CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres

Christian Hoischen1*, Sibel Yavas2*, Thorsten Wohland2*, Stephan Diekmann1*

1 Molecular Biology, Leibniz Institute on Aging–Friiz-Lipmann-Institute (FLI), Jena, Germany, 2 Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Building, National University of Singapore, Singapore

These authors contributed equally to this work.

* diekmann@fli-leibniz.de (SD); christian.hoischen@leibniz-fli.de (CH); twohland@nus.edu.sg (TW)

Abstract

Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.

Introduction

Chromosome segregation is executed by a conserved molecular machinery which contains a large number of subunits and recruits many additional regulatory proteins (recently reviewed in [1–5]). A multi-protein complex, the “kinetochore”, assembles onto centromeric chromatin [6–15]. During mitosis, the kinetochore mediates the interaction between DNA and the mitotic spindle [16–28] (reviewed in [29]). Kinetochores are built from an inner layer, directly
contacting centromeric chromatin, and an outer layer, binding to the spindle microtubules. The inner kinetochore controls outer kinetochore assembly [30–32], influences microtubule binding [31,33], and contributes to epigenetic specification of centromeres [21–26,34–37].

Although centromeres are directly embedded in chromatin, specific DNA sequences are neither necessary nor sufficient for centromere function. Instead, the centromere seems to be epigenetically defined, and its location inherited, by the H3 histone variant CENP-A, which replaces canonical H3 in centromeric nucleosomes [38–56]. CENP-A propagates centromere identity and nucleates kinetochore formation [57–63].

The 16-subunit Constitutive Centromere-Associated Network (CCAN) localizes to centromeres throughout the cell cycle and provides the foundation for outer kinetochore assembly on CENP-A-containing chromatin [18,35,64–72]. Also non-coding satellite RNA is involved in centromere regulation and CENP-A loading to the centromere [73,74]. Two CCAN proteins, CENP-C and CENP-N, bind CENP-A nucleosomes directly [48,54,70,75–82] while CENP-C and CENP-T associate with proteins of the kinetochore microtubule binding interface [21–26,78,83–85]. Thus, the CCAN proteins establish a link between the centromere and the outer kinetochore.

The CCAN proteins can be grouped into five sub-units: CENP-C, CENP-L/N, CENP-H/I/K/M, CENP-T/W/S/X, and CENP-O/P/Q/U/R [35,38,68,69,75,86–92]. The relationships between these proteins were extensively studied [12–15,30,31,35,37,50,68,70,75,76,79,83,88–90,92–96]. CENP-H, CENP-I and CENP-K form a complex [31,32,35] with CENP-M [92]. The complex formed by CENP-A and CENP-C/H/I/K/M/L/N seems to be basic for kinetochore function [15]. The binding of CENP-T/W/S/X to CENP-A requires CENP-C and the presence of the CENP-H/I/K/M complex [15,92]. The CENP-T/W/S/X complex contains proteins with histone-fold domains that bind DNA and might form a nucleosome-like structure [52,70,91,97,98]. Several interactions among CCAN proteins have been identified in S. cerevisiae and S. pombe [11,23,64,65,67,94,99–106] as well as in other organisms [107], indicating a strong evolutionarily conserved homology of kinetochore assembly in many [108] however no or very little homology in a few other organisms [109,110].

CENP-I is required to generate a stable association of the RZZ complex (formed by Rod, ZW10 and Zwilch) and Mad1 with kinetochores and also inhibits their removal by dynein [111,112]. The CENP-H/I/K/M proteins are proximal to the CENP-N/L complex but also to the subunits of the CENP-T/W/X/S and CENP-O/P/U/R complexes [35,66,68,69,113]. The CENP-O/P/U/R complex interacts with CENP-R [88,90,114,115] and is involved in microtubule binding and spindle checkpoint control [10]. CENP-T interacts directly with the Ndc80 complex contributing to outer kinetochore assembly [18,21–24,78,83–85] while CENP-C binds the Mis12 complex [25,26]. The CENP-S/X hetero-dimer is not essential for mitosis but plays a role in kinetochore stabilisation [89,97].

At the centromere, the CCAN sub-units show multiple interactions with other sub-complexes, centromeric nucleosomes [15], and/or DNA [12] and RNA [73]. Kinetochore assembly depends on the combination of these interactions. The contributions of these interactions vary during the cell cycle [14,79,116]. Thus, the extensive network of interactions formed between sub-units plays a critical role in providing a specific and robust foundation for the chromosome segregation machinery [12,15].

We speculated that these protein-protein interactions may be established partly already in the nucleoplasm at non-centromeric sites, before these proteins assemble at the centromere. Indeed, for some CCAN proteins we recently found that they form diffusible complexes in the nucleoplasm before binding to the centromere: by fluorescence cross-correlation spectroscopy (FCCS) we detected a strong association for CENP-S and CENP-X [97], a slightly weaker interaction for CENP-O and CENP-P [90], and a weak association for CENP-R and CENP-Q.
FCCS analysis can identify if two differently labeled molecules move together (in a complex) or independently, indicating direct or indirect protein-protein interaction. Fluorescence correlation spectroscopy (FCS) analyses diffusing particles (summarized in [117]) by monitoring the fluorescence fluctuations created when molecules diffuse through a diffraction limited confocal detection volume. Photons emitted from the fluorescent particles are counted continuously over time. While the fluctuation amplitude depends on particle concentration and brightness, its frequency contains information on the diffusion times of the fluorescent particles. For quantitative evaluation, the fluctuation frequency is correlated with a time-shifted replica of itself (autocorrelation). The amplitude of the autocorrelation curve is inversely proportional to the average number of fluorescent molecules in the confocal volume. By monitoring the diffusion coefficient FCS can determine molecular association and binding affinities. However, the diffusion coefficient is inversely proportional to the hydrodynamic radius of a particle and thus weakly dependent on its overall mass. Therefore, it is difficult to determine the association of similar sized particles. This limitation can be circumvented by fluorescence cross-correlation spectroscopy (FCCS). When two differently labeled molecules are measured in the same volume and correlated by cross-correlation, the analysis can tell if both molecules move together (in a complex) or independently, enabling the deduction of dissociation constants (K_d) of binding reactions in vivo [117].

Here, we extend our FCCS studies in living human cells [90, 97] to a number of other CCAN and hMis12 complex proteins. We found that in the nucleoplasm outside kinetochores CENP-T co-migrates with CENP-K and CENP-M. The in vivo interactions between CENP-T and CENP-W as well as between CENP-S and CENP-X are studied in detail. We found that a large fraction of the CCAN proteins CENP-C/H/I/K/M/T/W/N/L but not CENP-S/X interact with one another in vivo outside centromeres, supporting the findings of Weir et al. [15].

Materials and methods

Plasmids

Cloning of CENP-M, -N, -S, -T and CENP-X have been described elsewhere [71,97,118]. Full length coding sequences of CENP-L (IRAUp969E0882D, RZPD Berlin), CENP-W (IRATp970A07105D, imaGenes Berlin), hMis12 (IRAUp969C0611D6, RZPD Berlin), SPC24 (IMAgp958K072621Q, RZPD Berlin), SPC25 (IRAUp969F0887D, RZPD Berlin), Nsl1 (pIC79, Iain Cheeseman), Dsn1 (pIC80, Iain Cheeseman), Nnf1 (pIC81, Iain Cheeseman), CENP-C/H/I [116] were amplified by PCR (Expand high fidelity PLUS PCR System, Roche, Penzberg, Germany) using primers incorporating flanking attB recombination sites and transferred into vector pDONR221 by BP recombination reaction (Invitrogen, Carlsbad, CA, USA). Genes were then transferred by LR recombination reactions into modified pFP-C and pFP-N (BD Biosciences, Clontech, Palo Alto, CA, USA) based Destination vectors. The fusion constructs have either short (FP-(s)-CENP) or long (FP-(l)-CENP) linkers. In FP-(s)-CENP constructs, the amino acid (aa) linker between the two fused proteins is SGTSLYKKFENLYFQGA T, whereas in FP-(l)-CENP constructs the linker is extended to SGTSLYKKAGGSAGGGSAGGSGG SGGSSGASGTAGTGGTGGTGGG.

Cell lines and transfection

HEp-2 and U2OS cells were cultured in DMEM with 10% FCS as previously described [79,119]. For the dual color fluorescence cross-correlation spectroscopy (DC-FCCS) experiments, appropriate constructs were transfected into HEp-2 and U2OS cells (ATCC, Manassas, VA, USA) by electroporation and interphase cells were assayed by DC-FCCS after 24–48 hrs.
For single-wavelength fluorescence cross-correlation spectroscopy (SW-FCCS), HEK293 cells (ATCC) were cultivated in Dulbecco’s modified Eagle’s medium DMEM (HyClone, GE Healthcare, UK) supplemented with 10% FBS (HyClone fetal bovine serum, GE Healthcare, UK) and 1% PS, penicillin G and streptomycin (PAA, Austria) at 37˚C in 5% CO₂ atmosphere. Appropriate plasmids were transfected into the cells by electroporation (Neon R Transfection system, Life Technologies, Carlsbad, CA). Around 90% confluent cells were washed twice with 5 ml 1×PBS (phosphate buffer saline), treated with 0.5 ml Trypsin for 1 min and re-suspended in 5 ml DMEM culture medium. Cells (1×10⁶) were centrifuged for 3 min, re-suspended in R buffer and transfected according to the manufacturer’s protocol. The transfected cells were seeded in DMEM and 10% FBS culture medium on glass coverslips (MatTEK, Ashland, US) and kept at 37˚C in 5% CO₂ atmosphere overnight. Before starting the experiments, the cells were washed with 1×PBS and maintained in 1 ml 1×PBS.

Fluorescence cross-correlation spectroscopy (FCCS)

Dual color fluorescence cross-correlation spectroscopy (DC-FCCS). Dual Color FCCS analyses [120,121] were performed at 37˚C on an LSM 710 Confocor3 microscope (Carl Zeiss, Jena, Germany) using a C Apochromat 40x/1.2 NA water objective. U2OS cells were double transfected with vectors for the simultaneous expression of EGFP and mCherry fusion proteins and analysed. In interphase cells expressing both fusion proteins at relatively low and comparable levels, we selected spots for the FCCS measurements in areas of the nucleoplasm which were free of kinetochores. For illumination of the EGFP-fusion proteins, we used the 488 nm laser line of a 25 mW Argon/2-laser (Carl Zeiss) and for simultaneous illumination of the mCherry fusion proteins a DPSS 561-10-laser (Carl Zeiss), both at moderate intensities between 0.2 and 0.5%. The detection pinhole was set to a relatively small diameter of 40 μm (corresponding to about 0.8 airy units). After passing a dichroic beam splitter (NTF 565, standard filter of LSM710), the emission of mCherry was recorded in channel 1 through a BP-IR 615–680 nm bandpath filter by an APD (avalanche photodiode), whereas the emission of EGFP was simultaneously recorded in channel 2 through a BP-IR 505–540 nm bandpath filter by a second APD. Before each measurement, we analysed possible crosstalk between the channels and used only cells without or with very little crosstalk. Furthermore, before data sampling, the selected focal volume was bleached destroying the fluorescence of immobile fluorophores. Thus, after bleaching, only mobile fluorophores (like tagged CENPs) can contribute to the DC-FCCS signal. In addition, measurements with autocorrelation values below 1.05 for both, the mRFP channel as well as the EGFP channel, were not further analysed. For the measurements, 10 time series of 10 sec each were simultaneously recorded for mCherry and for EGFP. After averaging, the data were superimposed for fitting with the Fit-3Dfree-1C-1Tnw model of the ZEN-software (Carl Zeiss), a diffusion model in three dimensions with a triplet. Applying this procedure, we obtained autocorrelations of channels 1 and 2 as well as the cross-correlation of channels 1 versus channel 2. Before starting a set of experiments, the pinhole position was adjusted to the beam path. As negative control, U2OS cells were transfected with vector pIRES2, separately expressing EGFP and mRFP as single molecules with fluorescence intensities comparable to those in the FCCS analysis with CENP fusion proteins. As a positive control, U2OS cells were transfected with pH-mR-G-C expressing a mRFP-EGFP fusion protein, again with fluorescence intensities comparable to those in the FCCS analysis with CENP fusion proteins.

Single-Wavelength Fluorescence Cross-Correlation Spectroscopy (SW-FCCS). Single-Wavelength Fluorescence Cross-Correlation Spectroscopy (SW-FCCS) setup and calibration was described previously [122,123]. In short, the experiments were performed on a modified
Olympus FV300 confocal microscope with a 1.2 NA 60x water immersion objective (Uplanaapo, Olympus, Japan). EGFP- and mCherry-labelled proteins were excited by a 20 μW Argon ion 514 nm laser line (Melles Griot, Albuquerque, NM, USA). The emission passed a 150 μm pinhole, split by a 560 DCLP emission dichroic mirror (Omega Optical, Brattleboro, VT, USA) followed by the band-pass filters (545AF35 and 615DF45, respectively, Omega Optical, Brattleboro, VT, USA) to the two avalanche photodiodes (SPCM-AQR-14; PerkinElmer, Canada). Auto- and cross-correlation curves were generated by a hardware correlator (Flex02-01D, www.correlator.com, Bridgewater, NJ, USA). The experiments were conducted at 37˚C (TempContro 37–2, Pecon, Erbach, Germany) equipped with an objective heating ring (TC-124A, Warner Instruments, Hamden, CT, USA). Each single-point measurement recorded 3 times 25 sec runs in the nucleoplasm. The obtained auto- and cross-correlation functions (ACF and CCF) were fitted with a self-written software in Igor Pro 6.22A (WaveMetrics, Lake Oswego, OR, USA) using a 3-dimensional 1-particle 1-triplet model [124]. The concentration calculations and dimer fraction quantification was conducted by a self-written program in Mathematica 10 (Wolfram Research, Champaign, IL, USA). For the calculation of apparent dissociation constants (Kd) the data were corrected for the probability of mCherry to be fluorescent (pr) and for the differences in the effective observation volumes at different wavelength. The detailed protocols for the correction have been published previously [124]. EGFP was assumed to be fully fluorescent (pg = 1). The green observation volume Vg was 0.54 fl as determined by calibration of the system with Atto488. The red observation volume Vr was determined by the ratio of diffusion times of mCherry/EGFP (τD,R/τD,G) from the measurement of a tandem EGFP-mCherry construct. The ratio of τD,R/τD,G was 1.1, which translated into a Vr/Vg ratio of 1.15 (τD is proportional to ωo^2, V is proportional to ωo^3), resulting in Vr = 0.62 fl. The overlap of these two observation volumes gave an effective cross-correlation volume Vc of 0.58 femto-litre (fl). These parameters resulted in a pr = 0.6, implying that slightly more than half of all mCherry fluoresce. The fraction of non-fluorescent mCherry proteins limits the maximum cross-correlation that can be achieved.

Results and discussion

16 CCAN proteins, forming the sub-complexes CENP-T/W/S/X, CENP-H/I/K/M, CENP-L/N and CENP-P/O/R/Q/U, assemble at the centromere during all phases of the cell cycle. We studied if these proteins and the four proteins of the hMis12 complex form pre-complexes in the nucleoplasm outside centromeres. Recently we analysed protein interactions between proteins of the CENP-P/O/R/Q/U complex and their interactions with other CCAN proteins [90]. By Yeast-2-Hybrid (Y2H) analysis of these human proteins in S. cerevisiae we could only detect a weak interaction of CENP-R with itself. However, using a mammalian three-hybrid (F3H) [125,126] assay for protein-protein interactions in living human cells at non-centromeric chromatin locations, we detected the interactions between CENP-O and CENP-P as well as CENP-R, between CENP-U and CENP-P, CENP-R and CENP-Q and between CENP-Q and CENP-R. When analysing the diffusible proteins of the CENP-P/O/R/Q/U complex individually in the nucleoplasm of human cells by dual wavelengths fluorescence cross-correlation spectroscopy (DC-FCCS), we observed co-migration between CENP-O and CENP-P (40–50%) and between CENP-Q and CENP-R (16–20%) (see Table 1) but not between other complex members [90], suggesting that the CENP-P/O/R/Q/U proteins only partially pre-form sub-complexes but not a fivefold complex in the nucleoplasm outside centromeres.

Here we analysed potential protein-protein interactions among further CCAN proteins in the nucleoplasm of living human interphase cells outside centromeres. We double-transfected
Table 1. Cross-correlation by DC-FCCS.

mCherry fusion	Measured (mean±SD %)	Corrected (%)	Measurements/number of cells	
CENP-P/O/R/Q/U complex				
EGFP-(s)-CENP-O'	mCherry-(s)-CENP-P'	25±3	40–50	12/12
EGFP-(s)-CENP-R'	mCherry-(s)-CENP-Q'	10±2	16–20	2/2
CENP-H/I/K/M complex				
EGFP-(l)-CENP-M	mCherry-(s)-CENP-K	37±9	56–83	19/12
EGFP-(l)-CENP-M	mCherry-(s)-CENP-I	24±9	30–66	32/18
EGFP-(s)-CENP-I	mCherry-(s)-CENP-M	0	0	12/4
CENP-I-(s)-EGFP	CENP-M-(s)-mCherry	0	0	10/6
EGFP-(s)-CENP-H	CENP-I-(s)-mCherry	22±6	32–58	26/14
EGFP-(s)-CENP-H	mCherry-(s)-CENP-K	31±8	46–78	23/10
EGFP-(s)-CENP-K	mCherry-(s)-CENP-I	20±7	26–54	19/10
CENP-C				
EGFP-(s)-CENP-H	mCherry-(s)-CENP-C	26±7	38–66	20/10
EGFP-(s)-CENP-H	CENP-C-(s)-mCherry	18±10	16–56	11/5
CENP-N/L complex				
EGFP-(l)-CENP-L	mCherry-(s)-CENP-N	23±9	28–64	16/9
EGFP-(l)-CENP-L	mCherry-(s)-CENP-K	18±7	22–50	22/10
EGFP-(s)-CENP-N	mCherry-(s)-CENP-K	0	0	4/2
CENP-K-(s)-EGFP	mCherry-(s)-CENP-N	26±13	26–78	17/8
CENP-T/W/S/X complex				
EGFP-(s)-CENP-X'	mCherry-(s)-CENP-S'	40±10	60–100	19/12
EGFP-(s)-CENP-X	mCherry-(l)-CENP-S	31±7	48–76	9/7
CENP-T-(s)-EGFP	mCherry-(s)-CENP-W	28±8	40–72	18/12
EGFP-(s)-CENP-T	mCherry-(s)-CENP-S	0	0	14/8
EGFP-(s)-CENP-T	CENP-S-(s)-mCherry	0	0	7/5
EGFP-(s)-CENP-T	mCherry-(l)-CENP-S	0	0	6/4
EGFP-(l)-CENP-T	CENP-S-(l)-mCherry	0	0	6/3
EGFP-(s)-CENP-T	mCherry-(s)-CENP-X	0	0	10/5
EGFP-(l)-CENP-W	CENP-X-(l)-mCherry	0	0	4/2
EGFP-(s)-CENP-M	CENP-T-(s)-mCherry	13±3	20–32	4/2
EGFP-(s)-CENP-M	CENP-TNC-(s)-mCherry	0	0	14/5
CENP-K-(s)-EGFP	CENP-T-(s)-mCherry	31±13	36–88	20/10
hMis12 complex				
EGFP-(s)-Dsn1	mCherry-(s)-Nnf1	22±3	38–50	18/10
EGFP-(s)-Nld1	mCherry-(s)-Nnf1	18±6	24–48	15/11
EGFP-(s)-Dsn1	mCherry-(s)-Nnf1	24±5	38–58	13/8
hMis12-(s)-EGFP	Nnf1-(s)-mCherry	31±8	46–78	22/10
Nld1-(s)-EGFP	hMis12-(s)-mCherry	36±11	50–94	19/9
EGFP-(s)-Dsn1	hMis12-(s)-mCherry	32±7	50–78	18/10
hMis12-(s)-EGFP	mCherry-(s)-CENP-K	18±4	28–44	22/10
hMis12-(s)-EGFP	mCherry-(s)-CENP-T	18±4	28–44	17/8
hMis12-(s)-EGFP	CENP-T-(s)-mCherry	19±4	30–46	8/5

Measured and the corrected values (in %) for the CENP or hMis12 complex protein pairs tagged by EGFP or mCherry at the N- or C-terminal end. (s): short linker, (l): long linker (see Materials & Methods). The original data behind “means” and “SD” are listed in S1 Table. Since cross-correlation values underestimate the factual percentage of co-migrating molecules approximately by a factor two, due to various effects including non-fluorescent proteins and differences in the size of the diffraction limited volume for the two measured wavelengths, the values measured with DC-FCCS had to be corrected (see main text and reference [124]).

1) [83]
2) [90]

https://doi.org/10.1371/journal.pone.0192572.t001
human HEp-2 cells so that they express two CCAN proteins, terminally tagged with EGFP in the one and mCherry in the other case. By DC-FCCS we then measured the mobility of both tagged proteins in a very small confocal volume (ca. 1 fl, about half the size of E. coli) and, by cross-correlation of the fluorescence signal, we determined if in the focal volume the two proteins co-migrate which would indicate both proteins being part of a di- or multimeric complex [90,117,127–129]. FCCS possesses single-molecule sensitivity and can be conducted at concentrations in the nanomolar range.

Tagged proteins were introduced by transient transfection and exhibited centromeric targeting independently of the N- or C-terminal site of fluorescent protein fusion. Before data acquisition, the selected focal volume was bleached, destroying the fluorescence of immobile fluorophores. Thus, after bleaching, only mobile fluorophores (like those tagged to CENPs) can contribute to the DC-FCCS signal. Furthermore, cross talk was minimized by microscope adjustment. Experiments with control fluorochromes in monomeric (EGFP and mRFP) or fused (mRFP-EGFP) forms determined the dynamic range of this system. Co-diffusion generally was detected as described in detail by Bacia & Schwille [120, 121]. First we analyzed EGFP and mRFP as single molecules (negative control, Fig 1A). The count rates of EGFP and mRFP over time, reflecting the fluctuations of the analyzed fluorescent molecules, are displayed in insert b). With the measured signals, autocorrelation analyses were performed (measured signals are compared with itself at later time points and analyzed for repeated motifs) resulting in the FCS- or autocorrelation-curves $G(\tau)$ for EGFP (green) and mRFP (red) with calculated autocorrelations (AC) for EGFP (AC $\text{EGFP} = 1.151$) and mRFP (AC $\text{mRFP} = 1.057$). By subtraction of 1 from the AC values, the corresponding amplitudes of the autocorrelation curves $A(\text{AC}_{\text{EGFP}}) = 0.151$ and $A(\text{AC}_{\text{mRFP}}) = 0.057$ are obtained. In addition, cross-correlation analyses were performed (measured signals of the green channel were compared with measured signals of the red channel at identical time points and analyzed for identical motifs), resulting in the FCCS- or cross-correlation-curve $G(\tau)$ (black). In this example, the calculated cross-correlation (CC) of 1.001 and the amplitude $A(\text{CC}) = 0.001$ indicate 0% co-migration of EGFP with mRFP. In all experiments with this pair of single proteins, the measured cross-correlation values never indicated co-diffusion. For the mRFP-EGFP fusion protein (positive control, Fig 1B) we observed a CC = 1.029, an AC $\text{EGFP} = 1.064$ and an AC $\text{mRFP} = 1.142$. The corresponding amplitudes of the autocorrelation and cross-correlation curves are $A(\text{AC}_{\text{EGFP}}) = 0.064$, $A(\text{AC}_{\text{mRFP}}) = 0.142$ and $A(\text{CC}) = 0.029$. $A(\text{CC})$, relative to the diffusion related amplitude of one of the autocorrelation curves ($A(\text{AC}_{\text{EGFP}})$ in this case), is a measure of binding or dynamic co-localization indicating 45% co-migration. The $A(\text{AC})$s correspond to the reciprocals of the average numbers of particles in the detection volume, resulting here in 15.6 particles EGFP (N_{EGFP}) and 7 particles mCherry (N_{mCherry}). The $A(\text{CC})$, however, is directly proportional to the concentration of the co-migrating molecules ($N_{\text{EGFP-mCherry}}$). The $N_{\text{EGFP-mCherry}}$ can be calculated according to the ratio $A(\text{CC})/A(\text{AC}_{\text{mCherry}}) = N_{\text{EGFP-mCherry}}/N_{\text{EGFP}}$ resulting in about 3.2 co-migrating molecules ($N_{\text{EGFP-mCherry}} = 3.2$). In addition, $N_{\text{EGFP-mCherry}}$ = 3.2 relative to the number of analyzed molecules of one of the two fluorophores (in this case $N_{\text{mCherry}} = 7$) also indicated 45% co-migration. In general, we obtained CC-values between 40 and 55% for mRFP-EGFP and EGFP-mCherry fusion proteins [90,97]. These results are in agreement with results of Kohl & Schwille [130]. For such fusion proteins, 100% cross-correlation should be observed. Since cross-correlation values obtained with these protein pairs rate the factual percentage of co-migrating molecules too low by approximately a factor of two, we corrected the values measured with DC-FCCS by this factor. The lower values of 40–55% is due to at least four effects [124]: (i) differences in observation volumes for fluorescent proteins of different emission wavelengths and displacement of these observation volumes due to chromatic aberrations, (ii) the existence of dark fluorescent proteins due to maturation problems
Pre-complex formation of kinetochore components outside centromeres

A

EGFP + mRFP

G(t)
1.20
1.15
1.10
1.05
1.00

Lagtime [s]

AC EGFP = 1.151
AC mRFP = 1.077
CC = 1.001
A(CCA)(AEGFP) = 0%

B

mRFP-EGFP

G(t)
1.35
1.30
1.25
1.20
1.15
1.10
1.05
1.00

Lagtime [s]

AC EGFP = 1.064
AC mRFP = 1.142
CC = 1.029
A(CCA)(AEGFP) = 45%

C

EGFP-(l)-CENP-M + mCherry-(s)-CENP-K

G(t)
1.15
1.10
1.05
1.00

Lagtime [s]

AC EGFP = 1.101
AC mCh = 1.130
CC = 1.060
A(CCA)(AEGFP) = 49%
[130] and photo-bleaching, (iii) Förster resonance energy transfer (FRET) between the labels changing the amplitudes of auto- and cross-correlations, and finally (iv), endogenous proteins might interfere with the analysed biomolecular interactions. The dominant reason seems to be that roughly only about half of all mCherry fluoresce (see Materials & Methods). Thus, cross-correlation values obtained from DC-FCCS experiments under-estimate the percentage of co-migrating molecules. In order to avoid these effects, we carry out single wavelength fluorescence cross-correlation (SW-FCCS) experiments (see below). In addition, the fluorescent tag itself, in particular when being tied by a short linker, might interfere with protein-protein interaction, for example by being attached at or close to the binding site, introducing sterical hindrance. Therefore, when detecting no protein-protein interaction, in most cases additional cross-correlation experiments were carried out with (i) proteins labeled at the other terminus and/or (ii) introducing a long protein linker between EGFP and CENP, reducing or excluding the effects of sterical hindrance by the tagged fluorescent protein.

CENP-H/I/K/M complex

As a further CCAN sub-complex next to CENP-P/O/R/Q/U [90], we analysed the potential pairwise interactions between proteins of the CENP-H/I/K/M sub-complex [35, 92] in order to determine if CENP-H/I/K/M proteins form hetero-dimers or -multimers in the nucleoplasm outside centromeres. By Y2H we only detected a single weak interaction between CENP-H and -K. In double-transfected interphase HEp-2 cells, we analysed various combinations of EGFP and mCherry tagged CENP-H/I/K/M proteins (Table 1). Measurements of EGFP-(l)-CENP-M and mCherry-(s)-CENP-K indicate complex formation in the nucleoplasm (A(CC)/A(AC_{EGFP}) = 49%). The cross-correlation analysis (with a magnified scale of G (τ); insert a) resulted in a correlation of 1.050, whereas the autocorrelations yielded 1.101 and 1.130 for EGFP-CENP-M and mCherry-CENP-K, respectively. The amplitude of the cross-correlation curve A(CC), relative to the diffusion-related amplitude of one of the autocorrelation curves A(AC) of EGFP or mCherry (in this case A(AC_{EGFP})), is a measure of binding or dynamic colocalization. According to this ratio of amplitudes, up to 49% of nucleoplasmic CENP-M and -K are part of a common (hetero-dimer or larger) complex.
CENP-I-(s)-EGFP and CENP-M-(s)-mCherry (all fusions with short linkers), we found no cross-correlation (Table 1). We speculated that the fluorescent tag might interfere with protein-protein interaction (see above). In order to test this hypothesis, we introduced a long protein linker between EGFP and CENP-M and repeated the cross-correlation experiment, now between mCherry-(s)-CENP-I and EGFP-(l)-CENP-M. In this case, when EGFP is fused to CENP-M by a long linker, we found (24±9)% of the molecules co-migrating (corrected value 30–66%) (Table 1). In further experiments we measured the cross-correlation, and found co-migration, between EGFP-(s)-CENP-H and CENP-I-(s)-mCherry, between EGFP-(s)-CENP-H and mCherry-(s)-CENP-K and between EGFP-(s)-CENP-K and mCherry-(s)-CENP-I (Table 1). By FCCS in the nucleoplasm outside centromeres, we estimate pairwise co-migration of CENP-H/I/K/M proteins in the range 30 to >90% (corrected values, considering the under-estimation discussed above; see Fig 1B and 1C). This suggests that in the nucleoplasm of interphase cells outside centromeres, most of the CENP-H/I/K/M proteins (30 to >90%) form a multimeric complex.

Our results are in agreement with earlier observations. CENP-H [67,131,132] and CENP-K [35,68,100,133] form a tight dimer when co-expressed in and purified from insect cells [92]. CENP-H and CENP-K interact with CENP-I [35,92,101,134] and were proposed to form a complex [31,32,35]. CENP-M stabilizes this complex [92]: CENP-I bridges CENP-H/K and CENP-M; both CENP-H/K and CENP-M contribute to CENP-I stabilisation. This stabilisation is functionally relevant since CENP-M and CENP-I are mutually required for kinetochore localization. Thus, these proteins form a quaternary complex [12,13] which, as indicated by our data here, partially forms already in the nucleoplasm outside centromeres (see Fig 5).

CENP-C

CENP-C is required for the incorporation and stabilisation of CENP-A nucleosomes [63,81], has a central CCAN forming function [12] and recruits the CENP-T/W/S/X and CENP-H/I/K/M complexes to centromeres. CENP-C binds the CENP-L/N and CENP-H/I/K/M complexes directly, with CENP-H and CENP-K being the main determinants of this interaction [31–15,92]. By DC-FCCS we identified a cross-correlation between EGFP-(l)-CENP-H and CENP-C tagged at either end (mCherry-(s)-CENP-C and CENP-C-(s)-mCherry). We found co-migration between CENP-H and CENP-C in the range of 16 to 66% (corrected, Table 1). This indicates that in the nucleoplasm outside centromeres, CENP-C interacts with CENP-H (either directly or indirectly), and suggests that there CENP-C is associated with the CENP-H/I/K/M complex, consistent with [15] (see Fig 5).

CENP-N/L complex

Next we studied the CENP-N/L complex. CENP-N associates with CENP-A nucleosomes and directly binds CENP-L [12,15,75,79,80]. By DC-FCCS we identified a cross-correlation between EGFP-(l)-CENP-L and mCherry-(s)-CENP-N ((23±9)% co-migration, corrected value 28–64%) (Table 1), indicating that most of the CENP-N and CENP-L proteins co-migrate. Thus, our data show that to a considerable amount CENP-N and CENP-L already interact in the nucleoplasm outside centromeres. CENP-K and CENP-N interact with one another [75], probably inducing an interaction between the complexes CENP-L/N and CENP-H/I/K/M [12,15]. We therefore measured DC-FCCS between EGFP-(l)-CENP-L and mCherry-(s)-CENP-K and between CENP-K-(s)-EGFP and mCherry-(s)-CENP-N, and found co-migration between 26 and 78% (corrected, see Table 1). The results indicate that in the nucleoplasm about one to two thirds of the available CENP-N and CENP-L proteins (most of them complexed together, see above) associated with proteins of the CENP-H/I/K/M complex.
This is consistent with the recent observation that CENP-N seems to be associated with CENP-H/I/K/M, however not always [96]. Interestingly, DC-FCCS between EGFP-(s)-CENP-N and mCherry-(s)-CENP-K showed no co-migration (Table 1). The CENP-K N-terminal, but not the C-terminal tag, fused by a short linker, seems to interfere with binding to CENP-N. In summary, in the nucleoplasm outside centromeres, the CENP-L/N complex is partly associated with the CENP-H/I/K/M complex (see Fig 5).

CENP-T/W/S/X complex

We then studied the interactions between CENP-T/W/S/X proteins [91] in the nucleoplasm not only by DC-FCCS (as above) but also in more detail by quantitative SW-FCCS [124,135–137]. This approach allows the estimation of effective dissociation constants. In principle, the ratio of the auto- (ACF) and cross- (CCF) correlation amplitudes can vary between zero (no binding) and one (complete binding (assuming 1:1 stoichiometry)). Factors affecting the correlation amplitudes and their ratios include background fluorescence (which in our DC-FCCS experiments was eliminated by bleaching the focal volume before data acquisition) and cross talk [138–140] (which was minimized by microscope adjustment). Nevertheless, the largest values for the CCF/ACF amplitude ratios for fused fluorescent proteins (like EGFP-mRFP or EGFP-mCherry) were in the range of ~0.5 (see Fig 1, Table 1), due to differences in observation volumes for different fluorescent proteins, the existence of dark fluorescent proteins and photo-bleaching, Förster resonance energy transfer (FRET), and endogenous protein interference with the analysed biomolecular interactions (see above). Recently, we established procedures for correcting these effects [124].

Single wavelength FCCS (SW-FCCS) overcomes the difficulty of aligning two lasers to the same spot [135–137]. Further quantitative corrections allowed us to accurately determine the ACF and CCF amplitudes and thus obtain correct concentrations of the interacting molecules so that we can deduce K_d values. K_d values from in vivo experiments usually are effective dissociation constants since in many cases interactions in cells are not simple pure binary reactions but can be affected by the presence of other biomolecules. Even unspecific background reactions of low binding strength can influence the measured K_d if the concentration of the unspecific binding partner is high. Nevertheless, in the absence of detailed knowledge of the composition and all interactions in a cell, this effective K_d is a relevant parameter.

First, by SW-FCCS we analyzed mCherry and EGFP expressed in interphase HEK293 cells as single proteins (negative control) or expressed as the fused hetero-dimer mCherry-EGFP (positive control). The diffusion time \(\tau_D \) of mCherry-EGFP was slightly higher than those of the single proteins (Table 2). The uncorrected amount of co-migration was \((8.6 \pm 6.7)\%\) for the single proteins (defining the background level) and \((47 \pm 14)\%\) for the hetero-dimer (Table 2), defining the maximally expected value.

Recently, by DC-FCCS we detected a cross-correlation between EGFP-(s)-CENP-X and mCherry-(s)-CENP-S in the nucleoplasm, suggesting that 60–100% (corrected value) of the molecules co-migrate and thus co-reside in a single complex (Table 1) [97]. By contrast, the FCCS analysis of CENP-S association with CENP-T revealed no detectable soluble complex containing these two proteins, consistent with our Y2H experiments which also did not detect an interaction between CENP-T and CENP-S. We concluded that, outside centromeres and ectopic chromatin sites, to a large extent CENP-S and CENP-X exist in a diffusible complex independent of CENP-T [97]. Here, we repeated this experiment, now fusing mCherry to CENP-S by a long linker. By DC-FCCS we measured a cross-correlation between EGFP-(s)-CENP-X and mCherry-(l)-CENP-S ((31\pm7)\% co-migration, corrected value 48–76%) (Table 1), confirming our previous results. Then, we exchanged the N-terminal tags and
studied EGFP-(s)-CENP-S and mCherry-(s)-CENP-X by SW-FCCS. In 101 measurements in 36 cells, both tagged proteins showed similar diffusion times and high uncorrected co-migration of (42 ± 12) % (Table 2). The fusion proteins moved slower than the single fluorescent proteins. From our data we deduced an effective dissociation constant K_d of (264 ± 37) nM from the scatter plot and the similar value 287 nM (SD = 0.5) from the histogram analysis (Fig 2, Table 2). When correcting these data according to [124], we obtained (58 ± 15) % as the relative amount of complex formation (Table 2). Thus, in agreement with our DC-FCCS results, most

Table 2. Cross-correlation by SW-FCCS.

Sample	τ_D ± SD (ms)	Dimer ± DD (%)	Measurements / number of cells	K_d ± SD (nM)	Corrected K_d ± SD (nM)	Dimer ± SD (%)
Control measurements						
mCherry-EGFP	G: 0.87 ± 0.16	47.4 ± 14.0	37 / 17	N/A	N/A	N/A
	R: 0.95 ± 0.22					
EGFP	G: 0.65 ± 0.45	8.6 ± 6.7	12 / 8	N/A	N/A	N/A
mCherry	R: 0.60 ± 0.09					
Interacting proteins						
EGFP-(s)-CENP-S	G: 2.86 ± 2.02	41.6 ± 12.0	101 / 36	409 nM ± 28 (S)	264 nM ± 37 (S)	58 ± 15
mCherry-(s)-CENP-X	R: 2.23 ± 1.53			679 nM SD$_{ln}$ 1.6 (H)	287 nM SD$_{ln}$ 0.5 (H)	
EGFP-(s)-CENP-W	G: 6.41 ± 4.40	35.4 ± 14.9	218 / 87	1.5 µM ± 0.1 (S)	538 nM ± 81 (S)	51 ± 18
mCherry-(s)-CENP-T	R: 5.61 ± 5.53			626 nM SD$_{ln}$ 1.7 (H)	340 nM SD$_{ln}$ 1.2 (H)	
EGFP-(s)-CENP-T$^{\Delta N}$	G: 3.6 ± 2.3	18.2 ± 15.2	79 / 16	2.4 µM ± 0.2 (S)	1.3 µM ± 0.2 (S)	24 ± 17
mCherry-(s)-CENP-W	R: 2.7 ± 1.7			1.3 µM SD$_{ln}$ 1.5 (H)	944 nM SD$_{ln}$ 1.9 (H)	
Non-interacting proteins						
EGFP-(s)-CENP-W	G: 1.6 ± 0.8	6.1 ± 5.5	11 / 5	N/A	N/A	N/A
mCherry-(s)-CENP-X	R: 1.5 ± 0.7			N/A		
EGFP-(s)-CENP-S	G: 3.3 ± 2.8	11.5 ± 7.8	12 / 6	N/A	N/A	N/A
mCherry-(s)-CENP-W	R: 1.4 ± 1.0			N/A		
EGFP-(s)-CENP-T$^{\Delta C}$	G: 7.0 ± 2.5	10.9 ± 8.1	23 / 7	N/A	N/A	N/A
mCherry-(s)-CENP-W	R: 1.4 ± 3.2			N/A		
EGFP-(s)-Spc24	G: 10.6 ± 7.5	10.3 ± 11.6	14 / 4	N/A	N/A	N/A
mCherry-(s)-CENP$^{\Delta N}$	R: 5.3 ± 2.6			N/A		
Possibly weakly interacting proteins						
mCherry-(s)-CENP-T	G: 2.4 ± 1.9	12.0 ± 8.9	7 / 5	5.8 µM ± 0.2 (S)	N/A	N/A
EGFP-(s)-CENP-X	R: 2.9 ± 1.2			N/A	N/A	N/A
EGFP-(s)-Spc24	G: 11.8 ± 17.3	13 ± 13	29 / 8	1.8 µM ± 0.2 (S)	N/A	N/A
mCherry-(s)-CENP-T	R: 8.1 ± 4.7			N/A		
EGFP-(s)-CENP-S	G: 2.04 ± 1.54	10.5 ± 8.6	61 / 28	9.3 µM ± 2.3 (S)	N/A	N/A
mCherry-(s)-CENP-T	R: 3.8 ± 1.20			12.0 µM SD$_{ln}$ 1.6 (H)	N/A	N/A
EGFP-(s)-Spc25	G: 9.0 ± 7.7	10.3 ± 7.4	15 / 4	N/A		N/A
mCherry-(s)-CENP$^{\Delta N}$	R: 7.0 ± 9.9			N/A		

1. The interacting proteins have both, a) a cross-correlation above the negative control and, b) similar diffusion coefficients for red- and green-labeled molecules.
2. The non-interacting proteins have a) cross-correlations close to or at the negative control and b) different diffusion coefficients for the red- and green-labeled molecules.
3. The proteins fulfill both conditions (as in 1), they have a) cross-correlation above the negative control and, b) similar diffusion coefficients for red- and green-labeled molecules. However, their cross-correlation is only slightly different from the negative control and thus their interaction cannot be ascertained under the measurement conditions. The original data behind “means” and “SD” are listed in S2 Table.

(S) = scatter plot
(H) = histogram

https://doi.org/10.1371/journal.pone.0192572.t002
of the CENP-S and CENP-X molecules form a complex in the nucleoplasm of interphase cells outside centromeres.

In vitro, in the absence of CENP-T/W, CENP-S/X can assemble into a tetramer [91]. CENP-T/W or CENP-S/X complexes alone can induce negative supercoils into DNA similar to canonical histones, while the CENP-T/W/S/X complex induces positive supercoils [98]. Here we observed that the diffusion times of EGFP-(s)-CENP-X and mCherry-(s)-CENP-S are slower than those of the single proteins mRFP and EGFP but clearly faster than the diffusion time of mCherry-H4. Potentially, this suggests that in the nucleoplasm EGFP-(s)-CENP-X and mCherry-(s)-CENP-S are not or only to a small extent incorporated into chromatin structures. A freely diffusible CENP-S/X complex would support its non-centromeric functional activities at DNA repair sites [141, 142].

Then we studied the interaction between CENP-T and CENP-W [70, 91]. By DC-FCCS, we measured a cross-correlation between CENP-T-(s)-EGFP and mCherry-(s)-CENP-W ((28 ±8)% co-migration, corrected value 40–72%) (Table 1). We switched the tags and repeated the analysis by SW-FCCS. In 218 measurements in 87 cells, EGFP-(s)-CENP-W and mCherry-(s)-CENP-T showed similar mobility in the nucleoplasm (slightly slower than the CENP-S and CENP-X fusion proteins) and high uncorrected co-migration (35±15%) (Table 2). Correcting these values, an effective dissociation constant \(K_d\) of (538±81) nM was deduced from the scatter plot and of 340 nM (SD ln 1.2) from the histogram analysis (Fig 3). The corrected value for the relative amount of complex formation was (51±18)% (Table 2), consistent with our DC-FCCS results.

CENP-T binds DNA in vitro and in vivo [70, 98]. Thus, in the chromatin environment of the nucleoplasm, single CENP-T and CENP-T/W complexes envisage multiple DNA binding sites. This disturbs our binding analysis and complicates the interpretation of the measured effective \(K_d\) for the interaction between CENP-T and CENP-W. We therefore constructed two separate CENP-T domains: the CENP-T mutants CENP-T\(^{ΔC}\) (aas 1–395) and CENP-T\(^{ΔN}\) (aas 396–561). We found no co-migration between the N-terminal domain of CENP-T (EGFP-(s)-CENP-T\(^{1–395}\)) and CENP-W (mCherry-(s)-CENP-W) (Table 2), indicating that the C-terminal domain CENP-T\(^{396–561}\), containing the histone-fold domain (aas 376–561), interacts with CENP-W, supporting results by [70]. Next, by SW-FCCS we analysed the interaction between the C-terminal domain of CENP-T (EGFP-(s)-CENP-T\(^{396–561}\) and mCherry-(s)-CENP-W. We found similar mobility in the nucleoplasm and clear co-migration of (24±17)% (corrected value) with an effective \(K_d\) of (1.3±0.2) μM (scatter plot) and 944 nM (SD ln 1.9) (histogram) (corrected values, Fig 3, Table 2). Compared to wildtype, we thus found modified binding
between CENP-W and CENP-TΔN, with a shifted effective K_d. Taken together, for both complexes, CENP-T/W and CENP-S/X, in the nucleoplasm we measured apparent dissociation constants in the 1 μM range. At the centromere, we expect stronger binding to the kinetochore multi-protein complex due to additional protein-protein contacts by CENP proteins.

By DC-FCCS, in the nucleoplasm, we found no cross-correlation between EGFP-(s)-CENP-T and mCherry-(s)-CENP-S, between EGFP-(s)-CENP-T and CENP-S-(s)-mCherry, between EGFP-(s)-CENP-T and mCherry-(l)-CENP-S and between EGFP-(l)-CENP-T and mCherry-(l)-CENP-S (Table 1), independent of the linker lengths of the fusion proteins. Analysis of EGFP-(s)-CENP-T and mCherry-(s)-CENP-S in the nucleoplasm showed autocorrelation values $AC_{EGFP} = 1.322$ and $AC_{mCherry} = 1.106$. Cross-correlation measurements resulted in a $CC = 1.001$, indicating that the molecules were not co-migrating (Fig 4A, Table 1). The localization of EGFP-(s)-CENP-T and mCherry-(s)-CENP-S in the nucleus of a living human HEp-2 cells, used for FCCS analysis, is shown in Fig 4B. Compared to centromeres, the fluorescence intensity in the nucleoplasm is rather weak. For the analyzed centromere in spot 1 the ratios of nucleoplasmic to centromeric fluorescence intensities was 1:43 for EGFP-(s)-CENP-T and 1:33 for mCherry-(s)-CENP-S. $A(AC_{EGFP}) = 0.322$ and $A(AC_{mCherry}) = 0.106$ correspond to the reciprocals of the average numbers of particles in the detection volumes. Accordingly 3.1 particles EGFP-(s)-CENP-T and 9.1 particles mCherry-(s)-CENP-S were found in the analyzed confocal detection volume. When knowing the effective detection volume, the concentrations of the samples can be deduced. Rüttinger et al. [143] described a linear dependence of the number of particles detected by FCS with the concentrations of the analyzed samples in a range between 0.5–100 nM. From these results, under their experimental conditions.
conditions, they determined an effective detection volume of (1.0 ± 0.1) fl for Atto-655 in H₂O. Under our experimental conditions, with a purified EGFP solution with known concentration, for EGFP we determined an effective detection volume of roughly 0.8 fl. Due to the above described problems with insufficient maturation and stability of mRFP and mCherry, we could not experimentally determine the effective detection volume for these proteins. Due to
the longer emission wavelengths we estimated them to be about 30% larger than the detection volume of EGFP. Thus, for calculations with mCherry we used an effective detection volume of 1.04 fl. Determining the effective detection volume of the fusion proteins in living cells is more complex due to different local compositions and viscosity, and additional interacting components, influencing the mobility of the proteins. Therefore, for DC-FCCS experiments the intracellular concentrations were only estimated. Using the effective detection volumes measured in solution (see above), nucleoplasmic protein concentrations were deduced to be 6 nM for EGFP-(s)-CENP-T and 14 nM for mCherry-(s)-CENP-S.

We neither found co-migration between EGFP-(s)-CENP-T and mCherry-(s)-CENP-X nor between EGFP-(l)-CENP-W and CENP-X-(l)-mCherry (Table 1). Using different linker lengths and a switched tag for CENP-X, we confirmed the latter result by SW-FCCS. Furthermore, we found no co-migration between EGFP-(s)-CENP-S and mCherry-(s)-CENP-W (Table 2). In SW-FCCS, for mCherry-(s)-CENP-T/EGFP-(s)-CENP-X the cross-correlations are slightly above the negative control value, and the diffusion times in both channels are close (Table 2). According to these data, we cannot rule out possibly very weak interactions between these two protein pairs in the nucleoplasm. In summary, our results indicate that, consistent with earlier observations [23,89,91], CENP-T and CENP-W as well as CENP-S and CENP-X form two separate hetero-dimeric complexes which, in the nucleoplasm outside centromeres, practically do not co-migrate as a joint larger complex (see Fig 5).

Human CENP-T binds to Spc24/25 of the human Ndc80 complex [21–24,84]. This interaction is influenced by CENP-T phosphorylation [21,22]: CENP-T is phosphorylated on multiple cyclin dependent kinase (CDK) consensus sites in G2 of HeLa cells and remains phosphorylated until anaphase. In vivo, CENP-T phosphorylation is important since its elimination prevents Ndc80 localization and causes defects in chromosome segregation [83]. However, also the un-phosphorylated human CENP-T76–106 N-terminal fragment binds to the human Spc24137–197/Spc25129–224 complex (with a K_d of 645 nM) while phospho-mimetic human CENP-T shows an increased K_d of 150 nM [84]. In the nucleoplasm of interphase cells,
by SW-FCCS we analysed EGFP-(s)-Spc24 and mCherry-(s)-CENP-T and detected a very weak cross-correlation; we deduced a K_d of 1.8 μM (Table 2). EGFP-(s)-Spc25 and mCherry-(s)-CENP-T$^{1-395}$ showed an even weaker cross-correlation with a K_d of (3.0 ± 0.9) μM (scatter plot) and 4.3 μM (SD$_{ln}$ 0.9) (Table 2). These values are consistent with in vitro results [24,84].

That these weak cross-correlations slightly above background level might indeed indicate co-migration and complex formation is supported by our observation that in both cases the fusion proteins move with similar diffusion times.

CENP-T/W interacts with the CENP-H/I/K/M complex, an interaction mediated by CENP-H/K [12,13,15,21,23,70,92]. In vitro, CENP-T/W was found to bind CENP-K [83]. By DC-FCCS we studied CENP-K-(s)-EGFP and CENP-T-(s)-mCherry and found (31\pm13)% co-migration (corrected value 36–88%). Also for EGFP-(s)-CENP-M and CENP-T-(s)-mCherry we measured 20–32% (corrected value) co-migration (Table 1). A co-migration with CENP-M was not detected when replacing full-length CENP-T by its N-terminal domain CENP-T$^{\Delta C}$ (CENP-T$^{1-395}$-(s)-mCherry). Thus, the co-migration of CENP-T with CENP-M is caused by its C-terminal domain (in agreement with yeast data [23]). Our data suggest that, in the nucleoplasm outside kinetochores, the proteins of the CENP-H/I/K/M complex form a complex with the CENP-T/W hetero-complex (see Fig 5). The measured pairwise co-migrations do not necessarily indicate a direct protein-protein interaction between the two analysed proteins: the detected co-migration might be mediated by a third protein (or more) in the nucleoplasm which probably would be a CENP protein. In the nucleoplasm, the hetero-dimer CENP-S/X does not bind to the CENP-C/H/I/K/M/T/W proteins (Fig 5); it becomes part of the CCAN kinetochore complex only at centromeres. Recently we observed by fluorescence-three-hybrid studies (F3H) that in vivo CENP-K is able to recruit CENP-O and CENP-U to non-centromeric chromatin sites, and that CENP-L can recruit CENP-R [90]. We thus speculate that at least also CENP-O/U/R of the CENP-P/O/R/Q/U proteins bind to the CENP-C/H/I/K/M/T/W/N/L proteins in vivo in the nucleoplasm outside centromeres.

hMis12 complex

Finally, by DC-FCCS we studied the proteins hMis12, Nsl1, Dsn1 and Nnf1 of the hMis12 complex [77,85,144,145]. We measured the cross-correlation between these four proteins and found co-migration for all six protein pairs in the range between about 20 and 90% (corrected values) (Table 1), indicating that a large fraction of these proteins in the nucleoplasm are part of complexes, either of hetero-dimers or -multimers (Fig 5). Our results are in agreement with published conclusions that the four proteins of the hMis12 complex form a quaternary complex [25,26,144,145]. Here we find that, in the nucleoplasm outside centromeres, a larger part of these proteins aggregate to hetero-dimers and hetero-multimers (Fig 5). In vitro, the hMis12 complex directly interacts with the CCAN, in particular with CENP-C, CENP-T, CENP-K and CENP-N [21,22,24,25,106]. Indeed, FRAP showed dynamic binding to centromeres with fast protein exchange in interphase cells [116] indicating weak binding. Here we showed that 30–44% of hMis12 of the Mis12 complex proteins co-migrated with CENP-K and CENP-T in vivo in the nucleoplasm outside centromeres (Table 1), indicating interaction of hMis12 (and probably the whole Mis12 complex) with the CENP-C/H/I/K/M/T/W/N/L complex. In mitosis, hMis12 stably binds to centromeres [116]. This stable interaction requires protein phosphorylation which in vivo takes place only in mitosis [29].

Conclusion

In this work, by FCCS we measured the co-migration of CCAN and hMis12 complex protein pairs in the nucleoplasm outside centromeres in living human interphase cells. Since cross-
correlation values obtained from DC-FCCS experiments under-estimate the percentage of co-migrating molecules, for some protein pairs we carried out SW-FCCS experiments which correct for these effects. Furthermore, the fluorescent tags might introduce sterical hindrance, preventing the detection of protein-protein interaction. Therefore, we labeled proteins at both termini and, in cases we detected no co-migration, introduced longer protein linkers between tag and CENP. For the hetero-dimerisation of CENP-T/W and CENP-S/X, we also determined apparent dissociation constants (K_d). We detected co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Probably these interactions take place in the nucleoplasm independent of modifications specifically occurring at centromeres. Nevertheless, we assume that at the centromere cell cycle and location specific protein modification of at least some of the proteins will enhance their interactions with other CCAN proteins. Furthermore, at the centromere CCAN protein-protein interactions will be further stabilized by multiple protein-protein binding [146]. Our FCCS analysis of the hMis12 complex showed that also these four proteins form a diffusing complex outside centromeres with at least hMis12 interacting with members of the CENP-C/H/I/K/M/T/W/N/L complex. Overall we show here that human CCAN and hMis12 kinetochore proteins assemble in the nucleoplasm outside centromeres, potentially forming dynamic multimeric complexes.

Supporting information

S1 Table. Cross-correlation of protein pairs in the nucleoplasm by DC-FCCS. Original Data from which “means” and “SD” values were calculated and presented in Table 1. (DOCX)

S2 Table. Cross-correlation of protein pairs in the nucleoplasm by SW-FCCS. Original Data from which "means" and “SD” values were calculated and presented in Table 2. (DOCX)

Acknowledgments

We thank N. Klo¨cker, D. Foltz and I. Cheeseman for the kind gift of plasmids. We acknowledge expert technical support by S. Pfeifer and S. Gallert.

Author Contributions

Conceptualization: Christian Hoischen, Stephan Diekmann.

Data curation: Christian Hoischen, Thorsten Wohland, Stephan Diekmann.

Formal analysis: Christian Hoischen, Sibel Yavas, Thorsten Wohland.

Funding acquisition: Thorsten Wohland, Stephan Diekmann.

Investigation: Christian Hoischen, Sibel Yavas.

Methodology: Christian Hoischen, Thorsten Wohland, Stephan Diekmann.

Project administration: Stephan Diekmann.

Resources:Thorsten Wohland, Stephan Diekmann.

Software: Christian Hoischen, Thorsten Wohland.
Supervision: Christian Hoischen, Thorsten Wohland, Stephan Diekmann.

Validation: Christian Hoischen, Sibel Yavas.

Visualization: Christian Hoischen, Sibel Yavas.

Writing – original draft: Stephan Diekmann.

Writing – review & editing: Christian Hoischen, Sibel Yavas, Thorsten Wohland.

References

1. Pesenti M, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. *Curr Opin Struct Biol* 37:152–163.

2. Nagpal H, Fukagawa T (2016) Kinetochore assembly and function through the cell cycle. *Chromosoma* 125:645–659. https://doi.org/10.1007/s00412-016-0608-3 PMID: 27376724

3. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. *Nat Rev Mol Cell Biol* 17:16–29. https://doi.org/10.1038/nrm.2015.5 PMID: 26601620

4. Schalch T, Steiner FA (2016) Structure of centromere chromatin: from nucleosome to chromosomal architecture. *Chromosoma*, https://doi.org/10.1007/s00412-016-0620-7 PMID: 27858158

5. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. *EMBO J* 28:2511–2531. https://doi.org/10.1038/emboj.2009.173 PMID: 19629042

6. Musacchio A, Desai A (2017) A Molecular View of Kinetochore Assembly and Function. *Biology (Basel)* 6. pii: E5. https://doi.org/10.3390/biology6010005 PMID: 28125021

7. Wan X, O’Quinn RP, Pierce HL, Joglekar AP, Gall WE, DeLuca JG et al. (2009) Protein architecture of the human kinetochore microtubule attachment site. *Cell* 137:672–684. https://doi.org/10.1016/j.cell.2009.03.035 PMID: 19450515

8. Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. *Annu Rev Genet* 43:439–465. https://doi.org/10.1146/annurev-genet-102108-134310 PMID: 19886809

9. Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA et al. (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. *Cell* 142: 810–821. https://doi.org/10.1016/j.cell.2010.07.047 PMID: 20813266

10. Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. *Chromosoma* 120:425–446 https://doi.org/10.1007/s00412-011-0330-0 PMID: 21751032

11. Westermann S, Schleiffer A (2013) Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. *Trends Cell Biol* 23:260–269. https://doi.org/10.1016/j.tcb.2013.01.010 PMID: 23481674

12. McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM (2015) The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. *Mol Cell* 60:886–898. https://doi.org/10.1016/j.molcel.2015.10.027 PMID: 26698661

13. Klare K, Weir JR, Basilico F, Zimmnik T, Massimiliano L, Ludwigs N et al. (2015) CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. *J Cell Biol* 210:11–22. https://doi.org/10.1083/jcb.201412028 PMID: 26124289

14. Nagpal H, Hori T, Furukawa A, Sugase K, Osakabe A, Kurumizaka H et al. (2015) Dynamic changes in CCAN organization through CENP-C during cell-cycle progression. *Mol Biol Cell* 26:3768–3776. https://doi.org/10.1091/mbc.E15-07-0531 PMID: 26354420

15. Weir JR, Faessen AC, Klare K, Petrovic A, Basilico F, Fischböck J et al. (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. *Nature* 537:249–253. https://doi.org/10.1038/nature19333 PMID: 27580032

16. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006). The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. *Cell* 127:983–997. https://doi.org/10.1016/j.cell.2006.09.039 PMID: 17129783

17. Aldhous RE, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? *Nature Rev Gen* 9:923–937. https://doi.org/10.1038/nrg2466 PMID: 19002142

18. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. *Nat Rev. Mol Cell Biol* 9:33–46. https://doi.org/10.1038/nrm2310 PMID: 18097444

19. Westhorpe FG, Straight AF (2013) Functions of the centromere and kinetochore in chromosome segregation. *Curr Opin Cell Biol* 25:334–340. https://doi.org/10.1016/j.cceb.2013.02.001 PMID: 23490282
20. Fukagawa T, Earnshaw WC (2014) The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 30:496–508. https://doi.org/10.1016/j.devcel.2014.08.016 PMID: 25203206

21. Kim S, Yu H (2015) Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208:181–196. https://doi.org/10.1083/jcb.201407074 PMID: 25601404

22. Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct Organization and Regulation of the Outer Kinetochore KMN Network Downstream of CENP-C and CENP-T. Curr Biol, 25:671–677. https://doi.org/10.1016/j.cub.2015.01.059 PMID: 25660545

23. Altunkaya GP, Malvezzi F, Demianova Z, Zmniak T, Litos G, Weissmann F et al. (2016) CCAN Assembly Configures Composite Binding Interfaces to Promote Cross-Linking of Ndc80 Complexes at the Kinetochore. Current Biology 26:2370–2378. https://doi.org/10.1016/j.cub.2016.07.005 PMID: 27524485

24. Huis in’t Veld PJ, Jeg Nathan S, Petrovic A, Singh P, John J, Kron K et al. (2016) Molecular basis of outer kinetochore assembly on CENP-T. Elife 24: pii: e21007. https://doi.org/10.7554/eLife.21007 PMID: 28012276

25. Petrovic A, Keller J, Liu Y, Overlack K, John J, Dimitrova YN et al. (2016) Structure of the MIS12 Complex and Molecular Basis of Its Interaction with CENP-C at Human Kinetochores. Cell 167:1028–1040.e15. https://doi.org/10.1016/j.cell.2016.10.005 PMID: 27881301

26. Dimitrova YD, Jenni S, Valverde R, Khin Y, Harrison SC (2016) Structure of the MIND complex defines a regulatory focus for yeast kinetochore assembly. Cell 167:1014–1027. https://doi.org/10.1016/j.cell.2016.10.011 PMID: 27881300

27. Mosalaganti S, Keller J, Altenfeld A, Winzker M, Rombaut P, Saur M et al. (2017) Structure of the RZZ complex and molecular basis of its interaction with Spindly. J Cell Biol 216:961–981.

28. Faesen AC, Thanasoula M, Maffini S, Breit C, Muller F, van Gerwen Set al. (2017) Basis of catalytic assembly of the mitotic checkpoint complex. Nature 542:498–502. https://doi.org/10.1038/nature21384 PMID: 28102834

29. Ladurner R, Straight AF (2016) MIS12/MIND Control at the Kinetochore. Cell 167:889–891. https://doi.org/10.1016/j.cell.2016.10.036 PMID: 27814517

30. Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175:41–53. https://doi.org/10.1083/jcb.200606020 PMID: 17030981

31. McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, McInish AD et al. (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 26:5033–5047. https://doi.org/10.1038/sj.emboj.7601927 PMID: 18007590

32. Cheeseman IM, Hori T, Fukagawa T, Desai A (2008) KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 19:587–594. https://doi.org/10.1091/mbc.E07-10-1051 PMID: 18045986

33. Amaro AC, Samora CP, Holtackers R, Wang E, Kingston JG, Alonso M et al. (2010) Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Bio, 12:319–329.

34. Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A like protein in fission yeast. Science 288:2215–2219. https://doi.org/10.1126/science.288.5474.2215 PMID: 10864871

35. Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR et al. (2006) The CENP-H/I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Bioi 8:446–457. https://doi.org/10.1038/ncbi1396 PMID: 16622420

36. Okada M, Okawa K, Isobe T, Fukagawa T (2009) CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol Biol Cell 20:3986–3995. https://doi.org/10.1091/mbc.E09-01-0065 PMID: 19625449

37. Hori T, Shang WH, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60. https://doi.org/10.1083/jcb.201210106 PMID: 23277427

38. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321. https://doi.org/10.1007/BF00328227 PMID: 2579778

39. Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biology 104:805–815. https://doi.org/10.1083/jcb.104.4.805

40. Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738. PMID: 2023923
41. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes MA (1995) mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. *Gen Dev* 9:573–586. https://doi.org/10.1101/gad.9.5.573

42. Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. *Proc Natl Acad Sci USA* 97:716–721. https://doi.org/10.1073/pnas.97.2.716 PMID: 10639145

43. Yoda K, Ando S, Morishita S, Houguma K, Hashimoto K, Takeyasu K et al. (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution *in vitro*. *Proc Natl Acad Sci USA* 97:7266–7271. https://doi.org/10.1073/pnas.130189697 PMID: 10840064

44. Malik HS, Vermaak D, Henikoff S (2002) Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. *Proc Natl Acad Sci USA* 99:1449–1454. https://doi.org/10.1073/pnas.032664299 PMID: 11805302

45. Black BE, Foltz DR, Chakravarty S, Luger K, Woods VL Jr., Cleveland DW (2004) Structural determinants for generating centromeric chromatin. *Nature* 430:578–582. https://doi.org/10.1038/nature02766 PMID: 15282608

46. Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV et al. (2007) Centromere identity maintained by nucleosomes reassembled with histone H3 containing the CENP-A targeting domain. *Mol Cell* 25:309–322. https://doi.org/10.1016/j.molcel.2006.12.018 PMID: 17244537

47. Sekulic N, Bassett EA, Rogers DJ, Black BE (2010) The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. *Nature* 467:347–351. https://doi.org/10.1038/nature09323 PMID: 20739937

48. Black BE, Cleveland DW (2011) Epigenetic Centromere Propagation and the Nature of CENP-A Nucleosomes. *Cell* 144:471–479. https://doi.org/10.1016/j.cell.2011.02.002 PMID: 21335232

49. Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K et al. (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. *Nature* 476:232–235. https://doi.org/10.1038/nature10258 PMID: 21743476

50. Tachiwana H, Muller S, Blumberg J, Klare K, Musacchio A, Almouzni G (2015). HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. *Cell Rep* 11:22–32. https://doi.org/10.1016/j.celrep.2015.03.013 PMID: 25843710

51. Bui M, Dimitriadi ES, Hoischen C, An E, Quenet D, Giebel S et al. (2012) Cell-Cycle-Dependent Structural Transitions in the Human CENP-A Nucleosome In Vivo. *Cell* 150:317–326. https://doi.org/10.1016/j.cell.2012.05.035 PMID: 22817894

52. Prendergast L, van Vuuren C, Kaczmarczyk A, Döring V, Hellwig D, Quinn N et al. (2011) Premitotic assembly of human CENPs-T and -W switches centromeric chromatin to a mitotic state. *PLOS Bio*, 9, e1001082. https://doi.org/10.1371/journal.pbio.1001082 PMID: 21695110

53. Fachinetti D, Diego-Folco H, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ et al. (2013) A two-step mechanism for epigenetic specification of centromere identity and function. *Nat Cell Biol* 15:1056–1066. https://doi.org/10.1038/nclb2805 PMID: 23873148

54. Kato H, Jiang J, Zhou B-R, Rozendaal M, Feng H, Ghirlando R et al. (2013) conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. *Science* 340:1110–1113. https://doi.org/10.1126/science.1235532 PMID: 23723239

55. Lacoste N, Woolfe A, Tachiwana H, Villar Garea A, Barth T, Cantaloube S et al. (2014) Mislocalization of the Centromeric Histone Variant CenH3/CENP-A in Human Cells Depends on the Chaperone DAXX. *Mol Cell* 53:631–644. https://doi.org/10.1016/j.molcel.2014.01.018 PMID: 24530302

56. Nechemia-Arbely Y, Fachinetti D, Miga KH, Sekulic N, Soni GV, Kim DH et al. (2015) Human centromeric CENP-C chromatin is a homotypic, octameric nucleosome at all cell cycle points. *J Cell Biol* 216:607–621. https://doi.org/10.1083/jcb.201608083 PMID: 28235947

57. Barnhart MC, Kluh PH, Stellfox ME, Ward JA, Bassett EA, Black BE et al. (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. *J Cell Biol* 194:229–243. Epub 2011. https://doi.org/10.1083/jcb.201012017 PMID: 21768289

58. Mendiburo MJ, Padelen J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. *Science* 334:686–690. https://doi.org/10.1126/science.1206880 PMID: 22053052

59. Hoffmann S, Dumont M, Barra V, Ly P, Nechemia-Arbely Y, McMahon MA et al. (2016) CEN-P-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly. *Cell Rep* 17:2393–2404. https://doi.org/10.1016/j.celrep.2016.10.084 PMID: 27880912

60. Guo LY, Allu PK, Zandarashvili L, McKinley KL, Sekulic N, Dawicki-McKenna JM et al. (2017) Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. *Nat Commun* 8:15775. https://doi.org/10.1038/ncomms15775 PMID: 28598437
61. Sathyan KM, Fachelletti D, Foltz DR (2017) α-aminotrimethylation of CENP-A by NRMT is required for full recruitment of the centromere. *Nat Commun* 8:14478. https://doi.org/10.1038/ncomms14478 PMID: 28266506

62. Pan D, Klare K, Petrovic A, Take A, Walstein K, Singh P et al. (2017) CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading. *Elife* 6: pii: e23352. https://doi.org/10.7554/eLife.23352 PMID: 28059702

63. Stankovic A, Guo LY, Mata JF, Bodor DL, Cao XJ, Bailey AO et al. (2017) A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. *Mol Cell* 65:231–246. https://doi.org/10.1016/j.molcel.2016.11.021 PMID: 28017591

64. Cheeseman IM, Anderson S, Jwa M, Green EM, Kang JS, Yates JR et al. (2002) Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. *Cell* 111:163–172. https://doi.org/10.1016/S0092-8674(02)00973-X PMID: 12408861

65. De Wulf P (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. *Gen Dev* 17:2902–2921. https://doi.org/10.1101/gad.144403 PMID: 14683397

66. Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere assembly on defined chromatin templates. *Genes to Cells* 9:105–120. https://doi.org/10.1111/j.gtc.2004.9.issue-2 PMID: 15009096

67. Liu X, McLeod I, Anderson S, Yates JR, He X (2005) Molecular analysis of kinetochore architecture in fission yeast. *EMBO J* 24:2919–2930. https://doi.org/10.1038/sj.emboj.7600762 PMID: 16079914

68. Foltz DR, Jansen LET, Black BE, Bailey AO, Yates JR, Cleveland DW (2006) The human CENP-A centromere nucleosome-associated complex. *Nat Cell Biol* 8:458–469. https://doi.org/10.1038/rcnb1397 PMID: 16622419

69. Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C et al. (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. *Genes to Cells* 11:673–684. https://doi.org/10.1111/j.1365-2443.2006.00969.x PMID: 16716197

70. Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y et al. (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. *Cell* 135:1039–1052. https://doi.org/10.1016/j.cell.2008.10.019 PMID: 19070575

71. Hellwig D, Hoischen S, Ulbricht T, Diekmann S (2009) Acceptor-photobleaching FRET analysis of core kinetochore and NAC proteins in living human cells. *Eur Biophys J* 38:781–791; https://doi.org/10.1007/s00249-009-0498-x PMID: 19533115

72. Thakur J, Henikoff S (2016) CENP-T bridges adjacent CENP-A nucleosomes on young human α-satellite dimers. *Gen Res* 26:1178–1187.

73. Quénat D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. *eLIFE* 3:e03254. https://doi.org/10.7554/eLife.03254 PMID: 25117489

74. Rošić S, Köhler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. *J Cell Biol* 207:335–349. https://doi.org/10.1083/jcb.201404097 PMID: 15365994

75. Carroll CW, Silva MCC, Godek KM, Jansen LET, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. *Nat Cell Biol* 11:896–902. https://doi.org/10.1038/ncb1899 PMID: 19543270

76. Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. *J Cell Biol* 189:1143–1155. https://doi.org/10.1083/jcb.201001013 PMID: 20566683

77. Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF (2011) In vitro centromere and kinetochore assembly on defined chromatin templates. *Nature* 477:354–358. https://doi.org/10.1038/nature10379 PMID: 21874020

78. Przewłoka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly. *Current Biology* 21:399–405. https://doi.org/10.1016/j.cub.2011.02.005 PMID: 21355555

79. Hellwig D, Emmerth S, Ulbricht T, Döring V, Hoischen C, Martin R et al. (2011) Dynamics of CENP-N kinetochore binding during the cell cycle. *J Cell Sci* 124:3871–3883. https://doi.org/10.1242/jcs.088625 PMID: 22100916

80. Hinshaw SM, Harrison SC (2013) An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. *Cell Rep* 5:29–36. https://doi.org/10.1016/j.celrep.2013.08.036 PMID: 24075991

81. Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA et al. (2015) CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. *Science* 348:699–703. https://doi.org/10.1126/science.1259308 PMID: 25954010
82. Fang J, Liu Y, Wei Y, Deng W, Yu Z, Huang L et al. (2015) Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. *Genes Dev* 29:1–16.

83. Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. *Cell* 145:410–422. https://doi.org/10.1016/j.cell.2011.03.031 PMID: 21529714

84. Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T. (2013) CENP-T provides a structural platform for outer kinetochore assembly. *EMBO J* 32:424–436. https://doi.org/10.1038/emboj.2012.348 PMID: 23334297

85. Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E et al. (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. *Curr Biol* 21:391–398. https://doi.org/10.1016/j.cub.2010.12.039 PMID: 21353556

86. Saitoh H, Tomkijl J, Cooke CA, Ratrie H 3rd, Maurer M, Rothfield NF et al. (1992). CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. *Cell* 70:115–125. PMID: 1339310

87. Cohen RL, Espelin CW, De Wulf P, Sorger PK, Harrison SC, Simons KT (2008) Structural and functional dissection of Mif2p, a conserved DNA-binding kinetochore protein. *Mol Biol Cell* 19:4480–4491. https://doi.org/10.1091/mbc.E08-03-0297 PMID: 18701705

88. Hori T, Okada M, Maenaka K, Fukagawa T (2008) CENP-O class proteins form a stable complex and are required for proper kinetochore function. *Mol Biol Cell* 19:843–854. https://doi.org/10.1091/mbc.E07-06-0556 PMID: 18094054

89. Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM et al. (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. *J Cell Biol* 186:173–182. https://doi.org/10.1083/jcb.200903100 PMID: 19620631

90. Eskat A, Deng W, Hofmeister A, Rudolphi S, Emmert S, Hellwig D et al. (2012) Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex. *PLoS One* 7:e44717. https://doi.org/10.1371/journal.pone.0044717 PMID: 23028590

91. Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T et al. (2012) CENP-T/W/S/X forms a unique centromeric chromatin structure with a histone-like fold. *Cell* 148:487–501. https://doi.org/10.1016/j.cell.2011.11.061 PMID: 22304917

92. Basilio F, Maffini S, Weir JR, Prunbaum D, Rojas AM, Zimniak T et al. (2014) The pseudo GTPase CENP-M drives human kinetochore assembly. *eLIFE* 3:e02978. https://doi.org/10.7554/elife.02978 PMID: 25006165

93. Kwon MS, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. *Mol Biol Cell* 18:2155–2168. https://doi.org/10.1091/mbc.E07-01-0045 PMID: 17392512

94. Folco HD, Campbell CS, May KM, Espinoza CA, Oegema K, Hardwick KG et al. (2015). The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. *Curr Biol* 25:348–356. https://doi.org/10.1016/j.cub.2014.11.060 PMID: 25619765

95. Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T et al. (2015). Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. *J Cell Biol* 208:521–531. https://doi.org/10.1083/jcb.201412011 PMID: 25713413

96. Samejima I, Sapanos C, de Lima Alves F, Hori T, Perpelescu M, Zou J et al. (2015) Whole proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. *J Cell Biol* 211:1141–1156. https://doi.org/10.1083/jcb.201508072 PMID: 26668330

97. Dornblut C, Quinn N, Monajambashi S, Prendergast L, van Vuuren C, Münch S et al. (2014) A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. *Open Biol* 4:130229. https://doi.org/10.1098/rsob.130229 PMID: 24522885

98. Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H et al. (2014) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. *Nucleic Acids Res* 42:1644–1655. https://doi.org/10.1093/nar/gkt1124 PMID: 24234442

99. Meadsay V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G et al. (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. *Gen Dev* 16:101–113. https://doi.org/10.1101/gad.949302 PMID: 11782448

100. Pidoux AL, Richardson W, Allshire RC (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. *J Cell Biol* 161:295–307. https://doi.org/10.1083/jcb.200212110 PMID: 12719471

101. Pot I, Meadsay V, Snydersman B, Cagney G, Fields S, Davis TN et al. (2003) Chl4p and iml3p are two new members of the budding yeast outer kinetochore. *Mol Biol Cell* 14:460–476. https://doi.org/10.1091/mbc.E02-08-0517 PMID: 12589047
102. Westermann S, Cheeseman IM, Anderson S, Yates JR 3rd, Drubin DG, Barnes G (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol 163:215–222. https://doi.org/10.1083/jcb.200310100 PMID: 14581449

103. Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630. https://doi.org/10.1128/MCB.24.15.6620-6630.2004 PMID: 15254229

104. Tanaka K, Chang HL, Kagami A, Watanabe Y (2009) CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 17:334–343. https://doi.org/10.1016/j.devcel.2009.09.004 PMID: 19758558

105. Schleiffer A, Maiher M, Litos G, Lampert F, Hornung P, Mechtler K et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613. https://doi.org/10.1038/ncb2493 PMID: 22561346

106. Hornung P, Troc P, Malvezzi F, Maiher M, Demianova Z, Zimniak T et al. (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206:509–524; https://doi.org/10.1083/jcb.201403081 PMID: 25135934

107. Przewłoka MR, Zhang W, Costa P, Archambault V, D’Avino PP, Lilley KS et al. (2007) Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One 2:e478. https://doi.org/10.1371/journal.pone.0000478 PMID: 17534428

108. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 3:193–300. https://doi.org/10.1016/S1534-5807(02)00135-1 PMID: 11879637

109. Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258. https://doi.org/10.1016/j.cell.2014.01.049 PMID: 24582333

110. D’Archivio S, Wickstead B (2017) Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol 216:379–391.

111. Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5:341–345. https://doi.org/10.1038/ncb8953 PMID: 12640463

112. Matson DR, Stukenberg PT (2014) CENP-I and Aurora B act as a molecular switch that ties RZZ/Mad1 recruitment to kinetochore attachment status. J Cell Biol 205:541–554. https://doi.org/10.1083/jcb.201307137 PMID: 24862574

113. Tschernyschkow S, Herda S, Grünert G, Döring V, Görlich D, Hofmeister A et al. (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113:33–45. https://doi.org/10.1016/j.pbiomolbio.2013.03.010 PMID: 23562479

114. Schmitzberger F, Harrison SC (2012) RWD domain: a recurring module in kinetochore architecture. Cell Cycle 11:245–250. https://doi.org/10.1083/jcb.201109110 PMID: 22906117

115. Schleiffer A, Maiher M, Litos G, Lampert F, Hornung P, Mechtler K et al. (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613. https://doi.org/10.1038/ncb2493 PMID: 22561346

116. Hornung P, Troc P, Malvezzi F, Maiher M, Demianova Z, Zimniak T et al. (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206:509–524; https://doi.org/10.1083/jcb.201403081 PMID: 25135934

117. Kagawa N, Hori T, Hoki Y, Hosoya O, Tsutsui K, Saga Y et al. (2014) The CENP-O complex requires MAD1 recruit- ment to kinetochore attachment status. J Cell Biol 205:541–554. https://doi.org/10.1083/jcb.201307137 PMID: 24862574

118. Przewłoka MR, Zhang W, Costa P, Archambault V, D’Avino PP, Lilley KS et al. (2007) Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One 2:e478. https://doi.org/10.1371/journal.pone.0000478 PMID: 17534428

119. Akiyoshi B, Gull K (2014) Discovery of unconventional kinetochores in kinetoplastids. Cell 156:1247–1258. https://doi.org/10.1016/j.cell.2014.01.049 PMID: 24582333

120. D’Archivio S, Wickstead B (2017) Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol 216:379–391.

121. Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5:341–345. https://doi.org/10.1038/ncb8953 PMID: 12640463

122. Matson DR, Stukenberg PT (2014) CENP-I and Aurora B act as a molecular switch that ties RZZ/Mad1 recruitment to kinetochore attachment status. J Cell Biol 205:541–554. https://doi.org/10.1083/jcb.201307137 PMID: 24862574

123. Tschernyschkow S, Herda S, Grünert G, Döring V, Görlich D, Hofmeister A et al. (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113:33–45. https://doi.org/10.1016/j.pbiomolbio.2013.03.010 PMID: 23562479

124. Schmitzberger F, Harrison SC (2012) RWD domain: a recurring module in kinetochore architecture. Cell Cycle 11:245–250. https://doi.org/10.1083/jcb.201109110 PMID: 22906117

125. Kagawa N, Hori T, Hoki Y, Hosoya O, Tsutsui K, Saga Y et al. (2014) The CENP-O complex requires MAD1 recruit- ment to kinetochore attachment status. J Cell Biol 205:541–554. https://doi.org/10.1083/jcb.201307137 PMID: 24862574

126. Lieber MR, Gurney N, Lippincott-Schwartz J (2000) Confocal and super-resolution microscopies: their applications and new tools. J Cell Biol 150(Suppl):S27–S43.

127. Lieber MR, Gurney N, Lippincott-Schwartz J (2000) Confocal and super-resolution microscopies: their applications and new tools. J Cell Biol 150(Suppl):S27–S43.

128. Pan X, Foo W, Lim W, Fok MH, Liu P, Yu H et al. (2007) Multifunctional fluorescence correlation microscopy for intracellular and microfluidic measurements. Rev Sci Instrum 78:053711. https://doi.org/10.1063/1.2740053 PMID: 17552829

129. Liu P, Sudhaharan T, Koh RM, Hwang LS, Ahmed S, Maruyama IN et al. (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength
fluorescence cross-correlation spectroscopy. *Biophys J* 93:684–698. https://doi.org/10.1529/biophysj.106.102087 PMID: 17468161

124. Foo YH, Naredi-Rainer N, Lamb DC, Ahmed S and Wohland T (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. *Biophys J* 102:1174–1183. https://doi.org/10.1016/j.bpj.2012.01.040 PMID: 22404940

125. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermerle L, Gahle A et al. (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. *Nat Methods* 3:887–889. https://doi.org/10.1038/nmeth953 PMID: 17069012

126. Zolghadr K, Mortusewicz O, Rothbauer U, Kleinhans R, Goehler H, Wanker EE et al. (2008) A fluorescent two-hybrid assay for direct visualization of protein interactions in living cells. *Mol Cell Proteomics* 7:2279–2287. https://doi.org/10.1074/mcp.M700548-MCP200 PMID: 18622019

127. Baudendistel N, Muller G, Waldeck W, Angel P, Langowski J (2005) Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo. *Chem Phys Chem* 6:984–990. https://doi.org/10.1002/cphc.200400639 PMID: 15884086

128. Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. *Nat Methods* 3:83–89. https://doi.org/10.1038/nmeth822 PMID: 16342516

129. Kohl T, Schwille P (2005) Fluorescence correlation spectroscopy with autofluorescent proteins. *Adv Biochem Eng Biotechnol* 95:107–142. PMID: 16080267

130. Sanyal K, Ghosh SK, Sinha P (1998) The MCM16 gene of the yeast *Saccharomyces cerevisiae* is required for chromosome segregation. *Mol Gen Genet* 260:242–250. https://doi.org/10.1007/s004380050892

131. Sugata N, Munekata E, Todokoro K (1999) Characterization of a novel kinetochore protein, CENP-H. *The Journal of Biological Chemistry* 274:27343–27346. https://doi.org/10.1074/jbc.274.39.27343 PMID: 10488063

132. Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H et al. (2002) CENP-I is essential for centromere function in vertebrate cells. *Dev Cell* 2:463–476. PMID: 11970896

133. Poddar A, Roy N, Sinha P (1999) MCM21 and MCM22, two novel genes of the yeast *Saccharomyces cerevisiae* are required for chromosome transmission. *Molecular Microbiology* 31:349–360. https://doi.org/10.1046/j.1365-2958.1999.01179.x PMID: 9987135

134. Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H et al. (2002) CENP-I is essential for centromere function in vertebrate cells. *Dev Cell* 2:463–476. PMID: 11970896

135. Hwang LC, Wohland T (2004) Dual-color fluorescence crosscorrelation spectroscopy using single laser wavelength excitation. *Chem Phys Chem* 5:549–551. https://doi.org/10.1002/cphc.200301057 PMID: 15139229

136. Hwang LC, Wohland T (2005) Single wavelength excitation fluorescence cross-correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies. *J Chem Phys* 122:114708–114711. https://doi.org/10.1063/1.1862614 PMID: 15836244

137. Hwang LC, Gösch M, Lasser T, Wohland T (2006) Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation. *Biophys J* 91:715–727. https://doi.org/10.1529/biophysj.105.074120 PMID: 16632502

138. Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. *Nat Cell Biol* 9:1319–1326. https://doi.org/10.1038/ncb1652 PMID: 17952059

139. Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S et al. (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. *Biophys J* 97:678–686. https://doi.org/10.1016/j.bpj.2009.05.006 PMID: 19619483

140. Ries J, Petrasek Z, Garcia-Saez AJ, Schwille P (2010) A comprehensive framework for fluorescence cross-correlation spectroscopy. *New J Phys* 12:13009.

141. Singh TR, Sara D, Ali AM, Zheng XF, Du CH, Killen MW et al. (2010) MHF1-MHF2, a histone-fold containing protein complex, participates in the Fanconi anemia pathway via FANC.M. *Mol Cell* 37:879–886. https://doi.org/10.1016/j.molcel.2010.01.036 PMID: 20347429

142. Yan Z, Mathieu Delannoy M, Ling C, Daee D, Osman F, Muniandy P et al. (2010) A histone-fold complex and FANC.M form a conserved DNA-remodeling complex to maintain genome stability. *Mol Cell* 37:865–878. https://doi.org/10.1016/j.molcel.2010.01.039 PMID: 20347428

143. Rüttinger S, Buschmann V, Krämer B, Erdmann R, Macdonald R, Koberling F (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. *J Microscopy* 232:343–352.
144. Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D et al. (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. *J Cell Biol* 190:835–852. https://doi.org/10.1083/jcb.201002070 PMID: 20819937

145. Petrovic A, Mosalaganti S, Keller J, Mattiuzzo M, Overlack K, Krenn V et al. (2014) Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. *Mol Cell* 53:591–605. https://doi.org/10.1016/j.molcel.2014.01.019 PMID: 24530301

146. Vargiu G, Makarov AA, Allan J, Fukagawa T, Booth DG, Earnshaw WC (2017) Stepwise unfolding supports a subunit model for vertebrate kinetochores. *Proc Natl Acad Sci USA* 114:3133–3138. https://doi.org/10.1073/pnas.1614145114 PMID: 28265097