The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization

Received for publication, February 1, 2008, and in revised form, May 8, 2008 Published, JBC Papers in Press, June 6, 2008, DOI 10.1074/jbc.M800886200

Madhu S. Pandey, Edward N. Harris, Janet A. Weigel, and Paul H. Weigel
From the Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

The hyaluronic acid (HA) receptor for endocytosis (HARE) is the primary scavenger receptor for HA and chondroitin sulfates in mammals. The two human isoforms of HARE (full-length 315-kDa and a 190-kDa proteolytic cleavage product), which are type I single-pass membrane proteins, are highly expressed in sinusoidal endothelial cells of lymph nodes, liver, and spleen. Their identical HARE cytoplasmic domains contain four candidate AP-2/clathrin-mediated endocytic signaling motifs as follows: YSYFRI2485 FQHF2495 NPLY2519 and DPF2534 (315-HARE numbering). Stably transfected cells expressing 190-HARE(ΔSYFRI), 190-HARE(ΔFQHF), or 190-HARE(ΔNPLY) (lacking Motifs 1, 2, or 3) had decreased 125I-HA endocytosis rates of ~49, ~39, and ~56%, respectively (relative to wild type). In contrast, 190-HARE(ΔDPF) cells (lacking Motif 4) showed no change in HA endocytic rate. Deletions of motifs 1 and 2 or of 1, 2, and 4 decreased the rate of HA endocytosis by only ~41%. Endocytosis was ~95% decreased in mutants lacking all four motifs. Cells expressing a 190-HARE(Y2519A) mutant of the NPLY motif retained 85–90% of wild type endocytosis, whereas this mutation in the triple motif depleted decreased endocytosis to ~7% of wild type. Tyr in NPLY2519 is thus important for endocytosis. All HARE mutants showed similar HA binding and degradation of the internalized HA, indicating that altering endocytic motifs did not affect ectodomain binding of HA or targeting of internalized HA to lysosomes. We conclude that, although NPLY may be the most important motif, it functions together with two other endocytic motifs; thus three signal sequences (SYFRI, FQHF, and NPLY) provide redundancy to mediate coated pit targeting and endocytosis of HARE.

The GAGs,2 which are primarily located at the cell surface or in the ECM, constitute a polysaccharide family that includes the chondroitin sulfates, heparin, heparan sulfate, keratan sulfate, dermatan sulfate, and HA. HA is found in essentially all vertebrate tissues, which is a major ECM constituent (1), and is abundant in young skin, synovial fluid, vitreous humor of the eye, and other tissues (e.g. umbilical cord). The size range of HA (up to ~106 Da) is much greater than other GAGs (~105 Da). Unlike other cell surface receptors for HA, such as CD44 and CD168, HARE mediates the rapid endocytosis of HA via the clathrin-coated pit pathway (2–4) in an endocytic process similar to that for transferrin, asialoglycoprotein, mannose 6-phosphate, and low density lipoprotein receptors (5, 6). Although named for its first known function (3), HARE is a general receptor for GAG clearance, mediating the endocytosis of CS-A, CS-C, CS-D, CS-E, heparin, and dermatan sulfate (CS-B) (7, 8). Heparan sulfate and keratan sulfate are the only GAGs that are not ligands for HARE (63).

Despite its simple linear structure (i.e. a polymer of 2-deoxy, 2-acetamido-α-glucopyranosyl-β(1,4)-α-glucuronopyranosyl-β(1,3) disaccharide units), HA is a very dynamic molecule, whose synthesis and degradation appear tightly regulated. Mammals degrade and resynthesize about one-third (~5 g) of their total body HA daily. The metabolic half-life of HA varies from ~1.5 day in skin (9) to 2–3 weeks in cartilage (10). Similarly, circulating HA has a half-life of 2–5 min, because of its rapid clearance by liver sinusoidal endothelial cells (10, 11). In mammals, large native HA (~107 Da) in ECMs throughout the body is partially degraded to fragments of ~106 Da that are released into lymphatic fluid and flow to lymph nodes where sinusoidal endothelial cells remove and degrade ~85% of the HA. The remaining HA (~15%) passes through the lymph nodes, enters the blood, and is removed by the liver via receptor-mediated endocytosis. Although HA turnover is high, HARE in sinusoidal endothelial cells of lymph nodes and liver keeps the steady-state HA concentration in blood low (10–100 ng/ml). A high level of HA in the blood circulation could elevate blood viscosity and impair the microcirculation in capillaries.

Full-length hHARE is a 2551-aa type I single transmembrane glycoprotein (~315 kDa in SDS-PAGE) encoded by the 180.2-kb STAB-2 gene on chromosome 12q23.3; the gene has 69 exons. HARE proteins were first purified from rat liver (12) and human spleen (13). Two isoforms of HARE are present in...
Human HARE CD Contains Multiple Endocytic Motifs

Human HARE (Human Angiopoietin-2 Receptor) is a signaling receptor that can mediate multiple endocytic pathways, including receptor-ligand complexes from the cell surface. The study aimed to determine which of the four candidate targeting motifs in the CD of HARE are functional in directing the receptor-ligand complexes into endocytic pathways for internalizing and then creating different microenvironments for different receptor-ligand complexes.

EXPERIMENTAL PROCEDURES

Materials and Buffers—Pfu Ultra DNA polymerase for site-directed mutagenesis was from Stratagene (La Jolla, CA), and super-competent DH10B-derived Escherichia coli, TOP10 E. coli, restriction enzymes, cell culture reagents, and hygromycin B were from Invitrogen. Plasmid DNA was purified using Eppendorf Miniprep (Westbury, NY) or Maxiprep plasmid isolation kits (Promega, Madison, WI). Protease inhibitor mixture (catalogue P8340) and alkaline phosphatase conjugated to anti-goat or anti-mouse polyclonal Abs were from Santa Cruz Biotechnology (Santa Cruz, CA). SDS, Tris, acrylamide, bis-acrylamide, TEMED, ammonium persulfate, high range protein molecular weight markers, p-nitro blue tetrazolium, and 5-bromo-4-chloro-3-indolyl phosphate to-luidine were from Bio-Rad. Solutions for dye binding protein assays (20) and reagents for enhanced chemiluminescence were from Pierce. Autoradiography film was from Molecular Technologies (St. Louis, MO). Na$_{22}$I was obtained from GE Healthcare, and 125I-HA was prepared as described previously (21, 22). Nitrocellulose and polyvinylidene difluoride membrane were from Millipore (Billerica, MA). Unless specified otherwise, other chemicals and analytical reagent of the purity available were from Sigma or Fisher. Growth Medium is DMEM containing 8% (v/v) bovine serum and 100 µg/ml hygromycin B. TBS contains 20 mM Tris–HCl, pH 7.5, and 150 mM NaCl. TBST is TBS with 0.1% (v/v) Tween 20. TBST/BSA is TBST with 1.0% (v/v) BSA. PBS contains 137 mM NaCl 8 mM Na$_2$HPO$_4$, 1.5 mM KH$_2$PO$_4$, 2.7 mM KCl, pH 7.2. HBSS contains 5 mM KCl 0.4 mM KH$_2$PO$_4$, 0.8 mM MgSO$_4$, 137 mM NaCl, 0.3 mM Na$_2$HPO$_4$, 5.5 mM glucose, 1.26 mM CaCl$_2$, 0.5 mM MgCl$_2$, and 28 µM phenol red; at the time of use, 3.5 g/100 ml of NaHCO$_3$ was added, and the pH was adjusted to 7.2 with HCl.

Endocytic receptors contain either single or multiple targeting sequences that direct the receptor-ligand complexes into a coated pit pathway (5, 16, 17). There may be multiple coated pit pathways for internalizing and then creating different microenvironments for different receptor-ligand complexes so they are routed or assembled signaling complexes in different ways appropriate for the particular receptor (6, 18, 19). In contrast to single motif receptors, the HARE CD contains five putative endocytic motifs (Fig. 1 and Table 2): YSYF2483, YFRI2485, FQHF2493, NPLY2519, and DP2534. The first three (YSYF, YFRI, and FQHF) are ϕXXϕ motifs; where ϕ is either Tyr or Phe, X can be any aa, and B is a hydrophobic aa with a bulky side chain.

The first two sequences are overlapping, located at the junction between the membrane and CD, and for practical reasons we consider them to be a single motif, YSYFRI2485. The functions of ϕXXϕ, NPYX, and DP(F/P) motifs in receptor internalization, trafficking, and delivery of ligand to lysosomes have been studied extensively in different receptors (Table 2). Many receptors contain NPYX motifs that facilitate rapid internalization of receptor-ligand complexes from the cell surface.

We recently found that HARE is a signaling receptor able to sense external HA and initiate intracellular activation of the mitogen-activated protein kinase ERK (64). Thus, we are interested in how HARE is targeted for internalization and intracellular routing. In this study, our goal was to determine which of the four candidate targeting motifs in the CD of HARE are important or critical for efficient endocytosis of HA by the coated pit pathway. The results indicate that three motifs are important, and thus provide substantial redundancy, for coated pit targeting and internalization.
days and then periodically when required. After 2 weeks, individual isolated colonies were collected and grown in 24-well plates until confluent. Clones were tested for HARE protein expression by SDS-PAGE, using 5% gels, followed by Western blot analysis (23) with anti-V5 Ab. Each clone was also tested for correct insertion of the mutant pSecTag-190-kDa hHARE cDNA uniquely into the Flp-In recombination site by the Flp-In recombinase encoded by pOG44, as described previously (7, 8). At least 4–6 clones of each mutant were selected and characterized for further experiments.

125I-HA Binding Assays for Cell Surface and Intracellular Receptors—WT 190-HARE, EV, and mutant 190-HARE cell lines were grown to ~90% confluence in Growth Medium in 12-well tissue culture plates. Cultured cells were washed with 1 ml of sterile PBS and 1 ml of serum-free DMEM and were incubated with 2 ml of HBSS and incubated at 37 °C in Endocytosis medium for 2 h at 4 °C. Media were aspirated, and the cells were washed rapidly three times with HBSS (2 ml per wash) to remove unbound 125I-HA. Cells were then lysed in 1 ml of lysozyme (0.3 n NaOH, and radioactivity was measured using a cetylpyridinium chloride precipitation assay as described previously (26, 27). Cells were lysed in 0.3 n NaOH, and 100-μl samples were mixed at 22 °C with 47 μl of 0.6 n HCl, 28 μl of distilled water, and 125 μl of 2.0 mg/ml HA in 1.5-ml microcentrifuge tubes. Cetylpyridinium chloride (300 μl of 6%; w/v) in distilled water was added, and the tubes were mixed by vortexing, and after 10 min, the samples were centrifuged (22 °C, 5 min, 9000 rpm) in a microcentrifuge, using a swinging bucket rotor. A supernatant sample (300 μl) was taken to determine radioactivity, and the rest was removed by aspiration. The tube tip containing the precipitated pellet was cut off and put in a gamma counter tube, and radioactivity was determined. Degradation values were calculated as the time-dependent increase of nonprecipitable radioactivity and are expressed as the percent (with WT as 100%) of specifically internalized 125I-HA that was degraded.

Western and Ligand Blot Assays—To analyze and normalize for HARE expression in mutant cell lines, cells at ~90% confluence in 6-well plates were washed twice with cold PBS and solubilized in Lysis Buffer. Lysates were mixed by vortexing, incubated on ice for 2 h, and centrifuged at 11,250 × g for 5 min to remove debris. Samples (25 μg of protein) were separated in 5% gels by nonreducing SDS-PAGE, followed by electro-transfer to nitrocellulose membranes for 1 h, 4 °C at 110 V in 25 mM Tris-HCl, 192 mM glycine, pH 7.4, and 20% (v/v) methanol. For Western blot analysis of WT and mutant 190-HARE protein, membranes were treated with TBST/BSA for 1 h, washed, and incubated with anti-V5Ab for 1 h at 22 °C. Blots were washed three times (5 min each) with TBST/BSA, incubated with goat anti-rabbit Ab conjugated to alkaline phosphatase (or horseradish peroxidase), washed three times with TBST/BSA, and incubated with p-nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate p-toluidine-conjugated Ab for color development using alkaline phosphatase. Reactions were stopped by washing the membrane with distilled water. For horseradish peroxidase detection, membranes were incubated with 1 ml of 0.3 n NaOH, and radioactivity and protein content were determined as above. Specific HA endocytosis or degradation was calculated as the mean value (as fmol/106 cells/ HARE expression relative to WT HARE) without unlabeled HA (total) minus the value in the presence of unlabeled HA (nonspecific). Each experiment was repeated 2–3 times with multiple clones.

Degradation of internalized 125I-HA was measured using a cetylpyridinium chloride precipitation assay as described previously (26, 27). Cells were lysed in 0.3 n NaOH, and 100-μl samples were mixed at 22 °C with 47 μl of 0.6 n HCl, 28 μl of distilled water, and 125 μl of 2.0 mg/ml HA in 1.5-ml microcentrifuge tubes. Cetylpyridinium chloride (300 μl of 6%; w/v) in distilled water was added, and the tubes were mixed by vortexing, and after 10 min, the samples were centrifuged (22 °C, 5 min, 9000 rpm) in a microcentrifuge, using a swinging bucket rotor. A supernatant sample (300 μl) was taken to determine radioactivity, and the rest was removed by aspiration. The tube tip containing the precipitated pellet was cut off and put in a gamma counter tube, and radioactivity was determined. Degradation values were calculated as the time-dependent increase of nonprecipitable radioactivity and are expressed as the percent (with WT as 100%) of specifically internalized 125I-HA that was degraded.

Western and Ligand Blot Assays—To analyze and normalize for HARE expression in mutant cell lines, cells at ~90% confluence in 6-well plates were washed twice with cold PBS and solubilized in Lysis Buffer. Lysates were mixed by vortexing, incubated on ice for 2 h, and centrifuged at 11,250 × g for 5 min to remove debris. Samples (25 μg of protein) were separated in 5% gels by nonreducing SDS-PAGE, followed by electro-transfer to nitrocellulose membranes for 1 h, 4 °C at 110 V in 25 mM Tris-HCl, 192 mM glycine, pH 7.4, and 20% (v/v) methanol. For Western blot analysis of WT and mutant 190-HARE protein, membranes were treated with TBST/BSA for 1 h, washed, and incubated with anti-V5Ab for 1 h at 22 °C. Blots were washed three times (5 min each) with TBST/BSA, incubated with goat anti-rabbit Ab conjugated to alkaline phosphatase (or horseradish peroxidase), washed three times with TBST/BSA, and incubated with p-nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate p-toluidine-conjugated Ab for color development using alkaline phosphatase. Reactions were stopped by washing the membrane with distilled water. For horseradish peroxidase detection, membranes were incubated

TABLE 1

Primer sequences used to create mutations in the 190-HARE CD

190-HARE mutant	Forward and reverse mutagenic primer sequence
(AYSFRI) = ΔM1	F, 5′-GTTGGCTTGGCTAACCAGAGAATAC-3′
(AYSFRI) = ΔM2	R, 5′-GATTCTTGTCCTGACTGGCAGGCAAG-5′
(AYSFRI) = ΔM3	F, 5′-GAGGGAGCTGAGGTTGTGCTCTCCGAGATATTCTCAGGCTGCTG-3′
(AYSFRI) = ΔM4	R, 5′-GTCCTCTTCCGACTCGCCGATTGTTCTCCG-3′
Y2519A	F, 5′-GAGAATATCTCTACTGCTGGCAGAAGTAAACGAC-3′
	R, 5′-GATTCTTGTCCTGACTGGCAGGCAAG-5′
Human HARE CD Contains Multiple Endocytic Motifs

with enhanced chemiluminescence substrate and exposed to autoradiography film. For comparison of 190-HARE protein expression levels by mutant cell lines (with replicates of 4–6 clones per group), HARE band intensities in Western blots (with equal total cell protein loads) were quantified by densitometry using a FluoroChem8000 Imaging System (Alpha Innotech Corp, San Leandro, CA). Band intensities were normalized to parallel wild type 190-HARE samples and expressed as a percent of WT HARE expression.

For ligand blot assays, the post-transfer membranes were incubated with TBST for 2 h or overnight at 4 °C. To reduce nonspecifically bound material, and thus background, solutions of 1.5 μg/ml 125I-HA in 10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM EDTA, with or without a 100-fold excess of unlabeled HA, were first exposed to unused nitrocellulose at 22 °C for 2 h. The protein-containing membranes were then incubated with the treated 125I-HA solutions for 2 h at 4 °C, washed five times (5 min each) with TBST, air-dried at 22 °C for 30 min, and bound 125I-HA was detected by autoradiography using Kodak BioMax MS film exposed for 1–15 days at 315 °C. The four sequence motifs (YSYFRI2485, FQHF2495, NPLY2519, and DPF2534) are referred (indicated in

Table 2

Potential endocytic signals in HARE

The candidate endocytic signals (M1–M4) in the HARE CD, their recognition partners, and potential functions are summarized. The first motif contains two overlapping YXXXΦ motifs as indicated by the sequences that are underlined or in boldface font.

HARE sequence	Targeting motif	Proposed recognition protein	Function	Refs.
YSYFRI2485	YXXΦ (ΦXXB)	μ subunits of AP complex	Internalization, basolateral, or lysosomal targeting	43, 44, 59–62
FQHF2495	ΦXXB	μ subunits of AP complex	Internalization, basolateral, or lysosomal targeting	43, 44, 59–62
NPLY2519	NPXY	μ2 subunit of AP-2, Dab2 Tyr(P) binding domain, clathrin	Internalization, intracellular, routing/signaling	42, 47, 49, 50
DPF2534	DPF/DPW	Ear domain of the α subunit of AP-2 complex	Internalization process	34, 35, 37

RESULTS

Whereas many membrane receptors have a single CD sequence that mediates efficient uptake into the coated pit pathway, HARE has multiple candidate motifs for this purpose (Fig. 1A and Table 2). Involvement of multiple motifs might indicate that redundancy is critical, perhaps for multiple functions of HARE, or that different HARE-ligand complexes may follow alternative intracellular pathways. To determine whether any of the four putative endocytic motifs in the HARE CD are active for targeting to coated pits, we created a panel of stable Flp-In 293 cell lines expressing 190-HARE mutants with different endocytic motif deletions or substitution mutations (Fig. 1B). Cells expressing mutant 190-HARE protein that were negative for β-galactosidase and sensitive to Zeocin represented the correct insertion of vector into the single recombinase-specific site in Flp-In 293 cells. We examined multiple clones of the following 190-HARE mutant cell lines containing single motif deletions (ΔYSYFRI (ΔM1), ΔFQHF (ΔM2), ΔNPLY (ΔM3) or ΔDPF (ΔM4)); a double motif deletion (ΔM1M2), triple motif deletions (ΔM1M2M4) without and with a Y2519A substitution in M3, and a quadruple motif deletion (ΔM1M2M3M4).

We selected 4–6 individual cell line clones for each mutant and measured HARE expression in replicates of each group of clones by SDS-PAGE, Western analysis, and densitometry using equal amounts of total cell lysate protein as measured by the Bradford assay. Although a single blot is shown (Fig. 2A), the overall results (not shown) demonstrated that HARE expression within each group of mutants was ~85–100% of the WT 190-HARE protein level. Each
Human HARE CD Contains Multiple Endocytic Motifs

HARE CD mutant also contains V5 and His6 epitopes at the COOH terminus. No differences were found in the morphology or cell growth characteristics among the mutant cell lines, compared with 190-HARE cells (data not shown). Ligand blot assays were performed to quantify specific \(^{125}\text{I}\)-HA binding to the various HARE mutants after SDS-PAGE and electrotransfer to nitrocellulose (28). Densitometry of autoradiographs followed by Western blot analysis allowed HA binding to be normalized for HARE protein content, relative to WT (Fig. 2B). All of the HARE CD mutants lacking individual or multiple endocytic motifs bound \(^{125}\text{I}\)-HA in ligand blot assays essentially at WT levels. The HARE CD mutants also bound comparable amounts of three anti-hHARE mAbs, compared with WT HARE, indicating there were no changes in the folding of the mutant HARE ectodomains (not shown).

Typically, endocytic recycling receptors constitutively recycle and are found both on the cell surface and in numerous intracellular compartments, representing different stages of the receptor routing and recycling pathway. The majority of such endocytic receptors, including HARE, are intracellular, and this cellular distribution of receptor molecules reflects the kinetic steady-state of the receptor pathway, which is both kinetic and spatial. If mutation of an important motif sequence affected the intracellular routing/recycling kinetics of HARE, then the normal steady-state receptor distribution could also be altered. To test this, cell lines expressing a variety of 190-HARE CD mutants were assessed for cell surface and total (i.e., cell surface and intracellular receptors in digitonin-permeabilized cells) binding of \(^{125}\text{I}\)-HA (Fig. 3A and Fig. 4A). All 190-HARE single mutant cells bound \(^{125}\text{I}\)-HA at the cell surface and to intracellular sites at WT levels (Fig. 3A). Among the multiple motif deletion mutants, only the \(\Delta M1/M2/M4 + Y2519A\) HARE mutant displayed significantly less cell surface \((p = 0.004)\) HARE and total \((p = 0.02)\) HARE than WT (Fig. 4A). However, the \(\Delta M1/M2/M4 + Y2519A\) HARE mutant showed a surface/internal HARE distribution that was similar to WT. Thus, all the 190-HARE CD motif-deletion mutants appear to have normal intracellular receptor trafficking and recycling kinetics.

To understand the role of putative signal motifs in endocytosis of HA and targeting HARE to coated pits, cells expressing 190-HARE mutants were incubated at 37 °C with \(^{125}\text{I}\)-HA with or without excess HA to assess nonspecific uptake (Fig. 3A). Values from 2 to 3 independent experiments are the means ± S.E. \((n = 6–9)\) specific \(^{125}\text{I}\)-HA binding normalized for HARE expression relative to WT 190-HARE. Specific \(^{125}\text{I}\)-HA internalization was determined at 37 °C for 2 and 4 h as described under “Experimental Procedures.” Values from 2 to 3 independent experiments are the mean ± S.E. \((n = 6–9)\) specific \(^{125}\text{I}\)-HA endocytosis, normalized for HARE expression relative to WT. The plots show cells expressing WT (○), \(\Delta M1\) (▲), \(\Delta M2\) (△), \(\Delta M3\) (■), or \(\Delta M4\) (□) 190-HARE, or EV (●).
or a triple motif (ΔM1M2M4) deletion showed similar endocytic rate decreases of ~41% (Fig. 4B). The essentially identical rates of HA endocytosis by cells expressing HARE ΔM1M2 or ΔM1M2M4 mutants confirm that the DPF motif does not play an important role in HARE-mediated endocytosis of 125I-HA. Cells expressing HARE lacking the NPLY motif (ΔM3) demonstrated ~56% decreased endocytosis rates, which indicate that this motif is very important, although not absolutely necessary, for HARE internalization.

After HA is internalized, it is delivered to lysosomes where it is then degraded by lysosomal hyaluronidase, β-glucuronidase, and β-N-acetylglucosaminidase (10, 26). 125I-HA degradation was quantified by a cetylpyridinium chloride precipitation assay (26). No significant differences in the amounts of 125I-HA degradation were observed for any of the HARE mutants compared with the WT cell lines over 8 h (Fig. 5). The results indicate that deletion of different endocytic motifs in the HARE CD does not affect delivery to and degradation in lysosomes of the 125I-HA internalized by the various mutants.

To confirm the redundancy of the multiple motifs in the HARE CD and further assess their role in HARE internalization, we created additional deletion and point mutation mutants of M3. Cells expressing a triple motif deletion HARE CD mutant, ΔM1M2M4, were compromised in their ability to endocytose HA but still mediated HA uptake at 58% of the WT 190-HARE rate (Fig. 4B). In contrast, a HARE CD mutant with a single Y2519A change in the NPLY signal sequence showed only an ~10% reduced rate of HA uptake (Fig. 4C); this mutation had little effect compared with deletion of the whole M3 motif. However, when the Y2519A mutation was combined with the triple motif deletion, Δ(M1M2M4), the resulting rate of HARE-mediated 125I-HA endocytosis was reduced by ~95% (Fig. 4C), to almost the level of background uptake seen in EV cells. The result shows that in the absence of the functional redundancy provided by motifs M1 and M2, Tyr2519 is critical for the function of motif M3. Table 3 summarizes the 125I-HA endocytosis rates for all the 190-HARE mutants used in this study.

DISCUSSION

Receptor-mediated endocytosis via the clathrin-coated pit pathway is a sequential process, involving many cytosolic pro-
Human HARE CD Contains Multiple Endocytic Motifs

Human HARE CD contains four potential signal sequence motifs (YYSFRF2485, FQHE2495, NPLY2519, and DP2534) that could be used to target ligand-HARE complexes to the clathrin-coated pit pathway for rapid endocytosis. As expected, deleting any of these CD motifs had little or no effect on \(^{125}\text{I}\)-HA binding by their respective HARE ectodomains or on HARE protein expression levels. All HARE mutants were also recognized by three hHARE-specific mAbs originally raised against rat HARE suggesting that the ecto-domain is not affected by CD mutations (3, 13). However, cells expressing single or multiple deletions of motifs M1, M2, or M3 showed very similar (~38–52%) decreases in \(^{125}\text{I}\)-HA internalization rates. In contrast, deletion of M4 (DP2534) did not affect \(^{125}\text{I}\)-HA endocytosis. Moreover, all of the 190-HARE CD mutants tested showed no defects in the ability to deliver the internalized HA to lysosomes, i.e. deletion of different potential endocytic motifs in HARE did not affect the trafficking pathways that deliver internalized HA from plasma membrane to lysosomes. In all but two of the HARE CD mutants, intracellular receptor routing and recycling appeared to be unaffected. The results do not exclude the possibility that some of the signal sequences are involved in both coated pit targeting and intracellular routing.

Several classes of endocytic motifs present in the CD of membrane proteins have been identified that utilize clathrin-coated pits for endocytosis. Among these signals, Tyr-containing signal motifs such as YXX\Phi and NPTY are the best characterized. Cells expressing 190-HARE(\(\Delta M1\)) showed slower \(^{125}\text{I}\)-HA internalization rates (~49%) compared with WT, indicating that YSYFRF2485, with two overlapping YXX\Phi motifs, is important but not essential for endocytosis. Tyr in the CD of endocytic recycling receptors (e.g. cation-independent mannoside 6-phosphatase, asialoglycoprotein, and transferrin receptors (5, 38)) is essential for binding the \(\mu 2\) subunit of AP-2 and for accumulation into clathrin-coated pits and rapid internalization (39–41). The dominant signal for \(\beta\)-amyloid precursor protein endocytosis is also a YXX\Phi motif, YEPN (42). YXX\Phi motifs are not limited to only endocytic targeting, they can also help target transmembrane proteins to lysosomes and lysosome-related organelles (43), and sort membrane receptors to the basolateral plasma membrane of polarized epithelial cells (44) or to the trans-Golgi network (5, 30, 45).

Tyr is also critical in NPYL endocytic signal motifs, which are highly conserved from Caenorhabditis elegans and Drosophila melanogaster to mammals, indicating that they participate in evolutionarily conserved sorting mechanisms. The NPY signal motifs in other type I integral membrane receptors such as the LDL receptor, LDL receptor-related protein, integrin \(\beta\), and \(\beta\)-amyloid precursor protein mediate rapid endocytosis via coated pits (42, 46–50). Generally, NPYL signals are found in medium length CDGs (e.g. ~40–200 aa), not closer than 10 aa from the membrane domain and not present at the very end of the CD. In hHARE, the NPLY2519 sequence is in the center of the 72-aa-long CD.

This is the first effort to address the functional roles of YXX\Phi, DPX, and NPTY motifs in the endocytosis of hHARE-ligand complexes. The hHARE CD actually has three \(\Phi\)XYB motifs: the overlapping YSYF and YFRI sequences in M1 and the M3 motif FXXEr2495. Interestingly, the rat HARE CD has corresponding and nearly identical YSYFR (M1) and FQRF (M2) sequences but does not contain DP(F/W) or NPYX motifs (13, 14). Our results indicate that although NPLY2519 (M3) is slightly more important for endocytosis by hHARE, the YSYFRI2485 (M1) and FQHE2495 (M2) sequences also contribute substantially to the overall internalization of HA. Thus, no single motif was critical for rapid uptake of HARE, and the three motifs provide, for as yet unknown reasons, unexpected redundancy for internalization. Redundancy may be needed for functions of HARE other than just GAG clearance. One newly discovered function is the recent finding that HARE is a signaling receptor that mediates intracellular activation of ERK1 and -2, in response to the concentration of external HA (64). Perhaps

Table 3

190-HARE mutant	Specific \(^{125}\text{I}\)-HARE	Relative HA uptake
WT	295 ± 5	100
EV	0.5 ± 0.3	0.2
\(\Delta M1\)	151 ± 5\(^a\)	51
\(\Delta M2\)	180 ± 2\(^b\)	61
\(\Delta M3\)	129 ± 4\(^b\)	44
\(\Delta M4\)	351 ± 6	119
\(\Delta M1M2\)	182 ± 2	61
\(\Delta M1M2M4\)	172 ± 4	58
\(\Delta M1M2M3M4\)	21 ± 3	7
Y2519A	279 ± 19	94
\(\Delta M1M2M3 + Y2519A\)	14 ± 2	5

\(^a\) Data indicate that the rates for the \(\Delta M1\) and \(\Delta M3\) mutants, compared with each other, were significantly different; \(p < 0.002\).

\(^b\) Data indicate that the rates for \(\Delta M1\) and \(\Delta M2\) mutants were significantly different; \(p < 0.001\).
Human HARE CD Contains Multiple Endocytic Motifs

one of the three active endocytic signal sequences is also specifically involved in activation of the ERK signaling pathway.

Some receptors have a single signal motif for internalization. For example, substitution of Tyr207 with Cys or Ala reduces endocytosis by ~85% in the LDL receptor, whereas substitution with Phe does not abolish rapid internalization. An NPXY motif in the insulin-like growth factor I receptor is the primary motif for internalization and is also involved in the signaling pathway (51). Other receptors possess multiple motifs for internalization, so that mutation or deletion of a single motif often does not completely ablish receptor internalization. For example, two NPXY motifs in integrin β1 are required for recruitment to focal adhesions (52), and the CD of megalin has two NPXY motifs that are both important for coated pit targeting (53). The interleukin-1 receptor α2 contains a diLeu- and a Tyr-based endocytic motif, and substitution or deletion of either motif decreases endocytosis of 125I-interleukin-13 by ~50%, indicating that both endocytic motifs work together for internalization (54). In some proteins, endocytic motifs are not involved in endocytosis and therefore not signal sequences. The angiotensin II receptor contains four candidate Tyr-based motifs and one diLeu-based motif, but only Tyr219 and LL316 are important for efficient receptor internalization (55). The CD of the receptor for LDL-related protein 1 contains one YXXΦ, two NPXY, and two diLeu motifs. However, only the YXXΦ and one diLeu are dominant endocytic signals for targeting receptor to coated pits (56).

It may not be surprising that multiple endocytic motifs are involved in HARE-mediated internalization of 125I-HA. Although we have characterized HARE most extensively as an HA receptor, it also specifically binds and internalizes many other ligands. In addition to HA and multiple CS types, HARE/Stabilin 2 specifically recognizes advanced glycation end products (e.g. AGE-BSA) and acetylated-LDL (57), which we have confirmed. We also recently discovered that the 190-HARE and 315-HARE proteins are endocytic receptors for hirudin (63). Thus, HARE binds and internalizes sulfated (CS, DS, and heparan) and nonsulfated (HA and chondroitin) GAGs and advanced glycation end products. Nonetheless, HARE is specific and does not simply bind any anionic polymer, because heparan sulfate, keratan sulfate, polygalacturonic acid, and nucleic acids are not ligands (2, 7, 8, 58).

In summary, the results show that NPXY2519 is a slightly more active endocytic signal sequence in the CD of 190-HARE than YSYSRYF2485 or FQHF2495. In contrast, deletion of the DPE2534 sequence motif did not affect endocytosis. Thus, the maximum rate of HARE endocytosis requires that the three endocytic motifs (YSYFRI, FQHF, and NPXY) work together for efficient coated pit targeting and endocytosis of HARE.

Acknowledgments—We thank Jennifer Washburn for technical assistance and Dr. Svetlana Kyosseva for helpful discussions.

REFERENCES
1. McDonald, J., and Hascll, V. C. (2002) J. Biol. Chem. 277, 4575–4579
2. McGary, C. T., Raja, R. H., and Weigel, P. H. (1989) Biochem. J. 257, 875–884
3. Zhou, B., Weigel, I. A., Fauss, L. A., and Weigel, P. H. (2000) J. Biol. Chem.

275, 37733–37741
4. Smedsrod, B., Malmgren, M., Ericsson, J., and Laurent, T. C. (1988) Cell Tissue Res. 253, 39–45
5. Mellman, I. (1996) Annu. Rev. Cell Dev. Biol. 12, 575–625
6. Weigel, P. H., and Yik, I. H. N. (2002) Biochim. Biophys. Acta 1572, 341–363
7. Harris, E. N., Kyosseva, S. V., Weigel, J. A., and Weigel, P. H. (2007) J. Biol. Chem. 282, 2785–2795
8. Harris, E. N., Weigel, I. A., and Weigel, P. H. (2004) J. Biol. Chem. 279, 36201–36209
9. Tammi, R., Saamanen, A.-M., Maibach, H. L., and Tammi, M. (1991) Invest. Dermatol. 97, 126–130
10. Fraser, J. R. E., Laurent, T. C., and Laurent, U. B. G. (1997) J. Intern. Med. 242, 27–33
11. Fraser, J. R. E., Laurent, T. C., Pertof, H., and Baxter, E. (1981) Biochem. J. 200, 415–424
12. Zhou, B., Oka, J. A., Singh, A., and Weigel, P. H. (1999) J. Biol. Chem. 274, 33831–33834
13. Zhou, B., McGary, C. T., Weigel, I. A., Saxena, A., and Weigel, P. H. (2003) Glycobiology 13, 339–349
14. Zhou, B., Weigel, I. A., Saxena, A., and Weigel, P. H. (2002) Mol. Biol. Cell 13, 2853–2868
15. Politz, O., Gratchev, A., McCourt, P. A. G., Schledzewski, K., Guillot, P., Johansson, S., Svineng, G., Franke, P., Kannicht, C., Kzhyszykowska, I., Longati, P., Velten, F. W., and Goerdt, S. (2002) Biochem. J. 362, 155–164
16. Clague, M. J., and Urbe, S. (2001) J. Cell Sci. 114, 3075–3081
17. Sorkin, A. (2004) Curr. Opin. Cell Biol. 16, 392–399
18. Benmerah, A., and Lamaze, C. (2007) Traffic 8, 970–982
19. Mills, I. G. (2007) Semin. Cell Dev. Biol. 18, 459–470
20. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
21. Raja, R. H., LeBoeuf, R. D., Stone, G. W., and Weigel, P. H. (1984) Anal. Biochem. 139, 168–177
22. McGary, C. T., Weigel, J. A., and Weigel, P. H. (2003) Methods Enzymol. 363, 354–366
23. Burnette, W. N. (1981) Anal. Biochem. 112, 195–203
24. Weigel, P. H., Ray, D. A., and Oka, J. A. (1983) Anal. Biochem. 133, 437–449
25. Weigel, P. H., McGary, C. T., and Weigel, J. A. (2003) Methods Enzymol. 363, 382–391
26. McGary, C. T., Yannariello-Brown, J., Kim, D. W., Stinson, T. C., and Weigel, P. H. (1993) Hepatology 18, 1465–1476
27. Weigel, I. A., and Weigel, P. H. (2003) J. Biol. Chem. 278, 42802–42811
28. Yannariello-Brown, J., Zhou, B., and Weigel, P. H. (1997) Glycobiology 7, 15–21
29. Slepenev, V. I., and De Camilli, P. (2000) Nat. Rev. Neurosci. 1, 161–172
30. Kirchhausen, T., Bonifacio, J. S., and Riezman, H. (1997) Curr. Opin. Cell Biol. 9, 488–495
31. Altschuler, Y., Barbas, S. M., Terlecky, L. J., Tang, K., Hardy, S., Mostov, K. E., and Schmid, S. L. (1998) J. Cell Biol. 143, 1871–1881
32. Praefcke, G. J., and McMahon, H. T. (2004) Nat. Rev. Mol. Cell Biol. 5, 133–147
33. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C., and Wakeham, D. E. (2001) Annu. Rev. Cell Dev. Biol. 17, 517–568
34. Chen, H., Fre, S., Slepenev, V. I., Capua, M. R., Takei, K., Butler, M. H., Di Fiore, P. P., and De Camilli, P. (1998) Nature 394, 793–797
35. Benmerah, A., Begeu, D., Dautry-Varsat, A., and Corb-Bensussan, N. (1996) J. Biol. Chem. 271, 12111–12116
36. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M., and Kirchhausen, T. (1996) J. Biol. Chem. 271, 28727–28730
37. Wang, L.-H., Sudhof, T. C., and Anderson, R. G. W. (1995) J. Biol. Chem. 270, 10079–10083
38. Iacopetta, B. I., Rothenberger, S., and Kuhn, L. C. (1988) Cell 54, 485–489
39. Boll, W., Ohno, H., Zhou, S. Y., Rapoport, I., Cantley, L. C., Bonifacio, J. S., and Kirchhausen, T. (1996) EMBO J. 15, 5789–5795
40. Ohno, H., Fournier, M. C., Poy, G., and Bonifacio, J. S. (1996) J. Biol. Chem. 271, 29009–29015
41. Shiratori, T., Miyatake, S., Ohno, H., Nakaseko, C., Isuno, K., Bonifacio, J. S., and Saito, T. (1997) Immunity 6, 583–589
42. Perez, R. G., Soriano, S., Hayes, J. D., Otaszewski, B., Xia, W. M., Selkoe, D. J., Chen, X. H., Stokin, G. B., and Koo, E. H. (1999) J. Biol. Chem. 274, 18851–18856
43. Williams, M. A., and Fukuda, M. (1990) J. Cell Biol. 111, 955–966
44. Hunziker, W., Harter, C., Matter, K., and Mellman, I. (1991) Cell 66, 907–920
45. Marks, M. S., Woodruff, L., Ohno, H., and Bonifacino, J. S. (1996) J. Cell Biol. 135, 341–354
46. Filardo, E. J., Brooks, P. C., Deming, S. L., Damsky, C., and Cheresh, D. A. (1995) J. Cell Biol. 130, 441–450
47. Chen, W.-J., Goldstein, J. L., and Brown, M. S. (1990) J. Biol. Chem. 265, 3116–3123
48. Davis, C. G., Lehrman, M. A., Russell, D. W., Anderson, R. G., Brown, M. S., and Goldstein, J. L. (1986) Cell 45, 15–24
49. Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T., and Park, H. W. (2003) J. Biol. Chem. 278, 36572–36581
50. Keyel, P. A., Mishra, S. K., Roth, R., Heuser, J. E., Watkins, S. C., and Traub, L. M. (2006) Mol. Biol. Cell 17, 4300–4317
51. Hsu, D., Knudson, P. E., Zapf, A., Rolband, G. C., and Olefsky, J. M. (1994) Endocrinology 134, 744–750
52. Vignoud, L., Albigez-Rizo, C., Frachet, P., and Block, M. R. (1997) J. Cell Sci. 110, 1421–1430
53. Hjalm, G., Murray, E., Crumley, G., Harazim, W., Lundgren, S., Onyango, I., Ek, B., Larsson, M., Juhlin, C., Hellman, P., Davis, H., Akerstrom, G., Rask, L., and Morse, B. (1996) Eur. J. Biochem. 239, 132–137
54. Kawakami, K., Takeshita, F., and Puri, R. K. (2001) J. Biol. Chem. 276, 25114–25120
55. Thomas, W. G., Baker, K. M., Motel, T. J., and Thekkumkara, T. J. (1995) J. Biol. Chem. 270, 22153–22159
56. Li, Y., Marzolo, M. P., van Kerkhof, P., Strous, G. J., and Bu, G. (2000) J. Biol. Chem. 275, 17187–17194
57. Tamura, Y., Adachi, H., Osuga, J., Ohashi, K., Yahagi, N., Sekiya, M., Oka- zaki, H., Tomita, S., Iizuka, Y., Shimano, H., Nagai, R., Kimura, S., Tsujimoto, M., and Ishibashi, S. (2003) J. Biol. Chem. 278, 12613–12617
58. Raja, R. H., McGary, C. T., and Weigel, P. H. (1988) J. Biol. Chem. 263, 16661–16668
59. Rajasekaran, A. K., Humphrey, J. S., Wagner, M., Miesenbock, G., Le Bivic, A., Bonifacino, J. S., and Rodriguez-Boulan, E. (1994) Mol. Biol. Cell 5, 1093–1103
60. Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W., and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682–5688
61. Jadot, M., Canfield, W. M., Gregory, W., and Kornfeld, S. (1992) J. Biol. Chem. 267, 11069–11077
62. Blot, V., and McGraw, T. E. (2006) EMBO J. 25, 5648–5658
63. Harris, E. N., Weigel, J. A., and Weigel, P. H. (2008) J. Biol. Chem. 283, 17341–17350
64. Kyosseva, S. V., Harris, E. N., and Weigel, P. H. (2008) J. Biol. Chem. 283, 15047–15055