The Saturation Number for the length of Degree Monotone Paths

Yair Caro
Department of Mathematics
University of Haifa-Oranim
Israel

Josef Lauri
Department of Mathematics
University of Malta
Malta

Christina Zarb
Department of Mathematics
University of Malta
Malta

Abstract

A degree monotone path in a graph \(G \) is a path \(P \) such that the sequence of degrees of the vertices in the order in which they appear on \(P \) is monotonic. The length of the longest degree monotone path in \(G \) is denoted by \(mp(G) \). This parameter, inspired by the well-known Erdős-Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter \(mp(G) \). We call \(G \) saturated if, for every edge \(e \) added to \(G \), \(mp(G + e) > mp(G) \), and we define \(h(n, k) \) to be the least possible number of edges in a saturated graph \(G \) on \(n \) vertices with \(mp(G) < k \), while \(mp(G + e) \geq k \) for every new edge \(e \).

We obtain linear lower and upper bounds for \(h(n, k) \), we determine exactly the values of \(h(n, k) \) for \(k = 3 \) and \(4 \), and we present constructions of saturated graphs.

1 Introduction

Given a graph \(G \), a degree monotone path is a path \(v_1v_2\ldots v_k \) such that \(\text{deg}(v_1) \leq \text{deg}(v_2) \leq \ldots \leq \text{deg}(v_k) \) or \(\text{deg}(v_1) \geq \text{deg}(v_2) \geq \ldots \geq \text{deg}(v_k) \). This notion, inspired by the well-known Erdős-Szekeres Theorem [7, 9], was introduced in [6] under the name of uphill and downhill path in relation to domination problems, also studied in [4, 5, 11]. In [6], the study of the parameter \(mp(G) \), which denotes the length of the longest degree monotone path in \(G \), was specifically suggested. This parameter was studied by the authors in [2, 3], and among many results obtained, the parameter \(f(n, k) = \max\{|E(G)| : |V(G)| = n, mp(G) < k\} \) was also defined. It was shown that this is closely related to the Turan numbers \(t(n, k) = \max\{|E(G)| : |V(G)| = n, G \text{ contains no copy of } K_k\} \).

A general form of the Turan numbers with respect to a graph \(H \) is \(t(n, H) = \max\{|E(G)| : |V(G)| = n, G \text{ contains no copy of } H\} \). The study of Turan num-
bers is undoubtedly considered as one of the fundamental problems in extremal graph and hypergraph theory [1].

The Turan number has a counter-part known as the saturation number with respect to a given graph H, defined as

$$
\text{sat}(n, H) = \min \{|E(G)| : |V(G)| = n, G \text{ contains no copy of } H, \text{ but } G + e \text{ contains } H \text{ for any edge added to } G}\}
$$

Tuza and Kaszonyi in [12] launched a systematic study of $\text{sat}(n, H)$ following an earlier result by Erdos, Hajnal and Moon [8] who proved that $\text{sat}(n, K_k) = \binom{k-2}{2} + (k-2)(n-k+2)$ with a unique graph attaining this bound, namely $K_{k-2} + K_{n-k+2}$. For the current paper, it is worth noting that $\text{sat}(n, P_k)$ (or $\text{sat}(n, k)$ for short) is known [12] for every k for n sufficiently large with respect to k, and in particular for n large enough, $\text{sat}(n, k) = n(1 - c(k))$. For a survey and recent information about saturation, see [10].

In this spirit, we call a graph G saturated if $mp(G + e) > mp(G)$, for all new edges e joining non-adjacent vertices in G. If it happens that $mp(G + e) \geq k$ for all new edges e we sometimes refer to the saturated graph G as k-saturated. By convention we say that K_m is k-saturated for $m \leq k - 1$. Then we define

$$
h(n, k) = \min \{|E(G)| : |V(G)| = n, G \text{ is } k\text{-saturated}\}.
$$

In Section 2, we prove linear lower and upper bounds for this parameter. In Section 3, we provide exact determination of $h(n, k)$ for $k = 3, 4$. In Section 4 we present several open problems concerning $h(n, k)$ for $k \geq 5$ as well as several other problems and conjectures.

2 General Lower and Upper bounds

2.1 Lower bounds

We begin by showing that $\text{sat}(n, k)$ is a lower bound for $h(n, k)$.

Proposition 2.1.

For $k \geq 2$, $h(n, k) \geq \text{sat}(n, k)$.

Proof. Clearly, if G is a graph realising $\text{sat}(n, P_k) = \text{sat}(n, k)$, this means that G does not contain a copy of P_k, and hence no degree monotone path of length k. But $G + e$ contains P_k, but not necessarily a degree monotone path of length k. Hence $h(n, k) \geq \text{sat}(n, k)$.

Recall that for fixed k and large n, $\text{sat}(n, k) = n(1 - c(k)) < n$. We now strengthen Proposition 2.1 to show that for $k \geq 4$, $h(n, k) \geq n$. We first prove a lemma, and subsequently a corollary, which will then be used in the main proof.

2
Lemma 2.2. Let G be a connected graph with a vertex u of degree 1 and a vertex v of maximum degree $\Delta \geq 2$ which are not adjacent. Then $mp(G + uv) \leq mp(G)$, namely G is not saturated.

Proof. Let $H = G + uv$ and let P be a path in H which realizes $mp(H)$. Let u^* and v^* be the vertices u and v as they appear in H.

If $\Delta = 2$, then clearly G is a path on $k \geq 4$ vertices and $mp(G) = k - 1$, and if we take u to be the first vertex of the path, and v to be the $(k - 1)^{th}$ vertex, then $mp(H) = k - 1 = mp(G)$.

So we may assume $\Delta \geq 3$. Now if u^* and v^* are not on P, then P is degree monotone in G and hence $mp(H) \leq mp(G)$. If v^* is on P but u^* is not then v^* must be the last vertex on P, and hence, in G, the path P with v^* replaced by v is also degree monotone in G and $mp(H) \leq mp(G)$. Similarly, if u^* is on P but v^* is not, then u^* must be the first vertex on P, since clearly u^* cannot be in the “middle” of the path as then the next vertex on P must be v^*, which is not on P. Then the path P in G with u^* replaced by u is also degree monotone in G and again $mp(H) \leq mp(G)$. If u^* is the last vertex on the path then clearly P is not maximal, as $P \cup \{v^*\}$ has a neighbour w which must be the last vertex on P, contradicting maximality of P.

So the only remaining case to consider is when u^* and v^* are both on P. Then clearly v^* must be the last vertex on P. If u^* is the first vertex, then either $P = u^*v^*$ and $mp(H) = 2 \leq mp(G)$, or the path P is degree monotone in G too. If u^* is not the first vertex, then the next vertex on P must be v^* which is the last vertex. Hence, in this case, all predecessors of u^* on P must have degree at most 2. But if the first vertex y in P has degree 1, then, in G, the path $y \ldots u$ is disconnected from the rest of G, which is impossible. Therefore $deg(y) = 2$ and y has a neighbour w which must have degree greater than 2 (note that w may be equal to v^* but cannot be any other vertex on P). But then, the path $u \ldots yw$ is degree monotone in G and is of the same length as P, and hence $mp(H) \leq mp(G)$.

Lemma 2.2 is best possible with respect to the adjacency condition between minimum degrees and maximum degrees because, if the minimum degree is greater than 1, and a vertex u of minimum degree is not adjacent to vertex v, then $mp(G + uv)$ may be larger than $mp(G)$. As an example, consider graph G_n made up of the cycle C_{2n}, $n \geq 3$, with vertices labelled v_1, v_2, \ldots, v_{2n}, and a vertex w connected to vertices $v_1, v_3, v_5, \ldots, v_{2n-1}$. Thus w has degree $\Delta = n$ and $\delta = 2$, and $mp(G_n) = 3$. The vertices of degree 2 are not connected to w, but connecting any such vertex to w by an edge e gives $mp(G_n + e) = 5$. In fact, these graphs are 5-saturated even though they have non-adjacent vertices of maximum degree $\Delta \geq 3$ and minimum degree $\delta = 2$.

Corollary 2.3. Let T be a tree on $n \geq 3$ vertices. Then T is saturated for a degree monotone path if and only if $T = K_{1,n-1}$.

Proof. Suppose first $mp(T) \geq 3$. Then clearly T is a not a star, hence there is a leaf not connected to a vertex of maximum degree and by Lemma 2.2 T is not saturated.
So suppose $mp(T) = 2$. If not all leaves are adjacent to the same vertex of maximum degree then again by Lemma 2.2, T is not saturated. Hence T must be a star $K_{1,n-1}$.

Indeed $K_{1,n-1}$ is saturated and $mp(K_{1,n-1}) = 2$ while $mp(K_{1,n-1} + e) = 3$ for every edge $e \notin E(K_{1,n-1})$.

Theorem 2.4. For $n \geq 3$ and $k \geq 4$, $h(n,k) \geq n$.

Proof. We may assume that $n \geq k$ for otherwise, trivially, K_n is saturated having $\binom{n}{2} \geq n$ edges for $n \geq 3$.

So let G be a graph on $n \geq k$ vertices realizing $h(n,k)$, $k \geq 4$. If G is connected then by Corollary 2.3, G is not a tree hence $|E(G)| \geq n$ as required.

So we may assume that G is not connected, and let $G_1, G_2, \ldots G_t$ be the connected components of G. Again, by Corollary 2.3, we infer that every component on at least three vertices is not a tree and hence must have at least $|V(G_j)|$ edges.

If there are two components G_i and G_j on at most two vertices, adding an edge joining these two components does not create a degree monotone path of length 4 or more, contradicting the fact that G is saturated.

If there is just one component on at most two vertices, then one can connect one vertex of this component to a vertex of maximum degree in another component, and again no degree monotone path of length four or more is created, contradicting the fact that G is saturated.

Hence

$$|E(G)| = \sum_{i=1}^{t} |E(G_i)| \geq \sum_{i=1}^{t} |V(G_i)| = n,$$

and therefore $h(n,k) \geq n$ for $n \geq 3$ and $k \geq 4$. □

2.2 Upper bounds

We now give a linear upper bound for $h(n,k)$. We consider separately k odd and k even.

We first recall the definition of the Cartesian product $G \square H$ for two graphs G and H. The vertex set of the product is $V(G) \times V(H)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent if either u_1 and u_2 are adjacent in G and $v_1 = v_2$, or v_1, v_2 are adjacent in H and $u_1 = u_2$.

Theorem 2.5. If $k \geq 3$ is an odd integer, then $h(n,k) \leq \frac{n(3k-1)}{12}$ for $n = 0 \pmod{\frac{3(k-1)}{2}}$.

Proof. Consider the graph $G = P_3 \square K_t$, for $k \geq 3$ odd and $t = \frac{k-1}{2}$. Clearly $|V(G)| = 3k-1$ and $|E(G)| = \frac{3(k-1)(k-3)}{8} + \frac{2(k-1)}{2} = \frac{(k-1)(3k-1)}{8}$. For $k = 3$ (so $t = 1$) this is simply P_3 and $mp(P_3) = 2$ while for $k = 5$ (so $t = 2$), this gives the graph $G = P_3 \square K_2$, which is C_6 plus one edge joining two antipodal vertices and clearly $mp(G) = 4$.

We now show that this graph, which has $mp(G) = k - 1$, is saturated. In $G = P_3 \square K_t$, let the top t vertices be u_1, \ldots, u_t, all having degree t, the middle
vertices v_1, \ldots, v_t all having degree $t + 1$, and the bottom vertices w_1, \ldots, w_t all having degree t. It is clear that $mpG = 2t = k - 1$, taking for example the path $u_1 \ldots u_tv_1 \ldots v_1$. Because of the symmetry of G, we only need to check the addition of the edges u_1v_2, v_1w_2 and u_1w_1.

- If the edge u_1v_2 is added, then the path $w_1 \ldots w_tv_1 \ldots v_1u_1v_2$ has exactly $t + t - 2 + 3 = 2t + 1 = k$ vertices.
- If the edge v_1w_2 is added, then the path $u_1 \ldots u_tv_1 \ldots v_2w_2v_1$ has exactly $t + t - 1 + 2 = 2t + 1 = k$ vertices.
- If the edge u_1w_1 is added, then the path $u_2 \ldots u_tv_1 \ldots v_1w_1u_1$ has exactly $t - 1 + t + 2 = 2t + 1 = k$ vertices.

Hence G is saturated with $mp(G) = k - 1$.

We now consider two disjoint copies of G, G_1 and G_2. We label this graph $2G$ and show that this graph is also saturated. Again labelling the vertices of G as above, by the symmetry of G we only need to consider the addition of the edges joining u_t in G_1 to u_1 in G_2, u_t in G_1 to v_1 in G_2, and v_t in G_1 to v_1 in G_2:

- If the edge joining u_t in G_1 to u_1 in G_2 is added, then the path $u_1 \ldots u_tv_1 \ldots v_1u_t$ in G_1 followed by $u_1v_1 \ldots v_1$ in G_2 has exactly $t + t + 1 = 2t + 1 = k$ vertices.
- If the edge joining u_t in G_1 to v_1 in G_2 is added, then the path $u_1 \ldots v_tv_1u_t$ in G_1 followed by $v_1 \ldots v_t$ in G_2 has exactly $t + t = 2t + 1 = k$ vertices.
- If the edge joining v_t in G_1 to v_1 in G_2, is added, then the path $u_1 \ldots u_1v_1 \ldots v_t$ in G_1 followed by $v_1 \ldots v_1$ in G_2 has exactly $2t + 1 = k$ vertices.

Hence $2G$ is saturated, and clearly this also applies to $p \geq 3$ disjoint copies of G, pG. Now pG has $n = p^{3(k - 1)}$ vertices and $p^{(k - 1)(3k - 1)}8$ edges. Hence, for $n \equiv 0 \pmod{\frac{(3k - 1)}{2}}$, the number of edges is $\frac{n(3k - 1)}{12}$, as stated.

Lemma 2.6. Let G be a saturated graph with $mp(G) = k$. Consider the graph $H = G + v$, where v is a new vertex connected to all the vertices of G. Then $mp(H) = k + 1$, and H is saturated.

Proof. Consider the graph H. Then $deg(v) = |V(G)|$ and v has maximum degree. So any degree monotone path in G can be extended in H by including vertex v, and hence $mp(H) = mp(G) + 1 = k + 1$.

Now since G is saturated, adding any edge e creates a degree monotone path of length $k + 1$, and hence, adding the same edge in H creates a path of length $k + 2$. The only edges which can be added in H are those that can be added in G, and hence H is saturated with $mp(H) = k + 1$ as required.

This lemma, together with Theorem 2.2, leads to the following result:
Theorem 2.7. For \(k \geq 4 \) and \(k = 0 \) (mod 2), \(h(n, k) \leq \frac{n(3k+8)(k-2)}{4(3k-4)} \) for \(n = 0 \) (mod \(\frac{3k-4}{2} \)).

Proof. In Theorem 2.5 we proved that \(G = P_3 \Box K_t \), where \(t = \frac{j-1}{2} \) has \(mp(G) = j - 1 \) and is saturated for \(j \geq 3 \) and \(j \) odd. Now by Lemma 2.6, \(H = G + v \) has \(mp(H) = j + 1 \) (even) and is saturated. Then \(H \) has \(\frac{3(j+1)}{2} \) vertices and \(\frac{(j-1)(3j-1)}{8} + \frac{3(j-1)}{2} = \frac{(3j+11)(j-1)}{8} \) edges. Now let \(k = j + 1 \), and hence we have \(\frac{3k-4}{2} \) vertices and \(\frac{(3k+8)(k-2)}{2} \) edges.

We now consider two disjoint copies of \(H \), \(H_1 \) and \(H_2 \) and call this graph \(2H \). We need only consider edges which involve the new vertex of degree \(\frac{3k-2}{2} \), which has the largest degree, as other edges have the same effect as they have in \(2G \). If we connect the vertex of degree \(\frac{3k-2}{2} \) in \(H_1 \) to that of the same degree in \(H_2 \), we can take a path of length \(k - 1 \) in \(H_1 \) ending with the vertex of maximum degree and then move to the vertex in \(H_2 \), giving a path of length \(k \). If we connect the vertex of degree \(\frac{3k-2}{2} \) in \(H_1 \) to one of degree \(\frac{3k}{2} \) in \(H_2 \), then we take a path of length \(k - 1 \) in \(H_2 \) ending with the vertex connected to the vertex in \(H_1 \), and then move to this vertex in \(H_1 \) to give a degree monotone path of length \(k \). Finally, if we connect the vertex of degree \(\frac{3k-2}{2} \) in \(H_1 \) to one of degree \(\frac{k+1}{2} \) in \(H_2 \), then we can take a degree monotone path in \(H_2 \) of length \(k - 1 \) ending on the vertex connected to \(H_2 \), and then the vertex in \(H_2 \) to give a degree monotone path of length \(k \) in \(2H \).

Hence \(2H \) is saturated and this also applies to \(p \geq 3 \) disjoint copies of \(H \), \(pH \). This graph has \(n = p\frac{3k-4}{2} \) vertices and \(p\frac{(3k+8)(k-2)}{8} \) edges. Hence for \(n = 0 \) (mod \(\frac{3k-4}{2} \)), the number of edges is \(\frac{n(3k+8)(k-2)}{4(3k-4)} \) as stated. \(\square \)

We next show, as an example, how to extend the results given in Theorems 2.5 and 2.7, to the case where \(\alpha \neq 0 \) (mod \(f(k) \)), where \(f(k) \) is the modulus given in these theorems. We will demonstrate it in the case \(k = 5 \).

Proposition 2.8. For \(n \geq 8 \), \(h(n, 5) \leq \frac{7n+c(n \mod 6)}{6} \), where \(c(n \mod 6) = \{0, 35, 16, 27, 8, 28\} \) for \(n \) (mod 6) = 0, 1, 2, 3, 4, 5 respectively.

Proof. Consider the graphs \(G = P_3 \Box K_2 \), \(H = K_5 - e \) for \(e \in E(K_5) \) and \(K_4 \), which are saturated for \(k = 5 \) and clearly \(mp(G) = mp(H) = mp(K_4) = 4 \). Every integer \(n \geq 8 \) can be represented in the form \(6x + 5y + 4z \) with \(x, y, z \) non-negative integers. Hence \(x \) copies of \(G \), \(y \) copies of \(H \) and \(z \) copies of \(K_4 \) produce graphs for every \(n \geq 8 \). It is easy to check that any graph made up of two vertex disjoint copies of any combination of \(G \), \(H \) and \(K_4 \) is also saturated, and hence any combination of vertex disjoint copies of these graphs is saturated.

Hence any graph made up of a disjoint combination of any number of these three graphs is saturated.

For \(n = 0 \) (mod 6), the result follows immediately by substituting for \(k = 5 \) in Theorem 2.5.

For \(n = 1 \) (mod 6), we take the graph made up of \(\frac{n-13}{6} \) copies of \(G \), two copies \(K_4 \) and one copy of \(H \). The graph thus obtained is saturated and has \(\frac{7(n-13)}{6} + 12 + 9 = \frac{7n+35}{6} \) edges.
For \(n = 2 \pmod{6} \), we take the graph made up of \(\frac{n-8}{6} \) copies of \(G \) and two copies \(K_4 \). The graph thus obtained is saturated and has \(\frac{7(n-8)}{6} + 12 = \frac{7n+16}{6} \) edges.

For \(n = 3 \pmod{6} \), we take the graph made up of \(\frac{n-9}{6} \) copies of \(G \), one copy of \(K_4 \) and one copy of \(H \). The graph thus obtained is saturated and has \(\frac{7(n-9)}{6} + 6 + 9 = \frac{7n+27}{6} \) edges.

For \(n = 4 \pmod{6} \), we take the graph made up of \(\frac{n-4}{6} \) copies of \(G \) and one copy of \(K_4 \). The graph thus obtained is saturated and has \(\frac{7(n-4)}{6} + 6 = \frac{7n+8}{6} \) edges.

For \(n = 5 \pmod{6} \), we take the graph made up of \(\frac{n-5}{6} \) copies of \(G \) and one copy of \(H \). The graph thus obtained is saturated and has \(\frac{7(n-5)}{6} + 9 = \frac{7n+28}{6} \) edges.

Note: Applying the technique demonstrated in Proposition 2.8, we can extend Theorems 2.5 and 2.7 to cover all \(n \geq (k-1)(k-2) \), and we state it rather crudely as follows:

1. For \(k \geq 3, k = 1 \pmod{2} \) and \(n \geq (k-1)(k-2) \), \(h(n, k) \leq \frac{n(3k-1)}{12} + O(k^2) \).
2. For \(k \geq 4, k = 0 \pmod{2} \) and \(n \geq (k-1)(k-2) \), \(h(n, k) \leq \frac{n(3k+8)(k-2)}{4(3k-4)} + O(k^2) \).

3 Determination of \(h(n, k) \) for \(k = 2, 3, 4 \).

We first determine the exact value of \(h(n, 2) \) and \(h(n, 3) \).

Proposition 3.1.

1. \(h(n, 2) = 0 \).
2. \(h(n, 3) = \frac{n}{2} \) for \(n = 0 \pmod{2} \), while \(h(n, 3) = \frac{n+1}{2} \) for \(n = 1 \pmod{2} \).

Proof.
1. \(mp(G) = 1 \) if and only if \(G \) is a graph with no edges, and any edge we add gives \(mp(G + e) = 2 \).
2. By Proposition 2.1, \(h(n, 3) \geq sat(n, 3) = \lfloor \frac{n}{2} \rfloor \). Consider \(n = 0 \pmod{2} \). Let \(G \) be made up of \(\frac{n}{2} \) copies of \(K_2 \). This is the only graph which achieves \(sat(n, 3) \). Clearly \(mp(G) = 2 \), and adding any edge will create a copy of \(P_4 \) so \(mp(G + e) = 3 \).

Now if \(n = 1 \pmod{2} \), the graph \(G \) made up of \(\lfloor \frac{n}{2} \rfloor \) copies of \(K_2 \) and one copy of \(K_1 \) achieves \(sat(n, 3) \), and is the only such graph. Again \(mp(G) = 2 \).

If we add an edge joining two vertices from disjoint copies of \(K_2 \) then we get a copy of \(P_4 \) and \(mp(G + e) = 3 \); however, if we add a vertex joining a vertex from \(K_2 \) to the vertex in \(K_1 \), this gives a copy of \(P_3 \), and \(mp(G + e) = 2 \), hence \(h(n, 3) \geq sat(n, 3) + 1 \).

Consider the graph \(G \) made up of \(\lfloor \frac{n-3}{2} \rfloor \) copies of \(K_2 \), and a single copy of \(P_3 \). Again it is clear that \(mp(G) = 2 \). Adding an edge joining two vertices
from disjoint copies of K_2 then we get a copy of P_4 and $mp(G + e) = 3$, while adding an edge joining a vertex from K_2 to one in P_3 gives $mp(G + e) = 4$. The number of edges in this graph is $\frac{n + 1}{2} = sat(n, 3) + 1$ as stated.

We now determine the exact value of $h(n, 4)$. For this we need another lemma:

Lemma 3.2. Let G be a saturated connected graph with $\lvert E(G) \rvert \leq \lvert V(G) \rvert$ and $2 \leq mp(G) \leq 3$. Then

1. If $mp(G) = 2$ then $G = K_{1,\Delta}$ and for $\Delta \geq 2$, $mp(G + e) = 3, \forall e \notin E(G)$.

2. If $mp(G) = 3$ then $G = K_3$ which is saturated by definition.

Proof. Let G be such a graph. Then since $\lvert E(G) \rvert \leq \lvert V(G) \rvert$, G is either a tree or is unicyclic.

If G is a tree then either all leaves are adjacent to the same vertex which has maximum degree, that is $G = K_{1,\Delta}$. Then $mp(G) = 2$ and, in case $\Delta \geq 2$, adding any edge between two leaves u and v gives $mp(G + uv) = 3$. If G is a tree but not $K_{1,\Delta}$, then there is a leaf u and a vertex v of maximum degree which are not adjacent, and hence by Lemma 2.2 G is not saturated.

So suppose G is unicyclic. Then it cannot be a simple cycle C_n on $n \geq 4$ vertices as otherwise $mp(C_n) = n \geq 4$. Observe that $C_3 = K_3$ is saturated by definition.

So G is unicyclic with at least one leaf if the cycle has at least four vertices.

Suppose $mp(G) = 2$. If there are at least two vertices on the cycle which have branches attached, then on one of these branches (including the vertex on the cycle) there must be a vertex of maximum degree, and on the other branch there must be a leaf not connected to this vertex of maximum degree, and hence by Lemma 2.2 G is not saturated.

So there is precisely one vertex on the cycle with degree greater than two, which means that $mp(G) > 2$, a contradiction.

So now suppose $mp(G) = 3$. If there are at least two vertices on the cycle which have branches attached, then on one of these branches (including the vertex on the cycle) there must be a vertex of maximum degree, and on the other branch there must be a leaf not connected to this vertex of maximum degree, and hence by Lemma 2.2 G is not saturated.

So there is precisely one vertex on the cycle with degree greater than two, and if the cycle has at least four vertices, $mp(G) \geq 4$, a contradiction.

So it remains to consider the cycle K_3 with exactly one vertex x with degree greater than two.

Suppose the vertex x has p leaves and q branches with $p, q \geq 0$. We consider several cases:

1. If $p \geq 2$, we connect two leaves to get H with $mp(H) = mp(G) = 3$, and G is not saturated. Hence $p \leq 1$.

2. If $p = 1$ and $q \geq 1$, then either x is of maximum degree $\Delta \geq 3$, and there is a leaf not connected to x, so by Lemma 2.2 G is not saturated, or there
is a vertex of maximum degree in one of these branches, so the leaf at \(x \) is not connected to the vertex of maximum degree and again by Lemma 2.2 \(G \) is not saturated.

3. If \(p = 1 \) and \(q = 0 \), then \(G \) is \(K_3 \) with a leaf attached and clearly it is not saturated.

4. If \(p = 0 \) and \(q \geq 2 \), then either \(x \) is of maximum degree \(\Delta \geq 3 \) and there is a leaf in the branch not connected to \(x \), so by Lemma 2.2 \(G \) is not saturated, or there is a vertex of maximum degree in one of these branches, so the leaf at \(x \) is not connected to the vertex of maximum degree and again by Lemma 2.2 \(G \) is not saturated.

5. If \(p = 0 \) and \(q = 1 \), then \(\deg(x) = 3 \). Let \(z \) be the neighbour of \(x \) in this branch. If \(\deg(z) \geq 3 \) then \(mp(G) \geq 4 \), a contradiction. Hence \(\deg(z) = 2 \), and let \(w \) be the neighbour of \(z \).

If \(\deg(w) = 1 \) then \(x \) has maximum degree, \(w \) is not connected to \(x \) and by Lemma 2.2 \(G \) is not saturated. So \(\deg(w) \geq 2 \). We consider two cases:

Case 1: \(\deg(w) = 2 \).

Let \(u \) be the neighbour of \(w \). If \(\deg(u) \leq 2 \), then we have \(uwzv \) a degree monotone path of length four. So \(\deg(u) \geq 3 \).

If \(\deg(u) > 3 \) then if the edge \(xw \) is added, \(mp(G + xw) = 3 \) and \(G \) is not saturated. Hence \(\deg(u) = 3 \). Let \(s \) and \(y \) be the neighbours of \(u \). If either \(s \) or \(y \) have degree at least three, we have \(zwux \) or \(zwuy \) degree monotone paths of length four, a contradiction. So both \(s \) and \(y \) have degree at most two.

If either \(s \) or \(y \) is a leaf, say \(s \), then either \(\Delta = 3 \) and \(s \) is leaf is not connected to \(x \), so by Lemma 2.2 \(G \) is not saturated, or \(\Delta \geq 4 \) and is realized by a vertex \(r \) say on the branch at \(y \). Again \(s \) is a leaf not adjacent to \(r \) and by lemma 2.2 \(G \) is not saturated.

So \(\deg(s) = \deg(y) = 2 \), and either the maximum degree \(\Delta = 3 \), and there is a leaf not adjacent to \(x \), so by Lemma 2.2 \(G \) is not saturated, or \(\Delta \geq 4 \) and is realized by a vertex \(r \) on a branch at some \(x_i \), \(i \neq j \). Then \(x_j \) is a leaf not adjacent to \(r \) and by Lemma 2.2 \(G \) is not saturated.

Case 2: \(\deg(w) = t \geq 3 \).

Let \(x_1, \ldots, x_t \) be the neighbors of \(w \). If for some \(j \), \(\deg(x_j) = 1 \), then either \(\Delta = 3 \) and \(x_j \) is not connected to \(x \), so by Lemma 2.2 \(G \) is not saturated, or \(\Delta \geq 4 \) and is realized by a vertex \(r \) on a branch at some \(x_i \), \(i \neq j \). Then \(x_j \) is a leaf not adjacent to \(r \) and by Lemma 2.2 \(G \) is not saturated.

So \(\deg(x_j) \geq 2 \) for \(j = 1, \ldots, t \). Now if \(\Delta = 3 \) then a leaf on one these branches starting at \(x_1, \ldots, x_j \) is not connected to \(x \) and by Lemma 2.2 \(G \) is not saturated. Otherwise \(\Delta \geq 4 \) and a vertex \(r \) of maximum degree
appears on the branch starting at say x_j. Then a leaf on any other branch is not connected to r and by Lemma 2.2 G is not saturated.

Hence $G = K_3$ is the only saturated graph with $|E(G)| \leq |V(G)|$ and $mp(G) = 3$.

Theorem 3.3. For $n = 0 \pmod{3}$, $h(n, 4) = n$ while for $n = 1, 2 \pmod{3}$, $h(n, 4) = n + 1$.

Proof. We first prove the upperbound for $h(n, 4)$. Consider the following cases:

1. Assume $n = 0 \pmod{3}$. Let G be made up of $\frac{n}{3}$ copies of K_3, then clearly $mp(G) = 3$. Any edge we add gives a degree monotone path of length 4. So G is saturated and hence $h(n, 4) \leq n$, for $n = 0 \pmod{3}$.

2. Assume $n = 1 \pmod{3}$. Let G be made up of $\frac{n-1}{3}$ copies of K_3 and a copy of $K_4 - e$, $e \in E(K_4)$. Clearly $mp(G) = 3$ and it is easy to see that $mp(G + e) \geq 4$. So G is saturated and hence $h(n, 4) \leq n + 1$, for $n = 1 \pmod{3}$.

3. Assume $n = 2 \pmod{3}$. Let G be made up of $\frac{n-5}{3}$ copies of K_3 and two copies of K_3 with a common vertex. Clearly $mp(G) = 3$ and it is easy to see that $mp(G + e) \geq 4$. So G is saturated and hence $h(n, 4) \leq n + 1$, for $n = 2 \pmod{3}$.

Now to the lower bound. Suppose G is a graph on $n \geq 3$ vertices realising $h(n, 4)$. If G is connected then by Lemma 3.2 either G is K_3 or $|E(G)| \geq n + 1$. Hence we may assume that G is not connected, and let G_1, G_2, \ldots, G_t be the connected components of G.

Again, by Lemma 3.2 every component G_j on at least 3 vertices is either K_3 or contains at least $|V(G_j)| + 1$ edges.

If there are at least two components say G_i and G_j on at most two vertices each, then we can just add an edge between a vertex in G_i and one in G_j without creating a degree monotone path of length more than 3, contradicting the fact that G is saturated.

Lastly if there is just one component G_j on at most two vertices, then if we connect a vertex in this component to a vertex v of maximum degree in another component of G, then clearly no degree monotone path of length 4 or more is created, once again contradicting that G is saturated.

Hence all components of G have at least 3 vertices. If there are at least two components which are not K_3 then $|E(G)| \geq n + 2$, and this is not optimal by the constructions above. If there is just one component which is not K_3, then $|E(G)| \geq n + 1$ and so for $n = 1, 2 \pmod{3}$, $h(n, 4) \geq n + 1$ proving the constructions above are optimal.

Finally, if all components are K_3, then $|E(G)| = n$, proving $h(n, 4) = n$ for $n = 0 \pmod{3}$.

\end{proof}
4 Concluding Remarks and Open Problems

Several open problems have arised during our work on this paper. We list some of the more interesting ones:

- The major role played in this paper by Lemma 2.2 and its consequences suggest:
 Problem 1: Find further structural conditions (along the lines indicated in Lemma 2.2) indicating that a graph \(G \) is not saturated.

- In Corollary 2.3 we characterise saturated trees. In a previous paper [2] we characterised saturated graphs with \(mp(G) = 2 \). This leads to the following:
 Problem 2: Characterise \(k \)-saturated graphs for other families of graphs such as maximal outerplanar graphs, maximal planar graphs, regular graphs, etc.

 Problem 3: Characterise saturated graphs with \(mp(G) = 3 \).

- The parameter \(mp(G) \) can be very sensitive to edge-addition and edge-deletion, as shown in [3]. Also Theorem 2.5 gives \(h(n, 7) \leq \frac{4n}{7} \) for \(n = 0 \) (mod 9) while Theorem 2.7 gives \(h(n, 6) \leq \frac{13n}{7} \) for \(n = 0 \) (mod 7). These facts suggest the following monotonicity problem:
 Problem 4: Is it true that, at least for \(n \) large enough, depending on \(k \), and for \(k \geq 2 \), \(h(n, k + 1) \geq h(n, k) \)?

- If true, this will have the immediate implication that the construction for \(h(n, 6) \) is not optimal and that in fact \(h(n, 6) \leq \frac{5n(1+o(1))}{3} \) by the above upper bound for \(h(n, 7) \).

- The upper bound constructions given in Theorem 2.5 and Theorem 2.7 are probably not optimal.
 Problem 5: Improve upon the upper bounds obtained in Theorems 2.5 and 2.7.

- The lower bound given in Theorem 2.4 proved to be sharp in the case \(k = 4 \).
 Problem 6: Improve upon the lower bound \(h(n, k) \geq n \) for \(k \geq 5 \).

- In Proposition 2.8 we have shown that \(h(n, 5) \leq \frac{7n}{6} + c(n \text{ (mod 6)}) \).
 Problem 7: Determine \(h(n, 5) \) exactly. In particular, is it true that \(h(n, 5) = \frac{7n(1+o(1))}{6} \).

- Lastly recall that \(sat(n,k) = n(1-c(k)) < n \) for every large \(k \) and \(n \).
 Problem 8: Is it true that \(h(n, k) \leq cn \) for some constant \(c \) independent of \(k \).
References

[1] B Bollobás. Extremal graph theory. Courier Dover Publications, 2004.

[2] Y. Caro, J. Lauri, and C. Zarb. Degree Monotone Paths. ArXiv e-prints, May 2014. submitted.

[3] Y. Caro, J. Lauri, and C. Zarb. Degree Monotone Paths and Graph Operations. ArXiv e-prints, August 2014.

[4] J. Deering. Uphill & Downhill Domination in Graphs and Related Graph Parameters. PhD thesis, ETSU, 2013.

[5] J. Deering, T.W. Haynes, S.T. Hedetniemi, and W. Jamieson. Downhill and uphill domination in graphs. 2013. submitted.

[6] J. Deering, T.W. Haynes, S.T. Hedetniemi, and W. Jamieson. A polynomial time algorithm for downhill and uphill domination. 2013. submitted.

[7] M. Eliáš and J. Matoušek. Higher-order Erdős–Szekeres theorems. Advances in Mathematics, 244:1–15, 2013.

[8] P. Erdős, A. Hajnal, and J.W. Moon. A problem in graph theory. American Mathematical Monthly, pages 1107–1110, 1964.

[9] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463–470, 1935.

[10] J.R. Faudree, R.J. Faudree, and J.R. Schmitt. A survey of minimum saturated graphs. The Electronic Journal of Combinatorics, 1000:DS19, 2011.

[11] T. W. Haynes, S. T. Hedetniemi, J. D. Jamieson, and W. B. Jamieson. Downhill domination in graphs. Discussiones Mathematicae Graph Theory, accepted.

[12] L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. Journal of graph theory, 10(2):203–210, 1986.