Normal transversality and uniform bounds

FRANCESC PLANAS-VILANOVA

Dept. Matemàtica Aplicada 1. ETSEIB-UPC. Diagonal 647, 08028 Barcelona. E-mail: planas@ma1.upc.es

1 Introduction

Let A be a commutative ring. A graded A-algebra $U = \oplus_{n \geq 0} U_n$ is a standard A-algebra if $U_0 = A$ and $U = A[U_1]$ is generated as an A-algebra by the elements of U_1. A graded U-module $F = \oplus_{n \geq 0} F_n$ is a standard U-module if F is generated as an U-module by the elements of F_0, that is, $F_n = U_n F_0$ for all $n \geq 0$. In particular, $F_n = U_1 F_{n-1}$ for all $n \geq 1$. Given I, J, two ideals of A, we consider the following standard algebras: the Rees algebra of I, $R(I) = \oplus_{n \geq 0} I^n t^n = A[It] \subset A[t]$, and the multi-Rees algebra of I and J, $R(I, J) = \oplus_{n \geq 0} (\oplus_{p+q=n} I^p J^q u^p v^q) = A[u, Jv] \subset A[u, v]$. Consider the associated graded ring of I, $G(I) = R(I) \otimes A/I = \oplus_{n \geq 0} I^n/I^{n+1}$, and the multi-associated graded ring of I and J, $G(I, J) = R(I, J) \otimes A/(I + J) = \oplus_{n \geq 0} (\oplus_{p+q=n} I^p J^q/(I + J)^{p+q})$. We can always consider the tensor product of two standard A-algebras $U = \oplus_{p \geq 0} U_p$ and $V = \oplus_{q \geq 0} V_q$ as an standard A-algebra with the natural grading $U \otimes V = \oplus_{n \geq 0} (\oplus_{p+q=n} U_p \otimes V_q)$. If M is an A-module, we have the standard modules: the Rees module of I with respect to M, $R(I; M) = \oplus_{n \geq 0} I^n M t^n = M[It] \subset M[t]$ (a standard $R(I)$-module), and the multi-Rees module of I and J with respect to M, $R(I, J; M) = \oplus_{n \geq 0} (\oplus_{p+q=n} I^p J^q M u^p v^q) = M[u, Jv] \subset M[u, v]$ (a standard $R(I, J)$-module). Consider the associated graded module of I with respect to M, $G(I; M) = R(I; M) \otimes A/I = \oplus_{n \geq 0} I^n M/I^{n+1} M$ (a standard $G(I)$-module), and the multi-associated graded module of I and J with respect to M, $G(I, J; M) = R(I, J; M) \otimes A/(I + J) = \oplus_{n \geq 0} (\oplus_{p+q=n} I^p J^q M/(I + J)^{p+q} M)$ (a standard $R(I, J)$-module). If U, V are two standard A-algebras and F is a standard U-module and G is a standard V-module, then $F \otimes G = \oplus_{n \geq 0} (\oplus_{p+q=n} F_p \otimes G_q)$ is a standard $U \otimes V$-module.

Denote by $\pi: R(I) \otimes R(J; M) \to R(I, J; M)$ and $\sigma: R(I, J; M) \to R(I + J; M)$ the natural surjective graded morphisms of standard $R(I) \otimes R(J)$-modules. Let $\varphi: R(I) \otimes R(J; M) \to R(I + J; M)$ be $\sigma \circ \pi$. Denote by $\pi: G(I) \otimes G(J; M) \to G(I, J; M)$ and $\sigma: G(I, J; M) \to G(I + J; M)$ the tensor product of π and σ by $A/(I + J)$; these are two natural surjective graded morphisms of standard $G(I) \otimes G(J)$-modules. Let $\overline{\varphi}: G(I) \otimes G(J; M) \to G(I + J; M)$ be $\overline{\sigma} \circ \overline{\pi}$. The first purpose of this note is to prove the following theorem:

Theorem 1 Let A be a noetherian ring, I, J two ideals of A and M a finitely generated A-module. The following two conditions are equivalent:

(i) $\overline{\varphi}: G(I) \otimes G(J; M) \to G(I + J; M)$ is an isomorphism.

(ii) $\text{Tor}_1(A/I^p, R(J; M)) = 0$ and $\text{Tor}_1(A/I^p, G(J; M)) = 0$ for all integers $p \geq 1$.

In particular, $G(I) \otimes G(J; M) \simeq G(I + J)$ if and only if $\text{Tor}_1(A/I^p, A/J^q) = 0$ and $\text{Tor}_2(A/I^p, A/J^q) = 0$ for all integers $p, q \geq 1$.

The morphism φ has been studied by Hironaka [H], Grothendieck [G] and Hermann, Ikeda and Orbanz [HIO], among others, but assuming always A is normally flat along I (see 21.11 in [HIO]). We will see how Theorem 2 generalizes all this former work.

Let us now recall some definitions in order to state the second purpose of this note. If U is a standard A-algebra and F is a graded U-module, put $s(F) = \min\{r \geq 1 \mid F_n = 0 \text{ for all } n \geq r + 1\}$, where $s(F)$ may possibly be infinite. If $U_n = \oplus_{n>0} U_n$ and $r \geq 1$, the following three conditions are equivalent: F can be generated by elements of degree at most r; $s(F/U_+ F) \leq r$; and $F_n = U_1 F_{n-1}$ for all $n \geq r + 1$. If $\varphi : G \to F$ is a surjective graded morphism of graded U-modules, we denote by $E(\varphi)$ the graded A-module $E(\varphi) = \ker \varphi / U_+ \ker \varphi = \ker \varphi \oplus (\oplus_{n \geq 1} \ker \varphi_n / U_1 \ker \varphi_{n-1}) = \oplus_{n \geq 0} E(\varphi)_n$. If F is a standard U-module, take $S(U_1)$ the symmetric algebra of U_1, $\alpha : S(U_1) \to U$ the surjective graded morphism of standard A-algebras induced by the identity on U_1 and $\gamma : S(U_1) \otimes F_0 \to U \otimes F_0 \to F$ the composition of $\alpha \otimes 1$ with the structural morphism. Since F is a standard U-module, γ is a surjective graded morphism of graded $S(U_1)$-modules. The module of effective n-relations of F is defined to be $E(F)_n = E(\gamma)_n = \ker \gamma_n / U_1 \ker \gamma_{n-1}$ (for $n = 0$, $E(F)_0 = 0$). Put $E(F) = \oplus_{n \geq 1} E(F)_n = \oplus_{n \geq 1} E(\gamma)_n = E(\gamma) = \ker \gamma / S_\alpha(U_1) \ker \gamma$. The relation type of F is defined to be $rt(F) = s(E(F))$, that is, $rt(F)$ is the minimum positive integer $r \geq 1$ such that the effective n-relations are zero for all $n \geq r + 1$. A symmetric presentation of a standard U-module F is a surjective graded morphism of standard V-modules $\varphi : G \to F$, with $\varphi : G = V \otimes M \overset{f \otimes h}{\to} U \otimes F_0 \to F$, where V is a symmetric A-algebra, $f : V \to U$ is a surjective graded morphism of standard A-algebras, $h : M \to F_0$ is an epimorphism of A-modules and $U \otimes F_0 \to F$ is the structural morphism. One can show (see [P2]) that $E(F)_n = E(\varphi)_n$ for all $n \geq 2$ and $s(E(F)) = s(E(\varphi))$. Thus the module of effective n-relations and the relation type of a standard U-module are independent of the chosen symmetric presentation. Roughly speaking, the relation type of F is the largest degree of any minimal homogeneous system of generators of the submodule defining F as a quotient of a polynomial ring with coefficients in F_0. For an ideal I of A and an A-module M, the module of effective n-relations and the relation type of I with respect to M are defined to be $E(I; M)_n = E(\mathcal{R}(I; M))_n$ and $rt(I; M) = rt(\mathcal{R}(I; M))$, respectively. Then:

Theorem 2 Let A be a commutative ring, U and V two standard A-algebras, F a standard U-module and G a standard V-module. Then $U \otimes V$ is a standard A-algebra, $F \otimes G$ is a standard $U \otimes V$-module and $rt(F \otimes G) \leq \max(rt(F), rt(G))$.

As a consequence of Theorems [P1] and [P2] one deduces the existence of an uniform bound for the relation type of all maximal ideals of an excellent ring.

Theorem 3 Let A be an excellent (or $J - 2$) ring and let M be a finitely generated A-module. Then there exists an integer $s \geq 1$ such that, for all maximal ideals m of A, the relation type of m with respect to M satisfies $rt(m; M) \leq s$.

In fact, Theorem [P3] could also been deduced from the proof of Theorem 4 of Trivedi in [H]. Finally, and using Theorem 2 of [P2], one can recover the following result of Duncan and O’Carroll.

Corollary 4 [DO] Let A be an excellent (or $J - 2$) ring and let $N \subseteq M$ be two finitely generated A-modules. Then there exists an integer $s \geq 1$ such that, for all integers $n \geq s$ and for all maximal ideals m of A, $m^n M \cap N = m^{n-s}(m^s M \cap N)$.

2
2 Normal transversality

Lemma 2.1 Let A be a commutative ring, I an ideal of A, U a standard A-algebra, F and G two standard U-modules and $\varphi : G \to F$ a surjective graded morphism of standard A-algebras. If $\overline{A} = A/I$, then $\overline{U} = U \otimes \overline{A}$ is a standard \overline{A}-algebra, $\overline{F} = F \otimes \overline{A}$ and $\overline{G} = G \otimes \overline{A}$ are two standard \overline{U}-modules and $\overline{\varphi} = \varphi \otimes 1_{\overline{A}} : \overline{G} \to \overline{F}$ is a surjective graded morphism of standard \overline{U}-modules. Moreover, $s(E(\overline{\varphi})) \leq s(E(\varphi))$.

Proof. Consider the following commutative diagram of exact rows:

\[
\begin{array}{ccccccccc}
U_1 \otimes \ker \varphi_{n-1} & \longrightarrow & U_1 \otimes G_{n-1} & \longrightarrow & U_1 \otimes F_{n-1} & \longrightarrow & 0 \\
\downarrow & & \downarrow \varphi_{n-1} & & \downarrow \varphi_n & & \\
\ker \varphi_n & \longrightarrow & G_n & \longrightarrow & F_n & \longrightarrow & 0.
\end{array}
\]

By the snake lemma, $\ker \partial_n^G \to \ker \partial_n^F \to E(\varphi)_n \to 0$ is an exact sequence of A-modules. If we tensor this sequence by \overline{A}, then $(\ker \partial_n^G) \otimes \overline{A} \to (\ker \partial_n^F) \otimes \overline{A} \to E(\varphi)_n \otimes \overline{A} \to 0$ is an exact sequence of \overline{A}-modules. On the other hand, we have the following commutative diagram of exact rows:

\[
\begin{array}{ccccccccc}
\overline{U}_1 \otimes \ker \overline{\varphi}_{n-1} & \longrightarrow & \overline{U}_1 \otimes \overline{G}_{n-1} & \longrightarrow & \overline{U}_1 \otimes \overline{F}_{n-1} & \longrightarrow & 0 \\
\downarrow & & \downarrow \overline{\varphi}_{n-1} & & \downarrow \overline{\varphi}_n & & \\
\ker \overline{\varphi}_n & \longrightarrow & \overline{G}_n & \longrightarrow & \overline{F}_n & \longrightarrow & 0.
\end{array}
\]

By the snake lemma, $\ker \partial_n^G \otimes \overline{A} \to \ker \partial_n^F \otimes \overline{A} \to E(\overline{\varphi})_n \to 0$ is an exact sequence of \overline{A}-modules. In order to see the relationship between $\ker \partial_n^F$ and $\ker \partial_n^F$, tensor by \overline{A} the exact sequence of A-modules $0 \to \ker \partial_n^F \to U_1 \otimes F_{n-1} \to F_n \to 0$ and consider the commutative diagram of exact rows:

\[
\begin{array}{ccccccccc}
(\ker \partial_n^F) \otimes \overline{A} & \longrightarrow & (U_1 \otimes F_{n-1}) \otimes \overline{A} & \longrightarrow & F_n \otimes \overline{A} & \longrightarrow & 0 \\
\downarrow & & \downarrow \sim & & \downarrow \sim & & \\
\ker \partial_n^F & \longrightarrow & U_1 \otimes \overline{F}_{n-1} & \longrightarrow & \overline{F}_n & \longrightarrow & 0.
\end{array}
\]

It induces an epimorphism of \overline{A}-modules $(\ker \partial_n^F) \otimes \overline{A} \to \ker \partial_n^F$. Analogously, there exists an epimorphism of \overline{A}-modules $(\ker \partial_n^G) \otimes \overline{A} \to \ker \partial_n^F$. Both epimorphisms make commutative the following diagram of exact rows:

\[
\begin{array}{ccccccccc}
(\ker \partial_n^G) \otimes \overline{A} & \longrightarrow & (\ker \partial_n^F) \otimes \overline{A} & \longrightarrow & E(\overline{\varphi})_n \otimes \overline{A} & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\ker \partial_n^G & \longrightarrow & \ker \partial_n^F & \longrightarrow & E(\overline{\varphi})_n & \longrightarrow & 0,
\end{array}
\]

from where we deduce an epimorphism $E(\overline{\varphi})_n \otimes \overline{A} \to E(\overline{\varphi})_n$. In particular, $s(E(\overline{\varphi})) \leq s(E(\varphi))$.

Lemma 2.2 Let A be a commutative ring, I, J two ideals of A and M an A-module. Consider $\sigma : \mathcal{R}(I, J; M) \to \mathcal{R}(I + J; M)$ and $\overline{\sigma} = \mathcal{G}(I, J; M) \to \mathcal{G}(I + J; M)$. Then
(a) \(\text{ker}(\sigma_1) \simeq IM \cap JM \).

(b) \(\text{ker}(\overline{\sigma}_1) = 0 \) if and only if \(IM \cap JM \subset (I+J)M \cap (I+J)JM \).

(c) If \(IpM \cap JqM = IpJqM \) for all integers \(p, q \geq 1 \), then \(s(E(\sigma)) = 1 \) and \(\overline{\sigma} \) is an isomorphism.

Proof. Consider \(0 \to IM \cap JM \xrightarrow{\rho} IM \oplus JM \xrightarrow{\sigma_1} (I+J)M \to 0 \) where \(\rho(a) = (a, -a) \) and \(\sigma_1(a,b) = a+b \). Clearly it is an exact sequence of \(A \)-modules. Thus \(\text{ker}(\sigma_1) = \rho(IM \cap JM) \simeq IM \cap JM \). If we tensor this exact sequence by \(A/(I+J) \) we get \((IM \cap JM) \otimes A/(I+J) \xrightarrow{\overline{\sigma_1}} (I+J)M/(I+J)^2M \to 0 \). Then

\[
\text{ker}(\overline{\sigma}_1) = \text{im}\overline{\rho} = \{(\overline{\sigma}, -\overline{\sigma}) \in IM/I(I+J)M \oplus JM/(I+J)JM \mid a \in IM \cap JM \}.
\]

Hence \(\text{ker}(\overline{\sigma}_1) = 0 \) if and only if \(IM \cap JM \subset (I+J)M \cap (I+J)JM \). Now, let us prove (c).

Let \(z \in \text{ker}\sigma_n \subset R(I,J;M)_n = \oplus_{p+q=n} IpJqM u^p v^q \subset M[u,v] \). Thus, \(z = a_0 u^n + a_1 u^{n-1} v + \ldots + a_{n-1} v^{n-1} + a_n v^n \), \(a_i \in I^{n-i}J^iM \), and \(0 = \sigma_n(z) = (a_0 + a_1 + \ldots + a_{n-1} + a_n)u^n \in R(I+J;M)_n = (I+J)^nM \). So \(a_0 + a_1 + \ldots + a_{n-1} + a_n = 0 \). Let us denote:

\[
\begin{align*}
&b_0 = a_0 \in I^n \cap JM = I^nJM \\
b_1 = a_0 + a_1 \in I^{n-1} \cap J^2M = I^{n-1}J^2M \text{ and } a_1 = b_1 - b_0 \\
b_2 = a_0 + a_1 + a_2 \in I^{n-2} \cap J^3M = I^{n-2}J^3M \text{ and } a_2 = b_2 - b_1 \\
\vdots \\
b_{n-2} = a_0 + \ldots + a_{n-2} \in I^2 \cap J^{n-1}M = I^2J^{n-1}M \text{ and } a_{n-2} = b_{n-2} - b_{n-3} \\
b_{n-1} = a_0 + \ldots + a_{n-1} \in IM \cap J^nM = IJ^nM \text{ and } a_{n-1} = b_{n-1} - b_{n-2} \\
b_n = -b_{n-1} \in IJ^nM \;.
\end{align*}
\]

We can rewrite \(z \) in \(M[u,v] \) in the following manner:

\[
z = a_0 u^n + a_1 u^{n-1} v + \ldots + a_{n-1} v^{n-1} + a_n v^n = \\
= b_0 u^n + (b_1 - b_0) u^{n-1} v + (b_2 - b_1) u^{n-2} v^2 + \ldots + \\
+(b_{n-2} - b_{n-3}) u^{n-3} v^3 + (b_{n-1} - b_{n-2}) u^{n-4} v^4 + \ldots + b_n v^n = \\
= (b_0 u^n + b_1 u^{n-1} v + b_2 u^{n-2} v^2 + \ldots + b_{n-2} u^{n-3} v^3 + b_{n-1} u^{n-4} v^4 + \ldots + b_n v^n)(u - v) := p(u,v)(u - v),
\]

where \(p(u,v) \in A[Iu,Jv]_{n-1} \cdot (IJM) = R(I,J)_{n-1} \cdot (IJM) \). Since by hypothesis \(IM \cap JM = IJM \), then \(\text{ker}(\sigma_1) = (IJM)(u - v) \), \(\text{ker}(\overline{\sigma}_1) = 0 \) and \(z = p(u,v)(u - v) \in R(I,J)_{n-1} \cdot (IJM)(u - v) = R(I,J)_{n-1} \cdot \text{ker}\sigma_1 \). Thus \(\text{ker}\sigma_n = R(I,J)_{n-1} \cdot \text{ker}\sigma_1 \) for all \(n \geq 2 \) and \(s(E(\sigma)) = 1 \). By Lemma 2.1, \(s(E(\overline{\sigma}_1)) \leq s(E(\sigma)) = 1 \). Therefore \(\text{ker}(\overline{\sigma}_n) = G(I,J)_{n-1} \cdot \text{ker}(\overline{\sigma}_1) = 0 \) for all \(n \geq 2 \) and \(\overline{\sigma} \) is an isomorphism.

\[\blacksquare\]

Proposition 2.3 Let \(A \) be a noetherian ring, \(I, J \) two ideals of \(A \) and \(M \) a finitely generated \(A \)-module. The following two conditions are equivalent:

(i) \(\overline{\sigma} : G(I,J;M) \to G(I+J;M) \) is an isomorphism.

(ii) \(IpM \cap JqM = IpJqM \) for all integers \(p, q \geq 1 \).

Proof. Remark that we can suppose \(A \) is local. By Lemma 2.2, (ii) \(\Rightarrow\) (i). Let us see (i) \(\Rightarrow\) (ii), proving by double induction in \(p, q \geq 1 \) that

\[
IpM \cap JqM \subset Ip(I+J)J^{n-1}M \cap (I+J)pJ^nM .
\]
Remark that if $I^p M \cap J^q M \subseteq I^p (I + J) J^{q-1} M$ for all $p, q \geq 1$, then $I^p M \cap J^q M \subseteq I^{p+1} M + I^p J^q M$ and $I^p M \cap J^q M \subseteq I^{p+1} M \cap J^q M + I^p J^q M$. Recursively, and using A is noetherian local and M is finitely generated, $I^p M \cap J^q M \subseteq (\cap_{r \geq 1} I^{p+r} M \cap J^q M) + I^p J^q M \subseteq (\cap_{n \geq 1} I^n M) + I^p J^q M = I^p J^q M$, concluding (ii). Take $q = 1$. Let us prove by induction in $p \geq 1$ that

$$I^p M \cap J^1 M \subseteq I^p (I + J) M \cap (I + J)^p J^1 M.$$

For $p = 1$, we apply Lemma 2.4 (b), using the hypothesis σ_1 is an isomorphism. Suppose

$$I^p M \cap J^1 M \subseteq I^p (I + J) M \cap (I + J)^p J^1 M$$

is true and let us prove

$$I^{p+1} M \cap J^1 M \subseteq I^{p+1} (I + J) M \cap (I + J)^{p+1} J^1 M.$$

Then $I^{p+1} M \cap J^1 M \subseteq I^p M \cap J^1 M \subseteq (I + J)^p J^1 M$. Consider the short complex of A-modules:

$$I^p M \cap J^1 M \xrightarrow{\alpha} I^{p+1} M \cap (I + J)^p J^1 M \xrightarrow{\beta} (I + J)^{p+1} M,$$

where $\alpha(a) = (a, -a)$ and $\beta(a, b) = a + b$. Remark that $\beta \circ \alpha = 0$, β is surjective and that there exists a natural epimorphism γ of A-modules such that $\beta \circ \gamma = \sigma_{p+1}$. If we tensor this short complex by $A/(I + J)$ we obtain:

$$(I^{p+1} M \cap J^1 M) \otimes A/(I + J) \xrightarrow{\pi} I^{p+1} M/I^{p+1} (I + J) M \oplus (I + J)^p J^1 M/(I + J)^{p+1} J^1 M$$

$$I^{p+1} M/I^{p+1} (I + J) M \oplus (I + J)^p J^1 M/(I + J)^{p+1} J^1 M \xrightarrow{\pi} (I + J)^{p+1} M/(I + J)^{p+2} M,$$

with $\overline{\beta} \circ \overline{\pi} = 0$. Since $\sigma_{p+1} = \overline{\beta} \circ \overline{\pi}$ is an isomorphism, then $\overline{\beta}$ is an isomorphism, $\overline{\pi} = 0$ and

$$I^{p+1} M \cap J^1 M \subseteq I^{p+1} (I + J) M \cap (I + J)^{p+1} J^1 M.$$

By the symmetry of the problem, the following inclusion is also true for all $q \geq 1$:

$$I^1 M \cap J^q M \subseteq (I + J) J^q M \cap I (I + J)^q M.$$

In particular, if $I^p M \cap J^q M \subseteq I^p (I + J) M$ for all $p \geq 1$, then $I^p M \cap J^q M \subseteq I^{p+1} M + I^p J^q M$ and $I^p M \cap J^q M \subseteq I^{p+1} M \cap J^1 M + I^p J^q M$. Recursively, and using A is noetherian local and M is finitely generated, $I^p M \cap J^q M \subseteq (\cap_{r \geq 1} I^{p+r} M \cap J^q M) + I^p J^q M \subseteq (\cap_{n \geq 1} I^n M) + I^p J^q M = I^p J^q M$ concluding $I^p M \cap J^q M = I^p J^q M$ for all $p \geq 1$. Again, by the symmetry of the problem, $I^1 M \cap J^q M = I J^q M$ for all $q \geq 1$. Now, suppose

$$I^p M \cap J^q M \subseteq I^p (I + J) J^{q-1} M \cap (I + J)^p J^q M$$

holds for all $p \geq 1$ and let us prove, by induction in $p \geq 1$, that

$$I^p M \cap J^{q+1} M \subseteq I^p (I + J) J^q M \cap (I + J)^p J^{q+1} M.$$

Remark that if $I^p M \cap J^q M \subseteq I^p (I + J) J^{q-1} M$ for all $p \geq 1$, then $I^p M \cap J^q M \subseteq I^{p+1} M + I^p J^q M$ and $I^p M \cap J^q M \subseteq I^{p+1} M \cap J^q M + I^p J^q M$. Recursively, and using A is noetherian local and M is finitely generated, $I^p M \cap J^q M \subseteq (\cap_{r \geq 1} I^{p+r} M \cap J^q M) + I^p J^q M \subseteq (\cap_{n \geq 1} I^n M) + I^p J^q M = I^p J^q M$ concluding $I^p M \cap J^q M = I^p J^q M$ for all $p \geq 1$. For $p = 1$, we have to show:

$$I^1 M \cap J^{q+1} M \subseteq I (I + J) J^q M \cap (I + J)^1 J^{q+1} M.$$
We have $IM \cap J^{q+1}M \subset IM \cap J^qM = IJ^qM$. Consider the short complex of A-modules:

$$IM \cap J^{q+1}M \xrightarrow{\alpha} I^qM \oplus \ldots \oplus IJ^qM \oplus J^{q+1}M \xrightarrow{\sigma_{q+1}} (I + J)^{q+1}M,$$

where $\alpha(a) = (0, \ldots, 0, a, -a)$. Remark that $\sigma_{q+1} \circ \alpha = 0$. If we tensor this complex by $A/(I + J)$ we obtain $\overline{\sigma}_{q+1} \circ \overline{\alpha} = 0$. Since $\overline{\sigma}_{q+1}$ is an isomorphism, then $\overline{\alpha} = 0$ and

$$IM \cap J^{q+1}M \subset I(I + J)J^qM \cap (I + J)J^{q+1}M.$$

Suppose now true

$$IP^{p}M \cap J^{q+1}M \subset IP^{p}(I + J)J^qM \cap (I + J)^pJ^{q+1}M$$

and let us prove

$$IP^{p+1}M \cap J^{q+1}M \subset IP^{p+1}(I + J)J^qM \cap (I + J)^{p+1}J^{q+1}M.$$

Then $IP^{p+1}M \cap J^{q+1}M \subset IP^{p}M \cap J^{q+1}M \subset (I + J)^{p+1}J^{q+1}M$ and $IP^{p+1}M \cap J^{q+1}M \subset IP^{p+1}M \cap J^qM = IP^{p+1}J^qM$. Consider the short complex of A-modules:

$$IP^{p+1}M \cap J^{q+1}M \xrightarrow{\alpha} IP^{p+1}M \oplus \ldots \oplus IP^{p+1}J^qM \oplus (I + J)^{p+1}J^{q+1}M \xrightarrow{\beta} (I + J)^{p+1}J^{q+1}M,$$

where $\alpha(a) = (0, \ldots, 0, a, -a)$ and $\beta(a_1, \ldots, a_{q+2}) = a_1 + \ldots + a_{q+2}$. Remark that $\beta \circ \alpha = 0$, β is surjective and that there exists a natural epimorphism γ of A-modules such that $\beta \circ \gamma = \sigma_{p+q+1}$. If we tensor this complex by $A/(I + J)$ we obtain $\overline{\beta} \circ \overline{\alpha} = 0$. Since $\overline{\sigma}_{p+q+1} = \overline{\beta} \circ \overline{\alpha}$ is an isomorphism, then $\overline{\beta}$ is an isomorphism, $\overline{\alpha} = 0$ and

$$IP^{p+1}M \cap J^{q+1}M \subset IP^{p+1}(I + J)J^qM \cap (I + J)^{p+1}J^{q+1}JM.$$

Proposition 2.4 Let A be a commutative ring, I an ideal of A and $\lambda : M \otimes N \to P$ an epimorphism of A-modules. Consider $f : R(I; M) \otimes N \to R(I; P)$ and $\overline{f} = f \otimes 1_{A/I} : G(I; M) \otimes N \to G(I; P)$ the natural surjective graded morphisms of standard modules. Then, for each integer $n \geq 2$, there exists an exact sequence of A-modules $E(f)_n \to E(f)_n \to E(\overline{f})_n \to 0$. In particular, if A is noetherian, M, N, P are finitely generated and \overline{f} is an isomorphism, then f is an isomorphism.

Proof. For each integer $n \geq 1$, the natural morphism $\text{Tor}_1(A/I^n, M) \otimes N \to \text{Tor}_1(A/I^n, M \otimes N)$ and $\lambda : M \otimes N \to P$ define the following commutative diagram of exact rows:

$$\begin{array}{cccccc}
\text{Tor}_1(A/I^n, M) \otimes N & \xrightarrow{1 \otimes \lambda} & I^n \otimes M \otimes N & \xrightarrow{1 \otimes \lambda} & I^nM \otimes N & \to 0 \\
0 & \xrightarrow{1 \otimes \lambda} & \text{Tor}_1(A/I^n, P) & \xrightarrow{1 \otimes \lambda} & I^n \otimes P & \to 0 \\
\end{array}$$

We deduce an epimorphism $f_n : I^nM \otimes N \to I^nP$. On the other hand, $R(I; M) \otimes M$ is a standard $R(I)$-module and $f = \oplus_{n \geq 0} f_n : R(I; M) \otimes N \to R(I; P)$ defines a surjective graded morphism of standard $R(I)$-modules. If we tensor f by A/I, we get $\overline{f} : G(I; M) \otimes N \to G(I; P)$ a surjective graded morphism of standard $G(I)$-modules.

Let X be an A-module. The following is a commutative diagram of exact columns with rows the last three nonzero terms of the complexes $K(R(I; X))_{n+1}, K(R(I; X))_n$ and $K(G(I; X))_n$ (see Proposition 2.6 in [P] for more details):
In other words, \(\ker(\mathcal{R}(I; X))_{n+1} \xrightarrow{u} \ker(\mathcal{R}(I; X))_n \xrightarrow{v} \ker(\mathcal{G}(I; X))_n \to 0 \) is an exact sequence of complexes. It induces the morphisms in homology: \(H_1(\ker(\mathcal{R}(I; X))_{n+1}) \xrightarrow{u} H_1(\ker(\mathcal{R}(I; X))_n) \) and \(H_1(\ker(\mathcal{R}(I; X))_n) \xrightarrow{\cdot} H_1(\ker(\mathcal{G}(I; X))_n) \). By Proposition 2.6 in [P3], \(H_1(\ker(\mathcal{R}(I; X))_n) = E(I; X)_n \) and \(H_1(\ker(\mathcal{G}(I; X))_n) = E(\mathcal{G}(I; X))_n \). Thus we have \(E(I; X)_{n+1} \xrightarrow{u} E(I; X)_n \xrightarrow{v} E(\mathcal{G}(I; X))_n \). Since \(v \circ u = 0 \), then \(v \circ u = 0 \). Since \(u_0 \) is injective, then \(\ker \subset \text{im} u_0 \). Since \(H_0(\ker(\mathcal{R}(I; X))_{n+1}) = 0 \), then \(v \) is surjective. So \(E(I; X)_{n+1} \xrightarrow{v} E(I; X)_n \xrightarrow{v} E(\mathcal{G}(I; X))_n \to 0 \) is an exact sequence of \(A \)-modules. For \(X = P \) we get the exact sequence of \(A \)-modules: \(E(I; P)_{n+1} \xrightarrow{v} E(I; P)_n \xrightarrow{v} E(\mathcal{G}(I; P))_n \to 0 \). Take \(X = M \) in \(\ker(\mathcal{R}(I; X))_{n+1} \xrightarrow{u} \ker(\mathcal{R}(I; X))_n \xrightarrow{v} \ker(\mathcal{G}(I; X))_n \to 0 \) and tensor it by \(N \). Then we get the exact sequence of complexes

\[
\ker(\mathcal{R}(I; M))_{n+1} \otimes N \xrightarrow{\alpha = u \otimes 1} \ker(\mathcal{R}(I; M))_n \otimes N \xrightarrow{\beta = v \otimes 1} \ker(\mathcal{G}(I; M))_n \otimes N \to 0.
\]

That is, we obtain the exact sequence:

\[
\ker(\mathcal{R}(I; M) \otimes N)_{n+1} \xrightarrow{\alpha} \ker(\mathcal{R}(I; M) \otimes N)_n \xrightarrow{\beta} \ker(\mathcal{G}(I; M) \otimes N)_n \to 0,
\]

which induces the morphisms in homology

\[
H_1(\ker(\mathcal{R}(I; M) \otimes N)_{n+1}) \xrightarrow{\alpha} H_1(\ker(\mathcal{R}(I; M) \otimes N)_n) \xrightarrow{\beta} H_1(\ker(\mathcal{G}(I; M) \otimes N)_n).
\]

Again, by Proposition 2.6 in [P3], \(H_1(\ker(\mathcal{R}(I; M) \otimes N)_n) = E(\mathcal{R}(I; M) \otimes N)_n \) and \(H_1(\ker(\mathcal{G}(I; M) \otimes N)_n) = E(\mathcal{G}(I; M) \otimes N)_n \). Moreover, since \(\beta \circ \alpha = 0 \), then \(\beta \circ \alpha = 0 \), and since \(H_0(\ker(\mathcal{R}(I; M) \otimes N)_{n+1}) = 0 \), then \(\beta \) is an epimorphism. Thus we have

\[
E(\mathcal{R}(I; M) \otimes N)_{n+1} \xrightarrow{\alpha} E(\mathcal{R}(I; M) \otimes N)_n \xrightarrow{\beta} E(\mathcal{G}(I; M) \otimes N)_n \to 0
\]

with \(\beta \circ \alpha = 0 \) and \(\beta \) surjective. Remark that since we do not know if \(\alpha_0 = u_0 \otimes 1 \) is injective, we cannot deduce \(\ker \beta \subset \text{im} \alpha \). On the other hand, consider \(g : S(I) \otimes M \otimes N \to \mathcal{R}(I; M) \otimes N \) and \(\overline{g} : S(I/I^2) \otimes M \otimes N \to \mathcal{G}(I; M) \otimes N \) the natural surjective graded morphisms of standard modules, where \(S(I) \), \(S(I/I^2) \) stands for the symmetric algebras of \(I \) and \(I/I^2 \), respectively. By Lemma 2.3 in [P2], for each \(n \geq 2 \), there exists exact sequences of \(A \)-modules \(E(g)_n \to E(f \circ g)_n \to E(f)_n \to 0 \) and \(E(\overline{g})_n \to E(f \circ \overline{g})_n \to E(\overline{f})_n \to 0 \). In other words, we have exact sequences

\[
E(\mathcal{R}(I; M) \otimes N)_n \to E(\mathcal{R}(I; P))_n \to E(f)_n \to 0
\]

and

\[
E(\mathcal{G}(I; M) \otimes N)_n \to E(\mathcal{G}(I; P))_n \to E(\overline{f}) \to 0.
\]

Consider the following commutative diagram of exact columns:
The commutativity induces two morphisms \(\xi : E(f)_{n+1} \to E(f)_n \) and \(\mu : E(f)_n \to E(f)_n \). Since \(v \circ u = 0 \), then \(\mu \circ \xi = 0 \). Since \(v \) is surjective, then \(\mu \) is surjective too. Since \(\beta \) is surjective and the middle row is exact, then \(\ker \mu \subseteq \im \xi \). Therefore,

\[E(f)_{n+1} \xrightarrow{\xi} E(f)_n \xrightarrow{\mu} E(f)_n \to 0 \]

is an exact sequence of \(A \) modules. Finally, if \(A \) is noetherian and \(M, N \) and \(P \) are finitely generated, then \(E(f)_n = 0 \) for \(n \gg 0 \) big enough.

Theorem 2.5 Let \(A \) be a noetherian ring, \(I, J \) two ideals of \(A \) and \(M \) a finitely generated \(A \)-module.

The following two conditions are equivalent:

1. \(\varphi : G(I) \otimes G(J; M) \to G(I + J; M) \) is an isomorphism.
2. \(\Tor_1(A/I^p, R(J; M)) = 0 \) and \(\Tor_1(A/I^p, G(J; M)) = 0 \) for all integers \(p \geq 1 \).

In particular, \(G(I) \otimes G(J) \simeq G(I + J) \) if and only if \(\Tor_1(A/I^p, A/J^q) = 0 \) and \(\Tor_2(A/I^p, A/J^q) = 0 \) for all integers \(p, q \geq 1 \).

Proof. Remark that \(\Tor_1(A/I^p, J^q M) = \ker(\pi_{p,q} : I^p \otimes J^q M \to I^p J^q M) \). Moreover, under the hypothesis \(\Tor_1(A/I^p, R(J; M)) = 0 \) for all \(p \geq 1 \), then the following two conditions are equivalent:

- \(\Tor_1(A/I^p, G(J; M)) = 0 \) for all \(p \geq 1 \).
- \(I^p M \cap J^q M = I^p J^q M \) for all \(p, q \geq 1 \).

Suppose \((ii)\) holds, i.e., \(\Tor_1(A/I^p, J^q M) = 0 \) and \(I^p M \cap J^q M = I^p J^q M \) for all \(p, q \geq 1 \). Then, \(\pi : R(I) \otimes R(J; M) \to R(I, J; M) \) is an isomorphism and, by Lemma 2.2, \(\varphi : G(I, J; M) \to G(I + J; M) \) is an isomorphism. Thus \(\varphi = \pi \circ \varphi \) is an isomorphism and \((i)\) holds. Let us now prove \((i) \Rightarrow (ii)\).

If \(\varphi = \varphi \circ \varphi \) is an isomorphism, then \(\varphi \) and \(\varphi \) are two isomorphisms. By Proposition 2.3, \(\varphi \) an isomorphism implies \(I^p M \cap J^q M = I^p J^q M \) for all \(p, q \geq 1 \). In particular,

\[R(I; J^p M/J^q+1 M)_p = \frac{I^p J^q M + J^q+1 M}{J^q+1 M} = \frac{I^p J^q M}{J^q+1 M} = \frac{I^p J^q M}{I^p J^q+1 M} = G(J; I^p M)_q \]

and

\[G(I; J^q M/J^q+1 M)_p = \frac{I^p J^q M + J^q+1 M}{I^p J^q+1 M} = \frac{I^p J^q M}{I^p J^q+1 M} = \frac{I^p J^q M}{I^p J^q+1 M} = G(I; J^q M)_{p,q}. \]

Fix \(q \geq 1 \). Since \(\varphi_{p,q} : G(I)_p \otimes G(J; M)_q \to G(I, J; M)_{p,q} \) is an isomorphism for all \(p \geq 1 \) and \(G(I, J; M)_{p,q} = G(I, J^q M/J^q+1 M)_{p,q} \), then \(\varphi_{p,q} : G(I) \otimes J^q M/J^q+1 M \to G(I; J^q M/J^q+1 M) \) is an isomorphism for all \(q \geq 1 \). In other words, \(I^p \otimes G(J; M) \to G(J; I^p M) \) is an isomorphism for all \(p \geq 1 \) (since \(R(I; J^q M/J^q+1 M)_p = G(J; I^p M)_q \)). By Proposition 2.4, \(I^p \otimes R(J; M) \to R(J; I^p M) \) is an isomorphism for all \(p \geq 1 \). So \(\pi : R(I) \otimes R(J; M) \to R(I, J; M) \) is an isomorphism and \(\Tor_1(A/I^p, R(J; M)) = 0 \) for all \(p \geq 1 \).
3 Some examples

Example 3.1 Let A be a noetherian local ring, I, J two ideals of A and M a finitely generated A-module. If $I = (x)$ is principal and x A-regular, then $\varphi : \mathcal{G}(I) \otimes \mathcal{G}(J; M) \to \mathcal{G}(I + J; M)$ is an isomorphism if and only if x is a nonzero divisor in $\mathcal{R}(J; M)$ and in $\mathcal{G}(J; M)$. Indeed, let $K(y; N)$ denote the Koszul complex of a sequence of elements $y = y_1, \ldots, y_m$ of A with respect to an A-module N and let $H_i(y; N)$ denote its i-th Koszul homology group. Then $\text{Tor}_1(A/I, N) = H_1(K(x; A) \otimes N) = H_1(x; M) = 0$ if and only if x is a non-zerodivisor in N.

Example 3.2 Let A be a noetherian local ring and let $I = (x)$ and $J = (y)$ be two principal ideals of A. If $(0 : x) \subset (y)$ and $(0 : y) \subset (x)$, then $\varphi : \mathcal{G}(I) \otimes \mathcal{G}(J) \to \mathcal{G}(I + J)$ is an isomorphism if and only if x, y is an A-regular sequence.

Example 3.3 Let R be a noetherian local ring and let z, t be an R-regular sequence. Let $A = R/(zt)$, $x = z + (zt)$, $y = t + (zt)$, $I = (x)$ and $J = (y)$. Then $\varphi : \mathcal{G}(I, J) \to \mathcal{G}(I + J)$ is an isomorphism, but $\varphi : \mathcal{G}(I) \otimes \mathcal{G}(J) \to \mathcal{G}(I, J)$ is not an isomorphism.

An example of a pair of ideals I, J with the property $\text{Tor}_1(A/I^p, A/J^q)$ for all integers $p, q \geq 1$ arises from a product of affine varieties (see [V], pages 130 to 136, and specially Proposition 5.5.7). The next result is well known (see, for instance, [HIO]). We give here a proof for the sake of completeness.

Proposition 3.4 Let A be a noetherian local ring, I and J two ideals of A and M a finitely generated A-module. Let $x = x_1, \ldots, x_r$ be a system of generators of I and $y = y_1, \ldots, y_r$, $y_i = \overline{x}_i = x_i + J$, a system of generators of the ideal $\overline{I} = I + J/J$ of the quotient ring $\overline{A} = A/J$. If $\mathcal{G}(J)$ and $\mathcal{G}(J; M)$ are free \overline{A}-modules and y is an \overline{A}-regular sequence in \overline{I}, then x is an A-regular sequence in I and then $\varphi : \mathcal{G}(I) \otimes \mathcal{G}(J; M) \to \mathcal{G}(I + J; M)$ is an isomorphism.

Proof. Since, for all $q \geq 1$, $J^qM/J^{q+1}M$ is \overline{A}-free and y is an \overline{A}-regular sequence, then

$$0 = \text{Tor}_1(\overline{A}/I, J^qM/J^{q+1}M) = H_1(K(y; \overline{A}) \otimes J^qM/J^{q+1}M) = H_1(y; J^qM/J^{q+1}M).$$

So y is a $J^qM/J^{q+1}M$-regular sequence in \overline{I} for all $q \geq 1$. In particular, x is a $J^qM/J^{q+1}M$-regular sequence in I and $H_i(x; J^qM/J^{q+1}M) = 0$ for all $q \geq 1$. Using the long exact sequences in homology associated to the short exact sequences of A-modules $0 \to J^qM/J^{q+1}M \to M/J^{q+1}M \to M/J^qM \to 0$, we deduce $H_i(x; M/J^qM) = 0$ and x is an M/J^qM-regular sequence in I for all $q \geq 1$. In particular, x is an M-regular sequence in I. Analogously, but using the hypothesis $\mathcal{G}(J)$ is \overline{A}-free, we deduce x is an A-regular sequence in I. Therefore

$$\text{Tor}_1(A/I, M) = H_i(K(x; A) \otimes M) = H_i(K(x; M)) = 0$$

and

$$\text{Tor}_1(A/I, M/J^qM) = H_i(K(x; A) \otimes M/J^qM) = H_i(K(x; M/J^qM)) = 0.$$

Using the long exact sequences in homology associated to the short exact sequences

$$0 \to J^qM \to M \to M/J^qM \to 0$$

and

$$0 \to J^qM/J^{q+1}M \to M/J^{q+1}M \to M/J^qM \to 0,$$

we deduce $\text{Tor}_1(A/I, \mathcal{R}(J; M)) = 0$ and $\text{Tor}_1(A/I, \mathcal{G}(J; M)) = 0$. Since I^p/I^{p+1} is A/I-free, then $\text{Tor}_1(I^p/I^{p+1}, \mathcal{R}(J; M)) = \text{Tor}_1(A/I, \mathcal{R}(J; M)) \otimes I^p/I^{p+1} = 0$ and $\text{Tor}_1(I^p/I^{p+1}, \mathcal{G}(J; M)) = \text{Tor}_1(A/I, \mathcal{G}(J; M)) \otimes I^p/I^{p+1} = 0$. Applying the long exact sequences in homology to the short exact sequences $0 \to I^p/I^{p+1} \to A/I^{p+1} \to A/I^p \to 0$, we deduce $\text{Tor}_1(A/I^p, \mathcal{R}(J; M)) = 0$ and $\text{Tor}_1(A/I^p, \mathcal{G}(J; M)) = 0$ for all $p \geq 1$.

4 Relation type of tensor products

Lemma 4.1 Let U be a standard A-algebra and F a standard U-module. If M is an A-module, then $F \otimes M$ is a standard U-module and $\text{rt}(F \otimes M) \leq \text{rt}(F)$. If $\lambda : M \rightarrow N$ is an epimorphism of A-modules, then $1 \otimes \lambda : F \otimes M \rightarrow F \otimes N$ is a surjective graded morphism of standard U-modules. Moreover, for each integer $n \geq 1$, $\ker(1_{F_n} \otimes \lambda) = U_1 \cdot \ker(1_{F_{n-1}} \otimes \lambda)$. In particular, for each $n \geq 1$, there exists an epimorphism of A-modules $E(F \otimes M)_n \rightarrow E(F \otimes N)_n$ and $\text{rt}(F \otimes N) \leq \text{rt}(F \otimes M)$.

Proof. Clearly $F \otimes M$ is a standard U-module and $1 \otimes \lambda : F \otimes M \rightarrow F \otimes N$ is a surjective graded morphism of standard U-modules. By Proposition 2.6 in [1], for each $n \geq \text{rt}(F) + 1$, the following sequence is exact:

$$\mathbf{A}_2(U_1) \otimes F_{n-2} \rightarrow U_1 \otimes F_{n-1} \rightarrow F_n \rightarrow 0.$$

If we tensor it by M, we obtain the exact sequence

$$\mathbf{A}_2(U_1) \otimes F_{n-2} \otimes M \rightarrow U_1 \otimes F_{n-1} \otimes M \rightarrow F_n \otimes M \rightarrow 0,$$

for all $n \geq \text{rt}(F) + 1$. Thus $E(F \otimes M)_n = 0$ for all $n \geq \text{rt}(F) + 1$ and $\text{rt}(F \otimes M) \leq \text{rt}(F)$. Consider the following commutative diagram of exact columns and rows:

Using a diagram chasing argument, one deduces $\ker(1_{F_n} \otimes \lambda) = U_1 \cdot \ker(1_{F_{n-1}} \otimes \lambda)$ for all $n \geq 1$. If $g : X \rightarrow F \otimes M$ is a symmetric presentation of $F \otimes M$, then, by Lemma 2.3 in [1], there exists an exact sequence of A-modules $E(g)_n \rightarrow E((1 \otimes \lambda) \circ g)_n \rightarrow E(1 \otimes \lambda)_n \rightarrow 0$ for all $n \geq 1$. But $E(g)_n = E(F \otimes M)_n$, $E((1 \otimes \lambda) \circ g)_n = E(F \otimes N)_n$ and $E(1 \otimes \lambda)_n = 0$ for all $n \geq 1$. Thus $E(F \otimes M)_n \rightarrow E(F \otimes N)_n$ is surjective for all $n \geq 1$ and $\text{rt}(F \otimes N) \leq \text{rt}(F \otimes M)$.

Theorem 4.2 Let A be a commutative ring, U and V two standard A-algebras and F a standard U-module and G a standard V-module. Then $U \otimes V$ is a standard A-algebra, $F \otimes G$ is a standard $U \otimes V$-module and $\text{rt}(F \otimes G) \leq \max(\text{rt}(F), \text{rt}(G))$.

Proof. Clearly $U \otimes V$ is a standard A-algebra and $F \otimes G$ is a standard $U \otimes V$-module. Take $\varphi : X \rightarrow F$ and $\psi : Y \rightarrow G$ two symmetric presentations of F and G, respectively. Then $\varphi \otimes \psi : X \otimes Y \rightarrow F \otimes G$ is a symmetric presentation of $F \otimes G$. Since $\varphi \otimes \psi = (\varphi \otimes 1_G) \circ (1_X \otimes \psi)$, then, for each integer $n \geq 2$, there exists an exact sequence of A-modules

$$E(1_X \otimes \psi)_n \rightarrow E(\varphi \otimes \psi)_n \rightarrow E(\varphi \otimes 1_G)_n \rightarrow 0.$$

Since $\psi : Y \rightarrow G$ is a symmetric presentation of G, then $1_{X_0} \otimes \psi : X_0 \otimes Y \rightarrow X_0 \otimes G$ is a symmetric presentation of $X_0 \otimes G$ and $E(X_0 \otimes G)_n = E(1_{X_0} \otimes \psi)_n$. Using Lemma 1.4, $\ker(1_{X_1} \otimes \psi_{n-1}) = \cdots$
\[U_1 \cdot \ker(1_{X_{i-1}} \otimes \psi_{n-i}) \text{ for all } i \geq 1. \]

Then

\[
E(1_X \otimes \psi)_n = \frac{\ker(1_X \otimes \psi)_n}{(U \otimes V)_1 \cdot \ker(1_X \otimes \psi)_{n-1}} \oplus \cdots \oplus \frac{V_1 \cdot \ker(1_{X_{n-1}} \otimes \psi) + V_1 \cdot \ker(1_{X_1} \otimes \psi) - \cdots - \frac{U_1 \cdot \ker(1_{X_{n-2}} \otimes \psi) + V_1 \cdot \ker(1_{X_{n-1}} \otimes \psi)}{U_1 \cdot \ker(1_{X_1} \otimes \psi)}}{\ker(1_{X_0} \otimes \psi)}.
\]

Therefore \(E(1_X \otimes \psi)_n = E(1_{X_0} \otimes \psi)_n = E(X_0 \otimes G)_n \) for all \(n \geq 1 \). Analogously, \(E(\varphi \otimes 1_G)_n = E(\varphi \otimes 1_{G_0})_n = E(F \otimes G_0)_n \) for all \(n \geq 1 \). Hence there exists an exact sequence of \(A \)-modules

\[
E(X_0 \otimes G)_n \rightarrow E(F \otimes G)_n \rightarrow E(F \otimes G_0)_n \rightarrow 0
\]

for all \(n \geq 2 \) and, by Lemma \([4.3]\), \(\text{rt}(F \otimes G) \leq \max(\text{rt}(F \otimes G_0), \text{rt}(X_0 \otimes G)) \leq \max(\text{rt}(F), \text{rt}(G)). \]

Remark 4.3 Let \(A \) be a commutative ring and let \(U \) and \(V \) be two standard \(A \)-algebras. If \(\text{Tor}^A_1(U, V) = 0 \), then \(E(U \otimes V) = E(U) \oplus E(V) \). This follows from the characterization \(E(U) = H_1(A, U, A) \) (see Remark 2.3 in \([P_3]\)) and Proposition 19.3 in \([A]\).

5 Uniform bounds

Lemma 5.1 Let \((A, m)\) be a noetherian local ring and \(M \) be a finitely generated \(A \)-module. Let \(p \) a prime ideal of \(A \) such that \(A/p \) is regular local and \(G(p) \) and \(G(p; M) \) are free \(A/p \)-modules. Then \(\text{rt}(m; M) \leq \text{rt}(p; M) \).

Proof. Since \(A/p \) is regular local, there exists a sequence of elements \(x = x_1, \ldots, x_r \) in \(A \) such that \(y = y_1, \ldots, y_r \), defined by \(y_i = x_i + p \), is a system of generators of \(m/p \) and an \(A \)-regular sequence. Let \(I \) be the ideal of \(A \) generated by \(x \). In particular, \(I + p/p = m/p \) and \(I + p = m \). By Proposition 3.4, \(x \) is an \(A \)-regular sequence and \(\text{Tor}_1(A/p^i, \mathcal{R}(p; M)) = 0 \) and \(\text{Tor}_1(A/p^i, \mathcal{G}(p; M)) = 0 \) for all \(p^i \geq 1 \). By Theorem 2.\(B \), \(\mathcal{G}(I) \otimes \mathcal{G}(p; M) \rightarrow \mathcal{G}(m; M) \) is an isomorphism. By Theorem 4.2, \(\text{rt}(\mathcal{G}(m; M)) \leq \max(\text{rt}(\mathcal{G}(I)), \text{rt}(\mathcal{G}(p; M))) \). By Remark 2.7 in \([P_3]\), \(\text{rt}(\mathcal{G}(J; M)) = \text{rt}(J; M) \) for any ideal \(J \) of \(A \). Since \(I \) is generated by a regular sequence, then \(\text{rt}(I) = 1 \) (see, for instance, \([V]\) page 30). Thus \(\text{rt}(m; M) \leq \text{rt}(p; M) \).

The next result is a slight generalization of a well known Theorem of Duncan and O’Carroll \([DO]\). In fact the proof of our theorem is directly inspired in their. We sketch it here for the sake of completeness.

Theorem 5.2 Let \(A \) be an excellent (or \(J - 2 \)) ring and let \(M \) be a finitely generated \(A \)-module. Then there exists an integer \(s \geq 1 \) such that, for all maximal ideals \(m \) of \(A \), the relation type of \(m \) with respect to \(M \) satisfies \(\text{rt}(m; M) \leq s \).

Proof. For every \(p \in \text{Spec}(A) \), let us construct a non-empty open subset \(U(p) \) of \(V(p) = \{ q \in \text{Spec}(A) \mid q \supseteq p \} \approx \text{Spec}(A/p) \). Remark that \(A/p \) is a noetherian domain, \(G(p) \) is a finitely generated \(A/p \)-algebra and \(G(p; M) \) is a finitely generated \(G(p) \)-module. By Generic Flatness (Theorem 22.A in \([M]\)), there exist \(f, g \in A - p \) such that \(G(p)_f \) is an \((A/p)_f\)-free module and \(G(p; M)_g \) is an \((A/p)_g\)-free
module. Since A is $J - 2$, the set $\text{Reg}(A/p) = \{q \in V(p) \mid (A/p)_q$ is regular local$\}$ is a non-empty open subset of $V(p)$. Define $U(p)$ as the intersection $D(f) \cap D(g) \cap \text{Reg}(A/p) = \{q \in V(p) \mid q \not\subseteq f, q \not\subseteq g, (A/p)_q$ is regular local$\}$, which is a non-empty open subset of $V(p)$. Remark that for all $q \in U(p)$, $(A/p)_q$ is regular local and $G(p)_q$ and $G(p; M)_q$ are free $G(p)_q$-modules. By Lemma 5.1, $rt(qA_q; M_q) \leq rt(pA_q; M_q) \leq rt(p; M)$ for all $q \in U(p)$. In particular, $rt(m; M) \leq rt(p; M)$ for all maximal ideals $m \in U(p)$. For each minimal prime p_i of A, let $V(p_i) - U(p_i) = V(p_{i,1}) \cup \ldots \cup V(p_{i,r_i})$ be the decomposition into irreducible closed subsets of the proper closed subset $V(p_i) - U(p_i)$, $p_{i,j} \in \text{Spec}(A)$, $p_{i,j} \not\subseteq p_i$. Since A is noetherian, $\text{Spec}(A)$ can be covered by finitely many locally closed sets of type $U(p)$, i.e., there exists a finite number of prime ideals q_1, \ldots, q_m, such that $\text{Spec}(A) = \bigcup_{i=1}^m U(q_i)$. Hence, $rt(m; M) \leq \max\{rt(q_i; M) \mid i = 1, \ldots, m\}$ for any maximal ideal m of A.

Using Theorem 2 in [P] we deduce the result of Duncan and O'Carroll in [DO].

Corollary 5.3 [DO] **Let A be an excellent (or $J - 2$) ring and let $N \subseteq M$ be two finitely generated A-modules. Then there exists an integer $s \geq 1$ such that, for all integers $n \geq s$ and for all maximal ideals m of A, $m^n M \cap N = m^{n-s}(m^s M \cap N)$.**

Acknowledgement. This work was partially supported by the DGES PB97-0893 grant.

References

[A] M. André. Méthode simpliciale en algèbre homologique et algèbre commutative. Lecture Notes in Math. 32. Springer 1967.

[DO] A.J. Duncan, L. O’Carroll: A full uniform Artin-Rees theorem. J. reine angew. Math. 394 (1989), 203-207.

[G] A. Grothendieck: Étude locale des schémas et des morphismes de schémas. EGA IV, Publ. Math. IHES 20 (1964).

[H] M. Herrmann, S. Ikeda, U. Orbanz. Equimultiplicity and Blowing up. Springer-Verlag, Berlin 1988.

[H] H. Hironaka: Resolution of singularities of an algebraic variety of characteristic zero. Ann. of Math. 79 (1964), 109-326.

[M] H. Matsumura. Commutative Algebra. Second Edition. Mathematics Lecture Note Series. Reading, Massachusetts 1980.

[P] F. Planas Vilanova: On the module of effective relations of a standard algebra. Math. Proc. Camb. Phil. Soc. 124 (1998), 215-229.

[P] F. Planas Vilanova: The strong uniform Artin-Rees property in codimension one. Preprint

[T] V. Trivedi: Hilbert functions, Castelnuovo-Mumford Regularity and Uniform Artin-Rees numbers. Manuscripta Math. 94 (1997), 485-499.

[V] W.V. Vasconcelos: Arithmetic of Blowup Algebras. Cambridge University Press, Cambridge 1994.