Recent Advances in Research on Vascular Permeability to Establish Novel Therapeutic and Drug Delivery Strategies for Intractable Diseases

Enhanced Vascular Permeability by Microbubbles and Ultrasound in Drug Delivery

Daiki Omata, Lisa Munakata, Kazuo Maruyama, and Ryo Suzuki

Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University; Laboratory of Theranostics, Faculty of Pharma-Science, Teikyo University; and Advanced Comprehensive Research Organization (ACRO), Teikyo University.

Received May 24, 2021

Ultrasound and microbubbles, an ultrasound contrast agent, have recently increased attention to developing novel drug delivery systems. Ultrasound exposure can induce mechanical effects derived from microbubbles behaviors such as an expansion, contraction, and collapse depending on ultrasound conditions. These mechanical effects induce several biological effects, including enhancement of vascular permeability. For drug delivery, one promising approach is enhancing vascular permeability using ultrasound and microbubbles, resulting in improved drug transport to targeted tissues. This approach is applied to several tissues and drugs to cure diseases. This review describes the enhancement of vascular permeability by ultrasound and microbubbles and its therapeutic application, including our recent study. We also discuss the current situation of the field and its potential future perspectives.

Key words blood vessel; brain; cancer; drug delivery; microbubble; ultrasound

1. INTRODUCTION

The drug delivery system is essential to cure diseases with high therapeutic effects and low side effects by improving a distribution of drug in the body. Various drug delivery systems have been studied, such as chemical modification to change physiological characteristics of drug and development of drug loading carriers to control the distribution of drug. Additionally, physical energies, such as thermal energy, light energy, magnetic force, proton concentration, and ultrasound are used to develop drug delivery systems. In most of the systems, a drug is systemically administered and distributed via blood flow. Then, the drug must pass vascular endothelial cells and act on targeted parenchyma cells except targeting endothelial cells. Therefore, vascular endothelial cells are a major obstacle to achieving an appropriate drug distribution. An increase in vascular permeability is a promising approach to overcome the obstacle. Many strategies have been studied using biologically active substances such as bradykinin and nitric oxide and physical energy such as thermal energy and ultrasound. The combination of ultrasound and microbubbles, an ultrasound contrast agent, has increased attention because it can enhance vascular permeability by mechanical effects of microbubbles. To establish noninvasive and efficient drug delivery systems, research and development using ultrasound and microbubbles have dramatically proceeded.

This review describes the enhancement of vascular permeability by ultrasound and microbubbles and its therapeutic application, including our recent study. We also discuss the current situation of the field and its potential future perspectives.

2. MICROBUBBLES AND ULTRASOUND

Ultrasound is clinically used in ultrasound imaging diagnosis for a long time. Ultrasound and its imaging device have several advantages such as non-invasiveness, non-radioactivity, superior portability, and low cost. Recently, ultrasound is also used for therapy. A high-intensity focused ultrasound, which can concentrate ultrasound energy in small point and ablate tissue, has been approved in Japan to treat essential tremors and Parkinson disease. It is also tried to apply for several diseases such as uterine fibroid and prostatic hyperplasia. Furthermore, a combination of ultrasound and microbubbles is studied for a novel drug delivery system. Microbubbles are used as an ultrasound contrast agent and composed of insoluble gas and covered shells such as lipids and protein. In ultrasound imaging, ultrasound exposure induces an oscillation of microbubble, and ultrasound waves are deformed, including higher harmonic waves. The imaging device detects the reflection of higher harmonic ultrasound waves derived from microbubbles and describes the tissue structure. Microbubbles are useful to detect micro-blood flow and are applied to diagnose the tumor. Ultrasound exposure with adequate energy induces stable cavitation, which is a repetition of expansion and contraction of microbubbles (Fig. 1B). Furthermore, ultrasound exposure with high energy induces inertial cavitation, which is a collapse of microbubbles, resulting in the induction of phenomena such as microjet stream. The cavitation of microbubbles can enhance the permeability of the cellular membrane and blood vessel (Fig. 1B). Although some parts of the mechanism
The medical field has dramatically developed, and some diseases have been treatable. Nevertheless, diseases of the brain and central nervous systems such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and brain tumors still require advanced therapy. Several promising drugs have been studied using peptides, proteins, genes, nucleic acids, or cells. To treat diseases of the brain and central nervous systems such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and brain tumors still require advanced therapy.

3. BLOOD–BRAIN BARRIER OPENING

In the past decades, the medical field has dramatically developed, and some diseases have been treatable. Nevertheless, diseases of the brain and central nervous systems such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and brain tumors still require advanced therapy. Several promising drugs have been studied using peptides, proteins, genes, nucleic acids, or cells. To treat diseases of the brain and central nervous systems such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and brain tumors still require advanced therapy.
The effect of encapsulated gas on blood–brain barrier opening. Different gas-encapsulated microbubbles and examined the blood–brain barrier has not been evaluated. Thus, we prepared microbubbles. Still, the effect of encapsulating gas in microbubbles on achieving efficient and noninvasive blood–brain barrier opening is important to achieve efficient and noninvasive blood–brain barrier opening. Optimizing the characteristics of microbubbles, such as the composition of shells, particle size, and encapsulated gas helps establish a useful blood–brain barrier-opening system.

In *in vitro* studies, the echogenicity of MB-C3F8, MB-C4F10, and MB-SF6 was sustained compared with MB-C3F8 and MB-SF6, and the echogenicity of microbubbles in the kidney of mouse was observed, while the echogenicity of MB-C3F8 and MB-C4F10 was sustained with that of MB-SF6. These results suggested that MB-C3F8 and MB-C4F10 were stable *in vitro* and *in vivo* compared with MB-SF6. The solubility of C3F8 and C4F10 in water is lower than that of SF6. The prepared microbubbles had the same lipid composition in shell and similar size, and MB-C3F8 and MB-C4F10 had less leakage of gas through the shell because of less solubility of C3F8 and C4F10 in water. Furthermore, examination was performed on the different gas-encapsulated microbubbles on blood–brain barrier opening. The mixture of microbubbles and Evans blue was intravenously injected into the mouse, and immediately transcranial ultrasound exposure was performed to the right side of the brain. After one hour, the blood was transcranially perfused, and Evans blue delivered to the brain was determined. The amount of Evans blue delivered to the brain treated by MB-C3F8 or MB-C4F10 with ultrasound were higher than that of MB-SF6 (Figs. 2B, C). These results suggested that the MB-C3F8 and MB-C4F10 with high stability *in vivo* would be suitable for blood–brain barrier opening. Furthermore, we evaluated the damage to the brain by hematoxylin–eosin staining and fluoro-jade C staining, which can detect denatured neurons. The experiments revealed that the MB-C3F8 and MB-C4F10 with ultrasound did not induce notable damage to the brain. Our study demonstrated that C3F8 or C4F10 encapsulated in microbubbles would be suitable to achieve efficient and noninvasive blood–brain barrier opening. Optimizing the characteristics of microbubbles, such as the composition of shells, particle size, and encapsulated gas helps establish a useful blood–brain barrier-opening system.

The blood–brain barrier opening with microbubbles and ultrasound has been applied to brain-related diseases such as cancer, Parkinson’s disease, and Alzheimer’s disease. The combination of microbubbles and ultrasound could deliver low molecular weight compounds and large molecules such as antibody. Nucleic acid with a large molecular weight is expected to treat intractable diseases and needs a delivery system to exhibit therapeutic effects because of physical characteristics such as negative charge and large molecular weight. The combination of microbubbles and ultrasound has the possibility to deliver a nucleic acid to the brain by enhancing the blood vessel’s permeability. Kinoshita et al. examined nucleic acid delivery to the brain using microbubbles and ultrasound, followed by protein expression to reduce oxidative stress. Oxidative stress induces the degradation of neurons in some diseases. Glutathione shows an antioxidative activity and protects the degradation of neurons. Glutathione synthesis needed by cysteine, and cysteine uptake are regulated.

![Image](image_url)

Fig. 2. Blood–Brain Barrier Opening by Microbubbles and Ultrasound

(A) Mechanical forces of microbubbles induced by ultrasound exposure can temporally disrupt tight junctions between endothelial cells and enhance the permeability of blood–brain barrier. (B) A mixture of Evans blue (100 mg/kg) and microbubbles (3 × 109 particles/kg) was intravenously injected into the mouse. Immediately, ultrasound (Frequency: 3 MHz, Intensity: 0.5 W/cm², Time: 3 min) was exposed to the right side of the brain. After one hour, blood was transcranially perfused, and the whole brain and slice brain were observed. (C) The delivered Evans blue into each side of the brain was extracted and measured. Data were shown as a box plot. **p < 0.01. Reprinted with modification from Omata et al. with permission.

![Diagram](diagram_url)

Improved in diagnosis and therapy. To induce blood–brain barrier opening, not only ultrasound devices but also microbubbles are essential. It is reported that the characteristics of microbubbles such as particle size and composition of the shell affect the blood–brain barrier opening. Therefore, the development of optimized microbubbles is important to achieve efficient and noninvasive blood–brain barrier opening. Still, the effect of encapsulating gas in microbubbles on blood–brain barrier has not been evaluated. Thus, we prepared different gas-encapsulated microbubbles and examined the effect of encapsulated gas on blood–brain barrier opening.

Three types of gas which are used in approved microbubbles were chosen. Perfluoropropane (C3F8), perfluorobutane (C4F10), and sulfur hexafluoride (SF6) are used in Definity, Sonazoid, and SonoVue, respectively. We fabricated C3F8-encapsulated microbubbles (MB-C3F8), C4F10-encapsulated microbubbles (MB-C4F10), and SF6-encapsulated microbubbles (MB-SF6). The average diameter of these microbubbles was 2–3 μm, and the lipid composition of the shell was the same. Therefore, it was considered that the effect of gas could be compared. To evaluate the stability of microbubbles, ultrasound imaging was conducted and the echogenicity derived from microbubbles by contrast mode was supervised.

In *in vitro* studies, the echogenicity of MB-C3F8 sustained was compared with MB-C3F8 and MB-SF6, and the echogenicity of microbubbles in the kidney of mouse was observed, while the echogenicity of MB-C3F8 and MB-C4F8 was sustained with that of MB-SF6. These results suggested that MB-C3F8 and MB-C4F10 were stable *in vitro* and *in vivo* compared with MB-SF6. The solubility of C3F8 and C4F10 in water is lower than that of SF6. The prepared microbubbles had the same lipid composition in shell and similar size, and MB-C3F8 and MB-C4F10 had less leakage of gas through the shell because of less solubility of C3F8 and C4F10 in water. Furthermore, examination was performed on the different gas-encapsulated microbubbles on blood–brain barrier opening. The mixture of microbubbles and Evans blue was intravenously injected into the mouse, and immediately transcranial ultrasound exposure was performed to the right side of the brain. After one hour, the blood was transcranially perfused, and Evans blue delivered to the brain was determined. The amount of Evans blue delivered to the brain treated by MB-C3F8 or MB-C4F10 with ultrasound were higher than that of MB-SF6 (Figs. 2B, C). These results suggested that the MB-C3F8 and MB-C4F10 with high stability *in vivo* would be suitable for blood–brain barrier opening. Furthermore, we evaluated the damage to the brain by hematoxylin–eosin staining and fluoro-jade C staining, which can detect denatured neurons. The experiments revealed that the MB-C3F8 and MB-C4F10 with ultrasound did not induce notable damage to the brain. Our study demonstrated that C3F8 or C4F10 encapsulated in microbubbles would be suitable to achieve efficient and noninvasive blood–brain barrier opening. Optimizing the characteristics of microbubbles, such as the composition of shells, particle size, and encapsulated gas helps establish a useful blood–brain barrier-opening system.

The blood–brain barrier opening with microbubbles and ultrasound has been applied to brain-related diseases such as cancer, Parkinson’s disease, and Alzheimer’s disease. The combination of microbubbles and ultrasound could deliver low molecular weight compounds and large molecules such as antibody. Nucleic acid with a large molecular weight is expected to treat intractable diseases and needs a delivery system to exhibit therapeutic effects because of physical characteristics such as negative charge and large molecular weight. The combination of microbubbles and ultrasound has the possibility to deliver a nucleic acid to the brain by enhancing the blood vessel’s permeability. Kinoshita et al. examined nucleic acid delivery to the brain using microbubbles and ultrasound, followed by protein expression to reduce oxidative stress. Oxidative stress induces the degradation of neurons in some diseases. Glutathione shows an antioxidative activity and protects the degradation of neuron. Glutathione synthesis needed by cysteine, and cysteine uptake are regulated.
by excitatory amino acid carrier 1 (EAAC1).40 Therefore, the upregulation of EAAC1 increases cysteine, resulting in an increase of glutathione. EAAC1 expression is suppressed by miR-96-5p.41 Thus, the antisense oligonucleotide inhibiting miR-96-5p would become neuroprotective drugs. Kinoshita \textit{et al.} administrated the mixture of this antisense oligonucleotide and microbubbles into the internal carotid artery and simultaneously exposed ultrasound to the brain. Immunohistochemistry analysis revealed that EAAC1 expression treated by antisense oligonucleotide with microbubbles and ultrasound was increased compared with antisense oligonucleotide alone and antisense oligonucleotide as a negative control with microbubbles and ultrasound. Furthermore, intracellular glutathione treated by antisense oligonucleotide with microbubbles and ultrasound was higher than that of antisense oligonucleotide alone. The results suggested that the combination of microbubbles and ultrasound could efficiently deliver antisense oligonucleotides into the brain parenchyma, and the delivered antisense oligonucleotides could modulate the protein expression followed by physiological response. Thus, the combination of microbubbles and ultrasound would be useful to enhance the permeability of blood–brain barriers and deliver drugs such as antisense oligonucleotides into the brain parenchyma.

To establish blood–brain barrier opening system in clinic, many studies have progressed worldwide. Magnetic resonance-guided focused ultrasound combined with microbubbles has been clinically studied for glioblastoma therapy and others.12,14 In this system, an ultrasound device is set on the head and transcranially applied without surgery because ultrasound frequency is low, and ultrasound can pass the skull. Alternatively, non-focused ultrasound has also been developed for glioblastoma therapy.13 Here, the transducer is embedded under the skull with surgery. Therefore, it has some invasiveness, but it does not need to be set in each treatment and equipped with simple treatment. Additionally, a focused ultrasound device has been developed which can detect inertial cavitation and control the acoustic power not to inertial cavitation for safe treatment.52 Microbubbles have also been studied to achieve efficient and safe treatment. As previously described, the lipid composition of shell, encapsulated gas, and particle size of microbubbles could affect the blood–brain barrier opening.10,36,37 Therefore, it is also important to develop the optimized microbubbles for blood–brain barrier opening to achieve a therapeutic system for brain-related diseases. Although some concerns should be addressed, a development of ultrasound device and microbubbles will help achieve efficient and safe blood–brain barrier systems followed by treatment of brain and central nervous system diseases.

4. BLOOD–TUMOR BARRIER OPENING

Chemotherapy is one of the therapeutic strategies for cancer therapy. The chemotherapy is including conventional chemical drugs and targeted molecular drugs. Although chemical conventional medicines such as doxorubicin (DOX) and cisplatin (CDDP) are widely applied for various types of cancer, they frequently introduce severe toxicities and side effects. To avoid their appearance, reduction of the injection dose would be effective. Although the dose reduction can decrease the frequency of side effects, it would be reduced therapeutic effect. To get out of the dilemma, it is necessary to change the pharmacokinetics (PK) of the drug. There are some approaches for changing PK, such as modulation of the microenvironment in tumor tissue to enhance drug accumulation using the drug delivery carriers. Cancer cells in tumor tissue take essential nutrition and oxygen via blood flow. For the survival of cancer cells, tumor tissue needs angiogenesis. The tight junctions of neovascular tumor tissue are loose and result in leakages even for large molecules and nanomedicine. This is a different big property compared with vascular in normal tissue. In normal tissue, vascular permeability is limited for large molecules. This difference in vessel structure between tumor and normal tissue is used for drug delivery system.

In tumor tissue, large molecules and nanomedicine, which has a diameter of 100–200 nm, preferentially enhance extravasation and retention in tumor tissue. This phenomenon is known as the enhanced permeability and retention (EPR) effect.43 The EPR effect is an accumulation mechanism of nanomedicine such as liposomal doxorubicin (DOXIL). It was thought that the EPR effect was an attractive drug targeting strategy. DOXIL has been approved for Kaposi’s sarcoma in which a practical EPR effect is observed in the clinic. However, reports have deduced that the mean delivery efficiency in nanomedicine based on EPR effect was only 0.7%44 The EPR effect is not sufficient to achieve the therapeutic effect with chemotherapy in many types of cancer. The limitation of the EPR effect is caused by the lack of fenestrations in the tumor endothelium, the rich extracellular matrix and stroma in tumor tissue, tumor interstitial fluid pressure, irregular vascularity, heterogeneous pericyte coverage, and poor blood flow within tumor, etc.45–47 Especially, pancreatic cancers have a rich extracellular matrix and poor blood flow. In pancreatic cancer, drug delivery efficiency is commonly low and results in a low therapeutic effect even with gemcitabine or FOLFIRINOX (bolus injection and infusion of 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin), which is a first-line for pancreatic cancer or an optimal combination of chemotherapy.48

Altogether, it is thought that the EPR effect is rare in clinic, anti-tumor drugs, and nanomedicine would be difficult to be delivered into tumor tissue across the blood vessels in most types of tumors. It means that the blood–tumor barrier would exist and endothelial cells have functioned as blood–tumor barrier. To get over blood–tumor barrier and achieve the effective drug delivery into tumor tissue, it is crucial to develop a new approach to promote extravasation by enhancing the neovascular permeability in tumor tissue.

As mentioned in the previous section, the combination of microbubbles and ultrasound can effectively deliver small and large molecules into the brain by opening the blood–brain barrier. It is expected that this approach could be applied to anti-tumor drug delivery by blood–tumor barrier opening. Ueno \textit{et al.} reported improvement in anti-tumor effect with chemotherapy for osteosarcoma.49 Osteosarcoma is the most frequent malignant tumor. DOX is considered one of the most effective drugs. In the chemotherapeutic regimens, a high dosage of the drug requires eliminating tumor successfully. Adversely, chemotherapy under high dose would frequently cause the side effects such as cardiotoxicity, immune suppression, nephrotoxicity, and others. To prevent the side effect, alternative strategies for treating osteosarcoma should be developed. Under this situation, it was developed
an effective therapeutic system for osteosarcoma by DOX delivery with submicron bubbles (Bubble liposome) and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.

Kotopoulis and colleagues have conducted a pilot study, which is first-in-human to deliver the anti-tumor drug with microbubbles and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.

Kotopoulis and colleagues have conducted a pilot study, which is first-in-human to deliver the anti-tumor drug with microbubbles and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.

Kotopoulis and colleagues have conducted a pilot study, which is first-in-human to deliver the anti-tumor drug with microbubbles and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.

Kotopoulis and colleagues have conducted a pilot study, which is first-in-human to deliver the anti-tumor drug with microbubbles and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.

Kotopoulis and colleagues have conducted a pilot study, which is first-in-human to deliver the anti-tumor drug with microbubbles and ultrasound. Interestingly, this system achieved an equivalent tumor growth suppression at about 1/5 the dose of DOX employed in monotherapy. Additionally, a significant reduction of platelet number was observed in the monotherapy with DOX but not in our delivery system at the injection dose with an equivalent therapeutic effect. Moreover, Yamaguchi et al. attempted to deliver CDDP for cervical cancer (HeLa) (Fig. 3A) and uterine endometrial cancer (HEC1B) (Fig. 3B) in mouse xenograft model with lipid-stabilized microbubbles and diagnostic ultrasound scanner. This bubble and ultrasound-mediated drug delivery system (BUS-DDS) significantly enhanced anti-tumor effects without any adverse events. Furthermore, Hirabayashi et al. developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated microbubbles (EGFR-MB). In the human gingival squamous carcinoma xenograft model, bleomycin delivery by combining ultrasound and EGFR-MB exhibited remarkable anti-tumor activity. These findings suggest the possibility of proposing a novel strategy for chemotherapy.
and targeted drug release. In this event, the permeability of the capillary vessel would be enhanced and resulted in effective delivery of the drug into tumor tissue. In the PDAC xenograft subcutaneous model, the combination of ACT and paclitaxel injection and ultrasound exposure could effectively suppress tumor growth. This research group also reported colon cancer therapy by ACT along with irinotecan. In the Royal Marsden Hospital in the UK, Phase I trial on the ACT with chemotherapy for treatment of liver metastasis in patients with solid tumors with an expansion cohort in metastatic colorectal and pancreatic cancer has been started.35

During the early stages of research with microbubbles and ultrasound, small molecule delivery has been mainly reported. In recent research, there are many reports about the delivery of middle and large molecules such as small interfering RNA (siRNA), microRNA (miRNA), plasmid DNA, antibodies and nanoparticles. Generally, siRNA and miRNA are unstable in the bloodstream due to degradation by ribonuclease (RNase). To prevent degradation, their molecules are loaded with microbubbles or nanoparticles. When ultrasound is exposed to their molecules-loaded microbubbles or nanoparticles combined with microbubbles in the bloodstream of tumor tissue, the loaded molecules is quickly released at the sonication site. Simultaneously, sonoporation would open the tight junction of capillary vessels and result in the effective delivery of siRNA, miRNA, or their molecules-loaded nanoparticles into tumor tissue. This delivery system could be applied to nanomedicine such as DOXIL. Our collaborators reported anti-tumor effects in various types of tumors in mice (Fig. 3C) or dog. In these experiments, anti-tumor effects were observed. From these results, it was suggested that the combination of microbubbles and ultrasound could open pores of sizes which will be at least 100 nm enough to pass through the nanomedicine on neovascular in tumor tissue.

The drug delivery technologies for cancer therapy with microbubbles and ultrasound are low invasive. They could apply for various types of drugs, from small and large molecules to nanomedicine as nanoparticles. The therapeutic effects could enhance and reduce the adverse effects because of help achieve “reinforced targeting.” Therefore, it is expected that this technology would be an attractive drug delivery system for various therapeutic agents and nanomedicine for cancer therapy.

5. CONCLUSION

Microbubbles and ultrasound could enhance the permeability of blood–brain barrier and tumor neovascular, and improve drug delivery to the targeted tissues. In the review, we described only the brain and tumor, while many studies have been conducted against other tissues such as the liver, kidney, and other kind type of tumor with promising results. Therefore, microbubbles and ultrasound would be useful drug delivery systems by enhancing blood vascular permeability. One of the advantages is that the system could be applied for many types of tissues and drugs because ultrasound is externally for the targeted tissue from the body. The mechanism of drug delivery is enhancing vascular permeability by mechanical forces derived from microbubbles. Microbubbles and ultrasound are also used for diagnosis in the clinic and seemed to be a promising system applied for theranostics that achieves therapy and diagnostics. Additionally, microbubbles and ultrasound can induce many biological effects, which ablate the tumor tissues and enhance neuron activity. Although advanced studies are still required, microbubbles and ultrasound can apply for many purposes.

In conclusion, the combination of microbubbles and ultrasound could enhance vascular permeability, resulting in improved drug delivery to the targeted tissues. The mechanism of enhancing permeability is that the expansion, contraction, and collapse of microbubbles are induced by ultrasound exposure. Many fundamental studies have been conducted, and some clinical studies have also progressed. Although there are still some issues in establishing a drug delivery system in clinics, it is believed that these issues would be solved, and a novel therapeutic approach would be installed.

Acknowledgments R.S. acknowledges ACRO Incubation Grants of Teikyo University for funding the work. The authors are grateful for the assistance of Ms. Sanae Oda and Dr. Saori Kagayama (Department of Theranostics, Faculty of Pharma-Science, Teikyo University), Dr. Tadamitsu Shima, Ms. Fumiko Hagiwara, Ms. Yuno Suzuki and Mr. Tamotsu Maruyama (Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University), Mr. Kohei Yamaguchi and Dr. Yoko Matsumoto in manuscript preparation.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother. Pharmacol., 84, 937–958 (2019).
2) Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomedicine, 16, 1313–1330 (2021).
3) Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J. Control. Release, 327, 316–349 (2020).
4) van Rhoon GC, Frankena M, Ten Hagen TLM. A moderate thermal dose is sufficient for effective free and TSL based thermochemistry. Adv. Drug Deliv. Rev., 163-164, 145–156 (2020).
5) Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J. Nanosci. Nanotechnol., 18, 108 (2020).
6) Zhao S, Yu X, Quan Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics, 10, 6278–6309 (2020).
7) Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J. Control. Release, 332, 127–147 (2021).
8) Chowdhury SM, Abu-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook. J. Control. Release, 326, 75–90 (2020).
9) Zhang B, Jiang T, Tuo Y, Jin K, Luo Z, Shi W, Mei H, Hu Y, Pang Z, Jiang C. Captoril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett, 410, 12–19 (2017).
10) Sun T, Ding Y, Wang X, Zhang K, Zhang GP, Liang D, Yu K, Chu Y, Chen Q, Jiang C. Carry-on nitric-oxide luggage for enhanced chemotherapeutic efficacy. Nano Lett., 20, 5275–5283 (2020).
11) Dimcevski G, Kotopoulos S, Bjønæs T, Hoem D, Schjøtt J, Gjertsen
BT, Biermann M, Molven A, Sorbye H, McCormack E, Postema M, Gitlin OH. A human clinical trial using ultrasound and microbubbles to enhance ganciclovir treatment of inoperable pancreatic cancer. *J. Control. Release*, **243**, 172–181 (2016).

12) Gasca-Salas C, Fernández-Rodríguez B, Pinedo-Pardo JA, Rodríguez-Rojas R, Obeso I, Hernández-Fernández F, Del Alamo M, Mata D, Guida P, Ordás-Bandera C, Montero-Roblas JJ, Martinez-René F, Roffani G, Rachmilewitz I, Obeso JA. Blood-brain barrier opening with focused ultrasound in Parkinson’s disease dementia. *Nat. Commun.*, **12**, 779 (2021).

13) Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodykdi C, Karachi C, Leclereq D, Laffon C, Chapelon J, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A. Clinical trial of blood–brain barrier disruption by pulsed ultrasound. *Sci. Transl. Med.*, **8**, 343re2 (2016).

14) Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, Herrmann N, Heyn C, Aubert I, Boutet A, Smith GS, Hynynen K, Black SE. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. *Nat. Commun.*, **9**, 2336 (2018).

15) Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. *Adv. Drug Deliv. Rev.*, **164-165**, 336–344 (2020).

16) Unga J, Omata D, Kudo N, Ueno S, Munakata L, Shima T, Suzuki R, Maruyama K. Development and evaluation of stability and ultrasound response of DSPC-DPSG-based freeze-dried microbubbles. *J. Liposome Res.*, **29**, 368–374 (2019).

17) Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Membrane disruption by optically controlled microbubble cavitation. *Nat. Phys.*, **1**, 107–110 (2005).

18) Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, Lohse AJ. Sonoporation from jetting cavitation bubbles. *Biophys. J.*, **91**, 4285–4295 (2006).

20) Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ. Blood vessel deformations on microsecond time scales by ultrasound cavitation. *Phys. Rev. Lett.*, **106**, 034301 (2011).

21) Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. *Ultrasound Med. Biol.*, **30**, 979–989 (2004).

22) Sheikov N, McDannold N, Sharma S, Hynynen K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. *Ultrasound Med. Biol.*, **34**, 1093–1104 (2008).

23) Hauser J, Eliasim M, Steinau H-U, Stefan E, Dudda M, Hauser M. Ultrasound enhanced endocytotic activity of human fibroblastic *Ultrasound Med. Biol.*, **35**, 2084–2092 (2009).

24) McDannold N, Zhang Y, Supko JG, Power C, Sun T, Peng C, Vykhodtseva N, Golby AJ, Reardon DA. Acoustic feedback enables safe and reliable carboplatin delivery across the blood–brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. *Theranostics*, **9**, 6284–6299 (2019).

25) Dubey S, Heinen S, Krantic S, McLaurin J, Branch DR, Hynynen K, Aubert I. Clinically approved IV Ig delivered to the hippocampus with focused ultrasound promotes neurogenesis in a model of Alzheimer’s disease. *Proc. Natl. Acad. Sci. U.S.A.*, **117**, 32691–32700 (2020).

26) Han H, Kim D, Jang Y, Seo M, Kim K, Lee JB, Kim H. Focused ultrasound-triggered chemo-gen therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. *J. Control. Release*, **322**, 346–356 (2020).

27) Yamaguchi K, Matsumoto Y, Suzuki R, Nishida H, Omata D, Inaba H, Kukita A, Tanikawa M, Sone K, Oda K, Osuga Y, Maruyama K, Fujii T. Enhanced antitumor activity of combined lipid bubble ultrasound and anticancer drugs in gynecological cervical cancers. *Cancer Sci.*, **112**, 2493–2503 (2021).

28) Kinoshita C, Kikuchi-Utsumi K, Aoyama K, Suzuki R, Okamoto Y, Matsumura N, Omata D, Maruyama K, Nakaki T. Inhibition of miR-96-5p in the mouse brain increases glutathione levels by altering NOAV1 expression. *Commun. Biol.*, **4**, 182 (2021).

29) Yokoe I, Murahata Y, Harada K, Sunden Y, Omata D, Unga J, Suzuki R, Maruyama K, Okamoto Y, Osaki T. A pilot study on efficacy of lipid bubbles for theranostics in dogs with tumors. *Cancers* (Basel), **12**, 2423 (2020).

30) Omata D, Maruyama T, Unga J, Hagiwara F, Munakata L, Kageyama S, Shima T, Suzuki Y, Maruyama K, Suzuki R. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. *J. Control. Release*, **311-312**, 65–73 (2019).

31) Endo-Takahashi Y, Negishi Y, Nakamura A, Uki S, Ooako K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic delivery of miR-126 by miRNA-loaded bubble liposomes for the treatment of hindlimb ischemia. *Sci. Rep.*, **4**, 3883 (2014).

32) Lewis RN, Zhang YP, McElhaney RN. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. *Biochim. Biophys. Acta*, **1668**, 203–214 (2005).

33) Abbott NJ, Ronnback L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. *Nat. Rev. Neurosci.*, **7**, 41–53 (2006).

34) Banks WA. Characteristics of compounds that cross the blood–brain barrier. *BMC Neurol.*, **9** (Suppl. 1), S3 (2009).

35) Omata D, Hagiwara F, Munakata L, Shima T, Kageyama S, Suzuki Y, Azuma I, Takagi S, Seki K, Maruyama K, Suzuki R. Characterization of brain-targeted drug delivery enhanced by a combination of lipid-based microbubbles and non-focused ultrasound. *J. Pharm. Sci.*, **109**, 2827–2835 (2020).

36) Wu SY, Chen CT, Jeng YS, Ouomolade OO, Konofagou EE. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain. *J. Control. Release*, **212**, 30–40 (2015).

37) Song KH, Fan AC, Hinkle JJ, Newman J, Borden MA, Harvey BK. Microbubble gas volume: a unifying dose parameter in blood–brain barrier opening by focused ultrasound. *Theranostics*, **7**, 144–152 (2017).

38) Aoyama K, Watabe M, Nakaki T. Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3–18. *Amino Acids*, **42**, 169–179 (2012).

39) Aoyama K, Wang E, Matsumura N, Kiyonari H, Shioi G, Tanaka K, Kinoshita C, Kikuchi-Utsumi K, Watabe M, Nakaki T. Increased neuronal glutathione and neuroprotection in GTRAP3–18-deficient mice. *Neurobiol. Dis.*, **45**, 973–982 (2012).

40) Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. *Nat. Neurosci.*, **9**, 119–126 (2006).

41) Kinoshita C, Aoyama K, Matsumura N, Kikuchi-Utsumi K, Watabe M, Nakaki T. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. *Nat. Commun.*, **5**, 3823 (2014).

42) Sun T, Zhang Y, Power C, Alexander PM, Sutton JT, Atryal M, Vykhodtseva N, Miller EL, McDannold NJ. Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model. *Proc. Natl. Acad. Sci. U.S.A.*, **114**, E10281–E10290 (2017).
mulation of proteins and the antitumor agent smancs. Cancer Res., 46, 6387–6392 (1986).
44) Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 1, 16014 (2016).
45) Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 33, 941–951 (2015).
46) Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 244 (Pt A), 108–121 (2016).
47) Miao L, Lin CM, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J. Control. Release, 219, 192–204 (2015).
48) Conroy T, Gavoille C, Samalin E, Ychou M, Ducreux M. The role of the FOLFIRINOX regimen for advanced pancreatic cancer. Curr. Oncol. Rep., 15, 182–189 (2013).
49) Ueno Y, Sonoda S, Suzuki R, Yokouchi M, Kawasoe Y, Tachibana K, Maruyama K, Sakamoto T, Komiya S. Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol. Ther., 12, 270–277 (2011).
50) Hirabayashi F, Iwanaga K, Okinaga T, Takahashi O, Ariyoshi W, Suzuki R, Sugii M, Maruyama K, Tominaga K, Nishihara T. Epidermal growth factor receptor-targeted sonoporation with microbubbles enhances therapeutic efficacy in a squamous cell carcinoma model. PLOS ONE, 12, e0185293 (2017).
51) Dimecvski G, Kotopoulos S, Bjønns T, Fømø D, Schiott J, Gjertsen BT, Biermann M, Molven A, Sorbye H, McCormack E, Postema M, Gilja OH. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J. Control. Release, 243, 172–181 (2016).
52) Kotopoulos S, Dimecvski G, Gilja OH, Fømø D, Postema M. Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study. Med. Phys., 40, 072902 (2013).
53) Kotopoulos S, Stigen E, Popa M, Safont MM, Healey A, Kvale S, Sontum P, Gjertsen BT, Gilja OH, McCormack E. Sonoporation with Acoustic Cluster Therapy (ACT (R)) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J. Control. Release, 245, 70–80 (2017).
54) Wanel AV, Healey A, Sontum PC, Kvale S, Bush N, Bamber J, Davies CD. Acoustic Cluster Therapy (ACT)—pre-clinical proof of principle for local drug delivery and enhanced uptake. J. Control. Release, 224, 158–164 (2016).
55) Bjønns TK, Riedel B, Schiott J. Ultrasound and microbubble assisted drug delivery—a clinical pharmacological perspective. Pharmacol. Res., 165, 105475 (2021).
56) Negishi Y, Endo-Takahashi Y, Maruyama K. Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov. Ther., 10, 248–255 (2016).
57) Bez M, Foirer J, Shapiro G, Pelled G, Ferrara KW, Gazit D. Non-viral ultrasound-mediated gene delivery in small and large animal models. Nat. Protoc., 14, 1015–1026 (2019).
58) Han H, Kim D, Jang Y, Seo M, Kim K, Lee JB, Kim H. Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. J. Control. Release, 322, 346–356 (2020).
59) Wang Y, Choe JW, Pu KY, Devulapally R, Bachawal S, Machtaler S, Chowdhury SM, Luong R, Tian L, Khuri-Yakub B, Rao JH, Paulmarugan K, Willmann JK. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer. J. Control. Release, 203, 99–108 (2015).
60) Yokoe I, Omata D, Unga J, Suzuki R, Maruyama K, Okamoto Y, Osaki T. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv., 28, 530–541 (2021).
61) Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, Shiono Y, Sawaguchi Y, Unga J, Naoi T, Negishi Y, Kawasumi S, Hashida M, Maruyama K. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci., 107, 217–223 (2016).
62) Tutul Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SI, Tyler WJ. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 66, 681–694 (2010).