New photometric and spectroscopic observations of the Seyfert galaxy Mrk 315

S. Ciroi, V.L. Afanasiev, A.V. Moiseev, V. Botte, F. Di Mille, S.N. Dodonov, P. Rafanelli, A.A. Smirnova
1 Department of Astronomy, Padova University, Vicolo dell’Osservatorio 2, Padova, 35122, Italy
2 Special Astrophysical Observatory, Nizhniy Arkhyz, 369167 Russia
3 Guest investigator of the UK Astronomy Data Centre

ABSTRACT
We present new important results about the intermediate-type Seyfert galaxy Mrk 315, recently observed through optical imaging and integral-field spectroscopy. Broad-band images were used to study the morphology of the host galaxy, narrow-band Hα images to trace the star forming regions, and middle-band [O iii] images to evidence the distribution of the highly ionised gas. Some extended emission regions were isolated and their physical properties studied by means of flux calibrated spectra. High resolution spectroscopy was used to separate different kinematic components in the velocity fields of gas and stars. Some peculiar features characterise this apparently undisturbed and moderately isolated active galaxy. Such features, already investigated by other authors, are re-analysed and discussed in the light of these new observations. The most relevant results we obtained are: the multi-tiers structure of the disc; the presence of a quasi-ring of regions with star formation much higher than previous claims; a secondary nucleus confirmed by a stellar component kinematically decoupled by the main galaxy; a new hypothesis about the controversial nature of the long filament, initially described as hook-shaped, and more likely made of two independent filaments caused by interaction events between the main galaxy and two dwarf companions.

Key words: galaxies: Seyfert – galaxies: individual: Mrk 315 – galaxies: interactions.

1 INTRODUCTION
Understanding the processes responsible for triggering the activity in galactic nuclei is one of the fundamental outstanding questions regarding Active Galactic Nuclei (AGNs). Several mechanisms have been invoked during the last decades, as the presence of circumnuclear star clusters, nuclear bars, discs or spirals, and the interaction between galaxies, in form of close encounters and mergers. Unfortunately, none of them produced conclusive results. For example, nuclear bars and spirals seems not to be more common among AGNs than among non-active galaxies (Carollo, Stiavelli, & Mack 1998; Pogge & Martini 2002; Martini et al. 2003). Numerical simulations showed that the gravitational interaction between galaxies can bring gas from the disc toward the nuclear regions (Mihos & Hernquist 1994; Hernquist & Mihos 1996; Mihos & Hernquist 1996). Nevertheless, statistical studies of the large-scale environments of nearby AGNs produced until now controversial results (see e.g. Dahari 1984; Bushouse 1986; Fuentes-Williams & Stocke 1988; MacKenty 1988; Laurikainen et al. 1994; Rafanelli, Violato, & Baruffolo 1995; De Robertis, Yee, & Hayhoe 1998; Schmidt 2001), and failed to demonstrate that a one-to-one relationship between activity and interaction does really exist. On the contrary deep high resolution imaging and follow-up spectroscopy of these galaxies allowed to identify merging systems or the presence of close faint companions, suggesting that the investigation of the interaction–activity relation should be addressed to AGN hosts and their immediate surroundings. Therefore, one of the most natural approaches toward this topic is looking for effects of interaction in apparently isolated and morphologically undisturbed nearby Seyfert galaxies. In this paper we present new results about the intermediate-type Seyfert galaxy, Mrk 315.

Mrk 315 (II Zw 187) is a well known active galaxy. Spectroscopically classified as Seyfert 1.5 by Kast (1978), it was studied by Wilson (1988) with high resolution long-slit scanning of the nuclear and extra-nuclear regions of the galaxy (within a radius of 5 arcsec). His spectra, obtained around Hβ and [O iii] emission lines, revealed the presence of a two
distinct kinematic components associated to gas showing different ionisation degrees.

Mrk 315 was also extensively investigated by MacKenty (1986), MacKenty et al. (1994) and Simkin & MacKenty (2001). These authors found an unusual jet-like ionised gas feature, emitting in [OIII] narrow-band filter but not visible in VLA radio maps, and suggested for it to be gas drawn out from Mrk 315 by a tidal interaction with another galaxy. By means of HST images they discovered a knot close to the active nucleus, which they interpreted as a remnant nucleus, proposing a scenario of '...an AGN caught in the act of the initiation stage of a tidally induced feeding'. Finally, Mrk 315 was observed in optical, infrared and radio wavelength domains by Nonino et al. (1998). They confirmed the presence of a secondary nucleus embedded in a chain of faint structures surrounding the active nucleus, and discussed the possible origin of these structures in favour of the MacKenty et al. (1994) merger hypothesis.

Here we present new photometric and spectroscopic data of Mrk 315, which confirm partly the previous findings mentioned above and show for the first time that we are observing the effects of the interaction of two dwarf galaxies with Mrk 315. The paper is organised as follows: the photometric and spectroscopic data are presented in Section 2; the morphology of Mrk 315 is investigated in Section 3; the 2D-spectrophotometric data are analysed in Section 4 with the aim to study in detail the physical properties of gas in the circum-nuclear regions of the galaxy; the stellar and gaseous kinematics is presented and discussed in Section 5; in Section 6 we analyse the environment surrounding Mrk 315 to look for objects physically connected to the galaxy; finally, in Section 7 we discuss the results obtained for each of the features identified in Mrk 315.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Photometry

Broad-band B and R, and narrow-band Hα (λc=6830 Å, Δλ ~ 70 Å; Hαoff hereafter), Hα-continuum (λc=6580 Å, Δλ ~ 70 Å; Hαoff hereafter) images were obtained at the 1.8-m Vatican Advanced Technology Telescope (VATT) of the Vatican Observatory (Arizona, USA) in October 1998, with a 2k×2k CCD camera. The transmission curves of the narrow-band filters are plotted in Fig. 1. Middle-band [OIII] (filter SED520, λc=5229 Å, Δλ = 310 Å; [OIII]on hereafter), [OIII]-continuum (filter SED574, λc=5730 Å, Δλ = 160 Å; [OIII]off hereafter), broad-band V and Rc images were obtained in August 2002 and September 2004 with SCORPIO (Afanasiev & Moiseev, 2005), a multi-mode focal reducer mounted at the 6-m telescope (BTA) of the Special Astrophysical Observatory (SAO-RAS, Russia). See Table 1 for observation details. These images were reduced with IRAF1 (for VATT images) and with IDL (for BTA image) in a standard way by subtracting bias and correcting for flat-field variations and cosmic ray events. Also B, V, Rc and I, images from Chatzichristos (2004), available in NED (NASA Extragalactic Database), were involved in our study. The calibration in the magnitude scale for filters R and Ic was obtained by means of a bright star, located 30 arcsec South-East of the galaxy, whose photometry was carried out by Bachev, Strigachev, & Dimitrov (2000). Instead, the calibration for filters B and V was carried out according to published aperture photometry. The six best aperture measurements out of the eight available in database HyperLeda2 have been selected. Finally, for the image obtained with filter [OIII]off the calibration was carried out by using the V band. The accuracy of zero-point in any case is better than 0.1 mag.

2.2 Panoramic spectroscopy at the 6m telescope

2.2.1 Integral-Field Spectrograph MPFS

Mrk 315 was observed in December 2000 and August 2003 with the MultiPupil Fiber Spectrograph (MPFS), the integral-field unit mounted at the primary focus of the 6-m telescope (Afanasiev, Dodonov, & Moiseev, 2001). The MPFS takes simultaneous spectra from 240 spatial elements (constructed in the shape of square lenses) that form on the sky an array of 16 × 15 elements (in 2000), or from 256 spatial elements (16 × 16 in 2003). The angular size is 1 arcsec/element. The detector was a TK1024 in 2000 and EEV CCD42-40 (2048 × 2048 px) in 2003. A description of the MPFS is available at SAO RAS web page: http://www.sao.ru/hq/lsvf/devices.html.

During the first run, the galaxy was observed at low resolution for spectrophotometric purposes, while the second run was addressed to the gas and stellar kinematics investigation, and the galaxy was observed at higher resolution. The log of MPFS observations is given in Table 1.

The data were reduced by using the software developed at the SAO RAS by V.L. Afanasiev and A.V. Moiseev and running in the IDL environment. The primary reduction included bias subtraction, flat-fielding, cosmic-ray hits removal, extraction of individual spectra from the CCD frames, and their wavelength calibration using a spectrum of a He-Ne-Ar lamp. Subsequently, we subtracted the night-sky spectrum from those of the galaxy. The spectra of spectrophotometric standard stars were used to convert counts into absolute fluxes.

2.2.2 Scanning Fabry-Perot Interferometer

Mrk 315 was observed in November 2003 with SCORPIO (Afanasiev & Moiseev, 2003) in Fabry-Perot mode. The Queensgate interferometer Fabry-Perot (IFP) ET-50 was used at the 300th interference order (for the redshifted [OIII] λ4959 line). The free spectral range between neighbouring orders (interfringe) was about 16 Å. The detector used was an EEV CCD42-40 operated with 2 × 2 binning for reading-out time saving. The IFP was installed into the parallel beam, inside the focal reducer SCORPIO which provides a field-of-view of ~ 6 arcmin and a spatial scale of ~ 0.3 arcsec/pix. A brief description

1 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

2 http://leda.univ-lyon1.fr/
New observations of the Seyfert galaxy Mrk 315

Table 1. Photometric observations.

Date	T_{exp} [sec]	Filter	seeing (arcsec)	Scale (arcsec/px)	FOV (arcmin)	Instr.	Tel.
1998 Oct. 29	1200	B	1.5	0.4	6×6	CCD Camera	VATT
	600	B					
	1200	R					
	600	R					
	1200	Hα_{on}					
	1200	Hα_{off}					
2002 Aug. 30	1800	[O iii]_{on}	1.6	0.29	5×5	SCORPIO	BTA
	1800	[O iii]_{off}					
2004 Sep. 08	1320	V	1.6	0.35	6×6	SCORPIO	BTA
	600	R_{c}	1.5				

Table 2. Spectroscopic observations.

Date	T_{exp} [sec]	Sp. Range (Å)	Sp. Res. (Å)	Disp. (Å/px)	Seeing (arcsec)	Instr.	Mode
1994 Aug. 17	1500	4700 - 5700	2.2	0.8	1.2	ISIS	
2000 Dec. 03	3600	3700 - 6100	7.5	2.6	1.6	MPFS	
	4800	5000 - 7400	7.5	2.6	1.6	MPFS	
2003 Aug. 24	14400	4860 - 6330	4.2	0.75	1.5	MPFS	
2002 Nov. 02	30 x 250	[O iii]	12	0.54	2.0	SCORPIO IFP	
2002 Nov. 07	900	3700 - 7300	10.0	1.8	1.5	SCORPIO slit	

To reduce the interferometric observations we used a custom development software [Moiseev (2002)], running in the IDL environment. After the primary reduction (bias, flat-field, cosmic hits), we removed the night-sky spectrum, converted the data to the wavelength scale, and prepared them as ‘data cubes’. The data cube was smoothed by a Gaussian function with FWHM = 2 px in the spectral and spatial domain under the ADHOC package. The spatial resolution after smoothing was about 2.5 arcsec. The velocity fields of the ionised gas, and images in the emission line [O iii] λ4959 were mapped by means of a Gaussian fitting of the emission line profiles. Moreover, we created the images of the galaxy in the ‘red’ continuum close to the emission line.

2.2.3 Long-slit spectroscopy

A long-slit spectrum obtained with ISIS Double Beam Spectrograph at the William Herschel Telescope on August 1994 was extracted from the ING public archive. The grating R600B was used in combination with a 1.5 arcsec-slit, at position angle PA= 114°.

We also obtained a long-slit spectrum of a source located ~1 arcmin South-East of Mrk 315 with SCORPIO in November 2002. The detector used was the EEV CCD42-40 2048×2048 pixels and the slit had a width of 1.2 arcsec.

Data reduction was performed using our IDL-based software for SCORPIO data, and IRAF for ISIS data. We followed the standard procedures applied to long-slit spectra: bias and flat-field correction, two-dimensional wavelength calibration, flux calibration, included atmospheric extinction correction, and night-sky background subtraction.

3 MORPHOLOGY

3.1 Isophotal analysis

The morphology of the galaxy was investigated by fitting parametric ellipses to its isophotes in all of the images at our disposal, and fixing the centre at the location of the nucleus. Then, the plots of ellipticity (e) and position angle (PA) were obtained as a function of the semi-major axis length, expressed in kpc (see Fig. 2). The spatial scale is 0.75 kpc/arcsec assuming a distance to the galaxy of 153.6 Mpc, directly measured on our spectroscopic data (V_{sys} = 11517 ± 9, see Section 5), and H0 = 75 km s^{-1} Mpc^{-1}.

These plots show a first peak in ellipticity between 1 and 2 kpc and a second peak between 3 and 4 kpc. Then, the isophotes have a smooth trend up to the outer regions with ellipticity ranging around e ~ 0.1. A slight dip in ellipticity between 8 and 9 kpc corresponds to a change in isophote orientation from PA ~ 60° - 70° (between 3 and 8 kpc) to PA = 15° - 40° (between 10 and 20 kpc).

3.2 2-D decomposition

Mrk 315 is classified in NED (NASA Extragalactic Database) as an elliptical galaxy (type E1), and so the distri-
The 1-D surface brightness profile and the radial behaviour of the isophotes are too complex to be decomposed in a unique way. A more stable and reliable result could be obtained with the method of the 2-D decomposition, which uses the whole bi-dimensional information of the surface brightness distribution (see e.g. Moriondo, Giovanardi, & Hund 1998). We applied the IDL-based software GIDRA, developed at SAO RAS by A.V. Moiseev, and we followed the same iterative method of consecutive comparisons between 1-D mean profiles and 2-D models, which allowed Moiseev, Valdés, & Chavushyan (2004) to study effectively the morphology of double-barred galaxy candidates (see also Sil’chenko & Afanasiev 2004; Sil’chenko, Vlasuk, & Alvarado 2001). The seeing-convolved decomposition was carried out for images in all available bands, and among them we chose deeper BTA images of Mrk 315, and stressed that the photometric parameters of the galaxy do not match its morphological type. We tried to decompose the surface brightness distribution by applying ‘standard’ components: an exponential disc with central brightness μ_d and scale length r_d, and a Sérsic bulge (Sérsic 1968) with effective radius r_{eff}, effective brightness μ_{eff} and power index n varying from 1 to 4. In addition, a point-like source profile was included to account for the presence of the AGN.

The 1-D surface brightness profile and the radial behaviour of the isophotes are too complex to be decomposed in a unique way. A more stable and reliable result could be obtained with the method of the 2-D decomposition, which uses the whole bi-dimensional information of the surface brightness distribution (see e.g. Moriondo, Giovanardi, & Hund 1998). We applied the IDL-based software GIDRA, developed at SAO RAS by A.V. Moiseev, and we followed the same iterative method of consecutive comparisons between 1-D mean profiles and 2-D models, which allowed Moiseev, Valdés, & Chavushyan (2004) to study effectively the morphology of double-barred galaxy candidates (see also Sil’chenko & Afanasiev 2004; Sil’chenko, Vlasuk, & Alvarado 2001). The seeing-convolved decomposition was carried out for images in all available bands, and among them we chose deeper BTA images of Mrk 315, and stressed that the photometric parameters of the galaxy do not match its morphological type. We tried to decompose the surface brightness distribution by applying ‘standard’ components: an exponential disc with central brightness μ_d and scale length r_d, and a Sérsic bulge (Sérsic 1968) with effective radius r_{eff}, effective brightness μ_{eff} and power index n varying from 1 to 4. In addition, a point-like source profile was included to account for the presence of the AGN.

The 1-D surface brightness profile and the radial behaviour of the isophotes are too complex to be decomposed in a unique way. A more stable and reliable result could be obtained with the method of the 2-D decomposition, which uses the whole bi-dimensional information of the surface brightness distribution (see e.g. Moriondo, Giovanardi, & Hund 1998). We applied the IDL-based software GIDRA, developed at SAO RAS by A.V. Moiseev, and we followed the same iterative method of consecutive comparisons between 1-D mean profiles and 2-D models, which allowed Moiseev, Valdés, & Chavushyan (2004) to study effectively the morphology of double-barred galaxy candidates (see also Sil’chenko & Afanasiev 2004; Sil’chenko, Vlasuk, & Alvarado 2001). The seeing-convolved decomposition was carried out for images in all available bands, and among them we chose deeper BTA images of Mrk 315, and stressed that the photometric parameters of the galaxy do not match its morphological type. We tried to decompose the surface brightness distribution by applying ‘standard’ components: an exponential disc with central brightness μ_d and scale length r_d, and a Sérsic bulge (Sérsic 1968) with effective radius r_{eff}, effective brightness μ_{eff} and power index n varying from 1 to 4. In addition, a point-like source profile was included to account for the presence of the AGN.
lines were corrected for the underlying stellar contribution.

An IRAF task made by us on the basis of the insights given by Ho, Filippenko, & Sargent (1993) allows to subtract the spectrum of a template early-type galaxy after having conveniently rescaled its continuum and diluted its absorption features (see Cirol et al. 2003 for a more extensive discussion about this step).

A first reconstruction of the galaxy image in the field-of-view of the spectrograph was done convolving each spectrum with the transmission curve of a typical Johnson V filter. This image together with narrow-band images obtained integrating in a small wavelength range around Hα and [O III] λ5007 allowed to locate the position of the nucleus in the brightest pixel. This position does not coincide with that shown by a similarly reconstructed image in [O III] λλ3727, because of the atmospheric refraction effect. To solve the problem we calculated the correction function to be applied to each image before any comparison. This was done simply producing several narrow-band continuum images covering both spectral ranges and measuring the centroid of the galaxy in each image with a bi-dimensional Gaussian fitting. Finally the centroid positions were interpolated separately as a function of wavelengths.

Since Mrk 315 is an intermediate-type Seyfert galaxy, its nuclear spectrum shows permitted lines with composite profiles: a narrow component emitted by the Narrow-Line Region (NLR) and a broad component emitted by the Broad-Line Region (BLR). Given its sub-parsec size the BLR can be considered as a point-like source, therefore its emission will not be limited to the nuclear spectrum, but distributed in the surrounding regions depending on the seeing during the observations. In order to obtain spectra with only NLR emission lines, we applied the following procedure. Firstly, a hand-made PSF was produced in the field-of-view of MPFS with a bi-dimensional normalised Gaussian function centred on the brightest pixel (in the Hα reconstructed map), where the BLR should be located, and with a FWHM similar to the seeing value. Then, the spectrum of the brightest pixel was measured. A deblending of the Hα+[N II] λλ6548, 6583 profile by means of an iterative multi-Gaussian fitting procedure involving four components, Hα-broad (Hαb), Hα-narrow (Hαn), [N II] λ6548 and [N II] λ6583, allowed us to build a spectrum showing only Hαb. This spectrum was replicated to cover the entire field-of-view, and the 240 Hα lines were rescaled to obtain the spatial distribution of the BLR emission in Hα. This was done by multiplying each of them for the scaling factor given by the pixel intensity of the PSF at the corresponding location on the field-of-view. Finally these spectra were subtracted from those containing both BLR and NLR emission lines. Two parameters were fine tuned to better remove the broad component: the FWHM of the PSF and its position within the pixel where the active nucleus is located. Obviously a bi-dimensional Gaussian is only an approximation of the real PSF and moreover the low spatial resolution (1 arcsec) implies that even an off-centring of 0.2 px can distribute the flux in a significantly different way. These are the reasons why we could not fix these two parameters a-priori. The same steps were applied to Hβ.

After having removed the broad emission lines, the spectra of Mrk 315 were measured. An IRAF task made by us and based on a recursive application of NGAUSSFIT allowed to interactively fit each emission line with Gaussian functions, and obtain tables with fundamental parameters, as position, flux, FWHM, amplitude and EW. These tables can be quickly used to reconstruct maps of the 16×16 resolution elements for whatever of these parameters. Relative errors were also calculated by estimating the RMS of the continuum close to each emission line. In most of the spectra, the fluxes of the brightest lines have errors below 30 per cent (Table 4).

Table 3. Parameters of the 2D decomposition of the brightness distribution

Band	µ_{eff} (mag)	r_e (kpc)	n	µ_{d1} (mag)	r_{d1} (kpc)	µ_{d2} (mag)	r_{d2} (kpc)	L_B/L_D
[O III]	20.82±0.33	2.01±0.14	2.0±0.3	22.35±0.04	6.99±0.07	20.06±0.22	2.05±0.08	0.62±0.13
V	21.70±0.18	2.55±0.13	3.0±0.3	22.79±0.05	7.07±0.10	19.58±0.10	1.90±0.04	0.56±0.12
R_e	21.09±0.21	2.49±0.15	3.0±0.3	21.85±0.05	6.16±0.08	19.03±0.06	1.98±0.03	0.52±0.13
V	19.69±0.07	3.05±0.30	1.7±0.4	23.10±0.05	7.60±0.11	2.67±0.35	2.47±0.29	
R_e	19.75±0.10	2.35±0.04	1.5±0.2	21.77±0.04	6.31±0.05			

4.1 Emission line ratios

We have reconstructed maps of the most important emission lines visible in the spectra of Mrk 315, i.e. [O III] λλ3727, [O III] λλ4363, [Ne III] λ4686, Hβ, [O III] λ5007, [O i] λλ6300, Hα, [N II] λλ6583 and [S II] λλ6716 + 31 (also named [S II] λ6724 throughout this paper). These maps, grouped in Fig. 4 show the spatial distribution of the ionised gas. Maps of Hβ and Hα lines have a smoothed shape, where structures are not easy to be distinguished because of the low spatial resolution. Nevertheless, a significant improvement is reached by overlapping the contours of the V_{rec} image (Fig. 4). These contours helped us to identify integral-field spectra belonging to specific regions. In particular we defined the nucleus (N), three regions of the quasi-ring structure (A1, A2, A3), numbered counter-clockwise from South-West to North-East, and finally the knot (K) located 2.5 arcsec East of the nucleus.

A similar procedure was used for the [O III] map, whose shape is well in agreement with the contours of the [O III] continuum-subtracted image (Fig. 4). On this map we have isolated other two regions, one radially extended from the nucleus and North-West oriented (J1), the other smaller and fainter, located ~ 6 arcsec East of the nucleus (J2). Finally, [O I] and [S II] maps clearly show a secondary bright emis-
The region identified with the knot K.
In Fig. S3 we plotted the integrated spectra of these identified regions.

Then we have calculated the emission line ratio maps on the basis of the diagnostic diagrams of Veilleux & Osterbrock (1987, VO hereafter), i.e. [O iii]/Hβ, [N ii]/Hα, [O ii]/Hα, and [S ii]/Hα. These ratios are useful to study the ionisation of gas and identify the kind of ionising source. As done before, each ratio map was compared with a contour ([O iii] continuum-subtracted image, or V$_{res}$ image) to make the analysis clearer (Fig. 9). [N ii]/Hα and [O ii]/Hα ratios show peaked values at the location of the knot K. This is visible also in the [S ii]/Hα map, where a larger structure extends clockwise from K toward West in the outer part of A3. High values of [S ii]/Hα ratio are also located South of A1. The [O iii]/Hβ map shows two loci where the gas is highly ionised, except for the nucleus: J2 and the outer regions of J1.

We have also reconstructed the map of the [O ii]/[O iii] emission line ratio (Fig. 10), which is abundance independent and a good indicator of the ionisation degree. Unlike the pairs of emission lines used by the VO diagnostic diagrams, which are close in wavelength so that their ratios are almost unaffected by dust extinction, the [O ii]/[O iii] ratio must be reddening corrected. Therefore we have firstly calculated the observed Hα/Hβ ratios and applied a theoretical Balmer decrement of 2.86 to all emission regions but the nucleus N, where a 3.1 was used following the suggestions by Osterbrock (1980). As an extinction law we used that given by Cardelli, Clayton, & Mathis (1989). The map of the visual absorption A_V (Fig. 11 right) shows clearly that the major extinction is distributed in a region including N, K and J2 with values ranging from 2 to 3 mag (light grey). Lower values (A_V ~ 1–1.5) are typical of A1, A2 and A3, while in J1 the extinction is negligible.

The map of the reddening corrected [O ii]/[O iii] ratios shows two zones (dark grey) located on the nucleus N and on J1, where the [O iii] is dominant ([O ii]/[O iii] < 1) and the ionisation is mainly produced by the AGN. The [O ii] is stronger than [O iii] ([O ii]/[O iii] > 3–10) roughly in correspondence of the other regions A1, A2, A3, and K (light grey), thus indicating the prevailing thermal origin of the ionisation sources. Finally, the map of the electron density (n_e) distribution, given by the [S iv]/6716/6731 ratio (Fig. 11 left), shows the highest values (~105 cm$^{-3}$) where also the extinction is higher, while it assumes values in the range 100–300 cm$^{-3}$ North of the nucleus, including A3, and even less than 100 cm$^{-3}$ in A1 and A2.

To carry out a more detailed analysis we plotted the emission line ratios [O ii]/Hβ versus [N ii]/Hα, [O ii]/Hα, and [S ii]/Hα respectively. (Figs. 12a, 12b, 12c) according to the VO diagrams. We added the empirical borderlines, which separate AGN from H II regions (solid line), and AGN from LINER or supernova remnants (SNR; dashed line), or in other words define the ranges of ratios for which non-thermal, thermal or shock ionisation dominates. An inspection of the diagrams suggests that the observed ratios are consistent with the structure identified in the image analysis (see Section 3). In particular spectra belonging to N (open circles) fall in the AGN zone, although three of them are close to the AGN/LINER borderline. Interestingly, all spectra around the central one (the brightest pixel in e.g. Hβ, Hα or [N ii] maps of Fig. 8) where the active nucleus is expected to be located, show higher [N ii], [O i] and [S ii] to Hα values. On the contrary, spectra of K (filled circles) fall in the LINER/SNR zone and show a lower ionisation degree ([O iii] ~ Hβ). Thanks to the relatively good seeing, N and K spectral properties are well discriminated even if they are close to each other. The easiest and maybe more corrected interpretation is that the gas in region K is dominated by shock effects. Nevertheless, we cannot rule out the possibility that K itself is an active secondary nucleus, namely a LINER. A1 and A3 have most of their line ratios typical of H II regions (open squares and crosses respectively), while A1 has some close to the AGN/H II borderline and A3 shows some values of [O i] and [S ii] to Hα falling in LINER/SNR zone. These last points are located among regions N, K and A3 and their line ratios strongly indicate that the gas is compressed and shock ionisation occurs. Region A2 has line ratios mostly falling in the H II region zone (filled squares), but two of them are close to the AGN/H II borderline. These two spectra of A2 are just those near the nucleus N, and therefore are probably ‘polluted’ by AGN radiation. Indeed it was shown by Radovich, Hasinger, & Rานanelli (1998) that an increasing contribution to the AGN ionisation by star forming regions pushes the emission line ratios from the AGN toward the H II zone. J1 has five spectra in common with A2 and one in common with A1. In agreement with what we said before about J1 and the [O iii]/Hβ map, the inner parts of J1 (skeletal triangles) are characterised by lower ionisation, while the outer parts fall in the AGN zone. This is not unexpected because the overlap between J1 and A2 makes lower the emission line ratio [O iii]/Hβ since Hβ is strong in star forming regions. The outer parts of J1 (> 7 arcsec) are reached by AGN radiation, and so J1 can be considered an ionisation cone. It is likely that J1 and A2 overlap only in projection on the sky, but are not coplanar. The other cone could be located in region J2 (open stars), whose spectra have also AGN-like properties. Its small extension and relatively faintness could be caused by the fact that we are observing it through the disc of the galaxy.

The remaining emission regions have line ratios mostly filling the H II zone in all VO diagrams, while few points have AGN properties, in particular those around J1, there-

[O ii]	[O iii]	Hα	[O i]	Hβ	[O i]	6300 Hα	[N ii]	6583	[S ii]	6724	ΔI/ι
42	5	0	65	61	10	73	65	57	<0.10		
80	24	12	82	82	53	88	83	73	<0.20		
96	38	53	94	89	74	94	92	83	<0.30		

Columns (1)-(6) show the percentage of spectra whose relative flux errors are below the values given in column (7).
fore characterised by diffuse AGN radiation, and finally others fall in the LINER/SNR zone. A more careful identification of these last points, carried out by reconstructing the map of their positions within the field of view, reveals that they form a ring around the identified regions. This ring is made mostly by regions whose spectra have LINER/SNR properties only in the [S\text{II}]/\text{H}\alpha diagram, while few regions are present in two diagnostics or in all the three. In addition two adjacent regions not connected to the ring have a LINER/SNR identification in all the three plots, and are located among N, A1 and A2. The shape and displacement of these regions suggests that shocks caused by gas compression around the inner quasi-ring structure could be at the origin of their emission line ratios. Nevertheless a single plot based indication makes this hypothesis not completely convincing, since the regions whose spectra show higher values of [S\text{II}]/\text{H}\alpha ratio could simply have an overabundance of [S\text{II}], even if in this case the ring-like distribution of these regions remains unexplained.

4.2 Star Formation Rate and Energy Budget

We have used the H\alpha emission to estimate the star formation rate (SFR) in the field of view of integral-field data. The H\alpha reddening corrected fluxes were first converted into luminosities, then the total luminosities of the portion of galaxy observed with MPFS, and of each region identified on the H\alpha emission line map, were calculated. Finally, we applied the formula by Kennicutt (1998): SFR (M\odot yr\(^{-1}\)) = 7.9 \times 10^{-42} \text{L}_{\text{H,\alpha}}. In Table 4 we list these values, together with the surface density of SFR in M\odot yr\(^{-1}\) pc\(^{-2}\) units. The total \text{L}_{\text{H,\alpha}} includes also the nuclear contribution, which is clearly AGN dominated and therefore the SFR value is overestimated. Removing \text{L}_{\text{H,\alpha}}(N), which accounts for about 22 per cent of the total \text{L}_{\text{H,\alpha}}, we obtain SFR \sim 35 M\odot yr\(^{-1}\) and \Sigma_{\text{SFR}} \sim 4.36 \times 10^{-27} M\odot yr\(^{-1}\) pc\(^{-2}\).

For consistence with these results, we tried to estimate SFR by using other two indicators, the infrared and radio emissions. We used the IRAS data of Mrk 315 extracted from the Point Source Catalogue, and in particular the 60 \mu m flux, \text{S}_{60} = 1.505 Jy. Then, we followed the suggestions given by Chapman et al. (2000), based on Rowan-Robinson et al. (1997), who made use of the 60 \mu m luminosity to estimate the total Far Infrared emission within the range 1–1000 \mu m, L_{\text{FIR}} \sim 1.7 \times L_{60} \text{erg sec}^{-1}, and converted into star formation rate with the formula: SFR (M\odot yr\(^{-1}\)) = L_{\text{FIR}}/2.2 \times 10^{39} L_{\odot}. We obtained the following values, L_{\text{FIR}}(1–1000 \mu m) = 3.32 \times 10^{44} \text{erg sec}^{-1} and SFR \sim 39 M\odot yr\(^{-1}\). Also in this case, the total FIR emission includes the AGN contribution, therefore this value of SFR should be considered as an upper limit.

The radio emission value at 1.425 GHz was taken from Nonino et al. (1998), who measured the total flux and the contribution from the nucleus and the knot separately. We removed the nuclear emission obtaining \text{S}_{20} = 19 \text{mJy}, and luminosity L_{20} = 5.38 \times 10^{22} W Hz\(^{-1}\). This value was then converted into SFR using the formula given by Bell (2003), and obtaining \sim 30 M\odot yr\(^{-1}\), in good agreement with the SFRs found by using H\alpha and FIR emission.

From the radio luminosity we also calculated the supernova rate (SN), since at 1.425 GHz the radio emission is usually dominated by non-thermal radiation (synchrotron) produced by electrons accelerated by supernova remnants and explosions. To obtain the non-thermal luminosity L_{\text{NT}}, we followed the assumption by Condon & Yin (1999) and Bell (2003) that the thermal radio fraction at 1.425 GHz is about 10 per cent. Then, we applied the relation: L_{\text{NT}}(W Hz\(^{-1}\)) = 1.3 \times 10^{23} (\nu/1 \text{GHz})^{-\alpha} \text{v}_{\text{SN}} \text{(yr}^{-1})\), given by Condon & Yin (1990), and we adopted the spectral index \alpha = 0.9 for the overall galaxy (Nonino et al. 1998). The SN rate (\nu_{\text{SN}}) is about 0.5 yr\(^{-1}\), a value much higher than that expected in normal spiral galaxies, 1 SN/100 yrs per 10^{10} L_{\odot}(B) (see e.g. van den Bergh & Tamman 1991), but consistent with the rates observed in starburst galaxies, which are typically in the range 0.1–1.0 yr\(^{-1}\) (Smith, Lonsdale, & Lonsdale 1998; Mannucci et al. 2003; Neff, Ulvestad, & Teng 2004).

The equally high SFR is in agreement with observations of starburst galaxies, since in the local Universe mildly obscured and UV luminous starbursts show rates of 5–50 M\odot yr\(^{-1}\) (Heckman et al. 2002).

Since the VO diagrams indicate that the J1 region, especially its outer part, is highly ionised, it is interesting to evaluate whether the nuclear radiation can sustain this observed high ionisation degree. To carry out this test, we have firstly isolated a region of 3\times2 arcsec, located \sim 6 arcsec NW of the nucleus, within J1 and showing a spectrum dominated by AGN excitation according to the diagnostic diagrams. In the approximation that the AGN is the only source producing the H\alpha photons observed in this region, we converted its total H\alpha luminosity into the number of ionising photons Q_{\text{ion}} = 7.3 \times 10^{11} \text{L}_{\text{H,\alpha}} (Osterbrock 1989). Then we corrected this number for the effect of the geometrical dilution of the nuclear radiation flowing through the solid angle \Omega subtended by the region, Q_{\text{ion}} = (4\pi/\Omega) \times Q_{\text{ion~}} \sim 3 \times 10^{45} \text{photons sec}^{-1}.

Now we use this rough estimate of the number of ionising photons emitted by the source, to calculate the expected ionisation parameter U = Q_{\text{ion}}/(4\pi^2 N_{\text{H}}\text{pc}) at the distance of the region. Assuming \nu \sim 4.6 kpc and N_{\text{H}} \sim 10^2 cm\(^{-3}\) (obtained from the [S\text{II}]/6716/6731 ratio), we obtain log U \sim -3.4. This value does not agree with observed line ratios. A simple comparison with published photoionisation models (see e.g. Ho, Shields, & Filippenko 1994), indicates that this expected ionisation parameter is typical of a low ionisation degree. Indeed, the [O\text{II}]/[O\text{III}] emission line ratio \sim 0.4–0.5 (reddening corrected), observed both in the nucleus and in the region should correspond to a value of log U \sim -2.5 (Penston et al. 1992; Komossa & Schulz 1995). In the end, the nuclear ionising radiation alone seems not enough to produce the high excitation levels detected in J1, especially in its outer parts. Another source of high energy photons must be present, like hot stars, or more likely shock waves. A similar result was obtained by MacKenty (1986), who followed a different approach.

5 KINEMATICS

The kinematics of Mrk 315 was investigated essentially by means of the integral-field MPFS and Fabry-Perot data.
Table 5. \(\text{H} \alpha \) luminosities and star formation rates.

Region	\(L_{\text{H} \alpha} \) (10^{42} \text{ erg sec}^{-1})	SFR (M_\odot \text{ yr}^{-1})	\(\Sigma_{\text{SFR}} \) (M_\odot \text{ yr}^{-1} \text{ pc}^{-2})
N	1.30
K	0.50	3.9	1.13 \times 10^{-6}
A1	1.14	9.0	5.79 \times 10^{-7}
A2	0.47	3.7	8.10 \times 10^{-7}
A3	0.84	6.6	8.19 \times 10^{-7}
Total	5.84	46	5.32 \times 10^{-7}

5.1 Fabry-Perot data

The kinematics of the highly ionised gas was studied in detail through the spectral analysis of the \([\text{O} \text{ iii}]\) emission line. The high resolution of the Fabry-Perot data allowed to clearly separate two distinct components in the emission line profile: a first component belonging to the disc of the galaxy and showing a pattern of almost circular rotation with velocities ranging from 11350 and 11750 \text{ km s}^{-1}, and a second ‘redder’ component corresponding to the previously mentioned J1 and J2 regions, and characterised by high velocity gas radially moving toward the outskirts of the galaxy. The difference to the systemic velocity is \(\sim +500 \text{ km s}^{-1} \). In addition, the first kinematic component shows a clear nuclear outflow with \(V \sim 11480 \text{ km s}^{-1} \) (Fig. 12).

We remark that the disc circular rotation seen in \([\text{O} \text{ iii}]\) agrees with the circular rotation observed in \(\text{H} \alpha \) and in the velocity field of stars (see next section).

The analysis of the long-slit spectrum, even if at lower resolution, showed the same two kinematic components both in \([\text{O} \text{ iii}]\) and also in \(\text{H} \beta \). We fitted separately these components, and then we compared the velocity curves with the Fabry-Perot data extracted at the same PA of the slit, obtaining a good agreement.

We compared also our results with those published by Wilson (1988), who found the two kinematic components in \([\text{O} \text{ iii}]\), one characterised by rotational motions, and the other extended from the nucleus toward North and North-West with an unclear kinematical structure. Unlike Wilson (1988), we observe clearly the blueward and redward components both in \([\text{O} \text{ iii}]\) and \(\text{H} \beta \). Moreover, we observe a larger splitting of the two kinematic components than Wilson (1988), maybe because of an higher spectral resolution which allowed us to obtain more precise measurements of the line profiles.

5.2 MPFS data

The low resolution MPFS spectra were used to derive the overall kinematics of both low and high ionisation gas within the field-of-view. Firstly the wavelength positions of \(\text{H} \alpha \) emission lines were measured by means of Gaussian fittings and then converted into heliocentric velocities. Later we constructed the maps of the line-of-sight velocity fields of the brightest emission lines. The absolute accuracy of the velocity measurements, evaluated from the air-glow emission line wavelengths, was about 10-15 \text{ km s}^{-1}. A continuum map was also obtained by adding the fluxes in the spectral ranges free from emission lines (5600-5900 \text{ Å}).

Velocity maps show a deviation from circular rotation in oxygen ([O i], [O ii], [O iii]) and sulphur ([S ii]) lines. In particular, in [O ii] we can see a sudden increase of velocity with \(\Delta V \sim +300 \text{ km s}^{-1} \), where the knot K is located. A sudden decrease of velocity (\(\Delta V \sim -200 \text{ km s}^{-1} \)) in [O iii] confirms the outflow already shown by Fabry-Perot and long-slit data.

The kinematics of the stellar component in Mrk 315 was studied by means of the high resolution MPFS data. The line-of-sight velocity and dispersion velocity fields were constructed. We used the ‘classic’ cross-correlation method adapted for working with MPFS spectra (Moiseev 2002).

The region 5050-6050 Å containing numerous stellar absorption features (Mg i, Fe i, Na i etc.) was analysed. As a template for cross-correlation the spectra of the twilight sky, observed in the same night as the galaxy, were used. The estimated errors were \(\sim 10 \text{ km s}^{-1} \) and 10-20 \text{ km s}^{-1} for the velocity and velocity dispersion respectively. The line-of-sight velocity distribution (LOSVD) of the stars in the central region of the galaxy shows two clearly peaked structures, with a separation of about 600 \text{ km s}^{-1}. By means of a double-Gaussian fit of the LOSVD we have constructed maps of line-of-sight velocity and velocity dispersion for both components. The results are shown in Fig. 13. Both components have velocity fields with a pattern corresponding to circular rotation of inclined discs. The centre of rotation of the ‘blue’ LOSVD component coincides with the photometric nucleus of Mrk 315, and the centre of rotation of the ‘red’ LOSVD component coincides with the position of the knot K, within the limits of 1 arcsec. In the following we will identify the ‘blue’ component as the main galaxy, and the second component as the ‘satellite’.

The analysis of the velocity fields of the main galaxy and the satellite was carried out by means of the method of the ‘tilted-rings’ model (Begeman 1989). More details about this method, in connection to the MPFS velocity fields, are given in Moiseev, Valdés, & Chavushyan (2004). The average parameters of the orientation of the rotated discs are listed in Table 6. The relatively high error in the system velocity of the satellite is caused by an observed smooth change of \(V_{sys} \) with radius. Most likely, it is connected to the influence of the tidal interaction on the dynamics of the satellite. Indeed, in the azimuthal Fourier-decomposition of the velocity field there is a systematic change of the harmonic with \(m = 1 \), which is interpreted in the frame of the circular rotation as a radial trend of the systemic velocity.

In Fig. 14 the curves of the circular rotation for each of the galaxies, and the azimuthally averaged radial distribution of the velocity dispersion are also shown. We observe a rather small velocity dispersion of the stars in Mrk 315, in comparison with a large amplitude of the rotation curve, which does not reach a plateau within the limit of 5 kpc from the centre. The ratio of the maximum velocity of rotation to the maximum velocity dispersion, \(V_{max}/\sigma \sim 3.5 \), extremely exceeds the mean value which is usually observed.

Table 6. Kinematic parameters of the stellar components.

Name	\(V_{sys} \) (\text{H} \alpha) (\text{km s}^{-1})	\(V_{200} \) (\text{km s}^{-1})	PA (\degree)
main galaxy	11517 ± 9	57 ± 4	34 ± 3
satellite	12164 ± 22	2 ± 6	35 ± 10

In Table 6, \(V_{sys} \) and \(V_{200} \) are the systemic and the maximum velocity of rotation, respectively. The PA stands for the position angle of the rotation axis.
in the bulges of the early type galaxies (0.1 - 1.5, Kormendy 1982). Moreover, there are no significant deviations of line-of-sight velocity of the galaxy from the pure circular rotation. Therefore, the stellar kinematics in Mrk 315 support the idea that we are observing rotation of stars in a disc, instead of a dynamically ‘hot’ bulge.

In the centre a sharp decrease of the velocity dispersion of stars is also observed, with values less than 50-70 km s$^{-1}$, which cannot be measured with our spectral resolution. Recently Wozniak et al. (2003) explained such drops in the radial velocity dispersion distribution of a number of Seyfert galaxies, within the framework of the self-consistent dynamic model. According to these authors, this effect is caused by stars which were born in the centre from a dynamically cold gas having a smaller velocity dispersion, than the older star population. Wozniak’s model has been constructed for galaxies with bars, but in our opinion it can be applied also to Mrk 315, where the gas in the centre can be connected to tidal effects, instead of a secular evolution of a bar. Also, as mentioned in Section 7a, the bar could be existed here, but dissolved by interaction.

Thus, our analysis of stellar kinematics in Mrk 315 clearly distinguishes two independently rotating subsystems separated in systemic velocity by more than ~ 600 km s$^{-1}$. Estimating the masses of these stellar systems within the field-of-view by means of the virial approximation $M \propto V^2$, we obtain that the satellite has a mass about 10 times smaller than the mass of the main galaxy, the collision should not change significantly the morphology of the main galaxy, but it can compress the gas and trigger the process of fuelling of the active nucleus. Nevertheless, it is unlikely that such a small galaxy can throw away gas at the observed velocity along J1.

6 THE ENVIRONMENT

To study the environment of Mrk 315, we applied the criteria proposed by Schmitt 2001 to consider a candidate companion as physically bound to the active galaxy: 1) the distance to the main galaxy must be smaller than 5 times the diameter of that galaxy; 2) the difference in brightness between them must be $|\Delta m| \leq 3$ mag; 3) the difference in radial velocities must be $|\Delta v| \leq 1000$ km s$^{-1}$. On the DSS2-red image (Fig. 15) we found a galaxy located East of Mrk 315 just at the distance of about 5 diameters (~ 3.4 arcmin), which satisfy also the brightness criterion ($|\Delta m| \sim 1.2$ mag). This galaxy is catalogued in NED as 2MASX J23041747+2237302, but unfortunately no information is available about its redshift. Therefore, according to these criteria Mrk 315 can be considered a moderately isolated galaxy.

Its overall morphology does not show strong distortions, bright tidal tails or similar structures, which lead immediately to conclude that this galaxy experienced past episodes of gravitational interactions. Nevertheless, our analysis confirmed the presence of a secondary nucleus very close to the active nucleus. This secondary nucleus originated likely by a dwarf satellite which sank into the main galaxy.

Moreover, inspecting carefully the [OIII] continuum-subtracted image, we discovered an emission source located ~ 1 arcmin South-East of Mrk 315 (Fig. 16). We measured the aperture magnitude V and R of the active galaxy and this source, obtaining $V=14.60\pm0.09$, $R=13.92\pm0.07$ (aperture diameter = 100 arcsec), and $V=20.0\pm0.3$, $R=19.7\pm0.2$, respectively. Clearly, the South-East source does not fit the brightness criterion. Nevertheless, it is associated to a bright extended H I cloud (Sinkin & MacKenty 2001). This cloud could be an integral part of the outer regions of the main galaxy, which is HI deficient at velocities where the gas is ionised, that is in the filament F1 or in the regions of starburst activity near the nucleus. We obtained a low resolution slit spectrum of this source with SCORPIO (Fig. 16). This spectrum shows prominent emission lines at a velocity $\sim +200$ km s$^{-1}$ relative to V_{sys} of Mrk 315, and a clear stellar continuum. Therefore this source, which has also a tidal-disturbed shape visible on the broad-band images, is a dwarf satellite of the active galaxy.

We conclude that the criteria applied to evaluate the isolation of a galaxy are often biased toward bright companions, and therefore are useless in case of an environment populated by dwarf galaxies. During the last two decades many authors have studied the environment of active galaxies, mainly using a statistical approach and applying different isolation criteria to define a companion galaxy. For many reasons, as for example the crucial point of the control sample selection, they reached contradictory results (see e.g. Schmitt 2001, and references therein). Therefore, to date a solid evidence that nuclear activity is induced by the environment does not exist. On the contrary less attention has been paid to dwarf satellites in relation to minor merger events. Recently, on the basis of the Sloan Digital Sky Survey (SDSS) EDR Miller et al. 2003 observed a high fraction of AGNs (~ 40 percent) in their sample of nearby galaxies. They explained their result with either an AGN duty cycle longer than previous estimates by other authors, or with several bursts of the nucleus driven by mergers. Since they did not observe any dependence on environment of their AGN sample, they rejected the second hypothesis. Again, this analysis is limited to bright galaxies ($M(r^*) < -20$), and does not take into account the possible presence of dwarf satellites. Indeed, converting our magnitudes into the SDSS photometric system (Fukugita et al. 1996), we obtained $M(r^*) = -21.8$ for Mrk 315 and $M(r^*) = -16.1$ for the South-East companion.

De Robertis, Yee, & Havlcek (1998) and Taniguchi (1999) suggested that ‘minor mergers’ between a gas-rich galaxy and a satellite companion may play a significant role in triggering activity in Seyfert nuclei. Indeed the minor merger seems to be the favourite mechanism for several reasons. First of all there is evidence that most spiral galaxies have dwarf satellites (Zaritsky et al. 1997) and therefore minor merger events are expected to occur several times during the lifetime of a galaxy. Second, numerical
simulations (see e.g. [Hernquist & Mihos 1997]) showed that minor mergers can drive sufficient amount of gas from the host galaxy into its central kiloparsec in a relatively rapid timescale (< 1 Gyr). Third, minor mergers do not cause strong deformations of the host morphology, and indeed most Seyfert galaxies do not appear significantly different from non-active galaxies. In fact, as reported by [Taniguchi 1999], the minor merger timescale could be long enough to smear its relics, therefore most of the advanced mergers would be observed as ordinary-looking isolated galaxies.

7 DISCUSSION

Mrk 315 has been investigated by means of both new imaging and spectroscopic data. The galaxy has several peculiar features in spite of the fact that it appears like a rather ‘normal’ early-type spiral. We discuss separately these features in the following.

a) Redshift

We have compared the heliocentric systemic velocity of Mrk 315, \(V_{sys} = 11517 \pm 9 \text{ km s}^{-1} \), obtained with the spectroscopy of the stellar component, with the values given in literature. By inspecting carefully the previously published papers about this galaxy, we found a redshift of 11827 \(\text{km s}^{-1} \) given by [Sargent 1970] and [Huchra & Sargent 1973] based on measurements of optical emission lines. We remark that this value is referred to the Galactic centre, and when converted to heliocentric reference frame, it becomes \(\sim 11640 \text{ km s}^{-1} \). The discrepancy with our redshift could be caused by the use of the emission lines. In fact, the nuclear spectrum shows hydrogen Balmer lines with asymmetric profiles caused by their broad components, which make them useless to measure a systemic velocity, and high ionisation lines affected by the nuclear outflow. A value of 11827 \(\text{km s}^{-1} \), coincidently identical to the one given above, but in this case referred to heliocentric reference frame, was obtained by [Mirabel & Wilson 1984] with H\(\text{I} \) observations. The large difference with optical measurements could be caused by the low spatial resolution of their data (3.3 arcmin). In fact, this beam includes the South-East dwarf galaxy, which is an H\(\text{I} \) source much stronger than Mrk 315 (with a flux about nine times higher). This appears clear in higher resolution H\(\text{I} \) data recently published by [Simkin & MacKenty 2001], and showing well separated H\(\text{I} \) sources with velocities of \(\sim 11800 \text{ km s}^{-1} \) and \(\sim 11670 \text{ km s}^{-1} \) for the South-East dwarf and the main galaxy respectively. Finally, the weak H\(\text{I} \) cloud relative to Mrk 315 appears not perfectly centred on its nucleus and extended toward North-West. This could have been caused by gravitational interaction effects, and could justify the discrepancy between the radio data and our systemic velocity measurement.

b) Morphology

At first sight the morphology of Mrk 315 does not show evident signs of past or ongoing interaction. Apart from the peak of ellipticity close to the nucleus and caused by the presence of the knot, named K throughout this paper, the isophotes of the galaxy are almost regular in their ellipticity. However, in all analysed images after the subtraction of the 2-D surface brightness models, two faint spiral arms are visible in external parts. The presence of these spiral arms is likely to cause the observed change of the position angle of the external isophotes.

The 2-D decomposition process of the surface brightness distribution allowed us to give the correct interpretation of the morphological parameters observed in the galaxy. At the beginning we have considered two possible choices for the orientation of the disc component in Mrk 315: 1) \(PA_d \equiv PA_{out} \sim 20^\circ \) and \(i_d \equiv i_{out} \sim 30^\circ \), obtained from the parameters of the external elliptical isophotes between 10 and 20 kpc; 2) \(PA_d \equiv PA_{dyn} = 57^\circ \) and \(i_d \equiv i_{dyn} = 34^\circ \), measured on the velocity field of stars between 1 and 6 kpc.

In the first case (Fig. 8 top) the residual brightness is negative (over-subtracted) at \(PA \sim 0^\circ \) and positive at \(PA \sim 60^\circ - 70^\circ \), where the knot K is located, and resembles that of an elongated bar-like feature in the galactic plane. But if this is a real bar, then the non-circular motions of stars must shift the \(PA_{dyn} \) in the gas/stellar velocity field from the \(PA \) of the line-of-nodes toward the opposite direction relative to the bar major axis (see discussion and references in [Moiseev, Valdés, & Chavushyan 2004]). However \(PA_{dyn} = 57^\circ \), so it is turned to the same direction of the bar major axis, like in case of disc kinematic. Therefore the bar-like structure is an artifact. Moreover, the morphological type of the galaxy is not consistent with the model result. On one hand, the bulge-to-disc (B/D) luminosity ratio is \(L_B/L_D \sim 2.5 \) as in a E-S0 galaxy (see [Simien & de Vaucouleurs 1986]). On the other hand the bulge follows an almost exponential profile (index \(n \sim 1.5 \)), which is rather strange for an early-type galaxy (see e.g. [Moriondo, Giovanardi, & Hunh 1998]).

On the contrary, the morphological structure becomes clear if we consider the second choice for the disc orientation, that is by applying our kinematic measurements. Firstly, the B/D ratio becomes \(L_B/L_D \sim 0.5 - 0.6 \), which corresponds to a Sab type according to [Simien & de Vaucouleurs 1986], and the Sérsic index \(n \sim 3 \) is in a good agreement with this early morphological type. Secondly, there is no more a displacement between the stellar velocity field and the orientation of the disc. Thirdly, the map of the residual brightness deprojected onto the galactic plane (see Fig. 8 bottom) shows a symmetric ring-like feature within 6 arcsec, in agreement with the disc-like kinematics of this region, which remains even when an outer secondary exponential disc is taken into account. This feature matches the star-forming quasi-ring analysed in Section 4. Finally, the presence of an inner disc allows us to explain the relatively small value of the velocity dispersion of stars within a radius of 5 kpc (see Section 5.3). Because this inner disc has a surface brightness greater or equal to the bulge one (between 2 and 8 kpc), the dynamically cold component influences significantly the line-of-sight velocity dispersion.

In this frame, the significant twist of the outer isophotes can be explained as a warp of the outer disc. Substituting the parameters of the outer isophotes \(PA_{out} = 20^\circ - 30^\circ \) and \(i_{out} = 30^\circ \) in the equation (2) by [Moiseev, Valdés, & Chavushyan 2001], we predict that the angle between the inner (< 8 – 10 kpc) and outer (15-20 kpc) parts of the galaxy is \(\Delta i \sim 15^\circ - 20^\circ \). This result is consistent with a galaxy which experienced an interaction process (see e.g. [Reshetnikov & Combes 1994]), and therefore the presence of a warped disc is not surprising.

\[\text{PA} = 60^\circ - 70^\circ \]
In the last years a multicomponent structure of the galactic disc was found in numerous galaxies, e.g. NGC 615 (Sil’chenko, Vlasyuk, & Alvarado 2000) or the intriguing case of NGC 7217 (Sil’chenko & Afanasiev 2000) with three exponential discs increasing their radial scales outward. Also Pizzella et al. (2002) showed nuclear discs embedded in the bulges of three early-type galaxies. Erwin et al. (2003) found luminous inner discs inside bar-regions of two barred galaxies, NGC 2787 and NGC 3945, and in the last one the inner disc is ten times more luminous than the bulge. Moiseev, Valdés, & Chavushyan (2004) also detected inner discs within a one kiloparsec-size region of seven barred galaxies. To date the origin of these inner discs is explained with a ‘secular evolution’ of the galactic disc, or a redistribution of the gaseous matter provoked by a bar, or a moderate gravitational interaction with other galaxies (see discussion in Sil’chenko, Vlasyuk, & Alvarado 2001). Mrk 315 has no bar, but we found that it experienced interaction with two dwarf satellites. In addition our model-subtracted images show a ring in the central region (with the same scale of the inner disc) with two bright peaks. The eastern peak is a satellite sink into the galaxy (knot K), but the western peak belongs to the galactic plane, and therefore the azimuthal brightness distribution of the ring is non-uniform. This situation is analogous to the results of numerical simulations of the flight of a small satellite through a barred galaxy performed by Athanassoula, Puerari, & Bosma (1997). Their Fig. 19 shows that the impact destroys the bar and form a ring on a timescale $\sim 5 \times 10^7$ yr after the impact. Therefore, we suggest that the inner disc component in Mrk 315 could be the debris of a bar.

c) Quasi-ring

In analogy with Nonino et al. (1998), who applied the method of isophotal fitting with ellipses to make a model of the galaxy and subtract it from the original image to evidence fine structures, we were able to enhance an internal quasi-ring structure, embedded in the bright diffuse emission of the galaxy, and in which we have identified three main regions (labelled A1, A2, and A3). This structure, whose existence was already indicated by MacKenty et al. (1994) as a ring, is similar to that shown in Fig. 1 of the Nonino et al. (1998) paper, who called it a ‘chain’ of knots surrounding the Seyfert nucleus. We stress that we do not observe the ‘emission dip’ found by these authors at PA $\sim 225^\circ$, which should be located roughly in the middle of A1.

This quasi-ring is characterised by diffuse Hα emission, without any evident condensation, while [O III] is very faint suggesting the thermal origin of the ionising sources. Indeed, integral-field spectra of regions A1, A2 and A3 exhibit the typical emission lines and line ratios observed in H II and star forming regions: low values of [N II]/Hα (< 0.6), [O III]/Hβ (< 3) and high values of [O III]/[O II] (> 1). This result is in agreement with Wilson (1988), who measured [O III]/H$\beta = 0.4 - 1.0$ and claimed for hot star photoionised gas outside the nucleus, where the kinematics is dominated by circular motions.

The total Hα luminosity, corrected for internal reddening, and then converted into SFR clearly indicates that Mrk 315 is a starburst galaxy. Our result is solid since we have cross-checked the high SFR value found by using Hα with infrared and radio emission, which gave a substantial agreement. It is remarkable that Nonino et al. (1998) claimed for an overall SFR of $\sim 1 \, M_\odot$ yr$^{-1}$ on the basis of IRAS data taken from Mazzarella, Bothun, & Boroson (1991). We tried to investigate the reason for this large difference by repeating the calculations made by these authors, and we found a possible oversight in their FIR luminosity value, which is lower by a factor of ~ 10. Indeed Nonino et al. (1998) are not able to explain why a so quite low FIR luminosity, and therefore SFR, can be related to a high value of SN rate given by the radio emission. Moreover they used both 60 and 100 μm IRAS fluxes to obtain FIR emission, but while at 60 μm the source is well defined and its emission easily measurable, at 100 μm the galaxy is embedded in large and bright structures which prevent a reliable estimate of the background level and therefore of the source flux. This is probably why the value at 100 μm published by Mazzarella, Bothun, & Boroson (1991) is an upper limit (≤ 0.76 Jy), and it is largely distant to the flux given in the Faint Source Catalogue (≤ 4.526 Jy).

Through the analysis of the gaseous and stellar kinematics of this structure, and more in general of the galaxy, we found out that the velocity fields are made by independent kinematical components. In particular, the main component of the galaxy is characterised by almost pure circular rotation, with the dynamic centre located at the photometric nucleus of Mrk 315. This is a major difference between our results and those presented by MacKenty et al. (1994), and later mentioned by Nonino et al. (1998), who located the kinematic centre 6 arcsec NW of the nucleus. In our opinion these authors might have been misled by the fact that their long-slit spectrum was positioned close to kinematic minor axis, where rotation is generally not expected, and covered partially the NW and SE region of high velocity gas visible in the velocity field. This could be the reason of the shape of the velocity curve obtained by MacKenty et al. (1994).

d) Knot

A knot located close to the nucleus has been identified on the broad band images, and named K throughout the paper. It corresponds to the secondary nucleus of the merger hypothesis claimed by MacKenty, who showed its stellar nature by means of an I-band HST image. The kinematical analysis of our integral-field data confirmed the merger hypothesis: the knot K is a real secondary nucleus, the remnant of a dwarf galaxy which sank into the main disc of the galaxy. In fact, a stellar component kinematically independent from the main galaxy was discovered and its velocity field reconstructed by means of high resolution integral-field spectra obtained with MPFS. The velocity field clearly shows a rotation pattern lying over the knot K, which has a $\Delta V \sim 400$ km s$^{-1}$ with respect to the systemic velocity of the galaxy.

The high velocity of the impact is expected to produce gas compression. Indeed, this secondary nucleus is embedded in the Hα emission of the galaxy, and it also shows a faint [O III] emission, but is strongly emphasised in the integral-field maps of [O III] $\lambda \lambda 3727, 3731$, [O I] $\lambda \lambda 6300$ and [S II] $\lambda \lambda 6716, 6731$ emission lines. All these features are a probe that the gaseous component at the location of K is mainly ionised by shocks.

In particular, the auroral line [O III] $\lambda \lambda 3727, 3731$ ($S_0 - D_2$) can have two main origins. The collisionally populated level 1S_0 can be excited both by high electron density, or by high gas temperature. Since the critical density of this transition is
around $10^8 - 10^9$ cm$^{-3}$, in case of lower density gas, as it happens in NLR or generally in H II regions, this line is a function of the temperature. In fact the $[O\text{ III}]$ 4959+5007/4363 ratio is used as a direct measure of the gas temperature, provided that the electron density $n_e < 10^6$ cm$^{-3}$. Therefore $[O\text{ III}]$ λ4363 is so weak in classical H II regions, with temperatures ranging around 5000–10000 K, that is generally not observed, while it is visible when $T \sim 10^8 - 10^9$ K. These are the conditions of supernova remnants, or more in general of shock excited gas.

We stress that the knot K and its surroundings are characterised by higher electron density and internal extinction than the other regions except the nucleus. Moreover, the diagnostic line ratios indicate this secondary nucleus shares the same properties observed in LINER galaxies. In particular, it satisfies the $[O\text{ III}]$ λ4372/λ5007 > 1, and $[O\text{ I}]$ λ6300/λ5007 $> 1/3$, emission line ratios criteria proposed by Heckman (1980) and extensively discussed by Ho (2004) to define a LINER. Therefore, we cannot exclude that this knot could be a low luminosity active nucleus, and if this is the case, Mrk 315 can be numbered as a new case of two active nuclei in merging. Analogous results were obtained by Rifatto et al. (2001) for ESO 202-G 23, and by Komossa et al. (2003) for NGC 6240.

e) Filaments

The nature of the filaments mentioned in Section 3 is controversial. F1 and part of F2 were already found and discussed by MacKenty (1986) and MacKenty et al. (1994), who considered them as a single filament with a ‘book’ shape. Moreover, MacKenty (1986) could see F1 only in narrow-band filters, and not in continuum light. At the beginning we also obtained a similar result, but later, thanks to deeper images, we could observe that the situation is completely different: there exist two independent filaments crossing likely in projection, and they are both visible in continuum light.

The shape of F1 could indicate that it is a tidal tail, but some evidences are against this hypothesis. First of all, the gas velocity is much higher than what expected in case of a kinematical connection to the main body of the galaxy, as it usually happens with the classical tidal tails (see e.g. Hibbard & van Gorkom 1999, and references therein). Second, radio observations did not find any trace of H I emission in correspondence to the filament. On the other hand, the jet hypothesis was already discussed and discarded by MacKenty (1986). Essentially, the lack of radio emission beyond the boundaries of the galaxy excludes the filament to be a jet. Indeed, the 6 and 20 cm observations by Nonino et al. (1998) showed only a diffuse emission coincident with the extended regions of star formation found in the quasi-ring, and two bright knots corresponding to the active nucleus N and the secondary nucleus K. Similar narrow and long structures may occur in case of relativistic jets from active nuclei. The strong magnetic field causes a collimated radio emission with non-thermal spectrum, which should be aligned with its optical counterpart, as it is observed in radio galaxies. Even if the relativistic jet were oriented directly toward us, so we could not observe synchrotron emission, it should become broader at the end due to the bow-shock. This is not the case of F1.

We propose the following possible interpretation for both F1 and F2: they are likely the debris of the interaction between Mrk 315 and two dwarf companions. In particular, one sank into the main galaxy and gave rise to a minor merger event (knot K), while the other passed closed to Mrk 315 in a sort of fly-by (South-East dwarf). It has been demonstrated by simulations and observations, that a satellite companion crossing through the halo of the main galaxy undergoes a tidal interaction, which strips away its outer stars, and forms extended tails with low surface brightness which are usually difficult to detect (Forbes et al. 2003). This idea is close to the hypothesis proposed by MacKenty et al. (1994) and Simkin & MacKenty (2001), that the filament F1 could be ‘...a short-lived wake left behind a bow-shock formed by the passage of the galaxy’s nucleus through the neutral gas’.

In F1 the gas trails along the trajectory followed by the dwarf galaxy, and its velocity increases along the filament, in agreement with the long-slit observations by MacKenty et al. (1994). Moreover, its distribution should be curved near the massive core, as we see in the middle-band $[O\text{ III}]$ images. MacKenty (1986) already observed that extrapolating the filament into the galaxy failed to intersect the nucleus by ~ 1 arcsec. If we take in account the length of the right side of the filament (~ 70 kpc in projected distance), the falling time is about 1.2×10^8 years. Since this value is 3-5 times shorter than the period of rotation of Mrk 315, we expect that the filament is not strongly disturbed by the differential rotation.

The emission line ratios available for the part of the filament within the disc of the galaxy (region J1) show an high ionisation degree, probed by the $[O\text{ III}]/\text{H}\beta$ and $[O\text{ I}]/[O\text{ III}]$ values, which is similar to those observed in the active nucleus. It is straightforward to claim that nuclear radiation is ionising the gas along the filament. This was also suggested by Wilson (1988), who measured $[O\text{ III}]/\text{H}\beta$ ratios larger than 3 (and up to 17) in the North-West region of the galaxy.

But energy budget calculations provide a flux of nuclear ionising photons lower than that requested to sustain a so high ionisation at large distance from the central engine. Therefore, another additional source must be invoked. Since the gas is moving at high velocity along J1, we should reasonably expect that strong shock excitation occurs (Mach number >10), and due to the low density of the gas, the collisions should cause strong $[O\text{ III}]$ emission (in analogy with $[O\text{ III}]$ structures observed in radio galaxies).

8 SUMMARY

In this paper we have presented, analysed and discussed new data about the Seyfert 1.5 galaxy Mrk 315, which allowed to improve the overall knowledge of this peculiar object. Apparently isolated and undisturbed, Mrk 315 is known to hide interesting features, which induced previous authors to classify it as a merger in act. The analysis of the light distribution in different wavelength ranges of the optical domain, combined with the integral-field spectroscopic information, showed that the galaxy has an early-type spiral morphology, with an inner and an outer disc. The inner disc shows bright star forming regions arranged in a quasi-ring shape around the nucleus, and it hosts a secondary nucleus close to the
AGN, centre of mass of a dwarf galaxy remnant, which sank into the main body of the galaxy, producing clear effects of gas compression and shock ionisation. Highly ionised and collimated gas is observed to move radially at high velocity with respect to the rotation of the galaxy, and in agreement with the velocity of the secondary nucleus. This gas is connected to a giant filament. We have discussed the nature of this filament, excluding the tidal tail and/or jet hypotheses, and proposing the idea of debris of the dwarf galaxy, which passed through the halo of the main galaxy loosing stars and gas. We also identified a second and more extended filament, to which we ascribed a similar origin. This filament is clearly connected to an emission line dwarf galaxy, which has a redshift in agreement with that of Mrk 315, and is associated to a bright H\textsc{i} cloud.

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for precious comments and suggestions which improved the quality of the paper. We are also grateful to Prof. S. Simkin and Prof. V. Reshetnikov for useful discussions. A. Moiseev thanks Russian Science Support Foundation. Based on observations carried out at the 6m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, operated under the financial support of the Science Department of Russia (registration number 01-43).

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was partially based on data from the ING Archive.

REFERENCES

Afanasiev V. L., Dodonov S. N., Moiseev A. V., 2001, sdcm.conf, 103
Afanasiev V. L., Moiseev A.V., 2005, Astronomy Letters, 31, 193 (astro-ph/0502095)
Athanassoula E., Puerari I., Bosma A., 1997, MNRAS, 286, 284
Bachev R., Strigachev A., Dimitrov V., 2000, A&AS, 147, 175
Begeman K. G., 1989, A&A, 223, 47
Bell E. F., 2003, ApJ, 586, 794
Bushouse H. A., 1986, AJ, 91, 255
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Carollo C. M., Stiavelli M., Mack J., 1998, AJ, 116, 68
Chapman S. C. et al., 2000, MNRAS, 319, 318
Chatzichristou E. T., 2001, ApJ, 556, 653
Chatzichristou E. T., 2000, ApJS, 131, 71
Ciroi S., Contini M., Rafanelli P., Richter G. M., 2003, A&A, 400, 859
Condon J. J., Yin Q. F., 1990, ApJ, 357, 97

Dahari O., 1984, AJ, 89, 966
De Robertis, Yee, & Hayhoe 1998, ApJ, 496, 93
Erwin P., Beltrán J. C. V., Graham A. W., Beckman J. E., 2003, ApJ, 597, 929
Forbes D. A., Beasley M. A., Bekki K., Brodie J. P., Strader J., 2003, Sci, 301, 1217
Fuentes-Williams T., Stocke J. T., 1988, AJ, 96, 1235
Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111, 1748
Heckman T. M., 1980, A&A, 87, 152
Heckman T. M., et al., 2005, ApJ, 619, L35
Hernquist & Mihos 1995, ApJ, 448, 41
Hibbard J. E., van Gorkom J. H., 1996, AJ, 111, 655
Ho L. C., Shields J. C., Filippenko A. V., 1993, ApJ, 410, 567
Ho L. C., Filippenko A. V., Sargent W. L. W., 1993, ApJ, 417, 63
Ho L. C., 2004, cbhg.symp, 293
Huchra J., Sargent W. L. W., 1973, ApJ, 186, 433
Kennicutt R. C., 1998, ARA&A, 36, 189
Komossa S., Schulz H., 1997, A&A, 323, 31
Komossa S., Burwitz V., Hasinger G., Predehl P., Kaastra J. S., Ikebe Y., 2003, ApJ, 582, L15
Kormendy J., 1982, ApJ, 257, 75
Koski A. T., 1978, ApJ, 223, 56
Laurikainen E., Salo H., Teerikorpi P., Petrov G., 1994, A&AS, 108, 491
MacKenty J. W., 1986, ApJ, 308, 571
MacKenty J. W., 1989, ApJ, 343, 125
MacKenty J. W., Simkin S. M., Griffiths R. E., Ulvestad J. S., Wilson A. S., 1994, ApJ, 435, 71
Mannucci F., et al., 2003, A&A, 401, 519
Martini P., Regan M. W., Mulchaey J. S., Pogge R. W., 2003, ApJ, 589, 774
Mazzarella J. M., Bothun G. D., Boroson T. A., 1991, AJ, 101, 2034
Mihos J. C., Hernquist L., 1994, ApJ, 425, L13
Mihos J. C., Hernquist L., 1996, ApJ, 464, 641
Miller C. J., Nichol R. C., Gomez P. L., Hopkins A. M., Bernardi M., 2003, ApJ, 597, 142
Mirabel I. F., Wilson A. S., 1984, ApJ, 277, 92
Moiseev A. V., 2002, BSAO, 54, 74 (astro-ph/0211104)
Moiseev A. V., Valdés J. R., Chavushyan V. H., 2004, A&A, 421, 433
Moriondo G., Giovanardi C., Hunt L. K., 1998, A&AS, 130, 81
Neff S. G., Ulvestad J. S., Teng S. H., 2004, ApJ, 611, 186
Nonino M., Henry J. P., Fanti C., Fanti R., Davies J., 1998, MNRAS, 299, 332
Osterbrock D. E., 1989, agna.book
Penston M. V., et al., 1990, A&A, 236, 53
Pizzella A., Corsini E. M., Morelli L., Sarzi M., Scarletta C., Stiavelli M., Bertola F., 2002, ApJ, 573, 131
Pogge R. W., Martini P., 2002, ApJ, 569, 624
Radovich M., Hasinger G., Rafanelli P., 1998, AN, 319, 325
Radovich M., Ciroi S., Contini M., Rafanelli P., Afanasiev V. L., Dodonov S. N., 2005, A&A, 431, 813
Rafanelli P., Violato M., Baruffolo A., 1995, AJ, 109, 1546
Radovich M., Hasinger G., Rafanelli P., 1998, AN, 319, 325
Rowan-Robinson M. et al., 1997, MNRAS, 289, 490
Sargent W. L. W., 1970, ApJ, 160, 405
Schmitt H., 2001, AJ, 122, 2243
S´ersic J. L., 1968, adga.book
Sil’chenko O. K., Afanasiev V. L., 2000, A&A, 364, 479
Sil’chenko O. K., Vlasyuk V. V., Alvarado F., 2001, AJ, 121, 2499
Simien F., de Vaucouleurs G., 1986, ApJ, 302, 564
Simkin S. M., MacKenty J. W., 2001, ASP Conference Proceedings, 240, 408
Smith H. E., Lonsdale C. J., Lonsdale C. J., 1998, ApJ, 492, 137
Taniguchi 1999, ApJ, 524, 65
van den Bergh S., Tammann G. A., 1991, ARA&A, 29, 363
Veilleux, S. & Osterbrock, D.M. 1987, ApJS, 63, 295
Wilson A. S., 1988, AdSpR, 8, 27
Wozniak H., Combes F., Emsellem E., Friedli D., 2003, A&A, 409, 469
Zaritsky, Smith, Frenk, & White 1997, ApJ, 478, 39
New observations of the Seyfert galaxy Mrk 315

Figure 1. Transmission curves of the VATT narrow-band filters $H_{\alpha_{on}}$ and $H_{\alpha_{off}}$ with central wavelength $\lambda_{c}=6830 \, \text{Å}$, and $\lambda_{c}=6580 \, \text{Å}$ respectively. Both filters have similar width $\Delta \lambda \sim 70 \, \text{Å}$.

Figure 2. Elliptical isophote parameters from the available images of Mrk 315. In the upper panel the position angle is plotted vs. the semi-major axis in kpc. The symbols correspond to different optical bands. The solid line marks the dynamical axis measured on the velocity field of stars (Fig. 14), the dashed line corresponds to the mean value of the dynamical axis (which is accepted as line of nodes). The ellipticity of the isophotes is plotted in the lower panel.
Figure 3. 2-D decomposition of the surface brightness distribution in the R$_\text{c}$ band. Top row shows the results of a single disc model with $PA = PA_{\text{out}}$. Here the left panel shows the residuals (smoothed) after the model subtraction from the original image in the sky plane, the middle panel is the residual after the deprojection onto the galactic plane. The scale is in magnitudes, the cross marks the photometric centre, and the solid line indicates the direction of the line of nodes. The right panel presents the mean profile averaged in annular ellipses. The solid line is the averaged model profile, and the dashed lines are the averaged profiles of the photometric components convolved with seeing. Bottom row is the same, but for two discs model with $PA = PA_{\text{dyn}}$.

Figure 4. The quasi-ring structure. Contours are the isointensities of the non-calibrated H$_\alpha$ (a) and [O iii] (b) continuum-subtracted images of Mrk 315. The cross marks the position of the knot identified by [MacKenty et al. (1994)] as possible secondary nucleus.

Figure 5. The V image of Mrk 315 with different greyscale levels to emphasise the weak inner (left panel) and outer (right panel) features. In the left panel, black arrows indicate the position of the wounding trail, while the dashed line indicate the location of the inner stellar shell. In the right panel, black arrows follow the wake toward the secondary nucleus (named F1 in the text), while white arrows indicate the wake toward the South-East extended source (named F2 in the text). The white dashed line indicates the position of the outer shell. The scale–bar corresponds to 7.5 kpc at the distance of the galaxy.

Figure 6. Reconstructed maps of the galaxy for different emission lines in the field-of-view of the spectrograph (16×15 arcsec). Each pixel corresponds to 1×1 arcsec. The arrow indicates the North direction, the cross marks the position of the nucleus.
Figure 7. (a) Hα integral-field map. White contours are the isointensities of the V_{red} image. Black lines define the selected regions N, K, A1, A2 and A3. (b) [O iii] integral-field map. White contours are the isointensities of the [O iii] continuum-subtracted image. Black lines define the selected regions J1 and J2.

Figure 8. Integrated spectra of the regions identified in Fig. 7.
Figure 9. Integral-field maps of the emission line ratios used in diagnostic diagrams. The contours of the V_{rest} image are overlaid to all maps, but the $[\text{O III}]/H\beta$ where the contours of the $[\text{O III}]$ continuum-subtracted image are used. The brightest pixels have ratios with the highest values.

Figure 10. Map of the reddening corrected $[\text{O II}]/[\text{O III}]$ ratio. The brightest pixels have the ratios with the highest values. The contours of the $[\text{O III}]$ continuum-subtracted image are overlaid.
New observations of the Seyfert galaxy Mrk 315

Figure 11. Left: Integral-field map of the [S\textsc{ii}] doublet ratio, which indicates the distribution of the electron density (n_e) over the field of view. Dark grey pixels correspond to the highest values of n_e. Right: The map of the internal reddening A(V) obtained from the Hα/Hβ ratios. Brightest pixels are those with the highest extinction. White contours of the V_{res} image are overlaid onto both panels.

Figure 12. Veilleux & Osterbrock (1987) diagnostic diagram showing the emission line ratios from the regions selected in Fig. 7: N (open circles), K (filled circles), A1 (open squares), A2 (filled squares), A3 (crosses), J1 (skeletal triangles), and J2 (open stars). The solid and the dashed lines separate the zones where thermal, non-thermal and shock ionisation occurs. The error bars indicate the typical errors for the diagnostic ratios of these regions.
Figure 13. The velocity field of gas obtained with Fabry-Perot observations in the emission line [O\textsc{iii}]. Two kinematic components can be separately studied. The left panel shows the rotation of the galaxy with the additional nuclear outflow. The right panel shows the high velocity gas corresponding to the J1 and J2 regions.
Figure 14. Stellar kinematics obtained with MPFS data. (a) The ‘main galaxy’ component: the line-of-sight velocity field and the map of the velocity dispersion are reproduced in the upper panels. The cross marks the dynamical centre. The rotation curve (solid line) and the average radial distribution of the line-of-sight velocity dispersion (dotted line) are plotted in the lower panel. (b) The same for the secondary component, named ‘knot K’ in the text.

Figure 15. The POSS2-red field around Mrk 315 (panel (a)). The black and white arrows indicate the positions of Mrk 315 and the nearest brightest galaxy 2MASX J23041747+2237302. The [O III] continuum-subtracted image of Mrk 315 (black arrow) and the location of the dwarf emission-line galaxy (white arrow).
Figure 16. The low resolution spectrum of the dwarf emission-line galaxy identified in [O III] with SCORPIO.
This figure "FIGURE_3.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_4.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_5.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_6.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_7.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_8.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_12.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_13.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1
This figure "FIGURE_20.JPG" is available in "JPG" format from:

http://arxiv.org/ps/astro-ph/0503468v1