Arsenic trioxide (As$_2$O$_3$) as a maintenance therapy for adult T cell leukemia/lymphoma

Ambroise Marçais1,*, Lucy Cook2, Aviva Witkover2, Vahid Asnafi3, Véronique Avettand-Fenoël6, Richard Delarue4, Morgane Cheminant1, David Sibon1, Laurent Frenzel1, Hugues de Thé5, Charles R. M. Bangham2, Ali Bazarbachi6,†, Olivier Hermine1,*† and Felipe Suarez1,*†

Abstract

Background: Adult T-cell leukemia-lymphoma (ATL) is an aggressive and mature lymphoid proliferation associated with poor prognosis. Standard of care includes chemotherapy and/or the combination of zidovudine and interferon-alpha. However, most patients experience relapse less than 6 months after diagnosis. Allogeneic stem cell transplantation is the only curative treatment, but is only feasible in a minority of cases. We previously showed in a mouse model that Arsenic trioxide (As$_2$O$_3$) targets ATL leukemia initiating cells.

Results: As$_2$O$_3$ consolidation was given in 9 patients with ATL (lymphoma n = 4; acute n = 2; and indolent n = 3), who were in complete (n = 4) and partial (n = 3) remission, in stable (n = 1) and in progressive (n = 1) disease. Patients received up to 8 weeks of As$_2$O$_3$ at the dose of 0.15 mg/kg/day intravenously in combination with zidovudine and interferon-alpha. One patient in progression died rapidly. Of the remaining eight patients, three with indolent ATL subtype showed overall survivals of 48, 53 and 97 months, and duration of response to As$_2$O$_3$ of 22, 25 and 73 months. The other 5 patients with aggressive ATL subtype had median OS of 36 months and a median duration of response of 10 months. Side effects were mostly hematological and cutaneous (one grade 3) and reversible with dose reduction of AZT/IFN and/or As$_2$O$_3$ discontinuation. The virus integration analysis revealed the regression of the predominant malignant clone in one patient with a chronic subtype.

Conclusion: These results suggest that consolidation with As$_2$O$_3$ could be an option for patients with ATL in response after induction therapy and who are not eligible for allogeneic stem cell transplantation.

Keywords: Arsenic trioxide, ATL
with chemotherapy [4]. The combination of zidovudine (AZT) and interferon-alpha (IFN) may induce long term response in indolent and a small proportion of acute type [5]. Allogeneic stem cell transplantation is the only curative treatment in responding patients but its use is limited to a minority of patients [6]. The anti-CCR4 antibody mogamulizumab showed interesting results in relapsed patients, but a randomized trial in newly diagnosed ATL showed no benefit of its addition to chemotherapy in term of progression-free survival (PFS) and overall survival (OS), despite an increase response rate [7, 8].

In prior ex vivo studies, we showed that arsenic trioxide synergizes with IFN to selectively induce ATL cell apoptosis through the degradation by the proteasome of the oncoprotein Tax [9, 10]. This combination showed some signals of efficacy but a low rate of response in relapsed or refractory ATL patients [11]. A pilot study reported 100% response rate including 70% complete remission in newly diagnosed chronic ATL patients treated with the combination of arsenic, IFN and AZT [12]. We recently showed that this combination cures ATL developed in Tax-transgenic mice through selective targeting of leukemia-initiating cell (LIC) activity [13], suggesting that the best use of arsenic and IFN may be as a consolidation or maintenance therapy. Thus, we performed a retrospective study analyzing the outcome of patients treated with the combination of arsenic trioxide and AZT/IFN as consolidation after induction therapy with chemotherapy or antiviral therapy.

Results and discussion

Response criteria and overall survival
Response evaluation was performed according to consensus published criteria [15]. Overall survival (OS) was defined as the period between initiation of treatment and the date of death or last follow-up.

HTLV-i proviral load and clonality assay
DNA extraction was done using Invitrogen kit (QiAmp or blood and cell's DNA extraction kit) and performed according to manufacturer’s instructions. HTLV DNA was quantified by real-time PCR in the pX region as previously described [16]. High-throughput sequencing for the genome-wide identification and quantification of proviral integration sites was performed as previously described [17].

Patients and methods

Patients and diagnosis criteria
This retrospective study included nine newly diagnosed, previously untreated ATL patients. Patients’ characteristics are described in Table 1. This study was approved by the local ethic committee (CNIL: number 1692254 and CPP IRB registration number 000001072). TP53 status was evaluated in seven patients by a functional assay as previously described [14].

Treatment schedule

After induction with chemotherapy (mainly anthracyclin-based regimen including LSG and CHOP like regimen) and/or AZT/IFN, patients received up to 8 weeks of arsenic at the dose of 0.15 mg/kg/day intravenously (Table 1) in combination with oral zidovudine (AZT; 600 mg/day) and subcutaneous recombinant IFN (Roferon, ROCHE® 3 millions/day) or pegylated IFN (PEG-IFN Virafeeron MSD® 1.5 µg/kg/week). During the consolidation phase, patients could receive only IFN/AZT combination between the arsenic infusions.

In case of hematological toxicity, growth factors such as GCSF or EPO were used, or the antiviral therapy dose was reduced as per physician choice.
Table 1 Patient’s characteristics

Patient	Sex	Age at diagnosis	Clinical subtype	p53 activity	First line treatment	Interval between induction therapy and As$_2$O$_3$ consolidation (months)	Disease status at time/after of As$_2$O$_3$	Treatment duration (weeks)	OS since diagnosis (months)	Death OS since arsenic (months)	Duration of response since As$_2$O$_3$ (months)	Progression	
ATL 6	M	51.6	Chronic	F	AZT-IFN-VP16	24.4	SD/SD	4	53	Yes	28	22	Yes
ATL 9	M	50.6	Chronic	F	CHOP like	20.1	CR/CR	6	48	Yes	28	25	Yes
ATL 11	M	27.7	Chronic	F	LSG 15 + AZT-IFN	13.2	VGR/CR	6	97	Yes	83	73	Yes
ATL 7	F	59.8	Acute	F	CHOP like	6.2	PD/PD	4	8	Yes	1	NA	Yes
ATL 14	F	35.1	Acute	NF	Alemtuzumab-CHOP	2.2	CR/CR	4	12	Yes	10	5	Yes
ATL 43	F	66.3	Lymphoma	F	CHOP like	6.3	CR/CR	8	19	Yes	12	5	Yes
ATL 44	F	54.8	Lymphoma	F	CHOP like	3.8	VGR/CR	8	36	Yes	32	29	Yes
ATL 64	M	63.1	Lymphoma	ND	CHOP/DHAOx	13	CR/CR	8	65	No	51	51	No
ATL 65	M	54.4	Lymphoma	ND	CHOP	4	PR/PR	16	41	Yes	36	10	Yes

M, male; F, female; CHOP, cyclophosphamide, doxorubicine, oncovin, prednisone; DHAOx, dexamethasone, aracynite high dose, oxaliplatine; CR, complete response; PR, partial response; VGPR, very good partial response; SD, stable disease; PD, progressive disease

F, functional; NF, non functional (this patient was found to have a p.V274A variant of TP53)

* Clone switch
before relapsing with a new tumoral clone as described below. The three indolent ATLs had an OS of 48, 53 and 97 months and duration of response to As$_2$O$_3$ of 22, 25 and 73 months. The six aggressive ATLs had a median OS of 27.5 months (range 8–65 months) and a median duration of response to As$_2$O$_3$ of 10 months (5–55 months).

Longitudinal analysis of the HTLV-I proviral load (PvL) revealed no difference during treatment except in one patient (ATL 14) with acute ATL, who showed a dramatic decrease of proviral load after chemotherapy. Viral integration clonality analysis was assessed in 2 patients. One patient (ATL 11) who had a normal lymphocyte count but with an excess of phenotypically abnormal T-cells and one dominant clone representing 92% of infected cells exhibited 1 month after As$_2$O$_3$ treatment a regression of the predominant malignant clone and restoration of an oligoclonal architecture, both in proportion and in absolute count, while the proviral load remained stable. Interestingly, this patient remained in remission 86 months after initiation of arsenic and 97 months from diagnosis but finally relapsed with a different clone, as demonstrated by the finding of a different TCR rearrangement as previously published [18]. In contrast, another patient (ATL 9), with a chronic subtype initially treated with chemotherapy had a normal lymphocyte count with an excess of abnormal phenotype T cells with one dominant clone that represented 91% of infected cells, which remained unchanged after completion of As$_2$O$_3$ treatment. This patient progressed to an acute subtype 2 years later and died (Fig. 1).

Taken together, as predicted by our mice model and our previous clinical study with the triple induction with As$_2$O$_3$/AZT/IFN in chronic ATL, this retrospective clinical analysis shows that As$_2$O$_3$ consolidation in combination with low-dose AZT/IFN maintenance may enhance

![Figure 1](image-url)
long-term disease control also in ATL lymphoma with moderate side effects [12, 13]. In addition, although based on a small number, our data suggest that sequential analysis of proviral load and architecture of the virus clonality could serve as a good surrogate marker of long-term response rather than the viral load and lymphocyte count.

However, despite prolonged responses in some cases, most patients ultimately relapsed, suggesting that one cycle of arsenic consolidation may not be sufficient. Future trials are warranted to investigate whether or not multiple cycles of arsenic consolidation are needed in ATL to prevent relapses.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12977-020-0513-y.

Additional file 1: Table S1. Toxicity.

Abbreviations
ATL: Adult T-cell leukemia-lymphoma; HTLV-1: Human T cell leukemia virus type 1; AZT: Zidovudine; INF: Interferon-alpha; PFS: Progression free survival; OS: Overall survival; LIC: Leukemic initiating cells; WT: Wild type; PEG-INF: Pegylated interferon; TCR: T-cell receptor.

Acknowledgements
Not applicable.

Authors’ contributions
AM, AB, HdT, FS and OH designed research, AM, LC, AW, VA, VAF, HDt, CB, OH, FS performed research and analyzed data, AM, RD, MC, DS, LF, OH, FS treated patients and provided data. AM, AB, OH and FS wrote the first draft of the paper. All authors read and approved the final manuscript.

Funding
This study was supported by Institut national du cancer (INCA) and cáncer pôle d’Ile de France grants.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
The local ethic committee approved this study (CNIL: number 1692254 and CPP IRB registration number 000001072) and all surviving patients gave their consent.

Consent for publication
All authors contributed to paper correction and editing.

Competing interests
The authors declare no conflict of interests related to this work.

Author details
1 Service d’Hématologie Adultes, Institut Imagine, Hôpital Universitaire Necker Enfants Malades, APHP, Université de Paris, 149-161 rue de Sèvres, 75743 Paris Cedex 15, France. 2 Section de Virologie, Wright-Fleming Institute, Imperial College, London, UK. 3 Laboratoire d’oncogénétique, Institut Necker-Enfants Malades, INSERM U151, Hôpital Universitaire Necker Enfants Malades, APHP, Université de Paris, Paris, France. 4 Laboratoire de Microbiologie, Hôpital Universitaire Necker Enfants Malades, APHP, Université de Paris, Paris, France. 5 Institut Universitaire d’Hématologie, Hôpital St. Louis, Paris, France. 6 Department of Internal Medicine, American University of Beirut, Beirut, Lebanon.

Received: 6 May 2019 Accepted: 3 March 2020
Published online: 21 March 2020

References
1. Gessaïn A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:388.
2. Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood. 2017;129(9):1071–81.
3. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. A report from the Lymphoma Study Group (1984–1987). Br J Haematol. 1991;79(3):428–37.
4. Katsuya H, Ishitsuka K, Utsunomiya A, et al. Treatment and survival among 1594 patients with ATL. Blood. 2015;126(24):2570–7.
5. Bazarbachi A, Plumelle Y, Carlos Ramos J, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28:4177–83.
6. Kanda J, Hishizawa M, Utsunomiya A, et al. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study. Blood. 2012;119(9):2141–8.
7. Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR5 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(9):1591–8.
8. Ishida T, Jo T, Takamoto S, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukemia-lymphoma: a randomized phase II study. Br J Haematol. 2015;169(5):672–82.
9. Bazarbachi A, El-Sabbab ME, Nasr R, et al. Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood. 1999;93(1):278–83.
10. El-Sabbab ME, Nasr R, Dbaibo G, et al. Arsenic-interferon-alpha-triggered apoptosis in HTLV-I-transformed cells is associated with tax down-regulation and reversal of NF-kappa B activation. Blood. 2000;96(8):2849–55.
11. Hermine O, Dombret H, Poupon J, et al. Phase II trial of arsenic trioxide and alpha interferon in patients with relapsed/refractory adult T-cell leukemia/lymphoma. Hematol J Off J Eur Haematol Assoc EHA. 2004;5(2):130–4.
12. Kchour G, Tarhini M, Kooshyar M-M, et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood. 2009;113(26):6528–32.
13. El-Hajj H, El-Sabbab M, Hasegawa H, et al. Therapy-induced selective loss of leukemia-initiating activity in murine adult T cell leukemia. J Exp Med. 2010;207(13):2785–92.
14. Flaman JM, Fiebourg T, Moreau V, et al. A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA. 1995;92(9):3963–7.
15. Tsukasaki K, Hermine O, Bazarbachi A, et al. Definition, prognostic factors, treatment, and response criteria of adult-T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(3):453–9.
16. Marçais A, Waast L, Bruneau J, et al. Adult T-cell leukemia aggressiveness correlates with loss of both 5-hydroxymethylcytosine and TET2 expression. Oncotarget. 2017;8(32):52256–68.
17. Gillet NA, Malani N, Melamed A, et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011;117(11):3113–22.
18. Artesi M, Marçais A, Durkin K, et al. Monitoring molecular response in adult-T-cell leukemia by high-throughput sequencing analysis of HTLV-1 clonality. Leukemia. 2017;31(11):2532–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.