RESEARCH ARTICLE

Validation of K46, a Pup1-linked marker, using a selection of Sri Lankan rice (Oryza sativa L.) germplasm for marker assisted selection towards phosphorous deficiency tolerance

Y. C. Aluwihare1, M. D. M. Chamikara1, D. R. R. P. Dissanayake1, N. N. H. Karannagoda1, D. N. Sirisena2, W. L. G. Samarasinghe2, S. Rajapakse1 and S. D. S. S. Sooriyapathiran1*

1Department of Molecular Biology and Biotechnology, University of Peradeniya, Sri Lanka.
2Rice Research and Development Institute, Bathalagoda, Sri Lanka.

ABSTRACT

Phosphorous deficiency (PD) tolerance is a pivotal trait that is advantageous if present in modern day high performing rice varieties. However most of the frequently grown mega rice varieties lack this trait leading to expensive application of artificial phosphate fertilizer results secondary consequences such as environmental pollution and higher cost of production. Marker assisted breeding (MAB) for PD tolerance in rice is often hailed as the pragmatic solution to tackle this problem. The genetic basis of PD tolerance in rice has been dissected using a wide cross made between PD tolerant rice landrace Kasalath and a sensitive landrace Nipponbare. A major QTL known as Pup1 has been identified, molecularly characterized and underlying polymorphisms were detected. A major INDEL region within Pup1 QTL within Kasalath background is conferred to control the PD tolerance which is genetically ‘null’ in Nipponbare background. The DNA marker K46 which is present within Pup1 has been developed to identify this INDEL region in Kasalath like genotypes. The PD tolerance in Sri Lankan rice germplasm has been recently studied using a core panel of rice genotypes that are important in rice breeding programs. It is important to figure out the genomic landscape of the INDEL region of Pup1 QTL in these Sri Lankan rice genotypes. Therefore the present study was conducted to characterize the K46 DNA marker locus of the previously characterized for PD tolerance rice cultivars in Sri Lanka. The K46 specific primer-pair was assayed across 30 selected Sri Lankan cultivars and the PCR products were sequenced. The resulted DNA sequences were aligned with the Kasalath reference sequence for K46 locus. Further analysis of the identified SNPs resulted four distinct haplotypes in which nine cultivars were grouped with Kasalath like haplotype, two unique haplotypes and the null haplotype. However, there is no strong association between the haplotype class and the PD tolerance score of the cultivars implying the potentially novel PD tolerance mechanisms that require further studies.

Keywords: Phosphorous deficiency tolerance, Oryza sativa, K46 marker, marker assisted selection, rice germplasm in Sri Lanka.

INTRODUCTION

Since green revolution, profitable rice farming is believed to be entirely dependent on the application of artificial fertilizer. The higher and expedited responding of rice cultivars to fertilizer application was considered as a key trait (MacDonald et al., 2011). However, currently it is believed that the application of fertilizer itself cannot increase the rice production due to many reasons such as fixing nutrients by the soil systems and higher cost associated with the fertilizer inputs (Arai and Sparks, 2007). Moreover prolonged and handful applications of fertilizer could dramatically pollute the environment (Cordell et al., 2009) and also contribute to the health hazards (Chandrajith et al., 2010). Phosphorous (P) is the most problematic nutrient in rice growing soils. Phosphorous gets fixed by Fe³⁺ and Al³⁺ ions present in the soils and thereby becoming limitedly available to the plants (Shen et al., 2011; Holford and Mattingly, 1976; Bieselski, 1973). In fact most of the rice growing soils lack the optimum levels of P for growth and development of rice (Fairhurst et al., 1999). Because of these reasons farmers tend to apply more P fertilizer, but consequently they pollute the environment and increase the cost of production. Governments of the developing countries spend lot of money on fertilizer imports and in Sri Lanka it approximately accounts for 0.3 billion US dollars annually (Central Bank, Sri Lanka, 2014). The situation is further aggravated when government funded fertilizer subsidies are placed due to numerous socio-economic and political reasons (Cordell et al., 2009). Organic rice growers also face difficulties as the popular organic manure such
as crop stubbles and straw lack sufficient levels of P (Sirisena and Wanninayake, 2014; Kumaragamage and Indraratne, 2011). Therefore, an alternative strategy to overcome the P fertilizer led crisis is required.

To solve this problem, the plant research community considers breeding of P deficiency (PD) tolerant rice varieties as the most promising solution (Cordell et al., 2009; Wissuwa and Ae, 2001a; Rose et al., 2011). The PD tolerance is found to be quantitatively inherited with a significantly higher level of heterosis ranging from -60.6 to 148.6 (Majumder et al., 1989). It was an encouraging sign for the rice geneticists and 17 years ago detailed quantitative genetic studies were begun to dissect the underlying genetics of PD tolerance in rice (Chin et al., 2011; Wissuwa et al., 1998; Doerge and Churchill, 1996). A major quantitative trait locus (QTL) controlling PD tolerance was identified on the rice chromosome 12 using recombinant inbred lines (RILs) generated from a cross between a PD tolerant landrace Kasalath and sensitive landrace Nipponbare (Wissuwa and Ae, 2001b; Wissuwa et al., 2002). Later this QTL was fine mapped and labeled as Pup1 (Wissuwa et al., 1998; Heuer et al., 2009; Chin et al., 2010; Chin et al., 2011). The Pup1 QTL in Kasalath which is tolerant to PD, is 278 kb in length and Nipponbare which is sensitive to PD is only 145 kb in length (Gamuyao et al., 2012; Heuer et al., 2009) due to an INDEL. Thus, this major INDEL in the Pup1 locus is a key determinant in conferring PD tolerance in Kasalath-like rice germplasm (Chin et al., 2010).

The molecular markers have been developed to introgress the Pup1 alleles conferring PD tolerance into PD sensitive rice genotypes (Chin et al., 2010; Heuer et al., 2009; Chin et al., 2011). The DNA marker K46, present in the major INDEL within Pup1 QTL and produces a 523 bp allele in Kasalath genetic background and a null allele (i.e. no band) in Nipponbare background (Chin et al., 2010).

However, the presence of K46 locus is not validated across a diverse rice germplasm collection to confirm it as a diagnostic marker for PD tolerance. In Sri Lanka, although MAB is still in its infancy, PD tolerance in rice and the importance of using genomic information in breeding is highlighted (Kottearachchi and Wijesekara, 2013). An important set of landraces and improved varieties (here in after collectively referred to as a panel of cultivars) were characterized for PD tolerance based on a three-tier indexing system (Aluwihare et al., 2015). However, no attempts are reported in characterizing the Pup1 locus to lay a foundation towards the MAB for PD tolerance. Therefore, the present study was conducted to characterize a set of rice cultivars previously evaluated for PD tolerance in Aluwihare et al., (2015) for the DNA sequence polymorphism in K46 marker locus to lay a foundation for MAB to produce better performing rice varieties under low P conditions.

MATERIALS AND METHODS

Materials and methods

A set of 30 rice cultivars were obtained from Rice Research and Development Institute (RRDI), Bathalagoda (Bg), Sri Lanka (Appendix 1). Seeds were germinated, immature leaf samples were collected from young seedlings and DNA was extracted using the Dneasy Plant Mini kit® (Qiagen, Solna, Sweden). Extracted DNA was confirmed for the successful PCR amplification using matK, a universal plant DNA barcoding primer pair (Hollingsworth et al., 2011). Then PCR amplification was carried out using K46 specific-primer pair (Pcr: 5’TGAGATAGCGTCAAGATG CT and Pfr: 5’AAGGACCACATTCCATAGC; Chin et al., 2010). The PCR conditions were as follows, initial denaturation at 94 °C for min, 35 cycles of 94 °C for 0.5 min, 57 °C for 1.5 min, 72 °C for 2 min and final extension at 72 °C for 10 min. The PCR products were resolved in 1.5 % agarose gel electrophoresis and purified using a PCR clean-up system (Promega Corporation, Madison, WI, USA). The purified products were subjected to DNA sequencing using ABI 3500 series Genetic Analyzer (Applied Biosystems®, USA).

Data Analysis

The K46 locus sequence of Kasalath (GenBank accession no: AB458444.1) was retrieved from GenBank (www.ncbi.nlm.nih.gov/genbank/) and was used as the reference sequence. The amplified K46 DNA sequences of rice cultivars were aligned with the reference sequence using ClustalW software (www.ebi.ac.uk). The DNA polymorphism of K46 locus among the selected rice cultivars were subjected to cluster analysis by using pair-wise Simple Matching Coefficients (Webb and Copsey, 2011) calculated based on the shared single nucleotide polymorphisms (SNPs). A dendrogram was constructed by unweighted pair-wise group method using average (UPGMA) based hierarchical clustering (Nei and Kumar, 2000). The haplotypes and PD tolerance scores of the rice cultivars (Aluwihare et al., 2015) were subjected to association analysis using the Statistical Package SPSS 16 (SPSS Inc., 2007; Landau and Everitt, 2004).

RESULTS

PCR amplification of K46 locus produced a distinct band having an approximate size of 500 bp for 15
Marker assisted selection towards phosphorous deficiency tolerance

out of 30 rice cultivars (Figure 1). When these PCR products were subjected to DNA sequencing, the exact length was revealed as 523 bp which is compatible with the K46 locus in Kasalath (Chin et al., 2010). A total of six SNPs were detected at the 47th, 225th, 226th, 247th, 339th and 420th positions along the 523 bp region, indicating the overall degree of polymorphism was 1.15 %. Out of the six SNPs, four transition and two transversion mutations were detected. All six SNPs were bi-allelic and were distributed along the locus without any apparent pattern (Figure 2).

The DNA sequence polymorphism in the K46 locus of 16 cultivars including Kasalath revealed three clusters (i.e. three distinct haplotypes) at 84.33 % of sequence similarity. Cluster one (C1) contained nine rice cultivars including Kasalath and therefore, was referred to as the Kasalath-like cluster, cluster two (C2) included two cultivars Pokkali and At 354 and cluster three (C3) contained five rice cultivars. The SMC based UPGMA clustering revealed that the Kasalath-like cluster (C1) was 84.33 % similar to C2 and C3 was only 58.33 % similar to the other two clusters (Figure 3). The set of 15 cultivars in which the priming site of K46 locus is absent was considered as the C4. When the overall score of PD tolerance of the cultivars was compared with the K46 haplotype, it was found that, PD tolerance score of the cultivars were not significantly associated with the K46 haplotypes (Table 1; p < 0.05).

DISCUSSION

Molecular breeding (i.e. MAS or MAB) is a theoretically sound and logical timely paradigm shift from the conventional breeding (Collard and Mackill, 2008; Xu and Crouch, 2008). However, complex polygenic traits provide a great deal of skepticism in molecular breeding when it is put into the practice as they are also controlled by the environment (Xu and Crouch, 2008). Although PD tolerance is an important trait in rice breeding, it is a complex trait controlled by genetic and environmental factors. The characteristic feature of plants under P deprived conditions is the enhancement of the expression of specific genes to uptake more Pi from roots in P deficient soil conditions. Pup1 has been identified as the major QTL for P deficiency tolerance in rice causes enhanced Pi uptake under P deprived conditions (Wissuwa et al., 2002). The DNA marker K46 was developed along with another set of markers to specifically target the INDEL region of the Pup1 in Kasalath-like rice genomic background and to introgress the Pup1 QTL effectively into the missing backgrounds (Chin et al., 2010; Chin et al., 2011, Pariasca-Tanaka et al., 2014). However, the present study has clearly indicated that the employment of K46 in molecular breeding for improved PD tolerance is quite inefficient (Table 1). Marker validations for country specific programs is a prerequisite before launching MAB into routine practice given the nature of higher diversity of rice germplasm (Ni et al., 2002; Gao, 2003) and utilization of a narrow set of genotypes from the global rice germplasm for initial discovery of markers.

Although the major INDEL region where K46 locus is missing in the rice landrace Nipponbare, there could be other rice genotypes which are significantly PD tolerant yet do not contain the INDEL region. In the present study there are two landraces Murungakayan and Suduheenati and three improved rice varieties H-4, H-7 and Bg 94-1 which are tolerant to PD (Aluwihare et al., 2015) (Appendix 1) but possess a null allele for the K46 locus (i.e. INDEL is missing). In addition, two landraces Sudurusamba and Hondarawala and six improved varieties which are classified as moderately tolerant (Aluwihare et al., 2015) (Appendix 1) also do not contain the K46 locus.

Table 1 The two-way contingency table depicting the association analysis between the K46 haplotype and the degree of PD tolerance

Cluster	PD tolerance (Aluwihare et al., 2015)		
	1	2	3
K46 haplotype			
Null (C4)	2	8	6
Kasalath type (C1)	1	2	4
C2	0	2	3
C3	1	1	0

Pearson Chi Square: 4.867 (not significant at p < 0.05).
Cramer’s V Coefficient: 0.285 (not significant at p < 0.05).
Number of cultivars are shown in the each for respective categories.
Figure 1 The K46 DNA marker polymorphism in rice cultivars. The bands obtained for matK DNA barcoding locus is included to show the quality of DNA. 1: At 362, 2: Pokkali, 3: Bg 358, 4: Bg 450, 5: Sudurasamba, 6: Bg 379-2, 7: Hondarawala, 8: Bg 352, 9: Bg 250, 10: Bw 364, 11: At 353, 12: Suwandel, 13: Ld 356, 14: Rathuheenati, 15: Bg 357, 16: At 306, 17: At 354, 18: Bg 300, 19: Kasalath, 20: Nipponbare, 21: H-4, 22: Marsa, 23: Suduheenati, 24: H-10, 25: Rathel, 26: Kaluheenati, 27: Murungakayan, 28: Kokuwellai, 29: H-7, 30: Sudubalawee, 31: Bg 94-1, and 32: Bg 403. As the positive and negative controls Kasalath (19) and Nipponbare (20) were included.

Suwandel TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT 120
Rathuheenati TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
H-10 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Kokuwellai TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Bg 403 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
At 306 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Bw 364 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Pokkali TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
At 354 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
At 362 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Kasalath TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

Suduheenati TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Kalamheenati TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Sudubalawee TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

Kokuwellai TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Bg 403 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

Rathel TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Kaluheenati TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
H-10 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

Kasuwellai TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

** ***

Suduheenati TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
H-10 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Kasuwellai TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT
Bg 403 TGAGATAGCCGCTCAAGAGTTGATCTATGAGTACATGCCCAATGGTTCACTTGATAGATATTCTTTTGGCGATAGCTCTGTCCAAGGAGATAACACCCTGAGCT

Figure 1 The K46 DNA marker polymorphism in rice cultivars. The bands obtained for matK DNA barcoding locus is included to show the quality of DNA. 1: At 362, 2: Pokkali, 3: Bg 358, 4: Bg 450, 5: Sudurasamba, 6: Bg 379-2, 7: Hondarawala, 8: Bg 352, 9: Bg 250, 10: Bw 364, 11: At 353, 12: Suwandel, 13: Ld 356, 14: Rathuheenati, 15: Bg 357, 16: At 306, 17: At 354, 18: Bg 300, 19: Kasalath, 20: Nipponbare, 21: H-4, 22: Marsa, 23: Suduheenati, 24: H-10, 25: Rathel, 26: Kaluheenati, 27: Murungakayan, 28: Kokuwellai, 29: H-7, 30: Sudubalawee, 31: Bg 94-1, and 32: Bg 403. As the positive and negative controls Kasalath (19) and Nipponbare (20) were included.
Marker assisted selection towards phosphorous deficiency tolerance
Figure 2 DNA Sequence alignment of K46 region of the *Pup1* locus for 16 genotypes. The symbol ‘*’ indicates monomorphic nucleotides across the genotypes and brown colored fonts indicate the SNPs. The names of the rice genotypes are indicated to the left of each DNA sequence and the number of bases at each section is indicated at the top right corner. The two brown colored underlines at the corners indicate the position of the K46 primer pair.
Figure 3. The dendrogram constructed based on the haplotypic variation in K46 locus of 15 rice cultivars. Three clusters were obtained and named as C1, C2 and C3. The C1 is also named as Kasalath-like cluster as it contains the standard PD tolerance landrace Kasalath. The set of 15 cultivars in which the K46 locus is absent was considered as the C4 cluster and is not depicted in the dendrogram.

The absence of K46 locus in the cultivars strongly imply the fact that they also lack the INDEL region of Pup1 as in Nipponbare yet possess unrevealed molecular mechanisms to confer the tolerance for PD tolerance. However the possibility of the presence of paralogous K46 like loci in elsewhere of the genome of these cultivars cannot be simply ruled out (Thiel et al., 2009). Therefore further studies are required to locate the K46 locus of the genomes of these cultivars using techniques such as fluorescent in-situ hybridization (FISH) and linkage mapping. The utilization of FISH and linkage mapping to genomically locate the target loci is common in genetics (Rastogi et al., 2013; Wissuwa et al., 1998, Wissuwa, 2003). Interestingly there are two PD sensitive rice varieties Bg 357 and Bg 300 which do not have the K46 locus and show the sensitivity to PD (Aluwihare et al., 2015). The PD sensitive rice cultivar At 306 contains the Kasalath-like haplotype for K46 locus indicating that the mere presence of Kasalath-like haplotype is not guaranteeing the PD tolerance by default. The presence of two unique K46 haplotypes in the studied set of rice germplasm reveals the molecular diversity within K46 locus may be related to the overall degree of PD tolerance. The association analysis between the class of haplotype and the categories of the traits is a routine diagnostic procedure in genomic studies to find the marker trait associations (Bush and Moore, 2012). The chi-square value, the Cramer’s V coefficient and the associated probabilities indicated the strength and the significance of the associations (Sokal and Rohlf, 1987). In the present study it is clearly shown that K46 haplotypes are not significantly associated with the score of PD tolerance ($p > 0.05$) (Table 1). Therefore it is safe to conclude that neither the sheer presence of K46 locus in a rice cultivar nor the underlying haplotypic variation provide the necessary basis for marker-assisted selection. However chi-square association analysis of this nature often suffers the inherent weakness of the smaller sample size and statistical demand to have more stringent chi square thresholds (McDonald, 2014). However, in practical genetics and breeding research designs such kind of bigger sample sizes cannot be achieved as certain haplotype vs. trait category combinations are naturally rare and not available in abundance for studying. Although these complexities are present in many polygenic eukaryotic traits such as PD tolerance in rice, the value of having DNA markers as selections tools in breeding cannot be undermined (Xu and Crouch, 2008). Therefore marker validation is very much required and Xu and Crouch, (2008) clearly explained what steps are required in MAB to go from publications to real practice. It would be compulsory to molecularly characterize the entire Pup1 region of a much larger panel of rice cultivars that are important to the country specific breeding programs. More in-depth
analysis for QTLs with genome scans using novel state of the art SNP (Chen et al., 2014; Zhao et al., 2011) and genotyping by sequencing (GBS) (Poland and Rife, 2012; Arbelaez et al., 2015) platforms would be necessary to dig for any potential QTLs other than the Pup1. Although it is very expensive, such kind of and large scale research efforts are required to accurately establish the MAB platforms to produce PD tolerant rice varieties to conduct profitable rice farming with less input in the future.

CONCLUSION
The K46 marker locus within the Pup1 QTL is present only in the 15 rice Sri Lankan cultivars studied. There are four K46 haplotypes within the studied set of cultivars namely Kasalath like haplotype, two unique haplotypes and the ‘null’ haplotype (i.e. the INDEL region is missing). However these haplotypes are not significantly associated with the degree of PD tolerance suggesting the presence of hitherto unknown mechanisms of PD tolerance in the local germplasm.

ACKNOWLEDGEMENTS
This study was funded by National Research Council (NRC), Sri Lanka (Grant No: NRC 11-087). Dr. M. Wissuwa and Dr. J. Pariasca-Tanaka at Crop, Livestock and Environment and Livestock Division, Japan International, Research Center for Agricultural Sciences, (JRCAS), 1-1 Ohwashi, Tsukuba 305-8686, Japan are acknowledged for kindly providing Kasalath and Nipponbare DNA samples for the study.

REFERENCES
Aluwihare, Y.C., Ishan, M., Chamikara, M.D.M., Weebadde, C.K., Siriseni, D.N., Samarasinghe, W.L.G. and Sooriyapathirana, S.D.S.S. (2015). Characterization and selection of phosphorus deficiency tolerant rice genotypes in Sri Lanka for utilization as parents in breeding programs. Rice Science (In press).

Aray, Y. and Sparks, D. (2007). Phosphate reaction dynamics in soils and soil components: A multiscale approach. Advances in Agronomy 94: 135-179.

Arbelaez, J.D., Moreno, L.T., Singh, N., Tung, C.W., Maron, L.G., Osplina, Y., Martínez, C.P., Grenier, C., Lorieux, M. and McCouch, S. (2015). Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga.

Molecular Breeding 35: 81.

Bieleski, R. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology 24: 225-252.

Bush, W.S. and Moore, J.H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology 8 (12): e100282

Central Bank of Sri Lanka (2014). Annual Report, Available from: http://www.cbsl.gov.lk/pics_n_docs/10_pub/docs/efr/annual_report/AR2014/English/13_PolicyBox.pdf (Feb 11, 2016).

Chandrajith, R., Seneviratne, S., Wickramaarachchi, K., Attanayake, T., Aturaliya, T.N.C. and Disanayake, C.B. (2010). Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: study of a chronic kidney disease area in Sri Lanka. Environmental Earth Sciences 60: 193-201.

Chen, H., Xie, W., He, H., Yu, H., Chen, W., Li, J., Yu, R., Yao, Y., Zhang, W., He, Y., Tang, S., Zhou, F., Deng, X.W. and Zhang, Q. (2014). A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant 7 (3): 541-553.

Chin, J.H., Gamuyao, R., Dalid, C., Bustinamam, M., Prasetiyono, J., Moeljopawiro, S., Wissuwa, M. and Heuer, S. (2011). Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology 156: 1202-1216.

Chin, J.H., Lu, X., Haefele, H.M., Gamuyao, R., Ismail, A.M., Heuer, S. and Wissuwa, M. (2010). Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theoretical and Applied Genetics 120: 1073-1086.

Collard, B.C.Y. and Mackill, D.J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 557-572.

Cordell, D., Drangert, J.O. and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change 19: 292-305.

Doerge, R.W. and Churchill, G.A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294.

Fairhurst, T., Lefroy, R., Mutert, E. and Batjes, N.H. (2011). The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agroforestry Forum 9: 2-9.

Gamuyao, R., Chin, J.H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., Slamat-Loedin, I., Tecson-Mendoza, E.M., Wissuwa, M. and Heuer, S. (2012). The protein kinase Pstoll from traditional rice confers tolerance of phosphorus deficiency. Nature 488: 535-539.

Gao, L. (2003). The conservation of Chinese rice
biodiversity: Genetic erosion, Ethnobotany and prospects. Genetic Resources and Crop Evolution. 50 (1): 17-32.

Heuer, S., Lu, X., Chin, J.H., Tanaka, J.P., Kanamori, H., Matsumoto, T., De Leon, T., Ulat, V.J., Ismail, A.M., Yano, M. and Wissuwa, M. (2009). Comparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnology Journal 7 (5): 456-471.

Holford, I. and Mattingly, G. (1976). Phosphate adsorption and availability of plant phosphate. Plant and Soil 44 (2): 377-389.

Hollingsworth, P.M., Graham, S.W. and Little, D.P. (2011). Choosing and using a plant DNA barcode. PLoS ONE 6 (5): e19254 doi:10.1371/journal.pone.0019254.

Kotlearachchi, N.S. and Wijesekara, U.A.D.S.L. (2013). Implementation of Pup1 gene based markers for screening of donor varieties for phosphorus deficiency tolerance in rice. Indian Journal of Plant Sciences 2 (4): 76-83.

Kumaragamage, D. and Indraratne, S.P. (2011). Systemic approach to diagnosing fertility problems in soils of Sri Lanka. Communication in Soil Science and Plant Analysis 42 (22): 2699-2715.

Landau, S. and Everitt, B.S. (2004). A Handbook of Statistical Analyses using SPSS. CRC Press Company.

MacDonald, G.K., Bennett, E.M., Potter, P.A. and Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world’s crop lands. Proceedings of the National Academy of Sciences 108: 3086-3091.

Majumder, N., Borthakur, D. and Rakshit, S. (1989). Heterosis in rice under phosphorus stress. The Indian Journal of Genetics and Plant Breeding 49 (2): 231-235.

McDonald, J.H. (2014). Handbook of Biological Statistics. Sparky House Publishing, Baltimore, Maryland, Pp. 86-89.

Nei, M. and Kumar, S. (2000). Phylogenetic Inference: Distance Methods. Molecular Evolution and Phylogenetics, Oxford University Press, p 89

Ni, J., Colowit, P.M. and Mackill, D.J. (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science 42: 601-607.

Pariasca-Tanaka, J., Chin, J.H., Dramè, K.N., Dalid, C., Heuer, S. and Wissuwa, M. (2014). A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice (Oryza glaberrima Steud) and its distribution in the genus Oryza. Theoretical and Applied Genetics 127: 1387-1398.

Poland, J.A. and Rife, T.W. (2012). Genotyping-by-Sequencing for Plant Breeding and Genetics. The Plant Genome 5: 92-102.

Rastogi, S.C., Mendiratta, N. and Rastogi, P. (2013). Bioinformatics: Methods and applications-genomics, proteomics and drug Discovery. 4th edn. PHI Learning Pvt Ltd.p. 68-69.

Rose, T.J., Rose, M.T., Pariasca-Tanaka, J., Heuer, S. and Wissuwa, M. (2011). The frustration with utilization: Why have improvements in internal phosphorus utilization efficiency in crops remained so elusive?. Frontiers in Plant Science 73 (2): 1-5.

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. and Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology 156: 997-1005.

Sirisena, D.N. and Wanninayake, W.M.N. (2014). Identification of promising rice varieties for low fertile soils in the low country intermediate zone in Sri Lanka. Annals of Sri Lanka Department of Agriculture 16: 95-105.

Sokal, R.R. and Rohlf, F.J. (1987). Introduction to Biostatistics. W.H. Freeman and Company.

Thiel, T., Graner, A., Waugh, R., Grosse, I., Close, T.J. and Stein, N. (2009). Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evolutionary Biology 9: 209.

Webb, A.R. and Copsey, K.D. (2011) Statistical Pattern Recognition. John Wiley and Sons, Ltd, p 435.

Wissuwa, M., Yano, M. and Ae, N. (1998). Mapping of QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics 97: 777-783.

Wissuwa, M. (2003). How do plants achieve tolerance to phosphorus deficiency; Small causes with big effects. Plant Physiology 133: 1947-1958.

Wissuwa, M. and Ae, N. (2001a). Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding 120: 43-48.

Wissuwa, M. and Ae, N. (2001b). Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant and Soil 237: 275-286.

Wissuwa, M., Wegner, J., Ae, N. and Yano, M. (2002). Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics 105: 890-897.

Xu, Y. and Crouch, J.H. (2008). Marker assisted selection in plant breeding: From publications to practice. Crop Science 48: 391-407.

Zhao, K., Tung, C.W., Eizenga, G.C., Wright, M.H., Ali, M.L., Price, A.H., Norton, G.J., Islam, N.M.R., Reynolds, A., Mezey, J., McClung, A.M., Bustamante, C.D. and McCouch, S.R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2: 467.
Appendix 1. Rice cultivars characterized for the DNA sequence polymorphism in K46 locus and their PD tolerance levels

Type of cultivar	Name	PD tolerance score^a
Landrace	Hondarawala	2
	Kaluheenati	3
	Kokawellai	3
	Marsys	3
	Murungakayan	3
	Pokkali	2
	Rathel	3
	Rathuheenati	2
	Sudabalawee	3
	Suduheenati	2
	Sudurusamba	2
	Suwandel	2
Improved varieties	H-4	3
	H-7	3
	H-10	3
	At 306	1
	At 353	2
	At 354	1
	At 362	3
	Bg 250	2
	Bg 300	1
	Bg 352	2
	Bg 357	1
	Bg 358	2
	Bg 379-2	2
	Bg 403	3
	Bg 450	2
	Bg 94-1	3
	Bw 364	2
	Ld 356	2

^a The score of PD tolerance as indicated in Aluwihare <i>et al.</i>, (2015)