Reduction in concentration of PM$_{2.5}$ in India’s top most polluted cities: with special reference to post-lockdown period

Subham Roy$^1$ · Nimai Singha$^2$

Received: 22 August 2020 / Accepted: 17 December 2020 / Published online: 8 January 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
Lockdown in India begins from 25 March and continues until 31 May 2020 due to the COVID-19 pandemic situation. Due to such an extended period of lockdown for about more than 2 months resulted in 1.38 billion populations restricted themselves from mass activities that contribute to air pollution. Thus, through our quantitative approach and trend analysis, the study aims to evaluate the changes in the level of PM$_{2.5}$ as a major pollutant for the top ten polluted cities in India, with a special emphasis on finding what happened to its concentration after the lockdown ended. Thus, to better understand the nature of variation in PM$_{2.5}$, we divide the entire 7 months into three periods for our analysis, i.e., before lockdown (1 January to 24 March), during lockdown (25 March to 31 May), and post-lockdown or unlock 1 and 2 (1 June to 31 July). Our investigation reveals that before lockdown, all the top polluted cities of India violating the national standard of PM$_{2.5}$, as the lockdown begins interestingly, all cities show a momentous reduction in PM$_{2.5}$ concentration. Further, surprisingly we found that after the post-lockdown period, the concentration of PM$_{2.5}$ was reduced to minimal, as the average concentration of PM$_{2.5}$ for all the cities is below the National Ambient Air Quality Standard (NAAQS). The study reveals that the lockdown has a consequence in improving overall air quality for the top polluted cities in India and further lockdown in the future with proper planning should be considered an alternative approach to restrain excessive emissions.

Keywords Lockdown · COVID-19 · Air pollution · PM$_{2.5}$ · India

Introduction
The present situation due to the COVID-19 pandemic has created a chaotic situation globally. In 11 March 2020, the World Health Organization (WHO) declared a pandemic due to SARS-COV-2 virus and named the contagious diseases as COVID-19 due to the thirteen-fold increases in the number of cases in China affecting 114 countries (WHO 2020). The first spread of COVID-19 from Wuhan, China, in December 2019, results in total cases above one million within the first 4 months (Sharma et al. 2020). India reports its first case of COVID-19 patient on 30 January 2020 with travel history from Wuhan (India Today 2020); after that, the number of cases continued to spike in the country. Until then, the situation became more sensitive as the numbers of cases continue to rise and India finally initiates its first lockdown announced by the prime minister of India on 24 March 2020 and the lockdown will be effective from 25 March 2020 (Mahato et al. 2020). Since then, anthropogenic activities like mass vehicle movement, industrial activities, construction works, restaurants and malls, flight and cargo ships, and schools and colleges were restricted and it has a massive impact on the overall air quality. According to the latest report of 23 December 2020, India records about more than 10 million cases with more than 1.4 million deaths (https://www.worldometers.info/coronavirus/).

Few studies have shown that reduction in concentration PM$_{2.5}$ (particulate matter size with 2.5-μ diameter) and overall air quality improves due to sudden lockdown globally. For example, Chauhan and Singh (2020) analyze the reduction in PM$_{2.5}$ concentration due to lockdown in major global cities. They found that compared to the previous year, a momentous change in PM$_{2.5}$ concentration was noticed. Also, Dhaka et al. (2020) assess the attenuation of PM$_{2.5}$ and the reduction of haze events due to lockdown in Delhi.
(2020), Wuhan City of China, find that the reduction of NO$_2$
(53.3\%) was more compared to PM$_{2.5}$ (36.9\%), and also they
discover lower air quality by 33.9\% than before lockdown and
47.5\% reduction compared to 2015-2019. Sharma et al. (2020)
conducted their comprehensive research to find the
level of emission over 22 Indian cities’ during the lockdown
period. They found PM$_{2.5}$ had shown maximum reduction
followed by PM$_{10}$, CO, and NO$_2$. Further, the study conduct-
ed by Mahato et al. (2020), in their study over Delhi, India,
found about 40-52\% reduction in the concentration of PM$_{2.5}$,
PM$_{10}$, NO$_2$, SO$_2$, CO, and NH$_3$ compared to pre-lockdown
periods.

The importance of lockdown to restore air quality is not yet
clearly understood. Thus, through our study, we further try to
fill the gap to better comprehend the actual scenario of the top
polluted cities in India, especially after the lockdown ended.
Does the unlocking again accumulate the surge of PM$_{2.5}$ con-
centration in the top polluted cities in India? To find this ques-
tion, we conduct our study using a quantitative approach to
find PM$_{2.5}$ concentration at different phases of lockdown with
special reference to the post-lockdown period. Many studies
show that due to excessive PM$_{2.5}$ exposure in India as it is one
of the leading countries in terms of air pollution, consequence
in a significant threat to human health as it causes major prob-
lems related to cardiovascular activity, respiratory illness, and
increase in mortality rate (Ghude et al. 2016; Balakrishnan
et al. 2018; Spears et al. 2019). Therefore, our scientific study
attempted to understand the benefits of lockdown as an alter-
native approach to restrain the air quality. This paper aims (i)
to find out the tendency and changes (%) in the concentration
of PM$_{2.5}$ for the top polluted cities of India during the period
of before, during, and after lockdown (Table 1); (ii) what is the
nature of PM$_{2.5}$ for the top polluted cities after the lockdown
ended? Hence, this study is very much feasible for the scien-
tific community and the policymakers to better restrain the air
qualities of the top most polluted cities in India and the world
by considering lockdown as alternative measures with proper
planning.

**Material and methodology**

**Selection of study cities**

We selected the top ten most polluted cities of India for our study
which was ranked accordingly to the “World Air Quality
Report” of 2019 published by IQAir visuals (2019) where
PM$_{2.5}$ was the significant pollutants (Table 2). Based on this
rank, we attempt to analyze the present scenario of PM$_{2.5}$ con-
centration in these top ten cities and its changes due to pandemic
lockdown. However, the 6th and 10th cities’ data are not avail-
able for a more extended period, hence excluded and the next
alternative cities were selected for the study.

**Data source**

The entire study was based on secondary data and to
interpret the changes in the concentration of PM$_{2.5}$ due
to lockdown in different cities, daily (24 h) automatic data
from 1 January to 31 July 2020 was collected. The data of
PM$_{2.5}$ for Delhi was collected from online portal known as
AirNow which was maintained by the US Environmental Protection Agency
(https://www.airnow.
gov/international/us-embassies-and-consulates/#
India$New_Delhi) and the rest of the data for nine cities
were collected from the Central Pollution Control Board
(CPCB) of India which was available online (https://app.
cepbcrr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/
data). The data provided by the CPCB is very authentic
and standardized as they follow a variety of rules and
regulations for the collection and evaluation of data (Mahato et al. 2020). Furthermore, satellite images obtain-
ed from the Copernicus Tropospheric Monitoring
Instrument (TROPOMI) were used to display the im-
provements in PM$_{2.5}$ concentration over the Indian atmo-
sphere. This satellite, developed by the European Space
Agency (ESA), is primarily used for the measurement of
air quality, including the concentration of various partic-
ulate matters and also to track climate forecasting
(Lokhandwala and Gautam 2020).

**Data analysis**

In order to assess the different scenarios of PM$_{2.5}$, we
divide the data in terms of before lockdown (from 1
January to 24 March), during lockdown (25 March to 31
May), and post-lockdown period (from 1 June to 31 July)
to comprehend better the nature and changes of PM$_{2.5}$
(Table 1). The mean concentration of PM$_{2.5}$ was calculat-
ed for each phase (i.e., before, during, and after lock-
down) in order to compare the changes (%) and variation
among pre-during and pre-post lockdown periods
(Table 3). For cities like Ghaziabad, Gurugram, Noida,
Greater Noida, and Lucknow, which have more than one
automatic air monitoring stations, the data of PM$_{2.5}$ for
these cities are calculated by aggregating the number of
stations.

Both descriptive and inferential statistics were conduct-
ed, including mean, standard deviation (SD), paired $t$ test,
linear regression model, and coefficient of determination.
A paired $t$ test was included to understand the mean dif-
ference between dependent observations to determine
whether there are considerable differences between the
concentrations of PM$_{2.5}$ for the period of pre-during and
pre-post lockdown. The $t$ test is a statistical analysis tech-
nique constructed by William Sealy Gosset in 1908 to
determine if two sets of data are significantly different
from each other (Kim 2015). The paired t test with a 2-tailed method was performed at a 5% significance level. Also, the relationship between each independent and dependent variable is analyzed using the regression coefficient. Besides, the coefficient of determination was also assessed, which is also denoted by $R^2$ value; $R^2$ is the fraction of variation of one variable explained by other variables used to determine the strength of the relationship in the regression model (Kasuya 2018). Therefore, the higher $R^2$ value in this study indicates that the model fits the data well. Further trend analysis was carried out for each city separately by analyzing the daily average of PM 2.5 for the entire 7 months, revealing the changing nature of its concentration due to lockdown and after the lockdown ended.

The Copernicus satellite images showing PM 2.5 concentration over the atmosphere of India, acquired for the period of before lockdown (January to March), during lockdown (end of March to May), and also for post-lockdown (June and July), were shown in Fig. 3a-h. The dark red color shows a very high accumulation of PM 2.5, yellow color depicts moderate, and dark blue shows low concentration.

### Result

According to the 2019 report from IQAir visual, out of thirty most polluted cities in the world, twenty-one belongs to India (The Indian Express 2019) and thus the study tries to reveal about the changes in the concentration of PM 2.5 as major pollutants for the top most polluted cities during the different phases of lockdown. Our study found that the diurnal tendency of concentration for PM2.5 before the period of lockdown (i.e., from 1 January to 24 March 2020) shows violating the limit of the National Ambient Air Quality Standard (NAAQS) which is much higher than the safe limit (Figs. 1a, b, c, d, e, f, g, h, i, j and 2). However, the diurnal standard for PM 2.5 in India was 60 μg m$^{-3}$ set by the NAAQS for residential, industrial, and ecologically sensitive areas and breaching this limit consequence in bad air quality (CPCB report 2009). Based on our findings, the mean concentration of PM 2.5 before the lockdown period was 133 μg m$^{-3}$ for Ghaziabad followed by 122 μg m$^{-3}$ for Noida, 115 μg m$^{-3}$ for Bulandshahr, 114 μg m$^{-3}$ for Greater Noida, 105 μg m$^{-3}$ for Delhi, 104 μg m$^{-3}$ for Faridabad, 104 μg m$^{-3}$ for Lucknow, 89 μg m$^{-3}$ for Muzzafarnagar, 88 μg m$^{-3}$ for Muzaffarnagar, 88 μg m$^{-3}$ for Muzaffarnaga...
The countrywide lockdown begins from 25 March 2020 due to the threatening situation of a pandemic. Since then, the mass industrial actions, constructional works, transportation movements, and many other anthropogenic activities were suspended, which consequences in dramatic impact over the concentration of PM$_{2.5}$. The primary sources of PM$_{2.5}$ emissions are related to automobiles, transport and traffic activity, and industrial works including smelting, combustion, and manufacturing (Lee et al. 2003) and with the commence of lockdown in India, all these activities were discontinued. We interestingly found that with the beginning of the lockdown in India, all these activities were discontinued.

The countrywide lockdown begins from 25 March 2020 due to the threatening situation of a pandemic. Since then, the mass industrial actions, constructional works, transportation movements, and many other anthropogenic activities were suspended, which consequences in dramatic impact over the concentration of PM$_{2.5}$. The primary sources of PM$_{2.5}$ emissions are related to automobiles, transport and traffic activity, and industrial works including smelting, combustion, and manufacturing (Lee et al. 2003) and with the commence of lockdown in India, all these activities were discontinued. We interestingly found that with the beginning of the lockdown in India, all these activities were discontinued.

Table 3 shows the changes in concentration of PM$_{2.5}$ for the period of before-during lockdown which reveals that Greater Noida shows the maximum reduction in PM$_{2.5}$ concentration of about 65% (from 120 to 42 μg m$^{-3}$), followed by Noida 63.11% (from 122 to 45 μg m$^{-3}$), Delhi 61.40% (from 114 to 44 μg m$^{-3}$), Faridabad 60.95% (from 105 to 41 μg m$^{-3}$), and Ghaziabad 60.15% (from 133 to 53 μg m$^{-3}$). All these five cities show a reduction in PM$_{2.5}$ concentration by more than 60% due to the lockdown. Besides the other five cities, they also show a significant decline in the PM$_{2.5}$ concentration ranges between 39 and 53% due to the lockdown (Table 3). Thus, it is clear that restrict movement due to the lockdown in the country shows a definite reduction in PM$_{2.5}$ concentration for the top polluted cities.

After the continued lockdown for more than 2 months (i.e., from 25 March to 31 May 2020), the unlocking procedure (unlock 1.0 and 2.0) and resumption of activities started from 1 June which continues until 31 July with specific constraints and limitations over the movement of people and goods (MHA 2020; Financial Express 2020). Surprisingly, the result shows that the unlocking of the city does not impact the concentration of PM$_{2.5}$ as it shows further dwindle in its concentration during the post-lockdown period (Figs. 1a, b, c, d, e, f, g, h, i, j and 2). Also, Table 3 shows a comparison of PM$_{2.5}$ for the period of before-after lockdown, and it depicts that majority of the cities shows a decline in the concentration of PM$_{2.5}$ by more than 60%. Greater Noida again shows maximum reduction in PM$_{2.5}$ concentration during the post-lockdown which is about 71.67% (from 120 to 34 μg m$^{-3}$), followed by Delhi and Ghaziabad 68.42% respectively for both, Bulandshahr 67.83% (from 115 to 37 μg m$^{-3}$), Faridabad 65.71% (from 105 to 36 μg m$^{-3}$), and Noida 64.75% (from 122 to 43 μg m$^{-3}$). Besides, the remaining four cities also show that a significant reduction varies between 46 and 57%.

![Fig. 1 a-j Trend of PM$_{2.5}$ concentration for the top most polluted cities in India for the time span of before lockdown (1 January to 24 March), during lockdown (25 March to 31 May), and post-lockdown (1 June to 31 July 2020)](image-url)
during the post-lockdown period (Table 3). Changes in the concentration of PM$_{2.5}$ depend on a variety of factors like seasonal variations, dust events, monthly flow of traffic, and other anthropogenic activities (Chauhan and Singh 2020). Thus, countrywide lockdown for the end of March to the end of May momentously reduced PM$_{2.5}$, which was still effective after the lockdown ended as the mean of PM$_{2.5}$ for all the cities is minimal and below the NAAQS limit (Fig. 2).

The first three satellite images (Fig. 3a, b, and c) clearly show that the concentration of PM$_{2.5}$ was very high over the Indian atmosphere before the commence of the lockdown, i.e., from January to March, especially over North India including the top most polluted cities. Subsequently, it is evident from the images (Fig. 3d, e, and f) the drastic reduction in PM$_{2.5}$ concentration during the time span of 2-month lockdown, i.e., from the end of March which continues until the end of May. Further, Fig. 3g and h also reveal the scenario of post-lockdown and it is clear that the concentration of PM$_{2.5}$ was reduced to minimal.

Table 4 also reveals that since the calculated $p$ value (0.0001) is less than the significance level at 0.05, this is considered being statistically significant. Thus, it is evident that there is a massive change in the concentration of PM$_{2.5}$ from the top polluted cities of India due to the pandemic lockdown.

**Discussion and conclusion**

Our findings reveal that the implementation of lockdown due to COVID-19 pandemic results in a dramatic decrease in PM$_{2.5}$ concentration and an overall improvement in the air qualities for the top most polluted cities in India. Also, the $p$ value (0.0001) shows a statistically significant reduction in the concentration of PM$_{2.5}$ due to the lockdown. About 39-65%
reduction in PM$_{2.5}$ was noticed during the lockdown period, and the range further increases to 48-68% after the lockdown ended. The study interestingly reveals that despite the unlocking and resumption of all activities during the post-lockdown periods, it does not result in a surge of PM$_{2.5}$. Further, the mean concentration of PM$_{2.5}$ for all the top polluted cities was reduced to minimal after the lockdown ends. The present pandemic situation has threatened the society in every sphere of life, but its benefits to improve the overall environment were also remarkable and need to understand correctly for future benefits. So, to restrain the air quality of the major polluted cities in India and globally, well-designed short-term lockdown implementation should be required once or twice a month at regular intervals. Policymakers and the government must need to understand the positive impact of lockdown on curbing excessive emissions for future purposes and must adopt lockdown as an alternative strategy.

Indeed, the lockdown has brought critical economic loss nationwide, which is undeniable, but at the same time, short-term environmental refurbishment also has taken place. However, reasonable, cost-effective economic planning is necessary before initiating such a short-term lockdown either it will be an economic detriment.

The lockdown due to the pandemic has given us a short-term interlude when the concentrations of overall pollutants are reduced to a greater extent, mainly for the top polluted cities. However, the reduction in the PM$_{2.5}$ concentration does not assure sustained clean air quality for a longer period. Once everything begins at a full pace from economic activity to buzzing traffic movement, the quality of air must inevitably be back to its previous worsen condition. However, this lockdown has allowed us to understand the positive benefits of isolation towards the environment and hence proper regulatory framework and technological intervention must be necessary to recover air quality in the later part. Huge repository of researches and data related to COVID-19 lockdown and its environmental benefit must be utilized and need to be reexamined.

**Future research instructions**

- The data of concentration of pollution need to be further correlated with population of the cities, to identify the sources of known pollution of these top most polluted cities and also comparison needs to be done with other regions.
- Also emphasis needs to be given over the spatial variations of regional meteorological factor, local geography, and air movements which have direct impact over the concentration of pollutants.

**Acknowledgments**

The authors would like to thanks the Central Pollution Control Board (CPCB), Environmental Protection Agency (EPA), and European Space Agency (ESA) for the detailed data and images regarding PM$_{2.5}$ and without which, it is not possible to find such novel results. Also the authors would like to express their sincere gratitude to the anonymous referees and the editor for their insightful suggestions and comments which greatly helped in the improvement of the earlier version of the manuscript. Lastly, the author would like to convey their deep sense of appreciation to all those who have served selflessly during the covid-19 pandemic period.

**Author’s contribution**

Subham Roy—conceptualization, methodology, software, formal analysis, investigation, resources, writing—original draft, writing—review and editing, visualization, and supervision.

Nimai Singha—formal analysis, investigation, data curation, resources, and writing—review and editing.

**Data availability**

All the data used in the present study are freely available to all through proper request, if needed by anyone for further research.

**Compliance with ethical standards**

**Conflict of interest**

The authors declare that they have no conflict of interest.

**References**

Balakrishnan K et al (2018) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet Health 3(1):e26–e39. https://doi.org/10.1016/S2542-5196(18)30261-4
Dhaka et al (2020) PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline pollution and meteorology. Sci Rep 10, 13442. https://doi.org/10.1038/s41598-020-70179-8.

Chauhan A, Singh RP (2020) Decline in PM$_{2.5}$ concentrations over major cities around the world associated with COVID-19. Environ Res. https://doi.org/10.1038/s41598-020-109634

CPCB, Central Pollution Control Board (2009) Revised National Ambient Air Quality Standard. https://cpcb.nic.in/air-pollution/. Accessed date: 20th August, 2020

Financial Express (2020) Lockdown 5.0 or unlock 1.0: what’s open, what’s not – explained in brief. https://indianexpress.com/article/india/india-unlock-2-guidelines-rules-what-is-allowed-coronavirus-6482192/. Accessed date: 15th August, 2020

Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P (2016) Premature mortality in India due to PM$_{2.5}$ and ozone exposure. Geophys Res Lett 43:4650–4658. https://doi.org/10.1002/2016GL068949

India Today (2020) Kerala reports first confirmed corona virus case in India. https://www.indiatoday.in/india/story/kerala-reports-first-confirmed-novel-coronavirus-case-in-india-1641593-2020-01-30. Accessed date: 18th August, 2020

IQAir (2019) World’s most polluted cities 2019 (PM2.5) https://www.iqair.com/us/world-most-polluted-cities?continent=59a92b13e7001ec1bd7e53&country=SPLi4goKT3JdGPa&perPage=50&cities=. Accessed date: 20th August, 2020

Kasuya E (2018) On the use of r and r squared in correlation and regression. Ecol Res 34:235–236. https://doi.org/10.1111/1440-1703.1011

Kim TK (2015) T test as a parametric statistic. Korean J Anesthesiol 68: 540–546. https://doi.org/10.4097/kjae.2015.68.6.540

Lee PHK, Brook JR, Davek-Zlotorzynska E, Mabury SA (2003) Identification of the major sources contributing to PM$_{2.5}$ observed in Toronto. Environ Sci Technol. https://doi.org/10.1021/es026473i

Lian X, Huang J, Huang R, Liu C, Wang L, Zhang T (2020) Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci Total Environ 742:140556. https://doi.org/10.1016/j.scitotenv.2020.140556

Lokhandwala S, Gautam P (2020) Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ Res 188:109807. https://doi.org/10.1016/j.envres.2020.109807

Mahato S, Pal S, Ghosh KG (2020) Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci Total Environ 730:139086. https://doi.org/10.1016/j.scitotenv.2020.139086

MHA, Ministry of Home Affairs, Government of India (2020) https://www.mha.gov.in/sites/default/files/MHAOrderDt_30052020.pdf. Accessed date: 15th August, 2020

Sharma S, Zhang M, Gao J, Anshika, Zhang H, Kota SH (2020) Effect of restricted emissions during COVID-19 on air quality in India. Sci Total Environ 728:138878. https://doi.org/10.1016/j.scitotenv.2020.138878

Spears D, Dey S, Chowdhury S et al (2019) The association of early-life exposure to ambient PM$_{2.5}$ and later-childhood height-for-age in India: an observational study. Environ Health. https://doi.org/10.1186/s12940-019-0501-7

The Indian Express (2019) 21 Indian cities among world’s 30 most polluted: Ghaziabad tops list: report. https://www.newindianexpress.com/nation/2020/feb/25/21-indian-cities-among-worlds-30-most-polluted-ghaziabad-tops-list-report-2108302.html. Accessed date: 20th August, 2020

WHO (2020) https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-19%2D%2D11-march-2020. Accessed date: 20th August, 2020

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.