Study of Glutathione-S-transferase (gstm1 and gstt1) Gene Polymorphisms in Down Syndrome Patients

Abstract

Background & aims: Down syndrome is the most common chromosomal abnormalities in chromosome number. Children with Down syndrome are often identified by symptoms such as severe growth and mental retardation and specific facial characteristics. The human glutathione S-transferases (GSTs) are a family of enzymes known to act as the defense systems for neutralize free radicals. These super family of enzymes, are components of metabolic phase II enzymes and play an important role in the immune system of body. The aim of this study was to examine whether an association exists between glutathione S-transferase GSTM1 and GSTT1 genes polymorphism and Down syndrome.

Material and methods: This case-control study conducted between the years 2013 to 2014 in whole of Iran. The study group consisted of 51 patients with Down syndrome and 51 healthy subjects as the control. DNA was extracted by salting out method from peripheral blood and multiplex polymerase chain reaction was performed following agarose gel electrophoresis to detect gstm1 and gstm1 null genotypes. Data were analyzed with SPSS v16 software.

Results: Our findings showed the deletion of both genes and for both groups, is equal to %1/96 or frequency of the presence and absence of these genes in populations of patients and controls group were similar.

Conclusion: It seems that there is no correlation between these two genes and Down syndrome.

Keywords: Down syndrome; Polymorphism; Glutathione-S-Transferase - T1 and M1

Introduction

Downs syndrome (DS), also known as Trisomy 21 is the commonest of congenital anomalies occurring 1 in 800 live births [1]. It is known as one of the most common chromosomal abnormalities. Down syndrome is often the result of lack of proper segregation of chromosomes number 21 during meiosis or in the less frequently in the mitotic phase of the egg cell. By examining artifacts from the Tumaco-La Tolita culture, which existed on the border between current Colombia and Ecuador approximately 2500 years ago [2]. Suspected that certain figurines depicted individuals with Trisomy 21, making these potteries the earliest evidence for the syndrome [3]. Existence of the syndrome is characterized by dysmorphic facies. The incidence of Down’s syndrome increases as the age of mother increases. The syndrome was first described by Dr. John Langdon Down in 1866 [4]. The human GSTs are a family of enzymes known to act in the body as the defense systems for neutralize free radicals [5]. These protein family members are in the form of dimer [6].

GSTs, a superfamily of dimeric phase II metabolic enzymes (molecular mass 17-28 KD), play an important role in the cellular defense system. GST enzymes catalyze the conjugation of toxic and carcinogenic electrophilic molecules with glutathione and thereby protect cellular macromolecules from damage [4]. The loci encoding the GST enzymes located on at least seven chromosomes. This multigene family divided in seven families (Alpha, Mu, Pi, Theta, Sigma, Zeta, and Omega) with functions ranging from detoxification to biosynthesis and cell signaling. Many of the GST genes are polymorphic, therefore, there has been substantial interest in studying the associations between particular allelic variants with altered risk of a variety of diseases. Several GST polymorphisms have been associated with an increased or decreased susceptibility to several diseases. Two of the important members of the GST family, named glutathione-s-transferase mu 1 (gstm1) and glutathione-s-transferase theta 1 (gstt1) have polymorphic homozogous deletion or null genotypes. Persons with homozogous deletions of either the gstm1 or the gstt1 locus have no enzymatic functional activity of the respective enzyme. This has been confirmed by phenotype assays that have demonstrated 94% or greater concordance between phenotype and genotype [7]. The gstm1 locus has been mapped on chromosome 1p13.3, while the gstt1 locus exists on chromosome 22q11.2 [8].

Materials and Methods

In this case-control study conducted between the years 2013 to 2014, Down syndrome patients were selected all over Iran with male gender. Among patients with Down syndrome, 51 patients were selected who were 10 to 25 years old and 51 healthy children aged 12-27 years were selected randomly in 2014. Written informed consent was obtained from the patients’ parents and controllers for the publication of this report and
any accompanying. The criteria of Down syndrome were based on phenotype examination by physician (based on the WHO indexes) and patients karyotypes. The research was carried out in compliance with the WMA Declaration of Helsinki and was approved by the Ethical Committee of Islamic Azad University of Borujerd, Lorestan, Iran. To examine GSTT1 and GSTM1 gene deletion in patients, a sample of 5 ml peripheral blood was taken in tubes and DNA was extracted by salting out method. Molecular examination performed by multiplex PCR using 3 sets of primer pairs for GSTT1, GSTM1 and ß globin gene as internal control (Table 1).

Table 1: Primer sequences for GST multiplex PCR.

Primer	Sequencing
GSTM1 Forward	5'-GAA CTC CTC GAA AAG CTA AAG C-3'
GSTM1 Reverse	5'-GTT GGG CTC AAA TAT AGG GTG G-3'
GST T1 Forward	5'-TTC CTT ACT GGT CCT CAC ACT TC-3'
GST T1 Reverse	5'-TCA CCG GAT CAT GGC CAG CA-3'
ß-globin Forward	5'-CAA CTT CAT CCA GTG TCA GC-3'
ß-globin Reverse	5'-GAA GAG CCA AGG ACA GGT AC-3'

A total of 100 ng of genomic DNA was used for PCR amplification, in 30 µL of reaction mixture that contained 2 mM MgCl₂ (Sigmaaldrich-USA) and 12.5 pM each of the forward and reverse primers (Genfanavaran-Iran) and 0.5 U Taq DNA polymerase (Kawsar-Iran) (Table 2). The PCR condition was one cycle of 94°C for 5 minutes followed by 35 cycles of 94°C, 59°C, and 72°C for 1 min each (FlexCycler-Germany) (Table 3). The PCR products were visualized using 1/5% agarose gel electrophoresis (Merck-Germany) in the electric current is 100 volts and amps 1 MA for 55 minute. DNA bands for GSTM1 and GSTT1 gene sequence of 480 and 215 base pairs in length, and DNA fragments gene amplification of derived from β-globin gene 268 base pairs long. Negative examples, GSTM1 and GSTT1 genes lack either separately or together in the presence of B-Globin gene null genotype for each is indicated. In positive samples of each gene separately or together in the presence of B-Globin gene expression of wild genotype. In Fig. 1, M represents a Ladder or molecular marker-fermentase 100bp, column PC is positive control, column NC is negative control and lanes 1-3 are patients Multiplex PCR samples (Figure 1). Using the chi-square test showed no significant relationship between the variables. The removal rates for both genes and for both groups, equal 1/96 percent (1 of 51), respectively. Fisher’s exact test for both genes had the same results with the P-Value of 1 indicates that there is no a significant association between the absence or presence of genes and Down syndrome. Checking for receiver operating characteristic (ROC) curve for both the gene and the same cannot be said that these genes can be diagnostic for the disease, Down syndrome (Table 4).

Result

From 51 Down syndrome patients and 51 healthy children as control group that involved in this study, the GSTT1 and GSTM1 gene deletion in the patients group and controls was identical. DNA fragments amplification GSTM1 and GSTT1 gene sequence of 480 and 215 base pairs in length, and DNA fragments gene amplification of derived from B-globin 268 base pairs long. Negative examples, GSTM1 and GSTT1 genes lack either separately or together in the presence of B-Globin gene null genotype for each is indicated. In positive samples of each gene separately or together in the presence of B-Globin gene expression of wild genotype. In Fig. 1, M represents a Ladder or molecular marker-fermentase 100bp, column PC is positive control, column NC is negative control and lanes 1-3 are patients Multiplex PCR samples (Figure 1). Using the chi-square test showed no significant relationship between the variables. The removal rates for both genes and for both groups, equal 1/96 percent (1 of 51), respectively. Fisher’s exact test for both genes had the same results with the P-Value of 1 indicates that there is no a significant association between the absence or presence of genes and Down syndrome. Checking for receiver operating characteristic (ROC) curve for both the gene and the same cannot be said that these genes can be diagnostic for the disease, Down syndrome (Table 4).

Table 3: PCR program.

Reaction Components	For a Total Volume of 25 µl
Sterilzed ddH₂O	-
PCR Buffer	10 X
MgCl₂	50 mM
dNTP	10 mM
Primers	5 µM
Taq Polymerase	1.6 µg/µl

Figure 1: Gel electrophoresis (%1/5 Agarose) showing Multiplex PCR products.
Discussion

Fifty years ago, Lejeune et al. [9] discovered that DS results from the presence of an additional Chromosome 21. A common defect present in about 1 in 700 liveborn children, it is the most frequent cause of mental retardation and a recognized genetic etiology of Alzheimer disease (AD) [9]. Down’s syndrome constitutes one of the most common chromosomal disorders [10]. Down syndrome is the leading chromosomal defect in the United States and has a national estimated prevalence of 13.65 per 10,000 live births [11]. The glutathione-S-transferase gene family encodes genes that are critical for certain life processes, as well as for detoxification and toxification mechanisms, via conjugation of reduced glutathione (GSH) with numerous substrates such as pharmaceuticals and environmental pollutants [12]. GSTs are dimeric, mainly cytosolic enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification [13,14]. The glutathione-S-transferase gene family encodes genes that are critical for certain life processes, as well as for detoxification and toxification mechanisms, via conjugation of reduced glutathione (GSH) with numerous substrates such as pharmaceuticals and environmental pollutants [12]. GSTs are dimeric, mainly cytosolic enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification [13,14]. The glutathione-S-transferase gene family encodes genes that are critical for certain life processes, as well as for detoxification and toxification mechanisms, via conjugation of reduced glutathione (GSH) with numerous substrates such as pharmaceuticals and environmental pollutants [12]. GSTs are dimeric, mainly cytosolic enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification [13,14]. The glutathione-S-transferase gene family encodes genes that are critical for certain life processes, as well as for detoxification and toxification mechanisms, via conjugation of reduced glutathione (GSH) with numerous substrates such as pharmaceuticals and environmental pollutants [12]. GSTs are dimeric, mainly cytosolic enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification [13,14].

Table 4: The relationship between genotypes gstm1 and gstt1 and the risk of suffering from Down syndrome.

gstm1 & gstt1 Combined	Control	Cases (Down Syndrome)	OR (95%CI)
Both Present	49 (96.08)	49 (96.08)	1 (reference)
Either One Null	50 (98.04)	50 (98.04)	(0.573 to 1/746)

Acknowledgement

We express our appreciation and thanks to the personnel and manager of Nahavand state welfare organization and Nahavand Ayatollah Alimoradian Hospital.

References

1. Yang Q, Rasmussen SA, Friedman JM (2002) Mortality associated with Down’s syndrome in USA from 1983-1997: a population based study. Lancet 359(9311): 1019-25.
2. Bernal JE, Briceno I (2006) Genetic and other diseases in the pottery of Tumaco-La Tolita culture in Colombia-Ecuador. Clin Genet 70(3): 188-191.
3. Martinez-Frias ML (2005) The real earliest historical evidence of Down syndrome. American Journal of Medical Genetics Part A 132A: 231.
4. (2003) National downs syndrome society. When was the downs syndrome discovered.
5. Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S-transferase-family of enzymes. Mutat Res 492(1-2): 21-26.
6. Steelehachier J, Park DJ, Zhang W, Groschen S, Tsao-Wei DD, et al. (2002) Association Between Glutathione S-Transferase P1, T1, and M1 Genetic Polymorphism and Survival of Patients With Metastatic Colorectal Cancer. Jnl of National Cancer Institute 94(12): 936-942.
7. Geisler SA, Olshan AF (2001) GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: a mini-HuGE review. Am J Epidemiol 154(2): 95-105.
8. Guengerich FP (1992) Characterization of human cytochrome P450 enzymes. PASEB J 6(2): 745-748.
9. Garbade AM, Ravel A, Mircher C, Sturtz E, Grattau Y, et al. (2009) The 50th anniversary of the discovery of trisomy 21: The past, present, and future of research and treatment of Down syndrome. Genetics in Medicine 11(9): 611-616.
Study of Glutathione-S-transferase (gstm1 and gstt1) Gene Polymorphisms in Down Syndrome Patients

10. Bhattarai B, Kulkarni AH, Rao ST, Mairpadi A (2008) Anesthetic consideration in down syndrome-a review. Nepal Med Coll J 10(3): 199-203.

11. Centers for Disease Control and Prevention (CDC) (2006) Improved national prevalence estimates for 18 selected major birth defects-United States, 1999-2001. MMWR Morb Mortal Wkly Rep 54(51-52): 1301-1305.

12. Nebert DW, Vasiliou V (2004) Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics 1(6): 460-464.

13. Listowsky I, Abramovitz M, Homma H, Niitsu Y (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione S-transferase. Drug Metab Rev 19(3-4): 305-318.

14. Barycki JJ, Colman RF (1997) Identification of the nonsubstrate steroid binding site of the rat liver glutathione S-transferase, isoenzyme 1-1, by the steroid affinity label, 3b-(iodoacetoxy) dehydroisoandrosterone. Archives of Biochemistry and Biophysics 345(1): 16-31.

15. Dirven HA, van Omme B, van Bladeren PJ (1994) Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 54(23): 6215-6220.

16. Dirven HA, Dictus EL, Broeders NL, van Omme B, van Bladeren PJ (1995) The role of human glutathione S-transferase isoenzymes in the formation of glutathione conjugates of the alkylating cytostatic drug thiopeta. Cancer Research 55(8): 1701-1706.

17. Haghirasadat F, Nazari T, Omodi M, Azimzadeh M, Sheikhhah MH (2013) Investigating the rate of glutathione S-transferase T1 and M1 genes deletion in patients with lung cancer. Bimonthly Journal of Hormozgan University of Medical Sciences 5(17): 386-393.

18. Dehghani M, Vahidi S, Moir MR, Haghirasadat F, Sharafaldini M, et al. (2012) Investigating Frequency of GSTT1 and GSTM1 Genes Null Genotype in Men with Varicocele and Its Association with the Sperm Parameters. Journal of Shahid Sadoughi University of Medical Sciences 3(20): 350-360.

19. Alidoust L, Zafarghandi M, Aghah MA, Sanadi H, Zali MR (2006) Glutathion-S-transferase M1, T1 and P1 Gene Polymorphisms in Autoimmune Hepatitis. Shahid Beheshti University of Medical Sciences and Health services Journal of Research in Medical Sciences. 30(2):161-167.

20. Cilenšek I, Mankoč S, Petrovič MG, Petrovič D (2012) GSTT1 null genotype is a risk factor for diabetic retinopathy in Caucasians with type 2 diabetes, whereas GSTM1 null genotype might confer protection against retinopathy. Disease Markers 32(2): 93-99.

21. Mirfeizollahi A, Farivar Sh, Akhondi MM, Modarresi MH, Hodjat M, et al. (2008) GSTM1 and GSTP1 polymorphisms and glutathione S-transferase activity. Iranian infertile men. Tehran University Medical Journal 12(66): 878-887.

22. Davies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, et al. (2001) Glutathione-S-Transferase Polymorphisms and Outcome of Chemotherapy in Childhood Acute Myeloid Leukemia. J Clin Oncol 19(19): 1279-1287.

23. Helzlsouer KJ, Selmin O, Huang HY, Strickland PT, Hoffman S, et al. (1998) Association Between Glutathione S-Transferase M1, P1, and T1 Genetic Polymorphisms and Development of Breast Cancer. J Natl Cancer Inst 90(5): 512-519.