The ability to distinguish self from foreign is found broadly in biology and is at the heart of many group behaviors. In eukaryotes, cell-type-specific protein complexes can mediate self-identity. For example, the self-recognition system of the social amoeba Dictostelium discoideum, which is responsible for the separation of nonidentical strains during fruiting body development, minimally consists of two proteins, TgrB1 and TgrC1, which bind one another (1). TgrB1 and TgrC1 are highly conserved across different D. discoideum strains; however, each contains regions of increased variability between strains (2). Strains with noncognate TgrB1/TgrC1 pairs show separation during D. discoideum development (1). For bacteria, homotypic, single-protein interactions have been recently implicated in self-recognition. A surface protein, TraA, mediates the strain-specific transfer of outer membrane proteins in the social bacterium Myxococcus xanthus. Since transfer of surface proteins can modulate motility in this bacterium, this has important implications for coordinating social behaviors (3–5). The residues for specificity are found within the variable region (VR) of TraA in M. xanthus and are sufficient to establish strain identity (6).

Here we address the challenge of understanding the biochemical mechanisms that define self-identity by focusing on the interactions between two known bacterial self-identity proteins. Populations of the bacterium Proteus mirabilis merge with populations consisting of genetically identical cells (i.e., “self”) to make one larger swarm and form visible boundaries with populations of nonisogenic cells (i.e., “nonself”) when migrating over nutrient-rich surfaces (7). Boundary formation is hypothesized to result from self-recognition-mediated events, including cell death, and is likely regulated by multiple cellular and environmental factors (8–12). This territorial exclusion requires cell-cell contact (9), and in at least one strain, three gene clusters (termed idr, ts, and ids) comprise the necessary components (11, 13). The ts and idr genes, which encode a type VI secretion (T6S) system and putative cytotoxic elements, respectively, are needed for competition with other P. mirabilis strains and appear to evoke contact-dependent growth inhibition (13) similar to the ts and pef genes described for a second strain of P. mirabilis, H14320 (8). Indeed, conserved T6S systems have been identified in numerous Gram-negative bacteria, where the T6S system has been shown to translocate cargo proteins from the donor cell cytoplasm into the periplasm or cytoplasm of target cells (reviewed in reference 14), and most T6S systems have been primarily described as a mechanism for competitive killing between bacteria upon physical contact (15–18). However, in discordance with the current paradigm for T6S-related genes, the third self-
recognition gene cluster, ids, does not contribute to competitions against other P. mirabilis strains and instead encodes proteins necessary for nonlethal interactions within a clonal population (11, 13). Studying the ids locus, therefore, addresses mechanisms for recognition of self (kin) cells as opposed to the inhibition of nonself cells.

Insights into the functions of the Ids proteins have arisen primarily from genetic and bioinformatic analyses. Briefly, deletion of the six ids genes, idsABCDEF, is sufficient to prevent P. mirabilis strain BB2000 from merging with an otherwise genetically identical parent population, indicating that the Ids system is necessary for establishment of self-identity in this strain (11). The introduction of ids genes (or of just idsDEF) from strain BB2000 and driven by the native ids promoter (also from BB2000) into strain HI4320 is sufficient to cause the recipient H14320 strain to form a boundary with both parental strains, indicating the formation of a new identity (11). Likewise, in trans expression of the ids genes from strain HI4320 in strain BB2000 is sufficient to alter self-identity and induce boundary formation (11). Therefore, expression of foreign ids genes in either of these P. mirabilis strains can confer a new identity.

Both the idsD and idsE genes, which are carried adjacently, must originate from the same strain for two P. mirabilis swarming populations to merge and for a conversion of strain identity to occur (11). Compared across several P. mirabilis strains, the idsD and idsE genes each contain a region of reduced sequence conservation that is flanked by highly conserved sequences (11). Together, these data suggest that the idsD and idsE genes encode the information determining self-identity (11). Neither IdsD nor IdsE has a known function outside self-recognition-dependent boundary formation. Prior to this current research, there was no structural or localization prediction for either IdsD or IdsE, and no interaction partners have been described for either protein. Therefore, we hypothesized that IdsD and IdsE may comprise a complex whose function is to convey and/or determine self-identity within a bacterial population. Here we examine the in vitro protein-protein interactions between IdsD and IdsE, as well as determine the allele and strain specificity of the IdsD-IdsE binding interaction, including critical residues that contribute to binding specificity. We also provide evidence that in vitro binding affinities positively correlate with in vivo self-identity.

RESULTS
IdsD and IdsE interact with each other. Given the limited information available about either IdsD (1,034 amino acids) or IdsE (312 amino acids), we explored the predicted domains of these proteins. The N-terminal domain of IdsD, from amino acids 1 to 750, is predicted to consist of several components: a disordered region, a putative T6S-associated motif (19), a coiled-coil region, and a series of sequential alpha-helices (Fig. 1A). The IdsD C-terminal domain is predicted to contain two transmembrane domains from approximately amino acids 695 to 708 and 786 to 814 and an unstructured C-terminal tail from amino acids 815 to 1034 (Fig. 1A). Likewise, IdsE appears to consist of two discernible domains: an N-terminal domain that is predicted to contain two transmembrane domains from approximately amino acids 61 to 78 and 154 to 171 and a C-terminal domain (amino acids 172 to 312) that is predicted to contain six beta-strands and two alpha-helices (Fig. 1A). From this analysis, we proceeded with the hypothesis that IdsD and IdsE are membrane-associated proteins and therefore may be localized to similar cellular environments.

We next queried whether IdsD and IdsE encoded by strain BB2000 would interact with one another. We constructed plasmids containing the entire ids operon under the control of the native promoter with a FLAG-tagged epitope attached in-frame to either idsD or idsE and then introduced the plasmids individually into a strain containing a chromosomal deletion of the ids genes (Δids). The resultant strains exhibited a wild-type boundary phenotype, indicating that the gene fusions with the FLAG epitope were functional (see Fig. S3 in the supplemental material [20]). We then performed pulldown assays with cellular extracts derived from actively migrating cells expressing either FLAG-IdsD or FLAG-IdsE using anti-FLAG antibody resin and analyzed the precipitates by Western blotting using IdsD- and IdsE-specific antibodies. IdsE was pulled down at higher levels by FLAG-IdsD than by the control protein, FLAG-BAP (Fig. 1B). Similarly, IdsD was present in the FLAG-IdsE sample, with only
IdsD and IdsE bind to each other independently of other Ids proteins. IdsD and IdsE binding might be direct or, alternatively, may require the other Ids proteins. To distinguish between these possibilities, we expressed both proteins individually in Escherichia coli strain BL21(DE3), which does not contain any Ids-like genes. We engineered a His₆ epitope tag on the C terminus of IdsD, expressed IdsD-His₆ and FLAG-IdsE in separate E. coli strains, and performed anti-FLAG pulldown assays on mixed cell extracts followed by Western blot analysis. IdsD-His₆ was efficiently detected in the immunoprecipitate of FLAG-IdsE but not in that of the control protein, FLAG-BAP (Fig. 1C). Therefore, the interaction between IdsD and IdsE does not require other Ids proteins and is most likely direct.

IdsD-IdsE binding is strain-specific. To further examine the hypothesis that IdsD-IdsE binding specificity is restricted, we replaced IdsD and IdsE in the E. coli expression plasmids with adjacently carried alleles (see Table S1 in the supplemental material) from the independent P. mirabilis strains HI4320 and CW977, resulting in the production of IdsD_{HI}-His₆, FLAG-IdsE_{HI}, IdsD_{CW}-His₆, and FLAG-IdsE_{CW}. Strains BB2000, HI4320, and CW977 form boundaries of amino acids 1 to 442 and 866 to 1034 of IdsD_{HI}, which define allele-specific binding with IdsD.

The variable regions of IdsD and IdsE mediate binding specificity. Alignments between IdsD and IdsE variants highlight a region of high sequence variability in each protein; therefore, the strain-specific binding might be determined by these distinctive amino acid sequences. As such, we replaced the variable region in IdsE from strain BB2000 (amino acids 147 to 169) with the analogous sequence from strain HI4320, resulting in FLAG-IdsE_{BB} to HI. We expressed this protein in E. coli and assayed for binding interactions by immunoprecipitation with anti-FLAG antibodies. In FLAG-IdsE_{BB} to HI pulldowns, we did not detect IdsD_{BB}, but did detect IdsD_{HI} (Fig. 3A), indicating that the variable region of IdsE is sufficient to define allele-specific binding with IdsD.

Similarly, we probed for which residues in IdsD mediate binding specificity. The 33 amino acids of IdsD unique to either the BB2000 or HI4320 variants are located across the primary sequence (see Fig. S1 in the supplemental material [22–25]). Therefore, we constructed a hybrid epitope-tagged IdsD protein, IdsD_{BB} to HI-His₆, consisting of amino acids 1 to 442 and 866 to 1034 of IdsD_{BB} where 4 amino acid polymorphisms lay, and amino acids 443 to 865 of IdsD_{HI}, which contained the remaining 29 polymorphisms and is part of the C-terminal domain (Fig. 4). We expressed this protein in E. coli and assayed for binding interactions by anti-FLAG immunoprecipitation and found that hybrid IdsD_{BB} to HI-His₆ was pulled down robustly by both FLAG-IdsE_{BB} and FLAG-IdsE_{HI} but not by FLAG-IdsE_{BB} (see Fig. S6 in the supplemental material). This result suggested that the residues sufficient to convert IdsD to a new binding specificity were found in the C-terminal domain.

To more narrowly define the variable region of IdsD, we reasoned that the variable region we identified for IdsE mapped to a region predicted to be surrounding a membrane-spanning portion; therefore, we predicted that the complementary surface on IdsD would map to a similar position (Fig. 4). As such, we replaced
the membrane-spanning region containing distinctive amino acids in IdsD from strain BB2000 (amino acids 777 to 865, where 16 of the 33 polymorphisms reside) with the analogous sequence from strain HI4320, resulting in IdsD_{small BB} to HI^{+}\text{His}_{6}, expressed this protein in E. coli, and assayed for binding interactions by anti-FLAG immunoprecipitation. Surprisingly, we did not detect IdsD_{small BB} to HI^{+}\text{His}_{6} in pulldowns with FLAG-IdsE_{BB} FLAG-IdsE_{HI}, or the VR-swap variant, FLAG-IdsE_{BB} to HI (Fig. 3B). These data indicate that the exchanged residues in IdsD were sufficient to disrupt binding interactions but not sufficient to confer a different binding specificity.

Several additional amino acid polymorphisms flank the predicted IdsD variable region (Fig. 4). Using this as a basis, we introduced 2 amino acid exchanges (A761V and A765T) into the IdsD variable region (Fig. 4). Using this as a basis, we introduced each construct into the E. coli and assayed for binding interactions by anti-FLAG immunoprecipitation. IdsD_{small BB} to HI^{+}\text{His}_{6} was detected in FLAG-IdsE_{BB} to HI and pulldowns with FLAG-IdsE_{BB} FLAG-IdsE_{HI}, or the VR-swap variant, FLAG-IdsE_{BB} to HI (Fig. 3B). These data indicate that the exchanged residues in IdsD were sufficient to disrupt binding interactions but not sufficient to confer a different binding specificity.

In vitro binding correlates with self-identity in vivo. To determine whether the in vitro binding interactions correlated with in vivo behaviors, we used an in vivo ids expression system in which all ids genes are expressed from a plasmid under the native control of the ids promoter (pIdsBB) in a BB2000 mutant strain lacking the ids genes (Δids) (11). We chose this simplified system in which all other genes are identical except for the expressed ids genes so as to remove contributions to self-recognition-dependent boundary formation due to differences at other loci. To test the hypothesis that in vitro binding interactions correlate to in vivo self-identity, we replaced the now-defined variable regions (residues 761 to 865 of IdsD and 147 to 169 of IdsE) in the idsD and idsE genes, individually or together, in plasmid pIdsBB with those from strain HI4320 and introduced each construct into the Δids strain.

These strains were subjected to boundary formation assays, which are currently the standard assay for studying self-identity in P. mirabilis (7–9, 11, 12). When two migrating populations merge to form a single swarm upon meeting, they are described as “self,” and when a boundary forms between the two populations they are described as “nonself” (7, 11, 12). Expression of the ids genes from BB2000 (pIdsBB) in a Δids background results in a strain that merges with BB2000, indicating that BB2000 is recognized as self (11). In contrast, expression of the ids genes from strain HI4320 (pIdsBB) in a Δids background led to a boundary with the BB2000, HI4320, and Δids strains carrying pIdsBB (Fig. 5; see Fig. S7 in the supplemental material). The boundary formation with strain HI4320 likely results from multiple factors independent from the ids genes, such as the putative cytotoxic idr genes and/or pef (8) genes.
Surprisingly, strains expressing an individual exchange, whether in idsD or in idsE, did not clearly merge or form a boundary with the strains expressing ids genes from either BB2000 or HI4320 and exhibited reduced swarm expansion (Fig. 5; see Fig. S7 in the supplemental material). Strikingly, the strain carrying ids alleles in which both the idsD and idsE variable regions were exchanged with those from strain HI4320, pIdsBB-idsDBB to HIsidsE to HI, merged with the strain expressing the ids genes from HI4320 (pIdsHI) and formed a boundary against the strain carrying the ids genes from BB2000 (pIdsBB) while also exhibiting a wild-type swarm expansion (Fig. 5; see Fig. S7 in the supplemental material). This observation is consistent with the observed in vitro binding interactions between the hybrid IdsD and IdsE proteins and the IdsEHI and IdsDHI proteins, respectively. From this, we conclude that the presence of cognate variable regions in both IdsD and IdsE, in otherwise isogenic strains, led to the conversion of strain-specific identity from that of one isolate to another in vivo, indicating that these binding interactions are one factor that contributes to the definition of strain identity.

DISCUSSION

Here we have shown that IdsD and IdsE bind to one another in vitro without the necessity of additional Ids or *P. mirabilis*-derived proteins (Fig. 1). Furthermore, we demonstrated that the in vitro IdsD-IdsE binding interaction is restricted by both allele (between proteins encoded within strain BB2000) and strain (between proteins encoded by strains BB2000, HI4320, and CW977), indicating the presence of allele-specific (i.e., cognate) IdsD and IdsE pairs in nature (Fig. 1 and 2). The information for the binding specificity between the IdsD and IdsE proteins is encoded in a short stretch of distinctive amino acids within each protein that comprises the variable region (Fig. 3 and 4). Strikingly, a positive binding interaction between IdsD and IdsE in vitro directly correlates with self-identity in vivo (Fig. 5).

The molecular recognition site between IdsD and IdsE overlaps with at least one predicted transmembrane domain for each protein (Fig. 4), suggesting that IdsD and IdsE may interact via an interface within the membrane. Exchange of residues within these
transmembrane domains as well as in the predicted periplasmic loop was sufficient to disrupt native binding interactions for both IdsD and IdsE and was also sufficient to confer a new binding specificity for IdsE. Interestingly, for IdsD two additional predicted cytoplasmic residues (A761 and A765) were needed to convert binding specificity (Fig. 3 and 4), suggesting that the variable region for IdsD might be extended to the regions flanking the transmembrane domain. These two residues may also contribute to the stability of IdsD or to the fold of the variable region.

Binding specificity between two proteins is crucial for many intracellular processes, e.g., bacterial histidine kinase (HK) and response regulator (RR) proteins (reviewed in reference 26). Multiple variants of homologous HK and RR proteins are simultaneously present in a single Caulobacter crescentus cell, yet signaling via phosphorylation is restricted to cognate HK-RR protein pairs that are often encoded by adjacent genes (27). Specific residues in the HK and RR proteins define the specificity of these interactions, restricting the ability of a given protein to interact with a cognate variant and permitting the predictive redesign of a protein’s signaling specificity (28–33). As the specificity of signaling interactions is sufficient to alter intracellular processes, it stands to reason that variant-specific binding interactions between proteins may also drive population and social behaviors. Since no additional proteins are required for the IdsD-IdsE interaction, we posit that the binding between these two proteins is the central protein-protein interaction determining P. mirabilis Ids-mediated self-recognition and most likely occurs in the cell envelope.

In fact, the in vitro binding specificity between IdsD and IdsE appears to be preferential to not only an endogenous idE variant but also the idE allele immediately adjacent to idS (see Table S1 in the supplemental material). The role of the IdsE-like proteins encoded by nonadjacent alleles remains unknown. These orphan IdsE variants may interact with foreign IdsDs from the environment or may serve as reservoirs for alternate identity by replacing the canonical idE gene via allelic exchange. Interestingly, not all P. mirabilis genomes contain idE genes, and it is unclear whether this is due to a recent acquisition of idE genes within the P. mirabilis species or whether the idE genes have been lost in some strains. Alteri et al. have demonstrated that a HI4320-derived strain with a disruption in the idE gene is able to merge with its parental strain; however, the effect of a full idE deletion or a deletion of idE in strain HI4320 remains to be examined (8). The diversity of IdsD and IdsE likely extends beyond P. mirabilis, as genes with similarity to idS and idE are adjacent to each other in other bacterial species (see Fig. S8 in the supplemental material [22–25]), raising the possibilities that IdsD and IdsE may encode strain-specific information in other species and that IdsD and IdsE may coevolve. The specific binding between adjacent encoded IdsD and IdsE pairs observed here supports a hypothesis for selective pressure on idS and idE to maintain a complementary protein interaction interface. It remains to be determined how each distinctive amino acid contributes to binding specificity and how the remaining portions of the IdsD and IdsE proteins contribute to biological function.

Here we have reported new biochemical information on two self-identity proteins of unknown function and structure. This information is a necessary contribution for developing a mechanistic model of self-recognition, as well as for a fuller understanding of protein-protein interactions in P. mirabilis and other bacteria. However, many questions remain unresolved. For example, multiple modes for the IdsD and IdsE interaction in vivo are possible. The IdsD and IdsE interactions could occur (i) between neighboring cells, (ii) within a single cell, or (iii) through a combination of both.

We prefer a model in which IdsD from one cell is communicated to a neighboring self cell; a positive binding interaction between the transferred IdsD and the recipient’s encoded cognate IdsE would then cause a signaling cascade in the recipient cell, ultimately resulting in behaviors that are beneficial for kin, such as swarming, which is a cooperative method of motility. In support of this hypothesis, we have observed reduced motility in strains in which only the IdsD and IdsE proteins are noncognate and thus do not bind in vitro (see Fig. S7 in the supplemental material). Given that the T6S system is necessary for boundary formation (8, 13) and for the export of IdsD from liquid-grown cells into the extracellular medium (13), IdsD may be transported directly into (or onto) a neighboring cell via the T6S system to elicit a response. Indeed, T6S systems in Pseudomonas aeruginosa can transfer macromolecules known as effectors directly from one cell into its neighbor, resulting in the recipient’s cell death (16). However, we have not observed transfer of IdsD directly into neighboring cells in liquid or on surfaces and as such cannot definitively conclude whether IdsD is transported into neighboring cells. Further, the presence of IdsD in the extracellular supernatant despite the predicted transmembrane domains (13) raises the question of whether multiple isoforms of IdsD are present within a cell; a cell envelope-localized isoform and an exported isoform. Alternatively, since IdsD and IdsE
each have two predicted transmembrane domains, IdsD and IdsE could potentially form an envelope-spanning complex within a single cell that in turn interacts with a similar complex in a neighboring cell. Nonetheless, it remains likely that adjacent cells share identity information through the actions of IdsD and IdsE. Future work will be aimed at determining the topology, subcellular localization, and three-dimensional structure of the native IdsD-IdsE complex.

Without knowledge of the topology for IdsD-IdsE binding interactions in vitro, we cannot predict how these interactions contribute to boundary formation. However, these data are consistent with our current model for self-recognition in *P. mirabilis* strain BB2000, in which the absence of cognate Ids proteins denotes that the interacting cell is missing self-identifiers (13). Defining self-identity is at the foundation of many group behaviors mediated by self- versus nonself-recognition. Features of *P. mirabilis* self-recognition are shared with recognition systems like those of other social microbes, e.g., kin-specific binding interactions between proteins to define identity. In this study, we definitively link in vitro binding affinity with an *in vivo* self-recognition behavior. We have also begun to map the recognition interface necessary for the allele-specific binding between two self-identity proteins. Better understanding of molecular recognition among proteins, such as this one that drives population identity, may provide insights into how genetic mutations and genomic evolution emerge into or are constrained by population behaviors.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. All strains and plasmid constructions are described in the supplemental material (see Table S2). *E. coli* and *P. mirabilis* strains were maintained on LB and LSW agar, respectively (34). CM55 blood agar base agar (Oxoid, Basingstoke, England) was used for swarming colony growth. All strains were grown in LB broth under aerobic conditions at 16, 30, or 37°C. Antibiotics were used at the following concentrations: carbenicillin, 100 μg/ml; tetracycline, 15 μg/ml; kanamycin, 35 μg/ml; and chloramphenicol, 50 μg/ml.

Boundary assays. All boundary assays were performed as previously described (13) on swarm-permissive nutrient plates with kanamycin.

FLAG immunoprecipitations from *P. mirabilis* cell extracts. *P. mirabilis* strains carrying pIds plasmids were inoculated from overnight cultures onto three swarm agar plates and incubated for ~20 h until the population almost reached the edge of the petri dish. Cells were resuspended in LB, harvested by centrifugation, and stored at ~80°C. Pellets were resuspended in 1 ml cell lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100, 1 mM EDTA) supplemented with Complete protease inhibitor cocktail (Roche, Basel, Switzerland) and lysed by vortexing with cell disruptor beads (0.1-mm diameter; Electron Microscopy Sciences, Hatfield, PA). Lysates were cleared by centrifugation and applied to 20 μl preequilibrated anti-FLAG M2 antibody resin (Sigma-Aldrich, St. Louis, MO). Control lyses (not containing a FLAG-tagged protein) was supplemented with 2 μg of FLAG-BAP protein (Sigma-Aldrich, St. Louis, MO). Lysates were incubated with resin for 2 h at 4°C. Unbound cell extract was removed. Resin was washed five times in wash buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100), and bound proteins were eluted with 50 μl of elution buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 200 ng/μl 3× FLAG peptide) for 45 min at 4°C. The elution was centrifuged, and the top 40 μl (of the original 50 μl) was retained. Samples of load (L), flowthrough (F) (i.e., proteins in supernatant after incubation with resin), and elution (E) were separated by SDS-PAGE and analyzed by Western blotting.

Co-immunoprecipitation assays from *E. coli* cell extracts. BL21(DE3) cells (Invitrogen Corporation, Carlsbad, CA) transformed with overexpression plasmids were grown in 25 ml of LB with 100 μg/ml carbenicillin under shaking conditions at 30°C for 3 h, cooled on ice, induced with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside), and incubated overnight while shaking at 16°C. Cells were harvested by centrifugation and then stored at ~80°C. Cells were lysed as described above, and the total protein concentration was assessed by a microplate reader-based Bradford assay (Bio-Rad Laboratories, Hercules, CA). Seven hundred microfilters of FLAG-tagged extracts (normalized with lysis buffer to equivalent protein concentrations) was mixed with 300 μl of the His6-tagged extracts, applied to anti-FLAG resin, immunoprecipitated, and analyzed as described above.

SDS-PAGE and Western blots. Samples from the immunoprecipitation assays described above were separated by gel electrophoresis using 12% or 15% Tris-Tricine polyacrylamide gels, transferred to nitrocellulose membranes, and probed with rabbit anti-IdsD (1:2,000), rabbit anti-IdsE (1:2,000), rabbit anti-FLAG (1:4,000; Sigma-Aldrich, St. Louis, MO), rabbit anti-His6 (1:2,000; Abcam, Cambridge, England), or mouse anti-sigma-70 (1:1,000; Thermo, Fisher Scientific, Waltham, MA), followed by goat anti-rabbit conjugated to horseradish peroxidase (HRP) (1:5,000; KPL, Inc., Gaithersburg, MD) or goat anti-mouse conjugated to HRP (1:5,000; KPL, Inc., Gaithersburg, MD) and developed with Immun-Star HRP substrate kit (Bio-Rad Laboratories, Hercules, CA). Antibodies specific to IdsD amino acids 4 to 18 (EVNEKYLTPQERKAR) and IdsE amino acids 298 to 312 (EQILAKLDQEKEHHA) were raised in rabbits using standard protocols (Covance, Dedham, MA). Blots were visualized using a Chemidoc (Bio-Rad Laboratories, Hercules, CA). JPEG images of blots were converted to TIFF files using Adobe Photoshop (Adobe Systems, San Jose, CA), and figures were made in Adobe Illustrator (Adobe Systems, San Jose, CA).

Bioinformatics analysis and construction of 2D projection graphics. Bioinformatics analysis of the IdsD and IdsE amino acid sequences from strains BB2000 and H4320 were performed using the web interfaces of PredictProtein (35), TMFinder (36), Hmmer (37), and Phyre2 (38). Two-dimensional (2D) projections of IdsD and IdsE were prepared using the web-accessible Proter software (http://wlab.ethz.ch/protter/start/) (39), which employs Phobius (40, 41) to predict transmembrane domains and orientation. Colors and red lines were added using Adobe Illustrator (Adobe Systems, San Jose, CA). The sequence alignment methods are described in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00251-15/-/DCSupplemental.

REFERENCES

1. Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G. 2011. Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333:467–470. http://dx.doi.org/10.1126/science.1203903.

2. Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski EA, Strassmann JE, Queller DC, Zupan B, Shaulsky G, Kuspa A. 2009.
Polymorphic members of the lag gene family mediate kin discrimination in *Dictyostelium*. Curr Biol 19:567–572. http://dx.doi.org/10.1016/j.cub.2009.02.037.

3. Ducet A, Fleuchot B, Bergam P, Mignot T. 2013. Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in *Myxococcus xanthus*. Proc Natl Acad Sci USA 110:2028–2033. http://dx.doi.org/10.1073/pnas.1211572110.

4. Nudelman E, Wall D, Kaiser D. 2005. Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125–127. http://dx.doi.org/10.1126/science.1112440.

5. Patath DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D. 2012. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet 8:e1002626. http://dx.doi.org/10.1371/journal.pgen.1002626.

6. Patath DT, Wei X, Dey A, Wall D. 2013. Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in bacteria. PLoS Genet 9:e1003891. http://dx.doi.org/10.1371/journal.pgen.1003891.

7. Dienes L. 1947. Further observations on the reproduction of bacilli from large bodies in *Proteus* cultures. Proc Soc Exp Biol Med 66:97. http://dx.doi.org/10.3181/00379727-66-15994.

8. Alteri CJ, Himpel SD, Pickens SR, Zora JS, Miller JE, Arno AP. 2013. Pathways by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

9. Pathog 9:e1003608. http://dx.doi.org/10.1371/journal.ppat.1003608.

10. Budding AE, Ingham CJ, Bitter W, Vandenbroucke-Grauls CM, Schneeberger PM. 2009. The Dienes phenomenon: competition and territoriality in swarming *Proteus mirabilis*. J Bacteriol 191:3892–3900. http://dx.doi.org/10.1128/JB.00795-08.

11. Gibbs KA, Greenberg EP. 2011. Territoriality in *Proteus*: advertisement and aggression. Chem Rev 111:188–194. http://dx.doi.org/10.1021/cr100051v.

12. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

13. Al-Sharifa M, Vasan P, Roper S, Rubinstein S, Wall D. 2013. Bacteria from diverse habitats exchange proteinaceous vesicles across cell surfaces. Proc Natl Acad Sci USA 110:1174–1179. http://dx.doi.org/10.1073/pnas.1216596110.

14. Senior BW. 1993. Ribonucleic Acids Res 31:2668–2672. http://dx.doi.org/10.1093/nar/31.14.2668.

15. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

16. Senior BW. 1997. The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102:235–244. http://dx.doi.org/10.1099/00221287-102-2-235.

17. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

18. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.

19. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.

20. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

21. Senior BW. 1997. The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102:235–244. http://dx.doi.org/10.1099/00221287-102-2-235.

22. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

23. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.

24. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

25. Senior BW. 1997. The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102:235–244. http://dx.doi.org/10.1099/00221287-102-2-235.

26. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

27. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.

28. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

29. Senior BW. 1997. The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102:235–244. http://dx.doi.org/10.1099/00221287-102-2-235.

30. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

31. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.

32. Gibbs KA, Urbanowski ML, Greenberg EP. 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:236–259. http://dx.doi.org/10.1126/science.1160033.

33. Senior BW. 1997. The Dienes phenomenon: identification of the determinants of compatibility. J Gen Microbiol 102:235–244. http://dx.doi.org/10.1099/00221287-102-2-235.

34. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent export. mBio 4(4):e00374-13. http://dx.doi.org/10.1128/mBio.00374-13.

35. Russell AB, Peterson SB, Mougous JD. 2013. Type VI secretion system effector: toxins with a purpose. Nat Rev Microbiol 11:137–148. http://dx.doi.org/10.1038/nrmicro3185.