OPS – An Opportunistic Networking Protocol Simulator for OMNeT++

Asanga Udugama, Anna Förster, Jens Dede, Vishnupriya Kuppusamy and Anas bin Muslim

University of Bremen, Germany

OMNeT++ Community Summit 2017
University of Bremen, Bremen, Germany
September 07 – 08, 2017
Contents

- Motivation
- Opportunistic Networks
- Opportunistic Networking Protocol Simulator (OPS)
- Evaluations
- Summary and Future Work
Motivation
Motivation

- Internet of Things (IoT)
 - Over 50 billion devices by 2020 [1]

- Architecture for communications in the IoT
 - Opportunistic Networking

- IoT Scenarios
 - Social networking to emergencies
 - Nature of applications – higher value of information in locality

- Importance of information propagation
 - Forwarding protocols – Epidemic Routing, ODD, etc.

- Necessity for large-scale evaluations
 - Require simulators – OMNeT++
Opportunistic Networks (OppNets)
Characteristics of OppNets

- Information dissemination
 - Interested parties wanting information
 - Value of information higher around the source

- Store-and-Forward architecture
 - Communicate when there is an opportunity to communicate
 - Delayed delivery of information

- Use of peer-to-peer communication technologies
 - E.g., Bluetooth, IEEE 802.15.4

- Importance of the information propagation
 - Capabilities of the forwarding protocol
OppNets Use-case

- Propagation of information about an event
 - Street performers
 - Interested people gather (flash crowd)

![Diagram showing the propagation of information about an event involving street performers and interested people gathering in the city center.](image)

- Intensity of the performance
- Direction of messages

City Center

Visitor

Building

Street performers
Opportunistic Networking Protocol Simulator (OPS)
Objectives

- Pluggable protocol layer architecture
 - Node model can handle new protocol implementations
 - Clear interface between layers

- Large-scale simulations
 - IoT-scale devices

- Mobility
 - Synthetic, trace-based and hybrid
Protocol Stack

- Node model – 4 layer protocol stack

- Protocol layers
 - Application layer – Data generators
 - Forwarding layer – Data propagation mechanisms
 - Link Adaptation layer – Conversions to different link technologies
 - Link layer – Link technology coupled with mobility
Models

- Application layer
 - **Promote** – Generates random data as constant traffic, uniformly distributed traffic or exponentially distributed traffic
 - **Herald** – Generates pre-determined set of data where nodes assigned “likeness” value to data

- Opportunistic forwarding layer
 - **Caching data** – Employs store-and-forward
 - **Neighborhood communications** – Communications with the changing neighborhood
 - **Epidemic Routing** – Nodes negotiate and exchange data [2]
 - **Organic Data Dissemination (ODD)** – Dissemination of data based on popularity of data [3]
 - **Randomized Rumor Spreading (RRS)** – Random dissemination of data
Models ...contd

- Link adaptation layer
 - **PassThru** – Simple packet traversal

- Link layer
 - **WirelessInterface** – Simple wireless interface that models bandwidth, delays, wireless range (with UDG) and queuing

- Interfaces
 - Use of an extensible packet format
Node Model Implementation

- An example node model used in an experiment
- Use of trace based mobility
 - **BonnMotion** – Cartesian trace of an actual GPS trace – SFO Taxi trace [4]
Evaluation Metrics

- Focus of performance evaluations is slightly different compared to classical networks

- Data related metrics
 - **Liked Data** – Preferred data received
 - **Non-liked Data** – Not preferred but still received
 - **Traffic Spread** – How well is packet traffic spread in the network
 - **Data Delivery Ratio** – Delivery ratio of destined data
 - **Delivery Time** – Delivery time of destined data

- Mobility related metrics
 - **Average Contact Time** – Duration of a contact
 - **Number of Contacts** – Number of times in contact
Evaluations
Evaluation Scenario

- OPS is being used extensively in our research
 - Results of some evaluations
 - Used in an IEEE Survey on OppNets [5]

- General scenario details
 - Nodes – 50-node network
 - Mobility – SFO Taxi Trace [4]
 - Data generation – 2 hour interval
 - Run for 24 days
Influence of Traffic Models & Caching

- Scenario specific parameters
 - Different traffic generation models and different cache sizes
 - Evaluation of data delivery times

- Analysis
 - Traffic generation model has no influence
 - But, caching policy influences delay
Performance of Mobility Models

- Scenario specific parameters
 - 3 different mobility models (synthetic, trace-based and hybrid)
 - Models parameterized as closely as possible to trace-based model

- Analysis
 - Trace-based takes the longest time (but realistic)
 - Closest performance is given by the hybrid model (SWIM)

Model	RWP	SWIM	Bonn Motion
Simulation Time	4 min	59 min	109 min
Memory used	74 MB	86 MB	127 MB
Average Delivery Rate	3 %	96%	92 %
Average Delivery Delay	20.6 h	16.25 h	13.16 h
Total Number of Contacts	190	46,752	155,757
Average Contact Duration	117.14 sec	150.12 sec	584.39 sec
Verification of the Models

- Survey compared OPS with 3 other OppNets implementations
 - ONE [6], Adyton [7] and ns-3

- Analysis
 - OPS provides a comparatively close performance (in metrics listed above)
Summary and Future Work
Summary

- OPS – OMNeT++ based modular simulator to evaluate the performance of OppNets
- Node model architecture with pluggable protocol layers
- OppNets focused evaluation metrics
- Available at Github
 - https://github.com/ComNets-Bremen/OPS
Future Work

- Constant improvements, additions to OPS
- Current projects
 - Forwarding protocols (e.g. Spray and Wait)
 - Applications
 - User behavior models
 - Mobility models
References
References

[1] D. Evans, Cisco, The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, April 2011

[2] A. Vahdat and D. Becker, Epidemic Routing for Partially-Connected Ad Hoc Networks, Technical Report, June 2000

[3] A. Förster et al, A Novel Data Dissemination Model for Organic Data Flows, MONAMI 2015, September 2015, Santander Spain

[4] Michal Piorkowski at al, CRAWDAD dataset epfl/mobility (v. 20090224), downloaded from http://crawdad.org/epfl/mobility/20090224, https://doi.org/10.15783/C7J010, February 2009

[5] J. Dede et al, Simulating Opportunistic Networks: Survey and Future Directions, IEEE Communications Surveys and Tutorials, Accepted for publication in 2017

[6] A. Keránen et al, The ONE Simulator for DTN Protocol Evaluation, SIMUTools 2009, March 2 - 6, 2009, Rome, Italy

[7] N. Papanikos et al, Adyton: A network simulator for opportunistic networks, [Online]. Available: https://github.com/npapanik/Adyton, 2015
Thank You.

Questions?