Title
Conformational dynamics of hSGLT1 during Na+/glucose cotransport.

Permalink
https://escholarship.org/uc/item/2zw9986s

Journal
The Journal of general physiology, 128(6)

ISSN
0022-1295

Authors
Loo, Donald DF
Hirayama, Bruce A
Karakossian, Movses H
et al.

Publication Date
2006-12-01

DOI
10.1085/jgp.200609643

Peer reviewed
Conformational Dynamics of hSGLT1 during Na+/Glucose Cotransport

Donald D.F. Loo, Bruce A. Hirayama, Movses H. Karakossian, Anne-Kristine Meinild, and Ernest M. Wright

This study examines the conformations of the Na+/glucose cotransporter (SGLT1) during sugar transport using charge and fluorescence measurements on the human SGLT1 mutant G507C expressed in Xenopus oocytes. The mutant exhibited similar steady-state and presteady-state kinetics as wild-type SGLT1, and labeling of Cys507 by tetramethylrhodamine-6-maleimide had no effect on kinetics. Our strategy was to record changes in charge and fluorescence in response to rapid jumps in membrane potential in the presence and absence of sugar or the competitive inhibitor phlorizin. In Na+ buffer, step jumps in membrane voltage elicited presteady-state currents (charge movements) that decay to the steady state with time constants \(\tau_{\text{med}} \) (3–20 ms, medium) and \(\tau_{\text{slow}} \) (15–70 ms, slow). Concurrently, SGLT1 rhodamine fluorescence intensity increased with depolarizing and decreased with hyperpolarizing voltages (\(\Delta F \)). The charge vs. voltage (Q-V) and fluorescence vs. voltage (\(\Delta F-V \)) relations (for medium and slow components) obeyed Boltzmann relations with similar parameters: \(z_b \) (apparent valence of voltage sensor) \(\approx 1 \); and \(V_{0.5} \) (midpoint voltage) between \(-15 \) and \(-40 \) mV. Sugar induced an inward current (Na+/glucose cotransport), and reduced maximal charge (Q\textsubscript{max}) and fluorescence (\(\Delta F_{\text{max}} \)) with half-maximal concentrations (K\textsubscript{0.5}) of 1 mM. Increasing [\(\alpha \text{MDG} \]) also shifted the \(V_{0.5} \) for Q and \(\Delta F \) to more positive values, with K\textsubscript{0.5} \(\approx 1 \) mM. The major difference between Q and \(\Delta F \) was that at saturating [\(\alpha \text{MDG} \)], the presteady-state current (and Q\textsubscript{max}) was totally abolished, whereas \(\Delta F_{\text{max}} \) was only reduced 50%. Phlorizin reduced both Q\textsubscript{max} and \(\Delta F_{\text{max}} \) (K\textsubscript{0.5} \(\approx 0.4 \) \u2103M), with no changes in \(V_{0.5} \) or relaxation time constants. Simulations using an eight-state kinetic model indicate that external sugar increases the occupancy probability of inward-facing conformations at the expense of outward-facing conformations. The simulations predict, and we have observed experimentally, that presteady-state currents are blocked by saturating sugar, but not the changes in fluorescence. Thus we have isolated an electroneutral conformational change that has not been previously described. This rate-limiting step at maximal inward Na+/sugar cotransport (saturating voltage and external Na+ and sugar concentrations) is the slow release of Na+ from the internal surface of SGLT1. The high affinity blocker phlorizin locks the cotransporter in an inactive conformation.

INTRODUCTION

The Na+/glucose cotransporter, SGLT1, is a member of a large family of proteins (SLC5) that uses the Na+ electrochemical gradient to transport substrates (sugars, amino acids, osmolytes, neurotransmitters, ions, and water) against their concentration gradients. We have proposed that the protein functions by an alternating access mechanism, and a simplified six-state ordered kinetic model has been proposed (Parent et al., 1992b; Loo et al., 1998). In previous studies, we characterized the voltage-dependent partial reactions of SGLT1 in the absence of glucose using charge and fluorescence measurements on an hSGLT1 mutant Q457C where sugar transport is abolished after labeling of Cys457 by the fluorophore tetramethylrhodamine-6-maleimide (TMR6M) (Loo et al., 1998, 2005; Meinild et al., 2002). Our conclusion was that the presteady-state currents (in the absence of glucose) are associated with Na+ binding, and isomerization of the empty carrier involves a series of four conformational changes (Loo et al., 2005).

The goal of the present study is to examine the conformations of the transporter under sugar transport conditions. Our kinetic model predicts that the conformational occupancy distribution of the transporter depends on the sugar concentration. We expressed hSGLT1 mutant G507C in Xenopus laevis oocytes and recorded changes in transporter currents (steady state and presteady state) and rhodamine fluorescence after step jumps in membrane voltage. The mutant transporter has similar steady-state and presteady-state kinetics as hSGLT1, before and after labeling of Cys507 by TMR6M. The charge and fluorescence measurements provide independent and complementary views of protein conformational changes. Our model predicts that the charge movements in the Na+/glucose cotransport

Correspondence to Donald Loo: dlloo@mednet.ucla.edu

M.H. Karakossian’s present address is Department of Neurobiology, David Geffen School of Medicine at UCLA.

A.-K. Meinild’s present address is August Krogh Institute, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark.

Abbreviations used in this paper: au, arbitrary unit of fluorescence intensity; SGLT1, Na+/glucose cotransporter; hSGLT1, human Na+/glucose cotransporter; \(\alpha \text{MDG} \), \(\alpha \)-methyl-d-glucopyranoside; TMR6M, tetramethylrhodamine-6-maleimide; MTSEA, 2-aminoethyl methanethiosulfonate hydrobromide.
cycle are associated with external Na\(^+\) binding and translocation of the empty transporter, whereas changes in fluorescence could originate from any (or all) of the conformational transitions of the transport cycle. By using a fully functional protein, we are now able to study the partial reactions involved in sugar binding and translocation. We expected that the fluorescence measurements would reveal conformations not detected by charge measurements. Our data do uncover a novel, slow conformational change with sugar transport that is not associated with charge movement, and simulations indicate that this is due to a slow electroneutral step in the transport cycle associated with the release of Na\(^+\) from SGLT1 in the internal membrane surface. We found that sugar shifted the conformations of SGLT1, resulting in a reduction in the occupancy probability in the outward-facing, and increasing the occupancy probability in the inward-facing, Na\(^+\)-bound conformations. Phlorizin, the high affinity inhibitor, locked the transporter in the phlorizin-bound form and proportionally reduced the occupancy probabilities in all other conformations.

MATERIALS AND METHODS

Preparation and Maintenance of Oocytes

Mature Xenopus laevis oocytes were isolated, defolliculated, and injected with hSGLT1 or hSGLT1 mutant G507C cRNA (see Loo et al., 1993, 1998). The G507C mutant was constructed using standard PCR techniques and confirmed by DNA sequencing. Oocytes expressing hSGLT1 G507C were labeled with TMR6M (Invitrogen; Loo et al., 1998; Meinild et al., 2002). We determined the maximal fluorescence change (\(\Delta F_{\text{max}}\), see below) as a function of the incubating [TMR6M], (from 1 to 100 \(\mu\)M) and duration of labeling (from 1 to 30 min), and found that the extent of labeling of Cys 507C by the fluorophore was saturating in 100 \(\mu\)M TMR6M for 10 min in NaCl buffer at the normal resting membrane potential. We assume that all the functional transporters are labeled. After labeling, oocytes were washed free of dye and kept in NaCl buffer in the dark until use. MTSEA (2-aminoethyl methanethiosulfonate hydrobromide; Toronto Research Biochemicals) was prepared and used as previously described (Loo et al., 1998). Oocytes were bathed in a NaCl buffer containing (in mM) 100 NaCl, 2 KCl, 1 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES, pH 7.4. αMDG or phlorizin was added to the superfusing NaCl buffer at the normal conditions. Na\(^+\) concentration was varied by equimolar replacement of Na\(^+\) with choline.

Uptake Experiments

Sugar uptake into oocytes was measured using 50 \(\mu\)M \(^{14}\)C-α-methyl-d-glucopyranoside (\(^{14}\)CαMDG, Amersham Biosciences), a nonmetabolized sugar analogue that is transported by human SGLT1 (see Ikeda et al., 1989). The initial rates of sugar uptake into oocytes were measured at 20–23°C for 10–60 min. Experiments were repeated at least twice on oocytes isolated from different donor frogs. Uptake was expressed in pmol per oocyte per minute (mean ± SEM).

Combined Electrophysiological and Fluorescence Experiments

Electrophysiological and fluorescence experiments were performed simultaneously, using two-electrode voltage clamp fluorometry (Loo et al., 1998, 2005; Meinild et al., 2002). A standard pulse protocol was applied where membrane potential was held at −50 mV (\(V_o\)) and stepped to various test potentials (\(V_i\) from +90 to −150 mV in 20 mV decrements) for 100 (or 500) ms before returning to \(V_o\). The current records were the averages of three sweeps, and the fluorescence records were averages of either 3 or 10 sweeps. To minimize the effects of photobleaching, the 500-ms fluorescence records were averages of three sweeps. Records were filtered at 50 or 500 Hz, depending on the sampling interval (0.1 or 0.5 ms per sample). Note that in the present studies, we do not record the fast and medium components of \(\Delta F\) observed in our previous study using cut-open oocyte voltage clamp fluorometry (Loo et al., 2005). Fluorescence intensity is expressed as arbitrary units (au). In TMR6M-labeled oocytes expressing mutant G507C bathed in NaCl buffer, \(\Delta F_{\text{max}}/F_{\text{total}}\) is \(≈1\%\), where \(\Delta F_{\text{max}}\) is the maximal fluorescence intensity change and \(F_{\text{total}}\) is the total fluorescence intensity. Fluorescence data have been corrected for photobleaching and rundown (Meinild et al., 2002). All experiments were performed at room temperature (20–25°C).

Data Analysis

Steady-State Currents. To obtain the current–voltage (I-V) relationships of the sugar-induced current, the pulse protocol was applied with 100-ms pulses. The sugar-induced current was obtained by subtracting the current in NaCl buffer (measured at 100 ms) from the current with sugar (αMDG) added to the external solution. The substrate-induced currents (at each voltage) were fitted to the equation

\[
I = I_{\text{max}} [S_o]^n / (K_{0.5} + [S_o]^n) + I_{\text{cm}} + I_{\text{med}},
\]

where \(I_{\text{max}}\) is the maximal current, \([S_o]\) is the external substrate (αMDG or Na\(^+\)) concentration, \(K_{0.5}\) is the half-maximal substrate concentration ([S]o at 50% \(I_{\text{max}}\)), and n is the Hill coefficient. For the kinetics of sugar activation, n was fixed at 1 (Birnir et al., 1991; Parent et al., 1992a; Mackenzie et al., 1998).

Isolation of Presteady-State Currents. Total membrane current in response to a voltage pulse consisted of the bilayer capacitive transient, the presteady-state currents of SGLT1, and the steady-state currents. In the absence of external sugar, the steady-state currents consisted of the background (endogenous) currents of the oocyte and the Na\(^+\) leak (uniporter mode) mediated by SGLT1 (Parent et al., 1992b; Loo et al., 1998). We found previously that the presteady-state currents of hSGLT1 (in the absence of external sugar) contained three components, with time constants (\(\tau\)) ranging from fast (0.2–1.5 ms), medium (3–20 ms), and slow (30–160 ms), and the method of isolating the three components has been described in detail (Loo et al., 2005). The focus of this study is the medium component, as the fast component is beyond the resolution of the two-electrode voltage clamp (≈1 ms). Since the kinetics of the medium component (\(\tau\)V and Q-V relations) obtained from records corrected for the slow component (describe above) are similar to those obtained from uncorrected records (Loo et al., 2005), the medium component was estimated from uncorrected records using 100-ms voltage pulses (Loo et al., 1993; Hazama et al., 1997; Quick et al., 2001; Meinild et al., 2002). In these experiments, total current relaxation (\(I_{\text{med}}\)) was fitted to the equation

\[
I_{\text{med}}(t) = I_{\text{med}} (1 - \exp(-t/\tau_{\text{med}})) + I_{\text{cm}} \exp(-t/\tau_{\text{cm}}) + I_{\text{ss}},
\]

where \(I_{\text{med}}\) is the steady-state current, \(I_{\text{med}} \exp(-t/\tau_{\text{med}})\) is the bilayer capacitance current with initial value \(I_{\text{med}}\) and time constant \(\tau_{\text{med}}\), and \(I_{\text{cm}} \exp(-t/\tau_{\text{cm}})\) is the medium component of SGLT1 presteady-state current with initial value \(I_{\text{med}}\) and time constant \(\tau_{\text{med}}\). The medium component of presteady-state current \(I_{\text{med}} \exp(-t/\tau_{\text{med}})\)
was isolated by subtraction of the steady-state \((I_{st}) \) and membrane bilayer capacitance \((C_m \exp(-1/\tau_m)) \) from the total current. The medium charge movement associated with SGLT1 was obtained from the integral of the medium component of presteady-state current. This analysis was extended to the presteady-state current (or carrier transients) in the presence of sugar. At steady state, the current \((I_p) \) consisted of the oocyte background current, Na\(^+\)-uniporter current (of SGLT1), and the Na\(^+\)/sugar cotransport current.

In experiments where the slow and medium components were isolated (Fig. 2), 100- and 500-ms pulses were applied (Fig. 2, A and B). The slow time constant \((\tau_{slow}) \) was estimated from the 500-ms current records after the medium component has decayed (the period was five times the time constant of the medium component, see Fig. 2 of Loo et al., 2005 for detailed description). The early phase was obtained by extrapolation of the exponential fit to the peak of the capacitive transient, typically two sample points after onset of the voltage pulse. The slow charge was obtained from the integral of the slow component of presteady-state current. The medium charge was then estimated using 100-ms pulses after subtraction for the slow component and steady-state current.

Fitting of Q-V and ΔF-V Relations. The charge vs. voltage \((Q(V_m)) \) relations for medium and slow charge could, to a first approximation, be fitted to a single Boltzmann function (Loo et al., 1993; Hazama et al., 1997):

\[
(Q - Q_{\text{hyp}})/Q_{\text{max}} = 1/[1 + \exp(z\delta(V_m - V_{0.5})/F/RT)],
\]

where \(Q_{\text{max}} = Q_{\text{exp}} - Q_{\text{hyp}}, Q_{\text{exp}} \) and \(Q_{\text{hyp}} \) are the Q (absolute value) at depolarizing and hyperpolarizing limits, \(V_m \) is membrane potential, F is the Faraday, R is the gas constant, T is the absolute temperature, \(V_{0.5} \) is the membrane potential at 50% \(Q_{\text{max}} \) (or the midpoint voltage), and \(\delta \) is the maximum steepness factor for the dependence of Q on voltage, or the apparent valence of the voltage sensor; \(\delta \) is the product of the apparent valence of the movable charge \((z) \), and the fraction of the membrane electric field traversed by the charge \((\delta) \). We denote \(z\delta \) for \(\delta \) obtained from charge movement.

The Boltzmann relation was also used to empirically fit the dependence of the change of fluorescence intensity \((\Delta F) \) on membrane voltage (Loo et al., 1998; Meinild et al., 2002). The parameters obtained were the maximal fluorescence intensity change \((\Delta F_{\text{max}}) \), the membrane voltage at 50% \(\Delta F_{\text{max}} \) (\(V_{\text{50}} \)), and the apparent valence or voltage-steepestness factor for fluorescence \((z\delta) \).

Fits of data to equations were performed using either Sigma-plot 2002 (SPSS), or Clampfit 8.1 (Axon Instruments, Inc.). On data obtained on a single oocyte, the statistics are given by the means and standard errors of the means with the number of samples. While data are obtained from a population, the statistics are given by the means and standard errors of the means with the number of samples. When data are shown for representative experiments, all experiments were performed on at least three oocytes from different batches.

Simulation of SGLT1

The differential equation for the eight-state model for Na\(^+\)/glucose cotransport (Fig. 9) is shown as Eq. 4 (below). \(C_i \) is the occupancy probability in state i, and \(C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8 = 1 \). Excluding the substrate-binding reactions, the rate constants \(k_i \) for transitions from \(C_i \rightarrow C_i \) are given by \(k_i = k_i^o \exp(-E_i/RT) \), where \(k_i^o \) is a voltage-independent rate, \(E_i \) is the equivalent charge movement (up to the transition state from \(C_i \rightarrow C_i \)), and \(F, R, \) and \(T \) have their usual physicochemical meanings (Parent et al., 1992b). Na\(^+\) and sugar binding to the protein on the external and internal membrane surfaces is represented by pseudo-rate constants \(k_{12} = k_{12}^o [\text{Na}]^2 \exp(-E_1/RT) \), \(k_{23} = k_{23}^o [\text{sugar}] \exp(\epsilon/RT) \), and \(k_{45} = k_{45}^o \text{MDG} \). There are four components of presteady-state current associated with voltage-sensitive reactions (shaded region of Fig. 9): \(C_2 \rightarrow C_3, C_4 \rightarrow C_5, C_7 \rightarrow C_8, \) and \(C_6 \rightarrow C_7 \). The presteady-state current \((I_p) \) due to \(C_7 \rightarrow C_8 \) was calculated by \(I_p = (e_{\text{e}} + e_{\text{c}}) (k_{72} \delta C_7 - k_{54} \delta C_5) \), where \(e_{\text{e}} \) and \(e_{\text{c}} \) are the elementary charges (Parent et al., 1992b; Loo et al., 2005).

The total SGLT1 current \((I) \) is \(I = N_i (I_{1a} + I_{1b} + L_{a} + L_{b}) \), where \(N_i \) is the total number of transporters in the oocyte plasma membrane.

Simulations in the figures 10–15 and Table I were performed for wild-type hSGLT1 and TM6G-labeled mutant G507C at 20°C using the parameters of Table II with \([\text{Na}^+]_o = 100 \text{mM}, [\text{Na}^+]_i = 5 \text{mM}, \text{[MDG]} = 0, \) and \(N_i = 10^8 \) transporters. All the simulations were performed at 0–100 mM \([\text{Na}^+]_o \) and 0–100 mM [sugar].

External phlorizin was assumed to bind to SGLT1 in the Na\(^+\)-bound conformation (Parent et al., 1992b): \([\text{Na}^+]_o = [\text{Na}^+]_i \text{Na}^+] \), thus in the presence of phlorizin, there are nine states (Fig. 9). Simulations of the phlorizin-binding model (using the rate constants of Table II) were performed in a similar manner to the eight-state model, with modifications to include the phlorizin-bound state \([\text{Na}^+]_o = [\text{Na}^+]_i \text{Na}^+] \), and as membrane potential was stepped to each test value \((V_t \text{ ranging between } +50 \text{ and } -150 \text{ mV}) \), the time course of the occupancy probabilities, cotransporter currents, and fluorescence \((\Delta F) \) were obtained by numerically integrating the differential equation (Eq. 4) using the Runge-Kutta Method. Steady-state kinetic parameters were simulated by generating the I-V relations as functions of \([\text{Na}^+]_o \), and \([\text{sugar}]_o \). Kinetic parameters \(I_{\text{max}}, K_{0.5} \), and \(n \) (at each \(V_m \)) were obtained by fitting the I vs. [sugar]_o or \([\text{sugar}]_o \) relations to Eq. 1.

For presteady-state simulations, the transient cotransporter currents for the ON and OFF responses at each test voltage \((V_t) \) were integrated to obtain the charge \((Q) \). The Q vs. V_t relations were fitted with the Boltzmann relation (Eq. 3) to obtain the maximum charge \((Q_{\text{max}}) \), apparent valence of the voltage sensor \((z\delta) \), and midpoint voltage \((V_{0.5}) \). The eigenvectors of the matrix (Eq. 4) were obtained using MATLAB 6.0 (The MathWorks Inc.). The time constants were the reciprocals of the eigenvalues (Loo et al., 2005).
Fluorescence experiments were simulated by assuming that changes of fluorescence intensity (ΔF) with step jumps in membrane voltage are due to changes in occupancy probabilities:

$$ΔF = q_{y1}ΔC_{y1} + q_{y2}ΔC_{y2} + q_{y3}ΔC_{y3} + q_{y4}ΔC_{y4} + q_{y5}ΔC_{y5} + q_{y6}ΔC_{y6}$$

where q_{yi} is the apparent quantum yield of the fluorophore (TMR6M) when SGLT1 is in conformation Ci. The simulations were performed with $q_{y1} = 3$, $q_{y2} = 1$, $q_{y3} = 3$, $q_{y4} = 5$, $q_{y5} = 3$, and $q_{y6} = 5$. In practice, $ΔF$ was determined by the relative quantum yields $q_{y2}/q_{y3} = 3$, and $q_{y5}/q_{y6} = 6$ (see Discussion below).

The Dixon analysis (for the determination of the inhibitory constant K_i for phlorizin, Table I) was simulated by determining the intersection of the straight lines $1/I$ vs. [phlorizin]$_o$. Relations at [αMDG]$_o = 1$ and 2 mM, where I is the sugar-coupled current (at $−150$ mV) at each [phlorizin]$_o$ (see Panayotova-Heiermann et al., 1995). [Phlorizin]$_o$ used was 0, 50, 100, 200, 500, 1,000, 5,000, and 10,000 nM.

RESULTS

Part I. Steady- and Presteady-State Kinetics

We first briefly describe the steady-state kinetic properties of hSGLT1 G507C, and the effects of MTSEA and TMR6M. The kinetics of the pre-steady-state currents in the absence of glucose and the fluorescence changes of the TMR6M-labeled mutant protein with step jumps in membrane voltage are then presented. These provide the basis for describing the conformations of SGLT1 under sugar-transporting conditions by charge and fluorescence measurements (Part II).

Steady-State Kinetics

14C-αMDG Uptake. The rates of 14C-αMDG (50 μM) uptake into oocytes were comparable for oocytes expressing the mutant transporter and wild-type hSGLT1. In a representative experiment on the same batch of oocytes (each determination being the mean of 8–10 oocytes and expressed as the mean ± SEM), in the presence of external Na$^+$ (100 mM), uptake by oocytes injected with hSGLT1 G507C-cRNA was 143 ± 8 pmol/oocyte/h versus 176 ± 10 pmol/oocyte/h for oocytes injected with wild-type hSGLT1-cRNA. This uptake rate was 100-fold greater than that of noninjected oocytes (1.4 ± 0.1 pmol/oocyte/h). Uptake of αMDG by hSGLT1 G507C was dependent on external Na$^+$ and blocked by the SGLT1-specific inhibitor phlorizin. When external Na$^+$ was replaced by choline, the rate of sugar uptake (1.6 ± 0.1 pmol/oocyte/h) was similar to that of noninjected control oocytes (0.6 ± 0.1 pmol/oocyte/h). Phlorizin (500 μM) in the external solution also reduced the rate of 14C-αMDG uptake by the mutant to that of controls.

Na$^+$ and Sugar Activation. The total current from an oocyte expressing hSGLT1 G507C in NaCl buffer is shown in Fig. 1 A. Membrane potential (V_m) was held at $−50$ mV (V_h) and stepped to a series of test values for 100 ms (from $+50$ to $−150$ mV) before returning to V_h. The current relaxation consisted of an initial membrane capacitive transient (time constant $\tau = 0.8$ ms) followed by the decay of the pre-steady-state current to steady state (with $\tau = 3–20$ ms) (Loo et al., 1993, 2005). The current records when 1 mM αMDG was added to the bathing medium are shown in Fig. 1 B. At each test voltage, αMDG increased the steady-state current, and there was a shift in the profile of the pre-steady-state current records. This is particularly noticeable in the OFF response when the test voltage was returned to V_h (the effect of sugar on pre-steady-state current will be presented below).

The current vs. voltage (I-V) relation of the αMDG-induced current tended toward saturation at large negative membrane voltages ($−150$ mV) and approached zero at $+50$ mV (Fig. 1 C). At each voltage, the I vs. [αMDG]$_o$ relation was hyperbolic (e.g., Fig. 1 D shows the relation at $−50$ mV). The half-maximal concentration for αMDG ($K_{αMDG}^{50}$) was 1.6 mM. $K_{αMDG}^{50}$ decreased with negative membrane voltages (Fig. 1 E), and reached a minimum of 1.0 ± 0.1 mM at $−150$ mV. In three experiments, at 100 mM [Na$^+$]$_o$ and $−50$ mV, $K_{αMDG}^{50}$ was 1.7 ± 0.3 mM.

The dependence of the αMDG-induced current on [Na$^+$]$_o$ was sigmoid. The Hill coefficient was 1.5 and independent of membrane voltage (unpublished data). Fig. 1 F shows the dependence of the half-maximal concentration for Na$^+$ (K_{Na}^{50}) on voltage. At $−50$ mV, K_{Na}^{50} was 20 ± 2 mM and decreased to 2.8 ± 0.4 mM at $−150$ mV. In three experiments, K_{Na}^{50} at $−50$ mV was 18 ± 1 mM.

Effects of MTSEA and TMR6M. The rate of 14C-αMDG uptake for oocytes expressing hSGLT1 mutant G507C preincubated in MTSEA (1 mM for 15 min in NaCl buffer) was 81 ± 14% ($n = 5$) of the control nontreated oocytes, indicating that the mutant hSGLT1 G507C retained the ability to transport sugar after Cys507 was modified by MTSEA. We confirmed that the Cys507 was derivatized by MTSEA from the reduction in maximal fluorescence change (ΔF$_{max}$, see Fig. 3 below) after the oocytes were preincubated in the reagent. In four experiments, compared with control nonpreincubated oocytes, ΔF$_{max}$ (measured with the oocytes bathed in NaCl buffer) was reduced 93% (from 9.1 ± 1.0 au to 0.06 ± 0.14 au). In control experiments on oocytes expressing wild-type hSGLT1, exposure to MTSEA had no effect on the kinetics of hSGLT1 (see also Loo et al., 1998), and after labeling by TMR6M, fluorescence changes induced by voltage jumps were not observed in noninjected oocytes and hSGLT1-expressing oocytes (unpublished data).

The affinity for sugar was unaffected by either MTSEA or TMR6M. In representative experiments on the same oocytes (at $−50$ mV), $K_{αMDG}^{50}$ was 1.9 ± 0.1 mM before, 2.0 ± 0.2 mM after MTSEA, and 2.4 ± 0.3 mM after TMR6M. The I-V curves of the sugar-induced currents
(at 20 mM αMDG) between MTSEA-labeled and nonlabeled oocytes were similar, except for a slight reduction (6 ± 4%, n = 5) in the current at each voltage.

Presteady-State Kinetics

Charge Movement. We have previously found that in two-electrode voltage clamp experiments on hSGLT1, the presteady-state currents contained medium and slow components with time constants of 3–20 and 30–100 ms (Loo et al., 2005). Similar time constants were also observed in mutant hSGLT1 G507C (Fig. 2). Like wild-type hSGLT1, the transient currents of the mutant did not quite reach steady state at 100 ms (Fig. 2 A), and there was a slow decay to steady state revealed in the 500-ms pulses (Fig. 2 B).

The τ-V relation for the medium component is shown in Fig. 2 C. For the ON pulse, when membrane potential was stepped from V_h to V_t, τ_{med} was 20 ± 1 ms at -150 mV and decreased to 4.0 ± 0.2 ms at $+50$ mV (filled symbols). For the OFF pulse, when V_t was returned to V_h, τ_{med} was independent of the test voltage (open symbol), and was 12 ± 1 ms ($n = 10$). The medium charge transfer (Q_{med}), obtained by subtracting the current (measured at 100 ms) with sugar added from baseline current in Na$^+$ alone, was 39 ± 5 nC ($n = 10$). The Q_{med}-V curve obeyed the Boltzmann relation with a Q_{max} of 7 nC, apparent valence ($z\delta_Q$) of 1.0, and midpoint voltage ($V_{0.5}$) of -62 mV (Fig. 2 E). When the medium and slow charges were added to obtain the total charge (Q_{total}),...
the Q_{total}-V curve followed the Boltzmann relation with a Q_{max} of 19 nC, $z\delta Q$ of 1.0, and $V_{0.5}$ of -50 mV (Fig. 2 F).

We focused our attention on the medium component and estimated medium charge from 100-ms pulses uncompensated for slow charge. Previously we found the τ_{med}-V and Q_{med}-V relations obtained from current records corrected for slow charge were similar to those obtained from uncorrected records (Loo et al., 2005). For the medium component, the maximal charge (Q_{max}) ranged from 5 to 30 nC, depending on the level of expression of mutant G507C in the oocyte plasma membrane. $z\delta Q$ was 1.0 ± 0.1 ($n = 6$). $V_{0.5}$ ranged between -30 and -47 mV, with a mean of -38 ± 3 ($n = 6$).

TMR6M did not affect the kinetics of the presteady-state currents. In a representative experiment on the same oocyte where we monitored the medium charge movement before and after TMR6M, $z\delta Q$, $V_{0.5}$, and Q_{max} were 0.9 ± 0.1, -30 ± 1 mV, and 18 ± 1 nC before, and 0.9 ± 0.1, -28 ± 1 mV, and 18 ± 1 nC after TMR6M. The population means for $z\delta Q$ and $V_{0.5}$ after labeling by TMR6M were 1.0 ± 0.1 ($n = 6$), and -35 ± 3 mV ($n = 6$). $V_{0.5}$ ranged between -28 and -45 mV. The τ-V relations (for medium charge) were the same before and after labeling by TMR6M (unpublished data).

Fluorescence. The time course of the fluorescence signal (ΔF) from a TMR6M-labeled hSGLT1 G507C-expressing oocyte in response to a series of voltage pulses (from V_h -50 mV) is shown in Fig. 3. Fluorescence intensity increased with depolarizing voltages and decreased with hyperpolarizing voltages. Fluorescence intensity returned to baseline when the test pulse was stepped back to V_h. Like charge movement, the fluorescence records consisted of medium and slow components. The slow component was much more apparent in the depolarizing direction, especially the OFF response (Fig. 3, A vs. B).

Figure 2. Presteady-state kinetics of hSGLT1 G507C (nonlabeled). (A) Current record for 100-ms test voltage pulses. V_h was -50 mV, and the current records at selected $V_t = +30$, -10, -50, -90, and -150 mV are shown for the ON and OFF pulses. (B) The corresponding current records for 500-ms pulses. (C) τ-V relation for the medium and slow components. The OFF responses were independent of the previous test potential (V_t), and the open symbol represents the mean of 10 values with V_t varying between $+50$ and -150 mV. (D) Q-V relation for medium charge. (E) Q-V relation for slow charge. (F) Q-V relation for total charge. The curve in D was obtained from fitting the data with the Boltzmann relation (Eq. 3). In E and F, the Boltzmann fits were obtained under the constraint $z = 1.0$.

Figure 3. Fluorescence signal (ΔF) from a TMR6M-labeled hSGLT1 G507C-expressing oocyte in response to a series of voltage pulses (from V_h -50 mV) is shown in Fig. 3. Fluorescence intensity increased with depolarizing voltages and decreased with hyperpolarizing voltages. Fluorescence intensity returned to baseline when the test pulse was stepped back to V_h. Like charge movement, the fluorescence records consisted of medium and slow components. The slow component was much more apparent in the depolarizing direction, especially the OFF response (Fig. 3, A vs. B).
The medium and slow components (ΔF_{med} and ΔF_{slow}) at each voltage were isolated by fitting the time course of the 500-ms fluorescence records (ΔF_{total}) with a sum of two exponential functions, and ΔF versus voltage relations for medium and slow components were obtained. The ΔF_{med}-V and ΔF_{slow}-V were sigmoidal and were fitted by the Boltzmann relation (Fig. 3, C and D). $z_{0.5}$ and $V_{0.5}^F$ were 0.8 and 3 mV (Fig. 3 C) for the medium, and 0.6 and 12 mV (Fig. 3 D) for the slow component. The mean values of the voltage sensitivity ($z_{0.5}$) and midpoint voltage ($V_{0.5}^F$) from seven experiments were similar for both components: 0.9 ± 0.1 and −15 ± 3 mV for the medium, and 0.8 ± 0.1 and −17 ± 3 mV for the slow component.

The main difference between the medium and slow components was their amplitude. Maximal fluorescence change for the medium component ($\Delta F_{\text{max med}}$) was 64 ± 1% ($n = 7$) of the total maximal fluorescence change ($\Delta F_{\text{max total}}$).

The dependence of the relaxation time constants for ΔF on voltage differed between medium and slow components. For medium, τ was 15 ± 1 ms at −150 mV and decreased to 8.7 ± 0.1 ms at +90 mV for ON (filled symbols, Fig. 3 E). For OFF, τ was independent of test voltage (open symbols, Fig. 3 E) and was 14.4 ± 0.3 ms ($n = 12$). For slow ΔF (Fig. 3 F), τ (139 ± 8 ms, $n = 10$) was relatively independent of voltage, for ON and OFF $\tau = 150 ± 14$ ms.

Part II. Presteady-State Kinetics in Sugar

Sugar increased the steady-state current (due to Na$^+$/sugar cotransport, see Fig. 1) and shifted the profile of the presteady-state currents. Fig. 4 A shows the total current records for the OFF-pulse when membrane potential was stepped from various test values (V_t from +50 to −150 mV) back to the holding potential (−50 mV) from an oocyte in 0, 1, and 10 mM αMDG. The
most pronounced effect of sugar was the reduction in presteady-state current with hyperpolarizing voltages. For example, at 10 mM $[\alpha MDG]_o$, the OFF currents for hyperpolarizing voltages was completely inhibited (Fig. 4 A). As in the absence of sugar, the ON and OFF charges were equal and opposite, and the Q-V relations at each $[\alpha MDG]_o$ fitted the Boltzmann relation (unpublished data). With increasing $[\alpha MDG]_o$ (from 0 to 100 mM), there was a reduction and eventual elimination in the maximal charge (Q_{max}) with a $K_{0.5}$ of 1.1 mM (Fig. 6 and Fig. 7 A). The midpoint voltage ($V_{0.5}$) shifted to more positive values (maximal shift was $+60$ mV, from -45 mV in NaCl alone to $+15$ mV in 10 mM αMDG) with a $K_{0.5}$ of 1.3 mM (Fig. 7 C). $z\delta F$ ($=0.8$), as $z\delta Q$ ($=1.0$), was unaffected by αMDG.

The relaxation time constants (τ) of the medium component of the presteady-state current showed a small decrease with increasing $[\text{sugar}]_o$, but only at hyperpolarizing voltages. For example, we determined τ in the presence and absence of 0.1 mM αMDG. In the case of G507C, there was no significant change in the ON and OFF time constants at either at $+30$ or -130 mV (τ_{ON} was 5.1 ± 0.4 at $+30$ mV, and 13.4 ± 0.6 ms at -130 mV, $n = 4$; and τ_{OFF} was 10.5 ± 0.4 ms, $n = 6$). For wild-type hSGLT1, there was also no significant change in τ_{ON} at $+30$ mV, but there was a reduction from 19 to 14 ms at -130 mV. At higher sugar concentrations we were unable to accurately determine the time constants of the medium component in the hyperpolarizing direction.

![Figure 4](image-url) hSGLT1 G507C OFF currents in the presence of sugar (A) and phlorizin (B). Membrane potential was held at -50 mV (V_h), and shown are the selected total OFF current records (in response to a series of test voltage pulses from $+50$ to -150 mV) of an oocyte expressing G507C (unlabeled). The numbers beside the traces indicate the test voltage (V_t). (A) Effect of αMDG. OFF current records in Na$^+$ buffer (top), with 0.1 (middle) and 1 mM αMDG (bottom) added to the external solution. At V_h, the αMDG-induced currents were 14 and 99 nA at 0.1 and 1 mM αMDG. (B) Effect of phlorizin. OFF current records in Na$^+$ buffer, and with 0.5 and 1 mM phlorizin added to the external solution. Dashed lines represent zero current.
or the slow component owing to the reduction of the presteady-state current (Fig. 7 A) and the positive shift in \(V_{0.5} \) (Fig. 7 C).

The time constant (\(\tau \)) of the medium component of \(\Delta F \) was also unaffected by \(\alpha \)MDG. On average, for ON, at +30 mV, \(\tau \) was 10.7 ± 0.2 ms (\(n = 5 \)). At −150 mV, \(\Delta F \) was too low for reliable estimates of \(\tau \) (compare Fig. 5). On average, the time constant for OFF was 17.1 ± 0.3 ms (\(n = 5 \)). When large depolarizing voltages were applied at saturating sugar concentrations (>10 mM, compare Fig. 5 and Fig. 6 B), the time course of \(\Delta F \) was slow, with \(\tau \) ranging between 600 and 900 ms. In three experiments at 100 mM \(\alpha \)MDG where 500-ms pulses were applied, the mean was 800 ± 100 ms.

Blockade by Phlorizin
Phlorizin reduced, and at high concentrations eliminated, the presteady-state current, but did not alter the profiles of the OFF current records (Fig. 4 B). The maximal charge (\(Q_{\text{max}} \)) was reduced with [phlorizin]_o, with an inhibitory constant (\(K_i \)) of 0.3 \(\mu \)M (Fig. 7 B). There was no change in the \(V_{0.5} \) (Fig. 7 D) and \(z\delta \) (not depicted).

Fig. 8 shows the effect of phlorizin on the fluorescence records. The inhibitor reduced \(\Delta F \) at every test voltage. At the highest concentration applied (100 \(\mu \)M), \(\Delta F \) was completely inhibited. The \(K_i \) for the reduction of \(\Delta F_{\text{max}} \) with [phlorizin]_o was 0.4 \(\mu \)M, similar to the \(K_i \) for the inhibition of charge (Fig. 7 B). There was also no effect of phlorizin on the \(V_{0.5} \) (Fig. 7 D) and \(z\delta \) for fluorescence (not depicted).

The time constants of the presteady-state current and \(\Delta F \) were unaffected by phlorizin. For example, in the experiment of Fig. 4 B, as [phlorizin]_o varied from 0 to 1 \(\mu \)M, on average, for the ON presteady-state currents at +50 and −150 mV, \(\tau \) was 4.8 ± 0.3 ms (\(n = 5 \)) and 17.3 ± 0.4 ms (\(n = 5 \)), respectively. For OFF, on average, \(\tau \) was 10.6 ± 0.3 ms (\(n = 5 \)). Likewise, in the experiment of Fig. 8, on average, for the ON fluorescence records at +50 mV, \(\tau \) was 11.1 ± 0.2 ms (\(n = 5 \)). For OFF, \(\tau \) was 14.6 ± 0.6 ms (\(n = 5 \)).

DISCUSSION

The goal of this study is to examine sugar interactions with SGLT1 and to place this in context of a kinetic model for \(Na^+ \)/sugar cotransport. We used a rhodamine-labeled mutant G507C of SGLT1 that transports sugar with similar kinetics as wild type. The kinetics of wild-type hSGLT1 and mutant G507C determined from the electrical and optical measurements (steady-state sugar-induced current, presteady-state current, and \(\Delta F \) measurements) are summarized in Table I. Apart from the slight increase in \(K_{0.5}^{\alpha \text{MDG}} \) for mutant G507C compared with wild-type hSGLT1 (1.7 vs. 0.3–0.5 mM), the kinetics of hSGLT1 are similar to those of the TMR6M-labeled G507C. The \(K_{0.5}^{\alpha \text{MDG}} \) values were identical from electrical and optical measurements.

Our strategy was to perturb the steady-state distribution of conformations of the protein in the absence and presence of sugar or the competitive inhibitor phlorizin by step jumps in membrane voltage, and measure the presteady-state currents and changes in rhodamine fluorescence. The charge and fluorescence experiments provide insights into conformational changes induced...
by ligands (Na\(^+\) and sugar) and membrane voltage. In the absence of sugar, we have previously shown that charge measurements, namely, the Q-V relations, are correlated with the steady-state distribution of hSGLT1 between conformations C\(_2\) and C\(_6\) (C\(_2\) is the outward-facing Na\(^+\)-bound state, and C\(_6\), the inward-facing empty transporter) (see Fig. 9 and Loo et al., 1998, 2005; Meinild et al., 2002). In addition, we have shown the fluorescence changes (\(\Delta F\)) reflect differences in local environment of the fluorophore as the protein undergoes changes of conformations (Loo et al., 2005).

The key observations here are that \(\alpha\)MDG and phlorizin reduce the presteady-state current and maximal fluorescence, and \(\alpha\)MDG shifts the midpoint voltages (\(V_{0.5}\)) for charge and fluorescence. More importantly, at saturating [\(\alpha\)MDG]\(_o\), presteady-state current was completely inhibited, whereas fluorescence change (\(\Delta F_{\text{max}}\)) was not (Fig. 6). The decrease in presteady-state current (and \(Q_{\text{max}}\)) is matched by the generation of the \(\alpha\)MDG-induced steady-state current, i.e., Na\(^+\)/sugar cotransport (Loo et al., 1993). The reductions in \(Q_{\text{max}}\) and \(\Delta F_{\text{max}}\) and the shifts of the \(V_{0.5}\)'s with [\(\alpha\)MDG]\(_o\) occurred with similar kinetics (\(K_{\text{0.5}}\) \(\alpha\)MDG = 1 mM, Table I), indicating that they are all measurements of the same overall Na\(^+\)/glucose cotransport process. Phlorizin reduced \(Q_{\text{max}}\) and \(\Delta F_{\text{max}}\), but had no effect on \(V_{0.5}\) (see also Hazama et al., 1997; Hirayama et al., 2001).

Kinetic Model of SGLT1

Previously, we have developed and refined a model to account for the observed steady-state and presteady-state kinetics of SGLT1 (Parent et al., 1992b; Loo et al., 2002). Basically, this is a six-state, ordered, nonrapid equilibrium, alternating-access model with mirror symmetry and a Na\(^+\)/glucose transport stoichiometry of 2. We postulated that the ligand-free carrier is negatively charged (valence \(-2\)). There are six kinetic states, empty (C\(_1\) and C\(_6\)), Na\(^+\) bound (C\(_2\) and C\(_5\), C\(_3\) and C\(_4\)), and Na\(^+\)/ and sugar-bound (C\(_6\) and C\(_4\)) states in the external and internal membrane surfaces (Fig. 9). The Na\(^+\) ions bind to the protein before glucose, and the substrates are transported simultaneously. To simplify the model we assumed the...
Na\(^+\) ions bind to two identical Na\(^+\) binding sites with the same rate constant. The only voltage-dependent steps are translocation of the ligand-free protein between the two sides of the membrane and the binding of external Na\(^+\). The effects of voltage on these reaction steps were described by the Eyring rate theory. The presteady-state currents are associated with the voltage-dependent steps: binding of external Na\(^+\) (C\(_1\)=C\(_2\), 30% of total charge; Loo et al., 1993; Hazama et al., 1997) and translocation of the empty carrier (C\(_1\)=C\(_6\), 70% of total charge).

All steady-state and presteady-state parameters (I/V curves, K\(_{0.5}\) and I\(_{\text{max}}\) values for Na\(^+\) and sugar as a function of membrane voltage and given cis and trans concentrations) were computer generated simultaneously with numerical values assigned for the 12 of the 14 rate constants, and the results were compared.

Figure 7. Effect of sugar and phlorizin on charge and fluorescence. (A) Dependence of Q\(_{\text{max}}\) and \(\Delta F_{\text{max}}\) on [aMDG]\(_o\). The line was the fit of the charge data to Eq. 1. The line through the \(\Delta F\) data was drawn using Eq. 1 with a K\(_{0.5}\) of 1.1 mM and a maximal change of 0.5 observed at 100 mM [aMDG]\(_o\). (B) Dependence of Q\(_{\text{max}}\) and \(\Delta F_{\text{max}}\) on [phlorizin]\(_o\). The lines were fits of the data. (C) Dependence of the shift of V\(_{0.5}\) for charge (\(\Delta V_{0.5}\)\(_Q\)) and fluorescence (\(\Delta V_{0.5}\)\(_F\)) on [aMDG]\(_o\). The line was obtained by fitting all the data. (D) Dependence of V\(_{0.5}\) for charge and \(\Delta F\) on [phlorizin]\(_o\). The dashed lines represent the mean of the data points.

Figure 8. Effect of phlorizin on fluorescence. Shown is the time course of \(\Delta F\) in NaCl buffer with [phlorizin]\(_o\) (0, 0.1, 1, and 100 \(\mu\)M) in one oocyte. Membrane potential was held at \(V_h\) \(-50\) mV and stepped for 100 ms to \(V_t\) (from +50 to \(-150\) mV), before returning to \(V_h\). Abscissa and ordinate scales are the same for all panels.
and contrasted with the experimental datasets. Optimization of the simulations was accomplished by progressively adjusting each rate constant to obtain a global fit to the experimental results. A single set of rate constants, reasonable but not necessarily unique, was obtained that accounted for the overall behavior of the cotransporter, including the I/V curves in the presence and absence of sugar, the steady-state kinetics of inward Na\(^+\)/sugar cotransport as a function of the external ligand concentrations and voltage (Parent et al., 1992b).

Subsequently, we tested and refined the model by detailed investigations of: (a) the presteady-state behavior of SGLT1 as a function of external Na\(^+\) concentration, membrane voltage, and temperature (Loo et al., 1993, 2005, Hazama et al., 1997); (b) the stoichiometry of Na\(^+\) and glucose cotransport (Mackenzie et al., 1998); (c) Na\(^+\) transport in the absence of substrate (Loo et al., 1999); (d) the kinetics of reverse Na\(^+\)/glucose cotransport (Quick et al., 2003; Eskandari et al., 2005); (e) the conformational states of SGLT1 as a function of ligand concentrations and membrane voltage using optical techniques on a TMR6M-labeled hSGLT1 mutant (Q457C) where Na\(^+\)/sugar cotransport is abolished after labeling (Loo et al., 1998, 2005; Meinild et al., 2002) and (f) electron microscopic techniques to determine the density of SGLT1 in the membrane (Zampighi et al., 1995). These comprehensive studies support the validity of the model but require the presence of two additional states (C\(_g\) and C\(_d\)) between C\(_l\) and C\(_b\) to account for the presteady-state behavior (shaded region of Fig. 9; Loo et al., 2005). The major discrepancies between the model and the observed behavior are the fast presteady-state kinetics in the submillisecond range, and these are thought to be due to assumptions about Na\(^+\) binding to two identical sites with similar rate constants (see Loo et al., 2005 and below). In this study we have employed the eight-state model (Fig. 9) along with electrical and optical methods to examine the conformational states during the Na\(^+\)/glucose cotransport cycle. Since the binding of the high-affinity inhibitor phlorizin is Na\(^+\) dependent, this is incorporated into the model as C\(_{2}\) = C\(_{7}\) ([CNa\(_2\)] + Pz\(^r\) [CNa\(_2\)Pz\(^r\)]) with ON and OFF rates k\(_{27}\) and k\(_{72}\) (Fig. 9). Phlorizin binding to the cytosolic surface of SGLT1 ([CNa\(_2\)]' + Pz\(^r\) [CNa\(_2\)Pz\(^r\)']) is neglected owing to the low affinity (K\(_i\) > 1 mM; Quick et al., 2003; Eskandari et al., 2005).

Model Simulations

As a starting point, we used the rate constants for the voltage-dependent steps from Loo et al. (2005). The rate constants for the sugar binding and translocation steps (k\(_{23}\), k\(_{32}\), k\(_{34}\), and k\(_{43}\)) are from Hirayama et al. (1996). The rate constants for Na\(^+\) and sugar binding on the internal membrane are from Eskandari et al. (2005). We extend the model to mutant G507C by reducing the rates for sugar binding (k\(_{23}\), k\(_{34}\)) for mutant G507C to account for the lower K\(_{0.5}^\text{MBG}\) (Table I). A set

Table I

Kinetic Parameters for Wild-type hSGLT1 and TMR6M-labeled hSGLT1 Mutant G507C

Parameter	G507C	G507C-TMR6M	hSGLT1	G507C-TMR6M	hSGLT1
Electrical					
Steady state					
K_{23}^{MBG} (mM)	1.7 ± 0.3	2.4 ± 0.3	0.30–0.40^b	0.94	0.39
K_{23}^{Na} (mM)	18 ± 1	25 ± 3	20–40^{c,d}	16	16
K_{50}^{Na} (mM)	ND	ND	220 ± 70⁺	338	326
Pre-steady state					
K_{23}^{MBG} (mM), $V_{0.5}$ shift	1.6 ± 0.7	1.3 ± 0.2	0.16 ± 0.19	1.05	0.13
K_{23}^{MBG} (mM), Q_{max} reduction	1.1 ± 0.3	1.1 ± 0.8	0.21 ± 0.01	0.9	0.11
K_{50}^{MBG} (mM), Q_{max} reduction	180 ± 24	250 ± 39	200 ± 25	277	277
Optical					
K_{23}^{MBG} (mM), $V_{0.5}$ shift	–	1.3 ± 0.2	–	1.1	–
K_{23}^{MBG} (mM), ΔF_{max} reduction	–	1.1 ± 0.8	–	0.5	–
K_{50}^{MBG} (mM), Q_{max} reduction	–	450 ± 250	–	399	–

Steady-state kinetic parameters (Experimental and Simulation) were all obtained at V_m = −50 mV. Simulations were performed on the eight-state kinetic model for wild-type hSGLT1 and mutant G507C using the kinetic parameters listed in Table II. K_{23}^{MBG} and K_{23}^{Na} from steady-state measurements on G507C and G407C-TMR6M are the mean ± SEM of three to seven experiments. ND, not determined. Statistics shown for K_{23}^{MBG}, K_{23}^{Na}, and K_{50}^{MBG} from pre-steady-state and optical measurements are the errors of the fit for individual oocytes, but these were repeated on at least three oocytes.

^aHirayama et al., 1996.

^bDiez-Sampedro et al., 2000.

^cLoo et al., 2000.

^dQuick et al., 2001.

^eHirayama et al., 1996.
of rate constants was obtained (Table II) that accounts qualitatively and quantitatively for the steady-state and presteady-state experimental data (see below). As a working hypothesis we assume that changes in fluorescence intensity (ΔF) associated with SGLT1 were due to differences in apparent quantum yield of the bound fluorophore in different conformations: ΔF = qyΔC1 + qyΔC2 + qyΔC3 + qyΔC4 + qyΔC5 + qyΔC6 + qyΔC7. This hypothesis is supported by the findings that in the SGLT homologue (vSGLT) from Vibrio parahaemolyticus (Veenstra et al., 2004), and hSGLT1 mutant Q457C (unpublished data), the sugar-induced quenchers of fluorescence of covalently linked extrinsic fluorophores are not accompanied by shifts in absorption or emission spectra. As discussed below, since the occupancy probabilities of conformations C1, C3, C4, C5, and C6 are negligible, the fluorescence signal is reduced to ΔF = qyΔC2 + qyΔC3 + qyΔC5.

Steady-State Kinetics. The eight-state model accounted quantitatively for the kinetics of steady-state Na+/glucose cotransport as a function of extracellular ligand concentrations and voltage (Table I). The sugar-induced currents increased and saturated with hyperpolarizing voltages (compare Fig. 1 C). The simulated K0.5 for αMDG and Na+ (K0.5 αMDG, K0.5 Na+) decreased with hyperpolarizing voltages. Between −50 and −150 mV, K0.5 Na+ decreased from 16 to 3 mM, and K0.5 αMDG decreased from 0.39 to 0.24 mM (unpublished data). The model also simulated the kinetics of reverse cotransport as a function of intracellular ligand concentrations (unpublished data; see Eskandari et al., 2005).

Occurrence Probabilities. Ligands and voltage alter the occupancy probability (P) of each state (Fig. 10 A). In external NaCl buffer, the transporter is predominantly in C2 at negative membrane voltages (98% occupancy in C2 at −150 mV), and in C6 at positive voltages (e.g., 73% in C6 at +50 mV). External sugar alters the distribution by reducing the occupancy in C6 and increasing C5 occupancy at large negative membrane voltages. At large positive voltages (e.g., +50 mV), C6 is predominant, regardless of [sugar] (Fig. 10, A, B and D). For example, at 10 mM [αMDG] in C5 is the highest occupancy state (57%) at Vm −150 mV, and C6 (69%) at Vm +50 mV.

This analysis predicts large changes in the distribution of SGLT1 with jumps in membrane potential, and for the voltage-dependent transitions, a presteady-state current.

Presteady-State Kinetics. Fig. 11 A shows the simulated presteady-state currents for the OFF-pulses in response to the standard 100-ms voltage pulse protocol (Vh = −50 mV; compare Fig. 1 A). The currents are progressively reduced with increasing [sugar] and, at 10 mM, they are inhibited 82% (Fig. 11 D). The simulated Q-V relations for medium change (at each [sugar]o) could be fitted by Boltzmann relations. Without sugar, V0.5 = −32 mV and zδq = 0.9. Increasing [sugar]o reduced the maximal charge (Qmax) with a K0.5αMDG of 0.9 mM (Table I). Sugar also shifted the midpoint voltage (V0.5) to more positive values, with a simulated K0.5 of 1.1 mM (maximal shift was +56 mV). These are close to the experimentally measured K0.5αMDG of 1.1 and 1.3 mM (Table I).
The τ-V relations are simulated by the model. In the absence of sugar, there are four time constants, two fast ($\tau_{fast} < 1$ ms), one medium ($\tau_{med} = 3-25$ ms), and a slow ($\tau_{slow} = 30-100$ ms; Loo et al., 2005). τ_{med} and τ_{slow} are voltage independent for hyperpolarizing voltages and decreased with depolarizing voltages (see Fig. 16 C of Loo et al., 2005). Simulations indicate that the time constant τ_{med} for ON (as V_m is stepped from -50 to $+50$ mV) is relatively unaffected at [sugar]o below the $K_{0.5}$; e.g., at $+50$ mV, τ_{ON} decreased by <1 ms when [sugar]o increased from 0 to 1 mM. Experimentally, we found in the range 0–1 mM, the time constant (at $V_m = 30$ mV) was independent of [αMDG]o (see Results). The simulations indicated a decrease in τ_{med} (by ≈ 5 ms) in the hyperpolarizing direction. However, since the presteady-state current in response to hyperpolarizing voltage pulses was abolished by external sugar (see Fig. 1, A and B), accurately resolving this difference is beyond the resolution of the method.

Fluorescence. There is good agreement between our model simulations and the experimental data as functions of voltage and the concentrations of sugar and phlorizin (Fig. 12). In the presence of 100 mM external Na+, the ON responses for 100-mV jumps in membrane potential from -50 mV to $+50$ and -150 mV matched the experimental observation in the presence and absence of external sugar (0, 1, and 10 mM) in terms of (a) the magnitude of the changes in fluorescence; (b) the asymmetry of the response to depolarizing and hyperpolarizing voltage steps; and (c) the reduction in ΔF with increasing [sugar]o (Fig. 12). These fits were within the normal variation recorded from experiment to experiment. A discrepancy between the simulations and the data is in the relative magnitude of the fast and medium components for the OFF responses when the test voltage returned from $+50$ mV to the holding potential. The underestimated size of the fast component is likely to be due to our simplifying assumptions about Na+ binding (see below).

We also simulated ΔF as a function of membrane potential in the presence and absence of sugar and phlorizin (Fig. 13) to obtain the presteady-state parameters ΔF_{max}, $V_{0.5}$, and ΔF_{95} as functions of sugar and phlorizin concentrations. The ΔF-V relations saturated at -150 and $+90$ mV and fitted the Boltzmann relation (with a ΔF_{95} of 0.7 and $V_{0.5}$ of -11 mV). With saturating sugar (10 mM αMDG), ΔF_{max} was reduced by 53%, with a $K_{0.5}$ of 0.5 mM (Table I). $V_{0.5}$ also shifted with increasing [sugar]o (maximum shift was $+51$ mV) with a $K_{0.5}$ of 1.1 mM (Table I). Thus the observed small reduction of ΔF_{max} ($=50\%$) compared with Q_{max} (>95%, Fig. 6 B) is reproduced by the simulations.

In the absence of sugar, with a large depolarizing voltage pulse (e.g., from -50 to $+50$ mV), the fluorescence changes are due to the transition $C_2 \rightarrow C_6$ (Fig. 10 A), as the voltage jump dictates a new equilibrium state distribution highly favoring C_6 (Fig. 14 C; see also Fig. 10 A). Thus the apparent quantum yield of C_6 must be higher than that of C_2, as there is an increase in ΔF (Figs. 3 and 13). This series of conformational changes involve all the voltage-dependent transitions (Fig. 9, shaded region). On the other hand, at saturating [αMDG]o (e.g., 10 mM; Fig. 10 D), C_6 is the most highly populated state at V_h (-50 mV), and a depolarizing voltage favors C_6 over C_5 (see Fig. 10 D and Fig. 14 D). So if the quantum yield of $C_6 > C_5$ on depolarization, we would observe an increase in ΔF (Fig. 14 B). The

Table II

Rate Constants and Parameters for the Eight-State Kinetic Model for hSGLT1 and Mutant G507C
$k_{12} = 140,000 M^{-1}s^{-1}$
$k_{13} = 600 s^{-1}$
$k_{23} = 20 s^{-1}$
$k_{34} = 500 s^{-1}$
$k_{45} = 50 s^{-1}$
$k_{56} = 5 s^{-1}$
$k_{67} = 0.01 s^{-1}$

The rate constants were obtained by interactive numerical simulations of the model (Fig. 9) and were evaluated by visual goodness-of-fit to the observed global kinetic behavior of hSGLT1 (including steady-state and presteady-state kinetics, i.e., current-voltage (fluorescence-voltage) curves and apparent affinities and maximum values for currents and TMRM fluorescence as functions of cis and trans Na+, sugar, and phlorizin concentrations (see Parent et al., 1992b). As a starting point we used the parameters obtained for rabbit SGLT1 (Parent et al., 1992b) and the rates k_{23} and k_{34} were chosen as the dependent parameters (imposed by microscopic reversibility). The values for rate constants involved in sugar binding and transport, k_{23}, k_{34}, k_{43}, and k_{45}, were unchanged from Parent et al. (1992b), while k_{23} was varied according to the $K_{0.5}$ for inward sugar transport by hSGLT1 (0.3–3 mM; Hirayama et al., 1996, and present study). The rates for Na+ and sugar binding at the internal surface, k_{59}, k_{60}, and k_{60}, were revised after reviewing the kinetic parameters for reverse Na+/sugar cotransport (Quick et al., 2003; Eskandari et al., 2005). The voltage-dependent rate constants (k_{12}, k_{13}, k_{14}, k_{24}, k_{35}, k_{45}, k_{67}, k_{68}, and k_{69}) were taken from Loo et al. (2005). The magnitude of SGLT1 Na+uniport, i.e., SGLT1-mediated Na+ transport in the absence of sugar, limits the value of k_{25}. The rates for phlorizin association and dissociation, k_{57} and k_{58}, are determined by the phlorizin inhibitory constant (0.2–0.4 μM) and $k_{35} < 0.1 s^{-1}$, the insignificant release of phlorizin when the membrane potential jumped to $+50$ mV for up to 2 s. For detailed discussion on the evaluation of these rate constants see Parent et al. (1992b) and Loo et al. (2005). The quantum yields (q_h) for TMR6 in G507C-hSGLT1 were also obtained by numerical simulations.
change in \(\Delta F \) is slower than in Na\(^+\) alone (Fig. 14 A), as is observed experimentally (Figs. 5 and 12). The charge movements arising from the concurrent relaxation of the voltage-dependent transitions (shaded region, Fig. 9) are negligible, owing to the negligible occupancy of C\(_2\) at V\(_h\) (Fig. 10).

Effect of Phlorizin. Phlorizin locked the transporters in fixed state (C\(_7\) in Fig. 9) and prevented the protein from running through the transport cycle. This is illustrated by the occupancy probabilities as [phlorizin]\(_o\) is varied. The increase in the occupancy of the phlorizin-bound state ([CNa\(_2\)Pz]') is balanced by reduction of the occupancy probabilities (P\(_o\)) in the other conformations (Fig. 10, A, C, and E). The profile of the P\(_o\)-V\(_m\) curves is not affected by phlorizin. The amplitudes of the presteady-state current and \(\Delta F \) are reduced at every test voltage. Analysis of the Q-V and \(\Delta F \)-V relations as [phlorizin]\(_o\) was varied from 0 to 100 \(\mu \)M showed that maximal charge (Q\(_{\text{max}}\)) and maximal fluorescence (\(\Delta F_{\text{max}} \)) were reduced by phlorizin, with K\(_i\)'s of 277 nM for charge and 399 nM for fluorescence. There were no changes in the V\(_{0.5}\) (and z\(\delta \)) values for both charge and fluorescence.

Our estimate of the rate constants for phlorizin binding and dissociation for human SGLT1 (k\(_{72}\) = 50,000 M\(^{-1}\)s\(^{-1}\), k\(_{27}\) = 0.01 s\(^{-1}\)) was obtained with the requirements that (a) the ratio k\(_{72}\)/k\(_{27}\) is the dissociation constant k\(_D\) (k\(_D\) = k\(_{72}\)/k\(_{27}\) = 0.2 \(\mu \)M from Dixon analysis; Panayotova-Heiermann et al., 1995; Hirayama et al., 2001), and
(b) the phlorizin-bound state ([CNaPz]−) does not decay significantly during 2-s depolarizing voltage pulses. These estimates are within the range of values obtained previously by Toggenburger et al. (1982) on rabbit small-intestinal brush border membrane vesicles: $k_{27} \approx 18,000$–150,000 M$^{-1}$s$^{-1}$, $k_{72} = 0.4$ s$^{-1}$, and $K_D = 2.7$ μM.

Simulation Conclusions

(a) We have obtained a single set of kinetic parameters that accounts for the global experimental observations on steady-state and presteady-state kinetics, for both charge and fluorescence measurements in the presence and absence of sugar or phlorizin.

(b) In view of the close agreement between the data and simulations on charge movements in the presence of sugar, this suggests that there are no significant voltage-dependent steps in the transport cycle other than those associated with external Na$^+$ binding/dissociation and conformational change of the empty transporter (shaded region of Fig. 9). This is in agreement with our previous study on reverse Na$^+$/sugar cotransport using the giant patch (Eskandari et al., 2005).

(c) At saturating [αMDG]o, when membrane voltage is stepped from −50 to +50 mV, the charge movement is too small to be detected because of the low occupancy in states C_2, C_1, C_3, C_6, and C_6 (Fig. 10 D and
Fig. 14 D), which is observed experimentally (Fig. 6 B). However, there is a fluorescence change (bold line of Fig. 14 B) due to the transition: C₅ → C₆ (bold lines in Fig. 14 D). This is a rate-limiting step for Na⁺/sugar cotransport, and we have thus experimentally isolated a conformational change that has not been previously described. The differential sensitivities of the electrical and optical measurements allow us to measure the fluorescence change associated with the electro-neutral steps.

Figure 12. Comparison of fluorescence data and simulation of the eight-state model (Fig. 9). Simulation was performed using the kinetic parameters of Table II. Representative fluorescence traces at test voltages +50 and −150 mV from Vₖ (−50 mV) are from Fig. 5. The dashed lines are the simulated ΔF. The apparent quantum yields used for the simulation were q₁ = 1, q₅ = 5, and q₁ = q₂ = q₅ = q₆ = q₇ = q₈ = q₉ = 3. Abscissa and ordinate scales are the same for all panels.

Figure 13. Simulated fluorescence records. The simulations were performed in 100 mM external Na⁺. (A, B, and D) Time course of fluorescence intensity change (ΔF) with 0, 1, and 10 mM αMDG in the external solution. (C and E) Effect of phlorizin (0.4 and 4 μM). Total fluorescence (F) associated with SGLT1 is defined by

\[F = q₁C₁ + q₂C₂ + q₅C₅ + q₆C₆ + q₇C₇ + q₈C₈ + q₉C₉, \]

where qⱼ is the apparent quantum yield of the fluorophore (TMR6M) when SGLT1 is in conformation Cⱼ. Fluorescence records were simulated with q₁ = 3, q₂ = 1, q₅ = 3, q₆ = 3, q₇ = 3, q₈ = 3, q₉ = 6. Shown are the predicted ΔF records when Vₖ is stepped from −50 mV to Vₑ (+50, +10, −30, −50, −70, −90, and −150 mV). Steady-state fluorescence levels have been removed. The simulation for ΔF in the presence of phlorizin is independent of the quantum yield of the phlorizin-bound state ([CNa₂Pz]'). See Table I for comparison of simulated and observed presteady-state kinetic parameters.
Simulations show that the model accounts for the reductions in the Q_{max} and ΔF_{max} and the shifts in $V_{0.5}$ for charge and fluorescence produced by external sugar (or phlorizin). While the apparent valence ($z\delta$) is similar for both charge movement and fluorescence changes ($z\delta \sim 0.7-0.9$), this may depend on the nature and position of the fluorophore and its local interactions with SGLT1. The apparent valence ($z\delta_{Q}$) for charge movement is the sum ($z\delta_{1} + z\delta_{2} + \ldots + z\delta_{n}$) of the products of moveable charges (z_{i}) and the displacement (δ_{i}) of each charge in the membrane electric field, whereas the apparent valence ($z\delta_{F}$) for fluorescence depends on the apparent quantum yields of the fluorophore in different protein conformations. While the apparent valence of SGLT1 and mutant charge movement have been found to be 1, the observed values of $z\delta_{F}$ varied: $z\delta_{F} = 0.4$ for TMR6-M-Q457C (Loo et al., 1998, 2005; Meinild et al., 2002), 0.7 for TMR6-M-D454C (Diez-Sampedro et al., 2004), and 0.9 for TMR6-M-G507C (this study).

The previous six-state model could account for the steady-state kinetics of SGLT1 and the steady-state kinetics of TMR6-M-G507C obtained in the present study (Parent et al., 1992b; Eskandari et al., 2005; present study). However, the model failed to describe the presteady-state currents in the absence and presence of sugar and phlorizin, especially their voltage dependence. In particular, the model predicted τ-V relations that are bell shaped (see Fig. 7 B of Hazama et al., 1997), contrary to experimental observations (Fig. 2 C; see also Fig. 4 A of Loo et al., 2005). The eight-state model accounts for the voltage dependence of τ by asymmetric equivalent charge movements ($\varepsilon_{1a} \approx 0, \varepsilon_{a1} = 0.5, \varepsilon_{ab} = 0.15, \varepsilon_{ba} = 0, \varepsilon_{b6} = 0.05, \varepsilon_{6b} = 0.7$). An asymmetric voltage dependence between forward and backward reactions could arise from asymmetric Eyring energy barriers for the transition state (Zagotta et al., 1994). The molecular mechanism for the asymmetry and the location of the voltage sensor(s) in cotransporters such as SGLT1 is unknown. The asymmetry has been observed in the gating currents of shaker Potassium channels (Zagotta et al., 1994; Rodriguez et al., 1998; Schoppa and Sigworth, 1998), but the mechanism is also unknown. One possibility could be a change in the membrane electric field profile between forward and backward reactions (Blunck et al., 2005).

We have previously noted that the model for presteady-state current (Fig. 9, shaded region) failed to account for the kinetics of the fast rising phase ($\tau = 0.17$ ms, Loo et al., 2005), and is due to our assumption of two Na$^+$ ions binding to identical sites with the same rate constant (Falk et al., 1998; Loo et al., 2005). In this study, we found that the model does not correctly predict the fast monotonic decay of presteady-state current and fluorescence for hyperpolarizing pulses from very positive voltages. The simulations predict a biphasic time course in the OFF current when membrane...
potential is stepped from a large positive test value to \(V_h \) (from +50 to −50 mV). This can be seen in Fig. 11 A, and is a consequence of the high rate (\(k_{34} = 300 \text{ s}^{-1} \)) and high equivalent charge movement (\(\epsilon_{ob} = 0.7 \)) from \(C_6 \rightarrow C_h \) (see Loo et al., 2005). The discrepancies between model simulations and data are in the submillisecond domain. Resolving the fast kinetic events in Na\(^+\)/glucose cotransport remains a major challenge to understanding Na\(^+\)/glucose cotransport.

(g) The fluorescence changes are primarily associated with the differences in relative quantum yields of the fluorophore in conformations \(C_2, C_6, \) and \(C_5 \) (\(\eta_Q/\eta_F = 3, \eta_Q/\eta_F = 6 \)) because the occupancy probabilities of the other states are low.

Other Cotransporters
Charge Movement. Since our initial observation of pre-steady-state currents in the Na\(^+\)/glucose cotransporter (Birnir et al., 1991), they have been observed in many solute carrier (SLC, HUGO Nomenclature) gene families, including SLC1 (high affinity glutamate transporter; Grewer and Rauen, 2005), SLC6 (Na\(^+\)/Cl\(^-\)/GABA; Mager et al., 1993), SLC13 (Na\(^+\)-sulfate/carboxylate; Chen et al., 1998), SLC15 (H\(^+\)/oligopeptide; Mackenzie et al., 1996), SLC20 and SLC34 (types II and III Na\(^+\)/phosphate; Forster et al., 2002), and SLC28 (Na\(^+\)/nucleoside; Larrayoz et al., 2004, Smith et al., 2004).

Common observations are the reduction of presteady-state currents by substrates and the linear relationship between maximal charge (\(Q_{\text{max}} \)) and maximal substrate-coupled current (\(I_{\text{max}} \)), with the ratio (\(I_{\text{max}}/Q_{\text{max}} \)) providing an estimate of the turnover rate of cotransporter (for reviews see Forster et al., 2002; Loo et al., 2002; Grewer and Rauen, 2005). We have used charge measurements to probe the conformations of SGLT1 under sugar transport. The positive shift of \(V_{0.5} \) with [sugar], indicates that the rate-limiting step is \(C_5 \rightarrow C_6 \). In contrast, we recently found that for hPEPT1 (human H\(^+\)/dipeptide transporter), glycylsarcosine reduced \(Q_{\text{max}} \) and shifted \(V_{0.5} \) to more negative values (Sala-Rabanal et al., 2006). This negative shift indicates that for hPEPT1, the rate limiting step is the return of the empty transporter from inward-facing to outward-facing conformation (\(C_6 \rightarrow C_5 \)), unlike the \(C_5 \rightarrow C_6 \) for hSGLT1. Thus charge measurements in the presence of substrates provide unique and novel insights into the rate-limiting step for cotransporters.

Voltage Clamp Fluorometry. Since our initial application of voltage clamp fluorometry to study SGLT1, voltage clamp fluorescence experiments have been performed on the Na\(^+\)/Cl\(^-\)/\(\gamma\)-aminobutyric acid (GAT1; Li et al., 2000; Meinild, A.-K., N. MacAulay, U. Gether, and D. D.F. Loo, 2006. FASEB J. 20: A839), serotonin (SERT; Li and Lester, 2002), glutamate (EAAT3; Larsson et al., 2004), and Na\(^+\)/Pi (Virkki et al., 2006) cotransporters.

In these studies, with the exception of Li and Lester (2002), the \(\Delta F-V \) relations are affected by substrates, indicating that substrate interactions alter the distribution of conformations.

Conclusions
We have used voltage-clamp fluorometry to examine the partial reactions involving sugar binding and transport by the human Na\(^+\)/glucose cotransporter. This was accomplished using a voltage-jump perturbation protocol in the presence and absence of sodium, sugar, and phlorizin. Based on simulations of the experimental data using our eight-state, ordered, nonrapid equilibrium, alternating access model (Fig. 9) we conclude that partial reactions involving sugar binding (\(k_{23}, k_{32}, k_{43}, \) and \(k_{54} \)) and Na\(^+\)/sugar cotransport (\(k_{34} \) and \(k_{43} \)) are neither voltage dependent nor rate limiting. Furthermore, our analysis of pre-steady-state currents and fluorescence in the presence and absence of sugar or phlorizin demonstrate that: (a) external sugar increases the occupancy probability of inward-facing conformations (\(C_5 \) and \(C_6 \)) at the expense of outward-facing conformations (\(C_2 \) and \(C_3 \)); and (b) the high affinity blocker phlorizin locks the cotransporter in an inactive conformation (\(C_7 \)). Finally, under the maximum driving force for inward Na\(^+\)/glucose cotransport (saturating voltage and external Na\(^+\) and sugar concentrations) the rate-limiting step for transport is the electroneutral dissociation of Na\(^+\) from the cotransporter at the internal face of the membrane (\(C_5 \) to \(C_6 \)). In general, our model for cotransport satisfactorily accounts for all the observed steady-state and pre-steady-state kinetics. The model does not completely account for submillisecond pre-steady-state kinetics due to our assumption that external binding of the two Na\(^+\) ions can be simplified by using single lumped rate constants (\(k_{12} \) and \(k_{34} \)). A current challenge is to parse out the rapid kinetics of Na\(^+\) binding to the two binding sites.

We thank Mary Lai-Bing, Amanda Johnson, Kari Edwards, Linh Nguyen, and Teresa Ku for the preparation, injection, care of oocytes, and assistance with the uptake experiments. We especially thank Dr. Eric Turk for his help with mutagenesis.

This research was supported by National Institutes of Health grant DK19567.

Olaf S. Andersen served as editor.

Submitted: 3 August 2006
Accepted: 2 November 2006

REFERENCES
Birnir, B., D.D.F. Loo, and E.M. Wright. 1991. Voltage-clamp studies of the Na\(^+\)/glucose cotransporter cloned from rabbit small intestine. Pflugers Arch. 418:79–85.
Blunck, R., B. Chanda, and F. Bezanilla. 2005. Nano to microfluorescence measurements of electric fields in molecules and genetically specified neurons. J. Membr. Biol. 208:91–102.
Chen, X.-Z., C. Shayakul, U.V. Berger, W. Tian, and M.A. Hediger. 1998. Characterization of a rat Na+/dicarboxylate cotransporter. J. Biol. Chem. 273:29972–29981.

Diez-Sampedro, A., M.P. Lostao, E.M. Wright, and B.A. Hirayama. 2000. Glycoside binding and translocation in Na+-dependent glucose cotransporters: comparison of SGLT1 and SGLT3. J. Membr. Biol. 176:111–117.

Diez-Sampedro, A., D.D.F. Loo, E.M. Wright, and B.A. Hirayama. 2004. Coupled sodium-glucose cotransport by SGLT1 requires a negative charge at position 454. Biochemistry. 43:13175–13184.

Eskandari, S., E.M. Wright, and D.D.F. Loo. 2005. Kinetics of the reverse mode of the Na+/glucose cotransporter. J. Membr. Biol. 204:23–32.

Falk, S., A. Guz, C. Chenu, S.D. Patil, and A. Berteloot. 1998. Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program. Biophys. J. 74:816–830.

Forster, I.C., K. Kohler, J. Biber, and H. Murer. 2002. Forging the bonds of the Na+ transporters in the CNS: molecular mechanism, presteady-state kinetics, and their impact on synaptic signaling. J. Membr. Biol. 203:1–20.

Hazama, A., D.D.F. Loo, and E.M. Wright. 1997. Presteady-state currents of the Na+/glucose cotransporter (SGLT1). J. Membr. Biol. 155:175–186.

Hirayama, B.A., M.P. Lostao, M. Panayotova-Heiermann, D.D.F. Loo, E. Turk, and E.M. Wright. 1996. Kinetic and specificity differences between the rat, human and rabbit Na+-glucose cotransporters (SGLT1). Am. J. Physiol. 270:G919–G926.

Hirayama, B.A., A. Diez-Sampedro, and E.M. Wright. 2001. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl−/GABA (hGAT1) cotransporters. Br. J. Pharmacol. 134:484–495.

Ikedaa, T.S., E.-S. Hwang, M.J. Coady, B.A. Hirayama, M.A. Hediger, and E.M. Wright. 1989. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J. Membr. Biol. 110:87–95.

Larrazo, J.M., F.J. Casado, M. Pastor-Anglada, and M.P. Lostao. 2004. Electrophysiological characterization of the human Na+/nucleoside cotransporter 1 (hCNT1) and role of adenosine on hCNT1 function. J. Biol. Chem. 279:9999–9007.

Larsson, H.P., A.V. Tsangounis, H.P. Koch, and M.P. Kavanagh. 2004. Fluorometric measurements of conformational changes in glutamate transporters. Proc. Natl. Acad. Sci. USA. 101:3951–3956.

Li, M., and H.A. Lester. 2002. Early fluorescence signals detect transitions at mammalian serotonin transporters. Biophys. J. 83:206–218.

Li, M., R.A. Farley, and H.A. Lester. 2000. An intermediate state of the γ-aminobutyric acid transporter GAT1 revealed by simultaneous voltage clamp and fluorescence. J. Gen. Physiol. 115:491–508.

Loo, D.D.F., S. Eskandari, K.J. Boorer, H.R. Sarkar, and E.M. Wright. 2000. Role of Cl− in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275:37414–37422.

Loo, D.D.F., A. Hazama, S. Supplisson, E. Turk, and E.M. Wright. 1993. Relaxation kinetics of the Na+/glucose cotransporter. Proc. Natl. Acad. Sci. USA. 90:5767–5771.

Loo, D.D.F., B.A. Hirayama, E. Gallardo, J. Lam, E. Turk, and E.M. Wright. 1998. Conformational changes couple Na+ and glucose transport. Proc. Natl. Acad. Sci. USA. 95:7789–7794.

Loo, D.D.F., B.A. Hirayama, A.-K. Meinild, G. Chandy, T. Zuehnen, and E.M. Wright. 1999. Passive water and ion transport by cotransporters. J. Physiol. 518:195–202.

Loo, D.D.F., S. Eskandari, B.A. Hirayama, and E.M. Wright. 2002. A kinetic model for secondary active transport. In Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and its Applications. Vol. 129. H.E. Layton and A.M. Weinstein, editors. Springer-Verlag, New York. 65–83.

Loo, D.D.F., B.A. Hirayama, A. Cha, F. Bezanilla, and E.M. Wright. 2005. Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. J. Gen. Physiol. 125:13–36.

Mackenzie, B., D.D.F. Loo, Y. Fei, W.J. Liu, V. Ganapathy, F.H. Leibach, and E.M. Wright. 1996. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J. Biol. Chem. 271:5430–5437.

Mackenzie, B., D.D.F. Loo, and E.M. Wright. 1998. Relationships between Na+ and glucose cotransporter (SGLT1) currents and fluxes. J. Membr. Biol. 162:101–106.

Mager, S., J. Naeve, M. Quick, C. LaBarca, N. Davidson, and H.A. Lester. 1993. Steady states, charge movements and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron. 10:177–188.

Meinild, A.-K., B.A. Hirayama, E.M. Wright, and D.D.F. Loo. 2002. Fluorescence studies of ligand-induced conformational changes of the Na+–glucose cotransporter. Biochemistry. 41:1250–1258.

Panayotova-Heiermann, M., D.D.F. Loo, and E.M. Wright. 1995. Kinetics of steady state and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270:27099–27105.

Parent, L., S. Supplisson, D.D.F. Loo, and E.M. Wright. 1992a. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J. Membr. Biol. 125:49–62.

Parent, L., S. Supplisson, D.D.F. Loo, and E.M. Wright. 1992b. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J. Membr. Biol. 125:63–79.

Quick, M., D.D.F. Loo, and E.M. Wright. 2001. Neutralization of a conserved amino acid residue in the human Na+/glucose transporter (hSGLT1) generates a glucose-gated H+ channel. J. Biol. Chem. 276:1728–1734.

Quick, M., J. Tomasevic, and E.M. Wright. 2003. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Biochemistry. 42:9147–9152.

Rodriguez, B.M., D. Sigg, and F. Bezanilla. 1998. Voltage gating of Shaker K+ channels. The effect of temperature on ionic and gating currents. J. Gen. Physiol. 112:223–242.

Sala-Rabanal, M., D.D.F. Loo, B.A. Hirayama, E. Turk, and E.M. Wright. 2006. Molecular interactions between dipeptides, drugs and the human intestinal H+-oligopeptide cotransporter hPEPT1. J. Physiol. 574:149–166.

Scoppa, N.E., and F.J. Sigworth. 1998. Activation of Shaker potassium channels III. An activation gating model for wild-type and Y2 mutant channels. J. Gen. Physiol. 111:313–342.

Smith, K.M., A.M.L. Ng, S.Y.M. Yoo, K.A. Labedz, E.E. Knaus, L.I. Wiebe, C.E. Cass, S.A. Baldwin, X.-Z. Chen, E. Karpinski, and J.D. Young. 2004. Electrophysiological characterization of a recombinant human Na+-coupled nucleoside transporter (hCNT1) produced in Xenopus oocytes. J. Physiol. 558:807–823.

Toggenburger, G., M. Kessler, and G. Semenza. 1982. Phlorizin as a probe of the small-intestinal Na+-D-glucose cotransporter. A model. Biochim. Biophys. Acta. 688:557–571.

Veenstra, M., S. Lanza, B.A. Hirayama, E. Turk, and E.M. Wright. 2004. Local conformational changes in the Vibrna Na+/glactose cotransporter. Biochemistry. 43:3620–3627.

Virkki, I.V., H. Murer, and I.C. Forster. 2006. Voltage clamp fluorometric measurements on a type II Na+-coupled P, cotransporter: shading light on substrate binding order. J. Gen. Physiol. 127:539–555.

Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1994. Shaker potassium channel gating III: evaluation of kinetic models for activation. J. Gen. Physiol. 103:321–362.

Zampighi, G.A., M. Kreman, K.J. Boorer, D.D.F. Loo, F. Bezanilla, G. Chandy, and E.M. Wright. 1995. A method for determining the unitary functional capacity of cloned channels and transporters in Xenopus laevis oocytes. J. Membr. Biol. 148:65–78.