Magnetic properties of the UNiGe$_2$ at low temperature

Kohei Ohashi1, Masashi Ohashi1,2, Masaki Sawabu1, Masahiro Miyagawa1, Kae Maeta1 and Tomoo Yamamura3

1Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
2Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
3Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

E-mail: k-ohashi@stu.kanazawa-u.ac.jp

Abstract. We report on the magnetic characterization of a novel ternary uranium intermetallic UNiGe$_2$. When we assume that UNiGe$_2$ has the orthorhombic structure of CeNiGe$_2$-type which is same as that of UNiSi$_2$, the lattice constants were obtained to be $a = 3.97$ Å, $b = 16.48$ Å, and $c = 4.08$ Å. The unit cell volume of UNiGe$_2$ is larger than that of UNiSi$_2$. It comes from the fact that the atomic radius of Ge is larger than that of Si. The temperature dependence of the magnetic susceptibility shows two peaks at $T_N = 45$ K and $T'_N = 65$ K. Taking an account that UNi$_2$Ge$_2$ secondary phase exists in the compound, UNiGe$_2$ is an antiferromagnet below T_N while T'_N may come from the antiferomagnetic order of UNi$_2$Ge$_2$. At 5 K, the slope of the magnetization curve increases as increasing the magnetic field up to 5 T, indicating the presence of a metamagnetic transition. The residual magnetization remains on the magnetization curve at 5 K, which may come from a week ferromagnetism of UNi$_2$Ge$_2$ at low temperature.

1. Introduction
Intermetallic compounds including Ce or U atoms have been investigated extensively because these compounds give important information for studying the role of strong electron correlations in metallic systems[1, 2, 3, 4]. In these compounds, the ferromagnetic/antiferromagnetic interaction and Kondo effect compete each other.

The ternary compounds CeTX$_2$ (T = transition metal and X = Si, Ge, Sn) form a large family having the orthorhombic CeNiSi$_2$-type layered structure, which is constructed from deformed fragments of the CeGa$_2$Al$_2$ and α-ThSi$_2$ structures[5]. The lattice parameter along b-axis is extremely large compared to those along a- and c- axes, and it is expected that highly anisotropic magnetic property exists. Indeed, these compounds have received considerable interest of a great variety of magnetic behaviors[6, 7, 8].

UNiSi$_2$ also crystallizes in orthorhombic CeNiSi$_2$-type layered structure, and is a ferromagnet at $T_C = 95$ K[9, 10]. Single crystals can be brown by Czochralski pulling method because UNiSi$_2$ melts congruently. The large anisotropic behavior is observed in the measurement of the magnetization of UNiSi$_2$ single crystal at low temperature ferromagnetic phase. The easy
2. Experimental
Polycrystalline sample of UNiGe$_2$ was synthesized by arc melting with a stoichiometric composition in an Ar gas atmosphere. Weight losses were less than 0.3%. To improve homogeneity, the sample was turned over and re-melted several times. The sample was characterized by X-ray powder diffraction experiments using a Rigaku MiniFlex II diffractometer with Cu-K$_\alpha$ radiation. The dc magnetization was measured by using a Quantum Design MPMS-5 superconducting quantum interference device magnetometer.

3. Results and Discussion
3.1. X-ray diffraction
Figure 1 shows the X-ray diffraction pattern of UNiGe$_2$ at room temperature. Here we assumed that UNiGe$_2$ has the same crystal structure as UNiSi$_2$ and indexed the Bragg peaks as the orthorhombic CeNiSi$_2$ type structure with the space group of $Cmcm$. The lattice constants were obtained to be $a = 3.97$ Å, $b = 16.48$ Å, and $c = 4.08$ Å for UNiGe$_2$. The unit cell volume is calculated to be 266 Å3, which is larger than that of UNiSi$_2$, 258.83 Å3[11]. It comes from the fact that the atomic radius of Ge is larger than that of Si. On the other hand, several unknown peaks are also observed in the X-ray diffraction pattern, and may correspond to the diffraction of UNi$_2$Ge$_2$ as a secondary phase[13]. Such behavior has been also observed in the previous report, in which it is suggested that a new dominant phase and UNi$_2$Ge$_2$ secondary phase exist in the compound[12].
3.2. Magnetic Properties

Figure 2 shows the temperature dependence of M/H of UNiGe$_2$ between 2 and 300 K in a magnetic field of 1 kOe. The ZFC M/H curve is obtained by cooling in zero field from a high temperature while the FC one by cooling at small applied field. M/H increases as temperature decreases and two peaks are visible on the $M/H(T)$ curve at $T_N = 45$ K and $T_{N'} = 65$ K. At low temperature below T_N, on the other hand, M/H in the FC curve tends to increase as decreasing temperature while that in the ZFC one approaches to zero. It suggests that a dominant phase of UNiGe$_2$ is an antiferromagnet below T_N. Taking account that UNi$_2$Ge$_2$ is an antiferromagnet below 74 K and that a weak ferromagnet moment is also present at low temperature[13, 14], $T_{N'}$ and the residual magnetization in the FC curve may also come from a secondary phase in the sample.

Figure 3 displays the behavior of the magnetization M of UNiGe$_2$ as a function of magnetic field H up to 50 kOe at 5 K. M increases as increasing magnetic field, and reaches 0.139 μ_B, which is much smaller than the saturation magnetization $M_s = 1.12$ μ_B of UNiSi$_2$[9]. Since the slope of magnetization $\partial M/\partial H$ increases up to 50 kOe, a magnetic phase transition such as metamagnetism is expected at a high magnetic field below T_N. Moreover, hysteresis loop is also observed in the magnetization curve at 5 K, suggesting the the presence of some magnetic ordering phase such as weak ferromagnetism or canted magnetism. Taking account that UNi$_2$Ge$_2$ a weak ferromagnet moment is also present at low temperature[13], pure samples are needed to discuss the ground state of UNiGe$_2$.

4. Summary

In this study, we prepared a novel ternary uranium intermetallic UNiGe$_2$ during our investigation of UNiX$_2$ with the CeNiSi$_2$-type orthorhombic structure. The unit cell volume of UNiGe$_2$ is larger than that of UNiSi$_2$. Our preliminary result of the magnetization indicates that UNiGe$_2$ is an antiferromagnet of 45 K. Further experiments are in progress to synthesize UNiSn$_2$ and UNiC$_2$ to investigate magnetic properties of UNiX$_2$ (X = C, Si, Ge, Sn) series.
Figure 3. The field dependence of the magnetization of UNiGe$_2$ at 5.0 K.

Acknowledgment
This work was performed under the inter-university cooperative research program of the cooperative research program of the Institute for Materials Research, Tohoku University (Proposal No. 17K0057). This work was supported in part by Futaba Electronics Memorial Foundation and by Research Foundation for the Electrotechnology of Chubu.

References
[1] Uwatoko Y, Umehara I, Ohashi M, Nakano T and Oomi G 2012 Handbook on the Physics and Chemistry of Rare Earths vol 2 (Amsterdam: North-Holland) chap 252, p 1
[2] Ohashi M, Oomi G, Koizai S, Hedo M and Uwatoko Y 2003 Phys. Rev. B 68 144428
[3] Miyagawa H, Oomi G, Ohashi M, Satoh I, Komatsubara T, Hedo M and Uwatoko Y 2008 Phys. Rev. B 78 064403
[4] Ohashi M, Miyagawa H, Nakano T, Oomi G, Sechovsky V, Satoh I and Komatsubara T 2014 J. Phys. Soc. Jpn. 83 024701
[5] Iandelli A and Palenzona A 1979 Handbook on the Physics and Chemistry of Rare Earths vol 2 (Amsterdam: North-Holland) chap 13, p 1
[6] Ohashi M, Oomi G, Ishida K, Satoh I, Komatsubara T, Kawae T and Takeda K 2006 J. Alloys and Compounds 408-412 84
[7] Ohashi M, Oomi G and Satoh I 2007 J. Phys. Soc. Jpn. 76 114712
[8] Nakano T, Ohashi M, Oomi G, Matsubayashi K and Uwatoko Y 2009 Phys. Rev. B 79 172507
[9] Kaczorowski D 1996 Solid State Commun. 99 949
[10] Taniguchi T, Morimoto H, Miyako Y and SRamakrishnan 1998 J. Magn. Magn. Mater. 177-181 55
[11] Ohashi M, Oomi G, Ishida K and Satoh I 2006 J. Phys. Soc. Jpn. Suppl. 75 124
[12] Molcanova Z, Jr M M, Reiffers M, Dzubinska A, Hurakova M, Kavecansky V, Paukov M and Havela L 2017 Acta Physica Polonica A 131 994
[13] Ning Y B, Garret J D, Stager C V and Datars W R 1992 Phys. Rev. B 46 8201
[14] Chelmich I, Leciejewicz J and Zygmunt A 1985 J. Phys. Chem. Solids 46 529