Research Article

Nontrivial Solutions for 4-Superlinear Schrödinger–Kirchhoff Equations with Indefinite Potentials

Wei Chen and Yue Wu

School of Mathematics and Statistics, Linyi University, Linyi 276000, China

Correspondence should be addressed to Yue Wu; wuyue@lyu.edu.cn

Received 30 January 2021; Revised 10 March 2021; Accepted 17 March 2021; Published 26 March 2021

Academic Editor: Calogero Vetro

Copyright © 2021 Wei Chen and Yue Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is devoted to the 4-superlinear Schrödinger–Kirchhoff equation

$$-(a + b \int_{\mathbb{R}^3} |\nabla u|^2 \, dx) \Delta u + V(x)u = f(x, u),$$

where $a > 0$, $b \geq 0$ are constants. This equation arises when we look for stationary solutions of the equation

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{P_0}{h} \left(\frac{d}{dx} \right)^4 u + \frac{E}{2L} \int_0^L \left(\frac{d^2 u}{dx^2} \right)^2 \, dx = 0$$

proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings, where ρ, h, P_0, and L are positive constants. In [2], J.L. Lions introduced an abstract functional analysis framework to the equation

$$u_{tt} = \left(a + b \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u = f(x, u),$$

where $\Omega \subset \mathbb{R}^3$ is a bounded domain. After that, (3) received much attention. For more details on the physical and mathematical background of this problem, we refer to [1–3] for references.

Problem (1) has been studied extensively by many researchers. Some interesting studies by variational methods can be found in, for example, [3–13] and references therein. Under suitable conditions, it is well known that weak solutions to (1) correspond to critical points of the energy functional $\Phi : H^1(\mathbb{R}^3) \to \mathbb{R}$,

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^3} (a |\nabla u|^2 + V(x)u^2) \, dx + \frac{b}{4} \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^2 - \int_{\mathbb{R}^3} F(x, u) \, dx,$$

where $F(x, t) = \int_0^t f(x, s) \, ds$. We emphasize that in the papers mentioned above, the authors only considered the case that the Schrödinger operator $-\Delta + V$ is positively definite. In this situation, a typical way to deal with (1) is to use the mountain pass theorem (cf. [14]). However, when the potential V is negative somewhere, the zero function $u = 0$ is no longer a local minimizer of Φ. In this case, the functional Φ would not enjoy the general linking geometry due to the nonlocal term $\int_{\mathbb{R}^3} |\nabla u|^2 \, dx$. Hence, the classical linking theorem (see, e.g., ([15], Theorem 2.12)) is also not applicable.

Such an indefinite situation was studied in [16]. To overcome these difficulties and the difficulty that the Sobolev embedding $H^1(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$ is not compact, it is assumed in...
(5) \[
\mu(V^{-1}(-\infty,M)) < \infty \text{ for all } M > 0, \quad \langle V \rangle,
\]
so that the related weighted Sobolev space is compactly embedded into \(L^2(\mathbb{R}^3) \). Then, via Morse theory, they obtained nontrivial critical points of \(\Phi \).

In this paper, we will consider the case of more general \(V \) such that the abovementioned compact embedding may not be true. We assume the potential \(V \) satisfies:

\[(V) \quad V \in C(\mathbb{R}^3) \text{ is bounded such that the quadratic form} \]

\[Q(u) = \int_{\mathbb{R}^3} (a|\nabla u|^2 + V(x)u^2)dx, \]
which is nondegenerate and the negative space of \(Q \) is nondegenerate and the negative space of \(Q \) is nondegenerate.

For the nonlinearity \(f \), we make the following assumptions:

\[(f_1) \quad f \in C(\mathbb{R}^3 \times \mathbb{R}) \text{ there exist } C > 0 \text{ and } p \in (4, 6) \text{ such that} \]

\[|f(x, t)| \leq C(1 + |t|^{p-1}) \text{ for all } x \in \mathbb{R}^3; \]

\[(f_2) \quad f(x, t) = o(|t|) \text{ as } t \to 0 \text{ uniformly in } x \in \mathbb{R}^3 \text{ and} \]

\[\lim_{t \to \infty} \frac{F(x, t)}{t^4} = +\infty \text{ for all } x \in \mathbb{R}^3; \]

\[(f_3) \quad 0 < 4F(x, t) \leq tf(x, t) \text{ for } x \in \mathbb{R}^3 \text{ and } t \neq 0; \]

\[(f_4) \quad \text{for any } r > 0, \text{ there holds} \]

\[\lim_{|x| \to \infty} \sup_{t \in [r, t]} \left| \frac{f(x, t)}{t} \right| = 0. \]

Remark 1.

(i) \((V) \) is a generic assumption on \(V \). For example, if \(V : \mathbb{R}^3 \to \mathbb{R} \) such that

\[\lim_{|x| \to \infty} V(x) = V_{\infty} \in (0, \infty), \]

and 0 does not happen to be a spectrum point of the Schrödinger operator \(- \Delta + V\), then such \(V \) satisfies our assumption \((V)\).

(ii) Note that in \((f_2)\), we have not required that the limit \((8)\) holds uniformly.

(iii) In order to produce critical points of \(\Phi \), eventually, we will encounter the compactness problem. For this issue, we assume assumption \((f_4)\). It is easily see that let \(a : \mathbb{R}^3 \to (0, \infty) \) be continuous, \(\lim_{|x| \to \infty} a(x) = 0 \) and \(p \in (4, 6) \), then

\[f(x, t) = a(x)|t|^{p-2}t \]

satisfies \((f_1)-(f_4)\).

Now, we are ready to state our main results.

Theorem 2. Assume that \((V)\) and \((f_1)-(f_4)\) are satisfied. Then, problem \((1)\) has a nontrivial solution.

Theorem 3. Assume that \((V)\) and \((f_1)-(f_4)\) are satisfied. Moreover, if \(f(x, \cdot) \) is odd, then problem \((1)\) has a sequence of solutions \(\{u_n\} \) such that the energy \(E(u_n) \to +\infty\).

It is known that if the quadratic form \(Q \) is indefinite, usually, it is more difficult to verify the boundedness of the \((PS)\) sequence. In [16], this is done by taking advantage of the compact embedding mentioned before. Under our present setting, the related Sobolev embedding \(H^1(\mathbb{R}^3) \to L^2(\mathbb{R}^3) \) is not compact. We will illustrate a general technique to establish the boundedness of \((PS)\) sequences. Moreover, it is also worth to point out that the weak limit of the bounded \((PS)\) sequence is not obviously a critical point of \(\Phi \). Since we cannot easily see that \(\Phi' \) is weakly sequentially continuous in \(H^1(\mathbb{R}^3) \) by direct calculations due to the existence of nonlocal term. Indeed, in general, we do not know \(\int_{\mathbb{R}^3} |\nabla u_n|^2 dx \to \int_{\mathbb{R}^3} |\nabla u|^2 dx \) from \(u_n \to u \) in \(H^1(\mathbb{R}^3) \).

The paper is organized as follows. In the next section, we prove that the \((PS)\) sequences of \(\Phi \) are bounded and \(\Phi \) satisfies the \((PS)\) condition. In Section 3, we recall some concepts and results in infinite-dimensional Morse theory; then, we analyze the critical groups of \(\Phi \) at infinity; finally, we give the proof of Theorem 11. Having established the \((PS)\) condition, the proof of Theorem 3 is quite similar to that of [16, Theorem 3]; therefore, we omit it here.

2. Palais-Smale Condition

Throughout of this paper, we always denote \(E = H^1(\mathbb{R}^3) \). In view of assumption \((V)\), we may choose an equivalent norm \(||\cdot|| \) on \(E \) such that

\[Q(u) = ||u^+||^2 - ||u^-||^2, \quad u = u^+ + u^-, \quad u^\pm \in E^\pm, \]

where \(E^+ \) and \(E^- \) are positive and negative spaces of \(Q \), respectively, and \(E = E^+ \oplus E^- \). Here and in what follows, \(u^\pm \) denotes the orthogonal projection of \(u \) on \(E^\pm \). Then, the functional \(\Phi \) can be rewritten as

\[\Phi(u) = \frac{1}{2} \left(||u^+||^2 - ||u^-||^2 \right) + \frac{a}{4} \left(\int_{\mathbb{R}^3} |\nabla u|^2 dx \right)^2 - \int_{\mathbb{R}^3} F(x,u) dx. \]

By \((f_1)\), \(\Phi \) is of class \(C^1 \) on \(E \) with the derivative given by

\[\langle \Phi'(u), v \rangle = \int_{\mathbb{R}^3} \left(a \nabla u \cdot \nabla v + V(x)uv \right) dx + \int_{\mathbb{R}^3} \left(|\nabla u|^2 \right) u v - \int_{\mathbb{R}^3} F(x,u) v dx, \]

(14)
for all \(u, v \in E \). Then, \(u \) solves (1) if and only if it is a critical point of \(\Phi \).

Lemma 4. Let \(\{ u_n \} \) be a (PS) sequence of \(\Phi \), that is,

\[
\sup_n |\Phi(u_n)| < \infty, \Phi'(u_n) \to 0. \tag{15}
\]

Then, \(\{ u_n \} \) is bounded in \(E \).

Proof. Suppose by contradiction that \(\| u_n \| \to \infty \). Let \(v_n = \| u_n \|^{-1} u_n \). Then, passing to a subsequence, there exists \(v \in E \) such that

\[
v_n = v^+ + v^- \to v = v^+ + v^- \text{ in } E. \tag{16}
\]

If \(v = 0 \), then \(v_n \to v^- \) since \(\dim E < \infty \). Noting that \(\| v_n^+ \|_2^2 + \| v_n^- \|_2^2 = 1 \), we have

\[
\| v_n^+ \|_2^2 - \| v_n^- \|_2^2 \geq \frac{1}{2} \tag{17}
\]

By (17) we deduce that, for \(n \) large enough,

\[
1 + \sup_n |\Phi(u_n)| + \| u_n \| \geq \Phi(u_n) - \frac{1}{4} \langle \Phi'(u_n), u_n \rangle
\]

\[
= \frac{1}{4} \left(\| u_n^+ \|_2^2 - \| u_n^- \|_2^2 \right) + \int_{\mathbb{R}^3} \left(\frac{1}{4} f(x, u_n) u_n - F(x, u_n) \right) dx
\]

\[
\geq \frac{1}{4} \| u_n \|_2^2 \left(\| v_n^+ \|_2^2 - \| v_n^- \|_2^2 \right) \geq \frac{1}{8} \| u_n \|_2^2, \tag{18}
\]

contradicting \(\| u_n \| \to \infty \).

Now suppose that \(v \neq 0 \). Then, the set \(\Theta = \{ x \in \mathbb{R}^3 : v(x) \neq 0 \} \) has positive Lebesgue measure. For \(x \in \Theta \), we have \(|u_n(x)| \to \infty \), and hence (8) implies

\[
\frac{F(x, u_n(x))}{u_n^+(x)} v_n^+(x) \to +\infty. \tag{19}
\]

Then, the Fatou lemma yields

\[
\int_{\Theta} \frac{F(x, u_n(x))}{u_n^+(x)} v_n^+(x) dx \to +\infty. \tag{20}
\]

On the other hand, for large \(n \),

\[
\int_{\Theta} \frac{F(x, u_n(x))}{u_n^+(x)} v_n^+(x) dx = \frac{1}{\| u_n \|_2^2} \int_{\Theta} F(x, u_n(x)) dx \leq \frac{1}{\| u_n \|_2^2} \int_{\mathbb{R}^3} F(x, u_n(x)) dx
\]

\[
= \frac{1}{\| u_n \|_2^2} \left(\frac{1}{2} \| u_n^+ \|_2^2 - \| u_n^- \|_2^2 \right) + b \left(\int_{\mathbb{R}^3} |u_n|_2^2 dx \right)^2
\]

\[
\leq 1 + b \| u_n \|_2^2 \leq 1 + M, \tag{21}
\]

where \(M > 0 \) is a constant and \(|\cdot|_2 \) denotes the standard norm in \(L^2(\mathbb{R}^3) \). This is also a contradiction.

In conclusion, we deduce that the (PS) sequence \(\{ u_n \} \) is bounded.

To get a convergent subsequence of the (PS) sequence, we need the following lemma.

Lemma 5. Let \(u_n \to u \) in \(E \). Then

\[
\lim_{n \to \infty} \int_{\mathbb{R}^3} \nabla u \cdot \nabla (u_n - u) dx \geq 0. \tag{22}
\]

Proof. Since \(u_n \to u \) in \(E \), we have \(\nabla u_n \to \nabla u \) in \(L^2(\mathbb{R}^3) \).

Hence,

\[
\int_{\mathbb{R}^3} \nabla u_n \cdot \nabla u dx \to \int_{\mathbb{R}^3} |\nabla u|^2 dx. \tag{23}
\]

Define \(\psi(u) = \int_{\mathbb{R}^3} |\nabla u|^2 dx \) in \(E \). It is easy to see that \(\psi \) is continuous and convex. Hence, \(\psi \) is weakly lower semicontinuous in \(E \), so that

\[
\lim_{n \to \infty} \int_{\mathbb{R}^3} |\nabla u_n|^2 dx \geq \int_{\mathbb{R}^3} |\nabla u|^2 dx. \tag{24}
\]

Consequently,

\[
\lim_{n \to \infty} \int_{\mathbb{R}^3} \nabla u \cdot \nabla (u_n - u) dx = \lim_{n \to \infty} \int_{\mathbb{R}^3} |\nabla u_n|^2 dx - \lim_{n \to \infty} \int_{\mathbb{R}^3} \nabla u \cdot \nabla u_n dx
\]

\[
\geq \int_{\mathbb{R}^3} |\nabla u|^2 dx - \int_{\mathbb{R}^3} |\nabla u|^2 dx = 0. \tag{25}
\]

The lemma is proved.

Lemma 6. \(\Phi \) satisfies the (PS) condition.

Proof. Let \(\{ u_n \} \) be a (PS) sequence. From Lemma 4, we know that \(\{ u_n \} \) is bounded in \(E \). Up to a subsequence, we may assume that \(u_n \to u \) in \(E \). Hence,

\[
\int_{\mathbb{R}^3} (a \nabla u_n \cdot \nabla V(x) u_n) dx \to \int_{\mathbb{R}^3} (a |\nabla u|^2 + V(x) u^2) dx \tag{26}
\]

\[
= |u^*|^2 - |u^-|^2.
\]

Consequently,

\[
a(1) \left(\langle \Phi'(u_n), u_n - u \rangle \right) = \int_{\mathbb{R}^3} (a \nabla u_n \cdot \nabla (u_n - u) + V(x) u_n (u_n - u)) dx + \int_{\mathbb{R}^3} |\nabla u_n|^2 dx
\]

\[
\geq \int_{\mathbb{R}^3} \left(a |\nabla u_n|^2 + V(x) u_n^2 \right) dx - \int_{\mathbb{R}^3} \langle \Phi'(u_n), V(x) u_n \rangle u_n dx + \int_{\mathbb{R}^3} |\nabla u_n|^2 dx
\]

\[
\geq \int_{\mathbb{R}^3} \left(a |\nabla u|^2 + V(x) u^2 \right) dx - \int_{\mathbb{R}^3} \langle \Phi'(u), V(x) u \rangle u dx + \int_{\mathbb{R}^3} |\nabla u|^2 dx
\]

\[
= a(1) \left(|u^+|^2 - |u^-|^2 \right) - \left(|u^+|^2 - |u^-|^2 \right) + b \int_{\mathbb{R}^3} |\nabla u|^2 dx
\]

\[
+ \int_{\mathbb{R}^3} \nabla u \cdot \nabla (u_n - u) dx - \int_{\mathbb{R}^3} f(x, u_n) (u_n - u) dx. \tag{27}
\]
Because \(\text{dim } E < \infty \), we have \(u_n^+ \to u^- \) and thus \(\|u_n^+\| \to \|u^-\| \). Collecting all infinitesimal terms, we obtain
\[
\|u_n^+\|^2 - \|u^-\|^2 = o(1) + \int_{R^3} f(x, u_n^+)(u_n^+ - u^-)dx - b \int_{R^3} \nabla u_n^+ \cdot \nabla (u_n^+ - u^-)dx.
\] (28)

We claim that
\[
\lim_{n \to \infty} \int_{R^3} f(x, u_n^+)(u_n^+ - u^-)dx \leq 0.
\] (29)

Given \(\varepsilon > 0 \). For \(r \geq 1 \), by (f1) and Hölder’s inequality, we have
\[
|u_n|_r f(x, u_n^+)(u_n^+ - u^-)dx \leq 2C \int |u_n|^{r-1}|u_n^+ - u^-|dx
\]
\[
\leq 2C r^{p-6} \int |u_n|^{r} |u_n^+ - u^-|dx
\]
\[
\leq 2C r^{p-6} |u_n|_6^r |u_n^+ - u^-|_6.
\] (30)

Since \(p < 6 \), we may fix \(r \) large enough such that,
\[
\int R^3 |u_n|_r f(x, u_n^+)(u_n^+ - u^-)dx \leq \varepsilon \frac{\varepsilon}{3},
\] (31)
for all \(n \). Moreover, it follows from (f4) that there exists \(R > 0 \) such that
\[
\int_{|x| \geq R} f(x, u_n^+)(u_n^+ - u^-)dx \leq |u_n|_2 |u_n^+ - u^-|_1 \operatorname{sup}_{|x| \leq R} \frac{|f(x, t)|}{t} \leq \varepsilon \frac{\varepsilon}{3},
\] (32)
for all \(n \). Finally, from (f1) and (f4) we deduce that, for any \(\varepsilon > 0 \), there exists \(\varepsilon > 0 \) such that
\[
|F(x, t)| \leq \varepsilon t^2 + c_0 |t|^p,
\]
\[
|f(x, t)| \leq \varepsilon |t| + c_0 |t|^{p-1}.
\] (33)

Note that \(u_n^+ \to u^+ \) in \(L^1(B_R(0)) \) for every \(s \in (2, 2^*) \). Consequently, for \(n \) large enough,
\[
\int R^3 |x| \leq R |f(x, u_n^+)(u_n^+ - u^-)dx \leq \int R^3 |x| \leq R |u_n|_2 |u_n^+ - u^-|dx + \int R^3 |x| \leq R |u_n|_2 |u_n^+ - u^-|dx
\]
\[
\leq |u_n|_2 |u_n^+ - u^-|_{C^{1/2}(\partial B_R)} + c_0 |u_n|_2 |u_n^+ - u^-|_{C^{1/2}(\partial B_R)} \leq \varepsilon \frac{\varepsilon}{3},
\] (34)

Combining (31), (32), and (34), we obtain that
\[
\int R^3 f(x, u_n^+)(u_n^+ - u^-)dx \leq \varepsilon,
\] (35)
for \(n \) large enough. Since \(\text{dim } E^- < \infty \), we obtain that (29) holds by the arbitrariness of \(\varepsilon \).

Now using Lemma 5, we deduce from (28) that
\[
\lim_{n \to \infty} \left(\|u_n^+\|^2 - \|u^-\|^2 \right) = \lim_{n \to \infty} \left(\int R^3 f(x, u_n^+)(u_n^+ - u^-)dx - b \int R^3 \nabla u_n^+ \cdot \nabla (u_n^+ - u^-)dx \right)
\]
\[
= \lim_{n \to \infty} \left(\int R^3 f(x, u_n^+)(u_n^+ - u^-)dx - \lim_{n \to \infty} \int R^3 \nabla u_n^+ \cdot \nabla (u_n^+ - u^-)dx \right)
\]
\[
\leq \lim \int R^3 f(x, u_n^+)(u_n^+ - u^-)dx \leq 0.
\] (36)

Combining this with the weakly lower semicontinuous of the norm, we have
\[
\|u^-\|^2 \leq \lim_{n \to \infty} \|u_n^+\|^2 \leq \lim_{n \to \infty} \|u_n^+\|^2 \leq \|u^-\|^2.
\] (37)

That is \(\|u_n^+\| \to \|u^-\| \). Reminding \(\|u_n\| \to \|u\| \), we get \(\|u_n\| \to \|u\| \). Thus, \(u_n \to u \) in \(E \).

3. Critical Groups and the proof of Theorem 11

Before giving the proof of Theorem 11, we recall some concepts and results of infinite dimensional Morse theory [17].

Let \(X \) be a Banach space, \(\phi : X \to \mathbb{R} \) be a C1 functional, \(u \) be an isolated critical point of \(\phi \) and \(\phi(u) = c \). Then,
\[
C_q(\phi, u) := H_q(\phi, \phi^{-1}(\{c\}) \setminus \{c\}), q = 0, 1, 2, \ldots
\] (38)

is called the qth critical group of \(\phi \) at \(u \), where \(\phi^{-1}(\{c\}) = H_q(\phi, \phi^{-1}(\{c\})) \) stands for the singular homology with coefficients in \(\mathbb{Z} \).

If \(\phi \) satisfies the (PS) condition and the critical values of \(\phi \) are bounded from below by \(\alpha \), then following Bartsch and Li [18], we call
\[
C_q(\phi, \alpha) := H_q(\phi, \alpha), q = 0, 1, 2, \ldots
\] (39)

the qth critical group of \(\phi \) at infinity. It is well known that the homology on the right hand does not depend on the choice of \(\alpha \).

Proposition 7 (see [18]). If \(\phi \in C^1(X, \mathbb{R}) \) satisfies the (PS) condition and \(C_k(\phi, 0) \neq C_k(\phi, \infty) \) for some \(k \in \mathbb{N} \), then \(\phi \) has a nonzero critical point.

Proposition 8 (see [19]). Suppose \(\phi \in C^1(X, \mathbb{R}) \) has a local linking at 0, i.e., \(X = Y \oplus Z \) and
\[
\begin{cases}
\phi(u) \leq 0 & \text{for } u \in Y \cap B^\rho,
\phi(u) \geq 0 & \text{for } u \in (Z \setminus \{0\}) \cap B^\rho,
\end{cases}
\] (40)

for some \(\rho > 0 \), where \(B_\rho = \{ u \in X : \| u \| \leq \rho \} \). If \(k = \dim Y < \infty \), then \(C_k(\Phi, 0) \neq 0 \).

For the proof of Theorem 11, we may assume the \(\Phi \) has only finitely many critical points. Since \(\Phi \) satisfies the (PS) condition, the critical group \(C_k(\Phi, \infty) \) of \(\Phi \) at infinity makes sense. To study \(C_k(\Phi, \infty) \), we need the following lemma.

Before state it, we point out that the proof of the following lemma is quite different and more general ([16], Lemma 2.4), because in our case, the working Sobolev space is \(H^1(\mathbb{R}^3) \), which cannot compactly embedded into \(L^2(\mathbb{R}^3) \).

Lemma 9. There exists \(A > 0 \) such that, if \(\Phi(u) \leq -A \), then

\[
\frac{d}{dt} \Phi(tu) < 0. \tag{41}
\]

Proof. Otherwise, there exists a sequence \(\{ u_n \} \subset E \) such that \(\Phi(u_n) \leq -n \) but

\[
\left\langle \Phi'(u_n), u_n \right\rangle = \frac{d}{dt} \bigg|_{t=1} \Phi(tu) \geq 0. \tag{42}
\]

Consequently,

\[
\| u_n^* \|^2 - \| u_n \|^2 \leq \left(\| u_n^* \|^2 - \| u_n^+ \|^2 \right) + \int_{\mathbb{R}^3} |f(x, u_n)u_n - 4F(x, u_n)|dx \\
= 4\Phi(u_n) - \left\langle \Phi'(u_n), u_n \right\rangle \leq -4n. \tag{43}
\]

Let \(v_n = \| u_n \|^{-1} u_n \) and \(v_n^+ \) be the orthogonal projection of \(v_n \) on \(E^+ \). Then, \(v_n^+ \rightarrow v^+ \) for some \(v^+ \in E^+ \), because \(\dim E^+ < \infty \).

If \(v^+ \neq 0 \), then for some \(v \in E \setminus \{ 0 \} \) we have \(v_n \rightarrow v \) in \(E \). Similar to (20), we obtain

\[
\int_{\mathbb{R}^3} \frac{f(x, u_n)u_n}{\| u_n \|^4} dx \geq 4 \int_{\mathbb{R}^3} \frac{F(x, u_n)}{\| u_n \|^4} dx \geq 4 \int_{\mathbb{R}^3} \frac{F(x, u_n)}{\| u_n \|^4} v_n^+ dx \rightarrow +\infty. \tag{44}
\]

Hence, by (42), we get

\[
0 \leq \left\langle \Phi'(u_n), u_n \right\rangle \| u_n \|^2 - \| u_n \|^2 + b\| u_n \|^2_2 \int_{\mathbb{R}^3} \frac{f(x, u_n)u_n}{\| u_n \|^4} dx \\
\leq 1 + M - \int_{\mathbb{R}^3} f(x, u_n)u_n dx \rightarrow -\infty,
\]

a contradiction. Therefore, \(v^+ = 0 \). From

\[
\| v_n^+ \|^2 + \| v_n^- \|^2 = 1, \tag{45}
\]

we see that \(\| v_n^+ \| \rightarrow 1 \). Consequently, for \(n \) large enough,

\[
\| u_n^* \| = \| u_n \| \| v_n^+ \| \geq \| u \| \| v_n^+ \| = \| u^* \| , \tag{46}
\]

violating (43). Hence, the desired result is proved.

Lemma 10. \(C_q(\Phi, \infty) = 0 \) for all \(q = 0, 1, 2, \cdots \)

Proof. Let \(B = \{ v \in E : \| v \| \leq 1 \} \), \(S = \partial B \) be the unit sphere in \(E \), and \(A > 0 \) be the number given in Lemma 9. Without loss of generality, we may assume that

\[
-A < \inf_{\| u \| \leq 2} \Phi(u). \tag{47}
\]

Using (8), it is clear that for any \(v \in S \)

\[
\Phi(sv) \rightarrow -\infty \text{ as } s \rightarrow +\infty. \tag{48}
\]

So there is \(s_0 > 0 \) such that \(\Phi(s_0v) = -A \). Set \(u = s_0v \), then a direct computation and Lemma 9 gives

\[
\frac{d}{ds} \bigg|_{s=s_0} \Phi(sv) = \frac{1}{s_0} \frac{d}{ds} \bigg|_{s=1} \Phi(tu) < 0. \tag{49}
\]

By the implicit function theorem, \(T : v \mapsto s_0 \) is a continuous function on \(S \). Using the function \(T \), as in [20–22], we can construct a strong deformation retract \(\eta : E \setminus B \rightarrow \Phi_{-A} \),

\[
\eta(u) = \begin{cases} u, & \text{if } \Phi(u) \leq -A, \\ T\left(\frac{u}{\| u \|}\right) \frac{u}{\| u \|} & \text{if } \Phi(u) > -A, \end{cases} \tag{50}
\]

and deduce

\[
C_q(\Phi, \infty) = H_q(E, \Phi_{-A}) = H_q(E, E \setminus B) = 0, \quad q = 0, 1, 2, \cdots. \tag{51}
\]

Now, we are ready to prove our main result.

Proof of Theorem 11. It follows from (V) and (f2) that as \(\| u \| \rightarrow 0 \),

\[
\Phi(u) = \frac{1}{2} \left(\| u^+ \|^2 - \| u^- \|^2 \right) + o(\| u \|^2). \tag{52}
\]

Hence, there exists \(\rho > 0 \) such that \(\Phi \) is positive in \(E^+ \setminus \{ 0 \} \) \(\cap B_\rho \) and negative in \(E^- \setminus \{ 0 \} \) \(\cap B_\rho \) that is, \(\Phi \) has a local linking with respect to the decomposition \(E = E^+ \oplus E^- \).

Therefore, Proposition 8 yields

\[
C_k(\Phi, 0) \neq 0, \tag{53}
\]

where \(k = \dim E^- \). By Lemma 10, \(C_k(\Phi, \infty) = 0 \). Applying Proposition 7, we obtain that \(\Phi \) has a nonzero critical point. The proof of Theorem 11 is completed.
Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (no. 11701251, no. 11671185, and no. 11771195) and the Natural Science Foundation of Shandong Province (no. ZR2017BA015 and no. ZR2019YQ04).

References
[1] G. Kirchhoff, Vorlesungen/Huber, Mechanik. Teubner, Leipzig, 1883.
[2] S. Liu and J. Zhou, “Standing waves for quasilinear Schrödinger equations with indefinite potentials,” Journal of Differential Equations, vol. 256, no. 9, pp. 3970–3987, 2018.
[3] J.-L. Lions, “On some Questions in Boundary Value Problems of Mathematical Physics,” in North-Holland Mathematics Studies, vol. 30, pp. 284–346, North-Holland publishing company, North-Holland, Amsterdam-New York, 1978.
[4] C. O. Alves, “Nonlinear perturbations of a periodic Kirchhoff equation in RN,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 5, pp. 2750–2759, 2012.
[5] W. Chen, Z. Fu, and Y. Wu, “Positive solutions for nonlinear Schrödinger-Kirchhoff equations in R3,” Applied Mathematics Letters, vol. 104, article 106274, 2020.
[6] G. M. Figueiredo, N. Ikoma, and J. R. Santos Júnior, “Existence and concentration result for the Kirchhoff type equations with general nonlinearities,” Archive for Rational Mechanics and Analysis, vol. 213, no. 3, pp. 931–979, 2014.
[7] X. He and W. Zou, “Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3,” Journal of Differential Equations, vol. 252, no. 2, pp. 1813–1834, 2012.
[8] S. Liu and W. Yue, “Standing waves for 4superlinear Schrödinger-Poisson systems with indefinite potentials,” Bulletin of the London Mathematical Society, vol. 49, no. 2, pp. 226–234, 2017.
[9] Q. Li, X. Du, and Z. Zhao, “Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in R3,” Journal of Mathematical Analysis and Applications, vol. 477, no. 1, pp. 174–186, 2019.
[10] K. Perera and Z. Zhang, “Nontrivial solutions of Kirchhoff-type problems via the Yang index,” Journal of differential equations, vol. 221, no. 1, pp. 246–255, 2006.
[11] J. Sun and W. Tsung-Fang, “Ground state solutions for an indefinite Kirchhoff type problem with steep potential well,” Journal of Differential Equations, vol. 256, no. 4, pp. 1771–1792, 2014.
[12] Z. Q. Wang, “On a superlinear elliptic equation,” Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 8, no. 1, pp. 43–57, 1991.
[13] Y. Wu and S. Liu, “Existence and multiplicity of solutions for asymptotically linear Schrödinger-Kirchhoff equations,” Nonlinear Analysis: Real World Applications, vol. 26, pp. 191–198, 2015.
[14] A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” Journal of Functional Analysis, vol. 14, no. 4, pp. 349–381, 1973.
[15] X. Wu, “Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN,” Nonlinear Analysis: Real World Applications, vol. 12, no. 2, pp. 1278–1287, 2011.
[16] S. Chen and S. Liu, “Standing waves for 4superlinear Schrödinger-Kirchhoff equations,” Mathematical Methods in the Applied Sciences, vol. 38, no. 11, pp. 2185–2193, 2015.
[17] K.C. Chang, “Infinite-dimensional Morse theory and multiple solution problems,” in Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 1993.
[18] T. Bartsch and S. Li, “Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,” Nonlinear Analysis: Theory, Methods & Applications, vol. 28, no. 3, pp. 419–441, 1997.
[19] S. Liu, “Existence of solutions to a superlinear p-Laplacian equation,” Electronic Journal of Differential Equations (EJDE)[electronic only], vol. 2001, 2001.
[20] Z. Liu and S. Guo, “Positive solutions for asymptotically linear Schrödinger-Kirchhoff-type equations,” Mathematical Methods in the Applied Sciences, vol. 37, no. 4, pp. 571–580, 2014.
[21] G. Li and H. Ye, “Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3,” Journal of differential equations, vol. 257, no. 2, pp. 566–600, 2014.
[22] M. Willem, “Minimax theorems,” in Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston Inc., Boston, MA, 1996.