PB1999 ATG-010 PLUS LOW-DOSE DEXAMETHASONE (SD) IN CHINESE RELAPSED/REFRACTORY MULTIPLE MYELOMA (RRMM) PATIENTS PREVIOUSLY RECEIVED CHIMERIC ANTIGEN RECEPTOR T-CELL (CAR-T)

Topic: 14. Myeloma and other monoclonal gammopathies - Clinical

Weijun Fu1, Zhongjun Xia2, Chengcheng Fu3, Wenming Chen4, Chun Kang Chang5, Baijun Fang6, Gang An7, Yongqiang Wei8, Zhen Cai9, Sujun Gao10, Jianyu Weng11, Lijuan Chen12, Hongmei Jing13, Fei Li14, Zhuogang Chen15, Xuequn Chen16, Jing Liu17, Yang Yu18, Aihua Wang18, Yi Zou Fe18, Lugui Qiu17

1 Shangai Changzheng Hospital, Shanghai, China; 2 Sun Yat-sen University Cancer Center, Guangzhou, China; 3 The First Affiliated Hospital of Soochow University, Suzhou, China; 4 Beijing Chaoyang Hospital, Beijing, China; 5 Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; 6 Henan Cancer Hospital, Zhengzhou, China; 7 Institute of Hematology and Blood Diseases Hospital, Tianjin, China; 8 Nantong Hospital, Guangzhou, China; 9 The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; 10 the First Affiliated Hospital of Jilin University, Changchun, China; 11 Guangdong Provincial People's Hospital, Guangzhou, China; 12 Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; 13 Peking University Third Hospital, Beijing, China; 14 the First Affiliated Hospital of Nanchang University, Nanchang, China; 15 Shengjing Hospital of Medical College of China Medical University, Shenyang, China; 16 Xi Jing Hospital affiliated to the Fourth Military Medical University, Xi'An, China; 17 the Third Xiangya Hospital of Central South University, Changsha, China; 18 Antengene Therapeutics Ltd., Shanghai, China

Background: There are limited treatment options for multiple myeloma (MM) patients who have a disease progression after CAR-T therapy. ATG-010 (selinexor) is a novel, oral selective inhibitor of nuclear export, inhibiting exportin 1. US FDA has approved selinexor plus low dose dexamethasone (SD) to treat patients (pts) with pentarefractory MM. MARCH study, a single arm, phase 2, registrational study evaluating SD in Chinese RRMM pts, achieved an overall response rate (ORR) of 29.3% (95% CI: 19.7, 40.4), rejecting the null hypothesis of the study.

Aims: To evaluate efficacy and safety of SD in Chinese RRMM pts previously treated with CAR-T.

Methods: The study enrolled 82 pts previously exposed and refractory to a proteasome inhibitor (PI), an immunomodulatory agent (IMiD), and last line of therapy. Among them, 10 had received lymphodepleting conditioning followed by CAR-T cell therapy before study screening. ATG-010 (80mg) plus dexamethasone (20mg) was administered orally twice weekly. Response was assessed by an independent review committee.

Results: Among 10 pts, 8 were male and 2 were female. Median age was 58.5 years. Median duration from MM initial diagnosis was 5.2 years. A total of 6 pts (60.0%) had high-risk cytogenetic abnormalities, including 4 pts (40.0%) with del (17p). Three pts had baseline plasmacytoma. Five pts (50%) experienced very rapid disease progression as indicated by a median of 46.2% increase of tumor burden from screening to Cycle 1 Day 1. Patients were heavily pre-treated with a median of 9.5 prior regimens (range: 5-12), with 8 receiving more than 6 regimens. Four pts were exposed to daratumumab (triple-class exposure). ORR was 50% including 1 very good partial response and 4 partial responses. Disease control rate defined as SD and above was 70%. As of 10th Feb 2022, all pts had disease progression, 5 pts are still under survival follow-up. Median duration of response was 1.4 months (mo) (95% CI: 0.96, NE). Median progression free survival was 1.9 mo (95% CI: 0.93, 3.74). Median overall survival was not reached and estimated 12-mo OS rate was 70%. After disease progression (PD) after SD treatment, 4 pts received CD38 antibody based regimen, 4 pts received pomalidomide based regimen, 4 pts had cytotoxic therapy, 1 pt received 2nd CAR-T therapy, and 2 pts had no chance to receive any treatment due to death after rapid PD. Of note,
1 pt received selinexor plus lenalidomide based regimen and obtained a prolonged disease control.

Adverse events were consistent with those events previously reported with Sd regimen in RRMM patients. The most common grade≥3 treatment emergent adverse events (TEAEs) included anemia, thrombocytopenia, neutropenia and nausea. Most events were manageable with appropriate supportive care or dose modification. Four pts (40%) experienced TESAEs, including anemia, pneumonia, neutropenia, and upper gastrointestinal hemorrhage. There were no TEAEs leading to treatment discontinuation or death.

Summary/Conclusion: Sd was able to induce an encouraging response with a manageable safety profile for a group of Chinese RRMM patients desperately needing treatment after failing CAR-T therapy. This suggests that selinexor is a highly potent anti-MM therapy and further investigation is warranted, including using selinexor in combination with other anti-MM therapies in earlier lines of treatment.