Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and Pond Wolf Spider

Lin Niu1, Amani Mannakkara2,3, Lin Qiu1, Xiaoping Wang1, Hongxia Hua2, Chaoliang Lei1, Juan Luis Jurat-Fuentes1,3 & Weihua Ma1

Transgenic rice expressing cry genes from the bacterium Bacillus thuringiensis (Bt rice) is highly resistant to lepidopteran pests. The brown planthopper (BPH, Nilaparvata lugens) is the main non-target sap-sucking insect pest of Bt transgenic rice. The pond wolf spider (PWS, Pardosa pseudoannulata) is one of the most dominant predators of BPH in rice fields. Consequently, the safety evaluation of Bt rice on BPH and PWS should be conducted before commercialization. In the current study, two experiments were performed to assess the potential ecological effects of Bt rice on BPH and PWS: (1) a tritrophic experiment to evaluate the transmission of Cry1Ac, Cry2Aa and Cry1Ca protein in the food chain; and (2) binding assays of Cry1Ac, Cry2Aa and Cry1Ca to midgut brush border membrane proteins from BPH and PWS. Trace amounts of the three Cry proteins were detected in BPH feeding on Bt rice cultivars, but only Cry1Ac and Cry2Aa proteins could be transferred to PWS through feeding on BPH. In vitro binding of biotinylated Cry proteins and competition assays in midgut protein vesicles showed weak binding, and ligand blot analysis confirmed the binding specificity. Thus, we inferred that the tested Bt rice varieties have negligible effects on BPH and PWS.

Rice (Oryza sativa) is one of the most important food crops in Asia1. There are more than 200 species of insect pests that infect rice during its growing season2, including the striped stem borer (Chilo suppressalis) and leaf-folders (Cnaphalocrocis medinalis), which are chronic lepidopteran pests responsible for large annual losses3,4. Traditional management of lepidopteran pests relies on chemical pesticides that not only cause environmental contamination and potential risks to human health, but may also reduce the populations of beneficial predatory insects5,6. Transgenic plants containing cry genes have been proven effective against lepidopteran insect pests3 and have been successfully developed for the management of caterpillars3,7–13. However, similar to other plant protection strategies, the adoption of Bt rice may have potential risks to the environment. One of the main concerns of using transgenic Bt crops is their potential impact on non-target herbivorous insects and their predators, which provide important ecological functions14–16.

The brown planthopper (BPH, Nilaparvata lugens Stål) (Hemiptera: Delphacidae) is found in most rice fields worldwide17,18. This insect is easy to rear in the laboratory, which makes it an ideal arthropod candidate for the evaluation of potential risks associated with transgenic rice. Former publications on the effects of Bt rice on BPH address the survival, growth, oviposition behavior19–23, or field population dynamics of the insect21,22–25. Our previous study has showed that Bt rice has no detrimental effects on the digestion, detoxification and immune responses of BPH22. In addition, Bt toxin was detected in the honeydew of BPH after being fed on transgenic Bt rice, but no effects on the fitness of the BPH or its predator Cyrtorhinus lividipennis were observed26. The Cry1Ab protein maybe transferred from transgenic rice plants to BPH27, and from BPH to its predator wolf spider (WS, Pirata subpiraticus)28. However, the possibility of insecticidal proteins from Bt rice binding to the BPH midgut remains unclear.

1Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. 2Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81100, Sri Lanka. 3Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA. Correspondence and requests for materials should be addressed to W.M. (email: weihuama@mail.hzau.edu.cn)
Spiders are generalist predators and prey on insect pests that infect crops. The Cry proteins produced by Bt may be transferred to the predators through the herbivorous insects feeding on Bt rice plants. The pond wolf spider (PWS, Pardosa pseudoannulata) is one of the dominant spider species in Chinese farmlands. Tian et al. demonstrated that Cry1Ab toxin could be transferred from the Bt rice lines KMD1 and KMD2 through the BBMV to PWS, but that the tested Cry1Ab rice line did not influence the spider's fitness. Zhou et al. showed that the activities of three key metabolic enzymes were significantly influenced in PWS after feeding on Cry1Ab-containing fruit flies. Moreover, Bernal et al. detected Cry1Ab toxin in honeydew from BPH and concluded that BPH and its predator C. lividipennis, could be exposed to Bt toxins from Bt rice. Cry1Ab from Bt rice can be transferred to BPH and thus expose its predator Propylea japonica, but no adverse effects have been found on any of the fitness parameters. When supplied with Bt rice-fed BPH, the Cry1Ab protein was detected in Ummelidua insecticeps, but no effects on its survival and development were observed. Despite these previous reports, very few studies have detected the binding of the Cry protein in the predator spider, and the Cry binding protein in PWS is still unknown.

In the current study, we used three transgenic Bt rice lines producing Cry1Ab/1Ac fused proteins, Cry2Aa or Cry1Ca proteins to investigate the effects of B toxins on the non-target insect BPH and its predator PWS. The work reported here had 2 objectives: (1) to quantify the Cry proteins in both BPH after being fed on Bt rice and in PWS after feeding on BPH that had been reared on Bt rice; (2) to evaluate the binding of the three Cry proteins (Cry1Ac, Cry2Aa and Cry1Ca) produced by the rice lines in midgut brush border membrane vesicles (BBMVs) from BPH and PWS.

Results

Cry1Ac, Cry2Aa and Cry1Ca protein detection in BPH and PWS.

Detection by ELISA assays showed that Cry1Ac, Cry2Aa and Cry1Ca proteins could be detected in BPH after feeding on the three tested Bt rice plant lines, and the toxin concentration was 3.6 ± 1.7 ng/g, 9.8 ± 2.7 ng/g and 1.7 ± 0.8 ng/g of fresh weight, respectively (Table 1). No Cry proteins were detected in the BPH reared on non-transgenic rice isolate (MH 63).

Both the Cry1Ac and Cry2Aa proteins could be transferred from BPH to PWS by predation, while Cry1Ca protein could not. The concentration of Cry1Ac and Cry2Aa in PWS adults was 2.5 ± 0.9 ng/g and 6.5 ± 3.9 ng/g of fresh weight when predating on BPH that were fed TT51 and T2A-1 rice, respectively (Table 1). No Cry proteins were detected in the PWS predating on BPH fed the non-transgenic rice isolate (MH 63).

Binding of Cry1Ac, Cry2Aa and Cry1Ca to BPH and PWS BBMV.

Binding assays were conducted with biotinylated Cry proteins to investigate the binding of Cry1Ac, Cry2Aa and Cry1Ca to midgut proteins of BPH and PWS. In these assays, we used midgut brush border membrane vesicles from Spodoptera exigua as a positive binding control based on its susceptibility to Bt cotton producing Cry1Ac and Cry2Ab and to Cry1Ca toxin, and previous reports demonstrating high affinity specific binding of the toxins to S. exigua BBMV. There was no evidence for specific binding of any of the three tested proteins to BBMV from BPH and PWS (Fig. 1a–c). For S. exigua BBMV, binding of biotinylated-Cry1Ac, biotinylated-Cry2Aa and biotinylated-Cry1Ca toxin was easily detected and displaced by 100-fold excess of unlabeled homologous competitor proteins (Fig. 1a–c), supporting specific binding. In contrast, 100-fold excess of unlabeled Cry proteins did not reduce the weak binding of biotinylated Cry proteins to BBMV from BPH and PWS, supporting that the three Cry proteins tested had no specific binding to these BBMV.

To further test interactions between midgut proteins of BPH and PWS with Cry proteins, we performed ligand blotting analyses. Our results showed that in S. exigua BBMV Cry1Ac recognized proteins of approximately 110-, 120-kDa in size (Fig. 2a), Cry2Aa bound to proteins of approximately 40-, 70-, 90-, 110- and 120-kDa (Fig. 2a), and Cry1Ca mostly recognized two proteins of approximately 110- and 120-kDa (Fig. 2a). In contrast, we did not observe distinct binding of Cry1Ac, Cry2Aa or Cry1Ca to the BBMV proteins from BPH and PWS (Fig. 2a).

Table 1. Detection of Cry1Ac, Cry2Aa and Cry1Ca proteins in BPH after feeding on Bt rice and and PWS after predating on the BPH.

Transgene protein	Treatments	Contents of transgene proteins ± SE (ng/g fresh weight)
Cry1Ac	BPH provided with TT51	3.6 ± 1.7
	PWS provided with TT51 BPH	2.5 ± 0.9
	BPH provided with MH63	Not detectable
	PWS provided with MH63 BPH	Not detectable
Cry2Aa	BPH provided with T2A-1	9.8 ± 2.7
	PWS provided with T2A-1 BPH	6.5 ± 3.9
	BPH provided with MH63	Not detectable
	PWS provided with MH63 BPH	Not detectable
Cry1Ca	BPH provided with TIC-19	1.7 ± 0.8
	PWS provided with TIC-19 BPH	Not detectable
	BPH provided with MH63	Not detectable
	PWS provided with MH63 BPH	Not detectable
Negative controls including BBMV proteins without exposure to Cry toxins (Fig. 2b) did not detect any binding interactions.

Discussion

Non-target risk assessment for transgenic crops should be case specific, and consider variables including the plant, transgene and environment39. In the present study, we focused on the potential ecological risk of transgenic Cry1Ac, Cry2Aa and Cry1Ca rice to BPH and its predator PWS at the molecular level. We detected the transmission of Cry proteins in the Bt rice-BPH-PWS food chain, and performed binding and ligand blotting assays testing the binding of Cry toxins to BPH and PWS BBMV. This is the first reported study to evaluate Cry toxin binding in BPH and PWS.

Transmission of the Cry1Ac, Cry2Aa and Cry1Ca proteins from Bt rice to BPH and PWS was quantified by ELISA (Table 1). Low levels of the tested Cry toxins could be detected in BPH after feeding on Bt rice (less than 10 ng/g fresh weight). Cry1Ac and Cry2Aa toxin could be further transferred to PWS during predation on BPH fed on Bt rice. However, we found Cry1Ca could not be transferred. These results are in agreement with previous reports examining whether Bt proteins can be transferred to predators from BPH feeding on transgenic Bt rice. For example, Cry1Ab could be transferred to P. subpiraticus through Bt rice-BPH-predator food chain, and the Cry1Ab protein in P. subpiraticus was significantly higher than that in BPH fed on Bt rice28. Cry1Ab was also transferred to U. insecticeps through the food chain, but the concentration of Cry1Ab in U. insecticeps was much lower than that in BPH29. In addition, Cry1Ab and Cry2A proteins were transferred to C. lividipennis and Hylyphantes graminicola via predation on BPH fed on transgenic Bt rice40, 41. However, and in contrast to our...
observations, Han et al. (2014) concluded that Cry2A protein concentration was very low in BPH and could not be transferred to \(C. \) sinica and \(C. \) lividipennis by preying on BPH \(^{16}\). In agreement with our findings, Meng et al. found that the concentration of Cry1C in BPH fed with T1C-19 was \(1.1 \pm 0.0 \) ng/g, and could not be transferred to \(P. \) fuscipes via predation\(^{42}\). The differences in detection results may be attributed to the different exposure times and/or degradation of Bt toxin. For instance, Zhao et al.\(^{43}\) found that the longer ladybeetles consumed aphids that were feeding on Bt plants, the more toxin it accumulated in the predator’s body\(^{43}\). Tian et al.\(^{44}\) also found that Cry1Ab protein could accumulate in the spider via the Bt rice-BPHs-PWS food chain, despite the degradation of the Cry1Ab protein\(^{44}\).

The action of Bt Cry toxins includes a critical binding step to receptors in the insect midgut\(^{45}\). Interactions between Cry toxins and midgut proteins of non-target insects would support that the possibility of detrimental effects of Bt crops producing those toxins exist. Previous studies did find low concentrations of Cry toxin residues in the midguts of BPH upon feeding on Bt rice that did not affect survival and growth of the BPH\(^{16}, 42, 46\). However, the potential interaction between Cry toxins and midgut proteins of BPH and PWS was not tested. Rodrigo-Simón et al.\(^{45}\) showed that Cry1A proteins failed to bind to green lacewing (\(Chrysoperla carnea \)) BBMV and suggested that this explained the lack of adverse effects\(^{45}\). Ferry et al.\(^{46}\) did not find a Cry3A binding protein in \(Nebia brevicollis \) BBMV and suggested that this explained the lack of acute or chronic effects of Cry3A on adults of \(N. \) brevicollis\(^{46}\). However, Li et al.\(^{49}\) found that Cry1Ac could bind to the aphid gut epithelium, yet only low aphid toxicity was detected in bioassays\(^{49}\). In our present study, none of the tested Cry proteins displayed specific binding to BBMV from BPH or PWS. Results from ligand blotting experiments provided further support for the lack of specific binding sites for the toxins in BPH or PWS midgut. Consequently, even considering potential transmission of the tested three Bt toxins to BPH and its predator PWS, no adverse effects are expected.

In summary, the current study supports that Bt rice lines TT51, T2A-1 and T1C-19 have no adverse effects on BPH or its predator PWS. Since these three Bt rice plants have not been promoted in China, the present study can provide information for the commercialization of new Bt varieties for agricultural protection.

Figure 2. Ligand blots of Cry1Ac, Cry2Aa and Cry1Ca toxins with BPH and PWS BBMV proteins. (a) PVDF membranes from BPH and PWS BBMV were incubated with activated Cry toxin, primary antibody, and secondary antibody. (b) PVDF membranes from BPH and PWS BBMV were incubated with primary antibody and secondary antibody. \(S. \) exigua gut BBMV proteins were used as a positive control treatment.
Materials and Methods

Test plant materials. Three Bt rice strains (TT51, T2A-1 and T1C-19) generated by the Huazhong Agriculture University and their non-transgenic parental indica cultivar Minghui 63 (MH 63) were used in this study. TT51 expresses a Bt fusion gene derived from Cry1Ab and Cry1Ac under the control of rice actin promoter. T2A-1 expresses one synthesized Cry2Aa gene and T1C-19 expresses one synthesized Cry1Ca gene, expression of both of them was driven by the maize ubiquitin promoter. MH 63 served as the non-transgenic control isolate. The three transgenic Bt rice strains exhibit high resistance against lepidopteran pests.

BPH and PWS preparation. Adults of BPH were randomly collected from paddy fields in Wuhan, Hubei Province, China. BPHs were exposed to the 3 tested Bt rice or control rice lines on 15-day-old rice seedlings cultured with Yoshida solution in glass bottles, and used as spider diets as described below.

The PWS larvae were obtained from the eggs of a single female collected from the experimental farmland in Huazhong Agricultural University, Wuhan, Hubei Province, China, and reared in a glass tube (12 mm × 100 mm) with BPHs. Each spider larva was individually placed in a tube with a moist cotton ball to provide enough water for its survival and supplied with 20 BPHs daily. The majority of spiders preyed on 12 BPHs per day.

Quantification of Bt toxin in BPH and PWS. BPHs were segregated into four groups, three fed with transgenic rice and one with normal rice. After feeding for 15 days, the BPHs were fed to PWS. Nymphs of BPH (30 per treatment) and PWS adults (10 per treatment) were collected for detection of Cry protein. Levels of Cry toxin accumulation in BPHs and PWSs were measured with an enzyme-linked immunosorbent assay (ELISA) using the Envirologix Qualiplate Kit (Envirologix Inc., Portland, Me, USA). Before the assay, the samples were washed with PBST buffer (PBS/0.5% Tween-20) to remove the Cry protein from their surfaces. Then BPHs and PWSs were homogenized in the extract buffer (provided by the kit) and centrifuged for 10 min at 13,000 × g. The supernatants were used for ELISA analyses.

Binding and competition assays using isolated BPH and PWS BBMVs. Midguts of BPH were dissected from macropterous female adults (soon after ecdysis) to prepare BBMV using methods described previously. For preparation of BBMV from PWS, we used dissected gut tissue from 7-day old adult spiders. Briefly, more than 1,000 BPH nymphs and 20 PWS adult gut tissues were collected in 1.5 ml MET buffer (0.3 M Mannitol, 5 mM EGTA, 17 mM Tris-HCl pH 7.5) containing protease inhibitors (PMSF) to prevent protein degradation, and stored at −80 °C until used. Preparation of BBMV was by the differential centrifugation method of Wolfersberger. The protein concentration of the BBMV was determined by the Bradford method (BSA was used as the standard protein) according to the manufacturer’s instructions.

Toxin labeling and binding of biotinylated toxins were carried out as described elsewhere. Active Cry1Ac, Cry2Aa and Cry1Ca toxins (1 mg) were labeled with biotin by incubation with 10 nM EZ-Link NHS-LC-Biotin (Thermo Scientific) in PBS buffer at room temperature for 1 h. Free biotin was removed by dialysis overnight in 4 liters of 20 mM Na2CO3, 150 mM NaCl at 4 °C. Protein concentration of biotinylated Cry1Ac, Cry2Aa and Cry1Ca toxins was determined with the Qubit Protein Assay kit following the manufacturer’s instructions, and then proteins were stored in aliquots at −80 °C.

Binding reactions (100 μl final volume) included 20 μg of S. exigua, BPH or PWS BBMV proteins and 0.1 μg of biotinylated Cry1Ac, Cry2Aa or Cry1Ca in binding buffer (PBS plus 0.1% BSA), and were allowed to proceed for 1 h at room temperature. Reactions were stopped by centrifugation for 10 min at 15,000 × g at 4 °C, and then BBMV and bound toxin in pellets were washed with 0.5 ml of ice-cold binding buffer, and these steps were repeated for a total of three times. Final pellets were solubilized in 10 μl of SDS sample buffer, and heat-denatured at 100 °C for 5 min. The samples were resolved by 10% SDS-PAGE and electro-transferred to polyvinylidene difluoride (PVDF) membranes. After blocking blots for 1 h at room temperature in PBS buffer (135 mM NaCl, 2 mM KCl, 10 mM Na2HPO4, 1.7 mM KH2PO4, pH 7.5) containing 3% bovine serum albumin (BSA) and 0.1% Tween 20, filters were probed with streptavidin-HRP conjugate (1:20,000) for 1 h at room temperature. Membranes were washed with washing buffer (PBS plus 0.1% BSA and 0.1% Tween 20) for 1 h (10 min per wash). After the last wash, the bound toxins were visualized using the ECL chemiluminescence detection kit (Thermo Fisher Scientific, Waltham, MA USA). For competition assays, the same protocol was followed except that a 100-fold excess of unlabelled homologous toxin was included in the binding reactions.

Ligand blot analyses were performed using 20 μg of S. exigua, BPH or PWS BBMV proteins resolved by 8% SDS-PAGE and then transferred using polyvinylidene difluoride (PVDF) filters. Filters were blocked for 2 h at room temperature with PBST buffer (PBS buffer plus 0.1% Tween-20) containing 5% (w/v) nonfat dry milk powder. Subsequently, PVDF filters were separately incubated with 2 μg/ml of biotinylated Cry1Ac, Cry2Aa or Cry1Ca in PBST buffer containing 5% of milk powder (blocking buffer) overnight at 4 °C. Filters were then washed three times with PBS buffer containing 0.1% Tween-20 and incubated in blocking buffer for 2 h with polyclonal rabbit anti-Cry1Ac, anti-Cry2Aa (1:3,500) or monoclonal mouse anti-Cry1Ca (1:5,000) sera. After washing, filters were probed with polyclonal HRP-conjugated goat anti-rabbit secondary antiserum (for Cry1Ac and Cry2Aa, 1:5,000) or goat anti-mouse secondary antiserum (for Cry1Ca, 1:5,000). After washing, filters were developed using the ECL chemiluminescence detection kit (Fermentas/Thermo Fisher Scientific, Waltham, MA USA).
References

1. Zeigler, R. S. & Barclay, A. The relevance of rice. Rice 1, 3–10 (2008).
2. Cheng, J. & He, J. Rice insect pests China A agricultural Press, Beijing (1996).
3. Chen, M., Shelton, A. & Ye, G.-y. Insect-resistant genetically modified rice in China: from research to commercialization. Annual review of entomology 56, 81–101 (2011).
4. Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2013).
5. Sheng, C., Wang, H., Gao, L. & Xuan, J. The occurrence status, damage cost estimate and control strategies of stem borers in China. Plant Prot 29, 37–39 (2003).
6. Lou, Y.-G., Zhang, G.-R., Zhang, W.-Q., Hu, Y. & Zhang, J. Biological control of rice insect pests in China. Biological Control 67, 8–20 (2013).
7. Matteson, P. Insect pest management in tropical Asian irrigated rice. Annual review of entomology 45, 549–574 (2000).
8. Yu, J. et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nature biotechnology 18, 1101–1104 (2000).
9. Ye, G. et al. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leafhopper, Cnaphalocrocis medinalis (Gueneé) under field conditions. Crop Protection 22, 171–178 (2003).
10. Chen, H. et al. Transgenic indica rice plants harboring a synthetic cry2A gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theoretical and applied genetics 111, 1330–1337 (2005).
11. Chen, M. et al. Field assessment of the effects of transgenic rice expressing a fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis Berliner on nontarget planthopper and leafhopper populations. Environmental Entomology 35, 127–134 (2006).
12. Tang, W. et al. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Molecular Breeding 18, 1–10 (2006).
13. Wang, Y., Li, D., Wang, L.-J., Li, S.-I. & Adhikari, B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydrate Polymers 81, 128–133 (2010).
14. Sanvito, O., Romeis, J. & Bigler, F. In Green gene technology 235–278 (Springer, 2007).
15. Romeis, J., Meissle, M., Raybould, A. & Hellmich, R. L. Impact of insect-resistant transgenic crops on above-ground non-target arthropods. Environmental impact of genetically modified crops. CAB International, Wallingford, 165–198 (2009).
16. Han, Y. et al. Bt rice expressing Cry2Aa does not harm Cyrtorhinus lividipennis, a main predator of the nontarget Herbivore Nilapavarta Lugens. Plos one 9, e112315 (2014).
17. Sogawa, K., Liu, G. & Shen, J. A review on the hyper-susceptibility of Chinese hybrid rice to insect pests. J Integrative Agric 12, 985–993 (2013).
18. Win, S., Muhamad Awang, R., Ahmad, M., Abidin, Z. & Chen, A. The influence of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on non-target planthoppers and their main predators under field conditions. Agricultural sciences in China 10, 1739–1747 (2011).
19. Chen, M. et al. Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cytorhinus lividipennis (Hemiptera: Miridae)—A case study of the compatibility of Bt rice with biological control. Environmental Entomology 42, 242–250 (2007).
20. Li, E.-F., Ye, G.-y., Wu, Q., Peng, Y.-F. & Chen, X.-X. Arthropod abundance and diversity in Bt and non-Bt rice fields. Environmental Entomology 36, 646–654 (2007).
21. Bernal, C. C., Aguda, R. M. & Cohen, M. B. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper, Nilapavarta lugens and white backed planthopper Sogatella furcifera on rice. Journal of Entomology 8, 183–190 (2010).
22. Chen, M., Ye, G., Hu, C. & Datta, S. Effects of transgenic Bt indica rice on the feeding and oviposition behavior of the brown planthopper, Nilapavarta lugens. Acta Phytophylacica Sinica 30, 365–370 (2002).
23. Chen, M., Ye, G., Hu, C., Tu, J. & Datta, S. Effect of transgenic Bt rice on dispersal of planthoppers and leafhoppers as well as their egg parasitic wasps. Journal of Zhejiang University (Agriculture and Life Sciences) 29, 29–33 (2002).
24. Chen, M., Ye, G., Yao, H., Hu, C. & Shu, Q. Evaluation of the impact of Bt rice on the feeding and oviposition behavior of its non-target insect, the brown planthopper, Nilapavarta lugens (Homoptera: Delphacidae). Zhongguo nongye ke xue 37, 222–226 (2003).
25. Mannakkara, A., Niu, L., Ma, W. & Lei, C. Zero effect of Bt rice on expression of genes coding for digestion, detoxification and immune responses and developmental performances of Brown Planthopper Nilapavarta lugens (Stål). Journal of insect physiology 59, 985–993 (2013).
26. Yu, H. et al. The influence of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on non-target planthoppers and their main predators under field conditions. Agricultural sciences in China 10, 1739–1747 (2011).
27. Chen, M. et al. Effects of transgenic cry1Ab rice on non-target planthoppers and their main predator Cytorhinus lividipennis (Hemiptera: Miridae)—A case study of the compatibility of Bt rice with biological control. Biological Control 42, 242–250 (2007).
28. Li, E.-F., Ye, G.-y., Wu, Q., Peng, Y.-F. & Chen, X.-X. Arthropod abundance and diversity in Bt and non-Bt rice fields. Environmental Entomology 36, 646–654 (2007).
29. Bernal, C. C., Aguda, R. M. & Cohen, M. B. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cytorhinus lividipennis. Entomologia Experimentalis et Applicata 102, 21–28 (2002).
30. Bai, Y., Jiang, M., Cheng, J. & Wang, D. Effects of Cry1Ab toxin on Propylea japonica (Thunberg)(Coleoptera: Coccinellidae) through its prey, Nilapavarta lugens Stål (Homoptera: Delphacidae), feeding on transgenic Bt rice. Environmental Entomology 35, 1130–1136 (2006).
31. Chen, M. et al. Biotransfer and bioaccumulation of Cry1Ab insecticidal protein in rice plant-brown planthopper-wolf spider food chain. Acta Entomologica Sinica 48, 208–213 (2005).
32. Hoeller, C. D., Chen, A. & Jakob, E. M. The potential of a jumping spider, Philidippus clavus, as a biocontrol agent. Journal of economic entomology 99, 432–436 (2006).
33. Sigggaard, L. Early season natural control of the brown planthopper, Nilapavarta lugens: the contribution and interaction of two spider species and a predatory bug. Bulletin of entomological research 97, 533–544 (2007).
34. Zhou, J. et al. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species. Plos one 9, e84724 (2014).
35. Tian, J.-C. et al. Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. Plos one 7, e35164 (2012).
36. Tian, J. et al. Laboratory and field assessments of prey-mediated effects of transgenic Bt rice on Ummelutia insecpctoris (Araneidae: Linyphiidae). Environmental Entomology 39, 1369–1377 (2010).
37. Chen, M. et al. Analysis of Cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology 18, 230–238 (2009).
38. Qiu, L. et al. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Journal of invertebrate pathology 127, 47–53 (2015).
39. Ren, X.-L. et al. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity. Applied and environmental microbiology 79, 2276–5583 (2013).
40. Herrero, S. et al. Mutations in the Bacillus thuringiensis Cry1C gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theoretical and applied genetics 111, 1330–1337 (2005).
41. Romeis, J. et al. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature biotechnology 26, 203–208 (2008).
42. Yang, C. et al. Cry1Ab rice does not impact biological characters and functional response of Cytorhinus lividipennis preying on Nilapavarta lugens eggs. Journal of Integrative Agriculture 14, 2011–2018 (2015).
41. Han, Y. et al. Prey-mediated effects of transgenic cry2Aa rice on the spider Hylyphantes graminicola, a generalist predator of Nilaparvata lugens. Biocontrol 60, 251–261 (2015).
42. Meng, J. et al. No impact of transgenic cry1C rice on the rove beetle Paederus fuscipes, a generalist predator of brown planthopper Nilaparvata lugens. Scientific Reports 6 (2016).
43. Zhao, Y. et al. Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/epsps does not harm the predator Propylaea japonica through its prey Aphis gossypii. Agriculture, ecosystems & environment 179, 163–167 (2013).
44. Tian, Y. et al. Effect of Cry1AB protein on hemocytes of the wolf spider Pardosa pseudoannulata. Biocontrol Science and Technology 23, 423–432 (2013).
45. Adang, M. J., Crickmore, N. & Jurat-Fuentes, J. L. Diversity of Bacillus thuringiensis crystal toxins and mechanism. Insect Midge Insect. Proteins 47, 39 (2014).
46. Van den Berg, J. & Van Wyk, A. The effect of Bt maize on Sesamia calamistis in South Africa. Entomologia Experimentalis et Applicata 122, 45–51 (2007).
47. Rodrigo-Simón, A. et al. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Applied and Environmental Microbiology 72, 1595–1603 (2006).
48. Ferry, N. et al. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transgenic research 16, 795–812 (2007).
49. Li, H., Chougule, N. P. & Bonning, B. C. Interaction of the pea aphid, Acyrthosiphon pisum (Harris). Journal of invertebrate pathology 107, 69–78 (2011).
50. Tu, J. et al. Expression and function of a hybrid Bt toxin gene in transgenic rice conferring resistance to insect pest. Plant Biotechnology 15, 195–203 (1998).
51. Woltersberger, M. et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comparative Biochemistry and Physiology Part A: Physiology 86, 301–308 (1987).
52. Shao, E. et al. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål). Scientific Reports 6 (2016).
53. Zhao, C. et al. Identification of a new cry1I-type gene as a candidate for gene Pyramiding in corn to control Ostrinia species larvae. Applied and environmental microbiology 81, 3699–3705 (2015).

Acknowledgements
This research was supported by the National Special Transgenic Project of China (2016ZX08011001). Partial funding was provided by Biotechnology Risk Assessment Grant Program competitive grant No. 2014-33522-22215 from the USDA National Institute of Food and Agriculture and Agricultural Research Service. We thank Prof. Yongjun Lin (National Key Laboratory of Crop Genetic Improvement at Huazhong Agricultural University) for providing the transgenic rice seeds. We thank Mr. James Dee (University of Tennessee) for providing comments on an early draft of this manuscript.

Author Contributions
W.M., J.L., J.-F conceived and designed the experiments; L.N., A.M., L.Q. performed the experiments; L.N., L.Q., X.W., H.H., W.M., C.L. analyzed the data and prepared the figures and tables; L.N., W.M., J.L., J.-F wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017