Signed Shape Tilings of Squares

Kevin Keating†
Department of Mathematics
University of Florida
Gainesville, FL 32611
USA
keating@math.ufl.edu

Abstract

Let T be a tile made up of finitely many rectangles whose corners have rational coordinates and whose sides are parallel to the coordinate axes. This paper gives necessary and sufficient conditions for a square to be tilable by finitely many \mathbb{Q}-weighted tiles with the same shape as T, and necessary and sufficient conditions for a square to be tilable by finitely many \mathbb{Z}-weighted tiles with the same shape as T. The main tool we use is a variant of F. W. Barnes's algebraic theory of brick packing, which converts tiling problems into problems in commutative algebra.

1 Introduction

In [3] Dehn proved that an $a \times b$ rectangle R can be tiled by finitely many nonoverlapping squares if and only if a/b is rational. More generally, suppose we allow the squares to have weights from \mathbb{Z}. An arrangement of weighted squares is a tiling of R if the sum of the weights of the squares covering a region is 1 inside of R and 0 outside. Dehn’s argument applies in this more general setting, and shows that R has a \mathbb{Z}-weighted tiling by squares if and only if a/b is rational. In [4] this result is generalized to give necessary and sufficient conditions for a rectangle R to be tilable by \mathbb{Z}-weighted rectangles with particular shapes. In this paper we consider a related question: Given a tile T in the plane made up of finitely many weighted rectangles, is there a weighted tiling of a square by tiles with the same shape as T?

We define a rectangle in $\mathbb{R} \times \mathbb{R}$ to be a product $[b_1, b_2) \times [c_1, c_2)$ of half-open intervals, with $b_1 < b_2$ and $c_1 < c_2$. Let A be a commutative ring with unity. An A-weighted tile is represented by a finite A-linear combination $L = a_1R_1 + \cdots + a_nR_n$ of disjoint rectangles. Associated to each such L there is a function $f_L : \mathbb{R}^2 \to A$ which is supported on $\bigcup R_i$.

*Keywords: tile, shape, polynomial.
†Partially supported by NSF grant 9500982.
and whose value on R_i is a_i. We say that L_1 and L_2 represent the same tile if $f_{L_1} = f_{L_2}$. An example of a \mathbb{Z}-weighted tile is given in Figure 1. We may form the sum $T_1 + T_2$ of two weighted tiles T_1, T_2 by superposing them in the natural way. For $a \in A$ the tile aT is formed from T by multiplying all the weights of T by a. The set of all A-weighted tiles forms an A-module under these operations.

Let U be an A-weighted tile and let $\{T_\lambda : \lambda \in \Lambda\}$ be a set of A-weighted tiles. We say that the set $\{T_\lambda : \lambda \in \Lambda\}$ A-tiles U if there are weights $a_1, \ldots, a_n \in A$ and tiles $\tilde{T}_1, \ldots, \tilde{T}_n$, each of which is a translation of some T_{λ_i}, such that $a_1\tilde{T}_1 + \cdots + a_n\tilde{T}_n = U$. Note that we are allowed to use as many translated copies of each prototile T_λ as we need, but we are not allowed to rotate or reflect the prototiles. Given an A-weighted tile T and a real number $\rho > 0$ we define $T(\rho)$ to be the image of T under the rescaling $(x, y) \mapsto (\rho x, \rho y)$. We say that an A-weighted tile T' has the same shape as T if there exists $\rho > 0$ such that T' is a translation of $T(\rho)$. We say that T A-shapetiles U if $\{T(\rho) : \rho > 0\}$ A-tiles U. If U' has the same shape as U then T A-shapetiles U' if and only if T A-shapetiles U.

In this paper we consider tiles T constructed from rectangles whose corners have rational coordinates. We prove two main results about such tiles. First, we show that if T is a \mathbb{Q}-weighted tile whose weighted area is not 0, then T \mathbb{Q}-shapetiles a square. Second, if T is a \mathbb{Z}-weighted tile we give necessary and sufficient conditions for T to \mathbb{Z}-shapetile a square.

The author would like to thank Jonathan King for posing several questions which led to this work.

2 Polynomials and tiling

Say that T is a lattice tile if T is an A-weighted tile made up of unit squares in \mathbb{R}^2 whose corners are in \mathbb{Z}^2. We will associate a (generalized) polynomial f_T to each A-weighted lattice tile T. Our approach is similar to that used by F.W.Barnes in \cite{2}, except
that the polynomials that we construct differ from Barnes’s polynomials by a factor $(X - 1)(Y - 1)$. Including this extra factor will allow us to generalize the construction to non-lattice tiles at the end of the section.

Our polynomials will be elements of the ring

$$A[X^Z, Y^Z] := A[X, Y, X^{-1}, Y^{-1}],$$

which is naturally isomorphic to the group ring of $\mathbb{Z} \times \mathbb{Z}$ with coefficients in A. To begin we associate the polynomial $X^iY^j(X - 1)(Y - 1)$ to the unit square S_{ij} with lower left corner $(i, j) \in \mathbb{Z} \times \mathbb{Z}$. Given an A-weighted lattice tile

$$T = \sum_{i,j} w_{ij}S_{ij},$$

by linearity we associate to T the polynomial

$$f_T(X, Y) = \sum_{i,j} w_{ij}X^iY^j(X - 1)(Y - 1).$$

One consequence of this definition is that translating a tile by a vector $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ corresponds to multiplying its polynomial by X^iY^j. The map $T \mapsto f_T$ gives an isomorphism between the A-module of A-weighted lattice tiles in the plane and the principal ideal in $A[X^Z, Y^Z]$ generated by $(X - 1)(Y - 1)$.

Example 2.1 Let a, b, c, d be integers such that $a, b \geq 1$ and let T be the $a \times b$ rectangle whose lower left corner is at (c, d). Then the polynomial associated to T is

$$f_T(X, Y) = \sum_{i=c}^{c+a-1} \sum_{j=d}^{d+b-1} X^iY^j(X - 1)(Y - 1) = X^cY^d(X^a - 1)(Y^b - 1).$$

In section 4 we will need to work with non-lattice tiles. To represent these more general tiles systematically we introduce a new set of building blocks to play the role that the unit squares S_{ij} play in the theory of lattice tiles. For $\alpha, \beta \in \mathbb{R}^2$ let $R_{\alpha\beta}$ denote the oriented rectangle with vertices $(0, 0), (\alpha, 0), (\alpha, \beta), (0, \beta)$. Note that if exactly k of α, β are negative then $R_{\alpha\beta}$ is equal to $(-1)^k$ times a translation of $R_{|\alpha|, |\beta|}$. We can express any rectangle in terms of the rectangles $R_{\alpha\beta}$:

Example 2.2 Let $\alpha, \beta > 0$ and let $R'_{\alpha\beta}$ be the translation of the rectangle $R_{\alpha\beta}$ by the vector $(\sigma, \tau) \in \mathbb{R}^2$. Then $R'_{\alpha\beta} = R_{\alpha+\sigma, \beta+\tau} - R_{\alpha+\sigma, \tau} - R_{\sigma, \beta+\tau} + R_{\sigma, \tau}$. In particular, we have $S_{ij} = R_{i+1, j+1} - R_{i+1, j} - R_{i, j+1} + R_{ij}$.

In fact the following holds:

Lemma 2.3 Every A-weighted tile T can be expressed uniquely as an A-linear combination of rectangles $R_{\alpha\beta}$ with $\alpha, \beta \in \mathbb{R}^2$.

3
Proof: By Example 2.2 every rectangle is an A-linear combination of the rectangles $R_{\alpha\beta}$. Therefore every A-weighted tile is an A-linear combination of the $R_{\alpha\beta}$. Suppose

$$c_1R_{\alpha_1\beta_1} + c_2R_{\alpha_2\beta_2} + \cdots + c_nR_{\alpha_n\beta_n} = 0$$

is a linear relation such that the pairs (α_i, β_i) are distinct and $c_i \neq 0$ for $1 \leq i \leq n$. Choose j to maximize the distance from the origin to the far corner (α_j, β_j) of $R_{\alpha_j\beta_j}$. None of the other rectangles in the sum can overlap the region around (α_j, β_j). Since $c_j \neq 0$, this gives a contradiction. Therefore the set $\{R_{\alpha\beta} : \alpha, \beta \in \mathbb{R}^x\}$ is linearly independent over A, which implies the uniqueness part of the lemma. \qed

In order to represent arbitrary A-weighted tiles algebraically we introduce a generalization of the polynomials f_T. Let $A[X^R, Y^R]$ denote the set of “polynomials” with coefficients from A where the exponents of X and Y are allowed to be arbitrary real numbers. The natural operations of addition and multiplication make $A[X^R, Y^R]$ a commutative ring with unity. The ring $A[X^R, Y^R]$ is naturally isomorphic to the group ring of $\mathbb{R} \times \mathbb{R}$ with coefficients in A, and contains $A[X^\mathbb{Z}, Y^\mathbb{Z}]$ as a subring.

For $\alpha, \beta \in \mathbb{R}^x$ define $f_{R_{\alpha\beta}} = (X^\alpha - 1)(Y^\beta - 1) \in A[X^R, Y^R]$. By Lemma 2.3 this definition extends linearly to give a well-defined element $f_T \in A[X^R, Y^R]$ associated to any A-weighted tile T. It follows from Example 2.2 that this definition agrees with that given earlier if $T = S_{ij}$ is a unit lattice square, and hence also if T is any lattice tile. The map $T \mapsto f_T$ gives an isomorphism between the A-module of A-weighted tiles and an A-submodule of $A[X^R, Y^R]$. The next lemma implies that this A-submodule is actually an ideal in $A[X^R, Y^R]$.\hfill

Lemma 2.4 Let T be an A-weighted tile and let T' be the translation of T by the vector $(\sigma, \tau) \in \mathbb{R} \times \mathbb{R}$. Then $f_{T'} = X^\sigma Y^\tau f_T$.

Proof: Let $R'_{\alpha\beta}$ be the translation of $R_{\alpha\beta}$ by (σ, τ). Using Example 2.2 we get

$$f_{R'_{\alpha\beta}} = X^\sigma Y^\tau (X^\alpha - 1)(Y^\beta - 1) = X^\sigma Y^\tau f_{R_{\alpha\beta}},$$

so the lemma holds for $T = R_{\alpha\beta}$. Therefore by Lemma 2.3 the lemma holds for all tiles T. \qed

The next result gives a further relation between ideals and tiling.

Proposition 2.5 Let U be a tile, let $\{T_{\lambda} : \lambda \in \Lambda\}$ be a collection of tiles, and let $I \subset A[X^R, Y^R]$ be the ideal generated by the set $\{f_{T_{\lambda}} : \lambda \in \Lambda\}$. Then $\{T_{\lambda} : \lambda \in \Lambda\}$ A-tiles U if and only if $f_U \in I$.

Proof: We have $f_U \in I$ if and only if

$$f_U(X,Y) = \sum_{i=1}^k a_i X^{\sigma_i} Y^{\tau_i} f_{T_{\lambda_i}}(X,Y)$$

for some $a_i \in A$, $\sigma_i, \tau_i \in \mathbb{R}$, and $\lambda_i \in \Lambda$. Since $X^{\sigma_i} Y^{\tau_i} f_{T_{\lambda_i}}(X,Y)$ is the polynomial associated to the translation of T_{λ_i} by the vector (σ_i, τ_i), we have $f_U \in I$ if and only if $U = a_1 \hat{T}_1 + \cdots + a_k \hat{T}_k$, with \hat{T}_i a translation of T_{λ_i}. Therefore $f_U \in I$ if and only if $\{T_{\lambda} : \lambda \in \Lambda\}$ A-tiles U. \qed
Corollary 2.6 Let \(\{ T_\lambda : \lambda \in \Lambda \} \) be a collection of lattice tiles, let \(I \) be the ideal in \(A[\mathbb{Z}^2, \mathbb{Z}^2] \) generated by the set \(\{ f_{T_\lambda} : \lambda \in \Lambda \} \), and let \(U \) be a lattice tile such that \(f_U \in I \). Then \(\{ T_\lambda : \lambda \in \Lambda \} \) \(A \)-tiles \(U \).

The last result in this section shows what happens to \(f_T \) when we replace \(T \) by a rescaling.

Lemma 2.7 Let \(T \) be an \(A \)-weighted tile and let \(\rho \) be a positive real number. Then \(f_{T(\rho)} = f_T(X^\rho, Y^\rho) \).

Proof: Let \(\alpha, \beta \in \mathbb{R}^\times \). Then \(R_{\alpha,\beta}(\rho) = R_{\rho\alpha,\rho\beta} \) and hence
\[
f_{R_{\alpha,\beta}(\rho)} = (X^{\rho\alpha} - 1)(Y^{\rho\beta} - 1) = f_{R_{\alpha,\beta}}(X^\rho, Y^\rho).
\]
Therefore the lemma holds for \(T = R_{\alpha,\beta} \). It follows from Lemma 2.3 that the lemma holds for all tiles \(T \). \(\square \)

3 Tiling with rational weights

This section is devoted to proving the following theorem:

Theorem 3.1 Let \(T \) be a \(\mathbb{Q} \)-weighted tile made up of rectangles whose corners all have rational coordinates. Then \(T \) \(\mathbb{Q} \)-shapetiles a square if and only if the weighted area of \(T \) is not zero.

Proof: It is clear that if the weighted area of \(T \) is zero then \(T \) cannot shapetile a square with nonzero area. Assume conversely that \(T \) has nonzero weighted area. By rescaling and translation we may assume that \(T \) is a lattice tile in the first quadrant. Let \(T(\mathbb{N}) \) denote the set \(\{ T(k) : k \in \mathbb{N} \} \) of positive integer rescalings of \(T \). To complete the proof of Theorem 3.1 it suffices to prove that \(T(\mathbb{N}) \) \(\mathbb{Q} \)-tiles a square. First we will prove that \(T(\mathbb{N}) \) \(\mathbb{C} \)-tiles a square; from this it will follow easily that \(T(\mathbb{N}) \) \(\mathbb{Q} \)-tiles a square.

Since \(T \) is a lattice tile in the first quadrant, \(f_T \in \mathbb{Q}[X,Y] \) is a polynomial in the ordinary sense. We begin by interpreting the hypothesis that the weighted area of \(T \) is nonzero in terms of \(f_T \).

Lemma 3.2 There is a polynomial \(f^*_T \in \mathbb{Q}[X,Y] \) such that
\[
f_T(X,Y) = (X - 1)(Y - 1)f^*_T(X,Y).
\]
Moreover, the weighted area of \(T \) is equal to \(f^*_T(1,1) \), and hence \(f^*_T(1,1) \neq 0 \).

Proof: Since the polynomial associated to the unit square \(S_{ij} \) is
\[
f_{S_{ij}}(X,Y) = X^iY^j(X - 1)(Y - 1),
\]
the lemma holds for S_{ij}. It follows by linearity that the lemma holds for all lattice tiles in the first quadrant. \hfill \Box

Let I denote the ideal in $\mathbb{C}[X^Z, Y^Z]$ generated by $\{f_{T(k)} : k \in \mathbb{N}\}$ and let
\[g_t(X,Y) = (X^t-1)(Y^t-1) \]
be the polynomial associated to an $l \times l$ square with lower left corner $(0,0)$. To show that $T(\mathbb{N})$ \mathbb{C}-tiles a square it suffices by Corollary 2.8 to show that $g_t \in I$ for some positive integer l. In order to get information about I we consider the set $V(I) \subset \mathbb{C}^\times \times \mathbb{C}^\times$ of common zeros of the elements of I. The set $V(I)$ is essentially the union of the lines $X = 1$ and $Y = 1$ with the “shape variety” of $T(\mathbb{N})$ as defined by Barnes [2, §3].

We wish to determine which points $(\alpha, \beta) \in \mathbb{C}^\times \times \mathbb{C}^\times$ might be in $V(I)$. Let m be the X-degree of f_T, let n be the Y-degree of f_T, and define $\Upsilon \subset \mathbb{C}^\times$ by
\[\Upsilon = \{ \zeta \in \mathbb{C}^\times : \zeta^k = 1 \text{ for some } 1 \leq k \leq 2mn \}. \]

Lemma 3.3 $V(I) \subset (\mathbb{C}^\times \times \Upsilon) \cup (\Upsilon \times \mathbb{C}^\times)$.

Proof: Let $(\alpha, \beta) \in V(I)$, and suppose neither α nor β is in Υ. By Lemma 2.7 and Lemma 3.2 we have
\[0 = f_{T(k)}(\alpha, \beta) = f_T(\alpha^k, \beta^k) = (\alpha^k-1)(\beta^k-1)f_T^*(\alpha^k, \beta^k) \]
for all $k \geq 1$. Since α and β aren’t in Υ this implies $f_T^*(\alpha^k, \beta^k) = 0$ for $1 \leq k \leq 2mn$. Therefore by Lemma 3.4 below there exist $c, d \in \mathbb{Z}$ such that $f_T^*(X^c, X^d) = 0$. It follows that $f_T^*(1,1) = 0$, contrary to Lemma 3.2. We conclude that if $(\alpha, \beta) \in V(I)$ then at least one of α, β must be in Υ. \hfill \Box

Lemma 3.4 Let K be a field and let $f^* \in K[X,Y]$ be a nonzero polynomial with X-degree $m - 1$ and Y-degree $n - 1$. Assume there are $\alpha, \beta \in K^\times$ such that
\begin{enumerate}
 \item α and β are not kth roots of 1 for any $1 \leq k \leq 2mn$, and
 \item $f^*(\alpha^k, \beta^k) = 0$ for all $1 \leq k \leq 2mn$.
\end{enumerate}

Then there exist relatively prime integers c, d with $1 \leq c \leq n - 1$ and $1 \leq |d| \leq m - 1$ such that $f^*(X^c, X^d) = 0$.

Proof: Define an $mn \times mn$ matrix M whose columns are indexed by pairs (i,j) with $0 \leq i \leq m - 1$ and $0 \leq j \leq n - 1$ by letting the kth entry in the (i,j) column of M be $\alpha^k \beta^j k$. Since $f^*(\alpha^k, \beta^k) = 0$ for $1 \leq k \leq mn$, the coefficients of f^* give a nontrivial element of the nullspace of M. Since M is essentially a Vandermonde matrix this implies
\[0 = \det(M) = \alpha^{nm(m-1)/2} \beta^{mn(n-1)/2} \cdot \prod_{(i,j)<(i',j')} (\alpha^i \beta^j - \alpha^{i'} \beta^{j'}) \]
for an appropriate ordering of the pairs \((i, j)\). It follows that \(\alpha^i \beta^j = \alpha^{i'} \beta^{j'}\) for some \((i', j') \neq (i, j)\), so \(\alpha^0 = \beta^0\) for some \((c_0, d_0) \neq (0, 0)\) with \(|c_0| \leq n - 1\) and \(|d_0| \leq m - 1\). The first assumption implies that \(c_0 \neq 0\) and \(d_0 \neq 0\), so we may assume without loss of generality that \(c_0 \geq 1\).

Let \(e = \gcd(c_0, d_0)\) and set \(c = c_0/e\) and \(d = d_0/e\). Then since \((\alpha^e)^d = (\beta^e)^c\) with \(\gcd(c, d) = 1\) there is a unique \(\gamma \in K\) such that \(\gamma^c = \alpha^e\) and \(\gamma^d = \beta^e\). Let \(q\) be an integer such that \(1 \leq q \leq 2mn/e\). Then by the second assumption we have

\[
0 = f^*(\alpha^{eq}, \beta^{eq}) = f^*(\gamma^{eq}, \gamma^{dq}),
\]

and so \(f^*(X^c, X^d) \in K[X, X^{-1}]\) has zeros at \(X = \gamma^d\) for \(1 \leq q \leq 2mn/e\). If these zeros are not distinct then for some \(1 \leq r \leq 2mn/e\) we have \(\gamma^r = 1\) and hence \(1 = \gamma^{eq} \alpha^e\), which violates the first assumption. Therefore \(f^*(X^c, X^d)\) has at least \([2mn/e]\) distinct zeros. On the other hand the degree of the rational function \(f^*(X^c, X^d)\) is at most \((m - 1)|c| + (n - 1)|d|\), and since \(|c| = |c_0/e| \leq (n - 1)/e\) and \(|d| = |d_0/e| \leq (m - 1)/e\) we have

\[
(m - 1)|c| + (n - 1)|d| \leq 2(m - 1)(n - 1)/e < [2mn/e].
\]

Therefore \(f^*(X^c, X^d) = 0\).

Let \(l \geq 1\) and recall that \(g_l(X, Y) = (X^l - 1)(Y^l - 1)\) is the polynomial associated to an \(l \times l\) square with lower left corner \((0, 0)\). The set \(V(g_l) \subset \mathbb{C}^l \times \mathbb{C}^l\) of zeros of \(g_l\) is the union of the lines \(X = \zeta\) and \(Y = \zeta\) as \(\zeta\) ranges over the \(l\)th roots of 1. It follows from Lemma 3.3 that if we choose \(l\) appropriately (say \(l = (2mn)\)) then \(V(g_l) \supset V(I)\). This need not imply that \(g_l\) is in \(I\), but by Hilbert’s Nullstellensatz [4, VII, Th. 14] we do have \(g_k^k \in I\) for some \(k \geq 1\).

To show there exists \(l\) such that \(g_l \in I\) we use the theory of primary decompositions (see, e. g., chapters 4 and 7 of [2]). Let \(A\) be a commutative ring with 1. We say that the ideal \(Q \subset A\) is a primary ideal if whenever \(xy \in Q\) with \(x \notin Q\) there exists \(a \geq 1\) such that \(g^a \in Q\). By the Hilbert basis theorem, \(\mathbb{C}[X^Z, Y^Z]\) is a Noetherian ring [4, Cor. 7.7]. Therefore there are primary ideals \(Q_1, \ldots, Q_r\) in \(\mathbb{C}[X^Z, Y^Z]\) such that \(I = Q_1 \cap \ldots \cap Q_r\) [4, Th. 7.13]. The radical ideal

\[
P_i = \sqrt{Q_i} = \{ f \in \mathbb{C}[X^Z, Y^Z] : f^r \in Q_i \text{ for some } r \geq 1 \}
\]

of the primary ideal \(Q_i\) is automatically prime, and is called the prime associated to \(Q_i\). We may also characterize \(P_i\) as the smallest prime ideal containing \(Q_i\).

Since \(I = Q_1 \cap \ldots \cap Q_r\) we need to show that there exists \(l \geq 1\) such that \(g_l \in Q_i\) for all \(1 \leq i \leq r\). Observe that if \(l | l'\) then \(g_l | g_{l'}\). Therefore it is enough to show that for each \(i\) there is \(l_i\) such that \(g_{l_i} \in Q_i\), since in that case we have \(g_l \in I\) with \(l = \text{lcm}\{l_1, \ldots, l_r\}\). To accomplish this we first restrict the possibilities for the prime ideals \(P_i\).

Let \(q = (2mn)\). We observed above that \(g_q^k \in I\) for some positive integer \(k\). Since \(P_i \supset Q_i \supset I\) this implies that \(g_q^k \in P_i\). Therefore some irreducible factor of

\[
g_q(X, Y)^k = \prod_{\zeta^q = 1} (X - \zeta)^k(Y - \zeta)^k
\]
lies in the prime ideal P_i. It follows that $X - \zeta \in P_i$ or $Y - \zeta \in P_i$ for some $\zeta \in \mathbb{C}^\times$ such that $\zeta^q = 1$.

Assume without loss of generality that $X - \zeta \in P_i$. Then P_i contains the prime ideal $(X - \zeta)$ generated by the irreducible polynomial $X - \zeta$. If $P_i \neq (X - \zeta)$ let h be an element of P_i which is not in $(X - \zeta)$. By dividing $X - \zeta$ into $h(X,Y)$ we see that $h(\zeta, Y) \in P_i$. Since P_i is prime and \mathbb{C} is algebraically closed this implies that some linear factor $Y - \alpha$ of $h(\zeta, Y)$ is in P_i. Therefore P_i contains the maximal ideal $(X - \zeta, Y - \alpha)$, so in fact $P_i = (X - \zeta, Y - \alpha)$. Moreover, we must have $\alpha \neq 0$ since Y is a unit in $\mathbb{C}[X^2, Y^2]$. It follows that if $X - \zeta \in P_i$ then either $P_i = (X - \zeta)$ or $P_i = (X - \zeta, Y - \alpha)$ for some $\alpha \in \mathbb{C}^\times$.

We will make repeated use of the following elementary fact about primary ideals.

Lemma 3.5 Let Q be a primary ideal and set $P = \sqrt{Q}$. If $gh \in Q$ with $h \not\in P$ then $g \in Q$.

Proof: Since $h \not\in P$ we have $h^a \not\in Q$ for all $a \geq 1$. Therefore by the definition of primary ideal we have $g \in Q$. \hfill \Box

Assume now that $P_i = (X - \zeta)$ with $\zeta^q = 1$. Then $X^q - 1$ has a simple zero at $X = \zeta$. Therefore by Lemma 2.7 and Lemma 3.2 we have

$$f_{T(q)}(X,Y) = f_T(X^q, Y^q) = (X^q - 1)(Y^q - 1) f_T^*(X^q, Y^q) = (X - \zeta) h(X,Y)$$

for some $h \in \mathbb{C}[X, Y]$. Moreover we have $h(\zeta, Y) \neq 0$, since otherwise $0 = f_T^*(\zeta^q, Y^q) = f_T^*(1, Y^q)$, which would imply $f_T^*(1, 1) = 0$, contrary to Lemma 3.2. Therefore $h \not\in P_i = (X - \zeta)$. It follows by Lemma 3.3 that $X - \zeta \in Q_i$, and hence that $g_q \in Q_i$.

Now assume $P_i = (X - \zeta, Y - \alpha)$. If α is an rth root of 1 for some $r \geq 1$ then $X^{qr} - 1$ has a simple zero at $X = \zeta$ and $Y^{qr} - 1$ has a simple zero at $Y = \alpha$. As in the previous case this implies

$$f_{T(qr)}(X,Y) = (X^{qr} - 1)(Y^{qr} - 1) f_T^*(X^{qr}, Y^{qr}) = (X - \zeta)(Y - \alpha) h(X,Y)$$

for some $h \in \mathbb{C}[X, Y]$. Since $f_T^*(\zeta^{qr}, \alpha^{qr}) = f_T^*(1, 1) \neq 0$, we have $h(\zeta, \alpha) \neq 0$, and hence $h \not\in P_i$. Applying Lemma 3.3 we get $(X - \zeta)(Y - \alpha) \in Q_i$, and hence $g_{qr} \in Q_i$. If α is not a root of 1 we may choose $r \geq 1$ so that $f_T^*(\zeta^{qr}, \alpha^{qr}) = f_T^*(1, \alpha^{qr}) \neq 0$, since $f_T^*(1, 1) \neq 0$ implies that $f_T^*(1, Y)$ has only finitely many zeros. Then $X^{qr} - 1$ has a simple zero at $X = \zeta$ and $Y^{qr} - 1$ is nonzero at $Y = \alpha$. By an argument similar to those used above we have $f_{T(qr)}(X,Y) = (X - \zeta) h(X,Y)$ for some $h \in \mathbb{C}[X, Y]$ such that $h(\zeta, \alpha) \neq 0$. This implies $h \not\in P_i$, so by Lemma 3.3 we get $X - \zeta \in Q_i$, and hence $g_q \in Q_i$.

We’ve shown now that for each $1 \leq i \leq r$ there is $i_t \geq 1$ such that $g_{i_t} \in Q_i$. Therefore we have $g_t \in I$ with $l = \text{lcm}\{l_1, \ldots, l_r\}$. It follows from Corollary 2.6 that $T(\mathbb{N})$ \mathbb{Q}-tiles an $l \times l$ square. To prove that $T(\mathbb{N})$ \mathbb{Q}-tiles a square it is sufficient to prove that g_t is in
the ideal I_0 in $\mathbb{Q}[X^Z, Y^Z]$ generated by $T(\mathbb{N})$. Equivalently, we need to show that g_l is in the \mathbb{Q}-span of the set

$$\mathcal{E} = \{X^iY^jf_{T(k)} : i, j, k \in \mathbb{Z}, k \geq 1\}.$$

We have shown that g_l is in the \mathbb{C}-span of \mathcal{E}. Since g_l and the elements of \mathcal{E} are all in $\mathbb{Q}[X^Z, Y^Z]$, and

$$\mathbb{C}[X^Z, Y^Z] \cong \mathbb{Q}[X^Z, Y^Z] \otimes_{\mathbb{Q}} \mathbb{C},$$

it follows immediately that g_l is in the \mathbb{Q}-span of \mathcal{E}. This completes the proof of Theorem 3.1. □

Corollary 3.6 Let T be a \mathbb{Z}-weighted tile made up of rectangles whose corners all have rational coordinates. Assume that the weighted area of T is not zero. Then there exists a positive integer w such that $T(\mathbb{N})$ \mathbb{Z}-tiles a square with weight w.

Proof: By Theorem 3.1 we know that $T(\mathbb{N})$ \mathbb{Q}-tiles a square R, so there are rational numbers a_1, \ldots, a_n and tiles T_1, \ldots, T_n, each a translation of some $T(k_i) \in T(\mathbb{N})$, such that $R = a_1T_1 + \ldots + a_nT_n$. Let $w \geq 1$ be a common denominator for a_1, \ldots, a_n. Then $wR = wa_1T_1 + \ldots + wa_nT_n$, and $wa_i \in \mathbb{Z}$ for $1 \leq i \leq n$. Therefore $T(\mathbb{N})$ \mathbb{Z}-tiles wR. □

4 Tiling with integer weights

Let T be a \mathbb{Z}-weighted lattice tile, and assume that the weighted area of T is not zero. By Corollary 3.6 we know that $T \mathbb{Z}$-shapetiles a square with weight w for some positive integer w. We wish to find necessary and sufficient conditions for T to \mathbb{Z}-shapetile a square with weight 1. To express these conditions we need a definition. Given $\mu \in \mathbb{Q} \cup \{\infty\}$ we say that two lattice squares S_{ij} and $S_{ij'}$ belong to the same μ-slope class if the line joining their centers has slope μ. The tile T can be decomposed into a sum $T = C_1 + \cdots + C_k$ of lattice tiles such that for each i the unit lattice squares which make up C_i all belong to the same μ-slope class.

Proposition 4.1 Let T be a \mathbb{Z}-weighted lattice tile and let n be a positive integer. Let c and d be relatively prime integers and set $\mu = -c/d$. Then the μ-slope classes of T all have weighted area divisible by n if and only if f_T is an element of the ideal $((X^d - Y^c)(X - 1)(Y - 1), n(X - 1)(Y - 1))$ in $\mathbb{Z}[X^Z, Y^Z]$.

Proof: The μ-slope classes of T all have weighted area divisible by n if and only if we can write $T = T_1 + nT_2$, where T_1 and T_2 are \mathbb{Z}-weighted lattice tiles such that the μ-slope classes of T_1 all have weighted area zero. Write the decomposition of T_1 into its μ-slope classes as $T_1 = C_1 + \cdots + C_k$. Since $\mu = -c/d$ with c and d relatively prime, the lattice squares S_{ij} and $S_{ij'}$ are in the same μ-slope class if and only if $S_{ij'}$ is the translation...
of S_{ij} by $(dr, -cr)$ for some $r \in \mathbb{Z}$. Therefore if C_i is the μ-slope class of T_1 containing S_{ij} we have
\[f_{C_i}(X, Y) = g(X^dY^{-c})X^iY^j(X - 1)(Y - 1) \]
for some $g \in \mathbb{Z}[X^{\mathbb{Z}}]$. Since the weighted area of C_i is zero we see that $0 = f_{C_i}^\mu(1, 1) = g(1)$, which implies $X - 1 \mid g(X)$. It follows that $(X^dY^{-c} - 1)(X - 1)(Y - 1)$ divides f_{C_i} for $1 \leq t \leq k$, and hence also that $(X^dY^{-c} - 1)(X - 1)(Y - 1)$ divides f_{T_1}. Conversely, if $(X^dY^{-c} - 1)(X - 1)(Y - 1)$ divides f_{T_1}, it is easy to check that the μ-slope classes of T_1 all have weighted area zero. It follows that the μ-slope classes of T all have area divisible by n if and only if we can write
\[f_{T}(X, Y) = (X^dY^{-c} - 1)(X - 1)(Y - 1)h_1(X, Y) + n(X - 1)(Y - 1)h_2(X, Y) \]
for some $h_1, h_2 \in \mathbb{Z}[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$. Since Y^c is a unit in $\mathbb{Z}[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ this is equivalent to $f_T \in ((X^d - Y^c)(X - 1)(Y - 1), n(X - 1)(Y - 1))$. □

Theorem 4.2 Let T be a \mathbb{Z}-weighted lattice tile. Then T \mathbb{Z}-shapetiles a square if and only if the two following conditions hold:

1. The weighted area of T is not zero.

2. For every $\mu \in \mathbb{Q}^\times$ the gcd of the weighted areas of the μ-slope classes of T is 1.

Proof: Let T be a tile which satisfies conditions 1 and 2. To show that T \mathbb{Z}-shapetiles a square it is sufficient by Corollary 3.6 to show that $T(\mathbb{N}) \cup \{wR\} \mathbb{Z}$-tiles a square, where R is an $l \times l$ square and l, w are positive integers. Let $S = S_{00}$ be the unit lattice square with lower left corner $(0, 0)$. If $T(\mathbb{N}) \cup \{wS\}$ \mathbb{Z}-tiles an $a \times a$ square then by rescaling we see that $T(\mathbb{N}) \cup \{wR\}$ \mathbb{Z}-tiles an $la \times la$ square. Therefore it is sufficient to show that $T(\mathbb{N}) \cup \{wS\}$ \mathbb{Z}-tiles a square. Let J be the ideal in $\mathbb{Z}[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ generated by $\{f_{T(k)} : k \in \mathbb{N}\} \cup \{w(X - 1)(Y - 1)\}$. By Corollary 2.6 it is sufficient to show that $g_i \in J$ for some $l \geq 1$.

By the Hilbert basis theorem $\mathbb{Z}[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ is a Noetherian ring. Therefore the ideal J has a primary decomposition $J = Q_1 \cap \ldots \cap Q_l$. We need to show that there exists $l \geq 1$ such that $g_i \in Q_i$ for all i. As in the proof of Theorem 3.1 it is enough to show that for each i there is $l_i \geq 1$ such that $g_{l_i} \in Q_i$. Let $P_i = \sqrt{Q_i}$ be the prime associated to Q_i, and suppose $w \notin P_i$. Then since $w(X - 1)(Y - 1) \in Q_i$, by Lemma 3.3 we see that $(X - 1)(Y - 1) = g_i$ is in Q_i. If $w \in P_i$ then since P_i is a prime ideal it follows that P_i contains a prime integer p which divides w, and hence that $P_i \cap \mathbb{Z} = p\mathbb{Z}$.

For $f \in \mathbb{Z}[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ let $\overline{f} \in \mathbb{F}_p[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ be the reduction of f modulo p, where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements. Let $\overline{P_i}$ be the ideal in $\mathbb{F}_p[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ consisting of the reductions modulo p of the elements of P_i. Since $p \in P_i$ the ideal $\overline{P_i}$ is prime. Let $\overline{J} \subset \mathbb{F}_p[X^{\mathbb{Z}}, Y^{\mathbb{Z}}]$ be the ideal consisting of the reductions modulo p of the elements of J. Then \overline{J} is generated by $\{\overline{J}_{T(k)} : k \geq 1\}$. Since $P_i \supset J$, we have $\overline{P_i} \supset \overline{J}$.

10
Let K be an algebraic closure of \mathbb{F}_p and let $V(\mathcal{J}) \subset K^\times \times K^\times$ be the set of common zeros of the elements of \mathcal{J}. Let m be the X-degree of \mathcal{J}, let n be the Y-degree of \mathcal{J}, and define $\mathcal{Y} \subset K^\times \times K^\times$ by

$$
\mathcal{Y} = \{ \zeta \in K^\times : \zeta^k = 1 \text{ for some } 1 \leq k \leq 2mn \}.
$$

Lemma 4.3 $V(\mathcal{J}) \subset (K^\times \times \mathcal{Y}) \cup (\mathcal{Y} \times K^\times)$.

Proof: Let $(\alpha, \beta) \in V(\mathcal{J})$ and suppose neither α nor β is in \mathcal{Y}. Then for $1 \leq k \leq 2mn$ we have

$$
0 = \mathcal{J}(\alpha, \beta) = \mathcal{J}(\alpha^k, \beta^k) = (\alpha^k - 1)(\beta^k - 1)\mathcal{H}(\alpha^k, \beta^k).
$$

Since α and β aren’t in \mathcal{Y} this implies that $\mathcal{H}(\alpha^k, \beta^k) = 0$ for $1 \leq k \leq 2mn$. Therefore by Lemma 3.4 there are relatively prime integers c, d with $c \geq 1$ and $d \neq 0$ such that $\mathcal{H}(X^c, X^d) = 0$. Let A be the quotient ring $\mathbb{F}_p[X^c, Y^c]/(X^d - Y^c)$, and let x, y denote the images of X, Y in A. Then x and y are units in A satisfying $x^d = y^c$ with $\gcd(c, d) = 1$, so there is $z = x^a y^b$ in A^\times such that $x = z^c$ and $y = z^d$. Therefore the image of \mathcal{J} in A is given by $\mathcal{J}(x, y) = \mathcal{J}(z^c, z^d)$, which equals zero since $\mathcal{J}(X^c, X^d) = 0$. It follows that $X^d - Y^c$ divides \mathcal{J}, and hence that f_T^μ is in the ideal $(X^d - Y^c, p)$ in $\mathbb{Z}[X^\mathbb{Z}, Y^\mathbb{Z}]$. Therefore $f_T = (X - 1)(Y - 1)$ is in the ideal $((X^d - Y^c)(X - 1)(Y - 1), p(X - 1)(Y - 1))$ in $\mathbb{Z}[X^\mathbb{Z}, Y^\mathbb{Z}]$. Proposition 1.1 now implies that every μ-slope class of T has area divisible by p. This violates condition 2 of the theorem, so we have a contradiction. \hfill \Box

Set $q = (2mn)!$ and let $V(\mathcal{J}_q) \subset K^\times \times K^\times$ be the set of zeros of \mathcal{J}_q. Since $X^q - 1$ has zeros at all elements of \mathcal{Y}, we have $V(\mathcal{J}_q) \supset (K^\times \times \mathcal{Y}) \cup (\mathcal{Y} \times K^\times)$. Therefore Lemma 4.3 implies $V(\mathcal{J}_q) \supset V(\mathcal{J})$. Since $\mathcal{P}_i \supset T$ we have $V(\mathcal{J}) \supset V(\mathcal{P}_i)$, and hence $V(\mathcal{J}_q) \supset V(\mathcal{P}_i)$. As in Section 3 Hilbert’s Nullstellensatz implies that $\mathcal{J}_q \supset P_i$ for some $k \geq 1$. Since P_i is prime and

$$
\mathcal{J}_q(X, Y)^k = (X^q - 1)^k(Y^q - 1)^k
$$

we have either $X^q - 1 \in P_i$ or $Y^q - 1 \in P_i$. It follows that P_i contains one of the ideals $(X^q - 1, p)$ or $(Y^q - 1, p)$. We may assume without loss of generality that $P_i \supset (X^q - 1, p)$.

By [1], Prop. 7.14 we have $Q_i \supset P_i^u$ for some $u \geq 1$. Therefore it is enough to prove that for every $u \geq 1$ there is $l \geq 1$ such that $g_l \in P_i^u$. Let t be a positive integer. Expanding $X^{qt} - 1$ in powers of $X^q - 1$ gives

$$
X^{qt} - 1 = -1 + ((X^q - 1) + 1)^t = \sum_{j=1}^{t} \binom{t}{j} (X^q - 1)^j.
$$
If we choose \(t \) to be divisible by a large power of \(p \) then for small values of \(j \geq 1 \) the binomial coefficient \({t \choose j} \) is divisible by a large power of \(p \). Thus every term in this expansion is divisible either by a large power of \(p \) or a large power of \(X^q - 1 \). It follows that there exists \(t \geq 1 \) such that \(X^q t - 1 \in (X^q - 1, p)^u \). Since \(P^u_1 \supset (X^q - 1, p)^u \) we get \(g_{qt} \in P^u_1 \), as required.

Assume conversely that \(T \mathbb{Z} \)-shapetiles a square. Then the weighted area of \(T \) is clearly not equal to zero, so condition 1 of Theorem 4.2 is satisfied. We need to show that for every \(\mu \in \mathbb{Q}^* \) the gcd of the weighted areas of the \(\mu \)-slope classes of \(T \) is equal to 1. If we knew that the scale factors and the coordinates of the translation vectors used in shapetiling the square were all in \(\mathbb{Z} \), or even in \(\mathbb{Q} \), we could prove this using polynomials in \(\mathbb{Z}[X^\mathbb{R}, Y^\mathbb{R}] \). Since we have no right to make this assumption, we need to work in the ring \(\mathbb{Z}[X^\mathbb{R}, Y^\mathbb{R}] \).

We may assume that the square which is shapetiled by \(T \) is \(S = S_{00}, \) the unit square with lower left corner \((0, 0) \). We have then \(S = a_1T_1 + \cdots + a_kT_k \), where \(a_i \in \mathbb{Z} \) and each \(T_i \) is a translation of some \(T(\rho_i) \). Let \(p \) be prime and suppose that for some \(\mu \in \mathbb{Q}^* \) the areas of the \(\mu \)-slope classes of \(T \) are all divisible by \(p \). Let \(c, d \) be integers such that \(\gcd(c, d) = 1 \) and \(\mu = -c/d \). Let \(\overline{f}_T \in \mathbb{F}_p[X^\mathbb{R}, Y^\mathbb{R}] \) be the reduction of \(f_T \) modulo \(p \), and for \(1 \leq i \leq n \) let \(\overline{f}_{T_i} \in \mathbb{F}_p[X^\mathbb{R}, Y^\mathbb{R}] \) be the reduction of \(f_{T_i} \). Then by Proposition 4.1 we see that \((X^d - Y^c)(X - 1)(Y - 1) \) divides \(\overline{f}_T \) (in \(\mathbb{F}_p[X^\mathbb{R}, Y^\mathbb{R}] \), and hence also in \(\mathbb{F}_p[X^\mathbb{R}, Y^\mathbb{R}] \)). Therefore by Lemma 2.7 and Lemma 2.4 we see that \(\overline{f}_{T_i} \) is divisible by

\[
(X^{\rho_i d} - Y^{\rho_i c})(X^{\rho_i} - 1)(Y^{\rho_i} - 1).
\]

Define a ring homomorphism \(\Psi : \mathbb{F}_p[X^\mathbb{R}, Y^\mathbb{R}] \rightarrow \mathbb{F}_p[X^\mathbb{R}] \) by setting \(\Psi(f) = f(X^c, X^d) \). Since \(\Psi(X^{\rho_i d} - Y^{\rho_i c}) = 0 \), the divisibility relation from the preceding paragraph implies that \(\Psi(\overline{f}_{T_i}) = 0 \) for \(1 \leq i \leq n \). On the other hand, since \(\overline{f}_S = \overline{f}_1 = (X - 1)(Y - 1) \), we have

\[
\Psi(\overline{f}_S) = X^{c+d} - X^c - X^d + 1,
\]

which is nonzero since \(c \) and \(d \) are nonzero. Since \(S = a_1T_1 + \cdots + a_kT_k \) we have \(\overline{f}_S = \overline{a}_1\overline{f}_{T_1} + \cdots + \overline{a}_k\overline{f}_{T_k} \) with \(\overline{a}_i \in \mathbb{F}_p \), which gives a contradiction. Therefore the areas of the \(\mu \)-slope classes of \(T \) can’t all be divisible by \(p \), so condition 2 is satisfied. This completes the proof of Theorem 4.2. \(\square \)

Example 4.4 Let \(T \) be the lattice tile pictured in Figure 3a. Since \(T \) has area \(4 \neq 0 \), it follows from Theorem 3.1 that \(T \mathbb{Q} \)-shapetiles a square. But since the nonempty \(1 \)-slope classes of \(T \) both have area 2, Theorem 4.2 implies that \(T \) does not \(\mathbb{Z} \)-shapetile a square.

Example 4.5 Let \(a, b, c, d \) be positive integers with \(a > c \) and \(b > d \). We construct a lattice tile \(T \) by removing a \(c \times d \) rectangle from the upper right corner of an \(a \times b \) rectangle, as in Figure 3b. The area of \(T \) is \(ab - cd > 0 \), so the first condition of Theorem 4.2 is satisfied. If \(\mu > 0 \) there is a \(\mu \)-slope class of \(T \) consisting of just the
upper left corner square, while if \(\mu < 0 \) there is a \(\mu \)-slope class of \(T \) consisting of just the lower left corner square. In either case \(T \) has a \(\mu \)-slope class whose area is 1. Therefore the second condition of Theorem 4.2 is also satisfied, so \(T \) \(\mathbb{Z} \)-shapetiles a square.

Example 4.6 The simplest case of Example 4.5 occurs when \(a = b = 2 \) and \(c = d = 1 \). In this case we have \(f_T(X, Y) = (1 + X + Y)(X - 1)(Y - 1) \). A straightforward calculation shows that

\[
XY g_3(X, Y) = (X^3Y^3 - X^2Y^2 - X^4 - X^4Y - X^4Y^2 - Y^4 - XY^4 - X^2Y^4) f_T(X, Y) \\
+ (XY - 1) f_{T(2)}(X, Y) + f_{T(3)}(X, Y).
\]

This gives the \(\mathbb{Z} \)-tiling of a 3 \(\times \) 3 square with lower left corner \((1, 1)\) depicted in Figure 3. The left side of Figure 3 has tiles with weight 1 and the right side has tiles with weight \(-1\). The total weights of the tiles covering each region are indicated.

References
[1] M. F. Atiyah and I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading, Mass. (1969).

[2] F. W. Barnes, Algebraic theory of brick packing I, Discrete Math. 42 (1982), 7–26.

[3] M. Dehn, Über die Zerlegung von Rechtecken in Rechtecke, Math. Ann. 57 (1903), 314–332.

[4] K. Keating and J. L. King, Shape tiling, Electron. J. Combin. 4 (1997), no. 2, R12.

[5] O. Zariski and P. Samuel, *Commutative Algebra, Volume II*, Springer-Verlag, New York (1960).