SARS-CoV-2 and Acute Otitis Media in Children: A Case Series

Holly M. Frost, MD,1 Thessia Sebastian, MD, MPH2 Anthia Krytk, MPH2 Melanie Kurtz, BS2 Samuel R. Dominguez, MD, PhD3 Samuel R. Dominguez, MD, PhD2 Sarah Parker, MD2 Timothy C. Jenkins, MD1 Denver Health and Hospital Authority, University of Colorado School of Medicine, Denver, Colorado; Denver Health and Hospital Authority, Denver, Colorado; University of Colorado, School of Medicine, Aurora, CO; Children’s Hospital Colorado, Aurora, Colorado; Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado

Session: P-14. COVID-19 Complications, Co-infections, and Clinical Outcomes

Background. Reports in adults with COVID-19 and acute otitis media (AOM) show that severe symptoms and hearing loss may be more common than with the clinical presentation of typical AOM. However, the association of SARS-CoV-2 with AOM in children is poorly understood.

Methods. Cases were identified as a subpopulation enrolled in the NOTEARS prospective AOM study in Denver, CO from March–December 2020. Children enrolled were 6–35 months of age with uncomplicated AOM and prescribed amoxicillin. Children diagnosed with AOM and SARS-CoV-2, detected by polymerase chain reaction assays, were included in the case series. Data was obtained from electronic medical records and research case report forms. Patients completed surveys at enrollment and 5, 14 and 30 days after enrollment that included the Acute Otitis Media Severity of Symptoms (AOM-SOS) scale. All patients had nasopharyngeal pathogen testing completed.

Results. A total of 108 patients had been enrolled through December 2020 (all of whom were subsequently tested for SARS-CoV-2). During the study period for this case series, 16 patients were enrolled, and 7 (43.6%) were identified with AOM/SARS-CoV-2 co-infection. Among these 7 patients, fever was present in 3 children (29%). Four children (57%) attended daycare. Only 2 children (29%) had testing for SARS CoV-2 as part of their clinical workup. Mean AOM-SOS scores were similar among the SARS-CoV-2 positive and negative patients with no statistical significance noted with two-sided t-tests: 13.6 (± 4.5) vs 14.2 (± 4.9) at enrollment, 1.4 (± 1.8) vs 4.2 (±4.9) on Day 5, and 0.6 (± 0.9) vs. 2.5 (±6.1) on Day 14 (Table 1). Among the 7 patients, no child had an AOM treatment failure or recurrence. Of the 6 patients in whom bacterial and viral testing have been completed, a bacterial pathogen was identified in 6 (100%), and a viral pathogen in 3 (50%) children (Table 2).

Conclusion. SARS-CoV-2 can occur in children with AOM. It is important that providers maintain a high index of suspicion for COVID-19 even in patients with clinical evidence of AOM, particularly to ensure families are appropriately advised on isolation and quarantine requirements. AOM with SARS-CoV-2 does not appear to be more severe than AOM without SARS-CoV-2.

Disclosures. Samuel R. Dominguez, MD, PhD, BioFire Diagnostics (Consultant, Research Grant or Support); DiaSorin Molecular (Consultant); Pfizer (Grant/Research Support) Samuel R. Dominguez, MD, PhD, BioFire (Individual(s) Involved: Self); Consultant, Research Grant or Support; DiaSorin Molecular (Individual(s) Involved: Self); Consultant; Pfizer (Individual(s) Involved: Self); Grant/Research Support

Disclosures.

SARS-CoV-2 can occur in children with AOM. It is important that providers maintain a high index of suspicion for COVID-19 even in patients with clinical evidence of AOM, particularly to ensure families are appropriately advised on isolation and quarantine requirements. AOM with SARS-CoV-2 does not appear to be more severe than AOM without SARS-CoV-2.

Disclosures. Samuel R. Dominguez, MD, PhD, BioFire Diagnostics (Consultant, Research Grant or Support); DiaSorin Molecular (Consultant); Pfizer (Grant/Research Support) Samuel R. Dominguez, MD, PhD, BioFire (Individual(s) Involved: Self); Consultant, Research Grant or Support; DiaSorin Molecular (Individual(s) Involved: Self); Consultant; Pfizer (Individual(s) Involved: Self); Grant/Research Support

Table 1. Clinical features of children with concurrent SARS-CoV-2 and AOM.

Category	Description	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15	Case 16	
Demographics	Age (months)	12	15	15	23	12	15	15	10	15	15	15	15	15	15	15		
	Gender	Male	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Race	White	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Medication History	Antibiotics	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		Antihistamines	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Nasal Decongestants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Oral Decongestants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Corticosteroids	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Antihistamines	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Nasal Decongestants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Oral Decongestants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Corticosteroids	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Outcomes	AOM symptoms	Acute Otitis Media (AOM)	12	0	10	12	12	12	12	12	12	12	12	12	12	12	12

Disclosures. Samuel R. Dominguez, MD, PhD, BioFire (Individual(s) Involved: Self); Consultant, Research Grant or Support; DiaSorin Molecular (Individual(s) Involved: Self); Consultant; Pfizer (Individual(s) Involved: Self); Grant/Research Support

Table 2. Laboratory findings of children with concurrent SARS-CoV-2 and AOM.

Laboratory Test	Description	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14	Case 15	Case 16	

Disclosures. Samuel R. Dominguez, MD, PhD, BioFire (Individual(s) Involved: Self); Consultant, Research Grant or Support; DiaSorin Molecular (Individual(s) Involved: Self); Consultant; Pfizer (Individual(s) Involved: Self); Grant/Research Support

Co-morbidities and requirement for ICU stay, mechanical ventilation for total cohort Covid-19 and fungemic cohort.

Table 3. Patient Characteristics and Laboratory Parameters

Patient Characteristics	Median	IQR	Laboratory Parameters	Mean Difference in Fengemic Day Hospitalization	SBA	p value
Age (months)	62 (48–75)	62 (53–75)				

Disclosures. Samuel R. Dominguez, MD, PhD, BioFire (Individual(s) Involved: Self); Consultant, Research Grant or Support; DiaSorin Molecular (Individual(s) Involved: Self); Consultant; Pfizer (Individual(s) Involved: Self); Grant/Research Support

Abstracts