Background. This is a synopsis of the registry report from the Australia and New Zealand islet and pancreas transplant registry. The full report is available at http://anziptr.org/reports/. Methods. We report data for all solid organ pancreas transplant activity from inception in 1984 to end 2017. Islet-cell transplantation activity is reported elsewhere. Data analysis was performed using Stata software version 14 (StataCorp, College Station, TX). Results. From 1984 to 2017 a total of 809 solid organ pancreas transplants have been performed in Australia and New Zealand, in 790 individuals. In 2017, 52 people received a pancreas transplant. By center, this was; Auckland (4), Monash (17), and Westmead (31). In 2017, 51 transplants were simultaneous pancreas kidney, whereas 1 was pancreas after kidney, and none were pancreas transplant alone. Conclusions. The number of pancreas transplants performed in Australia and New Zealand was slightly lower in 2017 but continues to increase over time.

WAITING LIST

Overview of Waiting List Activity

Definitions

Patients join the waiting list on the date they are referred to the transplanting center; however, this may occur some time before their kidneys fail. Patients are therefore classified as “under consideration” until they medically require a kidney pancreas transplant. Once they require a kidney pancreas transplant they are classified as “active” on the list while they remain medically fit. The “under consideration” classification also captures people recently referred to the transplant center, who are still undergoing assessment about their medical fitness for pancreas transplant. People are referred to a transplanting center when they are already on dialysis and become “active” on the list as soon as they are accepted as medically fit. People referred to a transplanting center when their kidneys still function, become active once their kidney disease progresses to such a level that dialysis is planned in the near future. Once active on the waiting list, patients are transplanted in order of their waiting time, by blood group.

Patient Waiting List Flow

The patient waiting list activity in the last 3 years for Australia (Westmead and Monash Units) and New Zealand are shown in Table 1 and Table 2, respectively. In Australia, although the number of transplants has increased over the last 3 years, the number of patients on the active waiting list has continued to increase.
Distribution of Active Patients by State

Figure 1 and Table 3 show the state of residence for people active on the pancreas waiting list, by the pancreas transplanting center they were referred to (Australia only). For New Zealand data, there is no breakdown beyond that seen in Table 2.

New Referrals Received Over Time

Tables 4 and 5 show the distribution of new referrals received by the transplanting units over time.

Patient Characteristics for Those Active on the List in 2016

Figures 2 and 3 illustrate the distribution of other characteristics of those active on the waiting list in 2017, including the distribution of blood groups and patient ages.

TABLE 1.

Activity	Patients (n)	2015	2016	2017
On active list at beginning of year	59	40	60	
Added to active list during the year	42	123	52	
Removed from active list during year	12	24	4	
Pancreas transplants to patients on waiting list*	45	51	50	
Kidney only transplants	0	3	2	
Transplants performed outside Australia/New Zealand	0	0	0	
Died while active on list	4	4	1	
On active waiting list at the end of year	40	81	57	
Temporarily inactive on waiting list at end of year	—	—	19	
Died within 12 mo of removal from list	0	1	9	
Under consideration but not active on list	97	112	198	
Referred but declined for pancreas transplantation	12	19	39	

* Excluding kidney only transplants and transplants performed outside Australia/New Zealand.

TABLE 2.

Activity	Patients (n)	2015	2016	2017
On active list at beginning of year	5	7	4	
Added to active list during the year	—	—	7	
Removed from active list during year	—	—	1	
Pancreas transplants to patients on waiting list*	0	4	4	
Kidney only transplants	—	—	0	
Transplants performed outside Australia/New Zealand	—	—	0	
Died while active on list	—	—	1	
On active waiting list at the end of year	—	—	4	
Temporarily inactive on waiting list at end of year	—	—	2	
Died within 12 mo of removal from list	—	—	1	
Under consideration but not active on list	3	4	3	
Referred but declined for pancreas transplantation	—	—	0	

* Excluding kidney only transplants and transplants performed outside Australia/New Zealand. Fields marked “—” were not captured prior to 2017.

PANCREAS TRANSPLANT RECIPIENTS

Pancreas Transplant Incidence

A total of 809 solid organ pancreas transplants have been performed in Australia and New Zealand (ANZ) from 1984-2017. Transplants have been performed in Westmead (511), Monash (238), Auckland (56), Royal Prince Alfred (1), Royal Melbourne Hospital (1), Queen Elizabeth Hospital (1), and Prince Henry (1). Figure 4 shows pancreas transplants over time. The number of transplants has substantially increased in the last decade compared with previous years.

In 2017, 52 people received a pancreas transplant, by center this was; Auckland (4); Monash (17); Westmead (31). The number of transplants in 2017 increased by 5% compared to 2016.

Not all pancreas transplant operations are undertaken with the same organs. Simultaneous pancreas-kidney (SPK) transplant is the most common operation, representing 99% of all pancreas transplants in Australia and New Zealand. From 52 transplants performed in 2017, 51 were SPK, 1 was pancreas after kidney (PAK), and none were pancreas transplant alone (PTA).

Pancreas after kidney operations are done for type 1 diabetic people who either had a first kidney transplant without a pancreas (most commonly from a living donor relative) and subsequently opt for a pancreas, or for people who underwent an SPK and have good kidney transplant function, but had a pancreas transplant failure, so need a further pancreas transplant. Pancreas transplant alone is a less common operation and occurs very rarely. On rarer occasions, a multiorgan transplant is undertaken which includes a pancreas transplant. There was 1 simultaneous pancreas, liver plus kidney transplant which was performed in 2005, 1 liver, pancreas plus intestine transplant in 2012, and 1 liver plus pancreas transplant in 2016. The distribution of operation types is shown in Figure 5, and the number of transplants by operation type is shown in Table 6.

Patients Transplanted by State

The states of origin of the people receiving pancreas transplants are shown in Table 7. Numbers for New Zealand can be found in Table 6.

Demographics of New Pancreas Transplant Recipients

The characteristics of pancreas transplant recipients in 2017 and in previous years are shown in Table 8. The
primary diagnosis causing end stage kidney disease of recipients during 2017 and historically was type I diabetes. The number of diabetic recipients with other cause of end stage kidney failure was small. The number of type II diabetics accepted for pancreas transplantation was also small, and none were transplanted in 2017.

The type of pancreas transplants and the types of donors for transplants performed in 2017 is presented in Table 9, stratified by country and sex.

Balance of Donor and Recipient Characteristics in 2016

Cross tabulations of donor and recipient blood group and gender for people transplanted in 2017 are displayed in Table 10 and Table 11. These distributions remain similar to previous years.

Patient Survival

Patient survival is calculated from the date of transplantation until death. Patients still alive at the end of the follow-up period are censored. For people who had more than 1 transplant, their survival is calculated from the date of their first transplant. For these analyses, we had survival data for

TABLE 3.
Patient state of residence for people active on the list, December 2017

State of residence	New South Wales	Victoria	Queensland	South Australia	Western Australia	Tasmania	Australian Capital Territory	Northern Territory	Total
2017	11 (19)	22 (39)	10 (18)	6 (11)	5 (9)	3 (5)	0 (0)	0 (0)	57 (100)
2016	21 (26)	29 (36)	12 (15)	7 (9)	5 (6)	4 (5)	2 (2)	1 (1)	81 (100)
2015	16 (18)	33 (36)	13 (15)	14 (16)	5 (6)	2 (2)	3 (2)	1 (1)	87 (100)

TABLE 4.
New referrals received by Westmead and Monash national pancreas units (Australia)

State of residence	New South Wales	Victoria	Queensland	South Australia	Western Australia	Tasmania	Australian Capital Territory	Northern Territory	Total
2017	16 (22)	42 (57)	8 (11)	6 (8)	0 (0)	1 (1)	0 (0)	1 (1)	74 (100)
2016	24 (22)	23 (21)	23 (21)	10 (9)	16 (15)	7 (6)	5 (5)	2 (2)	110 (100)
2015	22 (25)	18 (21)	16 (18)	12 (14)	11 (13)	2 (2)	4 (5)	2 (2)	87 (100)
2014	25 (24)	39 (38)	12 (12)	10 (10)	9 (9)	4 (4)	2 (2)	3 (3)	104 (100)
2013	16 (19)	30 (35)	16 (19)	9 (11)	9 (11)	3 (4)	1 (1)	1 (1)	85 (100)
2012	14 (17)	26 (32)	13 (16)	7 (9)	12 (15)	5 (6)	3 (4)	2 (2)	82 (100)

TABLE 5.
New referrals received by Auckland national pancreas transplant unit (New Zealand)

Year	2017	2016	2015	2014	2013	2012
Referrals	3	7	0	9	4	5+

FIGURE 2. Distribution of people active on the list by their blood group as of December 2017.

FIGURE 3. Distribution of people active on the list by their age as of December 2017.
790 patients, 19 of whom have received a second pancreas transplant, for a total of 809 pancreas transplants. Note that for the following survival plots survival proportion on the y-axes does not always start at zero; this is to better demonstrate some observed differences.

Patient survival by era of transplantation is shown in Figure 6. Survival has improved over time ($P = 0.002$). Survival at 1 year for people transplanted before 2000 was 92.6%; in recent years this has risen to 97.2%. Survival at 5 years was 88.5% for those transplanted before 2000, whereas for those transplanted in 2010 or later, 5-year survival was 93.2%.

Patient survival by age at transplantation is shown in Figure 7. People that were older at the time of pancreas transplantation had poorer survival than those who were younger ($P = 0.005$). Survival at 1 year for recipients younger than 35 years was 98.0%, and for those aged 35 to 44 years was 96.2%, whereas for those aged 45 to 49 years was 94.6% and for those 50 or older was 96.3%. Five-year survival for those younger than 35 years was 93.3%, and for those aged 35 to 44 years was 93.6%, whereas for those aged 45 to 49 years was 90.1% and for those 50 years or older was 92.2%. The greater survival for the 50 years and older group suggests these recipients may be a more highly selected population.

Pancreas Survival

Pancreas transplant survival was calculated from the time of transplant until the time of pancreas failure (defined as permanent return to insulin therapy or pancreatectomy). We calculated both pancreas failure including death with a functioning pancreas and pancreas failure censored for death with a functioning graft. For pancreas graft survival, we included all pancreas transplants undertaken, including those who had received a pancreas transplant twice (19 patients). At the time of this report, we had survival records for 809 pancreas transplants.

Survival of pancreas transplants has changed over time, as shown in Figure 8. Survival improved markedly over time ($P = 0.02$). For those transplanted prior to 2000, 1-year pancreas survival was 80.7%, and 5-year survival 74.7%. For those transplanted in 2010 or later, 1-year survival was 90.7% and 5-year survival 86.4%.

Pancreas survival by donor body mass index (BMI) is presented in Figure 9. Most donors (64%) were either underweight or normal (BMI <25). However, 31% were overweight (BMI 25-29) and 4% were obese (BMI 30+). Although Figure 9 suggests separation of survival curves, there was no statistical association between donor BMI and survival.

The above table excludes the 4 transplants performed in Australia outside of Westmead and Monash. These occurred in 1988, 1989, 1990, and 2005.

for death with a functioning graft. For pancreas graft survival, we included all pancreas transplants undertaken, including those who had received a pancreas transplant twice (19 patients). At the time of this report, we had survival records for 809 pancreas transplants.

Survival of pancreas transplants has changed over time, as shown in Figure 8. Survival improved markedly over time ($P = 0.02$). For those transplanted prior to 2000, 1-year pancreas survival was 80.7%, and 5-year survival 74.7%. For those transplanted in 2010 or later, 1-year survival was 90.7% and 5-year survival 86.4%.

Pancreas survival by donor body mass index (BMI) is presented in Figure 9. Most donors (64%) were either underweight or normal (BMI <25). However, 31% were overweight (BMI 25-29) and 4% were obese (BMI 30+). Although Figure 9 suggests separation of survival curves, there was no statistical association between donor BMI

TABLE 6.
Pancreas transplant operations by center, over time

Year	Westmead	Monash	New Zealand	Total	
2017	31 (59)	0 (0)	0 (0)	4 (7)	52
2016	26 (47)	3 (5)	0 (0)	20 (36)	55
2015	27 (56)	1 (2)	0 (0)	16 (33)	48
2014	28 (62)	0 (0)	0 (0)	15 (33)	45
2013	20 (58)	0 (0)	0 (0)	13 (38)	34
2012	28 (71)	0 (0)	0 (0)	9 (23)	39
2011	19 (65)	0 (0)	0 (0)	7 (24)	29
2010	19 (52)	0 (0)	0 (0)	14 (38)	36
2009	22 (56)	0 (0)	0 (0)	14 (35)	39
2008	20 (55)	0 (0)	0 (0)	12 (33)	41 (11)
2007	16 (65)	2 (6)	1 (3)	9 (31)	29
2006	25 (62)	0 (0)	1 (2)	8 (20)	31
2005	21 (60)	2 (5)	1 (2)	8 (22)	35
2004	15 (48)	3 (9)	2 (6)	8 (25)	31
2003	19 (61)	0 (0)	1 (3)	5 (16)	29
2002	15 (55)	1 (3)	0 (0)	9 (33)	27
2001	11 (57)	0 (0)	0 (0)	10 (41)	24
2000	18 (62)	0 (0)	0 (0)	8 (27)	30
1999	11 (57)	1 (5)	0 (0)	5 (26)	19
1998	14 (73)	0 (0)	0 (0)	4 (21)	19
1997	11 (68)	0 (0)	0 (0)	5 (31)	16
1996	11 (91)	0 (0)	0 (0)	1 (8)	12
1995	11 (84)	0 (0)	0 (0)	2 (15)	13
1994	10 (66)	0 (0)	0 (0)	5 (33)	15
1993	9 (81)	0 (0)	0 (0)	2 (18)	11
1992	7 (70)	0 (0)	0 (0)	3 (30)	10
1991	7 (87)	0 (0)	0 (0)	1 (12)	8
1990	8 (88)	0 (0)	0 (0)	0 (0)	9
1989	5 (71)	0 (0)	1 (4)	0 (0)	7
1988	4 (57)	0 (0)	0 (0)	2 (28)	7
1987	2 (66)	0 (0)	0 (0)	1 (33)	3
1986	0 (0)	0 (0)	0 (0)	0 (0)	0
1985	0 (0)	0 (0)	0 (0)	0 (0)	0
1984	0 (0)	0 (0)	0 (0)	0 (0)	1

Total 490 (60) 13 (1) 7 (<1) 232 (28) 5 (<1) 1 (<1) 56 (6) 809
and pancreas survival \((P = 0.7)\). One-year pancreas survival was 87.9% for transplants where the donor was underweight/normal BMI, 86.5% for transplants where the donor was overweight, and 82.9% where the donor was obese.

TABLE 7.
Distribution of state of residence of people receiving pancreas transplants in Australia over time

Year of transplant	New South Wales	Victoria	Queensland	South Australia	Western Australia	Tasmania	Capital Territory	Northern Territory	Total
2017	16 (33)	14 (29)	11 (23)	2 (4)	2 (4)	0 (0)	0 (0)	0 (0)	48
2016	12 (24)	15 (29)	10 (20)	8 (16)	5 (10)	1 (2)	0 (0)	0 (0)	51
2015	16 (36)	13 (29)	8 (18)	2 (4)	1 (2)	3 (7)	0 (0)	2 (4)	45
2014	13 (30)	12 (26)	11 (26)	3 (7)	2 (3)	1 (2)	0 (0)	1 (2)	43
2013	9 (20)	10 (30)	8 (24)	1 (3)	3 (6)	0 (0)	1 (3)	1 (3)	33
2012	13 (35)	4 (11)	10 (27)	5 (14)	2 (5)	3 (8)	0 (0)	0 (0)	37
Total	79 (31)	68 (26)	58 (23)	21 (8)	15 (6)	9 (4)	3 (1)	4 (2)	257

TABLE 8.
Demographics and characteristics of pancreas transplant recipients

Age category, y	Median (IQR)	2017	1984-2016	Total
0-34	39 (36.3-45.0)	39.9 (36.3-44.4)	39 (33.4-44.4)	39 (33.4-44.4)
35-44	28 (53)	334 (44)	362 (44)	362 (44)
45-50	10 (19)	123 (16)	133 (16)	133 (16)
50+	5 (9)	50 (6)	55 (6)	55 (6)

Sex	Female	Male
19 (36)	353 (46)	372 (45)
33 (63)	404 (53)	437 (54)

Cause of end-stage kidney disease	Diabetes type 1	Diabetes type 2	Other	Uncertain diagnosis	Total
22 (42)	311 (41)	333 (41)	9 (1)	28 (53)	464 (57)

Ethnicity*	Australian Aboriginal	Maori	Pacific Islander	White	Indian	Arab	Chinese	Asian	Unknown	Total
0 (0)	2 (<1)	2 (<1)	4 (<1)	13 (1)	8 (1)	2 (<1)	1 (<1)	4 (8)	15 (28)	64 (57)

Blood group	0	22 (42)	342 (45)	364 (44)
A	21 (40)	278 (36)	299 (36)	
B	7 (13)	68 (8)	75 (9)	
AB	2 (3)	33 (4)	35 (4)	
Unknown	0 (0)	36 (4)	36 (4)	
Total	52	757	809	

*Ethnicity classified according to the Australian Bureau of Statistics standard classification, 2nd Edition.

\(\text{IQR, interquartile range.} \)

TABLE 9.
Cross-tabulation of pancreas transplant type and donor type by recipient country and sex

Australia	New Zealand	Overall					
Female	Male	Female	Male				
Pancreas alone	0	0	0	0			
DBD	0	0	0	0			
DCD	0	0	0	0			
Unknown	1	0	0	1			
SPK	14	33	4	0	18	33	51
DBD	13	33	0	0	13	33	46
DCD	1	0	0	1	0	1	
Unknown	0	0	4	0	0	4	4

DBD, donor after brain death; DCD, donor after circulatory death.

TABLE 10.
Cross-tabulation of recipient and donor blood groups for 2016

Recipient blood group	O	A	B	AB	Total
0	21 (95)	0 (0)	0 (0)	0 (0)	0 (0)
A	1 (4)	17 (80)	0 (0)	0 (0)	0 (0)
B	0 (0)	0 (0)	7 (100)	0 (0)	0 (0)
AB	0 (0)	0 (0)	0 (0)	2 (100)	0 (0)
Total	0 (0)	0 (0)	0 (0)	2 (100)	0 (0)

TABLE 11.
Cross-tabulation of recipient and donor sex for 2016

Recipient sex	Female	Male	
Female	3 (15)	12 (63)	19
Male	14 (42)	19 (57)	33
Total	17 (32)	31 (59)	52

McNemar test for difference, \(P = 0.8. \)
Pancreas survival by donor age is presented in Figure 10. The survival curves appear poorer for donors aged 35 to 44 years compared with those 45 and older, or younger donors, but this difference was not statistically significant ($P = 0.5$). We can only hypothesize that any difference may be due to donors older than 45 years being a more highly selected group, compared to the donors aged 35 to 44 years. One-year pancreas survival was 89.5% for transplants from donors aged 0 to 24 years, 86.1% for donors aged 25 to 34 years, 83.7% for donors aged 35 to 44 years, and 87.0% for donors 45 years or older.

Prevalence of Functioning Pancreas Transplants

We calculated the point prevalence of people living in Australia and New Zealand who were alive with a functioning transplant on December 31, each year for the last 5 years (Table 13). The below numbers exclude people still alive, 34 years, 83.7% for donors aged 35 to 44 years, and 87.0% for donors 45 years or older.

Pancreas graft survival at 1 and 5 years posttransplant, censored at death, and stratified by country and era of transplantation is presented in Table 12.

Table 12. Pancreas graft survival at 1 and 5 years post transplant, censored at death, and stratified by country and era of transplantation

Era	Australia	New Zealand						
	1y	5y	1y	5y	1y	5y		
2008-2013	175	90.2%	140	84.9%	15	100.0%	15	100.0%
2009-2014	182	88.7%	112	83.3%	13	92.3%	11	92.3%
2010-2015	190	88.3%	83	83.7%	14	92.9%	9	92.9%
2011-2016	206	89.1%	52	83.7%	15	93.3%	6	93.3%
but whose pancreas transplant has failed. The number of functioning transplants is continuing to increase over time, as a consequence of the growing number of transplants, and their improved survival.

Kidney Transplant Survival

Kidney transplant survival was calculated for those who received SPK transplants, from the time of transplantation until the time of return to dialysis. We calculated both kidney failure including death with a functioning kidney and kidney failure censored for death with a functioning graft. For kidney graft survival, we included only SPK transplants and excluded PAK transplant recipients. We had survival records for 780 SPK transplant recipients.

Kidney survival improved over time, with longer survival for those transplanted in more recent years ($P = 0.002$). For those transplanted in 2000 or before, kidney transplant survival was 92.5% at 1 year and 88.4% at 5 years but was 98.2% at 1 year and 96.5% at 5 years for those transplanted in 2010 or later (Figure 11).

The era effect was even stronger when considering kidney failure including death with kidney function ($P < 0.001$). For those transplanted before 2000, survival was 87.8% at 1 year and 81.0% at 5 years, but was 96.0% at 1 year and 91.8% at 5 years for those transplanted in 2010 or later (Figure 12).

Pancreas Transplant Operative Data

Characteristics of the pancreas transplant operations for 2017, previous years, and overall are shown in Table 14.

Surgical Technique

Exocrine drainage of the pancreas graft has changed over time. Enteric Drainage of the pancreas was first used in Australia and New Zealand during 2001. Figure 13 illustrates
the number of transplants by pancreas duct management. Since 2001, most pancreas transplants have used enteric drainage of the pancreas duct.

The cytomegalovirus and Epstein-Barr virus (EBV) matching of donor-recipient pairs is shown in Table 15.

PANCRES DONORS

This section gives an overview of donors in 2017 and over time. Donor eligibility criteria guidelines are available in the TSANZ consensus statement, but briefly require donors to be over 25 kg, and up to the age of 45 years, without known diabetes mellitus or pancreatic trauma, or history of alcoholism or pancreatic trauma. Donation after circulatory death may be considered up to the age of 35 years. As these are guidelines, there may be occasions when there is minor deviation from these advised criteria.

Donor BMI is perceived as impacting recipient outcomes. Obese donors are more likely to have fatty pancreas, which results in more difficult surgery and increased postoperative complications, and suboptimal insulin secretion. Alcohol consumption is defined by a history of consumption of more than 40 g/d. Table 16 describes pancreas donor characteristics in Australia and New Zealand to date.

Pancreas Donor Characteristics

The distribution of donor states of origin is shown in Table 17.

TABLE 15.

Infectious disease serology cross-tabulation of donor recipient pairs

Donor serology, n (%)	Positive	Negative	Unknown
CMV IgG			
Positive	36 (14)	1 (1<1)	0 (0)
Negative	221 (86)	0 (1)	0 (0)
Unknown	0 (0)	0 (0)	0 (0)
EBV IgG			
Positive	27 (8)	0 (0)	0 (0)
Negative	333 (93)	0 (0)	0 (0)
Unknown	0 (0)	0 (0)	0 (0)

CMV, cytomegalovirus; EBV, Epstein-Barr virus; IgG, immunoglobulin G antibody.

TABLE 16.

Demographics and characteristics of pancreas transplant donors

Donors, n (column %)	2017	1984-2016	Total
Total (row %)	52 (6)	757 (94)	809 (100)
Age category, y			
0-24	20 (38)	354 (46)	374 (46)
25-34	15 (28)	196 (25)	211 (26)
35-44	12 (23)	160 (21)	172 (21)
45+	1 (1)	30 (3)	31 (3)
Unknown	4 (7)	17 (2)	21 (2)
Sex			
Female	17 (32)	278 (36)	295 (36)
Male	31 (59)	451 (59)	482 (59)
Unknown	4 (7)	28 (3)	32 (3)
BMI, kg/m²			
Underweight/normal (<24.9)	35 (67)	467 (61)	502 (62)
Overweight (25-29.9)	12 (23)	234 (30)	246 (30)
Obese (30+)	1 (1)	34 (4)	35 (4)
Unknown	4 (7)	22 (2)	26 (3)
Donor type			
Brain death (DBD)	46 (88)	745 (98)	791 (97)
Circulatory death (DCD)	1 (1)	9 (1)	10 (1)
Unknown	5 (9)	3 (<1)	8 (<1)
Donor mode of death			
Cerebral hypoxia/ischemia	7 (13)	19 (2)	26 (3)
Cerebral infarct	0 (0)	12 (1)	12 (1)
Intracranial hemorrhage	4 (7)	148 (19)	152 (19)
Nonneurological condition	8 (15)	121 (15)	129 (15)
Other neurological condition	3 (5)	3 (<1)	6 (<1)
Traumatic brain injury	0 (0)	29 (3)	29 (3)
Unknown	30 (57)	425 (56)	455 (56)
Alcohol consumption			
Never	47 (90)	597 (78)	644 (79)
Former	0 (0)	4 (<1)	4 (<1)
Current	1 (1)	36 (4)	37 (4)
Unknown	4 (7)	120 (15)	124 (15)
Smoking history			
Never	34 (65)	476 (62)	510 (63)
Former	1 (1)	32 (4)	33 (4)
Current	13 (25)	179 (23)	192 (23)
Unknown	4 (7)	70 (9)	74 (9)
Donor’s blood group			
O	22 (42)	361 (47)	383 (47)
A	17 (32)	259 (34)	276 (34)
B	7 (13)	70 (9)	77 (9)
AB	2 (5)	17 (2)	19 (2)
Unknown	4 (7)	50 (6)	54 (6)
Kidney biopsy			
Performed	22 (42)	154 (20)	176 (21)
Not performed	30 (57)	600 (79)	630 (77)
Unknown	0 (0)	3 (<1)	3 (<1)
CMV serology			
IgG positive	38 (73)	443 (58)	481 (59)
IgG negative	10 (19)	288 (36)	298 (36)
Unknown	4 (7)	26 (3)	30 (3)
EBV serology			
IgG positive	40 (76)	429 (56)	469 (57)
IgG negative	3 (5)	70 (9)	73 (9)
Unknown	9 (17)	258 (34)	267 (33)

FIGURE 13. Change in management of exocrine drainage of the pancreas over time.
TABLE 17.
Distribution of state of residence of pancreas donors in Australia over time

State	2017	2016	2015	2014	2013	2012	Total
New South Wales	10 (17)	9 (16)	10 (17)	8 (14)	10 (17)	11 (19)	58 (100)
Victoria	15 (24)	13 (21)	14 (22)	8 (13)	6 (10)	7 (11)	63 (100)
Queensland	5 (24)	7 (33)	4 (19)	2 (10)	1 (5)	2 (10)	21 (100)
South Australia	1 (4)	2 (9)	5 (22)	5 (22)	5 (22)	5 (22)	23 (100)
Western Australia	5 (22)	7 (30)	3 (13)	3 (13)	3 (13)	2 (9)	23 (100)
Tasmania	0 (0)	1 (50)	0 (0)	1 (50)	0 (0)	0 (0)	2 (100)
Australian Capital Territory	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Northern Territory	1 (100)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1 (100)
Total	11 (17)	12 (18)	9 (14)	16 (24)	8 (12)	10 (15)	66 (100)

TABLE 18.
Number of pancreas transplants by donor and recipient state of residence in Australia, all years

Recipient state	New South Wales	Victoria	Queensland	South Australia	Western Australia	Tasmania	Australian Capital Territory	Northern Territory	Unknown	Total	
New South Wales	106	7	16	20	15	0	0	0	0	65	229
Victoria	18	138	1	5	3	4	0	0	0	49	218
Queensland	56	8	20	22	9	0	0	1	30	146	
South Australia	12	13	2	8	3	0	0	0	15	53	
Western Australia	16	2	11	5	5	0	0	0	12	51	
Tasmania	12	6	1	1	0	1	0	0	6	27	
Australian Capital Territory	11	1	1	2	0	0	0	0	8	23	
Northern Territory	1	0	0	1	0	0	0	0	1	4	
Total	232	175	52	64	36	5	0	1	186	751	

Donor and Recipient State/Territory
Table 18 shows the distribution of donor organs according to state of origin, cross-tabulated with the state of origin of the recipients who received those organs, for 2017, and from inception of the pancreas program. Note that these tables include Australian donors and recipients only.

ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of all Australia and New Zealand pancreas transplant collaborators; Prof Stephen Munn, Prof Peter Kerr, Prof John Kanellis, Mr Alan Saunders, Mr Roger Bell, Mr Ming You, Miss Nancy Suh, Mr Stephen Thwaites, Mr Michael Wu, Ms Tia Mark, Prof Philip O’Connell, Prof Jeremy Chapman, Dr Brian Nankivell, A/Prof Germaine Wong, Dr Natasha Rogers, Dr Brendan Ryan, Dr Lawrence Yuen, Prof Richard Allen, Ms Kathy Kable, Prof Wayne Hawthorne, Mr Abhijit Patekar.

REFERENCE
1. (TSANZ) TTSOaANZ. Clinical guidelines for organ transplantation from deceased donors. http://www.tsanz.com.au/organallocationprotocols/. Published 2017. Accessed June 4, 2018.
Author/s:
Webster, AC; Hedley, J; Robertson, P; Mulley, WR; Pilmore, HL; Pleass, H; Kelly, PJ

Title:
Australia and New Zealand Islets and Pancreas Transplant Registry Annual Report 2018-
Pancreas Waiting List, Recipients, and Donors.

Date:
2018-10

Citation:
Webster, A. C., Hedley, J., Robertson, P., Mulley, W. R., Pilmore, H. L., Pleass, H. & Kelly, P. J. (2018). Australia and New Zealand Islets and Pancreas Transplant Registry Annual Report 2018-Pancreas Waiting List, Recipients, and Donors.. Transplant Direct, 4 (10), pp.e390-. https://doi.org/10.1097/TXD.0000000000000832.

Persistent Link:
http://hdl.handle.net/11343/271485

License:
CC BY-NC-ND