Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production

Cécile Cathalot, Erwan G. Roussel, Antoine Perhirin, Vanessa Creff, Jean-Pierre Donval, Vivien Guyader, Guillaume Roullet, Jonathan Gula, Christian Tamburini, Marc Garel, Anne Godfroy & Pierre-Marie Sarradin

Carbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemosynthetic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gC m\(^{-2}\)y\(^{-1}\)) compared to the surrounding seawater could lead to 0.05 GtC y\(^{-1}\) of C-biomass produced through chemooorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.
A major challenge in understanding the oceanic carbon cycle and forecasting the impact of climate change at a global scale is quantifying the portion of organic carbon escaping the upper water column and being sequestered in the deep ocean. Models of water-column attenuation, deep-sea carbon flux, and sequestration rates in the global carbon budgets are estimated from net primary production and export fluxes derived from satellite-imaging of ocean surface. However, misbalance between total biological carbon demand (heterotrophic production and respiration) and particulate organic carbon (POC) fluxes, export to the deep ocean through dissolved organic carbon (DOC) or local fertilization by spermwhales seriously challenge such approach. Episodic organic carbon pulses have only recently been highlighted as significant contributors to the total POC flux, pointing out temporal and spatial variations of the carbon pump efficiency.

Deep-sea hydrothermal venting is a global process occurring where fluid circulation in the oceanic crust is close to a heat source, especially along mid-ocean ridges (MOR) and back-arc basins. Hydrothermal vents play a significant role in heat and matter exchange between the Earth’s interior and the atmosphere, such as export sources of dissolved and particulate metals that could drive ocean biogeochemical cycles at a global scale. Part of the imbalance in the global carbon budgets has been suggested to originate from fertilization of surface waters by hydrothermally-derived iron. Despite our growing understanding on chemical metal scavenging and export processes within hydrothermal plumes, their contribution to the deep-sea carbon flux still remains elusive. Hydrothermal vents along mid-ocean ridge systems host unique, highly productive communities mainly relying on chemosynthetic primary production. Although it has recently been shown that hydrothermal subsurface communities are highly productive, microbial communities growth rates, carbon biomass production rates, and associated POC export fluxes within hydrothermal non-buoyant plumes remain enigmatic.

Numerous numerical models based on thermodynamics mixing approaches have been used to estimate dominant microbial metabolism in hydrothermal chimney walls and plumes by calculating the amount of energy potentially available through a wide range of pathways. Two studies have incorporated a kinetic component allowing to spatially resolve the geochemical reactions and metagenomics within the hydrothermal plume or chimney. Here, we couple these biogeochemical numerical approaches describing chemical species distribution in hydrothermal plumes with a microbial model based on the Microbial Transition State (MTS) theory of growth to predict microbial cell distribution and carbon fixation rates within the plumes. Chemoorganotrophic and chemolithoautotrophic biomass production rates in various hydrothermal plumes along slow, ultra-slow, and fast-spreading ridges were then compared with rates measured in situ. Here, we show that by promoting microbial biomass production through chemoorganotrophy along the thousands of kilometers of MOR, hydrothermal plumes process a significant fraction of the deep ocean carbon pool. Our results suggest that common assumptions of vertical flux attenuation used in global carbon model are strongly underestimated, as chemoorganotrophic biomass production rates below 1000 m are at least twice the hypothesized POC flux export values.

Results and discussion

Biogeochemical modeling of biomass microbial production in hydrothermal plume. In our numerical model of hydrothermal plume, we consider 27 pertinent chemical species and 18 relevant microbial metabolisms, including catabolic and anabolic processes (Table 1), and an uniform first order mortality rate of 1.16 × 10^−8 s^−1. We apply our model to ten hydrothermal sites in various MOR contexts (slow, intermediate, and fast-spreading rates) over a wide range of both hydrodynamic and chemical conditions. Non-buoyant plume chemistry is predicted based only on dilution from high-temperature fluids with seawater, ignoring thus potential abiotic processes that could occur and alter the chemical distribution in the rising plume. As a result, concentrations of some substrates may be slightly overestimated (Supplementary Table 3). However, as the rising speed of a hydrothermal buoyant plume is usually quite fast, the short residence times (between 1.4 and 2 h for all sites considered) would only lead to a slight overestimation of substrate concentration and affect only total sulfides and H2 concentrations. Other biogeochemical processes (e.g., oxidation, adsorption) are not significantly affected as they occur over longer timescales, within the neutral buoyant plume. To prevent any overestimation of substrates in NBP leading to miscellaneous biomass production rates, we compared our NBP predicted values to literature data and corrected them accordingly when needed (Supplementary Table 3). The distribution of DOC in the plume could only be higher than the theoretical dilution with seawater by in situ plume production or lateral entrainment of high DOC diffused fluids. A simple spatially resolved hydrodynamic model based on the original buoying jet equations set up by Morton and Turner is used to predict the maximal plume height and associated dilution ratios. When hydrodynamic information is missing (e.g., fluid output velocity, fluid vent diameter), we consider a dilution factor of 10^5 respective to concentrations in the high-temperature fluid. The distribution of the different microbial groups is hypothesized based on literature and taken identical through all study sites. Microbial functional community model is based on the MTS conceptual framework, including water and ionic activities. Initial cell densities of 10^5 cells ml^−1 considered in our model were derived from cell counts performed within TAG hydrothermal plume during the BICOSE 2 cruise and was consistent with previously reported values. The average residence time for the microbial community (30 days) that was chosen to run the model was long enough to allow for consumption of initial chemical species, microbial turnover, and internal recycling (i.e., labile DOC release).

Chemolithoautotrophic rates in hydrothermal plumes. Our modeling results suggest that, for all 10 hydrothermal sites studied, chemical distribution in non-buoyant plumes is unable to support net microbial chemolithoautotrophic biomass production. Substrate concentrations in the plume appear too low to harvest the threshold energy level needed in our MTS model to sustain the chemolithoautotrophic microbial community (i.e., trigger microbial cell division). Such substrate limitation in deep open ocean waters is not surprising as the concentrations of electron donors or acceptors required to trigger pelagic chemolithoautotrophy activity usually occur in surface waters, or in zonal redox gradient areas such as Oxygen Minimum Zones. Only very low dark chemolithoautotrophic rates around 0.005 μgC l^−1 d^−1 have been reported in bathy- and meso-pelagic seawaters (below 1000 m depth) mainly through aerobic ammonia and nitrite oxidation processes. Given the formalism of our model, reproducing such low rates in deep Atlantic seawater implies to both increase the \(k_{\text{H}_{2}} \) parameter and decrease the dissipated free energy of growth \(\Delta G_{\text{dis}} \) for chemolithoautotrophic processes down to the acetate heterotrophy levels. This basically comes down to increasing the energy harvested through catabolism or, in other words, decreasing the energy threshold needed...
Table 1 Metabolic pathways included in the model.

Anabolism	Catabolism
$\text{C}_0 + \text{CO}_2 \rightarrow \text{CH}_4$	$\text{CH}_4 + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H}$
$\text{CH}_4 + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}$	$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$
$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$	$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$
$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$	$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$
$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$	$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$
$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$	$\text{CH}_3\text{CO}_2\text{H} + \text{H}_2O \rightarrow \text{CH}_3\text{CO}_2\text{H} + \text{H}_2\text{O}$

Note: Values based on ref. 1.

for the chemolithoautotraphs to start cell division by increasing the volume of substrate accessible around each microbial cell and lowering the amount of energy dissipated through anabolism. Minimization of energy losses during anabolic and catabolic reactions reflects the ability of microbial communities to survive even while starving, and to respond to fresh food supply as has been shown in bathypelagic communities.

Although there are no direct in situ measurements of chemolithoautotrophic production rates (defined hereafter as Dissolved Inorganic Carbon (DIC) assimilation rates) available in deep hydrothermal plumes to our knowledge, significant ammonia and methane oxidation rates have been reported along the Juan de Fuca ridge, and variable chemolithoautotrophic rates have been observed in a shallow water hydrothermal plume offshore Taiwan. To gain further confidence in our model and its ability to give quantitative estimates of biomass production rates including through chemolithoautotrophic metabolisms, we ran it for hydrothermal plume sites where either substrate conditions might not be limiting or chemolithoautotrophic activity rates were reparable. For conditions reproducing the 2011 El Hierro eruptive event, where large amounts of reduced chemical species were released in the water column, our model predicts very little chemolithoautotrophic production (0.32 μgC L$^{-1}$ d$^{-1}$, Fig. 1), which is consistent with in situ observation. At the Endeavor site, we ran our model for 300 days to increase chemolithoautotrophic biomass production due to internal recycling and microbial turnover. However, model outputs predict methane oxidation rates up to 1.3 nmol m$^{-1}$ d$^{-1}$ but no net chemolithoautotrophic biomass production in the Endeavor hydrothermal plume (Fig. S3). Our model was also ran for the Crab Spa vent site (East Pacific Rise) where recent work has provided estimates of chemolithoautotrophic productivity from incubation at in situ pressure and temperature. Our model does predict stimulated chemolithoautotrophic activity and reproduce the metabolic pathways of hydrogen oxidation coupled and uncoupled to dissimilatory nitrate reduction to ammonium and denitrification (Fig. 1). However, predicted chemolithoautotrophic biomass production rates at the Crab Spa vent field (0.7–5.8 μgC L$^{-1}$ d$^{-1}$, Fig. 1) or chemolithoautotrophic activity rates modeled for the Endeavor Main Field are about ten folds lower than the chemolithoautotrophic rates reported by the authors. As for seawater, lowering the energy-dissipating barrier (by increasing V_{harm} and lowering ΔG_{diss}) allows the model to increase significantly the chemolithoautotrophic biomass production rates by a factor 2, closer to the measured rates. Within hydrothermal chemolithoautotrophic communities, energy expenditures required to fix DIC differ among metabolic pathways and C-fixation cycle at stake: Calvin–Benson–Bassham, reductive tricarboxylic acid, or reductive acetyl eoenzyme A. Studies suggest that chemolithoautotrophic hydrothermal microbial communities have the ability to switch between available catabolic pathways to adopt the less energetically expensive DIC fixation pathway available given the thermodynamic constraints of the cost of biomass synthesis in our model are fixed per metabolism and based on the definition by Heijnen and Van Dijken; individual ΔG_{diss} differ between metabolism and the C-fixation cycle considered for ATP synthesis, they include the energy costly reverse transport of electron for numerous chemolithoautotrophic processes and are therefore likely to be overestimated. The reductive acetyl-CoA pathway is, for instance, not considered although it may be used by chemolithoautotrophs inhabiting H$_2$-rich environments, where CO$_2$ is directly reduced by H$_2$ and ATP input is therefore not required. However, this level of metabolic consideration is beyond the scope of this paper, and our modeling approach lays the groundwork for estimating chemolithoautotrophic biomass production rates in seawater and hydrothermal plumes.
Chemoorganotrophic production rates in hydrothermal plumes. Our model predicts prokaryotic biomass production through chemoorganotrophic processes18 in hydrothermal plumes higher than in surrounding seawater by a factor 2 (Table 2). Based on DOC remineralization (acetate-based-aerobic respiration and denitrification, Table 1), chemoorganotrophic production is usually designed as Prokaryotic Heterotrophic Production (PHP)18,48. PHP rates measured in the deep Atlantic seawater during the BICOSE 2 cruise using 3H-Leucine incorporation give rates of 4.8 ± 1.0 × 10-3 μgC l-1 d-1 (Fig. 1) similar to our model outputs for background conditions of 6.7 × 10-3 μgC l-1 d-1, and to previously reported values for bathypelagic waters of the deep Atlantic water masses (2–6 × 10-3 μgC l-1 d-1)38,39,49,50. Predicted PHP rates in the non-buoyant hydrothermal plumes from all 10 hydrothermal sites tested range from 0.0088 to 0.0124 μgC l-1 d-1 (Fig. 2), with model outputs at the TAG site up to 0.0116 μgC l-1 d-1 in close agreement with measurements performed during the BICOSE 2 cruise (Fig. 1). Elevated PHP rates in hydrothermal plumes are sustained by concentrations of labile DOC higher than surrounding seawater yields. This labile DOC in the plumes may originate from the fluids itself through CO\textsubscript{2} reduction in volatile acids (e.g., acetate, formate), abiotic formation during mixing with seawater or mobilization of buried or thermally altered organic matter, or from lateral and vertical entrainment from the diffuse vent areas where secretion by macrofauna or subseafloor or microbial activity also lead to high bulk DOC concentrations28,51–53. Heterotrophic microbial communities in the deep ocean have the ability to quickly respond to fresh labile C inputs54 after long period of starvation39, by persisting and maintaining functionality for a long time and quickly reactivating during occasional pulses of organic matter. Deep-sea marine communities found in hydrothermal plumes, such as Gammaproteobacteria (e.g., SUP05 clade), Epsilonproteobacteria, Thaumarchaeota, or other planktonic prokaryotes29, are able to shift between anabolic pathways and to process DOC very efficiently through mixotrophy9,31,55–57. Similar to vertical DOC fluxes that represent a significant part of the deep ocean respiration, we therefore propose that, by promoting inputs of labile DOC into starved deep-ocean microbial communities through direct...
incoming or internal recycling, hydrothermal plumes increase their overall carbon processing rates.

Global Estimates of hydrothermal prokaryotic POC production rates through chemoorganotrophy and consequences for the deep-ocean carbon standing stock. Given the concordance between our predicted biomass production rates and the measured values, in particular regarding the chemoorganotrophic processes (Fig. 1, Table 1), we used our model to calculate the hydrothermal plumes contribution to the dark ocean respiration. Estimated PHP rates at each hydrothermal sites were correlated with the corresponding heat fluxes (corr = 0.730, n = 8, Fig. 2). Using the definite integral of the empirical function we found over the global

Table 2 Compilation and global estimates of microbial biomass production rates through chemoorganotrophy within hydrothermal non-buoyant plumes (NBP).

Site	Rates	Areal estimates of microbial biomass production based on chemoorganotrophy (gC m⁻² y⁻¹)—plume height considered: 200 m	Global estimates of microbial biomass production based on chemoorganotrophy (GtC y⁻¹)	Number of active vents at Mid Ocean Ridges^a
		Average ± standard error	Average ± standard error	Average ± standard error
		0.01235 ± 0.003 μgC L⁻¹ d⁻¹	0.902 ± 0.219 gC m⁻² y⁻¹	1305 713 1853
		Global production rates—Plume area considered: 1000 km²		
		Average ± standard error	Min Max	Min Max
		1.2 ± 0.3 × 10⁻³ GtC y⁻¹	0.6 ± 0.2 × 10⁻³ GtC y⁻¹	1.7 ± 0.4 × 10⁻³ GtC y⁻¹
		Global production rates—Plume area considered: 10% of 400 × 10³ km² + 90% of 1000 km²		
		Average ± standard error	Min Max	Min Max
		0.048 ± 0.012 GtC y⁻¹	0.026 ± 0.006 GtC y⁻¹	0.068 ± 0.017 GtC y⁻¹

^aCommonly defined as prokaryotic heterotrophic production (PHP, see main text).

Fig. 2 Global prokaryotic biomass production through chemoorganotrophic processes within non-buoyant hydrothermal plumes. a Chemoorganotrophic production rates as a function of heat flux for various hydrothermal sites from the Mid-Atlantic Ridge (MAR: Rainbow, Tour Eiffel, Broken Spur, TAG), the East-Pacific Rise - Grand Bonum site (EPR, GB), the Main Endeavor vent field (Dante), and the Central Indian Ridge (CIR: Kairei). b Global map of the chemoorganotrophic production rates within the non-buoyant plume for the following hydrothermal sites on the MAR (Rainbow, Tour Eiffel, Logatchev, Broken Spur, TAG, Ashadze), the EPR (Grand Bonum, EPR, GB), the Main Endeavor vent Field (Dante), and the CIR (Kairei, Edmonds).
range of hydrothermal heat flux, we provide an average value of 0.012 µgC m⁻² d⁻¹ to be used as the first estimate for prokaryotic biomass production through chemooorganotrophy (PHP) in hydrothermal plumes over all mid-ocean ridges (Fig. 2, Table 2). Considering an average plume height of 200 m, hydrothermal prokaryotic carbon demand rates (i.e., net balance between organic matter assimilation and mineralization rates both aerobic and anaerobic) of 0.9 gC m⁻² y⁻¹ (Table 2) are similar to the POC export fluxes (ca. 3 gC m⁻² y⁻¹) reported in the deep Atlantic and Pacific oceans.⁶,⁷ Our results hint that hydrothermal plumes play a critical role in the carbon balance of the dark ocean by providing local in situ POC production rates of the same order of magnitude as the vertical POC flux. By promoting the supply of labile carbon to the deep ocean, hydrothermal plumes provide microbial niches of enhanced microbial activity.

In order to extend our quantitative estimates of hydrothermal plume prokaryotic biomass production rate to a global perspective, we used an estimate of the distribution of active vents⁷⁴ to calculate global deep-ocean POC production fluxes due to chemooorganotrophic activity within hydrothermal plumes. The range of these estimates is quite broad given the uncertainties of plume volumes to be considered. Based only on small scale plumes of about 1000 km² (i.e., ≈18 km radius if we assume a circular shape distributed over the vent site) and 200 m high, this leads to prokaryotic POC production in hydrothermal plumes ca. 0.001 GtC y⁻¹ through chemooorganotrophy which is only about 1% the total ocean respiration of the deep ocean. However, this represents up to 10% of the POC flux estimated at 1000 m⁶⁹ and a significant part of the global deep ocean organic carbon inventory.⁶¹ Recent studies have demonstrated export of hydrothermal plumes far beyond a few tenths of kilometers of their source, implying basin-scale transport over thousands of kilometers.⁸ Such large plumes may not represent the vast majority of the distribution of hydrothermal plumes, but assuming they only account for 10% of the global hydrothermal plumes volume, it leads to 0.05 GtC y⁻¹ of plume chemooorganotrophic POC production (Table 2). These estimates represent 3% of the total carbon processed in the deep ocean through respiration and is in the same order as the vertical POC flux at 1000 m. In addition, diffuse venting, which accounts for 50–90% of the global vent flux, is not included in our calculation and might increase further the estimated rates. Additional investigations are needed to refine and better constrain our estimates, but our results highlight hydrothermal plumes as significant contributors to the overall carbon assimilation rates in the deep ocean. Whether this carbon comes from biomass produced through symbiotic chemolithoautotrophy in hydrothermal vents habitats and vertically and laterally entrained in the plume or produced in the subsea upwell by the deep biosphere and thermal alteration has very different implications for the global carbon cycle. By promoting microbial activity and providing labile organic carbon in the food-limited deep-sea, hydrothermal plumes may represent a source of microbial biomass in the deep ocean that must be accounted for in global POC fluxes in order to better constrain global ocean carbon budgets.

Methods
Sample collection and processing at the TAG hydrothermal site. Samples from the TAG hydrothermal vent were collected during the BICOSE1 and 2 cruises.⁶²,⁶³ performed in 2014 and 2018, respectively, on board the R/V Pourquoi Pas? Hydrothermal fluids were sampled during the BICOSE1 cruise using 750 ml Ti syringes deployed by pairs and manipulated by the arm of the ROV Victor 6000 to collect the fluids from the vent exit. An autonomous temperature probe (NKE) was attached to the snorkel of each Ti syringe to provide temperature measurement during sampling. The Ti samplers were conditioned to avoid out-gassing and gas leakage during recovery and gas extraction on board. Immediately after recovery, PH and HS content were measured and total gas was extracted as described in ref. ⁶⁴-⁶⁶. After gas extraction, hydrothermal solutions were transferred to acid-cleaned high-density polyethylene (HDPE) flasks for mineral composition analysis on shore (major, minor, and trace elements). Preliminary major gases (CO₂, H₂, CH₄, and N₂) concentrations and (N₂) concentrations were measured on board by using a portable chromatograph (Microsensor Technology Instruments Inc.) that was mounted on line with the gas extractor. Extracted gases were conditioned on board in stainless steel pressure-tight flasks and stored until analyses. Gases were separated by Gas-Chromatography (Agilent GC 7890 A, Agilent Technologies) and quantitatively analyzed by triple detection using mass (MS 5975 C, Agilent technologies), flame ionization, and thermal conductivity detectors. Analytical precision for the O₂, N₂, CH₄, and CO₂ were 1% and 0.5% for H₂ (relative standard deviation based on 10 injections of a standard).

Dissolved organic carbon (DOC) measurements were performed using a multi N/C 3100 from Analytic Jena®. Analytical precision was 1% (relative standard deviation on 30 repetition of a standard measurement).

Samples from the non-buoyant plume at TAG for heterotrophic activity rates were collected during the BICOSE2 cruise using High Pressure Sampler Unit fitted on a CTD carousel.⁶⁵

Total cell counts. Samples for total cell direct counting were fixed and homogenized in a 2% (v/v) formaldehyde saline solution (1 ml of seawater in 9 ml of solution) on board the ship. As described by ref. ⁶⁸, a 0.5–3 ml aliquot was stained using 50 µl 2X SYBR Gold (Invitrogen) in 10 ml of sterile 2% formaldehyde saline solution for 3 min, and then filtered onto a black polycarbonate membrane filter (0.22 µm pore size). Cells were counted under an epifluorescence microscope (Zeiss AxioImager.Z2 microscope – Gottingen, Germany).

Heterotrophic activity and cell densities abundance. Prokaryotic heterotrophic production (PHP), similar to chemooorganotrophic microbial biomass production, was measured by incorporating L-[4.5-³H]-Leucine (³H-Leu, 109 Ci mmol⁻¹ of specific activity, PerkinElmer®) to get a final concentration of 10 nM in high-pressure bottles as described in ref. ⁶⁸. To calculate the PHP, we used the empirical conversion factor of 1.55 ng C mmol⁻¹ of incorporated ³H-Leu according to Calvo-Diaz and Moreas.⁶⁹

Hydrodynamic model. Our hydrodynamic modeling is a simple 1-D buoyant plume model based on the Morton and Turner definition under the Boussinesq approximation: past the first meters of advection driven by the initial fluid velocity, the main driving force of the rising plume is the density difference between the hydrothermal fluid and the surrounding seawater.⁷⁰ Such models have been used widely in the literature.⁷¹,⁷²

Briefly, we consider a turbulent plume formed by the steady release of a buoyant isothermal fluid into a quiescent environment. The environment is assumed to be unconfined and stratified. Ambient seawater at the vent site field depth is of uniform density ρw at any z. Reference seawater density for stratification frequency calculations (ρw ref) is taken above the non-buoyant plume height. Through the lateral entrainment process of external fluid across the plume boundary (uw), the mass flow rate increases with height (z). At the same time, plume radius r, vertical velocity u_r and density ρ_r may evolve with z.

The governing equations for mass, momentum, and density deficit conservations for a steady plume rising in a stable uniform environment in terms of its characteristic radius r_w, vertical velocity u_w, and density ρ_w can be written in the following forms:

\[
\frac{d}{dz} \left[u_r^2 r_w \right] = 2 u_w \quad (1)
\]

\[
\frac{d}{dz} \left[u_r^2 r_w \right] = \rho_w - \rho_r \rho_w^2 \quad (2)
\]

\[
\frac{d}{dz} \left[(\rho_w - \rho_r) u_r r_w \right] = 0 \quad (3)
\]

Lateral entrainment uw proportional to the vertical water velocity is defined with α, the lateral entrainment coefficient as follows:

\[
u_w = \alpha \cdot u_w \quad (4)
\]

α is the value intrinsically included between 0.05 and 0.2, and may vary between two hydrothermal plumes or even within the same plume. For a pure jet, where mixing is driven by initial advection, α (designed by α_j) has low values ranging between 0.05 and 0.10. A pure buoyant plume (i.e., mixing is driven by density anomaly), α (designed by α_b) should be higher in the initial phase (0.15–0.20) and then decrease after the buoyancy initial acceleration phase.⁷¹ Hydrothermal plume water entrainment ranges between these two behavior schemes, and balance between pure jet and pure buoyant plume behavior is done by calculating the Froude number (Fr) which represent the ratio of the vertical velocity by the buoyancy force (gEqs. (5) and (6), where g represents the universal gravitational constant).

\[
g = \frac{g}{Fr} = \frac{u_w}{\sqrt{g R}} \quad (5)
\]

\[
Fr = \frac{u_w}{\sqrt{g R}} \quad (6)
\]
The following semi-empirical Eq. (7) is used to predict the evolution of the entrainment coefficient of the rising plume:\(^72\)

\[
a_{v} = a_{0} - (a_{1} - a_{2}) \cdot \left(\frac{Fr}{Fr} \right)^{3/2}
\]

(7)

With \(Fr\) representing the Froude number for a pure buoyant plume.

This advection-only transport model is defined on a 1D volumetric grid that allows resolving temperature, salinity, and dilution ratios at each grid cell. Number of cells is arbitrarily fixed to 300. At each site, input parameters of the model are fluid temperature and salinity, diameter of the vent, and fluid velocity at the output, which will drive the initial buoyancy flux. These data were collected from the literature (see Table S1.1), along with the density values needed for stratification frequency calculations\(^72\)-\(^77\). Hydrothermal sites were chosen so that both physical (salinity, temperature, vent diameters, and velocity output) and chemical data (sanckconcentrations see Table S1.1) of the vents were available.

Thermodynamic microbial model based on MTS theory\(^16\),\(^17\). Our growth microbial model is strictly based on the formalism of the MTS theory of growth derived from first principles of thermodynamics of growth\(^16\),\(^17\). A detailed presentation of the framework and governing equations is provided in ref.\(^16\),\(^17\) and we encourage the reader to refer to this publication for a thorough description of the model, as we will only describe its main components and governing equations.

Here, we model the non-buoyant plume microbial community. Plume height and chemical species concentration are based on dilution with seawater based on our hydrodynamic model outputs: when hydrodynamic outputs are not available, the stoichiometric coefficients are either positive or negative depending on the production or consumption of the corresponding chemical species, respectively. The microbial community is subdivided into 18 guilds, each corresponding by definition follows Kleerebezem (Table SI.1). Population density of each guild is represented by the molar concentration of the generic C-normalized biomass molecule. \(H_{c}C_{4}O_{1.8}N_{0.2}\).

The model stoichiometry is formulated using a vectorial approach. Let \(r\) be the number of reagents involved in the system; in our system, \(r\) equals 39 (i.e., 21 chemical species and 18 microbial guild biomasses). Let \(C\) be a \(r \times 1\) vector storing the concentration of all reagents of the system, including biomasses, in mol\(\cdot\)m\(^{-3}\) at a given time \((s)\). Let \(p\) be the number of processes affecting the concentrations of the reagents; the derivative of \(C\) over time is expressed from the balance equation of \(C\) as:

\[
\frac{dC}{dt} = \lambda_{an} + \lambda_{death} \cdot \lambda_{cat}
\]

where \(\lambda_{an}\) and \(\lambda_{death}\) are the \(r \times p\) matrices storing the (unitless) stoichiometric coefficients of, respectively, metabolic and mortality process for every reagent, \(\lambda_{cat}\) and \(\lambda_{death}\) are the \(p \times 1\) vectors of the rate (in \(s^{-1}\)) of every metabolic and death processes and \(\lambda\) denotes the matrix product operator. By convention, the stoichiometric coefficients \(\lambda\) are defined as positive or negative depending on the production or consumption of the corresponding chemical species, respectively. \(\lambda_{an}\) is therefore the matrix of dimension \(39 \times 18\) storing the stoichiometric coefficients of the metabolism of each guild, and \(\lambda_{death}\) the \(18 \times 1\) vector of the rate of each guild reaction, whereas \(\lambda_{an}\) is the matrix of dimension \(39 \times 18\) storing the stoichiometric coefficients of mortality of each guild, and \(\lambda_{death}\) the \(18 \times 1\) vector of the mortality rates \(\alpha\) of each guild (\(\alpha\) taken equal for all guilds). Mortality is defined by a first-order term for microbial community\(^2\) and we assume that for 1 mol\(\cdot\)CBiomass released, 40% is recycled into labile DOC (DOC\(_{l}\)), 10% into refractory DOC (DOC\(_{r}\)), and 50% goes into the POC pool.

\(\lambda_{an}\) is a linear combination of two matrices \(\lambda_{an}\) and \(\lambda_{an}\) both of dimensions \(r \times 18\), respectively, storing the coefficients of the anabolic and catabolic reactions, and adjusted to close the elemental balance in each reaction separately. Following Delattre et al.\(^16\), the stoichiometric coefficients of a catabolic reaction are so that exactly one electron donor molecule is consumed. The stoichiometric coefficients of an anabolic reaction are so that exactly one biomass molecule is produced.

The specific energy of formation of every chemical species used in the simulations is calculated using the thermodynamic database from the CHNOZ package and the temperature and pressure conditions issued from the hydrodynamic model.

The overall metabolism of the whole microbial community is expressed as followed (Eq. (8)): \(\lambda_{an} = \lambda_{an} + \lambda_{an}\)

(8)

where \(\lambda\) is the number of times the catabolic reaction of a guild has to be performed for the total produced energy to meet the energy barrier of growth requirement (expressed as mol\(\cdot\)Donormol\(\cdot\)CBiomass\(^{-1}\)). \(\lambda\) is a diagonal matrix of guild-specific scalar factors (denoted \(\lambda_{i}\)) that ensures the balance between stoichiometry and energy reactions. \(\lambda_{an}\) definition follows Kleerebezem’s formalism summarized in Eq. (9).

\[
\begin{align*}
\lambda_{an} & = \lambda_{an} + \lambda_{an} \\
& = \Delta G_{cat} + \Delta G_{ana} \\
& = \Delta G_{cat} \cdot \Delta G_{ana}
\end{align*}
\]

(9)

where \(\Delta G_{cat}\) is the Gibbs free energy change for the catabolic reaction, \(\Delta G_{ana}\) is the Gibbs free energy change for the catabolic reaction and \(\Delta G_{ana}\) is the dissipated free energy of growth. Only exergonic catabolic reactions can lead to growth in our model: therefore \(\Delta G_{cat}\) is set to zero if it happens to be positive during calculation. \(\lambda_{an}\) factors are computed at each time step of system integration. Water and biomass activities are included in the mass and action ratio calculated following Helgezen’s definition\(^30\); \(\Delta G_{ana}\), \(\Delta G_{cat}\), and \(\Delta G_{ana}\) values are expressed in kJ\(\cdot\)mol\(\cdot\)CBiomass\(^{-1}\).

The dissipated free energy is the Gibbs free energy assumed to be identifiable with the variable \(\lambda_{ana}\) as empirically defined by Heijnen\(^77\) as:

\[
\Delta G_{ana} = -\gamma \frac{\lambda_{ana}}{\lambda_{ana} + \lambda_{ana}}
\]

(10)

Where \(\gamma\) and \(\lambda\) are, respectively, the length chain and degree of reduction of acetate, the carbon source for heterotrophic growth considered in our model\(^16\),\(^47\). This advection-only transport model is defined on a 1D volumetric grid that allows resolving temperature, salinity, diameter of the vent, and fluid velocity at the output, which will drive the initial buoyancy flux. These data were collected from the literature (see Table S1.1), along with the density values needed for stratification frequency calculations\(^72\)-\(^77\). Hydrothermal sites were chosen so that both physical (salinity, temperature, vent diameters, and velocity output) and chemical data (sanckconcentrations see Table S1.1) of the vents were available.

Sensitivity analysis. We performed sensitivity analysis for our microbial model to test the influence of the parameters on our model outputs. We tested the effect of temperature, salinity, pressure, \(V_{harv}\), and Mortality rate \(\alpha\) over the following range for the Crab SpA vent field initial conditions: 2-50°C, 15-450m, 100-500 bars, 1000-10,000 m\(^3\)mol\(\cdot\)CBiomass\(^{-1}\) and 0.1 x 10\(^{-8}\)-1 x 10\(^{-8}\)\(\cdot\)s\(^{-1}\). Except for \(V_{harv}\), parameters did not show a large influence on our model outputs, with variation of biomass production rates within 20% for all metabolic pathways, except for \(H_{2}\) and \(NH_{4}\) metabolisms that showed variations >50%. \(V_{harv}\) however, did influence growth the overall biomass production rates predicted by the model: Figure SL2 shows the variation of the 18 different microbial communities considered over the span of 300 h with \(V_{harv}\) ranging from 1000 to 10,000 m\(^3\)mol\(\cdot\)CBiomass\(^{-1}\). We therefore fixed it to 1000 m\(^3\)mol\(\cdot\)CBiomass\(^{-1}\) for all our calculations.

Chemolithoautotrophy metabolism: 300 days runs. In order to look further into microbial processes and chemolithoautotrophy in hydrothermal plumes, the model was run for 300 days at the TAG and Endeavor Main Field sites. Endeavor Main Field plume substrate concentrations (in particular \(H_{2}\) and \(CH_{4}\)) were taken from the literature\(^11\),\(^42\). Although no net primary production (i.e., net DIC incorporation) was observed, positive chemolithoautotrophic rates were found (Fig. SI3). At the Endeavor Main Field Sites, methane oxidation rates were up to 1.3 nM\(^{-1}\). Although non-null, the model predict only very little chemolithoautotrophic activity in the TAG hydrothermal non-buoyant plume.

Global extrapolation of heterotrophic production in hydrothermal plumes. The function fitted between heterotrophic production (HP) rates (\(\mu_{C}\)) and
Heat Flux (MW) was the following:

\[H = 0.0123 \text{ Heat Flux} \]

Residual standard error was 0.003 and correlation 0.77 \((n = 8, p < 0.11)\). The average \(H \) rates for hydrothermal vents considered for global extrapolation was therefore calculated using the global estimates for hydrothermal vent heat flux \((=10^{12} \text{ W})\), a value of 0.001 W for surrounding seawater Heat Flux and the primitive of the function defined in Eq. (14).

\[
\int_{Q_m}^{Q_m} H(\dot{Q})d\dot{Q} = 0.01235 \cdot 0.01235 \cdot 5.985 \cdot \ln(Q_1 + 5.985) \]

Assessing the error of our modeling approach on the distribution of substrates within the NBP. We compared the concentrations of substrates predicted by our hydrodynamic model within the NBP with data available in the literature. When predicted concentrations were out of the available data range, we performed simulations with updated substrate concentrations to quantify the impact on our predicted biomass production rates. All NBP substrates were kept identical except for chemical species available in the literature whose concentrations were taken as reported. The species concerned are methane, hydrogen, dissolved iron, dissolved manganese, total hydrogen sulfide, ammonia, nitrate, and nitrite. Results are compiled in Supplementary Table 3. Predicted NBP substrate concentrations were out of range for the Rainbow, Broken Spur, and Logatchev hydrothermal vent sites, with no impact on heterotrophic biomass production rates (\(<0.5\%\) rate difference between updated and non-updated substrate concentrations). The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations. The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations. The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations. The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations. The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations. The only significant difference occurs for chemoautotrophic production rates at the Rainbow vent sites between updated and non-updated substrate concentrations.
39. Sebastian, M. et al. High growth potential of long-term starved deep ocean opportunistic heterotrophic bacteria. Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.00760 (2019).
40. Cowen, J. P., Massoth, G. J. & Feely, R. A. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res. Part A. Oceanographic Res. Pap. 37, 1619–1637 (1990).
41. Cowen, J. P., Wen, X., Jones, R. D. & Thomson, R. E. Elevated NH+4 in a neutrally buoyant hydrothermal plume. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 1891–1902 (1998).
42. Lam, P., Cowen, J. P. & Jones, R. D. Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol. Ecol. 47, 191–206 (2004).
43. Lin, Y.-S. et al. Intense but variable autotrophic activity in a rapidly flushed shallow water-hydrothermal plume (Kueishantao Islet, Taiwan). Geobiology 19, 197–211 (2021).
44. Santana-Casiano, J. M. et al. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci. Rep. 3, 1140 (2013).
45. Gomez-Letona, M., Aristegui, J., Ramos, A. G., Montero, M. F. & Coca, J. Lack of impact of the El Hierro (Canary Islands) submarine volcanic eruption on the local phytoplankton community. Sci. Rep. 8, 4667 (2018).
46. Nakagawa, S. & Takai, K. Deep-sea vent chemosynthetic diversity, biochemistry and ecological significance. FEMS Microbiol. Ecol. 65, 1–14 (2008).
47. Heijnis, J. J. & Van Dijken, J. P. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol. Bioeng. 37, 834–840 (1992).
48. Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeney indicates a predominantly particle-associated lifestyle of deep-sea prokaroytes. Sci. Adv. 6, eaa4354 (2020).
49. Baltar, F. et al. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Sci. Rep. 11, 8333 (2021).
50. Tamburini, C., Bourtif, M., Gare, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ. Microbiol. 15, 1262–1274 (2013).
51. Hawkes, J. A. et al. Efficient removal of recalitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015).
52. Meier, D. V. et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ. Microbiol. 18, 4348–4368 (2016).
53. Rossel, P. E. et al. Thermally altered marine dissolved organic matter in hydrothermal fluids. Org. Geochem. 110, 73–86 (2017).
54. Gare, M. et al. Contrasting degradation rates of natural dissolved organic carbon by deep-sea prokaroytes under stratified water masses and deep-water convection conditions in the NW Mediterranean Sea. Mar. Chem. 231, 103932 (2021).
55. Herndl, G. J. et al. Contribution of Arcuacea to total prokaroytic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).
56. Shah, V., Chang, B. X. & Morris, R. M. Cultivation of a chemosynthet from the UPOS plume of marine bactera that produces nitrate and consumes ammonium. ISME J. 11, 263–271 (2017).
57. Wang, W., Li, Z., Zeng, L., Dong, C. & Shao, Z. The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bactera that inhabit deep-sea hydrothermal ecosystems. ISME J. 14, 1994–2006 (2020).
58. Bol, R., Henson, S. A., Rumyantseva, A. & Briggs, N. High-frequency variability of small-particle carbon export flux in the northeast. Atl. Glob. Biogeochem. Cycle 32, 1803–1814 (2018).
59. Beaulieu, S. E., Baker, E. T. & German, C. R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep-Sea Res. Part II: Topical Stud. Oceanogr. 121, 202–212 (2015).
60. Jahnke, R. A. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Glob. Biogeochem. Cycle 10, 71–88 (1996).
61. Maruyama, A., Urabe, T., Ishibashi, J., Feely, R. & Baker, E. T. Global hydrothermal primary production rate estimated from the southern Eastern Pacific Ridge. Cah. de Biologie Mar. 59, 249–252 (1998).
62. Cambon-Bonavita, M. A. BICOSE cruise, RV Pourquoi pas? https://doi.org/10.17605/5z00083 (2014).
63. Cambon-Bonavita, M. A. BICOSE 2 cruise, RV Pourquoi pas? https://doi.org/10.17605/1800000004 (2018).
64. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vents in the Rainbow hydrothermal plume. J. Geophys. Res.: Solid Earth 98, 9625–9642 (1993).
65. Charlou, J. L., Donval, J. P., Jean-Baptiste, P., Daphon, A. & Rona, P. A. Geochemistry and high temperature solutions in plumes before and after ODP Leg 158 drilling at TAG Hydrothermal Field (26°N, MAR). Geophys. Res. Lett. 23, 3491–3494 (1996).
66. Gare, M. et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microses under in situ conditions. Front. Microbiol. 10, https://https://doi.org/10.3389/fmicb.2019.00453 (2019).
67. Fry, J. C. in Methods in Aquatic Bacteriology (ed. Austin, B.) 27–72 (John Wiley, 1988).
68. Calvo-Diaz, A. & Moran, X. A. G. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem. Appl. Environ. Microbiol. 75, 3126–3121 (2009).
69. Devenish, B. J., Rooney, G. G. & Thomson, D. J. Large-eddy simulation of a buoyant plume in uniform and stably stratified environments. J. Fluid Mech. 652, 75–103 (2010).
70. Carazzo, G., Kaminski, E. & Tait, S. On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J. Geophys. Res.: Solid Earth 113, https://doi.org/10.1029/2007JB005458 (2008).
71. Verschaeck, A. L. V. & Vinogradov, G. M. Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge. Deep Sea Res. Part I: Oceanographic Res. Pap. 46, 1615–1632 (1999).
72. Speer, K. G. & Rona, P. A. A model of an Atlantic and Pacific hydrothermal plume. J. Geophys. Res. 94, https://doi.org/10.1029/JC094i05p06213 (1989).
73. Thurnherr, A. M. & Richards, K. J. Hydrography and high-temperature heat flux of the Rainbow hydrothermal site (36°14’N, Mid-Atlantic Ridge). J. Geophys. Res.: Oceans 106, 9411–9426 (2001).
74. Wilson, C. et al. Hydrothermal anomalies in the Lucky Strike segment on the Mid-Atlantic Ridge (37°17’N). Earth Planet. Sci. Lett. 142, 467–477 (1996).
75. Stranne, C., Sohn, R. A., Liljebladh, B. & Nakamura, K. I. Analysis and modeling of hydrothermal plume data acquired from the 85E segment of the Gakkel Ridge. J. Geophys. Res.: Oceans 115, https://doi.org/10.1029/2010JC006677 (2010).
76. Rudnicki, M. D. & German, C. R. Temporal variability of the hydrothermal plume above the Kairei vent field, 25°5, Central Indian Ridge. Geochem., Geophys. Geosystems 3, https://doi.org/10.1029/2001GC000240 (2002).
77. Kleerebezem, R. & Van Loosdrecht, M. C. M. A generalized method for thermodynamic state analysis of environmental systems. Crit. Rev. Environ. Sci. Technol. 40, 1–54 (2010).
78. Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: Package deSolve. J. Stat. Software 5, https://doi.org/10.18637/jss.v050.i08 (2013).
79. Soetaert, K. & Meysman, F. Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environ. Model. Softw. 32, 49–60 (2012).
80. Dick, J. M. CHINOS: thermodynamic calculations and diagrams for geochemistry. Front. Earth Sci. 7, https://doi.org/10.3389/feart.2019.00180 (2019).
81. Stein, C. A. & Stein, S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res.: Solid Earth 99, 3081–3095 (1994).
