Greenhouse Pepper Growth and Yield Response to Copper Application

Youbin Zheng, Linping Wang, and Mike Dixon
Controlled Environment Systems Research Facility, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Abstract. Copper (electrolytically generated or from cupric sulfate) is increasingly used to control diseases and algae in the greenhouse industry. However, there is a shortage of information regarding appropriate management strategies for Cu²⁺ (Cu) in greenhouse hydroponic production. Three greenhouse studies were conducted to examine the growth and yield responses of sweet pepper (Capsicum annuum L., Triple 4, red) to the application of Cu in hydroponic production systems. In the first two experiments, plants were grown on rockwool and irrigated with nutrient solutions containing Cu at concentrations of 0.05, 0.55, 1.05, 1.55, and 2.05 mg·L⁻¹. Copper treatments were started either when plants were 32 days old and continued for 4 weeks, or when plants were 11 weeks old and continued for 18 weeks, respectively. In the third experiment, roots of seedling cultured pepper seedlings were exposed to Cu (1.0, 1.5, and 2.0 mg·L⁻¹) containing nutrient solutions for 2 hours per day for 3 weeks. Higher Cu treatment initialized when plants were 32 days old significantly reduced plant leaf number, leaf area, leaf biomass, specific leaf area, stem length and shoot biomass. The calculated Cu toxicity threshold was 0.19 mg·L⁻¹. However, when treatment initialized at plants were 11 weeks old, Cu did not have significant effects on leaf chlorophyll content, leaf area or specific leaf area. Copper started to show significant negative effects on leaf biomass and shoot biomass at 1.05 mg·L⁻¹ or higher levels. Copper treatments did not have any significant effect on fruit number, fresh weight or dry weight. Under all the Cu levels, fresh fruit copper contents were lower than 0.95 mg·kg⁻¹ which is below the drinking water standard of 1.3 mg·kg⁻¹. Seedling growth was significantly reduced by exposing roots to Cu (≥ 1.0 mg·L⁻¹) containing solutions even for only 2 h. Cu²⁺.

Greenhouse conditions are favorable to plant growth and also creating an optimal environment for various plant pathogens and algae. Commercial greenhouse operations not only employ conventional control methods (e.g., pesticides spray and biological control agents), but actively explore new methods, such as electrolytically generated copper, ozone and UV to treat nutrient solutions, growth facilities and materials. Increasing numbers of growers have started using either electrolytically generated copper (Zheng et al., 2004), cupric sulfate (Alva et al., 1999; Hill et al., 2000), or some other copper containing fungicides and bactericides (Kaplan, 1999) to control diseases or pathogens both in the greenhouse and in field crop production. However, a question which urgently needs to be answered is the Cu²⁺ (Cu) concentration (possibly threshold) that can be used to control greenhouse diseases and algae without negatively affecting crops. Much of the research on Cu toxicity has been on the responses of plants to Cu polluted soil (Fernandes and Henriques, 1991; Panou-Filotheou et al., 2001). Zheng et al. (2004) recently reported on Cu toxicity on greenhouse ornamental crops; however, we are not aware of any study that has provided Cu toxicity data for greenhouse hydroponic vegetable production.

Sweet pepper is one of the three major greenhouse vegetable crops in both Europe and Northern America; and rockwool is the primary growth medium used in greenhouse pepper production. Using Cu to control pathogens in hydroponics raises concerns about potential phytotoxic effects and Cu accumulation in fruit.

The objectives of this study were to 1) determine the dose-response of hydroponically grown pepper plants to Cu; 2) determine Cu phytotoxicity in pepper plants at two different growth stages; 3) assess copper levels in fruit of pepper plants irrigated with high concentration Cu solutions; 4) evaluate the intermittent application of Cu in greenhouse pepper production as an alternative management strategies.

Materials and Methods

Experiment I. Nine-week-old Capsicum annuum L. (sweet pepper, cultivar Triple 4, red) seedlings, grown on rockwool blocks [10 x 10 x 8 cm (L x W x H)], were transplanted to rockwool slabs [15 x 9.15 x 7.5 cm (W x L x H)] in a greenhouse vegetable production system at the University of Guelph on 28 Feb. 2003. Plants were irrigated as needed with the nutrient solution containing (mg·L⁻¹) 180 N, 50 P, 378 K, 190 Ca, 75 Mg, 120 S, 0.8 Fe, 0.55 Mn, 0.33 Zn, 0.5 B, 0.05 Cu, and 0.05 Mo. In all the nutrient solutions used in the present study, the Fe was supplied as FeCl₃, instead of chelated Fe. The nutrient solution pH was 5.8. On 13 Mar. 2003, Cu²⁺ (Cu) treatments were initialized by irrigating plants with the above nutrient solution containing a final Cu concentration of 0.05, 0.55, 1.05, 1.55, or 2.05 mg·L⁻¹. Thereafter, plants were irrigated with different nutrient solutions at different development stages following the recommendation of Ontario Ministry of Agriculture and Food (OMAF, 2001) for greenhouse pepper production, while continuing the Cu treatments. During the vegetative stage, the set point of the temperature and the relative humidity (RH) in the greenhouse were 23/21 °C (day/night) and 70% (day and night), respectively; during the harvest stage, the set point for temperature was 24/21 °C (day/night) and for the RH was 70% (day and night). All other operations were similar to common commercial greenhouse practices.

Leaf chlorophyll content index (CCI) was measured on the youngest fully expanded leaf 1 week after the initialization of Cu treatment, and this leaf was marked (referred to as old leaf hereafter) and measured again once a week thereafter. Also, once a week, the CCI of the youngest fully expanded leaf of the day (referred to as young leaf hereafter) was measured. The CCI was measured with a chlorophyll content meter (CCM-200; Opti-Sciences, Tyngsboro, Mass.).

Sweet pepper was ground into 1 mm particles for copper content analysis. Sub-samples (1 gram each) were digested using a dry ash method (at 475 °C) and then dissolved in 1.0 M HCl solution. Copper concentrations of the above solutions were analyzed by an atomic absorption spectrometer (SpectraAA-300; Varian, Victoria, Australia) at the Laboratory Service Division, University of Guelph.

The experiment was randomized complete block design with five Cu concentrations in three blocks. There were four plants in each plot.

Experiment II. Pepper seeds (Triplet 4, red) were sown in rockwool cubes and placed on a mist bench on 17 July 2002. After germination, seedlings were moved to a production greenhouse at the University of Guelph and watered with the same nutrient solution as used in the early stage in Experiment I. Plants were transplanted to rockwool slabs in a commercial greenhouse production setting on August 27, 2002 and Cu treatments were started one day later (when plants were 32 d old). Subsequently, plants were irrigated as needed with the above nutrient solution containing 0.05, 0.55, 1.05, 1.55, and 2.05 mg·L⁻¹ Cu. The experiment was
a randomized complete block design with five Cu treatments in three blocks. There were four plants in each plot. The environmental condition of the greenhouse and all the management practices were kept the same as those during the vegetative stage in Experiment I.

Leaf visible injury was assessed every day. Plants were harvested for growth analysis after 4 weeks of Cu treatment. The growth analysis methods used were the same as those used in Experiment I. The stem length was measured from the substrate surface to the top of the plant.

Experiment III. Pepper seeds (same cultivar as used in the above two experiments) were sown in rockwool cubes in a greenhouse. Seedlings (32 d old) were transplanted to a 2-L plastic pot containing a nutrient solution with 0.05 mg L⁻¹ Cu. When plants were 46 d old, Cu treatments were initialized by exposing plant roots to the above nutrient solution containing 0.05, 1.0, 1.5, and 2.0 mg L⁻¹ Cu for 2 h d⁻¹, and then returned to their original nutrient solutions.

After 21 d of Cu treatment, the CCI of the youngest fully expanded leaves were measured, and then the plants were harvested for growth analysis following the methods used in Experiment I. In addition, the roots were washed with deionized water until clean and dried in a forced air oven at 65 °C until weight constant. Root to shoot ratio was calculated by dividing the root biomass by the biomass sum of the aerial parts of each plant.

This experiment was a completely randomized design with 10 replications in each treatment.

Statistical analysis. Analysis of variance was performed to detect whether there were treatment effects. When the treatment effect was significant (P < 0.05), a multiple comparison of means was conducted using Tukey’s HSD, or a linear regression analysis was performed after log-transforming of the}

dependent variable. If there was no significant treatment effect, then data were presented as the average of all the treatments. Statistical analysis was conducted using SAS (version 9.1, SAS Institute Inc., Cary, N.C.).

Results

Experiment I. No visible symptoms of Cu toxicity or nutrient deficiency were observed on leaves of any of the plants during the entire experimental period. Sequential CCI measurements made on both the old leaves and young leaves also did not show any significant Cu treatment effect. The average CCI for the youngest expanded leaves was 64 ± 0.3 (mean ± standard error) and for the old leaves was 65 ± 0.3. There were no significant Cu treatment effects on leaf area (8226 ± 352 cm²/plant) or specific leaf area (184 ± 3 cm² g⁻¹). No significant (P > 0.05) differences in leaf and shoot biomass between Cu concentrations (mg L⁻¹) of 0.05 and 0.55 were observed. However, both leaf and shoot biomass were significantly reduced at Cu ≥ 0.105 mg L⁻¹ (Fig. 1). Copper treatment did not have any significant (P > 0.05) effect on ripe fruit number (2.5 ± 0.3 fruit/plant), ripe fruit fresh weight (342 ± 40 gram/plant) or dry weight (32.4 ± 4.7), green fruit number (3.3 ± 0.4), green fruit fresh (366 ± 49) or dry weight (26.8 ± 3.6), total fruit fresh weight (708 ± 58), or dry weight (59.2 ± 4.7). Tissue analysis showed that fruit copper contents of all the treatments were below 10 mg kg⁻¹ dry mass, which was the detection limit of the method used.

Fig. 1. Leaf and shoot biomasses of pepper plants (Triple 4, red) irrigated with Cu solution (started at week 11). Data are the mean ± SE of three replications (four subsamples in each replication). Bars bearing the same letter are not significantly different at the 5% level (by Tukey’s HSD).

Within 2 weeks after the start of the Cu treatments, young leaves of several plants irrigated with Cu concentration ≥ 0.105 mg L⁻¹ started to show chlorosis. At the end of the experiment, all the plants under 1.05 mg L⁻¹ or higher Cu concentrations had young leaves showing chlorotic symptoms. Final harvest data showed that leaf number, leaf area, leaf biomass, specific leaf area (SLA), stem length and shoot biomass of the seedlings were significantly (P < 0.001) reduced by higher Cu concentrations (Y, mg L⁻¹). According to this equation, the toxicity threshold (based on 10% reduction in shoot biomass) of rockwool grown pepper seedlings to nutrient solution Cu was 0.19 mg L⁻¹.

Experiment III. Roots started to show brown tips after the first 2-hour exposure to 1.5 and 2.0 mg L⁻¹ Cu solutions. All the plants started to show brown roots after 3 consecutive days of 2-h exposure periods to 1.0, 1.5, and 2 mg L⁻¹ Cu solutions. On day 12, all the plants in the 1.5 and 2.0 mg L⁻¹ Cu solutions started to show chlorosis on young leaves. Chlorophyll content index measured on the youngest fully expanded leaves on day 21 showed that there was a significant (P=0.005) negative linear relationship (Y=38.5−0.3735X+0.9707) between log transformed seedling shoot biomass (Y, g/plant) and nutrient solution Cu concentration (X, mg L⁻¹). Growth analysis after 21 d of copper treatment showed that leaf area, leaf biomass, stem length, stem biomass, the longest root length, root biomass,
total biomass, and root to shoot ratio were significantly (P < 0.05) reduced by solutions with Cu ≥ 1.0 mg·L⁻¹ (Table 1). No significant (P > 0.05) treatment effect was observed for specific leaf area (data not show).

Discussion

Pepper plants grown on rockwool were more sensitive to Cu toxicity at the early growth stage (Experiment II, Cu treatments initialized at 4.5 weeks) and became more resistant when plants were older (Experiment I, Cu treatments initialized at 11 weeks). The calculated Cu toxicity threshold, based on 10% shoot biomass reduction, was 0.19 mg·L⁻¹ at the seedling stage and it increased to somewhere between 0.55 to 1.05 mg·L⁻¹ when plants were older. Different plant species have different Cu sensitivities. Previous research found the threshold (mg·L⁻¹) for taro = 0.08 (Hill et al., 1999; Hill et al., 2000; Zheng et al., 2004), and the mobility of copper in plants is restricted (Fernandes and Henriques, 1991). Zheng et al. (2004) reported that copper concentration in the roots can be 20 to 30 times higher than that in the aerial parts. Even so, it is suggested that nutrient solution Cu concentration used in hydroponic pepper production, especially at early growth stage, should not be directly exposed to high level Cu, even for a short time, in solution culture or hydroponic systems with inert growing substrates. However, it may be feasible to design a system which can remove Cu or convert Cu to forms which are not available to plants after the disinfection process and before the Cu treated nutrient solution or water be delivered to hydroponic production system.

Literature Cited

Alva, A.K., B. Huang, O. Prakash, and S. Paramasivam. 1999. Effects of copper rates and soil pH on growth and nutrient uptake by citrus seedlings. J. Plant Nutr. 22:1687–1699.

Fernandes, J.C. and F.S. Henriques. 1991. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 57:247–273.

Hill, S.A., S.C. Miyasaka, and R.S. Yost. 2000. Taro production system. HortScience 35:863–867.

Javis, W.R. 1992. Managing diseases in greenhouse crops. Amer. Phytopathol. Soc. Press, St. Paul, Minn.

Kaplan, M. 1999. Accumulation of copper in soils and leaves of tomato plants in greenhouses in Turkey. Plant Nutr. 22:237–244.

Panou-Filotheou, H., A.M. Bosabalidis, and S. Karataglis. 2001. Effects of copper toxicity on leaves of oregano (Origanum vulgare) subsp. hirtum. Ann. Bot. 88:207–214.

Rey, A.F. and M.J. Tsujiita. 1987. Copper nutrition of greenhouse roses relative to supplementary irrigation and growing medium. Plant Nutr. 10:47–65.

Taylor, G.J. and C.D. Foy. 1985. Differential uptake and toxicity of ion and chelated copper in Trifolium aestivum. Can. J. Bot. 63:1271–1275.

US Environmental Protection Agency (EPA). 2002. List of contaminants and their MCLs. EPA 816-F-02-013. http://www.epa.gov/safewater/mcl.htm#mcls.

Zheng, Y., L. Wang, and M. Dixon. 2004. Response to copper toxicity for three ornamental crops in solution culture. HortScience 39:1116–1120.