Metabolic syndrome- Rapidly spreading non infectious Neo-epidemic

Ram S Kaulgud*, Guruprasad V Deshpande, Chetan K Ganteppanavar, Shreenidhi K Kulkarni, Shreyas A C and Kiran V

Department of Internal Medicine, Karnataka Institute of Medical Sciences, Hubli, India

*Correspondence Info:
Dr. Ram S Kaulgud
Department of Internal Medicine,
Karnataka Institute of Medical Sciences, Hubli, India
E-mail: ramk72@yahoo.com

Abstract
Metabolic syndrome, a combination of various cardiovascular risk factors, is one of the fast increasing non communicable diseases. It has been considered to be mainly a disorder affecting cardiovascular system. Unfortunately, the subtle, but important clinical features of this syndrome due to involvement of other systems go unrecognized, leading to lot of morbidity for the patient. Hence, we conducted review to highlight the evidence about various complications due to this syndrome. We searched more than thousand relevant articles from Cochrane, pubmed, embase, medline databases. We have found that metabolic syndrome can affect virtually every organ systems in the body. But the silver lining is, most of them can be prevented by appropriate patient education, life style changes and other non pharmacologic intervention itself. Proper control of the components of metabolic syndrome with the drugs is also important in unresponsive cases. Increasing physical activity, weight reduction, dietary alteration are the key to prevent complications related to this preventable, treatable and curable disease.

Keywords: metabolic syndrome, dyslipidemia, insulin resistance

1. Introduction
Metabolic syndrome (MetS) is also known as metabolic syndrome X, cardiometabolic syndrome, syndrome X, insulin resistance syndrome, Reaven's syndrome (named for Gerald Reaven), and CHAOS (in Australia). It is a combination of elevated blood pressure, blood sugar levels and dyslipidemia. Very often, it is unrecognized by the clinicians leading to the progression of complications related to this disease.

It has been defined by various organizations differently. Various definitions are given by different organizations and are as follows:

Organizations	Main Criteria	Additional Criteria (any Two)
International Diabetes Federation	Central Obesity (waist circumference with ethnicity specific values)	Raised Triglycerides: >150mg/dL (1.7mmol/L) or specific treatment for lipid abnormality
(2006)		Reduced Hdl Cholesterol: <40mg/dL (1.03mmol/L) in males, or 50 mg/dL (1.29 mmol/L) in females or specific treatment for this lipid abnormality
		Blood Pressure (BP): systolic BP >130 or diastolic BP >85 mm Hg or treatment of previously diagnosed hypertension
		Fasting Plasma Glucose (FPG): >100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes

IJBR (2013) 04 (07)
Central Obesity:

- WHR > 0.9 (males) & > 0.85 (females), BMI > 30 kg/m²

Blood Pressure:

- ≥ 140/90 mmHg

Microalbuminuria:

- Albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g

Waist Circumference:

- ≥ 94 cm (male), ≥ 80 cm (female)

Insulin Resistance:

- Defined as the top 25% of the fasting insulin values among nondiabetic individuals

Blood Pressure:

- ≥ 140/90 mmHg

Microalbuminuria:

- Albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g

Waist Circumference:

- ≥ 102 cm or 40 inches (male), ≥ 88 cm or 36 inches (female)

Other Factors:

Physical inactivity, atherogenic diet, cigarette smoking, hypertension, elevated LDL cholesterol, low HDL cholesterol, family history of premature coronary heart disease (CHD) and aging.

2. Epidemiology:

The prevalence of metabolic syndrome is increasing throughout the world. The prevalence of metabolic syndrome is high in western countries than with developing countries. As per NHANES 2003-2006 (National health and examination survey) 34% of population meet the criteria for metabolic syndrome. As per ATP III 2001 guidelines, 27% meet criteria for metabolic syndrome and as per ATP III revised guidelines 32.3% meet the criteria. It has been observed that there is 5% increase in the metabolic syndrome in last 15 years.

WHO has set a higher waist circumference than IDF. Hence, less number of people meet the criteria reflecting lower prevalence of metabolic syndrome. There has been significant rise in metabolic syndrome among developing countries like India.

For example:

Table 2: Epidemiology of MetS in India

Studies	Region	Age group	BMI	Waist circumference in cm OR cut-offs for BMI	Prevalence of obesity (%) males	Prevalence of obesity (%) females
Dhurandhar and Kulkarni, 1992	Western India	>15 y	BMI ≥ 30	48	7.8	-
Deepa et al., 2007	South India	>20	BMI ≥ 25	43.2	47.4	-
Park et al., 2006	Korea	20–80	WC ≥ 90 (M), ≥ 85 (F)	19.4	22.5	
The factors responsible for high prevalence of obesity in developing countries are higher life expectancy, changes in lifestyle, changes in diet, physical inactivity etc. There has been no proper criteria for identifying metabolic syndrome in children and adolescents.

2.1 Risk factors: Abdominal obesity, Atherogenic Dyslipidemia, Blood Pressure, Insulin Resistance, Proinflammatory state, Prothrombotic state are the main risk factors. The three main contributing factors of metabolic syndrome are – Obesity and adipose tissue disorders, Insulin resistance. Multiple independent factors like Aging, Hormones, Molecules of vascular, immunologic and hepatic origin also have significant role.

2.2 Pathogenesis: Many investigators claim that excess visceral fat is more strongly associated with insulin resistance than any other adipose tissue compartment. A pattern of abdominal (or upper-body) obesity correlates more strongly with insulin resistance and the metabolic syndrome than does lower-body obesity. The mechanism by which obesity initiates complications of metabolic syndrome is shown in the figure below.

Fig 1: Pathogenesis of components of Metabolic syndrome.

2.3 Insulin resistance: Next to obesity insulin resistance has an important role in causation of metabolic syndrome. The mechanism by which it initiates atherosclerosis is shown below.

Fig 2: Pathogenesis of atheroclsclerosis
2.4 Atherogenic Dyslipidemia

Decreased levels of HDL cholesterol, increased levels of triglycerides, increased small dense LDL are key features.

It is the final and common pathway for the development of Cardio-Vascular Diseases.
2.5 Genetic: Both the acquired and the genetic factors play an important role. MetS is polygenic disease. The incidence is influenced by non modifiable factors like heredity, age and race; Modifiable risk factors like physical activity, diet, other co-morbidities, drugs also play very significant role in occurrence of this syndrome.

McCathy and coworkers studied 207 SNPs in 110 candidate genes among coronary artery disease patients, a population enriched for metabolic abnormalities.28 The number of abnormalities was determined in 214 male and 91 female patients and the association with each polymorphism was evaluated. Polymorphisms in 8 genes were associated metabolic syndrome in the whole population: LDLR, GBE1, IL1R1, TGFB1, IL6, COL5A2, SELE and LIPC. Variants in 7 additional genes showed significant gene interaction by gender. Separate analysis in men and women revealed strong association with a silent polymorphism in the gene encoding LDLR related protein associated protein 1(LRPAP1) among females but not males; Several other genes showed association only in females; Only 1 gene PRCP, was significantly associated in men alone.

Study by Qing Song \textit{et al.} in Atlanta in 507 white nuclear families demonstrated a strong link between chromosome band 3q27 and 6 traits. The chromosome locus of 16p13 pter was also implicated in the MetS. This same broad region of chromosome 2 has been implicated by at least 14 other studies for phenotypes related to MetS. Relatives of patients with type 2 diabetes are insulin resistant, compared with 20% of people without a family history of diabetes.29,30,31 The heritability of blood pressure is about 40–50%, and hypertension is associated with insulin resistance.32 The heritability of HDL cholesterol is stronger than the heritability of triglycerides;34 the triglyceride levels are also dependent on the duration of fasting and blood glucose levels.

2.6 Stress: Chronic stress among patients with genetic predisposition leads to release of excessive cortisol which results in excessive visceral fat accumulation, decreased growth hormone and hypogonadism.35,36 Sleep apnea in some patients which causes release of more of stress hormones like IL-6, cortisol, noradrenaline, TNFα37 increases the risk.

2.7 MicroRNAs (miRNAs): Play a role in many processes like adipocyte differentiation, metabolic integration, regulation of cellular gene expression by post transcriptional or translational level, suppression of protein coding genes, cleaving target miRNAs etc.38 Antagomirs (cholesterol conjugated antisense oligonucleotides) target silent miRNAs by locking hepatic miR-122 blockade39 which has been tested in phase I clinical trial. In future we may have miRNAs as new markers for metabolic syndrome.

Metabolic syndrome, by the mechanisms described above, is an important risk factor in causation of various diseases affecting different organ systems.

2.8 Cardiovascular And Cerebrovascular Diseases: MetS is a very strong risk factor for ischemic macrovascular diseases, The following studies illustrate the association between cardiovascular, cerebrovascular diseases with MetS.

\textbf{Table 3: Cerebrovascular, cardiovascular diseases and Metabolic syndrome}

S No	Name of The Study	Type of Study	Conclusion
1	Juntila \textit{et al.}40	Cohort study	Patients with type 2 diabetes are at higher risk for SCD after MI than are non diabetic patients. The incidence of sudden cardiac death in post-MI type 2 diabetic patients with left ventricular ejection fraction $>$35\% is equal to that of non diabetic patients with left ventricular ejection fraction $<$35\%.
2	Suarez \textit{et al.}41	Retrospective study	Sudden cardiac death was correlated with atherosclerotic heart disease and nephropathy, and to a lesser degree with diabetes autonomic neuropathy and HDL cholesterol.
3	Jacqueline \textit{et al} 42	Cohort study	The MetS, however defined, is associated with an approximate 2-fold increased risk of incident cardiovascular morbidity and mortality in a European population.
4	Kurl.\textit{et al.}43	Cohort study	The risk of any stroke is increased in men with metabolic syndrome, in the absence of stroke, diabetes and cardiovascular disease at baseline.
5	Hiroyasu \textit{et al.}44	Prospective study	The MetS is a major determinant of ischemic cardiovascular disease among middle-aged Japanese men and women, in particular among smokers.
6	Jouven \textit{et al.}45	Cohort study	Circulating NEFA concentration is an independent risk factor for sudden death in middle-aged men. Some form of primary prevention could be envisaged in subjects at high risk of sudden death.
The MetS defined by the 6 criteria except for the American College of Endocrinology definition predicts stroke in elderly subjects. However, impaired glucose tolerance alone is as strong a predictor of stroke as is the metabolic syndrome defined by the World Health Organization, NCEP and updated NCEP criteria.

MetS is associated with an increased risk for acute ischemic/nonembolic stroke in elderly subjects with significant contributions from its individual components. In the presence of metabolic syndrome, HDL cholesterol loses its protective role against ischemic stroke.

The MetS is an important risk factor for ischemic stroke, with differential effects by sex and race/ethnicity.

MetS per se at baseline or combinations of its components does not predict the development of ischemic stroke in type 2 diabetic patients. Waist circumference represents an independent prognostic factor and could be used as a clinical tool for stroke prevention in this population.

Sudden cardiac death describes the unexpected natural death from a cardiac cause within a short time period, generally ≤1 hour from the onset of symptoms, in a person without any prior condition that would appear fatal. It is well known that the risk factors for sudden death and non sudden death caused by myocardial infarction are type-2 diabetes, circulating free fatty acid levels and waist circumference. Dyslipidemia and elevated blood pressure are also risk factors in the causation of sudden cardiac death which complete the pentad of MetS. Its presence also strongly correlates with early atherosclerosis (greater carotid artery wall thickness and lower endothelial flow-mediated vasodilation) and is associated with increased morbidity and predicts the risk of future adverse cardiac events.

2.9 Gastrointestinal Manifestations: Non Alcoholic Fatty Liver Disease (NAFLD) and Non Alcoholic Steatohepatitis (NASH) constitute a spectrum of liver disease commonly associated with components of the MetS. Here are a few studies relating the same:

Study	Design	Metabolic Syndrome Risk Factors
Lu et al	Meta analysis and review	NAFLD is a potent predictor of Cardiovascular disease and MetS.
Rodriguez-Hernández et al	Review	The chronic inflammatory state in obesity plays a crucial role in the manifestations of MetS.
Wu et al	Retrospective study	Fatty pancreas is also a manifestation of MetS
Zelber-Sagi et al	Prospective cohort study	NAFLD is a strong indicator of pre diabetes mellitus.
Park et al	population-based prospective cohort study	Heavy alcohol intake and MetS had a supraadditive deleterious effect on Liver function.
Rosmorduc	Review	Cirrhosis as a complication of NAFLD and NASH may lead to increased HCC risk.
Holterman et al	Prospective study	Adolescents who were severely obese had greater liver damage, systemic inflammation and signs suggesting NAFLD and rapid disease progression.
Schild et al	Prospective study	The diagnosis of MetS is strongly associated with the presence of NAFLD.
Stacy et al	Prospective study	Aminotransferase levels are strongly correlated with cardiometabolic risk factors, visceral fat and insulin resistance.

NAFLD is the most common chronic liver disease in the western world and its incidence is increasing in developing countries particularly due to the epidemic of obesity and diabetes in industrialising countries. Its prevalence is about one third of the population in the West and it is associated with other cardiometabolic risk factors like type 2 Diabetes Mellitus and central obesity. The pathologic spectrum includes simple fatty liver and non specific inflammation (having a relatively good prognosis) to NASH, cirrhosis and Hepatocellular carcinoma. The exact role of NAFLD in the
pathogenesis of MetS remains to be defined: whether the disease is a manifestation of the syndrome or has an active role in its natural history. HDL-C levels are reduced with increase in TG’s, cholesterol and hyperglycaemia. The two hit hypothesis proposed by Day and James says that the first hit is likely to be an imbalance in triglyceride formation and turnover with insulin playing a crucial role. The second hit is likely to originate from adipocytokines and ROS that initiate inflammation, stellate cell activation and fibrosis. Inflammation and fibrosis in the liver are indicators of the presence and severity of the MetS. The possible roles of adipose tissue itself, adiponectin, resistin, FFA, TNF-alpha, Leptin, have been elucidated by various studies. Fatty pancreas has also emerged as another manifestation of MetS. Intake of excess carbohydrate, especially fructose is known to be a risk factor for the development of NAFLD. Other incriminating factors that may have a synergistic role include excessive alcohol intake and cigarette smoking. Moderate alcohol consumption seems to reduce the risk of NAFLD.

NAFLD can be diagnosed by liver biopsy, CT, MRI or H-MRS and is defined as steatosis be greater than 5 percent by weight in the absence of excess alcohol consumption (>20g per day). Common Liver markers such as ALT, AST and to a lesser extent GGT can be used to monitor the severity of the disease and serve useful tools in its surveillance and screening among MetS patients.

With no wide consensus on its management, NAFLD has to be treated with the same measures as one would approach other features of the MetS. These include lifestyle modifications and pharmacological therapies. Increased physical activity and cardio respiratory exercises are known to reduce the risk for NAFLD. Calorie restriction, diet modification and body weight management are also found to help. Pharmacological therapies include metformin to improve insulin sensitivity and lipid lowering drugs such as statins and fibrates. Large scale RCTs are required to further clarify their role in the management of NAFLD.

2.10 Metabolic Syndrome and Kidney Disease: Metabolic syndrome has been recently identified as a major risk factor for chronic kidney disease (CKD). There seems to be a steeper decline in kidney function over time in patients with MetS.

Below is a list of renal complications of metabolic syndrome.

Main Author	Type of Study	Conclusion
Chen et al	Cross-sectional study	MetS might be an important factor in the cause of chronic kidney disease.
Agarwal et al	Prospective cohort study	Additive interaction present between Mets and Chronic kidney disease
Hill et al	Retrospective cross-sectional study	There is a strong association between obesity and kidney disease in type 1 diabetes and confirmed their association in type 2 diabetes.
Johns et al	Cross-sectional study	CKD is more common among individuals with the MetS
Banerjee et al	Cross-sectional study	MetS is common in CKD and renal transplant patients in North India
Thomas et al	Systematic review and meta-analysis.	MetS and its components are associated with the development of eGFR <60 ml/min per 1.73 m² and microalbuminuria or overt proteinuria
Alexander et al	Cross-sectional study	Prevalence of microvascular disease high in patients with MetS
Kambham et al	Prospective cohort study	Occurrence of nephrotic range of proteinuria in centrally obese individuals.
Tanaka et al	Cross-sectional study	A strong, positive relationship between MetS and the prevalence of CKD
Palaniappan et al	Cross-sectional study	Micro-albuminuria is strongly associated with incidence of MetS

Estimated GFR has been found to be lower among these individuals with MetS. It has been found that triglyceride-rich apolipoprotein B clearly promotes the progression of human renal insufficiency. It is known that high triglyceride levels are a risk factor for developing proteinuria which forms a component of MetS. Both CKD and MetS are independent predictors of Cardiovascular disease (CVD), but their combination furthers the risk of developing CVD.

2.11 Metabolic Syndrome And Depression: Metabolic syndrome is known to be associated with depression and there seems to be a rather bidirectional association between them. The table below shows a few important studies conducted in the same direction.
Table 6: Metabolic syndrome and Depression

Main Author	Type of Study	Conclusion
Pan et al	Review & metaanalysis	Bidirectional association between MetS and depression.
Malhotra et al	Prospective and longitudinal	Bipolar disorder and schizophrenic patients have higher risk of developing MetS
James et al	Cross-sectional	Association between depression and MetS present in a heterogeneous population
Oliver et al	Review	Prevalence of MetS in Depressed population was confirmed.
Debra et al	Cross-sectional study	No association between major depression and MetS
Edie et al	Prospective cohort	Major depression is a significant predictor of the onset of MetS.
Tasnime et al	Prospective cohort	MetS associated with Depressive symptoms in middle aged and older adults.
Raikkonen et al	Prospective cohort	Psychological factors significantly predict the risk of developing MetS.
Koponen et al	Prospective cohort	MetS is an important risk factor for the development of depression.
Anne Herva et al	Prospective birth cohort	Poor association between MetS and psychological distress in 31 year olds

In particular, depression has been closely linked with low HDL cholesterol levels and large waist circumferences according to several studies. Depression associated with MetS is also said to be more common in females than among males most likely owing to the fact that the risk factors for MetS is more common in females.

Certain studies report no association between MetS and depression. A study by Anna et al in Northern Finland showed that there was no relationship between MetS and Depression among a young study group of 31 year olds. Hence the association between MetS and Depression is more likely to be multifactorial such as with Diabetes, coronary heart disease and hypertension.

2.12 Metabolic Syndrome And Cognitive Dysfunction: Metabolic syndrome and the chronic inflammatory state associated with it are known to play a role in chronic neurological diseases associated with cognitive decline. These include Alzheimer’s and Non Alzheimer’s Dementia including vascular dementia. Following studies are apt to illustrate this association:

Table 7: Metabolic syndrome and cognition

Main Author	Type of Study	Conclusion
Birdsill et al	Longitudinal Study	Maintaining CBF and minimizing CV Risk factors are important in the management of MetS
Yaffe et al	A 5-year prospective observational study	MetS is associated with cognitive impairment in the geriatric population esp. in an inflammatory state.
Watts et al	Longitudinal Study	MetS is not associated with the cognitive decline in healthy older adults as compared with those with early AD.
Dik et al	Longitudinal Study	Poorer cognitive performance was found in patients with MetS as compared to healthy non MetS controls especially associated with hyperglycaemia and an inflammatory state.
Yates et al	Evidence based review	Positive association between MetS and cognitive dysfunction with involvement of multiple domains associated with insulin resistance.
Berg et al	Longitudinal study	The association between MetS and cognitive impairment does not seem to be applicable in the oldest old.
Yaffe	Review	MetS is a well established risk factor for accelerated cognitive loss especially in patients with an inflammatory state.
Yau et al	Cross sectional study	Adolescents with MetS reported lower cognitive function and brain function.
Lindenmayer et al	Cross sectional study	Patients with Schizophrenia with added MetS showed significant loss in cognitive function.
Raffaitin et al		Association between high triglycerides, diabetes and vascular dementia and the need for early detection of risk factors in the management.
The underlying mechanism for MetS induced cognitive loss is poorly understood. Birdstill et al.113 reported that Cerebral Blood Flow (CBF) was lower in MetS patients and associated memory loss. The cognitive impairment was significantly associated with a high inflammatory state as measured by IL-6 and CRP levels112,122. Hypertension, DM and other cardiovascular risk factors have been thought to play a role in the pathogenesis of Alzheimer’s and Non Alzheimer’s dementia.123 Similar studies have suggested the predominant role of DM in cognitive impairment particularly involving toxic AGE’s.124

The association between MetS and cognitive impairment was found to be stronger in women125 The term Metabolic Cognitive Syndrome (MCS) has been applied to this particular association involving cognitive impairment of degenerative or vascular origin.126

Management of this particular aspect of MetS requires early screening practises and aggressive management of the parameters involved. Viscogliosi et al reported that the Mini Mental Status Examination (MMETSE) scores are related directly to cognitive dysfunction and can function as an adequate screening test127 The detection and treatment of metabolic risk factors particularly DM and dyslipidaemia is essential to prevent the likelihood of cognitive diseases.121

2.13 Metabolic Syndrome And Polycystic Ovary Syndrome (PCOS): Polycystic Ovary Syndrome is a very prevalent and common gynaecologic problem in women in the reproductive age group. The Syndrome in addition to its obvious effects on reproductive health and fertility also has significant morbid associations with higher hysterectomy rates, diabetes and hypertension.128 Its associations with obesity, impaired glucose tolerance and cardiovascular risk are further explored in the following studies:

Study	Type of Study	Findings
Glueck et al.129	Cohort study	Metformin and diet modification should reduce risk for DM and atherosclerosis in PCOS patients.
Coviello et al.130	cross-sectional case-control study	PCOS and Hyperandrogenemia is a risk factor for MetS in adolescent girls.
Silfen et al.131	Cross sectional study	Variation in the HPA axis in non obese adolescents with PCOS and marked dysregulation of insulin sensitivity in their obese counterparts. There are also differences in the IGF system between nonobese and obese adolescents with PCOS.
Dokras et al.132	Case control study	Women with PCOS have a 11-fold increase in the prevalence of MetS. The risk of MetS is high even at a young age.
Ehrmann et al.133	Multicentre clinical trial	The MetS is prevalent in women with PCOS particularly associated with High BMI and insulin levels.
Apridonidze et al.134	Retrospective chart review	Women with PCOS have an increased incidence of MetS
Bozd’ag et al.135	Review	Metformin and statins are associated with improved dyslipidaemia picture.
Faloia et al.136	Prospective study	Obesity seems to be the link underlying metabolic disturbances leading to increased CV risk in PCOS patients.
Glintborg, et al.137	Cross sectional study	Lower adiponectin levels found in obese PCOS patients associated with higher risk for MetS.

Adolescents with PCOS exhibited characteristics both clinical and metabolic that were similar to adult women; Dysregulation of insulin levels and insulin resistance was found to more significant in obese girls with PCOS131 On the contrary Sam, Susan, et al. reported that there might be a heritable trait involved as LDL levels are increased in sisters of women affected with PCOS138.

Low Adiponectin and ghrelin levels, markers for cardiometabolic risks are found with increased frequency in women with PCOS and MetS and may be due to hyperandrogenemia and insulin resistance,137 putting them at risk for grave cardiac morbidity.

3. Management

Management of these cases include proper screening programmes to identify those at risk and institution of appropriate interventions including lifestyle changes and pharmacological therapy. Dokras, Anuja, et al. Reported that
TG/HDL-C ratio is a useful tool and its further role needs to be evaluated. Vural, Birol, et al. Found that adolescence may be an appropriate time to start interventional strategies as many cardiometabolic risks are present in early adulthood. According to some studies, all obese women with PCOS should be screened and if the test is negative, it should be repeated every two to three years.

Lifestyle management should be the first line of treatment which includes exercise, diet and behavioural modification; these changes are found to improve the abnormalities, both metabolic and reproductive. Adoption of the well-studied low sodium DASH eating plan provides heart healthy foods that can be used to promote weight loss, reduce BP in both hypertensive and prehypertensive individuals, and reduce LDL. The benefits of modest lifestyle changes on cardiovascular risk factors are well documented. In the Framingham Heart Study, weight loss of 5 lbs or greater was associated with reductions in cardiovascular risk of about 40 percent. Reduce dietary sodium intake to no more than 100 mmol per day (2.4 g sodium or 6 g sodium chloride).

Pharmacological therapies include diet modifying drugs such as orlistat and sibutramine. Insulin sensitising agents such as metformin and statins are found to be particularly efficacious with decrease in total cholesterol, TG’s and LDL levels.

3.1 Coronary Heart Disease risk assessment

The primary reason for the increased emphasis is being paid for early identification of metabolic syndrome is because of the coronary heart disease risk, which is significantly increased by each of the constituents of the metabolic syndrome. Each of the components of metabolic syndrome increases coronary heart disease risk manifold when adds up with other components. There are several scoring systems which indicate future risk of coronary heart disease in an individual. Framingham risk score, PROCAM score, Vascular age are few of these systeMetS used to convey to a patient future risk of coronary heart disease. Using Framingham risk score, patients can be classified into three risk categories:

1. High risk for CHD: 10 year risk > 20% of coronary heart disease-related death or nonfatal MI, and includes patients with a diagnosis of atherosclerotic vascular disease (CAD, cerebrovascular disease or peripheral artery disease), and most patients with chronic kidney disease or established diabetes mellitus.
2. Moderate to high risk for CHD: 10 year risk - 10-20%
3. Lower to moderate risk: 10 year risk- <10%

4. Therapeutic Targets

4.1 Abdominal Obesity: It is very important to achieve state of negative energy balance in an individual to reduce abdominal adiposity. This should preferably attained by increasing energy expenditure by exercise program as well as reduced energy consumption. Waist circumference should be maintained<40 inches in men <35 inches in women. BMI should be maintained <25kg/m². Target weight loss in initial year should be around 7% to 10% reduction from baseline total body weight. 500 to 1000 calories should be burnt every day to achieve this. 30 minutes of moderate intensity exercise such as brisk walking is recommended on preferably all days in a week. This should preferably be combined with short (10- to 15-minute) bouts of activity (walking breaks at work, gardening, or household work), jogging, swimming, biking, golfing, team sports, and engaging in resistance training; avoiding sedentary activities for long duration in leisure time (television watching and video games) is also advised.

4.2 Atherogenic diet: consumption of saturated fat, trans fat, cholesterol should be avoided. saturated fat intake should be restricted to 7% of total calories; dietary cholesterol to 200 mg/dL; total fat 25% to 35% of total calories. Unsaturated fat should constitute most of dietary fat; simple sugars intake should be limited.

4.3 Goals of therapy- as per ATP III and its recent update

LDL: High risk patients: < 100mg/dL.
Moderately high risk patients: < 130mg/dL.
Moderate risk patients < 130 mg/dL.
Low risk patients < 160 mg/dL.

Blood pressure: Reduce BP to at least achieve BP of 140/90 mm Hg (or 130/80 mm Hg if diabetes present).

Elevated Fasting glucose: Life style modifications constitute main therapy of elevated fasting glucose. Except for a preliminary trial with acarbose, there is evidence till now to document effectiveness of oral hypoglycemic agents in reducing risk for cardiovascular events. And there further, long term safety of drugs like metformin or thiazolidinediones has not been documented.
5. Conclusion

- Metabolic syndrome is a rapidly increasing and strong risk factor for diabetes mellitus as well as coronary heart disease.
- It can lead to complications related to virtually all the organ systems.
- Increasing physical activity, weight reduction, dietary alteration are the key to prevent complications related to this preventable, treatable and curable disease.

References
1. Hjermann I. The metabolic cardiovascular syndrome: syndrome X, Raven's syndrome, insulin resistancesyndrome, atherothrombogenic syndrome. J Cardiovasc Pharmacol. 1992; 20(8): S5-10.
2. The IDF consensus worldwide definition of the metabolic syndrome 2006.
3. Alberti, KGMM, Zimmet. Definition, Diagnosis, and Classification of Diabetes Mellitus and its Complications, World Health Organization 1999: 32–33.
4. Balkau B, Charles MA; Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR)/ Diabet Med. 1999; 16(5): 442-3.
5. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults JAMA 2001; 285 (19): 2486-2497.
6. Scott M. Grundy, H. Bryan Brewer et al. Definition of Metabolic Syndrome : Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition ; 2004 ;109: 433-438.
7. Grundy SM, Cleeman JI, Daniels SR, Donato KA, American Heart Association; National Heart, Lung, and Blood Institute et al. ; Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. 2005; 112(17): 2735-52.
8. Scott M. Grundy, H. Bryan Brewer Jr, James I. Cleeman et al. Definition of Metabolic Syndrome; Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition 2004; 109: 433-438.
9. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. Circulation. 2002; 106: 3143–3421.
10. Scott M. Grundy; Metabolic syndrome pandemic; Arteriosclerosis, Thrombosis and Vascular biology; 2008; 28: 629-636.
11. Hollman G, Kristensson M. The Prevalence of the Metabolic Syndrome and Its Risk Factors in a Middle-Aged Swedish Population — Mainly a Function of Overweight? Cardiovasc Nurs 2008; 7(1):21-6.
12. Do Carmo, Dos Santos, J. Camolas et al. Overweight and obesity in Portugal : national prevalence in 2003–2005; 2007 ; 1467-789.
13. Ervin RB ; Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health Stat Report 2009; 5(13):1-7.
14. Marc-Andre Cornier, Dana Dabelea, Teri L. Hernandez et al. ; The Metabolic Syndrome; Endocrine Reviews 2008 ; 29: 7777-822.
15. Anoop Misra and Lokesh Khurana; Obesity and the Metabolic Syndrome in Developing Countries; The Journal of Clinical Endocrinology & Metabolism 2008; 93(11): s9-s30.
16. Dhurandhar NV, Kulkarni PR; Prevalence of obesity in Bombay; Obesity related metabolic disorders; 1992; 16(5): 367-75.
17. Deepa M, Farooq S, Deepa R, Manjula D, Mohan V; Prevalence and significance of generalized and central body obesity in an urban Asian Indian population in Chennai, India (CURES: 47). Eur J Clin Nutr, 2009; 63(2):259-67.
18. Park HS, Lee SY, Kim SM, Han JH, Kim DJ; Prevalence of the metabolic syndrome among Korean adults according to the criteria of the International Diabetes Federation. Diabetes Care 2006; 29: 933–934.
19. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004; 53:2087–2094.
20. Brochu M, Starling RD, Thernouf A, Matthews DE, Garcia-Rubi E, Poehlman ET. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab. 2000; 85:2378 –2384.
21. Rendell M, Hulthen UL, Tornquist C, Groop L, Mattiasson I. Relationship between abdominal fat compartments and glucose and lipid metabolism in early postmenopausal women. J Clin Endocrinol Metab. 2001; 86: 744 –749.
22. Raji A, Seely EW, Arky RA, Simonson DC. Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab 2001; 86:5366 –5371.
23. Ross R, Freeman J, Hudson R, Janssen I. Abdominal obesity, muscle composition and insulin resistance in premenopausal women. J Clin Endocrinol Metab 2002; 87: 5044 –5051.
24. Nyholm B, Nielsen MF, Kristensen K, Nielsen S, Ostergard T, Pedersen SB et al. Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. *Eur J Endocrinol.* 2004; 150:207–214.

25. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE, Fujimoto WY. Visceral adiposity and the risk of impaired glucose tolerance: a prospective study among Japanese Americans. *Diabetes Care* 2003; 26: 650–655.

26. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE, Fujimoto WY. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. *Ann Intern Med.* 2004; 140:992–1000.

27. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. *J Clin Invest.* 1989; 83:1168–1173.

28. McCarthy JJ, Meyer J, Molterno DJ, Newby LK, Rogers WJ et al. Evidence for substantial effect modification by gender in a large-scale genetic association study of the metabolic syndrome among coronary heart disease patients. *Hum Genet* 2003; 114: 87-98.

29. Beck-Nielsen H & Groop L (1994) Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. *Journal of Clinical Investigation*1994; 94: 1714–1721.

30. Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nisse’n M, Ehrnströ’m B-O et al. Metabolic consequences of a family history of NIDDM (The Botnia Study). *Diabetes* 1996; 45: 1585–1593.

31. Groop L & Tuomi T. Non-insulin-dependent diabetes mellitus – a collision between thrifty genes and an affluent society. *Annals of Medicine* 1997; 29: 37–53.

32. Ferrannini E, Buzzigoli G, Bonadonna R, Giornico M, Oleggini M, Pedrinelli R, Brandi L & Bevilacqua S (1987) Insulin resistance in essential hypertension. *New England Journal of Medicine* 1997; 317: 350–357.

33. Hong Y, Rice T, Gagnon J, Despré’s J-P, Nadeau A, Pe’russe L, Bouchard C, Leon A, Skinner J, Wilmore J & Rao D. Familial clustering of insulin and abdominal visceral fat: the HERITAGE family study. *Journal of Clinical Endocrinology and Metabolism* 1998; 83: 4239–4245.

34. Lehtovirta M, Kaprio J, Forsblom C, Eriksson JJT & Groop L. Insulin secretion and insulin sensitivity in monozygotic and dizygotic twins. *Diabetologia* 2000; 43(3): 285-293.

35. Chrousos GP, Gold PW; The concepts of stress and stress system disorders; Overview of physical and behavioral homeostasis; *JAMA* 1992; 267(12):1244-1252.

36. Charmandari E, Tsigos C, Chrousos G; Endocrinology of the stress response; *Annu Rev Physiol* 2005; 67: 259-284.

37. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia; *J Clin Endocrinol Metab* 2000, 85: 1151-1158.

38. Krutzfeldt J, Stoffel M; MicroRNAs: a new class of regulatory genes affecting metabolism; *Cell Metab* 2006; 4(1): 9-12.

39. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, et al.; Silencing of microRNAs in vivo with 'antagomirs'; *Nature* 2005; 438(7068): 685-689.

40. Junttila MJ, Barthel P, Myerburg RJ, Mäikkäliö TH, et al. Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. *Heart Rhythm* 2010; 7(10): 1396-403.

41. Suarez GA, Clark VM, Norell JE, Kottke TE, et al. Sudden cardiac death in diabetes mellitus: risk factors in the Rochester diabetic neuropathy study. *J Neurol Neurosurg Psychiatry* 2003; 76(2): 240-5.

42. Dekker JM, Girman C, Rhodes T, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ. "Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn Study." *Circulation* 2005; 112(5): 666-673.

43. Kurl S, Laukkanen JA, Niskanen L, Laaksonen D, Sivenius J, Salonen JT. "Metabolic syndrome and the risk of stroke in middle-aged men." *Stroke* 2006; 37(3): 806-811.

44. Iso H, Sato S, Kitamura A, Imano H, Kiyama M, Yamagishi K, Cui R, Tanigawa T, Shimamoto T. et al. "Metabolic syndrome and the risk of ischemic heart disease and stroke among Japanese men and women." *Stroke* 2007; 38(6): 1744-1751.

45. Jouven X, Charles MA, Desnos M, Ducimetiere P. "Circulating nesfatin-1 predicts arterial stiffness as a predictive risk factor for sudden death in the population." *Circulation* 2001; 104(7): 756-761.

46. Wang J, Ruotsalainen S, Moilanen L, Lepistö P, Laakso M, Kiusisto J. "The metabolic syndrome predicts incident stroke a 14-year follow-up study in elderly people in Finland." *Stroke* 2008; 39(4): 1078-1083.

47. Milionis HJ, Rizos E, Gouveenjos J, Seferiadis K, Mikhailidis DP, Eliahsa MS. "Components of the metabolic syndrome and risk for first-ever acute ischemic nonembolic stroke in elderly subjects." *Stroke* 2005; 36(7): 1372-1376.

48. Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV et al. "Metabolic syndrome and ischemic stroke risk in Southern Manhattan Study." *Stroke* 2008; 39(1): 30-35.

49. Prototsali I, Korantzopoulos P, Milionis HJ, Koutsovasilis A, Nikolopoulos GK, Dimou E et al. "Metabolic syndrome and its components as predictors of ischemic stroke in type 2 diabetic patients." *Stroke* 2008; 39(3): 1036-1038.

50. Engelstein ED, Zipes DP. Sudden cardiac death. In: Alexander RW, Schlant RC, Fuster V, eds. The Heart, Arteries and Veins. New York, NY: McGraw-Hill; 1998:1081–1112.
with weight loss. J Clin Endocrinol Metab. 1998; 83:2907–2910.
78. Fishman S, Muzumdar RH, Atzmon G, Ma X, Yang X, Einstein FH, Barzilai N. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo. FASEB J 2007; 21: 53–60.
79. Neuschwander-Tetri BA. Carbohydrate intake and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2013; 16(4): 446-52.
80. Dixon, John B., Prithi S. Bhathal, and Paul E. O'Brien. "Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese." Gastroenterology 2001; 121(1): 91-100.
81. Oh SY, Cho YK, Kang METS, Yoo TW et al., The association between increased alanine aminotransferase activity and metabolic factors in non-alcoholic fatty liver disease. Metabolism. 2006; 55:1604–1609.
82. Liangpunsakul S, Chalasani N. Unexplained elevations in alanine aminotransferase in individuals with the metabolic syndrome: results from the third National Health and Nutrition Evaluation (NHANES III) Am J Med Sci. 2005; 329:111–116.
83. Nilssen O, Forde OH, Brennan T. The TroMetSo Study. Distribution and population determinants of gamma-glutamyltransferase. Am J Epidemiol 1990; 132: 318–326.
84. Perseghin G, Lattuada G, De Cobelli F, Ragogna F, et al. Habitual physical activity is associated with intrahepatic fat content in humans. Diabetes Care 2007; 30: 683–688.
85. Church TS, Kuk JL, Ross R, Priest EL, Biltoft E, Blair SN. Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology 2006; 130: 2023–2030.
86. Larner CZ, Yeh MM, Haigh WG, Van Rooyen DM, et al. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease. Obesity (Silver Spring) 2012 Nov 5 [Epub ahead of print]
87. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005; 54: 603–608.
88. Johns, Barry R., Alan C. Pao, and Sun H. Kim. "Metabolic syndrome, insulin resistance and kidney function in non-diabetic individuals." Nephrology Dialysis Transplantation 2012; 27(4): 1410-1415.
89. Alexander, Marim P, et al. "Kidney pathological changes in metabolic syndrome: a cross-sectional study." American Journal of Kidney Diseases 2009; 53(5): 751-759.
90. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V et al. The metabolic syndrome and chronic kidney disease in US adult. Ann Intern Med 2004; 140: 167–174.
91. Subhashish Agarwal, Michael G. Shlipak, Holly Kramer, Aditya Jain,. et al: The Association of Chronic Kidney Disease and Metabolic Syndrome with Incident Cardiovascular Events: Multiethnic Study of Atherosclerosis; Cardiology Research and Practice 2012; 2012: 806102.
92. Hill CJ, Cardwell CR, Maxwell AF, Young RJ, Matthews B, O'Donoghue DJ, Fogarty DG. "Obesity and kidney disease in type 1 and 2 diabetes: an analysis of the National Diabetes Audit." QJM (2013). Jun 6. [Epub ahead of print]
93. Banerjee D, Chitalia N, Raja R, Bhandara T, Poulikakos D, Jha V. "Metabolic syndrome in chronic kidney disease and renal transplant patients in North India." International urology and nephrology 2012; 44(3): 937-943.
94. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. "Metabolic syndrome and kidney disease: a systematic review and meta-analysis." Clinical Journal of the American Society of Nephrology 2011; 6(10): 2364-2373.
95. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. "Obesity-related glomerulopathy: an emerging epidemic." Kidney international 2001; 59(4): 1498-1509.
96. Tanaka H, Shiohira Y, Uezu Y, Higa A, Iseki K. "Metabolic syndrome and chronic kidney disease in Okinawa, Japan." Kidney international 2006; 69(2): 369-374.
97. Palaniapan L, Carmethon M, Fortmann SP. Association between microalbuminuria and the metabolic syndrome: NHANES III. Am J Hypertens 2003; 16: 952–958.
98. Samuelsson O, Attman PO, Knight-Gibson C et al. Complex apolipoprotein B-containing lipoprotein particles are associated with a higher rate of progression of human renal insufficiency. J Am Soc Nephrol 1998; 9: 1482–1488.
99. Tazawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y, Takishita S. Triglyceride, but not total cholesterol or low-density lipoprotein levels, predict development of proteinuria. Kidney Int 2002; 62: 1743–1749.
100. Pan A, Keum N, Okereke IO, Sun Q, Kivimaki M, Rubin RR, Hu FB: Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes Care. 2012; 35(5):1171-80.
101. Malhotra N, Kulhara P, Chakrabarti S, Grover S: A prospective, longitudinal study of metabolic syndrome in patients with bipolar disorder and schizophrenia. J Affect Disord. 2013 Apr 19. [Epub ahead of print]
102. Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, et al. Depression: an important comorbidity with metabolic syndrome in a general population. Diabetes Care 2008; 31:2368-73.
103. Oliver Kozumplik & Suzana Uzun: Metabolic syndrome in patients with depressive disorder - features of comorbidity. Psychiatry
Contribution of metabolic syndrome components to cognition in older individuals.

104. Foley DL, Morley KI, Madden PA, Heath AC, Whitfield JB & Martin NG: Major depression and the metabolic syndrome. Twin Res Hum Genet 2010; 13:347-58.

105. Goldbacher EM, Bromberger J & Matthews KA: Lifetime history of major depression predicts the development of the metabolic syndrome in middle-aged women. Psychosom Med 2009; 71: 266-72.

106. Akbaraly TN, Kivimäki M, Brunner EJ, Chandola T et al. Association between metabolic syndrome and depressive symptomS in middle-aged adults: results from the Whitehall II study. Diabetes Care 2009; 32:499-504.

107. Raikkonen K, Matthews KA, Kuller LH. Depressive symptomS and stressful life events predict metabolic syndrome among middle-aged women. Diabetes Care 2007; 30:872-7.

108. Koponen H, Jokelainen J, Keinanen-Kiukaanniemi S, Kumpusalo E, Vanhala M. Metabolic syndrome predisposes to depressive symptomS: a population-based 7-year follow-up study. J Clin Psychiatry 2008; 69:178–82.

109. Herva A, Rasainen P, Miettunen J, Timonen M, Läksy K, Veijola J, Laitinen J, Ruokonen A, Joukamaa M. Co-occurrence of metabolic syndrome with depression and anxiety in young adults: the Northern Finland 1966 birth cohort study. Psychosom Med 2006; 68: 213–6.

110. Takeuchi T, Nakao M, Nomura K, Inoue M, Tsurugano S, Shinozaki Y & Yano E: Association of the metabolic syndrome with depression and anxiety in Japanese men: a 1-year cohort study. Diabetes Metab Res Rev 2009; 25:762-7.

111. Musselmann DL, Betan E, Larsen H, Phillips LS. Relationship of de- pression to diabetes types 1 and 2: epidemiology, biology and treatment. Biol Psychiatry 2003; 54:317–29.

112. Yaffe, Kristine, et al. "The metabolic syndrome, inflammation, and risk of cognitive decline." JAMA: the journal of the American Medical Association 2004; 292(18): 2237.

113. Birdsell AC, Carlsson CM, Willette AA, Okonkwo OC, et al. Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Obesity (Silver Spring). 2012 Nov 30. [Epub ahead of print].

114. Watts AS, Loskutova N, Burns JM, Johnson DK. Metabolic syndrome and cognitive decline in early Alzheimer's disease and healthy older adults. J Alzheimers Dis. 2013;35(2):253-65.

115. Dik, Miranda G., et al."Contribution of metabolic syndrome components to cognition in older individuals." Diabetes Care 2007; 30(10): 2655-2660.

116. Yates KF, Sweat V, Yau PL, Turchiano MM, et al. Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler Thromb Vasc Biol. 2012; 32(9): 2060-7.

117. Van den Berg E, Biessels GJ, de Craen AJ, Gussekloo J, et al. The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology 2007; 69(10):979-85.

118. Yaffe, Kristine. "Metabolic syndrome and cognitive decline." Current Alzheimer Research 2007; 4(2): 123-126.

119. Yau PL, Castro MG, Tagani A, Tsui WH, et al. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012; 130(4):e856-64.

120. Lindenmayer JP, Khan A, Kaushik S, Thanju A, et al. Relationship between metabolic syndrome and cognition in patients with schizophrenia. Schizophr Res. 2012; 142(1-3): 171-6.

121. Raffaitin C, Gin H, Empana JP, Helmer C, Berr C, Tsourio C et al. "Metabolic Syndrome and Risk for Incident Alzheimer's Disease or Vascular Dementia The Three-City Study." Diabetes Care 2009; 32(1): 169-174.

122. Roberts RO, Geda YE, Knopman DS, Cha RH, Boeve BF, Ivnik RJ et al. "Metabolic syndrome, inflammation, and non-amnestic mild cognitive impairment in older persons: A population-based study." Alzheimer disease and associated disorders 2010; 24(1): 11.

123. Gregg EW, Yaffe K, Cauley JA, Rolka DB, Blackwell TL, Narayan KM, Cummings SR. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Arch Intern Med 2000; 160(2): 174-180.

124. Takeuchi M, Nihon Yakurigaku Zasshi. Participation of toxic AGEs (TAGE) in a variety of diseases 2012; 139(5): 193-7.

125. Laudisio, Alice, et al. "Association of metabolic syndrome with cognitive function: the role of sex and age." Clinical Nutrition 2008; 27(5): 747-754.

126. Panza F, Solfirizi V, Logrosino G, Maggi S, et al. Current epidemiological approaches to the metabolic-cognitive syndrome. J Alzheimers Dis 2012; 30(2): S31-75.

127. Viscogliosi G, Andreozzi P, Chiari M, Cipriani E, et al. Screening cognition in the elderly with metabolic syndrome. Metab Syndr Relat Disord 2012; 10(5): 358-62.

128. Carmina, Enrico, and Rogerio A. Lobo. "Polycystic ovary syndrome (PCOS): arguably the most common endocrinopathy is associated with significant morbidity in women." Journal of Clinical Endocrinology & Metabolism 1999; 84(6): 1897-1899.

129. Glueck, C. J., et al. "Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome." Metabolism: clinical and experimental 2003; 52(7): 908.
130. Coviello, Andrea D., Richard S. Legro, and Andrea Dunai. "Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance." *Journal of Clinical Endocrinology & Metabolism* 2006; 91(2): 492-497.

131. Silfen, Miriam E., et al. "Early endocrine, metabolic, and sonographic characteristics of polycystic ovary syndrome (PCOS): comparison between nonobese and obese adolescents." *Journal of Clinical Endocrinology & Metabolism* 2003; 88(10): 4682-4688.

132. Dokras, Anuja, et al. "Screening women with polycystic ovary syndrome for metabolic syndrome." *Obstetrics & Gynecology* 2005; 106(1): 131-137.

133. Ehrmann, David A., et al. "Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome." *Journal of Clinical Endocrinology & Metabolism* 2006; 91(1): 48-53.

134. Apridonidze, Teimuraz, et al. "Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome." *Journal of Clinical Endocrinology & Metabolism* 2005; 90(4): 1929-1935.

135. Bozdag G, Yildiz BO. "Interventions for the metabolic dysfunction in polycystic ovary syndrome." *Steroids* 2013; 78(8): 777-81.

136. Faloia E, Canibus P, Gatti C, Frezza F, Santangelo M, Garrapa GG, Boscaro M. "Body composition, fat distribution and metabolic characteristics in lean and obese women with polycystic ovary syndrome." *Journal of endocrinological investigation* 2004; 27(5): 424.

137. Glintborg, Dorte, et al. "Evaluation of metabolic risk markers in polycystic ovary syndrome (PCOS). Adiponectin, ghrelin, leptin and body composition in hirsute PCOS patients and controls." *European Journal of Endocrinology* 2006; 155(2): 337-345.

138. Sam, Susan, et al. "Dyslipidemia and metabolic syndrome in the sisters of women with polycystic ovary syndrome." *Journal of Clinical Endocrinology & Metabolism* 2005; 90(8): 4797-4802.

139. Vural, Birol, et al. "Evaluation of metabolic syndrome frequency and premature carotid atherosclerosis in young women with polycystic ovary syndrome." *Human Reproduction* 2005; 20(9): 2409-2413.

140. Carmina, Enrico. "Metabolic syndrome in polycystic ovary syndrome." *Minerva ginecologica* 2006; 58(2): 109-114.

141. Panidis D, Tziomalos K, Papadakis E, Vosnakis C, et al. Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility. *Endocrine* 2013 Apr 27.

142. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. *N Engl J Med.* 2001; 344(1): 3-10.

143. Wilson PW, Kannel WB, Silbershatz H, D’Agostino RB. Clustering of metabolic factors and coronary heart disease. *Arch Intern Med* 1999; 159:104-9.

144. Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, et al. Effects of diet and sodium intake on blood pressure: Subgroup analysis of the DASH-sodium trial. *Ann Intern Med* 2001;135:1019-28.

145. Chobanian AV, Hill M. National Heart, Lung, and Blood Institute Workshop on Sodium and Blood Pressure: A critical review of current scientific evidence. *Hypertension* 2000; 35:858-63.

146. Grundy SM, Hansen B, Smith SC Jr, Cleeman JI, Kahn RA; American Heart Association; National Heart, Lung, and Blood Institute; American Diabetes Association. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. *Circulation* 2004; 109: 551–556.

147. Thompson PD, Buchner D, Pina IL, Balady GJ, WilliaMetS MA, Marcus BH, Berra K, Blair SN, Costa F, Franklin B, Fletcher GF, Gordon NF, Pate RR, Rodriguez BL, Yancey AK, Wenger NK; Am Heart Association Council on Clinical Cardiology Subcommittee on Exercise, Rehabilitation, and Prevention; American Heart Association Council on Nutrition, Physical Activity, and Metabolism Subcommittee on Physical Activity. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). *Circulation.* 2003; 107: 3109–3116.

148. Pollock ML, Franklin BA, Balady GJ, Chatman BL, Fleg JL, Fletcher B, Limacher M, Pina IL, Stein RA, WilliaMetS M, Bazzarre T. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. *Circulation* 2000; 101: 828–833.

149. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ; National Heart, Lung, and Blood Institute; American College of Cardiology Foundation; American Heart Association. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. *Circulation* 2004; 110: 227–239.

150. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. *JAMA* 2003; 290: 486–494.