Study of Optical, Thermal, Mechanical and Microstructural Properties of Fullerene/Poly (vinylidene fluoride) Polymer Nanocomposites

Manoranjan Behera 1,*

1 Silicon Institute of Technology, Bhubaneswar, India
* Correspondence: mano.silicon@gmail.com (M.B.);

Abstract: Fullerene (C$_{60}$/) poly (vinylidene fluoride) PVDF polymer nanocomposites (PNCs) films were prepared using a solution casting route. The optical, microstructural, thermal, and mechanical properties of pure PVDF and C$_{60}$-PVDF polymer nanocomposite films were studied using UV-Visible & Fourier Transform infrared (FTIR) spectrophotometer, X-ray diffractometer, Thermo-gravimetric analyzer, Tensile tester, and Field emission scanning electron microscope. An absorption band near 350 nm in the absorption spectrum shows the presence of C$_{60}$ nanoparticles in the PNC film. In the FTIR spectrum, the presence of vibrational bands near 510 and 840 cm$^{-1}$ suggest the development of β-phase of PVDF in PNC films. An increase in the degradation temperature from 444 $^\circ$C in pure PVDF to 506 $^\circ$C in PNC with 0.5 wt% C$_{60}$ is ascribed to cross-linking occurring between C$_{60}$ and polymer in PNC films. Both thermal conductivity and Young’s modulus vary non-linearly with C$_{60}$ content in PNC films. Microscopic image shows agglomerated C$_{60}$ particles of diameter ~550 nm, which were cross-linked to PVDF particles.

Keywords: solution casting; polymer nanocomposites; cross-linked structure; degradation temperature; Young’s modulus.

1. Introduction

Since the discovery of piezoelectric actions in poly (vinylidene fluoride) PVDF by Kawai in 1969 [1], semi-crystalline polymer and its copolymer have been investigated much these days [2-7]. Amongst various polymers, PVDF, in particular, has many advantageous features like low cost, flexibility, long-term stability, solubilization in many solvents, hydrophobicity, easy castability, excellent mechanical strength, good aging resistance, high chemical selectivity, large polarization, etc. as compared to many known technological polymers like poly (acrylonitrile), poly(tetrafluoro ethylene), polyimide, polysulfone, etc. [2-7]. Owing to possession of improved properties, PVDF founds applications in various fields like sensing [2-6], energy harvesting [5,8-13], biomedicals [6,9,14,15], nonlinear optics [16], water treatment [17,18], electromagnetic field shielding [19,20], distillation [17,18,21,22] and ultrafiltration [17,18]. PVDF is a fluoropolymer consisting of -(CH$_2$CF$_2$)- repeating unit. The repeating unit can exist in two conformations, i.e., Gauche (G) and Trans (T). Based on chain conformations, internal rotation about the C-C chain, and steric hindrance, PVDF polymer can exist in five crystalline forms α, β, γ, δ, and ε. Out of these five forms, ‘α’ is the most stable crystalline form but possesses no net dipole moment as it follows a TGTGTG… sequence about
the main backbone chain. The all Trans (TTTTT...) conformational sequence results in electroactive β-phase are of immense technological importance, especially in sensing due to the exposition of strong piezoelectricity on account of spontaneous polarization [8-13].

Several techniques were adopted by researchers to increase the percentage of β-phase in the PVDF are mechanical stretching [23-25], polymer blending [24,26,27], electrospinning [24,28,29], spin coating [24,30], sonication [8,31-35], addition of nanofillers [2,3,9-12,14-16,20,24], etc. However, polymer nanocomposites (PNCs) obtained by adding nano-fillers to PVDF polymer attract much attention due to their multifunctional properties like optical, electrical, thermal, mechanical, biological, etc. [9-12,14-16,20]. Various literature shows that diverse types of fillers in the form of metal oxides, transition metal oxides, carbon nanostructures (fullerene C60, carbon nanotube (CNT), graphene), ferrites, clay, etc. are tried by the researcher to enhance the dielectric, thermal, mechanical properties, etc. by increasing the percentage crystallinity of β-phase in PVDF [9-12,14-16,20,24]. Xiao et al. [31] reported an enhanced thermal conductivity (K-value) in PVDF/Boron Nitride (BN) composites in the presence of CNT. They reported a K-value of 1.30 Wm⁻¹K⁻¹ in PVDF/BN (20 wt%)/CNT (2 wt%) composite, and K-value increases almost linearly with BN-content (1-20 wt%). Mandal and Nandi [32] studied the effect of CNT addition on the thermal and mechanical properties of polymethyl methacrylate (PMMA). They reported that the formation of hard composite material causes an increase in thermal stability, tensile strength, and Young’s modulus of PMMA/CNT composite. In an article, Zhou et al. [34] reported that the K-value in PVDF/Ni composite is significantly enhanced due to the high K-value of nickel metal. Georgousis et al. [35] reported that at higher loading of CNT (6 and 8 wt%) the yield stress increases marginally relative to the pristine PVDF owing to enhancement in the β-phase.

In recent times, carbon nanostructure-based spherical filler like C60 is also attracting much attention due to its excellent optical, biological, rheological, and thermal properties [36-46]. Fullerene is chosen because many researchers report that C60 can alter the properties of the polymer via the transformation of α to β-phase in PVDF [8-10,12,18,33,47,46]. Vukicevic et al. [8] have reported that C60 nanoparticles (NPs) increase the polymer’s melting point by drastically reducing chain mobility. In an article, Zhang et al. [9] reported that they had fabricated β-form of PVDF in the presence of C60 using a twin-screw extruder. They succeeded in forming nanowires of PVDF assisted by C60 in C60/PVDF nanocomposites. Kim et al. [18] developed C60/PVDF membranes via a solution casting route that is useful for microfiltration and characterized their mechanical strength, hydrophilicity, and antifouling properties. The Young’s modulus of C60/PVDF PNC can be increased up to 1550 MPa upon addition of as small as 0.2 wt% C60 [25]. They also reported that Young’s modulus varies non-linearly with C60 content. Zeuv et al. [47] reported that Young’s modulus and tensile strength of Polyaniline/C60 PNC could be improved by 20% by doping of 0.02-0.08 wt% C60. According to their report, Young’s modulus varies non-linearly with C60 content and can give 3.0 GPa at a loading of 0.04 wt%. In epoxy/C60 PNC, Young’s modulus can be increased up to 20% by loading of 0.12 wt% C60 [48].

The present work aims to link C60 with PVDF via non-covalent interaction and develop PVDF/C60 nanocomposite films via a solution casting route. In this study, the development of PNC films was discussed using N-methyl pyrrolidone (NMP) solvent. As far as my knowledge is concerned, it is of the first kind to develop PVDF/C60 nanocomposite films using NMP as a common solvent for both materials. The effect of C60 NPs on the optical, microstructure, thermal and mechanical properties have been investigated.
2. Materials and Methods

PVDF powder (average Molecular weight ~534,000) was purchased from Sigma-Aldrich (is now Merck). Fullerene C\textsubscript{60} (99.9 % purity) and the solvent N-methyl pyrrolidone (NMP) were purchased from Alfa Aesar and Sigma-Aldrich. All these raw materials were used as such in developing PNCs.

At first, C\textsubscript{60} powder was submerged in NMP solvent, and the mixture was stirred with a stirrer maintained at 1500 rpm for 20 min to prepare C\textsubscript{60} solution. Then, PVDF (3g) was immersed in 100 mL NMP, and the mixture was stirred using an electrical stirrer maintained at 70 °C and 3000 rpm for 2 h to prepare PVDF solution. The PVDF solution was allowed to cool to RT. The different volume of C\textsubscript{60} solution was added to a fixed volume (5 mL) of PVDF solution to develop C\textsubscript{60}/PVDF nanofluids of various C\textsubscript{60} contents in NMP. In this manner, I prepared four NFs of different C\textsubscript{60} contents. The NFs were poured into four glass sheets and placed in a vacuum oven maintained at 120 °C for 5 h to remove the solvent. After removing the solvent, the nanocomposite films were peeled off from the sheets and obtained PNCs films were stored in desiccators for experimental analysis.

Absorption spectra of PNCs films were measured under identical conditions on a Perkin–Elmer double beam spectrophotometer (LAMBDA 1050). Infrared (IR) spectra have been studied with a Thermo Nicolet Corporation FTIR spectrometer (Model NEXUS-870). The X-ray diffraction (XRD) patterns of PNCs were obtained from a diffractometer made in Germany (Rigaku D/MAX-r.) with 2θ ranging from 5 to 60°, using Cu Kα radiation (λ = 1.5406 Å) at room temperature. Images of PNCs films were studied with a Field Emission Scanning Electron Microscope (FESEM) of ZEISS SUPRA–40. The thermal conductivities of the composites were measured using an LFA 447 Nano Flash (NETZSCH, Germany). A sample with a diameter of 12.6 mm was used for finding thermal conductivity value. Using the relationship \(C=\alpha t_{50}/d\), the thermal diffusivity (\(\alpha\)) can be calculated. Here, C is a dimensionless constant, \(t_{50}\) denotes the time to get one-half of the maximum temperature, and d denotes sample thickness. Now, thermal conductivity can be calculated using the equation \(K=\alpha C_p \rho\), where K, \(\rho\), and \(C_p\) represent thermal conductivity, bulk density, and specific heat of composites, respectively. Thermogravimetric analysis (TGA) was performed on a TGA 209 F3 (NETZSCH, Germany). The samples weighing nearly 10 mg were placed in the instrument, and measurements were performed under an N\textsubscript{2} gas atmosphere with a heating rate of 10 °C/min. The mechanical properties of the films were measured using universal testing machines UTM (INSTRON Instruments) following the ASTM D638-10 standard, taking an average of five measurements per reported value with the standard deviation under 65%. The extension rate was kept at ~10 mm/min. The dimensions of the film used were ~2cm × 5cm × ~200–250 μm (width × length × thickness).

3. Results and Discussion

3.1. Electronic and vibrational spectroscopy.

The electronic absorption spectra of C\textsubscript{60}/PVDF PNCs films with C\textsubscript{60} content (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, and (e) 0.5 wt% in the wavelength range (240-740 nm) are given in Fig. 1. As the peaks are broad, de-convolution was done (for sample-3) to split the broad peak into two peaks. The two peaks, one near 290 nm and the other near 350 nm, were seen after de-convolution. The de-convoluted spectrum is placed in the inset of Fig. 1. The two peaks were
from the C\textsubscript{60} band [39,40]. PVDF usually gives a band near 200 nm [16]. The nonpresence of this band near 200 nm shows that C\textsubscript{60} is successfully incorporated into the PVDF matrix in PNCs. Also, it was found that the peak maximum is shifting to a higher wavelength (i.e., from 286 nm in 0.1 wt\% C\textsubscript{60} to 298 nm in 0.5 wt\% C\textsubscript{60}) upon the incorporation of more and more C\textsubscript{60} into the polymer matrix. This result suggests that some interaction (maybe charge transfer type) occurs between C\textsubscript{60} and PVDF polymer [42-46,49].

![Absorption spectra of C\textsubscript{60}-PVDF PNCs](image)

Figure 1. Absorption spectra of C\textsubscript{60}-PVDF PNCs: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, and (e) 0.5 wt\% C\textsubscript{60}. Inset shows deconvolution of a broad absorption into two bands.

In order to identify the various crystalline polymorphs in PNCs film, we studied the vibrational spectra (Fig. 2) of C\textsubscript{60}/PVDF PNCs films with C\textsubscript{60} content (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.5 wt\%. The selective bands at 1268, 966, 831, 786, 755, 607, 523, 502, and 481 cm-1 which were assigned in Fig. 2 are recognized as α or β-phase in PNCs containing 0.5 wt\% C\textsubscript{60} (see the Table 1 for polymorph type and band assignment) [8,9,35]. No such band was seen in pure PVDF film (Fig. 3). This clearly shows that C\textsubscript{60} NP induces crystallinity in PVDF matrix. Further red-shift (i.e., wavenumber deceases to lower value upon adding C\textsubscript{60} into PVDF) in these bands in the presence of C\textsubscript{60} suggest charge transfer type interaction between carbon NP and fluro-polymer via C\textsubscript{60}---F-atom [42-46,49]. This band shift also suggests cross-linking between C\textsubscript{60} and PVDF polymer [48].

![FTIR spectra of C\textsubscript{60}-PVDF PNCs and pure PVDF](image)

Figure 2. FTIR spectra of (A) C\textsubscript{60}-PVDF PNCs and (B) pure PVDF.

Table 1. Assignments of vibrational bands.

Sl. No.	Band Position (cm-1)	α/β-phase assignment [8,9,35]
1	1268	β
2	966	α
3	831	β
4	786	α
5	755	α
6	607	α
7	523	α
8	502	β
9	481	β
3.2. XRD and microstructures.

XRD patterns of pure PVDF and C$_{60}$-PVDF PNC films are shown in Fig. 3. For the pure PVDF film, the diffraction lines corresponding to 2θ angles were found at 18.02 and 20.2. This shows that PVDF film is a little crystalline in nature. As per the referred diffraction data, the reflection of polymer with 0.5 wt% C$_{60}$ at 2θ angles 17.83, 20.6, and 36.34 are ascribed to α, β, and β-phase, respectively. Whereas no such peak was seen in pure PVDF. This suggests that C$_{60}$ NPs help crystallize the polymer [8,9,11].

![Figure 3. Diffraction patterns of C$_{60}$-PVDF PNCs: (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, and (e) 0.5 wt% C$_{60}$.](image)

Fig. 4 displays the FESEM images of pure PVDF and C$_{60}$-PVDF PNC film. The FESEM image of pure PVDF film (Fig. 4a) shows spherical particles (~450 nm) of PVDF polymer. In Fig. 4b, the image shows agglomerated C$_{60}$ particles of ~550 nm, which were cross-linked to PVDF particles. Fig. 4c shows a magnified image of the C$_{60}$ nanocluster.

![Figure 4. FESEM image of (a) Pure PVDF film; (b) C$_{60}$-PVDF PNC film with 0.3 wt% C$_{60}$ and (c) magnified image of the selected portion of Fig. 4b.](image)

3.3. Thermal properties of C$_{60}$-PVDF PNC films.

The thermal stability of PNC films was studied from TGA curves. Fig. 5a shows the TGA curves for pure PVDF film and C$_{60}$-PVDF PNC films. All TGA curves show a single degradation temperature. The PVDF polymer is almost thermally stable up to 378 °C. After this temperature, PFDF polymer matrix degrades at a rapid rate. As seen from the TGA thermograms of PNCS films, the temperature at which the PNCS starts degrading drastically increases upon more and more addition of C$_{60}$ NPs into the polymer matrix [32,50].
The degradation temperature has increased from 444 °C (pure PVDF) to 506 °C (PNC with 0.5 wt% C₆₀). The result reveals that the cross-linking occurs between C₆₀ and polymer, helping PNCs sustain thermal degradation. Also, it suggests that % cross-linking increases upon the addition of more and more carbon NPs into the matrix.

Thermal conductivity (K) values with and without filler were measured. K-value vs. wt% of C₆₀ plot (Fig. 5b) shows that C₆₀-PVDF PNC films exhibit enhanced K-value compared to pure PVDF film. The K-value varies non-linearly with C₆₀ content. Xiao et al. [31] and Cao et al. [52] have reported a similar nonlinear relationship between K-value and filler content. The K-value of PNC with 0.5 wt% C₆₀ is 0.28 W mK⁻¹, and this value is ~61% higher than pure PVDF film (0.172 W mK⁻¹). The enhanced value of K in PNC films is ascribed to the formation of thermal conductivity path by developing cross-linked structure in the PNC films, as seen from the FESEM image (Fig. 4) [31,52].

3.4. Mechanical properties of C₆₀-PVDF PNC films.

The stress–strain % plot of pure PVDF and PNC films is shown in Fig. 6A. The strain % at break decreases with an increase in C₆₀ content. The result is due to incorporating more and more carbon NPs into the polymer matrix. These NPs cross-link the polymer molecule and make the matrix rigid, decreasing the plasticity of PNC films. Upon increasing the C₆₀ content to 0.5 wt% in PCN film, the strain % decreases nearly 200% relative to pure PVDF.
Fig. 6B shows the variation of ultimate tensile strength against C₆₀ content in pure PVDF and PNC films. From the plot, it is found that tensile strength varies non-linearly with C₆₀ content. Relative to the pure PVDF, the ultimate tensile strength increases by 62% in PNC film consisting of 0.5 wt % C₆₀. This result is due to the formation of carbon nano-filler's cross-linked structure in PNC films. As it can be seen from the inset of Fig. 6A that Young’s modulus (Y) gradually increases with C₆₀ content. These two parameters also vary non-linearly with each other, upon increasing the C₆₀ content to 0.5 wt% in PCN film, the Y-value increases by nearly 18% concerning pure PVDF.

4. Conclusions

C₆₀-PVDF PNCs films were developed via a solution casting route and studied their optical, microstructural, thermal, and mechanical properties. The UV-Vis spectra show the incorporation of C₆₀ into the polymer matrix. XRD patterns and FTIR spectra suggest an enhancement in % crystallinity of PVDF polymer via the formation of α and β-phase in PNC films. The composites' thermal and mechanical properties increase with increasing C₆₀ content due to the formation of cross-linked microstructures. The developed polymer nanocomposites may find useful in bio-sensing and microfiltration.

Funding

This research received no external funding.

Acknowledgments

The kind help from the Silicon Institute of Technology is highly acknowledged.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kawai, H. The Piezoelectricity of Poly (vinylidene Fluoride). Jpn. J. Appl. Phys. 1969, 8, 975-976, https://doi.org/10.1143/JJAP.8.975.
2. Panda, M.; Sultana, N.; Singh, A.K. Structural and optical properties of PVDF/GO nanocomposites. Fuller. Nanotub. Carbon Nanost. 2021, 6, 1-12, https://doi.org/10.1080/1536383X.2021.1966767.
3. Sha, Z.; Boyer, C.; Li, G.; Yu, Y.; Allioux, F.M., Kalantar-Zadeh, Zhang, J. Electrospun Liquid Metal/PVDF-HFP Nanofiber Membranes with Exceptional Triboelectric Performance. Nano Energy 2021, 92, https://doi.org/10.1016/j.nanoen.2021.106713.
4. Wang, A.; Shao, M.; Yang, F.; Shao, C.; Chen, C. Preparation and properties of antibacterial PVDF composite thin films. Eur. Polym. J. 2021, 160, https://doi.org/10.1016/j.eurpolymj.2021.110803.
5. Guo, Y.; Wu, S.; Liu, S.; Xu, J.; Pawlikowska, E.; Gao, F. Enhanced dielectric tunability and energy storage density of structure-structured BaO. 6SrO. 4TiO₃/PVDF composites. Mater. Lett. 2022, 306, https://doi.org/10.1016/j.matlet.2021.130910.
6. Sun, M.F.; Wang, T.; Wu, L.G.; Wang, Y.X. Enhancing the permeation and antifouling performance of PVDF hybrid membranes by incorporating Co–Fe hydroxide nanoparticles in reverse microemulsion. J. Environ. Chem. Eng. 2021, 9, https://doi.org/10.1016/j.jece.2021.106556.
7. Ongun, M.Z.; Oguzlar, S.; Kartal, U.; Yurddaskal, M.; Cihanbegendi, O. Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@ Ag NPs. Solid State Sci. 2021, 122, https://doi.org/10.1016/j.solidstatesciences.2021.106772.
8. Vukicevic, R.; Beuermann, S. Fullerenes Decorated with Poly(vinylidenefluoride). Macromolecules 2011, 44, 2597-2603, https://doi.org/10.1021/ma102754c.
9. Zhang, D.; Tian, P.; Chen, X.; Lu, J.; Zhou, Z.; Fan, X.; Huang, R. Fullerene C60-induced growth of hollow piezoelectric nanowire arrays of poly(vinylidenefluoride) at high pressure. Compos. Sci. Technol. 2013, 77, 29–36, 10.1016/j.compscitech.2013.01.007.

10. Faraz, M.; Singh, H.H.; Khare, N. A progressive strategy for harvesting mechanical energy using flexible PVDF-rGO-MoS2 nanocomposites film-based piezoelectric nanogenerator. J. Alloys Compd. 2022, 890, https://doi.org/10.1016/j.jallcom.2021.161840.

11. Pan, J.; Li, Y.; Guo, G.; Zhao, X.; Yu, J.; Li, Z.; Zhang, C. Synergizing piezoelectric and plasmonic modulation of PVDF/MoS2 cavity/Au for enhanced photocatalysis. Appl. Surf. Sci. 2021, 577, https://doi.org/10.1016/j.apsusc.2021.151811.

12. Tang, T.; Li, C.; He, W.; Hong, W.; Zhu, H.; Liu, G.; Yu, Y.; Lei, C. Preparation of MOF-derived C-ZnO/PVDF Composites Membrane for the Degradation of Methylene Blue Under UV-Light Irradiation. J. Alloys Compd. 2021, 894, https://doi.org/10.1016/j.jallcom.2021.162559.

13. Orudzhov, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Träka, T.; Kadiev, M. Ultrasound and water flow driven piezopotential effect in self-polarized flexible α-Fe3O4 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy 2021, 90, https://doi.org/10.1016/j.nanoen.2021.106586.

14. Yin, J.; Roso, M.; Bouretti, C.; Lorenzetti, A.; Martucci, A.; Modesti, M. PVDF-TiO2 core-shell fibrous membranes by microwave-hydrothermal method: Preparation, characterization, and photocatalytic activity. J. Environ. Chem. Eng. 2021, 9, https://doi.org/10.1016/j.jece.2021.106250.

15. Feng, W.; Chen, Y.; Wang, W.; Yu, D. A water proof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 633, https://doi.org/10.1016/j.colsurfa.2021.127890.

16. Sabira, K.; Saeeda, P.; Diveyaree, M.C.; Jayakleshmi, S. Impressive nonlinear optical response exhibited by Poly(vinylidenefluoride)(PVDF)/reducedgraphene oxide (RGO) nanocomposite films. Opt. Laser Technol. 2017, 97, 77–83, https://doi.org/10.1016/j.optlastec.2017.06.008.

17. Yi, J.; Song, Y.; Cao, Z.; Li, C.; Xiong, C. Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nano-generators. Compos. Sci. Technol. 2021, 215, https://doi.org/10.1016/j.compscitech.2021.109011.

18. Kim, K.H.; Lee, J.S.; Hong, H.P.; Han, J.Y.; Park, J.W.; Min, B. The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane. Membr. Water Treat. 2015, 6, 423–437, https://doi.org/10.12989/mwt.2015.6.5.423.

19. Kumarman, R.; Kumar, S.D.; Balasubramanian, N.; Alagar, M.; Subramanian, V.; Dinakaran, K. Enhanced electromagnetic interference shielding in a Au–MWNT composite nanostructure dispersed PVDF thin films. J. Phys. Chem. C 2016, 120, 13771–13778, https://doi.org/10.1021/acs.jpcc.6b01333.

20. Mullaveettii, F.N.; Daukevicius, R.; Wakjira, Y. Strength and elastic properties of 3D printed PVDF-based parts for light weight biomedical applications. J. Mech. Behav. Biomed. Mater. 2021, 120, https://doi.org/10.1016/j.jmbbm.2021.104603.

21. Manikandan, N.; Valleti, K.; Karupasamy, K.; Divagar, M.; Subramaniam, S. The monolithic α,β crystal structural design of piezoelectric poly(vinylidenefluoride) (PVDF) polymer/fullerene based sensor array for the measurement of lung pressure. Sens. Bio-Sens. Res. 2021, 32, https://doi.org/10.1016/j.sbsr.2021.100418.

22. Ren, L.F.; Xia, F.; Chen, V.; Shao, J.; Chen, R.; and He, Y. TiO2-FTCS modified superhydrophobic PVDF electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Desalination 2017, 423, 1–11, https://doi.org/10.1016/j.desal.2017.09.004.

23. Kumar, R.; Singh, R.; Singh, M.; Kumar, P. On ZnO nanoparticle reinforced PVDF composite materials for 3D printing of biomedical sensors. J. Manuf. Process 2020, 60, 268–282, https://doi.org/10.1016/j.jmapro.2020.10.027.

24. Ren, X.; Meng, N.; Zhang, H.; Wu, J.; Abrahams, I.; Reece, M.J. Giant energy storage density in PVDF with internal stress engineered polar nanostructures. Nano Energy 2020, 72, https://doi.org/10.1016/j.nanoen.2020.104662.

25. Baur, C.; DiMaio, J.R.; MeAllister, E.; Hossini, R.; Wagener, E.; Ballato, J.; Priya, S.; Ballato, A.; Smith, Jr.D.W. Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites. J. Appl. Phys. 2012, 112, https://doi.org/10.1063/1.4768923.

26. Dhatarwal, P.; Sengwa, R.J. Tunable β-phase crystals, degree of crystallinity, and dielectric properties of three-phase PVDF/PEO/SiO2 hybrid polymer nanocomposites. Mater. Res. Bull. 2020, 129, https://doi.org/10.1016/j.materresbull.2020.110901.

27. Lederle, F.; Härter, C.; Beuermann, S. Inducing β phase crystallinity of PVDF homopolymer, blends and blockcopolymers by anti-solvent crystallization. J. Flavour. Chem. 2020, 234, https://doi.org/10.1016/j.flmultech.2020.109522.

28. Rahman, M.A.; Chung, G.S. Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd. 2013, 581, 724–730, https://doi.org/10.1016/j.jallcom.2013.07.118.

29. Wang, Z.; Zhou, W.; Sui, X.; Dong, L. Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. J. Reinf. Plast. Compos. 2015, 34, 1126-3115, https://doi.org/10.1177/0731684415588776.
30. Yu, L.; Cebe, P. Crystal polymorphism in electrosprun composite nanofibers of poly(vinylidenefluoride) within anoclay. Polymer. 2009, 50, 2133-2141, https://doi.org/10.1016/j.polymer.2009.03.003.
31. Xiao, Y.J.; Wang, W.Y.; Lin, T.; Chen, X.J.; Zhang, Y.T.; Yang, J.H.; Wang, Y.; Zhou, Z.W. Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidenefluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J. Phys. Chem. C 2016, 120, 6344-55, https://doi.org/10.1021/acs.jpcc.5b12651.
32. Mandal, A.; Nandi, A.K. Physical properties of poly(vinylidenefluoride) composites with polymer functionalized multiwalled carbon nanotubes using nitrene chemistry. J. Mater. Chem. 2011, 21, 15752-15763, https://doi.org/10.1039/C1JM12926K.
33. Ahmed, H.M.; Hassan, M.K.; Mauritz, K.A.; Bunkley, S.L.; Buchanan, R.K.; Buchanan, J.P. Dielectric properties of C60 and Sc123N@C60 fullerol containing polyurethane nanocomposites. J. Appl. Polym. Sci. 2014, 131, https://doi.org/10.1002/app.40577.
34. Zhou, W.; Gong, Y.; Tu, L.; Xu, L.; Zhao, W.; Cai, J.; Zhang, Y.; Zhou, A. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidenefluoride) composites. J. Alloys Compd. 2017, 693, 1-8, https://doi.org/10.1016/j.jallcom.2016.09.178.
35. Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czankova, K.; Kulicek, J.; Omatsova, M. Strain sensing polymer/carbonnanotube composites by electrical resistance measurement. Compos. B. Engg. 2015, 68, 162-169, https://doi.org/10.1016/j.compositesb.2014.08.027.
36. Fang, Y.; Bi, C.; Wang, D.; Huang, J. The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 782-794, https://doi.org/10.1021/acsenergylett.6b00657.
37. Kour.R.; Arya,S.; Young,S.; Gupta,V.; Bandhoria,P.; Khosla,A. Recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 2020, 167, https://doi.org/10.1149/1945-7111/ab6be4.
38. Liu, B.; Li, H. Alkylated fullerene as lubricant additive in paraffin oil for steel/steel contacts. Fuller. Nanotub. Carbon Nanost. 2016, 24, 712-719, https://doi.org/10.1080/1536383X.2016.1231178.
39. Behera, M.; Ram, S. Solubilization and stabilization of fullerene C60 in presence of poly(vinylpyrrolidone) molecules in water. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 233–239, https://doi.org/10.1007/s10847-011-9957-y.
40. Behera, M.; Ram, S. Mechanism of solubilizing fullerene C60 in presence of poly(vinylpyrrolidone) molecules in water. Fuller. Nanotub. Carbon Nanost. 2015, 23, 906-916, https://doi.org/10.1007/1536383X.2015.1041109.
41. Castro, E.; Garcia, A.H.; Zavala, G.; Echegoyen, L. Fullerenes in biology and medicine. J. Mater. Chem. B 2017, 5, 6523-6535, https://doi.org/10.1039/C7TB00855D.
42. Behera, M.; Ram, S. Poly(vinylpyrrolidone) mediated solubilization and stabilization of fullerene C60 in the form of nanofluid in an alcoholic medium. Fuller. Nanotub. Carbon Nanost. 2015, 23, 1064-1072, https://doi.org/10.1080/1536383X.2015.1068295.
43. Behera, M.; Ram, S. Tuning the optical and rheological properties of fullerene C60/poly(vinylpyrrolidone) nanofluids via inclusion of nanogold. Plasmonics 2016, 11, 1057-1065, https://doi.org/10.1007/s11468-015-0142-9.
44. Behera, M.; Ram, S. Variation of optical properties, rheology, and microstructure in fullerene/poly(vinylpyrrolidone) nanofluids with fullerene content in n-butanol, Fuller. Nanotub. Carbon Nanost. 2015, 24, 154-161, https://doi.org/10.1080/1536383X.2015.1130703.
45. Behera, M.; Ram, S. Strongly optical absorbive nanofluids and rheology in bonded fullerene C60 via poly(vinylpyrrolidone) molecules in water. Fuller. Nanotub. Carbon Nanost. 2017, 25, 143-150, https://doi.org/10.1080/1536383X.2016.1271788.
46. Behera, M.; Ram, S. Interaction between poly(vinylpyrrolidone) PVP and fullerene C60 at the interface in PVP-C60nanofluids–A spectroscopic study. IOP Conf. Ser. Mater. Sci. Engg. 2018, 330, https://doi.org/10.1088/1757-899X/330/1/012016.
47. Zuev, V.V.; Shlikov, A.V. Polyaniline12/fullerene C60 composites:investigation on their mechanical and dielectric properties. J. Polym. Res. 2012, 19, 925-9930, https://doi.org/10.1007/s10965-02-9925-2.
48. Pikhurov, D.V.; Zuev, V.V. The effect of fullerene C60 on the mechanical and dielectrical behavior of epoxy resins at low loading. AIP Conf. Proc. 2014, 1599, https://doi.org/10.1063/1.4876876.
49. Garcia-Hernandez, D.A.; Cataldo, F.; Manchado,A. Charge-transfer interaction between C60fullerene and alkynaphthalenes.Fuller. Nanotub. Carbon Nanost. 2017, 25, 223-229, https://doi.org/10.1080/1536383X.2016.1277993.
50. Thakur, V.K.; Tan, E.J.; Lin, M.F.; Lee, P.S. Poly(vinylidenefluoride)-graft-poly(2-hydroxyethylmethacrylate):a novel material for high energy density capacitors. J. Mater.Chem. 2011, 21, 3751-3759, https://doi.org/10.1039/c0jm02408b.
51. Mago, G.; Kalyon, D.M.; Fisher, F.T. Membranes of polyvinylidenefluoride and PVDF nanocomposites with carbon nanotubes via immersion precipitation. J. Nanomater. 2008, 2008, https://doi.org/10.1155/2008/759825.
52. Cao, Y.; Deng, Q.; Liu, Z.; Shen, D.; Wang, T.; Huang, Q.; Du, S.; Jiang, N.; Lin, C.T.; Yu, J. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 2017, 7, 20494-204501, https://doi.org/10.1039/C7RA00184C.