Development of Napoleon’s Theorem on the Rectangles in Case of Inside Direction

Mashadi¹*, Chitra Valentika², Sri Gemawati¹

¹Analysis and Geometry Group Department of Mathematics, Fakulty of Mathematics and Natural Sciences University of Riau, Bina Widya Campus, Pekanbaru, Indonesia
²Fakulty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru, Indonesia

Email address:
mash_mat@unri.ac.id (Mashadi), chitra.valentika@yahoo.com (C. Valentika), gemawati.sri@gmail.com (S. Gemawati)

*Corresponding author

To cite this article:
Mashadi, Chitra Valentika, Sri Gemawati. Development of Napoleon’s Theorem on the Rectangles in Case of Inside Direction. International Journal of Theoretical and Applied Mathematics. Vol. 3, No. 2, 2017, pp. 54-57. doi: 10.11648/j.ijtam.20170302.11

Received: October 25, 2016; Accepted: January 12, 2017; Published: February 9, 2017

Abstract: In this paper will be discussed Napoleon’s Theorem on rectangles that has two parallel pair sides of the square case that built inside direction. The theorem will be proven by using congruence approach. At the end of Napoleon's theorem was discussed the development of Geogebra application in case of inside direction.

Keywords: Napoleon’s Triangle, Napoleon’s Theorem on Quadrilateral, Inside Directions and Congruence

1. Introduction

Geogiev and Mushkarov [2, 6, 7, 10, 11 and 12] stated that Napoleon’s theorem was discovered by Napoleon Bonaparte (1769-1821), a French emperor and mathematics figure in geometry. After four years he was death, the theorem was published for the first time by W. Rutherford in case of equilateral triangle that constructed in the outside direction [1, 3, 4, 6 and 7]. Then, developed by Wetzel [5, 6 and 7] in case of an equilateral triangle that constructed in the inside direction. Napoleon’s theorem in direction is on each side of any triangle constructed equilateral triangle leads to the inside or outside of the third point in the center of the equilateral triangle will form a new equilateral triangle. It is called the Napoleon triangle [3, 6 and 7]. In accordance with Napoleon’s Theorem on the triangle then the theorem will be developed on a rectangle. In this article the author discusses the proof of quadrilateral Napoleon’s theorem is a quadrilateral that has two pairs of parallel sides. For example point P, Q, and R are center point of equilateral triangle. The center forms an equilateral triangle that can be called as inside Napoleon’s triangle [4, 5, 6 and 7]. The Napoleon’s theorem on the triangle in case of inside direction was provided as follow [3, 4, 7, 8 and 9].

ΔBCF equilateral triangle, and on the AC side was constructed ΔACE equilateral triangle, the equilateral triangles were constructed to inside direction [4, 6 and 11]. For example point P, Q, and R are center point of equilateral triangle. The center forms an equilateral triangle that can be called as inside Napoleon’s triangle [4, 5, 6 and 7]. The Napoleon’s theorem on the triangle in case of inside direction was provided as follow [3, 4, 7, 8 and 9].

2. Napoleon’s Theorem on Triangle

Look at picture 1, on the AB side was constructed ΔABD equilateral triangle, and on the BC side was constructed

Figure 1. Napoleon’s Theorem triangle in case of inside direction.
Theorem 1. On this case explained equilateral triangle that constructed on each side of \(\Delta ABC\) quadrilateral to inside. For example, \(X\), \(Y\), and \(Z\) are center point of \(\Delta ABD'\), \(\Delta ACE'\), and \(\Delta BCF'\), the points form equilateral triangle that can be called as Napoleon’s inside triangle, the illustration is shown on figure 1.

Proof: Picture 1 is the illustration of the proof of Napoleon’s theorem on the triangle that leads inside direction.

Furthermore, in providing \(\Delta XYZ\) is equilateral triangle, will be shown that \(XY = YZ = XZ\) in accordance with trigonometry. By using basic trigonometry formula as follow

\[
BX = AX = \frac{1}{3}\sqrt{3}c, \\
AY = CY = \frac{1}{3}\sqrt{3}b, \\
BZ = CZ = \frac{1}{3}\sqrt{3}a.
\]

Then, by using cosine direction on \(\Delta BXZ\), \(\Delta CYZ\), and \(\Delta AXY\) as follow.

\[
XZ^2 = \frac{1}{3}c^2 + \frac{1}{3}a^2 - \frac{2}{3}ac \cos (60^\circ - \angle B), \\
XZ^2 = \frac{1}{3}b^2 + \frac{1}{3}a^2 - \frac{2}{3}ab \cos (60^\circ - \angle C), \\
\sqrt{3}\frac{1}{3}ac \sin \angle B
\]

Then by distributing the equality (3) to the equality (1) as follow.

\[
XY^2 = \frac{1}{3}(b^2 + ac \cos \angle B) + \frac{\sqrt{3}}{3}ab \sin \angle C, \\
YZ^2 = \frac{1}{3}(c^2 + ab \cos \angle C) + \frac{\sqrt{3}}{3}bc \sin \angle C, \\
XZ^2 = \frac{1}{3}(a^2 + ab \cos \angle A) + \frac{\sqrt{3}}{3}b^2 \cos \angle A.
\]

Based on cosine direction on \(\Delta ABC\) that has been eliminated as follow

\[
a^2 + bc \cos \angle A = b^2 + ac \cos \angle B, \\
b^2 + ac \cos \angle B = c^2 + ab \cos \angle C.
\]

Based on sinus direction on \(\Delta ABC\) as follow

\[
sin \angle B = \frac{b}{c} \sin \angle C, \\
sin \angle A = \frac{a}{c} \sin \angle C.
\]

3. Napoleon’s Theorem on the Quadrilateral

Napoleon’s theorem on the quadrilateral is discussed on the quadrilateral that has two pairs of parallel sides, one of them on the parallelogram. Look at the picture 2, on the \(AB\) side is constructed \(ABHG\) square, on \(AD\) side is constructed \(ADEF\) square, on the \(CD\) side is constructed \(CDKL\) square, and on the \(BC\) side is constructed \(BCLJ\) square. Then, each of square is constructed into inside direction. Furthermore, each of square’s center point is connected then can be called as Napoleon’s inside quadrilateral.

Theorem 2. It is provided quadrilateral that form as parallelogram \(ABCD\). On each of parallelogram side is constructed \(ADEF\), \(ABGH\), \(CDKL\), and \(BCLJ\) squares that lead into inside. For example \(M'\), \(N'\), \(O'\), and \(P'\) are each of square center point that constructed into inside direction. If they are connected they will form \(M'N'O'P'\) square.

Proof. To showing \(M'N'O'P'\) square, it can be proved that \(M'N' = N'O' = O'P' = M'P'\), and \(\angle M'MN = \angle M'PO' = 90^\circ\). Look at picture 2, \(GD\) line and \(BF\) are deducted, for example deduction point is \(S\) and \(T\). Then for the example \(W\) point is deduction point \(BC\) and \(AF\) line. Look at picture 2, \(\angle TBS = \angle BFW\), \(\angle FBW = \angle BTS\), then the three angles are equal \(\angle FWB = \angle TSB\). Because of
ADEF square is rotated 180°, so the ADEF square is straight with BCD so it is caused \(\angle FWB = \angle TSB = 90^\circ \). Pull the line \(N'P' \) and \(M'O' \) so it cuts in a point, for example \(R \) point. Because \(FN'//BP' \) then it cause \(\angle TSB = \angle GVR = \angle P'RO' = 90^\circ \). Look at \(\Delta M'AN' \) and \(\Delta O'DN' \), \(M'A=O'D \), \(\angle M'AN' = \angle O'DN' \). Then we obtained that \(\Delta M'AN' \) and \(\Delta O'DN' \) is congruence. So that \(M'N = N'O' \). It cause \(\Delta M'N'O' \) isosceles triangle so \(\angle M'N'R = \angle O'N'R = 45^\circ \). It is clear that \(\angle P'M'N = \angle M'P'O' = 90^\circ \). So, it is proved that quadrilateral \(M'N'O'P' \) is square.

4. Development of Napoleon’s Theorem on the Quadrilateral

Development of the quadrilateral Napoleon’s theorem developed based on quadrilateral parallelogram to a square in case of leads into inside direction.

Theorem 3. Given a quadrilateral parallelogram \(ABCD \), and on each side leading into the square built. Then draw a line \(FG, EL, KJ, \) and \(HI \). For example point \(Q, R, S, \) and \(T \) is the midpoint of the fourth line. If the four points are connected, the square formed \(QRST \).

Proof. For example point \(Q, R, S, \) and \(T \) is the midpoint of the line \(FG, EL, KJ, \) and \(HI \). To show \(QRST \) is square it will be proved \(TQ = QR \), and \(\angle TQR = 90^\circ \). Figure 3, draw a line from point \(Q \) to point \(S \) and point \(R \) to the point \(Q \). So the lines \(QS \) and \(RQ \) lines intersect at one point, said point \(U \). Before Show \(TQ = QR \) will at first show \(UT = UR \). Figure 3, \(UY = UT, YT = VR \) so \(UT = UR \). Then Note \(\Delta QUT \) and \(\Delta QUR \). \(UT = UR, \angle TQU = \angle TQ U \) and \(UQ = UQ \) thus obtained \(TQ = QR \). From Theorem 2, \(\angle VU = UY \), and \(\angle VUY = 90^\circ \), then also obtained \(\angle QTR = 90^\circ \), so it proved \(QRST \) quadrilateral is a square.

5. Development of Napoleon’s Theorem with Applications Geo-Gebra

Napoleon's Theorem development is performed by using GeoGebra application. Georgiev and Mushkarov [12] stated that application GeoGebra is dynamic mathematics software that can be used as a tool in the learning of mathematics. To apply Theorem Napoleon with applications GeoGebra namely by inputting equations elliptical \(bx^2 + ay^2 = a^2 \) on Graphics 1, then make four points on the graph the ellipse is to enter \(A = (a \cos \alpha, b \sin \alpha) \), \(B = (a \cos (\alpha + 90^\circ), b \sin (\alpha+90^\circ)) \), \(C = (a \cos (\alpha + 180^\circ), b \sin (\alpha + 180^\circ)) \), \(D = (a \cos (\alpha + 270^\circ), b \sin (\alpha + 270^\circ)) \) on Graphics 1. for a whose value \(0^\circ, 90^\circ, 180^\circ, 270^\circ \) origin quadrilateral is a rhombus. Whose value for a \(45^\circ, 135^\circ, 225^\circ, \) and \(315^\circ \) origin quadrilateral is a square or rectangular depending chart major and minor axes of the ellipse. As for the other angles of a quadrilateral origin formed is parallelogram.

Furthermore, to make the square leads into, select the Regular Polygon can be seen from the way of construction, hover the cursor back to the image and select quadrilateral. To make a point of the center of each square choose Midpoint or center can be seen from the way mengkontruksinya, hover the cursor on the second point of the square diagonal [2, h.7]. Then connect the four points of the square center, forming a quadrilateral in. Note ilustrasi GeoGebra application in Figure 4.
6. Conclusion

After several experiments Napoleon’s theorem in the quadrilateral thus obtained Napoleon’s theorem applies only to the quadrilateral which possess two pairs of parallel sides like a square, rhombus, rectangle, parallelogram. Napoleon’s theorem on the line leading inside the case is if the square was built on each side, the fourth point square center will be forming a square called the Napoleon quadrilateral. Proof of that is done by using the concept of congruence. Development of Napoleon on a quadrilateral theorem can be developed to form a square on the midpoint of the line so as to form a new square.

References

[1] B. Grunbaum, Is Napoleon’s theorem really Napoleon’s theorem?, The American Mathematical Monthly, 119 (2012), 495–501.
[2] G. Stols, Geogebra in 10 Lessons, http://www.geogebra.org/.../GerritStols Geogebrain10Lesson.
[3] G. A. Venema, Exploring advanced euclidean geometry with Geometer’s Sketchpad, http://www.math.buffalostate.edu/giambrtm/MAT521/eeg.pdf.
[4] J. A. Abed, A proof of Napoleon’s theorem, The General Science Journal, (2009), 1–4.
[5] J. E. Wetzel, Converse of Napoleon’s theorem, The American Mathematical Monthly, 99 (1992), 339–351.
[6] Mashadi, Buku Ajar Geometri, Pushbangdik Universitas Riau, Pekanbaru, 2012.
[7] Mashadi, Geometri Lanjut, Pushbangdik Universitas Riau, Pekanbaru, 2015.
[8] Mashadi, S. Gemawati, Hasriati and H. Herlinawati, Semi excircle of quadrilateral, JP Journal. Math. Sci. 15 (1 & 2) (2015), 1-13.
[9] Mashadi, S. Gemawati, Hasriati and P. Januarti, Some result on excircle of quadrilateral, JP Journal Math. Sci. 14 (1 & 2) (2015), 41-56.
[10] M. Corral, Trigonometry, http://www.biomech.uottawa.ca/fran09/enseignement/notes/trgbook.pdf.
[11] P. Bredehoft, Special Cases of Napoleon Triangles, Disertasi Master of Science, University of Central Missouri, 2014.
[12] V. Georgiev and O. Mushkarov, Around Napoleon’s theorem, http://www.dynamat.v3d.sk/ uploadpdf/2012’0221528150.pdf.
[13] Zukrianto, Mashadi and S Gemawati, A Nonconvex Quadrilateran and Semi-Gergonne Points on it: Some Results and Analysis, Fundamental Journal of Mathematics and Mathematical Sciences, 6 (2), 2016, 111-124.