Additional index words. fruit breeding, Prunus armeniaca, self-compatibility, shankra resistance, fruit quality

'Selene' is a midseason ripening apricot cultivar (Prunus armeniaca L.) with high productivity, good fruit quality, and an attractive orange skin suitable for the European market. This cultivar is adapted to the climatic conditions in the Southeast of Spain. It has some resistance to shankra disease, showing weak symptoms when challenged with a strong inoculation pressure. 'Selene' is self-compatible and possesses a high degree of autogamy. 'Selene' fruit are free stone with a light orange skin color and a deep orange flesh color that make them very attractive.

ORIGIN

'Selene' resulted from a cross made in 1995 at Murcia, Spain, between the North American cultivar 'Goldrich' (Washington State University) and the breeding selection 'A2564' (Screara x Stark Early Orange) (Institut National de la Recherche Agronomique, Avignon, France) (Fig. 1). The major objective of the apricot breeding program at CEBAS–CSIC in Murcia is to develop new, good fruit quality, shanka-resistant cultivars to replace traditional cultivars in the areas affected by this viral disease (Egea et al., 1999).

DESCRIPTION

Tree characteristics. 'Selene' was originally selected as a seedling tree on its own roots and then grafted onto apricot seedlings (3 replications) and studied five consecutive years. Trees of 'Selene' are large and very vigorous with a moderate spread. 'Selene' has a high density of flower buds (28.9 flowers/cm²) of shoots mainly localized on fruiting spurs of 2-year-old branches (Table 1). 'Selene' is characterized by large fruit with high productivity in comparison with traditional Spanish apricot cultivars. Tree architecture greatly facilitates pruning (reduced branching habit).

Table 1. Comparative analysis of tree and fruit characteristics of 'Selene, the Spanish cultivar 'Búlida', the French cultivar 'Bergeron' and the North American cultivar 'Orange Red'.

Characteristic	'Selene'	'Búlida'	'Bergeron'	'Orange Red'	
Tree	Vigorous	Vigorous	Vigorous	Vigorous	
Flower density (flowers/cm²)	28.9	28.9	27.8	26.8	
Flowering date (full bloom)	7 Mar.	8 Mar.	13 Mar.	15 Mar.	
Fruit set (%)	44.7	31.6	39.4	39.4	
Yield	Very high	High	High	Medium	
Fruit	Ripening date	8 June	26 May	19 June	28 May
Fruit size (g)	64.7	59.8	70.7	70.7	
Sugar ('Brix')	13.33	10.62	11.90	14.22	
Acidity	2.45	1.29	1.73	1.23	

Table 2. Comparative analysis of fruit and flower characteristics of 'Selene, the Spanish cultivar 'Búlida', the French cultivar 'Bergeron' and the North American cultivar 'Orange Red'.

Molecular characterization

Simple Sequence Repeat (SSR) analysis. Eleven SSR markers previously developed in peach were screened for polymorphism of 'Selene' apricot DNA. The DNA fingerprints of 'Selene' and its progenitors 'Goldrich' and 'A2564' are shown in Table 2. UDP96005, UDP96018 and UDP98411 SSR markers were able to distinguish 'Selene' and its progenitors.

Received for publication 25 Feb. 2003. Accepted for publication 4 Jan. 2004. We thank Mariano Gambín, Adela Martínez and José Luis Patiño for technical assistance in obtaining this cultivar. The work has been financed with several projects of the “Plan Nacional de I-D” of the Spanish Ministry of Science and Technology from 1985, the last one being titled “Mejora Genética del Albaricoquero” (AGL2001-112-C02-01). The authors dedicate this paper to Dr. Luis Egea, who dedicated a great part of his life to the apricot breeding program of the CEBAS-CSIC.

* Corresponding author; email jegea@cebas.csic.es.
Virus-free budwood is available from CE-BAS-CSIC (Spain). This cultivar is registered in the European Union Community Plant Variety Office with the registration number 2002/2176. Budwood has been tested and is free of the following viruses: prunus necrotic ring spot virus (PNRSV), apple mosaic virus (ApMV), apple chlorotic leaf spot virus (ACLSV), prune dwarf virus (PDV) and plum pox virus (PPV).

Literature Cited

Cipriani, G., G. Lot, H.G. Huang, M.T. Marrazzo, E. Peterlunger, and R. Testolin. 1999. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Basch): Isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Genet. 99:65–72.

Dirlewanger, E., A. Crosson, P. Tavaud, M.J. Aranzana, C. Poizat, A. Zanetto, P. Arús, and L. Laigret. 2002. Development of microstellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor. Appl. Genet. 105:127–138.

Egea, J., L. Burgos, P. Martínez-Gómez, and F. Dicenta. 1999. Apricot breeding for sharka resistance at CEBAS-CSIC, Murcia (Spain). Acta Hort. 488:153–157.

Kölber, M. 2001. Workshop on plum pox. Acta Hort. 550:249–255.

Martínez-Gómez, P. and F. Dicenta. 1999. Evaluation of resistance to sharka in the breeding apricot program in CEBAS-CSIC in Murcia (Spain). Acta Hort. 488:731–737.

Martínez-Gómez, P., F. Dicenta, and J.M. Audergon. 2000. Behaviour of apricot (Prunus armeniaca L.) cultivars in the presence of sharka (Plum pox potyvirus): A review. Agronomie 20:407–422.

Richardson, E.A., S.D. Seeley, and R.D. Walker. 1974. A model estimating the completion of rest for Red Haven and Elberta peach. HortScience 9:331–332.

Testolin, R., T. Marrazo, G. Cipriani, R. Quarta, L. Verde, M.T. Dettori, M. Pancaldi, and S. Sansavini. 2000. Microsatellite DNA in peach (Prunus persica (L) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520.

Table 2. Molecular characterization of ‘Selene’ apricot cultivar and its parents ‘Goldrich’ and ‘A2564’ using peach simple sequence repeat (SSR) markers.

SSR marker	Reference	Size of amplified bands (bp)		
		‘Selene’	‘Goldrich’	‘A2564’
BPPCT 017	Dirlewanger et al., 2002	191/212	191/212	191/212
BPPCT 020	Dirlewanger et al., 2002	121/121	121/121	121/121
BPPCT 006	Dirlewanger et al., 2002	76/76	76/76	76/76
UDP 96003	Cipriani et al., 1999	115/115	93/115	115/115
UDP 96005	Cipriani et al., 1999	117/124	82/124	100/117
UDP 96018	Cipriani et al., 1999	242/242	242/282	242/282
UDP 96019	Cipriani et al., 1999	170/214	170/214	170/214
UDP 98406	Cipriani et al., 1999	95/100	95/100	95/100
UDP 98409	Cipriani et al., 1999	124/124	124/138	124/124
UDP 98411	Testolin et al., 2000	160/164	154/164	160/160
UDP 98412	Testolin et al., 2000	103/114	103/114	103/114