Influence of GA Siwabessy Reactor Irradiation Period on The Molybdenum-99 (99Mo) Production by Neutron Activation of Natural Molybdenum to Produce Technetium-99m (99mTc)

M Munir, Herlina, Sriyono, E Sarmini, Abidin, H Lubis and Marlina
Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency, Puspiptek Area, Serpong, Tangerang Selatan, Indonesia, 15314
E-mail : miftakul@batan.go.id

Abstract. Production of 99Mo by neutron activation of natural Mo in multipurpose reactor GA Siwabessy is an alternative solution to overcome the 99Mo shortage, particularly in Indonesia. The aim of this study is to evaluate the influence of the irradiation period of the reactor on the quality of the produced 99Mo and 99mTc. A natural molybdenum was packed in quartz ampule and aluminium capsule, irradiated in the research reactor for around 100 hours. The 99Mo - 99mTc separation was conducted in Center for Radioisotope and Radiopharmaceutical Technology using zirconium-based material (ZBM). The observed parameters are 99Mo activity, 99mTc yield percentage, adsorption capacity ZBM and 99mTc quality. Both the obtained 99Mo activity and 99mTc yield percentage were influenced by the irradiation period. On the other hand, neither the adsorption capacity of ZBM nor quality parameters of 99mTc were influenced by the irradiation period.

1. Introduction
The role of Technetium-99m (99mTc) in a medical field is very important due to its ideal characteristics as a radiodiagnostic agent [1–4]. Annually, more than 45 million diagnostic nuclear medicine procedures are carried out using 99mTc. More than eighteen 99mTc radiopharmaceutical kits are commercially available and the new ones are still developed in a laboratory [5]. The characteristics which make 99mTc become an ideal radiodiagnostic are short half-life (6.02 h), low but sufficient energy (141 keV), and availability of its generator. A 99mTc is a daughter radionuclide from Molybdenum-99 (99Mo) which usually produced from High Enriched Uranium (HEU) or Low Enriched Uranium (LEU)[6, 7].

A shortage of 99Mo produced from Uranium, i.e. fission 99Mo, is predicted to be happening in the future because of several problems regarding the production of fission 99Mo. The shutdown of couple of research reactors, NRU of Canada and HFR of Netherlands, among the seven research reactors which supply more than 95% world demand of 99Mo (NRU of Canada, HFR of Netherlands, BR2 of Belgium, Safari-1 of South Africa, Osiris of France, Maria of Poland and OPAL of Australia), become a serious issue beside the aging of the others[8]. The other problem is about 20 long-lived radionuclide produced during production of fission-99Mo with a half-life of 0.1 to 60 days and total activity hundred times higher than the obtained 99Mo. This problem and the separation of the remaining 235U lead to a waste management and disposal issues [9]. The last problem is the use of 235U which can cause nuclear security issues [9].
There are several alternative solutions to overcome these problems including a production of non-fission 99Mo from a natural molybdenum using research reactor[10]. The non-fission 99Mo production route can use natural molybdenum (MoO_3) which produces less radioactive waste than the fission one. This production also needs less complicated procedures and facilities for post-irradiation processing, however, it produces low specific activity 99Mo. Therefore a conventional generator technology is not suitable for non-fission 99Mo[11].

The production of non-fission 99Mo from natural molybdenum using research reactor follows $^{98}\text{Mo}(n, \gamma)^{99}\text{Mo}$ reaction. To estimate the activity of the obtained 99Mo, the following equation is used[12]:

$$A^{(99}\text{Mo}) = N^{(98}\text{Mo})\Phi \sigma (1 - e^{-\lambda t})$$

$A^{(99}\text{Mo})$ represents a 99Mo activity at end of irradiation (EOI); $N^{(98}\text{Mo})$ is the number of 98Mo element (atom); Φ is a neutron flux (neutron s$^{-1}$ cm$^{-2}$); σ is a 98Mo cross section (98Mo = 0,13 barn = 1.3×10^{-25} cm2)[12]. The equation shows the factors that influence a 99Mo activity. The number of 98Mo atom depends on the amount of starting material (MoO_3), whereas the neutron flux is varied in each research reactor and the irradiation position.

A Multipurpose reactor GA Siwabessy is the one of a research reactor in the world which produces radioisotopes including 99Mo. [13]. This reactor has neutron flux up to $1,12 \times 10^{14}$ n cm$^{-2}$ s$^{-1}$ in the Center Irradiation Position (CIP)[12]. The terrace configuration of this reactor can be seen in figure 1.

Figure 1. The terrace configuration of GA Siwabessy Research Reactor[12]

The multipurpose reactor GA Siwabessy has a long experience in producing both fission 99Mo and non-fission 99Mo which is supported by post-irradiation processing facilities of PT INUKI and National Nuclear Energy Agency (BATAN). A 99Mo is produced in this reactor to supply the national demand for both medical practice and research purpose.
The location of post-irradiation processing facilities for non-fission 99Mo is located in the Center for Radioisotope and Radiopharmaceutical Technology, BATAN, which has developed a zirconium-based material (ZBM) for 99Mo/99mTc separation. This material is a poly-zirconium compound which has an adsorption capacity to molybdenum up to 180 mg Mo/gram ZBM. This material has been examined for 99Mo/99mTc separation for more than three years. The objective of this study is evaluating the influence of GA Siwabessy reactor irradiation period on the production of non-fission 99Mo and its application to produce 99mTc. This study is important to ensure the quality assurance of radioisotope production.

2. Materials and Methods

The following chemical substances were used as received from E Merck: natural molybdenum oxide (MoO$_3$), sodium hydroxide (NaOH), hydrochloric acid (HCl). Aquabidest and saline solution (NaCl 0,9%) were purchased from IPHA Laboratories. Sodium hypochlorite (NaOCl) was purchased from Sigma Aldrich and A ZBM was obtained from Center for Radioisotope and Radiopharmaceutical Technology, BATAN.

The main facilities for the study were the multipurpose reactor GA Siwabessy and hotcells laboratory for irradiation and post-irradiation processing. The pre-irradiation facilities were: welding installation, forklift for transportation and transfer cask, whereas the other post-irradiation facilities were: multi-channel amplitude pulse analyzer (MCA) Ortec GEM-30, High Purity Germanium (HPGe) detector, dose calibrator and fume hood.

2.1. Pre-Irradiation

The MoO$_3$ was weighed for 4 grams and heated at 500°C for 60 minutes to prevent a clumping of the powder after irradiation, packaged in quartz ampule and aluminium irradiation capsule. To avoid the leakage, both quartz ampule and irradiation capsule were examined for the leak test using the bubble test method. The irradiation target was irradiated in the reactor for 100 hours.

2.2. Post-Irradiation

The transportation between multipurpose reactor GA Siwabessy and Center for Radioisotope and Radiopharmaceutical Technology was conducted using a forklift and transfer cask to ensure the personal safety. After irradiation, both quartz ampule and irradiation capsule were dismantled in the hotcell.

The MoO$_3$ powder was placed and diluted using 15 mL 4N NaOH in a beaker glass. The MoO$_3$ solution was measured using dose calibrator and HPGe detector for its activity and radionuclide purity. For the 99Mo and 99mTc separation, the ZBM was soaked into MoO$_3$ solution at 90°C for 3 hours, then packed into a glass column. The glass column was drained off with saline solution and NaOCl 0,05% to release the remained 99mTc and enhance yield. The column which to be in tandem with alumina column was eluted using saline solution after a day to release 99mTc.
Figure 2. Illustration of the pre-irradiation and post-irradiation process: (a) MoO$_3$ weighing; (b) heating; (c) outer capsule (top), inner capsule (middle), MoO$_3$ bulk (bottom left), and ampule (bottom right); (d) bubble testing for inner capsule; (e) bubble testing for inner ampule; (f) transportation of irradiation sample; (g) Post-irradiation process

3. Results and Discussion

The irradiation cycle of multipurpose reactor GA Siwabessy is 100 hours at power capacity of 15 Megawatt. There are two irradiation periods of the reactor, Friday – Tuesday and Monday - Friday, which depend on the agreement of the stakeholders. The results of 99Mo activities in different irradiation period are presented in Table 1.
Table 1. The comparison of 99Mo results between two irradiation periods

Irradiation period	Friday – Tuesday	Tuesday - Saturday				
	1	2	3	1	2	3
Amount of MoO$_3$ (gram)	4	4	4	4	4	4
Irradiation time (hour)	96.75	95.5	97	104.5	103.25	100
CIP position	E-7	D-6	E-7	E-7	E-7	E-7
99Mo activity (GBq)	56.88	73.12	43.15	36.13	25.11	38.36
Specific activity (GBq/gram)	18.28	10.79	9.03	6.28	9.59	18.28

Table 1 showed different 99Mo activity results in two irradiation periods. Friday – Tuesday irradiation period has a higher 99Mo activity result. This phenomenon was caused by different post-irradiation processing. In Friday – Tuesday irradiation period, the irradiation target was processed a day after the end of irradiation (EOI), the decay time after EOI was less than a day. On the other hand, in Monday - Friday irradiation period, the irradiation target was processed on Monday, i.e. two days after the EOI, where the decay time after EOI was more than a day. The calculation of irradiation target decays after EOI is presented in table 2.

Table 2. The calculation of irradiation target decays after EOI

Irradiation period	Friday - Tuesday	Monday - Friday				
	1	2	3	1	2	3
Decay time (hour)	25.73	23.38	22.6	68.85	69.60	63.25
99Mo activity at measurement (GBq)	56.88	73.12	43.15	36.13	25.11	38.36

A significant difference between two irradiation periods is seen in table 2. This difference leads to different parameter values in the next post-irradiation processing.

The amount of 99Mo adsorbed into ZBM is calculated by the assumption that ZBM has an adsorption capacity of 200 mg Mo/gram ZBM concluded from previous studies. The adsorption of 99Mo into ZBM is based on an ion exchange mechanism between 99MoO$_4^{2-}$ and Cl$^-$ in the surface of the material [14, 15]. The attachment of oxygen in 99MoO$_4^{2-}$ to a metal, such as Zr, is common which is usually happened in Fe or Al Oxide [16]. The mechanism can be seen in Figure 3.

Figure 3. Adsorption mechanism of 99MoO$_4^{2-}$ into ZBM[17]
Awaludin et al proposed the adsorption mechanism based on the SEM-EDX analysis[15]. The decrease of Cl and the increase of Mo after adsorption experiment indicate the ion exchange between the couple atoms. The mole ratio of Mo and Zr (1: 2) also indicates the bond pattern of the couple atoms which has described in Figure 3 [18]. The 99mTcO$_4^-$ elution mechanism is also described in Figure 3 which exhibits an ion exchange mechanism like adsorption mechanism in a reverse direction [17]. The Cl atoms in the saline solution will replace the 99mTcO$_4^-$ during the elution. The calculation of 99Mo adsorption and 99mTc elution in this study is presented in figure 4 and figure 5, respectively.

Figure 4. The adsorption capacity of ZBM to molybdenum in two irradiation periods which presented by triplication data and its average.

In figure 4, the adsorption capacity of ZBM to molybdenum both on Friday – Tuesday and Monday - Friday periods are alike. Hence, the irradiation period has no influence on the adsorption capacity of the material. The adsorption capacity of the material is not influenced by a 99Mo activity which depends on the irradiation period, however, it is influenced by the MoO$_4^{2-}$ and ZBM bond. The factors which determine the bond are the acidity of MoO$_4^{2-}$ and the surface area/porosity of the material[16].

Figure 5. 99mTc yield percentage in two irradiation periods which presented by triplication data and its average.

On the other hand, figure 5 shows that there is a difference between 99mTc yield percentage in two irradiation periods. A 99mTc yield percentage in Friday – Tuesday period is higher than the one in Tuesday-Saturday period. The higher the activity of 99Mo loaded in ZBM, the lower the 99mTc yield percentage. This phenomenon is suspected caused by the solvated electron derived from beta irradiation of 99Mo. The electron then reduces 99mTeO$_4^-$ become the lower oxidation state, e.g. 99mTeO$_2$, which is more difficult to be eluted from ZBM[15].
The low 99mTc yield percentage is a classical problem for 99Mo/99mTc generator system. To increase the 99mTc yield percentage, an oxidizing agent, e.g. NaOCl, is usually added. The oxidizing agent oxidizes 99mTc to the highest oxidation state which is eluted easily\cite{18}. The addition of oxidizing agent is limited by its toxic concentration level and its inhibition to radiolabeling of radiopharmaceutical kits.

To ensure the quality of 99mTc eluate, the investigation of 99mTc radiochemical purity, 99mTc radionuclide purity and alumina breakthrough were conducted using Thin Layer Chromatography (TLC), HPGe detector and alumina breakthrough kit, respectively. The investigation result of the radiochemical purity and alumina breakthrough is presented in Table 3.

Irradiation period	Radiochemical purity (%)	Alumina breakthrough (μg/mL)
Friday - Tuesday	98.9	< 5
Monday - Friday	99.9	< 5

Radiochemical purity is a parameter which ensures that 99mTc exists in the desired chemical form, i.e. 99mTcO$_4^-$. Whereas, alumina breakthrough is a parameter which ensures that an alumina from the column does not exist in the 99mTc solution. Table 3 shows that both parameters in two irradiation periods were meet the requirement\cite{19}. Hence, the irradiation period has no influence on the radiochemical purity and the alumina breakthrough. The radionuclide purities from two irradiation periods were identical. The identical spectra are presented in figure 6.

![Figure 6. The spectra of radionuclide purity of 99mTcO$_4^-$ solution.](image)

Figure 6 shows the spectra of 99mTcO$_4^-$ solution containing only Pb and 99mTc spectrums. It means the 99mTc was separated from 99Mo by ZBM column system. The spectrum of Pb was existed due to the interaction of the β particle of 99mTc with the chamber made from lead (Pb) \cite{17}.

The irradiation periods also influenced the elution days after 99Mo adsorption process. In the Monday - Friday period, the 99mTc elution was conducted four times continuously after the adsorption process without any interruption. On the other hand, in the Friday – Tuesday period, the 99mTc elution was conducted only two times continuously, after two holidays a 99mTc activity became too low to be eluted.
4. Conclusion
The obtained 99Mo activity and 99mTc yield percentage were influenced by the irradiation period. The 99Mo activity was higher in the Friday – Tuesday period due to the short decay time before post-irradiation processing, while the 99mTc yield percentage was higher in the Monday – Friday period. On the other hand, neither the adsorption capacity of ZBM nor quality parameters of 99mTc were influenced by the irradiation period.

Acknowledgement
The authors would like to acknowledge Mr Hotman Lubis as a head of Radioisotope Technology section, Adang Hardi G., Kadarisman, Indra Saptiama, Hambali and Eni Lestari for the discussion and the contribution to this research study.

References
[1] Naik H, Suryanarayana S V, Jagadeesan K C, Thakare S V, Joshi P V, Nimje V T, Mittal K C, Goswami A, Venugopal V and Kailas S 2013 An alternative route for the preparation of the medical isotope 99Mo fro the 238U(y, f) and 100Mo(y, n) reactions J. Radioanal. Nucl. Chem. 295 807–16.
[2] El-Absy M A, El-Amir M A, Fasih T W, Ramadan H E and El-Shahat M F 2014 Preparation of 99Mo/99mTc generator based on alumina 99Mo-molybdate (VI) gel J. Radioanal. Nucl. Chem. 299(3) 1859–64.
[3] Benard F, Zeisler S K, Vuckovic M, Lin K, Zhang Z, Colpo N, Hou X, Ruth T J and Schaffer P 2015 Cross-linked polyethylene glycol beads to Separate 99mTc-pertechnetate from low-specific-activity molybdenum J. Nucl. Med. 55(11) 1910–5.
[4] Pillai M R A Dash A and Knapp F F 2015 Diversification of 99Mo/99mTc separation: non-fission reactor production of 99Mo as a strategy for enhancing 99mTc availability J. Nucl. Med. 56(1) 159–62.
[5] Osso Jr J A, Catanoso M F, Barrio G, Brambilla T P, Teodoro R, Dias C R B R and Suzuki K N 2012 Technetium-99m - new production and processing strategies to provide adequate levels for SPECT imaging Curr. Radiopharm. 5(3) 178–86.
[6] Muenze R, Beyer G J, Ross R, Wagner G, Novotny D, Franke E, Jehangir M, Pervez S and Mushtaq A 2013 The Fission-based 99Mo production process ROMOL-99 and its application to PINSTECH islamabad Sci. Technol. Nucl. Install. 2013 1–10.
[7] Lee S, Beyer G J and Sig J 2016 Development of industrial-scale fission 99Mo production process using low enriched uranium target Nucl. Eng. Technol 48(3):613–23.
[8] Liem H P, Tran H N and Sembiring T M 2014 Progress in nuclear energy design optimization of a new homogeneous reactor for medical radioisotope Mo-99 /Tc-99m production Prog. Nucl. Energy 82 1–6.
[9] Matyskin A V, Ridikas D, Skuridin V S, Sterba J and Steinhauser G 2012 Feasibility study for production of 99mTc by neutron irradiation of MoO 3 in a 250 kW TRIGA Mark II reactor J. R. 298(1) 413–8.
[10] Amin M, Mostafa M, El-Amir M A, Mohamed O I, Farag A B and El-Absy M A 2014 99Mo/99mTc generator based on high radionuclidic pure zirconium molybdate gel Arab J. Nucl. Sci. Appl. 47(2) 15–25.
[11] Guedes-silva C C, Ferreira S, Carvalho F M S, Paula C M D and Otubo L 2016 Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for 99Mo/99mTc generators columns Mater. Res. 19(4) 791–4.
[12] Saptiama I, Herlina, Sriyono, Sarmini E, Abidin and Kadarisman 2016 Production of neutron activation molybdenum-99 $(^{99}$Mo) from natural molybdenum to obtain technetium-99m $(^{99m}$Tc). Urania 22(2) 121–32.
rs5-gas reactor using deterministic method Teknol. Indones. 35(2) 37–45.

[14] Le V S, Do Z P, Le M K, Le V and Le N N 2014 Methods of Increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity. Molecules 19 7714–56.

[15] Awaludin R, Gunawan A, Lubis H, Srijono, Herlina, Muthalib A, Kimura A, Tsuchiya K, Tanase M and Ishihara M 2015 Mechanism of 99Mo adsorption and 99mTc elution from zirconium-based material in 99Mo/99mTc generator column using neutron-irradiated natural molybdenum J. Radioanal. Nucl. Chem. 303 1481–3.

[16] Xu N, Braida W, Christodoulatos C and Chen J 2013 A Review of molybdenum adsorption in soils/bed sediments: speciation, mechanism, and model applications Soil Sediiment Contam. Int J. 22(8) 912–29.

[17] Saptiama I, Lestari E, Sarmini E, Lubis H and Mutalib A 2016 Development of 99Mo/99mTc generator system for production of medical radionuclide 99mTc using a material (ZBM) as its adsorbent. Atom Indones. 42(3) 115–21.

[18] Saptiama I, Marlina, Sarmini E, Herlina, Srijono, Abidin, Setiawan H, Kadarisman, Lubis H and Mutalib A 2015 The use of sodium hypochlorite solution for (n, γ) 99Mo/99mTc generator based on zirconium-based material (ZBM) Atom Indones. 41(2) 103–9.

[19] Chattopadhyay S, Barua L, Das S S, De A, Kumar U, Mitra A, Mallick T, Madhusmita, Nayer M A, Sinha S, Sarkar B R, Ganguly S, De K, Das M K and Rajan M G R 2014 Pharmaceutical grade sodium $^{[99m]}$Tc pertechnetate from low specific activity 99Mo using an automated 99Mo/99mTc-TCM-autosolex generator J. Radioanal. Nucl. Chem. 302(2) 781–790