Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
Main source publication	Leisenring et al. 2009 (32); Robison et al. 2009 (33)	Hudson et al. 2011 (34); Howell et al. 2021 (35)	Evans et al. 1991 (36); Lange et al. 2014 (37)	Teepen et al. 2017 (10)	Demoor-Goldschmidt et al. 2020 (38); Gbetchedji et al. 2020 (39)	Michel et al. 2008 (40); Kuehni et al. 2012 (41)	Van Leeuwen et al. 2000 (42); De Bruin et al. 2009 (43); Van Eggermond et al. 2017 (44)

Study Methodology

Setting	Multi-institutional cohort study	Single-center study*	Multi-institutional cohort study	Multi-institutional cohort study	Nationwide population-based cohort study	Multi-institutional cohort study
Source for cohort identification	31 children’s hospitals in the United States and Canada	Diagnosis of childhood malignancy treated at SJCRH	Clinical Trial databases of the NWTSG as basis for the Long Term Follow up Study	7 pediatric oncology/hematology centers, including 2 hematopoietic stem cell transplant centers	5-Pediatric Oncology-Department s of CLCC (Center for Struggle Against Cancer) in France	Swiss Childhood Cancer Registry
HL patients treated in 7 Dutch University Hospitals or Cancer Centers						
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
Treatment exposure assessment	- Data abstraction from medical records (ie, chemotherapy, radiation therapy, and surgery) - Region- and organ-based dosimetry from copies of all RT records for later dose reconstruction†	- Data abstraction from medical records	NWTSG Clinical Trial Database	- Medical record abstraction by trained data management staff - Digitization of RT paper-based records - Storage of X-ray reports	- Data abstraction from medical records (ie, chemotherapy, radiation therapy, and surgery) - Whole body and organ dosimetry from copies of RT records	Medical record abstraction	Medical record abstraction
Follow-up methods	Self-reported/next of kin reported health surveys or followed by a telephone call with validation of subsequent neoplasms. National Death Index	- Systematic clinical assessments supplemented by medical record validation of self-	- Bi-annual contact with family and health updates by treating center twice yearly	- Medical record abstraction - Central Bureau for Genealogy (vital status, decedents) - Centralized municipal resident	- National death certificate data - National Public and Private Hospitals	Medical record abstractions - Questionnaires surveys to patients or parents	- Medical records - Netherland s Cancer Registry - Vital status

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Wang Y, et al. BMJ Open 2022; 12:e065910. doi: 10.1136/bmjopen-2022-065910
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
SMN outcome assessment	- Repeated questionnaire surveys; medical validation (including a pathology/oncology report review panel for subsequent malignancies, or the patient)	- Comprehensive clinical evaluation on the SJCRH campus	- At baseline (5 yr survival) abstraction of medical record for health outcomes	- Record linkage with national registries (cancer, pathology reports, hospital discharge diagnoses)	- Algorithms for identification of the SMN from the ICD codes and the drugs codes in the SNDS	- Causes of death and death records from the Swiss mortality statistics in the Swiss Federal Statistical Office	Up to 2004: - Medical records - By contacting general practitioners - By attending
		reported health events	- Cancer Registry	registry database (tracing) and vital status	and National Health Insurance Database (SNDS)	- Hospital clinical files	- Linkage to cantonal cancer registries
		- For decedents: Next-of-Kin contact			- Long term follow-up visits	- Self-completed questionnaires	- Linkage to national mortality statistics and birth statistics (Federal Statistical Office)

for late mortality. Tracing protocol using multiple publicly available sources\(^1\), including e.g. Social Security Administration and National Death Index
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
and/or parent response or death certificate and/or other institutional records were reviewed)							
- Vital status and the cause of death were determined through the National Death Index (NDI)							
Source for population cancer rates	U.S. SEER Cancer Registries (National Cancer institute)	U.S. SEER Cancer Registries (National Cancer institute)	U.S. SEER Cancer Registries (National Cancer institute)	Netherlands Cancer Registry	FRANCIM (French Cancer Registry Network)	Swiss Childhood Cancer Registry and National Agency for Cancer Registration (www.nacr.ch)	Swiss Childhood Cancer Registry and National Agency for Cancer Registration (www.nacr.ch)
- Systematic clinical assessments except limited to risk-based screening for breast and colon cancer surveillance since 2015			(physical examination forms)	- Self-administered questionnaire survey	- Specific item in self-questionnaires	- Self-administered questionnaire survey	physicians in other hospitals
- Clinical records or annual status reports							Up to 2010: linkage with the nationwide PALGA network and the Netherlands Cancer Registry
- Pathologic verification of subsequent malignant neoplasms							
- Causes of deaths							
- Contact with pathologists, and getting copy of pathological records for all neoplasms							
- Long term followup visits							
- Self-administered questionnaire survey							

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the information supplied which has been supplied by the author(s).
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL	
Inclusion Criteria								
Eligible survivors	Alive 5 yrs after diagnosis⁴	Alive 5 yrs after diagnosis at time of cohort entry	Alive 5 yrs post-surgery	Alive 5 yrs after diagnosis	Alive 5 yrs after diagnosis	Alive 5 yrs after diagnosis	Alive 5 yrs after receiving treatment	
Period of childhood cancer diagnosis	1970-1999	1962-2012	1969-2002	1963-2001	1946-2000	Since 1976	1965-1995	
Age at childhood cancer diagnosis (yrs)	<21	<21	<20	<18	<21	<21	<21	⁵

Main Cohort Characteristics

Source Cohort fulfilling eligibility criteria (n)	- For survivors diagnosed between 1970-1986: 20,687 (both male and female)	8,192 (both male and female)	2,492 females	6,165 (both male and female)	7,670 (both male and female)	By 31 December 2010: 5,553 (both male and female)	265 female pediatric HL survivors

⁴ Alive 5 yrs after diagnosis

⁵ <21 yrs
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
Base Cohort available for studies	- For survivors diagnosed between 1970-1986: 14,361 - For survivors diagnosed between 1987-1999: 11,304	Contacted for recruitment: 7,471	2,492 females	6,015 (44% female)	7,670 (both male and female)	Questionnaire survey 2007-11: 2,738/5,553	265 female pediatric HL survivors
Participation rates (including loss to follow-up)	- Follow-up 1, diagnosed 1970-86: 12,884 (participation 81%)¹¹	Survivors have completed a campus visit (n=5,223)/Survivors contacted for recruitment (n=7,471) 69.9%	NA	NA	1st self-questionnaire: 3,313/6,173 alive (53%)²	Questionnaire responded rate in adults and adolescents: 1,505/2,738 (for children aged 5-15 yr, mailing ongoing)	NA
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
- Follow-up 5, diagnosed 1970-1999: 18,041 (participation 63%)							
- Follow-up 6, diagnosed 1970-1999: 17,301 (participation 76%)							

Funding sources

- National Cancer Institute: U24 CA55727, the Cancer Center Support (CORE) grant (CA21765, C. Roberts, Principal Investigator) and the American Lebanese Syrian Associated Charities (ALSAC)
- National Cancer Institute at the National Institutes of Health Cancer Center Support grant 5P30CA021765-33 and the St. Jude Lifetime Cohort Study Grant [U01 CA195547], and the American NIH grant 2 R01 CA054498
- Dutch Cancer Society KiKa Children Cancer Free ODAS Foundation European Union Dutch Childhood Oncology Group
- Fondation Pfizer for childhood and Adolescent Health. Ligue Nationale Contre le Cancer (LNCC), Institut de Recherche en Santé Publique (IRES).
- The SCCSS has been supported by the Swiss Cancer League and the Swiss Cancer Research foundation (KFS-02783-02-2011, KLS-3412-02-2014, KFS-4157-02-2017, KLS/KFS-4825-01-2019; KFS-4722-02-2019, KFS-5027-02-2020; KFS-5302-
- Dutch Cancer Society (NKI 2010-4720)
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
Lebanese Syrian Associated Charities. Registered at Clinicaltrials.gov (#NCT00760656)							
IRB and/or Ethics Committee approval	The St. Jude Children’s Research Hospital Institutional Review Board provides oversight and approval for all CCSS activities	The St. Jude Children’s Research Hospital Institutional Review Board provides oversight and approval for	Institutional Review Board for the Fred Hutchinson Cancer Research Center provides oversight and approval for all NWTSG activities	The study protocol of the DCCSS LATER was declared exempt from the review of medical intervention research by the institutional review boards of all	The FCCSS was approved by the French Data Protection Authority (CNIL)	The Swiss Childhood Cancer Registry and the Swiss Childhood Cancer Survivor Study have been approved by the	The Netherlands Cancer Institute’s Institutional Review Board approved
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
	all SJLIFE activities	participating centers, in compliance with Dutch law and regulations for health research involving human beings	(Authorisation n°902287) and by the ethics committee of the INSERM. The FCCSSS also obtained a specific act in law from the French “Conseil d’Etat”, the highest court in France (Order of 2014–96 of 2014 February 3), that approved	cantonal ethics committee Bern (ethics approval KEK BE 166/2014); the data collection in Switzerland on second neoplasms within PanCareSurFup has been approved by the cantonal ethics committee Bern (ethics approval KEK BE 183/11)	participatio n in the current study		
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL
Study website	https://ccss.stjude.org/	https://sjlife.stjude.org/			the linkage with the SNDS (Système National des Données de Santé) data for all patients included in the FCCSS		www.fccss.fr
Yr = Year; SJCRH = St Jude Children’s Research Hospital, Memphis TN, USA; RT = Radiotherapy; NM = Not mentioned; NA = Not applicable							
Includes patients referred to St. Jude for treatment and follow-up care, largely from the USA; eligible survivors were recruited at their last annual follow-up visit to the After Completion of Therapy (ACT) Clinic upon reaching age 18 years or at high school graduation, whichever comes and from the SJCRH Cancer Registry.							
For details, see Stovall et al. 2006 (46) and Armstrong et al. 2009 (47).							
Postal service address-correction requests, directory assistance, internet directories, reverse directories, contact of previous neighbors and/or relatives, voter registration records, post offices, Social Security Administration hand search, credit bureaus, property tax records, schools, social security death files, National Death Index.							
Craniopharyngioma and meningioma were excluded.							
Supplemental Table 1. Key Characteristics of the original multi-institutional study cohorts included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Participating collaborative groups	CCSS	SJLIFE	NWTSG	DCCSS LATER	FCCSS	SCCSS	DHL

*The SJCRH generally restricts acceptance to children <25 years of diagnosis, but only survivors <21 years of diagnosis were included in our consortium.
*The DHL includes survivors who were <51 years at HL treatment. Only the information of the survivors who were diagnosed <21 years was provided to the consortium.
**Total/denominator as in column ‘base cohort’ unless otherwise specified.
††Participation among baseline participants still alive at initiation of Follow-up survey.
Supplemental Table 2. Demographic, clinical, and childhood-cancer treatment characteristics of female childhood/adolescent cancer survivors included in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer by each participating study.

Participating study	CCSS (n=9671)	NWTS (n=3989)	IFCT (n=2236)	ILIPE (n=2237)	LATER (n=265)	DHL (n=79)	SCCSS (n=21892)	Non-SBC patients (n=21057)	SBC patients* (n=835)	
Primary childhood cancer type										
Leukemia	2987 (30.9%)	-	-	802 (35.9%)	770 (34.4%)	-	15 (19.0%)	4574 (20.9%)	4402 (21.3%)	82 (0.8%)
Non-Hodgkin lymphoma	586 (6.1%)	-	235 (9.6%)	115 (5.3%)	157 (7.0%)	-	4 (5.1%)	1097 (5.0%)	1060 (5.0%)	37 (4.4%)
Hodgkin lymphoma	1276 (13.2%)	-	189 (5.3%)	227 (10.2%)	125 (5.6%)	265 (100%)	19 (24.1%)	2101 (9.0%)	1692 (8.0%)	409 (40.0%)
CNS tumor	1841 (19.0%)	-	486 (14.6%)	287 (12.8%)	312 (13.9%)	-	8 (10.1%)	2946 (13.5%)	2932 (13.9%)	14 (1.7%)
Neuroblastoma	901 (9.3%)	-	505 (14.8%)	101 (4.5%)	145 (6.5%)	-	5 (6.3%)	1657 (7.6%)	1642 (7.8%)	15 (1.8%)
Retinoblastoma	-	-	293 (4.6%)	119 (15.3%)	14 (0.6%)	-	-	426 (1.1%)	424 (2.0%)	2 (0.0%)
Renal tumor	389 (4.0%)	3890 (100%)	558 (16.3%)	170 (7.6%)	250 (11.2%)	-	5 (6.3%)	5361 (24.5%)	5270 (25.0%)	91 (10.9%)
Hepatic tumor	-	-	32 (0.9%)	10 (0.4%)	19 (0.8%)	-	-	61 (0.3%)	60 (0.3%)	1 (0.0%)
Bone tumor	884 (9.1%)	-	285 (8.0%)	133 (5.9%)	141 (6.3%)	-	6 (7.6%)	1489 (6.7%)	1352 (6.4%)	107 (12.8%)
Soft tissue tumor	763 (7.9%)	-	361 (10.0%)	127 (5.7%)	151 (6.8%)	-	3 (3.8%)	1405 (6.4%)	1350 (6.4%)	55 (6.0%)
Germ-cell tumor	20 (0.2%)	-	240 (7.3%)	66 (3.0%)	101 (4.5%)	-	2 (2.5%)	440 (2.0%)	431 (2.0%)	9 (1.1%)
Other malignant epithelial neoplasms	-	-	187 (5.5%)	49 (2.2%)	52 (2.2%)	-	11 (13.9%)	297 (1.4%)	288 (1.4%)	11 (1.5%)
Other and unspecified	-	-	7 (0.2%)	28 (1.3%)	2 (0.1%)	-	1 (1.3%)	38 (0.2%)	37 (0.2%)	1 (0.0%)
Unclassifed	24 (0.2%)	-	6 (0.2%)	-	-	-	-	30 (0.1%)	29 (0.1%)	1 (0.0%)
Age at primary childhood cancer diagnosis (yr)										
Median [IQR]	7.5 [3.1, 13.7]	3.3 [1.8, 5.0]	5.2 [1.7, 11.4]	6.2 [2.7, 12.6]	5.4 [2.7, 10.7]	18.3 [16.6, 19.7]	14.2 [6.0, 17.3]	5.4 [2.5, 11.9]	5.2 [2.4, 11.3]	14.6 [11.6, 17.3]
Age at primary childhood cancer diagnosis (yr) category										
<5	3666 (37.9%)	2900 (75.0%)	1671 (48.0%)	973 (43.5%)	1049 (46.9%)	-	17 (21.5%)	10866 (47.4%)	10828 (48.8%)	84 (10.1%)
5-9	2027 (21.0%)	869 (21.8%)	707 (20.7%)	468 (20.9%)	569 (25.0%)	7 (2.6%)	10 (12.5%)	4657 (21.3%)	4574 (21.7%)	81 (9.9%)
10-14	2204 (22.8%)	115 (2.9%)	744 (21.8%)	472 (21.3%)	471 (21.5%)	21 (7.9%)	18 (22.8%)	4045 (18.5%)	3759 (17.3%)	286 (34.3%)
15-21	1774 (18.3%)	15 (0.4%)	293 (8.0%)	325 (14.4%)	148 (6.6%)	257 (99.4%)	34 (43.0%)	2824 (12.9%)	2442 (11.6%)	382 (45.7%)
Period of childhood cancer diagnosis, range										
Median [IQR]	1985 [1979, 1992]	1989 [1982, 1996]	1986 [1978, 1994]	1994 [1984, 2002]	1989 [1981, 1996]	1992 [1984, 1991]	1990 [1984, 1999]	1987 [1980, 1995]	1987 [1980, 1995]	1994 [1974, 1996]
Attained age at last follow-up (yr)	Median (IQR)	Attained age at last follow-up (yr)	Median (IQR)							
-----------------------------------	--------------------	-----------------------------------	--------------							
<20	838 (8.7%)	<20	1484 (37.2%)							
20-29	2552 (26.4%)	20-29	1128 (28.3%)							
30-39	3314 (34.3%)	30-39	921 (23.1%)							
≥40	2967 (30.7%)	≥40	456 (11.4%)							
Subsequent invasive breast cancer diagnosed	2967 (30.7%)	Subsequent invasive breast cancer diagnosed	456 (11.4%)							
No	9315 (96.3%)	No	3955 (99.1%)							
Yes	356 (3.7%)	Yes	34 (0.9%)							
Subsequent in situ breast cancer diagnosed	356 (3.7%)	Subsequent in situ breast cancer diagnosed	34 (0.9%)							
No	9529 (98.5%)	No	3971 (98.5%)							
Yes	142 (1.5%)	Yes	48 (0.5%)							
Any subsequent breast cancer (invasive or in situ)	142 (1.5%)	Any subsequent breast cancer (invasive or in situ)	48 (0.5%)							
No	9214 (93.9%)	No	3843 (98.8%)							
Yes	457 (4.7%)	Yes	46 (1.2%)							
First subsequent breast cancer type		First subsequent breast cancer type								
Pelvis	Mediastinal	Chest radiation dose (Gy)	Radiotherapy exposure to the chest	Vital status at last point of contact						
--------	-------------	---------------------------	----------------------------------	------------------------------------						
Only in situ	113 (24.7%)	12 (21.3%)	16 (12.5%)	24 (30.8%)	5 (12.5%)	14 (21.5%)	-	184 (22.0%)	-	184 (22.0%)
Invasive and in situ diagnosed at the same moment	8 (1.8%)	4 (8.7%)	2 (1.8%)	2 (2.0%)	-	-	-	16 (1.9%)	-	16 (1.9%)

Radiotherapy exposure to the chest	No	Yes	Unknown	Chest radiation dose (Gy)	Median [IQR]	Chest radiation dose (Gy) category				
No chest radiation	6607 (68.3%)	3415 (35.6%)	2728 (79.9%)	1706 (76.3%)	1892 (84.9%)	22 (8.3%)	49 (62.0%)	16419 (75.0%)	16145 (76.7%)	274 (32.8%)
<10	73 (0.8%)	4 (0.1%)	7 (0.2%)	5 (0.2%)	48 (2.1%)	-	-	137 (6.0%)	132 (6.6%)	5 (0.6%)
10-19	405 (4.2%)	509 (12.8%)	102 (5.0%)	133 (3.5%)	69 (3.5%)	2 (0.4%)	124 (5.6%)	115 (5.5%)	73 (6.7%)	
20-29	533 (5.5%)	19 (0.5%)	148 (4.3%)	210 (4.9%)	60 (2.7%)	11 (4.2%)	2 (2.5%)	803 (4.5%)	906 (4.3%)	77 (2.2%)
30-39	342 (3.6%)	12 (0.3%)	92 (2.7%)	85 (3.8%)	82 (3.7%)	90 (3.4%)	5 (6.3%)	908 (4.1%)	762 (3.6%)	146 (17.5%)
≥40	511 (5.3%)	3 (0.1%)	133 (3.9%)	41 (1.8%)	60 (3.0%)	85 (3.2%)	6 (7.6%)	847 (3.9%)	650 (1.1%)	197 (23.6%)
Unknown	1002 (10.4%)	27 (0.7%)	265 (6.0%)	56 (2.5%)	18 (0.8%)	55 (20.8%)	11 (13.9%)	1374 (6.3%)	1311 (6.2%)	63 (7.5%)

Chest radiation field	No chest radiation	Arilla	Mantle	Medialul	Others	Spine	Total body irradiation	Whole lung	Unknown	Radiotherapy exposure to the Pelvis
6607 (68.3%)	3415 (35.6%)	2728 (79.9%)	1706 (76.3%)	1892 (84.9%)	22 (8.3%)	49 (62.0%)	16419 (75.0%)	16145 (76.7%)	274 (32.8%)	
Axilla	12 (0.1%)	-	5 (0.3%)	15 (0.7%)	2 (0.5%)	-	34 (2.0%)	31 (1.5%)	3 (0.4%)	
Mantle	723 (7.5%)	46 (2.5%)	191 (8.3%)	39 (1.7%)	102 (72.5%)	11 (73.9%)	124 (5.7%)	914 (4.3%)	331 (30.6%)	
Medialul	227 (2.3%)	1 (0.1%)	134 (3.9%)	25 (1.8%)	36 (1.6%)	45 (17.0%)	4 (5.1%)	470 (21.4%)	437 (21.4%)	33 (4.0%)
Others	177 (1.8%)	19 (0.5%)	117 (3.6%)	35 (1.9%)	40 (2.2%)	-	1 (1.1%)	396 (1.9%)	344 (1.6%)	52 (6.2%)
Spine	596 (6.2%)	-	98 (2.9%)	131 (3.9%)	100 (4.9%)	-	3 (0.4%)	839 (4.1%)	927 (4.9%)	12 (1.4%)
Total body irradiation	223 (2.3%)	-	10 (0.5%)	67 (3.8%)	60 (3.1%)	-	2 (2.5%)	371 (1.7%)	348 (1.7%)	21 (2.8%)
Whole lung	79 (0.8%)	527 (13.2%)	37 (1.1%)	44 (2.0%)	22 (1.0%)	-	2 (2.5%)	711 (3.2%)	663 (1.3%)	48 (5.8%)
Unknown	1025 (10.6%)	27 (0.7%)	265 (6.0%)	36 (1.6%)	6 (0.4%)	3 (1.3%)	130 (6.9%)	123 (5.9%)	59 (7.1%)	
Doxorubicin dose (mg/m²)	7191 (74.4%)	1922 (48.2%)	2287 (67.0%)	1873 (63.8%)	2129 (95.2%)	179 (67.5%)	68 (68.1%)	15649 (71.5%)	15133 (71.9%)	516 (61.8%)
------------------------	---------------	---------------	---------------	---------------	---------------	-------------	-------------	----------------	----------------	-------------
Pelvic radiation dose (Gy)	Median [IQR]	130.4, 358.3	215.7, 135.1, 396.2	177.4, 135.1, 296.2	191.0, 219.0, 280.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	219.9, 170.7, 371.8
Doxorubicin	Median [IQR]	224.7 [130.4, 358.3]	NA**	215.7 [135.1, 396.2]	177.4 [135.1, 296.2]	191.0 [219.0, 280.0]	200.0 [203.0, 240.0]	201.0 [219.0, 230.0]	200.0 [203.0, 240.0]	219.9 [170.7, 371.8]
Doxorubicin dose (mg/m²)	Median [IQR]	224.7 [130.4, 358.3]	NA**	215.7 [135.1, 396.2]	177.4 [135.1, 296.2]	191.0 [219.0, 280.0]	200.0 [203.0, 240.0]	201.0 [219.0, 230.0]	200.0 [203.0, 240.0]	219.9 [170.7, 371.8]
Doxorubicin dose (mg/m²)	Unknown	1315 (15.7%)	923 (27.0%)	337 (15.1%)	105 (4.7%)	81 (30.6%)	3 (3.8%)	2964 (15.5%)	2740 (13.8%)	234 (28.9%)
Pelvic radiation dose (Gy)	Median [IQR]	130.4, 358.3	215.7, 135.1, 396.2	177.4, 135.1, 296.2	191.0, 219.0, 280.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	219.9, 170.7, 371.8
Doxorubicin dose (mg/m²)	Unknown	1315 (15.7%)	923 (27.0%)	337 (15.1%)	105 (4.7%)	81 (30.6%)	3 (3.8%)	2964 (15.5%)	2740 (13.8%)	234 (28.9%)
Pelvic radiation dose (Gy)	Median [IQR]	130.4, 358.3	215.7, 135.1, 396.2	177.4, 135.1, 296.2	191.0, 219.0, 280.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	200.0, 203.0, 240.0	201.0, 219.0, 230.0	219.9, 170.7, 371.8
Doxorubicin dose (mg/m²)	Unknown	1315 (15.7%)	923 (27.0%)	337 (15.1%)	105 (4.7%)	81 (30.6%)	3 (3.8%)	2964 (15.5%)	2740 (13.8%)	234 (28.9%)

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s). BMJ Open 2022; 12:e065910. doi: 10.1136/bmjopen-2022-065910

Wang Y, et al. BMJ Open 2022; 12:e065910. doi: 10.1136/bmjopen-2022-065910
Daunorubicin

Daunorubicin dose (mg/m²)	Median (IQR)	No	<6000	6000-17999	≥18000
No	1210 (12.6%)	375 (3.5%)	6000 (26.8%)	437 (19.5%)	7 (0.9%)
Yes	792 (8.2%)	14 (0.4%)	119 (3.5%)	18 (0.8%)	5 (0.2%)
Unknown					

Median [IQR]

Daunorubicin dose (mg/m²)	Median [IQR]	No	<6000	6000-17999	≥18000
No	1210 (12.6%)	375 (3.5%)	6000 (26.8%)	437 (19.5%)	7 (0.9%)
Yes	792 (8.2%)	14 (0.4%)	119 (3.5%)	18 (0.8%)	5 (0.2%)
Unknown					

Epipodophyllotoxins

Epipodophyllotoxin dose (mg/m²)	Median [IQR]	No	<6000	6000-17999	≥18000
No	1210 (12.6%)	375 (3.5%)	6000 (26.8%)	437 (19.5%)	7 (0.9%)
Yes	792 (8.2%)	14 (0.4%)	119 (3.5%)	18 (0.8%)	5 (0.2%)
Unknown					

Alkalizing agents

Alkalizing agents	Median [IQR]	No	<6000	6000-17999	≥18000
No	1210 (12.6%)	375 (3.5%)	6000 (26.8%)	437 (19.5%)	7 (0.9%)
Yes	792 (8.2%)	14 (0.4%)	119 (3.5%)	18 (0.8%)	5 (0.2%)
Unknown					

CED™ dose (mg/m²)

CED™ dose (mg/m²)	Median [IQR]	No	<6000	6000-17999	≥18000
No	1210 (12.6%)	375 (3.5%)	6000 (26.8%)	437 (19.5%)	7 (0.9%)
Yes	792 (8.2%)	14 (0.4%)	119 (3.5%)	18 (0.8%)	5 (0.2%)
Unknown					

Wang Y, et al. BMJ Open 2022; 12:e065910. doi: 10.1136/bmjopen-2022-065910
Among survivors with an in situ first subsequent breast cancer, 38 developed a second subsequent breast cancer (16 invasive, 17 DCIS, 5 LCIS), and 4 developed a third subsequent breast cancer (1 invasive, 2 DCIS, 1 LCIS).

71 patients developed both a subsequent invasive and in situ breast cancer.

Follow-up time was calculated from five years after a primary cancer diagnosis to the date of subsequent breast cancer diagnosis, death, or the date of the last follow-up observation, whichever occurred first.

Includes 172 DCIS and 12 LCIS.

Among survivors with both an invasive and in situ first subsequent breast cancer diagnosed at the same moment, 2 developed DCIS as a third subsequent breast cancer.

Chemotherapy dose information was not available in the NWTSG.

Anthracyclines include doxorubicin, daunorubicin, epirubicin, and idarubicin.

Pelvic radiation information was not available in the NWTSG.

Includes patients with invasive and/or in situ breast cancer.

Follow-up time was calculated from five years after a primary cancer diagnosis to the date of subsequent breast cancer diagnosis, death, or the date of the last follow-up observation, whichever occurred first.

Includes 172 DCIS and 12 LCIS.

Among survivors with both an invasive and in situ first subsequent breast cancer diagnosed at the same moment, 2 developed DCIS as a third subsequent breast cancer.

Chemotherapy dose information was not available in the NWTSG.

Anthracyclines include doxorubicin, daunorubicin, epirubicin, and idarubicin.

Pelvic radiation information was not available in the NWTSG.
Supplemental Table 3. Published results from participating cohorts in the International Consortium for Pooled Studies on Subsequent Malignancies after Childhood and Adolescent Cancer

Study	Title	Study design	Number of female childhood/adolescent cancer survivors	Follow-up duration	Subsequent breast cancer	Subsequent breast cancer risk estimates	Findings
CCSS (Kenney et al. 2004) (48)	Breast Cancer after Childhood Cancer: A Report from the Childhood Cancer Survivor Study	Cohort	6,068 female 5-yr survivors Diagnosed 1970-1986	95 survivors developed 111 cases of breast cancer	Radiotherapy exposure to the chest, yes/no & SIR (95% CI): 24.7 (19.3-31.0)	Breast cancer risk was increased in survivors who had radiotherapy exposure to the chest	

Research question 1: Chest radiotherapy-related subsequent breast cancer risk
Study	Design	Subjects	Population	Subsequent Breast Cancer Cases	Radiation Dose Category, Gy & OR (95% CI)	Analysis Notes
CCSS (Inskip et al. 2009) (25)	Case-control	120 patients matched with 464 controls	Female 5-yr survivors Treated 1970-1986	120 breast cancer cases	Radiation dose category, Gy & OR (95% CI) 0 Gy: ref. >0-0.13 Gy: 1.4 (0.5-4.4) 0.14-1.29 Gy: 1.9 (0.7-5.4) 1.30-11.39 Gy: 1.9 (0.7-5.0) 11.40-29.99 Gy: 7.1 (2.9-17) 30.00-60.00 Gy: 10.8 (3.8-31) *P trend* < 0.001	Analyses were adjusted for type of first cancer Excess OR per Gy: 0.36 for those who received ovarian doses <5 Gy; 0.06 for those A dose-response relation between reconstructed radiation dose to the breast and subsequent breast cancer risk, which was reduced among women with dose to the ovaries of >5 Gy
CCSS (Moskowitz et al. 2014) (27)	Breast Cancer after Chest Radiation Therapy for Childhood Cancer	Cohort	1,230 female 5-yr survivors received chest irradiation within 5 years of their childhood cancer diagnosis Treated 1970-1986	Median 25.9 (range 8.4-40.6) yr	203 women had a confirmed breast cancer diagnosis	who received higher doses
----------------------------------	---	--------	---	-------------------------------	--------------------------------	-------------------
CCSS (Moskowitz) Breast Cancer following	Cohort	363 female 5-yr	Median follow-up	3 women were	Treated with spinal irradiation, yes/no	Delivered radiation dose/volume associated with subsequent breast cancer risk

| | Madeleina (median, 40 Gy; range, 5-54): 24.2 (20.7-28.3) | Mantle (median, 30 Gy; range, 3-54): 13.0 (8.4-20.2) | Mediastinal (median, 14 Gy; range, 2-20): 43.6 (27.1-70.1) | Whole lung (median, 12 Gy; range, 4-16): 19.3 (7.3-51.5) | Total body (median, 12 Gy; range, 4-16): 19.3 (7.3-51.5) | Abdominal (median, 20 Gy; range, 4-40): 10.8 (2.7-43.2) | Other one-sided anterior (median, 41 Gy; range, 10-61): 9.9 (3.2-30.6) | Median 25.9 (range 8.4-40.6) yr | 203 women had a confirmed breast cancer diagnosis | Delivered radiation dose/volume associated with subsequent breast cancer risk |
Study	Title	Design	Participants	Follow-up	Diagnosed with Breast Cancer	SIR (95% CI)	Notes
et al. 2015) (49)	Spinal Irradiation for a Childhood Cancer: A Report from the Childhood Cancer Survivor Study	Cohort	Survivors of a pediatric central nervous system tumor or leukemia treated with spinal irradiation diagnosed 1970-1986	27 (range 10-38) yr	Diagnosed with breast cancer	SIR (95% CI): 2.4 (0.8-7.5)	May not be associated with an increased breast cancer risk
CCSS (Moskowitz et al. 2017) (50)	Radiation-associated Breast Cancer and Gonadal Hormone Exposure: A Report from the Childhood Cancer Survivor Study	Cohort	1,108 female 5-yr survivors treated with chest radiotherapy, and survived to ages ≥20 years diagnosed 1970-1986	Median follow-up 26 (range 5-38) yr	195 women were diagnosed with breast cancer	Delivered chest radiation dose, dose in Gy & HR (95% CI) 1-19 Gy: ref. 20-29 Gy: 0.58 (0.31-1.11) 30-39 Gy: 0.68 (0.41-1.13) 40+ Gy: 0.80 (0.49-1.28) Univariable analysis Chest radiation ≤1 yr of menarche vs. >1 yr from menarche HR (95% CI): 1.80 (1.19-2.72) Analyses were adjusted for age at primary childhood	Chest radiotherapy increases breast cancer risk especially when administered near menarche
Study	Design	Cases/controls	Cases/control Characteristics	Cases/control Analysis	Cases/control Findings		
-------------------------------	-------------------------	-----------------------------	--------------------------------	--	--		
CCSS (Veiga et al. 2019) (12)	Case-control	271 cases matched with 1,044 controls	Range 5-40 yr since primary cancer diagnosis	Increasing radiation dose to the breast OR (95% CI) per 10 Gy, 3.9 (2.5-6.5)	Increasing radiation dose associated with subsequent breast cancer risk; the combined effect of anthracycline and radiotherapy was stronger than the individual effects of these two treatments on subsequent breast cancer risk		
	Female 5-yr survivors	Diagnosed 1970-1986		Analyses were adjusted for first cancer diagnosis, chemotherapy (yes/no), calendar year of breast cancer diagnosis, and family history of breast/ovarian cancer			
SJLIFE (Ehrhardt et al. 2019) (28)	Cohort	1,467 female 10-yr survivors	Median 22.7 yr since primary cancer diagnosis	56 survivors developed 68 breast cancers	Subsequent breast cancer risk was associated with 20 Gy or more of chest radiation		
Lifetime Cohort Study (SJLIFE)

Excluding survivors with pathogenic/likely pathogenic mutations:
- Chest radiation, Gy & HR (95% CI)
 - None: ref.
 - >0-<10 Gy: 1.2 (0.3-5.0)
 - 10-<20 Gy: 8.0 (1.1-56.3)
 - ≥20 Gy: 10.0 (3.3-30.5)

Analyses were adjusted for age at diagnosis.

NWTSG (Lange et al. 2014) (37)

Breast Cancer in Female Wilms Tumor Survivors: A Report from the National Wilms Tumor Late Effects Study

Cohort	NM	28 survivors developed 29 breast cancers	Cumulative risk (95% CI) of breast cancer at age 40:	
2,492 female 5-yr Wilms tumor survivors			No RT: 0.3% (0.0-2.3)	
1969-1995			Chest RT: 14.8% (8.7-24.5)	
			No chest dose: 2.3% (1.0-5.1)	
			Chest dose 1-12 Gy: 14.4% (7.6-30.1)	
			Chest dose >12 Gy: 14.2% (7.1-29.3)	
Study	Cohort Description	Cases/controls	Risk Factors	
------------------------------	--	---	--	
DCCSS LATER (Teepen et al. 2017) (10)	Long-Term Risk of Subsequent Malignant Neoplasms After Treatment of Childhood Cancer in the DCOG LATER Study Cohort: Role of Chemotherapy	Cohort: 2,731 female 5-yr survivors diagnosed 1963-2001	For the whole cohort (both males and females): Median 20.7 (range 5.0-49.8) yr since primary cancer diagnosis	SIR (95% CI): No RT: 2.2, Chest RT: 27.6 (16.1-44.2), No chest dose: 4.6, Chest dose 1-12 Gy: 46.8, Chest dose >12 Gy: 18.9
DHL (van Leeuwen et al. 2003) (51)	Roles of Radiation Dose, Chemotherapy, and Hormonal	Case-control: 48 cases matched with 175 controls	For the breast cancer cases: Median 18.7 yr since	HR (95% CI): Chest radiotherapy (yes vs. no): 2.5 (1.3-4.9), Total body irradiation (yes vs. no): 10.6 (3.7-30.2), Analyses were adjusted for alkylating agents, anthracyclines, and type of radiation
			Breast cancer risk increases with increasing reconstructed radiation dose up	
Factors in Breast Cancer Following Hodgkin’s Disease

DHL (Krul et al. 2017) (52)	Breast Cancer Risk After Radiation Therapy for Hodgkin Lymphoma: Influence of Gonadal Hormone Exposure
Case-control	**174 cases matched with 466 controls**
Female 5-yr HL survivors treated before age 41	Treated 1965-2000
For the breast cancer cases: Median 21.9 (IQR 16.9-26.8) yr since primary cancer diagnosis	**174 breast cancer cases**
Radiation dose to breast tumor location (median), dose in Gy & OR (95% CI)	Breast cancer risk in female HL survivors increases linearly with radiation dose; no indications that endogenous and exogenous gonadal hormones affect the radiation dose-response relationship

Radiation Dose and Breast Cancer Risk

Radiation Dose (Gy)	Median Dose	Range	OR (95% CI)
0-2.9 (median 1.2)	ref.		
3.0-7.9 (median 4.9)	1.33 (0.64-2.77)		
8.0-27.9 (median 17.5)	2.21 (1.09-4.46)		
28.0-35.9 (median 33.9)	2.38 (1.17-4.83)		
36.0-61.2 (median 39.4)	4.70 (2.36-9.38)		

Analyses were adjusted for duration of breast cancer risk following RT is strongly reduced in women who have experienced CT-induced premature menopause.
Study	Cohort	Subjects	Follow-up	Breast Cancers	Cumulative Incidence	Risk Factors	
FCCSS (Guibout et al. 2005) (53)	Malignant Breast Tumors after Radiotherapy for a First Cancer during Childhood	1,814 female 3-yr survivors* Treated 1946-1986	Mean 16 yr since primary cancer diagnosis	16 patients developed breast cancers	Cumulative incidence: After a 30-yr follow-up cumulative incidence (95% CI): 2.8% (1.0-4.5) After a 40-yr follow-up (95% CI): 10.7% (1.4-19.9)	Chest radiation dose, dose in Gy & RR (95% CI) Chest radiation yes vs. no: 1.3 (0.4-5.9) 0 Gy: ref. 0-<1 Gy: 1.3 (0.3-6.3) 1-<10 Gy: 1.5 (0.3-8.1) 10-<20 Gy: 3.7 (0.6-24.2) ≥20 Gy: 2.5 (0.1-22.1) \(P_{trend} = 0.06 \) Excess relative risk per Gy to the breasts (95% CI): 0.13 (<0.0-0.75) Analyses were adjusted for castration, chemotherapy, and	The high risk of breast cancer after HL may not only related to chemotherapy and a higher radiation dose to the breasts
Research question 2: Anthracycline-related subsequent breast cancer risk							

CCSS (Henderson et al. 2016) (11)	Breast Cancer Risk in Childhood Cancer Survivors Without a History of Chest Radiotherapy: A Report From the Childhood Cancer Survivor Study						
Cohort	3,768 female 5-yr childhood cancer survivors without a history of chest radiotherapy Diagnosed 1970-1986						
Median 25.5 (range 8.3-38.9) yr	47 women developed breast cancer						
Anthracycline, dose in mg/m2 & SIR (95% CI)	Among childhood leukemia and sarcoma survivors						
0 mg/m2: 2.0 (1.2-3.3) 1-249 mg/m2: 4.0 (1.5-0.7) ≥250 mg/m2: 8.3 (5.7-12.2)							

Anthracycline, dose in mg/m2 & Relative SIR (95% CI)

- Among childhood leukemia and sarcoma survivors
- Anthracycline, dose in mg/m2 & SIR (95% CI)
 - 0 mg/m2: 1.8 (0.9-3.6)
 - 1-249 mg/m2: 5.0 (1.8-13.1)
 - ≥250 mg/m2: 9.5 (6.4-14.0)

High-dose anthracycline chemotherapy increases the risk of subsequent breast cancer

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Study	Cohort Description	Number of Survivors	Range since Primary Cancer Diagnosis	Number of Breast Cancer Cases	Anthracyclines Category, mg/m² & RR (95% CI) in Survivors Treated with Only Chemotherapy: per 100 mg/m²	Dose-response Relationship between Anthracyclines and the Risk of Subsequent Breast Cancer
CCSS	(Turcotte et al. 2019) (54)	10,440 female 5-yr survivors Diagnosed 1970-1999	Range 5-46.7 yr since primary cancer diagnosis	51 breast cancer cases	Anthracyclines category, mg/m² & RR (95% CI) in survivors treated with only chemotherapy: per 100 mg/m²: 1.3 (1.2-1.6) None: ref. 0-100 mg/m²: 0.9 (0.1-9.1) 101-300 mg/m²: 1.8 (0.6-6.0)	Dose-response relationship between anthracyclines and the risk of subsequent breast cancer

In childhood cancer survivors:
- 0 mg/m²: ref.
- 1-249 mg/m²: 2.6 (0.8-8.7)
- ≥250 mg/m²: 3.8 (1.7-8.3)

P trend = 0.004

Among childhood leukemia and sarcoma survivors:
- 0 mg/m²: ref.
- 1-249 mg/m²: 4.3 (1.1-16.6)
- ≥250 mg/m²: 5.1 (1.9-13.7)

P trend = 0.005
Study	Design	Cases	Controls	Findings
CCSS (Veiga et al. 2019) (12)	Case-control	271 cases matched with 1,044 controls		301-600 mg/m²: 3.7 (1.3-10.8) >600 mg/m²: 8.1 (1.2-56.0) P trend = 0.10
	Female 5-yr survivors	Diagnosed 1970-1986		Analyses were adjusted for attained age, age at primary cancer diagnosis, 5-yr treatment era, history of splenectomy, cumulative dose levels of chemotherapy classes (alkylating agents, epipodophyllotoxins, and platinum-based agents)
	Range 5-40 yr since primary cancer diagnosis	271 breast cancer cases		301-600 mg/m²: 3.7 (1.3-10.8) >600 mg/m²: 8.1 (1.2-56.0) P trend = 0.10
				Analyses were adjusted for attained age, age at primary cancer diagnosis, 5-yr treatment era, history of splenectomy, cumulative dose levels of chemotherapy classes (alkylating agents, epipodophyllotoxins, and platinum-based agents)

Anthracyclines dose OR (95% CI) per 100 mg/m² in survivors with LFS-associated cancers: 1.31 (1.1-1.5)

Anthracycline dose associated with subsequent breast cancer risk; the combined effect of breast radiation and anthracycline was stronger than the
Childhood Cancer Survivor Study	Anthracyclines dose OR (95% CI) per 100 mg/m² in survivors with non LFS-associated cancers: 1.16 (1.0-1.4)	Anthracycline, dose in mg/m² & OR (95% CI) None: ref. 1-223 mg/m²: 2.3 (1.3-4.2) 224-343 mg/m²: 2.4 (1.3-4.6) 344-455 mg/m²: 1.5 (0.7-3.2) >455 mg/m²: 3.8 (1.8-8.2) P trend < 0.01	individual effects of these two treatments on subsequent breast cancer risk
	Analyses were adjusted for type of first cancer, breast radiation dose, calendar year of follow-up, family history of breast/ovarian cancer,		

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the information supplied on this page or the supplementary material.
SJLIFE (Ehrhardt et al. 2019) (28)	Subsequent Breast Cancer in Female Childhood Cancer Survivors in the St Jude Lifetime Cohort Study (SJLIFE)	Cohort	1,467 female 10-yr survivors	Median 22.7 (range 10.5-48.2) yr since primary cancer diagnosis	56 survivors developed 68 breast cancers	and treatment with alkylating agents
	Anthracycline exposure, mg/m2 & HR (95% CI):			Higher doses of anthracyclines are associated with increased risk of breast cancer independent of mutations in known cancer predisposition genes		
None: ref.	1-249 mg/m2: 2.6 (1.1-6.2)					
≥250 mg/m2: 13.4 (5.5-32.5)	Excluding pathogenic/likely pathogenic mutations:					
Anthracycline exposure, mg/m2 & HR (95% CI):						
None: ref.	1-249 mg/m2: 2.5 (1.0-6.1)					
≥250 mg/m2: 15.1 (6.1-37.6)	Excluding Survivors with ≥10 Gy of chest radiation and pathogenic/likely pathogenic mutations:					
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)	BMJ Open	doi: 10.1136/bmjopen-2022-065910:e065910.	12 2022;	BMJ Open, et al. Wang Y		
Study	Risk of Subsequent Malignant Neoplasms After Treatment of Childhood Cancer in the DCOG LATER Study Cohort: Role of Chemotherapy	Long-Term Risk of Subsequent Malignant Neoplasms After Treatment of Childhood Cancer in the DCOG LATER Cohort (Teepen et al. 2017) (10)	Anthracycline exposure, mg/m² & HR (95% CI): None: ref. 1-249 mg/m²: 2.1 (0.2-27.0) ≥250 mg/m²: 16.9 (2.2-126.6)			
---	---	---	---			
DCCSS LATER	2,731 female 5-yr survivors	For the whole cohort (both males and females): Median 20.7 (range 5.0-49.8) yr since primary cancer diagnosis	45 breast cancer cases			
Doxorubicin dose, mg/m² & HR (95% CI): None: ref. ≤270 mg/m²: 1.1 (0.4-2.9) 271-443 mg/m²: 2.6 (1.1-6.5) >443 mg/m²: 5.8 (2.7-12.5) P trend < 0.001						
Doxorubicin was associated with a dose-dependent increased risk of female breast cancer, especially for survivors who had LFS-associated childhood cancer types (leukemia, CNS, and non-Ewing sarcoma)						
Doxorubicin dose, mg/m² & HR (95% CI)	\(\leq 270 \text{ mg/m²} \): 0.6 (0.1-3.2)	271-443 mg/m²: 9.1 (2.5-32.8)	>443 mg/m²: 14.8 (5.1-43.2)			
--------------------------------------	---------------------------------	----------------------------	----------------------------			
\(P \text{ trend} < 0.001 \)	\(P \text{ trend} = 0.94 \)					

Non-LFS-associated CCSs:

Analyses were adjusted for chest radiation, TBI, and chemotherapy groups.
Research question 3: Attained age-related subsequent breast cancer risk

CCSS (Kenney et al. 2004) (48)	Breast Cancer after Childhood Cancer: A Report from the Childhood Cancer Survivor Study	Cohort	6,068 female 5-yr survivors diagnosed 1970-1986	For subsequent breast cancer cases: median 19 (range 6-29) yr since primary cancer diagnosis; For non-subsequent breast cancer cases: median 18 (range 5-31) yr since primary cancer diagnosis	95 survivors developed 111 cases of breast cancer	Subsequent breast cancer, cumulative incidence: At age 40 yr exposed to chest radiation in HL survivors: 12.9% (9.3-16.5)	Increased subsequent breast cancer risk in survivors at age 40 yr
CCSS (Turcotte et al. 2004)	Risk of Subsequent Neoplasms	Cohort	1,510 female 5-yr survivors completed at least one study	NM	103 breast cancer cases	In patients age 40 yr or older, subsequent breast cancer risk: SIR	Childhood cancer survivors remain at
SJLIFE (Ehrhardt et al. 2019) (28)	During the Fifth and Sixth Decades of Life in the Childhood Cancer Survivor Study Cohort	questionnaire after age 40 yr	(95% CI): 5.5 (4.5-6.7); EAR 1.04	increased risk for treatment related subsequent breast cancer even after age 40 yr			
SJLIFE	Subsequent Breast Cancer in Female Childhood Cancer Survivors in the St Jude Lifetime Cohort Study (SJLIFE)	Cohort	1,467 female 10-yr survivors	56 survivors developed 68 breast cancers	Subsequent breast cancer, cumulative incidence: By age 35 yr unexposed to chest radiation: 1% By age 50 yr unexposed to chest radiation: 15% By age 35 yr ≥10 Gy chest radiation: 8% By age 50 yr ≥10 Gy chest radiation: 41% By age 35 yr unexposed to anthracyclines: 2% By age 50 yr unexposed to anthracyclines: 15% By age 35 yr ≥250 mg/m² anthracyclines: 7%		
SJLIFE	Cohort	Median 22.7 (range 10.5-48.2) yr since primary cancer diagnosis	Attained age associated with increased subsequent breast cancer risk				
DCCSS LATER (Teepen et al. 2017) (10)	Long-Term Risk of Subsequent Malignant Neoplasms After Treatment of Childhood Cancer in the DCOG LATER Study Cohort: Role of Chemotherapy	Cohort 2,731 female 5-yr survivors Diagnosed 1963-2001	For the whole cohort (both males and females): Median 20.7 (range 5.0-49.8) yr since primary cancer diagnosis	45 breast cancer cases	Attained age, yr & SIR (95% CI) and EAR <10 yr at childhood cancer diagnosis <20 yr: 10.5 (8.0-13.4); EAR: 13.5 20-29 yr: 4.6 (3.4-6.2); EAR: 14.6 30-39 yr: 4.3 (3.1-5.9); EAR: 32.1 ≥40 yr: 4.3 (2.3-7.2); EAR: 73.1 10-17 yr at childhood cancer diagnosis <30 yr: 5.8 (4.1-8.1); EAR: 16.9 30-39 yr: 5.6 (4.0-7.6); EAR: 43.4 40-49 yr: 3.2 (1.9-4.9); EAR: 51.4 ≥50 yr: 2.0 (0.8-4.2); EAR: 65.4	Chest radiotherapy and total body irradiation were risk factors for female breast cancer	

By age 50 yr ≥250 mg/m² anthracyclines: 46%
Study (Authors)	Cohort Description	Cohort Size	Risk Group	Risk Estimates	
DHL (van Leeuwen et al. 2000) (42)	Long-Term Risk of Second Malignancy in Survivors of Hodgkin’s Disease Treated During Adolescence or Young Adulthood	544 female 1-yr survivors treated for HL before the age of 40 yr	For the whole cohort (both males and females): Median 14.1 yr	27 breast cancer cases	Breast cancer risk, RR (95% CI) and EAR: 5.2 (3.4-7.6); EAR per 10 000 female patient-years: 29.4
DHL (Schaapveld et al. 2015) (19)	Second Cancer Risk Up to 40 Years after Treatment for Hodgkin’s Lymphoma	1,698 female 5-yr HL survivors	Range 5.0-47.2 yr	183 survivors with breast cancer	Attained age, yr & SIR (95% CI) and EAR: 15-24 at HL <30 yr: 19.8 (5.4-50.6); E: 12.3 30-39 yr: 12.9 (8.8-18.3); E: 55.3 40-49 yr: 9.4 (6.6-12.9); E: 138 50-59 yr: 8.6 (5.1-13.4); E: 215 ≥60 yr: 7.4 (1.5-21.7); E: 218

The increased risk of solid tumors in patients who were young (<20 yr of age) at the first treatment seems to decrease as these patients grow older.

Increased risk in survivors previously treated with (high dose) chest radiation with an attained age ≥60 yr.
Age Group	SIR (95% CI)	EAR (95% CI)
25-34 at HL	3.7 (1.4-8.1)	15.2 (4.0-6.3)
35-50 at HL	1.4 (0.4-3.5)	6.4 (1.8-3.0)
35-50 at HL	1.8 (0.9-3.0)	20.1 (6.0-3.4)
50-59 yr	5.2 (3.6-7.3)	69.3 (2.4-6.3)
50-59 yr	4.0 (2.4-6.3)	82.5 (0.7-6.9)
60-69 yr	2.7 (0.7-6.9)	57.5 (1.7-3.4)
70-79 yr	2.9 (0.6-8.5)	67.8 (2.9-0.6)
SIR: $P_{trend} = 0.06$; EAR: $P_{trend} < 0.001$		

Other papers on subsequent breast cancer
| Moskowitz et al. (2019) (8) | Mortality After Breast Cancer Among Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study | Case-control | 274 cases matched with 1,095 controls with de novo breast cancer
Female 5-yr survivors
Diagnosed 1970-1986 | For cases: Median 38 (range 20-58) yr | 274 breast cancer cases | HR (95% CI)
Death after breast cancer (survivors vs. controls): 2.2 (1.7-3.0); after adjusting for breast cancer treatment with RT: 2.2 (1.7-3.1); after adjusting for breast cancer treatment with CT: 2.3 (1.8-3.2); both: 2.4 (1.7-3.2) | Mortality is significantly elevated among childhood cancer survivors |
|--------------------------|--|-------------|---------------------------------|-----------------------------|-----------------------------|---|--|
| Moskowitz et al. (2021) (55) | Development and Validation of a Breast Cancer Risk Prediction Model for Childhood Cancer Survivors Treated With Chest Radiation: A Report From the Childhood Cancer Survivor Study and the Dutch | Cohort | Model development cohort: was based on 1,120 female 5-yr survivors treated with chest radiation (diagnosed 1970-1986);
Model validation cohort: 1,027 female 5-yr survivors treated with chest radiation (diagnosed 1963-2001) | Among women alive at last contact:
Model development cohort: Median 32.3 (range 9.7-45.7) yr;
Model validation cohort: median 18.6 (range 6.3-46.0) yr | Model development cohort: 242
Model validation cohort: 105 | Ten-year risk estimates: 2-23% for 30-year-old women; 5-34% for 40-year-old women | The model included current age, chest radiation field, whether chest radiation was delivered within 1 year of menarche, anthracycline exposure, age at menopause, and history of a first-degree relative with breast cancer |
Hodgkin Late Effects and LATER Cohorts

*Included both French and UK data

Yr = year; SIR = Standardized incidence ratio; CI = Confidence interval; OR = Odds ratio; HR = Hazard ratio; HL = Hodgkin lymphoma; IQR = Interquartile range; RR = Relative risk; LFS = Li-Fraumeni syndrome; TBI = Total body irradiation; CNS = Central nervous system; NM = Not mentioned; EAR = Excess absolute risk; RT = Radiotherapy; CT = Chemotherapy; CCSS = Childhood Cancer Survivor Study; SJLIFE = St. Jude Lifetime Cohort Study; NWTSG = US National Wilms Tumor Study group; DCCSS LATER = Dutch Long-term Effects After Childhood Cancer Study; FCCSS = French Childhood Cancer Survivor Study; DHL = Dutch Hodgkin Late Effects cohort
References

1. Collaborators GBDCC. The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncol. 2019;20(9):1211-25.

2. Gatta G, Bottà L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5—a population-based study. Lancet Oncol. 2014;15(1):35-47.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.

4. Bhakta N, Liu Q, Ness KK, Baassiri M, Eissa H, Yeo F, et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet. 2017;390(10112):2569-82.

5. Gibson TM, Mostoufi-Moab S, Stratton KL, Leisenring WM, Barnea D, Chow EJ, et al. Temporal patterns in the risk of chronic health conditions in survivors of childhood cancer diagnosed 1970-99: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2018;19(12):1590-601.

6. Landier W, Skinner R, Wallace WH, Hjorth L, Mulder RL, Wong FL, et al. Surveillance for Late Effects in Childhood Cancer Survivors. Journal of Clinical Oncology. 2018;36(21):2216-22.

7. Friedman DL, Whitton J, Leisenring W, Mertens AC, Hammond S, Stovall M, et al. Subsequent neoplasms in 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2010;102(14):1083-95.

8. Moskowitz CS, Chou JF, Neglia JP, Partridge AH, Howell RM, Diller LR, et al. Mortality After Breast Cancer Among Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. J Clin Oncol. 2019;37(24):2120-30.

9. Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7(1):21-32.

10. Teepen JC, van Leeuwen FE, Tissing WJ, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, van der Pal HJ, et al. Long-Term Risk of Subsequent Malignant Neoplasms After Treatment of Childhood Cancer in the DCOG LATER Study Cohort: Role of Chemotherapy. J Clin Oncol. 2017;35(20):2288-98.

11. Henderson TO, Moskowitz CS, Chou JF, Bradbury AR, Neglia JP, Dang CT, et al. Breast Cancer Risk in Childhood Cancer Survivors Without a History of Chest Radiotherapy: A Report From the Childhood Cancer Survivor Study. J Clin Oncol. 2016;34(9):910-8.

12. Veiga LH, Curtis RE, Morton LM, Withrow DR, Howell RM, Smith SA, et al. Association of Breast Cancer Risk After Childhood Cancer With Radiation Dose to the Breast and Anthracycline Use: A Report From the Childhood Cancer Survivor Study. JAMA Pediatrics. 2019;173(12):1171-9.
13. Kovalchik SA, Ronckers CM, Veiga LH, Sigurdson AJ, Inskip PD, de Vathaire F, et al. Absolute risk prediction of second primary thyroid cancer among 5-year survivors of childhood cancer. J Clin Oncol. 2013;31(1):119-27.

14. Veiga LH, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies. Radiat Res. 2016;185(5):473-84.

15. Withrow DR, Anderson H, Armstrong GT, Hawkins M, Journy N, Neglia JP, et al. Pooled Analysis of Meningioma Risk Following Treatment for Childhood Cancer. JAMA Oncol. 2022.

16. Teepen JC, Kok JL, van Leeuwen FE, Tissing WJE, Dolsma WV, van der Pal HJ, et al. Colorectal Adenomas and Cancers After Childhood Cancer Treatment: A DCOG-LATER Record Linkage Study. J Natl Cancer Inst. 2018;110(7):758-67.

17. Ghosh T, Chen Y, Dietz AC, Armstrong GT, Howell RM, Smith SA, et al. Lung Cancer as a Subsequent Malignant Neoplasm in Survivors of Childhood Cancer. Cancer Epidemiol Biomarkers Prev. 2021;30(12):2235-43.

18. van Leeuwen FE, Klokman WJ, Stovall M, Hagenbeek A, van den Belt-Dusebout AW, Noyon R, et al. Roles of radiotherapy and smoking in lung cancer following Hodgkin's disease. J Natl Cancer Inst. 1995;87(20):1530-7.

19. Schaapveld M, Aleman BM, van Eggermond AM, Janus CP, Krol AD, van der Maazen RW, et al. Second Cancer Risk Up to 40 Years after Treatment for Hodgkin's Lymphoma. N Engl J Med. 2015;373(26):2499-511.

20. Landier W, Bhatia S, Eshelman DA, Forte KJ, Sweeney T, Hester AL, et al. Development of risk-based guidelines for pediatric cancer survivors: the Children's Oncology Group Long-Term Follow-Up Guidelines from the Children's Oncology Group Late Effects Committee and Nursing Discipline. J Clin Oncol. 2004;22(24):4979-90.

21. Byrne J, Alessi D, Alldjdi RS, Bagnasco F, Bardi E, Bautz A, et al. The PanCareSurFup consortium: research and guidelines to improve lives for survivors of childhood cancer. Eur J Cancer. 2018;103:238-48.

22. Kremer LC, Mulder RL, Oeffinger KC, Bhatia S, Landier W, Levitt G, et al. A worldwide collaboration to harmonize guidelines for the long-term follow-up of childhood and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Pediatr Blood Cancer. 2013;60(4):543-9.

23. Mulder RL, Kremer LC, Hudson MM, Bhatia S, Landier W, Levitt G, et al. Recommendations for breast cancer surveillance for female survivors of childhood, adolescent, and young adult cancer given chest radiation: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2013;14(13):e621-9.

24. Mulder RL, Hudson MM, Bhatia S, Landier W, Levitt G, Constine LS, et al. Updated Breast Cancer Surveillance Recommendations for Female Survivors of Childhood, Adolescent, and Young Adult Cancer From the International Guideline Harmonization Group. Journal of Clinical Oncology. 2020;38(35):4194-207.
25. Inskip PD, Robison LL, Stovall M, Smith SA, Hammond S, Mertens AC, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27(24):3901-7.

26. Henderson TO, Amsterdam A, Bhatia S, Hudson MM, Meadows AT, Neglia JP, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444-55; w144-54.

27. Moskowitz CS, Chou JF, Wolden SL, Bernstein JL, Malhotra J, Novetsky Friedman D, et al. Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol. 2014;32(21):2217-23.

28. Ehrhardt MJ, Howell CR, Hale K, Baassiri MJ, Rodriguez C, Wilson CL, et al. Subsequent Breast Cancer in Female Childhood Cancer Survivors in the St Jude Lifetime Cohort Study (SJLIFE). J Clin Oncol. 2019;37(19):1647-56.

29. Brenner AV, Preston DL, Sakata R, Sugiyama H, de Gonzalez AB, French B, et al. Incidence of Breast Cancer in the Life Span Study of Atomic Bomb Survivors: 1958-2009. Radiat Res. 2018;190(4):433-44.

30. Turcotte LM, Whitton JA, Friedman DL, Hammond S, Armstrong GT, Leisenring W, et al. Risk of Subsequent Neoplasms During the Fifth and Sixth Decades of Life in the Childhood Cancer Survivor Study Cohort. J Clin Oncol. 2015;33(31):3568-75.

31. Holmqvist AS, Chen Y, Berano Teh J, Sun C, Birch JM, van den Bos C, et al. Risk of solid subsequent malignant neoplasms after childhood Hodgkin lymphoma-Identification of high-risk populations to guide surveillance: A report from the Late Effects Study Group. Cancer. 2019;125(8):1373-83.

32. Leisenring WM, Mertens AC, Armstrong GT, Stovall MA, Neglia JP, Lancetot JQ, et al. Pediatric cancer survivorship research: experience of the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2319-27.

33. Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. J Clin Oncol. 2009;27(14):2308-18.

34. Hudson MM, Ness KK, Nolan VG, Armstrong GT, Green DM, Morris EB, et al. Prospective medical assessment of adults surviving childhood cancer: study design, cohort characteristics, and feasibility of the St. Jude Lifetime Cohort study. Pediatr Blood Cancer. 2011;56(5):825-36.

35. Howell CR, Bjornard KL, Ness KK, Alberts N, Armstrong GT, Bhakta N, et al. Cohort Profile: The St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors. Int J Epidemiol. 2021;50(1):39-49.

36. Evans AE, Norkool P, Evans I, Breslow N, D'Angio GJ. Late effects of treatment for Wilms' tumor. A report from the National Wilms' Tumor Study Group. Cancer. 1991;67(2):331-6.
37. Lange JM, Takashima JR, Peterson SM, Kalapurakal JA, Green DM, Breslow NE. Breast cancer in female survivors of Wilms tumor: a report from the national Wilms tumor late effects study. Cancer. 2014;120(23):3722-30.

38. Demoor-Goldschmidt C, Allodji RS, Journy N, Rubino C, Zrafi WS, Debiche G, et al. Risk Factors for Small Adult Height in Childhood Cancer Survivors. J Clin Oncol. 2020;38(16):1785-96.

39. Gbetchedji AA, Houndetoungan GD, Hounsossou HC, Journy N, Haddy N, Rubino C, et al. A systematic review of occupational radiation individual dose monitoring among healthcare workers exposed in Africa. J Radiol Prot. 2020;40(4).

40. Michel G, von der Weid NX, Zwahlen M, Redmond S, Strippoli MP, Kuehni CE, et al. Incidence of childhood cancer in Switzerland: the Swiss Childhood Cancer Registry. Pediatr Blood Cancer. 2008;50(1):46-51.

41. Kuehni CE, Rueegg CS, Michel G, Rebholz CE, Strippoli MP, Niggli FK, et al. Cohort profile: the Swiss childhood cancer survivor study. Int J Epidemiol. 2012;41(6):1553-64.

42. van Leeuwen FE, Klokman WJ, Veer MB, Hagenbeek A, Krol AD, Vetter UA, et al. Long-term risk of second malignancy in survivors of Hodgkin's disease treated during adolescence or young adulthood. J Clin Oncol. 2000;18(3):487-97.

43. De Bruin ML, Sparidans J, van't Veer MB, Noordijk EM, Louwman MW, Zijlstra JM, et al. Breast cancer risk in female survivors of Hodgkin's lymphoma: lower risk after smaller radiation volumes. J Clin Oncol. 2009;27(26):4239-46.

44. van Eggermond AM, Schaapveld M, Janus CP, de Boer JP, Krol AD, Zijlstra JM, et al. Infradiaphragmatic irradiation and high procarbazine doses increase colorectal cancer risk in Hodgkin lymphoma survivors. Br J Cancer. 2017;117(3):306-14.

45. Mauz-Korholz C, Metzger ML, Kelly KM, Schwartz CL, Castellanos ME, Dieckmann K, et al. Pediatric Hodgkin Lymphoma. J Clin Oncol. 2015;33(27):2975-85.

46. Stovall M, Weathers R, Kasper C, Smith SA, Travis L, Ron E, et al. Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemiological studies. Radiat Res. 2006;166(1 Pt 2):141-57.

47. Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2328-38.

48. Kenney LB, Yasui Y, Inskip PD, Hammond S, Neglia JP, Mertens AC, et al. Breast cancer after childhood cancer: a report from the Childhood Cancer Survivor Study. Ann Intern Med. 2004;141(8):590-7.

49. Moskowitz CS, Malhotra J, Chou JF, Wolden SL, Weathers RE, Stovall M, et al. Breast cancer following spinal irradiation for a childhood cancer: A report from the Childhood Cancer Survivor Study. Radiother Oncol. 2015;117(2):213-6.
50. Moskowitz CS, Chou JF, Sklar CA, Barnea D, Ronckers CM, Friedman DN, et al. Radiation-associated breast cancer and gonadal hormone exposure: a report from the Childhood Cancer Survivor Study. Br J Cancer. 2017;117(2):290-9.

51. van Leeuwen FE, Klokman WJ, Stovall M, Dahler EC, van't Veer MB, Noordijk EM, et al. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin's disease. J Natl Cancer Inst. 2003;95(13):971-80.

52. Krul IM, Opstal-van Winden AWJ, Aleman BMP, Janus CPM, van Eggermond AM, De Bruin ML, et al. Breast Cancer Risk After Radiation Therapy for Hodgkin Lymphoma: Influence of Gonadal Hormone Exposure. Int J Radiat Oncol Biol Phys. 2017;99(4):843-53.

53. Guibout C, Adjadj E, Rubino C, Shamsaldin A, Grimaud E, Hawkins M, et al. Malignant breast tumors after radiotherapy for a first cancer during childhood. J Clin Oncol. 2005;23(1):197-204.

54. Turcotte LM, Liu Q, Yasui Y, Henderson TO, Gibson TM, Leisenring W, et al. Chemotherapy and Risk of Subsequent Malignant Neoplasms in the Childhood Cancer Survivor Study Cohort. J Clin Oncol. 2019;37(34):3310-9.

55. Moskowitz CS, Ronckers CM, Chou JF, Smith SA, Friedman DN, Barnea D, et al. Development and Validation of a Breast Cancer Risk Prediction Model for Childhood Cancer Survivors Treated With Chest Radiation: A Report From the Childhood Cancer Survivor Study and the Dutch Hodgkin Late Effects and LATER Cohorts. J Clin Oncol. 2021;39(27):3012-21.