A 3 \times 109 SOLAR MASS BLACK HOLE IN THE QUASAR SDSS J1148+5251 AT Z = 6.41

CHRIS J. WILLOTT
Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, B.C. V9E 2E7, Canada
chris.willott@nrc.ca

ROSS J. MCLURE
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, U.K.
rjm@roe.ac.uk

MATT J. JARVIS
Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH, U.K.
mjj@astro.ox.ac.uk

1. INTRODUCTION

The vast energy requirements of the most luminous quasars can be met by a model invoking extraction of gravitational potential energy from matter falling toward a supermassive (\sim a billion solar mass) black hole. The correlation between black-hole mass and galaxy mass observed in the local Universe strongly suggests that the most luminous quasars will reside in the most massive galaxies in the most massive dark matter halos. The luminous quasars at redshifts $z > 6$ found in the Sloan Digital Sky Survey (SDSS) therefore pinpoint the earliest massive objects to form (Fan et al. 2001, 2003).

The recent discovery of SDSS J114816.64+525150.3 (hereafter SDSS J1148+5251) at a redshift of $z = 6.43$ by Fan et al. (2003) makes it the most distant known quasar, observed only 840 million years after the beginning of the universe (cosmological parameters of $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$ and $\Omega_{\Lambda} = 0.7$ are assumed throughout). The very high luminosity of this quasar ($M_{1450} = -27.8$) suggests that it contains a black-hole mass of at least several billion solar masses.

We have obtained near-infrared spectroscopy of SDSS J1148+5251 to search for the Mg II emission line (rest wavelength 2799 Å) redshifted into the K-band. This line is particularly useful since it is usually found close to the systemic redshift, unlike higher ionization lines such as C IV which typically show large blueshifts \sim 1000 km s$^{-1}$ (Richards et al. 2002). The redshift for this quasar given by Fan et al. was based on the position of a heavily absorbed Ly α line and the onset of the Lyman break and is therefore quite uncertain. An accurate redshift is important for determining the strength of the proximity effect and for molecular line searches. Additionally, it has recently been shown that the width of the Mg II emission line can be used to derive the mass of the quasars central black hole in the same way that the H β line has traditionally been used (McLure & Jarvis 2002).

We present near-infrared H and K-band spectra of the $z = 6.41$ quasar SDSS J114816.64+525150.3. The spectrum reveals a broad Mg II A2799 emission line with a full-width half-maximum of 6000 km s$^{-1}$. From the peak wavelength of this emission line we obtain a more accurate redshift than is possible from the published optical spectrum and determine a redshift of $z = 6.41 \pm 0.01$. If the true peak of the Ly α emission is at the same redshift, then a large fraction of the flux blueward of the peak is absorbed. The equivalent width of the Mg II emission line is similar to that of lower redshift quasars, suggesting that the UV continuum is not dominated by a beamed component. Making basic assumptions about the line-emitting gas we derive an estimate for the central black hole in this quasar of 3 \times 109 solar masses. The very high luminosity of the quasar shows that it is accreting at the maximal allowable rate for a black hole of this mass adopting the Eddington limit criterion.

Subject headings: galaxies: formation – quasars: emission lines – quasars: individual (SDSS J114816.64+525150.3)

2. NEAR-INFRARED SPECTROSCOPY

2.1. Observations

We observed SDSS J1148+5251 with the United Kingdom Infra-Red Telescope (UKIRT) equipped with the UKIRT Imager Spectrometer (UIST) on 2003 January 10. UIST is a 1.5 m imagerspectrometer with a 1204x1024 InSb array. Conditions were photometric with seeing at K-band approximately 0.6 arcsec. The HK grism was employed with a 0.48 arcsec wide slit giving continuous wavelength coverage from 1.4 to 2.5 microns with a resolving power of \sim 500. The pixels have size 10.9 Å spectrally and 0.12 arcsec spatially. The target was nodded along the slit a distance of 12 arcsec in between exposures to en-
able accurate sky subtraction. The total integration time of the observation was 6480 seconds.

The data frames were flat-fielded and then adjacent pairs were subtracted from each other to subtract the sky emission and produce positive and negative spectra of the target. These data were combined and any pixels deviating from the mean at the 3σ level were excluded since this indicates contamination by cosmic rays. The residual background level was subtracted from the combined image. The positive and negative quasar spectra were extracted from this image using apertures of 1.0 arcsec and combined.

Flux calibration and atmospheric extinction corrections were made by dividing the spectrum by that of a star of spectral type F6 which was observed immediately preceding the quasar. An accurate wavelength calibration was made by comparison to an Argon arc lamp. This solution was then checked against the positions of about 20 sky emission lines giving an rms uncertainty in the wavelength calibration of 1˚A. The absolute flux scale of the image was set by comparison with the magnitude measured in a snapshot K-band image. The image gave $K = 16.86 \pm 0.05$ consistent with the $K' = 16.91$ quoted by Fan et al. (2003).

2.2. Emission line fitting

The spectrum of SDSS J1148+5251 is shown in Fig. 1. It shows a broad emission line at approximately the position expected for redshifted MgII. To determine the wavelength and width of the MgII emission line, a line-fitting process was applied which involves the determination of the underlying continuum and FeII emission surrounding the MgII line. Due to the blending of the MgII line emission and the FeII features in the 2700 Å – 2900 Å region, the fitting of the continuum and FeII emission is confined to two bands either side of the MgII line (rest-frame 2250 Å – 2700 Å and 2900 Å – 3100 Å).

The FeII emission in this spectral region is modeled using an FeII template based on an archival HST FOS spectrum of the narrow line Seyfert galaxy I Zw1, which is notable for its extremely strong FeII emission. Due to the fact that the FeII emission in I Zw1 is relatively narrow (FWHM ~ 900 km s$^{-1}$), this template can be smoothed in order to match the much broader FeII features typical of powerful quasars. The fitting of the FeII emission template and AGN continuum are performed simultaneously, with the amplitude and FWHM of the FeII iron template left as free parameters. The AGN continuum is modeled as a power law which is normalized with the continuum magnitude at rest-frame 1280 Å of $AB_{1280} = 19.10$ given by Fan et al. (2003). The spectral index of the power law is a free parameter and the fitting produces a value of $\alpha = 0.2$ (defining $f_\nu \propto \nu^{-\alpha}$, where f_ν is the flux-density at frequency ν). This continuum slope is typical of quasars (e.g. Vanden Berk et al. 2001). The goodness of fit for the FeII + continuum fit is determined from a chi-square test using the noise array from the observation.

Once the minimum chi-square fit has been determined the best-fitting combination of continuum and FeII emission is then subtracted from the spectrum, leaving the isolated MgII emission line in the region 2700 Å – 2900 Å. The MgII emission line itself is then modeled using two identical gaussians which represent the line doublet ($\lambda\lambda2796, 2802$). During the fitting of the line profile, the amplitude, FWHM and central wavelength of the gaussians are treated as free parameters, while the doublet separation is held fixed at its laboratory value. The best fit to the MgII emission was determined with a chi-square test. Although more complex deconvolutions of the line profile are obviously possible, due to the signal-to-noise constraints of the spectrum the above procedure was adopted because it was able to effectively describe the MgII line profile with the minimum level of complexity.

We also performed an alternative fitting procedure in which the continuum was fixed at two points with low expected FeII emission and then the MgII and FeII fea-
ures fit simultaneously. The results from this independent fitting method are consistent with those using the former method. The ratio of Fe II/Mg II emission lines in high redshift quasars is a powerful diagnostic of early element production inside supernovae (Yoshii, Tsujimoto & Kawara 1998). Unfortunately we do not have sufficient signal to noise to place meaningful constraints on this ratio using either of our two fitting methods.

The best fit Mg II line doublet in SDSS J1148+5251 is at a redshift of $z = 6.41 \pm 0.01$. The deconvolved FWHM of each component of the doublet is 6000^{+1100}_{-600} km s$^{-1}$. The rest-frame equivalent width of the Mg II line is 35 Å. The typical equivalent width of Mg II lines in lower redshift SDSS quasars is 32 Å (Vanden Berk et al. 2001). The fact that the equivalent width of Mg II in SDSS J1148+5251 is similar to that of other quasars indicates that the UV continuum emission from this quasar is not strongly beamed. Fan et al. (2003) noted that the Ly α equivalent width of this and other $z \sim 6$ quasars are smaller than lower redshift quasars. Pentericci et al. (2002) observed the C IV line in the $z = 6.28$ quasar SDSS J1030+0524 and also found an equivalent width typical of lower redshift quasars. These results suggest that the Ly α equivalent widths are primarily due to Ly α absorption and not a fundamental difference between the emission properties of these quasars.

3. AN ACCURATE REDSHIFT DETERMINATION

The redshift of $z = 6.43 \pm 0.05$ for this quasar given in Fan et al. (2003) is based on the position of the heavily absorbed Ly α line and the onset of the Lyman break. The lack of distinguishable N V emission or any other lines in the optical spectrum mean that a more accurate redshift could not be obtained. In our spectrum we are able to measure the location of the Mg II line and hence obtain a more accurate redshift for this quasar. We find a redshift of $z = 6.41 \pm 0.01$. The Mg II line is particularly useful for redshift estimation compared to, for example, C IV which could be observed in the J-band. The low-ionization Mg II line is usually found close to the systemic redshift, whereas the high-ionization C IV line often shows blueshifts of several thousand km s$^{-1}$ (Richards et al. 2002). Another important fact is that there is no systematic velocity offset for the Ly α and Mg II lines in a large sample of SDSS quasars (Vanden Berk et al. 2001), so we can predict the intrinsic, unabsorbed Ly α line peak.

Accurate redshifts for the most distant quasars are important for several reasons. The rest-frame UV spectra of $z \sim 6$ quasars show a deficit of flux shortward of Ly α due to absorption by neutral hydrogen in the intergalactic medium (Fan et al. 2001; Becker et al. 2001). These observations have led to the possibility that we are now witnessing the epoch of reionization. Whilst accurate quasar redshifts are not essential for determining the ionization state of the universe as a function of redshift, they are very important when dealing with the state of the IGM close to the quasar.

Assuming that the IGM in general is neutral at the redshift of the quasar, the strong ionizing field of the quasar will ionize a local region around the quasar allowing Ly α photons to be transmitted. This proximity effect has been observed as a lack of absorption lines in the spectra of quasars close to the peak of Ly α (Bajtlik, Duncan & Osstriker 1988). Cen & Haiman (2000) showed that the size of this ionized region and the transmitted flux blueward of the peak of Ly α depend upon the number of ionizing photons which have been emitted from the quasar, i.e. the product of its lifetime and luminosity. Haiman & Cen (2002) apply this to the spectrum of the $z = 6.28$ quasar SDSS J1030+0524 to show that it is not strongly gravitationally lensed and to derive a lower limit on how long the quasar has been active. Such an analysis depends critically on knowing where the peak of the Ly α line should be in the spectrum.

The spectrum of SDSS J1148+5251 presented by Fan et al. (2003) also shows zero flux at Ly α redshifts of 5.7 to 6.33, suggestive of a neutral universe. However, there is some flux apparent on the blue wing of Ly α which is likely due to the proximity effect. The marked location of Ly α at $z = 6.43$ given by Fan et al. is at the peak of the Ly α emission. However, adopting the new redshift for the quasar of $z = 6.41$ shifts the location of Ly α to 9010 Å, which is co-incident with a steep decline in flux to less than half of the peak value. Hence the revised redshift indicates a substantially more neutral IGM close to the quasar. The amount and extent of transmitted flux on the blue side of Ly α is similar to that in SDSS J1030+0524 and the conclusions about this quasar made by Haiman & Cen (2002) and Pentericci et al. (2002) probably apply equally to SDSS J1148+5251.

The evolutionary state of the host galaxies of high redshift quasars can be probed by (sub)millimeter observations of dust and molecular gas. Particularly important tracers are the emission lines from transitions of CO molecules and carbon atoms (Blain et al. 2000). However current millimeter receivers have a fairly small bandwidth corresponding to ~ 2000 km s$^{-1}$. Hence systemic redshifts must be known to an accuracy of ~ 0.01 to ensure that the emission line will fall within the frequency range of the observation. Our observations of SDSS J1148+5251 provide a redshift of sufficient accuracy for millimeter line searches.

4. ESTIMATING THE BLACK-HOLE MASS

Reverberation mapping studies of low redshift quasars have been successfully employed to estimate the masses of their black holes (Netzer & Peterson 1997). This method determines the radial distance of the broad line emitting region (BLR) from the nucleus (R_{BLR}), by observing the time lag (}~ 1 year) between variations in the UV/optical continuum and the line strength. Combining this distance with the velocity of the emission line gas (v_{BLR}, which is closely related to the observed FWHM of the line) gives a virial estimate of the black-hole mass ($M_{bh} = \frac{g}{2} R_{BLR} v_{BLR}^2$). This estimate assumes that the dynamics of the gas are dominated by gravitational forces (see Peterson & Wandel 2000 for a discussion). These reverberation studies have revealed a correlation between the continuum luminosity and the radius of the BLR which can be used to estimate black-hole masses when only the line FWHM and luminosity are available (Kaspi et al. 2000).

Traditionally, the H β emission line has been used for this work, since it is readily observable in the optical spectra of low redshift quasars where the reverberation map-
ping calibration of luminosity and BLR has been derived. Recently, McLure & Jarvis (2002) have cross-calibrated this relationship of the Hβ line to the MgII line using a sample of AGN with reverberation mapping measures of R_{BLR}, so that black-hole mass estimates can be derived to higher redshifts. They note that the MgII line (which has an ionization potential close to that of Hβ) is a much better choice than higher ionization lines like CIV whose dynamics may be strongly influenced by outflows. McLure & Jarvis derived a calibration between R_{BLR} and L_{3000} (the monochromatic luminosity at 3000 Å) and performed a fit to the Hβ and MgII FWHMs, finding a linear relationship with virtually identical normalization. The resulting black-hole mass estimator has the form

$$M_{bh} = 3.37 \left(\frac{\lambda L_{3000}}{10^{37} \text{W}} \right)^{0.47} \left(\frac{\text{FWHM(MgII)}}{\text{kms}^{-1}} \right)^2. \quad (1)$$

Our spectrum covers the rest wavelength region 3000 Å and we have determined the MgII FWHM. Therefore we can apply this formula to derive an estimate of the black-hole mass in SDSS J1148+5251. Using $\lambda L_{3000} = 6.2 \times 10^{39}$ W and FWHM(MgII) = 6000 km s$^{-1}$ we get $M_{bh} = 3 \times 10^9 M_\odot$. Assuming that $z \sim 6$ quasars are not fundamentally different to low redshift quasars (evidence supporting this is that their spectra are similar), the accuracy of this black-hole mass estimator with respect to those from reverberation mapping is a factor of 2.5 (1σ).

This is an extremely massive black hole to be in existence such a short time (840 Myr) after the beginning of the universe. Assuming that this black hole is residing in a proportionately massive halo ($\sim 10^{14} M_\odot$) then standard theories of structure formation predict that this is one of the rarest, most massive halos to have collapsed by this time (e.g. Haiman & Loeb 2001; Fan et al. 2001). There are two caveats to the derived black-hole mass. Since the estimator depends on L_{3000}, if we have over-estimated the intrinsic, isotropic luminosity we will have over-estimated the black hole mass. If the luminosity function of $z \sim 6$ quasars has a steep slope then there are expectations that a significant fraction of the SDSS $z \sim 6$ quasars will have their luminosities enhanced by either gravitational lensing or beaming (Turner 1991; Wyithe & Loeb 2002a). Fan et al. (2003) discussed K'-band images of the three new $z \sim 6$ quasars and found that none of them show evidence for gravitational lensing. Our spectrum found that the equivalent width of the MgII line is typical of quasars which shows that the continuum luminosity is not strongly enhanced by beaming. Therefore, the available evidence suggests that there is minimal amplification of the intrinsic quasar luminosity.

It is interesting to consider the maximum luminosity that can be attained by an accreting black hole of this mass. This is usually considered to be the Eddington limit at which the outward radiation pressure equals the inward gravitational attraction. The Eddington limit for a black hole of mass $3 \times 10^9 M_\odot$ is 4×10^{40} W. Using a bolometric correction of 7 to get the bolometric luminosity from λL_{3000} (Wandel, Peterson & Malkan 1999) we determine a bolometric luminosity for SDSS J1148+5251 of $L = 4 \times 10^{40}$ W. Therefore we find that the black hole in this quasar is radiating the maximal amount possible. This supports the often made assumption when relating quasar luminosities to black hole and halo masses that the highest redshift quasars are accreting at the Eddington limit (e.g. Fan et al. 2001; Wyithe & Loeb 2002a). It is not too surprising to find that SDSS J1148+5251 has the minimum size black hole given its luminosity. As mentioned above, the short cosmic time available for the growth of supermassive black holes by this redshift means black holes with such masses will only have arisen within rare collapsed peaks. In such conditions, there is likely to be a plentiful gas supply to fuel the quasar and the black hole is expected to be accreting close to its Eddington limit.

5. Conclusions

We have presented H and K spectra of the quasar SDSS J1148+5251 which currently has the highest known redshift. We clearly detect the broad MgII emission line. Fitting the location of this emission line we derive a redshift of $z = 6.41 \pm 0.01$. The equivalent width of this line is similar to that of lower redshift SDSS quasars, suggesting that the optical continuum is not strongly beamed. We obtain a virial mass estimate of the black-hole mass of $M_{bh} = 3 \times 10^9 M_\odot$. The quasar is radiating at the Eddington luminosity, in line with the expectation that it is easier to fuel a supermassive black hole than create one at such an early epoch. Similar observations of other $z > 6$ quasars would reveal if they are all radiating at the Eddington luminosity.

We thank the staff at the UKIRT for their excellent technical support. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the U.K. Particle Physics and Astronomy Research Council. We thank the referee for comments. CJW thanks the National Research Council of Canada for support.

REFERENCES

Bajtlik, S., Duncan, R. C., & Ostriker, J. P., 1988, ApJ, 327, 570
Becker, R. H., et al., 2001, AJ, 122, 285
Blain, A. W., Frayer, D. T., Bock, J. J., & Scoville, N. Z., 2000, MNRAS, 313, 559
Cen, R., & Haiman, Z., 2000, ApJ, 542, L75
Fan, X., et al., 2001, AJ, 122, 2833
Fan, X., et al., 2003, AJ, in press, astro-ph/0301135
Haiman, Z., & Loeb, A., 2001, ApJ, 552, 459
Haiman, Z., & Cen, R., 2002, ApJ, 578, 702
Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., & Giveon, U., 2000, ApJ, 533, 631
McLure, R. J., & Jarvis, M. J., 2002, MNRAS, 337, 109
Netzer, H., & Peterson, B. M., 1997, in Astronomical Time Series, ed. D. Maoz, A. Sternberg & E. M. Leibowitz (Dordrecht: Kluwer), 85
Petercici, L., et al., 2002, AJ, 123, 2151
Peterson, B. M., & Wandel, A., 2000, ApJ, 540L, 13
Richards, G. T., Vanden Berk, D. E., Reichard, T. A., Hall, P. B., Schneider, D. P., SubbaRao, M., Thakar, A. R., & York, D. G., 2002, AJ, 124, 1
Turner, E. L., 1991, AJ, 101, 5
Vanden Berk, D. E., et al., 2001, AJ, 122, 549
Wandel, A., Peterson, B. M., & Malkan, M. A., 1999, ApJ, 526, 579
Wyithe, J. S. B., & Loeb, A., 2002a, ApJ, 577, 57
Wyithe, J. S. B., & Loeb, A., 2002b, ApJ, 581, 886
Yoshii, Y., Tsujimoto, T., & Kawara, K., 1998, ApJ, 507, L113