Bartonella Species in Blood of Immunocompetent Persons with Animal and Arthropod Contact

Edward B. Breitschwerdt,* Ricardo G. Maggi,* Ashlee W. Duncan,* William L. Nicholson,† Barbara C. Hegarty,* and Christopher W. Woods‡

Using PCR in conjunction with pre-enrichment culture, we detected Bartonella henselae and B. vinsonii subsp. berkhoffii in the blood of 14 immunocompetent persons who had frequent animal contact and arthropod exposure.

Attempts to isolate Bartonella sp. from immunocompetent persons with serologic, pathologic, or molecular evidence of infection are often unsuccessful; several investigators have indicated that Bartonella isolation methods need to be improved (1–4). By combining PCR and pre-enrichment culture, we detected B. henselae and B. vinsonii subsp. berkhoffii infection in the blood of immunocompetent persons who had arthropod and occupational animal exposure.

The Study

From November 2004 through June 2005, blood and serum samples from 42 persons were tested, and 14 completed a questionnaire, approved by the North Carolina State University Institutional Review Board. Age, sex, animal contact, history of bites, environment, outdoor activity, arthropod contact, travel, and medical history were surveyed. Bacterial isolation, PCR amplification, and cloning were performed by using previously described methods (5–7). Each blood sample was tested by PCR after direct DNA extraction, pre-enrichment culture for at least 7 days, and subculture onto a blood agar plate (Figure). An un inoculated, pre-enrichment culture was processed simultaneously as a control. Methods used for DNA extraction and conventional and real-time PCR targeting of the Bartonella 16S-23S intergenic spacer (ITS) region and heme-binding protein (Pap31) gene have been described (7,8). Conventional PCR amplicons were cloned with the pGEM-T Easy Vector System (Promega, Madison, WI, USA); sequencing was performed by Davis Sequencing, Inc. (Davis, CA, USA). Sequences were aligned and compared with GenBank sequences with AlignX software (Vector NTI Suite 6.0 (InforMax, Inc., Bethesda, MD, USA) (7,8). B. vinsonii subsp. berkhoffii, B. henselae, and B. quintana antibodies were determined by using a modification of a previously described immunofluorescence antibody assay (IFA) procedure (9).

Study participants included 12 women and 2 men, ranging in age from 30 to 53 years; all of them reported occupational animal contact for >10 years (Table). Most had daily contact with cats (13 persons) and dogs (12 persons). All participants reported animal bites or scratches (primarily from cats) and arthropod exposure, including fleas, ticks, biting flies, mosquitoes, lice, mites, or chiggers. All participants reported intermittent or chronic clinical symptoms, including fatigue, arthralgia, myalgia, headache, memory loss, ataxia, and paresthesia (Table). Illness was most frequently mild to moderate in severity, with a waxing and waning course, and all but 2 persons could perform occupational activities. Of the 14 participants, 9 had been evaluated by a cardiologist, 8 each by an infectious disease physician or a neurologist, and 5 each by an internist or a rheumatologist. Eleven participants had received antimicrobial drugs.

When reciprocal titers of ≥64 were used, 8 persons were seroreactive to Bartonella antigens (online Appendix Table, available from www.cdc.gov/eid/content/13/6/938-appT.htm). B. henselae or B. vinsonii subsp. berkhoffii was detected or isolated from all 14 participants. At the time of initial testing, Bartonella DNA was amplified directly from 3 blood samples, from 7 pre-enrichment liquid cultures, and from 4 subculture isolates (Table). For 5 persons, results of PCR and culture of initial samples were negative. Overall, Bartonella DNA was amplified from 11 (28%) of 40 extracted blood samples, 13 (33%) of 40 pre-enrichment cultures, and 5 isolates. For 7 persons, B. henselae DNA was amplified at multiple time points. Bartonella DNA was never amplified from any PCR control or uninoculated culture control.

By using the ITS target region, 2 distinct B. henselae ITS and Pap31 strains were sequenced, B. henselae Hous-

![Diagram of sample processing and testing.](Image)
Table. Selected demographic, epidemiologic, and medical information reported by 14 immunocompetent persons infected with *Bartonella henselae* or *B. vinsonii* subsp. *berkhoffii*.

Characteristic/symptom	Study participant no.	Total, \(N = 14 \)
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	
Sex	F F F M F F F M F F F M F M F	
Age, y	51 30 48 44 53 50 32 33 48 53 52 39 52 44 32	
State of residence	NC NC NC CO VA CA NC VA CA CA CA CA VA MN	
Occupational exposure	V VIA AHR V V CR VIA VIA VIA VIA VIA V WB WB	
Daily contact	Y/Y Y/N N/Y Y/Y	
Contact with	2/1 3/3 4/4 4/4 3/3 2/3 3/3 2/2 4/4 2/4 3/1 3/2 NA/3 4/3	
fleas/ticks†	Cl Cl II II II Cl Cl Cl Cl II II Cl II Cl	
Self-health assessment‡		
Fatigue	+ + - + + + + + + + + + + +	13
Joint pain	+ + - + + + + + + + + + U	10
Difficulty sleeping	+ + - - + - + + + + + -	9
(insomnia)		
Muscle pain	+ + - - - U + + - + U + + +	8
Difficulty remembering	+ + - - + - + + + + - U	8
Loss of	+ + + - + - + + + - U	7
sensation or numbness		
Balance problems	+ + - + + + + + + +	7
Headache	+ + - - + + + + + + U	7
Tremors	+ + - - + + + + + + - -	6
Irritability	+ - - - + + + + + + -	6
Bowel or bladder	+ + - - + + + + + + + -	6
dysfunction		
Eye pain	+ + - + + + + + + - - -	5
Blurred vision	+ - - - + + + + + + -	5
Sleepiness	+ - - - + + + + - - +	5
Syncope or	+ + + - + + - - - - -	5
fainting episodes		
Shortness of	+ + - + - + + + - - U	5
breath		
Muscle weakness	+ - - + + + + + + U	5

*F, female; M, male; NC, North Carolina; CO, Colorado; VA, Virginia; CA, California; MN, Minnesota; V, veterinarian; VIA, veterinary assistant; AHR, animal health researcher; CR, cattle rancher; WB, wildlife biologist; Y, yes; N, no, with respect to the study participant’s daily contact with dogs/cats; Cl, chronically ill; II, infrequently ill; +, yes; - , no; blank, no answer reported; U, unknown.
†Reported as frequencies and defined as follows: 1, daily; 2, infrequently (weekly); 3, occasionally (monthly); 4, almost never (yearly).
‡Self-health assessment: As part of the questionnaire, study participants were asked to rate their own health status: healthy, infrequently ill, or chronically ill.

Conclusions

Persistent human infection with *B. bacilliformis* and *B. quintana* has been previously documented, whereas infection with *B. henselae* (cat-scratch disease [CSD]) is generally considered self-limiting (1,2,10). Recently, *B. henselae* DNA was amplified from the blood of a child 4 months after CSD diagnosis (11). Our study indicates that *B. henselae* and *B. vinsonii* subsp. *berkhoffii* can induce occult infection in immunocompetent persons and that detection can be enhanced by combining PCR with pre-enrichment culture. Considering only the results from initial blood samples, PCR detected *Bartonella* DNA in 3 samples, all of which were subsequently PCR positive by subculture or enrich-

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 13, No. 6, June 2007
ment culture. In samples from 5 persons, pre-enrichment was necessary, and in 5 other persons, sequential sampling was necessary to detect *Bartonella* infection. Intermittent bacteremia, as occurs in *B. henselae*–infected cats (12), antimicrobial drug administration, low bacterial copy numbers, and low inoculum volume (1 mL) may have contributed to intermittent detection or inability to isolate *Bartonella* spp. from some participant samples. Although our approach is an improvement over historical isolation approaches, our results emphasize ongoing limitations associated with the detection of *Bartonella* infection. Obtaining stable *Bartonella* subcultures (n = 5 in this study) has proven problematic for other specialized laboratories that routinely culture for *Bartonella* spp. (3,4). To our knowledge, the *B. vinsonii* subsp. *berkhoffii* type II isolate described in our study is the only type II human isolate reported to date (8). Various combinations of *B. henselae* and *B. vinsonii* subsp. *berkhoffii* strain types were detected in the same blood sample or sequential blood samples. The coexistence of *B. henselae* genetic variants has been described among primary patient isolates, which suggests that multiple genotypes may emerge within the same person (13).

Overall, 57% of persons tested were seroreactive to 1 or all 3 *Bartonella* test antigens. Previous reports from the United States identified a *B. henselae* seroprevalence of 3% in healthy blood donors and a cumulative seroprevalence of 7.1% to both *B. henselae* and *B. quintana* antigens in veterinary professionals (1). In this and other studies, serologic test results did not correlate with PCR amplification or isolation results. Antigenic variability among *B. henselae* test strains can cause false-negative IFA results in persons with suspected CSD. Also *B. henselae*, *B. quintana*, or *B. elizabethae* antibodies were not detected in some persons with DNA evidence of active infection (1,3,4).

Animal contact, often to a wide spectrum of domestic and wild animal species, is an obvious consequence of the daily activities of the study population, which is biased by veterinary occupational exposure and by self-selection (volunteer bias). Cats are considered the primary reservoir host for *B. henselae*, whereas coyotes and foxes are considered reservoir hosts for *B. vinsonii* subsp. *berkhoffii* (1,2,8). Detection of *B. vinsonii* subsp. *berkhoffii* in 4 of 5 Californian participants could be related to the high prevalence of bacteremic coyotes in this region as well as to the potential transmission by a tick vector (1,2). All 14 participants reported frequent arthropod exposure. Although *Bartonella* spp. transmission by ticks has not been proven, several recent studies have identified *Bartonella* DNA in questing ticks, ticks attached to animals, and ticks attached to humans (1,2,14).

Despite reporting chronic or episodic illness, most participants continued to effectively maintain daily professional and personal activities. The symptoms described in the study patients are very similar to those described in a community and hospital-based surveillance study of CSD patients, in whom CSD-associated arthropathy was an uncommon chronic syndrome affecting mostly young and middle-age women (15). Our study was initiated to investigate the feasibility of combining PCR with pre-enrichment culture. Prospective studies, with appropriate controls, are needed to characterize the prevalence and clinical relevance of persistent *Bartonella* infection in immunocompetent persons.

Acknowledgments

We thank the study participants for providing blood samples, Julie Bradley and Maria Belen Cadenas for technical assistance, and Tonya Lee for editorial assistance.

This research was supported by the state of North Carolina and, in part, through a gift from Bayer Animal Health (to R.G.M. and A.W.D.).

Dr Breitschwerdt is a professor of medicine and infectious diseases at the College of Veterinary Medicine, North Carolina State University. He is also adjunct associate professor of medicine at Duke University Medical Center. His research focuses on comparative medical aspects of zoonotic vectorborne infections in cats, dogs, and humans.

References

1. Chomel BB, Kasten RW, Sykes JE, Boulouis HJ, Breitschwerdt EB. Clinical impact of persistent *Bartonella* bacteremia in humans and animals. Ann N Y Acad Sci. 2003;990:267–78.
2. Boulouis H-J, Chang CC, Henn JB, Kasten RW, Chomel BB. Factors associated with the rapid emergence of zoonotic *Bartonella* infections. Vet Res. 2005;36:383–410.
3. La Scola B, Raoult D. Culture of *Bartonella quintana* and *Bartonella henselae* from human samples: a 5-year experience (1993–1998). J Clin Microbiol. 1999;37:1899–905.
4. Gouriet F, Fenollar F, Patrice JY, Dancourt M, Raoult D. Use of shell-vial cell culture assay for isolation of bacteria from clinical specimens: 13 years of experience. J Clin Microbiol. 2005;43:4993–5002.
5. Maggi RG, Harms CA, Hohn AA, Pabst DA, McLellan WA, Walton WJ, et al. *Bartonella henselae* in porpoise blood. Emerg Infect Dis. 2005;11:1894–8.
6. Breitschwerdt EB, Maggi RG, Signon B, Nicholson WL. Isolation of *Bartonella quintana* from a woman and a cat following putative bite transmission. J Clin Microbiol. 2007;45:270–2.
7. Maggi RG, Breitschwerdt EB. Potential limitations of the 16S–23S rRNA intergenic region for the molecular detection of *Bartonella* species. J Clin Microbiol. 2005;43:1171–6.
8. Maggi RG, Chomel B, Hegarty BC, Henn J, Breitschwerdt EB. A *Bartonella vinsonii berkhoffii* typing scheme based upon 16S–23S ITS and P5P1 sequences from dog, coyote, gray fox, and human isolates. Mol Cell Probes. 2006;20:128–34.
9. Dalton MJ, Robinson LE, Copper J, Regnery RL, Olson JG, Childs JE. Use of *Bartonella* antigens for serologic diagnosis of cat-scratch disease at a national referral center. Arch Intern Med. 1995;155:1670–6.
Bartonella Species in Immunocompetent Persons

10. Brouqui P, La Scola B, Roux V, Raoult D. Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med. 1999;340:184–9.
11. Arvand M, Schad SG. Isolation of Bartonella henselae DNA from the peripheral blood of a patient with cat scratch disease up to 4 months after the cat scratch injury. J Clin Microbiol. 2006;44:2288–90.
12. Kordick DL, Brown TT, Shin KO, Breitschwerdt EB. Clinical and pathological evaluation of chronic Bartonella henselae or Bartonella claridgeiae infection in cats. J Clin Microbiol. 1999;37:1536–47.
13. Arvand M, Schubert H, Viezens J. Emergence of distinct genetic variants in the population of primary Bartonella henselae isolates. Microbes Infect. 2006;8:1315–20.
14. Adelson ME, Rao RV, Tilton RC, Cabets K, Eskow E, Fein L, et al. Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey. J Clin Microbiol. 2004;42:2799–801.
15. Giladi M, Maman E, Paran D, Bickels J, Comaneshter D, Avidor B, et al. Cat-scratch disease-associated arthropathy. Arthritis Rheum. 2005;52:3611–7.

Address for correspondence: Edward B. Breitschwerdt, North Carolina State University College of Veterinary Medicine, 4700 Hillsborough St, Raleigh, NC 27606, USA; email: ed_breitschwerdt@ncsu.edu
Appendix Table. Serologic and PCR results from blood collected at multiple time points from 14 persons with frequent animal and arthropod contact

Participant no./day sample collected	Direct extraction from blood/serum	After 7-d pre-enrichment culture	Blood agar plate isolate	Bartonella PCR result	Bartonella IFA reciprocal titers		
			B. henselae H1-like‡†		N/A N/A N/A		
Participant 1	0	Neg	Neg	B. henselae	N/A N/A N/A		
	50	B. henselae H1-like‡†	Neg	Neg	32 <32 <32		
	67	Neg	Neg	B. henselae	128 32 64		
	165	Neg B. henselae	Neg	<32 <32 <32			
	239	Neg	Neg	N/A N/A N/A			
	299	Neg	Neg	<32 <32 <32			
	351	Neg	Neg	256 64 32			
Participant 2	0	Neg	Neg	<32 <32 <32			
	72	Neg	Neg	<32 <32 <32			
	89	B. henselae SA2-like‡†	Neg	<32 <32 <32			
	106	Neg B. henselae SA2-like‡†	Neg	128 64 64			
Participant 3	0	Neg	B. henselae SA2-like‡†		128 128 128		
	44	Neg	B. henselae SA2-like‡†		1024 256 256		
	105	Neg	B. henselae SA2-like‡†		512 256 256		
Participant 4	0	Neg	B. henselae SA2-like‡†		64 <32 64		
	33	Neg	Neg	N/A N/A N/A			
Participant 5	0	B. vinsonii subsp. berkoffii (type II)‡†	Neg	B. vinsonii subsp. berkoffii (type II)‡†	<32 <32 <32		
	26	Bh (SA2-like)‡§¶	Neg	<32 <32 <32			
Participant 6	0	Neg	B. henselae SA2-like‡†		<32 <32 <32		
	35	Neg	B. henselae SA2-like‡†		<32 <32 <32		
	147	B. henselae SA2-like‡†	Neg	<32 <32 <32			
Participant 7	0	Neg	B. henselae SA2-like‡†, B. vinsonii subsp. berkoffii (type II)‡†	Neg	32 <32 <32		
Participant 8	0	Neg	B. henselae SA2-like‡†		<32 <32 <32		
	25	Neg	B. henselae H1-like‡¶		<32 <32 <32		
	183	Neg	B. henselae H1-like‡¶		<32 <32 <32		
	215	Neg	Neg	32 <32 <32			
Participant 9	0	B. vinsonii subsp. berkoffii	B. vinsonii subsp. berkoffii	Neg	N/A N/A N/A		
Participant	Specimen	PCR Result	IFA	Serum	PCR Result	PCR Result	
-------------	----------	------------	-----	-------	------------	------------	
10	B. vinsonii subsp. berkoffii (type I)†‡	Neg	82	Neg	256	128	128
11	B. vinsonii subsp. berkoffii (Type II)†‡§	Neg	92	Neg	128	64	128
12	B. vinsonii subsp. berkoffii (type II)†‡	Neg	0	Neg	32	<32	32
13	B. vinsonii subsp. berkoffii (type II)†‡	Neg	103	Neg	64	32	32
14	B. henselae	Neg	193	Neg	<32	<32	<32
15	B. henselae	Neg	0	Neg	<32	<32	<32
16	B. henselae	Neg	62	Neg	<32	<32	<32

*IFA, immunofluorescence antibody assay; Neg, negative for Bartonella spp. by PCR; NA, serum not available for testing; H1, B. henselae Houston 1; SA2, B. henselae San Antonio 2.
†Independent PCR from blood and serum identified a Bartonella spp.
‡Identified by DNA sequencing.
§Blood source for PCR or sequencing result.
¶Serum source for PCR or sequencing result.