Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater

Eric B. Norman*, Christopher T. Angell, Perry A. Chodash

Department of Nuclear Engineering, University of California, Berkeley, California, United States of America

Abstract
We have observed fallout from the recent Fukushima Dai-ichi reactor accident in samples of rainwater collected in the San Francisco Bay area. Gamma ray spectra measured from these samples show clear evidence of fission products \(^{131}\text{I},^{132}\text{I},^{132}\text{Te}\), and \(^{134}\text{Cs}\). The activity levels we have measured for these isotopes are very low and pose no health risk to the public.

Introduction
Following the recent accident at the Fukushima Dai-ichi nuclear power plant in Japan, radioactive contamination has been observed near the reactor site. In order to search for more widespread distribution of radioactive material, we collected rainwater samples in Berkeley, Oakland, and Albany, California and examined them for the presence of above normal amounts of radioactivity.

Methods
Rainwater samples were collected from March 16–26, 2011 by placing plastic containers outside in the Oakland and Berkeley hills and in Albany. Collection periods varied from a few to approximately 12 hours. Following collection, each sample was placed directly into a Marinelli beaker for gamma-ray counting. This type of re-entrant cylindrical container fits directly over a gamma-ray detector and allows liquid samples to be counted with relatively high detection efficiency. No chemical or physical processing of any kind was done to the rainwater samples before counting.

Each sample was gamma-ray counted using a 60% relative efficiency high-purity germanium detector. The Marinelli beaker was placed directly over the end-cap of the detector. The detector was shielded with 10–15 cm of lead in order to reduce the gamma-ray background from natural sources. Gamma-ray energy spectra from 0.02–1.58 MeV were collected in 16384 channels using the ORTEC Maestro data acquisition system. Counting periods varied from 1–24 hours. Energy calibrations were performed using standard gamma ray sources. The efficiency of the detector for the Marinelli geometry was calibrated using the technique described by Perillo Isaac et al. [1]. Measured masses of high-purity \(\text{LuCl}_3\), \(\text{LaCl}_3\), and \(\text{KCl}\) obtained from Alfa-Aesar were dissolved in 1 liter of water and placed into a Marinelli beaker. This mixture of chemicals provides known emission rates of gamma rays at 88, 202, 307, 789, 1436, and 1461 keV from the decays of \(^{176}\text{Lu}\), \(^{138}\text{La}\), and \(^{40}\text{K}\), respectively [2]. This source was then counted in the same manner as the rainwater samples. This source thus provided an efficiency curve that spans the energy range of interest for our measurements. Based on these measurements, our photo-peak detection efficiency at 364 keV was determined to be 0.026 and at 723 keV to be 0.018.

Results
Collection of rainwater started on the night of March 15/16. This sample showed no evidence of fission-fragment gamma-rays. From this spectrum, a 1-sigma upper limit on the \(^{131}\text{I}\) activity concentration in this sample was established to be \(<0.016 \text{ Bq L}^{-1}\) \((<0.43 \text{ pCi L}^{-1})\). The first sample which showed activity above background was collected on March 18. Figure 1(a) illustrates the gamma-ray spectrum we observed from a 24-hour count of a 1-liter sample of rainwater collected in Oakland on March 18. For comparison, we show in Figure 1(b) the spectrum we observed from a 24-hour count of a 1-liter sample of Berkeley tap water. Note that the gamma-ray lines seen in figure 1(b) do not originate from the tap water, but are the part of the natural background present in our laboratory environment. The rainwater spectrum shown in Figure 1(a) clearly shows the presence of \(^{131}\text{I}\), \(^{132}\text{I}\), \(^{132}\text{Te}\), and \(^{134}\text{Cs}\). These are relatively volatile fission fragments produced with large cumulative yields from the fission of \(^{235}\text{U}\) and \(^{239}\text{Pu}\) [3]. The half-lives (2) of \(^{132}\text{Te}\) (3.26 days) and \(^{131}\text{I}\) (8.04 days) are sufficiently short in order for them to present now, that they must have been released from the reactor core(s) rather than from spent fuel repositories. The short-lived \(^{132}\text{I}\), \(t_{1/2} = 2\) hours [2], is only present in our water samples because of the in-situ beta decay of \(^{132}\text{Te}\). We see no evidence for the presence of more refractory fission fragments such as \(^{95}\text{Zr}\), \(^{99}\text{Mo}\), \(^{136}\text{Ba}\), or \(^{144}\text{Ce}\) that are also produced with large yields.

From each of our measured spectra, the observed counting rates were determined for the major gamma-ray lines seen from each of the above-mentioned fission fragments. Our measured efficiency curve was then used to convert these counting rates into activities...
per liter of water. The activities were corrected for decay back to the time of collection. The results of our measurements as a function of time of sample collection for 131,132I, 132Te, and 134,137Cs are shown in Figure 2. Note that the activities of all the other observed fission fragments are substantially smaller than that of 131I and all seem to track each other from day to day. The time...
dependence of the activities we observe in San Francisco Bay area rainwater is undoubtedly a complicated function of many variables including release rates at the Fukushima Dai-ichi reactor site, wind patterns and velocities, as well as local weather conditions.

Discussion

Because of their short half lives, 132Te and 131I quickly reach their saturation activity levels in the course of normal reactor operation. The cumulative yields of 132Te and 131I from the thermal fission of 235U are 4.30% and 2.89%, respectively [3]. For 239Pu thermal fission, these same cumulative yields are 5.14% and 3.86%, respectively [3]. Thus at the cessation of normal reactor operation, the ratio of activities of 132Te/131I should be 4.30/2.89 = 1.49 (from 235U fission) or 5.14/3.86 = 1.33 (from 239Pu fission). Once normal reactor operations cease, these two activities decrease in time with their respective half lives. Our measured ratios of these two activities can be compared to the expectations from free decay to search for chemical fractionation effects in the processes that led to the release of the isotopes from the reactor(s) and their subsequent transport from Japan to California. For example, 10 days after the cessation of fission production, the ratio of 132Te/131I activity should be approximately 0.61 (0.54) from a 235U (239Pu) fission source. From the data shown in Figure 2, it can be seen that the ratios of 132Te/131I activities we observe are substantially less than what would be expected if Te and I were released and transported with equal efficiencies. Previous studies of the relative volatilities of Te and I [4] show that Te is much less volatile than I and thus much less tellurium should have been released than iodine. The results we obtained are consistent with this expectation.

The maximum concentration of 131I we observed in the rainwater was 16 Bq L$^{-1}$ (430 pCi L$^{-1}$ from the sample collected on March 24. This maximum activity concentration can be compared to the US EPA limit on 131I allowed in drinking water of 3 Bq L$^{-1}$ (81 pCi L$^{-1}$) [5]. If a person were to drink a typical amount of water per day containing the EPA limit of 131I, then in one year he or she would receive a whole body dose of <0.04 mSv (4 mrem). This dose should be compared to the US average annual radiation dose of 6.2 mSv (620 mrem) [6]. Due to the short half life of 131I, it is extremely unlikely that the public will be exposed to anywhere near these levels in drinking water. Thus the levels of fallout we have observed in San Francisco Bay area rainwater pose no health risk to the public. A preliminary version of this manuscript was posted online on March 30, 2011 [7].

Note added in proof

After this manuscript was originally submitted, similar gamma-ray counting measurements were performed on samples of weeds collected in Oakland and on vegetables and milk sold commercially in the San Francisco Bay area. In some of these samples, low levels of the same fission products observed in the rainwater were also detected. The levels of activity observed in these samples also pose no hazard to the public.

Acknowledgments

We wish to thank Ren P. Angell for his assistance in collecting the Albany water samples.

Author Contributions

Conceived and designed the experiments: EBN. Performed the experiments: EBN CTA PAC. Analyzed the data: EBN CTA PAC. Contributed reagents/materials/analysis tools: EBN CTA PAC. Wrote the paper: EBN.

References

1. Perillo Isaac MC, Hurley D, McDonald RJ, Norman EB, Smith AR (1997) A natural calibration source for determining germanium detector efficiencies. Nucl Instr & Meth A 397: 310–316.
2. Browne E, Firestone RB (1986) Table of Radioactive Isotopes. New York: Wiley. 929 p.
3. England TR, Rider BF (1993) Fission product yields per 100 fissions for thermal neutron induced fission decay. Los Alamos National Lab. Report LA-UR-94-3106, ENDF-349.
4. Fuji T, Obata K, Kubota T, Kamiya M, Yamana H (2004) Volatility of tellurium and various fission products in heated nitric acid solutions. J Radioanal and Nucl Chem 262: 531–534.
5. US Environmental Protection Agency website. Available: http://water.epa.gov/drink/contaminants/index.cfm#Radionuclides Accessed 2011 Aug 30 and Agency for Toxic Substances & Disease Registry website. Available: http://www.atsdr.cdc.gov/csem/csem.asp?csem=23&po=12#tocbookmark0 Accessed 2011 Aug 30.
6. US Nuclear Regulatory Commission website. Available: http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/bio-effects-radiation.html Accessed 2011 Aug 30.
7. Norman EB, Angell CT, Chodash PA (2011) Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater. arXiv:1103.5954.