Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (*Rapana venosa*)

Hao Song 1, 2, Xin Dang 3, Yuan-qiu He 3, Tao Zhang Corresp. 1, 4, Hai-yan Wang Corresp. 1, 4

1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2 University of Chinese Academy of Sciences, Beijing, China
3 College of Fisheries, Ocean University of China, Qingdao, China
4 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Corresponding Authors: Tao Zhang, Hai-yan Wang
Email address: tzhang@qdio.ac.cn, haiyanwang@qdio.ac.cn

Background. The veined rapa whelk *Rapana venosa* is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in *R. venosa*. For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in *R. venosa* for use as internal controls for qRT-PCR.

Methods. In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1α (*EF-1α*), α-actin (*ACT*), cytochrome c oxidase subunit 1 (*COX1*), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex subunit 7 (*NDUFA7*), 60S ribosomal protein L5 (*RL5*), 60S ribosomal protein L28 (*RL28*), glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*), β -tubulin (*TUBB*), 40S ribosomal protein S25 (*RS25*), 40S ribosomal protein S8 (*RS8*), ubiquitin-conjugating enzyme E2 (*UBE2*), histone H3 (*HH3*), and peptidyl-prolyl cis-trans isomerase A (*PPIA*). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms.

Results. Of the 13 candidate genes tested, we found that *EF-1α* was the most stable internal control gene in almost all adult tissue samples investigated with *RL5* and *RL28* as secondary choices. For the normalization of a single specific tissue, we suggested that *EF-1α* and *NDUFA7* are the best combination in gonad, as well as *COX1* and *RL28* for intestine, *EF-1α* and *RL5* for kidney, *EF-1α* and *COX1* for gill, *EF-1α* and *RL28* for Leiblein and mantle, *EF-1α*, *RL5*, and *NDUFA7* for liver, *GAPDH*, *PPIA*, and *RL28* for hemocyte. From a developmental perspective, we found that *RL28* was the most stable gene in all developmental stages measured, and *COX1* and *RL5* were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, *PPIA*, *RS25*, and *RL28* for stage 1, *RL5* and *RL28* for stage 2 and 5, *RL28* and *NDUFA7* for stage 3, and *PPIA* and *TUBB* for stage 4.

Discussion. Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of *R. venosa* in the future.
Research Article

Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (Rapana venosa)

Hao Song¹,², Xin Dang⁴, Yuan-qiu He⁴, Tao Zhang¹,³,*, Hai-yan Wang¹,³,*

¹ CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

² University of Chinese Academy of Sciences, Beijing, China

³ Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

⁴ College of fisheries, Ocean University of China, Qingdao, China

Corresponding Authors at: 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China.
Email address: haiyanwang@qdio.ac.cn (H-Y Wang); tzhang@qdio.ac.cn (T Zhang)
ABSTRACT

Background. The veined rapa whelk *Rapana venosa* is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in *R. venosa*. For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in *R. venosa* for use as internal controls for qRT-PCR.

Methods. In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1α (*EF-1α*), α-actin (*ACT*), cytochrome c oxidase subunit 1 (*COX1*), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex subunit 7 (*NDUFA7*), 60S ribosomal protein L5 (*RL5*), 60S ribosomal protein L28 (*RL28*), glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*), β-tubulin (*TUBB*), 40S ribosomal protein S25 (*RS25*), 40S ribosomal protein S8 (*RS8*), ubiquitin-conjugating enzyme E2 (*UBE2*), histone H3 (*HH3*), and peptidyl-prolyl cis-trans isomerase A (*PPIA*). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larval developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and ReFind algorithms.

Results. Of the 13 candidate genes tested, we found that *EF-1α* was the most stable internal control gene in almost all adult tissue samples investigated with *RL5* and *RL28* as secondary choices. For the normalization of a single specific tissue, we suggested that *EF-1α* and *NDUFA7* are the best combination in gonad, as well as *COX1* and *RL28* for intestine, *EF-1α* and *RL5* for kidney, *EF-1α* and *COX1* for gill, *EF-1α* and *RL28* for Leiblein and mantle, *EF-1α*, *RL5*, and *NDUFA7* for liver, *GAPDH*, *PPIA*, and *RL28* for hemocyte. From a developmental perspective, we found that *RL28* was the most stable gene in all developmental stages measured, and *COX1* and *RL5* were appropriate secondary choices. For the specific developmental stage, we recommended the following combination for normalization, *PPIA*, *RS25*, and *RL28* for stage 1, *RL5* and *RL28* for stage 2 and 5, *RL28* and *NDUFA7* for stage 3, and *PPIA* and *TUBB* for stage 4.

Discussion. Our results are instrumental for the selection of appropriately validated housekeeping genes for use as internal controls for gene expression studies in adult tissues or larval development of *R. venosa* in the future.
INTRODUCTION

Gene expression analysis has great utility in increasing our understanding of gene function that underlies all biological and developmental processes. Presently available approaches or methods to evaluate gene expression include RNA in situ hybridization, northern blotting, microarray analysis, transcriptome sequencing, and quantitative real-time PCR (qRT-PCR). Heid et al. (1996) first proposed using qRT-PCR as a novel quantitative method to detect transcript levels of genes. Recently, qRT-PCR has become a common method to analyze gene expression on account of its excellent sensitivity, specificity, reproducibility, and extensive dynamic range (Bustin et al. 2005; Kubista et al. 2006).

Despite its advantages, the quality of data obtained from using this approach is dependent on RNA quality, the efficiency of reverse transcription, and appropriate normalization (Bustin et al. 2009). Therefore, relative qRT-PCR assay necessitates internal reference controls, which are mostly housekeeping genes. Housekeeping genes are constitutive genes that express proteins necessary to maintain elementary cellular functions. Because they have no organ or tissue specificity and are not affected in pathophysiological conditions, housekeeping genes should exhibit stable expression levels under various experimental conditions and in different tissues and developmental stages (Butte et al. 2002; Eisenberg & Levanon 2003). Several housekeeping genes with relatively constant expression are considered as internal controls in qRT-PCR. These include glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein (RP), tubulin (TUB), actin (ACT), elongation factor (EF), ubiquitin (UBQ), and histone H3 (HH3) (Bangaru et al. 2012; Huggett et al. 2005; Lee et al. 2010; Ray & Johnson 2014). However, various studies have reported that internal standards, mainly housekeeping genes used in quantifying mRNA expression, exhibit variable expression levels under different tissue types, developmental stages, and environmental conditions (Stürzenbaum & Kille 2001; Thellin et al. 1999). Because selection of the appropriate internal control relies on the type of samples measured in the experiment, it is necessary to identify and characterize housekeeping genes which are essential for qRT-PCR data normalization in the experiment in question.

The veined rapa whelk Rapana venosa, which is an economically important mollusk in China, has been bred since 1992 (Yuan 1992). In France, Argentina, and the United States, R. venosa is considered an invasive pest that severely disrupts the survival of native bivalves because of its lack of human consumption (Culha et al. 2009; Giberto et al. 2006; Leppäkoski et al. 2002; Mann & Harding 2003; Mann et al. 2006). Because of its commercial importance and ecological impact, molecular research in the morphology and biology of R. venosa have been increasing, and qRT-PCR is commonly being used as the tool to study gene expression (Lusumin et al. 2008; Samadi & Steiner 2009). Housekeeping genes need to be identified and validated as reliable reference genes, however, no such prior study has been carried out in R. venosa. Thus, the objective of this reference-selection study is to evaluate 13 candidate reference genes associated with eight target tissues and 12 developmental stages in R. venosa.

MATERIALS AND METHODS

Larvae culture and sample collection

Egg capsules of R. venosa were collected naturally from Laizhou Bay, Laizhou, China. Following published methods, larvae were incubated in appropriately sized tanks at Blue Ocean Co. Limited (Laizhou, China) (Pan et al. 2013). Newly hatched pelagic larvae were transferred to 2.5 m × 2.5 m × 1.5 m tanks with a density range of 0.3–0.05 ind/mL, determined by developmental
stage. Larvae were fed a mixture of microalgae containing *Platymonas subcordiformis*, *Isochrysis galbana*, and *Chlorella vulgaris* (13.0 × 10^4 cells/mL daily). Seawater was treated by sand filtration and UV irradiation before samples were cultured. Seawater temperature was below 25 ± 1°C. Larvae samples were examined by microscope to ensure synchronous growth in developmental stages including blastula, juvenile, and adult stages. Samples were collected and washed with distilled water, frozen in liquid nitrogen, and stored at -80 °C until use. We selected five biological replicates from 12 larval stages [blastula (L), gastrula (M), trochophore (N), early intra-membrane veliger (R), mid intra-membrane veliger (S), late intra-membrane veliger (T), one-spiral whorl larvae (C), two-spiral larvae (D), early three-spiral whorl larvae (F), late three-spiral whorl larvae (G), four-spiral whorl larvae (J), and juvenile stage (Y)] and all tested tissues (gill, hemocyte, intestine, Leiblein’s gland, liver, kidney, mantle, and gonad) were aseptically dissected from five adult specimens. Hemolymph was obtained by centrifugation at 4 °C and 1,000× g for 10 min.

Total RNA extraction and cDNA synthesis

Total RNA was extracted from tissue samples of gill, intestine, Leiblein’s gland, liver, kidney, and gonad, and from larvae of different developmental stages using MiniBEST Universal RNA Extraction Kit (TaKaRa, Tokyo, Japan), and from hemocyte and mantle using RNAiso Plus (TaKaRa) according to manufacturer’s instructions. RNA integrity was confirmed by gel electrophoresis based on the predicted product size. RNA from each sample was diluted with nuclease-free water and 0.1μg RNA of each sample was used as the template for cDNA synthesis using a PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa). Prior to qRT-PCR, cDNA was diluted 10-fold.

Selection of candidate internal controls

According to RNA-seq transcriptome data of developmental samples, which were derived from stages C to Y and performed in triplicate for each stage (Song et al. 2016), genes with similar expression patterns were identified and classified to different clusters. Candidate housekeeping genes were selected from clusters exhibiting expression stability based the RPKM value in different developmental stages. In total, 13 genes were selected using a previously published RNA-seq data (Song et al. 2016).

Primer design and qRT-PCR

The primers for qRT-PCR were designed using Primer Premier 5 (PREMIER Biosoft, USA) and are listed in Table 1. qRT-PCR was performed using a SYBR Green®-real-time PCR assay consisting of a SYBRPrimeScript™ RT-PCR Kit II (TaKaRa) with a Mastercycler ®ep realplex S (Eppendorf, Hamburg, Germany). Amplifications were carried out in a total volume of 20 μL [10 μL of SYBR Green Master Mix, 0.4 μL of each forward and reverse primer (10 μmol/L), 1 μL of diluted cDNA, and 8.2 μL RNase-free water] as follows: 95 °C for 2 min followed by 40 cycles of 95 °C for 15 s, the respective annealing temperature (Tm) for 15 s, and 68 °C for 20 s. The Tm for *GAPDH*, *EF-1a*, *ACT*, *COX1*, *NDUFA7*, and *RL5* is 58.5 °C, the Tm for *RL28*, *TUBB*, *RS25*, *RS8*, *UBE2*, and *PPIA* is 57.5 °C, and the Tm for *HH3* is 56.5 °C. Melting-curve analysis of the amplification products was performed and following electrophoresis each gel picture was analyzed to confirm the product by the predicted size. Each assay was performed in triplicate and Cq values were recorded for further analysis.

Analysis of gene expression stability
The expression stability of 13 candidate housekeeping genes among the different RNA samples was calculated using the Excel-based tool GeNorm v3.4 (https://genorm.cmgg.be/) and overall stability of these candidate genes was determined using RefFinder (http://fulxie.0fees.us/?type=reference&i=1). We used this suite of tools to ensure a statistically thorough analysis and robust identification of housekeeping genes for use in qRT-PCR of *R. venosa*.

GeNorm evaluates gene stability (M) of inputted genes using a statistical algorithm according to geometric averaging of multiple control genes and means pairwise variation of a gene from those remaining control genes in all provided samples. Vandesompele *et al.* (2002) proposed a value of 1.5 as a cut-off for suitability as an endogenous control, especially with heterogeneous samples such as different cell types or tissues. Based on this approach, genes with the lowest M value have the highest expression stability. The best combinations of two internal control genes with a constant level were selected by stepwise exclusion of the gene with the highest M value followed by a recalculation of new M values for all of the remaining genes (Vandesompele *et al.* 2002). In addition, GeNorm is used to determine the optimal number of housekeeping genes by pairwise number variation analysis. It computes the geometric mean of the selected genes that are expressed steadily for accurate normalization. A pairwise variation below 0.15, which is determined by \(V_n/n + 1 \), means that an added control gene (\(n + 1 \)) would not further improve the normalization factor (Vandesompele *et al.* 2002).

RefFinder is an online analysis tool, which includes GeNorm v3.4, NormFinder v20, BestKeeper v1, and delta CT, that is used to avoid one-sidedness and the potential limitations of relying on a single tool or algorithm for stability analysis to identify reference genes of interest (Pfaffl *et al.* 2004). Andersen *et al.* (2004) developed NormFinder to estimate both overall and subgroup variation of the sample set of candidate genes for normalization factors (NFs) in a gene expression study. Three candidate housekeeping genes and two tested samples per group are required to set the minimum input data. Raw Cq values are first log-transformed and used as input. Random co-regulated genes would not bias the results of the software. NormFinder ranks the best candidate reference genes according to the lowest expression stability values and the lowest variation values by combining intra- and inter-group variability.

BestKeeper calculates descriptive statistics of the Cq values and Pearson correlation coefficient (Pfaffl *et al.* 2004). Internal control genes with stable expression for use as a housekeeping gene are identified based on highly correlated expression levels. The correlation between each candidate reference gene and the BestKeeper index, which is determined by calculating the geometric mean of the Cq values of the candidate genes, is estimated by the Pearson correlation coefficient (\(r \)), the coefficient of determination (\(r^2 \)), and P value. BestKeeper ranks the candidate housekeeping genes according to Cq variation, which is displayed as standard deviation (SD), \(r \), and as \(r^2 \) with the BestKeeper index value. An SD threshold value less than 1.0 is recommended by Pfaffl *et al.* (2004) and the closer \(r^2 \) is to 1, the better.

RESULTS

Selection of housekeeping genes to be used as internal controls

Eight different subclusters that exhibited various gene expression patterns were identified. Genes that have similar gene expression patterns were evaluated based on their correlation and classified as a single subcluster (Fig. 1). We found that each subcluster had between 179 and 8222 genes. The gene expression patterns of subclusters 1 and 8 were highly variable in six developmental
stages, whereas genes in subclusters 2, 3, and 4 indicated the greatest expression stability. Therefore, genes from these latter subclusters were selected as eligible candidate housekeeping genes. *TUBB*, which is a common housekeeping gene already used as an internal control, was selected from subcluster 2. *ACT*, *UBE2*, and *GAPDH* were selected from subcluster 3, while the other nine candidate housekeeping genes were from subcluster 4.

Real-time PCR amplification of housekeeping genes

Single peaks of the melting curves in different samples confirmed primer accuracy and gene-specific amplification (Fig. S1). In addition, agarose gel electrophoresis exhibited a single band for each amplified gene and PCR product were confirmed based on the expected size.

Gene expression stability analysis in tissues

In our study, we identified 13 candidate reference genes and tested them for expression stability in eight different tissues, specifically, gill, hemocyte, intestine, Leiblein’s gland (Leiblein), liver, kidney, mantle, and gonad from five adult individuals.

We analyzed the raw quantification cycle data (Cq values) obtained from qRT-PCR and the determined variation among these candidate housekeeping genes in trial samples. In all tissues, we found that the average Cq values of the 13 genes ranged from 14.71 to 33.45 (Table 2). We found that *COX1* had the lowest mean Cq values, which represent the highest expression levels, both in all tissues and in individual tissues, whereas HH3 had the highest mean Cq values, which indicates the lowest expression levels, in various tissues with the exception of the mantle. We found that each housekeeping gene displayed minor variability in its expression level in the various tissues under the same conditions. According to computed values of standard error (SE), we found that *RL28* (SE = 0.37), *EF-1α* (SE = 0.38), *NDUFA7* (SE = 0.39), and *RS25* (SE = 0.39) have the least varying transcript abundance values when all of the tissues were analyzed together; however, we found that different housekeeping genes displayed variable levels of transcript abundance in different tissues. The genes with the lowest SE in the eight tissues examined was *RS25* (SE = 0.26) in gill, *TUBB* (SE = 0.35 and SE = 0.72) in hemocyte and Leiblein respectively, *HH3* (SE = 0.44) in intestine, *RL5* (SE = 0.44) and *RL28* (SE = 0.42) in liver, *PPIA* (SE = 0.56) in kidney, *ACT* (SE = 0.44) and *RS25* (SE = 0.45) in mantle, and *EF-1α* (SE = 0.46) and *NDUFA7* (SE = 0.47) in gonad. These findings demonstrate that no single candidate housekeeping gene is expressed at a stable level on the basis of Cq value only in these eight tissues from different adult *R. venosa* samples, and therefore, it is necessary to select better-suited housekeeping genes using additional statistical analyses.

The GeNorm-derived M values of candidate housekeeping genes in all tissues and for each tissue are shown in Fig. 2. We found that *EF-1α* and *RL5* (both M = 0.52) showed the highest stability in all tissues as well as in gonad, kidney, and liver. However, we found that *EF-1α* and *RL28* were the best combination of two internal control genes for gill, intestine, and mantle, whereas the best control gene pairs for hemocyte and Leiblein were *PPIA* and *HH3*, and *RL28* and *UBE2*, respectively. These results indicate that *EF-1α*, *RL5*, and *RL28* are the most appropriate internal control genes for most tissues.

Fig. 2 also shows a ranking of the stability values calculated by NormFinder for tissue-specific housekeeping genes. The best housekeeping genes on the basis of all tissues together was *EF-1α* with a stability value of 0.63 as well as in Leiblein and mantle (0.16 and 0.10, respectively), whereas in the gill and intestine it was *COX1* (0.08 and 0.20, respectively), in hemocyte and gonad it was *RL28* (0.68 and 0.84, respectively), and in liver and kidney it was both *RL5* and *EF-1α* (both
showed different expression states in each stage under the same condition. The gene with the abundance when all stages were analyzed together. However, the tested housekeeping genes and lowest SE value for each of the five stages is constant (Table S1). According to computed SE values, we found that EF-1α was the most stably expressed gene in all tissues together and in most separate tissues, namely, gill, Leiblein, mantle, gonad, and kidney, although EF-1α and RL5 had the same rank position in kidney. In addition, RL5 was the best gene in hemocyte, whereas COX1 and PPIA were ideal for intestine and liver, respectively. Therefore, based on our findings with r, EF-1α was the most stable housekeeping gene in most tissue samples.

Gene expression stability analysis in developmental stages

In this study, using five specimens, we identified 13 candidate reference genes and tested them for expression stability in 12 different developmental larval stages. For data description and display in tables and figures, we merged these 12 developmental larval stages into five groups/stages according to their developmental characteristics: stage 1 (L, M, N); stage 2 (R, S, T); stage 3 (C, D, F); stage 4 (G, J); and stage 5 (Y).

We analyzed the Cq values obtained from qRT-PCR and calculated variation among the candidate housekeeping genes evaluated in the samples. In all stages combined, the average Cq of the 13 genes ranged from 19.26 to 30.36 (Table 5). We found that EF-1α and COX1 had the lowest mean Cq values, which represented the highest expression level, in both the total for all stages and separately for each of the five stages, whereas we found that HH3 had the highest mean Cq values in all of the different stages, which indicates it had the lowest expression levels. Interestingly, stages 1 and 2 showed more variation in gene expression compared to that found in the other stages, and that integral Cq values decreased gradually from stage 1 to stage 3 and were then constant (Table S1). According to computed SE values, we found that HH3 (SE = 0.32), EF-1α and NDUF47 (both SE = 0.34), and GAPDH (SE = 0.35) had the least varying transcript abundance when all stages were analyzed together. However, the tested housekeeping genes showed different expression states in each stage under the same condition. The gene with the lowest SE value for each of the five stages is RL28 (SE = 0.31) and COX1 (SE = 0.32) in stage 1, PPIA (SE = 0.62) in stage 2, TUBB and RS25 (both SE = 0.15) in stage 3, PPIA and TUBB (both SE = 0.10) in stage 4, and RS25 (SE = 0.19) in stage 5. These findings illustrate that no single candidate housekeeping gene was expressed at a stable level on the basis of Cq value only across five stages from different *R. venosa* larvae samples, and therefore, further statistical analyses were required to identify the best housekeeping genes.

GeNorm-derived M values of the candidate housekeeping genes for all stages together and stage-specific are shown in Fig. 3. COX1 and RL28 (both M = 0.34) have the highest stability in all the stages together. However, we found that UBE2 and PPIA were the most suitable combination of two internal controls for stage 1, RL5 and RL28 were optimal for stage 2, NDUF47 and RL28 in stage 3, RS25 and PPIA in stage 4, and COX1 and RL5 in stage 5. These results indicate that RL28 is the most appropriate internal control gene for most of the different stages examined. In addition, Fig. 3 shows the ranked stability value calculated by NormFinder of the tested candidate housekeeping genes, and we found that the best housekeeping gene for all combined stages was RL28 with a stability value of 0.188. It was also the best gene for stages 1 and 3 (0.277 and 0.228, respectively), whereas RL5 was the best gene for stages 2 and 5 with...
respective stability values of 0.142 and 0.112, and TUBB (0.022) for stage 4. Based on these findings, RL28 and RL5 are the appropriate stable internal control genes for most developmental stages.

Based on SD values generated from BestKeeper, we found that various housekeeping genes manifested major differences in expression in each stage (Tables 6 and 4). We identified HH3 as the best gene for all stages together, whereas the best stage-specific genes were RL28 for stage 1, NDUFA47 for stage 2, TUBB for stage 3, and RS25 for stages 4 and 5. However, when ranking by r, we found that RL28 was the most stably expressed gene when all stages were combined and for stage 3 with PPIA, RL5, TUBB, and GAPDH being the ideal genes for stages 1, 2, 4, and 5, respectively.

Determination of the optimal number of internal controls for normalization

In regards to the tissue-specific pairwise variation calculated by GeNorm (Fig. 4), we found that in most tissues (gill, gonad, intestine, Leiblein, kidney, and mantle) the V4/5 value of 0.141 indicated EF-1α and RL5 are insufficient for normalization and that RL28 and NDUFA47 should be included; however, the V2/3 value was under 0.15, which suggests two internal control genes were sufficient. In liver, the V2/3 value (0.148) was comparable to the cut-off value although the V3/4 value (0.092) was sufficiently low, which indicates the inclusion of a third reference gene is needed to improve stability of normalization (Fig.S2). We found that none of the pairwise variations determined before V10/11 was less than 0.15 in hemocyte, and therefore, over 10 genes are suitable as reference genes based on the determined conditions (Figure S4). In terms of pairwise variation for all developmental stages (Fig. 4), we found that the V2/3 value was below threshold (0.15), which suggests RL28 and COX1 (on the basis of the M value) are sufficient for normalization, and that inclusion of an additional reference gene is not required in most stages with the exception of stage 1. We found in stage 1 that the V2/3 value exceeds threshold, whereas V3/4 is below threshold, which indicates the necessity of adding a third reference gene (RS25 based on M value) to improve the robustness of normalization (Fig.S3).

DISCUSSION

The commercial importance and ecological role of R. venosa have driven increased molecular research towards investigating the morphology and biology of this organism, which may commonly use qRT-PCR as a tool to study gene expression (Lusumin et al. 2008; Samadi & Steiner 2009). It is imperative to study the expression patterns of specific genes in different larval developmental stages and adult tissues in R. venosa, and qRT-PCR is a demonstrably powerful tool to analyze such gene expression. Nevertheless, internal controls are critical to obtain reliable normalization of gene expression, and in turn, robust results from qRT-PCR analysis. The ideal internal control gene is characterized by stable expression across different environmental conditions and physiological states, such as different developmental stages and tissue types. However, according to findings from many related studies, housekeeping genes have variable expression changing under different experimental conditions. Thus, no gene has stable expression under all experimental conditions. As a consequence, using a single control gene in all experimental conditions could influence the accuracy of normalization of gene expression results (Jain et al. 2006). Therefore, evaluating the level of candidate housekeeping genes is a vital preliminary effort to reliably quantifying target genes by qRT-PCR (Bustin 2009; Dheda et al. 2005). Prior to our study, there has been no published finding of research that has examined the suitability of potential housekeeping genes for gene expression analysis in R. venosa. We selected
We found from comprehensive analysis using GeNorm, NormFinder, and BestKeeper in eight different tissues analyzed together that EF-1α was the most stable internal control gene followed by RL28. According to the pairwise variation calculated by GeNorm, two additional genes should be added for normalization. Based on the rank determined by NormFinder and BestKeeper, RS8 and RS25 are the most appropriate internal controls; however, RL5 and NDUFA7 are determined to be the most appropriate internal controls based on GeNorm. Considering these findings, we conclude that EF-1α, RL28, RL5, and RS8 are the most stable gene combination for R. venosa tissues. EF-1α belongs to the G-protein family, which has a significant influence in protein translation (Browne & Proud 2002; Ejiri 2002). EF-1α was the most stable reference gene in studies of disk abalone exposed to tributyltin chloride and 17β-estradiol (Wan et al. 2011), in Atlantic salmon (Nilsen et al. 2005), during larval development in flatfish (Infante et al. 2008), in hemocytes of flat oyster Ostrea edulis (Morga et al. 2010), and in different stages of gametogenesis in the mussel, Mytilus edulis (Cuberoleon et al. 2012). RL5 and RL28 belong to the large subunit ribosomal protein family, while RS8 and RS25 belong to the small subunit family, and they are present in all cell types involved in biogenesis of new proteins. Studies found that RL5 was the most stable gene in all tissues in red abalone (López-Landavery et al. 2014) and in disk abalone following exposure to tributyltin chloride and 17β-estradiol (Wan et al. 2011). The other genes relating to ribosomal protein biosynthesis are commonly considered as housekeeping genes in many other organisms, including animals, plants, and algae (Barsalobres-Cavallari et al. 2009; Hsiao et al. 2001; Liu et al. 2012). RL7 and RS18 maintain considerable expression stability in both OsHV-1 infected and uninfected pacific oyster larvae (Du et al. 2013). RS18 was the most stable gene in Mya arenaria after Vibrio splendidus 7SHRW challenge (Mateo et al. 2010) and in the intestine of the sea cucumber, Apostichopus japonicas, during normal growth and aestivation (Zhao et al. 2014).

In addition, using GeNorm, NormFinder, and BestKeeper we identified tissue-specific expression levels of 13 candidate internal controls in eight different tissues to determine the most stable gene for each tissue type. We found that EF-1α and NDUFA7 are the best combination for normalization in gonad. For gill, EF-1α and COX1 are the best combination. COX1, which is encoded from an approximately 650 bp fragment of the mitochondrial gene, is used to identify animals and plants (Evans et al. 2007), but has been rarely used as an internal control of gene expression (Kaweessi et al. 2014). However, in this study, we found it demonstrates relatively stable expression and in fact can be the secondary internal control for R. venosa tissues and developmental stages. In addition, we identified COX1 and RL28 for intestine, EF-1α and RL5 for kidney, and EF-1α and RL28 for Leiblein and mantle. For liver, we determined from our analysis that at least three internal controls are required for reliable normalization, which are EF-1α, RL5, and NDUFA7. In regards to hemocyte, we determined based on pairwise variation that more than 10 genes should be used as reference genes, and therefore, we proposed using as many internal controls available including GAPDH, PPIA, and RL28. Because of our comprehensive assessment, it is evident that EF-1α is a good housekeeping gene as an internal control in most R. venosa tissues and for a particular tissue, we recommend including additional corresponding housekeeping genes to improve stability.
Comprehensive analysis using GeNorm, NormFinder, and BestKeeper combining different developmental stages in *R. venosa* identified *RL28* and *RL5* as the most stable gene combination for normalization, a finding that is supported from an assessment of the pairwise variation. In contrast, three genes are required for normalization in stage 1, namely, *PPIA*, *RS25*, and *RL28*. *PPIA* has been used as an internal control on account of its stable expression in milk somatic cells under healthy and disease status (Jarczak et al. 2014). Furthermore, *PPIA* was also found to be a stable reference gene in the mammary gland of goats, murines, and bovines (Bonnet et al. 2013; Boutinaud et al. 2004; Robinson et al. 2007). With the exception of stage 1, the other four stages require two genes for normalization, specifically, *RL5* and *RL28* for stage 2 and stage 5, *RL28* and *NDUFA7* for stage 3, and *PPIA* and *TUBB* for stage 4. Both α-tubulin (*TUBA*) and *TUBB* belong to the tubulin family of proteins, and are considered suitable internal controls in research because of their high expression stability. *TUBB* was found to be the most stable gene in different developmental stages of *Hippoglossus hippoglossus* (Fernandes et al. 2008) and in goat follicles (Costa et al. 2012). In addition, two isoforms of *TUBB* (*TUB1* and *TUB5*) are used as control genes in *Striga hermonthica* (Fernández-Aparicio et al. 2013). Interestingly, in the current study, we found that *TUBB* showed significantly different expression stability in *R. venosa*. *TUBB* was the least stable gene when all tissues and stages were assessed together as well as in gonad and gill, whereas in contrast it was the most stable gene in stage 4. This difference illustrates the importance of studies such as ours to identify and evaluate species-specific housekeeping genes for qRT-PCR as differences in expression of the same gene exists between different species. Based on our findings, we determined that *RL28* was an appropriate housekeeping gene for use as an internal control for qRT-PCR during most developmental stages of *R. venosa* larvae. Furthermore, we propose that *RL5* and other specific genes can be included in normalization as needed for the corresponding developmental stage.

GAPDH, *ACT*, *UBE2*, and *HH3* are housekeeping genes that are considered as internal controls for qRT-PCR in both plants and animals. However, these genes showed unsuitability as internal controls in *R. venosa* adult tissues and larvae development in our study. *GAPDH* is expressed stably under different tissue types in *Crassostrea gigas* (Dheilly et al. 2011) and hence it was selected as internal control for qRT-PCR analysis of *R. venosa* in previous study (Song et al. 2016). According to present result, *GAPDH* is not recommended as internal control for future studies involved with *R. venosa* adult tissues and larvae development. As to *HH3*, in this study, we identified it according to GeNorm and NormFinder as the least stable gene for most tissues (intestine, kidney, Leiblein, liver, and mantle) and for stages 1 and 2. These results demonstrate that *HH3* is unsuitable to be used as an internal control in *R. venosa*.

So far, there is no ideal internal control that can be fully used for various types of samples with constant expression. Usually, housekeeping genes have variable expression changing under different conditions. As a consequence, using a single control gene in all experimental conditions could influence the accuracy of normalization of gene expression results (Jain et al. 2006). To eliminate bias and variation of these, Vandesompele et al. (2002) suggested to use three control genes to correct during normalization at least. Therefore, in order to investigate the expression of target gene, researchers should take all conditions into account, including types of sample, species, gene family and experiment conditions, and choose suitable and stable gene to normalize to acquire reliable data.

CONCLUSIONS
We identified and evaluated expression stability of 13 housekeeping genes for qRT-PCR normalization in *R. venosa* tissues and larvae developmental stages. In our assessment of tissue-specific genes, *EF-1α* was the most stable internal control gene in most tissue samples tested with *RL5* and *RL28* as suitable secondary choices. We found that *RL28* was the most stable gene when evaluating all measured developmental stages, and *COX1* and *RL5* were appropriate secondary choices. To our knowledge, this study was the first to investigate and identify optimal housekeeping genes for relative quantification of qRT-PCR in *R. venosa*. The results of this study provide not only references to estimate gene expression levels during *R. venosa* larvae developmental stages, but also enables future research efforts to measure readily and robustly tissue-specific mRNA abundance in *R. venosa*.

Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation	Description
qRT-PCR	quantitative real-time PCR
EF-1α	elongation factor-1α
ACT	α-actin
COX1	cytochrome c oxidase subunit 1
NDUFA7	nicotinamide adenine dinucleotide dehydrogenase [ubiquinone] 1 α subcomplex subunit 7
RL5	60S ribosomal protein L5
RL28	60S ribosomal protein L28
GAPDH	glyceraldehyde 3-phosphate dehydrogenase
TUBB	β-tubulin
RS25	40S ribosomal protein S25
RS8	40S ribosomal protein S8
UBE2	ubiquitin-conjugating enzyme E2
HH3	histone H3
PPIA	peptidyl-prolyl cis-trans isomerase A
Cq values	quantification cycles
Leiblein	Leiblein’s gland
REFERENCES

419 Andersen CL, Jensen JL, and TF Ø. 2004. Normalization of real-time quantitative reverse
420 transcription-PCR data: a model-based variance estimation approach to identify genes
421 suited for normalization, applied to bladder and colon cancer data sets. Cancer Research
422 64:5245-5250.
423 Bangaru MLY, Park F, Hudmon A, McCallum JB, and Hogan QH. 2012. Quantification of gene
424 expression after painful nerve injury: validation of optimal reference genes. Journal of
425 Molecular Neuroscience, 46:497-504.
426 Barsalobres-Cavallari CF, Severino FE, Maluf MP, and Maia IG. 2009. Identification of suitable
427 internal control genes for expression studies in Coffea arabica under different
428 experimental conditions. BMC Molecular Biology 10:1.
429 Bonnet M, Bernard L, Bes S, and Leroux C. 2013. Selection of reference genes for quantitative
430 real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from
431 ruminants. Animal 7:1344-1353.
432 Boutinaud M, Shand JH, Park MA, Phillips K, Beattie J, Flint DJ, and Allan GJ. 2004. A
433 quantitative RT-PCR study of the mRNA expression profile of the IGF axis during
434 mammary gland development. Journal of Molecular Endocrinology 33:195-207.
435 Browne GJ, and Proud CG. 2002. Regulation of peptide-chain elongation in mammalian cells.
436 European Journal of Biochemistry 269:5360-5368.
437 Bustin SA. 2009. Why the need for qPCR publication guidelines?-The case for MIQE. Methods
438 50:217-226.
439 Bustin SA, Benes V, Nolan T, and Pfaffl MW. 2005. Quantitative real-time RT-PCR--a
440 perspective. Journal of Molecular Endocrinology 34:597-601.
441 Butte AJ, Dzau VJ, and Glueck SB. 2002. Further defining housekeeping, or "maintenance,"
442 genes focus on "A compendium of gene expression in normal human tissues".
443 Physiological Genomics 7:95-96.
444 Costa JJ, Passos MJ, Leitão CC, Vasconcelos GL, Saraiva MV, Figueiredo JR, Van dHR, and
445 Silva JR. 2012. Levels of mRNA for bone morphogenetic proteins, their receptors and
446 SMADs in goat ovarian follicles grown in vivo and in vitro. Reproduction Fertility &
447 Development 24:723-732.
448 Cuberoleon E, Ciocan CM, Minier C, and Rouchell JM. 2012. Reference gene selection for qPCR
449 in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure.
450 Environmental Science and Pollution Research 19:2728-2733.
451 Culha M, Bat L, Dogan A, and Dagli E. 2009. Ecology and distribution of the veined rapa whelk
452 Rapana venosa (Valenciennes, 1846) in Sinop peninsula (Southern Central Black Sea),
453 Turkey. Journal of Animal & Veterinary Advances 8:51-58.
454 Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW, and Zumla A.
455 2005. The implications of using an inappropriate reference gene for real-time reverse
456 transcription PCR data normalization. Analytical Biochemistry 344:141-143.
457 Dheilly NM, Lelong C, Huvet A, and Favrel P. 2011. Development of a Pacific oyster
458 (Crassostrea gigas) 31,918-feature microarray: identification of reference genes and
459 tissue-enriched expression patterns. BMC Genomics 12:468.
460 Du Y, Zhang L, Xu F, Huang B, Zhang G, and Li L. 2013. Validation of housekeeping genes as
internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. *Fish & Shellfish Immunology* 34:939-945.

Eisenberg E, and Levanon EY. 2003. Human housekeeping genes are compact. *Trends in Genetics* 19:362-365.

Ejiri S. 2002. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. *Bioscience Biotechnology & Biochemistry* 66:1-21.

Evans KM, Wortley AH, and Mann DG. 2007. An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in *Sellaphora* (Bacillariophyta). *Protist* 158:349-364.

Fernández-Aparicio M, Huang K, Wafula EK, Honaas LA, Wickett NJ, Timko MP, Depamphilis CW, Yoder JL, and Westwood JH. 2013. Application of qRT-PCR and RNA-Seq analysis for the identification of housekeeping genes useful for normalization of gene expression values during *Striga hermonthica* development. *Molecular Biology Reports* 40:3395-3407.

Fernandes JM, Mommens M, Hagen O, Babiak I, and Solberg C. 2008. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. *Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology* 150:23-32.

Giberto DA, Bremec CS, Schejter L, Schiariti A, Mianzan H, and Acha EM. 2006. The invasive rapa whelk *Rapana venosa* (Valenciennes 1846): Status and potential ecological impacts in the Río de la Plata estuary, Argentina-Uruguay. *Journal of Shellfish Research* 919-924.

Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, and Haverty P. 2001. A compendium of gene expression in normal human tissues. *Physiological Genomics* 7:97.

Huggett J, Dheda K, Bustin S, and Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. *Genes & Immunity* 6:279-284.

Infante C, Matsuoka MP, Asensio E, Cañavate JP, Reith M, and Manchado M. 2008. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. *BMC Molecular Biology* 9:28.

Jain M, Nijhawan A, Tyagi AK, and Khurana JP. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. *Biochemical & Biophysical Research Communications* 345:646-651.

Jarczak J, Kaba J, and Bagnicka E. 2014. The validation of housekeeping genes as a reference in quantitative Real Time PCR analysis: application in the milk somatic cells and frozen whole blood of goats infected with caprine arthritis encephalitis virus. *Gene* 549:280.

Kaweesi T, Kawuki R, Kyaligonza V, Baguma Y, Tusiiime G, and Ferguson ME. 2014. Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load. *Virology Journal* 11:216.

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögren B, and Strömblom L. 2006. The real-time polymerase chain reaction. *Molecular Aspects of Medicine* 27:95-125.

López-Landaveray EA, Portillo-López A, Gallardo-Escárate C, and Del Río-Portilla MA. 2014. Selection of reference genes as internal controls for gene expression in tissues of red
abalone *Haliotis rufescens* (Mollusca, Vetigastropoda; Swainson, 1822). *Gene* 549:258-265.

Lee JM, Roche JR, Donaghy DJ, Thrush A, and Sathish P. 2010. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (*Lolium perenne* L.). *BMC Molecular Biology* 11:1-14.

Leppäkoski E, Gollasch S, and Olenin S. 2002. Invasive aquatic species of Europe. Distribution, Impacts and Management. Springer, Netherlands.

Liu C, Wu G, Huang X, Liu S, and Cong B. 2012. Validation of housekeeping genes for gene expression studies in an ice alga *Chlamydomonas* during freezing acclimation. *Extremophiles Life under Extreme Conditions* 16:419-425.

Lusumin, Zhenmin, Xiaoli, Chunhua, Fang, and Jianguang. 2008. mRNA differential display on gene expression in settlement metamorphosis process of *Ruditapes philippinarum* larvae. *High Technology Letters (English Edition)*:332-336.

Mann R, Harding JM. 2003. Salinity tolerance of larval *Rapana venosa*: implications for dispersal and establishment of an invading predatory gastropod on the North American Atlantic coast. *The Biological Bulletin* 204:96-103.

Mann R, Harding JM, and Westcott E. 2006. Occurrence of imposex and seasonal patterns of gametogenesis in the invading veined rapa whelk *Rapana venosa* from Chesapeake Bay, USA. *Marine Ecology Progress* 310:129-138.

Mateo DR, Greenwood SJ, Araya MT, Berthe FC, Johnson GR, and Siah A. 2010. Differential gene expression of gamma-actin, Toll-like receptor 2 (TLR-2) and interleukin-1 receptor-associated kinase 4 (IRAK-4) in *Mya arenaria* hemocytes induced by in vivo infections with two *Vibrio splendidus* strains. *Developmental & Comparative Immunology* 34(7):710-714.

Mimida N, Kidou S, and Kotoda N. 2007. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of like heterochromatin protein 1 affects flowering time and whole-plant growth in transgenic *Arabidopsis*. *Molecular Genetics and Genomics* 278:295-305.

Morga B, Arzul I, Faury N, and Renault T. 2010. Identification of genes from flat oyster *Ostrea edulis* as suitable housekeeping genes for quantitative real time PCR. *Fish & Shellfish Immunology* 29:937-945.

Nielsen TO, Jordal A-E0, Lie KK, Olsvik PA, and Ivar H. 2005. Evaluation of potential reference genes in real-time RT-PCR studies of *Atlantic salmon*. *BMC Molecular Biology* 6:21.

Pan Y, Qiu T, Zhang T, Wang P, and Ban S. 2013. Morphological studies on the early development of *Rapana venosa*. *Journal of Fisheries of China* 37:1503-1512.

Pfaffl MW, Tichopad A, Prgomet C, and Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. *Biotechnology Letters* 26:509-515.

Ray DL, and Johnson JC. 2014. Validation of reference genes for gene expression analysis in olive (*Olea europaea*) mesocarp tissue by quantitative real-time RT-PCR. *BMC Research Notes* 7:1-12.

Robinson TL, Sutherland IA, and Sutherland J. 2007. Validation of candidate bovine reference genes for use with real-time PCR. *Veterinary Immunology & Immunopathology* 115:160-165.

Samadi L, and Steiner G. 2009. Involvement of Hox genes in shell morphogenesis in the
encapsulated development of a top shell gastropod (*Gibbula varia* L.). *Development Genes and Evolution* 219:523-530.

Song H, Yu ZL, Sun LN, Xue DX, Zhang T, and Wang HY. 2016. Transcriptomic analysis of differentially expressed genes during larval development of *Rapana venosa* by digital gene expression profiling. *G3-Genes Genomes Genetics* 6:2181-2193.

Stürzenbaum SR, and Kille P. 2001. Control genes in quantitative molecular biological techniques: the variability of invariance. *Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology* 130:281-289.

Thellin O, Zorzi W, Lakaye B, De BB, Coumans B, Hennen G, Grisar T, Igout A, and Heinen E. 1999. Housekeeping genes as internal standards: use and limits. *Journal of Biotechnology* 75:291-295.

Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, and Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* 3.

Wan Q, Whang I, Choi CY, Lee JS, and Lee J. 2011. Validation of housekeeping genes as internal controls for studying biomarkers of endocrine-disrupting chemicals in disk abalone by real-time PCR. *Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology* 153:259-268.

Wang Q, Zhang L, Zhao J, You L, and Wu H. 2012. Two goose-type lysozymes in *Mytilus galloprovincialis*: possible function diversification and adaptive evolution. *PLoS One* 7: e45148.

Yuan C-Y. 1992. Primary exploration on aquaculture of *Rapana venosa*. *Fisheries Science* 9:005.

Zhao Y, Chen M, Wang T, Sun L, Xu D, and Yang H. 2014. Selection of reference genes for qRT-PCR analysis of gene expression in sea cucumber *Apostichopus japonicus* during aestivation. *Chinese Journal of Oceanology and Limnology* 32:1248-1256.
Table 1 Candidate housekeeping genes and their primer sequences for qRT-PCR.

Accession	Gene name	Gene symbol	Biological function	Primer sequence (5′-3′)	Tm (℃)	Product size (bp)	Efficiency (%)
c85865_g1	Elongation factor-1α	EF-1α	Essential component of the eukaryotic translational apparatus	f: CGAGATCAAGGAGAAGTGC	58.5	182	101.4
				r: CAACGGTCTGGCTATGCA			
c154556_g1	α-actin	ACT	Cytoskeletal structural protein	f: CGAGAACAGGTACACGCAA	58.5	166	97.5
				r: GTTGAGGACATGCGAAGCT			
c104226_g1	Cytochrome c oxidase subunit 1	COX1	Respiratory electron transport chain of mitochondria	f: CTCTGATATAGCCTTCCGT	58.5	165	97.7
				r: CTACAGAACCACACGACAG			
c205682_g1	Nicotinamide adenine dinucleotide dehydrogenase [ubiquinone] 1 α complex subunit 7	NDUFA7	Electron transport in the respiratory chain	f: GGGAGACGGGAAAAACTTGAC	58.5	152	99.8
				r: AGGGAGGTCAGCAATGCA			
c121877_g2	60S ribosomal protein L5	RL5	60S ribosomal subunit	f: CTGCCCTTGACTCCTGCG	58.5	184	96.0
c64332_g1	60S ribosomal protein L28	RL28	60S ribosomal subunit	f: CGTGCTAAACACAAAGAAGA	57.5	151	102.4
				r: CACCACAGCTACACACTT			
c149072_g1	Glyceraldehyde 3-phosphate dehydrogenase	GAPDH	Glycolytic enzyme	f: CTCTACCTAGTCAAAGCTCA	58.5	138	97.6
				r: AATGCGACCCACATCAGA			
c150134_g1	β-tubulin	TUBB	Structural protein	f: CACTTTCCTGGGCAAACCTC	57.5	170	96.0
				r: ACTCGGACACGTCGT			
c64251_g1	40S ribosomal protein S25	RS25	40S ribosomal subunit	f: ACAAGATGCTGAGGAGG	57.5	224	99.3
				r: ACCGCAAGACAATGAAAA			
c112836_g1	40S ribosomal protein S8	RS8	40S ribosomal subunit	f: TGGTGAAAGTCTGACAGT	57.5	111	97.6
				r: CCTGGGGCTGACAGTTGA			
c68556_g1	Ubiquitin-conjugating enzyme E2	UBE2	Protein degradation	f: TTCTGTGACACTTGCTT	57.5	378	100.3
				r: CCTTCTCCCTCACATTCTT			
c105544_g1	Histone H3	HH3	Essential structure of nucleosome	f: TACAGGCACTGACAGTT	56.5	366	99.0
				r: CCAGGAAAATGAAGGACAGA			
c45955_g1	Peptidyl prolyl cis-trans isomerase A	PPIA	Immuno-regulation	f: ATCGAAACACGCTTCTTT	57.5	235	97.8
				r: CCAAACCTTCTCACCAG			
Table 2 **Tissue-specific expression profiles of candidate reference genes.** Data are shown as raw Cq values and represented as mean ± standard error (SE).

Gene	All tissues	Gill	Hemocyte	Intestine	Leiblein	Liver	Kidney	Mantle	Gonad
EF-1α	20.70 ± 0.38	19.14 ± 0.36	21.81 ± 0.74	23.00 ± 1.35	22.48 ± 0.92	20.35 ± 0.46	20.73 ± 0.68	16.98 ± 0.61	21.09 ± 0.46
ACT	26.50 ± 0.47	25.20 ± 0.45	28.51 ± 0.77	29.24 ± 1.35	28.24 ± 0.85	26.88 ± 0.52	26.56 ± 0.73	20.57 ± 0.44	26.80 ± 0.55
COX1	19.26 ± 0.41	17.36 ± 0.31	20.39 ± 0.97	21.47 ± 1.25	21.49 ± 0.91	18.57 ± 0.56	19.10 ± 0.77	15.36 ± 0.48	20.32 ± 0.68
NDUFA7	26.92 ± 0.39	24.69 ± 0.32	28.42 ± 0.79	29.49 ± 1.19	28.48 ± 1.00	26.54 ± 0.56	27.40 ± 0.60	23.41 ± 0.73	26.94 ± 0.47
RL5	23.14 ± 0.41	21.92 ± 0.42	24.19 ± 0.81	25.91 ± 1.45	24.57 ± 0.95	22.83 ± 0.44	23.89 ± 0.67	18.74 ± 0.58	23.05 ± 0.53
RL28	22.59 ± 0.37	21.47 ± 0.41	23.65 ± 0.52	24.96 ± 1.19	24.18 ± 0.87	22.13 ± 0.42	23.42 ± 0.75	18.63 ± 0.58	22.31 ± 0.61
GAPDH	24.14 ± 0.42	21.60 ± 0.44	24.18 ± 0.71	26.95 ± 1.11	24.98 ± 0.95	24.19 ± 0.54	24.72 ± 0.59	20.11 ± 0.63	26.44 ± 0.84
TUBB	25.95 ± 0.43	23.16 ± 0.58	26.72 ± 0.35	25.78 ± 1.37	24.95 ± 0.72	23.42 ± 0.78	26.08 ± 0.80	28.00 ± 0.71	29.48 ± 1.33
PPIA	25.56 ± 0.41	24.43 ± 0.35	26.15 ± 0.57	28.41 ± 1.19	26.74 ± 1.03	24.78 ± 0.72	25.32 ± 0.56	21.67 ± 0.71	26.99 ± 1.20
RS25	24.95 ± 0.39	24.27 ± 0.26	24.95 ± 0.42	27.18 ± 1.39	26.22 ± 0.91	24.42 ± 0.62	25.70 ± 0.80	20.59 ± 0.45	26.30 ± 0.82
UBE2	26.75 ± 0.48	24.49 ± 0.46	26.60 ± 0.79	29.71 ± 1.46	28.58 ± 0.85	26.65 ± 0.57	27.19 ± 1.11	22.09 ± 0.88	28.67 ± 1.18
RS88	24.15 ± 0.43	22.95 ± 0.61	24.45 ± 0.77	26.74 ± 1.52	25.80 ± 0.79	23.50 ± 0.57	24.57 ± 0.85	19.81 ± 0.55	25.42 ± 0.97
HH3	30.36 ± 0.41	28.45 ± 0.42	30.13 ± 0.69	32.84 ± 0.44	32.25 ± 0.80	30.58 ± 0.53	30.48 ± 0.78	26.04 ± 1.05	32.14 ± 0.93
Table 3 **Ranking of candidate reference genes in order of expression stability calculated by BestKeeper for different tissues.** Data shown as Pearson correlation coefficient (r) and standard deviation (SD).

Rank	All tissues	Gill	Hemocyte	Intestine	Leiblein	Liver	Kidney	Mantle	Gonad												
	SD	r																			
1	RL28	EF-1α	RS25	EF-1α	TUBB	RL5	HH3	COX1	TUBB	EF-1α	RL28	PPIA	PPIA	EF-1α	RS25	EF-1α	NDUFA	7	EF-1α	7	
2	EF-1α	RS8	COX1	RS8	RS25	RL28	GAPDH	TUBB	RS8	RL28	GAPDH	RL5	GAPDH	RL5	COX1	RL5	EF-1α	RS8			
3	RS25	RL28	NDUFA	7	RL28	GAPDH	NDUFA	7	RL5	COX1	UBE2	RL5	NDUFA	7	NDUFA	7	UBE2	ACT	COX1	RL5	RL28
4	RL5	RL5	EF-1α	RL5	PPIA	EF-1α	RL28	EF-1α	ACT	RL5	EF-1α	EF-1α	RL5	PPIA	RL28	PPIA	ACT	RL5			
5	NDUFA	7	COX1	PPIA	COX1	RS8	ACT	PPIA	RL28	UBE2	GAPDH	HH3	COX1	RL28	NDUFA	7	RL5	RL28	COX1	COX1	
6	PPIA	UBE2	ACT	PPIA	EF-1α	NDUFA	7	COX1	PPIA	RL28	TUBB	UBE2	RS8	EF-1α	ACT	EF-1α	UBE2	RL28	PPIA		
7	HH3	PPIA	HH3	ACT	ACT	RS8	ACT	RS25	RS25	RS8	RS8	RL28	ACT	RL28	RS8	NDUFA	7	RS25	ACT		
8	RS8	RS25	RL28	HH3	GAPDH	COX1	EF-1α	UBE2	NDUFA	7	NDUFA	7	ACT	RS25	HH3	RS25	GAPDH	RS8	HH3	HH3	
9	GAPDH	NDUFA	7	RL5	UBE2	HH3	PPIA	RS25	ACT	GAPDH	RS25	NDUFA	7	ACT	TUBB	COX1	PPIA	HH3	GAPDH	UBE2	
10	COX1	GAPDH	GAPDH	NDUFA	7	RL5	HH3	TUBB	GAPDH	EF-1α	ACT	COX1	TUBB	RS25	GAPDH	TUBB	GAPDH	RS8	NDUFA	7	
11	TUBB	ACT	UBE2	RS25	NDUFA	7	UBE2	RL5	RS8	HH3	COX1	RS25	UBE2	COX1	RS8	NDUFA	7	RS25	UBE2	RS25	
12	ACT	HH3	TUBB	GAPDH	UBE2	RS25	NDUFA	7	RL5	PPIA	TUBB	GAPDH	RS8	TUBB	UBE2	TUBB	PPIA	GAPDH			
13	UBE2	TUBB	RS8	TUBB	COX1	TUBB	RS8	HH3	PPIA	HH3	PPIA	HH3	UBE2	HH3	ACT	TUBB	TUBB	TUBB	TUBB		

Manuscript to be reviewed
Table 4 Results from BestKeeper descriptive statistical analysis and BestKeeper regression analysis in different tissues and developmental stages (correlation coefficients between each control gene Cq and the BestKeeper Index). Geo Mean represents Geometric mean while AR Mean represents Arithmetic mean [Cq]. Tissues and developmental stages are represented as T and D, respectively.

Gene	EF-1α	ACT	GAPDH	NDUFA7	RL5	RL28	TUBB	PPIA	RS25	UBE2	RS8	HH3														
n	60	60	60	60	60	60	60	60	60	60	60	60														
Geo Mean [Cq]	20.56	18.95	26.33	24.39	19.09	19.09	26.81	25.88	22.99	22.74	22.47	22.63	24.00	22.79	25.81	22.70	25.43	25.36	24.83	25.25	26.58	26.74	24.01	24.17	30.25	28.40
AR Mean [Cq]	20.70	19.12	26.50	24.61	19.26	19.29	26.92	26.00	23.14	22.91	22.59	22.80	24.14	22.93	25.95	23.09	25.56	25.50	24.95	25.44	26.75	26.90	24.15	24.39	30.36	28.51
min [Cq]	15.79	15.89	19.33	20.50	14.24	14.71	22.13	22.60	17.54	18.80	17.39	18.85	18.13	18.81	21.64	17.63	19.96	21.45	19.63	21.02	20.87	22.79	18.65	19.62	23.56	24.72
max [Cq]	27.26	25.67	33.86	32.70	25.34	25.40	32.45	32.41	30.57	29.67	28.72	28.76	29.84	29.89	32.73	33.20	31.46	32.15	33.62	32.85	31.61	31.89	34.08	33.45		
SD [± Cq]	1.88	2.30	2.24	2.98	2.11	2.52	1.93	2.27	1.90	2.54	1.79	2.59	2.09	2.34	2.17	3.79	1.99	2.39	1.88	2.81	2.39	2.74	2.07	2.99	2.66	2.20
CV [% Cq]	9.08	12.02	8.46	12.10	10.96	13.04	7.15	8.73	8.21	11.09	7.93	11.34	8.65	9.75	8.36	16.43	7.79	9.36	7.54	11.05	8.94	9.82	8.58	12.27	6.79	7.71
min [x-fold]	-27.35	-8.37	-127.64	-14.85	-28.81	-20.86	-25.66	-9.71	-43.81	-15.38	-33.88	-13.78	-58.46	-15.73	-18.02	-33.51	-44.43	-15.02	-36.79	-18.81	-52.23	-15.50	-41.00	-23.48	-103.17	-12.86
max [x-fold]	103.71	105.07	185.34	316.90	76.20	79.21	49.82	92.41	190.90	121.70	76.00	69.80	57.31	137.63	120.96	1451.54	65.19	110.77	78.17	133.14	131.93	68.88	194.32	210.36	14.23	33.02
std dev [x ± fold]	3.68	4.92	4.73	7.87	4.32	5.72	3.80	4.82	3.73	5.82	3.46	6.01	4.25	4.71	4.50	13.87	3.98	5.24	3.69	7.02	5.24	6.24	4.20	7.96	4.17	4.59
Coeff. of corr[r]	0.96	0.98	0.92	0.98	0.95	0.99	0.99	0.99	0.99	0.95	0.99	0.95	0.99	0.95	0.99	0.95	0.99	0.94	0.98	0.94	0.99	0.99	0.99	0.99	0.99	0.99
Coeff. of det[e]²	0.93	0.95	0.84	0.96	0.90	0.98	0.97	0.97	0.90	0.98	0.91	0.99	0.97	0.91	0.99	0.93	0.88	0.96	0.88	0.98	0.90	0.97	0.92	0.98	0.75	0.75
P value	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Table 5 **Developmental stage-specific expression profiles of candidate reference genes.** Data are shown as raw Cq values and represented as mean ± standard error (SE).

Gene	All stages	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
GAPDH	22.93 ± 0.35	26.39 ± 0.54	22.83 ± 0.64	21.43 ± 0.22	21.32 ± 0.21	20.61 ± 0.48
EF-1α	19.12 ± 0.34	22.35 ± 0.39	19.59 ± 0.65	17.26 ± 0.19	17.05 ± 0.20	17.80 ± 0.51
ACT	24.61 ± 0.43	29.09 ± 0.44	25.02 ± 0.73	22.23 ± 0.22	22.38 ± 0.20	21.50 ± 0.51
COX1	19.29 ± 0.36	22.93 ± 0.32	19.71 ± 0.68	16.87 ± 0.18	17.70 ± 0.17	17.49 ± 0.33
NDUFA7	26.00 ± 0.34	29.41 ± 0.41	26.29 ± 0.58	23.90 ± 0.19	24.69 ± 0.11	23.86 ± 0.38
RL5	22.91 ± 0.37	26.73 ± 0.38	23.10 ± 0.67	20.63 ± 0.20	21.24 ± 0.11	21.07 ± 0.33
RL28	22.80 ± 0.37	26.67 ± 0.31	23.17 ± 0.64	20.33 ± 0.17	21.07 ± 0.12	21.02 ± 0.24
TUBB	23.09 ± 0.57	29.46 ± 0.66	22.82 ± 0.77	19.03 ± 0.15	20.09 ± 0.10	22.98 ± 0.28
RS25	25.44 ± 0.41	29.90 ± 0.37	25.48 ± 0.69	22.92 ± 0.15	23.52 ± 0.08	23.32 ± 0.19
RS8	24.39 ± 0.44	29.02 ± 0.45	24.55 ± 0.75	21.48 ± 0.17	22.76 ± 0.11	22.08 ± 0.37
UBE2	26.90 ± 0.38	30.83 ± 0.37	27.35 ± 0.66	24.35 ± 0.17	25.47 ± 0.11	24.22 ± 0.25
PPIA	25.50 ± 0.36	29.27 ± 0.38	25.51 ± 0.62	23.10 ± 0.22	24.57 ± 0.10	23.30 ± 0.21
HH3	28.51 ± 0.32	31.45 ± 0.33	29.17 ± 0.66	26.41 ± 0.19	27.25 ± 0.17	26.50 ± 0.30
Table 6 **Ranking of candidate reference genes in order of expression stability calculated by BestKeeper for different developmental stages.** Data shown as Pearson correlation coefficient (r) and standard deviation (SD).

Rank position	All stages	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5							
	SD	r	SD	r	SD	r	SD	r	SD	r			
1	HH3	RL28	RL28	PPIA	NDUFA7	RL5	TUBB	RL28	RS25	TUBB	RS25	GAPDH	
2	GAPDH	RL5	COX1	RL28	PPIA	RL28	RS25	NDUFA7	NDUFA7	COX1	PPIA	EF-1α	
3	NDUFA7	RS25	HH3	RS25	HH3	RS8	UBE2	RL5	TUBB	EF-1α	UBE2	RL5	
4	EF-1α	RS8	RL5	UBE2	GAPDH	COX1	RL28	COX1	UBE2	PPIA	RL28	RL28	
5	PPIA	COX1	EF-1α	RS8	UBE2	TUBB	COX1	RS8	RS8	ACT	HH3	RS25	
6	COX1	UBE2	UBE2	TUBB	EF-1α	GAPDH	RS8	RS25	PPIA	NDUFA7	TUBB	COX1	
7	RL28	NDUFA7	RS25	EF-1α	RL28	EF-1α	NDUFA7	UBE2	RL28	RL28	COX1	NDUFA7	
8	UBE2	ACT	NDUFA7	NDUFA7	COX1	NDUFA7	HH3	ACT	RL5	UBE2	RL5	ACT	
9	RS25	EF-1α	PPIA	ACT	RL5	RS25	ACT	EF-1α	EF-1α	HH3	RL5	RS8	UBE2
10	ACT	TUBB	RS8	COX1	ACT	RS25	GAPDH	HH3	ACT	GAPDH	GAPDH	TUBB	
11	RS8	GAPDH	ACT	RS8	PPIA	ACT	TUBB	EF-1α	HH3	ACT	PPIA		
12	TUBB	HH3	TUBB	HH3	TUBB	HH3	PPIA	GAPDH	GAPDH	RS8	EF-1α	RS8	

Figure 1 Clusters of genes in different developmental samples. Six developmental stages in triplicates consisting of one-spiral whorl stage (C), two-spiral whorl stage (D), early three-spiral whorl stage (F), late three-spiral whorl stage (G), four-spiral whorl stage (J), and juveniles (Y).
Figure 2: Ranking of candidate housekeeping genes in adult tissue. NormFinder (stability value, filled squares) and GeNorm [average expression stability (M value) of remaining genes, open rhombus] ranking of candidate housekeeping genes in eight tissues together and separately. A lower value indicates more stable expression.
Figure 3 Ranking of candidate housekeeping genes in developmental stages. NormFinder (stability value, filled squares) and GeNorm [average expression stability (M value) of remaining genes, open rhombus] ranking of candidate housekeeping genes in five developmental stages together and separately. A lower value indicates more stable expression.
Figure 4 Determination of the number of reference genes required for accurate normalization. Pairwise variation by GeNorm between candidate genes in tissues (black bar) and developmental stages (white bar).