RESEARCH

Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis
A CONTEMPORARY REVIEW OF EXPERIMENTAL STUDIES

Y. Yang, S. Lin, B. Wang, W. Gu, G. Li
Changzhou No.7 People’s Hospital and The Chinese University of Hong Kong, China

Objectives
Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone grafting. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods
We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.

Results
Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods.

Conclusion
The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies.

Cite this article: Bone Joint Res 2017;6:385–390.

Keywords: Mesenchymal stem cells, Distraction osteogenesis, Bone formation, Bone consolidation, Tissue engineering

Article focus
• Distraction osteogenesis (DO) harnesses the bone regenerative potential of bone and avoids the complications of other treatments such as bone grafting. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation in this phase, with some good results. This review focuses on the use of MSCs in promoting bone consolidation during DO. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Most studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to the animal model, DO protocol and cell transplantation regime require further investigation. A consensus is required on this before further research is undertaken. Clinical trials are needed to test and confirm these findings once a consensus has been agreed on the protocols involving animal studies.

Key messages
• The length of time required for bone consolidation remains a problem in distraction osteogenesis (DO);
• Mesenchymal stem cells can migrate to the sites of injury and stimulate bone regeneration. This may be used to accelerate bone consolidation in DO;
• Despite the variation in animal model, cell source, cell number, administration method, treatment time-point and outcome assessment, MSCs proved effective in regenerating bone during DO.

Strengths and limitations
• Strengths: three tables are used to display the animal models, outcomes, DO protocols and characteristics of MSCs which have been reported in the literature.
Limitations: with the eligibility criteria, the number of selected publications is only 16. This is too small to come to a convincing conclusion.

Introduction

Bone can repair and regenerate itself following damage, but not in the case of significant/segmental bone loss, when surgery with bone grafting or transplantation is usually required. The goal in bone defect management is to align the bone segments, facilitate union, maintain or obtain equal limb length, and restore the function of the limb. Many factors can influence the outcomes, and many alternative therapies have been suggested.1,2

The distraction osteogenesis (Do) technique is frequently employed to manage large bone defects.3,4 Do is widely applied in the treatment of firearm injuries, deformities, nonunion, lower-limb malignant metaphyseal bone tumours or tumour resection.5-9 Large defects or growth deficiencies severely compromise patients’ limb function and quality of life, and their treatment is a challenge.10 Compared with the conventional techniques for bone reconstruction, Do is a simpler procedure that has a shorter operation time, less blood loss, a shorter duration of hospitalisation, lower cost and risk of complications.11-13 The Do procedure involves three sequential phases: latency; active distraction or lengthening; and consolidation.14,15 It stimulates new bone formation through the controlled separation of two osteogenic fronts and also promotes the regeneration of the surrounding soft tissue.16,17 Do resembles an in vivo form of tissue engineering.18,19 It has been shown that Do induces migration of MSCs from the bone marrow to the site.20,21

Although Do is recognised as an effective and safe procedure, there are drawbacks associated with it.22 The major disadvantage relates to the duration of the bone consolidation phase, when the external fixators need to be kept in place for a prolonged period (12 months on average).5,17,23 During this period complications can arise including pin site infection and fibrous union; patients and family members may experience physical inconvenience and psychosocial burden due to the retained external fixators, and there is a higher rate of fracture at the docking site.14,24-26 These limitations hamper any large-scale clinical application of Do. The recommended rate of gradual bone lengthening as described by Ilizarov is 1 mm per day. Higher rates (1.3 mm/day or greater) may lead to tissue damage, and researchers have found that the size of the fibrous zone increased more quickly than that of the new bone zone in these conditions.27 Also, the bone-regenerating capability slows with increasing age.28

To reduce the time required for the Do process, numerous animal models were developed to mimic clinical situations and test the new treatments.29 MSCs have been used in a variety of applications owing to their regenerative potential and migration capacity. One of the most important capabilities of MSCs is their migration capacity in response to signals released from the injured tissues.30,31 The application of MSCs has been shown to improve the quality and quantity of bone healing including fractures or Do.3,32,33

Materials and Methods

This review included studies that have been published in English; PubMed, OVID and Google Scholar search engines were used. The key terms “cells” and “distraction osteogenesis” were searched, and 434 titles identified. The inclusion criteria were as follows: Do with bone lengthening and administration of MSCs with control and/or comparison group(s). The exclusion criteria included: distraction of other areas such as mandibular distraction; use of bone grafts in addition to Do; testing of new distractor device or new surgical technique; and outcomes assessing soft-tissue changes, rather than bony outcomes. Review articles, case reports and non-English language publications were excluded.

Results

A total of 16 studies meeting the eligibility criteria were selected from 423 published articles. Six studies used small animal models (rats or mice) and six studies used rabbits, while the other three studies used large animal models (two used dogs and one a goat) and one study involved a human subject (Table I). Among these studies, there were variations in the experimental design, including distraction time point, cell transplantation time point, administration methods and cell quantity, as well as outcome assessment methods. All studies used unilateral limb Do with or without cell injection.

The Do protocols are summarised in Table II. Various custom-made or commercially available distractors/lengtheners were used. The latency phase ranged between four and fourteen days. The distraction rate ranged from 0.5 mm/day to 2 mm/day, the total distraction gap ranged from 1.5 mm to 60.8 mm, and the consolidation period ranged from four days to ten weeks.

As shown in Table III, different cell sources were used: autologous or allogenic bone marrow MSCs from long bone,6,16,20,37,43,45,48,50-52 and iliac crest,30,38,44,46,47 autologous adipose stem cells,48,52 and location not specified.15,49 The number of transplanted cells ranged from 1 to 30×10^6. The cell injection timing included three different time points: in three studies, MSCs were injected during the distraction phase15,37,49 or during the consolidation phase;30,38,43,44,45,47,48,51 in three studies, the MSCs were injected on the day of the operation;16,20,50 and in one study the time of injection was not stated.52 The majority of the studies reported that MSC transplantation at the end of the lengthening phase with MSCs over 1×10^6 enhanced bone consolidation or formation in Do in animal models.

All studies showed a positive effect in bone regeneration on the cell-treated side. This was regardless of whether
the cell sources, cell number, and time points have different effect.

Discussion

In normal DO, the recruitment, proliferation, and osteogenic differentiation of MSCs are sufficient to achieve bone regeneration in the distraction gap (Fig. 1). However, the MSCs may be compromised under conditions such as poor vascularity, severe trauma and radiotherapy. This may result in fibrous union or nonunion. In order to enhance the quality and quantity, and the time to bone formation in DO, DO animal models were developed to test bone regeneration by MSC therapy approaches.

In all studies reported, the MSC-treated group showed improvement in the quality and quantity of new bone formation in the distraction gap. Dehghan et al.36 Lee et al.51 and Kinoshita et al.37 used the higher rate of lengthening, and the MSC therapy significantly promoted new bone formation and shortened the consolidation period in their DO models.

The total size of the distraction gap is another important factor to consider; at present, most studies conducted ≤10 mm of distraction, which did not reflect the real clinical scenario where most DO treatment exceeds 5 cm or more. In the large gap, the effect of cell therapy may be more or less apparent. This needs to be tested in a clinical setting.

Table I. Characteristics of animal models and the main outcomes of the study

First author name and Year	Animal	Gender (n)	Cells Used	Control Group	Main Results	Objectives
Yuji Takamine, 200232	Rat	Male (73)	BMSCs	Collagen gel	Cells treated group was significantly better than that of control group Same as above	Promote new bone formation and shorten the consolidation period.
Kazuhiko Kinoshita, 200837	Rabbit	Male (54)	BMSC	Saline	Same as above	Promote bone regeneration of DO
Koichiro Sato, 201041	Rabbit	Male (8)	BMSCs	PBS	Same as above	Promote new bone formation.
Qing-Guo Lai, 201144	Rabbit	Male (54)	BMSCs	PBS	Same as above	Promote bone formation.
Masahito Fujio, 201111	ICR mice	Female (83)	BMSCs + SDF-1	Saline	Same as above	Shorten the treatment period of DO.
Jan Gessmann, 201245	Human	Male(6) female(2)	BMSC	N/A	Same as above	Promote bone regeneration of DO
Ozgur Sunay, 201346	Rabbit	Female (21)	BMSCs	Saline	Same as above	Promote new bone formation and shorten bone consolidation phase.
Issie Nomura, 201447	Rat	N/A(60)	ADSC + Collagen gel	Saline	Same as above	Promote bone regeneration of DO
Yuji Ando, 201448	ICR mice	Female (12)	BMSCs	PBS	Same as above	Shorten the distraction period.
Yohei Harada, 201550	Rabbit	Male (42)	BMSCs	PBS	Same as above	Repair of large bone defects.
J. J. Zeng, 201649	Dog	Male (27)	BMSCs	PBS	Same as above	Promote bone regeneration of DO
Xu jia, 201650	Rabbit	Male(24)	BMSCs	PBS	Same as above	Promote bone regeneration of DO
Mohammad Mehdi Dehghan, 201556	Dog	Male (10)	MSC + PRP	PRP	Same as above	Promote new bone formation and shortened the consolidation period.
El Hadidi, 201659	Goats	Female (12)	BMSCs	PBS	Same as above	Improve the quality and quantity of DO.
Alexander R. Zheutlin, 201651	Lewis rats	Male (30)	BMSCs	N/A	Same as above	N/A
Sung Joo Lee, 201652	Rabbit	Male (32)	ADSC	Fibrin glue	Same as above	Promote bone regeneration of DO

Table II. Characteristics of distraction osteogenesis protocols

First author, year	Latency time (days)	Rate of lengthening (mm/day)	Total lengthening (mm)	Consolidation phase (days)	Infection rate
Yuji Takamine, 200232	7	0.5	5.0	14/28/42/56	N/A
Kazuhiko Kinoshita, 200837	5	2.0	8.0	N/A	N/A
Koichiro Sato, 200941	7	0.8	10.5	14/28/42	N/A
Qing-Guo Lai, 201044	6	0.3	3.2	N/A	N/A
Masahito Fujio, 201111	5	1.0	Average 82.4	N/A	Six local pin infections
Jan Gessmann, 201245	N/A	N/A	N/A	56	N/A
Ozgur Sunay, 201333	7	0.7	10.5	14/28/42	N/A
Issie Nomura, 201446	3	0.8	3.2	N/A	N/A
Yuji Ando, 201448	14	N/A	1.5	28/56/84	N/A
Yohei Harada, 201550	5	1.0	10	14/28/42/56	No infection
J. J. Zeng, 201554	5	1.0	60.8	120	N/A
Xu jia, 201559	5	0.8	10	42	N/A
Mohammad Mehdi Dehghan, 201556	7	1.0	60.8	120	N/A
El Hadidi, 201659	4	0.6	5.1	30	Most animals
Alexander R. Zheutlin, 201651	5	3.0	10	28/56/84	1

vol. 6, no. 6, june 2017
Y. Yang, S. Lin, B. Wang, W. Gu, G. Li

Bone & Joint Research

The timing and number of MSCs for cell injection also varied among studies. MSC isolation and cultivation are similar, though they differ from the source. All of them used MSCs at passages 2 to 6, but only one was characterized by CD33, CD45 and CD90. Most authors did the cell injection at the end of the lengthening period and used a dose of 1 x 10^5 to 3 x 10^7 MSCs, based on previous reported studies (Fig. 2). No clear explanation was given as to why a certain time was chosen for cell delivery. As shown in Tables II and III, the larger the distraction gap, the more stem cells may be needed.

None of the studies has purposely investigated what the optimal cell numbers and optimal time points are for injection. Nor has any study compared the difference between autologous or allogenic MSCs in DO. The gender of animals may affect the outcome, however, no study has directly compared the effects of cell therapy on the DO process between male and female animals of any species. We know much more about the role of gender in medicine, such as the fact that women are more sensitive to cardiological medicine and women who are lactating may have worsened symptoms. With the increasing demand to eliminate gender bias in animal studies, future efforts are warranted to clarify gender-related differences of cell therapy in DO.

Another issue related to animal models is animal age and skeletal maturity. All animals used were skeletally mature, except the goats used by El Hadidi et al.29 which were of an age comparable with childhood. Older rats display delayed healing of femoral fractures. As DO may be performed on patients of all ages, it is important clinically to interpret the data obtained from animal studies. This is in specific consideration of its application to humans of different skeletal ages. Future studies are needed to compare age-related differences on MSC therapy in DO. Through extensive research, it has become clear that different animal models may have a different optimal DO protocol. Three aspects should be considered carefully during the DO procedure: site of lengthening; lengthening rate; and length.40,41 The optimal rate of lengthening in small and large animals is commonly thought to be 0.5 mm/day and 1 mm/day, respectively, but there have been attempts using a higher rate of lengthening to create a poor bone formation model.

Adverse events, such as infection, were not carefully or purposely investigated in any of the 16 studies using

Table III. Characteristics of transplanted cells

First Author Name, Year	Cell Type	Cell Source	Cell Number	Time	Passage of MSC
Yoji Takamine, 200242	Allogenic	Femurs	0.1M	When distraction phase finished	3
Kazuhiko Kinoshita, 200817	Autologous	Iliac crest	10M	When distraction phase finished	3
Koichiro Sato, 201043	Allogenic	Iliac bone	30M	When distraction phase finished	3-6
Qing-Guo Lai, 201144	Autologous	Tibia	10M	When distraction phase finished	3
Masahito Fujio, 201145	N/A	N/A	N/A	Every other day from day 4.	3-6
Jan Gessmann, 201246	Autologous	Iliac crest	2M	At the end of the distraction phase	3
Ozgur Sunay, 201347	Autologous	Inguinal regions	5M	When distraction phase finished	3
Issel Nomura, 201448	Autologous	Femurs	1M	after termination of distraction	3
Yuji Ando, 201449	Autologous	Tibia	1M	At surgery day	4-6
Yohei Harada, 201550	Autologous	Tibia	1M	At surgery day	3
J. J. Zeng, 201651	Allogenic	Tibia	N/A	Every 3 days when distraction phase finished	3
Xu jia, 201652	Allogenic	Tibia	10M	Middle and end of the distraction phase	3
Mohammad Mehdi Dehghan, 201553	N/A	Tibia	15M	Day 10 and 20 in the consolidation phase	3
El Hadidi, 201655	Allogenic	Iliac crest	2M	At surgery day	3
Alexander R. Zheutlin, 201656	Allogenic	Femurs and ummers	2M	At surgery day	3
Sung Joo Lee, 201657	Autologous	Tibia	3M	N/A	3

M, number of cells in millions.

Malignant tumors were not found at the surgical site in any of the 16 studies using.
Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis

MSC therapy in DO. Most studies did not mention the infection risk assessment, and animals were simply excluded from the study due to pin site infections. Complications related to MSC therapy during limb lengthening procedure must be taken into consideration. In clinical situations, the emphasis is on the use of the GMP facility to process and prepare the cells in order to minimise the potential risks of infection.

Questions related to animal models, DO protocols and cell transplantation regimes still need further investigation. A consensus is required for the development of such a model. Clinical trials using MSC therapy for enhancement of bone formation and consolidation in patients with DO treatment are warranted, and it is the only way to obtain a definitive answer in this subject area.

References
1. Liu L, Aronson J, Huang S, et al. Rosiglitazone inhibits bone regeneration and causes significant accumulation of fat at sites of new bone formation. Calcif Tissue Int 2012;91:139-148.
2. Morcos MW, Al-Jallad H, Hamdy R. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int 2015.
3. Spiegel U, Pätzold R, Friederichs J, et al. Clinical course, complication rate and outcome of segmental resection and distraction osteogenesis after chronic tibial osteitis. Injury 2013;44:1049-1056.
4. Yang Z, Liao T, Tao H, Yang D. Reconstruction of large tibial bone defects following osteosarcoma resection using bone transport distraction: A report of two cases. Oncol Lett 2016;12:1445-1447.
5. He X, Zhang HL, Hu YC. Limb salvage by distraction osteogenesis for distal tibial osteosarcoma in a young child: A case report. Orthop Surg 2016;8:253-256.
6. Xu J, Jia YC, Hamdy R. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int 2015.
7. Kaim Khani GM, Humaiti S, Ahmed N. Pattern of bony injuries among civilian gunshot victims at tertiary care hospital in Karachi, Pakistan. Chin J Traumatol 2015;18:161-163.
8. Jeong BO, Kim TY, Song WJ. Use of lizarov external fixation without soft tissue release to correct severe, rigid equinus deformity. J Foot Ankle Surg 2015;54:821-825.
9. Grubor P, Milicevic S, Grubor M, Meccariello L. Treatment of bone defects in war wounds: retrospective study. Med Arch 2015;69:260-264.
10. Tee BC, Sun Z. Mandibular distraction osteogenesis assisted by cell-based tissue engineering: a systematic review. J Craniofac Surg 2013;24:171-177.
11. Zandi M, Dehghan A, Saleh M, Seyed Hoseini SR. Osteodistraction of mandibles with a small bone defect at the planned osteotomy site: a histological pilot study in dogs. J Craniofac Surg 2014;25:204-209.
12. Yamauchi K, Nogami S, Martinez-de la Cruz G, et al. Timed-release system for periosteal expansion osteogenesis using NiTi mesh and absorbable material in the rabbit calvaria. J Craniofac Surg 2016;27:1366-1372.
13. Huseyn Arslan M. Segmental bone loss in pediatric lower extremity fractures: indications and results of bone transport. J Pediatr Orthop 2015;35:8:12.
14. Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: a contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg 2013;66:883-896.
15. Fujio M, Yamamoto A, Ando Y, et al. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone 2011;49:693-700.
A systematic review of distraction osteogenesis in head surgery: what are the benefits, complication rates, and duration of treatment? Plast Reconstr Surg 2014;133:1120-1130.

24. Borzunov DV, Chevardin AY, Mitrofanov AI. Management of congenital pseudarthrosis of the tibia with the lizarov method in a paediatric population: influence of aetiological factors. Int Orthop 2016;40:331-339.

25. Tong P. A clinical narrative review of mandibular distraction osteogenesis in neonates with Pierre Robin sequence. Int J Pediatr Otorhinolaryngol 2011;75:985-991.

26. Jiang X, Zou S, Ye B, et al. LIFG-Modified BMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone 2010;46:1156-1161.

27. Li G. New developments and insights learned from distraction osteogenesis. Curr Opin Orthop 2004;15:325-330.

28. Mehta M, Strube P, Peters A, et al. Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing? Bone 2010;47:219-228.

29. El Hadidi VN, El Kassaby M, El Fatay Ahmed SA, Khamis NS. Effect of mesenchymal stem cell application on the distracted bone microstructure: an experimental study. J Oral Maxillofac Surg 2016;74:1463.e1-1463.e11.

30. Zomorodian E, Baghban Eslamiejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012.

31. Granero-Molto F, Weiss JA, Migas MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 2009;27:1887-1898.

32. Wang X, Schröder HC, Grebenuk V, et al. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 2014;12:1131-1147.

33. Sunay O, Can G, Cakir Z, et al. Autologous rabbit adipose tissue-derived mesenchymal stromal cells for the treatment of bone injuries with distraction osteogenesis. Cytotherapy 2013;15:690-702.

34. Xu J, Wang B, Sun Y, et al. Human fetal mesenchymal stem cell secreteme enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther 2016;7:134.

35. Lee SJ, Kim BJ, Kim YI, et al. Effect of recombinant human bone morphogenetic protein-2 and adipose tissue-derived stem cell on new bone formation in high-speed distraction osteogenesis. Cleft Palate Craniofac J 2016;53:84-92.

36. Dehghan MM, Baghban Eslamiejad M, et al. Transplantation of autologous bone marrow mesenchymal stem cells with platelet-rich plasma accelerate distraction osteogenesis in a canine model. Cell J 2015;27:1631-1644.

Funding Statement The work was partially supported by grants from National Natural Science Foundation of China (81371946 and 81371458); Hong Kong Government Research Grant Council, General Research Fund (470813, 1419115 and 9054014) and grants from China Shenzhen City Science and Technology Bureau (JC201204141920051680 and JC20150630165216960). This study was also supported in part by SMART program, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong and the research was made possible by resources donated by Lui Che Woo Foundation Limited.

Author Contribution Y. Yang: First author, Literature review, Manuscript writing. S. Lim: Co-first author, Manuscript revision. B. Wang: Second author. W. Gu: Corresponding author. G. Li: Co-corresponding author.

Conflicts of Interest Statement None.

© 2017 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution license (CC-BY-NC), which permits unrestricted use, distribution, and reproduction in any medium, but not for commercial gain, provided the original author and source are credited.