MORE DISSIMILARITIES THAN AFFINITIES BETWEEN DNAJB11-PKD AND ADPKD

Isabella Pisani¹; Marco Allinovi²; Viviana Palazzo³; Paola Zanelli⁴; Micaela Gentile¹; Maria Teresa Farina¹; Sara Giuliani⁵; Paolo Cravedi⁶; Marco Delsante¹; Umberto Maggiore¹; Enrico Fiaccadori¹; Lucio Manenti¹

¹Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; ²Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy; ³Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy; ⁴Unità di Immunogenetica dei Trapianti, Azienda-Ospedaliero Universitaria di Parma, Parma, Italy; ⁵Unità Operativa Radiologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; ⁶Department of Medicine, Renal Division, Icahn School of Medicine at Mount Sinai, New York, USA

Correspondence to: Lucio Manenti; E-mail: lmanenti1969@gmail.com

Running title: DNAJB11-polycistic kidney disease vs ADPKD
ABSTRACT

Background. Polycystic kidney diseases (PKD) are an important cause of chronic kidney disease (CKD). ADPKD due to *PKD1* or *PKD2* mutations is the most common form, but other genes can be responsible for ADPKD or its phenocopies. Among them, a form of atypical ADPKD caused by *DNAJB11* mutations (DNAJB11-PKD) has been recently described.

Methods. We retrospectively recruited a cohort of 27 patients from 6 different families sharing common ancestries and harboring the same *DNAJB11* mutation (c.100C>T, p.Arg34*), and we compared it with a cohort of 42 typical ADPKD patients.

Results. DNAJB11-PKD patients show small/normal sized kidneys, with significantly smaller cysts and a slower progression to end-stage kidney disease (ESKD) than ADPKD patients. In the DNAJB11-PKD cohort the cystic phenotype could not be detected by ultrasound in about half of the patients, but all cases with available CT/MR displayed cysts. Clinically, DNAJB11-PKD patients
displayed proteinuria (mostly albuminuria). Compared to ADPKD, DNAJB11-PKD patients were older and had higher prevalence of type 2 diabetes mellitus (19 vs 0%; P = 0.007) and nephrolithiasis (62 vs 29%; P = 0.01), while the prevalence of cardiac valvular defects was lower (4 vs 51%; P < 0.001).

Conclusions. Overall, clinical features of DNAJB11-PKD were more subtle compared to those of ADPKD. DNAJB11-PKD shows a unique renal and extra-renal phenotype, clinical presentation, and natural history. Therefore, our data support that this genetic disease is classified separately from ADPKD.

Keywords: ADPKD, chronic kidney disease, cystic kidney disease, DNAJB11, genetics.
INTRODUCTION

Monogenic inherited diseases are underestimated but important causes of chronic kidney disease (CKD) and, despite the rapid increase in knowledge, they are identified in fewer than 10% of CKD patients [1,2]. Among monogenic causes of CKD, polycystic kidney disease (PKD) represents a group of disorders with a clinical and genetic heterogeneity and a variable phenotype, from early manifestations during pregnancy or childhood to oligo-symptomatic cases until adulthood [1, 3-8].

Among different PKDs, the Autosomal Dominant Polycystic Kidney Disease (ADPKD) is recognized as the most common inherited kidney disease with an estimated prevalence of 1:2500 [6]. ADPKD is a genetically heterogeneous disease, with two main causative genes, *PKD1* (Chr 16.p13.3) and *PKD2* (Chr 4p21) that account for the 72-78% and the 15% of affected patients [3-7, 9,10] respectively. There are some other genes that are rarely described in ADPKD, particularly *GANAB* (Chr 11q12.3) and the causative genes of Autosomal Dominant Polycystic Liver Disease (such as *PRKCSH, SEC63, LRP5, PMM2, ALG8, ALG9* and *SEC61β*) that can mildly affect kidneys [4,10]. PKD phenocopies due to genetic variants in numerous further genes (such as *HNF1β, UMOD, PKHD1, COL4A1*, or *TSC1/2*) have been reported as well [11,12]. Nevertheless, about 7-10% of all ADPKD patients remains genetically unresolved despite a clinical and radiological diagnosis [13]. Recently, a large cohort of ADPKD patients negative for all known genes was examined [13] and a new gene (DNAJB11 in chromosome region 3q27) was described as being responsible of an atypical dominant form of ADPKD (DNAJB11-PKD).

DNAJB11 encodes a co-chaperone of the endoplasmic reticulum (ER), also called ERdj3. It is part of the HSP40 protein family and plays a central role in both intracellular and extracellular proteomic homeostasis (proteostasis) [14-18]. It also acts in the pathway of the unfolded protein response (UPR), binding misfolded proteins and activating BiP, an HSP70 of ER whose function is to correct the misfolding. DNAJB11 malfunction disrupt its interaction with BiP and impair both proteostasis and the upregulation of the UPR in response to stress [14-18].

Herein, we report the largest retrospective single center cohort of DNAJB11-PKD patients carrying a single point nonsense DNAJB11 mutation and belonging to a small village with less than 2000
inhabitants perched in the Apennines Mountains near Parma, Italy. This allowed us to precisely define the natural history of the DNAJB11-PKD as well as the renal and extra-renal phenotypes. Additionally, we compared DNAJB11-PKD patients with a cohort of ADPKD patients (carrying either PKD1 or PKD2 mutations) to describe the differences between the two diseases.

MATERIALS AND METHODS

In April 2018, we identified two sisters with end-stage kidney disease (ESKD) on chronic hemodialysis carrying the same single point-nonsense pathogenic variant of DNAJB11 gene (c.100C>T, pArg34*). This variant leads to a stop-codon, resulting in the production of a shortened, and likely nonfunctional, protein. Subsequently, an in-depth analysis of the family history revealed other patients followed for CKD/ESKD at our Outpatient clinic and dialysis service, who shared common ancestors with the index family. These patients underwent genetic analysis in the suspicion of DNAJB11-PKD.

From April 2020, we conducted a retrospective analysis of patients affected by DNAJB11-PKD and ADPKD (PKD1 and PKD2 genes) followed at the Nephrology Unit of the Parma University Hospital from 2000 to nowadays. We reviewed both the Outpatient Clinic data and the dialysis registry.

We included all the patients whose diagnoses were established in a proband with age-specific renal imaging criteria and an affected first-degree relative with genetically proven ADPKD/DNAJB11-PKD or with the identification of a heterozygous pathogenic variant of DNAJB11 or other ADPKD genes in the proband [19]. No other mutations in genes known to be involved in PKD have been detected throw the Whole Exome Sequencing (WES) used in the original genetic analysis. A panel of 109 genes created from the database Genomics England PanelApp (https://panelapp.genomicsengland.co.uk/) was used (Supplementary Table 1) with an average coverage at 20X from 94 to 100; the gene LRP5 was added to the panel because it is reported in association with ADPKD while the gene MUC1 even if included in the panel could not be
considered because the VNTR domain usually harboring mutations could not be correctly analyzed with WES.

Data analyzed for both cohorts (ADPKD cohort and DNAJ11-PKD one) were: clinical history, imaging findings [renal size defined as pole-to-pole diameter on renal ultrasound (US) or as pole-to-pole diameter on sagittal plan on CT or MR imaging when kidneys diameter exceed the scanning area on ultrasound as in some ADPKD patients, renal cysts diameter, cysts localization in other organs such as liver and pancreas (detected with US, computed tomography, CT, and/or magnetic resonance, MR), presence of valvular defects on echocardiography (mitral valve stenosis and prolapse or mitral valve insufficiency, aortic valve insufficiency or stenosis, tricuspidal valve insufficiency or stenosis, pulmonary valve insufficiency or stenosis. Each defect was considered independently of its grade — mild, moderate, or severe — but valve calcification was considered only in association with one of the above defects), presence of vascular aneurisms or arteries dissection, and laboratory data (serum creatinine, creatinine clearance, blood glucose level, HbA1c, serum and urinary electrolytes, serum uric acid levels, urinary protein levels). Urinary electrolytes, particularly sodium, potassium, calcium, phosphate, citrate and oxalate were analyzed as factors predisposing to lithiasis.

Estimated glomerular filtration rate (eGFR) was calculated using Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPI creatinine formula) [20]. Proteinuria was defined as the presence of more than 0.5 gr of protein in a 24h urine collection or the presence of P/C (urinary protein/urinary creatinine ratio) higher than 0.5 gr/gr. Comorbidities were recorded at last follow-up visit or at the beginning of dialysis in order to reduce confounding factors linked to dialysis or to renal transplantation.

The study protocol conformed to the Declaration of Helsinki and was approved by a local research ethics committee (Protocol number 14721/2020). Informed consent was obtained from patients.
Statistical analysis

We used Stata release 17 (2021 StataCorp LLC, College Station, TX, USA) for all the analyses. A two-sided P value of less than 0.05 was regarded as statistically significant. We compared two-sample differences in continuous variables using Mann-Whitney test, and those in categorical variables using Fisher's exact test.

We used LASSO (least absolute shrinkage and selection operator) [21] to identify which clinical characteristics helped in discriminating between ADPKD and DNAJB11-PKD as the dependent dichotomous variable (=1 if DNAJB11-PKD, and =0 if ADPKD). LASSO is meant for high-dimensional models having too many potential covariates (possibly highly correlated) for the sample size at hand. It is meant to avoid overfitting the dataset by preventing the inclusion of spurious predictors that would likely not be confirmed upon validation in an external dataset.

LASSO is a procedure for selecting covariates: it does not provide P values. LASSO estimates coefficients of the regression model as a function of a tuning parameter which “shrinks” the coefficient towards zero as its value gets larger. In other words, the value of the tuning parameter acts as a volume knob: large values of the parameter penalize model complexity (i.e. large number of predictors), while smaller values weakly penalize model complexity. By setting some coefficient to zero, the tuning parameter determines which variables the LASSO will eventually exclude. The potential values of the tuning parameter cannot be estimated by the data, therefore their candidate values need to be calculated by cross-validation. We chose the final optimal value of the tuning parameter based on the Bayesian information criterion. We fitted LASSO via logistic regression on the 61 patients with all clinical variates available.

We reported how the rate of ESKD and of death varies with patient’s age using cumulative failure rate (hazard) functions. The advantage of using cumulative hazard rates over Kaplan-Meier estimates was twofold: first, unlike Kaplan-Meier estimates, the cumulative hazard function does not rely on the assumption of ESKD and death being independent from each other; secondly, the cumulative hazard estimates cannot immediately be interpreted as a conditional probability of
failure from birth, which would be misleading since we could not retrospectively select and follow-up all affected patients since time of birth. The interpretation of the cumulative hazard rate function is as follows: if the hazard (of ESKD or death) is constant over age bands, then the cumulative hazard will rise linearly with age; if the hazard increases with age the cumulative hazard will rise non-linearly showing an increase in slope with increasing age; if the hazard decreases with age the cumulative hazard will still rise, but now with a decrease in the slope [22]. We tested the differences in hazard function between ADPKD and DNAJB11-PKD using Mantel-Cox method.

RESULTS

We identified 42 patients deriving from 23 families with genetically proven PKD1-PKD2 ADPKD diagnosis (35 harboring a PKD1 mutation and 7 a PKD2 one, stratified data are shown in supplementary Table 2), and 27 patients with DNAJB11-PKD from 6 related families. No other mutations in genes known to be involved in PKD have been detected throw the Whole Exome Sequencing (WES) used in the original genetic analysis.

Patients’ characteristics of both cohorts are reported in Table 1.

DNAJB11-PKD Patients

The 6 different DNAJB11-PKD families acknowledge parentage with a great and enlarged family in the Parma Appennines [23] (Figure 1). Among them, 14 patients carried the reported mutation of DNAJB11 gene. The other 13 patients were identified retrospectively as DNAJB11-PKD first-degree relatives from highly suggestive imaging. In 11 patients (41%) the peculiar radiological renal appearance was described by CT or MR, while ultrasound aspect was not conclusive for diagnosis. Among them, three patients displayed ESKD. Overall, 12 out of 27 (44.4%) patients with DNAJB11-PKD reached ESKD at a mean age of 71.1 ± 4.5 years. Only one patient had a pancreatic cyst, while liver cysts were documented in the 47.8% of the cohort. Imaging findings or a suggestive clinical history of nephrolithiasis was identified in 16 patients (61.5%), but urinary electrolyte analyses were available only for a minority of patients and a specific excretory profile could not be defined. Mean renal diameter was 10.3 ± 1.6 cm, while the mean diameter of the
bigger cyst measured 3 ± 2.5 cm. Among comorbidities, 5/26 (19.2%) were affected by type 2 diabetes mellitus (T2DM) and 8 (33.3%) patients by malignant neoplasms. Specifically, malignancy diagnoses were two breast cancers, two prostate cancers, one melanoma, a hepatocellular carcinoma, a bladder cancer, and an acute myeloid leukemia. About 70% of the patients was hypertensive, two patients had a stroke and five a myocardial infarction, while only one patient displayed a cardiac valvular defect. Moreover, more than 50% of patients, with proteinuria available, showed 24h proteinuria higher than 1 gr/day, mainly represented by albuminuria. Of them, 4 patients had diabetes while 2 patients without T2DM presented with nephrotic range proteinuria (renal biopsy was not performed for the presence of renal cysts) (Figure 2). 36% of cases had a combination of lithiasis/proteinuria. Finally, we analyzed how patients were initially diagnosed before genetic analysis. Seven patients out twenty-seven (26%) were diagnosed as having ADPKD, 6 patients (22%) had a previous diagnosis of medullary sponge kidney disease (MSKD) and 10 patients (41%) did not have a definite diagnosis. Curiously, 4 patients (15%) were reported as suspected diabetic nephropathy. 5 out of 6 patients diagnosed as having MSKD belonged to the same family; among other family members one was recognized as having MSKD. The diagnosis in affected patients was based upon ultrasonography without the use of intravenous urography.

ADPKD Patients

At variance, in the ADPKD cohort the clinical diagnosis was achieved before genetics in the whole cohort. Thirty-nine patients carried a mutation of PKD1 and 3 of PKD2. Overall, 16 out of 42 patients (38.1%) reached ESKD at a mean age of 59.9 ± 11.4 years. Only 2 patients displayed pancreatic cysts, while liver cysts were detected in 29 (72.5%). Nephrolithiasis was identified in 29.3% of cases. Mean renal size was 16.4 ± 4.6 cm, with a median diameter of the bigger cyst of 5.5 cm (range 2-13.5 cm). No patient had T2DM and 4 (9.8%) had a neoplasia (an ovarian cancer, a breast cancer, two cases of skin cancer). Hypertension was present in 62.5% of the patients, while cerebrovascular disease was not diagnosed in the whole cohort, and only one patient...
reported a myocardial infarction. Cardiac valvular defects were reported in 21/41 (51.8%) of patients. No intracranial aneurysm was detected, however only 25.5% of patients underwent MRI angiography of cerebral vessels as a screening exam.

Comparison between DNAJB11-PKD vs ADPKD patients

ADPKD diagnosis was suspected before genetic testing in a quarter of DNAJB11-PKD patients (26% vs 100% of ADPKD cohort; p<0.001). DNAJB11-PKD cohort presented a significantly lower renal size (mean value 10.3 vs 16.4 cm; p<0.001) and smaller renal cysts (mean value 3 vs 5.7 cm; p<0.001). Therefore, whereas ultrasound could detect the presence of cysts in all ADPKD patients, it frequently missed the presence of cysts in patients with DNAJB11-PKD, and almost half of them eventually required MR/CT studies (supplementary Figure 1).

We used LASSO statistical approach [21] to select, among the 61 patients with all clinical variates available (reported in Table 1), the clinical characteristics which independently predicted DNAJB11-PKD (Figure 33): Compared to ADPKD, DNAJB11-PKD patients had higher prevalence of type 2 diabetes mellitus (19 vs 0%) and kidney stones (62 vs 29%), while the prevalence of cardiac valvular defects was lower (4 vs 51%).

The risk of ESKD manifested after the age of 40 years in ADPKD patients, and after 60 years of age in DNAJB11-PKD patients, being the median time to dialysis start respectively 64.4 and 76.5 yrs (P=0.0006, by Mantel-Cox test). In contrast, the hazard of death was not significantly different between the groups (Figure 44).
DISCUSSION

The presence of \textit{DNAJB11} mutation as a cause of PKD was firstly described in May 2018 by Cornec-Le-Gall and colleagues who were analyzing patients with genetically unresolved ADPKD [13]. Even if this first cohort was recruited among families with an established diagnosis of ADPKD or ADPLD, researchers described a quite different disease, characterized by the development of multiple small renal cysts, non-enlarged kidneys, presence of chronic interstitial fibrosis and development of ESKD in the sixth decade of life [13]. They recognized this new entity as an atypical form of ADPKD or a disease that combines features of ADPKD and ADTKD (Autosomal Dominant Tubulointerstitial Kidney Disease) [24-26]. The subsequent work by Huynh [27] and colleagues better defined the clinical spectrum of DNAJB11-kidney disease. It confirmed the presence of non-enlarged kidneys with small cysts and the development of ESKD between the fifth and the eighth decade of life and underlined the presence of liver cysts in about 49% of patients [13,27].

Our data confirm prior findings in a well characterized cohort. First, we showed that DNAJB11-PKD is characterized by significantly low-normal/normal size kidneys with cysts smaller than those of ADPKD counterparts. Another relevant issue is that ultrasound for individuation of cystic disease in our DNAJB11 cohort seems to be inadequate, while MRI allows an early identification of patients, showing smaller cysts (Figure 5).

Interestingly only a quarter of our DNAJB11-PKD cases had a clinical diagnosis of ADPKD before genetic testing. Indeed, our DNAJB11-PKD cohort belongs to a peculiar geographical area and not, as in previous studies, to a quite undeniable ADPKD phenotype; therefore, we captured more DNAJB11-PKD cases in which the cystic phenotype does not seem to be so suggestive.

The second most represented diagnosis in our cohort was MSKD. Patients were diagnosed using ultrasonography, so even if we have peculiar characteristics that addressed this diagnosis on imaging, we lacked what is recognized as the gold standard in literature, intravenous urography. On the one hand, the lack of the gold standard imaging technique could have led to an incorrect diagnosis; on the other hand, considering that MSKD diagnosis mainly rely on an imaging study
and that only a small percentage of cases is genetically resolved, it could be that different phenocopies of MSKD exist with different genes mutation supporting a similar expression.

The hazard of ESKD in DNAJB11-PKD cohort starts about 15 years later than in the ADPKD one. The normal sized kidneys, the smaller cysts, the difficult diagnosis with ultrasound and the later onset of ESKD, justify the frequent lack of a definite diagnosis, even in the face of a suggestive family history of nephropathy.

From a clinical point of view, we documented that about 20% of DNAJB11-patients suffer T2DM while our typical ADPKD cohort has no cases. A unique characteristic highlighted by our DNAJB11-PKD cohort is the presence of proteinuria ranging from mild levels to nephrotic range; this finding is totally unexpected in a patient with ADPKD. Interestingly, albumin contributed for the vast majority of urinary proteins, suggesting a glomerular origin rather than a tubular one, despite the tubular disfunction that is supposed to be associated with DNAJB11-PKD [13, 24-26]. Moreover, albuminuria was usually documented at the time of diagnosis and in one PKD-DNAJB11 patient was reported despite normal renal function. Proteinuria in the DNAJB11-PKD patients was not reported in previous studies but it is unclear whether the data was available in the whole group [13]. Our data set the basis for further studies aimed to understand the pathophysiology of proteinuria/albuminuria in DNAJB11-PKD patients.

The impaired proteostasis of the ER secondary to loss of function of DNAJB11 co-chaperone would explain the various clinical expressions of DNAJB11-PKD. First of all, cystogenesis that seems to be caused by the disruption of proteostasis due to the defect in the appropriate localization or secretion of different proteins involved in cysts development such as polycystin 1, uromodulin and MUC1 [13,27]; secondly, since unfolded protein response (UPR) is involved in different metabolic diseases and, specifically, regulates insulin resistance, this pathologic variation would determine an augmented insulin synthesis from β-cells leading to β-cells apoptosis and T2DM since the UPR is impaired [15,28,29]. Finally, ER stress and UPR activation would both explain the appearance of relevant proteinuria.
Kidney stones seem to be a characterizing feature of DNAJB11-PKD. This could be related to the more relevant involvement of the distal nephron rather than the proximal one in DNAJB11-PKD compared to ADPKD. In fact, DNAJB11 is predominantly expressed in the thick ascending limb of Henle’s loop, in the distal tubule, and in the collecting duct. However, considering the small number of patients and that the analysis of urine for factors predisposing to lithiasis was available in a few patients in our retrospective study, this observation should be tested in a larger cohort. The LASSO analysis did not detect a significant difference between cohorts in the risk of malignancies, as the higher number of events in the DNAJB11-PKD patients is probably due to the older age in this cohort.

Previous studies on DNAJB11-PKD gave a general description of clinical and imaging features, but they are mainly based on clinical databases of unsolved genetic cases of ADPKD, lacking a direct comparison with a typical ADPKD cohort. A major strength of our study is that it includes the largest single mutation cohort of DNAJB11-PKD, which allowed us to perform a comparison with an ADPKD cohort to identify affinities and divergences between the two diseases.

However, there are some caveats that should be considered in data interpretation. First of all, the two cohorts are relatively small and some established comorbidities, such as intracranial aneurysms, were not represented in the ADPKD cohort. Moreover, the DNAJB11-PKD cohort was older than ADPKD cohort. Nevertheless, the reported clinical findings such as T2DM, kidney stones and proteinuria/albuminuria seem to be peculiar of DNAJB11-PKD vs ADPKD. Importantly, both DNAJB11-PKD and ADPKD patients were followed at the same institutions for years and came from the same area of origin, limiting potential confounders.

The depicted DNAJB11-PKD disease is quite different from ADPKD and has a slower and apparently benign course favoring its local spread, particularly in contexts of geographic isolation like in our cohort, indeed biallelic mutations give rise to severe neonatal cases with poor outcomes [30,31]. Consequently, its recognition should prompt family screening even if clinical manifestations arise in adulthood.
In conclusion, DNAJB11-PKD is characterized by normal/low-normal sized kidneys, small renal cysts, significant proteinuria and slowly developing CKD with about a 30% of patients reaching ESKD. It seems to be associated with important comorbidities, such as T2DM and kidney stones.

An increased awareness among clinicians should be advised to avoid misdiagnosis and improve patients' management; moreover, our work could provide a strong rationale for future studies evaluating the pathogenic role of malfunctioning ER co-chaperone DNAJB11 in the different manifestations of the disease.

CONFLICT OF INTEREST STATEMENT
All authors have no conflicts of interest to declare. The results presented in this paper have not been published previously in whole or part, except in abstract format.

REFERENCES
1. Armstrong ME, Thomas CP. Diagnosis of monogenic chronic kidney diseases. Curr Opin Nephrol Hypertens 2019;28: 183-194

2. Cornec-Le Gall E, Harris PC. The Underestimated Burden of Monogenic Diseases in Adult-Onset ESRD. J Am Soc Nephrol 2018;29: 1583-1584

3. Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet 2019;393: 919-935

4. Cornec-Le Gall E, Torres VE, Harris PC. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J Am Soc Nephrol 2018;29: 13-23

5. Bergmann C. Recent advances in the molecular diagnosis of polycystic kidney disease. Expert Rev Mol Diagn 2017;17: 1037-1054

6. Lanktree MB, Iliuta IA, Haghighi A, Song X, Pei Y. Evolving role of genetic testing for the clinical management of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2019;34: 1453-1460
7. Lanktree MB, Chapman AB. New treatment paradigms for ADPKD: moving towards precision medicine. Nat Rev Nephrol 2017;13: 750-768

8. Mallawaarachchi AC, Lundie B, Hort Y, et al. Genomic diagnostics in polycystic kidney disease: an assessment of real-world use of whole-genome sequencing. Eur J Hum Genet 2021;29: 760-770

9. Lanktree MB, Chapman AB. Autosomal dominant polycystic kidney disease. CMAJ 2017;189: E1396.

10. Lanktree MB, Haghighi A, Guiard E, et al. Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J Am Soc Nephrol 2018;29:2593-600.

11. Izzi C, Dordoni C, Econimo L, et al. Variable Expressivity of HNF1B Nephropathy, From Renal Cysts and Diabetes to Medullary Sponge Kidney Through Tubulo-interstitial Kidney Disease. Kidney Int Rep. 2020;5: 2341-50

12. Schönauer R, Baatz S, Nemitz-Kliemchen M, et al. Matching clinical and genetic diagnoses in autosomal dominant polycystic kidney disease reveals novel phenocopies and potential candidate genes. Genet Med 2020;22: 1374-83

13. Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet 2018;102: 832-44

14. Park SJ, Kim Y, Chen YM. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol 2019;34: 1493-1500.

15. Buck TM, Brodsky JL. Escaping the endoplasmic reticulum: why does a molecular chaperone leave home for greener pastures? EMBO J 2015;34: 1-3

16. Shen Y, Hendershot LM. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol Biol Cell 2005;16: 40-50
17. Genereux JC, Qu S, Zhou M, et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 2015;34: 4-19

18. Genereux JC, Wiseman RL. Regulating extracellular proteostasis capacity through the unfolded protein response. Prion 2015;9: 10-21

19. Adam MP, Ardinger HH, Pagon RA, et al. GeneReviews. 1993.

20. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150: 604-12

21. James G, Witten D, Hastie T, et al. An Introduction to statistical learning with applications in R. Springer; 2017.

22. Clayton D, Hills M. Statistical models in epidemiology. Oxford science publications. Oxford University Press; 1993.

23. Abondi W, Venturini E, Stefanini Ablondi V. Una grande e complessa famiglia in alta Val Baganza. In: Baganza CSV, ed. Per La Val Baganza. Studio Guidotta SNC; 2018.

24. Eckardt KU, Alper SL, Antignac C, et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management—A KDIGO consensus report. Kidney Int 2015;88: 676-83.

25. Bleyer AJ, Kidd K, Živná M, Knoch S. Autosomal Dominant Tubulointerstitial Kidney Disease. Adv Chronic Kidney Dis 2017;24: 86-93

26. Ayasreh Fierro N, Miquel Rodríguez R, Matamala Gastón A, Ars Criach E, Torra Balcells R. A review on autosomal dominant tubulointerstitial kidney disease. Nefrologia 2017;37: 235-43

27. Huynh VT, Audrézet MP, Sayer JA, et al. Clinical spectrum, prognosis and estimated prevalence of DNAJB11-kidney disease. Kidney Int 2020;98: 476-487
28. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016;529: 326-35

29. Gallazzini M, Pallet N. Endoplasmic reticulum stress and kidney dysfunction. Biol Cell 2018;110: 205-216

30. Jordan P, Arrondel C, Bessières B, et al. Bi-allelic pathogenic variations in DNAJB11 cause Ivemark II syndrome, a renal-hepatic-pancreatic dysplasia. Kidney Int 2021;99: 405-409

31. Ateş EA, Turkyilmaz A, Delil K, et al. Biallelic Mutations in DNAJB11 are Associated with Prenatal Polycystic Kidney Disease in a Turkish Family. Mol Syndromol 2021;12: 179-185
Table 1. Patients clinical data

ADPKD	DNAJB11-PKD	P value			
	N	N			
Number of Patients	42	27			
Age at last follow-up, yr	42	55.0±16.8	27	74.8±12.3	0.000
Males/Females	26/16	38.1%	12/15	55.6%	0.22
ESKD (y/n)	16/26	38.1%	12/15	44.4%	0.62
Age at ESKD, years	15	59.9±11.4	12	71.1±4.5	0.006
Kidney diameter, cm*	33	16.4±4.6	22	10.3±1.6	<0.001
Larger kidney cyst, cm	29	5.7±2.9	22	3.0±2.5	<0.001
Pancreatic cysts (y/n)	2/38	5.0%	1/22	4.3%	1.00
Liver cysts (y/n)	30/10	75.0%	11/12	47.8%	0.06
Kidney stones (y/n)	12/29	29.3%	16/10	61.5%	0.01
Hb, g/dL#	29	12.9±2.3	23	11.0±2.6	0.006
PTH, pg/mL§	19	188.5±196.5	14	305.8±276.8	0.09
24h Proteinuria>0.5g (y/n)	6/28	17.6%	12/10	54.5%	0.007
ESA use	5/28	15.2%	9/16	36%	0.12
Diabetes type 2 (y/n)	0/41	0.0%	5/21	19.2%	0.007
Cancer (y/n)	4/37	9.8%	8/16	33.3%	0.02
Valvular defects¶ (y/n)	21/20	51.2%	1/22	4.3%	<0.001
Cerebrovascular disease (y/n)	0/41	0%	2/21	8.7%	0.12
Cardiovascular disease (y/n)	1/39	2.5%	5/18	21.7%	0.02
Hypertension	25/15	62.5%	16/7	69.6%	0.78

ADPKD, Autosomal Dominant Polycystic Kidney disease; DNAJB11-PKD, DNAJB11-polycystic kidney disease; ESKD, end-stage kidney disease; Hb, hemoglobin; PTH, parathormone; ESA, erythropoietin stimulating agent.

* Kidney size is assessed using pole-to-pole diameter on ultrasound or pole-to-pole diameter on a sagittal scan on CT or MR.

For 10 ADPKD patients, data were collected just before the beginning of dialysis, the other 19 patients had a mean eGFR of 80 ml/min/1.73m² using CKD-EPI formula. Among 5 DNAJB11-PKD patients, data were collected just before dialysis, the other 10 had a mean eGFR of 50 ml/min/1.73m².

§ 7 ADPKD patients were starting dialysis, among others the mean eGFR was 71 ml/min/1.73m². 5 DNAJB11-PKD patients were starting dialysis and the other 8 ones had a mean eGFR of 51 ml/min/1.73m².
The valvular defects considered were: mitral valve insufficiency, mitral valve stenosis, aortic valve insufficiency, aortic valve stenosis, tricuspid valve insufficiency, each of this defects could be mild moderate or severe in different patients; tricuspid valve stenosis and pulmonary valve defects were not reported among patients.
Figure 1. Family trees. a-f) Family trees of the 6 families carrying the same DNAJB11 gene mutation from a restricted area in the Parma Appennines are reported. All the families recognize parentage with a local great and enlarged family. Black squares and circle are genetically confirmed patients or first-degree relatives with identical clinical/radiological presentation, while grey squares and gray circles are obliged carriers.
Figure 2. Plot of albuminuria (panel A) or proteinuria (panel B) against eGFR at the time of that urine collection. 24h Proteinuria/Albuminuria appearance was unrelated with eGFR or the presence of diabetes.
Figure 3 Variables characterizing DNAJB11-PKD patients. LASSO (least absolute shrinkage and selection operator) for variable selection via logistic model for discriminating between ADPKD and DNAJB11-PKD based. The plot shows standardized coefficient estimates (y-axis) as a function of the “L1-norm” of the standardized coefficients (i.e., the maximum allowed sum of the absolute values of the coefficients) (x-axis). The tuning parameter (not shown in the plot) “shrinks” the coefficient towards zero as its value gets larger; by setting some coefficient to zero, the tuning parameter determines which variables the LASSO will eventually exclude. The final value of the L1-norm (vertical dash line) resulted from the selection, among the potential candidates of the tuning parameters that were estimated by cross-validation (see text), of the one value that minimized the Bayesian Information Criterion. Age at last follow-up, valvular defects (negative association with DNAJB11-PKD), kidney stones, and diabetes type 2 were the variables with the largest standardized coefficients and that were eventually selected by LASSO.
Figure 4. Differences in renal outcome and death between ADPKD and DNAB11-PKD patients. A) Cumulative failure rate (hazard) functions of ESKD in ADPKD (red line) and in DNAB11-PKD (blue line). The interpretation of the cumulative hazard rate function is as follows: If the hazard of ESKD is constant over time...
age bands, then the cumulative hazard will rise linearly with age; if the hazard increases with age the cumulative hazard will rise non-linearly showing an increase in slope with increasing age; if the hazard decreases with age the cumulative hazard will still rise, but now with a decrease in the slope. P value refers to Mantel-Cox method.B) Cumulative failure rate (hazard) functions of Death in ADPKD (red line) and in DNAJB11-PKD (blue line)- P value refers to Mantel-Cox method.
Figure 5. Differences in kidneys imaging in DNAJB11 and ADPKD. a) ultrasound (US) shows, in DNAJB11-PKD the presence of multiple small cysts distributed both in the cortex and in the medulla with normal sized kidney. Hyperechoic spots (microcalcifications or small kidney stones) could also be detected.
In ADPKD US shows enlarged kidneys with bigger cysts and the cortico-medullary differentiation is not recognizable because of extensive parenchymal substitution with cysts. b) contrast enhanced abdomen CT does not add useful information in the diagnostic process of ADPKD while it is often crucial in DNAJB11-PKD diagnosis because it improve small cysts visualization, while in ADPKD, cysts size is usually big enough to be detected without mean of contrast in the contest of enlarged kidneys. c) the goal of MR for DNAJB11-PKD is detection of simple cysts with T2w images and complicated, hematic debris filled cysts with T1w fat sat.