Monotone Riemannian Metrics and Relative Entropy on Non-Commutative Probability Spaces

Andrew Lesniewski*
Paribas Capital Markets
The Equitable Tower
787 Seventh Avenue
New York, NY 10019 USA
and
Mary Beth Ruskai†
Department of Mathematics
University of Massachusetts Lowell
Lowell, MA 01854 USA
bruskai@cs.uml.edu

December 7, 2021

Abstract

We use the relative modular operator to define a generalized relative entropy for any convex operator function g on $(0, \infty)$ satisfying $g(1) = 0$. We show that these convex operator functions can be partitioned into convex subsets each of which defines a unique symmetrized relative entropy, a unique family (parameterized by density matrices) of continuous monotone Riemannian metrics, a unique geodesic distance on the space of density matrices, and a unique monotone operator function satisfying certain symmetry and normalization conditions. We describe these objects explicitly in several important special cases, including $g(w) = - \log w$ which yields the familiar logarithmic relative entropy. The relative entropies, Riemannian

*partially supported by National Science Foundation Grant DMS-94-24344 while at the Department of Physics, Harvard University, Cambridge, Massachusetts.
†supported by National Science Foundation Grants DMS-94-08903 and DMS-97-06981.
metrics, and geodesic distances obtained by our procedure all contract under completely positive, trace-preserving maps. We then define and study the maximal contraction associated with these quantities.

Contents

1. **Introduction** 3

2. **Relative Entropy and Riemannian Metrics** 5
 - 2.1 Definitions 5
 - 2.2 Relative Entropy 7
 - 2.3 Monotone Riemannian metrics 10
 - 2.4 Correspondence between defining functions 14
 - 2.5 Examples 15
 - 2.6 Monotonicity proof 17

3. **Geodesic distance** 19

4. **Contraction Under Stochastic Maps** 20
 - 4.1 Contraction coefficients 20
 - 4.2 Eigenvalue formulation of $\eta_R(\phi)$ 24
 - 4.3 Bounds on contraction coefficients 26
 - 4.4 Examples 29
1 Introduction

For quantum systems, a state is described by a density matrix \(\rho \), i.e., a positive semi-definite operator with trace one. We will let \(\mathcal{D} \) denote the set of density matrices. For classical discrete or commutative systems we can identify the states with the subset of diagonal density matrices, each of which defines a probability vector \(p \in \mathbb{R}^n \). For commutative systems the usual logarithmic relative entropy

\[
H_{\log}(p, q) = \sum_k p_k \log(p_k/q_k)
\]

can be generalized to

\[
H_g(p, q) = \sum_k p_k g(q_k/p_k)
\]

where \(g \) is a convex function on \((0, \infty)\) with \(g(1) = 0 \). It is well-known that any such \(H_g \) contracts under stochastic mappings, i.e., \(H_g(Ap, Aq) \leq H_g(p, q) \) when \(A \) is a column stochastic matrix. Cohen, et al, \cite{7} defined the entropy contraction coefficient as

\[
\eta_g(A) = \sup_{p \neq q} \frac{H_g(Ap, Aq)}{H_g(p, q)}
\]

(3)

In the pair of papers \cite{7, 9}, it was shown that for each fixed \(A \) all the contraction coefficients associated with those \(g \) which are also operator convex are equivalent, more precisely

Theorem 1.1 If \(g \) is operator convex, then

\[
\eta_g(A) = \eta_{\log}(A) = \eta_{(w-1)^2}(A) \leq \eta_{|w-1|}(A).
\]

(4)

A summary of these results is given in \cite{29}. It suffices to mention here that the observation

\[
\left. \frac{d^2}{dt^2} H_g(p, p + tv) \right|_{t=0} = g''(0) \sum_k (v_k)^2 / p_k = H_{(w-1)^2}(p, p + v)
\]

(5)

plays a critical role. The quantity \(\sum_k (v_k)^2 / p_k \) can also be written as \(M_p(v, v) \) where

\[
M_p(u, v) = -\left. \frac{\partial^2}{\partial \alpha \partial \beta} H_g(p + \alpha u, p + \beta v) \right|_{\alpha=\beta=0}
\]

(6)

is the Riemannian metric corresponding to the Fisher information. Čencov \cite{5, 6} showed that, for commutative systems, this is the only Riemannian metric which
satisfies the monotonicity condition $M_P(Av, Av) \leq M_P(v, v)$. Thus, we can regard Theorem 1.1 as stating that for operator convex g the maximal contraction of the relative entropy and its associated Riemannian metric are the same. Since there is only one Riemannian metric, all the contraction coefficients must be equal.

For quantum systems, the usual logarithmic relative entropy is given by

$$H_{\log}(P, Q) = \text{Tr} P (\log P - \log Q) = \int_0^\infty \text{Tr} P \left[\frac{1}{Q + tI} (P - Q) \frac{1}{P + tI} \right] dt$$

with P, Q in \mathcal{D}, the set of invertible density matrices. The integral representation (8) can be used to show that

$$M_{p_{\log}}(A, B) \equiv -\left. \frac{\partial^2}{\partial \alpha \partial \beta} H_{\log}(P + \alpha A, Q + \beta B) \right|_{\alpha = \beta = 0} = \int_0^\infty \text{Tr} A \left[\frac{1}{P + tI} B \frac{1}{P + tI} \right] dt.$$

Although $M_{p_{\log}}(A, B)$ is a monotone Riemannian metric, it is not the only possibility; $M_P(A, B) = \text{Tr} A^* P^{-1} B$ is also monotone under completely positive, trace-preserving maps. The study of monotone Riemannian metrics on non-commutative probability spaces was initiated by Morozova and Čencov [20] who did not, however, provide any explicit examples. A complete characterization of monotone Riemannian metrics (which includes the examples above) was given recently by Petz [24, 25, 27]. The quantum structure is much richer because left and right multiplications by P^{-1} are not equivalent. We will see that $M_P(A, B)$ can always be written in the form $\text{Tr} A^* \Omega_P(B)$ where Ω_P reduces to multiplication by P^{-1} when P and B commute. Thus, for example, (8) above gives

$$\Omega_P(B) = \int_0^\infty \frac{1}{P + tI} B \frac{1}{P + tI} dt$$

which becomes $P^{-1} B$ when P and B commute.

Earlier, Ruskai [29] tried to extend the entropy contraction coefficient results of Cohen, et al to non-commutative situations but obtained only a few preliminary results. Although one can formally define $H_g(P, Q) = \text{Tr} P g(Q/P)$ the expression Q/P is ambiguous in the quantum case. Using the non-standard definition $Q/P = P^{-1/2} Q P^{-1/2}$, [which yields $H_g(P, Q) = \text{Tr} P \log P^{-1/2} Q P^{-1/2}$ rather than (7) when $g(w) = -\log w$.] Ruskai and Petz [20] were able to prove an analogue of Theorem 1.1 using the fact that

$$\frac{d^2}{dt^2} H_g(P, P + tA) \bigg|_{t=0} = g''(0) \text{Tr} A P A P^{-1}$$

for all g. In essence, their convention for Q/P always yields the Riemannian metric $M_P(A, B) = \text{Tr} A^* P^{-1} B$.

4
A better alternative is to use the relative modular operator introduced by Araki \[2, 3, 4, 21, 23, 24\] to define \(Q/P\). This yields the usual logarithmic entropy \(\log\) and a rich family of generalized relative entropies. Moreover, differentiation then yields the entire family of monotone Riemannian metrics found by Petz \[24, 25, 27\].

In this paper we use the relative modular operator to study both the relative entropies and Riemannian metrics associated with convex operator functions. For simplicity, we restrict ourselves to the matrix algebras associated with finite dimension systems. Although we do not believe this restriction is essential, it avoids many technical complications. [The most serious arises when the condition \(\text{Tr}P = 1\) is not compatible with the requirement that \(P\) be invertible (in the sense of having a bounded inverse in relevant operator algebra). In that case, one must restrict the domain of \(H_g(P, Q)\) to those pairs \(P, Q\) which have comparable approximate null spaces in some suitable sense.] We show that each convex operator function defines a convex family of relative entropies, a unique symmetrized relative entropy, a unique family (parameterized by density matrices) of continuous monotone Riemannian metrics, a unique geodesic distance on the space of density matrices, and a unique monotone operator function. We describe these objects explicitly in several important special cases, including \(g(w) = -\log w\). We then define and study the contraction coefficient associated with the relative entropy, Riemannian metrics, and metrics. Finally, we examples showing that these contraction coefficients can have any value in \([0, 1]\) for a suitable stochastic map.

The paper is organized as follows. In section 2, we give some basic definitions and results for relative entropy and Riemannian metrics. In section 3, we define the corresponding the geodesic distance, including the Bures metric as a special case. Finally, in section 4 we study the contraction of all the quantities under stochastic maps and give bounds on the maximal contraction.

2 Relative Entropy and Riemannian Metrics

2.1 Definitions

We begin by describing the relative modular operator which was originally introduced by Araki to generalize the logarithmic relative entropy to type III von Neumann algebras \[2, 3, 4, 21, 23, 24\]. Later, Petz \[24\] used it to generalize relative entropy itself. Let \(\mathcal{D}\) denote the subset of invertible operators in \(\mathcal{D}^\circ\). Let \(P, Q \in \mathcal{D}\) i.e., \(P\) and \(Q\) are positive definite matrices with \(\text{Tr}(P) = \text{Tr}(Q) = 1\). For matrix algebras, the relative modular operator associated with the pair of
states $\rho_P(A) = \text{Tr}(AP)$ and $\rho_Q(A) = \text{Tr}(AQ)$ reduces to
\[
\Delta_{Q,P} = L_Q R_P^{-1},
\] (11)
where L_Q and R_P are the left and right multiplication operators, respectively. Thus $\Delta_{Q,P}(A) = QAP^{-1}$. It is easy to verify directly that $\Delta_{Q,P}$ is a positive Hermitian operator with respect to the Hilbert-Schmidt inner product.

Definition 2.1 Let g be an operator convex function defined on $(0, \infty)$ such that $g(1) = 0$. The relative g-entropy of P and Q is
\[
H_g(P, Q) = \text{Tr}(P^{1/2} g(\Delta_{Q,P}) P^{1/2}).
\] (12)
We will let \mathcal{G} denote the set of functions satisfying these conditions. Note, however, that the argument of g, as defined here, is shifted from that (which we here denote g_C) in [7] and [9] so that $g_C(w) = g(w + 1)$. Using standard results from the theory of monotone and convex operator functions, one can show that \mathcal{G} is the class of functions which can be written in the form
\[
g(w) = a(w - 1) + b(w - 1)^2 + c \frac{(w - 1)^2}{w} + \int_0^\infty \frac{(w - 1)^2}{w + s} d\nu(s),
\] (13)
where $b, c > 0$ and ν is a positive measure on $(0, \infty)$ with finite mass $\int_0^\infty d\nu(s)$. The term $\frac{(w-1)^2}{w}$ may seem unfamiliar, as it is usually included implicitly in the integral. However, writing it separately will be convenient later and is necessary to ensure that the measure has finite mass. The function $g(w) = -\log w$ yields the usual logarithmic relative entropy (7) which we continue to denote $H_{\log}(P, Q)$.
The function $g(w) = (w - 1)^2$ yields
\[
H_{(w-1)^2} = \text{Tr}(P - Q) P^{-1}(P - Q)
\] (14)
which we call the “quadratic relative entropy”; it plays an extremely important role in our development. The function $g(w) = (w - 1)^2/(w + 1)$ yields the equally important, but less familiar $H_{\text{Bures}}(P, Q) = \text{Tr}(P - Q)[L_Q + R_P]^{-1}(P - Q)$, where we use the subscript Bures because (as will be explained in section 3) it eventually leads to a geodesic on \mathcal{D} referred to as the “metric of Bures”.

We will study the properties of relative entropy and related quantities under a class of maps referred to as “stochastic”.

Definition 2.2 A stochastic map $\phi : \mathcal{A}_1 \to \mathcal{A}_2$ is a completely positive, trace-preserving map from one von Neumann algebra to another.
For commutative systems, a stochastic map always corresponds to a column stochastic matrix, as discussed in the Introduction and in \[7, 8, 29\]. For non-commutative systems, a partial trace (see section 4.4 or, e.g., \[18, 19\]) is an example of a stochastic map. General conditions can be obtained from the Stinespring representation \[31\] for completely positive maps or the subsequent work of Choi \[8\] and Kraus \[14\] who showed that \(\phi\) is a completely positive if and only if there exist operators \(\{V_k\}\) with \(V_k : A_1 \rightarrow A_2\) such that
\[
\phi(A) = \sum_{k=1}^{N} V_k A V_k^*.
\]
(15)
The condition that \(\phi\) is trace preserving is then \(\sum_k V_k^* V_k = I\) [and not \(\sum_k V_k V_k^* = I\), which is the condition that \(\phi\) is unital, i.e., \(\phi(I_1) = I_2\).] For algebras with trace (as is the case here) one can use the Hilbert-Schmidt inner product \(\langle A, B \rangle = \text{Tr} A^* B\) to define the adjoint \(\hat{\phi}\) of any completely positive map so that \(\text{Tr} A^* \phi(B) = \text{Tr} \hat{\phi}(A)^* B\). It is then easy to see that \(\hat{\phi}(A) = \sum_k V_k^* A V_k\) and that \(\phi\) is trace-preserving if and only if \(\hat{\phi}\) is unital.

2.2 Relative Entropy

We begin by defining a relative entropy distance as a bilinear function on \(D\) with the properties we expect of the relative g-entropy \(H_g(P, Q)\). It is sometimes convenient to extend our definition from \(D \times D\) to the somewhat larger set of pairs \(P, Q\) of positive definite matrices with \(\text{Tr} P = \text{Tr} Q\).

Definition 2.3 By a relative entropy distance we mean a function \(H(P, Q)\) satisfying:

a) \(H(P, Q) \geq 0\) with \(H(P, Q) = 0 \iff P = Q\).

b) \(H(\lambda P, \lambda Q) = \lambda H(P, Q)\) for \(\lambda > 0\).

c) \(H(P, Q)\) is jointly convex in \(P\) and \(Q\).

In addition, we say that the relative entropy is monotone if

d) \(H(P, Q)\) decreases under stochastic maps \(\phi\),

that it is symmetric if

e) \(H(P, Q) = H(Q, P)\)

and that it is differentiable if
f) the function \(g(x, y) = H(P + xA, Q + yB) \) is differentiable.

Conditions (b), (c), and (d) are not independent. It is well-known that by embedding \(\mathbb{C}^{n \times n} \) in \(\mathbb{C}^{n \times n} \otimes \mathbb{C}^{2 \times 2} \) and choosing \(\phi \) to correspond to the partial trace over \(\mathbb{C}^2 \), one can show that (d) implies the subadditivity relation

\[
H(P_1 + P_2, Q_1 + Q_2) \leq H(P_1, Q_1) + H(P_2, Q_2).
\]

But for functions satisfying the homogeneity condition (b) this is equivalent to joint convexity. Because any stochastic map can be represented as a partial trace \([19]\), it follows that when (a) and (b) hold, then (c) \(\iff \) (d). Nevertheless, the properties of convexity and monotonicity are each of sufficient importance to justify explicitly stating them separately.

A relative entropy distance (even if symmetric) is not a metric in the usual sense, because it need not satisfy the triangle inequality. Nevertheless, such quantities have been widely used \([10, 12, 37]\) to measure the difference between \(P \) and \(Q \). Later, we shall show that every relative g-entropy defines a relative entropy distance which then defines a Riemannian metric and an associated geodesic distance.

Theorem 2.4 Every relative g-entropy of the form given in Definition 2.1 is a differentiable monotone relative entropy distance in the sense of Definition 2.3.

Proof: Properties (a), (b) and (f) are straightforward; (d) is due to \([23]\) and implies (c) by the above remarks. A simple new proof of (d) is given in Section 2.6.

Theorem 2.5 For each operator convex function \(g \in \mathcal{G} \),

\[
H_g(P, Q) = \text{Tr}(Q - P) \left[b_g P^{-1} + c_g Q^{-1}\right] (Q - P) \]

\[
= \int_{0}^{\infty} \text{Tr} \left((Q - P) \frac{1}{L_Q + sR_P} (Q - P) \right) dv_g(s) \]

\[
= \text{Tr} \left[(Q - P) R_P^{-1} g(\Delta_Q P)(Q - P) \right]
\]

where \(b_g, c_g \) and \(v_g \) are as in \([13]\).

Proof: We first observe that

\[
(\Delta_Q P - I)(P^{1/2}) = (Q - P) P^{-1/2} = R_{P^{-1/2}} (Q - P),
\]

so that

\[
H_{w^{-1}}(P, Q) = \text{Tr} \left[P^{1/2} (Q - P) P^{-1/2} \right] = 0,
\]

8
and the linear term in (13) does not contribute. We also find using (19) again

\[H_g(P, Q) = \langle (\Delta_{Q, P} - I)(P^{1/2}), (\Delta_{Q, P} + sI)^{-1}(\Delta_{Q, P} - I)(P^{1/2}) \rangle
= \text{Tr} \left[(Q - P)(\Delta_{Q, P} + sI)^{-1}R_{P^{-1}}(Q - P) \right]
= \text{Tr}(Q - P) \frac{1}{L_Q + sR_P}(Q - P). \]

(21)

Letting \(s = 0 \) yields

\[H_{(w-1)^2/w}(P, Q) = \text{Tr} \left[(Q - P)Q^{-1}(Q - P) \right] = H_{(w-1)^2}(Q, P) \]
and one easily verifies that

\[H_{(w-1)^2}(P, Q) = \text{Tr}((Q - P)P^{-1}(Q - P)). \]

(23)

Using these results in (13) gives the desired result (17).

It is worth pointing out that the cyclicity of the trace implies that

\[\text{Tr}(Q - P) \frac{1}{R_P + sL_Q}(Q - P) = \text{Tr}(Q - P) \frac{1}{L_P + sR_Q}(Q - P), \]

(24)

although

\[\text{Tr}(Q - P) \frac{1}{R_P + sL_Q}(Q - P) \neq \text{Tr}(Q - P) \frac{1}{R_Q + sL_P}(Q - P), \]

in general.

One can also use the heat kernel representation

\[(\Delta_{Q, P} + sI)^{-1} = \int_0^\infty e^{-u(\Delta_{Q, P} + sI)}du, \]

(25)

to obtain another integral representation of \(H_g(P, Q) \).

Theorem 2.6 Let \(m_g(u) = \int_0^\infty e^{-us}d\nu(s) \) denote the Laplace transform of the measure \(\nu_g \). Then

\[H_g(P, Q) = b_gH_{(w-1)^2}(P, Q) + c_gH_{(w-1)^2}(Q, P) + \int_0^\infty H_{(w-1)^2e^{-uw}}(P, Q)m_g(u)du, \]

where we formally extend our definition of \(H_g(P, Q) \) to the non-convex function \(g(w) = (w - 1)^2e^{-uw} \).
Proof: We use (25) in (13).

\[
\int_0^\infty \langle (\Delta_{Q,P} - I)(P^{1/2}), (\Delta_{Q,P} + sI)\rangle (\Delta_{Q,P} - I)(P^{1/2}) \rangle d\nu_g(s) \\
= \int_0^\infty \langle (\Delta_{Q,P} - I)(P^{1/2}), e^{-u\Delta_{Q,P}I}(\Delta_{Q,P} - I)(P^{1/2}) \rangle m_g(u) du \\
= \int_0^\infty \text{Tr}((Q - P)(R_{P-1}e^{-u\Delta_{Q,P}})(Q - P)) m_g(u) du \\
= \int_0^\infty H_{(w-1)^2e^{-uw}}(P, Q) m_g(u) du
\]

where we have interchanged the order of integration and then used (19) again.

2.3 Monotone Riemannian metrics

We now consider the relation between relative g-entropy and Riemannian metrics. Note that the set of density matrices \(D\) has a natural structure as a smooth manifold, so that we can define a Riemannian metric on its tangent bundle \(T_\star D\), whose fibers consist of traceless, self-adjoint matrices or

\[T_P D = \{A = A^* : \text{Tr} A = 0\}.\] (26)

Definition 2.7 By a Riemannian metric on \(D\), we mean a positive definite bilinear form \(M_P(A,B)\) on \(T_P D\) such that the map \(P \rightarrow M_P(A,A)\) is smooth for each fixed \(A \in T_\star D\). The metric is monotone if it contracts under stochastic maps in the sense

\[M_{\phi(P)}[\phi(A), \phi(B)] \leq M_P(A, B)\] (27)

when \(\phi\) is a stochastic map.

Note that this definition of monotone requires that the stochastic map \(\phi\) act on the base point (i.e., the indexing density matrix \(P\)) as well as the arguments of the bilinear form.

Theorem 2.8 For each \(g \in G\) and density matrix \(P \in D\),

\[M^g_P(A, B) = -\frac{\partial^2}{\partial \alpha \partial \beta} H_g(P + \alpha A + \beta B) \bigg|_{\alpha = \beta = 0}\] (28)

\[= \langle A, \Omega^g_P(B) \rangle = \text{Tr}A^g_P(B)\] (29)

defines a Riemannian metric on \(T_P D\), and a positive linear operator \(\Omega^g_P\) on \(T_P D\).
The theorem follows easily from the fact that R_P, L_P and their inverses are positive semi-definite operators with respect to the Hilbert-Schmidt inner product, e.g., $\text{Tr} A^* R_P A > 0$, and the integral representation in Theorem 2.5. We find

$$\langle A, \Omega^g P(B) \rangle = (b_g + c_g) \text{Tr} [AL_P^{-1}(B) + BL_P^{-1}(A)] + \int_0^\infty \text{Tr} \left[A(L_P + sR_P)^{-1}(B) + B(L_P + sR_P)^{-1}(A) \right] d\nu_g(s)$$

$$= (b_g + c_g) \text{Tr} A[L_P^{-1} + R_P^{-1}](B) + \int_0^\infty \text{Tr} A \left[(L_P + sR_P)^{-1} + (R_P + sL_P)^{-1} \right] (B) d\nu_g(s)$$

$$= \int_0^\infty \text{Tr} A \left[(L_P + sR_P)^{-1} + (R_P + sL_P)^{-1} \right] (B) N_g(s) ds$$

$$= \left\langle A, \int_0^\infty \left[(L_P + sR_P)^{-1} + (R_P + sL_P)^{-1} \right] (B) N_g(s) ds \right\rangle \quad (30)$$

where, for simplicity, we temporarily subsume the quadratic terms in the integral by defining N_g so that $N_g(s) ds = (b_g + c_g) \delta(s) ds + d\nu_g(s)$. It is critical that A and B are self-adjoint so that we can interchange A and B by replacing L_P by R_P as in

$$\text{Tr} BL_P^{-1}(A) = \text{Tr} BP^{-1}A = \text{Tr} ABP^{-1} = \text{Tr} AR_P^{-1}(B). \quad (31)$$

This result would not hold if we did not require the perturbations of P and Q to be self-adjoint. Given that requirement, the result is necessarily symmetric in the sense that we get the same result from both $H_g(P, Q)$ and $H_g(Q, P)$. This is already evident in the quadratic term, whose coefficient depends only on the sum $b + c$, and will be discussed further below.

We can now use (30) to obtain several explicit formulas for Ω^g_P.

$$\Omega^g_P = \int_0^\infty \left(\frac{1}{sR_P + L_P} + \frac{1}{sL_P + R_P} \right) N_g(s) ds \quad (32)$$

$$= \int_0^\infty \frac{1}{sR_P + L_P} \left(N_g(s) + s^{-1} N_g(s^{-1}) \right) ds \quad (33)$$

$$= R_P^{-1} \int_0^\infty \frac{1}{s + \Delta_{P,P}} \sigma_g(s) ds \quad (34)$$

$$= \int_0^1 \left(\frac{1}{sR_P + L_P} + \frac{1}{sL_P + R_P} \right) \sigma_g(s) ds, \quad (35)$$

where we have used the change of variable $s \to s^{-1}$ and

$$\sigma_g(s) = N_g(s) + s^{-1} N_g(s^{-1}).$$
Note that $\sigma_g(s^{-1}) = s\sigma_g(s)$. Then, if we define
\[
 k(\lambda) = \int_0^\infty \frac{1}{s + \lambda} \sigma_g(s) ds
 \]
we find that $k(\lambda^{-1}) = \lambda k(\lambda)$, $\Omega^g_P = R_P^{-1} k(\Delta_P)$, and that k can be expressed in terms of g as
\[
 k(w) = \frac{g(w) + wg(w^{-1})}{(w - 1)^2}.
\]
We will let \mathcal{K} denote this set of functions, i.e.,
\[
 \mathcal{K} = \{ k : -k \text{ is operator monotone, } k(w^{-1}) = wk(w), \text{ and } k(1) = 1 \}. \quad (38)
\]
We have recovered half of Petz’s result [24, 25, 27] that there is a one-to-one correspondence between symmetric Riemannian metrics and functions of the form (38) which satisfy the normalization condition $k(1) = 1$. (But note that our k corresponds to $1/f$ in Petz’s notation.) Our approach also easily yields an explicit expression for both Ω^g_P and its inverse.

Theorem 2.9 For each $g \in \mathcal{G}$ and $P \in \mathcal{D}$, the operator Ω^g_P as defined in Theorem 2.8 satisfies $\Omega^g_P = R_P^{-1} k(L_P R_P^{-1})$ and $[\Omega^g_P]^{-1} = R_P f(L_P R_P^{-1})$ where $k(w)$ is given by (37) and $f(w) = 1/k(w)$.

Although Ω^g_P is initially defined only on $T_\ast \mathcal{D}$, it can easily be extended to all traceless matrices using the natural complexification $\text{Tr}A = 0 \implies A = A_1 + i A_2$ with $A_1, A_2 \in T_P \mathcal{D}$ and then to all of $\mathcal{C}^{n \times n}$ using linearity and $\Omega^g_P(I) = P^{-1}I$. The result is equivalent to using any of the formulas for Ω^g_P above together with the obvious extension of L_P and R_P to all of $\mathcal{C}^{n \times n}$. We can summarize this discussion as follows.

Theorem 2.10 For each $g \in \mathcal{G}$ and $P \in \mathcal{D}$, the operator Ω^g_P as defined in Theorem 2.8 can be extended to a positive linear operator on $\mathcal{C}^{n \times n}$ so that $M^g_P(A, B) = \text{Tr}A^\dagger \Omega^g_P(B)$ defines an inner product on $\mathcal{C}^{n \times n}$. On the other hand, for each $g \in \mathcal{G}$ and $P \in \mathcal{D}$ equation (34) defines a positive linear operator Ω^g_P on all of $\mathcal{C}^{n \times n}$, and the bilinear form $M^g_P(A, B) = \text{Tr}A^\dagger \Omega^g_P(B)$ extends to a monotone Riemannian metric satisfying the symmetry condition $M^g_P(A, B) = M^g_P(B^*, A^*)$.

This result is essentially due to Petz [24, 25, 27], who also showed the converse result that every symmetric monotone Riemannian metric is of this form. We
give an independent proof of monotonicity at the end of this section. That the metric is symmetric is a consequence of the cyclicity of the trace.

The following result is essentially due to Kubo and Ando [13] who developed a theory of operator means.

Theorem 2.11 If \(k \) given by (36) satisfies \(k(1) = 1 \), then for all \(P, Q \in \mathcal{D} \)

\[
R_P^{-1} + L_Q^{-1} \geq R_P^{-1}k(\Delta_{Q,P}) \geq (R_P + L_Q)^{-1}.
\] (39)

Proof: This follows easily from (36), the elementary inequality

\[
\frac{w + 1}{2w} \geq \frac{1 + t}{2} \left[\frac{1}{t + w} + \frac{1}{tw + 1} \right] \geq 2 \frac{w + 1}{w + 1},
\] (40)

and the fact that the normalization \(k(1) = 1 \) implies that \(2\sigma_g(t)/(t + 1) \) is a probability measure on \([0, 1]\).

As immediate corollaries, we find

\[
\Omega_{P}^{(w-1)^2} = L_P^{-1} + R_P^{-1} \geq \Omega_{P}^2 \geq (R_P + L_P)^{-1} = \Omega_{P}^{Bures}
\] (41)

\[
M_{P}^{(w-1)^2}(A, A) \geq M_{P}^2(A, A) \geq M_{P}^{Bures}(A, A)
\] (42)

\[
H_{\text{sym}}^{(w-1)^2}(P, Q) \geq H_{\text{sym}}^{g}(P, Q) \geq H_{\text{Bures}}(P, Q)
\] (43)

where the superscript indicates the symmetric relative entropy associated with \(g \). Thus \(k(w) = 2/(w + 1) \) corresponds to the minimum symmetric relative entropy and minimum Riemannian metric among the class studied here. By contrast, we will see that \(g(w) = (w - 1)^2 \) corresponds to \(k(w) = (w + 1)/(2w) \) so that the quadratic relative entropy is maximal.

The operators \(\Omega_{P}^2 \) and \([\Omega_{P}^2]^{-1} \) are non-commutative versions of multiplication by \(P^{-1} \) and \(P \) respectively. Hence, in view of the cyclicity of the trace, the following result is not surprising.

Theorem 2.12 The operator \(\Omega_{P}^2 \) given by (34) satisfies

\[
\text{Tr} \Omega_{P}^2(A) = \text{Tr}AP^{-1}
\] and

\[
\text{Tr}[\Omega_{P}^2]^{-1}(A) = \text{Tr}AP
\]

Proof: We first observe that in a basis in which \(P \) is diagonal with eigenvalues \(p_k \)

\[
[R_P^{-1} \frac{1}{s + \Delta_{P,P}}(A)]_{jk} = \left[\frac{1}{sR_P + L_P}(A) \right]_{jk} = \frac{1}{sp_k + p_j}a_{jk}
\] (44)

so that

\[
[\Omega_{P}^2(A)]_{jk} = \int_0^\infty \frac{a_{jk}}{sp_k + p_j}\sigma_g(s)ds.
\] (45)
Then for every $g \in G$, $P \in D$, and $A \in T_P D$

$$\text{Tr } \Omega^g_P(A) = \sum_j \int_0^\infty \frac{a_{jj}}{sp_j + p_j} \sigma_g(s)ds$$

$$= \sum_j p_j^{-1}a_{jj} \int_0^\infty \frac{1}{s+1} \sigma_g(s)ds$$

$$= k(1) \text{Tr} P^{-1} A = \text{Tr} P^{-1} A.$$

The proof for the inverse is similar. Since $1/k$ is also operator monotone, we can use Theorem to conclude that $[\Omega^g_P]^{-1}$ can be written in the form

$$[\Omega^g_P]^{-1} = aR_P + bL_P - \int_0^\infty \frac{R_P^2}{sR_P + L_P} d\mu(s).$$

for some positive measure μ.

2.4 Correspondence between defining functions

We now make some remarks on the relation between $g(w), wg(w^{-1})$, and $k(w)$. It should be clear from the development above that every function $g \in G$ defines a Riemannian metric and a function k as in (36) or (37). If we now consider $\hat{g}(w) = wg(w^{-1})$, it is easy to verify that $\hat{g}(w) \in G$ as well and that $H_{\hat{g}}(P, Q) = H_g(Q, P)$. Thus, the map $g(w) \to wg(w^{-1})$ has the effect of switching the arguments of the relative entropy and the function $g(w) + wg(w^{-1})$ yields the symmetrized relative entropy $H_g(P, Q) + H_g(Q, P)$. Now, if we begin with a function g and relative entropy $H_g(P, Q)$, the differentiation in (28) automatically yields a symmetric result. Thus, all convex combinations $ag(w) + (1-a)\hat{g}(w)$ of g and $\hat{g}(w)$ yield the same Riemannian metric and the same function $k \in K$.

Conversely, every $k \in K$ defines a unique symmetric relative entropy via the function $g_{\text{sym}}(w) = (w-1)^2 k(w)$. It follows immediately from the integral representation (13) and (14) that $g_{\text{sym}}(w)$ is also in G and that $wg_{\text{sym}}(w^{-1}) = g_{\text{sym}}(w)$. Thus, k selects from the convex set of relative entropies associated with a given $g \in G$, the symmetric one. If we observe that the integral representation (14) is equivalent to $-k$ being an operator monotone function, we can summarize the discussion above as follows.

Theorem 2.13 There is a one-to-one correspondence between each of the following

a) monotone Riemannian metrics extended to bilinear forms via the symmetry condition $M^g_P(A, B) = M^g_B(B^*, A^*)$,

14
b) monotone (decreasing) operator functions satisfying $k(w^{-1}) = wk(w)$ with the normalization $k(1) = 1$, and
c) convex operator functions in \mathcal{G} which satisfy the symmetry relation $wg(w^{-1}) = g(w)$.

The relations between these are given by (34), (36), and (37). In view of this theorem, it would be appropriate to identify a given operator Ω^g_P by using the (unique) symmetric function g^sym. However, we will continue to use the asymmetric g for such familiar cases as the logarithm. One might expect the one-to-one correspondence to extend to twice-differentiable symmetric monotone relative entropies. However, Petz and Ruskai [26] consider relative entropies of the form $\tilde{H}_g(P, Q) = \text{Tr}Pg(P^{-1/2}QP^{-1/2})$. This class of monotone relative entropies can be symmetrized; however, differentiation of H_g yields the Riemannian metric $M_g^{(w^{-1})^2}(A, B) = \text{Tr}A^*[P^{-1}B + BP^{-1}]$ for all $g \in \mathcal{G}$. Thus, in particular $\tilde{H}_\log(P, Q) = \text{Tr}P\log(P^{-1/2}QP^{-1/2})$ is an example of a relative entropy distance which is not a relative g-entropy in the sense of Definition 2.3. Another class of distinct relative entropy distances is given by squares of the geodesic distances introduced in Section 3. Thus, the properties in Definition 1.3 are not sufficient to completely characterize the relative g-entropy and allow us to extend the one-to-one correspondence in Theorem 2.4 to a class of relative entropies. Although we believe that such an additional condition must exist, we have not found it.

2.5 Examples

We now give explicit expressions for the relative entropy, Ω^g_P and related quantities in several important special cases. These examples will also illustrate the relation between the functions $g, \hat{g}, g^\text{sym},$ and k discussed above.

Example 1: Take $g(w) = - \log w$. Then $\hat{g}(w) = w \log w$, $g^\text{sym} = (w - 1) \log w$, $k(w) = (w - 1)^{-1} \log w$, $N_g(s) = (s + 1)^{-2}$ and $\sigma_g(s) = 1/(s + 1)$. Then, $H_\log(P, Q)$ is given by (7), and

\[
H^\text{sym}_\log = H_{(w^{-1})\log w} = \text{Tr}(P - Q) [\log P - \log Q]
\]

\[
= \int_0^\infty \text{Tr}(P - Q) \frac{1}{Q + xI} (P - Q) \frac{1}{P + xI} dx
\]

and

\[
\Omega^\log_P = \int_0^\infty \left(\frac{1}{sR_P + L_P} + \frac{1}{sL_P + R_P} \right) \frac{1}{(s + 1)^2} ds
\]

\[
= \int_0^\infty \frac{1}{s + 1} \frac{1}{L_P + sR_P} ds.
\]
Making the change of variables $s \rightarrow s R_P$ in the last integral, yields
\[\Omega_P^{\log} = \int_0^\infty \frac{1}{s + L_P} \frac{1}{s + R_P} ds \] (48)
so that
\[\langle A, \Omega_P^{\log}(B) \rangle = \text{Tr} \int_0^\infty A^* \frac{1}{s I + P} B \frac{1}{s I + P} ds, \] (49)
a result that we obtained earlier (9) using the integral representation (8) or
\[\log P - \log Q = \int_0^\infty \left[\frac{1}{Q + x I} - \frac{1}{P + x I} \right] dx. \] (50)
In this case, it is also well-known [16, 21] that the inverse operator can be written as
\[[\Omega_P^{\log}]^{-1} = \int_0^1 P^t B P^{1-t} dt. \] (51)

Example 2: Take $g(w) = (w - 1)^2$. Then $\tilde{g}(w) = (w - 1)^2/w$, $g_{\text{sym}}(w) = (w - 1)^2(w + 1)/w$ and $k(w) = (w + 1)/(2w)$. Then $H_{(w-1)^2}(P, Q)$ is given by (44),
\[H_{(w-1)^2}^{\text{sym}}(P, Q) = \text{Tr}(Q - P) \left[P^{-1} + Q^{-1} \right] (Q - P), \]
\[\Omega_{(w-1)^2} = R_P^{-1} + L_P^{-1} \]
and
\[\langle A, \Omega_{(w-1)^2}(A) \rangle = H_{(w-1)^2}(P, P + A) = \text{Tr} A P^{-1} A. \]
The associated function is the maximal function satisfying the prescribed conditions. The operator $\Omega_{(w-1)^2}(B) = P^{-1}B + BP^{-1}$ so that
\[\Omega_{(w-1)^2} = R_P^{-1} + L_P^{-1} = R_P^{-1}[R_P + L_P]L_P^{-1}. \] (52)

Example 3: For $s_0 > 0$ take $g_{s_0}(w) = (w - 1)^2/(w + s_0)$. Then $\tilde{g}_{s_0}(w) = (w - 1)^2/(1 + ws_0)$, $g_{\text{sym}}(w) = (w - 1)^2(w + 1)(1 + s_0)/(1 + ws_0)(w + s_0)$, $k(w) = (w + 1)(1 + s_0)/(1 + ws_0)(w + s_0)$, and $N_g(s) = \delta(s - s_0)$. Thus
\[\Omega_{(w-1)^2}^{g_{s_0}} = \frac{1}{s_0 R_P + L_P} + \frac{1}{s_0 L_P + R_P} \]
\[= (s_0 + 1)[s_0 R_P + L_P]^{-1}[R_P + L_P][R_P + s_0 L_P]^{-1}. \] (53)
When no confusion will result, it will be convenient to employ a slight abuse of notation and write Ω_{gs}^0 for Ω_{gs0}^0. The case $s_0 = 1$ is particularly important; we have already seen that it yields the minimal $k \in K$. Then $k(w) = \frac{2}{1 + w}$.

$g(w) = g_{\text{sym}}(w) = \frac{(w-1)^2}{w+2}$ and $\Omega_{gs0}^{g_{\text{sym}} = 1} \equiv \Omega_{Bures}^g = [R_P + L_P]^{-1}$, The corresponding Riemannian metric is $\langle A, \Omega_{Bures}^g(B) \rangle = \text{Tr}A^*[R_P + L_P]^{-1}(B)$ and the corresponding relative entropy

$$H_{\text{Bures}}(P, Q) = \text{Tr}(Q - P)[R_P + L_Q]^{-1}(Q - P) = \text{Tr}QPXP$$

where $X = [R_P + L_Q]^{-1}(Q - P)$. Because of the cyclicity of the trace, $H_{\text{Bures}}(P, Q)$ is already symmetric and $[R_Q + L_P]^{-1}$ would have given the same result.

Example 4: Take $g(w) = 1 - w^\alpha$. Then $k(w) = (1 - w^\alpha)(1 - w^{1 - \alpha})$ and $N_g(s) = \frac{\sin \pi s}{\pi}(1 + s)^{\alpha - 2}$. Thus

$$H_{1 - w^\alpha}(P, Q) = 1 - \text{Tr}Q^\alpha P^{1 - \alpha}.$$

$$\Omega_{gs}^g = R_P^{-1} \int_0^\infty \frac{1}{sI + \Delta_{P,P}} \frac{\sin \pi s}{\pi} (1 + s)^{\alpha - 2} ds.$$

After the change of variables $s \to sR_P$ this becomes

$$\Omega_{gs}^g = \frac{\sin \pi s}{\pi} \int_0^\infty \frac{1}{L_P + s(\Delta_{P,P})} \frac{R_P^{-1 - \alpha} + s^{1 - \alpha}}{R_P + s} ds.$$

(55)

2.6 Monotonicity proof

We now present a new proof of the monotonicity of the relative entropies and Riemannian metrics associated with convex operator functions.

Theorem 2.14 For every convex operator function g of the type considered here, both the relative entropy $H_g(P, Q)$ and the corresponding Riemannian metric are monotone, i.e.

$$H_g(P, Q) \leq H_g[\phi(P), \phi(Q)],$$

$$\langle A\Omega_g^g(A), A \rangle \leq \langle \phi(A)\Omega_g^g(\phi(A)), A \rangle.$$

(56)

(57)

This result is essentially due to Petz [23]. We give an independent proof as an immediate corollary of the following theorem and the integral representations (17) and (34).
Theorem 2.15 If ϕ is stochastic

$$\text{Tr} A^* \frac{1}{R_P + sL_Q} A = \text{Tr} \phi \left(A^* \frac{1}{R_P + sL_Q} A \right) \geq \text{Tr} \phi(A^*) \frac{1}{R^{(P)} + sL^{(Q)}} \phi(A). \quad (58)$$

Proof: If $P > 0$, then $\text{Tr} A^* PA \geq 0$ and $\text{Tr} A^* AP \geq 0$ so that both L_P and R_P are positive as operators on the Hilbert-Schmidt space. Thus for $Q > 0$, the operator $R_P + sL_Q$ is also positive. Let $X = [R_P + sL_Q]^{-1/2}(A) - [R_P + sL_Q]^{1/2}\hat{\phi}(B)$ with $B = [R^{(P)} + sL^{(Q)}]^{-1}\phi(A)$. Then $\text{Tr} X^* X \geq 0$ so that

$$\text{Tr} A^* \frac{1}{R_P + sL_Q} A - \text{Tr} A^* \hat{\phi}(B) - \text{Tr} \hat{\phi}(B^*) A \quad (59)$$

$$+ \text{Tr} \hat{\phi}(B^*) [R_P + sL_Q] \hat{\phi}(B) \geq 0.$$

Since it is easy to see that

$$- \text{Tr} A^* \hat{\phi}(B) - \text{Tr} \hat{\phi}(B^*) A = -2 \text{Tr} \phi(A^*) \frac{1}{R^{(P)} + sL^{(Q)}} \phi(A),$$

the desired result will follow if we can show that the last term in (59) is bounded above by the right side of (58). We find

$$\text{Tr} \hat{\phi}(B^*) [R_P + sL_Q] \hat{\phi}(B) = \text{Tr} \hat{\phi}(B^*) \hat{\phi}(B) P + \hat{\phi}(B^*) sQ \hat{\phi}(B)$$

$$= \text{Tr} \hat{\phi}(B^*) \hat{\phi}(B) P + \hat{\phi}(B) \hat{\phi}(B^*) sQ$$

$$\leq \text{Tr} \hat{\phi}(B^* B) P + \hat{\phi}(BB^*) sQ$$

where the inequality follows from positivity of P and Q and the operator inequality

$$\hat{\phi}(B^*) \hat{\phi}(B) \leq \hat{\phi}(B^* B), \quad (60)$$

which holds for any B because the trace-preserving condition on ϕ gives $\hat{\phi}(I_2) = I_1$. Then using, e.g., $\text{Tr} \hat{\phi}(B^* B) P = \text{Tr} B^* B \phi(P)$, we find

$$\text{Tr} \hat{\phi}(B^*) [R_P + sL_Q] \hat{\phi}(B) \leq \text{Tr} B^* B \phi(P) + BB^* s\phi(Q)$$

$$= \text{Tr} B^*[B \phi(P) + s\phi(Q) B]$$

$$= \text{Tr} B^* [R^{(P)} + sL^{(Q)}] B = \text{Tr} B^* \phi(A)$$

$$= \text{Tr} \phi(A^*) \frac{1}{R^{(P)} + sL^{(Q)}} \phi(A).$$
It is interesting to observe that the strategy used here is very similar to that used by Lieb and Ruskai [18] to prove a Schwarz inequality for completely positive mappings and, as a special case, the monotonicity of the quadratic relative entropy. At that time, Lieb and Ruskai could use these Schwarz inequalities to prove many special cases of the strong subadditivity of the logarithmic relative entropy, but not the general case. A complete proof of strong subadditivity [17] (see also [29, 38]) seemed to require one of the convex trace function theorems of Lieb [16]. It is therefore curious that now, some 25 years later, we have finally found a way to recover strong subadditivity directly from the Schwarz strategy of Lieb and Ruskai [18].

It should also be noted that Uhlmann had earlier [32] used a very different approach (based on interpolation theory) to show the logarithmic relative entropy was monotone under a related class of mappings that are Schwarz in the sense $\phi(A^*A) \geq \phi(A^*)\phi(A)$ and Petz [23] extended this to other relative entropies.

3 Geodesic distance

We now wish to consider the contraction of the relative entropy and corresponding Riemannian metric under stochastic mappings. Before doing so, it will be useful to consider the geodesic distance which arises from the Riemannian metrics considered here.

Definition 3.1 Associated with every Riemannian metric $\langle A, \Omega_p^g(B) \rangle$ of the form (28) is a geodesic distance $D_g(P, Q)$ which is defined as

$$D_g(P, Q) \equiv \inf \int_0^1 \sqrt{\dot{S}(t), \Omega_{S(t)}^g S(t)}dt$$

where the infimum is taken over all smooth paths $S(t)$ with $S(0) = P$ and $S(1) = Q$.

Theorem 3.2 The square $[D_g(P, Q)]^2$ of every geodesic distance of the form given in Definition 3.1 is a differentiable monotone relative entropy distance in the sense of Definition 2.3. In addition, $D_g(P, Q)$ satisfies the triangle inequality $D_g(P, R) \leq D_g(P, Q) + D_g(Q, R)$.

Proof: Properties (a), (b) and (e) of Definition 2.3 are readily verified. Property (d), i.e., the monotonicity $D_g[\phi(P), \phi(Q)] \leq D_g(P, Q)$ can be proven directly, but also follows easily as a corollary to Theorem 4.2 below. The triangle inequality is standard. That $D_g(P + xA, Q + yB)$ is differentiable in the sense of Definition
2.3(f) follows from standard results (see, e.g., Theorem 3.6, part (2) of [13]).

QED

It is well-known (see, e.g., [33, 34, 35]) that the metric associated with the minimal function

\[k(w) = \frac{2}{1+w}, \]

discussed in Example 3, is (except for normalization) the metric of Bures, i.e.,

\[D_Bures(P, Q) = \frac{1}{2} \frac{(P - Q)^2}{(1+w)} \]

so that \(4D_{\text{Bures}}(P, Q) \) gives the minimal geodesic distance of this type.

4 Contraction Under Stochastic Maps

4.1 Contraction coefficients

Because the relative entropies, Riemannian metrics, and geodesic distances all contract under stochastic maps, their maximal contraction is a well-defined quantity in the following sense.

Definition 4.1 For each fixed convex operator function \(g \) of the form given in Def. 2.1 and stochastic map \(\phi \) we define three entropy contraction coefficients

\[\eta_{\text{RelEnt}}(\phi) = \sup_{P \neq Q} \frac{H_g[\phi(P), \phi(Q)]}{H_g[P, Q]}, \]

\[\eta_{\text{Riem}}(\phi) = \sup_P \sup_{A \in T_P \mathcal{D}} \frac{\langle \phi(A), \Omega^{g}_{\phi(P)}[\phi(A)] \rangle}{\langle A, \Omega^{g}_{\phi(P)}[A] \rangle}, \]

\[\eta_{\text{geod}}(\phi) = \sup_{P \neq Q} \frac{[D_{g}(\phi(P), \phi(Q))]^2}{[D_{g}(P, Q)]^2}. \]

In [7, 9] it was shown that for commutative systems, \(\eta_{\text{RelEnt}}(\phi) = \eta_{\text{Riem}}(\phi) = \eta_{\text{geod}}(\phi) = \eta_{(w-1)^2}(\phi) \). Here, we will prove some relations between these various \(\eta \).

Theorem 4.2 The three contraction coefficients defined above satisfy

\[1 \geq \eta_{\text{RelEnt}}(\phi) \geq \eta_{\text{Riem}}(\phi) \geq \eta_{\text{geod}}(\phi). \]
The intuition behind the second inequality can be seen by letting $A = B = Q - P$ in the integral representations of Theorems 2.2 and 2.3. Then the only difference between the ratios in (34) and (35) is that the modular operator in the former is $\Delta_{Q,P}$ while that in the latter is $\Delta_{P,P}$. This would seem to indicate that the first supremum is taken over a larger set. However, the two are not directly comparable because the condition $P \neq Q$ in the first case precludes the choice $\Delta_{P,P}$. Hence, we consider $Q = P + \epsilon A$.

Proof: The upper bound of 1 follows immediately from Theorem 2.14. To prove the second inequality $\eta^\text{RelEnt}_g(\phi) \geq \eta^\text{Riem}_g(\phi)$ we consider, as suggested above, $H_g(P, P + \epsilon A) = \text{Tr} P^{1/2} g(\Delta_{P,P+\epsilon A})(P^{1/2})$. Proceeding as in the proof of Theorem 2.3 but with the shorthand $d N_g(s) = (b_g + c_g) \delta(s) ds + d \nu_g(s)$, we obtain

$$H_g(P, P + \epsilon A) = \epsilon^2 \int_0^\infty \text{Tr} \left[A \frac{1}{L_{P+\epsilon A} + s R_P} (A) \right] d N_g(s)$$

$$= \epsilon^2 \int_0^\infty \text{Tr} \left[A \frac{1}{L_P + s R_P} (A) \right] d N_g(s) + O(\epsilon^3)$$

$$= \epsilon^2 \langle \phi(A), \Omega^g_{\phi(P)}(\phi(A)) \rangle + O(\epsilon^3).$$

Thus

$$\eta^\text{RelEnt}_g(\phi) = \sup_{P \neq Q} \frac{H_g[\phi(P), \phi(Q)]}{H_g[P, Q]}$$

$$\geq \sup_p \sup_{A \in \mathcal{T}_D} \frac{H_g[\phi(P), \phi(P + \epsilon A)]}{H_g(P, P + \epsilon A)}.$$

However

$$\frac{H_g[\phi(P), \phi(P + \epsilon A)]}{H_g(P, P + \epsilon A)} = \frac{\langle \phi(A), \Omega^g_{\phi(P)}[\phi(A)] \rangle + O(\epsilon)}{\langle A, \Omega^g_{\phi(P)}[A] \rangle + O(\epsilon)}.$$

Since the quantity on the right can be made arbitrary close to $\eta^\text{Riem}_g(\phi)$, we conclude that $\eta^\text{RelEnt}_g(\phi) \geq \eta^\text{Riem}_g(\phi)$. Finally, to prove the third inequality we first choose $S_\circ(t)$ to be a minimizing path for $D_g(P, Q)$, i.e.

$$D_g(P, Q) = \int_0^1 \sqrt{\langle S_\circ(t), \Omega^g_{S_\circ(t)} S_\circ(t) \rangle} dt.$$

Then, $\phi \circ S_\circ$ is a smooth path from $\phi(P)$ to $\phi(Q)$. Moreover, the linearity of ϕ implies that $\frac{d}{dt} \phi \circ S_\circ(t) = \phi \circ \dot{S}_\circ(t)$. Thus

$$D_g[\phi(Q), \phi(Q)] \leq \int_0^1 \sqrt{\langle \phi \circ \dot{S}_\circ(t), \Omega^g_{\phi \circ S_\circ(t)} \phi \circ \dot{S}_\circ(t) \rangle} dt$$

$$\leq \left[\eta^\text{Riem}_g(\phi) \right]^{1/2} \int_0^1 \sqrt{\langle \dot{S}_\circ(t), \Omega^g_{S_\circ(t)} \dot{S}_\circ(t) \rangle} dt$$

$$= \left[\eta^\text{Riem}_g(\phi) \right]^{1/2} D_g(P, Q).$$
Dividing both sides by $D_g(P, Q)$ and taking the supremum of the left hand side, gives the desired result. QED

In this case of the first inequality $\eta_g^{\text{RelEnt}}(\phi) \geq \eta_g^{\text{Riem}}(\phi)$, we proved slightly more, namely, that either equality holds or the supremum in $\eta_g^{\text{RelEnt}}(\phi)$ is actually attained for some non-negative (but not necessarily strictly positive) density matrices P, Q, i.e., strict inequality implies that there exists $P \neq Q \in \mathcal{D}$ such that

$$H_g[\phi(P), \phi(Q)] = \eta_g^{\text{RelEnt}}(\phi)H_g(P, Q).$$

This follows from the fact that we can always find a maximizing sequence (P_k, Q_k) such that

$$\lim_{k \to \infty} \frac{H_g[\phi(P_k), \phi(Q_k)]}{H_g(P_k, Q_k)} = \eta_g^{\text{RelEnt}}(\phi).$$

Since we are in a finite dimensional space, the space of non-negative density matrices is compact so that we can find a convergent subsequence (P_k, Q_k) such that $\lim_{k \to \infty} H_g[\phi(P_k), \phi(Q_k)] = \eta_g^{\text{RelEnt}}(\phi)$. (Strictly speaking, we must also exclude the possibility that both $H_g(P_k, Q_k)$ and $H_g[\phi(P_k), \phi(Q_k)]$ diverge to ∞.)

We expect that for most choices of g equation (68) holds only in very special cases [see, e.g., the partial trace example in Section 4.4 which yield $\eta_g^{\text{RelEnt}}(\phi) = 1 = \eta_g^{\text{Riem}}(\phi)$]. Indeed, even for commutative systems, early proofs [1, 7] that equality holds for $\eta_{\log(A)} = \eta_{(w-1)^2}(A)$ depended on a demonstration that (68) could not hold in general.

Another special situation occurs for the minimal g which yields the Bures metric. If P, Q commute, then

$$H_{\text{Bures}}(P, Q) = \text{Tr}(P - Q)([L_P + R_Q]^{-1} + [L_Q + R_P]^{-1})(P - Q) = 2\text{Tr}(P - Q)(P + Q)^{-1}(P - Q) = 2\langle(P - Q), \Omega_{P+Q}[(P - Q)]\rangle.$$

Thus if the supremum for $\eta_{\text{Bures}}^{\text{Riem}}(\phi)$ happens to be attained for a commuting pair R, A (with $R \in \mathcal{D}$ and $A \in T_P\mathcal{D}$) whose images $\phi(R), \phi(A)$ also commute, then

$$H_{\text{Bures}}[\phi(R + A), \phi(R - A)] = \eta_{\text{Bures}}^{\text{Riem}}(\phi)H_{\text{Bures}}(R + A, R - A).$$

If $\eta_{\text{Bures}}^{\text{RelEnt}}(\phi) = \eta_{\text{Bures}}^{\text{Riem}}(\phi)$, then this also yields equality in (68); however, it does not give strict inequality for $\eta_{\text{Bures}}^{\text{RelEnt}}(\phi) \geq \eta_{\text{Bures}}^{\text{Riem}}(\phi)$. On the contrary, it seems to offer some heuristic support for equality.

We expect that in those exceptional situation in which the supremum $\eta_g^{\text{RelEnt}}(\phi)$ is attained the result is equal to $\eta_g^{\text{Riem}}(\phi)$ so that equality always holds, at least for the first inequality in Theorem 4.2.
Recall that many common choices for \(g \) [e.g., \(g(w) = (w - 1)^2 \) or \(g(w) = -\log w \)] do not yield a symmetric relative entropy, i.e., \(H_g(P, Q) \neq H_g(Q, P) \). This raises the question of whether or not the entropy contraction coefficient [which we denote \(\eta_g^{\text{sym}}(\phi) \equiv \eta_g^{\text{RelEnt}}(\phi) \)] for the symmetrized relative entropy

\[
H_g^{\text{sym}}(P, Q) = H_g(P, Q) + H_g(Q, P) = H_{g(w + wg(w^{-1})}(P, Q)
\]

is the same as \(\eta_g^{\text{RelEnt}}(\phi) \). Although we believe equality holds, we can only prove that

\[
\eta_g^{\text{sym}}(\phi) \leq \eta_g^{\text{RelEnt}}(\phi).
\]

Nevertheless, Theorem 4.2 holds for any \(g \). In fact, since there is a unique Riemannian metric associated with all \(g \) which yield the same symmetrized relative entropy, we have \(\eta_g^{\text{RelEnt}}(\phi) \geq \eta_g^{\text{sym}}(\phi) \geq \eta_g^{\text{Riem}}(\phi) \). To prove (71) it suffices to observe that

\[
H_{g(w + wg(w^{-1})}(P, Q) = H_g^{\text{sym}}(P, Q) = H_g(P, Q) + H_g(Q, P)
\]

so that

\[
H_g^{\text{sym}}(\phi(P), \phi(Q)) = H_g[\phi(P), \phi(Q)] + H_g[\phi(Q), \phi(P)]
\leq \eta_g^{\text{RelEnt}}(\phi)H_g(P, Q) + \eta_g^{\text{RelEnt}}(\phi)H_g(Q, P)
= \eta_g^{\text{RelEnt}}(\phi)H_g^{\text{sym}}(P, Q).
\]

In the case of the quadratic entropy, it easily follows that \(\eta_g^{\text{Riem}}(\phi) = \eta_g^{\text{Riem}}(\phi) = \eta_g^{\text{Riem}}(\phi) \).

Finally, we note that the joint convexity of relative entropy, Riemannian metrics, and \([D_g(P, Q)]^2\) imply that the corresponding contraction coefficients are convex in \(\phi \). (Although we did not explicitly state the joint convexity for \(M_P(A, A) \) it is an easy consequence of homogeniety and contraction under partial traces.)

Theorem 4.3 For each fixed \(g \in G \), each of the contraction coefficients \(\eta_g^{\text{RelEnt}}(\phi) \), \(\eta_g^{\text{Riem}}(\phi) \), and \(\eta_g^{\text{geo}(\phi)} \) is convex in \(\phi \).

Proof: Since the argument is straightforward, we give details only for the relative entropy. Let \(\phi = x\phi_1 + (1 - x)\phi_2 \).

\[
H_g[\phi(P), \phi(Q)] = H_g[x\phi_1(P) + (1 - x)\phi_2(P), x\phi_1(Q) + (1 - x)\phi_2(Q)]
\leq xH_g[\phi_1(P), \phi_1(Q)] + (1 - x)H_g[\phi_2(P), \phi_2(Q)]
\leq x \eta_g^{\text{RelEnt}}(\phi_1)H_g(P, Q) + (1 - x) \eta_g^{\text{RelEnt}}(\phi_2)H_g(Q, P)
= [x \eta_g^{\text{RelEnt}}(\phi_1) + (1 - x) \eta_g^{\text{RelEnt}}(\phi_2)] H_g(P, Q).
\]

Dividing both sides by \(H_g(P, Q) \) implies

\[
\eta_g^{\text{RelEnt}}(\phi) \leq x \eta_g^{\text{RelEnt}}(\phi_1) + (1 - x) \eta_g^{\text{RelEnt}}(\phi_2). \quad \text{QED}
\]
4.2 Eigenvalue formulation of $\eta_{Riem}^g(\phi)$

We now show how $\eta_{Riem}^g(\phi)$ is related to the following set of eigenvalue problems:

$$\hat{\phi} \circ \Omega^g_{\phi(P)} \circ \phi(A) = \lambda \Omega^g_P(A). \quad (72)$$

In view of Theorem 2.11, this is a well-defined linear eigenvalue problem on $\mathbb{C}^{n \times n}$ for each fixed pair ϕ and P. The following remarks are easily verified.

a) The eigenvalue problem (72) can be rewritten as $\Phi^g_P \circ \phi(B) = \lambda B$ where

$$\Phi^g_P \equiv (\Omega^g_P)^{-1} \circ \hat{\phi} \circ \Omega^g_{\phi(P)}. \quad (73)$$

Furthermore, Φ^g_P is trace-preserving. This follows from Theorem 2.12 and

$$\text{Tr} \Phi^g_P(B) = \text{Tr} \hat{\phi} \circ \Omega^g_{\phi(P)}(B) = \langle \hat{\phi}(P), \Omega^g_{\phi(P)}(B) \rangle = \langle \Omega^g_{\phi(P)}[\phi(P)], B \rangle = \langle I, B \rangle = \text{Tr} B.$$

b) We can assume without loss of generality that matrices which are eigenvectors in (72) are self-adjoint, i.e., that $A = A^*$. Indeed, it is easy to check that the operator $\Omega^g_{\phi}(A) = (sR_P + L_P)[R_P + L_P]^{-1}(R_P + sL_P)(A)$ satisfies $[\Omega^g_{\phi}(A)]^* = \Omega^g_{\phi^*}(A^*)$. Therefore, the operators $\Omega^g_P, \Omega^g_{\phi(P)}, \phi, \hat{\phi}$ and Φ^g_P all map adjoints to adjoints.

c) For each fixed P, the eigenvalue equation is satisfied with $A = P$ and eigenvalue $\lambda = 1$ which is the largest eigenvalue. The operators on both sides of (72) are self-adjoint (in fact, positive definite) with respect to the Hilbert-Schmidt inner product and the corresponding orthogonality condition for the other eigenvectors reduces to $\text{Tr}A = 0$.

In view of these observations, it is easy to conclude from the max-min principle that the second-largest eigenvalue $\lambda_2^g(\phi, P)$ satisfies

$$\lambda_2^g(\phi, P) = \sup_{A \in \mathcal{T}_P \mathcal{D}} \frac{\langle \phi(A), \Omega^g_{\phi(P)}[\phi(A)] \rangle}{\langle A, \Omega^g_P[A] \rangle} \quad (74)$$

for each fixed P. Then taking the supremum over \mathcal{D} yields

Theorem 4.4 For each $g \in G$ and stochastic map ϕ

$$\eta_{Riem}^g(\phi) = \sup_{P \in \mathcal{D}} \lambda_2^g(\phi, P). \quad (75)$$
We have already observed that every Ω^g_P can be regarded as a non-commutative variant of multiplication by P^{-1}. Indeed, if both pairs of operators P, A and $\phi(P), \phi(A)$ associated with a particular eigenvalue commute for some g, then $\Omega^g_P(A) = R_{P^{-1}}(A) = L_{P^{-1}}(A)$ for all g and the corresponding eigenvalue equations are the same. It may be tempting to conjecture that the eigenvalue equations for different g are related by a similarity transform, which would then imply that all $\lambda_2(\phi, P)$ are equal so that all $\eta^\text{Riem}_g(\phi)$ are identical. However, for a given fixed P, R_P and L_P commute, which implies that Ω^g_P and Ω^h_P commute for any pair of functions g and h. Since commuting operators are simultaneously diagonalizable and similar operators have the same eigenvalues, this would imply that all of the eigenvalue operators $B \to [(\Omega^g_P)^{-1} \circ \hat{\phi} \circ \Omega^g_P \circ \phi](B)$ are identical. This is easily seen to be false in specific examples. Moreover, as discussed at the end of Section 4.4 one can find examples of non-unital ϕ for which different $\eta^\text{Riem}_g(\phi)$ are not identical.

Theorem 4.5 We can rewrite the eigenvalue problem (72) so that

$$\lambda_2^g(\phi, P) = \sup_{\alpha} \frac{\langle \hat{\phi}(\alpha), (\Omega^g_P)^{-1}[\hat{\phi}(\alpha)] \rangle}{\langle \alpha, (\Omega^g_\phi(P))^{-1}[\alpha] \rangle},$$

where the supremum is now taken over $\left\{ \alpha \in \text{Range}(\phi) : \text{Tr}[\Omega^g_\phi(P)^{-1}(\alpha) = 0] \right\}$.

Proof:

$$\lambda_2^g(\phi, P) = \sup_{A : \text{Tr}(A) = 0} \frac{\langle \phi(A), \Omega^g_\phi(P)[\phi(A)] \rangle}{\langle A, \Omega^g_P[A] \rangle} = \sup_{B : \text{Tr}[\Omega^g_P]^{-1/2}(B) = 0} \frac{\langle B[\Omega^g_P]^{-1/2} \circ \hat{\phi} \circ \Omega^g_\phi(P) \circ \phi \circ [\Omega^g_P]^{-1/2}B \rangle}{\langle B, B \rangle}.$$

If we now write $\Gamma = [\Omega^g_\phi(P)]^{1/2} \circ \phi \circ [\Omega^g_P]^{-1/2}$, we see that $\lambda_2^g(\phi, P)$ is the largest eigenvalue of $\Gamma^*\Gamma$ where Γ maps

$$\{B : \text{Tr}[\Omega^g_P]^{-1/2}(B) = 0\} \to \{\beta \in \text{Range}(\phi) : \text{Tr}[\Omega^g_\phi(P)]^{-1/2}(\beta) = 0\}.$$

Since $\Gamma^*\Gamma$ and $\Gamma^*\Gamma$ have the same non-zero eigenvalues,

$$\lambda_2^g(\phi, P) = \sup_{\beta : \text{Tr}[\Omega^g_\phi(P)]^{-1/2}(\beta) = 0} \frac{\langle \beta[\Omega^g_\phi(P)]^{1/2} \circ \phi \circ [\Omega^g_P]^{-1} \circ \hat{\phi} \circ [\Omega^g_\phi(P)]^{1/2} \beta \rangle}{\langle \beta, \beta \rangle} = \sup_{\alpha : \text{Tr}[\Omega^g_\phi(P)]^{-1}(\alpha) = 0} \frac{\langle \hat{\phi}(\alpha)[\Omega^g_P]^{-1} \circ \hat{\phi}(\alpha) \rangle}{\langle \alpha, [\Omega^g_\phi(P)]^{-1}\alpha \rangle}.$$
If we apply this result with \(\Omega^\text{Bures}_P = [R_P + L_P]^{-1} \), it follows easily from the theorem above that

\[
\lambda^\text{Bures}_2(\phi, P) = \sup_{\alpha : \text{Tr}\phi(P)\alpha = 0} \frac{\text{Tr}\hat{\phi}(\alpha)P\hat{\phi}(\alpha)}{\text{Tr}\phi(P)\alpha}. \tag{76}
\]

It is tempting to write \(\phi(P)\alpha = \beta = \phi(B) \) and replace the constraint \(\text{Tr}\phi(P)\alpha = 0 \) by \(\text{Tr}B = 0 \). The denominator would then become \(\langle \phi(B)[\phi(P)]^{-1}\phi(B) \rangle \) which has the same form as the numerator in (75) when \(k(w) = \frac{w+1}{2w} \) (corresponding to \(g = (w-1)^2 \)). However, we there is no guarantee that \(\hat{\phi}(\alpha) = \hat{\phi}([\phi(P)]^{-1}B) \).

On the contrary, this cannot possibly hold because we would then have that the \(\lambda \) (and hence \(\eta \)) for the two extremal functions \(k(w) = \frac{2}{1+w} \) and \(k(w) = \frac{w+1}{2w} \) are inverses, which is inconsistent with \(\lambda^\phi(\phi, P) \leq \eta^\text{Riem}_g(\phi) \leq 1 \) (except in the case \(\lambda = 1 \) which is not generic). There is, however, a sense in which the operators associated with these two extremal functions are inverses since \(\Omega^g_2 = R_P^{-1} + L_P^{-1} = R_P^{-1}[R_P + L_P]L_P^{-1} = R_P^{-1}[\Omega^\text{Bures}_P]^{-1}L_P^{-1} \). It seems likely that if the \(\eta^\text{Riem}_g \) for these two extremal functions are equal, then all of them are.

Unlike the case of \(\eta^\text{RelEnt}_g(\phi) \), we do expect that the supremum for \(\eta^\text{Riem}_g(\phi) \) is actually attained. Indeed, we know that for each fixed \(P \) the supremum in (74) is attained for some \(A \neq 0 \) which satisfies the eigenvalue problem (72). As before, we can find a maximizing sequence of density matrices \(P_k \) for (73) so that \(\eta^\text{Riem}_g(\phi) = \lim_{k \to \infty} \lambda^g_2(\phi, P_k) \). For each \(P_k \), let \(A_k \) be the solution to the eigenvalue problem (72) for \(\lambda^g_2(\phi, P_k) \) normalized so that \(\text{Tr}|A_k| = 1 \). Then we can find a convergent subsequence for which \(P_k \to P \in \mathcal{D} \) and \(A_k \to A \neq 0 \) since \(\text{Tr}|A| = 1 \).

It then follows that (72) holds for this \(P, A \) with \(\lambda = \eta^\text{Riem}_g(\phi) \) (although \(P \) is only non-negative) which implies

\[
\langle \phi(A), \Omega^g_\phi[\phi(A)] \rangle = \eta^\text{Riem}_g(\phi)\langle A, \Omega^\text{Riem}_g(A) \rangle.
\]

4.3 Bounds on contraction coefficients

We first give an upper bound for \(\eta^\text{Riem}_g \) using

\[
\eta^\text{Dobrushin}_g(\phi) \equiv \sup_{A \in \mathcal{T}, \mathcal{D}} \frac{\text{Tr}|\phi(A)|}{\text{Tr}|A|}. \tag{77}
\]

This can be interpreted as the norm of \(\phi \) regarded as an operator on the Banach space of traceless matrices with norm \(\text{Tr}|A| \). Although the function \(g(w) = |w-1| \) is not operator convex, \(\eta^\text{Dobrushin}_g(\phi) \) is analogous to the contraction coefficient of the (non-differentiable) symmetric relative g-entropy \(H_{|w-1|}(P, Q) = \text{Tr}|P - Q| \) which, however, is not the relative g-entropy obtained by using \(g(w) = |w-1| \).
in Definition \[2.1\]. Nevertheless, \(\eta^{\text{Dobrushin}}(\phi)\) is a natural and useful object to consider. It was shown in \[29\] (see Theorem 2) that

\[
\eta^{\text{Dobrushin}}(\phi) = \frac{1}{2} \sup \{ \text{Tr} |\phi(E - F)| : E, F \text{ 1-dim projs; } EF = 0 \}
\]

(78)

where “1-dim projs” means that \(E, F\) are one-dimensional projections in \(\mathcal{D}\). The expression on the right in (78) shows that we are justified in interpreting \(\eta^{\text{Dobrushin}}(\phi)\) as a non-commutative analogue of Dobrushin’s coefficient of ergodicity.

Theorem 4.6 If \(\phi\) is stochastic,

\[
\eta_{\text{Riem}}^{\phi}(\phi) \leq \eta^{\text{Dobrushin}}(\phi) \equiv \sup_{A \in T^* \mathcal{D}} \frac{\text{Tr}|\phi(A)|}{\text{Tr}|A|}.
\]

(79)

Proof: The map \(B \to (\Omega_{\log}^P)^{-1} \circ \hat{\phi} \circ \Omega_{\log}^{\phi(P)}(B) \equiv \Phi_{\log}(B)\) is positivity-preserving, as well as trace-preserving. The former follows from the integral representations (49) and (51) for \(\Omega_{\log}^P\) and its inverse together with the fact that the composition of positivity-preserving maps is positive-preserving. Then taking the trace of the absolute value of both sides of the eigenvalue problem \(\Phi[\phi(A)] = \lambda A\) and using Theorem 1 of \[29\] yields

\[
\lambda \text{Tr}|A| = \text{Tr}|\Phi[\phi(A)]| \leq \text{Tr}|\phi(A)|. \quad \text{QED} \]

(80)

Although we believe that this result holds for any \(g\), we do not have a proof except for the \(\log\). Our proof depended on the observation that in the case of the \(\log\) the map \(\Phi_g(B) = (\Omega_{\log}^P)^{-1} \circ \hat{\phi} \circ \Omega_{\log}^{\phi(P)}(B)\) is positivity-preserving. However, explicit examples can be found to show that \(\Phi_g\) is not positivity preserving in general. Indeed, although both \(\Omega_{\log}^{\text{Bures}} = [R_P + L_P]^{-1}\) and \(\Omega_{P}^{\phi(P)}(w^{-1}) = R_P^{-1} - L_P^{-1}\) are positive semi-definite with respect to the Hilbert-Schmidt inner product, they are not positivity preserving in the sense of mapping positive operators to positive operators. The difference is analogous to the difference between an ordinary matrix being positive semi-definite and having positive elements.

We now consider lower bounds on \(\eta_{\text{Riem}}^g(\phi)\). In \[29\] it was shown that

\[
\eta^{\text{Dobrushin}}(\phi) \leq \sqrt{\eta_{\text{Riem}}^g(\phi)}. \quad \text{(81)}
\]

We now give a lower bound which holds for all \(\eta_{\text{Riem}}^g(\phi)\) when the map \(\phi\) is unital, i.e., \(\phi(I) = I\).

Theorem 4.7 If \(\phi\) is unital,

\[
\eta_{g}^{\text{Riem}}(\phi) \geq \sup_{\text{Tr} A = 0} \frac{\text{Tr} |\phi(A)|^2}{\text{Tr}|A|^2}. \quad \text{(82)}
\]
This is an immediate consequence of the definition (65); it also follows from Theorem 4.4 and the fact that the right side of (82) is just $\lambda_2(\phi, I)$ when ϕ is unital. The right side of (82) can also be interpreted as the square of the norm of ϕ regarded as an operator on the Banach space of traceless matrices with Hilbert-Schmidt norm $\sqrt{\text{Tr}A^*A}$. When ϕ is self-adjoint in the sense $\hat{\phi} = \phi$, every trace-preserving map is unital.

If ϕ maps $\mathbb{C}^{n \times n}$ to itself, then the results of this section can be restated in terms of the eigenvalues and singular values of ϕ. Since ϕ is trace-preserving, $\phi(B) = \Lambda B$ implies that either $\Lambda = 1$ or $\text{Tr}B = 0$. If we restrict ϕ to the matrices with trace zero, then $\eta^{\text{Dobrushin}}(\phi)$ is the largest magnitude of an eigenvalue and for unital ϕ $\lambda_2(\phi, I)$ is the largest eigenvalue of $\hat{\phi}\phi$. Thus for unital stochastic maps, $\lambda_2(\phi, I) = \Lambda_2(\hat{\phi}\phi)$ where we have continued our convention of using the subscript 2 for eigenvalues of maps restricted to T^*_D. If ϕ is self-adjoint, the two lower bounds (81) and (82) coincide and $\lambda_2(\phi, I) = \Lambda_2(\hat{\phi}\phi) = [\Lambda_2(\phi)]^2$ in the usual sense of second largest eigenvalue of. For general unital ϕ, (82) is stronger since

$$
\eta_{\text{Riem}}^{w-1}(\phi) \geq \lambda_2(\phi, I) = \Lambda_2(\hat{\phi}\phi) \geq \left[\eta^{\text{Dobrushin}}(\phi)\right]^2.
$$

We now explicitly state some conjectures which have already been discussed.

Conjecture 4.8 For each fixed $g \in G$,

$$
\eta_{\text{RelEnt}}^g(\phi) = \eta_{\text{Riem}}^g(\phi) = \eta_{\text{geod}}^g(\phi) \leq \eta_{\text{Dobrushin}}^g(\phi).
$$

Conjecture 4.9 If ϕ is unital, then

$$
\eta_{\text{Riem}}^g = \Lambda_2(\hat{\phi}\phi) \equiv \sup_{\text{Tr}A=0} \frac{\text{Tr}|\phi(A)|^2}{\text{Tr}|A|^2}
$$

for all $g \in G$.

If this conjecture holds, then for unital ϕ the contraction coefficient η_{Riem}^g is independent of g. Theorem (4.13) at the end of the next section contains an explicit example of a non-unital stochastic map for which η_{Riem}^g depends non-trivially on g; therefore, the hypothesis that ϕ be unital is essential. In view of (82) it would suffice to show that $\eta_{\text{Riem}}^g \leq \Lambda_2(\hat{\phi}\phi)$.
4.4 Examples

We now consider some special classes of stochastic maps $\phi : A_1 \to A_2$. We begin by looking at some maps for which all contraction coefficients are easily seen to be zero or one. We then consider maps from $\mathbb{C}^{2\times 2}$ to $\mathbb{C}^{2\times 2}$ which provide support for the conjectures above.

We first consider the case in which A_2 is one-dimensional, e.g., ϕ projects onto a one-dimensional subalgebra (which need not have an identity) of A_1. Then, since ϕ is trace-preserving and maps density matrices to density matrices, we must have $\phi(P) = \phi(Q) \forall P, Q$ with $\text{Tr} \phi(P) = 1$ so that $\phi(P) \neq 0$. Thus, $H_g[\phi(P), \phi(Q)] = D_g[\phi(P), \phi(Q)] = 0 \forall P, Q$ which implies $\eta_g^{\text{RelEnt}}(\phi) = \eta_g^{\text{geod}}(\phi) = 0$. If $\text{Tr} B = 0$, then $\phi(B) = 0$. (To see this note that one can find a, b such that $P = (aI + bB)$ is a density matrix.) Thus $\langle \phi(B) \Omega^g_{\phi(P)} \phi(B) \rangle = 0$ and $\text{Tr} |\phi(B)| = 0$ for all B in $T_\ast D$ which implies $\eta_R^{\text{Riem}}(\phi) = \eta_D^{\text{Dobrushin}}(\phi) = 0$. We can summarize this as

Theorem 4.10 If the image of the stochastic map ϕ is one-dimensional, then $\eta_g^{\text{RelEnt}}(\phi) = \eta_g^{\text{Riem}}(\phi) = \eta_g^{\text{geod}}(\phi) = \eta_D^{\text{Dobrushin}}(\phi) = 0$ for all $g \in G$.

We next consider the important special case in which ϕ is a partial trace τ. In the simplest case, let $\tau : \mathbb{C}^{2n \times 2n} \to \mathbb{C}^{n \times n}$ be the map which takes $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \to \tau(M) = A + D$ (86)

where $M \in \mathbb{C}^{2n \times 2n}$ has been written in block form and $A, B, C, D \in \mathbb{C}^{n \times n}$. Then the homogeneity of relative entropy (see Definition 2.3b) implies that for $P = \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix}$ and $Q = \begin{pmatrix} Q & 0 \\ 0 & Q \end{pmatrix}$

$H_g(P, Q) = H_g(2P, 2Q) = H_g(\tau(P), \tau(Q))$

for any g, and similarly

$\langle A, \Omega^g_P(A) \rangle = \langle 2A, \Omega^g_{2P}(2A) \rangle = \langle \tau(A), \Omega^g_{\tau(P)}(\tau(A)) \rangle$

when $A = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$. From this, we easily see that

$\eta_g^{\text{RelEnt}}(\phi) = \eta_g^{\text{Riem}}(\phi) = \eta_g^{\text{geod}}(\phi) = \eta_D^{\text{Dobrushin}}(\phi) = 1$, (87)

where we have assumed implicitly that τ acts on the full algebra of all $2n \times 2n$ matrices.

The partial trace described above is similar to a conditional expectation, i.e., a map for which A_2 is a subalgebra (with identity) of A_1 and $\phi(A) = A \forall A \in A_2$. Both partial traces and conditional expectations are included in the following
Theorem 4.11 If the stochastic map \(\phi \) is also an isomorphism from a non-trivial subalgebra (with identity) of \(A_1 \) to \(A_2 \), then \(\eta_{g}^{\text{RelEnt}}(\phi) = \eta_{g}^{\text{Riem}}(\phi) = \eta_{g}^{\text{geod}}(\phi) = \eta^{\text{Dobrushin}}(\phi) = 1 \) for all \(g \in G \).

Since every completely positive map can be represented as a partial trace \([19]\), this might seem to suggest that \(\eta = 1 \) always holds. However, these representations involve multiple copies of the algebra, so that the partial trace is not acting on the full algebra in the higher dimensional space. Thus, the representation of \(A_1 \) need necessarily not contain a subalgebra with the desired isomorphism property. Examples of maps with \(\eta < 1 \) were already found in \([7]\) for commutative algebras, and two different non-commutative examples are given below.

We now state two results for maps \(\phi: C^{2 \times 2} \rightarrow C^{2 \times 2} \). The proofs are postponed to a subsequent paper \([30]\). Recall that any density matrix in \(C^{2 \times 2} \) can be written in the form \(\frac{1}{2} [I + w \cdot \sigma] \) where \(w \in \mathbb{R}^3 \) and \(\sigma \) denote the vector of Pauli matrices. The first theorem provides evidence for the two conjectures at the end of the previous section.

Theorem 4.12 For the unital map \(\phi_T: I + w \cdot \sigma \rightarrow I + Tw \cdot \sigma \),

\[
\eta_{g}^{\text{RelEnt}}(\phi_T) = \eta_{g}^{\text{Riem}}(\phi_T) = \eta_{g}^{\text{geod}}(\phi_T) = \|T\|^2 \quad \forall \ g \in G,
\]

and \(\eta^{\text{Dobrushin}}(\phi_T) = \|T\| \).

The next example gives a non-unital stochastic map for which \(\eta_{g}^{\text{Riem}}(\phi) \) varies with \(g \). For \(\alpha, \tau > 0 \) with \(\alpha + \tau \leq 1 \), define

\[
\phi_{\alpha,\tau}[I + w \cdot \sigma] = I + \alpha w_1 \sigma_1 + \tau \sigma_2.
\] (88)

It is easily seen to be stochastic because the condition \(\alpha + \tau \leq 1 \) insures that it is a convex combination of stochastic maps. For \(g_{s_0}(w) = (w - 1)^2/(w + s_0) \) as in Example 3 of section 2.3,

\[
\eta_{g_{s_0}}^{\text{Riem}}(\phi) = \sup_{0 \leq \omega \leq 1} \frac{[(1 - \tau^2 + (\rho - \alpha^2)\omega^2)[1 - \omega^2]}{[1 - \tau^2 - \alpha^2 \omega^2][1 - \tau^2(1 - \rho) - (1 - \rho)\alpha^2 \omega^2]} \geq \frac{\alpha^2}{1 - \left(\frac{1-s_0}{1+s_0}\right)^2 \tau^2}
\]

where \(1 - \rho = \frac{1-s_0}{1+s_0} \) and equality holds for \(s_0 \approx 0 \). In particular, we can conclude

Theorem 4.13 For the non-unital stochastic map \(\phi \) given by (88), there is an \(S > 0 \) such that for \(s_0 \in [0, S) \),

\[
\eta_{g_{s_0}}^{\text{Riem}}(\phi) = \frac{\alpha^2}{1 - \left(\frac{1-s_0}{1+s_0}\right)^2 \tau^2}.
\]
Furthermore

\[\eta_{Riem}^{(w-1)^2}(\phi) = \frac{\alpha^2}{1-\tau^2} < \alpha = \eta_{Dobrushin}(\phi). \]

If \(s_1 \in (0, S) \), we have \(\eta_{Riem}^{s_1}(\phi) > \eta_{Riem}^{s_0}(\phi) = \frac{\alpha^2}{1-\tau^2} \).

Acknowledgment: Portions of this work were done while the second author was an Affiliate of Department of Physics at Harvard University; she is grateful to Professor Arthur Jaffe for his hospitality.

References

[1] R. Ahlswede and P. Gacs, “Spreading of sets in product spaces and hyper-contraction of the Markov operator” *Ann. Probab.* 4, 925–939 (1976).

[2] H. Araki, “Relative Entropy of State of von Neumann Algebras” *Publ RIMS Kyoto Univ.* 9, 809–833 (1976).

[3] H. Araki, “Recent Progress in Entropy and Relative Entropy” *Proc. VIIIth International Congress on Mathematical Physics* R. Seneor and M. Mebkhout, eds., pp. 354–365 (World Scientific, 1987).

[4] O. Bratteli and D. Robinson *Operator Algebras and Quantum Statistical Mechanics* (Springer-Verlag, 1981).

[5] L.L. Campbell, “An extended Čencov Characterization of the Information Metric” *Proc. AMS* 98, 135–141 (1986).

[6] N. N. Čencov, *Statistical Decision Rules and Optimal Inferences* Transl. Math. Monogr. bf 53 (AMS, Providence, 1982).

[7] J.E. Cohen, Y. Iwasa, Gh. Rautu, M.B. Ruskai, E. Seneta, and Gh. Zbaganu “Relative Entropy Under Mappings by Stochastic Matrices” *Lin. Alg. Appl.* 179, 211-235 (1993).

[8] M-D Choi, “Completely Positive Linear Maps on Complex Matrices” *Lin. Alg. Appl.* 10, 285–290 (1975).

[9] M.D. Choi, M.B. Ruskai, and E. Seneta “Equivalence of Certain Entropy Contraction Coefficients”, *Lin. Alg. Appl.* 208/209, 29–36 (1993).
[10] J.E. Cohen and Gh. Zbaganu *Comparison of Stochastic Matrices* (Birkhauser, 1998).

[11] J. Dittman and A. Uhlmann, “Connections and Matrics Respecting Standard Purification” preprint.

[12] L.K. Jones and C.L. Byrne “General Entropy Criteria for Inverse Problems, with Applications to Data Compression, Pattern Classification and Cluster Analysis” *IEEE Trans. Info. Theory* 36, 23–30 (Jan., 1990).

[13] S. Kobayashi and K. Nomizu *Foundations of Differential Geometry*, Vol. 1 Interscience, 1963).

[14] K. Kraus, *States, Effects and Operations: Fundamental Notions of Quantum Theory* (Springer-Verlag, 1983).

[15] F. Kubo and T. Ando, “Means of Positive Linear Operators” Math. Ann. 246, 205–224 (1980).

[16] E. Lieb, “Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture” *Adv. Math* 11, 267–288 (1973).

[17] E. Lieb and M.B. Ruskai, “Proof of the Strong Subadditivity of Quantum Mechanical Entropy” *J. Math. Phys.* 14, 1938–1941 (1973).

[18] E. Lieb and M.B. Ruskai “Some Operator Inequalities of the Schwarz Type” *Adv. Math* 12, 269–273 (1974).

[19] G. Lindblad “Completely Positive Maps and Entropy Inequalities” *Commun. Math. Phys.* 40, 147–151 (1975).

[20] E.A. Morozova and N.N. Čencov, “Markov Invariant Geometry on State Manifolds” (Russian) *Itogi Nauki i Tekhniki* 36, 69–102 (1990).

[21] M. Ohya and D. Petz, *Quantum Entropy and Its Use* (Springer-Verlag, 1993).

[22] M. Ohya, D. Petz and N. Watanabe, “On Capacities of Quantum Channels” preprint (1997).

[23] D. Petz, “Quasi-Entropies for Finite Quantum Systems” *Rep. Math. Phys.* 23, 57–65 (1986).

[24] D. Petz, “Information Geometry on Quantum States” Hungarian Academy of Sciences preprint No. 39 (1995).
[25] D. Petz, “Monotone Metrics on Matrix Spaces” Lin. Alg. Appl. 244, 81–96 (1996).

[26] D. Petz and M. B. Ruskai, “Contraction of Generalized Relative Entropy under Stochastic Mappings” Quantum Probability and Infinite Dimensional Analysis in press (1998).

[27] D. Petz and Cs. Sudar, “Geometries of Quantum States” J. Math. Phys. 37, 2662–73 (1996).

[28] D. Petz and Cs. Sudar, “Extending the Fisher Metric to Density Matrices”

[29] M. B. Ruskai, “Beyond Strong Subadditivity? Improved Bounds on the Contraction of Generalized Relative Entropy” Rev. Math. Phys. 6 1147–1161 (1994).

[30] M. B. Ruskai, “Contraction of Riemannian Metrics and Relative Entropy on the Algebra of 2 × 2 Matrices” preprint.

[31] W.F. Stinespring, “Positive Functions on C*-Algebras” Proc. Amer. Math. Soc. 6, 211–216 (1955).

[32] A. Uhlmann, “Relative Entropy and the Wigner–Yanase–Dyson–Lieb Concavity in an Interpolation Theory” Rev. Math. Phys. 54, 21–32 (1977).

[33] A. Uhlmann, “The Metric of Bures and the Geometric Phase” in Groups and Related Topics ed. by R. Gielerak, et al, pp. 267–274 (Kluwer Academic Publisher, 1992).

[34] A. Uhlmann, “Density Operators as an Arena for Differential Geometry” Rep. Math. Phys. 33 253–263 (1993).

[35] A. Uhlmann, “Spheres and Hemispheres as Quantum State Spaces” Erwin Schrödinger Institute preprint No. 102 (Vienna, 1994).

[36] A. Uhlmann, “Geometric Phases and Related Structures” Rep. Math. Phys. 36 461–481 (1995).

[37] V. Vedral and M.B. Plenio “Entanglement Measures and Purification Procedures” preprint [quant-ph/9707033].

[38] A. Wehrl “General Properties of Entropy” Rev. Mod. Phys. 50 221–260 (1978).