High intrinsic lattice thermal conductivity in monolayer MoSi$_2$N$_4$

Jihai Yu1, Jian Zhou1,2,*, Xiangang Wan1,3 and Qingfang Li4,*

1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
2 National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
4 Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044, People’s Republic of China

* Authors to whom any correspondence should be addressed.
E-mail: zhoujian@nju.edu.cn and qingfangli@nuist.edu.cn

Keywords: lattice thermal conductivity, first-principles calculations, two-dimensional material

Abstract

Very recently, a novel two-dimension (2D) MXene, MoSi$_2$N$_4$, was successfully synthesized with excellent ambient stability, high carrier mobility, and moderate band gap (2020 Science 369 670). In this work, the intrinsic lattice thermal conductivity of monolayer MoSi$_2$N$_4$ is predicted by solving the phonon Boltzmann transport equation based on the first-principles calculations. Despite the heavy atomic mass of Mo and complex crystal structure, the monolayer MoSi$_2$N$_4$ unexpectedly exhibits a quite high lattice thermal conductivity over a wide temperature range between 300 to 800 K. At 300 K, its in-plane lattice thermal conductivity is 224 Wm$^{-1}$K$^{-1}$. The detailed analysis indicates that the large group velocities and small anharmonicity are the main reasons for its high lattice thermal conductivity. We also calculate the lattice thermal conductivity of monolayer WSi$_2$N$_4$, which is only a little smaller than that of MoSi$_2$N$_4$. Our findings suggest that monolayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ are potential 2D materials for thermal transport in future nano-electronic devices.

1. Introduction

Since the successful exfoliation of monolayer graphene [1], there have been extensive efforts to find novel two-dimensional (2D) materials due to their unusual mechanical, thermal, optoelectric, piezoelectric, and thermoelectrical properties [2–10]. Owing to these unique properties, 2D materials have become promising candidates for optoelectronics [11], field-effect transistors [12], and energy applications [13, 14]. Many classes of monolayer 2D materials have been fabricated, such as transition metal dichalcogenides [2, 15], h-BN [16], phosphorene [17], borophene [18], and silicene [19]. It may have difficulties if these monolayer materials are directly applied in integrated nanoelectronic devices because of their restricted properties. For example, graphene and borophene have no band gap [20, 21] while monolayer BN has an excessively wide band gap [22]. Monolayer phosphorene and silicene are unstable upon exposure [19, 23]. The carrier mobility in monolayer MoS$_2$ is quite low [24]. Thus, the discovery of a desirable monolayer 2D material with a moderate band gap and high carrier mobility remains a primary research goal in materials science and physics.

Recently, a high-quality 2D MXene, MoSi$_2$N$_4$, was successfully synthesized with excellent ambient stability, moderate band gap, and considerable carrier mobility [25]. Experimental results [25] demonstrated that MoSi$_2$N$_4$ has a band gap of about 1.94 eV. Furthermore, large hole and electron mobilities of monolayer MoSi$_2$N$_4$ are predicted to be about 1200 and 270 cm2V$^{-1}$s$^{-1}$ [25], which are four to six times higher than those of MoS$_2$ monolayer [26]. Since the synthesis of MoSi$_2$N$_4$, intensive research
efforts have been devoted to unearthing its novel properties [27–35]. First principles calculations revealed that the large thermopower of monolayer MoSi₂N₄ can be obtained in a range of chemical potential from 0 to 1 eV [27]. Cao et al [28] investigated the electrical contact of monolayer MoSi₂N₄ and an ultralow Schottky barrier height was observed in MoSi₂N₄/NbS₂ contact [28], which is beneficial for the nano-electronic device applications. The theoretical calculations demonstrated that the piezoelectricity MoSi₂N₄ enables actuating new electronic components of nanoscale devices [32].

Thermal transport is an important property for materials in many applications including thermal barrier coating [36], heat management [37], and thermoelectric energy conversion [38]. Especially the phonon transport is an essential part of designing all power-dissipating devices [39, 40]. 2D materials are ideal platforms to investigate fundamental carrier transport and provide new directions for thermal management and energy control. Phonon transport phenomena are related to various intriguing applications based on 2D materials [37]. In recent years, the lattice thermal conductivities of 2D materials have attracted considerable interest [41–53]. For these reasons, the study of the thermal transport property of monolayer MoSi₂N₄ is urgently called to speed up its application.

In this paper, we have systematically investigated the intrinsic thermal transport properties of monolayer MoSi₂N₄ by iteratively solving the Boltzmann transport equation. It is found that MoSi₂N₄ unexpectedly exhibits a quite high and almost isotropic lattice thermal conductivity despite its great average atomic mass and complex crystal structure. To further explain the mechanism of the high thermal conductivities, we also discuss the phonon lifetimes, group velocities, and Grüneisen parameters of the monolayer MoSi₂N₄.

2. Theoretical methods

The crystal structure of monolayer MoSi₂N₄ is fully optimized by the Vienna \textit{ab initio} simulation package [54, 55] based on the density functional theory. The projected augmented wave method [56, 57] and generalized gradient approximation with the Perdew–Burke–Ernzerh of exchange–correlation functional [58] are used. The plane-wave cutoff energy of 520 eV is used with a 12 \times 12 \times 1 k-mesh. Both the lattice constants and internal atomic positions are allowed to relax until the maximal residual Hellmann–Feynman forces are less than 0.0001 eV Å⁻¹. To avoid interactions with other neighboring layers, a vacuum space of 15 Å is taken.

After optimizing the crystal structure, we further perform the calculations of the second- and third-order interatomic force constants (IFCs) with the finite displacement method. The second-order IFCs in the harmonic approximation and the phonon dispersions of monolayer MoSi₂N₄ are calculated by using the PHONOPY code [59]. And the third-order IFCs and their lattice thermal conductivities are obtained based on the PHONOPY code [60], which solves the phonon Boltzmann transport equation by using the iterative self-consistent algorithm. The lattice thermal conductivity is defined as [60]:

$$\kappa = \frac{1}{NV} \sum_\lambda C_\lambda v_\lambda \otimes v_\lambda \tau_\lambda, \tag{1}$$

where N and V are the number of unit cells in the crystal, the volume of a unit cell. v_λ and τ_λ are the group velocity and lifetime of the phonon mode λ, respectively. The method has already been widely used in the prediction of thermal conductivities for 2D materials [42, 44, 45, 52–54]. The energy convergence criteria for monolayer MoSi₂N₄ is 10⁻⁷ eV. A $4 \times 4 \times 1$ supercell (112 atoms) with a $3 \times 3 \times 1$ k-mesh is used to calculate the second- and third-order IFCs. The lattice thermal conductivity of monolayer MoSi₂N₄ is calculated with a cutoff distance of 5.0 Å and a q-mesh of $30 \times 30 \times 1$. The phase space for three-phonon processes P3 is also calculated by the ShengBTE code [61].

3. Results and discussion

3.1. Crystal structure and phonon dispersions

The structure of monolayer MoSi₂N₄ has seven atoms per unit cell. As shown in figure 1, the crystal exhibits a sandwiched structure, where the 2H MoS₂-type MoN₂ layer is sandwiched between two slightly buckled SiN layers. Monolayer MoSi₂N₄ holds a mirror paralleling to the horizontal plane, inversion asymmetry, and C₃ rotation symmetry. The lattice constants obtained in our calculations are $a = b = 2.911$ Å, which are a little smaller than those of monolayer MoS₂ (3.16 Å) [9]. The distances between Si and its adjacent N (N1 and N2) are 1.748 and 1.755 Å, respectively. The distance of Mo–Si is 2.093 Å. The thicknesses (d_{ij}) of the vertical MoSi₂N₄ plane is 7.00 Å. These results are in good agreement with the previous reports [25, 27]. We also check the electronic properties by calculating its electronic band structure and partial density of states (PDOS), which is given in figure S1 (https://stacks.iop.org/NJP/23/033005/mmedia). It is found that
monolayer MoSi$_2$N$_4$ exhibits an indirect band gap of 1.77 eV with the valence band maximum (VBM) and conduction band minimum (CBM) located at Γ and K points, respectively, which is also consistent with the previous studies [25, 27, 29, 30]. The band gap could be improved to be 2.30 eV based on the Heyd, Scuseria, Ernzerhof (HSE) functional calculations [25]. The wide band gap implies that the lattice thermal conductivity is dominant in the total thermal conductivity of monolayer MoSi$_2$N$_4$. It can be seen from the PDOSs in figure S1 that the VBM and CBM are mostly dominated by Mo’s d orbitals, with a small contribution from N’s p states. There is a strong hybridization between Mo’s d (Si’s p) and N’s p orbitals from about -10.0 to -2.0 eV and 2.0 to 6.0 eV. The result is consistent with the charge analysis, indicating about 2.2 e (1.5 e) transferring from Si (Mo) atom to its adjacent N atom, respectively [27]. The strong hybridization and large charge transfer suggest that there are strong interactions between Mo (Si) and N atoms.

The phonon dispersions play a significant role in the precise calculation of phonon transport properties.

![Figure 1.](image1.png)

Figure 1. (a) Top and (b) side views of the crystal structure of monolayer MoSi$_2$N$_4$. The primitive unit cell is indicated by a black hexagonal in (a). The red, blue, and brown balls represent Mo, Si, and N atoms, respectively.

![Figure 2.](image2.png)

Figure 2. (a) Phonon dispersions and (b) DOS of monolayer MoSi$_2$N$_4$. The average sound velocity can be determined by the formula $v_{\text{avg}} = \frac{1}{3} v_{\text{LA}} + \frac{1}{3} v_{\text{TA}} + \frac{1}{3} v_{\text{ZA}}$, where v_i represents the x or y axis. Along the x axis, the sound velocities in the long-wavelength limit are 10.7, 6.1, and 2.0 km s$^{-1}$ for the LA (in-plane longitudinal acoustic), TA (in-plane transverse acoustic), and ZA (out-of-plane transverse acoustic) phonons respectively. These values are higher than...
Table 1. Calculated sound velocities of monolayer MoSi$_2$N$_4$ along x and y axes in the unit of km s$^{-1}$.

	LA	TA	ZA	Average
x axis	10.7	6.1	2.0	2.9
y axis	10.8	6.1	2.2	3.1

Figure 3. Calculated in-plane lattice thermal conductivity (κ_{xx}) of monolayer MoSi$_2$N$_4$ from 300 to 800 K.

those of silicene (8.8, 5.4, and 0.63 km s$^{-1}$ for the LA, TA, and ZA phonons) [62] and MoS$_2$ (6.6 and 4.3 for the LA and TA phonons) [62] but much smaller than those of graphene (19.9 and 12.9 km s$^{-1}$ for the LA and TA phonons) [63]. The sound velocities of monolayer MoSi$_2$N$_4$ along the y axis are almost identical to that in the x axis. The large sound velocities are one of the main reasons for the high lattice thermal conductivities of monolayer MoSi$_2$N$_4$ as we will show later.

3.2. Lattice thermal conductivity

We then calculate the temperature-dependent lattice thermal conductivity (κ_{xx}) of monolayer MoSi$_2$N$_4$, as depicted in figure 3. It is noted that the in-plane thermal conductivity κ_{yy} is equal to κ_{xx} due to its hexagonal structure. The intrinsic lattice thermal conductivity decreases with the increase of temperature, which could be explained by the Umklapp scatterings of phonons [64]. At 300 K, the lattice thermal conductivities of MoSi$_2$N$_4$ are 224 W m$^{-1}$ K$^{-1}$, which is much higher than those of the other well-known 2D semiconductors, such as black phosphorene (30.15 W m$^{-1}$ K$^{-1}$ (zigzag), 13.65 W m$^{-1}$ K$^{-1}$ (armchair)) [50], monolayer 2H-MoTe$_2$ (42.2 W m$^{-1}$ K$^{-1}$) [51], MoS$_2$ (83 W m$^{-1}$ K$^{-1}$ [52] or 23.2 W m$^{-1}$ K$^{-1}$ [65]) and blue phosphorene (106.6 W m$^{-1}$ K$^{-1}$) [53], while much lower than that of monolayer hexagonal BN, BP, BAs [66], C$_3$N [67], and graphene [68] with low average atomic mass. It is noted that the thermal conductivity of MoSi$_2$N$_4$ is even much higher than those of widely used electronic materials such as Si (142 W m$^{-1}$ K$^{-1}$) [69]. Hence, the satisfactory lattice thermal conductivity of MoSi$_2$N$_4$ could guarantee heat removal in the corresponding nano-electronic devices.

To deeply understand the lattice thermal conductivity of monolayer MoSi$_2$N$_4$, we then further calculate the cumulative lattice thermal conductivity of MoSi$_2$N$_4$ at 300 K, given in figure 4(a). The cumulative lattice thermal conductivity first increases with the increase of mean free path (MFP), and then gradually saturates when the phonon MFP is equal to or larger than 1000 nm, which is much longer than those of black phosphorene (66/83 nm) [50], but shorter than graphene [68]. The phonon MFP in MoSi$_2$N$_4$ is much longer than those in the other 2D materials, leading to a much higher thermal conductivity. The representative MFP (rMFP) of materials is useful for studying the size effects on the diffusive or ballistic phonon transport. The rMFP means the phonons whose MFP is smaller than their rMFP contribute to half of the total lattice thermal conductivity. The rMFP of MoSi$_2$N$_4$ is 156.3 nm, and the values are about ten times that of phosphorene (17/15 nm [50]).

We also calculated the frequency-dependent lattice thermal conductivity of monolayer MoSi$_2$N$_4$ at 300 K, which is presented in figure 4(b). The width of each column in the figure is 2.0 THz. The summation of all columns represents the total thermal conductivity. It is found that the phonon below 15 THz contribute most of (96%) the lattice thermal conductivity in monolayer MoSi$_2$N$_4$. Furthermore, we also analyzed the contribution of acoustic and optical phonons. It is found that the acoustic phonons contribute about 55% and the optical ones contribute about 45% of the thermal conductivity in both directions. The
Figure 4. (a) Normalized directional cumulative lattice thermal conductivity (K_{L}) with respect to the phonon MFP and (b) frequency-dependent in-plane lattice thermal conductivity of monolayer MoSi$_2$N$_4$ at 300 K. In (b), the phonons above 20 THz contribute little to the thermal conductivity, which is not shown here.

Figure 5. (a) Square of the group velocities, (b) phonon lifetimes, and (c) frequency-dependent mode Grüneisen parameters of monolayer MoSi$_2$N$_4$ at 300 K.

large contribution of the optical phonons is due to the large number of low-frequency optical modes of the complex structure of monolayer MoSi$_2$N$_4$.

In addition, it should be noted that there is an inverse relationship between the lattice thermal conductivity of a material and its phase space for three-phonon scattering P3, which represents the relative number that satisfies the energy and momentum conservation selection rules [70]. Here, we have also calculated the phase space for three-phonon processes P3 for the monolayer MoSi$_2$N$_4$, which is 0.002 21. This value is comparatively lower than those in materials such as the monolayer GaN [71] and well-known semiconductor Si [70]. The low value of P3 also implies that the monolayer MoSi$_2$N$_4$ has high intrinsic lattice thermal conductivity.

3.3. Phonon group velocities, lifetimes, and Grüneisen parameters

To understand the underlying mechanism of the high intrinsic lattice thermal conductivity in MoSi$_2$N$_4$, we further analyze its phonon group velocities, lifetimes, and Grüneisen parameters. The squares of the phonon group velocities are plotted in figure 5(a). The large values of squares of the group velocities almost lie below about 15 THz which could reach more than 100 km2 s$^{-2}$ which are much larger than those of monolayer MoS$_2$ [65]. Since the lattice thermal conductivity is proportional to the squares of group velocities, therefore the large group velocities in figure 5(a) as well as the large sound velocities in table 1 are the important reasons for its high thermal conductivity.

The frequency-dependent phonon lifetimes of MoSi$_2$N$_4$ are calculated by using the PHONO3PY code from the third-order anharmonic IFCs, as displayed in figure 5(b). The phonon lifetimes at the low frequency (acoustic phonon modes) are much longer than those of high-frequency optical modes. Most of the phonon lifetimes in MoSi$_2$N$_4$ are in the range from 0 to 50 ps. The lifetimes are larger than those of monolayer MoS$_2$ [65], and even higher than those of penta-graphene (PG) and hydrogenated PG (HPG), while the lattice thermal conductivities of PG (350 W m$^{-1}$ K$^{-1}$) [72] and HPG (616 W m$^{-1}$ K$^{-1}$) [72] are...
much larger than that of MoSi$_2$N$_4$. The results imply that the long phonon lifetimes contribute significantly to the large thermal conductivity of monolayer MoSi$_2$N$_4$. Finally, we give the mode-dependent Grüneisen parameters (γ) of monolayer MoSi$_2$N$_4$, which can provide crucial information on the anharmonic interactions of phonons. The larger γ implies stronger anharmonicity, which leads to low lattice thermal conductivity. Figure 5(c) indicates that Grüneisen parameters of MoSi$_2$N$_4$ are dominantly located in the range from -1.5 to 1.5. The range is smaller than those of PG, HPG, and graphene (-8 to 2) [72] which have ultra-high lattice thermal conductivities. The long lifetimes and small Grüneisen parameters indicate the small anharmonicity in monolayer MoSi$_2$N$_4$, which is another important reason for its high lattice thermal conductivity. This weak anharmonicity is attributed to the strong Mo–N and Si–N atomic interactions since Young’s modulus of MoS$_2$N$_4$ (479 GPa) is much higher than that of MoS$_2$ (270 GPa) [25].

3.4. Comparative study with monolayer WSi$_2$N$_4$

Finally, we compare MoSi$_2$N$_4$ with another 2D MXene (WSi$_2$N$_4$), which has also been successfully synthesized in the recent experiment [25]. Compared with monolayer MoSi$_2$N$_4$, WSi$_2$N$_4$ has the same crystal structure and similar band characteristics [25], but a wider band gap [25] and higher atomic density. To understand the difference of phonon transport properties between WSi$_2$N$_4$ and MoSi$_2$N$_4$, we further calculate the lattice thermal conductivity of monolayer WSi$_2$N$_4$, as gathered in figure S2. Monolayer WSi$_2$N$_4$ also exhibits high lattice thermal conductivity. At 300 K, the lattice thermal conductivity is 219 W m$^{-1}$ K$^{-1}$. The thermal conductivities of monolayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ are smaller than that of SiN$_4$ (371 W m$^{-1}$ K$^{-1}$ at 300 K [73]) with similar Si–N bonds. We notice that although the atomic mass of W is much larger than that of Mo, the lattice thermal conductivity of WSi$_2$N$_4$ is slightly lower than that of MoSi$_2$N$_4$. The similar thermal conductivity results from their similar phonon spectra, the square of the group velocities, phonon lifetimes, and Gruneisen parameter as shown in figure S3.

3.5. Discussion

In 1972, Slack investigated many nonmetallic crystals with high thermal conductivity (>100 W m$^{-1}$ K$^{-1}$ at 300 K) and found four characteristics of them: (1) low average atomic mass, (2) simple crystal structure, (3) strong interatomic bonding, and (4) low anharmonicity [74]. In our case, MoSi$_2$N$_4$ and WSi$_2$N$_4$ have quite complex crystal structures (seven atoms in a unit cell) and great average atomic masses. However, they unexpectedly exhibit quite high lattice thermal conductivities (>200 W m$^{-1}$ K$^{-1}$ at 300 K). We think that the high thermal conductivities of MoSi$_2$N$_4$ and WSi$_2$N$_4$ are possibly due to their particular sandwiched structure, in which the heavy W or Mo layer is the inner layer while the light Si–N layers are the outer layers. Theinner and outer layers are in parallel connection and therefore the heat could still transfer fast in the Si–N layers despite the heavy Mo or W layers. This is possibly also the reason why the MoSi$_2$N$_4$ and WSi$_2$N$_4$ exhibit almost the same size of lattice thermal conductivity.

4. Conclusions

We investigate the lattice thermal conductivities of monolayer MoSi$_2$N$_4$ based on first-principles calculations and the Boltzmann transport equation. Unexpectedly, we find that its intrinsic lattice thermal conductivity (224 W m$^{-1}$ K$^{-1}$ at 300 K) are much higher than those of the other well-known semiconductors, such as black phosphorene, blue phosphorene, monolayer 2H-MoTe$_2$, and MoS$_2$. The lattice thermal conductivities of monolayer MoSi$_2$N$_4$ are almost independent of direction due to its isotropic structure. The detailed analysis indicates that the large lattice thermal conductivity of MoSi$_2$N$_4$ is attributed to the high phonon group velocities, long phonon lifetimes, and small Grüneisen parameters compared to the other well-known 2D materials. Besides, we compare the lattice thermal conductivities of monolayer MoSi$_2$N$_4$ and WSi$_2$N$_4$. It is found that the lattice thermal conductivity of WSi$_2$N$_4$ is only a little lower than those of monolayer MoSi$_2$N$_4$. We think that the high thermal conductivities of MoSi$_2$N$_4$ and WSi$_2$N$_4$ is possible due to their particular sandwiched structure, in which the Si–N layers are mainly responsible for the heat transportation. The high lattice thermal conductivities of monolayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ making them promising building blocks for heat dissipation in nanoelectronics and microelectronics.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11704195, 11974163, 11890702, and 51721001) and National Key R & D Program of China (Grant No. 2016YFA0201104). QFL also acknowledges the Qing Lan Project of Jiangsu Province (Grant No.
R2019Q04). The numerical calculations in this paper have been done on the computing facilities in the High Performance Computing Center (HPCC) of Nanjing University.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

References

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805
[3] Mak K F and Shan J 2016 Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides Nat. Photon. 10 216
[4] Chhowalla M, Shih H S, Eda G, Li L-J, Loh K P and Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263
[5] Lu A-Y et al 2017 Janus monolayers of transition metal dichalcogenides Nat. Nanotechnol. 12 744
[6] Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 Ab initio prediction of piezoelectricity in two-dimensional materials ACS Nano 9 9885
[7] Liu H, Qin G, Lin Y and Hu M 2016 Disparate strain dependent thermal conductivity of two-dimensional penta-structures Nano Lett. 16 3831
[8] Wallbank J R et al 2016 Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures Science 353 575
[9] Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A and He F 2019 Thermal conductivity enhancement in MoS2 under extreme strain Phys. Rev. Lett. 122 155901
[10] Bhimanapati G R et al 2010 Recent advances in two-dimensional materials beyond graphene ACS Nano 9 11509
[11] Kang S, Lee D, Kim J, Capasso A, Kang H S, Park J-W, Lee C-H and Lee G H 2020 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge 2D Mater. 7 022003
[12] Eda G, Fanchini G and Chhowalla M 2008 Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material Nat. Nanotechnol. 3 279
[13] Bonaccorso F, Colombo L, Yu G, Stoller M, Tossini V, Ferrari A C, Ruoff R S and Pellegrini V 2015 Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage Science 347 6217
[14] Cha E, Patel M D, Park J, Hwang J, Prasad V, Cho K and Choi W 2018 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries Nat. Nanotechnol. 13 337
[15] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS2 ACS Nano 4 2695
[16] Lin Y, Williams T V and Connell J W 2010 Soluble, exfoliated hexagonal boron nitride nanosheets J. Phys. Chem. Lett. 1 277
[17] Xia F, Wang H and Jia Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics Nat. Commun. 5 4458
[18] Mannix A J et al 2015 Synthesis of borophenes: anisotropic, two-dimensional boron polyborophenes Science 350 1513
[19] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Silicene: compelling experimental evidence for graphene like two-dimensional Silicon Phys. Rev. Lett. 108 155501
[20] Partoens B and Peeters F M 2006 From graphene to graphite: electronic structure around the K point Rev. Mod. Phys. 78 515
[21] Wang H, Li Q, Gao Y, Miao F, Zhou X-F and Wan X G 2016 Strain effects on borophene: ideal strength, negative Poisson’s ratio and phonon instability New J. Phys. 18 013016
[22] Song L et al 2010 Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10 3209
[23] Wood J D et al 2014 Effective passivation of exfoliated black phosphorus transistors against ambient degradation Nano Lett. 14 6964
[24] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147
[25] Hong Y-L et al 2020 Chemical vapor deposition of layered-two-dimensional MoS124141 materials Science 369 670
[26] Cai Y, Zhang G and Zhang Y-W 2014 Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons J. Am. Chem. Soc. 136 6269
[27] Bafekre A, Faraji M, Hoat D M, Fadlallah M M, Shahrokhi M, Shojaei F, Gogova D and Ghergherehchi M 2020 MoS2-N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic, optical, and photocatalytic properties (arXiv:2009.04267)
[28] Cao L, Zhou G, Wang Q, Ang I K and Ang Y S 2021 Two-dimensional van der Waals electrical contact to monolayer MoS2 Mater. Lett. 216 115501
[29] Yang C, Song Z, Sun X and Lu J 2021 Valley pseudospin in monolayer MoS1242842 and MoS124141333,3 Phys. Rev. B 103 035308
[30] Guo X and Guo S 2020 Tuning electronic structures, transport and piezoelectric coefficients of monolayer MoS1241412 N2 with biaxial strain (arXiv:2008.08747)
[31] Li S, Wu W, Feng X, Guan S, Feng W, Yao Y and Yang S A 2020 Valley-dependent properties of monolayer MoS1241412 N2, WS1241412 N2 and MoSi1241413 As4 (arXiv:2009.13253)
[32] Guo S-D, Zhu Y-T, Mu W-Q and Ren W-C 2020 Intrinsic piezoelectricity in monolayer MoSi1241412 N2 (M = Mo and W) Europhys. Lett. 132 57002
[33] Guo S-D, Mu W-Q, Zhu Y-T and Chen X-Q 2020 Coexistence of intrinsic piezoelectricity and ferromagnetism induced by small biaxial strain in septuple-atomic-layer VS1241412 P4, Phys. Chem. Chem. Phys. 22 28359
[35] Guo S-D, Zhu Y-T, Mu W-Q, Wang L and Chen X-Q 2021 Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M = Mo and W) Comput. Mater. Sci. 188 110223
[36] Padture N P, Gell M and Jordan E H 2002 Thermal barrier coatings for gas-turbine engine applications Science 296 280
[37] Zhao Y, Cai Y, Zhang L, Li B, Zhang G and Thong T J L 2019 Thermal transport in 2D semiconductors—considerations for device applications Adv. Funct. Mater. 30 1903929
[38] He J and Tritt T M 2017 Advances in thermoelectric materials research: looking back and moving forward Science 357 6358
[39] Arrigoni M, Carrete J, Mingo N and Madsen G K H 2018 First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: the role of force-constant disorder Phys. Rev. B 98 115205
[40] Machida Y, Matsumoto N, Isozo T and Behnia K 2020 Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphene structure Science 367 309
[41] Zheng G,Jia Y, Gao S and Ke S 2016 Comparative study of thermal properties of group-VA monolayers with buckled and puckered honeycomb structures Phys. Rev. B 93 155448
[42] D’Souza R and Mukherjee S 2017 First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene Phys. Rev. B 95 085435
[43] Peng B, Zhang H, Shao H, Xu Y, Ni G, Zhang R and Zhu H 2016 Phonon transport properties of two-dimensional group-IV materials from ab initio calculations Phys. Rev. B 94 245420
[44] Xie H, Ouyang T, Gemmaeaeu E, Qin G, Hu M and Bao H 2016 Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain Phys. Rev. B 93 075404
[45] Liu P, Bo T, Xu J, Yin W, Zhang J, Wang F, Eriksson O and Wang B 2018 First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides Phys. Rev. B 98 235426
[46] Taberi A, Silva C D and Amon C H 2019 Phonon thermal transport in j-NX (X = P, As, Sb) monolayers: a first-principles study of the interplay between harmonic and anharmonic phonon properties Phys. Rev. B 99 235425
[47] Ying H et al 2020 Tailoring the thermal transport properties of monolayer hexagonal boron nitride by grain size engineering 2D Mater. 7 015031
[48] Gu X, Li B and Yang R 2016 Layer thickness-dependent phonon properties and thermal conductivity of MoS2 J. Appl. Phys. 119 085106
[49] Wang H, Li Q, Pan H, Gao Y and Sun M 2019 Comparative investigation of the mechanical, electrical and thermal transport properties in graphene-like C,B and C,N J. Appl. Phys. 126 234302
[50] Qin G, Yan Q-B, Qin Z, Yue S-Y, Hu M and Su G 2015 Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles Phys. Chem. Chem. Phys. 17 4854
[51] Shafique A and Shin Y-H 2017 Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2 Phys. Chem. Chem. Phys. 19 32072
[52] Li W, Carrete J and Mingo N 2013 Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles Appl. Phys. Lett. 103 253103
[53] Peng B, Zhang D, Zhang H, Shao H, Ni G, Zhu Y and Zhu H 2017 The conflicting role of buckled structure in phonon transport on 2D group-IV and group-V materials Nanoscale 9 7397
[54] Kresse G and Furthmüller J 1996 Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set Phys. Rev. B 54 11169
[55] Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953
[56] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758
[57] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865
[58] Togo A and Tanaka I 2015 First principles phonon calculations in materials science Scr. Mater. 108 1
[59] Togo A, Chaput L and Tanaka I 2015 Distributions of phonon lifetimes in Brillouin zones Phys. Rev. B 91 094306
[60] Li W, Carrete J, Kitcho N A and Mingo N 2014 ShengBTE: a solver of the Boltzmann transport equation for phonons Comput. Phys. Commun. 185 1747
[61] Li X, Mullen J T, Jin Z, Borysenko K M, Nardelli M B and Kim K W 2013 Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles Phys. Rev. B 87 115418
[62] Cong X, Li Q-Q, Zhang X, Lin M-L, Wu J-B, Liu X-L, Venezuela P and Tan P-H 2019 Probing the acoustic phonon dispersion and sound velocity of graphene by Raman spectroscopy Carbon 149 19
[63] Tritt T 2004 Thermal Conductivity: Theory, Properties, and Applications (Dordrecht: Kluwer) pp 114–5
[64] Cai Y, Lan J, Zhang G and Zhang Y 2014 Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 Phys. Rev. B 89 035438
[65] Fan H, Wu H, Lindsay L and Hu Y 2019 Ab initio investigation of single-layer high thermal conductivity boron compounds Phys. Rev. B 100 085420
[66] Hong Y, Zhang J and Zeng X C 2018 Monolayer and bilayer polyamine C3N: two-dimensional semiconductors with high thermal conductivity Nanoscale 10 4301
[67] Kong B D, Paul S, Buongiorno Nardelli M and Kim K W 2009 First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphenes Phys. Rev. B 80 035406
[68] Shankar R, Maycock P D, Stiles P H and Danielsion G C 1963 Thermal conductivity of silicon from 300 to 1400 K Phys. Rev. 130 1743
[69] Lindsay L and Bro ideologies A 2008 Three-phonon phase space and lattice thermal conductivity in semiconductors J. Phys.: Condens. Matter. 20 165209
[70] Jiang Y, Cai S, Tao Y, Wei Z, Bi K and Chen Y 2017 Phonon transport properties of bulk and monolayer GaN from first-principles calculations Comput. Mater. Sci. 138 419
[71] Wu X, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K and Luo T 2016 Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity Nano Lett. 16 3925
[72] Liu N, Chen X, Guo J, Deng J and Guo L 2018 New type of nitrides with high electrical and thermal conductivities Chinese Phys. Lett. 35 087102
[73] Slack G A 1973 Nonmetallic crystals with high thermal conductivity J. Chem. Phys. Solids 34 321