Effect of anthropogenic pressure on grasshopper (Orthoptera: Acridomorpha) species diversity in three forests in southern Cameroon

Abstract

Grasshoppers are a highly diversified in tropical rainforests and considered of both ecological and conservation importance. The population dynamics of central African grasshoppers, however, and the structure of their communities remain poorly studied. We report here on the impact of human activities on the diversity of grasshopper species from three localities in southern Cameroon: Ongot, more anthropized forest; Zamakoe, moderately anthropized forest; and Ngutadjap, less anthropized forest. Data were collected using sweep nets, quadrats, and pitfall traps. We analyzed how pressures from human activities affected the grasshopper species compositions using five statistical methods: (1) two non-parametric estimators for specific richness, (2) abundance, (3) abundance distribution model, (4) α diversity index, and (5) β diversity index. The results showed no significant differences in species richness between the sites (nine species at Zamakoe, seven each at Ongot and Ngutadjap). Among these species, one was specific to Ongot and Zamakoe, while one, two, and three species, respectively, were found only in Ongot, Ngutadjap, and Zamakoe. Abundance and species diversity of grasshoppers increased with anthropogenic pressure on the forests. We noticed a great similarity between the grasshopper communities of the two localities under the greatest anthropogenic pressure (Ongot and Zamakoe) compared to that of the less anthropized locality of Ngutadjap. The most common grasshopper species, *Mazea granulosa*, was most abundant where deforestation was highest. Species diversity was highest in the more and moderately anthropized forests, and the diversity index showed greater similarity between these two grasshopper communities compared with that of the less anthropized forest. This work enables us to better understand how the parameters of these insect communities reflect the degree of forest degradation in southern Cameroon.

Keywords

biodiversity, degradation rate, grasshopper communities, tropical rainforest

Introduction

Tropical rainforests shelter an important part of the world's biodiversity and represent an important stake for all countries, in particular with regard to the effects of anthropogenic disturbances and climate change. Forest biodiversity remains poorly studied throughout the African continent (Basset et al. 2001), where these ecosystems are heavily deforested, particularly in the Congo Basin. The rate of deforestation doubled in the Congo Basin between 1990 and 2005 (Tchatchou et al. 2015). These forests are subject to growing anthropogenic pressures leading to their fragmentation and progressive destruction (de Wasseige et al. 2012). The direct causes of deforestation include intensification of mining, population expansion, intensive agricultural practices, and construction of dams that severely alter the structure of the forest and its dependent biodiversity. As the primary means of livelihood for semi-subistence farmers in the Congo Basin, shifting cultivation uses forest resources for agricultural production and as a source of non-wood products (Brown 2006). Cameroon loses about 140,000 hectares of forest per year (Ndoye and Kaimowitz 2000). In its southern part, industrial wood production has increased from 2.3 million m3 in 1991 to more than 3 million m3 in 2000 (de Wasseige et al. 2012). The destruction of these forests has altered the biophysical structure of the natural environment and leads to the breakdown of ecosystem equilibrium and the extinction of species as well as the modification of the structure of floral and faunal communities. The faunal composition is known to be negatively affected by this clearing, with reduction of canopy cover being the major factor of these losses (Scott et al. 2006, Steer et al. 2009). The habitat loss is predicted to greatly impact invertebrates’ species diversity (Chinery 1993); these organisms are less mobile than vertebrates, have short life cycles, and are more specialized in micro-habitats due to their specificity to host plants.

Grasshoppers are a common and diverse invertebrate group worldwide (Gangwere et al. 1997, Song 2010, Zhang 2011). They are a dominant group of herbivorous insects with up to 20–30% of all arthropod biomass (Soliman et al. 2017) and occasionally constituting as much as half of the biomass in an environment (Gillon 1983). This group plays an important role in terrestrial...
food webs and is known to be a good source of protein for other animals such as amphibians, small reptiles, birds, and small mammals; therefore, their scarcity may disturb the trophic structure in an ecosystem (Schmidt et al. 1991, Soliman et al. 2017). Grasshoppers are important bioindicators of threatened environments because of their specific microhabitat preferences, functional importance in ecosystems, sensitivity to the modification of biotic and abiotic factors of their habitats, and the ease with which they can be sampled (Armstrong and van Hensbergen 1997, Samways 1997, Andersen et al. 2001, Guido and Gianelle 2001, Soliman et al. 2017). Diversity and community structure of grasshoppers as they relate to anthropogenic activities, types of vegetation, and climate change have been studied in many regions of the world (Otte 1976, Kemp et al. 1990, Clayton 2002, Gebeleyhu and Samways 2003, Steck et al. 2007, Saha and Haldar 2009, Sirin et al. 2010, Branson 2011, Kekeunou et al. 2017). Despite the high rate of deforestation observed, the bioindicator potential of grasshoppers in the Congo Basin area, and particularly in Cameroon, has been largely neglected. Apart from the recent works of Seino et al. (2013) and Kekeunou et al. (2017) on the diversity of acridoids in higher mountains in West Cameroon, abundance and grasshopper diversity have been poorly studied. The present article is a contribution to the understanding of the effect of anthropogenic pressure and forest degradation on the abundance and diversity of grasshopper species in southern Cameroon.

Materials and methods

Study sites.—Grasshoppers were collected over a year in three localities (Ongot, Zamakoe, and Ngutadjap; Fig. 1) in the forest area located on the margins of southern Cameroon plateau (3°27'N, 11°32'E and 4°10’N, 11°49'E). This area, about 650–700 m in elevation, is a part of the plateau that forms the northern and western edges of the Congo Basin (Westphal et al. 1981). The climate is typical of the Guinean zone with four seasons comprised of a long dry season (mid-November to mid-March), a short rainy season (mid-March to June), a short dry season (July to mid-September), and a long rainy season (mid-September to mid-November). Precipitation ranges from 1500–2000mm per year (Amou’ou et al. 1985, Santoir and Bopda 1995). The southern Cameroonian forest is dominated by Sterculiaceae and Ulmaceae, and its undergrowth is made up of herbaceous plants such as Marantaceae and Acanthaceae (Westphal et al. 1981). In this ecosystem, the natural vegetation is regularly degraded by the economic exploitation of wood and the practice of slash-and-burn agriculture (Santoir and Bopda 1995). The resulting bushy vegetation after degradation is less diversified and dominated by *Chromolaena odorata*, *Ageratum conizoïdes*, *Synedrella nodiflora*, and *Imperata cylindrica*. Plantain, cassava, yam, maize, and groundnut are the main food crops, while industrial crops include cocoa, coffee, sweet banana, and palm oil.

Grasshoppers were sampled in three forest ecosystems, each with different levels of anthropogenic pressure and degradation: Ongot forest, 14 to 88 inhabitants/km² located in the division of Mefou and Akono, near Yaoundé; Zamakoe forest, 10 to 41 inhabitants/km² in the division of Nyong and So'o, near Mbalmayo; and Ngutadjap forest, 2 to 15 inhabitants/km² in the division of Ntem Valley, near Ebolowa (Gockowski 1996). Plant species richness is higher in the less degraded Ngutadjap forest, lower in the Zamakoe forest, and lowest in the Ongot forest (Suppl. material 1). Gockowski (1996) showed that the residents of Ongot draw more income from paid work and extensive agriculture. In Ngutadjap, people depend more on hunting and fishing activities, while Zamakoe is a transition zone between the conditions of Ongot and Ngutadjap forests.

Grasshopper sampling.—The grasshopper species were sampled every month from the forests of Ongot, Zamakoe, and Ngutadjap using sweep nets, quadrats, and pitfall traps. Samples by net were made randomly for 30 min; grasshoppers were also captured by hand on the litter in 22 movable iron quadrats of 1 m² each.

Fig. 1. Study sites in relation to vegetation types in Cameroon (see Mertens et al. 2012).
These quadrats were placed every 10m, on two parallel transects of 110m, separated from each other by 10m. Other specimens were collected in 10 pitfall traps (of 8cm diameter each), 1/3 filled with 5% formalin as a preservative; each trap was laid every 20m in the same transects after quadrant exploration.

Grasshopper identification.—The collected specimens were identified using keys from Dirsh (1956, 1961, 1965, 1966, 1970), Jago (1967), Kevan (1975), Hollis (1975), and Lecoq (1980).

Data analysis

Species richness, sampling efforts and species accumulation curves.—Species richness (S) is the number of species reported from each sampling site. We have estimated these theoretical values by the non-parametric estimators viz., Chao1 and Abundance-based Coverage Estimator (ACE) (Marcon 2015) using the software EstimateS (Colwell 2013). The plots of cumulative species number per sample were generated using the same software with data randomized 100 times. We estimated the sampling effort as the ratio of observed species richness to theoretical species richness. Average efforts were compared using a Kruskal-Wallis H-test in the software PAST (Hammer et al. 2001).

Relative abundances.—The average relative abundances (Marcon 2015) were calculated using the following formula:

\[fx = \frac{\sum n_1 x + n_2 x + \ldots + n_{17} x}{N} \times 100 \]

\(\sum n_1 x + n_2 x + \ldots + n_{17} x \) is the sum of abundances of species \(x \) from the first to the seventeenth month in a given site; \(N \) is the sum of abundances of all the species in the three sites. Mean abundance between the different sites and between species were compared by the Wilcoxon W-test using PAST.

Abundance distribution models.—The abundance distributions of the reported species were compared to the geometric distribution model of Motomura, the broken stick model of Mac-Arthur, and the log series model of Fisher (Carlo et al. 1998, Cielo Filho et al. 2012, Havyarimana et al. 2013, Marcon 2015) to find the one that fits most to our dataset. These models provide information on how species are distributed and on how they share the available resources in the ecosystem (Havyarimana et al. 2013). PAST software automatically generates the results from the row data. The \(\chi^2 \) test was used in PAST to compare the observed abundance distribution to the expected for the three types of theoretical distributions tested.

Diversity.—Species diversity of grasshoppers was calculated in PAST and expressed as dominance (D), Shannon diversity (H), and evenness (H/Hmax) indexes (Carlo et al. 1998, Tuad et al. 2013, Marcon 2015, Kekou et al. 2017, Mnoun Massa et al. 2017, Raghavender and Vastrad 2017). The Shannon index for two samples were compared using the Student t-test (Hutcheson 1970).

Similarity.—Similarities between the grasshopper communities were assessed by the Bray Curtis index (\(C_b \)) (Bray and Curtis 1957, Tuad et al. 2013, Tuad and Djéto-Lordon 2014, Raghavender and Vastrad 2017) and the correspondence analysis of the species to the different communities (Yelland 2010). Cluster analysis was performed using the Paired Group Method (UPGMA) in PAST. PAST graphically generates the Euclidean distances between rows (species) and columns (sites/forests) for the correspondence analysis.

Results

Species richness.—A total of 12 grasshopper species were identified belonging to two families: Pyrgomorphidae (two species) and Acrididae (10 species) (Fig. 2A). The subfamily Catantopinae was the most diverse with six species following by the Oxyinae and Pyrgomorphinae (two species each), and Acridinae and Coptacrinae with only one species each (Fig. 2B).

Ten of the 12 identified species were collected by net, six species were collected in quadrats, and only two species in pitfalls (Table 1). Two species were collected only from the least disturbed forest of Ngutadjap (Gemeneta opilionoides and Parapetasia femorata).

Fig. 2. Species richness from each study site. A. Families; B. Subfamilies.
Table 1. Species richness according to the different sampling methods in the forests.

Family	Subfamily	Species	Ongot	Zamakoe	Ngutadjap
			net	quadrat	pitfall
Acrididae	Acridinae	H. gerstaeckeri	+	+	+
		A. degener	+	+	+
		G. opilionoides			
		G. terrea	+		
		M. granulosa	+	+	+
		P. carnapi	+		
		S. opacula		+	+
Catantopinae		G. opilionoides			
		G. terrea	+		
		M. granulosa	+	+	+
		P. carnapi	+		
		S. opacula		+	+
Coptacrinae		C. hopei	+		
Oxynae		D. fasciata	+	+	+
		P. apicalis		+	+
Pyrgomorphidae	Pyrgomorphinae	P. femorata		+	+
		T. ferruginea	+		

Number of taxa: 7, 4, 1, 7, 5, 2, 6, 2, 1

+ indicates the presence of the species at the site for the collection method used.

Gemeneta terrea was collected from the two more disturbed forests of Ongot and Zamakoe, while Apoboleus degener was collected only from the most disturbed forest of Ongot. Pteropera carnapi, Cyphocerastis hopei, and Taphronota ferruginea were collected only from the moderately anthropized forest of Zamakoe (Table 1). The remaining five species were common to all three localities.

Sampling effort and species accumulation curves.—Sampling captured almost the entire estimated species assemblage (95.3 ± 1.42%). No significant difference (H = 2, P = 0.36) was observed between the localities: Ngutadjap (97.0 ± 3%), Ongot (96.5 ± 3.5%), and Zamakoe (92.5 ± 2.5%) (Table 2). The species accumulation curve of each forest started to flatten out towards the end of the sampling period (Fig. 3).

Relative abundance.—A total of 465 individuals were collected from the target localities (Appendix 1). We did not observe great differences in abundance between seasons (Appendix 1). Among these Table 2. Sampling effort and diversity of grasshopper species from the study sites. The values in brackets represent the theoretical species richness; a and b: the results of Shannon diversity index test for two samples.

Diversity/Estimator	Ongot	Zamakoe	Ngutadjap
Taxa S	7	9	7
Individuals	167	226	72
Dominance D	0.54	0.71	0.47
Shannon H	0.97 ab	1.18 b	0.73 a
Evenness H/Hmax	0.38	0.23	0.46
ACE	93% (7.52)	90% (10.00)	94% (7.40)
Chao1	100% (7.00)	95% (9.47)	100% (7.00)
Mean of Estimators	96.5 ± 3.5%	92.5 ± 2.5%	97 ± 3%
	(7.26 ± 0.26)	(9.73 ± 0.26)	(7.2 ± 0.2)

The same letter between two sites shows no significant difference between the values.

Fig. 3. Species accumulation curves of the study sites.
Table 3. The mean relative abundance (%) of species between the different study sites. Each value is: mean ± standard error; H-value: Kruskal Wallis test; P-value: probability; a, b and c: the results of the comparisons, with the Wilcoxon test, for two samples.

Family	Subfamily/Species	Ongot	Zamakoe	Ngutadjap	H-value	P-value	Total
Acrididae							
Acrinidae	H. gerstaecker	1.1±0.4	2.07±0.9	1.65±0.8	0.14	0.91	4.82±1.7
Catantopinae	A. degener	0.44±0.2	0	0	0.64	0.13	0.44±0.29
G. opilionoides		0.45±0.4	0.45±0.4	0.51	0.32	0.62±0.03	
G. terrea	0.17±0.1	0.45±0.3	0	0.51	0.32	0.62±0.03	
M. granulosa	26.44±2.3b	41.05±3.2c	11.6±2.2	22.02	<0.0001	79.15±3.1	
P. carnapi	0	0.77±0.4	0	1.45	0.05	0.77±0.4	
S. opacula	4.8±1.9b	0.82±0.3b	1.2±0.6b	5.28	0.03	6.82±1.8	
Coptacrinae	C. hopei	0.37±0.3	0	0.16	0.36	0.37±0.3	
Oxyinae							
D. fasciata	0.85±0.4	1.14±0.6	0.35±0.3	0.65	0.51	2.34±0.09	
P. apicalis	1.7±0.6	0.86±0.4	0.92±0.4	0.76	0.56	3.48±1.07	
Pyrgomorphidae	Pyrgomorphiniae						
P. femorata	0	0	0.57±0.4	0.64	0.12	0.57±0.4	
T. ferruginea	0.17±0.1	0	0	0	0.17±0.1		
H-value		62.5	50.02	37.62	85.58		
P-value	<0.0001	<0.0001	<0.0001	<0.0001			
Total	35.5±2.8b	47.7±3.0b	16.8±2.3b	23.49	<0.0001	100	

The same letter between two sites shows no significant difference between the values.

Fig. 4. Abundance distribution model of species in the different forests. A. Ongot; B. Zamakoe; C. Ngutadjap.

465 individuals, 72 (16.8 ± 2.3%) were collected from the low anthropized forest of Ngutadjap, 167 (35.5 ± 2.8%) from the more anthropized forest of Ongot, and 226 (47.7 ± 3.0%) from the moderately anthropized forest of Zamakoe (Table 3). The mean abundances were significantly higher (H = 23.49, P < 0.0001) in the grasshopper community from Zamakoe, and significantly lower in that of Ngutadjap. *Mazea granulosa* reported from all localities was the most abundant species (79.2%) (Table 3). The abundance of this species significantly differed among the three sites (H = 22.02, P < 0.0001): 11.7% in Ngutadjap, 26.4% in Ongot, and 41.1% in Zamakoe (Table 3). The common species *Holoperorna gerstaeckeri* and *Serpusia opacula* were less abundant than *M. granulosa*. All other species were present with very low abundances in the different sites studied (Table 3).

Abundance distribution models.—The grasshopper species collected during this study were distributed into seven abundance ranks in the Ongot and Ngutadjap forests and in nine abundance ranks in Zamakoe forest. The distribution models of species abundance from the target localities were very different from the geometric model of Motomora: Ongot (χ² = 53.3; P < 0.001; Fig. 4A), Zamakoe (χ² = 562.2; P < 0.001; Fig. 4B), and Ngutadjap (χ² = 30.6; P < 0.001; Fig. 4C); the broken stick of MacArthur model: Ongot (χ² = 88.6; P < 0.001; Fig. 4A), Zamakoe (χ² = 290.8; P < 0.001; Fig. 4B), and Ngutadjap (χ² = 27.4; P < 0.001; Fig. 4C). All the observed abundance distribution models were closer to, though slightly different from, Fisher’ log-series distribution model: Ongot (χ² = 17.1; P = 0.002; Fig. 4A), Zamakoe (χ² = 110.5; P < 0.001; Fig. 4B), and Ngutadjap (χ² = 11.1; P = 0.011; Fig. 4C). The rare
respondence analysis shows that most of the species studied were closer to these two most degraded forests of Ongot and Zamakoe (Fig. 6). A. degener was specific to Ongot; P. carnapi, C. hopei, and T. ferruginea were specific to Zamakoe; and G. opilionoides and P. femorata were specific to Ngutadjap (Fig. 6).

Discussion

Species richness and sampling effort.—The sampling efforts were high, varying between 87% and 93% in the forests studied, with no significant difference, which is consistent with the statement of Branson (2011) that evaluation and comparison of grasshopper diversities requires that all regions and ecosystems be studied in the same way. The species accumulation curve of each forest started to flatten out towards the end of the sampling period; this shows that almost all the species had been collected: all the common species were sampled. The missing species are likely to be all rare taxa corresponding to the expected low abundance nature of tropical forest faunas.

Overall, 12 species were identified: seven in Ngutadjap and Ongot and nine in Zamakoe. Seino et al. (2013) and Kekeunou et al. (2017) have identified, respectively, 28 and 27 species in the mountainous area of West Cameroon. This considerable difference in species richness can be explained by the fact that (1) previous studies collected grasshoppers in both fallows and forests and (2) the works cited were conducted in the upland area of western Cameroon with two climatic seasons, while we carried out the present work in the southern Cameroon plateau with four climatic seasons. The structure, biology, and ecology of the grasshopper communities are logically expected to be different in the two different habitats.

Grasshoppers are indeed recognized as abundant insects in open environments, which may explain the low species richness observed in our work. Joubert et al. (2016) recently reported that grasshoppers constitute a significant proportion of invertebrate diversity in grasslands; their abundance increases with burning, cattle grazing, and short vegetation. Spungis (2007) and Arya et
In this work, species diversity increased to the most abundant ones or those with intermediate abundance. Dirsh (1965, 1966, 1970) and Mestre and Chiffaud (2009) showed that these two taxa are the main acridid families in the fauna of both Cameroon and Congo Basin.

In the same way, Seino et al. (2013) and Kekeunou et al. (2017) found that Acrididae (18 and 22 species, respectively) and Pyrgomorphidae (four and six species, respectively) are the more speciose families in West Cameroon. The same results were given by Almeida and Câmara (2008) in Brazil, and by Arya et al. (2015), More and Nikam (2016), and Raghavender and Vastrad (2017) in India. The Catantopinae was the richest subfamily in the study areas with three species in Ngutadjap and four species in Zamakoe and Ongot. Seino et al. (2013) reported this subfamily as most speciose in the study areas. After the Oedipodinae, the Catantopinae was also the richest subfamily in both agriculture and forest ecosystems of Dharwad, India (Raghavender and Vastrad 2017). The above results are consistent with the findings by Dirsh (1965) more than fifty years ago in Cameroon and in Africa.

Relative abundance and abundance distributions.—The abundance of grasshoppers in the three study sites increased with human pressure. In fact, it is already known that grasshopper abundance increases in dry grassland habitats and forests used by humans (Latchininsky and Gapparov 1996, 2011, Spungis 2007, Latchininsky 2008). These results contrast with those of Soliman et al. (2017) who reported higher species richness, abundance, and diversity in the less disturbed sites in South Cairo, Egypt. We can therefore assume that the behavior of grasshoppers in response to the environmental disturbances is influenced by the eco-climatic zone and the structure of plant and even animal communities.

In fact, ecosystem changes strongly affect behavior, especially of poikilotherms such as grasshoppers that feed on plant materials (Bronwyn 2013). The increase in abundance as the forest is opened up by human agency that was observed in our work is not due to an invasion by grassland or forest edge species, but of forest forms due to increased light penetration and, thus, a change in understory vegetation. The positive correlations that exist between the population density of grasshoppers and plant species diversity can be explained by both feeding and sheltering requirements of grasshoppers (Spungis 2007).

Disturbed and new habitats can be important for the spreading of some grasshopper forms (Samways et al. 1997, Sergeev 1998, Latchininsky et al. 2011). At the same time, some grasshopper species are threatened by anthropogenic pressures, such as overgrazing and ploughing (Latchininsky and Gapparov 1996, 2011, Sergeev 1998). The abundance distribution of the species observed in this work were most similar to, though slightly different from, Fisher’ log-series distribution model. Therefore, species with low abundance were the most numerous in the forests studied compared to the most abundant ones or those with intermediate abundance (Havyarimana et al. 2013). This distribution model shows that although they had different levels of utilization and degradation, these three forest ecosystems are disturbed by human activities (Hughes 1986). Under these conditions, the available resources may be immobilized by a small number of species that develop strategies of resistance to human disturbances (Ramade 2009, Cielo Filho et al. 2012, Havyarimana et al. 2013); this was the case of _M. granulosa_, _S. opulaca_, and _H. gerstaeckeri_ in the forests studied. The other species are relegated to the unfavorable areas (Ramade 2009), as was the case with _G. opiliones_ and _P. femorata_, two very rare species found only in the less degraded forest of Ngutadjap. It therefore seems necessary to reconstitute and conserve these different ecosystems in order to protect this forest biodiversity and its trophic structure.

Diversity and similarity.—In this work, species diversity increased with the level of human activity and use of forest resources: it was higher in the more anthropized forests of Zamakoe and Ongot and lower in the less anthropized forest of Ngutadjap. This result is presented by our cluster analysis based on species composition. Steer et al. (2009) also observed an increase in the invertebrate diversity, especially of diurnal Lepidoptera, with the level of forest degradation in Madagascar. Recently, Soliman et al. (2017) also reported significant differences between grasshopper community structures in moderately and highly disturbed sites in India, using one-way analysis of similarity. We therefore assume that invertebrate communities, especially of insects, are strongly influenced by increased human activities in forest ecosystems around the world; these invertebrates are recognized worldwide as indicative of the levels of natural habitat degradation (Clayton 2002, Gebeeyehu and Samways 2003, Steck et al. 2007, Sirin et al. 2010, Chen et al. 2011).

Acknowledgements

This work was financially supported by a Rufford Small Grant (ID application: 19665-1) from the Rufford Foundation. We thank Dr. C.H.F. Rowell for proofreading the manuscript.

References

Almeida AV, Câmara CAG (2008) Distribution of grasshoppers (Orthoptera: Acridoidea) in the Tapacurá ecological station (São Lourenço da Mata, PE/Brazil). Brazilian Journal of Biology 68: 21–24. https://doi.org/10.1590/S1519-69842008000100004

Amou’ou JP, Melingui A, Mounkam J, Tchepannou A (1985) Le Cameroun. Armand Colin, Paris.

Andersen AN, Ludwig JA, Lowe LM, Rentz DCF (2001) Grasshopper biodiversity and bioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park. Austral Ecology 26: 213–222. https://doi.org/10.1046/j.1442-9993.2001.00106.x

Armstrong AJ, van Hensbergen HJ (1997) Evaluation of afforestarable montane grasslands for wildlife conservation in the north-eastern Cape, South Africa. Biological Conservation 81: 179–190. https://doi.org/10.1016/S0006-3207(96)00034-1

Arya MK, Joshi PC, Vinod PB (2015) Species composition, abundance, density and diversity of grasshoppers (Insecta: Orthoptera) in a protected forest ecosystem in the Western Himalayas, India. International Journal of Fauna and Biological Studies 2: 42–46. http://www.faunajournal.com/vol2issue5/pdf/2-5-6-1.pdf

Basset Y, Aberlénc HP, Barrios H, Curletti G, Berenger JM, Vesco JP, Causse PA, Haug A, Hennison AS, Lesobre L, Marques E, O’Meara R (2001) Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biological Journal of the Linnean Society 72: 585–607. https://doi.org/10.1111/j.1095-8312.2001.tb01340.x

Branson DH (2011) Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland. Psyche 2011: 748635. https://doi.org/10.1155/2011/748635
Raghavender B, Vastrad AS (2017) Changing scenario of short horned grasshopper diversity in agriculture and forest ecosystems in Dharwad. Journal of Entomology and Zoology Studies 5: 268–272. http://www.enomaljournal.org/archives/2017/vol5issue2/PartD/5-1-138-321.pdf
Ramad F (2009) Eléments d’écologie: Ecologie fondamentale (4th edn.). Dunod.

Saha HK, Haldar P (2009) Acridids as indicators of disturbance in dry deciduous forest of West Bengal in India. Biodiversity and Conservation 18: 2343–2350. https://doi.org/10.1007/s10531-009-9591-9

Samways MJ (1997) Conservation biology of Orthoptera. In: Gangwere SK, Muralirangan MC, Muralirangan M (Eds) The Bionomics of Grasshoppers, Katydids and their Kin. CAB International, Wallingford, 481–496.

Santoro C, Bopda A (1995) Atlas régional Sud-Cameroun. Orstom/Minrest, Paris/Yaoundé. http://www.documentation.ird.fr/hor/fdi:010004189

Schmidt GH, Ibrahim N, Abdallah MD (1991) Toxicological studies on the long-term effects of heavy metals (Hg, Cd, Pb) in soil on the development of Aiolopus thalassinus (Fabr.) (Saltatoria: Acrididae). Science of the Total Environment 107: 109–133. https://doi.org/10.1016/0048-9697(91)90254-C

Scott DM, Brown D, Mahood S, Denton B, Silburn A, Rakotondraparany Y (2010) Grasshopper systematics: Past, present and future. Journal of Orthoptera Research 2020, 29(1) https://doi.org/10.3897/jor.29.33373.suppl1

Seino RA, Dongmo TI, Ghogomu RT, Kekeunou S, Chifon RN, Manjeli SK, Muralirangan MC, Muralirangan M (Eds) The Bionomics of Grasshoppers, Katydids and their Kin. CAB International, Wallingford, 481–496.

Seino RA, Dongmo TI, Ghogomu RT, Kekeunou S, Chifon RN, Manjeli SK, Muralirangan MC, Muralirangan M (Eds) The Bionomics of Grasshoppers, Katydids and their Kin. CAB International, Wallingford, 481–496.

Sirin D, Eren O, Çiplak B (2010) Grasshopper diversity and abundance in relation to elevation and vegetation from a snapshot in Mediterranean Anatolia: Role of latitudinal position in altitudinal differences. Journal of Natural History 44: 1343–1363. https://doi.org/10.1080/00222930903528214

Soliman MM, Haggag AA, El-Shazly MM (2017) Assessment of grasshopper diversity along a pollution gradient in the Al-Tebbin region, South Cairo, Egypt. Journal of Entomology and Zoology Studies 5: 298–306.

Song H (2010) Grasshopper systematics: Past, present and future. Journal of Orthoptera Research 19: 57–68. https://doi.org/10.1665/034.019.0112

Spungis V (2007) Fauna and ecology of grasshoppers (Orthoptera) in the coastal dune habitats in Ziemupe Nature Reserve, Latvia. Latvijas entomologs 44: 58–68. http://leb.daba.lv/44-sp1.pdf

Steck CE, Bürgi M, Bolliger J, Kienast F, Lehmann A, Gonseth Y (2007) Conservation of grasshopper diversity in a changing environment. Biological Conservation 138: 360–370. https://doi.org/10.1016/j.biocon.2007.05.001

Steer MD, Vater A, McCann-Wood S (2009) The effect of forest degradation on the species richness and diversity of a diurnal Lepidoptera community in Northern Madagascar. Frontier – Madagascar Environmental Research, Report 22. The Society for Environmental Exploration, London. http://frontier.ac.uk/Publications/Files/2010_11.23_13.51_51.235.pdf

Tadu Z, Djieto-Lordon C, Babin R, Yede, Messop-Youbi EB, Fomena A (2013) Influence of insecticide treatment on ant diversity in tropical agroforestry system: Some aspect of the recolonization process. International Journal of Biodiversity and Conservation 5: 832–844. https://agritrop.cirad.fr/572130/1/document_572130.pdf

Tadu Z, Djieto-Lordon C (2014) Ant diversity in different cocoa agroforest habitats in the centre region of Cameroon. African Entomology 22: 388–404. https://doi.org/10.4001/003.022.0219

Tchatchou B, Sonwa DJ, Ifo S, Tian AM (2015) Deforestation and Forest Degradation in the Congo Basin: State of Knowledge, Current Causes and Perspectives. Occasional paper 144, Center for International Forestry Research, Bogor. https://doi.org/10.17528/cifor/005894

Torrusio S, Ciglitano MM, De Wysiecki ML (2002) Grasshopper (Orthoptera: Acridoidae) and plant community relationships in the Argen-tine pampas. Journal of Biogeography 29: 221–229. https://doi.org/10.1046/j.1365-2699.2002.00663.x

Westphal E, Embrecht I, Mbouemboue P, Westphal-Stevels JMC, Mouzong-Boyomo (1981) L’agriculture autochtone au Cameroun; les techniques culturales, les séquences de culture, les plantes alimen-taires et leur consommation. Miscellaneous papers 20-Landbouwho-gescool, Wageningen.

Yelland PM (2010) An Introduction to Correspondence Analysis. The Mathematica Journal 12: 1–23. https://doi.org/10.3888/tmj.12-4

Zhang ZQ (2011) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148: 1–237.

Supplementary material 1

Author: Charly Oumarou Ngoute, Sévilor Kekeunou, Michel Lecoq, Armand Richard Nzoko Fiampong, Philènè Corine Aude Um Nyobe, Charles Félix Bilong Bilong

Data type: plant species richness

Explanation note: Effect of anthropogenic pressures on floristic composition from the forests of three localities of southern Cameroon.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/jor.29.33373.suppl1
Species composition and abundance of the grasshopper species in different seasons (Srs: Short rainy season; Sds: Short dry season; Lrs: Long rainy season; Lds: Long dry season).

Taxon	Srs (n = 2)	Sds (n = 2)	Lrs (n = 1)	Lds (n = 1)	Total
Holopercna gerstaeckeri (Bolivar, 1980)	9	13	3	1	26
Apoboleus degener Karsch, 1891	0	0	2	0	2
Gemena opilionoides (Bolivar, 1905)	0	0	2	0	2
Gemena teresa Karsch, 1892	1	1	1	0	3
Mazaea granulosa Stål, 1876	93	71	89	104	357
Peropera carnapi Ramme, 1929	0	4	1	0	5
Serpusia opacula Karsch, 1891	8	15	8	7	38
Coptacrinae					
Cyphocerastis hopei Brunner, 1920	1	0	0	0	1
Oxyinae					
Dextria fasciata Ramme, 1929	5	1	3	2	11
Perotilton apicalis Bolivar, 1905	6	4	0	5	15
Pygromorphidae					
Pygromorphinae					
Parapetasia femorata Bolivar, 1884	3	1	0	0	4
Taphronota ferruginea (Fabricius, 1791)	0	1	0	0	1
Site					
Ongot	39	47	34	47	167
Zamakoe	58	49	64	55	226
Ngutadjap	29	15	11	17	72
Total	126	111	109	119	465

n indicates the number of seasons sampled.