Clinical Study

Evaluation of Polybutylate-Coated Braided Polyester (Ethibond) Sutures for Levator-Advancement Blepharoptosis Repair

Michael Yulish and Joseph Pikkel

Ziv Medical Center, Ophthalmology Department, Safed 13100, Israel

Correspondence should be addressed to Michael Yulish, yulishmichael@gmail.com

Received 3 August 2012; Accepted 10 September 2012

Academic Editors: P. E. Gallenga and H. Toshida

Copyright © 2012 M. Yulish and J. Pikkel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To evaluate the efficacy and safety of polybutylate-coated braided polyester (Ethibond® 5-0) suture for levator aponeurosis suturing to the anterior tarsal surface in involutional blepharoptosis repair surgery. Methods. Ten consecutive patients (16 eyes) with acquired blepharoptosis which resulted from levator aponeurosis dehiscence with good levator function had gone through surgery and were followed up for, at least, one year. Results. There was no significant change between postoperative MRD1 measurements. No serious complications, such as infection of the sutures, inflammation, granuloma formation or ptosis recurrence, were registered. Conclusion. Polybutylate-coated braided polyester (Ethibond® 5-0) suture is a safe and effective material for involutional blepharoptosis repair surgery.

1. Introduction

Involutional blepharoptosis occurs in the elderly population as a result of levator aponeurosis dehiscence from the anterior tarsal surface, which stretches or thins the aponeurotic fibers, and results in a lowered upper eyelid position and obstruction of the superior visual field [1–3]. Clinically, the patient presents with a lower upper eyelid position, superior migration of the upper eyelid crease and normal levator muscle excursion. Recruitment of the frontalis muscle to raise the eyebrow and compensate for loss of the superior visual field sometimes occurs, and contralateral eyelid retraction may be apparent in cases of unilateral or asymmetric ptosis.

Surgical repair is usually required to reattach the levator aponeurosis to the anterior face of the tarsal plate. One to three sutures are necessary. Suture materials that are used for this purpose include 6-0 silk, 6-0 or 5-0 polypropylene (Prolene®), 6-0 or 5-0 polyglactin, and 910 (Vicryl®). Each material has advantages as well as disadvantages for ptosis surgery.

The purpose of this study is to evaluate the efficacy and safety of polybutylate-coated braided polyester (Ethibond® 5-0; 8.0 mm, 1/4 c, spatula, Ethicon®, Somerville, NJ, USA) for suturing the levator aponeurosis to the anterior tarsal surface in involutional blepharoptosis repair surgery.

Ethibond is a very soft and easy to use multifilament suture. Ethibond knots are less bulky than knots of other suture materials [4]. The use of the nonabsorbable Ethibond reduces the risk of knots releasing as well as of ptosis recurrence. However, the nonabsorbable and multifilament structure of Ethibond has been reported to lead to infection, inflammation, or granuloma formation [5–8].

2. Methods

Ten consecutive patients with acquired blepharoptosis resulting from levator aponeurosis dehiscence were treated from May 2008 until August 2009 at the Oculoplastic Service in the Ziv Medical Center, Zefad, Israel. Eyelid ptosis was bilateral in six patients and unilateral in four. All underwent levator aponeurosis advancement technique ptosis repair. Exclusion criteria were Horner’s syndrome, congenital ptosis, history of trauma, prior eyelid surgery, Grave’s ophthalmopathy, Bell’s palsy, treatment for glaucoma with topical medication,
and concomitant blepharoplasty. Levator function (eyelid excursion at brow fixation) was at least 11-12 mm in all the patients. Margin-reflex distance (MRD1) (the distance between the upper eyelid margin and the corneal light reflex) was measured in the upright position by the surgeon with a handheld ruler, preoperative, and 1 week, 3 months, 6 months, 1 year and more than 1 year (in four patients) postoperatively. Complications, including ptosis recurrence, infection, inflammation, and granuloma formation, were recorded.

2.1. Surgical Technique. All procedures were performed under local anaesthesia. Patients were sedated by oral Diazepam five or ten mg. The skin crease was marked to be symmetric with that on the opposite side of the eyelid. Anaesthetic solution (2% lidocaine with 1 : 100 000 epinephrine) was injected subcutaneously into the eyelid. The incision was made through the skin to expose underlying orbital septum. The septum was incised and the infected sutures removed. Other complications, such as infection of polybutylate-coated braided polyester sutures, inflammation, granuloma formation or ptosis recurrence, were not observed.

Preoperative and postoperative MRD1 measurements are presented in Table 1. Mean values, standard deviations, and ranges are presented in Table 2. Mean MRD1 measurements at one week postoperatively were significantly higher than at preoperatively (Table 2, Figure 1). Mean MRD1 measurements did not change significantly during the one-year, or longer, follow-up period.

3. Results

Six of the patients (10 eyes, 62.5%) were women and four (6 eyes, 37.5%) were men. Patients’ age ranged from 38 to 81 years; mean age was 67.8 years (Table 1). Ptosis was repaired in nine right eyelids (56%) and seven left eyelids (44%). Skin Polypropylene 6-0 suture infection was observed in two patients (patients 2 and 8, Table 1). They were treated by local antibiotic ointment and the infected sutures removed. Other complications, such as infection of polybutylate-coated braided polyester sutures, inflammation, granuloma formation or ptosis recurrence, were not observed.

As a nonabsorbable suture material, Ethibond, like silk, decreases the chance of ptosis recurrence due to knot release. Bartley et al. [9] used 6-0 silk sutures for levator-advancement ptosis repair, with successful results. However, silk is subject to gradual degradation and loss of strength, though this process may take several years. Many surgeons find silk the easiest of all suture materials to work with. On the other hand, silk, as a natural braided suture, causes inflammation and provides spaces for bacterial growth. Significant erythema around sutures, epithelial-lined suture tracks and suture abscesses may occur with the use of silk.

Another synthetic nonabsorbable suture material is polypropylene (Prolene®). Many surgeons use polypropylene 5-0 or 6-0 for aponeurosis suturing to the anterior tarsal surface. However, polypropylene can serve as a nidus for infection and has some stiffness, which can lead to early or late skin or conjunctival extrusion of the suture’s ends, and may be disturbing to patients.

Polyglactin 910 [10] is a synthetic absorbable multi-filament (braided) suture that is used to secure levator aponeurosis to the tarsus. The sutures are coated, reducing friction, enabling smooth and easy tissue passage. However, the sutures weaken within a few weeks, which may explain the risk of ptosis recurrence. The common believe is that...
Table 1: MRD1 in ten patients (16 eyelids) with blepharoptosis.

Age	Gender	Eyelid	Preop. MRD	Postoperative MRD						
				1 week	1 month	3 months	6 months	1 year	>1 year	Complications
1	64	F	R	0.5	2.9	3.0	3.0	3.0	3.0	
2	69	F	R	1.0	3.1	3.5	3.4	3.5	3.5	**, ≠
3	38	M	L	1.5	4.0	3.8	4.0	4.0	3.8	
4	61	M	R	0	3.5	3.8	4.0	3.8	3.8	
5	70	F	L	1.0	2.8	2.8	2.8	2.9	2.9	2.8
6	75	M	R	−1.0	2.5	2.7	2.8	2.7	2.7	
7	79	F	R	0.8	2.6	2.7	2.7	2.8	2.8	
8	81	F	L	−0.5	3.0	3.0	3.0	3.0	3.0	**, ≠
9	63	F	L	1.0	2.9	2.8	2.8	2.9	2.9	
10	78	M	R	−1.0	4.0	3.9	3.9	3.9	3.9	3.8
			L	−0.5	3.5	3.5	3.6	3.5	3.5	3.5

Complications: *recurrence, **infection, *inflammation, ≠granuloma formation.

Table 2: Preoperative and postoperative mean MRD1 (±SD) in ten patients (16 eyelids).

	Preoperative			Postoperative						
	Mean MRD1 (SD) mm	1 week	1 month	3 months	5 months	6 months	1 year			
Range, mm	0.33 (0.80)	3.08 (0.47)	3.12 (0.44)	3.13 (0.49)	3.14 (0.45)	3.13 (0.43)				

at 1 week postoperatively (\(P < 0.001\)), and remained steady from that point to the end of the follow-up period.

We found polybutylate-coated braided polyester (Ethibond™ 5-0) suture to be a safe and effective material for levator aponeurosis suturing to the anterior tarsal surface in involutional blepharoptosis repair surgery.

References

[1] R. L. Anderson and C. Beard, “The levator aponeurosis. Attachments and their clinical significance,” Archives of Ophthalmology, vol. 95, no. 8, pp. 1437–1441, 1977.
[2] R. K. Dortzbach and F. C. Sutula, “Involutional blepharoptosis. A histopathological study,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2045–2049, 1980.
[3] L. T. Jones, M. H. Quickert, and J. L. Wobig, “The cure of ptosis by aponeurotic repair,” Archives of Ophthalmology, vol. 93, no. 8, pp. 629–634, 1975.
[4] O. A. Ilahi, S. A. Younas, D. M. Ho, and P. C. Noble, “Security of knots tied with ethibond, fiberwire, orthocord, or ultrabraid,” American Journal of Sports Medicine, vol. 36, no. 12, pp. 2407–2414, 2008.
[5] W. G. Everett, “Sutures, incisions and anastomoses,” Annals of The Royal College of Surgeons of England, vol. 8, pp. 14–16, 1970.
[6] E. T. Madsen, “An experimental and clinical evaluation of surgical suture materials. III,” Surgery, Gynecology & Obstetrics, vol. 106, no. 2, pp. 216–224, 1958.

[7] R. W. Postlethwait, “Long-term comparative study of nonabsorbable sutures,” Annals of Surgery, vol. 171, no. 6, pp. 892–898, 1970.

[8] M. S. Bajaj, S. S. Sastry, S. Ghose, S. M. Betharia, and N. Pushker, “Evaluation of polytetrafluoroethylene suture for frontalis suspension as compared to polybutylate-coated braided polyester,” Clinical and Experimental Ophthalmology, vol. 32, no. 4, pp. 415–419, 2004.

[9] G. B. Bartley, J. C. Lowry, D. O. Hodge et al., “Results of levator-advancement blepharoptosis repair using a standard protocol: effect of epinephrine-induced eyelid position change,” Transactions of the American Ophthalmological Society, vol. 94, pp. 165–173, 1996.

[10] J. V. Linberg, R. J. Vasquez, and G. M. Chao, “Aponeurotic ptosis repair under local anesthesia. Prediction of results from operative lid height,” Ophthalmology, vol. 95, no. 8, pp. 1046–1052, 1988.

[11] C. R. Deane, N. A. Ferran, A. Ghandour, and R. L. Morgan-Jones, “Tibial tubercle osteotomy for access during revision knee arthroplasty: Ethibond suture repair technique,” BMC Musculoskeletal Disorders, vol. 9, article no. 98, 2008.