Mesons From String Theory

K. Stiffler
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA

A brief historical synopsis of the connection between gauge theories and string theory is given. Meson configurations known as k-strings are examined from string theory via the gauge/gravity correspondence. Backgrounds dual to k-strings in both $2 + 1$ and $3 + 1$ are discussed. The energy of k-strings to lowest order consists of a tension term, proportional to the length, L, of the k-string, i.e., the size of the mesons in the configuration. The first quantum correction is a Coulombic $1/L$ correction, known as a Lüscher term, plus a constant. Acquiring tensions and Lüscher terms via the gauge/gravity correspondence is discussed.

I. INTRODUCTION

From its inception, string theory has long thought to have a deep connection with the strong nuclear force. From a series of calculations by t’Hooft, Green, Schwarz, Maldacena, Herzog, Klebanov, et. al. [1, 2, 3, 4, 5, 6], today we see the connection through the gauge/gravity correspondence. As string theory can describe gauge theories in the case of open strings, and supergravity (SUGRA) in the case of closed strings, we can hope to find a map from SUGRA to gauge theories, known as the gauge/gravity correspondence. The specific case we will investigate is performing calculations done near the horizon of a SUGRA solution, and relating it to a strongly coupled gauge theory calculation.

The strongly coupled gauge theory example we use is the k-string, which we find particular SUGRA solutions to be dual to in either $2 + 1$ or $3 + 1$ dimensions. The k-string is an assemblage of fundamental strings, where the fundamental string is a quark and an anti-quark source connected by a color flux tube of length L, as described in [7]. For large quark separations, L, the energy of k-strings is dominated by the tension term, a term proportional to L. The lowest order correction is a Coulombic term, proportional to $1/L$. Both of these terms can be found from supergravity duals of k-strings. For $2 + 1$ k-strings, we will demonstrate this specifically in the background of Cvetic, Gibbons, Lu, and Pope (CGLP) [8]. We will compare this tension to preliminary results for another background dual to $2 + 1$ k-strings: the background of Maldacena and Nastase (MNa) [9]. We will also show results of $3 + 1$ k-string calculations from the background of Klebanov and Strassler (KS) [10].

II. SU(N) k-STRINGS

A. Lüscher’s Fundamental String

Lüscher’s picture of the fundamental string is as in Figure 1. Lüscher found the energy of this configuration to be of the form

$$E = TL + \beta - \frac{\pi(d-2)}{24L} + \mathcal{O}(L^{-2}),$$

where T is known as the tension, and d is the dimension of spacetime. The $1/L$ correction term is the so-called, Lüscher term.

B. The k-string

Here is a quick overview of k-strings. A more complete review can be found in [11]. SU(N) k-strings are an assemblage of fundamental strings, a close distance $d << L$ next to each other as in Figure 2 where $k = |l - m|$, l being the number of quarks on one side of the k-string and m being the number of anti-quarks on that same side.

For large L, k-strings exhibit k-ality: the tension vanishes whenever $k = N$. This k-ality is exhibited in models from lattice gauge theory [12, 13, 14], Hamiltonian methods [15, 16, 17], and supergravity calculations using the gauge/gravity correspondence [2, 18].
Two possible forms of the k-string tension, T_k, are

$$T_k \propto \begin{cases} N \sin \frac{k\pi}{N} & \text{sine law} \\ \frac{k}{N} & \text{casimir law} \end{cases}$$

where clearly either law exhibits k-ality. Table I compares k-strings tensions in $2 + 1$ dimensions calculated from various methods. From this data, it would seem that in $2 + 1$ dimensions, the casimir law is more appropriate. It also shows that the supergravity calculations in $2 + 1$ done here more closely align with the anti-symmetric quark representations.

TABLE I: Comparison of k-string tensions from various methods. The values quoted are T_k/T_f, where T_k is the k-string tension, and T_f is the fundamental string tension, i.e., $k = 1$. The CGLP tension is calculated from the transcendental Eqs. (26,27); MNa(Sine) and Casimir from Eq.(2). Data in quark representations: $S =$symmetric [17], $A =$antisymmetric [17], $M =$mixed [17], $*$ =antisymmetric [14]

Group	k	CGLP	MNa(Sine)	Casimir	lattice	Karabali-Nair
$SU(4)$	2	1.310	1.414	1.333	1.355(A)	1.332(A)
	2	1.466	1.618	1.5	1.528*	1.529*
$SU(5)$	2	1.562	1.732	1.6	1.617(A)	1.601(A)
	3	1.744	2.0	1.8	1.808(A)	1.800(A)
$SU(6)$	2	1.674	1.848	1.714	1.752*	1.741*
	3	2.060	2.414	2.143	2.174*	2.177*
	4	2.194	2.613	2.286	2.366*	2.322*
$SU(8)$	2	1.450	1.600	1.500	1.555(A)	1.512(A)
	3	1.846	2.000	2.100	2.125(A)	2.110(A)
	4	2.214	2.500	2.300	2.400*	2.367*

Furthermore, lattice calculations done by Brugholtz and Teper [14] find a Lüscher term in $2 + 1$ dimensional $SU(5)$ and $SU(4)$ gauge theory to be close to

$$-\frac{\pi}{6L},$$

the same value we calculated with the CGLP SUGRA model in [19] which is dual to a $2 + 1$ $SU(N)$ k-string configuration. At first glance, it may be troubling that these results are different from Lüscher’s, as seen in Eq. [1]. However, Lüscher’s result was for the fundamental string, which we do not expect to exhibit the precise behavior of a k-string, which is a series of fundamental strings “glued together”, as in Fig. 2.

III. k-STRINGS FROM SUPERGRAVITY DUAL THEORIES

Through the gauge gravity correspondence, we expect a string theory embedded in a SUGRA background to be dual to a gauge theory with a large number, N, of colors. Investigating k-string dual SUGRA solutions, Herzog and Klebanov [6, 18] considered an embedding as in Figure 3, where a probe Dp-brane, either electrically(Q) or magnetically(M) charged

$$F = dA = Q dt \wedge dx + M d\theta \wedge d\phi,$$

is embedded in a classical SUGRA background, typically of the form

$$ds_{10}^2 = H_3 \eta_{\mu\nu} dx^\mu dx^\nu + \dot{H}_3 ds_{10-d}^2,$$

sourced by

$$F_{n+1}(X^\mu) = dC_n(X^\mu), \quad \Phi(X^\mu),$$

$$H_3(X^\mu) = dB_2(X^\mu),$$

where t, x, θ, ϕ are four of the Dp-brane coordinates, ζ^a, and X^μ are the bosonic SUGRA coordinates. It is important to note here that d is the spacetime dimension of the Minkowski spacetime portion of the metric in Eq. [5] which will be the spacetime dimension in which the k-string will be embedded in the gauge dual theory.

FIG. 3: A probe Dp-brane embedded in a SUGRA background.

The SUGRA coordinates become fields on the Dp-brane, the field theory dynamics governed by the Dp-brane action

$$S_p = -\mu_p \int d^{p+1}x e^{-\Phi} \sqrt{-\det(g_{ab} + F_{ab})} +$$
brane action, yielding the Hamiltonian:

\[H = \sum_{n} C_n \wedge \mathcal{F} + S_f \]

(7)

where

\[\mathcal{F}_{ab} = B_{ab} + 2\pi \alpha' F_{ab}, \quad \mu_p = (2\pi)^p(\alpha')^{(p+1)/2} \]

(8)

and \(S_f \), which is a functional solely of fermionic fields, \(\Theta \), on the Dp-brane, is classically set to zero \[19, 20\]. Considering classical solutions \((A_0, X_0)\) where the only field with dynamics is the electric field component of \(F \),

\[S_p = \int \mathcal{L}(A_0, \dot{A}_0, X_0) \]

(9)

we can apply the Legendre transformation to the Dp-brane action, yielding the Hamiltonian:

\[\mathcal{H} = \frac{\partial \mathcal{L}}{\partial A} \dot{A} - \mathcal{L} \]

(10)

Minimization of this Hamiltonian leads to the \(k \)-string tension \[6, 18\]

\[\mathcal{H}_{min} = T_k L \]

(11)

The first quantum corrections are found by fluctuating around the classical solution

\[X^\mu = X_0^\mu + \delta X^\mu, A^\mu = A_0^\mu + \delta A^\mu, \Theta = 0 + \delta \Theta, \]

(12)

expanding out the action to second order in these fluctuations

\[S_p = S_p^{(0)} + S_p^{(1)} + S_p^{(2)}, \]

(13)

and calculating the free energy of the one loop corrections through

\[e^{F_1T} = Z_2 = \int DXDAD\bar{\Theta}D\Theta e^{iS_p^{(2)}}. \]

(14)

A. The CGLP Supergravity Background

First, we briefly review the CGLP SUGRA background. The complete details can be found in the original paper \[8\]. The CGLP background is a type IIA supergravity background, sourced by

\[F_4 = g_s^{-1}d^3x \wedge dH^{-1} + m(f_i \epsilon_{ijk} \mu^j \epsilon^k + f_2 X_2 + f_3 X_3) \]

(16)

\[e^\Phi = g_s H^{1/4} \]

(18)

with all other type IIA supergravity sources set to zero. In the above, we have

\[X_2 = \frac{1}{2} \epsilon_{ijk} \mu^j \epsilon^k, \quad J_2 = \mu^i J_i \]

(19)

\[D\mu^i = \epsilon^{ijk} \epsilon^j \mu_k \]

(20)

\[J^i = dA_i + \frac{1}{2} \epsilon^{ijk} A_j \wedge A_k. \]

(21)

and \(J^i \) satisfies the algebra of unit quaternions. With these sources, the background takes the form

\[ds^2 = H^{-1/4}dx^a dx^b \eta_{ab} + H^{1/4}l^2 [h^2 dr^2 + a^2 (D\mu^i)^2 + b^2 d\Omega_2^2] \]

(22)

where the bosonic supergravity coordinates are the set

\[X^\mu = (x^0, x^1, x^2, r, \mu^1, \mu^2, \mu^3, \psi, \chi, \theta, \phi) \]

(23)

with the constraint \((\mu^i)^2 = 1\). In the above, \(H, h, a, b, f_1 \) are functions of \(r \), and \(m \) and \(l \) are constants. In fact

\[m = 8\pi \alpha'^{3/2} g_s N \]

(24)

where \(N \) is the number of parallel D4-branes sourcing the background and is also the number of colors in the gauge theory dual.

B. SU(N) K-string Tension and Lüsher Term from CGLP Background

Here we show a brief outline of the full calculation of the tension and Lüsher term, which can be found in \[19\]. We use a probe D4-brane embedded in the CGLP SUGRA background. As the Minkowski spacetime portion of the CGLP background is 2+1 dimensional, the dual SU(N) \(k \)-string will be in 2+1 dimensions.

The classical action for a probe D4-brane in the CGLP background is

\[S^{(0)} = -\mu_4 \int d^5 \zeta e^{-\Phi} \sqrt{-\text{det}(g_{ab} + 2\pi \alpha' F_{ab})} + \mu_4 \int C_3 \wedge F \]

(25)

IV. K-STRING FROM CGLP SUPERGRAVITY BACKGROUND

Following the outline of the previous section, we summarize the work of \[18, 19\], where the 2+1 dimensional \(k \)-string energy was calculated as the dual of a D4-brane embedded in the CGLP background.
where F is electrically charged. Constructing the Hamiltonian and minimizing with respect to the bosonic SUGRA coordinate ψ yields

$$H_{\text{min}} = \alpha NL \sin^2 \psi_0 \sqrt{\sin^2 \psi_0 + (3\alpha/q)^2 \cos^2 \psi_0}$$

subject to the constraint

$$\frac{4k}{3N} = \xi(\psi_0) + 3\frac{\alpha^2}{q^2} \sin^2 \psi_0 \cos \psi_0$$

with

$$\xi(\psi_0) = \int_0^{\psi_0} \sin^3 u du$$

and where α and q are constants with $\alpha/q \approx 0.3083$ and ψ_0 is the classical value of ψ whose solution is the solution to the constant Eq. [27].

When we fluctuate about this classical solution by the method outlined in Eqs. [12], [13], and [14], we find the one loop energy to be

$$E_1 = -\frac{\pi}{6L} + \beta_3$$

which contains a term constant of L, β_3, which arises from the massive modes, plus a Lüscher term from the massless modes, $-\pi/6L$, which is the same as that found by lattice calculations of Bringholtz and Teper [14]. We find we can group this new calculation of the Lüscher term together with a previous calculation dual to $3 + 1$ k-strings [22], into a single formula

$$V_{\text{Lüscher}} = -\frac{(d + p - 3)}{24L}$$

where d is the dimension of the Minkowski space-time portion of the SUGRA and also the dimension in which the dual k-string lives and p is the spatial dimension of the probe Dp-brane.

V. CONCLUSION

We have given a brief summary of the gauge/gravity correspondence and shown the method for calculating k-string tensions and Lüscher terms from the SUGRA side of this correspondence. The tension of k-strings in $2 + 1$ calculated from the CGLP background seems to align well with anti-symmetric quark representations, as shown in Table [1]. The Lüscher term found from the CGLP dual theory, Eq. [30], aligns well with Lattice calculations of Bringholtz and Teper [14]. Furthermore, our current findings for the Lüscher terms found in $2 + 1$ and $3 + 1$ can succinctly be written as in Eq. [30].

Acknowledgments

I would like to thank my advisor, Vincent Rodgers, and my other collaborators, Leopoldo A. Pando-Zayas and Christopher A. Doran, for their work done in [19, 20], off which this proceeding is based. I would also like to thank the organizers of the DPF 2009 conference [21]. This work is partially supported by Department of Energy under grant DE-FG02-95ER40899 to the University of Michigan and the National Science Foundation under award PHY - 0652983 to the University of Iowa.

[1] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).
[2] M. B. Green and J. H. Schwarz, Phys. Lett. B 151, 21 (1985).
[3] M. B. Green and J. H. Schwarz, Phys. Lett. B 149, 117 (1984).
[4] M. B. Green and J. H. Schwarz, Nucl. Phys. B 243, 475 (1984).
[5] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] arXiv:hep-th/9711200.
[6] C. P. Herzog and I. R. Klebanov, Phys. Lett. B 526, 388 (2002) arXiv:hep-th/0111078.
[7] M. Luscher, Nucl. Phys. B 180, 317 (1981).
[8] M. Cvetic, G. W. Gibbons, H. Lu and C. N. Pope,
Nucl. Phys. B 606, 18 (2001) [arXiv:hep-th/0101096].
[9] J. M. Maldacena and H. S. Nastase, JHEP 0109, 024 (2001) [arXiv:hep-th/0105049].
[10] I. R. Klebanov and M. J. Strassler, JHEP 0008, 052 (2000) [arXiv:hep-th/0007191].
[11] M. Shifman, Acta Phys. Polon. B 36, 3805 (2005) [arXiv:hep-ph/0510098].
[12] B. Lucini and M. Teper, Phys. Rev. D 64, 105019 (2001) [arXiv:hep-lat/0107007].
[13] B. Bringoltz and M. Teper, Phys. Lett. B 645, 383 (2007) [arXiv:hep-th/0611286].
[14] B. Bringoltz and M. Teper, Phys. Lett. B 663, 429 (2008) [arXiv:0802.1490 [hep-lat]].
[15] D. Karabali, C. j. Kim and V. P. Nair, Phys. Lett. B 434, 103 (1998) [arXiv:hep-th/9804132].
[16] V. P. Nair, [arXiv:hep-th/0309061].
[17] D. Karabali and V. P. Nair, Phys. Rev. D 77, 025014 (2008) [arXiv:0705.2898 [hep-th]].
[18] C. P. Herzog, Phys. Rev. D 66, 065009 (2002) [arXiv:hep-th/0205064].
[19] C. A. Doran, L. A. P. Zayas, V. G. J. Rodgers and K. Stiffler, [arXiv:0907.1331 [hep-th]].
[20] L. A. Pando Zayas, V. G. J. Rodgers and K. Stiffler, JHEP 0812, 036 (2008) [arXiv:0809.4119 [hep-th]].
[21] http://www.dpf2009.wayne.edu/committee.php.
[22] Here we correct for a factor of 1/2 missing in [20].