Stability of an additive-quadratic-quartic functional equation

Abstract: In this paper, we investigate the stability of an additive-quadratic-quartic functional equation

\[f(x + 2y) + f(x - 2y) - 2f(x + y) - 2f(x - y) - 2f(x - y) - 2f(y - x) + 4f(-x) + 2f(x) - f(2y) - f(-2y) + 4f(y) + 4f(-y) = 0 \]

by the direct method in the sense of Găvruta.

Keywords: Hyers-Ulam stability, hyperstability, quadratic functional equation, fixed point theorem

MSC: 39B82, 39B52

1 Introduction

A. K. Hassan et al. [1], M. Mohamadi et al. [2] and C. Park et al. [3] investigated the stability of the AQQ (additive-quadratic-quartic) functional equation

\[f(x + 2y) + f(x - 2y) - 2f(x + y) - 2f(x - y) - 2f(y - x) + 4f(-x) + 2f(x) - f(2y) - f(-2y) + 4f(y) + 4f(-y) = 0 \] (1.1)

in various spaces. For the terminology “AQQ (additive-quadratic-quartic) functional equation”, refer to the papers [1–3]. The second author [4] also studied different type of the additive-quadratic-quartic functional equation

\[f(x + ky) + f(x - ky) - k^2f(x + y) - k^2f(x - y) + 2(k^2 - 1)f(x) + (k^2 + k)f(y) + (k^2 - k)f(-y) - 2f(ky) = 0, \]

where \(k \) is a fixed real constant with \(k \neq 0, \pm 1 \).

In this paper, let \(V \) and \(W \) be real vector spaces and \(Y \) be a real Banach space. For a given mapping \(f : V \rightarrow W \), we use the following abbreviations

\[f_o(x) := \frac{f(x) - f(-x)}{2}, \quad f_e(x) := \frac{f(x) + f(-x)}{2}, \]

\[Df(x, y) = f(x + 2y) + f(x - 2y) - 2f(x + y) - 2f(x - y) - 2f(x - y) - 2f(x - y) + 4f(-x) + 2f(x) - f(2y) - f(-2y) + 4f(y) + 4f(-y) \]

for all \(x, y \in V \). In this paper, we will prove the stability of the functional equation (1.1) in the sense of Găvruta [5] (See also [6, 7]). In other words, from the given mapping \(f \) that approximately satisfies the functional...
equation (1.1), we will show that the mapping \(F \), which is the solution of the functional equation (1.1), can be constructed using the formula

\[
F(x) = \lim_{n \to \infty} \left(\frac{f_0(2^n x)}{2^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n} \right)
\]

or

\[
F(x) = \lim_{n \to \infty} \left(2^n f_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n f_e \left(\frac{x}{2^n} \right)}{3} - \frac{16^{n+1} - 4^{n+2} f_e \left(\frac{x}{2^{n+1}} \right)}{3} \right)
\]

and we will prove that the mapping \(F \) is the unique solution mapping of functional equation (1.1) near the mapping \(f \).

2 Main results

Lemma 1. If a mapping \(f : V \to W \) satisfies \(Df(x, y) = 0 \) for all \(x, y \in V \), then the equalities

\[
f(x) = \frac{f_0(2^n x)}{2^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n}, \tag{2.1}
\]

\[
f(x) = 2^n f_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n f_e \left(\frac{x}{2^n} \right)}{3} - \frac{16^{n+1} - 4^{n+2} f_e \left(\frac{x}{2^{n+1}} \right)}{3} \tag{2.2}
\]

hold for all \(x \in V \) and all \(n \in \mathbb{N} \cup \{0\} \).

Proof. If a mapping \(f : V \to W \) satisfies \(Df(x, y) = 0 \) for all \(x, y \in V \), then the equality (2.1) can be derived from the equalities

\[
f(x) = \frac{f_0(2^n x)}{2^n} - \frac{16f_e(2^n x) + f_e(2^{n+1} x)}{12 \cdot 4^n} + \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n}
\]

\[
= \sum_{i=0}^{n-1} \frac{2f_0(2^i x) - f_e(2^{i+1} x)}{2^i 12 \cdot 4^i} + \sum_{i=0}^{n-1} \frac{64f_e(2^i x) - 20f_e(2^{i+1} x) + f_e(2^{i+2} x)}{12 \cdot 4^i}
\]

\[
+ \sum_{i=0}^{n-1} \frac{-64f_e(2^i x) - 20f_e(2^{i+1} x) + f_e(2^{i+2} x)}{12 \cdot 16^{i+1}}
\]

\[
= \sum_{i=0}^{n-1} \frac{-Df_0(2^i x, 2^{i-1} x)}{2^{i+1}} + \sum_{i=0}^{n-1} \frac{Df_e(2^i x, 2^{i+1} x) + 4Df_e(2^i x, 2^i x)}{12 \cdot 4^{i+1}} + \sum_{i=0}^{n-1} \frac{-Df_e(2^{i+1} x, 2^{i+2} x) - 4Df_e(2^i x, 2^{i+1} x)}{12 \cdot 16^{i+1}}
\]

for all \(x \in V \) and \(n \in \mathbb{N} \cup \{0\} \). The equality (2.2) can be easily obtained in a similar way.

In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation (1.1) in the sense of Găvruţa.

Theorem 1. Let \(f : V \to Y \) be a mapping for which there exists a function \(\varphi : (V \setminus \{0\})^2 \to [0, \infty) \) such that the inequality

\[
\|Df(x, y)\| \leq \varphi(x, y) \tag{2.3}
\]

holds for all \(x, y \in V \setminus \{0\} \) and let \(f(0) = 0 \). If \(\varphi \) has the property

\[
\sum_{n=0}^{\infty} \varphi(2^n x, 2^n y) < \infty \tag{2.4}
\]

for all \(x, y \in V \), then there exists a unique solution mapping \(F : V \to Y \) of the functional equation (1.1) satisfying the inequality

\[
\|f(x) - F(x)\| \leq \sum_{i=0}^{\infty} \left(\frac{\varphi(2^i x, 2^{i-1} x) + \varphi(2^{i+1} x, 2^i x) + 4\varphi(2^i x, 2^{i+1} x)}{12 \cdot 4^{i+1}} \right) \tag{2.5}
\]
for all \(x \in V \setminus \{0\} \), where \(\varphi_x \) is the function defined by \(\varphi_x(x, y) := \frac{\varphi(x) + \varphi(-x, y)}{2} \). In particular, \(F \) is represented by

\[
F(x) = \lim_{n \to \infty} \left(\frac{f_0(2^n x)}{2^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n} \right)
\]

(2.6)

for all \(x \in V \).

Proof. First, we define a set \(A := \{ f : V \to Y \mid f(0) = 0 \} \) and a mapping \(J_n : A \to A \) by

\[
J_n f(x) := \frac{f_0(2^n x)}{2^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n}
\]

for \(x \in V \) and \(n \in \mathbb{N} \cup \{0\} \). Notice that

\[
\| J_n f(x) - J_{n+1} f(x) \| = \left\| \frac{f_0(2^n x)}{2^n} - \frac{f_0(2^{n+1} x)}{2^{n+1}} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{16f_e(2^{n+1} x) - f_e(2^{n+2} x)}{12 \cdot 4^{n+1}} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n} + \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^{n+1}} \right\|
\]

\[
= \left\| \frac{-Df_0(2^n x, 2^{n-1} x)}{2^{n+1}} + \frac{Df_e(2^{n+1} x, 2^n x) + 4Df_e(2^n x, 2^n x)}{12 \cdot 4^{n+1}} - \frac{Df_e(2^{n+1} x, 2^n x - 4Df_e(2^n x, 2^n x)}{12 \cdot 16^{n+1}} \right\|
\]

\[
\leq \frac{\varphi_e(2^n x, 2^{n-1} x)}{2^{n+1}} + \frac{\varphi_e(2^n x, 2^{n-1} x)}{12 \cdot 4^{n+1}} + 4\varphi_e(2^n x, 2^n x)
\]

(2.7)

for all \(x \in V \setminus \{0\} \). It follows from (2.7) that

\[
\| J_n f(x) - J_{n+m} f(x) \| \leq \sum_{i=n}^{n+m-1} \| J_i f(x) - J_{i+1} f(x) \|
\]

\[
\leq \sum_{i=n}^{n+m-1} \left(\frac{\varphi_e(2^n x, 2^{n-1} x)}{2^{n+1}} + \frac{\varphi_e(2^{n+1} x, 2^n x) + 4\varphi_e(2^n x, 2^n x)}{12 \cdot 4^{n+1}} \right)
\]

(2.8)

for all \(x \in V \setminus \{0\} \). In view of (2.4) and (2.8), the sequence \(\{ J_n f(x) \} \) is a Cauchy sequence for all \(x \in V \setminus \{0\} \). Since \(Y \) is complete and \(f(0) = 0 \), the sequence \(\{ J_n f(x) \} \) converges for all \(x \in V \). Hence, we can define a mapping \(F : V \to Y \) by

\[
F(x) := \lim_{n \to \infty} \left(\frac{f_0(2^n x)}{2^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n} - \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n} \right)
\]

for all \(x \in V \). Moreover, letting \(n = 0 \) and passing the limit \(m \to \infty \) in (2.8) we get the inequality (2.5). With the definition of \(F \), we easily get the equality \(DF(x, y) = 0 \) from the relations

\[
\| DF(x, y) \| = \lim_{n \to \infty} \left\| \frac{Df_0(2^n x, 2^n y)}{2^n} + \frac{16Df_e(2^n x, 2^n y) - Df_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 4^n} - \frac{4Df_e(2^n x, 2^n y) - Df_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 16^n} \right\|
\]

\[
\leq \lim_{n \to \infty} \left(\frac{\varphi_e(2^n x, 2^n y)}{2^n} + \frac{16\varphi_e(2^n x, 2^n y)}{12 \cdot 4^n} + 4\varphi_e(2^n x, 2^n y) \right)
\]

\[
= 0
\]

for all \(x, y \in V \setminus \{0\} \). From the equality \(DF(x, y) = 0 \) for all \(x, y \in V \setminus \{0\} \) and \(f(0) = 0 \), it is easy to see that \(DF(x, y) = 0 \) for all \(x, y \in V \). To prove the uniqueness of \(F \), let \(F' : V \to Y \) be another solution mapping of the functional equation (1.1) satisfying the inequality (2.5). Instead of the condition (2.5), it
is sufficient to show that there is a unique mapping F satisfying the simpler condition $\|f(x) - F(x)\| \leq \sum_{i=0}^{\infty} \frac{\phi_e(2^{i+1}x, 2^{i+1}x) + \phi_e(2^{i+1}x, 2^{i+1}x) + 4\phi_e(2^{i+1}x, 2^{i+1}x)}{2^{i+1}}$. By (2.1), the equality $F'(x) = J_n F'(x)$ holds for all $n \in \mathbb{N}$. Therefore, we have

$$\|J_n f(x) - F'(x)\| = \|J_n f(x) - J_n F'(x)\| \leq \frac{\phi_e(2^n x) + 16\phi_e(2^{n+1}x) - 4\phi_e(2^n x) - 4\phi_e(2^{n+1}x)}{12 \cdot 4^n} - \frac{\phi_e(2^n x) - 4\phi_e(2^n x)}{12 \cdot 4^n} \leq \frac{\phi_e(2^n x) - 4\phi_e(2^n x)}{12 \cdot 4^n} + \left(\frac{16}{12 \cdot 4^n} - \frac{4}{12 \cdot 16^n}\right)\|f_e(2^n x) - F' e(2^n x)\| \leq \sum_{i=0}^{\infty} \frac{\phi_e(2^{i+1}x, 2^{i+1}x) + \phi_e(2^{i+1}x, 2^{i+1}x) + 4\phi_e(2^{i+1}x, 2^{i+1}x)}{2^{i+1}} \leq 4 \sum_{i=0}^{\infty} \phi_e(2x, 2^{i+1}x) + \phi_e(2x, 2^{i+1}x) + 4\phi_e(2x, 2^{i+1}x)$$

for all $x \in V \backslash \{0\}$ and all $n \in \mathbb{N}$. Taking the limit in the above inequality as $n \to \infty$, we conclude that $F'(x) = \lim_{n \to \infty} J_n f(x)$ for all $x \in V \backslash \{0\}$. Because $F(0) = 0 = F'(0)$, this means that the equality $F(x) = F'(x)$ holds for all $x \in V$.

In the following corollary, we obtain the hyperstability of the functional equation (1.1).

Corollary 1. Let $p < 0$ be a real number and X be a real normed space. If $f : X \to Y$ is a mapping such that

$$\|Df(x, y)\| \leq \theta(\|x\|^p + \|y\|^p)$$

(2.9)

for all $x, y \in X \backslash \{0\}$ and $f(0) = 0$, then $f : X \to Y$ satisfies the equality $Df(x, y) = 0$ for all $x, y \in X$.

Proof. According to Theorem 1, there is a unique solution mapping F of the functional equation $DF(x, y) = 0$ such that

$$\|f(x) - F(x)\| \leq \left(1 + \frac{2^p}{2p|2 - 2p|} + \frac{2^p + 9}{12 |4 - 2p|}\right)\|x\|^p$$

for all $x \in X \backslash \{0\}$. From the equality

$$Df((2n + 1)x, nx) = Df((2n + 1)x, nx) - DF((2n + 1)x, nx) = (f - F)((3n + 1)x) + (f - F)(2f - F)((3n + 1)x) - 2(f - F)((3n + 1)x) - 2(f - F)((3n + 1)x) - 2(f - F)((3n + 1)x) + 4(f - F)((2n + 1)x) + 4(f - F)((2n + 1)x) - (f - F)(2nx) - (f - F)(2nx) + 4(f - F)(nx) + 4(f - F)(nx)$$

for all $x \in X \backslash \{0\}$ and $n \in \mathbb{N}$, we have the inequality

$$\|f(x) - F(x)\| \leq \|Df((2n + 1)x, nx)\| + \|(f - F)((3n + 1)x)\| + 2\|(f - F)((3n + 1)x)\|$$
Proof the inequality $\forall x \in V \setminus \{0\}$ and $n \in \mathbb{N}$. Since $(4n + 1)^p, (3n + 1)^p, (2n + 1)^p, (n + 1)^p + (2n)^p, n^p$ tend to 0 as $n \to \infty$ and $f(0) = F(0)$, we get $f(x) = F(x)$ for all $x \in X$. Therefore, the equality $Df(x, y) = DF(x, y) = 0$ holds for all $x, y \in X$.

\textbf{Theorem 2.} Let $f : V \to Y$ be a mapping for which there exists a function $\varphi : V^2 \to [0, \infty)$ such that the inequality

$$\|Df(x, y)\| \leq \varphi(x, y)$$

(2.10)

holds for all $x, y \in V$ and let $f(0) = 0$. If φ has the property

$$\sum_{n=0}^{\infty} 16^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) < \infty$$

(2.11)

for all $x, y \in V$, then there exists a unique solution mapping $F : V \to Y$ of the functional equation (1.1) satisfying the inequality

$$\|f(x) - F(x)\| \leq \sum_{n=0}^{\infty} \left(\frac{16^{n+1}}{3} \varphi e \left(\frac{x}{2^n}, \frac{x}{2^{n+2}} \right) + \left(\frac{4 \cdot 16^n}{3} + 2^n \right) \varphi e \left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+2}} \right) \right)$$

(2.12)

for all $x \in V \setminus \{0\}$. In particular, F is represented by

$$F(x) = \lim_{n \to \infty} \left(2^n f_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n}{3} f_0 \left(\frac{x}{2^n} \right) - \frac{16^{n+1} - 4^{n+2}}{3} f_0 \left(\frac{x}{2^{n+1}} \right) \right)$$

(2.13)

for all $x \in V$.

\textbf{Proof.} First, we define $A := \{ f : V \to Y \mid f(0) = 0 \}$ and a mapping $I_n : A \to A$ by

$$I_n f(x) := 2^n f_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n}{3} f_0 \left(\frac{x}{2^n} \right) - \frac{16^{n+1} - 4^{n+2}}{3} f_0 \left(\frac{x}{2^{n+1}} \right)$$

for $x \in V$ and $n \in \mathbb{N} \cup \{0\}$. Notice that

$$\|I_n f(x) - I_{n+1} f(x)\| \leq \left\| \frac{4 \cdot 16^n - 4^n}{3} f_0 \left(\frac{x}{2^n} \right) - 20 f_0 \left(\frac{x}{2^{n+1}} \right) + 64 f_0 \left(\frac{x}{2^{n+2}} \right) \right\|$$

(2.14)

$$+ 2^n \left(f_0 \left(\frac{x}{2^n} \right) - 2 f_0 \left(\frac{x}{2^{n+1}} \right) \right)$$

$$\leq \frac{4 \cdot 16^n}{3} \left\| Df_0 \left(\frac{x}{2^n}, \frac{x}{2^{n+2}} \right) + 4 Df_0 \left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+2}} \right) \right\| + 2^n \left\| Df_0 \left(\frac{x}{2^n}, \frac{x}{2^{n+2}} \right) \right\|$$

$$\leq 2^n \varphi e \left(\frac{x}{2^n}, \frac{x}{2^{n+2}} \right) + \frac{4 \cdot 16^n}{3} \left\| \varphi e \left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+2}} \right) + 4 \varphi e \left(\frac{x}{2^{n+2}}, \frac{x}{2^{n+2}} \right) \right\|$$

for all $x \in V \setminus \{0\}$. It follows from (2.14) that

$$\|I_n f(x) - I_{n+m} f(x)\| \leq \sum_{i=n}^{n+m-1} \left(\frac{16^{i+1}}{3} \varphi e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) + \left(\frac{4 \cdot 16^i}{3} + 2^i \right) \varphi e \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+2}} \right) \right)$$

(2.15)

for all $x \in V \setminus \{0\}$.
In view of (2.11) and (2.15), the sequence \(\{J_n f(x)\} \) is a Cauchy sequence for all \(x \in V \setminus \{0\} \). Since \(Y \) is complete and \(f(0) = 0 \), the sequence \(\{J_n f(x)\} \) converges for all \(x \in V \). Hence, we can define a mapping \(F : V \to Y \) by

\[
F(x) := \lim_{n \to \infty} \left(2^n f_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n}{3} f_e \left(\frac{x}{2^n} \right) - \frac{16^{n+1} - 4^{n+2}}{3} f_e \left(\frac{x}{2^{n+1}} \right) \right)
\]

for all \(x \in V \). Moreover, letting \(n = 0 \) and passing the limit \(n \to \infty \) in (2.15) we get the inequality (2.12). From the definition of \(F \), we easily get

\[
\|DF(x, y)\| = \lim_{n \to \infty} \|2^n Df_0 \left(\frac{x}{2^n} \right) + \frac{4 \cdot 16^n - 4^n}{3} Df_e \left(\frac{x}{2^n} \right) - \frac{16^{n+1} - 4^{n+2}}{3} Df_e \left(\frac{x}{2^{n+1}} \right) \|
\]

\[
\leq \lim_{n \to \infty} \left(\|2^n Df_0 \left(\frac{x}{2^n} \right)\| + \left\| \frac{4 \cdot 16^n - 4^n}{3} Df_e \left(\frac{x}{2^n} \right) \right\| + \left\| \frac{16^{n+1} - 4^{n+2}}{3} Df_e \left(\frac{x}{2^{n+1}} \right) \right\| \right)
\]

\[
= 0
\]

for all \(x, y \in V \setminus \{0\} \), which means that \(DF(x, y) = 0 \) for all \(x, y \in V \) from the same reason in Theorem 1.

To prove the uniqueness of \(F \), let \(F^* : V \to Y \) be another solution of the functional equation (1.1) satisfying (2.12). Instead of the condition (2.12), it is sufficient to show that there is a unique mapping satisfying the simpler condition

\[
\|f(x) - F(x)\| \leq \sum_{i=0}^{\infty} 16^{i+1} \left(\varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) + \varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) \right)
\]

for all \(x \in V \). By (2.2), the equality \(F^*(x) = J_n F^*(x) \) holds for all \(x \in V \) and all \(n \in \mathbb{N} \). Therefore, we have

\[
\|J_n f(x) - F^*(x)\|=\|J_n f(x) - J_n F^*(x)\|
\]

\[
\leq \sum_{i=0}^{\infty} 16^{i+1} \left(\varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) + \varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) \right)
\]

\[
+ \sum_{i=0}^{\infty} 16^{i+2} \left(\varphi_e \left(\frac{x}{2^{i+3}}, \frac{x}{2^{i+3}} \right) + \varphi_e \left(\frac{x}{2^{i+3}}, \frac{x}{2^{i+3}} \right) \right)
\]

\[
+ 16 \sum_{i=0}^{\infty} 16^{i+1} \left(\varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) + \varphi_e \left(\frac{x}{2^{i+2}}, \frac{x}{2^{i+2}} \right) \right)
\]

\[
\leq 17 \sum_{i=0}^{\infty} 16^i \left(\varphi_e \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}} \right) + \varphi_e \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}} \right) \right)
\]

for all \(x \in V \) and all \(n \in \mathbb{N} \). Taking the limit in the above inequality as \(n \to \infty \), we can conclude that

\[
F'(x) = \lim_{n \to \infty} J_n f(x) \quad \text{for all} \quad x \in V.
\]

This means that \(F(x) = F'(x) \) for all \(x \in V \).
3 Conclusions

We have proved the stability of an additive-quadratic-quartic functional equation

\[f(x + 2y) + f(x - 2y) - 2f(x + y) - 2f(-x - y) - 2f(x - y) - 2f(y - x) \\
+ 4f(-x) + 2f(x) + f(2y) - f(-2y) + 4f(y) + 4f(-y) = 0 \]

by the direct method in the sense of Găvruta.

References

[1] H. Azadi-Kenary, J.R. Lee, and C. Park, Non-Archimedean stability of an AQQ functional equation, J. Comput. Anal. Appl. 14 (2012), no. 2, 211–227.

[2] M. Mohamadi, Y.J. Cho, C. Park, P. Vetro, and R. Saadati, Random stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), 754210, DOI: 10.1155/2010/754210.

[3] C. Park, Fuzzy stability of an additive-quadratic-quartic functional equation, J. Inequal. Appl. 2010 (2010), 253040, DOI: 10.1155/2010/253040.

[4] Y.-H. Lee, A fixed point approach to the stability of an additive-quadratic-quartic functional equation, Honam Mathematical J. (2019), accepted.

[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.

[6] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.

[7] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.