The $\delta^{18}$O stratigraphy of the Hoxnian lacustrine sequence at Marks Tey, Essex, UK: implications for the climatic structure of MIS 11 in Britain

G. J. TYE, 1 J. SHERRIFF, 1 I. CANDY, 1* P. COXON, 2 A. PALMER, 1 E. L. MCCLYMONT 3 and D. C. SCHREVE 1

1Department of Geography, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
2Department of Geography, Museum Building, Trinity College, Dublin, Ireland
3Department of Geography, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK

Received 14 August 2015; Revised 8 November 2015; Accepted 14 January 2016

ABSTRACT: Marine Isotope Stage 11 (MIS 11) is considered one of the best analogues for the Holocene. In the UK the long lacustrine sequence at Marks Tey, Essex, spans the entirety of the Hoxnian interglacial, the British correlative of MIS 11c. We present multiproxy evidence from a new 18.5-m core from this sequence. Lithostratigraphy, pollen stratigraphy and biomarker evidence indicate that these sediments span the pre-, early and late temperate intervals of this interglacial as well as cold climate sediments that post-date the Hoxnian. The $\delta^{18}$O signal of endogenic carbonate from this sequence produces several clear patterns that are interpreted as reflecting the climatic structure of the interglacial. As well as providing evidence for long-term climate stability during the interglacial and a major post-Hoxnian stadial/interstadial oscillation the $\delta^{18}$O signal provides strong evidence for abrupt cooling events during the interglacial itself. One of these isotopic events occurs in association with a short-lived increase in non-arbores pollen (the NAP phase). The results presented here are discussed in the context of other MIS 11 records from Europe and the North Atlantic, particularly with respect to our understanding of the occurrence of abrupt climatic events in pre-Holocene interglacials. Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

KEYWORDS: abrupt event; Hoxnian; Interglacial; Marine Isotope Stage 11; $\delta^{18}$O and $\delta^{13}$C.

Introduction

Marine Oxygen Isotope Stage 11 (MIS 11, ca. 425–360 ka; MIS 11c, 425–395 ka) is often suggested to be the most appropriate analogue for the Holocene interglacial (Droxler and Farrell, 2000; Berger and Loutre, 2002; Loutre and Berger, 2003; Candy et al., 2014). This suggestion is based on the observation that the pattern of orbital forcing, and consequent insolation variability, that occurred during the Holocene matches that which occurred during MIS 11 more closely than in any other interglacial of the past 500 ka (Berger and Loutre, 2002, 2003; Loutre and Berger, 2003). As temporal variations in insolation patterns will partially control the duration and climatic structure of interglacials, climate records from MIS 11 allow the study of how the climate of a Holocene-like interglacial might evolve in the absence of anthropogenic forcing (Candy et al., 2014). Long climate records that provide data on the structure of MIS 11, including the EPICA Dome C ice core (EPICA Community Members, 2004; Jouzel et al., 2007), marine cores (McManus et al., 1999; Kandiano et al., 2012) and long lake records (Prokopenko et al., 2002, 2006, 2010; Tzedakis, 2010), are now providing high-resolution evidence for the extended duration, complex structure and potential instability of this climatic episode.

Despite the importance of marine and ice core archives there is an increasing need to understand the expression of MIS 11 in the terrestrial realm. Western and central Europe are ideal locations for such studies as (i) they contain several long lacustrine records that have been correlated with MIS 11 (Nitychoruk et al., 2005; Koutsodendris et al., 2010, 2011, 2012, 2013), and (ii) they occur in close proximity to the large number of high-resolution palaeoclimatic records that are found in the North Atlantic. Despite the often-fragmentary nature of such records they have the clear advantage over ice and marine core archives in that they can be annually laminated, or varved, and therefore they allow environmental change to be reconstructed at a much higher temporal resolution (Turner, 1970; Meyer, 1974; Müller, 1974; Nitychoruk et al., 2005; Mangili et al., 2007, 2010a, b; Brauer et al., 2008; Koutsodendris et al., 2010, 2011, 2012, 2013). In the UK, however, many of these terrestrial records have not been restudied for several decades; consequently, much of the palaeoenvironmental information that has been derived from them is based upon pollen analysis with only limited application of other proxy techniques. Marks Tey (Fig. 1), in southern Britain (Turner, 1970), is a good example of this. The lacustrine sequence at Marks Tey contains the most complete record of the Hoxnian interglacial, the British correlative of MIS 11, more specifically the interglacial interval MIS 11c (Shackleton and Turner, 1967; Shackleton, 1987). Much of this sequence has been proposed to be varved (Shackleton and Turner, 1967), with each varve containing a distinct summer lamination of endogenic carbonate, suitable for $\delta^{18}$O and $\delta^{13}$C isotopic analysis. Consequently, Marks Tey holds great potential for increasing our understanding of the expression of the climates and environments of MIS 11 in Western Europe.

This paper presents a re-investigation of the Hoxnian lake sediment sequence preserved at Marks Tey, through the analysis of a new sediment core that was recovered in 2010. The paper describes the lithostratigraphy of the new core and the micromorphological characteristics of the different lithofacies that are present. A pollen diagram for the sequence is also presented, which allows both for the correlation of the new sequence with that of Turner’s (1970) original borehole, and for a reconstruction of the vegetation succession preserved within. This record of palaeoecological change is supported by the analysis of lipid biomarkers from the sediments, which allow for long-term patterns of environmental/biological change to be discussed. The $\delta^{18}$O and $\delta^{13}$C records of this sequence are also presented. Some of the
variability within the isotopic signal can be explained by changes in the style of sedimentation. However, a number of patterns exist that can be interpreted as reflecting climatic, primarily temperature, shifts. These include two episodes of abrupt change: (i) a period of climatic instability that occurs during full interglacial conditions, and (ii) an abrupt warming event that occurs in the cold, post-Hoxnian (post-MIS 11c) sediments. The paper concludes by discussing the significance of the climatic stratigraphy of this record particularly in the context of other records of MIS 11 from Britain and the North Atlantic.

MIS 11 in the British terrestrial record

Marks Tey (Fig. 1a,b) is one of several sites in central and southern Britain that preserve lacustrine sediments that span all, or a significant part, of the Hoxnian interglacial (West, 1956; Kelly, 1964; Turner, 1970; Coxon, 1985; Coope, 1993; Coope and Kenward, 2007; Preece et al., 2007; Ashton et al., 2008). Most of these sequences have accumulated in sedimentary basins that formed as kettle holes or sub-glacial scour features during the preceding Anglian glaciation and became lacustrine systems during the immediate post-glacial period and the subsequent interglacial. An abundance of litho-, bio- and morpho-stratigraphic evidence, coupled with a range of geochronological data, has been used to correlate robustly the Anglian glaciation with MIS 12 and the Hoxnian interglacial with MIS 11, or more specifically with MIS 11c, the interglacial interval of this warm isotopic stage (see Candy et al., 2014 for a recent review of these arguments). Marks Tey is the para-stratotype for the Hoxnian-Interglacial, a temperate episode defined by West (1956) on the basis of pollen stratigraphy from the type sequence at Hoxne in Suffolk (Mitchell et al., 1973). Marks Tey is unique as, unlike most other Hoxnian sequences, it preserves the full interglacial vegetation succession from the end of the Anglian through the entire Hoxnian–Interglacial into the subsequent cold interval.

The pollen stratigraphy of the Hoxnian (Fig. 2) is subdivided into four pollen zones (West, 1956; Turner and West, 1968; Turner, 1970). The pre-temperate zone (Hoxnian I or Hol), where total arboreal pollen (AP) first exceeds total non-arboreal pollen (NAP), is characterized by the presence of closed boreal forest species *Betula* and *Pinus*. The early-temperate zone (HolII) sees the expansion of mixed *Quercus* forest that undergoes a succession of changing species dominance from *Quercus* (HolIIa) to *Alnus* (HolIIb) to *Corylus* (Hollc). The late-temperate zone (HolIII) is characterized by the progressive decline of mixed *Quercus* forest and an increase in late-migrating temperate trees such as *Carpinus* (Holllla) and *Abies* (Holllb). Finally, the post-temperate zone (HolIV) is characterized by a return to boreal and heathland species such as *Pinus* and *Empetrum* (HolVa) as well as *Betula* and *Poaceae* (HolVb). At Marks Tey, the Hoxnian sediments are underlain and overlain by beds that contain a high NAP/AP ratio, which have been ascribed to the colder climates of the preceding late Anglian and to the post-Hoxnian cold stage, respectively.

A key characteristic of the pollen record of many Hoxnian sequences is the occurrence of a short-lived increase in NAP relative to AP (Fig. 2) during the early-temperate zone (Hollc), commonly referred to as the nonarboreal pollen increase during the early-temperate zone (Hollc).
phase, or NAP phase (West, 1956; Kelly, 1964; Turner, 1970). This episode is well expressed at Marks Tey, where the presence of assumed varved sediments allowed its duration to be reconstructed at ca. 300 years (Turner, 1970).

A comparable event is seen in deposits of the Holsteinian interglacial, the continental correlative of the Hoxnian, in Germany (e.g. Dethlingen and Döttingen) and Poland (Ossowka). In the continental records this event has been referred to as the Older Holsteinian Oscillation, or OHO (Nitychoruk et al., 2005; Diehl and Sirocko, 2007; Koutso-dendris et al., 2011, 2012, 2013). The forcing mechanism for this event is unclear as the occurrence of charcoal fragments at the start of the NAP phase at Marks Tey led Turner (1970) to suggest that the reduction in tree pollen was caused by wildfire, while other researchers have suggested that it was climatically driven (e.g. Kelly, 1964; Turner, 1970; Koutsodendris et al., 2011).

It is important to highlight the fact that the widely cited Marks Tey summary pollen diagram (Fig. 2) is a composite one. This is constructed from pollen records derived from several cores that were extracted from different parts of the Marks Tey basin (Turner, 1970; Rowe et al., 1999). The longest of these records, from borehole ‘GG’, comes from the deepest part of the basin and contains sediments, mostly fine silts and clays, which cover the interval from the late Anglian through pollen zones HoI–HoII and much of HoIIIa to HoIIIb (Turner, 1970; Gibbard and Aalto, 1977; Gibbard et al., 1986). The laminations within the sediments of HoIIIb are irregular and highly variable with respect to their thickness (Turner, 1970). In contrast, from the approximate onset of HoIIb to HoIIIa and within the brecciated fragments of HoIIIb, the sediments have a more regular structure, comprising laminated sets. These sets have three distinct laminations consisting of: (i) diatom laminations, (ii) calcite laminations and (iii) detrital laminations. It is these laminations that have been suggested to be varved (Shackleton and Turner, 1967; Turner, 1970; Candy, 2009), although no quantitative work to validate (or otherwise) the varved nature of these laminations has been published.

It is the endogenic calcite laminations within the Marks Tey deposits that have the greatest potential for investigating British palaeoenvironments during MIS 11c (Candy, 2009; Candy et al., 2014). The analysis of the $\delta^{18}$O and $\delta^{13}$C values of lacustrine carbonates in British Quaternary sequences has become increasingly widespread over the past 20 years (Whittington et al., 1996, 2015; Marshall et al., 2002, 2007;
The δ^{18}O value of lacustrine carbonates receives the most attention because, within open-lake systems under mid-latitude temperate climates, temperature is suggested to be the primary driver of this proxy (Leng and Marshall, 2004; Candy et al., 2015). This is because the δ^{18}O value of lacustrine carbonate is strongly related to the δ^{18}O of the lake water, which in turn is a function of the δ^{18}O of rainfall (Andrews, 2006; Candy et al., 2011). In mid-latitude regions, there is a positive linear relationship between prevailing air temperature and the δ^{18}O of rainfall (Dansgaard, 1964; Rozanski et al., 1992, 1993). In general this means that the δ^{18}O of lacustrine carbonates should increase under warmer climates and decrease under cooler climates. This temperature relationship is clearly seen in numerous lacustrine carbonate records of the Last Glacial to Interglacial Transition (LGIT), which provide the most convincing evidence in the British Isles for abrupt climatic shifts comparable to those preserved in the Greenland ice core records (Marshall et al., 2002; van Asch et al., 2012; Whittington et al., 2015).

**Methodology**

**Core recovery and sedimentology**

A sediment sequence (MT-2010) comprising two overlapping boreholes (TL 91081, 24431 and TL91082, 24432 drilling from a surface elevation of 15.80 m OD) was obtained in 2010, within 10 m of the original ‘GG’ borehole of Turner (1970). The cores were drilled using a wet rotary drilling rig, recovering cores in 3-m lengths, which were then cut in half for ease of transport. The two boreholes were correlated by the identification of key marker beds that were present in both sequences. This produced a composite sequence that was 18.5 m in length. This paper quotes depth as metres below surface (mbs) but depths are also shown in Figs 3–5 as metres below ordnance datum (OD). In the laboratory, macroscopic sediment description of the cores was undertaken to determine facies changes throughout the sequence and to identify the main sedimentary units, or lithofacies. Samples of 1 cm³ were taken from throughout the sequence to determine the organic carbon content by titration (Walkley

![Figure 3. Lithostratigraphy, bulk sedimentology (% carbonate and % organic carbon) and biomarker records for the Marks Tey 2010 (MT-2010) borehole. Lithofacies associations are shown (Table 1, in Supplementary information Table S1, for detailed descriptions) as are the pollen zones recorded in this record (see Fig. 4 for pollen diagram). Photomicrographs (labelled A–E) highlight changes in microfacies through the sequence. LFa-1 consists of finely but irregularly laminated sediments (A), LFa-2 consists of finely but regularly laminated sediments (B) and LFa-3 consists of finely, regularly laminated sediments that are either brecciated or deformed (C). In all of these micrographs the light coloured laminae are calcitic, while the darker sediments are organic. LFa-4 and -5 are characterized by a significant proportion of minerogenic material with LFa-4 (D) containing occasional calcite lamination (top of photomicrograph) but LFa-5 (E) being dominated by fine sand, silts and clays. All photomicrographs were taken using cross-polarized light; scale bar at bottom left is 500 µm in all cases.

Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd. J. Quaternary Sci., Vol. 31(2) 75–92 (2016)
Figure 4. Pollen diagrams for the Marks Tey 2010 (MT-2010) record. No pollen analysis was carried out on the middle 2 m of the brecciated sediments of LFa-3. The key characteristics of MT-2010 replicate that seen in the ‘GG’ borehole of Turner (1970) including the NAP phase (shaded).
and Black, 1934), and calcium carbonate content using a Bascomb Calcimeter (Gale and Hoare, 1991).

**Micromorphology**

Samples of undisturbed sediment were taken from each lithofacies for the production of thin sections. The aim of this was to support the macroscopic description of the different lithofacies with observations made at the microscale. Furthermore, microscopic analysis of the sediments can provide information on detrital invasional, which may act as a source of detrital contamination during the isotopic analysis of the endogenic carbonate. Thin sections were prepared from fresh sediment blocks (100 mm x 30 mm x 20 mm) using standard impregnation techniques involving a slow-curing crysatic resin developed in the Centre for Micromorphology at Royal Holloway, University of London (Palmer et al., 2008). Thin sections were analysed using an Olympus BX-50 microscope with magnifications from 20x to 200x and photomicrographs were captured with a Pixera Penguin 600es camera.

**Pollen**

Sediment samples of 1 cm³ were taken for pollen analysis. In total, 88 samples were prepared from the lowermost 8 m of the core (Fig. 4b) and ten samples were prepared from the uppermost 6.5 m of the core (Fig. 4a). Samples were prepared following standard techniques, including sample weighing, treatment with sodium pyrophosphate (Na₄P₂O₇), hydrochloric acid (HCl, 10%), hydrofluoric acid (HF, 40%), heavy liquid separation with sodium polytungstate, acetolysis (C₂H₄O₂), and slide preparation using glycerine jelly. A tablet with a known number of Lycopodium spores (Stockmann, 1971) was added to the samples before preparation to enable concentrations (grains g⁻¹) to be calculated (lowermost 88 samples prepared with Lycopodium batch 177745, uppermost ten samples prepared with Lycopodium batch 1031).

**Biomarkers**

Lipid biomarkers were extracted from 18 freeze-dried and homogenized subsamples of ca. 1 cm³ following the microwave-assisted extraction methodology of Kornilova and Rosell-Melé (2003). Known concentrations of 2-nonadecane, 5α-cholestane and hexatriacontane (all Sigma-Aldrich) were added as internal standards. An aliquot of each lipid extract was separated into apolar, ketone and polar fractions using silica column chromatography (5% H₂O) using n-hexane, dichloromethane and methanol, respectively.

---

Figure 5. δ¹⁸O and δ¹³C record from the MT-2010 borehole. (a) Mean δ¹⁸O values for each isotopic zone (see Table 1 for descriptive statistics), (b) δ¹⁸O data plotted against depth (nd (c) δ¹³C data plotted against depth. Note the increase in scatter within the δ¹⁸O data in the varved section (equivalent to MTIZ-2). δ¹³C values are for much of the record consistent with those recorded in open system lakes where dissolved carbon has equilibrated with atmospheric CO₂, although in the later part of the record more enriched values occur, this may reflect greater anoxic decay in the water body or lower plant activity in the surrounding catchment. Note that there is no evidence in the sediments for detrital contamination, a suggestion supported by the lack of co-variance within the δ¹⁸O and δ¹³C dataset. That is, where δ¹³C values become more enriched there is no concomitant change in δ¹⁸O values (see Supplementary information Table S2).
apolar fractions were analysed by gas chromatography-mass spectrometry (GC-MS), using a 30-m HP-5MS fused silica column (0.25 mm i.d. 0.25 μm of 5% phenyl methyl siloxane). The carrier gas was He, and the oven temperature was programmed as follows: 60–200°C at 20°C min⁻¹, then to 320°C (held 35 min) at 6°C min⁻¹. The mass spectrometer was operated in full-scan mode (50–650 amu s⁻¹), and the process of sieving removes no further material from the sample. All samples were then left to dry, powdered and the 13C values of each sample were determined by analysing CO2 liberated from the reaction of the sample with phosphoric acid at 90°C using a VG PRISM series 2 mass spectrometer in the Earth Sciences Department at Royal Holloway. Internal (RHBNC) and external (NBS19, LSVEC) standards were run every four and 18 samples, respectively. VPDB. All isotope data presented in this study are quoted against VPDB.

Results

Core stratigraphy and sedimentology

The composite stratigraphy and sedimentology of the MT-2010 core is presented in Fig. 3. Based on changes in macroscale and microscale sedimentology throughout the sequence, the core can be divided into five main lithofacies associations (LFa-1 to 5). The main characteristics of these associations are summarized in Supplementary Table S1. The lowermost two units, LFa-1 (18.47–16.47 mb or −2.67 tp -0.67 m OD) and LFa-2 (16.47–12.00 mb or −0.67 to +3.8 m OD), comprise intact and in situ laminated deposits that are rich in organic and endogenic sediments. The laminations that comprise LFa-1 are irregular with carbonate laminations becoming more frequent upwards through this unit. LFa-2 comprises regular millimetre-scale laminations composed of the repeating organic/diatom/calcite triplets described earlier (Turner, 1970). Following the interpretation of Turner (1970) the sediments that comprise LFa-2 are considered varved, although this cannot be definitively proven. However, the irregular pattern of sedimentation seen in the sediments from LFa-1 is untypical of seasonal/annual laminations, questioning whether they are truly varved. The lower pollen diagram records a characteristic interglacial vegetation succession from a pre-temperate Pinus–Betula–Poaceae–beech assemblage (18.50–16.75 mbs) through an early temperate assemblage of deciduous woodland taxa, primarily Ulmus–Quercus–Alnus–Corylus in varying proportions (16.75–13.60 mbs), to a post-temperate assemblage characterized by a rise in Abies (13.50 mbs onwards and into the brecciated sediments of LFa-3). A short-lived expansion of grass pollen at the expense of deciduous taxa (particularly Corylus) occurs between 15.00 and 14.50 mbs, producing a pronounced NAP phase. The brecciated sediments of LFa-3 in the upper pollen diagram also record a post-temperate vegetation assemblage dominated by Abies. From 4.00 mbs upwards, temperate tree pollen is still abundant but grass and other open ground taxa become increasingly significant. The pollen sequence presented here is characteristic of the Hoxnian interglacial and replicates almost exactly the vegetation succession record in the ‘GG’ borehole of Turner (1970). The lowermost pollen diagram records pollen zones Hol, Holla-Ilc and Holla, with the onset of Hollb being broadly consistent with the transition to the brecciated sediments of LFa-3. The position of the NAP phase, midway through Hollc, is identical to that described by Turner (1970). Between 7.00 and 4.00 mbs in the upper pollen diagram, the dominance of Abies highlights the continuation of Hollil. However, the overlying sediments (4.00–0.00 mbs) are marked by an expansion of non-arboreal taxa although temperate pollen is still present. Turner (1970) argued that a sedimentary hiatus occurred at this level, with the uppermost sediments in ‘GG’, the equivalent of LFa-4 and -5, accumulating during a cold-climate interval immediately after the Hoxnian. In Turner’s model, sediments of HolV are absent from the sequence and the temperate taxa represented in the pollen spectrum reflect reworking of material from interglacial sediments exposed at the lake margin, a common taphonomic issue in Hoxnian lake sequences (West, 1956; Coope and Kenward, 2007). This proposal is also accepted in this study to explain the pollen record of LFa-4 and -5 and these sediments are suggested to reflect a post-Hoxnian cold interval.

n-Alkane biomarkers

This study focuses on the distribution of the biomarkers found within the apolar fraction at Marks Tey, which is dominated by mid-chain (C20–C26) and long-chain (C27–C33) n-alkanes, with summed concentrations ranging from 5.4 to 26.3 μg g⁻¹ and 2.4 to 18.6 μg g⁻¹, respectively. The dominant n-alkane varies between C27 (5.0–12.4 μg g⁻¹; 1773–1838 cm), C29 (1.8–3.4 μg g⁻¹; 1633–1211 cm) and C23 (4.5–10.2 μg g⁻¹; above 1016 cm). Minor contributions are also recorded from
taraxast-20-ene (0–0.6 μg g⁻¹), which has been linked to Ericaceae (Pancost et al., 2002) and the C₃₇₇ methylhopanes sourced from aerobic bacteria (0–1.1 μg g⁻¹; Sinninghe Damsté et al., 2004).

The relative distributions of the n-alkanes provide useful indicators of the dominant contributions of different higher plants to sediment sequences, alongside indications of the relative importance of aquatic algal inputs (Castañeda and Schouten, 2011). For example, short- and mid-chain n-alkanes dominate aquatic algae (C₁₇–C₂₁, Cranwell et al., 1987) and submerged macrophytes (C₂₃–C₂₅, Ficken et al., 2000), whereas long chain length n-alkanes (C₂₇–C₃₃) are important components of the epicuticular waxes of higher plants (Eglinton and Hamilton, 1967). The contribution of submerged vegetation is calculated using the Paq ratio (Ficken et al., 2000). Furthermore, the relative importance of different long-chain n-alkanes, described by the ‘average chain length (ACL)’ has been linked to changes to the higher plant assemblage and/or shifts in temperature and humidity (Gago-Sánchez and Peltzer, 1986; Hinrichs et al., 1997; Rinna et al., 1999; Pancost et al., 2003; McClymont et al., 2008). In contrast, the Pwax ratio is believed to distinguish between contributions from plant roots and the above-ground parts, albeit based on evidence from peatland environments (Zheng et al., 2007; Ronkainen et al., 2013).

Values of the ACL, Paq and Pwax indices all vary across the MT-2010 sequence (Fig. 3). The lowest ACL values (28.5–29) occur within sediments of LFa-1 (Hol) and LFa-4 (the post-Hoxnian sediments). ACL values peak in LFa-2, Holfic–Hollifa (29.5–29.8), and then decline in the later part of the interglacial, LFa-3 or Hollib (29–29.5). Note that the samples analysed from Hollib are from the brecciated zone, and the extracted material includes both brecciated fragments and the intra-fragment clay, which were mixed after freeze-drying (it was not possible to separate these components before extraction). These lower values may therefore represent an ‘averaging’ of the ACL values of Hollib sediments and the clays that were deposited post-brecciation. Pwax values show a similar pattern to ACL values in that they peak in LFa-2 (0.7–0.8 in Holfic and Holla) but are low in the early (ca. 0.6 in LFa-1/Hol) and late (ca. 0.4 in LFa-3/Hollib) interglacial. There is a slight increase in Pwax values from Hollib into the post-Hoxnian sediments (0.5–0.6 in LFa-4). In contrast, Paq values show the reverse trend to Pwax (reflecting the different emphasis on long- versus mid-chain n-alkanes between the two indices). Paq values decline from 0.55 in Hol, are low (0.25–0.38) through Holla, Ilb, Ilc and Illa, before increasing to 0.68–0.73 through Hollfa–Ilb. A slight decline to values of 0.60 occurs in Hollib.

δ¹⁸O and δ¹³C values of the lacustrine carbonates

The Marks Tey sequence is divided into five Isotopic Zones, MTIZ (Fig. 5, Table 1 and Supplementary information Table S2). These zones are delimited on the basis of variations and patterns with the δ¹⁸O signal, rather than the δ¹³C signal. This is because in all isotopic studies of lacustrine marl sequences in the British Quaternary, it is the δ¹³C values that provide the most useful climatic/environmental data because of their relationship to prevailing temperature (as outlined above). δ¹³C values record more localized information on hydrology, biological activity, carbon sources and organic decay (Leng and Marshall, 2004; Candy et al., 2015).

**MTIZ-1 (18.47–15.90 mbs, LFa-1, pollen zone Hol–Hollib)**

The δ¹³C (mean = −3.13‰) and δ¹³C (mean = −2.32‰) values in MTIZ-1 are high with relatively low standard deviations (δ¹³C 1σ = 0.4; δ¹³C 1σ = 1.3). δ¹³O values decrease from 18.28 mbs (−2.65‰) to 16.48 mbs (−3.40‰). This declining trend is also seen in the δ¹³C signal but the scale of the decline is much greater; from 3.62‰ at 18.37 mbs to −0.82‰ at 16.48 mbs. There is no co-variance between δ¹³O and δ¹³C (r² = 0.03/P = 0.18).

**MTIZ-2 (16.48–12.00 mbs, LFa-2, pollen zones Hollic–Illa)**

MTIZ-2 is characterized by average δ¹³O and δ¹³C values that are lower than MTIZ-1 (δ¹³O mean = −3.75‰ and δ¹³C mean = 0.77‰). The standard deviation in δ¹³O increases from that of MTIZ-1 (δ¹³O 1σ = 0.6) while that of δ¹³C decreases but is still high (δ¹³C 1σ = 0.8). δ¹³C values continue to decrease across the boundary between MTIZ-1 and -2 to a low of −1.10‰ at 15.06 mbs, after which they increase across the rest of this zone. Within MTIZ-2 there is no clear trend in δ¹³O, although the lowermost part of this zone (15.88–14.71 mbs) has a lower mean δ¹³O value (−3.92‰) than the uppermost part (14.71–12.00 mbs) which has a mean δ¹³O value of −3.61‰. The lower mean δ¹³O value for 15.88–14.71 mbs is a function of two factors: (i) the lowest individual δ¹³O values occur between these depths, and (ii) the occurrence of a 30-cm segment of sediment (15.02–14.71 mbs) where δ¹³O values are persistently low (mean δ¹³O value = −4.06‰). These low values occur at the same depths within the sequence as the NAP phase. There is no co-variance between δ¹³O and δ¹³C values (r² = 0.20/P = 0.31).

**MTIZ-3 (12.00–4.00 mbs, LFa-3, Hollia–Illb)**

MTIZ-3 covers the ‘brecciated’ zone. Samples for isotopic analysis from this lithofacies were taken from carbonate laminations from within the brecciated fragments at regular depths across this interval. This lithofacies does not have stratigraphic integrity due to the brecciation and disturbance. Thus, although on the basis of pollen content the fragments of lake sediments that make up this zone (Hollib) are younger than the sediments of LFa-2 and older than the sediments of LFa-4, within LFa-3 depth does not equate to age. The isotopic value of the samples taken from across this lithofacies therefore does not provide information on how the environment evolved across this interval but provides an indication of the isotopic characteristics of lacustrine carbonates that precipitated during this time. The mean δ¹³O (−3.22‰, 1σ = 0.53) and δ¹³C (3.49‰, 1σ = 0.91) values both show an increase from those of MTIZ-2. MTIZ-3 contains some of the highest δ¹³O values of the whole record. There is no evidence of co-variance between δ¹³O and δ¹³C values (r² = 0.31).

---

**Table 1.** Descriptive statistics of the MT-2010 isotopic dataset presented as summary data for the entire dataset (top row) as summary data for the individual isotopic zones.

| Covariance | P | Mean δ¹³O (%) | σ | Mean δ¹³C (%) | σ |
|------------|---|---------------|---|---------------|---|
| Dataset    | 0.23 | 0.05 | −3.64 | 0.76 | 1.60 | 1.52 |
| MTIZ 1     | 0.18 | 0.03 | −3.13 | 0.37 | 2.32 | 1.31 |
| MTIZ 2     | 0.31 | 0.20 | −3.75 | 0.62 | 0.77 | 0.84 |
| MTIZ 3     | 0.26 | 0.31 | −3.22 | 0.53 | 3.49 | 0.92 |
| MTIZ 4     | −1.19 | 0.36 | −4.97 | 0.97 | 3.43 | 2.23 |
| MTIZ 5     | 0.26 | 0.03 | −4.13 | 1.27 | 3.12 | 1.34 |
MTIZ-4 (4.11–3.19 mbs) and MTIZ-5 (3.19–1.51 mbs)

The sediments of lithofacies 4 are characterized by major oscillations in $\delta^{18}O$ values, with a zone (MTIZ-4) of relatively low values (mean $\delta^{18}O = -4.97\%e$, $1\sigma = 0.97$) between 4.11 and 3.19 mbs and a zone of relatively high values (mean $\delta^{18}O = -4.13\%e$, $1\sigma = 1.27$) between 3.19 and 1.51 mbs (MTIZ-5). It is these characteristics that are used to define MTIZ-4 and -5. As indicated by the high standard deviation values of MTIZ-4 and -5, there is significant scatter within the data of both zones; however, the $\delta^{18}O$ values effectively show a decrease, in MTIZ-4, to the lowest values of the whole dataset and then an increase, in MTIZ-5, to values as high as those seen in MTIZ-1, -2 and -3. At the end of MTIZ-5, $\delta^{18}O$ values decrease again to values consistent with those seen in MTIZ-4. $\delta^{13}C$ shows no trend, with mean values (MTIZ-4 = 3.43%e, $1\sigma = 2.23$; MTIZ-5 = 3.12%e, $1\sigma = 1.34$) being relatively consistent across the two zones. In both of these zones $r^2$ values are low, indicating little co-variance between $\delta^{18}O$ and $\delta^{13}C$ (MTIZ-4 $r^2 = 0.36$; MTIZ-5 $r^2 = 0.03$).

**General characteristics of the Marks Tey isotopic record**

The isotopic dataset presented above is characteristic of an open-system lake basin in a temperate climate (Fig. 5). In general the $\delta^{13}C$ values (mean = 1.6%e, $1\sigma = 1.52$) are typical of lake waters that have equilibrated with atmospheric CO$_2$ (Talbot, 1990; Leng and Marshall, 2004), although in places (early MTIZ-1 and late MTIZ-3) carbon values are significantly higher. It is likely that this reflects the presence of anoxic conditions at the lake bed, resulting in an increase in methanogenesis leading to a consequent rise in $\delta^{13}C$ values (Talbot, 1990). The absence of any significant relationship between $\delta^{18}O$ and $\delta^{13}C$ values (the $r^2$ of the whole data set = 0.05, never exceeding 0.36 for any isotopic zone) suggests that evaporation was not a major environmental control on lake basin hydrology (Leng and Marshall, 2004).

It is also proposed that the dataset is unaffected by detrital contamination. Isotopic values of samples of the carbonate-rich Lowestoft Till, which underlies the Marks Tey basin and is the most likely source of detrital contamination, are plotted against the lacustrine carbonate dataset (Fig. 6). The detrital values and the lacustrine samples overlap, which is not unusual as marine limestone, the source of the carbonate in the Lowestoft Till, and lake carbonates have similar $\delta^{13}C$ values (Candy et al., 2015). However, the overlap occurs between Lowestoft Till samples and samples from LFa-2, the endogenic-rich sediments that show the least evidence for detrital contamination. There is no overlap between the isotopic values of the minerogenic rich sediments of LFa-4 and -5, the units that have the greatest potential for detrital contamination, and those of the Lowestoft Till samples. It is therefore suggested that the impact of detrital contamination on the Marks Tey isotopic record is negligible, with the overlap observed between the isotopic values of bedrock samples and the samples from LFa-2 being coincidental.

It is also important to note that some shifts within the isotopic dataset may be a function of changes in sedimentary style. For example, there is a large increase in the standard...
deviation of $\delta^{18}$O values from MTIZ-1 to MTIZ-2. If the sediments within LFa-2 are interpreted as varves, but those within LFa-1 are non-anual in nature (see above for discussion and associated caveats), the shift in standard deviation could simply reflect the resolution of the archive: in this instance, a shift from a sediment where each carbonate bed/lamination may reflect many years or even decades of accumulation (LFa-1) to a unit where each lamination represents carbonate that has accumulated in a single summer (LFa-2). This increase in resolution, because of a change in sedimentology, will automatically produce an increase in scatter within the dataset. In such contexts, this change in scatter has no environmental/climatic significance, but averaging the $\delta^{18}$O datasets from MTIZ-1 and -2 removes the effect of changes in sample resolution and allows the $\delta^{18}$O values of these two datasets to be compared. Consequently, the decrease in mean $\delta^{18}$O values that occurs from MTIZ-1 to -2 is considered to have an environmental significance.

Discussion

Lithostratigraphy, pollen stratigraphy and n-alkane biomarkers of the Marks Tey sequence

The lithostratigraphy and the pollen stratigraphy of MT-2010 replicate the sequence recovered from borehole GG by Turner (1970). MT-2010 records intact sediments preserving continuous sedimentation across the early to middle part of the Hoxnian interglacial (Hol–Hollia, in LFa-1 and -2). The later part of the interglacial (Hollia and b) is preserved in the brecciated and deformed sediments of LFa-3. As with the GG borehole sequence, there is no evidence for intact sediments of HolV, and consequently the very end of the Hoxnian interglacial is absent from this sequence. The minerogenic sediments of LFa-4 and -5 directly overlie the brecciated sediments of Hollib (LFa-3). The accumulation of deposits dominated by allogenic sediments, accompanied by a decrease in CaCO$_3$ concentrations to 15–20%, suggests that these lithofacies represent a cold climate interval. Reduced vegetation cover during such an interval would increase allogenic sediment supply and dilute the input of endogenic material (Palmer et al., 2015).

That the sediments of MT-2010 record the major part of an interglacial and the subsequent return to cold climate conditions is supported by the biomarker studies. This pattern contrasts with the biomarker-derived indicators of a more stable interglacial climate, interrupted by two short-lived climate oscillations that occurred within the Holsteinian interglacial at Dethlingen lake, Germany (Regnery et al., 2013), although this is likely to be a function of two factors. Firstly, the biomarker analysis at Marks Tey has been carried out at a lower resolution that at Dethlingen, with the aim of characterizing the broad structure of the interglacial rather than looking for evidence for abrupt and short-term change. Secondly, the later abrupt event described by Regnery et al. (2013), if present in the Marks Tey sequence, would lie within the brecciated sediments of LFa-3, making it unlikely that it would be identified in this study. It is important to highlight, however, that in both studies the patterns and interpretations of the n-alkane ratios are supported by multiple lines of evidence. n-Alkane chain length (ACL) is generally used as a broad indicator of climatic conditions, with longer chain lengths occurring under warmer/drier conditions (Gagosian and Peltzer, 1986; Hinrichs et al., 1997; Rinna et al., 1999; Pancost et al., 2003; McClymont et al., 2008), although the strength of the relationships can vary between plant genera and species (e.g. Sachse et al., 2006; Hofmann et al., 2013; Ronkainen et al., 2013).

In the Marks Tey record, ACL increases across Hol and is highest during Holl and Hollia, suggesting that peak interglacial conditions may have occurred during these pollen zones. ACL then declines within the brecciated sediments of LFa-3, which may be a function of the later part of the interglacial being cooler, although as mentioned earlier this may also be an artefact of sediment mixing at this level, between the brecciated fragments and the clay matrix that they occur within. ACL values of sediments from lithofacies 4 and 5 are low, supporting the idea that these represent a cold climate interval. P$_{aq}$ indicates an indication of the proportion of n-alkanes within each sample coming from higher (terrestrial plants) relative to aquatic plants. The low P$_{aq}$ values from Hol to Hollia indicate a dominance of input from terrestrial plants (Ficken et al., 2000). From Hollib onwards, there is a shift to a greater contribution from submerged/float macrophytes (Ficken et al., 2000) given the increasing P$_{aq}$ signal. The mirror-image pattern of the P$_{aq}$ ratio (high in Hol–Hollia, low from Hollib) may also indicate a shift towards a reduced contribution from higher plants and emergent macrophytes through time (Zheng et al., 2007). Although this increase in aquatic plant markers could be related to sediment mixing as described above, alternative environmental controls on the observed trends include either: (i) long-term changes in nutrient availability in the basin as the lake system evolves over time, or (ii) an environmentally controlled reduction in vegetation cover around the lake basin.

$\delta^{18}$O stratigraphy of the Marks Tey sequence

The $\delta^{18}$O stratigraphy of the Marks Tey sequence (Figs 5 and 7) shows two zones, MTIZ-1 (Hol–Hollia) and MTIZ-3 (Hollia and b), with high mean $\delta^{18}$O values (~3.13 and ~3.22‰, respectively), separated by a zone, MTIZ-2 (Hollia and Hollia), with a lower mean $\delta^{18}$O value (~3.75‰). In the interpretation of this signal it must be remembered that the samples of MTIZ-3 come from brecciated fragments of lake deposits. The magnitude of the isotopic decline between MTIZ-1 and MTIZ-2 and the recovery into MTIZ-3 is relatively small (ca. 0.6–0.7 ‰). Across a large part of the Hoxnian interglacial (Hol–Hollia) there is therefore minimal evidence for major, long-term shifts in mean $\delta^{18}$O values. This is not the case for the post-Hoxnian sediments of LFa-4 and -5 where values decline to ~6.49‰ early in MTIZ-4 (LFa-4), increase to ~2.83‰ early in MTIZ-5 and then decline again to ~5.63 at the end of MTIZ-5 (Fig. 5).

It is common, in most lacustrine carbonate $\delta^{18}$O studies in Western Europe, to interpret isotopic shifts in the context of temperature changes (Marshall et al., 2002, 2007; Leng and Marshall, 2004; Candy, 2009; Candy et al., 2011, 2015; van Asch et al., 2012). Such interpretations are based on the well-recorded control that air temperature exerts on the $\delta^{18}$O of rainfall (Dansgaard, 1964; Rozanski et al., 1992, 1993; Darling, 2004), which is, in turn, the main control on the $\delta^{18}$O of meteoric waters and, through groundwater recharge, the main control on the $\delta^{18}$O of lake waters. Following this approach, the $\delta^{18}$O value of the Marks Tey carbonate record can be interpreted in terms of long-term temperature variations if the following two assumptions are accepted. Firstly, that the $\delta^{18}$O value of the Marks Tey carbonate is primarily controlled by the $\delta^{18}$O value of the lake water from which it precipitates. Secondly, that the modification of the $\delta^{18}$O value of lake water by processes such as evaporation is minimal. If this is accepted then the following observations can be made. That the Hoxnian...
interglacial was characterized by long-term climate stability, with minimal changes in mean δ¹⁸O value from Hol to Holli. The higher mean δ¹⁸O values in MTIZ-1 and MTIZ-3, relative to MTIZ-2, suggest that two temperature peaks may have occurred during the Hoxnian, one early in the interglacial and one in the mid-/late part of the interglacial. It must be stressed, however, that the changes in mean δ¹⁸O values across the Hoxnian sediments preserved at Marks Tey are small, and consequently if there are two periods of higher temperatures then the degree of cooling between them must have been relatively minor (as witnessed by the persistence of deciduous woodland across this interval).

The pronounced variation in δ¹⁸O values that occurs within LFa-4 is suggested to represent a more pronounced climatic oscillation for two main reasons. Firstly, the scale of the δ¹⁸O variations (ca. 3‰) represents a large shift and, secondly, the oscillation occurs in association with significant changes in allogenic versus endogenic sediment input. In LFa-4 (MTIZ-4), the low δ¹⁸O values occur in association with reduced CaCO₃ concentrations (20% or less), implying increased allogenic input. The increase in δ¹⁸O values in the later part of LFa-4 (MTIZ-5) occurs in association with a return to higher CaCO₃ concentrations (25–30%), implying an increase in endogenic carbonate precipitation in the lake basin or a reduction in allogenic inputs from the catchment. The reduction in δ¹⁸O values in the later parts of MTIZ-5 is associated with a reduction in CaCO₃ (20% or less), again implying that allogenic inwashing has increased and erosion is dominating the catchment. The magnitude of the isotopic shifts, combined with the evidence for changing sedimentology, is therefore used to suggest that during LFa-4, a significant post-Hoxnian cold interlude occurred, followed by a short-lived return to interglacial-like temperatures, i.e. the δ¹⁸O values at this point are consistent with those of the underlying Hoxnian beds. This warm event is then followed by a return to lower δ¹⁸O values and, consequently, lower temperatures.

The above discussion assumes that temperature is the driving control on δ¹⁸O. However, it is worth considering two other environmental factors that could have influenced the δ¹⁸O signal presented here. Firstly, several recent studies have argued that under interglacial climates, rainfall, both amount and seasonality, may have a major influence on the δ¹⁸O value of lacustrine carbonates in western and central Europe (Hammarlund et al., 2002; Nitychoruk et al., 2005; Diefendorf et al., 2006; Candy et al., 2015). These studies have proposed that the occurrence of more continental-style climates at the onset of interglacials may produce, because of high levels of summer rainfall (enriched in δ¹⁸O) relative to winter rainfall (depleted in δ¹⁸O), high δ¹⁸O values in recharging surface and groundwaters. As the interglacials progress, the onset of more maritime climates, characterized by an increase in winter rainfall (and therefore an increase in the contribution of relatively depleted δ¹⁸O precipitation), will result in a decline in the δ¹⁸O value of recharging waters. This has been used to explain an early interglacial peak in the δ¹⁸O signal of both Holocene and Hoxnian/Holsteinian lacustrine carbonate records (Nitychoruk et al., 2005; Diefendorf et al., 2006; Candy et al., 2015). It is therefore possible that the decline in δ¹⁸O values that occurs between MTIZ-1 and -2 could reflect a shift in the seasonality of rainfall regime in the early part of the Hoxnian rather than, or as well as, a decrease in temperature.

Secondly, it should also be highlighted that any isotopic record of the early part of MIS 11 may be influenced by the uniquely long and protracted deglaciation that occurred across Termination V (Rohling et al., 2010). Termination V, as well as being characterized by the most extreme deglaciation of the past 500 000 years (Droxler et al., 2003), also lasted for approximately twice the length of most other terminations (Rohling et al., 2010; Vázquez Riveiros et al., 2013). This would have meant that during the early part of MIS 11, when interglacial conditions were already established in much of Europe, Atlantic waters (the source of British precipitation) would have remained relatively enriched with respect to δ¹⁸O, because a significant proportion of H₂¹⁸O was still held within the residual ice masses. This may have elevated the δ¹⁸O value of rainfall during the early part

---

**Figure 7.** Raw δ¹⁸O data for MTIZ-1 and -2 (a) and that data converted into five- (b) and ten- (c) point running averages. Much of the scatter within the δ¹⁸O data from the varved sediments is smoothed out when averaged because the distribution of high and low values are part of no consistent pattern or trend. This is not the case within Holli where intervals, such as that associated with the NAP phase, contain persistent low δ¹⁸O values that produce clear isotopic excursions/ events within the running averages. Three noticeable isotopic ‘depletion’ events occur during Holli, the last of which occurs in association with the NAP phase.

---

**Isotopic data from MTIZ-1 and 2**
of the Hoxnian until significant ice melt had occurred. The decline in \(\delta^{18}O\) values across pollen zones Hol–Holl could therefore represent a complex environmental signal of temperature-, precipitation- and source water-controlled change. Significant oscillations in \(\delta^{18}O\) values occurred during MTIZ-2 in association with the NAP phase of Hollic. The scatter in the \(\delta^{18}O\) dataset of the varved sediments of LFA-2 obscures this pattern, but the depth at which the NAP phase occurs is relatively unusual within MTIZ-2 in that it correlates with a zone of consistently low \(\delta^{18}O\) values. The mean \(\delta^{18}O\) value of MTIZ-2 is \(-3.75\%\) and between 15.10 and 14.70 mbs, the depth of the NAP phase, all the individual \(\delta^{18}O\) values (mean = \(-4.08\%\)) are either below the mean value or within uncertainties of the mean value. This situation is unique within MTIZ-2 where low \(\delta^{18}O\) values do occur but rarely as part of a consistent pattern of low values. The occurrence of a \(\delta^{18}O\) excursion or event in association with the NAP phase can clearly be seen if a five- or ten-point running average is plotted through the dataset (Fig. 7b,c) as this removes scatter and highlights areas of persistently low or high values.

The NAP phase is therefore characterized by a pronounced low in \(\delta^{18}O\) values and is followed by a return to higher mean \(\delta^{18}O\) values, although the pattern of \(\delta^{18}O\) variations before the NAP phase is complex. This section of the sequence is characterized by three zones of low \(\delta^{18}O\) values, separated by a short-lived return to higher \(\delta^{18}O\) values. It has long been debated whether the NAP phase of Hollic is a climatic event, possibly analogous to the 8.2-ka event of the early Holocene, or a regional event driven by wildfire or volcanic eruptions (Kelly, 1964; Turner, 1970; Kukla, 2003; Koutsodendris et al., 2012). If it is assumed that changing \(\delta^{18}O\) values in the Marks Tey record reflect temperature variability then the NAP phase does occur in association with a significant climatic oscillation. This oscillation may not, however, be a single cold event but part of a more complex series of cold/warm oscillations that occurred in the early part of this interglacial.

**The Marks Tey sequence in the context of MIS 11 in Britain, Europe and the North Atlantic**

The application of stable isotopic analysis to the Marks Tey sequence has identified three key characteristics of the Hoxnian (MIS 11c) interglacial in Britain. Firstly, over the scale of the entire interglacial, the climate is one of relative stability. Secondly, at least one post-Hoxnian (MIS 11c) climatic oscillation occurs. Finally, the NAP phase is associated with a significant decline in \(\delta^{18}O\) values and therefore is likely to have occurred in association with an abrupt cooling event. These three points will be discussed here with reference to other sites in Britain and the North Atlantic. Although several stable isotopic records have been produced from MIS 11 sequences in Europe, comparing them with the Marks Tey record is problematic. The main stratigraphic proxy for the La Celle (northern France) tufa sequence (Dabkowski et al., 2012) is a molluscan assemblage that makes a direct correlation with the pollen zones of Marks Tey difficult. Equally, comparing the Planico pollen record of northern Italy (Mangili et al., 2007, 2010a, b) with that of Britain is problematic, as it is unclear how compatible the vegetation history of northern Europe is with that of southern Europe during MIS 11c (see Koutsodendris et al., 2011, 2012). Koutsodendris et al. (2012) have presented \(\delta^{18}O\) values for the Holsteinian lake sediments at Dethlingen but detailed analysis is restricted to the interval spanning the OHO, with little data from the rest of the interglacial. The complexity of understanding \(\delta^{18}O\) shifts in the early part of interglacials has been discussed above with reference to the Polish site of Ossówka (Nitychoruk et al., 2005). However, it is the variability in \(\delta^{18}O\) values that occurs at Dethlingen in association with the OHO that is significant for the discussion here.

While absolute alignment of British and European MIS 11c records is problematic, there is also much debate about how the pollen history of this interglacial should be aligned with marine records of the North Atlantic. In southern Europe, it would appear that woodland conditions persisted for most of MIS 11c, albeit with a noticeable decline ca. 415 ka (Desprat et al., 2005; Tzedakis, 2010). This has led researchers such as Ashton et al. (2008) to assume that the Hoxnian interglacial spans most of MIS 11c (ca. 30 ka), a suggestion supported by estimated varve counts at Marks Tey (Shackleton and Turner, 1967). In contrast, varve chronologies from lacustrine records of the Holsteinian indicate that the woodland phase of this interglacial persisted for only ca. 15 ka (Müller, 1974; Kukla, 2003; Koutsodendris et al., 2011, 2012), i.e. only half of MIS 11c. Koutsodendris et al. (2012) have suggested that the Hoxnian/Holsteinian should therefore be correlated with the second half of MIS 11c, which in North Atlantic sea surface temperature (SST) records (Fig. 8) contains the thermal maximum, and in Mediterranean pollen records contains the maximum expansion of woodland (Tzedakis, 2010).

In the following section we follow the approach of Ashton et al. (2008) in assuming that the Hoxnian equates to the entirety of MIS 11c, because: (i) the extrapolation of annual-layer counting (Shackleton and Turner, 1967) remains the only age model for this period in Britain, and (ii) the model of Koutsodendris et al. (2012) requires Britain to remain treeless for 15 ka, despite the fact that North Atlantic SST records indicate that during this ‘treeless’ interval, this region had achieved Holocene levels of warmth. Consequently, the isotopic variability recorded in Marks Tey is compared, but not directly correlated to, the climatic complexity seen across the entirety of MIS 11c in North Atlantic SST records. The varve chronology for a ‘short’ Holsteinian (Koutsodendris et al., 2012) is, however, compelling and it should be considered that the Marks Tey isotopic record may actually represent climatic variability in the second half of MIS 11c.

**The Hoxnian as an interglacial of prolonged climatic stability**

The suggestion that the Hoxnian interglacial is a time of prolonged climatic stability is consistent with records from the North Atlantic (McManus et al., 1999, 2003; Martrat et al., 2007; Stein et al., 2009). In particular, the work of McManus et al. (2003) on ODP 980 has highlighted the occurrence of relatively stable SSTs at the same approximate latitude as Britain. This is consistent with the \(\delta^{18}O\) signal of the Marks Tey sequence, which shows remarkably little variation in mean \(\delta^{18}O\) value across the major part of the interglacial (Hol–Holllb). The apparent occurrence in the Marks Tey sequence of an early and a late peak in \(\delta^{18}O\) values is, if these are interpreted as being temperature maxima, consistent with many of the North Atlantic records of MIS 11 (Fig. 8), e.g. MD01-2443 (Martrat et al., 2007), ODP 982 (Lawver et al., 2009), U1313 (Stein et al., 2009) and MD03-2699 (Voelker et al., 2010; Rodrigues et al., 2011). All of these workers have shown that North Atlantic SSTs during MIS 11c were characterized by an early (centred on ca. 420 ka) and a late (centred on 405 ka) temperature peak, separated by a short-lived and relatively minor cooling interval. It is important to highlight that the difference in the
magnitude of the early and late Hoxnian $\delta^{18}O$ peaks is small: 0.1% difference in the average of the two isotopic zones in question (MTIZ-1 and 3) and 0.49% difference in the peak value from each zone. This is, however, consistent with SST estimates from U1313 (Stein et al., 2009) and MD03-2699 (Rodrigues et al., 2011), which show that the temperature difference between the late and the early peaks is in the order of ca 1 °C, even without considering the uncertainties associated with these temperature estimates.

If the high $\delta^{18}O$ values that occur in HoI are not a function of higher temperatures but rather a function of precipitation changes or the prolonged pattern of deglaciation, then the fact that the highest $\delta^{18}O$ values occurred in HoIII (the later part of MTIZ-2 and MTIZ-3) might imply a thermal maximum relatively late in the Hoxnian. This would again be consistent with British records of the Hoxnian, which show tentative evidence for climates during HoIII being warmer than during HoI and HoII. In the last interglacial, MIS 5e, fossils of the most thermophilous species are concentrated in pollen zone IpII, i.e. the early temperate phase (Candy et al., 2010). In Hoxnian sequences, there is less convincing evidence for the extreme warmth that is seen in MIS 5e but where evidence for exotic plant species does occur, e.g. seeds of Trapa natans, which indicate summer temperatures of >20 °C (Candy et al., 2010), they are found in sediments of Holl, i.e. the late temperate phase (Gibbard and Aalto, 1977; Coxon, 1985; Gibbard et al., 1986). Although the evidence of warm climate conditions in Holl at Marks Tey is heavily reliant on isotopic data from brecciated sediments, it is consistent with palaeoclimatic data from other Hoxnian sites.

### A post-Hoxnian/MIS 11c stadial/interstadial oscillation

The sedimentological/isotopic oscillations observable in LFa-4 suggest the occurrence of climatic instability directly after the Hoxnian. There is now a growing body of evidence, supported by the new work at Marks Tey, for the existence of short-lived warm climate episodes after the end of the Hoxnian interglacial in Britain. This is seen at both the Hoxne typesite (West, 1956; Ashton et al., 2008; Coope and Kenward, 2007), where a combination of floral and faunal data indicates that post-HoIII, a cold interlude occurred during which summer temperatures decreased by ca. 7 °C and winter temperatures decreased by at least 10 °C from their interglacial peak. This cold interlude was followed by a return to warm, but not fully interglacial conditions (Coope and Kenward, 2007; Ashton et al., 2008; Candy et al., 2014). That this later ‘interstadial’ occurred directly after the Hoxnian and does not relate to a younger interglacial, MIS 9 for example, is supported by the amino acid racemization values of shells from this bed at Hoxne (Ashton et al., 2008; Penkman et al., 2011) and the mammalian fauna, which has Hoxnian affinities (Schreve, 2000, 2001).

Figure 8. Comparison between the MT-2010 $\delta^{18}O$ record, plotted against depth (data from MTIZ-1 and -2 shown as a five-point running average), and sea surface temperature records from two high-resolution North Atlantic cores (U1313 from Stein et al., 2009; MD03-2699 from Rodrigues et al., 2011). Note that there is no absolute chronology associated with the Marks Tey record so this figure does not represent a direct correlation but is used to highlight the fact that some of the patterns seen in the MT-2010 isotopic records are consistent with those seen in SST records from the North Atlantic. This comparison uses the approach taken by Ashton et al. (2008) that the Hoxnian interglacial corresponds to all of MIS 11c, as opposed to that of Kutsodendris et al. (2010, 2012), which assumes that the Hoxnian/Holsteinian correlates with only the later warm peak of MIS 11c (see Candy et al., 2014, for discussion).
Ashton et al. (2008) tentatively correlated the cold interlude with MIS 11b and the later interstadial with MIS 11a. A lack of radiometric dating makes it impossible to provide a direct correlation between this interstadial and the marine record or even to prove that the post-Hoxnian climatic oscillations seen at Quinton, Hoxne and now Marks Tey are even the same event. This situation is complicated by the fact that there is growing evidence from marine (Martrat et al., 2007), ice core (Jouzel et al., 2007) and long lake records (Prokopenko et al., 2006) that the latter part of MIS 11 was punctuated by multiple stadial/interstadial cycles (Candy et al., 2014). The record from Marks Tey does not aid the stratigraphic correlation of post-Hoxnian stadial/interstadial events between sites or provide a greater understanding of the number of stadial/interstadial events that occurred in Britain during the transition from MIS 11 to 10. However, it supplies the most detailed evidence yet for post-Hoxnian climatic complexity, indicating that the British mainland was sensitive and susceptible to such events.

The occurrence of abrupt climatic events in pre-Holocene interglacials

There is now clear evidence for abrupt climatic events in the early part of the current interglacial (Daley et al., 2011). A key research question is whether such events are common in pre-Holocene interglacials (Tzedakis et al., 2009). Within Europe, the most convincing evidence for an abrupt ‘event’ in any pre-Holocene interglacial is the NAP phase/Older Holsteinian oscillation (OHO) that occurs in multiple Hoxnian/Holsteinian interglacial sequences across Europe (Koutsodendris et al., 2011, 2012; Candy et al., 2014). The duration of this event is approximately 300 years (Turner, 1970; Koutsodendris et al., 2011, 2012) and although it is not (yet) possible to absolutely date this event, it is frequently considered synchronous across Europe because it occurs in the same position in the regional pollen stratigraphy (Koutsodendris et al., 2012).

Although the NAP phase/OHO clearly represents an ecological ‘event’, it has long been debated whether it is a response to a climatic trigger (Kelly, 1964; Koutsodendris et al., 2011, 2012), a wildfire (Turner, 1970) or a major volcanic eruption (Diehl and Sirocko, 2007). The study of the $\delta^{18}O$ signal of the lake sequences in which the NAP phase/OHO occurs would address this issue. In many of these lacustrine records, however, carbonate precipitates are absent. Koutsodendris et al. (2012) attempted to address this by analysing the $\delta^{18}O$ value of diatom silica across the OHO interval at Dethlingen. Although a reduction in $\delta^{18}O$ values was evident in the OHO, the section of the sequence analysed was short, making it difficult to establish whether this shift was significant in the context of longer-term changes within the $\delta^{18}O$ signal. Koutsodendris et al. (2012) were, however, able to show that the shift in $\delta^{18}O$ values and other palaeoenvironmental proxies, such as diatom assemblages (Koutsodendris et al., 2013), did occur before the shift in vegetation assemblage, implying that the former led the latter. This would also appear to be the case at Marks Tey, as the $\delta^{18}O$ values decline before the vegetation response (Fig. 7).

The data presented here allow for the first time: (i) a record of the NAP phase to be directly compared with the $\delta^{18}O$ value of lacustrine carbonate, and (ii) the $\delta^{18}O$ values associated with the NAP phase to be placed within the context of the $\delta^{18}O$ signal of an entire interglacial. As outlined above, the NAP phase is associated with an interval of persistently low $\delta^{18}O$ values and therefore occurs during a period of climatic cooling. Figure 7 clearly shows that three distinct episodes of low $\delta^{18}O$ values occurred during Hollc, implying both that Hollc is characterized by numerous abrupt cooling events, and that the NAP phase occurs in association with the last of these.

Koutsodendris et al. (2012) have argued that the OHO may be analogous to the 8.2-ka event of the early Holocene in terms of both its relative timing within the stratigraphy of the interglacial and the expression of this event in terrestrial sequences. Several studies in Europe have used the $\delta^{18}O$ of early Holocene lacustrine carbonates in Europe to characterize the 8.2-ka event (Daley et al., 2011); in Britain the best example is from Hawes Water (Marshall et al., 2002, 2007). A comparison between the isotopic record of Marks Tey and that of Hawes Water highlights two similarities between the isotopic characteristics of the abrupt events in these records. Firstly, the 8.2-ka event is just one of several isotopic oscillations, and therefore abrupt cooling events seen in the early Holocene record of Hawes Water (Marshall et al., 2007). This sequence records a number of abrupt events in the early Holocene, including the 8.2-ka event, the 9.3-ka event and other unnamed $\delta^{18}O$ events. The 8.2-ka event is not therefore an isolated cooling event but one of several early Holocene abrupt climatic shifts, a situation comparable to that seen in Hollc. Secondly, the 8.2-ka event in the Hawes Water sequence is characterized by a negative shift away from the moving average of the $\delta^{18}O$ dataset of ca. 0.8‰. The largest isotopic shift in the ten-point running average in Hollc is 0.6‰ from the average of the dataset. With respect to the relationship between temperature and the $\delta^{18}O$ of freshwater carbonates (Andrews, 2006; Candy et al., 2011) the difference between these shifts is negligible, implying that both sequences record an isotopic response to a temperature shift of a comparable magnitude.

It is apparent that the NAP phase in Marks Tey occurs in association with a period of climatic instability. It is therefore likely that it represents a vegetation response to an abrupt cooling event and, given its position within the early Hoxnian, this event may be comparable to the 8.2-ka event. The Marks Tey sequence has the potential to address this further as: (i) the $\delta^{18}O$ signal of this time interval can, with further sampling, be constructed in much greater resolution, and (ii) if it can be proved that these laminations are varved then this archive can be used to quantify the absolute duration of the isotopic events, the intervals between them and the lag time between climatic shifts and vegetation response/recovery. The duration of these events can then be compared with the known duration of the 8.2-ka event, as preserved in the Greenland ice cores (Thomas et al., 2007). The data presented in this study provide strong evidence that abrupt events occurred in pre-Holocene interglacials and that these events had significant impacts on the ecosystems of Western Europe.

Conclusions

The recovery and analysis of overlapping boreholes (MT-2010) from the Hoxnian deposits at Marks Tey replicate the previously published record of Turner (1970) and allow, through the application of pollen, biomarker and stable isotopic analysis, the following conclusions to be drawn:

- The sequence preserved in MT-2010 records sediments spanning the pre-, early and late temperate phases of the Hoxnian and cold-climate sediments deposited in the immediate post-Hoxnian period.
• The δ18O record of the endogenic carbonates from this sequence records the climatic structure of this interglacial which is characterized by: (i) relative long-term climatic stability, (ii) the existence of a possible early and late temperature peak and (iii) a stadial/interstadial oscillation in the immediate post-Hoxnian.

• The δ18O record from the early temperate phase records several short-term fluctuations that are interpreted as abrupt cooling events.

• The most pronounced of these oscillations occurs in association with the well-documented NAP phase during which grassland expands at the expense of deciduous woodland taxa.

• The implication is that the NAP phase represents a response to a short-lived cooling event (possibly analogous to the 8.2-ka event of the early Holocene) and consequently provides one of the best recorded examples of an abrupt climatic event in a pre-Holocene interglacial.

Acknowledgments. This work was carried out whilst G.J. Tye (T63620B) and J. Sherriff (Block grant studentship 796) were in receipt of NERC and AHRC PhD studentships respectively. Data that was generated during the course of the RCUK studentship is available as supplementary information and can be downloaded from the article website: Supplementary information Table S2. Funds for the drilling of the boreholes and biomarker analysis were partially supported by the Leverhulme Trust funded “Ancient Human Occupation of Britain” project and isotopic analysis was partially funded by a Quaternary Research Association (QRA) research fund award. The authors would like to thank Maurice Page of Collier’s brick works for allowing the borehole work to be undertaken. I. Candy would like to thank Dr Dave Lowry from the department of Earth Sciences, RHUL, for help in the analysis of the carbonate samples. E. McGlymont thanks Martin West and Benjamin Petrick for support in the analysis of the biomarker samples. The authors would like to thank two anonymous reviewers for constructive comments that improved the overall quality of the manuscript.

Abbreviations. MIS, Marine Isotope Stage; AP, arboreal pollen; NAP, non-arboreal pollen; OHO, Older Holsteinian Oscillation; LGIT, Last Glacial to Interglacial Transition; OD, ordnance datum; TOC, total organic carbon; ACL, average chain length; MTIZ, Marks Tey Isotopic Zone; SST, sea surface temperature.

Supplementary information
Additional supporting information can be found in the online version of this article:

Table S1. Descriptions of the sedimentary characteristics of the five main lithofacies that comprise the MT-2010 sequence (taken from Sherriff et al., 2014).

Table S2. Sediment data from the Mrks Tey sequence: δ18O organic carbon, δ13C carbonate and carbon and oxygen isotopic values.

References
Andrews JE. 2006. Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Science Reviews 75: 85–104 [DOI: 10.1016/j.earscirev.2005.08.002].
Ashton N, Lewis SG, Parfitt SA et al. 2008. New evidence for complex climate change in MIS 11 from Hoxne, Suffolk, UK. Quaternary Science Reviews 27: 625–668 [DOI: 10.1016/j.quascirev.2008.01.003].
Berger A, Loutre MF. 2002. An exceptionally long interglacial ahead? Science 297: 1287–1288.
Berger A, Loutre MF. 2003. Climate 400, 000 years ago, a key to the future? In Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Droxler AW, Poore RZ, Burckle LH (eds.), Geophysical Monograph Series 137: 17–26.
Brauer A, Mangili C, Moscariello A et al. 2008. Palaeoclimatic implications from micro-facies data of a 5900 varve time series from the Pianico interglacial sediment record, southern Alps. Palaeoecography Palaeoclimatology Palaeoecology 259: 121–135 [DOI: 10.1016/j.palaeo.2007.10.003].
Candy I. 2009. Terrestrial and freshwater carbonates in Hoxnian interglacial deposits, UK: micromorphology, stable isotopic composition and palaeoenvironmental significance. Proceedings of the Geologists’ Association 120: 49–57 [DOI: 10.1016/j.pgeola.2009.03.001].
Candy I, et al. 2010. Pronounced warmth during early Middle Pleistocene interglacials: investigating the Mid-Brunhes Event in the British terrestrial sequence. Earth Science Reviews 103: 183–196 [DOI: 10.1016/j.earscirev.2010.09.007].
Candy I, Farry A, Darvill CM et al. 2015. The evolution of Palaerelake Flixton and the environmental context of Star Carr: an oxygen and carbon isotopic record of environmental change for the early Holocene. Proceedings of the Geologists’ Association 126: 60–71 [DOI: 10.1016/j.pgeola.2014.10.001].
Candy I, Schreve DC, Sherriff J et al. 2014. Marine Isotope Stage 11: palaeoeclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth Science Reviews 128: 18–51 [DOI: 10.1016/j.earscirev.2013.09.006].
Candy I, Stephens M, Hancock, JDR. 2011. Palaeoenvironments of ancient human occupation: the application of oxygen and carbon isotopes to the reconstruction of Pleistocene environments. In The Ancient Human Occupation of Britain Project, Ashton N, Lewis SG, Stringer C. (eds). Elsevier: Amsterdam; 23–37.
Castaneda IS, Schouten S. 2011. A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quaternary Science Reviews 30: 2851–2891 [DOI: 10.1016/j.quascirev.2011.07.009].
Coope GR. 1993. Late-Glacial (Anglian) and Late-Temperate (Hoxnian) Coleoptera. In The Lower Palaeolithic Site at Hoxne, England, Singer R, Gladfelter BG, Wymer JI (eds). University of Chicago Press: Chicago; 156–162.
Coope GR, Kenward HK. 2007. Evidence from coleopteran assemblages for a short but intense cold interlude during the latter part of the MIS 11 interglacial from Quinton, west Midlands, UK. Quaternary Science Reviews 26: 3276–3285 [DOI: 10.1016/j.quascirev.2007.10.002].
Coxon P. 1985. A Hoxnian interglacial site at Athelington, Suffolk. New Phytologist 99: 611–621 [DOI: 10.1111/j.1469-8137.1985.803687.x].
Cranwell PA, Eglinton G, Robinson N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II. Organic Geochemistry 11: 513–527 [DOI: 10.1016/0146-6380(87)90007-6].
Dabkowski J, Limondin-Lozouet N, Antoine P et al. 2012. Climatic variations in MIS 11 recorded by stable isotopes and trace elements in a French tufa (La Celle, Seine Valley). Journal of Quaternary Science 27: 790–799 [DOI: 10.1002/jqs.2567].
Daley TJ, Thomas ER, Holmes JA et al. 2011. The 8200yr BP cold event in stable isotope records from the North Atlantic region. Global and Planetary Change 79: 288–302 [DOI: 10.1016/j.gloplacha.2011.03.006].
Dansgaard W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468 [DOI: 10.1111/j.1600-0854.1964.tb0081x].
Darling WG. 2004. Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quaternary Science Reviews 23: 743–770 [DOI: 10.1016/j.quascirev.2003.06.016].
Desprat S, Sánchez Góñi MF, Turon JL et al. 2005. Is vegetation responsible for glacial inception during periods of muted insolation changes? Quaternary Science Reviews 24: 1361–1374 [DOI: 10.1016/j.quascirev.2005.01.005].
Diefendorf AF, Patterson WP, Mullins HT et al. 2006. Evidence for high-frequency late Glacial to mid-Holocene (16,800 to 5500 cal yr B.P.) climate variability from oxygen isotope values of Lough Inchquin, Ireland. Quaternary Research 65: 78–86 [DOI: 10.1016/j.yqres.2005.08.001].
Diehl M, Sirocko F. 2007. A new Holsteinian record from the Dry Maar at Döttlingen (Eifel). In The Climate of Past Interglacials,
Developments in Quaternary Science, Stroock F, Clausen M, Sánchez Goñi MF, Litt T (eds), Elsevier; Amsterdam: 397–416.

Drexer AW, Alley RB, Howard WR, et al. 2003. Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate. Geophysical Monograph Series 137: 1–14.

Drexer AW, Farrell JW. 2000. Marine Isotope Stage 11 (MIS 11): new insights for a warm future. Global and Planetary Change 24: 1–5 [DOI: 10.1016/S0921-8181(99)00065-X).

Eglinton G, Hamilton RJ. 1967. Leaf epicuticular waxes. Science (New York, N.Y.) 156: 1322–1335 [DOI: 10.1126/science.156.3780.1322] [PubMed: 4975474].

EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429: 623–628.

Ficken KJ, Li B, Swain DL et al. 2007. Centennial-scale oscillations in oxygen and carbon isotopes of endogenic calcite from a 15,500 varve year record of the Pläneko interglacial. Quaternary Science Reviews 26: 1725–1735 [DOI: 10.1016/j.quascirev.2007.04.012].

Gagosian RB, Peltzer ET. 1986. Atmospheric transport of continentally derived organic material to the central Pacific Ocean. Atmospheric Environment (1967) 20: 2074 [DOI: 10.1016/0004-6981(86)90369-0].

Gale S, Hoare P. 1991. Quaternary Sediments: Petrographic Methods for the Study of Un lithified Rocks. Belhaven and Halsted Press: New York.

Gibbard PL, Aalto MM, Beales PW. 1977. A Hoxnian interglacial site at Fishers Green, Stevenage, Hertfordshire. New Phytologist 78: 505–520 [DOI: 10.1111/j.1469-8137.1977.tb04857.x].

Gibbard PL, Bryant ID, Hall AR. 1986. A Hoxnian interglacial doline infilling at Slade Oak Lane, Denham, Buckinghamshire, England. Geological Magazine 123: 27–43 [DOI: 10.1017/S0016756800026510].

Hammarlund D, Barnekow L, Birks HJB et al. 2003. Marine Isotope Stage 11 as an analogue for Holocene and future climate? In Question Climate and Orbital Eccentricity: The Marine Isotope Stage 11 oscillations in oxygen and carbon isotopes of endogenic calcite during the Holsteinian interglacial (MIS 11c): an analogy to the 8.2ka climatic event? Global and Planetary Change 92–93: 224–235 [DOI: 10.1016/j.glopla.2012.05.011].

Kukla G. 2003. Continental records of MIS 11. Earth’s climate and orbital eccentricity: the Marine Isotope Stage 11 question. Geophysical Monograph Series 137: 207–211.

Lawrence KT, Herbert TD, Brown CM. 2009. High-amplitude variations in North Atlantic sea surface temperature during the Pliocene warm period. Paleoceanography 24: PA2218.

Leng MJ, Marshall JD. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23: 811–831 [DOI: 10.1016/j.quascirev.2003.06.012].

Leng MJ, Jones MD, Fogley MR et al. 2010. Detrital carbonate influences on bulk oxygen and carbon isotope composition of lacustrine sediments from the Mediterranean. Global and Planetary Change 71: 175–182.

Loutre MF, Berger A. 2003. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change 36: 209–217 [DOI: 10.1016/S0921-8181(02)00186-8].

Mangili C, Brauer A, Plessen B et al. 2007. Centennial-scale oscillations in oxygen and carbon isotopes of endogenic calcite from a 15,500 varve year record of the Pläneko interglacial. Quaternary Science Reviews 26: 1725–1735 [DOI: 10.1016/j.quascirev.2007.04.012].

Mangili C, Brauer A, Plessen B et al. 2010a. Effects of detrital carbonate on stable oxygen and carbon isotope data from varved sediments of the interglacial Pläneko palaeolake (Southern Alps, Italy). Journal of Quaternary Science 25: 135–145 [DOI: 10.1002/jqs.1282].

Mangili C, Plessen B, Wolff C et al. 2010b. Climatic implications of annual to decadal resolution stable isotope data from calcite varves of the Pläneko interglacial lake record, Southern Alps. Global and Planetary Change 71: 168–174 [DOI: 10.1016/j.glopla.2010.01.027].

Marshall JD, Jones RT, Crowley SF et al. 2002. A high resolution Late-Glacial isotopic record from Hawes Water, Northwest England. Palaeogeography Palaeoclimatology Palaeoecology 185: 25–40 [DOI: 10.1016/S0031-0182(02)00422-4].

Marshall JD, Lang B, Crowley SF et al. 2007. Terrestrial impact of abrupt changes in the North Atlantic thermohaline circulation: Early Holocene, UK. Geology 35: 639–642 [DOI: 10.1130/G2498BA.1].

Martrat B, Grimalt JO, Shackleton NJ et al. 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science (New York, N.Y.) 317: 502–507 [DOI: 10.1126/science.1139994] [PubMed: 17569824].

McClymont EL, Mauquoy D, Yvel D et al. 2008. The disappearance of Sphagnum imbricatum from Butterburn Flow, UK. Holocene 18: 991–1002 [DOI: 10.1177/0959683608093537].

McManus J, Oppo D, Cullen J et al. 2003. Marine Isotope Stage 11 (MIS 11): analog for Holocene and future climate? In Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Drexler AW, Poore RZ, Buckle LH (eds). AGU Geophysical Monograph Series 137: 69–85 [DOI: 10.1029/137GM06].

McManus JF, Oppo DW, Cullen JL. 1999. A 0.5-million-year record of millennial-scale climate variability in the north atlantic. Science (New York, N.Y.) 283: 971–975 [DOI: 10.1126/science.283.5404.971] [PubMed: 9974387].

Meyer KJ. 1974. Pollenanalytische Untersuchungen und Jahres schichtenzählungen an der Holstein-zeitlichen Kieselsch von Heten dol. Geologisches Jahrbuch A 21: 87–105.

Mitchell GF, Penny LF, Shotton FW et al. 1973. A Correlation of Quaternary Deposits in the British Isles. Geological Society: London.

Müller H. 1974. Pollenanalytische Untersuchungen und Jahres schichtenzählungen an der hosteil-zeitlichen Kieselsch von Munster Breloh. Geologie Jahrbuch A 21: 107–140.

Nitychoruk J, Birdk J, Hoej J et al. 2005. Climate reconstruction for the Holsteinian-Interglacial in eastern Poland and its comparison with Germany. Quaternary Science Reviews 29: 3298–3307 [DOI: 10.1016/j.quascirev.2010.07.024].

Koutsodendris A, Pross J, Müller UC et al. 2012. A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): an analogy to the 8.2ka climatic event? Global and Planetary Change 92–93: 224–235 [DOI: 10.1016/j.glopla.2012.05.011].
isotopic data from Marine Isotope Stage 11. Quaternary Science Reviews 24: 631–644 [DOI: 10.1016/j.quascirev.2004.07.023].

Palmer AP, Lee JA, Kemp RA et al. 2008. Revised Laboratory Procedures for the Preparation of Thin Sections from Uncorrosided Sediments. Centre for Micromorphology, University of London.

Palmer AP, Matthews IP, Candy I et al. 2015. The evolution of Palaeolake Flixtone and the environmental context of Star Carr, NE. Yorkshire: stratigraphy and sedimentology of the Last Glacial-Interglacial Transition (LGIT) lacustrine sequences. Proceedings of the Geologists’ Association 126: 50–59.

Pancost RD, Baas M, van Geel B et al. 2007. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry 33: 675–690 [DOI: 10.1016/S0146-6380(02)00484-7].

Pancost RD, Baas M, van Geel B et al. 2003. Response of an ombrotrophic bog to a regional climate event revealed by macrofossil, molecular and carbon isotopic data. Holocene 13: 921–932 [DOI: 10.10119/095968360364741p].

Penkman KEH, Preece RC, Bridgland DR et al. 2011. A chronological framework for the British Quaternary based on Bithynia opercula. Nature 476: 446–449 [DOI: 10.1038/nature10305] [PubMed: 21804567].

Preece RC, Parfitt SA, Bridgland DR et al. 2007. Terrestrial environments during MIS 11: evidence from the Palaeolithic site at West Stow, Suffolk, UK. Quaternary Science Reviews 26: 1236–1300 [DOI: 10.1016/j.quascirev.2006.11.016].

Prokopenko AA, Bezrukova EV, Khursevich GK. 2006. Oxidation state of high temperature carbonaceous matter in the Late Cretaceous and Early Cenozoic rocks of central Asia. Organic Geochemistry 37: 469–483 [DOI: 10.1016/j.orggeochem.2005.12.003].

Schreve DC. 2000. The vertebrate assemblage from Hoxne, Suffolk. In The Quaternary of Norfolk and Suffolk. Field Guide, Lewis SG, Preece RC, Whiteman CA (eds). Quaternary Research Association: London; 155–164.

Schreve DC. 2001. Mammalian evidence from Middle Pleistocene fluvial sequences for complex environmental change at the oxygen isotope stage substage level. Quaternary International 79: 65–74 [DOI: 10.1016/S1040-6182(00)00123-3].

Schackleton NJ. 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6: 183–190 [DOI: 10.1016/0277-3791(87)90003-5].

Schackleton NJ, Turner C. 1967. Correlation between marine and terrestrial Pleistocene successions. Nature 216: 1079–1082.

Sherriff JE, Tye GJ, Palmer A. 2014. Macro scale and micro scale sedimentology of the Marks Tey sequence. In The Quaternary of the Lower Thames and Eastern Essex, Bridgland DR, Allen P, White TS (eds). Quaternary Research Association: London; 92–99.

Sinninghe Damsté JS, Hijmastra WIC, Schouten S et al. 2004. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry 35: 561–566 [DOI: 10.1016/j.orggeochem.2004.01.013].

Stein R, Heffer J, Grützner A. 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: biomarker and XRD records from IODP Site U1313 (MIS 16–9). Paleoceanography 24: PA2203 [DOI: 10.1029/2008PA001639].

Stockman J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 614–621.

Talbot MR. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section 80: 261–279 [DOI: 10.1016/0168-9629(90)90009-2].

Thomas ER, Wolf EW, Mulvaney R et al. 2007. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews 26: 70–81 [DOI: 10.1016/j.quascirev.2006.07.017].

Turner C. 1970. The Middle Pleistocene deposits at Marks Tey, Essex. Philosophical Transactions of the Royal Society B: Biological Sciences 257: 373–437 [DOI: 10.1098/rstb.1970.0029].

Turner C, West RG. 1968. The subdivision and zonation of interglacial periods. Einzeitalter und Gegenwart 19: 93–101.

Tzedakos PC, Raynaud D, McManus JF et al. 2009. Interglacial diversity, Nature Geoscience 2: 751–755 [DOI: 10.1038/ngeo660].

van Asch N, Lutz AF, Duijkers MCH et al. 2010. Muted climate change in continental interior Asia during the longest interglacial of the Quaternary. Science (New York, N.Y.) 328: 912–915 [DOI: 10.1126/science.1192830].

Vázquez Riveiros N, Waelbroeck C, Skinner L et al. 2013. The ‘MIS 11 paradox’ and ocean circulation: role of millennial scale events. Earth and Planetary Science Letters 371–372: 258–268 [DOI: 10.1016/j.epsl.2013.03.036].

Voelker AH, Rodrigues T, Billups K et al. 2010. Variations in mid-latitude North Atlantic surface water properties during the mid-Bruncis (MIS 9–14) and their implications for the thermohaline circulation. Climate of the Past 6: 531–552 [DOI: 10.5194/cp-6-531-2010].

Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 39: 29–38 [DOI: 10.1097/00010694-193401000-00003].

West RG. 1956. The Quaternary deposits at Hoxne, Suffolk. Philosophical Transactions of the Royal Society B: Biological Sciences 239: 265–345 [DOI: 10.1098/rstb.1956.0001].
Whittington G, Edwards KJ, Zanchetta G et al. 2015. Lateglacial and early Holocene climates of the Atlantic margins of Europe: stable isotope, mollusc and pollen records from Orkney, Scotland. *Quaternary Science Reviews* **122**: 112–130 [DOI: 10.1016/j.quascirev.2015.05.026].

Whittington G, Fallick AE, Edwards KJ. 1996. Stable oxygen isotope and pollen records from eastern Scotland and a consideration of Late-glacial and early Holocene climate change for Europe. *Journal of Quaternary Science* **11**: 327–340.

Zheng Y, Zhou W, Meyers PA et al. 2007. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: indicators of Holocene climate changes in West China. *Organic Geochemistry* **38**: 1927–1940 [DOI: 10.1016/j.orggeochem.2007.06.012].