Abstract

We report a new graphene allotrope named HOT graphene containing carbon hexagons, octagons, and tetragons. A corresponding series of nanotubes are also constructed by rolling up the HOT graphene sheet. Ab initio calculations are performed on geometric and electronic structures of the HOT graphene and the HOT graphene nanotubes. Dirac cone and high Fermi velocity are achieved in a non-hexagonal structure of HOT graphene, implying that the honeycomb structure is not an indispensable condition for Dirac fermions to exist. HOT graphene nanotubes show distinctive electronic structures depending on their topology. The \((0,1)\) \((n \geq 3)\) HOT graphene nanotubes reveal the characteristics of semimetals, while the other set of nanotubes \((1,0)\) \(n\) shows continuously adjustable band gaps \((0\sim 0.51\) eV) with tube size. A competition between the curvature effect and the zone-folding approximation determines the band gaps of the \((1,0)\) \(n\) nanotubes. Novel conversion between semimetallicity and semiconductivity arises in ultra-small tubes \((radius < 4\) Å, i.e., \(n < 3)\).

Keywords: HOT graphene, Nanotubes, Electronic structures, First-principles calculations

Introduction

Because of its bonding flexibility, carbon-based systems show an unlimited number of different structures with an equally large variety of physical properties. These physical properties are, in great part, the result of the dimensionality of these structures [1]. Graphene is a single two-dimensional layer of carbon atoms bound in a hexagonal lattice structure [2] revealing a number of unique properties, such as massless carriers, high Fermi velocity [3], and Dirac cones [4, 5], which are characteristic of two-dimensional Dirac fermions. The honeycomb lattice consisting of two equivalent carbon sublattices plays a crucial role in forming such intriguing properties [2]. Enyashin and Ivanovskii [6] constructed 12 artificial 2D carbon networks but found no structures other than the graphene allotrope exhibit the graphene-like electronic behavior. It seems to imply that the Dirac-like fermions in sp²-bonded carbon systems are dependent on the honeycomb structure. In the lower dimension, the carbon nanotube is a honeycomb structure rolled into a hollow cylinder with nanometric diameter and μm length [7–10]. As there is an infinite number of ways of rolling a sheet into a cylinder, the large variety of possible helical geometries, defining the tube chirality, provides a family of nanotubes with different diameters and microscopic structures [11–13]. The electronic and transport properties are certainly among the most significant physical properties of carbon nanotubes, and crucially depend on the diameter and chirality [14–18]. Graphene nanotubes can be either semimetallic [14] or semiconducting [19–21], with a band gap varying from zero to a few tenths of an eV, depending on their diameter and chirality [10, 14, 16]. Furthermore, the band gap of semiconducting tubes can be shown to be simply related to the tube diameter. The semimetallic nanotubes also maintain the unique properties from graphene, such as massless carriers, high Fermi velocity [22], and Dirac cones [23]. Such remarkable results can be obtained from a variety of considerations, starting from the so-called band-folding approach, based on knowledge of...
the electronic properties of the graphene sheet, to the direct study of nanotubes using semiempirical tight-binding approaches [14, 16, 18, 23]. Comparing with more sophisticated ab initio calculations and available experimental results, finer considerations, such as curvature effects, kF shifting [24, 25], σ-π hybridization [26] are introduced. Graphene and graphene-like materials [6] are considered a revolutionary material for future generation of high-speed electronic, radio frequency logic devices [27, 28], thermally and electrically conductive reinforced composites [29, 30], catalyst [31], sensors [32–35], transparent electrodes [27, 36], etc. basing on the unusual properties all above. Over the past few decades, carbon nanotubes also have shown great potential in logic circuits, gas storage, catalysis, and energy storage because of their extraordinary electronic, mechanical, and structural properties [37–39]. Hence, the creation of new carbon allotropes (including 2D and 1D) has been the focus of numerous theoretical and experimental explorations because of their fundamental scientific and technological importance [40]. However, completely clarifying the structures of these exciting carbon phases through current experimental technologies is usually unrealistic due to their limited quantity, as well as the mixture of other phases. Theoretical prediction is necessary and has yielded great success [31–35, 40–42].

In this study, we designed a new allotrope of graphene that has two-dimensional Dirac fermions without an exclusively hexagonal structure. The new allotrope was constructed with interlaced carbon hexagons, octagons, and tetragons, and was named HOT graphene. HOT graphene nanotubes were also constructed by rolling up HOT graphene sheet along with different directions. The electronic property, curvature effect, kF shifting effect, etc. of HOT graphene and nanotubes were calculated using ab initio calculations based on density function theory (DFT).

Method of Calculation
The present calculations on HOT graphene and HOT graphene nanotubes were performed by using a first-principles method based on the density-functional theory (DFT) with the generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerh (PBE) exchange-correlation functional [43], as implemented in the Vienna Ab initio Simulation Package (VASP) [44, 45]. The wave functions were expanded in plane waves up to a cutoff of plane wave kinetic energy of 520 eV. The Brillouin zone (BZ) integrals were performed by using a Monkhorst-Pack [46] sampling scheme with a k-point mesh resolution of 2π × 0.03 Å−1. The unit cell basis vectors (representing unit cell shape and size) and atomic coordinates were fully relaxed in each system until the forces on all the atoms were smaller than 0.01 eV/Å.

Results and Discussion
Geometric and Electronic Structures of HOT Graphene
The geometric structure of HOT graphene (Fig. 1a) shows a more complicated bonding situation than graphene. The variety of carbon polygons in HOT graphene results in various carbon bonding characters. These polygons in HOT graphene share common edges with each other, and the bonds can be distinguished by the two polygons they belong to. Therefore, in our research, they are named as 6–8 bonds, 4–8 bonds, 4–6 bonds, 6–6 bonds, and 8–8 bonds. The 4–8 bonds and 6–8 bonds have two different bond lengths: 1.44 Å and 1.47 Å for 4–8 bonds; 1.41 Å and 1.48 Å for 6–8 bonds. The 4–6 bonds, 6–6 bonds, and 8–8 bonds have unique bond lengths of 1.44 Å, 1.46 Å, and 1.34 Å, relatively. Figure 1b shows the band structure and density of states (DOS) of HOT graphene with the corresponding BZ depicted in

![Fig. 1](image-url) (a) Geometry of HOT graphene; (b) Band structures and DOS of the HOT graphene; (c) the corresponding BZ of HOT graphene
Fig. 1c. The crossing point of energy bands at the Fermi level indicates semimetallicity of HOT graphene, which is confirmed by the vanishing DOS at the Fermi level. The Dirac point is located at (0, 0.0585, 0) adjacent to Γ. The 3D band structure (Fig. 2) presents the band surfaces near the Fermi level, where one can see the Dirac cones formed by upper and lower conical surfaces meeting at two Dirac points exactly at the Fermi surface. The corresponding Fermi velocity \(v_F\) of the Dirac fermions, evaluated from the gradient of the linear dispersions of the band structures, is \(6.27 \times 10^5\) m/s, which is a little lower than \(8.1 \times 10^5\) m/s [22] for graphene nanotube and \(8.6 \times 10^5\) m/s [47, 48] for graphene. The high \(v_F\) implies high mobility of carriers in the HOT graphene.

Geometric and Electronic Structures of HOT Graphene Nanotubes

The HOT graphene tubes are rolled up from the HOT graphene sheet in various directions symbolized by an index on the 2D HOT graphene lattice (Fig. 3a). This index is denoted as \((lm)\) n basing on two unit vectors \(a\) and \(b\). Symbol \((lm)\) stands for different directions on the HOT graphene sheet, \(n\) stands for the number of perimeter units (Fig. 3b and c) used in rolling up the tubes. Under the space reversal symmetry of the HOT graphene unit cell, the nanotube symbol is confined to \(0 \leq l\) and \(0 \leq m\) to avoid a many-to-one correspondence. The number of possible geometric structures of the HOT graphene nanotubes is infinite since there are infinite choices for both diameters and rolling directions. Among such a large number of nanotubes, only two directions, \((0,1), (1,0)\), are selected in our study. This is because the helical arrangement of atoms in other directions is barely periodic and possesses a nearly infinite length of unit cell along the tube axis. Such a large unit cell is unrealistic in our calculation. Different rolling directions between \((1,0)\) \(n\) and \((0,1)\) \(n\) tubes result in the differences in geometry and bonding situation. Two tubes, \((1,0)6\) and \((0,1)4\), are depicted in Fig. 3d and e to describe the geometric differences between the two rolling directions. The arrangement of polygons along \((1,0)\) direction can be divided into two patterns: \(C_4\rightarrow C_6\rightarrow C_8\) (orange) and \(C_4\rightarrow C_6\rightarrow C_4\) (blue) which is exactly opposite to each other. These two opposite patterns alternate along the circumferential direction of the tube. In direction \((0,1)\), polygons along the tube axis also have two patterns: \(C_4\rightarrow C_6\) (blue) and \(C_6\rightarrow C_8\) (orange). Two \(C_4\rightarrow C_8\) patterns alternate with one \(C_6\rightarrow C_4\) pattern along the circumferential direction.

To reveal the energy cost in rolling up a sheet into tubes, we define the curvature energy (Fig. 4) \(E_{\text{cur}}\) as:

\[
E_{\text{cur}} = E_{\text{tube}} - E_{\text{sheet}}
\]

where \(E_{\text{tube}}\) is the average energy of atoms in nanotube, and \(E_{\text{sheet}}\) is the average energy of atoms in the 2D sheet. The \((1,0)\) \(n\) tubes exhibit a lower energy cost than the graphene nanotubes while the \((0,1)\) \(n\) tubes are nearly the same as the armchair graphene nanotubes except for several ultra-small tubes. Such results also suggest that it is possible to synthesize the HOT graphene nanotubes in experiments. It should be noted that tube \((1,0)1\) is too small because its diameter is even shorter than the bond length of carbon.

The calculated electronic band structure and DOS of nanotube \((0,1)6\) (Fig. 5b) indicate a semimetallic character. When the HOT graphene sheet is rolled up into a nanotube, its 2D BZ reduces to 1D BZ as a result of the new periodic boundary conditions in nanotubes. The periodic boundary conditions along the circumferential direction of the tube only allow wave vectors “around” the nanotube circumference and these vectors are quantized [49]. The periodic boundary conditions along the nanotube axis remain the same as the 2D sheet, then the wave vectors remain continuous along the nanotube axis. According to the zone-folding scheme, the electronic band structure of a specific nanotube is given by the superposition of the electronic energy bands of the corresponding 2D sheet along the specifically allowed \(k\) lines [50]. As the quantized wave vectors in the middle of the BZ of the HOT graphene always cross the Dirac point (point \(F\) in Fig. 5a), a non-degenerate Dirac point (point \(F\) in Fig. 5b) and Dirac cone appears in the band structures of the \((0,1)\) \(n\) HOT graphene nanotubes, resulting in the semimetallicity of all the \((0,1)\) \(n\) nanotubes. Tube \((0,1)6\) is calculated to evaluate the semimetallicity of this set of \((0,1)\) \(n\) nanotubes in Fig. 5. Band structure of the \((0,1)6\) HOT graphene nanotubes shows a crossing point of energy bands at the Fermi level and the corresponding DOS shows no states at the Fermi level which verifies the semimetallicity of the system.
the Dirac cone in (0,1) \(n \) tubes is originated from the HOT graphene sheet, the calculated coordinate of the Dirac point in the (0,1)6 nanotube is the same as that in HOT graphene sheet which is (0, 0.0585, 0). The calculated fermi velocity at the Dirac point in (0,1)6 nanotube is 6.76 \(\times 10^5 \) m/s, close to 6.27 \(\times 10^5 \) m/s in the HOT graphene sheet.

The band structure evolution of (0,1) \(n \) nanotubes with different tube radii (Fig. 6a) reveals that the HOT graphene nanotubes (0,1) \(n \) are semimetallic \((n \geq 3)\) and transform to metal \((n = 2)\) and then turn back to semimetal \((n = 1)\). Such a change under a small radius resulted from the so-called curvature effect \[26\]. In the situation of ultra-small nanotubes (e.g., (0,1)2 and (0, 1)1), the curvature takes a non-negligible effect on the zone-folding scheme. The bond length and bond angle undergo a non-negligible change within the big curvature, which has an influence on the electronic band structure. The band structures of such nanotubes are no longer a simple superposition of energy bands on the allowed wave vectors. This change of bonds modifies the conditions that define the \(k \) point at which occupied and unoccupied bands do cross (at a point we label \(k_F \)) and shift the \(k_F \) away from the original Dirac points, which is called the \(k_F \) shifting effect \[24, 25\]. As a result, in the (0,1) \(n \) HOT graphene nanotubes, the \(k_F \) shifts away from its original position \((k_{HOT})\) in the HOT graphene sheet (point F in Fig. 5a). And the shifting direction of \(k_F \) is calculated to be along the allowed wave vector (dash lines in Fig. 5a), resulting in no change of the semimetallicity (Fig. 6a \((n \geq 3)\)). According to the calculated coordination of Dirac points, the \(k_F \) shifting effect becomes non-negligible at (0,1)5 with a tube radius of 5.988 Å, whose Dirac point \((k_F)\) shifts to (0,0.0626,0) from original point \((k_{HOT})\) at (0,0.0594,0) in HOT graphene sheet. As the tube radius gets smaller, the \(k_F \) keeps shifting and reaches point (0,0.0712,0) in tube (0, 1)3. In tube (0,1)2, the \(k_F \) shifts to (0,0.0835,0) where the
Dirac point moves down below the Fermi level, resulting in a metallic system. The vanishing of the semimetallicity in (0,1)2 indicates a deviation from the k_F shifting effect in the (0,1) n nanotubes ($n \geq 3$). Moreover, the (0,1)1 tube becomes semimetallic again in its band structure and the DOS (Fig. 6b). Our electron state analysis of the (0,1) n HOT nanotubes shows π states overlapping at $n \geq 2$, which is usually considered the origin of the semimetallicity of graphene nanotubes [18, 24]. However, the corresponding electron state analysis of the HOT graphene nanotube (0,1)1 shows a σ-π hybridization that a low-lying $σ^*$ band intersects the Fermi level and joins the Dirac cone (blue lines in Fig. 6a). The coordination of Dirac point, which is (0,0.18345,0), also exhibits a distinction from other (0,1) n HOT graphene nanotubes. The calculated Fermi velocity is 4.47×10^5 m/s, lower than 6.27×10^5 m/s.
10^5 m/s in HOT graphene sheet and values for other (0,1) n nanotubes ($\sim 6.76 \times 10^5$ m/s). An obviously different shape of its band structure is also shown in Fig. 6a. All these characters verify that the semimetallicity of the HOT graphene nanotube (0,1)1 is originated from the σ-π hybridization. In summary, with the increasing curvature, the k_F shifting effect emerges at $n = 5$, becomes more effective at $4 \geq n \geq 2$, and is finally replaced by the σ-π hybridization effect at $n = 1$.

In another rolling direction, the calculated band structure of (1,0)6 (Fig. 7b) shows semiconductivity. The 6 wave vectors (dash lines) are parallel to Γ-M, crossing the Γ point in the middle of the BZ of HOT graphene (Fig. 7a), and open a 0.46 eV band gap as shown in the DOS (Fig. 7b). In this rolling direction, the allowed wave vectors in the middle of the BZ never include the Dirac points, which results in the nonzero band gaps in this set of nanotubes. The band evolution reveals a change of band gaps with different radii in Fig. 8a. The (1,0) n HOT graphene nanotubes are semiconductive ($n \geq 4$). The valence band maximum (VBM) and conduction band minimum (CBM) get closer from tube (1,0)6 to tube (1,0)4 and then crosses with each other in tube (1,0)3 with a radius of 2.17 Å. This crossing point is exactly on the Fermi level located at (0.0791,0,0). The calculated DOS (Fig. 8b) presents 0 states at the Fermi level of (1,0)3, verifying the semimetallicity. When the tube radius decreases to (1,0)2, a 0.848 eV gap opens up again. The CBM and VBM of (1,0)2 are located at Γ point and M point, respectively, indicating an indirect band gap. This change in VBM implies a different origin for the semiconductivity in (1,0)2. A further study of the band-gap change in the (1,0) n HOT graphene nanotubes is shown in Fig. 9. The band gap evolution as a function of n ($3 \leq n \leq 23$) indicates that the band gap is adjustable with tube sizes. Also, instead of being monotonous, the dependence of the band gap as the tube size has a zigzag shape (Fig. 9 black curve). The global minimum at (1,0)15 presents a zero band gap. The semimetallicity of (1,0)15 is further confirmed by the band structure and DOS (Fig. 9g). From the zone-folding scheme, we know that the band structure of nanotubes is the superposition of the band structure of the 2D sheet along the corresponding quantized k lines [50]. Thus, the semimetallicity indicates that at least one of the allowed k lines (dash lines in Fig. 7a) intersects the Dirac points (red points in Fig. 7a) at $n = 15$. Otherwise, if the allowed k lines have a distance from the Dirac points (k_{HOT}), a band gap will appear in nanotube. Furthermore, this distance between k_F and the k lines is proportional to the band gaps, as the band dispersion near the Dirac cone is linear [25]. The Δk_m measures the shortest distance between k_F and k_m lines of quantum number m. We calculated this distance Δk_m between the Dirac points (k_{HOT}) and the allowed k lines in the HOT graphene and plot it (red line) together with the band gaps (black line) in Fig. 9. Firstly, all the allowed k lines have a quantum number m. When $n \leq 7$ (e.g., Fig. 9a), the shortest
The distance (Δk_m) is between the k_{HOT} and the first k line, k_1, which sits at the Γ point constantly (insert graph (a) in Fig. 9). In this situation, Δk_m is constant as both k_1 and k_{HOT} are constant independents of the tube size. However, as the allowed k lines become denser in larger nanotubes ($7 \leq n \leq 17$), the k_2 becomes the nearest one to k_{HOT} (e.g. Fig. 9b). In this situation, the k_2 approaches the Dirac point from the outer BZ with increasing tube radii; therefore, it shows a decline of Δk_m in Fig. 9 ($7 \leq n \leq 17$). $n = 17$ is a turning point where k_2 almost intersects the Dirac point resulting in a local minimum of the distance Δk_m (Fig. 9c). As the radius keeps going up, the k_2 traverse the k_{HOT} point and continues to move away from it to the Γ point resulting in an increase of the distance Δk_m.

Fig. 8 (a) Band evolution of HOT graphene nanotubes $(1,0)_n$ ($n = 2, 3, 4, 5, 6, 9, 18$); (b) DOS of the $(1,0)_3$ nanotube.
distance again at $17 \leq n \leq 24$ (e.g., Fig. 9d). At the same time, k_3 is approaching the Dirac point. k_3 gets closer to k_{HOT} than k_2 and begins a new decrease in distance Δk_m at $n \geq 24$. As the band gaps are proportional to this distance Δk_m [25], the band gap curve shows the same shape as the Δk_m plot ($n \geq 7$). And it is revealed that the band gaps change in cycles: the k_m gets closer to the Dirac point (k_{HOT}) causing a decline of band gap, then traverses the Dirac point resulting in a local minimum, then gets farther from the Dirac point causing a rising of band gap, and is finally replaced by the next line k_{m+1} entering the next cycle. In summary, the reason why the band gaps are changing with tube size ($n \geq 7$) is that the k lines are moving with different tube sizes, thereby the change the distance Δk_m between k_{HOT} and the allowed k lines which is proportional to the band gaps.

Though the Δk_m curve and the band gap curve have similarities in shape, the differences between them are also obvious, which is that the Δk_m plot shows a “delay” in change at $n \geq 7$ and becomes completely different from the band gap plot at $3 \leq n \leq 7$. The reason is that the Fermi point in HOT graphene nanotubes (k_F) is assumed to have the same coordinate as the original Fermi point in HOT graphene (k_{HOT}) in the preceding section where the band gap changing was explained. However, the Fermi point (k_F) in nanotubes shifts away from the origin Fermi point (k_{HOT}) in HOT graphene sheet under the curvature effect. Therefore, the k_F shifting ($\Delta k_F = k_F - k_{HOT}$) effect contributes to the mismatches between the distance Δk_m and the band gaps. As calculated in the $(0,1) n$ tubes (Fig. 6), the k_F in $(1,0) n$ tubes also shifts to the outer BZ towards the symmetric point X under the curvature. Therefore, when the nearest k_m sits between the k_{HOT} and the Γ point, the distance Δk_m underestimates the band gap (e.g., $17 \leq n \leq 24$ in Fig. 9d). Otherwise, the nearest k_m sitting at outer the k_{HOT} point, it results in an overestimate of the band gap (e.g., $7 \leq n \leq 17$ in Fig. 9b). In small nanotubes ($3 \leq n \leq 7$), the k_F shifting effect is enhanced under the large growth rate of the curvature; consequently, it causes a drastic k_F shifting and changes the band gap. When the radius is getting smaller than $n = 8$, the k_1 becomes the closest to the k_{HOT} indicating a constant Δk_m. However, the k_F shifting effect is so strong to move the k_F farther from k_1 but closer to the k_2 (Fig. 9e). The k_F shifting effect wins the competition with the k lines moving and begins to determine the band gaps since then ($n \leq 7$). The k_F keeps shifting to the k_2 at a high velocity so that the distance between k_F and k_2 gets smaller and smaller. Therefore, from $(1,0)7$ to $(1,0)3$, the band gap decreases (Fig. 9). At last, the k_F catches up with k_2 and crosses it at $n = 3$ (Fig. 9f). This crossing of a k line with the k_F results in the Dirac point in tube $(1,0)3$ that gives rise to the semimetallicity (Fig. 8) as discussed in the preceding sections. Further decrease of radius to $n = 2$ opens a 0.848 eV gap in the tube $(1,0)2$ (Fig. 8). This gap is so large and is considered out of the k_F shifting scheme, and hence is not plotted in Fig. 9. In summary, there is a competition mechanism between the k line moving and the k_F shifting in determining the band gaps. The k_F shifting effect leads in small tubes ($7 \leq n \geq 3$), while the k line moving leads in big tubes ($n \geq 8$) where the k_F shifting effect is faded. The amount of the k_F shifting is estimated to be $0.0015 \text{ 2}\pi\text{ Å} / n = 15$ and $0.0238 \text{ 2}\pi\text{ Å} / n = 3$ as the band gaps are 0 eV where the shifted k_F point is on the allowed k lines. It can be seen that the k_F shifting is 15.86 times bigger in a small tube (tube $(1,0)3$) than in a big tube (tube $(1,0)15$).

In HOT graphene, carbon atoms are all three-fold coordinated, thus the fourth valence electron plays a key role in its conductivity. The calculated band decomposed charge density $\pm 0.15 \text{ eV}$ around the Fermi level (Fig. 10) shows the distribution of the electrons in the Dirac cone. Only the electrons on the 8–8 bonds (Fig. 10a) have an overlapping and the side view (Fig. 10b) shows that the electrons distribute perpendicularly to the HOT graphene sheet, which indicates that the Dirac cone consists of π states. Therefore, the electron overlapping on the 8–8 bonds (enlarged side view in Fig. 10a) is considered to be localized π states. In big nanotubes such as $(0,1)6$ (Fig. 10c), the charge density is similar to the HOT graphene sheet showing localized π bonds on 8–8 bonds (enlarged side view in Fig. 10c). As the radius decreases to $(0,1)2$, whose conductivity transforms to metal (Fig. 6), the 8–8 bonds show several deformations (Fig. 10d). Firstly, these states are no longer symmetric with respect to the tube wall. The overlapping of the π state outside the tube wall breaks apart while the π states inside keep overlapping with each other. Besides the 8–8 π bonds, new π bonds form on 4–8 in $(0,1)2$. These bonds are similar to the deformed 8–8 bonds; separated π states outside the tube wall and overlapping π states inside the tube wall. Every 4–8 bond connects two 8–8 bonds adjacent to it, forming a delocalized π overlapping inside the tube along the tube axis direction. The enlarged side view in Fig. 10d shows the connection between 4 and 8 and 8–8 bonds as a segment of the whole delocalized bond. Therefore, the metallicity in tube $(0,1)2$ can be attributed to the delocalized π overlapping in the 4–8 and 8–8 bonds along the tube axis direction which provides a pathway for the electrons to travel along the tube. When the radius keeps decreasing, the conductivity disappears and the $(0,1)1$ tube becomes a semimetal again (Fig. 6). Different from all the other $(0,1) n$ tubes, the 8–8 overlapping (Fig. 10e) in nanotube $(0,1)1$ is totally broken up; instead, 4–8 overlapping and 4–6 overlapping plays the major role in the Dirac cones. These two bonds belong to two opposite edges in the same carbon
tetragons and are arranged parallel to the tube axis. Furthermore, they are no longer π states. Based on the electronic state analysis, a σ-π hybridization takes place at the Fermi level under such a strong curvature in nanotube (0,1)1. It is verified by the charge density which shows the electron states distribute closely to the bond axis (enlarged side view in Fig. 10e). Strongly modified low-lying σ states are introduced at the Fermi level as discussed in the preceding sections (blue line in Fig. 6). Therefore, the σ-π hybrid states in the 4–8 and 4–6 bonds are considered the reason for the semimetallicity in (0,1)1, which is essentially different from the other semimetallic tubes (0,1) n ($n \geq 3$). In another set of HOT graphene nanotubes, the band gaps show adjustability with different tube radius (Fig. 9). The charge densities also present an evolution with the tube radii in Fig. 11. The band decomposed charge density of tube (1,0)9 in Fig. 11a and b shows the localized π states overlapping in both the VBM and CBM. The VBM is contributed by π states on 6–6 bonds and 8–8 bonds (Fig. 11a). The CBM is contributed by π states on part of 4–8 and 6–8 bonds (Fig. 11b). The 4–6 bonds have no states on both of the VBM and CBM. When the (1,0) n tubes become semimetallic at some specific radii, such as $n = 15$, the

![Fig. 10](image1.png) Band decomposed charge densities around the Fermi level of (a) HOT graphene, (b) the corresponding side view, and HOT graphene nanotubes (c) (0,1)6, (d) (0,1)2, and (e) (0,1)1 with corresponding enlarged side views

![Fig. 11](image2.png) Band decomposed charge densities at (a) VBM, and (b) CBM of HOT graphene nanotube (1,0)9; (c) charge densities around the Fermi level of the HOT graphene nanotube (1,0)15 with the localized π bond in the enlarged side view
VBM and CBM meet with each other. Band decomposed charge density $\pm 0.15 \text{ eV}$ around the Fermi level of $(1,0)_{15}$ nanotube show the different distribution of electrons from the semiconductive tubes. More importantly, it exhibits a similar distribution to the semimetallic HOT graphene sheet and $(0,1)$ n tubes. The localized π bond of $(1,0)_{15}$ only locates on the 8–8 bonds. This redistribution of electron in $(1,0)$ n tubes causes the conductivity change.

Conclusion

A new graphene allotrope named HOT graphene is constructed by carbon hexagons, octagons, and tetragons showing Dirac cone and high Fermi velocity, which implies that the honeycomb structure is not an indispensable condition for Dirac fermions to exist. The semiconductivity of HOT graphene is dependent on the localized π bonding. A corresponding series of nanotubes is rolled up from the HOT graphene sheet and shows distinct electronic structures depending on the topology. The set of $(0,1)$ n ($n \geq 3$) HOT graphene nanotubes reveals a character of semimetallicity and Dirac cones that are composed by π states. A non-negligible k_F shifting along the allowed k line arises under the curvature effect when the tube radius gets smaller ($3 \leq n \leq 5$). However, the ultra-small nanotube $(0,12)$ begins to deviate from the π state-based k_F shifting effect showing a transformation to metallicity. Finally, an σ-π hybridization takes the place of the π states at Fermi level in nanotube $(0,1)$, where a low-lying σ^* band intersection appears at the Fermi level and forms a semimetallicity again. Another set of tubes $(1,0)$ n shows various band gaps (0–0.51 eV), which is continuously adjustable with the tube size. The band gaps of $(1,0)$ n ($n \geq 3$) nanotubes turn out to be determined by a competition mechanism between the k line moving and the k_F shifting effect. The zone-folding approximation indicates a k line moving and results in the zigzag and periodical band gap changing curve in big tubes ($n \geq 8$), while the k_F shifting effect gets stronger and causes a dramatic decrease of band gaps in small tubes ($7 \geq n \geq 3$). Zero-gap semimetallic tubes appear periodically under the competition.

Abbreviations

1D: One-dimensional; 2D: Two-dimensional; 3D: Three-dimensional; BZ: Brillouin zone; CBM: Conduction band minimum; DFT: Density functional theory; DOS: Density of states; GGA: Generalized-Gradient Approximation; HOT: Hexagons, octagons, and tetragons; PBE: Perdew–Burke–Ernzerh; VASP: Vienna Ab initio Simulation Package; VBM: Valence band maximum.

Acknowledgements

The authors are grateful to all of the sponsors.

Authors’ Contributions

LHX proposed the work and carried out the computation. LHX and ZZZ wrote the manuscript. LHX, ZZZ, SQW, FCC, and ZQH analyzed the results. ZZZ and FZ revised the paper. KMH participated in the design of the study. All authors read and approved the final manuscript.

Funding

This work was supported by the National Key R&D Program of China under grant No. 2016YFA0202601 and 2016YFB0901502. Financial support from the program of China Scholarships Council (No.201806310018).

Availability of Data and Materials

Authors declare that the datasets used and/or analyzed during the current study are available to the readers and included in this article.

Competing Interests

The authors declare that they have no competing interests.

Author details

1Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiulian Research Institute, Xiamen University, Xiamen, China. 2Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. 3Department of Physics and Astronomy, Ames Laboratory of DOE, Iowa State University, Ames, IA 50011, USA. 4International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, Anhui, China.

Received: 16 August 2019 Accepted: 4 February 2020

Published online: 06 March 2020

References

1. Castro Neto AH, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109
2. Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Maljiz N, Masicotte M, Vandsburger L, Whetney E, Yu V (2012) Experimental review of graphene. ISRN Condensed Matter Physics 2012:12
3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197
4. Hass J, de Heer WA, Conna EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20:323202
5. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201
6. Enyashin AN, Ivanovski AL (2011) Graphene allotropes. Phys Status Solidi B 248:187
7. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56
8. Bethune DS, Kiang CH, de Vries MS, Corman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605
9. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603
10. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49
11. Saito, R., G. Dresselhaus, and M. S. Dresselhaus, (1998) Physical Properties of Carbon Nanotubes Imperial College Press, London SW7 2BT. ISBN 1-86094-093-5
12. Damjanovic M, Milosevic I, Vukovic T, Sredanic R (1999) Full symmetry, optical activity, and potentials of single-wall and multwall nanotubes. Phys Rev B 60:2728
13. Reich, S., C. Thomsen, and J. Maultzsch, (2004) Carbon nanotubes, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN 3-527-40386-8
14. Mintmire JW, Dunlap B, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631
15. Losaeu A, Launori P, Petit P, Roche S, Salvetat J-P (2006) Understanding Carbon Nanotubes Lecture Notes in Physics Vol. 677. Springer-Verlag, Heidelberg
16. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubes. Appl Phys Lett 60:2204
17. Vukovic T, Milosevic I, Damjanovic M (2002) Carbon nanotubes band assignation, topology, Bloch states, and selection rules. Phys Rev B 65:045418
18. Hamada N, Sawada S, Oshiyama A (1992) New One-Dimensional Conductors: Graphitic Microtubes. Phys. Rev. Lett 68:1579
19. White CT, Mintmire JW (1998) Density of states reflects diameter in nanotubes. Nature 394:29
20. Saito R, Dresselhaus G, Dresselhaus MS (2000) Trigonal warping effect of carbon nanotubes. Phys Rev B 61:2981
21. Zhou X, Park J-Y, Huang S, Liu J, McMoen PL (2005) Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors. Phys Rev Lett 95:146805

22. Liang W, Bockrath M, Bozovic D, Hafer JH, Tinkham M, Park H (2001) Fabry-Perot interference in a nanotube electron waveguide. Nature 411(685)

23. Reich S, Maultzsch J, Thomsen C, Ordejon P (2000) Tight-binding description of graphene. Phys Rev B 66:035412

24. Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932

25. Yang L, Han J (2000) Electronic structure of deformed carbon nanotubes. Phys Rev B 62:1920

26. Blase X, Benedikt LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878

27. Kumar TN, Mohan L, Karakkad S (2019). Carbon nanofiber based epoxy nano composites-an innovative material for electromagnetic shielding. AIP Conf Proc 2105:020029

28. Takahashi H, Suzuki Y, Yoshida N, Nakagawa K, Maki H (2019) Trion-based High-speed Electroluminescence from Semiconducting Carbon Nanotube Films. arXiv preprint arXiv 1903:01640

29. Pohkarela P, Xiaoa D, Erogbogbob F, Kolesb O, Lee DS (2019) A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes. Composites Part B 161(169)

30. Sánchez-Romatea XF, Artigas J, Jiménez-Suárez A, Sánchez M, Güemes A, Ureta A (2019) Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: Empirical results versus theoretical predictions. Compos Sci Technol 171:44

31. Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. J Am Chem Soc 139(21)

32. Gui Y, Tang C, Zhou Q, Xu L, Zhao Z, Zhang X (2018) The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study. Appl Surf Sci 440:846

33. Wang Y, Gui Y, Ji C, Tang C, Zhou Q, Lia J, Zhang X (2018) Adsorption of SF6 decomposition components on Pt3-TIQ2(1 0 1) surface: A DFT study. Appl Surf Sci 459:242

34. Liu D, Gui Y, Ji C, Tang C, Zhou Q, Li J, Zhang X (2019) Adsorption of SF6 decomposition components over Pd (1 1 1): A density functional theory study. Appl Surf Sci 440:846

35. Wei H, Gui Y, Ji C, Wang W, Tang C (2018) A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials 8:646

36. Subramanyam BVRS, Mahakul PC, Sa K, Raiguru J, Alam I, Das S, Mondal M, Subudhi S, Mahanandi P (2019) Improved stability and performance of organic photovoltaic cells by application of carbon nanostructures and PEDOT:PSS composites as additional transparent electrodes. Sol Energy 186:146

37. Wang H, Song Y, Cao Y, Yu H, Liang H, Peng F (2019) Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustain Chem Eng 7:10951

38. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2019) Carbon Nanotubes: Present and Future Commercial Applications. Science 363:535

39. Capellos-Díaz J, Boscoboinik JA, Saber S, Rao R, Zhong JQ, Maschmann MR, Kidambi PR, Deo NT, Zalcherov DN, Hart AJ, Stach EA, Maruyama B (2019) Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. ACS Nano 13:8736

40. Hu M, Zhao Z, Tian F, Oganov AR, Wang Q, Xiong M, Fan C, Wen B, He J, Yu D, Wang HT, Xu B, Tian Y (2013) Compressed carbon nanotubes: A family of new multifunctional carbon allotropes. Sci Rep 3:1331

41. Hart M, Chen J, Michaelides A, Sella A, Shaffer MSP, Salzmann CG (2019) One-Dimensional Pnictogen Allotropes inside Single-Wall Carbon Nanotubes. Inorg Chem 58:15216

42. Jeon, Yoon J, Kim J, Lee C, Xiang R, Shawk A, Xi J, Byeon J, Lee H, Choi M, Maruyama S, Matsuo Y (2019) High-Performance Solution-Processed Double-Walled Carbon Nanotube Transparent Electrode for Perovskite Solar. Cells Adv Energy Mater 9:1901204

43. Perdew JP, Burke K, Ernzerhof M (1997) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865

44. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

45. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

46. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:518

47. Yang B, Zhou H, Zhang X, Liu X, Zhao M (2017) Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon 113:40

48. Jo Y, Kim BG (2012) Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon. Phys. Rev B 86:055151

49. Xu LH, Hu QJ, Zhang JH, Wu SQ, Chuang FC, Zhu ZZ, Ho KM (2019) Structural and electronic properties of T graphene nanotubes: a first-principles study. New J Phys 21:053015

50. Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes Rev Mod Phys 79:677

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.