Diversity of pollen collected by *kelulut* bee (*Heterotrigona itama*) from South Kalimantan

S S Hakim¹,²*, S Siswadi², R S Wahyuningtyas², W Halwany², B Rahmanto², F Lestari², H A Basiang², M S Alamsyah², A Susianto², D C Buwono², E Suryanto² and A Saad³

¹ Center for Standardization of Sustainable Forest Management Instruments, Jl. Gunung Batu No. 5, Bogor, Indonesia
² Banjarbaru Environment and Forestry Research and Development Institute, Jl. A Yani km 28.7 Landasan Ulin, Banjarbaru, Indonesia
³ Faculty of Agriculture, Jambi University, Jl. Kemajuan, Jambi, Indonesia

*E-mail: safinah.hakim@gmail.com

Abstract. Pollen is an essential source of proteins and vitamins for the bee diet. In addition, the diversity of pollen found in honey provides information about plant species that illustrate the bees foraging activity. This study aims to identify pollen in *kelulut* (*Heterotrigona itama*) beehives and identify its botanical origins. This study was conducted in two bee farming locations which are Layuh Village, Hulu Sungai Tengah Regency, and Gambah Luar Village, Hulu Sungai Selatan Regency, South Kalimantan Province. Pollen was collected from the beehives and stored in an air-tight container. Collected pollen was identified using the acetolysis method. According to this study, there were 14 pollen types found, where only 9 of them can be identified. In the first locations (Layuh Village), most pollen came from Asteraceae (38.8%) and Arecaceae (31.2%) families. While at the Gambah Luar village, pollen was dominated by those who originated from the Rubiaceae family (31.2%). This result also revealed that *Heterotrigona itama* is a multi-floral bee and has various diets consisting of fruit, ornamental, and herbaceous plants. The information generated from this study can be used as plant enrichment recommendations in the honey bee farming areas.

1. Introduction

The honey bee is one of the important Non-Timber Forest Products (NTFPs) in South Kalimantan. The availability of forest areas and plantations in South Kalimantan could support the development of honey bee farming by providing its food resources. There are three different species of stingless bee in the South cultivated by the local farmers in Kalimantan, namely *Heterotrigona (Trigona) itama*, *H. levicaps*, and *Geniotrigona thorasica*. The demand for honey produced by the stingless bee is high. Hence this NTFPs is very potential to be developed by farmers. In addition, the stingless bee is easier to cultivate and more resistant to disease than *Apis melifera* bee.

Pollen is an essential protein source for the bee that supports the bee’s colony life. In addition, pollen is also a source of amino acids, various vitamins (A, B, C, D, and E), carbohydrates, lipids, and other micronutrients [1]. A bee collects pollen from various plants and stores them in the beehives. In their foraging activity, stingless bees prefer to gain pollen and food sources near their beehives to reduce the energy used during the foraging activity and avoid the risk of environmental disturbances.
such as predator and high-temperature conditions [2, 3]. The study of pollen contained in the honey is known as Melissopalinogy [2, 4, 5]. This study aims to identify pollen in stingless bee honey and its botanical origin [6]. Indirectly, the study of Melissopalinology could provide information about plant species enrichment for honey bee farmers and ensure honey quality.

2. Materials and Methods
The research was carried out from September to December 2019. Sampling was conducted in two honey bee farming locations (Table 1), and the samples were collected during the dry season in September 2019. Pollen was collected from the beehives and stored in an airtight container. In addition, vegetation surveys were done to identify the plant species located near to bee farming location.

Table 1. Study location.

Location	Village	District	Regency	Geographical information	Altitude (m asl)	Vegetation condition	Total area (Ha)
A	Layuh	Batu	Hulu	115°28’ 37.738” E; 2°36’ 30.054” S	27	rubber plantation, agroforestry area	10
		Benawa	Sungai				
			Tengah				
B	Gambah	Kandangan	Hulu	115°16’ 18.237” E; 2°45’ 2.618” S	22	Rice field back yard garden, settlement	0.18
		Luar	Sungai				
			Selatan				

Pollen samples were sent and identified using the acetolysis method in the Palynology Laboratory of Jambi University, Jambi province [4, 6]. Acetolysis is a method of purifying and staining pollen through strong acids to identify the pollen (Figure 1). The sample in the container was diluted with warm destile water, transferred into a water bath, and heated for about 20-30 minutes up to 90°C then sieved. Next, samples were centrifuged for 4 minutes at 3500 rpm to obtain supernatant. The supernatant was added with 4 ml of acetic acid and centrifuged for 5 minutes at 3500 rpm, and then the sample was put in a beaker glass. Afterward, the supernatant was removed and then added with a mixture of acetic anhydride ((CH₃CO)₂O) and concentrated sulphuric acid (H₂SO₄) (9:1). Subsequently, the sample is shifted into the water bath with a temperature of 60°C for up to 10 minutes. Next, the tube is centrifuged again at 12,000 rpm for up to 3 minutes. Finally, the supernatant is discarded and then added aquades. A drop of this mixture was placed onto a microscope slide. Pollen microscopic slides were observed using a binocular microscope at 40x magnification.
3. Results and Discussion

Information on pollen gathered by a stingless bee could benefit farmers since it could provide information on plant species frequently visited and utilized by bee colonies. This information is needed when a farmer initiates plant enrichment to boost honey productivity. The foraging activity and plant selection were determined by several variables: season, food source availability, colony condition, food, and food source location. Furthermore, pollen preference by bees depends on color, shapes, odor, flower shapes, and size [3, 7, 8].

The Stingless bee is well known for its role as a general forager [9]. Based on the research result, it is known that stingless bee’s honey is categorized as multi-floral honey. In the first location (Layuh village), nine types of pollen were identified to family, four pollen types were identified to species level, and one type of pollen was unidentified (Table 2). Furthermore, pollen from the Asteraceae family (38.8%) dominated the pollen of stingless bees in the location, followed by pollen from Arecaceae (29.4%) and Macaranga sp. (8.4%). There are several categories of pollen frequency found in the bee honey which are categorized as very frequent pollen (>45%), frequent pollen (16-45%), isolated pollen (4-15%), and rare pollen (< 3%) [4]. Therefore, the pollen of the Asteraceae plant has become frequent pollen in the honey collected in Layuh Village. However, pollen from Dipterocarpaceae (3.6%), Avicenniaceae (2.4%), Myrtaceae (1.8%), and Malphigiaceae (2.4%) are classified as rare pollen. Moreover, this result revealed that Heterotrigona itama has various diets consisting of fruit, ornamental, and herbaceous plants.

Table 2. Pollen types found in the honey from Layuh village honey-bee farm.

Pollen type	Family	Genus/Species	Total pollen found	Percentage (%)
Type 1	Asteraceae	Unidentified	194	38.8
Type 2	Arecaceae	Arenga sp	147	29.4
Type 3	Unidentified	Unidentified	66	13.2
Type 4	Avicenniaceae	Unidentified	12	2.4
Type 5	Arecaceae	Cocos nucifera	8	1.6
Type 6	Euphorbiaceae	Macaranga sp	42	8.4
Type 7	Malphigiaceae	Lophantera longifolia	4	0.8
Type 8	Myrtaceae	Unidentified	9	1.8
Type 9	Dipterocarpaceae	Unidentified	18	3.6
Unlike the first location, fewer pollen types [5] were identified in the second location. One type was identified to species level, two types to family, and two types were unidentified (Table 3). Pollen of *Oldenlia* sp. (31.2%), unidentified pollen (22.4%), and Rubiaceae (22.2%) were considered frequent pollen. The figure of pollen is present in Figure 2.

Table 3. Pollen types found in the honey from Gambah Luar honey-bee farm.

Pollen type	Family	Genus/Species	Total pollen found	Percentage (%)
Type 1	Dipterocarpaceae	Probably Hopea sp.	21	4.2
Type 2	Rubiaceae	*Oldenlia* sp.	156	31.2
Type 3	Unidentified	Unidentified	70	14.0
Type 4	Unidentified	Unidentified	30	6.0
Type 5	Unidentified	Unidentified	112	22.4
Type 6	Rubiaceae	Unidentified	111	22.2

Figure 2. Pollen types found in a sample of honey produced by the stingless bee in South Kalimantan: (a) Asteraceae, (b) Arecaceae/Arenga sp. (c) Avicenaceae (d) *Cocos nucifera* (e) *Macaranga* sp (f) Malphigiaeae (*Lophantera longifolia*) (f) Myrtaceae (g) Dipterocarpaceae/Hopea sp. (h) Rubiaceae/ *Oldenlia* sp.
No	Layuh Village	Gambah Luar Village				
	Local name	Scientific name	Family	Local name	Scientific name	Family
1	Rumput bambu	Pogonatherum paniceum	Poaceae	Jotang	Synedrella nodiflora	Asteraceae
2	Rumput israel	Asystasia intrusa	Acanthaceae	Rumput Paitan	Conjugatum	Poaceae
3	Gewor	Commelina benghalensis	Commelinaeae	Padi	Oryza sativa	Poaceae
4	Rumput Keladingan	Scleria purpurascens	Cyperaceae	Rumput israel	Asystasia intrusa	Acanthaceae
5	Saveg	Amorphophallus paeonifolius	Araceae	Rumput teki	Cyperus rotundus	Cyperaceae
6	Sirih hutan	Piper aduncum L.	Piperaceae	Matahari kecil	Melampodium divaricatum	Compositae
7	Karet	Hevea brasiliensis	Euphorbiaceae	Aren	Arenga pinnata	Arecaleae
8	Bidara	Ziziphus mauritiana	Rhamnaceae	Sirih hutan	Piper aduncum L.	Piperaceae
9	Bunilan	Ageratum conyzoides	Asteraceae	Pacing tawar	Costus speciosus	Costaceae
10	Meniran	Phyllanthus urinaria	Euphorbiaceae	Rumput Bantak	Leersia hexandra S.	Poaceae
11	Sungkai	Peronema canescens	Verbenaceae	Pisang	Muta sp.	Musaceae
12	Mahang gajah	Macaranga gigantea	Euphorbiaceae	Nyawa	Ficus variegata	Moraceae
13	Mahang damar	Macaranga trifolia	Euphorbiaceae	Ramania	Bouea macrophylla	Anacardiaceae
14	Jualing	Micromelum minutum	Rutaceae	Sungkai	Peronema canescens	Verbenaceae
15	Pisang	Musa spp.	Musaceae	Kelapa	Cocos nucifera	Arecaleae
16	Jambu-jambu	Syzygium	Myrtaceae	Mangga	Mangifera indica	Anacardiaceae
17	Bunga kupu-kupu	Bauhinia purpurea	Fabaceae	Pinang	Areca atechu	Arecaleae
18	Tarap	Artocarpus odoratissimus	Moraceae	Sirsak	Annona muricata	Anonaceae
19	Alaban	Vitex pubescens	Verbenaceae	Tarap	Artocarpus odoratissimus	Moraceae
20	Langsat	Lansium domesticum	Meliaceae	Anggung	Trema orientalis	Urticaceae
21	Cempekak	Artocarpus integer	Moraceae	Rambutan	Nephelium lappaceum	Sapindaceae
22	Sirih hutan	Piper aduncum L.	Piperaceae	Langsat	Lansium domesticum	Meliaceae
23	Aren	Arenga pinnata	Arecaleae	Durian	Durio zibethinus	Malvaceae
24	Durian	Durio zibethinus	Malvaceae	Karet	Hevea brasiliensis	Euphorbiaceae
25	Sirak	Annona muricata	Anonaceae	Kendong	Spondias dulcis	Anacardiaceae
26	Rambai	Baccaraea motleyana	Phyllanthaceae	Nanga	Artocarpus heterophyllus	Moraceae
27	Asam	Tamarindus indica	Fabaceae	Jeruk	Citrus sp.	Rutaceae
28	Birik	Albizia procera	Fabaceae	Jengkol	Archidendron pauciflorum	Fabaceae
29	Tarap	Artocarpus integer	Moraceae	Hambawang	Mangifera foetida	Magnoliophyta
30	Kelapa	Cocos nufera	Arecaleae	Belimbing	Averrhoa carambola	Oxalidaceae
Research result reveals that two sampling locations had different vegetation composition (Table 4). The first location (Layuh village) was dominated by agroforestry plantation with several dominant plant species, namely karet (Hevea brasiliensis), sungkai (Peronema canescens), asam (Tamarindus indicus), ramania (Bouea macrophylla), meranti (Dypterocarpaceae), laban (Vitex sp.), tarap (Artocarpus odoratissimus), mahang (Macaranga gigantea), and cempedak (Artocarpus integer). While, the second location (Gambah Luar Village) consisted of a backyard plantation, rice field, and river that only drains water flow during the rainy season. The dominant plant species in the area are kelapa (Cocos nucifera), langsat (Lansium parasiticum), karet (Hevea brasiliensis), pinang (Areca catechu), and rambutan (Nepptelium lappaceum).

Subsequently, Table 4 shows that the bee farming location has diverse plant species. However, based on the pollen analysis, it is known that stingless bees only used certain plant species as food sources. Accordingly, stingless bee determines their food source plant by its distance to their nest [1]. Commonly, they will choose the closest food source to reduce the energy used during the foraging activity. In addition, choosing a close food source will reduce the risk of predators and other environmental disturbances such as heat or rain. Another study revealed that stingless bees only used less than ten plant types as their food source [8]. Those findings confirm our research results where only nine plant sources were found in the honey sample of Layuh Village and six pollen types found in the pollen sample of Gambah Luar Village. However, it needs to be underlined that the study result depends on various factors, i.e., season and duration of observation.

The Stingless bee is an important pollinator agent. It is reported that the stingless bee is a pollinator for at least 215 different families and 1434 genera of plant species in the world [8]. In addition, about 30,000–50,000 tropical plant species are visited by this insect. Plant from Asteraceae and Rubiaceae families is considered the most utilized by the stingless bee and categorized as the most frequent pollen in the honey (Table 1 and 2). Asteraceae is a plant family commonly known as an ornamental plant or herbaceous that is potentially a food source. Several plant families reported to be the most widely used by a stingless bee are Fabaceae, Asteraceae, Rubiaceae, Poaceae, Euphorbiaceae, Myrtaceae, Malvaceae, Arecaceae, Solanaceae, and Anacardiaceae [8, 10]. Besides being beneficial for the environment, stingless bees also benefited farmers since their role as pollinators for plants that provide food for people worldwide [11].

Conclusion
The Stingless bee is a multi-floral bee and uses the various plant as a pollen source. Pollen from Asteraceae, Arecaceae and Rubiaceae was considered as the most frequent pollen found during this study. Thus, this study reveals several important plants that can be used as enrichment in bee-keeping farming.

References
[1] Gruter C 2020 Stingless Bee: Their Behaviour, Ecology, and Evolution Switzerland Springer Nature Switzerland
[2] Ponnuchamy R, Bonhomme S, Prasad S, Das L, Patel P, Gaucherel C, Pragasam A and Anupama K 2014 Honey pollen: Using melissopalynology to understand foraging preferences of bees in tropical south India PLoS One 9 7
[3] Wayo K Sritongchuay T, Chuttong B, Attasopa K, and Bumrungsri S 2020 Local and landscape compositions influence stingless bee communities and pollination networks in tropical mixed fruit orchards, Thailand Diversity 12(12) 1-17
[4] Louveaux J, Maurizio A and Vorwohl G 1978 Methods of melissopalynology Bee World 59(4) 139-57
[5] Majid M, Ellulu M S and Abu Bakar M F 2020 Melissopalynological study, phenolic compounds, and antioxidant properties of heterotrigona itama honey from Johor, Malaysia Scientifica 2020 June 1-9
[6] Abdullah I, Gary S R and Marla S 2007 Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor *Apidologie* 38 67-76

[7] Schmidt V M, Dirk D L, Hrncir M, Zucchi R and Barth F G 2006 Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery *Anim. Behav.* 72(6) 1309-17

[8] Bueno FGB, Kendall L, Alves DA, Tamara LM, Heard T, Latty T and Gloag R 2021 Stingless bee floral visitation in the global tropics and subtropics *BioRxiv* 1-29

[9] Hrncir M and Maia-Silva C 2013 Diversity of Foraging-Related Traits in Stingless Bees in Pot-Honey: A Legacy of Stingless Bees *Vit* P, Roubik D W and Pedro S R M New York: Springer Science Business Media 201-13

[10] Chelong I A Foraging plant and palynological analysis of stingless bee pot-pollen in Pattani, Thailand 2021 *Journal of Physics: Conference Series* 1835(1) 5-11

[11] Ramírez V M, Ayala R and González H D 2018 Crop Pollination by Stingless Bees,” in *Pot-Pollen in Stingless Bee Melittology* *Vit* P, Pedro S R M and Roubik D W Springer International Publishing 139-53

Acknowledgments

Forestry Service of South Kalimantan Province funded this research. The authors would like to express our sincere thanks to Bapak Warhamni and Bapak Fachrudin, the honey farmer, for providing data and pollen samples.

Authors’ Contributions

All authors contributed equally to this work as the main contributor. SSH, SS, RSW designed the study, collected the samples, and together writing the manuscript. WH, BR, FL, HAB, MSA, AS, DCB, and ES conducted fieldwork. AA performed the pollen analysis and identification.