A GENERALIZATION OF POWERS-STØRMER INEQUALITY

ANCHAL AGGARWAL AND MANDEEP SINGH

Abstract. Let A, B be the positive semidefinite matrices. A matrix version of the famous Powers-Størmer's inequality

$$2 \text{Tr}(A^\alpha B^{1-\alpha}) \geq \text{Tr}(A + B - |A - B|), \quad 0 \leq \alpha \leq 1,$$

was proven by Audenaert et. al. We establish a comparison of eigenvalues for the matrices $A^\alpha B^{1-\alpha}$ and $A + B - |A - B|$, $0 \leq \alpha \leq 1$, subsuming the Powers-Størmer’s inequality. We also prove several related norm inequalities.

1. Introduction

Let M_n denote the algebra of all $n \times n$ complex matrices. A Hermitian member A of M_n with all non-negative eigenvalues is known as positive semi-definite matrix, simply denoted by $A \geq 0$. We shall denote by P_n, the collection of all such matrices. For A, B Hermitian in M_n, we employ the positive semi-definite ordering: $A \geq B$ if and only if $A - B \geq 0$. By $|A|$, we mean the positive square root of the matrix A^*A, i.e., $(A^*A)^{1/2}$. The Jordan decomposition of a Hermitian matrix A is given by $A = A_+ - A_-$, where A_+ and A_- are the members of the P_n along with $A_+A_- = 0$ (see [3], page 99). We shall consider $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A) \geq 0$, the eigenvalues of $A \in P_n$, arranged in decreasing order and repeated according to their multiplicity. Similarly $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A) \geq 0$, denote the singular values (eigenvalues of $|A|$) of a matrix $A \in P_n$, arranged in decreasing order and repeated according to their multiplicity. By $||| . |||$, we mean any unitarily invariant norm, while $|| . ||$ denotes operator norm on M_n.

In 2007, Audenaert et. al. [1] solved a long standing open problem to identify the classical quantum Chernoff bound in the area of information theory. After the mathematical formulation of that problem, they proved a nontrivial and fundamental inequality relating to the trace distance to the quantum Chernoff bound. That became a key result to a solution of the problem and is stated as follows:

2010 Mathematics Subject Classification. Primary 15A42; Secondary 15A45,15A60.

Key words and phrases. Chernoff bound, Powers-Størmer Inequality, Positive operator, Eigenvalues inequality.
Let A, B be positive matrices and $0 \leq \alpha \leq 1$. Then

$$2Tr(A^\alpha B^{1-\alpha}) \geq Tr(A + B - |A-B|)$$

(1.1)

holds. A particular case $\alpha = 1/2$ in (1.1) is a well known Powers-Størmer’s inequality [7], which was proved in 1970. For such literature and detail of inequalities the reader may refer [6]. Subsequently in 2008, again Audenaert et. al. [2] worked on symmetric as well as with asymmetric quantum hypothesis testing. In [2] also, they proved some similar type of inequalities as that of (1.1) which played a key role in getting the optimal solution to the symmetric classical hypothesis test.

In 2011, Y. Ogata [5] generalised the Powers-Størmer inequality to von Neumann algebras. Recently several authors including D. Hoa et. al. [4] generalised this inequality on C^*-algebras using the technique of operator monotone functions on $[0, \infty)$.

We aim to prove the comparison of eigenvalues of $A + B - |A-B|$ and $2A^\alpha B^{1-\alpha}$, generalizing all the forms of Powers-Størmer’s inequality. We shall also prove several other associated norm inequalities.

2. Main Results

Lemma 2.1. Let $A, B \in P_n$ then there exist a matrix $S \in P_n$ satisfying

1. $S \preceq A$, $S \preceq B$
2. If $T \preceq A$, $T \preceq B$, is a fixed Hermitian matrix then $\lambda_i(T) \leq \lambda_i(S)$ for $1 \leq i \leq n$.

Proof. We shall first prove this result for either of A or B invertible. So assume B is invertible i.e. B is Hermitian and whose all the eigenvalues are positive. As is well-known that $B^{-1/2}AB^{-1/2} \in P_n$ and so unitarily diagonalizable. We assume that $B^{-1/2}AB^{-1/2} = U^*DU$ for some U a unitary and D a diagonal matrix with diagonal entries as $d_1 \geq d_2 \geq d_3 \cdots \geq d_n \geq 0$. Choose $S = B^{1/2}U^*D_1UB^{1/2}$, where D_1 is a diagonal matrix with diagonal entries as $t_1 \geq t_2 \geq t_3 \cdots \geq t_n \geq 0$, such that $t_i = \min\{d_i, 1\}$. This choice of S satisfies

$$S = B^{1/2}U^*D_1UB^{1/2} \leq B^{1/2}U^*DUB^{1/2} = A,$$

$$S = B^{1/2}U^*D_1UB^{1/2} \leq B^{1/2}U^*IUB^{1/2} = B.$$

For (2), let $T \preceq A$ as well as $T \preceq B$ be a fixed Hermitian matrix, then by Weyl’s monotonicity principle we have $\lambda_i(T) \leq \lambda_i(A)$ and $\lambda_i(T) \leq \lambda_i(B)$ for all $i = 1, 2, \cdots, n$. If

$$\lambda_i(T) \leq \lambda_i(S) \text{ for } 1 \leq i \leq n,$$
the above construction of S meets both the requirements.

If

$$\lambda_j(T) \geq \lambda_j(S) \text{ for some } 1 \leq j \leq n,$$

then we replace that particular t_j with $\lambda_j(T)$ in D_1. Then, this choice of S meets both the requirements.

The general case follows by using continuity argument. □

Now onwards, we shall denote S by $\min\{A, B\}$.

Theorem 2.2. Let $A, B \in P_n$ then

$$\lambda_i(A + B - |A - B|) \leq 2\lambda_i(A^\alpha B^{1-\alpha})$$

for $0 \leq \alpha \leq 1$ and $1 \leq i \leq n$.

Proof. Let T be any Hermitian matrix with Jordan decomposition $T_+ - T_-$. Then, $|T| = T_+ + T_-$, so $T - |T| = -2T_- \leq 0$. Using this fact for $A - B$, we can write,

$$A + B - |A - B| = 2(B - (A - B)_-) \leq 2B.$$ \hfill (2.2)

Replacing B by A in above inequality, we obtain

$$A + B - |A - B| = 2(A - (B - A)_-) \leq 2A.$$ \hfill (2.3)

Now, on using Lemma 2.1, we obtain

$$\lambda_i(A + B - |A - B|) \leq 2\lambda_i(\min\{A, B\} = S) \leq 2\lambda_i(S^{\alpha/2}B^{1-\alpha}S^{\alpha/2}), \text{ for } 1 \leq i \leq n.$$

To complete the proof, it is enough to show

$$\lambda_i(S^{\alpha/2}B^{1-\alpha}S^{\alpha/2}) \leq \lambda_i(A^\alpha B^{1-\alpha}), \text{ for } 1 \leq i \leq n.$$

Indeed,

$$2\lambda_i(S^{\alpha/2}B^{1-\alpha}S^{\alpha/2}) = 2\lambda_i(B^{(1-\alpha)/2}S^{\alpha}B^{(1-\alpha)/2}) \leq 2\lambda_i(B^{(1-\alpha)/2}A^\alpha B^{(1-\alpha)/2}) = 2\lambda_i(A^\alpha B^{1-\alpha}) \text{ for } 1 \leq i \leq n.$$

□

Corollary 2.3. (Cf. [1, 2],Theorem 1,Theorem 2) Let $A, B \in P_n$ then for $0 \leq \alpha \leq 1$

$$0 \leq Tr(A + B - |A - B|) \leq 2Tr(A^\alpha B^{1-\alpha}).$$ \hfill (2.4)
Proof. Let $A - B = (A - B)_+ - (A - B)_-$ be the Jordan decomposition of $A - B$, then for $1 \leq i \leq n$,

$$\lambda_i(A - B)_- \leq \lambda_i(B),$$

(see Lemma IX.4.1 of [3]). The first inequality from the left side in (2.4) follows immediately from (2.2) and (2.5). The last inequality follows from Theorem 2.2. \qed

Corollary 2.4. Let $A, B \in P_n$ then for $0 \leq \alpha \leq 1$

(i) $|||(A + B - |A - B|)_+||| \leq 2|||A^\alpha B^{1-\alpha}|||

(ii) $|||(A + B - |A - B|)_-||| \leq 2|||A^\alpha B^{1-\alpha}|||.$

Proof. (i) As $A, B \in P_n$, hence, without loss of generality we assume

$$\lambda_1(A + B - |A - B|) \geq \lambda_2(A + B - |A - B|) \geq \cdots \geq \lambda_k(A + B - |A - B|) \geq 0$$
$$> \lambda_{k+1}(A + B - |A - B|) \geq \cdots \geq \lambda_n(A + B - |A - B|)$$

and

$$\lambda_1(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}) \geq \lambda_2(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}) \geq \cdots \geq \lambda_n(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}) \geq 0.$$

The matrix $A + B - |A - B|$ is Hermitian, so unitarily diagonalizable, i.e.,

$$A + B - |A - B| = W^*D_2W,$$

for W a unitary matrix and D_2 a diagonal matrix given by

$$D_2 = diag(\lambda_1(A + B - |A - B|), \cdots, \lambda_n(A + B - |A - B|)).$$

Now, using Jordan decomposition of $A + B - |A - B|$, (see [3], page 99) provides that

$$(A + B - |A - B|)_+ = W^*D_{2+}W$$
and
$$(A + B - |A - B|)_- = W^*D_{2-}W,$$

where D_{2+} and D_{2-} are diagonal matrices in P_n, given by

$$D_{2+} = diag(\lambda_1(A + B - |A - B|), \cdots, \lambda_k(A + B - |A - B|), 0, \cdots 0)$$
and

$$D_{2-} = diag(0, \cdots, -\lambda_{k+1}(A + B - |A - B|), \cdots, -\lambda_n(A + B - |A - B|)).$$

By the above discussion, we clearly obtain

$$\lambda_i(A + B - |A - B|)_+ = \begin{cases} \lambda_i(A + B - |A - B|), & \text{for } i = 1, 2, \cdots, k \\ 0, & \text{for } i = k + 1, k + 2, \cdots, n, \end{cases}$$
and
\[
\lambda_i(A + B - |A - B|)_- = \begin{cases}
0, & \text{for } i = 1, 2, \ldots, k \\
-\lambda_i(A + B - |A - B|), & \text{for } i = k + 1, k + 2, \ldots, n.
\end{cases}
\]

Now, using inequality (2.1) along with \(\lambda_i(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}) = \lambda_i(A^{\alpha}B^{1-\alpha})\), we obtain
\[
\lambda_i((A + B - |A - B|)_+) \leq 2\lambda_i(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}), \quad \text{for } i = 1, 2, \ldots, n,
\]
i.e.,
\[
s_i((A + B - |A - B|)_+) \leq 2s_i(A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}), \quad \text{for } i = 1, 2, \ldots, n. \tag{2.6}
\]

On using Theorem IV.2.2 and then Proposition IX.1.1 of [3] in (2.6), we obtain
\[
|||(A + B - |A - B|)_+||| \leq 2|||A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}|||
\leq 2|||A^{\alpha}B^{1-\alpha}|||. \tag{2.7}
\]
This completes the proof of (i).

For a proof of (ii), use (2.2) and (2.5) to obtain,
\[
\lambda_i((A + B - |A - B|)_-) \leq 2\lambda_i(B). \tag{2.8}
\]
Now, replace \(B\) by \(A\) in (2.8), we obtain,
\[
\lambda_i((A + B - |A - B|)_-) \leq 2\lambda_i(A). \tag{2.9}
\]
Again, on using similar technique as in Theorem 2.2, we get the desired result. \(\square\)

The following corollary is an immediate consequence of Corollary 2.4.

Corollary 2.5. Let \(A, B \in P_n\) then for \(0 \leq \alpha \leq 1\)
\[
||A + B - |A - B|||| \leq 2||A^{\alpha}B^{1-\alpha}||. \tag{2.10}
\]

Proof. The operator norm for any Hermitian matrix \(T\) is given by
\[
||T|| = \max\{|T_+||, |T_-||\}.
\]
Using the above fact for the matrix \(A + B - |A - B|\) and Corollary 2.4 to obtain (2.10). \(\square\)

Theorem 2.6. Let \(A, B \in P_n\) then for \(0 \leq \alpha \leq 1\), some projection \(P\) and \(\beta \geq 0\),
\[
|||A + B - |A - B|||| \leq 2|||A^{\alpha}B^{1-\alpha} - \beta A^{\alpha/2}PA^{-\alpha/2}|||.
\]
\[
\tag{2.11}
\]
Proof. Let $X = \text{diag}(x_1, x_2, \ldots, x_n)$ and $T = \text{diag}(t_1, t_2, \ldots, t_n)$ be the matrices comprised of x_i's and t_i's as eigenvalues of $A + B - |A - B|$ and $2A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}$ in decreasing order respectively. Using Theorem (2.2) on X and T, we get

$$x_i \leq t_i \text{ for } i = 1, 2, \ldots, n.$$

If $\beta = Tr(T) - Tr(X)$, then on using Corollary 2.3, we obtain $\beta \geq 0$. Consider

$$T_1 = 2A^{\alpha/2}B^{1-\alpha}A^{\alpha/2} - \beta Q_n,$$

where $\sum_{i=1}^{n} t_i Q_i$ is the spectral decomposition of $2A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}$. It is clear from the construction of T_1 that eigenvalues of T_1 are all same and in the same order as that of $2A^{\alpha/2}B^{1-\alpha}A^{\alpha/2}$ except the last one. So we may assume $(t_1, t_2, \ldots, t_{n-1}, \gamma_n)^t$ as a column vector of eigenvalues of T_1, satisfying

$$\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} t_i \text{ for } k = 1, 2, 3, \ldots, n - 1,$$

and

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n-1} t_i + \gamma_n.$$

Finally, using Example II.3.5 in [3], we get

$$\sum_{i=1}^{k} |x_i| \leq \sum_{i=1}^{k} t_i \text{ for } k = 1, 2, \ldots, n - 1,$$

and

$$\sum_{i=1}^{n} |x_i| \leq \sum_{i=1}^{n-1} t_i + |\gamma_n|.$$

Equivalently,

$$\sum_{i=1}^{k} s_i(A + B - |A - B|) \leq \sum_{i=1}^{k} s_i(T_1) \text{ for } k = 1, 2, \ldots, n.$$

Hence,

$$|||A + B - |A - B||| \leq |||2A^{\alpha/2}B^{1-\alpha}A^{\alpha/2} - \beta Q_n|||$$

$$= |||A^{-\alpha/2}(2A^\alpha B^{1-\alpha}A^{\alpha/2} - \beta A^{\alpha/2}Q_n)|||$$

$$\leq |||2A^\alpha B^{1-\alpha} - \beta A^{\alpha/2}Q_n A^{-\alpha/2}|||,$$

using Theorem IV.2.2 of [3] for the first inequality and Proposition IX.1.1 of [3] for the second inequality. This completes the proof.
Acknowledgements: The authors would like to sincerely thank the referee for several useful comments improving the paper.

References

[1] K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E. Bagan, Ll. Masanes, A. Acin and F. Verstraete, *Discriminating States: The Quantum Chernoff Bound*, Phys. Rev. Lett. 98, 160501 (2007).

[2] K. M. R. Audenaert, M. Nussbaum, A. Szkola and F. Verstraete, *Asymptotic Error Rates in Quantum Hypothesis Testing*, Commun. Math. Phys. 279, 251-283 (2008).

[3] R. Bhatia, *Matrix Analysis*, New York, Springer, 1997.

[4] D. T. Hoa, H. Osaka, H. Minh Toan, *On generalized Powers-Stormer’s inequality*, Linear Algebra Appl. 438, 242-249 (2013).

[5] Y. Ogata, *A generalization of Powers-Størmer’s inequality*, Lett. Math. Phys. 97 (3), 339-346 (2011).

[6] D. Petz, *Quantum Information Theory and Quantum Statistics*, Berlin Heidelberg, Springer, 2008.

[7] R. T. Powers, E. Størmer, *Free states of canonical anticommutation relations*, Commun. Math. Phys. 16, 1-33 (1970).

Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India

E-mail address: anchal8692@gmail.com

E-mail address: msraula@yahoo.com