Влияние варианта развития меланомы B16/F10 на содержание Bcl-2 в митохондриях клеток различных органов самок мышей

Кит О.И., Франциянц Е.М., Нескубина И.В., Черярина Н.Д., Шихлярова А.И., Сурикова Е.И., Каплиева И.В., Немашкалова Л.А.

Национальный медицинский исследовательский центр (НМИЦ) онкологии России, 344037, г. Ростов-на-Дону, ул. 14-я линия, 63

РЕЗЮМЕ

Цель – изучить содержание Bcl-2 в митохондриях различных органов самок мышей при стандартном и стимулированном росте экспериментальной меланомы B16/F10.

Материалы и методы. Работа выполнена на самках мышей линии C57BL/6 (n = 168), которых разделили на группы: интактную (n = 21), группу с воспроизведением модели хронической нейрогенной боли (XHB) (n = 21), группу «М» – меланома B16/F10 (n = 63), группу «XHB + М» (n = 63). В митохондриальных образцах методом иммуноферментного анализа определяли концентрацию Bcl-2 в нг/мг белка (Thermo Fisher Scientific, Австрия). Статистическая обработка результатов проводилась с использованием пакета прикладных программ Statistica 10.0.

Результаты. По сравнению со значениями Bcl-2 у интактных животных, XHB способствовала снижению данного показателя в митохондриях сердца в 1,3 раза, а в митохондриях кожи, напротив, повышала в 5,9 раз. В динамике стандартного роста меланомы содержание Bcl-2 изменялось относительно соответствующих интактных величин в митохондриях мозга, сердца, кожи, при этом не менялось в печени и почках. В митохондриях меланомы уровень Bcl-2 по сравнению с интактной кожей был высоким на всем протяжении стандартного роста опухоли. Стимулированный рост меланомы при XHB вовлекал в патологический процесс органы, количество которых увеличивалось по мере развития опухоли. Так, по сравнению со значениями в группе XHB изменение уровня Bcl-2 на 1-й нед роста фиксировали в митохондриях сердца, на 2-й – в сердце и коже, на 3-й нед – в сердце, коже и мозге. Не изменялся показатель в митохондриях печени и почек. В митохондриях меланомы, стимулированной XHB, уровень Bcl-2 на протяжении всего роста опухоли был ниже, чем в митохондриях кожи при XHB.

Заключение. Выявлено, что митохондрии клеток печени и почек обладают определенной стабильностью по Bcl-2 как при стандартном развитии опухолевого процесса, так и при стимулированном. Полагаем, что различная динамика Bcl-2 в митохондриях клеток меланомы в зависимости от варианта развития опухоли свидетельствует о модулирующем эффекте XHB и способности менять уровень показателя в зависимости от фазы роста.

Ключевые слова: митохондрии клеток, Bcl-2, хроническая нейрогенная боль, экспериментальная меланома B16/F10, самки мышей.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Исследование выполнено в рамках государственного задания.

Соответствие принципам этики. Исследование одобрено биоэтическим комитетом по работе с животными ФГБУ «НМИЦ онкологии» Минздрава России (протокол № 2 от 31.05.2018).

Для цитирования: Кит О.И., Франциянц Е.М., Нескубина И.В., Черярина Н.Д., Шихлярова А.И., Сурикова Е.И., Каплиева И.В., Немашкалова Л.А. Влияние варианта развития меланомы B16/F10 на содержание Bcl-2 в митохондриях клеток различных органов самок мышей.
Influence of a B16/F10 melanoma variant on the Bcl-2 levels in mitochondria in various organs of female mice

Kit O.I., Frantsiyants E.M., Neskubina I.V., Cheryarina N.D., Shikhlyarova A.I., Surikova E.I., Kaplieva I.V., Nemashkalova L.A.

National Medical Research Center for Oncology (NMRCO)
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation

ABSTRACT

Aim. To study the Bcl-2 level in mitochondria of various organs in female mice with standard and stimulated growth of an experimental B16/F10 melanoma.

Materials and methods. The study included C57BL/6 female mice ($n = 168$). The experimental animals were divided into the following groups: an intact group ($n = 21$), a group with modelled chronic neuropathic pain (CNP) ($n = 21$), an M group with B16/F10 melanoma ($n = 63$), and a CNP + M group ($n = 63$). The Bcl-2 concentration (ng / mg protein) in mitochondrial samples was determined by ELISA (Thermo Fisher Scientific, Austria). Statistical analysis of the results was carried out using Statistica 10.0.

Results. Compared to the Bcl-2 levels in the intact animals, CNP decreased this parameter in the cardiac mitochondria by 1.3 times, while increasing it by 5.9 times in the skin mitochondria. In the dynamics of standard melanoma growth, the Bcl-2 levels changed compared with the corresponding intact values in the mitochondria of the brain, heart, and skin, but did not change in the liver and kidneys. In the mitochondria in melanoma, the Bcl-2 levels were high throughout the entire period of standard tumor growth in comparison with the intact skin. The stimulated melanoma growth in CNP was involving more organs into the pathological process as the tumor was growing. Thus, in comparison with the values in the CNP group, the mitochondrial Bcl-2 levels changed in the heart at week 1; in the heart and skin – at week 2; in the heart, skin, and brain – at week 3. The Bcl-2 levels did not change in the liver and kidney mitochondria. In the mitochondria in the CNP-stimulated melanoma, the Bcl-2 levels were lower than in the skin mitochondria in CNP throughout the entire tumor growth period.

Conclusion. The liver and kidney mitochondria are somewhat Bcl-2 stable in both standard and stimulated tumor growth. It is assumed that different Bcl-2 dynamics in the mitochondria in melanoma depending on the variant of tumor development reflects the modulating effect of CNP and the ability to change the Bcl-2 levels according to the growth phase.

Key words: cell mitochondria, Bcl-2, chronic neuropathic pain, experimental B16/F10 melanoma, female mice.

Conflict of interest. The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

Source of financing. The study was carried out as part of the state assignment.

Conformity with the principles of ethics. The study was approved by the Bioethics Committee for Working with Animals of the NMRCO of the Ministry of Health of the Russian Federation (Protocol No. 2 of 31.05.2018).

For citation: Kit O.I., Frantsiyants E.M., Neskubina I.V., Cheryarina N.D., Shikhlyarova A.I., Surikova E.I., Kaplieva I.V., Nemashkalova L.A. Influence of a B16/F10 melanoma variant on the Bcl-2 levels in mitochondria in various organs of female mice. Bulletin of Siberian Medicine. 2021; 20 (3): 46–53. https://doi.org/10.20538/1682-0363-2021-3-46-53.
Концепция избирательной активации гибели клеток в злокачественных опухолях имеет давнюю историю. Программированная гибель клеток может происходить с помощью ряда механизмов, включая апоптоз и некроптоз, регулируемых различными сигнальными путями, в том числе и через митохондриальный путь апоптоза. Некоторые из этих путей передачи сигналов гибели клеток использовались с переменным успехом в качестве потенциальных терапевтических целей и с неутешительными редкими клиническими результатами из-за неполного понимания основ биологии [2, 3]. Еще более осторожно приводятся поиск и применение агентов селективного воздействия на митохондрии, поскольку необходимо учитывать специфику перестройки как самих митохондрий, так и митохондриального метаболизма трансформированной клетки и (или) активации энергетического метаболизма перепрограммированными митохондриями [4].

Осознание того, что сверхэкспрессия белка Bcl-2 способствовала онкогенезу путем ингибирования за-программированного запуска гибели клеток, привело к идентификации семейства регуляторов апоптоза и установило уклонение от апоптоза как центрального признака рака [5]. В настоящее время у позвоночных установлено уклонение от апоптоза как центрального процесса нейрональных уровней Bcl-2 значимо варьирует внутри и между популяциями клеток [12]. Таким образом, воздействие на злокачественные клетки через процесс апоптоза посредством нарушения белковых взаимодействий Bcl-2 между цитозолем и митохондриями является динамическим, клеточная популяция достигает равновесия между чувствительностью и устойчивостью к проапоптотическому стимулу [11]. Уровень стимуляции апоптотического сигнала значительно варьирует внутри и между популяциями клеток [12]. Таким образом, воздействие на злокачественные клетки через процесс апоптоза посредством нарушения белковых взаимодействий Bcl-2 между цитозолем и митохондриями является сложным, современные знания на данный момент не раскрывают всех тонкостей этого взаимодействия, что требует дальнейших изысканий в обозначенном направлении.

Цель настоящего исследования – изучить содержание Bcl-2 в митохондриях различных органов самок мышей при стандартизированном росте экспериментальной меланомы B16/F10.

Материалы и методы

Экспериментальное исследование выполнено на самках мышей линии C57BL/6 (n = 168), возраст – 8 нед, начальная масса – 21–22 г. Животные были распределены методом случайной выборки на следующие экспериментальные группы: интактная группа «К» (n = 21), группа «Кб» с воспроизведением модели хронической нейрогенной боли (XНБ) (n = 21), группа «М» – меланома B16/F10 (n = 63), стандартная подкожная трансплантация меланомы B16/F10, группа «XНБ + М» (n = 63), меланому B16/F10 трансплантировали через 3 нед после создания модели XНБ. Экспериментальные животные были получены из ФГБУН «Научный центр биомедицинских технологий ФМБА» (филиал «Андреевка», Московская область), также использовали штаммы мышиной меланомы B16/F10.
ланомы В16/F10 из ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России. Работа с животными проводилась в соответствии с правилами Европейской конвенции о защите животных, используемых в экспериментах (Директива 86/609/ЕЕС) и Хельсиннской декларации, а также в соответствии с Международными рекомендациями по проведению медико-биологических исследований с использованием животных и приказом Минздрава России от 19.06.2003 № 267 «Об утверждении правил лабораторной практики».

Животные содержались при естественном режиме освещения со свободным доступом к воде и пище. Манипуляции с животными производили в боксе с соблюдением общепринятых правил асептики и антисептики. Исследование одобрено этическим комитетом по работе с животными ФГБУ «НМИЦ онкологии» Минздрава России (протокол № 2 от 31.05.2018).

Меланому В16/F10 животным трансплантировали путем стандартного подкожного введения под правую лопатку в объеме по 0,5 мл опухолевой взвеси клеток в разведении 1 : 10 в физиологическом растворе. Модель ХНБ воспроизводили наложением лигатуры на седалищный нерв с двух сторон под ксила-золетиловым наркозом [13]. Наркоз: ксила-золетиловый, за 10 мин до основного наркоза; премедикация: ксилазин (препарат «Ксила») внутримышечно в дозе 0,05 мл/кг массы тела (по инструкции), затем через 10 мин вводили золетил-50 в дозе 10 мг на 100 г массы.

Животных декапитировали на гильотине, в группе «М» и в группе «ХНБ + М» после трансплантации меланомы B16/F10 в сроки: 1-я нед – 7-е сут роста меланомы, 2-я нед – 14-е сут роста меланомы и 3-я нед – 21-е сут роста меланомы. Мышей группы «ХНБ» выводили из эксперимента через 3 нед после воспроизведения модели ХНБ, одновременно декапитировали интактных животных. После декапитации у животных иссекали кожу, опухоль, а также извлекали мозг, печень, почки и сердце. Условно здоровую кожу иссекали на максимально удаленном расстоянии от опухолевого узла. Митохондрии выделяли по методу М.В. Егоровой и С.А. Афанасьева [14] (с применением хладагентов и дифференциального центрифугирования на высокоскоростной рефрижераторной центрифуге Avanti J-E (Becman Coulter, США).

Полученные митохондриальные образцы (концентрация белка 4–6 г/л) до анализа хранили при –80 ºС в среде выделения. В митохондриальных образцах методом иммуноферментного анализа (ИФА) определяли концентрацию Bcl-2 в нг/мг белка (Thermo Fisher Scientific, Австрия) на ИФА-анализаторе (Infinite F50 Tecan, Австрия) и биохимическим методом – концентрацию белка в мг/мл (биуретовый метод (Ольвекс Диагностикум, Россия) на автоматическом анализаторе ChemWell (Awareness Technology INC, США)).

Статистическая обработка результатов проводилась с использованием пакета прикладных программ Statistica 10.0. Полученные данные подвергали анализу на соответствие распределения признаков нормальному закону распределения с использованием критерия Шапиро – Уилка (для малых выборок). Сравнение количественных данных в группах (независимые выборки) проводили с использованием критерия Краскела – Уоллиса (множественные сравнения). Данные таблиц представлены в виде M ± m, где M – среднее арифметическое значение, m – стандартная ошибка среднего, за уровень статистической значимости принимали р < 0,05. Полученные результаты статистически обрабатывали с соблюдением общих рекомендаций для медицинских исследований.

РЕЗУЛЬТАТЫ

Результаты эксперимента по изучению уровня Bcl-2 в митохондриях клеток различных органов и меланомы B16/F10 представлены в таблице.

Таблица

Показатель	Орган	M ± m, нг/мг белка	Опухоль
Интактные (К)	мозг	82,937 ± 2,455	5,56 ± 0,203
ХНБ (Кб)	печень	96,335 ± 4,561	46,66 ± 3,87
М, 1-я нед	сердце	62,00 ± 2,85	103,079 ± 4,033
М, 1-я нед	почки	103,079 ± 4,033	32,69 ± 1,37
М, 1-я нед	кожа	5,56 ± 0,203	109,584 ± 4,129
М, 2-я нед	мозг	24,22 ± 1,511	49,61 ± 1,711
М, 2-я нед	печень	49,476 ± 2,689	15,46 ± 1,41
М, 2-я нед	сердце	38,58 ± 1,951	0,00000
М, 2-я нед	почки	21,38 ± 1,56	0,00000
М, 2-я нед	кожа	15,46 ± 1,41	0,00000
При изучении Bcl-2 в митохондриях клеток органов интактных мышей найдено, что минимальный уровень был в митохондриях кожи, затем следовали митохондрии сердца — в 11,2 раза больше, чем в коже, далее митохондрии мозга, печени и почек, уровень Bcl-2 в которых был примерно равным и в среднем в 16,9 раз выше, чем в митохондриях кожи.

Установлено, что у самок мышей ХНБ не оказывала значимого действия на изменение уровня Bcl-2 в митохондриях печени и почек относительно соответствующих значений в митохондриях органов интактных животных (группа «К»). Вместе с тем в митохондриях клеток сердца ХНБ вызывала снижение Bcl-2 в 1,7 раза, а в митохондриях мозга и кожи, напротив, повышение в 1,3 (p < 0,05) и 5,9 раза соответственно. Через 1 нед роста меланомы (группа «М») изменения уровня Bcl-2 зарегистрированы в митохондриях сердца, мозга и кожи: в митохондриях мозга и кожи, напротив, повышение в 1,3 (p < 0,05) и 8,9 раза относительно значений в митохондриях сердца, мозга и кожи, наоборот, повышение в 1,3 (p < 0,05) относительно соответствующего контроля (группа «Кб»). В этот срок исследования не найдено изменения уровня Bcl-2 в митохондриях мозга, печени, почек и кожи.

В митохондриях меланомы этой группы животных содержание Bcl-2 на протяжении 1, 2 и 3-й нед было в 4,4; 5,1 и 2,5 раза соответственно выше, чем в митохондриях кожи интактных мышей. Через 1 нед роста меланомы на фоне ХНБ (группа «ХНБ + М») изменения уровня Bcl-2 найдены только в митохондриях сердца — увеличение в 1,7 раза (p < 0,05) относительно соответствующего контроля (группа «Кб»). В этот срок исследования не найдено изменения уровня Bcl-2 в митохондриях мозга, печени, почек и кожи.

Относительно предыдущего срока исследования найдено снижение уровня Bcl-2 в митохондриях мозга в 3,4 раза и в 1,7 раза (p < 0,05) относительно соответствующего контроля. В митохондриях меланомы, растущей на фоне ХНБ, содержание Bcl-2 через 1 нед развития опухоли было в 3 раза ниже, чем в митохондриях кожи кон-
Оригинальные статьи

мыслей группы «Кб», через 2 и 3 нед – в среднем в 1,5 раза ниже контрольных величин.

Таким образом, показано, что ХНБ, рост мелано-мы в самостоятельном варианте и рост меланомы на фоне ХНБ не оказывали влияния на уровень Bcl-2 в митохондриях печени и почек самок мышей. Во-первых, с тем значимые изменения найдены в содержании Bcl-2 в митохондриях мозга, сердца, не пораженной злокачественным процессом коже и меланоме.

ОБСУЖДЕНИЕ

Семейство белков Bcl-2 определяет чувствительность клеток к апоптозу, древней программе самоубийства, которая необходима для развития организма, гомеостаза тканей и иммунитета. Низкий апоптоз может приводить к развитию рака и аутоиммунным заболеваниям, высокий – увеличивать дегенеративные состояния органов, в том числе способствовать возникновению ньютонгенерации. Исследования с использованием трансгенных мышей прояснили функции многих членов семейства Bcl-2 как в нормальной физиологии, так и при различных патологических состояниях. Нет сомнений в том, что эти белки контролируют выживание всех клеток млекопитающих.

Некоторые биохимические находки привели к предположению, что члены семейства Bcl-2 также участвуют в неапоптотических процессах, включая деление и слияние митохондрий, аутофагию [15], но физиологические доказательства остаются ограниченными. Было показано, что белки семейства Bcl-2 регулируют проницаемость внешней мембраны митохондрий, что позволяет выживать митохондриям, но при различных патологических состояниях. Нет сомнений в том, что эти белки контролируют выживание всех клеток млекопитающих.

В данном исследовании при традиционной перевивке опухоли в митохондриях мозга было отмечено снижение уровня Bcl-2 после 2 нед роста опухоли, а при развитии меланомы на фоне ХНБ – только после 3 нед. В митохондриях сердца в случае традиционного роста опухоли не обнаружено снижения уровня Bcl-2, напротив, в динамике роста опухоли его содержание в митохондриях сердца прогрессивно снижалось. При росте меланомы на фоне ХНБ через 1 нед после перевивки в митохондриях сердца обнаружено повышение уровня Bcl-2 и дальнейшее его падение в динамике роста опухоли.

Возможно, этот факт можно рассматривать как контроль проницаемости наружной митохондриальной мембраны для митохондриальной активации митохондрий в результате стресса, вызванного опухолевым ростом, так как именно мозг и сердце являются органами, наиболее подверженные стрессу [17, 18]. Предполагается, что наряду с изменением проницаемости наружной митохондриальной мембраны Bcl-2 опосредует сигналы стресса [19]. Показано, что различные внутриклеточные стрессовые сигналы действуют через белки семейства Bcl-2, вызывая активацию эффекторных каспаз [20].

Вместе с тем мы не обнаружили изменения уровня Bcl-2 в митохондриях печени и почек. В митохондриях кожи, непораженной злокачественным процессом, в динамике самостоятельного и индуцированного ХНБ роста меланомы уровень Bcl-2 имел как общие, так и отличительные черты. Так, на начальном и логарифмическом этапах развития опухоли (1–2–я нед) в митохондриях кожи при самостоятельном росте опухоли уровень изучаемого показателя был повышен относительно соответствующего контроля. При стимулированном росте, напротив, сначала (1–я нед) не имел значимых отличий от контрольных значений, а затем (2–я нед) снижался относительно показателя в соответствующем контроле. И только 3–я нед – терминальный этап роста опухоли – характеризовалась снижением показателя, т.е. однородными изменениями, но при стандартном варианте роста опухоли значения Bcl-2 были существенно ниже.

В многоклеточных организмах рост, деление и гибель клеток регулируются множеством сигнальных путей, которые интегрируют состояние и функцию клетки. В здоровых тканях существует баланс между этими процессами, что позволяет существовать тканевому гомеостазу [21]. Семейство белков Bcl-2 объединяет сигналы, которые запускают либо выживание клеток, либо апоптоз. Баланс между этими процессами важен для развития тканей и гомеостаза, в то время как нарушенный апоптоз способствует развитию нескольких патологий, в том числе рака. В дополнение к апоптотической и антиапоптотической функции члены семейства Bcl-2 играют неапоптотическую роль в регуляции миграции и инвазии клеток через различные сигнальные пути [22].

Семейство Bcl-2 контролирует целостность наружной митохондриальной мембраны (ОММ) и функционально делится на анти- и проапоптотические белки. Антиапоптотические члены Bcl-2 (например, Bcl-2/Bcl-xL/MCL-1) сохраняют целостность ОММ, напрямую связывая проапоптотические белки, которые взаимодействуют и образуют поры в ОММ. Регуляция ОММ является сложной из-за множества белков и паттерны экспрессии и функциональности, зависящие от типа клеток и состояния дифференцировки [21].
В митохондриях опухоли, растущей самостоятельно или на фоне ХНБ, была несколько иная динамика, чем в коже, не пораженной злокачественным процессом. Это выражалось в том, что в митохондриях клеток меланомы, растущей стандартно, уровень Bcl-2 на протяжении всего срока исследования был значимо повышен по сравнению с показателями контрольной кожи, а в митохондриях клеток, стимулированных ХНБ, напротив, снижен относительно соответствующего контроля. Следовательно, ХНБ способствует изменению накопительной способности митохондрий по Bcl-2 как в клетках органа опухоленосителя, так и в опухоли.

ЗАКЛЮЧЕНИЕ

Анализируя в целом полученные результаты, следует заключить, что не только митохондрии клеток меланомы реагируют на сопутствующую хроническую нейрогенную боль, но и кожи, не пораженной злокачественным процессом, как органа-мишени злокачественного роста. Найденные различия по уровню Bcl-2 являются тому подтверждением.

Полагаем, что различная динамика Bcl-2 в митохондриях клеток меланомы в зависимости от варианта развития опухоли свидетельствует о модулирующем эффекте ХНБ и способности менять уровень показателя в зависимости от фазы роста. Из всех исследованных внутренних органов наиболее ярко на стандартный и стимулированный рост экспериментальной меланомы отреагировали митохондрии клеток мозга и сердца. Вместе с тем обнаружено, что митохондрии клеток двух органов – печень и почки, обладают определенной стабильностью по Bcl-2 как при стандартном развитии опухолевого процесса, так и при стимулированном.

ЛИТЕРАТУРА

1. Gilmore A., King L. Emerging approaches to target mitochondrial apoptosis in cancer cells. F1000Research. 2019; 8 (1000): 1793. DOI: 10.12688/f1000research.18872.1.
2. Fulda S. Smac mimetics to therapeutically target IAP proteins in cancer. Int. Rev. Cell Mol. Biol. 2017; 350: 157–169. DOI: 10.1016/bs.tcmrb.2016.09.004.
3. Von Karstedt S., Montinaro A., Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat. Rev. Cancer. 2017; 17 (6): 352–366. DOI: 10.1038/nrc.2017.28.
4. Badrinnath N., Yoo S.Y. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis. 2018; 39 (12): 1419–1430. DOI: 10.1093/carcin/bgy148.
5. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100 (1): 57–70. DOI: 10.1016/S0092-8674(00)81683-9.
6. Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008; 9 (1): 47–59. DOI: 10.1038/nrm2308.
7. Vikström I.B., Slomp A., Carrington E.M., Moesbergen L.M., Chang C., Kelly G.L., Glaser S.P., Jansen J.H., Leusen J.H., Strasser A., Huang D.C., Lew A.M., Peperzak V., Tarlinton D.M. MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 r BCL-XL. Cell Death Dis. 2016; 7 (8): 2345. DOI: 10.1038/cddis.2016.237.
8. Grabow S., Kueh A.J., Ke F., Vanvai H.K., Sheikh B.N., Denglser M.A., Chiang W., Eccles S., Smyth L.M., Jones L.K., De Sauvage F.J., Scott M., Whitehead L., Voss A.K., Strasser F. Subtle changes in the levels of BCL-2 proteins cause severe craniofacial abnormalities. Cell Rep. 2018; 24 (12): 3285–3295. DOI: 10.1016/j.celrep.2018.08.048.
9. Ankers J.M., Awais R., Jones N.A., Boyd J., Ryan S., Adams A.D., Harper C.V., Bridge L., Spiller D.G., Jackson D.A., Paszek P., Sée V., White M.R. Dynamic NF-xB and E2f interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife. 2016; 5: 10473. DOI: 10.7554/eLife.10473.
10. Schellenberg B., Wang P., Keeble J.A., Rodriguez-Enriquez R., Walker S., Owens T.W., Foster F., Tananis-Hughes J., Brennan K., Streuli C.H., Gilmore A.P. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol. Cell. 2013; 49 (5): 959–971. DOI: 10.1016/j.molcel.2012.12.022.
11. Flusberg D.A., Rous J., Spencer S.L., Sorger P.K. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol. Biol. Cell. 2013; 24 (14): 2186–2200. DOI: 10.1091/mbc.e12-10-0737.
12. Gascoigne K.E., Taylor S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008; 14 (2): 111–122. DOI: 10.1016/j.ccr.2008.07.002.
13. Кит О.И., Францияц Е.М., Котиева И.М., и др. Некоторые механизмы повышения злокачественности меланомы на фоне хронической боли у самок мышей. Российский журнал боли. 2017; 2 (53): 14–20.
14. Егорова М.В., Афанасьев С.А. Выделение митохондрий из клеток и тканей животных и человека: Современные методические приемы. Сибирский медицинский журнал. 2011; 26 (1-1): 22–28.
15. Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014; 15 (1): 49–63. DOI: 10.1038/nrm3722.
16. Nakazawa M., Matsubara H., Matsushita Y., Watanebe M., Vo N., Yoshida H., Yamaguichi M., Kataoka T. The human Bcl-2 family member Bcl-rambo localizes to mitochondria and induces apoptosis and morphological aberrations in drosophila. PloS One. 2016; 11 (6): 0157823. DOI: 10.1371/journal.pone.0157823.
17. Cenini G., Lloret A., Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative Medicine and Cellular Longevity. 2019; 2019: 2105607. DOI: 10.1155/2019/2105607.
18. Yin X., Xin H., Mao S., Wu G., Guo L. The role of autophagy in sepsis: protection and injury to organs. *Frontiers in Physiology*. 2019; (10): 1071. DOI: 10.3389/fphys.2019.01071.

19. Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. *Biochemical and Biophysical Research Communications*. 2018; 500 (1): 26–34. DOI: 10.1016/j.bbrc.2017.06.190.

20. Wang J., Feng W., Yuan Z., Weber J.D., Zhang Y. DHX33 Interacts with AP-2β to regulate Bcl-2 gene expression and promote cancer cell survival. *Molecular and Cellular Biology*. 2019; 39 (17): 17–19. DOI: 10.1128/MCB.00017-19.

21. Elkholi R., Renault T.T., Serasinghe M.N., Chipuk J.E. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? *Cancer & Metabolism*. 2014; 2: 16. DOI: 10.1186/2049-3002-2-16.

22. Hartman M.L., Czyz M. BCL-w: apoptotic and non-apoptotic role in health and disease. *Cell Death & Disease*. 2020; 11 (4): 260. DOI: 10.1038/s41419-020-2417-0.

Вклад авторов

Кит О.И. – окончательное утверждение для публикации рукописи. Франциянц Е.М. – разработка концепции и дизайна; анализ и интерпретация данных, окончательное утверждение для публикации рукописи. Нескубина И.В., Немашкалова Л.А. – анализ и интерпретация данных. Черярина Н.Д., Сурикова Е.И., Каплиева И.В. – проверка критически важного интеллектуального содержания. Шихлярова А.И. – обоснование рукописи.

Сведения об авторах

Кит Олег Иванович, д-р мед. наук, профессор, чл.-корр. РАМН, генеральный директор НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0003-3061-6108.

Франциянц Елена Михайловна, д-р биол. наук, профессор, зам. генерального директора по научной работе, НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0003-3618-6890.

Нескубина Ирина Валерьевна, канд. биол. наук, ст. науч. сотрудник, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0002-7395-3086.

Черярина Наталья Дмитриевна, врач-лаборант, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0002-3711-8155.

Шихлярова Алла Ивановна, д-р биол. наук, профессор, ст. науч. сотрудник, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0003-2943-7655.

Сурикова Екатерина Игоревна, канд. биол. наук, ст. науч. сотрудник, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0002-4318-7587.

Каплиева Ирина Викторовна, д-р мед. наук, ст. науч. сотрудник, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0002-3972-2452.

Немашкалова Людмила Анатольевна, науч. сотрудник, лаборатория «Изучение патогенеза злокачественных опухолей», НМИЦ онкологии, г. Ростов-на-Дону. ORCID 0000-0003-2713-8598.

(∗) Сурикова Екатерина Игоревна, e-mail: sundsur2000@mail.ru

Поступила в редакцию 19.06.2020
Подписана в печать 28.12.2020