Digital rehabilitation for hand and wrist pain: a single-arm prospective longitudinal cohort study

Fabiola Costaa, Dora Janelaa, Maria Molinosa, Robert G. Moulderb, Jorge Lainsc, d, Gerard E. Franciscoe, Virgílio Bentoa, Vijay Yanamadalaf, g, Steven P. Cohenh, i, Fernando Dias Correiaa, j, *

Abstract

Introduction: Wrist and hand represent the third most common body part in work-related injuries, being associated with long-term absenteeism. Telerehabilitation can promote access to treatment, patient adherence, and engagement, while reducing health care-related costs.

Objective: Report the results of a fully remote digital care program (DCP) for wrist and hand pain (WP).

Methods: A single-arm interventional study was conducted on individuals with WP applying for a DCP. Primary outcome was the mean change in the Numerical Pain Rating Scale after 8 weeks (considering a minimum clinically important change of 30%). Secondary outcomes were: disability (Quick Disabilities of the Arm, Shoulder, and Hand questionnaire), analgesic intake, surgery intention, mental health (patient health questionnaire [PHQ-9] and generalized anxiety disorder [GAD-7]), fear-avoidance beliefs (FABQ-PA), work productivity and activity impairment, and engagement.

Results: From 189 individuals starting the DCP, 149 (78.8%) completed the intervention. A significant pain improvement was observed (51.3% reduction (2.26, 95% CI 1.73; 2.78)) and 70.4% of participants surpassing minimum clinically important change. This change correlated with improvements in disability (52.1%), FABQ-PA (32.2%), and activities impairment recovery (65.4%). Improvements were also observed in other domains: surgery intent (76.1%), mental health (67.0% in anxiety and 72.7% in depression), and overall productivity losses (68.2%). Analgesic intake decreased from 22.5% to 7.1%. Mean patient satisfaction score was 8.5/10.0 (SD 1.8).

Conclusions: These findings support the feasibility and utility of a fully remote DCP for patients with WP. Clinically significant improvements were observed in all health-related and productivity-related outcomes, alongside very high patient adherence rates and satisfaction. This study strengthens that management of WP is possible through a remote DCP, decreasing access barriers and potentially easing health care expenditure.

Keywords: Musculoskeletal pain, Physical therapy, Telerehabilitation, Digital therapeutic, eHealth

1. Introduction

Wrist or hand pain (WP) is very common among the adult population, with a prevalence rate of approximately 19.1%, being the third most common work-related injury. Over the past few decade, 2.6 million annual hand and wrist injuries were estimated in a nationwide database study in the United States. Wrist or
hand pain conditions impose significant disability, affecting leisure and work activities, being frequently associated with long-term absenteeism. Collectively, this translates into an average $69,51 total cost per case or $8297 considering health economic evaluations (in 2015 U.S. dollars), with indirect costs (work absenteeism) being a major driver.

Major risk factors associated with WP conditions include female sex, occupations with high mechanical demands (including handling of heavy material or vibration tools) or sustained repetitive movements (e.g., computer use), and high psychological stress, work-related or otherwise.

There is no consensus on best practices to manage WP conditions, with most guidelines advocating for stronger evidence. Surgical interventions are mainly reserved for refractory or severe cases, while conservative treatments have been advocated in most conditions. Among these, exercise is one of the most frequently studied interventions with positive results reported for function and pain. Exercise has the advantage of inducing systemic and long-lasting effects, encompassing not only biomechanical and functional aspects but also influencing central pain processing, metabolic mechanisms, sleep, and mental health. In 1 randomized controlled trial (RCT), patients in a waiting list for carpal tunnel surgery who underwent exercise-based interventions combined with education and splinting had a lower likelihood of proceeding to surgery. Despite the importance of early interventions to prevent progression, access to care remains poor because of unavailable health care resources. Despite amplified during the COVID-19 pandemic, treatment time, and travel barriers. There is no consensus on best practices to manage WP conditions, with most guidelines advocating for stronger evidence. Surgical interventions are mainly reserved for refractory or severe cases, while conservative treatments have been advocated in most conditions. Among these, exercise is one of the most frequently studied interventions with positive results reported for function and pain. Exercise has the advantage of inducing systemic and long-lasting effects, encompassing not only biomechanical and functional aspects but also influencing central pain processing, metabolic mechanisms, sleep, and mental health. In 1 randomized controlled trial (RCT), patients in a waiting list for carpal tunnel surgery who underwent exercise-based interventions combined with education and splinting had a lower likelihood of proceeding to surgery.

2.2. Participants

Beneficiaries of employers or health plans older than 18 years and reporting WP were offered the opportunity to apply to SWORD Health’s DCP through a dedicated website. Wrist or hand pain was defined as a pain condition affecting the wrist, hand, or fingers in the context of neuropathy, tendinopathy, osteoarthritis, or sprain or fracture. Exclusion criteria included (1) presence of a health condition incompatible with at least 20 minutes of light-to-moderate exercise (e.g., cardiac, respiratory), (2) cancer requiring active treatment, (3) rapidly progressive loss of strength or numbness in the arms or legs, and (4) an unexplained change in bowel or urinary function in the previous 2 weeks. Informed consent was obtained from all participants. To prevent the risk of selection bias, consecutive participants were enrolled until the cut-off date of August 12, 2021.

2.3. Intervention

This telerehabilitation intervention combines individually tailored exercises, education, and CBT during an 8-week program (Fig. 1). On enrollment, a physical therapist (PT) is assigned to each participant. The PT is responsible for program customization and monitoring, through the digital therapist (DT).

The DT is an FDA-listed class II medical device comprising a dedicated tablet with a mobile app, inertial motion sensors (IMU), and a cloud-based portal. The tablet displays the prescribed exercises through audio–videos, while motion sensors, both camera-based (tablet camera) and IMU-based, provide real-time feedback on performance to the participant. This allows individuals to perform exercise sessions independently at home (3 sessions per week are typically recommended). The exercise prescription was based on current evidence and clinical guidelines. Data obtained from the exercise sessions are stored on a cloud-based platform, being asynchronously monitored through a web-based portal by the assigned PT who adjusts the exercises according to the participants’ performance and progression (Supplementary Table S1, available at http://links.lww.com/PR9/A166). The education and CBT components were developed according to current evidence and clinical guidelines. The main topics addressed include ergonomics, risk behaviors, as well as pain reconceptualization, fear-avoidance, and active coping skills. A multidisciplinary team (including psychiatrists and psychologists) developed the CBT component into interactive modules. Those were based on third-generation techniques, such as acceptance and commitment therapy, mindfulness, and empathy-focused therapy. The educational articles and interactive modules were delivered through a dedicated smartphone app. Bidirectional communication between participants and PTs was ensured through a built-in secure chat feature on the same smartphone app (with at least 1 touchpoint each week by the PT) and through synchronous video calls between the PT and the member (at least once every 4 weeks).

2.4. Outcomes

Outcome assessments were recorded at baseline, and 4 and 8 weeks, while mean changes were calculated between baseline and the 8-week primary end point. Primary outcome was self-reported pain level, using the Numerical Pain Rating Scale (NPRS), through the question: “Please rate your average pain over the last 7 days” from 0 (no pain at all) to 10 (worst pain imaginable). Secondary outcomes assessed the following clinical and engagement domains:

1. Disability: Quick Disabilities of the Arm, Shoulder, and Hand questionnaire (QuickDASH). This scale consists of 11 items scored from 0% to 100%, with higher scores indicating worse functioning.

2. Anxiety: Generalized Anxiety Disorder (GAD-7) measured on a 7-item scale (range 0–21).
(3) Depression: Patient Health (PHQ-9), a 9-item questionnaire (range 0–27). A threshold equal or greater than 5 signifies at least mild anxiety (GAD-7) or depression (PHQ-9).

(1) Fear-avoidance beliefs (FAB): FAB questionnaire evaluating physical activity (FABQ-PA), which includes 5 items scored on a 7-option Likert scale (0–24).

(2) Work productivity and activity impairment (WPAI) for general health questionnaire: evaluated in employed participants (WPAI overall: combining presenteeism and absenteeism from work), presenteeism (WPAI work), absenteeism (WPAI time), and in all participants for not work-related activity impairment (WPAI activity).

(3) Analgesic consumption: binary variable based on the question, “Are you currently taking any pain medication?”

(4) Surgery likelihood: continuous variable based on the question, “How likely are you to have surgery to address your condition in the next 12 months?” (range 0—not at all likely; 100—extremely likely).

(5) Engagement: measured through completion of the program (considered as retention rate), number of completed exercise sessions, number of sessions performed per week, and overall satisfaction evaluated by the question: “On a scale from 0 to 10, how likely is it that you would recommend this intervention to a friend or neighbor?”

2.5. Safety and adverse events

Physical therapists continuously monitored pain and fatigue scores (0–10 score) based on electronic questions answered by the participants at the end of each exercise session, as well as any adverse events reported by members through several communication channels.

2.6. Data availability

All relevant data are provided within the article or as supplementary material (available at http://links.lww.com/PR9/A166). The protocol, deidentified data, and analysis codes may be provided on reasonable request to the corresponding author.

2.7. Statistical analysis

Study population demographics and clinical data, as well as usability metrics are characterized through descriptive statistics. Participants were considered dropouts if they did not perform any session for 28 consecutive days. Participants were still considered if they were compliant with the intervention but failed to complete a given reassessment survey.

Differences between completers and noncompleters (ie, who dropped out or were excluded after program start) at baseline were assessed through χ² tests for categorical variables and independent sample t tests or one-way ANOVA with Bonferroni post hoc for continuous variables.

Outcome change trajectories were modeled using latent growth curve analysis (LGCA), following an intent-to-treat principle. Latent growth curve analysis belongs to the same family of linear mixed-effects modeling but uses a structural equation model (Supplementary Figure 1 presents the structural equation and path diagram used for the LGCA, available at http://links.lww.com/PR9/A166), having the advantage of providing a measure of model fitness (eg, how well the model explains the data set). Each trajectory is represented by an intercept (baseline values) and slope (estimated linear change over time). Latent growth curve models treat time as a continuous variable, do not require equality of variance of residuals at each time point, acknowledges that repeated measures on the same individual are correlated, and provide estimates robust to attrition bias because it handles missing data through the use of full information maximum likelihood (FIML) estimation. The FIML method handles missing data by using all of the subject’s available data to calculate maximum likelihood estimates, outperforming other modern imputation models such as multiple imputation by chained equations (MICE) or listwise deletion.

Given the high prevalence of carpal tunnel syndrome within WP (3% in the general population and ~8% in the working population), a subgroup analysis of this cohort was performed. Models were adjusted for covariates, ie, sex, age, and body mass index (BMI). A robust sandwich estimator for standard errors was used in all model estimations. Two analyses were performed including the entire cohort and filtering at...
baseline for relevant scores: (1) >0 score for surgery intent and WPAI and (2) ≥5 score for GAD-7 and PHQ-9. A conditional analysis was also performed to assess the influence of age, sex, BMI, and type of occupation (eg, white vs blue collar) covariates. Model fit estimation was assessed using χ^2 test, confirmatory fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR).10,42

Association of baseline variables with the probability of being a responder for pain reduction was assessed through logistic regression, considering a minimum clinically important change (MCIC) of 30% between baseline and treatment end.24

Associations between outcome changes were assessed through bivariate correlations (Pearson r). Significance levels were set at $P < 0.05$ in all analyses. Latent growth curve analysis was coded using R (version 1.4.1717), and all other analyses were performed using SPSS (version 17.0, SPSS Inc, Chicago, IL).

3. Results

As presented in the study flow diagram (Fig. 2), 255 participants were screened for eligibility, 8 (3.1%) declined participation, and 58 (22.7%) were excluded. Therefore, 189 participants from 41 states within the United States started the program. Program completion rate was 78.8% (149/189).

3.1. Baseline characteristics

Baseline demographics of the entire cohort (N = 189) and of the carpal tunnel syndrome (CTS) subgroup (N = 50) are given in Table 1.

Comparing completers (N = 149) with noncompleters (N = 40), the latter were younger ($P = 0.029$), presented with more acute conditions ($P = 0.001$), and had lower levels of disability ($P = 0.031$) at baseline than completers (Supplementary Table S2, available at http://links.lww.com/PR9/A166).

3.2. Clinical outcomes

Each outcome variable had its change modeled through LGC, following an intent-to-treat principle (N = 189) with the respective trajectory parameters and P-values presented in Supplementary Table S3, http://links.lww.com/PR9/A166. The results are reported following unconditional (Table 2) and conditional models (Supplementary Table S4, available at http://links.lww.com/PR9/A166), with the latter presenting the impact of covariates.

3.3. Primary outcome

3.3.1. Pain

Significant reduction was observed for pain across the intervention ($P < 0.001$, Supplementary Table S2, available at http://links.lww.com/PR9/A166), with a mean change of 51.3% observed (2.26, 95% CI 1.73; 2.78) (Table 2). Female patients reported more pain at program start ($P < 0.001$), which had no impact on recovery trajectories (Fig. 3; Supplementary Table S4, available at http://links.lww.com/PR9/A166). Considering the recommended MCIC of 30% for pain,24 an odds ratio (OR) of 2.38 (95% CI 1.35; 4.38) was observed, corresponding to 70.4% response rate ($P < 0.001$). The OR for being a responder was not influenced by age, sex, or mental health status at baseline (Supplementary Table S5, available at http://links.lww.com/PR9/A166).

3.4. Secondary outcomes

3.4.1. Quick Disabilities of the Arm, Shoulder, and Hand Questionnaire

We observed a significant reduction in QuickDASH of 13.84 points (95% CI 10.77; 17.12, Table 2) representing an overall change of 52.1%. Female patients, older participants, and those

Figure 2. Study flow diagram.
with higher BMI levels reported higher QuickDASH baseline levels, but overall recovery trajectories were not influenced by any covariates with the exception for female sex, which was associated with a faster-paced recovery (0.85 per week, P = 0.029) (Fig. 3; Supplementary Table S4, available at http://links.lww.com/PR9/A166). QuickDASH improvement was strongly correlated with pain reduction (r[59] = 0.659, P < 0.001).

3.4.2. Analgesic usage

Only a quarter of the participants (22.5%, 42/187) reported taking analgesics at baseline. Despite significant missing data for this outcome, an overall reduction of analgesic usage was observed, with only 7.1% of participants (4/56) still taking analgesics by study end.

3.4.3. Surgery intent

Willingness to pursue surgery decreased at a pace of 2.45 points (0.03) per week (P < 0.001), resulting in a reduction of 76.1% (19.63, 95% CI 14.69; 24.56) at the end of the intervention (Table 2). Participants with higher BMI scores at baseline reported greater willingness to undergo surgery; however, recovery trajectories were not influenced by any covariates (Supplementary Tables S4, available at http://links.lww.com/PR9/A166). The overall change in surgery likelihood was correlated with disability (QuickDASH) recovery (r[59] = 0.291, P = 0.024).

3.4.4. Mental health and fear-avoidance beliefs

Significant improvement was observed for both mental health indicators (P < 0.001) in participants with at least mild symptoms at baseline, revealing a mean change until program end of 67.0% for GAD-7 (5.54 points, 95% CI: 1.22; 9.87) and 72.7% for PHQ-9 (5.82 points, 95% CI: 3.69; 7.95). Individuals with white-collar occupations or higher BMI presented higher depression levels at baseline (P = 0.001 and P = 0.024, respectively), despite having no impact on recovery pace (Supplementary Table S4, available at http://links.lww.com/PR9/A166). Regarding FAB, a significant

| Table 1
Baseline characteristics of study participants: entire cohort (N = 189) and carpal tunnel syndrome (N = 50) subgroups.
Characteristic

Age (y), mean (SD)
Age categories (y), N (%):
<25
25–40
40–60
>60
Sex, N (%)
Female
Male
Nonbinary
BMI, mean (SD)
BMI categories, N (%):
Underweight (<18.5)
Normal (18.5–25)
Overweight (25–30)
Obese (30–40)
Obese grade III (>40)
Side
Left
Right
Both
Wrist condition, N (%):
Carpal tunnel syndrome
De Quervain tenosynovitis
Other tenosynovitis
Tendinopathy
Chronic nonspecific wrist pain
Wrist or hand osteoarthritis
Sprain or fracture
Systemic diseases
Dorsal wrist syndrome
Other
Pain duration, N (%):
Acute (<12 wk)
Chronic (>12 wk)
Employment status, N (%):
Employed (part-time or full-time)
Unemployed (not working or retired)
Occupation type, N (%):
White collar
Blue collar
Other (eg, retired)

BMI, body mass index.
improvement of 32.2% (mean change 3.57, 95% CI 2.12; 5.02) was observed, with female patients recovering at a faster pace (20.39, \(P = 0.040\)). Fear-avoidance beliefs improvement was correlated with pain reduction (\(r = 0.409, P = 0.005\)) and QuickDASH reduction (\(r = 0.583, P < 0.001\)).

3.4.5. Work productivity

Productivity recovery improved significantly by 68.2% on the WPAI overall score (mean change 19.11, 95% CI 12.43; 25.79, \(P < 0.001\)), 68.1% on the WPAI work score (mean change 18.84, 95% CI 12.01; 25.67, \(P < 0.001\)), and 65.4% on the WPAI activity score (mean change 17.23, 95% CI 12.43; 21.93, \(P < 0.001\)).

Table 2: Outcome changes between baseline and 8 weeks: intent-to-treat approach (unconditional model).

Outcome, mean (95% CI)	N	Baseline	End-of-program	Mean change	% Change
Pain level	187	4.40 (4.09; 4.72)	2.14 (1.68; 2.60)	2.26 (1.73; 2.78)	51.3
Q-DASH	189	26.56 (24.38; 28.74)	12.72 (10.07; 15.37)	13.84 (10.77; 17.12)	52.1
Surgery intent > 0	101	25.79 (21.44; 30.14)	6.16 (2.30; 10.02)	19.63 (14.69; 24.56)	76.1
Surgery intent	187	13.71 (10.64; 16.78)	4.51 (2.19; 6.83)	9.20 (5.98; 12.42)	67.1
FABQ-PA	188	11.07 (10.29; 11.85)	7.50 (6.04; 8.96)	3.57 (2.12; 5.02)	32.2
GAD-7 ≥ 5	38	8.28 (7.05; 9.50)	2.73 (0.00; 6.60)	5.54 (1.22; 9.87)	67.0
GAD-7	189	2.53 (2.00; 3.03)	1.14 (0.40; 1.89)	1.38 (0.53; 2.23)	54.7
PHQ-9 ≥ 5	35	8.00 (6.88; 9.13)	2.18 (0.27; 4.09)	5.82 (3.69; 7.95)	72.7
PHQ-9	189	2.24 (1.74; 2.74)	0.71 (0.21; 1.21)	1.53 (0.93; 2.12)	68.2
WPAI overall > 0	93	28.00 (23.90; 32.10)	8.89 (4.38; 14.30)	19.11 (12.43; 25.79)	68.2
WPAI overall	158	16.22 (13.08; 19.36)	6.88 (3.61; 10.15)	9.34 (5.14; 13.54)	57.6
WPAI work > 0	92	27.66 (23.75; 31.58)	8.82 (3.17; 14.47)	18.84 (12.01; 25.67)	68.1
WPAI work	158	15.84 (12.77; 18.91)	6.90 (3.54; 10.26)	8.94 (4.71; 13.17)	56.4
WPAI activity > 0	142	32.45 (29.08; 35.81)	11.22 (7.41; 15.03)	21.23 (16.83; 25.62)	65.4
WPAI activity	189	24.39 (21.15; 27.62)	9.58 (6.42; 12.74)	14.81 (10.88; 18.74)	60.7

Analyses were performed both for unfiltered cases and filtering for above zero (>0) for surgery intent (individuals with intention to undergo surgery at baseline) and WPAI (individuals with productivity impairment at baseline), and above or equal to 5 (≥5) points for GAD-7 and PHQ-9 (individuals with at least mild anxiety and depression at baseline).

FABQ-PA, fear-avoidance beliefs questionnaire for physical activity; GAD-7, generalized anxiety disorder 7-item scale; PHQ-9, patient health 9-item questionnaire; QuickDASH, quick disabilities of the arm, shoulder, and hand questionnaire; WPAI, work productivity and activity impairment questionnaire.

![Figure 3](image-url). Longitudinal changes across time and per sex for all filtered variables. Individual trajectories are depicted in lighter lines (with darker lines meaning overlap of trajectories), while average trajectories are depicted in bold lines, with shadowing depicting 95% confidence intervals. (A) Primary outcome: pain level; (B–E) secondary outcomes: (B) QuickDASH; (C) surgery intent; (D) FABQ-PA; and (E) WPAI overall, WPAI work, and WPAI activity. Cases were filtered according to the following baseline thresholds—surgery intent and WPAI scores ≥ 0 points. FABQ-PA, fear-avoidance beliefs questionnaire for physical activity; QuickDASH, quick disabilities of the arm, shoulder, and hand questionnaire; WPAI, work productivity and activity impairment questionnaire.
score (mean change 21.23 95% CI 16.83; 25.62, P < 0.001). Regarding WPAI time, only 11 individuals (of 158) had some degree of absenteeism at baseline, which reduced to 4 individuals (of 47) at program end. Female patients and individuals with higher BMI scores reported both higher overall productivity and activity impairment at baseline, while those with white-collar occupations had lower activity impairment at baseline. Any covariates influenced recovery trajectories (Supplementary Table S4, available at http://links.lww.com/PR9/A166). Overall productivity recovery was correlated with a lower likelihood to pursue surgery (r = 0.364, P = 0.011). Activity impairment recovery was correlated with pain reduction (r = 0.401, P = 0.002), disability reduction (r = 0.466, P < 0.001), and FABQ-PA reduction (r = 0.313, P = 0.032).

3.5. Engagement and usability

An average of 20.3 (13.8) sessions were performed by participants, and engagement levels were high, particularly in the first 4 weeks—3.0 (1.7) sessions, with an overall 2.5 (1.7) sessions a week in completers. Total average exercise duration was 390.4 (277.2) minutes. On average, participants read 3.4 (5.1) educational content pieces. Average satisfaction was 8.5 (1.8).

3.6. Subgroup analysis: carpal tunnel syndrome

Considering the high prevalence of carpal tunnel syndrome, 11,19 a subgroup analysis was performed. As observed in Table 1, all baseline subgroup characteristics were similar to the entire cohort. An LGCA of this subgroup is presented in Supplementary Table S6 (available at http://links.lww.com/PR9/A166) and respective outcome changes in Table 3. The recovery profile of each outcome measure was very similar to that previously observed for the entire cohort (Supplementary Table S7, available at http://links.lww.com/PR9/A166). Female patients presented with greater disability and productivity impairment at baseline (P = 0.035 and P = 0.049, respectively), but sex did not affect recovery pace. Older participants had lower FABQ-PA, GAD-7, and productivity impairment at baseline but recovered at a slower pace (Supplementary Table S8, available at http://links.lww.com/PR9/A166).

4. Discussion

4.1. Main findings

This multimodal DCP was able to foster high engagement and completion rates, which paralleled statistically significant improvements in all outcome measures. A significant reduction in pain was observed (51.3%), above the reported MCIC of 30%, corresponding to a 70.4% response rate. Importantly, this recovery was correlated with improvements in several secondary outcomes such as QuickDASH (52.1%), FABQ-PA (32.2%), and WPAI activity (65.4%). Disability recovery correlated with a reduction in FABQ-PA and surgery likelihood (76.1%). Meaningful reductions were also noted in mental health (67.0% in anxiety and 72.7% in depression), analgesic consumption (from 22.5% at baseline to 7.1% at program end), and productivity losses (68.2%).

Table 3: Outcome changes in patients with carpal tunnel syndrome: intent-to-treat approach (unconditional model).

Carpal tunnel syndrome	Outcome mean (95% CI)	N	Baseline	End of program	Mean change	% Change
Pain level	4.18 (3.56; 4.89)	50	1.99 (1.09; 2.89)	2.19 (1.06; 3.33)	52.4	
QuickDASH	25.15 (19.86; 29.44)	50	10.85 (5.61; 16.09)	14.30 (8.08; 20.52)	56.9	
Surgery intent	20.07 (12.65; 27.49)	50	5.92 (3.03; 11.52)	14.15 (4.70; 23.59)	70.5	
GAD-7	2.67 (1.59; 3.76)	50	1.28 (0.33; 2.23)	1.39 (0.30; 2.49)	52.2	
PHQ-9	2.25 (1.30; 3.21)	50	0.78 (0.00; 1.79)	1.47 (0.31; 2.63)	65.4	
FABQ-PA	10.08 (8.56; 11.61)	49	6.70 (3.90; 9.50)	3.38 (0.62; 6.14)	33.5	
WPAI overall	17.42 (10.94; 23.91)	43	5.94 (0.60; 11.28)	11.48 (2.46; 20.51)	65.9	
WPAI work	16.51 (10.50; 22.52)	43	6.06 (1.22; 10.90)	10.45 (2.35; 18.55)	63.3	
WPAI activity	24.62 (17.69; 31.56)	50	7.04 (0.33; 13.76)	17.58 (8.32; 26.84)	77.4	

FABQ-PA, fear-avoidance beliefs questionnaire for physical activity; GAD-7, generalized anxiety disorder 7-item scale; PHQ-9, patient health 9-item questionnaire; QuickDASH, quick disabilities of the arm, shoulder and hand questionnaire; WPAI, work productivity and activity impairment questionnaire.
supports that results can be maximized when integrated in multimodal approaches.

The PT monitoring not only supported adjustments and quality of treatment but may also have enhanced patient motivation, accountability, and engagement. Although the study design did not enable the impact of each individual DCP component to be separately evaluated on the observed outcomes, important insights can be gleaned regarding feasibility, engagement, and overall improvement. Of note, enrolment occurred during the COVID-19 pandemic, when social distancing was a required practice. One big advantage of this intervention relates to its accessibility because all aspects of this DCP are delivered remotely, which in the particular case of this study, actually favored enrollment because all clinics were closed and off-limits to patients. The intervention completion rate (78.8%) was high and within the range reported by other telerehabilitation interventions (55.8% - 100%). Higher completion rates have been reported only in small cohort studies and studies with shorter treatment periods. Engagement was very high, particularly in the first 4 weeks and for completers, where the average number of sessions performed matched the number recommended. This is important because it is well-established that patient adherence is paramount for recovery.

Regarding health-related and productivity-related outcomes, reductions were observed across different domains. Wrist and hand pain-focused telerehabilitation studies are still scarce, and those that have been published used myriad different outcomes which limits direct comparison with our intervention. Blanquero et al. conducted 2 RCTs with cohorts of patients with wrist injuries and CTS and reported significantly higher pain and disability reductions after telerehabilitation compared with controls, with recoveries of 21.7% to 35.7% for pain and 46.6% to 49.0% for disability (QuickDASH). In this study, greater pain and disability changes were observed, considering both the entire cohort (51.3% and 52.1%, respectively) and the CTS subgroup (52.4% and 56.9%, respectively). Within the CTS subgroup, several RCTs have investigated the efficacy of different in-person conservative therapies, reporting pain reductions ranging between 15.8% and 32.4% and disability improvements between 5.9% and 20%. This range may reflect variability in both the length and the components of the interventions, with some including an educational component. This is supported by evidence showing that education reinforces a patient’s ability to cope with their condition, diminishing catastrophizing and kinesiophobia.

In this study, we observed marked improvements for both FAB and mental health (32.2% for FABQ-PA, 67.0% for anxiety, and 72.7% for depression). The impact of these mental health domains is underscored for WP, with reported improvements varying between 2% and 21.9% in mental health scales after conservative rehabilitation programs composed by exercise or exercise and education, without a component specifically dedicated on mental health. Nevertheless, considering that high psychological stress is a known risk factor for WP and the strong evidence supporting a biopsychosocial framework in the management of other MSK pain conditions, there seems to be a need to further study these components.

Despite guidelines favoring conservative treatment, many still consider surgical intervention a first-line approach. Surgery may provide good short-term results, but long-term outcomes may not be clinically different from conservative approaches. Moreover, surgical interventions may result in significant complications in some people, including nerve damage and worsening pain. In this study, we observed a marked reduction in the intention to undergo surgery both in the entire cohort (78.1%) and in the CTS subgroup (70.5%), which further reinforces the recommendation to first try conservative treatment. These reductions are also in line with studies whereby exercise significantly reduced conversion to surgery. Regarding medication consumption, a small proportion of participants reported analgesics use, less than the previously reported for hand osteoarthritis or other chronic musculoskeletal pain conditions. The reason for this is not clear; however, the cohort in this study included both acute (36.5%) and chronic (63.5%) conditions, which might partially explain the observed difference.

Considering our findings and the results of previous studies, the high reductions in productivity impairment both in the entire cohort (68.2%) and in the CTS subgroup (65.9%) are not surprising because improvements in pain and disability are expected to substantially affect leisure and work activities. This is important because WP is associated with greater productivity decrements than pain involving other anatomical regions. Female patients are consistently more affected with wrist conditions, being 3 times more likely to have CTS than men and having a poorer prognosis. Our cohort had 60% female participants, who reported greater levels of pain, disability, and all WPAI domains than male participants at baseline. Contrary to previous reports, at the end of the program, female participants attained similar outcomes to men in all domains.

4.3. Strengths and limitations

This study has several strengths, namely the novelty of the approach, which combined both camera-based and IMU-based motion capture technology (depending on exercise type) to provide real-time biofeedback during exercise execution. To the best of our knowledge, this is the first device which combines both technologies for this purpose. In addition, this DCP included not only a PT-monitored exercise program, delivered through a technological platform, but also educational and CBT components and was therefore structured within a biopsychosocial framework. The digital nature of the program improves accessibility and convenience which, together with regular communication with the PT, promotes high adherence, which is known to translate into improved clinical outcomes. Other strengths include the large sample size containing balanced female and male participation, as well as the broad set of secondary outcome measures evaluated.

The major limitation is the lack of a control group. Considering the real-world context of the study, the most obvious control group would be “wait-listed patients,” which would not simulate clinical practice and may not be ethical. Still, taken together, the aspects reported herein on engagement and observed outcomes will help guide future RCT comparing the DCP against in-person intervention. Other limitations include failure to stratify the impact of each DCP component and the lack of long-term outcomes to assess the persistence of results and relapse rates.

5. Conclusions

This multimodal DCP was able to foster high engagement and completion rates, which translated into clinically meaningful improvements in all outcomes. Significant reductions in pain, disability, analgesic usage, mental health, and surgery intent were observed, which in turn resulted in meaningful improvement in productivity. These results are in line with the literature, demonstrating that management of WP is possible through a
remote DCP, thus eliminating barriers to access. Future RCTs comparing the DCP with conventional in-person PT or other telerehabilitation programs, including longer follow-up assessments, may provide further insights into recovery pathways and comparative effectiveness.

Disclosures

F. Costa, D. Janela, M. Molinos, V. Bento, V. Yanamadala, and F. D. Correia are employees at SWORDD Health, the study sponsor. R. G. Moulder, J. Lains, G. E. Francisco, and S. P. Cohen received a scientific advisor honorarium from SWORDD Health.

Acknowledgments

The authors acknowledge the team of physical therapists responsible for the management of participants. The authors also acknowledge the contributions of João Tiago Silva and Quemuel Araujo in data management and of Nikki Armstrong in figure design.

Appendix A. Supplemental digital content

Supplemental digital content associated with this article can be found online at http://links.lww.com/PR9/A166.

Article history:

Received 14 April 2022
Received in revised form 10 June 2022
Accepted 25 June 2022

References

[1] Algar L, Valdes K. Using smartphone applications as hand therapy interventions. J Hand Ther 2014;27:254–6; quiz 257.
[2] Ballestero-Pérez R, Plaza-Manzano G, Urraca-Gesto A, Romo-Romo F, Afrin-Arratibel MDÁ, Peos-Martin D, Gallego-Izquierdo T, Romero-Franco N, Efeṣiyen, C. Use of neural gliding exercises on carpal tunnel syndrome: a systematic review. J Manipulative Physiol Ther 2017;40: 50–9.
[3] Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y, Kataoka Y, Noda A. Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ 2018;6:e6172.
[4] Barr AE, Barbe MF, Clark BD. Work-related musculoskeletal disorders and national call to action. Pain Med 2016;17:250–63.
[5] Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ. A randomized sham-controlled trial of a web-based exercise programming system to improve home exercise adherence for people with carpal tunnel syndrome: A randomized controlled trial. Am J Phys Med Rehabil 2019;98:850–6.
[6] Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ. A randomized sham-controlled trial of a neurodynamic technique in the treatment of carpal tunnel syndrome. J Orthop Sports Phys Ther 2004;34:610–27.
[7] Bennell KL, Marshall CJ, Dobson F, Katsa J, Lonsdale C, Hinman RS. Does a web-based exercise programming system improve home exercise adherence for people with musculoskeletal conditions?: a randomized controlled trial. Am J Phys Med Rehabil 2019;98:850–6.
[8] Bialosky JE, Bishop MD, Price DD, Robinson ME, Vincent KR, George SZ. A randomized sham-controlled trial of a neurodynamic technique in the treatment of carpal tunnel syndrome. J Orthop Sports Phys Ther 2004;34:610–27.
[9] Bijker L, Sleijser-Koehorst MLS, Coppieters MW, Cuijpers P, Scholten-Peeters GGM, Preferred self-administered questionnaires to assess depression, anxiety and somatization in people with musculoskeletal pain—a modified Delphi study. J Pain 2021;20:409–17.
[10] Blanquero J, Cortés-Vega MD, García-Fasqueta MA, Sánchez-Lauhí PR, Nieto Díaz de Los Beramendis MI, Suero-Pineda A. Exercises using a touchscreen tablet application improved functional ability more than an exercise program prescribed on paper for people with wrist, hand or finger injuries: a randomised trial. J Physiother 2019;65:81–7.
[11] Burton CL, Chen Y, Chesterton LS, van der Windt DA. Trends in the prevalence, incidence and surgical management of carpal tunnel syndrome between 1993 and 2013: an observational analysis of UK primary care records. BMJ Open 2016;8:e002166.
[12] Carpal Tunnel Syndrome. A summary of clinical practice guideline recommendations—using the evidence to guide physical therapist practice. J Orthop Sports Phys Ther 2018;49:350–60.
[13] Carvalho FD, Molinos M, Luís S, Carvalho D, Carvalho C, Costa P, Seabra R, Francisco G, Bento V, Lains J. Digitally assisted versus conventional home-based rehabilitation after arthroscopic rotator cuff repair: a randomized controlled trial. Am J Phys Med Rehabil 2022;101:237–49.
[14] Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2013;2:e00473.
[15] Damms NA, McCallum LM, Serrijnanni PS, Zis P. Pain as a determinant of health-related quality of life in patients with carpal tunnel syndrome; a case-controlled study. Postgrad Med 2020;132:52–6.
[16] Darnell BD, Scheman J, Davin S, Burns JW, Murphy JL, Wilson AC, Kerns RD, Mackey SC. Pain psychology: a global needs assessment and national call to action. Pain Med 2016;17:250–63.
[17] Dias Correia F, Nogueira A, Magalhaes I, Guimaraes J, Moreira M, Barradas I, Molinos M, Teixeira L, Tuinha J, Seabra R, Lains J, Bento V. Use of a digital biofeedback system versus conventional in-person rehabilitation after total knee arthroplasty: a feasibility trial. J Orthop Sports Health 2019;39:495–505.
[18] Duncan TE, Duncsan SC. An introduction to latent growth curve modeling. Behav Ther 2004;35:333–63.
[19] Elgert L, Steiner B, Saalfeld B, Marschollek M, Wolf K-H. Health-related quality of life before and after total knee arthroplasty: prospective, parallel-group feasibility study. JMRIR Rehabil Assist Technol 2019;6:e13111.
[20] Ferrer I, Pauwels V, Seibel V, Schmieder R, van Schayck CP, Grol R, Sanderson MG, Siemsen J. Individual patient education for low back pain. Cochrane Database Syst Rev 2008;3: CD004057.
[21] Filler A, Curbs S, Bentolligli M, Baldisseroni I, Spatari G, Mattioli S, Violante FS. Observing differences between males and females in surgically treated carpal tunnel syndrome among non-manual workers: a sensitivity analysis of findings from a large population study. Ann Work Expo Health 2018;62:505–15.
[74] Preacher KJ, Wichman AL, MacCallum RC, Briggs NE. Latent growth curve modeling. Thousand Oaks, California: Sage, 2008.
[75] Randhawa K, Côté P, Gross DP, Wong JJ, Yu H, Sutton D, Southerst D, Varartharajan S, Mior S, Stupar M, Shearer HM, Lindsay GM, Jacobs C, Taylor-Vaisey A. The effectiveness of structured patient education for the management of musculoskeletal disorders and injuries of the extremities: a systematic review by the Ontario protocol for traffic injury management (OPTIma) Collaboration. J Can Chiropr Assoc 2015;39:340-62.
[76] Richmond H, Hall AM, Copsey B, Hansen Z, Williamson E, Hoey-Thomas N, Cooper Z, Lamb SE. The effectiveness of cognitive behavioural treatment for non-specific low back pain: a systematic review and meta-analysis. PLos One 2015;10:e0134192.
[77] Robinson LS, Sankoe M, Brown T, O'Brien L. Direct, indirect and intangible costs of acute hand and wrist injuries: a systematic review. Injury 2016;47:2614-26.
[78] Rozmarny LM, Dovelle S, Rothman ER, Gorman K, Olvey KM, Bartko JJ. Nerve and tendon gliding exercises and the conservative management of carpal tunnel syndrome. J Hand Ther 1998;11:171-9.
[79] Sankah BEA, Stokes M, Adams J. Exercises for hand osteoarthritis: a systematic review of clinical practice guidelines and consensus recommendations. Phys Ther Rev 2019;24:66-81.
[80] Shi Q, Bobos P, Lalone EA, Warren L, MacDermid JC. Comparison of the short-term and long-term effects of surgery and nonsurgical intervention in treating carpal tunnel syndrome: a systematic review and meta-analysis. Hand (N Y) 2020;15:13-22.
[81] Shiri R, Falah-Hassani K. Computer use and carpal tunnel syndrome: a meta-analysis. J Neurol Sci 2015;349:15-19.
[82] Sorensen AA, Howard D, Tan WH, Ketchersid J, Calfee RP. Minimal clinically important differences of 3 patient-rated outcomes instruments. J Hand Surg Am 2013;38:641-9.
[83] Spitzer RL, Kroenke K, Williams JBW, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 2006;166:1092-7.
[84] Srikesanv CS, Shay B, Szturm T. Task-oriented training with computer games for people with rheumatoid arthritis or hand osteoarthritis: a feasibility randomized controlled trial. Games Health J 2016;5:295-303.
[85] Stanhope J, Weinstein P. Application to facilitate adherence to home-based exercise after flexor tendon repair: a randomised controlled trial. Clin Rehabil 2021;35:266-75.
[86] Tamayo M, Salazar PJ, Bustamante DC, Silva SM, Escudero VM, Andaluz VH. Virtual Rehabilitation of Carpal Tunnel Syndrome Through Force Feedback. In: De Paolis L, Bourdot P, editors. Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science. 2018. vol 10851. p. 153-64. Springer, Cham. doi: 10.1007/978-3-319-95282-6_11
[87] Tan L, Cikutcin FM, Fairley J, Romero L, Este M, Hussain SM, Urquhart DM. Does aerobic exercise effect pain sensitisation in individuals with musculoskeletal pain? A systematic review. BMC Musculoskelet Disord 2022;23:113.
[88] US Department of Labor BoLS. News release: “Nonfatal occupational injuries and illnesses requiring days away from work, 2015, 2016. Available at: https://www.bls.gov/news.release/osh2.toc.htm. Accessed November 19, 2021.
[89] Vaegter HB, Handberg G, Graven-Nielsen T. Isometric exercises reduce temporal summation of pressure pain in humans. Eur J Pain 2015;19:973-83.
[90] Valdes K, Manik T. A systematic review of conservative interventions for osteoarthritis of the hand. J Hand Ther 2010;23:334-50; quiz 351.
[91] Verdugo RJ, Salinas RS, Castillo J, Cea JG. Surgical versus non-surgical treatment for carpal tunnel syndrome. Cochrane Database Syst Rev 2003;3:CD001552.
[92] Vigilatorto RM, Condino S, Turini G, Carbone M, Ferrari V, Gesi M. Review of the augmented reality systems for shoulder rehabilitation. Information 2019;10:154.
[93] Watson JA, Ryan CG, Cooper L, Ellington D, Whittle R, Lavender M, Dixon J, Atkinson G, Cooper K, Martin DJ. Pain neuroscience education for adults with chronic musculoskeletal pain: a mixed-methods systematic review and meta-analysis. J Pain 2019;20:1140.e1-e22.
[94] Whiteley D, Martin KR, Lovell K, Jones GT. A systematic review of prognostic factors for distal upper limb pain. Br J Pain 2015;9:241-55.
[95] Williams ACdC, Fisher E, Hearn L, Eccleston C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane database Syst Rev 2020;8:CD007407.
[96] Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs 2005;14:798-804.
[97] Wipperman J, Giebel K. Carpal tunnel syndrome: diagnosis and management. Am Fam Physician 2016;94:993-9.
[98] Wong JYP, Fung BKK, Che MML, Chan RKY. The use of Disabilities of the arm, shoulder, and hand questionnaire in rehabilitation after acute traumatic hand injuries. J Hand Ther 2007;20:49-55; quiz 56.
[99] Xiao J, Bulut O. Evaluating the performance of missing data handling methods in ability estimation from sparse data. Educ Psychol Meas 2020;80:593-54.
[100] Yu H, Côté P, Southerst D, Wong JJ, Varartharajan S, Shearer HM, Gross DP, van der Velde GM, Carroll LJ, Mior SA, Arneis A, Jacobs CL, Taylor-Vaisey AL. Does structured patient education improve the recovery and clinical outcomes of patients with neck pain? A systematic review from the Ontario protocol for traffic injury management (OPTIma) collaboration. Spine J 2016;16:1524-40.