Bio-Inspired Ant Lion Optimizer for a Constrained Petroleum Product Scheduling

CHINWE PEACE IGIRI¹, DEEPSHIKHA BHARGAVA², (Senior Member, IEEE), THEODORA EKWOMADU³, FUNMILAYO KASALI¹, AND BASSEY ISONG⁴,⁵

¹College of Basic and Applied Science, Mountain Top University, Ogun State 110106, Nigeria
²Department of Computer Science Engineering, Amity University, Greater Noida, Uttar Pradesh 201303, India
³Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa
⁴Faculty of Science and Technology, Cavendish University Uganda, Kampala, Uganda

Corresponding authors: Chinwe Peace Igiri (chynkemdirim@gmail.com) and Bassey Isong (isong.bassey@ieee.org)

ABSTRACT Real-world optimization problems demand sophisticated algorithms. Over the years bio-inspired approach, a subset of computational intelligence has demonstrated remarkable success in real-world use cases, especially where exact or deterministic algorithms are ineffective. Petroleum product scheduling is a complex optimization task belonging to the combinatorial problem category. The problem size and the constraints compound the complexity of the petroleum product scheduling problem. However, conventional optimization methods such as the exact or deterministic algorithm produced a poor solution quality to the petroleum products scheduling problem. Therefore, this study leverages the potency of a bio-inspired approach, Ant Lion Optimizer (ALO) in its basic state to enhance the solution quality. This is in line with She-Shin Yang’s proposition, father of bio-inspired algorithms who advocated for the application of existing bio-inspired algorithms to tackle real-world problems rather than developing new algorithms. Bio-inspired is a computational paradigm that models the characteristics of natural biological entities to solve complex problems. We also used the Chaotic Particle Swarm Optimization (CPSO) algorithm for the same problem to unveil the efficacy of the roulette wheel function in ALO. The results show a 24.8% and 23.9% reduction in the original cost of distribution on ALO and CPSO respectively. Also, 99.5% of the constraints are met. Thus, problems of scarcity, minimum allocation and product availability are solved using the penalty constraint handling method. The exact algorithm showed a 14% reduction in the original cost. However, despite the effectiveness, further work on constraint handling methods and other bio-inspired computation approaches such as Genetic algorithms and their variants could be possible in the future scope. Moreover, other real-world problem domains such as power distribution in the power, sector could be a possible application of the ALO.

INDEX TERMS Optimization, bio-inspired algorithms, ant lion optimizer, particle swarm optimizer, petroleum product scheduling, chaotic functions, penalty constraint handling method.

I. INTRODUCTION

Optimization is an all-domain-centric subject. It involves searching for the best alternative given an objective function subject to constrained or unconstrained variables [1]. Amidst several options, finding the best solution could be complex or nearly impossible. Optimization need arises when there are unlimited resources. To this end, every organization strives to strategically plan and design their system to maximize profit amidst scarce resources [2]. Conventional optimization techniques may not give optimum solutions to some problems as demonstrated in this study [3]. The problem complexity suggests the need for a more sophisticated optimization technique. The problem size and the constraints are the major characteristics of a complex problem, and many real-world problems belong to this category. Typically, scheduling is a combinatorial optimization problem. Combinatorial optimization is finding an optimal solution to perform a collection
of tasks by several agents at minimal cost, time and resources. It either minimizes cost or maximizes profit based on defined constraints. The complexity lies in a large number of decision variables and constraints. The efficacy of the algorithm applied determines the solution quality. Many conventional algorithms are not effective in finding optimal solutions [4], [5], [6].

Bio-inspired computation models the principle found in biological beings or activities to solve complex real-world problems. Different authors classify the algorithm based on certain defined criteria. For example, evolutionary and swarm intelligence are classified based on the operation mode of the organisms [7]. The evolutionary-based algorithm is inspired by the theory of evolution. The principle is the survival of the fittest [8]. Swarm intelligence on the hand, involves the cooperation of the individual organisms to solve a problem. Evolutionary is competitive while swarm intelligence is cooperative when searching for an optimal solution, [9]. Another classification, based on search mechanisms is Heuristics and Metaheuristics. In recent times, [10] presented a more comprehensive categorization. The nine groups are based on Evolutionary algorithms [11], chemical processes [12], social activities [13], physics [14], sporting activities [15], musical compositions [16], plant characteristics [17], mathematics [18], and Swarm-based. ALO could be classified as an Evolutionary Algorithm. It is a metaheuristic algorithm that operates by the survival of the fittest (see the subsequent section for a more comprehensive description). ALO and its variant have demonstrated significant performance in medical applications, engineering controls, and wireless networks, amongst others [15]. Despite its wide application, there is a need to extend it to solve petroleum product scheduling problems.

Petroleum product scheduling is a combinatorial optimization problem. It consists of a variety of products such diesel, kerosene, paraffin, petrol etc. These refined products are transported from the production centres to various distribution centres [19]. Usually, the distribution centres are based on demand and allocation policies which could result in scarcity or surplus if not strictly ahead. The oil and gas sector faces numerous challenges in Nigeria. Typically, transporting crude oil and refined products to and from the upstream and downstream respectively results in overhead costs [3]. More so, customers’ satisfaction and the company’s profit must be balanced. Therefore, an optimum scheduling solution is critical to realizing this goal. The proposed study attempts to proffer a solution by reducing the distribution cost of twelve (12) petroleum products using data from Pipeline Petroleum Marketing Company (PPMC) as a case study. PPMC is a subsidiary of Nigeria National Petroleum Cooperation [20]. The petroleum product distribution matrix of PPMC is a typical constrained optimization problem.

Optimization problems could be constrained or non-constrained. However, many real-world problems are constrained. Typically, engineering design optimization problems, energy management in a microgrid, and wireless sensor networks [21], [22], [23]. A variety of constrained handling methods is integrated into the algorithm to obtain an optimum or near optimum solution. Such constrain handling methods like the penalty method, separatist approach, feasibility preserving technique [24], and Lagrange multiplier [25]. Petroleum product optimization is a complex task; thus, it belongs to the class of combinatorial problems [26]. From the preceding, it could be deduced that gradient-based algorithms are used in the petroleum optimization model evaluation. Studies have shown that the gradient-based optimization method is not effective in solving some real-world problems [27]. Among the limitations of the conventional gradient-based methods are poor solution quality, high computation cost, and implementation complexity [28]. Bio-inspired algorithms have shown better alternatives to conventional methods [29], [30], [31], [32]. Upon this premise, therefore, the study models and evaluates petroleum product scheduling optimization using a subsection of a public refinery in Nigeria. The bio-inspired algorithm approach would be employed to implement the model and compare the result using the existing conventional method in the literature.

The remaining parts of the paper are structured as follows: Section II discusses the related concepts and works; Section III presents the study methodology while Section IV presents the results. The study’s final remark and future scope are presented in Section V.

II. RELATED WORKS
The study considers related work on ALO applications, chaotic optimization, constraint handling techniques, and petroleum scheduling. TABLE 1 presents the summary.

A. ANTLION OPTIMIZER (ALO) APPLICATIONS
ALO has shown significant performance in both constrained and unconstrained optimization problems. In an unconstrained engineering problem like gear train design, ALO has been utilized to optimize the parameter tuning [33]. ALO has shown effectiveness in handling the Integrated Maintenance Scheduling problem [34]; optimal design in engineering problems [35]; optimized the turning parameter in PID controller [36]. A hybrid ALO and genetic operators have demonstrated efficiency in data mining and big data analytics [33], [37]. A hybrid ALO and Wavelet Support Vector Machine were proposed for the accuracy of feature selection in hyperspectral image processing [38]. The multi-Layer neural network problem has also been addressed with ALO [39]. It has also demonstrated effectiveness in image processing [40]. Also, energy and resource distribution optimization in the power sector has experienced a significant impact on ALO [41], [42].

B. CHAOTIC-IMPROVED BIO-INSPIRED ALGORITHMS
Chaotic functions have demonstrated significan results in handling premature convergence in many bio-inspired algorithms including the Chaotic bee colony algorithm [43], and the Chaotic harmony search algorithm [44]. Contemporary
studies have also shown a wide range of chaotic improved optimization. For example, Varol Altay & Atalas integrated chaotic function variants into the birds’ swarm algorithm to address the local optima entrapment problem. The authors applied the modified variant of the birds swarm algorithm to benchmark functions and real-world engineering design optimization problems [45]. According to the authors, the improved version outperformed the basic counterpart [45]. Again, League Champion Algorithm (LCA) has been modified with various chaotic functions including logistic, circle, and sinusoidal maps to balance exploitation and exploration in the basic LCA [46]. The study showed that the Chaotic LCA is superior to the basic version when tested with popular benchmark optimization problems according to the authors [46]. A chaotic system has also demonstrated significant enhancement in Optic inspired optimization algorithms as presented in the article, titled “Chaos-based optics-inspired optimization algorithms as global solution search approach” [47]. Similarly, Chaos has been used to handle the local optima problem in Particle Swarm Optimizer (PSO). The same has shown improved performance in various optimization spaces such as data clustering [48], reactive power optimization [49], electric load forecasting [50], and many more. Chaotic PSO would also be extended to the petroleum product schedule in the proposed study to measure its effectiveness.

C. CONSTRAINT HANDLING TECHNIQUES

Not all solutions of the variable space are viable in many real-world optimization tasks. There are usually restrictions referred to as constraints. These constraints intensify the difficulty of the optimization procedure. Finding optimum or near optimum solutions that satisfy all the constraints is usually challenging. Several constraints handling techniques are available in the literature [24]. The popular methods are the penalty function, separatist method, feasibility preserving method, and hybrid approaches [24]. Penalty constrained handling method converts the constraint to unconstraint by incorporating a term called penalty to the objective function. The solution consequently decreases the objective value [51].

$$\gamma(\vec{u}) = f(\vec{u}) + \left[\sum_{i=1}^{d} q_i h_i + \sum_{j=s+1}^{e} p_j k_j \right]$$ \hspace{1cm} (1)

where $\gamma(\vec{u})$ and $f(\vec{u})$ represent the modified and original objective functions respectively, h_i and k_j denotes the inequality and equality constraints respectively, while q_i and p_j are the penalty parameters [21], [51]. The penalty method is broadly divided into two categories, interior and exterior penalty methods. The exterior penalty approach requires the knowledge of the feasible solution and it is not suitable for many real-world problems. In the exterior penalty method, on the contrary, the knowledge of the feasible solution is not a prerequisite [24]. The exterior penalty paradigm has demonstrated effectiveness when integrated with the Genetic Algorithm (GA) [24].

D. PETROLEUM PRODUCT SCHEDULING

Various transportation means exist for shipping petroleum products, including roads, vessels, railways, and pipelines. Although the pipeline is the most economical, it is capital intensive and less efficient [52]. The benefits of optimization in refinery operations cannot be underestimated. Implicitly, it determines the business is sustained amidst highly competitive and unstable environmental challenges. Enhancing the planning and services of petroleum products is a paramount management concern in the oil and gas industry [53]. In a highly constrained and competitive environment, management and stakeholders need an efficient optimization model to maximize profit [54]. Although some commercial tools
TABLE 2. Petroleum product demand matrix source [20].

Products	D1	D2	D3	D4	D5	D6	D7	D8	Availability
Fuel oil	3700	2010	444	48	228	11174	744	1104	16470
Lubricating oil	15272	10526	19520	4112	9254	10512	12040	9838	43088
Kerosene	15024	970	350	2988	2258	11416	8168	4674	37234
Gasoline	16580	326	1406	22	192	696	1668	838	13216
Wax	1920	180	722	692	400	772	1996	820	12480
Bitumen	1560	550	1510	556	204	822	156	696	11130
Others	2304	456	1978	274	574	862	1316	622	3192
Total	10260	4592	3682	2874	4308	7610	5750	5130	17086
Total cost	4310	4120	5150	1030	1694	3214	1926	3384	15008
Total cost	8508	56	82	746	1250	7416	4030	616	16424
Total cost	1068	480	528	92	156	960	240	152	3072
Total cost	70	16	32	6	20	96	18	18	2016
Policy	0.2	0.2	0.4	0.4	0.6	0.8	0.4	0.8	0

Some production scheduling models are available in the literature; including the nonlinear planning model [53]. It is a three-phased planning model that involves raw material supply optimization, processing, and commercialization. The study proposed a nonlinear mixed integer programming (MIP) to maximise oil refinery production using a gradient-based algorithm. Although the study obtained a satisfactory result, according to the authors [53], they also recommended an enhanced approach to optimize the operation cost. [54] proposed an in-line certification (ILC) approach to optimize petroleum product scheduling. [26] proposed a hybrid model for schedule lube oil production. The lube oil plant is a subsection of a petroleum refinery. The “flow network optimization (FNO)” was integrated with a binary integer linear programming (BILP)” to form the hybrid model. The study analysed the six sections and products of the lube oil plant using an Indian-based petroleum oil refinery. The four constraints including reservoir capacity, change over time, flow and yield rate and slop occurrence were considered in the proposed hybrid model [26]. The model was evaluated with a software tool, LINDO to be exact. The authors claimed that optimal solutions were obtained based on certain assumptions. [20] developed a multi-objective multi-constrained linear programming model for the petroleum product supply chain. The study outlined the various products and their distribution centres of a subunit of a public refinery in Nigeria. The proposed model was evaluated with TORA (an operation research software package). About a 14% reduction of the initial distribution cost was obtained [20].

A. PETROLEUM PRODUCT PROBLEM DEFINITION

TABLE 2 describes the petroleum product distribution matrix. It consists of twelve products (fuel oil, lubricating oil, kerosene, gasoline, wax, bitumen, and others) and eight distribution centres. Also, the unit transportation cost of each product from the source to the depot is given in the unit cost row, while the total quantity of each product available is presented in the availability column. The company operates on certain policies. First, the distribution policy (policy row) that states that a certain percentage of the product must be sent to a depot to sustain customers’ satisfaction and avoid scarcity. Then the demand policy states that not more than the requested amount of product should be shipped to a depot. TABLE 3 is an illustration of the quantity of each product shipped to the eight depots. The zero quantity is highlighted in red colour indicating that nothing was shipped to those depots. By implication, the company policy is violated and it could result in scarcity of those products at their corresponding location. Aside from policy violations, the total shipping cost is relatively high. The present research attempts to satisfy the constraints at reduced shipping costs.
TABLE 3. Quantity of products supplied to the depots [20].

	D1	D2	D3	D4	D5	D6	D7	D8
1	1690	2010	44	4	288	10554	744	994
2	4746	10526	1952	822	2776	4204	8428	8582
3	14054	970	36	568	2258	6846	8168	4206
4	11210	326	140	4	58	278	1168	0
5	750	180	96	692	120	308	0	820
6	232	350	152	200	62	240	0	110
7	1000	456	498	54	172	344	0	622
8	2730	4592	368	574	1292	3644	4026	0
9	190	4210	516	206	1694	2898	1926	3046
10	8452	56	8	150	376	2966	3856	554
11	0	480	290	18	46	384	168	0
12	8	16	4	2	6	38	12	0

The total cost of distribution N2,353,050

TABLE 4. Problem definition and data description.

Notation	Description	Data Type	Boundary	Unit
p	Product index	Integer	u<p>0	-
q	Depot index	Integer	v<q>0	-
Dpq	The quantity, p demanded from depot, q	Decision Variable	19520< Dpq<22	Barrel
Apq	Quantity of product, p available at source	Decision Variable	43088<Apq>3072	Barrel
u	Number of products available for shipping	Integer	12<u>0	-
v	Number of depots	Integer	8<v>0	-
spq	Product p shipping cost from source to depot q	Currency	-	Naira
G	Summation of shipping cost	Currency	-	Naira
Kpq	Quantity of product, p supplied at depot, q	Integer values	14054< Kpq>0	-
Rq	Minimum quantity to be shipped to depot q	Integer values	0	-

B. OBJECTIVE FUNCTION DEFINITION FOR PETROLEUM PRODUCT DISTRIBUTION

From TABLE 2, the petroleum product demand matrix displays 12 petroleum products and 8 depots or distribution centres, resulting in 96 decision variables. Also, there are three major constraints namely, availability, demand, and policy constraints, resulting in 208 constraints. The availability constraint states that the total quantity of product to be allocated to various depots must not exceed the quantity available. Also, the demand constraint states that the quantity of product to be shipped to a depot must not exceed the quantity requested by that depot. While the policy constraint states that the quantity to be shipped to a depot must not be less than the designated percentage of the quantity requested by the depot. TABLE 3 shows the quantity of each product supplied to various depots according to PPMC. However, according to [20], there is no specific method for data generation in TABLE 3. TABLE 4 presents the problem definition and data description of the petroleum product matrix. Although the maximum product index, p is 12. However, it could be extended according to the problem space. The same applies to the depot index, q. The ALO uses an inbuilt linear scaling normalization technique to confine the search process within the designated search space as shown in Eq. (9). The objective function is shown in Eq. (2) and the notations are defined in TABLE 4.

Minimize:

$$G = \sum_{p}^{v} \sum_{q}^{u} G_p D_{pq}$$

(2)

Subject to:

$$\sum_{p=1}^{v} D_{pq} \leq A_p \forall p = 1, 2, 3, \ldots, 12 \quad \text{(Availability constraint)}$$

$$D_{pq} \leq K_{pq} \forall p = 1, 2, 3, \ldots, 12; q = 1, 2, 3, \ldots, 8 \quad \text{(Demand constraint)}$$

$$D_{pq} \geq R_q K_{pq} \forall p = 1, 2, 3, \ldots, 12; q = 1, 2, 3, \ldots, 8 \quad \text{(Policy constraint)}$$

$$D_{pq} \geq 0 \forall p = 1, 2, 3, \ldots, 12; q = 1, 2, 3, \ldots, 8 \quad \text{(Non-negativity constraint)}$$
We incorporate the penalty constraint handling method to ensure that the constraints are satisfied. Therefore, a new objective function is shown in Eq. (3)

\[
\psi_r (G) = f (G) + \Omega_r \sum h(D_{pq} (G))
\]

(3)

where \(h(D_{pq} (G)) = \max(0, D_{pq} (G))^2 \).

\(h(D_{pq} (G)) \) is the exterior penalty function and \(\Omega_r \) is the penalty coefficient. The penalty coefficient simultaneously increases at every iteration \(r \) by a factor of 10, thereby generating an initial solution of an unconstrained problem for subsequent iterations. It results in the convergence of the progressive unconstrained problem towards the initial feasible location of the constrained problem.

C. STANDARD PSO AND CPSO

The PSO algorithm is a population-based algorithm that models a swarm of fish or birds during their foraging activities [57], [58], [59]. The swarm cooperate by comparing the individual (personal) best and cooperate (global) best location to find the food source (feasible solution to an optimization problem). Two equations control the kernel of the PSO algorithm, Eq. (4) and Eq. (5). An algorithm kernel is defined by the equations that control the search process of the algorithm [60].

\[
\bar{V}_i(t+1) = \omega \bar{V}_i(t) + m_1 \cdot \text{rand1}(.) \cdot (p_i - x_i) + m_2 \cdot \text{rand2}(.) \cdot (g - x_i),
\]

(4)

\[
\bar{x}_i(t+1) = x_i(t) + \bar{V}_i(t + 1),
\]

(5)

where, \(\bar{V}_i = (v_{i1}, v_{i2}, v_{i3}, \ldots, v_{in}) \) referred to the particle velocity, it is the distance to be covered by the particle from its current location; \(x_i = (x_{i1}, x_{i2}, x_{i3}, \ldots, x_{in}) \) represents the local best position; \(x = (x_1, x_2, x_3, \ldots, x_N) \) is the global best position; \(\text{rand1}() \) and \(\text{rand2}() \) are simple randomization parameters; \(m_1 \) and \(m_2 \) are the acceleration constant; while \(\omega \) is the inertial weight. Comprehensive details about the PSO algorithm are available in the literature [57]. However, studies have shown that the standard PSO gets trapped in local optima [58], [59]. We consider the chaotic improved PSO variant CPSO to find an optimum or near optimum solution for the petroleum product distribution network, although the standard PSO solution would also be presented to demonstrate and compare the effect of chaos on the problem in question. Specifically, the logistic map is used to improve the randomization process. The chaotic map has shown significant performance in handling local optima entrapment problems in stochastic optimization algorithms [59], [60], [61]. This research considers the logistic map which has shown good results in stochastic optimization [60]. The logistic map function is shown in Eq. (6).

\[
c_{t+1} = \psi m_p (1 - c_t)
\]

(6)

where \(m_p \in (1, 0) \) and \(\psi \) is the parameter at (0,4) intervals. Hence, Eq. (7) represents the chaotic PSO (CPSO).

\[
\begin{align*}
\tilde{V}_i(t + 1) &= \omega \bar{V}_i(t) + m_1 \cdot c_t (.) \cdot (p_i - x_i) \\
&\quad + m_2 \cdot c_t (.) \cdot (g - x_i),
\end{align*}
\]

(7)

where \(c_t \) is the chaotic function. The concept is to generate initial values with the chaotic function using the property of sensitivity to initial conditions [58], [60], [62].

D. THE ALO ALGORITHM

The antlion optimizer (ALO) was developed by Mirjalili in 2015. Its inspiration came from the hunting lifestyle of the antlion [29]. The algorithm models the predator-prey relationship between the antlion and the ants in the trap. Readers are referred to [29] for the assumption that precedes the ALO. The algorithm concept consists of six stages: the ants’ random motion stage, antlion trapping pits, trap construction, descending of the ants towards the antlion, capturing prey and pit reconstruction, and last, leader selection stage [29]. The kernel of the algorithm is controlled using the following equations. The random motion is represented by Eq. (8):

\[
D_u = [0, \text{cums}\sum (2r (u_1) - 1), \text{cums}\sum (2r (u_2) - 1), \ldots, \text{cums}\sum (2r (u_k) - 1)]
\]

(8)

where \(\text{cums}\sum \) stands for the cumulative sum; \(u \) is the maximum iteration, and \(k \) represents the random movement step; \(r \) is a random number generator between zero and one. The random motion is further normalized using Eq. (9). The normalization enables the search to be confined within the designated search space.

\[
D^u_i = \frac{(D^u_i - y_i) \times (m_i - n^u_i)}{(g^u_i - y_i)} + n_i,
\]

(9)

where \(y_i \) represents the \(i \)-th variable minimum random motion; \(m_i \) is the \(i \)-th variable maximum random motion; while \(g^u_i \) is the maximum \(i \)-th variable at \(u \)-th iteration. The descending and towards the antlion is represented by Eq. (10).

\[
h^u = \frac{h^u}{F}, \quad g^u = \frac{g^u}{F}.
\]

(10)

where \(F \) is a factor given by \(f = 10^p \frac{\#}{u} \) where \(u \) is the current iteration and \(p \) is the maximum iteration, \(\# \) is a constant and it varies according to the maximum iteration [22]. Readers could refer to (Mirjalili, 2015a) for more details about the varying \(p \)-value. The last updating function is the Leadership selection process based on the roulette wheel given by Eq. 11.

\[
A^u_i = \frac{W^u_A + W^u_L}{2},
\]

(11)

where \(A^u_i \) is the \(i \)-th position of the ant at iteration \(u \)-th; \(W^u_A \) is the random motion within antlion based on the roulette wheel; and \(W^u_L \) represents the random motion around the leader at the \(u \)-th iteration.
The roulette wheel function is represented by eq.12:

\[S_i = \frac{G_i}{\sum_{k=1}^{N} G_k} \tag{12} \]

where, \(S_i \) is the probability of being selected; \(G_i \) represents the individual, its fitness. \(K \) and \(N \) are the start and end paths respectively.

IV. RESULTS AND DISCUSSIONS

A. ALO-BASED PETROLEUM PRODUCT SCHEDULING

The petroleum product scheduling matrix result using ALO is shown in TABLE 5. A population size of 2000 with 20 iterations is used in the experiments. The ALO demonstrated an efficient balance between exploitation and exploration by minimizing the shipping cost by 24.8% of the original cost. The convergence curve of the ALO algorithm is shown in Fig. 3. Also, 99.5% of the constraints are satisfied; only one is violated. The scheduling of the matrix shows that there is no zero product, in contrast to the original (PPMC) supply matrix in TABLE 3. It implies that the minimum quantity supply policy is satisfied, consequently solving the petroleum of possible scarcity. TABLE 5 also shows that no depot
C. P. Igiri et al.: Bio-Inspired Ant Lion Optimizer for a Constrained Petroleum Product Scheduling

FIGURE 2. The ALO Algorithm flowchart.

received more quantity than it requested; thereby satisfying the demand policy.

B. OPTIMUM PETROLEUM PRODUCT SCHEDULING USING CPSO

TABLE 6 presents the petroleum product scheduling matrix result based on the CPSO algorithm. The convergence plot comparing the PSO CPSO, and ALO algorithm is also shown in Fig. 2. The PSO is presented to reveal the effect of the chaos in petroleum product scheduling. The chaos significantly improved the PSO search capability. Five thousand (5000) particles (search agents) at 30 iterations gave a near-optimum scheduling solution. In contrast to the original supply chain matrix shown in TABLE 3: distribution centres 7, 8, and 11 did not receive certain products denoted as “0” as indicated in TABLE 3; thereby violating the policy constraint. Most importantly the total shipping cost is reduced by 23.9% of the initial cost.

C. COMPARATIVE PERFORMANCE OF BIO-INSPIRED AND EXACT/DETERMINISTIC ALGORITHMS

TABLE 7 presents the petroleum product scheduling matrix using the exact algorithm, (TORA) [20]. As presented in TABLE 8, the result shows only a 14% reduction of the original cost. Contrarily, the bio-inspired alternatives, ALO and CPSO gave a significantly better cost reduction of 24.8% and 23.9% of the original cost respectively. Although the ALO outperformed the CPSO and the exact algorithm, it increases the high computation resources.

The experimental results of the proposed methodologies were obtained in the same environmental conditions. Specifically, in Intel® Pentium® CPU N3510 @ 1.99 GHz processor; 4.00 GB RAM; and windows 10 64 × 64 bit operating system.

D. ADVANTAGE OF THE PROPOSED METHOD

ALO is considered cost-effective since it converges with less computational power to reduce the original total distribution cost by 24.8%. TABLE 8 shows that 2000 search agents found the near-optimum solution within 20 iterations. CPSO on the hand utilizes more computational power by using 5000 search agents at 30 iterations to obtain a 23.9% cost reduction as shown in TABLE 8. The performance of ALO and CPSO is relatively better than that of the Exact or deterministic algorithm (14.0%) as shown in TABLE 8.

E. LIMITATIONS OF THE PROPOSED METHOD

Typically, there are two limitations in the proposed study. First, one of the constraints was relaxed to obtain the results. Therefore, more robust constraint handling methods could be a suggestion for further study. Secondly, although the proposed stochastic ALO and CPSO algorithm could handle more problem sizes than the available data, however, the data...
provided by PPMC in this proposed study is not sufficient to determine the exact estimation.

V. CONCLUSION

The performance of a bio-inspired algorithm does not only depend on the behaviour of the inspiration source, but also on the appropriate representation of the characteristics. For example, the PSO algorithm is a population-based algorithm that operates by cooperation, while ALO operates by competition i.e., survival of the fittest. Both algorithms initialize with simple random number distribution, however, subsequent steps of the ALO are controlled by the Roulette wheel function as shown in step 9 of our proposed algorithm in section 3E. The Roulette wheel function enables the ALO to avoid local optima entrapment. Unlike many algorithms including PSO, ABO, etc which use the simple random

TABLE 6. Quantity of products supplied to the depots using CPSO algorithm.

	D1	D2	D3	D4	D5	D6	D7	D8
P1	740	402	178	19	228	8939	744	1104
P2	3054	2105	7808	1645	5552	8410	4816	7870
P3	3005	194	350	1195	1345	9133	3267	3739
P4	3316	326	1406	9	192	696	667	838
P5	384	180	289	277	240	772	1996	656
P6	312	110	604	556	122	658	156	557
P7	2304	91	791	274	574	862	1316	498
P8	2052	918	1473	1150	2585	6088	2300	4104
P9	862	824	2060	412	1016	2571	1926	2707
P10	1702	11	82	298	750	5953	1612	616
P11	1065	480	528	96	91	960	96	152
P12	70	16	13	2	20	96	18	18

Total cost of distribution N1,787,152

TABLE 7. Quantity of products supplied to the depots using exact algorithm [20].

	D1	D2	D3	D4	D5	D6	D7	D8
P1	3700	202	44	4	288	10554	744	994
P2	15000	1052	1952	822	2776	4204	8428	8854
P3	15024	98	36	598	2258	6846	8168	4206
P4	10782	32	140	4	58	278	1168	754
P5	1920	180	722	692	400	772	1996	820
P6	1560	550	1510	556	204	822	156	696
P7	896	46	198	54	172	344	922	560
P8	2704	460	368	574	1292	3044	4026	4618
P9	4310	412	516	206	1694	2898	1926	3046
P10	8508	6	8	150	376	2966	3856	554
P11	1068	480	528	92	156	960	240	152
P12	70	16	32	6	20	96	18	18

Total cost of distribution N2,025,200

TABLE 8. Comparative performance of CPSO, ALO, and exact algorithm.

Algorithm	Number of Iterations	Population Size	Computation time (sec.)	Relative performance to the original cost
CPSO	30	5000	23.6	23.9%
ALO	20	2000	623.1	24.8%
Exact Algorithm	N/A	N/A	N/A	14.0%
number generation in the basic phase. Such algorithms usually get trapped in local optima despite the fast computation speed. This study applied two bio-inspired algorithms—one standard and the other improved variant to optimize petroleum product scheduling. It also compares the result of the two bio-inspired algorithms with the exact algorithm in the literature [20]. We also illustrate that the kernel representation of a BIA significantly affects its efficiency, especially in a real-world problem. The results show that ALO and CPSO reduced the distribution cost by 24.8% and 23.9%, respectively, while the exact algorithm minimized the total shipping cost by only 14%. The distribution matrix for CPSO and ALO showed that 99.5% of constraints are satisfied. The ALO algorithm produced better solution quality even at its basic state, although its convergence is significantly slow. Basic PSO on the other hand is ineffective in the petroleum product scheduling network. The chaotic function shows significant improvement in the PSO search performance in a real-world optimization problem. The chaotic function enhances algorithm performance.

In all, the proposed algorithms are robust and could handle many more products and depots, but the exact algorithm (TORA) cannot handle more than 100 decision variables. The study could also be extended to other domains such as power distribution, and resource allocation, among others. Besides other constraint handling methods like language multiplier could be a possible extension in the future study. In addition, other bio-inspired algorithms including Genetic algorithm and their variants are further suggestions for future work. Furthermore, other variants of ALO could be applied to the petroleum product scheduling to compare their result with the basic ALO.

REFERENCES

[1] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Philadelphia, PA, USA: SIAM, 2019.
[2] U. Diwekar, Introduction to Applied Optimization, vol. 22, 3rd ed. Crystal Lake, IL, USA: Springer, 2020, p. 358.
[3] Y. Singh, D. Bhargava, S. Shikaa, and C. P. Igiri, “Improved African buffalo optimisation algorithm for petroleum product supply chain management,” Int. J. Grid Util Comput., vol. 11, no. 6, p. 769, 2020.
[4] J. Xiong, X. Tan, K.-W. Yang, L.-N. Xing, and Y.-W. Chen, “A hybrid multiobjective evolutionary approach for flexible job-shop scheduling problems,” Math. Problems Eng., vol. 2012, pp. 1–27, May 2012.
[5] Y. Li, “A bio-inspired adaptive job scheduling mechanism on a computational grid,” Int. J. Comput. Sci. Netw. Secur., vol. 6, no. 3, pp. 1–7, 2006.
[6] Y. Li, H. Gao, L. Wang, and J. Fu, “A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under E-supply chain environment,” Sci. World J., vol. 2013, pp. 1–10, Dec. 2013.
[7] X. Fan, W. Sayers, S. Zhang, Z. Han, L. Ren, and H. Chizari, “Review and classification of bio-inspired algorithms and their applications,” J. Bionic Eng., vol. 17, no. 3, pp. 611–631, May 2020.
[8] B.-S. Chen, “Robust design of genetic networks: Evolutionary systems biology approach via an evolutionary algorithm (EA) in phenotype space,” in Systems Evolutionary Biology. Taiwan: Academic, 2018, pp. 103–121.
[9] R. S. Parpinelli and H. S. Lopes, “An ecology-based evolutionary algorithm applied to the 2D-AF off-lattice protein structure prediction problem,” in Proc. Brazilian Conf. Intell. Syst., Fortaleza, Brazil, Oct. 2013, pp. 64–69.
[10] B. Alatas and H. Bingol, “Comparative assessment of light-based intelligent search and optimization algorithms,” Light Eng., vol. 28, no. 6, pp. 51–59, Dec. 2020.
[11] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: Past, present, and future,” Multimedia Tools Appl., vol. 80, no. 5, pp. 8091–8126, Oct. 2021.
[12] Y. Kumar, N. Dahiya, S. Malik, G. Yadav, and V. Singh, “Chemical reaction-based optimization algorithm for solving clustering problems,” in Natural Computing for Unsupervised Learning. Unsupervised and Semi-Supervised Learning., Cham, Switzerland: Springer, 2019.
[13] A. Naik and S. C. Satapathy, “A comparative study of social group optimization with a few recent optimization algorithms,” Complex Intell. Syst., vol. 7, pp. 249–295, Feb. 2021.
[14] B. Alatas and H. Bingol, “A physics based novel approach for travelling tournament problem: Optics inspired optimization,” Inf. Technol. Control, vol. 48, pp. 373–388, Sep. 2019.
[15] A. Assiri, A. Hussien, and M. Amin, “An optimization algorithm inspired by musical composition,” IEEE Access, vol. 15, pp. 1–20, 2016.
[16] R. A. Morá-Gutiérrez, J. Ramírez-Rodríguez, and E. A. Rincón-García, “An optimization algorithm inspired by musical composition,” Artif. Intell. Rev., vol. 41, no. 3, pp. 301–315, Mar. 2014.
[17] M. J. Rahimi, B. Ghorbani, M. Amidpour, and M. H. Hamedi, “Configuration optimization of a multi-generation plant based on biomass gasification,” Energy, vol. 227, Jul. 2021, Art. no. 120457.
[18] A. Mortazavi, V. Toğan, and M. Moloodpoor, “Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm,” Adv. Eng. Softw., vol. 127, pp. 106–123, Jan. 2019.
[19] H.-R. Zhang, Y.-T. Liang, Q. Xiao, M.-Y. Wu, and Q. Shao, “Supply-based optimal scheduling of oil product pipelines,” Petroleum Sci., vol. 13, no. 2, pp. 355–367, May 2016.
[20] M. O. Okwu and I. O. Opara, “Optimization modelling for multi-objective supply chains, a case study of the oil and gas sector,” Int. J. Sci. Technol., vol. 1, no. 3, pp. 54–65, 2012.
[21] C. P. Igiri, D. Bhargava, and Y. Singh, “A penalty method based-spring design optimization using bio-inspired computation approach,” in Proc. Amity Int. Conf. Artif. Intell. (AICAI), Dubai, UAE, Feb. 2019, pp. 182–187.
[22] J. M. Ramirez and A. P. Pacheco, “Use of agents for isolated microgrids with frequency regulation,” in Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization. New York, NY, USA: Academic, 2019, pp. 57–88.
[23] R. Kausik, V. Singh, and R. Kumari, “Secure multi-objective hybrid routing protocol for wireless sensor network,” Recent Patents Eng., vol. 15, no. 5, pp. 63–73, Sep. 2021.
[24] A. Petrov, I. H. S. Mostaghim, H. Zille, and M. I. Schor, “Constraint-handling techniques for highly constrained optimization,” in Proc. Intell. Cooperat. Syst. Comput. Intell. Medg., Magdeburg, Germany, 2019, pp. 38–45.
[25] S. K. Vadlamani, T. P. Xiao, and E. Yablomovitch, “Physics successfully implements Lagrange multiplier optimization,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 43, pp. 26635–26650, Oct. 2020.
[26] J. N. Abraham and K. S. Rao, “Integration of generative and evaluative models for production scheduling of lube oil plants in a petroleum refinery,” Appl. Math. Model., vol. 33, no. 3, pp. 1213–1227, Mar. 2009.
[27] X.-S. Yang, Nature-Inspired Optimization Algorithms. New York, NY, USA: Academic, 2020.
[28] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. London, U.K.: Luniver, 2010.
[29] S. Mirjalili, “The ant lion optimizer,” Adv. Eng. Softw., vol. 83, pp. 80–98, May 2015.
[30] S. Mirjalili, “How effective is the Grey Wolf optimizer in training multi-layer perceptrons,” Appl. Intell., vol. 43, no. 1, pp. 150–161, 2015.
[31] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
[32] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. D. Coelho, “Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization,” Expert Syst. Appl., vol. 47, pp. 106–119, Apr. 2016.
[33] E. N. Moueligh, M. Shehab, M. Alahinsan, S. Mirjalili, and M. A. Elaziz, “Ant lion optimizer: A comprehensive survey of its variants and applications,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1397–1416, May 2021.
[34] E. Ummaheswari, S. Ganesan, M. Abirami, and S. Subramanian, “Cost effective integrated maintenance scheduling in power systems using ant lion optimizer,” Energy Proc., vol. 117, pp. 501–508, Jun. 2017.
CHINWE PEACE IGIRI received the B.Eng. degree in computer science and engineering from the Enugu State University of Science and Technology, the M.Sc. degree in computer science from the University of Port Harcourt, Nigeria, and the Ph.D. degree in software engineering from Amity University Rajasthan, India. She has the chair of various technical sessions at conferences and meetings. She is currently a Lecturer with the Department of Computer Science and Mathematics, Mountain Top University, Nigeria. She is presently on a national assignment, serving as a Guest Lecturer at Cavendish University Uganda, under the Technical Aids Corps, Ministry of Foreign Affairs, Nigeria. She has 13+ years of teaching, research and mentoring, and administrative experience. She has published about 15 scholarly peer-reviewed articles in journals of repute as well as conference presentations and proceedings. Her research interests include emerging technologies, such as computational intelligence, software engineering, blockchain technology, data science, and artificial intelligence, among others. She has obtained much professional training and certification including a six-month professional training certification on blockchain technology jointly organized by National Program on Technology Enhanced Learning (NPTEL), India, and IBM. She has the chair of various technical sessions at conferences. She is a Registered Professional Engineer with COREN, as well as a Corporate Member of NSE, IEEE, and ACM.

[53] S. Talatali, “Optimum design of skeletal structures using ant lion optimizer,” Iran Univ. Sci. Technol., vol. 6, pp. 13–25, Jan. 2016.
[54] K. Eltay, M. S. Aslamk, and R. Ullah, “Dynamic stability enhancement using fuzzy PID control technology for power system,” Int. J. Control Autom. Syst., vol. 17, no. 1, pp. 234–242, Jan. 2019.
[55] P. Hu, Y. Wang, H. Wang, R. Zhao, C. Yuan, Y. Zheng, Q. Lu, Y. Li, and L. Masood, “ALO-DM: A smart approach based on ant lion optimizer with differential mutation operator in big data analytics,” in Proc. Int. Conf. Database Syst. Adv. Appl., 2018, pp. 64–73.
[56] M. Wang, C. Wu, L. Wang, D. Xiang, and X. Huang, “A feature selection approach for hyperspectral image based on modified ant lion optimizer,” Knowl-Based Syst., vol. 168, no. 15, pp. 39–48, Mar. 2019.
[57] A. A. Heidari, H. Faris, S. Mirjalili, I. Aljarahe, and M. Mafarja, “Ant lion optimizer: Theory, literature review, and application in multi-layer perceptron neural networks,” Nature-Inspired Optimizers, vol. 811, pp. 23–46, Jun. 2020.
[58] A. Leke and T. Marwala, “Missing data estimation using ant-lion optimizer algorithm,” Deep Learn. Missing Data Eng. Syst., vol. 48, pp. 103–114, Dec. 2019.
[59] I. N. Trivedi, S. A. Parmar, R. H. Bhesadiya, and P. Jangir, “Voltage stability enhancement and voltage deviation minimization using ant-lion optimizer algorithm,” in Proc. 2nd Int. Conf. Adv. Electr., Electr. Info., Commun. Bio-Inform. (AEEICB), Feb. 2016, pp. 263–267.
[60] T. Spoljaric and I. Pavic, “Performance analysis of an ant lion optimizer in tuning generators’ excitation controls in multi machine power system,” in Proc. 41st Int. Conv. Inf. Commun. Technol. Electron. Microelectron. (MIPTRO), May 2018, pp. 1040–1045.
[61] B. Alatas, “Chaotic bee colony algorithms for global numerical optimization,” Expert Syst. Appl., vol. 37, no. 8, pp. 5682–5687, Aug. 2010.
[62] B. Alatas, “Chaotic harmony search algorithms,” Appl. Math. Comput., vol. 216, no. 3, pp. 2687–2699, 2010.
[63] E. V. Altay and B. Alatas, “Bird swarm algorithms with chaotic mapping,” Artif. Intell. Rev., vol. 53, no. 2, pp. 1373–1414, 2019.
[64] H. Bingol and B. Alatas, “Chaotic league championship algorithms,” Arab. J. Sci. Eng., vol. 41, no. 12, pp. 5123–5147, Dec. 2016.
[65] H. Bingol and B. Alatas, “Chaos based optics inspired optimization algorithms as global solution search approach,” Chaos, Solitons Fractals, vol. 141, Dec. 2020, Art. no. 110434.
[66] L.-Y. Chuang, C.-J. Hsiao, and C.-H. Yang, “Chaotic particle swarm optimization for data clustering,” Expert Syst. Appl., vol. 38, no. 12, pp. 14555–14563, Nov. 2011.
[67] J. Chauanwen and E. Bompard, “A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation,” Math. Comput. Simul., vol. 68, no. 1, pp. 65–75, Feb. 2005.
[68] W.-C. Hong, “Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model,” Energy Convers. Manage., vol. 50, no. 1, pp. 105–117, Jan. 2009.
[69] Ö. Yeniay, “Penalty function methods for constrained optimization with genetic algorithms,” Math. Comput. Appl., vol. 10, no. 1, pp. 45–56, 2005.
[70] S. MirHassani and M. Ghorbahanlizadeh, “The multi-product pipeline scheduling system,” Comput. Math. Appl., vol. 54, no. 4, pp. 891–897, 2008.
[71] M. Joly, L. F. L. Moro, and J. M. Pinto, “Planning and scheduling for petroleum refineries using mathematical programming,” Brazilian J. Chem. Eng., vol. 19, no. 2, pp. 207–228, Apr. 2002.
[72] T. Feital, P. Lima, J. C. Pinto, M. B. de Souza, G. Xavier, M. I. Lima, and M. Joly, “Rethinking petroleum products certification,” J. Petroleum Eng., vol. 2013, pp. 1–12, Dec. 2013.
[73] M. Joly, “Refinery production planning and scheduling: The refining core business,” Brazilian J. Chem. Eng., vol. 29, no. 2, pp. 371–384, Jun. 2012.
[74] L. Magatoo, L. V. R. Arruda, and F. Neves-Jr, “A combined CLP-MILP approach for scheduling commodities in a pipeline,” J. Scheduling, vol. 14, no. 1, pp. 57–76, Feb. 2011.
[75] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Amsterdam, The Netherlands: Elsevier, 2001.
[76] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D. X. Huang, “Improved particle swarm optimization combined with chaos,” Chaos, Solitons Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.
[77] Q. Tao, Z. Huang, C. Gu, and C. Zhang, “Optimization of green agri-food supply chain network using chaotic PSO algorithm,” in Proc. IEEE Int. Conf. Service Oper. Logistics, Informat., Dongguan, China, Jul. 2013, pp. 462–467.
[78] C. P. Igi, Y. Singh, and D. Bhargava, “An improved African buffalo optimization algorithm using chaotic map and chaotic-levy flight,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 4570–4576, 2018.
DEEPSHIKHA BHARGAVA (Senior Member, IEEE) has rich experience of around 22+ years, as an Academician. She is currently working as a Professor at the Department of Computer Science and Engineering, Amity University, Greater Noida, India. She has authored 16 books and 14 Book chapters, edited two books, and published 60+ research papers in journals and conference proceedings. Her research interests include artificial intelligence, soft computing, bio-inspired computation, and healthcare informatics. She has recently been nominated as a member of the Project Review Steering Group (PRSG), Ministry of Electronics and IT (MeitY), Government of India. She has also served as Visiting Fellow at Université des Mascareignes (UDM), Ministry of Education and Human Resources, Tertiary Education and Scientific Research, Mauritius. She has been nominated by MeitY, Government of India to visit the Drone Application and Research Center (DARC), Information Technology Development Agency (ITDA), Department of Information Technology, (Government of Uttarakhand). She is also empanelled in PaperVest Press Scientific Advisors, PaperVest University Publisher of Centro Universitário Facvest-UNIFACVEST, Brazil. Recently, she has been included as a Reviewer of the 2022 NSF Graduate Research Fellowship Program (GRFP) by National Science Foundation (NSF), USA. She also received the awards: Active Participation Woman Award and Best Faculty of the year under the subcategory Authoring Books on Contemporary Subjects to name a few. She was also awarded by MHRD, Govt. of India in the year 1992 for academic excellence. Overall, four Ph.D.s were completed under her guidance.

THEODORA EKWHOMADU received the B.Sc. degree (Hons.) in applied biochemistry from the Enugu State University of Science and Technology, Nigeria, and the M.Sc. and Ph.D. degrees in biological sciences from North-west University, South Africa. She is currently a Postdoctoral Research Fellowship at the Faculty of Natural and Agricultural Sciences, North-West University, South Africa in the food security and safety niche area. She has published research papers in accredited journals, attended scientific workshops, and presented papers at several local and international conferences.

FUNMILAYO KASALI received the B.Sc. degree in computer mathematics from Olabisi Onabanjo University, in 2008, and the M.Sc. and Ph.D. degrees in computer science from Babcock University, Ilishan-Remo, Ogun State, Nigeria, in 2015 and 2018, respectively. She is currently a Lecturer with the Department of Computer Science and Mathematics, College of Basic and Applied Sciences, Mountain Top University. Her research interests include big data analytics, health informatics, user-centered systems design, blockchain technology, management information systems, and computational modeling. She is a member of Nigeria Computer Science and the Association for Computing Machinery (ACM). She also holds a Certificate in Blockchain Mastery Award by IBM and IT Project Management from the Indian School of Business amongst others.

BASSEY ISONG received the B.Sc. degree in computer science from the University of Calabar, Nigeria, in 2004, the M.Sc. degrees in computer science and software engineering from the Blekinge Institute of Technology, Sweden, in 2008 and 2010, respectively, and the Ph.D. degree in computer science from the North-West University, in 2014. He is currently an Associate Professor with the Department of Computer Science, North-West University, Mafikeng Campus, South Africa. His research interests include are not limited to software engineering, software defined networks, cloud computing, the Internet of Things and low power wide area networks, machine learning, and blockchain. He is a member of IEEE Computer, Communication, and Education Societies as well as ACM.

VOLUME 10, 2022