Comparison of Extractants for Calibrating Phosphorus Application Rates in a Calcareous Soil

Qiang Zhu
College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430030, China

Yuncong C. Li
Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL 33031

Rao S. Mylavarapu
Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611

Kelly Morgan
Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL 34142

Mingjian Geng
College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China

Abstract. Preplant soil testing is essential for optimizing phosphorus (P) fertilization and minimizing the potential for soil P losses. Currently, there is no effective soil P extractant for calcareous soils in Florida. This study was conducted to compare Mehlich-3, ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB-DTPA), and Olsen for evaluating P availability, estimating soil-test P (STP) critical levels, and calibrating P application rates for fresh-market tomato (Solanum lycopersicum L.) production in a calcareous soil. Tomatoes were grown during Winter 2014 and 2015 with P application rates of 0, 29, 49, 78, 98, and 118 kg·ha⁻¹. Water-extractable P (water-P) and dissolved reactive P (DRP) in leachate were used to determine the STP change point of leaching potential. Results showed the greatest correlation occurred between Mehlich-3 and Olsen of the three STP extractants. For Mehlich-3-P, the medium STP level (producing 75% to 90% relative yield) was predicted from 76 to 89 mg·kg⁻¹ and the change point was predicted at 88 or 104 mg·kg⁻¹ by split-line models. The P requirement was calculated from 52 to 112 kg·ha⁻¹ when Mehlich-3-P was rated as low level (producing 50% to 75% relative yield), which is from 42 to 76 mg·kg⁻¹. The multiple regression models using AB-DTPA-P and Olsen-P could not predict either the medium STP level or the practical P application rates for the low level. Consequently, based on 2 years of data, Mehlich-3 was the most effective extractant for estimating soil P availability and calibrating P rates in calcareous soils with an extremely high calcium carbonate (CaCO₃) content.

Additional index words. tomato production, multiple regression model, change point, phosphorus index

There are ≈12,000 ha of calcareous soils dedicated to vegetable production in South Florida (U.S. Department of Agriculture, 2014). After fertilizer application, P can be fixed by free CaCO₃ through surface adsorption and precipitation (von Wandruszka, 2006). As a consequence, supplemental P fertilizer is needed to alleviate the fixation effects (Mengel and Kirkby, 1987). However, oversupplied P can be released by runoff or leaching and contributes to eutrophication (von Wandruszka, 2006). Phosphorus leaching loss usually occurs in these vegetable production areas as a result of the coarse-textured soils, the porous limestone bedrock, and the shallow water table [0.15–1.8 m (U.S. Department of Agriculture, 1996)]. In the water bodies of the Everglades Protection Area in South Florida, the geometric mean of DRP concentration is required to be ≤0.015 mg·L⁻¹ (Florida Administrative Code, 2017). Thus, preplant soil testing, which is performed to evaluate soil-P availability, is essential for optimum crop production and protection of the Biscayne Aquifer in South Florida.

The most commonly used STP extractants for calcareous soils include Olsen, AB-DTPA, and Mehlich-3. The Olsen or sodium bicarbonate extraction method uses bicarbonate (HCO₃⁻) and hydroxide (OH⁻) anions to extract labile P into solution (Olsen et al., 1954). AB-DTPA is a multielement extractant used in areas with calcareous soils (Soltanpour and Schwab, 1977). Similar to the Olsen method, the HCO₃⁻ in AB-DTPA serves to enhance phosphate solubility. Mehlich-3 was developed for extracting P and other macronutrients and micronutrients from a wide range of soils (Mehlich, 1984). The Mehlich-3 solution extracts P by dilute acid and fluoride (F⁻), and acetic acid buffers the solution pH at 2.5 to prevent neutralization in calcareous soil (Mehlich, 1984). Mehlich-3 is performed to evaluate soil-P availability, is essential for optimum crop production and protection of the Biscayne Aquifer in South Florida.

The STP interpretations using Mehlich-3 have been established for vegetables grown on acid–mineral soils in Florida (Freeman et al., 2014b). In calcareous soils, however, AB-DTPA was adopted and 10 mg·kg⁻¹ was proposed to be the critical level for vegetable production without calibrated interpretations (Li et al., 2000). Because no soil-test calibration has been performed in Floridian calcareous soils under field conditions, the STP interpretations and P recommendations are not available. Therefore, the objectives of this study were to compare three

Received for publication 3 Dec. 2018. Accepted for publication 19 Mar. 2019.

This research was funded by Florida Department of Agriculture and Consumer Services (FDACS) and the Fundamental Research Funds for the Central Universities (Program No. 2662019QD016). We are grateful to Guiqin Yu and Jose Castillo, University of Florida/Tropical Research and Education Center, for their help in crop management and data collection.

Corresponding author. E-mail: zhuqiang@mail.hzau.edu.cn.
extractants—Mehlich-3, AB-DTPA, and Olsen—in 1) estimating P availability with different P application rates, 2) establishing STP critical level, and 3) calculating the P requirement for tomato production on a calcareous soil.

Materials and Methods

A 2-year field trial, during Winter 2014 (29 Oct. 2014–24 Mar. 2015) and Winter 2015 (15 Oct. 2015–16 Feb. 2016), was conducted at the University of Florida/Tropical Research and Education Center, Homestead, FL. The seasonal average 10-cm soil temperatures were 22.9 and 23.7 °C, and the total rainfall accumulations were 130 and 564 mm in 2014 and 2015, respectively. Soil (Loamy-skeletal, carbonatic, hypothermic Lithic Udorthent) physical and chemical characteristics before applying fertilizers in the growing season of 2014 were gravel (<2 mm), 632 g kg⁻¹; clay, 31 g kg⁻¹; silt, 49 g kg⁻¹; sand, 288 g kg⁻¹; pH, 7.8; equivalent carbonate concentration, 379 g kg⁻¹; organic matter, 57 g kg⁻¹; nitrate-nitrogen, 22 mg kg⁻¹; ammonium-nitrogen, 7 mg kg⁻¹; AB-DTPA extracted potassium (K), 82 mg kg⁻¹; and total P, 1473 mg kg⁻¹. P application rates included 0, 29, 78, and 98 kg ha⁻¹ P. Every P rate was replicated three times with a randomized complete block design. Each plot was 9.1 m long and included three beds, which were 20 cm high, 91 cm wide, and covered with polyethylene mulch. Treatments were set on the same plots during the two growing seasons. Total season nitrogen (N) and K were applied at the same rates for all treatments with 224 kg ha⁻¹ N and 149 kg ha⁻¹ K. All the P, 56 kg ha⁻¹ P and 56 kg ha⁻¹ K were applied 8 d before transplanting with triple superphosphate, urea, and potassium sulfate, respectively. These dry fertilizers were banded on the bed center with two strips and 15 cm away from the bed center, where tomatoes were planted, then incorporated into the soil to an 8-cm depth. The residual N and K were supplied weekly through drip fertigation. Tomato seedlings (cv. Ridgerunner; Syngenta, Greensboro, NC) were transplanted in the bed center on 6 Nov. 2014 and 23 Oct. 2015, with a population of 11,960 plants/ha. Pest control and drip irrigation management followed the recommendations from the University of Florida/Institute of Food and Agricultural Sciences (Freeman et al., 2014a).

Soil samples were collected 0, 40, 70, 105, and 145 d after preplant fertilization (DAF) in 2014; and 0, 30, 60, 90, and 120 DAF in 2015 [i.e., preplant, first flowering, early fruit setting, first harvest (FH), and final harvest stages]. The 0 DAF indicated the soil sampling date before applying fertilizers. Three subsamples, which were collected using an auger with a 3-cm diameter from a depth of 0 to 20 cm in one bed of each plot, composed one soil sample. The soil sampling spots were selected at around 2-m intervals and 10 cm away from the tomato plants. From the plots with P rates of 0, 29, 78, and 118 kg ha⁻¹, leachate was captured cumulatively by gravitational lysimeter (28-cm internal diameter by 61-cm depth) buried 20 cm under the soil surface. The leachate samples were collected 39, 74, 94, and 138 DAPF in 2014; and 30, 63, 93, and 122 DAPF in 2015. Soil P was extracted by Mehlich-3 [solution pH, 2.5; soil:solution ratio, 1:10 (Mehlich, 1984)], AB-DTPA [solution pH, 7.6; soil: solution ratio, 1:2 (Soltanpour and Schwab, 1977)], Olsen [solution pH, 8.5; soil:solution ratio, 1:20 (Olsen et al., 1954)], and distilled water [soil:solution ratio, 1:10 (Kormodfer et al., 1995)]. The P concentration in the extract and the DRP concentration in the leachate were analyzed by the ascorbic acid-molybdenum blue method using a spectrophotometer (DU 640; Beckman Instruments Inc., Fullerton, CA) (Murphy and Riley, 1962). At every analytical step, quality control blanks were conducted according to standard techniques. The DRP load was the result of multiplying leachate DRP concentration by the leachate volume. Tomato fruits were harvested 119, 133, and 146 DAPF in 2014; and 96, 110, and 124 DAPF in 2015 as the first, second, and third harvest, respectively. Relative yield was calculated by dividing the actual yield of each replication by the maximum yield among all the plots in each season (Zhu et al., 2017b).

The GLM procedure in the SAS program (version 9.2; SAS Institute Inc., Cary, NC) and Duncan’s multiple range test (when the P value of the analysis of variance was less than 0.05) were used to compare the means of STP and leachate DRP. Every replicate from the first, second, and third harvest stages were used, whereas at 39 DAPF in 2014 and 30 DAPF in 2015 only the leachate DRP from the treatment without P fertilization was included. The better fit model was selected based on P < 0.05 and a greater coefficient of determination (r²).

A multiple regression model [Relative yield = a + (b × STP) + (c × P rate) + (d × STP²) + (e × P rate²) + (f × STP × P rate)] was carried out to calculate P rates (Slaton et al., 2009; Zhu et al., 2017b). The 50%, 75%, and 90% relative yield were chosen to calculate STP critical levels (i.e., very low, low, medium, and high STP levels indicated <50%, 50% to 75%, 75% to 90%, and >90% relative yield could be expected, respectively, without P addition) and required P rates (Savoy, 2013). When calculating the P index, the rating value of each parameter was adopted based on the work of Hurt et al. (2013), and 150 was considered the environmental threshold of the P index (Table 1).

Part A	Part B		
Site and transport characteristics	Rating value	P source management	Rating value
Soil erosion	1	Soil fertility index	Mehlich-3-P (mg kg⁻¹) × 2 × 0.025
Runoff potential	2	P application rate	kg ha⁻¹ x 0.103
Leaching potential	8	Leaching potential	—
Potential to reach water body	0	Waste water application	0
Total	11	Total	—

P index = Total for part A × Total for part B.

Results

Tomato marketable yields of FH accounted for 47% to 66% and 13% to 54% of the total season harvest (TSH) yields in 2014 and 2015, respectively (Table 2). In 2014, P rates ≥ 78 kg ha⁻¹ resulted in significantly greater FH marketable yields than those with rates less than 49 kg ha⁻¹. However, no significant differences were found in the marketable yields of the first and second combined harvest (FSH) and FSH in 2014. Significantly greater marketable yields were observed in both FH and FSH with P rates ≥ 49 kg ha⁻¹ in 2015. A P rate of 78 kg ha⁻¹ resulted in the greatest marketable yield in FSH of 2015. The marketable yields from FH in 2014 and FSH in 2015 were used to calculate relative yield in each season.

Preplant STP concentrations at 0 DAPF in 2015 were not significantly affected by P rates applied in 2014 (Table 2). The STP concentrations at 0 DAPF in 2015, averaging from all P rates, increased by 40% for Mehlich-3-P and decreased by 13% and 10% for AB-DTPA-P and Olsen-P, respectively, compared with those values in 2014. Combining all the STP concentrations throughout the two seasons, significant correlations were found among Mehlich-3-P, AB-DTPA-P, and Olsen-P (Fig. 1). The correlation between Mehlich-3-P and Olsen-P was predicted by a split-line model. When Mehlich-3-P was greater than 99 mg kg⁻¹, the slope of the correlation line declined significantly from 2.1 to 0.45 (correlation equation changed from y = 2.1x + 9.1 to y = 0.45x + 80.1). A similar correlation occurred between Mehlich-3-P and AB-DTPA-P.

Table 1. Calculation of phosphorus (P) index in Miami-Dade County, FL, based on Hurt et al. (2013).

Site and transport characteristics	Rating value	P source management	Rating value
Soil erosion	1	Soil fertility index	Mehlich-3-P (mg kg⁻¹) × 2 × 0.025
Runoff potential	2	P application rate	kg ha⁻¹ x 0.103
Leaching potential	8	Leaching potential	—
Potential to reach water body	0	Waste water application	0
Total	11	Total	—

P index = Total for part A × Total for part B.
Correlations among STP. Table 2. Preplant soil-test phosphorus (P) concentrations extracted by Mehlich-3, ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB-DTPA), and Olsen, and tomato marketable yields in the first harvest (FH), first and second combined harvest (FSH), and total season harvest (TSH) as affected by P fertilizer application rates in 2014 and 2015.

P rate (kg·ha⁻¹)	Mehlich-3	AB-DTPA	Olsen	FH	FSH	TSH
2014						
0	32.8	13.0	20.0	38.3 c	64.1	74.3
29	46.7	19.0	20.9	36.4 c	66.5	76.9
49	30.5	12.1	20.4	44.6 bc	63.4	70.8
78	32.8	13.0	20.0	50.1 ab	69.2	76.3
98	39.5	15.7	20.0	51.2 ab	74.7	82.6
118	37.7	15.5	21.4	60.0 a	87.2	97.1
P value	0.42	0.32	0.69	0.003	0.09	0.13
2015						
0	42.7	10.8	15.0	3.9 b	13.4 b	31.2 b
29	43.6	10.8	15.8	5.8 b	15.1 b	32.2 b
49	56.4	13.8	18.3	17.9 a	24.4 a	33.6 b
78	53.2	13.3	20.4	16.0 a	25.7 a	39.8 a
98	52.3	13.1	20.2	18.6 a	26.0 a	34.7 b
118	60.1	15.3	21.3	17.7 a	25.1 a	34.3 b
P value	0.34	0.23	0.17	0.001	0.001	0.03

*Means within each column followed by different letters are significantly different at the 5% level.

Table 2. Preplant soil-test phosphorus (P) concentrations extracted by Mehlich-3, ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB-DTPA), and Olsen, and tomato marketable yields in the first harvest (FH), first and second combined harvest (FSH), and total season harvest (TSH) as affected by P fertilizer application rates in 2014 and 2015.

The model using AB-DTPA-P could not predict relative yield ≥75% with a P rate of 0 kg·ha⁻¹. P rates of 138 and 52 kg·ha⁻¹ were required to produce 90% relative yield for soils with 42 and 76 mg·kg⁻¹ Mehlich-3-P, respectively. Adopting the P index threshold of 150, when Mehlich-3-P concentrations were 42 and 76 mg·kg⁻¹, the P rate should not exceed 112 and 95 kg·ha⁻¹, respectively. The required P rates were 176 and 60 kg·ha⁻¹ to produce 90% relative yield when Olsen-P was 19 and 24 mg·kg⁻¹, respectively; whereas 136 kg·ha⁻¹ was predicted for soils having 13 mg·kg⁻¹ AB-DTPA-P.

Significant responses of water-P and leachate DRP to the STP concentrations were detected for all the three extractants (Figs. 3 and 4). The relationship between water-P and Mehlich-3-P was described by a split-line model, and a change point of 88 mg·kg⁻¹ was predicted (Fig. 3). The split-line model using AB-DTPA-P had the lowest r² value and could not yield a reasonable change point. Nonetheless, a change point of 26 mg·kg⁻¹ was predicted from the relationship between water-P and Olsen-P. In the correlations with leachate DRP, the greatest r² value was observed using Mehlich-3-P (Fig. 4). A split-line model with a change point of 104 mg·kg⁻¹ predicted the response of leachate DRP to Mehlich-3-P, whereas simple linear models predicted the responses of leachate DRP to AB-DTPA-P and Olsen-P. In the simple linear models, the x-intercepts of 7 and 10 mg·kg⁻¹ were the change points for AB-DTPA-P and Olsen-P, respectively.

Discussion

Correlations among STP. The amounts of P extracted by Mehlich-3 were greater than the amounts extracted by AB-DTPA and Olsen, demonstrating that the hydrogen ion (H⁺) plus F⁻ in Mehlich-3 were more effective in releasing P than HCO₃⁻ (Elsashidi et al., 2001). Furthermore, the efficiency of P extraction by HCO₃⁻ decreased with increasing rates, as indicated by Castro and Torrent (1995). Although a similar chemical mechanism was followed to extract P by AB-DTPA and Olsen, the greatest correlation was observed between Mehlich-3-P and Olsen-P. This result was probably attributed to the low solution-to-soil ratio (2:1) in the AB-DTPA extraction procedure.

In the relationship between Mehlich-3-P and Olsen-P, the slope of the correlation line declined significantly when Mehlich-3-P was greater than 99 mg·kg⁻¹. Nevertheless, a simple linear relationship was found in previous studies except for the work of Kumaragamage et al. (2007), who showed the slope of the correlation line decreased from 2.3 to 1.6 when extending the Olsen-P concentrations from 100 to 352 mg·kg⁻¹. The decreased slope was probably attributed to the reduced activity of H⁺ and F⁻ in the Mehlich-3 solution through neutralization and precipitation. Different from our study, the simple linear relationship between Mehlich-3-P and Olsen-P occurred in soils with either less than 195 mg·kg⁻¹ carbonate content (Ebeling et al., 2002; Mallarino, 1997; Pizzeghello et al., 2016; Sen Tran et al., 1990) or less than 40 mg·kg⁻¹ Mehlich-3-P (Iatrou et al., 2014). Thus, both CaCO₃ and P contents should be taken into consideration when determining the relationship between P extractants in calcareous soils.

Critical level of STP. From an agronomic perspective, the concentration of STP extracted by an effective extractant should correlate sufficiently with crop response. Havlin et al. (2005) showed the crop response to soil-P nutrition usually occurred during early plant growth stages. In addition, the extra-large and large tomatoes, which brought greater returns to growers than...
medium-size fruit, were mainly from the first and second harvests (Zhu et al., 2017a). As a result, the significantly affected tomato marketable yields from FH in 2014 and FSH in 2015 were selected to regress against STP. In 2015, the tomato yields of FSH, rather than FH, were used because of the relatively low proportion (13% to 54%) of FH in TSH yields. Ussiri et al. (1998) found AB-DTPA-P obtained a greater correlation with corn (Zea mays L.) relative yield than Mehlich-3-P in soils with a pH level ranging from 4.8 to 7.7. In our study, although the r^2 values of the multiple regression models using Olsen-P and AB-DTPA-P were slightly greater than that of Mehlich-3-P, all three models were significant. According to the calibration models, the critical level of AB-DTPA-P for producing 90% relative yield could not be predicted, and a more reasonable

Extractant	Intercept (a)	Linear STP (b)	Linear PR (c)	Quadratic STP (d)	Quadratic PR (e)	Linear STP × PR (f)	P value	r^2
Mehlich-3	41.89	-0.125	0.516	0.007	-0.0009	-0.0025	0.001	0.70
AB-DTPA	22.72	2.711	0.476	-0.043	-0.0011	-0.0028	0.001	0.72
Olsen	72.79	-5.658	0.603	0.238	-0.0009	-0.012	0.001	0.78

Equation of the model: Relative yield = a + (b × STP) + (c × PR) + (d × STP²) + (e × PR²) + (f × STP × PR).

$r^2 =$ coefficient of determination; AB-DTPA = ammonium bicarbonate–diethylenetriaminepentaacetic acid.
Phosphorus application rate recommendation. Calculated from the multiple regression models, the very low STP level was predicted to be less than 42, 13, and 19 mg·kg⁻¹ Mehlich-3-P, AB-DTPA-P, and Olsen-P, respectively. At these critical concentrations, the calculated P requirement using Olsen-P was about 40 kg·ha⁻¹ greater than the other two extractants. The recommended P rate was only 73 kg·ha⁻¹ for tomato production on acid–mineral soils with low STP levels in Florida (Freeman et al., 2014b). In addition, Zhang et al. (2007) recommended 55 kg·ha⁻¹ for tomato production in calcareous soils with less than 50 mg·kg⁻¹ Olsen-P. Thus, the proposed P rate of 176 kg·ha⁻¹ through Olsen-P seemed to be impractical. Lower and similar P rates were predicted from the multiple regression models for the very low level of Mehlich-3-P and AB-DTPA-P. However, the rate of 138 kg·ha⁻¹ predicted from Mehlich-3-P was still greater than the maximum input (112 kg·ha⁻¹) according to the threshold of the P index. As a consequence, 112 kg·ha⁻¹ was selected as the recommendation when Mehlich-3-P was 42 mg·kg⁻¹. At the medium STP level, the predicted P rate (52 kg·ha⁻¹) by Mehlich-3-P was similar to the proposed amount (60 kg·ha⁻¹) using Olsen-P and less than the ceiling amount (95 kg·ha⁻¹) calculated from the P index.

Conclusions

Compared with AB-DTPA, Mehlich-3 resulted in a greater correlation with Olsen in testing P availability. A very low STP level was predicted of less than 42, 13, and 19 mg·kg⁻¹ by the multiple regression models using Mehlich-3-P, AB-DTPA-P, and Olsen-P, respectively. The high level of Mehlich-3-P was estimated to be more than 89 mg·kg⁻¹ considering both agronomic and environmental impacts, whereas the regression model using AB-DTPA-P could not predict this critical value. The required P amounts were predicted from 52 to 112 kg·ha⁻¹ when Mehlich-3-P ranged from 76 to 42 mg·kg⁻¹. The calibration approach using Olsen-P could not propose a practical P application rate for the low STP levels. Therefore, Mehlich-3 can be considered the most effective extractant to assess P availability and calibrate P rates for tomato production on the calcareous soils in Florida.

Literature Cited

Bai, Z., H. Li, X. Yang, B. Zhou, X. Shi, B. Wang, D. Li, J. Shen, Q. Chen, W. Qin, O. Oenema, and F. Zhang. 2013. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372: 27–37.

Castro, B. and J. Torrent. 1995. Phosphate availability in calcareous Vertisols and Inceptisols in relation to fertilizer type and soil properties. Fert. Res. 40:109–119.

Ebeling, A.M., L.G. Bundy, A.W. Kittell, and D.D. Ebeling. 2008. Evaluating the Bray P1 test on alkaline, calcareous soils. Soil Sci. Soc. Amer. J. 72:985–991.

Elrashidi, M.A., A.K. Alva, Y.F. Huang, D.V. Calvert, T.A. Obreza, and Z.L. He. 2001. Accumulation and downward transport of phosphorus in Florida soils and relationship to water quality. Commun. Soil Sci. Plant Anal. 32:3099–3119.

Florida Administrative Code. 2017. Rule 62-302.540. Water quality standards for phosphorus within the Everglades Protection Area, Tallahassee, FL. 30 May 2017. <https://www.flrules.org/gateway/RuleNo.asp?ID=62-302.540>.

Freeman, J.H., E.J. McAvoy, N. Boyd, P.J. Dittmar, M. Orozen-Hampton, H.A. Smith, G.E. Vallad, and S.E. Webb. 2014a. Tomato production, p. 183–204. In: G.E. Vallad, J.H. Freeman, and P.J. Dittmar (eds.). 2014–2015 Vegetable and small fruit production handbook of Florida. Vance Publishers, Lenexa, KS.

Freeman, J.H., G.E. Vallad, G. Liu, E.H. Simonne, G.J. Hochmuth, M.D. Dukes, L. Zottarelli, J.W. Noling, D.A. Botts, P.J. Dittmar, and S.A. Smith. 2014b. Vegetable production in Florida, p. 1–6. In: G.E. Vallad, J.H. Freeman, and P.J. Dittmar (eds.). 2014–2015 Vegetable and small fruit production handbook of Florida. Vance Publishers, Lenexa, KS.

Havlin, J.L., D.J. Beach, S.L. Tsidale, and W.L. Nelson. 2005. Phosphorus, p. 160–198. In: Soil fertility and fertilizers: An introduction to nutrient management. Pearson Education Inc., Upper Saddle River, NJ.

Hesketh, N. and P.C. Brookes. 2000. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 29:105–110.

Hurt, G.W., R.S. Mylavarapu, and S.P. Boeter. 2013. UF/IFAS nutrient management series: Computational tools for field implementation of the Florida phosphorus index: Dade County Florida. Univ. Florida, Inst. Food Agric. Sci., Electronic Data Info. Source. 20 Sept. 2017. <http://edis.ifas.ufl.edu/ef03710>.

Iatrou, M., A. Papadopoulos, F. Papadopoulos, O. Dichala, P. Psoma, and A. Bountla. 2014. Determination of soil available phosphorus using the Olsen and Mehlich 3 methods for Greek soils having variable amounts of calcium carbonate. Commun. Soil Sci. Plant Anal. 45:2207–2214.

Ige, D.V., O.O. Akinremi, D. Flaten, and M.A. Kashem. 2006. Comparison of soil test phosphorus methods in neutral to calcareous Mani- toba soils. Can. J. Soil Sci. 86:691–699.

Kormodrher, G.H., D.L. Anderson, K.M. Portier, and E.A. Hanlon. 1995. Phosphorus soil test correlation to sugarcane grown on Histosols in the Everglades. Soil Sci. Soc. Amer. J. 59:1655–1661.

Kumaragamage, D., O.O. Akinremi, D. Flaten, and J. Heard. 2007. Agronomic and environmental soil test phosphorus in manured and non-manured Manitoba soils. Can. J. Soil Sci. 87:73–85.

Lemunyon, J.L. and R.G. Gilbert. 1993. The concept and need for a phosphorus assessment tool. J. Prod. Agr. 6:483–486.

Li, Y.C., S.O. Hair, R. Mylavarapu, T. Olczyk, and M. Lamberts. 2000. Demonstration of phos- phorus fertilizer management for potato grown in a calcareous soil. Proc. Annu. Mtg. Fla. State. Hort. Soc. 113:237–239.

Mallarino, A.P. 1997. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. J. Prod. Agr. 10:163–167.

McDowell, R.W. and A.N. Sharpley. 2001. Phos- phorus losses in subsurface flow before and after manure application to intensively farmed land. Sci. Total Environ. 278:113–125.
Sen Tran, T., M. Giroux, J. Guibeault, and P. Audesse. 1990. Evaluation of Mehlich-III extractant to estimate the available P in Quebec soils. Commun. Soil Sci. Plant Anal. 21:1–28.

Sims, J.T., R.O. Maguire, A.B. Leytem, K.L. Gartley, and M.C. Poulter. 2002. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Sci. Soc. Amer. J. 66:2016–2032.

Slaton, N.A., B.R. Golden, R.J. Norman, C.E. Wilson, Jr., and R.E. DeLong. 2009. Correlation and calibration of soil potassium availability with rice yield and nutritional status. Soil Sci. Soc. Amer. J. 73:1192–1201.

Soltanpour, P.N. and A.P. Schwab. 1977. A new soil test for simultaneous extraction of macro- and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8:195–207.

U.S. Department of Agriculture. 1996. Soil survey of Dade County area, Florida. U.S. Department of Agriculture, Natural Resources Conservation Service. Washington, DC. 30 May 2016. <https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/florida/FL686/0/Dade.pdf>.

U.S. Department of Agriculture. 2014. 2012 Census county-level data, Florida. U.S. Department of Agriculture, Census of Agriculture, Washington, DC. 7 Oct. 2016. <https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1:_Chapter_2_County_Level/Florida/st12_2_029_029.pdf>.

Ussiri, D.A., P.N.S. Mkeni, A.F. MacKenzie, and J.M.R. Semoka. 1998. Soil test calibration studies for formulation of phosphorus fertilizer recommendations for maize in Morogoro district, Tanzania: I. Evaluation of soil test methods. Commun. Soil Sci. Plant Anal. 29:2801–2813.

von Wandruszka, R. 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 7:6–14.

Wang, J.J., D.L. Harrell, R.E. Henderson, and P.F. Bell. 2004. Comparison of soil-test extractants for phosphorus, potassium, calcium, magnesium, sodium, zinc, copper, manganese, and iron in Louisiana soils. Commun. Soil Sci. Plant Anal. 35:145–160.

Zhang, X.S., H. Liao, P. Chen, A. Li, and F.S. Zhang. 2007. Response of tomato on calcareous soils to different seedbed phosphorus application rates. Pedosphere 17:70–76.

Zhu, Q., M. Ozores-Hampton, and Y. Li. 2016. Comparison of Mehlich-3 and ammonium bicarbonate-DTPA for the extraction of phosphorus and potassium in calcareous soils from Florida. Commun. Soil Sci. Plant Anal. 47:2315–2324.

Zhu, Q., M. Ozores-Hampton, Y. Li, K. Morgan, G. Liu, and R.S. Mylavarapu. 2017a. Effect of phosphorus rates on growth, yield, and post-harvest quality of tomato in a calcareous soil. HortScience 52:1406–1412.

Zhu, Q., M. Ozores-Hampton, Y.C. Li, and R.S. Mylavarapu. 2017b. Comparing extractants for calibrating potassium rates for tomato grown on a calcareous soil. Soil Sci. Soc. Amer. J. 81:1621–1628.