Cross-sections of large-angle hadron production in proton– and pion–nucleus interactions VIII: aluminium nuclei and beam momenta from ±3 GeV/c to ±15 GeV/c

Abstract

We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% λ_{int} thick stationary aluminium target, of proton and pion beams with momentum from ±3 GeV/c to ±15 GeV/c. Results are given for secondary particles with production angles $20^\circ < \theta < 125^\circ$. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.

The HARP–CDP group

A. Bolshakova1, I. Boyko1, G. Chelkov1a, D. Dedovitch1, A. Elagin1b, D. Emelyanov1, M. Gostkin1, A. Guskov1, Z. Kroumchtein1, Yu. Nefedov1, K. Nikolaev1, A. Zhemchugov1, F. Dydak2, J. Wotschack2*, A. De Min3c, V. Ammosov4i, V. Gapenko4, V. Koreshev4, A. Semak4, Yu. Sviridov4, E. Usenko4d, V. Zaets4

1 Joint Institute for Nuclear Research, Dubna, Russia
2 CERN, Geneva, Switzerland
3 Politecnico di Milano and INFN, Sezione di Milano-Bicocca, Milan, Italy
4 Institute of High Energy Physics, Protvino, Russia

(To be submitted to Eur. Phys. J. C)
1 INTRODUCTION

The HARP experiment arose from the realization that the inclusive differential cross-sections of hadron production in the interactions of few GeV/c protons with nuclei were known only within a factor of two to three, while more precise cross-sections are in demand for several reasons.

These are the optimization of the design parameters of the proton driver of a neutrino factory (see Ref. [1] and further references cited therein), but also the understanding of the underlying physics and the modelling of Monte Carlo generators of hadron–nucleus collisions, flux predictions for conventional neutrino beams, and more precise calculations of the atmospheric neutrino flux.

The HARP experiment was designed to carry out a programme of systematic and precise (i.e., at the few per cent level) measurements of hadron production by protons and pions with momenta from 1.5 to 15 GeV/c, on a variety of target nuclei. It took data at the CERN Proton Synchrotron in 2001 and 2002.

The HARP detector combined a forward spectrometer with a large-angle spectrometer. The latter comprised a cylindrical Time Projection Chamber (TPC) around the target and an array of Resistive Plate Chambers (RPCs) that surrounded the TPC. The purpose of the TPC was track reconstruction and particle identification by dE/dx. The purpose of the RPCs was to complement the particle identification by time of flight.

This is the eighth of a series of cross-section papers with results from the HARP experiment. In the first paper [2] we described the detector characteristics and our analysis algorithms, on the example of $+8.9$ GeV/c and -8.0 GeV/c beams impinging on a 5% λ_{int} Be target. The second paper [3] presented results for all beam momenta from this Be target. The third [4], fourth [5], fifth [6], sixth [7], and seventh [8] papers presented results from the interactions with 5% λ_{int} tantalum, copper, lead, carbon, and tin targets. In this paper, we report on the large-angle production (polar angle θ in the range $20^\circ < \theta < 125^\circ$) of secondary protons and charged pions, and of deuterons, in the interactions with a 5% λ_{int} aluminium target of protons and pions with beam momenta of ±3.0, ±5.0, ±8.0, $+12.9$, -12.0, and ±15.0 GeV/c.

Our work involves only the HARP large-angle spectrometer.

2 THE BEAMS AND THE HARP SPECTROMETER

The protons and pions were delivered by the T9 beam line in the East Hall of CERN’s Proton Synchrotron. This beam line supports beam momenta between 1.5 and 15 GeV/c, with a momentum bite $\Delta p/p \sim 1\%$.

The beam instrumentation, the definition of the beam particle trajectory, the cuts to select ‘good’ beam particles, and the muon and electron contaminations of the particle beams, are the same as described in Ref. [2].

The target was a disc made of high-purity (99.999%) aluminium, with a radius of 15.1 mm, a thickness of 19.80 mm (5% λ_{int}), and a measured density of 2.69 g/cm3.

The finite thickness of the target leads to a small attenuation of the number of incident beam particles. The attenuation factor is $f_{\text{att}} = 0.975$.

Our calibration work on the HARP TPC and RPCs is described in detail in Refs. [9] and [10], and in references cited therein.

The momentum resolution $\sigma(1/p_T)$ of the TPC is typically 0.2 (GeV/c)$^{-1}$ and worsens towards small relative particle velocity β and small polar angle θ. The absolute momentum scale is determined to be correct to better than 2%, both for positively and negatively charged particles.
The polar angle θ is measured in the TPC with a resolution of ~ 9 mrad, for a representative angle of $\theta = 60^\circ$. In addition, a multiple scattering error must be considered that is for a proton with $p_T = 500$ MeV/c in the TPC gas ~ 4.0 mrad at $\theta = 20^\circ$, and ~ 12.7 mrad at $\theta = 90^\circ$. For a pion with the same characteristics, the multiple scattering errors are ~ 3.3 mrad and ~ 6.4 mrad, respectively. The polar-angle scale is correct to better than 2 mrad.

The TPC measures dE/dx with a resolution of 16% for a track length of 300 mm.

The intrinsic efficiency of the RPCs that surround the TPC is better than 98%.

The intrinsic time resolution of the RPCs is 127 ps and the system time-of-flight resolution (that includes the jitter of the arrival time of the beam particle at the target) is 175 ps.

To separate measured particles into species, we assign on the basis of dE/dx and β to each particle a probability of being a proton, a pion (muon), or an electron, respectively. The probabilities add up to unity, so that the number of particles is conserved. These probabilities are used for weighting when entering tracks into plots or tables.

A general discussion of the systematic errors can be found in Ref. [2]. For the data from the $+15$ GeV/c beam, the systematic error of the momentum measurement was increased by a factor of 1.5 to account for minor problems with the correction for dynamic TPC distortions. For the data from the -5 GeV/c beam, the systematic error arising from the parametrization of the pion abundance in the respective Monte Carlo simulation was doubled, for a less satisfactory description of data distributions in the Monte Carlo simulation with the same number of weight parameters as used in comparable data sets. All systematic errors are propagated into the momentum spectra of secondaries and then added in quadrature. They add up to a systematic uncertainty of our inclusive cross-sections at the few-per-cent level, mainly from errors in the normalization, in the momentum measurement, in particle identification, and in the corrections applied to the data.

3 MONTE CARLO SIMULATION

We used the Geant4 tool kit [11] for the simulation of the HARP large-angle spectrometer.

Geant4’s QGSP.BIC physics list provided us with reasonably realistic spectra of secondaries from incoming beam protons with momentum below 12 GeV/c. For the secondaries from beam protons at 12.9 and 15 GeV/c momentum, and from beam pions at all momenta, we found the standard physics lists of Geant4 unsuitable [12].

To overcome this problem, we built our own HARP.CDP physics list. It starts from Geant4’s standard QBBC physics list, but the Quark–Gluon String Model is replaced by the FRITIOF string fragmentation model for kinetic energy $E > 6$ GeV; for $E < 6$ GeV, the Bertini Cascade is used for pions, and the Binary Cascade for protons; elastic and quasi-elastic scattering is disabled. Examples of the good performance of the HARP.CDP physics list are given in Ref. [12].

4 CROSS-SECTION RESULTS

In Tables A.1–A.45, collated in the Appendix of this paper, we give the double-differential inclusive cross-sections $d^2\sigma/dp_1d\Omega$ for various combinations of incoming beam particle and secondary particle, including statistical and systematic errors. In each bin, the average momentum at the vertex and the average polar angle are also given.

The data of Tables A.1–A.45 are available in ASCII format in Ref. [13].

Some bins in the tables are empty. Cross-sections are only given if the total error is not larger than the cross-section itself. Since our track reconstruction algorithm is optimized for tracks with p_T above ~ 70 MeV/c in the TPC volume, we do not give cross-sections from tracks
with p_T below this value. Because of the absorption of slow protons in the material between
the vertex and the TPC gas, and with a view to keeping the correction for absorption losses
below 30%, cross-sections from protons are limited to $p > 450$ MeV/c at the interaction vertex.
Proton cross-sections are also not given if a 10% error on the proton energy loss in materials
between the interaction vertex and the TPC volume leads to a momentum change larger than
2%. Pion cross-sections are not given if pions are separated from protons by less than twice the
time-of-flight resolution.

The large errors and/or absence of results from the +15 GeV/c pion beam are caused by
scarce statistics because the beam composition was dominated by protons.

We present in Figs. 1 to 7 what we consider salient features of our cross-sections. Figure 1
shows the inclusive cross-sections of the production of protons, π^+'s, and π^-'s, by
incoming protons between 3 GeV/c and 15 GeV/c momentum, as a function of their charge-
signed p_T. The data refer to the polar-angle range $20^\circ < \theta < 30^\circ$. Figures 2 and 3 show the
same for incoming π^+'s and π^-'s. Figure 4 shows inclusive Lorentz-invariant cross-sections of the production of protons, π^+'s
and π^-'s, by incoming protons between 3 GeV/c and 15 GeV/c momentum, in the rapidity range
$0.6 < y < 0.8$, as a function of the charge-signed reduced transverse particle mass, $m_T - m_0$,
where m_0 is the rest mass of the respective particle. Figures 5 and 6 show the same for incoming
π^+'s and π^-'s. We note the good representation of particle production by an exponential falloff
with increasing reduced transverse mass.

In Fig. 7, we present the inclusive cross-sections of the production of secondary π^+’s and
π^-’s, integrated over the momentum range 0.2 < p < 1.0 GeV/c and the polar-angle range
$30^\circ < \theta < 90^\circ$ in the forward hemisphere, as a function of the beam momentum.
Fig. 1: Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, by protons on aluminium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different proton beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 2: Inclusive cross-sections of the production of secondary protons, π^+'s, and π^-'s, by π^+'s on aluminium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different π^+ beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 3: Inclusive cross-sections of the production of secondary protons, π⁺’s, and π⁻’s, by π⁻’s on aluminium nuclei, in the polar-angle range $20^\circ < \theta < 30^\circ$, for different π⁻ beam momenta, as a function of the charge-signed p_T of the secondaries; the shown errors are total errors.
Fig. 4: Inclusive Lorentz-invariant cross-sections of the production of protons, π^+’s and π^-’s, by incoming protons between 3 GeV/c and 15 GeV/c momentum, in the rapidity range $0.6 < y < 0.8$, as a function of the charge-signed reduced transverse particle mass, $m_T - m_0$, where m_0 is the rest mass of the respective particle; the shown errors are total errors.
Fig. 5: Inclusive Lorentz-invariant cross-sections of the production of protons, π^+'s and π^-'s, by incoming π^+'s between 3 GeV/c and 15 GeV/c momentum, in the rapidity range $0.6 < y < 0.8$, as a function of the charge-signed reduced transverse pion mass, $m_T - m_0$, where m_0 is the rest mass of the respective particle; the shown errors are total errors.
Fig. 6: Inclusive Lorentz-invariant cross-sections of the production of protons, π^+'s and π^-'s, by incoming π^-'s between 3 GeV/c and 15 GeV/c momentum, in the rapidity range $0.6 < y < 0.8$, as a function of the charge-signed reduced transverse pion mass, $m_T - m_0$, where m_0 is the rest mass of the respective particle; the shown errors are total errors.
Fig. 7: Inclusive cross-sections of the production of secondary π^+'s and π^-'s, integrated over the momentum range $0.2 < p < 1.0$ GeV/c and the polar-angle range $30^\circ < \theta < 90^\circ$, from the interactions on aluminium nuclei of protons (top row), π^+'s (middle row), and π^-'s (bottom row), as a function of the beam momentum; the shown errors are total errors and mostly smaller than the symbol size.
5 Comparison with results from the E802 Experiment

Experiment E802 [14] at Brookhaven National Laboratory measured secondary π^\pm's and protons in the polar-angle range $5^\circ < \theta < 58^\circ$ from the interactions of $+14.6$ GeV/c protons with aluminium nuclei.

Figure 8 shows their published Lorentz-invariant cross-section of π^\pm and π^- production by $+14.6$ GeV/c protons, in the rapidity range $0.8 < y < 1.0$, as a function of $m_T - m_\pi$, where m_T denotes the secondary particle’s transverse mass. Their data are compared with our respective cross-sections from the interactions of $+15.0$ GeV/c protons with aluminium nuclei.

Fig. 8: Comparison of our cross-sections (black symbols) of π^\pm and proton production by $+15.0$ GeV/c protons off aluminium nuclei, with the respective cross-sections published by the E802 Collaboration for the proton beam momentum of $+14.6$ GeV/c (open symbols).

The E802 π^\pm and proton cross-sections are in good agreement with our cross-sections measured nearly at the same proton beam momentum, taking into account the normalization uncertainty of (10–15)% quoted by E802.
6 Comparison with results from the HARP Collaboration

Figure 9 shows the comparison of our cross-sections of π^\pm production by protons, π^+’s and π^-’s of 3.0 GeV/c and 8.0 GeV/c momentum, off aluminium nuclei, with the ones published by the HARP Collaboration [15][16], in the polar-angle range $20^\circ < \theta < 30^\circ$. The latter cross-sections are plotted as published, while we expressed our cross-sections in the unit used by the HARP Collaboration. The errors shown are the published total errors.

The discrepancy between our results and those published by the HARP Collaboration is evident. It shows the same pattern as observed in inclusive cross-sections off other target nuclei [2–8]. We hold that the discrepancy is caused by problems in the HARP Collaboration’s data analysis, discussed in detail in Refs [17–21], and summarized in the Appendix of Ref. [2].
Fig. 9: Comparison of HARP–CDP cross-sections (full circles) of π^\pm production by protons, π^+’s and π^-’s of 3.0 GeV/c (left panels) and 8.0 GeV/c momentum (right panels), off aluminium nuclei, with the cross-sections published by the HARP Collaboration (open circles).
7 Comparison of Charged-pion Production on Beryllium, Carbon, Aluminium, Copper, Tin, Tantalum and Lead

Figure 10 presents a comparison between the inclusive cross-sections of π^+ and π^- production, integrated over the secondaries’ momentum range $0.2 < p < 1.0$ GeV/c and polar-angle range $30^\circ < \theta < 90^\circ$, in the interactions of protons, π^+ and π^-, with beryllium ($A = 9.01$), carbon ($A = 12.01$), aluminium ($A = 26.98$), copper ($A = 63.55$), tin ($A = 118.7$), tantalum ($A = 181.0$), and lead ($A = 207.2$) nuclei. The comparison employs the scaling variable $A^{2/3}$ where A is the atomic mass number of the respective nucleus. We note the approximately linear dependence on this scaling variable. At low beam momentum, the slope exhibits a strong dependence on beam particle type, which tends to disappear with higher beam momentum.

Linearity with $A^{2/3}$ means that inclusive pion production scales with the geometrical cross-section of the nucleus. We note that at the lowest beam momenta the inclusive pion cross-section tends to fall below a linear dependence on $A^{2/3}$, while at the highest beam momenta the cross-sections tend to lie above a linear dependence. We conjecture that this behaviour arises from the production of tertiary pions from the interactions of secondaries in nuclear matter. At high beam momenta, the acceptance cut of $p > 0.2$ GeV/c has a minor effect on the tertiary pions. The transition of the inclusive pion cross-section from an approximate $A^{2/3}$ dependence for light nuclei toward an approximate A dependence for heavy nuclei (owing to the increasing contribution of pions from the re-interactions in nuclear matter) becomes apparent. At low beam momenta, the acceptance cut of $p > 0.2$ GeV/c suppresses a large fraction of the primarily low-momentum secondaries, thus not only hiding this transition but even reversing its trend.

Figure 11 compares the ‘forward multiplicity’ of secondary π^+’s and π^-’s in the interaction of protons and pions with beryllium, carbon, aluminium, copper, tin, tantalum, and lead target nuclei. The forward multiplicities are averaged over the momentum range $0.2 < p < 1.0$ GeV/c and the polar-angle range $30^\circ < \theta < 90^\circ$. They have been obtained by dividing the measured inclusive cross-section by the total cross-section inferred from the nuclear interaction lengths and pion interaction lengths, respectively, as published by the Particle Data Group [22] and reproduced in Table 1. The errors of the forward multiplicities are dominated by a 3% systematic uncertainty.

Table 1: Nuclear and pion interactions lengths used for the calculation of pion forward multiplicities.

Nucleus	λ_{nucl} [g cm$^{-2}$]	λ_{int} [g cm$^{-2}$]
Beryllium	77.8	109.9
Carbon	85.8	117.8
Aluminium	107.2	136.7
Copper	137.3	165.9
Tin	166.7	194.3
Tantalum	191.0	217.7
Lead	199.6	226.2

The forward multiplicities display a ‘leading particle effect’ that mirrors the incoming beam particle. It is also interesting that the forward multiplicity decreases with the nuclear mass at

1) The beryllium data with $+8.9$ GeV/c beam momentum [2,3] have been scaled, by interpolation, to a beam momentum of $+8.0$ GeV/c; analogously, this paper’s aluminium data with $+12.9$ GeV beam momentum have been scaled to a beam momentum of $+12.0$ GeV/c
low beam momentum but increases at high beam momentum. Again, we interpret this as the effect of pion re-interactions in the nuclear matter in conjunction with the acceptance cut of $p > 0.2 \text{ GeV/c}$.

Figure 12 shows the increase of the inclusive cross-sections of π^+ and π^- production by incoming protons of $+3.0 \text{ GeV/c}$ from the light beryllium nucleus to the heavy lead nucleus, for pions in the polar angle range $20^\circ < \theta < 30^\circ$. For comparison, Figure 13 shows the analogous cross sections for incoming protons of $+8.0 \text{ GeV/c}$ (in the case of beryllium target nuclei: +8.9 GeV/c).

We observe that the π^+/π^- ratio depends on the proton beam momentum. We interpret the diminishing preponderance of π^+ over π^- with increasing beam momentum as a consequence of the increase of phase space for particle production. We observe further that the general preponderance of π^+ over π^- decreases with increasing atomic mass number A. For $+8.0 \text{ GeV/c}$ beam momentum, the trend even reverses from light to heavy nuclei. We interpret this feature as follows. The heavier the target nucleus, the larger the neutron-to-proton ratio. While low-energy secondary protons produce in their re-interactions in nuclear matter considerably more π^+ than π^-, the situation is the opposite for low-energy secondary neutrons as shown long ago in a pertinent experiment [23]. The heavier the target nucleus, the larger the neutron-to-proton ratio and therefore the contribution to π^- production by secondary neutrons.
Fig. 10: Inclusive cross-sections of π^+ and π^- production by protons (open squares), π^+'s (open circles), and π^-'s (black circles), as a function of $A^{2/3}$ for, from left to right, beryllium, carbon, aluminium, copper, tin, tantalum, and lead nuclei; the cross-sections are integrated over the momentum range $0.2 < p < 1.0 \text{ GeV/c}$ and the polar-angle range $30^\circ < \theta < 90^\circ$; the shown errors are total errors and often smaller than the symbol size.
Fig. 11: Forward multiplicity of π^+'s and π^-'s produced by protons (open squares), π^+'s (open circles), and π^-'s (black circles), as a function of $A^{2/3}$ for, from left to right, beryllium, carbon, aluminium, copper, tin, tantalum, and lead nuclei; the forward multiplicity refers to the momentum range $0.2 < p < 1.0$ GeV/c and the polar-angle range $30^\circ < \Theta < 90^\circ$ of secondary pions.
Fig. 12: Comparison of inclusive cross-sections of π^\pm production by 3 GeV/c protons, in the forward region, between beryllium, carbon, copper, tin, tantalum, and lead target nuclei, as a function of the charge-signed pion p_T.
Fig. 13: Comparison of inclusive cross-sections of π^\pm production by 8 GeV/c protons, in the forward region, between beryllium, carbon, copper, tin, tantalum, and lead target nuclei, as a function of the charge-signed pion p_T.

HARP-CDP $p + A \rightarrow (\pi^+,\pi^-) + X$

$+8.0$ (Be: +8.9) GeV/c

$20^\circ < \Theta < 30^\circ$
8 Deuteron Production

Besides pions and protons, also deuterons are produced on aluminium nuclei. Up to momenta of about 1 GeV/c, deuterons are easily separated from protons by dE/dx.

Table 2 gives the deuteron-to-proton production ratio as a function of the momentum at the vertex, for 8 GeV/c beam protons, π^+'s, and π^-'s. Cross-section ratios are not given if the data are scarce and the statistical error becomes comparable with the ratio itself—which is the case for deuterons at the high-momentum end of the spectrum.

The measured deuteron-to-proton production ratios are illustrated in Fig. 14 and compared with the predictions of Geant4’s FRITIOF model. FRITIOF’s predictions are shown for π^+ beam particles. While there is for small polar angles θ good agreement between the data and FRITIOF’s estimate, the latter tends to fall short of the data toward large polar angles.

2) We observe no appreciable dependence of the deuteron-to-proton production ratio on beam momentum.

3) There is less than 10% difference between its predictions for incoming protons, π^+’s and π^-’s.
In Fig. 15 we show, for the polar-angle region $30^\circ < \theta < 45^\circ$, how the deuteron-to-proton ratio varies with the mass of the target nucleus. The ratios are for 8 GeV/c beam protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead nuclei.

![Deuteron-proton ratio vs. momentum](image)

Fig. 15: Deuteron-to-proton production ratios for 8 GeV/c beam protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead nuclei, as a function of the momentum at the vertex, for the polar-angle region $30^\circ < \theta < 45^\circ$.

In Fig. 16 we show how the deuteron-to-proton ratio depends on the atomic mass number A. Since in this ratio the geometrical scaling with $A^{2/3}$ should cancel out, any remaining dependence should reflect re-interactions in the nuclear matter for which $A^{1/3}$ seems the right scaling variable. The ratios are averaged over the $0.65 < p < 1.05$, where p is the particle momentum at the vertex, and shown separately for the polar-angle bins $20^\circ < \theta < 30^\circ$ and $30^\circ < \theta < 45^\circ$. We note an approximately linear increase of the deuteron-to-proton ratio with $A^{1/3}$, and a tendency to increase with polar angle.
Fig. 16: Momentum-averaged deuteron-to-proton production ratios for 8 GeV/c beam protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead nuclei, as a function of $A^{1/3}$, for the polar-angle regions $20^\circ < \theta < 30^\circ$ (black points) and $30^\circ < \theta < 45^\circ$ (open points).
Table 2: Ratio d/p of deuterons to protons produced by beam protons, \(\pi^+ \)'s and \(\pi^- \)'s of 8 GeV/c momentum, as a function of the particle momentum \(p \) [GeV/c] at the vertex, for bins of polar angle \(\theta \).

\(p \)	Beam \(p \) d/p	Beam \(\pi^+ \) d/p	Beam \(\pi^- \) d/p
\(\theta = 20^\circ - 30^\circ \)			
0.73	0.112 ± 0.018	0.143 ± 0.045	0.145 ± 0.026
0.79	0.138 ± 0.020	0.099 ± 0.021	0.120 ± 0.025
0.86	0.146 ± 0.018	0.114 ± 0.032	0.115 ± 0.021
0.93	0.122 ± 0.017	0.152 ± 0.044	0.138 ± 0.025
1.02	0.129 ± 0.019	0.082 ± 0.021	0.138 ± 0.031
1.10	0.135 ± 0.024	0.121 ± 0.039	0.117 ± 0.024
1.20	0.112 ± 0.023	0.213 ± 0.068	0.183 ± 0.064
\(\theta = 30^\circ - 45^\circ \)			
0.71	0.153 ± 0.019	0.111 ± 0.017	0.191 ± 0.024
0.77	0.139 ± 0.013	0.129 ± 0.022	0.193 ± 0.024
0.85	0.135 ± 0.017	0.137 ± 0.021	0.184 ± 0.027
0.92	0.155 ± 0.024	0.140 ± 0.025	0.248 ± 0.044
1.01	0.144 ± 0.021	0.163 ± 0.053	0.157 ± 0.030
1.10	0.140 ± 0.023	0.137 ± 0.020	0.251 ± 0.109
1.19	0.127 ± 0.023	0.311 ± 0.087	0.351 ± 0.082
\(\theta = 45^\circ - 65^\circ \)			
0.70	0.167 ± 0.015	0.188 ± 0.028	0.212 ± 0.022
0.77	0.173 ± 0.014	0.170 ± 0.028	0.235 ± 0.030
0.84	0.206 ± 0.037	0.230 ± 0.050	0.338 ± 0.055
0.92	0.187 ± 0.027	0.184 ± 0.037	0.436 ± 0.087
1.01	0.261 ± 0.045	0.248 ± 0.053	0.326 ± 0.074
1.10	0.336 ± 0.064	0.160 ± 0.050	0.212 ± 0.076
1.19	0.545 ± 0.130	0.133 ± 0.230	0.197 ± 0.230
\(\theta = 65^\circ - 90^\circ \)			
0.70	0.255 ± 0.030	0.226 ± 0.035	0.323 ± 0.044
0.77	0.332 ± 0.040	0.353 ± 0.065	0.441 ± 0.072
0.84	0.412 ± 0.066	0.355 ± 0.071	0.367 ± 0.055
0.92	0.503 ± 0.098	0.220 ± 0.050	0.589 ± 0.101
1.01	0.581 ± 0.219	0.629 ± 0.177	0.620 ± 0.118
1.10	0.611 ± 0.140	0.354 ± 0.154	0.594 ± 0.101
1.19	0.879 ± 0.351	0.548 ± 0.142	0.579 ± 0.223
\(\theta = 90^\circ - 125^\circ \)			
0.77	0.470 ± 0.069	0.441 ± 0.127	0.594 ± 0.101
0.84	0.562 ± 0.112	0.548 ± 0.142	0.620 ± 0.118
0.92	0.989 ± 0.393	0.579 ± 0.223	0.594 ± 0.101
1.01	1.053 ± 0.317	0.441 ± 0.127	0.594 ± 0.101
9 SUMMARY
From the analysis of data from the HARP large-angle spectrometer (polar angle θ in the range $20^\circ < \theta < 125^\circ$), double-differential cross-sections $d^2\sigma/dpd\Omega$ of the production of secondary protons, π^+'s, and π^-'s, and of deuterons, have been obtained. The incoming beam particles were protons and pions with momenta from ± 3 to ± 15 GeV/c, impinging on a 5% λ_{int} thick stationary aluminium target.

We have compared the inclusive aluminium π^+ and π^- production cross-sections with those on beryllium, carbon, copper, tin, tantalum, and lead and find an approximately linear dependence on the scaling variable $A^{2/3}$.

We also observe a significant production of deuterons off aluminium nuclei that we compared to the deuteron production on beryllium, carbon, copper, tin, tantalum, and lead.

ACKNOWLEDGEMENTS
We are greatly indebted to many technical collaborators whose diligent and hard work made the HARP detector a well-functioning instrument. We thank all HARP colleagues who devoted time and effort to the design and construction of the detector, to data taking, and to setting up the computing and software infrastructure. We express our sincere gratitude to HARP’s funding agencies for their support.

REFERENCES
[1] M. Apollonio et al., J. Instrum. 4 (2009) P07001
[2] A. Bolshakova et al., Eur. Phys. J. C62 (2009) 293 (CERN-PH-EP-2008-022, arXiv:0901.3648)
[3] A. Bolshakova et al., Eur. Phys. J. C62 (2009) 697 (CERN-PH-EP-2008-025, arXiv:0903.2145)
[4] A. Bolshakova et al., Eur. Phys. J. C63 (2009) 549 (CERN-PH-EP-2009-009, arXiv:0906.0471)
[5] A. Bolshakova et al., Eur. Phys. J. C64 (2009) 181 (CERN-PH-EP-2009-012, arXiv:0906.3653)
[6] A. Bolshakova et al., Eur. Phys. J. C66 (2010) 57 (CERN-PH-EP-2009-025, arXiv:0912.0378v1)
[7] A. Bolshakova et al., Eur. Phys. J. C70 (2010) 573 (CERN-PH-EP-2010-026, arXiv:1007.5482)
[8] A. Bolshakova et al., Eur. Phys. J. C71 (2011) 1719 (CERN-PH-EP-2011-069, arXiv:1105.2239)
[9] V. Ammosov et al., Nucl. Instrum. Methods Phys. Res. A588 (2008) 294
[10] V. Ammosov et al., Nucl. Instrum. Methods Phys. Res. A578 (2007) 119
[11] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A506 (2003) 250; J. Allison et al., IEEE Trans. Nucl. Sci. 53 (2006) 270
[12] A. Bolshakova et al., Eur. Phys. J. C56 (2008) 323
[13] A. Bolshakova et al., Tables of cross-sections of large-angle hadron production in proton– and pion–nucleus interactions VIII: aluminium nuclei and beam momenta from ± 3 GeV/c to ± 15 GeV/c, CERN–HARP–CDP–2011–002
[14] T. Abbott et al., Phys. Rev. D45 (1992) 3906
[15] M.G. Catanesi et al., Phys. Rev. C77 (2008) 055207 (arXiv:0805.2871)
[16] M. Apollonio et al., Phys. Rev. C80 (2009) 065207 (arXiv:0907.1428)
[17] V. Ammosov et al., J. Instrum. 3 (2008) P01002
[18] V. Ammosov et al., Eur. Phys. J. C54 (2008) 169
[19] V. Ammosov et al., CERN–HARP–CDP–2006–003
[20] V. Ammosov et al., CERN–HARP–CDP–2006–007
[21] V. Ammosov et al., CERN–HARP–CDP–2007–001
[22] http://pdg.lbl.gov/2011/AtomicNuclearProperties
[23] K.O. Oganesian, Zh. Eksp. Teor. Fiz. 54, 1273 (1968) [in Russian].
Table A.1: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $p + Al \to p + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.20–0.24	0.220	25.0	195.44 ± 8.79 ± 9.96	0.220	25.0	178.43 ± 6.52 ± 7.48
0.24–0.30	0.270	25.2	183.12 ± 6.94 ± 9.18	0.270	25.2	159.78 ± 6.31 ± 6.53
0.30–0.36	0.329	25.1	160.12 ± 6.71 ± 9.08	0.329	25.1	159.78 ± 6.31 ± 6.53
0.36–0.42	0.389	25.1	131.22 ± 6.08 ± 6.84	0.389	25.1	129.63 ± 5.94 ± 6.98
0.42–0.50	0.460	25.1	112.36 ± 4.75 ± 5.29	0.460	25.1	114.53 ± 4.96 ± 6.69
0.50–0.60	0.549	24.8	94.74 ± 3.84 ± 3.89	0.549	24.8	92.37 ± 3.99 ± 5.06
0.60–0.72	0.658	25.0	77.09 ± 3.20 ± 3.66	0.658	25.0	59.15 ± 2.88 ± 3.31
0.72–0.90	0.797	35.1	38.49 ± 1.92 ± 2.61	0.797	35.1	38.49 ± 1.92 ± 2.61
0.90–1.25	1.031	44.7	33.58 ± 1.85 ± 2.75	1.031	44.7	23.12 ± 1.64 ± 2.68
1.25–1.75	1.534	56.4	25.85 ± 1.26 ± 2.36	1.534	56.4	19.97 ± 1.17 ± 2.14
1.75–2.75	2.270	72.9	19.12 ± 0.99 ± 1.78	2.270	72.9	15.98 ± 0.85 ± 1.53
2.75–4.00	3.070	84.2	14.30 ± 0.75 ± 1.31	3.070	84.2	12.37 ± 0.62 ± 1.14
4.00–6.00	4.220	96.9	10.10 ± 0.56 ± 0.94	4.220	96.9	9.08 ± 0.48 ± 0.81
6.00–9.00	5.620	110.5	7.02 ± 0.39 ± 0.58	5.620	110.5	6.08 ± 0.32 ± 0.48
9.00–15.00	7.070	125.0	5.10 ± 0.27 ± 0.40	7.070	125.0	4.24 ± 0.22 ± 0.33

APPENDIX A: CROSS-SECTION TABLES
Table A.2: Double-differential inclusive cross-section \(d^2\sigma/dp d\Omega\) [mb/(GeV/c sr)] of the production of \(\pi^+\)’s in \(p + Al \to \pi^+ + X\) interactions with \(+3.0\) GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\)	\(\langle p_T \rangle\)	\(\langle \theta \rangle\)	\(d^2\sigma/dp d\Omega\)	\(\langle p_T \rangle\)	\(\langle \theta \rangle\)	\(d^2\sigma/dp d\Omega\)	
\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)
Table A.3: Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $p + Al \rightarrow \pi^- + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$	
$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\Omega$	
0.10-0.13	0.116	24.6	47.65 ± 3.49 ± 3.81	0.114	35.2	49.54 ± 3.56 ± 3.95	0.103	35.9	20.13 ± 1.99 ± 2.21
0.13-0.16	0.146	25.1	54.47 ± 5.47 ± 3.55	0.146	35.3	54.70 ± 5.52 ± 3.96	0.135	36.4	22.37 ± 2.19 ± 2.52
0.16-0.20	0.178	24.8	52.28 ± 4.51 ± 2.87	0.181	34.9	47.42 ± 4.25 ± 2.76	0.170	36.0	24.03 ± 2.34 ± 2.67
0.20-0.24	0.217	24.7	39.41 ± 3.70 ± 1.93	0.219	34.9	41.96 ± 3.83 ± 2.15	0.207	35.8	25.58 ± 2.47 ± 2.70
0.24-0.30	0.268	25.5	30.17 ± 2.75 ± 1.31	0.270	35.1	35.12 ± 2.85 ± 1.52	0.256	36.6	27.10 ± 2.96 ± 3.19
0.30-0.36	0.329	24.9	20.93 ± 2.22 ± 0.99	0.329	34.8	23.66 ± 2.34 ± 1.06	0.298	38.6	29.60 ± 2.63 ± 2.86
0.36-0.42	0.386	26.1	8.48 ± 1.48 ± 0.50	0.387	34.9	15.28 ± 1.92 ± 0.78	0.356	41.2	32.50 ± 2.43 ± 2.66
0.42-0.50	0.453	25.7	7.05 ± 1.16 ± 0.49	0.456	35.4	7.93 ± 1.20 ± 0.46	0.424	44.0	39.90 ± 2.72 ± 2.94
0.50-0.60	0.542	25.2	1.87 ± 0.52 ± 0.17	0.540	35.1	4.91 ± 0.84 ± 0.37	0.510	51.2	47.30 ± 3.05 ± 3.33
0.60-0.72	0.628	24.8	0.36 ± 0.21 ± 0.04	0.645	34.0	1.18 ± 0.37 ± 0.12	0.600	60.0	55.00 ± 3.18 ± 3.45
0.72-0.90	0.742	32.7	0.16 ± 0.12 ± 0.02	0.724	31.8	0.91 ± 0.29 ± 0.09	0.700	67.0	62.00 ± 3.51 ± 3.73

...
Table A.4: Double-differential inclusive cross-section $d^2\sigma/d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Al} \rightarrow p + X$ interactions with +3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$\langle p_T\rangle$	$\langle \theta \rangle$	$d^2\sigma/d\Omega$	$d^2\sigma/d\Omega$		
20 $\leq \theta < 30$	30 $\leq \theta < 40$					
0.20–0.24	0.221	25.0	165.87 ± 5.85 ± 8.55	0.271	34.9	168.78 ± 4.64 ± 7.14
0.24–0.30	0.269	25.1	156.82 ± 4.74 ± 8.16	0.329	35.0	144.78 ± 4.40 ± 6.01
0.30–0.36	0.329	25.2	121.35 ± 4.29 ± 7.36	0.329	35.0	118.77 ± 4.16 ± 6.47
0.36–0.42	0.389	25.1	108.39 ± 4.05 ± 6.07	0.389	35.0	92.62 ± 3.25 ± 5.47
0.42–0.50	0.458	25.0	91.27 ± 3.12 ± 4.78	0.459	35.1	78.74 ± 2.67 ± 4.44
0.50–0.60	0.546	25.3	73.59 ± 2.46 ± 3.39	0.546	35.0	54.15 ± 1.98 ± 3.20
0.60–0.72	0.655	25.3	49.11 ± 1.82 ± 2.46	0.654	35.0	30.75 ± 1.23 ± 2.20
0.72–0.90				0.800	35.2	
40 $\leq \theta < 50$	50 $\leq \theta < 60$					
0.30–0.36	0.329	45.0	169.77 ± 4.53 ± 5.52	0.329	45.0	156.83 ± 4.27 ± 4.74
0.36–0.42	0.388	45.1	129.06 ± 3.99 ± 4.30	0.388	55.1	119.55 ± 3.41 ± 4.08
0.42–0.50	0.457	45.2	102.88 ± 3.33 ± 4.67	0.457	55.1	92.62 ± 3.25 ± 5.47
0.50–0.60	0.544	45.1	80.03 ± 2.71 ± 4.85	0.543	55.0	72.08 ± 2.59 ± 4.99
0.60–0.72	0.650	45.0	56.32 ± 2.13 ± 3.83	0.651	54.9	43.11 ± 1.94 ± 3.91
0.72–0.90	0.795	44.9	28.05 ± 1.22 ± 2.45	0.791	54.9	20.03 ± 1.12 ± 2.52
0.90–1.25	1.023	44.8	7.13 ± 0.43 ± 0.96	0.800	35.0	30.75 ± 1.23 ± 2.20
50 $\leq \theta < 75$	75 $\leq \theta < 90$					
0.42–0.50	0.458	67.6	121.03 ± 2.71 ± 3.51	0.457	82.0	98.83 ± 2.40 ± 3.52
0.50–0.60	0.545	67.2	71.38 ± 2.01 ± 3.74	0.546	82.1	59.49 ± 1.69 ± 2.87
0.60–0.72	0.652	67.1	36.12 ± 1.33 ± 2.36	0.652	82.2	35.70 ± 1.28 ± 1.84
0.72–0.90	0.795	66.9	20.03 ± 1.12 ± 2.52	0.791	82.3	20.03 ± 1.12 ± 2.52
0.90–1.25	1.023	66.8	7.13 ± 0.43 ± 0.96	0.800	35.0	30.75 ± 1.23 ± 2.20
75 $\leq \theta < 105$	105 $\leq \theta < 125$					
0.42–0.50	0.456	96.9	71.71 ± 2.04 ± 3.69	0.456	113.5	35.70 ± 1.28 ± 1.84
0.50–0.60	0.545	96.8	36.12 ± 1.33 ± 2.36	0.542	112.4	12.73 ± 0.82 ± 1.66
Table A.5: Double-differential inclusive cross-section $d^2\sigma/dp^2d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^+ + A1 \rightarrow \pi^+ + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
	(p_T)	$d^2\sigma$						
0.10-0.13	0.115	24.9	85.88 ± 5.65	6.95	0.115	34.9	91.52 ± 5.36	6.78
0.13-0.16	0.146	24.9	104.04 ± 5.56	6.37	0.145	34.7	74.24 ± 4.59	4.53
0.16-0.20	0.180	24.8	119.19 ± 5.05	6.00	0.180	34.9	95.73 ± 4.42	4.94
0.20-0.24	0.220	25.0	132.48 ± 5.35	6.01	0.220	34.9	114.26 ± 4.83	5.11
0.24-0.30	0.270	24.9	125.17 ± 4.10	4.59	0.270	34.9	109.25 ± 3.75	4.08
0.30-0.36	0.329	25.1	103.51 ± 3.71	3.47	0.329	34.9	92.67 ± 3.48	3.09
0.36-0.42	0.390	25.1	79.93 ± 3.23	2.72	0.389	34.5	68.93 ± 2.94	2.34
0.42-0.50	0.457	24.9	63.40 ± 2.44	2.49	0.458	34.9	59.36 ± 2.38	2.15
0.50-0.60	0.546	25.1	41.52 ± 1.70	2.19	0.547	34.9	40.56 ± 1.71	1.92
0.60-0.72	0.658	24.8	25.65 ± 1.20	2.00	0.655	34.8	22.47 ± 1.10	1.53
0.72-0.90	0.799	34.9	14.76 ± 0.74	1.66				
0.90-1.25	1.017	54.5	1.62 ± 0.15	0.25				
1.00-1.30	1.145	67.5	76.95 ± 4.12	4.73	0.146	81.9	68.94 ± 3.85	4.30
1.06-1.60	0.180	67.4	79.59 ± 3.32	3.81	0.180	82.4	69.41 ± 3.11	3.23
1.40-2.00	0.220	67.3	67.78 ± 2.97	2.81	0.219	82.3	55.30 ± 2.68	2.23
1.60-2.20	0.268	67.1	54.00 ± 2.20	1.96	0.268	82.1	40.12 ± 1.90	1.50
2.00-3.60	0.329	67.0	45.27 ± 2.00	1.55	0.329	82.0	27.62 ± 1.57	1.09
2.20-3.80	0.390	66.8	33.44 ± 1.73	1.25	0.388	81.9	21.97 ± 1.41	1.04
2.80-4.00	0.457	66.6	24.53 ± 1.55	1.07	0.459	81.7	15.90 ± 1.00	0.73
3.00-5.00	0.547	66.4	18.97 ± 1.00	1.10	0.543	81.8	9.14 ± 0.70	0.66
4.00-7.00	0.655	66.7	9.72 ± 0.65	0.76	0.652	80.9	5.41 ± 0.50	0.54
5.00-7.00	0.795	66.6	4.73 ± 0.36	0.52	0.782	81.2	1.61 ± 0.19	0.22
7.00-1.25	1.018	66.1	0.64 ± 0.07	0.12	1.023	82.2	0.11 ± 0.02	0.03
1.00-1.25	1.056	95.8	0.03 ± 0.01	0.02				
Table A.6: Double-differential inclusive cross-section $d^2\sigma/d\theta d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + \text{Al} \to \pi^- + X$ interactions with $+3.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))	p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))
0.10–0.13	0.115	25.1	0.115	34.9	64.52
	0.13–0.16	0.146	0.20	25.1	76.99
	0.16–0.20	0.179	0.24–0.24	0.219	25.3
	0.24–0.30	0.269	0.30–0.36	0.328	25.1
	0.36–0.42	0.390	0.42–0.50	0.457	25.3
	0.50–0.60	0.546	0.60–0.72	0.648	25.4
	0.72–0.90	1.034			

p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))	p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))
0.10–0.13	0.114	45.2	0.145	55.1	65.61
	0.13–0.16	0.145	0.182	44.8	66.14
	0.16–0.20	0.182	0.270	44.8	56.13
	0.24–0.30	0.331	0.36–0.42	0.391	44.8
	0.42–0.50	0.461	0.50–0.60	0.547	45.0
	0.60–0.72	0.655	0.72–0.90	0.804	45.1
	0.90–1.25	1.034			

p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))	p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))
0.13–0.16	0.144	67.1	0.145	82.6	47.34
	0.16–0.20	0.180	0.179	82.2	44.56
	0.24–0.24	0.220	0.268	96.8	59.63
	0.30–0.36	0.330	0.389	67.1	20.99
	0.36–0.42	0.459	0.42–0.50	0.547	67.1
	0.50–0.60	0.651	0.72–0.90	0.783	67.1
	0.90–1.25	1.016			

p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))	p_T (GeV/c)	θ (degree)	$d^2\sigma/d\theta d\Omega$ (mb/(GeV/c sr))
0.13–0.16	0.145	97.3	0.145	114.4	33.49
	0.16–0.20	0.180	0.219	96.4	40.77
	0.24–0.24	0.268	0.326	96.4	11.22
	0.30–0.36	0.390	0.42–0.50	0.457	97.1
	0.36–0.42	0.541	0.50–0.60	0.651	96.1
	0.60–0.72	0.796			
Table A.7: Double-differential inclusive cross-section $d^2\sigma/dp_d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- + Al \rightarrow p + X$ interactions with −3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	20 $< \theta < 30$	30 $< \theta < 40$	40 $< \theta < 50$	50 $< \theta < 60$	60 $< \theta < 75$	75 $< \theta < 90$	90 $< \theta < 105$	105 $< \theta < 125$
\(10^{-4}\)	\(\langle p_T \rangle\) \(\langle \theta \rangle\)	\(d^2\sigma/dp_d\Omega\)	\(\langle p_T \rangle\) \(\langle \theta \rangle\)	\(d^2\sigma/dp_d\Omega\)	\(\langle p_T \rangle\) \(\langle \theta \rangle\)	\(d^2\sigma/dp_d\Omega\)	\(\langle p_T \rangle\) \(\langle \theta \rangle\)	\(d^2\sigma/dp_d\Omega\)
Table A.8: Double-differential inclusive cross-section $d^2\sigma/dp_T d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- + A1 \rightarrow \pi^+ + X$ interactions with -3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle \theta \rangle$	$d^2\sigma/dp_T d\Omega$	$\langle \theta \rangle$	$d^2\sigma/dp_T d\Omega$
	$20 < \theta < 30$	$30 < \theta < 40$	$50 < \theta < 60$	$75 < \theta < 90$
	$40 < \theta < 50$	$60 < \theta < 75$	$90 < \theta < 105$	$105 < \theta < 125$
0.10-0.13	0.116 45.0	55.01 ± 2.94 ± 4.03	0.115 35.2	67.62 ± 3.19 ± 4.85
0.13-0.16	0.145 44.8	66.19 ± 2.87 ± 3.77	0.145 54.8	56.93 ± 2.70 ± 3.38
0.16-0.20	0.180 44.7	70.68 ± 2.94 ± 4.23	0.180 54.8	62.36 ± 2.32 ± 2.96
0.20-0.24	0.220 44.9	58.86 ± 1.82 ± 2.05	0.219 54.9	53.46 ± 2.11 ± 2.21
0.24-0.30	0.269 44.7	58.86 ± 1.82 ± 2.05	0.268 54.7	44.78 ± 1.55 ± 1.55
0.30-0.36	0.330 44.7	47.44 ± 1.60 ± 1.49	0.329 54.9	37.92 ± 1.44 ± 1.21
0.36-0.42	0.394 44.8	38.80 ± 1.44 ± 1.20	0.389 54.8	31.47 ± 1.31 ± 1.04
0.42-0.50	0.456 44.7	28.37 ± 1.09 ± 1.03	0.457 54.6	27.30 ± 1.11 ± 1.20
0.50-0.60	0.564 44.9	11.08 ± 0.54 ± 0.70	0.545 54.5	15.40 ± 0.69 ± 0.74
0.60-0.72	0.654 44.8	4.52 ± 0.26 ± 0.43	0.793 54.3	3.95 ± 0.25 ± 0.37
0.72-0.90	0.792 44.8	1.031 54.3	0.73 ± 0.06 ± 0.12	
Table A.9: Double-differential inclusive cross-section $d^2\sigma/dp_d\Omega$ [mb/(GeV/c sr)] of the production of π^- in $\pi^- + \text{Al} \to \pi^- + \text{X}$ interactions with -3.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
	$d^2\sigma/dp_d\Omega$							
0.10–0.13	0.115 (44.9)	0.115 (44.9)	0.116 (44.9)	0.116 (44.9)	0.115 (44.9)	0.115 (44.9)	0.115 (44.9)	0.115 (44.9)
0.13–0.16	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)	0.145 (44.9)
0.16–0.20	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)	0.179 (45.0)
0.20–0.24	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)	0.219 (45.0)
0.24–0.30	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)	0.269 (45.0)
0.30–0.36	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)	0.329 (45.0)
0.36–0.42	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)	0.389 (45.0)
0.42–0.50	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)	0.457 (45.0)
0.50–0.60	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)	0.545 (45.0)
0.60–0.72	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)	0.655 (45.0)
0.72–0.90	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)	0.798 (45.0)

p_T (GeV/c)	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
0.13–0.16	0.145 (71.4)	0.145 (71.4)	0.145 (71.4)	0.145 (71.4)
0.16–0.20	0.179 (71.4)	0.179 (71.4)	0.179 (71.4)	0.179 (71.4)
0.20–0.24	0.219 (71.4)	0.219 (71.4)	0.219 (71.4)	0.219 (71.4)
0.24–0.30	0.267 (71.4)	0.267 (71.4)	0.267 (71.4)	0.267 (71.4)
0.30–0.36	0.327 (71.4)	0.327 (71.4)	0.327 (71.4)	0.327 (71.4)
0.36–0.42	0.388 (71.4)	0.388 (71.4)	0.388 (71.4)	0.388 (71.4)
0.42–0.50	0.455 (71.4)	0.455 (71.4)	0.455 (71.4)	0.455 (71.4)
0.50–0.60	0.540 (71.4)	0.540 (71.4)	0.540 (71.4)	0.540 (71.4)
0.60–0.72	0.649 (71.4)	0.649 (71.4)	0.649 (71.4)	0.649 (71.4)
0.72–0.90	0.794 (71.4)	0.794 (71.4)	0.794 (71.4)	0.794 (71.4)
0.90–1.25	1.030 (71.4)	1.030 (71.4)	1.030 (71.4)	1.030 (71.4)
Table A.10: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in p + Al → p + X interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$\langle p_T \rangle$ (GeV/c)	$\langle \theta \rangle$ (deg)	$d^2\sigma/dp d\Omega$ (mb/(GeV/c sr))	$\langle p_T \rangle$ (GeV/c)	$\langle \theta \rangle$ (deg)	$d^2\sigma/dp d\Omega$ (mb/(GeV/c sr))
0.20–0.24	0.220	24.9	202.12 ± 7.25 ± 10.04	0.226	24.9	202.12 ± 7.25 ± 10.04
0.24–0.30	0.269	25.0	176.21 ± 5.06 ± 8.00	0.262	25.0	176.21 ± 5.06 ± 8.00
0.30–0.36	0.330	25.2	160.61 ± 4.86 ± 7.00	0.329	25.2	160.61 ± 4.86 ± 7.00
0.36–0.42	0.389	25.1	142.79 ± 4.57 ± 5.50	0.389	25.1	142.79 ± 4.57 ± 5.50
0.42–0.50	0.460	25.1	116.71 ± 3.48 ± 4.13	0.458	25.1	116.71 ± 3.48 ± 4.13
0.50–0.60	0.548	25.0	106.96 ± 2.99 ± 3.62	0.547	25.0	106.96 ± 2.99 ± 3.62
0.60–0.72	0.658	24.9	90.34 ± 2.31 ± 3.16	0.657	24.9	90.34 ± 2.31 ± 3.16
0.72–0.90			65.84 ± 2.00 ± 2.71			65.84 ± 2.00 ± 2.71
40 < θ < 50			70.31 ± 4.76 ± 5.25			70.31 ± 4.76 ± 5.25
50 < θ < 60			146.66 ± 4.43 ± 4.24			146.66 ± 4.43 ± 4.24
60 < θ < 75			120.78 ± 3.58 ± 3.90			120.78 ± 3.58 ± 3.90
75 < θ < 90			89.03 ± 2.80 ± 3.68			89.03 ± 2.80 ± 3.68
90 < θ < 105			67.28 ± 2.28 ± 3.16			67.28 ± 2.28 ± 3.16
105 < θ < 125			40.01 ± 1.46 ± 2.39			40.01 ± 1.46 ± 2.39

36
Table A.11: Double-differential inclusive cross-section $d^2\sigma/dpd\Omega$ [mb/(GeV/c sr)] of the production of π^+s in p + Al → π^+ + X interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	(p_T)	$20 < \theta < 30$	$d^2\sigma/dpd\Omega$	(p_T)	$30 < \theta < 40$	$d^2\sigma/dpd\Omega$
0.10-0.13	0.116	25.0	103.61 ± 6.31 ± 7.22	0.116	34.8	83.96 ± 5.53 ± 5.94
0.13-0.16	0.145	24.8	111.38 ± 6.09 ± 6.31	0.145	35.0	89.27 ± 5.30 ± 5.00
0.16-0.20	0.180	24.9	130.75 ± 5.48 ± 6.18	0.180	34.7	92.51 ± 4.52 ± 4.37
0.20-0.24	0.220	24.8	122.56 ± 5.18 ± 5.03	0.220	34.7	91.15 ± 4.42 ± 3.72
0.24-0.30	0.269	24.9	121.43 ± 4.19 ± 4.21	0.269	34.8	87.65 ± 3.52 ± 3.03
0.30-0.36	0.329	24.7	89.39 ± 3.50 ± 2.79	0.329	34.7	73.95 ± 3.19 ± 2.28
0.36-0.42	0.389	24.9	66.86 ± 3.02 ± 2.13	0.389	34.8	52.41 ± 2.70 ± 1.61
0.42-0.50	0.458	25.2	51.75 ± 2.30 ± 2.01	0.457	34.9	41.23 ± 2.07 ± 1.46
0.50-0.60	0.548	24.8	28.77 ± 1.43 ± 1.50	0.546	34.9	29.22 ± 1.50 ± 1.37
0.60-0.72	0.657	25.1	13.32 ± 0.78 ± 1.04	0.655	34.9	13.14 ± 0.84 ± 0.90
0.72-0.90	0.790	34.6	6.18 ± 0.41 ± 0.66			

p_T	(p_T)	$40 < \theta < 50$	$d^2\sigma/dpd\Omega$	(p_T)	$50 < \theta < 60$	$d^2\sigma/dpd\Omega$
0.10-0.13	0.116	45.2	75.39 ± 5.40 ± 5.47			
0.13-0.16	0.145	44.7	79.23 ± 5.05 ± 4.57			
0.16-0.20	0.181	44.8	82.67 ± 4.25 ± 3.95			
0.20-0.24	0.220	44.9	76.21 ± 4.01 ± 3.18			
0.24-0.30	0.270	44.7	68.06 ± 3.14 ± 2.39			
0.30-0.36	0.330	44.7	54.42 ± 2.76 ± 1.68			
0.36-0.42	0.388	44.7	42.87 ± 2.45 ± 1.31			
0.42-0.50	0.457	44.5	35.37 ± 1.93 ± 1.20			
0.50-0.60	0.550	44.7	21.34 ± 1.29 ± 0.96			
0.60-0.72	0.658	44.9	11.49 ± 0.85 ± 0.73			
0.72-0.90	0.788	44.7	4.76 ± 0.40 ± 0.45			
0.90-1.25			1.005 34.7 $\pm 0.12 \pm 0.14$			

p_T	(p_T)	$60 < \theta < 75$	$d^2\sigma/dpd\Omega$	(p_T)	$75 < \theta < 90$	$d^2\sigma/dpd\Omega$
0.13-0.16	0.146	66.8	63.84 ± 3.73 ± 3.79			
0.16-0.20	0.181	67.4	58.61 ± 2.95 ± 2.76			
0.20-0.24	0.221	67.2	52.01 ± 2.75 ± 2.11			
0.24-0.30	0.270	67.2	38.89 ± 1.92 ± 1.32			
0.30-0.36	0.329	66.9	30.70 ± 1.74 ± 0.99			
0.36-0.42	0.391	66.9	24.55 ± 1.51 ± 0.86			
0.42-0.50	0.460	67.0	16.17 ± 1.06 ± 0.69			
0.50-0.60	0.548	67.1	9.91 ± 0.74 ± 0.57			
0.60-0.72	0.650	66.3	6.48 ± 0.55 ± 0.51			
0.72-0.90	0.793	65.8	1.79 ± 0.22 ± 0.20			
0.90-1.25	1.016	65.0	0.37 ± 0.06 ± 0.07			

p_T	(p_T)	$90 < \theta < 105$	$d^2\sigma/dpd\Omega$	(p_T)	$105 < \theta < 125$	$d^2\sigma/dpd\Omega$
0.13-0.16	0.145	97.6	52.33 ± 3.43 ± 3.05			
0.16-0.20	0.180	97.3	45.94 ± 2.69 ± 1.95			
0.20-0.24	0.219	97.2	32.08 ± 2.16 ± 1.16			
0.24-0.30	0.267	96.7	21.85 ± 1.46 ± 0.78			
0.30-0.36	0.327	97.0	13.24 ± 1.13 ± 0.59			
0.36-0.42	0.390	96.8	8.53 ± 0.90 ± 0.49			
0.42-0.50	0.459	96.1	5.64 ± 0.64 ± 0.42			
0.50-0.60	0.546	96.6	3.47 ± 0.45 ± 0.34			
0.60-0.72	0.655	95.9	1.11 ± 0.22 ± 0.15			
0.72-0.90	0.799	96.6	0.19 ± 0.06 ± 0.04			
Table A.12: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $p + Al \rightarrow \pi^- + X$ interactions with $+5.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	p_T	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.10-0.13	0.116	45.1	0.10-0.13	0.116	45.1
0.13-0.16	0.145	25.0	0.13-0.16	0.145	25.0
0.16-0.20	0.180	24.9	0.16-0.20	0.180	24.9
0.20-0.24	0.218	24.8	0.20-0.24	0.218	24.8
0.24-0.30	0.269	24.9	0.24-0.30	0.269	24.9
0.30-0.36	0.328	25.0	0.30-0.36	0.328	25.0
0.36-0.42	0.386	24.9	0.36-0.42	0.386	24.9
0.42-0.50	0.454	25.1	0.42-0.50	0.454	25.1
0.50-0.60	0.545	24.9	0.50-0.60	0.545	24.9
0.60-0.72	0.650	25.3	0.60-0.72	0.650	25.3
0.72-0.90	0.776	35.4	0.72-0.90	0.776	35.4
0.90-1.25	1.042	54.2	0.90-1.25	1.042	54.2
1.25-1.75	1.448	78.0	1.25-1.75	1.448	78.0
1.75-2.25	2.046	96.0	1.75-2.25	2.046	96.0
2.25-2.75	2.570	114.0	2.25-2.75	2.570	114.0
2.75-3.25	2.964	132.0	2.75-3.25	2.964	132.0
3.25-3.75	3.278	150.0	3.25-3.75	3.278	150.0
3.75-4.25	3.475	168.0	3.75-4.25	3.475	168.0
4.25-4.75	3.627	186.0	4.25-4.75	3.627	186.0
4.75-5.25	3.709	204.0	4.75-5.25	3.709	204.0
5.25-5.75	3.719	222.0	5.25-5.75	3.719	222.0
5.75-6.25	3.654	240.0	5.75-6.25	3.654	240.0
6.25-6.75	3.498	258.0	6.25-6.75	3.498	258.0
6.75-7.25	3.290	276.0	6.75-7.25	3.290	276.0
7.25-7.75	2.981	294.0	7.25-7.75	2.981	294.0
7.75-8.25	2.616	312.0	7.75-8.25	2.616	312.0
8.25-8.75	2.169	330.0	8.25-8.75	2.169	330.0
8.75-9.25	1.655	348.0	8.75-9.25	1.655	348.0
9.25-9.75	1.184	366.0	9.25-9.75	1.184	366.0
9.75-10.25	0.769	384.0	9.75-10.25	0.769	384.0
10.25-10.75	0.459	402.0	10.25-10.75	0.459	402.0
10.75-11.25	0.272	420.0	10.75-11.25	0.272	420.0
11.25-11.75	0.162	438.0	11.25-11.75	0.162	438.0
11.75-12.25	0.094	456.0	11.75-12.25	0.094	456.0
12.25-12.75	0.055	474.0	12.25-12.75	0.055	474.0
Table A.13: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Al} \rightarrow p + X$ interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
20 < θ < 30						
0.20-0.24	0.220	25.0	160.55 ± 3.42 ± 8.01	0.270	35.0	159.32 ± 4.30 ± 6.56
0.24-0.30	0.270	25.2	154.49 ± 4.25 ± 7.06	0.329	35.1	130.20 ± 3.78 ± 4.78
0.30-0.36	0.329	25.0	118.90 ± 3.72 ± 5.29	0.388	34.9	112.22 ± 3.62 ± 4.30
0.36-0.42	0.388	25.2	110.40 ± 3.59 ± 4.40	0.389	34.9	112.22 ± 3.62 ± 4.30
0.42-0.50	0.458	25.1	87.13 ± 2.66 ± 3.25	0.458	35.0	92.95 ± 2.86 ± 3.70
0.50-0.60	0.547	25.1	78.88 ± 2.26 ± 2.81	0.548	35.0	73.31 ± 2.26 ± 2.88
0.60-0.72	0.655	25.1	50.79 ± 1.58 ± 2.08	0.656	34.9	52.37 ± 1.71 ± 2.33
0.72-0.90				0.802	35.1	34.02 ± 1.12 ± 1.92
40 < θ < 50						
0.30-0.36	0.329	45.1	151.31 ± 4.02 ± 4.72	0.389	55.1	126.97 ± 3.62 ± 3.59
0.36-0.42	0.388	45.0	119.42 ± 3.59 ± 3.51	0.458	55.0	107.29 ± 2.96 ± 3.16
0.42-0.50	0.458	44.8	94.69 ± 2.84 ± 3.15	0.458	54.9	70.48 ± 2.27 ± 3.24
0.50-0.60	0.549	45.0	71.66 ± 2.25 ± 3.10	0.548	54.9	70.48 ± 2.27 ± 3.24
0.60-0.72	0.655	45.0	50.15 ± 1.76 ± 2.46	0.656	55.1	48.76 ± 1.80 ± 2.94
0.72-0.90	0.799	45.0	32.30 ± 1.16 ± 1.99	0.798	54.8	26.10 ± 1.08 ± 1.98
0.90-1.25	1.037	45.0	11.27 ± 0.48 ± 0.99	1.034	54.8	7.55 ± 0.41 ± 0.85
60 < θ < 75						
0.42-0.50	0.461	67.4	98.81 ± 2.27 ± 2.72	0.460	81.9	80.27 ± 2.03 ± 2.83
0.50-0.60	0.549	67.3	70.62 ± 1.80 ± 2.79	0.549	82.0	56.60 ± 1.56 ± 2.64
0.60-0.72	0.658	67.1	36.58 ± 1.29 ± 2.87	0.657	82.1	21.90 ± 1.03 ± 2.30
0.72-0.90	0.805	67.1	17.69 ± 0.77 ± 2.01	1.034	81.9	80.27 ± 2.03 ± 2.83
75 < θ < 90						
0.42-0.50	0.458	97.0	61.38 ± 1.78 ± 3.12	0.458	113.7	32.08 ± 1.13 ± 1.57
0.50-0.60	0.550	96.9	38.32 ± 1.29 ± 2.42	0.549	113.3	15.32 ± 0.75 ± 1.43
0.60-0.72	0.658	96.9	13.32 ± 0.85 ± 1.88	0.658	113.3	15.32 ± 0.75 ± 1.43
Table A.14: Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^+ + A \rightarrow \pi^+ + X$ interactions with +5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
	$d^2\sigma/dp\Omega$							
0.10–0.13	0.116 ± 0.036	0.115 ± 0.034	0.115 ± 0.036	0.115 ± 0.034	0.116 ± 0.036	0.115 ± 0.034	0.115 ± 0.036	0.115 ± 0.034
0.13–0.16	0.145 ± 0.036	0.145 ± 0.034	0.145 ± 0.036	0.145 ± 0.034	0.145 ± 0.036	0.145 ± 0.034	0.145 ± 0.036	0.145 ± 0.034
0.16–0.20	0.181 ± 0.036	0.180 ± 0.034	0.180 ± 0.036	0.180 ± 0.034	0.181 ± 0.036	0.180 ± 0.034	0.180 ± 0.036	0.180 ± 0.034
0.20–0.24	0.221 ± 0.036	0.220 ± 0.034	0.220 ± 0.036	0.220 ± 0.034	0.221 ± 0.036	0.220 ± 0.034	0.220 ± 0.036	0.220 ± 0.034
0.24–0.30	0.270 ± 0.036	0.271 ± 0.034	0.271 ± 0.036	0.271 ± 0.034	0.270 ± 0.036	0.271 ± 0.034	0.271 ± 0.036	0.271 ± 0.034
0.30–0.36	0.329 ± 0.036	0.329 ± 0.034	0.329 ± 0.036	0.329 ± 0.034	0.329 ± 0.036	0.329 ± 0.034	0.329 ± 0.036	0.329 ± 0.034
0.36–0.42	0.389 ± 0.036	0.389 ± 0.034	0.389 ± 0.036	0.389 ± 0.034	0.389 ± 0.036	0.389 ± 0.034	0.389 ± 0.036	0.389 ± 0.034
0.42–0.50	0.458 ± 0.036	0.458 ± 0.034	0.458 ± 0.036	0.458 ± 0.034	0.458 ± 0.036	0.458 ± 0.034	0.458 ± 0.036	0.458 ± 0.034
0.50–0.60	0.547 ± 0.036	0.547 ± 0.034	0.547 ± 0.036	0.547 ± 0.034	0.547 ± 0.036	0.547 ± 0.034	0.547 ± 0.036	0.547 ± 0.034
0.60–0.72	0.657 ± 0.036	0.657 ± 0.034	0.657 ± 0.036	0.657 ± 0.034	0.657 ± 0.036	0.657 ± 0.034	0.657 ± 0.036	0.657 ± 0.034
0.72–0.90	0.798 ± 0.036	0.798 ± 0.034	0.798 ± 0.036	0.798 ± 0.034	0.798 ± 0.036	0.798 ± 0.034	0.798 ± 0.036	0.798 ± 0.034
0.90–1.25	0.928 ± 0.036	0.928 ± 0.034	0.928 ± 0.036	0.928 ± 0.034	0.928 ± 0.036	0.928 ± 0.034	0.928 ± 0.036	0.928 ± 0.034
1.0–1.3	1.028 ± 0.036	1.028 ± 0.034	1.028 ± 0.036	1.028 ± 0.034	1.028 ± 0.036	1.028 ± 0.034	1.028 ± 0.036	1.028 ± 0.034
Table A.15: Double-differential inclusive cross-section $d^2σ/dp dΩ$ [mb/(GeV/c sr)] of the production of $π^−$’s in $π^+ + Al → π^− + X$ interactions with $+5.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle $θ$ in degrees.

p_T	$20 < θ < 30$	$30 < θ < 40$	
	$<$	$<$	
	$<$	$<$	

p_T	$40 < θ < 50$	$50 < θ < 60$	
	$<$	$<$	
	$<$	$<$	

p_T	$60 < θ < 75$	$75 < θ < 90$	
	$<$	$<$	
	$<$	$<$	

p_T	$90 < θ < 105$	$105 < θ < 125$	
	$<$	$<$	
	$<$	$<$	
Table A.16: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- + \text{Al} \rightarrow p + \text{X}$ interactions with -5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$\langle p_T \rangle$ (GeV/c)	$\langle \theta \rangle$ (degrees)	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$ (GeV/c)	$\langle \theta \rangle$ (degrees)	$d^2\sigma/dp d\Omega$				
$20 < \theta < 30$										
0.20–0.24	0.221	25.1	139.73	± 3.81	± 7.00	0.272	34.8	133.09	± 2.92	± 5.51
0.24–0.30	0.271	25.2	125.66	± 2.91	± 5.82	0.331	35.0	116.52	± 2.72	± 4.34
0.30–0.36	0.331	25.2	111.65	± 2.80	± 5.17	0.392	35.0	97.46	± 2.57	± 3.82
0.36–0.42	0.393	25.2	93.50	± 2.53	± 4.04	0.462	35.0	78.89	± 2.02	± 3.33
0.42–0.50	0.462	25.1	75.29	± 1.94	± 3.01	0.552	35.0	62.69	± 1.59	± 2.66
0.50–0.60	0.554	25.1	59.94	± 1.51	± 2.27	0.665	35.0	43.62	± 1.22	± 2.04
0.60–0.72	0.665	25.2	42.51	± 1.14	± 1.82	0.812	35.0	24.62	± 0.73	± 1.44
0.72–0.90										
$30 < \theta < 40$										
0.30–0.36	0.329	45.0	125.63	± 2.77	± 3.95	0.388	55.0	110.16	± 2.55	± 3.10
0.36–0.42	0.386	45.0	108.71	± 2.60	± 3.24	0.456	55.0	85.20	± 1.99	± 2.60
0.42–0.50	0.456	45.1	79.33	± 1.95	± 2.77	0.545	55.0	55.56	± 1.52	± 2.81
0.50–0.60	0.544	45.0	59.20	± 1.59	± 2.77	0.650	55.0	34.74	± 1.16	± 2.38
0.60–0.72	0.650	44.9	41.62	± 1.23	± 2.23	0.792	55.0	19.93	± 0.73	± 1.73
0.72–0.90	0.793	44.9	25.15	± 0.79	± 1.67	1.021	55.1	5.78	± 0.29	± 0.77
$60 < \theta < 75$										
$50 < \theta < 60$										
0.42–0.50	0.457	67.5	85.69	± 1.59	± 2.40	0.457	82.1	71.68	± 1.43	± 2.60
0.50–0.60	0.546	67.2	56.07	± 1.22	± 2.36	0.546	81.9	46.07	± 1.05	± 2.17
0.60–0.72	0.655	67.1	28.29	± 0.89	± 2.57	0.651	81.8	18.08	± 0.74	± 2.13
0.72–0.90	0.796	66.9	11.65	± 0.48	± 1.60					
$75 < \theta < 90$										
$90 < \theta < 105$										
0.42–0.50	0.457	97.0	51.45	± 1.22	± 2.63	0.457	113.7	27.82	± 0.79	± 1.38
0.50–0.60	0.547	97.0	30.41	± 0.86	± 1.93	0.543	113.5	12.17	± 0.51	± 1.19

42
Table A.17: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+s in $\pi^- + A \to \pi^+ + X$ interactions with -5.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$0 < \theta < 30$	$30 < \theta < 60$		
	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$
0.10-0.13	0.116 46.4	66.32 ± 3.44 ± 4.83	0.115 43.4	80.61 ± 3.63 ± 5.70
0.13-0.16	0.144 44.9	77.75 ± 3.33 ± 4.32	0.145 55.0	65.23 ± 3.08 ± 3.80
0.16-0.20	0.180 44.9	79.75 ± 2.75 ± 3.75	0.179 55.0	67.15 ± 2.55 ± 3.16
0.20-0.24	0.219 44.7	71.89 ± 2.58 ± 2.93	0.219 54.7	63.81 ± 2.43 ± 2.62
0.24-0.30	0.269 44.8	68.07 ± 2.06 ± 2.32	0.268 54.8	56.23 ± 1.86 ± 1.92
0.30-0.36	0.328 44.8	59.40 ± 1.90 ± 1.80	0.328 54.7	46.91 ± 1.74 ± 1.53
0.36-0.42	0.387 44.7	50.52 ± 1.79 ± 1.55	0.387 54.5	36.05 ± 1.49 ± 1.13
0.42-0.50	0.456 44.7	39.88 ± 1.38 ± 1.39	0.456 54.9	29.59 ± 1.18 ± 1.07
0.50-0.60	0.545 45.0	27.56 ± 1.01 ± 1.32	0.542 54.9	19.30 ± 0.84 ± 0.93
0.60-0.72	0.651 44.6	14.33 ± 0.63 ± 1.04	0.651 54.6	9.81 ± 0.54 ± 0.69
0.72-0.90	0.791 44.5	6.10 ± 0.32 ± 0.78	0.785 55.0	4.22 ± 0.27 ± 0.47
0.90-1.25	1.021 54.3	1.00 ± 0.08 ± 0.20	1.021 54.3	1.00 ± 0.08 ± 0.20

p_T	$0 < \theta < 75$	$75 < \theta < 90$		
	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$
0.13-0.16	0.145 67.2	59.93 ± 2.45 ± 3.52	0.145 82.3	46.83 ± 2.19 ± 2.79
0.16-0.20	0.180 67.4	57.51 ± 1.96 ± 2.67	0.179 82.2	49.66 ± 1.82 ± 2.24
0.20-0.24	0.219 67.2	47.39 ± 1.71 ± 1.88	0.220 82.1	39.86 ± 1.62 ± 1.50
0.24-0.30	0.269 67.1	42.55 ± 1.33 ± 1.40	0.269 82.3	29.40 ± 1.12 ± 0.95
0.30-0.36	0.330 67.0	33.56 ± 1.19 ± 1.03	0.329 81.7	20.15 ± 0.91 ± 0.68
0.36-0.42	0.389 66.9	27.89 ± 1.08 ± 0.94	0.390 81.7	16.28 ± 0.82 ± 0.66
0.42-0.50	0.458 66.6	19.15 ± 0.77 ± 0.79	0.459 81.5	11.36 ± 0.59 ± 0.58
0.50-0.60	0.544 66.6	13.93 ± 0.59 ± 0.78	0.546 81.7	7.41 ± 0.43 ± 0.51
0.60-0.72	0.654 66.5	6.29 ± 0.35 ± 0.50	0.653 82.0	3.59 ± 0.26 ± 0.34
0.72-0.90	0.790 66.4	2.71 ± 0.18 ± 0.32	0.795 81.8	1.12 ± 0.11 ± 0.16
0.90-1.25	1.008 65.6	0.41 ± 0.04 ± 0.09	0.105 81.0	0.09 ± 0.02 ± 0.03

p_T	$0 < \theta < 105$	$105 < \theta < 125$		
	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$	$(\langle p_T \rangle)$	$d^2\sigma/dp\,d\Omega$
0.13-0.16	0.145 97.6	41.71 ± 2.07 ± 2.43	0.144 114.4	41.13 ± 1.83 ± 2.10
0.16-0.20	0.179 97.1	41.83 ± 1.72 ± 1.78	0.179 114.0	29.79 ± 1.25 ± 1.14
0.20-0.24	0.219 97.3	34.38 ± 1.50 ± 1.25	0.218 114.0	20.32 ± 1.00 ± 0.76
0.24-0.30	0.268 97.2	22.80 ± 0.99 ± 0.78	0.267 113.7	11.82 ± 0.62 ± 0.50
0.30-0.36	0.329 96.9	14.07 ± 0.76 ± 0.59	0.327 114.3	7.51 ± 0.49 ± 0.42
0.36-0.42	0.388 97.0	10.14 ± 0.64 ± 0.56	0.388 113.6	5.45 ± 0.41 ± 0.41
0.42-0.50	0.458 96.8	7.03 ± 0.48 ± 0.50	0.454 112.8	2.88 ± 0.26 ± 0.28
0.50-0.60	0.546 96.1	3.98 ± 0.31 ± 0.38	0.537 112.3	1.36 ± 0.15 ± 0.19
0.60-0.72	0.652 96.3	1.52 ± 0.16 ± 0.21	0.647 109.7	0.32 ± 0.06 ± 0.07
0.72-0.90	0.800 95.8	0.28 ± 0.05 ± 0.06	0.798 112.4	0.04 ± 0.02 ± 0.02
Table A.18: Double-differential inclusive cross-section \(d^2\sigma/dp\Omega\) [mb/(GeV/c sr)] of the production of \(\pi^+\)'s in \(\pi^- + \text{Al} \to \pi^- + \text{X}\) interactions with \(-5.0\ \text{GeV/c}\) beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\) (GeV/c)	\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)
\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)	
\(p_T\) (GeV/c)	\(d^2\sigma/dp\Omega\) [mb/(GeV/c sr)]							
Table A.19: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $p + Al \rightarrow p + X$ interactions with $+8.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$0.20-0.24$	$0.24-0.30$	$0.30-0.36$	$0.36-0.42$	$0.42-0.50$	$0.50-0.60$	$0.60-0.72$	$0.72-0.90$
$20 < \theta < 30$	21.8	18.7	16.7	21.8	16.7	21.8	18.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1							
$30 < \theta < 40$	21.8	18.7	16.7	21.8	16.7	21.8	18.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1							

p_T (GeV/c)	$0.30-0.36$	$0.36-0.42$	$0.42-0.50$	$0.50-0.60$	$0.60-0.72$	$0.72-0.90$
$40 < \theta < 50$	21.8	18.7	16.7	21.8	18.7	16.7
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1					
$50 < \theta < 60$	21.8	18.7	16.7	21.8	18.7	16.7
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1					

p_T (GeV/c)	$0.42-0.50$	$0.50-0.60$	$0.60-0.72$	$0.72-0.90$
$60 < \theta < 75$	21.8	18.7	16.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1
$75 < \theta < 90$	21.8	18.7	16.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1

p_T (GeV/c)	$0.42-0.50$	$0.50-0.60$	$0.60-0.72$	$0.72-0.90$
$90 < \theta < 105$	21.8	18.7	16.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1
$105 < \theta < 125$	21.8	18.7	16.7	21.8
$d^2\sigma/dp\,d\Omega$	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1	0.41 ± 1.1
p_T	(pT)	$d^2\sigma / dp d\Omega$	(pT)	$d^2\sigma / dp d\Omega$
-------	------	----------------	------	----------------
0.10–0.13	0.116	24.8	0.808	24.8
0.13–0.16	0.146	24.8	0.046	24.8
0.16–0.20	0.181	24.7	0.046	24.7
0.20–0.24	0.221	24.8	0.146	24.8
0.24–0.30	0.271	24.7	0.146	24.7
0.30–0.36	0.331	24.6	0.146	24.6
0.36–0.42	0.392	24.7	0.146	24.7
0.42–0.50	0.462	24.7	0.146	24.7
0.50–0.60	0.552	24.8	0.146	24.8
0.60–0.72	0.662	24.8	0.146	24.8
0.72–0.90	0.808	24.8	0.146	24.8

p_T	(pT)	$d^2\sigma / dp d\Omega$	(pT)	$d^2\sigma / dp d\Omega$
0.10–0.13	0.117	44.9	1.065	44.9
0.13–0.16	0.146	44.9	1.065	44.9
0.16–0.20	0.182	44.9	1.065	44.9
0.20–0.24	0.222	44.8	1.065	44.8
0.24–0.30	0.272	44.7	1.065	44.7
0.30–0.36	0.333	44.7	1.065	44.7
0.36–0.42	0.394	44.6	1.065	44.6
0.42–0.50	0.467	44.6	1.065	44.6
0.50–0.60	0.558	44.6	1.065	44.6
0.60–0.72	0.673	44.5	1.065	44.5
0.72–0.90	0.820	44.7	1.065	44.7
0.90–1.25	1.049	65.9	1.065	65.9

p_T	(pT)	$d^2\sigma / dp d\Omega$	(pT)	$d^2\sigma / dp d\Omega$
0.13–0.16	0.146	67.2	1.046	67.2
0.16–0.20	0.181	69.6	1.046	69.6
0.20–0.24	0.220	69.1	1.046	69.1
0.24–0.30	0.271	70.7	1.046	70.7
0.30–0.36	0.331	70.7	1.046	70.7
0.36–0.42	0.394	70.6	1.046	70.6
0.42–0.50	0.467	70.5	1.046	70.5
0.50–0.60	0.554	70.2	1.046	70.2
0.60–0.72	0.660	66.4	1.046	66.4
0.72–0.90	0.805	65.9	1.046	65.9
0.90–1.25	1.049	69.5	1.046	69.5

Table A.20: Double-differential inclusive cross-section $d^2\sigma / dp d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $p + Al \rightarrow \pi^+ + X$ interactions with +8.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.
Table A.21: Double-differential inclusive cross-section \(d^2\sigma/dp d\Omega\) [mb/(GeV/c sr)] of the production of \(\pi^-\)'s in \(p + Al \rightarrow \pi^- + X\) interactions with +8.0 GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\) (GeV/c)	\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)	
\(p_T\) (GeV/c)	\(d^2\sigma/dp d\Omega\)								
0.10–0.13	0.115 24.8 134.10 ± 4.16 ± 9.08 0.116 25.0 110.34 ± 3.71 ± 7.79	0.145 24.6 144.41 ± 4.00 ± 7.85 0.145 34.8 117.62 ± 3.55 ± 6.44	0.194 24.9 150.04 ± 3.37 ± 5.72 0.219 34.7 110.96 ± 2.86 ± 4.26	0.267 24.9 128.95 ± 2.52 ± 4.07 0.268 34.7 105.42 ± 2.26 ± 3.34	0.326 25.0 101.14 ± 2.24 ± 2.79 0.327 34.8 84.50 ± 2.05 ± 2.33	0.385 24.9 73.22 ± 1.89 ± 2.07 0.385 34.8 65.00 ± 1.77 ± 1.82	0.454 24.9 56.27 ± 1.45 ± 1.91 0.453 34.8 48.19 ± 1.31 ± 1.60	0.539 24.9 34.69 ± 1.02 ± 1.61 0.539 34.8 28.92 ± 0.90 ± 1.30	0.644 25.0 18.83 ± 0.67 ± 1.21 0.646 34.6 14.17 ± 0.56 ± 0.90
0.72–0.90	0.778 34.7 6.55 ± 0.30 ± 0.60								
0.80–0.90	0.806 34.7 5.16 ± 0.30 ± 0.56								
0.90–1.25	0.977 54.8 0.76 ± 0.07 ± 0.11								
1.25–1.50	1.251 90.9 0.37 ± 0.05 ± 0.08								

47
Table A.22: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Al} \rightarrow p + \text{X}$ interactions with +8.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	
0.20–0.24	0.221	25.0	163.97 \pm 5.12 \pm 8.10	0.272	34.8	144.64 \pm 3.85 \pm 5.93	
0.24–0.30	0.271	25.1	140.86 \pm 3.83 \pm 6.31	0.323	35.1	128.82 \pm 3.56 \pm 4.63	
0.30–0.36	0.331	25.2	118.62 \pm 3.52 \pm 5.09	0.392	35.0	114.73 \pm 3.44 \pm 3.99	
0.36–0.42	0.392	25.0	98.19 \pm 3.19 \pm 4.00	0.463	34.9	90.42 \pm 2.66 \pm 3.32	
0.42–0.50	0.463	25.1	83.43 \pm 2.47 \pm 3.30	0.555	35.0	71.05 \pm 2.11 \pm 2.87	
0.50–0.60	0.553	25.0	71.20 \pm 2.02 \pm 2.86	0.665	35.0	49.19 \pm 1.60 \pm 2.33	
0.60–0.72	0.665	25.0	52.30 \pm 1.54 \pm 2.33	0.813	35.0	30.87 \pm 1.00 \pm 1.89	
0.72–0.90	0.813	25.0	25.87 \pm 0.81 \pm 1.89	0.90–1.25	1.079	44.9	8.45 \pm 0.38 \pm 0.81

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$												
0.30–0.36	0.334	45.0	132.87 \pm 3.56 \pm 4.11	0.396	55.1	120.19 \pm 3.31 \pm 3.26												
0.36–0.42	0.396	45.0	119.21 \pm 3.38 \pm 3.40	0.467	55.1	94.29 \pm 2.61 \pm 2.67												
0.42–0.50	0.467	45.1	91.84 \pm 2.63 \pm 2.82	0.560	55.0	65.71 \pm 2.05 \pm 2.68												
0.50–0.60	0.560	45.1	71.18 \pm 2.14 \pm 2.76	0.672	55.1	43.21 \pm 1.57 \pm 2.45												
0.60–0.72	0.672	45.0	48.31 \pm 1.63 \pm 2.37	0.825	54.9	23.51 \pm 0.98 \pm 1.78												
0.72–0.90	0.825	45.0	28.58 \pm 1.02 \pm 1.84	1.077	54.8	5.85 \pm 0.34 \pm 0.68												
0.90–1.25	1.077	44.9	8.45 \pm 0.38 \pm 0.81	0.42–0.50	0.462	67.4	95.24 \pm 2.09 \pm 2.64											
0.50–0.60	0.551	67.6	65.60 \pm 1.62 \pm 2.51	0.553	82.2	51.31 \pm 1.39 \pm 2.38												
0.60–0.72	0.664	67.3	34.17 \pm 1.17 \pm 2.47	0.660	81.7	23.86 \pm 0.99 \pm 2.08												
0.72–0.90	0.809	67.0	17.00 \pm 0.69 \pm 1.70	0.808	81.7	9.96 \pm 0.54 \pm 1.17												
0.90–1.25	1.050	66.5	4.22 \pm 0.26 \pm 0.67	1.040	81.2	2.33 \pm 0.20 \pm 0.40												
0.42–0.50	0.461	96.9	54.94 \pm 1.58 \pm 2.77	0.461	113.4	32.09 \pm 1.06 \pm 1.58												
0.50–0.60	0.552	96.9	35.69 \pm 1.17 \pm 2.24	0.550	112.9	14.23 \pm 0.67 \pm 1.20												
0.60–0.72	0.658	96.5	13.16 \pm 0.76 \pm 1.47	0.657	112.4	4.36 \pm 0.39 \pm 0.67												
0.72–0.90	0.807	95.6	4.61 \pm 0.39 \pm 0.64	0.799	113.1	1.02 \pm 0.16 \pm 0.22												
p_T	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$										
-------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------										
	$d^2\sigma/dp_Td\Omega$																	
0.10–0.13	0.116	24.8	133.16 \pm 6.22 \pm 9.40	0.016	34.7	103.03 \pm 5.13 \pm 7.09	0.116	45.0	81.24 \pm 4.33 \pm 5.75	0.016	44.7	98.71 \pm 4.64 \pm 5.34	0.146	54.8	85.41 \pm 4.32 \pm 4.85	1.078	54.2	1.41 \pm 0.12 \pm 0.21
0.13–0.16	0.146	44.7	98.71 \pm 4.64 \pm 5.34	0.146	54.8	85.41 \pm 4.32 \pm 4.85	0.180	82.3	5.89 \pm 2.26 \pm 2.47	0.180	82.1	48.65 \pm 2.13 \pm 1.79	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.16–0.20	0.181	44.8	108.61 \pm 4.20 \pm 4.95	0.181	54.6	82.21 \pm 3.53 \pm 3.72	0.270	82.1	35.41 \pm 1.55 \pm 1.20	0.270	82.1	35.41 \pm 1.55 \pm 1.20	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.20–0.24	0.222	44.7	107.66 \pm 4.16 \pm 4.29	0.222	54.8	76.84 \pm 3.47 \pm 3.01	0.334	54.9	60.42 \pm 2.48 \pm 1.80	0.334	54.9	60.42 \pm 2.48 \pm 1.80	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.24–0.30	0.272	44.6	105.65 \pm 3.29 \pm 3.56	0.272	54.9	71.86 \pm 2.74 \pm 2.47	0.466	54.8	56.20 \pm 1.64 \pm 1.30	0.466	54.8	56.20 \pm 1.64 \pm 1.30	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.30–0.36	0.333	44.7	85.68 \pm 2.93 \pm 2.53	0.334	54.9	60.42 \pm 2.48 \pm 1.80	0.497	54.9	56.20 \pm 1.64 \pm 1.30	0.497	54.9	56.20 \pm 1.64 \pm 1.30	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.36–0.42	0.395	44.6	73.44 \pm 2.76 \pm 2.14	0.395	54.8	54.27 \pm 2.36 \pm 1.66	0.637	54.6	50.70 \pm 2.70 \pm 2.97	0.637	54.6	50.70 \pm 2.70 \pm 2.97	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.42–0.50	0.466	44.8	55.09 \pm 2.03 \pm 1.80	0.466	54.6	56.20 \pm 1.64 \pm 1.30	0.803	54.6	50.70 \pm 2.70 \pm 2.97	0.803	54.6	50.70 \pm 2.70 \pm 2.97	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.50–0.60	0.557	44.6	36.03 \pm 1.42 \pm 1.53	0.558	54.8	23.77 \pm 1.19 \pm 1.09	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.60–0.72	0.622	44.6	22.88 \pm 1.01 \pm 1.33	0.671	54.6	16.01 \pm 0.87 \pm 1.01	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.72–0.90	0.825	44.6	13.37 \pm 0.55 \pm 1.05	0.823	54.5	6.48 \pm 0.41 \pm 0.60	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21			
0.90–1.25	1.044	66.0	0.81 \pm 0.08 \pm 0.14	1.056	80.5	0.26 \pm 0.04 \pm 0.05	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21	1.078	54.2	1.41 \pm 0.12 \pm 0.21			

Table A.23: Double-differential inclusive cross-section $d^2\sigma/dp_Td\Omega$ [mb/(GeV/c sr)] of the production of $\pi^+\alpha + p \rightarrow \pi^+\alpha + X$ interactions with $+8.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.
Table A.24: Double-differential inclusive cross-section $d^2\sigma/dp^d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + A\rightarrow \pi^- + X$ interactions with $+8.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$	$d^2\sigma/dp^d\Omega$		$40 < \theta < 60$	$50 < \theta < 60$	$d^2\sigma/dp^d\Omega$
$2.00-3.00$	0.116	0.34	$98.96 \pm 5.03 \pm 7.01$		0.783	$3.65 \pm 0.46 \pm 0.69$	
$3.00-4.00$	0.34	$3.69 \pm 0.36 \pm 3.55$					
$4.00-5.00$	0.78	$3.96 \pm 0.36 \pm 3.55$					
$5.00-6.00$	$3.69 \pm 0.36 \pm 3.55$						
$2.00-3.00$	0.116	0.34	$98.96 \pm 5.03 \pm 7.01$		0.783	$3.65 \pm 0.46 \pm 0.69$	
$3.00-4.00$	0.34	$3.69 \pm 0.36 \pm 3.55$					
$4.00-5.00$	0.78	$3.96 \pm 0.36 \pm 3.55$					
$5.00-6.00$	$3.69 \pm 0.36 \pm 3.55$						
Table A.25: Double-differential inclusive cross-section \(d^2\sigma/d\theta d\Omega\) [mb/(GeV/c sr)] of the production of protons in \(\pi^- + \text{Al} \to p + X\) interactions with \(-8.0\) GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\) (GeV/c)	\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)	
	\(\langle p_T\rangle\)	\(\langle \theta\rangle\)	\(d^2\sigma/d\theta d\Omega\)	\(\langle p_T\rangle\)	\(\langle \theta\rangle\)	\(d^2\sigma/d\theta d\Omega\)	\(\langle p_T\rangle\)	\(\langle \theta\rangle\)	\(d^2\sigma/d\theta d\Omega\)
0.20–0.24	0.221	25.0	131.35 ± 3.27 ± 6.50	0.271	34.9	127.10 ± 2.56 ± 5.22	0.801	35.0	22.63 ± 0.63 ± 1.39
0.24–0.30	0.270	25.2	120.09 ± 2.52 ± 5.37	0.329	35.0	110.94 ± 2.36 ± 4.00	0.654	35.0	21.9 ± 0.21 ± 0.35
0.30–0.36	0.329	25.2	94.11 ± 2.24 ± 4.16	0.390	35.0	90.62 ± 2.19 ± 3.25	0.548	35.0	17.3 ± 0.17 ± 0.34
0.36–0.42	0.389	25.2	81.02 ± 2.09 ± 3.47	0.459	35.0	73.95 ± 1.73 ± 2.84	0.458	35.0	13.6 ± 0.13 ± 0.24
0.42–0.50	0.459	25.1	72.20 ± 1.67 ± 2.85	0.548	35.0	57.00 ± 1.36 ± 2.34	0.654	34.9	10.4 ± 0.10 ± 0.19
0.50–0.60	0.548	25.1	55.79 ± 1.30 ± 2.30	0.458	35.0	46.67 ± 0.97 ± 1.81	0.801	35.0	6.33 ± 0.63 ± 0.19
0.60–0.72	0.655	25.2	39.55 ± 0.97 ± 1.81	0.801	35.0	22.63 ± 0.63 ± 1.39	0.458	35.0	4.28 ± 0.21 ± 0.53
0.72–0.90	1.035	44.8	6.10 ± 0.24 ± 0.59	0.801	35.0	22.63 ± 0.63 ± 1.39	0.458	35.0	4.28 ± 0.21 ± 0.53

Note: The values are given in units of mb/(GeV/c sr).
p_T	$(\frac{d^3\sigma}{dp_t d\Omega})$	$20 < \theta < 30$		$(\frac{d^3\sigma}{dp_t d\Omega})$	$30 < \theta < 40$										
0.10–0.13	0.116	24.8	103.05	\pm	3.66	\pm	6.85	0.116	34.9	78.47	\pm	3.18	\pm	5.44	
0.13–0.16	0.146	24.7	121.20	\pm	3.68	\pm	6.56	0.145	34.6	99.03	\pm	3.27	\pm	5.30	
0.16–0.20	0.181	24.8	145.20	\pm	3.35	\pm	6.55	0.180	34.7	109.96	\pm	2.92	\pm	4.93	
0.20–0.24	0.220	24.9	158.84	\pm	3.48	\pm	6.22	0.220	34.7	109.84	\pm	2.84	\pm	4.25	
0.24–0.30	0.269	24.8	143.59	\pm	2.67	\pm	4.80	0.270	34.7	110.08	\pm	2.36	\pm	3.61	
0.30–0.36	0.329	24.7	121.62	\pm	2.44	\pm	3.57	0.329	34.7	88.40	\pm	2.07	\pm	2.53	
0.36–0.42	0.389	24.9	105.60	\pm	2.26	\pm	3.07	0.389	34.7	76.15	\pm	1.92	\pm	2.12	
0.42–0.50	0.458	24.7	80.58	\pm	1.67	\pm	2.79	0.457	34.7	58.16	\pm	1.46	\pm	1.83	
0.50–0.60	0.546	24.8	49.67	\pm	1.13	\pm	2.44	0.547	34.9	35.99	\pm	0.98	\pm	1.57	
0.60–0.72	0.654	24.9	29.70	\pm	0.76	\pm	2.18	0.656	34.6	22.12	\pm	0.67	\pm	1.44	
0.72–0.90	0.798	34.6	9.14	\pm	0.30	\pm	0.99	0.90–1.25	1.038	54.6	1.13	\pm	0.07	\pm	0.18

Table A.26: Double-differential inclusive cross-section $\frac{d^3\sigma}{dp_t d\Omega}$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^- +$ Al $\to \pi^+$ + X with -8.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.
Table A.27: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^{-}s in $\pi^{-} + Al \rightarrow \pi^{-} + X$ interactions with -8.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

θ	$d^2\sigma/dp\,d\Omega$	$d^2\sigma/dp\,d\Omega$
$20 < \theta < 30$	(p_T)	(θ)
$30 < \theta < 40$	(p_T)	(θ)
$40 < \theta < 50$	(p_T)	(θ)
$50 < \theta < 60$	(p_T)	(θ)
$60 < \theta < 75$	(p_T)	(θ)
$75 < \theta < 90$	(p_T)	(θ)
$90 < \theta < 105$	(p_T)	(θ)
$105 < \theta < 125$	(p_T)	(θ)

p_T	(p_T)	(θ)																		
0.10-0.13	0.116	24.7	156.75	4.61	10.77	0.116	34.6	114.00	3.86	8.05	0.145	24.6	186.78	4.66	10.26	0.145	34.8	135.76	3.92	7.43
0.13-0.16	0.145	24.6	186.78	4.66	10.26	0.145	34.8	135.76	3.92	7.43	0.180	24.7	214.58	4.16	9.75	0.180	34.7	154.21	3.51	7.05
0.16-0.20	0.220	24.7	223.32	4.20	8.67	0.220	34.8	154.16	3.46	5.95	0.270	24.7	207.25	3.25	6.61	0.270	34.7	146.89	2.73	4.70
0.20-0.24	0.329	24.7	177.37	4.94	4.94	0.329	34.5	127.90	2.54	3.55	0.389	24.7	151.94	2.79	4.30	0.389	34.6	100.24	2.24	2.81
0.24-0.30	0.458	24.7	111.41	2.06	3.79	0.458	34.6	79.61	1.75	2.64	0.545	24.8	75.92	1.51	3.50	0.545	34.6	50.41	1.20	2.25
0.30-0.36	0.654	24.8	42.84	1.02	2.74	0.654	34.7	30.43	0.86	1.87	0.798	34.8	14.32	0.48	1.24					

p_T	(p_T)	(θ)																			
0.10-0.13	0.116	44.9	96.67	3.68	7.03	0.116	54.7	82.54	3.01	4.77	0.146	44.9	109.35	3.51	6.09	0.146	54.7	82.54	3.01	4.77	
0.13-0.16	0.145	44.9	109.35	3.51	6.09	0.146	54.7	82.54	3.01	4.77	0.180	44.8	118.13	3.06	5.44	0.180	54.9	85.24	2.57	3.92	
0.16-0.20	0.180	44.8	118.13	3.06	5.44	0.180	54.9	85.24	2.57	3.92	0.220	44.7	116.78	3.04	4.56	0.220	54.9	86.30	2.56	3.30	
0.20-0.24	0.269	44.7	101.52	2.25	3.62	0.269	54.7	74.95	1.93	2.37	0.329	44.7	87.73	2.10	2.46	0.329	54.9	59.07	1.71	1.67	
0.24-0.30	0.389	44.7	71.01	1.89	2.05	0.388	54.7	50.67	1.60	1.52	0.457	44.7	50.60	1.36	1.76	0.459	54.8	36.61	1.16	1.34	
0.30-0.36	0.457	44.7	32.82	0.98	1.55	0.547	54.7	25.37	0.85	1.25	0.654	44.9	22.04	0.73	1.44	0.654	54.6	14.52	0.59	0.98	
0.36-0.42	0.793	44.7	10.05	0.40	0.92	0.797	54.7	7.24	0.34	0.68	1.029	54.4	4.59	0.10	0.24						
0.42-0.50	0.816	54.5	44.7	32.82	0.98	1.55	0.547	54.7	25.37	0.85	1.25	0.654	44.9	22.04	0.73	1.44	0.654	54.6	14.52	0.59	0.98
0.50-0.60	0.816	54.5	44.7	32.82	0.98	1.55	0.547	54.7	25.37	0.85	1.25	0.654	44.9	22.04	0.73	1.44	0.654	54.6	14.52	0.59	0.98
0.60-0.72	0.90-1.25	1.066	66.3	65.65	0.05	0.110	1.070	81.2	0.26	0.04	0.035										

53
Table A.28: Double-differential inclusive cross-section $\frac{d^2\sigma}{dpd\Omega}$ [mb/(GeV/c sr)] of the production of protons in $p + Al \rightarrow p + X$ interactions with $+12.9$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$<p_T>$	$\langle\theta\rangle$	$\frac{d^2\sigma}{dpd\Omega}$	$<p_T>$	$\langle\theta\rangle$	$\frac{d^2\sigma}{dpd\Omega}$
$20 < \theta < 30$						
0.20–0.24	0.220	25.1	197.63 \pm 5.84 \pm 9.62	0.220	25.1	197.63 \pm 5.84 \pm 9.62
0.24–0.30	0.270	25.1	180.23 \pm 1.74 \pm 7.92	0.271	34.9	184.83 \pm 1.75 \pm 7.44
0.30–0.36	0.329	25.1	156.23 \pm 1.63 \pm 6.49	0.329	35.0	168.84 \pm 1.64 \pm 5.90
0.36–0.42	0.389	25.0	133.49 \pm 1.49 \pm 5.36	0.389	35.0	141.55 \pm 1.53 \pm 4.78
0.42–0.50	0.459	25.0	116.86 \pm 1.20 \pm 4.57	0.458	35.0	119.66 \pm 1.24 \pm 4.20
0.50–0.60	0.548	25.0	96.07 \pm 0.96 \pm 3.76	0.548	35.0	92.26 \pm 0.97 \pm 3.51
0.60–0.72	0.656	25.0	71.39 \pm 0.73 \pm 3.13	0.656	35.0	66.43 \pm 0.75 \pm 3.13
0.72–0.90	0.800	34.9	39.75 \pm 0.47 \pm 2.42	0.800	34.9	39.75 \pm 0.47 \pm 2.42
$40 < \theta < 50$						
0.30–0.36	0.331	45.0	174.44 \pm 1.65 \pm 5.21	0.331	45.0	174.44 \pm 1.65 \pm 5.21
0.36–0.42	0.391	45.1	149.24 \pm 1.53 \pm 4.07	0.391	55.0	149.25 \pm 1.50 \pm 3.87
0.42–0.50	0.461	45.1	120.04 \pm 1.21 \pm 3.48	0.461	55.0	118.05 \pm 1.17 \pm 3.20
0.50–0.60	0.551	45.0	89.81 \pm 0.96 \pm 3.35	0.550	54.9	83.84 \pm 0.93 \pm 3.36
0.60–0.72	0.660	44.9	63.10 \pm 0.75 \pm 2.96	0.660	54.9	55.28 \pm 0.72 \pm 3.08
0.72–0.90	0.806	45.0	36.46 \pm 0.47 \pm 2.28	0.806	54.9	30.27 \pm 0.44 \pm 2.20
0.90–1.25	1.044	44.8	10.85 \pm 0.18 \pm 1.06	1.041	54.8	8.07 \pm 0.16 \pm 0.92
$60 < \theta < 75$						
0.42–0.50	0.453	67.4	114.08 \pm 0.92 \pm 3.24	0.454	82.1	92.82 \pm 0.82 \pm 3.30
0.50–0.60	0.540	67.3	78.68 \pm 0.71 \pm 2.94	0.540	82.0	62.19 \pm 0.62 \pm 2.85
0.60–0.72	0.646	67.1	44.51 \pm 0.54 \pm 2.33	0.645	81.9	28.23 \pm 0.44 \pm 2.47
0.72–0.90	0.785	66.9	21.96 \pm 0.32 \pm 2.14	0.781	81.7	12.04 \pm 0.24 \pm 1.38
0.90–1.25	1.006	66.6	5.62 \pm 0.12 \pm 0.86	1.003	81.5	2.92 \pm 0.09 \pm 0.49
$75 < \theta < 90$						
0.42–0.50	0.453	97.0	66.07 \pm 0.70 \pm 3.34	0.452	113.4	34.76 \pm 0.44 \pm 1.69
0.50–0.60	0.539	96.8	39.46 \pm 0.49 \pm 2.45	0.538	112.9	16.19 \pm 0.29 \pm 1.37
0.60–0.72	0.643	96.7	14.65 \pm 0.32 \pm 1.63	0.642	112.5	5.51 \pm 0.18 \pm 0.84
0.72–0.90	0.783	96.2	5.68 \pm 0.17 \pm 0.79	0.777	112.6	1.62 \pm 0.08 \pm 0.34
Table A.29: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega [\text{mb/(GeV/c sr)}]$ of the production of π^+'s in $p + \text{Al} \rightarrow \pi^+ + X$ interactions with +12.9 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$
	$(p_T) (0)$	$d^2\sigma/dp d\Omega$	$(p_T) (0)$	$d^2\sigma/dp d\Omega$	$(p_T) (0)$	$d^2\sigma/dp d\Omega$
0.10–0.13	0.116	24.8	154.62 ± 2.64 ± 10.35	0.116	34.8	116.65 ± 2.50 ± 7.95
0.13–0.16	0.146	24.7	185.20 ± 2.67 ± 9.90	0.145	34.8	136.67 ± 2.25 ± 7.22
0.16–0.20	0.180	24.7	212.34 ± 2.37 ± 9.54	0.180	34.8	147.32 ± 1.98 ± 6.63
0.20–0.24	0.220	24.7	221.40 ± 2.36 ± 8.56	0.220	34.7	153.42 ± 1.97 ± 5.91
0.24–0.30	0.269	24.7	210.03 ± 1.87 ± 6.89	0.269	34.7	147.27 ± 1.58 ± 4.79
0.30–0.36	0.329	24.7	179.89 ± 1.72 ± 5.15	0.329	34.7	123.26 ± 1.42 ± 3.49
0.36–0.42	0.389	24.7	152.58 ± 1.57 ± 4.31	0.389	34.8	99.08 ± 1.27 ± 2.73
0.42–0.50	0.458	24.7	113.22 ± 1.15 ± 3.87	0.458	34.7	75.85 ± 0.94 ± 2.37
0.50–0.60	0.547	24.7	76.61 ± 0.82 ± 3.74	0.547	34.7	53.87 ± 0.71 ± 2.35
0.60–0.72	0.655	24.7	45.54 ± 0.55 ± 3.34	0.656	34.7	30.39 ± 0.45 ± 1.98
0.72–0.90	0.797	34.7	15.62 ± 0.24 ± 1.63	0.797	34.7	15.62 ± 0.24 ± 1.63

$90 < \theta < 105$	$105 < \theta < 125$	p_T	$d^2\sigma/dp d\Omega$	$(p_T) (0)$	$d^2\sigma/dp d\Omega$	
0.13–0.16	0.145	97.4	48.98 ± 1.04 ± 2.99	0.144	114.5	40.56 ± 0.79 ± 2.51
0.16–0.20	0.179	97.2	45.20 ± 0.82 ± 2.14	0.179	114.2	44.52 ± 0.82 ± 2.14
0.20–0.24	0.218	97.2	35.72 ± 0.72 ± 1.36	0.218	113.8	24.42 ± 0.54 ± 0.81
0.24–0.30	0.267	97.0	25.01 ± 0.52 ± 0.78	0.265	113.5	13.57 ± 0.34 ± 0.52
0.30–0.36	0.326	96.8	16.29 ± 0.42 ± 0.63	0.325	113.5	8.11 ± 0.25 ± 0.44
0.36–0.42	0.385	96.9	10.77 ± 0.34 ± 0.56	0.385	113.6	4.74 ± 0.19 ± 0.34
0.42–0.50	0.452	96.9	6.75 ± 0.23 ± 0.47	0.449	112.4	2.98 ± 0.13 ± 0.28
0.50–0.60	0.539	96.5	3.86 ± 0.15 ± 0.36	0.536	113.0	1.23 ± 0.08 ± 0.15
0.60–0.72	0.642	96.0	1.62 ± 0.09 ± 0.20	0.634	112.5	0.39 ± 0.04 ± 0.06
0.72–0.90	0.783	95.5	0.56 ± 0.04 ± 0.09	0.784	111.6	0.10 ± 0.02 ± 0.02
0.90–1.25	1.001	95.9	0.10 ± 0.02 ± 0.03	1.001	95.9	0.10 ± 0.02 ± 0.03
Table A.30: Double-differential inclusive cross-section $d^2\sigma/d\eta d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $p + Al \rightarrow \pi^- + X$ interactions with $+12.9$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
p_T	$d^2\sigma/d\eta d\Omega$						
0.10–0.13	0.116	24.8	166.11 ± 2.61 ± 10.95	0.115	34.8	122.89 ± 2.21 ± 8.62	
0.13–0.16	0.145	24.8	195.17 ± 2.63 ± 10.36	0.145	34.7	140.99 ± 2.22 ± 7.64	
0.16–0.20	0.180	24.7	206.82 ± 2.28 ± 9.24	0.180	34.8	142.91 ± 1.88 ± 6.45	
0.20–0.24	0.220	24.8	201.48 ± 2.20 ± 7.60	0.220	34.7	147.31 ± 1.89 ± 5.58	
0.24–0.30	0.269	24.9	184.10 ± 1.73 ± 5.73	0.269	34.7	131.00 ± 1.43 ± 4.09	
0.30–0.36	0.329	24.7	147.56 ± 1.54 ± 3.98	0.329	34.8	111.14 ± 1.32 ± 2.99	
0.36–0.42	0.389	24.8	115.76 ± 1.37 ± 3.17	0.388	34.8	84.31 ± 1.14 ± 2.29	
0.42–0.50	0.458	24.7	85.73 ± 1.01 ± 2.86	0.458	34.7	63.67 ± 0.86 ± 2.06	
0.50–0.60	0.547	24.8	58.74 ± 0.76 ± 2.68	0.546	34.7	39.54 ± 0.59 ± 1.74	
0.60–0.72	0.655	24.8	31.87 ± 0.49 ± 2.02	0.654	34.7	23.09 ± 0.41 ± 1.43	
0.72–0.90	0.798	34.7	11.05 ± 0.23 ± 0.97				
0.90–1.25	1.008	54.6	0.96 ± 0.04 ± 0.15				

p, T, θ 56
Table A.31: Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Al} \rightarrow p + \text{X}$ interactions with +12.9 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$0 < \theta < 20$	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
	$d^2\sigma/dp\Omega$								
0.20–0.24	0.220	149.28 ± 5.08 ± 7.36	0.271	34.9	143.35 ± 3.80 ± 5.88				
0.24–0.30	0.268	134.37 ± 3.65 ± 5.99	0.330	35.0	131.60 ± 3.54 ± 4.72				
0.30–0.36	0.329	111.88 ± 3.37 ± 4.78	0.388	35.0	106.92 ± 3.26 ± 3.77				
0.36–0.42	0.389	100.59 ± 3.16 ± 4.16	0.458	35.0	83.82 ± 2.54 ± 3.06				
0.42–0.50	0.457	81.01 ± 2.43 ± 3.25	0.547	34.9	62.93 ± 1.94 ± 2.45				
0.50–0.60	0.547	66.51 ± 1.93 ± 2.66	0.655	35.0	44.83 ± 1.50 ± 2.14				
0.60–0.72	0.655	48.69 ± 1.46 ± 2.17	0.799	35.0	27.88 ± 0.95 ± 1.72				
0.72–0.90	0.833	30.90 ± 1.30 ± 2.36	0.965	35.0	14.59 ± 0.75 ± 1.30				
0.80–1.00	1.040	20.89 ± 1.20 ± 2.49	1.175	35.0	7.00 ± 0.50 ± 1.08				
Table A.32: Double-differential inclusive cross-section $d^2\sigma/d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $\pi^+ + \text{Al} \rightarrow \pi^+ + \text{X}$ interactions with $+12.9$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

\(p_T\)	\(p_T\)	\(\theta\)	\(d^2\sigma/d\Omega\)	\(\theta\)	\(d^2\sigma/d\Omega\)	
\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)
0.10–0.13	0.116	24.8	133.85 ± 6.05 ± 9.10	0.116	35.1	105.43 ± 5.11 ± 7.23
0.13–0.16	0.145	24.6	172.26 ± 6.29 ± 9.33	0.145	34.8	121.95 ± 5.19 ± 6.52
0.16–0.20	0.181	24.7	189.11 ± 5.45 ± 8.63	0.180	34.8	130.18 ± 4.55 ± 5.95
0.20–0.24	0.220	24.6	210.80 ± 5.64 ± 8.31	0.220	34.7	126.50 ± 4.37 ± 4.97
0.24–0.30	0.269	24.8	207.79 ± 4.55 ± 7.01	0.269	34.6	135.09 ± 3.70 ± 4.52
0.30–0.36	0.329	24.6	182.30 ± 4.22 ± 5.41	0.329	34.5	115.74 ± 3.35 ± 3.40
0.36–0.42	0.389	24.6	147.02 ± 3.75 ± 4.30	0.389	34.6	94.99 ± 3.03 ± 2.71
0.42–0.50	0.458	24.7	110.33 ± 2.80 ± 3.86	0.458	34.7	72.26 ± 2.26 ± 2.32
0.50–0.60	0.545	24.7	78.90 ± 2.06 ± 3.89	0.545	34.6	51.82 ± 1.70 ± 2.29
0.60–0.72	0.654	24.6	47.44 ± 1.40 ± 3.50	0.656	34.7	29.83 ± 1.11 ± 1.95
0.72–0.90	0.797	34.7	14.42 ± 0.59 ± 1.51	0.797	34.7	14.42 ± 0.59 ± 1.51
0.90–1.25	1.049	45.4	1.29 ± 0.11 ± 0.20	1.049	45.4	1.29 ± 0.11 ± 0.20
1.25–1.60	1.411	49.5	0.53 ± 0.05 ± 0.14	1.411	49.5	0.53 ± 0.05 ± 0.14
1.60–2.00	2.002	53.0	0.23 ± 0.03 ± 0.05	2.002	53.0	0.23 ± 0.03 ± 0.05
2.00–2.50	2.785	56.0	0.13 ± 0.02 ± 0.03	2.785	56.0	0.13 ± 0.02 ± 0.03
2.50–3.15	3.828	60.0	0.07 ± 0.01 ± 0.02	3.828	60.0	0.07 ± 0.01 ± 0.02
3.15–4.00	5.433	65.0	0.04 ± 0.004 ± 0.004	5.433	65.0	0.04 ± 0.004 ± 0.004
4.00–5.00	8.000	70.0	0.03 ± 0.003 ± 0.003	8.000	70.0	0.03 ± 0.003 ± 0.003
Table A.33: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + A \rightarrow \pi^- + X$ interactions with $+12.9$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c; polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 75$	$75 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$	
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.10-0.13	0.116	24.6	128.55 ± 5.54 ± 8.47	0.116	34.9	96.69 ± 4.30 ± 6.82			
0.13-0.16	0.146	24.7	159.43 ± 5.81 ± 8.56	0.146	34.9	125.46 ± 5.15 ± 6.87			
0.16-0.20	0.180	24.6	176.04 ± 5.11 ± 7.98	0.181	34.7	124.45 ± 4.28 ± 5.70			
0.20-0.24	0.220	24.7	184.88 ± 5.16 ± 7.11	0.220	34.8	122.97 ± 4.24 ± 4.76			
0.24-0.30	0.269	24.7	161.93 ± 3.95 ± 5.20	0.269	34.7	109.06 ± 3.20 ± 3.51			
0.30-0.36	0.329	24.7	136.02 ± 3.61 ± 3.81	0.328	34.5	96.63 ± 3.01 ± 2.70			
0.36-0.42	0.389	24.7	113.56 ± 3.30 ± 3.23	0.389	34.8	74.49 ± 2.62 ± 2.10			
0.42-0.50	0.458	24.7	81.15 ± 2.41 ± 2.77	0.458	34.7	54.47 ± 1.95 ± 1.81			
0.50-0.60	0.545	24.8	51.99 ± 1.74 ± 2.40	0.548	34.6	36.08 ± 1.39 ± 1.61			
0.60-0.72	0.654	24.8	29.53 ± 1.16 ± 1.89	0.653	34.7	20.96 ± 0.96 ± 1.30			
0.72-0.90	0.798	34.9	8.42 ± 0.49 ± 0.74	0.798	44.7	6.82 ± 0.30 ± 0.49			
0.90-1.25	1.011	54.7	0.95 ± 0.10 ± 0.15	1.011	85.1	0.83 ± 0.10 ± 0.15			

p_T (GeV/c)	$90 < \theta < 105$	$105 < \theta < 125$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$			
0.13-0.16	0.145	97.2	39.10 ± 2.21 ± 2.65	0.145	97.2	39.10 ± 2.21 ± 2.65
0.16-0.20	0.179	97.2	32.46 ± 2.18 ± 2.58	0.178	97.2	22.46 ± 1.21 ± 1.00
0.20-0.24	0.220	96.9	26.69 ± 1.55 ± 0.92	0.219	96.9	16.98 ± 0.86 ± 0.79
0.24-0.30	0.269	97.3	19.22 ± 1.09 ± 0.61	0.269	97.3	11.44 ± 0.73 ± 0.61
0.30-0.36	0.328	97.0	12.13 ± 0.85 ± 0.50	0.328	97.0	5.98 ± 0.52 ± 0.36
0.36-0.42	0.391	96.7	10.42 ± 0.80 ± 0.58	0.393	96.7	3.84 ± 0.41 ± 0.31
0.42-0.50	0.458	96.9	6.12 ± 0.52 ± 0.46	0.461	96.9	2.25 ± 0.28 ± 0.24
0.50-0.60	0.551	96.9	2.74 ± 0.31 ± 0.28	0.547	96.9	0.93 ± 0.16 ± 0.13
0.60-0.72	0.657	96.6	0.84 ± 0.16 ± 0.11	0.652	96.6	0.19 ± 0.07 ± 0.03
0.72-0.90	0.796	96.3	0.36 ± 0.09 ± 0.06	0.828	96.4	0.10 ± 0.04 ± 0.02
0.90-1.25	1.026	93.9	0.08 ± 0.03 ± 0.02	1.026	93.9	0.08 ± 0.03 ± 0.02
Table A.34: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^- + Al \rightarrow p + X$ interactions with -12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
20 < θ < 30				30 < θ < 60		
0.20–0.24	0.220	25.1	111.64 ± 4.14 ± 6.61	0.271	34.9	124.18 ± 2.92 ± 5.17
0.24–0.30	0.270	25.1	118.61 ± 2.87 ± 5.42	0.329	35.0	110.23 ± 2.69 ± 4.05
0.30–0.36	0.329	25.0	98.76 ± 2.61 ± 4.30	0.390	35.1	91.82 ± 2.51 ± 3.30
0.36–0.42	0.389	25.0	85.76 ± 2.45 ± 3.66	0.459	35.1	73.43 ± 1.98 ± 2.81
0.42–0.50	0.459	24.9	66.70 ± 1.82 ± 2.79	0.547	35.0	59.25 ± 1.59 ± 2.50
0.50–0.60	0.548	25.0	54.86 ± 1.46 ± 2.25	0.656	35.0	37.65 ± 1.14 ± 1.88
0.60–0.72	0.656	25.0	40.06 ± 1.11 ± 1.83	0.798	35.0	22.91 ± 0.73 ± 1.47
0.72–0.90	0.798	25.0	24.91 ± 0.84 ± 1.47	0.948	35.0	10.91 ± 0.53 ± 0.89
40 < θ < 50				50 < θ < 60		
0.30–0.36	0.329	45.1	110.66 ± 2.65 ± 3.52	0.389	55.0	94.56 ± 2.40 ± 2.83
0.36–0.42	0.389	45.1	99.85 ± 2.54 ± 2.96	0.457	55.1	77.19 ± 2.12 ± 2.26
0.42–0.50	0.458	45.0	78.18 ± 1.99 ± 2.49	0.548	55.1	55.40 ± 1.55 ± 2.43
0.50–0.60	0.547	45.0	57.31 ± 1.59 ± 2.35	0.655	55.0	33.45 ± 1.13 ± 1.97
0.60–0.72	0.655	44.9	37.69 ± 1.17 ± 1.85	0.797	55.0	17.76 ± 0.70 ± 1.34
0.72–0.90	0.800	45.0	20.83 ± 0.73 ± 1.37	1.031	54.9	5.05 ± 0.27 ± 0.59
0.90–1.25	1.030	44.9	6.45 ± 0.28 ± 0.66	1.371	54.0	1.35 ± 0.21 ± 0.34
60 < θ < 75				75 < θ < 90		
0.42–0.50	0.454	67.6	77.10 ± 1.34 ± 2.30	0.541	81.9	41.21 ± 1.02 ± 1.94
0.50–0.60	0.541	67.3	52.30 ± 1.19 ± 2.05	0.644	81.9	17.74 ± 0.70 ± 1.62
0.60–0.72	0.645	67.1	25.48 ± 0.83 ± 2.01	0.780	81.9	6.29 ± 0.35 ± 0.76
0.72–0.90	0.786	66.6	12.31 ± 0.48 ± 1.25	0.992	81.7	1.55 ± 0.13 ± 0.27
0.90–1.25	1.011	66.2	3.25 ± 0.19 ± 0.52	1.371	81.0	0.49 ± 0.09 ± 0.21
90 < θ < 105				105 < θ < 125		
0.42–0.50	0.452	97.0	46.27 ± 1.18 ± 2.42	0.461	113.2	24.84 ± 0.76 ± 1.23
0.50–0.60	0.539	96.8	28.09 ± 0.85 ± 1.78	0.537	113.0	10.83 ± 0.49 ± 0.94
0.60–0.72	0.643	96.7	9.19 ± 0.54 ± 1.12	0.640	112.9	3.19 ± 0.28 ± 0.53
0.72–0.90	0.780	96.4	3.34 ± 0.27 ± 0.49			
Table A.35: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of π^+s in $\pi^- + A \rightarrow \pi^+ + X$ interactions with ~ 12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	20 $< \theta <$ 30	30 $< \theta <$ 40	40 $< \theta <$ 50	50 $< \theta <$ 60	60 $< \theta <$ 75	76 $< \theta <$ 90	90 $< \theta <$ 105	106 $< \theta <$ 125
	$\langle p_T \rangle$	$\sigma / d\Omega$						
0.10-0.13	0.116 24.8	117.87 ± 4.56 ± 8.05	0.116 34.7	82.79 ± 3.65 ± 5.79	0.116 44.9	82.79 ± 3.65 ± 5.79		
0.13-0.16	0.145 24.5	148.44 ± 4.73 ± 8.03	0.145 34.8	106.88 ± 3.93 ± 5.80	0.145 44.6	106.88 ± 3.93 ± 5.80		
0.16-0.20	0.180 24.7	172.17 ± 4.19 ± 7.86	0.181 34.6	116.47 ± 3.45 ± 5.31	0.181 44.4	116.47 ± 3.45 ± 5.31		
0.20-0.24	0.220 24.8	166.62 ± 4.07 ± 6.62	0.220 34.7	123.06 ± 3.51 ± 4.85	0.220 44.3	123.06 ± 3.51 ± 4.85		
0.24-0.30	0.269 24.7	173.18 ± 3.40 ± 5.87	0.269 34.5	110.34 ± 2.69 ± 3.69	0.269 44.2	110.34 ± 2.69 ± 3.69		
0.30-0.36	0.328 24.6	139.96 ± 3.01 ± 4.19	0.329 34.8	96.54 ± 2.52 ± 2.84	0.329 44.1	96.54 ± 2.52 ± 2.84		
0.36-0.42	0.388 24.6	116.69 ± 2.75 ± 3.49	0.389 34.8	79.63 ± 2.23 ± 2.30	0.389 44.0	79.63 ± 2.23 ± 2.30		
0.42-0.50	0.458 24.7	87.90 ± 2.02 ± 3.10	0.457 34.6	59.17 ± 1.64 ± 1.92	0.457 43.8	59.17 ± 1.64 ± 1.92		
0.50-0.60	0.546 24.7	54.29 ± 1.35 ± 2.69	0.545 34.7	36.99 ± 1.13 ± 1.62	0.545 43.7	36.99 ± 1.13 ± 1.62		
0.60-0.72	0.655 24.8	31.78 ± 0.89 ± 2.35	0.653 34.7	23.05 ± 0.77 ± 1.55	0.653 43.6	23.05 ± 0.77 ± 1.55		
0.72-0.90	0.798 34.5	9.12 ± 0.36 ± 0.97	0.798 34.4	6.24 ± 0.29 ± 0.69	0.798 34.3	6.24 ± 0.29 ± 0.69		
0.90-1.25	1.026 45.4	1.12 ± 0.08 ± 0.18	1.026 45.3	0.84 ± 0.05 ± 0.15	1.026 45.2	0.84 ± 0.05 ± 0.15		
1.25-1.75	1.281 46.3	0.94 ± 0.04 ± 0.12	1.281 46.2	0.73 ± 0.03 ± 0.10	1.281 46.1	0.73 ± 0.03 ± 0.10		
1.75-2.30	1.546 47.2	0.71 ± 0.03 ± 0.09	1.546 47.1	0.54 ± 0.02 ± 0.07	1.546 47.0	0.54 ± 0.02 ± 0.07		
2.30-3.00	1.848 48.1	0.50 ± 0.02 ± 0.05	1.848 48.0	0.35 ± 0.02 ± 0.04	1.848 47.9	0.35 ± 0.02 ± 0.04		
3.00-4.00	2.293 49.0	0.35 ± 0.01 ± 0.03	2.293 48.9	0.24 ± 0.01 ± 0.02	2.293 48.8	0.24 ± 0.01 ± 0.02		
4.00-5.00	2.893 50.0	0.25 ± 0.01 ± 0.02	2.893 49.9	0.17 ± 0.01 ± 0.01	2.893 49.8	0.17 ± 0.01 ± 0.01		
5.00-6.00	3.693 51.0	0.17 ± 0.01 ± 0.01	3.693 50.9	0.12 ± 0.01 ± 0.01	3.693 50.8	0.12 ± 0.01 ± 0.01		
6.00-7.00	4.793 52.0	0.11 ± 0.01 ± 0.01	4.793 51.9	0.09 ± 0.01 ± 0.01	4.793 51.8	0.09 ± 0.01 ± 0.01		
7.00-8.00	6.193 53.0	0.08 ± 0.01 ± 0.01	6.193 52.9	0.07 ± 0.01 ± 0.01	6.193 52.8	0.07 ± 0.01 ± 0.01		
8.00-9.00	7.993 54.0	0.06 ± 0.01 ± 0.01	7.993 53.9	0.06 ± 0.01 ± 0.01	7.993 53.8	0.06 ± 0.01 ± 0.01		
9.00-10.00	10.293 55.0	0.04 ± 0.01 ± 0.01	10.293 54.9	0.04 ± 0.01 ± 0.01	10.293 54.8	0.04 ± 0.01 ± 0.01		
10.00-11.00	13.193 56.0	0.03 ± 0.01 ± 0.01	13.193 55.9	0.03 ± 0.01 ± 0.01	13.193 55.8	0.03 ± 0.01 ± 0.01		
Table A.36: Double-differential inclusive cross-section $d^2\sigma/dp\omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^- + Al \rightarrow \pi^- + X$ interactions with -12.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$		
	(θ)	$d^2\sigma/dp\omega$	(θ)	$d^2\sigma/dp\omega$
0.10-0.13	0.116	24.6	0.115	34.8
0.20-0.24	0.186	24.6	0.181	34.6
0.30-0.36	0.389	24.6	0.389	34.7
0.40-0.50	0.548	24.6	0.548	34.7
0.60-0.70	0.844	24.6	0.844	34.7
0.70-0.90	1.23	24.6	1.23	34.7

p_T (GeV/c)	$40 < \theta < 50$	$50 < \theta < 60$		
	(θ)	$d^2\sigma/dp\omega$	(θ)	$d^2\sigma/dp\omega$
0.10-0.13	0.113	45.0	0.113	66.0
0.20-0.24	0.219	44.8	0.220	43.0
0.30-0.36	0.388	44.8	0.389	43.0
0.40-0.50	0.548	44.7	0.548	43.0
0.60-0.70	0.844	44.6	0.844	43.0
0.70-0.90	1.23	44.6	1.23	43.0

p_T (GeV/c)	$60 < \theta < 75$	$75 < \theta < 90$		
	(θ)	$d^2\sigma/dp\omega$	(θ)	$d^2\sigma/dp\omega$
0.10-0.13	0.146	67.2	0.146	82.2
0.20-0.24	0.221	66.8	0.220	82.0
0.30-0.36	0.392	66.7	0.392	81.8
0.40-0.50	0.552	66.6	0.551	81.7
0.60-0.70	0.862	66.7	0.862	81.7
0.70-0.90	1.23	66.6	1.23	81.7

p_T (GeV/c)	$90 < \theta < 105$	$105 < \theta < 125$		
	(θ)	$d^2\sigma/dp\omega$	(θ)	$d^2\sigma/dp\omega$
0.10-0.13	0.145	97.5	0.145	114.5
0.20-0.24	0.221	97.3	0.220	113.9
0.30-0.36	0.393	97.1	0.392	112.9
0.40-0.50	0.548	97.1	0.547	112.7
0.60-0.70	0.805	94.7	0.805	111.5
0.70-0.90	1.23	96.7	1.23	110.0

62
Table A.37: Double-differential inclusive cross-section $d^2\sigma/dp d\Omega$ [mb/(GeV/c sr)] of the production of protons in $p + Al \rightarrow p + X$ interactions with $+15.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.20–0.24	0.290	25.2	195.69 \pm 6.57 \pm 13.19	0.279	34.8	179.29 \pm 4.92 \pm 9.57
0.24–0.30	0.269	25.1	185.22 \pm 5.01 \pm 10.88	0.330	34.9	162.74 \pm 4.59 \pm 7.15
0.30–0.36	0.262	25.2	156.81 \pm 4.64 \pm 8.08	0.389	35.0	142.01 \pm 4.35 \pm 5.44
0.36–0.42	0.390	25.1	139.06 \pm 4.40 \pm 6.40	0.457	35.1	119.21 \pm 3.52 \pm 4.35
0.42–0.50	0.459	25.0	113.64 \pm 3.38 \pm 4.79	0.547	35.1	87.80 \pm 2.70 \pm 3.48
0.50–0.60	0.547	25.0	89.03 \pm 2.60 \pm 3.58	0.655	35.0	64.37 \pm 2.10 \pm 3.39
0.60–0.72	0.654	25.1	69.02 \pm 2.06 \pm 3.30	0.800	35.0	35.42 \pm 1.24 \pm 2.68
0.72–0.90						

p_T (GeV/c)	$40 < \theta < 50$	$50 < \theta < 60$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.30–0.36	0.329	45.1	162.68 \pm 4.62 \pm 5.84	0.390	54.9	150.85 \pm 4.25 \pm 4.43
0.36–0.42	0.388	44.8	149.27 \pm 4.37 \pm 4.44	0.456	55.2	116.01 \pm 3.30 \pm 3.39
0.42–0.50	0.458	45.0	123.70 \pm 3.49 \pm 3.70	0.546	55.0	82.84 \pm 2.63 \pm 3.74
0.50–0.60	0.547	45.0	84.52 \pm 2.68 \pm 3.40	0.654	54.4	53.48 \pm 2.02 \pm 3.53
0.60–0.72	0.654	45.1	63.40 \pm 2.14 \pm 3.46	0.798	54.9	28.02 \pm 1.20 \pm 2.52
0.72–0.90	0.799	44.9	33.56 \pm 1.27 \pm 2.66	1.038	54.9	8.43 \pm 0.48 \pm 1.21
0.90–1.25	1.041	45.0	10.91 \pm 0.51 \pm 1.39			

p_T (GeV/c)	$60 < \theta < 75$	$75 < \theta < 90$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.42–0.50	0.458	67.4	117.20 \pm 2.66 \pm 3.47	0.458	82.2	86.88 \pm 2.27 \pm 3.86
0.50–0.60	0.547	67.1	76.34 \pm 2.01 \pm 3.44	0.547	82.1	61.41 \pm 1.77 \pm 3.86
0.60–0.72	0.652	67.2	42.71 \pm 1.50 \pm 3.63	0.653	81.6	25.08 \pm 1.15 \pm 2.68
0.72–0.90	0.797	66.9	20.81 \pm 0.88 \pm 2.54	0.796	81.7	11.66 \pm 0.68 \pm 1.75
0.90–1.25	1.032	66.8	5.55 \pm 0.34 \pm 1.11	1.023	81.2	2.69 \pm 0.24 \pm 0.60

p_T (GeV/c)	$90 < \theta < 105$	$105 < \theta < 125$				
	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp d\Omega$
0.42–0.50	0.458	97.0	67.41 \pm 2.01 \pm 4.71	0.455	113.4	34.83 \pm 1.26 \pm 2.29
0.50–0.60	0.545	97.0	38.60 \pm 1.40 \pm 3.44	0.541	112.9	15.07 \pm 0.80 \pm 1.79
0.60–0.72	0.651	96.3	13.94 \pm 0.91 \pm 1.94	0.649	112.4	4.72 \pm 0.48 \pm 0.98
0.72–0.90	0.787	96.5	5.24 \pm 0.47 \pm 0.93	0.784	111.9	1.40 \pm 0.21 \pm 0.41
Table A.38: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^+'s in $p + Al \to \pi^+ + X$ interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$<\theta<30$	$30<\theta<40$	$<\theta<50$	$50<\theta<60$	$<\theta<75$	$75<\theta<90$			
	(p_T)	(θ)	$d^2\sigma/dp\,d\Omega$						
0.10–0.13	0.115	24.8	153.74 ± 7.37 ± 12.42	0.116	34.8	124.70 ± 6.49 ± 10.31	0.115	90–125	6.49 ± 10.31
0.13–0.16	0.146	25.1	190.18 ± 7.68 ± 12.95	0.146	34.8	155.00 ± 6.89 ± 10.43	0.146	90–125	6.89 ± 10.43
0.16–0.20	0.180	24.7	227.01 ± 6.91 ± 13.07	0.180	34.7	157.07 ± 5.83 ± 8.94	0.180	90–125	5.83 ± 8.94
0.20–0.24	0.220	24.8	238.81 ± 7.03 ± 11.60	0.220	34.7	169.67 ± 5.96 ± 8.13	0.220	90–125	5.96 ± 8.13
0.24–0.30	0.271	24.8	219.09 ± 5.41 ± 8.51	0.269	34.7	153.46 ± 4.57 ± 5.86	0.269	90–125	4.57 ± 5.86
0.30–0.36	0.329	24.8	195.47 ± 5.11 ± 6.04	0.331	34.8	128.71 ± 4.18 ± 3.93	0.331	90–125	4.18 ± 3.93
0.36–0.42	0.389	24.8	157.44 ± 4.57 ± 4.60	0.389	34.7	103.01 ± 3.64 ± 2.97	0.389	90–125	3.64 ± 2.97
0.42–0.50	0.459	24.7	122.68 ± 3.39 ± 4.53	0.458	34.6	80.86 ± 2.80 ± 2.86	0.458	90–125	2.80 ± 2.86
0.50–0.60	0.547	24.7	82.50 ± 2.43 ± 4.66	0.547	34.5	50.66 ± 1.89 ± 2.71	0.547	90–125	1.89 ± 2.71
0.60–0.72	0.655	24.5	49.17 ± 1.61 ± 4.29	0.655	34.6	35.38 ± 1.42 ± 2.89	0.655	90–125	1.42 ± 2.89
0.72–0.90	0.795	34.6	35.38 ± 1.42 ± 2.89	0.795	34.6	35.38 ± 1.42 ± 2.89	0.795	90–125	1.42 ± 2.89

For the second systematic, p_T in GeV/c, polar angle θ in degrees.
Table A.39: Double-differential inclusive cross-section \(d^2\sigma/dp d\Omega\) [mb/(GeV/c sr)] of the production of \(\pi^-\)'s in \(p + A \rightarrow \pi^- + X\) interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\) (GeV/c)	\(<\theta<30\)	\(30<\theta<40\)	\(40<\theta<50\)	\(50<\theta<60\)	\(60<\theta<75\)	\(75<\theta<90\)	\(90<\theta<105\)	\(105<\theta<125\)	
	\(\langle p_T \rangle\)	\(\langle \theta \rangle\)	\(d^2\sigma/dp d\Omega\)	\(\langle p_T \rangle\)	\(\langle \theta \rangle\)	\(d^2\sigma/dp d\Omega\)	\(\langle p_T \rangle\)	\(\langle \theta \rangle\)	\(d^2\sigma/dp d\Omega\)
0.10–0.13	0.115	24.7	157.25 ± 7.30 ± 13.03	0.116	34.8	125.55 ± 6.50 ± 10.83	0.112	34.8	125.55 ± 6.50 ± 10.83
0.13–0.16	0.145	24.9	191.84 ± 7.51 ± 13.19	0.145	34.6	133.02 ± 6.10 ± 9.25	0.142	34.6	133.02 ± 6.10 ± 9.25
0.16–0.20	0.180	24.6	218.41 ± 6.63 ± 12.54	0.180	34.5	135.91 ± 5.25 ± 7.86	0.177	34.5	135.91 ± 5.25 ± 7.86
0.20–0.24	0.220	24.7	224.74 ± 6.70 ± 10.53	0.220	35.0	155.94 ± 5.52 ± 7.39	0.216	35.0	155.94 ± 5.52 ± 7.39
0.24–0.30	0.269	24.7	195.78 ± 5.09 ± 6.99	0.269	34.7	127.39 ± 4.07 ± 4.62	0.263	34.7	127.39 ± 4.07 ± 4.62
0.30–0.36	0.329	24.6	169.55 ± 4.74 ± 4.74	0.329	34.7	115.81 ± 3.82 ± 3.24	0.324	34.7	115.81 ± 3.82 ± 3.24
0.36–0.42	0.388	24.6	132.60 ± 4.12 ± 3.91	0.389	34.8	84.07 ± 3.30 ± 2.48	0.384	34.8	84.07 ± 3.30 ± 2.48
0.42–0.50	0.457	24.8	92.66 ± 3.01 ± 3.80	0.457	34.6	71.68 ± 2.60 ± 2.86	0.452	34.6	71.68 ± 2.60 ± 2.86
0.50–0.60	0.548	24.7	65.70 ± 2.28 ± 4.09	0.546	34.6	48.98 ± 1.91 ± 2.93	0.541	34.6	48.98 ± 1.91 ± 2.93
0.60–0.72	0.653	24.8	38.33 ± 1.59 ± 3.49	0.654	34.9	28.28 ± 1.34 ± 2.48	0.649	34.9	28.28 ± 1.34 ± 2.48
0.72–0.90	0.799	34.8	11.94 ± 0.68 ± 1.53	0.797	34.8	11.94 ± 0.68 ± 1.53	0.793	34.8	11.94 ± 0.68 ± 1.53

Note: The table continues with similar entries for different intervals of \(p_T\) and \(\theta\).
Table A.40: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of protons in $\pi^+ + \text{Al} \rightarrow p + X$ interactions with $+15.0\text{ GeV/c}$ beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.20–0.24	0.218	22.6	150.08 ± 47.10 ± 10.98	0.266	33.0	126.31 ± 35.11 ± 7.63
0.24–0.30	0.266	23.4	106.94 ± 32.13 ± 6.96	0.330	35.7	58.15 ± 24.36 ± 3.04
0.30–0.36	0.322	25.1	65.20 ± 25.90 ± 3.86	0.387	32.9	81.00 ± 27.58 ± 3.88
0.36–0.42	0.398	27.0	77.45 ± 29.47 ± 4.24	0.454	33.9	48.93 ± 19.47 ± 2.29
0.42–0.50	0.457	25.8	90.16 ± 25.92 ± 6.44	0.549	35.4	33.16 ± 14.33 ± 1.64
0.50–0.60	0.539	26.1	52.61 ± 18.29 ± 2.64	0.671	33.9	35.99 ± 13.80 ± 2.17
0.60–0.72	0.635	26.0	38.49 ± 13.24 ± 2.18	0.823	34.6	25.05 ± 8.94 ± 2.04

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.30–0.36	0.332	44.8	141.67 ± 36.42 ± 6.53	0.383	54.6	83.72 ± 27.45 ± 3.46
0.36–0.42	0.389	45.9	105.45 ± 32.62 ± 4.33	0.461	55.0	42.08 ± 17.20 ± 1.72
0.42–0.50	0.457	44.6	130.27 ± 31.36 ± 5.42	0.545	54.3	39.57 ± 15.94 ± 2.15
0.50–0.60	0.549	45.2	41.90 ± 16.75 ± 2.09	0.645	55.3	12.31 ± 8.53 ± 0.89
0.60–0.72	0.655	45.1	22.84 ± 11.18 ± 1.41	0.816	54.1	7.92 ± 5.62 ± 0.75
0.72–0.90	0.789	44.2	18.93 ± 8.15 ± 1.60	1.946	53.2	4.29 ± 4.29 ± 1.33
0.90–1.25	1.044	45.9	10.16 ± 4.29 ± 1.33	2.610	52.4	2.09 ± 2.09 ± 0.71

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.42–0.50	0.436	66.8	85.01 ± 19.85 ± 3.47	0.465	81.8	61.02 ± 16.59 ± 3.20
0.50–0.60	0.541	68.5	48.18 ± 14.09 ± 2.61	0.543	84.8	15.51 ± 7.82 ± 1.07
0.60–0.72	0.651	66.2	40.67 ± 12.83 ± 3.64	0.632	80.8	17.58 ± 8.40 ± 1.94
0.72–0.90	0.772	68.1	10.10 ± 5.43 ± 1.26	0.794	82.2	8.10 ± 4.96 ± 1.22
0.90–1.25	1.067	68.0	7.03 ± 3.38 ± 1.42	1.420	81.3	4.29 ± 4.29 ± 1.33

p_T	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$	$\langle p_T \rangle$	$\langle \theta \rangle$	$d^2\sigma/dp\,d\Omega$
0.42–0.50	0.474	99.2	41.31 ± 13.85 ± 3.11	0.455	113.9	13.12 ± 6.78 ± 0.94
0.50–0.60	0.537	99.8	26.32 ± 10.14 ± 2.46	0.534	112.4	19.87 ± 8.28 ± 2.47
0.60–0.72	0.681	96.7	14.37 ± 8.07 ± 2.00	0.722	95.8	4.59 ± 3.81 ± 0.80
Table A.41: Double-differential inclusive cross-section $d^2\sigma/dp\Omega$ [mb/(GeV/c sr)] of the production of \(\pi^+\)'s in \(\pi^+ + \text{Al} \rightarrow \pi^+ + \text{X}\) interactions with +15.0 GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T\) in GeV/c, polar angle \(\theta\) in degrees.

\(p_T\) (GeV/c)	\(20 < \theta < 30\)	\(30 < \theta < 40\)	\(40 < \theta < 50\)	\(50 < \theta < 60\)	\(60 < \theta < 75\)	\(75 < \theta < 90\)	\(90 < \theta < 105\)	\(105 < \theta < 125\)
	\((p_T)\)	\(d^2\sigma/dp\Omega\)	\((p_T)\)	\(d^2\sigma/dp\Omega\)	\((p_T)\)	\(d^2\sigma/dp\Omega\)	\((p_T)\)	\(d^2\sigma/dp\Omega\)
0.10-0.13	0.114	24.5	0.108	4.7	0.38	0.26	0.134	0.18
0.13-0.16	0.144	25.1	0.146	3.6	0.35	0.26	0.172	0.24
0.16-0.20	0.185	23.8	0.176	4.0	0.30	0.25	0.206	0.29
0.20-0.24	0.223	24.9	0.218	3.5	0.29	0.25	0.269	0.30
0.24-0.30	0.267	25.2	0.270	3.7	0.34	0.25	0.318	0.33
0.30-0.36	0.323	24.2	0.343	5.7	0.47	0.25	0.375	0.37
0.36-0.42	0.387	23.9	0.367	6.1	0.54	0.25	0.414	0.42
0.42-0.50	0.456	24.6	0.470	6.1	0.59	0.25	0.458	0.45
0.50-0.60	0.536	23.0	0.542	6.3	0.64	0.25	0.500	0.51
0.60-0.72	0.658	23.8	0.633	6.8	0.71	0.25	0.552	0.56
0.72-0.90	0.773	43.7	0.800	1.5	0.87	0.25	0.661	0.67

67
Table A.42: Double-differential inclusive cross-section $d^2\sigma/d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^+ + \text{Al} \rightarrow \pi^- + X$ interactions with $+15.0$ GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

p_T (GeV/c)	$20 < \theta < 30$	$30 < \theta < 40$	$40 < \theta < 50$	$50 < \theta < 60$	$60 < \theta < 70$	$70 < \theta < 90$	$90 < \theta < 105$	$105 < \theta < 125$
$d^2\sigma/d\Omega$ [mb/(GeV/c sr)]								
Table A.43: Double-differential inclusive cross-section \(d^2\sigma/dp d\Omega \text{ [mb/(GeV/c sr)]} \) of the production of protons in \(\pi^- + Al \rightarrow p + X \) interactions with \(-15.0\ GeV/c\) beam momentum; the first error is statistical, the second systematic; \(p_T \) in GeV/c, polar angle \(\theta \) in degrees.

\(p_T \) (GeV/c)	\(20 < \theta < 30 \)	\(30 < \theta < 40 \)	\(40 < \theta < 50 \)	\(50 < \theta < 60 \)	\(60 < \theta < 75 \)	\(75 < \theta < 90 \)	\(90 < \theta < 105 \)	\(105 < \theta < 125 \)	
	\((p_T) \)	\(\langle \theta \rangle \)	\(d^2\sigma/dp d\Omega \)	\((p_T) \)	\(\langle \theta \rangle \)	\(d^2\sigma/dp d\Omega \)	\((p_T) \)	\(\langle \theta \rangle \)	\(d^2\sigma/dp d\Omega \)
0.20–0.24	0.222	24.9	129.77 ± 4.54 ± 7.39	0.274	34.7	118.48 ± 3.48 ± 5.88	0.825	34.9	22.21 ± 0.87 ± 1.54
0.24–0.30	0.272	25.1	122.02 ± 3.56 ± 6.42	0.333	34.7	103.98 ± 3.21 ± 4.73	0.825	34.9	22.21 ± 0.87 ± 1.54
0.30–0.36	0.334	25.0	97.64 ± 3.19 ± 5.00	0.396	35.0	88.68 ± 3.00 ± 4.01	0.825	34.9	21.31 ± 1.04 ± 2.16
0.36–0.42	0.394	25.1	78.73 ± 2.83 ± 3.94	0.468	34.9	69.54 ± 2.34 ± 3.25	0.825	34.9	21.31 ± 1.04 ± 2.16
0.42–0.50	0.468	25.2	71.87 ± 2.31 ± 3.50	0.538	35.0	57.95 ± 1.92 ± 2.78	0.825	34.9	21.31 ± 1.04 ± 2.16
0.50–0.60	0.592	25.2	52.89 ± 1.73 ± 2.58	0.674	34.9	39.23 ± 1.44 ± 2.21	0.825	34.9	21.31 ± 1.04 ± 2.16
0.60–0.72	0.675	25.1	37.71 ± 1.29 ± 2.01	0.825	34.9	22.21 ± 0.87 ± 1.54	0.825	34.9	21.31 ± 1.04 ± 2.16
0.72–0.90	0.825	34.9	22.21 ± 0.87 ± 1.54	0.825	34.9	22.21 ± 0.87 ± 1.54	0.825	34.9	22.21 ± 0.87 ± 1.54

69
Table A.44: Double-differential inclusive cross-section \(d^2\sigma / d\Omega d\Omega \) [mb/(GeV/c sr)] of the production of \(\pi^+ \)'s in \(\pi^- + Al \rightarrow \pi^+ + X \) interactions with \(-15.0\) GeV/c beam momentum; the first error is statistical, the second systematic; \(p_T \) in GeV/c, polar angle \(\theta \) in degrees.

\(p_T \) (GeV/c)	\(0.50-0.60 \)	\(0.42-0.50 \)	\(0.36-0.42 \)	\(0.30-0.36 \)	\(0.24-0.30 \)	\(0.20-0.24 \)	\(0.16-0.20 \)	\(0.13-0.16 \)	\(0.10-0.13 \)
\(\theta \) (°)	\(d^2\sigma / d\Omega d\Omega \)								
20 < \(\theta \) < 30									
0.10-0.13	0.116	0.146	0.221	0.333	0.395	0.467	0.557	0.672	0.819
0.13-0.16	0.147	0.182	0.223	0.335	0.467	0.588	0.672	0.826	1.080
0.16-0.20	0.182	0.233	0.273	0.364	0.467	0.588	0.672	0.826	1.080
0.20-0.24	0.221	0.273	0.335	0.467	0.578	0.672	0.826	1.070	1.490
0.24-0.30	0.271	0.333	0.428	0.557	0.805	0.805	0.805	0.805	0.805
0.30-0.36	0.371	0.467	0.692	0.805	0.805	0.805	0.805	0.805	0.805
0.36-0.42	0.467	0.692	0.805	0.805	0.805	0.805	0.805	0.805	0.805
0.42-0.50	0.692	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805
0.50-0.60	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805

\(p_T \) (GeV/c)	\(0.50-0.60 \)	\(0.42-0.50 \)	\(0.36-0.42 \)	\(0.30-0.36 \)	\(0.24-0.30 \)	\(0.20-0.24 \)	\(0.16-0.20 \)	\(0.13-0.16 \)	\(0.10-0.13 \)
\(\theta \) (°)	\(d^2\sigma / d\Omega d\Omega \)								
30 < \(\theta \) < 40									
0.10-0.13	0.116	0.146	0.221	0.333	0.395	0.467	0.557	0.672	0.819
0.13-0.16	0.147	0.182	0.233	0.356	0.467	0.588	0.672	0.826	1.080
0.16-0.20	0.182	0.223	0.273	0.383	0.467	0.588	0.672	0.826	1.080
0.20-0.24	0.221	0.273	0.335	0.428	0.467	0.578	0.672	0.805	1.070
0.24-0.30	0.271	0.333	0.428	0.557	0.805	0.805	0.805	0.805	0.805
0.30-0.36	0.371	0.467	0.692	0.805	0.805	0.805	0.805	0.805	0.805
0.36-0.42	0.467	0.692	0.805	0.805	0.805	0.805	0.805	0.805	0.805
0.42-0.50	0.692	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805
0.50-0.60	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805
Table A.45: Double-differential inclusive cross-section $d^2\sigma/dp\,d\Omega$ [mb/(GeV/c sr)] of the production of π^-'s in $\pi^- + Al \to \pi^- + X$ interactions with -15.0 GeV/c beam momentum; the first error is statistical, the second systematic; p_T in GeV/c, polar angle θ in degrees.

$20 < \theta < 30$	$30 < \theta < 40$	
p_T (GeV/c)	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))
<0.10–0.13	0.115 ± 0.023	0.116 ± 0.035
0.13–0.16	0.179 ± 0.036	0.204 ± 0.046
0.16–0.20	0.204 ± 0.046	0.235 ± 0.056
0.23–0.30	0.264 ± 0.079	0.304 ± 0.096
0.30–0.36	0.333 ± 0.114	0.364 ± 0.134
0.36–0.42	0.402 ± 0.160	0.434 ± 0.180
0.42–0.50	0.500 ± 0.233	0.530 ± 0.253
0.50–0.60	0.629 ± 0.320	0.660 ± 0.340
0.60–0.72	0.780 ± 0.421	0.820 ± 0.441
0.72–0.90	0.950 ± 0.541	1.00 ± 0.561

$40 < \theta < 50$	$50 < \theta < 60$	
p_T (GeV/c)	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))
<0.10–0.13	0.115 ± 0.023	0.116 ± 0.035
0.13–0.16	0.179 ± 0.036	0.204 ± 0.046
0.16–0.20	0.204 ± 0.046	0.235 ± 0.056
0.23–0.30	0.264 ± 0.079	0.304 ± 0.096
0.30–0.36	0.333 ± 0.114	0.364 ± 0.134
0.36–0.42	0.402 ± 0.160	0.434 ± 0.180
0.42–0.50	0.500 ± 0.233	0.530 ± 0.253
0.50–0.60	0.629 ± 0.320	0.660 ± 0.340
0.60–0.72	0.780 ± 0.421	0.820 ± 0.441
0.72–0.90	0.950 ± 0.541	1.00 ± 0.561

$60 < \theta < 75$	$75 < \theta < 90$	
p_T (GeV/c)	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))
<0.10–0.13	0.115 ± 0.023	0.116 ± 0.035
0.13–0.16	0.179 ± 0.036	0.204 ± 0.046
0.16–0.20	0.204 ± 0.046	0.235 ± 0.056
0.23–0.30	0.264 ± 0.079	0.304 ± 0.096
0.30–0.36	0.333 ± 0.114	0.364 ± 0.134
0.36–0.42	0.402 ± 0.160	0.434 ± 0.180
0.42–0.50	0.500 ± 0.233	0.530 ± 0.253
0.50–0.60	0.629 ± 0.320	0.660 ± 0.340
0.60–0.72	0.780 ± 0.421	0.820 ± 0.441
0.72–0.90	0.950 ± 0.541	1.00 ± 0.561

$90 < \theta < 105$	$105 < \theta < 125$	
p_T (GeV/c)	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))	$d^2\sigma/dp\,d\Omega$ (mb/(GeV/c sr))
<0.10–0.13	0.115 ± 0.023	0.116 ± 0.035
0.13–0.16	0.179 ± 0.036	0.204 ± 0.046
0.16–0.20	0.204 ± 0.046	0.235 ± 0.056
0.23–0.30	0.264 ± 0.079	0.304 ± 0.096
0.30–0.36	0.333 ± 0.114	0.364 ± 0.134
0.36–0.42	0.402 ± 0.160	0.434 ± 0.180
0.42–0.50	0.500 ± 0.233	0.530 ± 0.253
0.50–0.60	0.629 ± 0.320	0.660 ± 0.340
0.60–0.72	0.780 ± 0.421	0.820 ± 0.441
0.72–0.90	0.950 ± 0.541	1.00 ± 0.561
0.90–1.25	1.00 ± 0.561	1.00 ± 0.561