PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO

Susara Raghuram1, Anil Bhardwaj2, and Marina Galand1

1 Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; raghuramsusarla@gmail.com
2 Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, 695022, India

Received 2015 April 10; accepted 2015 November 15; published 2016 February 11

ABSTRACT

Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO2) and atomic oxygen emissions (to trace H2O and/or CO2, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA’s Rosetta mission. The intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO2 volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO2 and/or CO volume mixing ratios with respect to H2O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.

Key words: comets: general – comets: individual (67P Churyumov–Gerasimenko) – molecular processes

1. INTRODUCTION

The exploration of comets with space missions is critical to probe the coma and to access the detailed features of a cometary nucleus. However, remote spectroscopic observations can provide ample information about the global composition of comets. The coma composition associated with main species can be constrained from the analysis of airglow emissions using ground- and space-based telescopes. This, nevertheless, requires the quantitative assessment of physical processes that govern these emissions in the coma.

Among many observed cometary ultraviolet and visible airglow spectra, metastable emission lines have gained special interest. Solar resonance fluorescence is not an effective excitation mechanism to populate excited metastable states in the coma due to optically forbidden transitions. The dissociative excitation by photons, suprathermal electrons such as photoelectrons, and thermal recombination of ions are the main channels for producing various species in metastable excited states. By observing the emissions from the daughter products, which are particularly from the metastable state, the estimation of mixing ratios of their respective parent species has been done in several comets (Bockelée-Morvan et al. 2004; Feldman et al. 2004). The lifetime of a metastable excited species is shorter (∼0.7 s for O(1S), ∼110 s for O(1D), and ∼3 ms for CO (a3Π)) compared to their respective parent species (e.g., for H2O it is ∼8 × 104 s−1 at 1 AU), and cannot travel large radial distances in the coma from the place of formation without being lost through the emission of photons or quenched in collision. Hence, these forbidden emissions are good tracers to quantify the gas production rates of respective parent species in the coma.

Though water is the dominant species in comets, it is very difficult to access cometary H2O infrared emissions from ground-based observatories because of strong absorption by terrestrial water molecules. However, the spatial profiles of cometary H2O have been observed by ground-based telescopes by observing non-resonance fluorescence emissions (Mumma et al. 1995, 1996; Dello Russo et al. 2000). Since H2O does not have any transitions in ultraviolet and visible regions, the forbidden emissions of its dissociative metastable products ([O1] 6300, 6364, 5577, 2972 Å) have been used as tracers. Oxygen atoms that are produced in the 1S state decay 95% of the time to the 1D state emitting photons at 5577 Å (green line) wavelength, while 5% of them decay directly to the ground 3P state, which yields 2972 and 2958 Å emission lines. The radiative decay of 1D → 3P leads to 6300 and 6364 Å emission lines (red-doublet emission). Thus, if the green line is present in a cometary spectrum, the red-doublet must also be present, although the red-doublet can be formed without the green line. The quantification of H2O in the cometary coma has been done by observing [O1] 6300 Å emission in many comets (Delsemme & Combi 1976, 1979; Fink & Johnson 1984; Schultz et al. 1992; Morgensthaler et al. 2001). The direct de-excitation of O(1S) yields a 2972 Å emission line, which has been observed in the comet spectrum only once (Festou & Feldman 1981). Since there are other oxygen-bearing species, such as CO2 and CO, which can also produce these metastable states via dissociative excitation reactions, the observed green to red-doublet emission intensity ratio (hereafter referred as the G/R ratio) has been used to confirm the parent source of these emission lines (Cochran 1984, 2008; Morrison et al. 1997; Cochran & Cochran 2001; Zhang et al. 2001; Capria et al. 2005, 2008, 2010; Furusho et al. 2006; McKay et al. 2012, 2013, 2015; Decock et al. 2013). Based on O(1S) and O(1D) photorates calculated by Festou & Feldman (1981), the observed high G/R ratio values (>0.1) were ascribed to large CO2 and CO volume mixing ratios in the coma (Furusho...
The spin-forbidden atomic oxygen emission line [O I] 1356 Å has also been detected using rocket- and space-borne UV spectrometers in comets (Wood et al. 1986; Sahnow et al. 1993; McPhate et al. 1999). Since fluorescence efficiency (g-factor) for this transition is small to explain the observed intensity, production sources for this emission are attributed to electron impact excitation mechanisms (Cravens & Green 1978). Bhardwaj et al. (1996) accounted for various electron impact excitation sources to explain the observed emission intensity in comet Halley, which had a gas production rate of $1.3 \times 10^{30} \text{ s}^{-1}$ at 1 AU.

CO$_2$ is also an important oxygen-bearing species in the cometary coma, but is difficult to detect directly in the visible and ultraviolet cometary spectra because of the lack of electronic transitions. In order to quantify CO$_2$ in comets, CO Cameron band emissions ($\alpha^3\Pi \rightarrow \Lambda^3\Pi$) have been used as tracers of CO$_2$ by assuming that the excited metastable state $\alpha^3\Pi$, which is smaller by a factor of 3, Gilaianse et al. (2007) originates primarily from photodissociation of CO$_2$ (Weaver et al. 1994, 1997; Feldman et al. 1997). This spin-forbidden electron transition ($\alpha^3\Pi \rightarrow \Lambda^3\Pi$) yields a band emission in the ultraviolet spectral range of 1800–2600 Å. Using the Hubble Space Telescope (HST), Weaver et al. (1994) detected this band emission on comet 103P/Hartley 2. The observation of CO Cameron band emission on comet 103P led to the re-examination of International Ultraviolet Explorer (IUE) observed spectra, and Feldman et al. (1997) identified this emission on four comets (viz., C/1979 Y1 (Bradfield), 1P/Halley, C/1989 X1 (Austin), and C/1990 K1 (Levy)). The volume mixing ratios of CO relative to water have been derived in these comets by assuming that the photodissociation of CO$_2$ is the main source of CO($\alpha^3\Pi$). However, besides the photodissociation of CO$_2$, CO($\alpha^3\Pi$) can also be produced via the electron impact and dissociative recombination of CO-bearing species (Weaver et al. 1994; Bhardwaj & Raghuram 2011; Raghuram & Bhardwaj 2012).

The atomic carbon [C I] 1931 Å emission line has been observed in several comets (Feldman & Brune 1976; Feldman et al. 1980, 1997; Smith et al. 1980; Tozzi et al. 1998). The excited state of this emission is a metastable state C(1D), which has a lifetime of about 4080 s (Hibbert et al. 1993). The radiative decay of carbon from 1D to the ground 3P state results in photons at 9823 and 9850 Å, which are analogous to atomic oxygen red-doublet emissions at 6300 and 6464 Å. The [C I] 9850 Å emission line has been detected in comet Hale–Bopp by Olsen (2002). The carbon atom in 1D metastable state fluoresces the solar photons at 1931 Å before radiative decay to the ground 3P state can occur. Most of the emission line intensity is attributed to the photodissociative excitation of CO in comets (Feldman 1978; Bhardwaj 1999). Hence this emission line is a good tracer for CO production rate in comets (Olsen et al. 2002). The model developed by Bhardwaj (1999) calculated this emission line intensity in comet Halley, which is smaller by a factor of five than that observed by IUE, and suggested the involvement of additional carbon-bearing species in the coma.

In order to derive the parent species’ production rates in the coma based on the observed forbidden emission intensities, a quantitative study of various processes that govern these emissions is necessary. We have developed a coupled-chemistry-emission model that accounts for the major production and loss reactions of O($^3\Pi$), O($^1\Sigma$), O($^1\Delta$), C($^3\Pi$), C($^1\Delta$), and CO($\alpha^3\Pi$) in cometary comae (Bhardwaj et al. 1996; Bhardwaj 1999; Bhardwaj & Raghuram 2011, 2012). This model has been applied on several comets and results have been compared with the Earth-based observations (Bhardwaj et al. 1996; Bhardwaj 1999; Bhardwaj & Raghuram 2011, 2012; Raghuram & Bhardwaj 2012, 2013, 2014; Decock et al. 2015). The model calculations for comets 103P/Hartley 2 and 1P/Halley have shown that suprathermal electron impact is an important excitation process in the formation of CO($\alpha^3\Pi$), which is more important than the photodissociation of CO$_2$ (Bhardwaj & Raghuram 2011; Raghuram & Bhardwaj 2012). The model applied to study atomic oxygen emission lines in comets has shown that the collisional quenching in the inner coma can significantly change the observed G/R ratio (Bhardwaj & Raghuram 2012; Raghuram & Bhardwaj 2013, 2014; Decock et al. 2015). The model calculations in active comets, such as (C/1996 B2) Hyakutake and (C/1995 O1) Hale–Bopp, have shown that the G/R ratio varies as a function of projected distance and depends on the collisions in the cometary coma (Bhardwaj & Raghuram 2012, 2013).

Recently, we have applied our model for the analysis of high-resolution spectroscopic observations made from the ESO very large telescope (VLT) on four comets (viz., C/2002 T7 (LINEAR), 73P/C-Schwassmann–Wachmann 3, 8P/Tuttle, and 103P/Hartley 2). This study has allowed us to constrain the CO$_2$ volume mixing ratios in these comets (Decock et al. 2015).

After a successful rendezvous in 2014 August, ESA’s Rosetta spacecraft is exploring comet 67P/Churyumov–Gerasimenko (hereafter, referred to as 67P) by escorting it from ~4 AU toward perihelion at 1.29 AU reached in the summer of 2015. Assessing the chemical evolution of the cometary coma as the comet approaches the Sun is one of the main aims of the Rosetta mission. In support of Rosetta, different space- and ground-based observation campaigns are taking place to understand the spatial distribution of different volatile species in the coma. We apply our coupled-chemistry-emission model to comet 67P to identify and quantify the processes driving formation and loss of the CO Cameron band, atomic oxygen forbidden emissions, and the [C I] 1931 Å emission line at perihelion and at 3 AU heliocentric distance. Model calculations are necessary to understand the physical processes governing these metastable emissions and to derive CO$_2$ and CO mixing ratios. The motivation for this work is to provide theoretical support for the interpretation of Earth-based Rosetta-based UV observations of comet 67P.

We present the model input parameters, which may represent the gaseous environment of comet 67P at its perihelion and at 3 AU, in Section 2. The modeled various production and destruction profiles for different electronic states of atomic oxygen, atomic carbon, CO($\alpha^3\Pi$), and emission intensities as a function of projected distance are presented in Section 3. The implications of modeled emission profiles for comet 67P are discussed in Section 4. Conclusions are given in Section 5.

2. MODEL INPUT PARAMETERS

The coupled-chemistry-emission model has been used in the present study, which accounts for main production and loss processes for CO($\alpha^3\Pi$), O($^3\Pi$), O($^1\Delta$), O($^1\Sigma$), C($^3\Pi$), and C($^1\Delta$) species in the inner cometary coma, as described in earlier
works (Bhardwaj et al. 1990, 1996; Bhardwaj 1999, 2003; Bhardwaj & Raghuram 2011, 2012). Calculations are done at a perihelion distance (1.29 AU). The H$_2$O out-gassing rate at perihelion is assumed to be $1 \times 10^{28} \text{s}^{-1}$ (Snodgrass et al. 2013). The number density relative to water is taken to be 5% for both CO$_2$ (hereafter, $\mu_{\text{w}}$(CO$_2$)) and CO (hereafter, $\mu_{\text{w}}$(CO)) as a standard neutral composition. The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) instrument on board the Rosetta mission observed 67P’s nucleus has a bi-lobed structure with dimensions of $2.5 \times 2.5 \times 2.0 \text{km}$ for the small lobe and $4.1 \times 3.2 \times 1.3 \text{km}$ for the large lobe (Lee et al. 2015; Sierks et al. 2015). In our model, we have assumed a spherical nucleus of 2 km radius for simplification. The neutral atmosphere is calculated using Hasinger’s formula (Hasinger 1957) which assumes spherical expansion of coma with a constant velocity of 1 km s$^{-1}$. The electron temperature profile, which is required to calculate electron-ion recombination rates, is assumed to be the same as on Halley (Körösmezey et al. 1987).

We vary CO$_2$ and CO mixing ratios to quantify the change in contributions of different productions and loss processes yielding CO(a$^3$I), O($^3$S), O($^3$D), C($^3$D), as well as atomic carbon and atomic oxygen in ground states. The incident solar flux is based on the measurements from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMEED)/Solar EUV Experiment (SEE) (Woods et al. 2005) on 2005 January 2 (for solar activity phase with F10.7 = $100 \times 10^{22}$ Wm$^{-2}$ Hz$^{-1}$) at Earth and scaled to a heliocentric distance of 1.29 AU. It is expected to be representative of conditions encountered in the summer of 2015 near perihelion from the solar decreasing active period (Vigren & Galand 2013). The theoretical water collisional zone of comet 67P, with a gas production rate of $10^{28} \text{s}^{-1}$, is around 2000 km (Whipple & Huebner 1976). The calculations presented in this work are relevant for the inner coma and inside the diamagnetic cavity.

We also made calculations at a heliocentric distance of 3 AU, assuming a total gas production rate of $5 \times 10^{25} \text{s}^{-1}$ (Bieler et al. 2015; Gulkis et al. 2015; Hässig et al. 2015). The neutral coma composition is assumed to be 80% H$_2$O, 15% CO, and 5% CO$_2$. The solar flux on 2014 November 1 is used in the model and scaled to 3 AU using the inverse square of heliocentric distance. The electron temperature-dependent reactions play a minor role in governing the intensities of these emission lines.

Recently, ROSINA/DFMS has made several important discoveries such as the D/H ratio (Altwegg et al. 2015) and the presence of N$_2$ (Rubin et al. 2015) and O$_2$ (Bieler et al. 2015) in 67P’s coma. The observation of molecular oxygen has an important implication in the production of O($^1$S) and O($^1$D). Bieler et al. (2015) found that the local abundance of molecular oxygen is varying between 1% and 10% around the 67P nucleus relative to the H$_2$O production rate. The mean value of the molecular oxygen abundance in the 67P coma is $3.8 \pm 0.85\%$ relative to the H$_2$O production rate (Bieler et al. 2015). In order to quantify the contribution of molecular oxygen on the forbidden emission lines, we have taken 4% molecular oxygen relative to the H$_2$O production rate in the model. Hence we have also performed a case study by assuming the water production rate $5 \times 10^{28} \text{s}^{-1}$ and 25% CO, 8.3% CO$_2$, and 4% O$_2$ as relative abundances with respect to H$_2$O for the month of 2014 August. These abundances are mostly in agreement with the ROSINA measurements between 2014 August and October (Bieler et al. 2015; Hässig et al. 2015; Le Roy et al. 2015) when the comet was between 3 and 3.5 AU from the Sun.

3. RESULTS

3.1. Formation and Destruction of CO(a$^3$I)

The modeled CO(a$^3$I) rate profiles for different formation processes in the coma of 67P are shown in Figure 1. The number of excited CO(a$^3$I) molecules produced per unit volume per second is referred to as a volumetric production rate. For equal (5% relative to water) CO$_2$ and CO volume mixing ratios relative to water in the coma the major production source of CO(a$^3$I) is electron impact on CO. The electron impact on CO$_2$ and photodissociation of CO$_2$ are the next most dominant sources of CO(a$^3$I). The thermal electron recombination of HCO$^+$ and CO$_2$ ions and fluorescence of CO are minor CO(a$^3$I) production sources. Above 500 km the contributions from photodissociative excitation of CO$_2$ and electron impact on CO and CO$_2$ are nearly equal. Since the lifetime of CO(a$^3$I) is short (~3 ms, Gilijamse et al. 2007), most of the excited molecules decay to the ground state by spontaneous emission. Hence the radiative decay is the major loss source of this excited state. Other loss processes, such as collisional quenching and ionization by photons and photoelectrons, are smaller compared to radiative decay by several orders of magnitude. The number of species that de-excite to the ground state per second by various loss mechanisms is referred to as the loss rate.

The cross section for electron impact excitation of various excited states and the calculated suprathermal electron intensity in 67P coma at 10 km radial distance is presented in Figure 2. The suprathermal electron intensity in the energy range between 10 and 15 eV mainly determines the excitation rate of CO(a$^3$I) through electron impact on CO-bearing species.

![Figure 1](https://example.com/fig1.png)  
**Figure 1.** Calculated CO(a$^3$I) rate profiles in comet 67P/Churyumov–Gerasimenko for an H$_2$O out-gassing rate of $10^{28} \text{s}^{-1}$ and for 5% CO$_2$ and 5% CO volumetric mixing ratios relative to water at 1.29 AU. The photodissociation of CO (gray curve) and suprathermal electron impact on CO$_2$ (solid dashed curve) are producing CO(a$^3$I) with nearly equal rates and both curves overlap. hv, $\epsilon_{th}$, and $\epsilon_{sb}$ stand for photon, thermal electron, and suprathermal electron, respectively.
3.2. Formation and Destruction of Atomic Oxygen and Atomic Carbon

3.2.1. Atomic Oxygen in $^3P$, $^1D$, $^1S$, and $^5S$ States

The modeled major production rate profiles of atomic oxygen and atomic carbon in ground states are presented in Figure 3. Below 50 km radial distances, various sources are contributing to the formation of O($^3P$). The production of atomic oxygen in the ground state is mainly due to strong collisional quenching of O($^1D$) with water. The next important source of atomic oxygen is charge exchange of OH$^+$ and O$^+$ ions with water. Photodissociation of CO$_2$ and CO are the next important O($^3P$) production sources. Above 50 km, radiative decay of O($^1D$) is the major source of atomic oxygen in the ground state.

The calculated major chemical loss rate profile for O($^3P$) via different destruction mechanisms are presented in Figure 4. The major loss process for the atomic oxygen is due to collisions with OH molecules, which yield atomic hydrogen and molecular oxygen. The atomic oxygen can travel to large distances before getting lost in chemical reactions. Hence, we accounted for transport loss by taking 1 km s$^{-1}$ as advection velocity.

We have accounted for many O($^1S$) and O($^1D$) formation and destruction processes in the coma as described in Bhardwaj & Raghuram (2012). The modeled major production rate profiles for O($^1S$) in comet 67P are shown in Figure 5. The photodissociation of H$_2$O and CO$_2$ are equally important sources in producing O($^1S$) in the inner coma of comet 67P. Below 100 km, suprathermal electron impact on CO$_2$ is the next important O($^1S$) source. The photodissociation of CO and electron impact on H$_2$O and CO$_2$ are minor sources of O($^1S$). Electron recombination of H$_2$O$^+$ ion is a minor source of O($^1S$) in the inner coma, whereas its contribution is significant at large (>10$^3$ km) radial distances.

The calculated O($^1D$) production rate profiles for different formation processes are presented in Figure 6. The photodissociation of H$_2$O is a dominant source of O($^1D$) throughout the inner coma. Contribution from other O($^1D$) formation processes is minor (<5%) to the total. At large radial distances (>10$^3$ km) the contributions from dissociative recombination of H$_2$O$^+$, radiative decay of O($^1S$) and photodissociation of OH become significant in the formation of O($^1D$).

The modeled destruction rate profiles of O($^1S$) and O($^1D$) are shown in Figure 7. The O($^1S$) and O($^1D$) atoms are strongly quenched by H$_2$O up to radial distances of ~10 and ~200 km, respectively. Above these radial distances the radiative decay, which leads to forbidden visible emission lines, is the major loss process for the O($^1S$) and O($^1D$). Collisional quenching of O($^1S$) and O($^1D$) by other neutrals is smaller compared to H$_2$O quenching by several orders of magnitude, hence these processes are not shown in the figure.

The production of atomic oxygen in the $^5S$ state yields a [O I] 1356 Å emission line via immediate decay to ground state (with a lifetime of 185 µs, Johnson 1972). The calculated [O I] 1356 Å emission rates are presented in Figure 8. Electron
impact on atomic oxygen is the major production source for [O I] 1356 Å emission followed by electron impact on CO$_2$ and H$_2$O.

### 3.2.2. Atomic Carbon in $^3$P and $^1$D States

In case of atomic carbon formation, the photodissociation of CO is the major source of C($^3$P), as shown in Figure 3. Collisional quenching of C($^1$D) is the next important source of atomic carbon in the ground state. All other production processes described in Bhardwaj et al. (1996) contribute little (<5%) to the total. The loss of atomic carbon is mainly due to collisions with OH, which yield atomic hydrogen and CO. The next main loss source is due to collisions with H$_3$O$^+$, which leads to the formation of HCO$^+$ and H$_2$. The model accounts for the transport of atomic carbon in $^3$P and $^1$D states with an advection velocity of 1 km s$^{-1}$. Transport is the major loss process for atomic oxygen and atomic carbon compared to the total loss due to chemical reactions.

The calculated formation rates of the metastable C($^1$D) atom via different production processes are presented in Figure 9. The major formation mechanism for C($^1$D) is the photodissociation of CO at a large radial distance (10$^3$ km), the dissociative recombination of the CO$^+$ ion is also an important source of C($^1$D). Other formation reactions are smaller compared to photodissociation of CO by more than an order of magnitude. The modeled C($^1$D) loss rates presented in Figure 10 show that collisional quenching with water is the dominant loss process up to 300 km radial distance, above which radiative decay takes over. Collisional quenching of CO and CO$_2$ is a relatively less significant C($^1$D) loss process.

### 3.3. Calculation of Emission Intensities along the Projected Distance

The radial emission rate profiles are integrated for each emission line along the line of sight perpendicular to the Sun-comet direction at different radial distances to obtain limb brightness profiles. The model calculated intensity profiles, as a function of projected distance, for the CO Cameron band, atomic oxygen ([O I] 6300+6364, 5577, 2972, and 1356 Å), and atomic carbon emissions ([C I] 1931, 9823, 9850 Å) are
shown in Figure 11. Among the calculated emission intensities, the CO Cameron band emission peaks close to the nucleus (<20 km). The calculated intensity profiles of 5577 Å and red-doublet (6300+6364 Å) are flat up to radial distances of 20 km and 200 km, respectively, due to the strong collisional quenching of O(1S) and O(1D) with H2O in the inner coma. The calculated G/R ratio as a function of projected distance is also presented in the same figure on the right Y-axis. Since the lifetime of metastable C(1D) is large (4080 s), the collisional quenching with water makes [C I] 1931, 9850, and 9823 Å emission profiles flat up to 1000 km. The [O I] 1356 Å line is the weakest emission among the calculated emissions (presented in Figure 11 after multiplying a factor of 10).

Model calculated intensity profiles, when the comet was at a 3 AU heliocentric distance, are presented in Figure 12 as a function of projected distance. Very close to the nucleus surface, the oxygen red-doublet, green line, CO Cameron, and [O I] 1356 Å emissions are intense. Since the neutral gas production rate is low ($5 \times 10^{23}$ s$^{-1}$) at 3 AU, the calculated intensity profiles are decreased by two orders of magnitude compared to those at perihelion. Due to the high radiative lifetime (~110 s), the collisional quenching of O(1D) is significant for a radial distance up to 20 km, which alters the G/R ratio from 0.9 to 0.1. Inspite of having a high mixing ratio (15%), the role of CO in determining the oxygen visible emission intensities as well as in determining the G/R ratio is insignificant. In the case of the CO Cameron band, most of the emission intensity (>90%) close to the nucleus is mainly via the electron impact excitation of CO. For a radial distance higher than 50 km, the major (~50%) source for CO(a^3Π) is CO2 via electron impact and photodissociation excitation processes. The long radiative lifetime (~4080 s) of C(1D) makes the atomic carbon emission intensity profile flat up to 1000 km.

Figure 9. Calculated C(1D) production rate profiles in comet 67P/Churyumov–Gerasimenko with the water out-gassing rate of 10$^{28}$ s$^{-1}$ for 5% CO2 and 5% CO volume mixing ratios relative to water at 1.29 AU. hν, $e_{ph}$, and $e_{th}$ stand for photon, thermal electron, and suprathermal electron, respectively.

Figure 10. Calculated C(1D) loss rate profiles in comet 67P/Churyumov–Gerasimenko with the water production rate of 10$^{28}$ s$^{-1}$ for 5% CO2 and 5% CO volume mixing ratios relative to water at 1.29 AU. hν stands for photon.

Figure 11. Calculated various emission intensities for 5% CO2 and 5% CO volume mixing ratios relative to water in comet 67P/Churyumov–Gerasimenko with a water production rate of $1 \times 10^{28}$ s$^{-1}$ as a function of projected distance at 1.29 AU. The calculated G/R ratio values are shown on the right Y-axis. The [O I] 1356 Å emission line profile is multiplied by a factor of 10. One Rayleigh = $10^6/4\pi$ photons cm$^{-2}$ s$^{-1}$ sr$^{-1}$.

Figure 12. Calculated various emission intensities for 5% CO2 and 15% CO volume mixing ratios relative to water in comet 67P/Churyumov–Gerasimenko with a water production rate of $5 \times 10^{25}$ s$^{-1}$ as a function of projected distance at 3 AU. The calculated G/R ratio values are shown on the right Y-axis. One Rayleigh = $10^6/4\pi$ photons cm$^{-2}$ s$^{-1}$ sr$^{-1}$.

[Graphs and plots representing the emission intensities and production rates are shown here, as well as the calculated G/R ratios and emission line profiles.]
The Astrophysical Journal, 818:102 (12pp), 2016 February 20

RAGHURAM BHARDWAI, G. ALAND

Table 1

The Calculated Contribution of Different Production Processes Producing CO(\(a^3\)I) in Comet 67P for Different CO2 and CO Volume Mixing Ratios Relative to Water

| CO2 (\% relative to H2O) | CO \(\times 10^3\) | \(\nu^+ + \text{CO}_2\) \(10^2\) | \(\text{e}_{\text{ph}}^+ + \text{CO}_2\) \(10^3\) | \(\text{e}_{\text{ph}}^+ + \text{CO}\) \(10^5\) | Others\(^a\) \(10^6\) |
|-------------------------|------------------|----------------------|----------------------|----------------------|------------------|
| 1                       | 1                | 14.2                 | 14.5                 | 13.9                 | 15.8             |
| 1                       | 2                | 9.1                  | 9.3                  | 9.1                  | 9.6              |
| 1                       | 5                | 5.0                  | 5.2                  | 5.1                  | 4.8              |
| 2                       | 1                | 21.6                 | 21.9                 | 20.6                 | 24.4             |
| 2                       | 2                | 15.2                 | 15.5                 | 14.8                 | 16.3             |
| 2                       | 5                | 9.0                  | 9.3                  | 9.1                  | 8.7              |
| 5                       | 1                | 31.4                 | 31.5                 | 28.9                 | 36.5             |
| 5                       | 2                | 25.2                 | 25.5                 | 23.8                 | 28.0             |
| 5                       | 5                | 17.3                 | 17.7                 | 16.9                 | 17.4             |
| 0                       | 1                | 0.0                  | 0.0                  | 0.0                  | 0.0              |
| 0                       | 2                | 0.0                  | 0.0                  | 0.0                  | 0.0              |
| 0                       | 5                | 0.0                  | 0.0                  | 0.0                  | 0.0              |
| 1                       | 0                | 45.3                 | 44.6                 | 39.5                 | 54.0             |
| 5                       | 0                | 44.5                 | 44.0                 | 39.0                 | 54.7             |

Note.

\(^a\)Others corresponds to the sum of contributions from the photodissociation of HCO\(^+\) and CO\(_2\)\(^+\) ions and the resonance fluorescence of CO.

3.4. Effect of Neutral Composition on the Calculation of Emission Intensities

3.4.1. Role of CO2 and CO Volume Mixing Ratios Relative to Water

By varying the \(\mu_{\nu}^+(\text{CO}_2)\) and \(\mu_{\nu}^+\) (CO), the contribution of different processes producing CO(\(a^3\)I) is calculated at three different projected distances. The calculations are presented in Table 1 by varying \(\mu_{\nu}^+(\text{CO}_2)\) and \(\mu_{\nu}^+\) (CO) from zero to two, and then to five percent. In all of these cases, the contribution from the photodissociation of CO2 and electron impact on CO2 processes are nearly equal. Keeping 1% \(\mu_{\nu}^+(\text{CO}_2)\) in the coma, we varied \(\mu_{\nu}^+(\text{CO})\) between 1% and 5%. In this case, the contribution of photodissociation of CO2 and electron impact on CO2 processes is 65%–90%. The contribution from other chemical reactions, such as the electron recombination of HCO\(^+\) and CO\(_2\)\(^+\) ions contribute less than 10% to the formation of CO(\(a^3\)I).

When \(\mu_{\nu}^+(\text{CO}_2)\) is increased to 2%, the contribution from electron impact on CO is reduced to 50%–80%. About 10%–20% of CO(\(a^3\)I) is produced from the photodissociation of CO2. By increasing \(\mu_{\nu}^+(\text{CO}_2)\) to 5%, the contribution of CO2, from both photodissociation and electron impact reactions, in producing CO(\(a^3\)I) increases to a total of 30%–60%. In the case of equal (5%) \(\mu_{\nu}^+(\text{CO})\) and \(\mu_{\nu}^+(\text{CO}_2)\), the contribution from CO is around 65% and the rest comes from CO2-associated reactions in the inner coma.

Modeling results in Table 1 show that in the absence of CO2, the major source for production of CO(\(a^3\)I) is the electron impact of CO, and other processes have negligible contribution to the total. When CO is absent in the coma electron impact on CO2 and photodissociation of CO2 processes are producing CO(\(a^3\)I) with nearly equal contributions. In this case, at 1000 km projected distances, the contribution of the thermal recombination of HCO\(^+\) and CO\(_2\)\(^+\) producing CO(\(a^3\)I) is 15%.

The calculated percentage contribution of different processes in the formation of O(\(^1\)S) and O(\(^1\)D) are presented in Table 2. The main processes controlling the formation of O(\(^1\)S) is photodissociation of H2O and CO2. The photodissociation of H2O is the dominant source of O(\(^1\)D) production in the inner coma. Beyond 1000 km radial distances, the photodissociation of OH, the electron recombination of H2O\(^+\), and the radiative decay of O(\(^1\)S) are also important O(\(^1\)D) sources. The calculations presented in Table 2 show that below 100 km radial distance the formation of O(\(^1\)D) is mainly (80%–90%) through photodissociation of H2O. Above these distances this contribution changes to around 50%, while the rest is via photodissociation of OH and dissociative recombination of H2O\(^+\) and radiative decay of O(\(^1\)S).

In the case of O(\(^1\)S) production, both photodissociation of CO2 and H2O are important formation processes in the inner coma. It is found that the role of CO photodissociation is very small (<5%) in the O(\(^1\)S) production. Calculations presented in Table 2 show that for 1% of \(\mu_{\nu}^+(\text{CO}_2)\), below a 100 km projected distance, the contributions in the formation of O(\(^1\)S) are 65%–75% from the photodissociation of H2O, 15% from CO2 photodissociation, and 20% from other reactions. At a 1000 km projected distance, the photodissociation of H2O is contributing around 45% and ~45% contribution mainly from dissociative recombination of H2O\(^+\). In this case, the calculated G/R ratio varies between 0.05 and 0.4 for less than 1000 km projected distance. When we increased \(\mu_{\nu}^+(\text{CO}_2)\) to 5%, the contribution from both photodissociation of H2O and CO2 is similar (30%–45%) for the projected distances less than 1000 km. In this case, the G/R ratio is found to vary between 0.07 and 0.7.

In the absence of CO2, the photodissociation of water and dissociative recombination of H2O\(^+\) mainly controls the formation of O(\(^1\)S) in the cometary coma. In this case, by changing the CO alone between 1% and 5%, it is found that the change in the calculated G/R ratio profile is insignificant. Assuming the absence of CO in the coma, the calculated contributions are not changed from the previous cases whereas the calculated G/R ratio profile is increasing linearly by increasing \(\mu_{\nu}^+(\text{CO}_2)\).

We have calculated the [O I] 1356 Å emission intensity by varying \(\mu_{\nu}^+(\text{CO}_2)\) and \(\mu_{\nu}^+(\text{CO})\) between 1% and 5%. The calculations show that electron impact on atomic oxygen is an
Table 2
The Calculated Contribution of Different Production Processes Producing O(S) and O(D) in Comet 67P for Different CO₂ and CO Volume Mixing Ratios Relative to Water

| Volume Mixing Ratios Relative to Water (%) | CO₂ | CO | Percentage Contribution at Different Projected Distances (km) | G/R Ratio |
|------------------------------------------|-----|----|-------------------------------------------------------------|-----------|
|                                          | 10  | 10²| 10³                                                         | 10        |
| 1                                        | 1   | 75.1(94.6) | 67.3[83.9] | 44.3[54.2] | 16.4[0.8] | 14.5[5.4] | 9.8[24.5] | 8.5[4.6] | 18.2[10.6] | 45.9[21.3] | 0.41 | 0.09 | 0.05 |
| 1                                        | 2   | 74.3[94.5] | 66.6[83.9] | 43.8[54.2] | 16.2[0.8] | 14.3[5.4] | 9.6[24.5] | 9.5[4.7] | 19.1[10.7] | 46.6[21.3] | 0.42 | 0.09 | 0.05 |
| 1                                        | 5   | 71.7[94.3] | 64.2[83.6] | 42.1[54.0] | 15.6[0.8] | 13.8[5.4] | 9.3[24.5] | 12.6[4.9] | 22.0[10.9] | 48.7[21.5] | 0.44 | 0.09 | 0.05 |
| 2                                        | 1   | 63.3[93.5] | 57.2[82.7] | 38.7[53.5] | 27.6[0.8] | 24.6[5.4] | 17.0[24.2] | 9.1[5.8] | 18.2[12.0] | 44.2[22.3] | 0.49 | 0.10 | 0.05 |
| 2                                        | 2   | 62.8[93.4] | 56.8[82.6] | 38.3[53.5] | 27.4[0.8] | 24.4[5.4] | 16.9[24.2] | 9.8[5.8] | 18.9[12.0] | 44.8[22.3] | 0.49 | 0.10 | 0.05 |
| 5                                        | 1   | 43.2[90.2] | 39.5[79.0] | 28.0[51.4] | 46.7[0.8] | 42.3[5.1] | 30.8[23.3] | 12.2[6.1] | 21.1[12.3] | 46.6[22.5] | 0.51 | 0.10 | 0.06 |
| 5                                        | 2   | 43.0[90.1] | 39.3[79.0] | 27.9[51.4] | 46.5[0.8] | 42.2[5.1] | 30.7[23.3] | 10.4[9.1] | 18.5[15.9] | 41.2[25.3] | 0.69 | 0.14 | 0.07 |
| 5                                        | 5   | 42.5[89.9] | 38.7[78.8] | 27.3[51.3] | 45.8[0.8] | 41.6[5.1] | 30.1[23.2] | 11.7[9.3] | 19.7[16.0] | 42.6[25.5] | 0.71 | 0.14 | 0.07 |
| 0                                        | 1   | 92.4[95.8] | 81.7[85.3] | 51.8[54.9] | 0.0[0.8] | 0.0[5.5] | 0.0[24.9] | 7.6[3.4] | 18.3[9.2] | 48.2[20.2] | 0.34 | 0.07 | 0.04 |
| 0                                        | 2   | 90.9[95.7] | 80.4[85.2] | 51.0[54.9] | 0.0[0.8] | 0.0[5.5] | 0.0[24.9] | 9.1[3.5] | 19.6[9.3] | 49.0[20.2] | 0.35 | 0.07 | 0.04 |
| 0                                        | 5   | 86.8[95.4] | 76.8[84.9] | 48.6[54.2] | 0.0[0.8] | 0.0[5.5] | 0.0[24.8] | 13.2[3.8] | 23.2[9.6] | 51.4[20.4] | 0.36 | 0.08 | 0.04 |
| 1                                        | 0   | 75.9[94.7] | 68.0[84.0] | 44.8[54.2] | 16.6[0.8] | 14.6[5.4] | 9.9[24.5] | 7.5[4.5] | 17.4[10.6] | 45.3[21.3] | 0.41 | 0.08 | 0.05 |
| 2                                        | 0   | 63.8[93.5] | 57.6[82.7] | 39.0[53.5] | 27.8[0.8] | 24.8[5.4] | 17.2[24.2] | 8.4[5.7] | 17.6[11.9] | 43.8[22.4] | 0.48 | 0.10 | 0.05 |
| 5                                        | 0   | 43.2[90.2] | 39.5[79.1] | 28.1[51.4] | 46.7[0.8] | 42.4[5.1] | 30.9[23.3] | 10.1[9.0] | 18.1[15.8] | 41.0[25.4] | 0.69 | 0.14 | 0.07 |

Notes.

a Others corresponds to the sum of the contributions from all reactions listed in Tables 1 and 2 of Bhardwaj & Raghuram (2012) for the formation of O(S) and O(D) except for the photodissociation of H₂O and CO₂.

b The values in the square brackets are for O(D).
important (50%) excitation process for [O I] 1356 Å emission (see Figure 8). Electron impact on CO2 is the next important emission source of [O I] 1356 Å line (30% to the total). Below 50 km, the formation of atomic oxygen is through collisional quenching of [C I] with water (35%), charge exchange between O+ and OH+ with water (45%). Above this radial distance, 75% atomic oxygen is produced due to radiative decay of [O I]. The role of CO2 and CO in producing atomic oxygen is less than 5%. Hence, by increasing the \( \mu_v(\text{CO}_2) \) in the coma it is found that 30% of this emission line intensity is increased only below 50 km radial distance. The role of CO in producing this emission line is insignificant.

The \( \mu_v(\text{CO}) \) can significantly influence the [C I] 1931 Å emission intensity compared to that of CO2. By increasing the \( \mu_v(\text{CO}) \) from 1% to 5% it is found that the intensity of this emission line also increases. The [C I] 1931 Å is mainly through the photodissociation of CO (75%) and CO2 (20%). The role of the resonant scattering of C(1 D) is significant (50%) for radial distances larger than 500 km. Similar effects have also been observed on 9850 and 9823 Å emission lines.

### 3.4.2. Role of \( \text{H}_2\text{O} \) Gas Production Rate

The maximum gas production in this comet at perihelion for the high activity case is about \( 1 \times 10^{27} \text{ s}^{-1} \). We have also done calculations for this comet by considering the low activity case with a water production rate of \( 5 \times 10^{27} \text{ s}^{-1} \) and keeping the \( \mu_v(\text{CO}_2) \) and \( \mu_v(\text{CO}) \) equal (5%). By decreasing the gas production rate by a factor of two, it is found that the calculated emission intensities are decreased by 30%. Similarly, the collisional quenching radius for O(5 S), O(1 D), and C(1 D) also decreased by 30% and is moved toward the nucleus.

### 4. DISCUSSION

#### 4.1. Spectroscopic Observations at Comet 67P

The ALICE ultraviolet spectrometer on board the Rosetta mission is designed to observe many emission lines from 67P in the wavelength region 750–2050 Å (Stern et al. 2007; Feldman et al. 2011). This range overlaps with part of CO Cameron bands covering 1800–2600 Å, [O I] 1356 Å, and [C I] 1931 Å emission lines (Feldman et al. 2004; Stern et al. 2007). By making limb scan observations, the ALICE spectograph can be used to derive the spatial distribution of CO and/or CO2 around the 67P nucleus. ALICE can observe the shortward part of CO Cameron band emission in its longward limit where, unfortunately, the sensitivity is small (Stern et al. 2007). Similarly, the [C I] 1931 Å emission line also falls into the longer end of the ALICE spectral range. It may, however, possible to detect it because of strong resonant fluorescence efficiency of C(1 D) atom. The Rosetta on board OSIRIS is a scientific camera system with 12 discrete filters, which is designed to observe 67P cometary coma over the wavelength range of 250–1000 nm (Keller et al. 2007). OSIRIS can also map the release of certain daughter species such as OH and [O I], based on observed emission intensities at 3090 Å and at 6300 Å, respectively.

The outcome of this study can be compared with board ROSINA mass spectrometers in situ measurements of the neutral composition in the coma (Balsiger et al. 2007; Hässig et al. 2015). Space-based observations from Earth, such as from the HST, can also observe these ultraviolet emissions during the Rosetta mission observation period. Several ground-based observatories have been observing comet 67P (http://www. rosetta-campaign.net/planned-observations) in visible and infrared regions to study the spatial distribution of various species. In this context the present modeling work can provide a better understanding of different processes governing the CO Cameron band, atomic oxygen, and atomic carbon emission lines in comet 67P to derive parent neutral composition in the coma.

#### 4.2. Derivation of CO and CO2 Volume Mixing Ratios Relative to \( \text{H}_2\text{O} \) close to the Nucleus

By making several observations on different comets, Tozzi et al. (1998) demonstrated that there is a strong correlation between 1931 Å emission line intensity and CO column density. The radiative decay of C(1 D) to ground state yields 9823 and 9850 Å emission lines. By observing these emission lines on Hale–Bopp, Oliversen et al. (2002) concluded that they can be used as direct tracers of CO photodissociation in the comet coma. The model calculations also show that the major production source of C(1 D) in the inner coma is mainly due to the photodissociation of CO and the contribution from other production processes is smaller by an order of magnitude compared to the former (see Figure 9). The model calculated that 1931, 9850, and 9823 Å emission line profiles are flat up to 1000 km projected distances due to the strong collisional quenching of C(1 D) with \( \text{H}_2\text{O} \). Since these atomic carbon emission lines are mainly controlled by the photodissociation of CO, observed intensity profiles can be used to derive the CO gas production rate in the coma. The calculated emission intensity profile can be useful as a baseline prediction to constrain the CO mixing ratios in the coma for the ALICE observation of carbon emission lines, which can then be compared with the ROSINA observations for the same regions under similar solar illumination.

Measuring atomic oxygen visible emission line intensities is an important diagnostic tool in estimating the water production rate as well as to understand the spatial distribution of \( \text{H}_2\text{O} \) in the comet coma (Delsemme & Combi 1976, 1979; Fink & Johnson 1984; Schultz et al. 1992; Morgenthaler et al. 2001; Furusho et al. 2006). Decock et al. (2015) analyzed several ESO’s VLT observed high-resolution green- and red-doublet emission line spectra on various comets. CO2 mixing ratios are derived in these comets by comparing the ESO VLT observations with modeled G/R ratio profiles (Decock et al. 2015). The model calculated G/R ratio profile is presented on 67P in Figure 11. By modeling green- and red-double emission intensity profiles on various comets at different heliocentric distances, Raghuram & Bhardwaj (2014) have shown that the G/R ratio value increases linearly by increasing \( \mu_v(\text{CO}_2) \) in the coma, whereas the effect of CO is minor in determining either green- or red-doublet emission intensities. Hence, the observed G/R ratio profile on 67P can be used to constrain CO2 mixing ratio in the coma.

When a comet is far away from the Sun (3 AU), it is expected to have higher CO and CO2 volume mixing ratios, which are species associated with low sublimation temperatures (e.g., Mumma & Charnley 2011). The calculations made at 3 AU heliocentric distance (see Figure 12), with mixing ratios of 5% CO2 and 15% CO, show that atomic oxygen red-doublet emission is the most intense emission in the inner coma. This emission can be observed by Rosetta on board the OSIRIS instrument, which can be subsequently used to derive the water
production rate. Unfortunately, there are no filters on OSIRIS to measure [O I] 5577 Å, [C I] 9823 Å, and 9850 Å emission lines (Keller et al. 2007). The predicted oxygen red-doublet intensity along the projected distance (Figures 11 and 12) could be useful in analyzing OSIRIS visible spectra of 67P and, subsequently, deriving H₂O distribution around the nucleus.

4.3. Constraining the O(1S) Yield for H₂O at Solar Lyα Wavelength

The photon cross section for the formation of O(1S) from H₂O has never been reported in the literature (Huestis & Slanger 2006). In this model, the formation of O(1S) from photodissociation of H₂O has been accounted for by assuming 0.5% yield for H₂O at Lyα wavelength (Bhardwaj & Raghuram 2012). The spectrometers on board ROSINA can measure the CO₂ number densities during this mission period at different radial distances in the coma. By combining the observed G/R ratio profile with ROSINA CO₂ measurements, it would be possible to constrain the O(1S) average yield value at solar Lyα. The high-resolution spectroscopic observations, such as the analysis of Decock et al. (2015), can provide information about collisional quenching of O(1S) and O(1D) metastable states in the coma of 67P. The observation of both green- and red-doublet emission line widths and G/R ratio profiles along with ROSINA measurements can solve the puzzle that the green line is wider than either of the red-doublet emission lines in comets.

4.4. Derivation of Suprathermal Electron Intensity close to the Nucleus

The modeling of production rates of CO(a³ΣI) has shown that suprathermal electron impact reactions mainly govern the CO Cameron band emission with a contribution of around 75%, whereas CO₂ photodissociation contributes about 25% (see Section 3.1). In the absence of CO, the electron impact on CO₂ is an equally important production source of CO(a³ΣI) as photodissociation of CO₂ (see Table 1). This suggests that the electron impact excitation mechanism should be considered for the estimation of parent species production rates in the coma. With sufficient CO (>3%) in the coma, the contribution from electron impact reactions in producing this band emission close to the nucleus (<100 km) is about 80%. The excited state CO (a³ΣI) is mainly populated in the coma by suprathermal electrons in the energy range between 10 and 15 eV (see Figure 2). Since the major source for the production of CO (a³ΣI) is electron impact, the observed CO Cameron band emission close to the nucleus would be suitable to track the suprathermal electron intensity (McPhate et al. 1999) rather than CO₂ neutral density.

The [O I] 1356 Å emission line is an excellent tracer for electron impact processes in the coma. Modeling of electron impact excitation processes shows that this emission is mainly due to electron impact excitation of atomic oxygen followed by electron impact dissociative emission of CO₂ and H₂O (see Figure 8). However, the intensity of this emission is weaker by three orders of magnitude compared to CO Cameron band emission. The electron impact excitation cross section for atomic oxygen producing [O I] 1356 Å emission line peaks at 15 eV, whereas for CO₂ and H₂O, it is between 30 and 60 eV. The contribution from atomic oxygen is about 50% and the rest is through CO₂ (30%) and H₂O (20%). Hence, half of the observed emission intensity profile is linked to the suprathermal electron intensity at 15 eV. Recently, ALICE observed several H, O, and C emissions near the cometary nucleus when the comet was at around 3 AU (Feldman et al. 2015). The observation of O I 1356 Å emission line intensity, which is varying between ~1.5 and ~3 Rayleigh at 10 km projected distance, (Feldman et al. 2015), is close to our predicted calculation (~1.5 Rayleigh, see Figure 12). Detailed analysis of this emission line will be presented in future work using the Rosetta measured neutral density distribution around the nucleus.

The Rosetta Plasma Consortium (RPC)/Ion and Electron Sensor (IES) is capable of measuring the electron energy spectra in the energy rage 1 eV/e to 22 keV/e (Burch et al. 2007). Since both CO Cameron band and [O I] 1356 Å emission lines are governed mainly by electron impact excitation reactions, the observed emission intensities may be supportive for the IES measured suprathermal electron intensity at around 15 eV.

4.5. Implication of Molecular Oxygen in Determining the G/R Ratio

Molecular oxygen is the major source for the production of O(1S) and O(1D) in the terrestrial atmosphere. The recent discovery of O₂ in 67P’s coma by ROSINA/DFMS (Bieler et al. 2015) demands the inclusion of O₂ in the model in order to calculate green- and red-doublet emission intensities. By including 4% molecular oxygen with respect to water production rate, and for the input conditions described in Section 2, the G/R ratio is found to increase by around 20% close to the nucleus (<20 km projected distance). Bieler et al. (2015) observed that the relative abundance of molecular oxygen ranges from 1%–10% with respect to the H₂O production rate. Hence, in order to determine CO₂ abundance based on the G/R ratio, the contribution from molecular oxygen should also be considered. In the case of higher O₂ abundance in comets, the observed G/R ratio can be significantly controlled by photodissociation of O₂ and may lead to the underestimation of the CO₂ mixing ratio.

4.6. Parameters that can Influence the Predicted Emission Intensities

The estimated diamagnetic cavity on the sunlit side of this comet at perihelion is around 30–40 km (Benna & Mahaffy 2006; Hansen et al. 2007; Koenders et al. 2015). The extent of the diamagnetic cavity depends on the gas production rate and solar wind conditions during the comet perihelion visit. Beyond this cavity, most of the ions are transported toward the tail side due to solar wind interaction. The assessment of solar wind interaction on the emission intensities is beyond the scope of this work, but we would like to discuss the possible sources that can alter the emission intensities. Outside the diamagnetic cavity, the chemical lifetime of neutrals can be significantly altered by charge exchange between solar wind ions and cometary species. Hence, it is expected that the calculated intensities outside of the diamagnetic cavity can be changed based on the solar wind conditions during that time. The electrons outside of the diamagnetic cavity are primarily solar wind electrons or shocked solar wind electrons (Ginglau et al. 1986; Gan & Cravens 1990; Cravens 1991; Reme 1991; Ip 2004). The
population of suprathermal electrons outside of the diamagnetic cavity is a complex problem due to admixture of solar wind electrons. However, the radius of collisional zone and diamagnetic cavity are subjected to the gas production rate and solar wind conditions during the comet perihelion passage.

For electron impact driven emissions, such as the CO Cameron band and $[\text{O}]$ 1356 Å, due to strong solar wind interaction, both neutral density and electron population may change outside of the diamagnetic cavity region, thus the observed emission intensities vary significantly. In this region, the solar wind electrons may also contribute to the total emission intensity (Bhardwaj et al. 1990, 1996; Bhardwaj 1999). However, the dissociative recombination CO-bearing ions to the total emission intensity contribute little (<5%), whereas the formation of atomic oxygen contributes significantly (50%), because of charge exchange between O$^+$ and OH$^-$ with H$_2$O. We do not expect that the radiative decay and collisional quenching of O(I) can be altered significantly due to solar wind interaction.

The evolution of cometary ionosphere around the 67P nucleus has been monitored by the Rosetta Plasma Consortium and Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (Rosina) instruments. The recent observations of the Rosina/Double Focussing Mass Spectrometer (DFMS), RPC/Ion and Electron Sensor (IES), and RPC/Ion Composition Analyzer (ICA), when the comet was beyond 2 AU, have shown that, due to the low out-gassing rate, no contact surface is formed and most of the solar wind has directly accessed the 67P’s nucleus, though the plasma close to the comet is dominated by cometary water ions (Broiles et al. 2015; Fuselier et al. 2015; Nilsson et al. 2015). Clark et al. (2015) found that the suprathermal electrons are accelerated to several hundreds of eV. The high energetic solar wind charged particles may also be involved in producing the excited atomic and molecular states discussed here.

The formation of O(^1S), O(^1D), and C(^1D) is mainly due to photochemical reactions. The contribution from ions and thermal electron recombination reactions for the inner coma is very small (<5%). Hence, we do not expect the predicted oxygen visible and [C I] 1931 Å line emission intensities to change due to solar wind interaction for the inner coma unless the radial distribution of H$_2$O is changed.

In this model, we have accounted for main parent oxygen- and carbon-bearing species to compute the emission intensities. However, the contribution from photodissociation and electron impact of other minor species is also possible. In the case of atomic oxygen visible emissions, the dissociation of other oxygen-bearing species, such as HCOOH or H$_2$CO, are unlikely to be the parent because they cannot decay fast enough to produce O(^1D) and O(^3S) (Festou & Feldman 1981). However, in the case of carbon emissions there could be an involvement from other carbon-bearing species, such as hydrocarbons. Since the major processes governing these emissions are via photochemical reactions, the role of electron temperature for the inner coma is not significant (<5%). The model calculations are done for the gas phase, thus scattering of solar photons by dust grains could be a significant factor in governing these emission intensities.

The recent Rosina/DFMS observations on 67P show that the cometary coma contains a variety of species with heterogeneous distributions, which vary with time and latitude (e.g., Hässig et al. 2015; Le Roy et al. 2015). The Microwave Instrument on the Rosetta Orbiter (MIRO) mapped around 67P’s nucleus when it was at 3.4 AU (Biver et al. 2015; Lee et al. 2015). The water column density in the inner coma (within 3 km from the nucleus) is found to vary even by two orders of magnitude. Luspay-Kuti et al. (2015) further investigated the heterogeneity of 67P’s coma by measuring various major (H$_2$O, CO$_2$, and CO) and minor (HCN, CH$_3$OH, CH$_4$, and C$_2$H$_6$) volatile species using Rosina/DFMS. Our calculated emission intensities may change significantly due to variable neutral densities around comet 67P. Future work will include the use of in situ measured neutral densities from Rosina sensors to drive model calculated emission intensities. Results could then be compared with ALICE and OSIRIS observations as well as ground-based observations.

5. CONCLUSIONS

Rosetta-remote and Earth-based spectroscopic observations, combined with modeling of comet 67P, offer a unique opportunity to assess the main production and destruction processes governing various forbidden visible and ultraviolet emissions as the comet gets closer to the Sun. The combined analysis applied to remote and in situ Rosetta observations could be used as a ground truth for the interpretation of Earth-based observations on 67P cometary coma. The model calculations suggest that the electron impact reactions are the dominant sources in producing CO Cameron band emission. Hence, the observed CO Cameron emission intensity close to the cometary nucleus can be used to track the suprathermal electron intensity in the energy range of 10–15 eV close to the nucleus. The observed G/R ratio away from the collisional zone can be used to confirm the parent oxygen species producing these emissions. Measurement of the G/R ratio close to the comet as a function of projected distance can be used to constrain the $\mu_\text{e}(\text{CO}_2)$. Presence of high mixing ratio of molecular oxygen can affect the G/R ratio significantly, which may lead to the underestimation of $\mu_\text{e}(\text{CO}_2)$. The observation of [O I] 1356 Å can give a clear indication of the role of electron impact processes in the coma, while [C I] 1931 Å emission is a good tracer to probe CO distribution near the nucleus. Both Cameron band and atomic oxygen emission observations are useful to assess H$_2$O, CO$_2$, and CO volume mixing ratios in the coma and to understand the spatial distribution and their time evolution in comet 67P. The quantitative assessment of different excitation processes is essential to study the evolution of the chemistry in the inner cometary coma with the increasing neutral gas production rate.

S.R. and M.G. acknowledge support of the Science and Technology Facilities Council (STFC) of the UK through the Consolidated Grant ST/K001051/1 to Imperial College London. The work of A.B. is supported by Indian Space Research Organization.

REFERENCES

Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2015, Sci, 347, A387
Balsiger, H., Altwegg, K., Bochsler, P., et al. 2007, SSRv, 128, 745
Beija, M., & Mahaffy, P. R. 2006, GeoRL, 33, 10105
Bhardwaj, A. 1999, JGR, 104, 1929
Bhardwaj, A. 2003, GeoRL, 30, 2244
Bhardwaj, A., Haider, S. A., & Singhal, R. P. 1990, Icar, 85, 216
Bhardwaj, A., Haider, S. A., & Singhal, R. P. 1996, Icar, 120, 412
Bhardwaj, A., & Raghuram, S. 2011, MNras, 412, L25
Bhardwaj, A., & Raghuram, S. 2012, ApI, 748, 13
