On Linear Solution of “Cherry Pickup II”.
Max Weight of Two Disjoint Paths in Node-Weighted Gridlike DAG

Igor N. Tunev
itnvi@mail.ru

Abstract

“Minimum Falling Path Sum” (MFPS) is classic question in programming – “Given a grid of size $N \times N$ with integers in cells, return the minimum sum of a falling path through grid. A falling path starts at any cell in the first row and ends in last row, with the rule of motion – the next element after the cell (i, j) is one of the cells $(i+1, j-1), (i+1, j)$ and $(i+1, j+1)$”. This problem has linear solution (LS) (i.e. $O(N^2)$) using dynamic programming method (DPM).

There is an Multi-Agent version of MFPS called “Cherry Pickup II” (CP2) [1]. CP2 is a search for the maximum sum of 2 falling paths started from top corners, where each covered cell summed up one time. All known fast solutions of CP2 uses DPM, but have $O(N^3)$ time complexity on grid $N \times N$. Here we offer a LS of CP2 (also using DPM) as finding maximum total weight of 2 vertex-disjoint paths. Also, we extend this LS for some extended version of CP2 with wider motion rules.

Key words: dynamic programming, directed acyclic graph, grid, time complexity, combinatorial optimization, linear algorithm, disjoint paths, set

1 Introduction

CP2 is Multi-Agent extension of well known problem, sometimes called as “Minimum Falling Path Sum” in [2], and its variations like “Gold Mine” in [3] and “Minimum Path Sum” in [4].

There is variation of CP2 called “Cherry Pickup” in [5] sometimes called as “Diamond Mine” (DM) in [6]. DM extended with ability to lock cells, but still has linear reducing to CP2, even as finding maximum sum of 2 node-disjoint paths, as will be described below.

For solution of CP2 we offer algorithm for search of 2 paths without crossing with maximum common sum. Thus, this LS can be represented as LS for a simple case of Multi-Agent Path Finding problem (MAPF) with maximizing/minimizing deliveries/cost. The MAPF is the problem of finding collision-free paths for a team of robots from their locations to given destinations in a known environment.

Disjoint paths (DP) problem is one of the well known problems in algorithmic graph theory and combinatorial optimization. There are many LSs of finding fixed number of DP on special cases of graphs. For example, Scheffler found LS on graphs with bounded tree-width [7]. In the paper of Golovach, Kolliopoulos, Stamoulis and Thilikos [8] offered LS on a planar graphs. Most closely for our purpose is LS proposed by Tholey for 2 DP on directed acyclic graphs (DAGs) [9]. But we need in LS on node- or edge-weighted DAGs.

Suitable for our purpose the Suurballe’s algorithm (SA) on edge-weighted digraphs [10], but with not linear complexity, as we will show further. We offer LS for finding 2 node-DP with maximum total weight on some special case of node-weighted DAGs.

1.1 Problem description

Given a grid g of size $H \times W$ with addressable cells from $(0, 0)$ to $(H-1, W-1)$. Each cell in grid represents the number of cherries that we can collect. There are 2 robots in corners $(0, 0)$ and $(0, W-1)$, that can collect cherries. When a robot is located in a cell, it picks up all cherries of this cell, and this cell becomes an empty. We need to collect maximum number of cherries, using these robots. Robots can move according to following rules:

(r1) From cell (i, j), robots can move to cell $(i + 1, j - 1), (i + 1, j)$ or $(i + 1, j + 1)$;
When both robots stay on the same cell, only one of them takes the cherries;

Both robots cannot move outside of the grid at any moment;

Both robots should reach the bottom row in the grid.

The fastest solutions, found by us on the network, have \(O(H \cdot W \cdot \min\{H, W\}) \) complexity. Same complexity can be reached using next naive DPM with 3D structure \(dp \): for each \(i = 0, \ldots, H-2 \) and \(0 \leq j_1 < j_2 \leq W-1 \)

\[
dp[i][j_1][j_2] = \max_{j_1-1 \leq k_1 \leq j_1, j_2-1 \leq k_2 \leq j_2, 1.0 \leq k_1 < k_2 < W} \{\dp[i+1][k_1][k_2] + \g{k_1,j_1} + \g{k_2,j_2}\}
\]

where \(\dp[H-1][j_1][j_2] = g_{H-1,j_1} + g_{H-1,j_2} \).

Thus, if \(2H > W \), then we can to find this \(dp \) table and return \(\dp[0][0][W-1] \). If \(2H \leq W \), then any paths that started from \((0,0) \) and \((0, W-1) \) don’t intersect with each other, then this case can be reduced to the original problem with one path.

Here we answer the question – is there a solution of CP2 with \(O(H \cdot W) \) complexity? Also, we show LS for some extension of CP2 (without strong proof of correctness).

1.2 Near linear solution using Suurballe’s algorithm

Here we show the simple reduction of CP2 to the well known method for finding 2 node-DP in a nonnegatively-weighted (edge-weighted) digraph, such that both paths connect the same pair of nodes and have minimum total weight.

Let \(m \) be maximum value of \(\g \). Denote by \(\g' \) the edge-weighted DAG with \(WH+2 \) nodes and \(3(W-2)(H-1) + 4(H-1) + W+2 \) links (directed edges) such that:

1. Each cell of \(\g \) contains one node of \(\g' \). And 2 more nodes \(s \) and \(t \).
2. Weight of link from node in cell \((i,j)\) to node in cell \((i+1,j')\) is \(m-\g{i,j} \), for each \(0 \leq i < H-1, 0 \leq j < W \) and \(m\{0,j-1\} \leq j' \leq \min\{j+1, W-1\} \). Weights of 2 links from node \(s \) to nodes in cells \((0,0)\) and \((0, W-1)\) are 0. And weight of link from node in cell \((H-1,j)\) to \(t \) is \(m-\g{H-1,j} \) for each \(0 \leq j < W \).

Now we can find 2 node-DP from \(s \) to \(t \) in \(\g' \) using SA. The total weight of found 2 paths is minimum sum \(M' \). Then required answer is \(m \cdot H - M' \).

1.2.1 Complexity analysis

Let denote the set of edges and nodes of graph \(\g' \) as \(E(\g') \) and \(V(\g') \) respectively. The case when \(W > 2 \cdot H \) is trivial (because of this case can be reduced to problem with one robot in linear time), therefore we can assume that \(W \leq 2 \cdot H \).

Complexity of SA equal to complexity of Dijkstra’s algorithm (DA) \([11]\). As published in \([12]\) by Fredman and Tarjan the DA can be improved using Fibonacci heap and performed in \(O(|E(\g')| + |V(\g')| \log(|V(\g')|)) \). Then we get complexity \(O(H \cdot W \cdot \log(H \cdot W)) = O(H \cdot W \cdot \log(H)) \).

There are other optimisations of DA for our purposes. One of them is algorithm of shortest path (SP) on DAGs. Using topological sorting we can find SP on DAG in linear time as in \([13]\). But SA uses search of SP twice. And before second search of SP, the graph is not a DAG in common case.

Other optimisation for bounded integers weights by some value \(C \). But all such optimisations is not linear. Most fast of them, in our case, published in \([13]\) by Aluja, Mehlhorn, Orlin and Tarjan (AMOT). This algorithm works in \(O(|E(\g')| \cdot \log(C)) \) time. Thus, if \(C \) has polynomial dependence on \(H \), then SA with AMOT optimisation has complexity \(O(H \cdot W \cdot \log(H)) \).

Here we offer linear solution when almost all absolute values of the grid \(\g \) are close to \(C \).

2 Defaults

We can assume that absolute values in cells of grids are bounded by value \(C = f(H) \), for some positive real function \(f \) (i.e. in common case some values of \(\g \) can be negative). Exception for values equals to \(-\infty \) – this value is used for bounding of paths.

Also we assume that \(\Theta(H \cdot W) \) of cells have values \(\Theta(f(H)) \). I.e. the length of input data is \(O(H \cdot W \cdot \log(f(H))) \). And assume that \(H, W \geq 2 \).
Definition 1. The $F_{i,j}(g')$ is table, defined by grid g' of size $H \times W$, such that

$$F_{i,j}(g') = \begin{cases} 0 & i = H, \\ g'_{i,j} + \max\{F_{i+1,\max(j-1,0)}(g'), F_{i+1,j}(g'), F_{i+1,\min(j+1,W-1)}(g')\} & 0 \leq j \leq W - 1. \end{cases}$$

for each $0 \leq j \leq W - 1$. By default $F_{i,j}$ means $F_{i,j}(g)$

Definition 2. By path we call an ordered finite sequence (vector) of cells in grid (by default in g) using rules $(r1)$ and $(r3)$. I.e. after not the last cell (i,j) the next cell either $(i+1, \max(j-1,0))$ or $(i+1, j)$ or $(i+1, j + 1, W - 1)$.

Location of path in grid can be obtained by addressing to row number. For example, at i-th row the path t located at $t(i)$-th column.

Definition 3. Let t is path from row i_1 to row i_2 ($i_1 \leq i_2$), then denote sum of t as $PS(t)$. I.e.

$$PS(t) = \sum_{k=i_1}^{i_2} g_{k,t(k)}.$$

Table F is known dynamic programming method of search for maximum (or minimum, if we change the max to min in the definition of F) sum of falling path. Also, using F we can choose one of these paths with maximum sum.

Definition 4. Call path t as path defined by $F_{i',j'}$ if $t(i') = j'$ and for each $i = i' + 1, ..., H - 1$

$$t(i) \in \text{arg max}_{j = \max\{t(i-1) - 1,0\}, \ldots, \min(t(i-1) + 1, W-1\}} \{F_{i,j}\}.$$

Since the F is well known DPM for solution of MFPS, then next simple notes we will not prove

Note 1. t defined by $F_{i,j}(g)$ iff $PS(t) = F_{i,j}(g)$.

Note 2. If t starts from cell (i,j) then $PS(t) \leq F_{i,j}(g)$.

Definition 5. l_p is leftmost path defined by $F_{0,0}$. I.e. $l_p(0) = 0$ and for each $i = 1, ..., H - 1$

$$l_p(i) = \min_{j = \max\{l_p(i-1) - 1,0\}, \ldots, \min(l_p(i-1) + 1, W-1\}} \{F_{i,j}\}.$$

And r_p is rightmost path defined by $F_{0,W-1}$. I.e. $r_p(0) = W - 1$ and for each $i = 1, ..., H - 1$

$$r_p(i) = \max_{j = \max\{r_p(i-1) - 1,0\}, \ldots, \min(r_p(i-1) + 1, W-1\}} \{F_{i,j}\}.$$

By Note 1 we get $PS(l_p) = F_{0,0}(g)$ and $PS(r_p) = F_{0,W-1}(g)$. Then, if l_p don’t intersect with r_p, then required answer is $F_{0,0} + F_{0,W-1}$. This case can be checked in $O(H \times W)$ of linear operations with numbers of length $\log(H)$. Further we suppose that l_p intersects with r_p.

Due to simmetry of rules by left and right for input data and moving, all properties we will formulate for one side only. For other side all these properties can be formulated and proved similarly.

By default, if name of pair of paths starts from letters ’”l”’ and ’”r”’, then it means that path with first letter ””l”” located on the left side of path with first letter ””r””.

When we talk ”for each i” for rows, we mean ”for each $i = 0, ..., H - 1$”. When we talk ”for each j” for columns, we mean ”for each $j = 0, ..., W - 1$”.

3 Definitions and properties

Definition 6. Let $0 \leq i_1 < i_2 \leq H - 1$ and path t with begining not after i_1-th row and with ending not before i_2-th row. By subpath between rows i_1 and i_2 of t we call path $((i_1, t(i_1)), (i_1 + 1, t(i_1 + 1)), ..., (i_2, t(i_2)))$ and denote it as $t[i_1, ..., i_2]$.

By default $i_1 = 0, i_2 = H - 1$.

Definition 7. Let t is path from row i_1 to row i_2. By tail of path t from $(i, t(i))$ (or from i-th row) we call subpath $t[i, ..., i_2]$ and denote as $t[i, ..., i]$.

By prefix (or head) of path t with end on $(i, t(i))$ we call subpath $t[i_1, ..., i]$ and denote $t[i, ..., i]$.

3
Definition 8. Let t_1 and t_2 are paths. Suppose that t_1 ends after $(i-1)$-th row and t_2 starts before $(i+2)$. By **concatenation** t of $t_1[...i]$ and $t_2[i+1,...]$ we call the sequence of cells ordered by rows where $t[...i] = t_1[...i]$ and $t[i+1,...] = t_2[i+1,...]$.

Note 3. Let t_1 and t_2 are paths and $t_1(i) = t_2(i)$ then concatenation t of $t_1[...i]$ and $t_2[i+1,...]$ is path. I.e. t satisfies the rules (r1) and (r3).

Definition 9. The path t **intersect cell** (k,m) when $t(k) = m$.
The path t_1 **intersects path** t_2 at i-th row when either $(t_1(i-1) \leq t_2(i-1)$ and $t_1(i) \geq t_2(i))$ or $(t_1(i-1) \geq t_2(i-1)$ and $t_1(i) \leq t_2(i))$.

Note that “paths without intersection” (PW0I) is more stronger than “node-disjoint paths” (or “cell-disjoint paths” in our case).

Property 1. Let path p_1 intersects the path p_2 at row $i+1$ where $p_1(i) \leq p_2(i)$ and $p_2(i+1) \geq p_2(i+1)$, then tails of p_1 and p_2 from row $i+1$ are swapable. It mean that concatenation of $p_1[0,...,i]$ and $p_2[i+1,...]$ is path, and concatenation of $p_2[...i]$ and $p_1[i+1,...]$ is path too.

Proof. There are 2 case of intersections:

- When $p_1(i) = p_2(i)$.
 Then using rule (r1) we get $p_1(i) - 1 = p_2(i) - 1 \leq p_2(i+1) \leq p_2(i) + 1 = p_1(i) + 1$.
 I.e. $p_1(i) - 1 \leq p_2(i+1) \leq p_1(i) + 1$. Thus $p_1[...i]$ can be continued by $p_2[i+1,...]$ without breaking of rule (r1). A similar proof for concatenation of $p_2[...i]$ and $p_1[i+1,...]$.

- When $p_1(i) < p_2(i)$.
 Then using rule (r1) we get $p_1(i) - 1 < p_2(i) - 1 \leq p_2(i+1) \leq p_1(i) + 1$. And again, $p_1[...i]$ can be continued by $p_2[i+1,...]$ without breaking of rule (r1).
 Also using (r1) we get $p_2(i) - 1 \leq p_2(i+1) \leq p_1(i+1) \leq p_1(i) + 1 < p_2(i) + 1$. Thus $p_2[...i]$ can be continued by $p_1[i+1,...]$ without breaking of rule (r1).

Since p_1 and p_2 satisfy the rule (r3), then any subpaths of them are satisfy the rule (r3).

Thus all these concatenations satisfy the rules (r1) and (r3). I.e. concatenation of $p_1[0,...,i]$ and $p_2[i+1,...]$ is path, and concatenation of $p_2[...i]$ and $p_1[i+1,...]$ is path too.

\[\blacksquare\]

Note 4. If path t defined by $F_{i,j}$, then for any row $i' \geq i$ we get $\text{PS}(t[i',...]) = F_{i',t(i')}$.

Property 2. Consider path t_1 started from cell (i_1,j_1) and has maximum sum (i.e. t_1 is path defined by F_{i_1,j_1}). Suppose that t_1 intersect (k_1,m_1)-th and (k_2,m_2)-th cells, where $k_2 > k_1 \geq i_1$. Then:

1. $\text{PS}(t_1[i_1,...,k_2-1]) = F_{k_1,m_1} - F_{k_2,m_2}$;
2. Let path t intersect cells (k_1,m_1) and (k_2,m_2) then $\text{PS}(t[i_1,...,k_2]) \leq \text{PS}(t_1[i_1,...,k_2])$;
3. Let path t intersect cell (k_1,m_1) and t intersect t_1 at row k_2 then $\text{PS}(t[i_1,...,k_2-1]) \leq \text{PS}(t_1[i_1,...,k_2-1])$;
4. Let path t intersect cells (k_1,m_1) and (k_2,m_2), and $\text{PS}(t[i_1,...,k_2-1]) = F_{k_1,m_1} - F_{k_2,m_2}$. Then for any $k_1 \leq k_1' \leq k_2 \leq k_2$ we get $\text{PS}(t[k_1',...,k_2-1]) = F_{k_1',t(k_1')} - F_{k_2',t(k_2')}$;
5. Let path t intersect cells (k_1,m_1) and (k,m) for some $k > k_1$ and $0 \leq m \leq W - 1$, then $\text{PS}(t[i_1,...,k-1]) \leq F_{k_1,m_1} - F_{k,m}$.

Proof. 1. Since t_1 defined by F, then for any row $i \geq i_1$ by Note 2 we get $\text{PS}(t_1[i,...]) = F_{i,t_1(i)}$. Thus $\text{PS}(t_1[i_1,...,k_2-1]) = \text{PS}(t_1[i_1,...] - \text{PS}(t_1[k_2,...]) = F_{k_1,m_1} - F_{k_2,m_2}$.

2. Suppose that $\text{PS}(t[k_1,...,k_2]) > \text{PS}(t_1[k_1,...,k_2])$.
 Let t' is concatenation with begining on cell (k_1,m_1) such that $t'[k_1,...,k_2] = t[k_1,...,k_2]$ and $t'[k_2+1,...] = t_1[k_2+1,...]$. By Note 4 the t' is path.
 Then $F_{k_1,m_1} \geq \text{PS}(t')$ and the other side:
 $\text{PS}(t') = \text{PS}(t[k_1,...,k_2]) + \text{PS}(t_1[k_2+1,...]) > \text{PS}(t_1[k_1,...] + \text{PS}(t_1[k_2+1,...]) = \text{PS}(t_1[k_1,...]) = F_{k_1,m_1}$.
 This contradiction proves statement 2.
3. Let \(t' \) is concatenation of \([t[k_1, ..., k_2 - 1]] \) and \([t_1[k_2, ...]] \). By Property 4, \(t' \) is path. Also \(t' \) intersects with cells \((k_1, m_1) \) and \((k_2, m_2) \). Then using Property 2, we get \(PS([t[k_1, ..., k_2 - 1]]) = PS(t[k_1, ..., k_2]) - g_{k_2, m_2} \geq PS(t'[k_1, ..., k_2]) - g_{k_2, m_2} = PS([t[k_1, ..., k_2 - 1]]) \).

4. Let \(t_2 \) is path defined by \(F_{k_2, m_2} \). And \(t' \) is concatenation of \([t[k_1, ..., k_2 - 1]] \) and \([t_2[k_2, ...]] \). Then by Note 3, \(t' \) is path, with sum \(PS(t') = PS([t[k_1, ..., k_2 - 1]] + PS(t_2[k_2, ...]) = F_{k_1, m_1} - F_{k_2, m_2} = F_{k_1, m_1}. \) i.e. \(t' \) defined by \(F_{k_1, m_1} \).

Then using Property 2, we get \(PS(t'[k_1', ..., k_2'-1]) = F_{k_1', t'} - F_{k_2', t'} \). Since \(t(k_2) = t'(k_2) \) then \(t[k_1', ..., k_2'] = t'[k_1', ..., k_2'] \) then \(PS(t'[k_1', ..., k_2'-1]) = F_{k_1', t'} - F_{k_2', t'} \).

5. Let \(b_1 = \max(0, t(k - 1) - 1) \) and \(b_2 = \min(t(k - 1) + 1, W - 1) \). Then \(m \in \{b_1, ..., b_2\} \).

Let prove by induction on difference \(k - k_1 \)

Base case:
If \(k - k_1 = 1 \) then \(PS([t[k_1, ..., k_2 - 1]]) = g_{k_1, m_1} = g_{k_1, t(k_1)} \leq g_{k_1, t(k_1) - 1} + \max_{j=b_1, ..., b_2} \{F_{k_1, j}\} \leq F_{k_1, m_1} = F_{k_1, m_1} - F_{k_1, m_1} = F_{k_1, m_1} - F_{k_1, m_1}.

Induction step:
Let \(k - k_1 > 1 \), and \(PS([t[k_1, ..., k_2 - 1]]) \leq F_{k_1, m_1} - F_{k_1, t(k_1)}.

Then \(PS([t[k_1, ..., k_2 - 1]]) = PS([t[k_1, ..., k_2 - 2]]) + g_{k_1, t(k_1)} \leq \max_{j=b_1, ..., b_2} \{F_{k_1, j}\} \leq F_{k_1, m_1} = F_{k_1, m_1} - F_{k_1, t(k_1)} - F_{k_1, t(k_1)} = F_{k_1, m_1} = F_{k_1, m_1} - F_{k_1, m_1}.

Note 5. \(l_p(i) \leq r_p(i) \) for each \(i = 0, ..., H - 1 \).

Note 6. \(PS(l_p) = F_{0, 0} \) and \(PS(r_p) = F_{0, W-1} \).

Definition 10. \(g_i \) is grid defined for each \(i = 0, ..., H - 1 \) as:

\[
g_{i,j} = \begin{cases} \infty & j = l_p(i) + 1, ..., W - 1, \\ g_{i,j} & j = 0, ..., l_p(i). \end{cases}
\]

And \(g_r \) is grid defined for each \(i = 0, ..., H - 1 \) as:

\[
g_{i,j} = \begin{cases} g_{i,j} & j = r_p(i), ..., W - 1, \\ -\infty & j = 0, ..., r_p(i) - 1. \end{cases}
\]

Property 3. For each \(i = 0, ..., H - 1 \) and \(j \leq l_p(i) \) we get \(F_{i,j}(g) \leq F_{i,j}(g_i) \), and for \(j \geq r_p(i) \) we get \(F_{i,j}(g) \leq F_{i,j}(g_r) \).

Proof. Due to \(g_{i,j} \geq g_{i,j} \) for each \(i \) and \(j \), we get \(F_{i,j}(g) \geq F_{i,j}(g_i) \) for each \(i \) and \(j \).

Let \(t \) is path defined by \(F_{i_1,j_1}(g) \) for some \(i_1 \) and \(j_1 \leq l_p(i_1) \), then \(PS(t) = F_{i_1,j_1}(g) \).

Consider 2 cases:

- If \(l_p(i) \leq l_p(i) \) for each \(i \), then \(F_{i_1,j_1}(g) \geq PS(t) = F_{i_1,j_1}(g) \).
- Let \(i_2 \) is lowest row such that \(l_p(i_2) > l_p(i) \) (i.e. \(i_2 > i_1 \)). Then due to Property 1 a concatenation \(t' \) of \(l_p[i_2, ..., i_2 - 1] \) and \(t[i_2, ...] \) is path.

Since \(t \) defined by \(F(g) \) then by Note 4 we get \(PS([t[i_2, ...]] = F_{i_2,t(i_2)}(g) \). Since \(l_p \) defined by \(F(g) \) then by Property 2 we get \(PS([l_p[i_2, ...]] = F_{i_2,l_p(i_2)}(g) \).

Then \(F_{i_2,l_p(i_2)}(g) \geq PS(t') = PS([l_p[i_2, ...]] + PS([t[i_2, ...]] = F_{i_2,l_p(i_2)}(g) + F_{i_2,t(i_2)}(g) \). Thus \(F_{i_2,l_p(i_2)}(g) \geq F_{i_2,t(i_2)}(g) \).

Consider concatenation \(t'' \) of \(l_p[i_2, ..., i_2 - 1] \) and \(l_p[i_2, ...] \). Then due to Property 1 the \(t'' \) is path.

Since \(l_p \) defined by \(F(g) \), due to Note 4 we get \(PS([l_p[i_2, ...]] = F_{i_2,l_p(i_2)}(g) \). By Property 2 we get \(PS([l_p[i_2, ...]] = F_{i_2,l_p(i_2)}(g) \). Then \(PS(t'') = PS([l_p[i_2, ..., i_2 - 1]] + PS([l_p[i_2, ...]] = F_{i_1,j_1}(g) - F_{i_2,l_p(i_2)}(g) + F_{i_2,t(i_2)}(g) \).

By our choice of \(t' \) we get \(t''(i) \leq l_p(i) \) for each \(i \). Then \(F_{i_1,j_1}(g) \geq PS(t'') \geq F_{i_1,j_1}(g) \).
Similarly we can proof that \(F_{i,j}(g) = F_{i,j}(g_i) \).

Property 4. Let \(0 \leq i_1 < i_2 \leq H-1 \), and consider path \(t \) from cell \((i_1, l_p(i_1)) \) to cell \((i_2, l_p(i_2)) \), and path \(t' \) from cell \((i_1, r_p(i_1)) \) to cell \((i_2, r_p(i_2)) \). Then:

1. Due to Property 2 and Note 2 we get \(PS(t) \leq PS(l_p[i_1, ..., i_2]) \). Similarly we get \(PS(t') \leq PS(r_p[i_1, ..., i_2]) \).

2. Due to Property 1, leftmost of \(l_p \) and rightmost of \(r_p \) we get implication:
 - if \(PS(t) = PS(l_p[i_1, ..., i_2]) \) then \(t(i) \geq l_p(i) \) for each \(i = i_1, ..., i_2 \); if \(PS(t') = PS(r_p[i_1, ..., i_2]) \) then \(t'(i) \leq r_p(i) \) for each \(i = i_1, ..., i_2 \).

3. If \(t \) is LP path and \(PS(t) = PS(l_p[i_1, ..., i_2]) \), then by Property 2 we get \(t = l_p[i_1, ..., i_2] \). Similarly, if \(t' \) is RP path and \(PS(t') = PS(r_p[i_1, ..., i_2]) \), then \(t' = r_p[i_1, ..., i_2] \).

4. If \(p \) is \(LP_{i_1, t_1(i_1)} \) path and \(PS(p) = PS(l_p[i_1, ...,]) \), then due to leftmost and maximum sum of \(l_p \) we get \(p = l_p[i_1, ...] \).
 - Similarly, if \(p' \) is \(RP_{i_1, t_2(i_1)} \) path and \(PS(p') = PS(r_p[i_1, ...,]) \), then \(p' = r_p[i_1, ...] \).

Definition 11. Let path \(t \) begin at cell \((i, j)\) and ends at \((i', j')\) then \(t \) is leftmost of \(PS \).

Note 7. If \(t \) is LP path, and \(t(i) = r_p(i) \), then \(l_p(i) = r_p(i) \). If \(t \) is RP path, and \(t(i) = l_p(i) \), then \(l_p(i) = r_p(i) \).

Note 8. Let paths \(t_1, ..., t_n \) don't intersect the path \(t_0 \), and all \(t_1, ..., t_n \) placed on the same side of \(t_0 \). And \(t \) is concatenation of \(t_1, ..., t_n \) subpaths, such that \(t \) is path. Then \(t \) is path without intersection with any subpath of \(t_0 \).

Note 9. Let \(t_1, ..., t_n \) are \(RP_{i_1, t_1(i_1)} \), ..., \(RP_{i_n, t_1(i_n)} \) paths respectively, and \(t \) is concatenation of \(t_1, ..., t_n \) subpaths, such that \(t \) is path. Then \(t \) is \(RP_{i_n, t_n(i_n)} \) path for some \(i_1, ..., i_n \).

Definition 12. Let \(t_1 \) and \(t_2 \) are \(LP_{i_2, j_1} \) and \(RP_{i_1, j_2} \) PWOI, such that \(PS(t_1) + PS(t_2) \) is maximum among all \(LP_{i_1, j_1} \) and \(RP_{i_1, j_2} \) pairs of PWOI and ending at bottom (BE), then we call this pair as \(\text{pair} \) (l)eft and (r)ight (d)isjoint (t) racks with (m) aximum (s) um.

Definition 13. \(M_i \) is table, where \(M_i(j, j) = PS(l) + PS(r) \) for any \(\text{lrdts}(i, j, j) \) \(\text{pair} \) \((l) \)eft and \((r) \)ight \((d) \) isjoint \((t) \) racks with \((m) \) aximum \((s) \) um.

Note 10. For each row \(i \) the \(M_i \) defined in columns \(j \leq \min\{l_p(i), r_p(i) - 1\} \) only. For each row \(i \) the \(M_i \) defined in columns \(j \geq \max\{l_p(i) + 1, r_p(i)\} \) only.

3.1 Linear search of \(M_i \) and \(M_r \)

Property 5. Let \(l \) and \(r \) are \(\text{lrdts}(i, j_1, j_2) \) \(\text{pair} \) for some \(j_1 \leq l_p(i) \) and \(j_2 \geq r_p(i) \).

1. If \(l \) intersect \(l_p \) at 2 rows \(i_2 > i_1 > i \), and \(r \) don’t intersect \(l_p \) between these rows, then \(l[t[i_1, ..., i_2]] = l_p[i_1, ..., i_2] \).

2. If \(l \) intersect \(l_p \) at row \(i' \), and \(r \) don’t intersect \(l_p \) after this row, then \(l[t[i', ...]] = l_p[i', ...] \).

Proof. 1. Suppose that \(l[t[i_1, ..., i_2]] \neq l_p[i_1, ..., i_2] \).

 If suppose that \(PS(l[t[i_1, ..., i_2]]) = PS(l_p[i_1, ..., i_2]) \) then by Property 3 we get \(l[t[i_1, ..., i_2]] = l_p[i_1, ..., i_2] \) that contradicts to our assumption. Thus, using Property 1, we get inequality \(PS(l[t[i_1, ..., i_2]]) < PS(l_p[i_1, ..., i_2]) \).

 Since \(l \) is LP path then because of the intersection with \(l_p \) on \(i_1 \) and \(i_2 \) we get \(l(t[i_1]) = l_p(i_1) \) and \(l(t[i_2]) = l_p(i_2) \). Then consider concatenation \(l' \):

 \[
 l'[i, ..., i_1 - 1] = l[t[i, ..., i_1 - 1]], \\
 l'[i_1, ..., i_2] = l_p[i_1, ..., i_2], \\
 l'[i_2 + 1, ...] = l[t[i_2 + 1, ...]].
 \]
By Note \text{3} the $lt'[i, \ldots]$ is path. Then by Note \text{8} the lt' is path. By Note \text{9} the lt' is $LP_{0,0}$ path. By Note \text{8} lt' don’t intersects with rt.

Consider relation between $PS(lt)$ and $PS(lt')$:
\[
PS(lt) = PS(lt[i, \ldots, i_1=1]) + PS(lt[i_1, \ldots, i_2]) + PS(lt[i_2+1, \ldots]) < PS(lt[i, \ldots, i_1=1]) + PS(lp[r_p, \ldots, r_p]) + PS(lt[i_2+1, \ldots]) = PS(lt').
\]

Thus we get lt' and rt are LP_{i,j_1} and RP_{i,j_2} paths without intersection with sum $PS(lt') + PS(rt) > PS(lt) + PS(rt)$. That contradict to maximum sum of $ldtms(i, j_1, j_2)$. Let lt and rt.

2. Suppose that $lt'[i', \ldots] \neq lp[i', \ldots]$. Since lt is LP path then because of the intersection with lp on i' we get $lt(i') = lp[i']$ and $lt[i' + 1, \ldots] \neq lp[i', \ldots]$. Then consider concatenations lt' and lt'':
\[
lt'[i', \ldots] = lt[i', \ldots], \quad lt''[i' + 1, \ldots] = lp[i'] + 1, \ldots.
\]

Then by Note \text{8} the lt' and lt'' are paths. By Note \text{9} the lt' and lt'' are LP paths. By Note \text{8} lt' don’t intersects with rt.

Since $lt''[i' + 1, \ldots] = lt[i' + 1, \ldots] \neq lp[i', \ldots]$, then $lt'' \neq lp$. Then due to leftmost of lp among all LP paths with maximum sum we get $PS(lp) > PS(lt'')$. Then $PS(lt[i'+1, \ldots]) = PS(lt'') - PS(lp[i', \ldots]) < PS(lp) - PS(lp[i', \ldots]) = PS(lp[i'+1, \ldots])$.

Then $PS(lt) = PS(lt[i, \ldots, i']) + PS(lt[i' + 1, \ldots]) < PS(lt[i, \ldots, i']) + PS(lt[i' + 1, \ldots]) = PS(lt')$.

Thus we get LP_{i,j_1} and RP_{i,j_2} paths lt' and rt without intersections with sum $PS(lt') + PS(rt) > PS(lt) + PS(rt)$. That contradict to maximum sum of $ldtms(i, j_1, j_2)$. Let lt and rt.

\begin{property}
Let lt and rt are $ldtms(i, j_1, j_2)$ pair. Then for any $i' \geq i$ the path $lt[i', \ldots]$ and $rt[i', \ldots]$ are $ldtms(i', lt(i'), rt(i'))$ pair.
\end{property}

\begin{proof}
By Note \text{8} the $lt[i', \ldots]$ don’t intersects with $rt[i', \ldots]$. By Note \text{9} the $lt[i', \ldots]$ and $rt[i', \ldots]$ are $LP_{i', rt(i')}$ and $RP_{lt(i'), rt(i')}$ paths respectively.

Let lmt and rmt are $ldtms(i', lt(i'), rt(i'))$ pair. Suppose that $PS(lmt) + PS(rmt) > PS(lt[i', \ldots]) + PS(rt[i', \ldots])$. Consider concatenations lp and rp such that:
\[
lp[i, \ldots, i-1] = lt[i, \ldots, i-1], \quad rp[i', \ldots, i'-1] = rt[i', \ldots, i'-1], \quad lmt[i', \ldots], \quad rmt[i', \ldots].
\]

By Note \text{3} the lp and rp are paths. By Note \text{8} lp is LP_{i,j_1} path and rp is RP_{i,j_1} path. Since $lt[i, \ldots, i-1]$ don’t intersects with $rt[i, \ldots, i-1]$, and $lmt[i', \ldots]$ don’t intersects with $rmt[i', \ldots]$, then lp don’t intersects with rp. Then due to maximum sum of lt and rt we get $PS(lp) + PS(rp) \leq PS(lt) + PS(rt)$. But the other side
\[
PS(lp) + PS(rp) = PS(lt[i, \ldots, i-1]) + PS(lmt[i', \ldots]) + PS(rt[i, \ldots, i-1]) + PS(rmt[i', \ldots]) > PS(lt[i, \ldots, i-1]) + PS(lt[i', \ldots]) + PS(rt[i, \ldots, i-1]) + PS(rt[i', \ldots]) = PS(lt) + PS(rt).
\]

This contradiction proves that $PS(lmt) + PS(rmt) = PS(lt[i', \ldots]) + PS(rt[i', \ldots])$.

Thus we get $LP_{i,lt(i')}$ and $RP_{i',rt(i')}$ paths $lt[i', \ldots]$ and $rt[i', \ldots]$ respectively without intersection with maximum sum. I.e. $lt[i', \ldots]$ and $rt[i', \ldots]$ are $ldtms(i', lt(i'), rt(i'))$ pair.
\end{proof}

\begin{property}
Let lt and rt are $ldtms(i, lt(i), rt(i))$ pair, $lt[i, \ldots, ri]$ don’t intersects with $lp[i, \ldots, ri]$ and $rt(r(i)) = lp(r(i))$ for some $i < ri$. Let $i < i' < ri$ and $lp(i') \leq i' \leq rt(i')$. Consider $RP_{i', j'}$ path rt' where $rt'[ri, \ldots] = rt[ri, \ldots]$ and $PS(rt'[i', \ldots]) = rt'[i', \ldots]$. Then $lt[i', \ldots]$ and $rt'[i', \ldots]$ are $ldtms(i', lt(i'), j')$ pair.
\end{property}

\begin{proof}
Since lt is $LP_{i,lt(i)}$ path and don’t intersects with $lp[i, \ldots, ri]$, then $lt(k) < lp(k) \leq rp(k) \leq rt'(k)$ for each $k = i', \ldots, ri$. Since lt don’t intersects with rt, then by Note \text{3} the $lt'[i', \ldots]$ don’t intersects with rt'.

Let denote $lt'[i', \ldots]$ and $rt'[i', \ldots]$ as IT and RT respectively. Consider $ldtms(i', lt(i'), j')$ pair LP and RP. Since RP is $RP_{i', j'}$ path and $j' \leq rt(i') = rT(i')$, then RP intersects with RT on some row $ri \leq ri$. Then RT don’t intersects with LP before RI. Since IT don’t intersects with any of RP path before ri, then LT don’t intersects with RP before ri.

Let rP_1 and rP' are concatenations:
\[
rt'[i', \ldots, ri-1] = rP[lp[i', \ldots, ri-1], \quad rT'[ri, \ldots] = rT[ri, \ldots],
\]
\[
rP'[i', \ldots, ri-1] = rT'[i', \ldots, ri-1], \quad rP'[ri, \ldots] = rP[ri, \ldots].
\]
If $rP(rI) = rT(rI)$ then by Note X the rT' and rP' are paths. If $rP(rI) \neq rT(rI)$ then $rP(rI) > rT(rI)$ then by Property I the rT' and rP' are paths. Then by Note X rT' and rP' are RP paths. Using Note X the LP don't intersects with rP', and IT don't intersects with rT'.

Consider relations of differences $d_1 = PS(lP) - PS(lT)$ and $d_2 = PS(rT[rI, ...]) - PS(rP[rI, ...])$:

- $d_1 > d_2$. We get $LP_{r*I', lT(i')}$ and $RP_{r*I', rT(i')}$ paths LP and rP' without intersections with sum $PS(lP) + PS(rP') = d_1 + PS(lT) + PS(rT[i', ..., I - 1]) + PS(rP[rI, ...]) = d_1 + PS(lT) + PS(rT[i', ..., I - 1]) + PS(rP[rI, ...]) - d_2 > > PS(lT) + PS(rT)$, which contradicts to maximum of $PS(lT) + PS(rT)$ due to Property X.

- $d_1 \leq d_2$. We get $LP_{r*I', lT(i')}$ and $RP_{r*I', rT(i')}$ paths IT and rT' without intersections with sum $PS(lT) + PS(rT') = PS(lP) + d_1 + PS(rP[i', ..., I - 1]) + PS(rP[rI, ...]) = PS(lP) + d_1 + PS(rP[i', ..., I - 1]) + PS(rP[rI, ...]) + d_2 \geq \geq PS(lP) + PS(rP)$.

Inequality $PS(lT) + PS(rP)$ > $PS(lP) + PS(rP)$ contradicts the maximum of $PS(lP) + PS(rP)$ among all pairs of $LP_{r*I', lT(i')}$ and $RP_{r*I', rT(i')}$ paths without intersections.

Thus we get one valid case $d_1 = d_2$ with equation $PS(lT) + PS(rT') = PS(lP) + PS(rP)$. I.e. $IT = lT[i', ...]$ and rT' are $lrdms(i', lT(i'), j')$ pair. Since $rI \leq rI$ then $rT'(rI) = rT(rI)$.

Thus we get $RP_{r*I', rT(i')}$ path rT' where $rT'[rI, ...] = rT[rI, ...]$. Using Properties X and X we get $PS(rT'[i', ..., rI]) \leq \leq \leq F_{rT', F_{rT, rT'(i')}} + g_{rT, rT'(rI)} = F_{rT', rT'(i')} - F_{rT, rT'(rI)} + g_{rT, rT'(rI)} = PS(rT'[i', ..., rI]).$

Then, using condition $rI \leq rI$, we get $PS(lT[i', ...]) + PS(rT') = PS(lT) + PS(rT'[i', ..., rI]) \geq \geq PS(lT) + PS(rT'[i', ..., rI]) + PS(rT[rI, ...]) = PS(lT) + PS(rT'[i', ..., rI]) + PS(rT[rI, ...]) = PS(lT) + PS(rT')$. Then we get that $lT[i', ...]$ and rT' are $LP_{r*I', lT(i')}$ and $RP_{r*I', rT(i')}$ paths respectively without intersections and with maximum sum. I.e. $lT[i', ...]$ and rT' are $lrdms(i', lT(i'), j')$ pair.

Property 8. Let lI and rI are $lrdms(i - 1, lP(i - 1), j)$ pair, where $j > rP(i - 1)$. And $lT(i) < lP(i)$, $rT(i) > rP(i)$. Then:

1. Exist $rI_i > i$ such that $rT(rI_i) = lP(rI_i)$, and $lT(k) < lP(k)$ for each $k = i, ..., rI_i$;

2. Consider concatenation rT' of $lP[i, ..., rI_i - 1]$ and $rT[i, ...]$ (i.e. $rT'[i, ..., rI_i] = rT[i, ..., rI_i]$). Then $lT[i, ...]$ and rT' are $lrdms(i, lT(i), rT(i))$ pair;

3. $PS(lT[i - 1, ..., rI_i]) = F_{lT, rT(i - 1)} - F_{lT, rT(i)} + g_{lT, rT(i)}$. And $PS(rT[i, ..., rI_i - 1]) = F_{lT, rT(i)} - F_{lT, rT(i)}$ by Property X I;

4. Let $b_1 = \max\{0, lP(i - 1) - 1\}, b_2 = \min\{lP(i - 1) + 1, lP(i) - 1\}$ and $b_3 = \max\{rP(i) + 1, j - 1\}, b_4 = \min\{j + 1, W - 1\}$ then $PS(lT[i, ...]) + PS(rT[i, ...]) = \max_{k = \max\{b_1, b_2\}} \{M_{lT}(i, k)\} + \max_{k = \max\{b_3, b_4\}} \{F_{lT, i, k}\} - F_{lT, rP(i)}$.

Proof. 1. Suppose that rT don't intersect lP after $(i - 1)$-th row. Then due to Property X we get $lT[i, ...] = lP[i, ...]$ that contradicts with condition $lT(i) < lP(i)$. I.e. rT intersect lP after $(i - 1)$-th row.

Let $rI_i \geq i$ such that $rT(rI_i) = lP(rI_i)$, and $rT(k) \neq lP(k)$ for each $k = i, ..., rI_i - 1$.

Suppose that lT intersects with lP on row lI_i between i and rI_i. Since $lT(i - 1) = lP(i - 1)$, then due to Property X we get $lT[i - 1, ..., lI_i] = lP[i - 1, ..., lI_i]$ that contradicts with $lT(i) < lP(i)$.

Thus $lT(k) \neq lP(k)$ for each $k = i, ..., rI_i$. Then because of lT is LP path then $lT(k) < lP(k)$ for each $k = i, ..., rI_i$. Since $rP(i) < rT(i)$ then $rI_i > i$.

2. Since $rT(rI_i) = lP(rI_i)$ then using Note X we get $rT'[i, ..., rI_i] = rP[i, ..., rI_i]$. Due to Note X the rT' is path. By Note X the rT' is $RP_{rP, rI}$ path.

Since rP defined by F then $PS(rT'[i, ..., rI_i]) = PS(rP[i, ..., rI_i]) = F_{lT, rT'(i)} - F_{lT, rT'(rI)} + g_{lT, rT'(rI)}$. Then due to Property X the $lT[i, ...]$ and rT' are $lrdms(i, lT(i), rT'(i))$ pair. Since $rT'(i) = rP(i)$ we get proof of statement 2.
3. Since $l_p(i-1) = l_l(i-1)$ and l_l is LP path then by Property 4.1 $PS(l_p[i-1, ...]) \geq PS(l_l)$. Since $l_p(i) < l_l(i)$ then $l_p[i-1, ...] \neq l_l[i-1, ...]$. Then since $l_p(i-1) = l_l(i-1)$ and l_l is LP path by Property 4.1 we get $PS(l_p[i-1, ...]) > PS(l_l[i-1, ...])$

Consider $RP_{i-1,j}$ path rt'' defined by $F_{i-1,j}(r)$. Then $PS(rt') \leq F_{i-1,j}(r) = PS(rt'')$.

In case when $rt'(k) < rt''(k)$ for each $k \geq i-1$ we get $l_p[i-1, ...]$ and rt'' are $LP'_{i-1,j}(i-1)$ and $RP_{i-1,j}$ paths without intersections and with sum $PS(l_p[i-1, ...]) + PS(rt'') > PS(l_l) + PS(rt)$ that contradict to maximum sum of l_l and rt. I.e. this case impossible.

Then $rt'(i') \geq rt''(i')$ for some $i' > i-1$. WLOG we can assume that $rt'(k) < rt''(k)$ for each $k = i-1, ..., i' - 1$.

Let $ri' > ri$ such that $r_p(ri') < rt(ri')$ and $r_p(k) = rt(k)$ for each $k = ri, ..., ri' - 1$. I.e. using Property 8.1 we get $lt(k) < rp(k)$ for each $k = i, ..., i' - 1$. And since $rt''(i-1) = j > r_p(i-1) \geq l_p(i-1)$ then lt don’t intersects with $rt''[i-1, ... , i' - 1]$. If $rt[ri, ...] = r_p[ri, ...]$ then we can assume that $ri' = H$ and $F_{i,k} = 0$ for each $k = 0, ..., W - 1$.

If $i' < ri$ then $rt''(i') = rt'(i') = r_p(i')$ then due to Property 4.1 we get $rt''[i', ...] = r_p[i', ...]$. Then $rt''(ri' - 1) = r_p(ri' - 1) = rt(ri' - 1)$.

Then due to Properties 2,3 we get $PS(rt'[i-1, ..., ri' - 2]) \geq PS(rt[i-1, ..., ri' - 2])$.

Suppose that $PS(rt''[i-1, ..., ri' - 2]) > PS(rt[i-1, ..., ri' - 2])$. Then consider concatenation rp of $rt''[i-1, ..., ri' - 2]$ and $rt[ri' - 1, ...]$. Since $rt''(ri' - 1) = rt(ri' - 1)$ then by Property 1 the rp is path. By Note 1 the lt don’t intersects with rp. Thus lt and rp are $LP'_{i-1,lp(i-1)}$ and $RP_{i-1,j}$ paths without intersection with sum $PS(l_l) + PS(rp) = PS(l_l) + PS(rt''[i-1, ..., ri' - 2]) + PS(rt[ri' - 1, ...]) > PS(l_l) + PS(rt)$ that contradict to maximum sum of l_l and rt.

Thus $PS(rt[i-1, ..., ri' - 2]) = PS(rt''[i-1, ..., ri' - 2])$. Then using Property 2, 4 and $ri \leq ri' - 1$ we get $PS(rt[i, ..., ri - 1]) = F_{i,rt(i)} - F_{i,r,rt(i)}$ that proves this case.

It remains to consider case $ri' \leq i'$. Then $i < ri < ri' \leq i'$. Let rt_1 is concatenation of $rt'[i-1, ..., i' - 1]$ and $rt''[i', ...]$. By Property 1 the rt_1 is path. By Note 1 the rt_1 is RP path. Since $lt(k) < rt(k) \leq rt''(k)$ for each $k = i, ..., i' - 1$ and $lt(i-1) < j = rt''(i-1)$ then using Note 3 the lt don’t intersects with rt_1.

Since $ri < ri' \leq i'$ then $rt''[i', ...] = rt[ri', ...]$ then rt_1 intersects rt at row i'. Using Property 2, 3 we get $PS(rt''[i-1, ..., i' - 1]) \geq PS(rt[i-1, ..., i' - 1])$.

If $PS(rt''[i-1, ..., i' - 1]) > PS(rt[i-1, ..., i' - 1])$ then $PS(rt_1) = PS(rt''[i-1, ..., i' - 1]) + PS(rt''[i', ...]) \geq PS(rt[ri', ...]) = PS(rt)$. Then lt and rt_1 are $LP'_{i-1,lt(i-1)}$ and $RP_{i-1,j}$ paths without intersection and with sum $PS(l_l) + PS(rt_1) > PS(l_l) + PS(rt)$ that contradict to maximum sum of l_l and rt.

Then $PS(rt''[i-1, ..., i' - 1]) = PS(rt[i-1, ..., i' - 1])$.

Let rt_2 is concatenation of $rt[i-1, ..., i' - 1]$ and $rt''[i', ...]$. Since rt'' intersects rt at row i' then by Property 1 we get that rt_2 is path. Then $PS(rt_2) = PS(rt[i-1, ..., i' - 1]) + PS(rt''[i', ...]) = PS(rt'') = F_{i-1,j}$. Thus using Note 1 we get that rt_2 defined by $F_{i-1,j}$.

Since $ri < i'$ then $rt_2(ri) = rt(ri)$ and $rt_2(ri) = rt(i)$. Then using Property 2, 1 and $ri < i'$ we get $PS(rt[i-1, ..., ri]) = PS(rt_2[i-1, ..., ri]) = F_{i-1,rt_2(i)} - F_{i,rt_2(i)} + g_{ri,rt_2(i)} = F_{i-1,rt(i-1)} - F_{i,rt(i)} + g_{ri,rt(i)}$.

4. The set $\{b_1, ..., b_k\}$ are all possible columns which can be intersected at row i by $LP'_{i-1,l'(i-1)}$ path t_2 with restriction $t_2(i) < l_p(i)$. The set $\{b_1, ..., b_k\}$ are all possible columns which can be reached at row i by $RP_{i-1,j}$ path t_2 with restriction $t_2(i) > r_p(i)$. Since $r_p(i) + 1 \leq W - 1$, $l_p(i-1) \leq l_p(i) + 1 - 1 \geq 0$ then $b_2 \leq b_2$ and $b_3 \leq b_4$ i.e. these sets are not empty.

By Property 8.3 we get $PS(rt[i, ..., ri - 1]) = F_{i,rt(i)} - F_{i,rt(i)}$. Since $lt[i, ..., ri - 1]$ are $LP'_{i,rt(i)}$ pair and $lt(i-1) = l_p(i-1)$ then $PS(l_l[i, ..., i]) + PS(rt''[i, ..., ri - 1]) = max_k b_{k1}, ..., b_{k2} \{M[i, k]\}$. Recall that $PS(rt'[i, ..., ri - 1]) = PS(t_p[i, ..., ri - 1]) = F_{i,rt(i)}$ and $rt'(ri) = rt(ri) = r_p(ri)$. Then $PS(l_l[i, ..., i]) + PS(rt''[i, ..., ri - 1]) = F_{i,rt(i)} - F_{i,rt(i)} + PS(rt''[i, ..., ri - 1]) + PS(rt[i, ..., ri - 1]) = PS(l_l[i, ..., i]) + PS(rt'[i, ..., ri - 1]) + PS(rt[i, ..., ri - 1]) = PS(l_l[i, ..., i]) + PS(rt'[i, ..., ri - 1]) + PS(rt[i, ..., ri - 1]) = PS(l_l[i, ..., i]) + PS(rt'[i, ..., ri - 1]) + PS(rt[i, ..., ri - 1])$.

9
Let prove that $F_{i,rt(i)} = \max_{k=b_3, \ldots, b_4} \{F_{i,k}\}$. Since $\tau_p(i) < rt(i)$ then $rt(i) \in \{b_3, \ldots, b_4\}$ then $F_{i,rt(i)} \leq \max_{k=b_3, \ldots, b_4} \{F_{i,k}\}$.

Suppose that exists $j' \in \{b_3, \ldots, b_4\}$ such that $F_{i,j'} > F_{i,rt(i)}$. Consider $R_{p,j'}$ path rt_2 defined by $F_{i,j'}$. Let rt'_2 is concatenation of $rt'[i-1]$ and $rt_2[i, ...]$. Due to $\max(j-1, \tau_p(i)) \leq b_3 \leq b_4 \leq \min(j+1, W-1)$ then rt'_2 is $R_{p,1-i,j}$ path.

If $rt'(i) \leq rt_2'(i)$ for each $k \geq i$ then path and rt'_2 are $\text{ldtms}(i-1, l_p(i-1), j)$ pair with sum $PS(lt') + PS(rt'_2) = PS(lt) + F_{i,j'} + g_{i-1,j} \leq PS(lt) + F_{i,rt(i)} + g_{i-1,j} \geq PS(lt) + PS(rt)$. That contradict to maximum sum of lt and rt.

Then let $i_2 \geq i$ such that $rt'(i_2) > rt'_2(i_2)$ and $rt'(k) \leq rt'_2(k)$ for each $k = i-1, \ldots, i_2-1$. Consider concatenation $rt'_2'[i-1, \ldots, i_2-1]$ and $rt'[i_2, ...]$. By Property 9 the rt'_2' is path. By Note 9 the rt'_2 don't intersects with lt.

If $i_2 \geq i$ then $rt'_2(i_2) = rt'(i_2)$ then using Property 3

$$PS(lt) + PS(rt'_2) = PS(lt) + F_{i,j'} - F_{i,rt(i_2)} + PS(rt[i_2, ...]) + g_{i-1,j} =$$

$$= PS(lt) + F_{i,rt(i)} - F_{i,rt(i_2)} + PS(rt[i_2, ...]) + g_{i-1,j} \geq =$$

$$= PS(lt) + PS(rt)$$.

That contradict to maximum sum of lt and rt.

Then $i_2 < i$. Due to $PS(rt'[i_2, ..., ri-1]) = PS(r_p[i_2, ..., ri-1]) = F_{i_2,rt(i_2)} - F_{i,rt(i)} = F_{i_2,rt(i_2)} - F_{i,rt(i)}$ we get

$$PS(lt) + PS(rt'_2) = PS(lt) + PS(rt'[i_2, ..., ri-1]) + PS(rt'[i_2, ..., ri-1]) + PS(rt'[ri, ..., ni]) =$$

=$$PS(lt) + g_{i-1,j} + F_{i,j'} - F_{i,rt(i_2)} + PS(r_p[i_2, ..., ri-1]) + PS(rt'[ri, ..., ni]) >$$

$$PS(lt) + g_{i-1,j} + F_{i,rt(i)} - F_{i,rt(i_2)} + PS(rt'[ri, ..., ni]) =$$

$$PS(lt) + g_{i-1,j} + PS(rt'[i, ..., ri-1]) + PS(rt'[ri, ..., ni]) = PS(lt) + g_{i-1,j} + PS(rt[i, ..., ri-1]) = PS(lt) + PS(rt)$$.

Thus $F_{i,rt(i)} = \max_{k=b_3, \ldots, b_4} \{F_{i,k}\}$. Then $PS(lt[i, ...]) < PS(rt'[i, ...]) + F_{i,rt(i)} - F_{i,rt(i_2)} = \max_{k=b_3, \ldots, b_4} \{M_{i}(k, j)\} + \max_{k=b_3, \ldots, b_4} \{F_{i,k}\} = F_{i,rt(i)}$.

Property 8 divided into 4 keys notes, where each next note depends on previous. Property 8 tells that $rt'[i-1, ..., ri]$ is subpath of some path defined by $F_{i,rt(i-1)}$.

Property 9 tells that, if we will swap the tails of $rt[i, ...]$ and $r_p[i, ...]$ at row ri, then we get rt' (with head of τ_p and tail of rt) for which the difference between $PS(rt'[i, ...])$ and $PS(rt[i, ...])$ is the difference between $F_{i,rt(i)}$ and $F_{i,rt(i)}$.

Property 9 is main property that allows to find M_l and M_r in linear time, using DPM.

Property 9. Let lt and rt are $\text{ldtms}(i-1, l_p(i-1), j)$ pair. And let $\max\{0, l_p(i-1) - 1\} \leq b_1 \leq b_2 < \min\{l_p(i-1) + 1, l_p(i) - 1\} + \max\{l_p(i) - 1, l_p(i), j-1\} \leq b_3 \leq b_4 \leq \min\{j+1, W-1\}$. Then

$$PS(lt[i, ...]) + PS(rt[i, ...]) \geq \max_{k=b_1, ..., b_2} \{M_{i}(k, j)\} + \max_{k=b_3, ..., b_4} \{F_{i,k}\} - F_{i,rt(i)}.$$

Proof. Denote $lt[i, ...]$ as lt^{-} and $rt[i, ...]$ as rt^{-}. And suppose that $PS(lt^{-}) + PS(rt^{-}) < M_{i}(i, k_1) + F_{i,k_2} - F_{i,rt(i)}$ for some $k_1 \in \{b_1, ..., b_2\}$ and $k_2 \in \{b_3, ..., b_4\}$.

Let lt^{-} and rt^{-} are $\text{ldtms}(i, k_1, r_p(i))$ pair. Then $PS(lt') + PS(rt') = M_{i}(i, k_1)$.

The set $\{b_1, ..., b_2\}$ is set of all columns which can be reached by $LP_{i-1,l_p(i)}$ path at row i except column $r_p(i)$. Then concatenation $lt'^+ \cup$ of $lt[i-1]$ and lt' is $LP_{i-1,l_p(i)}^{-}(i-1)$ path. Then by definition of $F_{i,rt(i-1)}$ and l_p we get $F_{i,k_1} \leq F_{i,rt(i-1)}$. Since $rt'(i) = r_p(i)$ then concatenation rt'^+ of $r_p[i-1]$ and rt' in $R_{p,1-i,j}$ path.

Consider R_{p,k_2} path rt'^+ defined by $F_{i,k_2}(g_i) = F_{i,k_2}$. The set $\{b_3, ..., b_4\}$ is set of all columns which can be reached by $RP_{i-1,j}$ path at row i except column $l_p(i)$. Then concatenation rt'^+ of $rt'[i-1]$ and rt' in $R_{p,1-i,j}$ path. By definition $PS(lt) + PS(rt) = M_l(i-1, j) \geq PS(lt'^+) + PS(rt'^+)$. Then $PS(lt'^+) + PS(rt'^+) \geq F_{i,k_1} + F_{i,k_2} \geq PS(lt') + F_{i,k_2}$. Since $rt'^+(i-1) = r_p(i-1)$ then $PS(rt'^+) \leq F_{i,rt(i-1)}$ then $PS(lt'^+) \leq F_{i,rt(i-1)}$.

Thus $PS(lt) + PS(rt) = M_l(i-1, j) \geq PS(lt'^+) + PS(rt'^+) \geq F_{i,k_1} + F_{i,k_2} \geq PS(lt') + F_{i,k_2}$. Then $PS(lt') + PS(rt') \geq F_{i,k_1} + F_{i,k_2} \geq PS(lt') + F_{i,k_2}$. Since $rt'^+(i-1) = r_p(i-1)$ then $PS(rt'^+) \leq F_{i,rt(i-1)}$.

Thus $PS(lt) + PS(rt) = M_l(i-1, j) \geq PS(lt'^+) + PS(rt'^+) \geq F_{i,k_1} + F_{i,k_2} \geq PS(lt') + F_{i,k_2}$. Then $PS(rt') \leq F_{i,rt(i-1)}$.

Thus $PS(lt) + PS(rt) = M_l(i-1, j) \geq PS(lt'^+) + PS(rt'^+) \geq F_{i,k_1} + F_{i,k_2} \geq PS(lt') + F_{i,k_2}$. Then $PS(rt') \leq F_{i,rt(i-1)}$.

Thus $PS(lt) + PS(rt) \geq M_l(i-1, j) + F_{i,k_2} - F_{i,rt(i-1)}$. That contradicts to our assumption.
Then exists $r_i \geq i - 1$ such that $r_i''(r_i') = r_{p_1}(r_i')$. Then, due to $r_{p_1}(i) = r_i'(i)$, exists $i' \in \{i, ..., r_i\}$ such that $r_i''(i') \geq r_i''(i')$. WLOG we can assume that $r_i''(k) < r_i''(k)$ for each $k = i, ..., i' - 1$ when $i' > i$. Then $l't'$ don't intersect $rt'[i', i' - 1]$. If $i' = i$ then assume that $r_i''(i', i' - 1]$ and $rt'[i', i' - 1]$ is empty paths.

Consider concatenation of $rt'[i', i' - 1]$ and $r_i''(i', i' - 1]$). By Property 1 of the rt_1 is path. By Note 3 the $rt_1[i, ...]$ is RP_{i, k_1} path. By Note 3 $rt'[i, ...]$ don’t intersect $rt_1[i, ...]$

Let rt_2 is concatenation of $rt'[i', i' - 1]$ and $r_i''(i', i' - 1]$. By Property 1 the rt_2 is path. Using Property 3 we get $PS(rt_2[i, ...]) \leq PS(r_{p_1}(i), ...)] = F_{i, r_{p_1}(i)}$. Then $PS(rt_1[i, ...]) = PS(rt') + PS(r_i''(i', i' - 1]) - PS(rt_2[i, ...]) \geq PS(rt') + F_{i, k_2} - F_{i, r_{p_1}(i)}$

Thus $lt''[i, ...]$ and $rt_1[i, ...]$ are LPP_{i, k_1} and RP_{i, k_2} paths without intersections and with sum $PS(lt''[i, ...]) + PS(rt_1[i, ...]) \geq PS(lt') + PS(r_i''(i', i' - 1]) + F_{i, k_2} - F_{i, r_{p_1}(i)} = M_i(i, i_1) + F_{i, k_2} - F_{i, r_{p_1}(i)}$.

This contradiction proves our Property.

Lemma 1. Tables M_i and M_r can be found in $O(H \cdot W)$.

Proof. Before calculation of M_i and M_r we need to find table $F_{i, j}(g)$ for each i, j. This table can be found in $O(H \cdot W)$. Also, we need in l_{p_1} and r_{p_1}, which can be found in $O(H)$.

It is enough to prove that every row of tables M_i and M_r can be found in $O(W)$. Let prove it by induction on H.

Base case: Let find values for last row. For last row these tables contains the sum of pair paths with length 1. Thus, any pair (with different beginning) don’t intersects between themselves.

$$M_i(H-1, j) = g_{H-1, l_{p_1}(H-1)} + g_{H-1, j} \quad \text{for each } j = \max\{l_{p_1}(H-1), l_{p_1}(H-1) + 1, ..., W-1\}.$$
$$M_r(H-1, j) = g_{H-1, r_{p_1}(H-1)} + g_{H-1, j} \quad \text{for each } j = 0, ..., \min\{l_{p_1}(H-1), r_{p_1}(H-1) - 1\}.$$

This calculation requires $O(W)$ time.

Induction step: Suppose that known M_i and M_r for rows $i, ..., H-1$, where $i > 0$.

Then let find M_i for $(i - 1)$-th row. By Note 10 it is enough to find the $M_i(i - 1, j)$, for any $j \geq \max\{l_{p_1}(i-1) + 1, r_{p_1}(i-1)\}$.

Let $l_{p_1} and r_{p_1} are $l_{r_{p_1}}(i-1, l_{p_1}(i-1), j)$ pair. Consider all possible cases and find the sum $PS(l_{r_{p_1}}[i, ...]) + PS(r_{r_{p_1}}[i, ...]):$

1. For case $l_{r_{p_1}}(i) < l_{p_1}(i)$ and $r_{r_{p_1}}(i) = r_{p_1}(i)$. Denote $PS(l_{r_{p_1}}[i, ...]) + PS(r_{r_{p_1}}[i, ...])$ for this case as $max_1(j)$. Then we get $max_1(j) = M_i(i, l_{r_{p_1}}(i))$ i.e.

$$max_1(j) = \max_{k=b_1, ..., b_2} \{M_r(i, k)\}$$

where $b_1 = \max\{l_{p_1}(i-1), 1\}$ and $b_2 = \min\{l_{p_1}(i-1) + 1, l_{p_1}(i-1), r_{p_1}(i-1)\}$. Due to rule (r1) we get $l_{p_1}(i-1) + 1 > l_{p_1}(i)$ and $l_{p_1}(i) - 1 \leq r_{p_1}(i) - 1$, then $b_2 = l_{p_1}(i)$. Note that $b_1 \leq b_2$ if $l_{p_1}(i-1), 1 \leq l_{p_1}(i)$.

Let find when restrictions of this case don’t contradict to (r1), (r3). It is enough to check for possible positions of $l_{r_{p_1}}(i)$ and $r_{r_{p_1}}(i)$.

For $r_{r_{p_1}}(i)$ we get $j - 1 \leq r_{r_{p_1}}(i) \leq j + 1$ and $r_{r_{p_1}}(i) = r_{p_1}(i)$, then sufficient conditions for $r_{p_1}(i)$ are $j - 1 \leq r_{p_1}(i) \leq j + 1$. But by proposition $j \geq r_{p_1}(i) - 1$ then by (r1) the condition $j \geq r_{p_1}(i) - 1$ is true always.

Restrictions for $l_{r_{p_1}}(i)$ are $l_{p_1}(i) - 1 = l_{r_{p_1}}(i) - 1 \leq l_{p_1}(i) < l_{p_1}(i)$ and $0 \leq l_{p_1}(i)$.

Thus we get conditions when this case need to check

$$j - 1 \leq r_{p_1}(i), \max\{l_{p_1}(i-1), 1\} \leq l_{p_1}(i).$$

Thus, in common case, we can assume

$$max_1(j) = \begin{cases} \max_{k=b_1, ..., b_2} \{M_r(i, k)\}, & \text{if } j - 1 \leq r_{p_1}(i), \max\{l_{p_1}(i-1), 1\} \leq l_{p_1}(i) \\ 0, & \text{otherwise.} \end{cases}$$

11
2. For case $IP(i) = l_p(i)$. Denote $PS(IP[i,...]) + PS(rP[i,...])$ for this case as $max_2(j)$. Then we get $max_2(j) = M_i(i, rP(i))$ i.e.

$$max_2(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\}$$

where $b_1 = \max\{j-1, r_p(i), l_p(i) + 1\}$ and $b_2 = \min\{j + 1, W - 1\}$

Note that $b_1 \leq b_2$ iif $lpath(i) + 2 \leq W$.

For $rP(i)$ we get restrictions $\max\{l_p(i) + 1, r_p(i)\} \leq rP(i) \leq W - 1$ and $j - 1 \leq rP(i) \leq j + 1$. Since always $r_p(i) \leq \min\{j + 1, W - 1\}$ and $j - 1 \leq W - 1$ then required conditions for $rP(i)$ are $lpath(i) + 1 \leq j + 1$ and $l_p(i) + 2 \leq W$. But by proposition and (r1) we get $j \geq l_p(i) + 1 \geq l_p(i)$ then we get that $l_p(i) \leq j$ is true always.

Restrictions for $IP(i)$ are $lP(i) = l_p(i)$ and $lP(i) - 1 = l_p(i) - 1$. Since $l_p[i-1,i]$ satisfy to (r1) and (r3) then this restriction always true for $lP[i-1,i]$.

Thus we get conditions for this case checking

$$l_p(i) + 2 \leq W.$$ \hspace{1cm} (2)

Thus, in common case, we can assume

$$max_2(j) = \begin{cases} \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} & \text{if } l_p(i) + 2 \leq W, \\ 0 & \text{otherwise.} \end{cases}$$

3. Consider case when $IP(i) < l_p(i)$, $rP(i) > r_p(i)$ and $j = r_p(i) - 1$.

Due to contradiction with Properties [5]1 and [5]2 this case impossible for $lrdtms(i-1,l_p(i-1),j)$ pair IP and rP.

4. Consider case when $IP(i) < l_p(i)$, $rP(i) > r_p(i)$ and $j > r_p(i) - 1$. Denote $PS(IP[i,...]) + PS(rP[i,...])$ for this case as $max_3(j)$. Then by Property [8]4 we get

$$max_3(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_{1,k} - F_{i,r_p(i)}\}$$

where $b_1 = \max\{0, l_p(i-1) - 1\}$, $b_2 = \min\{l_p(i-1) + 1, l_p(i) - 1\} = l_p(i) - 1$ and $b_3 = \max\{r_p(i) + 1, j - 1\}$, $b_4 = \min\{j + 1, W - 1\}$.

Note that $b_1 \leq b_2$ and $b_3 \leq b_4$ iif $\max\{1, l_p(i-1)\} \leq l_p(i)$, $r_p(i) + 2 \leq W$.

This case possible only when $r_p(i) < rP(i) \leq W - 1$, $j - 1 \leq rP(i) \leq j + 1$, $r_p(i-1) < j$, $l_p(i-1) - 1 \leq IP(i) < l_p(i)$ and $0 \leq IP(i)$.

Then we get condition of $max_3(j)$ existing

$$\max\{1, l_p(i-1)\} \leq l_p(i)$, $r_p(i) + 2 \leq W$, $r_p(i-1) < j$. \hspace{1cm} (3)

Thus, in common case, we can assume

$$max_3(j) = \begin{cases} \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_{1,k} - F_{i,r_p(i)}\} & \text{if } \max\{1, l_p(i-1)\} \leq l_p(i), \\
0 & \text{otherwise.} \end{cases}$$

Note that condition $b_1 \leq b_2$ and $b_3 \leq b_4$ follows from (3).

Thus exists $m \in \{1, 2, 3\}$ such that $PS(IP[i,...]) + PS(rP[i,...]) = max_m(j)$. Then

$$PS(IP[i,...]) + PS(rP[i,...]) \leq \max\{max_1(j), max_2(j), max_3(j)\}.$$

Since $PS(IP[i,...]) + PS(rP[i,...]) \geq 0$ then $PS(IP[i,...]) + PS(rP[i,...]) \geq max_m(j)$ when condition (m) is false for each $m \in \{1, 2, 3\}$. Since $max_1(j)$ and $max_2(j)$ is result of reducing to an existing pairs of paths with maximum sum then $PS(IP[i,...]) + PS(rP[i,...]) \geq max_m(j)$ for each $m \in \{1, 2\}$.

Since $b_1 \leq b_2$ and $b_3 \leq b_4$ in case 4 follows from condition (3) then by Property [8] we get that $PS(IP[i,...]) + PS(rP[i,...]) \geq max_3(j)$. Thus using $M_i(i-1, j) = PS(IP[i,...]) + PS(rP[i,...]) + g_{i-1,r_p(i-1)} + g_{i-1,j}$ we get

$$M_i(i-1, j) = g_{i-1,l_p(i-1)} + g_{i-1,j} + \max\{max_1(j), max_2(j), max_3(j)\}.$$

Thus in $O(1)$ we can find $M_i(i-1, j)$ for any $j \in \{\max\{l_p(i-1) + 1, r_p(i-1)\}, \ldots, W - 1\}$. Then in $O(W)$ we can find M_i for row $i - 1$. Similarly in $O(W)$ we can find M_i for row $i - 1$. \hspace{1cm} \square
More exactly, this algorithm spent $O(H \cdot W)$ of comparisons and sums of numbers like $F_{i,j}$, $M_i(j, j)$, $l_p(j)$. Since values of g bounded by value C, then these numbers have length $O(\log(H \cdot C))$.

If $C = f(H)$ is less than any polynomial function of H, then these values have length $o(\log(H))$ i.e. less than length of addresses to elements of input data, therefore we ignore linear operations with these values.

If f is not less than some polynomial function of H, then complexity is $O(H \cdot W)$ of linear operations with integers of length $O(\log(f(H)))$. Thus, we have full complexity $O(H \cdot W \cdot \log(f(H)))$. But by our assumption, the length of input data is $\Theta(H \cdot W \cdot \log(f(H)))$. Thus, we got pure linear algorithm.

3.1.1 Simplification of M_i and M_r search

Here we use designations from induction step of Lemma[1].

Assume that $lP(i) < l_p(i)$. Note that pair b_1, b_2 of case 1 are same as pair b_1, b_2 of case 4. Also using restriction $rP(i) = r_p(i)$ in case 1 we get

$$\max_{k=r_p(i), \ldots, b_4} \{F_{i,k}\} = F_{i, r_p(i)}$$

for any $r_p(i) \leq b_4 \leq \min\{j + 1, W - 1\}$. Thus we can assume that b_4 from case 4 and

$$max_1(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=r_p(i), \ldots, b_4} \{F_{i,k}\} - F_{i, r_p(i)}.$$

Also we can extend restriction for case 4 by addition of restriction of cases 1 and 3. Let $b_3 = \max\{r_p(i), j - 1\}$. Then in case $rP(i) = r_p(i)$ we get $r_p(i) = rP(i) \geq j - 1$ then we get $b_3 = r_p(i)$ then

$$max_1(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=r_p(i), \ldots, b_4} \{F_{i,k}\} - F_{i, r_p(i)}.$$

If $rP(i) > r_p(i)$ then by case 3 we get that case $j = r_p(i - 1)$ impossible. Then $j > r_p(i - 1)$ and we get restrictions of case 4 and conditions of Property [8].

In case when $j - 1 > r_p(i)$ we get $b_3 = b_3$.

Consider case when $j - 1 \leq r_p(i)$ i.e. $b_3 = r_p(i) = b_3 - 1$. Then by Property [8] exists $r \in i$ such that $rP[i - 1, \ldots, r]$ is subpath of some RP path defined by F then

$$rP(i) \in \arg \max_{k=b_1, \ldots, b_4} \{F_{i,k}\}.$$

Since $b_3 = r_p(i) < rP(i)$ and $b_3 + 1 = b_3$ then $rP(i) \in \{b_3, \ldots, b_4\}$ then

$$\max_{k=b_3, \ldots, b_4} \{F_{i,k}\} = \max_{k=b_3, \ldots, b_4} \{F_{i,k}\}.$$

Thus if $rP(i) > r_p(i)$ we get

$$max_2(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_{i,k}\} - F_{i, r_p(i)}.$$

Thus, in common case, we can combine cases 1, 3 and 4 with one restriction $lP(i) < l_p(i)$ and common maximum formula

$$max_1(j) = \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_{i,k}\} - F_{i, r_p(i)}.$$

Let find conditions of max_1' existing.

For $rP(i)$ we get $r_p(i) \leq rP(i) \leq W - 1$ and $j - 1 \leq rP(i) \leq j + 1$ then we get $r_p(i) \leq j + 1$. But $j = rP(i - 1) \geq rP(i - 1) \geq r_p(i) + 1$ always.

For $lP(i)$ we get $l_p(i - 1) - 1 \leq lP(i) < l_p(i)$ and $0 \leq lP(i)$. Then we get conditions of $max_1'(j)$ existing

$$\max\{1, l_p(i - 1)\} \leq l_p(i). \quad (4)$$

Thus in common case we can assume

$$max_1'(j) = \begin{cases} \max_{k=b_1, \ldots, b_2} \{M_i(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_{i,k}\} - F_{i, r_p(i)} & \text{if } 1 \leq l_p(i - 1) \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$M_i(i - 1, j) = g_{i - 1, l_p(i - 1)} + g_{i - 1, j} + \max\{max_1'(j), max_2(j)\}$$

Implementation of this version search of M_i and M_r represented at listing 3 in function get_M using programing language Python.
3.2 Reducing problem to lrdtms(0,0,W-1) pair

Definition 14. Denote subset of common cells between paths \(t_1\) and \(t_2\) as \(t_1 \cap t_2\).
Set of all cells of paths \(t_1\) and \(t_2\) as \(t_1 \cup t_2\).
Set of all cells of path \(t_1\) without cells of path \(t_2\) as \(t_1 \setminus t_2\).

Definition 15. Consider paths \(lt\) and \(rt\). Let rows \(i_1\) and \(i_2\) such that \(lt(i) = rt(i)\) for each \(i = i_1 + 1, \ldots, i_2 - 1\) and either \(lt(i) < rt(i_1)\), \(lt(i_2) > rt(i_2)\) or \(lt(i_1) > rt(i_1)\), \(lt(i_2) < rt(i_2)\). Then call pair \(i_1, i_2\) as cross over pair.

Property 10. For any paths \(lt\) and \(rt\), with beginning from cells \((0,0)\) and \((0,W-1)\), exists paths \(lt'\) and \(rt'\) with beginning from \((0,0)\) and \((0,W-1)\) respectively, with \(lt \cup rt = lt' \cup rt'\) (as corollary with same common sum i.e. \(PS(lt \cup rt) = PS(lt' \cup rt')\)), and inequality \(lt'(i) \leq rt'(i)\) for each \(i\).

Proof. WLOG suppose that \(lt\) and \(rt\) have minimum cross over pairs from all paths \(lt'\) and \(rt'\) starts from \((0,0)\) and \((0,W-1)\) respectively with same common sum (equal to \(N\)), and \(lt \cup rt = lt' \cup rt'\). And suppose that between \(lt\) and \(rt\) exists cross over pair.
Then, using Property 10, we can reduce number of cross over pairs by swapping tails of \(lt\) and \(rt\). Since swapping don’t changes the set of cells of paths then we get \(lt \cup rt = lt' \cup rt'\). Thus we get contradiction with minimum cross over pairs between \(lt\) and \(rt\).

Thus we get \(lt(i) \leq rt(i)\) for each \(i\).

Property 11. Suppose that our grid \(g\) with no negative values. Consider paths \(lt\) and \(rt\) with beginning from \((0,0)\) and \((0,W-1)\), and \(lt(i) \leq rt(i)\) for each \(i\).

Then exists paths \(lt'\) and \(rt'\) with beginning from \((0,0)\) and \((0,W-1)\) respectively, such that \(lt'(i) < rt'(i)\) for each \(i\) (i.e. \(lt'\) don’t intersects with \(rt'\), and \(PS(lt') + PS(rt') \geq PS(lt) + PS(rt) - PS(lt \cap rt)\)).

Proof. Denote \(PS(lt) + PS(rt) - PS(lt \cap rt)\) as \(N\). WLOG assume that \(lt\) and \(rt\) have minimum common cells among all paths starts from \((0,0)\) and \((0,W-1)\) cells, and with common sum equal to \(N\) or greater (i.e. \(PS(lt) + PS(rt) - PS(lt \cap rt) \geq N\)). And suppose that row \(i_1\) such that \(lt(i_1) = rt(i_1)\) and \(lt(i) < rt(i)\) for each \(i < i_1\). Denote \(lt(i_1)\) as \(j_1\).
Consider case when \(lt(i_1 - 1) < j_1\).
Due to rule of moving \((r1)\), after \(k\) steps from cell \((i_1,j_1)\) left and right robots will be located on cells \((i_1 + k, j')\) and \((i_1 + k, j'')\) respectively, for some \(j', j'' \leq j_1 + k\). I.e. \(lt(i_1 + k) \leq rt(i_1 + k) \leq j_1 + k\).

Consider cases:
- Suppose that not all moves of left robot are rightmost after row \(i_1\). I.e. exists \(i' > i_1\) such that \(lt(i_1 + i - 1) \geq i(i_1 - 1)\) for each \(i = i_1, \ldots, i' - 1\) and \(lt(i') - j_1 < (i' - i_1)\),

Then \(j_1 + 1 + i - i_1 \leq lt(i_1 + i - i_1) \leq rt(i_1 + i - i_1) \leq j_1 + i - i_1\) for each \(i = i_1, \ldots, i' - 1\). I.e. \(lt[i_1, \ldots, i' - 1] = lt[i_1, \ldots, i' - 1]\).

Consider concatenation \(lmp'\) such that:
- \(lmp'[1, \ldots, i_1 - 1] = lt[1, \ldots, i_1 - 1]\),
- \(lmp'[i_1 + k] = j_1 + 1 + k, k = 0, \ldots, i' - 1 - i_1\),
- \(lmp'[i', \ldots] = lt[i', \ldots]\).

Then \(lmp'[\ldots, i_1 - 1]\) and \(lmp'[i', \ldots]\) are subpaths. Also, \(lmp'[\ldots, i' - 1]\) is subpath with rightmost moves.

Let prove that moves from \(lmp'(i_1 - 1)\) to \(lmp'(i_1)\) and from \(lmp'(i' - 1)\) to \(lmp'(i')\) are corresponds to move rules.

Using rules of move for \(lt\) we get \(lmp'(i_1 - 1) = lt(i_1 - 1) \geq lt(i_1) - 1 = lmp'(i_1)\). The other side \(lmp'(i_1) = lt(i_1) - 1 > lt(i_1) - 1 = lmp'(i_1 - 1)\). I.e. \(lmp'(i_1) = lmp'(i_1 - 1)\).
Thus move from \(lmp'(i_1 - 1)\) to \(lmp'(i_1)\) is correct (i.e. corresponds to moving rules).

By assumption \(lmp'(i') - j_1 < (i' - i_1)\) we get \(j_1 > lt(i') - (i' - i_1)\). Then for \(k = i' - 1 - i_1\) we get \(lmp'(i' - 1) = lmp'(i_1 + k) = j_1 + 1 + k = lt(i') - 2 = lmp'(i') - 2\). I.e. \(lmp'(i' - 1) = lmp'(i')\).

By assumption \(lt(i' - 1) - j_1 \geq (i' - 1 - i_1)\) we get \(j_1 \leq lt(i' - 1) - (i' - 1 - i_1)\). Then for \(k = i' - 1 - i_1\) we get \(lmp'(i' - 1) = j_1 + k - 1 \leq lt(i' - 1) - 1 \leq lt(i').\)
Proof. Let \(i \geq i_1, \ldots, i' \). Then, using assumption \(\ell(i) - j_1 \geq (i - i_1) \) for each \(i = i_1, \ldots, i' \) and \(\ell(i) \geq (i - i_1) + \ell(i') \) for each \(i = i_1, \ldots, i' - 1 \). Since \(g \) consists of nonnegative values, then \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \). Then \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) is correct too. Thus \(\mathit{PS} \) is path.

By definition \(\ell(i) = i - 1 + (i - i_1) \) for each \(i = i_1, \ldots, i' - 1 \). Then, using assumption \(\ell(i) \geq j_1 \) for each \(i = i_1, \ldots, i' - 1 \) and \(\ell(i) \geq (i - i_1) + \ell(i') \) for each \(i = i_1, \ldots, i' - 1 \). Denote \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) and \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) as \(d \) and \(d' \) respectively.

Since \(\ell(i) \neq \ell(i') \) for each \(i = i_1, \ldots, i' - 1 \), then \(d' = d - \mathit{PS}(\ell[i_1, \ldots, i'] - 1) \). Since \(g \) consists of nonnegative values, then \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) is correct too. Thus \(\mathit{PS} \) is path.

Then \(\ell(i) = \ell(i_1 - 1) < j_1 \leq j_1 + i - i_1 = \ell(i) \) for each \(i \geq i_1 \).

Denote \(\mathit{PS}(\ell[i] - 1) \) and \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) as \(d \) and \(d' \) respectively.

Since \(\ell(i) < \ell(i') \) for each \(i \geq i_1 \), then \(d' = d - \mathit{PS}(\ell[i_1, \ldots, i'] - 1) \). Since \(g \) consists of nonnegative values, then \(\mathit{PS}(\ell[i_1, \ldots, i'] - 1) \) is correct too. Thus \(\mathit{PS} \) is path.

Then \(\ell(i_1 - 1) = \ell(i_1 - 1) \) for each \(i \geq i_1 \).

Thus, like in previous case, we get contradiction with minimum of common cells between \(\ell \) and \(rt \).

It remains to consider case when \(\ell(i_1 - 1) \geq j_1 \). Then \(\ell(i_1 - 1) > \ell(i_1 - 1) \geq j_1 = \ell(i_1) \) and, due to symmetry, this case lead us to contradiction like in previous case.

Property 12. Consider paths \(\ell \) and \(rt \) with beginning from \((0, 0) \) and \((0, W - 1) \) respectively, and \(\ell(i) < \ell(i') \) for each \(i \). Then exists \(\ell(P, 0) \) and \(\ell(P, 0, W - 1) \) paths \(\ell' \) and \(rt' \) respectively such that \(\ell'(i) < \ell'(i') \) for each \(i \), and \(\mathit{PS}(\ell') + \mathit{PS}(rt') \geq \mathit{PS}(\ell) + \mathit{PS}(rt) \).

Proof. Denote \(\mathit{PS}(\ell) + \mathit{PS}(rt) \) as \(N \). WLOG we can assume that \(\ell(i) \) has minimum amount of rows \(i \) such that \(\ell(i) > l_0(i) \) among all paths \(\ell' \) with beginning on \((0, 0) \) without intersections with \(rt \), and with sum \(\mathit{PS}(\ell') + \mathit{PS}(rt') \geq N \).

Suppose that \(\ell(i) \) isn't \(\ell(P, 0) \) path. Then exists row \(i_1 \) such that \(\ell(i) \leq l_0(i) \) for each \(i < i_1 \) and \(\ell(i_1) > l_0(i_1) \) (i.e. \(i_1 > 0 \)). Then consider cases:

- If exists \(i_2 > i_1 \) such that \(\ell(i) > l_0(i) \) for each \(i = i_1, \ldots, i_2 - 1 \) and \(\ell(i_2) \leq l_0(i_2) \).

 Then consider concatenation \(t_1: t_1[i_1, i_1 - 1] = \ell[i_1, i_1 - 1], t_1[i_1, \ldots, i_1 - 1] = l_0[i_1, \ldots, i_1 - 1], t_1[i_1, \ldots, i_2 - 1] = l_0[i_1, \ldots, i_2 - 1] \).

 And concatenation \(\ell(i) = \ell(i_2, \ldots, i_2 - 1) = \ell(i_2, \ldots, i_2 - 1), l_0(i_2, \ldots, i_2) = l_0[i_2, \ldots, i_2] \).

 Due to Property the \(t_1 \) is path. Then due to Property the \(\ell(i) \) is path too.
Thus we get path lmp':
\[
\begin{align*}
lmp'[\ldots, i_1 - 1] &= lt[\ldots, i_1 - 1], \\
lmp'[i_1, \ldots, 2_1 - 1] &= l_p[i_1, \ldots, i_2 - 1], \\
lmp'[i_2, \ldots] &= lt[i_2, \ldots].
\end{align*}
\]
Similarly we can prove that concatenation t_2:
\[
\begin{align*}
t_2[\ldots, i_1 - 1] &= l_p[\ldots, i_1 - 1], \\
t_2[i_1, \ldots, 2_1 - 1] &= lt[i_1, \ldots, i_2 - 1], \\
t_2[i_2, \ldots] &= l_p[i_2, \ldots].
\end{align*}
\]
is path too.

Due to l_p defined by $F_{0,0}$ and t_2 is path with begining on $(0,0)$
\[
\operatorname{PS}(lt[i_1, \ldots, i_2 - 1]) = \operatorname{PS}(t_2) - \operatorname{PS}(l_p[\ldots, i_1 - 1]) - \operatorname{PS}(l_p[i_2, \ldots])
\leq \operatorname{PS}(l_p) - \operatorname{PS}(l_p[\ldots, i_1 - 1]) - \operatorname{PS}(l_p[i_2, \ldots]) = \operatorname{PS}(l_p[i_1, \ldots, i_2 - 1]).
\]
Then
\[
\operatorname{PS}(lmp') = \operatorname{PS}(lt[\ldots, i_1 - 1]) + \operatorname{PS}(l_p[i_1, \ldots, i_2 - 1]) + \operatorname{PS}(lt[i_2, \ldots]) \geq
\geq \operatorname{PS}(lt[\ldots, i_1 - 1]) + \operatorname{PS}(lt[i_1, \ldots, i_2 - 1]) + \operatorname{PS}(lt[i_2, \ldots]) = \operatorname{PS}(lt).
\]
Since $l_p(i) \leq lt(i)$ for each $i = i_1, \ldots, i_2 - 1$, then $lmp'(i) \leq lt(i) < rt(i)$ for each i.

Thus we get path lmp' without intersections with rt and $\operatorname{PS}(lmp') + \operatorname{PS}(rt) \geq \operatorname{PS}(lt) + \operatorname{PS}(rt) = N$.

But lmp' has less rows i such that $lmp'(i) > l_p(i)$ which contradicts to minimum of these rows in lt. Thus lt is $LP_{0,0}$ path.

- $lt(i) > lpath(i)$ for each $i \geq i_1$.

Then consider concatenations lmp' and t_2:
\[
\begin{align*}
lmp'[\ldots, i_1 - 1] &= lt[\ldots, i_1 - 1], \\
lmp'[i_1, \ldots] &= l_p[i_1, \ldots], \\
t_2[\ldots, i_1 - 1] &= lpath[\ldots, i_1 - 1], \\
t_2[i_1, \ldots] &= lt[i_1, \ldots].
\end{align*}
\]

Due to Property \Box the lmp' and t_2 are paths.

Due to l_p defined by $F_{0,0}$ and t_2 is path with begining on $(0,0)$
\[
\operatorname{PS}(lt[i_1, \ldots]) = \operatorname{PS}(t_2) - \operatorname{PS}(l_p[i_1, \ldots, i_2 - 1]) \leq
\leq \operatorname{PS}(l_p) - \operatorname{PS}(l_p[\ldots, i_1 - 1]) = \operatorname{PS}(l_p[i_1, \ldots])
\]
Then
\[
\operatorname{PS}(lmp') = \operatorname{PS}(lt[\ldots, i_1 - 1]) + \operatorname{PS}(l_p[i_1, \ldots]) \geq
\geq \operatorname{PS}(lt[\ldots, i_1 - 1]) + \operatorname{PS}(lt[i_1, \ldots]) = \operatorname{PS}(lt).
\]
Since $l_p(i) \leq lt(i)$ for each $i \geq i_1$, then $lmp'(i) \leq lt(i) < rt(i)$ for each i.

Thus we get path lmp' without intersections with rt and $\operatorname{PS}(lmp') + \operatorname{PS}(rt) \geq \operatorname{PS}(lt) + \operatorname{PS}(rt) = N$.

But lmp' has less rows i such that $lmp'(i) > l_p(i)$ which contradicts to minimum of these rows in lt. Thus lt is $LP_{0,0}$ path.

Similarly we can prove that rt is $RP_{0,W-1}$ path.

Definition 16. Consider pair of paths l and r, with intersection in i-th row. Assume that there are no paths l' and r' such that they contains all cells of l and r, but without intersections at i-th row (i.e. $(l \cup r) \subseteq (l' \cup r')$, and all cells $(l' \cup r') \setminus (l \cup r)$ with nonnegative values. Then call paths l and r as $l(i,i)$-linked pair. And call cell (i,j) as bottleneck if there are (i,j)-linked pair.

Lemma 2. Let N is maximum number of cherries which can be collected by 2 robots with begining on $(0,0)$ and $(0, W-1)$ cells. If is true at least one of next conditions:

1. All values of grid g is nonnegative.
2. The g don't has bottlenecks.

then any LRTMS$(0,0, W-1)$ pair lt and rt have $\operatorname{PS}(lt) + \operatorname{PS}(rt) = N$.

Proof. Let paths lmp and rmp starts from $(0,0)$ and $(0, W-1)$ cells respectively and pickups maximum cherries. I.e. $\operatorname{PS}(lmp) + \operatorname{PS}(rmp) - \operatorname{PS}(lmp \cap rmp) = N$.

By Property \Box we can assume that $lmp(i) \leq rmp(i)$ for each i.

1. Suppose that all values of g is nonnegative.

 Then by Property \Box we can assume that $lmp(i) < rmp(i)$ for each i.
2. Suppose that g don’t has bottlenecks. WLOG assume that lt and rt have minimum of intersections among all pairs of paths with begining from $(0,0)$ and $(0, W-1)$, and common sum equal to N or grater.
Suppose that lt intersects with rt.
Since grid g don’t has bottlenecks, then exists paths lt' and rt' such that $(lt' \cup rt') \subseteq (lt' \cup rt')$, and cells $(lt' \cup rt') \setminus (lt \cup rt)$ without negative values.
By Property $[13]$ exists lt'' and rt'' started from $(0,0)$ and $(0, W-1)$ without cross over pairs, and $(lt'' \cup rt'') = (lt'' \cup rt')$.
Thus we get paths lt'' and rt'' started from $(0,0)$ and $(0, W-1)$ such that $lt''(i) \leq rt''(i)$ for each i, and with common sum $PS((lt'' \cup rt'') = PS((lt' \cup rt') + PS((lt' \cup rt') \setminus (lt \cup rt)) \geq PS(lt \cup rt) = N$.
But lt'' and rt'' have less intersections than lt and rt, that contradicts with our assumption.
Thus lt don’t intersects with rt. Then $lt(i) < rt(i)$ for each i. Then, as in previous case, we can assume that $lmp(i) < rmp(i)$ for each i.
Then by Property $[12]$ exists $LP_{0,0}$ and $RP_{0,W-1}$ paths lmp' and rmp' respectively without intersections, and $PS(lmp') + PS(rmp') = N$. Since N is upper bound for collected cherries by any pair of $LP_{0,0}$ and $RP_{0,W-1}$ paths then lmp' and rmp' are $lrdtms(0,0, W-1)$ pair.
Due to uniqueness of maximum, all $lrdtms(0,0, W-1)$ pairs have same sum i.e. N.

4 Linear solution

Theorem 1. The “Cherry Pickup II” problem has a linear solution.

Proof. Since count of cherries in cells are nonnegative values, then all values of g are nonnegative. According to Lemma $[2]$ and start positions of robots it is enough to find the sum of any $lrdtms(0,0, W-1)$ pair in grid with nonnegative values. According to definitions of M_l and M_r this sum is equal to $M_l(0, W-1)$ and $M_r(0,0)$. According to Lemma $[1]$ we can find the tables M_l and M_r in $O(H \cdot W)$.

Algorithm implementation in Python showed in listings below. Finding F showed in listing 1, for l_p and r_p in listing 2, for M_l and M_r in listing 3. Main function with solution in listing 4.

Theorem 2. If there are negative values in g, but there are no bottlenecks, then problem can be solved by finding maximum sum of two node-disjoint paths on g.

Proof. Since g don’t has bottlenecks, then according to Lemma $[2]$ and start positions of robots it is enough to find the sum of any $lrdtms(0,0, W-1)$ pair. According to definitions of M_l and M_r this sum is equal to $M_l(0, W-1)$ and $M_r(0,0)$. According to Lemma $[1]$ we can find the tables M_l and M_r in $O(H \cdot W)$.

4.1 Reducing of DM to finding maximum sum of two node-DP

Problem description:
Given a grid g_{DM} of size $N \times N$ with values in cells 0, 1 and $−1$:
0 means there is no diamond, but you can go through this cell;
1 means the diamond (i.e. you can go through this cell and pick up the diamond);
$−1$ means that you can’t go through this cell.
We start at cell $(0,0)$ and reach the last cell $(N−1,N−1)$, and then return back to $(0,0)$ collecting maximum number of diamonds:
Going to last cell we can move only right and down;
Going back we can move only left and up.

Solution:
Let g_1, g_2 and g_3 are grids of size $(2N−1)\times (2N−1)$. And g_4 is grid of size $(3N−2)\times (2N−1)$. Denote $N−1$ as n. Then g_{DM} can be reduced to our LS of CP2 (without proof of correctness):
1. Check matrix for reachability by 1 robot. If not richable then return 0.
2. Turn matrix clockwise by 45°. I.e. for each $i = 0, ..., n, j = 0, ..., n$
 \[g_1[i+j][n+i−j] = g_{DM}[i][j]. \]
3. Add cells between horizontally neighboring cells. Also add under upper cells, except \((0, n)\), by one cell. Fill cell by \(-10N\) if bottom neighbor is \(-1\), or both horizontally neighboring cells are \(-1\). Otherwise, fill by 0. I.e. for each \(i = 0, \ldots, n, j = 0, \ldots, n\) where \(i + j \geq 1\)

\[
g_1[i+j-1][n+i-j] = \begin{cases} -10N & i = 0 \text{ and } j < n \\
0 & \text{otherwise}.
\end{cases}
\]

4. Add corners, and fill them by \(-10N\), except top and bottom rows. Fill unvalued cells by 0. I.e. for each \(i = 0, \ldots, 2n, j = 0, \ldots, 2n\)

\[
g_2[i][j] = \begin{cases} -10N & 0 < i < 2n \text{ and } (i+j < n \text{ or } i+j > 3n \text{ or } i+n < j \text{ or } i > j+n), \\
0 & i = 0 \text{ and } (j < n-1 \text{ or } j > n+1), \\
0 & i = 2n \text{ and } j \neq n, \\
g_1[i][j] & \text{otherwise}.
\end{cases}
\]

5. Change values \(-1\) by \(-10N\). I.e. for each \(i = 0, \ldots, 2n, j = 0, \ldots, 2n\)

\[
g_3[i][j] = \begin{cases} -10N & g_2[i][j] = -1, \\
g_2[i][j] & \text{otherwise}.
\end{cases}
\]

6. Add on top the matrix of size \(n \times (2n + 1)\) filled by 0. I.e. for each \(i = 0, \ldots, 3n, j = 0, \ldots, 2n\)

\[
g_4[i][j] = \begin{cases} 0 & i < n, \\
g_3[i-n][j] & i \geq n.
\end{cases}
\]

7. Apply our LS of CP2 for grid \(g_4\) and return answer.

Since our algorithm looking for paths without intersections, therefore by instruction3 we make double "road" with zero-sum for every reachable path to avoid bottlenecks. Therefore, after instruction3 due to Theorem2 we can get answer by applying our LS to \(g_4\).

First instruction can be checked by linear time using BFS. Instructions2 - 6 are linear transformations. And last instruction has linear complexity.

More exactly this reducing used linear operations with values at most \(O(N^2)\). I.e. these values have lengths \(O(\log(N))\) same as lengths of addresses to rows. Therefore, we ignore these operations for complexity estimation.

4.2 Some optimisation

Definition 17. Let \((fi, fj)\) is cell of first (least by rows) intersection of \(lp\) with \(rp\).

Definition 18. Let \(lP\max\) and \(rP\max\) are \(lrdtms(0, 0, W-1)\) pair.

Property 13. Either \(lP\max[0, \ldots, fi] = lp[0, \ldots, fi]\) or \(rP\max[0, \ldots, fi] = rp[0, \ldots, fi]\).

Proof. Suppose that one of these paths don’t passes through intersection of \(lp\) and \(rp\). WLOG let it be \(rP\max\). Then \(rP\max\) don’t intersect \(lp\). Then, due to Property5, we get \(lP\max = lp\). I.e. \(lP\max[0, \ldots, fi] = lp[0, \ldots, fi]\).

It remains to consider when \(lP\max\) intersect \(rp\) in some \(i_1\)-th row and \(rP\max\) intersect \(lp\) in some \(i_2\)-th row. By Note2 \(fi \leq \min\{i_1, i_2\}\). WLOG let \(i_1 < i_2\), then due to Property2 we get \(lP\max[0, \ldots, i_1] = lp[0, \ldots, i_1]\). Since \(fi \leq i_1\), then \(lP\max[0, \ldots, fi] = lp[0, \ldots, fi]\).

Using Lemma2 it is enough to find \(lrdtms(0, 0, W-1)\) pair \(lP\max\) and \(rP\max\). Also, due to Property13 either \(lP\max(fi) = fj\) or \(rP\max(fi) = fj\).

WLOG let \(lP\max(fi) = fj\). Let \(maxPath(i, j)\) is path \(p\) from \((0, W-1)\) to \((i, j)\) with maximum sum. Then, using Property13 it is enough to find maximum of

\[
PS(lp[\ldots, fi-1]) + PS(lp_j) + PS(rp_j) + maxPath(fi, j) - g_{fi,j}
\]

for each \(j > fj\), where \(lp_j\) and \(rp_j\) are \(lrdtms(fi, fj, j)\) pair.

Sum of \(lrdtms(fi, fj, j)\) pair equal to \(M_b(fi, j)\). For calculation of \(maxPath(fi, j)\) for each \(j > fj\) let consider next tables
Theorem 1. Let tg is grid:

$$tg_{i,j} = \begin{cases} \infty & i \geq fi \text{ or } j < W - 1 - i, \\ g_{i,j} & i < fi \text{ and } (j \leq i \text{ or } j \geq W - 1 - i). \end{cases}$$

Definition 20. For $j = 0, \ldots, W - 1$ the $udF_{i,j}(g')$ is table defined under grid g' as:

$$udF_{i,j}(g') = \begin{cases} g_{i,j}' & i = 0, \\ g_{i,j}' + \max \{udF_{i-1,j-1}(g'), udF_{i-1,j}(g'), udF_{i-1,j+1}(g')\} & i = 1, \ldots, H - 1. \end{cases}$$

Similarly to F the udF allows to find the path with maximum sum. For $j < f_j$ the $udF_{f_i,j}(tg)$ gives sum of path with maximum sum between cells (f_i, j) and $(0, 0)$. And for $j > f_j$ the $udF_{f_i,j}(tg)$ gives maximum sum of path between (f_i, j) and $(0, W - 1)$. Thus $maxPath(f_i,j) = udF_{f_i,j}(tg)$ for any $j > f_j$.

Then, for our task we can find

$$lMax = \max_{j = f_j+1, \ldots, W-1} \{M_0(f_i,j) + udF_{f_i,j}(tg) - g_{f_i,j}\} + F_{0,0} - F_{f_i - 1, f_j},$$

$$rMax = \max_{j = 0, \ldots, f_j - 1} \{M_r(f_i,j) + udF_{f_i,j}(tg) - g_{f_i,j}\} + F_{0,W-1} - F_{f_i - 1, f_j}.$$

Then $max\{lMax, rMax\}$ is required answer.

4.3 Linear solutions for some extensions

Let $0 \leq d_i < W$ for each $i > 0$. Then rule (r1) can be extended as (r'1). From cell $(i-1,j)$ robots can move to cell $(i,j-d_i)$, $(i,j+d_i)$, $(i-1,j+1)$, ... or $(i,j+d_i)$.

Note that all Properties, Lemmas and Theorems can be generalized for extended rule (r'1). Therefore further we assume that it is true.

The length of input data is the length of grid plus the length of vector d. Thus, the length of input data is $O(H \cdot W)$. Let prove that there are LS i.e. with complexity $O(H \cdot W)$.

Let $SWM_{v,w}(j) = \max\{v(j-w), \ldots, v(j+w)\}$ where v is vector. $SWM_{v,w}$ is sliding window maximum (SWM) with window size $2w + 1$. The SWM is well known structure in programming, and can be defined as array of maximums of each subarray of size $2w + 1$ in v. SWM has $O(|v|)$ complexity. I.e. array $SWM_{v,w}$ can be prepared in $O(|v|)$, and (after preparing) the value $SWM_{v,w}(j)$ can be obtained in $O(1)$ for each j (as in [LS]). Then F can be extended as

$$F_{i,j} = \begin{cases} 0 & i = H, \\ g_{i,j} & i = H - 1, \\ g_{i,j} + SWM_{R_{i+1,F_i+d_i+1}}(j) & i = 0, \ldots, H - 2 \end{cases}$$

where $R_{i,F}$ is vector of length $W + 2d_i$ such that

$$R_{i,F}(j) = \begin{cases} 0 & -d_i \leq j < 0 \text{ or } W \leq j < W + d_i, \\ F_{i,j} & 0 \leq j < W. \end{cases}$$

Then each row for F, R and SWM can be found sequentially: the first $F_{H,*}$, then $F_{H-1,*} \rightarrow R_{H-1,*} \rightarrow SWM_{R_{H-1,F,H-1}} \rightarrow F_{H-2,*} \rightarrow \cdots \rightarrow R_{1,F} \rightarrow SWM_{R_{1,F,d_1}} \rightarrow F_{0,*}.$

Since $SWM_{R_{i,F},d_i}$ can be found in $O(W)$ for each i, then table F can be found in $O(H \cdot W)$.

Let prove that M_0 and M_r can be found in $O(H \cdot W)$.

Assume that i,j, max_1, max_2 and max_3 are designations from induction step of Lemma[1]

Let $b'_1 = \max\{b_1(i-1)-d_i, 0\}$ and $b_2 = \lfloor p(i) \rfloor - 1$.

Let $b_i' = \max\{j - d_i, b_2(i) + 1\}$ and $b_i'' = \min\{j + d_i, W - 1\}$.

And let $b_1 = \max\{0, b_1(i-1)-d_i\}$, $b_2 = \lfloor p(i) \rfloor - 1 = b_2$ and $b_3 = \max\{\lfloor p(i) \rfloor + 1, j - d_i\}$, $b_4 = \min\{j + d_i, W - 1\}$.

I.e. b'_1, b_2 are extended b_1, b_2 from case 1 of Lemma[1] b'_1, b''_1 are extended b_1, b_2 from case 2, and b_1, b_2, b_3, b_4 are extended b_1, b_2, b_3, b_4 from case 4.

$max_1(j), max_2(j)$ and $max_3(j)$ can be found in $O(1)$ using precalculated the SWM with window size $2d_i + 1$ for i-th row of M_0, M_0 and $F.$

19
Let M_t is vector defined between positions $b_i' - d_i$ and $W + d_i$ such that $M_t(k) = M_t(i, k)$ for each $b_i' \leq k < W$, and $M_t(k) = 0$ for each $b_i' - d_i \leq k < b_i'$ and $W \leq k \leq W + d_i$. Then

$$\text{max}_2(j) = \max_{k=b_1', \ldots, b_2'} \{M_t(i, k)\} = SWM_{M_t, d_t}(j).$$

Let $M_{ri} = \max_{k=b_1', \ldots, b_2'} \{M_t(i, k)\}$ i.e. $\text{max}_1(j) = M_{ri}$ independ on j.

Let F_t is vector defined between positions $b_3 - d_i$ and $W + d_i$ such that $F_t(k) = F(k)$ for each $b_3 \leq k < W$, and $F_t(k) = 0$ for each $b_3 - d_i \leq k < b_3$ and $W \leq k \leq W + d_i$. Then

$$\text{max}_3(j) = \max_{k=b_3, \ldots, b_4} \{M_t(i, k)\} + \max_{k=b_3, \ldots, b_4} \{F_t(k)\} = M_{ri} + SWM_{F_t, d_t}(j) - F_t, r_t(i).$$

I.e. $\text{max}_1(j), \text{max}_2(j)$ and $\text{max}_3(j)$ can be found in $O(1)$ with prepared SWM_{M_t, d_t}, M_{ri} and SWM_{F_t, d_t} for each j.

The M_{ri} can be found in $O(W)$ and doesn’t depend on j. I.e. M_{ri} can be represented as structure with $O(W), O(1)$ complexity. The SWM can be found for M_{ri} and F_t with window $2d_i + 1$ in $O(W + 2d_i) = O(W)$ for any row. I.e. SWM_{F_t, d_t} and SWM_{M_t, d_t} are structures with $O(W), O(1)$ complexity.

Thus every row of M_t and M_t can be found in $O(W)$. I.e. this extension can be solved in $O(H \cdot W)$ i.e. has linear solution.

And another natural extension of CP2 we formulate as:

Conjecture 1. Let $n > 0$ and $W \geq n$. And let there are n robots located on different cells in the top row of g, which moves by rules (r1), (r2) and (r3) to bottom row. Then exists an algorithm for finding the maximum number of cherries, that can be collected by these robots, in $O(H \cdot W \cdot 2^n)$.

For $n = 1$ using $F_{0,j}(g)$ we get a proof of this Conjecture immediately for robot at j-th column.

For $n = 2$ let robots starts from j_1 and j_2 columns where $j_1 < j_2$. Consider 2 cases:

1. When $j_2 - j_1 > 2H$ then any paths of robots don’t intersect with each other. Then this case can be reduced to sum of 2 independent solutions for $n = 1$.

2. $j_2 - j_1 \leq 2H$ then all reachable columns by these robots in interval from $j_1 - H$ to $j_2 + H$. Then we can get subgrid of size $H \times (4H)$ contains this interval of all reachable columns. Let denote this subgrid as g_d. Let g_n is grid of size $(2H) \times (4H)$ with zeros. Then let g' obtained by attaching the g_n under the g_d. Thus, we get g' of size $(3H) \times (4H)$.

Now let m is maximum value of g'. Then let g'' is g' but with increased values by $m \cdot H$ in cells $(2H, j_1)$ and $(2H, j_2)$. Then after applying our LS for g'' we get the sum of 2 DP, passes through the cells $(2H, j_1)$ and $(2H, j_2)$ with maximum sum M. Then required value is $M - 2m \cdot H$.

Thus, we reduce the case $n = 2$ to CP2 by linear time. Then using Theorem [1] we confirm our Conjecture for $n = 2$.

References

[1] “1463. Cherry Pickup II”. (n.d.). In leetcode.com. Retrieved 14 Mar, 2021, from: https://leetcode.com/problems/cherry-pickup-ii/.

[2] “931. Minimum Falling Path Sum”. (n.d.). In leetcode.com. Retrieved 14 Mar, 2021, from: https://leetcode.com/problems/minimum-falling-path-sum/.

[3] “Gold Mine Problem”. (n.d.). In tutorialspoint.dev. Retrieved 14 Mar, 2021, from: https://tutorialspoint.dev/algorithms/dynamic-programming-algorithms/gold-mine-problem

[4] “64. Minimum Path Sum”. (n.d.). In leetcode.com. Retrieved 14 Mar, 2021, from: https://leetcode.com/problems/minimum-path-sum/.

[5] “741. Cherry Pickup”. (n.d.). In leetcode.com. Retrieved 14 Mar, 2021, from: https://leetcode.com/problems/cherry-pickup/.

[6] “SumoLogic Interview Question for SDE-3s”. (2015, 9 Aug). In careercup.com. Retrieved 14 Mar, 2021, from: https://www.careercup.com/question?id=5653217876639744.
[7] Scheffler P., “A Practical Linear Time Algorithm for Disjoint Paths in Graphs with Bounded Tree-width”. Report 396, Fachbereich 3 Mathematik, TU Berlin, 1994.

[8] Golovach P. A., Kolliopoulos S. G., Stamoulis G., Thilikos D. M., “Planar Disjoint Paths in Linear Time”. arXiv:1907.05940 [cs.DS], 2019.

[9] Tholey T., “Linear time algorithms for two disjoint paths problems on directed acyclic graphs”. TCS, vol. 465, pp. 35-48, 2012. doi:10.1016/j.tcs.2012.09.025.

[10] Suurballe J. W., “Disjoint paths in a network”. Netw., vol. 4, pp. 125-145, 1974. doi:10.1002/net.3230040204.

[11] Dijkstra, E. W., “A note on two problems in connexion with graphs”. Numerische Mathematik, 1(1):269-271, 1959. doi:10.1007/BF01386390.

[12] Fredman M.L., Tarjan R.E., “Fibonacci Heaps And Their Uses In Improved Network Optimization Algorithms”. J. ACM, 34(3):596–615, 1987. doi:10.1109/SFCS.1984.715934.

[13] Ahuja R.K., Mehlhorn K., Orlin J.B., Tarjan R.E., “Faster Algorithms for the Shortest Path Problem”. J. ACM, 37(2):213-223, 1990. doi:10.1145/77600.77615.

[14] “Shortest Path in Directed Acyclic Graph”. (n.d.). In tutorialspoint.dev. Retrieved 30 Mar, 2021, from: https://tutorialspoint.dev/data-structure/graph-data-structure/shortest-path-for-directed-acyclic-graphs.

[15] “Sliding Window Maximum (Maximum of all subarrays of size k)”. (n.d.). In tutorialspoint.dev. Retrieved 14 Mar, 2021, from: https://tutorialspoint.dev/data-structure/queue-data-structure/sliding-window-maximum-maximum-of-all-subarrays-of-size-k.
import numpy as np

def get_F(g):
 H = len(g)
 W = len(g[0])
 F = np.empty((H, W)) # create table HxW
 F[H−1] = g[H−1].copy() # copy last row
 for i in reversed(range(0, H−1)): # i = H−2, ..., 0
 F[i] = g[i] + max(F[i+1][0], F[i+1][1])
 F[i][W−1] = g[i][W−1] + max(F[i+1][W−2], F[i+1][W−1])
 return F

def get_bounds(F):
 H = len(F)
 W = len(F[0])
 lp = np.arange(0, H) # lp = [0, ..., H−1]
 rp = np.arange(0, H) # rp = [0, ..., H−1]
 lp[0] = 0
 rp[0] = W − 1
 for i in np.arange(1, H): # i = 1, ..., H−1
 lj = max(rp[H−1], lp[H−1]+1)
 if lj > 0 and F[i][lj−1] >= F[i][lj]:
 lp[i] = lj − 1
 if lj < W−1 and F[i][lj] < F[i][lj+1]:
 lp[i] = lj + 1
 rj = min(rp[i], rp[i−1])
 if rj < W−1 and F[i][rj+1] >= F[i][rj]:
 rp[i] = rj + 1
 if rj > 0 and F[i][rj] < F[i][rj−1]:
 rp[i] = rj − 1
 return lp, rp

def get_max(fromk, tok, Table, i):
 _max = float('−inf')
 for k in np.arange(fromk, tok+1): # k = fromk, ..., tok
 _max = max(_max, Table[i][k])
 return _max

def get_M(g, F, lp, rp):
 H, W = len(F), len(F[0])
 Ml, Mr = np.empty((H, W)), np.empty((H, W))
 # base case Mr[H−1]
 lj = max(rp[H−1], lp[H−1]+1)
 for j in np.arange(lj, W): # j = max(rp[H−1], lp[H−1]+1), ..., W−1
 Ml[H−1][j] = g[H−1][lp[H−1]] + g[H−1][j]
 rj = min(lp[H−1], rp[H−1]−1)
 for j in np.arange(0, rj+1): # j = 0, ..., min(lp[H−1], rp[H−1]−1)
 Mr[H−1][j] = g[H−1][rp[H−1]] + g[H−1][j]
induction step M*[0,...,H−2]

```python
for i in reversed(np.arange(0, H-1)):  # i = H-2,...,0
    Mri = get_max(max(0, lp[i]-1), lp[i+1]-1, Mr, i+1)
    Mli = get_max(rp[i+1]+1, min(W-1, rp[i]+1), Ml, i+1)

    # MI[i] search
    for j in np.arange(max(lp[i]+1, rp[i]), W):
        max1, max2 = 0, 0
        # case lPmax(i+1)<lP(i+1)
        if max(lp[i], 1) <= lp[i+1]:
            max1 = get_max(max(rp[i+1], j-1), min(j+1, W-1),
                            F, i+1) + Mri - F[i+1][rp[i+1]]
        # case lPmax(i+1)=lP(i+1)
        if lp[i+1]+2 <= W:
            max2 = get_max(max(j-1, rp[i]+1, lp[i]+1),
                            min(j+1, W-1),
                            Ml, i+1)
        MI[i][j] = g[i][lp[i]] + g[i][j] + max(max1, max2)

    # Mr[i] search
    for j in np.arange(0, min(lp[i], rp[i]-1)+1):
        max1, max2 = 0, 0
        # case rPmax(i+1)>rP(i+1)
        if rp[i+1] <= min(W-2, rp[i]):
            max1 = get_max(max(0, j-1), min(j+1, lp[i]+1),
                            F, i+1) + Mli - F[i+1][lp[i]+1]
        # case rPmax(i+1)=rP(i+1)
        if 1 <= rp[i+1]:
            max2 = get_max(max(j-1, 0),
                            min(j+1, lp[i]+1, rp[i+1]-1),
                            Mr, i+1)
        Mr[i][j] = g[i][rp[i]] + g[i][j] + max(max1, max2)
```

return MI, Mr

```python
def Pickup_Cherries_II(grid):
    W = len(grid[0])
    F = get_F(grid)
    lp, rp = get_bounds(F)
    MI, Mr = get_M(grid, F, lp, rp)
    return MI[0][W-1]
```