Comment on “Correlation between Bulk Thermodynamic Measurements and the Low-Temperature-Resistance Plateau in SmB6”

Kai Chen1,∗, Jean-Paul Kappler1
1Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin-BP48, 91192 GIF-surf-YVETTE CEDEX, France
(Dated: March 16, 2015)

Low-temperature-resistivity plateau observed in SmB6 single crystal, which is due to surface, not bulk, conduction has been confirmed from electrical transport measurements. Recently, the correlation between bulk thermodynamic measurements and the low-temperature-resistivity plateau in SmB6 have been investigated and a change in Sm valence at the surface has been obtained from x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Here we show that the statement of the report are not supported by the results from x-ray absorption spectroscopy and x-ray magnetic circular dichroism.

In a recent article, W. A. Phelan and co-workers[1] report data on the correlation between bulk thermodynamic measurements and the low-temperature-resistivity plateau in SmB6. They found surface conductivity of SmB6 increases systematically with bulk carbon content and addition of carbon is linked to an increase in n-type carriers, larger low-temperature electronic contributions to the specific heat and a broadening of the crossover to the insulating state. A change in Sm valence at the surface has been obtained from x-ray absorption spectroscopy(XAS) and x-ray magnetic circular dichroism(XMCD), which is claimed to be the definitive proof of changes in the electronic structure at the surface of SmB6. This statement is true while the data from XAS and XMCD are problematic which may misleading the further investigations.

In their report, the XAS and XMCD of surface and bulk are obtained from total electron yield (TEY) and fluorescence yield(FY), which are believed to be sensitive to the surface and bulk of the sample, respectively. However, the "surface" is not well defined here, which should be the electron escaping length in the order of ~2nm while the "bulk" is related to the thickness of ~10 times higher. Besides, nothing is reported for the SmB6 surface treatment which is important for the XAS measurement since naturally oxidized or cleaved surface are quite different. Furthermore, at the M5 edge of Sm, XAS from FY may be quite different from that obtained from TEY and transmission[2], due to the 3d core hole lifetime broadening γ dominated by the auger decay. However, such a deviation between TEY and FY is neglected in SmB6 shown in Fig.8a in [1], in which the peaks from Sm2+ and Sm3+ are well distinguished.

As they claimed in Fig.8 in [1], “the bulk spectra measured from FY (red curve) are consistent with a mixture of Sm2+ and Sm3+, with no appreciable magnetization, as previously reported[3, 4]”. Nothing related to magnetism is reported in the ref[3, 4]. It is also claimed: "in contrast, the surface spectra from TEY (black curve) consists of almost entirely Sm2+ and shows a discernible XMCD signal characteristic of a net magnetic moment, approximately 1/10 of that observed in ferromagnetic Sm0.974Gd0.02Al2 [4]". Here the spectra of Sm2+ and Sm3+ are mistaken in the report. To clarify, the XAS of Sm2+ and Sm3+ obtained from atomic multiplet calculation using CTM4XAS[5] are shown in Fig.1. The electrostatic and exchange parameters were scaled down to 80% of the atomic Hartree-Fock value. In the case of Sm3+ ions, because the two first excited, J =7/2 and J=9/2, multiplets are relatively close in energy to the fundamental J=5/2 multiplet [7], it is necessary to account for the crystalline electric field effects, not only on the fundamental, but also on these excited multiplets. The mixing of these higher multiplets into the fundamental leads to a reduction of the magnetic moment [8]. Such an effect is not considered in the calculation since only a slightly change of the XAS shape will be observed [6]. The XAS of Sm2+ is left shifted compared to that of Sm3+ in Fig.1, which is normal and attributed to the chemical shift, and similar to the previous results from experimental results [10] and theoretical calculation [9].

![Graph showing XAS of Sm2+ and Sm3+ from atomic multiplet calculation.](image-url)
However it is opposite in Fig.8 in [1], where the surface state of Sm$^{3+}$ is left shifted. This needs to be corrected at least by an erratum.

According to the experimental data of XAS, it is not possible that the surface is in pure Sm$^{2+}$ state while the bulk is mixed with Sm$^{3+}$ and Sm$^{2+}$. For Sm metals, which in the bulk is a trivalent of Sm$^{3+}$ at the surface was turned into divalent configuration of Sm$^{2+}$ [11-13]. For SmB$_6$, surface valence between 2.5 and 2.6 was determined from X-ray photoemission spectroscopy (XPS) [4]. Interestingly, as we calculated the shape of XAS for the surface is more like a 4f5 ground state with Sm$^{3+}$, not a 4f6 ground state with Sm$^{2+}$ (Fig.1). The XMCD results are also puzzling. Indeed, a magnetic TEY signal is observed in the “surface” case (Sm$^{3+}$ like), with the same shape as Sm$^{3+}$ in [6], whereas no magnetic signal has been detected for the bulk. As the bulk is a Sm$^{2+}$-Sm$^{3+}$ mixing, at least the Sm atoms in the 3+ state should give a magnetic response.

There still remains the problem with the shape of XAS from FY. The intensive peak at higher energy cannot be understood. We doubt there is the energy shift in the FY XAS since the shape can be well fitted with the XAS of Sm$^{2+}$, as shown in Fig.1. In this case, the XAS and XMCD data can be understood and supports their statements very well. However, we have no idea if there exists the energy shift between the XAS from TEY and FY shown in Fig.8a in [1] and needs to be checked by the authors.

We conclude that the XAS and XMCD spectra of Sm in [1] are problematic. Several possible mistakes have been considered to understand the results, among which the energy shift between the XAS from TEY and FY may be the explanation. We also doubt if chemical states of Sm can be determined from the comparison from the XAS of M$_{4,5}$ edge measured from TEY and FY [2].

[1] W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. W. Freeland, J. C. Leiner, C. L. Broholm, and T. M. McQueen, Correlation between Bulk Thermodynamic Measurements and the Low-Temperature-Resistance Plateau in SmB$_6$, Phys. Rev. X4, 031012 (2014).

[2] M. Pompa, A. M. Flank, P. Lagarde, J. C. Rife, I. Stekkin, M. Nakazawa, H. Ogasawara, and A. Kotani, Experimental and theoretical comparison between absorption, total electron yield, and fluorescence spectra of rare-earth M$_5$ edges, Phys. Rev. B 56, 2267 (1997).

[3] J. M. Tarascon, Y. Ishikawa, B. Chevalier, J. Etourneau, P. Hagenmuller, and M. Kasaya, Temperature Dependence of the Samarium Oxidation State in SmB$_6$ and Sm$_{13}$La$_6$B$_6$, J. Phys. France 41, 1141 (1980).

[4] M. Mizumaki, S. Tsutsui, and F. Iga, Temperature Dependence of Sm Valence in SmB$_6$ Studied by X-Ray Absorption Spectroscopy, J. Phys. Conf. Ser. 176, 012034 (2009).

[5] S. S. Dhesi, G. van der Laan, B. E. Brookes, R. M. Galera, and P. Ohresser, Spin- and orbital-moment compensation in the zero-moment ferromagnet Sm$_{0.97}$Gd$_{0.02}$Al$_2$, Phys. Rev. B 82, 180402 (2010).

[6] E. Stavitski, and F. M. F. de Groot, The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges, Micron 41, 687694 (2010).

[7] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.2), [Online]. Available: http://physics.nist.gov/asd (2014, September 24). National Institute of Standards and Technology, Gaithersburg, MD. (2014).

[8] K. H. J. Buschow, A. M. van Diepen, H. W. de Wijn, Moment Reduction in Magnetically Ordered Samarium Intermetallics, Phys. Rev. B 8 (1973) 51345138.

[9] B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J.-M. Esteva, 3d x-ray-absorption lines and the 3d34f$^{n+1}$ multiplets of the lanthanides, Phys. Rev. B 32, 5107 (1985).

[10] G. Kaindl, G. Kalkowski, W. D. Brewer, B. Perscheid, and F. Holtzberg, M-edge x-ray absorption spectroscopy of 4f instabilities in rare-earth systems, J. Appl. Phys. 55, 1910 (1984).

[11] G. K. Wertheim and G. Crecelius, Divalent Surface State on Metallic Samarium, Phys. Rev. Lett. 40, 813 (1978).

[12] J. W. Allen, L. I. Johansson, R. S. Bauer, I. Lindau, and F. Holtzberg, M-edge x-ray absorption spectroscopy and Surface Mixed Valence in Sm Metal, Phys. Rev. Lett. 41, 1499 (1978).

[13] B. Johansson, Surface Valence state at the surface of rare-earth metals, Phys. Rev. B 19, 6615 (1979).

[14] N. Heming, U. Treske, M. Kumpfer, B. Büchner, D. S. Inosov, N. Y. Shitsevalova, V. B. Filipov, S. Krause, and A. Koitzsch, Surface properties of SmB$_6$ from x-ray photoelectron spectroscopy, Phys. Rev. B 90, 195128 (2014).