In Vitro and In Vivo Anti-Clostridioides difficile Effect of a Probiotic Bacillus amyloliquefaciens Strain

Md Imtiazul Islam1,2†, Hoonhee Seo1,2†, Asma Redwan1, Sukyung Kim1,2, Saebim Lee1,2, Mashuk Siddiquee1, and Ho-Yeon Song1,2*

1Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
2Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea

Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 μg/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.

Keywords: Clostridioides difficile, Bacillus amyloliquefaciens, BA PMC-80, probiotic, antibiotic

Introduction

Clostridioides difficile-mediated infection (CDI) is a common nosocomial digestive infection characterized by pseudomembranous colitis and mainly associated with antibiotic treatments [1]. C. difficile (CD) remains prevalent throughout North America and Europe [2, 3]. Approximately half a million cases of CDI and more than 29,000 associated deaths were reported annually in the United States, and related overall medical costs exceeded US$ 4 billion [4]. Reduction of CDI rates is still one of the top priorities of the Centers for Disease Control and Prevention (CDC) [5]. Several current studies report that CDI is emerging in Asia and other parts of the world, where its occurrence was believed to be low [6, 7]. Most commonly, CDI arises among people on antibiotic treatment, as antibiotics disrupt the normal gut microbiota, decreasing resistance to colonization and leaving the body vulnerable to this opportunistic pathogen. Major classes of antibiotics have been linked to the risk of CDI and a patient may remain susceptible to infection for up to 3 months post antibiotic cessation [8].

Recurrence of infection is one of the significant drawbacks of the current treatment options for CDI, such as vancomycin, metronidazole, and fidaxomicin [9,10]. Several alternative therapeutic options include immune-based therapies, fecal microbiota transplantation (FMT), and vaccinations [11]. Slight effectiveness of immune-based therapies has been found in clinical trials, as well as intravenous immunoglobulin (IVIG) [12] against severe refractory and recurrent CDI, the method is hard to standardize and has been linked to the risk of transmitting other infectious diseases [13-17]. The CDI-targeted vaccines are still in clinical trials [18]; however, their prolonged seroconversion time [18-21] makes them unsuited for providing rapid protection. Alternative treatment options are required and they must be effective against both primary and recurrent CDI while helping to restore the complex balance of the normal gut microbiota without disrupting the indigenous microbiota [22].

Probiotics are attractive as a potential alternative to standard antibiotic therapy as they can prevent the invasion of pathogens by repopulating beneficial microbiota and producing antimicrobial compounds [23]. Different probiotics such as Lactobacillus rhamnosus GG and Saccharomyces boulardii have already been reported to prevent antibiotic-associated and CDI-induced diarrhea [24-26]. Bacteria of the genus Bacillus are also well known for producing many antimicrobial peptides with different chemical structures, such as bacteriocins, amyloolytic enzymes, and other defensive mechanisms.
bacteriocin-like substances, and lipopeptides [27–29]. Bacillus amyloliquefaciens (BA), a potential candidate and member of the Bacillus genus, has been suggested in several recent studies to produce antimicrobial peptides [27], antibiotic compounds such as difficidin and bacilysin [30, 31], antifungal protein bacamin [32, 33] and antifungal iturin/fengycin-like peptides [34]. BA is also known to exert a beneficial effect on CDI-associated diarrheal diseases [35].

Korean fermented foods are a recognized source of many probiotic bacteria [36, 37]. We therefore started a project focused on isolating and applying probiotics as new agents to replace conventional antibiotics in the fight against CDI. Initially, several prospective probiotic strains of various origins were tested against CD, and as a result, B. amyloliquefaciens (BA PMC-80) and its significant anti-CD effect were discovered. Here, we report the results of in vitro/in vivo efficacy and safety studies on the potential of BA PMC-80 for CDI therapy.

Materials and Methods

Commercial Drugs and Chemicals

Methicillin, streptomycin, rifampicin, vancomycin, and clindamycin were purchased from Sigma-Aldrich (USA).

Bacterial Strain

Clostridioides difficile (ATCC 43255) with tcdA (Toxin A) and tcdB (Toxin B) was purchased from the American Type Culture Collection (USA).

Isolation of Probiotic Strains from Korean Traditional Fermented Foods

Probiotic strains were isolated from traditional fermented foods such as abalone, sea conch, ghee, cured cheese, cured kimchi, kimchi (fresh), kimchi (old), mixed soybean sauce, mustard pickles, pepper sauce, radish kimchi, seaweed sauce, sesame leaf kimchi, soybean liquid, string cheese, white kimchi, and young radish kimchi from various regions of Korea. The liquid portion of each food sample was streaked on brain heart infusion agar (211065, BD Difco, USA), M17 agar (MB-M1192, Kisanbio, Korea), Tos-MUP agar (MB-T0892, Kisanbio, Korea), and de Man, Rogosa and Sharpe (MRS) agar (288210, BD difco, USA) media using a loop, respectively, and samples were then cultured in an aerobic (general incubator, N-Biotek, Korea) or anaerobic (Concept M 400, Baker Ruskin Technologies, UK) incubator at 37°C, respectively.

Screening for Potential Bacteria with Anti-CD Activity

Initially, anti-CD activity was investigated using agar diffusion assay according to Karsha-Wysocki et al. [38] with slight modifications. Briefly, overnight precultures of isolated probiotic bacteria were prepared from frozen glycerol stocks in MRS broth at 37°C in aerobic conditions. The next day, 3-μl probiotic precultures were spotted on the surface of MRS agar plates and incubated for 24 h at 37°C in aerobic condition to develop the growth of probiotic bacteria in the spot. After developing the probiotic bacterial spots, they were overlaid with 10 ml of BHI soft agar (0.7% agar) containing a 200-μl inoculum of an overnight culture of toxigenic Clostridioides difficile (ATCC 43255) in BHI broth. The plates were incubated for another 24 h under anaerobic condition at 37°C in an anaerobic chamber (Concept M 400, Baker Ruskin, Canada).

Identification of Selected Potential Strain

Biochemical and molecular identification techniques were used to identify PMC-80. According to the manufacturer's instructions, the carbon source utilization profile of PMC-80 was determined to evaluate its biochemical characteristics using an API 50 CHB system (bioMerieux, Inc., France) [39].

Molecular identification of PMC-80 was carried out using partial 16S rRNA gene sequence analysis using two universal primers 518 F (forward primer) 5'-CCAGCAGCCGGTATACAG-3' [40] and 805R (reverse primer) 5'-GACTACHVGGGTATCTAATCC-3' [41]. PCR products were separated by agarose gel electrophoresis (1% w/v) and visualized by staining with ethidium bromide. Sequencings were performed using a Big Dye Terminator Cycle Sequencing Kit (Applied BioSystems, USA), and the sequencing products were resolved on an Applied Biosystems model 3730XL automated DNA sequencing system (Applied BioSystems, USA). The resulting sequences of PMC-80 were collected in FASTA format for further analysis.

Phylogenetic Analysis

Similarities between the 16S rRNA gene sequence of PMC-80 and other strains in the National Center for Biotechnology Information (NCBI) database were evaluated in the Basic Local Alignment Search Tool (BLAST) program on the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Then, the 16S rRNA gene sequences representing the highest hits from the BLAST were retrieved and aligned in MEGA-X software. A phylogenetic tree was built with the constructed multiple sequence alignment using the neighbor-joining method in MEGA-X software. PMC-80 was later renamed BA PMC-80 after identification.

Evaluation of Anti-CD Activity of Cell-Free Supernatants (CFSs) of BA PMC-80

Cell-free supernatant (CFS) was used to determine the anti-CD activity of compounds secreted by BA PMC-80. CFS of BA PMC-80 was prepared according to Lee et al. [42] with slight modifications. Briefly, overnight culture of the BA PMC-80 incubated at 37°C in MRS broth (BD) was centrifuged at 10,000 × g for 10 min at 4°C, followed by filtration through a 0.2-μm sterile filter (Millipore, USA). The filtrate (20 ml) was further transferred to a 3K
Evaluation of the Effect of Enzymatic Degradation, Heat, and pH on BA PMC-80 Activity

We evaluated the stability of BA PMC-80 CFS under different pHs, temperatures, and enzymatic degradation according to the protocol [39] with slight modifications. The anti-CD activity of the 1X MIC₅₀ (89.06 μg/ml) concentration of BA PMC-80 CFS was determined in acidic (pH 5), neutral (pH 7) and basic (pH 9) conditions using broth microdilution assay as described in the previous section. To further evaluate the proteolytic stability and thermostability, CFS (1X MIC₅₀) was treated with 2 mg/ml Proteinase K (Promega, USA) for 2 h at 37°C and heated at 70, 80, or 90°C for 15 min respectively. After the treatment, the anti-CD activities were determined and compared with the previous normal condition results.

Antimicrobial Susceptibility Testing of BA PMC-80

Antibiotic susceptibility assay was performed to check whether BA PMC-80 carried any transmissible antibiotic resistance genes or not. The sensitivity of BA PMC-80 was assessed against a wide range of concentrations (200-0.02 g/ml) of methicillin, streptomycin, rifampicin, and vancomycin using the broth microdilution assay described in the earlier section.

Toxicity Assessment of BA PMC-80

A subchronic toxicity test was performed on Syrian hamsters to evaluate the toxicity of BA PMC-80 following the slightly modified protocol previously used [44]. Briefly, 20 six-week-old, male Syrian hamsters, each weighing 100 g, were purchased from Central Lab Animal, Inc., Korea, and divided into 4 groups with five hamsters in each group. Hamsters were orally treated with a 1-mL daily dose of normal saline (group 1) and test bacteria (BA PMC-80) at concentrations of 1 × 10⁸ CFU/ml (group 2), 1 × 10⁹ CFU/ml (group 3) and 1 × 10¹⁰ CFU/ml (group 4) for 2 weeks. BA PMC-80 cells were prepared for the treatment from the overnight culture by centrifugation at 4,000 g for 10 min, and the bacterial pellet was then resuspended in PBS to make concentrations of 1 × 10⁸, 1 × 10⁹, and 1 × 10¹⁰ CFU/ml. Every day, the food consumption, health condition, and weight of the hamsters were recorded. All the animal experiments were done under the control of the Soonchunhyang Institutional Animal Care and Use Committee (SIACUC, Approval No. SCH19-0037).

Evaluation of In Vivo Efficacy of BA PMC-80 in CDI Hamster Model

A CDI in vivo model was prepared using the Syrian hamsters to evaluate the efficacy of BA PMC-80 following a modified version of previous protocols [Fig. 7A] [45–47]. Briefly, 18 six-week-old male Syrian hamsters, each weighing 90-100 g, were purchased from Central Lab Animal, Inc., Korea, and divided into three groups with six hamsters in each group: 1) normal saline-treated infection control, 2) BA PMC-80 treated (1 × 10⁸ CFU/ml) and 3) vancomycin treated (2 mg/100 g) drug control. Hamsters were orally treated with 30 mg/kg clindamycin to disrupt the normal intestinal flora on day -2. Two days after the clindamycin treatment, on day 0, hamsters were orally infected with 1 × 10⁸ CFU/ml CD spores, previously prepared using the protocol [48] to initiate the infection. At 24 h post-infection, treatments of the hamsters were started with the feeding of normal saline, BA PMC-80, or vancomycin at day 1. Treatments were administered via oral gavage as a 1-mL single daily dose at the concentrations of 1 × 10⁸ CFU/ml (BA PMC-80) and 2 mg/100 g (vancomycin) for the next 14 days. Hamsters were observed throughout the experiment for signs of mortality and morbidity, the presence of diarrhea (wet tail), and overall appearance (activity, general response to handling, touch, ruffled fur). All the animal experiments were carried out in accordance with the institutional and national guidelines for animal care and use.

J. Microbiol. Biotechnol.
were done under the control of the Soonchunhyang Institutional Animal Care and Use Committee (SIACUC, Approval No. SCH19-0037).

Statistical Analysis

All experiments were done in triplicate. Statistical analyses were done using GraphPad Prism 9 software. Means of the drug-free control and test organism-treated group were compared using an unpaired Student’s *t*-test (*p* < 0.05, **p** < 0.01, ***p*** < 0.001, ****p*** < 0.0001).

Results

Isolation and Screening of Bacteria with Anti-CD Activity

A total of 252 colonies were obtained and 49 types of colonies judged to be different based on morphology, color, and size were selected and stored at -80°C under 15% glycerol conditions. The selected strains were evaluated for anti-CD activity using an agar diffusion assay, and BA PMC-80 showed the most potent inhibitory activity against toxigenic *C. difficile* (ATCC 43255) with a 30 mm zone of inhibition (Fig. 1). Other strains showed various activities with a range of inhibition zones, including 0~5 mm, 5~10 mm, 10~15 mm, 15~20 mm, and 20~25 mm (not shown). Finally, it was decided to continue further studies with BA PMC-80.

Table 1. The biochemical characteristics of *Bacillus amyloliquefaciens* PMC-80.

Substrate	Reaction	Substrate	Reaction
Glycerol	+	Esculin ferric citrate	+
Erythritol	-	Salcin	+
D-Arabinoose	-	D-Cellobiose	+
L-Arabinoose	+	D-Maltose	+
D-Ribose	+	D-Lactose	-
D-Xylose	-	Melibiose	+
L-Xylose	-	D-Sucrose	+
D-Adonitol	-	D-Trehalose	+
Methyl xylopyranoside	-	Inulin	+
D-Galactose	+	D-Melezitose	-
D-Glucose	-	D-Raffinose	+
D-Fructose	+	Amidon/Starch	+
D-Mannose	-	Glycogen	-
D-Sorbos	+	Xylitol	-
Rhamnose	-	Gentibiose	-
Dukitol	-	D-Turanose	-
Inositol	-	D-Lyxose	-
D-Mannitol	+	D-Tagatose	+
D-Sorbitol	+	D-Fructose	-
α-Methyl-D-mannoside	-	L-Fructose	-
α-Methyl-D-glucoside	+	D-Arabitol	-
N-Acetylglucomosamine	-	L-Arabitol	-
Amygdaline	+	Gluconate	-
Arbutin	+	2-Ketogluconate	-

+, Positive; -, Negative
Characterization and Identification of BA PMC-80

Based on the carbon source utilization profiles (Table 1), the API identification kit identified BA PMC-80 as *B. amyloliquefaciens* with 99.8% certainty. Over 99.0% similarity (Table 2) between the 16S rRNA gene sequence of BA PMC-80 and other *B. amyloliquefaciens* strains in the GenBank database further proved the identification. The constructed phylogenetic tree from the neighbor-joining method also demonstrated that BA PMC-80 was closely related to the *B. amyloliquefaciens* strains (GenBank, Accession No. NR_041455 and NR_112685) (Fig. 2). The identification results from API biochemical analysis, BLAST analysis, and phylogenetic analysis were consistent.

Anti-CD Activity of BA PMC-80 CFS

Along with the control drug vancomycin, BA PMC-80 CFS was used in a range of concentrations (5,700-2.78 μg/ml) to evaluate the anti-CD activity using broth microdilution assay. The CFS of BA PMC-80 exhibited a considerable anti-CD activity by reducing the OD in the broth microdilution assay with an MIC₅₀ of 89.06 μg/ml (Fig. 3). Similar results were shown by the BA PMC-80 CFS in the CFU enumeration assay (Fig. 4A) and ATP measurement assay (Fig. 4B) with a consistent MIC₅₀ value of 89.06 μg/ml.

Stability of BA PMC-80 CFS under Different pHs, Temperatures, and Enzymatic Degradation

The stability of the CFS of BA PMC-80 was evaluated by measuring its anti-CD activity in the presence of different pHs (5, 7, and 9), temperatures (70, 80, or 90°C) and Proteinase K (2 mg/ml) and by comparing the efficiency with the most active condition. BA PMC-80 CFS was found to be significantly effective against *C. difficile* in all three acidic (pH 5), neutral (pH 7), and basic conditions (Fig. 5). BA PMC-80 CFS also showed thermostability with considerable anti-CD activity after 15-min heat treatments up to 90°C (Fig. 5).

Table 2. Identification of isolated bacterial strain, BA PMC-80, based on 16S rRNA gene sequence analysis and their top ten close relatives published in NCBI databases.

NCBI reference	Organism	Length	Max score	Total score	Identities	E-value
NR_117946.1	*Bacillus amyloliquefaciens* strain MPA 1034	1448	2606	2606	99.93	0.0
NR_075005.2	*Bacillus velezensis* strain FZB42	1550	2603	2603	99.79	0.0
NR_041455.1	*Bacillus amyloliquefaciens* strain NBRC 15535	1472	2603	2603	99.93	0.0
NR_024696.1	*Bacillus vallismortis* strain DSM 11031	1530	2603	2603	99.79	0.0
NR_112685.1	*Bacillus amyloliquefaciens* strain NBRC 15535	1475	2599	2599	99.86	0.0
NR_151897.1	*Bacillus nakanura* strain NRRL B-41091	1508	2597	2597	99.72	0.0
NR_102783.2	*Bacillus subtilis* subsp. subtilis strain 168	1550	2597	2597	99.72	0.0
NR_116022.1	*Bacillus amyloliquefaciens* strain BCRC 11601	1468	2593	2593	99.86	0.0
NR_115351.1	*Bacillus nematocida* strain B-16	1511	2591	2591	99.65	0.0
NR_104873.1	*Bacillus subtilis* subsp. inaquosorum strain BGSC 3A28	1538	2591	2591	99.65	0.0

Fig. 2. Phylogenetic tree of BA PMC-80 generated using neighbor-joining method. 16S rRNA gene sequence of the BA PMC-80 and similar strain from BLAST search are used in the tree construction. At major nodes, bootstrap percentages for 1,000 re-samplings are shown.
Furthermore, we found that the Proteinase K treatment (2 mg/ml) did not influence the anti-CD activity of BA PMC-80 CFS (Fig. 5). Overall, the consistent 89.06 μg/ml MIC50 value in all the tested conditions confirmed that BA PMC-80 CFS contained considerably stable anti-CD compounds.

Antimicrobial Susceptibility of BA PMC-80

BA PMC-80 did not contain any resistance genes to the tested antibiotics. The antibiotic susceptibility assay showed that BA PMC-80 was highly sensitive to all tested antibiotics (methicillin, streptomycin, rifampicin, and vancomycin) with the MICs of ≤ 0.01 μg/ml (Fig. 6A), and the results are comparable with the previous report [49].

Toxicity of BA PMC-80

BA PMC-80 was non-toxic. The results from subchronic toxicity testing in hamsters showed no adverse effects, clinical symptoms, or death (Table S1) in any of the four test groups of hamsters after repeated 14-day oral feeding of BA PMC-80. However, a gradual increase in body weight was noticed in all the hamsters compared with their initial mean body weight (Fig. 6B). The food consumption and health status were almost the same (average 12-14 gm) during the experiment.
The Syrian hamster CDI model was used to evaluate the in vivo efficacy of BA PMC-80 against CDI along with the standard drug vancomycin. After completion of the experiment, it was found that all the normal saline-treated infection control hamsters expired by the end of day 2 (Fig. 7B). In contrast, the BA PMC-80 (1 × 10^10 CFU/ml)-treated group showed a reduction in the infection severity and maintained a 100% survival rate until day 4 of the experiment. Later, the survival rate started to decrease with the death of hamsters, and finally, all the hamsters of this group expired on day 10, specifically, 1 out of 6 (16.66%), 2 out of 6 (33.33%), 4 out of 6 (66.66%), 5 out of 6 (83.33%), and 6 out of 6 (100%) hamsters on days 5, 6, 8, 9, and 10, respectively (Fig. 6B). Similar to BA PMC-80, in...
Anti-CD Activity of New Probiotic B. amyloliquefaciens

January 2022 | Vol. 32 | No. 1

the control drug vancomycin (2 mg/100 g)-treated group, 1 out of 6 (16.66%), and 2 out of 6 (33.33%) hamsters expired on days 5 and 6. However, the remaining 66.66% survived till the end of the experiment (Fig. 6B).

Discussion

C. difficile infection (CDI) is an increasing problem in hospitals, and the rising incidence of this disease has been associated with the overuse of broad-spectrum antibiotics and resistance to them [50]. Recently, the search for alternative treatments against CDI has gained extraordinary attention. Probiotics have already shown protective effects on CDI and have been included in many trials to recover the imbalance in the gut microbiota resulting from antibiotics [35, 51, 52]. This study provides information on the in vitro activity of a prospective probiotic strain B. amyloliquefaciens PMC-80 against C. difficile and its in vivo efficacy in a CDI hamster model.

BA PMC-80 was isolated from traditional fermented food and confirmed as B. amyloliquefaciens using a biochemical profile, 16S rRNA gene sequencing, and phylogenetic analysis. The results of our identification experiments are similar to those of several recent and previous articles [35, 39]. The inhibitory activity of BA PMC-80 against C. difficile in coculture experiment and the anti-CD activity of BA PMC-80 CFS with the MIC₅₀ of 89.06 μg/ml in broth microdilution assay were significant. The results indicate that BA PMC-80 produces potent extracellular antimicrobial compounds against C. difficile, and it does not require cell-to-cell contact for the inhibition. Similar results were reported for the same and other probiotic bacteria against C. difficile in previous articles [35, 39, 42, 53]. The stable anti-CD activity of the CFS of BA PMC-80 under different pHs, temperatures, and Proteinase K matches the characteristics of the cyclic lipopeptides of Bacillus subtilis [29]. Other relevant studies also showed that B. amyloliquefaciens produces similar stable compounds such as difficidin, bacilysin, or LCI fusion protein to inhibit other bacterial pathogens such as Erwinia amylovora and Ralstonia solanacearum [31, 54]. So, our BA PMC-80 might have produced one of these antibiotic compounds against C. difficile in this study. However, further specialized characterization is required to confirm the exact anti-CD compound of BA PMC-80.

The sensitivity of BA PMC-80 against the four different contemporary antibiotics methicillin, streptomycin, rifampicin, and vancomycin indicates that it does not carry any resistance gene, and the result is consistent with the previous study [49]. Additionally, BA PMC-80 showed no subchronic toxicity in hamsters after 14 days of continuous oral treatment, and this result matches the result of a published article [55]. Both of these results suggest that BA PMC-80 has no side effects and is safe to consume.

Unlike the in vitro experiments, BA PMC-80 showed a mild effect in the in vivo hamster model. BA PMC-80
only prolonged the lifespan of the \textit{C. difficile}-infected hamster by reducing the severity of the infection. It could not protect the treated hamster from death. A similar result was found by S. Geeraerts et al. in a broiler CDI model where \textit{B. amyloliquefaciens} did not confer protection to the in vivo model but showed significant anti-CD activity in in vitro experiments [56]. However, several previous studies reported that \textit{B. amyloliquefaciens} successfully conferred protection against \textit{C. Difficile}-associated disease in a mouse model [57-59]. The difference in physiology and infection surface area between hamsters and mice might be the reason for the observed variation in \textit{B. amyloliquefaciens} efficacy, as was previously proposed for auranofin [60].

In conclusion, BA PMC-80 showed a significant in vitro antimicrobial effect against \textit{C. difficile} and a moderate in vivo effect in the hamster CDI model. Additional study is required to optimize the treatment conditions for the hamster CDI model and to discover the prime antimicrobial compound generated by BA PMC-80. To elucidate the protective mechanism of BA PMC-80, we will also need to evaluate its toxin-neutralizing activity, anti-inflammatory activity, and immunohistochemistry.

Acknowledgments

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Regional Industry-Based Organization Support Program” (Ref. No. P9001942) supervised by the Korean Institute for Advancement of Technology (KIAT). This study was also supported by the Soonchunhyang University Research Fund.

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. 1978. Role of \textit{Clostridium difficile} in antibiotic-associated pseudomembranous colitis. \textit{Gastroenterology} 75:778-782.
2. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. 2018. Clinical practice guidelines for \textit{Clostridium difficile} infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). \textit{Clin. Infect. Dis.} 66:e1-e48.
3. Colomb-Cotinat M, Assouvie L, Durand J, Danius C, Leon L, Maugat S, et al. 2019. Epidemiology of \textit{Clostridoides difficile} infections, France, 2010 to 2017. \textit{Eurosurveillance} 24:1800638.
4. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. 2015. Burden of \textit{Clostridium difficile} Infection in the United States. \textit{N. Engl. J. Med.} 372:825-834.
5. CDC. 2021. Antibiotic-resistant Germs: New Threats. Available from https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed Jul. 25, 2021.
6. Kato H, Senoh M, Honda H, Fukuda T, Tagashira Y, Horiiuchi H, et al. 2019. \textit{Clostridoides (Clostridium) difficile} infection burden in Japan: a multicenter prospective study. \textit{Anaerobe} 60:102011.
7. Curcio D, Cané A, Fernández FA, Correa J. 2019. \textit{Clostridium difficile}-associated diarrhea in developing countries: a systematic review and meta-analysis. \textit{Infect. Dis. Ther.} 8:87-103.
8. Evans CT, Safdar N. 2015. Current trends in the epidemiology and outcomes of \textit{Clostridium difficile} infection. \textit{Clin. Infect. Dis.} 60:S66-S71.
9. Kelly CP. 2012. Can we identify patients at high risk of recurrent \textit{Clostridium difficile} infection? \textit{Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.} 18 Suppl 6:21-27.
10. Johnson S. 2015. Recurrent \textit{Clostridium difficile} infection: causality and therapeutic approaches. \textit{Int. J. Antimicrob. Agents} 33 Suppl 1:S33–36.
11. Chai J, Lee CH. 2018. Management of primary and recurrent \textit{Clostridium difficile} infection: an update. \textit{Antibiotics} 7:54.
12. Abougergi MS, Kwon JH. 2011. Intravenous immunoglobulin for the treatment of \textit{Clostridium difficile} infection: a review. \textit{Dig. Dis. Sci.} 56:19-26.
13. Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, et al. 2017. Bezlotoxumab for prevention of recurrent \textit{Clostridium difficile} infection. \textit{N. Engl. J. Med.} 376:305-317.
14. Kociolk LK, Gerding DN. 2016. Breakthroughs in the treatment and prevention of \textit{Clostridium difficile} infection. \textit{Nat. Rev. Gastroenterol. Hepatol.} 13:150-160.
15. Rao K, Young VB. 2015. Fecal microbiota transplantation for the management of \textit{Clostridium difficile} infection. \textit{Infect. Dis. Clin. North Am.} 29:109-122.
16. Vyas D, Akka A, Vyas A. 2015. Fecal transplant policy and legislation. \textit{World J. Gastroenterol.} WJG 21:6-11.
17. DeFilipp Z, Bloom PP, Torres Soto M, Manour MK, Sater MRA, Huntley MH, et al. 2019. Drug-resistant \textit{E. coli} bacteremia transmitted by fecal microbiota transplant. \textit{N. Engl. J. Med.} 381:2043-2050.
18. de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, et al. 2016. Defining the optimal formulation and schedule of a candidate toxoid vaccine against \textit{Clostridium difficile} infection: a randomized Phase 2 clinical trial. \textit{Vaccine} 34:2170-2178.
19. Koloff KL, Wasserman SS, Losonsky GA, Thomas W, Nichols R, Edelman R, et al. 2001. Safety and immunogenicity of increasing doses of a \textit{Clostridium difficile} toxoid vaccine administered to healthy adults. \textit{Infect. Immun.} 69:988-995.
20. Sougioutzis S, Kyne L, Drudy D, Keates S, Marso S, Pothoulakis C, et al. 2005. \textit{Clostridium difficile} toxoid vaccine in recurrent \textit{C. difficile}-associated diarrhea. \textit{Gastroenterology} 128:764-770.
21. Greenberg RN, Marbury TC, Foglia G, Warzy M. 2012. Phase I dose finding studies of an adjuvanted \textit{Clostridium difficile} toxoid vaccine. \textit{Vaccine} 30:2245-2249.
22. McFarland LV. 1998. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. \textit{Dig. Dis.} 16:292-307.
23. Rolle RD. 2000. The role of probiotic cultures in the control of gastrointestinal \textit{C. difficile}. \textit{J. Nutr.} 130:3965-4025.
24. Katz JA. 2006. Probiotics for the prevention of antibiotic-associated diarrhea and \textit{Clostridioides difficile} diarrhea. \textit{J. Clin. Gastroenterol.} 40:249-255.
25. Kotowska M, Albrecht P, Srajewska H. 2005. \textit{Saccharomyces bouardii} in the prevention of antibiotic-associated diarrhoea in children: a randomised double-blind placebo-controlled trial. \textit{Aliment. Pharmacol. Ther} 21:583-590.
26. Baus S, Chatterjee M, Ganguly S, Chandra PK. 2007. Effect of \textit{Lactobacillus rhamnosus} GG in persistent diarrhea in Indian children: a randomized controlled trial. \textit{J. Clin. Gastroenterol.} 41:756-760.

