Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review
Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents

R. Sagaya Jansi a, Ameer Khusro b, Paul Agastian b,*, Ahmed Alfarhan c,*, Naif Abdullah Al-Dhabi c, Mariadhas Valan Arasu c, Rajakrishnan Rajagopalan c, Damia Barcelo d, Amal Al-Tamimi e

a Department of Bioinformatics, Stella Maris College, Chennai, India
b Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
c Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
d Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
e Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

HIGHLIGHTS
• Viral diseases with high mortality rates are major public health threat globally.
• Antiviral drugs and vaccines against deadly diseases are of urgent demand.
• Medicines from natural resources have shown low side-effect to human.
• Plants, fungi, and microorganisms are recognized as potent antiviral agents.
• Drugs from natural resources as future antiviral therapy are suggested.

ABBREVIATIONS:
AIDS, Acquired immunodeficiency syndrome; CHIKV, Chikungunya virus; CHMs, Chinese herbal medicine; CIN, Cervical intraepithelial neoplasia; COVID-19, Coronavirus disease 2019; DAA, Direct acting antiviral agents; ELISA, Enzyme-linked immunosorbent assay; EPS, Exopolysaccharides; HA, Hemagglutinin; HAV, Hepatitis A virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; HIV, Human immunodeficiency virus; HPV, Human papilloma virus; HSV-1, Herpes simplex virus type-1; HSV-2, Herpes simplex virus type-2; MERS-CoV, Middle East Respiratory Syndrome-coronavirus; NA, Neuraminidase; NIV, Nipah virus; ORFs, Open reading frames; PCR, Polymerase chain reaction; RT-PCR, Reverse transcription-polymerase chain reaction; SARS, Severe acute respiratory syndrome; SARS-CoV, Severe acute respiratory syndrome coronavirus; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; VZV, Varicella zoster virus; ZIKV, Zika virus.

⁎ Corresponding authors.
E-mail addresses: agastian@loyoloacollege.edu (P. Agastian), alfarhan@ksu.edu.sa (A. Alfarhan).

https://doi.org/10.1016/j.scitotenv.2020.143539
0048-9697/© 2020 Elsevier B.V. All rights reserved.
Contents

1. Introduction ... 2
2. Major viral diseases outbreaks: an overview 3
 2.1. Zika virus (ZIKV) disease .. 3
 2.2. Nipah virus disease .. 3
 2.3. SARS-COV .. 3
 2.4. Herpes genitalis .. 3
 2.5. Measles virus .. 4
 2.6. Human papilloma virus (HPV) 4
 2.7. Acquired immunodeficiency syndrome (AIDS) 4
 2.8. Ebola virus disease (EVD) 4
 2.9. Chicken pox .. 4
 2.10. Hanta virus disease ... 4
 2.11. COVID-19 .. 4
 2.12. Dengue ... 4
 2.13. Chikungunya .. 4
 2.14. Influenza .. 5
 2.15. Middle East Respiratory Syndrome-coronavirus (MERS-CoV) .. 5
 2.16. Hepatitis viral disease .. 5
3. Immune mechanisms in viral diseases 5
4. Antivirals from natural sources .. 5
 4.1. Medicinal plants .. 5
 4.2. Fungi .. 6
 4.3. Algae .. 11
 4.4. Bacteria .. 11
 4.5. Actinomycetes .. 11
 4.6. Endophytic bacteria .. 12
 4.7. Lichens .. 12
5. Complementary and herbal preparations as future therapy 13
 5.1. Indian medicinal plants, Ayurvedic, and Unani systems 13
 5.2. Chinese herbal medicine (CHMs) 15
 5.3. Other traditional medicines 15
 5.4. Enhancing immunity via nutrition 15
6. Conclusions and future perspectives 15
CRediT authorship contribution statement. 17
Declaration of competing interest ... 17
Acknowledgment ... 17
References ... 17

1. Introduction

Viral diseases are colossal threat to human and animal population. Emerging viral disease outbreaks have grown rapidly in the recent years and it has created great impact on human life, leading to the sudden increase in mortality rates. Over the past two decades, there have been seven disease epidemics that resulted in huge economic losses in the world, of which Coronavirus disease 2019 (COVID-19), Severe acute respiratory syndrome (SARS), Nipah virus (NIV) disease, West Nile virus disease, Avian Influenza, and Rift Valley fever are caused by viruses. Three modes of viral disease occurrence have been identified such as a) infection to a new host with no transmission, b) spread out to local populations, and c) epidemic or constant host-to-host transmission (Parish et al., 2008).

Viruses generally consist of DNA or RNA (single/double stranded or positive/negative stranded) as their genetic material which is surrounded by a lipoprotein/glycoprotein covering. Table 1 shows the classification of selected animal viruses with DNA/RNA genomes. Viruses invade host and employ the host metabolic processes as well as generate many copies of viral proteins that produce individual virus. The viral strains eventually get adapted to the host’s immune systems. Pre-vaccination was found to be more effective approach. The transmission of virus also depends on the contact of people in a population. Since the viral strains are mutated and are getting adapted, it is difficult to develop the vaccines (Alexander and Kobes, 2011). The antiviral drugs play a very important role in today’s life by suppressing the viral transmission and helps in host surviving. Analyzing and understanding the kinetics and dynamics of antiviral drugs aid in controlling the virus during pandemics because the hosts may expose to the infection again. Antivirals are effective in cases where there are no vaccines available for viruses like Influenza virus (Pepin et al., 2013).

The degree of virus infection depends on the immunity of human. The immunocompromised hosts are at higher risk of viral infection, thereby creating the situation worse for those people (Ye et al., 2013). The drug usage should be studied properly to analyze the results. Administration of drugs is taken into consideration for predicting the dynamics during epidemic waves. The emergence of pandemic has made every country to contain stockpile of antiviral drugs. These drugs are
important because studies showed that these drugs can help in controlling future pandemic. Though it might not cure it, the rate of transmission can be controlled (Becker and Wang, 2011).

Antivirals in combination with other antimicrobials help to combat resistant strains (Villa et al., 2017). Similarly, direct acting antiviral agents (DAA) was very effective in treating hepatitis C virus (HCV) infection. The DAAs constitute a combination of simeprevir, paritaprevir, ritonavir, daclatasvir, ledipasvir, ombitasvir, sofosbuvir, and dasabuvir. The proper intake of food along with the drugs had a great effect on treatment. The DAAs were approved in the EU in January 2016. The DAAs constitute a combination of simeprevir, paritaprevir, ritonavir, daclatasvir, ledipasvir, ombitasvir, sofosbuvir, and dasabuvir. The proper intake of food along with the drugs had a great effect on treatment. The DAAs were approved in the EU in January 2016.

2. Major viral diseases outbreaks: an overview

2.1. Zika virus (ZIKV) disease

Zika virus belongs to family Flaviviridae. The virus is transmitted through the bite of infected female mosquitoes, Aedes aegypti and Aedes albopictus. Flaviviruses in human can also lead to many diseases that include West Nile, dengue, yellow fever, tick-borne, and Japanese encephalitis. The route of transmission of ZIKV is through arthropod vectors, central nervous system injury, and hemorrhagic fevers. The infection of ZIKV during pregnancy results in birth defects in newborn babies, a condition called microcephaly. In adults, it leads to temporary paralysis. In Flaviviridae family, all members have enveloped virus with single stranded RNA genome and possesses 3 structural proteins envelope, capsid, precursor membrane, and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Patients in phase I and II clinical trials are vaccinated with DNA/mRNA vaccine. Symptoms of this infection include fever, headache, myalgia, and acute encephalitis. Incubation period ranges from 4 to 14 days. The diagnosis includes reverse transcription-polymerase chain reaction (RT-PCR) from body fluids and enzyme-linked immunosorbent assay (ELISA). There are no effective antiviral agents identified till date to control SARS-COV (Cheng et al., 2007).

2.2. Nipah virus disease

Nipah virus can be transmitted to humans from animals like bats or pigs. It can also transmit through contaminated food or directly from people to people. It was first recognized in Malaysia (1999), the people who were in contact with sick pigs or contaminations of tissues. Transmission is through unprotected contact or secretions from pigs, and fruits contaminated with secretions of urine by infected fruit bats. Symptoms include fever, headache, myalgia, and acute encephalitis. Incubation period ranges from 4 to 14 days. The diagnosis includes reverse transcription-polymerase chain reaction (RT-PCR) from body fluids and enzyme-linked immunosorbent assay (ELISA). The fruit bats belonging to the family Pteropodidae are the host of NIV. There has been reported in other animals such as horse, sheep, goats, cats, and dogs. It is a single stranded and non-segmented enveloped RNA virus. The NIV is second member of genus Henipavirus belonging to the family Paramyxoviridae. Prevention can be done by reducing overcrowding between animals and avoiding consumption of contaminating foods (Singh et al., 2019).

2.3. SARS-COV

Severe acute respiratory syndrome coronavirus (SARS-COV) belongs to family Coronaviride and order Nidovirales. It causes respiratory or intestinal infections in humans and animals. It is positive sense single stranded RNA virus which has genome size about 30 kb with 14 functional open reading frames (ORFs). Their genome size is larger with respect to all other RNA viruses. Symptoms of this infection include cough, chillness, myalgia, sore throat, rhinorrhea, breathlessness, and diarrhea. Serum test, RT-PCR, and ELISA are the most common tests performed for diagnosing the infected patients. There is no effective antiviral agent identified till date to control SARS-COV (Cheng et al., 2007).

2.4. Herpes genitalis

Herpes genitalis is a sexually transmitted infection caused by herpes simplex virus type-1 (HSV-1) or herpes simplex virus type-2 (HSV-2). They are enveloped DNA virus. The primary mode of transmission is by direct contact. There are some similarities between HSV-1 and HSV-2 based on type of epitopes and antigenic cross reactions. HSV-1 occurs in childhood and HSV-2 occurs during sexual contact. HSV-2 is commonly seen in females. Primary infection results in popular skin lesion in mucous membrane, swelling in inflammatory regions in vulva, and dysuria. The recurrent infection includes fever, menstruation stress, abortion, and eye lesion. The diagnosis is done by swabbing the infected mucous membrane and then analyzed using polymerase chain reaction (PCR). Another diagnosis includes antibody detection of HSV infection.

Table 1
Classification of selected animal viruses with DNA/RNA genomes.

Type of viruses	DNA/RNA material	Family	Virus	Capsid shape	Envelope	Virion size (nm)	Length of genome
DNA viruses	dsDNA	Herpesviridae	HSV	Icosahedral	Yes	200	130–230 kb
		VZV	Icosahedral	Yes	150–200	125 kb	
		Papillomaviridae	HPV	Icosahedral	No	54–60	5–8 kb
RT viruses	Reverse transcribing	Retroviridae	HIV	Icosahedral	Yes	90	9 kb
		Hepadnaviridae	HBV	Icosahedral	Yes	42	3 kb
RNA viruses	(+) ssRNA	Coronavirusidae	COVID-19	Spherical	Yes	120	27–32 kb
		SARS-CoV	Icosahedral	Yes	120	27–32 kb	
		MERS-CoV	Icosahedral	Yes	120	27–32 kb	
		Flaviviridae	Dengue	Icosahedral	Yes	45	11 kb
		ZIKV	Icosahedral	Yes	50	9.7–12 kb	
		HCV	Icosahedral	Yes	50	10 kb	
		Picornaviridae	HAV	Icosahedral	No	27	7 kb
		Togaviridae	CHIKV	Icosahedral	Yes	70	12 kb
		Filoviridae	Ebola virus	Helical	Yes	970	18–19 kb
		Paramyxoviridae	NIV	Helical	Yes	150	18 kb
			Measles	Helical	Yes	120–150	15 kb
			Hantavirus	Helical	Yes	80–120	14 kb
		Orthomyxoviridae	Influenza virus	Helical	Yes	100	14 kb
Acyclovir, valacyclovir, and famciclovir are the first line drugs used for its treatment (Sauerbrei, 2016).

2.5. Measles virus

Measles is caused by Rubella virus. It mainly affects children and pregnant women. The virus belongs to the family Paramyxoviridae and holds single stranded negative sense RNA, encodes 6 structural proteins, and 2 non-structural proteins. Measles occurs only in humans and is transmitted by respiratory droplets, saliva, skin to skin contact, and touching contaminated surface. Incubation period of the virus is 14–18 days. Symptoms include maculopapular rashes, cough, conjunctivitis, fever, and diarrhea. Samples from throat, nasal, and urine are used for analyzing using PCR. Attenuated measles strain is used as a vaccine in the beginning stage of the infection (Kondamudi and Waymack, 2020).

2.6. Human papilloma virus (HPV)

Human papilloma virus disease is a sexually transmitted infection which causes cervical cancer and genital warts. Among various types of HPV, type 16 and 18 are responsible for causing cervical cancer and HPV 6 and 11 cause genital warts. It mostly affects woman and is transmitted through skin to skin contact and infects vagina or anal intercourse. Cervical cancer can be detected by papaniculou testing; hence changes in squamous epithelium cells should be noted. The changes observed on the abnormal cells are referred as cervical intraepithelial neoplasia (CIN). Depending on the depth of the abnormal cells, it can be classified into 3 types (CIN-1, CIN-2, and CIN-3). CIN-1, CIN-2, and CIN-3 show mild, moderate, and severe dysplasia, respectively. For human papilloma virus, vaccine was developed against the type 6, 11, 16, and 18. It is prophylactic quadrivalent vaccine named gardasil. Another type of vaccine is bivalent vaccine, developed against HPV 16 and 18 (Braaten and Laufer, 2008).

2.7. Acquired immunodeficiency syndrome (AIDS)

AIDS is caused by human immunodeficiency virus (HIV). The virus infects the CD4+ T lymphocytes cells and results in catastrophic effect in the host. When the virus replication is increased it results in cardiovascular disease and infects other organs, resulting in kidney and liver damage. In some cases, tuberculosis plays the major role in activating the disease. Vaccines are developed using X-ray crystallography, cryo electron microscopy, and other technologies including probing the B-cell lineage and genome sequencing (Schwetz and Fauci, 2019).

2.8. Ebola virus disease (EVD)

Ebola virus belongs to family Filoviridae and is transmitted by fruit bats. It is transmitted by infected blood, airborne, and infection through droplet. The EVD can be diagnosed using blood samples, saliva, breast milk, semen, sweat, tears, stool, skin, vaginal, and rectal swabs. The transmission can also be oral such as by consuming uncooked animal food. The production of disease can be through tear, mucous membrane, and skin; which infects immune system and reaches lymph nodes, causing lymphadenopathy and hematogenous spread through liver and spleen resulting in failure of organs. Symptoms can be headache, dysphagia, malaise, dry cough, sore throat, nausea, vomiting, diarrhea, and conjunctival bleeding. Diagnosis is done by RT-PCR and ELISA test by the samples taken from infected persons. Currently, there is no antiviral drug for this virus (Hasan et al., 2019).

2.9. Chicken pox

Chicken pox is caused by varicella zoster virus (VZV) which is also responsible in causing herpes zoster or shingles. It is transmitted by inhaling aerosol droplets from infected patient. Symptoms include small itchy blister that spreads over chest, back, and then spreads through face, resulting in fatigue, fever, headache, and pharyngitis lary for seven days. It is diagnosed by PCR by the blister fluid samples. Vaccine was introduced in 1995 and it helps in the prevention of the infection (Ayoade and Kumar, 2020).

2.10. Hanta virus disease

Hanta virus causes hemorrhagic fever. It is also called as hanta virus cardio pulmonary syndrome, renal syndrome, and non-pathogenic prospects hill virus. It affects the function of kidney. The virus enters the host by interacting with cell surface integrin receptors and also uses alpha 5 beta 1 receptors to enter into the cell. The infection occurs by direct contact with infected rodents and inhaling virus through lungs. Hanta virus can be differentiated into many types such as Seoul virus from domestic rat, others are black creek canal virus, bayou virus etc. Symptoms include chillness, dizziness, headache, nausea, cough, vomiting, malaise, diarrhea, back pain, abdominal pain, and tachycardia. Diagnosis is based on positive serological test, blood samples detecting viral antigen, viral RNA sequences, serological assays, immunohistochemistry, and PCR. There is no antiviral drug for hanta virus but antipyretics and analgesic are used to control the disease (Mir, 2010).

2.11. COVID-19

Recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the family Coronaviridae. It has created a great impact throughout the world by its pathogenic nature and named COVID-19 by World Health Organization. The infection was acquired from seafood market in Wuhan, China. The genome of coronavirus consists of positive single stranded RNA of approximately 27–32 kb. The virus has Nsp1–16 (non-structural proteins) genes and others that code for four structural proteins including the envelope protein (E), membrane protein (M), spike protein (S), and the nucleocapsid protein (N) (Schoeman and Fielding, 2019). Symptoms include cough, mild fever, breathlessness, and throat congestion. Detection of the SARS-CoV-2 can be done by RT-PCR. Although few drugs and traditional remedies have been reported to alleviate mild symptoms of COVID-19, there are no medicines or vaccines approved to cure the disease till date. Nevertheless, there are several clinical trials undertaken including antibiotics, vaccines, and natural products proposed for treatment purpose (Bimonte et al., 2020).

2.12. Dengue

Dengue and dengue hemorrhagic fever are caused by the virus that belongs to Flaviviridae family. Flaviviruses infect host by the intermediate vectors like mosquitoes (Aedes aegypti) or ticks. There are four distinct serotypes of dengue viruses (DEN-1, DEN-2, DEN-3, and DEN-4) (Gubler and Clark, 1995). Approximately 2.5 billion people are susceptible at risk for this epidemic disease. Clinically, this disease has an incubation period of 2–7 days and symptoms include rashes, anorexia, cold, flu, nausea, vomiting, and respiratory illness. Laboratory diagnosis includes immunoassay tests and PCR amplification. No vaccines or specific antiviral drugs are available for this disease.

2.13. Chikungunya

Chikungunya, an epidemic threat in the recent years is a mosquito-borne disease in the tropical regions. It is caused by Chikungunya virus (CHIKV), a pathogen of the genus Alphavirus and the family Togaviridae. These are otherwise known as arboviruses as they are arthropod-borne viruses. CHIKV is similar to other alphaviruses including Sindbis viruses and Ross River viruses. Three distinct genotypes including Asian, West African, and East Central South African have been
observed so far. CHIKV holds a positive sense single stranded RNA of ~12 kb genome length. The genome analysis revealed that the viral comprise two ORFs. The 5’ORF encodes the nsP1, nsP2, nsP3, and nsP4 non-structural proteins, and the 3’ORF encodes capsid (C), envelope (E1 and E2), and two peptides (E3 and 6K) (Nunes et al., 2015). The acute stage lasts for a week whereas the chronic stage lasts from months to years. The symptoms include fever, arthralgia, rarely causing cardiac, ophthalmic, and neurological disorders. Diagnostic assays include ELISA, IgM antibody levels, and PCR. Treatment includes anti-rheumatic drugs but no vaccines have been discovered yet.

2.14. Influenza

Influenza viruses are significant due to its unavailing presence in the past centuries. The virus belongs to the family Orthomyxoviridae. Three forms namely A, B, and C infect human. Influenza A and B viruses cause relatively high morbidity and mortality compared to the C type. These are enveloped viruses that encompass segmented negative-sense single-stranded RNA. The gene structure contains surface glycoprotein projections, hemagglutinin (HA), and neuraminidase (NA). Based on the types of HA and NA, a total of 16 HA (H1–H6) and 9 NA (N1–9) subtypes are identified in birds. Recent outbreaks in humans contain subtypes H1N1 and H3N2 that are reported to be endemic. The zoonotic spread from birds and swine includes H5N1, H7N9, and H9N2. These have the capabilities to mutate into new forms and produce severe pathological effects (Harris et al., 2017). Symptoms include rapid onset of fever, dry cough, headache, muscle and joint pain, and severe malaise. The diagnostic method comprises influenza-specific RNA by RT-PCR. Treatment includes NA and HA inhibitors with monoclonal antibodies (Nachbagauer and Krammer, 2017) and antiviral drugs.

2.15. Middle East Respiratory Syndrome-coronavirus (MERS-CoV)

MERS-CoV is a zoonotic viral respiratory disease that has infected people with a high mortality rate of nearly 50% in the Middle East (first identified in Saudi Arabia in 2012). The disease is alleged to be contracted from infected camels. Coronaviruses possess enveloped single-stranded RNA that is spherical in shape with glycoprotein projections. The genome shows presence of two ORFs namely ORF 1a and 1b coding for non-structural proteins. Structural proteins encode the spike (S), envelope (E), membrane (M), and nucleocapsid (N). Symptoms include mild respiratory disease to severe acute respiratory disease and death. Severe illness can lead to the respiratory failure and may weaken the immune systems, especially with those with renal diseases, cancer, lung diseases, and diabetes. RT-PCR assay has been used as a diagnostic tool to detect the virus. At present, no vaccine or precise treatment is available (Alagaili et al., 2014).

2.16. Hepatitis viral disease

Hepatitis viruses are hepatocircuses that belong to Flaviviridae. These viruses possess a linear and positive sense single stranded RNA genome coding for nearly 10 proteins. There are 7 genotypes encountered till date (genotype 1 to 7). Hepatitis A virus (HAV), a member of hepatovirus is an endemic spread by fecal-oral route. Symptoms include necrosis and inflammation of the liver cells. It includes a positive sense RNA and the genome comprise of about 7500 (nucleotides). The incubation period is approximately 3–5 weeks. Hepatitis B virus (HBV) belongs to Hepadnaviridae family and includes dsDNA virus that replicates via reverse transcription (Stuyver et al., 2000). HCV is transmitted by blood-to-blood contacts and other blood/body fluid contaminants. This is an enveloped single-stranded RNA virus similar to flavivirus. It leads to complications such as liver cirrhosis, liver failure, and liver cancers such as hepatocellular carcinoma. Currently, no treatment is available for HCV infections.

3. Immune mechanisms in viral diseases

Immune system is a complex network of defence mechanism present in living organisms to fight the invading foreign microorganisms and provides protection from diseases. The immune system confers immunity to the organism by eliciting immune responses mediated by specialized immune cells and organs. Once the virus enters the host cells (cytopathic and non-cytopathic), it replicates, kills the infected cells, and invades other cells by releasing cellular contents (Münz et al., 2009).

Innate mechanism in human acts by the interaction of the virus particles with various receptors such as endosomal Toll-like receptors, C-type lectin receptors, cytoplasmic retinoic acid-inducible gene I receptors, and Nod-like receptors. Once induced, these receptors produce cytokines and interferons. Following the action encountered by the innate cells like neutrophils and release of pro-inflammatory cytokines, special T cells get induced to respond to the invaders. These cells also persuade B cells to secrete antibodies, which form immune complexes. They further invoke cytotoxic T lymphocytes CD8+ to transfer to the infection site and kill infected cells. Antibody mediated immune responses ie. antigen-antibody complexes induce activation of complement cascade. HIV-1, human cytomegalovirus, and certain other viruses use the host complement control proteins into their viros that create cell lysis (Mengshol et al., 2010).

The complement system of the innate immunity includes several factors and cell surface proteins that invoke immune response to the pathogens (Carroll, 2004). Three pathways of complement system are i) classical pathway (viral antigens bound with IgM and IgG interact with C1q and activates 2 serine proteases C1r and C1s, that further cleaves C4 into C4a and C4b to form the C3 convertase-C4b2a) ii) alternate pathway (triggered by the hydrolysis of C3 that binds to protease factor B. This is cleaved by Factor D to form Bb in order to end the formation of C3 convertase-C4b2a), and iii) lectin pathway (antigenic substances initiate mannose-binding lectin (MBL) and the ficolins. It forms a complex with MBL-associated serine proteases and cleaves C4 and C2 proteins to form C3 convertase-C4b2a). These pathways regulate and activate complement factors and unite to form the major C3 component involved in virus pathogenesis (Ricklin et al., 2010). The innate, complement, and the adaptive immune responses are interlinked and are activated by the varying mechanisms, depending on the type of infecting viral particles leading to reduced pathogenesis, regulate inflammatory conditions, and modulating adaptive responses (Fig. 1).

4. Antivirals from natural sources

Recent researches in etiology have made better understanding of viral diseases. There is a continuous search of natural drugs to target viral proteins. Only limited chemicals are available for treating emerging viral diseases which is a major disadvantage. Therefore, there is an urgent need to unravel the potential antiviral metabolites from varying natural sources.

4.1. Medicinal plants

Medicinal plants produce a variety of bioactive constituents that have the abilities to inhibit the replication cycle of various types of DNA or RNA viruses like HIV, HSV, Influenza virus, Human rhinovirus, Hepatitis B and C virus (HBV and HCV), and Dengue virus. Throughout the globe, medicinal plants act as important components to relieve from various ailments like bacterial, viral, and other infections. To mention a few, bioflavonoids such as Naringin (grape), daidzein (soybean), quercetin (foods and fruits such as green and black tea, apple, onion, citrus, tomato, and some other plants), and hesperetin (citrus) have been reported to fight dengue virus replication (Zandi et al., 2011).

Extracts of plants like Rosa nutkana and Amelanchier alnifoíía were found active against enteric coronavirus (Jassim and Naji, 2003).
Significant compound glycyrrhizin, found in Glycyrrhiza glabra, has antiviral activity against many viruses such as HBV, HCV, HIV, and HSV infections. Lycorine isolated from Lycoris radiate showed strong anti-SARS-CoV activity. The hot water extracts of Stevia rebaudiana blocked entry of various infectious serotypes of Human Rhinovirus into the permissive cells by an anionic polysaccharide with uronic acid as a major sugar constituent (Mishra et al., 2013).

Essential oils (eucalyptus oil, tea tree oil, and thyme oil) and monoterpenes like isoborneol proved antiviral activities against HSV-1 by inhibiting glycosylation of viral proteins (Astani et al., 2010). Silymarin (from the seeds of Silybum marianum) and catechin (present in green tea extract) inhibited HCV and also displayed anti-inflammatory and immunomodulatory actions (Calland et al., 2012). Table 2 illustrates antiviral properties of various plants associated metabolites against deadly viruses.

4.2. Fungi

Fungi are excellent sources of bioactive metabolites, possessing antiviral properties (Table 3). The first antiviral metabolite from fungi Stachybotrys sp. was tested against H1N1 Influenza virus (Moghadamtousi et al., 2015). Compounds isolated from Penicillium sp. were tested for antiviral properties. Trypiplepyrazinol acted as an inhibitor against HIV-1 and HCV. (+)-neocitreoviridin showed anti-influenza A virus activity. 3-β-hydroxyergosta-8,14,24(28)-trien-7-one expressed anti-HIV and anti-influenza A activities (Li et al., 2019). Fungi associated compounds such as phycsin, neoechinulin D, and dihydroauraglaucin inhibited replication of Influenza A virus (Bovio et al., 2019).

A sulphated polysaccharide from Agaricus brasiliensis against HSV-1 and 2, two proteins namely neutral protein bound polysaccharide, acidic protein bound polysaccharide, and triterpenes and laccases of Ganoderma lucidum exhibited anti-HIV-1 protease activity and anti-HIV-1 reverse transcriptase activity (Bishop et al., 2015). GFAHP, a protein from Grifola frondosa inhibited replication of HSV-1 (Hassan et al., 2015). Alternaria sp. ZJ-2008003, extracted from Sarcophyton sp. produced tetrahydroaltersolanols C-F and dihydrosolanol A and alterporriols N-R. Tetrahydroaltersolanol C and alterporriol Q showed antiviral activities against the porcine reproductive and respiratory syndrome virus. 11α-Dehydroxyisoterreulactone A from Aspergillus terreus possessed weak antiviral activity against HSV-1 virus. Aspergilli peptides D and E showed inhibitory activities towards HSV-1. Asperterrestide A displayed antiviral activity against H1N1 and H3N2 Influenza virus. Aspergillus sp. derived from Muricellaabnormalis, on fermentation yielded 22-0-(N-methyl-L-valyl)-21-epiaflaquinolone B. It exhibited antiviral activity against human respiratory syncytial virus. Isobutylarolactone II, obtained from another strain of Aspergillus sp. expressed strong antiviral activity towards HSV-1 (Liu et al., 2020).

The metabolites halovirs A-E isolated from the marine fungus Scytalidium sp. demonstrated antiviral activity against HSV type-1 and...
Table 2
Antiviral traits of medicinal plants associated metabolites.

Name of the compound	Plant	Active against	References
Alkaloids and nitrogenated compounds			
Acynoniphrine	Actinodaphne hookeri	HSV-1	Montanha et al. (1995)
Atropine	Atropa belladonna L.	Enveloped virus	Yamazaki and Tagaya (1980)
Biopeterin	Cithidia fasciculata	Antiviral activity	Tschescie et al. (1962)
Buchapnine	Euodia roxburghiana	HIV-1	Manske and Brossi (1985)
Campyptothecin	Ophiromizna mungos	Herpes virus	Tafur et al. (1976)
Canavanin	Carnaavia ensiformis L.	Influenza virus	Piicher et al. (1955)
Caffeine	Theobroma cacao L. and Coffea sp.	Cossackie-virus, Herpes, Poliovirus, vaccinia, and influenza virus	Yamazaki and Tagaya (1980)
Carinabe	Hymenocallis arecolana	Antiviral activity	Manske and Brossi (1987)
Carnicline	Zephyranthes carinata	Antiviral activity	Manske and Brossi (1987)
Chelidonine	Chelodium majus L.	Herpes virus and influenza virus	Manske and Brossi (1987)
Cordycepil	Aspergillus nidulans Eidam Wint.	Picornavirus, poliovirus, vaccinia, newcastle disease virus, Herpes simplex, and influenza viruses	Kaj-a-Kamb et al. (1992)
Cryptopetelelin	Bocherna cylindrica L. Sw. and	HSV-1	Cordell (1981); Manske and Brossi (1989)
O-demethyl-buchenavianine	Buchenavia capita	HIV	Vlietinck et al. (1997)
Emetine	Cephalis ipecuauhina A. Rich.	Pseudorabies and Herpes virus	Hanish et al. (1966)
Ectoparasite	Peganum harmala	HSV-1	Manske and Brossi (1988)
Harmoline	Pegurn harmala	HSV-1	Rashan (1990)
Hypoxanthine	Beta vulgaris	Antiviral activity	Mifflin (1981)
Lycoris	Clivia miniatia	Antiviral activity	Leven et al. (1983)
Michellamines D, Michellamines F	Anacstrocalus korupensis D. Thomas and G cane	HIV	Hallock et al. (1997)
10-Methoxycaumptothecin	Camptocere acaumata Descene	Adenovirus, Herpes, and vaccinia viruses	Clements (1977)
Odorinol	Aglaia roxburghiana Miq. var. Beddomeii	Ranikhet disease virus	Phillipson and Zenk (1980)
Oliverine	Polyuthia oliveri	HSV-1	Montanha et al. (1995)
Oxetanshaline	Stephania japonica	HSV-1	Montanha et al. (1995)
Pachystaudine	Pachyphodium lamari	Retrovirus	Montanha et al. (1995)
Papaverine	Papaver somniferum	CMV, measles, HSV	Manske and Brossi (1990)
Psychotrine	Cephaelis acuminata	HIV-1	Manske and Brossi (1985)
Schumannilicte	Schummannilchytton magnificum	HIV and HSV	Vlietinck et al. (1997)
Taspine	Croton lechleri M.	Avian myeloblastosis virus, Rauscher virus, and Simian sarcoma virus	Manske and Brossi (1990)
Homonojiromycin, Deoxymanojirimycin	Omphalea diandria	Homonojiromycin is an inhibitor of several a-glucosidases, Deoxymanojirimycin is an inhibitor of glycoprocessing mannosidase	Kite et al. (1988)
Aranotin, Gliotoxin	Arachniotus aureus (Eidam) Schoeter	Cossackie-virus A21, poliovirus, rhinovirus, influenza virus, and para-influenza virus type 3	Becker (1980); Miller et al. (1968)
Ochopamine and epi-16-Ochopamine	Cabucula erythrocera Vatke Mar	Influenza virus	Manske and Brossi (1990)
(+)-Glaucine fumarate, (+)-N-Methylaurotetanine,	Corydalis cava, Glaucium flavum,	HSV and picornaviridae	Bousie et al. (1998)
(+)-Isoboldine, and (-)-Nuciferine HCl	Pachyphodium lamari	HSV-1	Manske and Brossi (1990)
Castanospermine, Australe	Catharanthus roseus L. G. Don. and C. lancues Pich	HIV and HSV and HSV-1 reverse transcriptase	Foder and Colasant (1985)
Leucrocinela, Perifomyline, Perivine, and Vincaulecoalbstatine	Catharanthus roseus L. G. Don. and C. lancues Pich	HIV and HSV and HSV-1 reverse transcriptase	Farnsworth et al. (1968)
Columbamine, Berberine, Palmitine	Annonacea, Berbis vulgaris, menispermacae and Papaveracea	HIV-1	Manske and Brossi (1990)
Narcissine, Lycoricith, Pancratistatin,	Narcissus poeticus L. Lycorine was isolated from Clivia miniata Regel	HIV-1 reverse transcriptase	Gabrielsen et al. (1992); leven et al. (1982)
7-deoxyxoparanitstatin, Acetats, Isosuferinacate, cis-Dihydroracineacine, Lycorines, and Pretazetamine	Aglaia roxburghiana Miq. var. Beddomeii	HIV-1 reverse transcriptase	Hiller (1987)
Buxameone E and Clusobuxame H	Buxus sempervirens	HIV-1 reverse transcriptase	Duan et al. (2000)
Triptonines A and Triptonines B	Tripterygium hypoglaucum and Tripterygium wollofri	HIV-1 reverse transcriptase	Takanura et al. (1995)
5-hydroxyxoparanacrine and Acimarine F	Plumeria rubra L.	Epstein-Barr virus	Tan et al. (1991)
Fagamarone, Columbamine, and Fulvopulmerin	Swithine canescens, Astragalus lentinosus, Castanospernum australe, Aglaia roxburghiana	HIV-1 reverse transcriptase	Hudson (1990); Sydskis et al. (1991); Asano et al. (1996); Erdelmeier et al. (1996); Marchetti et al. (1996)
1-carbolines, foranoquinolines, indolizidines, swainsonine, and castanospermine	Plumeria rubra L.	DNA viruses	Take et al. (1995)
Coumarins	Calmidolide A	HIV	Murray et al. (1982)
Coriandrin	Coriandrum sativus	HIV	Towers (1989)
Inophyllum B and Inophyllum P	Calphylum inophyllum Linn.	HIV-1 reverse transcriptase	Patil et al. (1993)
Soulatokeide	Calphylum triytsmani	HIV	Murray et al. (1982)
Glycycoumarin and Licopyranocoumarin	Glycrythia glabra	HIV	Vlietinck et al. (1997)

(continued on next page)
Table 2 (continued)

Name of the compound	Plant	Active against	References	
Flavonoids				
Acetatin 7-o-(6'-rhamnopyranosyl)	Chrysanthemum morifolium Ramar (Compositae)	HIV	Qi-Hu et al. (1994)	
[4'-D-glucopyra-no-side]				
Apigenin	Chrysanthemum morifolium Ramar (Compositae)	HIV	Qi-Hu et al. (1994)	
3,3'-Dimethoxyquercetin	Euphorbia granitsi Oltv. and Veronica amygdalina Del. (Compositae)	Herpes virus	Béládi et al. (1977)	
Fisetin inactives	Ulex europaeus L.	Pseudorabies virus	Swallow et al. (1975)	
0-Glucosyl-7-methyl-5-genistein	Matricaria inodora L. (Compositae)	HSV	Suganda et al. (1983)	
Hesperetin	Citrus spp. (lemons and sweet oranges)	Pseudorabies virus	Béládi et al. (1977)	
Isoquercetin	W. H.	Pseudorabies virus	Béládi et al. (1977)	
Justicidin B	Solanum sarrachoides	HSV-1 virus	Karam and Shier (1992)	
Kaempferol	Phytoanthus acuminatus	Cytomegalovirus and Sindbis virus	Ingham (1983)	
3,3'-Dimethyl ether; and Isoaekampferide		Antiviral activity	Harborne (1988)	
Luteolin	Citrus parads MacFad.	Vesicular stomatitisis	Harborne (1988)	
Quercetin	Begonia glabra	Enveloped viruses	Béládi et al. (1977)	
Quercetin 3-methyl ether		Enveloped viruses	Béládi et al. (1977)	
Quercetin 3-O-(2'-galloyl)-3'-D-galactopyranoside	Acer okamotoanum Nakai	HIV-1 integrase	Kim et al. (1998)	
Quercetagenin	Rhus succedanum L.	Pseudorabies and vesicular stomatitisis virus	Béládi et al. (1977)	
Rutin	Acacia catechu	Antiviral activity	Rauscher murine leukemia and HIV	Cody et al. (1986)
Taxifolin	Maclura tinctoria	HIV	Liu et al. (1997); Liu et al. (1999)	
Volkensiflavone	Acacia catechu	Influenza B virus	Lee et al. (1997)	
Ternatin and Melaternatins	Evodia madagascariensis Baker	HSV-1, HSV-2; adenovirus type 2, poliovirus type 2, and VSV type 2	Simões et al. (1990)	
Afromosin and Formononetin	Wisteria brachybotrys Sieb	Epstein-Barr virus early antigen	Konoshima et al. (1989)	
Axillarin, Chrysosplenium B, and Chrysosplenium C	Chrysosplenium tansae	Rhinovirus	Tsuichiya et al. (1985)	
Lophirome F, Azobeclachone, and Isolophirachalcone	Lophira alata	Epine-Barr virus early antigen induction test	Murakami et al. (1992)	
Centaurein and Jacein	Centaurea nigra L.	Herpes virus and poliovirus	Kaji-a-Kamb et al. (1992)	
5,5',3',4',5',5'-Hexahydroxyflavonse, and 5,7',4'-Trihydroxy-3'-glicosylflavone	Befaria cinnamomea	HIV-1	Mahmood et al. (1993)	
Agathisflavone, Robustaflavone, Hinokiflavone, Amentotiflavone, and Morelloflavone		HIV-1 reverse transcriptase	Lin et al. (1997)	
3-O-Methylcalpocarpin, Licoisoflavane, Glyasper in	Erythrina lysistemon Hutch	HIV	McKeel et al. (1997)	
Macluraxanthone A, Macluraxanthone C, and Macluraxanthone B	Maclura tinctoria	HIV	Groweiss et al. (2000)	
7-O-Methyl-glaranine	Tephrros madrens	Dengue virus	Sanchez et al. (2000)	
Wogonin	Scutellaria baicalensis	HBV	Huang et al. (2000)	
Samarangin B and Myricetin	Limonium sinense	HSV-1 replication	Lin et al. (2000)	
Lignans	Bursera schlachetdandi	HSV-1	Ayres and Loike (1990)	
Dihydroxydiphenyldihorizol	Justicia procumbens var. leucantha	Herpesvirus stomatitis virus	Asano et al. (1996)	
Diphyllyl diphenylasate-5-acetate, justicidin A and B, and diphyllyl diphenyl asipside	Pinus nigra Arnold	HIV	Eberhardt and Young (1996)	
Lignane guaiacyl derivative	Juniperus sabina	HSV-1 and vesicular stomatitisis virus	Feliciano et al. (1993)	
Deoxyxopophyllotolitoxin, 4'-Dimethylpodophyllotoxin, Podophyllotoxin acetate, Epipodophyllotoxin acetate, and 4'-Peltatin A methyl ether	Podophyllotin	Measles and HSV-1 viruses	McKeel et al. (1997); Bedows and Harfield (1982)	
Podophyllotoxin, 4'-Peltatin, Deoxyxopophyllotoxin, Picropodophyllotoxin, and α-Peltatin	Podophyllum peltatum	Measles and HSV-1 viruses	McKeel et al. (1997); Bedows and Harfield (1982)	
Kadsilignan L, Kadsilignan M, and Kadsilignan N	Kadsilignan coccinea	HIV	Liu and Li (1995)	
Justicidin A, Justicidins B, Diphyllyl, Actigenin, and Trachelenolign	Forsythia intermedia and Ipomoea cafrica	HSV-1	Vliegheinck et al. (1998)	
Schizzarin B and taiwanschirin D	Kadsilignan matsudai	HIV	Liu and Li (1995)	
Rhinacanthin F	Rhinacanthin matsudai	HSV-1	Vliegheinck et al. (1998)	
Miscellaneous compounds	Kadsilignan matsudai	HSV-1	Vliegheinck et al. (1998)	
Calcium elenolate	Kadsilignan matsudai	HSV-1	Vliegheinck et al. (1998)	
Castelanone	Olea europea L.	Antiviral activity	Swallow et al. (1975)	
Champanirone	Castela tierdlet	Oncogenic Rous sarcoma virus	Rembold (1989)	
Cochinolide	Quassia andulata	Oncogenic Rous sarcoma virus	Rembold (1989)	
Curdian sulphate, Dextran sulphate, and Dextrin sulphate	Homolium cochinnichesis	HSV-1 and -2	Ishikawa et al. (1998)	
Glacarubolone and D-glucosamine	Dextrin sulphate - Violoidocontinis, Dextrin sulphate - Prunella vulgaris and Curdian sulphate - Alternanthera philoxeroides (Amaranaceae)	HIV	Vliegheinck et al. (1998)	
D-glucosamine	Quassia simaruba	Oncogenic Rous sarcoma virus	Rembold (1989)	
	Dahlia sp.	Fowl plague, Sindbis and Semliki Forest virus	Rauh et al. (1972)	
	Glycine max (L.) Merr and Phaseoles aureus Roxb.	RNA viruses, HSV, pox virus, NDV-inhibits para influenza 3, and measles	Rauh et al. (1972)	
Name of the compound	Plant	Active against	References	
----------------------	-------	----------------	------------	
Glucans 1 and Glucans 2	Nicotiana tabacum	Antiviral activity	Routhier et al. (1995)	
Pentagalloylglucose	Paeonia abloom Pallas	HCV	Kaj-i-Kamb et al. (1992)	
Monoterpenoids, diterpenoids and sesquiterpenoids	Calendula arvensis L.	Vesicular stomatitis virus and rhinovirus (HRV type 1B)	Tommasi et al. (1990)	
Alloaromandrol glycosides	Nyctanthes arbor-tristis	EMCV and SPV	Rathore et al. (1990)	
Arbitrosides A,B,C	Rosmarinus officinalis L.	HIV protease inhibitors	Paril et al. (1993)	
Carnosolic acid and Carnosol	Celastrus stephanotifolius Makino	Epstein-Barr virus	Takaiishi et al. (1993)	
Cefalolin A-1, Cefalolin B-2, Cefalolin B-3, Cefalolin C-1, Cefalolin D-1, Cefalolin D-2, and Cefalolin D-3	Exococcarea agallocha	HIV	Erickson et al. (1995)	
Eudoglophora orientalis	Eucalyptus tereticornis Sm.	Epstein-Barr virus	Kokumai et al. (1991)	
Littoral study TGL	Euphorbus grandis	Epstein-Barr virus	Takakasi et al. (1990)	
Halanolide	Banisteria caapi	Influenza virus A (WS), Newcastle diseases virus, Japanese B encephalitis virus (AZ), and vaccina virus	Cracker and Simon (1986)	
Liangshanbin B and Liangshanin D	Rhabdosia liangshanica C.Y.	Hepatitis virus	Fenglei et al. (1989)	
Rutales	Limonoids found in plants of the order	Antiviral activity	Champagne et al. (1992)	
Scleroacrid acid	Glycytopetallum scolocrum	HSV 1 and 2	Satyanaphun et al. (1999)	
Scoparic acid A, Scoparic acid B, Scoparic acid C, and Scopadulcis acid B	Scoparia dulcis	HSV 1	Hayashi et al. (1988); Hayashi et al. (1990)	
Dolabellane	Dolobella californica	Influenza and adenovirus viruses	Piattelli et al. (1995)	
Saffinolide and Saegeone	Salvia officinalis	Vesicular stomatitis virus	Tada et al. (1994)	
Triterpenoids	Tritygium wilfordii Hook	HIV	Chen et al. (1992)	
Aromoside, Geniposidic acid, Geniposidic, and Gardenoside	Genipa americana L.	Antiviral activity	Ueda et al. (1991)	
Xylopinic acid	Xylopia sp.	HIV	Fuller et al. (1996)	
12-O-Acetylphloroglucinol-13-Decanoate and 12-O-Denoxylphloroglucinol-13-(2-methyl butyrate)	Croton tigium	HIV-1	El-Mekkawy et al. (2000)	
Phenolic	2-O-Caffeoyl-(+)-allohydroxy citric	Spondias mombin	Coxsackie and HSV	Corthouth et al. (1992)
2,6-Dihydroxymethoxysuberylphenone and 4,6-Dihydroxymethoxybutylphenone	Scoparic acid A, Scoparic acid B	Antiviral activity	Bloor (1992)	
Eugenol or Ellagitannin	Syzygium aromaticum	HSV	Sotanaphun et al. (1999)	
Gentisic acid	Mentha suaveolens	HSV 1 and 2	Hayashi et al. (1988); Hayashi et al. (1990)	
Gossypol	Vaccinium corymbosum	HSV 1	Hayashi et al. (1988); Hayashi et al. (1990)	
Gutierrezine A,B,C,D, and E	Symphonia globulisera, Garcinia invintonei, Garcinia ovalifolia and Chusia rosea	Antiviral activity	Van Sunvere (1989)	
Mallotus japonicum and Mallotocromerone	Mallotus japonicus	HIV	Van Sunvere (1989)	
Peltal A	Pothomorpha peltata	HIV-1	Van Sunvere (1989)	
Pentagalloyl-1D-glucose	Nuphar japonicum	HIV	Porter (1989)	
Pentagalloylglucose	Geranium sanguineum	Neuraminidase activity of different influenza virus HIN, H2N2, and H3N2	Sankajeeva and Manolova (1992)	
Salicin and Salicropinosides	Populus trichocarpa	Poliovirions and Semliki forest virus	Van Hoof et al. (1989)	
A-9-Tetrahydrocannabinol	Cannabis sativa L	HSV-1, HSV-2	Blevins and Dunic (1980)	
Woodoriens	Syzygium aromaticum	HSV-1 and poliovirus	Xu et al., 2010	
Silymarin and Cyanidol	Syzygium macrocarpum	Acute viral hepatitis	Swallow et al. (1975)	
Diocarapapin and Balanocarapin	Syzygium cordatum	HIV	Hatano et al. (1988)	
3,5-di-O-Allyloxyquinic acid, 3,4,5-tri-O-Caffeoylquinic acid, and 1,3,4,5-tetra-O-Allyloxyquinic acid	Wistostrea indica C. A. Meyer	HIV-1	Van Sunvere (1989)	
(+)-Norotrichelogenin, Genkwonol A, Wilkstrol B, and Daphnomorin B	Lepidobotrya staudtii Engl.	HIV-1 and HIV-2	Hu et al. (2000)	
1,3,4,5-tetra-O-Allyloxyquinic acid	Lepidobotrya staudtii Engl.	HIV-1 and HIV-2	Bokesch et al. (1996)	
Phenylpropanoids	Coffea arabica	Influenza virus, HSV, vaccinia, and polio viruses	Melgaard and Ravn (1988)	
Caffeic acid	Coffea arabica	Poliovirus	Melgaard and Ravn (1988)	
Chlorogenic acid	Populus nigra L	Antiviral activity	Amoros et al. (1994)	
3-Methyl-buty-2-enyl caffeate	Populus nigra L	Antiviral activity	Urones et al. (1992)	
Unsineoide E, and Unsineoide Z	Brown seaweed Cystoseira usneoides	Respiratory syncytial virus	Kernan et al. (1998)	
Verbascoside, Isoverascoside, Luteoside A, and Luteoside B	Markhumia lutea	Respiratory syncytial virus	Kernan et al. (1998)	
Magnolol, Honokiol, and Monoterpenyllagnol	Magnolia officinalis	Epstein-Barr virus early antigen	Konoshima et al. (1991)	
Quinones	Conodurum incurvum	HIV-1 reverse transcriptase	Decosterd et al. (1993)	
Juglone	Juglans nigra; Hypericum triquetrifolium	HSV-1 virus and retrovirus	Berg and Labade (1989)	
Pseudoacaprin	Hypericum triquetrifolium	Retrovirus	Berg and Labade (1989)	
Rhinacanthin C and Rhinacanthin D	Hypericum nasutus (L.) Kurz	Cytomegalovirus	Sendil et al. (1996)	
Hypericin and Pseudohypericin	Hypericum perforatum	Retroviruses	Hudson et al. (1993)	
Name of the compound	Plant	Active against	References	
----------------------	-------	----------------	------------	
Tannins				
Aragominin		Avian myeloblastosis virus	Porter (1989)	
Cortarain A		HIV	Porter (1989)	
Procyandin B2		HIV	Porter (1989)	
Camellin B, Gemin D, Chebulagic acid, and Nobotanin B	Chebulagic acid was isolated from Terminalia chebula, gemin D from Geum japonicium, nobotanin B from Tisboichina semicandra	HIV	Vlietinck et al. (1998)	
Thiophenes and polyacetylenes				
Sideresmin A		Rhinovirus	Swallow et al. (1975)	
α-Terthieryl (α-T) ACPB-thiophene		Cytomegalovirus and Sindbis virus	Hudson et al. (1986a), Hudson et al. (1986b)	
Allyl methyl tiosulfinate, Methyl allyl tiosulfinate, Ajoene, and Allicin		Sindbis virus	Hudson et al. (1986b)	
Phyllanthrin (PHT), Thiophene-A, Erysoin, and Sulfouraphen		HSV, parainfluenza virus type 3, vaccinia virus, vesicular stomatitis virus, and human rhinovirus type 2	Weber et al. (1992)	
Triterpenoids				
3-α-Aescin		Influenza viruses	Hiller (1987)	
Arjunolic acid		EBV-EA	Dallal et al. (1989)	
Chukisetinosaponin		HIV	Hasegawa et al. (1994)	
Cucurbitacin F, 23,24-Dihydrocucurbitacin F, 15-oxo-23, 24-Cucurbitacin F, and 15-oxo-Cucurbitacin F		Epstein-Barr virus	Konoshima et al. (1993)	
Diterpenoids				
Echlerianic acid		Poliovirus	Koch and Gyorgy (1969)	
Genaderol F and Genaderonmantriol		Herpes virus type 1	Hiller (1987)	
Gleditsia japonica		HIV-1	El-Mekkawy et al. (1998)	
Gleditsia saponin C		HIV	Konoshima et al. (1995)	
Gymnocyclus saponin G and Glycyrrhizic acid		HSV 1, vaccinia virus, newcastle disease virus, and vesicular stomatitis virus	Hatano et al. (1988)	
3-0-Glucose (1-3) [arabinose 1-4]-glucose-xyloside of 3-0-Hydroxy-protoprimulagenin A 3-O-Glucose (1-3) [arabinose 1-4]-glucose-xyloside of 23-hydroxyprotoprimulagenin A		HSV 1 and poliovirus	Amoros and Girre (1987)	
Gymnemic acid		Anti-influenza activity	Rao and Cochran (1974)	
24-Hydroxydammannan-20,25-dien-3-one		Epstein-Barr virus	Inada et al. (1993)	
3’β-Hydroxyauricolic acid 3-β-hydroxy-benzoate		HIV-1 reverse transcriptase	Pengsuparp et al. (1995)	
(23-0) [β-0-glucopyranosyl-28-o-[β-0-glucopyranosyl (1-6)]β-D-galactopyranosyl (1-3)][arabinose 1-3]-D-glucopyranosyl (1-6)]		HSV	Elgamal et al. (1995)	
Isoflouqueisierol		HSV	Gyorgy and Koch (1969)	
Lanclactone C		HIV	Chen et al. (1999)	
Lanatoside D		Influenza, Herpes and vaccinia viruses	Koch and Sandor (1969)	
Methyl ester of wistariasaponin D, Methyl ester of wistariasaponin G, and Methyl ester of dehydrosoyasaponin		Epstein-Barr virus	Konoshima et al. (1989)	
Nigranic acid		HIV	Sun et al. (1996)	
(22E)-5β-24-Norcholest-22-ene-3 α,4α,11		Respiratory syncytial and polio viruses	Roccagallati et al. (1996)	
Oubain				
Saikosaponin-A		Newcastlde disease virus	Becher (1976)	
Salaspanic acid		Influenza virus	Hiller (1987)	
Saponin 2		HIV	Hiller (1987)	
Shoeric acid		Herpes virus and poliovirus	Kaj‐a‐Kamb et al. (1992)	
Strophantin G		Herpes virus	Koch and Sandor (1969)	
Suberosol		Influenza, Herpes and vaccinia viruses	Kaj‐a‐Kamb et al. (1992)	
3-O-Runs-Caffeoylortentorien	3-O-Runs-Caffeoylortentorien	HIV	Li et al. (1993)	
Wistariasaponin A, Wistariasaponin B, and Wistariasaponin C		Rhinovirus infection	Tommasi et al. (1992)	
Zingibroside R1				
2x-19a-Dihydroxy-3-oxo-12-ursen-28-oic-acid, and Mastinic acid				
Proxilariosidin A and Scillarenin				
Betulinic acid and Platanic acid		Influenza, HSV, vaccinia virus, and picornaviruses	Koch and Sandor (1969)	
Oleandric acid and Pomolic acid, Alphitolic acid, Asianic acid, and Betulinic acid				
Dammaradienol, Dammaradienol II, Dammarenolic		Herpes virus	Fujikawa et al. (1994)	
Dammaradienol, Dammaradienol II, Dammarenolic				
Table 2 (continued)

Name of the compound	Plant	Active against	References
acid, Hydroxyspirulanone I, Hydroxyphapanone, Hydroxyspirulanone, Hydroxyspirulanone, Hydroxyspirulanone, Hydroxyspirulanone, Hydroxyspirulanone,	Xanthoceras sorbifolia Bunge	HIV-1	Ma et al. (2000)
Epigallocatechin-(4â€‘â€‘8,2)-O-7-epicatechin, 3-Oxotricacalla-7â€‘20-dien-21oic acid. And Oleolic acid			
1-J3-hydroxyeulearotic acid-3-p-hydroxybenzoate	Escin		
Proteins and peptides		Reverse transcriptase inhibitors	
Trichobactin	Trichosanthes kirilowii	HIV	Miska et al. (2013)
Pokeweed antiviral proteins (PAP) (MRK29, MAP30 and GAP31)	Phytoallca Americana, Monordica charantia, Gelonium multiflorum	HIV-1	Rajamohan et al. (1999)
Panaxagin	Panax ginseng	HIV-1 reverse transcriptase	Ng and Wang (2001)
Kalata B1,B2	Oldenlandia affinis	HIV	Craik et al. (2012)
Lunatursin	Phaseolus lunatus	Antiviral activity	Wong and Ng (2005)
Vulgarinin	Phaseolus vulgaris	Antiviral activity	Jack and Ti (2005)
Cicerin and Arierin	Cicer arietinum	Antiviral activity	Ye et al. (2002); De Souza et al. (2011)
Peptidesa-Mitogenic	Brassica napus	ND-Not determined	Yast (2004)
Phaseococcin	Phaseolus coccineus	HIV	Kuczera et al. (2010)
Sesquin	Vigna sesquispes	HIV	Hulmark et al. (2005)

4.3. Algae

Table 4 shows antiviral attributes of algal metabolites and polysaccharides. Griffithsin and Scytovirin isolated from red and blue-green algae, respectively inhibited HCV (Takebe et al., 2013). The former is also a prominent HIV inhibitor (Besednova et al., 2019). Group I diterpenes like 8ox,11-dihydroxy-pachydictyol A, 8â€‘hydroxy pachydictyol A from Dicytota sp. and diterpenes of Group II including Acetoxychidodiol, 3â€‘-actoxydilophol obtained from Dicytota pliectens showed weak antiviral activity. Dolabelladienols A-B extracted from Dicytota pfludii displayed strong antiviral properties. Bicyclic diterpenes, Crenulidalens from Da-1, and AcDa-1 obtained from D. menestraulis inhibited HIV replication process (Chen et al., 2018).

Fucoidan, a polysaccharide from the marine alga, Cladosiphon okamuranus prevented dengue virus infection (Teixeira et al., 2014). The effect is specific on retroviruses by using heparan sulphate as primary viral receptors (Besednova et al., 2019). Carrageenan, from Gigartina skottsbergii inhibited Influenza virus, HIV, HPV, HSV-1, HSV-2, and dengue virus. Galactan from red algae like Callanpyllis varigate and Agardhiella tenera possessed antiviral properties against HIV, HSV-1, -2, Dengue virus, and Hepatitis A virus. Alginate from brown algae inhibited Hepatitis B, HIV, and A virus. Fucan from brown algae like Adenocystis utricularis and Undaria pinnatifida expressed antiviral activities against HIV, HSV, Sindbis virus, and Vesicular Stomatitis Indiana virus. The virus of red alga, Schizymenia pacifica exhibited antiviral properties against HIV (Ahmadi et al., 2015).

Calcium spirulin, isolated from Spirulina platensis blocked replication of HSV-1, HIV-1, Influenza A, measles, and mumps virus. Extract of Spirulina maxima reduced HSV-2 infection. Cyanovirin-N, a protein produced by blue-green alga Nostoc ellipsosporum stopped HSV-1 entry into cells by preventing fusion with HSV-1 glycoproteins (Kim et al., 2011). Nostoflan, extracted from Nostoc flagelliforme showed antiviral activities against HSV-1, HSV-2, and Influenza A virus (Thuan et al., 2019). Dieckol isolated from Ecklonia cava prevented cleavage of SARS-CoV 3CL protein and stopped viral replication (Koirala et al., 2017). Ulvan, from Ulva armoricanus has been identified to have antiviral properties (Xu et al., 2017). Laminarans or laminarins have been found to play the role of HIV reverse transcriptase and avoid absorption of HIV onto human lymphocytes (Besednova et al., 2019).

4.4. Bacteria

Therapeutic agents from natural resources, particularly bacteria are considered pivotal alternatives of commercially available synthetic drugs. Advancements in genomic technology (identify secondary metabolite gene clusters) and analytical techniques (isolation and purification of compounds) have led the drug discovery approaches to identify novel compounds with antiviral activity. Few noteworthy antiviral drugs isolated so far include surfactins from Bacillus subtilis which display antiviral activities against HSV (Ongena and Jacques, 2008).

Representatives of exopolysaccharides (EPS) producing strains of the genera Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, Pedicoccocus, and Weissella have been well studied for immunostimulating properties. The EPSs extracted from lactic acid bacteria of the genera Pedicoccus, Leuconostoc, and Lactobacillus significantly proved to produce anti-adeno virus effects in cell line studies (Bilavisk et al., 2019). Other microbial metabolites like spongouridine, spongothymidine, statins, myriocin, NA255, and cyclosporine were reported to have antiviral activities against HSV1,2, HBV, HIV, influenza virus, HCV, and coronaviruses (Nkongolo et al., 2014). Antiviral attributes of bacteria associated bioactive compounds are summarized in Table 5.

4.5. Actinomycetes

Actinomycetes are present in various environments and are active in the microbial communities. The secondary metabolites of these organisms are potential antiviral agents (Table 6). Xiamycin and its methyl ester of Streptomycyes sp. GT2002/1503 showed selective anti-HIV-1 activity (Xu et al., 2014). The compound (4S)-4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide, identified from Streptomycyes sp. Smu03 possessed antiviral property over a broad range of Influenza A virus (Li et al., 2018). Antimycin C from Streptomycyes kaviiensisis inhibited RNA virus families like Togaviridae, Picornaviridae, Bunaviridae, and western equine encephalitis virus. AhmpatininiBu from Streptomycyes sp. CPC 202950 and 4862F from Streptomycyes albusporus I03A-04862 inhibited HIV-1 protease. Narasin from Streptomycyes aureofaciens prohibited post-entry stages of viral replication during Dengue virus infection (Teixeira et al., 2014). Other antivirals include daptoycin from Streptomycyes roseoporus (Jakubiec-Krzesniak et al., 2018), diffusomycin from...
Table 3
Fungal metabolites against viral pathogens.

Name of the compound	Organisms	Active against	References
Aphidicolin	Cephalosporium aphidicola	HSV 1 and 2	Hanson (1972)
Hyalodendrin A	Penicillium turbata	Polio, Coxsackie viruses	Becher (1976)
Stachybotrys A	Stachybotrys sp.	Enterovirus-71	Qin et al. (2014)
3,6,8-Trihydroxy-1-methylbenzanthone	Sclerotium sp.	HSV	Rowley et al. (2003); Youssef et al. (2019)
Halovir 1	Aspergillus terreus SCGAF0162	HSV	Nong et al. (2014)
Balticolid	Ascomycetous strain 222	HSV	Shushni et al. (2011)
Equisetin	Fusarium heterosporum	HIV	Shushni et al. (2011)
Phomasetin	Phoma sp.	HIV	Singh et al. (1999)
Intergic acid	Xylohypha sp.	HIV	Rowley et al. (2004)
Stachyphil	Stachybotrys sp. RF-7260	Influenza virus	Minagawa et al. (2002)
Oxoglycantrypine, Norquinadoline A, Deoxynortryptoquiline, Deoxynortryptoquiline, Trypotoxine, and Quinadoline B	Cladosporium sp.	Influenza virus	Peng et al. (2013)
Cladosin C	Cladosporium sporaespermum	Influenza virus	Wu et al. (2014)
(2-)–5-(Hydroxymethyl)-2-(6‘)-methylhept–2‘-en–2‘-yl)-phenol, Dichiorin, and HIV Cordyl C	A. sydowii 2SDS1-F6	Influenza virus	Wang et al. (2014)
Rubridole S	A. terreus OUCMDZ-1925	Influenza virus	Zhu et al. (2013)
Aspergesterol A	A. terreus SCGAF0162	Influenza virus	Gao et al. (2013)
Isoaspulvinone E	A. terreus Cqgw-48	Influenza virus	Gao et al. (2013)
Emerinamide A	Emericella sp. (HK-ZJ)	Influenza virus	Zhang et al. (2011)
Purpurquinone B	P. purpurigenum JS03-21	Influenza virus	Wang et al. (2011)
Sorbitacetate B	P. chrysogenum PJK-17	Influenza virus	Peng et al. (2014)
Tetracydroalerosol A	Alternaria sp. 22-2008003	Purine reproductive and respiratory syndrome	Zheng et al. (2012)
Sansalvamite A (43)	Fusarium sp.	Molluscum contagiosum virus	Hwang et al. (1999)
22-O-([N-Me-L-valyl]-21-epiaflquinoline	Aspergillus sp. XS-20090B15	Respiratory syncytial virus	Prieto and Castro (2005)
B (44)	Extracts		
GFAHP	Agaricus subfurescens	HSV-1	Bruggemann et al. (2006)
Beta-glucan-protein	Gliophora frondosa	HSV	Gu et al. (2007)
Aureniol	Agaricus subfurescens	HSV	Yamamoto et al. (2013)
Lentinula edodes	Chaetomium cinereum	Influenza A (HIN2)	Sacramento et al. (2015)
Trametes versicolor	Trametes versicolor	HPV	Collins and Ng (1997)
Polyaccharide	Agaricus subfurescens	HPV	Facchin et al. (2007)
Cordyceps militaris	Cordyceps militaris	Influenza, HSV	Krupodora et al. (2014)
4.5 kDa protein	Cordyceps militaris	HIV protease	Jiang et al. (2011)
Ganoderin acid	Ganoderma lucidum	HIV reverse transcriptase	Wang and Ng (2001)
Brefeldi A	Penicillium sp. PKI-7127	Dengue viruses, ZIKV, and Japanese encephalitis virus	Min et al. (1998)
Ganodermic acid G triterpenoids, and lucidicol	Ganoderma gelphiif Bres.	Influenza virus type A and HSV-1	Mathona et al. (2003)
Cordycepin (also named 3-deoxyadenosine)	Cordyceps militaris	Influenza viral, HIV-1 RT, Epstein-Barr virus, and Rota virus	Yong et al. (2018)
Ganodermic acids are A, AM1, B, j, C1, C2,C5, D, DF, DM, E, F, G, H,JK, MC, Me, Me, MK, N, P, R, S, T, TR, TQ, X, and Y	Ganoderma lucidum	HIV-1 and HBV	Hsa and Yen (2014)
Hsp20 and hispolon	Innotus hispidus (Bull.) P. Karst.	Influenza virus type A and type B	Li and Wang (2005)
PKS Kreston and P5P	Trametes versicolor	HIV-1	Milinari et al. (2005)
Velutin and Flammunin proteins	Flammulina velutipes	HIV-1 reverse transcriptase	Wang and Ng (2001)
Trypipelleazolin, (+)-neocreticoargin, and 3’-hydroxyergosta-8,14,24-(28)-trien-7-one	Penicillium sp.	HIV-1, HCV, and Influenza	Li et al. (2019)
Physcion, Neocholinin D, and Dihydroauroglaucin	Eurotium chevaleri	Influenza A virus	Bovi et al. (2019)

4.7. Lichens

Lichens are symbiotic organisms between fungi and algae. Nearly 1100 bioactive metabolites have been isolated from 18,500 lichens, but still numerous organisms are yet to be discovered from different environments. These metabolites generally belong to the classes of polyketides, phenols, terpenoids or quinines. Several research studies indicated the antiviral activities of metabolites (Table 8), such as (+)-usnic acid, sekikaic acid, and ant kraquinones against arenaviruses, respiratory syncytial virus, and HSV type 1 (Boustie and Grube, 2005; Stocker-Wörgötter, 2008; Zambare and Christopher, 2012; Lai et al., 2013).

4.6. Endophytic bacteria

Endophytes are a group of bacteria and fungi which live inside the host without damaging them. Metabolites obtained from endophytes possess antiviral properties (Table 7). Xinnycin A, a distinguished compound extracted from Bruguiera gymnorrhiz hus mango plant, demonstrated selective anti-HIV activity (Christina et al., 2013).
5. Complementary and herbal preparations as future therapy

5.1. Indian medicinal plants, Ayurvedic, and Unani systems

Plants are a potential source of antiviral agents. In India, herbal medicines have proved to intensify therapeutic effects against several viral infections like Dengue virus, HBV, HCV, HSV, HIV, and Influenza virus. These natural agents inhibit viral replication and synthesis. These indigenous plants stand alone in Indian tradition and have been recognized worldwide for its beneficial healing effects (Ballabh and Chaurasia, 2007; Pandey et al., 2008). Some of the common medicinal plants used are shown in Fig. 2.

An Indian Government initiative, Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy (AYUSH) held by the Ministry of Health and Family Welfare, 2014 provides education, awareness, and enhances research to use natural resources that can fight several life threatening diseases. Ayurvedic medicine has been in use since two thousand years. Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy (AYUSH) held by the Ministry of Health and Family Welfare, 2014 provides education, awareness, and enhances research to use natural resources that can fight several life threatening diseases. Ayurvedic medicine has been in use since two thousand years. Ayurveda, Yoga and Naturopathy, Unani, Siddha, and Homeopathy (AYUSH) held by the Ministry of Health and Family Welfare, 2014 provides education, awareness, and enhances research to use natural resources that can fight several life threatening diseases. Ayurvedic medicine has been in use since two thousand years.
Due to changing lifestyles and requirements for nutrition and immunity to overcome growing infections complementary and herbal medicine can act as best alternatives for chemical drugs. Nutraceutical components and ethnopharmacological preparations play a very important role to fight against viral infections (Kamboj, 2000). India is the largest manufacturer of traditional health products and formulations from medicinal plants. Herbal medicines and other nutrients from food are provided as dietary supplements in the form of pills, capsules, powders, solids or liquid (processed forms). They act as antioxidants, vitamin, and mineral supplements, also alleviate health against respiratory diseases, strengthen the immune system, and protect against the common cold (Mukherjee and Wahle, 2006).

Table 5
Antiviral compounds from bacteria.

Name of the compound	Organisms	Active against	References
Sulfamethoxine C, soraphen F, epothilone D, and spiranigren B, and Kulpelen B	Sorangium cellulosum	HIV	Zander et al. (2012)
Rhizopodin	Myxococcus stipitalis	HIV	Martinez et al. (2013)
Thiangazole, phenalamide A1, and phenoxan	Polyangium species	HIV	Jurkiewicz et al. (1992)
Aetheramide A and aetheramide B (10b)	Aetherobacter	HIV	Trowitzsch-Kienast et al. (1992)
Ratjadon A (11) and ox-phenone	Sorangium cellulosum	HIV	Gerth et al. (1995)
Myxochelins A-F	Angiococcus disciformis	Human	Miyayaga et al. (2009)
Nannochelin A-C	Nannocystis exedens	Human	Kunze et al. (1992)
Hylacheline A-C	Hylangium minutum	Human	Nadmid et al. (2014)
Chondramide A-D	genus Chondromyces	EVD	Reichenbach (1988)
Norimucenol A-C	Sorangium cellulosum	EVD	Kunze et al. (1991)
Labindole A and B, 3-chloro-9H-carbazole, 4-hydroxymethyl-quinoline, and Soraphen A	Labiliithrix laterula	HCV	Mulwa et al. (2018)
Lanyamycin	Streptomyces sp.	HCV	Gentzsch et al. (2011)
Surfactin	Bacillus amyloliquefaciens	Antiviral activity	Komousiti et al. (2004)
Bacitracin	Bacillus licheniformis	Antiviral activity	Konz et al. (1997)
Lichenysin	Bacillus licheniformis	Antiviral activity	Veith et al. (2004)
Locitamycin	Bacillus subtilis	Antiviral activity	Lui et al. (2015)
Macroactin A	Pedicoccus, Leuconostoc, Lactobacillus	Human	Gustafson et al. (1989)
Exopolysaccharides (EPSs)		Human adenovirus	Liubov et al. (2019)

Name of the compound	Organism	Active against	References				
4862F	Streptomyces parvus	Furan-2-yl acetate (C6H6O3)	Streptomyces sp.	Streptomyces sp. CPCC 202050	Streptomyces aureofaciens	Dengue virus	Teixeira et al. (2014)
4862F	Streptomyces sp. CPCC 202050	Streptomyces aureofaciens	Dengue virus	Teixeira et al. (2014)			

Table 6
Antibacterial metabolites against viral pathogens.

Name of the compound	Organism	Active against	References
9-Methyl streptimidone	Streptomyces sp. S-885	Poliovirus	Swallow et al. (1975)
Rifampin	Streptomyces mediterranei	Vaccinia and pox viruses	De Clercq (1973)
Novobiocin	Streptomyces etaphoroides (Actinomycetales)	Antiviral activity	Murray et al. (1982)
Guanine-7-N-oxide	Streptomyces sp.	Rhabdovirus and infectious	Nakagawa et al. (1985)
Antimycin A1a	Streptomyces kaviengensis	Western equine	Raveh et al. (2013)
Xiamycins C-E	Streptomyces sp. #HR18	Porcine epidemic diarrhea	Kim et al. 2016; Xu et al. (2014)
Pentapeptide 4862F-N.N.N-[(trimethylated)-Tyr-L-Leu-L-Val-L-Leu-(dehydrated)-His	Streptomyces sp.	Poliovirus	Liu et al. (2012)
4-amino-3-hydroxy-5-(4-methoxyphenyl) pentanoic acid	Streptomyces albomentos R33A-04862	HIV-1	Chen et al. (2018)
Daptomycin and Nanchangmycin	Streptomyces spp. CPC 202950	HSV-1	Barrows et al. (2016); Pascoalino et al. (2016); Rauch et al. (2017)
Chartreusins	Streptomyces roseosporas	ZIKV	Miyahara et al. (1958)
Mannose specific pradimicin-A (PRMA)	Streptomyces roseosporas	Influenza A	Tanabe-Tochikura et al. (1990)
Actinothoin	Streptomyces chartreusis	HIV	Chiba et al. (2004); Takahashi et al. (2005)
Benzastatin C, a 3-chloro-tetrahydroquinolone alkaid	Streptomyces sp.	HSV-1, HSV-2, and	Lee et al. (2007)
JBR-68	Streptomyces sp. R18	vesicular stomatitis virus	
Methylbactopin	Streptomyces sp. RT62K1 spg.	Influenza virus	Takagi et al. (2010)
Furaz-2-y acetate (C6H6O3)	Streptomyces parvus	Newcastle disease virus	Lee et al. (2011)
Di-n-octyl phthalate and bis (2-methylethyl) phthalate	Streptomyces microflavus	Fish nodavirus	Suthindhuran et al. (2011)
Fattiviracin A1	Streptomyces griseoviridis	HCV	Elshab et al. (2016)
Musacin A	Actinomadura hibisca	Antiviral activity	Yokomizo et al. (1998)
MMG61356	Actinomadura pradimicin-A (PRMA)	Antiviral activity	Schneider et al. (1996)
FK 506	Actinomadura hibisca	Antiviral activity	Admon et al. (1990)
Benzastatin C	Streptomyces nitrosporeus	Antiviral activity	Reis et al. (2006)
(45)-4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide	Streptomyces sp. Smu03	Influenza A virus	Lee et al. (2010)
Ahmpatinini Bu	Streptomyces sp. CPCC 202050	HCV-1	Lee et al. (2011)
4862F	Streptomyces aureofaciens	HCV-1	Lee et al. (2011)
Narasin	Streptomyces aureofaciens	HCV-1	Lee et al. (2011)
5.2. Chinese herbal medicine (CHMs)

CHMs contain several plant products and preparations which play a tremendous role in treating various ailments (Fig. 3). They help to regulate body temperature and detoxify chemical substances in our body. Xiaoqionglong decoction mixture is used in China for respiratory ailments such as asthma, cough, and chronic obstructive pulmonary disease. The mixture consists of wild ginger (Xixin, Asari Radix et Rhizoma), *Pinellia ternata* (Banxia, Pinelliae Rhizoma), Liquorice root (Gancao, Glycyrrhizae Radix et Rhizoma), Chinese Magnoliavine Fruit (Wujie, Schisandrae Chinensis Fructus), dried ginger (Ganjiang, Zingiberis Rhizoma), Cassia Twig (Guizhi, Ramulus Cinnamomi), Chinese Ephedra herb (mahuang, Ephedrae Herba), and white peony root (Baishao, Paeoniae Radix Alba). This herbal extract exhibited antiviral activity against drug-resistant H1N1 virus (Zhen et al., 2018).

Extracts of *Scutellaria baicalensis* contain flavonoids such as 5,7,4′-trihydroxy-8-methoxyflavone, baicalin, and 5,7,8,4′-tetrahydroxyflavone. These extracts showed antiviral properties that inhibited the neuraminidase activity of Sendai virus and Influenza A H5N1 (Hou and Lu, 2009). *Houttuynia cordata* Thunb is a traditional Chinese medicine used for treating pneumonia and lung-related ailments. It is also found active against SARS-CoV (Lau et al., 2018).

5.3. Other traditional medicines

Maoto is a Japanese herbal medicine used for upper respiratory tract infection. Maoto constitutes extracts obtained from *Ephedra* herb, Apricot kernel, Cinnamon bark, and *Glycyrrhiza* root. Maoto expressed antiviral effect against Influenza virus PR8 and H1N1 by inhibiting the V-ATPase present in the endosome and lysosome membranes, thereby preventing the uncoating of the virus and its entry into the cytoplasm (Masui et al., 2017).

Korean Red Ginseng is used as traditional medicine in East Asian countries as it has enhanced pharmacological properties as compared with fresh ginseng (the root of *Panax ginseng*) because of the steaming process of ginseng (the root of *Panax ginseng*). Due to steaming, the root of *Panax ginseng* contains a variety of active ingredients, including saponins, ginsenosides, and flavonoids. These active ingredients have various medicinal properties, including immune-stimulating, anti-inflammatory, and anti-cancer effects.

5.4. Enhancing immunity via nutrition

A healthy immune system is the necessity in today’s world to combat emerging pathogenic infections. Fig. 4 enlists common nutraceuticals to improve immunity against viral pathogens. Vitamins are the best source of nutrient supplements readily available in plants, fresh fruits, and vegetables. Vitamin C and D hamper speedy recovery of common cold, cough, sore throats, etc., while other vitamins like A, B6, K, and E strengthen the immune system by enhancing inflammatory responses and speed up the biochemical pathways involved in viral destruction. Minerals like zinc, copper, iron, and potassium inhibit pro-inflammatory cytokines and enable the differentiation of T-lymphocytes (Patel et al., 2019). In addition to micronutrients, probiotics not only metabolize food but also wipe out pathogens from the hosts. Herbal home remedies like preparation of decoctions with garlic, ginger, turmeric, pepper, and onions increase flu fighting responses and boost the immune system (Kang et al., 2013; Curtis et al., 2017).

6. Conclusions and future perspectives

Newly emerging viral diseases are serious threat to human health. Recent impact of viral disease outbreaks like COVID-19, SARS, EVD, ZIKV disease, NIV disease, and Influenza viruses have emphasized new drug designing and vaccine development. Though synthetic molecules are available for viral infections, traditional medicines or novel drug formulations from different natural sources benefit better with low complications. Natural resources viz. medicinal plants, bacteria, and fungi have been identified as promising producers of plethora of alkaloids, coumarins, phenolics, flavonoids, lignans, terpenoids, tannins, and...
peptides which have shown tremendous abilities as antiviral agents and suggested their role in the development of ideal antiviral drugs in future. Indian medicinal plants and Ayurveda have shown beneficial effects against diversified groups of viral diseases. In addition, CHMs and Unani medicines contained several plant products and preparations which played a tremendous role in treating various

Coroana Virus	Influenza Virus	Hepatitis B Virus	Respiratory Syntitial Virus	Dengue Virus
Bupleurum spp. (Chái Hú)	elderberry (Jié Gǔ Mǔ; Sambucus nigra)	Piper longum (Jiā Jú)	Lophatherum gracile (Dān Zhù Yè)	Terminalia chebula (Hē Zī)
Scrophularia scorodonia (Xuán Shēn)	dandelion (Pú Gōng Yíng; Taraxacum officinale)	Xiao-Chai-Hu Tang (Xiāo Chái Hú Tang), Bupleurum species (Chái Hú), Polygonum cuspidatum sieb. et zucc (Hū Zāng)	Sheng-Ma-Ge-Gen-Tang (Shèng Mǎ Gé Gèn Táng), Its major component herb Cimicifuga foetida L. (Shèng Mǎ),	
Lycoris radiata (Shì Suàn)	homoisoflavanoids from Caesalpinia sappan (Sǔ Mǔ)			
Artemisia annua (Huáng Huā Hǎo), Pyrosis lingua (Shí Wěi)				
Lindera aggregata (Wú Yào)	Other medications			
Isatis indigotica (Bān Lǎn Gèn)	Ocimum basilicum (Luò Lè)	Woodfordia fruticosa flowers (Xià Zǐ Hú)		
Torreya nucifera (Fēi)		Fructus arctii (Niú Bāng Zǐ)		
Houttuynia cordata (Yú Xīng Cǎo)		Uncaria tomentosa (Gōu Tēng)		

Measles Virus	Human Immunodeficiency Virus	Sheng-Ma-Ge-Gen-Tang (SMGGT) is a Chinese formula, consisting of four herbal medicines: Rhizoma Cimicifuga-gae (Sheng Ma), P. lobata (Ge Gen), Glycyrrhiza uralensis (Gan Cao), and Raonemia lactiflora (Shào Yao)	Pu Di Lan is prepared as oral tablets or a liquid, and mainly consists of Taraxacum mongolicum (Pu Gong Ying), S. baicalensis (Huang Qin), Corydalis bungeana Turcz. (Ku Di Dīng), and Baphicacanthus cusiae Rhizoma et Radix (Bān Lān Gèn)
Rhus succedanea (Yè Qì)	Artemisia annua (Huáng Huā Hǎo)		
Garcinia multiflora			
Olinia rochitiana (Olkireinj)			
Warburgia ugandensis (Osokoi)			

Ayurvedha	Unani	Decotions used in Unani
Azadirachta indica A. Juss	Svetiachirata karst	Cydonia oblonga
Acorus calamus Linn.	Cichorium intybus Linn.	Zizyphus jujube Linn.
Vitex negundo Linn.	Artemisia absinthium Linn.	Cordia myxa Linn.
Boswellia serrata Roxb.	Trachysperm umammi sprague	Cinnamomum zeylanicum
Commiphora wightii Arn.	Borge officinalis Linn.	Viola odorata Linn.
Curcuma longa	Azadirachta indica A. Juss.	Borago officinalis Linn.
Punica granatum	Cyperus scariosus R. Br.	Papaver somniferum
Ocimum sanctum		Hyoscyamus niger
Nyctanthes arbor-tractis		Papaver somniferum
Carica papaya		Myrtus communis
Holarrhena antidysenterica		Lactuca sativa
Phyllanthus urinaria Linn.		Rosa damascene
Euphorbia jolkindi Biss		

Fig. 2. (a) Indian medicinal plants reported to treat viral diseases such as Measles, Poliomyelitis, Herpes, Influenza, Hepatitis, HIV, Chickenpox, and Yellow fever. (b) Plant extract formulations prepared by Ayurvedic and Unani medicines to combat viral diseases.
ailments. These evidences led to investigate further the field of pharmacology in order to strengthen the constant warning of emerging and re-emerging viral infections and develop a state of preparedness in the world. However, plethora of natural resources still requires in-depth pharmacological investigations in terms of suggesting their profound roles as therapeutics.

CRediT authorship contribution statement

R. Sagaya Jansi: Investigation, Writing - original draft. Ameer Khusro: Investigation, Writing - original draft. Paul Agastian: Conceptualization, Writing - original draft. Ahmed Alfarhan: Conceptualization, Resources, Supervision. Naif Abdullah Al-Dhabi: Writing - review & editing, Supervision. Mariadhas Valan Arasu: Writing - review & editing, Resources, Rajakrishnan Rajagopal: Writing - review & editing, Resources. Damia Barcelo: Conceptualization, Writing - review & editing, Supervision. Amal Al-Tamimi: Resources, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge the support they received from Loyola College and King Saud University for the preparation of this manuscript.

References

Ahmadi, A., Zoroofchian Moghadamtousi, S., Abubakar, S., Zandi, K., 2015. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed. Res. Int., 825203. https://doi.org/10.1155/2015/825203.

Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Munster, V.J., Hensley, L.E., Zalmout, I.S., Kapoor, A., Epstein, J.H., Karesh, W.B., Daszak, P., Mohammed, O.B., Lipkin, W.I., 2014. Middle East Respiratory Syndrome Coronavirus infection in dromedary camels in Saudi Arabia. MBio 5 (2).https://doi.org/10.1128/mbio.01002-14.

Alexander, M.E., Kobes, R., 2011. Effects of vaccination and population structure on influenza epidemic spread in the presence of two circulating strains. BMC Public Health 11 (Suppl. 1), S8. https://doi.org/10.1186/1471-2458-11-S1-S8.

Alvin, A., Miller, K.I., Neilan, B.A., 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 169 (7–8), 483–495. https://doi.org/10.1016/j.micres.2013.12.009.

Amoros, M., Girre, R.L., 1987. Structure of two antiviral triterpene saponins from Anagallis arvensis. Phytochemistry 26 (3), 787–791. https://doi.org/10.1016/S0031-9422(00)84787-1.

Amoros, M., Girre, R.L., 1987. Structure of two antiviral triterpene saponins from Anagallis arvensis. Phytochemistry 26 (3), 787–791. https://doi.org/10.1016/S0031-9422(00)84787-1.

Fig. 4. Nutraceuticals to improve immunity.
Gustafson, K.R., Sowder, R.C., Henderson, L.E., Parsons, L.C., Kashman, Y., Cardellina, J.H., 1996. HIV-inhibitory natural products. Diterpene

Erickson, K.L., Beutler, J.A., Cardellina, J.H., McMahon, J.B., Newman, D.J., Boyd, M.R., 1995. Antitumor and anticancer activity of marine

Foder, G.B., Colasanti, B., 1985. Alkaloids, Chemical and Biological Perspectives. 3. Wiley, New York, pp. 1–93.

Fenglei, Z., Yunlong, X., Handong, S., 1989. Diterpenoids constituents of

Gao, W., Sun, Y., Chen, S., Zhang, J., Kang, J., Wang, Y., Wang, H., Xia, G., Liu, Q., Kang, Y., 2001. Antibacterial and anti-HIV activity of new diterpenoid isolated from Scopolia carniolica, and the anti-HIV activity of structurally related triterpenoids.

Briggs, M., Stahl, M., Gulden, K.-P., Bringmann, C., French, G., 1997. Antiviral effects of naturally occurring thiophenes and polyacetylenes. Planta Med. 52 (5), 315–318. https://doi.org/10.1055/s-2002-321001.

Guenther, K., Schummer, D., Hölle, G., Ishik, H., Reichenbach, H., 1995. Ratatijn: a new antifungal compound from Sororugenum senega (Myxobacteria) production, physico-

Gahor, B., Olszewski, J., 1974. A screening strategy for selection of anti-HSV-1 and anti-HSV-2 drugs. Antivir. Res. 2, 19–27. https://doi.org/10.1016/0166-3542(74)90022-4.

Gaw, W., Sun, Y., Chen, S., Zhang, J., Kang, J., Wang, Y., Wang, H., Xie, G., Liu, Q., Kang, Y., 2001. A new mechanism of action of marine diterpenoids against HIV-1: the regulation of viral proteasome activity.

Gupta, R.K., Stowar, R.C., Henderson, L.E., Parsons, L.C., Kashman, Y., Cardellina, J.H., McMahon, J.B., Collins, R.W., Pannell, L.R., Boyd, M.R., 1994. Cyclic and acyclic cyclic peptides from the marine bacterium Sorangium cellulosum.

Gyorgy, E., Koch, A., 1969. Heart glycosides in poliovirus host cell interaction. Effect of the "anti-thrombotic" forces on the virus susceptibility. Virology 38 (1), 203–211. https://doi.org/10.1016/0042-6822(69)90153-8.

Gyorgy, E., Koch, A., 1969. Heart glycosides in poliovirus host cell interaction. Effect of the "anti-thrombotic" forces on the virus susceptibility. Virology 38 (1), 203–211. https://doi.org/10.1016/0042-6822(69)90153-8.
supplements to humoral immune responses following pediatric influenza vaccina-

virus. Viruses 11 (10), 907. https://doi.org/10.3390/v11100907.

Patel, A.D., Patel, A.J., Jonas, M.R., Nundy, S., Mardini, M.E., F.R., 2021.

Rajash, L.J., 1990. In vitro study of the antiviral activity of some b-carbaldehyde compounds. Fitologia 135–155.

Rathore, A., Bivastava, V., Sivastava, K.C., Tandon, J.S., 1990. Irido glucosides from Nyctanthes arbor-tristis. Phytochemistry 29 (6), 1917–1920. https://doi.org/10.1016/S0031-9422(99)01878-X.

Ricklin, D., Hajiaghjali, G., Yang, K., Lambris, J.D., 2010. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11 (9), 785–797. https://doi.org/10.1038/ni.1923.

Ricklo, V.P., Yamamoto, K.A., Ricardo, N.M.P.S., Soares, S.A., Meirelles, L.D.P., Nozawa, C., Linhares, R.E.C., 2012. Poly saccharides and extracts from Lentinula edodes: structural features and antiviral activity. Virol. J. 9, 37. https://doi.org/10.1186/1743-422X-9-37.

Roux, L.-E., Turgeon, S.L., Beaulieu, M., 2010. Structuralcharacterization of laminaran and laminarabioisomer extracted from Saccharomyces cerevisiae. Phytochemistry 71 (13), 1586–1595. https://doi.org/10.1016/j.phytochem.2010.05.021.

Roccatagliata, A.J., Maier, M.S., Seidel, A.M., Pujol, C.A., Damonte, E.B., 1996. Antiviral sul-
fated steroids from the ophiuroid Ophioplatus januarii. J. Nat. Prod. 59 (5), 887–889. https://doi.org/10.1021/np50171a001.

Rouhier, P., Kopp, M., Begot, V., Bruneteau, M., Fritig, B., 1995. Structural features of fungal b-glucans for the efficient initiation of the infection of virus infection on Nicotiana tabacum. Phytochemistry 39 (1), 57–62. https://doi.org/10.1016/0031-9422(94)00177-9.

Rowley, D.C., Kelly, S., Kauffman, C.A., Jensen, P.R., Fenical, W., 2003. Halovir A-E, new antiviral agents from a marine-derived fungus of the genus Systromin. Cheminfon 3 (6). https://doi.org/10.1021/ch0306159.

Rowman, K., Kelly, S., Kauffman, C.A., Jensen, P.R., Fenical, W., 2004. Synthesis and structure-activity relationships of the halovirs, antiviral natural products from a marine-derived fungus. Bioorganic and Medicinal Chemistry 12 (18), 4929–4936. https://doi.org/10.1016/j.bmc.2004.06.044.

Rondini, M., Gopalan, P., 2000. Antiviral activity of some halogenated flavones isolated from Cassia auriculata leaves against White Spot syndrome virus of Penaeus monodon. Fitoterapia LXI 153.

Roca, G.S., Cochran, K.W., 1974. Antiviral activity of triterpenoid saponins containing acyl-
edyl-D-galactopyranoside, an anti-HIV principle from Chrysanthemum cinerarum. J. Antibiot. 68 (2), 121–127. https://doi.org/10.1093/eca/mnh140.

Rohde, A., Deletke, P.C., Dobry, C.J., Peng, W., Schultz, P.J., Blakely, P.K., Tai, A.W., et al., 1999. Nanchangmycin as a novel antiviral of fungus-derived brefeldin A against dengue Virol. J. 16 (1), 69. https://doi.org/10.1186/s12985-019-1182-0.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.

Romani, L., Frasca, A., 2016. The extended impact of human immunodeficiency virus. J. Viral. 89, 92–99. https://doi.org/10.1186/1742-4695-12-21.
Xu, S.Y., Huang, X., Cheong, K.L., 2017. Recent advances in marine algae polysaccharides: isolation, structure, and activities. Marine Drugs 15 (12), 388. https://doi.org/10.3390/md15120388.

Yamamoto, R.A., Galhardi, L.C.F., Soares, S. de A., Vieira, Í.G.P., Ricardo, N.M.P.S., Nozawa, C., Linhares, R.E.C., 2013. Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated derivative and fractions. Int. J. Biol. Macromol. 52, 9–13. https://doi.org/10.1016/j.ijbiomac.2012.09.025.

Yamazaki, Z., Tagaya, I., 1980. Antiviral effects of atropine and caffeine. J. Gen. Virol. 50 (2), 429–431. https://doi.org/10.1099/0022-1317-50-2-429.

Yang, X.W., Zhao, J., Cui, Y.X., Liu, X.H., Ma, C.M., Hattori, M., Zhang, L.H., 1999. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis. J. Nat. Prod. 62 (11), 1510–1513. https://doi.org/10.1021/np990180u.

Ye, X.E., Ng, T.B., Rao, P.F., 2002. Cicerin and arietin, novel chickpea peptides, with different antifungal potencies. Peptides 23, 817–822. https://doi.org/10.1016/s0196-9781(02)00005-0.

Ye, M., Beach, J., Martin, J.W., Senthilselvan, A., 2013. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health 10 (12), 6442–6471. https://doi.org/10.3390/ijerph10126442.

Yokomizo, K., Miyamoto, Y., Nagao, K., Kumagae, E., Habib, E.-S.E., Suzuki, K., Harada, S., Uyeda, M., 1998. Fattiviracin A1, a novel antiviral agent produced by Streptomyces microflavus strain no. 2445. II. Biological properties. J. Antibiot. 51 (11), 1035–1039. https://doi.org/10.7164/antibiotics.51.1035.

Zambare, V.P., Christopher, L.P., 2012. Biopharmaceutical potential of lichens. Pharm. Biol. 50 (6), 778–798. https://doi.org/10.3109/13880209.2011.633089.

Zander, W., Irschik, H., Augustinak, H., Herrmann, M., Jansen, R., Steinmetz, H., Gerth, K., Kessler, W., Kalesse, M., Höfle, G., Müller, R., 2012. Sulfangolids, macrolide sulfate esters from Sorangium cellulosum. Chem. Eur. J. 18 (20), 6264–6271. https://doi.org/10.1002/chem.201100851.

Zandi, K., Tesh, B.T., San, S.S., Wong, P.F., Mustafa, M.R., Abubakar, S., 2011. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J. 8, 560. https://doi.org/10.1186/1743-422X-8-560.

Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P.J., Wang, Y., Ma, L.F., Zhu, Y.-H., 2009. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Marine Drugs 7 (2), 97–112. https://doi.org/10.3390/md7020097.

Zhang, G., Sun, S., Zhu, T., Lin, Z., Gu, J., Li, D., Gu, Q., 2011. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytomedicine 72 (11–12), 1436–1442. https://doi.org/10.1016/j.phytochem.2011.04.014.

Zeng, C.J., Shao, C.L., Guo, Z.Y., Chen, J.F., Deng, D.S., Yang, K.L., Chen, Y.Y., Fu, X.M., She, Z.G., Lin, Y.C., Wang, C.Y., 2012. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungi. J. Nat. Prod. 75 (2), 189–197. https://doi.org/10.1021/np200766d.

Zhu, T., Chen, Z., Liu, P., Wang, Y., Xin, Z., Zhu, W., 2013. New rubrolides from the marine-derived fungus Aspergillus terreus OUCMDZ-1925. J. Antibiot. 67 (4), 315–318. https://doi.org/10.1038/ja.2013.135.