Stepwise contraction of the nf Rydberg shells in the 3d photoionization of multiply-charged xenon ions

S. Schippers1, A. Borovik Jr.1, T. Buhr2, J. Hellhund1, K. Holste1, A. L. D. Kilcoyne3, S. Klumpp4, M. Martins4, A. Müller1, S. Ricz5, S. Fritzsche6,7

1 Institut für Atom- und Molekülphysik, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
2 Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
3 Advanced Light Source, MS 7-100, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4 Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
5 Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, H-4001, Hungary
6 Helmholtz-Institut Jena, 07743 Jena, Germany
7 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

Synopsis

Photoionization of Xe3+, Xe4+ and Xe5+ ions was measured in the energy range 670–750 eV, including the 3d ionization threshold. The cross sections exhibit a progressively larger number of sharp resonances as the ion charge state is increased. This clearly visualizes the re-ordering of the εf continuum into a regular series of (bound) Rydberg orbitals as the ionic core becomes more attractive.

Recently, first low-resolution results for 3d multiple photoionization of Xeq^+ ($1 \leq q \leq 5$) from the photon-ion spectrometer PIPE at the Hamburg PETRA III synchrotron light source have been reported [1]. Here, new high-resolution measurements with an experimental energy spread of 160 meV are presented for $3 \leq q \leq 5$ [2] (Fig. 1). Pronounced resonance structures are observed for all ions but with an increasing number of resonances as the charge state of the ions is increased. In contrast to the usually rather complex cross sections for outer shell ionization of atoms and ions, the present inner-shell ionization cross sections can be interpreted straight-forwardly. The strongest resonances are associated with the photoexcitation of a 3d electron to an atomic nf subshell ($n = 4, 5, 6, ...$) and the subsequent multiple autoionization of the associated hole states. The $3d_{3/2} - 3d_{5/2}$ fine structure splitting (~ 13 eV) of the 3d hole leads to two distinct Rydberg series of resonances in each spectrum. For Xe3+, for example, resonances with principal quantum numbers n from 4 to 7 can be clearly discerned. For Xe5+ the series of nf resonances could be observed up to $n = 9$. This progression of resonance structure with increasing charge state clearly visualizes the re-ordering of the εf continuum into a regular series of (bound) Rydberg orbitals as the ionic core becomes more attractive. The energies and strengths of the resonances are extracted from the experimental data and are further analyzed by relativistic atomic-structure calculations.

Figure 1. Measured (symbols) and fitted (full lines) absolute cross sections for triple ionization of Xe3+, Xe4+, and Xe5+ ions. Resonances are labelled by the nf subshell to where the 3d electron is excited.

References

[1] S. Schippers et al. 2014 J. Phys. B 47 115602
[2] S. Schippers et al. 2015 J. Phys. B in print; arXiv:1412.3592

*1E-mail: Stefan.Schippers@physik.uni-giessen.de