Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses

Ole J Hamming1, Ewa Terczyńska-Dyla1, Gabrielle Vieyres2, Ronald Dijkman3, Sanne E Jørgensen1, Hashaam Akhtar1, Piotr Siupka1, Thomas Pietschmann2, Volker Thiel4,4 and Rune Hartmann1,∗

1Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark, 2Institute of Experimental Virology, TWINCORE-Centre for Experimental and Clinical Infection Research, Hannover, Germany, 3Institute of Immunobiology, Kantonal Hospital, St. Gallen, Switzerland and 4Vetsuisse Faculty, University of Zürich, Zürich, Switzerland

The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλ3R1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N-linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.

The EMBO Journal (2013) 32, 3055–3065. doi:10.1038/emboj.2013.232; Published online 29 October 2013
Subject Categories: immunology; microbiology & pathogens
Keywords: coronavirus; genetics; hepatitis C virus; interferon lambda; interferon therapy

Introduction

Type III interferon or interferon lambda (IFNλs) is a recently discovered group of interferons (Dumoulet et al, 2003; Kotenko et al, 2003; Sheppard et al, 2003). Although IFNλs are clearly interferons (Ank et al, 2006; Doyle et al, 2006; Zhou et al, 2007), they signal via a complex consisting of the IFNλ3R1 and IL-10R2 receptor chains and share both structural features and the IL-10R2 chain with the IL-10 family of cytokines (Gad et al, 2009). Type III interferons distinguish themselves in being highly tissue specific. The IFNλ3R1 receptor chain is expressed on cells of epithelial origin and a yet not clearly defined small subset of haematopoietic cells (Mennechet and Uze, 2006; Mordstein et al, 2010; Pott et al, 2011). The liver is of particular interest to this report. In humans, hepatocytes express IFNλ3R1, and thus respond to IFNλ. (Dickensheets et al, 2013; Wang et al, 2013). Humans possess four IFNλ genes (IFNL1, -L2, -L3 and -L4) as well as a pseudogene (IFNL3P1) (Lasfar et al, 2006; Fox et al, 2009). Whereas the IFNL1, -L2 and -L3 genes were described in 2003 (Kotenko et al, 2003; Sheppard et al, 2003), the IFNL4 gene was described recently and the IFNL4 gene has been inactivated in large part of the human population by a frameshift mutation (Prokunina-Olsson et al, 2013). Phase 2 of clinical trials using pegylated IFNλ1 against hepatitis C virus (HCV) infection has recently been completed (Ramos, 2010), and it has now entered the phase 3 trials. IFNλs are interesting pharmaceuticals, as the rather specific expression pattern of the IFNλ3R1 receptor should reduce the adverse effects compared to the type I IFN treatment.

The responses to the current standard treatment for HCV infection, which consists of pegylated interferon-α2b combined with ribavirin (pegIFN-α2b RBV), depend both on the viral genotype and on the genetics of the patient. Rather unexpectedly, single-nucleotide polymorphisms (SNPs) located within and around the IFNλ3 gene were discovered as powerful predictors of treatment outcome as well as the likelihood for spontaneous clearance of the virus (Ge et al, 2009; Thomas et al, 2009). Extensive studies of the genetic region around the IFNL3 gene revealed the existence of a novel gene, the IFNL4 gene, which harbours a dinucleotide variant (ss469415590, TT or AG), where the TT allele leads to a frameshift thus inactivating the gene, and the AG allele results in a functional IFNL4 gene (Prokunina-Olsson et al, 2013). In humans, the TT allele is strongly positively associated with HCV clearance as well as with positive treatment outcome (Bibert et al, 2013; Prokunina-Olsson et al, 2013). Thus, disruption of the IFNL4 gene is beneficial for humans in the context of HCV infection, though the reason for this remains unclear.

The transfection of cells with an expression plasmid encoding IFNλ4 induced STAT1 and STAT2 phosphorylation, but the authors were unable to detect any significant secretion of the IFNλ4 protein, which was ascribed to a very weak signal peptide (SP) in IFNλ4 (Prokunina-Olsson et al, 2013). In addition, the authors produced recombinant IFNλ4 inactive protein using insect cells. However, this protein was purified from cell lysates and not from the media as it is normally done with secreted proteins, and it appears likely that the protein was not properly folded. The lack of IFNλ4 secretion together with the clear observation of intracellular IFNλ4 protein led to the suggestion that IFNλ4 could signal via an intracellular receptor (Booth and George, 2013;
Lupberger et al., 2013; Ray, 2013). Furthermore, the sequence of IFNλ4 is similar to other IFNλs within the first and last helices, which bind IFNλ.R1, while the IL-10R2 binding region is poorly conserved. Thus, the authors questioned whether IFNλ4 actually signals through IL-10R2.

We have expressed, purified and refolded IFNλ4 from E. coli and show that this recombinant protein is active and signals via IFNλ.R1 and IL-10R2, as do the other members of the type III interferon family. Furthermore, we show that IFNλ4 has antiviral activity in human hepatocytes against HCV and in primary human airway epithelia (HAE) cells against human coronavirus strain 229E (HCoV-229E) as well as the novel coronavirus MERS-CoV. We demonstrated that IFNλ4 gets secreted from mammalian cells, but with a substantially lower efficiency than what is seen for IFNλ3. Our data suggest that the poor secretion of IFNλ4 is not just a consequence of the weak IFNλ4 SP, but it might be connected with the glycosylation of IFNλ4.

Results

IFNλ4 expression and purification

To investigate the properties of IFNλ4, we cloned a codon-optimised cDNA encoding the mature form of human IFNλ4 with an N-terminal 6×His tag followed by a tobacco etch virus (TEV) protease cleavage site into a pET-15b vector. This recombinant form of IFNλ4 was expressed in E. coli and purified from inclusion bodies under denaturing conditions by metal-ion affinity chromatography. The protein was then refolded in vitro and purified to homogeneity by cation exchange chromatography (Figure 1A) followed by size-exclusion chromatography (Figure 1B) (Dellgren et al., 2009). IFNλ4 was eluted from the size-exclusion chromatography column at ~75 ml, consistent with the expected monomeric size of IFNλ4. The purified protein has a size of 17 kDa (Figure 1C) corresponding to IFNλ4 without the SP (residues 23–179 of IFNλ4) (NCBI accession code AFQ38559).

Recombinant IFNλ4 signals through IFNλ.R1 and IL-10R2

The effect of the recombinant IFNλ4 was tested in HL-116 cells. These cells were stably transfected with IFNλ.R1 and a luciferase reporter under the control of the IFI6 promoter (Uze and Monneron, 2007). Recombinant IFNλ4 is highly active and activates the IFI6 promoter in a concentration-dependent manner comparable to IFNλ3 (Figure 2A). Further, we verified the activity of IFNλ4 in HepG2 cells, which express IFNλ.R1 naturally. HepG2 cells were treated with IFNλ2, IFNλ3 or IFNλ4, and the induction of the well-known interferon-stimulated genes (ISGs) MX1, IFT1 and OASL was monitored by qPCR (Figure 2B). All three interferons clearly induced all three genes. In fact, we observed comparable induction by IFNλ3 and IFNλ4. Recombinant IFNλ4 is thus a highly active interferon.

To determine the receptor complex utilised by IFNλ4, we used HEK293 cells. These cells express low levels of IFNλ.R1 and normally respond very poorly to type III interferon (Meager et al., 2005). They do, however, express IL-10R2. In our assay, we introduced a luciferase reporter under the control of the Mx1 promoter in order to measure the interferon activity, and at the same time, we introduced IFNλ.R1 by transfection and/or knocked down IL-10R2, using specific siRNA (Figure 2C). The expression of IFNλ.R1 by transfection renders them highly responsive to both IFNλ4 and IFNλ3. However, this signal is largely lost when IL-10R2 is knocked down using siRNA (Figure 2C). The IFNλ4-mediated signalling was not significantly affected by either overexpression of IFNλ.R1 or knock-down of IL-10R2. To confirm these results, we repeated the experiment now blocking IL-10R2 with a specific antibody which has previously been shown to block IL-10R2 signalling in relation to IFNλ3 (Sheppard et al., 2003). The IL-10R2 antibody did not result in any activation of the reporter gene on its own, but both IFNλ3 and IFNλ4 signalling were sensitive to the IL-10R2 antibody, whereas IFNλ signalling was unaffected. These results conclusively demonstrate that IFNλ4, like the other members of the type III interferon family, signals via a heterodimeric receptor complex consisting of IFNλ.R1 and IL-10R2.

Evaluating IFNλ4 binding to IL-10R2 using structural modelling

Since IFNλ3 and IFNλ4 interact with the same receptor complex, we made a sequence alignment in Clustal W (Figure 3A) and generated a homology model of IFNλ4 (homIFNλ4) using the SWISS-MODEL Workspace with IFNλ3 as a model (Figure 3B). The overall structure of homIFNλ4 is similar to that of IFNλ3 (Figure 3C), as is expected for a homology model. The following observations validate the accuracy of the model. Cys76 and Cys178, which are not present in IFNλ3, are in close proximity in homIFNλ4, and with minor local rearrangements, they could form a disulphide bond (Figure 3B). Furthermore, two conserved disulphide links are expected to exist in IFNλ4, connecting
Figure 2. Activity of recombinant human interferon lambda 4. (A) The activity of IFNλ4 was tested and compared to IFNλ3 in HL-116 reporter cells. Dose response of IFNλ3 and IFNλ4 was performed in triplicate. Mean and s.d. are shown. (B) HepG2 cells were treated with IFNα (1000 U/ml), IFNλ3 (10 ng/ml) or IFNλ4 (10 ng/ml). After 4 h, the level of the interferon-induced genes, IFIT1, MX1 and OASL, was quantified by qPCR. Four independent experiments are shown, mean and s.e.m. are plotted. (C) HEK293 cells were transfected with the IFNλR1 and/or treated with siRNA against IL-10R2 as indicated. The cells were also transfected with Renilla and Firefly luciferase reporter constructs. The Firefly construct is IFN inducible whereas the Renilla is constitutively expressed. The cells were subsequently either treated with IFNλ3, IFNλ4 or left untreated, treatment with IFNα was performed as a control. (D) HEK293 cells were transfected with IFNλR1 as well as Renilla and Firefly luciferase reporter constructs (as in C). The cells were then treated with anti IL-10R2 antibody or control antibody followed by interferon treatment as indicated.

Figure 3. Homology model of human interferon lambda 4. (A) Alignment of IFNλ3 and IFNλ4 using Clustal W. The position of the signal peptide (SP) in IFNλ3 and IFNλ4 is shown. The positions of the helices in IFNλ3 and in the model of IFNλ4 shown in (B) are shown. A possible N-linked glycosylation site at Asn61 is marked by a square in IFNλ4. (B) Homology model of IFNλ4 (homIFNλ4) generated by the Swiss model server using IFNλ3 (PDB entry code HHC3) as a template. The position of the individual structural elements is denoted as A–F. The cysteins are shown as yellow sticks. The positions of C76 and C178 that could form a disulphide bridge specific for IFNλ4 are shown. (C) Superimposition of IFNλ3 (blue) and homIFNλ4 (red). (D) Comparison of helix D of IFNλ3 (blue) and homIFNλ4 (red). The residues that are expected to interact with IL-10R2 are labelled in blue for IFNλ3 and red for IFNλ4. Disulphides are shown in yellow. (E) Superimposition of homIFNλ4 (red) onto IFNλ1 (green) bound to IFNλ2 (cyan). N61 of homIFNλ4 (red) and W47 of IFNλ1 (green) are shown in sticks and labelled.
Cys27 to Cys122 and Cys62 to Cys152. In both cases, homIFN4 is compatible with the formation of these disulphide links. Moreover, superimposing homIFN4 onto the structure of IFNλ1 bound to IFNλR1 clearly shows that the homIFN4 structure is compatible with the IFNλR1 binding.

As noted by Prokunina-Olson et al, the residues in helices A and F, which bind IFNλR1, are well conserved between IFNλ3 and IFNλ4, whereas the D-helix, which is expected to bind IL-10R2, is quite different (Figures 3A and D). Yet our data clearly show that both IFNλ3 and IFNλ4 use IFNλR1 and IL-10R2 for signalling. The model of IFNλ4 suggests a conservation of the helical structure and the way this is presented to IL-10R2. The conserved residues in helix D are primarily hydrophobic residues, which dock helix D to the rest of the structure and thus, determine the steric conformation of this helix. This conservation is most likely crucial for the activation as both receptor chains need to be engaged simultaneously. It is, however, important to remember that IL-10R2 is a shared chain that is capable of binding several different cytokines (IL-10, IL-22 and IL-26 and the IFNλs). The chain is thus promiscuous, allowing itself to interact with different ligands (Logsdon et al., 2012).

To evaluate whether the structure of homIFN4 is compatible with binding to IFNλR1, we superimposed the structure of homIFN4 onto the structure of IFNλ1 in the IFNλ1:IFNλR1 complex (PDB entry code: 3OG6). Figure 3E shows that the overall structure of homIFN4 is very similar to IFNλ1 in the receptor-bound conformation and there are thus no obvious reasons why IFNλ4 would not bind IFNλR1. The glycosylation site N61 in IFNλ4 is equivalent to W47 in IFNλ1. W47 interacts weakly with IFNλR1, but is located at the periphery of the interaction site away from the membrane and is situated in a loop between the A- and B-helixes (Miknis et al., 2010). We believe that this position offers sufficient flexibility to allow for simultaneous glycosylation of N61 and receptor binding.

IFNλ4 possesses strong antiviral activity

As the ss469415590 SNP ΔG leading to the expression of IFNλ4 is associated with poor spontaneous HCV clearance and a negative response to pegIFN-α/RBV treatment, we decided to test the effect of recombinant IFNλ4 against HCV infection. Huh7-Lunet hCD81-Fluc cells were transfected with a HCV genome (JcR2a, encoding luciferase as a reporter), and the 4-h post-transfected cells were treated with IFNζ, IFNλ3 or IFNλ4 for 72 h. All interferon treatments resulted in a concentration-dependent decline in HCV replication (Figures 4A and B). In the Huh7-lunet cells, IFNλ4 is slightly weaker than IFNζ but at the same level as IFNλ3. The experiment was repeated in HepG2 cells, which were treated with the indicated interferons for 48 h. In HepG2 cells, the antiviral activity of all three interferons is at the same level. Thus, using two different liver cell lines, we do not see any measurable difference between IFNλ3 and IFNλ4.

The IFNλR1 chain is primarily expressed on cells of epithelial origin, and it is thus here that IFNλ mostly exerts its effect. We therefore decided to investigate the effect of IFNλ4 in an epithelial cell system. For this study, we used primary HAE cultures. This system is based on primary human bronchial epithelial cells grown in air–liquid interface to obtain fully differentiated pseudostratified HAE layers, and it reflects many characteristics of the conducting human

Figure 4 Antiviral effect of recombinant human Interferon lambda 4 against hepatitis C virus. (A, B) The antiviral effect of IFNα (A), IFNλ3 or IFNλ4 (B) against replication of the HCV JcR-2a chimera in the Huh7-Lunet N hCD81-Fluc cell line is shown. (C, D) The antiviral effect of IFNζ (C), IFNλ3 or IFNλ4 (D) against replication of the HCV JcR-2a chimera in the HepG2 cell line is shown. The plot shows the average of three independent experiments with the Renilla luciferase activity normalised to the untreated control. Background luciferase activity is 0.2% for (A, B) and 2.4% for (C, D).
airways, such as the presence of basal, secretory, columnar and ciliated cell populations and a physical barrier, that is, the mucus (Kindler et al., 2013). The HAE represents the entry port of human respiratory virus infection and is especially well suited for investigating the role of IFNαs. HAE cultures derived from three separate donors were treated with IFNα2, IFNα3 or IFNα4 prior to exposure to a human coronavirus 229E expressing luciferase upon replication (HCoV-229E-luc, 4000 plaque-forming units (PFUs)) (van den Worm et al., 2012). As can be seen in Figure 5A, treating the HAE culture with IFNα2, IFNα3 or IFNα4 reduces replication of HCoV-229E-luc. IFNα2 is the strongest interferon, whereas IFNα3 and IFNα4 are equally strong. In addition, we observed a concentration-dependent effect of IFNα4.

We then performed an experiment testing the effect of IFNα2, IFNα3 and IFNα4 against the novel and highly pathogenic coronavirus MERS-CoV (4000 PFUs). Again, we observed a concentration-dependent effect of IFNα4. To further investigate this effect, we looked at the induction of Mx1, OASL and IFIT1 by qPCR in the HAE cells treated with IFNα2, IFNα3 or IFNα4. All three interferons induced all three genes, and the induction by IFNα3 and IFNα4 is at the same level, whereas IFNα2 is slightly higher. Thus, there is a good agreement between the antiviral activity measured and the induction of ISGs.

Poor secretion of IFNα4 is not due to a weak SP

It was hypothesised by Prokunina-Olson et al that poor secretion of IFNα4 was due to a non-functional SP. Thus, we made chimaeric proteins of IFNα3 with the SP of IFNα4 and vice versa. HEK293 cells were then transfected with these constructs, and the protein secretion was evaluated by western blots of both the media and the cells (Figure 6A). For both the MYC- and FLAG-tagged constructs, IFNα3 is present in the media regardless of whether it has its own or the IFNα4 SP. Contrary to this, IFNα4 is not detectable by western blot in the media regardless of the SP. Thus, the poor secretion of IFNα4 cannot solely be ascribed to the SP.

In the case of IFNα4, we observed two bands in the transfected cells at around 18–19 and 20–22 kDa, respectively (Figure 6A, left panels). The bottom band corresponds to the expected size of IFNα4 with the MYC or FLAG tags. As IFNα4 is predicted to contain a single N-linked glycosylation site at Asn61 (marked with a square in Figure 3A and labelled in Figure 3E), the upper band could be due to glycosylation. To test this, we treated the cell lysates from the IFNα4-transfected cells with PNGase F that cleaves N-linked glycosylation between the asparagine and the innermost N-acetylchondrosamine of high mannose, hybrid and complex oligosaccharides. As can be seen on the right in Figure 6A, treatment with PNGase F resulted in a single band at 18–19 kDa, showing that IFNα4 gets glycosylated.

To test whether active IFNα3 was secreted from the transfected cells, we added the supernatant from the transfected cells in Figure 6A to HEK293 transfected with an interferon-inducible luciferase reporter system, with and without the expression of IFNαR1. This resulted in a clear signal from both IFNα3 and IFNα4, which was dependent upon IFNαR1 (Figure 6B). In order to estimate how much IFNα4 is secreted, we titrated the supernatants from IFNα3- and IFNα4-transfected cells (Figure 6C), and here we observed a substantially lower activity in the supernatant from IFNα4-transfected cells.

Figure 5 Antiviral effect of IFNα4 in human airway epithelial (HAE) cell culture. (A) The antiviral effect of IFNα2, IFNα3 and IFNα4 against the human coronavirus HCoV-229E expressing luciferase was tested in human HAE cultures. For each data point, triplicate measurements were performed on three different donors, mean and s.d. are shown. (B) The antiviral effect of IFNα2, IFNα3 and IFNα4 against the coronavirus MERS-CoV was tested in human HAE cultures. As in (A), experiments were performed in triplicate on each of the three donors, mean and s.d. are shown. (C) HAE cell cultures were treated with IFNα2 (100 U/ml), IFNα3 (10 ng/ml) or IFNα4 (10 ng/ml). After 72 h, the level of the interferon-induced genes IFIT1, MX1 and OASL were quantified by qPCR, mean and s.e.m. are indicated.
as compared to IFN-3-transfected cells (5- to 6-fold difference in EC50 values). Thus, IFN-4 is secreted at substantially lower levels. Swapping the SPs made no difference for IFN-3, which was equally well produced with its own or the SP of IFN-4. In the case of IFN-4, adding the SP of IFN-3 lead to lower levels of secreted interferon activity.

Glycosylation of IFN-4 is required for secretion but does not influence activity

As described above, IFN-4 contains a potential N-linked glycosylation site, and we observed a fraction of the intracellular protein which had a size suggesting post-translational modifications. Thus, we wanted to address the glycosylation state of the secreted IFN-4. As IFN-4 levels were too low to be detected using standard western blotting, we first refined the detection of IFN-4 in the media of transfected cells using acetone precipitation (Figure 7A). The western blot revealed IFN-4 of a size consistent with glycosylation, and this result was confirmed with PNGase F treatment. Next, we made a mutant of IFN-4 where the glycosylated asparagine residue N61 was mutated to aspartate (IFN-4 N61D). HEK293 cells were transfected with empty vector, IFN-4, IFN-3 or IFN-4 N61D, and the intracellular and extracellular fractions were analysed by western blotting (Figure 7B). IFN-4 N61D only gives one band on the western blot of the intracellular fractions corresponding to the unmodified IFN-4. Neither IFN-4 nor IFN-4 N61D is detectable in the extracellular fraction by standard western blotting. However, when we carry out acetone precipitation on the media before western blotting, we see a clear band for IFN-4, but not for IFN-4 N61D, showing that this mutation further impairs the secretion of IFN-4. This is also reflected in the IFN-4 activity (performed as in Figure 6C), where the activity in the supernatant of cells transfected with IFN-4 N61D is greatly decreased compared to that from cells transfected with IFN-4 (Figure 7C).

As the E. coli-produced IFN-4 is fully active and contain no glycosylation, this cannot be a prerequisite for activity. However, the question arose whether the glycosylated IFN-4 is active or whether low levels of unglycosylated protein that is undetectable by western blotting even after acetone precipitation mediate the activity. To exclude that non-glycosylated IFN-4 could be the source of the interferon activity, we incubated media from IFN-4-transfected cells with Concanavalin A (Con A) beads. Con A is a lectin that binds terminal α-D mannose and α-D glucose found on high mannose and hybrid N-linked glycans. Media from cells transfected with IFN-4 or empty vector were incubated with Con A beads. In the IFN-4-transfected cells, there was interferon activity in the input before addition of the Con A beads and this activity was removed after incubation with the beads (Figure 7E). This shows that the glycosylated IFN-4 is the source of the measured interferon activity. We attempted to elute IFN-4 from the beads using standard elution buffer but without success, as seen by the lack of activity (Figure 7D) and protein (Figure 7E) in the eluate. Nevertheless, we were able to confirm that IFN-4 was bound to the Con A beads by boiling these beads in SDS page buffer and performing a western blotting (Figure 7E).
Discussion

IFN4 signals through the IFNR_{1}:IL-10R2 receptor complex

We produced recombinant IFNN_{4} protein in E. coli and did not observe any substantial difference in the behaviour of IFNN_{4} compared to the other isoforms of IFNN_{3} during purification. First, we tested the activity of IFNN_{4} in a standard reporter gene assay, utilising a luciferase gene under the control of the IFI6 gene promoter (Uze and Monneron, 2007). The resulting dose response curves were comparable to IFNN_{3} and IFNN_{4}. Furthermore, we tested induction of individual ISGs by both IFNN_{3} and IFNN_{4}, and again we observed comparable levels of induction by both isoforms. Thus, we conclude that IFNN_{3} and IFNN_{4} are equally strong in inducing ISGs.

Based upon the low sequence similarity between IFNN_{4} and other isoforms of IFNN_{3} in the region known to bind IL-10R2, Prokunina-Olsson et al. (2013) understandably questioned whether IFNN_{4} uses this receptor chain for signalling. First, we confirmed the use of the IFN$\text{N}_{3}$$\text{R}_{1}$ receptor chain by IFNN_{4}, as IFNN_{4} signalling was restored in HEK293 cells upon transfection with IFN$\text{N}_{3}$$\text{R}_{1}$. Next, we demonstrated the involvement of IL-10R2 both by siRNA knockdown and by blocking the IL-10R2 chain by a specific antibody that has been used to define the receptor usage of the other IFNNs (Sheppard et al., 2003). Thus, IFNN_{4} leads to the activation of an interferon response and mediates antiviral effects through the canonical IFNN receptor complex composed of IFN$\text{N}_{3}$$\text{R}_{1}$ and IL-10R2. However, these results do not exclude the possibility that IFNN_{4} can signal through other types of cytokine receptors, but it would indicate that if such a signalling existed it would not involve the regulation of classical ISGs.

IFNN_{4} is a disadvantage in the context of HCV infection despite possessing a strong anti-HCV activity

We measured the antiviral activity of IFNN_{4} against HCV, HCoV-229E and MERS-CoV and compared it to the antiviral activity of IFNN_{3} and IFNN_{2}. To our surprise, the antiviral activity of IFNN_{3} and IFNN_{4}, respectively, was indistinguishable in all viral infection models tested. For HCV, we tested two different hepatic cell lines, Huh7 and HepG2, and in neither case did we observe any difference between IFNN_{3} and IFNN_{4}. Likewise, using primary HAE cells for the infection with either HCoV-229E or MERS-CoV, we did not observe any difference between IFNN_{3} and IFNN_{4}. This is remarkable as the sequence identity between the two isoforms is only 29% (Prokunina-Olsson et al., 2013), and our preliminary bioinformatics studies reveal that the protein sequence of IFNN_{4} is well conserved among mammals (data not shown). Thus, there must have been an evolutionary pressure to keep IFNN_{4} as a functional protein throughout the mammalian evolution until the sudden introduction of a frameshift mutation in humans. Since the inactivation of the IFNN_{4} gene is strongly correlated with increased likelihood of spontaneous clearance of HCV as well as with a positive response to the treatment with type I IFN, it appears that the production of IFNN_{4} protein is actually a disadvantage during HCV infection. Furthermore, there appears to be a positive selection in humans for the frameshift mutation abolishing IFNN_{4} production (Prokunina-Olsson et al., 2013). Whether this selection is solely driven by HCV is currently not known. IFNN_{4} production could even be beneficial in the context of other viral infections. It was thus recently reported that the SNPs that have been shown to be favourable for the treatment outcome as well as the likelihood for spontaneous clearance of HCV are associated with poor recovery from hepatitis B virus infection (Kim et al., 2013).
How a functional interferon suddenly becomes a liability during HCV infection is a paradox that we are currently unable to explain. As discussed above, the induction of ISGs occurs through the canonical IFN₃ receptor complex, but we cannot exclude that IFN₄ has activities outside the induction of ISGs, which could be mediated through an as yet unidentified receptor. However, our data suggests that IFN₄ is highly active against HCV despite the fact that it has been shown to be a predictor of poor response to HCV. The current data cannot exclude indirect genetic effects, and thus it is not firmly proven that the IFN₄ protein is the causal agent for the poor prognosis of HCV patients with a functional IFN₄ gene. Furthermore, no evidence for the presence of the IFN₄ protein in HCV patients exists to date. However, if one assumes that the IFN₄ protein is the causal agent, this would suggest a complicated relationship between IFN₄ and HCV in humans, where IFN₄ somehow impairs a full immune response towards HCV. We have produced fully functional IFN₄ protein which should be used for further studies of IFN₄ on hepatic and immune cells. Furthermore, it will be important to address whether HCV is driving the selection of the TT allele (non-functional IFN₄) and if the introduction of the TT allele changes susceptibility towards other viral infections.

Poor secretion of IFN₄ is not determined by the SP

The inability of the IFN₄ protein to be properly secreted by cells was previously reported, and the authors speculated that this might be due to a weak SP (Prokunina-Olsson et al., 2013). We produced chimaeric cDNAs where we had swapped the SPs between IFN₃ and IFN₄. Here, we observed that the IFN₄ protein was retained within the cells regardless of which SP was used, and likewise the secretion of the mature IFN₃ protein was not significantly affected by the SP used. By both immunoprecipitation and acetone precipitation, we were able to show that IFN₄ get secreted, but with much lower efficiency than what seen for IFN₃, which is also reflected by the reduced activity of media from IFN₄-transfected cells compared to media from IFN₃-transfected cells.

Glycosylation of IFN₄ is required for proper secretion and does not interfere with activity

We tested for the presence of intracellular IFN₄ by western blots of cell lysates and observed two isoforms of IFN₄. Digestion with PNGase F, which removes N-linked glycans, revealed that this was due to incomplete glycosylation of IFN₄. By using acetone precipitation to concentrate the protein in the media, we were able to show that all secreted IFN₄ protein appeared to contain the N-linked glycosylation. This is in agreement with the current dogma that proteins need to complete their glycosylation before being exported to the extracellular media. It is not clear to us how the cell senses the difference between proteins, which are glycosylated like IFN₃ and proteins that are not glycosylated like IFN₄. We produced a glycosylation-deficient mutant of IFN₄ (IFN₄ N61D), and observed that the secretion of this mutant was greatly impaired, confirming that the N-linked glycosylation is needed for proper secretion. These results also suggested that IFN₃ and IFN₄ use different pathways for secretion, and that removing the N-linked glycosylation site is not sufficient to make IFN₄ shift to the secretion pathway used by the non-glycosylated IFN₃.

The question whether the glycosylation impairs activity was also raised. As the E. coli-produced protein is fully active, it is obvious that the glycosylation is not required for activity, but could it interfere with receptor binding? Our structure modelling suggested that the sugars were attached outside the receptor-binding site, and the activity that we recovered from the supernatant of IFN₄-transfected cells, which appeared only to contain glycosylated IFN₄, suggested that the sugars did not interfere with activity. However, to confirm this result, we used Con A beads to deplete the media from glycosylated IFN₄. As this led to an almost complete loss of activity, we conclude that the IFN₄ secreted from HEK293 cells is both glycosylated and active.

The poor processing and secretion of the IFN₄ protein are currently what makes it stand out in comparison to the other IFN₃ proteins, and our data suggest that the block in secretion takes place after the translocation to the Golgi, as the SP appears to be efficiently cleaved off. The lack of secretion of IFN₄ led several news and views papers to suggest the presence of an intracellular receptor. Our data clearly demonstrate that IFN₄ does use the normal receptor situated at the cellular membrane, although we cannot formally exclude the presence of an intracellular receptor. However, we consider it likely that the activation of the interferon pathway, which was observed after transfection of HepG2 cells with IFN₄ expressing plasmids (Prokunina-Olsson et al., 2013), is due to low levels of secreted IFN₄.

Materials and methods

Protein expression, purification and refolding

IFN₄ (NM_001276254, amino acids 23–179) preceded by a 6 × His tag followed by a TEV protease cleavage site was codon optimised for E. coli and purchased from Invitrogen. This construct was cloned into the pET-15b vector using Fastdigt KpnI (Thermo Scientific, catalogue number FD0524) and Fastdigest Xhol (Thermo Scientific, catalogue number FD0694). BL21 (DE3) E. coli cells transformed with the plasmids were grown at 37°C in Luria Bertani medium containing 100 µg/ml ampicillin and 100 µl antifoam A concentrate (Sigma-Aldrich, catalogue number A5633) under continuous shaking until an OD₅₆₀ of 0.8–1. Protein expression was induced by adding 1 mM isopropyl-β-D-thiogalactopyranoside and incubated for another 4h at 37°C. Refolding and purification were performed as previously described (Dellgren et al., 2009).

Plasmids

The pEF2-IFN₃ and the pEF2-IFN₄ R1 vectors were kind gifts from Professor Sergei Kotenko (UMDNJ-New Jersey Medical School, Newark, USA). The human IFN₄ gene (NM_001276254), including the SSP, was purchased from Invitrogen. The following constructs were generated using Accupol (Amplicon, catalogue number 210302) following the manufacturer's instructions: IFN₄_FLAG (Template: IFN₄, forward primer: gtggtggaccgcctgggtatctgctgg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc), IFN₃_FLAG (Template: pEF2-IFN₃, forward primer: gtggtgta ccatgcagcccccggtg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc), IFN₄_FLAG (Template: IFN₄, forward primer: gtggtggaccgcctgggtatctgctgg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc), and IFN₃_FLAG (Template: IFN₃, forward primer: gtggtgta ccatgcagcccccggtg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc), as well as IFN₃_MYC (Template: IFN₃, forward primer: gtggtggaccgcctgggtatctgctgg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc), and IFN₄_FLAG (Template: IFN₄, forward primer: gtggtggaccgcctgggtatctgctgg, reverse primer: agttctagatcactgctgactggagcagccccccggcgctgcctgctctcgc).
forward primer: gttgtagctagcagccggccagt, reverse primer: agtt
catgatacagctcctcctctaatcagtttctgctccgatccgaggcaaggccc
ccgccgctgcgcctgctctcg, IFN3SP_IFN4_MYC (Template: IFN4, forward primer: gttgtagct
atgatacagctcctcctctaatcagtttctgctccgagctgttcgctgacctgcagac
cccgccgctgcgcctgctctcg, reverse primer: agttgtagatacagctcctcctca
taatcagtttctgctccgagctgttcgctgacctgcagac
cccgccgctgcgcctgctctcgc, and IFN4SP_IFN3_MYC
(Template: pEF2-IFN3, forward primer: gttgtagctagcagcgcggccagc
ggcgcgcagtggccgcggggctgtgggtcctgtgcacggtgatcgcagaggttcctgtcgccag
cccgccgctgcgcctgctctcg, reverse primer: agttgtagatacagctcctcctca
taatcagtttctgctccgagctgttcgctgacctgcagac
cccgccgctgcgcctgctctcgc). The following PCR programme was used: 1
95 °C for 5 min 2: 30 cycles of 95 °C for 1 min, 59 °C for
1 min and 72 °C for 1 min 45 s 3: 72 °C for 7 min. All
the constructs were cloned into the pEF2 vector using Fastdigest Kpn I
and left to rest for 72 h. After 24 h, the cells were transfected using Lipofectamine 2000
(Invitrogen) with plasmids coding IFN4 and IFN3 with the help of
Huh-7.5 lentiviral gene transfer as previously described (Gentzsch
et al, 2013). This reference also
provides primer sequences. The crossing points of the amplification
curves were determined using the second derivate method on the
Roche LightCycler software 3.5 (Roche). The data obtained
from the Light Cycler were normalised using the mathematical
superimposition was performed in pymol (DeLano, 2008).

Alignment of IFN3 and IFN4 and the model of IFN4.
The alignment of human IFN3 (NCBI accession code: NP_742151.2)
and human IFN4 (NCBI accession code: AF038559.1) was
performed in Clustal W2 using the default settings (Larkin et al, 2007).
The full-length proteins including the SPs were used. The model of
IFN4 was generated in the SWISS-MODEL workspace (Bordoli
et al, 2009) using the sequence of IFN4 without the SP and the structure
of human IFN3 (PDB entry code: HH3C) as a model. Structural
superimposition was performed in pymol (DeLano, 2008).

HCoV-229E infection of HAE
Human bronchial epithelial cells were isolated from patients (> 18
years old), who underwent bronchoscopy and/or surgical lung
resection in their diagnostic pathway for any pulmonary disease
and that gave informed consent. This was done in accordance with
the local regulation of the Kanton St. Gallen, Switzerland, as part of
the St. Gallen Lung Biopsy Biobank (SGLBB) of the
Kantonal Hospital, St. Gallen, which received approval by the ethics commit-
tee of the Kanton St. Gallen, Switzerland, as part of
the local regulation of the Kanton St. Gallen, Switzerland, as part of
the ethics committee (the Kanton St. Gallen (EKSG 11/044, EKSG 11/103). HAE
cultures were prepared as previously described (Dijkman et al,
2009). HAE cultures were used 28 days post exposure of the
apical surface to air for infection studies. IFN 3A/D (J4401, Sigma Aldrich),
IFN3 or IFN4 was added to the basolateral medium 4–16 h prior to infection, after which the
basolateral medium was replaced, and 20,000 PFFUs of HCoV-229E-rc were
applied apically. At 24 h post infection Renilla luciferase activity was
determined from cell lysates infected with HCoV-229E-rc.
The MERS-CoV infection was performed as previously described
(Kindler et al, 2013).

HCV replication
The Huh7-Lunet N hCD81-Fluc cell line was generated from the
Huh7-Lunet N hCD81 parental cell line (Bitzegeio et al, 2010) by
lentiviral gene transfer as previously described (Gentzsch et al,
In all, 4 \times 10^6 Huh-7-Lunet N HCD81-FLuc cells or 6 \times 10^6 HepG2-CDB1-mi122 cells (Narbus et al., 2010) were electroporated with 5 \mu g of \textit{in vitro}-transcribed JcR-2a RNA as previously described (Haid et al., 2010). The JcR-2a construct corresponds to the full-length infectious HCV Jc1 chimeric clone (Pietschmann et al., 2008; expression of Renilla luciferase reporter gene (Reiss et al., 2011). Electroporated cells were resuspended into 20 ml complete medium and seeded in 96-well dishes (100 \mu l/well). Four hours post electroporation, the cell medium was replaced by serially media without antibiotics and serum to a concentration of 1.5 ml.

In all, 120 \times 10^6 HEK293 cells were grown in 15 cm dishes using 20 ml DMEM supplemented with 10% FBS and left to rest for 24 h. After 24 h, cells were transfected using Lipofectamine 2000 (Invitrogen) either with plasmids coding IFN\(\gamma\)s (6-well format) or co-transfected with plasmids coding IFN\(\alpha\)1, Firefly Luciferase under the control of the Mx\(1\) promoter and Renilla Luciferase under the control of the Mx\(1\) promoter (24-well format). Six hours post transfection, cells transfected with IFN\(\gamma\)s were given fresh media (DMEM, 10% FBS and 100 U/ml Penicillin and 100 \mu g/ml Streptomycin). Twenty hours post transfection, media from cells transfected with IFN\(\gamma\)s was harvested, spun down at 500 r.c.f. for 8 min and added to cells co-transfected with IFN\(\gamma\)R1 and Luciferases in different dilutions. After 24 h, the cells were washed with PBS and lysed. Lysates were centrifuged at 10,000 r.c.f. for 2 min at 4°C, and cleared lysates were used for the measurement of Firefly activity (Dual-Luciferase Reporter Assay System, Promega).

For transfection experiments, HEK293 cells were seeded in 24-well plates (1.5 \times 10^5 cells/well) or 6-well plates (7 \times 10^5 cells/well) in DMEM supplemented with 10% FBS and left to rest for 24 h. After 24 h, cells were transfected using Lipofectamine 2000 (Invitrogen) with plasmids coding IFN\(\alpha\)3 or IFN\(\gamma\)A and IFN\(\gamma\)B (Narbus et al., 2010). The JcR-2a construct corresponds to the full-length infectious HCV Jc1 chimeric clone (Pietschmann et al., 2008). The JcR-2a construct is a bicistronic clone containing a Renilla luciferase reporter gene (Reiss et al., 2011). Electroporated cells were resuspended into 20 ml complete medium and seeded in 96-well dishes (100 \mu l/well). Four hours post electroporation, the cell medium was replaced by serially diluted IFN \(\alpha\)2b (Intron\(\alpha\), Essex Pharma). IFN\(\gamma\)s or IFN\(\gamma\)A. For each dilution, triplicate wells were used. Cells were lysed (HepG2 derived) or 72 h (Huh-7-Lunet) post electroporation in passive lysis buffer (Promega), and Renilla Luciferase activity was measured to evaluate HCV replication (Vieyres and Pietschmann, 2013).

Activity of secreted IFN\(\gamma\)3 and IFN\(\gamma\)4

The media was harvested from cells transfected with IFN\(\gamma\)s to obtain supernatants. The supernatants were transferred into 1.5 ml microcentrifuge tubes and left for 15–20 min at RT before addition to the cells. The cells were harvested at 37°C for 8 h, after which the media was isolated by centrifugation at 10,000 r.p.m. for 10 min.

Immunoprecipitation

In all, 8 \times 10^6 HEK293 cells were grown in 15 cm dishes using 20 ml of media and transfected as described. The supernatants were harvested from cells transfected with 100 \mu l of ANTI-FLAG\(\beta\) M2 Affinity Gel (SIGMA-Aldrich, catalogue number A2220) for 3 h. The beads were washed two times in 0.5 ml PBS containing 2% Triton X-100 and 100 \mu g/ml PNGase F was added. This mixture was incubated at 37°C for 1 h and analysed by western blotting.

Concanavalin A

In all, 2 ml glucose-free DMEM (Sigma) from IFN\(\gamma\)A-FLAG and mock (pCDA3.1) transfected cells was used for the measurement of Firefly activity (Dual-Luciferase Reporter Assay System, Promega).

In all, 120 \times 10^6 HEK293 cells were grown in 15 cm dishes using 20 ml of media and transfected as described. The supernatants were harvested from cells transfected with 100 \mu l of ANTI-FLAG\(\beta\) M2 Affinity Gel (SIGMA-Aldrich, catalogue number A2220) for 3 h. The beads were washed two times in 0.5 ml PBS containing 2% Triton X-100 and 100 \mu g/ml FLAG peptide (SIGMA-Aldrich, catalogue number F3290) for 30 min. The beads were precipitated by centrifugation at 8000 r.p.m. for 1 min, and the supernatant was isolated and analysed by western blotting.

Concanavalin A

In all, 2 ml glucose-free DMEM (Sigma) from IFN\(\gamma\)A-FLAG and mock (pCDA3.1) transfected cells was used for the measurement of Firefly activity (Dual-Luciferase Reporter Assay System, Promega).

In all, 120 \times 10^6 HEK293 cells were grown in 15 cm dishes using 20 ml of media and transfected as described. The supernatants were harvested from cells transfected with 100 \mu l of ANTI-FLAG\(\beta\) M2 Affinity Gel (SIGMA-Aldrich, catalogue number A2220) for 3 h. The beads were washed two times in 0.5 ml PBS containing 2% Triton X-100 and 100 \mu g/ml PNGase F was added. This mixture was incubated at 37°C for 1 h and analysed by western blotting.

Acetone precipitation

The media was harvested from cells transfected with IFN\(\gamma\)s to obtain supernatants. The supernatants were transferred into 1.5 ml microcentrifuge tubes and left for 15–20 min at RT before addition to the cells. The cells were incubated for 18 h, after which the media was isolated by centrifugation at 7000 r.p.m. for 10 min.

Immunoprecipitation

In all, 8 \times 10^6 HEK293 cells were grown in 15 cm dishes using 20 ml of media and transfected as described. The supernatants were harvested from cells transfected with 100 \mu l of ANTI-FLAG\(\beta\) M2 Affinity Gel (SIGMA-Aldrich, catalogue number A2220) for 3 h. The beads were washed two times in 0.5 ml PBS containing 2% Triton X-100 and 100 \mu g/ml FLAG peptide (SIGMA-Aldrich, catalogue number F3290) for 30 min. The beads were precipitated by centrifugation at 8000 r.p.m. for 1 min, and the supernatant was isolated and analysed by western blotting.

Deglycosylation

Deglycosylation was performed using Glycerol Free PNGase F (New England Biolabs, catalogue number P0705S). For deglycosylation, 9 \mu l of the cell lysate was added with 1 \mu l of 10x Glycoprotein denaturing buffer and denatured by heating at 100°C for 10 min. Then 5 \mu l H\(\text{2}\)O, 2 \mu l of G7 reaction buffer, 2 \mu l 10% NP-40 and 1 \mu l PNGase F was added. This mixture was incubated at 37°C for 15 h and analysed by western blotting.

Acetone precipitation

The media was harvested from cells transfected with IFN\(\gamma\)s to obtain supernatants. The supernatants were transferred into 1.5 ml microcentrifuge tubes and left for 15–20 min at RT before addition to the cells. The beads were washed with PBS before incubation with 1 ml of elution buffer (glucose-free DMEM supplemented with 500 mM glucose) for 30 min. The activity of the flow through and eluate was investigated in HEK293 cells co-transfected with plasmids coding IFN\(\gamma\)R1, Firefly Luciferase under the control of the Mx\(1\) promoter and Renilla Luciferase under the control of the \(\beta\)-actin promoter (24-well format) as previously described. The protein content was evaluated in the flow through, eluate and on the beads by western blotting. The beads were boiled in SDS loading buffer for 10 min before loading on the gel.

Acknowledgements

We wish to thank Dr Sergei Kotenko for the kind gift of the IFN\(\gamma\)R1 and IFN\(\gamma\)3 expression plasmids, Dr Georg Kochs for the Mx-Luc reporter plasmid and Dr Gilles Uze for the gift of HL-116 cells expressing the IFN\(\gamma\)R1. We are also in debt to Lisbeth Heilesen and Dr Hans Henrik Gad for critical reading of the manuscript. This work was funded by the Danish Cancer Society (grant: R20-A927; RH), and the Danish Council for Independent Research, Medical Research (grant 11-107588; RH); the Swiss National Science Foundation (project 31003A_132898; VT), the 3R Research Foundation Switzerland (project 128-11; VT and RD), and the Deutsche Forschungsgemeinschaft (Priority Programme (SPP) 1596; VT).

Author contributions: OJH, ET-D, GV, RD, SEI, PS and HA designed, performed and analysed the experiments; TP, VT and RH supervised research; OJH and RH conceived the project and prepared the manuscript; all authors commented on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.
Delggren C, Gad HH, Hamming OJ, Melchjorsen J, Hartmann R (2009) Human interferon-lambda3a is a potent member of the type III interferon family. *Genes Immun* **10**:125–131

Dickensheets H, Sheikh F, Park O, Gao B, Donnelly RP (2013) Interferon-lambda (IFN-lambda) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. *J Leukoc Biol* **93**:377–385

Dijkman R, Koeckx SM, Molenkamp R, Schildgen O, van der Hoek L (2009) Human bocavirus can be cultured in differentiated human airway epithelial cells. *J Virol* **83**:7739–7748

Doyle SE, Schreckhise H, Khuu-Duong K, Henderson K, Rosler R, Gentzsch J, Hinkelmann B, Kaderali L, Irschik H, Jansen R, Sasse F, Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah LP, Rasenack J, Blum HE, Haller O, Kochs G (2006) Rapid and simple infection in a human hepatocyte cell line. *J Virol* **80**:10605–10607

Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renaud JC (2003) Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT1, STAT2 and STAT3). *Biochem J* **370**:391–396

Fox BA, Sheppard PO, O’Hara PJ (2009) The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. *PLoS One* **4**:e49353

Gad HH, Delggren C, Hamming OJ, Vends S, Paludan SR, Hartmann R (2009) Interferon-lambda is functionally an interferon but structurally related to the interferon-κ-family. *J Biol Chem* **284**:20869–20875

Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. *Nature* **461**:399–401

Gentzsch J, Hinkelmann B, Kaderali L, Irschik H, Janssen R, Sasse F, Frank R, Pietschmann T (2011) Hepatitis C virus complete life cycle screen for identification of small molecules with pro- or antiviral activity. *Antiviral Res* **89**:136–148

Haid S, Windisch MP, Bartenschlager R, Pietschmann T (2010) Mouse-specific residues of claudin-1 limit hepatitis C virus genotype 2a infection in human hepatocyte cell lines. *J Virol* **84**:964–975

Jorns C, Holzinger D, Thimme R, Spangenberg HC, Weidmann M, Rasenack J, Blum HE, Haller O, Kochs G (2006) Rapid and simple detection of IFN-neutralizing antibodies in chronic hepatitis C non-responsive to IFN-alpha. *J Med Virol* **78**:74–82

Kim SU, Song KJ, Chang HY, Shin EC, Park JY, Kim Do Y, Han KH, Peipert JC, Thimme R, Spangenberg HC, Weidmann M, Haid S, Windisch MP, Bartenschlager R (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. *Proc Natl Acad Sci USA* **103**:7408–7413

Kotenko SV, Mahlakouv T, Dijkman R, Duerr CU, Michiels T, Stockinger S, Staeheli P, Hornet MW (2011) IFN-lambda determines the intestinal epithelial antiviral host defense. *Proc Natl Acad Sci USA* **108**:7944–7949

Krauson-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mummy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkowski HL, Edlin BR, Howell CD, Morgan TR et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. *Nat Genet* **45**:164–171

Ramos EL (2010) Preclinical and clinical development of pegylated interferon-lambda 1 in chronic hepatitis C. *J Interferon Cytokine Res* **30**:591–595

Ray K (2013) Hepatitis: New gene IFNL4 is associated with impaired clearance of HCV. *Nat Rev Gastroenterol Hepatol* **10**:63

Reiss S, Rebhan I, Backes P, Romero-Brey I, Erle H, Matula P, Kaderali L, Poenisch M, Blankenburg H, Hiet MS, Longierich T, Diehl S, Ramirez F, Balla T, Rohr K, Kaul A, Buhler S, Pepperkok R, Lengauer T, Albrecht M et al (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. *Cell Host Microbe* **9**:32–45

Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeier S, Wu SC, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkowski HL, Edlin BR, Howell CD, Morgan TR et al (2013) A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. *Nat Genet* **45**:164–171

Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’Huigin C, Kidd J, Kidd K, Khakoo S, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, Dorsch PD, Garber G, DeVivo DC, Goldstein DB, Carrington M (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. *Nature* **461**:798–801

Uze G, Monneron D (2007) IL-28 and IL-29: newcomers to the interferon family. *Biochimie* **89**:729–734

van den Worm SH, Eriksson KK, Zevenhoven JC, Weber F, Zust R, Davidson AD (2012) Reverse genetics of SARS-related coronavirus. *Methods* **59**:233–248

Wang Y, Li J, Wang X, Ye L, Zhou Y, Ho W (2013) Induction of interferon lambda 3b is antiviral in human hepatocytes. *J Interferon Cytokine Res* **29**:79–85

Weber F, van den Worm SH, Eriksson KK, Zevenhoven JC, van Vloten A, Zevenhoven-Janssen JG, Goldstein DB, Carrington M (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. *Nature* **461**:798–801

Uze G, Monneron D (2007) IL-28 and IL-29: newcomers to the interferon family. *Biochimie* **89**:729–734

van den Worm SH, Eriksson KK, Zevenhoven JC, Weber F, Zust R, Davidson AD (2012) Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. *PLoS One* **7**:e32857

Vieyres G, Pietschmann T (2013) Entry and replication of recombinant hepatitis C viruses in cell culture. *Methods* **59**:233–248

Wang Y, Li J, Wang X, Ye L, Zhou Y, Ho W (2013) Induction of interferon lambda 3b is antiviral in human hepatocytes. *J Interferon Cytokine Res* **29**:79–85

Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R (2007) Type III interferon (IFN) induces a type I IFN-like response in the restricted subset of signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinase. *J Virol* **81**:7749–7758