Large Animal Models of Breast Cancer
Pinaki Mondal, Katie L Bailey, Sara B Cartwright, Vimla Band, Mark A Carlson

To cite this version:
Pinaki Mondal, Katie L Bailey, Sara B Cartwright, Vimla Band, Mark A Carlson. Large Animal Models of Breast Cancer. 2021. hal-03271942v2

HAL Id: hal-03271942
https://hal.science/hal-03271942v2
Preprint submitted on 17 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Large Animal Models of Breast Cancer

Pinaki Mondal¹, Katie L. Bailey¹, Sara B. Cartwright¹, Vimla Band²,³, Mark A. Carlson¹,²,³,⁴,⁵

¹Department of Surgery, University of Nebraska Medical Center, Omaha NE 68198, USA
²Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha NE 68198, USA
³Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE 68198, USA
⁴VA Medical Center, Omaha NE 68105, USA
⁵Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha NE 68198, USA

*Corresponding author:
Mark A. Carlson
Department of Surgery
University of Nebraska Medical Center
983280 Nebraska Medical Center
Omaha, NE 68198-3280, USA
Phone: 001-402-559-4581
Email: macarls0@unmc.edu

Conflicts of Interest: The authors declare no relevant conflicts of interest.
Abstract

In this mini-review the status of animal modeling of BC will be reviewed, beginning with an overview of murine models, followed by a discussion of described and emerging large animal BC models.
Background: Breast Cancer Burden

The annual incidence of breast cancer (BC) in women (all ages and races) in the U.S. increased from 0.102% in 1980 to a peak of 0.142% in 1999, and then decreased slightly, plateauing at ~0.131% from 2011-2017. As of 2017, a woman’s lifetime risk of developing BC in the U.S. is 12.9%. In 2021, the estimated number of new BC cases in the U.S. will be 281,550 (15.3% of all new cancer cases), with 43,600 estimated deaths (~20 per 100,000 in the general population, or 7% of all cancer deaths, or ~2% of all mortality in the U.S.). All-stages 5-year survival for BC has improved from 75% in 1975 to 90% in 2016, secondary to earlier diagnosis and more efficacious therapy. However, survival with triple-negative breast cancer (TNBC; minimal/nil expression of the estrogen receptor, progesterone receptor, and epidermal growth factor receptor 2), which accounts for 10-20% of all BC, is 10, 20, and 30% lower at stages 2, 3, and 4, respectively, compared to non-TNBC. So, there remain a need for improved management of TNBC.

Current Status: Murine Modeling of BC

Commonly utilized murine BC models include cell-line derived xenograft (CDX), patient derived xenograft (PDX), humanized CDX and PDX, chemically induced, and genetically engineered murine (GEM) models.

Cell-line Derived Xenograft Models

Cell-line derived xenograft (CDX) murine models, which are based off the transplantation of human cell lines into immunocompromised animals, are simple, cost-effective, and useful for the assessment of breast cancer genetics and basic biological processes.
However, limitations associated with these models, including growth in the absence of a functioning host immune system, have made them poor predictors of clinically-relevant biologic behavior.11,12 They have reduced intra-tumoral heterogeneity which does not optimally represent a human breast tumor.11 When compared to PDX and original patient tumors, cell lines have shown a loss of genetic expression profile and loss of tumor-specific genes,13 an alteration in growth and invasive properties, loss of specific cell populations, and selection of cell population.12 They are frequently derived from highly aggressive malignant tumors or pleural effusions and thus are less useful in studying the early stages of disease.11 The lack of a functional host immune system means that CDX tumors do not undergo any appreciative immunoediting,14,15 which is increasingly recognized as important during tumor growth and evolution. Overall, CDX models are useful for BC genetics and basic biology, but are poorly predictive of human response to test interventions.

\textit{Patient-Derived Xenograft Models}

With the limitations of CDX, there has been significant growth in the use of patient-derived xenograft (PDX) murine models for translational cancer research. These models involve the transplantation of fragmented primary human tumor from surgical resection or biopsy into immune deficient mice. One of the main advantages of PDX models is that the grafted tumor remains biologically stable. Biologic stability is seen in relation to tumor architecture, gene expression, mutational status, growth kinetics, invasiveness, metastatic potential, and drug responsiveness.12,16,17 In breast cancer models, they have been shown to conserve ER, PR, and HER2 expression particularly when grafted directly into mammary ducts,18,19 and they have shown similar metastatic progression compared to human tumors.17,20 These features have made
PDX models useful for pre-clinical evaluation of drug therapy including new treatment targets, novel therapy combinations, treatment schedules, and even personalized drug therapy.12

However, PDX models are not without limitations. PDX models pose a slightly higher cost than CDX models and require access to fresh patient material.11 The prolonged length of time it takes to generate tumors does not always match clinical or research needs.11,12,21 Despite early studies showing success with different breast cancer subtypes with orthotopic implantation,18,19 ideal location of implantation remains uncertain12,21 and engraftment failure rates remain high in hormone receptor positive tumors favoring more aggressive subtypes.12,17,22 Another concern is that by the third \textit{in vivo} passage murine stroma replaces the human grafted stroma, which may result in changes in paracrine regulation as well as physical properties.23,24

With PDX models favoring more aggressive subtypes, they have been used extensively to study triple negative breast cancer (TNBC) and metastasis. However, limitations have been apparent, including (i) the need to utilize immunodeficient mice which do not mimic the clinical effect of the immune system (immunoediting) on the development of metastasis,17 (ii) the prolonged time for studying metastasis,17,21 and (iii) the rarity of spontaneous metastasis development.21 Metastatic tumors do occur in PDX models, primarily in lungs and lymph nodes, but less so in the brain and bone (the latter are common sites seen in human breast cancer metastasis).11 There is also high rates of tumor regrowth at primary implant sites which reduce survival time and failure of the metastatic sites to manifest the expected more aggressive phenotype when reimplanted (in contrast with what occurs with established cell lines).17 In summary, PDX models may be more predictive for preclinical drug evaluation, but ultimately are limited by the same issue afflicting the CDX model: a lack of a functional host immune system.
Humanized CDX and PDX models

A more recent development in murine cancer modeling is the humanized mouse model,25 which has been useful for the study of the immune system’s role in cancer. In brief, an immunocompromised mouse is engrafted with components of the human immune system, generating a functional human immune system somewhat similar to that observed in the originating patient, with the intention to create a more realistic tumor microenvironment.26 There has been increased interest in these models for pre-clinical studies with immunotherapies and breast cancer, particularly TNBC and HER2+ cancers. Human CD34+ HSC-engrafted NSG mice harboring different types of PDX are now commercially available. Some researchers have described less expensive, in-house models via intravenous injection of hematopoietic stem cells into irradiated SCID mice, which have shown successful engraftment and metastasis.27

Studies on breast cancer immunotherapy using humanized mice have successfully shown reduction of tumor growth,27,28 but they are not without limitations, including (i) a lack of GM-CSF in humanized mice, which is important for the differentiation and maturation of the myeloid lineage, and (ii) mismatching HLA typing between hNSG and PDX.27 Some humanized murine models have shown xenograft-versus-host effect, in which mature human T cells attack their murine host, reducing the window in which this model can be used to study an implanted tumor.26 So, while the lack of a functional immune system in conventional CDX/PDX models has been somewhat countered by introducing components of the human immune system in humanized mice, graft vs. host issues continue to define the utility of the humanized subjects.

Chemically Induced Murine Models
Although genetic models have provided insight into how particular mutations can induce tumorigenesis, these models may give an oversimplified view of how cancer develops. The occurrence of point mutations, changes in gene copy number, epigenetic modifications, and other genomic events can also be affected by environmental factors. Some human cancers develop secondary to chemical carcinogenesis; chemically induced models may be able to replicate the genetic events that occur during this process.29 Polycyclic aromatic hydrocarbons such as 7,12-Dimethylbenz(a)-anthracene (DMBA) and methylcholanthrene (MC) compounds have been used in mice to induce breast tumors.30-34 These compounds can bind to DNA and cause errors in replication.35 DMBA has been studied in knockout, hemizygous and SENCAR (SENsitivity to CARcinogenesis) mice, producing breast tumors after 3-34 weeks.30-33 MC has produced tumors after 7 months.34 In addition to modeling genetic events of chemical carcinogenesis, the advantages of chemically induced models include (i) no need for immunodeficient subjects, (ii) autochthonous tumor development, and (iii) relatively low cost and ease of use. The disadvantages of chemically-induced models is that they are not genetically defined to the same extent as GEM models are, which can have implications on the investigator’s ability to generalize from their data.

Genetically engineered murine models

There are several types of GEM models, including conventional, knockout, and conditional. Conventional GEM models are typically driven by mammary-specific promoters that direct expression of specific oncogenes (transgenes) which may not be specific to mammary epithelial cells. Common mammary promoters in use include the mouse mammary tumor virus long terminal repeat (MMTV-LTR), whey acidic protein (WAP), \(\beta \)-lactoglobulin (BLG) and the
5’ flanking region of the C3 component of the rat prostate steroid binding protein.36-39 The first GEM model from the 1980s expressed the c-Myc oncogene under the control of the MMTV promoter, which resulted in mammary adenocarcinoma.40 Since then, a number of transgenic mice have been created to study the role of proto-oncogenes in the development and progression of tumors. In addition to c-Myc, some of the oncogenes that have been overexpressed using the MMTV-LTR promoter include v-HRas, Wnt, PyMT, Neu, and ErbB2.40-45 Expression of these oncogenes resulted in mammary tumorigenesis and metastatic lesions.42,45,46

GEM models were also generated to understand loss-of-function (knockout) of tumor suppressor genes. One of the most common knockout models involves the tumor suppressor Trp53.47,48 Mice that were homozygous for Trp53 null allele developed lymphomas and died at around 4-6 months of age.48 In both the conventional and knockout models, the gene targets are not specific to a certain cell lineage. These models cannot recapitulate sporadic disease in which there is an accumulation of genetic events in a specific cell lineage. There also can be off-target effects in these models, and other types of cancers may arise in them. In addition, \(\sim30\%\) of the conventional knockout models are lethal in the perinatal period, which makes experimentation difficult.

To overcome these problems and prevent early embryonic death, conditional GEM models have been developed that allow for the activation of oncogenes and/or deletion of tumor suppressors, specifically targeted to the mammary gland (i.e., tissue-specific edits). These models utilize systems such as the Cre/loxP and Flp/frt systems for activation or deletion of genes.11 These systems provide for controllable recombination events, such as removal of stop codon that subsequently permits transcription of a transgene.11 Among the first two conditional GEM models created were WAP-Cre and MMTV-Cre49,50 These models have been able to
generate hereditary breast cancer models specifically by modeling the heterozygous mutations observed in the BRCA1/BRCA2 genes. GEM models that contained a conditional mutant BRCA1 allele and a disruption in Trp53 have accelerated mammary tumor development. Trp53 in combination with other genes has been extensively studied using conditional GEM models.

Tissue-specific genetic edits in conditional GEM models can also be induced at a specific time using the inducible Cre-ERT system or the tetracycline/ doxycycline promoter. In the Cre-ERT model the hormone-binding domain of the estrogen receptor (ERT) is fused to Cre-recombinase. Upon administration of tamoxifen (an estrogen analogue) Cre-recombinase is activated, leading to the recombination event marked by the loxP sites. GEM models have become increasingly popular in BC and other cancer research, providing insight into disease initiation, progression, evaluation of drug delivery, therapeutic response and biomarkers in their natural microenvironment. GEM models typically have a normal immune system, tumor development is autochthonous, and by definition are genetically defined. The disadvantages of GEM models are the expense and complexity involved in their creation.

Small Non-Murine Models of BC

Rat BC Models

Rats have been considered a suitable animal model to study breast cancer due to their similarity with human mammary cancer in terms of histology, immunocytochemical markers and biological behavior of tumors. The histologic characteristics of normal mammary luminal epithelium and myoepithelium is similar between rats and human. Long term studies have shown that some rats can develop breast tumors spontaneously. Use of a chemical carcinogen in rats can result in a shorter latency period to tumor development. Recently, 17b-estradiol
(E2) was used to induce breast tumors in August Copenhagen Irish-rats by modulating estrogen mediated mechanisms in breast cancer development.57

In xenograft-Matrigel® implantation experiments, younger rats have experienced greater tumor growth compared to older rats.60,61 A bone metastasis immunodeficient rat model has been developed in which human breast cancer cells (MDA-MB-231) were intra-arterially injected into a hindlimb artery.62 Genetically engineered rat models of breast cancer have been developed in which HER2 and TGF-α were overexpressed through the mouse mammary tumor virus (MMTV) promoter.63 This model stochastically produced a variety of benign, hyperplastic and malignant lesions, including ductal carcinoma in situ and carcinoma within a year.

In a rat model with three copies of human HRAS proto-oncogene, induction of carcinogenesis with nitrosomethylurea resulted in large mammary tumors within 8 weeks.64 Mammary carcinogenesis in rats was induced through injection of high-titer, Neu-containing, replication-defective retrovirus which produced hormonally-responsive in situ carcinomas within 15-days post infusion, and regressed spontaneously after 20-days post infusion.65 Injection of human adenovirus type 9 (Ad9) also is known to induce estrogen-dependent mammary tumors in rats within 7-12 months.66 Overall, however, use of rats in BC research has lagged far behind the broad use of mice.

Hamster BC Models

Similar to rats, nitrosomethylurea can induce mammary carcinoma in Syrian hamsters (*Mesocricetus auratus*), producing high-grade poorly-differentiated mammary adenocarcinomas.67 Subcutaneous allogenic implantation of cell lines established from these primary tumors generated secondary tumors. Hamster models can be useful in studies on
oncolytic adenoviruses, a self-replicating cancer cell-killing virus. Oncolytic adenoviruses can replicate in immunocompetent hamsters, making the hamster model of cancer a suitable non-immunocompromised model to study therapeutic potential of these viruses.68

Tree shrew BC Models

The tree shrew (*Tupaia belangeri chinensis*) can develop spontaneous mammary tumors, which are similar to human papillary tumors in terms of morphology and pathology.69,70 Chemical induction with DMBA plus medroxyprogesterone acetate (MPA) also produced breast cancer in tree shrews.71 Injection of a lentiviral vector with PyMT (polyomavirus middle T antigen, an oncogene that activates c-Src), into the mammary duct of tree shrews resulted in tumor development in all subjects by 7 weeks post-injection.72

Feline BC Models

Feline mammary carcinomas (FMCs) are the third most common type of cancer in cats.73 In utero implantation of allogeneic mammary cancer cell lines into fetal cats (*Felis catus*) produced tumor at the injection site, followed by widespread metastasis after 6-10 weeks.74,75 A nude mouse model of FMC demonstrated metastatic potential (bone, kidney, brain, lung and liver; i.e., common sites of metastasis in human breast cancer) after injection to the primary site.76 Cancer stem cell-like populations in FMCs can form mammospheres (organoids) and are tumorigenic, radioresistant, and chemoresistant.77,78 Mammospheres can be used a model to study feline breast cancer. Morphological, histological, and molecular to similarities between FMCs and human breast cancer have been described and discussed.79-81
Large Animal Models of BC

Justification for & Advantages of a Large Animal Model of BC

Breast cancer, and TNBC in particular, can be modeled with many of the above murine and other small animal models. However, none of the above models can overcome the limitation which drives the current proposal: inadequate subject size. Development of some diagnostic and interventional technologies require a human-sized model to understand how clinically relevant tumor size and tissue thickness affect the performance of the experimental technology, such as with three-dimensional scanning or with a tissue-ablation device. In addition, pharmacokinetic parameters (including absorption, distribution, metabolism, and excretion) can be vastly different between a 20 g mouse and a 70 kg patient. Testing the effect of an infused chemical entity (e.g., a novel anti-tumor agent) in a murine tumor model may result in an inaccurate conclusion secondary to these pharmacokinetic differences. As an example, a mouse vs. large subject scenario is utilized below.

With regard to drug distribution, tumor burden in a 20 gram mouse with a 1-cm tumor is ~400-fold greater (mass:mass) than in a 70 kg subject with a 2-cm tumor (Fig. 1). If the tumor acts as a sink for a candidate anti-tumor drug, then the tumor’s ability to decrease the drug’s plasma concentration would be much greater in the mouse. A consequence of this tumor sink effect would be a gross underestimation of the drug’s toxicity from murine data. Alternatively, if the drug penetrates poorly into dense tumor stroma, then testing in a ~1 cm murine tumor may overestimate the drug’s anti-tumor efficacy, as opposed to testing in a large (≥4 cm) tumor. These drug distribution issues in a murine model could be minimized with a large animal model (e.g., a 70 kg pig) with clinically-relevant tumor size. So, a primary justification for a large
animal BC model would be its ability to replicate human tumor dimension and human PK parameters.

Canine BC Models

Dog. Similar to cats, canine mammary tumors (CMTs) occur spontaneously and are the second most common cancer in dogs. Development of CMTs is hormone dependent and showed dysregulated expression of BRCA1, BRCA2 and TP53, analogous to human BC. Transcriptional analysis of CMTs demonstrated pathways that are active in human cancer, including those involved with cell cycle regulation, apoptotic signaling, immune functions, endoplasmic reticulum stress, angiogenesis and cell migration. Approximately 25% of the genetic alterations in metastatic CMTs were associated with human mammary cancer. In addition, canine spontaneous mammary DCIS and invasive cancer shows similar histologic and molecular characteristics with DCIS and invasive cancer in humans. Spontaneous CMTs also can metastasize to lymph nodes and lung. Her2 overexpression in CMTs is controversial. Benign tumors and mesenchymal tumors are more prevalent in CMTs; the latter are rare with human breast cancer.

Non-Human Primate BC Models

Mammary gland tissue from common marmoset and rhesus macaques have been used in mammosphere culture, and can be used as a *ex vivo* model to study breast cancer. However, due to the low incidence of spontaneous tumors, long incubation periods, and high costs, non-human primates have not been commonly used in breast cancer research.
Porcine BC Models

Swine have been used for decades as research subjects in diverse areas including transplantation, physiology, trauma, toxicology,98,99 and recently cancer.100-104 The porcine genome has been sequenced,105 and annotation is ongoing.106 Gene editing of pigs and creation of transgenic swine is now fairly common;102,103,107-110 some transgenics (such as the Oncopig101) are commercially available. With respect to breeding, the porcine gestation period (114 d) is relatively short (goat/sheep/cow = 150/152/283 d). In regards to pharmacokinetics, the pig has the most similarity to humans among studied mammals with respect to the cytochrome P450 enzymes.111,112 Similar pharmacokinetic behavior between humans and pigs has been reported for a number of compounds,113 and pig is recognized as a model for enabling determinations of in vivo kinetics and drug metabolism in general.113,114

Investigators have transformed porcine mammary epithelial cells in vitro with SV40 large T antigen insertion115 or BRCA1 knockdown,116 with evidence of tumorigenicity in immunodeficient mice.115 In addition, a BRCA1 haploinsufficient Yucatan minipig was generated with somatic cell nuclear transfer,117 but postnatal survival of cloned piglets was ≤18 days for reasons that were unclear (BRCA1+/− mice are phenotypically normal118). As a proof of principle, our group has transformed porcine mammary epithelial cells with KRASG12D and p53R167H, and produced tumors in xenografted nude mice. Our follow-up work in this area will focus on using porcine mammary epithelial cells transformed with PIK3CA mutants with BRCA1 and TP53 disruption119-121 to be utilized in an orthotopic porcine model of TNBC. To be clear, however, no porcine model of BC currently exists. The KRAS/p53 Oncopig101 is not a BC model, but rather a “generic” porcine tumor model, potentially allowing transformation of all cell types. Of note, KRAS mutation is relatively uncommon (1-2%) in BC.119-121 Given the recent
progress in porcine modeling of pancreatic cancer by multiple groups, it is conceivable that the best candidate for a large animal BC model will be the pig.

Disadvantages of Using Large Animal Cancer Models

In order to illustrate the potential disadvantages of using a large animal model of breast cancer, a comparison of porcine with murine models is described below. This does reveal a number of disadvantages with the porcine models, including:

1. **Costs.** Transgenic pigs are more expensive. Transgenic mice for BC research generally are 200-300 USD per subject (Jackson Laboratory), while transgenic pigs (e.g., the Oncopig) can be in the range of 1-2K USD. Per diem cost for pigs are generally ~10x the murine per diem at most institutions. Drug costs are higher in pigs because they require 100-1,000x the amount of drug used by mice. Labor costs are higher with pigs because of physical handling required each time a procedure is done.

2. **Husbandry.** More than 100-fold mice than pigs can be housed in the same space, which can limit experimental planning at most institutions. A Sinclair mini-pig can still reach up to 50 kg at 1.5 year, so the research facility has to accommodate animals of this size. The murine gestation period (20 d) is <20% of porcine gestation period, so crossbreeding is much quicker with mice. A relatively simple maneuver of placing a 20 g mouse under general anesthesia becomes more complicated when dealing with a 30-50 kg pig.

3. **Tools & Reagents.** The availability of antibodies, reagents, and other species-specific research tools is much greater in mice compared to pigs, though the availability for pigs has improved in the past decade.
4. **Subject Age.** In general, investigators only have access to young (<1 year) pigs; however, modeling epithelial tumors with young pigs may not be optimal.

5. **Research Community.** The number of investigators who utilize swine in cancer research is still relatively small, so other investigators may be reluctant to consider porcine experimentation.

6. **Social Issues.** Public reaction to swine use in research could be more negative compared to the reaction against rodent use. This possibility may demand more investigator effort devoted to public education.

Conclusion And Future Directions

The current landscape of animal modeling for breast cancer is dominated by murine models, which have developed into powerful and multi-faceted tools for the BC researcher. It would be difficult to improve on the utility that murine BC models have provided. However, there remain certain areas of research, such as device development and drug testing, which could benefit from the availability of a large animal model of BC. These BC models are still in their infancy, essentially at the point murine models were in the 1980’s. While large animal BC models likely will never be able to match the proven utility and ease-of-use of murine models, the availability of validated large animal BC models could provide additional tools to the BC researcher that would address specific BC questions or BC-relevant technology development, such as those requiring a human sized subject for generation of relevant data.
Fig. 1. Tumor Sink. In this example, murine tumor:body mass ratio is 400x the porcine ratio, even though murine tumor mass is only ~12% that of the porcine tumor. If a targeted drug preferentially concentrates in the tumor (i.e., tumor sink), then a given drug dose in the mouse may have a relatively high concentration in the tumor with respect to the plasma. The effect of tumor sink on plasma concentration at the same dose in the pig would be negligible because of the large body size. Thus, the same dose in the pig would produce a higher plasma concentration, possibly producing greater systemic toxicity than in the mouse.
References

1. Howlader N, Noone A, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis D, Chen H, Feuer E, Cronin KA, (eds). Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review, 1975-2017. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/csr/1975_2017/, based on November 2019 SEER data submission, posted to the SEER web site, April 2020.

2. Kochanek KD, Murphy SL, Xu J, Arias E. Deaths: Final Data For 2017. Natl Vital Stat Rep [Internet]. 2019; 68(9):[1-76 pp.]. Available from: www.cdc.gov/nchs/products/index.htm.

3. NCCN, National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 3.2020, Published March 6, 2020. Available from: www.nccn.org.

4. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430-2442. PMID: 27939063. DOI: 10.1016/S0140-6736(16)32454-0

5. Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol. 2018;25(Suppl 1):S142-S150. PMID: 29910657. DOI: 10.3747/co.25.3954

6. Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, O'Regan R, Torres MA, Meisel JL. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 2017;161(2):279-287. PMID: 27888421. DOI: 10.1007/s10549-016-4059-6
7. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. *Cell*. 2015;163(1):39-53. PMID: 26406370. DOI: 10.1016/j.cell.2015.08.068

8. Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. *Nat Rev Cancer*. 2017;17(12):751-765. PMID: 29077691. DOI: 10.1038/nrc.2017.92

9. Park MK, Lee CH, Lee H. Mouse models of breast cancer in preclinical research. *Lab Anim Res*. 2018;34(4):160-165. PMID: 30671101. DOI: 10.5625/lar.2018.34.4.160

10. Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in oncoimmunology. *Nat Rev Cancer*. 2016;16(12):759-773. PMID: 27687979. DOI: 10.1038/nrc.2016.91

11. Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. *Dis Model Mech*. 2017;10(4):359-371. PMID: 28381598. DOI: 10.1242/dmm.028274

12. Kawaguchi T, Foster BA, Young J, Takabe K. Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research. *J Mammary Gland Biol Neoplasia*. 2017;22(2):131-139. PMID: 28451789. DOI: 10.1007/s10911-017-9378-7

13. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, Yung R, Parmigiani G, Dorsch M, Peacock CD, Watkins DN. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. *Cancer Res*. 2009;69(8):3364-3373. PMID: 19351829. DOI: 10.1158/0008-5472.CAN-08-4210
14. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. *Annu Rev Immunol*. 2011;29:235-271. PMID: 21219185. DOI: 10.1146/annurev-immunol-031210-101324

15. Wagner M, Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. *Trends Immunol*. 2019;40(5):415-430. PMID: 30992189. DOI: 10.1016/j.it.2019.03.004

16. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. *Nat Rev Clin Oncol*. 2012;9(6):338-350. PMID: 22508028. DOI: 10.1038/nrclinonc.2012.61

17. Roarty K, Echeverria GV. Laboratory Models for Investigating Breast Cancer Therapy Resistance and Metastasis. *Front Oncol*. 2021;11:645698. PMID: 33777805. DOI: 10.3389/fonc.2021.645698

18. Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, Brisken C, Bult CJ, Cai S, Clarke RB, Dowst H, Ellis MJ, Gonzalez-Suarez E, Iggo RD, Kabos P, Li S, Lindeman GJ, Marangoni E, McCoy A, Meric-Bernstam F, Piwnica-Worms H, Poupon MF, Reis-Filho J, Sartorius CA, Scabia V, Sflomos G, Tu Y, Vaillant F, Visvader JE, Welm A, Wicha MS, Lewis MT. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. *Cancer Metastasis Rev*. 2016;35(4):547-573. PMID: 28025748. DOI: 10.1007/s10555-016-9653-x

19. Richard E, Grellety T, Velasco V, MacGrogan G, Bonnefoi H, Iggo R. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. *J Pathol*. 2016;240(3):256-261. PMID: 27447842. DOI: 10.1002/path.4772
20. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. *Nat Med*. 2011;17(11):1514-1520. PMID: 22019887. DOI: 10.1038/nm.2454

21. Paez-Ribes M, Man S, Xu P, Kerbel RS. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note. *PLoS One*. 2016;11(6):e0158034. PMID: 27355476. DOI: 10.1371/journal.pone.0158034

22. Moon HG, Oh K, Lee J, Lee M, Kim JY, Yoo TK, Seo MW, Park AK, Ryu HS, Jung EJ, Kim N, Jeong S, Han W, Lee DS, Noh DY. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. *Breast Cancer Res Treat*. 2015;154(1):13-22. PMID: 26438141. DOI: 10.1007/s10549-015-3585-y

23. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. *J Pathol*. 2003;200(4):429-447. PMID: 12845611. DOI: 10.1002/path.1398

24. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. *Nature*. 2013;501(7467):346-354. PMID: 24048067. DOI: 10.1038/nature12626

25. Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, Mou XZ. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. *Cancer Sci*. 2021. PMID: 33938090. DOI: 10.1111/cas.14934
26. Morton JJ, Alzofon N, Jimeno A. The humanized mouse: Emerging translational potential. *Mol Carcinog.* 2020;59(7):830-838. PMID: 32275343. DOI: 10.1002/mc.23195

27. Rosato RR, Davila-Gonzalez D, Choi DS, Qian W, Chen W, Kozielski AJ, Wong H, Dave B, Chang JC. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. *Breast Cancer Res.* 2018;20(1):108. PMID: 30185216. DOI: 10.1186/s13058-018-1037-4

28. Compte M, Harwood SL, Erce-Llamazares A, Tapia-Galisteo A, Romero E, Ferrer I, Garrido-Martin EM, Enguita AB, Ochoa MC, Blanco B, Oteo M, Merino N, Nehme-Alvarez D, Hangiu O, Dominguez-Alonso C, Zonca M, Ramirez-Fernandez A, Blanco FJ, Morcillo MA, Munoz IG, Melero I, Rodriguez-Peralto JL, Paz-Ares L, Sanz L, Alvarez-Vallina L. An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. *Clin Cancer Res.* 2021;27(11):3167-3177. PMID: 33785484. DOI: 10.1158/1078-0432.CCR-20-4625

29. McCreery MQ, Balmain A. Chemical Carcinogenesis Models of Cancer: Back to the Future. *Annu Rev Canc Biol.* 2017;1:295-3125. PMID: DOI: 10.1146/annurev-cancerbio-050216-122002

30. Day JK, Besch-Williford C, McMann TR, Hufford MG, Lubahn DB, MacDonald RS. Dietary genistein increased DMBA-induced mammary adenocarcinoma in wild-type, but not ER alpha KO, mice. *Nutr Cancer.* 2001;39(2):226-232. PMID: 11759285. DOI: 10.1207/S15327914nc392_11
31. Fischer SM, Conti CJ, Locniskar M, Belury MA, Maldve RE, Lee ML, Leyton J, Slaga TJ, Bechtel DH. The effect of dietary fat on the rapid development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene in SENCAR mice. *Cancer Res.* 1992;52(3):662-666. PMID: 1732055. DOI:

32. Huang MT, Lou YR, Xie JG, Ma W, Lu YP, Yen P, Zhu BT, Newmark H, Ho CT. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. *Carcinogenesis.* 1998;19(9):1697-1700. PMID: 9771944. DOI: 10.1093/carcin/19.9.1697

33. Jerry DJ, Butel JS, Donehower LA, Paulson EJ, Cochran C, Wiseman RW, Medina D. Infrequent p53 mutations in 7,12-dimethylbenz[a]anthracene-induced mammary tumors in BALB/c and p53 hemizygous mice. *Mol Carcinog.* 1994;9(3):175-183. PMID: 8142019. DOI: 10.1002/mc.2940090309

34. Kouri RE, Ratrie H, Whitmire CE. Evidence of a genetic relationship between susceptibility to 3-methyl-cholanthrene-induced subcutaneous tumors and inducibility of aryl hydrocarbon hydroxylase. *J Natl Cancer Inst.* 1973;51(1):197-200. PMID: 4720873. DOI: 10.1093/jnci/51.1.197

35. DiGiovanni J, Juchau MR. Biotransformation and bioactivation of 7, 12-dimethylbenz[a]anthracene (7, 12-DMBA). *Drug Metab Rev.* 1980;11(1):61-101. PMID: 6775921. DOI: 10.3109/03602538008994022

36. Asch BB. Tumor viruses and endogenous retrotransposons in mammary tumorigenesis. *J Mammary Gland Biol Neoplasia.* 1996;1(1):49-60. PMID: 10887480. DOI: 10.1007/BF02096302
37. Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu ZY, Calvo A, Couldrey C. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. *Oncogene*. 2000;19(8):1020-1027. PMID: 10713685. DOI: 10.1038/sj.onc.1203280

38. Webster J, Wallace RM, Clark AJ, Whitelaw CB. Tissue-specific, temporally regulated expression mediated by the proximal ovine beta-lactoglobulin promoter in transgenic mice. *Cell Mol Biol Res*. 1995;41(1):11-15. PMID: 7550448. DOI:

39. Wen J, Kawamata Y, Tojo H, Tanaka S, Tachi C. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. *Mol Reprod Dev*. 1995;41(4):399-406. PMID: 7576607. DOI: 10.1002/mrd.1080410402

40. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. *Cell*. 1984;38(3):627-637. PMID: 6488314. DOI: 10.1016/0092-8674(84)90257-5

41. Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumor progression. *J Biol Chem*. 1996;271(13):7673-7678. PMID: 8631805. DOI: 10.1074/jbc.271.13.7673

42. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. *Cell*. 1988;54(1):105-115. PMID: 2898299. DOI: 10.1016/0092-8674(88)90184-5

43. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of
44. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. *Cell*. 1988;55(4):619-625. PMID: 3180222. DOI: 10.1016/0092-8674(88)90220-6

45. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. *Mol Cell Biol*. 1992;12(3):954-961. PMID: 1312220. DOI: 10.1128/mcb.12.3.954-961.1992

46. Christenson JL, Butterfield KT, Spoelstra NS, Norris JD, Josan JS, Pollock JA, McDonnell DP, Katzenellenbogen BS, Katzenellenbogen JA, Richer JK. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. *Horm Cancer*. 2017;8(2):69-77. PMID: 28194662. DOI: 10.1007/s12672-017-0285-6

47. Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, Butel JS, Medina D. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. *Oncogene*. 2000;19(8):1052-1058. PMID: 10713689. DOI: 10.1038/sj.onc.1203270

48. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, Naber SP, Jerry DJ. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. *Am J Pathol*. 2000;157(6):2151-2159. PMID: 11106587. DOI: 10.1016/S0002-9440(10)64853-5
49. Wagner KU, McAllister K, Ward T, Davis B, Wiseman R, Hennighausen L. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 2001;10(6):545-553. PMID: 11817542. DOI: 10.1023/a:1013063514007

50. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 1997;25(21):4323-4330. PMID: 9336464. DOI: 10.1093/nar/25.21.4323

51. Trusler O, Goodwin J, Laslett AL. BRCA1 and BRCA2 associated breast cancer and the roles of current modelling systems in drug discovery. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188459. PMID: 33129865. DOI: 10.1016/j.bbcan.2020.188459

52. Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH. Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ. 1999;10(1):1-10. PMID: 9950212. DOI:

53. Vooijs M, Jonkers J, Berns A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2001;2(4):292-297. PMID: 11306549. DOI: 10.1093/embo-reports/kve064

54. J R. Significance of rat mammary tumors for human risk assessment. Toxicologic pathology. 2015;43(2). PMID: 25714400. DOI: 10.1177/0192623314532036

55. M S, JN M, HJ T. A comparison of the histopathology of premalignant and malignant mammary gland lesions induced in sexually immature rats with those occurring in the human. Laboratory investigation; a journal of technical methods and pathology. 2000;80(2). PMID: 10701691. DOI: 10.1038/labinvest.3780025
56. R C. Animal models of breast cancer: their diversity and role in biomedical research.
 Breast cancer research and treatment. 1996;39(1). PMID: 8738601. DOI: 10.1007/BF01806073

57. KL D, NB S, QE H, MP H, NL S, L D, JD S. Development and characterization of a novel rat model of estrogen-induced mammary cancer. *Endocrine-related cancer*. 2015;22(2). PMID: 25800038. DOI: 10.1530/ERC-14-0539

58. D G, J L, J Y, J W, X K, D K, W Z, G W, S S, Y T, C C, S S. Intraductal administration of N-methyl-N-nitrosourea as a novel rodent mammary tumor model. *Annals of translational medicine*. 2021;9(7). PMID: 33987274. DOI: 10.21037/atm-21-1540

59. S B, C B-R, BB A. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. *Cancer research*. 2002;62(17). PMID: 12208745. DOI:

60. P M, A R, SP L, WR M. Effect of Matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. *International journal of cancer*. 1996;67(6). PMID: 8824553. DOI: 10.1002/(SICI)1097-0215(19960917)67:6<816::AID-IJC10>3.0.CO;2-

61. A A, JA R, R O, J C, JE vL, R L, F B. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. *Nuclear medicine and biology*. 2004;31(6). PMID: 15246367. DOI: 10.1016/j.nucmedbio.2004.02.011

62. T B, H A, F K, H H, FP A, MR B. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. *International journal of cancer*. 2005;115(2). PMID: 15688393. DOI: 10.1002/ijc.20840
63. Davies BR, Platt-Higgins AM, Schmidt G, Rudland PS. Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTV-TGFalpha transgenic rats. *Am J Pathol.* 1999;155(1):303-314. PMID: 10393862. DOI: 10.1016/s0002-9440(10)65124-3

64. Asamoto M, Ochiya T, Toriyama-Baba H, Ota T, Sekiya T, Terada M, Tsuda H. Transgenic rats carrying human c-Ha-ras proto-oncogenes are highly susceptible to N-methyl-N-nitrosourea mammary carcinogenesis. *Carcinogenesis.* 2000;21(2):243-249. PMID: 10657964. DOI: 10.1093/carcin/21.2.243

65. Woditschka S, Haag JD, Sullivan R, Gould MN. A short-term rat mammary carcinogenesis model for the prevention of hormonally responsive and nonresponsive in situ carcinomas. *Cancer Prev Res (Phila).* 2009;2(2):153-160. PMID: 19196722. DOI: 10.1158/1940-6207.capr-08-0114

66. Javier R, Shenk T. Mammary tumors induced by human adenovirus type 9: a role for the viral early region 4 gene. *Breast Cancer Res Treat.* 1996;39(1):57-67. PMID: 8738606. DOI: 10.1007/bf01806078

67. Coburn MA, Brueggemann S, Bhatia S, Cheng B, Li BD, Li XL, Luraguiz N, Maxuitenko YY, Orchard EA, Zhang S, Stoff-Khalili MA, Mathis JM, Kleiner-Hancock HE. Establishment of a mammary carcinoma cell line from Syrian hamsters treated with N-methyl-N-nitrosourea. *Cancer Lett.* 2011;312(1):82-90. PMID: 21893382. DOI: 10.1016/j.canlet.2011.08.003

68. Li X, Wang P, Li H, Du X, Liu M, Huang Q, Wang Y, Wang S. The Efficacy of Oncolytic Adenovirus Is Mediated by T-cell Responses against Virus and Tumor in
Syrian Hamster Model. *Clin Cancer Res.* 2017;23(1):239-249. PMID: 27435398. DOI: 10.1158/1078-0432.ccr-16-0477

69. HJ X, CY W, HL Z, BL H, JL J, CS C. Characterization of spontaneous breast tumor in tree shrews (Tupaia belangeri chinensis). *Dong wu xue yan jiu = Zoological research.* 2012;33(1). PMID: 22345009. DOI: 10.3724/SP.J.1141.2012.01055

70. Elliot OS, Elliot MW, Lisco H. Breast cancer in a tree shrew (Tupaia glis). *Nature.* 1966;211(5053):1105. PMID: 6008104. DOI: 10.1038/2111105a0

71. Xia HJ, He BL, Wang CY, Zhang HL, Ge GZ, Zhang YX, Lv LB, Jiao JL, Chen C. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews. *Eur J Cancer.* 2014;50(18):3230-3242. PMID: 25457635. DOI: 10.1016/j.ejca.2014.10.012

72. Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, Wang CY, Xiao J, Ge F, Li FB, Li Y, Chen C. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. *Int J Cancer.* 2016;138(3):642-651. PMID: 26296387. DOI: 10.1002/ijc.29814

73. Thomas R. Cytogenomics of Feline Cancers: Advances and Opportunities. *Vet Sci.* 2015;2(3):246-258. PMID: 29061944. DOI: 10.3390/vetsci2030246

74. Smith BF, Migone FK, Cox NR, Baker HJ. An in utero allotransplantation model of metastatic breast cancer in the cat. *In Vivo.* 2003;17(1):35-39. PMID: 12655787. DOI:

75. Minke JM, Weijer K, Misdorp W. Allotransplantation of K248 feline mammary carcinoma cell line in cats. A model for monoclonal antibody guided detection and therapy of human breast cancer. *Lab Invest.* 1991;65(4):421-432. PMID: 1921332. DOI:
76. Hassan BB, Elshafae SM, Supsavhad W, Simmons JK, Dirksen WP, Sokkar SM, Rosol TJ. Feline Mammary Cancer. *Vet Pathol.* 2017;54(1):32-43. PMID: 27281014. DOI: 10.1177/0300985816650243

77. Barbieri F, Wurth R, Ratto A, Campanella C, Vito G, Thellung S, Daga A, Cilli M, Ferrari A, Florio T. Isolation of stem-like cells from spontaneous feline mammary carcinomas: phenotypic characterization and tumorigenic potential. *Exp Cell Res.* 2012;318(7):847-860. PMID: 22366263. DOI: 10.1016/j.yexcr.2012.02.008

78. Pang LY, Blacking TM, Else RW, Sherman A, Sang HM, Whitelaw BA, Hupp TR, Argyle DJ. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway. *Vet J.* 2013;196(3):414-423. PMID: 23219486. DOI: 10.1016/j.tvjl.2012.10.021

79. Wiese DA, Thaiwong T, Yuzbasiyan-Gurkan V, Kiupel M. Feline mammary basal-like adenocarcinomas: a potential model for human triple-negative breast cancer (TNBC) with basal-like subtype. *BMC Cancer.* 2013;13:403. PMID: 24004841. DOI: 10.1186/1471-2407-13-403

80. De Maria R, Olivero M, Iussich S, Nakaichi M, Murata T, Biolatti B, Di Renzo MF. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. *Cancer Res.* 2005;65(3):907-912. PMID: 15705889. DOI:

81. Burrai GP, Mohammed SI, Miller MA, Marras V, Pirino S, Addis MF, Uzzau S, Antuofermo E. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. *BMC Cancer.* 2010;10:156. PMID: 20412586. DOI: 10.1186/1471-2407-10-156
82. Lin JH. Species similarities and differences in pharmacokinetics. *Drug Metab Dispos.* 1995;23(10):1008-1021. PMID: 8654187. DOI:

83. Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, Bridges AS, Kuijer JL, Napier ME, Zamboni WC, DeSimone JM. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. *Nanomedicine.* 2013;9(5):686-693. PMID: 23219874. DOI: 10.1016/j.nano.2012.11.008

84. Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. *Cancer Sci.* 2018;109(7):2085-2092. PMID: 29737600. DOI: 10.1111/cas.13630

85. Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F. Canine tumors: a spontaneous animal model of human carcinogenesis. *Transl Res.* 2012;159(3):165-172. PMID: 22340765. DOI: 10.1016/j.trsl.2011.11.005

86. Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A, Castle J, Palombo F, Viti V, Mesiti G, Zappulli V, Marconato L, Abramo F, Ciliberto G, Lahm A, La Monica N, de Rinaldis E. Comparative expression pathway analysis of human and canine mammary tumors. *BMC Genomics.* 2009;10:135. PMID: 19327144. DOI: 10.1186/1471-2164-10-135

87. Lee CH, Kim WH, Lim JH, Kang MS, Kim DY, Kweon OK. Mutation and overexpression of p53 as a prognostic factor in canine mammary tumors. *J Vet Sci.* 2004;5(1):63-69. PMID: 15028887. DOI:

88. Chang CC, Tsai MH, Liao JW, Chan JP, Wong ML, Chang SC. Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant
mammary gland tumors. *J Am Vet Med Assoc*. 2009;235(4):391-396. PMID: 19681719. DOI: 10.2460/javma.235.4.391

89. Graim K, Gorenshteyn D, Robinson DG, Carriero NJ, Cahill JA, Chakrabarti R, Goldschmidt MH, Durham AC, Funk J, Storey JD, Kristensen VN, Theesfeld CL, Sorenmo KU, Troyanskaya OG. Modeling molecular development of breast cancer in canine mammary tumors. *Genome Res*. 2020;31(2):337-347. PMID: 33361113. DOI: 10.1101/gr.256388.119

90. Klopfleisch R, Lenze D, Hummel M, Gruber AD. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. *BMC Cancer*. 2010;10:618. PMID: 21062462. DOI: 10.1186/1471-2407-10-618

91. SI M, S U, M L, HH Y, Z C, N AL, G Z, XE RC, SK M, MA M. Ductal Carcinoma In Situ Progression in Dog Model of Breast Cancer. *Cancers*. 2020;12(2). PMID: 32053966. DOI: 10.3390/cancers12020418

92. Misdorp W, Hart AA. Canine mammary cancer. II. Therapy and causes of death. *J Small Anim Pract*. 1979;20(7):395-404. PMID: 470351. DOI: 10.1111/j.1748-5827.1979.tb06744.x

93. Burrai GP, Tanca A, De Miglio MR, Abbondio M, Pisanu S, Polinas M, Pirino S, Mohammed SI, Uzzau S, Addis MF, Antufermo E. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer? *Tumour Biol*. 2015;36(11):9083-9091. PMID: 26088453. DOI: 10.1007/s13277-015-3661-2
94. Salas Y, Márquez A, Diaz D, Romero L. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal Health Problem. *PLoS One*. 2015;10(5):e0127381. PMID: 25992997. DOI: 10.1371/journal.pone.0127381

95. Goldschmidt M, Peña L, Rasotto R, Zappulli V. Classification and grading of canine mammary tumors. *Vet Pathol*. 2011;48(1):117-131. PMID: 21266722. DOI: 10.1177/0300985810393258

96. Wu A, Dong Q, Gao H, Shi Y, Chen Y, Zhang F, Bandyopadhyay A, Wang D, Gorena KM, Huang C, Tardif S, Nathanielsz PW, Sun LZ. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets. *Sci Rep*. 2016;6:32190. PMID: 27558284. DOI: 10.1038/srep32190

97. Mariya S, Dewi FN, Suparto IH, Wilkerson GK, Cline MJ, Iskandriati D, Budiarsa NI, Sajuthi D. Mammosphere Culture of Mammary Cells from Cynomolgus Macaques (Macaca fascicularis). *Comp Med*. 2019;69(2):144-150. PMID: 30732675. DOI: 10.30802/aalas-cm-18-000030

98. Lunney JK. Advances in swine biomedical model genomics. *Int J Biol Sci*. 2007;3(3):179-184. PMID: 17384736. DOI: 10.7150/ijbs.3.179

99. Swindle MM, Smith AC. *Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques*. 3rd. Boca Raton, FL: CRC Press; 2016.

100. Flisikowska T, Kind A, Schnieke A. The new pig on the block: modelling cancer in pigs. *Transgenic Res*. 2013;22(4):673-680. PMID: 23748932. DOI: 10.1007/s11248-013-9720-9
101. Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, Schachtschneider KM, Seixas FK, Singh K, Wells KD, Walters EM, Prather RS, Counter CM. A Genetic Porcine Model of Cancer. *PLOS ONE*. 2015;10(7):e0128864. PMID: 26132737. DOI: 10.1371/journal.pone.0128864

102. Schook LB, Rund L, Begnini KR, Remiao MH, Seixas FK, Collares T. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models. *Front Genet*. 2016;7:28. PMID: 26973698. DOI: 10.3389/fgen.2016.00028

103. Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. *Int J Mol Sci*. 2020;21(2):1-21. PMID: 31940967. DOI: 10.3390/ijms21020488

104. Patel NS, Bailey KL, Lazenby AJ, Carlson MA. Induction of pancreatic neoplasia in the KRAS/TP53 Oncopig: preliminary report. *bioRxiv*. 2020; published online 2 June 2020. PMID: DOI: 10.1101/2020.05.29.123547

105. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardron P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshoj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O,
Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB. Analyses of pig genomes provide insight into porcine demography and evolution. *Nature*. 2012;491(7424):393-398. PMID: 23151582. DOI: 10.1038/nature11622

106. Giuffra E, Tuggle CK, Consortium F. Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap. *Annu Rev Anim Biosci*. 2019;7:65-88. PMID: 30427726. DOI: 10.1146/annurev-animal-020518-114913

107. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. *Science*. 2017;357(6357):1303-1307. PMID: 28798043. DOI: 10.1126/science.aan4187

108. Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. Genetically engineered pig models for human diseases. *Annu Rev Anim Biosci*. 2013;1:203-219. PMID: 25387017. DOI: 10.1146/annurev-animal-031412-103715

109. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner
TD, Brogden KA, Shilyansky J, McCray PB, Jr., Zabner J, Prather RS, Welsh MJ. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. *Science*. 2008;321(5897):1837-1841. PMID: 18818360. DOI: 10.1126/science.1163600

10. Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. *Biol Reprod*. 2014;91(3):78. PMID: 25100712. DOI: 10.1095/biolreprod.114.121723

11. Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP. Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. *BMC Pharmacol*. 2001;1:11. PMID: 11737866. DOI: 10.1186/1471-2210-1-11

12. Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. *J Pharmacol Toxicol Methods*. 2015;74:80-92. PMID: 25545337. DOI: 10.1016/j.vascn.2014.12.005

13. Petri N, Bergman E, Forsell P, Hedeland M, Bondesson U, Knutson L, Lennernas H. First-pass effects of verapamil on the intestinal absorption and liver disposition of fexofenadine in the porcine model. *Drug Metab Dispos*. 2006;34(7):1182-1189. PMID: 16621934. DOI: 10.1124/dmd.105.008409

14. Tannergren C, Evilevitch L, Pierzynowski S, Piedra JV, Westrom B, Erlwanger K, Tatara M, Lennernas H. The effect of pancreatic and biliary depletion on the in vivo pharmacokinetics of digoxin in pigs. *Eur J Pharm Sci*. 2006;29(3-4):198-204. PMID: 16935480. DOI: 10.1016/j.ejps.2006.06.009
115. Rowson-Hodel AR, Manjarin R, Trott JF, Cardiff RD, Borowsky AD, Hovey RC. Neoplastic transformation of porcine mammary epithelial cells in vitro and tumor formation in vivo. *BMC Cancer*. 2015;15:562. PMID: 26228788. DOI: 10.1186/s12885-015-1572-7

116. Donninger H, Hobbing K, Schmidt ML, Walters E, Rund L, Schook L, Clark GJ. A porcine model system of BRCA1 driven breast cancer. *Front Genet*. 2015;6:269. PMID: 26379698. DOI: 10.3389/fgene.2015.00269

117. Luo Y, Li J, Liu Y, Lin L, Du Y, Li S, Yang H, Vajta G, Callesen H, Bolund L, Sorensen CB. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. *Transgenic Res*. 2011;20(5):975-988. PMID: 21181439. DOI: 10.1007/s11248-010-9472-8

118. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH. Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. *Nat Genet*. 1996;12(2):191-194. PMID: 8563759. DOI: 10.1038/ng0296-191

119. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types. *Nature*. 2013;502(7471):333-339. PMID: 24132290. DOI: 10.1038/nature12634

120. Nik-Zainal S, Davies H, Staal J, Ramakrishna M, Glodzik D, Zou X, Martincoreana I, Alexandrov LB, Martin S, Wedge DC, Van Loo P, Ju YS, Smid M, Brinkman AB, Morganella S, Aure MR, Lingjaerde OC, Langerod A, Ringner M, Ahn SM, Boyault S, Brock JE, Broeks A, Butler A, Desmedt C, Dirix L, Dronov S, Fatima A, Foekens JA,
Gerstung M, Hooijer GK, Jang SJ, Jones DR, Kim HY, King TA, Krishnamurthy S, Lee HJ, Lee JY, Li Y, McLaren S, Menzies A, Mustonen V, O'Meara S, Pauporte I, Pivot X, Purdie CA, Raine K, Ramakrishnan K, Rodriguez-Gonzalez FG, Romieu G, Sieuwerts AM, Simpson PT, Shepherd R, Stebbings L, Stefansson OA, Teague J, Tommasi S, Treilleux I, Van den Eynden GG, Vermeulen P, Vincent-Salomon A, Yates L, Caldas C, van't Veer L, Tutt A, Knappskog S, Tan BK, Jonkers J, Borg A, Ueno NT, Sotiriou C, Viari A, Futreal PA, Campbell PJ, Span PN, Van Laere S, Lakhani SR, Eyfjord JE, Thompson AM, Birney E, Stunnenberg HG, van de Vijver MJ, Martens JW, Borresen-Dale AL, Richardson AL, Kong G, Thomas G, Stratton MR. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature*. 2016;534(7605):47-54. PMID: 27135926. DOI: 10.1038/nature17676

121. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerod A, Oslo Breast Cancer C, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van 't Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Borresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR. The landscape of cancer genes and mutational processes in breast cancer. *Nature*. 2012;486(7403):400-404. PMID: 22722201. DOI: 10.1038/nature11017
122. Bailey KL, Carlson MA. Porcine Models of Pancreatic Cancer. *Front Oncol.* 2019;9:144. PMID: 30915276. DOI: 10.3389/fonc.2019.00144

123. Bailey KL, Cartwright SB, Patel NS, Remmers N, Lazenby AJ, Hollingsworth MA, Carlson MA. Porcine pancreatic ductal epithelial cells transformed with KRASG12D and SV40T are tumorigenic. *Sci Rep.* 2021;11:13436. PMID: DOI: 10.1038/s41598-021-92852-2

124. Remmers N, Carlson MA. Ectopic expression of KRASG12D and p53R167H in porcine mammary epithelial cells results in transformation and tumorigenesis. *bioRxiv.* Published online 21 June 2021. PMID: DOI: 10.1101/2021.06.20.449198

125. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM. Genetic induction of tumorigenesis in swine. *Oncogene.* 2007;26(7):1038-1045. PMID: 16964292. DOI: 10.1038/sj.onc.1209892

126. Boas FE, Nurili F, Bendet A, Cheleuitte-Nieves C, Basturk O, Askan G, Michel AO, Monette S, Ziv E, Sofocleous CT, Maxwell AWP, Schook LB, Solomon SB, Kelsen DP, Scherz A, Yarmohammadi H. Induction and characterization of pancreatic cancer in a transgenic pig model. *PLoS One.* 2020;15(9):e0239391. PMID: 32956389. DOI: 10.1371/journal.pone.0239391

127. Principe DR, Overgaard NH, Park AJ, Diaz AM, Torres C, McKinney R, Dorman MJ, Castellanos K, Schwind R, Dawson DW, Rana A, Maker A, Munshi HG, Rund LA, Grippo PJ, Schook LB. KRAS(G12D) and TP53(R167H) Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs. *Sci Rep.* 2018;8(1):12548. PMID: 30135483. DOI: 10.1038/s41598-018-30916-6
128. Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, Grippo P, Principe DR, Park A, Overgaard NH, Jungersen G, Garcia KD, Maker AV, Rund LA, Ozer H, Gaba RC, Schook LB. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. *Front Oncol.* 2017;7:190. PMID: 28879168. DOI: 10.3389/fonc.2017.00190