Goulart, J. H. de M.; Comon, P.
On the minimal ranks of matrix pencils and the existence of a best approximate block-term tensor decomposition. (English) Zbl 1403.15008
Linear Algebra Appl. 561, 161-186 (2019).

Summary: Under the action of the general linear group with tensor structure, the ranks of matrices A and B forming an $m \times n$ pencil $A + \lambda B$ can change, but in a restricted manner. Specifically, with every pencil one can associate a pair of minimal ranks, which is unique up to a permutation. This notion can be defined for matrix pencils and, more generally, also for matrix polynomials of arbitrary degree. In this paper, we provide a formal definition of the minimal ranks, discuss its properties and the natural hierarchy it induces in a pencil space. Then, we show how the minimal ranks of a pencil can be determined from its Kronecker canonical form. For illustration, we classify the orbits according to their minimal ranks (under the action of the general linear group) in the case of real pencils with $m, n \leq 4$. Subsequently, we show that real regular $2k \times 2k$ pencils having only complex-valued eigenvalues, which form an open positive-volume set, do not admit a best approximation (in the norm topology) on the set of real pencils whose minimal ranks are bounded by $2k - 1$. Our results can be interpreted from a tensor viewpoint, where the minimal ranks of a degree-$(d - 1)$ matrix polynomial characterize the minimal ranks of matrices constituting a block-term decomposition of an $m \times n \times d$ tensor into a sum of matrix-vector tensor products.

MSC:
15A22 Matrix pencils
15A69 Multilinear algebra, tensor calculus
41A50 Best approximation, Chebyshev systems

Keywords:
matrix pencil; Kronecker canonical form; matrix polynomial; tensor decomposition

Full Text: DOI arXiv

References:
[1] Atkinson, M. D., Extensions to the Kronecker-Weierstrass theory of pencils, Linear and Multilinear Algebra, 29, 3-4, 235-241, (1991) · Zbl 0728.15015
[2] Breiding, P.; Vandervenheoven, N., The condition number of join decompositions, SIAM J. Matrix Anal. Appl., 39, 1, 287-309, (2018) · Zbl 1384.49035
[3] Comon, P., Tensors: a brief introduction, IEEE Signal Process. Mag., 31, 3, 44-53, (2014)
[4] De Lathauwer, L., Decompositions of a higher-order tensor in block terms-part II: definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30, 3, 1033-1066, (2008) · Zbl 1177.15032
[5] De Lathauwer, L.; Nion, D., Decompositions of a higher-order tensor in block terms-part III: alternating least squares algorithms, SIAM J. Matrix Anal. Appl., 30, 3, 1067-1083, (2008) · Zbl 1177.15033
[6] de Silva, V.; Lim, L.-H., Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30, 3, 1084-1127, (2008) · Zbl 1167.14038
[7] Dmytryshyn, A.; Johansson, S.; Kågström, B.; Van Dooren, P., Geometry of spaces for matrix polynomial Fiedler linearizations, (2015), Department of Computing Science, Umeå University, Report UMINF 15.17
[8] Gantmacher, F. R., Matrix theory, vol. 2, (1959), Chelsea New York · Zbl 0085.01001
[9] Ikramov, K. D., Matrix pencils: theory, applications, and numerical methods, J. Sov. Math., 64, 2, 783-853, (Apr. 1993)
[10] Ja’Ja’, J., Optimal evaluation of pairs of bilinear forms, SIAM J. Comput., 8, 3, 443-462, (1979) · Zbl 0418.68045
[11] Ja’Ja’, J., An addendum to Kronecker’s theory of pencils, SIAM J. Appl. Math., 37, 3, 700-712, (1979) · Zbl 0425.15004
[12] Pervouchine, D. D., Hierarchy of closures of matrix pencils, J. Lie Theory, 14, 2, 443-479, (2004) · Zbl 1061.15012
[13] Qi, Y.; Michalek, M.; Lim, L.-H., Complex tensors almost always have best low-rank approximations, (2018), arXiv preprint
[14] Stegeman, A., Degeneracy in candecomp/parafac explained for $p \times times p \times times 2$ arrays of rank $p + 1$ or higher, Psychometrika, 71, 3, 483-501, (Sep. 2006)
[15] Sumi, T.; Miyazaki, M.; Sakata, T., Rank of 3-tensors with 2 slices and Kronecker canonical forms, Linear Algebra Appl.,
Sumi, T.; Sakata, T.; Miyazaki, M., Typical ranks for $m \times n \times (m - 1)$ n tensors with $m \leq n$, Tensors and Multilinear Algebra, Linear Algebra Appl., 438, 2, 953-958, (2013) · Zbl 1260.15042

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.