INVITED REVIEW

Diversity of molecular targets and signaling pathways for CBD

Douglas L. de Almeida1,2 | Lakshmi A. Devi1

1Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
2Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, Belo Horizonte, Brazil

Correspondence
Lakshmi A. Devi, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
Email: Lakshmi.devi@mssm.edu

Funding Information
Center for Scientific Review, Grant/Award Number: DA008863 and NS26880; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Grant/Award Number: 88887.364609/2019-00

Abstract
Cannabidiol (CBD) is the second most abundant component of the Cannabis plant and is known to have effects distinct from Δ9-tetrahydrocannabinol (THC). Many studies that examined the behavioral effects of CBD concluded that it lacks the psychotomimetic effects attributed to THC. However, CBD was shown to have a broad spectrum of effects on several conditions such as anxiety, inflammation, neuropathic pain, and epilepsy. It is currently thought that CBD engages different targets and hence CBD’s effects are thought to be due to multiple molecular mechanisms of action. A well-accepted set of targets include GPCRs and ion channels, with the serotonin 5-HT1A receptor and the transient receptor potential cation channel TRPV1 channel being the two main targets. CBD has also been thought to target G protein-coupled receptors (GPCRs) such as cannabinoid and opioid receptors. Other studies have suggested a role for additional GPCRs and ion channels as targets of CBD. Currently, the clinical efficacy of CBD is not completely understood. Evidence derived from randomized clinical trials, in vitro and in vivo models and real-world observations support the use of CBD as a drug treatment option for anxiety, neuropathy, and many other conditions. Hence an understanding of the current status of the field as it relates to the targets for CBD is of great interest so, in this review, we include findings from recent studies that highlight these main targets.

KEYWORDS
μ-CB1 heteromers, binding sites, cannabidiol, G_i/o coupled receptors, ion channels

Received: 7 August 2020 | Revised: 3 October 2020 | Accepted: 6 October 2020
DOI: 10.1002/prp2.682

Abbreviations: 2-AG, 2 Arachidonylglycerol; 5-HT1A, 5-hydroxytryptamine 1A receptor; [3H]β-OH-DPAT, 7-(Dipropylamino)-5,6,7,8-tetrahydrodronaphthalen-1-ol; AEA, Anandamide; AM 251, 1-[2-(4-Dichlorophenyl)-5-[4-(iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide; AM 630, 1-[2-(Morpholin-4-yl)-ethyl]-2-methyl-3-[4-methoxybenzoyl]-6-iodobenzene; BHK, Baby hamster kidney cell line; BRET, Bioluminescence resonance energy transfer; CB1, Cannabinoid receptor 1; CB2, Cannabinoid receptor 2; CBD, Cannabidiol; CHO, Chinese hamster ovary cell line; CP 55940, 2-[1(R,2R,5R)-5-Hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol; D2, Dopamine receptor 2; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; dPAG, dorsolateral periaqueductal gray; DPCPX, 8-Cyclopentyl-1,3-dipropylxanthine; EEG, Electroencephalogram; EMT, Endocannabinoid membrane transporter; FAAH, Fatty acid amide hydrolase; GPCR, G-protein coupled receptor; GPR55, G-protein receptor 55; GTPγS, Guanosine triphosphate gamma S; HEK 293, human embryonic kidney 293 cell; HU 210, (6α,10αR)-9-(hydroxymethyl)-6,6-dimethyl-3-[2-methyloctan-2-yl]-6H,6aH,7H,10H,10αH-benzo[1,4]isochromen -1-ol; LPI, Lysophosphatidylglycerol; M3, Muscarinic receptor 3; MAGL, Monoacyl glycerol lipase; MIA, Monoiodoacetate; MTZ, 3-[4,5-dimethylthiazol-2-yl]-2,5-di-phenyltetrazolium bromide; OBX, olfactory bulbectomy mouse model of depression; PLA, Phospholipase A; PPARY, peroxisome proliferator-activated receptor gamma; PTZ, pentylentetrazol; rCBF, regional cerebral blood flow; RVM, rostroventral medulla; SB 366791, 4’-Chloro-3-methoxycinnamanilide; SR 141716, N-Piperidin-1-yl]-5-[4-[chlorophenyl]-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride; SR 144528, 5-(4-Chloro-3-methoxycinnamoyl)-1-[4-methylphenyl][methyl]-N-[15,25,4R]-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl-1H-pyrazole-3-carboxamide; THC, Δ9-tetrahydrocannabinol; TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; vNAG, ventromedial periaqueductal gray; VR1, Vanilloid receptor 1; WAY 100635, N-[2-[4-[2-Methoxyphenyl]-1-piperazinyl][ethyl]-N-2-pyrindinylcyclohexanecarboxamide maleate; WIN 55212, (R)-(+)-2,3-Dihydro-5-methyl-3-[4-morpholinylmethyl]pyrroloid[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethane mesylate.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
1 | INTRODUCTION

The plant,

\textit{Cannabis sativa}, has been used for recreational purposes for more than 4000 years. Over 60 compounds have been identified in the plant, of which the two major pharmacologically active components are \(\Delta^2 \)-tetrahydrocannabinol (THC) and cannabidiol (CBD).\(^1\) CBD has been shown to alter several body functions and neuronal activity. For example, CBD has been reported to improve motor activity,\(^2\) affect depression,\(^3\) exhibit antitumorigenic activity in vitro and in vivo,\(^4\) anti-inflammatory effects through reduction of pro-inflammatory cytokine synthesis,\(^5\) ameliorate lipid and glycemic parameters in Type 2 Diabetes,\(^6\) and to reduce markers of inflammation in pancreas microcirculation in a Type 1 Diabetes mice model.\(^7\) An interesting study in humans showed that a single high dose of CBD decreased neuronal activity in limbic and paralimbic areas of the brain leading the investigators to conclude that CBD has anxiolytic effects.\(^8\) These results were in accordance with a study\(^9\) reporting that a similar high dose of CBD was optimally effective in inducing anxiolytic effects in a simulated public speaking test. Finally, a number of studies have reported that CBD can reduce the anxiety and psychosis-like effects seen after THC administration, and attenuate the emotional and reward processing impairments associated with a single high dose of THC (reviewed by Freeman et al, 2019\(^10\)).

THC and CBD show antioxidant properties and these are thought to be due to a shared chemical structure. The hydroxyl groups and double bonds present in both molecules, contribute to increase their highest occupied molecular orbital (HOMO) value; higher HOMO values indicate a higher ability of the molecule to donate an electron, making THC and CBD powerful antioxidant molecules.\(^11\) Moreover studies using cyclic voltammetry and a fenton reaction-based system showed that CBD could reduce hyperoxide toxicity in neurons stimulated with glutamate. The antioxidant effect of CBD, evaluated in rat cortical neuron cultures, was not affected by the presence of 500 nmol/L of the selective CB\(_1\) cannabinoid receptor antagonist SR-144716A in an in vitro preparation of ischemic injury and was higher than the effect of other antioxidants such as \(\alpha \)-tocopherol and ascorbate in AMPA/kainate receptor toxicity assays.\(^12\) In agreement with these findings, Hacke et al.,\(^13\) reported that the antioxidant activity of THC and CBD in pure and mixed solutions was comparable to that of well-known antioxidants such as ascorbic acid (AA), resveratrol (Resv), and \((\epsilon\)-epigallocatechin-3-gallate (EGCG).

Most of the effects associated with CBD are believed to be mediated through its agonistic properties at 5-HT\(_{1A}\) and TRPV1\(^15\) receptors (Figure 1). Furthermore, it has been argued that through different mechanisms of action, CBD can modulate neuronal activity in the dorsal periaqueductal gray, bed nucleus of the stria termina-

2 | CANNABINOID SYSTEM

Early studies exploring the targets for CBD focused on the cannabinoid receptor system. This system is composed of two main receptors CB\(_1\) and CB\(_2\), their endogenous ligands (mainly arachidonylethanolamide = AEA; and 2-arachidonoylglycerol = 2-AG) and the enzymes responsible for endocannabinoid synthesis, reuptake and degradation (Fatty Acid Amide Hydrolase and Mono Acyl Glycerol Lipase = FAAH, and MAGL respectively).\(^17\) CB\(_1\) receptors are mainly distributed in the central nervous system while the CB\(_2\) receptors are mainly present in peripheral nerve terminals and immune cells, although evidence shows that this receptor is expressed in the brain stem (for a more detailed review, see Di Marzo et al, 2004\(^17\)). Unlike other neurotransmitters that are synthesized and stored in vesicles, endocannabinoids are synthesized on demand, after neuronal activation, in post synaptic terminals in a Ca\(_2+\)-dependent manner and activate presynaptic CB\(_{1}\) cannabinoid receptors. This molecular machinery represents a retrograde signaling mechanism model responsible for long term depression of stimulatory glutamatergic neurons, and control of short-term and long-term neuronal plasticity.\(^18\)

Initial studies examining the molecular pharmacological properties of CBD reported that it targets the cannabinoid receptor system. CBD was found to displace binding of radiolabeled CB\(_1\) and CB\(_2\) cannabinoid receptor agonists ([\(^3\)H]CP55940 and [\(^3\)H] R-(+)

\(\Delta^2 \)-THC) in cells heterologously (HEK 293A) or endogenously (STHdhQ7/Q7) expressing CB\(_1\) receptors.\(^21\) CBD was also found to display antagonistic activity at CB\(_2\) and CB\(_2\) cannabinoid receptors since it produced rightward shifts in dose response curves with CP55940- and R-(+)

\(\Delta^2 \)-THC in G protein activity assays with membranes from CHO cells expressing these receptors and from mouse brain.\(^22\) In experiments performed with brain membranes, the mean apparent \(K_d \) values of CBD for antagonism of CP55940- and R-(+)

\(\Delta^2 \)-THC induced stimulation of \([\(^3\)S]GTP\gamma S binding to these membranes were 79 and 138 nmol/L, respectively, both well below the \(K_d \) value of CBD for its displacement of [\(^3\)H]CP55940 from specific binding sites on these membranes.\(^20\) Finally, Pertwee et al.\(^23\) showed that CBD exhibited antagonistic activity at cannabinoid receptors on electricallyevoked contractions of the mouse isolated vas deferens.

It is important to point out that the modulatory effects CBD exerts over the psychotomimetic actions of THC in the central nervous system\(^10\) might come from its negative allosteric modulation of CB\(_1\) receptors, as reported by Laprairie et al.\(^21\) To further reinforce this molecular relation between THC and CBD, Hudson et al\(^24\) showed that CBD reverses THC associated side-effects due to inhibition of THC-mediated ERK phosphorylation in the ventral hippocampus (vHipp) of Sprague Dawley rats, as assessed by the western blot technique. Furthermore, using the open field test, the authors observed differential effects of THC vs CBD on anxiety-like behaviors. Coadministration of THC and CBD induced a significant anxiolytic effect, with rats spending significantly greater time in the center.
zone in relation to vehicle and THC treated groups, suggesting that intra-vHipp THC/CBD coadministration produces opposite effects on anxiety relative to THC. Moreover blockade of MEK1–2 signaling dose dependently blocks the anxiogenic effects of intra-vHipp THC, consistent with its ability to prevent intra-vHipp pERK1–2 activation.

In addition to cannabinoid receptors, CBD has also been shown to target the endocannabinoid system. CBD was found to inhibit the activity of FAAH, a major enzyme involved in anandamide hydrolysis.15 Furthermore, the ability of CBD to inhibit AEA hydrolysis and reuptake causes an increase in the concentration of available endogenous cannabinoids to bind their respective receptors. These data are corroborated by studies by Maione et al25 that detected increases in 2-AG in the ventromedial PAG (assessed by microdialysis) after a 3 nmol CBD microinjection. Since anandamide is the main endogenous CB\textsubscript{1} receptor agonist, this suggests an indirect effect of CBD on cannabinoid receptors due to increases in endogenous AEA levels. This could explain some of the cannabinoid-mediated effects attributed to CBD, even though it has been otherwise shown to be a cannabinoid receptor antagonist.22 For example, CBD was shown to reduce inflammation in a rat model of osteoarthritis,26 in a model of allergic contact dermatitis,27 and in a model of experimentally inflamed explant human colonic tissue28; the anti-inflammatory effects could be blocked by selective CB\textsubscript{2} receptor antagonists. In addition, a study by Maione et al,25 showed that CBD injected into the ventrolateral PAG induced antinoceception that could be blocked by the selective CB\textsubscript{2} receptor antagonist, AM 251. These studies suggest agonistic activities for CBD that could be due to its ability to inhibit FAAH activity and thereby increase anandamide levels. An interesting observation was made by Massi et al,29 who found that in vivo treatment of nude mice with CBD markedly enhanced the activity of the FAAH enzyme and reduced levels of AEA in tumor samples. These differential effects of CBD on FAAH enzyme activity could be due to differences in tissue levels of FAAH or in the different methods of assessing enzymatic activity.

A study examined the effect of CBD following direct microinjection into the ventrolateral PAG and found that this led to a reduction in the firing rate of ON and OFF cells on the rostral ventromedial medulla (RVM), and its immediate downstream neuronal circuit involved in descending pain modulation.25 These effects were maximal with 3 nmol CBD and were antagonized by selective antagonists of cannabinoid CB\textsubscript{1} (AM 251), adenosine A1 (DPCPX), and TRPA1 (AP18), but not TRPV1 receptors (\textit{5′}-iodo-resiniferatoxin).25 These results support the idea that CBD functions by engaging multiple targets (Table 1).

\section{GPR55}

GPR55 has been proposed to be a third cannabinoid receptor responsible for some effects attributed to cannabinoids that do not seem to be mediated through CB\textsubscript{1} or CB\textsubscript{2} receptors.30 Ryberg et al22 showed that cannabinoid receptor agonists such as CP55940, HU210, and Δ^{9}-THC can bind to and signal in heterologous cells expressing FLAG-tagged human GPR55. Like its activity at CB\textsubscript{1} or CB\textsubscript{2} receptors,22 CBD appears to function as a GPR55 agonist.31 CBD decreases the potency of the agonist, CP55940, at nmol/L concentrations in a GTP\textsubscript{yS} assay with membranes from cells overexpressing GPR55.30

To examine the in vivo effects, a synthetic regioisomer of cannabinol named abnormal-cannabinol (Abn-CBD), was used; administration of Abn-CBD produced vasodilator effects, reduced blood pressure, did not have any psychotomimetic effects,32 and showed that it could be a powerful tool to manage some of Parkinson’s disease symptoms.33 Also, Abn-CBD has an anti-cataleptic effect that is blocked by CBD confirming the agonist-antagonist activities of these two molecules at GPR55.33
Target	CBD Effect	Experiments/Results	References
CB₁ receptor	Antagonist	CBD decreases THC and 2-AG potencies in a GTPγS binding assay in mouse brain membranes	[22]
		CBD allosterically reduces CB₁ receptor signaling in HEK 293A cells	[21]
CB₂ receptor	Antagonist	CBD decreases the potency of the receptor agonist, WIN55212, in a GTPγS assay with membranes from CHO cells overexpressing CB₂ receptors	[22]
FAAH	Inhibitor	CBD inhibits [¹⁴C]-AEA hydrolysis (IC₅₀ < 100 µmol/L) in N18TG2 cell membrane preparations	[15]
GPR55	Antagonist	CBD decreases the potency of the agonist, CP55940, at nmol/L concentrations in a GTPγS assay with membranes from cells overexpressing GPR55	[82]
5-HT₁A	Agonist	CBD displaces [³H]8-OH-DPAT binding and increases G protein activity in CHO cells overexpressing the human 5-HT₁A receptor	[14]
		CBD increases the distance travelled in an open field test in a mouse model of depression (OBX); this is blocked by a selective 5-HT₁A receptor antagonist, WAY100635. CBD increases sucrose consumption in the sucrose preference test; and glutamate release as assessed by microdialysis studies	[83]
		Analgesia Reversal of CBD-mediated analgesia by a selective 5-HT₁A receptor antagonist. WAY 100135, in a Von Frey filament test	[36]
	Partial agonist	CBD inhibits radiolabeled domperidone binding to D2 receptors with dissociation constants of 11 nmol/L at dopamine D₂High receptors and 2800 nmol/L at dopamine D₂Low receptors in rat striatal membranes	[38]
Adenosine A₁ receptor	Agonist	CBD induces antiarrhythmic effects against I/R-induced arrhythmias in rats; this is blocked by the adenosine A₁ receptor antagonist DPCPX	[45]
Adenosine A₂A receptor	Agonist	Treatment with CBD (1 mg/kg) significantly reduces TNFα in mice challenged with LPS; this is blocked by pre-treatment with the A₂A adenosine receptor antagonist ZM 241385 (10 mg/kg, i.p.)	[43]
MOR and DOR	Allosteric modulator	CBD accelerates [³H]DAMGO dissociation from MOR and [³H]-NTI from DOR induced by 10 µmol/L naloxone or 10 µmol/L naltrindole, respectively, in cerebral cortical tissue from male Wistar rats (assessed by kinetic binding studies)	[47]
TRPV1	Agonist	CBD increases cytosolic calcium levels to the same extent as the full agonist capsaicin in HEK 293 cells overexpressing the human TRVR1 receptor.	[15]
		CBD reduces lever pressing in a cocaine self-administration test; this is blunted by capsazepine, a TRPV1 receptor antagonist	[62]
Sodium channels	Inhibition	CBD inhibits hNav1.1-1.7 currents (IC₅₀ of 1.9–3.8 µmol/L). Voltage-clamp electrophysiology in HEK-293 cells and iPSC neurons shows that CBD preferentially stabilizes inactivated Nav channel states	[63]
Calcium channels	Inhibition of L-type channels	Patch-clamp techniques show that CBD inhibits L-type Ca²⁺ channels (IC₅₀ of 0.1 µmol/L) in rat myocytes.	[65]
	Bidirectional effect on Ca²⁺ levels	Mitochondria-specific Ca²⁺ sensor, Rhod-FF, shows that CBD reduces [Ca²⁺]ᵢ levels under high excitability conditions but causes an increase under basal conditions in hippocampal primary neuronal cultures	[66]
PPARγ receptor	Agonist	CBD induces reuptake gliosis in rat primary astroglial cultures; this is significantly blunted by a selective antagonist of PPARγ receptors, GW9662	[72]
	Anti-inflammatory	CBD reduces leukocyte rolling and adhesion to the endothelium in a MIA-injected model of inflammation in rats	[26]
	Antioxidant	CBD reduces hyperoxide toxicity in neurons stimulated with glutamate (evaluated by cyclic voltammetry and a fenton reaction-based system); this is not altered by cannabinoid receptor antagonists	[12]
4 | 5-HT_{1A} RECEPTORS

One of the main proposed molecular targets for CBD is the serotonin receptor 5-HT_{1A}. Russo et al, (2005)¹⁴ showed that in heterologous cells expressing the 5-HT_{1A} receptor, CBD produced a dose-dependent displacement of [3H]8-OH-DPAT binding, a selective 5-HT_{1A} agonist, and at a high dose was able to induce robust [35S]GTPγS binding, supporting an agonistic activity for CBD at this receptor.¹⁴ To further reinforce the notion that CBD is interacting with the orthosteric binding site of 5-HT_{1A} receptors, the selective antagonist NAN-190 was used in the cAMP assay that assessed the percent inhibition of forskolin-stimulated cAMP levels in CHO cells. Both 5-HT and CBD reduced the percentage of forskolin-stimulated AMP in the cells, and this reduction was blocked by NAN-190. This suggests that NAN-190 is competing with 5-HT or CBD for the orthosteric binding site of the 5-HT_{1A} receptor.

Behavioral studies examining the involvement of the 5-HT_{1A} receptor found that CBD increased the percentage of time rats spent on the Elevated Plus Maze.³⁴ This response was similar to other known anxiolytic substances, such as AEA and its analogue ACEA,³⁵ and involved 5-HT_{1A} activation in the dorso-lateral PAG as suggested by reversal of anxiolytic effects in the presence of a selective 5-HT_{1A} receptor antagonist, WAY-100635.³⁴ Additionally, a study assessing the antidepressant effects of CBD found increased rodent vertical motor activity and that this was blunted by the 5-HT_{1A} receptor antagonist, WAY 100635.² CBD could also potentiate the effects of 8-OH-DPAT, a selective 5-HT_{1A} receptor agonist, in motor activity.² This supports the involvement of the 5-HT_{1A} receptor in the antidepressant effects of CBD.

Studies have also examined the antiialloidyic effects of CBD. A study using a rat model of neuropathic pain, streptozotocin-induced diabetes, found that CBD was able to attenuate mechanical allodynia; this was blocked by WAY 100135, a selective 5-HT_{1A} receptor antagonist, but not by AM 251 or AM 630, selective CB₁ and CB₂ receptor antagonists, respectively.³⁶ Another study used a different model of neuropathic pain, paclitaxel-induced neuropathy, and showed that CBD could attenuate mechanical allodynia. The latter effect was blocked by the selective 5-HT_{1A} receptor antagonist WAY 100635 but not by the CB₁ antagonist, SR141716, or the CB₂ antagonist, SR144528.³⁷ Together these studies show that many of CBD’s effects are mediated through 5-HT_{1A} receptor activation in the central and peripheral nervous system, regulating neuronal excitability and neurotransmitter release.

5 | DOPAMINE RECEPTORS

CBD has been proposed as a partial agonist of D2 dopamine receptors since it inhibits radiolabeled domperidone binding to D2 receptors with dissociation constants of 11 nmol/L for dopamine D2High receptors (dopamine D2 receptors in the high affinity state) and 2800 nmol/L for dopamine D2Low receptors (dopamine D2 receptors in the low affinity state) in rat striatal membranes.³⁸ Through molecular modeling (Molecular mechanics energies combined with generalized Born and surface area continuum solvation, MM-GBSA) of D2 and D3 receptors in complex with CBD and haloperidol, Stark et al,³⁹ showed that CBD might bind more favorably to D3 dopamine receptors compared to D2 receptors, and probably acts as a partial agonist at this receptor.

Although not acting directly at dopamine receptors, cannabinoids have been shown to alter dopamine signaling in the brain. The ventral hippocampus (VHipp) is responsible for transmitting emotionally relevant contextual information to the mesolimbic dopaminergic system thereby controlling the amount of dopamine being released at the ventro-tegmental area (VTA).⁴⁰ Systemic or intra-VHipp injection of WIN55,212–2 (CB₁ receptor agonist) was shown to increase VTA dopaminergic neuronal activity and bursting rates, decrease VTA non-dopaminergic neuronal activity, and elicit dopamine efflux directly into the nucleus accumbens shell. These effects were reversed by SR141716A (CB₁ receptor antagonist).⁴¹ THC and CBD were shown to exert differential control over dopamine activity states and emotional memory processing because of their opposing effects on molecular signaling pathways underlying schizophrenia.^{40,42}

6 | ADENOSINE RECEPTORS

CBD, alongside with THC, was shown to inhibit adenosine reuptake with an IC₅₀ of 124 nmol/L by acting as competitive inhibitors at the equilibrative nucleotide transporter on EOC-20 microglia cells; this increases the endogenous adenosine content available for adenosine receptor activation.⁴³ Furthermore, treatment with CBD (1 mg/kg) significantly reduced tumor necrosis factor (TNFα) in mice challenged with lipopolysaccharides (LPS); this was blocked by pretreatment with the selective A_{2A} adenosine receptor antagonist, ZM 241385 (10 mg/Kg, i.p.).⁴³ The role of A_{2A} adenosine receptors as CBD targets was confirmed by Ribeiro et al,⁴⁴ who found that CBD-mediated anti-inflammatory effects were reversed by the A_{2A} receptor antagonist, ZM 241385, in a murine model of acute lung injury.

In a different context, CBD was shown to have antiarrhythmic effects against I/R-induced arrhythmias in rats and this was blocked by the adenosine A₁ receptor antagonist DPCPX,⁴⁵ indicating that CBD might activate more than one type of adenosine receptor.

7 | OPIOID RECEPTORS

The idea that cannabinoids might have modulatory effects at opioid receptors was initially postulated by Vaysse et al,⁴⁶ where they showed that Δ⁷-THC decreased [3H]dihydromorphine binding to MOR due to a reduction in the number of binding sites. According to their findings, this suggests that the interaction of Δ⁷-THC with opioid receptors occurs in a non-competitive manner most likely acting as a negative allosteric modulator. Investigations by Kathmann et al,⁴⁷ show that both THC and CBD at 30 µmol/L concentration behave as negative allosteric modulators of MOR and δ opioid receptors (DOR) since they accelerated the dissociation of [3H]-DAMGO.
Parallel to that, they found that CBD significantly reduced Oprm1 sumption and preference in the two-bottle choice in C57BL/6J mice. Bys vi et al (2015).

A study by Viudez-Martínez et al,48 showed that administration of CBD led to a reduction in the MOR gene expression among other genes; this led the authors to speculate that CBD might be responsible for reducing the reinforcing properties, motivation and relapse for ethanol consumption in the two-bottle choice (TBC) paradigm in mice. This experimental approach is very useful for measurement of stress-induced anhedonia in mice using sucrose as a reward stimuli in one of the bottles, as opposed to water on the other.49 It takes advantage of the fact that rodents naturally and avidly consume sweet food and selectively drink sweet drink solution when presented with a two-bottle free-choice access to both the sucrose solution and regular water. However, when exposed to stress induced models of depression, rodents failed to drink sweetened water in preference to regular water.50–52 Thus, using this model Viudez-Martínez et al,48 found that CBD (60 and 120 mg/kg/day, i.p.) reduced ethanol consumption and preference in the two-bottle choice in C57BL/6J mice. Moreover CBD significantly decreased ethanol intake and the number of effective responses in the oral ethanol self-administration. Parallel to that, they found that CBD significantly reduced Oprm1 gene expression, among other genes, leading the authors to conclude that CBD reduced the reinforcing properties, motivation and relapse for ethanol.

In this context, Hurd53 shed some light on the importance of CBD as a potential tool for the treatment of Opioid Use Disorder (OUD) pointing out that CBD is not rewarding54 and as such has limited misuse potential. Moreover CBD has remarkable positive effects on the treatment of anxiety55 and sleep disorders,56 major behavioral features of drug addiction, as well as a neuroprotective effect57 making it safe to be used at high doses for the treatment of a variety of conditions.58 With this pharmacological profile, CBD could provide a strong alternative treatment to inhibit drug-seeking behavior and curb the current opioid abuse and misuse crisis that strikes the United States and other countries.

Due to its modulatory activity over the endocannabinoid system, the close interactions between the cannabinoid and the opioid systems, its anxiolytic properties and lack of psychostimulant effects, CBD could be a powerful tool to be used in drug abuse treatments and withdrawal syndrome. For a more comprehensive review on the potential of CBD in the treatment of drug addiction, see Hurd et al (2015).59

8 | ION CHANNELS

A proposed molecular target for CBD is the Transient Receptor Potential Vanilloid 1 (TRPV1) receptor (also known as VR1 receptor). A study by Bisogno et al,15 showed that CBD can displace capsaicin from the TRPV1 receptor and increase intracellular Ca\(^{2+}\) levels to the same extent as the full agonist capsaicin in heterologous cells overexpressing TRVR1 suggesting that it functions as an agonist of this receptor.

TRP channels belonging to subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1) have also been implicated as potential targets of CBD in modulating neuronal hyperactivity.60 Electroencephalographic (EEG) evaluation of brain activity showed that 60 mg/kg CBD had anticonvulsant effects in a mice model of seizure induction.61 Interestingly, CBD increased seizure latency and reduced seizure duration when injected intraperitoneally, and these effects were reversed by SB 366791, AM 251 and AM 630, selective antagonists of the TRPV1, CB\(_1\), and CB\(_2\) receptors, respectively.61 This suggests an involvement of additional targets beyond the TRPV1 channel receptors, such as the endocannabinoid system, in the anticonvulsant and anti-epileptic effects of CBD.

In a study using multiple models of cocaine self-administration, researchers evaluated the effects of a wide range of cocaine (0.031, 0.0625, 0.125, 0.25, 0.5, and 1 mg/kg/infusion) and CBD (3.10, 20, and 40 mg/kg, i.p.) doses on cocaine mediated reward behavior. Using different protocols of cocaine administration, such as the fixed ratio 1 (FR1 – cocaine reinforcement given after 1 attempt of self-administration) or the progressive ratio (PR – increasing response requirement for cocaine delivery over successive attempts of self-administration) schedule of reinforcement, coupled with in vivo microdialysis with high-performance liquid chromatography (HPLC) assays to evaluate brain dopamine levels, scientist showed that systemic administration of 20 mg/kg CBD dose-dependently inhibited cocaine self-administration; this was blocked by AM 630, WAY100135, and capsazepine (selective CB\(_2\), 5-HT\(_{1A}\), and TRPV1 receptor antagonists, respectively) demonstrating that targets beyond TRPV1 enable CBD effects.62 Furthermore, they showed that CBD given at the dose of 20 mg/kg attenuates cocaine-induced dopamine in the nucleus accumbens, which suggests that CBD plays an important role in controlling brain response to cocaine and the consequent drug seeking behavior triggered by drug consumption.62

Together these studies show that CBD has modulating effects at different doses (3, 10, 20, and 40 mg/kg) and routes of administration (intraperitoneal, subcutaneous), that are mainly dependent on its agonistic activity at TRPV1 and 5-HT\(_{1A}\) receptors.14,15 Although both receptors are responsible for several CBD-mediated actions, other targets might also be involved in distinct effects attributed to CBD and need to be further investigated.

In addition to TRPV channels, CBD has also been shown to engage sodium and calcium channels. CBD inhibits hNav1.1-1.7 currents, with an IC\(_{50}\) of 1.9–3.8 \(\mu\)mol/L in HEK-293 cells and in iPSC neurons, due to preferential stabilization of inactivated Nav channels.63 The effects of CBD on biophysical properties such as membrane fluidity and sodium channel conductance could be responsible for its positive outcomes in the treatment of epilepsy and other hyperactivity syndromes.64 CBD has also been shown to inhibit L-type Ca\(^{2+}\) channels with an IC\(_{50}\) of 0.1 \(\mu\)mol/L as detected by patch-clamp techniques in rat myocytes.65 Using mitochondrion-specific Ca\(^{2+}\) sensor (Rhod-FF,
AM), it was shown that CBD reduces [Ca^{2+}], levels in high excitability states and increases [Ca^{2+}], levels in control states in hippocampal primary culture cells. The modulatory properties of CBD on Na and Ca channels might have a great impact on neuronal excitability. Sodium currents in peripheral neurons are mainly responsible for sensory afferent stimuli to reach the central nervous system. If CBD can control part of the afferent stimuli coming from the periphery, the analgesic effects reported by Phillpot et al and Ward et al might be due to this ability of CBD to control membrane excitability.

9 | PPARγ RECEPTORS

Peroxisome proliferator-activated receptor gamma (PPARγ) is intimately related to glucose metabolism and insulin signaling in skeletal muscle and liver. Thiazolidinediones are insulin-sensitizing drugs that are greatly used to treat Type 2 diabetes to improve the metabolic profile of patients. Some thiazolidinediones such as rosiglitazone and pioglitazone, have been shown to be PPARγ agonists and stimulate the transcription of insulin and fatty acid regulating genes leading to restoration of the glycemic profile in db/db mice. These are obese mice due to leptin receptor knockout that have considerably higher caloric intake, hyperglycemia, dyslipidemia, and metabolic syndrome and are commonly used as models of Type 2 Diabetes and obesity.

CBD has been shown to have agonistic activities at PPARγ that might explain CBD-mediated improvements in lipid and glycemic parameters in Type 2 Diabetes. Blockade of PPARγ with the selective antagonist, GW9662, significantly blunted CBD effects on reactive gliosis in rat primary astroglial cultures. Moreover agonism of PPARγ by CBD might be an attractive therapeutic tool for Alzheimer’s disease (AD). There is a significant body of evidence showing the efficacy of PPARγ agonists, such as pioglitazone, in ameliorating disease-related pathology and improving learning and memory in animal models of AD. Recent clinical trials showed a significant improvement in memory and cognition in AD patients treated with rosiglitazone. It is important to highlight that in addition to CBD, endogenous cannabinoids such as anandamide and 2-AG can also activate PPARγ and produce anti-inflammatory responses.

10 | CONCLUSIONS AND PERSPECTIVES

CBD’s potential as a therapeutic comes from its multiple mechanisms of action. This wide range of pharmacological activity underlies the effects of CBD on anxiety, depression, pain, memory, metabolism and more. One potential novel target is GPCR heteromers, a macromolecular complex composed of at least two functional receptor units (protomers) with biochemical properties that are demonstrably different from those of its individual components. There are three criteria for G-protein heteromers in native tissues: (a) Heteromer components should colocalize and physically interact; (b) Heteromers should exhibit properties distinct from those of the protomers; (c) Heteromer disruption should lead to a loss of heteromer-specific properties. CBD has been reported to be an allosteric modulator of the DOR and heteromers between the DOR and the CB1 cannabinoid receptors have been reported. Furthermore, MOR has also been shown to interact with CB1 cannabinoid receptors. Hence, it is possible to envision that CBD could exert some of its effects via MOR-CB1 heteromers. By characterizing heteromer fingerprints, future studies could establish MOR-CB1 heteromer as a target of CBD.

While it is important to recognize the beneficial effects of CBD, it is even more important to understand that it is not a miraculous drug that can be effectively used in any given pathology or condition. While the pharmacodynamic properties are being characterized, further studies need to be undertaken to better characterize the pharmacokinetic properties of CBD, the correct dosage and routes of administration for each specific condition, advantages of coadministration with other substances (especially with morphine in the context of pain management) and whether detrimental side-effects arise from chronic treatment with CBD.

11 | NOMENCLATURE OF TARGETS AND LIGANDS

Key protein targets and ligands in this article are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al, 2018), and are permanently archived in the Concise Guide to PHARMACOLOGY 2019/20 (Alexander et al, 2019).

ACKNOWLEDGEMENTS

The authors thank Dr. Ivone Gomes for critical reading and editing of the manuscript. This work was supported in part by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) grant 88887.364609/2019-00 (to DAM) and NIH grants NS26880 and DA008863 (to LAD).

DISCLOSURE

All authors have no conflict of interest to disclose.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Lakshmi A. Devi https://orcid.org/0000-0002-2179-2874

REFERENCES

1. Mechoulam R. Marihuana chemistry. Science. 1970;168(3936):1159–1166. https://doi.org/10.1126/science.168.3936.1159
2. Espejo-Porras F, Fernández-Ruiz J, Pertwee RG, Mechoulam R, García C. Motor effects of the non-psychotropic
phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. *Neuropharmacology*. 2013;75:155–163. https://doi.org/10.1016/j.neuroph.2013.07.024

3. Shoval G, Shibori L, Hershkovitz L, et al. Prohedonic effect of cannabidiol in a rat model of depression. *Neuropsychobiology*. 2016;73(2):123–129. https://doi.org/10.1159/000443890

4. Fisher T, Golan H, Schiby G, et al. In vitro and in vivo efficacy of non-psychotomimetic cannabidiol in neuroblastoma. *Curr Oncol*. 2016;23(2):S15–S22. https://doi.org/10.3774/cc.23.02893

5. Juknat A, Kozela E, Kaushansky N, Mechoulam R, Vogel Z. Anti-inflammatory effects of the cannabidiol derivative dimethylheptyl-cannabidiol - studies in BV-2 microglia and encephalitogenic T cells. *J Basic Clin Physiol Pharmacol*. 2016;27(3):289–296. https://doi.org/10.1515/jbcpp-2015-0071

6. Jadoon KA, Ratcliffe SH, Barrett DA, et al. Efficacy and safety of cannabidiol and tetrahydrocannabinin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, placebo-controlled, Parallel Group Pilot Study. *Diabetes Care*. 2016;39(10):1777–1786. https://doi.org/10.2337/dc16-0650

7. Lehmann C, Fisher NB, Tugwell B, Szczesniak A, Kelly M, Zhou J. Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. *Clin Hemorheol Microcirc*. 2016;64(4):655–662. https://doi.org/10.3233/CH-168021

8. Crippa JADS, Zuardi AW, Garrido GEJ, et al. Effects of cannabidiol (CBD) on regional cerebral blood flow. *Neuropsychopharmacology*. 2004;29(2):417–426. https://doi.org/10.1038/sj.npp.1300340

9. Linares IM, Zuardi AW, Pereira LC, et al. Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test. *Rev Bras Psiquiatr*. 2019;41(1):9–14. https://doi.org/10.1590/1516-4446-2017-0015

10. Freeman AM, Petrilli K, Lees R, et al. How does cannabidiol interact with CB1 and CB2 receptor agonists in vitro? *Br J Pharmacol*. 2017;150(5):613–623. https://doi.org/10.1038/bj.2017133

11. Pertwee RG, Ross RA, Craib SJ, Thomas A, (-)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. *Eur J Pharmacol*. 2002;456(1–3):584–596. https://doi.org/10.1016/s0014-2999(02)02624-9

12. Hudson R, Renard J, Norris C, Rushlow WJ, Laviolette SR. Cannabidiol counteracts the psychotropic side-effects of Δ9-tetrahydrocannabinol in the ventral hippocampus through bidirectional control of ERK1/2 phosphorylation. *J Neurosci*. 2019;39(44):8762–8777. https://doi.org/10.1523/JNEUROSCI.0708-19.2019

13. Maione S, Piscitelli F, Gatta L, et al. Non-psychotomimetic cannabinoids modulate the descending pathway of antinociception in anesthetized rats through several mechanisms of action. *Br J Pharmacol*. 2011;162(3):584–596. https://doi.org/10.1111/j.1476-5381.2010.01063.x

14. Philpott HT, O’Brien M, McDougall JJ. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. *Pain*. 2017;158(12):2442–2451. https://doi.org/10.1097/j.pain.0000000000001052

15. Petrocosino S, Verde R, Vaia M, Allarà M, Iuvone T, Di Marzo V. Anti-inflammatory properties of cannabidiol, a non-psychoactive cannabinoid, in experimental allergic contact dermatitis. *J Pharmacol Exp Ther*. 2018;365(3):652–663. https://doi.org/10.1124/jpet.117.244368

16. Couch DG, Tasker C, Theophilidou E, Lund JN, O’Sullivan SE. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon. *Clin Sci*. 2017;131(21):2611–2626. https://doi.org/10.1042/CS20171288

17. Massi P, Valenti M, Vaccani A, et al. 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. *J Neurochem*. 2008;104(4):1091–1100. https://doi.org/10.1111/j.1471-4159.2007.05073.x

18. Ross RA. The enigmatic pharmacology of GPR55. *Trends Pharmacol Sci*. 2009;30(3):156–163. https://doi.org/10.1016/j.tips.2008.12.004

19. Whyte LS, Ryberg E, Sims NA, et al. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. *Proc Natl Acad Sci USA*. 2009;106(38):16511–16516. https://doi.org/10.1073/pnas.0902743106

20. Adams MD, Earnhardt JT, Martin BR, Harris LS, Dewey WL, Razdan RK. A cannabinoid with cardiovascular activity but no overt behavioral effects. *Experiencia*. 1977;33(9):1204–1205. https://doi.org/10.1007/bf01922330

21. Celorrio M, Rojo-Bustamante E, Fernández-Suárez D, et al. GPR55: a therapeutic target for Parkinson’s disease? *Neuropharmacology*. 2013;75:155–163. https://doi.org/10.1016/j.neuroph.2013.07.024

22. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. *Neuron*. 2012;76(1):70–81. https://doi.org/10.1016/j.neuron.2012.09.020
38. Seeman P. Cannabidiol is a partial agonist at dopamine D2 receptors. *Psychopharmacology*, 2008;199(2):223–230. https://doi.org/10.1007/s00213-008-1168-x

39. Moreira FA, Aguiar DC, Guimarães FS. Anxiolytic-like effect of cannabinoids injected into the rat dorsolateral periaqueductal gray. *Psychopharmacology*, 2007;52(3):958–965. https://doi.org/10.1007/s00213-006.10013

36. Jesus CHA, Redivo DDB, Gasparin AT, et al. Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors. *Brain Res*. 2019;1715:156–164. https://doi.org/10.1016/j.brainres.2019.03.014

37. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neurotoxicity via serotonergic system activation through 5-HT1A receptors. *Br J Pharmacol*. 2019.03.014

40. Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology. *Psychopharmacology*. 2018;235(2):447–458. https://doi.org/10.1007/s00213-017-4766-7

41. Cheer JW, Wessum KM, Heien MLAV, Phillips PEM, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. *Biochem Pharmacol*. 2020;177:14004. https://doi.org/10.1016/j.bcp.2020.114004

42. Bhattacharyya S, Morrison PD, Fusar-Poli P, et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. *Neuropsychopharmacology*. 2010;35(3):764–774. https://doi.org/10.1038/npp.2009.184

43. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. *Proc Natl Acad Sci USA*. 2006;103(20):7895–7900. https://doi.org/10.1073/pnas.0511232103

44. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, et al. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A2A receptor. *Eur J Pharmacol*. 2012;678(1-3):78–85. https://doi.org/10.1016/j.ejphar.2011.12.043

45. Gonca E, Danci F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. *J Cardiovasc Pharmacol Ther*. 2015;20(1):76–83. https://doi.org/10.1177/1077484414532013

50. Liu M-Y, Yin C-Y, Zhu L-J, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. *Nat Protoc*. 2018;13(7):1686–1698. https://doi.org/10.1038/s41596-018-0011-z

51. Zhou Q-G, Hu Y, Wu D-L, et al. Hippocampal telomerase is involved in the modulation of depressive behaviors. *J Neurosci*. 2011;31(34):12258–12269. https://doi.org/10.1523/JNEUROSCI.0805-11.2011

52. Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain inter leukin-1 mediates chronic stress-induced depression in mice via adenocortical activation and hippocampal neurogenesis suppression. *Mol Psychiatry*. 2008;13(7):717–728. https://doi.org/10.1038/sj.mp.4002055

53. Hurd YL. Cannabidiol: swinging the marijuana pendulum from “Weed” to medication to treat the opioid epidemic. *Trends Neurosci*. 2017;40(3):124–127. https://doi.org/10.1016/j.tins.2016.12.006

54. Katsidoni V, Anagnostou I, Panagis G. Cannabidiol inhibits the reward-facilitating effect of morphine: involvement of 5-HT1A receptors in the dorsal raphe nucleus. *Addict Biol*. 2013(18):286–296. https://doi.org/10.1111/j.1369-1600.2012.00483.x

55. Blessing EM, Steenkamp MM, Manzanares J, Marcar MR. Cannabidiol as a potential treatment for anxiety disorders. *Neurotherapeutics*. 2015;12(4):825–836. https://doi.org/10.1007/s13311-015-0387-1

56. Shannon S, Lewis N, Lee H, Hughes S. Cannabidiol in anxiety and sleep: a large case series. *Perim J*. 2019;23:18–41. https://doi.org/10.7812/TPP/18-041

57. Machado Bergamaschi M, Helena Costa Queiroz R, Waldo Zuardi A, Alexandre S, Crippa J. Safety and side effects of cannabidiol, a Cannabis sativa constituent. *Curr Drug Saf*. 2011;6(4):237–249. https://doi.org/10.2174/15748861179280924

58. Iflland K, Grottenhermen F. An update on safety and side effects of cannabidiol: a review of clinical data and relevant animal studies. *Cannabis Cannabinoid Res*. 2017;2(1):139–154. https://doi.org/10.1008/can.2016.0034

59. Hurd YL, Yoon M, Manini AF, et al. Early phase in the development of cannabidiol as a treatment for addiction: opioid relapse takes initial center stage. *Neurotherapeutics*. 2015;12(4):807–815. https://doi.org/10.1007/s11062-015-0373-7

60. Iannotti FA, Hill CL, Leo A, et al. Opposite effects of cannabinoids: a review of clinical data and relevant animal studies. *Cannabis Cannabinoid Res*. 2017;2(1):139–154. https://doi.org/10.1008/can.2016.0034

61. Vilela LR, Lima IV, Kunsch ÉB, et al. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. *Epilepsy Behav*. 2017;75:29–35. https://doi.org/10.1016/j.yebeh.2017.07.014

62. Galaj E, Bi G-H, Yang H-J, Xi Z-X. Cannabidiol attenuates the rewarding effects of cocaine in rats by CB2, 5-HT1A and TRPV1 receptor mechanisms. *Neuropsychopharmacology*. 2020;167:107740. https://doi.org/10.1016/j.npp.2019.107740

63. Ghovanloo M-R, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. *J Biol Chem*. 2018;293(43):16546–16558. https://doi.org/10.1074/jbc.RA118.004929

64. Gaston TE, Szafielski JP. Cannabidiol reduces ethanol consumption, motivation and relapse in mice. *Addict Biol*. 2018;23(1):154–164. https://doi.org/10.1111/adb.12495
65. Ali RM, Al Kury LT, Yang K-HS, et al. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes. Cell Calcium. 2015;57(4):290–299. https://doi.org/10.1016/j.cca.2015.02.001

66. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci. 2009;29(7):2053–2063. https://doi.org/10.1523/JNEUROSCI.4212-08.2009

67. de Lera Ruiz M, Kraus RL. Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem. 2015;58(18):7093–7116. https://doi.org/10.1021/jm501981g

68. Ward SJ, Ramirez MD, Neelakantan H, Walker EA. Cannabidiol prevents the development of cold and mechanical alldynia in paclitaxel-treated female C57Bl6 mice. Anesth Analg. 2011;113(4):947–950. https://doi.org/10.1213/ANE.0b013e3182283486

69. Janani C, Ranjitha Kumari BD. PPAR gamma gene – a review. Ward SJ, Ramirez MD, Neelakantan H, Walker EA. Cannabidiol prevents the development of cold and mechanical alldynia in paclitaxel-treated female C57Bl6 mice. Anesth Analg. 2011;113(4):947–950. https://doi.org/10.1213/ANE.0b013e3182283486

70. Mooradian AD, Chehade J, Thurman JE. The role of thiazolidine dehydrogenase in the treatment of patients with type 2 diabetes mellitus. Treat Endocrinol. 2002;1(1):13–20. https://doi.org/10.2165/0002477-200201010-00002

71. Moore GB, Chapman H, Holder JC, et al. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice. Biochem Biophys Res Commun. 2001;286(4):735–741. https://doi.org/10.1006/bbrc.2001.5460

72. Esposito G, Scuderi C, Valenza M, et al. Cannabidiol reduces Aj-286 induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One. 2011;6(12):e28668. https://doi.org/10.1371/journal.pone.0028668

73. Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid deposition and hippocampal neurogenesis in an animal model of Alzheimer’s disease. J Neurosci. 2003;23(20):7504–7509. http://www.ncbi.nlm.nih.gov/pubmed/12837980

74. Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics. 2008;5(3):481–489. https://doi.org/10.1016/j.nurt.2008.05.003

75. O’Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol. 2007;152(5):576–582. https://doi.org/10.1038/sj.bjp.0707423

76. Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KDG, Devi LA. G protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol. 2016;56(1):403–425. https://doi.org/10.1146/annurev-pharmtox-011613-135952

77. Sierra S, Gupta A, Gomes I, et al. Targeting cannabinoid 1 and delta opioid receptor heteromers alleviates chemotherapy-induced neuropathic pain. ACS Pharmacol Transl Sci. 2019;2(4):219–229. https://doi.org/10.1021/acspcs.9b00008

78. Ugr M, Derouiche L, Massoette D. Heteromerization modulates mu opioid receptor functional properties in vivo. Front Pharmacol. 2018;9:1–10. https://doi.org/10.3389/fphar.2018.01240

79. Manduca A, Lassalle O, Sepers M, et al. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play. Front Behav Neurosci. 2016;10:1–17. https://doi.org/10.3389/fnbeh.2016.00211

80. Rios C, Gomes I, Devi LA. mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol. 2006;148(4):387–395. https://doi.org/10.1038/sj.bjp.0706757

81. Hojo M, Sudo Y, Ando Y, et al. Mu-opioid receptor forms a functional heterodimer with cannabinoid CB receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci. 2008;108(3):308–319. https://doi.org/10.1254/jphs.o8244FP

82. Harding SD, Sharman JL, Facenda E, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 2018;46(D1):D1091–D1106. https://doi.org/10.1093/nar/gkx1121

83. Alexander SPH, Christopoulos A, Davenport AP, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol. 2019;176(Suppl):S21–S141. https://doi.org/10.1111/bjph.14748.

84. Alexander SPH, Mathie A, Peters JA, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: ion channels. Br J Pharmacol. 2019;176(S1):S142–S228. https://doi.org/10.1111/bjph.14749

85. Ryberg E, Larsson N, Sjögren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152(7):1092–1101. https://doi.org/10.1038/sj.bjp.0707460

86. Linge R, Jiménez-Sánchez L, Campa L, et al. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology. 2016;103:16–26. https://doi.org/10.1016/j.neuropharm.2015.12.017

How to cite this article: de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect. 2020;e00682. https://doi.org/10.1002/prp2.682