Experimental Study of Nasopharyngeal Carcinoma Radionuclide Imaging and Therapy Using Transferred Human Sodium/Iodide Symporter Gene

Xing Zhong¹‡, Changzheng Shi¹‡, Jian Gong², Bin Guo², Mingzhu Li¹, Hao Xu²*

¹ Department of Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China, ² Department of Nuclear Medicine, First Affiliated Hospital, Jinan University, Guangzhou 510630, China

‡ These authors contributed equally to this work.
* txh@jnu.edu.cn

Abstract

Purpose
The aim of this study was to design a method of radionuclide for imaging and therapy of nasopharyngeal carcinoma (NPC) using the transferred human sodium/iodide symporter (hNIS) gene.

Methods
A stable NPC cell line expressing hNIS was established (CNE-2-hNIS). After 131I treatment, we detected proliferation and apoptosis of NPC cells, both in vitro and vivo. In vivo, the radioactivity of different organs of nude mice was counted and 99mTc imaging using SPECT was performed. The apparent diffusion coefficient (ADC) value changes of tumor xenografts were observed by diffusion-weighted magnetic resonance imaging (DW-MRI) within 6–24 days of 131I treatment. The correlation of ADC changes with apoptosis and proliferation was investigated. Post-treatment expression levels of P53, Bax, Bcl-2, Caspase-3, and Survivin proteins were detected by western blotting.

Results
131I uptake was higher in CNE-2-hNIS than in CNE-2 cells. The proliferation and apoptosis rate decreased and increased respectively both in vitro and vivo in the experimental group after 131I treatment. The experimental group tumors accumulated 99mTc in vivo, leading to a good visualization by SPECT. DW-MRI showed that ADC values increased in the experimental group 6 days after treatment, while ADC values were positively and negatively correlated with the apoptotic and Ki-67 proliferation indices, respectively. After treatment, CNE-2-hNIS cells up-regulated the expression of P53 and Survivin proteins and activated Caspase-3, and down-regulated the expression of Bcl-2 proteins.
Conclusions

The radionuclide imaging and therapy technique for NPC hNIS-transfected cell lines can provide a new therapy strategy for monitoring and treatment of NPC.

Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in Southern and Southeast Asia, with an annual incidence of 10–30 per 100,000 people. Although NPC is distinctly radiosensitive, it has a high rate of treatment failure because of its metastatic behaviour and locoregional recurrence [1, 2].

NIS is an integral membrane protein located on the basolateral surface of the thyroid follicular cells that mediate the uptake and concentration of iodide into the thyroid gland [3, 4]. NIS gene transfection offered a new approach to treatment of extrathyroidal malignancies. While cloning of the NIS gene can be transfected into different tumor cell lines, the uptake of radioactive iodide should partially inhibit cells’ growth. 131I targeted therapy mediated by transfected NIS uses the β-rays emitted during 131I decay. Differences in the retention amount and time of 131I in the cells will lead to different biological effects. Currently, the exact biological mechanism to achieve 131I targeted therapy in NIS-transfected non-thyroid cancer has not been established.

As previously shown [5], the clinical evaluation of tumor treatment is to measure tumor volume and morphological changes. However, therapeutic-induced changes in tumor volume often occur relatively late during the treatment. Sometimes, new therapy methods may not lead to a significant reduction in tumor size, yet it can lead to a variety of biological effects, including inhibition of growth or apoptotic-induced cell death. There is a need to evaluate new therapeutic methods that will reflect changes at the cellular level. Recently, it was shown that diffusion-weighted magnetic resonance imaging (DW-MRI) can be used as a cancer biomarker, highlighting the potential of this promising technique in evaluating early treatment response in cancer patients [6]. DW-MRI can provide microstructural information at the cellular level. Both pre-clinical [7, 8] and clinical studies [9] have revealed that treatment success in a wide variety of tumor types can be detected as an increase in their apparent diffusion coefficient (ADC) values.

The aim of our study was to investigate in the experiment environment the potential of radioiodine imaging and treatment of NPC cells after transfection with the hNIS gene and to evaluate early response to treatment using DW-MRI, and the response of 131I treatment of NPC from protein level were initially explored.

Materials and Methods

In our study, a stable NPC cell line expressing hNIS was firstly established, and then the kinetics of 125I and the toxic effects of 131I in CNE-2-hNIS were observed. There were exciting results in vitro, so we proceeded to in vivo studies.

Plasmid constructs and establishment of stably transfected CNE-hNIS cell lines

NPC cell line CNE-2 was purchased from the American Type Cell Collection (ATCC). The Cells were cultured in RPMI-1640 medium (Gibco) supplemented with 10% fetal calf serum.
(Gibco) in an incubator (5% CO₂, 37°C), and the medium was refreshed every 2–3 days. The cells were harvested with 0.25% trypsin (Gibco) when needed.

hNIS cDNA was amplified from a human thyroid cDNA bank, and was cloned into plasmid pCMV-Tag2 (Invitrogen, Karlsruhe, Germany) to get pCMV-Tag2-hNIS.

CNE-2 cells were transfected with pCMV-Tag2-hNIS by LipofectAMINE 2000, stable clones were selected by addition of 500 μg/ml geneticin(Gibco) to the medium 2 days after transfection and was named CNE-2-hNIS.

Demonstration of hNIS protein expression in CNE-hNIS

The CNE-2 and CNE-2-hNIS cells were lysed in RIPA buffer with standard protease inhibitors (Santa Cruz Biotechnology, Santa Cruz, CA) and standard Western blotting analyses were performed as described previously [10] using primary antibodies hNIS (abcam).

Kinetics of ¹²⁵I uptake

Uptake of ¹²⁵I was determined as described for iodide by Weiss et al [11]. In brief, approximately 3×10⁵ cells were incubated with Hank’s buffered salt solution (HBSS) supplemented with 10 μM NaI, 0.1 μCi Na¹²⁵I/ml, and 10 mM HEPES (pH 7.3) with and without 1 M perchlorate. After 60 min they were washed twice with ice-cold HBSS, lysed in 1 M NaOH, and counted using a Cobra II auto-gamma gamma counter. For the internalization studies, 3×10⁵ cells were incubated with HBSS supplemented with 10 μM NaI, 0.1 μCi Na¹²⁵I/ml, and 10 mM HEPES (pH 7.3) at 37°C for 5, 10, 15, 20, 30, 40, 60 min, respectively. Efflux of ¹²⁵I was investigated by incubating 3×10⁵ cells with HBSS supplemented with 10 μM NaI, 0.1 μCi Na¹²⁵I/ml, and 10 mM HEPES (pH 7.3) for 1 h. Then the cells were washed twice with ice-cold HBSS, and incubated with nonradioactive HBSS for 5, 10, 20, 30 and 40 min, respectively before lysis with NaOH.

The toxic effects of ¹³¹I in vitro

The CNE-2 and CNE-2-hNIS cells were first incubated in HBSS solution for 7 h, which contained 0, 100, 200, 300 μCi/ml Na¹³¹I, respectively. Medium was changed several times in the period of 2 h to remove the excessive remaining ¹³¹I. The cells were then detected by cell counting kit-8 (CCK-8) at 1 to 6 day and the annexin V/PI kit at 1 to 3 day after ¹³¹I incubation according to the manufacturer’s instructions, and Clonogenic Assays were performed as described previously [12].

Animal experiments

The animals were purchased from Medical Laboratory Animal Center of Guangdong (certificate number: SCXK2008–0002). This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of Jinan University. The sacrifice of all animals was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. The humane endpoint would be applied when the xenograft tumors had reached ~30 mm in maximum diameter.

Athymic nude (BALB/C nu/nu) mice at 6–8 weeks of age were obtained from the medical laboratory animal centre comparative medical laboratory, Guangdong, China. The animals were housed under pathogen-free conditions with a 12-h light/12-h dark schedule and fed autoclaved standard food and water ad libitum. For xenografts, 6×10⁶ cells in culture medium were subcutaneously injected into the flanks of the mice.
Radionuclide uptake studies in vivo

After subcutaneous injection of cells for six to eight weeks, xenograft tumors were grown at ~10 mm in diameter, mice (n = 5) were injected with 0.2 mCi/0.15 mL 99mTcO4- into peritoneal cavity, mice were placed in a spread prone position and scanned with SPECT radionuclide body imaging (GE, HELIX APEX SPX) at 0.5, 1, 1.5, 2, 4 h after injection.

For biodistribution experiments, mice (n = 15) were killed, and then 6 μCi Na125I was injected i.p at 0.5, 1, 2, 6, and 24 h. Organs of interest were dissected and weighed, and radionuclide uptake was measured in a gamma counter. The results were reported as percentage of injected dose per gram tissue (% ID/g).

Radionuclide therapy studies in vivo

To establish tumor models, CNE-2 or CNE-2-hNIS cells were injected s.c. into left flank of the mice respectively. When tumor diameters reached approximately 10 mm, mice (n = 30) were administered i.p 111 MBq (3 mCi) of Na131I (experiment group) or PBS (control group). MRI scans were performed in all mice before (baseline) and 6, 12, 18 and 24 days after the above-mentioned treatment.

MR imaging and analysis

MRI was performed at a 1.5T MR unit (Sigma, General Electric Medical Systems, USA) with a maximum gradient strength of 40 mT/m, which was equipped with a 3-inch surface coil. The axial images were obtained with a section thickness of 3.0 mm and an intersection gap of 0.2 mm and field of view 6.0 cm×6.0 cm for T1WI and T2WI. For T2WI: repetition time (TR)/echo time (TE) of 5120/85 ms; field of view (FOV) of 160×160 mm; imaging acquisition matrix of 256×192. For DWI: TR/TE of 1500/100 ms, matrix of 128×128, NEX of 4, b factors (0 and 400 sec/mm2) in three orthogonal gradient directions (X, Y, and Z).

The acquired images were sent to a dedicated workstation (Advantage Workstation, ADW4.5, GE Medical Systems) and analyzed by two experienced radiologists. Xenografts volume was calculated with the following formula: V (mm3) = L × W2 × 0.52, where L is the maximum length and W is the maximum width of the xenografts. The ADC measurement of xenografts was selected in a maximum cross-section of xenografts. Using an operator-defined region of interest (ROI), the area of the tumor was manually delineated on maximum tumor-containing slice for DWI. We measured ADC values and change rate of ADC values at different time points in the experimental group and the control group. The rate change of ADC value = (ADC values after treatment—pre-treatment ADC value) / pre-treatment ADC values.

Immunohistochemistry of Tumor Xenografts

Cells of tumor Xenografts before and 6 days after 131I treatment were examined for TUNEL (Roche, USA) and expression of Ki-67 and activity of Caspase-3 (Santa Cruz Biotec Inc., USA) according to the manufacturer’s instructions. Criteria for positivity of apoptotic cells, Caspase-3 activity, and Ki-67 were used as described previously [13].

The apoptosis proteins were detected by western blotting

Xenografts at day 6 after treated with 3 mCi Na131I were lysed in RIPA buffer with standard protease inhibitors (Santa Cruz Biotechnology, Santa Cruz, CA) and standard Western blotting analyses were performed as described previously [10] using primary antibodies, including Bcl-2, Caspase-3 (Santa Cruz, USA), Bax, P53, Surviving (CST, USA).
Statistical Analysis

Experiments for in vitro were carried out in triplicates. For the clonogenic assay, ten wells were evaluated for the same conditions and cell density. Results are presented as means ± SD of triplicates. Statistical significance was tested by Student’s t test. Values of $p < 0.05$ were used to indicate statistical significance. A linear regression method was used to describe the relationship between ADC change within tumor and apoptotic cell density or the density of cells showing Ki-67 and Caspase-3 expression.

Results

Iodide accumulation in CNE-2-hNIS cells

First, we detected that CNE-2 cells did not express hNIS protein. Subsequently, we constructed a eukaryotic expression plasmid pCMV-Tag2-hNIS. After liposome-mediated transfection of CNE-2 cells with the pCMV-Tag2-hNIS plasmid, the stable CNE-2-hNIS transfected cell line was established by geneticin selection, and the expression of hNIS in cells was detected by hNIS monoclonal antibody (Fig. 1a). CNE-2-hNIS cells accumulated high amounts of radioiodide, which were completely inhibited by the addition of perchlorate, whereas the control CNE-2 cell line did not (Fig. 1b). Uptake of 125I was 17.1 ± 2.3-fold higher in CNE-2-hNIS cells than in CNE-2 cells. Accumulation was rapid in CNE-2-hNIS cells, reaching maximal levels within 30 min (Fig. 1c). The efflux of 125I from CNE-2-hNIS cells was rapid, with half-maximal activity levels reached after 8.45 min (Fig. 1d).

The toxic effects of 131I in vitro

First, cell proliferation was measured using CCK-8 when different concentrations of 131I were applied for treatment. The proliferation rates of CNE-2-hNIS gradually declined compared to those of CNE-2 at 24 and 48h after incubation with 131I in three concentrations and the

Figure 1. Iodide accumulation in CNE-2-hNIS cells. (a) Western blot of membrane preparations of NIS-transfected cell lines. Lanes from left to right are: CNE-2 and CNE-2-hNIS. (b) Uptake of 125I was significantly higher in CNE-2-hNIS cells than in CNE-2 cells ($t = 50.5, P < 0.05$). Uptake inhibition by perchlorate was highly significant ($t = 42.3, P < 0.05$). (c) Internalization of iodide into CNE-2-hNIS and CNE-2 cells. (d) Iodide efflux from CNE-2-hNIS and CNE-2 cells after 1 h incubation with Na125I. Data are expressed as mean±SD (n = 3).

doi:10.1371/journal.pone.0117053.g001
difference was statistically significant. The proliferation of CNE-2-hNIS cells gradually decreased when the concentration of 131I added increased (Fig. 2a).

After treatment with 0, 100, or 200 μCi/mL of Na131I for 7 h, the clonogenic survival rates of CNE-2-hNIS cells were markedly reduced, in a dose-dependent manner, to 95.4% ± 2.08%, 36.33% ± 2.51%, and 14.66% ± 4.50%, respectively. The survival rates of CNE-2 cells were 95.2% ± 3.43%, 88.0% ± 2.64%, and 80.3% ± 1.52%, respectively (Fig. 2b).

After incubation with 0, 100, 200, and 300 μCi/mL of Na131I for 7 h, cells were assessed visually for the presence of cytotoxic effects. Annexin V-FITC/PI double staining flow cytometry experiments showed that the rate of apoptosis of CNE-2-hNIS cells increased with increasing 131I concentration at the 3th day (Fig. 2c).

Biodistribution of Na125I in xenografts-bearing nude mice

Results of intraperitoneal treatment of Na125I for CNE-2-hNIS and CNE-2 bearing nude mice were shown in biodistribution data (Fig. 3a). Compared with parental CNE-2 tumors, the NIS-expressing tumors exhibited an increased uptake of Na125I. After tracer administration, the quantitation of the Na125I uptake (%ID/g) in the tumors at 1, 2, 6, and 24 h were 20.28% ± 0.15%, 18.52% ± 0.26%, 3.15% ± 0.11% and 0.04% ± 0.01%, respectively, which were significantly higher than those for the CNE-2 tumors (P < 0.05). In CNE-2-hNIS tumors, the 10.71-fold higher iodide accumulation was detected after 2 h administration when it was compared with CNE-2 tumors. However, the radioactivity remained quite stable in the CNE-2-hNIS tumors for 6 h administration, following a decline during the period until 24 h. In this model, the effective half-life (T1/2) was 1.56 h.
Figure 3. Biodistribution of Na125I and scintigraphic images of hNIS expression. (a) Biodistribution of radiotracer at different times after intraperitoneal administration of Na125I in mice bearing CNE-2-hNIS and CNE-2 cells. Data are expressed as mean%ID/g±SD(n = 3). (b) Scintigraphic images of hNIS expression. After injecting with 0.2 mCi/0.15mL 99mTcO\textsubscript{4}- per mouse, animals were scanned for 1 min using a gamma camera from 0.5h to 4h post 99mTc injection.

doi:10.1371/journal.pone.0117053.g003
99mTc imaging of xenografts

99mTc scintigraphy was used to visualize the hNIS-expressing tumor in vivo. Images were taken after intraperitoneal injection of 11.1 MBq of 99mTcO$_4^-$ at 30, 60, 90, 120, and 240 min. The hNIS-transfected tumors were clearly visible, with intensity levels comparable to that of the thyroid. In contrast, the control tumor was not seen. Normal NIS-expressing tissues, including those of the salivary gland, thyroid gland, and stomach, and the ones involved in iodide elimination (bladder) were also clearly visible (Fig. 3b).

Apoptotic and proliferation changes in xenografts in vivo after 131I treatment

After 131I treatment, the rate of apoptosis and caspase-3 positivity was higher in the experimental group than in the control group, whereas the positive rate of Ki-67 was lower at day 6 and 12 after 131I treatment. Overall, there was a statistically significant difference between the experimental and control groups in the rate of apoptosis, caspase-3, and Ki-67 expression at day 6 and 12 after 131I treatment (Fig. 4a-c).

In vivo effect of 131I therapy demonstrated by MRI

The MRI result showed that the growth of experimental xenografts was delayed significantly after 131I treatment. On the contrary, the size of control xenografts rapidly increased. The tumor volumes in the experimental group were slightly larger after 131I treatment (Fig. 5, Fig. 6a).

The ADC values of xenografts between the control and experimental groups before 131I therapy did not differ statistically. At day 6 after treatment, however, the ADC value increased in the experimental group, and continued to increase with time. At day 12, the ADC value reached a peak and started to decrease at day 18 and 24 after treatment. There was a statistically significant difference in ADC values between the experimental and control groups at day 6, and 12 after 131I treatment (Fig. 6b).

We assessed the relationship between the ADC value and the apoptosis rate by TUNEL, expression of Caspase-3, and Ki-67 after 131I treatment. The Pearson’s product-moment correlation coefficients were 0.72 (P < 0.001), 0.65 (P = 0.001) and -0.71 (P < 0.001) respectively.

Expression pattern of apoptosis-responsive proteins after 131I treatment

To determine which apoptosis-related proteins are regulated by 131I radiation, the expression of P53, Bcl-2, Bax, Caspase-3, and Survivin proteins was measured at day 6 after 3 mCi Na131I treatment in mice xenografts using western blot. After 131I treatment in NPC hNIS-transfected cells, the levels of P53, activated Caspase-3, and Survivin proteins were increased, but Bcl-2 protein was decreased compared to the control group. However, the expression of Bax did not show any change in either the experimental or the control group. This result implies that apoptosis by 131I may be mediated by P53, Caspase-3, Bcl-2, and the Survivin pathway in NPC hNIS-transfected cells (Fig. 7).

Discussion

There has been reported that the attempts to induce iodide uptake by hNIS gene transfer in various human cancer cell lines, including glioma, melanoma, liver, lung, colon, ovarian, cervix, prostate, and mammary gland [14–19]. Expression of functionally active hNIS in the tumor can allow to the accumulation of radioactive iodide and then make it susceptible to radioiodide treatment. Because of the limitations of current gene therapy technology, it is
difficult to achieve 100% transfection rates with the target gene. Other studies [20–22] used gene therapy to produce a “bystander” effect, so that tumor cells, which did not carry the gene could also be killed. The range of β-particles emitted by 131I is several millimetres, so surrounding untransfected tumor cells are likely to get damaged.

NPC is one of the most common cancers in China, and the main reason for treatment failure continues to be local recurrence and distant metastasis. Therefore, new treatment strategies are needed. We investigated the potential of radioiodide treatment in an NPC cell line (CNE-2) after hNIS transfection. Results showed rapid internalization of 131I into CNE-2-hNIS cells, with the maximal levels of uptake being reached in 30 min. However, 131I efflux from CNE-2-hNIS cells was rapid, with an effective t½ of 8.45 min. In our study, the retention time of iodine in vivo was longer than that in vitro. The biological half-life of 125I in hNIS xenografts is approximately 1.56 h. In our biodistribution study, hNIS-expressing tumors were found to accumulate 125I and they sustained this for 6 h, in contrary with our in vitro result of rapid radioiodine efflux from CNE-2-hNIS cells. This difference can be attributed to the significant

Figure 4. The graphs show apoptotic and proliferating cell density. The graphs show apoptotic cell density (a), cleaved caspase-3 density (b), and proliferating (Ki-67 expression) cell density (c) in xenografts at 0–24 days after 131I treatment in experiment group and control group.

doi:10.1371/journal.pone.0117053.g004
Figure 5. The T2WI of tumor xenografts in control group (a) and in experiment group (b) (A-F is represent respectively the T2WI of tumor xenografts before treatment, the day 6, 12,18,24 after 131I treatment. The tumor volumes of control xenografts rapidly increased, and the tumor volumes of the experimental xenografts were slightly larger after 131I treatment.).

doi:10.1371/journal.pone.0117053.g005

Figure 6. The volume change (a) and ADC change rate (b) of tumor xenografts in experiment and control group after 131I administration. The MRI result showed that the growth of experimental xenografts was delayed significantly compared to that of control group after 131I treatment. There was a statistically significant difference in ADC values between the experimental and control groups at day 6, and 12 after 131I treatment.

doi:10.1371/journal.pone.0117053.g006
re-uptake of radionuclide in vivo, which is contrary to the radioiodine-free medium used in vitro. In our study, 99mTc imaging showed that the experimental group tumors accumulated 99mTc, leading to clear scintigraphic visualization through SPECT, whereas the control tumor was not visualized. Using 99mTc-pertechnetate and SPECT, hNIS gene expression can be monitored both noninvasively and quantitatively.

In this study, 131I inhibited CNE-2-hNIS cell proliferation and induced apoptosis in a time- and dose-dependent manner. Our data indicate that a sufficiently high dose of radiation was achieved in CNE-2-hNIS cells and it caused cell death at a dose that spared CNE-2 cells, which were unable to trap 131I. Because of the encouraging in vitro cell findings, studies were continued in the in vivo settings. We detected apoptosis and proliferation after 131I treatment in vivo. TUNEL, an in-situ cell death detection kit, can preferentially label broken DNA, which

![Image of gel electrophoresis results](image.png)

Figure 7. Expression of apoptosis-related proteins in CNE-2-hNIS and CNE-2 xenografts after 131I treatment. After 131I treatment, the levels of P53, activated Caspase-3, and Survivin proteins were increased, but Bcl-2 protein was decreased in CNE-2-hNIS cells compared to CNE-2 cells.

doi:10.1371/journal.pone.0117053.g007
generates during the process of apoptosis [23]. Caspase-3 can cleave proteins in cells and trigger final apoptotic process. The enhancement in caspase-3 activity therefore is associated with the increase in apoptosis [24]. Ki-67 is a nuclear protein, expressing in all phases of cellular proliferation, not in the G0 phase, which is known as the immunohistochemistry marker for assessing cell proliferation [25]. In our study, TUNEL assay of apoptosis and the caspase-3 positive rate was significantly higher, and the Ki-67 labelling index was lower in the experimental group than in the control group at day 6 and 12 of 131I treatment. Our results indicate that 131I inhibits proliferation and induces apoptosis in NPC hNIS-transfected cells.

Although the post-treatment tumor volume of the experimental group was slightly larger in size in our study, the apoptosis and proliferation pathology markers showed that tumor apoptosis increased and proliferation rate decreased in the early days after 131I treatment. Therefore, we selected DW-MRI to evaluate the early response to 131I treatment. DW-MRI for the evaluation of early treatment response offers a lot of promise [26–29]. Usually, DWI could detect this change within a week after treatment [28]. Our results showed that the ADC values increased in the first three days after 131I therapy, and reached a peak at day 6 and 12, with a maximum rate of 0.28% ± 0.11% and 0.49% ± 0.19%, respectively.

Changes in the ADC value after cancer treatment are associated with many factors. Our study results showed that ADC values peaked at day 6 and 12 after treatment and that TUNEL assay and caspase-3 immunohistochemistry at both these time points showed that the rate of apoptosis was highest in both periods. ADC values after treatment, apoptosis rate detected by TUNEL assay, and caspase-3 expression were positively correlated (r = 0.72, P < 0.05; r = 0.65, P < 0.05, respectively). The changes in ADC values of mice xenografts after treatment were related with tumor cell apoptosis induced by 131I treatment.

In addition, tumor cell density is another important factor of water cell diffusion in tumor tissues [30]. High cellular density is related to a low ADC value, demonstrating that the mobility of water protons is impaired. The ADC values were related to necrotic tissue with inherent diffusion of water protons, which was due to the loss of cell membrane integrity. DWI indeed reflected earlier changes in histology at cellular and subcellular scales. The changes in ADC values of NPC xenografts after 131I treatment were also related with cell proliferation.

Treatment with 131I therapy can result in increasing water diffusion in tissues by inhibiting tumor cell proliferation and inducing tumor cell apoptosis, which can be detected as an increase in the mean diffusion value of the tumor. Subsequently increasing ADC values after therapy suggest that the treatment was effective. Therefore, DW-MRI could assess the efficacy of 131I therapy if there were no changes in the tumor volume after treatment. It is a non-invasive method for early detection of tumor response to treatment after targeted radionuclide therapy.

To further investigate the response of the hNIS-transfected NPC cells after 131I therapy, we decided to detect apoptosis-related proteins. Our study showed that P53 and activated Caspase-3 expression was increased in NPC cells after 131I therapy, while the expression of Bcl-2 was decreased, especially in cells transfected with hNIS gene. In our study, Survivin expression also increased after 131I treatment, and some cells may be considered as radiation resistant after 131I exposure. Therefore, we hypothesized that the function of Survivin in tumor cells was blocked or inhibited during 131I treatment. Therefore, if we block the ability of Survivin to inhibit apoptosis and reduce the radiation resistance developed during 131I treatment, it will enhance the sensitivity of tumor cells to radiation and help us achieve a more effective tumor treatment.

In conclusion, we present the successful treatment of NPC with radioiodide after hNIS transfection. Using 131I treatment, a striking cytotoxic effect of proliferation inhibition and apoptosis induction on NPC hNIS-transfected cells was observed in vitro and vivo, which has significant potential for the treatment of NPC. DW-MRI was used for the first time to assess the efficacy of early 131I therapy in NPC.
Acknowledgments

We thank Xiaoping Xiao and Junyuan Gong from Tsinghua University provided critical suggestions for the task. We thank the technical supports from college of life science and technology of Jinan University.

Author Contributions

Conceived and designed the experiments: XZ HX. Performed the experiments: XZ CZS JG BG. Analyzed the data: XZ MZL. Contributed reagents/materials/analysis tools: JG BG. Wrote the paper: XZ HX.

References

1. Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, et al. (2003) Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 21(4): 631–637. doi:10.1200/JCO.2003.06.158 PMID: 12586799
2. Chang JT, See LC, Liao CT, Ng SH, Wang CH, et al. (2000) Locally recurrent nasopharyngeal carcinoma. Radiother Oncol 54(2): 135–142. doi:10.1016/S0167-8140(99)00177-2 PMID: 10699476
3. Chow SM, Law SC, Mendenhall WM, Au SK, Chan PT, et al. (2002) Papillary thyroid carcinoma: prognostic factors and the role of radioiodine and external radiotherapy. Int J Radiat Oncol Biol Phys 52(3): 784–795. doi:10.1016/S0360-3016(01)02686-4 PMID: 11849802
4. Dadachova E, Carrasco N (2004) The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 34(1): 23–31. doi:10.1053/j.semnuclmed.2003.09.004 PMID: 14735456
5. van Persijn van Meerten EL, Gelderblom H, Bloem JL (2010) RECIST revised: implications for the radiologist. Eur Radiol 20(6):1456–1467. doi:10.1007/s00330-009-1685-y PMID: 20033179
6. Goldman M, Boxerman JL, Rogg JM, Norén G (2006) Utility of apparent diffusion coefficient in predicting the outcome of Gamma Knife-treated brain metastases prior to changes in tumor volume: a preliminary study. Neurosurg 105 Suppl: 175–182. PMID: 18503353
7. Braren R, Altomonte J, Settles M, Neff F, Esposito I, et al. (2011) Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol 55 (5): 1034–1304. doi:10.1016/j.jhep.2011.01.049 PMID: 21354233
8. Geschwind JF, Artemov D, Abraham S, Omdal D, Huncharek MS, et al. (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol 11(10): 1245–1255. doi:10.1016/S1051-0443(07)61299-8 PMID: 11099235
9. Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, et al. (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21(6): 1094–1100. doi:10.1200/JCO.2003.05.069 PMID: 12637476
10. Liu Z, Liu D, Bojdani E, El-Naggar AK, Vasko V, et al. (2010) IQGAP1 plays an important role in the invasiveness of thyroid cancer. Clin Cancer Res 16: 6009–6018. doi:10.1158/1078-0432.CCR-10-1627 PMID: 20959410
11. Weiss SJ, Philip NJ, Grollman EF (1984) Iodine transport in a continuous line of cultured cells from rat thyroid. Endocrinology 114(4): 1090–1098. doi:10.1210/endo-114-4-1090 PMID: 6705729
12. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, et al. (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60(22): 6526–6530. PMID: 11038238
13. Kim H, Morgan DE, Zeng H, Grizzle WE, Warram JM, et al. (2008) Breast Tumor Xenografts: Diffusion-weighted MR Imaging to Assess Early Therapy with Novel Apoptosis-Inducing Anti-DR5 Antibody. Radiology 248(3): 844–851. doi:10.1148/radiol.2483071740 PMID: 18710978
14. Dwyer RM, Schatz SM, Bergert ER, Myers RM, Harvey ME, et al. (2005) A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancer. Mol Ther 12(5): 835–841. doi:10.1016/j.ymthe.2005.05.013 PMID: 16054438
15. Dwyer RM, Bergert ER, O’Connor MK, Gendler SJ, Morris JC (2006) Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice. Gene Ther 13(1): 60–66. doi:10.1038/gt.3302599 PMID: 16121204
16. Riesco-Eizaguirre G, Santisteban P (2006) A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol 155(4): 495–512. doi: 10.1530/eje.1.02257 PMID: 16990649

17. Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK, et al. (2004) Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103(5): 1641–1646. doi: 10.1182/blood-2003-07-2233 PMID: 14604966

18. Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, et al. (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8(20): 1524–1531. doi: 10.1038/sj.gt.3301558 PMID: 11704812

19. Chen L, Altman A, Mier W, Eskerski H, Leotta K, et al. (2006) Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide symporter gene. J Nucl Med 47(5): 854–862. PMID: 16644756

20. Larson SM, Krenning EP (2005) A Pragmatic Perspective on molecular targeted radionuclide therapy. J Nucl Med 46(suppl): 1s–3s.

21. Buchsbaum DJ, Chaudhuri TR, Zinn KR (2005) Radiotargeted gene therapy. J Nucl Med 46(suppl1): 179s–186s. PMID: 15653667

22. Mairs RJ, Boyd M (2003) Targeting Radiotherapy to Cancer by Gene Transfer. J Biomed Biotechnol 2003(2): 102–109. doi: 10.1155/S11107243030209062 PMID: 12721515

23. Taatjes DJ, Sobel BE, Budd RC (2008) Morphological and cytochemical determination of cell death by apoptosis. Histochem Cell Biol 129(1): 33–43. doi: 10.1007/s00418-007-0356-9 PMID: 18000678

24. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2): 99–104. doi: 10.1038/sj.cdd.4400476 PMID: 10200555

25. Dutta P, Bhansali A, Vaiphei K, Dutta U, Ravi Kumar P, et al. (2012) Colonic neoplasia in acromegaly: increased proliferation or deceased apoptosis? Pituitary 15(2): 166–173. doi: 10.1007/s11102-011-0300-9 PMID: 21451936

26. Koh M D, Colless DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR 188(7): 1622–1635. doi: 10.2214/AJR.06.1403 PMID: 17515986

27. Mardor Y, Roth Y, Ochershvilli A, Spiegelmann R, Tichler T, et al. (2004) Pretreatment prediction of brain tumors response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia 6 (2): 136–142. doi: 10.1593/neo.03349 PMID: 15140402

28. Kim S, Loevner L, Quon H, Sherman E, Weinstein G, et al. (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 15(3): 986–994. doi: 10.1158/1078-0432.CCR-08-1287 PMID: 19188170

29. Kauppinen RA (2002) Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance and proton spectroscopy. NMR Biomed 15(1): 6–17. doi: 10.1002/nbm.742 PMID: 11840548

30. Humphries PD, Sebire NJ, Siegel MJ, Olsen ØE (2007) Tumors in pediatric patients at diffusion-weighted MR imaging:apparent diffusion coefficient and tumor cellularity. Radiology 245(3): 848–854. doi: 10.1148/radiol.2452061835 PMID: 17951349