Identification of plant genetic resources affected by shrimp farming in the southwestern coastal region of Bangladesh

M.B. Ahmed*, M.M. Islam and M.M. Islam

Received 30 June 2021, Revised 21 September 2021, Accepted 20 December 2021, Published online 31 December 2021

ABSTRACT

The main purpose of the study was to identify the plant genetic resources (PGRs) affected by shrimp farming and to determine their magnitude of vulnerability. Data were collected from randomly selected 100 respondents, through personal interview, using an interview schedule, at Dumuria upazila of Khulna district, during 16 November 2009 to 15 February 2010. The fruit PGRs were more affected by shrimp farming than that of timber yielding and other types of PGRs. Among the 18-fruit PGRs available, all were endangered, except indigenous velvet apple, Diospyros peregrine (Gaertn.) Gürke, which was in threatened condition. Among the fruit species, banana, Musa acuminata; guava, Psidium guajava L.; jackfruit, Artocarpus heterophyllus Lam.; sapota, Manilkara zapota L. and betel nut, Areca catechu L. were in highly endangered. Among the 17-timber yielding and other plant species, only 7-PGRs were affected by shrimp farming while majority (10-PGRs) had been available in different extents. Among the vulnerable PGRs, bamboo, Bambusa bambos (L.) Voss; flame of the forest, Delonix regia (Boj. ex Hook.) Raf.; teak, Tectona grandis L.f. and banyan, Ficus benghalensis L. were endangered, while Indian ash tree, Lannea coromandelica (Houtt.) Merr.; ipil-ipil, Leucaena leucocephala (Lam.) de Wit and cool mat, Schumannianthus dichotomus (Roxb.) Gagnep. were in threatened condition. In general, the total fruit trees decreased in numbers (74.17%) after inception of shrimp farming. On the other hand, the total numbers of timber yielding plants increased by 15.45%. From the overall consideration (irrespective of types), the number of plant population decreased (-58.10%) after inception of shrimp farming. It means that the plant species were affected by shrimp farming and became endangered.

Keywords: Plant genetic resources, Identification, Shrimp farming, Vulnerability

Agrotechnology Discipline, Khulna University, Khulna-9208, Bangladesh

*Corresponding author’s email: mbaatku@gmail.com (M.B. Ahmed)

Cite this article as: Ahmed, M.B., Islam, M.M. and Islam, M.M. 2021. Identification of plant genetic resources affected by shrimp farming in the southwestern coastal region of Bangladesh. Int. J. Agril. Res. Innov. Tech.11(2): 18-26. https://doi.org/10.3329/ijarit.v11i2.57251

Introduction

Bangladesh, being an agro-based country and having a vast fertile plain land, has not yet achieved a sustainable self-sufficiency in food production. Like other essential commodities, it is importing a large quantities of food grains every year to meet up its food shortage. However, a few agricultural, industrial and fisheries products are being exported; of which freezing shrimp is one of the major components (Paul, 1996). In Bangladesh, the sectorial contribution by shrimp export to the GDP was 8% in 1996-97 while the same was 6.97% in 1997-98 (Anonymous, 1998). The foreign earnings by crustaceans, which include shrimp, were 12.8% in 2015-16 increased to 13.56% in 2015-16 (Anonymous, 2019). Besides, shrimp farming is one of the fastest growing components of the global aquaculture. In 1988, the world’s shrimp farmers produced 7,37,000 tons of shrimp worth of an estimated USD 6 billion (Rosenberry, 1998). The culture of shrimp has become very much popular at the coastal region of the country, considering it as a unique means of income generation. This popularity has come from its high economic return.

The shrimp culture is locally termed as ‘gher’ [the water-bodies of shrimp/prawn farm are known as “gher” (Akter et al., 2019)] located mostly at the southwestern part of the country (southern part of Satkhira, Khulna and Bagerhat districts). The shrimp culture/gher business has become blessings for a small segment of our population, but a curse for the vast majority. The few
beneficiaries are almost property owners who can afford a lot of money, because it requires high initial investment. This includes taking land lease from the farmers, making embankment around the land, erection of a number of small cottage for night guard, recruitment of support service personnel, purchasing of post larvae (daughter shrimp) and other miscellaneous costs. The cultural procedure at first involves in making embankment around the land and then the whole area of land is filled up by the saline water from the river, which acts as cultural media for growth and development of post larvae (Paul, 1996). This artificial stagnant of saline water in a particular area of land creates enormous problems on normal life of poor village dwellers. Firstly, the land becomes uncultivable for usual crop plants. Secondly, the vast land is occupied by water, so, the cattle’s do not get grassland and ultimately the cattle owners become compelled to sell their cattle, as a result, cow’s milk become unavailable. Thirdly, the village dwellers generally use cow dung and paddy residues as a cheap means of fuel, but at present, due to its unavailability, they become dependent on costly firewood. Fourthly, saline water does not retain within a confined area, percolation and seepage of water takes place which create another major problems to the existence of fruit and valuable trees and also leading to the extinction of fresh-water fish, including aquatic animals and plants in the small ponds of poor village dwellers. Paul and Vogl (2011) addressed that shrimp farming environmental impacts such as mangrove degradation, salt-water intrusion, sedimentation, pollution and disease outbreaks had been found to be obstacles for the sustainable development of farming. In this way, shrimp culture creates a direct threat to the existence of poor families in the area, and makes a natural and/or ecological imbalance (Karim, 2000).

Considering these viewpoints, an attempt was made to conduct a study entitled “Identification of Plant Genetic Resources Affected by Shrimp Farming in the Southwestern Coastal Region of Bangladesh” to i) describe the socioeconomic characteristics of the respondents; ii) identify the PGRs’ availability in the study area; and iii) determine the extent of vulnerability of PGRs caused by shrimp farming.

Methodology

The research was designed to identify the PGRs as affected by shrimp farming and to investigate the extent of vulnerability of the PGRs caused by shrimp farming. The two main centers of shrimp production are located at (a) Khulna, Satkhira, Bagerhat districts in the Southwest; and (b) Chittagong and Cox’s bazaar districts in the Southeast. Rahman et al. (1994) highlighted that about 80% area of Khulna, Bagerhat, and Satkhira are under shrimp culture in Bangladesh, and noticed a threefold increase in the last decade. The area under shrimp culture had increased from 52,000 ha in 1982-83 to 141,000 ha in 1999-00, and about 75% of this land is located in the Khulna, Bagerhat and Satkhira districts in the southeastern region of the country (Mazid, 2002). It now covers about 1,45,000 hectares of land sprawled over 9,000 farms, 18% of total farms. In Bangladesh, shrimp cultivation has been spreading in the coastal regions. Fourteen southern administrative districts are sharing the whole shrimp cultivation coverage. For this study, Dumuria upazila (sub-district) under Khulna district was purposively [as this was an epicenter of shrimp farming] selected as the locale of the study.

The key role-playing members of the farmer’s family were selected for answering. The researchers, when went to collect data, asked the farmers whether there is any PGRs in his homestead or not. If the answer was yes (i.e., they have owned PGRs), the individual was selected as sample of the study. In this way, 100 respondents were selected by simple random sampling method. The distributions of sample farmers in the selected unions (smallest administrative unit) are shown in the Table 1.

Table 1. Sampling of the respondents.

Name of the upazila	Name of the union	Number of the selected farmers
Dumuria	Kharmia	42
	Atlia	37
	Dumuria	21
Total		**100**

Data were collected with the help of pretested interview schedule by the researchers following personal interview method. Data were collected from the respondents during 16 November 2009 to 15 February 2010. Hossain and Hasan (2017) reported that, in parallel with the significant contribution of the shrimp sector to the local and national economy, it has caused some negative impacts on local ecosystems. Ecological impacts include some deterioration of soil and water quality, depletion of mangrove forest, decrease in population of native fish and shellfish species,
intrusion of saline water, water pollution and changes to local hydrology. This proves that the scenario of degradation is still worsening. The collected data were cross checked by focus group discussion (FGD).

Data were collected on some of the selected characteristics of the respondents such as age, education, family size, farm size, annual income, farming experience, agricultural knowledge, organizational participation, cosmopolitanism, training and extension media contact. Data were also collected on PGRs as affected by shrimp farming and their extent of vulnerability. The respondents were asked directly to provide information regarding the PGRs available at their homestead before and after inception of shrimp farming. The extent of vulnerability was determined by three points rating scale developed by Ahmed (2003).

Rating scale based on nature of vulnerability	Percent of vulnerability
Threatened	≤50
Endangered	51-99
Extinct	100

Threatened means species still abundant in its natural range but is declining in number likely to become endangered, where endangered means species having so few in number that the species could soon become extinct overall or most of its natural range while extinct means the loss of an entire species (Ahmed, 2003).

An opposite scale was also followed to observe the availability of PGRs in the study area as developed by Ahmed (2003). The scales are as follows:

Rating scale based on nature of availability	Percent of availability
Fairly available	≤50
Moderately available	51-99
Extremely available	100

After completion of survey, all the interview schedules were compiled for processing of data. At the beginning of the data processing, all the qualitative data were converted into quantitative form by means of suitable code and score whenever necessary. Local units were converted into standard units. In several paradigms, indices and scales were constructed through the simple accumulation of scores allocated to individual or pattern of attributes. Statistical Package for Social Sciences (SPSS) was used to analyze the data. Statistical treatment such as number, percent, range, mean and standard deviation were used to describe and interpret the results.

Results and Discussion

Socioeconomic characteristics of the respondents

Majority (62%) of the respondents belonged to middle aged (36-50 years) group followed by old aged (>50 years) group (24%) and only 14% of the respondents belonged to young aged (<35 years) group. Average age of the respondents was around 45 years (Table 2). The highest numbers of respondents (34%) were in the primary level (1-5 years of schooling) of education followed by secondary level (6-10 years, 31%), illiterate (14.6%), higher secondary (11-12 years, 6%) and graduate (>12 years, 4%) level of education (Table 2). Majority (60%) of the respondents had medium sized family (5-7 members) followed by large sized family (>7 members, 25%) and only 15% respondents had small sized family (≤4 members) (Table 2). The average family size (6.28) of the respondents is higher than that of national average (5.6) (Anonymous, 2018), and the trend of family size is gradually lowering all over the country. It implies that the family planning activities in the study area were not so strong. The concerned department may take immediate step to create awareness among the people of the study area about planned family life. Most (85%) of the respondents were small landholders (0.21 to 1.0 ha). The subsequent respondents encircled medium land holding (1.01 to 3.0 ha, 12%) and only 3% respondents were marginal landholders (0.02 to 0.20 ha). None of them was landless (Table 2). Majority (52%) of the respondents belonged to medium income (50,000 to 1,00,000 BDT year⁻¹) group. More than one-fourth (26%) of them belonged to low income group (<50,000 BDT year⁻¹) and only 22% fall in high income group (>1,00,000 BDT year⁻¹) (Table 2). About half of the respondents (49%) had no organizational participation followed by (42%) low participation while only 9% of them had medium participation. None of the respondents had higher organizational participation (Table 2). Most of the respondents considered to have more relation with NGO leaded Samities (group of people with same interest) than other selected organizations.
Majority (63%) of the respondents were in the category of medium cosmopolitanism while 31% were low cosmopolite and only 6% respondents were high cosmopolite (Table 2). Most (78%) of the respondents had medium scale extension media contact followed by low scale extension media contact (19%) and only 3% respondents maintained high scale extension media contact (Table 2). The respondents were exposed to two types of training either related to crop production and/or fisheries. Highest proportion (16%) of the respondents was exposed to training related to agriculture followed by fisheries (11%)(Table 2). Most of the respondents possessed medium agricultural knowledge followed by low agricultural knowledge (9%). Only a few (4%) of the respondents possessed high agricultural knowledge (Table 2).

Table 2. Distribution of the respondents according to their selected characteristics.

Characteristics (Measuring unit)	Categories	Score	Respondents (N=100)	Range	Mean ± SD
Age (Years)	Young aged	≤35	14	25-66	45.39 ± 9.90
	Middle aged	36-50	62		
	Old aged	>50	24		
Educational qualification (Year of schooling)	Illiterate	0	12	0-14	5.4 ± 4.03
	Can read and write	1/2	13		
	Primary level	1-5	34		
	Secondary level	6-10	31		
	Higher secondary level	11-12	6		
	Graduate level	>12	4		
Family size (Number)	Small sized family	1-4	15	2-11	6.28 ± 1.93
	Medium sized family	5-7	60		
	Large sized family	>7	25		
Farm size (ha)	Landless	<0.02	0	0.14-5.89	0.83 ± 0.83
	Marginal land holder	0.02-0.20	0		
	Small land holder	0.21-1.00	85		
	Medium land holder	1.01-3.00	12		
	Large land holder	>3.00	3	20-430	81.13 ± 64.96
Annual income (‘000’ BDT)	Low income	≤50	26	20-430	81.13 ± 64.96
	Medium income	50-100	52		
	High income	>100	22		
Organizational participation (Score)	No participation	0	49	0-3	0.64 ± 0.74
	Low participation	1	42		
	Medium participation	2-3	9		
	High participation	>3	0		
Cosmopolitanism	Low cosmopolite	≤10	31	6-16	11.36 ± 2.16
	Medium cosmopolite	10-15	63		
	High cosmopolite	>15	6		
Extension media contact (Score)	Low extension contact	0-10	19	4-23	13.19 ± 3.23
	Medium extension contact	11-20	78		
	High extension contact	>20	3		
Training (Score)	Fisheries training	16	11		
	Agricultural training	11	11		
	Others	0			
Agricultural knowledge (Score)	Low knowledge	<15	9	11-33	22.45 ± 4.55
	Medium knowledge	15-30	87		
	High knowledge	>30	4		

Plant genetic resources available at homestead of the study area

For sound living and friendly environment, it is suggested by the ecologist to cover 25% of the total land area by trees and/or other vegetation in a country. The true tree cover in Bangladesh is around 7%; but including homestead and other tree cover, it accounts around 17.4% (Rahman, 2020). Therefore, it is very essential to plant trees to increase tree cover area, which will ultimately help us for a better and healthy living. To have an idea of tree cover in the homestead of the study area the respondents were asked to mention the number of trees available in their homesteads in different years (BISF-1989 and AISF- i.e., 1999 and 2009) [Before and After of Inception of Shrimp Farming]. The average number of trees per homestead in 2009 in the study area was 21.50 while the number before inception of shrimp farming (in 1989) was 51.31, irrespective of species and types of plants (Figure 1 and Supp. Table 1).
A wide range of plant species (33 and 35) were fairly available in the homestead both in pre-project (1989) and post project (1999 and 2009) time respectively (Supp. Table 1). The most dominant plant species in the study area irrespective of time is coconut tree. The trend of number of some major fruit plant species are shown in Figure 2, which are adversely affected by salinity due to shrimp farming.

The coconut, *Cocos nucifera* L. tree ranked first from population point of view both in pre-project and post project time and it was followed by banana, *Musa acuminate* Colla; sapota, *Manilkara zapota* (L.) P. Royen and mango, *Mangifera indica* L. However, a prestigious number of fruit trees are available in the study area, but their production and growth are affected by salinity resulting from shrimp farming. In the study area, the coconut production was 70-80 drupes tree\(^{-1}\) year\(^{-1}\) in before inception of shrimp farming which was much higher than the national average i.e., 20 drupes tree\(^{-1}\) year\(^{-1}\) (Anonymous, 1998). Although the production has already reduced to 20-30 drupes tree\(^{-1}\) year\(^{-1}\) it is still higher than that of national average. Salinity along with water logging severely affected the production of fruits as well as the trees and other vegetation in the study area.

![Figure 1. Average plant population per homestead in the study area.](image1)

![Figure 2. Major fruit plant population in the study area.](image2)
As the fruit plants were more affected by salinity, the people of the area preferred timber-yielding plants for their homestead. Consequently, the numbers of some timber yielding and other plants (viz. mahogany, *Swietenia macrophylla* King; gum arabic tree, *Acacia nilotica* (L.) Willd. ex Delile; neem, *Azadirachta indica* A. Juss.; raintree, *Samanea saman* (Jacq.) Merr.; Indian rosewood, *Dalbergia sissoo* Roxb. have increased over time in the study area (Figure 3 and Figure 4, Supp. Table 1). It was observed that timber and other plants are less affected than fruit plants. For this reason, mahogany especially got a tremendous acceptability in the study. A similar type of result was found by Ahmed (2003).

Plant genetic resources affected by shrimp farming

Results presented in Table 3 indicate that among the 18-fruit plant species available in the study area, all most all except indigenous velvet apple, *Diospyros peregrine* (Gaertn.) Gürke were in vulnerable condition i.e., in endangered condition. Indigenous velvet apple was in threatened condition. Among the fruit species, banana, *Musa acuminate* Colla; guava, *Psidium guajava* L.; jackfruit, *Artocarpus heterophyllus* Lam.; sapota, *Manilkara zapota* (L.) P. Royen and betel nut, *Areca catechu* L. were in highly endangered condition due to continuous intrusion of high saline water in the study area needed for shrimp farming (Table 3).

It is also observed from Table 3 that among the 17-timber yielding and other plant species, only 7-PGRs were affected by shrimp farming while majority (10–PGRs) became fairly available to different extent. Among the vulnerable PGRs, bamboo, *Bambusa bambos* (L.) Voss; flame of...
the forest, *Delonix regia* (Boj. Ex Hook.) Raf.;
teat, *Tectona grandis* L.f. and banyan, *Ficus Bengalensis* L., were in endangered condition
while Indian ash tree, *Lannea coromandelica* (Houtt.) Merr.; ipil-ipil, *Leucaena leucocephala* (Lam.) de Wit and cool mat,
Schumannianthus dichotomus (Roxb.) Gagnep., were in threatened condition.

Results presented in Table 3 indicate that in general the total fruit trees decreased in numbers
(-74.17%) after inception of shrimp farming. It means that it was affected by shrimp farming and
became vulnerable (endangered). On the other hand, the total numbers of timber yielding plants increased by 15.45% after inception of shrimp
farming. It means that, it was not affected except some exception and became fairly available.
From overall consideration (irrespective of types), the number of plant population decreased
(-58.10%) after inception of shrimp farming. It means that the plant species were affected by
shrimp farming and became endangered.

Conclusion and Recommendation

The total number of fruit trees decreased after inception of shrimp farming. That means, it was
affected by shrimp farming and became endangered. However, the total numbers of timber yielding plants increased after inception of shrimp
farming. That means, it was not affected except some exception and became fairly available.
Considering the overall scenario, the average number of plant population decreased (-58.10%), irrespective of types, after inception of shrimp farming. Thus, it might be concluded that
the plant species were affected by shrimp farming and became endangered. Based on the findings, it
is recommended that, indiscriminate saline water intrusion in the ghres for shrimp farming should
be managed in such a way that it would not cause any harm to the existing PGRs.

Acknowledgements

The authors express their heartfelt thankfulness and indebtedness to all the respondents of the
study area who cooperated the authors by providing valuable information during data
Collection.

Conflict of interest

There is none competing for the interests regarding the submitted manuscript, and the
Conducted research, except the authors mentioned in the author list.

Funding source

The conducted research was fully funded by the Khulna University Research Cell.

References

Ahmed, M.B. 2003. Impact of shrimp farming on socioeconomic, agriculture and
environmental conditions in Paikgacha Upazila of Khulna District. PhD Thesis.
Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh
Mujibur Rahman Agricultural University, Gazipur. 184p.

Akter, J., Ahmed, M.B., Mannan, M.A., Islam, M.M. and Mondal, A.B. 2019. Present status
and problem confrontation of Dyke vegetable production at freshwater ghers of
Bagerhat district in Bangladesh. Res. Agric. Live. Fish. 61(1): 69-78.
https://doi.org/10.3329/ralf.v61i.41387

Anonymous. 1998. Yearbook of Statistics. Bangladesh Bureau of Statistics, Ministry of
Planning, Government of the People’s Republic of Bangladesh, Dhaka.

Anonymous. 2018. Yearbook of Agricultural Statistics of Bangladesh. Bangladesh Bureau
of Statistics, Ministry of Planning, Government of the People’s Republic of
Bangladesh, Dhaka. pp. 1-52. https://unstats.un.org/capacity-
development/thematic-conferences/asia-
2020/presentations/Session%203-%20
%20Bangladesh.pdf

Anonymous. 2019. Yearbook of Agricultural Statistics of Bangladesh. Bangladesh Bureau
of Statistics, Ministry of Planning, Government of the People’s Republic of
Bangladesh, Dhaka. 285p.

Hossain, M.A.R. and Hasan, M.R. 2017. An assessment of impacts from shrimp
aquaculture in Bangladesh and prospects for improvement. FAO, Fisheries and
Aquaculture Technical Paper 618, Food and Agriculture Organization of the
United Nations, Rome, Italy. pp. 13-47. https://doi.org/10.13140/RG.2.2.16693.37605

Karim, M.R. 2000. Shrimp culture and changing land use pattern in Rampal Thana, Bagerhat
Zila: A spatial analysis. PhD Thesis. Dept. of Geography and Environment, Rajshahi
University, Rajshahi, Bangladesh. 294p.

Mazid, M.A. 2002. Development of Fisheries in Bangladesh: Plans and Strategies for Income
Generation and Poverty Alleviation. 176p. Available at
http://www.fao.org/fishery/countrysector/n
aso_bangladesh/en

Paul, S.K. 1996. Chingri: Adhunik Chash Projekti
-o- Upokulo Paribesh Babasthapan. M. Paul, Dhaka. pp. 13-21.

Paul, B. and Vogl, C.R. 2011. Impacts of shrimp
farming in Bangladesh: Challenges and
alternatives. Ocean Coastal Manage. 54(3):
201-211. https://doi.org/10.1016/j.ocecoaman.2010.12.001

Rahman, L.M. 2020. Bangladesh National
Conservation Strategy- Forest Resources.
IUCN and Department of Forestry, Ministry of
Environment, Forest and Climate Change,
Government of the People’s Republic of
Bangladesh, Dhaka. Bangladesh. pp. 43-56.

Rahman, A., Islam, M.A., Roy, I., Azad L. and
Islam, K.S. 1994. Shrimp culture and the
environment in the coastal region.
Bangladesh Institute of Development
Studies. E-17, Agargaon, Sher-e-Bangla
Nagar, GPO Box 3854, Dhaka, Bangladesh. 124p.

Rosenberry, R. 1998. World shrimp farming.
1998. Shrimp News International, San Diego,
California, USA. 328p.
Identification of plant genetic resources affected by shrimp farming in coastal region

Table 3. Vulnerability of PGRs in the study area.

Bangla Name / Common Name	Scientific Name	Availability of Plant Population (%)	Percentage of Vulnerability (-)/ Availability (+)	Remarks									
	BISF	AISF	2019	2009	2009	2009-2000	2009	BISF	AISF	2019	2009	2009-2000	2009
1. Aam / Mango	Mangifera indica L.	426 (100)	170 (99.91)	97 (22.77)	-256 (-60.09)	-329 (-72.23)	Endangered						
2. Atafol / Custard apple	Annona reticulata L.	42 (100)	22 (52.38)	10 (23.81)	-20 (-47.62)	-32 (-76.19)	Endangered						
3. Dalim / Pomegranate	Punica granatum L.	32 (100)	17 (53.13)	11 (34.38)	-15 (-46.87)	-21 (-65.62)	Endangered						
4. Deshigaab / Indigenous velvet apple	Diospyros peregrine (Guertn.) Gürke	13 (100)	10 (76.92)	9 (69.23)	-3 (-23.08)	-4 (-30.77)	Threatened						
5. Dumur / Common fig	Ficus carica L.	17 (100)	11 (64.71)	7 (41.18)	-6 (-35.29)	-10 (-58.82)	Endangered						
6. Jaam / Black plum	Syzygium cumini (L) Skeels.	71 (100)	55 (77.46)	23 (32.39)	-16 (-22.54)	-8 (-67.61)	Endangered						
7. Kachhola / Cooking plantain	Musa × paradisiaca L.	159 (100)	123 (77.36)	68 (42.77)	-36 (-22.64)	-91 (-57.23)	Endangered						
8. Kathal / Jackfruit	Artocarpus heterophyllus Lam.	111 (100)	48 (43.54)	19 (17.12)	-63 (-50.76)	-92 (-82.88)	Endangered						
9. Khejur / Date palm	Phoenix dactylifera L.	276 (100)	122 (44.20)	55 (19.93)	-154 (-55.80)	-221 (-80.07)	Endangered						
10. Kola / Banana	Musa acuminata Colla	737 (100)	188 (25.51)	93 (12.62)	-549 (-74.49)	-644 (-87.38)	Endangered						
11. Kul / Jujube	Ziziphus jujube Mill.	168 (100)	71 (42.26)	55 (32.74)	-97 (-57.74)	-113 (-67.26)	Endangered						
12. Narikel / Coconut	Cocos nucifera L.	1012 (100)	778 (76.88)	403 (39.82)	-234 (-23.12)	-609 (-60.18)	Endangered						
13. Pepe / Papaya	Carica papaya L.	113 (100)	53 (46.90)	37 (32.74)	-60 (-53.10)	-76 (-67.26)	Endangered						
14. Feyara / Guava	Psidium guajava L.	214 (100)	68 (31.78)	31 (14.49)	-146 (-68.22)	-183 (-85.51)	Endangered						
15. Sajina / Drumstick tree	Moringa oleifera Lam.	56 (100)	33 (58.93)	16 (28.57)	-23 (-41.07)	-40 (-71.43)	Endangered						
16. Sofofa / Sapota	Manilkara zapota (L) P. Royen	555 (100)	209 (37.66)	98 (17.66)	-346 (-62.34)	-459 (-82.34)	Endangered						
17. Supari / Betel nut or Areca nut	Areca catechu L.	155 (100)	59 (38.06)	28 (18.06)	-96 (-61.94)	-127 (-81.94)	Endangered						
18. Tal / Palmyra palm	Borassus flabellifer L.	82 (100)	51 (62.20)	35 (42.68)	-31 (-37.80)	-47 (-57.32)	Endangered						
Total	4239	2088	1095										

Endangered

Serial 1-18: fruit tree species; 19-35: timber and other tree species
Identification of plant genetic resources affected by shrimp farming in coastal region

Supplementary Table 1. Availability of plant population in the study area.

Bangla Name / Common Name	Scientific Name	Plant Population Before Inception of Shrimp Farming (BISF)	Plant Population After Inception of Shrimp Farming (AISF) 10 Years	20 Years						
		Total	Mean	Range	Total	Mean	Range	Total	Mean	Range
1. Aam / Mango	Mangifera indica L.	426	4.26	0-18	170	1.70	0-7	97	0.97	0-5
2. Ataful / Custard apple	Annona reticulata L.	42	0.42	0-2	22	0.22	0-3	10	0.10	0-2
3. Dalim / Pomegranate	Punica granatum L.	8	0.80	0-2	17	0.17	0-2	11	0.11	0-1
4. Deshigaab / Indigenous velvet apple	Diospyros peregrine (Gaertn.) Górke	13	0.13	0-1	10	0.10	0-1	9	0.90	0-1
5. Dumur / Common fig	Ficus carica L.	17	0.17	0-1	11	0.11	0-1	7	0.07	0-1
6. Jaam / Black plum	Syzygium cumini (L.) Skeels.	71	0.71	0-3	55	0.55	0-2	23	0.23	0-1
7. Kachkola / Cooking plantain	Musa × paradisiaca L.	159	1.59	0-12	123	1.23	0-6	68	0.68	0-4
8. Katal / Jackfruit	Artocarpus heterophyllus Lam.	111	1.11	0-3	48	0.48	0-2	19	0.19	0-2
9. Khejur / Date palm	Phoenix dactylifera L.	276	2.76	0-9	122	1.22	0-5	55	0.55	0-3
10. Kola / Banana	Musa acuminate Colla	737	7.37	0-22	188	1.88	0-8	93	0.93	0-5
11. Kal / Jujube	Ziziphus jujuba Mill.	168	1.68	0-6	71	0.71	0-4	55	0.55	0-3
12. Narikel / Coconut	Cocos nucifera L.	1012	10.12	0-20	778	7.78	0-8	403	2.03	0-5
13. Pepe / Papaya	Carica papaya L.	113	1.13	0-5	53	0.53	0-2	37	0.37	0-2
14. Peyara / Guava	Psidium guajava L.	214	2.14	0-7	68	0.68	0-4	31	0.31	0-3
15. Sajina / Drumstick tree	Moringa oleifera Lam.	56	0.56	0-7	33	0.33	0-2	16	0.16	0-2
16. Sofeda / Sapota	Manilkara zapota (L.) P.Royen	555	5.55	0-16	209	2.09	0-4	98	0.98	0-3
17. Supari / Betel nut or Areca nut	Areca catechu L.	155	1.55	0-8	59	0.59	0-5	28	0.28	0-2
18. Tal / Palmyra palm	Borassus flabellifer L.	82	0.82	0-3	51	0.51	0-1	35	0.35	0-1
Total		4239	2088	1095	173	1.73	0-8	52	0.52	0-5
19. Babba / Gum arabic tree	Acacia nilotica (L.) Willd.	36	0.36	0-2	106	1.06	0-5	173	1.73	0-8
20. Bot / Banyan	Ficus benghalensis L.	14	0.14	0-1	9	0.09	0-1	5	0.05	0-1
21. Bash / Bamboo	Bambusa bambos (L.) Voss	286	2.86	0-18	178	1.78	0-11	72	0.72	0-6
22. Ipil-Ipil	Leucaena leucocephala (Lam.)	15	0.15	0-1	11	0.11	0-1	9	0.09	0-1
23. Jiga / Indian ash tree	Lannea coromandelica (Houtt.)	176	1.76	0-9	145	1.45	0-5	77	0.77	0-5
24. Krishnachura / Flame of the forest	Delonix regia (Boj. ex Hook.) Raf.	36	0.36	0-2	17	0.17	0-1	12	0.12	0-1
25. Mahogany	Swietenia macrophylla King	78	0.78	0-2	154	1.54	0-6	319	3.19	0-15
26. Neem	Azadirachta indica A.Juss.	72	0.72	0-3	79	0.79	0-5	84	0.84	0-6
27. Rain tree	Samanea saman (Jacq.) Merr.	65	0.65	0-2	73	0.73	0-3	96	0.96	0-3
28. Segun / Teak	Tectona grandis L.	9	0.09	0-1	4	0.09	0-1	3	0.03	0-1
29. Geva / Milky mangoove	Eucocycaria galagoeca L.	0	0	0-0	7	0.07	0-1	13	0.13	0-1
30. Golpata / Mangrove palm	Nypa fruticans Wurmb	0	0	0-0	7	0.07	0-1	15	0.15	0-3
31. Bet / Cool mat	Schumannianthus dichotomus (Roxb.) Gagnep.	26	0.26	0-2	21	0.21	0-1	16	0.16	0-1
32. Sissoo / Indian rosewood	Dalbergia sissoo Roxb.	31	0.31	0-1	36	0.36	0-1	39	0.39	0-2
33. Bayin / Indian mangrove	Avicennia officinalis L.	9	0.09	0-1	23	0.23	0-1	37	0.37	0-2
34. Kewra / Screw pine	Sonneratia apetala Buch. Ham.	28	0.28	0-1	36	0.36	0-1	52	0.52	0-2
35. Sirish / Woman's tongue tree	Albizia lebeck (L.) Benth.	11	0.11	0-1	26	0.26	0-1	33	0.33	0-1
Total		892	932	1055	892	9.32	0-20	250	2.50	0-2

Serial 1-18: fruit trees; 19-35: timber tree

Int. J. Agric. Res. Innov. Tech. 11(2): 18–26, December 2021