An original risk of ovarian malignancy index and its predictive value in evaluating the nature of ovarian tumour

Vesna Antovska,* Milka Trajanova
Department of Urogynecology, University Clinic, St Cyril and Methodius Skopje, Skopje, Macedonia
*Correspondence to: Vesna Antovska, email: vantovska@yahoo.com
Keywords: ovarian cancer, serum cancer antigen 125, CA-125, ultrasound, risk of ovarian malignancy index

Introduction
Ovarian cancer is the leading cause of death from gynaecological malignancies, with five-year survival rates of 6–22%. Various methods of evaluating ovarian cancer risk have been proposed. A risk of malignancy index (RMI), originally invented in 1990, now termed RMI 1,1 is a simple scoring system of ultrasound scores (U), the menopausal score (M) and the absolute value of serum cancer antigen 125 (CA-125), i.e. RMI 1 = U × M × CA − 125. The ultrasound scan in RMI 1 is evaluated and the index increased by one point for each of the following characteristics if found: multilocularity, tumour with ≥ ¼ solid areas, dense and opalescent liquid, septum or papillary vegetation ≥ 3 mm, ascites, bilaterality, an unclear margin with respect to the surrounding tissue and thickness of the capsule ≥ 3 mm. Its originality lay in the three-stage CA-125 gradation, namely < 35 U/ml (1 point), 35-129 U/ml (3 points) and ≥ 130 U/ml (5 points). The study group comprised 274 patients divided into a group with benign tumours (BOT) (n = 205), and a group with malignant tumours (MOT) (n = 69). Both groups were subdivided into three subgroups of ROMI ≤ 11 (low risk), ROMI 12-14 (unclear risk) and ROMI ≥ 15 (high risk).

Results: The cut-off ROMI of ≤ 11 showed high sensitivity, specificity and area under the curve (AUC) of 0.74, 0.93 and 0.83, respectively. The cut-off ROMI of ≤ 14 demonstrated extremely high specificity of 0.985, but lower sensitivity and AUC, of 0.57 and 0.78, respectively.

Conclusion: Our newly devised ROMI and its cut-off of ≤ 11 is very effective in excluding, as well as confirming, ovarian cancer.
index 0/1 denotes U = 1, ultrasound index ≥ 2 denotes U = 4, premenopausal status M = 1 and postmenopausal status M = 4. A tumour diameter < 7 cm denotes S = 1, and ≥ 7 cm denotes S = 2. The Risk of Ovarian Malignancy Algorithm (ROMA) is a combined test of human epididymis protein 4 (HE4) enteroincysl axis enzyme immunoassay, ARCHITECT CA-125 II™ and menopausal status. In a recent Moore study, ROMA was evaluated in 472 women, and identified 94% of ovarian cancer cases and 75% of benign disease cases.

There is still no consensus on a scoring system for ovarian malignancy. The International Ovarian Tumour Analysis (IOTA) published a consensus statement in 2000 on terms and definitions with respect to five simple ultrasound-based rules for predicting malignancy (M features), namely an irregular solid tumour (M1), ascites (M2), at least four papillary structures (M3), an irregular multilocular or solid tumour with a large diameter of at least 100 mm (M4), very high colour content on colour Doppler (M5), and five ultrasonic features for predicting a benign tumour (B features), namely a unilocular cyst (B1), a solid tumour with a diameter of ≤ 7 mm (B2), acoustic shadows (B3), a smooth multilocular tumour (B4) and no detectable blood flow on Doppler (B5). If one or more M features are present in the absence of a B feature, the mass is classified as malignant (rule 1). If one or more B features is present in absence of an M feature, it is classified as benign (rule 2). If both or none of the M and B features are present, the simple rules are inconclusive (rule 3). These rules can be applied to 75% of masses. There is a worrying lack of agreement regarding the vascular imaging of tumours.

Twelve parameters are included in logistic regression model 1 (LR1):
- Family history.
- A personal history of ovarian cancer.
- Current hormonal therapy.
- Age, in years.
- Maximum diameter of the lesion.
- Pain during the examination.
- Ascites.
- Blood flow within a solid papillary projection.
- A purely solid tumour or maximal diameter of the solid component ≤ 50 mm.
- Irregular internal cyst walls.
- The presence of acoustic shadows.
- The colour score, i.e. 1, 2, 3 or 4.

Six variables are selected for the simpler version (LR2):
- Age.
- Ascites.
- Blood flow within a solid papillary projection.
- Maximal diameter of the solid component ≤ 50 mm.
- Irregular internal cyst walls.
- Acoustic shadows.

The mass is classified as malignant with an estimated probability of malignancy > 0.10 according to LR1 or LR2. Both LR1 and LR2 provide the clinician with a percentage risk of cancer, instead of a simple positive or negative diagnosis.

We represent our original risk of ovarian malignancy index (ROMI) (Table 1) as a simple sum of points derived from:
- A three-stage gradation of serum CA-125.
- Data from the familial and personal history.
- The ultrasound characteristics of the tumour, i.e. tumour size ≥ 6 cm, multilocularity, a tumour with ≥ ¼ solid areas, dense and opalescent liquid, and septum or papillary vegetation ≥ 3 mm.
- Ascites.
- Bilaterality.
- An unclear margin with respect to the surrounding tissue.
- Thickness of the capsule ≥ 3 mm.

Table 1: Our newly devised ROMI

Parameter	Point
Family history	
Negative	0
Breast cancer	1
Endometrial cancer	1
Colon cancer	1
Ovarian cancer	1
Personal history	
Negative	0
Breast cancer	1
Endometrial cancer	1
Colon cancer	1
Ovarian cancer	1
Age	
Childhood	1
Adolescence and generative age	0
Premenopausal or early menopausal	2
Senium	1
Ultrasound	
Tumour size	
< 6 cm	0
≥ 6 cm	1
Tumour structure	
Cystic	0
Solid	0
Cystic, with < ¼ solid parts	1
Cystic, with ≥ ¼ solid parts	2
Density of the intralocular liquid	
Absence of liquid	0
Clear liquid	1
Opalescent	2
Table 1: Our newly devised ROMI

Parameter	Point
Tumour feature (locularity)	
Without a locular feature (solid)	0
Unilocularity	0
Bililocularity	1
Multilocularity	2
Tumour feature (laterality)	
Unilateral tumour	0
Bilateral tumour	1
Presence of septum	0
No septum	0
Septum < 3 mm	1
Septum ≥ 3 mm	1
Presence of papillary vegetation in the cyst	
No vegetation	0
Vegetation thinner than 3 mm	0
Vegetation of 3–5 mm	1
Vegetation thicker than 5 mm	2
Thickness of the capsule	
< 3 mm	0
3–5 mm	1
> 5 mm	2
Margin feature	
Clear smooth margin	0
Clear rugged margin	1
Unclear margin with respect to surrounding tissue	2
Presence of ascites	
No ascites	0
Only in the pelvis	3
In the abdomen	5
Serum levels of CA-125	
< 35 U/ml	0
35–129 U/ml	3
≥ 130 U/ml	5

CA-125: serum cancer antigen 125

Its originality lies in the three-stage CA-125 gradation, i.e. < 35 U/ml (1 point), 35–129 U/ml (3 points) and ≥ 130 U/ml (5 points).

The differences between ROMI and other RMIs are as follows:

- ROMI is a simple sum of points, instead of a complicated mathematical formula, and provides a rapid result, with no need for a calculator or computer software.
- It includes additional semi-quantitative ultrasound features, i.e. multilocularity, solid areas in ≥ ¼ of the tumour, septum or papillary vegetation ≥ 3 mm, thickness of the capsule ≥ 3 mm. (Some are similar to those in LR1 and LR2, but with different cut-off values).
- Certain features, such as an unclear margin with respect to the surrounding tissue, dense or opalescent liquid, and ascites, are only included in ROMI.
- The three-stage graduation of CA-125, instead of an absolute value, is introduced for the first time with ROMI.
- Some data from the personal and familial history for cancer are only included in ROMI.
- All periods of the woman’s life (gynaecological age) are only included in ROMI, and a risk equitation made between childhood and senium, as well as between the premenopausal age and early menopause. (LR1 and LR2 include the general age in years. Other RMIs only make a distinction between premenopausal and postmenopausal status).

The main advantage of ROMI over simple ultrasound rules, neural network logistic regression models, artificial neural networks (ANNs) and vector machine models is its simplicity. The ultrasonic variables, as well as data from the personal and familial history are straightforward to obtain, without the need for a calculator or computer software. The disadvantage of the simple rules is that they yield an inconclusive result in approximately 25% of tumours, whereas mathematical models, such as RMI, ROMA or LR1 and LR2, yield a useful result with respect to all masses. ROMI is cheaper than ROMA because serum HE4 analysis and computer software is not needed.

Specific objectives and hypothesis

This was a study of diagnostic accuracy with the following aims:

- Estimation of the diagnostic accuracy (predictive value) of ROMI, and comparison with CA-125.
- Determination of the optimal ROMI cut-off value, with concurrent maximal specificity and sensitivity.
- A comparison of its accuracy with that of the previously mentioned methods in predicting ovarian malignancy.

The hypothesis was that ROMI was suitably effective and comparable with other RMIs in predicting ovarian malignancy. This scoring system might even be a better tool for this purpose than CA-125.

Method

Study population

Inclusion and exclusion criteria

Participant recruitment was based on the ultrasound examination. The presence of an ovarian tumour was an inclusion criterion for eligibility. A histological diagnosis of the ovarian tumour was la condition sine qua non (a necessary condition without which something is not possible). For this reason, the patients for whom this diagnosis was unavailable, i.e. patients who did not undergo the operation, were excluded from the study.
The setting

The setting was the Department for Urogynaecology and Pelvic Floor Disorders, University Clinic for Gynaecology and Obstetrics, Medical Faculty, University Saint Cyril and Methodius, Skopje, Republic of Macedonia. The study took place from 1 January 2012 to 1 January 2014. The study took place from 1 January 2012 to 1 January 2014.

Participant sampling

The study population was a consecutive series of participants defined by the previously mentioned selection criteria. Every woman screened in the gynaecological ultrasound outpatient department of the clinic with an ovarian tumour on ultrasound examination in the period 1 January 2012 to 1 January 2014 was assessed for eligibility (n = 289). Five patients refused to submit to the assessment and were excluded. An additional 10 patients were also excluded because of co-morbidities. Ultimately, 274 randomised patients were selected.

Data collection

Data collection was planned before the index test, and a reference standard (prospective study) performed.

Precise details of the interventions for each group, and how and when they were administered

The first study group consisted of patients in whom the histological tumour feature was benign (BOT) (n = 205), and the second study group of patients in whom the histological feature was a malignant ovarian tumour (MOT) (n = 69). The serum CA-125 was obtained, an ultrasound evaluation carried out according to our new ROMI, data on the patient’s personal or familial history noted for every group. Interpreters of the index test and reference standard test were blind (masked) to each other’s results. Ultrasound examination of the patients was performed by the first author of this article.

The study was approved by the local research ethics committee of the Association of Gynecologists and Obstetricians of Macedonia. Subjects were provided with an explanation of the study prior to it commencing, and written informed consent obtained therefrom.

Primary and secondary outcome measures

Demographic data

Demographic data, such as personal age, gynaecological age, parity and familial history for ovarian tumour or any other cancer, were evaluated. The study subjects underwent an ultrasound examination of the genital organs with a 4-9 MHz vaginal probe (the GE Voluson™ 58 system ultrasound model; GE Healthcare, Little Chalfont, UK) to determine several ultrasound characteristics of the ovarian tumour as a complementary part of ROMI, such as tumour size, its features, margin thickness, the presence of septum or papillary vegetation in the cyst, the quality of cystic liquor and the presence of ascites. Serum CA-125 was estimated preoperatively using an enhanced chemiluminiscence technique in each study subject, with use of the original CA-125™ II kit (Johnson & Johnson, New Brunswick, USA). Our newly proposed ROMI was also calculated in each patient.

Histopathological examination

The patients were examined using light microscopy by a pathologist who was not informed of the study.

Statistical method

In order to determine the optimal cut-off value of our new ROMI according to the estimated predictive values, we divided both study groups into three subgroups using three cut-off values:

- High risk (ROMI ≥ 15).
- Low risk (ROMI ≤ 11).
- Unclear risk (ROMI 12-14).

According to the results of our previous study, we also divided the patients into three subgroups according to the two cut-off values for serum CA-125:

- Low risk (CA-125 < 35 U/ml).
- Unclear risk (CA-125 35-129 U/ml).
- High risk (CA-125 ≥ 130 U/ml).

Finally, we overlapped these two modes of division intentionally to determine the real incidence rates and predictive values of these characteristics according to the three-level division of ROMI and serum CA-125.

The predictive values of ROMI and serum CA-125 were analysed according to standard formulae for sensitivity and specificity. The differences between the predictive values of the different cut-off values for ROMI and serum CA-125 were estimated using Mantel-Haenzel’s chi-square test with a degree of freedom of 1.

Results

Participants who satisfied the criteria for inclusion, but not those for exclusion, underwent the index test and/or the reference standard test. Patients included in the study underwent operative treatment for their ovarian tumour. The histological feature of the tumour was benign in 205 patients (BOT group) and malignant in 69 patients (MOT group).

There were no adverse events from performing the index or reference standard tests.

The results of the BOT group are presented in Table 2.
Preoperative serum CA-125 levels were ≤ 34 U/ml (the standard, well-established cut-off value) in 79% (160/205) of the patients, slightly increased (35-129 U/ml) in 17.42% (34/205) patients, and ≥130 U/ml in only 3% (6/205) of the patients. On the other hand, the ROMI was ≤ 11 (the first proposed cut-off value) and ≤ 14 (the second proposed cut-off value) in 93% (191/205) and 98% (202/205) of patients, respectively, in the same study group.

When the same parameters were analysed in the MOT group (Table 3), serum CA-125 of < 35 U/ml (low risk) was reported in only 26% (18/69) of the patients. It was slightly increased, i.e. a serum CA-125 of 35-129 U/ml (unclear risk) in 20% (14/69) of the patients, and a serum CA-125 of ≥ 130 U/ml (high risk) in 5% (11/205) of the patients. On the contrary, the ROMI was ≤ 11 (the first proposed cut-off value) and ≤ 14 (the second proposed cut-off value) in 91% (191/205) and 98% (202/205) of patients, respectively, in the same study group.

The predictive values of both estimated diagnostic methods, i.e. ROMI and CA-125, are presented with their proposed cut-off values in Table 4. The first cut-off value, a ROMI of ≤ 11 showed very high specificity, negative predictive value (NPP) and area under the curve (AUC) of 0.93, 0.91 and 0.84, respectively; as well as high sensitivity and positive predictive value (PPV) of 0.73 and 0.79, respectively. The second proposed cut-off value of ROMI ≤ 14 showed very high specificity, PPV and NPP of 0.99, 0.92 and 0.87, respectively; a high AUC of 0.78, but low sensitivity of 0.57. Regarding the second parameter, serum CA-125, the first standard cut-off < 35 U/ml showed high sensitivity, specificity, NPV and AUC of 0.74, 0.78, 0.90 and 0.76, respectively, but a low PPV of 0.53. The second proposed cut-off value of serum CA-125 of ≤ 129 U/ml showed very high specificity and NPV of 0.95 and 0.88, respectively; high PPV and AUC of 0.77 and 0.74, respectively; but low sensitivity of 0.54.

The differences between the predictive values of the two proposed cut-off values for ROMI are detailed in Table 5. Higher sensitivity was reported as a measure of probability that the test result would be positive in the presence of disease, as well as higher AUC for the ROMI cut-off value of ≤ 11 (p < 0.05 and p < 0.001, respectively); and higher specificity and PPV for the ROMI cut-off value of ≤ 14 (p < 0.001 and p < 0.01, respectively).

The differences between the predictive cut-off value of ≤ 11 (ROMI) and both cut-off values for CA-125 are outlined in Table 6. Higher specificity, PPV and AUC was reported for the cut-off ≤ 11 (ROMI) versus the cut-off < 35 U/ml (CA-125) (p < 0.001, p < 0.01 and p < 0.001, respectively). Additionally, the cut-off ≤ 11 (ROMI) showed higher sensitivity than the higher cut-off ≤ 129 U/ml (CA-125) (p < 0.05). Regarding the differences between both cut-off values for CA-125, higher specificity and AUC were reported for the cut-off value of < 35 U/ml (CA-125) (p < 0.001 and p < 0.01, respectively), but higher sensitivity for the cut-off value ≤ 129 U/ml (CA-125) (p < 0.05).

Table 2: A comparison of incidence rates using the original ROMI and CA-125, in the study group with benign ovarian tumours

Benign	ROMI ≥ 15 (high risk)	ROMI ≤ 11 (low risk)	ROMI 12–14 (unclear risk)	
n = 205	3/205	191/205	11/205	
%	1.46	93.17	4.88	
CA-125 (< 35 U/ml)	160/205	0/205	156/205	4/205
79.05%	0.00	77.00	1.95	
CA-125 (35–129 U/ml)	34/205	0/205	30/205	4/205
17.42%	0.00	14.63	1.95	
CA-125 (≥ 130 U/ml)	11/205	3/205	5/205	3/205
5.06%	1.46	2.44	1.46	
CA-125 (< 130 U/ml)	45/205	3/205	35/205	7/205
21.95%	1.46	17.07	3.41	
CA-125 (≥ 130 U/ml)	194/205	0/205	186/205	8/205
94.63%	0.00	90.73	3.90	

CA-125: serum cancer antigen 125, ROMI: risk of ovarian malignancy index

Table 3: A comparison of incidence rates using the original ROMI and CA-125, in the study group with malignant ovarian tumours

Malignant	ROMI ≥ 15 (high risk)	ROMI ≤ 11 (low risk)	ROMI 12–14 (unclear risk)	
n = 69	39/69	18/69	12/69	
%	56.52	26.09	17.39	
CA-125 (< 35 U/ml)	160/205	4/69	10/69	8/69
79.05%	5.80	14.49	11.59	
CA-125 (35–129 U/ml)	34/205	5/69	6/69	3/69
17.42%	7.25	8.70	4.35	
CA-125 (≥ 130 U/ml)	11/205	30/69	2/69	5/69
5.06%	43.48	2.90	7.25	
CA-125 (≥ 130 U/ml)	45/205	35/69	8/69	8/69
21.95%	50.72	11.59	11.59	
CA-125 (< 130 U/ml)	194/205	9/69	16/69	7/69
94.63%	13.04	23.19	10.14	

CA-125: serum cancer antigen 125, ROMI: risk of ovarian malignancy index
Discussion

The reported very high specificity in this study, as probability that the test result would be negative in the absence of malignancy and a high AUC for the cut-off value of ≤ 11 (ROMI), could be interpreted as ROMI’s high effectiveness in excluding or confirming malignancy. The higher reported sensitivity, as a measure of probability that the test result would be positive in the presence of malignancy for the cut-off value of ≤ 11 (ROMI) versus that of ≤ 14 (ROMI) could also denote its better accuracy in the detection of malignancy than serum CA-125.

A ROMI > 11 was attributed to 51/69 patients with ovarian malignancy in our series, and a ROMI > 14 for only 39/69 patients. So, an additional 12 patients with ovarian cancer would be overlooked using a cut-off value of ≤ 14 (ROMI).

If CA-125 alone was used, and its well-established cut-off value of < 35 U/ml was taken into consideration (Table 2), overtreatment would occur for 45/205 patients with benign tumour. However, if the higher cut-off value of ≤ 129 U/ml (CA-125) was used, only 11/205 patients would be overtreated. By comparison, using a cut-off value of ≤ 11 (ROMI), only 14/205 patients would be overtreated.

If CA-125 alone was used, and the well-established cut-off value of < 35 U/ml (Table 3) taken into consideration, or a cut-off value of ≤ 129 U/ml, 32/69 patients would be undertreated.

The higher specificity and AUC for the cut-off value of ≤ 11 (ROMI) (< 0.001) versus that of < 35 U/ml (CA-125) (p < 0.01 and p < 0.001, respectively), as well as higher sensitivity of
the cut-off value of ≤ 11 (ROMI) versus the higher cut-off value of ≤ 129 U/ml (CA-125) (p < 0.05) indicates the higher effectiveness of ROMI in predicting ovarian malignancy. The high sensitivity of the cut-off value of < 35 U/ml (CA-125) and the cut-off value of ≤ 11 (ROMI) indicate that they are both highly effective in excluding malignancy. On the other hand, the higher specificity of the cut-off value ≤ 11 (ROMI) versus that of < 35 U/ml (CA-125) (p < 0.001) indicates ROMI’s higher effectiveness in confirming malignancy.

Differences were not found with respect to the AUC receiver operating characteristic curve using < 35 U/ml (CA-125), HE4 and ROMA by Lenhard at al.8 in a series that featured 60 ovarian cancer and 116 benign ovarian tumours. A higher AUC for the cut-off value of ≤ 11 (ROMI) versus that of < 35 U/ml (CA-125) (p < 0.001) was reported in our study.

In determining sensitivity, as a measure of the probability that the test result would be positive in the presence of malignancy, was reported by Anton at al.12 in their series on 128 patients, the following was reported: CA-125 < 35 U/ml (70%), HE4 (80%), ROMA (74%) and RMI (63%). We found the same sensitivity (74%) for the cut-off value of ≤ 11 (ROMI) and that of < 35 U/ml (CA-125).

In determining specificity, as a measure of probability that the test result would be negative in the absence of malignancy, the following was reported by Karlsen et al.13 in their series on 809 benign tumours and 252 ovarian cancers: 62% (CA-125), 63% (HE4), 77% (ROMA) and 82% (RMI). They concluded that ROMA performed equally well as the ultrasound-dependent RMI. We found 93% higher specificity for the cut-off value of ≤ 11 (ROMI).

It was reported by Chan et al.14 in their series on 414 women with adnexal masses, of whom 65/414 had epithelial ovarian cancer (EOC), that a lower sensitivity of 57% was found using HE4 compared to 91% using CA-125, but there was improved specificity of 97% vs. 67%, respectively. Almost the same specificity (93%) was demonstrated using our cut-off value of ≤ 11 (ROMI) as the 97% achieved using HE4 in the study by Chan et al., but we reported much higher sensitivity of 74% vs. 57%. Li et al.15 analysed data from 11 studies, and reported the following comparisons with regard to the different tests used for EOC prediction: sensitivity of 0.86 (ROMA) and 0.80 (HE4), and specificity of 0.94 (HE4), 0.84 (ROMA) and 0.78 (CA-125). Our newly devised ROMI and its cut-off value of ≤ 11 showed high sensitivity of 0.74, and especially high specificity of 0.93.

We compared the AUC for ROMI with that for ultrasound alone using IOTA LR or simple rules, ROMA and CA-125 < 35 U/ml, based on data from all of the literature. On internal validation during IOTA phase 1, both LR1 and LR2 performed very well, together with AUC in predicting malignancy (0.94 and 0.92, respectively).7 A value of 0.95 AUC (93%) was reported for LR1, and 0.92 AUC (90%) for LR2 during IOTA phase 2 (2005–2007). The performance of LR1/LR2 was equivalent to subjective assessment by experienced gynecologists or radiologists (0.96 AUC).8 In our study, the AUC for the cut-off value of ≤ 11 (ROMI) was 0.84, but the corresponding figure for < 35 U/ml (CA-125) was only 0.76.

The sensitivity and specificity using the simple rules were 92% and 96%, respectively; similar to the performance of subjective assessment by an experienced operator (91% and 96%, respectively).7 Van Gorp et al.16 reported the largest AUC for RMI (0.86), compared to that for ROMA (0.82), HE4 (0.78) and CA-125 (0.80). In their study, the detection of malignancy did not increase using HE4 and ROMA when compared with CA-125 alone. Testa et al.17 used a meta-analysis approach to centre-specific data during IOTA phase 3, and reported that the AUC pertaining to LR1, LR2, subjective assessment and RMI, was 0.93, 0.92, 0.91 and 0.88, respectively. There was sensitivity of 67% and specificity of 91% using the RMI.

RMI, or the two IOTA LR1 and LR2, are not good enough to discriminate between benign and malignant tumours when an inconclusive result is yielded using the simple rules. The rules seem to work less well for abscesses, fibromas and stage I serous tumours. These conditions are also difficult to classify using an subjective assessment of ultrasonic findings, which requires expertise. External validation of the results using the simple rules is required. The simple rules are used as a triage test, and subjective assessment can be used by an experienced examiner when the rules do not apply. Overall sensitivity of 91% and specificity of 93% were obtained in the study by Timmerman et al.17 The accuracy obtained using an expert sonographer has not been matched using a biomarker test or algorithm, multimodal scoring system, such as RMI, neural networks logistic regression model, ANN or vector machine model.8

Conclusion

In our study, the cut-off value of ≤ 11 ROMI was more effective than < 35 U/ml (CA-125) in excluding ovarian cancer and had a higher specificity (p < 0.001). It was also more effective in confirming ovarian malignancy, with a higher PPV (p < 0.01). The inclusion of additional ultrasound features pertaining to the tumour and the new, proposed three-stage grouping of CA-125 into the ROMI calculation could improve predictive values and diminish the chances of false positive and false negative results. It is probable that this new, simple tool could be more effective, as well as cheaper, than HE4 and RMI, or even ROMA, in identifying ovarian tumour.
References

1. Jacobs I, Oram D, Fairbanks J, et al. A risk of malignancy index incorporating CA-125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922–929.

2. Tingulstad S, Hagen B, Skjeldestad FE, et al. Evaluation of a risk of malignancy index based on serum CA-125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol. 1996;103(8):826–831.

3. Tingulstad S, Hagen B, Skjeldestad FE, et al. The risk-of-malignancy index to evaluate potential ovarian cancers in local hospitals. Obstet Gynecol. 1999;93(3):448–452.

4. Yamamoto Y, Yamada R, Oguri H, et al. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur J Obstet Gynecol Reprod Biol. 2009;144(2):163–167.

5. Moore RG, Miller MC, Disilvestro P, et al. Evaluation of the diagnostic accuracy of the risk of ovarian malignancy algorithm in women with a pelvic mass. Obstet Gynecol. 2011;118(2 Pt 1):280–288.

6. Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet Gynecol. 2000;16(5):500–505.

7. Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol. 2005;23(34):8794–801.

8. Kaijser J, Bourne T, De Rijdt S, et al. Key findings from the International Ovarian Tumor Analysis (IOTA) study: an approach to the optimal ultrasound based characterisation of adnexal pathology. AUM. 2012;15 (3):82–86.

9. Valentin L, Ameye L, Jurkovic D, et al. Which extratubal pelvic masses are difficult to correctly classify as benign or malignant on the basis of ultrasound findings and is there a way of making a correct diagnosis? Ultrasound Obstet Gynecol. 2006;27(4):438–444.

10. Antovska V, Basheska N, Aksioska N. Predictive values of the ultrasound parameters, CA-125 and risk of malignancy index in patients with ovarian cancer. Klin Onkol. 2011;24(6):435–442.

11. Lenhardt M, Stieber P, Hertein L, et al. The diagnostic accuracy of two human epididymis protein 4 (HE4) testing systems in combination with CA125 in the differential diagnosis of ovarian masses. Clin Chem Lab Med. 2011;49(12):2081–2088.

12. Anton C, Carvalho FM, Oliveira EJ, et al. A comparison of CA125, HE4, risk ovarian malignancy algorithm (ROMA), and risk malignancy index (RMI) for the classification of ovarian masses. Clinics (Sao Paulo). 2012;67(5):437–441.

13. Karlsten MA, Sandhu N, Høgdall C, et al. Evaluation of HE4, CA125, risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index (RMI) as diagnostic tools of epithelial ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2012;127(2):379–383.

14. Chan KK, Chen CA, Nam JH, et al. The use of HE4 in the prediction of ovarian cancer in Asian women with a pelvic mass. Gynecol Oncol. 2013;128(2):239–244.

15. Li F, Tie R, Chang K, et al. Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and CA125 in predicting epithelial ovarian cancer: a meta-analysis. BMC Cancer. 2012;12:258.

16. Timmerman D, Van Calster B, Testa AC, et al. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group. Ultrasound Obstet Gynecol. 2010;36(2):226–234.

17. Timmerman D, Ameye L, Fischerova D, et al. Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. BMJ. 2010;341:c6839.

18. Van Gorp T, Cadron I, Despierre E, et al. HE4 and CA125 as a diagnostic test in ovarian cancer: prospective validation of the Risk of Ovarian Malignancy Algorithm. Br J Cancer. 2011;104(5):863–870.

19. Testa A, Kaijser J, Wynants L, et al. Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study. Br J Cancer. 2014;111(4):680–688.