Impact of pre- and post-variant filtration strategies on imputation

Céline Charon1,2*, Rodrigue Allodji2, Vincent Meyer1 & Jean-François Deleuze1

Quality control (QC) methods for genome-wide association studies and fine mapping are commonly used for imputation, however they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1089 NCBI recorded individuals for additional validation. Without QC-based variant pre-filtration, we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E−04–1E−03) and rare variants (1E−03–5E−03) (p < 1E−04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) < 0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E−04). Thus, to maintain confidence and enough SNVs, we propose here a two-step filtering procedure which allows less stringent filtering prior to imputation and post-imputation in order to increase the number of very rare and rare variants compared to conservative filtration methods.

First generation genome-wide association studies (GWAS) characterised many common single nucleotide polymorphisms (SNPs) seldom considered as the main cause of disease even at genome-wide significance1–3. Despite implementation of genomics imputation to improve the statistical power of association analyses4,5, SNPs were identified with small effect sizes on disease risk6.

Initial filtration of single nucleotide variants (SNVs) (pre-filtration) was considered necessary to warrant correct inference of SNPs during imputation7,8. This was mostly based on routine quality control (QC) applied in association studies and fine mapping. The confidence index threshold for post-imputation information measures was set either between 0.3 and 0.4 or at a more conservative score of 0.7–0.96,11,12.

Imputation increased the number of SNPs for non-genotyped variants in individuals, leading to higher power to detect significant associations4,13,14. Common imputation methods based on the graphical model of a haplotype set applied in Beagle15–19 and the Hidden Markov Model (HMM) implemented in IMPUTE20 and MaCH21 showed comparable accuracy16,22. Early GWAS imputation analyses used reference panels of the International HapMap project 23–25. The reference genomes were subsequently improved to characterise low and rare variants by sequencing larger sets of individuals from the 1000 Genome project phase 1 (1000GP1)26 and phase 3 (1000GP3)27 and from other panels of the haplotype reference consortium (HRC)28, the UK10K29 and the NHLBI Trans-Omics for precision Medicine (TOPMed)30. Structural variants were further uncovered with the 1000GP331 and the genome of the Netherlands project (GoNL)32. The imputation of rare variants was improved after rephasing the reference sequence of the 1,092 genomes (1000GP1) with SHAPEIT2 and Beagle against the 1000GP333,34.

The interest in imputation of rare variants in disease gene discovery was first illustrated by Jonsson et al. for Alzheimer’s disease35,36. The effects of rare variants in diseases are currently being analysed in both GWAS and fine-scale mapping association studies37. Rare variants are difficult to investigate; in many of these studies, the SNPs of individuals are routinely removed prior to imputation7,8, which can lead to a loss of information or loss of accuracy when imputing the unaccounted for SNPs that may be in linkage disequilibrium (LD) with SNVs38. The effect of QC prior to imputation is not fully understood in relation to downstream processes39. Understanding the underlying effects of filtration on imputation in the 1000GP should provide insight that could be applied to the larger reference panels. It has been shown that filtering out low quality SNVs rather than incorporating them with a low quality score weight40,41, can decrease the power of locus-based approaches when the causal

1CEA Paris-Saclay, Institut François Jacob, Centre National de Recherche en Génomique Humaine, 2 rue Gaston Crémieux, Evry 91057, France. 2Radiation Epidemiology Group CESP, Inserm Unit 1018, Gustave Roussy Université Paris Saclay, 114 rue Edouard Vaillant, Villejuif 94805, France. *email: celine.charon@cng.fr
variant is of good quality. A quality control that is too stringent can remove many variants, therefore to avoid variant exclusion, less stringent quality control or no pre-filtration may be required\(^1\)\(^2\). Das et al.\(^3\) also found that SHAPEIT performed better with less missing variants. Furthermore, missing genotypes can have an impact on quality assessment based on the certainty and the agreement of true genotypes\(^4\).

We performed an imputation without SNP pre-filtering to see if it would generate rare and more common SNPs of reliable confidence and accuracy. We also examined the imputation results after downstream filtration under stringent and non-stringent conditions. We used the re-phased 1000GP which satisfies criteria for reliable imputation accuracy of common and low frequency variants\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\)\(^14\)\(^15\)\(^16\)\(^17\)\(^18\) for our sample set of 1031 individuals which are similar in terms of size and population origin\(^19\)\(^20\)\(^21\)\(^22\)\(^23\).

Based on our findings, we recommend calculating the MAF of the sample set and suggest using it during pre-filteration to minimise the loss of rare variants potentially important for disease risk discovery, and to improve imputation quality. We also propose new approaches for post-imputation filtration with a 2-step strategy using (1) the MAF and (2) the quality score.

Methods

We used empirical sample datasets for 1,031 individuals from a 2 Mb region of chromosome 20 file source: https://mathgen.stats.ox.ac.uk/genetics_software/shaepit/shaepit.html.

A full description of the samples (including 37% AMR, 34.3% EUR, 25.1% EAS, 2.95% AFR and 0.65% SAS) is available at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_sample_info.xlsx. We pre-phased sample genotypes prior to imputation with SHAPEIT v2.r790.RHEL5.4 for former ordering of the markers to provide better downstream accuracy and increase imputation speed\(^24\). SHAPEIT\(^25\) was run, followed by imputation with IMPUTE2\(^26\) against a known reference haplotype\(^27\) based on the 1,092 individuals from phase 1 (35% EUR, 26% ASN, 22% AFR, 17% AMR) of the 1000GP, release 2011–05-21: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/shapeit2_phased haplotypes/. The same reference was previously re-phased with the coordinates of the NCBI build 37 (hg19)\(^28\) and made available in 2015: https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_SHAPEIT2_16-06-14.html.

After imputation, the MAF was determined for all variants and compared with that of the NCBI gMAF dbSNP137 which is based on 1089 individuals from the 1000GP1. We clustered the variants after imputation in different levels of non-overlapping MAFs, such as null (0–1E–04), very rare (1E–04–1E–03), rare (1E–03–1E–02), low (1E–02–5E–02), common (5E–02–1E–01) and high (1E–01–5E–01) frequencies. The very rare and rare classes were sub-divided into 2 bins, (1E–04–5E–04) and (5E–04–1E–03) for very rare MAFs (1E–03–5E–03) and (5E–03–1E–02) for the rare MAFs.

The minimum imputed MAF inferred from the allele dosage, based on genotype probabilities generated by IMPUTE2, was 1E–04 which corresponds to less than one heterozygous-imputed genotype. In our sample set and dbSNP137, the minimum MAF was 5E–04, referring to at least one heterozygote genotyped individual, thus demonstrating greater reliability compared with the dosage probabilities. NCBI uses the global 1000GP data to determine the minor alleles (gmaf) and frequencies\(^29\). In order to include the conditions without filtration and avoid missingness, all variants and genotyped individuals were primarily maintained for downstream analysis. After quality control (QC) 17.5% of variants were removed (Supplementary materials). The individuals were all retained as their pass scores for QC conditions were similar in terms of size and population origin\(^19\)\(^20\)\(^21\)\(^22\)\(^23\). The same seed (i.e. 1411139299) was used in each case before and after QC. The difference between imputation runs was the MAF selection criterion of 0.01, i.e. the standard used in most GWAS and fine-scale mapping studies.

Statistics were performed with the R package, version R 3.2.4\(^30\). The Wilcoxon paired test was performed for each class of frequencies to compare the MAF and information-impute2 scores\(^31\)\(^32\) between imputation runs in the presence or absence of QC. The Wilcoxon unpaired test was done for each class to compare the MAF of genotypes or imputed variants with that of dbSNP. Tests performed were two-sided unless specifically indicated as one-sided.

Results

Genotype imputation conditions. We focused on an arbitrarily chosen locus representing the size of a fine-scale mapping region that lies within Chr20, commonly used as a standard chromosome\(^49\)\(^50\). This allowed us to compare both imputation runs in the presence or absence of QC using the same seed for reproducibility.

Before imputation, the main cause for removal of rare variants during pre-filtration of the genotyped SNPs was the MAF selection criterion of 0.01, i.e. the standard used in most GWAS and fine-scale mapping studies (Supplementary materials). The number of genotyped SNPs dropped from 1762 to 1452 after pre-filtration. The number (27,090) and density of SNPs to impute (13.545/Kb) for the 2 Mb region studied were within the standard deviation (sd) (Table S1) and the interquartile range (IQR) of the average counts and density of SNPs for each 2 Mb of the genome (Supplementary Fig.S1). The MAF was also within the IQRs of the MAF on the Chr20 and of the whole genome for every 2 Mb (Supplementary Fig.S2). Omitting common filtration did not impact the number of imputed variants and it conserved the initial density of SNPs in the region.

Genotype accuracy. To increase imputation accuracy we used the re-phased haplotypes from the 1000GP\(^24\)\(^25\). The overall concordance\(^34\) between original and imputed genotypes was 98.83%. We then looked at
reported a strong positive correlation between genotyping and imputation which they defined as reflecting a

with or without QC, were the same for heterozygotes and homozygotes (Supplementary Fig. S3).

with the MAF of the imputed variants with or without pre-QC filtration, and also with their NCBI records. This

MAFs of the genotypes and imputed variants revealed that the Spearman correlation was at its maximum value

racy of each imputation compared with the masked genotyped SNPs27,34. The threshold for r2_type0 outliers

the square correlation defined in IMPUTE2 (r2_type0), a more stringent coefficient that determines the accu-

parameters were mostly not affected by the MAF when variants with a MAF < 0.01 before imputation were retained.

Additionally, the imputation accuracy of the genotype variants (r2_type0) without pre-filtration compared to

imbupation param-

Table 1. Variants counts and Wilcoxon paired signed rank test of minor allele frequencies before and

No significant differences were found in the total number (n) of variants before (no QC) and after QC (QC) with the Wilcoxon paired test (p value = 9.45 E−01) When stratifying each variant in the subclasses, significant differences in the maf were observed for the null alleles and one subclass of very rare (5E−04–1E−03) and rare variants (1E−03–5E−03). Levels of significance **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05. Percentage of SNPs with null MAF 12%, very rare MAF 24.8%, rare MAF 31.1%, low MAF 13.1%, common MAF 3.5%, SNP high MAF 15.5%. Percentage of rare variants < 0.01 is higher (68% including

Table: Variants counts and Wilcoxon paired signed rank test of minor allele frequencies before and after QC. No significant differences were found in the total number (n) of variants before (no QC) and after QC (QC) with the Wilcoxon paired test (p value = 9.45 E−01) When stratifying each variant in the subclasses, significant differences in the maf were observed for the null alleles and one subclass of very rare (5E−04–1E−03) and rare variants (1E−03–5E−03). Levels of significance **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05. Percentage of SNPs with null MAF 12%, very rare MAF 24.8%, rare MAF 31.1%, low MAF 13.1%, common MAF 3.5%, SNP high MAF 15.5%. Percentage of rare variants < 0.01 is higher (68% including

The majority of imputed variants (68%) had a MAF of <0.01 (Table 1). Thus downstream imputation param-

MAF comparisons between runs. Further investigation of the pair-wise correlation coefficient between

no QC QC maf noQC maf QC Wilcoxon paired test

MAFs of the genotypes and imputed variants revealed that the Spearman correlation was at its maximum value

the null alleles and 56% without the null alleles) compared to the SNP MAF > 0.01 (32%). maf minor allele

Variants counts and Wilcoxon paired signed rank test of minor allele frequencies before and after QC. No significant differences were found in the total number (n) of variants before (no QC) and after QC (QC) with the Wilcoxon paired test (p value = 9.45 E−01) When stratifying each variant in the subclasses, significant differences in the maf were observed for the null alleles and one subclass of very rare (5E−04–1E−03) and rare variants (1E−03–5E−03). Levels of significance **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05. Percentage of SNPs with null MAF 12%, very rare MAF 24.8%, rare MAF 31.1%, low MAF 13.1%, common MAF 3.5%, SNP high MAF 15.5%. Percentage of rare variants < 0.01 is higher (68% including

null alleles and name records in NCBI, or were described as monomorphic and 40 variants imputed different

1.4% (46) as very rare subclass II (5E−04–1E−03) and 0.1% (3) as rare variants (1E−03–5E−03). The same percentages were observed when comparing the variants obtained by applying QC to those obtained without QC. The monomorphic variants in presence of QC that were imputed were those with pre-filtration was significantly higher for the high category of MAFs (p-value = 1E−06, one-tailed).

imputed SNP genotype and found no outliers outside the lower and upper quantiles. Thus the classification for
categorising the different MAFs was considered appropriate.

The differences obtained from the paired test for each category of allele frequencies, imputed with or without

the number of variants before and after QC (p-value = 0.945) nor in the overall frequencies (p-values = 0.512) using the Wilcoxon paired test, and the overall MAFs were identical (mean = 0.05, sd = 0.110). We divided the MAFs and NCBI registered variants (0–0 3292 3299 0.00 0.00 0.00 0.00 < 2.20 E-16 ****) into six distinct classes for each

maf categories	no QC	QC	maf noQC	maf QC	Wilcoxon paired test		
n	n	Mean	sd	Mean	sd		
0-0	3292	3299	0.00	0.00	0.00	< 2.20 E-16 ****	
1E-04–5E-04	3778	3827	3.00 E−04	1.30 E−04	2.90 E−03	1.30 E−04	5.97 E−01
5E-04–1E-03	3139	3103	7.30 E−04	1.60 E−04	7.30 E−04	1.60 E−04	1.49 E-11 ****
1E-03–5E-03	6574	6518	2.40 E−03	1.10 E−03	2.40 E−03	1.10 E−03	8.99 E−11 ****
5E-03–1E-02	2119	2127	7.1 E−03	1.40 E−03	7.00 E−03	1.40 E−03	2.14 E−01
1E-02–5E-02	3630	3668	2.0 E−02	1.10 E−02	2.10 E−02	1.10 E−02	4.55 E−01
5E-02–1E-01	955	967	7.3 E−02	1.40 E−02	7.30 E−02	1.40 E−02	9.20 E−01
1E-01–5E-01	4316	4287	2.80 E−01	1.20 E−01	2.80 E−01	1.20 E−01	7.91 E−01
0-5E-01	27803	27796	5.00 E−02	1.10 E−01	5.00 E−02	1.10 E−01	5.12 E−01

The square correlation defined in IMPUTE2 (r2_type0), a more stringent coefficient that determines the accu-

the null alleles and one subclass of very rare (5E−04–1E−03) and rare variants (1E−03–5E−03). Levels of significance **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05. Percentage of SNPs with null MAF 12%, very rare MAF 24.8%, rare MAF 31.1%, low MAF 13.1%, common MAF 3.5%, SNP high MAF 15.5%. Percentage of rare variants < 0.01 is higher (68% including

The majority of imputed variants (68%) had a MAF of <0.01 (Table 1). Thus downstream imputation param-

Additionally, the imputation accuracy of the genotype variants (r2_type0) without pre-filtration compared to

those with pre-filtration was significantly higher for the high category of MAFs (p-value = 1E−06, one-tailed).
alleles before and after QC. We thus considered them as unreliable despite their information score of > 0.8. The public database served here has a further control.

Comparing databases. Genotyped variants imputed with or without pre-filtration had a strong MAF correlation ($r^2 = 0.99$) with the dbSNP B137.

For the imputed-only variants, with or without QC, only 163 were registered with null minor allele frequencies in dbSNP B137, including 18 variants detrimentally imputed with null MAFs (Fig. 3). The MAFs of the remaining 145 not fully documented in dbSNP B137 (personal communication) were thus uncorrelated with the NCBI MAFs (Supplementary Fig. S5) and 80% (0.44% in total) were imputed as structural. The majority had an information score above 0.8. Similar values were obtained when QC was applied. Additionally, more than 50% of the 145 variants were recently found in Ensembl GrCh38.p10 with frequencies between 2E−04 and 0.45.15,25.
We found that 13 genotyped rare to frequent variants absent from the reference haplotype (Fig. 1) were efficiently imputed (information-impute2 score = 1) without pre-filtration and could thus be kept for downstream analysis. Independently, we also identified 18 dual imputations (i.e. 36) when a structural variant and SNP were present at the same locus.

Imputation quality. We applied the paired test to each subclass of all imputed variants and found a significant group effect between the information imputation scores observed before and after quality control (Table 2). Thus the same variant did not necessarily produce the same information score with and without QC, although the overall mean imputation quality scores were similar before and after SNP filtering (Table 2). This difference can also be seen in Fig. 4 where the information scores are spread across each part of the regression line with a Spearman coefficient of only 0.93.

Pre-filtration improved the quality of the genotyped SNPs (Supplementary materials) but decreased by 17.5% the number of variants available for imputation. However, as stated above, the genotyped SNPs that failed initial QC were better imputed (information-impute2 score = 1) than those excluded prior to imputation (information-impute2 score = 0.4–1), and the information score above 0.3 was maintained in each case. Further, in conditions without pre-filtration compared with pre-filtration, the SNP added confidence to the imputation. The one-sided

maf categories	Info no QC	Info QC	Wilcoxon paired test	Info no QC vs. info QC		
	Mean	sd	Mean	sd	Info right tail p-value	Pseudomedians
0–0	1.70 E−02	2.60 E−02	1.60 E−02	2.60 E−02	1.00	– 0.00995
1E−04–5E−04	3.10 E−01	3.10 E−01	3.00 E−01	3.07 E−01	3.30 E−04 ***	0.00360
5E−04–1E−03	6.10 E−01	2.60 E−01	6.20 E−01	2.60 E−01	3.48 E−16 ****	0.01350
1E−03–5E−03	7.70 E−01	1.97 E−01	7.60 E−01	1.98 E−01	< 2.20 E−16 ****	0.00650
5E−03–1E−02	8.80 E−01	1.30 E−01	8.70 E−01	1.30 E−01	< 2.20 E−16 ****	0.00740
1E−02–5E−02	9.40 E−01	9.50 E−02	9.40 E−01	9.80 E−02	< 2.20 E−16 ****	0.00198
5E−02–1E−01	9.70 E−01	5.20 E−02	9.70 E−01	5.60 E−02	9.50 E−03 *	0.00580
1E−01–5E−01	9.90 E−01	3.90 E−02	9.90 E−01	3.40 E−02	< 2.20E−16 ****	0.00969
0–5E−01	6.72 E−01	3.68 E−01	6.60 E−01	3.67 E−01	< 2.20E−16 ****	0.00206

Table 2. One tail Wilcoxon-paired signed rank test comparing information before (no QC) and after QC (QC). Significant differences in information scores were found in each class except the first category as null alleles hold no information. Right tail levels of significance **** < 0.00005, *** < 0.0005, ** < 0.005, * < 0.025. The differences between the two distributions were at least equal to their pseudomedians (pseudomedians were obtained from the differences between the distributions before and after QC). Info information imputation score, maf minor allele frequency, sd standard deviation, QC quality control.
Wilcoxon paired test showed significantly greater information without SNP pre-filtration than with pre-filtration, these differences were observed at the alpha-level < 5E−04 in all classes except for the common variants (Table 2).

Post-filtration. Regardless of whether or not QC was applied prior to imputation, the total number of variants was reduced by almost a quarter, and by half for post-filtration, based on imputation scores of 0.3 and 0.8 respectively. This increase from 0.3 to 0.8 caused a 1.8 fold decrease in the number of variants for MAF < 0.01. Filtering using the information scores of 0.3 or 0.8 following SNP quality control mirrored the filtration without QC (Supplementary Fig.S6), i.e. both curves overlapped (Fig. 5).

The presence or absence of pre-filtration had little impact on post-filtration of imputed variants at MAF > 0.01 (Fig. 5, Supplementary Fig. S6) as their mean quality score was already over 0.8. The mean of bins for information score within the frequency range 5E−04–5E−03 was further improved when filtering was above 0.8 (Fig. 5). Without post-filtration, we observed for both runs an average score higher than 0.7 in the rare variant subclass (1E−03–5E−03) and just over 0.6 in the very rare variant subclass (5E−04–1E−03), showing that the information decreased with the MAF (Table 2).

Post-filtration of the data removed additional variants in the very rare classes. Downstream filtration at 0.3 showed that at a MAF of 5E−04, the average information score obtained after applying this threshold was closer to 0.7 (Fig. 5). When the threshold was raised to 0.8, the mean information score at a MAF of 5E−04 increased to above 0.8 (Fig. 5), demonstrating that certain variants at 5E−04 had been eliminated.

The number of very rare variants in the MAF subclasses between 2.5E−04 and 5E−04 decreased by almost half when the quality score was incremented from 0.3 to 0.8, in the presence or absence of pre-QC filtration. Below a mean MAF of 0.001, the ratio for the number of SNVs decreased 2.5 fold when post-filtration was incremented from a less conservative (0.3) to a more conservative (0.8) quality score. Thus, applying a lower information threshold allowed more very rare variants to be kept but the variants were of lower quality. Therefore, it may be of interest to use post-filtration at 0.3 in order to keep MAF variants < 0.001 (e.g. 5E−04) and to use a more stringent cut-off to maintain SNVs above 0.001. The sd of the quality score also decreased as the MAF increased. The sd was less densely spread around the mean when filtering with a threshold of 0.8 rather than 0.3. The quality of the data improved when the filtration threshold stringency was raised, but this also lowered the number of variants (Supplementary Fig. S7).

In the absence of post-filtration, the mean quality score for a MAF of 7.5E−04 was 0.7 in the range of 0.32–0.85, representing between one and two heterozygotes. Therefore, filtering MAFs between 5E−04 and 1E−03 (7.5E−04) should produce an imputation score above 0.3 (Supplementary Fig. S7). A frequency of 7.5E−04 includes MAFs that are just above the frequency of the sample set representing just one imputed heterozygous individual (i.e. 1.5) and ensuring better confidence in the probabilities of the number of estimated alleles. The MAF for a sample set is seldom achieved during genotyping for GWAS and fine-scale mapping studies, especially for homozygous rare variants. Genotyping studies of 1000 individuals would not have captured either homozygous or heterozygous rare variants with pre-filtration at a MAF < 0.01.

When we performed pre-filtration followed by an initial post-filtration at a MAF of 7.5E−04, only 1.24% of variants remained with a low imputation quality score (< 0.3), similar to the 1.33% obtained without pre-filtration. As expected, the mean for the class (7.5E−04 and 1E−03) reached an information score close to 0.7, i.e. 0.64 (sd = 0.26). The second step required only filtering out ~ 1% remaining variants with a score below 0.3 to enhance confidence (Fig. 6). When this 2-step protocol was compared with a single-step protocol using post-filtration at a stringent accuracy of 0.8, i.e. 18% (no-QC) and 19% (with QC) respectively, less variants were eliminated: i.e.

![Figure 4. Correlation between information-impute2 scores obtained after QC pre-filtration (info_QC) and no QC variant filtration (info_noQC).](https://doi.org/10.1038/s41598-021-85333-z)
Discussion

Imputation can create dense maps that can feasibly be used to refine loci linked to disease genes. In this study we ran SHAPEIT combined with IMPUTE, programs that have been commonly used for imputation with the 1000GP in fine-mapping of small regions previously missed in GWAS.53,54

Imputation from the reference panels allowed searches for variants forming haplotypes of identical sequences to those of genotyped individuals in order to impute their missing variants.14 Thus, for comparison of variants and MAF frequencies, individuals to be imputed were of similar number and ethnic background to the reference genome. Due to inherent sample effects, rare variants may be absent from the reference panel.55,56 This effect can be compensated for by the presence of populations from different demographic regions where these rarer variants are more common.14,55,56 Using the same number of subjects as the 1000GP, we compared imputed variants with and without pre-filtration of low quality genotyped SNPs. The size of the region, similar to the size of a fine mapping region, allowed us to manually curate the SNPs and to use the same seed for reproducibility of

![Figure 5](https://example.com/figure5.png)

Figure 5. (a) Absence of QC: r^2 (info-impute2 metric) mean of bins for variants according to the log(maf). Under 3 different post-filtration conditions (absence of post-filtration; post-filtration at an information score > 0.3; post-filtration at an information score > 0.8). Each middle bin is joined by a coloured dotted line. From 0.01 MAF the information score tends towards the maximum information even in the absence of pre-filtration. (b) After QC pre-filtration: r^2 (info metric) mean of bins for variants vs log(maf). Each middle bin is represented by a coloured dotted line (absence of post-filtration; post-filtration at an information score > 0.3; post-filtration at an information score > 0.8).

for very rare variants, 3.5% (no-QC) and 3.25% (with QC); for rare variants, 11.7% (no QC) and 12.7% (with QC). Hence this is a useful gain.
the imputation runs. The 2 Mb region in terms of counts, density and MAFs of SNPs was representative of the 2 Mb bins of Chr20 and the whole genome (Supplementary Fig.S1, S2, Table S1).

Figure 6. Methodology overview. After imputation a significant amount of variants are discarded by current practices. Some of these variants may provide important insight for determining disease risk. Here we investigate the effect of filtration strategies on the profiles of imputed variants and provide recommendation to improve the imputation quality and to reduce the amount of variants discarded.
IMPUTE2, being map-dependent, uses the reference dataset to enable the software to fill in gaps. After pre-filtration, the 17.5% of SNPs previously eliminated were fully recovered. Unlike previous studies, we did not observe a detrimental effect on imputation with the 1000GP when pre-filtration was not applied, probably due to improvements in the HapMap 3 reference set. Thus it is possible to decrease the MAF in the pre-filtration criteria and still achieve full imputation. It has been reported that the absence of variant pre-filtration with the GATK variant quality score recalibration (VQSR) does not reduce the numbers or performance of imputation on sequencing data.

SHAPEIT is designed to perform well when missingness is low, which suggests that the absence of filtration may improve imputation performance. This seems to be consistent with findings observed in our experiments performed without pre-filtration, and in this study the SNPs that failed QC showed a reliable imputation. Their allele calls were also identical to those obtained after pre-QC filtration with a similar number of allele counts (Supplementary Fig. S3). Further, in the absence of pre-filtration, the imputation was improved; the r^2_type0 of the genotypes SNPs was significantly increased for the most frequent MAFs 0.01–0.05 (p = 1E−06, one-tailed) and the information scores were significantly higher in all classes of MAFs (Table 2).

We observed a good correlation of MAF after imputation with or without QC (Fig. 2) and only very low subclasses of MAF were found to be significantly different due to the closeness of the low allele counts (Table 1). QC-filtered SNPs that were absent from the reference genome were not imputed. Imputation quality could also be observed by comparing the MAFs of imputed variants with those of public databases such as NCBI, used as a control. We also showed that a high information score did not guarantee a fully documented variant in dbSNP. The correlated MAFs also revealed variants mislabelled with null alleles in dbSNP B137 (Supplementary Fig.S5). After imputation, monomorphic variants have been reported to be present in reference panels, including GoNL. They may also be present in study data or when the samples do not share enough segments of common ancestry with the reference panel.

Sampson et al. demonstrated that increasing the sample size using the 1000GP panel improved imputation performance; in our case the size of the cohort was above 1000. Compared to imputations using panels with less individuals, a gain in very rare and rare imputed variants was found with the 1000GP.

Difficulties were encountered with previous panels when attempting to impute rare variants (MAF < 0.5%) as their performance remained lower compared to that of the more common variants. With IMPUTE2, Deelen et al. found that variants with a MAF of 0.05–0.5% would remain with a mean imputation accuracy below 0.8 with samples of the same ethnicity as the GoNL Panel. Other authors have performed an initial QC variant filtration and reported that below a MAF of 0.05 the information score decreased to under 0.8, while it increased to above 0.8 in higher MAF categories. Pistas et al. tested IMPUTE and finally chose a score > 0.7 rather than 0.3–0.4 to ensure that only well-imputed variants were kept. We found that a high accuracy score of 0.8 removed too many variants and, as a result, we had to apply a lower filtration accuracy score to keep very rare frequency variants decreases the power of association tests whilst in meta-analyses, it can lead to a loss of information.

In association studies that previously removed SNPs by applying an imputation information score > 0.8, should be reanalysed using a score of 0.3–0.8 with an imputed MAF threshold representing at least one heterozygous individual from the dataset. As each marker at this MAF represents at least one individual, this approach will be reanalysed using a score of 0.3–0.8 with an imputed MAF threshold representing at least one heterozygous individual from the dataset. As each marker at this MAF represents at least one individual, this approach will increase the number of very rare and rare variants.

For future GWAS and fine-scale mapping, we therefore recommend calculating the MAF of the sample set studied rather than filtering the genotypes prior to imputation with an arbitrary MAF of 0.01 or 0.005. We advise primarily not to pre-filter below the MAF of the sample set. We then suggest applying the following two-step post-filtration method: (1) Filter slightly above the MAF of the samples to achieve better accuracy; (2) Remove any remaining variants with an imputation score below 0.3 so that only reliable variants with an information score between 0.3 and 0.8 are retained and can be flagged prior to analysis (Fig. 6). Previous reports have mentioned the possible role of MAFs on GWAS and imputation, which supports our findings. In our experience, this approach mainly improves imputation confidence above the score of 0.3.

In addition, genotypic imputation approaches which use arrays or low coverage genotyping-by-sequencing (GBS) remain cost-effective compared to whole genome sequencing. Also, other reference panels can be used with the methodology since the MAF for filtration can be calculated from the studied sample data. Panels
such as HRC20, UK10K21 or TOPMed22 provide more imputation accuracy and would therefore enhance the methodology that we present here.

Conclusion

SNP pre-filtration above the minor allele frequencies of heterozygotes in the sample set should be avoided to reduce imputation information loss. The confidence and number of very rare and rare imputed variants can be improved by using the two-step post-filtration method presented above.

Data availability

The datasets used in the present study are available from https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_files. The individual files are also available on request from the corresponding author.

The data generated and analysed in this study are included in this article and in the Supplementary Information files. The individual files are also available on request from the corresponding author.

Received: 14 December 2020; Accepted: 22 February 2021
Published online: 18 March 2021

References

1. Li, M. X., Jiang, L., Kao, P. Y., Sham, P. C. & Song, Y. Q. IGG3: A tool to rapidly integrate large genotype datasets for whole-genome imputation and individual-level meta-analysis. *Bioinformatics* **25**, 1449–1450. https://doi.org/10.1093/bioinformatics/btp183 (2009).

2. Manolio, T. A. et al. Finding the missing heritability of complex diseases. *Nature* **461**, 747–753. https://doi.org/10.1038/nature08494 (2009).

3. Roshyara, N. R., Kirsten, H., Horn, K., Ahnert, P. & Scholz, M. Impact of pre-imputation SNP-filtering on genotype imputation results. *BMC Genet.* **15**, 88. https://doi.org/10.1186/s12863-014-0088-5 (2014).

4. Clark, A. G. & Li, J. Conjuring SNPs to detect associations. *Nat. Genet.* **39**, 815–816. https://doi.org/10.1038/ng0707-815 (2007).

5. Huang, J., Ellinghaus, D., Franke, A., Howie, B. & Li, Y. 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. *Eur. J. Hum. Genet. (EJHG)* **20**, 801–805. https://doi.org/10.1038/ejhg.2012.3 (2012).

6. Evangelou, E. & Ioannidis, J. P. Meta-analysis methods for genome-wide association studies and beyond. *Nat. Rev. Genet.* **14**, 379–389. https://doi.org/10.1038/nrg3472 (2013).

7. Anderson, C. A. et al. Data quality control in genetic case-control association studies. *Nat. Protoc.* **5**, 1564–1573. https://doi.org/10.1038/nprot.2010.116 (2010).

8. Consortium, W. T. C. C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Am. J. Hum. Genet.* **81**, 399–412. https://doi.org/10.1093/ajhg/dgh062 (2007).

9. Barnes, M. R. & Breen, G. (Ed. Totowas N.J.) (Springer, 2010).

10. Uh, H. W. et al. How to deal with the early GWAS data when imputing and combining different arrays is necessary. *Eur. J. Hum. Genet. (EJHG)* **20**, 572–576. https://doi.org/10.1038/ejhg.2011.231 (2012).

11. Kreiner-Moller, E., Medina-Gomez, C., Uitterlinden, A. G., Rivadeneira, F. & Estrada, K. Improving accuracy of rare variant imputation with a two-step imputation approach. *Eur. J. Hum. Genet. (EJHG)* **23**, 395–400. https://doi.org/10.1038/ejhg.2014.91 (2015).

12. Puitis, G. et al. Rare variant genotype imputation with thousands of study-specific whole-genome sequences: Implications for cost-effective study designs. *Eur. J. Hum. Genet. (EJHG)* **23**, 975–983. https://doi.org/10.1038/ejhg.2014.216 (2015).

13. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. *Nature* **536**, 41–47. https://doi.org/10.1038/nature18642 (2016).

14. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. *G3 (Bethesda)* **1**, 457–470. https://doi.org/10.1534/g3.111.001198 (2011).

15. Franger, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. *Nature* **449**, 851–861. https://doi.org/10.1038/nature06258 (2007).

16. Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. *Am. J. Hum. Genet.* **84**, 235–250. https://doi.org/10.1016/j.ajhg.2009.01.013 (2009).

17. Li, Y. et al. A global reference for human genetic variation. *Nature* **526**, 68–74. https://doi.org/10.1038/nature15393 (2015).

18. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. *Nat. Genet.* **48**, 1279–1283. https://doi.org/10.1038/ng.3643 (2016).

19. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65. https://doi.org/10.1038/nature11632 (2012).

20. Auton, A. et al. A global reference for human genetic variation. *Nature* **526**, 68–74. https://doi.org/10.1038/nature15393 (2015).

21. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. *Nat. Genet.* **48**, 1279–1283. https://doi.org/10.1038/ng.3643 (2016).

22. Itchikova, V. et al. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. *Nat. Genet.* **48**, 1303–1312. https://doi.org/10.1038/ng.3668 (2016).

23. Quick, C. et al. Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations. *bioRxiv* 548321, https://doi.org/10.1101/548321 (2019).

24. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. *Nature* **526**, 75–81. https://doi.org/10.1038/nature15394 (2015).

25. Hehir-Kwa, J. Y. et al. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. *Nat. Commun.* **7**, 12989. https://doi.org/10.1038/ncomms12989 (2016).

26. Delaneau, O. & Marchini, J. Integrating sequencing and array data to create an improved 1000 Genomes Project haplotype reference panel. *Nat. Commun.* **5**, 3934. https://doi.org/10.1038/ncomms4934 (2014).

27. Sharp, K., Kretzschmar, W., Delaneau, O. & Marchini, J. Phasing for medical sequencing using rare variants and large haplotype reference panels. *Bioinformatics* **32**, 1974–1980. https://doi.org/10.1093/bioinformatics/btw065 (2016).

28. Browning, B. L. & Browning, S. R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. *Am. J. Hum. Genet.* **84**, 210–223. https://doi.org/10.1016/j.ajhg.2009.01.005 (2009).

29. Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. *Am. J. Hum. Genet.* **98**, 116–126. https://doi.org/10.1016/j.ajhg.2011.05.020 (2011).

30. Browning, B. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am. J. Hum. Genet.* **81**, 1084–1097. https://doi.org/10.1086/521987 (2007).
30. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. *Nat. Rev. Genet.* 12, 703–714. https://doi.org/10.1038/nrg3054 (2011).

31. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. *Genetics* 165, 2213–2223 (2003).

32. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet.* 5, e1000529. https://doi.org/10.1371/journal.pgen.1000529 (2009).

33. Li, Y., Wilker, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet. Epidemiol.* 34, 816–834. https://doi.org/10.1002/gepi.20533 (2010).

34. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. *Nat. Rev. Genet.* 11, 499–511. https://doi.org/10.1038/nrg2796 (2010).

35. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. *Nature* 488, 96–99. https://doi.org/10.1038/nature11283 (2012).

36. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. *N. Engl. J. Med.* 368, 107–116. https://doi.org/10.1056/NEJMoa1211103 (2013).

37. Zheng-Bradley, X. & Flicek, P. Applications of the 1000 Genomes Project resources. *Brief. Funct. Genomics* 11, 600–614. https://doi.org/10.1093/bfgp/elw027 (2016).

38. He, S. et al. Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (*Triticum aestivum* L.). *BMGenomics* 16, 168. https://doi.org/10.1186/s12864-015-1366-y (2015).

39. Hoffmann, T. J. & Witte, J. S. Strategies for imputing and analyzing rare variants in association studies. *Trends Genet.* (TIG) 31, 556–563. https://doi.org/10.1016/j.tig.2015.07.006 (2015).

40. Asimit, J. L., Day-Williams, A. G., Morris, A. P. & Zeggini, E. ARIEL and AMELIA: Testing for an accumulation of rare variants using next-generation sequencing data. *Hum. Mol. Genet.* 22, R16–21. https://doi.org/10.1093/hmg/ddt376 (2013).

41. Southam, L. et al. The effect of genome-wide association scan quality control on imputation outcome for common variants. *Eur. J. Hum. Genet. (EJHG)* 19, 610–614. https://doi.org/10.1038/ejhg.2010.242 (2011).

42. Das, S. et al. Next-generation genotype imputation service and methods. *Nat. Genet.* 48, 1284–1287. https://doi.org/10.1038/ng.3566 (2016).

43. Gravel, S. et al. Demographic history and rare allele sharing among human populations. *Proc. Natl. Acad. Sci. U.S.A.* 108, 11983–11988. https://doi.org/10.1073/pnas.1019276108 (2011).

44. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat. Genet.* 44, 955–959. https://doi.org/10.1038/ng.2354 (2012).

45. Guan, Y. & Stephens, M. Practical issues in imputation-based association mapping. *PLoS Genet.* 4, e1000279. https://doi.org/10.1371/journal.pgen.1000279 (2008).

46. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. *Nat. Methods* 9, 179–181. https://doi.org/10.1038/nmeth.1785 (2012).

47. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, URL—Bioconductor 3.2. R: A language and environment for statistical computing.

48. Vélez, J. R. et al. Population-specific genotype imputations using minimac or IMPUTE2. *Nat. Protoc.* 10, 1285–1296. https://doi.org/10.1038/nprot.2015.077 (2015).

49. Sampson, J. N. et al. A two-platform design for next generation genome-wide association studies. *Genet. Epidemiol.* 36, 400–408. https://doi.org/10.1002/gepi.21634 (2012).

50. Li, L. et al. Performance of genotype imputation for rare variants identified in exons and flanking regions of genes. *PLoS ONE* 6, e24945. https://doi.org/10.1371/journal.pone.0024945 (2011).

51. Deelen, P. et al. Improved imputation quality of low-frequency and rare variants in European samples using the "Genome of The Netherlands". *Eur. J. Hum. Genet. (EJHG)* 22, 1321–1326. https://doi.org/10.1038/ejhg.2014.19 (2014).

52. Verma, S. S. et al. Improper imputation and quality control steps for combining multiple genome-wide datasets. *Front. Genet.* 5, 370. https://doi.org/10.3389/fgene.2014.00370 (2014).

53. Boyle, A. P. et al. The US National Human Genome Research Institute common region for analysis of common complex diseases. *Nat. Genet.* 47, 84–94. https://doi.org/10.1038/ng.2012.37 (2015).

54. Zheng, J., Li, Y., Abecasis, G. R. & Sheehy, P. A comparison of approaches to account for uncertainty in analysis of imputed genotypes. *Genet. Epidemiol.* 35, 102–110. https://doi.org/10.1002/gepi.20552 (2011).

55. Kim, M., Kim, J. H., Kim, K. & Kim, S. Cost-effective and accurate method of measuring fetal fraction using SNP imputation. *Bioinformatics* https://doi.org/10.1093/bioinformatics/btx172 (2018).

56. Zheng, C., Boer, M. P. & van Eeuwijk, F. A. Accurate genotype imputation in multiparental populations from low-coverage sequence. *Genetics* 210, 71–82. https://doi.org/10.1534/genetics.118.300088 (2018).

57. Coleman, J. R. et al. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. *Brief. Funct. Genomics* 15, 298–304. https://doi.org/10.1093/bfgp/elv037 (2016).

58. Schurz, H. et al. Evaluating the accuracy of imputation methods in a five-way admixed population. *Front. Genet.* 10, 34. https://doi.org/10.3389/fgene.2019.00934 (2019).

59. Coleman, J. R. et al. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. *Brief. Funct. Genomics* 15, 298–304. https://doi.org/10.1093/bfgp/elv037 (2016).

60. Schurz, H. et al. Evaluating the accuracy of imputation methods in a five-way admixed population. *Front. Genet.* 10, 34. https://doi.org/10.3389/fgene.2019.00934 (2019).

61. Kim, M., Kim, J. H., Kim, K. & Kim, S. Cost-effective and accurate method of measuring fetal fraction using SNP imputation. *Bioinformatics* https://doi.org/10.1093/bioinformatics/btx172 (2018).

62. Coleman, J. R. et al. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. *Brief. Funct. Genomics* 15, 298–304. https://doi.org/10.1093/bfgp/elv037 (2016).

63. Schurz, H. et al. Evaluating the accuracy of imputation methods in a five-way admixed population. *Front. Genet.* 10, 34. https://doi.org/10.3389/fgene.2019.00934 (2019).

64. Kim, M., Kim, J. H., Kim, K. & Kim, S. Cost-effective and accurate method of measuring fetal fraction using SNP imputation. *Bioinformatics* https://doi.org/10.1093/bioinformatics/btx172 (2018).

65. Zheng, C., Boer, M. P. & van Eeuwijk, F. A. Accurate genotype imputation in multiparental populations from low-coverage sequence. *Genetics* 210, 71–82. https://doi.org/10.1534/genetics.118.300088 (2018).
71. Vergara, C. et al. Genotype imputation performance of three reference panels using African ancestry individuals. *Hum. Genet.* 137, 281–292. https://doi.org/10.1007/s00439-018-1881-4 (2018).

Acknowledgements

We thank the Bioinformatics Department of CNG with A. Leduc for building the SQL database, N Wiart and E Larssonuer for installing the virtual machines and guiding us through the bioinformatics workflow management system at CNRGR. We also thank Steven McGinn and Elizabeth May for their careful reading of the manuscript and English language editing.

Author contributions

C.C. Design of the study, imputation analyses, statistical and Bioinformatics analyses, writing of the manuscript, text, figures and tables. J.F.D. Design of the study, reading of the manuscript. R.A. Reading of the statistical section with discussion in statistical analyses. V.M. Bioinformatics analyses, reviewing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-85333-z.

Correspondence and requests for materials should be addressed to C.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Open Access] This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2021