Putative *cis*-Regulatory Elements Associated with Heat Shock Genes Activated During Excystation of *Cryptosporidium parvum*

Benjamin Cohn1,2, Patricio Manque1,2,3,*, Ana M. Lara1,2, Myrna Serrano1,2, Nihar Sheth2, Gregory Buck1,2,4

1 Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America, 2 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America

Abstract

Background: Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites *Cryptosporidium hominis* and *C. parvum*, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The *Cryptosporidium* life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured *in vitro* and animal models are equally challenging. The recent publication of the genome sequence of *C. hominis* and *C. parvum* has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite.

Methodology/Principal Findings: Herein, our goal was to identify *cis*-regulatory elements associated with heat shock response in *Cryptosporidium* using a combination of *in silico* and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the *Cryptosporidium* genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock.

Conclusions/Significance: Our analyses suggest that occurrences of a motif identified in the upstream regions of the *Cryptosporidium* heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite. Since heat shock and excystation represent a critical step in the development of the infectious sporozoite form of *Cryptosporidium*, these results provide important insight into the pathogenicity of the parasite.

Introduction

First identified as an opportunistic illness in severely immunosuppressed individuals, cryptosporidiosis is now recognized as a threat to millions of people worldwide. Children under three years old and living in developing countries probably represent the most significant affected population [1], but adults in both developing and developed countries can also be infected [2]. The main etiological agents, *Cryptosporidium hominis* and *C. parvum* [3], cause a severe diarrhea that has been associated with malnutrition, growth retardation, and impaired cognitive development in affected children [4], and death is common in immunocompromised patients [5,6,7].

Unlike other apicomplexans, the life cycle of *Cryptosporidium* is completed within a single host, and the parasite is transmitted between hosts via the fecal-oral route. Despite this apparent simplicity, the parasite exhibits a very complex intracellular cycle [8]. The host ingests highly resilient oocysts which excyst in the intestine. The sporozoites released invade intestinal epithelial cells and transform into trophozoites. Trophozoites then progress either to an asexual or sexual meront phase and reinfect additional host epithelial cells or differentiate into male and female gametes, respectively. Gametes unite to form zygotes, which develop into the oocyst and are excreted from the host.
Recently, the genomes of *C. parvum* and *C. hominis* were sequenced, providing the necessary framework to use bioinformatics approaches to explore the biology of this parasite [9,10]. These sequences have contributed greatly to our understanding of the biology of these important pathogens, often providing insight impossible to obtain using standard laboratory procedures considering the challenges the parasites pose to *in vitro* culture and biochemical or genetic manipulation. For example, although gene regulation in *Cryptosporidium* remains poorly understood, genomics-based bioinformatics strategies provide a means to identify statistically over-represented sequences common to *C. parvum* heat shock genes. Heat Shock Proteins (HSPs) are highly conserved in all organisms [13]. They are classical molecular chaperones and have been implicated in a broad series of physiological events ranging from the stress response to the immune response in vertebrates [14,15,16]. Heat shock has also been found to be an external signal for life cycle events of parasites [17,18].

Cryptosporidium experiences dramatic changes in its environmental conditions, including pH and temperature during its life cycle, and in particular during the infection of the host. These environmental changes seem to elicit a cascade of internal responses in the parasite [15,19]. We hypothesize that these changes are induced, at least in part, by induction of a stress response including relevant HSPs.

Herein, we combine bioinformatics and molecular approaches to identify putative cis-regulatory elements associated with regulation of *C. parvum* heat shock genes. Heat Shock Proteins (HSPs) are highly conserved in all organisms [13]. They are classical molecular chaperones and have been implicated in a broad series of physiological events ranging from the stress response to the immune response in vertebrates [14,15,16]. Heat shock has also been found to be an external signal for life cycle events of parasites [17,18].

Herein, we show that many *C. parvum* genes annotated as HSPs are up-regulated during excystation. Furthermore, we identify putative cis-acting regulatory elements in the upstream regions of these genes that may function as heat shock regulatory elements.

Results and Discussion

Infection by *Cryptosporidium sp.* is initiated when infective oocysts, normally present in the environment, reach the intestine and excyst, releasing invasive sporozoites [20]. Oocysts are exposed to a series of environmental changes including changes in the pH and temperature, which likely serve as signals that trigger the excystation process [18,21]. Herein, we explored the hypothesis that the *Cryptosporidium* heat shock genes are involved in the excystation process and identify putative cis-regulatory elements in their upstream sequences that could be responsible for their co-regulation.

Heat Shock Genes in *Cryptosporidium*

Cryptosporidium heat shock genes were selected by querying our *C. hominis* genome database (www.hominis.mic.vcu.edu) for the presence of genes previously annotated as heat shock genes. We confirmed the putative annotations of these genes as HSPs by selecting only those with highly significant similarity scores to known HSPs from other related organisms using BLASTp (*e* value <10^-10) [22]. The gene identifiers for the 12 *C. hominis* genes selected by these criteria are listed in Table 1, as well as their *C. parvum* homologs.

Table 1. Heat shock genes of *Cryptosporidium*.

Gene ID	C. hominis Ortholog	Description	Chrom.	Ident.*	Upstream	Orientation	Mean Motif Dist.	First Occurrence	Fold Change	SEM
cg02_1000	Chr.20010	heat shock 70 (HSP70) protein	2	97%	1755	+	426	99	ND	
cg02_1800	Chr.20195	heat shock 40 kDa protein, putative	2	99%	360	−	427	138	6.19±1.23	
cg02_3230	Chr.20339	heat shock protein DnaJ Pfj2, putative	2	98%	1010	+	593	64	3.93±0.78	
cg02_3330	Chr.20349	APG-1 like HSP70	2	97%	819	−	414	77	6.03±1.80	
cg03_3440	Chr.30399	heat shock protein HSP70	3	98%	661	−	n/a	n/a	ND	
cg04_3770	Chr.30427	Hsp90	3	99%	1098	+	333	72	ND	
cg04_3770	Chr.40370	heat shock 105 kD	4	98%	1175	+	381	166	7.42±1.46	
cg06_1090	Chr.60141	DnaJ(hsp40)	6	98%	629	−	416	406	2.30±0.65	
cg06_1090	Chr.60306	heat shock protein, putative	6	98%	140	−	96	96	4.50±0.83	
cg06_4970	Chr.60573	Hsp60	6	98%	150	−	134	134	3.41±0.79	
cg07_360	Chr.70049	heat shock protein, Hsp70	7	98%	1253	+	585	65	ND	
cg07_3670	Chr.70410	heat shock protein 90	7	97%	217	+	82	60	ND	
Average			98%		772		328	125	4.82±1.08	

Genes annotated as encoding HSPs in the *C. hominis* and *C. parvum* databases (http://www.hominis.mic.vcu.edu).

*Identity of megalast nucleotide alignment of *C. parvum* and *C. hominis*.

*Upstream region: number of base pairs between the ATG start codon of the heat shock gene and the closest upstream gene in the *C. hominis* sequence.

Transcriptional orientation on the chromosome.

Mean position of motif occurrences from ATG start site of each gene, in base pairs. Values are combined means of hits from AlignACE and MEME algorithms.

Position of nearest occurrence of motif, as found by either algorithm.

*Fold induction of gene expression, quantified by qRT-PCR. Values shown are ratio of quantity mean values of heat shock to ambient control (37°C/25°C), with standard error.

P-value<5×10^-6.

P-value<0.05.

Motif not found upstream of cg03_3440 gene.

ND: not done.

doi:10.1371/journal.pone.0009512.t001
The physical characteristics of these genes showed that there is no obvious clustering among the eight Cryptosporidium chromosomes. Although chromosomes 2 and 6 contain four and three of the 12 heat shock genes analyzed, respectively, the remaining four are spread among chromosomes 3, 4 and 7 (Fig. 1). The orientations of these genes are apparently random (Fig. 1), and the distance from the stop codon of the nearest upstream neighbor, the region likely to contain a transcriptional regulatory apparatus, varied from 140 to 1755 bases (Table 1).

Putative Heat Shock Gene Regulatory Elements

We considered two possible scenarios when searching for cis-regulatory elements: first, that there may exist a known conserved heat shock element motif present in all upstream regions, or alternatively, that a Cryptosporidium species-specific motif controls regulation. Initial examination of the upstream regions of each of the 12 putative heat shock genes revealed no classical transcriptional control elements or overrepresented sequences (data not shown). Thus, potential regulatory motifs controlling heat shock genes in Cryptosporidium have, to date, remained uncharacterized.

In other organisms, it is well known that transcriptional regulation of heat shock genes is mediated by cis-acting heat shock response elements [23]. Thus, we examined the upstream regions of 12 Cryptosporidium heat shock genes to identify common sequence motifs that might represent regulatory heat shock response elements. Upstream sequences were extracted, and common sequence motifs—putative cis-regulatory motifs—were sought using two alternative implementations of Gibbs-sampling algorithms, AlignACE and MEME [24,25], as described in the Materials and Methods.

To search for novel heat shock response elements, the upstream regions from the set of putative C. parvum heat shock genes (see Table 1) were extracted and analyzed using the Gibbs-sampler, AlignACE. As there is a stochastic element to the algorithm, AlignACE was run iteratively to avoid exclusion of potential high-scoring motifs (not shown). The same set of upstream sequences was analyzed using another Gibbs-sampler, MEME, with the intent of converging upon a biologically relevant motif using multiple algorithms. Consensus sequences were displayed graphically using the WebLogo application [26].

Our examination of the upstream sequences of the heat shock genes for a conserved motif identified a six base motif, a G-rich sequence represented by the consensus G[G/A][G/C][G/G/A][G/A] (Fig. 2). This sequence appears in the upstream regions of 11 of the 12 putative heat shock genes we considered, and scored well in the respective metrics of each analysis performed (MAP = 38.6242 in AlignACE and LLR = 342 in MEME). On average, it is located 328 bp upstream of the transcription start codon, with the first occurrence at 125 bp, a range typical for heat shock elements in other apicomplexan parasites [27] (Table 1). Only cgd3_3440 did not contain this putative regulatory motif in its upstream region. This gene displays a very conserved HSP70 motif (pfam: <1.0e-180), suggesting that it is a member of the HSP70 gene family—one of the three major HSP gene families [28]. This observation suggests that the HSP70 gene family may, at least in part, fall under a different mechanism of regulation in Cryptosporidium, as observed in other systems [28]. Whether a different common transcriptional element regulates all HSP70 genes in Cryptosporidium remains unclear, however, as analyzing these genes as a subset with AlignACE yielded no high-scoring (MAP>30) motifs (data not shown).

The putative regulatory motif was also found upstream of orthologous C. hominis heat shock genes (Table 1). When upstream regions of these genes were analyzed in the same manner as previously with C. parvum, a similar G-rich motif was discovered (data not shown). Though the coding regions between the heat shock genes of these two species are highly conserved (~98% mean identity), the upstream regions of these genes are slightly more divergent (~95% mean identity). Regardless, the putative motif was likewise found to be highly conserved between C. hominis and C. parvum, as aligned motif sites [29] between the two species contained one or fewer sequence mismatches in all cases. Furthermore, if only the occurrence most directly upstream of the gene transcription start codon is considered, the motif is conserved between species in all of the 11 genes in which it is found (data not shown).

To address the question of the prevalence of the motif throughout the genome, the FIMO program [30] was used to

![Figure 1. Distribution of C. parvum heat shock genes by chromosome.](image)

Figure 2. Highest-Scoring motifs found by Gibbs-Sampling algorithms AlignACE and MEME. A and B show the highest-scoring motifs found by AlignACE and MEME, respectively. Maximum a-priori Probability (MAP) and Log Likelihood Ratio (LLR) scores are displayed below their respective motifs and are well above cutoffs used in previous studies with the same algorithms. The first occurrence of the motif is located, on average, 125 bp upstream of the transcription start codon (see Table 1).

doi:10.1371/journal.pone.0009512.g002
search for the motif in three training sets: heat shock upstream regions, coding sequences only and the entire genome. For the heat shock set, presence of the motif was confirmed (as expected) and false discovery rates (FDRs) were very low (q-values between 0.00165 and 0.0334). For the coding sequences, the motif was found by the algorithm, but FDRs were much higher (q-values between 0.171 and 0.500), indicating a greater rate of false positives in these regions. For the entire genome, FDRs were intermediate (q-values between 0.00150 and 0.350), presumably including motifs from both coding and non-coding regions. For nearly any q-value threshold at or below 0.350 (the highest reported by FIMO for the genomic set), more than double the number of occurrences of the motif sequence were found in the genome as a whole than in the coding sequences alone, implying a prevalence of statistically significant motif occurrences in non-coding regions (Fig. S1 and S2).

Expression of Heat Shock Genes during Excystation

We applied quantitative real time PCR (qRT-PCR) to measure the relative levels of mRNAs of seven of the eleven motif-bearing heat shock genes before and after excystation (i.e. without or with heat shock, respectively). The remaining four putative heat shock genes have previously been shown to be up-regulated during a similar excystation process in C. parvum [19] and therefore were not included in our experiments. Briefly, oocysts were incubated for 60 minutes at 37°C or 25°C in excystation medium and total RNA was extracted as described in the Materials and Methods. As shown in Fig. 3, oocysts incubated in excystation media at 37°C exhibited efficient excystation (~90%), whereas oocysts incubated in the same medium at 25°C exhibited almost no excystation (<1%). Interestingly, Widmer et al. (2007) showed that the rates of excystation of C. parvum incubated in phosphate buffered saline at 0°C or 37°C were very low, indicating that temperature alone does not efficiently induce excystation of C. parvum oocysts. Taken together, these observations suggest that the signals required to induce excystation of these parasites are complex and probably involve the synergistic effect of several environmental factors, one of which may be temperature.

The qRT-PCR results, performed in triplicate, showed that each of the seven putative HSP genes tested were significantly (p<0.05) up-regulated during heat-induced excystation (Table 1). These results are consistent with the previous observations [19] showing that the remaining four motif-bearing putative heat shock proteins are also up-regulated in excysted sporozoites. Gene expression analysis using comprehensive Cryptosporidium microarrays shows that, under identical conditions, while many genes are up-regulated besides those mentioned herein, others are unaffected or even down-regulated (Serrano et al., unpublished).

Thus, we conclude that the physiological conditions that induce excystation also clearly trigger molecular cascades that lead to the coordinated transcription of these heat shock proteins, though this likely represents only part of a more complicated transcriptional program during this phase of the parasite’s life cycle.

Currently, mechanisms of gene regulation in Cryptosporidium remain poorly understood. Traditional biochemical and genetic approaches to dissecting these mechanisms are largely unavailable due to the difficulty of manipulation of the parasite both in vitro and in vivo; e.g., the parasite cannot be continuously cultivated and no genetic system is available for it. The genome sequences of C. hominis and C. parvum revealed relatively few classical transcription factors (see www.hominis.mic.vcu.edu). Moreover, although ubiquitous transcriptional signals such as TATA boxes were found, the relatively high AT content of intergenic sequences (~70%) and the absence of data regarding transcriptional starting points make it challenging to define their role in the regulation of transcription. Recently, however, putative cis-acting regulatory elements associated with the genes in other metabolic pathways have been identified using in silico approaches [11,12]. Thus, informatics-based strategies are likely to provide important insights into the mechanisms of gene expression in this challenging model.

Here, using a combination of molecular and in silico strategies, we have studied expression of a panel of putative heat shock genes of Cryptosporidium. Our data demonstrate a concerted up-regulation of seven putative heat shock genes during the process of excystation, which in this case involves a temperature shock and other environmental changes. Since previous data indicate a

![Figure 3. Excystation of Cryptosporidium parvum oocysts.](image-url)
similar induction of four additional putative heat shock genes [19], at least 11 of the 12 putative heat shock genes are up-regulated during excystation. In silico analysis of the upstream regions of these putative heat shock genes using motif-finding algorithms identified a well-conserved sequence motif, for which we now propose a putative role in heat shock regulation. The biological role of the putative heat shock or stress regulatory element remains to be verified in vivo.

Materials and Methods

Parasite Source

Iowa strain C. parvum oocysts used in this study were purchased from the Sterling Parasitology Laboratory in Tuscon, AZ. Oocysts were purified using discontinuous sucrose and cesium chloride centrifugation gradients and shipped in an antibiotic solution containing 0.01% Tween 20, 100 U penicillin and 100 μg of gentamicin per ml. Purified oocysts were stored at 4°C for less than 30 days prior to use.

Heat Shock Treatment

1 × 10^6 C. parvum oocysts were incubated on ice in a solution containing 40% bleach in PBS. Oocysts were then washed three times (5,000 xg for 4 minutes at 4°C) with Hanks’ Balanced Salt Solution, transferred to “excystation medium” (0.75% Sodium Taurocholate and 0.25% Trypsin in PBS or Hanks’ medium [31]), and incubated at either 25°C (no heat shock) or 37°C (heat shock) for one hour prior to RNA extraction.

RNA Extraction

RNA from parasites incubated at 25°C (>99% oocysts) was extracted using TRIZOL (Invitrogen), with the addition of 100 μg of glycogen (Boehringer Mannhein) and 100 U of RNase inhibitor (SUPERase-In from Ambion). RNA from parasites incubated at 37°C (>90% sporozoites) was extracted using the RNAqueous system (Ambion) with the addition of 100 μg of glycogen and 100 U of RNase inhibitor, as described by the manufacturer.

Real-Time Quantitative RT-PCR

RNAs were treated with TURBO DNA-free DNAse (Ambion) following manufacturers instructions and used for Real-Time RT-PCR analysis using TaqManTM (ABI) technology. Primers and probes specific for putative heat shock genes (Table S1) were designed using Primer Express® version 2.0 (ABI). For each target, forward and reverse primers and an internal probe were synthesized. Probes were synthesized with 5’ end linked FAM (6-carboxyfluoresceine) and 3’ end fluorescent TAMRA (6-carboxytetramethylrhodamine) dyes. Amplification and analysis was performed in an ABI 7900HT instrument essentially as described by the manufacturer, and a parallel quantification of the orthologous set of putative heat shock genes in C. hominis. The motif occurrences of either species were then mapped onto a BLAST [29] alignment of the two upstream regions to see where they coincided, if at all.

To address prevalence of the motif within the C. parvum genome, the FIMO program [30] was used to search for a position-specific scoring matrix (PSSM) representing the motif within three sets: heat shock upstream regions (positive control), coding regions only, and the entire genome.

Supporting Information

Figure S1 Occurrences of motif identified by FIMO. FIMO identified occurrences of the motif in heat shock upstream regions (green triangles), genomic contigs (blue diamonds) and coding regions only (red squares). Abscissa indicates number of motif occurrences found.

Found at: doi:10.1371/journal.pone.0009512.s002 (2.01 MB TIF)

Figure S2 Segregation of FIMO-identified motifs by false discovery rate. Enlarged lower left-hand portion of Figure S2 shows that false discovery rates for the motif, indicated here by q-value, are highest for coding regions (red squares), followed by genomic contigs (blue diamonds) and the positive control, heat shock upstream regions (green triangles).

Found at: doi:10.1371/journal.pone.0009512.s002 (2.01 MB TIF)

Table S1 Probes and Primers used in quantitative real-time RT-PCR experiments. Gene-specific primers and probes used in RT-PCR experiments to show the up regulation of the indicated heat shock genes.

Found at: doi:10.1371/journal.pone.0009512.s003 (0.04 MB DOC)
Acknowledgments
Oligonucleotides were synthesized and RT-PCR was performed in the Nucleic Acids Research Facilities at Virginia Commonwealth University.

References

1. Guerrant RL (1997) Cryptosporidiosis: An emerging, highly infectious threat. Emerg Infect Dis 3(1): 51–57.
2. MacKenzie VR, Schell WL, Blair KA, Addiss DG, Peterson DE, et al. (1995) Massive outbreak of waterborne cryptosporidium infection in Milwaukee, Wisconsin: Recurrence of illness and risk of secondary transmission. Clin Infect Dis 21(1): 57–62.
3. Xiao L, Fayer R, Ryan U, Upton SJ (2004) Cryptosporidium taxonomy: Recent advances and implications for public health. Clin Microbiol Rev 17(1): 72–97.
4. Guerrant RL, Kosek M, Lima AA, Lomzt B, Guyatt HL (2002) Updating the DALYs for diarrhoeal disease. Trends Parasitol 18(5): 191–193.
5. Hunter PR, Nichols G (2002) Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. Clin Microbiol Rev 15(1): 145–154.
6. Wolska-Kusnierz B, Bajer A, Caccio S, Heropolitanska-Pliszka E, Bernatowska E, et al. (2007) Cryptosporidium infection in patients with primary immunodeficiencies. J Pediatr Gastroenterol Nutr 45(4): 458–464.
7. Navin TR, Weber R, Vugia DJ, Rimland D, Roberts JM, et al. (1999) Declining CD4+ T-lymphocyte counts are associated with increased risk of enteric parasitosis and chronic diarrhea: Results of a 3-year longitudinal study. J Acquir Immune Defic Syndr Hum Retrovirol 22(2): 154–159.
8. Thompson RC, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, et al. (2005) Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Cryptosporidium parvum. Adv Parasitol 59: 77–138.
9. Xu P, Widmer G, Wang Y, Ozaki ES, Alves JM, et al. (2004) The genome of Cryptosporidium hominis. Nature 431(2012): 1107–1112.
10. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, et al. (2004) Complete genome sequence of Cryptosporidium parvum. Science 304(5665): 441–445.
11. Kilbe MK, Coppin A, Dengouza N, Oria G, Mourice E, et al. (2005) Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Taugularella gondii. Nucleic Acids Res 33(5): 1722–1736.
12. Mullapudi N, Lancto CA, Abrahamsen MS, Kissing JC (2007) Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding. BMC Genomics 8: 13.
13. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677.
14. Zugel U, Kaufmann SH (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12(1): 19–39.
15. Gophna U, Ron EZ (2003) Virulence and the heat shock response. Int J Med Microbiol 292(7-8): 453–461.
16. Sahil HR (2008) Chaperone machines in action. Curr Opin Struct Biol 18(1): 35–42.
17. Van der Plouw LH, Giannini SH, Cantor CR (1985) Heat shock genes: Regulatory role for differentiation in parasitic protozoa. Science 229(4706): 1443–1446.
18. Redeker DW, Speer CA (1985) Factors influencing excystation in cryptosporidium oocysts from cattle. J Parasitol 71(1): 112–113.
19. Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, et al. (2007) Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (coccidia, apicomplexa). Mol Cell Proteomics 6(2): 346–355.
20. Fayer R, Ungar BL (1986) Cryptosporidium spp. and cryptosporidiosis. Microbiol Rev 50(4): 450–483.
21. Widmer G, Klein P, Bonilla R (2007) Adaptation of Cryptosporidium oocysts to different excystation conditions. Parasitology 134(1 Pt 1): 1583–1588.
22. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2): 203–14.
23. Morimoto RI (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24): 3789–3796.
24. Hughes JD, Estep PW, Vazquez S, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5): 1205–1214.
25. Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. ISMB 3: 21–29.
26. Schneider TD, Stephens RM (1990) Sequence logos: A new way to display consensus sequences. Nucleic Acids Res 18(20): 6971–6978.
27. Milletto KD, Dode M, Bethke L, Wirth D (2004) Identification of regulatory elements in the Plasmodium falciparum genome. Mol Biochem Parasitol 134: 75–88.
28. Heikila JJ, Kaldin A, Morrow G, Tanguay RM (2007) The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 25(4): 385–395.
29. Albanese SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
30. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 48–54.
31. Wagner-Wiening C, Kimmig P (1995) Detection of viable Cryptosporidium parvum oocysts by PCR. Appl Environ Microbiol 61(12): 4514–6.

Author Contributions
Conceived and designed the experiments: BLC PM GMS GAB. Performed the experiments: BLC PM AML MGS. Analyzed the data: BLC PM NUS. Wrote the paper: BLC PM GAB.