A MATRIX MODEL FOR QUANTUM SL_2

CHARLES FROHMAN AND JOANNA KANIA-BARTOSZYŃSKA

Abstract. We describe a topological ribbon Hopf algebra whose elements are sequences of matrices. The algebra is a quantum version of $U(sl_2)$.

For each nonzero $t \in \mathbb{C}$ that is not a root of unity, we give a quantum analog \mathcal{A}_t of $U(sl_2)$. The underlying algebra of the model is $\prod_{n=1}^{\infty} M_n(\mathbb{C})$. Consequently, the algebra structure, which comes from matrix multiplication, is independent of the variable t.

Define \mathcal{A}_t to be the unital Hopf algebra on X, Y, K, K^{-1}, with relations:

$$
\begin{align*}
KX &= t^2XK, \\ KY &= t^{-2}YK, \\
XY - YX &= \frac{K^2 - K^{-2}}{t^2 - t^{-2}}, \\ KK^{-1} &= 1.
\end{align*}
$$

The comultiplication is the algebra morphism given by:

$$
\Delta(X) = X \otimes K + K^{-1} \otimes X, \\
\Delta(Y) = Y \otimes K + K^{-1} \otimes Y,
$$

$$
\Delta(K) = K \otimes K.
$$

The antipode is the antimorphism given by $S(X) = -t^2X$, $S(Y) = -t^{-2}Y$, $S(K) = K^{-1}$, and the counit is the morphism given by $\epsilon(X) = \epsilon(Y) = 0$, and $\epsilon(K) = 1$.

The standard representations m, where m is a nonnegative integer, of \mathcal{A}_t have basis e_i, where i runs in integer steps from $-m/2$ to $m/2$. Hence as a vector space m has dimension $m + 1$. Recall that

$$
[n] = \frac{t^{2n} - t^{-2n}}{t^2 - t^{-2}},
$$

and $[n]! = [n][n-1] \ldots [1]$.

The action of \mathcal{A}_t is given by

$$
\begin{align*}
X \cdot e_i &= [m/2 + i + 1]e_{i+1} \quad \text{but} \quad X \cdot e_{m/2} = 0, \\
Y \cdot e_i &= [m/2 - i + 1]e_{i-1} \quad \text{but} \quad Y \cdot e_{-m/2} = 0, \\
K \cdot e_i &= t^{2i}e_i.
\end{align*}
$$

The representation m can be seen as a homomorphism

$$
\rho_m : \mathcal{A}_t \to M_{m+1}(\mathbb{C}).
$$

Lemma 1. The homomorphisms $\rho_m : \mathcal{A}_t \to M_{m+1}(\mathbb{C})$ are onto.

This research was partially supported by by NSF-DMS-9803233 and NSF-DMS-9971905.
Proof. Using the ordered basis, \(\{ e_{-m/2}, \ldots, e_{m/2} \} \), \(\rho_m(X) \) is the matrix that is zero except on the first subdiagonal, where the entries going from the top to the bottom are 1, [2], [3], \ldots, [m]. Similarly, the matrix \(\rho_m(Y) \) is zero except on the first superdiagonal, where starting from the bottom and going up the entries are 1, [2], [3], \ldots, [m].

The image of \(X^nY^p \) is a matrix with zero entries except on a particular super- or sub-diagonal, whose distance from the diagonal is \(|n-p| \). Starting from the top, the first \(\min\{p, n\} \) entries of that diagonal are zero, and the subsequent entries are all nonzero. Thus there exist linear combinations of the matrices \(\rho_m(X^nY^p) \), with \(p \leq n \), corresponding to each of the elementary matrices whose only nonzero entry lies on the \(n-p \) subdiagonal, or on the diagonal. We are using the pattern of zero and nonzero entries on the \(n-p \) subdiagonal to see this. By a similar analysis of \(\rho_m(Y^pX^n) \) we see that all elementary matrices where the nonzero entry lies on a superdiagonal can be written as a linear combination of the \(\rho_m(Y^pX^n) \). Since \(M_{m+1}(\mathbb{C}) \) is spanned by the elementary matrices, this finishes the proof.

Define the linear functionals \(m^c_{ij} : A_t \rightarrow \mathbb{C} \) by letting \(m^c_{ij}(Z) \) be the \(ij \)-th coefficient of the matrix \(\rho_m(Z) \). Let \(qSL_2 \) be the stable subalgebra of the Hopf algebra dual \(A_t' \) generated by linear functionals \(m^c_{ij} \).

Proposition 1. The linear functionals \(m^c_{ij} \) form a basis for the algebra \(qSL_2 \).

Proof. Since

\[
m \otimes n = \bigoplus_{q=|m-n|}^{m+n} q,
\]

the linear functionals \(m^c_{ij} \) span the algebra \(qSL_2 \). We need to show that they are also linearly independent. The quantum Casimir is given by

\[
C = \frac{(tK - t^{-1}K^{-1})^2}{(t^2 - t^{-2})^2} + YX \in A_t.
\]

Since \(C \) is central in \(A_t \), it acts as scalar multiplication in any irreducible representation. In fact, it acts on \(m \) as \(\lambda_m = \frac{(t^{m+1} - t^{-m-1})^2}{(t^2 - t^{-2})^2} \). Let

\[
C_{m,n} = \frac{C - \lambda_n}{\lambda_m - \lambda_n}.
\]

Notice that \(C_{m,n} \) is zero under \(\rho_n \) and is sent to the identity in \(\rho_m \). The product

\[
D_{m,N} = \prod_{p=1, p \neq m}^{N} C_{m,n}
\]

is an element of \(A_t \) that is sent to 0 in all of the representations from 1 to \(N \), except \(m \) where it is sent to the identity matrix.

If some linear combination \(\sum \alpha_{i,j,n} n^c_{ij} \) is equal to zero, it means that for all \(Z \in A_t \),

\[
\sum_{i,j,n} \alpha_{i,j,n} n^c_{ij}(Z) = 0.
\]
Let N be the largest n for which $\alpha_{i,j,n} \neq 0$. For each m such that $\alpha_{i,j,m} \neq 0$, apply the functional $\sum_{i,j,n} \alpha_{i,j,n} c^i_j$ to $D_{m,N}Z$. Since
$$\sum_{i,j,n} \alpha_{i,j,n} c^i_j(D_{m,N}Z) = 0,$$
it follows that for all $Z \in A_t$, and fixed m,
$$\sum_{i,j} \alpha_{i,j,m} c^n_i(Z) = 0.$$

Finally, from lemma 1 the homomorphisms ρ_m are surjective, so the independence of the $m c^i_j$ follows from the independence of the matrix coefficients on $M_{m+1}(\mathbb{C})$. Therefore all the $\alpha_{i,j,m} = 0$.

The product of any two matrix coefficients can be written as a linear combination of matrix coefficients
\begin{equation}
m c^i_j \cdot n c^k_l = \sum_{u,v,p} \gamma_{u,v,p}^{i,j,m,k,l,n}(t) c^u_v \end{equation}
Since the functionals $p c^u_v$ are linearly independent, the coefficients $\gamma_{u,v,p}^{i,j,m,k,l,n}(t)$ are uniquely defined. The $\gamma_{u,v,p}^{i,j,m,k,l,n}(t)$ are versions of the Clebsch-Gordan coefficients. Notice that $|m - n| \leq p \leq m + n$, consequently for each tuple (i, j, m, k, l, n) there are only finitely many (u, v, p) with $\gamma_{u,v,p}^{i,j,m,k,l,n}(t) \neq 0$.

A similar computation can be performed with the analogously defined $m c^i_j$ associated to $Sl_2(\mathbb{C})$. The limit as t approaches 1 of the coefficients $\gamma_{u,v,p}^{i,j,m,k,l,n}(t)$ gives the corresponding quantities for $Sl_2(\mathbb{C})$.

Let
$$\bar{A}_t = M_1(\mathbb{C}) \times M_2(\mathbb{C}) \times M_3(\mathbb{C}) \times \ldots$$
be the Cartesian product of all the matrix algebras over \mathbb{C} given the product topology.

Proposition 2. The homomorphism
\begin{equation}
\Theta : A_t \to \bar{A}_t
\end{equation}
given by $\Theta(Z) = (\rho_0(Z), \rho_1(Z), \rho_2(Z), \ldots)$ is injective and its image is dense in \bar{A}_t.

Proof. The fact that the ρ_m are onto and the existence of the elements $C_{m,n}$ defined by equation (7) can be used to prove that the image of Θ is dense in \bar{A}_t.

A version of the Poincaré-Birkhoff-Witt theorem says that the monomials $K^m X^n Y^p$ form a basis for A_t as a vector space. Using the relation $XY - YX = \frac{K^2 - K^{-2}}{t^2}$, this can be replaced by the basis $Z_{m,n,p}$, with $Z_{m,n,p} = K^m X^n Y^p$ for $n \geq p$ and $Z_{m,n,p} = K^m Y^n X^p$ when $n < p$. In order to prove that the map Θ is injective, consider an element $\sum \alpha_i Z_{m_i,n_i,p_i} \in A_t$. It is our goal to show that if $\Theta(\sum \alpha_i Z_{m_i,n_i,p_i}) = 0$ then all α_i are zero.

In any representation the image of $Z_{m,n,p}$ is a matrix that is zero off of the super (or sub)-diagonal corresponding to $n - p$. Thus it suffices to consider the sums where
\(n_i - p_i \) is a constant, as long as we only work with the parts of the matrices in the image that lie on the super- or sub-diagonal corresponding to that constant.

Assume that \(n_i \geq p_i \). The argument is similar when \(n_i < p_i \). Suppose that, for \(k \geq 0 \), the image under \(\Theta \) of

\[
\sum \alpha_i K^{m_i} X^{p_i+k} Y^{p_i},
\]

on the \(k \)th subdiagonal is zero. The map \(\Theta \) takes \(K^{m} X^{p+k} Y^{p} \) to a sequence of matrices such that the first \(p \) entries along the \(k \)-th subdiagonal are zero. Let \(p \) be the minimum of the \(p_i \) appearing in (8). The \((p+1)\)-st entry of each \(k \)-th subdiagonal of each matrix in the sequence \(\Theta(\sum \alpha_i K^{m_i} X^{p_i+k} Y^{m_i}) \) is the image under \(\Theta \) of the collection of terms in (8) with \(p_i = p \). All the other terms are mapped to matrices with a zero there. Thus it is enough to show that whenever all the \((p+1)\)-st entries on the \(k \)-th subdiagonal in each entry of \(\Theta(\sum \alpha_i K^{m_i} X^{p+k} Y^{p}) \) are zero, then all \(\alpha_i \) are zero.

Assume that all the \((p+1)\)-st entries on the \(k \)-th subdiagonal of \(\Theta(\sum \alpha_i Z^{m_i,p+k,p}) \) are zero. Make a sequence consisting of the \((p+1)\)-st entries of the \(k \)-th diagonal of the image of \(Z_{0,p+k,p} \). This sequence is:

\[
(0, 0, \ldots, [p+k]! \prod_{r=1}^{p} [k + r], [p+k]! \prod_{r=1}^{p} [k + r + 1], \ldots),
\]

where the first nonzero entry corresponds to the representation \(\rho_{p+k+1} \). Hence, the sequence corresponding to \(Z_{m_i,p+k,p} \) is

\[
(0, 0, \ldots, t^{m_i(p+k)} [p+k]! \prod_{r=1}^{p} [k + r], t^{m_i(p+k-1)} [p+k]! \prod_{r=1}^{p} [k + r + 1], \ldots).
\]

Supposing that we have \(J \) terms in our sum, we can truncate these sequences to get a \(J \times J \) matrix, so that the coefficients \(\alpha_i \) as a column vector, must be in the kernel of that matrix. Notice that the coefficient of the power of \(t \) in each column is the same product of quantized integers. Hence its determinant is a product of quantized integers times the determinant of the matrix,

\[
\begin{pmatrix}
t^{m_1(p+k)} & t^{m_1(p+k-1)} & \cdots \\
t^{m_2(p+k)} & t^{m_2(p+k-1)} & \cdots \\
& \vdots & \ddots
\end{pmatrix},
\]

Factoring out a large power of \(t \) from each row we get the Vandermonde determinant,

\[
\begin{vmatrix}
1 & t^{-m_1} & t^{-2m_1} & \cdots \\
1 & t^{-m_2} & t^{-2m_2} & \cdots \\
& \vdots & \ddots & \ddots
\end{vmatrix},
\]

which is nonzero as long as the \(t^{m_i} \) are not equal to one another. Since \(t \) was chosen specifically not to be a root of unity, all the \(\alpha_i \) must be zero. \(\square \)

The topology induced on \(\mathfrak{A}_t \) by its image under \(\Theta \) is the weak topology from \(qSL_2 \).

That is a sequence \(Z_n \) is Cauchy if for every \(\phi \in qSL_2 \), \(\phi(Z_n) \) is a Cauchy sequence of
complex numbers. Hence \mathcal{A}_t is the completion of \mathcal{A}_t by equivalence classes of Cauchy sequences in the weak topology from qSL_2.

Let $e_{i,j}(m) \in \mathcal{A}_t$ be the sequence of matrices that is the zero matrix in every entry, except the $m + 1$-st, where it is the elementary matrix that is all zeroes except for a 1 in the ij-th entry. Notice that the $e_{i,j}(m)$ are dual to the $m^c_{i,j}$ in the sense that $m^c_{i,j}(e_{k,l}(p))$ is zero unless the indices are identical, in which case it is one. Also notice that any $A \in \mathcal{A}_t$ can be written uniquely as $\sum_{i,j,m} \alpha_{i,j,m} e_{i,j}(m)$. The infinite sum makes sense!

Proposition 3. The algebra \mathcal{A}_t has a structure of a topological ribbon Hopf algebra.

Proof. We need to define comultiplication on \mathcal{A}_t. Every element of $\mathcal{A}_t \otimes \mathcal{A}_t$ can be written as an infinite sum,

$$\sum_{i,j,m,k,l,n} \tau_{i,j,m,k,l,n} e_{i,j}(m) \otimes e_{k,l}(n) \quad (9)$$

so that no $e_{i,j}(m) \otimes e_{k,l}(n)$ is repeated. There are infinite sums of this form that cannot be decomposed as a finite sum of tensors of elements of \mathcal{A}_t. We topologize $\mathcal{A}_t \otimes \mathcal{A}_t$ by saying that a sequence W_n is Cauchy if and only if for every $m^c_{i,j} \otimes n^c_{k,l}$ the sequence $(m^c_{i,j} \otimes n^c_{k,l})(W_n)$ is Cauchy. Let $\mathcal{A}_t \otimes \mathcal{A}_t$ be the completion of $\mathcal{A}_t \otimes \mathcal{A}_t$ by equivalence classes of Cauchy sequences. Notice that every sum of the type like in equation (9) yields an equivalence class of Cauchy sequences in $\mathcal{A}_t \otimes \mathcal{A}_t$ by truncating to get a sequence of partial sums. Conversely, if $Z_n \in \mathcal{A}_t \otimes \mathcal{A}_t$ is Cauchy, by applying the $m^c_{i,j} \otimes n^c_{k,l}$ to the sequence, and taking the limit we get the coefficients of a unique expression of the type (9), and two Cauchy sequences are equivalent if and only if they give rise to the same expression. Hence we can identify $\mathcal{A}_t \otimes \mathcal{A}_t$ with the set of expressions like in equation (9).

In order to define the comultiplication on \mathcal{A}_t with values in $\mathcal{A}_t \otimes \mathcal{A}_t$, take the adjoint of multiplication on qSL_2. Use \langle , \rangle to denote evaluation of elements of \mathcal{A}_t on qSL_2, and extend this to evaluating elements of $qSL_2 \otimes qSL_2$ on elements of $\mathcal{A}_t \otimes \mathcal{A}_t$ pairwise. Then,

$$\langle m^c_{i,j} \otimes n^c_{k,l}, \Delta(e_{u,v}(q)) \rangle = \langle m^c_{i,j} \cdot n^c_{k,l}, e_{u,v}(q) \rangle = \gamma_{i,j,m,k,l,n}^{u,v,q}.$$

Therefore,

$$\Delta(e_{u,v}(q)) = \sum_{i,j,m,k,l,n} \gamma_{i,j,m,k,l,n}^{u,v,q} e_{i,j}(m) \otimes e_{k,l}(n).$$

The sum makes sense for an arbitrary element of \mathcal{A}_t as there are only finitely many nonzero $\gamma_{i,j,m,k,l,n}^{u,v,q}$ for any $e_{i,j}(m) \otimes e_{k,l}(n)$. So one can sum

$$\Delta(\sum_{i,j,m} \alpha_{i,j,m} e_{u,v}(q)) = \sum_{i,j,m} \alpha_{i,j,m} \Delta(e_{i,j}(m)) =$$

$$\sum_{i,j,m} \alpha_{i,j,m} \gamma_{i,j,m,k,l,n}^{u,v,q}(t) e_{i,j}(m) \otimes e_{k,l}(n).$$
Comultiplication is continuous since its composition with every $m \otimes n \otimes c_j \otimes n \otimes c_k$ is continuous.

Let $q = t^4$. The standard formula for the universal R-matrix \mathbb{B} in the Jimbo-Drinfeld model of $U_h(sl_2)$ is

$$R = \sum_{n \geq 0} \frac{(q - q^{-1})^n}{[n]} q^{-n(n+1)/2} t^{H \otimes nH} (X^n \otimes Y^n).$$

(10)

Recall that the standard Drinfeld-Jimbo model \mathbb{B} of $U_h(sl_2)$ is generated by X, Y, H. If we let $K = t^H$ then the relations (1), (2) for \mathcal{A}_t can be derived from the relations for the Drinfeld-Jimbo model. Consequently, interpret H as the traditional image of H under the standard irreducible representations of $U(sl_2)$. That is, H is the sequence of matrices,

$$(1, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}, ...).$$

Taking t raised to this sequence gives the sequence $\Theta(K)$, where Θ is defined in equation (7). Interpret X and Y as the sequences of matrices coming from the standard representations of \mathcal{A}_t, i.e., $\Theta(X)$ and $\Theta(Y)$. The resulting expression (10) makes sense as an element of $\mathcal{A}_t \otimes \mathcal{A}_t$ since in any particular irreducible representation only finitely many terms are nonzero. Thus the R matrix is well defined as an element of $\mathcal{A}_t \otimes \mathcal{A}_t$, and has the desired properties.

References

[1] C. Kassel, *Quantum Groups*, Springer-Verlag (1995).