Functional changes in the thyroid gland caused by the effect of cadmium in males of (Mus musculus) and the therapeutic role of selenium

IBRAHIM N. AL-SUWITI and YAHYA M. SHOTOP

Department of Zoology, College of Sciences, King Saud University
P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
Corresponding Author Email: Ibrahm221@hotmail.com
http://dx.doi.org/10.22147/jusps-B/310401

Acceptance Date 20th March, 2019, Online Publication Date 09th April, 2019

Abstract

Three male Mus musculus groups were exposed to cadmium and selenium for a period of 45 days where is the first one was control. The result showed that increase in the cadmium accumulation in the thyroid gland increase, its weight and reduce the T4 hormone level wither the TSH level were increased. This study showed that Se can alleviated the effect.

Key words: cadmium, selenium, thyroid, thyroid hormones, Mus musculus.

Introduction

The thyroid gland is an endocrine gland that creates and secrete regulatory hormones such as thyroxine (T4) and triiodothyronine (T3), which are synthesized in the follicular cells. These hormones are necessary to increase metabolism in most cells. Meeker, et al.,1 Congenital cells of calcitonin are also excreted in connective tissues that play an important role in regulating calcium and phosphorus metabolism. Luo and Hendryx2, Swoucki,3 Cadmium is among 126 priority pollutants and has a strong tendency to accumulate in various devices, including the thyroid gland. Chen, et al.,4 Cadmium affects kidney, skeletal, and respiratory systems and is classified among the first group of carcinogens by the International Agency for Research on Cancer. Järup and Åkesson5.

Exposure to cadmium results in many cellular or metabolic effects in a variety of body tissues, and

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
reduced growth rates. Hill, et al., 6 atrophy and paralysis in the testis. Parizek, 7 and kidney damage. Axelsson and Pistrick, 8 and weak function liver and pancreas. Rastogi and Singhal, 9 and the thyroid gland. Nishiyama and Takata, 10 Pilet, et al., 11.

The endocrine system has been found to be affected by cadmium, especially the thyroid gland, pituitary gland, pancreas and testicles. Gupta, and Kar, 12 However, it was found that the adrenal gland has a tendency to accumulate more cadmium than any other endocrine. Killmer, 13.

Many studied showed that cadmium can accumulate in the thyroid gland causing increase in it's weight and increases the TSH level while T4 may reduced. Hammouda, et al., 14.

Cadmium can also be a major contributor to autoimmune disease in the thyroid gland. Nishiyama and Takata, 10.

In animal studies, cadmium was associated with lower levels of T4 in the serum and has been suggested to enter it in the removal of iodine. Hammouda, et al., 14 Mori, 15.

Selenium treatment partially protects the reduction of cadmium in the T4 level in the blood, by maintaining the normal weight of the thyroid gland and by reducing the concentration of cadmium in the thyroid gland. Hammouda, et al., 14.

Studies indicate the devastating effect of heavy metals on impaired thyroid function and the need for further studies to elucidate the mechanism of action. Darras, 16.

Materials and Methods

Experimental Design:
The experiment was conducted over 45 days. Thirty of the Male Mus musculus was used, which weighs 100 ± 15 g initial body weight, and was modified for two weeks before the start of the experiment in private cages, it was well ventilated, And under standard laboratory conditions.
The lighting period was 14 hours to 10 hours and the temperature was 25 ± 1 °C.
They were divided into three groups, and the first group was the control group, it consists of 10 mice without any treatment.
The second group consisted of 10 mice and treated with cadmium at a rate of 100 ppm.
The third group was treated with cadmium 100 ppm and selenium 0.1 ppm.

Assay for Cd Concentration in Thyroid:
The concentration of cadmium in the thyroid was assessed by method. Current, 17 and Using a device Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
Thyroid was digested with nitric acid at 200°C for 25 minutes, and the volume was then adjusted to 200 ml with deionized water.

Hormone Analysis:
Using commercially available T4-RIA- kit and TSH RIA-kit the T4 and TSH serum levels were measured radio immunologically All assays were performed in the Pollution Research Laboratory.

Statistical Analysis:
Data were analyzed using IBM – SPSS (Statistical Package for the Social Sciences) version 22. One-way analysis of variance (ANOVA) was used for treatments to visualize the interactions effects. The level of significance is the standard.
Results

Body Weight Gain:

In Figure 1. The body weight gains of mice receiving Cd alone and supplemented with Se during the experimental period were similar to that noted in the control group.

![Body Weight Gain](image)

Figure 1. Shown the Body weight gains in control (C) and mice exposed for 45 days to cadmium (Cd, 100 ppm Cd), cadmium +selenium (Cd + Se, 100 ppm Cd + 0.1 ppm Se). Means from ten animals in each group.

Thyroid Weight:

In Figure 2. shown the Relative thyroid weight has significantly decreased (p < 0.02) in Cd-exposed mice as compared to control mice. Se supply had no significant effect on the Cd-induced decrease in the Relative thyroid weight.

![Relative thyroid weight (RTW)](image)

Figure 2. shown the Relative thyroid weight of control (C) and mice exposed for 45 days to cadmium (Cd, 100 ppm Cd), cadmium + selenium (Cd + Se, 100 ppm Cd + 0.1 ppm Se). Means ± SE from ten mice in each group. Significance Means: *p < 0.05; **p < 0.01.
Thyroid Cd Concentration:

In Figure 3. There was a significant increase in cd content in the thyroid gland in the Cd-exposed group compared to the control mice, and there were no significant differences between the concentration of Cd and Se. However, a significant reduction in Cd concentration in the thyroid gland was detected in the Cd and Se group compared with the Cd-treated group.

![Cd Concentration in Thyroid](image)

Figure 3. As shown the Cadmium concentrations in the thyroid control (C) and mice exposed for 45 days to cadmium (200 ppm Cd), cadmium + selenium (100 ppm Cd + 0.1 ppm Se). Means ± SE from ten animals in each group. Significance Means: ***p < 0.0001.

Serum Hormone Levels:

In Figure 4. The treatment of Cd-exposed mice alone decreased significantly (p < 0.0001) the serum T4 level, Serum T4 levels of the Cd + Se (p < 0.0001) group were significantly higher in comparison to the Cd-exposed mice but significantly (p < 0.0001) lower when compared with control mice.

![T4 concentrations](image)

Figure 4. As shown the Serum tetra-iodothyronine (T4) concentrations in control (C) and rats exposed for 45 days to cadmium (Cd, 100 ppm Cd), cadmium + selenium (Cd + Se, 100 ppm Cd + 0.1 ppm Se). Means ± SE from ten animals in each group. Significance Means: ***p < 0.0001.
In Figure 5. As shown the serum TSH level was significantly increased (p < 0.01) in Cd-exposed rats compared to control mice. The treatment of Cd-exposed rats with Se had no significant effect on the Cd-induced increase in the serum TSH level.

![TSH concentrations](image)

Figure 5. shown the Serum thyroid-stimulating hormone (TSH) concentrations in control (C) and mice exposed for 45 days to cadmium (Cd, 100 ppm Cd), cadmium + selenium (Cd + Se, 100 ppm Cd + 0.1 ppm Se). Means ± SE from ten animals in each group. Significance means *p < 0.05; **p < 0.01.

Discussion

This study shows that, selenium reduces the effect of cadmium in thyroid gland, leading to it’s dysfunction. Results also showed that Cd accumulation in the thyroid gland, leading to an increase in it’s weight Similar result were shown in the Mus musculus. Piłat-Marcinkiewicz, were observed in the follicles thyroid gland increase in the size. The mice were treated with (100 ppm, Cd and 0.1 ppm, Se) For 45 days showed an increase in body weight, this may be because the mixture of Cd and Se can cause watee. Hammouda, et al., The results indicate that cadmium has a significant effect on concentrations of thyroid hormones in the serum which is similar to the study of. Goyer, et al., The effect may be because of it can be readily absorbed and accumulated in tissue for a long time.

The results of this study showed a significant decrease in the level of (T4) in the group treated with cadmium compared to control group. The decrease in the hormone level may be because due to Cd interference with the pituitary regulation of thyroid hormones production and secretion, in this organelle might disturb the oxidative phosphorylation and loss it’s energy supply caused inhibition of synthesis and release of thyroid hormones. Kelly,.

The increase in (TSH) level is probably because of the decrease of serum T4 level, and a tendency of increased TSH concentration in serum may indicate the effects of cadmium on pituitary regulation of production and secretion of thyroid hormones and this corresponds to a study. Piłat-Marcinkiewicz, et al., and the results were also consistent with the study. Yousif and Asma, as cadmium inhibits the production of thyroid hormones.

This study deals with the role of selenium in mitigating the effect of cadmium on Thyroid function of mice, in many studies Se has been shown to have an effective effect against the toxicity caused by cadmium.
Shamberger.22

Selenium is an essential microelement with antioxidant properties that bind cadmium and other toxic elements such as mercury or arsenic. Lazarus.23 In conclusion, exposure to cadmium caused a number of toxic damages to thyroid gland. It is recommended to link cadmium-producing industries with appropriate methods for waste disposal to reduce hazardous effects of heavy metals generally, and cadmium specifically. The combination of cadmium and selenium was effective in reducing the cumulative toxic effects of cadmium in serum hormones levels.

Further studies are recommended to determine the mechanism Se in reducing the toxic effects of cadmium and the other of heavy elements.

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

1. Meeker, J.D., M.G Rossano, B. Protas, M.P. Diamond, E. Puscheck, D. Daly, J.J. Wirth, Multiple metals predict prolactin and thyrotropin (TSH) levels in men. \textit{Environmental research}, 109(7), 869-873 (2009).
2. Luo, J. and M. Hendryx, Relationship between blood cadmium, lead, and serum thyroid measures in US adults–the National Health and Nutrition Examination Survey (NHANES) 2007–2010. \textit{International journal of environmental health research}, 24(2), 125-136 (2014).
3. Swoucki, B., Evaluation of the role of mammalian thyroid parafollicular cells. \textit{Acta histochemica}, 97(4), 389-399 (1995).
4. Chen, A.S., S.E. Kim, K. Chung, N. Dietrich, Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health and Nutrition Examination Survey, 2007–2008. \textit{Environmental health perspectives}, 121(2), 181-186 (2012).
5. Järup, L. and A. Åkesson, Current status of cadmium as an environmental health problem. \textit{Toxicology and applied pharmacology}, 238(3), 201-208 (2009).
6. Hill, C.H., G. Matrone, W.L. Payne, and C.W. Burher, In vivo interactions of cadmium with copper, zinc and iron. \textit{The Journal of nutrition}, 80(3), 227-235 (1963).
7. Parizek, J., The destructive effect of cadmium ion on testicular tissue and its prevention by zinc. \textit{Journal of Endocrinology} 15(1), 56-63 (1957).
8. Axelsson, B. and M. Pistcator, Renal damage after prolonged exposure to cadmium: an experimental study. \textit{Archives of Environmental Health: An International Journal}, 12(3), 360-373 (1966).
9. Rastogi, R.B. and R.L. Singhal, Effect of chronic cadmium treatment on rat adrenal catecholamines. \textit{Endocrine research communications}, 2(1), 87-94 (1975).
10. Nishiyama, S. and T. Takata, Effects of cadmium on the level of serum corticosterone and adrenocortical function in male and female rats. \textit{Research communications in chemical pathology and pharmacology}, 37(1), 65-79 (1982).
11. Pilet, M., M. Brzoska, B. Sawicki, Histological evaluation of the thyroid structure after co-exposure to cadmium and ethanol. \textit{Roczniki Akademii Medycznej w Białymstoku} (1995), 49, 152-154 (2004).
12. Gupta, P. and A. Kar, Cadmium induced thyroid dysfunction in chicken: hepatic type I iodothyronine 52 - monodeiodinase activity and role of lipid peroxidation. \textit{Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology}, 123(1), 39-44 (1999).
13. Killmer, W.E., Uptake and retention of cadmium-109 in the pituitary, the adrenals and the thyroid of the laboratory rat. \textit{The International journal of applied radiation and isotopes}, 31(10), 607-609 (1980).
14. Hammouda, F., I. Messaoudi, J. El Hani, T. Baati, K. Said, A. Kerkeni, Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat. *Biological trace element research, 126*(1-3), 194 (2008).

15. Mori, K., K. Yoshida, S. Hoshikawa, S. Ito, M. Yoshida, M. Satoh, Effects of perinatal exposure to low doses of cadmium or methylmercury on thyroid hormone metabolism in metallothionein-deficient mouse neonates. *Toxicology, 228*(1), 77-84 (2006).

16. Derras, V.M., Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. *The Cerebellum, 7*(1), 26-37 (2008).

17. Current Method., Analysis of Foods for As, Cd, Cr, Hg and Pb by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). CFSAN/ORS/DBC/CHCB April 25 (2011).

18. Pilat-Marcinkiewicz, B., B. Sawicki, M. M. Brzoska, J. Moniuszko-Jakoniuk, Effect of chronic administration of cadmium on the rat thyroid: radioimmunological and immunohistochemical studies. *Folia histochemica et cytobiologica, 40*(2), 189-190 (2002).

19. Goyer, R. A., *Metal Toxicology: Approaches and Methods*. Elsevier (2016).

20. Kelly, G.S., Peripheral metabolism of thyroid hormones: a review. *Alternative medicine review, 5*(4), 306-306 (2000).

21. Yousif, A. S., and A. A. Asma (2009). Effects of cadmium (Cd) and lead (Pb) on the structure and function of thyroid gland. *Afr J Environ Sci Technol, 3*(3), 78-85.

22. Shamberger, R. J. (1983). Selenium in health and disease. *In Biochemistry of selenium* (pp. 207-271). Springer, Boston, MA (1983).

23. Lazarus, M., Cadmium and selenium interaction in mammals. *Archives of Industrial Hygiene and Toxicology, 61*(3), 357-369 (2010).