Clinical impact of the subclonal architecture
and mutational complexity in chronic lymphocytic leukemia

Nadeu et al.
SUPPLEMENTARY METHODS ...4

Next generation sequencing approach...4
Bioinformatic analysis..4
Confirmation of the somatic origin of the mutations...5
Variant allele frequency variability due to the NGS approach5
Verification of low variant allele frequency mutations ...6
Sanger sequencing..6
Sequence analysis of IGHV-IGHD-IGHJ rearrangements..6
DNA copy number analysis...7
Algorithm for the identification of specific gene CCF patterns with impact on clinical outcome7

SUPPLEMENTARY TABLES ..9

Table S1. Molecular and clinical characteristics of the 48 CLL cases included in the longitudinal study ..9
Table S2. Target regions, transcripts used, library strategy, and coverage report9
Table S3. Access Array (Fluidigm) primers for deep-targeted NGS12
Table S4. Specific primers for Nextera XT library preparation for deep-targeted NGS ..12
Table S5. Primers used for Sanger sequencing...13
Table S6. AS-PCR primers used to verify the mutations called by the bioinformatic pipeline14
Table S7. Mutations identified by deep-targeted NGS in 406 untreated CLL patients17
Table S8. Comparison of clinical and biological characteristics between mutated cases with or without convergent mutational evolution (CME) ...17
Table S9. Mutations identified in the sequential samples analyzed in the longitudinal study17
Table S10. CNA identified in 376 untreated CLL patients by SNP arrays17
Table S11. Temporal classification of CLL driver alterations ..18
Table S12. Temporal classification of CLL driver alterations considering only the mutations present at a CCF ≥25% ..19
Table S13. Temporal relationship between specific pairs of driver alterations.20
Table S14. Temporal acquisition of gene mutations in specific biological pathways21
Table S15. CNA identified in the sequential samples analyzed in the longitudinal study21
Table S16. Summary of the results of the algorithm applied to determine the pattern of CCF of each gene mutation ..24
Table S17. No independent prognostic value of the subclonal diversity for OS26
SUPPLEMENTARY FIGURES

Figure S1. Dilutional experiment of MEC-1 cell line DNA for CNA quantification ...27
Figure S2. Summary of the variant calling ...28
Figure S3. Variant allele frequency variability due to the sequencing methodology ...29
Figure S4. No influence of the time of sampling on clinical outcome ..30
Figure S5. Gene maps of the 28 CLL driver genes analyzed ..31
Figure S6. Comparison of clinico-biological features between cases carrying subclonal-low and subclonal-high/clonal mutations ..32
Figure S7. Clinical implications of convergent mutational evolution (CME) ..32
Figure S8. Incidence and CCF of the CLL driver CNA ..33
Figure S9. CCF distribution of gene mutations and CNA, and proposed evolution route ..34
Figure S10. CCF of TP53 aberrations in CLL ...35
Figure S11. Schematic representation of the algorithm used for the identification of specific gene CCF patterns with impact on clinical outcome ..36
Figure S12. Survival curves of the patterns of CCF with impact on clinical outcome ...37
Figure S13. Clinical impact of the presence of driver subclones and mutational complexity38

SUPPLEMENTARY REFERENCES ..39
SUPPLEMENTARY METHODS

Next generation sequencing approach

Deep-targeted next-generation sequencing (NGS) of POT1 (exons 5-19), NFKBIE (exons 1-2), ZNF292 (exons 6, 8), XPO1 (exon 15), EGR2 (exons 1-2), FBXW7 (exons 2-12), MGA (exons 2-24), KLHL6 (exon 1), RPS15 (exons 3-4), MYD88 (exons 2-5), DDX3X (exons 1-17), BRAF (exons 12, 15), NFX1 (exons 2-21), DTX1 (exon 1), BCor (exons 4, 8), CCND2 (exon 5), KRAS (exons 2-3), IRF4 (exon 3), MED12 (exon 2), ZMYM3 (exons 15, 21, 23), NRAS (exons 2-3), TRAF3 (exon 11), and PIM1 (exons 2-4) was performed (Supplementary Table S2). NGS libraries were performed using the Access Array system (Fluidigm, South San Francisco, CA, USA) and/or the Nextera XT DNA library preparation kit (Illumina, San Diego, CA, USA). Specific primers for the target regions amplified in the Access Array libraries were designed with the D3 Assay Design tool (https://www.fluidigm.com/assays) (Supplementary Table S3). Once the libraries were generated using the Access Array system and pooled, they were sequenced with a paired-end run of 210 bp in a MiSeq equipment (Illumina). On the other hand, the Primer3^1,2 program was used to design the specific primers for the amplification of the target regions included in the Nextera XT libraries (Supplementary Table S4). Long polymerase chain reaction (PCR) amplifications were performed using the KAPA HiFi DNA Polymerase HotStart ReadyMix (Kapa Biosystems, Wilmington, MA, USA) and normalized with the SeqalPrep Normalization Plate kit (Invitrogen, Waltham, MA, USA).^3 Libraries were afterwards generated with the Nextera XT DNA Library Preparation kit and sequenced in a MiSeq (run of 2x150 bp).

Bioinformatic analysis

The complete bioinformatic analysis was performed as previously described.4 Briefly, quality control and trimming of the raw data was done using the FastQC (version 0.11.2), Flexbar (version 2.5),5 and Trimmomatic (version 0.32).6 Sequencing reads were subsequently aligned to the human reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner–MEM algorithm (version 0.7.10).7 The indel realignment and base quality score recalibration steps were applied as described in the Genome Analysis Toolkit (GATK) Best Practice recommendations using the RealignerTargetCreator, IndelRealigner, BaseRecalibrator, PrintReads, and AnalyzeCovariates from the GATK (version 3.3-0).8–10 Variant calling was performed independently using three different algorithms: VarScan2 (version 2.3.7),11 UnifiedGenotyper (GATK version 3.3-0), and HaplotypeCaller (GATK version 3.3-0). The post processing filter variant-filter (fpffilter.pl) was used to filter the point mutations detected by
VarScan2 while the VariantFiltration tool from GATK was used to hard-filter the variants identified by both UnifiedGenotyper and HaplotypeCaller algorithms. Additionally, the entire pipeline established on the MiSeq Reporter Software (MSR, version 2.4.60) was run independently. In this case, upon the supplied aligned files, the Somatic Variant Caller was used for variant detection. All variants detected for any of the variant callers applied were combined and annotated using ANNOVAR (version 2016Feb01)12 as well as custom scripts before filtering. All programs were executed following the authors’ recommendations.

Confirmation of the somatic origin of the mutations

Synonymous variants and polymorphisms described either in the Single Nucleotide Polymorphism Database (dbSNP142) with a European population frequency higher than 1% (1000 Genomes Project database) or in our CLL-genome project database13 were automatically removed by the bioinformatic pipeline. All variants that passed the previous filter were considered somatic if they were truncating, affected splicing sites, or were identified as previous somatic mutations in COSMIC (http://cancer.sanger.ac.uk/cosmic, v72) or in our own CLL database.13 Next, 219 variants not fulfilling the previous criteria were investigated in the germ line DNA of the patients by NGS, Sanger sequencing (Supplementary Table S5) or allele-specific (AS)-PCR (Supplementary Table S6). Among them, 145 variants were not detected in the normal DNA and therefore considered somatic. Among the 74 variants classified as germ line, and therefore not considered in this study, 27 were analyzed by NGS, 33 by Sanger sequencing, and 14 by AS-PCR. All germ line variants identified by NGS where present at >35% of VAF in the normal DNA, indicating that they were *bona fide* individual polymorphisms. Overall, only somatic/truncating mutations were finally considered in the analyses.

Variant allele frequency variability due to the NGS approach

The estimated variant allele frequency (VAF) from a NGS study may have some intrinsic variability due to the library preparation and sequencing. Analyzing the VAF detected for the same mutation in two independent NGS rounds we could estimate the expected variance on VAF due to the NGS approach. In this line, 643 variants (179 somatic mutations and 464 variants annotated as polymorphisms) detected in two independent runs of NGS were used to estimate this variability (Supplementary Figure S3). Due to the fact that there was heteroscedasticity related to the VAF value (lower variance in extreme values of VAF), we used the msir R package (version 1.3.1) to fit a Loess smooth curve and estimate the deviation of the VAF of a second
round of NGS in respect to the first one, represented by the 90% predictive interval (Supplementary Figure S3). The obtained predictive intervals at each specific VAF were converted to a cancer cell fraction (CCF) variability range using the formula used to estimate the CCF of the mutations. In this regard, two mutations where considered to have similar CCFs when their intervals overlapped.

Verification of low variant allele frequency mutations

Due to the existent baseline noise when performing a next-generation sequencing experiment, all mutations identified at low VAF (VAF <12%) were verified by a second independent NGS experiment and/or confirmed by AS-PCR (Supplementary Table S6), as described. In this line, 135 mutations were verified by AS-PCR, 94 by NGS, and 22 by both approaches.

Sanger sequencing

Amplification of the fragment of interest by PCR was performed using 1.25U AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA, Estados Unidos), PCR buffers (Applied Biosystems), 200µM dNTP mix (Invitrogen), 100nM forward and reverse primers (Supplementary Table S5), 1.5mM MgCl2, and 50ng of DNA in a final reaction volume of 50µl. PCR products were cleaned using ExoSAP-IT (USB) and sequenced using ABI Prism BigDye terminator (version 3.1) (Applied Biosystems) with 5pmol of each primer. Sequencing reactions were run on an ABI-3730 automated sequencer (Applied Biosystems). All sequences were visually examined with the Mutation Surveyor® software (v3.24, SoftGenetics, State College, PA, USA).

Sequence analysis of IGHV-IGHD-IGHJ rearrangements

The sequence analysis of IGHV-IGHD-IGHJ rearrangements were performed on either genomic DNA or complementary DNA using leader or consensus primers for the IGHV FR1 along with appropriate consensus constant primers, as previously reported. Only productive rearrangements were evaluated. Sequences with ≥98% identity to the germline were considered unmutated.
DNA copy number analysis

Copy number alterations (CNA) were investigated by high density SNP arrays (Genome-wide Human SNP Array 6.0, Affymetrix) and evaluated using Nexus Copy Number Discovery edition software (version 7.5, Biodiscovery, Hawthorne, CA, USA) in 376 cases, as described elsewhere. In order to quantify the CCF carrying each CNA, a dilutional experiment mixing DNA from MEC-1 CLL cell line (Supplementary Figure S1A) with normal DNA (Human Genome DNA: Male. Reference: G147A. Promega, Madison, WI, USA) was performed analyzing samples containing 100%, 90%, 80%, 60%, 40%, and 20% of MEC-1 DNA (Supplementary Figure S1B). Twenty copy number (CN) losses and 12 CN gains clonally represented in MEC-1 cell line were used to correlate the probe median score of each CNA to its known tumor cell content (or CCF) (Supplementary Figure S1C-D). After modeling a Loess fitted curve for the losses and a second model for the gains we were able to predict the CCF of the CNA (losses and gains) identified in our tumor samples. A 90% predictive interval was calculated in order to obtain a variability range of CCF due to the SNP array technology (Supplementary Figure S1C-D). The predicted CCFs were finally corrected by the tumor purity of the respective samples.

The CCF of the CNA were also used to calculate the CCF carrying each somatic mutation in order to correct for the ploidy of the locus when a given somatic mutation and a CNA affecting the same region co-occur in the same patient. Mutations and CNA were then classified as clonal or subclonal if their CCF was ≥85% or <85%, respectively. Subclonal mutations were further subclassified in subclonal with high CCF (subclonal-high) or subclonal with low CCF (subclonal-low), being the cut-off ≥25% of CCF. The quantification of the CCF carrying each specific mutation allowed us to quantitatively analyze the effect of the mutations on clinical outcome being not limited to study only the effect of their presence or absence (see next section for further details).

Algorithm for the identification of specific gene CCF patterns with impact on clinical outcome

To determine the clinical impact of the specific gene CCF we selected genes mutated in at least 10 cases and designed an algorithm based on the CCF of each mutated gene that combined maximally selected rank statistics (maxstat R package), Fine-Gray/Cox regression, and Gray’s/log-rank test (Supplementary Figure S11). We first used maxstat to determine the CCF cut-off that offered the best prediction of outcome for each gene. If the cut-off obtained was <15% of CCF, we performed a univariate analysis with the mutated cases considering the CCF of the mutations as a continuous variable using Fine-Gray/Cox regression. If the P-value of this
continuous analysis was < 0.1, we considered that the effect of the mutation was continuous, i.e. the more cells carrying the alteration, the worse the prognosis of the patient. These genes were considered to have a prognostic impact with a CCF-gradual pattern when the Gray’s/log-rank test between mutated and unmutated subgroups was significant ($P < 0.05$). Conversely, if $P > 0.1$ (i.e. not a continuous effect) in the univariate continuous analysis, we also performed a univariate categorical analysis (all mutated cases vs unmutated) to check if gene mutations at any CCF impacted the outcome of the patients. If in this analysis the mutated gene had a prognostic impact (Gray’s/log-rank test $P < 0.05$), the gene was classified as having a CCF-independent pattern as all mutations, even the ones at very low CCF, had similar prognostic value. If the mutated gene did not have prognostic impact ($P > 0.05$), the gene was considered as not having a prognostic impact at any CCF.

On the other hand, when the maxstat analysis indicated a CCF cut-off higher than 15% and the univariate categorical analysis based on this cut-off (cases with mutations at CCF ≥ cut-off vs unmutated/mutated at CCF < cut-off) had a significant impact on outcome (Gray’s/log-rank test $P < 0.05$) the gene was classified as having a CCF-dominant pattern, i.e. only cases carrying the mutation at a higher frequency than the cut-off had a poor outcome. Finally, the resulting classification was represented and visually inspected by survival curves (Figure 4, Supplementary Figure S12). A summary of the output of the algorithm for each gene is shown in Supplementary Table S16.
SUPPLEMENTARY TABLES

Table S1. Molecular and clinical characteristics of the 48 CLL cases included in the longitudinal study.

Supplementary file: Supplementary Table S1. Molecular and clinical characteristics of the 48 CLL cases included in the longitudinal study (XLSX, 19kB)

Table S2. Target regions, transcripts used, library strategy, and coverage report.

Target gene	RefSeq transcript	Target regiona	Chr	Start position (hg19)	End position (hg19)	Library strategy	Mean coverage	% samples covered >100x in >75% region	% samples covered >1000x in covered
BCOR	NM_001123385	Exon 8	chrX	39922858	39923106	Access Array	1128	73.9	46.1
BCOR	NM_001123385	Exon 4	chrX	39931599	39934436	Nextera XT/ Access Array	1904/1313	83/41.6	61.6/3.4
BRAF	NM_004333	Exon 15	chr7	140453072	140453196	Access Array	2897	98.3	97.5
BRAF	NM_004333	Exon 12	chr7	140477788	140477878	Access Array	3851	98	95.6
CCND2	NM_001759	Exon 5	chr12	4409023	4409178	Access Array	4092	97.3	95.6
DDX3X	NM_001193416	Exon 1	chrX	41193503	41193553	Access Array	2121	58.1	53.9
DDX3X	NM_001193416	Exon 2	chrX	41196658	41196721	Access Array	3002	96.6	95.3
DDX3X	NM_001193416	Exon 3	chrX	41198286	41198339	Access Array	156	46.6	0
DDX3X	NM_001193416	Exon 4	chrX	41200734	41200872	Access Array	3093	97.3	94.3
DDX3X	NM_001193416	Exon 5	chrX	41201745	41201909	Access Array	5567	97.5	96.1
DDX3X	NM_001193416	Exon 6	chrX	41201987	41202092	Access Array	3199	98.3	95.6
DDX3X	NM_001193416	Exon 7	chrX	41202466	41202607	Access Array	3245	96.6	94.8
DDX3X	NM_001193416	Exon 8	chrX	41202987	41203078	Access Array	4899	98.5	98.3
DDX3X	NM_001193416	Exon 9	chrX	41203280	41203384	Access Array	2779	98.3	97.3
DDX3X	NM_001193416	Exon 10	chrX	41203489	41203655	Access Array	3307	98	92.9
DDX3X	NM_001193416	Exon 11	chrX	41204430	41204580	Access Array	3746	98.3	95.1
DDX3X	NM_001193416	Exon 12	chrX	41204654	41204804	Access Array	3054	96.3	85.9
DDX3X	NM_001193416	Exon 13	chrX	41205479	41205666	Access Array	4470	98.5	92.1
DDX3X	NM_001193416	Exon 14	chrX	41205755	41205878	Access Array	5522	98.5	98.3
DDX3X	NM_001193416	Exon 15	chrX	41206109	41206268	Access Array	4596	98	98
DDX3X	NM_001193416	Exon 16	chrX	41206562	41206707	Access Array	3120	59.9	51.7
DDX3X	NM_001193416	Exon 17	chrX	41206890	41206975	Access Array	4517	98.5	98.3
DTX1	NM_0004416	Exon 1	chr12	11349599	11349625	Nextera XT/ Access Array	1862/516	95.3/17.7	55.4/9.4
EGR2	NM_000399	Exon 2	chr10	64572964	64574231	Nextera XT/ Access Array	3056/2083	94.6/56.9	88.4/48.3
EGR2	NM_000399	Exon 1	chr10	64575618	64575792	Nextera XT/ Access Array	2324/2372	94.6/88.3	82.3/78.3
FBXW7	NM_033632	Exon 12	chr4	153244030	153244304	Access Array	2479	94.3	88.4
FBXW7	NM_033632	Exon 11	chr4	153245333	153245549	Access Array	3998	97.3	95.6
FBXW7	NM_033632	Exon 10	chr4	153247155	153247386	Access Array	1969	85.5	56.7
FBXW7	NM_033632	Exon 9	chr4	153249357	153249544	Access Array	2527	95.3	70
FBXW7	NM_033632	Exon 8	chr4	153250821	153250940	Access Array	2101	87.7	67
A page from a document with various gene names and exon numbers listed, along with genomic coordinates and array access information.									
Gene	Access Array	Exon	Chr	Start	End	Access Array	Mean Coverage	69% Coverage	
---	---	---	---	---	---	---	---	---	---
NFX1	NM_006362	Exon 15	chr11	62563756	62563820	Access Array	1565	70.7	65.5
NFX1	NM_006362	Exon 14	chr11	62563929	62564042	Access Array	1998	96.3	91.9
NFX1	NM_006362	Exon 13	chr11	62564652	62564713	Access Array	1849	93.1	85.2
NFX1	NM_006362	Exon 12	chr11	62564787	62564861	Access Array	1515	89.4	68
NFX1	NM_006362	Exon 11	chr11	62566008	62566050	Access Array	1969	93.6	88.4
NFX1	NM_006362	Exon 9	chr11	62568563	62568676	Access Array	2868	97.3	95.1
NFX1	NM_006362	Exon 8	chr11	62568798	62568892	Access Array	4312	97.8	95.8
NFX1	NM_006362	Exon 7	chr11	62569031	62569106	Access Array	5241	96.8	95.8
NFX1	NM_006362	Exon 6	chr11	62569208	62569294	Access Array	707	96.1	17.5
NFX1	NM_006362	Exon 5	chr11	62569411	62569521	Access Array	3119	97.8	95.3
NFX1	NM_006362	Exon 4	chr11	62569646	62569735	Access Array	2118	96.3	86.7
NFX1	NM_006362	Exon 3	chr11	62570888	62571047	Access Array	4617	98.5	98.3
NFX1	NM_006362	Exon 2	chr11	62571261	62571453	Access Array	2089	96.1	59.1
PIM1	NM_001243186	Exon 2	chr6	37138546	37138658	Nextera XT/Access Array	403/6	83.3/0.2	6.4/0.2
PIM1	NM_001243186	Exon 3	chr6	37138754	37138810	Nextera XT/Access Array	590/803	89.2/36.7	14.5/33
PIM1	NM_001243186	Exon 4	chr6	37138898	37139270	Nextera XT/Access Array	1377/2202	94.3/56.4	39.4/53.4
POT1	NM_015450	Exon 19	chr7	124464013	124464131	Access Array	4022	98.3	95.1
POT1	NM_015450	Exon 18	chr7	124465303	124465414	Access Array	2942	97.8	94.6
POT1	NM_015450	Exon 17	chr7	124467265	124467362	Access Array	4006	98.3	97.8
POT1	NM_015450	Exon 16	chr7	124469305	124469399	Access Array	3102	97.8	93.3
POT1	NM_015450	Exon 15	chr7	124475330	124475471	Access Array	4184	97.8	93.8
POT1	NM_015450	Exon 14	chr7	124481024	124481235	Access Array	4555	98.5	97.8
POT1	NM_015450	Exon 13	chr7	124482858	124483020	Access Array	4511	98.5	98.3
POT1	NM_015450	Exon 12	chr7	124486993	124487055	Access Array	2534	98.5	93.8
POT1	NM_015450	Exon 11	chr7	124491923	124492008	Access Array	2432	96.3	93.3
POT1	NM_015450	Exon 10	chr7	124493023	124493195	Access Array	3942	98.3	97.3
POT1	NM_015450	Exon 9	chr7	124499008	124499169	Access Array	3531	98	95.1
POT1	NM_015450	Exon 8	chr7	124503401	124503697	Access Array	5562	96.8	95.1
POT1	NM_015450	Exon 7	chr7	124510962	124511098	Access Array	2804	96.1	82
POT1	NM_015450	Exon 6	chr7	124532317	124532437	Access Array	1532	96.1	78.3
POT1	NM_015450	Exon 5	chr7	124537216	124537230	Access Array	2792	98.5	97.3
RS15	NM_001018	Exon 3	chr19	1440015	1440255	Access Array	2247	70	57.1
RS15	NM_001018	Exon 4	chr19	1440345	1440464	Access Array	1864	76.4	71.7
TRAF3	NM_003300	Exon 11	chr14	103371547	103372124	Access Array	2717	85.7	70.4
XPO1	NM_003400	Exon 15	chr2	61719457	61719619	Access Array	5546	98.5	98.3
ZMYM3	NM_005096	Exon 23	chrX	70462017	70462277	Access Array	1797	27.1	1.5
ZMYM3	NM_005096	Exon 21	chrX	70463676	70463833	Access Array	5311	97.8	95.8
ZMYM3	NM_005096	Exon 15	chrX	70466200	70466365	Access Array	1545	0	0
ZNF292	NM_015021	Exon 6	chr6	87953190	87953332	Access Array	2825	96.8	94.6
ZNF292	NM_015021	Exon 8	chr6	87964365	87971522	Access Array	3149	95.1	82.3

*Target regions also include the 2-bp splice sites at 5' and 3' of each exon.

aNFKBIE hotspot mutation (chr6:44232739_44232742delGTAA, p.Y254fs*13) was covered with a mean coverage of 295x, with 69% of the samples having this region covered at >100x by Nextera XT. Using the Access Array system (Fluidigm), this region was covered at a mean coverage of 1846x, with 69% of the samples having this region covered at >1000x. Combining
both techniques, but considering only the technique that better covers each sample, the mean coverage was 1923x and 91% and 70% of the samples had a coverage >100 and 1000x, respectively. Region considered for these calculations: chr6:44232734-44232743.

56% of the NRAS exon 3 region (chr1:115256418-115256520) was covered with a mean coverage of 415x, and 90% of the samples had this region covered at >100x.

58% of the ZMYM3 exon 23 region (chrX:70462126-70462277) was covered with a mean coverage of 3009x, and 98% of the samples had this region covered at >1000x.

61% of the ZMYM3 exon 15 region (chrX:70466200-70466300) was covered with a mean coverage of 2419x, and 89% of the samples had this region covered at >100x.

Table S3. Access Array (Fluidigm) primers for deep-targeted NGS.

Supplementary file: Supplementary Table S3. Access Array (Fluidigm) primers for deep-targeted NGS (XLSX, 40kB)

Table S4. Specific primers for Nextera XT library preparation for deep-targeted NGS.

Target gene	Target region	Chr	Start position (hg19)	End position (hg19)	Forward primer (5' → 3')	Reverse primer (5' → 3')	Amplicon length (bp)
BCOR	Exon 4	chrX	39931193	39934693	CATGAATCCCCAGACATGC	TATGGGCTCAAGTCCAAAG	3501
DTX1	Exon 1	chr12	113495836	113496416	TAACGGAGCTCTAGGCTC	GGACAAGGTTAGACTG6CCT	575
EGR2	Exon 2-3	chr10	64572337	64576487	TCTCCCCATCACATTGTCA	GAAAGTCCCCAGAGAAGGGA	4151
NFKBIE	Exon 1	chr6	44232605	44234489	AGACCGAATGGGGACCTGAGA	TAGTGCCAGGAAATGAGGGA	1885
PIM1	Exon 2-4	chr6	37138343	37139441	GAGGTGGGGATGCTTTGTCC	AAATCCCCGGCTTTACTACG	1099
Table S5. Primers used for Sanger sequencing.

Target gene	Target region	Chr	Start position (hg19)	End position (hg19)	Forward primer (5' → 3')	Reverse primer (5' → 3')	Amplicon length (bp)
BCOR	Exon 4	chrX	39932996	39933364	CCCAGTCCAATGCCTTGGTTT	AGACAGCGGTCCAAGACAGA	369
BCOR	Exon 4	chrX	39933787	39934176	GAAGGTTCGCCAAGACAGA	CCCAATGCTCAGATGCTTCT	390
BCOR	Exon 8	chrX	39922658	39923441	TGGAGGCTCAGAAGGTAATTC	ACTCCTCCATCCACCACTC	784
BRAF	Exon 12	chr7	140477816	140478120	AGGCCTTGAATGCTGAGG	GGAACAAAGAGGTGGCTT	305
DDX3X	Exons 9-10	chrX	41200631	41201147	CCCGGATCTTGGGCTTGGG	GGAACAAAGAGGAGGAGG	720
DTX1	Exon 1	chr12	113495836	113496410	TAACGGAGGTCTCTAGGGAGG	GGACAAGGTTTAGACTG	575
EGR2	Exon 1	chr12	46575472	46576021	CTGGGGCTCGCTCGGAGG	GAAAACATGAGGAGGAGG	550
EGR2	Exon 2	chr12	46573406	46573920	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	517
KLHL6	Exon 1	chr12	183273077	183273531	TGGGGCTCGCTCGGAGG	GAAAACATGAGGAGGAGG	713
MGA	Exon 8	chr12	41203116	41203835	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	474
MGA	Exon 17	chr12	42042271	42042681	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	411
MYD88	Exon 2	chr12	38181251	38181784	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	534
NXF1	Exon 19	chr12	62561652	62562126	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	475
NXF1	Exon 2	chr12	62571036	62571452	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	475
POT1	Exon 11	chr12	62568893	62569414	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	522
POT1	Exon 11	chr12	124491714	124492168	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	455
POT1	Exon 6	chr12	124532243	124532585	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	455
POT1	Exon 7	chr12	124510843	124511258	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	455
POT1	Exon 8	chr12	124503233	124503763	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	531
POT1	Exon 9	chr12	124498661	124499154	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	494
TRAF3	Exon 11	chr12	103371498	103372126	ACTCCTCCCAATGAGGAGG	GCCTTCCCCCTCCTC	434
ZMYM3	Exon 23	chrX	70461863	70462201	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	416
ZNF292	Exon 2	chr7	87965855	87966308	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	454
ZNF292	Exon 8	chr7	87967480	87968198	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	719
ZNF292	Exon 8	chr7	87968378	87968922	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	545
ZNF292	Exon 8	chr7	87970836	87971163	GCCTTCCCCCTCCTC	CTGGGGCTCGCTCGGAGG	328
Table S6. AS-PCR primers used to verify the mutations called by the bioinformatic pipeline.

Target gene	Chr	Genomic position (hg19)	Ref	Alt	Amino acid	Forward primer WT (5’ → 3’)	Forward primer Mut (5’ → 3’)	Reverse primer WT (5’ → 3’)	Reverse primer Mut (5’ → 3’)
BCor	chrX	39932628	G	T	p.Y657*	TCAGGGGCTGGGTAAGGAGGAGG	TCAGGGGCTGGGTAAGGAGGAGG	CAGCAACCCAAGACAGGAGTG	-
BCor	chrX	39932621	AAGGGAGGT A	p.Y657fs*5	GGCTGCTTAAGGAGGAGGTA	GGCTGCTTAAGGAGGAGGTA	GCAACCCAAGACAGGAGTCT	-	
BCor	chrX	39932231	T	P.N790fs*27	TCCCTTGATCCAGTGGGGG	TCCCTTGATCCAGTGGGGG	ATGAGAGAGCGGCTAGGAG	-	
CDN2	chr12	4409027	A	C	p.D241A	GTCTGGACCACCTGCTAGG	GTCTGGACCACCTGCTAGG	ATATCCCGACACTGCCAG	-
CDN2	chr12	44090097	C	T	p.Q265*	CAGCACTACCCGCTAGGACC	CAGCACTACCCGCTAGGACC	AGGTGGCTTCCATCCCCAAA	-
CDN2	chr12	4409107	G	C	p.G268R	TGTGGGAGTGGCTGAAGTGAGG	TGTGGGAGTGGCTGAAGTGAGG	GGACAAGGACGCAAGCAC	-
DDX3X	chrX	41205649	T	G	p.L495V	GCTCAGGAAAAAGGAGAATT	GCTCAGGAAAAAGGAGAATT	TTTCCTGACACACATCCAGC	-
DDX3X	chrX	41205532	T	C	p.S456fs	GACCAAAAAGGAGTAGATT	GACCAAAAAGGAGTAGATT	TTTCCTGACACACATCCAGC	-
DDX3X	chrX	41203031	C	T	p.N26fs	CTTCTGGCCCATCTTGAAGT	CTTCTGGCCCATCTTGAAGT	TTTCCTGACACACATCCAGC	-
DDX3X	chrX	41196690	T	A	p.T280N	ACTGGCAACAGCCACGAC	ACTGGCAACAGCCACGAC	AGGTGGCTTCCATCCCCAAA	-
DDX3X	chrX	41203018	C	T	p.Q241	TCAGGGGCTGGGTAAGGAGGAGG	TCAGGGGCTGGGTAAGGAGGAGG	CAGCAACCCAAGACAGGAGTG	-
DDX3X	chrX	41196690	T	C	p.N26fs	CTTCTGGCCCATCTTGAAGT	CTTCTGGCCCATCTTGAAGT	TTTCCTGACACACATCCAGC	-
DDX3X	chrX	41205652	G	A	p.V496M	GCTCAGGAAAAAGGAGAATT	GCTCAGGAAAAAGGAGAATT	TTTCCTGACACACATCCAGC	-
DTX1	chr12	113496096	G	C	p.E33D	TTGGAGAGTGGCTGAAGTGAGG	TTGGAGAGTGGCTGAAGTGAGG	GGACAAGGACGCAAGCCCT	-
EGR2	chr10	64573167	T	C	p.D411H	GGTTGGCCCTCCTCTCATC	GGTTGGCCCTCCTCTCATC	AAGTTGACCCACAGCCCT	-
EGR2	chr10	64573332	C	T	p.E356K	GGATGTGCCGTGCTAGG	GGATGTGCCGTGCTAGG	ACCAGGCACTCCTCCTCCATG	-
EGR2	chr10	64574168	CTGGGATA	p.Y75fs	GGAGCAAAGTGCTGGGAGA	GGAGCAAAGTGCTGGGAGA	AAGGCGGAGAAGGATGGGA	-	
EGR2	chr10	64573060	GC	C	p.E33D	TTGGAGAGTGGCTGAAGTGAGG	TTGGAGAGTGGCTGAAGTGAGG	GGACAAGGACGCAAGCCCT	-
EGR2	chr10	64573248	T	T	p.H384N	GGATATGGTGCTGCTAGG	GGATATGGTGCTGCTAGG	GGATATGGTGCTGCTAGG	-
EGR2	chr10	64573326	C	T	p.T358A	GGATGGCCCTCCTCTCCATC	GGATGGCCCTCCTCTCCATC	ACCAGGCACTCCTCCTCCATG	-
EGR2	chr10	64573679	C	T	p.G240D	GGCTGGGAGGAGGAGGAGGAGG	GGCTGGGAGGAGGAGGAGGAGG	ACCAGGCACTCCTCCTCCATG	-
FBXW7	chr4	153253760	ATT	A	p.S114R	AGGAACCTGGTGGAGGGAGGAGG	AGGAACCTGGTGGAGGGAGGAGG	TGACCCACATAACTCAGC	-
IRF4	chr6	394946	C	A	p.S114R	AGGAACCTGGTGGAGGGAGGAGG	AGGAACCTGGTGGAGGGAGGAGG	TGACCCACATAACTCAGC	-
Locus	Chromosome	Position	Genotype	Protein Change	Transcript 1	Transcript 2			
-------	------------	----------	----------	---------------	-------------	-------------			
IRF4	chr6	394951	T	p.L116R	CTCTCATTCTTTCCCACCGG	-	TGTACGGGTTCTGAGATGTCACCA		
IRF4	chr6	394993	AG	p.G131fs*18	TTGGGTTGAGAATGTTGCGC	-	CCCCTACCTTTTTGGCTCTCTTT		
KHL6	chr3	183273248	A	p.L65P	TCAGAGGGTTTCTCATTCGGA	TCAGACGTTTCTCATTCGCG	GTTGATGCGAGGACAAAGGG		
KHL6	chr3	183273269	G	p.L58R	GGTGTTGCCGAGCATTGGAAGA	GGTGTTGCCGAGCATTGGAAGA	AGCTGTTAGAATGTTGAGG		
KHL6	chr3	183273255	C	p.E63*	GTTTCCTCCAGCAGGTTTGA	GTTTCCTCCAGCAGGTTTGA	GTTGATGCGAGGACAAAGGG		
KRAS	chr12	25398282	A	p.G131fs*18	TTGGGTTGAGAATGTTGCGC	-	CCCCTACCTTTTTGGCTCTCTTT		
KLHL6	chr3	25398284	T	p.G12D	CACTCTTGGCTAGGAATGGGTTC	CACTCTTGGCTAGGAATGGGTTC	AAGGCACGATGAGGAGGAGT		
KLHL6	chr3	25398284	C	p.P2156fs*23	GCAGCAATCTAATCTACAGCA	GCAGCAATCTAATCTACAGCA	TAACTGATGCTACTAGCAATAG		
MGAT	chr15	42005588	A	p.V1109fs*34	GCACCTTGTTTCTCTAGG	GCACCTTGTTTCTCTAGG	ACATGCGGAACTCAGAAA		
MGA	chr15	42042270	G	p.P2156fs*23	GCAGCAATCTAATCTACAGCA	GCAGCAATCTAATCTACAGCA	TAACTGATGCTACTAGCAATAG		
MYD88	chr3	38182641	T	p.L273P	GTGCCCATCAGAAGCGACT	GTGCCCATCAGAAGCGACT	AGATACACGACACACACAGG		
MYD88	chr3	38182032	C	p.S219C	ATCATCTTGGGAAGGGTGCA	-	CTACAGATGAGCCCTCCCAG		
NFKBIE	chr6	44232738	T	p.Y254fs*13	GGCACTGGTTTCTCTAGG	GGCACTGGTTTCTCTAGG	AAGCGTGATGAGGAGGAGT		
NXF1	chr11	62569722	C	p.G127V	ATGCCTTGTCATACTTTCTGC	ATGCCTTGTCATACTTTCTGC	AGATACACGACACACACAGG		
NXF1	chr11	62568570	T	p.N301S	TCCGAGCTATCAATTCTCAGC	TCCGAGCTATCAATTCTCAGC	AGATACACGACACACACAGG		
POT1	chr7	124493170	T	p.Y242C	GATTGAAGTTTGGTATGAAGGCTAT	GATTGAAGTTTGGTATGAAGGCTAT	AGATACACGACACACACAGG		
POT1	chr7	124503553	C	p.Y43C	TCCACAATAGTTACAACTGAGCAAT	TCCACAATAGTTACAACTGAGCAAT	AGATACACGACACACACAGG		
POT1	chr7	124503666	C	p.R80H	ATACCTTGGCTAGTGAGG	ATACCTTGGCTAGTGAGG	AGATACACGACACACACAGG		
POT1	chr7	124510981	C	p.N54fs*2	TGGGTTAAGAAGGAGAGG	TGGGTTAAGAAGGAGAGG	AGATACACGACACACACAGG		
POT1	chr7	124511058	AT	p.Y493P	GGGGGAAGGGGAGAGG	GGGGGAAGGGGAGAGG	AGATACACGACACACACAGG		
POT1	chr7	124511092	T	p.Q223P	CTGAGGCTGCAAGGAGG	CTGAGGCTGCAAGGAGG	AGATACACGACACACACAGG		
POT1	chr7	124532325	T	p.G145*	CACAGTTTTTAAACTACAGGCTTC	CACAGTTTTTAAACTACAGGCTTC	TGCCTTTATGACTAGTGTG		
POT1	chr7	124532362	C	p.V281	GGGGCTTAAAAGAAGTCTACACAC	GGGGCTTAAAAGAAGTCTACACAC	TGCCTTTATGACTAGTGTG		
POT1	chr7	124532666	C	p.G331D	CAAAGGCAGAGGCTGTTGATA	CAAAGGCAGAGGCTGTTGATA	AGGAGACTACTACACTAGC		
POT1	chr7	124532347	G	p.K33Q	TTTGCTTGATAGTTGGGCTT	TTTGCTTGATAGTTGGGCTT	TGCCTTTATGACTAGTGTG		
POT1	chr7	124510985	C	p.Y43C	TCCACAATAGTTACAACTGAGCAAT	TCCACAATAGTTACAACTGAGCAAT	TGCCTTTATGACTAGTGTG		
POT1	chr7	124475360	A	p.L493P	GGGGAAAGGAGAGGAGGAGG	GGGGAAAGGAGAGGAGGAGG	TGCCTTTATGACTAGTGTG		
RPS15	chr19	1440456	A	p.K145*	CCCGCTTCTACCTCTCCCTCA	CCCGCTTCTACCTCTCCCTCA	AGACTGCTAAACAGGCTTGG		
XPO	chr2	61719472	C	p.E571K	TGGCATACCTCTCAAACCT	TGGCATACCTCTCAAACCT	AGACTGCTAAACAGGCTTGG		

IRF4, **KHL6**, **KLHL6**, **KRAS**, **MGA**, **MYD88**, **NXF1**, **POT1**, **XPO** are genes listed in the table. The table lists the chromosomes, positions, genotypes, protein changes, and transcripts for each gene.
Gene	Chromosome	Position	Mutation	Mutant Allele 1	Mutant Allele 2	Normal Allele 1	Normal Allele 2
XPO1	chr2	61719471	T>C	p.E571G	TGGCATCACCTCTCAAACCT	ACTGTAGTAACAGCTGTCGA	ACTGTAGTAACAGCTGTCGG
XPO1	chr2	61719471	T>A	p.E571V	TGGCATCACCTCTCAAACCT	ACTGTAGTAACAGCTGTCGA	ACTGTAGTAACAGCTGTCGT
ZMYM3	chrX	70466233	C>T	p.V848M	CTTCCTTTGGACCTCTCTCAC	CTTCCTTTGGACCTCTCCAT	AAAACCCAGACACCCCTCC
ZNF292	chr6	87969505	C>G	p.I1376M	CTCTTCCCTCACCAGCAGA	GCCCTGAACACCGCTCACAG	GCCCTGAACACCGCTCACAC
ZNF292	chr6	87967475	C>G	p.I1376M	CTCTTCCCTCACCAGCAGA	GCCCTGAACACCGCTCACAG	GCCCTGAACACCGCTCACAC
Table S7. Mutations identified by deep-targeted NGS in 406 untreated CLL patients.

Supplementary file: Supplementary Table S7. Mutations identified by deep-targeted NGS in 406 untreated CLL patients (XLSX, 65kB)

Table S8. Comparison of clinical and biological characteristics between mutated cases with or without convergent mutational evolution (CME).

Parameter	Category	Mutated cases without CME (n=192)	Cases with CME (n=66)	P-value
Binet stage	A (%)	72.9	65.2	0.271
Age (years)	Median (range)	67 (25-91)	66 (45-94)	0.806
IGHV mutational status	Mutated (%)	41.7	39.7	0.661

Table S9. Mutations identified in the sequential samples analyzed in the longitudinal study.

Supplementary file: Supplementary Table S9. Mutations identified in the sequential samples analyzed in the longitudinal study (XLSX, 23kB)

Table S10. CNA identified in 376 untreated CLL patients by SNP arrays.

Supplementary file: Supplementary Table S10. CNA identified in 376 untreated CLL patients by SNP arrays (XLSX, 44kB)
Table S11. Temporal classification of CLL driver alterations.

Alteration	Out-going edges	In-going edges	P-value	Q value	Classification
del(13q14)	111	18	< 0.001	< 0.001	Early
tri(12)	55	2	< 0.001	< 0.001	Early
del(11q)	46	11	< 0.001	< 0.001	Early
del(17p)	24	5	< 0.001	0.002	Early
amp(8q23-q24)	30	5	< 0.001	< 0.001	Early
del(10q24.32-NFKB2)	19	3	< 0.001	0.003	Early
del(14q24.1)	14	0	< 0.001	< 0.001	Early
NOTCH1	44	80	0.002	0.006	Late
TP53	12	55	< 0.001	< 0.001	Late
NFKBIE	5	52	< 0.001	< 0.001	Late
ZNF292	8	31	< 0.001	0.002	Late
BIRC3	3	33	< 0.001	< 0.001	Late
amp(2p16)	17	23	0.430	0.696	Int./not powered
del(18p)	10	6	0.454	0.696	Int./not powered
del(8p)	7	12	0.359	0.696	Int./not powered
del(20p)	7	11	0.481	0.696	Int./not powered
del(6q15-ZNF292)	8	8	1	1	Int./not powered
del(3p21.31-SETD2)	4	7	0.549	0.737	Int./not powered
del(15q15.1-MGA)	12	8	0.503	0.696	Int./not powered
del(2q37.1-SP100)	9	3	0.146	0.312	Int./not powered
amp(3q26.1)	8	2	0.109	0.271	Int./not powered
amp(5q34)	6	1	0.125	0.280	Int./not powered
del(6p21.1-NFKBIE)	1	3	0.625	0.773	Int./not powered
tri(18)	1	0	1	1	Int./not powered
SF3B1	29	37	0.389	0.653	Int./not powered
ATM	31	48	0.071	0.221	Int./not powered
POT1	16	23	0.337	0.633	Int./not powered
XPO1	7	17	0.064	0.215	Int./not powered
EGR2	9	16	0.229	0.490	Int./not powered
FBXW7	13	7	0.263	0.538	Int./not powered
MGA	8	18	0.075	0.222	Int./not powered
KLIHL6	4	5	1	1	Int./not powered
RPS15	12	8	0.503	0.696	Int./not powered
MYD88	3	10	0.092	0.241	Int./not powered
DDX3X	10	16	0.327	0.633	Int./not powered
BRAF	3	10	0.092	0.241	Int./not powered
NFX1	4	3	1	1	Int./not powered
DTX1	3	1	0.625	0.773	Int./not powered
BCOR	2	4	0.687	0.829	Int./not powered
CCND2	4	4	1	1	Int./not powered
KRAS	1	4	0.375	0.653	Int./not powered
IRF4	0	7	0.016	0.056	Int./not powered
MED12	2	3	1	1	Int./not powered
ZMYM3	1	3	0.625	0.773	Int./not powered
NRAS	0	1	1	1	Int./not powered
TRAF3	0	1	1	1	Int./not powered
PIM1	2	0	0.500	0.696	Int./not powered

Alterations with a Q value < .05 were classified as early or late events, regarding their out/in-going edges.
Table S12. Temporal classification of CLL driver alterations considering only the mutations present at a CCF ≥25%.

Alteration	Out-going edges	In-going edges	P-value	Q value	Classification
del(13q14)	49	18	< 0.001	0.004	Early
tri(12)	21	2	< 0.001	0.004	Early
del(14q24.1)	10	0	0.002	0.020	Early
amp(8q23-q24)	18	5	0.011	0.072	Early (non-significant trend)
del(17p)	16	5	0.027	0.109	Early (non-significant trend)
TP53	5	25	< 0.001	0.004	Late
MGA	0	8	0.008	0.064	Late (non-significant trend)
BIRC3	0	7	0.016	0.091	Late (non-significant trend)
ATM	11	26	0.020	0.102	Late (non-significant trend)
del(20p)	2	11	0.022	0.102	Late (non-significant trend)
amp(2p16)	10	23	0.035	0.131	Late (non-significant trend)
del(11q)	23	11	0.058	0.197	Int./not powered
del(8p)	4	12	0.077	0.225	Int./not powered
amp(3q26.1)	4	0	0.125	0.320	Int./not powered
del(3p21.31-SETD2)	2	7	0.180	0.409	Int./not powered
del(10q24.32-NFKB2)	8	3	0.227	0.489	Int./not powered
amp(5q34)	3	1	0.625	0.915	Int./not powered
del(6p21.1-NFKBIE)	1	3	0.625	0.915	Int./not powered
del(18p)	6	6	1	1	Int./not powered
del(6q15-ZNF292)	7	8	1	1	Int./not powered
del(15q15.1-MGA)	6	8	0.790	1	Int./not powered
del(2q37.1-SP100)	4	3	1	1	Int./not powered
tri(18)	1	0	1	1	Int./not powered
NFKBIE	0	5	0.062	0.197	Int./not powered
DDX3X	2	8	0.109	0.299	Int./not powered
SF3B1	15	7	0.134	0.323	Int./not powered
ZMYM3	0	3	0.250	0.513	Int./not powered
FBXW7	4	1	0.375	0.699	Int./not powered
KLRH6	1	4	0.375	0.699	Int./not powered
BCO1	0	2	0.500	0.854	Int./not powered
IRF4	0	2	0.500	0.854	Int./not powered
BRAF	1	3	0.625	0.915	Int./not powered
XPO1	1	3	0.625	0.915	Int./not powered
NOTCH1	17	18	1	1	Int./not powered
POT1	4	6	0.754	1	Int./not powered
ZNF292	3	5	0.727	1	Int./not powered
EGR2	4	3	1	1	Int./not powered
RPS15	2	3	1	1	Int./not powered
DTX1	1	0	1	1	Int./not powered
CCND2	2	2	1	1	Int./not powered
TRAF3	0	1	1	1	Int./not powered
MYD88	0	0	-	-	Int./not powered
NXF1	0	0	-	-	Int./not powered
KRAS	0	0	-	-	Int./not powered
Alterations with a Q value < .05 were classified as early or late events, regarding their number of out/in-going edges. Alterations with a Q value < .15 were considered as having a non-significant trend.

Table S13. Temporal relationship between specific pairs of driver alterations.

Alteration A	Alteration B	Alteration A → Alteration B (CCF A > CCF B)	Alteration B → Alteration A (CCF A < CCF B)	P-value	Q value
del(13q14)	NOTCH1	15	1	< .001	0.013
del(13q14)	SF3B1	9	1	0.022	0.062
del(13q14)	TP53	10	2	0.039	0.084
del(13q14)	ATM	7	0	0.016	0.051
del(13q14)	POT1	6	0	0.031	0.074
del(13q14)	NFKBIE	7	0	0.016	0.051
del(13q14)	ZNF292	7	0	0.016	0.051
del(13q14)	BIRC3	7	0	0.016	0.051
tri(12)	NOTCH1	9	0	0.004	0.051
tri(12)	TP53	5	0	0.062	0.108
tri(12)	BIRC3	6	0	0.031	0.074
del(11q)	amp(2p16)	5	0	0.062	0.108
del(11q)	ATM	11	1	0.006	0.051
del(17p)	TP53	8	0	0.009	0.051
NFKBIE	RPS15	0	5	0.062	0.108
del(13q14)	amp(2p16)	4	1	0.375	0.464
del(11q)	SF3B1	4	1	0.375	0.464
amp(2p16)	ATM	5	2	0.453	0.512
del(10q24.32-NFKB2)	NOTCH1	5	1	0.219	0.335
NOTCH1	SF3B1	2	5	0.453	0.512
NOTCH1	TP53	6	2	0.289	0.418
NOTCH1	ATM	3	3	1	1
NOTCH1	POT1	1	5	0.219	0.335
NOTCH1	NFKBIE	4	1	0.375	0.464
NOTCH1	MGA	4	2	0.687	0.715
NOTCH1	DDX3X	4	2	0.687	0.715

Pairs of alterations with at least 5 connections with different CCFs were analyzed. Relationships with Q values < .15 were considered.
Table S14. Temporal acquisition of gene mutations in specific biological pathways.

Pathway	Out-going edges	In-going edges	P-value	Q-value	Classification
NF-κB signaling	9	26	0.006	0.042	Late
B-cell signaling	7	3	0.343	0.873	Int./not powered
RNA metabolism	34	27	0.443	0.883	Int./not powered
Notch signaling	31	25	0.504	0.883	Int./not powered
Cell cycle	6	8	0.790	1	Int./not powered
DNA damage response	31	29	0.897	1	Int./not powered
Chromatin structure	1	1	1	1	Int./not powered

NF-κB signaling: *BIRC3, TRAF3, EGR2, NFKBIE*; B-cell signaling: *BCOR, IRF4, KLHL6, MYD88*; RNA metabolism: *SF3B1, XPO1, RPS15, DDX3X, ZNF292, MED12, NXF1, MGA*; Notch signaling: *NOTCH1, FBXW7, DTX1*; Cell cycle: *KRAS, NRAS, BRAF, CCND2*; DNA damage response: *TP53, ATM, POT1*; Chromatin structure: *ZMYM3*.

Table S15. CNA identified in the sequential samples analyzed in the longitudinal study.

Case	Chr	Start position (hg19)	End position (hg19)	Event	CCF
24-2	chr12	145739	133779461	CN Gain	100
24-2	chr17	52844401	56619391	CN Loss	100
27-2	chr13	48496748	51570061	CN Loss	100
27-3	chr9	70907292	141153431	CN Loss	79.24
27-3	chr13	48474078	51571454	CN Loss	100
27-3	chr17	0	19751800	CN Loss	89.17
29-2	chr1	28003685	39385712	CN Loss	52.18
29-2	chr11	81997865	114232574	CN Loss	38.92
29-2	chr13	43373412	52583981	CN Loss	47.26
47-2	chr5	90159528	112894641	CN Loss	99.1
47-2	chr12	145739	133779461	CN Gain	100
47-2	chr13	48856202	52981500	CN Loss	95.46
47-2	chr17	0	26415213	CN Loss	94.07
47-2	chr17	29541908	32028411	CN Loss	82.16
47-2	chr17	35216940	35459748	CN Loss	92.44
47-2	chr17	49727681	54754350	CN Loss	76.85
47-2	chr17	67175999	72209853	CN Loss	69.08
48-2	chr2	232952935	243102476	CN Loss	79.67
48-2	chr3	75467674	75931704	CN Gain	99.02
48-2	chr3	118956344	197962430	CN Gain	87.49
48-2	chr7	16913652	17416937	CN Gain	100
48-2	chr7	143218633	143532988	CN Gain	100
73-2	chr3	6647527	52513610	CN Loss	27.5
73-2	chr13	44652243	74733583	CN Loss	72.67
73-2	chr17	1	22263006	CN Loss	38.93
chr	CN	CN	Homozygous Copy Loss	Homozygous Copy Loss	
------	------	------	----------------------	----------------------	
chr9	6977976	77079354	97.85	CN Loss	
chr13	47930454	65230248	100	CN Loss	
chr13	47435512	50532216	24.36	CN Loss	
chr13	50532217	51495664	na	CN Loss	
chr16	47415392	47669196	100	CN Loss	
chr15	93148606	102420705	100	CN Loss	
chr8	67438475	146259574	100	CN Gain	
chr13	50522257	51529916	100	CN Loss	
chr13	41973384	51846014	100	CN Loss	
chr8	48292859	48675393	100	CN Loss	
chr12	145739	133779461	100	CN Gain	
chr13	47531603	51471176	71.34	CN Loss	
chr12	131732300	131834302	100	CN Loss	
chr13	50546382	51480442	na	CN Loss	
chr13	47624417	51636090	100	CN Loss	
chr10	102843647	135449667	100	CN Loss	
chr12	46377041	133779461	100	CN Gain	
chr14	62327857	78130190	100	CN Loss	
chr13	50591783	51347782	na	CN Loss	
chr13	50590765	51347782	na	CN Loss	
chr2	10000	92285930	66.96	CN Gain	
chr13	41514889	42764265	67.37	CN Loss	
chr13	48415495	50553238	85.22	CN Loss	
chr13	50553239	51775052	na	CN Loss	
chr13	51775053	77166122	74.85	CN Loss	
chr18	130072	13715376	60.68	CN Loss	
chr2	231042372	231602800	100	CN Loss	
chr3	26037098	26168215	100	CN Loss	
chr6	162775040	163136852	100	CN Gain	
chr13	50496333	51438125	100	CN Loss	
chr13	48700382	52903825	100	CN Loss	
chr12	145739	133779461	100	CN Gain	
chr13	50245847	51570061	84.4	CN Loss	
chr13	50575189	51477334	100	CN Loss	
chr7	143914613	144117765	100	CN Gain	
chr13	47936555	56914417	100	CN Loss	
chr13	50560863	51461403	100	CN Loss	
chr4	160762679	160973516	100	CN Loss	
chr6	168335948	168583553	100	CN Gain	
chr9	20356788	30356439	100	CN Loss	
chr9	70986320	141074404	100	CN Loss	
chr11	2	61601850	100	CN Loss	
chr12	145739	133779461	100	CN Gain	
chr13	42763930	50107904	100	CN Loss	
chr14	22474859	23018097	100	CN Loss	
chr15	24349824	24726268	100	CN Gain	
chr9	20412119	22449551	100	CN Loss	
Position	Chromosome	Start	End	Type	
----------	------------	-------	-----	------------	
456-2	chr13	50546382	51182569	CN Loss	69.99
456-2	chr19	20581725	20721342	CN Loss	100
456-2	chr19	43292575	43612172	CN Loss	96.85
589-2	chr2	10000	92326171	CN Gain	100
589-2	chr10	102689838	10455106	CN Loss	100
589-2	chr20	60000	26319569	CN Loss	100
618-2	chr8	10001	43838887	CN Loss	99.68
618-2	chr17	0	22152702	CN Loss	99.56
701-2	chr2	10000	92326171	CN Gain	100
701-2	chr9	20501591	20625551	CN Loss	100
745-2	chr13	44617371	50538562	CN Loss	100
745-2	chr13	50538562	51420125	Homozygous Copy Loss	na
759-2	chr12	145739	133779461	CN Gain	99.29
787-2	chr1	156287292	161110488	CN Loss	100
787-2	chr1	223797846	227689207	CN Loss	100
1076-2	chr11	98133733	121464062	CN Loss	98.57
1076-2	chr12	204302	9354560	CN Gain	48.81
1076-2	chr12	11964269	18749512	CN Loss	40.76
1076-2	chr13	19815048	24959490	CN Loss	56.38
1076-2	chr9	79126120	124400641	CN Gain	26.13
1076-2	chr14	99754406	107289540	CN Loss	99.34
1076-2	chr16	78197385	78352939	CN Gain	100
1076-2	chr16	79495915	79688205	CN Gain	73.94
1076-2	chr3	154659178	154932978	CN Loss	100
1078-2	chr13	32737317	33359001	CN Loss	67.6
1078-2	chr13	50475234	51534610	CN Loss	87.06
1189-2	chr13	50538562	51526306	CN Loss	100
1313-2	chr13	43033142	53610920	CN Loss	100

CCF, cancer cell fraction; CN, copy number; na, not available.
Table S16. Summary of the results of the algorithm applied to determine the pattern of CCF of each gene mutation.

Gene	n	CCF pattern	Cut-off (% CCF)	P-value continuous analysis	P-value mutated vs unmutated	P-value mutated CCF ≥ cut-off vs unmutated + (mut CCF < cut-off)	CCF pattern	Cut-off (% CCF)	P-value continuous analysis	P-value mutated vs unmutated	P-value mutated CCF ≥ cut-off vs unmutated + (mut CCF < cut-off)
NOTCH1	86	CCF-gradual	6.69	0.085	< 0.001	-	CCF-dominant	63.27	-	-	< 0.001
SF3B1	51	CCF-gradual	7.39	0.006	< 0.001	-	CCF-independent	2.71	0.86	0.045	-
ATM	36	CCF-gradual	5.86	0.024	< 0.001	-	No impact	47.16	-	-	0.80
POT1	27	CCF-independent	0	0.19	< 0.001	-	No impact	13.85	0.47	0.57	-
NFKBIE	27	CCF-independent	3.13	0.18	0.004	-	No impact	2.70	0.30	0.79	-
ZNF292	27	No impact	0	0.62	0.25	-	No impact	1.25	0.54	0.32	-
XPO1	22	CCF-independent	0	0.26	< 0.001	-	No impact	4.63	0.67	0.77	-
EGR2	20	No impact	2.17	0.20	0.08	-	No impact	20.27	-	-	0.33
FBXW7	19	No impact	50.63	-	-	0.58	CCF-dominant	52.22	-	-	< 0.001
MGA	18	CCF-independent	0	0.29	< 0.001	-	No impact	74.87	-	-	0.68
BIRC3	17	No impact	22.17	-	-	0.63	No impact	9.10	0.61	0.19	-
KLHL6	17	No impact	46.59	-	-	0.57	No impact	94.31	-	-	0.82
RPS15	15	CCF-gradual	1.41	0.053	< 0.001	-	No impact	46.52	-	-	0.28
MYD88	15	No impact	81.31	-	-	0.26	No impact	6.90	0.52	0.21	-
DDX3X	14	CCF-independent	0	0.38	0.001	-	No impact	5.32	0.42	0.42	-
BRAF	11	CCF-independent	6.27	0.69	0.004	-	Not analyzed	52.59	-	-	0.34
NXF1	7	Not analyzed	-	-	-	-	Not analyzed	-	-	-	-
DTX1	6	Not analyzed	-	-	-	-	Not analyzed	-	-	-	-
BCOR	6	Not analyzed	-	-	-	-	Not analyzed	-	-	-	-
CCND2	6	Not analyzed	-	-	-	-	Not analyzed	-	-	-	-
KRAS	5	Not analyzed	-	-	-	-	Not analyzed	-	-	-	-
Gene	CCF	Analyzed	Univariate analysis								
------	-----	----------	---------------------								
IRF4	5	Not analyzed	-								
MED12	3	Not analyzed	-								
ZMYM3	3	Not analyzed	-								
NRAS	2	Not analyzed	-								
TRAF3	2	Not analyzed	-								
PIM1	2	Not analyzed	-								

a No impact, no impact of the gene mutations at any CCF for the outcome analyzed (TTFT or OS).

b Univariate continuous analysis considering the mutations as a continuous numeric variable based on their CCF. Only mutated cases were included in this analysis to better capture the possible gradual effect of the mutations.

c Univariate categorical analysis comparing unmutated cases vs mutated cases independently of the CCF of the mutations.

d Univariate categorical analysis in which only those patients carrying the mutation at a CCF ≥ cut-off were considered mutated.
Table S17. No independent prognostic value of the subclonal diversity for OS.

Variable	HR (95% CI)	P-value
IGHV (unmut vs. mut)	2.72 (1.73-4.27)	< 0.001
Age at sampling (>65 vs. ≤65 years)	2.69 (1.66-4.33)	< 0.001
TP53 (mut/deletion vs. wt)	2.86 (1.69-4.86)	< 0.001
SF3B1 (mut vs. unmut)	1.73 (0.99-3.01)	0.051

N=307, events=79. Starting model: IGHV, Binet stage, age at sampling, gender, TP53 aberration (mutation/deletion), ATM aberration (mutation/deletion), SF3B1 mutation, number of drivers in subclonal tumors, and number of drivers in clonal tumors. The number of driver alterations did not include TP53, ATM, and SF3B1 mutations, neither del(17p) nor del(11q).
Figure S1. Dilutional experiment of MEC-1 cell line DNA for CNA quantification. (A) Copy number (CN) profile of MEC-1. Chromosomes are aligned from 1 to 22, X, and Y, from p to q. (B) Graphical representation of the CN losses (depicted in red) and gains (in blue) identified in MEC-1 CLL cell line (100% MEC-1). The intensity of the color represents the clonality (or abundance) of the alteration in the tumor population, being the color darker when it is more clonally represented. The diluted samples mixing MEC-1 DNA with normal DNA are also plotted showing a gradual decrease of the intensity in which the alteration is detected when increasing the...
amount of normal mixed DNA. (C-D) Graphical representation of the probe median obtained using Nexus Copy Number Discovery (x-axis), and the known tumor abundance (cancer cell fraction, CCF, y-axis) for 20 CN deletions (C) and 12 CN gains (D) clonally represented in MEC-1. Each dot corresponds to one alteration. Black lines show the fitted Loess curves (obtained using the msir R package) for each scenario. Dashed lines represent the 90% predictive intervals. The cut-off point of 85% of CCF, which was used to classify alterations as clonal or subclonal, is represented in green.

Figure S2. Summary of the variant calling. (A) Venn diagram showing the degree of overlap on the identification of the 609 somatic/truncating mutations considered between the different variant callers used. SVC, Somatic Variant Caller (MiSeq, Illumina); UG, UnifiedGenotyper (GATK); HC, HaplotypeCaller (GATK); VS2, VarScan2. (B) Bar plot representing the total number of mutations identified by each variant caller. (C) Histograms showing the minimum variant allele frequency (VAF) of a mutation identified for each gene. Blue bars correspond to genes in which the minimum VAF was ≥12% whereas orange bars to genes with a VAF <12%. This cut-off value represents the detection threshold of mutations by Sanger sequencing. Number of mutations identified in each gene is shown next to its name on the x-axis.
Figure S3. Variant allele frequency variability due to the sequencing methodology. Graphical representation of the variant allele frequency (VAF) obtained for 643 variants (represented as gray dots) when sequenced in two independent NGS rounds (run 1, x-axis; run 2, y-axis). Perfect correlation is shown in green (VAF run 1 = VAF run 2) while the fitted Loess model is represented in black. The 90% predictive interval at each VAF is shown using dashed black lines.
Figure S4. No influence of the time of sampling on clinical outcome. Comparison of TTFT (left) and OS (right) among patients the sample of which was obtained within the first year of diagnosis (gray line) vs. after the first year (brown). The global P-values by Gray’s test (TTFT) and log-rank test (OS) are shown on the top-right corner of each curve. The number of patients at risk at each time point is shown at the bottom.
Figure S5. Gene maps of the 28 CLL driver genes analyzed. Coding exons are represented by gray boxes and the main protein domains are colored. Mutations types are represented in different shapes and the color code represents their cancer cell fraction (CCF). The y-axis on the left of each gene map reflects the maximum number of mutations affecting a single amino acid position. The number on the right represents the length of the resulting protein in amino acids.
Figure S6. Comparison of clinico-biological features between cases carrying subclonal-low and subclonal-high/clonal mutations. Comparison of the age at sampling (A), percentage of cases with Binet A (B), and average number of driver alterations (mutations and CNA) (C) between cases carrying subclonal-low and subclonal-high/clonal mutations in each of the genes mutated in more than 10 cases. No significant differences were observed after correcting for multiple comparisons.

Figure S7. Clinical implications of convergent mutational evolution (CME). (A) Comparison of the number of genes mutated and driver CNA between cases with (orange) or without (yellow) CME. (B) Comparison of TTFT (left) and OS (right) among unmutated patients (gray line), mutated patients without CME (yellow), and mutated patients with CME (orange). The global P-values by Gray’s test (TTFT) and log-rank test (OS) are shown on the top-right corner of each curve. P-values of each pairwise comparisons are also shown inside the plotting areas. The number of patients at risk at each time point is shown at the bottom.
Figure S8. Incidence and CCF of the CLL driver CNA. (A) Pie chart representing the distribution of patients according to the clonality of their CNA (top-right corner). Percentage of cases carrying each driver CNA colored based on its clonality (subclonal, light red; clonal, red; or homozygous deletion, dark red). (B) Distribution of the CCFs of each driver CNA where each dot corresponds to the CCF of the alteration in one patient.
Figure S9. CCF distribution of gene mutations and CNA, and proposed evolution route. (A) Density plot of the CCFs of the CNA and gene mutations. (B) Cartoon illustrating the proposed evolution route of formation of CLL tumors carrying CNA and gene mutations.
Figure S10. CCF of TP53 aberrations in CLL. (A) Distribution of the CCF of del(17p) and TP53 mutations for each patient carrying a TP53 aberration. Cases are grouped according to the presence of del(17p) and/or TP53 mutations. (B) Clonal evolution observed for three cases with concomitant evolution of del(17p) and TP53 mutation. Two cases received treatment between samples (CLL27 and CLL73).
Figure S11. Schematic representation of the algorithm used for the identification of specific gene CCF patterns with impact on clinical outcome. Schematic diagram of the algorithm applied to quantitatively analyze the clinical implications of each mutated gene based on the CCF of the mutations (see Supplementary Methods for a detailed explanation).
Figure S12. Survival curves of the patterns of CCF with impact on clinical outcome. Time to first treatment (TTFT) and overall survival (OS) curves to graphically represent the CCF patterns with impact on clinical outcome identified for each gene: CCF-independent pattern (A) or CCF-gradual pattern (B). P-values for all pairwise comparisons are shown inside the plot area. P, P-values by Gray’s test (TTFT) or log-rank test (OS).
Figure S13. Clinical impact of the presence of driver subclones and mutational complexity. (A) Impact on TTFT (left) and OS (right) of the presence of at least one subclonal driver alteration. (B) Increasing impact of the accumulation of driver alterations (mutational complexity) on TTFT (left) and OS (right). *P*, *P*-values by Gray’s test (TTFT) or log-rank test (OS).
SUPPLEMENTARY REFERENCES

1. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al. Primer3--new capabilities and interfaces. *Nucleic Acids Res* 2012; 40: e115.

2. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. *Bioinformatics* 2007; 23: 1289–91.

3. Harris JK, Sahl JW, Castoe TA, Wagner BD, Pollock DD, Spear JR. Comparison of normalization methods for construction of large, multiplex ampiclon pools for next-generation sequencing. *Appl Environ Microbiol* 2010; 76: 3863–8.

4. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. *Blood* 2016; 127: 2122–2130.

5. Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. *Biology (Basel)* 2012; 1: 895–905.

6. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 2014; 30: 2114–20.

7. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009; 25: 1754–60.

8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010; 20: 1297–1303.

9. DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet* 2011; 43: 491–8.

10. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Curr Protoc Bioinforma* 2013; 11: 11.10.1-11.10.33.

11. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. *Genome Res* 2012; 22: 568–76.

12. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res* 2010; 38: e164.

13. Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-April J, Martin-Subero JI et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. *Nature* 2015; 526: 519–524.

14. Scrucca L. Model-based SIR for dimension reduction. *Comput Stat Data Anal* 2011; 55: 3010–3026.

15. Tiacci E, Schiavoni G, Forconi F, Santi A, Trentin L, Ambrosetti A et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. *Blood* 2012; 119: 192–5.

16. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan YX et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: A molecular classification with implications for targeted therapies. *Blood* 2012; 119: 4467–4475.

17. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F et al. IMGT®, the international ImMunoGeneTics information system®. *Nucleic Acids Res* 2009; 37: D1006-12.