Orthorhombic and triclinic modifications of the arsenate Cu₄O(AsO₄)₂ and isotypic phosphates Cu₄O(PO₄)₂: strongly frustrated antiferromagnetics

L M Volkova

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
E-mail: volkova@ich.dvo.ru

Abstract
A structural-magnetic model of the orthorhombic and triclinic modifications of the arsenates Cu₄O(AsO₄)₂ and isotypic phosphates Cu₄O(PO₄)₂ has been built and analyzed. Their base elements are the complicated ribbons composed of antiferromagnetic Cu₄ tetrahedra. Structurally, these tetrahedra have no shared copper atoms; however, there are strong antiferromagnetic (AFM) and ferromagnetic (FM) couplings between them, both within the complicated ribbons and between them. It has been established that both modifications are strongly frustrated 3-D antiferromagnetics due to competition between the nearest AFM interactions along the edges of the Cu₄ tetrahedra and competition between interactions and a multiplicity of long-range secondary AFM and FM interactions. Additionally, a large number of weaker long-range interactions are competing among each other. However, there is a possibility of the ordering Dzyaloshinskii-Moriya (DM) interaction in the centrosymmetric orthorhombic modification (Pnma), because two of the three types of magnetic ions, Cu1 and Cu3, are in the partial position 4c, where the ions are not related by the inversion center. In the triclinic modification (P -1) of Cu₄O(As(P)O₄)₂, all four copper ions are in the centrosymmetric equivalent position 2i, which prevents DM interactions. This centrosymmetry will allow magnetic interactions in the triclinic modification of Cu₄O(As(P)O₄)₂ to be still frustrated at lower temperature. It is possible that the triclinic modification of these compounds is a quantum spin liquid.

Keywords: structural-magnetic model, geometrical spin-frustrations, quantum spin liquid, Dzyaloshinskii-Moriya interaction, antiferromagnetic Cu₄ tetrahedron, volcanic mineral

1. Introduction
A large number of studies have been looking into the frustration of magnetic materials, because this matter is attractive both in terms of theoretical and experimental research [1-8]. Frustrated magnets are the materials in which localized magnetic moments (also known as spins) interact through competing exchange interactions that cannot, for geometric reasons, be satisfied at once. Due to frustration, states can be reached that are no long-range magnetic ordered ones. Special attention is being paid to the search for and research into frustrated magnetic compounds as these, because these may be the materials whose ground states are quantum spin liquids [4, 6]. Just as there is no such thing as a single type of a magnetic order, there is no such thing as a single type of quantum spin liquid either.
Different types of quantum spin liquid correspond to different models of long-range entanglement.

The main objective of this work was to explain the role of a perfectly ordered crystal structure in the emergence of the magnetic disorder known as geometrical frustration. For the purpose of our study, we will use only the simplest geometrical part of the huge body of scientific material devoted to frustrated magnets. This portion will be exemplified with three randomly interacting magnetic ions, which reside on two geometrical units, a triangle and a linear chain (figure 1) [1, 3, 4]. These geometrical units represent the elementary components of the crystal structures of magnetic compounds.

Within the triangles and along the linear chains, frustration can exist at certain ratios of the strengths of magnetic interactions: either if \(J_{12}, J_{13} \) and \(J_{23} \) are antiferromagnetic at once (\(J_{ij} < 0 \)) (figures 1(a) and (e)) or if one of them, for example, \(J_{23} \), is anti-ferromagnetic (\(J_{23} < 0 \)), while the other two, \(J_{12} \) and \(J_{13} \), are ferromagnetic (\(J_{ij} > 0 \)) (figures 1(b) and (f)). By contrast, when \(J_{12}, J_{13} \) and \(J_{23} \) are ferromagnetic at once (\(J_{ij} > 0 \)) (figures 1(c) and (d)) – or when only one of them, for example, \(J_{23} \), is ferromagnetic (\(J_{23} > 0 \)), and the other two, \(J_{12} \) and \(J_{13} \), are antiferromagnetic (\(J_{ij} < 0 \)) (figures 1(g) and (h)), the system is not frustrated.

The same phenomenon of ground state degeneracy – frustration – takes place in any closed spin chain consisting of an arbitrary number of spins if the product of the spin-spin interactions along the chain is negative.

![Figure 1](image)

Figure 1. Frustration in a three-spin system. The system is frustrated when \(J_{12}, J_{13} \) and \(J_{23} \) are AFM ((a) and (e)) – or when \(J_{23} \) is AFM, and the other two, \(J_{12} \) and \(J_{13} \), are FM ((b) and (f)). The system is not frustrated when \(J_{12}, J_{13} \) and \(J_{23} \) are FM ((c) and (d)) – or when \(J_{23} \) is FM, and the other two, \(J_{12} \) and \(J_{13} \), are AFM ((d) and (h)).

However, the situation becomes much more complicated when it comes to real systems. A huge number of spin-spin interactions \(J_{ij} \), which may have either sign and diverse strengths on the triangles, linear units and closed multi-spinned chains, can be observed in low-symmetry magnetic systems. This will produce a large number of frustrations. Dotsenko [1] showed that, to describe the state of complex systems come, the concept of self-averaging should be introduced even if the system of spin-spin interactions \(J_{ij} \) being considered is fixed.

The purposes of our research were (1) to find complex strongly frustrated low-symmetry magnetic compounds that have a simple chemical composition and formula and (2) to build their structural-magnetic models. Our previous efforts [9, 10] suggest that the framework for the geometrical frustration of magnetic systems to happen could be oxocentered OCu4 tetrahedra, which are basic to the crystal structures of most minerals at
the Tolbachik volcano, the Kamchatka Peninsula [11, 12], and so we decided to take these minerals to our study. Pekov et al. [12] showed that the diversity and originality of fumarole systems of oxidizing type in this volcano are mineralogically unique. From a huge number of structural material [11, 12], we chose, for our purposes, two polymorphic modifications (that is, different crystal forms of the same chemical compound) of the arsenate Cu₄O(AsO₄)₂ [13]: triclinic ericlaxmanite and orthorhombic kozyrevskite – and the modifications of the phosphate Cu₄O(PO₄)₂ isostructural (isotypic) to them [14, 15]. These compounds consist of two types of centered tetrahedra: OCu₄ and As(P)O₄, where oxygen ions play a dual role. In OCu₄, the oxygen ion occupies the center of the tetrahedron, while in As(P)O₄, its corners. The oxygen ion is located centrally in the tetrahedron made of magnetic ions and plays a pivotal role in defining the magnetic properties of the material.

We will (1) calculate the parameters of the spin-spin interactions \(J_{ij} \) in these four magnetic materials using the Crystal Chemistry Method [16 - 18]; (2) construct their structural-magnetic models; and (3) demonstrate a strong frustration of the magnetic system of these compounds, to raise awareness of these materials among theorists and experimenters. The structural-magnetic models makes it possible to reveal main correlations between the structures and magnetic properties of the compounds and thus to determine the crystal chemistry criteria for a targeted search for new functional magnetics.

2. Method of calculation

The structural-magnetic models are based on crystal chemical parameters (crystal structure, ion charge and ion size). The characteristics of these models include: (1) the sign and strength of magnetic interactions \(J_{ij} \); (2) the dimensionality of magnetic structures (this does not always coincide with the dimensionality of the crystal structures); (3) the presence of magnetic frustrations in specific geometric configurations; (4) a possibility to reorient magnetic moments (that is, to enable AFM-to-FM transitions) due to displacement of intermediate ions located at critical positions.

To infer the sign (type) and strength of the magnetic interactions \(J_{ij} \) from structural data, we used the Crystal Chemistry Method, our previous development, and the associated software program MagInter [16-18]. The Crystal Chemistry Method puts together three well-known concepts about the nature of magnetic interactions: Kramers’s idea [19], the Goodenough–Kanamori–Anderson’s model [20-22] and the polar Shubin–Vonsovsky’s model [23].

The crystal chemistry method enables one to determine the sign (type) and strength of magnetic interactions \(J_{ij} \) on the basis of structural data. Within the framework of our consideration, the parameter \(J_{ij} \) and the exchange integral \(J_{ij} \) are practically synonymous - these quantities differ only by the scaling factor K, so we will use both terms interchangeably. According to this method, the coupling between magnetic ions \(M_i \) and \(M_j \) emerges in the moment of crossing the boundary between them by an intermediate ion \(A_n \) with the overlapping value of \(\sim 0.1 \) Å (figure 2). In the Cu₄O(As(P)O₄)₂ compounds under consideration, the magnetic ions are copper ions Cu²⁺. The area of the limited space (local space) between the \(M_i \) and \(M_j \) ions along the bond line is defined as a cylinder, whose radius is equal to these ions radii. The strength of magnetic couplings and the type of magnetic moments ordering in insulators are determined mainly by the geometrical position and the size of intermediate ions \(A_n \) in the local space between two magnetic ions (\(M_i \) and \(M_j \)).
Figure 2. A schematic representation of the intermediate A_n ion arrangement in the local space between magnetic ions M_i and M_j in cases where the A_n ion initiates the emerging of the antiferromagnetic (a) and ferromagnetic (b) interactions. $h(A_n)$, l_n, l_n', and $d(M_i-M_j)$ are the parameters determining the sign and strength of magnetic interactions (J_n).

The positions of intermediate ions (A_n) in the local space are determined by the distance $h(A_n)$ from the center of the ion A_n up to the bond line M_i-M_j and the degree of the ion displacement to one of the magnetic ions expressed as a ratio (l_n'/l_n) of the lengths l_n and l_n' ($l_n \leq l_n'$; $l_n' = d(M_i - M_j) - l_n$) produced by the bond line M_i-M_j division by a perpendicular made from the ion center (figure 2).

The intermediate A_n ions will tend to orient magnetic moments of M_i and M_j ions and make their contributions j_n into the emergence of AFM or FM components of the magnetic interaction in dependence on the degree of overlapping of the local space between magnetic ions ($\Delta h(A_n)$), the asymmetry (l_n'/l_n) of position relatively to the middle of the M_i-M_j bond line, and the distance between magnetic ions (M_i-M_j). Among the above parameters, only the degree of space overlapping between the magnetic ions M_i and M_j ($\Delta h(A_n) = h(A_n) - r_{A_n}$) equal to the difference between the distance $h(A_n)$ from the center of A_n ion up to the bond line M_i-M_j and the radius (r_{A_n}) of the A_n ion determined the sign of magnetic interaction. If $\Delta h(A_n) < 0$, the A_n ion overlaps (by $|\Delta h|$) the bond line M_i-M_j and initiates the emerging contribution into the AFM-component of magnetic interaction. If $\Delta h(A_n) > 0$, there remains a gap (the gap width Δh) between the bond line and the A_n ion, and this ion initiates a contribution to the FM-component of magnetic interaction.

The value of the contributions j_n is defined by expressions:

$$j_n = \frac{\Delta h(A_n) \frac{l_n}{l_n'} + \Delta h(A_n) \frac{l_n'}{l_n}}{d(M_i - M_j)^2} \quad (\text{if } l_n'/l_n < 2.0), \quad (1)$$

and
The sign and strength of the magnetic coupling \(J_{ij} \) are determined by the sum of the above contributions:

\[
J_{ij} = \sum_n j_n
\]

(3)

The \(J_{ij} \) value is expressed in per angstrom units (Å\(^{-1}\)). If \(J_{ij} < 0 \), the type of magnetic moment ordering of \(M_i \) and \(M_j \) ions is antiferromagnetic, while if \(J_{ij} > 0 \), the type of magnetic moment ordering is ferromagnetic, if \(J_{ij} = 0 \) transition to the paramagnetic state.

It is possible to establish the reasons of occurrence of anomalies of magnetic interactions and magnetic phase transitions in magnets with the help of Eqs. (1) - (3). There exist several critical positions of intermediate \(A_n \) ions when even a slight deviation from them could result in reorientation of magnetic moments (AFM–FM transition) and/or dramatic change of the magnetic interaction strength. It appears important to note that, under the effects of temperature, pressure, magnetic field, etc., the ions in a crystal structure could undergo displacement. That is why during prediction of possible changes in the sign and strength of magnetic interactions one should take into account not only the ions located exactly at critical positions, but also those in adjacent areas. The following intermediate ion positions can be considered as critical:

(a) \(h(A_n) = r_M + r_{An} \): the distance \(h(A_n) \) from the \(A_n \) ion center to the bond line \(M_i \cdots M_j \) is equal to the sum of the \(M \) and \(A_n \) ionic radii. The \(A_n \) ion reaches the surface of a cylinder of radius \(r_M \), limiting the space area between the magnetic ions \(M_i \) and \(M_j \). In this case the \(A_n \) ion does not induce the emerging of a magnetic interaction. However, on a slight decrease of \(h(A_n) \) (the \(A_n \) ion displacement inside this area) there emerges a strong FM interaction between magnetic ions.

(b) \(h(A_n) = r_{An} (h(A_n) = 0) \): the distance \(h(A_n) \) from the center of the \(A_n \) ion to the bond line \(M_i \cdots M_j \) is equal to the \(A_n \) ionic radius (the \(A_n \) reaches the bond line \(M_i \cdots M_j \)). In this case the interaction between magnetic fields disappears. However, on a slight decrease of \(h(A_n) \) (overlapping of the bond line by the \(A_n \) ion) there emerges a weak AFM interaction, while on a slight increase of \(h(A_n) \) (formation of a gap between the \(A_n \) ion and the bond line \(M_i \cdots M_j \)) there emerges a weak FM interaction.

(c) \(l_n/l_n = 2 \): the \(A_n \) ion is located at the boundaries of the central one-third of the space between magnetic fields. In this case the insignificant displacement of the \(A_n \) ion to the center in parallel to the bond line \(M_i \cdots M_j \) results in a dramatic increase of the magnetic interaction strength.

In the case when there are several intermediate \(A_n \) ions between the magnetic ions \(M_i \) and \(M_j \), the following critical positions are possible:

(d) When the ratio between the sums of the \(j_n \) contributions to the AF and FM components of the interaction becomes close to 1, the interaction between the magnetic ions \(M_i \) and \(M_j \)
is weak, and a slight displacement of even one of the intermediate \(A_n \) ions could result in its complete disappearance or the AF–FM transition.

(e) When even one of the intermediate \(A_n \) ions is in a critical position of (a) or (c) type, the contribution to AFM or FM components of the interaction could undergo dramatic changes because of even a slight displacement of these ions and, therefore, cause changes of respective scale in the interaction strength and reorientation of magnetic ion spins.

Calculation of magnetic moments in Bohr magnetons based on crystal chemical parameters was not provided. The crystal chemical method for calculating the parameters of magnetic interactions between magnetic ions is applicable to the study of both collinear and non-collinear magnets. We used this method to study 1-D and 2-D frustrated antiferromagnets, chiral magnetic solitons, potential spin liquids and multiferroics. This method was created by us to search for and predict new promising magnetic materials.

Thus, we have shown that that the structural–magnetic models of compounds built on the basis of calculations of magnetic couplings parameters by the crystal chemistry method make it possible to reveal the main correlations between the crystal structure of compounds and their magnetic properties. As a rule, under the temperature or pressure, structural phase transitions of magnetic compounds and displacement of intermediate ions located in critical positions are accompanied by magnetic transitions FM - AFM, FM - PM or AFM - PM. In this case, the structural transition temperature will also be the magnetic transition temperature.

We emphasize that the considered orthorhombic and triclinic modifications of the \(\text{Cu}_4\text{O}(\text{AsO}_4)_2 \) arsenate and isotypic \(\text{Cu}_4\text{O}(\text{PO}_4)_2 \) phosphate are polymorphs (i.e., different crystalline forms of the same chemical compound) and not the result of phase transitions.

We will consider pair exchange interactions, \(J_{ij} \), not only between the nearest neighbors in the lattice, in the nodes of which they reside, but also at long distances. However, it should be noted that Crystal Chemistry Method overestimates the strength of interactions between magnetic ions at long distances \((d(M_i-M_j) \sim 8 \text{ Å}) \). Apparently, as the distance between magnetic ions increases, the rates of reduction in the strength of magnetic interaction become higher – and it becomes inversely proportional not to the square, but to the cube of the distance between them.

It should be particularly emphasized that the magnetics in question – the arsenate \(\text{Cu}_4\text{O}(\text{AsO}_4)_2 \) and the phosphate \(\text{Cu}_4\text{O}(\text{PO}_4)_2 \) – belong to a specific class of compounds, whose magnetic structure and properties are largely defined by two factors: the presence of Jahn-Teller (JT) \(\text{Cu}^{2+} \) ions with orbital degeneracy [24-30] and the geometrical frustration of the magnetic couplings, both within the \(\text{Cu}_4 \) tetrahedra and between them. According to a large body of literature data and our crystal chemical studies [9, 31-32], intermediate X ions, whose bond with copper is JT elongated, do not contribute to magnetic coupling. Therefore, when calculating the parameters of the magnetic couplings \(J_n \) using the Crystal Chemistry Method, we will neglect the contribution \(j(X^{2n}) \) made by the intermediate ions X at elongated positions to magnetic coupling with at least one of the two involved \(\text{Cu}^{2+} \) ions.

Finally, it should be noted that, unlike any experimental setting, the Crystal Chemistry Method can calculate the ideal values of the magnetic parameters of separate couplings. This method ignores the potential impact of structural/"nonstructural" interactions and strengths on these couplings nor does it take account of the competition that weakens the couplings \(J_n \). Our calculations apply only to the regular lattices of the magnetic moments and intermediate ions that contribute to magnetic interactions.

To build the structural-magnetic models of the mineral polymorphs kozyrevskite \(\text{Cu}_4\text{O}(\text{AsO}_4)_2 \ (Pnma, \ ICSD-239833, \ [13]) \) and ericlaxmanite \((P \cdot l, \ ICSD-404850, \ [13]) \),
we used their perfect synthetic analogs. The crystal structure of the synthetic mineral kozyrevskite (ICSD-81295 [33, 34] was determined much more accurately (R value = 0.038) than that of its natural counterpart (R value = 0.1049). Ericlaxmanite was chosen for another reason. Its synthetic analog (ICSD-404850 [35]) is a stoichiometrically perfect crystal, while the Cu$^2+$ position in its natural sample split into two subsites, each having an occupancy factor less than 100%. The format of input data for the MagInter software program (crystallographic parameters, atom coordinates) is compatible with the cif-file in the Inorganic Crystal Structure Database (ICSD) (FIZ Karlsruhe, Germany). The ionic radii of Shannon [36] ($r^{(V)}$Cu$^{2+}$ = 0.65 Å, $r^{(VI)}$O$^{2-}$ = 1.40 Å, $r^{(IV)}$As$^{5+}$ = 0.335 Å, $r^{(IV)}$P$^{5+}$ = 0.170 Å) were used for calculations.

Tables 1 and 2 (Supplementary Note 1) show the crystallographic characteristics and parameters of magnetic couplings (Jn) calculated on the basis of structural data and respective distances between magnetic ions in the materials under study. Additionally, the degree of overlapping of the local spaces between magnetic ions (Δh(X)), asymmetry (l'/l_n) of the position relative to the middle of the Cui–Cuj bond line, and the Cui–X–Cuj angle are presented for the intermediate ions X, which provide the maximal contributions (j(X)) to the AFM or FM components of these couplings Jn. To translate the Jn value in per angstrom (Å$^{-1}$) into energy units more conventional for experimenters—milielectronvolt (meV)—one can use the scaling factor K = 74 (Jn (meV) = 74 Jn (Å$^{-1}$)) [31].

3. Results and discussion

3.1. Coordination polyhedra and the crystal structure of a sublattice of magnetic ions Cu$^{2+}$

The kozyrevskite Cu$_4$O(AsO$_4$)$_2$ (ICSD-81295) [33] (Supplementary Note 1, Table 1) crystallizes in the centrosymmetric orthorhombic space group Pnma (N62). The magnetic Cu$^{2+}$ ions occupy three crystallographically independent sites—Cu1, Cu2, and Cu3—and have a characteristic distortion of the Cu$^{2+}$ coordination polyhedra (Cu1O$_5$, a trigonal bipyramid, where d(Cu1–5O) = 1.842–2.109 Å; Cu2O$_5$, a distorted tetragonal pyramid, where d(Cu2–5O) = 1.912–2.337 Å; and Cu3O$_5$, a trigonal bipyramid, where d(Cu3–5O) = 1.920–2.182 Å) due to the Jahn–Teller effect enhanced by geometric hindrances related to the packing features (figure 3). Table 1 in Supplementary Note 1 also contains the crystallographic characteristics and parameters of the magnetic couplings, Jn, of the orthorhombic phosphate Cu$_4$O(PO$_4$)$_2$ (ICSD-50459), with Cu2 replaced by Cu3, according to the original work [15]. The corresponding changes in the designations of the oxygen ions were taken into account, too.

The ericlaxmanite Cu$_4$O(AsO$_4$)$_2$ (ICSD-404850) [35] (Supplementary Note 1, Table 2), which crystallizes with centrosymmetric triclinic symmetry (space group P^-I), has four main crystallographically independent Cu sites. The Cu(1) ions center distorted tetragonal pyramids (Cu(1)-4O = 1.926–1.959 Å of and Cu(1)-O8 = 2.646 Å), while the Cu(3) ions center distorted trigonal bipyramids (Cu(3)-4O = 1.911–2.015 Å and Cu(3)-O7 = 2.464 Å). The Cu(4) ions take positions in the elongated octahedra (Cu(4)-4O = 1.909–2.011 Å, Cu(4)-O6 = 2.457 Å and Cu(4)-O(4) = 2.464Å). The Cu(2) polyhedron can also be described as a distorted octahedron (Cu(2)-4O = 1.903–2.045 Å, Cu(2)-O(8)=2.316 Å and Cu(2)-O(4) = 2.779 Å). The isotypic phosphate Cu$_4$O(PO$_4$)$_2$ (ICSD-1666) [14] (Supplementary Note 1, Table 2) has the same structure as arsenate, except that the copper...
ions in the phosphate are replaced as follows: Cu1 by Cu2, Cu2 by Cu3, and Cu3 by Cu1. Discrepancies in the designations of the oxygen ions in arsenate [35] and phosphate [14] were taken into account, too. Later on, we will only focus on two polymorphic modifications of the arsenate Cu$_4$O(AsO$_4$)$_2$; while similar data on the polymorphic

Figure 3. Assembly of the Cu0m coordination polyhedra into tetramers I (a) in the kozyrevskite Cu$_4$O(AsO$_4$)$_2$. The arrangement of intermediate ions in the local space of AFM J_1 (b), J_2 (c), J_5 (d) and J_6 (e) in the tetrahedron O6Cu1Cu2Cu2Cu3 and in the local space of AFM J_3 (f), J_4 (g), J_9 (i), J_{10} (j), J_{12} (k) and FM J_7 (h) between the Cu$_4$ tetrahedra in the complicated ribbons and in AFM J_{12} (l), J_{19} (n), J_{21} (o) and FM J_{18} (m) between these complicated ribbons.
modifications of the phosphate Cu₄O(PO₄)₂ isotypic to them will appear in Tables 1 and 2 (Supplementary Note 1).

After assembly of the CuO₄ coordination polyhedra into tetramers, the following oxocentered OCu₄ tetrahedra form: O₆Cu₁Cu₂Cu₂Cu₃ in the orthorhombic arsenate Cu₄O(AsO₄)₂ (Fig. 3a), O₇Cu₁Cu₃Cu₃Cu₂Cu₄Cu₂Cu₃ in the orthorhombic phosphate Cu₄O(PO₄)₂, O₃Cu₁Cu₃Cu₃Cu₄ in the triclinic arsenate Cu₄O(AsO₄)₂ and O₁Cu₂Cu₃Cu₁Cu₄ in the triclinic phosphate Cu₄O(PO₄)₂. Structurally, these tetrahedra do not have shared copper atoms (Fig. 4); however, as we will show below, there are strong magnetic couplings between them. In this paper, we will look at these polymorphic modifications of Cu₄O(As(P)O₄)₂ at a different angle and show the crystal structure of the sublattices of magnetic Cu²⁺ ions.

What the crystal structures of the sublattice of the magnetic Cu²⁺ ions of both modifications have in common are the complicated ribbons made up by the Cu₄ tetrahedra extending along the b-axis in Pnma (figures 4(a) and 5(a)) and along the a-axis in P -1 (figures 4(b) and 5(b)). It appears as two parallel rows of tetrahedra, with the vertices nearly meshing with each other. The main difference in the crystal structure of the complicated ribbons between the two polymorphs is that the tetrahedra of the two rows mesh into each other in a perfectly aligned manner in the rhombic modification and are misaligned in the triclinic modification. Such a displacement leads to differences in magnetic coupling (figures 4(c) and (d)).

Thus, the crystal structures of the Cu²⁺ sublattice in the two distinct Cu₄O(As(P)O₄)₂ modifications—orthorhombic and triclinic—have quite a lot in common. However, there is no evidence about polymorphic transitions of one modification to another, which are normally caused by pressure or temperature. Transitions as these can be either reversible (enantiotropic), which, together with changes in magnetic properties, would be of particular interest, or irreversible (morphotropic). Polymorphism is common in Cu²⁺-based compounds, because the JT effect makes Cu²⁺ coordination be quite flexible and is responsible for there being transitional forms between the main types of coordination: (4+2), a distorted octahedron; (4+1), a tetragonal pyramid and a trigonal bipyramid; and (4), a square [25, 27].

3.2. Structural-magnetic models

In this chapter, we will build and discuss the structural-magnetic models of the arsenate Cu₄O(AsO₄)₂ in the form of its orthorhombic modification kozyrevskite and triclinic modification ericlaxmanite, and the phosphates Cu₄O(PO₄)₂ isotypic to them. According to our calculations (Tables 1 and 2, Supplementary Note 1), strong AFM couplings occur along all Cu₄ tetrahedral edges. A major contribution to the AFM components of all these couplings is made by the intermediate oxygen ions centering these tetrahedra (the O₆ ion in the oxocentered tetrahedron O₆Cu₁Cu₂Cu₂Cu₃ in kozyrevskite and the O₃ ion in the oxocentered tetrahedron O₃Cu₁Cu₂Cu₃Cu₄ in ericlaxmanite).

3.2.1. Structural-magnetic model of the orthorhombic arsenate Cu₄O(AsO₄)₂ and isotypic phosphate Cu₄O(PO₄)₂

Let us look closer at the characteristics that the magnetic couplings in these magnetics could possess if their formation were due to the crystal structure alone. The arrangement of intermediate ions in the local space of AFM J₁ (figure 3(b)), J₂ (figure 3(c)), J₅ (figure 3(d)) and J₆ (figure 3(e)) in tetrahedron O₆Cu₁Cu₂Cu₂Cu₃ for the
kozyrevskite Cu$_4$O(AsO$_4$)$_2$ is shown in figures 3 and 4(a). The strongest AFM coupling J_5 ($J_5 = -0.0789$ Å$^{-1}$, d(Cu2-Cu2) = 3.292 Å) in the tetrahedron is directed along the b-axis. This coupling is at the same time dominating throughout the structure. The second and third strongest couplings in the tetrahedron are two AFM couplings, J_6 (d(Cu2-Cu3) = 3.300 Å, $J_6/J_5 = 0.80$), and the fourth and fifth are two AFM couplings, J_1 (d(Cu1-Cu2) = 2.957 Å, $J_1/J_5 = 0.68$) and AFM J_2 (d(Cu1-Cu3) = 3.029 Å, $J_2/J_5 = 0.59$). All couplings in the tetrahedron are strong antiferromagnetic couplings, which compete with each other in the triangles along the tetrahedral edges and therefore, the tetrahedra are frustrated.

In the row lying along the b-axis (Fig. 4(a)), these tetrahedra are coupled, at short distances, by rather strong AFM interactions J_3 (d(Cu2-Cu2) = 3.120 Å, $J_3/J_5 = 0.50$) (figure 3(f)). Additionally, they are coupled, at long distances, by two strong AFM interactions J_9 (d(Cu1-Cu2) = 5.362 Å, $J_9/J_5 = 0.57$) (figure 3(i)) and AFM J_6^{2-2} (d(Cu2-Cu2) = 6.412 Å, $J_6^{2-2}/J_5 = 0.42$) (figure 3(k)), and one weaker FM interaction, J_5^{3-3} (d(Cu3-Cu3) = 6.412 Å, $J_5^{3-3}/J_5 = -0.26$). All these couplings are frustrated, too, as they compose three-spin AFM systems along the linear chain J_3-J_5-J_6^{2-2} and in the triangle J_3-J_9-J_1 ($J_3/J_1 = 0.74$ and $J_9/J_5 = 0.85$). In the triangle Cu1Cu3Cu3, the ferromagnetic

![Diagram](image.png)

Figure 4. The couplings, J_n, in the complicated ribbons from the Cu4 tetrahedra in the kozyrevskite Cu$_4$O(AsO$_4$)$_2$ (Pnma) (a) and in the ericlaxmanite Cu$_4$O(AsO$_4$)$_2$ (P -1) (b). In this and the other figures, the thickness of lines is proportional to the strength of the couplings J_n. AFM and FM couplings are indicated by solid and dashed lines, respectively. Possible FM\rightarrowAFM transitions are shown by strokes in the dashed lines.
Figure 5. Complicated ribbons (d(Cu-Cu) = 2.90 - 3.61 Å) in projected perpendicular onto the b-axis in the kozyrevskite \(\text{Cu}_4\text{O(AsO}_4) \) (\textit{Pnma}) (a) and perpendicular onto the a-axis in the ericlaxmanite \(\text{Cu}_4\text{O(AsO}_4) \) (\textit{P} - 1) (b).

Figure 6. \(J_n \) between the complicated ribbons composed of the \(\text{Cu}_4 \)-tetrahedra in the kozyrevskite \(\text{Cu}_4\text{O(AsO}_4) \) (\textit{Pnma}).
coupling J_b^{3-3} competes with J_1 ($J_b^{3-3}/J_1= -0.38$) and FM J_{22} (d(Cu1-Cu3) = 7.091 Å, $J_{22}/J_1 = -0.25$).

There are two AFM couplings between the rows in the complicated ribbon: one at a short distance, but weak, J_4 (d(Cu2-Cu3) = 3.133 Å, $J_4/J_5 = 0.14$) (figure 3(g)), and another at a long distance, but much stronger, J_{10} (d(Cu2-Cu3) = 5.561 Å, $J_{10}/J_5 = 0.56$) (figure 3(j)). Both these couplings are frustrated, as they compete with each other in the AFM triangles J_5-J_4-J_{10} and J_3-J_4-J_4 ($J_4/J_3 = 0.28$). Three within-ribbon FM couplings—J_7 (d(Cu3-Cu3) = 4.189 Å, $J_7/J_5 = -0.36$), J_8 (d(Cu2-Cu2) = 4.884 Å, $J_8/J_5 = -0.06$) and J_b^{3-3} (d(Cu3-Cu3) = 6.412 Å, $J_b^{3-3}/J_5 = -0.26$) — are not competing with within-ribbon interactions. However, they are active players in the competition with between-ribbon interactions. The strongest interactions between the complicated ribbons (figure 6) are J_{19} (d(Cu3-Cu3) = 6.838 Å, $J_{19}/J_5 = 0.73$) (figure 3(n)), AFM J_{12} (d(Cu1-Cu3) = 5.914 Å, $J_{12}/J_5 = 0.52$) (figure 3(l)), FM J_{18} (d(Cu1-Cu3) = 6.640 Å, $J_{18}/J_5 = -0.42$) (figure 3(m)) and J_{21} (d(Cu2-Cu3) = 7.029 Å, $J_{21}/J_5 = 0.38$) (figure 3(o)).

The competition between the AFM couplings (J_5-J_{15}-J_{15} ($J_{15}/J_5 = 0.27$) in the triangles Cu1Cu2Cu2 and between the AFM couplings J_6-J_{14}-J_{15} in the triangles Cu1Cu2Cu3 is type 1 competition ($J_14/J_6 = 0.31$, $J_{15}/J_6 = 0.33$). The competition in the following triangles is type 2 competition: (1) in Cu3Cu3Cu3, between AFMJ_{19}–FMJ_7–FM J_{22} ($J_7/J_{19} = -0.54$, $J_{22}/J_{19} = 0.32$), (2) in Cu1Cu2Cu1, between AFMJ_{1}–FMJ_{11}–FMJ_{20} ($J_{11}/J_1 = -0.32$, $J_{20}/J_1 = -0.32$) and (3) in Cu1Cu3Cu3, between AFMJ_{12}–FMJ_{18}–FMJ_7 ($J_{18}/J_{12} = -0.80$, $J_7/J_{12} = -0.69$) and AFMJ_{21}–FMJ_7–FMJ_{17} ($J_7/J_{21} = -0.95$, $J_{17}/J_{21} = -0.63$).

Thus, according to our calculations, the magnetic structures of the orthorhombic arsenate Cu$_4$O(AsO$_4$)$_2$ and isotypic phosphate Cu$_4$O(PO$_4$)$_2$ are strongly frustrated antiferromagnetics. Their base elements are the complicated ribbons composed of AFM Cu$_4$ tetrahedra directed along the b-axis and coupled by rather strong AFM and FM interactions. All magnetic interactions within and between the complicated ribbons are frustrated.

3.2.2. Structural-magnetic model of the triclinic modification of the arsenate Cu$_4$O(AsO$_4$)$_2$ and isotypic phosphate Cu$_4$O(PO$_4$)$_2$.

An increase in crystallographically independent Cu sites up to up to four and a many-fold increase in spin-spin interactions, J_{ij}, in a low-symmetry magnetic system in ericlaxmanite leads to a large number of frustrations. To identify all frustrated fragments appearing as triangles and linear chains in this complex system, we calculated 70 existing spin-spin interactions in the triclinic arsenate Cu$_4$O(AsO$_4$)$_2$ and isotypic phosphate Cu$_4$O(PO$_4$)$_2$ not only at short, but also at long distances (figures 4(b), and 7); Supplementary Note 1, Table 2 and figures 4(b), 7(a) and 7(b)).

As we demonstrated above, what the two polymorphs—the orthorhombic and the triclinic modification—have in common is two rows of separate tetrahedra, which form complicated ribbons. In the triclinic modification (ericlaxmanite), they are directed along the a-axis (figures 4(b) and 5(b)). In ericlaxmanite, the oxocentered tetrahedron O3Cu1Cu2Cu3Cu4 is strongly distorted. Along the six edges, the strength of AFM coupling increases (from -0.0335 Å$^{-1}$ to -0.1154 Å$^{-1}$) with an increase in edge length (from 2.882 Å to 3.609 Å) and the corresponding increase of the angle CuO3Cu (from 97.6° to 140.5°) (Supplementary Note 1, Table 2).
The dominating coupling in ericlaxmanite is the AFM coupling J_{10} ($J_{10} = -0.1154 \, \text{Å}^{-1}$, $d(\text{Cu1-Cu4}) = 3.609 \, \text{Å}$) along the longest edge Cu1-Cu4 of the tetrahedron Cu1Cu2Cu3Cu4, with the O3 ion ($j(O3) = -0.1154 \, \text{Å}^{-1}$) centering this tetrahedron being the main contributor to the AFM component. This coupling ($J_{10}/J_5 = 1.46$) is stronger than the dominating coupling J_5 in kozyrevskite. The strengths of AFM coupling in the tetrahedron are as follows (in descending order): J_6 ($d(\text{Cu2-Cu3}) = 3.122 \, \text{Å}$, $J_6/J_{10} = 0.54$), J_5 ($d(\text{Cu3-Cu4}) = 3.098 \, \text{Å}$, $J_5/J_{10} = 0.51$), J_3 ($d(\text{Cu2-Cu4}) = 2.927 \, \text{Å}$, $J_3/J_{10} = 0.41$), J_2 ($d(\text{Cu1-Cu3}) = 2.897 \, \text{Å}$, $J_2/J_{10} = 0.41$) and J_1 ($d(\text{Cu1-Cu2}) = 2.882 \, \text{Å}$, $J_1/J_{10} = 0.29$) (figure 4(b)).

Figure 7. J_n between the complicated ribbons from the Cu4-tetrahedra in the triclinic (P-1) ericlaxmanite Cu$_4$O(AsO$_4$)$_3$.

In the row, these tetrahedra are coupled, at short distances, by quite strong AFM interactions J_8 ($d(\text{Cu2-Cu3}) = 3.311 \, \text{Å}$, $J_8/J_{10} = 0.56$), similar to J_4 in kozyrevskite. Furthermore, at longer distances, they are additionally coupled by strong AFM interaction J_{22} ($d(\text{Cu1-Cu3}) = 5.244 \, \text{Å}$, $J_{22}/J_{10} = 0.56$) and weak AFM interaction J_{29} ($d(\text{Cu1-Cu2}) = 5.618 \, \text{Å}$, $J_{29}/J_{10} = 0.10$). A 20-fold increase in the strength of AFM coupling J_{21} ($J_{21} = -0.0205 \, \text{Å}^{-1}$, $d(\text{Cu1-Cu1}) = 6.415 \, \text{Å}$, $J_{21}/J_{10} = 0.18$) compared to this variable in the orthorhombic modification J_{b1} ($d(\text{Cu2-Cu2}) = 6.412 \, \text{Å}$, $J_{b1}/J_5 = -0.11$).

By contrast, the strong AFM coupling J_{b2} ($J_{b2} = -0.0329 \, \text{Å}^{-1}$, $d(\text{Cu2-Cu2}) = 6.412 \, \text{Å}$, $J_{b2}/J_5 = 0.42$) between the Cu2-Cu2 ions that exist in the orthorhombic modification split into two AFM couplings with reduced strengths in the triclinic modification: J_{a2} ($d(\text{Cu2-Cu2}) = 6.415 \, \text{Å}$, $J_{a2}/J_{10} = 0.18$) and J_{a3} ($d(\text{Cu2-Cu2}) = 6.415 \, \text{Å}$, $J_{a3}/J_{10} = 0.19$).
The most substantial changes in magnetic coupling at lower symmetry took places in the complicated ribbon due to a misalignment of the rows (figures 4(b) and (d)). First, closely spaced tetrahedra from different rows formed pairs. Magnetic coupling between the tetrahedra in these pairs vanished \((J7 = 0, \text{d(Cu1-Cu1)} = 3.288 \text{ Å}; J9 = 0, \text{d(Cu1-Cu4)} = 3.595 \text{ Å})\) or became ferromagnetic \((\text{FM } J40 = 0.0224 \text{ Å}^{-1}, \text{d(Cu4-Cu4)} = 6.410 \text{ Å})\). Two strong AFM couplings, \(J23\) \((J23 = -0.0707 \text{ Å}^{-1}, \text{d(Cu1-Cu3)} = 5.299 \text{ Å})\) and \(J42\) \((J4 = -0.0224 \text{ Å}^{-1}, \text{d(Cu3-Cu4)} = 6.482 \text{ Å})\), which compete with AFM \(J10\) in the triangle Cu1Cu4Cu3, appeared instead (figures 4(b) and 7(a)). Secondly, in addition to these couplings, strong FM couplings, \(J57\), appeared within the ribbon \((J57 = 0.0285 \text{ Å}^{-1}, \text{Cu4-Cu4} = 7.787 \text{ Å})\) (figure 4(b)), which compete in the triangle Cu1Cu4Cu4 with the strong between-ribbon FM couplings \(J53\) \((J53 = 0.0185 \text{ Å}^{-1}, \text{d(Cu1-Cu4)} = 7.517 \text{ Å})\) and AFM \(J52\) \((J52 = -0.0338 \text{ Å}^{-1}, \text{d(Cu1-Cu4)} = 7.467 \text{ Å})\). In the triangle Cu3Cu4Cu4, they compete with the weaker between-ribbon FM couplings \(J47\) \((J47 = 0.0068 \text{ Å}^{-1}, \text{d(Cu3-Cu4)} = 7.197 \text{ Å})\) and AFM \(J39\) \((J39 = -0.0083 \text{ Å}^{-1}, \text{d(Cu3-Cu4)} = 6.370 \text{ Å})\).

The interactions between the complicated ribbons (Supplementary: figures 4(b), 7(a) and 7(b)) are weaker than the strongest interactions within the ribbon. The AFM coupling \(J48\) \((\text{d(Cu1-Cu3)} = 7.213 \text{ Å}, J48/J10 = 0.42)\) is the strongest. The strengths of the top 20 strongest AFM interactions between the complicated ribbons range from \(-0.0128 \text{ Å}^{-1}\) to \(-0.0484 \text{ Å}^{-1}\). There are much fewer FM couplings between the complicated ribbons and they are weaker than the AFM couplings. The strengths of the top six strongest FM couplings range from \(0.0146 \text{ Å}^{-1}\) to \(0.0227 \text{ Å}^{-1}\). Additionally, even a minor displacement of the intermediate copper ion in the local space between the magnetic ions Cu2-Cu4 affects the strength of two FM couplings, \(J46\) \((J46 = 0.0089 \text{ Å}^{-1} \leftrightarrow 0.0299 \text{ Å}^{-1}, \text{d(Cu2-Cu4)} = 7.050 \text{ Å})\) and \(J54\) \((J54 = 0.0068 \text{ Å}^{-1} \leftrightarrow 0.0263 \text{ Å}^{-1}, \text{d(Cu2-Cu4)} = 7.596 \text{ Å})\). In \(J37\) \((J37 = 0.0089 \text{ Å}^{-1} \text{FM} \leftrightarrow -0.0159 \text{ Å}^{-1} \text{AFM}, \text{d(Cu2-Cu4)} = 6.243 \text{ Å})\), a displacement of the intermediate ion O1 in the local space between the magnetic ions Cu1-Cu2 can lead to an FM \leftrightarrow\text{AFM} transition.

All magnetic couplings, both in the complicated ribbons and between them, are frustrated. The parameters of the frustrated triangles are given in Table 3.

3.2.3. Frustration of antiferromagnetic Cu4O(As(P)O4)2. As far as the minerals in question are considered, in which separate magnetic fragments in the form of AFM Cu4 tetrahedra assembled into complicated ribbons, with AFM coupling between them, it is not easy to understand the hierarchy of magnetic interactions. In addition to the nearest interactions in the frustrated AFM tetrahedral ribbons, even very weak long-range interactions, including those between the ribbons, can too have a strong impact on the magnetic state of a frustrated quantum magnet at low temperatures [37, 38].

Based on our calculations, we conclude that three main structural factors define the magnetic spin-frustrated systems of the anti-ferromagnetics Cu4O(As(P)O4)2 with strongly entangled competing magnetic interactions in the sublattice of magnetic ions Cu2+ (Table 3, figures 4 and 7). First, the existence of frustrated oxocentered AFM OCu4 tetrahedra (“soft islands”). Secondly, competition between a large number of long-range secondary couplings, both strong enough and weak with frustrated primary couplings due to Cu4 tetrahedra. Finally, an additional competition between long-range secondary communications themselves. The competition continues in both triangular and linear systems with three spins, AFM-AFM-AFM and AFM-FM-FM.

As both spatial groups—orthorhombic \(Pnma\) (N62) and triclinic \(P\) \(\perp\) (N2), in which Cu4O(As(P)O4)2 crystallize—are centrosymmetric, it might be expected that all
magnetic ions in them are related by the inversion center; however, they do not live up to this expectation. In the orthorhombic modification of Cu₄O(AsO₄)₂, the copper ions occupy three crystallographically independent sites (Cu1, Cu2, and Cu3) and only the Cu2 ions are in the centro-symmetric equivalent position 8d, while the Cu1 and Cu3 ions are in the non-centro-symmetric equivalent position 4c, in which case the antisymmetric anisotropic exchange interaction (the Dzyaloshinskii-Moriya interaction) [39, 40] contributes to the total magnetic exchange interaction between two nearest magnetic spins in the lattice (D ≠ 0 in the Dzyaloshinskii-Moriya interaction). The competition between the exchange interaction and the Dzyaloshinskii-Moriya interaction caused by spin-orbital

Table 3. Parameters of the frustrated triangles in the triclinic modification of the arsenate Cu₄O(AsO₄)₂

Frustrated triangles	Jₙ	Bond	d(Cu-Cu) (Å)	Jₙ⁽ⁿ⁾ (Å⁻¹)	Jₙ/Jₙ⁽ⁿ⁾ max
In tetrahedron					
Cu₁Cu₂Cu₃	J₆	Cu₂ - Cu₃	3.122	-0.0624 (AFM)	1
	J₂	Cu₁ - Cu₃	2.897	-0.0469 (AFM)	0.75
	J₁	Cu₁ - Cu₂	2.882	-0.0335 (AFM)	0.54
Cu₁Cu₂Cu₄	J₁₀	Cu₁ - Cu₄	3.609	-0.1154 (AFM)	0.53
	J₃	Cu₂ - Cu₄	2.927	-0.0474 (AFM)	0.41
	J₁	Cu₁ - Cu₂	2.882	-0.0335 (AFM)	0.29
Cu₁Cu₃Cu₄	J₁₀	Cu₁ - Cu₄	3.609	-0.1154 (AFM)	0.53
	J₅	Cu₃ - Cu₄	3.098	-0.0588 (AFM)	0.51
	J₂	Cu₁ - Cu₃	2.897	-0.0469 (AFM)	0.41
Cu₂Cu₃Cu₄	J₆	Cu₂ - Cu₃	3.122	-0.0624 (AFM)	0.76
	J₅	Cu₃ - Cu₄	3.098	-0.0588 (AFM)	0.94
	J₃	Cu₂ - Cu₄	2.927	-0.0474 (AFM)	0.76
In complicated ribbons between tetrahedra					
Cu₁Cu₄Cu₃	J₁₀	Cu₁-Cu₄	3.609	-0.1154 (AFM)	0.53
	J₂₃	Cu₁-Cu₃	5.299	-0.0707 (AFM)	0.62
	J₄₂	Cu₃-Cu₄	6.482	-0.0224 (AFM)	0.19
Cu₄Cu₁Cu₃	J₁₀	Cu₁-Cu₄	3.609	-0.1154 (AFM)	0.53
	J₂₂	Cu₁-Cu₃	5.244	-0.0625 (AFM)	0.54
	J₂₁	Cu₄-Cu₃	5.211	-0.0423Å (AFM)	0.37
				+=-0.0021(AFM)	
Cu₁Cu₂Cu₃	J₈	Cu₂-Cu₃	3.311	-0.0642 (AFM)	1
	J₂₂	Cu₁-Cu₃	5.244	-0.0625 (AFM)	0.97
	J₁	Cu₁-Cu₂	2.882	-0.0335 (AFM)	0.52
Cu₁Cu₂Cu₁	J₁	Cu₁-Cu₂	2.882	-0.0335 (AFM)	1
	J₁⁻¹	Cu₁-Cu₁	6.415	-0.0205 (AFM)	0.61
	J₂₉	Cu₂-Cu₁	5.618	-0.0118 (AFM)	0.35
Cu₂Cu₃Cu₁	J₈	Cu₂-Cu₃	3.311	-0.0642 (AFM)	1
	J₂	Cu₃-Cu₁	2.897	-0.0469 (AFM)	0.73
	J₁⁻¹	Cu₁-Cu₁	6.415	-0.0205 (AFM)	0.32
Cu₂Cu₃Cu₁	J₈	Cu₂-Cu₃	3.311	-0.0642 (AFM)	1
	J₂	Cu₃-Cu₁	2.897	-0.0469 (AFM)	0.73
	J₂₉	Cu₂-Cu₁	5.618	-0.0118 (AFM)	0.18
Between complicated ribbons					
Cu₂Cu₂Cu₃	J₆	Cu₂ - Cu₃	3.122	-0.0624 (AFM)	1
	J₅₆	Cu₂ - Cu₃	7.618	-0.0178 (AFM)	0.29
	J₅⁻²	Cu₄ - Cu₄	7.655	-0.0095 (AFM)	0.15
Cu₁Cu₂Cu₃	J₆	Cu₂ - Cu₃	3.122	-0.0624 (AFM)	1
	J₁₆	Cu₁ - Cu₃	4.522	-0.0224 (AFM)	0.36
	J₃₈	Cu₁ – Cu₂	6.245	-0.0171(AFM)	0.27
Cu₄Cu₄Cu₃	J₅	Cu₃ - Cu₄	3.098	-0.0588 (AFM)	1
coupling induces spin canting and, thus, serves as a source of a weak FM behavior in an AFM. The results of a magnetic susceptibility measurement made on orthorhombic Cu4O(AsO4)2 by Adams et al. [33] are consistent with these structural data.

Significant antiferromagnetic coupling was revealed by variable temperature measurements. At very low temperatures (15-25 K), the sample undergoes a transition to a weak ferromagnetic state. At still lower temperatures, this will lead to magnetic ordering.

$J_{i,j}$	Cui - Cuj	$J_{i,j}$	Cui - Cuj	
$J_{1,4}$	Cu4 - Cu4	8.224	-0.0176 (AFM)	0.30
J_{36}	Cu3 - Cu4	6.210	-0.0141 (AFM)	0.34
J_{48}	Cu1 - Cu3	7.213	-0.0484 (AFM)	1.00
J_{16}	Cu1 - Cu3	4.522	-0.0224 (AFM)	0.46
J_{45}	Cu1 - Cu1	6.854	-0.0128 (AFM)	0.26
J_{3}	Cu2 - Cu4	2.927	-0.0474 (AFM)	1.00
J_{33}	Cu2 - Cu4	6.143	-0.0178 (AFM)	0.38
J_{58}	Cu4 - Cu4	8.147	-0.0108 (AFM)	0.23
J_{3}	Cu2 - Cu4	2.927	-0.0474 (AFM)	1.00
J_{4}	Cu4 - Cu4	2.938	-0.0280 (AFM)	0.59
J_{30}	Cu2 - Cu4	5.853	-0.0254 (AFM)	0.54
J_{2}	Cu1 - Cu3	2.897	-0.0469 (AFM)	1.00
J_{52}	Cu1 - Cu4	7.467	-0.0338 (AFM)	0.72
J_{39}	Cu3 - Cu4	6.370	-0.0083 (AFM)	0.18
J_{1}	Cu1 - Cu2	2.882	-0.0335 (AFM)	1.00
J_{37}	Cu1 - Cu2	6.243	-0.0159 (AFM)	0.47
J_{16}	Cu1 - Cu3	4.522	-0.0224 (AFM)	1.00
J_{39}	Cu3 - Cu4	6.370	-0.0083 (AFM)	0.37
J_{27}	Cu1 - Cu4	5.561	-0.0074 (AFM)	0.33
J_{1}	Cu1 - Cu2	2.882	-0.0335 (AFM)	1.00
J_{37}	Cu1 - Cu2	6.243	-0.0159 (AFM)	0.47
J_{52}	Cu1 - Cu4	7.467	-0.0338 (AFM)	1.00
J_{53}	Cu1 - Cu4	7.517	-0.0185 (AFM)	0.55
J_{57}	Cu4 - Cu4	7.787	0.0285 (FM)	-0.84
J_{53}	Cu1 - Cu4	7.517	0.0185 (FM)	-0.55
J_{1}	Cu1 - Cu2	2.882	-0.0335 (AFM)	1.00
J_{39}	Cu3 - Cu4	6.370	-0.0083 (AFM)	0.29
J_{47}	Cu3 - Cu4	7.197	-0.0068 (FM)	0.24
J_{54}	Cu2 - Cu4	7.596	0.0263 (FM)	-1.00
J_{33}	Cu2 - Cu4	6.143	-0.0178 (AFM)	0.68
J_{44}	Cu2 - Cu2	4.439	0.0084 (FM)	0.032
J_{16}	Cu1 - Cu3	4.522	-0.0224 (AFM)	1.00
J_{18}	Cu1 - Cu3	7.655	0.0290 (FM)	-0.93
J_{40}	Cu4 - Cu4	6.410	0.0224 (FM)	1.00
J_{24}	Cu4 - Cu4	8.224	-0.0176 (AFM)	0.79
J_{25}	Cu4 - Cu4	5.411	0.0044 (FM)	0.20
J_{2}	Cu2 - Cu2	2.824	-0.0215 (AFM)	1.00
J_{14}	Cu2 - Cu2	4.439	0.0084 (FM)	-0.39
J_{20}	Cu2 - Cu2	5.122	0.0078 (FM)	-0.36
Importantly, the low-symmetry triclinic spatial group \((P \bar{1})\) has only one equivalent position, 2i, and it has the inversion center. Each of the four crystallographically nonequivalent copper ions will be forced to take this position, preventing DM ordering and keeping the magnetic interactions in the triclinic modification of \(\text{Cu}_4\text{O(As(P)O}_4\text{)}_2\) frustrated at lower temperatures.

4. Conclusions

We have built and analyzed the structural-magnetic models of two minerals from the Tolbachik volcano: (1) the arsenate \(\text{Cu}_4\text{O(AsO}_4\text{)}_2\) in its orthorhombic modification (kozyrevskite) and triclinic modification (ericlaxmanite) and (2) the isotypic phosphates \(\text{Cu}_4\text{O(PO}_4\text{)}_2\); and revealed the main correlations between the structure and magnetic properties within them. Although the chemical formula—\(\text{Cu}_4\text{O(AsO}_4\text{)}_2\)—is easy, the magnetic couplings in these antiferromagnetics have been found to be intricately entangled, especially in the triclinic modification, due to an increased number of crystallographically independent Cu sites (up to four) and a many-fold increase in the number of the spin-spin interactions \(J_{ij}\) in a low-symmetry magnetic system.

The basic elements of both modifications are complicated ribbons composed of AFM \(\text{Cu}_4\) tetrahedra. These tetrahedra have no shared copper atoms; however, there are strong anti-ferromagnetic and ferromagnetic couplings, both within the complicated ribbons and between them. It has been established that both modifications are strongly frustrated 3-D magnets due to competition between the nearest AFM interactions along the AFM \(\text{Cu}_4\) tetrahedral edges and competition between these interactions and a multiplicity of long-range secondary AFM and FM interactions. Additionally, there are multiple competitions among weaker long-range interactions.

However, the state of the frustrated spin system of the orthorhombic modification \((Pnma)\) is not the same as the state of the triclinic modification \((P \bar{1})\). The main difference between them is that the centrosymmetric orthorhombic system can induce the ordering DM interaction in some interactions between copper ions in non-centrosymmetric partial positions and suppress frustration at lower temperature, which the triclinic system cannot. The DM interaction in the centrosymmetric triclinic modification of \(\text{Cu}_4\text{O(As(P)O}_4\text{)}_2\) is impossible, because all copper ions are in the centrosymmetric position. It is possible that the triclinic modification of \(\text{Cu}_4\text{O(As(P)O}_4\text{)}_2\) is a spin liquid.

Data availability statement
All data that support the findings of this study are included within the article (and any supplementary files).

Additional information
Supplementary information is available in the online version of the paper.

Acknowledgments
The work was financially supported within the frames of the State Order of the Institute of Chemistry FEBRAS, project No. 0205-2022-0001.
ORCID iDs
L M Volkova https://orcid.org/0000-0002-6316-8586

References

[1] Dotsenko V S 1993 Physics of the spin-glass state Phys. Usp. 36 455–485 DOI: 10.1070/PU1993v036n06ABEH002161.
[2] Binder K, Young A P 1986 Spin glasses: Experimental facts, theoretical concepts, and open questions Rev. Mod. Phys. 58 801–976 https://doi.org/10.1103/RevModPhys.58.801
[3] Hurd C M. 1982 Varieties of Magnetic Order in Solids Contemp Phys. 23 469–493 DOI:10.3367/UFNr.0142.198402e.0331
[4] Balents L 2010 Spin liquids in frustrated magnets. Nature 464 199-208 https://doi.org/10.1038/nature08917
[5] Ramirez A P 1994 Strongly geometrically frustrated magnets. Annu Rev. Mater Sci. 24 453–480 https://doi.org/10.1146/annurev.matsci.24.080194.002321
[6] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Quantum spin liquids. Science 367:eaay0668 DOI: 10.1126/science.aay0668
[7] Sosin S S, Prozorova L A, Smirnov A I 2005 New magnetic states in crystals. Phys. Usp. 48 83–90 https://doi.org/10.1070/PU2005v048n01ABEH002112
[8] Gotze O and Richter J 2016 The route to magnetic order in the spin-1/2 kagome Heisenberg antiferromagnet: The role of interlayer coupling EPL 114 67004 https://doi.org/10.1209/0295-5075/114/67004
[9] Volkova L M and Marinin D V 2018 Spin-frustrated pyrochlore chains in the volcanic mineral kamchatkite (KCu3OCl(SO4)2). Phys Chem Minerals 45 655-668 https://doi.org/10.1007/s00269-018-0950-5
[10] Volkova L M and Marinin D V 2017 Frustrated Antiferromagnetic spin chains of edge-sharing tetrahedra in volcanic minerals K3Cu3(Fe0.82Al0.18)O2(SO4)4 and K4Cu4O2(SO4)4MeCl.30. J Supercond Nov Magn 30 959–971 https://doi.org/10.1007/s10948-016-3892-5.
[11] Krivovichev Sergey V, Mentré Olivier, Siidra Oleg I, Colmont Marie and. Filatov Stanislav K 2013 Anion-Centered Tetrahedra in Inorganic Compounds Chem. Rev. 113 6459–6535 https://doi.org/10.1021/cr3004696
[12] Pekov I V, Agakhanovic A A, Zubkova N V, Koshlyakova N N, Shchipalkina N V, Sandalova F D, Yapaskurt V O, Turchkova A G, Sidorov E G 2020 Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique Russ. Geol. Geophys. 61 (5-6): 675–688 https://doi.org/10.15372/RGG2019167
[13] Pekov I V, Zubkova N V, Yapaskurt V O, Belakovskiy D I, Vigasina M F, Sidorov E G and Pushchrovsky D Yu 2014 New arsenate minerals from the Arsenatnaya fumarole,
Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu₄O(AsO₄)₂ Mineralogical Magazine, 78(7) 1553–1569
DOI: 10.1180/minmag.2014.078.7.03

[14] Brunel-Laugt M, Durif A and Guitel J.C 1978 Structure cristalline de Cu₄(PO₄)₂O J. Solid State Chem. 25 39–47 https://doi.org/10.1016/0022-4596(78)90041-5

[15] Schwunck H-M, Moser P und Jung W 1998 Copper(II) Oxide Phosphate Cu₄O(PO₄)₂ in a New, Orthorhombic Modification by Oxidation of a Tl/Cu/P Alloy Z. anorg. allg. Chem. 624 1262–1266 https://doi.org/10.1002/(SICI)1521-3749(199808)624:8%3C1262::AID-ZAAC1262%3E3.0.CO;2-R

[16] Volkova L M and Polyshchuk S A 2005 New Method to Calculate the Sign and Relative Strength of Magnetic Interactions in Low-Dimensional Systems on the Basis of Structural Data J. Supercond. 18 583 DOI: 10.1007/s10948-005-0043-9

[17] Volkova L M and Marinin D V 2009 Crystal chemistry aspects of the magnetically induced ferroelectricity in TbMn2O5 and BiMn2O5 J. Phys.: Condens. Matter 21 015903 doi:10.1088/0953-8984/21/1/015903

[18] Volkova L M 2009 Role of crystal chemical factors in the formation of the magnetic structure of inorganic compounds J. Struct. Chem. 50 49–59
https://doi.org/10.1007/s10947-009-0189-6

[19] Kramers H.A. 1934 Physica 1(1-6) 182-192. https://doi.org/10.1016/S0031-8914(34)90023-9

[20] Goodenough J B 1955 Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 Phys. Rev. 100 564–573
DOI:https://doi.org/10.1103/PhysRev.100.564

[21] Kanamori J 1959 Supereexchange interaction and symmetry properties of electron orbitals J. Phys. Chem. Solids 10 87-98 https://doi.org/10.1016/0022-3697(59)90061-7

[22] Anderson P W 1963 Solid State Physics vol 14 ed F Seitz and D Turnbull (New York: Academic) pp 99–214

[23] Vonsovsky S V 1971 Magnetism (Moscow: Nauka)

[24] Jahn H A and Teller E 1937 Stability of polyatomic molecules in degenerate electronic states I-orbital degeneracy Proc. R. Soc. A 161 220-35

[25] Bersuker I B, Vekhter B J, Ogurtsov I Y 1975 Tunnel effects in polyatomic systems with electronic degeneracy and pseudodegeneracy Sov. Phys. Usp. 18 569–587
DOI: 10.1070/PU1975v018n08ABEH004913

[26] Kugel' K I and Khomskii D I 1982 The Jahn-Teller effect and magnetism: transition metal compounds Sov. Phys. Usp. 25 231–256
DOI:10.1070/PU1982v025n04ABEH004537

[27] Bersuker I B 1986 The Concept of Vibronic Interactions in Present-day Chemistry Russ. Chem. Rev. 55 581–596.

[28] Streltsov S V and Khomskii D I 2017 Orbital physics in transition metal compounds: new trends Phys. Usp. 60 1121–1146 (); DOI: 10.3367/UFNe.2017.08.038196

[29] Kugel’ K I and Khomskii D I 1973 Sov. Phys. JETP 37 725
[30] Khomskii D I and Streltsov S V 2021 Chem. Rev. 121, 2992–3030
[31] Volkova L M and Marinin D V 2018 Antiferromagnetic spin-frustrated layers of corner-sharing Cu4 tetrahedra on the kagome lattice in volcanic minerals Cu5O2(VO4)2(CuCl), NaCu5O2(SeO3)2C13, and K2Cu5Cl8(OH)4·2H2O J. Phys.: Condens. Matter 30 425801 https://doi.org/10.1088/1361-648X/aade0b
[32] Volkova L M and D V Marinin 2021 Crystal chemistry criteria of the existence of spin liquids on the kagome lattice J. Phys.: Condens. Matter 33 415801(23pp) https://doi.org/10.1088/1361-648X/ac145e
[33] Adams R D, Layland R C and Payen C A 1995 New Copper Arsenate with Unusual Low Temperature Magnetic Properties Inorg. Chem. 34 5397-5398 https://doi.org/10.1021/ic00126a002
[34] Adams R D, Layland R C and Payen C 1997 The Synthesis, Crystal Structures and Magnetic Properties of Cu4(AsO4)(O) and Ba2Cu2(AsO4)6. Chem.Ber./Recueil 130 63–67 https://doi.org/10.1002/cber.19971300110
[35] Staack M and Mueller Buschbaum Hk 1996 Zur Kenntnis des Kupfer-Oxid-Arsenats Cu4O(AsO4)2. Z. Naturforsch. 51b 1279–1282 https://doi.org/10.1515/znb-1996-0910
[36] Shannon R D 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect A32: 751-767
[37] Kudasov Yu B, Korshunov A S, Pavlov V N and Maslov D A 2012 Phys. Usp. 55 1169–91 https://doi.org/10.3367%2FUFNe.0182.201212a.1249
[38] Lee S, Fernandez-Diaz M T, Kimura H, Noda Y, Adroja D T, Lee S, Park J, Kiryukhin V, Cheong S-W, Mostovoy M and Park J-G 2013 Phys. Rev. B 88 060103 DOI:https://doi.org/10.1103/PhysRevB.88.060103
[39] Dzyaloshinsky I 1958 A thermodynamictheory of “weak” ferromagnetism of antiferromagnetics J. Phys. Chem. Solids 4 241–255 http://dx.doi.org/10.1016/0022-3697(58)90076-3
[40] Moriya T 1960 Anisotropic Superexchange Interaction and Weak Ferromagnetism Phys. Rev. 120 91–98 DOI:https://doi.org/10.1103/PhysRev.120.91

Supplementary Material
Supplementary Note 1:
Figure 4 (all magnetic interactions (Jn) are shown)

Figure 4. The couplings, J_n, in the complicated ribbons from the Cu4 tetrahedra in the kozyreivskite Cu$_4$O(AsO$_4$)$_2$ (Pnma) (a) and in the ericlawxmanite Cu$_4$O(AsO$_4$)$_2$ (P-1) (b). In this and the other figures, the thickness of lines is proportional to the strength of the couplings J_n. AFM and FM couplings are indicated by solid and dashed lines, respectively. Possible FM \rightarrow AFM transitions are shown by strokes in the dashed lines. The diagrams complicated ribbons in the orthorhombic (c) and in the triclinic (d) modifications.
Figure 7 (all magnetic interactions (J_n) are shown.)

Ericlaxmanite $\text{Cu}_4\text{O(AsO}_4)_2$ (ICSD-404850): triclinic $P\bar{1}$

$a = 6.415$, $b = 7.655$, $c = 8.224$ Å, $\alpha = 98.5$, $\beta = 112.4^\circ$, $\gamma = 98.4^\circ$, $Z = 2$

Figure 7. J_n between the complicated ribbons from the Cu4-tetrahedera in the triclinic ($P\bar{1}$) ericlaxmanite $\text{Cu}_4\text{O(AsO}_4)_2$ (a) and (b).
Table 1. Crystallographic characteristics and parameters of magnetic couplings (Jn) calculated on the basis of structural data and respective distances between magnetic Cu²⁺ ions in the copper(II) oxide arsenate kozyrevskite Cu₃O(AsO₄)₂ and phosphate Cu₃O(PO₄)₂

Crystallographic and magnetic parameters	Cu₃O(AsO₄)₂[33]	Cu₃O(PO₄)₂[15]
Min Name: Kozyrevskite	(Data for ICSD-81295)	(Data for ICSD-50459)
Space group Pnma (N62)	a = 8.253, b = 6.4122, c = 13.789 Å	a = 8.088, b = 6.270, c = 13.3839 Å
α = β = γ = 90°, Z = 4	Method*: XDS (293 K); R-valueᵇ = 0.038	Method*: XDS (293 K); R-valueᵇ = 0.0338

d(Cu-X) (Å)	Cu₁: trigonal bipyramid	Cu₁: trigonal bipyramid
Cu₁-O7 = 1.842 (ax)	Cu₁-O1 = 1.835 (ax)	
-O6 = 1.907 (ax)	-O7 = 1.873 (ax)	
-O5 = 2.044 x 2 (eq)	-O6 = 2.105 x 2 (eq)	
-O3 = 2.143 (eq)	-O4 = 2.161 (eq)	
Cu₂: tetragonal pyramid	Cu₃: tetragonal pyramid	
Cu₂-O6 = 1.912	Cu₃-O7 = 1.890	
-O4 = 1.954	-O5 = 1.964	
-O1 = 1.973	-O3 = 1.973	
-O5 = 1.973	-O6 = 1.996	
-O2 = 2.337 (ax)	-O2 = 2.340 (ax)	
Cu₃: trigonal bipyramids	Cu₂: trigonal bipyramids	
Cu₃-O3 = 1.920	Cu₂-O4 = 1.921	
-O2 = 1.953	-O2 = 1.946	
-O6 = 2.005	-O7 = 1.989	
-O4 = 2.182 x 2	-O3 = 2.174 x 2	

Complicated ribbon	Bond	Cu₁-Cu₂	Cu₁-Cu₃
d(Cu-Cu) (Å)	2.957	2.965	
J₁[^] (Å⁻¹)	J₁ = -0.0533 (AFM)	J₁ = -0.0514 (AFM)	
j(X)[^] (Å⁻¹)	j(O6): -0.0439	j(O7): -0.0550	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.192, 1.0, 101.5°)	(-0.242, 1.1, 104.0°)	
j(X)[^] (Å⁻¹)	j(O5): -0.0094	j(O6): 0.0036	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.041, 1.07, 94.8°)	(0.016, 1.1, 92.6°)	
Jₙ/Jₙmax	J₁/J₅ = 0.68	J₁/J₅ = 0.66	
Bond	Cu₁-Cu₃	Cu₁-Cu₂	
d(Cu-Cu) (Å)	3.029	3.012	
J₂[^] (Å⁻¹)	J₂ = -0.0465 (AFM)	J₂ = -0.0488 (AFM)	
j(X)[^] (Å⁻¹)	j(O6): -0.0356	j(O7): -0.0426	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.163, 1.1, 101.4°)	(-0.192, 1.1, 102.5°)	
j(X)[^] (Å⁻¹)	j(O3): -0.0109	j(O4): -0.0062	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.049, 1.2, 96.2°)	(-0.027, 1.1, 94.9°)	
Jₙ/Jₙmax	J₂/J₅ = 0.59	J₂/J₅ = 0.63	
Bond	Cu₂-Cu₂	Cu₃-Cu₃	
d(Cu-Cu) (Å)	3.120	3.064	
J₃[^] (Å⁻¹)	J₃ = -0.0395 (AFM)	J₃ = -0.0365 (AFM)	
j(X)[^] (Å⁻¹)	j(O1): -0.0395	j(O1): -0.0365	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.192, 1.0, 104.5°)	(-0.171, 1.0, 102.5°)	
Jₙ/Jₙmax	J₃/J₅ = 0.50	J₃/J₅ = 0.47	
Bond	Cu₂-Cu₃	Cu₂-Cu₃	
d(Cu-Cu) (Å)	3.133	3.105	
J₄[^] (Å⁻¹)	J₄ = -0.0109 (AFM)	J₄ = -0.0060 (AFM)	
j(X)[^] (Å⁻¹)	j(O4): -0.0109	j(O3): -0.0060	
(Δh(X) [Å, l₁, l₂, Cu₃Cu₄]	(-0.053, 1.2, 98.3°)	(-0.028, 1.2, 96.6°)	
Jₙ/Jₙmax	J₄/J₅ = 0.14	J₄/J₅ = 0.08	
Bond	Cu2-Cu2	Cu3-Cu3	
------	---------	---------	
d(Cu-Cu) (Å)	3.292	3.206	
J_{5} (Å⁻¹)	J_{5} = -0.0789 (AFM)	J_{5} = -0.0777 (AFM)	
J_{6} (Å⁻¹)	J_{6} = -0.0635 (AFM)	J_{6} = -0.0654 (AFM)	
(∆hX)^{i} Å, l_{i}, I_{i}^{j}, ; CuXCu^{i}	(-0.428, 1.0, 118.8°)	(-0.428, 1.0, 118.8°)	
J_{n}/J_{max}	J_{5}/J_{5} = 1	J_{5}/J_{5} = 1	
Bond	Cu2-Cu3	Cu2-Cu3	
d(Cu-Cu) (Å)	3.300	3.255	
J_{7} (Å⁻¹)	J_{7} = 0.0284 (FM)	J_{7} = 0.0252 (FM)	
J_{8} (Å⁻¹)	J_{8} = 0.0050 (FM)	J_{8} = 0.0046 (FM)	
(∆hX)^{i} Å, l_{i}, I_{i}^{j}, ; CuXCu^{i}	(0.450, 2.6, 90.6°)	(0.380, 2.3, 93.6°)	
J_{n}/J_{max}	J_{7}/J_{5} = -0.36	J_{7}/J_{5} = -0.32	
Bond	Cu3-Cu3	Cu2-Cu2	
d(Cu-Cu) (Å)	4.189	4.166	
J_{9} (Å⁻¹)	J_{9} = 0.0453 (AFM)	J_{9} = -0.0473 (AFM)	
J_{10} (Å⁻¹)	J_{10} = -0.0440 (AFM)	J_{10} = -0.0516 (AFM)	
(∆hX)^{i} Å, l_{i}, I_{i}^{j}, ; CuXCu^{i}	(-0.0670, 1.8, 147.1°)	(-0.0670, 1.8, 147.1°)	
J_{n}/J_{max}	J_{9}/J_{5} = 0.57	J_{9}/J_{5} = 0.64	
Bond	Cu2-Cu2	Cu2-Cu3	
d(Cu-Cu) (Å)	5.362	5.292	
J_{11} (Å⁻¹)	J_{11} = -0.0253 (FM)	J_{11} = -0.0218 (FM)	
J_{12} (Å⁻¹)	J_{12} = -0.0266 (FM)	J_{12} = -0.0289 (FM)	
Bond	Cu1-Cu1	Cu1-Cu1	
d(Cu-Cu) (Å)	8.009	8.002	
J_{13} (Å⁻¹)	J_{13} = -0.0253 (FM)	J_{13} = -0.0218 (FM)	
J_{14} (Å⁻¹)	J_{14} = -0.0266 (FM)	J_{14} = -0.0289 (FM)	
Bond	Cu2-Cu2	Cu2-Cu2	
d(Cu-Cu) (Å)	6.412	6.270	
J_{b} (Å⁻¹)	J_{b} = 0.0866 (FM)	J_{b} = 0.0027 (AFM)	
J_{b} (Å⁻¹)	J_{b} = 0.0018 (FM)	J_{b} = 0.0073	
(∆hX)^{i} Å, l_{i}, I_{i}^{j}, ; CuXCu^{i}	(0.376, 1.0, 122.02°)	(0.144, 1.0, 127.55°)	
(∆hX)^{i} Å, l_{i}, I_{i}^{j}, ; CuXCu^{i}	(-0.498, 2.5, 142.7°)	(-0.457, 2.3, 141.3°)	
J_{n}/J_{max}	J_{b}/J_{5} = -0.11	J_{b}/J_{5} = 0.03	
Bond	Cu2-Cu2	Cu3-Cu3	
d(Cu-Cu) (Å)	6.412	6.270	
J_{b} (Å⁻¹)	J_{b} = -0.0329 (AFM)	J_{b} = -0.0339 (AFM)	
Bond	Δh(X)a (Å)	j(Cu2): -0.0278	j(Cu3): -0.0290
--------------------------	-----------------------------	----------------	----------------
(Δh(X)a A, l\textsubscript{A0}/l\textsubscript{A0}; CuXCub)	(-0.570, 1.06, 180°)	(-0.570, 1.05, 180°)	
(Δh(X)a A, l\textsubscript{A0}/l\textsubscript{A0}; CuXCub)	(-0.428, 2.9, 137.9°)	(-0.399, 2.9, 135.9°)	
(Δh(X)a A, l\textsubscript{A0}/l\textsubscript{A0}; CuXCub)	(-0.192, 3.1, 128.3°)	(-0.171, 3.1, 126.7°)	
J\textsubscript{n}/J\textsubscript{max}	J\textsubscript{h}a/J\textsubscript{S} = 0.42	J\textsubscript{h}a/J\textsubscript{S} = 0.42	
Bond	Cu\textsubscript{3}-Cu\textsubscript{3}	Cu\textsubscript{2}-Cu\textsubscript{2}	
d(Cu-Cu) (Å)	6.412	6.270	
J\textsubscript{h}a/J\textsubscript{S} (Å-1)	J\textsubscript{h}a/J\textsubscript{S} = 0.0204 (FM)	J\textsubscript{h}a/J\textsubscript{S} = 0.0066 (FM)	
Bond	Cu\textsubscript{1} - Cu\textsubscript{1}		
d(Cu-Cu) (Å)	4.251	4.057	
J\textsubscript{11}/J\textsubscript{max} (Å-1)	J\textsubscript{11} = 0.0170 (FM)	J\textsubscript{11} = 0.0208 (FM)	
Bond	Cu\textsubscript{1}-Cu\textsubscript{3}	Cu\textsubscript{1}-Cu\textsubscript{2}	
d(Cu-Cu) (Å)	5.914	5.757	
J\textsubscript{12}/J\textsubscript{max} (Å-1)	J\textsubscript{12} = 0.0411 (AFM)	J\textsubscript{12} = 0.00345 (AFM)	
Bond	Cu\textsubscript{1}-Cu\textsubscript{2}	Cu\textsubscript{1}-Cu\textsubscript{3}	
d(Cu-Cu) (Å)	6.212	6.047	
J\textsubscript{13}/J\textsubscript{max} (Å-1)	J\textsubscript{13} = 0.0173 (AFM)	J\textsubscript{13} = 0.0209 (AFM)	
Bond	Cu\textsubscript{1}-Cu\textsubscript{3}		
d(Cu-Cu) (Å)	6.244	6.058	
J\textsubscript{14}/J\textsubscript{max} (Å-1)	J\textsubscript{14} = 0.0199 (AFM)	J\textsubscript{14} = 0.0241 (AFM)	
Bond	Cu\textsubscript{1}-Cu\textsubscript{2}	Cu\textsubscript{1}-Cu\textsubscript{3}	
d(Cu-Cu) (Å)	6.262	6.064	
J\textsubscript{15}/J\textsubscript{max} (Å-1)	J\textsubscript{15} = 0.0210 (AFM)	J\textsubscript{15} = 0.0245 (AFM)	

a Bond notation: Cu\textsubscript{1}-Cu\textsubscript{2} for Cu\textsubscript{2}-Cu\textsubscript{1}, Cu\textsubscript{1}-Cu\textsubscript{3} for Cu\textsubscript{3}-Cu\textsubscript{1}, Cu\textsubscript{2}-Cu\textsubscript{2} for Cu\textsubscript{2}-Cu\textsubscript{2}, Cu\textsubscript{3}-Cu\textsubscript{3} for Cu\textsubscript{3}-Cu\textsubscript{3}.
Bond	d(Cu-Cu) (Å)	J_{max}	J_{15}/J_{5}
Cu2-Cu3	6.299	J16 = 0.0188 (AFM)	J16/J5 = 0.27
Cu2-Cu3	6.106	J16 = 0.0219 (AFM)	J16/J5 = 0.32
Cu2-Cu3	6.565	J17 = 0.0189 (FM)	J17 = 0.0196 (FM)
Cu1-Cu2	6.404	J18 = 0.0329 (FM)	J18 = 0.0283 (FM)
Cu3-Cu3	6.838	J19 = 0.0524 (AFM)	J19 = 0.0586 (AFM)
Cu1-Cu3	6.600	J20 = 0.0169 (FM)	J20 = 0.0224 (FM)
Cu2-Cu3	6.924	J21 = 0.0219 (AFM)	J21 = 0.0263 (AFM)
Cu1-Cu3	7.029	J22 = 0.0133 (FM)	J22 = 0.0056 (FM)
Cu3-Cu3	7.091	J23 = 0.0133 (FM)	J23 = 0.0056 (FM)
Cu2-Cu3	7.825	J24 = 0.0219 (AFM)	J24 = 0.0263 (AFM)

Bond	d(Cu-Cu) (Å)	Δ(hX) Å, l\(_a\)'/l\(_d\)' CuXCu\(_e\)	J_{max}	J_{15}/J_{5}
Cu2-Cu3	6.299	(-0.865, 2.5, 156.5°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu2-Cu3	6.106	(-0.818, 2.5, 153.9°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu2-Cu3	6.565	(-0.847, 2.4, 156.2°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu2-Cu3	6.404	(-0.870, 2.3, 156.9°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu1-Cu2	6.404	(-0.912, 2.3, 159.4°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu3-Cu3	6.838	(-0.942, 2.1, 160.5°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu1-Cu3	6.600	(-0.946, 2.1, 160.5°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu2-Cu3	6.924	(-0.974, 2.1, 163.2°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu3-Cu3	7.029	(-0.983, 2.1, 163.2°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu1-Cu3	7.091	(-0.989, 2.1, 163.2°)	J16/J5 = 0.27	J16/J5 = 0.32
Cu3-Cu3	7.825	(-0.0770, 1.0, 159.7°)	J21/J5 = 0.38	J21/J5 = 0.47

ΔX = J_{20}/J_{19} = 0.0524 (AFM)
\[
\begin{array}{c|c|c}
\hline
J_{22}^{(a)} (\text{Å}^{-1}) & J_{23}^{(b)} = -0.0170 \text{ (FM)} & J_{23}^{(b)} = 0.0195 \text{ (FM)} \\
\hline
j(X)^{d} (\text{Å}^{-1}) & j(Cu2): 0.0077 & j(Cu3): 0.0070 \\
\hline
(\Delta h(X)^{e} \text{Å}, l_{e}/l_{s}, \text{CuXCu}^{f}) & (0.222, 1.3, 156.4^\circ) & (0.191, 1.4, 156.7^\circ) \\
\hline
j(X)^{d} (\text{Å}^{-1}) & j(O1): 0.0167 & j(O5): 0.0188 \\
\hline
(\Delta h(X)^{e} \text{Å}, l_{e}/l_{s}, \text{CuXCu}^{f}) & (0.461, 1.6, 127.2^\circ) & (0.478, 1.7, 125.0^\circ) \\
\hline
J_{n}/J_{max} & J_{23}/J_{5} = -0.22 & J_{23}/J_{5} = -0.25
\end{array}
\]

\text{a}XDS: X-ray diffraction from a single crystal.
\text{b}The refinement converged to the residual factor (R) values.
\text{c}J_{n} in \text{Å}^{-1}: the magnetic couplings (\text{J}_{n} < 0, \text{AFM}; \text{J}_{n} > 0, \text{FM}).
\text{d}j(X): contributions of the intermediate ion X to the AFM (j(X) < 0) and FM (j(X) > 0) components of the coupling J_{n}.
\text{e}\Delta h(X): the degree of overlapping of the local space between magnetic ions by the intermediate ion X.
\text{f}l_{e}/l_{s}: the asymmetry of the position of the intermediate ion X relative to the middle of the Cu_{i–Cu_{j}} bond line.
\text{g}Cu_{i}XCu_{j}: bonding angle.
\text{h}Small j(X) contributions are not shown.

Table 2. Crystallographic characteristics and parameters of magnetic couplings (\text{J}_{n}) calculated on the basis of structural data and respective distances between magnetic ions Cu^{2+} in the copper(II) oxide arsenate erielaxmanite Cu_{4}O(AsO_{4})_{2} and phosphate Cu_{4}O(PO_{4})_{2}:

Crystallographic and magnetic parameters	Cu_{4}O(AsO_{4})_{2}[35]	Cu_{4}O(PO_{4})_{2}[14]
Min Name: Erielaxmanite (Data for ICSD-404850)	Space group P -1 (N2)	Space group P -1 (N2)
\(a = 6.415, b = 7.655, c = 8.224\ \text{Å} \)	\(a = 7.528, b = 8.090, c = 6.272\ \text{Å} \)	
\(\alpha = 98.52, \beta = 112.39, \gamma = 98.38^\circ, Z = 2\)	\(\alpha = 113.68, \beta = 81.56, \gamma = 105.77^\circ, Z = 2\)	
Method(a): XDS (293 K); \ R\text{-value}(b) = 0.038	Method(b): XDS (293 K); \ R\text{-value}(b) = 0.038	
d(Cu-X) (Å)	Cu1: tetragonal pyramid	Cu2: tetragonal pyramid (square)
Cu1-O3 = 1.926	Cu2-O6 = 1.916	
-O6 = 1.933	-O1 = 1.921	
-O9 = 1.939	-O9 = 1.934	
-O8 = 1.959	-O7 = 1.963	
-O8 = 2.648	-O2 = 2.951	
Cu2: [4+2] octahedron	Cu3-O1 = 1.901	
Cu2-O3 = 1.903	-O2 = 1.947	
-O1 = 1.962	-O8 = 2.028	
-O7 = 1.987	-O4 = 2.052	
-O5 = 2.045	-O7 = 2.230	
-O8 = 2.316	-O5 = 2.794	
-O4 = 2.779		
Cu3: trigonal bipyramid	Cu1: trigonal bipyramid	
Cu3-O3 = 1.911	Cu1-O1 = 1.898	
-O4 = 1.941	-O5 = 1.948	
-O1 = 1.957	-O2 = 1.950	
-O9 = 2.015	-O9 = 2.085	
-O7 = 2.464	-O8 = 2.289	
Cu4: [4+2] octahedron	Cu4-O1 = 1.914	
Cu4-O3 = 1.909	-O4 = 2.997	
-O2 = 1.966	-O4 = 1.973	
-O5 = 1.973	-O3 = 1.981	
-O2 = 2.011	-O3 = 2.001	
-O6 = 2.457	-O6 = 2.435	
-O4 = 2.462	-O5 = 2.521	
Complicated ribbon

Bond	Cu1-Cu2	Cu2-Cu3					
$\Delta d_{(Cu-Cu)} (Å)$	2.882	2.586					
$J_1^{(Cu)} (Å^{-1})$	$J_1 = -0.0335$ (AFM)	$J_1 = -0.0318$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O3): -0.0335$	$j(O1): -0.0318$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.139, 1.0, 97.61°)	(-0.130, 1.0, 96.70°)					
Ju_{1}/max	$J1/J10 = 0.29$	$J1/J10 = 0.27$					
Bond	Cu1-Cu3	Cu2-Cu1					
$d(Cu-Cu) (Å)$	2.897	2.871					
$J_2^{(Cu)} (Å^{-1})$	$J2 = -0.0469$ (AFM)	$J2 = -0.0330$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O3): -0.0338$	$j(O1): -0.0340$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.142, 1.0, 98.1°)	(-0.140, 1.0, 97.4°)					
$J_4/10 = 0.41$	$J2/J10 = 0.28$						
Bond	Cu2-Cu3	Cu3-Cu4					
$d(Cu-Cu) (Å)$	2.927	2.931					
$J_3^{(Cu)} (Å^{-1})$	$J3 = -0.0474$ (AFM)	$J3 = -0.0467$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O3): -0.0417$	$j(O1): -0.0417$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.179, 1.0, 100.3°)	(-0.179, 1.0, 100.4°)					
$J_3/J10 = 0.41$	$J3/J10 = 0.39$						
Bond	Cu3-Cu4	Cu3-Cu4					
$d(Cu-Cu) (Å)$	2.938	3.015					
$J_4^{(Cu)} (Å^{-1})$	$J4 = -0.0280$ (AFM)	$J4 = -0.0202$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O2): -0.0140x2$	$j(O3): -0.0101x2$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.060, 1.0, 95.3°)	(-0.043, 1.0, 94.03°)					
Ju_{1}/max	$J4/J10 = 0.24$	$J4/J10 = 0.18$					
Bond	Cu1-Cu4	Cu1-Cu4					
$d(Cu-Cu) (Å)$	3.098	3.105					
$J_5^{(Cu)} (Å^{-1})$	$J5 = -0.0588$ (AFM)	$J5 = -0.0611$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O3): -0.0588$	$j(O1): -0.0611$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.282, 1.0, 108.4°)	(-0.294, 1.0, 108.4°)					
Ju_{1}/max	$J5/J10 = 0.51$	$J5/J10 = 0.51$					
Bond	Cu2-Cu3	Cu2-Cu3					
$d(Cu-Cu) (Å)$	3.122	3.041					
$J_6^{(Cu)} (Å^{-1})$	$J6 = -0.0624$ (AFM)	$J6 = -0.0564$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O3): -0.0624$	$j(O1): -0.0564$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.304, 1.0, 109.9°)	(-0.261, 1.0, 106.3°)					
Ju_{1}/max	$J6/J10 = 0.54$	$J6/J10 = 0.47$					
Bond	Cu1-Cu1	Cu1-Cu2					
$d(Cu-Cu) (Å)$	3.288	3.457					
$J_7^{(Cu)} (Å^{-1})$	$J7 = 0$	$J7 = 0$					
Bond	Cu2-Cu3	Cu1-Cu3					
$d(Cu-Cu) (Å)$	3.311	3.239					
$J_8^{(Cu)} (Å^{-1})$	$J8 = -0.0642$ (AFM)	$J8 = -0.0604$ (AFM)					
$j(X)^2 (Å^{-1})$	$j(O1): -0.0642$	$j(O2): -0.0604$					
$(\Delta h(X)^3 Å, l_i'/l_i', CuXCu^6)$	(-0.352, 1.0, 115.3°)	(-0.317, 1.0, 115.3°)					
Ju_{1}/max	$J8/J10 = 0.56$	$J8/J10 = 0.51$					
Bond	Cu1-Cu4	Cu2-Cu4					
$d(Cu-Cu) (Å)$	3.595	3.450					
$J_9^{(Cu)} (Å^{-1})$	$J9 = 0$	$J9 = 0$					
Bond	Cu1-Cu4	Cu2-Cu4					
$d(Cu-Cu) (Å)$	3.609	3.632					
Bond	d(Cu-Cu) (Å)	J10/\(100\) (Å⁻¹)	J10 = -0.1154 (AFM)	J10 = -0.1190 (AFM)	J11/\(100\) (Å⁻¹)	J11 = 0.0062 (FM)	J11 = 0.0062 (FM)
----------------	--------------	-------------------------------	---------------------	---------------------	-----------------------------	-----------------	-------------------
Cu2-Cu3	4.124	4.149	J12/\(100\) (Å⁻¹)	J12 = 0.0041 (FM)	J12 = 0.0040 (FM)		
Cu1-Cu3	4.219	4.141	J13/\(100\) (Å⁻¹)	J13 = -0.0021 ↔ -0.0105(AFIM)	J13 =0		
Cu2-Cu3	4.355	4.270	J14/\(100\) (Å⁻¹)	J14 = 0.0084 (FM)	J14 = 0.0120 FM		
Cu3-Cu4	4.450	4.245	J15/\(100\) (Å⁻¹)	J15 = -0.0185 (AFM)	J15 = 0.		
Cu1-Cu3	4.522	4.250	J16/\(100\) (Å⁻¹)	J16 = -0.0224 (AFM)	J16 = -0.0043 (FM)		
Cu2-Cu1	4.550	4.368	J17/\(100\) (Å⁻¹)	J17 = 0.0086 (FM)	J17 = 0.0126 FM		
Cu1-Cu3	4.450	4.245	J18/\(100\) (Å⁻¹)	J18 = 0.0040 (FM)	J18 = 0.0047 (FM)		
Cu2-Cu4	4.742	4.775	J19/\(100\) (Å⁻¹)	J19 = 0.0040 (FM)	J19 = 0.0047 (FM)		

Note: J values are given in atomic units (Å⁻¹).
Bond	d(Cu-Cu) (Å)	J19 (Å⁻¹)	J19 = 0.0048 (FM)	J19 = -0.0048 (AFM)
d(Cu-Cu) (Å)	5.020	5.119		
J20 (Å⁻¹)	5.122	4.956		
J21 (Å⁻¹)	5.211	5.158		
J22 (Å⁻¹)	5.244	5.222		
J23 (Å⁻¹)	5.299	5.300		
d(Cu-Cu) (Å)	5.407	5.246		
d(Cu-Cu) (Å)	5.411	5.220		
J25 (Å⁻¹)	5.424	5.269		
J26 (Å⁻¹)	5.022	-0.0055		
J19/10	0.095	3.1, 111.2°		
J20/10	0.0074	0.0074		
J21/10	0.0423	-0.0021		
J22/10	0.0625	-0.0629		
J23/10	0.133	3.1, 111.2°		
J25/10	0.0804	0.0040		
J26/10	0.0016	0.0027		
J27/10	0.0048	-0.0050		
J28/10	0.0027	0.0027		
J29/10	0.0048	-0.0050		
J30/10	0.0027	0.0027		
$\Delta h(X)^e\ A$, $l_i^*/l_i^/\ CuXCu^6\ (0.297, 4.0, 101.3^\circ)\ (0.338, 3.6, 100.6^\circ)$

$J_{\mu}/J_{10} = 0.02\ J_{26}/J_{10} = 0.03$

Bond	Cu1-Cu4	Cu2-Cu4
J_{27}^{b} (Å$^{-1}$)	$J_{27}^{\text{b}} = -0.0074$ (AFM)	$J_{27}^{\text{b}} = -0.0089$ (AFM)
$j(X)^\mu\ (\AA^{-1})$	$j(X)^\mu\ = 0.0013$	$j(O)\ = 0.0013$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (-0.480, 2.1, 139.1^\circ)\ (-0.485, 2.03, 138.6^\circ)$		
$J_{\mu}/J_{10} = 0.06\ J_{27}/J_{10} = 0.06$		

Bond	Cu2-Cu3	Cu1-Cu3
$J_{28}^{(6)}\ (\AA)$	$J_{28} = 0.0013$ (AFM)	$J_{28} = 0.0006$ (AFM)
$j(X)^\mu\ (\AA^{-1})$	$j(O)\ = 0.0122$	$j(O)\ = 0.0062$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (-0.791, 2.1, 152.5^\circ)\ (-0.781, 1.97, 151.6^\circ)$		
$J_{\mu}/J_{10} = 0.10\ J_{28}/J_{10} = 0.01$		

Bond	Cu1-Cu2	Cu2-Cu3
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 5.618$	$d(Cu-Cu)\ = 5.451$
$J_{30}^{(6)}\ (\AA)$	$J_{30}^{\text{b}} = -0.0254$ (AFM)	$J_{30}^{\text{b}} = -0.0222$ (AFM)
$j(X)^\mu\ (\AA^{-1})$	$j(Cu)\ = -0.0223$	$j(Cu)\ = -0.0195$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (-0.382, 1.0, 172.7^\circ)\ (-0.330, 1.0, 170.6^\circ)$		
$J_{\mu}/J_{10} = 0.22\ J_{30}/J_{10} = 0.19$		

Bond	Cu2-Cu4	Cu3-Cu4
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 5.853$	$d(Cu-Cu)\ = 5.824$
$J_{31}^{(6)}\ (\AA)$	$J_{31}^{\text{b}} = -0.0155$ (AFM)	$J_{31}^{\text{b}} = -0.0152$ (AFM)
$j(X)^\mu\ (\AA^{-1})$	$j(O)\ = 0.0133$	$j(O)\ = 0.0124$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (-0.942, 2.1, 159.9^\circ)\ (-0.888, 2.1, 157.6^\circ)$		
$J_{\mu}/J_{10} = 0.13\ J_{31}/J_{10} = 0.13$		

Bond	Cu1-Cu1	Cu2-Cu2
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 5.863$	$d(Cu-Cu)\ = 5.880$
$J_{32}^{(6)}\ (\AA)$	$J_{32}^{\text{b}} = 0.0030$ (FM) → 0.0626 FM	$J_{32}^{\text{b}} = 0.0022$ (FM)
$j(X)^\mu\ (\AA^{-1})$	$j(0)\ = 0.0015\times 2$	$j(0)\ = 0.0011\times 2$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (0.240, 4.5, 104.4^\circ)\ (0.128, 3.6, 110^\circ)$		
$J_{\mu}/J_{10} = 0.03 - 0.54\ J_{32}/J_{10} = 0.02$		

Bond	Cu2-Cu4	Cu3-Cu4
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 6.143$	$d(Cu-Cu)\ = 6.081$
$J_{33}^{(6)}\ (\AA)$	$J_{33} = -0.0178$ (AFM)	$J_{33} = -0.0017$ (AFM)
$j(X)^\mu\ (\AA^{-1})$	$j(O)\ = 0.0065$	$j(O)\ = 0.0015$
$(\Delta h(X)^e\ A, l_i^*/l_i^/\ CuXCu^6\ (-0.599, 2.4, 145.5^\circ)\ (0.264, 4.7, 104.5^\circ)$		
$J_{\mu}/J_{10} = 0.15\ J_{33}/J_{10} = 0.01$		

Bond	Cu1-Cu4	
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 6.457$	
$J_{34}^{(6)}\ (\AA)$	$J_{34} = -0.0038$ (AFM)	$J_{34} = -0.0090$ (AFM)

Bond	Cu3-Cu4	Cu1-Cu4		
$d(Cu-Cu)\ (\AA)$	$d(Cu-Cu)\ = 6.162$	$d(Cu-Cu)\ = 6.051$		
$J_{34}^{(6)}\ (\AA)$	$J_{34} = -0.0038$ (AFM)	$J_{34} = -0.0090$ (AFM)		
Δh (Å)	$j(O2)$: -0.0021	$j(O3)$: -0.0030		
------------------	------------------	------------------		
$j(Xi)^d$ (Å$^{-1}$)	(0.225, 2.8, 129.7°)	(-0.288, 2.6, 132.0°)		
(Åh) A, l_i/l_i, CuXCu6	-0.0055	-0.0072		
$j(Xi)^d$ (Å$^{-1}$)	0.0038	0.0012		
(Åh) A, l_i/l_i, CuXCu6	(0.072, 1.0, 129.9°)	(0.023, 1.0, 129.6°)		
$J_{J_{/}/max}$	$J34/J10 = 0.15$	$J34/J10 = 0.08$		
Bond	Cu1-Cu3	Cu2-Cu1		
d(Cu-Cu) (Å)	6.177	5.974		
$J35^{(c)}$ (Å$^{-1}$)	$J35 = -0.0185$ (AFM)	$J35 = -0.0224$ (AFM)		
$j(jX)^d$ (Å$^{-1}$)	$j(O4)$: -0.0128	$j(O5)$: 0.0167		
(Åh) A, l_i/l_i, CuXCu6	-1.088, 2.2, 166.6°	-1.237, 2.1, 172.9°		
$J_{J_{/}/max}$	$J35/J10 = 0.14$	$J35/J10 = 0.14$		
Bond	Cu3-Cu4	Cu1-Cu4		
d(Cu-Cu) (Å)	6.210	6.071		
$J36^{(c)}$ (Å$^{-1}$)	$J36 = -0.0141$ (AFM)	$J36 = -0.0656$ ↔ 0.0160 AFM		
$j(jX)^d$ (Å$^{-1}$)	$j(O9)$: -0.0109	$j(O9)$: 0.0125		
(Åh) A, l_i/l_i, CuXCu6	-0.915, 2.2, 159.6°	-0.918, 1.99, 159.6°		
$J_{J_{/}/max}$	$J36/J10 = 0.12$	$J36/J10 = 0.55$ ↔ 0.13		
Bond	Cu1-Cu2	Cu2-Cu3		
d(Cu-Cu) (Å)	6.243	5.998		
$J37^{(c)}$ (Å$^{-1}$)	$J37 = 0.0089$ (FM) ↔ 0.0159	$J37 = -0.0620$ (AFM)		
$j(jX)^d$ (Å$^{-1}$)	$j(O1)$: 0.0248 (FM)	$j(O2)$: 0.0146 (FM)		
(Åh) A, l_i/l_i, CuXCu6	0.456, 1.4, 117.5°	0.245, 1.4, 121.2°		
$J_{J_{/}/max}$	$J37/J10 = 0.08$ ↔ 0.14	$J37/J10 = 0.52$		
Bond	Cu1-Cu2	Cu2-Cu3		
d(Cu-Cu) (Å)	6.245	6.007		
$J38^{(c)}$ (Å$^{-1}$)	$J38 = -0.0171$ (AFM)	$J38 = -0.0198$ ↔ 0.0819 AFM		
$j(jX)^d$ (Å$^{-1}$)	$j(O7)$: -0.0129	$j(O8)$: -0.0157 ↔ 0.0778 AFM		
(Åh) A, l_i/l_i, CuXCu6	-1.097, 2.2, 167.2°	-1.126, 1.99, 168.3°		
$J_{J_{/}/max}$	$J38/J10 = 0.15$	$J38/J10 = 0.17$ ↔ 0.69		
Bond	Cu3-Cu4	Cu1-Cu4		
d(Cu-Cu) (Å)	6.370	6.373		
$J39^{(c)}$ (Å$^{-1}$)	$J39 = -0.0083$ (AFM)	$J39 = -0.0066$ AFM		
$j(jX)^d$ (Å$^{-1}$)	$j(O2)$: -0.0083	$j(O2)$: -0.0066		
(Åh) A, l_i/l_i, CuXCu6	-0.786, 2.3, 154.4°	-0.677, 2.5, 149.3°		
$J_{J_{/}/max}$	$J39/J10 = 0.07$	$J39/J10 = 0.06$		
Bond	Cu4-Cu4	Cu4-Cu4		
d(Cu-Cu) (Å)	6.410	6.185		
$J40^{(c)}$ (Å$^{-1}$)	$J40^d = 0.0224$ (FM)	$J40^d = 0.0426$ (FM)		
$j(jX)^d$ (Å$^{-1}$)	$j(O8)$: 0.0115x2	$j(O7)$: 0.0216x2		
(Åh) A, l_i/l_i, CuXCu6	0.233, 1.2, 125.8°	0.403, 1.3, 119.0°		
$J_{J_{/}/max}$	$J40/J10 = -0.19$	$J40/J10 = -0.36$		
Bond	Cu1-Cu4	Cu2-Cu4		
d(Cu-Cu) (Å)	J41\(^{\circ}\) (Å\(^{-1}\))	J41\(^{b}\) = -0.0280 (AFM)	J41\(^{b}\) = -0.0321 (AFM)	
--------------	-----------------	-----------------	-----------------	
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O2): -0.0284	j(O8): -0.0344		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.583, 1.1, 151.4\(^{\circ}\))	(-0.677, 1.1, 154.0\(^{\circ}\))		
Jhu/\(\text{max}\)	J41/J10 = 0.24	J41/J10 = 0.27		
Bond	Cu3-Cu4	Cu1-Cu4		
d(Cu-Cu) (Å)	6.482	6.312		
J42\(^{\circ}\) (Å\(^{-1}\))	J42\(^{b}\) = -0.0224 (AFM)	J42\(^{b}\) = -0.0219 (AFM)		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(Cu1): -0.0187	j(Cu1): -0.0206		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.384, 1.2, 173.4\(^{\circ}\))	(-0.403, 1.2, 173.9\(^{\circ}\))		
Jhu/\(\text{max}\)	J42/J10 = 0.19	J42/J10 = 0.18		
Bond	Cu2-Cu4	Cu3-Cu4		
d(Cu-Cu) (Å)	6.505	6.328		
J43\(^{\circ}\) (Å\(^{-1}\))	J43 = 0.0227 (FM)	J43 = -0.0025 (AFM)		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(As1): 0.0209			
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.441, 1.1, 153.1\(^{\circ}\))			
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O2): -0.0031	j(O3): -0.0047		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.376, 2.9, 136.6\(^{\circ}\))	(-0.486, 2.6, 141.2\(^{\circ}\))		
Jhu/\(\text{max}\)	J43/J10 = -0.20	J43/J10 = 0.02		
Bond	Cu1-Cu3	Cu1-Cu2		
d(Cu-Cu) (Å)	6.627	6.420		
J44\(^{\circ}\) (Å\(^{-1}\))	J44 = 0.0194 (FM)	J44 = 0.0137 (FM)		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(Cu2): 0.0158(FM)	j(Cu3): 0.0184(FM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.326, 1.4, 148.9\(^{\circ}\))	(0.361, 1.4, 146.9\(^{\circ}\))		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O5): 0.0084 (FM)	j(O5): 0.0010 (FM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.175, 1.4, 128.1\(^{\circ}\))	(0.182, 4.6, 109.0\(^{\circ}\))		
Jhu/\(\text{max}\)	J44/J10 = -0.17	J44/J10 = -0.12		
Bond	Cu1-Cu2	Cu2-Cu3		
d(Cu-Cu) (Å)	6.696	6.677		
J45\(^{\circ}\) (Å\(^{-1}\))	J45\(^{b}\) = -0.0010 (AFM)	J45\(^{b}\) = -0.0004		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O7): -0.0010	j(O8): -0.0004		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.152, 3.3, 127.5\(^{\circ}\))	(-0.065, 3.4, 124.3\(^{\circ}\))		
Jhu/\(\text{max}\)	J45\(^{\circ}\)/J10 = 0.009	J45\(^{\circ}\)/J10 = 0.003		
Bond	Cu2-Cu4	Cu3-Cu4		
d(Cu-Cu) (Å)	7.050	6.881		
J46\(^{\circ}\) (Å\(^{-1}\))	J46 = 0.0089 (FM) ↔ 0.0299 (FM)	J46 = 0.0324 (FM)		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(Cu2): 0.0210(FM)	j(Cu3): 0.0216(FM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.472, 1.6, 145.6\(^{\circ}\))	(0.470, 1.5, 145.1\(^{\circ}\))		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O7): 0.0121 (FM)	j(O8): 0.0164 (FM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.298, 1.1, 128.4\(^{\circ}\))	(0.385, 1.2, 125.0\(^{\circ}\))		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O3): -0.0052 (AFM)	j(O1): -0.0056 (AFM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.750, 2.9, 153.0\(^{\circ}\))	(-0.747, 2.8, 152.7\(^{\circ}\))		
Jhu/\(\text{max}\)	J46/J10 = -0.08 ↔ -0.26	J46/J10 = -0.27		
Bond	Cu3-Cu4	Cu1-Cu4		
d(Cu-Cu) (Å)	7.197	7.026		
J47\(^{\circ}\) (Å\(^{-1}\))	J47\(^{b}\) = 0.0068 (FM)	J47\(^{b}\) = 0.0068 (FM)		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O3): -0.0066 (AFM)	j(O1): -0.0074 (AFM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(-0.981, 2.9, 162.8\(^{\circ}\))	(-1.004, 2.8, 163.7\(^{\circ}\))		
j(X)\(^{\circ}\) (Å\(^{-1}\))	j(O9): 0.0116 (FM)	j(O9): 0.0120 (FM)		
(Δh(X)\(^{\circ}\) A, l, \(l\)\(^{-1}\), CuXCu\(^{\circ}\))	(0.298, 1.1, 130.0\(^{\circ}\))	(0.292, 1.2, 128.3\(^{\circ}\))		
Jhu/\(\text{max}\)	J47/J10 = 0.06	J47/J10 = 0.06		
Bond	Cu1-Cu3	Cu1-Cu2-		
----------------------	----------	-----------		
d(Cu-Cu) (Å)	7.213	6.924		
J48\(^{12}\) (Å\(^{-1}\))	J48\(^{12}\) = -0.0484 (AFM)	J48\(^{12}\) = -0.0552 (AFM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(O5) = 0.0492	j(O4) = 0.0552		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(-1.243, 1.3, 174.9°)	(-1.275, 1.3, 175.8°)		
Jn/\(\text{max}\)	J48/J10 = 0.42	J48/J10 = 0.46		
Bond	Cu2-Cu3	Cu3-Cu1		
d(Cu-Cu) (Å)	7.316	7.263		
J49\(^{12}\) (Å\(^{-1}\))	J49\(^{12}\) = 0.0167 (FM)	J49\(^{12}\) = 0.0208 (FM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(Cu1): 0.0201(FM)	j(Cu2): 0.0247(FM)		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(0.467, 1.7, 146.3°)	(0.559, 1.8, 143.0°)		
Jn/\(\text{max}\)	J49/J10 = 0.14	J49/J10 = 0.14		
Bond	Cu1-Cu3	Cu2-Cu1		
d(Cu-Cu) (Å)	7.432	7.322		
J50\(^{12}\) (Å\(^{-1}\))	J50\(^{12}\) = 0.0010 (FM)	J50\(^{12}\) = 0.0017 (FM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(As1): 0.0044 (FM)	j(P1): 0.0117 (FM)		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(0.120, 1.0, 166.3°)	(0.310, 1.1, 165.0°)		
Jn/\(\text{max}\)	J50/J10 = 0.009	J50/J10 = 0.17		
Bond	Cu1-Cu4	Cu2-Cu4		
d(Cu-Cu) (Å)	7.465	7.389		
J51\(^{12}\) (Å\(^{-1}\))	J51\(^{12}\) = -0.0028 (AFM)	J51\(^{12}\) = -0.0019 (AFM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(O8): -0.0039 (AFM)	j(O7): -0.0032 (AFM)		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(-0.681, 3.1, 151.2°)	(-0.560, 3.2, 146.2°)		
Jn/\(\text{max}\)	J51/J10 = 0.02	J51/J10 = 0.02		
Bond	Cu1-Cu4	Cu2-Cu4		
d(Cu-Cu) (Å)	7.467	7.237		
J52\(^{12}\) (Å\(^{-1}\))	J52\(^{12}\) = -0.0338 (AFM)	J52\(^{12}\) = -0.0322 (AFM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(O7): -0.0332	j(O8): -0.0302		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(-0.880, 1.4, 163.7°)	(-0.758, 1.4, 159.4°)		
Jn/\(\text{max}\)	J52/J10 = 0.29	J40/J10 = 0.27		
Bond	Cu1-Cu4	Cu2-Cu4		
d(Cu-Cu) (Å)	7.517	7.284		
J53\(^{12}\) (Å\(^{-1}\))	J53\(^{12}\) = 0.0185 (FM)	J53\(^{12}\) = 0.107 (FM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(Cu3): 0.0016	j(Cu1): -0.0025		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(0.042, 1.5, 160.8°)	(-0.063, 1.4, 163.8°)		
Jn/\(\text{max}\)	J53/J10 = 0.16	J53/J10 = 0.09		
Bond	Cu2-Cu4	Cu3-Cu4		
d(Cu-Cu) (Å)	7.596	7.371		
J54\(^{12}\) (Å\(^{-1}\))	J54\(^{12}\) = 0.0263 (FM) ↔ 0.0068 (FM)	J54\(^{12}\) = 0.0244 (FM)		
j(X)\(^{2}\) (Å\(^{-1}\))	j(Cu1): 0.0195	j(Cu2): 0.0175		
(Δh(X)\(^{2}\) Ā, l\(^{1}\)/l\(^{2}\), CuXCu\(^{2}\))	(0.474, 1.8, 146.8°)	(0.369, 1.7, 149.5°)		
Jn/\(\text{max}\)	J54/J10 = -0.23 ↔ -0.06	J54/J10 = -0.21		
Bond	Cu1-Cu2	Cu2-Cu3		
d(Cu-Cu) (Å)	7.604	7.428		
Bond	d(Cu-Cu) (Å)	J_{55}^{01} (Å^{-1})	J_{55}^{01} = 0.0171 (FM) ↔ 0.0344 (FM)	J_{55}^{01} = 0.0309 FM
------	---------------	-----------------------	--	-------------------------
d(Cu-Cu) (Å)	7.618	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	7.548	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	7.87	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	7.756	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	8.062	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	7.992	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.415	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.272	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.415	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.272	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.415	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
d(Cu-Cu) (Å)	6.272	0.0037	(0.458, 1.2, 127.5°)	(0.458, 1.2, 127.5°)
Bond	Cu1-Cu1	Cu2-Cu2		
---------------	--------------	--------------		
d(Cu-Cu) (Å)	7.655	7.528		
J\text{Cu-Cu}	-0.0016 (AFM)	-0.0013 (AFM)		
j(X) [Å⁻¹]	0.0144	0.0198		
(Δh(X)) Å, l_1/l_2, CuXCu^6	-0.223, 3.0, 129.5°	-0.226, 3.0, 129.5°		
J_{Cu/Cu}max	J_{Cu/Cu}²/J_{10} = 0.01	J_{Cu/Cu}²/J_{10} = 0.01		

Bond	Cu1-Cu1	Cu2-Cu2
d(Cu-Cu) (Å)	7.655	7.528
J\text{Cu-Cu}	-0.0016 (AFM)	-0.0013 (AFM)
j(X) [Å⁻¹]	0.0144	0.0198
(Δh(X)) Å, l_1/l_2, CuXCu^6	-0.223, 3.0, 129.5°	-0.226, 3.0, 129.5°
J_{Cu/Cu}max	J_{Cu/Cu}²/J_{10} = 0.01	J_{Cu/Cu}²/J_{10} = 0.01

Bond	Cu1-Cu1	Cu2-Cu2
d(Cu-Cu) (Å)	7.655	7.528
J\text{Cu-Cu}	-0.0016 (AFM)	-0.0013 (AFM)
j(X) [Å⁻¹]	0.0144	0.0198
(Δh(X)) Å, l_1/l_2, CuXCu^6	-0.223, 3.0, 129.5°	-0.226, 3.0, 129.5°
J_{Cu/Cu}max	J_{Cu/Cu}²/J_{10} = 0.01	J_{Cu/Cu}²/J_{10} = 0.01

Bond	Cu1-Cu1	Cu2-Cu2
d(Cu-Cu) (Å)	7.655	7.528
J\text{Cu-Cu}	-0.0016 (AFM)	-0.0013 (AFM)
j(X) [Å⁻¹]	0.0144	0.0198
(Δh(X)) Å, l_1/l_2, CuXCu^6	-0.223, 3.0, 129.5°	-0.226, 3.0, 129.5°
J_{Cu/Cu}max	J_{Cu/Cu}²/J_{10} = 0.01	J_{Cu/Cu}²/J_{10} = 0.01
J_n/J_{max}	$J_n^{1-}/J_{10} = 0.02$	$J_n^{4-}/J_{10} = 0.10$
----------------------	--------------------------	--------------------------
Bond	Cu4-Cu4	Cu4-Cu4
d(Cu-Cu) (Å)	8.224	8.090
J_n^{4-}/J_{max} (Å$^{-1}$)	$J_n^{4-}/J_{10} = -0.0176$ (AFM)	$J_n^{4-}/J_{10} = -0.0277$ (AFM)
$J(X)$ (Å$^{-1}$)	$j(O7)$: -0.0141	$j(O7)$: -0.0229
$(\Delta h(X), l_o'/l_o, CuXCu)$	(-0.476, 1.0, 154.7°)	(-0.746, 1.1, 161.5°)

$\Delta h(X)$: the degree of overlapping of the local space between magnetic ions by the intermediate ion X.

The difference between arsenate and phosphate.

*XDS: X-ray diffraction from a single crystal.

*The refinement converged to the residual factor (R) values.

*J_n in Å$^{-1}$: the magnetic couplings ($J_n < 0$, AFM; $J_n > 0$, FM). To translate the J_n value in per angstrom (Å$^{-1}$) into energy units more conventional for experimenters—millielectronvolt (meV)—one can use the scaling factor $K = 74$ (J_n (meV) = 74 J_n (Å$^{-1}$)).

*$j(X)$: contributions of the intermediate ion X to the AFM ($j(X) < 0$) and FM ($j(X) > 0$) components of the coupling J_n.

*l_o'/l_o: the asymmetry of the position of the intermediate ion X relative to the middle of the Cu$_i$–Cu$_j$ bond line.

*Cu$_i$XCu$_j$: bonding angle.

*Small $j(X)$ contributions are not shown.

*The difference between arsenate and phosphate.