Inherited breast cancer predisposition in Asians: multigene panel testing outcomes from Singapore

Edward SY Wong1,10, Sandhya Shekar1,10, Marie Met-Domestici2, Claire Chan1, Melody Sze1, Yoon Sim Yap2,3,4, Steven G Rozen5, Min-Han Tan2,6, Peter Ang2,7, Joanne Ngeow2,3,4,11 and Ann SG Lee1,8,9,11

Genetic testing for germline mutations in breast cancer predisposition genes can potentially identify individuals at a high risk of developing breast and/or ovarian cancer. There is a paucity of such mutational information for Asians. Panel testing of 25 cancer susceptibility genes and BRCA1/2 deletion/duplication analysis was performed for 220 Asian breast cancer patients or their family members referred for genetics risk assessment. All 220 participants had at least one high-risk feature: having a family history of breast and/or ovarian cancer in first- and/or second-degree relatives; having breast and ovarian cancer in the same individual or bilateral breast cancer; having early-onset breast cancer or ovarian cancer (<40 years of age). We identified 67 pathogenic variants in 66 (30.0%) patients. Of these, 19 (28.3%) occurred in BRCA1, 16 (23.9%) in BRCA2, 7 (10.4%) in PALB2, 6 (9.0%) in TP53, 2 (3.0%) in CDH1 and 15 (22.4%) in other predisposition genes. Notably, 47.8% of pathogenic variants were in non-BRCA1/2 genes. Of the 66 patients with pathogenic mutations, 63.6% (42/66) were under the age of 40 years. Family history of breast and/or ovarian cancer is enriched in patients with BRCA1/2 pathogenic variants but less predictive for non-BRCA1/2 related pathogenic variations. We detected a median of three variants of unknown significance (VUS) per gene (range 0–21). Custom gene panel testing is feasible and useful for the detection of pathogenic mutations and should be done in the setting of a formal clinical cancer genetics service given the rate of VUS.

Results

Study population

Patients suspected of hereditary breast cancer in this study were referred from Singapore and the region for genetic risk assessment at the National Cancer Centre Singapore. Of the patients with established ethnicity, 181 (82.3%) were Chinese, 17 (7.7%) Malay, and 6 (2.7%) of South Indian descent (Table 1). The remaining 16 (7.3%) were of Burmese, Eurasian, Japanese, Filipino, Vietnamese and other races, respectively. Age at diagnosis of patients with breast and/or ovarian cancer ranged from 19 to 72 years, with an average age of 39 years. Of the 120 patients with

1Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore; 2Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; 3Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore; 4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; 5Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore; 6Division of Biodevices and Diagnostics, Institute for Bioengineering and Nanotechnology, Singapore, Singapore; 7OncoCare Cancer Centre, Mount Elizabeth Novena Specialist Centre, Singapore, Singapore; 8Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore and 9Office of Clinical & Academic Faculty Affairs, Duke-NUS Graduate Medical School, Singapore, Singapore.

10These authors contributed equally to this work.

11Joint Senior Authors.

Received 21 August 2015; revised 12 October 2015; accepted 14 October 2015

© 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited
Germline mutations in Asian breast cancer

ESY Wong et al

Table 1. Characteristics of the study participants

Characteristics	Study participants	n = 220
Race/ethnicity		
Chinese	181	82
Malay	17	8
Indonesians	7	3
Indians	5	2.5
Sri Lankan	1	0.5
Vietnamese	3	1
Burmese	1	0.5
Filipino	1	0.5
Japanese	1	0.5
Eurasian	1	0.5
Other races	2	1
Personal history of breast cancer		
Unilateral	177	80
Bilateral	18	8
Age at first breast cancer diagnosis, years		
Mean	46	
Median	50.5	
Range (unknown age for 3 patients)	15–65	
Age at ovarian cancer diagnosis, years		
Mean	46	
Median	50.5	
Range (unknown age for 3 patients)	15–65	
Family history of breast cancer	104	47
Family history of ovarian cancer	16	7

Available family history information, 104 (86.7%) had at least one first- or second-degree relative with breast cancer, and 16 (13.3%) had a relative with ovarian cancer.

Germline mutations

All coding exons and consensus splice sites of 25 known cancer predisposition genes were screened for mutations in the 220 patients. Overall, 67 pathogenic mutations were identified in 66 patients (30.0% (66/220); Table 2). Eight mutations were detected in more than 1 patient, and 10 patients were carriers for more than one mutation (Table 2). Of these, 19 (28.4%) occurred in patients. Overall, 67 pathogenic mutations were identified in 66 patients (30.0% (66/220); Table 2). Eight mutations were detected in 10.5% (23/220) of patients, including

BRCA1	BRCA2	PALB2	PMS2	PTEN	RAD51C	RAD51D	TP53
19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4

Manchester scores were available for 56 of 66 individuals with deleterious mutations, and 124 of 154 individuals with no mutations.

Family history

We also evaluated whether patients with mutations in the 25 predisposition genes were associated with a greater family history of breast and/or ovarian cancers than non-mutated patient cases (Table 2). Patients with BRCA1 mutations were enriched for a family history of breast (5/23 (21.7%)) and ovarian cancers (2/23 (8.7%)), whereas patient cases with BRCA2 mutations were enriched for a family history of breast (7/17 (41.2%)) but none of the family members had ovarian cancers. (Table 2). This is reflected in the differences in Manchester and Boadicea scores seen between the two groups of patients (Table 3). However, patient cases with mutations in the non-BRCA1/2 genes were not significantly associated with an enriched family history for either breast or ovarian cancer (Table 2). In particular, only 8 (24.2% (8/33)) non-BRCA1/2 gene mutation carriers had a family history of breast or ovarian cancer.

Variants of unknown significance

A total of 94 VUS were identified in 23 genes in 96 of 220 participants. Per participant, the average number of VUS across all genes was 0.67 (s.d., 0.9) (Figure 3a). Of the 220 participants, 103 (46.8%) had at least one VUS among the 25 genes sequenced. Per gene, the median number of VUS detected across all 220 participants was 3, ranging from zero (PTEN and NBN) to 21 (ATM; Figure 3b). Among the 7 high-risk genes, 10 VUS were found in BRCA1, 15 in BRCA2, 10 in PALB2, 2 in CDH1, 2 in STK11, 1 in TP53 and none in PTEN. In the remaining 18 genes, a median of 3.5 VUS per gene (range 0–21) were detected. All VUS were missense mutations and within exonic regions. Of the 94 VUS, 41 (43.6%) were novel, not previously reported in the databases or dbSNP. No statistically significant difference was detected in VUS frequency between ethnicities.

DISCUSSION

We present here a comprehensive mutation analysis of Asian patients suspected of having hereditary breast cancer. To our knowledge, this is the largest Asian series to date for the NGS screening of germline mutations using a panel of known breast cancer predisposition genes. We found 67 germline deleterious mutations in 17 of 25 predisposition genes tested. BRCA1 and BRCA2 mutations were found in 17.7% (39/220) of patients, consistent with other studies using panel testing, whereas mutations in 15 other genes were found in 32 (14.5%) patients. The frequency of these mutations, especially in PALB2, which has recently been associated with a high lifetime risk of breast cancer, was similar to the frequency in high- and moderate-risk breast cancer families. This is a significant higher yield of potentially actionable results, compared with the 5 to 10% probability threshold endorsed by guidelines for testing for HBOC and Lynch syndrome testing.

In Asia and many parts of the world, while there is a growing appreciation for the testing of patients identified as being at high risk of hereditary cancer, it is still not as yet ‘mainstream’ practice, as such patients are often referred after the development of multiple cancers in a patient. This may account for the relatively high number of TP53 (9.0%) and PTEN (3.0%) germline mutations seen in our cohort. Notably, only 63.6% (42/66) of patients with pathogenic variants were under the age of 40 years at the age of first cancer diagnosis, suggesting that age alone as a cut-off may miss significant numbers of patients (Table 2). Currently, there is no data as yet on the risk-benefit ratio of increased breast surveillance among patients with pathogenic

npj Genomic Medicine (2016) 15003 © 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited
ID	Race	Ca site	Subtype	Age at diagnosis (years)	Affected gene	Nucleotide change	Type of mutation	Amino-acid change	Family Ca history	MC score	Bo BRCA1	Bo BRCA2	Ref	
119	C	Bil Br Ca Histology Unk/Ov Ca	Unk	35	Br Ca (50/50)	c.3381T > A	N	p.Y1127fs*	Sis Br Ca (37)	46	64.6	22.1		
153	C	Bil Br Ca, Serous type	Ov Ca, Serous type	35	Br Ca (50/50)	c.3381T > A	N	p.Y1127fs*	Sis Br Ca (40); Sis Ov Ca (60); Fa Thy Ca (54); Co Pat Br Ca (40)	46	33.2	10.2	6	
121	C	Br IDC	ER−/PR−/Her2−	35	BrCA1	c.67_68delinsAG	Fr_ins	p.E23Rfs*18	Mo Br Ca (43); GM Mat Br Ca (45); Au Mat Br Ca (45); Ov Br Ca (50)	75	22.6	4.2	6,16-19	
152	C	Ov Ca	ER−/PR−/Her2− Na	35	BrCA1	c.67_68delinsAG	Fr_ins	p.E23Rfs*18	Sis Ov Ca (47)	46	27.2	1	16-19	
163	C	Bill Br IDC	ER−/PR−/Her2− Endometrioid	38, 46	BRCAl	c.3333delA	Fr_del	p.E1112Nfs*5	GM Mat Ov Ca (40)	42	32.2	6.1	20	
166	C	Bill Br IDC/Atypical medullary type	ER−/PR−/Her2− No personal Ca history, Predictive testing	39, 46	BRCAl	c.5072C > A	Mis	p.T1691K	Unk FH	51	88.8	9.7	21	
125225960	C	FH83 Br IDC	ER−/PR−/Her2− Unk	32	BRCAl	c.5072C > A	Mis	p.T1691K	Twin Sis Br Bil Ca (30s, 40s); Sis Br Ca (40s)	30	10.1	3.3	6,23	
104b	C	Br IDC	ER+ PR+/Her2−	33	BRCAl	c.5068A > C	Mis	p.K1690Q	Unk FH	1	0.5	2.1	5,22	
172	M	Br IDC	ER−/PR−/Her2−	37	BRCAl	c.4327C > T	N	p.R1443*	Unk FH	2	4.5	20.7	24	
105b	C	Br IDC	ER−/PR−/Her2−	39	BRCAl	c.4327C > T	N	p.R1443*	Unk FH	2	4.5	20.7	24	
159	I	Br IDC	ER−/PR−/Her2−	22	BRCAl	c.2766delA	Fr_del	p.V923Lfs*77	Unk FH	34	18.6	6.8	6,26	
65	C	Br IDC	ER−/PR−/Her2− + ER−/PR−/Her2−	44, 51, 53	BRCAl	c.2635G > T	N	p.R679*	Unk FH	22	85.6	1	6,27	
61	M	Bil Br Ca Unk type	ER+/PR+/Her2− Unk	34	BRCAl	c.2145A > T	Fr_del	p.R7625	No FH Ca	1	2	1.8		
103	M	Bil Br IDC	ER+/PR+/Her2−/ILC	24	BRCAl	c.981_982del	Fr_del	p.C328*	No FH Ca	22	18.7	33.2	28	
150b	B	Br IDC	ER+/PR+/Her2−	28	BRCAl	c.172C > G	Mis	p.S98A	No FH Ca	10	4.4	0.9	6	
59	C	Br mixed IDC ILC	ER+/PR+/Her2−	43	BRCAl	Del	Deletion of Exon 13-16-19*	Fr_del	Deletion of Exon 13-16-19*	Unk FH	31	3	3.6	6
MR0017	C	Br IDC	ER−/PR−/Her2−	41	BRCAl	Dup	Duplication of Exon 13*	Fr_del	Duplication of Exon 13*	Unk FH	22	85.6	1	6,27
79	C	Br DCIS/Ov Ca	ER−/PR−/Her2−	38	BRCAl	c.442_15del10*	SE	p.L709FS*13F	Sis Br Ca (37), Fa Br Ca (72)	38	68.1	1.7	5.6	
MR0027	C	Br IDC	ER+/PR+/Her2−	36	BRCAl	c.483T > G	Fr_del	p.C161W	Unk FH	10	3.3	0.7	5	
FH87	C	Br Ca	ER+/PR+/Her2−	32	BRCAl	c.483T > G	Fr_del	p.C161W	Unk FH	22	9.3	8.7	5	
FH60	C	Br IDC	ER+/PR+/Her2−	56	BRCAl	c.275delC	Fr_del	p.L709FS*13F	Sis Br Ca (37), Fa Br Ca (72)	26	1.6	44.8	6	
YP33	C	Br IDC	ER−/PR−/Her2−	40	BRCAl	c.3847_3848delIGT	Fr_del	p.L709FS*13F	Sis Br Ca (37), Fa Br Ca (72)	7	4.3	1.1	6,29	
168	C	No Ca	ER−/PR−/Her2−	40	BRCAl	c.4151delT	Fr_del	p.L709FS*13F	Sis Br Ca (37), Fa Br Ca (72)	1	4.3	1.1	6,29	

Table 2. Pathogenic variants with their Manchester and Boadicea scores

© 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited npj Genomic Medicine (2016) 15003

ESY Wong et al

Germline mutations in Asian breast cancer
ID	Race	Ca site	Subtype	Age at diagnosis (years)	Affected gene	Nucleotide change	Type of mutation	Amino-acid change	Family Ca history	MC score	Bo BRCA1	Bo BRCA2	Ref
HR0029	C	Br IDC	ER+/PR+/Her2-	51	BRCA2	c.5576_5579delITTAA	Fr_del	p.I1859Kfs*3	Sis Br Ca (53), Sis Br Ca (60), Sis Br Ca (51), Au Mat Br Ca (60), Mo Br Ca (58), Au Mat Br Ca (60), Un Mat Ga Ca (50)	18	1.4	2.2	6,30
151	C	Clear Cell Ov Ca		51	BRCA2	c.5799_5802delCCCA	Fr_del	p.N1933Kfs*29	Mo Br Ca (58), Au Mat Br Ca (60), Un Mat Ga Ca (50)	30	0	37	6,31
162	F	Br IDC	ER+/PR+/Her2-	36	BRCA2	c.6935delG	Fr_del	p.R223Q	No FH Ca	1	1.8	1.7	6
YP16b	C	Br IDC	ER+/PR+/Her2-	38	BRCA2	c.7480C>T	N	p.R2494^	No FH Ca	1	0.8	2.8	32
164	C	Br IDC, childhood acute leukemia, meningiomas		32	BRCA2	c.7480C>T	N	p.R2494^	No FH Ca	1	0.8	2.8	32
99	C	Br IDC	ER−/PR−/Her2-	42	BRCA2	c.7522G>A	Mis	p.G2508S	Mo Br Ca (80), Mo Col Ca (80), Au Mat Br Ca (70), Au Mat Ga Ca (70), Au Mat Ga Ca (70), Au Mat Ga Ca (70), Un Mat Ga Ca (70)	2	0.4	0.5	33,34
HR0045b	M	Br IDC	ER+/PR−/Her2-	28	BRCA2	c.7613G>A	Mis	p.G2544D	14	7.4	6.8	5	
FH29	C	Br IDC	ER+/PR+/Her2-	49	BRCA2	c.7696_7697delAA	Fr_del	p.D2366fs*5	Sis Br Ca (50)	2	0.6	2.1	6,35
LR0032	C	Br IDC	ER−/PR−/Her2-	36	BRCA2	c.8809_8891insAA	Fr_ins	p.A2964Kfs*54a	Un Pat Col (40), Col Ov (30)	10	1.8	1.7	6
LH5	C	Br IDC	ER+/PR+/Her2-	41	BRCA2	c.8914delT	N	p.G2534D	14	7.4	6.8	5	
104b	C	Br IDC	ER+/PR+/Her2-	33	BRCA2	c.9294C>G	N	p.Y3088^	Sis Br Ca (50), Sis Br Ca (60), Un Mat Ga Ca (50)	2	1.8	1.7	6
64	C	Br IDC/Ov Ca	ER Unk/PR Unk/Her2 Unk	18	BRCA2	c.7613G>A	SE	Deletion of Exon 19^	18	Unk	Unk	5,6	
YP6b	C	Br IDC	ER+/PR+/Her2-	25	PALB2	c.113C>G	Mis	p.A38G	2 Others Ca non related	6	Unk	Unk	4
YP59b	C	Br IDC	ER+/PR+/Her2-	34	PALB2	c.113C>G	Mis	p.A38G	30	Unk	Unk	4	
149	IO	Bil Serous Ov Carcinoma		59	PALB2	c.3164C>T	N	p.Q1056fs*6	Sis Br Ca (61), Mo Br Ca (69)	46	Unk	Unk	4
LR0032	C	Br IDC	ER+/PR+/Her2-	24	PALB2	c.3164C>T	N	p.Q1056fs*6	Sis Br Ca (61), Mo Br Ca (69)	46	Unk	Unk	4
LR0026b	C	Br IDC	ER+/PR+/Her2-	29	PALB2	c.3164C>T	N	p.Q1056fs*6	Sis Br Ca (61), Mo Br Ca (69)	46	Unk	Unk	4
LR0019	C	Br IDC	ER+/PR+/Her2-	39	PALB2	c.3164C>T	N	p.Q1056fs*6	Sis Br Ca (61), Mo Br Ca (69)	46	Unk	Unk	4
LR0009	C	Br IDC	ER−/PR−/Her2-	26	TP53	c.819delG	Fr_del	p.S274Afs*38	Bro sarcoma (38), Mo Ov Ca (38), Au Pat gastric Ca (68), GM Pat Ga Ca (72)	55	Unk	Unk	4
131	C	Br IDC	ER+/PR+/Her2-	32	TP53	c.616G>A	Mis	p.G2065	Co Mat Br Ca (33)	14	Unk	Unk	37–39
158b	IO	Mixed invasive	ER+/PR−/Her2−	30	TP53	c.356G>T	Mis	p.R1191^	Mo Br Ca (49)	18	Unk	Unk	4
HR00054	M	Br IDC	ER−/PR−/Her2−	32	TP53	c.331_343delG	Fr_del	p.T1116fs*16	Mo Br Ca (34), Sis Brain tumour (10)	22	Unk	Unk	4
158b	IO	Mixed invasive	ER+/PR−/Her2−	30	TP53	c.273A>G	Mis	p.N92S^	Mo Br Ca (49)	18	Unk	Unk	4
980221	C	Br IDC	ER+/PR+Her2−	34	TP53	c.802+1G>A	SE	Unk FH	Unk	Unk	Unk	4	
FH53b	C	Br IDC	ER+/PR+/Her2−	41	CHEK2	c.667C>T	Mis	p.R223C	Mo Br Ca (50)	2	Unk	Unk	4
HR0045b	C	Br IDC	ER+/PR−/Her2−	28	CHEK2	c.667C>T	Mis	p.R223C	Mo Br Ca (50)	2	Unk	Unk	4
LR0026b	C	Br IDC	ER+/PR+/Her2−	29	ATM	c.8800A>G	Mis	p.T2934A	Mo Br Ca (50)	6	Unk	Unk	4
ID	Race	Ca site	Subtype	Age at diagnosis (years)	Affected gene	Nucleotide change	Type of mutation	Amino-acid change	Family Ca history	MC score	Bo BRCA1	Bo BRCA2	Ref
------	------	--------------------	-----------------------------	--------------------------	---------------	-------------------	------------------	------------------	------------------	----------	-----------	----------	-----
YP62	C	Br IDC	ER+/PR+/Her2-	38	PTEN	c.641delA	Fr_del	p.214Rfs*7a	Au Mat Br (30), Un Mat Pros (60)	22	Unk	Unk	56
146	C	Multifocal Ov Ca, Br IDC, Endo Ca 50	ER+/PR+/Her2-	54	PTEN	c.672dup	Fr_ins	p.Y222fs*18a	Fa Col Ca (60), Co Mat Col Ca (30)	1	Unk	Unk	37
60	C	Unk type Br Ca, Neurofibromatosis		33	NFI	c.6480_6490del	Fr_del	p.K2160Nfs*14a	No FH Ca	1	Unk	14	
150a	B	Br ILC	ER−/PR−/Her2-	40	CDH1	c.2359G>A	Mis	p.V787A	Au Pat Br Ca (50), Au Pat Br Ca (59)	10	4.4	0.9	36
YP46	C	Br IDC	ER+/PR+/Her2-	33	CDH1	c.1888 C>G	Mis	p.L630V	GF Mat Ga Ca (70), GF Mat Pros Ca (70)	2	Unk	Unk	34
150a	B	Br ILC	ER−/PR−/Her2-	40	CDKN2A	c.221A>C	Mis	p.D74A	Au Pat Br Ca (50), Au Pat Br Ca (60)	10	4.4	0.9	36
YP43	C	Br IDC	ER−/PR−/Her2-	31	MLH1	c.2135G>T	Mis	p.W712L	Au Mat Other Ca (53)	1	Unk	Unk	40
YP6b	C	Br IDC	ER+/PR+/Her2-	25	MLH1	c.1153C>T	Mis	p.R385C	2 Other Ca Unk (60)	6	Unk	Unk	34
YP28	C	Br IDC	ER+/PR+/Her2-	39	MSH6	c.2187G>A	Mis	p.905X	14.27	Unk	Unk	Unk	34
170	SL	Br IDC	ER−/PR−/Her2-	38	MSH6	c.3227G>A	Mis	p.R1076H	Mo Br Ca (39) (40)	10	Unk	Unk	34
142	J	No Ca	NA	35	RADS1C	c.635T>G	Mis	p.R212H	1 Unk	34	Unk	Unk	34
86	C	Unk type Br Ca, Ov Ca	ER+/PR+/Her2+	30	BARD1	c.1298A>G	Mis	p.H433R	10 Unk	34	Unk	Unk	34
YP44	C	Br IDC	ER+/PR+/Her2-	37	BRIP1	c.1442G>A	Mis	p.G481D	10 Unk	34	Unk	Unk	34
990493b	C	Br IDC with mucinous differentiation	ER+/PR+/Her2-	35	BRIP1	c.2440 C>T	Mis	p.R814C	1 Unk	34	Unk	Unk	34
990493b	C	Br IDC with mucinous differentiation	ER+/PR+/Her2-	35	RADS1C	c.635T>G	Mis	p.R212H	1 Unk	34	Unk	Unk	34
YP5	C	Br IDC	ER+/PR+/Her2-	38	RADS1D	c.932T>A	Mis	p.311N	FH not found in the Case note	Unk	Unk	Unk	34
YP16b	C	Br IDC	ER+/PR+/Her2-	38	RADS1D	c.932T>A	Mis	p.311N	1 Unk	Unk	Unk	Unk	41
YP47	C	Br IDC	ER+/PR+/Her2-	36	RADS1D	c.932T>A	Mis	p.311N	FH not found in the Case note	Unk	Unk	Unk	41
12522596b	C	Br IDC	ER+/PR+/Her2-	32	RADS1D	c.932T>A	Mis	p.311N	1 Unk	Unk	Unk	Unk	41

Abbreviations: Au, aunt; B, burmese; Bi, bilateral; Bo, boadicea Score; Br, breast; Bro, brother; C, chinese; Ca, cancer; Co, cousin; Col, colorectal; Endo, endometrial; ER, oestrogen receptor; F, filipino; Fa, father; FH, family history; Fr_del, frameshift deletion; Fr_ins, frameshift Insertion; ga, gastric; GF, grandfather; GM, grandmother; GIST, gastrointestinal stromal tumour; I, indonesian; ILC, invasive ductal carcinoma; ILc, invasive lobular carcinoma; IO, indonesian; J, japanese; M, malay; Mis, missense; Mat, maternal; MC, manchester Score; Mo, mother; N, nonsense; NA, not applicable; Ov, ovarian; Pa, pancreatic; Pat, paternal; Pros, prostate; PRR, progesterone receptor; Ref, reference; SE, splice site Error; Sis, sister; SL, sri lankan; Thy, thyroid; Un, uncle; Unk, unknown; V, vietnamese.

*aUnderlined indicates novel pathogenic variants identified by our group.
*bPatients with more than one pathogenic variant.
*cPatient with male breast cancer.
variants in genes of moderate penetrance (e.g., CHEK2, ATM and BLM). There is remaining uncertainty in penetrance estimates for such variants, and, therefore, the optimal breast screening protocol and age of initiation remain unknown thus limiting the clinical utility of panel testing (for the present) to highly penetrant mutations. To better understand the role of these moderately penetrant genes will require population-based studies of mutation penetrance and clinical trials of risk-reducing interventions to guide clinical decisions. It is a major concern that while the practice of clinical cancer genetics is largely limited in developed countries to trained clinical cancer geneticists, this is not the case for the rest of the world.

![Figure 1. Pathogenic variants detected in 17 genes.](image)
The discovery of VUS that do not contribute to risk, may prompt anxiety and overtreatment particularly if the managing clinician is unfamiliar with genetics. Although our experience of finding ~3 VUS per gene is consistent with that from other studies, it also highlights the fact that the more we sequence, the more VUS we will unravel. This is particularly so in a population like Singapore, where we have multi-ethnic minority groups for whom there is limited publicly available sequencing data for variant reclassification. In the present study, consistent with our IRB–approved protocol, we did not re-contact any patient about VUS as there are no immediate clinical implications or recommendations to convey. In the clinical setting, where VUS results will be reported back to the patient, it is critical therefore that multigene panel testing is conducted in a dedicated genetics service with a genetics team familiar with cancer risk assessment and who are able to provide adequate pretest and post-test counselling.

This study was conducted within a formal clinical cancer genetics practice adherent to evidence-based testing guidelines, and using the definition of pathogenic variants as recommended by the American College of Medical Genetics. With the clinical availability of multiple-gene sequencing panels and the concurrent decreasing cost of panel testing, it is anticipated that an increased demand for such gene-directed risk stratification will occur. These genetic testing costs are borne by the patient and not by any third-party payer, especially in Asian countries with no insurance coverage or government subsidies for genetic testing for most countries at present. With the reducing costs of genetic testing, many of these health policies are ripe for review if we wish to harness the power of gene-enabled care.

Our study has limitations. The 25 genes that we selected reflect published literature but an optimal multiple-gene panel for routine diagnostic use remains to be defined. Patients were enrolled from within a specialized clinical cancer genetics service and do not reflect general oncology practice nor the general population at large.

MATERIALS AND METHODS

Patients

We studied 220 cases referred to the Cancer Genetics Service at the National Cancer Centre Singapore. Of these, 210 had a personal history of breast and/or ovarian cancer (192 had breast cancer, 9 had ovarian cancer, and 9 had breast and ovarian cancer). The subjects fulfilled at least one of the following criteria: (1) having a family history of breast and/or ovarian cancer in first- and/or second-degree relatives; (2) having breast and ovarian cancer in the same individual or bilateral breast cancer; (3) having early-onset breast cancer or ovarian cancer (<40 years of age). Clinical information including personal and family cancer histories, cancer histology and receptor status, were retrieved from case notes and clinical databases. All patients consented to participate in this study, which was approved by the SingHealth Centralized Institutional Review Board (CIRB 2008/455/B; CIRB 2010/406/B).

Mutation detection using next-generation sequencing (NGS)

An optimised in-house method was used to extract DNA from peripheral blood. Capture was performed using the SureSelect XT2 target enrichment kit (Agilent, Santa Clara, CA, USA), targeting 25 genes (Supplementary Table 1). The Covaris S2 system (Covaris, Woburn, MA, USA) was used to fragment the genomic DNA samples as recommended by the manufacturer. The exome-enriched libraries were sequenced on the
Germline mutations in Asian breast cancer

ESY Wong et al.

Illumina HiSeq platform (San Diego, CA, USA), with 100-bp paired-end reads.

Detection of large genomic rearrangements in the BRCA1 and BRCA2 genes was done for all 220 samples using the Multiplex Ligation-dependent Probe Amplification test kits (P002-C2 BRCA1 and P045-BRCA2/CHECK2) and confirmation kits (P087-BRCA1 and P077-BRCA2; MRC-Holland, Amsterdam, Netherlands). DNA fragment analysis was performed on the ABI 3130 Genetic Analyzer (ABI-Life Technologies, Thermo Fisher Scientific Corporation, MA, USA) and analysed using the Cofalysfreeware v.131123.1303 (MRC-Holland).

Bioinformatic analysis

The raw reads were aligned to the hg19 reference genome using BWA.12 BAM files were processed to identify variants using the Genome Analysis Tool Kit. The variants were annotated using the ANNOVAR tool.25 The mean depth of coverage was \(x \times 315 \) (range: \(x^{97-858} \)). Population allele frequencies were extracted from the Exome Variant Server (http://evs.gs.washington.edu/EVS), 1000 Genomes (http://www.1000genomes.org), and dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). Framework and nonsense mutations were considered to be deleterious. Missense variants were classified as damaged or benign using predictions from SIFT,13 PolyPhen-II HDIV,13 PolyPhen-II HVAR,16 LRT and Mutation Taster.15 If three or more of the five tools predicted the missense mutation to be damaging, then the mutation was classified as damaging. All deleterious or damaging variants were verified visually using the Integrative Genomics Viewer (IGV; Broad Institute), and collectively classified as pathogenic variants.

Variants that were synonymous, or classified as benign, unknown, uncertain or unspecified in the Breast Cancer Information Core, HGMD, ClinVar databases, were excluded. Also excluded were variants with an allele frequency greater than 1% as documented in the Exome Variant Server, 1000 Genomes, dbSNP and ExAC databases. All remaining variants were classified as VUS, and were verified visually using IGV.

Validation of variants detected by NGS

All frameshift, nonsense and damaging missense mutations were validated by Sanger sequencing. PCR amplification using HotStarTag (Qiagen, Hilden, Germany) using primers flanking mutations was performed as previously described.11 The BigDye Terminator v3.1 cycle sequencing kit (ABI-Life Technologies, Thermo Fisher Scientific Corporation) was used for the incorporation of dye-labelled dNTPs followed by Sanger sequencing using a 3130xl Genetic Analyzer (ABI-Life Technologies, Thermo Fisher Scientific Corporation). The chromatograms were visualised using the Sequenom Pro v.12 (Lasergene; DNASTAR, Madison, WI, USA) software.

Statistical analysis

Participant characteristics and sequencing results were tabulated, with descriptive statistics including medians, means and ranges.

ACKNOWLEDGEMENTS

We are grateful to all our clinical colleagues who have referred cases for cancer genetics assessment, and to the participants of this study. This work was supported by a grant from the National Medical Research Council (NMRC) of Singapore (NMRC/CB0R/0034/2013) to AL and a NMRC Transition Award to JN.

CONTRIBUTIONS

AL, YSY and PA conceived the study. AL and JN designed the study. PA and MHT provided genetic counselling and accrued participants for the study. EW, CC and MS contributed to acquisition of data. EW, SS, MM, CC, MS, SR, JN and AL contributed to data analysis and interpretation of data. All authors contributed to manuscript writing and approved the final version of the article. JN and AL are the guarantors of this manuscript.

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

1 Easton, D. F., Pharoah, P. D., Antoniou, A. C., Tischkowitz, M., Tavtigian, S. V., Nathanson, K. L. et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. N Engl J Med 372, 2243–2257 (2015).
2 Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014).
3 LaDuca, H., Stuenkel, A. J., Dolinsky, J. S., Keiles, S., Tandy, S., Pesaran, T. et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med 16, 830–837 (2014).
4 Lee, A. S. & Ang, P. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371, 1650–1651 (2014).
5 Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014).
6 Wong, E. S., Shekar, S., Chan, C. H., Hong, L. Z., Poon, S. Y., Silla, T. et al. Predictive Factors for BRCA1 and BRCA2 Genetic Testing in an Asian Clinic-Based Population. PloS one 10, e0134408 (2015).
7 Antoniou, A. C., Casadei, S., Heikininen, T., Barrowdale, D., Pykals, K., Roberts, J. et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371, 497–506 (2014).
8 Kurian, A. W., Hare, E. E., Mills, M. A., Kingham, K. E., McPherson, L., Whitemore, A. S. et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 32, 2001–2009 (2014).
9 Hall, M. J., Forman, A. D., Pilarski, R., Wiensser, G. & Giri, V. N. Gene panel testing for inherited cancer risk. J Natl Compr Canc Netw 12, 1339–1346 (2014).
10 Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 15, 405–423 (2013).
11 Chan, M., Ji, S. M., Yeo, Z. X., Gan, L., Yap, E., Yap, Y. S. et al. Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn 14, 602–612 (2012).
12 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010).
13 Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4, 1073–1081 (2009).
14 Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7, Unit7 20 (2013).
15 Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7, 575–576 (2010).
16 Roa, B. B., Boyd, A. A., Volcik, K. & Richards, C. S. S. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nature genet 14, 185–187 (1996).
17 Bar-Sade, R. B., Kruglikova, A., Modan, B., Gak, E., Hirsh-Yechezkel, G., Theodor, L. et al. The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazi. Human molecular genetics 7, 801–805 (1998).
18 Simard, J., Tonin, P., Durocher, F., Morgan, K., Rommens, J., Gingras, S. et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nature genetics 8, 392–398 (1994).
19 Struweging, J. P., Abellovich, D., Peretz, T., Avishtai, N., Kaback, M. M., Collins, F. S. et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nature genetics 11, 198–200 (1995).
20 Elit, L., Jack, E., Kwan, E., Baigal, G. & Narod, S. A unique BRCA1 mutation identified in Mongolia. International journal of gynecologic cancer: official journal of the International Gynecological Cancer Society 11, 241–243 (2001).
21 Lee, M. S., Green, R., Marsillaci, S. M., Coquelle, N., Williams, R. S., Yeung, T. et al. Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer research 70, 4880–4890 (2010).
22 Robertson, L., Hanson, H., Seal, S., Warren-Perry, M., Hughes, D., Howell, I. et al. BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. British journal of cancer 106, 1234–1238 (2012).
23 Castilla, L. H., Couch, F. J., Erdos, M. R., Hoskins, K. F., Calzone, K., Garber, J. E. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nature genetics 8, 387–391 (1994).
24 Friedman, L. S., Ostremeyer, E. A., Szabo, C. I., Dowid, P., Lynch, E. D., Rowell, S. E. et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nature genetics 8, 399–404 (1994).
25 Szabo, C., Masiello, A., Ryan, J. F. & Brody, L. C. The breast cancer information core: database design, structure, and scope. Human mutation 16, 123–131 (2000).
26 Ho, G. H., Phang, B. H., Ng, I. S., Law, H. Y., Soo, K. C. & Ng, E. H. Novel germline BRCA1 mutations detected in women in Singapore who developed breast carcinoma before the age of 36 years. *Cancer* **89**, 811–816 (2000).

27 Khoo, A. S., Balraj, P., Volpi, L. & Nair, S. A new BRCA1 germline mutation (E879X) in a Malaysian breast cancer patient of Chinese descent. *Human mutation* **15**, 485 (2000).

28 Al-Sukhni, W., Rothenmund, H., Borgida, A. E., Zogopoulos, G., O’Shea, A. M., Pollett, A. et al. Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. *Human genetics* **124**, 271–278 (2008).

29 Tavtigian, S. V., Simard, J., Rommens, J., Couch, F., Shattuck-Eidens, D., Neuhausen, S. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. *Nature genetics* **12**, 333–337 (1996).

30 Foster, K. A., Harrington, P., Kerr, J., Russell, P., DiCioccio, R. A., Scott, I. V. et al. Somatic and germline mutations of the BRCA2 gene in sporadic ovarian cancer. *Cancer research* **56**, 3622–3625 (1996).

31 Lubinski, J., Phelan, C. M., Ghadirian, P., Lynch, H. T., Garber, J., Weber, B. et al. Cancer variation associated with the position of the mutation in the BRCA2 gene. *Familial cancer* **3**, 1–10 (2004).

32 Vehmanen, P., Friedman, L. S., Eerola, H., McClure, M., Ward, B., Sarantaus, L. et al. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes. *Human molecular genetics* **6**, 2309–2315 (1997).

33 Lim, M. C., Kang, S., Seo, S. S., Kong, S. Y., Lee, B. Y., Lee, S. K. et al. BRCA1 and BRCA2 germline mutations in Korean ovarian cancer patients. *Journal of cancer research and clinical oncology* **135**, 1593–1599 (2009).

34 Bodian, D. L., McCutcheon, J. N., Kothyhal, P., Huddleston, K. C., Iyer, R. K., Vockley, J. G. et al. Germline variation in cancer-susceptibility genes in a healthy, ancestrally diverse cohort: implications for individual genome sequencing. *PLoS one* **9**, e94554 (2014).

35 Yeo, Z. X., Wong, J. C., Rozen, S. G. & Lee, A. S. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes. *BMC genomics* **15**, 516 (2014).

36 Consortium SNIBB. BRCA1 and BRCA2 mutations in Scotland and Northern Ireland. *British journal of cancer* **88**, 1256–62 (2003).

37 Eeles, R. A. Germline mutations in the TP53 gene. *Cancer surveys* **25**, 101–124 (1995).

38 Toguchida, J., Yamauchi, T., Dayton, S. H., Beauchamp, R. L., Herrera, G. E., Ishizaki, K. et al. Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. *N Engl J Med* **326**, 1301–1308 (1992).

39 Monti, P., Cirielli, Y., Jordon, J., Menichini, P., Umbach, D. M., Resnick, M. A. et al. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. *Clinical cancer research: an official journal of the American Association for Cancer Research* **13**, 3789–3797 (2007).

40 Bianchi, F., Galizia, E., Bracci, R., Belvederisi, L., Catalani, R., Loretelli, C. et al. Effectiveness of the CRCAPRO program in identifying patients suspected for HNPCC. *Clinical genetics* **71**, 158–164 (2007).

41 Plon, S. E., Eccles, D. M., Easton, D., Foulkes, W. D., Genuardi, M., Greenblatt, M. S. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. *Human mutation* **29**, 1282–1291 (2008).

Supplementary Information accompanies the paper on the npj Genomic Medicine website (http://www.nature.com/npjgenmed)