Hypo-EP Matrices of Adjointable Operators on Hilbert C^*-Modules

Xiaopeng Li, Junjie Huang, and Alatancang Chen

School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

Correspondence should be addressed to Junjie Huang; huangjunjie@rocketmail.com

Received 4 February 2021; Accepted 27 April 2021; Published 25 May 2021

Academic Editor: Hou-Sheng Su

Copyright © 2021 Xiaopeng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper introduces and studies hypo-EP matrices of adjointable operators on Hilbert C^*-modules, based on the generalized Schur complement. The necessary and sufficient conditions for some modular operator matrices to be hypo-EP are given, and some special circumstances are also analyzed. Furthermore, an application of the EP operator in operator equations is given.

1. Introduction and Preliminaries

The EP matrix, as an extension of the normal matrix, was proposed by Schwödiaeger; a square matrix T over the complex field C is said to be an EP matrix if T and T^* share the same range [1, 2]. The notion of EP matrices was extended by Campbell and Meyer to operators with closed range on a Hilbert space in [3]. Let H be a complex Hilbert space and $\mathcal{B}(H)$ the collection of all bounded linear operators on H. Let $T \in \mathcal{B}(H)$. Recall that T is called an EP operator if its range, $\mathcal{R}(T)$, is closed, and $\mathcal{R}(T) = \mathcal{R}(T^*)$ [3]. It is well known that $\mathcal{R}(T)$ is closed and if only if the Moore–Penrose inverse T^* of T exists. T is an EP operator if and only if $T^*T = TT^*$. Sharifi [4] provided a generalization of this result for EP operators on Hilbert C^*-modules. This has been studied by many other authors, see, e.g., [5–8] and references therein. More generally, T is said to be a hypo-EP operator if $T^*T \geq TT^*$ [9]. In fact, T is a hypo-EP operator if and only if $\mathcal{R}(T)$ is closed and $\mathcal{R}(T) \subseteq \mathcal{R}(T^*)$. It is also shown that T is a hypo-EP operator if and only if $T^*T^2T^* = TT^*$. The hypo-EP operator is our focus of attention in this paper, and it has been studied in [10, 11]. The EP operator can be applied to the solution of operator equations, see Section 3 of this article. The properties of hypo-EP and EP operators can find applications also in reverse order law [12] and core partial order [13] and will be useful in some other applied fields [14, 15]. In this note, we investigate the hypo-EP operators on Hilbert C^*-modules, and then we formulate some results of hypo-EP matrices of adjointable operators on Hilbert C^*-modules. As an application, the solvability conditions, and the general expression for the EP solution to the operator equations are given.

Since the finite-dimensional spaces, Hilbert spaces, and C^*-algebras can all be regarded as Hilbert C^*-modules, one can study hypo-EP modular operators in a unified way in the framework of Hilbert C^*-modules. Let us briefly recall some basic knowledge about Hilbert C^*-modules and adjointable operators. Throughout this paper, A is a C^*-algebra. A Hilbert A-module \mathcal{H} is a right A-module equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to A$ such that \mathcal{H} is complete with respect to the induced norm $\| \cdot \| = \| \langle \cdot, \cdot \rangle \|^{1/2}$. Suppose that \mathcal{H} and \mathcal{K} are Hilbert A-modules, and let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of all maps $T : \mathcal{H} \to \mathcal{K}$ for which there is a map $T^* : \mathcal{K} \to \mathcal{H}$ such that $\langle Tx, y \rangle = \langle x, T^* y \rangle$ for $x \in \mathcal{H}$ and $y \in \mathcal{K}$. It is well known that an arbitrary element T of $\mathcal{L}(\mathcal{H}, \mathcal{K})$ must be a bounded linear operator, which is also A-linear in the sense of $T(xa) = (Tx)a$ for any $x \in \mathcal{H}$ and $a \in A$. We call $\mathcal{L}(\mathcal{H}, \mathcal{K})$ the set of adjointable operators from \mathcal{H} to \mathcal{K}. We use $\mathcal{L}(\mathcal{H})$ to denote the C^*-algebra $\mathcal{L}(\mathcal{H}, \mathcal{H})$. Let $\mathcal{L}(\mathcal{H})^a$ be the set of Hermitian elements of $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$, the range and the null space of T are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively. An operator
$T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is said to be regular if there is an operator $T^* \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ satisfying $TT^* T = T$; T^* is called an inner inverse (or $[1]^{-1}$-inverse) of T. It is easy to prove that T is regular if and only if $\mathcal{R}(T)$ is closed. The $[1]^{-1}$-inverse of T is not unique in general.

In this paper, we use the generalized inverse to the generalized Schur complement as defined in [16]. Suppose $M \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$ is a modular operator matrix of the form

\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},
\]

where $A \in \mathcal{L}(\mathcal{H}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H}), C \in \mathcal{L}(\mathcal{H}, \mathcal{K}), D \in \mathcal{L}(\mathcal{K})$. Then, the generalized Schur complement of A in M is

\[
\frac{M}{A} = D - CA^{-1} B,
\]

where A^{-1} is an inner inverse of A. Similarly, the generalized Schur complement of D in M is

\[
\frac{M}{D} = A - BD^{-1} C,
\]

where D^{-1} is an inner inverse of D. The formulas (2) and (3) have previously appeared in papers dealing with generalized inverses of partitioned matrices (cf. [17–19]).

Definition 1 (see [20]). Let $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$. The Moore–Penrose inverse T^+ of T (if exists) is an element in $\mathcal{L}(\mathcal{H}, \mathcal{K})$ which satisfies

(a) $TT^+ T = T$

(b) $T^+ T T^+ = T^+$

(c) $(TT^+)^* = TT^+$

(d) $(T^+ T)^* = T^+ T$

These equations imply that T^+ will be uniquely determined if it exists, and TT^+ and $T^+ T$ are both orthogonal projections. Moreover, $\mathcal{R}(T^+) = \mathcal{R}(TT^+)$, $\mathcal{R}(T) = \mathcal{R}(TT^+)$, $\mathcal{N}(T) = \mathcal{N}(T^+ T)$, and $\mathcal{N}(T^+) = \mathcal{N}(TT^+)$.

Clearly, the Moore–Penrose inverse T^+ of T exists if and only if $\mathcal{R}(T)$ is closed; T is Moore–Penrose invertible if and only if T^+ is Moore–Penrose invertible, and in this case, $(T^+)^* = (T^+)$. Obviously, the Moore–Penrose inverse T^+ of T is one of inner inverses of T.

Similar to [21], Lemma 2.2.4, and [22], Lemma 2.2, we have the following conclusions on Hilbert C^*-modules.

Lemma 1. Let $A \in \mathcal{L}(\mathcal{H}), B \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ and $C \in \mathcal{L}(\mathcal{H}, \mathcal{K}, \mathcal{H})$. If A has an inner inverse A^{-1}, then

(i) $\mathcal{N}(A) \subseteq \mathcal{N}(C)$ if and only if $C = CA^{-1} A$

(ii) $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$ if and only if $B = AA^{-1} B$

Lemma 2. Let M be a modular operator matrix of form (1)

with $\mathcal{N}(A) \subseteq \mathcal{N}(C)$ and $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$. If A has an inner inverse A^{-1}, then M is regular if and only if M/A is regular, where $M/A = D - CA^{-1} B$. In this case, the inner inverse of M is given by

\[
M^{-1} = \begin{pmatrix} A^{-1} + A^{-1} B \left(\frac{M}{A}\right)^{-1} CA^{-1} - A^{-1} B \left(\frac{M}{A}\right)^{-1} \\ -\left(\frac{M}{A}\right)^{-1} CA^{-1} \\ \left(\frac{M}{A}\right)^{-1} \end{pmatrix}.
\]

From Lemma 2, we can obtain the following corollary.

Corollary 1. Let M be a modular operator matrix of form (1) with $\mathcal{N}(A) \subseteq \mathcal{N}(C), \mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, $\mathcal{N}(M/A) \subseteq \mathcal{N}(B)$, and $\mathcal{N}(M/A^*) \subseteq \mathcal{N}(C^*)$. If $\mathcal{R}(A)$ and $\mathcal{R}(M/A)$ are closed, then the Moore–Penrose inverse M^+ of M can be expressed as

\[
M^+ = \begin{pmatrix} A^+ + A^+ B \left(\frac{M}{A}\right)^{+} CA^+ - A^+ B \left(\frac{M}{A}\right)^{+} \\ -\left(\frac{M}{A}\right)^{+} CA^+ \\ \left(\frac{M}{A}\right)^{+} \end{pmatrix}.
\]

Remark 1. The preceding result given in [17], Theorem 1, was proved for finite matrices.

Lemma 3 (see [23]). Let $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$, where $A \in \mathcal{L}(\mathcal{H}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H}, \mathcal{H})$, and $D \in \mathcal{L}(\mathcal{K})$. If $\mathcal{R}(A)$ and $\mathcal{R}(D)$ are closed, then $M^+ = \begin{pmatrix} A^+ - A^+ BD^+ \\ 0 \\ 0 \end{pmatrix}$ if and only if $\mathcal{N}(D) \subseteq \mathcal{N}(B)$ and $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$.

Proof. The proof is similar to that in [22], Corollary 12, for Hilbert space operators.

Definition 2 (see [4]). Let \mathcal{H} be a Hilbert \mathbb{A}-module. An operator $T \in \mathcal{L}(\mathcal{H})$ is called EP if $\mathcal{R}(T) = \mathcal{R}(T^*)$.

Definition 3. Let \mathcal{H} be a Hilbert \mathbb{A}-module. An operator $T \in \mathcal{L}(\mathcal{H})$ is called hypo-EP if $\mathcal{R}(T) \subseteq \mathcal{R}(T^*)$.

Obviously, the range of an EP or a hypo-EP operator on Hilbert C^*-modules is not necessarily closed, and we further have the following properties.

Proposition 1 (see [4]). Let \mathcal{H} be a Hilbert \mathbb{A}-module and $T \in \mathcal{L}(\mathcal{H})$ with closed range. Then, the following conditions are equivalent:

(i) T is an EP operator

(ii) $\mathcal{N}(T) = \mathcal{N}(T^*)$

(iii) T is Moore–Penrose invertible and $T^+ T = TT^+$

Proposition 2. Let \mathcal{H} be a Hilbert \mathbb{A}-module and $T \in \mathcal{L}(\mathcal{H})$ with closed range. Then, the following conditions are equivalent:

(i) T is a hypo-EP operator

(ii) $\mathcal{N}(T) \subseteq \mathcal{N}(T^*)$
(iii) T is Moore–Penrose invertible and $T^*T^2T^* = TT^*$

Remark 2. The class of all hypo-EP operators contains the class of all EP operators on Hilbert \mathcal{A}-modules. Meanwhile, the EP operator with closed range is an extension of the invertible operator and the normal operator with closed range. In the case of finite dimensional situation, EP and hypo-EP are the same.

2. Main Results and Proofs

First, using generalized Schur complements, we study the hypo-EP property of matrices of adjointable operators on Hilbert C^*-modules.

Theorem 1. Let M be a modular operator matrix of the form (1) with $\mathcal{N}(A) \subseteq \mathcal{N}(C)$, $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, $\mathcal{N}(M/A) \subseteq \mathcal{N}(B)$, and $\mathcal{N}((M/A)^*) \subseteq \mathcal{N}(C^*)$. Suppose that $\mathcal{R}(A)$ and $\mathcal{R}(M/A)$ are closed. Then, the following conditions are equivalent:

1. M is a hypo-EP operator matrix with closed range
2. A and M/A are hypo-EP operators

Proof. Let M be a hypo-EP operator matrix with closed range. Since $\mathcal{R}(A)$ and $\mathcal{R}(M/A)$ are closed, let us consider the operator matrices

$$
L = \begin{pmatrix}
I & 0 \\
CA^{-1} & I
\end{pmatrix},
$$

$$
R = \begin{pmatrix}
I & B\left(\frac{M}{A}\right)^{-1} \\
0 & I
\end{pmatrix},
$$

$$
P = \begin{pmatrix}
A & 0 \\
0 & \frac{M}{A}
\end{pmatrix},
$$

where $M/A = D - CA^{-1}B$. Obviously, L and R are invertible. By using Lemma 1 and by assumptions $\mathcal{N}(A) \subseteq \mathcal{N}(C)$ and $\mathcal{N}(M/A) \subseteq \mathcal{N}(B)$, it is clear that M can be factorized as $M = LRP$. Hence, $\mathcal{N}(P) = \mathcal{N}(M) \subseteq \mathcal{N}(M^*)$. By using Lemma 1 again, it is immediate that

$$
M^* = M^*P^{-1}P
$$

holds for every inner inverse P^{-1} of P. In particular, for

$$
P^{-} = \begin{pmatrix}
A^{-1} & 0 \\
0 & \left(\frac{M}{A}\right)^{-1}
\end{pmatrix},
$$

we have from relation (7) that

$$
M^* = \begin{pmatrix}
A^* & C^* \\
B^* & D^*
\end{pmatrix} = \begin{pmatrix}
A^{-}A & 0 \\
0 & \left(\frac{M}{A}\right)^{-1} \left(\frac{M}{A}\right)^{-1}
\end{pmatrix},
$$

$$
= \begin{pmatrix}
A^*A^{-} & C^* \left(\frac{M}{A}\right)^{-1} \left(\frac{M}{A}\right)^{-1} \\
B^* & D^* \left(\frac{M}{A}\right)^{-1} \left(\frac{M}{A}\right)^{-1}
\end{pmatrix}.
$$

(9)

Then, $A^* = A^*A^{-}A$ implies $\mathcal{N}(A) \subseteq \mathcal{N}(A^*)$. Hence, A is a hypo-EP operator. Since $C^* = C^* (M/A)^{-} (M/A)$, substituting $D = (M/A) + CA^{-1}B$ into

$$
D^* = D^* (M/A)^{-} (M/A)
$$

yields $(M/A)^* = (M/A)^* (M/A)^{-} (M/A)$. This implies $\mathcal{N}(M/A) \subseteq \mathcal{N}((M/A)^*)$. Thus, M/A is a hypo-EP operator.

Conversely, according to the assumptions $\mathcal{N}(A) \subseteq \mathcal{N}(C)$, $\mathcal{N}(M/A) \subseteq \mathcal{N}(B)$, $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, and $\mathcal{N}((M/A)^*) \subseteq \mathcal{N}(C^*)$, the Moore–Penrose inverse M^* of M exists, and M^* is given by

$$
M^* = \begin{pmatrix}
A^* + A^*B\left(\frac{M}{A}\right)^{*} CA^* - A^*B\left(\frac{M}{A}\right)^{*} \\
\left(\frac{M}{A}\right)^{*} CA^* & \left(\frac{M}{A}\right)^{*}
\end{pmatrix},
$$

(11)

by Corollary 1. Using $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$ and $\mathcal{N}((M/A)^*) \subseteq \mathcal{N}(C^*)$, by Lemma 1, MM^* is described as

$$
MM^* = \begin{pmatrix}
AA^* & 0 \\
0 & \left(\frac{M}{A}\right)^{*} \left(\frac{M}{A}\right)^{*}
\end{pmatrix}.
$$

(12)

Similarly, by using $\mathcal{N}(A) \subseteq \mathcal{N}(C)$, $\mathcal{N}(M/A) \subseteq \mathcal{N}(B)$, and Lemma 1, it is given that

$$
M^*M = \begin{pmatrix}
A^*A & 0 \\
0 & \left(\frac{M}{A}\right)^{*} \left(\frac{M}{A}\right)^{*}
\end{pmatrix}.
$$

(13)

Then,

$$
M^*M^2M^* = (M^*M)(MM^*) = \begin{pmatrix}
A^*A^2A^* & 0 \\
0 & \left(\frac{M}{A}\right)^{*} \left(\frac{M}{A}\right)^{*}
\end{pmatrix}.
$$

(14)

Since A and M/A are hypo-EP operators with closed range,
operators on Hilbert $(\mathcal{H}, \mathcal{K})$ operator matrix with closed range, equivalent: operator matrix with closed range.

Let $A B \in \mathcal{L}(\mathcal{H})$ and $M = \begin{pmatrix} A & A X \\ X^* A & X^* A X \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$. If $\mathcal{R}(A)$ is closed, then M is a hypo-EP operator matrix with closed range if and only if A is a hypo-EP operator.

If using the generalized Schur complement $M/D = A - BD\, C$ of D in M, similar to Theorem 1, one can get the following results.

Theorem 2. Let M be a modular operator matrix of form (I) with $\mathcal{N}(D) \subseteq \mathcal{N}(B)$, $\mathcal{N}(D^*) \subseteq \mathcal{N}(C^*)$, $\mathcal{N}(M/D) \subseteq \mathcal{N}(C)$, and $\mathcal{N}((M/D)^*) \subseteq \mathcal{N}(B^*)$. Suppose that $\mathcal{R}(D)$ and $\mathcal{R}(M/D)$ are closed. Then, the following conditions are equivalent:

(i) M is a hypo-EP operator matrix with closed range

(ii) D and M/D are hypo-EP operators

Corollary 3. Let $D, X \in \mathcal{L}(\mathcal{H})$ and $M = \begin{pmatrix} X^* D X^* D \\ DX \ D \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$. If $\mathcal{R}(D)$ is closed, then M is a hypo-EP operator matrix with closed range if and only if D is a hypo-EP operator.

Next, using the properties of generalized inverses, we study upper triangular hypo-EP matrices of adjointable operators on Hilbert C^*-modules.

Theorem 3. Let $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$ with $\mathcal{N}(D) \subseteq \mathcal{N}(B)$ and $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, where $A \in \mathcal{L}(\mathcal{H}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$, and $D \in \mathcal{L}(\mathcal{K})$. If $\mathcal{R}(A)$ and $\mathcal{R}(D)$ are closed, then M is a hypo-EP operator matrix with closed range if and only if A and D are hypo-EP operators.

Proof. Let M be a hypo-EP operator matrix with closed range. We write

\[L = \begin{pmatrix} 1 & BD^\dagger \\ 0 & I \end{pmatrix}, \]

\[P = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}. \]

Obviously, L is invertible. By Lemma 1 and assumption $\mathcal{N}(D) \subseteq \mathcal{N}(B)$, it is clear that M can be decomposed as $M = LP$. Hence, $\mathcal{N}(M) = \mathcal{N}(P)$. Since M is a hypo-EP operator matrix with closed range, $\mathcal{N}(P) = \mathcal{N}(M) \subseteq \mathcal{N}(M^*)$. By Lemma 1, it is immediate that $M^* = M^* P^* P$, where P^* is given by

\[P^* = \begin{pmatrix} A^\dagger & 0 \\ 0 & D^\dagger \end{pmatrix}. \]

This gives

\[M^* = \begin{pmatrix} A^\dagger & 0 \\ B^* & D^\dagger \end{pmatrix} = \begin{pmatrix} A^\dagger A & 0 \\ B^* A^\dagger & D^\dagger D \end{pmatrix}. \]

Hence, $A^* = A^* A^\dagger A$ implies $\mathcal{N}(A) \subseteq \mathcal{N}(A^*)$. Thus, A is a hypo-EP operator. From $D^* = D^\dagger D$, it follows that $\mathcal{N}(D) \subseteq \mathcal{N}(D^*)$. Therefore, D is a hypo-EP operator.

Conversely, suppose A and D are hypo-EP operators. Since $\mathcal{R}(A)$ and $\mathcal{R}(D)$ are closed and $\mathcal{N}(D) \subseteq \mathcal{N}(B)$ and $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, by Lemma 3, the Moore–Penrose inverse M^\dagger of M exists and

\[M^\dagger = \begin{pmatrix} A^\dagger & -A^\dagger BD^\dagger \\ 0 & D^\dagger \end{pmatrix}. \]

Since $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, by Lemma 1, MM^\dagger is described as

\[MM^\dagger = \begin{pmatrix} A A^\dagger & 0 \\ 0 & DD^\dagger \end{pmatrix}. \]

Similarly, by Lemma 1, $\mathcal{N}(D) \subseteq \mathcal{N}(B)$ leads to

\[M^\dagger M = \begin{pmatrix} A^\dagger A & 0 \\ 0 & D^\dagger D \end{pmatrix}. \]

Then,

\[M^\dagger M^2 M^\dagger = \left(M^\dagger M \right) \left(MM^\dagger \right) = \begin{pmatrix} A^\dagger A^2 A^\dagger & 0 \\ 0 & D^\dagger D^2 D^\dagger \end{pmatrix}. \]

Since A and D are hypo-EP operators with closed range, $A^2 A^\dagger = AA^\dagger$ and $D^\dagger D^2 D^\dagger = DD^\dagger$. Thus, $M^\dagger M^2 M^\dagger = MM^\dagger$. Therefore M is a hypo-EP operator matrix with closed range.

Corollary 4. Let $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$ with $\mathcal{N}(D) \subseteq \mathcal{N}(B)$ and $\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*)$, where $A \in \mathcal{L}(\mathcal{H}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$, and $D \in \mathcal{L}(\mathcal{K})$. If $\mathcal{R}(A)$ and $\mathcal{R}(D)$ are closed, then M is an EP operator matrix with closed range if and only if A and D are EP operators.

Proof. Let M be an EP operator matrix with closed range. In view of Theorem 3, to prove the necessity, it is enough to show $\mathcal{N}(A^*) \subseteq \mathcal{N}(A)$ and $\mathcal{N}(D^*) \subseteq \mathcal{N}(D)$. Since M is an EP operator matrix with closed range, by the proof of Theorem 3, $\mathcal{N}(P) = \mathcal{N}(M) = \mathcal{N}(M^*)$. Applying Lemma 1, we have $P^* = MM^\dagger P^*$, i.e.,
\[
P^* = \begin{pmatrix} A^* & 0 \\ 0 & D^* \end{pmatrix} = \begin{pmatrix} A A^t & 0 \\ 0 & D D^t \end{pmatrix} \begin{pmatrix} A^* & 0 \\ 0 & D^* \end{pmatrix},
\]
\[
= \begin{pmatrix} A A^t A^* & 0 \\ 0 & D D^t D^* \end{pmatrix}.
\]

Hence, \(A^* = A A^t A^* \) and \(D^* = D D^t D^* \) imply \(\mathcal{N}(A^*) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(D^*) \subseteq \mathcal{N}(D) \), respectively.

Conversely, let \(A \) and \(D \) be EP operators. Since \(\mathcal{R}(A) \) and \(\mathcal{R}(D) \) are closed, \(\mathcal{N}(D) \subseteq \mathcal{N}(B) \), and \(\mathcal{N}(A^*) \subseteq \mathcal{N}(B^*) \), we get
\[
M^t M - M M^t = \begin{pmatrix} A A^t & 0 \\ 0 & D D^t D^* \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Therefore, \(M \) is an EP operator matrix with closed range. \(\square\)

Corollary 5. Let \(A, X, D \in \mathcal{L}(\mathcal{H}) \) and \(M = \begin{pmatrix} A & A X \\ D & 0 \end{pmatrix} \in \mathcal{L} (\mathcal{H} \oplus \mathcal{H}) \). If \(\mathcal{R}(A) \) and \(\mathcal{R}(D) \) are closed, then \(M \) is a hypo-EP operator matrix with closed range if and only if \(A \) and \(D \) are hyp-EP operators.

Corollary 6. Let \(A \in \mathcal{L}(\mathcal{H}) \) and \(M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in \mathcal{L} (\mathcal{H} \oplus \mathcal{H}) \). If \(\mathcal{R}(A) \) is closed, then \(M \) is a hypo-EP operator matrix with closed range if and only if \(A \) is a hypo-EP operator.

Remark 3. The Hilbert space version of the preceding four conclusions is given by [10], and the conditions of closed range can be naturally omitted there. Moreover, the alternative proofs of the conclusions in Hilbert space setting can be found in section 3 of [10]. In addition, these results originated from the research of the EP property of block matrices, according to Hartwig [24].

Finally, the following are devoted to investigating the hypo-EP property of antitriangular block matrices of adjointable operators on Hilbert C*-modules.

Lemma 4. Let \(M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}) \). If \(\mathcal{R}(B) \) and \(\mathcal{R}(C) \) are closed, then \(M^t = \begin{pmatrix} 0 & C^t \\ B^t & -B^t A C^t \end{pmatrix} \) if and only if \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \).

Proof. Sufficiency: since \(\mathcal{R}(B) \) and \(\mathcal{R}(C) \) are closed, \(B \) and \(C \) are Moore–Penrose invertible. From \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \), it follows that \(AC^t = A \) and \(BB^t A = A \).

We write \(X = \begin{pmatrix} 0 & C^t \\ B^t & -B^t A C^t \end{pmatrix} \). A direct calculation shows that
\[
M X M = M, \\
X M X = X, \\
(M X)^* = M X, \\
(X M)^* = X M.
\]

By Definition 1, \(M^t = X \) as desired. Necessity: since
\[
M M^t = \begin{pmatrix} B B^t & A C^t - B B^t A C^t \end{pmatrix}, \\
M^t M = \begin{pmatrix} B^t A - B^t A C^t & 0 \\ C C^t & 0 \end{pmatrix}
\]
are self-adjoint, we have \(AC^t - B B^t A C^t = 0 \) and \(B^t A - B^t A C^t = 0 \). From \(M M^t M = M \), we get \(BB^t A = A = AC^t \). Therefore, \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \). \(\square\)

Lemma 5. Let \(M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}) \) with \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \). If \(B \) and \(C \) are hypo-EP operators with closed ranges, then \(M \) is a hypo-EP operator matrix with closed range.

Proof. Since \(\mathcal{R}(B) \) and \(\mathcal{R}(C) \) are closed, \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \), by Lemma 4, the Moore–Penrose inverse \(M^t \) of \(M \) is given by
\[
M^t = \begin{pmatrix} 0 & C^t \\ B^t & -B^t A C^t \end{pmatrix}.
\]

Using \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \), by Lemma 1, we have
\[
M M^t = \begin{pmatrix} BB^t & 0 \\ 0 & CC^t \end{pmatrix}, \\
M^t M = \begin{pmatrix} C C^t & 0 \\ 0 & B B^t \end{pmatrix}
\]
are self-adjoint. Therefore, \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \), and \(\mathcal{N}(C) \subseteq \mathcal{N}(A) \) and \(\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*) \). By Definition 1, we have \(\mathcal{R}(M M^t) = \mathcal{R}(M) \) and \(\mathcal{R}(M^t M) = \mathcal{R}(M^t) = \mathcal{R}(M^*) \). Since \(B \) and \(C \) are hypo-EP operators with closed ranges, \(\mathcal{R}(B B^t) = \mathcal{R}(B) \subseteq \mathcal{R}(B^*) = \mathcal{R}(B^t B) \) and \(\mathcal{R}(C C^t) = \mathcal{R}(C) \subseteq \mathcal{R}(C^t) = \mathcal{R}(C^t C) \). Then,
\[
\mathcal{R}(M) = \mathcal{R}(M M^t) = \mathcal{R}(B B^t) \oplus \mathcal{R}(C C^t) \subseteq \mathcal{R}(B^t B) \oplus \mathcal{R}(C^t C) = \mathcal{R}(M^t M) = \mathcal{R}(M^*).
\]
Therefore, M is a hypo-EP operator with closed range.

Corollary 7. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ with $\mathcal{N}(C) \subseteq \mathcal{N}(A)$ and $\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*)$. If B and C are EP operators with closed ranges, then M is an EP operator matrix with closed range.

Theorem 4. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ with $\mathcal{N}(B) = \mathcal{N}(C) \subseteq \mathcal{N}(A)$ and $\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*)$. If $\mathcal{R}(B)$ and $\mathcal{R}(C)$ are closed, then M is a hypo-EP operator matrix with closed range if and only if B and C are EP operators.

Proof. The sufficiency is clear by Lemma 5. Now, we suppose that M is a hypo-EP operator matrix with closed range. We write

\begin{equation}
L := \begin{pmatrix} I & AC^* \\ 0 & I \end{pmatrix},
\end{equation}

\begin{equation}
P := \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}.
\end{equation}

In the similar way as in the proof of Theorem 3, we have $M = LP$, and hence, $\mathcal{N}(P) = \mathcal{N}(M) \subseteq \mathcal{N}(M^*)$, since M is a hypo-EP with closed range. This means $M^* = M^* P^* P$ by Lemma 1, i.e.,

\begin{equation}
\begin{pmatrix} A^* \\ B^* \end{pmatrix} = M^* P^* P = \begin{pmatrix} A^* C^* C \\ B^* C^* C \end{pmatrix}.
\end{equation}

Hence, $C^* = C^* B^* B$, which together with $\mathcal{N}(C) = \mathcal{N}(B)$, implies $\mathcal{N}(C) \subseteq \mathcal{N}(C^*)$. Thus, C is a hypo-EP operator. Similarly, it follows from $B^* = B^* C^* C$ and $\mathcal{N}(B) = \mathcal{N}(C)$ that $\mathcal{N}(B) \subseteq \mathcal{N}(B^*)$, and therefore, B is a hypo-EP operator.

Corollary 8. Let $B, X, C \in \mathcal{L}(\mathcal{H})$ and $M = \begin{pmatrix} BXC \\ B \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ with $\mathcal{N}(B) = \mathcal{N}(C)$. If $\mathcal{R}(B)$ and $\mathcal{R}(C)$ are closed, then M is a hypo-EP operator matrix with closed range if and only if B and C are EP operators.

Corollary 9. Let $M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ with $\mathcal{N}(B) = \mathcal{N}(C) \subseteq \mathcal{N}(A)$ and $\mathcal{N}(B^*) \subseteq \mathcal{N}(A^*)$. If $\mathcal{R}(B)$ and $\mathcal{R}(C)$ are closed, then M is an EP operator matrix with closed range if and only if B and C are EP operators.

Proof. According to the assumption, as with Lemma 5, we have equation (28). Since B and C are EP operators with closed ranges, $\mathcal{R}(B B^*) = \mathcal{R}(B^*) = \mathcal{R}(B^* B)$ and $\mathcal{R}(C C^*) = \mathcal{R}(C^*) = \mathcal{R}(C^* C)$. Then,

\begin{equation}
\mathcal{R}(M) = \mathcal{R}(M M^*) = \mathcal{R}(B B^*) \mathcal{R}(C C^*) = \mathcal{R}(B^* B) \mathcal{R}(C^* C) = \mathcal{R}(M^* M) = \mathcal{R}(M^*).
\end{equation}

Proof. By Corollary 7, we only need to show the necessity, which can be easily verified according to the proofs of Corollary 4 and Theorem 4.

Corollary 10. Let $B, X, C \in \mathcal{L}(\mathcal{H})$ and $M = \begin{pmatrix} BX \end{pmatrix} \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ with $\mathcal{N}(B) = \mathcal{N}(C)$. If $\mathcal{R}(B)$ and $\mathcal{R}(C)$ are closed, then M is an EP operator matrix with closed range if and only if B and C are EP operators.

Remark 4. In Hilbert space case, the conditions of closed range in Theorem 4 and Corollary 9 can be naturally omitted in Theorem 3.8 and Theorem 3.9 of [10], and the alternative proofs of Theorem 4 and Corollary 9 can be, respectively, found in Theorem 3.8 and Theorem 3.9 of [10].

3. The Application of EP Operators

In this section, let \mathcal{H}, \mathcal{K}, and \mathcal{G} be Hilbert spaces. We establish the solvability conditions and the general expression for the EP solution to the operator equations

\begin{equation}
AX = C, \\
XB = D,
\end{equation}

where $A, C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, $B, D \in \mathcal{B}(\mathcal{G}, \mathcal{H})$, and $X \in \mathcal{B}(\mathcal{H})$.

Lemma 6 (see [25]). Let $T \in \mathcal{B}(\mathcal{H})$ with closed range. Then, the operator T is EP if and only if there exist Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2, $U \in \mathcal{B}(\mathcal{H}_1 \oplus \mathcal{H}_2, \mathcal{H})$ unitary, and $T_1 \in \mathcal{B}(\mathcal{H}_1)$ isomorphism such that

\begin{equation}
T = U(T_1 \oplus 0)U^*,
\end{equation}

where $\mathcal{H}_1 \oplus \mathcal{H}_2 = \mathcal{H}$.

Lemma 7 (see [22]). Let $A, C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $B, D \in \mathcal{B}(\mathcal{G}, \mathcal{H})$. Suppose that A and B have closed ranges. Then, equation (33) has a common solution $X \in \mathcal{B}(\mathcal{H})$ if and only if

\begin{equation}
\mathcal{N}(A^*) \subseteq \mathcal{N}(C^*), \\
\mathcal{N}(B) \subseteq \mathcal{N}(D), \\
AD = CB.
\end{equation}

In this case, the general common solution is given by
\[
X = A^* C + DB^* - A^* ADB^* + (I_{\mathcal{H}} - A^* A) Y (I_{\mathcal{H}} - BB^*),
\]
where \(Y \in \mathcal{B} (\mathcal{H}) \) is arbitrary.

Now, we consider the EP solution to equation (33). By the Lemma 6, for the unitary operator \(U \in \mathcal{B} (\mathcal{H}_1 \oplus \mathcal{H}_2, \mathcal{H}) \), the solution has the following factorization:

\[
X = U \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} U^*.
\]

Let \(\mathcal{R} (A), \mathcal{R} (B) \) be closed, and

\[
AU = \begin{pmatrix} A_1 & A_2 \end{pmatrix}, \quad
CU = \begin{pmatrix} C_1 & C_2 \end{pmatrix},
\]

\[
U^* B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, \quad
U^* D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix},
\]

where \(A_1, C_1 \in \mathcal{B} (\mathcal{H}_1, \mathcal{H}), A_2, C_2 \in \mathcal{B} (\mathcal{H}_2, \mathcal{H}), B_1, D_1 \in \mathcal{B} (\mathcal{H}_1, \mathcal{H}), B_2, D_2 \in \mathcal{B} (\mathcal{H}_2, \mathcal{H}), \) and \(\mathcal{R} (A_1) \) and \(\mathcal{R} (B_1) \) are closed. Then, equation (33) has an EP solution if and only if operator equations

\[
A_1 X_1 = C_1, \quad X_1 B_1 = D_1, \quad C_2 = 0, \quad D_2 = 0
\]

\[\text{Conflicts of Interest}\]

The authors declare that they have no conflicts of interest.

\[\text{Acknowledgments}\]

This work was supported by the NNSF of China (Nos. 11961052 and 11761029) and the NSF of Inner Mongolia (No. 2017MS0118).

\[\text{References}\]

[1] I. J. Katz and M. H. Pearl, “On EPr and normal EPr matrices,” Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, vol. 70, pp. 46–77, 1966.

[2] H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, P. Noordhoff, Groningen, Netherlands, 1950.
S. L. Campbell and C. D. Meyer, “EP operators and generalized inverses,” *Canadian Mathematical Bulletin*, vol. 18, no. 3, pp. 327–333, 1975.

K. Sharifi, “EP modular operators and their products,” *Journal of Mathematical Analysis and Applications*, vol. 419, no. 2, pp. 870–877, 2014.

E. Boasso, “Factorizations of EP banach space operators and EP banach algebra elements,” *Journal of Mathematical Analysis and Applications*, vol. 379, no. 1, pp. 245–255, 2011.

D. S. Djordjević, “Product of EP operators on Hilbert spaces,” *Proceedings of the American Mathematical Society*, vol. 129, pp. 1727–1731, 2000.

R. E. Hartwig and I. J. Katz, “On products of EP matrices,” *Linear Algebra and its Applications*, vol. 252, no. 1-3, pp. 339–345, 1997.

D. Mosic, D. S. Djordjevic, and I. J. Koliha, “EP elements in rings,” *Linear Algebra and its Applications*, vol. 431, pp. 527–535, 2009.

M. Itoh, “On some EP operators,” *Nihonkai Mathematical Journal*, vol. 16, pp. 49–56, 2005.

A. B. Patel and M. P. Shekhwat, “Hypo-EP operators,” *Indian Journal of Pure and Applied Mathematics*, vol. 47, no. 1, pp. 73–84, 2016.

A. Vinoth and P. Sam Johnson, “On sum and restriction of hypo-EP operators,” *Functional Analysis, Approximation and Computation*, vol. 9, no. 1, pp. 37–41, 2017.

M. M. Karizaki and D. S. Djordjević, “Commuting C∗ modular operators,” *Aequationes Mathematicae*, vol. 90, pp. 1103C–1114, 2016.

D. S. Rakić, N. Ć. Dinić, and D. S. Djordjević, “Core inverse and core partial order of Hilbert space operators,” *Applied Mathematics and Computation*, vol. 244, pp. 283–302, 2014.

Y. Liu and H. Su, “Some necessary and sufficient conditions for containment of second-order multi-agent systems with sampled position data,” *Neurocomputing*, vol. 378, pp. 228–237, 2020.

Y. Liu and H. Su, “Containment control of second-order multi-agent systems via intermittent sampled position data communication,” *Applied Mathematics and Computation*, vol. 362, p. 124522, 2019.

F. Z. Zhang, *The Schur Complement and its Applications*, Springer-Verlag, Berlin, Germany, 2005.

F. Burns, D. Carlson, E. Haynsworth, and T. Markham, “Generalized inverse formulas using the schur complement,” *SIAM Journal on Applied Mathematics*, vol. 26, no. 2, pp. 254–259, 1974.

A. Meenakshi, “On schur complements in an EP matrix,” *Periodica Mathematica Hungarica*, vol. 16, no. 3, pp. 193–200, 1985.

C. A. Rohde, “Generalized inverses of partitioned matrices,” *Journal of the Society for Industrial and Applied Mathematics*, vol. 13, no. 4, pp. 1033–1035, 1965.

M. M. Karizaki, M. Hassani, M. Amyari, and M. Khosravi, “Operator matrix of moore-penrose inverse operators on Hilbert C∗-modules,” *Colloquium Mathematicum*, vol. 140, pp. 171–182, 2015.

C. R. Rao and S. K. Mitra, *Generalized Inverse of Matrices and its Applications*, Wiley, Hoboken, NJ, USA, 1971.

A. Dajić and I. J. Koliha, “Positive solutions to the equations AX=C and XB=D for Hilbert space operators,” *Journal of Mathematical Analysis and Applications*, vol. 333, pp. 567–576, 2007.

C. Y. Deng and H. K. Du, “Representations of the moore-penrose inverse of 2×2 block operator valued matrices,” *Journal of the Korean Mathematical Society*, vol. 46, no. 6, pp. 1139–1150, 2009.

R. E. Hartwig, “EP perturbations,” *Sankhyā: The Indian Journal of Statistics, Series A*, vol. 56, pp. 347–357, 1994.

D. Drivaliaris, S. Karanasios, and D. Pappas, “Factorizations of EP operators,” *Linear Algebra and Its Applications*, vol. 429, no. 7, pp. 1555–1567, 2008.