Bilman, Deniz; Nabelek, Patrik; Trogdon, Thomas

Computation of large-genus solutions of the Korteweg-de Vries equation. (English)

Physica D 449, Article ID 133715, 26 p. (2023)

Summary: We consider the numerical computation of finite-genus solutions of the Korteweg-de Vries equation when the genus is large. Our method applies both to the initial-value problem when spectral data can be computed and to dressing scenarios when spectral data is specified arbitrarily. In order to compute large genus solutions, we employ a weighted Chebyshev basis to solve an associated singular integral equation. We also extend previous work to compute period matrices and the Abel map when the genus is large, maintaining numerical stability. We demonstrate our method on four different classes of solutions. Specifically, we demonstrate dispersive quantization for “box” initial data and demonstrate how a large genus limit can be taken to produce a new class of potentials.

MSC:
65-XX Numerical analysis
35-XX Partial differential equations

Keywords:
Korteweg-de Vries equation; Riemann-Hilbert problem; spectral method; hyperelliptic Riemann surface; finite-genus solutions

Full Text: DOI arXiv

References:
[1] Chen, G.; Olver, P. J., Numerical simulation of nonlinear dispersive quantization, Discrete Contin. Dyn. Syst., 34, 3, 991-1008 (2013) · Zbl 1358.35152
[2] Trogdon, T.; Deconinck, B., A Riemann-Hilbert problem for the finite-genus solutions of the KdV equation and its numerical solution, Physica D, 251, 1-18 (2013) · Zbl 1278.37050
[3] McLaughlin, K. T.-R.; Nabelek, P. V., A Riemann-Hilbert problem approach to infinite gap hill’s operators and the Korteweg-de vries equation, Int. Math. Res. Not., 2021, 2, 1288-1352 (2021)
[4] Trogdon, T.; Olver, S., Riemann-Hilbert Problems, their Numerical Solution and the Computation of Nonlinear Special Functions, 373 (2016), SIAM: SIAM Philadelphia, PA
[5] Trogdon, T.; Deconinck, B., A numerical dressing method for the nonlinear superposition of solutions of the KdV equation, Nonlinearity, 27, 1, 67-86 (2014) · Zbl 1302.65234
[6] Olver, P. J., Dispersive quantization, Amer. Math. Monthly, 117, 7, 599 (2010) · Zbl 1195.81085
[7] Berry, M. V.; Klein, S., Integer, fractional and fractal Talbot effects, J. Modern Opt., 43, 10, 2139-2164 (1996) · Zbl 0941.78524
[8] Talbot, H. F., LXXVI. Facts relating to optical science. No. IV, Philos. Mag. Ser. 3, 9, 56, 401-407 (1836)
[9] Lax, P. D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 28, 141-188 (1975)
[10] Deconinck, B.; Heil, M.; Bobenko, A.; van Hoeij, M.; Schmies, M., Computing Riemann theta functions, Math. Comp., 73, 1417-1442 (2004) · Zbl 1093.30018
[11] Frauenthner, J.; Klein, C., Hyperelliptic theta-functions and spectral methods: KdV and KP solutions, Lett. Math. Phys., 76, 249-267 (2006) · Zbl 1111.14032
[12] Belokolos, E. D.; Bobenko, A. I.; Enol’skii, V. Z.; Its, A. R.; Matveev, V. B., Algebra-Geometric Approach to Nonlinear Integrable Equations (1994), Springer · Zbl 0809.35001
[13] Dubrovin, B. A., Inverse problem for periodic finite zoned potentials in the theory of scattering, Funct. Anal. Appl., 9, 61-62 (1975)
[14] Novikov, S. P.; Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E., Theory of Solitons (1984), Constants Bureau: Constants Bureau New York · Zbl 0598.35002
[15] Osborne, A. R., (Nonlinear Ocean Waves and the Inverse Scattering Transform. Nonlinear Ocean Waves and the Inverse Scattering Transform, International Geophysics Series, vol. 97 (2010), Elsevier/Academic Press: Elsevier/Academic Press Boston, MA) · Zbl 1250.86006
[16] Carrier, J.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm for particle simulations, SIAM J. Sci. Stat.
