INTRODUCTION

Correct length determination of a root canal system can influence the outcome of endodontic treatment.[1] It is widely accepted that the apical constriction is the point that root canal instrumentation and filling should be terminated, where the pulp ends and the periodontal ligament begins.[2] Radiographic and electronic methods are currently used to determine the correct root canal length. Due to the limitations...
of radiography, the use of electronic devices has increased in recent years. Although apex locators effectively and reproducibly locate the apical foramen, some factors such as endodontic solutions which used during preparation, apical constriction diameter, root canal preenlargement, treatment procedures, and intracanal medicaments can influence the accuracy of readings. Due to the complexity of the root canal system, none of exciting cleaning and shaping methods can completely remove the bacteria. Therefore, intracanal medicaments used in multiple visits are used to reduce the pathogenic species associated with pulp necrosis.

Calcium hydroxide (Ca(OH)_2) is an intracanal medicament, which has been widely used, especially in cases with necrotic pulp. Ca(OH)_2 must be removed before obturation because its presence on root canal walls adversely affects the penetration of sealers into the dentinal tubules. Many techniques and irrigants were introduced for Ca(OH)_2 removal. To remove the Ca(OH)_2, from the root canal, instrumentation by master apical file and simultaneously irrigation by different endodontic irrigants are suggested. There are various techniques to remove Ca(OH)_2 from the root canal. This usually accomplished through several irrigant rinses in conjunction with hand or rotary instrumentation or ultrasonics. Most common irrigants have been used included saline, sodium hypochlorite (NaOCl), ethylenediaminetetraacetic acid (EDTA), and combinations thereof. NaOCl is the most common used irrigant in endodontics, and the most frequently described method to remove Ca(OH)_2 from the root canal is combination use of NaOCl and EDTA. However, it was shown that instrumentation and irrigation cannot completely clean the root canal walls and it has been reported that in this method, Ca(OH)_2 residues were remained at the apical portion of the canal.

Raypex 6 is the last member of Raypex series electronic apex locators (EALs). The clinical performance of Raypex 4 and 5 was found to be successful. Moscoso et al. in an in vitro study showed that there were no statistically significant differences between Dentaport ZX and Raypex 6 under in vivo clinical condition.

Uzunoglu et al. in an in vitro study showed that the residues of Ca(OH)_2 adversely affected the accuracy of Root ZX. To the best of our knowledge, there is no information to evaluate the influence of Ca(OH)_2 residues on Raypex 6 EAL. Thus, the aim of this study was to evaluate and compare the effect of Ca(OH) remnants after irrigation by different irrigants on the accuracy of Raypex 6 and Root ZX EAL.

MATERIALS AND METHODS

Eighty mandibular single-rooted premolars were selected for this in vitro study. Calculus and soft-tissue debris were removed from the teeth and then stored in 1% thymol solution for disinfection. To minimize the variables, the crowns of the teeth were decoronated at the level of cementoenamel junction with a diamond disc to standardize the length of roots to 15–17 mm. The root canals patency was checked using a K-file size 10 (Dentsply Maillefer, Switzerland), and the working lengths (WLs) were determined using size 10–20 K-files depending on the apical foramen sizes. A K-file was inserted into the canal and the tip of the file was checked until it became visible through the foramen under microscope (Dunwell Tech, USA) at ×12 magnification. An actual WL (AWL) was measured 0.5 mm short of the apical foramen, and a single operator prepared all root canals. The coronal one-third of the canals were flared with size 2–3 Gates-Glidden burs (Jota AG co., Switzerland) and remaining root canals were shaped using protaper rotary instruments (Dentsply Maillefer, Switzerland) at a speed of 300 rpm up to size F3 (size 30). Between each instrument, copious irrigation by sodium hypochlorite (NaOCl) 5.25% solution (Poura, Iran) with a syringe and a 27-gauge needle 2-mm shorter than WL was done. Then, all the root canals were finally irrigated with 5 ml 17% EDTA (Master‑Dent, Dentonics Inc., USA) and 5 ml distilled water. The teeth were dried by paper point (Meta Biomed, South Korea) and filled with injectable Ca(OH), paste (SURE-Paste, Sure Dent Corp., Korea), and the access cavities were temporarily sealed with Cavit (Cavisol, Golchai Co., Iran). Mesiodistal and buccolingual radiographs were taken to confirm complete root canals filling. An alginate model was used for testing apex locators to mimic the clinical situation. Four plastic boxes were filled with alginate (Tropicalgine, Zhermack, Italy) and the teeth were randomly distributed in them. Two boxes were designed for experimental groups according to the apex locator and irrigants (n = 30), and two boxes were prepared for control groups (n = 10). The pool of alginate was wrapped in wet gazes and stored at 37°C and 100% humidity for 7 days. The apex...
locators used in this study were: Root ZX (J Morita Corp., Tokyo, Japan) and Raypex 6 (VDW, Munich, Germany).

Ca(OH)$_2$ removal was performed by two different irrigants: normal saline (Darou Pakhsh, Iran) and NaOCl 5.25% followed by EDTA. To avoid bias, during Ca(OH)$_2$ removal, apical foramen of all the teeth were filed until size 30. The teeth in the positive control group were not filled with Ca(OH)$_2$ paste, and in the negative control group, the Ca(OH)$_2$ was not removed from the root canals. Then, WLs were measured by two EALs when the root canals were filled with irrigants such that the apical third of the tooth was fulfilled with the irrigants. The metal lip clip was placed into the alginate, and the silicon stop was adjusted to the nearest available anatomical landmark of the teeth. The measuring file was moved into the canal until the display level the APEX point displayed on the monitor for Root ZX, then operator passed the file over the APEX point and the termination point was the first line in the red area. With the Raypex 6, the termination point was determined and the red bar began flashing according to the manufacturer’s instruction. Then, the K-file was fixed as the WL and withdrawn from the root canal, and the distance from the reference point to the file tip was measured, and then, 0.5 mm was subtracted from every measurement to achieve the situation of apical constriction. Each measurement was repeated three times by a static endodontic ruler, and the mean average electronic WL (EWL) was recorded. Differences from AWL were calculated (AWL–EWL). Furthermore, the accuracy of apex locators was calculated as the percentage of acceptable measurements (tolerance limit of ±0.5 and ±1 mm). One-way ANOVA with post hoc paired t-test was used to analyze the data ($P < 0.05$). Chi-square tests were used to compare percentages ($P < 0.05$).

RESULTS

The difference between the mean EAL and the AWL was calculated for teeth in the presence of different irrigants in tolerance limit of ±0.5 and ±1 mm. The calculated absolute difference values are reported in Table 1. There was no significant difference between the accuracy of two EALs and irrigants ($P > 0.05$) [Table 1].

The control group with no Ca(OH)$_2$ removal was significantly different from experimental groups ($P < 0.05$), and the control group with no Ca(OH)$_2$ placement was not significantly different from experimental groups ($P > 0.05$). The calculated apex locators’ accuracy in the presence of two irrigants is shown in Table 2.

DISCUSSION

In this study, the accuracy of two different EALs was evaluated after Ca(OH)$_2$ removal by different irrigants. The use of Ca(OH)$_2$ paste between therapeutic sessions is suggested due to its excellent antimicrobial efficacy. The selected method for Ca(OH)$_2$ removal was supported by Lambrianidis who suggested instrumentation by master apical file with copious irrigation.[19,25] Previous studies showed that none of the different removal techniques and irrigants can completely clean Ca(OH)$_2$ from the root canal walls and considerable amounts of medicament remnants were remained,[7,18,25] and these remnants of Ca(OH)$_2$ can adversely affect the outcome of treatment. Holland et al. reported that the residual Ca(OH)$_2$ in dentinal tubules causes the decreasing tubular permeability and endangers the outcome of the treatment.[26]

NaOCl is primarily used as an endodontic irrigant and has great efficacy in disinfecting root canals.[27,28] Van der Sluis et al. reported that NaOCl is an effective irrigant in removal of Ca(OH)$_2$ paste, especially in the apical root canal and when used during passive ultrasonic irrigation.[29] Adversely, Salgado et al. showed that the worst results of Ca(OH)$_2$ removal were in the NaOCl irrigation group.[30] Removal of Ca(OH)$_2$ from the root canal with copious irrigation of NaOCl

Table 1: The absolute difference value between the mean effective attenuation length measurements and the actual working length for Raypex 6 and Root ZX

Group	[AWL – EWL] for Raypex 6	[AWL – EWL] for Root ZX
Irrigation with 10 ml 0.9%	0.0840±0.5772ca	0.0066±0.427ca
saline		
Irrigation with 10 ml 5.25%	0.1586±0.4554cb	0.1203±0.4153cb
NaOCl/EDTA		
No CH removal (negative control group)	0.5230±0.4356cc	0.4370±0.4651cc
No CH placement (positive control group)	0.1190±0.3853cd	0.0200±0.6303cd

Same lowercase superscript letter in columns means no significant difference at $P<0.05$ level; Same uppercase superscript letter in rows means no significant difference at $P<0.05$ level; *Paired t-test; EWL: Electronic working length; AWL: Actual working length; NaOCl: Sodium hypochlorite; EDTA: Ethylenediaminetetraacetic acid; CH: Calcium hydroxide
and EDTA is the most frequently described method.\[^{19}\] Hence, the irrigation with EDTA after NaOCl was used in this study. Although it is likely that EDTA may chelate Ca(OH)$_2$ remnants and the removal of this paste became easier by following NaOCl irrigation, other studies could not confirm that these combinations of irrigants can remove Ca(OH)$_2$ totally and still found extensive Ca(OH)$_2$ remnants.\[^{19,31}\]

There are several studies about the influence of different irrigants on the accuracy of EALs. According to the manufacturer, the accuracy of new generation EALs is not adversely affected from irrigation. Some studies showed that there was no significant correlation between the accuracy of EALs and irrigation solution and the irrigation do not affect the accuracy of the electronic readings.\[^{32-34}\] Similarly, in this study for each EAL, regardless of the irrigants, the accuracy of readings was not significantly different in both ±0.5 mm and ±1 mm tolerance. Adversely, Kang and Kim reported that NaOCl gave rise the readings to significant differences among tested EALs include Root ZX. Furthermore, they concluded that when saline was used as an irrigant, the mean discrepancies for Root ZX were >0.05 mm.\[^{9}\]

Raypex EAL is a widely used EAL and Raypex 6 is a recently developed EAL. Stöber\textit{ et al.}, evaluated the clinical performance of Raypex 5, found that it is 75% accurate to ±0.5 mm and 100% to ±1 mm.\[^{35}\] Furthermore, in an \textit{in vivo} study, Somma\textit{ et al.} reported that the accuracy of Raypex 5 and Dentaport ZX is not significantly different and both of the EALs have correct measurements.\[^{22}\]

Some studies which compared different EALs to Root ZX reported that accuracy of the Root ZX is high.\[^{36,37}\] In accordance with the previous studies,\[^{36,38,39}\] based on the results of this study, the Root ZX apex locator revealed high success rate in the presence of both irrigants [Table 2], and similarly, the success rate of Raypex 6 is high and not significantly different from that of Root ZX.

In this study, an \textit{ex vivo} alginate model was selected for investigating EALs. This media has similar electrical resistance to the periodontium. The advantages of this \textit{ex vivo} model were the simplicity, ease of use, and the ability to have strict control over the experimental conditions tested. The disadvantages of laboratory models are the inability to simulate conditions \textit{in vivo}.\[^{9}\] \textit{Ex vivo} studies use electroconductive materials such as alginate to simulate the clinical situation. Sometimes, the media can leak through the apical foramen and may cause premature readings. Furthermore, it has been shown that some \textit{ex vivo} experimental models report greater accuracy for apex locators than clinical conditions.\[^{40}\] Therefore, the results of laboratory studies could not be directly extrapolated to the clinical situation, and the authors of the present study suggest further \textit{in vivo} studies to better evaluate these EALs after Ca(OH)$_2$ paste removal.

CONCLUSION

The present study revealed that no statistical significant differences were observed between Raypex 6 and Root ZX EALs after Ca(OH)$_2$ paste removal with normal saline and NaOCl irrigation.

Acknowledgment

The authors would like to thank the Vice-Chancellor of the Shiraz University of Medical Science for supporting this research (Grant#13958).

This manuscript is based on the thesis by D. Zaeri. The authors also thank Dr. Vossoughi from the Center for Research Improvement of the School Of Dentistry for the statistical analysis.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.
REFERENCES

1. Ricucci D, Langeland K. Apical limit of root canal instrumentation and obturation, part 2. A histological study. Int Endod J 1998;31:394-409.
2. Kuttler Y. Microscopic investigation of root apexes. 1955. J Indiana Dent Assoc 2010;89:20-8.
3. McDonald NJ. The electronic determination of working length. Dent Clin North Am 1992;36:293-307.
4. ElAyouti A, Weiger R, Löst C. The ability of root ZX apex locator to reduce the frequency of overestimated radiographic working length. J Endod 2002;28:116-9.
5. Fouad AF, Rivera EM, Krell KV. Accuracy of the endoex with variations in canal irrigants and foramen size. J Endod 1993;19:63-7.
6. Shabahang S, Goon WW, Gluskin AH. An in vivo evaluation of root ZX electronic apex locator. J Endod 1996;22:616-8.
7. Uzunoglu E, Eymirli A, Uyanik MÖ, Çalt S, Nagas E. Calcium hydroxide dressing residues after different removal techniques affect the accuracy of root-ZX apex locator. Restor Dent Endod 2015;40:44-9.
8. Erdemir A, Eldeniz AU, Ari H, Belli S, Esener T. The influence of irrigating solutions on the accuracy of the electronic apex locator facility in the tri auto ZX handpiece. Int Endod J 2007;40:391-7.
9. Kang JA, Kim SK. Accuracies of seven different apex locators under various conditions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e57-62.
10. Herrera M, Abalos C, Planas AJ, Llamas R. Influence of apical constriction diameter on root ZX apex locator precision. J Endod 2007;33:995-8.
11. de Camargo EJ, Zapata RO, Medeiros PL, Bramante CM, Bernardineli N, Garcia RB, et al. Influence of preflaring on the accuracy of length determination with four electronic apex locators. J Endod 2009;35:1300-2.
12. Aggarwal V, Singla M, Kabi D. An in vitro evaluation of performance of two electronic root canal length measurement devices during retreatment of different obturating materials. J Endod 2010;36:1526-30.
13. Kawashima N, Wadachi R, Suda H, Yeng T, Parashos P. Root canal medicaments. Int Dent J 2009;58:329-41.
14. Calt S, Serper A. Dentinal tubule penetration of root canal sealers after root canal dressing with calcium hydroxide. J Endod 1999;25:431-3.
15. Kim SK, Kim YO. Influence of calcium hydroxide intracanal medication on apical seal. Int Endod J 2002;35:623-8.
16. Nandini S, Velmurugan N, Kandaswamy D. Removal efficiency of calcium hydroxide intracanal medicament with two calcium chelators: Volumetric analysis using spiral CT, an in vitro study. J Endod 2006;32:1097-101.
17. van der Sluis LW, Wu MK, Wesselink PR. The evaluation of removal of calcium hydroxide paste from an artificial standardized groove in the apical root canal using different irrigation methodologies. Int Endod J 2007;40:52-7.
18. Kenee DM, Allemang JD, Johnson JD, Hellestein J, Nichol BK. A quantitative assessment of efficacy of various calcium hydroxide removal techniques. J Endod 2006;32:563-5.
19. Lambrianidis T, Kostì E, Boutsioukis C, Mazinis M. Removal efficacy of various calcium hydroxide/chlorhexidine medicaments from the root canal. Int Endod J 2006;39:55-61.
20. Wu MK, van der Sluis LW, Wesselink PR. The capability of two hand instrumentation techniques to remove the inner layer of dentine in oval canals. Int Endod J 2003;36:218-24.
21. Margelos J, Eliades G, Verdelis C, Palaghias G. Interaction of calcium hydroxide with zinc oxide-eugenol type sealers: A potential clinical problem. J Endod 1997;23:43-8.
22. Somma F, Castagnola R, Lajolo C, Paternò Holtzman L, Marigo L. In vivo accuracy of three electronic root canal length measurement devices: Dentaport ZX, raypex 5 and proPex II. Int Endod J 2012;45:552-6.
23. ElAyouti A, Kimionis I, Chu AL, Löst C. Determining the apical terminus of root-end resected teeth using three modern apex locators: A comparative ex vivo study. Int Endod J 2005;38:827-33.
24. Moscoso S, Pineda K, Basilio J, Alvarado C, Roig M, Duran-Sindreu F. Evaluation of dentaport ZX and raypex 6 electronic apex locators: An in vivo study. Med Oral Patol Oral Cir Bucal 2014;19:e202-5.
25. Lambrianidis T, Margelos J, Beltes P. Removal efficiency of calcium hydroxide dressing from the root canal. J Endod 1999;25:85-8.
26. Holland R, Alexandre AC, Murata SS, dos Santos CA, Dezan Júnior E. Apical leakage following root canal dressing with calcium hydroxide. Endod Dent Traumatol 1995;11:261-3.
27. Siqueira JF Jr., Rôças IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod 2000;26:331-4.
28. Mohammadi Z. Sodium hypochlorite in endodontics: An update review. Int Dent J 2008;58:329-41.
29. van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: A review of the literature. Int Endod J 2007;40:415-26.
30. Salgado RJ, Moura-Netto C, Yamazaki AK, Cardoso LN, de Moura AA, Prokopowitsch I. Comparison of different irrigants on calcium hydroxide medication removal: Microscopic cleanliness evaluation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:580-4.
31. Tatsuta CT, Morgan LA, Baumgartner JC, Adey JD. Effect of calcium hydroxide and four irrigation regimens on instrumented and uninstrumented canal wall topography. J Endod 1999;25:93-8.
32. Kaufman AY, Keila S, Yoshpe M. Accuracy of a new apex locator: An in vitro study. Int Endod J 2002;35:186-92.
33. Pommer O, Stamm O, Attin T. Influence of the canal contents on electronic apex locators: A comparative ex vivo study. Int Endod J 2002;35:186-92.
34. Saito T, Yamashita Y. Electronic determination of root canal length by newly developed measuring device. Influences of the diameter of apical foramen, the size of K-file and the root canal irrigants. Dent Jpn (Tokyo) 1999;27:65-72.
35. Stöber EK, de Ribot J, Mercadé M, Vera J, Bueno R, et al. Evaluation of the raypex 5 and the mini apex locator: An in vivo study. J Endod 2011;37:1349-52.
36. Stöber EK, Duran-Sindreu F, Mercadé M, Vera J, Bueno R,
Shojaee, et al.: Effect of calcium hydroxide residues on accuracy of electronic apex locators

Roig M. An evaluation of root ZX and iPex apex locators: An in vivo study. J Endod 2011;37:608-10.

37. Meares WA, Steiman HR. The influence of sodium hypochlorite irrigation on the accuracy of the root ZX electronic apex locator. J Endod 2002;28:595-8.

38. Aydin U, Karatasioglu E, Aksoy F, Yildirim C. In vitro evaluation of root ZX and raypex 6 in teeth with different apical diameters. J Conserv Dent 2015;18:66-9.

39. Briseño-Marroquín B, Frajlich S, Goldberg F, Willershausen B. Influence of instrument size on the accuracy of different apex locators: An in vitro study. J Endod 2008;34:698-702.

40. Czerw RJ, Fulkerson MS, Donnelly JC, Walmann JO. In vitro evaluation of the accuracy of several electronic apex locators. J Endod 1995;21:572-5.