Analysis of Treg cell population in patients with breast cancer with respect to progesterone receptor status

Konrad Dziobek¹, Marta Biedka²,³, Tomasz Nowikiewicz⁴, Maria Szymankiewicz⁵, Ewelina Łukaszewska⁶, Magdalena Dutsch-Wicherek⁷

¹Department of Oncological Gynecology, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Krakow Branch, Krakow
²Department of Radiotherapy, Professor Franciszek Lukaszczyk Oncology Center in Bydgoszcz, Poland
³Department of Oncology and Brachytherapy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
⁴Clinical Department of Breast Cancer and Reconstructive Surgery, Professor Franciszek Lukaszczyk Oncology Center in Bydgoszcz, Poland
⁵Department of Oncology, Radiotherapy, and Gynecologic Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
⁶Department of Pathology, Professor Franciszek Lukaszczyk Oncology Center in Bydgoszcz, Poland

Introduction

Breast cancer is the most frequently diagnosed type of cancer in women worldwide. The prognosis for breast cancer is determined by age, lymph node involvement, tumour grade, nuclear expression of estrogen receptor (ER), progesterone receptor (PR), and membrane expression of human epidermal growth factor receptor 2 (HER2) [1, 2]. The development and progression of the cancer is related to tumour evasion of the immune system through a process called cancer immune-editing consisting of three phases: elimination, equilibrium, and evasion. During the elimination phase, also called immunosurveillance, innate and adaptive immune responses cooperate to destroy the growing tumour cells before they become clinically apparent. In the equilibrium phase rare tumour cell variants that have escaped elimination outgrow. The cancer cells that have acquired resistance to the elimination enter the escape phase. During this phase cancer cells continue to grow and expand in an uncontrolled manner, enabled by several mechanisms including development of a suppressive cancer microenvironment. One of those mechanisms is recruitment of T regulatory cells exerting a regulatory effect on the immune system. At this phase the tumour becomes clinically apparent. Among the tumour-infiltrating lymphocytes (TILs) in breast cancer patients are regulatory T cells (Treg), which are identified by the nuclear factor forhead box P3 (FOXP3) [3]. FOXP3+ TILs are correlated with a high risk of negative clinicopathological factors, such as ER negativity and high tumour grade [4, 5]. Treg cell infiltration of breast cancer has been considered as an independent negative prognostic factor [6, 7]. However, in a study conducted by West et al. with a cohort of 175 women with estrogen-receptor-negative breast cancers, FOXP3+ TILs were demonstrated as an independent positive prognostic factor in ER-negative breast cancer [8]. Tylor et al. demonstrated that the recruitment of Tregs to the cancer microenvironment inhibits an effective antitumour immune response, and in patients with claudin-low breast cancer, these tumours were found to be highly enriched with Tregs.
Analysis of Treg cell population in patients with breast cancer with respect to progesterone receptor status

[9]. On the other hand, FOXP3+ TILs were also identified as an independent factor for improved survival and progression-free survival in triple-negative breast cancer [10]. In the present study, we aimed to evaluate the percentages of Treg cell populations in the peripheral blood of patients with breast cancer with respect to progesterone-receptor status.

Material and methods

The study included 27 patients who were treated surgically for breast cancer in 2017 in the Clinical Department of Breast Cancer and Reconstructive Surgery of the Lukaszczyk Oncological Centre, Bydgoszcz, Poland.

Patients were treated in line with the accepted management standard; in all cases, this involved combination treatment. All 27 patients underwent surgical treatment with radiotherapy of the breast. In every case, breast-conserving treatment (BCT) with sentinel lymph node biopsy (SLNB) was applied [11, 12]. Each patient underwent radical surgery. According to current recommendations, this involved removal of the tumour within the limits of healthy tissues (no ink on the tumour) [11, 12], and this was confirmed by the histopathological examination of the state of surgical margins. The SLNB procedure identified the patients without the presence of metastatic lesions in the axillary (cN0 group). The pre-operative assessment of the clinical condition required for this purpose included a physical examination of the patients supplemented by an ultrasound examination of the axilla. The isotope method was used to identify the sentinel lymph node. The surgical procedure was preceded by lymphoscintigraphy using 99mTc radionuclide with 75–100 MBq activity on the albumin carrier (Nanocol). The isotopic marker was administered intradermally at the margin of the nipple envelope (in the breast quadrant where the primary change was located) approximately 2–3 hours before the surgery. For intraoperative identification of places of increased accumulation of radiotracers in the axillary cavity, and to measure the radiation value of the lymph nodes, a handheld gamma ray detector was used. The lymph node with the highest level of radiation was considered the sitter node sought during the surgical procedure. According to the “10% rule” established by Martin et al. [13], lymph nodes displaying elevated radiotracer collection greater than 10% of the radiation value obtained for the sentinel node (nodes of the heart) were also removed.

The patient’s consent was obtained in each case. Additionally, approval for the research program was granted by the Ethical Committee of the Nicolaus Copernicus University Ludwig Rydygier Collegium Medicum in Bydgoszcz (KBET/364/B/2015).

All the patients in our study had an invasive ductal breast cancer. From these patients two groups were selected: 19 patients with invasive breast cancer luminal type A: ER (+) PR (+) HER (-), Ki 67 until 15% and eight patients with non-luminal (HER-positive) invasive breast cancer ER (-) PR (-) HER (+), Ki 67 in each case, according to Saint Gallen Consensus 2017. No statistically significant differences in tumour stage, lymph node status, tumour grade, and HER status were observed between the two groups of patients. The characteristics of the patient groups are presented in Table 1. From each of the patient peripheral blood samples were collected one day before the surgical procedure.

Flow cytometry

The samples for the cytometric evaluation of the Treg cell population in the whole blood of breast cancer patients (luminal A type) were prepared using Becton Dickinson reagents, according to the manufacturer’s instructions. At first, the following antibodies for the detection of surface antigens were added to 100 μl peripheral blood collected on EDTA: 5 μl CD3 APC-Cy7, 20 μl CD4 FITC, 20 μl CD25

Table 1. Characteristics of the patient group

Characteristic	Number of patients (%)
Age 57 years (range: 31–64)	
Tumour stage according to TNM 2010	
T1b	9 (33)
T1c	17 (62)
T2	1 (3)
Lymph node status according to TNM 2010	
Without lymph node involvement N0	22 (81)
With lymph node involvement N1	5 (19)
Tumour differentiation grade	
Grade 1	1 (3)
Grade 2	25 (92)
Grade 3	1 (3)
Histopathological assessment	
Carcinoma ductale	27 (100)
After operation margin	
> 1 cm	27 (100)
< 1 cm	0 (0)
Hormonal status	
ER positive	19 (70)
ER negative	8 (30)
PR positive	19 (70)
PR negative	8 (30)
HER status	
HER positive	8 (30)
HER negative	19 (70)
Ki-67 expression	
< 10%	0 (0)
10–15%	19 (70)
> 20%	8 (30)
Type of treatment	
BCT operation	27 (100)
Radiotherapy	27 (100)
Brachytherapy	26 (96)
Chemotherapy	1 (4)
PR (+) and PR (–) breast cancer tumours within CD3+/CD4+ T cells in patients with progesterone receptor

Fig. 1. The percentage of CD25+/FOXP3+/CD127 (–/low) T cells in patients with progesterone receptor (PR) (+) and PR (–) breast cancer tumours.

The authors declare no conflict of interest.
Analysis of Treg cell population in patients with breast cancer with respect to progesterone receptor status

References

1. Nottegar A, Veronese N, Senthil M, et al. Extra-nodal extension of sentinel lymph node metastasis is a marker of poor prognosis in breast cancer patients: A systematic review and an exploratory meta-analysis. Eur J Surg Oncol 2016; 42: 919-925.

2. Bianchini G, Ballo JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016; 13: 674-690.

3. Burugu S, Asleh-Aburaya K, Nielsen TO. Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer 2017; 24: 3-15.

4. Mahmoud SM, Paish EC, Powe DG, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat 2011; 127: 99-108.

5. Droeser R, Zlobec I, Klicic E, et al. Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer 2012; 12: 134.

6. Merlo A, Casalini P, Carcangi ML, et al. FOXP3 expression and overall survival in breast cancer patients. J Clin Oncol 2009; 27: 1746-1752.

7. Bates GI, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373-5380.

8. West NR, Kost SE, Martin SD, et al. Tumor-infiltrating FOXP3+ lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer 2013; 108: 155-162.

9. Lee S, Cho EY, Park YH, et al. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol 2013; 52: 73-81.

10. Yeong J, Thike AA, Lim JC, et al. Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163: 21-35.

11. Taylor NA, Vick SC, Iglesia MD, et al. Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J Clin Invest 2017; 127: 3472-3483.

12. Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 2015; 26: 1533-1546.

13. National Comprehensive Cancer Network (2016). National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology: Breast Cancer Version 1.2016. Retrieved 28 March 2016 at www.nccn.org.

14. Martin RC, Edwards MJ, Wong SL, et al. Practical guidelines for optimal gamma probe detection of sentinel lymph nodes in breast cancer: results of a multi-institutional study. For the University of Louisville Breast Cancer Study Group. Surgery 2000; 128: 139-144.

15. Santegoets SI, Dijkgraaf EM, Battaglia A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother 2015; 64: 1271-1286.

16. Broom RI, Tang PA, Simmons C, et al. Changes in estrogen receptor, progesterone receptor and Her-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res 2009; 29: 1557-1562.

17. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 2002; 288: 321-333.

18. Franco A, Col N, Chlebowski RT. Discordance in estrogen (ER) and progestin receptor (PR) status between primary metastatic breast cancer: A meta-analysis. J Clin Oncol 2004; 22 (Suppl): 539-539.

19. Wang Y, Sun J, Zheng R, et al. Regulatory T cells are an important prognostic factor in breast cancer: a systematic review and meta-analysis. Neoplasma 2016; 63: 789-799.

20. Ayala MA, Gottardo MF, Imsen M, et al. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat 2017; 166: 393-405.

Address for correspondence

Magdalena Dutsch-Wicherek
Department of Oncology, Radiotherapy, and Gynecologic Oncology
Ludwik Rydygier Collegium Medicum in Bydgoszcz
Nicolaus Copernicus University in Torun
2 Romanowskiej St.
85-796, Bydgoszcz, Poland
e-mail: mwicher@gmail.com

Submitted: 14.09.2018
Accepted: 24.10.2018