Myocardial infarction (MI) is a significant contributor to the high morbidity and mortality rates associated with cardiovascular disease. After MI, the left ventricle (LV) undergoes a wound healing response comprised of robust infiltration of inflammatory cells that regulate extracellular matrix (ECM) turnover to remove necrotic debris and form an infarct scar. In the mouse model of MI, the inflammatory response begins to subside by day 7, leading the way for an increase in ECM production and scar formation. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling.

Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that proteolytically process ECM proteins, cytokines, chemokines, growth factors, and adhesion molecules. MMP cleavage can activate or inactivate a protein; for example, cleavage of interleukin (IL)-8 increases its activity, whereas cleavage of Cxcl4 decreases its activity. MMP-9 is particularly important in the post-MI setting because protein concentrations increase 3-fold in the infarct region during the first week post-MI. MMP-9 deletion attenuates LV dilation post-MI, indicating a causal role for MMP-9. Although many in vitro MMP-9 substrates have been identified, including collagens (IV, V, VII, X, and XIV), gelatin, fibronectin, elastin, IL-8, Cxcl4, and IL-1β, the mechanisms whereby MMP-9 modulates post-MI LV remodeling has not been completely elucidated.

CD36 is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling

Kristine Y. DeLeon-Pennell, PhD; Yuan Tian, PhD; Bai Zhang, PhD; Courtney A. Cates, MS; Rugmani Padmanabhan Iyer, PhD; Presley Cannon, MS; Punit Shah, PhD; Paul Aiyetan, MS, MD; Ganesh V. Halade, PhD; Yonggang Ma, PhD; Elizabeth Flynn, BS; Zhen Zhang, PhD; Yu-Fang Jin, PhD; Hui Zhang, PhD; Merry L. Lindsey, PhD

Background—After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling.

Methods and Results—Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression.

Conclusions—Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis. (Circ Cardiovasc Genet. 2016;9:14-25. DOI: 10.1161/CIRCGENETICS.115.001249.)

Key Words: extracellular matrix • immunoblotting • infarction • inflammation • myocardial • proteomics

© 2015 American Heart Association, Inc.

Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org DOI: 10.1161/CIRCGENETICS.115.001249

Received April 13, 2015; accepted November 13, 2015.

From the Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson (K.Y.-P., Y.T., C.A.C., R.P.I., Y.-F.J., M.L.L.); San Antonio Cardiovascular Proteomics Center, University of Mississippi Medical Center, Jackson (K.Y.-P., Y.T., C.A.C., R.P.I., Y.-F.J., M.L.L.); Department of Electrical and Computer Engineering (Y.-F.J.), The University of Texas at San Antonio, San Antonio; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (B.Z., P.S., P.A., Z.Z., H.Z.); Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham (G.V.H.); and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.).

The Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGENETICS.115.001249/-/DC1. Correspondence to Kristine Y. DeLeon-Pennell, PhD or Merry L. Lindsey, PhD, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216. E-mail: kdeleon@umc.edu or mlindsey@umc.edu

© 2015 American Heart Association, Inc.
Methods

Detailed methods are available in the Methods section in the Data Supplement.

Mice
C57BL/6j wild-type (WT) and MMP-9 null male and female mice of 4 to 7 months of age were used in this study (Table I in the Data Supplement). The MMP-9 null mice were generated by Zena Werb laboratory and backcrossed onto the C57BL/6j strain by Lynn Matrisian laboratory.11,12 Mice were kept in a light-controlled environment with a 12:12 hour light–dark cycle and given free access to standard mice chow and water. All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of Texas Health Science Center at San Antonio and the University of Mississippi Medical Center in accordance with the Guide for the Care and Use of Laboratory Animals. The mice underwent permanent coronary artery ligation surgery, to produce MI, as described previously.11,13 Three sets of mice (n≥5/group) were used (Table I in the Data Supplement): a first set was used for glycoproteomics; a second set was used for immunoblotting, immunohistochemistry, and immunofluorescence; and a third set was used for in vitro stimulation of macrophages and blood neutrophils. Figure I in the Data Supplement illustrates the workflow of the study. For all procedures, samples were randomized and analyzed in a blind manner.

Tissue Samples and Protein Extraction
The LV infarct (LVI) region was collected at 0, 1, 3, 5, and 7 days post-MI as described previously.1,13 Because the insoluble fraction is enriched for ECM, we used that fraction for the glycoproteomic analysis. Immunoblotting also used the insoluble fraction for confirmation of glycoproteomic findings.

Mass Spectrometry
The samples were digested with trypsin at a ratio of 1:50 (wt/wt, enzyme:protein) at 37°C overnight with gentle shaking. Peptide concentration was determined by bicinchoninic acid (BCA) assay. N-linked glycopeptides were isolated from the trypsic peptides using the solid-phase extraction of glycopeptides method as previously reported.14 The efficiency of glycopeptide capture was evaluated previously by Zhou et al.16 According to 2 standard proteins with isotope labeling, 85% of the glycopeptides were coupled to the hydrazide resin. Peptides were analyzed by liquid chromatography–mass spectrometry (MS/MS) using a Q Exactive. MS/MS spectra were searched with SEQUEST using Proteome Discoverer (version 1.4) against the mouse RefSeq database (released in November 2014) containing 57788 sequences. The False Discovery Rate was set at 0.01 to eliminate low-probability protein identifications. To eliminate false-positive identifications of N-glycopeptides, we determined the extent of spontaneous deamidation on Asn residues satisfying the N–X–S/T sequence by profiling the unconjugated fraction of hydrazide beads without PNGase F treatment.17,18 The rate of spontaneous deamidation in the consensus motif was 1.5% in our sample set. Glycosylation was confirmed for several proteins, including fibronectin, γ sarcoglycan, and peristin (Figure II in the Data Supplement). Peptides were quantified by label-free relative quantification based on integrated peptide peak intensities using the SIEVE software, version 2.1. Unsupervised clustering was performed using normalized peak areas of the identified glycopeptides.

Proteomic Data Repository
The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/) with the data set identifier PXD001393.29

Bioinformatics Analysis
For gene ontology analysis, proteins were classified to gene ontology categories according to their cellular component and main biological processes using DAVID Bioinformatics tools (v6.7) with default settings.20,21 For network interaction analysis, the list of proteins was submitted to several protein–protein interaction databases, including Database of Interacting Proteins, Molecular INTeraction database, and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database v9.1.22,23 STRING identified the most proteins from our list; therefore, it was used in this study to identify protein–protein interactions using database, literature, and experimental search parameters.24 The confidence score was set as high (0.7). The interaction network was visualized by Cytoscape.25

Immunoblot Analysis
Immunoblotting was used to validate proteomic findings. The insoluble fraction from the infarct area of WT or MMP-9 null mice (n=8 per group; 4 male and 4 female) were analyzed. Samples were pooled for time course analysis and analyzed individually for the day 7 post-MI analysis. The blots were examined using the IQ-TL image analysis software on luminescent image analyzer. The signal intensity of each sample was normalized to the densitometry value for the total protein of its corresponding lane.

Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
RNA extraction was performed on the LVI tissue as previously described.26–28 Cartilage intermediate layer protein (CILP), CD36, Ltbp2, Col6a6, Col5a1, Lam5, and Fbn1 gene expression was assessed.

In Vitro Cleavage Assay
Mouse CD36-recombinant protein was incubated with active MMP-2–, MMP-9–, or MMP-12–recombinant protein at a ratio of 2:1. Two negative controls (MMP alone or recombinant protein alone) were included. Samples were run on SDS-PAGE, followed by silver staining.

Immunofluorescence Analysis or Immunohistochemistry
Five random images were captured at 40x magnification for analysis. Quantification was measured by Image-Pro Plus version 6.2. Representative images are shown at 40x or 60x magnification.

Phagocytosis Assay
Macrophages were isolated from day 7 post-MI LV of male mice, as previously described and stimulated with 1 ng/μL of active MMP-9, a CD36-blocking peptide (CD36i), or a combination of both (1:1 ratio).25,26 Phagocytosis was measured using the Vybrant Phagocytosis Kit (Life Technologies), with quantification measured on the SpectraMax M3 Plate Reader (excitation: 480 nm and emission: 520 nm). Representative images are shown at 40x magnification.

Blood Neutrophil Isolation and Stimulation
Neutrophils were isolated from the blood of male mice as previously described.25,26 Cells were stimulated with 0.5 ng/μL of active MMP-9 or CD36i and harvested for RNA isolation and RT-PCR examination.

Statistical Analysis
All analyses were performed blinded to groups, and data are presented as mean±SEM. For 2 group comparisons, the nonparametric Wilcoxon rank sum test was used. For multiple group comparisons, the nonparametric Kruskal–Wallis test with Dunns post-test was used. A 2-way ANOVA was used for CD36 time course analysis. A value of r>0.30 was considered a strong correlation for the linear regression of Cd36 and end-diastolic dimension. P<0.05 was considered statistically significant. Statistical analysis was performed using GraphPad InStat3 and Prism 5.

Results
Glycoproteomic Analysis Identified 45 MMP-9–Dependent Extracellular Protein Changes Post-MI
A total of 1161 unique N-linked glycopeptides were quantified by liquid chromatography–MS with a 1% false discovery rate.
rate and these sites represented 541 unique glycoproteins (Table II in the Data Supplement). Unsupervised clustering was used to analyze the identified glycopeptides. On the basis of the peptide abundance, 7 of 8 WT samples and 7 of 8 MMP-9 null samples were clustered together, indicating good grouping based on genotype (Figure 1A). There was poor clustering of males and females, indicating a lack of sex-related differences.

A total of 122 proteins showed significant changes in MMP-9 null mice compared with WT mice ($P<0.05$; Table III in the Data Supplement). Combining a minimum 2-fold change (fold change ≥ 2 or ≤ 0.5) and significance ($P<0.05$), there were 45 proteins (Table 1). Notably, 6 of the 45 proteins (fibronectin, collagen α-1, carboxypeptidase N subunit 2, β-1 integrin, fibulin-2, and thrombospondin-1 [Thbs1]) had >1 glycopeptide identified with similar fold change, which increased the confidence for these proteins. Detailed information and quantification values can be found in Tables II and IV in the Data Supplement. For the 20 single glycopeptides identified only once, the annotated MS/MS spectra are provided in Figure III in the Data Supplement. RT-PCR analysis was performed for 7 of the top 12 proteins (Figure IV in the Data Supplement). Of note, none of the genes measured were significantly different between WT and MMP-9 null, indicating the glycoproteomic changes were not because of changes in transcription. This comparison between gene and protein levels highlights the importance of examining protein level changes in addition to gene level changes.

![Figure 1. Glycoproteomic analysis identified matrix metalloproteinase (MMP)-9–dependent extracellular protein changes post myocardial infarction. A, Unsupervised clustering of the identified glycopeptides was performed using normalized peak areas. Wild-type (WT) samples and MMP-9 null clustered separately, with the exception of 1 WT and 1 null sample. Sex differences were not observed. B, The changed proteins were analyzed by Search Tool for the Retrieval of Interacting Genes (STRING/Proteins v9.1). Protein–protein interaction software with high confidence (score >0.7) and visualized by Cytoscape. The majority of the changed proteins interacted with each other. Stronger associations are represented by thicker lines. Red nodes are the upregulated proteins, blue nodes are the downregulated proteins, and gray nodes present proteins associated with the changed proteins. MMP-9 is highlighted in green. CD36 and cartilage intermediate layer protein, highlighted in yellow, were selected for immunoblot analysis.](image-url)
Table 1. Proteins Differentially Expressed in MMP-9 Null Mice (all \(P<0.05\) and At Least 2-Fold Difference), Ordered by NR (null/WT; Normalized to Total Ion Current by SIEVE) to Evaluate Substrate Accumulation in the Absence of MMP-9

Accession No.	Protein Description	Cellular Component	Glycopeptides	NR	N-P Value
27734196	Cartilage intermediate layer protein (CILP)	Extracellular matrix	EQRPGOACSNYTVR	13.13	9.90E-07
568933000	Platelet glycoprotein 4 (CD36)	Plasma membrane	QFWFODVONPDVAKANSSK	9.35	2.00E-02
158341636	Latent-transforming growth factor \(\beta\)-binding protein 2	Extracellular region	DSSPGAAV/NHLSSPWWGLNL7EK	7.12	1.60E-02
6753138	Sodium/potassium-transporting ATPase subunit \(\beta\)-1	Plasma membrane	LDWLNACSLNDNDSGYSR	6.74	8.60E-03
156616286	Collagen \(\alpha\)-6 (VI)	Extracellular matrix	LNANLSSSLWDTFQ/M	6.37	4.00E-02
6753484	Collagen \(\alpha\)-1 (VI)	Extracellular matrix	RFW7ADWGHSR	5.25	3.70E-02
568920137	Laminin subunit \(\alpha\)-5	Extracellular matrix	ELOGINSASSAWAR	5.09	4.80E-02
61651673	Dolichyl-diphospholigosaccharide protein glycosyltransferase subunit STT3B	Endoplasmic reticulum membrane	TTLVNDNTWAWSHALVGBK	4.81	2.70E-02
170784829	Procollagen galactosyltransferase 1	Unknown	TALWVATDHNTD/NTSAILR	4.34	2.30E-02
238637279	4F2 cell-surface antigen heavy chain	Plasma membrane	APLMPWNESSFHIIPP/PSL/MTVK	4.33	2.00E-02
75549868	Fibrillin-1	Extracellular matrix	AWGTCPCELCPSW/TSEYK	4.29	3.20E-02
568911077	Nicastrin	Plasma membrane	CDSGFALDSEER/NC7DIDECR	0.45	4.50E-02
755537649	Platelet endothelial cell adhesion molecule	Plasma membrane	ANWWSWFLSILK	4.14	3.20E-02
568939471	Serum paraoxonase/arylesterase 1	Extracellular region	EKDRPFFQAVN/D7DAFWHNK	4.1	1.20E-02
568926396	Tenascin	Extracellular matrix	ASTEEPSLENL/TEAGWGDLR	3.89	2.50E-02
31982236	Integrin \(\alpha\)-6	Plasma membrane	LWNSTFLEEYSK	3.76	5.00E-03
755537859	Solute carrier family 2, facilitated glucose transporter member 4	Plasma membrane	VIEOSYNA7WLGR	2.71	8.70E-03
112494256	Prolow-density lipoprotein-receptor–related protein 1	Plasma membrane	WTHGWNTWQR	3.62	2.40E-02
148747128	Dolichyl-diphospholigosaccharide protein glycosyltransferase subunit STT3A	Membrane	TILVDNNTWAWTHISR	3.52	2.20E-02
6755863	Endoplasmian	Plasma membrane	HNN/D7DHWESDSNF/SVADPR	3.36	3.60E-02
121674797	Palmitoyl-protein thioesterase	Golgi apparatus	FFADSDVPDS/SEWGFYR	3.29	4.40E-02
225543173	Cartilage-associated protein	Extracellular matrix	DKGGLSDEHOPR/PRPEAV/G/N/TLQK	3.05	3.20E-02
569003077	Catherin-2	Plasma membrane	RW7/1NR	3.03	1.00E-02
755537859	Solute carrier family 2, facilitated glucose transporter member 4	Plasma membrane	VIEOSYNA7WLGR	2.71	8.70E-03
31542891	\(\gamma\)-glutamyltransferase 5	Membrane	LDWDPSSHPGQ/WSR	2.65	2.50E-02
121583481	Inhibitor of nuclear factor \(\kappa\)-B kinase–interacting protein, isoform 1	Endoplasmic reticulum membrane	FQ/1/DFWK	2.52	4.70E-02
8850219	Haptoglobin	Extracellular region	VU/L/HWS/DV/IGLU	2.36	1.00E-02
568972029	C-type mannose receptor 2	Cell surface	ASN/AKPGTLEР	2.18	3.80E-02
568962784	Laminin subunit \(\beta\)-2	Extracellular matrix	AAALDKAASR	2.14	2.10E-02
73050399	Transhyretin	Extracellular region	TLGISPHEFA/DVFT/ANDSGHR	2.08	1.70E-02
147904569	Carboxypeptidase N subunit 2	Extracellular region	LDSLDSN/TAHL/PALFN/LSR	2.08	4.80E-02
31982712	Carboxypeptidase B2	Extracellular region	IPFNLNMMVEDL/EQU/T/ND/VSPR	2.07	2.50E-02
219521935	MHC class I-like protein GS10	Plasma membrane	TLLLSYQAGSH/HTISOW/SGE/GSDGR	2.02	2.70E-03
45504394	Integrin \(\beta\)-1	Plasma membrane	KDI/CAEOCHS/FL7K	0.5	3.70E-02
755522163	Integrin \(\alpha\)-M	Plasma membrane	TPLV/LNCSVA/CK	0.49	5.20E-03
449083336	Fibronectin	Extracellular matrix	WTP/LNST/SI/YR	3.65	4.10E-02

(Continued)
STRING Analysis Revealed That MMP-9–Dependent Changes Work in Concert as a Network

To obtain an overview of the interconnections among the differentially expressed proteins, the protein list was submitted to the STRING protein–protein interaction database and filtered for interactions of high confidence (score >0.7).23 In Figure 1B, the upregulated proteins are shown in red, the downregulated proteins are shown in blue, and proteins associated with the changed proteins but not identified in this study are shown in gray. Stronger associations are represented by thick black lines, whereas weaker associations are indicated by thin gray lines. MMP-9 is highlighted in green. The analysis revealed that 20 of the 45 proteins (45%) had established interconnections. For example, platelet glycoprotein 4 (CD36) is connected with Thbs1, and the interaction between CD36 and Thbs1 stimulates proapoptotic signals.30,31 In addition, platelet glycoprotein 4 (CD36) is connected with the STRING protein–protein interaction database and filtered for interactions of high confidence (score >0.7).23 In Figure 1B, the upregulated proteins are shown in red, the downregulated proteins are shown in blue, and proteins associated with the changed proteins but not identified in this study are shown in gray. Stronger associations are represented by thick black lines, whereas weaker associations are indicated by thin gray lines. MMP-9 is highlighted in green. The analysis revealed that 20 of the 45 proteins (45%) had established interconnections. For example, platelet glycoprotein 4 (CD36) is connected with Thbs1, and the interaction between CD36 and Thbs1 stimulates proapoptotic signals.30,31 In addition, several proteins coregulated a common protein. For example, Tnc, Thbs1, Fn1, CD36, and Cdh2 directly or indirectly sur-

Table 1. Continued
Accession No.

269315863
166064058
218931165
568940646
568930638
47059073
145966840
35803288

Glycosylation motif is indicated in italics. MHC indicates major histocompatibility complex; MMP, matrix metalloproteinase; N-P value, normalized P value; NR, normalized ratio; and WT, wild-type.

CILP and CD36 Had the Highest Fold Increases in MMP-9 Null Mice

Glycoproteomics results identified CILP and CD36 as having the highest fold increase in MMP-9 null mice (Table 1). Because direct associations with MMP-9 had not been previously assigned, CD36 and CILP were selected for validation (highlighted in yellow in Figure 1B). Immunoblotting was performed on an independent set of mouse tissues and showed agreement with the proteomic results (Figure 2).

Because ECM remodeling post-MI is time and space dependent, we also investigated the protein expression of CILP and CD36 in the LVI or remote control (LVC) regions during the post-MI time course.2 CILP continuously increased post-MI in both WT and MMP-9 null mice (Figure V in the Data Supplement). This pattern is not what we would expect if CILP was a substrate of MMP-9. For this reason, further analysis of CILP was not performed in this study. CD36 was robustly expressed at day 0, consistent with past reports of endothelial expression.32 CD36 showed a pattern consistent with being an MMP-9 substrate; namely, it decreased over time in the WT LVI, and this decrease was attenuated by MMP-9 deletion. Surprisingly, a similar pattern was found in the remote LVC (Figure 3A). The fact that CD36 decreased in the remote region indicates additional MMPs may also cleave CD36.

MMP-9 Regulates CD36 Levels Through Proteolytic Degradation

To assess in vitro proteolytic degradation, CD36-recombinant protein was incubated with active MMP-9. Because we found CD36 decreased over time in the remote region, we also incubated CD36 with active MMP-2 or MMP-12—2 MMPs that increase in the remote region post-MI (Figure 3B). Fragments were visible with MMP-9 and MMP-12 incubation but not with MMP-2 incubation (Figure 3C and 3D). This demonstrates CD36 is cleaved by MMP-9 and MMP-12 in vitro, which may explain the decrease in CD36 levels observed in both the LVC and LVI samples. Interestingly, there were multiple bands generated with MMP-9 at molecular weights ranging from 50 to 10 kDa, illustrating MMP-9 not only generated a CD36 fragment but can further degrade it, whereas MMP-12 only generated 1 major fragment. To confirm whether CD36 was cleaved by MMP-9 in vivo, immunoblotting was performed on the soluble fraction of homogenized LV tissue of WT and MMP-9 null mice. The results showed a 35-kDa fragment detected only in WT mice and not in MMP-9 null mice, confirming CD36 is an in vivo substrate of MMP-9 (Figure 3E).

MMP-9 Decreases Macrophage Phagocytosis

CD36 is known to be expressed by multiple cell sources, including macrophages and endothelial cells.32,33 At day 7 post-MI, dual immunofluorescence revealed no significant difference in the number of macrophages present in the LVI in WT and MMP-9 null mice as previously shown.11 CD36 was significantly higher in MMP-9 null mice, consistent with glycoproteomic analysis.
In addition, CD36 was colocalized with the macrophage marker Mac-3 (Figure 4). MMP-9 null mice showed higher levels of CD36+ macrophages compared with the WT mice at day 7 post-MI consistent with CD36 being reduced in WT.

CD36 expression is required for macrophage-mediated phagocytosis, thus we proposed MMP-9 cleavage of CD36 would decrease phagocytosis in WT mice. Macrophages isolated from the infarct of MMP-9 null mice exhibited a higher phagocytic index compared with WT macrophages (Figure 5). Stimulation with MMP-9 at concentrations similar to what is observed physiologically reduced phagocytosis by 30% in WT and 50% in MMP-9 null, indicating MMP-9 regulates phagocytosis. MMP-9 null mice had higher levels of CD36+ macrophages, which explain the greater reduction in phagocytic index. To test if this decrease was because of CD36 degradation, macrophages were incubated with CD36-blocking peptide (CD36i) or a mixture of MMP-9 and CD36i. Phagocytic potential decreased to a similar extent after incubation with CD36i or the mixture indicating MMP-9 regulates phagocytosis through CD36.

MMP-9 Decreased Apoptotic Neutrophils in Infarct Region at Day 7 Post-MI

CD36 is required for the induction of macrophage-mediated phagocytosis of apoptotic neutrophils. If not removed in a timely manner, apoptotic neutrophils can continue to release granule components prolonging the inflammatory response. We showed MMP-9 can degrade CD36 post-MI leading to a decrease in phagocytosis but whether this leads to sustained neutrophil inflammation is unknown. To address this, the LVs of WT and MMP-9 null mice at day 7 post-MI were stained for neutrophils. MMP-9 null had lower neutrophil numbers in the infarct region compared with WT at day 7 post-MI (Figure 6A and 6C). In addition to facilitating the removal of apoptotic cells, CD36 also initiates the rapid activation of caspase-3 resulting in neutrophil apoptosis. MMP-9 null mice had higher levels of caspase-3 and transferase deoxyuridine triphosphate (dUTP) nick end labeling staining compared with WT mice at day 7 post-MI (Figure 6B and 6D). Caspase-3-mediated spontaneous death in neutrophils is critical for modulating inflammatory responses. To confirm the higher levels of cleaved caspase-3 were because of neutrophil apoptosis, dual immunofluorescence of neutrophils and transferase dUTP nick end labeling was performed (Figure 6E). Overlay analysis showed higher numbers of apoptotic neutrophils with MMP-9 deletion. During active inflammation, neutrophil apoptosis is delayed leading to increased tissue damage.

We hypothesized that a lack of CD36 degradation was the cause of increased apoptotic neutrophils observed in the MMP-9 null mice and tested this using an in vitro assay. Because neutrophils are known to undergo spontaneous apoptosis in the absence of extracellular stimuli, we used this natural process to induce apoptosis to limit exogenous influences. Incubating neutrophils with MMP-9 decreased the gene expression of the apoptotic marker caspase-9 by 2-fold and increased caspase-3, with no effect on Bax or Xiap. Caspase-9 is a critical upstream activator of the caspase pathway, and these results indicate that MMP-9 regulates apoptosis in vitro. CD36i increased caspase-3 and Xiap expression but did not affect caspase-9 or Bax. Xiap is an inhibitor of the caspase pathway. Our data indicate that although MMP-9 directly regulated neutrophil apoptosis, this effect was independent of CD36 degradation.
Excessive inflammation post-MI has been shown to impair infarct healing contributing to LV dysfunction. At day 7 post-MI, WT mice showed increased LV dilation (Table 2), indicated by elevated diastolic dimensions and volumes compared with baseline day 0 controls. This increase was attenuated in the absence of MMP-9, consistent with previous findings. Regression analysis showed decreased CD36 levels were linked to increases in end-diastolic dimensions ($R^2=0.48$; $P<0.05$). MMP-9 deletion removed the link between CD36 and LV dilation.

Discussion

The goal of this study was to identify MMP-9–dependent signaling mechanisms in the post-MI LV. Our results...
showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion; and CILP and CD36 were identified as having the highest fold increases in MMP-9 null mice.

MMP-9 regulated CD36 levels through proteolytic degradation, decreasing macrophage phagocytosis and prolonging neutrophil inflammation. In addition, regression analysis showed decreased CD36 levels were linked to increases in

Figure 5. Matrix metalloproteinase (MMP)-9 regulates phagocytosis through CD36. Cells were stimulated in vivo and then isolated at day 7 post-myocardial infarction (MI) from the left ventricle. MMP-9 deletion increased the macrophage phagocytic index compared to wild-type (WT) MI macrophages. MMP-9 incubation decreased phagocytosis in both WT and MMP-9 null. MMP-9, CD36-blocking peptide (CD36i) and the combination of MMP-9 and CD36i decreased phagocytosis to similar degrees, indicating MMP-9 regulates macrophage phagocytic potential through CD36. Quantification of phagocytosis was performed using the SpectraMax M3 Plate Reader. Data are represented as mean±SEM. Representative images are at 40× magnification. Fluorescent bioparticles are shown in green. 4′,6-Diamidino-2-phenylindole staining is shown in blue. *P<0.05 vs WT; †P<0.05 vs null MI; n=5 per group.

Figure 6. Matrix metalloproteinase (MMP)-9 decreases removal of apoptotic neutrophils post myocardial infarction (MI). A and C, MMP-9 null mice had lower numbers of neutrophils in the infarct at day 7 post-MI compared with wild-type (WT). This decrease was coupled with an increase in the apoptotic markers (B) cleaved caspase-3 (pooled samples) and (D) terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) at day 7 post-MI. E, Overlay analysis indicated lower numbers of apoptotic neutrophils in WT animals indicating prolonged neutrophil-mediated inflammation at day 7 post-MI. Data are represented as mean±SEM. *P<0.05 vs respective day 0; †P<0.05 vs WT; n=8 per group. DAPI indicates 4′,6-diamidino-2-phenylindole.
end-diastolic dimensions. Combined, our results reveal a role for MMP-9 in regulating CD36-mediated aspects of post-MI LV remodeling.

The proteins identified in this study are potential downstream mediators of MMP-9. Of the 45 differentially expressed proteins, at least 5 are known MMP-9 substrates, including fibronectin, collagen XIV, tenasin, laminin α5, and laminin β2.10 Future studies identifying the role of the other key proteins identified, such as CILP and latent-transforming growth factor–β-binding protein–2, will be necessary to fully delineate MMP-9 post-MI mechanisms. This study validated CD36 as a novel in vivo MMP-9 substrate. CD36 degradation delayed inflammation resolution by decreasing macrophage-mediated phagocytosis. On the basis of our in vitro results, MMP-9 also regulates neutrophil apoptosis through a pathway that is not dependent on CD36 degradation.

In addition to MMP-9, CD36 was also cleaved by MMP-12. Inhibition of MMP-12 post-MI is known to suppress neutrophil apoptosis, leading to prolonged inflammation and worsened LV function.27 Interestingly, the in vitro cleavage assay showed multiple bands generated with MMP-9, whereas MMP-12 generated only 1 major fragment. This suggests that although MMP-12 cleaves CD36, MMP-9 degrades it further preventing CD36 biological activity. Although MMP-9 increases only in the infarct area, MMP-12 increases in both the remote and the infarct area. This is one explanation for why we see such a dramatic decrease in CD36 in the LVC. Lower levels of CD36 in the LVC could reduce fatty acid supply to the surviving myocytes, leading to a reduction in energy supply and contributing to infarct expansion.43

MMP-9 increases dramatically during the first week post-MI, and this lead to CD36 degradation. We focused our evaluation on day 7 post-MI, because this is a time when the early peak in MMP-9 concentrations is waning, as is the inflammatory process.44 This time point, therefore, allows us to monitor the end points of the inflammatory process and the beginning of the scar formation process. Our study identified macrophages as a source of CD36 in the infarct. CD36 is a multifunctional plasma membrane protein that plays a role in fatty acid transport, cell apoptosis, and inflammation.45 CD36 binds Thbs1-initiating apoptosis and the release of additional Thbs1 as a signal to recruit macrophages. The CD36/Thbs1 complex on the cell surface of the apoptotic cell acts as a ligand, which
interacts with the CD36/αvβ complex on macrophages initiating phagocytosis of the apoptotic cell. Macrophage CD36 recognition and internalization of apoptotic cells inhibits the release of proinflammatory cytokines, such as tumor necrosis factor-α, IL-12, IL-1β, and IL-8 and initiates the anti-inflammatory response, which is mediated by the release of IL-10 and transforming growth factor-β.

In our study, we showed CD36 levels decreased post-MI in WT only. This decrease was because of MMP-9–mediated degradation. Degradation of CD36 led to decreased macrophage phagocytosis at day 7 post-MI implicating MMP-9 as a key player in the persistence of the inflammatory response by mediating neutrophil removal.

Future Directions

MMP-9 deletion has been proven to be beneficial post-MI in mice. However, the use of a nonspecific inhibitor in clinical trials has shown to be inconclusive. In our study, we showed CD36 levels decreased post-MI in WT only. This decrease was because of MMP-9–mediated degradation. Degradation of CD36 led to decreased macrophage phagocytosis at day 7 post-MI implicating MMP-9 as a key player in the persistence of the inflammatory response by mediating neutrophil removal.

WT	MMP-9 null
Myocardial Infarction	Myocardial Infarction
proteolytic cleavage	No MMP-9
CD36	CD36
phagocytosis	phagocytosis
removal of neutrophils	removal of neutrophils
persistent inflammation	resolution of inflammation
↑ LV dilation	↓ LV dilation

![Figure 8. Diagram depicting the roles of matrix metalloproteinase (MMP)-9–mediated CD36 degradation in left ventricular (LV) remodeling post-myocardial infarction (MI). After MI, MMP-9 degradation of CD36 resulted in decreased phagocytic index and prolonged neutrophil inflammation, leading to LV dysfunction. WT indicates wild-type.](image-url)

In summary, this study identified CD36 as an in vivo MMP-9 substrate. In the clinical setting, heart failure is marked by the persistent presence and activation of neutrophils because of their reduced clearance. Our study demonstrated that degradation of CD36 decreased macrophage phagocytosis and prolonged neutrophil inflammation leading to an enlarged LV post-MI (Figure 8). These results are the first to implicate MMP-generated CD36 proteolysis as a possible marker for sustained inflammation and the development of heart failure.

Acknowledgments

We would like to thank the University of Mississippi Medical Center of Biostatics and Bioinformatics for their help with analysis of our datasets.

Sources of Funding

We acknowledge support from American Heart Association for 13POST14350034 to Dr DeLeon-Pennell and 14POST18770012 and 15SDG22930009 to Dr Iyer, from National Institutes of Health (NIH) R00AT006704 to Dr Halade, from Johns Hopkins Proteomics Center (N01-HV-00240) and Programs of Excellence in Glycosciences (PEG, P01HL107153) to Dr Zhang, from NIH/National Heart Lung Blood Institute HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center and R01 HL075360, HL051971, and GM104357 and from the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award S101BX000505 to Dr Lindsey.
myocardial infarction. *J Clin Invest.* 2000;106:55–62. doi: 10.1172/JCI8768.

7. Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP. Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. *Life Sci.* 2004;74:1561–1572.

8. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. *Nat Med.* 1999;5:1135–1142. doi: 10.1038/13459.

9. Zamplia R, Lopez EF, Chiara Y, Dai Q, Escobar GP, Hakala K, et al. Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. *Proteomics.* 2010;10:2214–2223. doi: 10.1002/pmic.200900587.

10. Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, et al. Matrix metalloproteinases. *Carr Med Chem.* 2010;17:3751–3768.

11. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoa JT, et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. *Am J Physiol Heart Circ Physiol.* 2006;290:H232–H239. doi: 10.1152/ajpheart.00407.2005.

12. Yu TH, Shipleym JM, Bergers G, Berger JE, Helms JA, Hanahan D, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. *Cell.* 1998;93:411–422.

13. de Castro Brás LE, Ramirez TA, DeLeon-Pennell KY, Chao Y, Ma Y, Dai Q, et al. Texas 3-step decellularization protocol: looking at the cardiac extracellular matrix. *J Proteomics.* 2013;86:43–52. doi: 10.1016/j.jprot.2013.05.004.

14. Zhang H, Li XJ, Martin DB, Aebbersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. *Nat Biotechnol.* 2003;21:660–666. doi: 10.1038/nbt827.

15. Tian Y, Zhou Y, Elliott S, Aebbersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. *Nat Protoc.* 2007;2:334–339. doi: 10.1038/nprot.2007.42.

16. Zhou Y, Aebbersold R, Zhang H. Isolation of N-linked glycopeptides from plasma. *Anal Chem.* 2007;79:5826–5837. doi: 10.1021/ac0623181.

17. Palmsano G, Melo-Braga MN, Engholm-Keller K, Parker BL, Larsen MR. Chemical deamination: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. *J Proteome Res.* 2012;11:1949–1957. doi: 10.1021/pr200168.

18. Wright HT. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. *Crit Rev Biochem Mol Biol.* 1991;26:1–52. doi: 10.3109/10409239109081719.

19. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, et al. The Database of Interacting Proteins: 2004 update. *Nucleic Acids Res.* 2004;32(database issue):D412–D416. doi: 10.1093/nar/gkh684.

20. Qin L, Kim E, Ratan R, Lee FS, Cho S. Genetic variant of BDNF (Val66Met) polymorphism attenuates stroke-induced angiogenic responses by enhancing anti-angiogenic mediator CD36 expression. *J Neurosci.* 2011;31:775–783. doi: 10.1523/JNEUROSCI.4547-10.2011.

21. Seftor RE, Seftor EA, Steiter-Stevenson WG, Hendrix MJ. The 72 kDa type IV collagenase is modulated via differential expression of alpha v beta 3 and alpha v beta 5 integrins during human melanoma cell invasion. *Cancer Res.* 1993;53:3411–3415.

22. Swerlick RA, Lee KH, Wick TM, Lawley TJ. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. *J Immunol.* 1992;148:78–83.

23. Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. *J Clin Invest.* 1992;90:1513–1522. doi: 10.1172/JCI116019.

24. Cheah FC, Hampton MB, Darlow BA, Winterbourn CC, Vissers MC. Detection of apoptosis by caspase-3 activation in tracheal aspirate neutrophils from premature infants: relationship with NF-kappaB activation. *J Leukoc Biol.* 2005;77:432–437. doi: 10.1189/jlb.0804217.

25. Kischrneh S, Vier J, Gautham S, Frankenberg T, Rangelova S, Eitz-Ferrer P, et al. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the proapoptotic BH3-only protein Noxa. *Cell Death Differ.* 2011;18:1805–1814. doi: 10.1038/cdd.2011.69.

26. Frumento G, Ottonello L, Bertolotto M, Franchello S, Melisoli G, Dallegri F. Spontaneous apoptosis in neutrophils is associated with downregulation of HLA Class I and is prevented by ligation of Class I. *J Leukoc Biol.* 2000;68:873–880.

27. Savill JS, Wylie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programed cell death in the neutrophil leads to its recognition by macrophages. *J Clin Invest.* 1989;83:865–875. doi: 10.1172/JCI113970.

28. Akgul C, Moulding DA, Edwards SW. Molecular control of neutrophil apoptosis. *FEBS Lett.* 2001;487:318–322.

29. Irie H, Krukenkamp IB, Brinkmann FJ, Gaudette GR, Saltman AE, Jou W, et al. Myocardial recovery from ischemia is impaired in CD36-null mice and restored by myocyte CD36 expression or medium-chain fatty acids. *Proc Natl Acad Sci U S A.* 2003;100:6819–6824. doi: 10.1073/pnas.1132094100.

30. Patterson NL, Iyer RP, de Castro Brás LE, Li Y, Andrews TG, Aune GJ, et al. Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. *Proteomics Clin Appl.* 2013;7:516–527. doi: 10.1002/prca.201200100.

31. Bonen A, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ. The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. *Int J Obes (Lond).* 2006;30:877–883. doi: 10.1038/sj.ijo.0803212.

32. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms.
DeLeon-Pennell et al CD36 as a Novel In Vivo MMP-9 Substrate

involving TGF-beta, PGE2, and PAF. *J Clin Invest*. 1998;101:890–898. doi: 10.1172/JCI11112.

47. Hudson MP, Armstrong PW, Ruzylo W, Brum J, Cusmano L, Krzeski P, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. *J Am Coll Cardiol*. 2006;48:15–20. doi: 10.1016/j.jacc.2006.02.055.

48. Benites-Zapata VA, Hernandez AV, Nagarajan V, Cauthen CA, Starling RC, Tang WH. Usefulness of neutrophil-to-lymphocyte ratio in risk stratification of patients with advanced heart failure. *Am J Cardiol*. 2015;115:57–61. doi: 10.1016/j.amjcard.2014.10.008.

CLINICAL PERSPECTIVE

In the United States, >40% of all deaths are attributed to cardiovascular disease, and more than half of these deaths are due to myocardial infarction. After myocardial infarction, the cardiac extracellular matrix is proteolytically cleaved by matrix metalloproteinases (MMPs). MMPs are involved in multiple biological processes, including cell-surface receptor cleavage and release, cytokine and chemokine activation and inactivation, and extracellular matrix turnover. MMP-9 deletion has been shown to be beneficial post myocardial infarction in mice; however, the use of nonspecific MMP inhibitors have been inconclusive in clinical trials. The current article used a proteomic strategy to identify novel MMP-9 substrates. Platelet glycoprotein 4, CD36, was validated as a novel in vivo MMP-9 substrate. Degradation of CD36 by MMP-9 decreased macrophage phagocytosis and prolonged neutrophil inflammation. This study revealed that MMP-9 deletion promotes resolution of the inflammatory response. Identifying the effects of MMP-9 cleavage products may provide novel therapeutic insight for post-myocardial infarction patients.