Effects of Ge Doping on the Charge Transport and Thermoelectric Properties of Permingea
tites Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$

Ji-Hee Pi, Go-Eun Lee, and Il-Ho Kim*

Department of Materials Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

Abstract: Permingeaites Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$ ($0 \leq y \leq 0.14$) were synthesized by mechanical alloying and hot pressing. The charge-transport parameters (Hall coefficient, carrier concentration, mobility, and Lorenz number) and thermoelectric properties (electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and figure of merit) were examined with respect to the Ge doping level. A single permingeaitite phase with a tetragonal structure was obtained without subsequent heat treatment, but a small amount of the secondary phase Cu$_2$GeSe$_3$ was found for the specimens with $y \geq 0.08$. All hot-pressed compacts exhibited a relative density of 97.5–98.3%. The lattice constants of the a-axis and c-axis were decreased by the substitution of Ge at the Sb sites. As the Ge content increased, the carrier concentration increased from 5.2×10^{18} to 1.1×10^{20} cm$^{-3}$, but the mobility decreased from 92 to 25 cm2·V$^{-1}$·s$^{-1}$. The Lorenz number of the undoped Cu$_3$SbSe$_4$ implied a non-degenerate semiconductor behavior, ranging from $(1.57–1.56) \times 10^{-8}$ V2·K$^{-2}$ at 323–623 K. The thermoelectric figure of merit was 0.39 at 623 K, resulting from a power factor of 0.49 mW·m$^{-1}$·K$^{-2}$ and a thermal conductivity of 0.76 W·m$^{-1}$·K$^{-1}$. However, the Lorenz numbers of the Ge-doped specimens indicated degenerate semiconductor characteristics, increasing to $(1.63–1.94) \times 10^{-8}$ V2·K$^{-2}$ at 323–623 K. The highest thermoelectric figure of merit of 0.65 was at 623 K for Cu$_3$Sb$_{0.86}$Ge$_{0.14}$Se$_4$, resulting from the significantly improved power factor of 0.93 mW·m$^{-1}$·K$^{-2}$ and the thermal conductivity of 0.89 W·m$^{-1}$·K$^{-1}$. As a result, the thermoelectric properties were remarkably enhanced by doping Ge into the Sb sites of the permingeaitete.

(Received March 23 2021; Accepted April 1, 2021)

Keywords: thermoelectric, charge transport, permingeaitite, mechanical alloying, hot pressing

1. Introduction

Recently, thermoelectric materials composed of non-toxic, eco-friendly, low-cost, and earth-abundant elements have attracted attention, and Cu-Sb-Se ternary chalcogenides are among those materials considered to be promising candidates [1-3]. Among these, Cu$_3$SbSe$_3$ (bytizite) and Cu$_3$SbSe$_4$ (permingeaitite) are expected to be superior thermoelectric materials because of their inherently low thermal conductivities. Cu$_3$SbSe$_3$ exhibits a low lattice thermal conductivity because of the lone-pair electrons of Sb$^{3+}$, while Cu$_3$SbSe$_4$ has an unusually low lattice thermal conductivity without lone-pair electrons because the valence electrons of Sb$^{5+}$ participate in bonding [4]. The electronic structure, thermal properties, phase diagram, and doping effects of Cu$_3$SbSe$_4$ were investigated by Wernick and Benson [5]. Cu$_3$SbSe$_4$ belongs to the space group I$\overline{4}$2m derived from the zinc-blende structure [6-8], and contains four times more atoms per unit cell than ZnSe [9]. The crystal structure of permingeaitite comprises a three-dimensional Cu–Se framework of distorted CuSe$_4$ tetrahedrons and a one-dimensional Sb–Se array of inserted SbSe$_4$ tetrahedrons [7,8]. The Sb–Se bonds are longer than the Cu–Se bonds, and the CuII–Se bond lengths differ from those of CuIII–Se. These three bonding differences increase the anisotropy of charge transport and phonon scattering, which affect the electrical and thermal properties [8]. The permingeaitite Cu$_3$SbSe$_4$ is a promising thermoelectric material because of its narrow direct bandgap (0.13–0.42 eV) and large carrier effective mass (~1.1 m_o) [6,9]. However,
further efforts are required to enhance Cu$_3$SbSe$_4$ thermoelectric performance because of its low power factor and thermoelectric figure of merit (ZT), resulting in its low carrier concentration of (6–8) × 10$^{-17}$ cm$^{-3}$ [6,10]. This can be accomplished by increasing the carrier concentration and thus electrical conductivity.

The effects of dopants on the thermoelectric properties of Cu$_3$SbSe$_4$ have been studied in efforts to improve them. Zhao et al. [11] reported a ZT of 0.54 at 650 K for Cu$_3$Sb$_{0.95}$Ga$_{0.05}$Se$_4$, and Li et al. [12] obtained a ZT of 0.58 at 600 K for Cu$_3$Sb$_{0.97}$Al$_{0.03}$Se$_4$. Li et al. [13] reported a ZT of 0.70 at 600 K for Cu$_3$Sb$_{0.99}$Bi$_{0.01}$Se$_4$, and Wei et al. [14] achieved one of 0.70 at 673 K for Cu$_3$Sb$_{0.99}$Sn$_{0.01}$Se$_4$. The ionic radius of Ge$^{4+}$ is similar to that of Sb$^{3+}$, and Ge contains one fewer valence electrons than Sb, suggesting that Ge is a great acceptor for Cu$_3$SbSe$_4$. Chang et al. [15] prepared Cu$_3$Ge$_{0.99}$Ge$_{0.01}$Se$_4$ by melting at 1123 K for several hours, annealing at 653 K for 40 h, and spark plasma sintering (SPS); the material had a ZT of 0.70 at 640 K. Skoug et al. [9] synthesized Cu$_3$Sb$_{0.99}$Ge$_{0.01}$Se$_4$ by melting at 1173 K for 12 h, annealing at 573 K for 48 h, and hot pressing (HP), obtaining a ZT of 0.68 at 630 K. In our previous study [16], we successfully synthesized Cu$_3$SbSe$_4$ via a solid-state route with mechanical alloying (MA; 350 rpm, 12 h) and sintering by hot pressing (HP; 673 K, 2 h, 70 MPa). Although the ZT value of the undoped Cu$_3$SbSe$_4$ was only 0.39 at 623 K, the thermoelectric performance may be enhanced by doping.

In this study, Ge-doped permingeatite Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$ (0 ≤ y ≤ 0.14) powders were synthesized by MA and consolidated by HP, and the effects of Ge doping on the charge-transport and thermoelectric properties were examined.

2. Experimental Procedure

To synthesize Ge-doped permingeaitites Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$ (y = 0, 0.04, 0.08, 0.12, and 0.14), Cu (<45 μm, purity 99.9%, Kojundo), Sb (<150 μm, purity 99.999%, Kojundo), Ge (<45 μm, purity 99.99%, Kojundo), and Se (<10 μm, purity 99.9%, Kojundo) powders were stoichiometrically weighed. The mixed powders were mechanically alloyed using a planetary ball mill (Fritsch, Pulverisette5) at 350 rpm for 12 h in an Ar atmosphere. The synthetic permingeatite powders were sintered using HP with a graphite die with an inner diameter of 10 mm at 573 K for 2 h at 70 MPa. The detailed MA-HP process for permingeatite was reported in our previous study [16]. The sintered compacts were cut into discs of 1 mm (thickness) × 10 mm (diameter) to measure the Hall coefficient and thermal diffusivity, and cut into parallelepipeds of 3 mm × 3 mm × 9 mm to measure electrical conductivity and Seebeck coefficient.

The phases were analyzed by X-ray diffraction (XRD; Bruker, D8-Advance) with Cu Kα radiation (40 kV, 30 mA). The diffraction angles were measured in the 2θ range 10–90° with a scanning step of 0.02° and a step duration of 0.4 s. The lattice constants were calculated by Rietveld refinement using the TOPAS program. The microstructures of the hot-pressed specimens were observed by scanning electron microscopy (SEM; FEI, Quantav400) in the backscattered electron (BSE) mode. Elemental line scans and maps were obtained by energy-dispersive spectrometry (EDS; Bruker, XFlash4010), employing the energy levels of the Cu K-series (8.046 eV), Sb L-series (3.604 eV), Ge K-series (9.886 eV), and Se K-series (11.224 eV). Charge-transport parameters were examined by measuring the Hall coefficient with a magnetic field (1 T) and electric current (100 mA DC) using the van der Pauw method (Keithley 7065). The thermoelectric properties were measured at temperatures of 323–623 K. The thermal conductivity was estimated from the thermal diffusivity, specific heat, and density using a TC-9000H (Advance Riko) system with the laser flash method in a vacuum. The Seebeck coefficient and electrical conductivity were measured using a ZEM-3 (Advance Riko) instrument with the four-probe method in a He atmosphere. The power factor and thermoelectric figure of merit ZT were also evaluated.

3. Results and Discussion

Figure 1 shows the XRD patterns of Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$ processed by MA-HP. The diffraction peaks matched the standard diffraction pattern (ICDD PDF# 01-085-0003) for permingeatite and confirmed that the samples had tetragonal structures (space group I$\bar{4}$2m). However, the secondary phase of Cu$_3$GeSe$_4$ was identified in the Ge-doped specimens with y ≥ 0.08. The diffraction peaks were shifted to higher angles with increasing Ge content, indicating lattice shrinkage. The calculated lattice constants are listed in Table 1. The
The decreased lattice constants were attributed to the small ionic radius of Ge

lattice constants of the a-axis and c-axis decreased with increasing Ge content from 0.56485 to 0.56439 nm and from 1.12471 to 1.12422 nm, respectively. This confirmed that Ge was successfully substituted at the Sb sites. Chang et al. \[15\] reported that Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$ ($y = 0–0.06$) contained a single permingeatite phase without secondary phases, and that both the a-axis and c-axis decreased with increasing Ge content. The decreased lattice constants were attributed to the smaller ionic radius of Ge$^{4+}$ (53 pm) \[17\] relative to that of Sb$^{5+}$ (60 pm) \[8\].

Figure 2 shows the SEM images of the fractured surfaces of the Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$. The hot-pressed compacts showed relative densities of 97.5%–98.3% as shown in Table 1; the theoretical density of permingeatite is 5.82 g·cm$^{-3}$ \[18\]. The microstructure did not significantly change with changes in Ge content, however, the secondary phase was observed for the specimens with $y \geq 0.08$.

Figure 3 shows the BSE-SEM micrographs and elemental analyses of Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$. The matrix phase (gray region) and secondary phase (black region) were identified as permingeatite and Cu$_{3}$GeSe$_{4}$, respectively, which was confirmed by the XRD phase analysis (Fig. 1). The EDS elemental line scans and maps indicated that each constituent element was homogeneously distributed except in the secondary-phase areas. The actual compositions of all specimens, listed in Table 1, were similar to the nominal compositions within the analysis error range.

Figure 4 shows the carrier concentration and mobility of the Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$. The carrier concentration and mobility of undoped Cu$_{3}$SbSe$_{4}$ were 5.2×10^{18} cm$^{-3}$ and 50 cm2·V$^{-1}$·s$^{-1}$, respectively. As the Ge content increased, the carrier concentration increased to $(0.1–1.0) \times 10^{20}$ cm$^{-3}$. However, the mobility rapidly decreased to 24 cm2·V$^{-1}$·s$^{-1}$ because of the significant increase in the carrier concentration of the specimen, with $y = 0.14$. Chang et al. \[15\] reported an increase in carrier concentration from 8.0×10^{18} to 3.2×10^{20} cm$^{-3}$ but a decrease in mobility from 76 to 21 cm2·V$^{-1}$·s$^{-1}$ for Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$ ($y = 0–0.06$) with increasing Ge content. Brooks et al. \[19\] suggested that mobility generally decreases with increases in the carrier concentration in non-degenerate semiconductors. In this study, the carrier concentration and mobility increased with increasing Ge content, although the mobility decreased when $y > 0.08$. This was because the Ge doping transforms the semiconducting state from non-degenerate to degenerate, and because the lattice distortion and ionized impurities enhanced the carrier scattering \[14\].

Figure 5 shows the electrical conductivity of Cu$_{3}$Sb$_{1-y}$Ge$_{y}$Se$_{4}$. In the specimens with $y \leq 0.04$, the electrical conductivity increased slightly with increasing temperature, indicating non-degenerate semiconductor behavior. The electrical conductivity of the specimens with $y \geq 0.08$ decreased with increasing temperature, indicating degenerate semiconductor behavior. At a constant temperature, the electrical conductivity
increased with Ge doping. For the undoped Cu$_3$SbSe$_4$, the electrical conductivity was $(4.2-4.5) \times 10^3$ S·m$^{-1}$ at 323–623 K, whereas the Ge-doped specimens exhibited increased values of $(0.8-4.3) \times 10^4$ S·m$^{-1}$ at 323 K and $(0.7-2.9) \times 10^4$ S·m$^{-1}$ at 623 K. Skoug et al. [9] reported that the electrical conductivity of Cu$_3$SbSe$_4$ showed a negative temperature dependence and a value of $\left(8.3-4.0\right) \times 10^2$ S·m$^{-1}$ at 80–630 K, whereas that of Cu$_{3-y}$Sb$_y$Ge$_y$Se$_4$ ($y = 0.01-0.03$) increased to $(0.3-1.1) \times 10^4$ S·m$^{-1}$ at 80 K and $(1.3-4.0) \times 10^4$ S·m$^{-1}$ at 630 K because the carrier concentration was increased to $10^{18}-10^{20}$ cm$^{-3}$ by Ge doping. Chang et al. [15] obtained an electrical conductivity of $(1.0-1.1) \times 10^3$ S·m$^{-1}$ at 300–640 K for Cu$_{2.95}$SbSe$_4$. However, the increased values of $(0.3-1.1) \times 10^4$ S·m$^{-1}$ at 300 K and $(1.7-5.6) \times 10^4$ S·m$^{-1}$ at 623 K for Cu$_{2.95}$Sb$_{1-y}$Ge$_y$Se$_4$ ($0.01 \leq y \leq 0.06$) indicated a positive temperature dependence, which was attributed to the increase in carrier concentration from 8.0×10^{18} to 3.2×10^{19} cm$^{-3}$ through Ge doping. In this study, the electrical conductivity was also increased by the increase in carrier concentration caused by Ge doping, as shown in Fig. 4, resulting from the additional carriers (holes) generated by Ge$^{4+}$ substituted at the Sb$^{5+}$ sites.

Figure 6 shows the Seebeck coefficients of Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$. All specimens exhibited p-type conduction characteristics, and the majority carriers were holes, as confirmed by the positive signs of both the Seebeck coefficient and Hall coefficient. The Seebeck coefficient of Cu$_3$SbSe$_4$ increased from 307 μV·K$^{-1}$ at 323 K to 348 μV·K$^{-1}$ at 523 K, and then
decreased to 331 μV·K$^{-1}$ at 623 K. Therefore, the Seebeck coefficient of undoped Cu$_3$SbSe$_4$ was decreased by the significant increase in carrier concentration, owing to the intrinsic transition at temperatures above 523 K. However, for the specimen with $y = 0.04$ the intrinsic transition occurred at temperatures above 573 K, whereas it did not occur at temperatures up to 623 K for the specimens with $y \geq 0.08$. This implies that increases in the Ge doping level (carrier concentration) shifted the intrinsic transition to higher temperatures.

As the Ge content increased, the Seebeck coefficient decreased from 225 to 102 μV·K$^{-1}$ at 323 K and from 288 to 178 μV·K$^{-1}$ at 623 K due to the increase in carrier concentration.

Skoug et al. [9] reported that the Seebeck coefficient of Cu$_3$SbSe$_4$ reached 300–400 μV·K$^{-1}$ at 80–630 K, with the maximum value at 320 K. However, as the Ge content increased, the Seebeck coefficient of Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$ ($y = 0.01–0.03$) decreased from 70 to 45 μV·K$^{-1}$ at 80 K and from 200 to 130 μV·K$^{-1}$ at 630 K. Chang et al. [15] reported that the Seebeck coefficient of Cu$_{2.95}$Sb$_{1-y}$Ge$_y$Se$_4$ exhibited the highest value of 350 μV·K$^{-1}$ at 450 K, and then decreased to 275 μV·K$^{-1}$ at 640 K owing to the intrinsic transition of the material; however, the Seebeck coefficient of Cu$_{2.95}$Sb$_{1-y}$Ge$_y$Se$_4$ ($y = 0.01–0.06$) decreased to 160–69 μV·K$^{-1}$ at 300 K and 225–130 μV·K$^{-1}$ at 640 K because of the increase in carrier concentration by Ge doping.

Figure 7 shows the power factor of Cu$_3$Sb$_{1-y}$Ge$_y$Se$_4$. The power factor (PF = $\alpha^2\sigma$) is proportional to the Seebeck coefficient (α) and electrical conductivity (σ); thus, it increases as the temperature increases due to the temperature dependences of the Seebeck coefficient and electrical conductivity. The power factor of Cu$_3$SbSe$_4$ was as low as 0.39–0.49 mW·m$^{-1}$·K$^{-2}$ at 323–623 K with a small temperature dependence. However, as the Ge content increased, the power factor increased with a larger temperature dependence; Cu$_3$Sb$_{0.86}$Ge$_{0.14}$Se$_4$ exhibited the highest values of 0.44–0.93 mW·m$^{-1}$·K$^{-2}$ at 323–623 K. The electrical conductivity and Seebeck coefficient have a trade-off relationship with the carrier concentration [20]. In this study, Cu$_3$Sb$_{0.86}$Ge$_{0.14}$Se$_4$ had the maximum power factor because it showed the highest
electrical conductivity, despite also having the lowest Seebeck coefficient. Skoug et al. [9] reported the low power factor of 0.10–0.43 mW·m⁻¹·K⁻² at 80–630 K for Cu₃SbSe₄, but higher values of 0.19–1.55 mW·m⁻¹·K⁻² at 80–630 K for Cu₃Sb₁₋ₓGeₓSe₄ (y = 0.02 and 0.03). Chang et al. [15] reported power factors of 0.81–1.15 mW·m⁻¹·K⁻² at 300–640 K for Cu₂.₉₅Sn₃Se₄ and 0.50–1.35 mW·m⁻¹·K⁻² at 300–640 K for Cu₂.₉₅Sb₁₋ₓGeₓSe₄ (y = 0.01–0.06).

Figure 8 shows the thermal conductivity of the Cu₃Sb₁₋ₓGeₓSe₄. As shown in Fig. 8(a), the thermal conductivity decreased with increasing temperature. The thermal conductivity of undoped Cu₃SbSe₄ was 1.19–0.74 W·m⁻¹·K⁻¹ at 323–623 K, while Ge-doped specimens exhibited increased values of 1.27–1.36 W·m⁻¹·K⁻¹ at 323 K and 0.76–0.89 W·m⁻¹·K⁻¹ at 623 K. The thermal conductivity (κ) is expressed as κ = Dcₚd, the product of the thermal diffusivity (D), specific heat (cₚ), and density (d). Therefore, the thermal conductivity is affected by the phases, compositions, and microstructures (grain boundaries, defects, pores, etc.), which depend on the preparation process. Skoug et al. [9] obtained the thermal conductivity of 15.0–1.0 W·m⁻¹·K⁻¹ at 80–630 K for Cu₃Sb₁₋ₓGeₓSe₄ (y = 0.02 and 0.03) prepared by the melting–annealing and HP method. Chang et al. [15] reported a thermal conductivity of 2.98–1.25 W·m⁻¹·K⁻¹ at 300–640 K for Cu₂.₉₅Sn₃GeₓSe₄ (y = 0–0.06) fabricated by the melting–annealing and SPS methods. Compared with these reports, in this study, significantly lower thermal conductivity values of 1.36–0.74 W·m⁻¹·K⁻¹ were achieved at 323–623 K for Cu₃Sb₁₋ₓGeₓSe₄ (y = 0.04–0.14) by employing the MA-HP process.

The thermal conductivity is the sum of the lattice thermal conductivity (κₐ) and electronic thermal conductivity (κₑ), which are attributed to phonons and charge carriers, respectively [21]. Figure 8(b) shows the lattice and electronic thermal conductivities estimated using the Wiedemann–Franz law (κₑ = LoT), where L is the temperature-dependent Lorenz number and T is the absolute temperature [9]. The lattice thermal conductivity and electronic thermal conductivity of Cu₃SbSe₄ were 1.17–0.72 W·m⁻¹·K⁻¹ and 0.02–0.04 W·m⁻¹·K⁻¹ at 323–623 K, respectively. The lattice thermal conductivity of Ge-doped specimens decreased to
1.23–1.09 W·m⁻¹·K⁻¹ at 323 K and 0.72–0.57 W·m⁻¹·K⁻¹ at 623 K because phonon scattering was enhanced by the ionized impurities and lattice distortions generated by Ge substitution at the Sb sites. However, the electronic thermal conductivity increased to 0.04–0.27 W·m⁻¹·K⁻¹ at 323 K and 0.07–0.31 W·m⁻¹·K⁻¹ at 623 K due to the increase in carrier concentration through Ge doping. As the Ge content increased, the lattice thermal conductivity decreased, while the electronic thermal conductivity increased. Therefore, the total thermal conductivity of Cu₃Sb₁₋ₓGeₓSe₄ was mainly determined by the lattice thermal conductivity, but the change in the total thermal conductivity was predominantly affected by the electronic thermal conductivity.

Figure 9 shows the Lorenz number of Cu₃Sb₁₋ₓGeₓSe₄. Theoretically, the Lorenz number is (1.45–2.44) × 10⁻⁸ V²·K⁻² [22]; smaller values indicate non-degenerate semiconductor behavior, while larger values indicate degenerate semiconductor or metallic conductor behavior. As shown in Fig. 8(b), the charge-carrier contribution to the thermal conductivity was determined using the Wiedemann–Franz law, and the Lorenz number was calculated using the equation [23]. In this study, the Lorenz number decreased with increasing temperature. The Lorenz numbers of undoped Cu₃SbSe₄ were low and constant between 1.57 × 10⁻⁸ and 1.56 × 10⁻⁸ V²·K⁻² at 323–623 K. However, the Lorenz number increased to (1.64–1.92) × 10⁻⁸ V²·K⁻² at 323 K and (1.56–1.72) × 10⁻⁸ V²·K⁻² at 623 K with increasing Ge content at constant temperature.

Figure 10 presents the dimensionless figure of merit for Cu₃Sb₁₋ₓGeₓSe₄. The dimensionless figure of merit was evaluated using the relationship \(ZT = \alpha^2 \sigma / \kappa \). ZT increased with increasing temperature because of the temperature dependences of the power factor and thermal conductivity. Cu₃SbSe₄ exhibited a maximum ZT of 0.39 at 623 K, whereas the ZT was significantly improved by Ge doping. Cu₃Sb₀.₈₆Ge₀.₁₄Se₄ showed the highest ZT (0.65) at 623 K. Although Ge doping increased the thermal conductivity, the ZT improvement arose from the remarkably increased power factor. Skoug et al. [9] reported a ZT of 0.68 at 630 K for Cu₃Sb₀.₉₈Ge₀.₀₂Se₄ prepared by melting at 1173 K for 12 h and annealing at 573 K for 48 h followed by HP. Chang et al. [15] obtained a ZT of 0.54 at 640 K for Cu₂.₉₅SbSe₄ and 0.70 at 640 K for Cu₂.₉₅Sb₀.₀₃Ge₀.₀₇Se₄ synthesized by melting at 1123 K for several hours, annealing at 653 K for 40 h, and SPS. In this study, solid-state synthesis via the MA-HP process was successful in preparing Ge-doped permingeatite compounds in a relatively short time (MA for 12 h) without subsequent heat treatment. The MA-HP method was confirmed to be an economical and practical process that saved time and energy in the fabrication of homogenous Ge-doped permingeatite. The obtained thermoelectric performance was comparable to that of permingeatite produced by the melting process.
4. Conclusions

Ge-doped permingeatites $\text{Cu}_3\text{Sb}_1-y\text{Ge}_y\text{Se}_4$ ($y = 0–0.14$) were successfully prepared by MA and HP. The phase, microstructure, charge transport, and thermoelectric properties were examined with respect to the Ge content. A permingeatite phase with a tetragonal structure was formed in all samples, and the secondary phase of Cu_2GeSe_3 was detected when $y \geq 0.08$. Both undoped and Ge-doped specimens exhibited p-type characteristics, and the carrier (hole) concentration increased with increasing Ge content. Cu_3SbSe_4 showed non-degenerate semiconductor behavior, while the Ge-doped specimens were degenerate in nature. As the Ge content increased, the Seebeck coefficient decreased, while the electrical conductivity and power factor increased. However, the thermal conductivity increased because of the increased electronic thermal conductivity. As a result, $\text{Cu}_3\text{Sb}_{0.86}\text{Ge}_{0.14}\text{Se}_4$ achieved the maximum ZT of 0.65 at 623 K, resulting from its low thermal conductivity of 0.89 W·m$^{-1}$·K$^{-1}$ and maximized power factor of 0.93 mW·m$^{-1}$·K$^{-2}$.

Acknowledgment

This study was supported by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047).

REFERENCES

1. K. Tyagi, B. Gahtori, S. Bathula, V. Toutam, S. Sharma, N. K. Singh, and A. Dhar, Appl. Phys. Lett. 105, 261902 (2014).
2. A. Kumar, P. Dhama, and P. Banerji, AIP Conf. Proc. 1832, 110050 (2016).
3. T. H. Zou, X. Y. Qin, D. Li, G. L. Sun, Y. C. Dou, Q. Q. Wang, B. J. Ren, J. Zhang, H. X. Xin, and Y. Y. Li, Appl. Phys. Lett. 104, 013904 (2014).
4. Y. Zhang, E. Skoug, J. Cain, V. Ozolin, D. Morelli, and C. Wolverton, Phys. Rev. B 85, 054306 (2012).
5. J. H. Wernick and K. E. Benson, J. Phys. Chem. Sol. 3, 157 (1957).
6. D. Zhang, J. Yang, Q. Jiang, Z. Zhou, X. Li, Y. Ren, J. Xin, A. Basit, X. He, W. Chu, and J. Hou, J. Alloys Compd. 724, 597 (2017).
7. G. Garcia, P. Palacios, A. Cabot, and P. Wahnon, Inorg. Chem. 27, 7321 (2018).
8. C. Yang, F. Huang, L. Wu, and K. Xu, J. Phys. D: Appl. Phys. 44, 295404 (2011).
9. E. Skoug, J. D. Cain, P. Majsztrik, M. Kirkham, E. L. Curzio, and D. T. Morelli, Sci. Adv. Mater. 3, 602 (2011).
10. P. M. Ortiz, S. L. Loredo, J. C. Alvarez, Y. P. Mendez, and J. A. Martinez, Mater. Res. Bull. 102, 418 (2018).
11. D. Zhao, D. Wu, and L. Bo, Energies 10, 1524 (2017).
12. Y. Li, X. Qin, D. Li, X. Li, Y. Liu, J. Zhang, C. Song, and H. Xin, RSC Adv. 5, 31399 (2015).
13. X. Y. Li, D. Li, H. X. Xin, J. Zhang, C. J. Song, and X. Y. Qin, J. Alloys Compd. 561, 105 (2013).
14. T. R. Wei, H. Wang, Z. M. Gibbs, C. F. Wu, G. J. Snyder, and J. F. Li, J. Mater. Chem. 132, 13527 (2014).
15. C. H. Chang, C. L. Chen, W. T. Chiu, and Y. Y. Chen, Mater. Lett. 186, 227 (2017).
16. G. E. Lee and I. H. Kim, Materials 14, 1116 (2021).
17. L. D. Gulay and M. Daszkiewicz, Hand. Phys. Chem. Rare Earths 41, 157 (2011).
18. J. W. Anthony, K. W. Bideaux, and M. C. Nichols, Handbook of Mineralogy, Vol. 1: Elements, Sulfides, Sulfosalts, p.1613, Mineral Data Publishing, Arizona, USA (2003).
19. H. Brooks, Adv. Electron. Electron. Phys. 7, 85 (1955).
20. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).
21. Y. Yan, H. Wu, G. Wang, X. Lu, and X. Zhou, Energy Stor. Mater. 13, 127 (2018).
22. S. G. Kwak, J. H. Pi, G. E. Lee, and I. H. Kim, Korean J. Met. Mater. 58, 272 (2020).
23. B. Madavali and S. J. Hong, J. Electron. Mater. 45, 6059 (2016).