Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model [version 3; peer review: 1 approved, 2 approved with reservations]

Mirasari Putri1, Bening Mauliddina Rastiarsa2, Raden Aliya T. M. Djajanagara3, Ghaliby Ardhia Ramli3, Neni Anggraeni4, Nugraha Sutadipura1, Nur Atik5, Mas Rizky A. A. Syamsunarno5

1Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
2Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
3Faculty of Medicine, Universitas Islam Bandung, Bandung, West Java, 40616, Indonesia
4Medical Laboratorium Technologist, Bakti Asih School of Analyst, Bandung, West-Java, 40192, Indonesia
5Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia

Abstract

Background: Sepsis causes several immunological and metabolic alterations that induce oxidative stress. The modulation of fatty acid-binding protein 4 (FABP4) has been shown to worsen this condition. Extract of cogon grass root (ECGR) contains flavonoids and isoeugenol compounds that exhibit anti-inflammatory and antioxidant properties. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress–related factors in a sepsis mouse model.

Methods: Twenty-nine male mice (Mus musculus) of the Deutsche Denken Yoken strain were divided into four groups: group 1, control; group 2, mice treated with 10 μL/kg body weight (BW) lipopolysaccharide (LPS); and groups 3 and 4, mice pre-treated with 90 and 115 mg/kg BW, respectively, and then treated with 10 μL/kg BW LPS for 14 d. Blood, liver, lymph, and cardiac tissue samples were collected and subjected to histological and complete blood examinations. Antioxidant (Glutathione peroxidase 3 (GPx3) and superoxide dismutase), FABP4 levels, and immune system-associated...
biomarker levels (TNF-α, IL-6 and IL-1β) were measured.

Results: Significant increases in platelet levels (p = 0.03), cardiomyocyte counts (p = 0.004), and hepatocyte counts (p = 0.0004) were observed in group 4 compared with those in group 2. Conversely, compared with those in group 2, there were significant decreases in TNF-α expression in group 3 (p = 0.004), white pulp length and width in group 4 (p = 0.001), FABP4 levels in groups 3 and 4 (p = 0.015 and p = 0.012, respectively), lymphocyte counts in group 4 (p = 0.009), and monocyte counts (p = 0.000) and polymorphonuclear cell counts in the livers (p = 0.000) and hearts (p = 0.000) of groups 3 and 4. Gpx3 activity was significantly higher in group 3 than in group 1 (p = 0.04).

Conclusions: ECGR reduces FABP4 level and modulating oxidative stress markers in sepsis mouse model.

Keywords
Cogon grass, FABP4, sepsis, oxidative stress, inflammation

Corresponding author: Mas Rizky A. A. Syamsunarno (rizky@unpad.ac.id)

Author roles: Putri M: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Rastiarsa BM: Formal Analysis, Methodology, Writing – Original Draft Preparation; Djajanagara RATM: Investigation, Project Administration, Writing – Original Draft Preparation; Ramli GA: Investigation, Project Administration, Writing – Original Draft Preparation; Anggraeni N: Formal Analysis, Investigation, Project Administration, Resources; Sutadipura N: Supervision, Writing – Review & Editing; Atik N: Data Curation, Formal Analysis, Supervision, Writing – Review & Editing; Syamsunarno MRAA: Conceptualization, Data Curation, Methodology, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The study was supported by the Ministry of Education, Culture, Research, and Technology of Indonesia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2023 Putri M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Putri M, Rastiarsa BM, Djajanagara RATM et al. Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model [version 3; peer review: 1 approved, 2 approved with reservations] F1000Research 2023, 10:1161 https://doi.org/10.12688/f1000research.73561.3

First published: 16 Nov 2021, 10:1161 https://doi.org/10.12688/f1000research.73561.1
Introduction

Sepsis significantly contributes to morbidity, mortality, and healthcare expenditure worldwide, with approximately 20 million cases of sepsis occurring each year.1 According to the 2015 International Multicenter Prevalence Study on Sepsis (IMPRESS STUDY), Asia has the highest global sepsis morbidity rate.2 Sepsis is a life-threatening condition characterized by unregulated systemic inflammation and oxidative responses to infection that can cause organ damage.3 Sepsis involves several molecular mechanisms of inflammation and cell damage, including the release of cytokines, eicosanoids, and free radicals.4 Specifically, free radicals may mediate cell damage and contribute to the development of liver, spleen, and heart failure,5,6 resulting in multiple organ failure (MOF) and mortality.8 In mammals, glutathione peroxidase (GPx) and superoxide dismutase (SOD) are the main antioxidants that protect cells from damage caused by free radicals through synergistic action.9,10

In addition to the immunologic response and oxidative stress, various metabolic alterations also occur in sepsis. Serious infections cause increased lipolysis of adipose tissue, allowing free fatty acids (FFAs) to be used for triglyceride synthesis in the liver.11,12 This phenomenon aligns with the high levels of triglycerides and FFAs found in patients in sepsis, which are associated with reduced hepatic fatty acid oxidation.12,13 Specifically, cytosolic fatty acid-binding protein 4 (FABP4, or adipocyte protein 2) is a lipid chaperone that regulates lipid transport in adipocytes and macrophages.14 Recent studies have found that FABP4 increases the severity of inflammation-related diseases by elevating the expression of cytokines, such as TNF-\(\alpha\), IL-1, IL-6, and monocyte chemo-attractant protein 1 (MCP 1).15 In contrast, deletion of the \textit{FABP4} gene protects against the inflammatory activity of macrophages and adipocytes. Furthermore, inhibition of FABP4 through pharmacological intervention was found to mitigate LPS-induced tissue damage and improve the survival rate in mice.16 Previous studies have shown that systemic infection jeopardizes the liver by damaging parenchymal cells. In response to the FABP4-induced release of proinflammatory cytokines, especially TNF-\(\alpha\), Kupffer cells in the liver produce IL-6.17,18

The pathophysiology of sepsis can be studied in a sepsis mouse model injected with bacterial lipopolysaccharide (LPS).19 LPS is the main endotoxin component of the membrane of gram-negative bacteria. It activates macrophages by triggering the toll-like receptor 4 (TLR4) signaling pathway within Kupffer cells and inducing inflammatory cytokine release.20 LPS play a vital role in acute and chronic inflammation,21 including that caused by gram-negative bacteria in sepsis.19

\textit{Imperata cylindrica} (L.), commonly known as cogon grass, is used to treat multiple conditions, such as fever, hepatitis, dysentery, diarrhea, hepatitis, typhus muscle pain, cancer, and hypertension.22-24 Phytochemical screening has shown that extract of cogon grass root (ECGR) contains potent antioxidants, including isoeugenin, tannins, saponins, flavonoids, terpenoids, and alkaloids.24,25 Specifically, isoeugenin demonstrates potent antioxidant activity through nitrite oxide (NO) scavenging, significantly inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory mRNA, which play essential roles in sepsis.26 However, the use of cogon grass root for the treatment of sepsis has not been explored. Therefore, this study aimed to investigate the effect of ECGR on a mouse model of sepsis. We hypothesized that ECGR would ameliorate sepsis by reducing inflammatory responses and oxidative damage via antioxidant activity.

Methods

\textbf{Ethical consideration}

Ethical clearance was granted by the Research Ethics Committee of Universitas Padjadjaran, Bandung, Indonesia (approval number: 921/Un6.KEP/EC/2019).

\textbf{ECGR}

Cogon grass was obtained from Solo, Central Java, Indonesia, and its authenticity was tested by the Bandung Institute of Technology. The roots of the cogon grass were separated, washed with water, and dried for two weeks. The roots were then macerated, filtered, and extracted. The extract was filtered and separated from the solvent using a vacuum rotary...
evaporator R220 pro (BUCHI Indonesia, Tangerang, Indonesia). The ECGR was then diluted in 0.5% carboxymethylcellulose (CMC) (Merck, U.S.A) and administered at a dose of either 90 or 115 mg/kg body weight (BW), as in our previous study.27

Model and research design
Male mice (Mus musculus sp.) of the Deutsche Denken Yoken strain (8–10 weeks of age, 30–35 g body weight) were provided by the Biofarma Company (Bandung, Indonesia). All efforts were made to relieve any pain and distress of the animals by strictly following the procedures. The mice were acclimatized for seven days in the laboratory. They were then kept in cages at the animal laboratory of Universitas Padjadjaran at a controlled room temperature and on a 12 hours light/12 hours dark cycle. The mice were provided regular food, drinking water ad libitum, observed daily to confirm lack of behavior, and weighed every three days. This study was conducted following the ARRIVE Essential 2.0 checklist for pre-clinical animal studies.

A randomized post-test control group design was used. Determination of the number of samples for each treatment group was determined using the Frederer formula. The mice were divided into the following four experimental groups (5–8 mice per group; 29 mice total): group 1 (control), mice treated with CMC 0.5% (the solvent of ECGR); group 2, mice treated with CMC 0.5% + 10 μL/kg BW LPS; group 3, mice treated with 10 μL/kg BW LPS + 90 mg/kg BW ECGR; and group 4, mice treated with 10 μL/kg BW LPS + 115 mg/kg BW ECGR.

Briefly, groups 1 and 2 were treated with 0.5% CMC, while groups 3 and 4 were treated with ECGR in 0.5% CMC at doses of 90 and 115 mg/kg BW, respectively, for two weeks. The mice were weighed every 3 days to determine the effects of ECGR on body weight. The ECGR solutions were administered daily for two weeks, between 3 and 5 pm.27 After two weeks, groups 2, 3, and 4 were injected intraperitoneally with LPS (10 μL/kg BW; Sigma-Aldrich, St. Louis, MO) diluted in 50 μL PBS, as in previous studies.28 At 8 hours after injection,29 the mice were euthanized by cervical dislocation, and portions of their livers, spleens, and hearts were snap-frozen in liquid nitrogen and stored at −80 °C until further use. The remaining liver, spleen, and heart tissues were processed for histological examination.

Measurement of blood parameters
Blood was collected from the inferior vena cava. A complete blood count profile (CBCP) was drawn automatically using the CLIA Waived Hematology Analyzer Sysmex XW-100 (Sysmex America, Lincolnshire, U.S.A). Serum was separated by centrifugation at 1,500 g for 15 minutes at 4 °C, and the lysates were stored at −80 °C until further examination.

Histological analysis of the livers, hearts and spleen
Liver, spleen, and heart tissues were prepared for histopathological evaluation using the Kiernan method.30 Briefly, they were fixed in 4% paraformaldehyde, embedded in paraffin, and stained with hematoxylin and eosin (H&E) according to the Harris method.31

GPx3 activity assay
GPx3 activity was measured using a commercial kit Randox-Backpack RS 505 (Randox Laboratories Ltd, Antrim, U.K), following the method described by Paglia and Valentine (1967).32 Briefly, Glutathione Peroxidase (GPx) catalyses the oxidation of Glutathione (GSH) by Cumene Hydroperoxide. In the presence of Glutathione Reductase (GR) and NADPH the oxidised Glutathione (GSSG) is immediately converted to the reduced form with a concomitant oxidation of NADPH to NADP+. The decrease in absorbance at 340 nm is measured.

FABP4 measurement
FABP4 levels in the samples were measured using commercial enzyme-linked immunosorbent assay (ELISA) kits Mouse FABP4 ELISA Kit, catalog number EM1506 (Fine Biotech, Wuhan, China) according to the manufacturer’s protocol.

RNA isolation and reverse transcription (RT)–PCR
Total RNA was isolated from the organs using TRizol™ Reagent catalog number 15596026 (Invitrogen, Massachusetts, US). DNA synthesis was performed using ReverTra Ace™ qPCR RT Master Mix with gDNA Remover product number FSQ-301 (Toyobo, Osaka, Japan) according to the manufacturer’s protocol. Quantitative real-time RT-PCR was performed using the SensiFAST™ SYBR® No-ROX Kit product number BIO-98020 (Bioline, United Kingdom) according to the manufacturer's instructions and used Rotor-Gene Q quantitative real-time PCR machine (Qiagen, USA). The first step of Quantitative real-time RT-PCR was polymerase activation for one cycle at 95 °C for two minutes, then denaturation proceeds at 95 °C for five seconds and annealing at 60 °C for 30 seconds. The denaturation and annealing
process took 40 cycles. The PCR was performed using mGAPDH as a housekeeping gene and the primers from Integrated DNA Technologies, USA. The gene-specific primers for the cDNA used in this study are listed in Table 1.

Statistical analysis
Statistical analyses were performed using the GraphPad Prism version 7.0a for Mac (GraphPad Software, Inc. CA, 92037 USA). Normally distributed data are represented as the mean ± SD and skewed data as the median ± interquartile range (IQR). Normality was assessed using the Shapiro-Wilk test. The p-values were calculated using analysis of variance (ANOVA) with Tukey’s post hoc test for normal distributions and the Kruskal-Wallis test with Dunn’s post hoc test for skewed distributions. Differences were considered statistically significant at p < 0.05 (for two-tailed p-values).

Results
In the blood profiles, platelet levels were significantly lower in group 2 (LPS treatment only) than in group 1 (control) (417.6 × 10³ vs. 732.60 × 10³ cells/μL, p < 0.01). Additionally, platelet levels were significantly higher in group 4 (115 mg/kg ECGR) than in group 2 (550.3 × 10³ vs 417.6 × 10³ cells/μL, p < 0.05; Figure 1). Conversely, LPS induced a substantial increase in the lymphocyte and monocyte counts in group 2 compared with those in the control (lymphocytes: 4.13 × 10³ vs. 2.26 × 10³ cells/μL, p < 0.05; monocytes: 0.84 × 10³ vs. 0.37 × 10³ cells/μL, p < 0.05). In addition, a significant decrease in the lymphocyte count was observed in group 4 compared with that in group 2 (2.26 × 10³ vs. 4.13 × 10³ cells/μL, p < 0.05). Furthermore, significant decreases in the monocyte count were observed in groups 3 and 4 compared with that in group 2 (0.43 × 10³ and 0.29 × 10³, respectively, vs. 0.84 × 10³ cells/μL, p < 0.05). Finally, a significant increase in the leukocyte count was observed in group 2 compared with that in group 1 (6.19 × 10³ vs. 3.05 × 10³ cells/μL, p < 0.05). However, no significant difference in the leukocyte count was observed between the treatment groups (Figure 1).

Group 2 exhibited a significantly decreased percentage of packed cell volume (PCV) compared with that in the control (0.15% vs. 0.26%, Figure 2). Additionally, group 4 also showed a decreased PCV percentage compared with that in group 2, although the difference was not statistically significant.

The typical architectural structures of the liver, heart, and spleen tissues were observed in group 1. Additionally, neither necrosis or apoptosis were observed, and the hepatic sinusoids and heart vessels were not dilated. In group 2, abnormalities in the architectural structures of the three organs were observed. Several areas of necrosis, cellular swelling, vessel dilation, and inflammatory cell infiltration, especially that of PMNs, were observed. In contrast, fewer areas of necrosis and cellular swelling were observed in the treatment groups (groups 3 and 4). In addition, the treatment groups demonstrated reduced PMN infiltration (Figure 3).

ECGR significantly affected the numbers of PMN cells and hepatocytes in the liver tissues. In the mice treated with only LPS (group 2), an increase in the number of PMN cells and significant decrease in that of hepatocytes were observed. Conversely, a decrease in the number of PMN cells and significant increase in that of hepatocytes were observed in the groups treated with ECGR (groups 3 and 4; Figure 4).

Similar conditions were observed in the heart, with significant differences in cardiomyocyte numbers in groups 1 and 4 compared with those in group 2 (277.3 and 251.6 vs. 212.5 cells; p < 0.01). There was also increased dilatation in the length and width of the white pulp spleen vasculature in the group treated with LPS compared with that in the control group, although the difference was not statistically significant. In contrast, there was a significant difference in length (p < 0.05) and width (p < 0.01) between groups 2 and 4 (Figure 4).
The GPx activity of the mice in group 3 was significantly higher than that in group 1 (585.9 vs. 876.5 U/L), p < 0.05; Figure 5). We also found that the LPS-treated groups developed significantly higher FABP4 expression than the control (27.69 vs. 3.98 pg/mL, p < 0.01; Figure 6). Compared with that in group 2, FABP4 expression was suppressed in groups 3 and 4 (the ECGR treatment groups) (27.69 vs. 5.19 and 6.55 pg/mL, p < 0.05).

We also observed a significant increase in the expression of TNF-α and IL-6 in group 2 compared with that in the control group (p < 0.05). However, a significant decrease in TNF-α expression was observed in group 3 compared with that in group 2 (p < 0.05). Decreased expression of IL-6 and IL-1β was also observed in group 4, although the differences were not statistically significant. No significant differences in the expression of SOD1 and SOD2 were observed among the groups (Figure 7).
Discussion

Overall, ECGR treatment provoked robust increases in platelet levels, GPx3 activity, hepatocyte numbers, and cardiomyocyte numbers. Treatment also induced decreases in lymphocyte numbers, monocyte numbers, TNF-α, and FABP4 levels. Furthermore, the expression of other related septic proinflammatory cytokines, including IL-6 and IL-1β, was also decreased by ECGR.

Sepsis is a systemic response that endangers the body, causing organ hypofunction and even death. The pathogenesis of sepsis is complex due to the involvement of various immune components. In experimental animals, LPS treatment causes the same pathophysiological changes as sepsis in humans. This is due to the presence of LPS-binding protein (LBP) in the blood and extracellular fluid, which binds to lipid A (the bioactive part of LPS) and carries LPS to cluster of differentiation 14 (CD14) in monocytes, macrophages, and neutrophils. The interaction between the LBP-LPS complex and the CD14 receptor allows LPS to bind to TLR4, signaling the cell nucleus to stimulate the production and release of inflammatory mediators. These inflammatory mediators activate the endothelium, causing increased expression of adhesion molecules, such as selectin-E, intracellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), which serve as ligands for leukocyte integrins. The proinflammatory cytokines also enhance the proliferation and differentiation of naive T lymphocytes into effector T lymphocytes. In addition, TNF-α and IL-1

Figure 2. LPS decreased PCV in a sepsis mouse model. Group 1, control; group 2, mice stimulated with LPS; groups 3 and 4, mice treated with 90 and 115 mg/kg BW ECGR, respectively, and stimulated with LPS. Data are represented as the mean ± SD, n = 5–8 per group. One-way ANOVA with Tukey's post hoc test and the Kruskal-Wallis test with Dunn's post hoc test were performed for normal and skewed data, respectively. *p < 0.05, significant; **p < 0.01, very significant. Abbreviations: PCV, packed cell volume; MPV, mean platelet volume; PDW, platelet distribution width; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration.
increase the secretion of chemokines, such as CXCL1 and CCL2, which bind to neutrophils and monocytes, respectively. This increases the affinity of leukocyte integrins for their ligands and enhances leukocyte migration.36,37

In this study, leukocyte, monocyte, and lymphocyte counts were observed to be significantly increased in the group treated with LPS alone (group 2) compared with those in the control (group 1; Figure 1). However, no significant differences were observed between these cell counts in the treatment groups (groups 3 and 4) and those in group 2. Increased PMN cell counts were also observed in group 2 via histopathological quantification (Figures 3, 4). In addition, significant decreases in the lymphocyte and monocyte counts were observed in the treatment groups compared with those in group 2 (Figure 1). The PMN cell count in groups 3 and 4 was also decreased compared with that in group 2, as observed in the histopathological analysis (Figure 4). These observations were likely due to ECGR treatment.

Previous studies have found that ECGR contains phenols in the form of flavonoids and isoeugenin.25,26,38 Phytochemical screening has shown that the flavonoid content of cogon grass root is 4.8%.38 Hyo-Jin An et al. also reported the isoeugenin content of cogon grass as approximately 0.268 mg/g dry ECGR.26

Flavonoids are known to inhibit inflammatory reactions. Their mechanism may involve the recruitment and regulation of neutrophils through chemokines, IL-8, and leukotriene B4.39 This mechanism has also been observed in isoeugenol, which specifically decreases the expression of proinflammatory cytokines.26 This is consistent with our results, which demonstrated significant decreases in TNF-α expression in group 3. IL-6 and IL-1β expression was also decreased in group 4, although not significantly (Figure 7). Thus, ECGR demonstrated potential anti-inflammatory activity through the inhibition of lymphocytes, monocytes, and PMN cell infiltration in the livers and hearts of mice with LPS-induced sepsis.
Proinflammatory cytokines play essential roles in sepsis through several pathways. Specifically, activation of the TLR4 signaling pathway causes plasminogen stimulation and the activation of antithrombin III in the fibrinolysis system. These effects trigger fibrinolysis, causing depletion of fibrinogen substances, induction of disseminated intravascular coagulation, and increased platelet damage. The pathogenesis of sepsis also involves the formation of free radicals. Endotoxins produced during sepsis induce mitochondrial production of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and hydroxyl. This further stimulates ROS production in endothelial cells, leading to perpetual free radical production. ROS cause macrostructural changes in the mitochondria that ultimately lead to the dysfunction of multiple organs. In addition, ROS production induces damage through the pathological redox cycle, which occurs independently, leading to cell damage and enhanced apoptosis of cardiomyocytes and hepatocytes.
The flavonoids and isoeugenin in ECGR also demonstrate antioxidant properties through the inhibition of NO activity and iNOS, COX-2, and nuclear factor-kappa B (NF-κB) expression. These substances play essential roles in the perpetuation of the pathological redox cycle that damages cells.39,44 Thus, the sustained numbers of hepatocytes and cardiomyocytes in the sepsis mouse model may be attributed to the two-week ECGR pre-treatment.45 In this study, group 4 demonstrated improvement in the liver and heart tissues and increased hepatocyte and cardiomyocyte numbers compared with those in group 2 (Figures 3, 4).

Enhanced proinflammatory release and LPS activity in sepsis have been found to cause immunologic and metabolic alterations, especially of lipid metabolism.47,48 Higher fatty acid levels in patients with sepsis are associated with increased lipolysis due to reductions in mitochondrial acyl-CoA synthetase (ACS), which aids the synthesis of triglycerides for energy storage. LPS and cytokine release are also associated with lower ACS expression, thereby assisting the mobilization of FAs.49 A previous study has shown that increased levels of FABP4 are associated with a robust inflammatory response in septic conditions.50 We observed a remarkable increase in FABP4 levels after LPS induction in group 2. In contrast, the mice pre-treated with ECGR (groups 3 and 4) exhibited decreased FABP4 expression (Figure 6). This may be attributed to the ability of FABP4 to modulate the NF-kB pathway, resulting in the expression of...
inflammasome complexes (e.g., NLR family pyrin domain containing 3 [NLRP3] and pro-IL-1β). In addition, NLRP3 activation is associated with the overproduction of IL-1β, resulting in detrimental effects in sepsis.49,50 Inhibition of FABP4 expression through surgical and pharmacological interventions may alleviate LPS-induced tissue damage.15,51 Cogon grass root contains flavonoids that phenotypically demonstrate anti-inflammatory effects. The previous study was measured total flavonoids as quercetin in cogon grass; the value was 7.35 QE/g dry wt.52 One of the flavonoid derivatives in the cogon grass is quercetin, which presented 36.47 mg/100 DW.53 Quercetin and icariin, which are kaempferol derivatives, have been shown to demonstrate prominent inhibition of FABP4 expression.54,55 The attenuation of FABP4 in macrophages subsequently inhibits the NF-kB pathway through induction of SIRT3 and diminishes proinflammatory cytokine production.51,56 Quercetin also suppresses NF-kB activation and blocks NLRP3 inflammasome activation.57 These findings suggest that cogon grass root may exhibit direct and indirect inhibitory effects on FABP4 and associated protein complex expression in inflammatory pathways. The limitation of this study was that we did not measure the active substance of ECGR, downstream protein products of our target genes and did not pursue an in vitro study to explore the mechanism of ECGR in sepsis conditions.

Figure 7. Effect of ECGR on the expression of several genes associated with inflammation and antioxidant properties. Group 1, control; group 2, mice stimulated with LPS; groups 3 and 4, mice treated with 90 and 115 mg/kg BW of ECGR, respectively, and stimulated with LPS. Data are represented as the mean ± SD, n = 5–8 per group. One-way ANOVA with Tukey's post hoc test and the Kruskal-Wallis test with Dunn's post hoc test were performed for normal and skewed data, respectively. *p < 0.05, significant; **p < 0.01, very significant.
Conclusions
In this study, we established that ECGR played a beneficial role in mitigating severe conditions in a sepsis mouse model. This suggests that cogon grass root may ameliorate sepsis by increasing the platelet level, GPx3 activity, hepatocyte count, and cardiomyocyte count, as well as by reducing the lymphocyte count, monocyte count, TNF-α expression, and FABP4 level. Further understanding of the mechanisms involved in the metabolic and inflammatory effects of cogon grass root is needed. This requires continued exploration of the TLR pathway and other metabolic markers associated with sepsis. Our findings emphasized the potential of cogon grass root as an herbal medicine for sepsis.

Data availability
Underlying data
Figshare: Experimental flow chart: https://doi.org/10.6084/m9.figshare.23897076.59

Figshare: Data measurement of Sepsis Mice Model with Ethanol Extract of Cogon Grass Root (Imperata cylindrica L.) pre-treament, https://doi.org/10.6084/m9.figshare.16530654.v8.59

Figshare: Original unedited histopathology image of the liver, heart, and spleen of a sepsis mouse model after pre-treatment with ECGR, https://doi.org/10.6084/m9.figshare.16894813.v2.60

This project contains the following underlying data:

- Spleen, group 4, 115 mgkg BW ECGR + LPS.jpg
- Spleen, group 3, 90 mgkg BW ECGR + LPS.jpg
- Spleen, group 2, mice stimulated with LPS.jpg
- Spleen, group 1, control.jpg
- Heart, group 4, 115 mgkg BW ECGR + LPS.jpg
- Heart, group 3, 90 mgkg BW ECGR + LPS.jpg
- Heart, group 2, mice stimulated with LPS.jpg
- Heart, group 1, control.jpg
- Liver, groups 4, 115 mgkg BW ECGR + LPS.jpeg
- Liver, groups 3, 90 mgkg BW ECGR + LPS.jpeg
- Liver, group 2, mice stimulated with LPS.jpeg
- Liver, group 1, control.jpeg

Reporting guidelines
Figshare: ARRIVE Essential 10 checklist-Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model, https://doi.org/10.6084/m9.figshare.16895506.v2.61

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements
The authors would like to express their gratitude to the staffs of the central laboratory of Universitas Padjadjaran-Bandung and Suhendra Pratama for statistic consultation.
References

1. Lie KC, Lau C-Y, Van Vith CN, et al.: Utility of SOFA score, management and outcomes of sepsis in Southeast Asia: a multinational multicenter prospective observational study. J Intensive Care. 2018; 6(1): 9. PubMed Abstract | Publisher Full Text | Free Full Text

2. Rhodes A, Phillips G, Beale R, et al.: The surviving sepsis campaign bundles and outcome: results from the international multicentre prevalence study on sepsis (the IMPRESS study). Intensive Care Med. 2015; 41(9): 1620–1628. PubMed Abstract | Publisher Full Text

3. Marik PE. Don’t miss the diagnosis of sepsis. Crit Care. 2014; 18(5): 529. PubMed Abstract | Publisher Full Text | Free Full Text

4. Faix JD: Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013; 50(1): 23–36. PubMed Abstract | Publisher Full Text | Free Full Text

5. Kobashi H, Toshimori J, Yamamoto K: Sepsis-associated liver injury: incidence, classification and the clinical significance. Hepatol Res. 2013; 43(3): 255–266. PubMed Abstract | Publisher Full Text

6. Lv X, Wang H: Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res. 2016; 3(1): 1–9. Publisher Full Text

7. Minasyan H: Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med. 2019; 27(1): 1–22. PubMed Abstract | Publisher Full Text | Free Full Text

8. Guerreiro MO, Petronilho F, Andrades M, et al.: Plasma superoxide dismutase activity and mortality in patients with sepsis. J Trauma Acute Care Surg. 2010; 69(6): E102-E106. PubMed Abstract | Publisher Full Text | Free Full Text

9. Whitney E, Rolles SR: Understanding nutrition. Cengage Learning: 2018.

10. Mahan LK, Escott-Stump S: Krause’s food & nutrition therapy: Saunders. St. Louis, Mo: Elsevier; 2008.

11. Syamsunarno MRA, Iso T, Yamaguchi A, et al.: Low Serum Cholesterol in Mice Pre-treated with Imperata cylindrica L. Ethanol Extract on Sepsis Mice Model Body Weight and Sepsis Score. Glob Med Health Commun. 2020 Dec 30; 8(3): 206–210. PubMed Full Text

12. Rhee C, Dantes R, Epstein L, et al.: Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004; 45(7): 1163–1196. PubMed Abstract | Publisher Full Text

13. Lee SH, Park MS, Park BH, et al.: Prognostic implications of serum lipid metabolism over time during sepsis. BioMed Res Int. 2015; 2015: 1–8. PubMed Abstract | Publisher Full Text

14. Cao H, Sekiya M, Ertunc ME, et al.: Adipocyte lipid chaperone Ap2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 2013; 17(2): 768–778. PubMed Abstract | Publisher Full Text | Free Full Text

15. Hu B, Li Y, Gao L, et al.: Hepatic induction of fatty acid binding protein 4 plays a pathogenic role in sepsis in mice. Am J Pathol. 2017; 187(1): 1059–1066. PubMed Abstract | Publisher Full Text | Free Full Text

16. Furumashi M, Hotamisligil GS: Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008; 7(6): 489–503. PubMed Abstract | Publisher Full Text | Free Full Text

17. Woliniec EA, Inglot M, Woliniec RK, et al.: Liver dysfunction in sepsis. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2018; 27(4): 547–552, DOI: PubMed Full Text | Publisher Full Text

18. Nessafer N, Launey Y, Aninat C, et al.: Clinical review: the liver in sepsis. Crit Care. 2012; 16(5): 235–238. Publisher Full Text

19. El Kamouni S, El Kebbaj R, Andreoletti P, et al.: Protective effect of argan and olive oils against LPS-induced oxidative stress and inflammation in mice livers. Int J Mol Sci. 2017; 18(10): 2181. PubMed Abstract | Publisher Full Text | Free Full Text

20. Lin MX, Yi YX, Fang P-P, et al.: Shikonin protects against D-galactosamine and lipopolysaccharide-induced acute hepatic injury by inhibiting TLR4-signalizing pathway. Oncotarget. 2017; 8(53): 91542–91550. PubMed Abstract | Publisher Full Text | Free Full Text

21. Shi C, Farmer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011; 11(11): 762–774. PubMed Abstract | Publisher Full Text | Free Full Text

22. Roosta K, Kusharto CM, Sekiya M, et al.: Medicinal plants used by the villagers of a Sundanese community in West Java. Indonesia J Ethnopharmacol. 2008; 115(1): 72–81. PubMed Abstract | Publisher Full Text

23. Kuete V, Sandjo LP, Wierib B, et al.: Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J Ethnopharmacol. 2013; 149(1): 245–253. PubMed Abstract | Publisher Full Text

24. Shinhaah D, Devi T, Bono A, et al.: Studies on phytochemical constituents of six Malaysian medicinal plants. J Med Plants Res. 2009; 3(2): 067–072. PubMed Abstract | Publisher Full Text | Free Full Text

25. Dima R, Parvathy NG, Renjith V, et al.: Quantitative estimation of tannins, phenols, and antioxidant activity of methanolic extract of Imperata cylindrica. Int J Res Pharm Sci. 2013; 4(1): 73–77.

26. An H-J, Namroh A, Song B-M, et al.: Isoeugenol, a novel nitrin oxide synthase inhibitor isolated from the rhizomes of Imperata cylindrica. Molecules. 2015; 20(12): 23136–23145. PubMed Abstract | Publisher Full Text | Free Full Text

27. Anggraeni N, Syamsunarno MRA, Mukarromah GR, et al.: Metabolomics of rat liver exposed to D-galactosamine and lipopolysaccharide, an experimental model of liver injury. PLoS One. 2014; 9(3): e90825. PubMed Abstract | Publisher Full Text | Free Full Text

28. Li J, Xia K, Xiong M, et al.: Effects of sepsis on the metabolism of sphingomyelin and cholesterol in mice with liver dysfunction. Exp Ther Med. 2017; 14(6): 5635–5640. PubMed Abstract | Publisher Full Text | Publisher Full Text

29. Putr M, Anggraeni N, Dijanjana RATM, et al.: Cegongras (Imperata cylindrica L) Ethanol Extract on Sepsis Mice Model Body Weight and Sepsis Score. Glob Med Health Commun. 2020 Dec 30; 8(3): 206–210. PubMed Full Text

30. Kiemann JA: Histological and histochemical methods: theory and practice. Shock. 1999; 12(6): 479.

31. Bancroft JD, Gamble M: Theory and practice of histological techniques. Elsevier Health Sciences. 2008.

32. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70(1): 158–161. PubMed Abstract | Publisher Full Text | Free Full Text

33. Rhee C, Dantes R, Epstein L, et al.: Incidence and trends of sepsis in US hospitals using clinical vs claims data. 2009-2014. JAMA. 2017; 318(13): 1241–1249. PubMed Abstract | Publisher Full Text | Free Full Text

34. Kakihana Y, Ito T, Nakahara M, et al.: Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016; 4(1): 1–10. PubMed Full Text

35. Chougule D, Nadkar M, Venkataraman K, et al.: Adipokine interactions promote the pathogenesis of systemic lupus erythematosus. Cytokeine. 2018; 111: 20–27. PubMed Abstract | Publisher Full Text | Free Full Text

36. Sagi M, Al-Qaqa A, Kim P: Definitions and pathophysiology of sepsis. Curr Probl Pediatr Adolesc Health Care. 2013; 43(10): 260–263. PubMed Abstract | Publisher Full Text | Free Full Text

37. Abbas AK, Lichtman AH, Pillai S: Cellular and molecular immunology E-book. Elsevier Health Sciences. 2014.

38. Seniwaity S, Ratnahan R, Nugraheni IK, et al.: Skrining fitokimia dari alang-alang (Imperata cylindrica L. Beauv) dan lidah ular (Hedyotis corymbosa L. Lamk). J Sains Dan Terap Kom. 2009; 3(2): 124–133.

39. Rathee P, Chaudhary H, Rathee S, et al.: Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy-Drug Targets Former Curr Drug Targets-Inflamm AllergyDiscontinued. 2009; 8(3): 229–235. PubMed Full Text

40. Guclu E, Durmaz Y, Karabay O: Effect of severe sepsis on platelet count and their indices. Afr Health Sci. 2013; 13(2): 333–338. PubMed Abstract | Publisher Full Text | Free Full Text

41. Tsoiakiv V, Makris D, Mantzarlis K, et al.: Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev. 2017; 2017: 1–11. PubMed Full Text

42. Kumar V, Abbas AK, Astar JC: Robbins basic pathology e-book. Elsevier Health Sciences. 2017.

43. Abejo A, Andrejko KM, Ochroch EA, et al.: Impaired hepatocellular regeneration in murine sepsis is dependent on regulatory protein levels. Shock Auga. 2011; 36(5): 471–477. PubMed Abstract | Publisher Full Text | Free Full Text
44. Andrades MÉ, Morina A, Spasić S, et al.: Bench-to-bedside review: sepsis-from the redox point of view. Crit Care. 2011; 15(5): 1–12.

45. Penny ME: Micronutrients in the treatment of stunting and moderate malnutrition. Meeting Micronutrient Requirements for Health and Development. Karger Publishers; 2012; p. 11–21.

46. Lee W-J, Chen Y-L, Chu Y-W, et al.: Comparison of glutathione peroxidase-3 protein expression and enzyme bioactivity in normal subjects and patients with sepsis. Clin Chim Acta. 2019; 489: 177–182.

Publisher Full Text

47. Deutschman CS, Tracey KJ: Sepsis: current dogma and new perspectives. Immunity. 2014; 40(4): 463–475.

PubMed Abstract | Publisher Full Text

48. Bermudes ACG, de Carvalho WB, Zamberlan P, et al.: Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition. 2018; 47: 104–109.

PubMed Abstract | Publisher Full Text

49. Tőzsér J, Benkő S: Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. Mediators Inflamm. 2016; 2016: 1–16. Publisher Full Text

50. Hardaway AL, Podgorski I: IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies. Future Med Chem. 2013; 5(10): 1089–1108. PubMed Abstract | Publisher Full Text | Free Full Text

51. Steen KA, Xu H, Bernlohr DA: FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol Cell Biol. 2017; 37(2): e00282–e00216. Publisher Full Text

52. Lalthanpuii PB, Zarzokimi KL: Some phytochemical analyses of different extracts of the coger grass Imperata cylindrica from Mizoram, India. Sci Vis. 2018; 18: 120–124. Publisher Full Text

53. Razafindrakoto ZR, Tombozara N, Donno D, et al.: Antioxidant, analgesic, anti-inflammatory and antipyretic properties, and toxicity studies of the aerial parts of Imperata cylindrica (L.) Beauv. South Afr J Bot. 2021; 142: 222–229. Publisher Full Text

54. Liu H, Xiong Y, Zhu X, et al.: Icariin improves osteoporosis, inhibits the expression of PPARγ, C/EBPα, FABP4 mRNA, N1ICD and jagged1 proteins, and increases Notch2 mRNA in ovariectomized rats. Exp Ther Med. 2017; 13(4): 1360–1368. PubMed Abstract | Publisher Full Text | Free Full Text

55. Floresta G, Pistorà V, Amata E, et al.: Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review. Eur J Med Chem. 2017; 138: 854–873. PubMed Abstract | Publisher Full Text

56. Xu H, Hertzel AV, Steen KA, et al.: Loss of fatty acid binding protein 4/aP2 reduces macrophage inflammation through activation of SIRT3. Mol Endocrinol. 2016; 30(3): 325–334. PubMed Abstract | Publisher Full Text | Free Full Text

57. Kerimi A, Williamson G: At the interface of antioxidant signalling and cellular function: key polyphenol effects. Mol Nutr Food Res. 2016; 60(8): 1770–1788. PubMed Abstract | Publisher Full Text | Free Full Text

58. Putri M, Rastiarsa BM, Djajanagara RATM, et al.: Experimental Flowchart [Internet]. figshare. 2023 Aug 7. Publisher Full Text

59. Putri M, Rastiarsa BM, Djajanagara RATM, et al.: Data Measurement of Sepsis Mice Model with Ethanol Extract of Cogon Grass Root (Imperata cylindrica L.) Pre-treament. figshare. 2021. Publisher Full Text

60. Putri M, Rastiarsa BM, Djajanagara RATM, et al.: Original unedited histopathology image of the liver, heart, and spleen of a sepsis mouse model after pre-treatment with ECR. figshare. 2021. Publisher Full Text

61. Putri M, Rastiarsa BM, Djajanagara RATM, et al.: ARRIVE Essential 10 checklist-Effect of coger grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model. figshare. 2021. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✅ 🔴

Version 3

Reviewer Report 29 March 2024

https://doi.org/10.5256/f1000research.155211.r255954

© 2024 Kueanjinda P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Patipark Kueanjinda
Chulalongkorn University, Bangkok, Thailand

Summary
This study investigates the potential effects of cogon grass root ethanol extract (ECGR) on fatty acid-binding protein 4 (FABP4) and oxidative stress markers in a sepsis mouse model. The authors studied the effects of ECGR in four mouse groups: control, LPS, LPS + low-dose ECGR, and LPS + high-dose ECGR. The inflammatory cytokines, TNFalpha and IL-6, and FABP4 decreased significantly after ECGR treatment. While the study has merit, several points require clarification and refinement.

Major comments:
1. The significant increase in TNFα levels after a high dose of ECGR treatment should be discussed.
2. Please consider including a diagram illustrating how ECGR might hypothetically inhibit inflammation based on the literature review. The authors may suggest potential ECGR components that could target FABP4 by comparing their molecular structures to known FABP4 inhibitors found in the literature. This will strengthen the connection between the findings and the title.

Minor comments:
1. Include the chemical profile of ECGR (using techniques like TLC or HPLC) to establish its authenticity.
2. Specify the ECGR administration method (e.g., intragastric) and the type of LPS used (e.g., E. coli, Salmonella)
3. Provide a clear description of the quantitative measurement methods used for the histopathological images.
4. In Table 1, please correct the typo in the first column header ("Gen" -> "Gene") and ensure consistent formatting of primer names and sequences (i.e., -3').
5. Please describe the specific procedures and essential reagents for each test, regardless of references to kits or previous studies. This enhances reproducibility.
6. Figure 2, please double-check the interpretation of Group 4's PCV percentage in comparison to Group 2.
7. Figure 7, please clarify the comparison group for Group 4 when discussing decreased cytokine
expression.
8. Figure 3, please elaborate on observed "typical architectural structures" in Group 1, possibly by specifying size, shape, form, or features of cell bodies and nuclei. Clarify quantification methods and specify if images are representative of replicates. Explain why observable necrotic or apoptotic cells were not quantified.
9. In discussion, rephrase the second statement from "Treatment also induced decreases in lymphocytes..." to "Treatment decreased lymphocytes..." for clarity.
10. Please use the terms "statistically significant" or "not statistically significant" instead of "very significant."
11. Add labels (e.g., A, B, C) to subfigures in Figures 1, 2, and 7 for clarity.
12. If possible, provide higher-resolution images. Consider using colored markers and a legend to indicate cell types instead of text within arrows. Include scale bars with their lengths in both images and legends.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Molecular Immunology
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
I'm glad to read about the author's interesting experimental research, and I have the following questions that I hope the author can further explain:

1. Why did you choose the Deutsche Denken Yoken strain of mice?

2. Why did you select the concentrations of 90 and 115 for ECGR, and why was the treatment conducted between 3 PM and 5 PM? The cited references seem to be related to the treatment of hyperlipidemia; please provide further explanation.

3. The model seems to involve preprocessing. It is suggested to use an experimental flowchart to present the process to avoid unnecessary misunderstandings.

4. After a 2-week preprocessing period, the mice's livers and other organs were collected after an 8-hour LPS treatment. Please further explain the reasoning behind choosing this specific timing.

5. As the author mentioned preprocessing, why did you select several antioxidant genes for monitoring in Figure 7, instead of directly using Western blot to detect the downstream protein products of these genes?

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: ARDS and sepsis

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 27 Aug 2023

Mirasari Putri

First, thank you for the review of this article, we very much appreciate your effort. These are the answers to your questions, Also we revised the article based on your suggestions.

1. We chose the Deutsche Denken Yoken strain of mice for our study because this strain has been widely used in trials for drug efficacy and various research fields, such as pharmacological, pharmacokinetic, and toxicological studies. This is the reason why this strain is usually used as a general-purpose mouse for various studies. We have no specific purpose for choosing this strain.

2. Before we carried out this study, we had conducted several preliminary studies to select the optimal concentration, and as a result, we selected concentrations of 90 and 115 for ECGR. Why is the treatment done between 15.00 and 17.00? According to previous studies, treatment with ECGR did not have a time-dependent effect; there is no specific time. We chose this time to expedite the technical research process.

3. Thank you for the suggestion. We have added an experimental flowchart to our revised manuscript (line 330).

4. LPS is known to be used to induce sepsis in many types of previous studies. Before this current study, we conducted a study and showed that LPS had a prominent effect on septic scores 8 hours after administration. For this reason, we chose that time. We have added this study as a citation in the methods section (line 132).

5. Based on previous studies showed that the expression of certain genes sufficiently indicates that a given substance affects the target protein, even so, that we realize that measuring the concentration of the target protein directly will show more reliable results. Therefore, we include this as a limitation of our research (line 315).

References:

1. An HJ, Nugroho A, Song BM, Park HJ. Isoeugenin, a novel nitric oxide synthase inhibitor isolated from the rhizomes of Imperata cylindrica. Molecules. 2015;20(12):21336–45.

2. El Kamouni S, El Kebbaj R, Andreoletti P, El Ktaibi A, Rharrassi I, Essamadi A, et al. Protective effect of argan and olive oils against LPS-induced oxidative stress and inflammation in mice livers. International journal of molecular sciences. 2017;18(10):2181.

3. Lin MX, Yi YX, Fang PP, Huang SS, Pan CW, Jin LX, et al. Shikonin protects against D-Galactosamine and lipopolysaccharide-induced acute hepatic injury by inhibiting TLR4 signaling pathway. Oncotarget. 2017;8(53):91542.
4. Putri M, Anggraeni N, D RATM, Ramli GA, Kusmiati M, Andriane Y, et al. Cogongrass (Imperata cylindrica L.) Ethanol Extract on Sepsis Mice Model Body Weight and Sepsis Score. Global Medical and Health Communication. 2020 Dec 30;8(3):206–10.

5. AbdAllah NB, Toraih EA, Al Ageeli E, Elhagrasy H, Gouda NS, Fawzy MS, et al. MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis. Sci Rep. 2021 Jun 28;11:13374.

6. Larrouyet-Sarto ML, Tamura AS, Alves VS, Santana PT, Ciarlini-Magalhães R, Rangel TP, et al. P2X7 receptor deletion attenuates oxidative stress and liver damage in sepsis. Purinergic Signal. 2020 Dec;16(4):561–72.

Competing Interests: We don't have any competing interests

Reviewer Report 17 January 2022

https://doi.org/10.5256/f1000research.119900.r119738

© 2022 Roosita K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Katrin Roosita
Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia

The authors have addressed appropriately my concerns that were raised in the peer review report.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Nutrigenomic, Nutraceuticals, herbal medicine, stress oxidative and human nutrition.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 14 December 2021

https://doi.org/10.5256/f1000research.77221.r100358

© 2021 Roosita K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Katrin Roosita
Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia

This manuscript has an acceptable scientific standard, but I have concerns about some details, as follows:

1. How was the antioxidant activity measured/determined?

2. Please elaborate/explain the parameters of the immune system-associated biomarker levels that were also measured.

3. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress-related factors, meanwhile, the conclusion only mentions that cogon grass root may aid in the development of herbal medicines and specific treatments for sepsis, not specifically addressing the purpose of this study.

4. It will also be valuable to explain the concentration of flavonoid antioxidants as bioactive compounds, such as Quercetin and icariin if authors have information about these.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Nutrigenomic, Nutraceuticals, herbal medicine, stress oxidative and human nutrition.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Dec 2021

Mirasari Putri

We greatly appreciate the reviewer’s time and effort in providing useful feedback and corrections. These are our answers:

1. How was the antioxidant activity measured/determined?

Response: We measured the antioxidant by measuring the activity of Glutathione peroxidase 3 (GPx3) and superoxide dismutase gene expression (SOD). In mammals, GPx and SOD are the main antioxidants that protect cells from damage caused by free radicals through synergistic action. We have revised the abstract (Line 26)

2. Please elaborate/explain the parameters of the immune system-associated biomarker levels that were also measured.

Response: We measured gene expression of TNF-α, IL-6, and IL-1β, we revised the abstract (Line 27)

3. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress-related factors, meanwhile, the conclusion only mentions that cogon grass root may aid in the development of herbal medicines and specific treatments for sepsis, not specifically addressing the purpose of this study.

Response: We have revised the conclusion according to the purpose of this study (Line 35)

4. It will also be valuable to explain the concentration of flavonoid antioxidants as bioactive compounds, such as Quercetin and icariin if authors have information about these.
Response: In our study, we did not isolate the bioactive compounds. Still, we found in other studies that they determined the amount of flavonoid and quercetin concentration. However, No study found icariin in cogon grass extract. This compound is mainly found in horny goat weed (Yin Yang Huo), a Chinese herbal medicine. We added some information about Quercetin (Line 305-307).

Competing Interests: The authors have no conflicts of interest to declare.