Supporting Information

Dual Function of Molybdenum Sulfide/C-cloth in Enhancing the Performance of Fullerene Nanosheets based Solar cell and Supercapacitor

Aparajita Das, a Melepurath Deepa, a,* Partha Ghosal b

Figure S1. Cyclic voltammograms of (a) TiO$_2$/FTO and (b) CdS/FTO recorded in a 0.1 M KOH solution at a scan rate of 10 mV s$^{-1}$ and used as working electrode in three electrode electrochemical cells. Ag/AgCl/KCl is used as reference electrode and a Pt rod as the counter electrode.

The CV plots of TiO$_2$ and CdS shows a reduction potential peaks at -0.52 V and -0.7 V (verses Ag/AgCl/KCl) in their cathodic sweep. The potential of Ag/AgCl/KCl (verses NHE) is 0.197 V. The reduction potential of TiO$_2$ (verses NHE) is $E_{\text{red}}^{0} = (-0.52 + 0.197)\text{ V} = -0.323\text{ V}$ and reduction potential of CdS (verses NHE) $E_{\text{red}}^{0} = (-0.7 + 0.197)\text{ V} = -0.503\text{ V}$. Therefore, the conduction band (CB) or LUMO of TiO$_2$ (w.r.t vacuum level) is calculated to be $E_{\text{red}}^{0} = -4.5 - (-0.323) = -4.17$ eV and for CdS it is $E_{\text{red}}^{0} = -4.5 - (-0.503) = -4$ eV respectively. By subtracting the optical band gap energy (E_g) from CB, the valence
band energy (VB) or HOMO of TiO$_2$ is found to be (-4.17 – 3.19)= -7.36 eV and for CdS it is found to be (-4 – 2.25)= -6.25 eV. These values are used in energy band diagram shown in figure 3e.

![Raman spectra of C-cloth and MoS$_2$/C-cloth and (b) XRD patterns of C-cloth and MoS$_2$.](image)

Figure S2. Raman spectra of C-cloth and MoS$_2$/C-cloth and (b) XRD patterns of C-cloth and MoS$_2$.

Table S1. Emission decay fitting parameters of photoactive films.

Sample	B_1	τ_1 (ns)	B_2	τ_2 (ns)	τ (ns)	χ^2
Glass/CdS	99.3	0.007	0.7	18.1	17.07	1.9
FTO/CdS	41.32	13.1	58.68	0.084	12.98	0.96
TiO$_2$/CdS	63.98	0.218	36.02	7.12	6.764	1.03
TiO$_2$/C$_{60}$-B/CdS	81.82	0.074	18.18	1.65	1.385	1.04
TiO$_2$/C$_{60}$-NS/CdS	10.99	0.003	89.01	0.65	0.65	1.27

Table S2. Raman data of counter electrodes.

Counter electrode	D-band (cm$^{-1}$)	G-band (cm$^{-1}$)	I_D/I_G
C-cloth	1335	1584	1.16
MoS$_2$/C-cloth	1339	1586	1.025
Table S3. EIS parameters for counter electrode based cells in symmetric configurations.

Counter	R_s (Ω)	R_{ct} (Ω)	R_{gb} (Ω)
C-cloth	20.1	4	14.2
MoS$_2$/C-cloth	23.6	1.4	19.2

Table S4. Solar cell parameters of large area QDSCs (1 cm2) containing 1 M Na$_2$S + 1 M S polysulfide based gel electrolyte under 1 sun illumination (AM 1.5, 100 mW cm$^{-2}$).

Photoanode	J_{sc} (mA cm$^{-2}$)	V_{oc} (mV)	FF	η (%)	
TiO$_2$/CdS	1	5.9	675	0.49	2
	2	5.95	680.4	0.49	2
TiO$_2$/CdS-B/CdS	1	7.2	692.2	0.50	2.5
	2	7.1	709	0.47	2.4
TiO$_2$/CdS-NS/CdS	1	8	717.3	0.51	2.9
	2	8.2	719.1	0.50	3

Table S5. Solar cell parameters of TiO$_2$/CdS cell with MoS$_2$/C-cloth counter in polysulfide gel electrolyte under 1 sun illumination at different interval of time.

Illumination time (min)	J_{sc} (mA cm$^{-2}$)	V_{oc} (mV)	FF	η (%)
0	15.5	741.1	0.46	5.3
100	12.9	746.0	0.53	5.1
200	12.5	765.5	0.54	5.2
300	11.5	804.6	0.54	5.0
400	11.0	802.1	0.52	4.6
500	10.9	785.0	0.51	4.3