Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
What do masks mask? A study on transdermal CO₂ monitoring

Kenta Iitani¹,²,³, Joel Tyson⁴, Samyukta Rao⁴, Sai Sathish Ramamurthy⁴,⁵, Xudong Ge⁴, Govind Rao⁴,∗

¹ Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, 100 Hilltop Circle, Baltimore, MD 21250, USA
² Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8460, Japan
³ Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
⁴ STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India

ARTICLE INFO

Keywords:
COVID-19
Carbon dioxide
Facemask
non-dispersive infrared
Personal protective equipment
Transdermal monitoring

ABSTRACT

Medical professionals have complained of extreme discomfort and fatigue from continuous wearing of N95 respirators (N95) overlaid with surgical masks (SM) and face shields (FS) during COVID-19 pandemic. However, there are no reports on the effect of face coverings on transdermal CO₂ (TrCO₂) levels (a measure of blood CO₂) during moderate activity. In this study, real-time monitoring of TrCO₂, heart rate and skin surface temperature was conducted for six subjects aged 20–59 years with and without personal protective equipment (PPE). We initially studied the effect of wearing PPE (N95+SM+FS) at rest. Then, the effect of moderate stepping/walking activity (120 steps per minute for 60 min) while wearing PPE was evaluated. In addition, we investigated the effect of exercising intensity with different masks. We observed a significant difference (p < 0.0001) in TrCO₂ levels between without and with PPE during moderate exercise, but not while resting. TrCO₂ levels were correlated to exercise intensity independently with masking condition and breathability of masks. For the first time, we present data showing that a properly fitting N95 worn along with SM and FS consistently leads to elevated TrCO₂ under moderate exertion, which could contribute to fatigue over long-term use.

1. Introduction

The ongoing pandemic has led to widespread implementation of mandates to wear masks especially in indoor public spaces. The WHO has similarly recommended when and how to use facemasks [1] on a daily basis, which has led to mask wearing in situations not previously considered. Recent studies have claimed that community use of facemasks and implementation of mandates [2] resulted in more than 200,000 COVID-19 cases being averted by May 22, 2020, and modelling studies [3] on universal masking forecast to save an additional 129,574 lives from September 22, 2020 through the end of February 2021. Medical professionals have routines adopted face-shields in addition to double-masking. Double-masking for the general public has been recommended as COVID-19 variants have emerged.

Even as clarity on the efficacy of facemasks in inhibiting airborne transmission of COVID-19 is emerging, [4] a Danish randomized controlled trial has found that wearing of a surgical mask (SM) in a community with modest infection rates did not reduce the infection rate by more than 50% [5]. There is even more ambiguity regarding blood gases, specifically the impact on gas exchange of carbon dioxide (CO₂) and oxygen (O₂) imposed by facemasks, under moderate exertion. A recent meta-review reported the effects of different facemasks and the cardiorespiratory response to physical activity, which suggested that dyspnea might increase and modify apparent effort with activity. However, it was concluded that the effect on blood gases imposed by facemasks during physical activity is trivial and negligible to detect, even while performing vigorous exercise [6]. Another study has presented no significant changes in gas exchange, O₂ saturation or CO₂ levels with the use of SM even in subjects with severe lung impairment [7]. Further, in a small crossover study, no decline in O₂ saturation was observed in older participants wearing a 3-layer nonmedical facemask [8]. Additionally wearing a mask for an average of 90 min during a flight-training mission does not appear to increase CO₂ retention in the body or the ability to attain O₂ [9]. However, study on the use of FFP-2 respirator with SM cover by healthcare workers during this COVID-19 outbreak has been found to

∗ Corresponding author.
E-mail address: grao@umbc.edu (G. Rao).

https://doi.org/10.1016/j.medengphy.2021.10.013
Received 22 July 2021; Received in revised form 15 October 2021; Accepted 24 October 2021
Available online 27 October 2021
1350-4533/© 2021 IPEM. Published by Elsevier Ltd. All rights reserved.
significantly increase the end-tidal CO$_2$ and fractional inspired CO$_2$ pressure values, without any disease while in resting position \cite{10}. Another study also showed CO$_2$ in mask increase with facemasks but remains below short-term National Institute for Occupational Safety and Health limits \cite{11}. More comprehensive studies need to be undertaken for drawing meaningful conclusions in light of certain other studies that claim facemasks reduce O$_2$ availability, prevents exchange of CO$_2$ and results in hypercapnic and hypoxic conditions while exercising \cite{12,13}. Close monitoring of respiratory status is critical, especially since there has been an increase in the use of respirators with high filtering performance, (i.e., N95-type), that are also associated with several concerns relating to physiological effects \cite{14}, including silent hypoxia and poor oxygenation \cite{15} during early stages of COVID-19. Despite vaccination rates steadily increasing, experts are suggesting that mask wearing continue for everyone and certainly for frontline workers.

In the current study, we present the results from real-time measurement of transdermal CO$_2$ (TrCO$_2$) levels during exercising and resting conditions, while wearing PPE face coverings. The transdermal measurement approach was chosen as it is non-invasive and the face covering would not be impeded. It has also been previously validated to be reflective of blood CO$_2$ levels \cite{16}. Usage of the word ‘exercise’ in this study implies moderate activity/execution of routine tasks. Our study has broad implications related to health and wellbeing, especially during this COVID-19 pandemic. However, our findings are more pertinent to healthcare workers, due to their constant usage of single-use N95 covering would not be impeded. It has also been previously validated to be reflective of blood CO$_2$ levels \cite{16}. Usage of the word ‘exercise’ in this study implies moderate activity/execution of routine tasks. Our study has broad implications related to health and wellbeing, especially during this COVID-19 pandemic. However, our findings are more pertinent to healthcare workers, due to their constant usage of single-use N95 together with SM and patterns of exertion. For the first time, we present a path towards a wearable transdermal CO$_2$ sensor.

2. Experimental section

2.1. Systems and experimental design

TrCO$_2$ emission rate could be influenced not only by using PPE but also by other factors. To take these effects into account, room temperature (RT) and relative humidity (RH) sensors (GSP-6, Elitech, USA) were installed in the experimental environment, and subjects wore a a skin surface temperature (SST) sensor (GSP-6) and a TrCO$_2$ sampler on the inner side of the forearm, along with a heart rate (HR) sensor (H1, Polar, Finland) on the chest (Fig. 1A). Fig. 1B shows a simplified diagram of previously developed rate-based TrCO$_2$ measurement system \cite{17}. The system automatically repeats a purging process with pure N$_2$ aeration for 30 s and recirculation for 60 s. During recirculation, CO$_2$ continuously diffuses across the skin through the contacting aperture of the sampler using N$_2$ as the carrier. The CO$_2$ concentration in the recirculated N$_2$ increases according to various parameters, including blood CO$_2$ concentration. TrCO$_2$ emission rate can hence be monitored every 90 sec in real-time. In this system, a new design of the TrCO$_2$ sampler with a spiral channel was adopted to improve the efficiency of TrCO$_2$ extraction without heating the skin (Fig. S1). Fig. S2 presents the collection arrangement used to obtain the preliminary results which demonstrate good stability of the system. We used this experimental platform to perform a two-pronged study: static and dynamic measurements, as presented in Fig.1C. The static study examined the effect of PPE wearing on TrCO$_2$ under stable conditions. In contrast, the dynamic study examined the effect of PPE wearing upon significant changes in activity, imitating work and exercise.

This study was authorized by the Institutional Review Board at the University of Maryland, Baltimore County (Protocol Number 89) was in accordance with the latest version of the Declaration of Helsinki. Healthy volunteers (five male and one female) were enrolled in this study after obtaining a written informed consent. Table S1 provides the details on the subjects obtained using a questionnaire prior to conducting the experiments. Age (in years) and BMI (kg/m2) differed by 38.7 ± 14.5 and 24.8 ± 5.5, respectively (mean ± SD). Data analysis was performed using R software (cran.project.org) version 4.0.0. The PPEs

![Fig. 1. Systems and experimental design.](image-url)
used in this study (Fig. S3) along with other experimental methods are described in the supplementary appendix. During the scheduled experiments conducted in triplicates, the six subjects were first provided with testing instructions, familiarized with the collection system and provided with quantitative fit-tested respiratory devices. The subjects maintained similar diet and fluid intake during all the testing phases of the study.

2.2. Static study

In this study, experiments were initiated within 2 h of the subjects’ meals. The study subjects first rested on a chair with the wearable sensors on and without a mask for 30 min. They were then asked to wear N95 (3 M, USA) overlaid with a SM, a face shield (FS) and asked to rest on the chair for 30 min. Finally, the subjects were asked to remove the PPE and continue to rest on the chair for another 30 min. Data acquiring was done in triplicates and each of the subjects completed the experiments on separate days.

2.3. Dynamic study

In this set of experiments, the diet conditioning of the study subjects was the same as in the case of the static study. Here, the study subjects first rested on a chair with the wearable sensors and without wearing a mask for 30 min. In the second phase involving exercise, the subjects were asked to maintain a step rate of 120 steps per minute (spm), audio click) for 60 min. The exercising phase had two patterns: controls (without PPE) and while wearing N95 overlaid with SM and FS. The mask-fitting check was manually done by the subject, and then visually inspected by the investigators. Finally, the subjects sat on the chair for 60 min without a mask for both patterns of the exercising phase. Armpit temperature (AT) and oxygen saturation (SpO2) was measured every 10 min in addition to data acquisition from the other sensors, as described in the static study design. Each subject performed two sets of experiments (exercising phase without and with masks) per day. The order of exercising patterns was randomized. The complete protocol was implemented for three days with at least one rest day in between.

3. Results

3.1. Effect of wearing PPE on TrCO$_2$ and HR while resting

Fig. 2A shows the typical time course variation of TrCO$_2$, HR, RT, RH, and SST parameters. We have defined the three 30 min phases concerning before, during, and after PPE wearing as P1, P2, and P3, respectively. The environmental parameters, HR, and SST were observed to be stable through the 1.5 h of experiments. TrCO$_2$ rate was stable in both of these conditions throughout the experiment. SST was the same as in the case of the static study. (Fig. S2). There are no significant differences in both TrCO$_2$ and HR parameters with confidence intervals of 95% (Fig. 2B). Moreover, we did not observe any differences in other study subjects beyond individual differences.

3.2. Time course studies on TrCO$_2$ emission rate without and with PPE during rest and moderate activity

The supplemental video 1 shows the record of one experiment pertaining to Section 3.4 for reference. The only PPE wearing condition and stepping rate is differed from the experiment in this section. Fig. 3A and B present the variation in TrCO$_2$ rate, HR, RT, RH, SST, and AT overtime when exercising without PPE (control) and with concurrent wearing of N95, SM, and FS. The two sets of experiments were conducted on the same day with a study subject. P1’, P2’, and P3’ are phases of resting before exercise without PPE, during exercise, and resting after exercise without PPE, respectively. Subjects performed 120 steps per minute (spm) of stepping exercise during P2’ without (Fig. 3A) and with PPE (Fig. 3B). RT and RH were similar during each experiment. AT was stable in both of these conditions throughout the experiment. SST decreased on cooling due to sweat vaporization that occurred during P2’, ΔTrCO$_2$ and ΔHR were defined as the difference between the minimum value obtained in the 0–30 min range and an average value of 80–90 min. TrCO$_2$ emission rate began to increase approximately 10 min later, after the onset of stepping, and was observed in both conditions to converge to a nearly plateau value during P2’ and then recovered to baseline in P3’.

3.3. Effect of wearing PPE on TrCO$_2$ in different study subjects while exercising moderately

Five subjects showed significant differences in TrCO$_2$ emission rate between the non-masked and masked (N95+SM+FS) conditions.

![Fig. 2. Effect of PPE on TrCO$_2$ rate and vitals while resting. (A) A typical variation in TrCO$_2$ and vitals over time in static conditions observed without and with PPE: N95, SM, and FS. P1, P2, and P3 represent the data before, during, and after PPE wearing, respectively. (B) Comparison of the average TrCO$_2$ emission rate and HR in each of the phases. n.s.: no significant difference.](image-url)
In our six study subjects, only subject 6 did not show a TrCO$_2$ emission rate without PPE, with a cloth mask (CM), and with FS indicated nearly the same value: 0.65 ± 0.05, 0.68 ± 0.07, and 0.63 ± 0.03 ppm/s, respectively. ΔTrCO$_2$ values with N95-only and SM-only was marginally higher (0.91 ± 0.04 and 1.03 ± 0.05 ppm/s) than that of without PPE, with CM, and with FS. ΔTrCO$_2$ levels with N95 covered by SM (1.21 ± 0.06 ppm/s) or SM and FS (1.58 ± 0.05 ppm/s) were higher than the ΔTrCO$_2$ levels of the N95 alone.

4. Discussion

In the resting state, there was no variation in the TrCO$_2$ emission rate, although wearing N95 overlaid with SM and FS (Fig. 2B). Hence, wearing a PPE with higher breathability (e.g., wearing only the N95 respirator) rather than N95 overlaid with SM and FS will definitely not alter the TrCO$_2$ levels while resting. This confirms that rebreathing alone, which can be caused by wearing a PPE, does not seem to have a significant effect on CO$_2$ concentration.

In contrast, during moderate exercise, the TrCO$_2$ emission rate increased even when the subject did not wear a PPE, and a larger increase was induced by wearing N95 overlaid with SM and FS. In our study, we did not use a standard instrument such as an ergometer; however, 120 spm of exercise is in the range of moderate (3 metabolic equivalents; METs) to vigorous (6 METs) exercise [18]. The threshold of exercise intensity at which the TrCO$_2$ levels increase is still debatable on account of large individual differences. Even the CDC has cited the Roberge study that concluded there was no significant difference in pCO$_2$ after 1 h of mild/moderate exercise while wearing N95 alone and in contrast to N95 overlaid with SM, where 2 out of 10 subjects showed a change in pCO$_2$ [19,20]. However, TrCO$_2$ levels can increase significantly as a person exercises moderately while wearing N95 overlaid with SM and FS. Sinkule et al. showed that higher concentration in inhaled CO$_2$ while wearing SM covered N95 compared to N95-only [21]. In our six study subjects, only subject 6 did not show a TrCO$_2$ change.
Fig. 4. Effect of wearing PPE face coverings on TrCO₂ levels during moderate exercise. (A–F) Time course studies on ΔTrCO₂ without PPE (▲) and while wearing PPE-N95 overlaid with SM and FS (●) in subjects 1–6. N = 3 except for subject 5. Each plot and error bar indicates mean value and SD. (G) Comparison of differential values of ΔTrCO₂ emission rate without and with PPE obtained on the same day. There are six curves represented subject 1 (●), subject 2 (▲), subject 3 (◆), subject 4 (×), subject 5 (■), and subject 6 (∨). Each plot and error bar represents mean value and SD that were calculated with experiments performed on different days. (H) Comparison of ΔTrCO₂ emission rate between without and with PPE in each of the subjects with error bars representing SD. Mean value and SD were calculated from the values at 80–90 min in each experiment shown in (A–F). n.s. represents no significant difference. (I) Comparison of ΔTrCO₂ emission rate between without and with PPE using data from all subjects (six subjects, thirty-two experiments). Boxes, white lines, error bars, and subplots (●) indicate quartile range, median, data range, and individual experimental data, respectively.

Fig. 5. Effect of PPE face coverings breathability on TrCO₂ levels. Time course of ΔTrCO₂ emission rate with various types and overlaying patterns of PPE during 140 spm of stepping exercise: with N95 overlaid with SM and FS (●), with N95 overlaid with SM (◆), with N95 (■), with SM (▼), with FS (+), with CM (×), and without PPE (▲). Each plot and error bar indicates mean and SD calculated with data from triplicate studies.
both without and with PPE (Fig. 4F). This result may also be due to
individual differences in tolerance to exercise. This subject particularly
was in the habit of playing soccer, a sport with relatively high physical
activity. It is hence possible that the subject did not reach the intensity
threshold for TrCO\textsubscript{2} activity. It is hence possible that the subject did not reach the intensity
was in the habit of playing soccer, a sport with relatively high physical
performing moderate exercise. This is especially since TrCO\textsubscript{2} levels can be
affected not only by blood CO\textsubscript{2} concentration but also by variation in
SST, blood flow, physical condition, and skin conditions, to name a few.
\(\Delta \text{SST} \) and \(\Delta \text{HR} \) did not differ significantly between subjects without and
with PPE (Figs. S4I and S5I). Further, variations of physical and skin
conditions were negated by executing control experiments (exercising
without PPE) along with exercising while wearing PPE, on the same day.
In principle, non-dispersive infrared (NDIR) CO\textsubscript{2} sensors can be affected by
water vapor in gaseous samples, however, a NDIR CO\textsubscript{2} sensor that
was used in our study compensated for water vapor interference by
measuring the reference signal. In addition, a high correlation between
TrCO\textsubscript{2} and arterial blood gas pCO\textsubscript{2} was measured by the same rate-based
method in the previous study [11], although the sampler geometry was
different. These findings suggested that the variations in TrCO\textsubscript{2} observed
during the experiment correlate with the changes in CO\textsubscript{2} concentration
in the body. These results are in correlation with the qualitative
assessment on suffocation experienced during the dynamic study by
the study subjects (Fig. S7). Note that there was a limit to the number of
human subjects we could access during this study. In order to extend
these findings to a general conclusion, it would be necessary to inves-
tigate with a larger sample size. Another current limiting factor is the
fact that it is different from the actual working situation where health
care workers have to walk around and speak.

\(\Delta \text{TrCO}_2 \) levels on different types and overlaying patterns of PPE
(Fig. 5) correlate well with filtering performance or breathability of PPE
[22–25]. There were two interesting observations as seen in Fig. 5: (1)
when N95 and SM were layered, the profile of \(\Delta \text{TrCO}_2 \) was similar to
when N95 was worn alone; (2) use of the FS alone showed a similar
\(\Delta \text{TrCO}_2 \) profile to when PPE were not worn. The differences however
became larger when the FS was added to SM covering N95. The first
obsservation in the current study is consistent with the findings of a
previous study by Roberge et al. [20] However for the second ob-
observation, computational fluid dynamics studies on airflow around
the mask would augment the understanding in this arena. It has been shown
that exhaled air can easily diffuse beyond the FS into the ambient air
when the mask is not worn [26,27]. In contrast, when SM covering N95
was worn inside FS, the mask caused a pressure loss in the exhalation
[28–30]. As a result, exhaled air could stay in the vicinity of the masks,
and furthermore, the FS could prevent diffusion of the exhaled breath
to the ambient environment, which promotes re-inhalation of exhaled
air. Note that we observed significant changes in TrCO\textsubscript{2} with bag
breathing that mainly contributes to re-breathing (Fig. S8). Thus, there
is a trade-off between the filter performance and breathability of a mask.
Considering variations in TrCO\textsubscript{2} levels as in our study and earlier studies
that have evaluated the filtering performance of masks, it is likely that
SM would be the first choice for the general public when exercising in
door gyms.

On the other hand, a recent study showed that commercially avail-
able powered air purifying respirator that enhance breathability could
prevent headache related to PPE [31] induced by hemodynamic alter-
ations [32]. We are confident that our device will support the rapidly
advancing research on filter materials [33,34] and designs [35,36] will
lead to engineering of ergonomic masks that do not compromise on filter
performance and breathability.

Continuous transdermal CO\textsubscript{2} monitoring using a wearable sensor
may provide physiological insights that are of value to a number of
medical applications and disease states [37]. Our earlier approach is
readily amenable to a wearable format (Fig. S9) by modifying a CO\textsubscript{2}
sensor previously designed for bioprocess monitoring [38,39].

5. Conclusions

We observed a significant effect on wearing N95 overlaid with SM
and FS during moderate exercise/activity on TrCO\textsubscript{2} levels, but not while
resting. There is however no significant difference in HR and SST while
exercising with masks. Individual differences in exercising tolerance
affect TrCO\textsubscript{2} levels during activity. Hence, having a personal TrCO\textsubscript{2}
monitor will be a prudent solution to monitor the health of first re-
sponders in this pandemic. Given the disadvantages and limitations of
the existing technologies, there is clearly a need for the development of
new generation devices for rapid and accurate assessment of respiratory
status to better guide clinical practice. Further studies are currently
underway for a more comprehensive understanding.

CRediT authorship contribution statement

Kenta Iitani: Investigation, Visualization, Project administration,
Formal analysis, Funding acquisition, Writing – original draft. Joel
Tyson: Methodology, Investigation. Samyukta Rao: Investigation. Sai
Sathish Ramamurthy: Project administration, Supervision, Writing –
original draft. Xudong Ge: Project administration, Supervision. Govind
Rao: Conceptualization, Project administration, Supervision, Funding
acquisition.

Declaration of Competing Interest

None declared.

Acknowledgments

We thank Dr. Yordan Kostov for the design of the instrumentation in
connection with the rate-based TrCO\textsubscript{2} measurement system. This study
is dedicated to first responders who serve and protect while constantly
wearing masks.

Funding

This work was supported by NIH, Grant No. 1U01EB021952-01 and
Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS
fellows No. JP19J01649.

Ethical approval

This study was approved by the Office of Research Protections and
Compliance, University of Maryland Baltimore County.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.medengphy.2021.10.013.

References

[1] World Health Organization. (2020). Mask use in the context of COVID-19:
interim guidance, 1 December 2020. World Health Organization.
https://apps.who .int/iris/handle/10665/337169. License: CC BY-NC-SA 3.0 IGO.
[2] Lynn W, Webbly GL. Community use of face masks and COVID-19: evidence
from a natural experiment of state mandates in the US. Health Aff 2020;39:1419-25.
https://doi.org/10.1377/hlthaff.2020.00818.
[3] Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et al. Modeling
COVID-19 scenarios for the United States. Nat Med 2021;27:94–105. https://doi.
org/10.1038/s41591-020-1132-9.
[4] Ueki H, Furasawa Y, Iwatsuki-Horimoto K, Imai M, Kabata H, Nishimura H, et al.
Effectiveness of Face masks in preventing airborne transmission of SARS-CoV-2.
MSphere 2020;5:2–6. https://doi.org/10.1128/msphere.00637-20.
[5] Bundgaard H, Bundgaard JS, Raaschou-Pedersen DET, von Buchwald C, Todesen T, Nordqvist J, et al. Effectiveness of adding a mask recommendation to other public health measures to prevent SARS-CoV-2 infection in Danish mask wearers. Ann Intern Med 2021;174:335–43. https://doi.org/10.7326/M20-6817.

[6] Hopkins SR, Dominelli PB, Davis CK, Guenette JA, Laks AM, Molgat-Seon Y, et al. Face masks and the cardiorespiratory response to physical activity in health and disease. Ann Am Thorac Soc 2021;18:399–407. https://doi.org/10.1513/AnnalsATS.202007-812RL.

[7] Samanam R, Holt G, Calderón-Candelario R, Mirzaei M, Campos M. Effect of face masks on gas exchange in healthy persons and patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc 2021;18:291–300. https://doi.org/10.1513/AnnalsATS.202009-990CM.

[8] Chan NC, Li K, Hirsh J. Peripheral oxygen saturation in older persons wearing nonmedical face masks in community settings. JAMA 2020;324:2323. https://doi.org/10.1001/jama.2020.21905.

[9] Dattel AR, O’toole NM, Lopez G, Byrnes KP. Face mask effects of CO₂, heart rate, respiration rate, and oxygen saturation on instructor pilots. Coll Aviat Rev 2020;38:1–11.

[10] Özdemir L, Aizoğlu M, Yapıcı D. Respirators used by healthcare workers due to the COVID-19 outbreak increase end-tidal carbon dioxide and fractional inspired carbon dioxide pressure. J Clin Anesth 2020;66:109901. https://doi.org/10.1016/j.jclinane.2020.109901.

[11] Rhee MSM, Lindquist CD, Silvestrini MT, Chan AC, Ong JJY, Sharma VK. Carbon dioxide increases with face masks but remains below short-term NIOSH limits. BMC Infect Dis 2021;21:53. https://doi.org/10.1186/s12879-021-06656-0.

[12] Chandrasekaran B, Fernandez S. Exercising with facemask; are we handling a devil’s sword? - A physiological hypothesis. Med Hypotheses 2020;144:110002. https://doi.org/10.1016/j.mehy.2020.110002.

[13] Chandrasekaran B, Dr FS. Chandrasekaran’s reply to ‘Exercising and face masks: an important hypothesis buried in a selective review. Med Hypotheses 2020;144:110002. https://doi.org/10.1016/j.mehy.2020.110002.

[14] Greenhalgh T, Dijkstra P, Jones N, Bowley J. Exercising and face masks: An important hypothesis buried in a selective review. Med Hypotheses 2020;144:110002. https://doi.org/10.1016/j.mehy.2020.110002.

[15] Herrmann J, Morig V, Bates JHT, Sukhi B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun 2020;11:4883. https://doi.org/10.1038/s41467-020-18672-6.

[16] Chatterjee M, Ge X, Kostov Y, Liu P, Tolosa L, Woo H, et al. A rate-based transcutaneous CO₂ sensor for noninvasive respiration monitoring. Physiol Meas 2015;36:883–94. https://doi.org/10.1088/0967-3334/36/5/883.

[17] Ge X, Adangwa P, Lim JY, Kostov Y, Tolosa L, Pierson R, et al. Development and characterization of a point-of-care rate-based transcutaneous respiratory status monitor. Med Eng Phys 2018;56:36–41. https://doi.org/10.1016/j.medengphy.2018.03.009.

[18] Tudor-Locke C, Aguirre EJ, Han H, Ducharme SW, Schuna JM, Barreira TV, et al. Walking cadence (steps/min) and intensity in 21 year olds: cadence-adults. Int J Behav Nutr Phys Act 2019;16:8. https://doi.org/10.1186/s12966-019-0769-6.

[19] Xi J, Si XA, Nagarajan R. Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway. Phys Fluids 2020;32:123312. https://doi.org/10.1063/5.0034580.

[20] Verma S, Dhanak M, Frankenstein J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys Fluids 2020;32:061708. https://doi.org/10.1063/5.0016018.

[21] Staymates M. Flow visualization of an N95 respirator with and without an exhalation valve using schlieren imaging and light scattering. Phys Fluids 2020;32:111703. https://doi.org/10.1063/5.0031996.

[22] Ong JJY, Chan ACY, Bharatendu C, Teoh HL, Chan YC, Sharma VK. Headache related to PPE use during the COVID-19 pandemic. Curr Pain Headache Rep 2021;25:53. https://doi.org/10.1007/s11916-021-00968-x.

[23] Xi J, Si XA, Nagarajan R. Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway. Phys Fluids 2020;32:123312. https://doi.org/10.1063/5.0034580.

[24] Verma S, Dhanak M, Frankenstein J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys Fluids 2020;32:061708. https://doi.org/10.1063/5.0016018.

[25] Huang L, Xu S, Wang Z, Xue K, Su J, Song Y, et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2021;14:2045–53. https://doi.org/10.1021/acsnano.0c05330.

[26] Byrne JD, Wentworth AJ, Choi PR, Huang HW, Babasa S, Li C, et al. Injection molded autoclavable, scalable, conformable (iMASC) system for aerosol-based protection: a prospective single-arm feasibility study. BMJ Open 2020;10:e039120. https://doi.org/10.1136/bmjopen-2020-039120.

[27] Faucher S, Lundberg DJ, Liang XA, Xin J, Phillips R, Parviz D, et al. A virucidal face mask based on the reverse-flow reactor concept for thermal inactivation of SARS-CoV-2. ACS Nano 2021. https://doi.org/10.1021/acsnano.0c21706.

[28] Tippajaran VV, Mora SJ, Yang J, Tsow F, Xian J. Wearable transcutaneous CO₂ monitor based on miniaturized nondispersive infrared sensor. IEEE Sens J 2021;21:17327–34. https://doi.org/10.1109/JSEN.2021.3081696.

[29] Chopda VR, Holzberg T, Ge X, Folio B, Tolosa M, Kostov Y, et al. Real-time dissolved carbon dioxide monitoring I: application of a novel in situ sensor for CO₂ monitoring and control. Biotechnol Bioeng 2020;117:981–91. https://doi.org/10.1002/bit.27252.

[30] Chopda VR, Holzberg T, Ba X, Folio B, Wong L, Tolosa M, et al. Real-time dissolved carbon dioxide monitoring II: surface aeration intensification for efficient CO₂ removal in shake flasks and mini-bioreactors leads to superior growth and recombiant protein yields. Biotechnol Bioeng 2020;117:992–8. https://doi.org/10.1002/bit.27252.