Definable versions of Menger’s conjecture

Franklin D. Tall

April 19, 2018

Abstract

Menger’s conjecture that Menger spaces are σ-compact is false; it is true for analytic subspaces of Polish spaces and undecidable for more complex definable subspaces of Polish spaces. For non-metrizable spaces, analytic Menger spaces are σ-compact, but Menger continuous images of co-analytic spaces need not be. The general co-analytic case is still open, but many special cases are undecidable, in particular, Menger co-analytic topological groups. We also prove that if there is a Michael space, then productively Lindelöf Čech-complete spaces are σ-compact. We also give numerous characterizations of proper K-Lusin spaces. Our methods include the Axiom of Co-analytic Determinacy, non-metrizable descriptive set theory, and Arhangel’skii’s work on generalized metric spaces.

1 Menger co-analytic groups

We shall assume all spaces are completely regular.

Definition. A topological space is analytic if it is a continuous image of \mathbb{P}, the space of irrationals. A space is Lusin if it is an injective continuous image of \mathbb{P}. (This is the terminology of [24]. This term is currently used

1 Research supported by NSERC grant A-7354.

2000 Math. Subj. Class. Primary 54A35, 54D45, 03E35, 03E75, 54H05; Secondary 03E15, 03E60.

Key words and phrases: Co-analytic, Menger, σ-compact, productively Lindelöf, determinacy, Michael space, topological group, K-analytic, absolute Borel, K-Lusin.
A space is **K-analytic** if it is a continuous image of a Lindelöf Čech-complete space. A space is **K-Lusin** if it is an injective continuous image of a Lindelöf Čech-complete space.

Definition. A space is **co-analytic** if $\beta X \setminus X$ is analytic. In general, we call $\beta X \setminus X$ the **remainder** of X. $bX \setminus X$, for any compactification bX of X, is called a **remainder** of X.

Definition. A space is **Menger** if whenever $\{U_n : n < \omega\}$ is a sequence of open covers, there exist finite V_n, $n < \omega$, such that $V_n \subseteq U_n$ and $\bigcup\{V_n : n < \omega\}$ is a cover.

Arhangel’skii [4] proved that Menger analytic spaces are σ-compact, generalizing Hurewicz’s classic theorem that Menger completely metrizable spaces are σ-compact. Menger’s conjecture was disproved in [19], where Miller and Fremlin also showed it undecidable whether Menger co-analytic sets of reals are σ-compact. In [27] we proved that Menger Čech-complete spaces are σ-compact and obtained various sufficient conditions for Menger co-analytic topological spaces to be σ-compact. We continue that study here. In [27] we observed that Π^1_1-determinacy – which we also call CD: the Axiom of Co-analytic Determinacy – implies Menger co-analytic sets of reals are σ-compact. Indeed, PD (the Axiom of Projective Determinacy) implies Menger projective sets of reals are σ-compact [25], [27]. When one goes beyond co-analytic spaces in an attempt to generalize Arhangel’skii’s theorem, one runs into ZFC counterexamples, but it is not clear whether there is a ZFC co-analytic counterexample. Assuming $V = L$, there is a counterexample which is a subset of \mathbb{R} [19], [27]. Here we prove:

Theorem 1.1. CD implies every Menger co-analytic topological group is σ-compact.

Remark. CD follows from the existence of a measurable cardinal [17].

We first slightly generalize the CD result quoted above.

Lemma 1.2. CD implies every separable metrizable Menger co-analytic space is σ-compact.

In order to prove this, we need some general facts about analytic spaces and perfect maps.
Lemma 1.3. Metrizable perfect pre-images of analytic spaces are analytic.

Proof. Rogers and Jayne [24, 5.8.9] prove that perfect pre-images of metrizable analytic spaces are K-analytic, and that K-analytic metrizable spaces are analytic [24, 5.5.1]. □

Lemma 1.4 [11, 3.7.6]. If $f : X \to Y$ is perfect, then for any $B \subseteq Y$, $f_B : f^{-1}(B) \to B$ is perfect.

Lemma 1.5 [24, 5.2.3]. If f is a continuous map of a compact Hausdorff X onto a Hausdorff space Y and the restriction of f to a dense subspace E of X is perfect, then $f^{-1} \circ f(E) = E$.

Lemma 1.6. Metrizable perfect pre-images of co-analytic spaces are co-analytic.

Proof. Let M be a metrizable perfect pre-image of a co-analytic X. Let p be the perfect map. Extend p to P mapping βM onto βX. Then by Lemma 1.5 $P^{-1} \circ P(M) = M$, i.e. $P^{-1}(X) = M$. Then $P(\beta M \setminus M) = \beta X \setminus X$, since P is onto and points in M map into X. By Lemma 1.4 $P|P^{-1}(\beta X \setminus X)$ is perfect. But then $\beta M \setminus M$ is analytic by Lemma 1.3 so M is co-analytic. □

Proof of Lemma 1.2. Let X be separable metrizable Menger co-analytic. It is folklore (see e.g. [13]) that every separable metrizable space X is a perfect image of a 0-dimensional one, and hence of a subspace M of the Cantor space $\mathbb{K} \subseteq \mathbb{R}$. Then M is Menger co-analytic, so by CD is σ-compact. But then so is X. □

Lemma 1.7 [5]. A topological group with Lindelöf remainder is a perfect pre-image of a metrizable space.

Since analytic spaces are Lindelöf, a co-analytic group is a perfect pre-image of a metrizable space. Since Menger spaces are Lindelöf, a Menger co-analytic topological group G is a perfect pre-image of a separable metrizable space M. In [27], we proved perfect images of co-analytic spaces are co-analytic, so M is co-analytic and Menger and therefore σ-compact by CD and Lemma 1.2. Then G is σ-compact as well. □

After hearing about Theorem 1.1 S. Tokgöz [29] proved:

Proposition 1.8. $V = L$ implies there is a Menger co-analytic group which is not σ-compact.
2 Productively Lindelöf co-analytic spaces

Definition. A space X is **productively Lindelöf** if for every Lindelöf space Y, $X \times Y$ is Lindelöf.

We have extensively studied productively Lindelöf spaces \([1, 8, 9, 10, 25, 26, 28]\), as have other authors. Since productively Lindelöf spaces consistently are Menger \([26, 1, 25, 23]\) it is natural to ask:

Problem 1. Are productively Lindelöf co-analytic spaces σ-compact?

Definition. A **Michael space** is a Lindelöf space whose product with the space \mathbb{P} of irrationals is not Lindelöf.

It is consistent that there is a Michael space, but it is not known whether there is one from ZFC. If there is no Michael space, then the space \mathbb{P} of irrationals is productively Lindelöf, co-analytic, nowhere locally compact, but not σ-compact. We shall prove:

Theorem 2.1. CH implies productively Lindelöf co-analytic spaces which are nowhere locally compact are σ-compact.

I do not know whether the unwanted “nowhere locally compact” clause can be removed. It assures us that $\beta X \setminus X$ is dense in βX. Laying the groundwork for proving Theorem 2.1 we need some definitions and previous results.

Definition \([3]\). A space is of **countable type** if each compact set is included in a compact set of countable character.

Lemma 2.2 \([14]\). A completely regular space is of countable type if and only if some (all) remainder(s) are Lindelöf.

Definition \([2]\). A space is **Alster** if each cover by G_δ’s such that each compact set is included in the union of finitely many members of the cover has a countable subcover.

Lemma 2.3 \([1, 25]\). Alster spaces of countable type are σ-compact.

Lemma 2.4 \([2]\). CH implies productively Lindelöf spaces of weight $\leq \aleph_1$ are Alster.
We can now prove Theorem 2.1. Let X be productively Lindelöf, co-analytic, and nowhere locally compact. $\beta X \setminus X$ is analytic and hence Lindelöf and separable. It is dense in βX, so $w(\beta X)$ and hence $w(X) \leq 2^{\aleph_0} = \aleph_1$. Then X is Alster. Since $\beta X \setminus X$ is Lindelöf, X has countable type, so it is σ-compact.

For metrizable spaces, Repovš and Zdomskyy [23] proved:

Proposition 2.5. If there is a Michael space and CD holds, then every co-analytic productively Lindelöf metrizable space is σ-compact.

We would like to drop the metrizability assumption, using:

Lemma 2.6 [23]. If there is a Michael space, then productively Lindelöf spaces are Menger.

As in [27], we run up against the unsolved problem:

Problem 2. Is it consistent that co-analytic Menger spaces are σ-compact?

However, we can apply the various partial results in the previous section and [27] to obtain:

Theorem 2.7. Suppose there is a Michael space and CD holds. Then if X is co-analytic and productively Lindelöf, then X is σ-compact if either:

1. closed subspaces of X are G_δ’s,

 or

2. X is a Σ-space,

 or

3. X is a p-space,

 or

4. X is a topological group.

Proof. These conditions all imply under CD that Menger co-analytic spaces are σ-compact. Σ-spaces and p-spaces are discussed in Section 3. \qed
The two hypotheses of Theorem 2.7 are compatible, since it is well-known that CH is compatible with the existence of a measurable cardinal, and that CH implies the existence of a Michael space [18]. Various other hypotheses about cardinal invariants of the continuum also imply the existence of a Michael space – see e.g. [20]. These are all compatible with CD.

We also have:

Theorem 2.8. There is a Michael space if and only if productively Lindelöf Čech-complete spaces are \(\sigma \)-compact.

Proof. If there is no Michael space, the space of irrationals is productively Lindelöf, and of course it is Čech-complete but not \(\sigma \)-compact. If there is a Michael space, productively Lindelöf spaces are Menger, but we showed in [27] that Menger Čech-complete spaces are \(\sigma \)-compact.

Repovš and Zdomskyy [23] prove:

Proposition 2.9. Suppose \(\text{cov}(\mathcal{M}) > \omega_1 \), and there is a Michael space. Then every productively Lindelöf \(\Sigma^1_2 \) subset of the Cantor space is \(\sigma \)-compact.

Example. The metrizability condition cannot be removed; Okunev’s space is a productively Lindelöf continuous image of a co-analytic space, but is not \(\sigma \)-compact (see [9]). In more detail, consider the Alexandrov duplicate \(A \) of the space \(\mathbb{P} \) of irrationals. \(A \) is co-analytic, since it has a countable remainder with a countable base. A countable metrizable space is homeomorphic to an \(F_{\sigma} \) in the Cantor space, and so is analytic. Okunev’s space is obtained by collapsing the non-discrete copy of \(\mathbb{P} \) in \(A \) to a point. Note that Okunev’s space is not co-analytic. To see this, if it were, it would be of countable type by Lemma 2.2. In [9] we showed that this space is Alster but not \(\sigma \)-compact, which would contradict Lemma 2.3.

3 K-analytic and K-Lusin spaces

We take the opportunity to make some observations about K-analytic, K-Lusin, absolute Borel, Frolik, and what Arhangel’skii [6] calls Borelian of the first type spaces. These are all attempts to generalize concepts of Descriptive Set Theory beyond separable metrizable spaces.

Definition [9]. A space is Frolik if it is homeomorphic to a closed subspace of a countable product of \(\sigma \)-compact spaces.
Definition. A space X is absolute Borel if it is in the σ-algebra generated by the closed sets of βX. A space X is Borelian of the first type if it is in the σ-algebra generated by the open sets of βX.

Definition. A space is projectively σ-compact (projectively countable) if its continuous images in separable metrizable spaces are all σ-compact (countable).

Frolík [12] showed that each Frolík space is absolute $K_{\sigma\delta}$ (and therefore Lindelöf), i.e. the intersection of countably many σ-compact subspaces of its Čech-Stone compactification (and conversely), and also is the continuous image of a Čech-complete Frolík space, so that Frolík spaces are absolute Borel and K-analytic. K-Lusin spaces are clearly K-analytic; K-Lusin spaces are also Frolík [24, 5.8.6]. Since K-analytic metrizable spaces are analytic and analytic Menger spaces are σ-compact [1], we see that Menger K-analytic spaces are projectively σ-compact [9]. In [26] we proved that projectively σ-compact Lindelöf spaces are Hurewicz, so we conclude:

Theorem 3.1. Menger K-analytic spaces are Hurewicz.

Hurewicz is a property strictly between σ-compact and Menger. A space is Hurewicz if every Čech-complete space including it includes a σ-compact subspace including it (This is equivalent to the usual definition – see [25]). This theorem may give some inkling as to why it seems to be hard to find topological properties that imply Hurewicz spaces are σ-compact which don’t in fact imply Menger spaces are σ-compact. There are, however, Hurewicz subsets of \mathbb{R} which are not σ-compact — see e.g. [30].

There is a projectively σ-compact Frolík space which is not σ-compact (Okunev’s space – see [9]). Okunev’s space is also not Čech-complete, since Menger Čech-complete spaces are σ-compact [24]. There is a Frolík subspace of \mathbb{R} which is not Čech-complete, since “Čech-complete” translates into being a G_δ, and we know the Borel hierarchy is non-trivial. There are of course analytic subsets of \mathbb{R} which are not absolute Borel and hence not Frolík. Moore’s L-space [21] is projectively countable but not K-analytic. The reason is that all its points are G_δ’s, which contradicts projectively countable for K-analytic spaces [24, 5.4.3].

Since K-Lusin spaces are Frolík, it is worth mentioning that:

Proposition 3.2 [9]. There are no Michael spaces if and only if every Frolík space is productively Lindelöf.
We could add to this “if and only if every K-Lusin space is productively Lindelöf”.

Proof. \mathbb{P} is K-Lusin.

Also of interest is:

Proposition 3.3 [24, 2.5.5]. K-analytic spaces are powerfully Lindelöf, i.e. their countable powers are Lindelöf – in fact they are K-analytic.

Theorem 3.4. Co-analytic Menger K-analytic spaces are σ-compact.

Corollary 3.5. Suppose there is a Michael space. Then co-analytic productively Lindelöf K-analytic spaces are σ-compact.

Compare with 2.5.

The Corollary follows from 2.6. In order to prove 3.4 we need to know:

Definition [6]. A completely regular space is called an s-space if there exists a countable open source for X in some compactification bX of X, i.e. a countable collection \mathcal{S} of open subsets of bX such that X is a union of some family of intersections of non-empty subfamilies of \mathcal{S}.

We also need to know about p-spaces and \sum-spaces, but do not need their internal characterizations. What we need are:

Lemma 3.6 [3]. A completely regular space is Lindelöf p if it is the perfect pre-image of a separable metrizable space.

Lemma 3.7 [22]. A completely regular space is Lindelöf \sum if and only if it is the continuous image of a Lindelöf p-space.

Lemma 3.8. An analytic space has a countable network and hence (see e.g [13]) is Lindelöf and a \sum-space.

Lemma 3.9 [6]. X is a Lindelöf p-space if and only if it is a Lindelöf \sum-space and an s-space.

Lemma 3.10 [6]. X is Lindelöf \sum if and only if its remainder is an s-space.

Lemma 3.11 [5]. X is a Lindelöf p-space if and only if its remainder is.
Proof of Theorem 3.4. Such a space X is a Lindelöf p-space, since both it and its remainder are Lindelöf $Σ$. Let X map perfectly onto a metrizable M. Then M is analytic and Menger, so is $σ$-compact, so X is also.

Theorem 3.12. Co-analytic Menger absolute Borel spaces are $σ$-compact.

To see this, we introduce:

Definition. Given a family of sets S, Rogers and Jayne \[24\] say that a set is a Souslin S-set if it has a representation in the form

$$\bigcup S(\sigma|n)$$

with $S(\sigma|n) \in S$ for all finite sequences of positive integers.

Rogers and Jayne prove:

Lemma 3.13 \[24, 2.5.4\]. The family A of K-analytic subsets of a completely regular space is closed under the Souslin operation i.e. every Souslin A-set is in A; if a family is closed under the Souslin operation, it is closed under countable intersections and countable unions.

Corollary 3.14. Absolute Borel spaces are K-analytic.

Proof. This is well-known. In $βX$, closed subsets are compact; compact spaces are K-analytic.

Theorem 3.12 now follows from 3.4.

Theorem 3.15. Every Lindelöf Borelian space of the first type is K-analytic.

Proof. We proceed by induction on subspaces of a fixed compact space. For the basis step, note that open subspaces of a compact space are locally compact, while Lindelöf locally compact spaces are $σ$-compact. For the successor stage, assume a Lindelöf Borelian set of the first type is the union (intersection) of countably many K-analytic subspaces. By Lemma 3.13, the union (intersection) is K-analytic and hence Lindelöf. The limit stage is trivial.

Arhangel’skii \[6\] proved that Borelian sets of the first type are s-spaces. This is interesting because:

Theorem 3.16. Every absolute Borel s-space is a Lindelöf p-space.
Proof. We induct on Borel order. The basis step is trivial. We need to show s-spaces which are the countable union (intersection) of Lindelöf p-spaces are Lindelöf \(\sum \). Let \(\{X_n\}_{n<\omega} \) be Lindelöf p. Let \(\sum_{n<\omega} X_n \) be the disjoint sum of the \(X_n \)'s. Then \(\sum_{n<\omega} X_n \) is clearly Lindelöf p. Consider the natural map \(\sigma \) from \(\sum_{n<\omega} X_n \) to \(\bigcup_{n<\omega} X_n \) obtained by identifying all copies of a point \(x \in \bigcup_{n<\omega} X_n \) which are in \(\sum_{n<\omega} X_n \). \(\sigma \) is continuous, so \(\bigcup_{n<\omega} X_n \) is Lindelöf \(\sum \).

Now consider \(\prod_{n<\omega} X_n \). This is also Lindelöf p \([3]\) and so then is the diagonal \(\Delta \). Define \(\pi (\langle x, x, \ldots \rangle) = x \). Then \(\pi \) is continuous and maps \(\Delta \) onto \(\bigcap_{n<\omega} X_n \), which is therefore Lindelöf \(\sum \). \(\square \)

Note Okunev’s space is Lindelöf absolute \(F_{\sigma \delta} \) but is not s, since it is not of countable type \([9]\), while s-spaces are \([6]\). By Theorem \([3.4]\) Okunev’s space is not co-analytic.

Borel sets of reals are of course analytic; Okunev’s space shows that Lindelöf absolute Borel spaces need not be analytic, since it is Menger but not \(\sigma \)-compact. Compact spaces are Borelian of the first type, so the latter spaces need not be analytic.

A somewhat smaller class of spaces than the \(K \)-analytic (\(K \)-Lusin) ones is comprised of what Rogers and Jayne call the proper \(K \)-analytic (proper \(K \)-Lusin) spaces.

Definition. A space is proper \(K \)-analytic if it is the perfect pre-image of an analytic subspace of \(\mathbb{R}^\omega \). A space is proper \(K \)-Lusin if it is the perfect pre-image of a Lusin subspace of \(\mathbb{R}^\omega \).

Rogers and Jayne \([24]\) prove that a space is proper \(K \)-Lusin if and only if both it and its remainder are \(K \)-analytic. It follows that a space is proper \(K \)-Lusin if and only if it and its remainder are \(K \)-Lusin. They also prove that \(K \)-Lusin spaces are absolute \(K_{\sigma \delta} \), i.e. what we have called Frélix. It follows that proper \(K \)-Lusin spaces are both \(K_{\sigma \delta} \) and \(G_{\delta \sigma} \), i.e. countable unions of Čech-complete spaces. We shall provide a large number of equivalences for “proper \(K \)-Lusin” below.

Proper \(K \)-analytic spaces are p-spaces, and their continuous real-valued images are analytic, so:

Theorem 3.17. Menger proper \(K \)-analytic spaces are \(\sigma \)-compact.

Corollary 3.18. Menger proper \(K \)-Lusin spaces are \(\sigma \)-compact.
Lemma 3.19. Let $Z(Y)$ be the collection of zero-sets of Y. Then X is proper K-analytic if and only if $X \in S(Z(\beta X))$.

Theorem 3.20. A space is proper K-analytic if and only if it is a K-analytic p-space.

Proof. By definition, a proper K-analytic space is a p-space. By 3.19 and 3.18 it is K-analytic. Conversely, if X is a K-analytic p-space, it maps perfectly onto a separable metrizable analytic space, which embeds into \mathbb{R}^ω. □

Note that zero-sets are closed G_δ’s, so that the absolute Baire sets, i.e. the elements of the σ-algebra generated by the zero-sets, are both Lindelöf Borelian of the first type and absolute Borel.

Corollary 3.21. Menger absolute Baire spaces are σ-compact.

Mixing Rogers and Jayne with Arhangel’skii, we have:

Theorem 3.22. The following are equivalent:

(a) X is proper K-Lusin,

(b) X and its remainder are K-Lusin,

(c) X and its remainder are both Frolík,

(d) X is Lindelöf Borelian of the first type,

(e) X is absolute Borel and Lindelöf p,

(f) X is absolute Borel and of countable type.

Proof. We have already proved that (a), (b) and (c) are equivalent. (c) implies (d), since X is Lindelöf absolute $G_{\delta\sigma}$. If X is Lindelöf Borelian of the first type, it is K-analytic, but so is its remainder, so (d) implies (b). If X is absolute Borel, it is K-analytic and its remainder is Borelian of the first type. If X is Lindelöf p, so is its remainder, so (e) implies (b). (b) implies a proper K-Lusin space and its remainder are both K-analytic spaces, hence Lindelöf \sum_{σ} spaces, so they are p-spaces. Thus (b) implies (e). (e) implies (f) since p-spaces are of countable type [3]. (f) implies the remainder of X is Lindelöf Borelian of the first type, and so is K-analytic. Thus (a) implies (f) implies (b). □
We know that Menger proper K-analytic (a fortiori, proper K-Lusin) spaces are σ-compact, but Menger K-analytic spaces may not be.

Problem 3. Are Menger K-Lusin spaces σ-compact?

An interesting fact about K-Lusin spaces is that:

Lemma 3.23 [24, 5.4.3]. The following are equivalent for a K-Lusin X:

(a) X includes a compact perfect set;

(b) X admits a continuous real-valued function with uncountable range;

(c) X is not the countable union of compact subspaces which include no perfect subsets. In particular, if X is not σ-compact, it includes a compact perfect set.

From this, we can conclude that Okunev’s space is not K-Lusin, since it is not σ-compact but doesn’t include a compact perfect set.

Indeed we have:

Definition. A space is **Rothberger** if whenever $\{U_n\}_{n<\omega}$ are open covers, there exists a cover $\{U_n\}_{n<\omega}, U_n \in U_n$.

Thus Rothberger is a strengthening of Menger.

Lemma 3.24 [7]. Rothberger spaces do not include a compact perfect set.

Theorem 3.25. K-analytic Rothberger spaces are projectively countable.

Proof. They are projectively σ-compact. □

Corollary 3.26. K-Lusin Rothberger spaces are σ-compact.

Proof. This follows from 3.23. □

Remark. Projectively countable Lindelöf spaces are always Rothberger [26]; thus Okunev’s space is Rothberger [9]. The assertion that Rothberger spaces are projectively countable is equivalent to Borel’s Conjecture [26].

Here are some more problems we have not been able to solve:

Problem 4. Does CD imply co-analytic Hurewicz spaces are σ-compact?

Problem 5. Are Lindelöf co-analytic projectively σ-compact spaces σ-compact?

Note $V = L$ implies there is a co-analytic Hurewicz group of reals that is not σ-compact [29].
References

[1] Alas, O. T., Aurichi, L. F., Junqueira, L. R., and Tall, F. D. Non-productively Lindelöf spaces and small cardinals. *Houston J. Math.* **37** (2011), 1373–1381.

[2] Alster, K. On the class of all spaces of weight not greater than \(\omega_1\) whose Cartesian product with every Lindelöf space is Lindelöf. *Fund. Math.* **129** (1988), 133–140.

[3] Arhangel’skiĭ, A. V. On a class of spaces containing all metric spaces and all locally bicoompact spaces. *Sov. Math. Dokl.* **4** (1963), 751–754.

[4] Arhangel’skiĭ, A. V. Hurewicz spaces, analytic sets and fan tightness in function spaces. *Sov. Math. Dokl.* **33** (1986), 396–399.

[5] Arhangel’skiĭ, A. V. Remainders in compactifications and generalized metrizability properties. *Topology Appl.* **150** (2005), 79–90.

[6] Arhangel’skiĭ, A. V. A generalization of Čech-complete spaces and Lindelöf \(\Sigma\)-spaces. *Comment. Math. Univ. Carolin.* **54**, 2 (2013), 121–139.

[7] Aurichi, L. F. \(D\)-spaces, topological games and selection principles. *Topology Proc.* **36** (2010), 107–122.

[8] Aurichi, L. F., and Tall, F. D. Lindelöf spaces which are indestructible, productive, or \(D\). *Topology Appl.* **159** (2011), 331–340.

[9] Burton, P., and Tall, F. Productive Lindelöfness and a class of spaces considered by Z. Frolík. *Topology. Appl.* **159** (2012), 3097–3102.

[10] Duanmu, H., Tall, F. D., and Zdomskyy, L. Productively Lindelöf and indestructibly Lindelöf spaces. *Topology Appl.* **160** (2013), 2443–2453.

[11] Engelking, R. *General Topology*. Heldermann Verlag, Berlin, 1989.

[12] Frolík, Z. On the descriptive theory of sets. *Czechoslovak Math. J.* **20** (1963), 335–359.
[13] Gruenhage, G. Generalized metric spaces. In *Handbook of Set-theoretic Topology*. North-Holland, Amsterdam, 1984, pp. 423–501.

[14] Henriksen, M., and Isbell, J. R. Some properties of compactifications. *Duke Math. J.* 25 (1957), 83–105.

[15] Hurewicz, W. Uber eine Verallgemeinerung des Borelschen Theorems. *Math. Zeit.* 24 (1925), 401–421.

[16] Kechris, A. S. *Classical Descriptive Set Theory*. Springer-Verlag, New York, 1995.

[17] Martin, D. A. Measurable cardinals and analytic games. *Fund. Math.* 66 (1970), 287–291.

[18] Michael, E. A. Paracompactness and the Lindelöf property in finite and countable Cartesian products. *Compositio Math.* 23 (1971), 199–214.

[19] Miller, A. W., and Fremlin, D. H. On some properties of Hurewicz, Menger, and Rothberger. *Fund. Math.* 129 (1988), 17–33.

[20] Moore, J. T. Some of the combinatorics related to Michael’s problem. *Proc. Amer. Math. Soc.* 127 (1999), 2459–2467.

[21] Moore, J. T. A solution to the *L*-space problem. *J. Amer. Math. Soc.* 19 (2006), 717–736.

[22] Nagami, K. Σ-spaces. *Fund. Math.* 65 (1969), 169–192.

[23] Repovš, D., and Zdomskyy, L. On the Menger covering property and *D* spaces. *Proc. Amer. Math. Soc.* 140 (2012), 1069–1074.

[24] Rogers, C. A., and Jayne, J. E. K-analytic sets. In *Analytic sets*, C. A. Rogers, Ed. Academic Press, London, 1980, pp. 2–175.

[25] Tall, F. D. Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or *D*. *Topology Appl.* 158 (2011), 2556–2563.

[26] Tall, F. D. Productively Lindelöf spaces may all be *D*. *Canad. Math. Bull.* 56 (2013), 203–212.
[27] Tall, F. D., and Tokgöz, S. On the definability of Menger spaces which are not σ-compact, to appear.

[28] Tall, F. D., and Tsaban, B. On productively Lindelöf spaces. *Topology Appl.* 158 (2011), 1239–1248.

[29] Tokgöz, S. A co-analytic Menger group which is not σ-compact, preprint.

[30] Tsaban, B. Menger’s and Hurewicz’s Problems: Solutions from “The Book” and refinements. In *Set Theory and its Applications* (2011), L. Babinkostova, Ed., vol. 533 of *Contemp. Math.*, pp. 211–226.

Franklin D. Tall, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, CANADA

e-mail address: f.tall@math.utoronto.ca