RNA-Seq analysis in giant pandas reveals the differential expression of multiple genes involved in cataract formation

Yuyan You1†‡, Chao Bai1†, Xuefeng Liu2, Yan Lu1, Ting Jia2, Maohua Xia2, Yanqiang Yin3, Wei Wang1, Yucun Chen4, Chenglin Zhang1, Yan Liu1, Liqin Wang5, Tianchun Pu2, Tao Ma2, Yanhui Liu2, Jun Zhou3, Lili Niu5, Suhui Xu4, Yanxia Ni2, Xin Hu1 and Zengshuai Zhang2

Abstract

Background: The giant panda (Ailuropoda melanoleuca) is an endangered mammalian species native to China. Fewer than 2500 giant pandas are known to exist, many of which are bred in captivity as a means to preserve and repopulate the species. Like other captive mammals, giant pandas acquire age-related cataracts, reducing their quality of life. Recent comparative genome-wide methylation analysis revealed 110 differentially methylated genes associated with cataract formation including six also associated with the formation of age-related cataracts in humans.

Results: To investigate the pathological pathway in greater detail, here we used RNA-Seq analysis to investigate the differential expression profiles of genes in three giant pandas with cataracts and three healthy controls. We identified more than 700 differentially expressed genes, 29 of which were selected for further analysis based on their low q-value. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation.

Conclusion: The identification of genes involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.

Keywords: Giant panda, endangered mammals, Cataracts, RNA-Seq

Background

The housing of mammals in zoos and reservations is an efficient strategy to protect endangered species and encourage repopulation, but captive mammals tend to live longer than their wild counterparts and thus experience diseases of ageing, which are uncommon in the wild. One example is the development of age-related cataracts, which are associated with ageing mammals due to the accumulation of oxidative damage in the lens [1]. Cataracts are the main cause of blindness in ageing humans and other primates, as well as companion animals such as dogs and cats [2–4]. They are also prevalent in captive giant pandas (Ailuropoda melanoleuca), which live to 15–20 years in the wild but 25–30 years in captivity [5, 6]. Giant pandas 18 or more years old are described as aged because they have reached an equivalent human age of ~ 75. The prevalence of cataracts in the current population of aged giant pandas is ~ 20%. Age-related cataracts are heritable with significant environmental triggers, including oxidative stress and the resulting accumulation of DNA damage [7–10].
genes most strongly associated with cataracts therefore include those related to oxidative stress responses, the production of antioxidant enzymes and metabolites, and various DNA repair pathways [11–13]. Previous studies identified changes in DNA methylation associated with cataract formation in several mammals [14–16] and we recently reported that 110 genes with functions relevant to cataract pathogenesis are differentially methylated in giant pandas, including six genes known to be associated with age-related cataracts in humans [17].

Epigenetic modifications such as DNA methylation affect gene expression and therefore control the availability of the corresponding gene products. To gain more insight into the role of differential gene expression in the pathogenesis of age-related cataracts in giant pandas, we took blood samples from three aged giant pandas with cataracts and three healthy controls for RNA-Seq analysis. Following the alignment of reads with the reference genome, we identified expression profiles representing genes expressed exclusively or preferentially in the cataractogenic or healthy samples, and determined the corresponding functional annotations. The identification of genes that are overexpressed or suppressed during the formation of cataracts could lead to the development of new diagnostics, preventative treatments and therapeutic approaches to improve the quality of life for captive giant pandas and other mammals.

Results

Samples
Peripheral blood samples were collected from six giant pandas (five females and one male) ranging in age from 19 to 37, with three of the females affected by cataracts and the other specimens defined as healthy based on regular physical examinations (Table 1). The blood samples were assigned to three sample bands: A (af- fected females), B (unaffected male) and C (unaffected females). These sample bands were subsequently used for comparative transcriptomic analysis.

RNA-Seq data processing and quality analysis
Blood samples from all six giant pandas were used to prepare a de novo RNA-Seq dataset with an average of 52.05 ± 5.63 million reads per specimen and an average length of 144.35 ± 1.86 bp after quality control and trimming. For each specimen, ~ 87% of the reads mapped to unique sequences in the reference genome (Supplementary Table S1). Homogeneity distribution analysis and the gene coverage ratio indicated the anticipated distribution of reads within each gene and across different genes (Supplementary Fig. S1a,b) and also confirmed that ~ 44.72% of the reads mapped to exonic regions of the reference sequence (Supplementary Fig. S1c).

Analysis of gene structure characteristics
Analysis of the RNA-Seq dataset for gene coverage and chromosome distribution revealed differences in mapping density across different chromosomes, with chromosomes GL192341.1 and GL192355.1 showing a particularly low read density and chromosomes GL192348.1 showing the opposite phenomenon (Fig. 1a). The mapped reads were screened for single-nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (indels) revealing 5.9–6.7 × 10^4 SNPs but < 1 × 10^4 indels in each sample (Fig. 1b). Among the SNPs, the number of transitions vastly exceeded the number of transversions, and the transitions A > G, C > T, G > A and T > C were particularly abundant (Supplementary Fig. S2). We detected more than 2.5 × 10^4 alternative mRNA processing events, the most abundant of which were alternative transcriptional start sites (8 × 10^3) followed by alternative transcriptional stop sites (7 × 10^3) (Fig. 2). We also identified at least eight new transcript regions representing previously unknown isoforms of known genes, with seven of these new regions mapping to four genes: GNAO1, OGFOD1, HERPUD1 and NLRC5 (Supplementary Table S2).

Analysis of gene expression
The number of reads mapping to each gene in the reference genome represents the abundance of the corresponding mRNA when corrected for factors such as gene length, sequencing depth and saturation. We also ensured the accuracy of our results by testing for correlation between samples (Supplementary Table S3). We then determined the number of genes that were co-expressed in our samples, revealing a core of 2711

Table 1 Description of giant panda sample donors. Sample band A features the affected females, whereas bands B and C feature the healthy males and females, respectively

Name	Sample band	Spectrum number	Birth year (age)	Status	Sex	Remarks
BD	C3	520	2000 (21)	Healthy	Male	
YY	C1	362	1990 (31)	Healthy	Female	
YE	C2	493	1999 (22)	Healthy	Female	
JN	A3	403	1993 (28)	Age-related cataracts	Female	Died in 2021
LL	A2	320	1986 (32)	Age-related cataracts	Female	Died in 2018
XX	A1	253	1982 (39)	Age-related cataracts	Female	
common genes that were universally expressed and a minimum of 172 and a maximum of 263 genes in each animal that were not part of this common set (Fig. 3). PCA indicated that 36.68% of the variation could be explained by PC1, a further 33.06% by PC2, and 13.65% by PC3, primarily separating the affected and unaffected animals but to a lesser extent separating the unaffected male from the unaffected females. Overall, this resulted in the clustering of the affected females together and the dispersion of the other three samples, suggesting the affected females had more in common than any of the unaffected individuals had in common with each other (Fig. 4a). This
outcome was broadly supported by PoCA, which revealed that 50.02% of the variation could be explained by PoC1, a further 13.65% by PoC2 and 5.62% by PoC3, again leading to the formation of an affected cluster with the other samples dispersed (Fig. 4b). The individual two-dimensional plots showing the PCA and PoCA data in more detail are provided in Fig. 5.

Identification and analysis of differentially expressed genes

We observed a much greater number of differentially expressed genes when comparing female pandas with cataracts to the healthy male (A vs B, 705 genes) than when comparing female pandas with cataracts to healthy females (A vs C, 33 genes). However, most of these genes were not differentially expressed when comparing healthy male and female pandas (B vs C, 116 genes), suggesting that the A vs B profile cannot be wholly explained by sex-specific differences in gene expression (Fig. 6). Given that very few genes were differentially expressed when comparing affected and healthy females (A vs C), cataract formation appears to influence a larger number of genes in male than female pandas. Among the 705 differentially expressed genes in the A vs B comparison, 533 were upregulated and 172 downregulated. When visualized as a scatter plot (Fig. 7), it is clear that more genes are upregulated in the healthy male than the affected females and are more likely to show a statistically significant change in expression (Fig. 7b) whereas the 23 upregulated and 10 downregulated genes in the comparison A vs C show limited statistical significance (Fig. 7a). The results are emphasized in the corresponding heat maps (Fig. 8). The comparison of affected females (A) with unaffected pandas of either sex (B + C) revealed 29 genes satisfying q < 0.05 and |log2 fold change (FC)| > 1 (Table 2).

Functional annotation of differentially expressed genes

The biological functions and related pathways of the differentially expressed genes were investigated by screening the sequences against the GO and KEGG databases, as well as the Clusters of Orthologous Groups of proteins (COG) and euKaryotic Ortholog Groups (KOG) maintained by the NCBI. GO annotations revealed that the differentially expressed genes represented a wide range of biological processes (111 genes), cellular components
Fig. 4 (a) Principal component analysis. The three-dimensional plot separates the individual pandas along three principal components. The affected females (red, band A) form one group whereas the unaffected male (blue, band B) and females (green, band C) are scattered. (b) Principal coordinates analysis. The three-dimensional plot separates the individual pandas along three principal coordinates. The affected females (red) form one group whereas the unaffected male (blue) and females (green) are scattered. The corresponding two-dimensional plots are shown in Fig. 5.

Fig. 5 Principal component analysis (a) and principal coordinates analysis (b). The two-dimensional plots provide more detailed context for the three-dimensional plots shown in Fig. 4a (PCA) and Fig. 4b (PoCA).
(73 genes) and molecular functions (5 genes). Strongly represented biological process categories (accounting for > 10% of the genes) included cellular process, metabolic process, biological regulation/regulation of a biological process (particularly positive regulation), and response to stimulus. With few exceptions, the functional profile of the differentially expressed genes mirrored that of the total gene catalog, although the differentially expressed genes were overrepresented in the categories immune system process and multi-organism process but underrepresented in the categories biological phase and cell aggregation (Fig. 9). There was little difference in terms of cellular

![Venn diagram](image)

Fig. 6 Venn diagram showing the differentially expressed genes when comparing the three bands in three pairwise comparisons. **Fig. 7** Scatter plots showing the differentially expressed genes when comparing the three sample bands in three pairwise comparisons. The horizontal and vertical axes represent the log2(TPM) value of two group samples. Each point represents a gene, and the closer each point is to the origin, the lower the expression level. Red represents upregulated genes, green represents downregulated genes, and black represents genes with no difference in expression.

![Scatter plots](image)

Fig. 7 Scatter plots showing the differentially expressed genes when comparing the three sample bands in three pairwise comparisons. The horizontal and vertical axes represent the log2(TPM) value of two group samples. Each point represents a gene, and the closer each point is to the origin, the lower the expression level. Red represents upregulated genes, green represents downregulated genes, and black represents genes with no difference in expression.
component categories, with the exception of the differentially expressed genes being unrepresented in the category *nucleoid*. However, one of the most abundant categories among the differentially expressed and complete gene catalog was *protein-containing complex*, and preliminary protein network analysis revealed that the genes most strongly upregulated in the A vs B comparison also tended to be more likely to interact with other proteins and also tended to have more connections (data not shown). In terms of molecular functions, there was again little difference between the differentially expressed genes and complete gene catalog, with the exception of the differentially expressed genes being unrepresented in the categories involving *morphogen*, *metallochaperone* and *chemoattractant/chemorepellant* activity (Fig. 9). Interestingly, several genes encoding enzymes involved in histidine metabolism were included among the differentially expressed pathways revealed when screening KEGG (Fig. 10). The analysis of GO categories that were enriched among the differentially expressed genes revealed strong hits for immunity and defense-related functions, which showed the highest Rich factors (Table 3, Fig. 11). Visualization of the biological, cellular and molecular functions by means of directed acyclic graphs revealed that 45
No.	GeneName	result	Transcript id	GeneID	MeanTPM (A)	MeanTPM (B)	log2FoldChange
1	GALNS	up	ENSAMET0000000379	ENSAMEG00000000312	41.27	18.8	1.134360776
2	NCF1	down	ENSAMET00000016724	ENSAMEG00000015198	1.534666667	268.47	-7.448182824
3	GLG1	down	ENSAMET0000001501	ENSAMEG0000001334	0.283333333	14.76	-5.703048571
4	C12orf56	up	ENSAMET00000019892	ENSAMEG00000018106	14.698666667	2.5	2.554069994
5	AZN1	down	ENSAMET00000016178	ENSAMEG00000014703	25.47	61.03	-1.260719631
6	RCAN1	down	ENSAMET00000005825	ENSAMEG00000005295	0.0001	82.1	-16.3250946
7	RASD1	up	ENSAMET00000002517	ENSAMEG00000002311	15.45533333	0.76	4.345774837
8	CYSLTR1	up	ENSAMET00000002176	ENSAMEG000000019893	19.67666667	80.1	1.296611993
9	EGR1	up	ENSAMET000000018184	ENSAMEG000000016544	63.94333333	48.1	3.7326585154
10	RANBP9	up	ENSAMET00000000514	ENSAMEG00000000415	8.37	1.31	2.675660811
11	UCHL1	down	ENSAMET00000018946	ENSAMEG00000017217	2.423333333	84.8	-1.807071401
12	TNF SF12	up	ENSAMET00000001886	ENSAMEG000000016729	8.51	0.0001	16.37687151
13	SERPINB10	up	ENSAMET000000016540	ENSAMEG000000015156	58.52	13.83	2.081128613
14	SPP1L2B	up	ENSAMET000000006059	ENSAMEG000000005486	65.44666667	26.61	1.294351204
15	PTP4A3	up	ENSAMET00000001697	ENSAMEG000000015150	38.59866667	5.66	2.76928463
16	FOS	up	ENSAMET000000020143	ENSAMEG000000018335	16.93143333	71.19	4.52512604
17	ARHGAP21	up	ENSAMET000000007161	ENSAMEG000000006453	5.335333333	2.03	1.446669108
18	FOSB	up	ENSAMET000000013608	ENSAMEG000000012405	204.76	68.3	4.905904523
19	IFI27L2	up	ENSAMET000000006889	ENSAMEG000000006288	79.83	337.07	1.24804284
20	ANXA3	down	ENSAMET000000005999	ENSAMEG000000005375	13.09966667	44.12	-1.75233124
21	CLIC4	up	ENSAMET000000011061	ENSAMEG000000010080	14.94833333	6.36	2.132403328
22	COL2A1	up	ENSAMET000000014144	ENSAMEG000000012885	15.23	6.57	2.121950666
23	DUSP22	up	ENSAMET000000006552	ENSAMEG000000005967	41.65333333	15.57	1.41966308
24	EPCAM	down	ENSAMET000000006851	ENSAMEG000000006223	2.763333333	59.1	-1.106748529
25	PDE4A	up	ENSAMET000000012636	ENSAMEG000000011455	6.78	2.24	1.597786541
26	MYBL1	down	ENSAMET000000013645	ENSAMEG000000012401	4.073333333	15.41	-1.391958077
27	STEAP3	up	ENSAMET000000009325	ENSAMEG000000008497	18.19	69.5	1.388006056
28	UNC119	up	ENSAMET000000005520	ENSAMEG0000000049930	111.16	50.33	1.143147237
29	ENG	up	ENSAMET000000016023	ENSAMEG000000015119	30.99666667	8.75	2.08004037
No.	pValue	qValue	GeneDescription	GO	KEGG	KOG	
-----	----------------	-----------------	-----------------	---	---	--	
1	0.0000000000000000000000	0.000000000000002714	galactosamine (N-acetyl-6-sulfatase [Source:HGNC Symbol:AcchGNC:4122])	GO:0007066 GO:0008484 GO:0008152; GO:0003824 GO:0003890	–	KOG3867-Sulfatase [R]	
2	0.0000000000000000000000	0.0000000000000000000000	neutrophil cytosolic factor 1 [Source:HGNC Symbol:Acc:HGNC:7660]	GO:0016175 GO:0035091 GO:0055114; GO:0005735 GO:0004332; GO:0006611 GO:0042754 GO:0005829; GO:0019816 GO:0003902 GO:0004168; GO:0004631 GO:0043574 GO:0004589; GO:0004635 GO:0071276 GO:1900745 GO:0005886	–	–	
3	0.0000000000000000000000	0.0000000000000000000000	golgi glycoprotein 1 [Source:HGNC Symbol:Acc:HGNC:4316]	GO:0007066 GO:0016020 GO:0005794; GO:0000139 GO:0016021	–	KOG3648-Golgi apparatus protein (cysteine-rich fibroblast growth factor receptor)[U]	
4	0.0000000000000000000000	0.0000000000000000000000	chromosome 12 open reading frame 56 [Source:HGNC Symbol:Acc:HGNC:26907]	–	–	–	
5	0.0000000000000000000000	0.000000000000005027	antizyme inhibitor 1 [Source: RefSeq peptide:Acc:NP_001278387]	GO:0006596 GO:0042978 GO:0043085; GO:0003824 GO:0042177 GO:1902269 GO:0005634	–	KOG0622-Ornithine decarboxylase [E]	
6	0.0000000000000000000000	0.000000000000003632	regulator of calcineurin 1 [Source:HGNC Symbol:Acc:HGNC:3040]	GO:0033173 GO:0019722 GO:0003676; GO:005622	–	KOG4019-Calcineurin-mediated signaling pathway inhibitor DSCR1[TR]	
7	0.0000000000000000000000	0.000000000000003903	ras related dexamethasone induced 1 [Source:HGNC Symbol:Acc:HGNC:15882]	GO:0016529 GO:0003924 GO:0005525; GO:0001016 GO:007165 GO:0016020	–	KOG0395-Ras-related GTPase [R]	
8	0.0000000000000000000000	0.000000000000001126	cytoxyl leukotriene receptor 1 [Source:HGNC Symbol:Acc:HGNC:17451]	GO:0004974 GO:0061737 GO:0007186; GO:0004930 GO:0016021 GO:0016020; GO:000243 lg:0006816 GO:0006935; GO:0007166 GO:0003887	–	KOG0322-Leukotriene receptor[C]	
9	0.0000000000000000000000	0.000000000000001781	early growth response 1 [Source:HGNC Symbol:Acc:HGNC:3238]	GO:0005735 GO:0005654 GO:0005634; GO:2000182 GO:0098759 GO:0090909; GO:0071480 GO:0071310 GO:0071498; GO:0061418 GO:0030725 GO:0004886; GO:0045946 GO:0045893 GO:0045080; GO:0044849 GO:004281 GO:0035914; GO:003323 G0:003268 GO:0035050; GO:0030217 GO:0039749 GO:0006836; GO:0006535 GO:0002931 GO:0001666; GO:0000122 GO:1900841 GO:0044212; GO:0044729 GO:0043565 GO:0035035; GO:0010386 GO:0010270 GO:0003570; GO:0003677 GO:0001077 GO:0000982; GO:000977 GO:000976 GO:0006351; GO:0003676 GO:0046872	–	KOG1721-FOG: Zn-finger [R]	
	q-value	log2 fold change	Gene Name	Source	GO Terms	KOG Annotation	
---	--------	-----------------	-----------	--------	----------	----------------	
10	0.0000000000223677291954	0.0000000029087367841100	RAN binding protein 9	HGNC Symbol: HGNC:13727	GO:0005737;GO:0005634;GO:0070373; GO:0019899	–	
11	0.00000000003728989939510	0.0000000029087367841100	ubiquitin C-terminal hydrolase L1	HGNC Symbol: HGNC:12513	GO:0006511;GO:1904115;GO:0016874; GO:0006508; GO:0006824;GO:0008234;GO:0008235; GO:0043417;GO:0019899	–	
12	0.000000000046303228987080	0.0000000029087367841100	TNF superfamily member 12	HGNC Symbol: HGNC:11927	GO:0005164;GO:0006955;GO:0016020; GO:0045732;GO:2001238;GO:0005576;GO:0048471	–	
13	0.000000000059926447639400	0.0000000029087367841100	serpin family B member 10	HGNC Symbol: HGNC:8942	GO:0005615;GO:0005634;GO:0005829	–	
14	0.000000000042149703973800	0.0000000029087367841100	signal peptide peptidase like 2B	HGNC Symbol: HGNC:30627	GO:1900746;GO:0043542;GO:0043117; GO:0007219;GO:0006470;GO:0016311;GO:0016791;GO:0008138;GO:0006355;GO:1901224;GO:1904951;GO:0005634;GO:0005737;GO:0031668	–	
15	0.000000000059926447639400	0.0000000029087367841100	protein tyrosine phosphatase type IVA, member 3	HGNC Symbol: HGNC:9636	GO:1900746;GO:0043542;GO:0043117; GO:0007219;GO:0006470;GO:0016311;GO:0016791;GO:0008138;GO:0006355;GO:1901224;GO:1904951;GO:0005634;GO:0005737;GO:0190830	–	
16	0.000000000010152143300000	0.0000000029087367841100	Fox proto-oncogene, AP-1 transcription factor subunit	HGNC Symbol: HGNC:5794	GO:0005654;GO:0005667;GO:0005634; GO:0043542;GO:0043117;GO:0007219;GO:0006470;GO:0016311;GO:0016791;GO:0008138;GO:0006355;GO:1901224;GO:1904951;GO:0005634	K04379-k04010 MAPK signaling pathway; k04668 TNF signaling pathway; k04024 MAPK signaling pathway; k04210 Apoptosis; k04620 Toll-like receptor signaling pathway; k04600 T cell receptor signaling pathway; k04602 B cell receptor signaling pathway; k04915 Estrogen signaling pathway; k04917 ProtecIn signaling pathway; k04923 Ocytocin signaling pathway; k04725 Cholinergic synapse; k04728 Dopaminergic synapse; k04800 Osteoclast differentiation; k04713 Caidian entertain; k05020 Pathways in cancer; k05233 Choline metabolism in cancer; k05210 Colorectal cancer; k05224 Breast cancer; k05323 Rheumatoid arthritis; k05031	–
Gene ID	FDR	Log2 FC	Function/Condition				
----------	--------	---------	---				
17	0.000197666	0.00050966G	GO:0005096;GO:0043547;GO:0045177;GO:0005829;GO:0005886;GO:0005975;GO:0005902;GO:0005902;GO:0005902	Amphetamine addiction; HTLV-I infection; Hepatitis B; Herpes simplex infection; Leprosy; Amphetamine addiction; Chagas disease (American trypanosomiasis); Endocrine resistance			
18	0.000266574	0.00056544G	GO:0005654;GO:0005654;GO:0005654;GO:0005654;GO:0005654	Oxygen metabolism; FosB proto-oncogene, AP-1 transcription factor subunit			
19	0.000292568	0.00160212	GO:0016021;GO:0016021;GO:0016021;GO:0016021;GO:0016021	Interferon-alpha inducible protein 27 like 2; KOG0819-Annexin			
20	0.001808525	0.00395670	GO:0039567;GO:0039567;GO:0039567;GO:0039567;GO:0039567	Annexin A3; KOG0819-Annexin			
21	0.002467927	0.00494711	GO:0049471;GO:0049471;GO:0049471;GO:0049471;GO:0049471	Chloride intracellular channel 4; Collagens (type IV and type XIII), and related proteins			
22	0.002568066	0.00469824	GO:0046982;GO:0046982;GO:0046982;GO:0046982;GO:0046982	Collagen type II alpha 1 chain; KOG3544-Collagens (type IV and type XIII), and related proteins			
No.	FDR	P-value	Symbol/GO Terms	Description			
-----	-----	---------	----------------	-------------			
23	0.00020624	0.00368372	dual specificity phosphatase 22 [Source: HGNC Symbol; Acc: HGNC:16077]	dual specificity phosphatase [V]			
24	0.000258111	0.00446881	epithelial cell adhesion molecule [Source: HGNC Symbol; Acc: HGNC:11528]	epithelial cell adhesion molecule [T]			
25	0.000451773	0.006951735	phosphodiesterase 4A [Source: HGNC Symbol; Acc: HGNC:8781]	phosphodiesterase 4A [T]			
26	0.000777204	0.010437403	MYB proto-oncogene like 1 [Source: HGNC Symbol; Acc: HGNC:7547]	MYB proto-oncogene like 1 [K]			
27	0.000805245	0.01071711	STEAP metalloenductase [Source: HGNC Symbol; Acc: HGNC:26592]	STEAP metalloenductase [K]			
28	0.002244887	0.022926346	unc-119 lipid binding chaperone [Source: HGNC Symbol; Acc: HGNC:12565]	unc-119 lipid binding chaperone [K]			
29	0.003054818	0.028698842	endoglin [Source: HGNC Symbol; Acc: HGNC:3349]	endoglin [K]			
genes differed between the healthy and unhealthy pandas (Supplementary Fig. S3).

Discussion
Ageing mammals in captivity often develop cataracts due to the accumulation of oxidative damage [1]. This has been observed in captive giant pandas, which typically live up to 10 years longer than their wild counterparts [5, 6]. The prevalence of cataracts in the current population of aged giant pandas is ~ 20% and this is associated with a declining quality of life, as the animals find it difficult to feed and negotiate their surroundings. Although genetic factors have been identified that promote age-related cataracts, the most important triggers are environmental, particularly oxidative stress and DNA damage [7–10]. We previously compared the DNA methylation status of giant pandas with and without cataracts in an attempt to identify epigenetic effects that might influence the expression of genes associated with cataract formation [17]. We identified multiple differentially methylated genes with potential roles in cataract-related pathways, including base excision repair, apoptosis and p53 signaling. Certain genes also showed abnormal methylation profiles specifically in the pandas with cataracts, including the cysteine-aspartate protease gene CASP3, a pro-apoptotic mediator already linked to cataracts in rats [18, 19], and the glutathione S-transferase gene GSTM3, which is expressed in the lens tissues of human patients with age-related cataracts [20].

DNA methylation is an epigenetic mechanism that regulates gene expression by modifying the structure of chromatin, usually leading to the suppression of gene expression. As a logical extension of our previous study, we were therefore interested in the analysis of differential gene expression between giant pandas with cataracts and controls with healthy eyes. Using the same animals as in our previous study, we carried out RNA-Seq analysis to identify panels of genes either upregulated or downregulated in pandas with cataracts. Following the alignment of reads with the reference genome, we identified expression profiles representing genes expressed exclusively or preferentially in the cataractogenic or healthy samples, and identified the corresponding functional annotations by screening the KEGG database and GO categories. Our RNA-Seq data also revealed abundant alternative splicing and novel transcripts within the dataset, as previously reported during murine lens development [21]. Two genes that were shown in our DNA methylation study [17] to be methylated specifically in affected pandas were also shown to be downregulated in the affected pandas by RNA-Seq analysis. CASP3, encoding the apoptotic cysteine-aspartate protease was downregulated with a log2FC of −1.03, whereas GSTM3, encoding the glutathione S-transferase, was downregulated with a log2FC of −1.28.

A link between the glutathione (GSH) pathway and cataract formation was identified in a transcriptomic study in mice [22]. The authors considered the
consequences of GSH deficiency in naïve and buthionine sulfoximine-treated C57Bl/6 LEGSKO (lens GSH-synthesis knockout) mice compared to wild-type controls, thus providing a more relevant model of oxidative damage. Among 24,415 mapped reads, 441 genes showed significantly modulated expression, including genes involved in epithelial-mesenchymal transition (EMT) signaling, the visual cycle, and lipid metabolism. Several detoxification genes were upregulated, including the aldehyde dehydrogenases Aldh1a1 and Aldh3a1, the metallothioneins Mt1 and Mt2, the carboxylesterase Ces1g, and the urea transporter Slc14a1, whereas genes encoding lens crystallins and other vision-related genes were downregulated [22]. The authors concluded that GSH deficiency in the lens leads to the expression of detoxifying genes and the activation of EMT signaling (providing evidence of adaption to the loss of antioxidant capacity) and also revealing a pathogenetic mechanism of cataract formation.

Similarly, our RNA-Seq analysis revealed the differential expression of several genes related to oxidative damage, the visual cycle, developmental functions, and lipid metabolism, suggesting that ageing pandas develop cataracts as the natural capacity for oxidative stress responses begins to diminish. For example, we observed a 7.45-fold down-regulation of NCF1, encoding a membrane-bound subunit of NADPH oxidase which is involved in superoxide production and the induction of apoptosis [23, 24]. Examples of differentially regulated genes involved in visual perception included COL2A1, encoding a collagen component of the extracellular matrix (1.2-fold induction) and UNC119, encoding a G-protein-binding factor that is required for protein trafficking in photoreceptor cells (1.1-fold induction) [25]. The differentially expressed genes related to developmental functions included EPCAM, encoding the epithelial cell adhesion molecule involved in cell–cell adhesion, cell signaling, migration, proliferation, and differentiation (downregulated 1.1-fold) [26, 27] as well as a chloride channel that interacts with the cytoskeleton and is known to regulate vascular morphogenesis in the eye (CLIC4, 1.2-fold induction) [28, 29] and

![Fig. 10 Differential representation of metabolic pathways. The rectangular nodes represent gene products (enzymes or regulatory factors) and the circular nodes represent metabolites. The rounded white boxes indicate linked pathways. Red indicates upregulated genes and green indicates downregulated genes, with deeper coloring indicating a greater fold change in expression.](image-url)
GO ID	Term Description	GO ID	Term	Ontology	Significant	Annotated	P-value	Q-value	Signi_id	Signi_symbol
GO:0031982	vesicle cellular component				84/287	2493/14310	0.00000041	0.0004		PDZK1P1, NUDT14, GALNS, LPL, MINDY1, SLC1A4, ZNF61, ECM1, KCNN1, ANPEP, HNMT, SCPEP1, PLOD3, CRYZ, EPS8, CMBl, KCTD12, SLPI, GAS6, NAN5, SPP1L28, Rab32, RIHO, ARAS, TMEBRA, TRIP10, SMPDL3A, SLC7A8, OAF, SLC1A5, STEAP3, F5, FBP1, SEPT5, COMT, SERPINE2, HAX1, LY2, APOH, ANGPTL6, FM1688, BVR, PLD3, CTSZ, SOG1, GIP, LAMB2, TUBB6, C3orf58, TIMP1, FES, A2M, RRA5, IGF8, NAA1, ITSN1, GAA, SCSH, MICL2, PRAD1, HFE, ACTG1, PEDP1, DPG4, EFHD1, TNFSF13, TMEI75, ARRB1, APP, ABCA3, PTGR1, CDC42BPB, ENDO1, KNE3, ATP6,

You et al. BMC Genomic Data (2021) 22:44
Page 15 of 56
Table 3: Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO:0005576	extracellular region	cellular component	91/287	2809/14310	0.00000064	0.0004	ENSAMEG00000000015, ENSAMEG00000000093, ENSAMEG000000000312, ENSAMEG000000000640, ENSAMEG000000000539, ENSAMEG000000000609, ENSAMEG0000000005291, ENSAMEG0000000002718, ENSAMEG0000000002732, ENSAMEG0000000003068, ENSAMEG0000000003442, ENSAMEG0000000003627, ENSAMEG0000000003820, ENSAMEG0000000004013, ENSAMEG0000000004196, ENSAMEG0000000004399, ENSAMEG0000000004441, ENSAMEG0000000004680, ENSAMEG0000000004836, ENSAMEG0000000006082, ENSAMEG0000000006368, ENSAMEG0000000007046, ENSAMEG0000000007327, ENSAMEG0000000007340, ENSAMEG0000000007342, ENSAMEG0000000007468, ENSAMEG0000000007631, ENSAMEG0000000008008, ENSAMEG0000000008907, ENSAMEG0000000008620, ENSAMEG0000000008780, ENSAMEG0000000009105, ENSAMEG0000000009193, ENSAMEG0000000009998, ENSAMEG0000000010219, ENSAMEG0000000010536, ENSAMEG0000000010602, ENSAMEG0000000010841, ENSAMEG0000000011403, ENSAMEG0000000011494, ENSAMEG0000000011617, ENSAMEG0000000011687, ENSAMEG0000000011820, ENSAMEG0000000011842, ENSAMEG0000000012016, ENSAMEG0000000012043, ENSAMEG0000000012457, ENSAMEG0000000012482, ENSAMEG0000000012483, ENSAMEG0000000012511, ENSAMEG0000000012590, ENSAMEG0000000012708, ENSAMEG0000000012743, ENSAMEG0000000012804, ENSAMEG0000000012869, PDZK1IP1, NUDT14, GALNS, HSPB6, LPL, MINDY1, SLC1A4, ECM1, DKK2, CRTP, ANPEP, HNMT, SCPEP1, PLOD3, MMP19, CRYZ, EPS8, CMBL, KCTD12, SLPI, PFPBP2, GAS6, NANS, TIMP4, RHOQ, MRRAS, TMEMBA, TRBP10, ZPI, SDC2, SMD3L3A, SLCA8, OAF, SLC1A5, CYBRD1, ENSAMEG0000000008780, AHCY, DMXL2, EMLN2, GNPDA1, VIM, PLED1, HSPB1, F5, FBP1, COMT, SERPINE2, LYZ, APOH, ANGPTL6, FAM168B, BLVRB, PLD3, CTSZ, SOGA1, GXP1, LAMB2, TUBB6, C3orf58, CFp, TIMP1, ECM2, A2M, RRA5, GSF8, ENSAMEG0000000014335, NAAA, CCL14, ENSAMEG0000000014908, SERPINE1, DAA, SGSH, ELN, ENSAMEG0000000015548, PRADC1, HFE, ACTG1, PEBP1, CD36, EFHD1, TNF5F12, TNF5F13, IL25, APP, F13A1, ABCA3, PTGR1, CDC180, CDC42BPB, ENDO1D1, ATP6	
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol																																
ENSAMEG000000012943, ENSAMEG000000013536, ENSAMEG000000013869, ENSAMEG000000013931, ENSAMEG000000014335, ENSAMEG000000014605, ENSAMEG000000014906, ENSAMEG000000014908, ENSAMEG000000015156, ENSAMEG000000015157, ENSAMEG000000015221, ENSAMEG000000015429, ENSAMEG000000015548, ENSAMEG000000015564, ENSAMEG000000015938, ENSAMEG000000016015, ENSAMEG000000016143, ENSAMEG000000016224, ENSAMEG000000016446, ENSAMEG000000016729, ENSAMEG000000016736, ENSAMEG000000016820, ENSAMEG000000017184, ENSAMEG000000017422, ENSAMEG000000017862, ENSAMEG000000017964, ENSAMEG000000018103, ENSAMEG000000018199, ENSAMEG000000019907, ENSAMEG000000023442	GO:0044421 extracellular region part	cellular component	84/287		2524/14310	0.000000070	0.0004	PDZK1IP1, NUDT14, GALNS, LPL, MINDY1, SLC1A4, ECM1, DKK2, CRTAP, ANPEP, HNMT, SCPBP1, PLOD3, MMP19, CRYZ, EPS8, CMBl, KCTD12, SLPI, PFPBP2, GA56, NANS, RHOCQ, MRAS, TMEBBA, TRIP10, ZP1, SDC2, SMDP1A, SLC7A8, DAF, SLC1A5, CYBRD1, ENSAMEG000000008780, AHCY, DMXL2, EMILIN2, GNPD1A, VIM, PLBD1, HSFB1, F5, FBP1, COMT, SERPINE2, LY2, APOH, ANGPTL6, FAM168B, BLVRB, PLD3, CTS2, SOGA1, GPX1, LAMB2, TUBB6, C3orf58, CFP, TIMP1, ECM2, A2M, MRAS, ICSF8, ENSAMEG000000014335, NAAA, SERPINB10, GAA, SGSH, ELN, PRADCl, HFE, ACTG1, PEPB1, CD36, EFHD1, TNFSF13, APP, F13A1, ABCA3, PTGR1, Ccdc80, CDC40B8, ENDOD1, ATP6																																
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol																																
-------	------	----------	-------------	-----------	--------	--------	----------	--------------																																
ENSAMEG000000011403	ENSAMEG000000011494	ENSAMEG000000011617	ENSAMEG000000011687	ENSAMEG000000011820	ENSAMEG000000011842	ENSAMEG000000012016	ENSAMEG000000012043	ENSAMEG000000012457	ENSAMEG000000012482	ENSAMEG000000012483	ENSAMEG000000012511	ENSAMEG000000012590	ENSAMEG000000012708	ENSAMEG000000012743	ENSAMEG000000012804	ENSAMEG000000012869	ENSAMEG000000012943	ENSAMEG000000013931	ENSAMEG000000013980	ENSAMEG000000014335	ENSAMEG000000014605	ENSAMEG000000015156	ENSAMEG000000015157	ENSAMEG000000015221	ENSAMEG000000015429	ENSAMEG000000015564	ENSAMEG000000015938	ENSAMEG000000016015	ENSAMEG000000016143	ENSAMEG000000016224	ENSAMEG000000016446	ENSAMEG000000016736	ENSAMEG000000017184	ENSAMEG000000017422	ENSAMEG000000017862	ENSAMEG000000017964	ENSAMEG000000018103	ENSAMEG000000018199	ENSAMEG000000019007	ENSAMEG000000023442
GO:0005615	extracellular space cellular component	79/287	0.00000072	0.0005	PDZK1IP1, NUDT14, GALNS, LPL, MINDY1, SLC1A4, ECM1, DKK2, CRTAP, ANPEP, HNMT, SCPEP1, PLOD3, MMP19, CRYP, EPSP, CMBL, XCTD12, SLP, PPIFBP2, GAS6, NANS, RHOD, MRAS, TMEM8A, TRIP10, SMPDL3A, SLC7A8, OAF, SLC1A5, CYBRD1, ENSAMEG00000008780, ACHE, DMD2, EMLIN3, GNPD1A1, VM, PLBD1, HSPB1, F5, FBIP1, COMT, SRPRINE2, LYZ, APOH, ANGPTL6, FAM168B, BLVRB, PLD3, CTSZ, SOGA1, GPX1, LAMB2, TUBB6, C3orf58, TIMP1, A2M, Rras, IGF1, ENSAMEG000000014335, NAA, SERPINB10, GAA, SGSH, PRAD1, HFE, ACTG1, PEBP1, CD36, EFHD1, TNFSF13, APP, F13A1, ABCA3, PTGR1, CDC48B, CDC42BPB, ENDOD1, ATP6																																			
Table 3: Functional enrichment analysis based on the representation of GO terms (Continued)

GO ID	Term Description	Ontology	Significant	Annotated	P-value	Q-value	Signi_id	Signi_symbol
ENSAMEG000000000015	extracellular organelle	Cellular component	63/287	1929/14310	0.00004900	0.013		
ENSAMEG000000000015	extracellular organelle	Cellular component	63/287	1929/14310	0.00004900	0.013		

You et al. BMC Genomic Data (2021) 22:44 Page 19 of 56
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
ENSAMEG00000007468, ENSAMEG00000007631, ENSAMEG00000008008, ENSAMEG00000008407, ENSAMEG00000008620, ENSAMEG00000009105, ENSAMEG00000010219, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000011403, ENSAMEG00000011494, ENSAMEG00000011617, ENSAMEG00000011687, ENSAMEG00000011820, ENSAMEG00000011842, ENSAMEG00000012016, ENSAMEG00000012043, ENSAMEG00000012457, ENSAMEG00000012482, ENSAMEG00000012483, ENSAMEG00000012511, ENSAMEG00000012590, ENSAMEG00000012708, ENSAMEG00000012743, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000013931, ENSAMEG00000013980, ENSAMEG00000014605, ENSAMEG00000015157, ENSAMEG00000015221, ENSAMEG00000015564, ENSAMEG00000016015, ENSAMEG00000016143, ENSAMEG00000016446, ENSAMEG00000016736, ENSAMEG00000017184, ENSAMEG00000017964, ENSAMEG00000018199, ENSAMEG00000019907, ENSAMEG00000023442	GO: 1903561 extracellular vesicle cellular component	63/287	1929/14310	0.00004900	0.013			
			63/287	1929/14310	0.00004900	0.013		
PDZK1IP1, NUDT14, GALNS, LPL, MINDY1, SLCA14, ECM1, ANPEP, HNMT, SCPEP1, POLD3, CRYZ, EPS8, CMBL, KCTD12, SLPI, GAS5, NANS, RHOQ, MRAS, TMEM8A, TRIP10, SMFDL3A, SLCA78, DAF, SLCA9S, CYB5D1, AHCY, GNPD, A1, VM, HSPB1, F5, FBP1, COMT, SERPINE2, LYZ, APOH, ANGPTL6, FAM168B, BLVRB, PLD3, CTSZ, SOGA1, GPX1, LAMB2, TUBB6, TIMP1, A2M, RRAS, KGFB3, NAAA, GAA, SGSH, PRAD1C1, ACTG1, PEBP1, EFHD1, TNFSF13, APP, PTGR1, CDC42BPB, ENDOD1, ATP6								
Table 3 Functional enrichment analysis based on the representation of GO terms *(Continued)*

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
ENSAMEG00000011403, ENSAMEG00000011494, ENSAMEG00000011617, ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000012016, ENSAMEG00000012043, ENSAMEG00000012457, ENSAMEG00000012482, ENSAMEG00000012483, ENSAMEG00000012511, ENSAMEG00000012590, ENSAMEG00000012708, ENSAMEG00000012743, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000013931, ENSAMEG00000013980, ENSAMEG00000014605, ENSAMEG00000015157, ENSAMEG00000015221, ENSAMEG00000015564, ENSAMEG00000016015, ENSAMEG00000016143, ENSAMEG00000016446, ENSAMEG00000016736, ENSAMEG00000017184, ENSAMEG00000017964, ENSAMEG00000018199, ENSAMEG00000019907, ENSAMEG00000023442	GO:0070062 extracellular exosome cellular component	61/287 1918/14310	0.00014000 0.0319	1918/14310	0.00014000 0.0319	PDZK1IP1, NUDT14, GALNS, LPL, MINDY1, SLC1A4, ECM1, ANPEP, HNMT, SCPEP1, PLOD3, CRYZ, EPS58, CMBL, KCTD12, SLP1, GAS6, NANS, RHOQ, MRA5, TMEM8A, TRIP10, SNAPC3, SLC7A8, DAF, SLC1A5, CYRD1, AHCY, GPN2, A1, VM, HSPB1, FBP1, COMT, LYZ, APOH, ANGPTL6, FAM168B, BLVRB, PLOD3, CTSZ, SOGA1, GPX1, LAMR2, TUBB6, TIMP1, A2M, RAS, IGFBF8, NAAA, GAA, SGSH, PRAD1, ACTG1, PEBP1, EFHD1, TNFSF13, APP, PTGR1, CDC42BPI, ENDO1, ATP6		

You et al. BMC Genomic Data (2021) 22:44 Page 21 of 56
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
ENSAMEG000000012511, ENSAMEG000000012590, ENSAMEG000000012708, ENSAMEG000000012743, ENSAMEG000000012943, ENSAMEG000000013869, ENSAMEG000000013931, ENSAMEG000000013980, ENSAMEG000000014605, ENSAMEG000000015157, ENSAMEG000000015221, ENSAMEG000000015564, ENSAMEG000000016015, ENSAMEG000000016143, ENSAMEG000000016446, ENSAMEG000000016736, ENSAMEG000000017184, ENSAMEG000000017964, ENSAMEG000000019007, ENSAMEG0000000223442	GO:0031012, extracellular matrix, cellular component	17/287	342/14310	0.00056000	0.1117	ENSAMEG00000001502, ENSAMEG00000003068, ENSAMEG00000004196, ENSAMEG00000007340, ENSAMEG00000007342, ENSAMEG00000009998, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000012708, ENSAMEG00000012869, ENSAMEG00000012943, ENSAMEG00000013536, ENSAMEG00000015429, ENSAMEG00000016015, ENSAMEG00000018103	ECM1, MMP19, SLPI, ZP1, SDC2, EMILIN2, VM, HSPB1, SERPINE2, APOH, LAMB2, CFP, TIMP1, ECM2, ELN, ACTG1, CCDC80	
ENSAMEG00000001502, ENSAMEG00000003068, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990	GO:0052547, regulation of peptidase activity, biological process	17/269	260/13500	0.00001800	0.127	ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990	ECM1, SLPI, GAS6, PPARG, TIMP4, NOD1, ENSAMEG000000010076, KIAA0141, HIP1, SERPINE2, GPX1, TIMP1, A2M, NLRP3, ARRB1, APP, BAD	
ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990	GO:0052548, regulation of endopeptidase activity, biological process	16/269	234/13500	0.00001900	0.127	ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990	SLPI, GAS6, PPARG, TIMP4, NOD1, ENSAMEG000000010076, KIAA0141, HIP1, SERPINE2, GPX1, TIMP1, A2M, NLRP3, ARRB1, APP, BAD	
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO:0019897	extrinsic component of plasma membrane	cellular component	5/287	63/14310	0.00161	0.2699	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000011687, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	CYTH3, ENSAMEG000000008528, SEPRINE2, FES, DLG4, GNG11
GO:0031234	extrinsic component of cytoplasmic side of plasma membrane	cellular component	5/287	44/14310	0.00179	0.2699	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	CYTH3, ENSAMEG000000008528, FES, DLG4, GNG11
GO:0098802	plasma membrane receptor complex	cellular component	8/287	112/14310	0.00186	0.2699	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	EP58, ENSAMEG000000004337, ITGAX, PORCN, ACVR1, HFE, GABBR1, DLG4
GO:0005774	vacuolar membrane	cellular component	10/287	174/14310	0.00271	0.3487	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	TCIRG1, ANPEP, SFB2, SPPL2B, TMEM8A, CLCN7, GAA, CD68, TMEM175, SLC29A3
GO:0043235	receptor complex	cellular component	11/287	206/14310	0.003	0.3487	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	EP58, ENSAMEG000000004337, ITGAX, ENSAMEG000000010559, PORCN, ACVR1, HFE, GABBR1, CD36, DLG4, APP
GO:0044437	vacuolar part	cellular component	10/287	180/14310	0.00345	0.3487	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	TCIRG1, ANPEP, SFB2, SPPL2B, TMEM8A, CLCN7, GAA, CD68, TMEM175, SLC29A3
GO:0031966	mitochondrial membrane	cellular component	15/287	338/14310	0.00348	0.3487	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	HADH, ENSAMEG000000002314, CHDH, RAB32, RNF144B, TMEM173, HAX1, IKBKE, EHD1, BAD, ND1, ND2, COX1, ATP6, CYTB
GO:0008805	whole membrane	cellular component	22/287	592/14310	0.00409	0.3487	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000013803, ENSAMEG00000016396, ENSAMEG00000017737	TCIRG1, KCNQ1, ANPEP, SFB2, SPPL2B, RAB32, RHQO, TMEM8A, CLCN7, HIP1, TMEM173, HAX1,
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
---------	-------------------------------	--------------	-------------	-----------	---------	---------	----------	--------------
GO: 0005764	lysosome cellular component	13/287	279/14310	0.00424	0.3487	ENSAMEG0000001230, ENSAMEG0000001230, ENSAMEG0000002069, ENSAMEG0000002535, ENSAMEG0000005486, ENSAMEG0000007046, ENSAMEG0000007997, ENSAMEG0000012483, ENSAMEG0000014605, ENSAMEG0000019739, ENSAMEG0000017739, ENSAMEG0000017739	C3orf58, GAA, CD36, CD68, TMEM175, APP, SLC29A3, ABCA3, BAD, KCNE3	
GO: 0005765	lysosomal membrane cellular component	9/287	156/14310	0.00424	0.3487	ENSAMEG0000001230, ENSAMEG0000002535, ENSAMEG0000005486, ENSAMEG0000007046, ENSAMEG0000007997, ENSAMEG0000012483, ENSAMEG0000014605, ENSAMEG0000019739, ENSAMEG0000017739, ENSAMEG0000017739	TCIRG1, ANPEP, SPP2L8, TMEM8A, CLCN7, CTSZ, NAAA, GAA, SGSH, CD68, TMEM175, SLC29A3	
GO: 0098852	lytic vacuole membrane cellular component	9/287	156/14310	0.00424	0.3487	ENSAMEG0000001230, ENSAMEG0000002535, ENSAMEG0000005486, ENSAMEG0000007046, ENSAMEG0000007997, ENSAMEG0000012483, ENSAMEG0000014605, ENSAMEG0000019739, ENSAMEG0000017739, ENSAMEG0000017739	TCIRG1, ANPEP, SPP2L8, TMEM8A, CLCN7, GAA, CD68, TMEM175, SLC29A3	
GO: 0000323	lytic vacuole cellular component	13/287	280/14310	0.00437	0.3487	ENSAMEG0000001230, ENSAMEG0000002535, ENSAMEG0000005486, ENSAMEG0000007046, ENSAMEG0000007997, ENSAMEG0000012483, ENSAMEG0000014605, ENSAMEG0000019739, ENSAMEG0000017739, ENSAMEG0000017739	TCIRG1, ANPEP, SPP2L8, TMEM8A, CLCN7, GAA, CD68, TMEM175, SLC29A3	
GO: 0048866	endopeptidase inhibitor activity molecular function	9/273	102/13119	0.00027	0.3916	ENSAMEG0000004196, ENSAMEG0000004441, ENSAMEG0000004836, ENSAMEG0000010076, ENSAMEG0000011687, ENSAMEG0000012943, ENSAMEG0000012943, ENSAMEG0000012943, ENSAMEG0000012943, ENSAMEG0000012943	SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, TIMP1, A2M, ARRB1, APP	
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
--------	-----------------------------------	--------------	-------------	-----------	---------	---------	--	------------------------------
GO:0061135	endopeptidase regulator activity	molecular function	9/273	105/13119	0.00034	0.3916	ENSAMEG00000013869, ENSAMEG00000017062, ENSAMEG00000017184	SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, TIMP1, A2M, ARRB1, APP
GO:0008484	sulfuric ester hydrolase activity	molecular function	4/273	17/13119	0.00035	0.3916	ENSAMEG00000000312, ENSAMEG00000013098, ENSAMEG00000014912, ENSAMEG00000015221	GALNS, ENSAMEG00000013098, ENSAMEG00000014912, SGSH
GO:0061134	peptidase regulator activity	molecular function	10/273	132/13119	0.00043	0.3916	ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004836, ENSAMEG00000010076, ENSAMEG00000011687, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000017062, ENSAMEG00000017184	SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, TIMP1, A2M, ARRB1, APP, BAD
GO:0045275	respiratory chain complex III	cellular component	2/287	6/14310	0.0057	0.4233	ENSAMEG000000023436, ENSAMEG000000023455	COX1, CYTB
GO:0008328	ionotropic glutamate receptor complex	cellular component	3/287	19/14310	0.0061	0.4233	ENSAMEG000000003627, ENSAMEG000000012689, ENSAMEG000000016396	EPS8, PORCN, DLG4
GO:0098878	neurotransmitter receptor complex	cellular component	3/287	19/14310	0.0061	0.4233	ENSAMEG000000003627, ENSAMEG000000012689, ENSAMEG000000016396	EPS8, PORCN, DLG4
GO:0098552	side of membrane	cellular component	10/287	198/14310	0.00671	0.425	ENSAMEG000000005486, ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000011687, ENSAMEG000000013414, ENSAMEG000000013803, ENSAMEG000000015938, ENSAMEG000000016224, ENSAMEG000000016396, ENSAMEG000000017737	SPPL2B, CYTH3, ENSAMEG000000008528, SERPINE2, CD163, FES, HFE, CD36, DLG4, GNG11
GO:0005773	vacuole	cellular component	14/287	329/14310	0.00673	0.425	ENSAMEG000000001230, ENSAMEG000000002069, ENSAMEG000000002535, ENSAMEG000000003625, ENSAMEG000000005486, ENSAMEG000000007046, ENSAMEG000000007997, ENSAMEG000000012483, ENSAMEG000000014605, ENSAMEG000000015157, ENSAMEG000000015221, ENSAMEG000000016765, ENSAMEG000000016795, ENSAMEG000000017737	TCIRG1, KCNQ1, ANPEP, SFB2, SPPL2B, TMEM8A, CLCN7, CTSZ, NAAA, GAA, SGSH, CD68, TMEM175, SLC29A3
GO:0005740	mitochondrial envelope	cellular component	15/287	365/14310	0.00699	0.425	ENSAMEG000000001814, ENSAMEG000000002314, ENSAMEG000000002398, ENSAMEG000000006014, ENSAMEG000000008424, ENSAMEG000000011225, ENSAMEG000000011750, ENSAMEG000000011831, ENSAMEG000000016446, ENSAMEG000000018369, ENSAMEG000000019717, ENSAMEG00000002069, ENSAMEG00000002535, ENSAMEG00000003625, ENSAMEG00000005486, ENSAMEG00000007046, ENSAMEG00000007997, ENSAMEG00000012483, ENSAMEG00000014605, ENSAMEG00000015157, ENSAMEG00000015221, ENSAMEG00000016765, ENSAMEG00000016795, ENSAMEG00000017737	HADH, ENSAMEG00000002314, CHDH, RAB32, RNF144B, TMEM173, HAX1, KPBK, EFHD1, BAD, ND1, ND2, COX1, ATP6, CYTB
GO ID	Term	Ontology	Significant	Annotated	P value	Q value	Signi_id	Signi_symbol
---------	------------------------------------	---------------------	-------------	-----------	---------	---------	----------	--------------
GO: 0098562	cytoplasmic side of membrane	cellular component	6/287	85/14310	0.00719	0.425	ENSAMEG0000017990, ENSAMEG0000023426, ENSAMEG0000023430, ENSAMEG0000023436, ENSAMEG0000023442, ENSAMEG0000023455	SPPL2B, CYTH3, ENSAMEG0000008528, FES, DLG4, GNG11
GO: 0005614	interstitial matrix	cellular component	2/287	7/14310	0.00788	0.4492	ENSAMEG0000013536, ENSAMEG0000018103	ECM2, CCDC80
GO: 0030414	peptidase inhibitor activity	molecular function	9/273	114/13119	0.0062	0.4517	ENSAMEG00000013536, ENSAMEG0000018103	SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, TIMP1, A2M, ARRB1, APP
GO: 005912	adherens junction	cellular component	14/287	337/14310	0.00824	0.4535	ENSAMEG0000003894, ENSAMEG0000006768, ENSAMEG0000010536, ENSAMEG0000010841, ENSAMEG0000013263, ENSAMEG0000013297, ENSAMEG0000013803, ENSAMEG0000013931, ENSAMEG0000014689, ENSAMEG0000015431, ENSAMEG0000015837, ENSAMEG0000016015, ENSAMEG0000016087, ENSAMEG0000019485	MRC2, CYTH3, VIM, Hspb1, REXO2, FHL2, FES, RRAS, TNS5, LIMK1, STXB5, ACTG1, POLIM1, CDC42EP4
GO: 0031410	cytoplasmic vesicle	cellular component	25/287	755/14310	0.00965	0.4966	ENSAMEG0000001276, ENSAMEG0000002069, ENSAMEG0000005486, ENSAMEG0000006014, ENSAMEG0000008800, ENSAMEG0000009193, ENSAMEG0000010113, ENSAMEG0000010991, ENSAMEG0000011403, ENSAMEG0000011509, ENSAMEG0000011687, ENSAMEG0000011750, ENSAMEG0000012016, ENSAMEG0000012483, ENSAMEG0000012804, ENSAMEG0000013803, ENSAMEG0000013931, ENSAMEG0000014724, ENSAMEG0000015326, ENSAMEG0000015938, ENSAMEG0000016396, ENSAMEG0000016795, ENSAMEG0000017062, ENSAMEG0000017184, ENSAMEG0000017862	ZNRF1, KCNQ1, SPPL2B, RAB32, STEAP3, DGKH, DMXL2, SLA2, HIP1, F5, SEPT5, SERPINE2, HAX1, ANGPTL6, CTSZ, C3orf58, FES, ITSNI, MICALL2, HFE, DLG4, TMEM175, ARRB1, APP, ABCA3
GO: 0007708	intracellular vesicle	cellular component	25/287	756/14310	0.0098	0.4966	ENSAMEG0000001276, ENSAMEG0000002069, ENSAMEG0000005486, ENSAMEG0000006014, ENSAMEG0000008800, ENSAMEG0000009193, ENSAMEG0000010113, ENSAMEG0000010991, ENSAMEG0000011403, ENSAMEG0000011509, ENSAMEG0000011687, ENSAMEG0000011750, ENSAMEG0000012016, ENSAMEG0000012483, ENSAMEG0000012804, ENSAMEG0000013803, ENSAMEG0000013931, ENSAMEG0000014724, ENSAMEG0000015326, ENSAMEG0000015938, ENSAMEG0000016396, ENSAMEG0000016795, ENSAMEG0000017062, ENSAMEG0000017184, ENSAMEG0000017862	ZNRF1, KCNQ1, SPPL2B, RAB32, STEAP3, DGKH, DMXL2, SLA2, HIP1, F5, SEPT5, SERPINE2, HAX1, ANGPTL6, CTSZ, C3orf58, FES, ITSNI, MICALL2, HFE, DLG4, TMEM175, ARRB1, APP, ABCA3
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
--------	-----------------------------	-------------------	-------------	-----------	---------	--------	----------	-------------
GO:0070161	anchoring junction	cellular component	14/287	345/14310	0.01	0.4966	ENSAMEG0000003894, ENSAMEG0000006768, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000013263, ENSAMEG00000013479, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014689, ENSAMEG00000015431, ENSAMEG00000015837, ENSAMEG00000016015, ENSAMEG00000016087, ENSAMEG00000019485, MRC2, CYTH3, VIM, HSPB1, REXO2, FHL2, FES, RAS, TNS3, LIMK1, STXB6, ACTG1, PDLIM1, CDC42EP4	
GO:0042627	chylomicron	cellular component	2/287	8/14310	0.01036	0.4966	ENSAMEG0000000943, ENSAMEG00000011842, LPL, APOH	
GO:0042641	actomyosin	cellular component	4/287	43/14310	0.01058	0.4966	ENSAMEG00000015326, ENSAMEG00000017327, ENSAMEG00000017670, ENSAMEG00000018199, MICALL2, FHOD1, PDLIM4, CDC42BPB	
GO:0030027	lamellipodium	cellular component	6/287	96/14310	0.01272	0.5715	ENSAMEG00000004387, ENSAMEG00000007278, ENSAMEG00000011750, ENSAMEG00000014724, ENSAMEG00000015431, ENSAMEG00000016087, ENSAMEG00000017670, PLXND1, ARHGAP31, HAX1, ITSN1, LIMK1, PDLIM4	
GO:0032281	AMPA glutamate receptor complex	cellular component	2/287	9/14310	0.01315	0.5715	ENSAMEG00000012689, ENSAMEG00000016396, PORCN, DLG4	
GO:0031252	cell leading edge	cellular component	9/287	187/14310	0.01325	0.5715	ENSAMEG00000003627, ENSAMEG00000004387, ENSAMEG00000007278, ENSAMEG00000010536, ENSAMEG00000011750, ENSAMEG00000014724, ENSAMEG00000015431, ENSAMEG00000016087, ENSAMEG00000017670, EP58, PLXND1, CYTH3, ARHGAP31, VIM, HAX1, ITSN1, LIMK1, PDLIM4	
GO:0051336	regulation of hydrolase activity	biological process	28/269	690/13500	0.00028	0.5728	ENSAMEG0000001502, ENSAMEG0000003625, ENSAMEG0000004106, ENSAMEG0000004196, ENSAMEG0000004441, ENSAMEG0000004474, ENSAMEG0000004836, ENSAMEG0000005271, ENSAMEG0000005566, ENSAMEG0000006453, ENSAMEG0000006630, ENSAMEG0000007278, ENSAMEG0000008477, ENSAMEG00000010076, ECM1, SBF2, SLPI, GAS6, PPARG, TIMP4, ENSAMEG0000005271, ADAP2, ARHGAP21, NOD1, ARHGAP31, HSCB, ENSAMEG00000010076, KIAA0141, HIP1, SDR14E2, APOH, GPx1, TIMP1, A2M, PPI1R1S, ENSAMEG00000015030, NLRP3, ARRB1, APP, BAD, CDC42EP2	
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
---------	---	-------------------------------	-------------	-----------	----------	----------	----------	--------------
GO:	negative regulation of peptidase activity	biological process	11/269	157/13500	0.00031	0.5728		
0010466								
GO:	immune system process	biological process	43/269	1258/13500	0.00031	0.5728		
002376								

Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)
Table 3: Functional enrichment analysis based on the representation of GO terms (Continued)

GO ID	Term	Ontology	Significant	Annotated	P-value	Q-value	Signi_id	Signi_symbol
GO:0055095	lipoprotein particle mediated signaling	biological process	2/269	1/13500	0.0004	0.5728	ENSAMEG00000000943, ENSAMEG00000016224	LPL, CD36
GO:0055096	low-density lipoprotein particle mediated signaling	biological process	2/269	1/13500	0.0004	0.5728	ENSAMEG00000000943, ENSAMEG00000016224	LPL, CD36
GO:0010885	regulation of cholesterol storage	biological process	3/269	8/13500	0.00041	0.5728	ENSAMEG00000000943, ENSAMEG00000004774, ENSAMEG00000016224	LPL, PPARG, CD36
GO:0045861	negative regulation of proteolysis	biological process	13/269	218/13500	0.00043	0.5728	ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004836, ENSAMEG0000010076, ENSAMEG0000011687, ENSAMEG0000012483, ENSAMEG0000012590, ENSAMEG0000012943, ENSAMEG0000013869, ENSAMEG0000015938, ENSAMEG0000017062, ENSAMEG0000017184	ECM1, SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, CTSZ, GPX1, TIMP1, A2M, HFE, ARRB1, APP
GO:0030162	regulation of proteolysis	biological process	20/269	436/13500	0.00047	0.5728	ENSAMEG00000000272, ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012483, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000015938, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990	CBFA2T3, ECM1, SLPI, GAS6, PPARG, TIMP4, NOD1, ENSAMEG00000010076, KIAA0141, HIP1, SERPINE2, CTSZ, GPX1, TIMP1, A2M, HFE, NLRP3, ARRB1, APP, BAD
GO:0006955	immune response	biological process	27/269	686/13500	0.00058	0.5728	ENSAMEG00000001502, ENSAMEG00000003641, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004663, ENSAMEG00000004774, ENSAMEG00000004836, ENSAMEG00000006630, ENSAMEG00000010076, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000011687, ENSAMEG00000012483, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000015938, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990, ENSAMEG00000018841	ECM1, CARDS, SLPI, GAS6, TRIM14, PPARG, POLJ2F2, SPPL2B, CYBB, TMEM173, IRBKE, SDHAF4, ERC1, GPX1, FES, A2M, HFE, NLRP3, ARRB1, APP, CEBPG, CYSLTR1
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO: 0030851	granulocyte differentiation	biological process	4/269	20/13500	0.00058	0.5728	ENSAMEG00000019893	CBFA2T3, HAX1, GATA2, IL2S
GO: 0010951	negative regulation of endopeptidase activity	biological process	10/269	143/13500	0.00058	0.5728	ENSAMEG00000000272, ENSAMEG00000011750, ENSAMEG00000015180, ENSAMEG00000016820	SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, GPX1, TIMP1, A2M, ARRB1, APP
GO: 0010878	cholesterol storage	biological process	3/269	9/13500	0.0006	0.5728	ENSAMEG00000000943, ENSAMEG00000004774, ENSAMEG00000016224	LPL, PPARC, CD36
GO: 0098797	plasma membrane protein complex	cellular component	14/287	360/14310	0.01408	0.5914	ENSAMEG0000002069, ENSAMEG00000036327, ENSAMEG0000004337, ENSAMEG0000006806, ENSAMEG0000007284, ENSAMEG0000008528, ENSAMEG0000010991, ENSAMEG0000012689, ENSAMEG0000014318, ENSAMEG0000015938, ENSAMEG0000016101, ENSAMEG0000016396, ENSAMEG0000017737, ENSAMEG0000020287	KCNQ1, EPS8, ENSAMEG0000004337, ITGAX, CYBB, ENSAMEG0000008528, HIP1, PORCN, ACVR1, HFE, GABBR1, DLG4, GNG11, KCNE3
GO: 1990204	oxidoreductase complex	cellular component	5/287	72/14310	0.01471	0.602	ENSAMEG00000007284, ENSAMEG00000023426, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023455	CYBB, ND1, ND2, COX1, CYTB
GO: 0098796	membrane protein complex	cellular component	24/287	749/14310	0.01602	0.6392	ENSAMEG0000001230, ENSAMEG0000002069, ENSAMEG00000036327, ENSAMEG0000004337, ENSAMEG0000006806, ENSAMEG0000007284, ENSAMEG0000008528, ENSAMEG0000009860, ENSAMEG0000010991, ENSAMEG0000012689, ENSAMEG0000012804, ENSAMEG0000014318, ENSAMEG0000015938, ENSAMEG0000016101, ENSAMEG0000016396, ENSAMEG0000017737, ENSAMEG0000020287, ENSAMEG0000023426, ENSAMEG0000023430, ENSAMEG0000023436, ENSAMEG0000023442, ENSAMEG0000023455	TCIRG1, KCNQ1, EPS8, ENSAMEG0000004337, AP2A2, ITGAX, CYBB, ENSAMEG0000008528, ORMDL3, HIP1, PORCN, C3orf58, ACVR1, HFE, GABBR1, DLG4, GNG11, OSTM4, KCNE3, ND1, ND2, COX1, ATP6, CYTB
GO: 0009898	cytoplasmic side of plasma membrane	cellular component	5/287	75/14310	0.01729	0.6534	ENSAMEG0000006768, ENSAMEG0000008528, ENSAMEG0000013803, ENSAMEG0000016396, ENSAMEG0000017737	CYTH3, ENSAMEG0000008528, FES, DLG4, GNG11
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO ID	Term	Ontology	Significant Annotated	Pvalue	Qvalue	Signi id	Signi_symbol	
GO:0044304	main axon	cellular	3/287	28/14310	0.01806	ENSAMEG00000012095,	NAV1, DLG4, DAGLA	
	cellular	component				ENSAMEG0000016396,		
						ENSAMEG0000016637		
GO:0016020	membrane	cellular	165/287	7329/14310	0.0182	PDZK1IP1, MARVELD1,		
	cellular	component				ENSAMEG00000000015,		
						ENSAMEG0000000095,		
						ENSAMEG0000000381,		
						ENSAMEG0000000590,		
						ENSAMEG0000000602,		
						ENSAMEG0000000751,		
						ENSAMEG0000000943,		
						ENSAMEG0000001092,		
						ENSAMEG0000001230,		
						ENSAMEG0000001267,		
						ENSAMEG0000001276,		
						ENSAMEG0000001318,		
						ENSAMEG0000001514,		
						ENSAMEG0000001784,		
						ENSAMEG0000001814,		
						ENSAMEG0000001879,		
						ENSAMEG0000002069,		
						ENSAMEG0000002314,		
						ENSAMEG0000002398,		
						ENSAMEG0000002415,		
						ENSAMEG0000002508,		
						ENSAMEG0000002535,		
						ENSAMEG0000003020,		
						ENSAMEG0000003086,		
						ENSAMEG0000003089,		
						ENSAMEG0000003400,		
						ENSAMEG0000003591,		
						ENSAMEG0000003625,		
						ENSAMEG0000003627,		
						ENSAMEG0000003733,		
						ENSAMEG0000003778,		
						ENSAMEG0000003894,		
						ENSAMEG0000003970,		
						ENSAMEG0000004337,		
						ENSAMEG0000004387,		
						ENSAMEG0000004469,		
						ENSAMEG0000004481,		
						ENSAMEG0000004482,		
						ENSAMEG0000004516,		
						ENSAMEG0000004600,		
						ENSAMEG0000004900,		
						ENSAMEG0000005113,		
						ENSAMEG0000005412,		
						ENSAMEG0000005486,		
						ENSAMEG0000005566,		
						ENSAMEG0000005794,		
						ENSAMEG0000005927,		
						ENSAMEG0000006014,		
						ENSAMEG0000006082,		
						ENSAMEG0000006083,		
						ENSAMEG0000006288,		
						ENSAMEG0000006368,		
						ENSAMEG0000006453,		
						ENSAMEG0000006630,		
						ENSAMEG0000006677,		
						ENSAMEG0000006768,		
						ENSAMEG0000006806,		
						ENSAMEG0000006896,		
						ENSAMEG0000007046,		
						ENSAMEG0000007123,		
						ENSAMEG0000007284,		
						ENSAMEG0000007302,		
						ENSAMEG0000007340,		
						ENSAMEG0000007342,		
						ENSAMEG0000007375,		
						ENSAMEG0000007631,		
						ENSAMEG0000007997,		
						ENSAMEG0000008407,		
						ENSAMEG0000008416,		
						ENSAMEG0000008424,		
						ENSAMEG0000008433,		
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
---------------	---------------------------	----------	-------------	-----------	--------	--------	----------	--------------
ENSAMEG00000008497, ENSAMEG00000008528, ENSAMEG00000008575, ENSAMEG00000008620, ENSAMEG00000009198, ENSAMEG00000009367, ENSAMEG00000009654, ENSAMEG00000009860, ENSAMEG00000010113, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000010857, ENSAMEG00000010898, ENSAMEG00000010991, ENSAMEG00000011225, ENSAMEG00000011403, ENSAMEG00000011408, ENSAMEG00000011455, ENSAMEG00000011509, ENSAMEG00000011564, ENSAMEG00000011617, ENSAMEG00000011687, ENSAMEG00000011750, ENSAMEG00000011831, ENSAMEG00000011849, ENSAMEG00000011977, ENSAMEG00000012457, ENSAMEG00000012482, ENSAMEG00000012576, ENSAMEG00000012804, ENSAMEG00000013414, ENSAMEG00000013445, ENSAMEG00000013447, ENSAMEG00000013560, ENSAMEG00000013803, ENSAMEG00000013851, ENSAMEG00000013931, ENSAMEG00000013980, ENSAMEG00000014079, ENSAMEG00000014229, ENSAMEG00000014318, ENSAMEG00000014354, ENSAMEG00000014490, ENSAMEG00000014678, ENSAMEG00000014705, ENSAMEG00000014724, ENSAMEG00000015157, ENSAMEG00000015252, ENSAMEG00000015326, ENSAMEG00000015431, ENSAMEG00000015837, ENSAMEG00000015938, ENSAMEG00000015964, ENSAMEG00000016015, ENSAMEG00000016101, ENSAMEG00000016224, ENSAMEG00000016396, ENSAMEG00000016446, ENSAMEG00000016637, ENSAMEG00000016729, ENSAMEG00000016736, ENSAMEG00000016739, ENSAMEG00000016765, ENSAMEG00000016795, ENSAMEG00000016820, ENSAMEG00000017107, ENSAMEG00000017184, ENSAMEG00000017327, ENSAMEG00000017329, ENSAMEG00000017737, ENSAMEG00000017739,								
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
-------------	--	------------------------	-------------	-----------	--------	--------	------------	--------------
GO:0005608	laminin-3 complex	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000012708	LAMB2
GO:0038039	G-protein coupled receptor heterodimeric complex	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000016101	GABBR1
GO:0043196	varicosity	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000016637	DAGLA
GO:0097232	lamellar body membrane	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000017862	ABCA3
GO:0097233	alveolar lamellar body membrane	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000017862	ABCA3
GO:0098839	postsynaptic density membrane	cellular component	1/287	1/14310	0.0206	0.6534	ENSAMEG0000016396	DLG4
GO:0098803	respiratory chain complex	cellular component	4/287	54/14310	0.02287	0.73	ENSAMEG00000223426, ENSAMEG00000223430, ENSAMEG00000223436, ENSAMEG00000223455	ND1, ND2, COX1, CYTB
GO:0043281	regulation of cysteine-type endopeptidase activity involved in apoptotic process	biological process	9/269	125/13500	0.000388	0.7841	ENSAMEG00000000004441, ENSAMEG00000000004774, ENSAMEG00000000006630, ENSAMEG00000000010287, ENSAMEG00000000010991, ENSAMEG00000000012590, ENSAMEG00000000016947, ENSAMEG00000000017062, ENSAMEG00000000017990	GAS6, PPARG, NOD1, KIAA0141, HIP1, GPX1, NLRP3, ARRB1, BAD
GO:0005925	focal adhesion	cellular component	11/287	281/14310	0.02663	0.8278	ENSAMEG0000000003894, ENSAMEG0000000010536, ENSAMEG0000000010841, ENSAMEG0000000013263, ENSAMEG0000000013297, ENSAMEG0000000013803, ENSAMEG0000000013931, ENSAMEG0000000014689, ENSAMEG0000000015431, ENSAMEG0000000016015, ENSAMEG0000000016087	MRC2, VIM, HSPB1, REXO2, FHL2, FES, RRAS, TNS3, LIMK1, ACTG1, PDUM1
GO:0070069	cytochrome complex	cellular component	2/287	13/14310	0.02702	0.8278	ENSAMEG00000000223436, ENSAMEG00000000223455	COX1, CYTB

You et al. BMC Genomic Data (2021) 22:44 Page 33 of 56
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	pvalue	Qvalue	Signi_id	Signi_symbol
GO:0019898	extrinsic component of membrane	cellular component	6/287	115/14310	0.02828	0.8278	ENSAMEG000000006768, ENSAMEG000000008528, ENSAMEG000000011687, ENSAMEG000000013803, ENSAMEG000000016396, ENSAMEG000000017737	CYTH3, ENSAMEG000000008528, SERPINE2, FES, DLG4, GNB1
GO:0005924	cell-substrate adherens junction	cellular component	11/287	284/14310	0.02848	0.8278	ENSAMEG00000003894, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000013263, ENSAMEG00000013297, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014689, ENSAMEG00000015431, ENSAMEG00000016015, ENSAMEG00000016087	MRC2, VIM, HSPB1, REXO2, FHL2, FES, RAR5, TNF5, LIMP1, ACTG1, PDUM1
GO:0120025	plasma membrane bounded cell projection	cellular component	24/287	793/14310	0.02923	0.8278	ENSAMEG00000003086, ENSAMEG00000003627, ENSAMEG00000003733, ENSAMEG000000004387, ENSAMEG00000006768, ENSAMEG00000007278, ENSAMEG00000008620, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000011509, ENSAMEG00000011750, ENSAMEG00000012095, ENSAMEG00000014724, ENSAMEG00000015252, ENSAMEG00000015431, ENSAMEG00000015964, ENSAMEG00000016224, ENSAMEG00000016396, ENSAMEG00000016637, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017670, ENSAMEG00000018345, ENSAMEG00000020287	NRP2, EPS8, INPP5E, PLXND1, CYTH3, ARHGAP31, CYBRD1, VIM, HSPB1, SEPT5, HAX1, NAV1, ITSN1, RILPL1, LIMP1, ADCA4, CD36, DLG4, DAGLA, ARRB1, APP, PDUM1, TLL5, KCNE3
GO:0031090	organelle membrane	cellular component	31/287	1086/14310	0.02933	0.8278	ENSAMEG00000001230, ENSAMEG00000001814, ENSAMEG00000002314, ENSAMEG00000002398, ENSAMEG00000002535, ENSAMEG00000003625, ENSAMEG00000003733, ENSAMEG00000005486, ENSAMEG00000006014, ENSAMEG00000007046, ENSAMEG00000007997, ENSAMEG00000008424, ENSAMEG00000010991, ENSAMEG00000011225, ENSAMEG00000011750, ENSAMEG00000011831, ENSAMEG00000012804, ENSAMEG00000015157, ENSAMEG00000016446, ENSAMEG00000016765, ENSAMEG00000017095, ENSAMEG00000017739, ENSAMEG00000017862, ENSAMEG00000017990, ENSAMEG00000019719, ENSAMEG00000020281, ENSAMEG00000023426, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, TCRG1, HADH, ENSAMEG00000002314, CDH1, ANPEP, SBF2, INPP5E, SPPL2B, RAB32, TMEM18A, CLCN7, RNF1-448, HIP1, TMEM173, HAX1, JKBK, Cxcr5, GAA, EFHD1, CD68, TMEM175, SLC29A3, ABCA3, BAD, B3GNT9, B3GALT2, ND1, ND2, COX1, ATP6, CYTB	
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
--------	---	---------------------------	-------------	-----------	---------	---------	----------	-----------------------------------
GO:0030055	cell-substrate junction cellular component		11/287	287/14310	0.03042	0.8278	ENSAMEG000000023455 ENSAMEG00000003894, ENSAMEG000000010536, ENSAMEG00000001841, ENSAMEG000000013263, ENSAMEG000000013297, ENSAMEG000000013803, ENSAMEG000000013931, ENSAMEG000000014689, ENSAMEG000000015431, ENSAMEG000000016015, ENSAMEG000000016087	MRC2, VIM, HSPB1, REXO2, FHL2, FES, RAR5, TNS5, LIMK1, ACTG1, PDUM1
GO:0031091	platelet alpha granule cellular component		2/287	14/14310	0.03112	0.8278	ENSAMEG00000011403, ENSAMEG00000011687	F5, SERPINE2
GO:0034361	very-low-density lipoprotein particle cellular component		2/287	14/14310	0.03112	0.8278	ENSAMEG00000000943, ENSAMEG00000011842	LPL, APOH
GO:0034385	triglyceride-rich plasma lipoprotein particle cellular component		2/287	14/14310	0.03112	0.8278	ENSAMEG00000000943, ENSAMEG00000011842	LPL, APOH
GO:0061077	chaperone-mediated protein folding biological process		4/269	23/13500	0.00101	0.8293	ENSAMEG00000000640, ENSAMEG00000002444, ENSAMEG000000010841, ENSAMEG000000014637	HSPB6, CRTAP, HSPB1, UNC45B
GO:0030222	eosinophil differentiation biological process		2/269	3/13500	0.00117	0.8293	ENSAMEG00000015180, ENSAMEG00000016820	GATA2, IL25
GO:0031532	actin cytoskeleton reorganization biological process		6/269	60/13500	0.0012	0.8293	ENSAMEG00000003627, ENSAMEG00000011750, ENSAMEG00000013803, ENSAMEG00000015226, ENSAMEG00000017670, ENSAMEG00000019659	EP58, HAX1, FES, MICALL2, PDL1 M4, S1PR2
GO:0030029	actin filament-based process biological process		19/269	442/13500	0.0014	0.8293	ENSAMEG00000000602, ENSAMEG00000002069, ENSAMEG00000003627, ENSAMEG00000005610, ENSAMEG00000006802, ENSAMEG00000007327, ENSAMEG00000011750, ENSAMEG00000012992, ENSAMEG00000013803, ENSAMEG00000015226, ENSAMEG00000015431, ENSAMEG00000017062, ENSAMEG00000017147, ENSAMEG00000017327, ENSAMEG00000017670, ENSAMEG00000019659, ENSAMEG00000019280, ENSAMEG00000019659, ENSAMEG0000002087	EPB41L3, KCNQ1, EP58, INPPL1, RHQO, TRIP10, HAX1, SNTA1, FES, MICALL2, LIMK1, ARR81, FMR1L2, FHOD1, PDLIM4, CDC42BPB, CDC42EP2, S1PR2, KCNE3
GO:0042133	neurotransmitter metabolic process biological process		6/269	62/13500	0.0014	0.8293	ENSAMEG00000002398, ENSAMEG00000002581, ENSAMEG000000011617, ENSAMEG000000016224, ENSAMEG000000016637, ENSAMEG000000016662	CHDH, HNMT, COMT, CD36, DAGLA, DPYD
GO:0032634	interleukin-5 production biological process		3/269	12/13500	0.00151	0.8293	ENSAMEG00000002415, ENSAMEG00000014490, ENSAMEG00000016820	IL17RB, ILSRA, IL25
GO:0060307	regulation of ventricular cardiac muscle cell membrane repolarization biological process		3/269	12/13500	0.00151	0.8293	ENSAMEG00000002069, ENSAMEG00000012992, ENSAMEG0000002087	KCNQ1, SNTA1, KCNE3
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
----------	---	-------------------	-------------	-----------	---------	--------	---------------------------	-----------------------------
GO:0097164	ammonium ion metabolic process	biological process	7/269	85/13500	0.00152	0.8293	ENSAMEG00000001272, ENSAMEG00000002314, ENSAMEG00000002398, ENSAMEG00000002581, ENSAMEG00000003089, ENSAMEG00000007468, ENSAMEG00000011617	CHKA, ENSAMEG00000002314, CHDH, HNMT, PNKD, SMPDL3A, COMT
GO:0002521	leukocyte differentiation	biological process	14/269	281/13500	0.00154	0.8293	ENSAMEG00000000272, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000004811, ENSAMEG00000006928, ENSAMEG00000011750, ENSAMEG00000012594, ENSAMEG00000013931, ENSAMEG00000015180, ENSAMEG00000016820, ENSAMEG00000017184, ENSAMEG00000017745, ENSAMEG00000017990, ENSAMEG00000018841	CBFA2T3, GAS6, PPARG, POL2F2, DUSP10, HAX1, LYL1, BRAS, GATA2, IL25, APP, BATF2, BAD, CEBPG
GO:0010883	regulation of lipid storage	biological process	4/269	26/13500	0.00163	0.8293	ENSAMEG00000000943, ENSAMEG00000004774, ENSAMEG00000011831, ENSAMEG00000016224	LPL, PPARG, IKBKE, CD36
GO:2000116	regulation of cysteine-type endopeptidase activity	biological process	9/269	138/13500	0.00177	0.8293	ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000006630, ENSAMEG00000010287, ENSAMEG00000010991, ENSAMEG00000012590, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017990	GAS6, PPARG, NOD1, KIAA0141, HIP1, GPX1, NLRP3, ARRB1, BAD
GO:0007596	blood coagulation	biological process	8/269	114/13500	0.002	0.8293	ENSAMEG00000004441, ENSAMEG00000010841, ENSAMEG00000011403, ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000016015, ENSAMEG00000016224, ENSAMEG00000017422	GAS6, HSPB1, F5, SERPINE2, APOH, ACTG1, CD36, F13A1
GO:0006952	defense response	biological process	24/269	638/13500	0.00213	0.8293	ENSAMEG00000011502, ENSAMEG0000002415, ENSAMEG00000035641, ENSAMEG0000004196, ENSAMEG0000004663, ENSAMEG0000004774, ENSAMEG0000006630, ENSAMEG0000007284, ENSAMEG0000008499, ENSAMEG0000008575, ENSAMEG0000011225, ENSAMEG0000011820, ENSAMEG0000011831, ENSAMEG0000012283, ENSAMEG0000012590, ENSAMEG0000013869, ENSAMEG0000014335, ENSAMEG0000014490, ENSAMEG0000016224, ENSAMEG0000016820, ENSAMEG0000016947, ENSAMEG0000017745, ENSAMEG0000018841, ENSAMEG0000019893	ECM1, IL17RB, CARD9, SLPL, TRIM14, PPARG, NOD1, CYBB, ZFP36, STAB1, TMEM173, LYZ, IKBKE, SEHAF4, GPX1, A2M, ENSAMEG0000014335, IL5RA, CD36, IL25, NLRP3, BATF2, CEBPG, CYSLTR1
GO:0039611	response to wounding	biological process	13/269	260/13500	0.00218	0.8293	ENSAMEG00000004441, ENSAMEG00000006577, ENSAMEG0000008499	GAS6, NINJ1, ZFP36, ENSAMEG00000010280, HSPB1, F5, SERPINE2, APOH, GPX1
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
-------	-----------------------------------	---------------------------	-------------	-----------	---------	--------	--	--------------------------------
GO: 0007599	hemostasis	biological process	8/269	0.00223	0.8293	ENSAMEG00000010280, ENSAMEG00000010841, ENSAMEG00000011403, ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000012590, ENSAMEG00000012708, ENSAMEG00000016015, ENSAMEG00000016224, ENSAMEG00000017422	LAMB2, ACTG1, CD36, F13A1	
GO: 0042089	cytokine biosynthetic process	biological process	6/269	0.0023	0.8293	ENSAMEG00000003641, ENSAMEG00000006630, ENSAMEG00000008409, ENSAMEG00000010841, ENSAMEG00000013744, ENSAMEG00000018841	GAS6, HSPB1, F5, SERPINE2, APOH, ACTG1, CD36, F13A1	
GO: 0010757	negative regulation of plasminogen activation	biological process	2/269	0.00231	0.8293	ENSAMEG00000011687, ENSAMEG00000012483	SERPINE2, CTSZ	
GO: 0010886	positive regulation of cholesterol storage	biological process	2/269	0.00231	0.8293	ENSAMEG00000000943, ENSAMEG00000016224	LPL, CD36	
GO: 0106049	regulation of cellular response to osmotic stress	biological process	2/269	0.00231	0.8293	ENSAMEG00000009393, ENSAMEG00000017990	YBX3, BAD	
GO: 1902218	regulation of intrinsic apoptotic signaling pathway in response to osmotic stress	biological process	2/269	0.00231	0.8293	ENSAMEG00000009393, ENSAMEG00000017990	YBX3, BAD	
GO: 0050817	coagulation	biological process	8/269	0.00235	0.8293	ENSAMEG00000004441, ENSAMEG00000010841, ENSAMEG00000011403, ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000016015, ENSAMEG00000016224, ENSAMEG00000017422	GAS6, HSPB1, F5, SERPINE2, APOH, ACTG1, CD36, F13A1	
GO: 0009141	nucleoside triphosphate metabolic process	biological process	10/269	0.00236	0.8293	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000006082, ENSAMEG00000007468, ENSAMEG00000011494, ENSAMEG00000017990, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455	CBFA2T3, PFKFB2, RHOQ, SMPD	
GO: 0099623	regulation of cardiac muscle cell membrane repolarization	biological process	3/269	0.00242	0.8293	ENSAMEG00000012992, ENSAMEG00000020287	KCNQ1, SNTA1, KCNE3	
GO: 0099625	ventricular cardiac muscle cell membrane repolarization	biological process	3/269	0.00242	0.8293	ENSAMEG00000012992, ENSAMEG00000020287	KCNQ1, SNTA1, KCNE3	
GO:0055086	nucleobase-containing small molecule metabolic process	biological process	18/269	431/13500	0.00254	0.8487	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000006082, ENSAMEG00000007468, ENSAMEG00000007497, ENSAMEG00000008034, ENSAMEG00000009105, ENSAMEG00000010857, ENSAMEG00000011455, ENSAMEG00000011494, ENSAMEG00000014118, ENSAMEG00000015964, ENSAMEG00000016662, ENSAMEG00000017990, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455, CBFA2T3, PFKFB2, RHOQ, SMPD3, NADSYN1, ENSAMEG00000011418, ADCCY4, DPYD, BAD, ND2, COX1, ATP6, CYTB	
GO:0030054	cell junction	cellular component	20/287	640/14310	0.03342	0.8682	ENSAMEG00000000602, ENSAMEG00000003894, ENSAMEG00000006453, ENSAMEG00000006768, ENSAMEG00000008034, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000013263, ENSAMEG00000013297, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014689, ENSAMEG00000015326, ENSAMEG00000015431, ENSAMEG00000015837, ENSAMEG00000016015, ENSAMEG00000016087, ENSAMEG00000016396, ENSAMEG00000017184, ENSAMEG00000017327, ENSAMEG00000019485, EPB41L3, MRCC2, ARHGAP21, CYTH3, VIM, HSPB1, REXO2, FHL2, FES, RRAS, TNS3, MICALL2, LIMK1, STXB5, ACTG1, PDLIM1, DLG4, APP, RHOD1, CDC42EP4	
GO:0042995	cell projection	cellular component	24/287	808/14310	0.03526	0.8682	ENSAMEG00000003086, ENSAMEG00000003627, ENSAMEG00000003733, ENSAMEG00000004387, ENSAMEG00000006768, ENSAMEG00000007278, ENSAMEG00000008620, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000011509, ENSAMEG00000011750, ENSAMEG00000012095, ENSAMEG00000014724, ENSAMEG00000015252, ENSAMEG00000015431, ENSAMEG00000015964, ENSAMEG00000016224, ENSAMEG00000016396, ENSAMEG00000016637, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017670, ENSAMEG00000018345, ENSAMEG00000020287, NRP2, EPS8, INPP5E, PLXND1, CYTH3, ARHGAP31, CYBRD1, VIM, HSPB1, SEPT5, HAX1, NAVI1, ITSN1, RILPL1, LIMK1, ADCY4, CD36, DLG4, DAGLA, ARRB1, APP, PDLIM4, TTL5, KCNE3	
GO:0015629	actin cytoskeleton	cellular component	11/287	294/14310	0.03531	0.8682	ENSAMEG000000005486, ENSAMEG00000006082, ENSAMEG00000006453, ENSAMEG00000011202, ENSAMEG00000011750, ENSAMEG00000015326, ENSAMEG00000016015, ENSAMEG00000017327, ENSAMEG00000017670, SPPL2B, RHOQ, ARHGAP21, ZNF74, HAX1, MICALL2, ACTG1, RHOD1, PDLIM4, CDC42BPB, CDC42EP4	
GO:ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
---------	-------------------------------	---------------------------	------------	-----------	---------	---------	-------------------	----------------
GO:0070469	respiratory chain cellular component	4/287	63/14310	0.03751	0.8682		ENSAMEG00000018199, ENSAMEG00000019485	ND1, ND2, COX1, CYTB
GO:0001725	stress fiber cellular component	3/287	37/14310	0.03757	0.8682		ENSAMEG00000023426, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023455	NDI2, FHOD1, PDIM4
GO:0097517	contractile actin filament bundle cellular component	3/287	37/14310	0.03757	0.8682		ENSAMEG00000023426, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455	NDI2, FHOD1, PDIM4
GO:0044429	mitochondrial part cellular component	16/287	491/14310	0.03918	0.8682		ENSAMEG00000023426, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455	HADH, ENSAMEG00000002314, CHDH, RAB32, GLR05, RNF1448, TME173, HAX1, IQK6E, EFHD1, BAD, ND1, ND2, COX1, ATPI6, CYTB
GO:0005737	cytoplasm cellular component	140/287	6226/14310	0.03957	0.8682		ENSAMEG00000000640, ENSAMEG00000012330, ENSAMEG0000001276, ENSAMEG00000017894, ENSAMEG0000001814, ENSAMEG0000002069, ENSAMEG0000002314, ENSAMEG00000023998, ENSAMEG00000025315, ENSAMEG0000002581, ENSAMEG00000027332, ENSAMEG00000030200, ENSAMEG0000003089, ENSAMEG0000003442, ENSAMEG00000036227, ENSAMEG00000036481, ENSAMEG00000037333, ENSAMEG0000004195, ENSAMEG00000043448, ENSAMEG00000044441, ENSAMEG00000045116, ENSAMEG00000045600, ENSAMEG00000046800, ENSAMEG00000047744, ENSAMEG00000055113, ENSAMEG00000055458, ENSAMEG0000005566, ENSAMEG0000005610, ENSAMEG00000056798, ENSAMEG00000058747, ENSAMEG00000059227, ENSAMEG00000060014, ENSAMEG00000060893, ENSAMEG00000064553, ENSAMEG00000064540, ENSAMEG00000066300, ENSAMEG00000068768, ENSAMEG00000069282, ENSAMEG0000007046,	HSPB6, TCIRG1, ZNF1, TCT7B, HADH, KCNQ1, ENSAMEG00000002314, CHDH, IL17B8, CRATP, ANPEP, HNMT, PLOD3, HACD4, PNKD, CRYZ, SBF2, EPS8, CARD9, INPP5E, SLPI, ENSAMEG00000004348, GASS6, CD1D, NANS, PPARG, SCDS, SPPL28, ADAP2, INPPL1, JAZ2F1, TCC2, ATP10A, RAB32, AP2P2, ARHGA21, GLR5X, NOD1, CYTH3, DUSP10, TME173, NAD5, YN1, CLCN7, RNFL448B, HSCB, STEAP3, ZF936, DGK4, AIKCY, DMYXL2, ZERB, XXTL17, YBX3, CPT2, S0C52, ORMDL3, TRIM47, SLA2, GNPDA1, KIAA0141, VIM, HSPB1, HIF1, PGEP1, TME173, F5, PDE4A, FBP1, SEPT5, CCDC50, COMT, SERPINE2, HAX1, ENSAMEG000000011792, IKBKE, ANGPT16, SDHAF4, ERCC1, RNF7, BLVRB, CTS2, DNAJ4A4, GPX1, PORCN, Clorh58, ENSAMEG00000013098, ACS53, RX02, SNA11, FES, NAAA, UNC45B, PPP1R15A, TNS3, ITSN1, SERPINB10, GAA, SGSH, RLP1L1, MICALL2, CLP2, LIMK1, NUAK1, HIF, ADFOCY, ACTG1, CD36, TRIM3, DLG4, EFHD1, DPDY, TNFSF12, TNSFSF13, CD68, TME175, NLRP3, ARRB1, RN1, APP, FHOD1, ENSAMEG00000017441, PDIM4, CASB, SLC29A3, ABCA3, PTO1G1, BAD, TNFAIP2, TITL5, CDC42E2, CDC42E4, B3GNT9, OST4, B3GALT2, KNE3, ND1, ND2, COX1, ATP6, CYTB
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
ENSAMEG00000007997, ENSAMEG00000007997, ENSAMEG00000008424, ENSAMEG00000008477, ENSAMEG00000008497, ENSAMEG00000008949, ENSAMEG00000008800, ENSAMEG00000009105, ENSAMEG00000009193, ENSAMEG00000009337, ENSAMEG00000009367, ENSAMEG00000009393, ENSAMEG00000009555, ENSAMEG00000009824, ENSAMEG00000009860, ENSAMEG00000009928, ENSAMEG00000010113, ENSAMEG00000010219, ENSAMEG00000010287, ENSAMEG00000010536, ENSAMEG00000010841, ENSAMEG00000010991, ENSAMEG00000011170, ENSAMEG00000011225, ENSAMEG00000011403, ENSAMEG00000011455, ENSAMEG00000011494, ENSAMEG00000011509, ENSAMEG00000011582, ENSAMEG00000011617, ENSAMEG00000011687, ENSAMEG00000011750, ENSAMEG00000011792, ENSAMEG00000011831, ENSAMEG00000012016, ENSAMEG00000012283, ENSAMEG00000012418, ENSAMEG00000012425, ENSAMEG00000012457, ENSAMEG00000012463, ENSAMEG00000012576, ENSAMEG00000012590, ENSAMEG00000012689, ENSAMEG00000012804, ENSAMEG00000013098, ENSAMEG00000013162, ENSAMEG00000013263, ENSAMEG00000013478, ENSAMEG00000013803, ENSAMEG00000014605, ENSAMEG00000014637, ENSAMEG00000014678, ENSAMEG00000014689, ENSAMEG00000014724, ENSAMEG00000015156, ENSAMEG00000015157, ENSAMEG00000015221, ENSAMEG00000015252, ENSAMEG0000001526, ENSAMEG00000015346, ENSAMEG00000015431, ENSAMEG00000015604, ENSAMEG00000015938, ENSAMEG00000015964, ENSAMEG00000016015, ENSAMEG00000016224, ENSAMEG00000016339, ENSAMEG00000016396, ENSAMEG00000016446, ENSAMEG00000016662, ENSAMEG00000016729, ENSAMEG00000016736,								
GO:ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
--------	-----------------------------------	---------------------------	-------------	-----------	---------	---------	--------------	--------------
0000110	nucleotide-excision repair factor 1 complex	cellular component	1/287	2/14310	0.03971	0.8682	ENSAMEG00000012418	ERCC1
0031232	extrinsic component of external side of plasma membrane	cellular component	1/287	2/14310	0.03971	0.8682	ENSAMEG00000011687	SERPINE2
0035339	SPOTS complex	cellular component	1/287	2/14310	0.03971	0.8682	ENSAMEG00000009860	ORMDL3
0043083	synaptic cleft	cellular component	1/287	2/14310	0.03971	0.8682	ENSAMEG00000012708	LAMB2
0072559	NLRP3 inflammasome complex	cellular component	1/287	2/14310	0.03971	0.8682	ENSAMEG00000016947	NLRP3
0042107	cytokine metabolic process	biological process	6/269	70/13500	0.00267	0.8704	ENSAMEG00000003641	CARD9, NOD1, ZFP36, HSPB1, MAST2, CEBPG
0043393	regulation of protein binding	biological process	9/269	148/13500	0.00286	0.882	ENSAMEG00000004196	SLPI, PLXND1, TMEM173, CTSZ, HFE, CD36, CAMK1, ARRB1, APP
0032640	tumor necrosis factor production	biological process	6/269	71/13500	0.00287	0.882	ENSAMEG00000003641	CARD9, GAS6, NOD1, HSPB1, CD36, APP
0010884	positive regulation of lipid storage	biological process	3/269	15/13500	0.00298	0.882	ENSAMEG00000011831	LPL, IKBKE, CD36
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO:0051239	regulation of multicellular organismal process	biological process	47/269	158/1350	0.00314	0.882	ENSAMEG00000000528, ENSAMEG00000000640, ENSAMEG00000000943, ENSAMEG00000001502, ENSAMEG0000002069, ENSAMEG00000002415, ENSAMEG00000003641, ENSAMEG00000004387, ENSAMEG00000004441, ENSAMEG00000004774, ENSAMEG00000006630, ENSAMEG00000006928, ENSAMEG00000008416, ENSAMEG00000008499, ENSAMEG00000008575, ENSAMEG00000009824, ENSAMEG0000010280, ENSAMEG0000010536, ENSAMEG0000010841, ENSAMEG0000011225, ENSAMEG0000011687, ENSAMEG0000011750, ENSAMEG0000011842, ENSAMEG0000012590, ENSAMEG0000012943, ENSAMEG0000012992, ENSAMEG0000013478, ENSAMEG0000013744, ENSAMEG0000013803, ENSAMEG0000013931, ENSAMEG0000014318, ENSAMEG0000014490, ENSAMEG0000015157, ENSAMEG0000015180, ENSAMEG0000015431, ENSAMEG0000015938, ENSAMEG0000016224, ENSAMEG0000016268, ENSAMEG0000016625, ENSAMEG0000016736, ENSAMEG0000016947, ENSAMEG0000017062, ENSAMEG0000017184, ENSAMEG0000017990, ENSAMEG0000018841, ENSAMEG0000019059, ENSAMEG0000020287	NCKIPSD, HSPB6, LPL, ECM1, KCNQ1, IL17RB, CARD9, PLXND1, GAS6, PPARG, NOD1, DUSP10, KREMEN1, ZFP36, STAB1, SOCS2, ENSAMEG00000010280, VIM, HSPB1, TMEM173, SERPINE2, HAX1, APOH, GPX1, TIMP1, SNTA1, SNAI1, MAST2, FES, RRAS, ACVR1, ILSRA, GAA, GATA2, LINIK1, HFE, CD36, CAMK1, PBX3, TNFSF13, NRF2, ARRB1, APP, BAD, CEBPB, S1PR2, KCNE3
GO:0007585	respiratory gaseous exchange	biological process	4/269	31/1350	0.00318	0.882	ENSAMEG00000004600, ENSAMEG00000010280, ENSAMEG00000015157, ENSAMEG00000016625	NDS1, ENSAMEG00000010280, GAA, PBX3
GO:0050830	defense response to Gram-positive bacterium	biological process	4/269	31/1350	0.00318	0.882	ENSAMEG00000003641, ENSAMEG00000009630, ENSAMEG00000011820, ENSAMEG00000016224	CARD9, NOD1, LYZ, CD36
GO:0071706	tumor necrosis factor superfamily cytokine production	biological process	6/269	74/1350	0.00353	0.882	ENSAMEG00000003641, ENSAMEG00000009441, ENSAMEG00000009630, ENSAMEG00000010841, ENSAMEG00000016224, ENSAMEG00000017184	CARD9, GAS6, NOD1, HSPB1, CD36, APP
GO:0009205	purine ribonucleoside triphosphate metabolic process	biological process	9/269	153/1350	0.00357	0.882	ENSAMEG00000002072, ENSAMEG00000003519, ENSAMEG00000006302, ENSAMEG00000011494, ENSAMEG00000017990, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455	CFB24T3, PFKFB2, RHOD, FBP1, BAD, ND2, COX1, ATP6, CYTB
GO:0031638 zymogen activation	biological process	4/269	32/13500	0.00357	0.882	ENSAMEG00000011687, ENSAMEG00000011842, ENSAMEG00000012483, ENSAMEG00000017990	SERPINE2, APOH, CTSZ, BAD	LPL, IL17R, CARD9, GA56, NOD1, ZFP36, HSPB1, TIMM173, MAST2, IL5RA, HFE, CD36, IL25, NLRP3, ARRB1, APP, CEBPG
GO:0001816 cytokine production	biological process	17/269	411/13500	0.00366	0.882	ENSAMEG00000000943, ENSAMEG00000002415, ENSAMEG00000003641, ENSAMEG00000004441, ENSAMEG00000006630, ENSAMEG00000008499, ENSAMEG00000010841, ENSAMEG00000011225, ENSAMEG00000013764, ENSAMEG00000014400, ENSAMEG00000015938, ENSAMEG00000016224, ENSAMEG00000016820, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000018841	LPL, IL17R, CARD9, GA56, NOD1, ZFP36, HSPB1, TIMM173, MAST2, IL5RA, HFE, CD36, IL25, NLRP3, ARRB1, APP, CEBPG	
GO:0035754 B cell chemotaxis	biological process	2/269	5/13500	0.0038	0.882	ENSAMEG00000004441, ENSAMEG00000007512	GAS6, HSD3B7	
GO:0090240 positive regulation of histone H4 acetylation	biological process	2/269	5/13500	0.0038	0.882	ENSAMEG00000000640, ENSAMEG00000001502, ENSAMEG00000004387, ENSAMEG00000004774, ENSAMEG00000008575, ENSAMEG00000010841, ENSAMEG00000011842, ENSAMEG00000013931, ENSAMEG00000015180	HSPB6, ECM1, PLXND1, PPARG, STAB1, HSPB1, APOH, RRAS, GATA2	
GO:0045765 regulation of angiogenesis	biological process	9/269	155/13500	0.00389	0.882	ENSAMEG00000000640, ENSAMEG00000001502, ENSAMEG00000002069, ENSAMEG00000002415, ENSAMEG00000003641, ENSAMEG00000004441, ENSAMEG00000006630, ENSAMEG00000006928, ENSAMEG00000009824, ENSAMEG00000010841, ENSAMEG00000011225, ENSAMEG00000011687, ENSAMEG00000011750, ENSAMEG00000011842, ENSAMEG00000013478, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014318, ENSAMEG00000015180, ENSAMEG00000015431, ENSAMEG00000016224, ENSAMEG00000016268, ENSAMEG00000016736, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990, ENSAMEG00000018841	NCKIPSD, HSPB6, LPL, ECM1, KCNQ1, IL17RB, CARD9, GA56, NOD1, DUJSP10, SOC2, HSPB1, TIMM173, SERPINE2, HAX1, APOH, SNAI1, FES, RRAS, ACVR1, GATA2, LIMK1, CD36, CAMK1, TNFSF13, NLRP3, APP, BAD, CEBPG	
GO:0051240 positive regulation of multicellular organismal process	biological process	29/269	863/13500	0.004	0.882	ENSAMEG00000000528, ENSAMEG00000000540, ENSAMEG00000002640, ENSAMEG00000002943, ENSAMEG000000051502, ENSAMEG00000005269, ENSAMEG00000005415, ENSAMEG00000005641, ENSAMEG00000005641, ENSAMEG00000007577, ENSAMEG00000010841, ENSAMEG00000011225, ENSAMEG00000011687, ENSAMEG00000011750, ENSAMEG00000011842, ENSAMEG00000013478, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014318, ENSAMEG00000015180, ENSAMEG00000015431, ENSAMEG00000016224, ENSAMEG00000016268, ENSAMEG00000016736, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990, ENSAMEG00000018841	ENSAMEG00000000528, ENSAMEG00000000540, ENSAMEG00000002640, ENSAMEG00000002943, ENSAMEG000000051502, ENSAMEG00000005269, ENSAMEG00000005415, ENSAMEG00000005641, ENSAMEG00000005641, ENSAMEG00000007577, ENSAMEG00000010841, ENSAMEG00000011225, ENSAMEG00000011687, ENSAMEG00000011750, ENSAMEG00000011842, ENSAMEG00000013478, ENSAMEG00000013803, ENSAMEG00000013931, ENSAMEG00000014318, ENSAMEG00000015180, ENSAMEG00000015431, ENSAMEG00000016224, ENSAMEG00000016268, ENSAMEG00000016736, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000017990, ENSAMEG00000018841	NCKIPSD, HSPB6, LPL, ECM1, KCNQ1, IL17RB, CARD9, GA56, NOD1, DUJSP10, SOC2, HSPB1, TIMM173, SERPINE2, HAX1, APOH, SNAI1, FES, RRAS, ACVR1, GATA2, LIMK1, CD36, CAMK1, TNFSF13, NLRP3, APP, BAD, CEBPG
GO:0009199 ribonucleoside triphosphate metabolic process	biological process	9/269	157/13500	0.00423	0.882	ENSAMEG0000000011783, ENSAMEG00000000272, ENSAMEG000000003519, ENSAMEG000000006082, ENSAMEG000000011494, ENSAMEG000000017990, ENSAMEG000000018841	CBFA2T3, PFKFB2, RHOQ, FBPI, BAD, ND2, COX1, ATP6, CYTB	
GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
---------	---	---------------------------	-------------	-----------	---------	--------	---------------------------	-------------------------------------
GO: 0042060	wound healing biological process		11/269	218/13500	0.00436	0.882	ENSAMEG000000023430,	GAS6, NINJ1, ENSAMEG000000010280, HSPB1, F5, SERPINE2, APOH, GPX1, ACTG1, CD36, F15A1
GO: 0009144	purine nucleoside triphosphate metabolic process		9/269	158/13500	0.00441	0.882	ENSAMEG00000002722,	CBF2A3T3, PFKFB2, RHOQ, FBP1, BAD, ND2, COX1, ATP6, CYTB
GO: 0006753	nucleoside phosphate metabolic process		16/269	388/13500	0.0049	0.882	ENSAMEG00000002722,	CBF2A3T3, PFKFB2, RHOQ, SMPD L3A, NADSYN1, ENSAMEG00000008034, ADCY19, PDE4A, FBP1, ENSAMEG00000014118, ADCY4, BAD, ND2, COX1, ATP6, CYTB
GO: 0032612	interleukin-1 production biological process		4/269	35/13500	0.00497	0.882	ENSAMEG00000004441,	GAS6, HSPB1, CD36, NLRP3
GO: 0051346	negative regulation of hydrolase activity biological process		12/269	254/13500	0.00501	0.882	ENSAMEG00000001502,	ECM1, SLPI, GAS6, TIMP4, ENSAMEG00000010076, SERPINE2, GPX1, TIMP1, A2M, PPP1R5A, ARRB1, APP
GO: 0010955	negative regulation of protein processing biological process		3/269	18/13500	0.00511	0.882	ENSAMEG000000011687,	SERPINE2, CTSZ, A2M
GO: 0014002	astrocyte development biological process		3/269	18/13500	0.00511	0.882	ENSAMEG00000001503,	VIM, LAMB2, APP
GO: 0099622	cardiac muscle cell membrane repolarization biological process		3/269	18/13500	0.00511	0.882	ENSAMEG00000002069,	KCNQ1, SNTA1, KCNE3
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO.ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO:1903318	negative regulation of protein maturation	biological process	3/269	1/3/1500	0.00511	0.882	ENSAMEG00000011687, ENSAMEG00000012483, ENSAMEG00000013869	SERPINE2, CTSZ, A2M
GO:0008627	intrinsic apoptotic signaling pathway in response to osmotic stress	biological process	2/269	6/3/1500	0.00563	0.882	ENSAMEG00000009393, ENSAMEG00000017990	YBX3, BAD
GO:0015858	nucleoside transport	biological process	2/269	6/3/1500	0.00563	0.882	ENSAMEG00000009393, ENSAMEG00000017990	YBX3, BAD
GO:0019359	nicotinamide nucleotide biosynthetic process	biological process	5/269	58/3/1500	0.00587	0.882	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000007497, ENSAMEG0000000834, ENSAMEG00000011494	CBFA2T3, PFKFB2, NADSYN1, ENSAMEG00000008034, FBPI
GO:0019363	pyridine nucleotide biosynthetic process	biological process	5/269	58/3/1500	0.00587	0.882	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000007497, ENSAMEG0000000834, ENSAMEG00000011494	CBFA2T3, PFKFB2, NADSYN1, ENSAMEG00000008034, FBPI
GO:0046034	ATP metabolic process	biological process	8/269	136/3/1500	0.00588	0.882	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000007497, ENSAMEG0000000834, ENSAMEG00000011494	CBFA2T3, PFKFB2, FBPI, BAD, ND2, COX1, ATP6, CYTB
GO:0030036	actin cytoskeleton organization	biological process	16/269	396/3/1500	0.00593	0.882	ENSAMEG00000000602, ENSAMEG00000003627, ENSAMEG00000005610, ENSAMEG00000006082, ENSAMEG00000007327, ENSAMEG00000007803, ENSAMEG00000011526, ENSAMEG00000014531, ENSAMEG00000017062, ENSAMEG00000017147, ENSAMEG00000017327, ENSAMEG00000017670, ENSAMEG00000018199, ENSAMEG00000019280, ENSAMEG00000019659	EPB4L13, EPS8, INPPL1, RHOQ, TRIP10, HAX1, FES, MKC2L2, LIN1K1, ARRB1, FMNL2, PHD1, PDUM4, CDC42BPB, CDC42EP2, S1PR2
GO:0031639	plasminogen activation	biological process	3/269	19/3/1500	0.00599	0.882	ENSAMEG000000011687, ENSAMEG000000011842, ENSAMEG000000012483	SERPINE2, APOH, CTSZ

You et al. BMC Genomic Data (2021) 22:44 Page 45 of 56
GO:	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
0086005	ventricular cardiac muscle cell action potential	biological process	3/269	19/13500	0.00599	0.882	ENSAMEG00000002069, ENSAMEG00000012902, ENSAMEG00000020287	KCNQ1, SNTA1, KCNE3
0072521	purine-containing compound metabolic process	biological process	14/269	327/13500	0.00601	0.882	ENSAMEG00000000272, ENSAMEG00000003519, ENSAMEG00000006082, ENSAMEG00000009105, ENSAMEG00000010857, ENSAMEG00000011455, ENSAMEG00000011494, ENSAMEG00000015964, ENSAMEG00000016662, ENSAMEG00000017990, ENSAMEG00000023430, ENSAMEG00000023436, ENSAMEG00000023442, ENSAMEG00000023455	CBFA2T3, PPPFB2, RHOQ, AHCY, ADCY9, PDE4A, FBPI, ADCY4, DPDY, BAD, ND2, COX1, ATP6, CYTB
0044092	negative regulation of molecular function	biological process	23/269	655/13500	0.00605	0.882	ENSAMEG00000001502, ENSAMEG00000004196, ENSAMEG00000004441, ENSAMEG00000004836, ENSAMEG00000005412, ENSAMEG00000006928, ENSAMEG00000008499, ENSAMEG00000010076, ENSAMEG00000010841, ENSAMEG00000011684, ENSAMEG00000012483, ENSAMEG00000012590, ENSAMEG00000012943, ENSAMEG00000013869, ENSAMEG00000014678, ENSAMEG00000015431, ENSAMEG00000015938, ENSAMEG00000016268, ENSAMEG00000016947, ENSAMEG00000017062, ENSAMEG00000017184, ENSAMEG00000018841, ENSAMEG00000020287	ECM1, SLPI, GAS6, TIMP4, ADORA3, DUSP10, ZFP36, ENSAMEG00000010076, HSPB1, SERPINE2, CTSZ, GPX1, TIMP1, A2M, PPP1R15A, LIMK1, HFE, CAK1, NLRP3, ARRB1, APP, CEBPG, KCNE3
0045597	positive regulation of cell differentiation	biological process	18/269	469/13500	0.00612	0.882	ENSAMEG00000000528, ENSAMEG00000006630, ENSAMEG00000010841, ENSAMEG00000016224	NCKIPSD, GAS6, DUSP10, ZFP36, SOCS2, SERPINE2, HAX1, SNAI1, FES, ACVR1, GATA2, LIMK1, CD36, CAK1, APP, HSF4, BAD, S1PR2
1901342	regulation of vasculature development	biological process	9/269	167/13500	0.0063	0.882	ENSAMEG00000000640, ENSAMEG0000001502, ENSAMEG0000004387, ENSAMEG0000004774, ENSAMEG0000008575, ENSAMEG0000010841, ENSAMEG0000011842, ENSAMEG0000012184, ENSAMEG0000012742, ENSAMEG0000017990, ENSAMEG0000019659	HSPB6, ECM1, PLXND1, PPARG, STAB1, HSPB1, APOH, RRAS, GATA2
Table 3 Functional enrichment analysis based on the representation of GO terms (Continued)

GO ID	Term	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
GO:	regulation of cytokine biosynthetic process	biological process	5/269	59/13500	0.00631	0.882	ENSAMEG000000013931, ENSAMEG000000015180	CARD9, ZFP36, HSPB1, MAST2, CEBPG
GO:	positive regulation of tumor necrosis factor superfamily cytokine production	biological process	4/269	38/13500	0.00668	0.882	ENSAMEG000000013931, ENSAMEG000000015180	CARD9, NOD1, HSPB1, CD36
GO:	aromatic compound catabolic process	biological process	12/269	264/13500	0.00676	0.882	ENSAMEG000000013931, ENSAMEG000000015180	CBFA2T3, HNMT, PFKFB2, LSM7, SMPL3A, ZFP36, AHCY, PD4E4A, FBP1, COMT, BLVRB, DPYD
GO:	respiratory system process	biological process	3/269	20/13500	0.0694	0.882	ENSAMEG000000013931, ENSAMEG000000015180	ENSAMEG000000010280, GAA, PBX3
GO:	tissue regeneration	biological process	3/269	20/13500	0.0694	0.882	ENSAMEG000000013931, ENSAMEG000000015180	NIN1, ENSAMEG000000010280, GPX1
GO:	regulation of membrane repolarization	biological process	3/269	20/13500	0.0694	0.882	ENSAMEG000000013931, ENSAMEG000000015180	KCNQ1, SNTA1, KCNE3
GO:	pyridine-containing compound biosynthetic process	biological process	5/269	61/13500	0.0726	0.882	ENSAMEG000000013931, ENSAMEG000000015180	CBFA2T3, PFKFB2, NADSYN1, ENSAMEG00000008034, FBP1
GO:	organophosphate metabolic process	biological process	22/269	627/13500	0.0726	0.882	ENSAMEG000000013931, ENSAMEG000000015180	CBFA2T3, CHKA, TTC7B, ENSAMEG00000002034, PFKFB2, INPP5E, INPPL1, ROH2, SMPL3A, NADSYN1, ENSAMEG00000008034, DGH, ADCY9, PD4E4A, FBP1, ENSAMEG00000014118, ADCY4, BAD, ND2, COX1, ATP6, CYT6
GO:	glycerolipid metabolic process	biological process	10/269	202/13500	0.0733	0.882	ENSAMEG000000013931, ENSAMEG000000015180	LPL, CHKA, TTC7B, ENSAMEG00000002834, INPP5E, INPPL1, DGH, APOH, GPX1, DAGLA
GO: ID	Term Description	Ontology	Significant	Annotated	Pvalue	Qvalue	Signi_id	Signi_symbol
--------	-----------------	----------	--------------	-----------	--------	--------	----------	--------------
GO: 1901135	carbohydrate derivative metabolic process	biological process	23/269	667/13500	0.00747	0.882	ENSAMEG000000011842, ENSAMEG000000012590, ENSAMEG000000016637	CBFA2T3, PLOD3, PFKFB2, NDST1, RHOQ, AHCY, XXYLT1, GNPD1, ADCY9, PEDE4A, FBP1, PORCN, SGSH, ADCY4, DPYD, BAD, B3GNT9, GST4, B3GALT2, ND2, COX1, ATP6, CYTB
GO: 0030812	negative regulation of nucleotide catabolic process	biological process	2/269	7/13500	0.00778	0.882	ENSAMEG000000012590, ENSAMEG000000011842	CBFA2T3, FBP1
GO: 0031269	pseudopodium assembly	biological process	2/269	7/13500	0.00778	0.882	ENSAMEG000000011842, ENSAMEG000000012590	CDC42EP2, CDC42EP4
GO: 0031272	regulation of pseudopodium assembly	biological process	2/269	7/13500	0.00778	0.882	ENSAMEG000000011842, ENSAMEG000000012590	CDC42EP2, CDC42EP4
GO: 0031274	positive regulation of pseudopodium assembly	biological process	2/269	7/13500	0.00778	0.882	ENSAMEG000000011842, ENSAMEG000000012590	CDC42EP2, CDC42EP4
GO: 0001817	regulation of cytokine production	biological process	15/269	373/13500	0.00793	0.882	ENSAMEG00000000943, ENSAMEG00000002415, ENSAMEG00000003641, ENSAMEG00000009343	LPL, IL17RA, CARD9, GAS6, NOD1, ZFP36, HSPB1, TMEM173, MAST2, IL5RA, HFE, CD36, NLRP3, ARRB1,
another gene involved in vascular remodeling (ENG, 2.1-fold induction) [30].

Previous transcriptomic studies of cataract formation have focused on the analysis of gene expression in models of human congenital cataracts rather than age-related cataract formation, but it is possible that some of the pathway elements are conserved. For example, mutations in the major intrinsic protein (MIP, also known as aquaporin 0) promote cataract formation in human infants, and several strains of rats and mice with loss-of-function mip mutations also develop fully penetrant cataracts [31–35]. More recently, we reported a novel mutation in the panda Mip gene also associated with cataract formation [36]. Transcriptomic analysis in juvenile mip−/− knockout mice identified 29 genes with > 2-fold changes in expression, including the mitochondrial translocase
(Timmdc1), a matrix metallopeptidase (Mmp2), a Rho GTPase-interacting protein (Ubxn11) and a transcription factor (Twist2) which were strongly upregulated, and a proteasome subunit (Psmd8), a ribonuclease (Pop4), and a heat-shock protein (Hspb1) that were strongly downregulated [37].

The discovery of differentially expressed proteasome subunits and heat shock factors indicates that the regulation of protein turnover may contribute to cataract formation, and likewise we identified several differentially expressed genes with similar functions. These included GLG1, which encodes a negative regulator of protein processing (downregulated 5.7-fold in affected pandas), AZINI, which encodes a regulator of protein turnover (downregulated 1.2-fold in affected pandas), and UCHL1, which encodes a thiol-dependent ubiquitin-specific protease (downregulated 1.8-fold in affected pandas). Furthermore, we detected the strong (16.4-fold) upregulation of TNFSF12, encoding a regulator of protein turnover linked to angiogenesis and apoptosis [38], and a 2.1-fold induction of SERPINB10, another regulator of proteases associated with apoptosis [39]. The link

![Significant enrichment functional scatter plot. The vertical axis represents the functional annotation, and the horizontal axis represents the Rich factor of that function. The q-value is represented by the color of the dots, and the number of differentially expressed genes representing each function is shown by the size of the dots. Only the 30 highest enrichments are shown.](image-url)
with apoptosis was also supported by the 3.7-fold induction of EGR1, which mediates p53-independent apoptosis induced by c-Myc [40]. We also observed the 1.5-fold induction of ARHGAP21, a target of p53 that promotes the degradation of MDM2 to maintain TP53 stability [41], and the 1.4-fold induction of STEAP3, another target of p53 that regulates cell cycle progression and apoptosis [42]. The IFIT2L2 gene, encoding an interferon-induced mitochondrial membrane protein that also promotes apoptosis, was induced 1.24-fold [43]. Recent studies have shown that lens epithelial cells undergo apoptosis as a common cytological basis for all kinds of cataract except congenital lesions.

Several of the most strongly modulated genes we identified are involved in signaling, indicating the activation of cell–cell signaling as a response to lens deterioration. The top-ranking downregulated gene was RCAN1 (16-fold repression), which encodes a calcineurin-binding regulator of CNS development. The relevance of this gene in cataracts is unclear, but may be linked to the vascular remodeling discussed above given its role in the suppression of angiogenesis [44]. Other genes we identified appear to be involved in signaling pathways involving G-protein-coupled receptors (GPCRs). For example, CYSLTR1 (induced 1.3-fold) encodes a leukotriene-specific GPCR typically involved in bronchoconstriction, but it also regulates vascular permeability, cell migration and collagen deposition, which may be the more relevant functions here [45]. The UV irradiation of lens epithelial cells was previously shown to increase the expression of LET-7B, the ligand for another GPCR (LGRT), resulting in the induction of apoptosis [46]. A targeted deletion in LGR4 reduced the resistance of rat lens epithelial cells to oxidative stress and accelerated the development of age-related cataracts [47]. RASD1 (induced 4.3-fold) encodes a member of the Ras family of G-protein regulators acting downstream of GPCRs, and its upregulation in human cell lines has been shown to suppress cell growth and induce apoptosis [48, 49]. Similarly RANBP9 (induced 2.7-fold) encodes a Ras protein that influences cytoskeletal organization and interacts with several regulators of cell growth [50]. PDE4A (induced 1.6-fold) encodes a cAMP-specific 3',5'-cyclic phosphodiesterase that regulates second messenger signaling downstream of GPCRs by cleaving cAMP [51]. Other modulated genes encoding signaling proteins potentially involved in the regulation of cell growth included PTP4A3, encoding a membrane-associated protein tyrosine phosphatase (induced 2.8-fold) [52], ANXA3, encoding annexin 3 (downregulated 1.75-fold) [53], and DUISP22, encoding a dual-specificity protein kinase (induced 1.42-fold) [54]. We also observed the 1.92-fold downregulation of the MYBL1 gene, whose principal function is the regulation of meiosis, so its relevance in the context of cataract formation is unclear.

Mutations in the HSF4 gene have been shown to cause cataracts in humans and other mammals [55], including the recent discovery of a novel HSF4 mutation in pandas [56]. HSF4 is a transcriptional repressor and we proposed that the novel mutation we discovered in this gene is likely to affect its interactions with upstream signaling components, thus disrupting the genetic control of lens functions. Although HSF4 was not among the differentially expressed genes we detected in this study, we found that both FOS and FOSB were strongly upregulated (4.5-fold and 4.9-fold, respectively). These genes encode two leucine zipper proteins that dimerize with members of the JUN family to form transcriptional regulators [57]. Importantly, the FOS family of transcription factors is involved in the regulation of many of the processes discussed above revealed by the functional analysis of other differentially expressed genes, including cell proliferation, differentiation and survival, oxidative stress and angiogenesis [58]. It is therefore possible that FOS/FOSB play a key role in the regulation of the other genes discussed above, or that the FOS/FOSB genes are targets of the modulated signaling pathways we have identified.

The analysis of GO enrichment provided results that were broadly consistent with the functional annotation of the differentially expressed genes, with cellular process, metabolic process, biological regulation/regulation of a biological process as the most overrepresented categories in the differentially expressed gene catalog. The categories immune system process and multi-organism process were also represented, which may reflect the modulation of signaling proteins that are also known to participate in the regulation of immunity responses, including cytokine release and immune cell recruitment. Another enriched category was protein-containing complex, which agreed with our preliminary protein network analysis and is consistent with the tendency of signaling proteins to form complexes. Finally, functional annotation by screening the differentially expressed genes against the KEGG database generated several hits in the histidine metabolic pathway, which is particularly interesting given that dietary histidine and/or carnitine are known to prevent cataract development in salmon, presumably by countering the effect of oxidative stress [59, 60]. Taken together, our results confirm that age-related cataracts in pandas bear many of the same hallmarks as cataracts in other animals, including the modulation of stress response genes, metabolic adaptations, and signaling pathways regulating cell growth and apoptosis. The identification of genes that are overexpressed or suppressed during the formation of cataracts could lead to the development of markers for early diagnosis,
preventative strategies and therapies that improve the quality of life for captive giant pandas and other mammals.

Conclusions
Blood samples from six giant pandas with and without cataracts were used for de novo RNA-Seq analysis. This revealed the differential expression of several genes related to oxidative damage, the visual cycle, developmental functions, and lipid metabolism, suggesting that ageing pandas may develop cataracts as the natural capacity for oxidative stress responses begins to diminish. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation. The identification of genes potentially involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.

Methods
Clinical findings
Routine physical examinations were carried out every month on the living captive animals, including eye, mouth and nose and general physical appearance, abdominal palpation, and general clinical signs. Blood was collected once a month for the analysis of physiological and biochemical indicators in order to exclude risk factors such as injury, diabetes or other diseases that can promote cataract formation [36].

RNA isolation
Peripheral blood samples (2 ml) were collected from all six giant panda specimens (Table 1) because markers for many diseases can be detected in blood using transcriptomics methods [61] including eye diseases [62–64]. JN and LL were from Beijing Zoo, XX and YE were from Chongqing Zoo, and BD and YY were from Strait (Fuzhou) Giant Panda Research and Exchange Center. Three of the females were diagnosed with age-related cataracts and the other three donors were healthy controls. Blood samples were stored at 4 °C and total RNA was extracted within 2 days using the Trizol Total RNA Extraction kit (Sangon Biotech, Shanghai, China) according to the manufacturer’s protocol. The samples were treated with RNase-free DNase I to remove genomic DNA. RNA integrity was evaluated by 1.0% agarose gel electrophoresis, and RNA quality and quantity were assessed using a NanoPhotometer (Implen, Westlake Village, CA, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Library preparation and sequencing
High-quality RNA samples were sent to Sangon Biotech for library preparation and sequencing. The libraries were generated from 2 μg RNA using the VAHTS mRNA-seq V2 Library Prep Kit for Illumina (Vazyme Biotech, Nanjing, China) and index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations at 94 °C in VAHTS 5× First Strand Synthesis Reaction Buffer, and first-strand cDNA was synthesized using DNA polymerase I and RNase H, which also created blunt ends for 3′ polyadenylation. Following adapter ligation, cDNA fragments in the size range 150–200 bp were selected using the AMPure XP system (Beckman Coulter, Brea, CA, USA). The size-selected and adaptor-ligated cDNA was incubated with 3 μL USER enzyme mix (New England Biolabs, Ipswich, MA, USA) for 15 min at 37 °C then 5 min at 95 °C. We then carried out PCR using Phusion high-fidelity DNA polymerase, universal PCR primers i7 (5′-CAA GCA GAA GAC GGC ATA CGA GAT-index primer-GTG ACT GGA GTT CAG ACG TGT GCT-3′) and i5 (5′-A*A TGA TAC GGC GAC CAC CGA GAT-CTA CAC-index primer-ACA CTC TTT CCC TAC AAC ACC TCA ACG TGC TCC CGA T*T*C-3′) and sample-specific index primers (Table 4). The PCR products were purified (AMPure XP system) and library quality was assessed using the Agilent Bioanalyzer 2100 system. The libraries were then quantified and pooled. Paired-end sequencing was carried out using a HiSeq XTen device (Illumina, San Diego, CA, USA).

Data assessment and quality control
The quality of the sequence data was determined using FastQC v0.11.2. Raw reads were filtered using Trimomatic v0.36 in five steps. First, the adaptor sequences were removed. Next, low-quality bases (Q < 20) were removed from reads in the 3′ to 5′ direction and then in the 5′ to 3′ direction. Then we used a sliding window

Name	Index primer (5′ → 3′)	Name	Index primer (5′ → 3′)
Bing-Dian	ACTCGGTAA	Le-Le	CTGCTGTC
Ya-Ya	CGTAAAGCC	Ji-Ni	GACTGTTCA
Ya-Er	CTCATGTC	Le-Le	CTGCCTGTT
Ji-Ni	GACTGTTCA	Xin-Xing	TCAGTCAC

Table 4 Sample-specific index primers for sequencing
method to remove low-quality bases from the read tails (window size = 5 bp). Finally, any reads smaller than 35 nt were removed along with the corresponding paired reads.

Alignment with reference genome

Sequences randomly selected from clean data were used as blastn queries against the NCBI nucleotide database (http://ncbi.nlm.nih.gov/). Hits with an E-value cutoff of ≤1×10⁻¹⁰, similarity > 90% and coverage > 80% of the results were used to calculate the species distribution and pollution detection. The remaining clean reads were mapped to the reference genome using HISAT2 v2.0 with default parameters. RSeQC v2.6.1 was used for the statistical analysis of the alignment results.

Gene structure analysis

The sequence of each chromosome was compared and mapped statistically to show the distribution of sequences using BEDtools v2.26.0. After comparing the reads to the reference genome, the proportion of each gene structure in the reads was counted, including exons, introns and intergenic DNA, using Qualimap v2.2.1. Only 30 chromosomes were displayed. BCFtools v1.5 was used to find SNPs and SnpEff v2.36 was used to determine their effects. The sequences were filtered according to the mass value (> 20) and coverage (> 8). The sequences were assembled using StringTie v1.3.3b, and compared with existing genomic data in the STRING database (http://string-db.org/) using GUCompare v0.10.1 to find new transcription regions. The predicted transcripts were used as gene models to identify variable splicing. ASprofile v1.0.4 is used to classify variable splicing events according to the predicted gene model of each sample.

Expression analysis

StringTie v1.3.3b was applied to the transcriptionally assembled reference genome to determine gene expression levels by measuring transcript abundances as transcripts per million reads (TPM) for both the protein-coding genes and lncRNAs in each sample. After quality control, the sequence was compared with the reference genome using HISAT2 v2.1.0 and the results were statistically compared using RSeQC v2.6.1, with the feature count used to homogenize the read count matrix (gene length and sequence depth) after each gene count to determine the TPM. Principal component analysis (PCA) and principal co-ordinates analysis (PCoA) were used to determine the distance and difference between samples in vegan v2.0.10. Data were presented as TPM avoid the influence of gene length or sequencing discrepancies during sample comparison. We used DESeq2 v1.12.4 to identify genes that were differentially expressed between two samples. Differential expression was considered significant if the false discovery rate (q-value) was ≤0.05 and the log2 fold change (|FC| value) was ≥2. If the normalized expression of a gene between two samples was zero, its expression value was adjusted to 0.01 (because 0 cannot be plotted on a log plot). If the normalized expression of a gene in two libraries was < 1, further differential expression analysis was conducted without this gene.

Functional analysis of differentially expressed genes

Given the absence of biological replicate samples, we first standardized all the data with TMM. This removed all the unexpressed genes, identified a sample with average data trends from many samples as the reference sample, calculated the total number of reads for all samples, and divided each sample by its own total number of reads to get the modified number of reads. The Q3 value (the third quartile) of each sample’s modified read number was calculated, averaged, and the sample with the smallest difference from the average Q3 was used as the reference sample. To find the representative gene sets in each sample and calculate the standardization factor of the sample, we referred to the fold change of these representative gene sets. Differentially expressed genes were identified by standardizing the read count data in DESeq2 v1.12.4 as described above. TopGO v2.24.0 was then used for GO enrichment analysis and to prepare the significant GO-directed acyclic graph. ClusterProfiler v3.0.5 was used to analyze KEGG pathways and KOG taxonomic enrichment analysis, allowing the construction of a network diagram. Functional enrichment analysis was carried out to identify differentially expressed genes significantly enriched in GO terms (biological, cellular and molecular functions) or KEGG metabolic pathways. Genes were mapped to the GO database (http://www.geneontology.org) and KEGG database (http://www.kegg.jp) [65–67], the number of genes representing each term or pathway was calculated, and hypergeometric tests were performed to identify significantly enriched GO terms or KEGG pathways in the gene list. GO terms and KEGG pathways were considered significant if the q-value was ≤0.05.

The results of differential gene expression analysis were visualized using DESeq2 v1.12.4 and mapped to the STRING protein interaction network database (http://string-db.org/) to construct the protein interaction network. Based on these results, Venn diagrams were prepared with VennDiagram v1.6.17 in the R package. The correlation of gene expression levels between
samples was determined in R using the cor.test package to ensure data reliability and rational sample selection. The sample-to-sample and group-to-group distance heat map were prepared in R using the gplots v2.17.0 package, which showed the distance relationship between the samples or the groups directly. Scatter plots were used to show the degree of difference between groups of genes and were prepared in R v3.2.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12863-021-00996-x.

Funding

This study was supported by the National Natural Science Foundation of China (NSFC 31872257). The project funding agency only provided the research funds.

Availability of data and materials

The RNA sequencing data are available at NCBI GenBank (https://dataview.ncbi.nlm.nih.gov/object/PRJNA720280?reviewer=m87rldcpcp4b1f1lq490483re). All data necessary for confirming the conclusions of the article are present within the article, figures, and tables.

Declarations

Ethics approval and consent to participate

All samples were authorized by the source institution (Beijing Zoo, Chongqing Zoo, or Strait (Fuzhou) Giant Panda Research and Exchange Center). All three source institutions conform to the guidelines laid down by the Beijing Zoo Academic and Ethics Committee. The study is reported in accordance with ARRIVE guidelines. All blood samples were collected in accordance with the Wildlife Protection Law of the People’s Republic of China (President of the People’s Republic of China No. 16), and the experimental approach and samples were approved by the Beijing Zoo Academic and Ethics Committee.

Consent for publication

Not applicable.

Competing interests

The author declare no conflict of interest.

Author details

1. Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China. 2. Beijin Zoo, Beijing, China. 3. Chongqing Zoo, Chongqing, China. 4. Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China. 5. Chengdu Zoo, Chengdu, China.

Received: 28 April 2021 Accepted: 9 September 2021

Published online: 27 October 2021

References

1. Triscott RWJEBR. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005;80(5):709–25. https://doi.org/10.1016/j.exere.2004.12.007.

2. Uno HJA. Age-related pathology and biosenescent markers in captive rhesus macaques. Age. 1997;20(1):1–13. https://doi.org/10.1007/BF01357-997-0001-5.

3. Asbell PA, Dulanl I, Mindel JS, Brooks D, Ahmad M, Epstein SPJT. Age-related cataract. Lancet. 2005;365(9459):599–609. https://doi.org/10.1016/S0140-6736(05)67802-0.

4. Urfer SR, Gerek K, Wolf NS. Age-related cataract in dogs: a biomarker for life span and its relation to body size. Age. 2011;33(3):451–60. https://doi.org/10.1007/s11357-010-9158-4.

5. Jin Y, Lin W, Huang S, Zhang C, Pu T, Ma W, et al. Dental abnormalities in eight captive giant pandas (Ailuropoda melanoleuca) in China. J Comp Pathol. 2012;146(4):357–64. https://doi.org/10.1016/j.jcpa.2011.08.001.

6. Jin Y, Chen S, Chao Y, Pu T, Xu H, Liu X, et al. Dental abnormalities of eight wild Qinling giant pandas (Ailuropoda melanoleuca qinlingensis), Shaanxi Province. China J Wildlife Dis. 2015;51(4):849–59. https://doi.org/10.17589/2014-12-289.

7. Hammond CJ, Duncan DD, Snieder H, De Lange M, West SK, Spector TD, et al. The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmo Vis Sci. 2001;42(3):601–5.

8. Ottonello S, Foroni C, Carta A, Petrucco S, Maraini GJO. Oxidative stress and age-related cataract. Ophthalmologica. 2000;214(1):78–85. https://doi.org/10.1111/j.0029-8419.200027474.x.

9. Ho M, Peng Y, Chen S, Chiu SJ. Senile cataracts and oxidative stress. J Clin Gerontol Geriatr. 2010;1(1):17–21. https://doi.org/10.1016/j.jcgg.2010.10.006.

10. Tinaztepe OE, Ay M, Eser E. CERK: Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage. Curr Eye Res. 2017;42(4):1–6. https://doi.org/10.1080/02713683.2016.1200100.

11. Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak SJ, Hosseini SM, et al. CRYPBA, a novel human cataract gene, is also involved in
microphthalmia. Am J Hum Genet. 2006;79(4):702–9. https://doi.org/10.1086/507712.

12. Hasanov N, Kubo E, Kumamoto Y, Takamura Y, Y/JboO A. Age-related cataracts and Pdrx6 correlation between severity of lens opacity, age and the level of Pdrx6 expression. Br J Ophthalmol. 2009;93(1):1081–4.

13. Zhang Y, Zhang L, Sun D, Li Z, Wang L, Liu PJ. Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Mol Vis. 2011;17:2325–32.

14. Liu X, Luo Y, Zhou P, Lu YAO, Science V. DNA methylation mediated and oxidative stress related genes CRYAA and GJA3 in nuclear age-related cataract (ARC) and its mechanism. Invest Ophthalmol Vis Sci. 2015;56:5877.

15. Zhou P, Luo Y, Liu F, Fan L, Lu Y1FJ. Down-regulation and Cbp island hypermethylation of CRYAA in age-related nuclear cataract. FASEB J. 2012; 26(2):4897–902. https://doi.org/10.1096/fj.11-213702.

16. Wang Y, Li F, Zhang G, Kang L, Qin B, Guan HICER. Altered DNA methylation and expression profiles of 8-oxoguanine DNA glycosylase 1 in lens tissue from age-related cataract patients. Curr Eye Res. 2015;40(8):815–21. https://doi.org/10.1007/s00109-015-2473-2.

17. You Y, Bai C, Liu X, Xia M, Ji A, Li X, et al. Genome-wide analysis of gene expression changes in lens tissue from age-related cataract patients. Curr Eye Res. 2015;40(8):815–21. https://doi.org/10.1016/j.exer.2015.09.004.

18. Doshna CW, Fortner JH, Pfohl JC, Aleo TMW, MEJIO V. Science V. DNA methylation mediated and oxidative stress related genes CRYAA and GJA3 in nuclear age-related cataract (ARC) and its mechanism. Invest Ophthalmol Vis Sci. 2015;56:5877.

19. Salichan K, Sedlund J, Soderberg PG. Kinetics of GADD45 expression in the lens. Invest Ophthalmol Vis Sci. 2002;43:2377.

20. Shiels A, Mackay D, Bassnett S, al-Ghouli K, Kusaka J. Disruption of lens fiber cell architecture in mice expressing a chimeric AQP9-LTR protein. FASEB J. 2000;14(14):2207–12. https://doi.org/10.1096/faseb.99-1071com.

21. Sidjanin DJ, Parker-Williams DM, Neuberger-Klaus A, et al. A 7-bp deletion in the Mip gene causes autosomal dominant cataract in Hf mice. Genomics. 2001;74(3):313–9. https://doi.org/10.1006/geno.2001.6509.

22. Okamura T, Miyoshi I, Takahashi K, Mototani Y, Ishigaki S, Kan Y, et al. Bilateral congenital cataracts result from a gain-of-function mutation in the gene for aquaporin-0 in mice. Genomics. 2003;81(4):361–8. https://doi.org/10.1016/S0888-7543(03)00299-6.

23. Watanabe K, Wada K, Ohashi T, Okubo S, Takekuma K, Hashizume R, et al. A 5-bp insertion in Mip causes recessive congenital cataract in KF54/Kyots rats. Plos One. 2012;7(11):e50737. https://doi.org/10.1371/journal.pone.0050737.

24. Bai C, You YY, Liu XF, Xi MH, Wang W, Ji A, et al. A novel misense mutation in the gene encoding major intrinsic protein (MIP) in a Giant panda with unilateral cataract formation. BMC Genomics. 2021;22(1):100. https://doi.org/10.1186/s12864-021-07386-8.

25. Bennett TM, Zhou Y, Shiels A. Lens transcriptome profile during cataract development in Mip-null mice. Biochem Biophys Res Commun. 2016;472(2):998–93. https://doi.org/10.1016/j.bbrc.2016.08.068.

26. Burkly LC. TWEAK/Fn14 axis: the current paradigm of tissue injury-inducible function in the midst of complexities. Seminars in Immunology. The TNF family - challenges ahead. 2014;26:229–36.

27. Schleef RR, Chuang TL. Protease inhibitor 10 inhibits tumor necrosis factor alpha-induced cell death. Evidence for the formation of intracellular high-M(r) protease inhibitor 10-containing complexes. J Biol Chem. 2000;275(34):36385–9. https://doi.org/10.1074/jbc.C000389200.

28. Boone DN, Qi Y, Li Z, Hans SR. EgR1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci U S A. 2011;108(26):10599–604. https://doi.org/10.1073/pnas.1102689108.

29. Rosa LRO, Soares GM, Silveira LR, Boscheri AC, Barbosa-Sampaio HCL. ARHGAP21 as a master regulator of multiple cellular processes. J Cell Physiol. 2018;233(11):8477–81. https://doi.org/10.1002/jcp.26289.

30. Pasier B, Nancy-Portebois V, Arnzallag N, Prieur S, Cans C, Roborel de Climens A, et al. The p53-inducible TAP66 gene product regulates apoptosis and the cell cycle and interacts with nix and the Myt1 kinase. Proc Natl Acad Sci U S A. 2003;100(5):2284–9. https://doi.org/10.1073/pnas.0101733100.

31. Gütz H, Hansen MF, Skovbjerg S, Krietschen AC, Harlyck S, Jensen MB, et al. Apoptotic properties of the type 1 interferon induced family of human mitochondrial membrane 1G12 proteins. BioCell. 2017;19(2):94–112. https://doi.org/10.1111/boc.201600034.

32. Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor Nsflkin. Nature. 2004;99(7250):1126–30. https://doi.org/10.1038/nature06862.

33. Liu M, Yokomizo T. The role of leutokinotors in allergic diseases. Allergol Int. 2015;64(1):17–26. https://doi.org/10.1016/j.jallint.2014.09.001.

34. Dong Y, Zheng Y, Xiao J, Zhu C, Zhao M. MicroRNA let-7b induces lens epithelial cell apoptosis by targeting leucinerich repeat containing G protein-coupled receptor 4 (Lgr4) in age-related cataract. Exp Eye Res. 2016;147:98–104. https://doi.org/10.1016/j.exer.2016.04.018.

35. Zhu J, Hou Q, Dong XD, Wang Z, Chen X, Zheng D, et al. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation. Plos one. 2015;10(3):e0119599.

36. Vaidyanathan G, Cismowski MJ, Wang G, Vincent TS, Brown KD, Lanier SM. The Ras-related protein AGS1/RASD1 suppresses cell proliferation. Oncogene. 2004;23(4):5848–55. https://doi.org/10.1038/sj.onc.1207865.

37. Jhih Jh Jhih Jhih Jhih Jhih. Chloride intracellular channels 1 and 4 function in distinct branches of SNIP signaling to regulate endothelial cell behavior and vascular development. PhD thesis, Columbia University, 2017.

38. Ulmasov B, Brun B, Gordon N, Hartnett ME, Edwards JC. Chloride intracellular channel protein-4 functions in angiogenesis by supporting acidification of vacuoles along the intracellular tubulogenic pathway. Am J Pathol. 2009;174(4):1084–96. https://doi.org/10.2353/ajpath.2009.080625.

39. Sano-Sanchez S, Guinovart-Maroto A, Botella LM, Vanvill D, Gary CP, Bernabeu C. Endolgin regulates cytoskeletal organization through binding to ZAP-1, a member of the Lim family of proteins. J Biol Chem. 2004; 279(31):32888–6. https://doi.org/10.1074/jbc.M400843200.

40. Shiel A, Bassnett S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat Genet. 1996;16(2):212–5. https://doi.org/10.1038/ng0296-212.
phosphodiesterase gene. Mol Pharmacol. 2005;67(6):1920–34. https://doi.org/10.1124/mol.104.009423.

52. Zeng Q, Dong JM, Guo K, Li J, Tan HK, Koh V, et al. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res. 2003;63(11):2716–22.

53. Park JE, Lee DH, Lee JA, Park SG, Kim NS, Park BC, et al. Annexin A3 is a potential angiogenic mediator. Biochem Biophys Res Commun. 2005;337(4):1283–7. https://doi.org/10.1016/j.bbrc.2005.10.004.

54. Sekine Y, Ikeda O, Hayakawa Y, Tsuji S, Imoto S, Aoki N, et al. DUSP22/JMM-DSP2 regulates estrogen receptor-alpha-mediated signaling through dephosphorylation of Ser-118. Oncogene. 2007;26(41):6038–49. https://doi.org/10.1038/sj.onc.1210426.

55. Bu L, Jin Y, Shi Y, Chu R, Ban A, Elberg H, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nature Genet. 2002;31(3):276–8. https://doi.org/10.1038/ng921.

56. You YY, Bai C, Liu XF, Xia MH, Yin YQ, Chen YC, et al. A novel missense mutation in the HSF4 gene of giant pandas with senile congenital cataracts. Sci Rep. 2021;11:5411.

57. Halazonetis TD, Georgopoulous K, Greenberg ME, Leder P. C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 1988;55(5):917–24. https://doi.org/10.1016/0092-8674(88)90147-X.

58. Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000;15(3):921–8. https://doi.org/10.14670/HH-15.921.

59. Waagbar R, Tröse C, Koppe W, Fontanillas R, Breck O. Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, *Salmo salar* L., in seawater. Br J Nutr. 2010;104(10):1460–70. https://doi.org/10.1017/S0007114510002485.

60. Sambraus F, Fjelldal PG, Rema SC, Hevray EM, Nilsen TO, Thorsen A, et al. Water temperature and dietary histidine affect cataract formation in Atlantic salmon (*Salmo salar* L.) diploid and triploid yearling smolt. J Fish Dis. 2017;40(9):1195–212. https://doi.org/10.1111/jfd.12594.

61. Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med. 2007;13(10):422–32. https://doi.org/10.1016/j.molmed.2007.08.003.

62. Jeoung JW, Ko JH, Kim YJ, Kim YW, Park KH, Oh JY. Microarray-based analysis of gene expression profiles in peripheral blood of patients with acute primary angle closure. Ophthalmic Genet. 2017;38(6):520–6. https://doi.org/10.1080/13816810.2017.1300922.

63. Rosenbaum JT, Harrington CA, Searles RP, Fei SS, Zaki A, Arepalli S, et al. Revising the diagnosis of idiopathic uveitis by peripheral blood transcriptomics. Am J Ophthalmol. 2021;222:15–23. https://doi.org/10.1016/j.ajo.2020.09.012.

64. Ye HH, Zhang JM, Lu YF, Qian YY. Expression of nitric oxide synthase in peripheral blood of cataract patients and its clinical significance. Chin J Ophthalmol. 2015;54:351–5.

65. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.

66. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

67. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 1947-1951;2019:28.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.