Hidden Structure in Protein Energy Landscapes

Dengming Ming,1 Marian Anghel,1 and Michael E. Wall1,2

1Computer, Computational, and Statistical Sciences Division

2Bioscience Division and Center for Nonlinear Studies

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: February 1, 2008)

Abstract

Inherent structure theory is used to discover strong connections between simple characteristics of protein structure and the energy landscape of a Gō model. The potential energies and vibrational free energies of inherent structures are highly correlated, and both reflect simple measures of networks of native contacts. These connections have important consequences for models of protein dynamics and thermodynamics.
Protein activity is controlled by dynamical transitions among conformational substates [1]; the transitions may be understood in terms of motions on an energy landscape [2]. Substates correspond to local minima in the energy landscape, and transitions correspond to the hurdling of barriers between minima. Interestingly, the protein energy landscape resembles that of glasses [3].

Spin-glass models have yielded insight into properties of protein energy landscapes [4, 5] and the kinetics of protein folding [6]. The main motivation for using spin-glass models rather than structural-glass models is that spin-glass models are more analytically tractable; however, it has long been recognized that structural-glass models might be better-suited to describe proteins [5]. Indeed, protein unfolding has been characterized as a rigidity transformation that is similar to those seen in network glasses [7].

Structural-glass-forming liquids have been fruitfully characterized using inherent structure (IS) theory [8, 9], which treats the energy landscape as a set of discrete basins that are separated by saddles. Each basin contains a local minimum, called an inherent structure, which is analogous to a protein conformational substate. The dynamics are then naturally described as vibrations about local minima, punctuated by transitions between neighboring basins. A key assumption in IS theory is that vibrations are similar about minima with the same potential energy; however, importantly, IS theory allows for diversity among vibrations that have different potential energies.

Guo and Thirumalai [10] have used IS theory to analyze fluctuations in the neighborhood of the native state of a coarse-grained model of a designed four-helix bundle protein. Baumketner, Shea, and Hiwatari [11] have applied IS theory to study the glass transition in a coarse-grained model of a 16-residue polypeptide; by IS analysis of molecular dynamics trajectories, they demonstrated the ability to rigorously calculate the glass transition temperature due to freezing in the native-state basin. In a more recent study, Nakagawa & Peyrard [12] used IS theory to analyze the energy landscape of a protein G B1 domain using a coarse-grained model, finding that the density of minima increases exponentially with the energy. Importantly, their analysis relied on an assumption that vibrations are the same about all potential energy minima. However, because proteins become less rigid as noncovalent bonds are broken [7], vibrations are expected to be different for different minima, especially for minima with different potential energies. Diversity in vibrations not only would change the density of minima, but also would have important implications for
the kinetics of transitions among conformational substates \[1\]; however, if vibrations are
the same for different minima, their role in determining the kinetics of transitions would be
trivial.

To characterize the diversity in vibrations among different protein inherent structures, we
used IS theory to analyze a coarse-grained Gō model of the same protein fragment considered
by Nakagawa & Peyrard \[12\]: GB1, a protein G B1 domain (Protein Data Bank \[13\] entry
2GB1 \[14\]). GB1 has 56 amino acids and consists of a four-stranded \(\beta\)-sheet packed against
a single helix.

A configuration \(x\) is represented by the set of \(C_\alpha\) positions, and the Gō model potential
energy \(U(x)\) for \(C_\alpha\) configurations \(x\) of all proteins is similar to that used by the GB1 studies
in Refs. \[15\] and \[12\]:

\[
U(x) = \sum_{i=1}^{N-1} \frac{K_b}{2} (r_i - r_{i,0})^2 + \sum_{i=1}^{N-2} \frac{K_\theta}{2} (\theta_i - \theta_{i,0})^2
+ \sum_{i=1}^{N-3} \frac{K_\phi}{2} \left[1 - \cos \left(\frac{2\phi_i - \pi}{2} \right) \right]
+ \sum_{i>j-3}^{NC} \epsilon \left[\frac{(r_{ij,0})^{12}}{r_{ij}} - 6 \left(\frac{r_{ij,0}}{r_{ij}} \right)^{10} \right]
+ \sum_{i>j-3}^{NNC} \epsilon \left(\frac{C_\epsilon}{r_{ij}} \right)^{12}. \tag{1}
\]

The first term in Eq. (1) is the contribution from neighboring backbone \(C_\alpha\) bond distances,
the second is from angles between neighboring bonds, the third is from dihedral angles,
the fourth is from noncovalent interactions between native contacts, and the fifth is from
noncovalent interactions between other pairs of atoms. The crystal structure was used as the
reference structure to determine \(r_{i,0}, \theta_{i,0}\), and \(r_{ij,0}\), with native contacts determined using a
cutoff distance of 5.5 Å. Other parameter values are \(K_b = 200\epsilon_0 \text{ Å}^{-2}\), \(K_\theta = 40\epsilon_0 \text{ rad}^{-2}\), \(K_\phi = 0.3\epsilon_0\), \(\epsilon = 0.18\epsilon_0\), and \(C = 4 \text{ Å}\). The absolute energy unit \(\epsilon_0 = 1.89 \text{ Kcalmol}^{-1}\) is determined
as in Ref. \[15\], assuming a folding temperature of 350 K. Frustration is introduced through
the dihedral angle terms, which are not defined with respect to the reference structure.

Langevin dynamics simulations were performed using a time step 0.0007\(\tau\) and a friction
coefficient of 0.2/\(\tau\), where \(\tau = 1.47 \text{ ps}\) (following Ref. \[15\]). The collapse temperature
\(T_\theta\), at which extended and collapsed configurations are approximately equally likely, was
located by analysis of the specific heat \[12\]. A single trajectory at temperature \(T_\theta\) with
3×10^8 time steps was sampled every 10^4 steps to obtain an ensemble of 3×10^4 inherent structures for analysis. Local minima e_α, corresponding to inherent structures α, were found using conjugate gradient minimization terminated when a step resulted in an energy change of just 10^{-12}. The protein exhibited multiple transitions between extended and collapsed states during the course of the simulation, and the inherent structure ensembles exhibited a bimodal probability distribution $P_{IS}(e_\alpha, T_\theta)$ of collapsed and extended inherent-structure potential energies e_α, similar to the distribution in Ref. [12].

Like a previous application of IS theory to proteins by Baumkötter, Shea, and Hiwatari [11], we replace the configurational integral in the partition function for an isolated protein with a sum over contributions from individual inherent structures:

$$Z = \left(\prod_{i=1}^{3N} \Lambda_i^{-1} \right) \frac{1}{\sigma} \int_V dx e^{-U(x)/k_B T}$$

$$= \sum_\alpha e^{-\beta e_\alpha} \left(\prod_{i=1}^{3N} \Lambda_i^{-1} \right) \frac{1}{\sigma} \int_{R(\alpha)} dx e^{-[U(x)-e_\alpha]/k_B T}$$

$$= \sum_\alpha e^{-[e_\alpha+F_v(\alpha,T)]/k_B T}, \quad (2)$$

which defines the vibrational free energy $F_v(\alpha, T)$. In Eq. (2), $R(\alpha)$ is the basin surrounding inherent structure α, Λ_i is the thermal wavelength of atom i, and σ is a factor to account for symmetries.

Values of $F_v(\alpha, T)$, calculated as differences with respect to the native structure $\alpha = 0$ (the same holds for values of e_α), were estimated at the collapse temperature T_θ using a harmonic approximation,

$$F_v(\alpha, T) = \frac{k_B T}{2} \sum_{i=1}^{3N} \ln \frac{\lambda_i^{(\alpha)}}{\lambda_i^{(0)}}, \quad (3)$$

where $\lambda_i^{(\alpha)}$ is the ith eigenvalue of the Hessian $h_{jk} = \frac{\partial^2 U}{\partial x_j \partial x_k}$ calculated at the energy minimum corresponding to inherent structure α, and $\lambda_i^{(0)}$ is the same for the ground-state inherent structure. The sum is over all modes with nonzero frequency: we neglect a contribution due to changes in the rotational entropy for different inherent structures. Values of F_v are similar for inherent structures with a similar potential energy e_α (Fig. 1). The contribution to F_v from the highest $1/3$ of the eigenvalues does not change for different inherent structures. Interestingly, there is a gap in the eigenvalue spectrum between the lowest $2/3$ and the highest $1/3$ of the eigenvalues; in addition, only the highest $1/3$ of the eigenvalues change when the bond-distance force constant K_b is increased by a factor of ten, indicating
FIG. 1: Vibrational free energies F_v of inherent structures vs. their potential energies e_α (black points). The dependence is well-modeled by Eq. (4) with $e_c = 88.4 k_B T_\theta$ (piecewise-linear red line). The contribution from the highest 1/3 of the eigenvalues is constant (green points).

that the corresponding modes describe the bond vibrations. Therefore bond vibrations do not change significantly among different inherent structures. However, the total F_v, which includes contributions from the lowest 2/3 of the eigenvalues, changes significantly with e_α (Fig. 1). The assumption of constant F_v by Nakagawa & Peyrard [12] therefore is only valid for the modes that involve bond vibrations. This result is consistent with studies of the loss of protein rigidity upon protein unfolding [7], and is also consistent with molecular dynamics studies suggesting that vibrations can be diverse for different protein conformational substates [16, 17].

As demonstrated by the fit in Fig. 1, F_v is well-modeled using the function

$$F_v(e_\alpha) = k_2 e_\alpha + (k_2 - k_1) k_B T_\theta \times \ln \left(e^{-e_c/k_B T_\theta} + e^{-e_\alpha/k_B T_\theta} \right).$$

Equation (4) is essentially a piecewise-linear function with slope k_1 for $e_\alpha < e_c$, and slope k_2 for $e_\alpha > e_c$. For GB1, $k_1 = -0.40$, $k_2 = -0.91$, and $e_c = 88.4 k_B T_\theta$.

Inherent structure theory [8, 9] assumes that $F_v(\alpha, T) = F_v(e_\alpha, T)$ (validated for the present application in Fig. 1), and relates the vibrational free energy $F_v(e_\alpha)$ and the probability distribution $P_{IS}(e_\alpha)$ to the density of states $\Omega_{IS}(e_\alpha)$ through

$$P_{IS}(e_\alpha, T) = \frac{1}{Z} \Omega_{IS}(e_\alpha) e^{-e_\alpha/k_B T} e^{-F_v(e_\alpha, T)/k_B T}. $$

(5)
FIG. 2: Density of inherent structures $\Omega_{IS}(e_{\alpha})$. The knee at $e_r = 47.4k_B T_\theta$ is due to a change in stress, and the plateau beginning at roughly $e_c = 88.4k_B T_\theta$ is due to a change in rigidity; both are understood in terms of the network of native contacts (Figs. 3, 4).

Given $\Omega_{IS}(e_0) = 1$, $F_v(e_0, T) = 0$, and $e_0 = 0$, $\Omega_{IS}(e_{\alpha})$ is given by

$$\Omega_{IS}(e_{\alpha}) = e^{e_{\alpha}/k_B T} e^{F_v(e_\alpha, T)/k_B T} P_{IS}(e_{\alpha}, T) / P_{IS}(e_0, T),$$

which generalizes a similar equation in Nakagawa & Peyrard [12] to values of $F_v(e_{\alpha}, T)$ that vary with e_{α}.

We used Eq. (6) along with the calculated $P_{IS}(e_{\alpha})$ and $F_v(e_{\alpha})$ from Eq. (4) to model the density of inherent structures $\Omega_{IS}(e_{\alpha})$. At energies below e_c, $\Omega_{IS}(e_{\alpha})$ exhibits an exponential increase, but with a slight increase in the exponent factor above an energy e_r, giving rise to a knee in the plot of $\log \Omega_{IS}(e_{\alpha})$ vs. e_{α} (Fig. 2). The knee is located at a minimum in $P_{IS}(e_{\alpha})$ between the extended and collapsed states, and is thus associated with the transition state. Such a knee was also seen in a previous model of $\Omega_{IS}(e_{\alpha})$ that did not consider vibrations [12]. Above e_c, $\Omega_{IS}(e_{\alpha})$ plateaus and decreases at the highest energies, which is a consequence of the structure in both $P_{IS}(e_{\alpha})$ and $F_v(e_{\alpha}, T_\theta)$. Rather than being exponential in form [12], from Eqs. (4) and (6), $\Omega_{IS}(e_{\alpha})$ in this region has the form

$$\Omega_{IS}(e_{\alpha}) = e^{(1+k_2)e_{\alpha}/k_B T} e^{(k_1-k_2)e_c/k_B T_\theta} P_{IS}(e_{\alpha}, T) / P_{IS}(e_0, T).$$

Because k_2 is close to -1 at T_θ, the structure of $\Omega_{IS}(e_{\alpha})$ closely resembles that of $P(e_{\alpha}, T_\theta)$ above e_c.

6
FIG. 3: Potential energy e_α vs. number of broken contacts \bar{n}_α. The dependence is well-modeled by Eq. (8) (red line). The energy required to break a native contact is approximately equal to the binding energy ε, with differences due to stress in the structure. The knee corresponds to a change in stress at $\bar{n}_r = 60$, where $e_\alpha(\bar{n}_r) = 59.6 k_B T_\theta$.

We found (Fig. 3) that e_α is closely related to the number of broken native contacts, \bar{n}_α through the piecewise-linear function

$$e_\alpha = h_2 \bar{n}_\alpha + (h_2 - h_1) \ln \left(e^{-\bar{n}_r} + e^{-\bar{n}_a} \right).$$

(8)

The slopes h_1 and h_2 correspond to the amount of energy required to break a native contact below (h_1) and above (h_2) a critical number of broken contacts \bar{n}_r. Data for GB1 are well-modeled using $h_1 = 0.997$, $h_2 = 0.622$, and $\bar{n}_r = 60$. Below \bar{n}_r, breaking a native contact requires more potential energy than above \bar{n}_r. Therefore, \bar{n}_r is associated with a change in protein stress.

There are interesting connections between the structure of $\Omega_{IS}(e_\alpha)$ below e_c (Fig. 2) and the dependence of e_α on \bar{n}_α (Fig. 3). The change in the slope of Ω_{IS} at e_r is closely related to the change in the slope of $e_\alpha(\bar{n}_\alpha)$ at \bar{n}_r, suggesting that Ω_{IS} has a simple exponential dependence on \bar{n}_r below e_c. However, the knee in Ω_{IS} occurs at $e_r = 47.4 k_B T_\theta$, which is smaller than the value $e_\alpha(\bar{n}_r) = 59.6 k_B T_\theta$ at the knee in Fig. 3. While the density of inherent structures might truly be enhanced in the gap between e_r and $e_\alpha(\bar{n}_r)$, we note that the shift of e_r with respect to $e_\alpha(\bar{n}_r)$ might indicate that the inherent structure basins associated with the transition state are especially large (as noted above, e_r is associated with the transition state), and that the harmonic approximation might be especially ill-suited to estimating
FIG. 4: Number of residues \(m_\alpha \) for which all native contacts are broken vs. the number of broken contacts \(\bar{n}_\alpha \). The dependence is well-modeled by Eq. (9) (black line). Note that \(m_\alpha = 55 \) (close to the expected value of 56) at \(\bar{n}_\alpha = 207 \).

The source of the plateau in \(\Omega_{IS}(e_\alpha) \) above \(e_c \) may be understood in terms of the dependence of the free energy on both \(\bar{n}_\alpha \) and the number of residues \(m_\alpha \) for which all native contacts are broken. As shown in Fig. 4, a plot of \(m_\alpha \) vs. \(\bar{n}_\alpha \) is well-modeled by the function

\[
m_\alpha = \frac{1}{3} \left(e^{\bar{n}_\alpha/40} - 1 \right),
\]

(9)
supporting an expectation that breaking a contact is only likely to create a residue with no native contacts at high \(\bar{n}_\alpha \). The following simple model for \(F_v \) then successfully captures the structure of \(F_v \) in Fig. 1:

\[
F_v(\bar{n}_\alpha) = \nu \bar{n}_\alpha + \mu m_\alpha,
\]

(10)
with \(m_\alpha \) given by Eq. (10). Using \(\nu = -0.32 \) and \(\mu = -1.07 \) yields good agreement between values of \(F_v \) obtained either directly from the Hessian or using Eq. (10), with a correlation coefficient of 0.993 for values calculated from all inherent structures. We conclude that the change in the slope of \(F_v \) vs. \(e_\alpha \) at \(e_c \), and therefore the plateau in \(\Omega_{IS}(e_\alpha) \) above \(e_c \), is associated with an increase in the likelihood that breaking a native contact will increase the number of residues with no native contacts.

We found that protein stress and rigidity are closely tied to the network of native contacts through Eqs. (8) and (10). This finding is reminiscent of an analysis of protein folding by
Rader et al.\[7\], in which the loss of network rigidity was associated with protein unfolding. It is therefore tempting to associate the region between \(e_r\) and \(e_c\) in Fig. 2 with the region of the mean coordination number \(\langle r \rangle\) where Rader et al. found that proteins become floppy and unfold. However, the present approach differs from that used by Rader et al. in two key ways. First, because all residue interactions in the present study are lumped into \(C_\alpha\) atoms, the coordination numbers are higher, and the relation of coordination numbers to protein rigidity might be different than for the all-atom models considered by Rader et al. Second, whereas the present results were obtained using a dynamical model, those obtained by Rader et al. were obtained using a static model of the protein. It will be interesting to further explore connections between the analyses based on IS theory and network rigidity; at present, they provide complementary perspectives on the relationship between protein dynamics and protein stress and rigidity.

The maximum in the density of states above \(e_c\) is a consequence of considering diversity in vibrations, and is not observed when uniform vibrations are assumed \[12\]. Interestingly, a similar structure for the density of states, in which an exponential increase is followed by a maximum, has been observed for many structural-glass-forming liquids \[9\]. It will therefore be interesting to improve the estimation of the density of states by obtaining more accurate estimates of \(F_v\) than are possible using a harmonic approximation \[11\].

Studies of two other Gō models of proteins yielded results that are similar to those found here for GB1 (unpublished results), suggesting the possibility that a simple phenomenological relationship between the network of native contacts and the energy landscape might exist for all Gō models. It will be interesting to explore this relationship for a large number of proteins and seek representations in which it is identical for different proteins. Discovery of such “universality” would enable the prediction of important properties of the energy landscapes of Gō models without performing numerical simulations.

It will be important to extend the present results to models whose energy landscapes exhibit more frustration than Gō models. For example, consider a modified model in which there is a weak attractive interaction for non-native contacts. In contrast to the simple relation illustrated in Fig. 3, in such a model, inherent structures with the same potential energy would likely have diverse numbers of native contacts. However, by extending the parameter space, the energy still might be simply related to a combination of both the number of native contacts and the number of non-native contacts. Similarly, the vibrational
free energies might exhibit diversity among inherent structures with the same energy, but might still be simply related to both the number of native contacts and non-native contacts through an equation analogous to Eq. (10). Ultimately, it will be interesting to incrementally increase the complexity of the model, extending the present results (as far as computationally feasible) to realistic, all-atom models of proteins that include explicit solvent and other effects that are important in controlling protein function. Use of such all-atom models will enable the link between analyses based on IS theory and network rigidity to be further explored.

The present results demonstrate that simple connections to protein structure are hidden within the energy landscape of a Gō model. The potential energies and vibrational free energies of inherent structures are highly correlated, and both reflect simple measures of networks of native contacts. Through use of IS theory, these regularities should enable significant simplification of thermodynamic models of proteins [8, 9, 12].

We gratefully acknowledge Arthur Voter and Donald Jacobs for discussions. This work was supported by the Department of Energy.

* E-mail: mewall@lanl.gov

[1] H. Frauenfelder and P. G. Wolynes, Science 229, 337 (1985).
[2] H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254, 1598 (1991).
[3] A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young, Proc Natl Acad Sci U S A 82, 5000 (1985).
[4] J. D. Bryngelson and P. G. Wolynes, Proc Natl Acad Sci U S A 84, 7524 (1987).
[5] D. L. Stein, Proc Natl Acad Sci U S A 82, 3670 (1985).
[6] J. D. Bryngelson and P. G. Wolynes, J Phys Chem 93, 6902 (1989).
[7] A. J. Rader, B. M. Hespenheide, L. A. Kuhn, and M. F. Thorpe, Proc Natl Acad Sci U S A 99, 3540 (2002).
[8] F. H. Stillinger and T. A. Weber, Phys Rev A 25, 978 (1982).
[9] F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
[10] Z. Guo and D. Thirumalai, J Mol Biol 263, 323 (1996).
[11] A. Baumketner, J.-E. Shea, and Y. Hiwatari, Phys Rev E 67, 011912 (2003).
[12] N. Nakagawa and M. Peyrard, Proc Natl Acad Sci U S A 103, 5279 (2006).
[13] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids Res 28, 235 (2000).

[14] A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow, P. T. Wingfield, and G. M. Clore, Science 253, 657 (1991).

[15] J. Karanicolas and C. L. Brooks, Protein Sci 11, 2351 (2002).

[16] D. Janezic, R. M. Venable, and B. R. Brooks, J Comput Chem 16, 1554 (1995).

[17] H. W. T. van Vlijmen and M. Karplus, J Phys Chem B 103, 3009 (1999).