Introduction

Chronic low-grade inflammation and activation of the innate immune system are closely involved in the pathobiological and immunopathogenesis of type 2 diabetes mellitus (DM2). Both acute and chronic hyperglycaemias determine a pro-inflammatory state. A single hyperglycaemia-induced process of overproduction of reactive oxygen species (ROS) seems to be important in the activation of all of the other pathways involved in the pathogenesis of diabetic inflammatory complications. Additionally, acute-phase circulating inflammatory responses, of which interleukin 6 (IL-6) appears to be the major cytokine mediator, are strong predictors of the development of DM2, and it is believed that cytokine production may be mediated by ROS. In this context, cAMP is an important second messenger of cellular activation. The presence of cAMP-elevating agents has been shown to inhibit IL-2 and gamma-interferon (IFNγ), but not as to IL-4 and IL-5, in Jurkat cells. Moreover, cAMP potentiates IL-6 production in neuronal cells and inhibits such production in adipocytes. The intracellular level of cAMP is elevated following activation of adenyl cyclase by prostaglandin E1 (PGE2). Interestingly, PGE2 is produced by inflammatory cells, and the levels of PGE2 are significantly elevated in a diabetic population with nephropathy and retinopathy. In diabetic rats, the level of PGE2 is increased by hyperglycaemia.

We have previously suggested that an increase in the level of cAMP inhibits ROS and NO production in granulocytes from healthy subjects, but activates their generation in cells from DM2 patients. In the present study we have investigated the effect of a cAMP-elevating agent on ROS, IL-4, IL-6 and IFNγ production by peripheral blood mononuclear cells (PBMNC) from DM2 patients in addition to evaluate possible correlations between ROS generation and cytokine secretion by these cells.

Results

Patients. Biochemical parameters of type 2 diabetic patients and healthy control were compared and the results are shown in the Table 1. Fasting glucose level was significantly different (p < 0.05).

Activation of ROS production by cAMP in PBMNC from DM2 patients. The results of the present study revealed that...
Inhibition of IL-6 production by cAMP in PBMNC from DM2 patients.

In order to determine whether the observed upregulation of ROS production in PBMNC from DM2 patients was associated with modulation in the production of pro- or anti-inflammatory cytokines, supernatants from PBMNC that had been cultured in the presence or absence of cAMP were assayed for IL-4, IL-6 and IFN\(\gamma\). As can be seen from the results shown in Table 2, PBMNC from DM2 patients produced a significantly (p < 0.05) higher amount of IL-6 (25.3 ± 2.88 pg/ml) as compared with cells from healthy subjects (3.0 ± 1.2 pg/ml) (Table 2 and Fig. 4). However, in the presence of cAMP, the secretion of IL-6 was significantly inhibited (45.7%) in DM2 patients but remained unaltered in healthy subjects (Table 2). The levels of IL-4 and IFN\(\gamma\) produced by PBMNC from DM2 patients and healthy controls were not significantly different and were not modulated by the presence of cAMP (Table 2).
Discussion

In this study we examined the reactivity of PBMNC from DM2 patients in the presence and absence of a cAMP-elevating agent in comparison with cells from healthy controls. We observed an altered reactivity for ROS and IL-6 production in DM2 patients, whilst IL-4 and IFNγ levels were insensitive to the hyperglycaemia of diabetes and to the intracellular elevation of cAMP.

Diabetes is believed to be an inflammatory disease in which the associated chronic hyperglycaemia is linked with an increase in ROS generation by PBMNC. Results from the present study confirmed that the production of ROS in PBMNC from DM2 patients is significantly greater than in cells from healthy individuals. It has been suggested that the rise in ROS production is associated with an increase of p47phox, a component of the NADPH-oxidase system. However, cytokine production may also be mediated by ROS, and in this context an increase in PGE2 has been reported in vascular complications of diabetes. Since PGE2 activates adenyly cyclase to form cAMP, a functional relationship between ROS, cAMP and cytokine secretion could be proposed. Mitogen-activated protein kinases (MAPKs) includes three subgroups of MAPKs identified as extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun aminoterminal kinase (JNK). In J774 macrophages, the association between cAMP, NO and IL-6 was demonstrated, and ERK and p38 MAPK are involved in the upregulation of gene expression of inducible NO synthase (iNOS) and IL-6. Mitochondrial ROS and IL-6 activate AMP-activated protein kinases (AMPK) and the effect of IL-6 depends on cAMP.

We have previously reported that cAMP increases ROS production in granulocytes from patients with diabetes types 1 and 2 via a PKA-independent signalling pathway. In the present study, we were able to demonstrate a similar effect of cAMP on PBMNC from DM2 patients, although cAMP inhibited ROS generation in PBMNC from healthy controls (Figs. 2, 3 and 5). It may thus be hypothesised that the hyperglycaemia of diabetes induces an adaptation in the metabolic response of diabetic patients.

In order to investigate the possible association between ROS production and the release of cytokines, we evaluated the production of the anti-inflammatory cytokine IL-4 and the two pro-inflammatory cytokines IL-6 and IFNγ by PBMNC in the presence and absence of a cAMP-elevating agent. In these experiments, the levels of IL-4 and IFNγ were similar in PBMNC derived from DM2 patients and from healthy controls, both in the presence and absence of cAMP (Table 2, Fig. 4). The results relating to IL-4 are in agreement with those reported from previous studies. More significantly, however, is that the present study revealed an increase in both ROS and IL-6 production by PBMNC derived from DM2 patients as compared with cells from healthy individuals (Table 2; Fig. 4). Furthermore, intracellular elevation of cAMP induced an inhibition of IL-6 secretion by PBMNC from diabetic patients but it did not modulate IL-6 production by PBMNC from healthy controls. This kind of control of interleukin synthesis has not been observed with either IL-4 or IFNγ. IL-6 has previously been shown to modify insulin sensitivity, whilst an increase in the level of cAMP has been reported to upregulate both IL-1 beta and IL-6 transcripts.

In spite of the observed increases in ROS and IL-6 generation by PBMNC derived from DM2 patients, no correlations were observed between ROS and IL-4, IL-6 or IFNγ in any of the experiments performed with cells from DM2 patients or from healthy individuals, either in the presence or absence of cAMP. cAMP enhances the activity of protein kinase A (PKA) which activates protein kinase C (PKC) and p38 MAPK leading to a NFκB activation with consequent induction of inducible nitric oxide synthase (iNOS) and IL-6.

The activation of ROS production by cAMP in PBMNC from DM2 patients, and the concomitant downregulation of IL-6, may suggest a regulatory mechanism in the inflammatory process. We have previously suggested that cAMP modulates ROS production in granulocytes from DM2 patients using a metabolic route PKA-independent, Epac/PKB-dependent. Izura et al. have demonstrated that PGE2 levels did not correlate with the grade of retinopathy, and proposed that the elevation of PGE2 could be regarded as a marker of inflammation associated with microvascular complications. Our present results suggest that elevated ROS production, in association with high levels of IL-6, could be considered as a typical profile of type 2 diabetes as well as suggestive of an active inflammatory response. It is proposed that the intracellular increase of cAMP, which might arise from the elevation of PGE2, could activate ROS production and simultaneous downregulation of IL-6. This may represent a novel type of regulatory mechanism of diabetic inflammation and reinforces previous findings.
Preparation of peripheral blood mononuclear cells. PBMNC were purified from 10.0 ml of heparinised venous blood using the Ficoll-Hypaque gradient method as described previously. In the present study, three different densities of Ficoll-Hypaque gradient were employed and three interfaces were formed following centrifugation. The first (upper) interface was rich in mononuclear cells and depleted in granulocytes, whilst the second interface was neutrophil-rich (100%), and the third interface was composed of neutrophils (±95%) and eosinophils (±5%). The cell fraction depleted in granulocytes was employed in the experiments described herein. The viability of cells in all samples was of >95% as determined by the Trypan blue exclusion test.

Quantification of ROS in peripheral blood mononuclear cells (PBMNC). The generation of ROS was measured quantitatively by chemiluminescence assay using a Magic Lite luminometer, Table 2.

Cytokines	Healthy subjects	PBMNC + cAMP	DM2 patients	Healthy subjects	PBMNC	DM2 patients
IL-6	3.5 ± 1.26	p < 0.05	14.1 ± 3.04	3.0 ± 1.2	p < 0.05	25.3 ± 2.88
INFγ	6.64 ± 0.41	ns	8.75 ± 1.18	6.39 ± 0.39	ns	7.02 ± 0.51
IL-4	232 ± 1.63	ns	231.2 ± 2.8	239.4 ± 7.5	ns	230.6 ± 2.9

*aMean values ± SD (n = 9); Cytokines quantification was performed by ELISA using supernatant of cultured PBMNC (peripheral blood mononuclear cells). Mean values between groups were compared using Student t-tests; p < 0.05 was considered significant; ns, not significant. IFNγ, IL-6 and IL-4 refer to gamma interferon, interleukin 6 and interleukin 4, respectively.

Taken together, our results provide evidences that cAMP may play a prominent role in IL-6 modulation in PBMNC from DM2 patients and, consequently, in the pathogenesis of diabetes.

Materials and Methods

Details of the project were presented to and approved by the Ethical Committee of the Hospital Santa Casa de Belo Horizonte (Belo Horizonte—MG, Brazil). Appropriate informed consent was obtained from all participants prior to the commencement of the study.

Subjects. Patients suffering from DM2 (diagnosed according to the criteria of the American Diabetes Association) and healthy volunteers, all within the age range of 30–75 years, were recruited from the endocrinology service of the Santa Casa Hospital. Each volunteer was submitted to a detailed physical examination, together with an evaluation of relevant medical history and laboratory data, before being subjected to the study. The levels of fasting plasma glucose were determined to be 170 ± 25 and 87 ± 8.0 mg/dl, respectively, for DM2 patients and healthy controls (Table 1).

Preparation of peripheral blood mononuclear cells. PBMNC were purified from 10.0 ml of heparinised venous blood using the Ficoll-Hypaque gradient method as described previously. In the present study, three different densities of Ficoll-Hypaque gradient were employed and three interfaces were formed following centrifugation. The first (upper) interface was rich in mononuclear cells and depleted in granulocytes, whilst the second interface was neutrophil-rich (100%), and the third interface was composed of neutrophils (±95%) and eosinophils (±5%). The cell fraction depleted in granulocytes was employed in the experiments described herein. The viability of cells in all samples was of >95% as determined by the Trypan blue exclusion test.

Quantification of ROS in peripheral blood mononuclear cells (PBMNC). The generation of ROS was measured quantitatively by chemiluminescence assay using a Magic Lite luminometer,
Table 3. Correlation between reactive oxygen species (ROS) production and cytokines secretions

Cytokines	ROS production—RLU/min	Absence of cAMP	Presence of cAMP	
	ND	DM2	ND	DM2
IL-6	-0.039	0.130	-0.442	-0.340
IFN	0.373	-0.088	-0.138	-0.416
IL-4	0.025	0.037	-0.072	0.439

r = represent the coefficient of correlation (Pearson). The secretion of cytokines were evaluated in the presence and in the absence of cyclic AMP. No correlation between ROS production and cytokine releasing was observed. DM2 = Type 2 diabetic patients; ND = healthy control.

References
1. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27:83-23.
2. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003; 26:1589-96.
3. Thomas E, Lin Y-, Dagher Z, Saha A, Luo Z, Ido Y, et al. Hyperglycemia and insulin resistance: Possible mechanisms. Ann NY Acad Sci 2002; 967:48-51.
4. Srivastava AK. High-glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes. Int J Mol Med 2002; 9:85-9.
5. Saitoh M, Nishitoh H, Fuji M, Takeda K, Tsuchiue K, Sawada Y, et al. Mammalian threodixin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1999; 18:25356-606.
6. Benhertou N, Esaïet S, Shin HCK, Fekkar H, Guennounou M. Differential regulation of IFNγ, IL-10 and inducible nitric oxide synthase in human T cells by cyclic AMP-dependent signal transduction pathway. Immunology 1997; 91:361-8.
7. Bergamaschi A, Costi M, Garnier MJ. Synergistic effects of cAMP-dependent signaling pathway and IL-1 on IL-6 production by H19-7IGF-IR neuronal cells. Cell Signal 2006; 18:1679-84.
8. Fasshauer M, Klein J, Losurier U, Paschke R. Interleukin (IL)-6 mRNA expression in stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone and IL-6 in ST3-L1 adipocytes. Horm Metab Res 2003; 35:147-52.
9. Jakob T, Hupstr NR, Bachtler YM, Roos DR, Estall J. Depressed lymphocyte transformation and the role of prostaglandins in atopic dermatitis. Clin Exp Immunol 1990; 70:380-4.
10. Izuora KE, Chase HD, Jackson WE, Coll JR, Osberg LM, Gottlieb PA, et al. Inflammatory markers and diabetic retinopathy in type 1 diabetes. Diabetes Care 2005; 28:745-51.
11. Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 2007; 9:343-53.
12. Lo CJ. Upregulation of cyclooxygenase-II gene and PGE2 production of peritoneal macrophages in diabetic rats. J Surg Res 2005; 125:121-7.
13. Nogueira-Machado JA, cols. Modulation of the production of reactive oxygen species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: an Akt/PKB-dependent phenomenon. Diabetes Metab 2006; 32:331-5.
14. Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hyperteny-eroidemia and diabetes. Diabetes 1998; 37:852-7.
15. Mohanty P, Hamouda W, Garg RK, Aljada A, Ghanim H, Danouda P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leukocytes. J Clin Endocrinol Metab 2005; 85:2970-3.
16. Cobb MH, Goldsmith M. How MAP kinases are regulated. J Biol Chem 1995; 270:1483-6.
17. Treiman R. Regulation of transcription by MAPKinases cascades. Curr Opin Cell Biol 1996; 8:205-15.
18. Chio CC, Chang YH, Hsu Y W, Chi KH, Lin WW. PKA-dependent activation of PKC, p38MAPK and IKK in macrophage; implication in the induction of inducible nitric oxide synthase and interleukin 6 by dibutyryl cAMP. Cellular Signalling 2004; 16:565-75.
19. Ridley SH, Sarsfield SJ, Lee JC, Bigg HE, Cawston TE, Taylor DJ. Interleukin-1-induced rat pancreatic islet nitric oxide synthesis require both the p38 and intra-cellular signal-regulated kinase ½ mitogen-activated protein kinases. J Immunol 2004; 173:51329-300.
20. Larsen CM, Ward KAW, Julsh LF, Anderson HU, Karlson AE, Su MSS. Actions of IL-1 are selectively modulated by PKA-dependent phenomenon. Diabetes Metab 2007; 33:631-6.
21. Bicalho HMS, Gontijo CM, Nogueira-Machado JA. Simple technique for simultaneous human leukocyte separation. J Immunol Meth 1981; 40:115-6.
22. Kelly M, Gauthier MS, Saha AK, Rudman NB. Activation of AMP-activated protein kinase (AMPK) by interleukin 6 inksletal muscle: association with changes in cAMP, energy states and endogenous fuel mobilization. Diabetes 2009; (ahead of print).
23. Nogueira-Machado JA, Lima e Silva PC, Medina LO, Costa DC, Chaves MM. Modulation of the reactive oxygen species (ROS) generation mediated by cyclic AMP-elevating agents or interleukin 10 in granulocytes from type 2 diabetic patients (NIDDM): a PKA-independent phenomenon. Diabetes Metab 2003; 29:535-7.
24. Betz M, Fox BS. Prostaglandin E2 inhibits production of T helper lymphokines but not T helper lymphokines. J Immunol 1991; 146:108-13.
25. Novak TJ, Rothenberg EV. CAMP inhibits induction of interleukin 2 but not interleukin 4 in T cells. Proc Natl Acad Sci USA 1990; 87:9355-7.
26. Glund S, Deshmukh A, Long YC, Moller T, Kuistinen HA, Caidahl K, et al. IL-6 directly increases glucose metabolism in rat skeletal muscle. Diabetes 2007; 56:1636-7.
27. Tan KS, Nckley AG, Satterfield K, Maier G, Diachenko L, Flood PM. Beta(2) adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA and NIKappB-independent mechanisms. Cell Signal 2007; 19:25-31.
28. Mahomed AG, Theron AJ, Anderson R, Feldman C. Anti-oxidative effects of theophylline on human neutrophils involves cyclic nucleotides and protein kinase A. Inflammation 1998; 22:545-7.
29. Nogueira-Machado JA, Lima e Silva FC, Cinha PE, Costa DC, Chaves MM. Modulation of the production of reactive oxygen species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: an Akt/PKB-dependent phenomenon. Diabetes Metab 2006; 32:331-6.
30. Bicalho HMS, Gontijo CM, Nogueira-Machado JA. A simple technique for simultaneous human leukocyte separation. J Immunol Meth 1981; 40:115-6.