State of the Pandemic Commentary

Whither immunity? The search for effective, durable immunity to coronavirus disease 2019 (COVID-19)

David K. Henderson MD1, Sarah D. Haessler MD, MS2, Mary K. Hayden MD3, David J. Weber MD, MPH4, Hilary Babcock MD, MPH5, Anurag Malani MD6, Sharon B. Wright MD, MPH7, A. Rekha Murthy MD8, Judith Guzman-Cottrill DO9, Clare Rock MD, MS10, Trevor Van Schooneveld MD11, Corey Forde MD, DM12, Latania K. Logan MD, MSPH3 and for the SHEA Board of Trustees

1Clinical Center, National Institutes of Health, Bethesda, Maryland, 2UMass Medical School–Baystate Campus, Springfield, Massachusetts, 3Rush University Medical Center, Chicago, Illinois, 4University of North Carolina, Chapel Hill, North Carolina, 5Washington University School of Medicine, St. Louis, Missouri, 6St. Joseph Mercy Health System, Ann Arbor, Michigan, 7Beth Israel Deaconess Medical Center, Boston, Massachusetts, 8Cedars Sinai Health System, Los Angeles, California, 9Oregon Health and Science University, Portland, Oregon, 10Johns Hopkins University School of Medicine, Baltimore, Maryland, 11University of Nebraska Medical Center, Omaha, Nebraska and 12Queen Elizabeth Hospital, Barbados

One of the most important and challenging questions facing medicine today concerns the extent to which immunity develops and persists following coronavirus disease 2019 (COVID-19), that is, infection with severe acute respiratory coronavirus virus 2 (SARS-CoV-2), or for that matter, following immunization with a candidate SARS-CoV-2 vaccine. During the first 6 months of the pandemic, a great deal of speculation was expressed about whether immunity would follow infection. One prepublication study that has not yet been peer reviewed has suggested that coronavirus protective immunity has a short duration.1 At this stage of the pandemic, whether individuals who recover from COVID-19 can get infected again remains uncertain.2,3 Nonetheless, an enormous scientific effort is being expended urgently to develop vaccines and monoclonal antibodies to attempt to mitigate the risk for infection on the assumption that protective immunity can and does develop. Now 8 months into the pandemic, what do we know about immunity to SARS-CoV-2? What have we learned thus far suggests important roles for nonspecific, humoral, and cellular immunity.

Nonspecific immunity

Several manuscripts have suggested a hypothetical role for nonspecific immunity provided through the interferon network and natural killer (NK) cells4 in defending against the virus. Several studies have shown that NK cells are depleted or exhausted in severe COVID-19 infection.5–7 Vaccines, such as Bacillus Calmette–Guérin (BCG),8–11 measles,10,12 measles, mumps, rubella (MMR),13,14 and oral polio vaccines,10 stimulate nonspecific immunity. One preliminary epidemiological study found that, among studied countries in which BCG vaccination is given at birth, COVID-19 contagion rates were lower. These countries also experienced fewer COVID-19 deaths.8

Humoral immunity

The role of B-cell–mediated humoral immunity has been debated.15 Some investigators suggest that the humoral response might be ephemeral and incompletely protective, whereas others have found the presence of neutralizing antibodies and robust antibody responses among recovered patients.16 Longitudinal studies of antibody protection from seasonal coronavirus infection have shown transient protection, with frequent reinfections occurring 12 months after infection and substantial decreases in antibody levels within 6 months following infection.1 In a study of symptomatic and asymptomatic COVID-19 infections in China, asymptomatic infections produced a weaker, more transient immune response, with diminished IgG and neutralizing antibody levels.17 Even if humoral immunity is transient, plasma from patients who have recovered that contains high-titer neutralizing antibody might be beneficial. Many anecdotes describing the successful use of convalescent plasma have been reported, but only 1 controlled trial has been reported—it was underpowered and was terminated before statistical significance could be achieved.18 Other large, blinded controlled trials are underway.19 A recently posted preprint, which has not yet been peer reviewed, from the large, expanded access trial coordinated by the Mayo Clinic, identified reduced mortality associated with both the administration of higher antibody-titer plasma as well as with earlier administration of the plasma for hospitalized COVID-19 patients.20 More recently, investigators have demonstrated that antibodies directed against the SARS-COV-2 spike protein are neutralizing and correlate with protection against reinfection in a macaque model.21

Cellular immunity

Several recent papers suggest that cellular immunity likely plays a key role in defense against COVID-19. Lymphopenia occurs commonly, especially in patients who have severe infections, and the severity of the lymphopenia correlates directly with the severity of disease. Lymphopenia in COVID-19 is associated with the depletion of both CD4 and CD8 T cells, with minimal change to...
the CD4:CD8 ratio. Whether lymphopenia relates to the sequestration of T lymphocytes in sites of active infection or active destruction of T cells is not yet completely clear. One investigator has suggested that the varied presentations of the disease in patients with COVID-19 could be related to some extent to CD8+ T-cell memory of other coronaviruses. In a paper that has not yet been peer reviewed, evaluated individuals who had asymptomatic or very mild COVID-19 and found vigorous memory T-cell responses in both populations. Interestingly, they also detected SARS-CoV-2–specific T cells in seronegative family members. This paper did not address the extent to which cross immunity to prior seasonal coronavirus infections may have played a role in their findings.

Le Bert et al demonstrated that COVID-19 induces durable T-cell immunity to a SARS-CoV-2 structural protein. Grifoni et al assessed the virus to identify aspects of viral proteins that they predicted would likely stimulate T cells effectively. They then exposed cells from 10 recovered COVID-19 patients to these viral protein fragments. All 10 patients had helper T cells that responded to the SARS-CoV-2 spike protein. In addition, 7 of the 10 patients responded to stimulation with these protein fragments by producing virus–specific killer T cells. Similarly, in a preprinted paper, Braun et al found helper T cells that could target the spike protein in 15 of 18 patients hospitalized with COVID-19. These latter 2 papers, as well as a paper by Mateus et al, identified cells reactive with SARS-CoV-2 proteins in healthy individuals who had not been exposed to COVID-19. Also, 2 of these papers suggest that these responses likely represent cross-reactive T-cell recognition between seasonal coronaviruses and SARS-CoV-2.

Animal challenge studies

Two recently published studies, one peer reviewed and the other posted as a preprint, have demonstrated that macaques infected with SARS-CoV-2 are resistant to reinfection with the same viral isolate following recovery from their initial infection. In the former study, macaques that had recovered from a laboratory-induced COVID-19 and were rechallenged with the same inoculum demonstrated a 5 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa compared with levels detected during their primary infections. In both studies, high levels of neutralizing antibodies were detected following rechallenge. Neither study assessed the cellular immune responses of the macaques in detail.

Clinical experience to date

Several studies provide some evidence that clinical infection, and even mild infection, can produce a protective immune response. One study evaluated a COVID-19 outbreak that occurred on a fishing vessel. The outbreak attack rate was 85% (104 of 122 crew members); however, 3 crew members who were known to have neutralizing antibodies before departure remained uninfected. Thus, these 3 individuals who were known before the outbreak to have robust antineucleoprotein antibody responses and neutralizing antibodies were apparently protected from infection. Two recently preprinted studies that have not yet been peer reviewed have also detected robust neutralizing humoral responses among patients who have recovered from COVID-19. Finally, although some cases of possible reinfection with SARS-CoV-2 have been reported, such cases are rare, and none of these cases has been definitely proved to represent de novo reinfection.

References

1. Edridge AWD, Kaczorowska J, Hoste ACR, et al. Human coronavirus reinfection dynamics: lessons for SARS-CoV-2. medRxiv 2020. doi: 10.1101/2020.05.11.20086439v2.
2. Test for past infection (antibody test). Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/testing/serology-overview.html. Updated June 30, 2020. Accessed July 9, 2020.
3. Interim guidelines for COVID-19 antibody testing in clinical and public health settings. Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html. Updated August 1, 2020. Accessed September 9, 2020.
4. Market M, Angka L, Martel AB, et al. Flattening the COVID-19 curve with natural killer cell based immunotherapies. Front Immunol 2020;11:1512.
5. Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Life Sci 2020;18167.
6. Bordoni V, Sacchi A, Cimini E, et al. An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19. Clin Infect Dis 2020. doi: 10.1093/cid/ciaa577.
7. Gan J, Li J, Li S, Yang C. Leucocyte subsets effectively predict the clinical outcome of patients with COVID-19 pneumonia: a retrospective case-control study. Front Public Health 2020;8:299.
8. Covian C, Retamal-Díaz A, Bueno SM, Kalerghis AM. Could BCG vaccination induce protective trained immunity for SARS-CoV-2? Front Immunol 2020;11:970.
9. Gursel M, Gursel I. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy 2020;75:1815–1819.
10. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andres J, et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell 2020;181:969–977.

11. Abbas AM, AbouBakr A, Bahaa N, et al. The effect of BCG vaccine in the era of COVID-19 pandemic. Scand J Immuno 2020;12(1):2947.

12. Shanker V. Measles immunization: worth considering containment strategy for SARS-CoV-2 global outbreak. Indian Pediatr 2020;57:380.

13. Anbarasu A, Ramasaih S, Livingstone P. Vaccine repurposing approach for SARS-CoV-2 infection. vaccimmunother 2020;181:157.

14. Fidel PL Jr, Noverr MC. Could an unrelated live attenuated vaccine serve as a preventive measure to dampen septic inflammation associated with COVID-19 infection? mBio 2020;11(3): doi: 10.1128/mBio.00907-20.

15. Siracusano G, Pastorri C, Lopalco L. humoral immune responses in COVID-19 patients: a window on the state of the art. Front Immunol 2020;11:1049.

16. Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. Nature 2020;584:443–449.

17. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020;26:1200–1204.

18. Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020;324:460–470.

19. Murphy M, Estcourt L, Grant-Casey J, Dzik S. International survey of trials of convalescent plasma to treat COVID-19 infection. Transfus Med Rev 2020;34:151–157.

20. Joyner MJ, Senefeld JW, Klassen SA, et al. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: initial three-month experience. medRxiv 2020 August 21. doi: 10.1101/2020.08.12.20169359.

21. Chandra Shekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against challenge in rhesus macaques. Science 2020. https://www.ncbi.nlm.nih.gov/pubmed/32434946.

22. Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis 2020;221:1762–1769.

23. Sette A, Crotty S. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol 2020;20:457–458.

24. Sekine T, Perez-Pott A, Rivera-Ballesteros O, et al. Robust T-cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 2020. doi: 10.1016/j.cell.2020.08.017.

25. Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2 specific T-cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;584:457–462.

26. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T-cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489–1501.

27. Braun J, Loyal L, Frensch M, et al. Presence of SARS-CoV-2-reactive T cells in 1 COVID-19 patients and healthy donors. medRxiv [Internet]. 2020. doi: 10.1101/2020.04.17.20061440.

28. Mateus J, Grifoni A, Tarke A, et al. Selective and cross-reactive SARS-CoV-2 T-cell epitopes in unexposed humans. Science 2020. doi: 10.1126/science.abd3871.

29. Bao L, Deng W, Gao H, et al. Lack of reinfection in rhesus macaques infected with SARS-CoV-2. bioRxiv 2020 August 10. doi: 10.1101/2020.03.13.990226.

30. Addetia A, Crawford KHD, Dingens A, et al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with high attack rate. medRxiv 2020. doi: 10.1101/2020.08.13.20173161.

31. Ripperger TJ, Uhrlaub JL, Watanabe M, et al. Detection, prevalence, and duration of humoral responses to SARS-CoV-2 under conditions of limited population exposure. medRxiv 2020 August 17. doi: 10.1101/2020.08.14.20174490.

32. Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. medRxiv 2020 August 17. doi: 10.1101/2020.08.11.20171843.

33. Batisse D, Benich N, Botelho-Nevers E, et al. Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound? J Infect 2020. doi: 10.1016/j.jinf.2020.06.073.

34. Centers for Disease Control and Prevention. Duration of isolation and precautions for adults with COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html. Updated August 17, 2020. Accessed September 7, 2020.

35. Altmann DM, Boyton RJ. SARS-CoV-2 T-cell immunity: specificity, function, durability, and role in protection. Sci Immunol 2020;5(49). doi: 10.1126/sciimmunol.abd6160.

36. Parry J. Covid-19: Hong Kong scientists report first confirmed case of reinfection. BMJ 2020;370:m3340.

37. Tillet R, Sevinsky J, Hartley P, et al. Genomic evidence for a case of reinfection with SARS-CoV-2. SSRN [Internet]. 2020. https://ssrn.com/abstract=3681489.

38. To KK-W, Hung IF-N, Ip JD, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clinical Infectious Diseases [Internet]. 2020; in press. https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1275/5897019.