Reconstruction of Bandlimited Functions from Space–Time Samples

Alexander Ulanovskii and Ilya Zlotnikov

August 21, 2020

Abstract

For a wide family of even kernels \(\{ \varphi_u, u \in I \} \), we describe discrete sets \(\Lambda \) such that every bandlimited signal \(f \) can be reconstructed from the space-time samples \(\{(f \ast \varphi_u)(\lambda), \lambda \in \Lambda, u \in I \} \).

Keywords: Dynamical sampling, Paley–Wiener spaces, Bernstein spaces

1 Introduction

The classical sampling problem asks when a continuous signal (function) \(f \) can be reconstructed from its discrete samples \(f(\lambda), \lambda \in \Lambda \). In the dynamical sampling problem, the set of space samples is replaced by a set of space-time samples (see e.g. \([1],[2],[3],[5]\) and references therein). An interesting case is the problem of reconstruction of a bandlimited signal \(f \) from the space-time samples of its states \(f \ast \varphi_u \) resulting from the convolution with a kernel \(\varphi_u \). An important example (see \([3],[4]\)) is the Gaussian kernel \(\varphi_u(x) = \exp(-ux^2) \), which arises from the diffusion process. More generally, the kernel

\[
\varphi_u(x) = \exp(-u|x|^{\alpha}), \quad \alpha > 0,
\]

arises from the fractional diffusion equation.

Denote by \(PW_\sigma \) the Paley–Wiener space

\[
PW_\sigma := \{ f \in L^2(\mathbb{R}) : \text{supp}(\hat{f}) \subseteq [-\sigma, \sigma] \},
\]

where \(\hat{f} \) denotes the Fourier transform

\[
\hat{f}(t) = \int_{\mathbb{R}} e^{-itx} f(x) \, dx.
\]

A set \(\Lambda \subset \mathbb{R} \) is called uniformly discrete (u.d.) if

\[
\delta(\Lambda) := \inf_{\lambda, \lambda' \in \Lambda, \lambda \neq \lambda'} |\lambda - \lambda'| > 0.
\]

The following problem is considered in \([3]\): Given a u.d. set \(\Lambda \subset \mathbb{R} \) and a kernel \(\{ \varphi_u, u \in I \} \), where \(I \) is an interval. What are the conditions that allow one to recover a function \(f \in PW_\sigma \) in a stable way from the data set

\[
\{(f \ast \varphi_u)(\lambda) : \lambda \in \Lambda, u \in I \}.
\]
In what follows, we denote by Φ_u the Fourier transform of φ_u and assume that the functions $\varphi_u(x)$ and $\Phi_u(t)$ are continuous functions of (x, u) and (t, u), respectively.

It is remarked in [3], that the property of stable recovery formulated above is equivalent to the existence of two constants A, B such that

$$A\|f\|_2^2 \leq \int \sum_{\lambda \in \Lambda} \left| (f * \varphi_u)(\lambda) \right|^2 du \leq B\|f\|_2^2, \quad \forall f \in PW_\sigma. \quad (4)$$

It often happens in the sampling theory that inequalities similar to the one in the right hand-side of (4) are not difficult to check. It is also the case here, it suffices to assume the uniform boundedness of the $L^1(\mathbb{R})$-norms $\|\varphi_u\|_1$:

Proposition 1

Assume

$$\sup_{u \in I} \|\varphi_u\|_1 < \infty. \quad (5)$$

Then for every $\sigma > 0$ and every u.d. set Λ there is a constant B such that

$$\int \sum_{\lambda \in \Lambda} \left| (f * \varphi_u)(\lambda) \right|^2 du \leq B\|f\|_2^2, \quad \forall f \in PW_\sigma.$$

We present a simple proof in Section 3.

Hence, the main difficulty lies in proving the left hand-side inequality.

Recall that the classical Shannon sampling theorem states that every $f \in PW_\sigma$ admits a stable recovery from the uniform space samples $f(k/a), k \in \mathbb{Z}$, if and only if $a \geq \sigma/\pi$. The critical value $a = \sigma/\pi$ is called the Nyquist rate. Since the space-time samples [3] produce “more information” compared to the space samples, one may expect that every $f \in PW_\sigma$ can be recovered from the space-time uniform samples at sub-Nyquist spatial density. However, it is not the case, as shown in [4] for the convolution with the Gaussian kernel. On the other hand, it is proved in [3] that uniform dynamical samples at sub-Nyquist spatial rate allow one to stably reconstruct the Fourier transform \hat{f} away from certain, explicitly described blind spots.

It is well-known that the nonuniform sampling is sometimes more efficient than the uniform one. For example, this is so for the universal sampling, see e.g. [6], Lecture 6. It is also the case for the problem above: For a wide class of even kernels, we show that data [3] always allows stable reconstruction, provided Λ is any relatively dense set “different” from an arithmetic progression.

To state precisely our main result, we need the following definition: Given a u.d. set Λ, the collection of sets $W(\Lambda)$ is defined as all weak limits of the translates $\Lambda - x_k$, where x_k is any bounded or unbounded sequence of real numbers (for the definition of weak limit see e.g. Lecture 3.4.1 in [6]).

Consider the following condition:

(α) $W(\Lambda)$ does not contain the empty set, and no element $\Lambda^* \in W(\Lambda)$ lies in an arithmetic progression.

The first property in (α) means that Λ is relatively dense, i.e. there exists $r > 0$ such that every interval $(x, x + r)$ contains at least one point of Λ. It follows that every element $\Lambda^* \in W(\Lambda)$ is also a relatively dense set.

The second condition in (α) means that no $\Lambda^* \in W(\Lambda)$ is a subset of $b + (1/a)\mathbb{Z}$, for some $a > 0$ and $b \in \mathbb{R}$.

Let us now define a collection of kernels \mathcal{C}: A kernel $\{\varphi_u, u \in I\}$, where I is an interval, belongs to \mathcal{C} if it satisfies the following five conditions:
(β) There is a constant C such that
\[\sup_{u \in I} |\varphi_u(x)| \leq \frac{C}{1 + x^4}, \quad x \in \mathbb{R}; \]
(6)

(γ) There is a constant C such that
\[\|\varphi_{u'} - \varphi_u\|_1 \leq C|u - u'|, \quad u, u' \in I; \]
(7)

(ζ) Every φ_u is real and even: $\varphi_u(x) \in \mathbb{R}$, $\varphi_u(-x) = \varphi_u(x), x \in \mathbb{R}, u \in I$;
(η) $\sup_{u \in I} |\Phi_u(t)| > 0$ for every $t \in \mathbb{R}$;
(θ) For every $w \in \mathbb{C}$ and every $\sigma > 0$, the family $\{\Phi_u''(t) + w\Phi_u(t), u \in I\}$ forms a complete set in $L^2(0, \sigma)$.

Clearly, condition (β) implies that the derivatives $\Phi_u''(t), u \in I$, are continuous and uniformly bounded. Condition (ζ) implies that the functions Φ_u are real and even.

One may easily check that C contains the kernels defined in (1), where $I = (a, b)$ is any interval such that $0 < a < b < \infty$.

Our main result is as follows:

Theorem 1 Given a u.d. set $\Lambda \subset \mathbb{R}$ and a kernel $\{\varphi_u, u \in I\} \in \mathcal{C}$. The following conditions are equivalent:

(a) The left inequality in (4) is true for every $\sigma > 0$ and some $A = A(\sigma)$;
(b) Λ satisfies condition (α).

2 Space–Time Sampling in Bernstein Spaces

The aim of this section is to prove a variant of Theorem 1 for the Bernstein space B_σ.

It is well-known that every function $f \in PW_\sigma$ admits an analytic continuation to the complex plane and satisfies
\[|f(x + iy)| \leq Ce^{\sigma|y|}, \quad x, y \in \mathbb{R}, \]
(8)

where C depends only on f.

The Bernstein space B_σ is defined as the set of entire functions f satisfying (8) with some C depending only on f. An equivalent definition is that B_σ consists of the bounded continuous functions that are the inverse Fourier transforms of tempered distributions supported by $[-\sigma, \sigma]$.

Denote by \mathcal{C}_0 the collection of kernels $\{\varphi_u, u \in I\}$ satisfying the properties (β)-(η) in the definition of C above. However, we do not require I to be an interval. In particular, it can be a countable set.

Theorem 2 Given a u.d. set $\Lambda \subset \mathbb{R}$ and a kernel $\{\varphi_u, u \in I\} \in \mathcal{C}_0$. The following conditions are equivalent:

(a) For every $\sigma > 0$ there is a constant $K = K(\sigma)$ such that
\[\|f\|_\infty \leq K \sup_{\lambda \in \Lambda, u \in I} |(f * \varphi_u)(\lambda)|, \quad \forall f \in B_\sigma; \]
(9)

(b) Λ satisfies condition (α).

To prove this theorem we need a lemma:
Lemma 1 Assume $f \in B_{\sigma}$ and $\{\varphi_u, u \in I\} \in \mathcal{C}_0$. If $(f * \varphi_u)(0) = 0, u \in I$, then f is odd, $f(-x) = -f(x), x \in \mathbb{R}$.

Proof. 1. Given a function $f \in B_{\sigma}$, set

$$f_r(z) := \frac{f(z) + f(z)}{2}, \quad f_i(z) := \frac{f(z) - f(z)}{2i}.$$

Then f_r, f_i are real (on \mathbb{R}) entire functions satisfying $f = f_r + if_i$. It is clear that both f_r and f_i satisfy \mathcal{S}, so that they both lie in B_{σ}. Hence, since every φ_u is real, it suffices to prove the lemma for the real functions $f \in B_{\sigma}$.

2. Let us assume that $f \in B_{\sigma}$ is real. Write

$$f_e(x) := \frac{f(z) + f(-z)}{2}, \quad f_o(x) := \frac{f(z) - f(-z)}{2}.$$

Clearly, $f_e \in B_{\sigma}$ is even, $f_o \in B_{\sigma}$ is odd and $f = f_e + f_o$. Since φ_u is even, we have $(f_o * \varphi_u)(0) = 0, u \in I$. Hence, to prove Lemma 1 it suffices to check that if a real even function $f \in B_{\sigma}$ satisfies $(f * \varphi_u)(0) = 0, u \in I$, then $f = 0$.

3. Let us assume that $f \in B_{\sigma}$ is real, even and satisfies $(f * \varphi_u)(0) = 0, u \in I$. If f does not vanish in \mathbb{C} then $f(z) = e^{iaz}$ for some $-\sigma \leq a \leq \sigma$, which implies $a = 0, f(z) = 1$. Then $(f * \varphi_u)(0) = \Phi_u(0) = 0, u \in I$, which contradicts condition (η). Hence, $f(w) = 0$ for some $w \in \mathbb{C}$. It follows that $f(-w) = 0$. Set

$$g(z) := \frac{f(z)}{s^2 + u^2}.$$

Denote by G the Fourier transform of g. Then G is continuous, even and vanishes outside $(-\sigma, \sigma)$. Now, condition $(f * \varphi_u) = 0, u \in I$, implies:

$$0 = \int_{\mathbb{R}} \varphi_u(s)f(s)\,ds = \int_{\mathbb{R}}(s^2 - u^2)\varphi_u(s)g(s)\,ds =$$

$$- \int_{\sigma}^{\infty} (\Phi_u'(t) + w^2\Phi_u(t))G(t)\,dt = -2 \int_{0}^{\infty} (\Phi_u'(t) + w^2\Phi_u(t))G(t)\,dt.$$

Using property (θ), we conclude that $G = 0$ and so $f = 0$.

2.1 Proof of Theorem 2

We denote by C different positive constants.

1. Suppose $W(\Lambda)$ contains an empty set. It means that Λ contains arbitrarily long gaps: For every $\rho > 0$ there exists x_ρ such that $\Lambda \cap (x_\rho - 2\rho, x_\rho + 2\rho) = \emptyset$. Set

$$f_\rho(x) := \frac{\sin(\sigma(x - x_\rho))}{\sigma(x - x_\rho)} \in B_{\sigma}. \quad (10)$$

Then $\|f_\rho\|_\infty = 1$. Using \mathcal{S}, for all x such that $|x - x_\rho| \geq 2\rho$, we have

$$|(f_\rho * \varphi_u)(x)| \leq \int_{|s| > \frac{|x - x_\rho|}{2}} \frac{2}{\sigma|x - x_\rho|} |\varphi_u(s)|\,ds +$$

$$\int_{|s| \leq \frac{|x - x_\rho|}{2}} |\varphi_u(s)|\,ds \leq \frac{C}{|x - x_\rho|}. \quad (11)$$
It readily follows that \([\ref{3}]\) is not true.

2. Suppose \(\Lambda^* \subset b + (1/a)\mathbb{Z}\) for some \(\Lambda^* \in W(\Lambda), b \in \mathbb{R}\) and \(a > 0\). Since
\(\Lambda^* - b \in W(\Lambda)\), we may assume that \(b = 0\).

Consider two cases: First, let us assume that \(\Lambda \subset (1/a)\mathbb{Z}\). Clearly,
the function \(f(z) := \sin(\pi az) \in B_{\sigma}\). Since every function \(\varphi_u\) is even
while \(f\) is odd, one may easily check that \((f \ast \varphi_u)(k/a) = 0, k \in \mathbb{Z}\), so that \([\ref{3}]\) is not true.

Now, assume that \(\Lambda^* \subset (1/a)\mathbb{Z}\), for some \(\Lambda^* \in W(\Lambda)\). This means that for every
small \(\varepsilon > 0\) and large \(R > 0\) there is a point \(v = v(\varepsilon, R) \in \mathbb{R}\) such that \((\Lambda - v) \cap (-R, R)\)
is close to a subset of \((1/a)\mathbb{Z}\) in the sense that for every \(\lambda \in \Lambda \cap (v - R, v + R)\) there exists
k(\lambda) \in \mathbb{Z} with
\[
|\lambda - v - k(\lambda)/a| \leq \varepsilon, \quad \lambda \in \Lambda \cap (v - R, v + R).
\]

For simplicity of presentation, we assume that \(v = 0, a = 1\), and that
\[
\Lambda \cap (-R, R) = \{\lambda_k : |k| \leq m\}, \quad |\lambda_k - k| \leq \varepsilon, \quad m = [R], \quad |k| \leq m. \tag{12}
\]
The proof of the general case is similar.

Fix \(\varepsilon := 1/\sqrt{R}\). Set
\[
f(x) := \sin(\pi x) \frac{\sin(\varepsilon x)}{\varepsilon x} \in B_{\varepsilon x + \varepsilon} \tag{13}
\]
and
\[
f_k(x) := \sin(\pi x) \frac{\sin(\varepsilon \lambda_k)}{\varepsilon \lambda_k},
\]
Then
\[
|f(\lambda_k - s) - (-1)^{k+1} f_k(s)| \leq \left| \sin(\pi(\lambda_k - s)) - \sin(\pi(k - s)) \right| \left| \frac{\sin(\varepsilon(\lambda_k - s))}{\varepsilon \lambda_k} \right|
+ \left| \frac{\sin(\varepsilon s)}{\varepsilon s} \frac{\sin(\varepsilon \lambda_k)}{\varepsilon \lambda_k} \right|.
\tag{14}
\]
By \([\ref{12}]\),
\[
|\sin(\pi(\lambda_k - s)) - \sin(\pi(k - s))| \leq \pi \varepsilon, \quad s \in \mathbb{R},
\]
and so the first term in the right-hand-side of (14) is less than \(\pi \varepsilon\) for every \(s \in \mathbb{R}\). To
estimate the second term in (14), we use the classical Bernstein’s inequality (see e.g.
[6], Lecture 2.10):
\[
\left| \frac{\sin(\varepsilon(\lambda_k - s))}{\varepsilon \lambda_k} - \frac{\sin(\varepsilon \lambda_k)}{\varepsilon \lambda_k} \right| = \left| \int_0^s \left(\frac{\sin(\varepsilon(\lambda_k - u))}{\varepsilon(\lambda_k - u)} \right)' \, du \right| \leq \|s\| \left| \left(\frac{\sin(u)}{u} \right)' \right|_\infty \leq \varepsilon |s|.
\]
Therefore,
\[
|f(\lambda_k - s) - (-1)^{k+1} f_k(s)| \leq \pi \varepsilon (1 + |s|), \quad s \in \mathbb{R}.
\]
Observe that
\[
(f \ast \varphi_u)(\lambda_k) = \int_{\mathbb{R}} (f(\lambda_k - s) - (-1)^{k+1} f_k(s)) \varphi_u(s) \, ds + (-1)^{k+1} \int_{\mathbb{R}} f_k(s) \varphi_u(s) \, ds.
\]
Since \(f_k\) is odd, the last integral is equal to zero. It follows that for every \(|k| \leq m\) we have
\[
|(f \ast \varphi_u)(\lambda_k)| \leq \pi \varepsilon \int_{\mathbb{R}} (1 + |s|) |\varphi_u(s)| \, ds, \quad u \in I.
\]
Hence, using (6) we conclude that
\[|(f \ast \varphi_u)(\lambda)| \leq C\epsilon, \quad \lambda \in \Lambda \cap (-R, R), \quad u \in I. \]

On the other hand, for all \(\lambda \in \Lambda, |\lambda| \geq R \) and \(|s| < 1/\epsilon = \sqrt{R} \), we get
\[|f(\lambda - s)| \leq \frac{1}{|\lambda - s|} \leq \frac{\sqrt{R}}{R - \sqrt{R}} < 2\epsilon, \]
provided \(R \) is sufficiently large. This and (6) imply
\[|(f \ast \varphi_u)(\lambda)| \leq 2\epsilon \int_{|s| < \sqrt{R}} |\varphi_u(s)| \, ds + \int_{|s| > \sqrt{R}} |\varphi_u(s)| \, ds \leq C\epsilon, \quad \lambda \in \Lambda, |\lambda| \geq R, u \in I. \]

Since \(\epsilon \) can be chosen arbitrarily small, we conclude that (9) is not true.

3. Assume condition (a) holds. We have to show that for every \(\sigma > 0 \) there is a constant \(K = K(\sigma) \) such that (9) is true.

Assume this is not so. It means that there exists \(\sigma > 0 \) and a sequence of functions \(f_n \in B_\sigma \) satisfying
\[\|f_n\|_\infty = 1, \quad \sup_{u \in I, \lambda \in \Lambda} |(f_n \ast \varphi_u)(\lambda)| \leq 1/n. \]

Choose points \(x_n \in \mathbb{R} \) such that \(|f_n(x_n)| > 1 - 1/n \), and set \(g_n(x) := f_n(x + x_n) \).
It follows from the compactness property of Bernstein spaces (see e.g. [6], Lecture 2.8.3), that there is a subsequence \(n_k \) such that \(g_{n_k} \) converge (uniformly on compacts in \(\mathbb{C} \)) to some non-zero function \(g \in B_\sigma \). We may also assume (by taking if necessary a subsequence of \(n_k \)) that the translates \(\Lambda - x_{n_k} \) converge weakly to some \(\Gamma \in W(\Lambda) \). By property (a), \(\Gamma \) is an infinite set which is not a subset of any arithmetic progression.

Clearly, we have
\[(g \ast \varphi_u)(\gamma) = 0, \quad u \in I, \quad \gamma \in \Gamma. \]

By Lemma 4 we see that every function \(g(x - \gamma), \gamma \in \Gamma \), is odd. Clearly, this implies that \(g \) is a periodic function and \(\Gamma \) is a subset of an arithmetic progression whose difference is a half-integer multiple of the period of \(g \). Contradiction.

3 Space–Time Sampling in Paley-Wiener Spaces

Throughout this section we denote by \(C \) different positive constants.

In what follows we assume that \(I \) is an interval. We denote by \(C \) different positive constants.

The following statement easily follows from (6) and (7):

Corollary 1 Assume condition (a) holds for some kernel \(\{\varphi_u\} \) satisfying (7), a u.d. set \(\Lambda \) and \(\sigma > 0 \). Then there is a constant \(K' = K'(\sigma) \) such that
\[\|f\|_\infty^2 \leq K' \int I \sup_{\lambda \in \Lambda} |(f \ast \varphi_u)(\lambda)|^2 \, du, \quad \forall f \in B_\sigma. \]

We skip the simple proof.
3.1 Proof of Proposition

Take any function \(f \in PW_\sigma \) and denote by \(F \) its Fourier transform. It follows from (5) that \(\| \Phi_u \|_\infty \leq C, \ u \in I \). Hence, the functions \(F \cdot \Phi_u \in L^2(-\sigma, \sigma) \) and

\[
\| f \ast \varphi_u \|_2 = \| F \cdot \Phi_u \|_2 \leq \| \Phi_u \|_\infty \| F \|_2 \leq C \| f \|_2.
\]

Clearly, \(f \ast \varphi_u \in PW_\sigma \), for every \(u \). Using Bessel’s inequality (see e.g. Proposition 2.7 in [6]), we get

\[
\sum_{\lambda \in \Lambda} |(f \ast \varphi_u)(\lambda)|^2 \leq C \| f \ast \varphi_u \|_2 \leq C \| f \|_2^2, \ u \in I,
\]

which proves Proposition.

3.2 Connection between space–time sampling in \(B_\sigma \) and \(PW_\sigma \)

Observe that if \(\Lambda \) is a sampling set (in the ‘classical sense’) for the Paley-Wiener space \(PW_\sigma' \), then it is a sampling set for the Bernstein spaces \(B_\sigma \) with a ‘smaller’ spectrum \(\sigma < \sigma' \), and vice versa (see Theorem 3.32 in [6]). We provide a corresponding statement for the space-time sampling problem.

For the reader’s convenience, we recall the main inequalities:

\[
\| f \|_2^2 \leq D \int \sum_{\lambda \in \Lambda} |(f \ast \varphi_u)(\lambda)|^2 \, du,
\]

(15)

\[
\| f \|_\infty \leq K \sup_{\lambda \in \Lambda, u \in I} |(f \ast \varphi_u)(\lambda)|.
\]

(16)

Theorem 3 Let \(\Lambda \) be a u.d. set, a kernel \(\{ \varphi_u \} \) satisfy (9) and (10) and \(\sigma' > \sigma > 0 \).

(i) Assume that (10) holds with some constant \(K \) for all \(f \in B_{\sigma'} \). Then there is a constant \(D \) such that (15) is true for every \(f \in PW_{\sigma'} \).

(ii) Assume that (15) holds with some constant \(D \) for all \(f \in PW_{\sigma'} \). Then there is a constant \(K \) such that (10) is true for every \(f \in B_{\sigma} \).

Proof. The proof is somewhat similar to the proof of Theorem 3.32 in [6], but is more technical.

(i) Assume that (10) holds for every \(f \in B_{\sigma'} \). Fix any positive number \(\varepsilon \) satisfying

\[
\sigma + \varepsilon \leq \sigma'.
\]

(17)

Set

\[
h_\varepsilon(x) := \frac{\sin \varepsilon x}{\varepsilon x}, \quad \varepsilon > 0.
\]

(18)

It is easy to check that

\[
h_\varepsilon(0) = 1, \quad \| h_\varepsilon \|_2^2 = \frac{C}{\varepsilon}, \quad \| h_\varepsilon' \|_2^2 = C \varepsilon.
\]

(19)

For every \(f \in PW_{\sigma'} \), we have

\[
\| f \|_2^2 = \int_{\mathbb{R}} |f(x)|^2 \, dx \leq \int_{\mathbb{R}} \sup_{s \in \mathbb{R}} |h_\varepsilon(x-s) f(s)|^2 \, dx.
\]
Note that $h_ε(x - s)f(s) ∈ PW_{σ+ε} ⊂ B_{σ'}$. By Corollary 1, for every x and s,

$$|h_ε(x - s)f(s)|^2 ≤ C \int \sup_{\lambda \in \Lambda} \left| \int \varphi_u(\lambda - s)h_ε(x - s)f(s) \, ds \right|^2 \, d u ≤ C \int \sum_{\lambda \in \Lambda} \left| \int \varphi_u(\lambda - s)h_ε(x - s)f(s) \, ds \right|^2 \, d u.$$

Write

$$J = J_u(x, \lambda) := \left| \int \varphi_u(\lambda - s)h_ε(x - s)f(s) \, ds \right|^2. \tag{20}$$

Then

$$\|f\|^2 \leq C \int \sum_{\lambda \in \Lambda} \int J \, d u d x.$$

Clearly,

$$J ≤ 2(J_1 + J_2),$$

where

$$J_1 := \left| \int \varphi_u(\lambda - s)h_ε(x - \lambda)f(s) \, ds \right|^2 = |h_ε(x - \lambda)|^2 |(f * \varphi_u)(\lambda)|^2,$$

and using property (11) and the Cauchy–Schwarz inequality, we have

$$J_2 := \left| \int \varphi_u(\lambda - s)(h_ε(x - s) - h_ε(x - \lambda))f(s) \, ds \right|^2 ≤ \int |\varphi_u(s - \lambda)| \, d s \int |\varphi_u(\lambda - s)||h_ε(x - s) - h_ε(x - \lambda)|^2 |f(s)|^2 \, d s \leq C \int |\varphi_u(\lambda - s)||h_ε(x - s) - h_ε(x - \lambda)|^2 |f(s)|^2 \, d s.$$

Observe that

$$|h_ε(x - s) - h_ε(x - \lambda)|^2 = \left| \int_s^\lambda h_ε'(x - v) \, d v \right|^2 ≤ |s - \lambda| \int_s^\lambda |h_ε'(x - v)|^2 \, d v.$$

Hence,

$$J_2 ≤ C \int |\varphi_u(\lambda - s)||s - \lambda| \left(\int_s^\lambda |h_ε'(x - v)|^2 \, d v \right) |f(s)|^2 \, d s.$$

Using (10), we have

$$\int \sum_{\lambda \in \Lambda} \int J_1 \, d u d x = \int |h_ε(\lambda - x)|^2 \, d x \sum_{\lambda \in \Lambda} \int |(f * \varphi_u)(\lambda)|^2 \, d u ≤$$

8
\[\frac{C}{\varepsilon} \sum_{\lambda \in \Lambda} \int (f * \varphi_u)(\lambda)^2 du. \]

To estimate the second sum we switch the order of integration and apply (19):

\[\int \sum_{\lambda \in \Lambda} \int J_2 du dx \leq \int \sum_{\lambda \in \Lambda} \int \left| \varphi_u(\lambda - s)\right| |s - \lambda| f(s)^2 \left(\int_{s - \lambda}^{s + \lambda} |h'_{\varepsilon}(s - v)|^2 dv dx \right) du ds. \]

Now, by (6) we get

\[\sum_{\lambda \in \Lambda} \left| \varphi_u(\lambda - s)\right| |s - \lambda| f(s)^2 \leq C \sum_{\lambda \in \Lambda} (\lambda - s)^2 \frac{1 + (\lambda - s)^2}{1 + (\lambda - s)^2} < C, \quad u \in I, s \in \mathbb{R}. \]

where the second inequality holds since \(\Lambda \) is a u.d. set (see definition in (2)). Hence,

\[\int \sum_{\lambda \in \Lambda} \int J_2 du dx \leq C \varepsilon |I| \| f \|_2^2, \]

where \(|I| \) is the length of \(I \).

Combining this with the estimate for \(J_1 \) and using (20), we conclude that

\[\| f \|_2^2 \leq \frac{C}{\varepsilon} \sum_{\lambda \in \Lambda} \int (f * \varphi_u)(\lambda)^2 du + C \varepsilon |I| \| f \|_2^2. \]

Choosing \(\varepsilon \) small enough, we obtain (15).

(ii) Assume (15) holds with some constant \(D \) for all \(f \in PW_{\sigma'} \).

We will argue by contradiction. Assume that there is no constant \(K \) such that (16) holds for every \(f \in B_{\sigma} \). This means that there exist \(g_j \in B_{\sigma} \) such that \(\| g_j \|_{\infty} = 1 \),

\[\sup_{u \in I, \lambda \in \Lambda} \left| (g_j * \varphi_u)(\lambda) \right| < \frac{1}{j}, \quad \tag{21} \]

and for some points \(x_j \) we have \(|g_j(x_j)| \geq 1/2 \).

Assume \(\varepsilon > 0 \) satisfies (17) and let \(h_{\varepsilon} \) be defined by formula (18). Set

\[f_j(x) := g_j(x) h_{\varepsilon}(x - x_j). \]

It is clear that for every \(j \) we have \(f_j \in PW_{\sigma'} \), \(\| f_j \|_{\infty} \leq 1 \), and that \(|f_j(x_j)| \geq 1/2 \). The last two inequalities and the Bernstein’s inequality imply that there is a constant \(K' > 0 \) such that

\[\| f_j \|_2 \geq K', \quad j \in \mathbb{N}. \quad \tag{22} \]

By (16), we get

\[\| f_j \|_2^2 \leq C \int \sum_{\lambda \in \Lambda} |(f_j * \varphi_u)(\lambda)|^2 du = C \int \sum_{\lambda \in \Lambda} \left| \int_{x_j}^{x_j + \varepsilon} g_j(x) \varphi_u(\lambda - x) h_{\varepsilon}(x - x_j) dx \right|^2 du. \]
This gives
\[\|f_j\|_2^2 \leq C(\tilde{J}_1 + \tilde{J}_2), \] (23)
where \(\tilde{J}_1 \) and \(\tilde{J}_2 \) are defined as follows:
\[
\tilde{J}_1 := \left(\sum_{\lambda \in \Lambda} \left| \int_\mathbb{R} g_j(x) \varphi_u(\lambda - x)(h_\varepsilon(x - x_j) - h_\varepsilon(\lambda - x_j)) \, dx \right| \right)^2 du,
\]
\[
\tilde{J}_2 := \left(\sum_{\lambda \in \Lambda} \int_\mathbb{R} g_j(x) \varphi_u(\lambda - x) h_\varepsilon(\lambda - x_j) \, dx \right)^2 du.
\]

By Bessel’s inequality (see, e.g. [6], Proposition 2.7) and (19),
\[
\sum_{\lambda \in \Lambda} |h_\varepsilon(\lambda - s)|^2 \leq C \|h_\varepsilon\|_2^2 \leq \frac{C}{\varepsilon^2}, \quad \forall s \in \mathbb{R}.
\]

Therefore, using (21) we arrive at
\[
\tilde{J}_2 \leq \frac{C}{\varepsilon^2} |I|.
\]

Let us now estimate \(\tilde{J}_1 \). Recall that \(\|g_j\|_\infty = 1 \). Using the change of variables \(x = t + \lambda \), we get
\[
\tilde{J}_1 \leq \left(\int \varphi_u(-t) \left(\int_0^t h_\varepsilon'(s + \lambda - x_j) \, ds \right) \, dt \right)^2 du.
\]

Now, use the Cauchy–Schwarz inequality:
\[
\tilde{J}_1 \leq \int \left(\int_\mathbb{R} |\varphi_u(-t)(1 + t^2)^2 \int_\mathbb{R} \frac{1}{(1 + t^2)^2} \left| h_\varepsilon'(s + \lambda - x_j) \right| \, ds \right)^2 dt \, du.
\]

Using again the Cauchy–Schwarz inequality and condition (21), we arrive at
\[
\tilde{J}_1 \leq C \int \left(\int_\mathbb{R} \frac{|I|}{(1 + t^2)^2} \int_0^t \left| h_\varepsilon'(s + \lambda - x_j) \right|^2 \, ds \right) \, dt \, du.
\]

Finally, Bessel’s inequality yields
\[
\sum_{\lambda \in \Lambda} |h_\varepsilon'(s + \lambda - x_j)|^2 \leq C \|h_\varepsilon\|_2^2 \leq C \varepsilon,
\]
and we conclude that
\[
\tilde{J}_1 \leq C |I| \varepsilon.
\]

We now insert the estimate for \(\tilde{J}_1, \tilde{J}_2 \) in (23) and use (22) to get the estimate
\[
(K')^2 \leq \frac{C}{\varepsilon^2} + C |I| \varepsilon.
\]
Choosing \(\varepsilon \) sufficiently small, we arrive at contradiction for all large enough \(j \).
3.3 Proof of Theorem 1

The proof easily follows from Theorems 2 and 3. Assume that the assumptions of Theorem 1 hold.

(i) Assume that Λ satisfies condition (α). Then by Theorem 2, for every σ > 0 there exists K = K(σ) such that inequality (9) is true. Applying Theorem 3, we see that there exists A = A(σ) > 0 the left hand-side inequality in (4) is also true for every σ > 0.

(ii) Assume that Λ does not satisfy condition (α). Then by Theorem 2 there exists σ > 0 such that there is no constant K for which condition (9) is true. Applying Theorem 3 we see that for every positive σ′ > σ there is no constant D such that inequality (15) holds for every f ∈ PWσ′.

References

[1] Aldroubi, A., Cabrelli C., Çakmak, A.F., Molter, U., Petrosyan, A., Iterative actions of normal operators. In Journal of Functional Analysis, Volume 272, Issue 3, (2017), 1121–1146.

[2] Aldroubi, A., Davis, J., Krishtal, I., Dynamical sampling: Time-space trade-off. In Applied and Computational Harmonic Analysis, Volume 34, Issue 3, (2013), 495–503.

[3] Aldroubi, A., Grochenig, K., Huang, L., Jaming, Ph., Kristal, I., Romero J.L. Sampling the flow of a bandlimited function. arXiv:2004.14032 (2020).

[4] Lu, Y.M., Vetterli, M. Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, apr. 2009.

[5] Martín, R.D., Medri, I., Molter U., Dynamical Sampling: a view from control theory. arxiv.org/abs/2003.01488.

[6] Olevskii, A., Ulanovskii, A. Functions with Disconnected Spectrum: Sampling, Interpolation, Translates. AMS, University Lecture Series, 65, 2016.

Alexander Ulanovskii
University of Stavanger, Department of Mathematics and Physics, 4036 Stavanger, Norway
alexander.ulanovskii@uis.no

Ilya Zlotnikov
University of Stavanger, Department of Mathematics and Physics, 4036 Stavanger, Norway
ilia.k.zlotnikov@uis.no