E, Perez-Medina T. Clinical course of coronavirus disease-2019 in pregnancy. Acta Obset Gynecol Scand 2020;99:839–47.
[18] Mohr-Saason A, Choye J, Birt Y, Meyer R, Swain E, Mazaki-Tovi S, et al. Laboratory characteristics of pregnant compared to non-pregnant women infected with SARS-CoV-2. Arch Gynecol Obstet 2020 Sep;302(3):629–34. https://doi.org/10.1007/s00404-020-05655-7.
[19] Sahin U, Muik A, Derovichanss E, Vogler L, Kranz LM, Vorwerk M, et al. Coronavirus disease 2019 (COVID-19) and pregnancy. Can J Clin Pharmacol 2020;27:88–94.
[20] Labrousse VF, Leyroul Q, Amadieu C, Aubert A, Sere A, Coutureau E, et al. COVID-19 infection in symptomatic pregnant women: a retrospective review of medical records. Lancet 2020 Mar 7;395(10226):809–15.
[21] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) and pregnancy. 2020. https://www.cdc.gov/coronavirus/2019-ncov/special-topics/pregnancy-faq.html. [Accessed 6 March 2020].
[22] Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero? more definitive evidence is needed. J Am Med Assoc 2020;323:1788–9.
[23] Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, et al. Maternal choline and respiratory coronavirus effects on fetal brain development. J Paediatr Child Health Res 2020;128:1–4.
[24] Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19 patients: an updated case-control study. Front Cell Infect Microbiol 2020;10:560899. https://doi.org/10.3389/fcimb.2020.560899.
[25] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) and pregnancy. 2020. https://www.cdc.gov/coronavirus/2019-ncov/special-topics/pregnancy-faq.html. [Accessed 6 March 2020].
[26] Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero? more definitive evidence is needed. J Am Med Assoc 2020;323:1788–9.
[27] Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, et al. Maternal choline and respiratory coronavirus effects on fetal brain development. J Paediatr Child Health Res 2020;128:1–4.
[28] Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19 patients: an updated case-control study. Front Cell Infect Microbiol 2020;10:560899. https://doi.org/10.3389/fcimb.2020.560899.
[29] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) and pregnancy. 2020. https://www.cdc.gov/coronavirus/2019-ncov/special-topics/pregnancy-faq.html. [Accessed 6 March 2020].
[30] Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero? more definitive evidence is needed. J Am Med Assoc 2020;323:1788–9.
[31] Freedman R, Hunter SK, Law AJ, D’Alessandro A, Noonan K, Wyrwa A, et al. Maternal choline and respiratory coronavirus effects on fetal brain development. J Paediatr Child Health Res 2020;128:1–4.
[32] Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19 patients: an updated case-control study. Front Cell Infect Microbiol 2020;10:560899. https://doi.org/10.3389/fcimb.2020.560899.
[33] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) and pregnancy. 2020. https://www.cdc.gov/coronavirus/2019-ncov/special-topics/pregnancy-faq.html. [Accessed 6 March 2020].
Zhao M, Chen YH, Dong XT, Zhou J, Chen X, Wang H, et al. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice. PLoS One 2013 Dec 6;8(12):e82713. https://doi.org/10.1371/journal.pone.0082713.

Wu WL, Adams CE, Stevens KE, Chow KH, Freedman R, Patterson PH. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav Immun 2015;46:192–202.

Zhang Han X, Rao J, Yang J, Shi SQ, Garfinkle R, Liu H. Choline supplementation during pregnancy protects against gestational lipopolysaccharide-induced inflammatory responses. Reprod Sci 2018;25:74–85.

University of Colorado, Denver. Choline supplementation during pregnancy: impact on attention and social withdrawal. ClinicalTrials.gov Identifier: NCT03028857. Camille Hoffman, MD, Investigator. https://clinicaltrials.gov/ct2/show/NCT03028857.

University of Aarhus. Vitamin D in pregnancy (GRAVITD). ClinicalTrials.gov Identifier: NCT04291313. Anna Louise Vestergaard, MD, Investigator. https://clinicaltrials.gov/ct2/show/NCT04291313.

Gartstein MA, Putnam SP, Kliever R. Do infant temperament characteristics predict core academic abilities in preschool-aged children? Learn Indiv Differ 2016;45:299–306.

Slobodskaya HR, Rozlova EA. Early temperament as a predictor of later personality. Pers Indiv Differ 2016;99:127–32.

Rossi A, Police R, Daneluzzo E, Marinangeli MG, Stratt P. Behavioral neuro-developmental abnormalities and schizophrenia disorder: a retrospective evaluation with the Child Behavior Checklist (CBCL). Schizophr Res 2000;44:121–8.

Hunter SK, Hoffman MC, D’Alessandro A, Noonan K, Wyrwa A, Freedman R, et al. Male fetus susceptibility to maternal inflammation: C-reactive protein and brain development. Psychol Med 2021 Feb;51(3):450–9. https://doi.org/10.1017/S0033291719003313.

Gartstein MA, Rothbart MK. Studying infant temperament via the revised Infant Behavior Questionnaire. Infant Behav Dev 2004;26:64–86.

Hunter SK, Hoffman MC, D’Alessandro A, Wyrwa A, Noonan K, Zeisel SH, et al. Prenatal choline, cannabis, and injection, and their association with offspring development of attention and social problems through 4 years of age. Psychol Med 2021;1–10. https://doi.org/10.1017/S0033291720005061 [Epub ahead of print].

Achenbach TM, Recorda L. Manual for the ASEBA preschool forms and profiles: an integrated system of multi-informant assessment. Burlington, VT: ASEBA; 1991.

Smid RG, Hunter SK, Hoffman MC, McCarthy L, Chambers BM, Law AJ, et al. Prenatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRN7A moderation. Am J Psychiatr 2016;173:509–16.

Akhil CC, Pressman EP, Cooper E, Queenan RA, Piffiterre J, O’Brien KO. Low Vitamin D is associated with infections and proinflammatory cytokines during pregnancy. Reprod Sci 2018;25:414–23.

Zhang Q, Chen H, Wang Y, Zhang C, Tang Z, Li H, et al. Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy. Clin Nutr 2019;38:1921–6.

Bobbitt KR, Peters RM, Li J, Rao SD, Woodcroft KJ, Cassidy-Bushrow AE. Early pregnancy vitamin D and patterns of antenatal inflammation in African-American women. J Reprod Immunol 2015;107:52–8. doi: 0.1016/j.jri.2014.09.024.

Keelan JA, Mas E, D’Vaz N, Dunstan JA, Li S, Barden AE, et al. Effects of maternal n-3 fatty acid supplementation on placental cytokines, pro-resolving lipid mediators and their precursors. Reproduction 2015;149:171–8.

Simhan HN, Himes JP, Venkataramanan R, Bodnar LM. Maternal serum folate intake and food sources of choline and betaine in New Zealand reproductive age women. Asia Pac J Clin Nutr 2013;22:319–24.

Brunst KJ, Wright RO, DiGioia K, Enlow MB, Fernandez H, Wright RJ, et al. Racial/ethnic and sociodemographic factors associated with micronutrient intakes and inadequacies among pregnant women in an urban US population. Publ Health Nutr 2014;17:1960–70.

Lewis ED, Subhan FB, Bell RC, McCagg LJ, Jacobs JM, Jacobs RL, et al. APoRN team. Estimation of choline intake from 24 h dietary intake recalls and contribution of egg and milk consumption to intake among pregnant and lactating women in Alberta. Br J Nutr 2014;112:112–21.

Vennemann FB, Ioannidou S, Valsta LM, Dumas C, Ocké MC, Mensink GB, et al. Dietary intake and food sources of choline in European populations. Br J Nutr 2015;114:2046–55.

Groth SW, Stewart PA, Ossip DJ, Block RC, Wixon N, Fernandez ID. Micronutrient intake is inadequate for a sample of pregnant African American women. J Acad Nutr Diet 2017;117:589-906.

Zeisel SH. 2006. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 2006;26:229–50.

Zeisel SH, Growdon JH, Wurtman RJ, Magil SC, Logue M. Normal plasma choline responses to ingested lecithin. Neurology 1980;30:1226–9.

Abrate CM, Wang W, Li R, Jamone J, Moriarty DJ, Caudill MA. Choline status is not a reliable indicator of moderate changes in dietary choline consumption in premenopausal women. J Nutr Biochem 2009;20:62–9.

Fischer LM, da Costa KA, Galanko J, Sha W, Stephenson B, Vick J, et al. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr 2010;92:336–46.

Jacobson SW, Carter RC, Molteno CD, Mentejs EM, Senekal MS, Lindinger NM, et al. Feasibility and acceptability of maternal choline supplementation in heavy drinking pregnant women: a randomized, double-blind, placebo-controlled clinical trial. Alcohol Clin Exp Res 2018;42:1315–26.

Yan J, Jiang X, West AA, Perry CA, Malyshova OY, Devapati S, et al. Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 2012;95:1060–71.

Cho C, Aardena NC, Bunnell ML, SS, Bergeson JR, Malyshova OY, et al. Free choline, but not phosphatidylcholine, elevates circulating trimethylamine-N-oxide and this response is modified by the gut microbiota composition in healthy men. Curr Dev Nutr 2020 June;4(Suppl 2):379. https://doi.org/10.1053/j.cadn.045.012.

Zeisel SH, Warner M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 2017;37:157–81.

DiMarco DM, Missimer A, Murillo AG, Lemos BS, Malyshova OY, Caudill MA, et al. Intake of up to 3 eggs/day increases HDL cholesterol and plasma choline while plasma trimethylamine-N-oxide is unchanged in a healthy population. Lipids 2017;52:255–63.

Bidelescuc A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 2007;7:20. https://doi.org/10.1186/1471-2261-7-20.

Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol 2020;40:1239–55.

Derbyshire E, Obeid R. Choline, neurological development and brain function: a systematic review focusing on the first 1000 Days. Nutrients 2020;12:1731. https://doi.org/10.3390/nu12061731.

EFSA (European Food Safety Authority). 2017. Dietary reference values for nutrients. Summary Report. Amended September 2019,23:e15121. https://doi.org/10.2903/sp.efsa.2017.e15121. https://efsainsidewaybrary.com/doi/10.2903/sp.efsa.2017.e15121.

World Health Organization. World recommendations on antenatal care for a positive pregnancy experience. Geneva: WHO Press; 2016.

World Health Organization. World recommendations on antenatal care for a positive pregnancy experience. Nutritional interventions update: vitamin D supplements during pregnancy. Geneva: WHO Press; 2020.