The negatively charged nitrogen vacancy center (NV) in diamond is a widely applicable system for both quantum communication [1] and quantum sensing [2]. It features an optically addressable electron spin with long spin coherence both at low- and at room temperature [3–5], hyperfine-coupled nuclear spins that can be used as long-term storage qubits [6], and an electronic structure that enables sensing of magnetic, electric or mechanical fields as well as temperature [7]. Nanoscale probing of magnetism in 2D materials [8], imaging of domain walls in antiferromagnets [9], and measurement of current flow in graphene [10] have benefited from this sensitivity, while demonstrations of entanglement between distant NVs [11] and implementations of few-node quantum networks [12] build on the NV’s electronic, nuclear, as well as optical coherence. Because these applications rely on optical initialization and interrogation, an efficient optical interface is critical. For NVs deep in the bulk, the solution has so far been to employ solid immersion lenses [13, 14], which improve the collection efficiency by up to a factor of 10 over unstructured diamond but do not increase the weak NV zero-phonon line (ZPL) fraction. Approaches based on optical resonators such as open microcavities [15–21] shorten the radiative lifetime, increase the fraction of photons emitted into the ZPL, and improve the collection efficiency, but require more extensive diamond microfabrication. For quantum sensing, the common approach to increase the collection efficiency is to use waveguiding photonic structures as scanning probes [22, 23], which also requires a considerable amount of diamond microstructuring.

On account of its permanent electric dipole moment, the NV’s excited state is sensitive to charge noise and thus prone to optical linewidth broadening, especially in microfabricated diamond [24]. Lifetime-limited optical linewidths, \(\sim 13 \) MHz, have therefore been measured only on native NVs in bulk diamond [25]. It is important to differentiate between two cases of reported linewidths: the ones measured under repeated off-resonant repumping of the charge- and spin state, which we refer to as extrinsically broadened linewidths, and the ones measured between repumping pulses, which we refer to as dephasing linewidths. In the former case, charge noise triggered by the repump pulses induces spectral jumps and results in a broadened linewidth, while in the latter case this contribution is avoided. Recent work demonstrated close to lifetime-limited dephasing linewidths (< 60 MHz) for im-
planted NVs when using conditional charge state repumping. Under repeated repumping, most implanted centers in bulk instead exhibit extrinsically broadened linewidths on the order of 100 MHz, about ten times the lifetime limit. For micro- and nano-fabricated diamond, the sensitivity to fluctuating electric fields results in a further deterioration of the optical quality of the NVs: remaining lattice damage from implantation as well as surface and subsurface charge traps introduced during etching conspire such that extrinsically broadened linewidths reaching up to several GHz are observed. Furthermore, studies have shown that NVs created from implanted nitrogen have worse optical properties compared to NVs created from diamond-native nitrogen and irradiation-induced vacancies, in that they form a separate, broad-linewidth distribution and electron irradiation (electron irradiation) and the need for highly specialized setups (laser writing). In general, NV optical linewidths have been shown to increase drastically for structure thicknesses less than 3.8 µm, with only a few cases of narrow lines reported in thinner structures.

In this study, we explore a refined method of NV creation, in which we avoid implantation of nitrogen ions and instead use 12C+ implantation to create vacancies. The NVs are formed by recombination of the created vacancies with native nitrogen in the diamond lattice. Using carbon as a substitute for nitrogen retains the ability to create NVs with nanoscale depth resolution (like electron irradiation or optical writing), without creating a broad-linewidth population (unlike nitrogen implantation). Using 12C+, which has a mass comparable to 15N+, for the implantation further ensures that the depth distribution of vacancies is very similar to the one created by implantation of nitrogen. Since the lattice consists mainly of 12C, this further ensures that no heteroatoms are introduced into the lattice. In contrast to prior work, we opt for implantation post-fabrication (IPF), implanting the ions after fabrication of the microstructures, following the approach used by Kasperczyk et al. The rationale behind this reversal is to avoid exposing already formed NVs to the potentially deleterious effects of fabrication, in particular the aggressive dry etching steps and electron beam lithography.

We fabricate our samples from electronic grade (100) single-crystal diamond ([N] < 5 ppb, [B] < 1 ppb, Element Six), and follow a previously developed fabrication procedure. The main steps of the process flow are illustrated in Fig. 1a). We create < 5 µm-thin microstructures out of ~ 50 µm bulk diamond via electron beam lithography and inductively coupled plasma reactive ion etching (ICP-RIE). The etching is carried out through the aperture (typically 1-by-1 mm²) of a quartz mask until the structures within the aperture become free-standing. A combination of the etching process, mask geometry and mask position results in a thickness gradient: the structures in the center of the aperture are up to several micrometers thinner compared to the structures at its edges. The thickness gradient varies in its extent from sample to sample. Once the microstructures have been created, a thin chromium/gold layer is evaporated at a slight angle onto the back surface to reduce charging during implantation. Finally, 12C+ is implanted into the microstructures from the front side at an angle of 7°, and NVs are created after stripping the metal layer and performing a multi-step annealing process similar to the one described in Ref.

As can be seen in Fig. 1b), Stopping and Range of Ions in Matter (SRIM)-simulations for 12C+ show that the ion and vacancy distributions after implantation differ only very marginally from implantation with 15N+. For both 12 keV and 50 keV implantation energies, the difference in implantation depth of ions (vacancies) inside the diamond, defined as $\Delta_d = |D_{12N}^{(v)} - D_{15N}^{(v)}|$, with $D^{(v)}$ being the depth corresponding to the maximum of the distributions, results in a relative depth difference $\Delta_d/\Delta_d^{(v)}$ below 20% (15%). We choose the implantation energies 12 keV and 50 keV for two different purposes: the former to create shallow NVs suitable for...
We choose measurement sites on the three samples covering a range of different thicknesses. The chosen regions are indicated in Fig. 2(a)-(c): in sample A, thicknesses span 1.9-4.6 µm, and in sample B 1.9-4.9 µm. The free-standing microstructures in sample C are 2.5 µm thick and we also measure in a neighboring bulk region with a thickness of approximately 50 µm (not indicated).

We characterize the NV ZPL optical linewidths through photoluminescence excitation (PLE) measurements in either a liquid helium bath (CryoVac) or a closed-loop cold-finger (attocube attoDRY800) cryostat. We resonantly excite the NVs by sweeping a tunable narrow-linewidth external cavity diode laser (New Focus Velocity TLB-6704) locked to a wavemeter (HighFinesse WS-U) across the ZPL and collect the photons emitted into the PSB with a high-numerical aperture objective (Partec 50x, 0.82 NA, or Olympus LMPLFLN 100x, 0.8 NA). We minimize power broadening in the resulting PLE spectra by measuring at the lowest possible resonant laser power that still gives an adequate signal-to-noise ratio. Typical resonant laser powers are on the order of 100 nW, which leads to a power broadening of up to three times the homogeneous linewidth yet remains marginal compared to our measured linewidths.

The measurement sequence consists of a 1-2 µs green initialization pulse to reset the charge and spin state, followed by a resonant pulse (637 nm ± detuning, 5-10 µs) during which PSB counts are accumulated. The sequence is repeated at a 100 kHz rate for a duration of 10 ms for each laser detuning. An example PLE measurement from the average of 100 scans is shown in Fig. 3(b). The residual PLE background arises via leakage of photons generated during the green repumping pulse into the counting window. We note that by systematically using an off-resonant green initialization pulse, our experiment yields a measurement of the extrinsically broadened linewidths, i.e., linewidths including spectral jumps caused by the repump pulses.

Figure 4 summarizes the measured PLE linewidths in samples A, B, and C. We measure a median (mean) Gaussian-fitted full width at half maximum (FWHM) linewidth of 143 MHz (227 MHz), 138 MHz (181 MHz) and 304 MHz (691 MHz) for the three samples, respectively. The data are well-described by lognormal distributions. We argue that the median is a better figure-of-merit than the mean as the linewidth distributions are asymmetric. A few broad-linewidth NVs in the tail of the distribution will increase the mean but barely affect the amount of preselection needed in any application requiring narrow-linewidth NVs. In this case, the median is more informative, providing the linewidth value for which half of the population is equal or narrower. Figure 4(d) shows the corresponding empirical cumulative distribution functions, indicating the fraction of measured linewidths below or equal to a certain value.

In order to provide a quantitative threshold under which NV linewidths can be described as narrow, we base ourselves on the projected indistinguishability between two ZPL photons – a cornerstone for remote entanglement generation.

Two-photon interference with high (0.9) visibility can still be obtained despite broadening at the cost of temporal filtering, down to the typical ∼300 ps timing resolution of silicon single photon counting diodes. In our case, we can...
not discriminate between broadening due to spectral jumps and broadening due to pure dephasing. Considering the latter as the sole contribution leads to the worst-case scenario, in which temporal selection is technically possible for measured linewidths \(< 150 \text{ MHz}\). In samples A and B, which we group as the two samples with the same implantation parameters, 54\% of the measured linewidths are below 150 MHz. In sample C, only 26\% of the linewidths are below 150 MHz, and the median linewidth is about two times higher. This difference can be explained by the shallower implantation depth of sample C and a correspondingly larger contribution of surface-related charge noise to the linewidth broadening \([26]\). For the three samples combined, including bulk, we measure 48\% of linewidths below 150 MHz.

Figure 5 demonstrates the statistical changes in linewidths as a function of the thickness of the measured structure. We see no general trend of increasing mean (not shown) or median linewidth with decreasing structure thickness, in contrast to previous studies \([21, 24, 32]\). Sample C shows broader lines than the other two samples regardless of the sampled thickness, which can again be attributed to the shallower NV depth in this sample. Considering all the sampled microstructures, spanning 1.9–4.9 \(\mu\text{m}\) in thickness, 52\% of the NVs have a linewidth below 150 MHz. No thinner regions were created on sample B, the fraction of NVs exhibiting optically addressable ZPLs dropped significantly for structures less than 1.9 \(\mu\text{m}\) thick, which precluded further studies. We note that narrow, \(< 250 \text{ MHz}\), extrinsically broadened linewidths have previously not been measured consistently in diamond microstructures thinner than 3.8 \(\mu\text{m}\) \([24, 32, 33]\). IPF with nitrogen as employed by Kasperczyk et al. described a few cases of narrow linewidths in thin structures; as we show here, going one step further and substituting nitrogen for carbon avoids the formation of broader-linewidth NVs from implanted nitrogen and therefore results in only the native-nitrogen, narrow-linewidth NV distribution.

We speculate that a possible explanation for the positive effect of IPF on NV optical linewidths is that the dynamics of NV formation are affected by preexisting lattice damage. Performing etching and electron beam lithography on structures with existing emitters imposes lattice damage on the complete structure, while implantation after the microfabrication might preferentially create emitters on sites with less lattice disorder. Dedicated studies are however required to single out the effect of IPF from carbon substitution alone.

In conclusion, we demonstrate that carbon IPF creates NVs with on average lower charge-noise and reduced spectral diffusion compared to other NV creation approaches. We show that substituting nitrogen with carbon during implantation results in similar NV densities for moderate implantation fluences that allow optical isolation of single emitters. We measure narrow linewidths with high probability: 48\% of the measured NVs have an extrinsically broadened linewidth below 150 MHz, and this applies across the full measured range of diamond microstructure thicknesses down to 1.9 \(\mu\text{m}\). We show that by implanting an ion species other than nitrogen, the creation of NVs displaying extreme linewidth broadening is avoided, confirming earlier conjectures \([31, 32]\). Moreover, we demonstrate that our method is easy to implement, is reproducible and provides an advantage over conventional fabrication methods for different samples and implantation parameters.
Our method should prove useful for any application relying on optically coherent NVs, both in bulk and in microstructured diamond. As an example, coupling the emission of such NVs (∼150 MHz linewidth, ∼2 µm thick microstructure) to an open microcavity with a finesse of a few thousand would increase the fraction of photons emitted into the ZPL by more than an order of magnitude \[21\]. The success probability of spin-spin entanglement between remote NVs would therefore increase by over two orders of magnitude compared to the state-of-the-art when using the Barrett-Kok protocol \[11, 24, 46\]. This would dramatically improve the generation rate of entangled qubit pairs and remove an important roadblock toward quantum networks beyond few-node prototypes.

ACKNOWLEDGMENTS

We thank Tomasz Jakubczyk for fruitful discussions. We acknowledge financial support from the National Centre of Competence in Research (NCCR) Quantum Science and Technology (QSWIT), a competence center funded by the Swiss National Science Foundation (SNSF), and by SNSF project No. 188521. J.A.Z. acknowledges financial support from the Swiss Nanoscience Institute (SNI). A.C. acknowledges financial support from the Quantum Science and Technologies at the European Campus (QUSTEC) project of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847471.

\[1\] D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, Quantum technologies with optically interfaced solid-state spins, Nat. Photonics 12, 516 (2018).

\[2\] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).

\[3\] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achar, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Ultra-long spin coherence time in isotopically engineered diamond, Nature Mat. 8, 383 (2009).

\[4\] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Solid-state electronic spin coherence time approaching one second, Nat. Commun. 4, 1743 (2013).

\[5\] M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and T. H. Taminiau, One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment, Nat. Commun. 9, 1 (2018).

\[6\] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, and T. H. Taminiau, A ten-qubit solid-state spin register with quantum memory up to one minute, Phys. Rev. X 9, 031045 (2019).

\[7\] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy colour centre in diamond, Phys. Rep. 528, 1 (2013).

\[8\] L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lexama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky, Probing magnetism in 2d materials at the nanoscale with single-spin microscopy, Science 364, 973 (2019).

\[9\] N. Hedrich, K. Wagner, O. V. Pylypovskyi, B. J. Shields, T. Kosub, D. D. Sheka, D. Makarov, and P. Maletinsky, Nanoscale mechanics of antiferromagnetic domain walls, Nat. Phys. 17, 574 (2021).

\[10\] M. L. Palm, W. S. Huxter, P. Welter, S. Ernst, P. J. Scheiddegger, S. Diesch, K. Chang, P. Rickhaus, T. Taniiguchi, K. Watanabe, K. Esslmin, and C. L. Degen, Imaging of submicroampere currents in bilayer graphene using a scanning diamond magnetometer, Phys. Rev. Applied 17, 054008 (2022).

\[11\] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682–686 (2015).

\[12\] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. Dos Santos Martins, and R. Hanson, Realization of a multinode quantum network of remote solid-state qubits, Science 372, 259 (2021).

\[13\] M. Jamali, I. Gerhardt, M. Rezai, K. Brenner, H. Fedder, and J. Wrachtrup, Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling, Rev. Sci. Instrum. 85, 123703 (2014).

\[14\] J. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marselgia, Y.-L. D. Ho, B. R. Patton, J. L. O’Brien, and J. G. Rarity, Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses, Appl. Phys. Lett. 97, 241901 (2010).

\[15\] R. J. Barbour, P. A. Dalgaro, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, A tunable microcavity, J. Appl. Phys. 110, 053107 (2011).

\[16\] R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity, Phys. Rev. Lett. 110, 243602 (2013).

\[17\] S. Johnson, P. R. Dolan, T. Grange, A. A. T. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Aufèves, and J. M. Smith, Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond, New J. Phys. 17, 122003 (2015).

\[18\] H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeussser, H. C. Chang, H. Fedder, T. W. Hänsch, and D. Hunger, Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity, Phys. Rev. Appl. 6, 054010 (2016).

\[19\] E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, Fabry-perot microcavity for diamond-based photonics, Phys. Rev. A 92, 43844 (2015).

\[20\] S. Bogdanović, S. van Dam, S. Bonato, L. C. Coenen, A.-M. J. Zwerber, B. Hensen, M. S. Z. Liddiy, T. Fink, A. Reiserer, M. Lončar, and R. Hanson, Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks, Appl. Phys. Lett. 110, 171103 (2017).

\[21\] D. Riedel, I. Söllner, B. J. Shields, S. Starosieleck, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond, Phys. Rev. X 7, 031040 (2017).
