Comparative Evaluation of Etest and Sensititre YeastOne Panels against the Clinical and Laboratory Standards Institute M27-A2 Reference Broth Microdilution Method for Testing Candida Susceptibility to Seven Antifungal Agents

Barbara D. Alexander, Terry C. Byrne, Kelly L. Smith, Kimberly E. Hanson, Kevin J. Anstrom, John R. Perfect, and L. Barth Reller

Division of Infectious Diseases and International Health, Department of Medicine, Clinical Microbiology Laboratory, Department of Pathology, and Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina

Received 5 September 2006/Returned for modification 17 October 2006/Accepted 21 December 2006

To assess their utility for antifungal susceptibility testing in our clinical laboratory, the Etest and Sensititre methods were compared with the Clinical and Laboratory Standards Institute (CLSI) M27-A2 reference broth microdilution method. Fluconazole (FL), itraconazole (I), voriconazole (V), posaconazole (P), flucytosine (FC), caspofungin (C), and amphotericin B (A) were tested with 212 Candida isolates. Reference MICs were determined after 48 h of incubation, and Etest and Sensititre MICs were determined after 24 h and 48 h of incubation. Overall, excellent essential agreement (EA) was observed for Etest (95%) and Sensititre (91%). Etest showed a ≥92% EA for MICs for all drugs tested; Sensititre showed a ≥92% EA for MICs for I, FC, A, and C but 82% for FL and 85% for V. The overall categorical agreement (CA) was 90% for Etest and 88% for Sensititre; minor errors accounted for the majority of all categorical errors for both systems. Categorical agreement was lowest for Candida glabrata and Candida tropicalis with both test systems. Etest and Sensititre provided better CA at 24 h compared to 48 h for C. glabrata; however, CA for C. glabrata was <80% for FL with both test systems despite MIC determination at 24 h. Agreement between technologists for both methods was ≥98% for each agent against all organisms tested. Overall, Etest and Sensititre methods compared favorably with the CLSI reference method for determining the susceptibility of Candida. However, further evaluation of their performance for determining the MICs of azoles, particularly for C. glabrata, is warranted.

Fungi have become pathogens of increasing concern over the past several decades, and Candida is now a common cause of nosocomial bloodstream infection in the United States (6). Accordingly, antifungal prophylaxis is routinely used in several populations considered at high risk for candidiasis, and breakthrough infections in patients on such prophylactic regimens are increasingly reported. The breakthrough organisms often have higher MICs of the drug to which they were exposed, and some may exhibit heteroresistance (14–16) and cross-resistance to one or more additional agents (1, 11, 33, 34). Although fluconazole and, more recently, voriconazole, have been widely used as prophylactic agents, the introduction of newer agents and several supporting recent studies will likely increase the spectrum of agents used for this purpose. Micafungin, a member of the echinocandin class of antifungal agents, has now been cleared by the U.S. Food and Drug Administration (FDA) for prophylactic use against Candida in hematopoietic stem cell transplant recipients (32). Posaconazole has also been approved by the FDA for prophylaxis in patients with graft-versus-host disease and in high-risk neutropenic patients after chemotherapy (A. J. Ullmann, J. H. Lipton, D. H. Vesole, P. H. Chandrasekar, A. Langston, S Tarantolo, H. Greinix, W. Azevedo, V. Reddy, C. Hardalo, H. Patino, and S. Durrant, Abstr. 45th Intersci. Conf. Antimicrob. Chemother., abstr. M716, 2005). The increasing number of antifungal agents now on the market, the widespread use of these agents in prophylactic regimens, and the frequent isolation of Candida species with unpredictable patterns of susceptibility to these agents has led clinicians to seek guidance from the clinical laboratory when selecting antifungal therapy for these complex, infected patients (26).

The Clinical and Laboratory Standards Institute (CLSI; formerly the National Committee for Clinical Laboratory Standards [NCCLS]) has developed and published an approved reference method for broth microdilution testing (CLSI document M27-A2) of Candida species. This method was developed through a consensus process to facilitate agreement among laboratories in determining the susceptibility of Candida species to several antifungal agents (20). This test method was published as a reference standard for use in clinical laboratories in 1997, updated as M27-A2 in 2002, and remains the standard method of susceptibility testing in many clinical laboratories. Unfortunately, this reference method is labor-intensive. Commercial systems are now available to clinical laboratories for determining MICs of various agents against Candida species. In November 2001, the Sensititre YeastOne test panel (Trek Diagnostic Systems, Inc., Westlake, OH) was cleared for commercial sale by the FDA as a new and less labor-intensive
method for determining MICs of fluconazole, itraconazole, and fluycytosine for yeasts (8).

Etest (AB BIODISK, Solna, Sweden), an agar-based predefined concentration gradient method for determining the MICs of various agents, is also available for Candida and could reduce further the effort required for routine susceptibility testing (17, 30).

The most important feature of a laboratory test for susceptibility testing is its ability to produce accurate results consistently within an appropriately rapid turnaround time in order to influence clinical decisions. Initial evaluations of these parameters are often performed in specialty or research laboratories by personnel with expertise in the test application area. Even FDA clearance of a commercial product does not predict how well a product will perform in an individual laboratory under actual testing conditions and with the clinical specimen mix encountered in particular hospital populations. Therefore, before one of the new antifungal susceptibility test devices can be used for clinical testing in place of the CLSI M27-A2 reference standard, a detailed comparative evaluation of its performance should be investigated by the offering laboratory. This local validation and verification of new test devices is a necessary part of the quality assurance program for all clinical laboratories in order to meet accreditation standards as required by the Centers for Medicare and Medicaid Services (4).

This single-center study was designed to compare the Etest and Sensititre antifungal susceptibility test systems with the CLSI M27-A2 reference method for seven antifungal agents in a hospital clinical laboratory as required by regulatory agencies. The present study is one of the first in a clinical laboratory setting to document the performance of these new test systems for seven of the most frequently used antifungal agents.

MATERIALS AND METHODS

Isolates. Duke University Health System Institutional Review Board approval was obtained for the present study. All patients with Candida bloodstream infection at Duke University Medical Center in 2000 and 2001 were identified via a review of the clinical microbiology laboratory database. A new episode of infection was defined as the recovery of the same Candida species more than 14 days after the last positive blood culture or if a new species was found ≥7 days since the last positive blood culture for Candida. A total of 212 initial isolates recovered from unique, consecutive episodes of bloodstream infection were retrieved from frozen (−70°C) storage for testing. Prior to testing, each isolate was subcultured at least twice on potato-dextrose agar to ensure purity and viability. All isolates were subcultured again 24 h prior to testing.

Antifungal agents. Caspofungin, voriconazole, and posaconazole research powders were provided by Merck Research Laboratories (Rahway, NJ), Pfizer Laboratories (Sandwich, Kent, United Kingdom), and Schering-Plough Research Institute (Kenilworth, NJ), respectively. Fluconazole, fluycytosine, itraconazole, amphotericin B, and flucytosine research powders and caspofungin Etest strips were provided by AB BIODISK, Sensititre YeastOne panels containing fluconazole, voriconazole, itraconazole, amphotericin B, fluycytosine, and caspofungin were provided by Trek Diagnostic Systems.

Definitions. Standard antimalarial susceptibility testing definitions were used (7, 18). For MICs measured with a continuous concentration scale (i.e., Etest) that yielded results falling in between conventional serial twofold dilutions, the next higher dilution was assigned. The results were considered to be in essential agreement when the test result was within two dilutions of the reference value. The percent essential agreement was calculated by using the number of test results in essential agreement as the numerator and the total number of organisms tested as the denominator. Differences were calculated by dividing the number of tests with no category discrepancy by the number of isolates tested. "Major errors" occurred when the reference method categorized the organism as resistant, but the test method categorized the organism as susceptible (falsely susceptible). The percent major errors were calculated by using the number of resistant isolates as the denominator.

"Minor errors" occurred when the reference method categorized an organism as susceptible or resistant and the test method categorized it as susceptible dose dependent (or intermediate) or the reference categorized it as susceptible dose dependent (or intermediate) and the test method categorized it as susceptible or resistant. The percent minor errors were calculated by using the total number of organisms tested as the denominator.

Testing. Each Candida isolate was tested with the three methods in parallel as outlined below by two fully certified (American Society of Clinical Pathologists) medical technologists (B. D. Alexander and T. C. Byrne) with training in antifungal susceptibility testing. All seven antifungal agents were tested with each isolate by all test systems with the exception of posaconazole, which was not included on the Sensititre panels. Technologists interpreted results from each test system independent of the other test system results and independent of each other. The test results were recorded on paper onto a grid used as a reference standard. The expert (K. L. Smith) subsequently entered these results into an electronic database. Testing was repeated for tests with major and very major errors (for drugs with categorical interpretive criteria available) and for MIC results that did not agree with the reference standard within two dilutions. Discrepancies were resolved through repeat testing of both systems (the test method and reference method) in triplicate.

Sensititre YeastOne inoculum suspension. Yeast inoculum suspensions were prepared as described in the CLSI M27-A2 document using sterile 0.5% saline (20). The cell density was adjusted with a spectrophotometer by adding sufficient saline to match the transmittance produced by a 0.5 McFarland density standard at a 530-nm wavelength, resulting in a concentration of 1 × 10⁶ to 5 × 10⁹ cells per ml. This suspension was used to directly inoculate agar plates for Etest and was diluted as directed by CLSI M27-A2 for the broth microdilution procedure. For the Sensititre system, a suspension of yeast in demineralized water was adjusted to match the turbidity of a 0.5 McFarland standard by using a Sensititre nephelometer; 20 μl of this suspension was transferred into an 11-ml tube of Sensititre YeastOne inoculum broth, resulting in a concentration of 1.5 × 10⁶ to 8 × 10⁹ cells per ml. This broth suspension was then used to inoculate the wells of the Sensititre plates.

CLSI M27-A2 broth microdilution method. The CLSI M27-A2 broth microdilution method was performed in accordance with the published guidelines that specify RPMI 1640 medium (Remel, Lenexa, KS) buffered to pH 7.0 with (morpholinepropanesulfonic acid) (20). Microdilution trays were incubated at 35°C and read visually after 48 h of incubation. For amphotericin B, the MIC endpoint was defined as the lowest concentration with complete (100%) growth inhibition. For the azoles, fluconazole, and fluycytosine, an 80% inhibition in growth compared to that of the drug-free growth control was used as the MIC endpoint.

Etest predefined concentration gradient method. The Etest method was performed according to the manufacturer’s instructions. Preformed and predefined gradients of the different agents immobilized on individual plastic test strips covered a continuous concentration range across 15 dilutions. A cotton-tipped, sterile swab was used to inoculate the organism from the yeast suspension onto a 150-mm agar plate containing RPMI 1640 medium supplemented with 2% glucose and buffered with MOPS to pH 7.0. After allowing the excess moisture to be fully absorbed into the agar, Etest strips were applied to the inoculated surface. The plates were incubated at 35°C and read at 24 and 48 h.

Sensititre YeastOne colorimetric antifungal susceptibility test method. The Sensititre antifungal susceptibility test method was performed according to the manufacturer’s instructions. Plates containing serial twofold dilutions of the antifungal agents across 12 dilutions were inoculated using a suspension of the organism prepared as described above, incubated at 35°C, and read at 24 and 48 h. The MIC was recorded as the lowest concentration of antifungal agent preventing the development of a red color (the first blue well).
Quality control strains. Quality control was performed for each test method every day the tests were performed. Quality control strains included C. albicans ATCC 90028 (Etest), C. krusei ATCC 658 (Etest, Sensititre, and CLSI M27-A2), and C. parapsilosis ATCC 22019 (Etest, Sensititre, and CLSI M27-A2). The MIC control ranges used were those established by Barry et al. (2) for the reference method and those provided by the manufacturers for the test devices.

Data analysis. Performance based on categorical (qualitative) and MIC (quantitative) comparisons between the methods (Etest versus CLSI M27-A2 and Sensititre versus CLSI M27-A2) were calculated and reported. Primary analysis included overall percent essential agreement (all organisms and all antifungal agents tested) and overall percent categorical agreement (for the four agents with CLSI MIC breakpoints) at 48 h. Secondary analyses included the percent essential and categorical agreement at 48 h for all organisms with each antifungal agent, each Candida species with all antifungal agents, and each Candida species with each antifungal agent. The percent essential agreements between technologists for each antifungal agent against all organisms tested for both the Etest and Sensititre methods were also calculated.

Acceptable percent essential agreement for MICs was set at $\geq 90\%$ for each antifungal agent against all organisms tested. An acceptable overall categorical agreement was set at $\pm 1.5\%$ very major errors and $\pm 3\%$ major errors. An acceptable percent essential agreement for MICs between technologists was set at $\geq 95\%$ for each antifungal agent against all organisms tested (18, 19).

All isolates tested in the study were included in the final analysis. Descriptive statistics were used to report isolate demographic and susceptibility profiles. Proportions of categorical and essential agreements at 24 h and 48 h were compared by using McNemar’s chi-square test. Statistical significance was set at the 5% level. All P values and 95% confidence intervals (CI) were two tailed; 95% CI values for agreement were based on a binomial distribution. Statistical analyses were performed by using Analyze-It software (Analyze-It Software, Ltd., Leeds, United Kingdom) for Microsoft Excel.

RESULTS

A total of 212 Candida isolates, including 94 C. albicans, 38 C. glabrata, 34 C. tropicalis, 31 C. parapsilosis, 5 C. krusei, 8 C. lusitaniae, and 2 C. guillermondii isolates, were tested. Table 1 shows the MICs at which 90% of the isolates tested (MIC$_{90}$) were inhibited for each drug, and Table 2 displays the categorical distribution for susceptibility for each Candida species to fluconazole, itraconazole, voriconazole, and fluconosine based on the CLSI M27-A2 reference method of testing. Table 3 provides a summary of MIC$_{90}$ and MIC ranges as determined by CLSI M27-A2, Etest, and Sensititre test methods at 48 h.

In accordance with the planned primary analysis, compared to the CLSI M27-A2 reference method of testing, the overall essential agreement was 95% for Etest and 91% for Sensititre. Overall, the categorical agreement values (for fluconosine, fluconazole, itraconazole, and voriconazole) were 90% for Etest and 88% for Sensititre. Categorical errors for Etest included 9% (78 of 848) minor, 0.5% (4 of 731) major, and 4% (2 of 56) very major errors. Categorical errors for Sensititre included 11% (94 of 848) minor, 0.7% (5 of 731) major, and no very major errors.

The percent essential and categorical agreements for all organisms with each antifungal agent are summarized in Table 4. Etest demonstrated $\geq 92\%$ essential agreement for MICs for all drugs tested. Sensititre demonstrated $\geq 92\%$ essential agreement for MICs for itraconazole, fluconosine, amphotericin B, and caspofungin but 82 and 85% essential agreement for fluconazole and voriconazole, respectively. The categorical agreement was $\geq 95\%$ for fluconosine and voriconazole with both test systems, but 88 and 83% for fluconazole and 80 and 73% for itraconazole for the Etest and Sensititre systems, respectively.

The percent essential and categorical agreements for each
TABLE 2. Distribution of 212 organisms tested according to species and susceptibility profile

Candida species	No. (%) of isolates	Total	S	S-DD (I)	R
C. albicans	94 (44)				
Fluconazole	89 (95)	3 (3)	2 (2)		
Itraconazole	88 (94)	2 (2)	4 (4)		
Voriconazole	92 (98)	0 (0)	2 (2)		
Fluconytosine	91 (97)	0 (0)	3 (3)		
C. glabrata	38 (18)				
Fluconazole	19 (50)	16 (42)	3 (8)		
Itraconazole	1 (3)	12 (31)	25 (66)		
Voriconazole	35 (92)	1 (3)	2 (5)		
Fluconytosine	36 (95)	0 (0)	2 (5)		
C. tropicalis	34 (16)				
Fluconazole	32 (94)	0 (0)	2 (6)		
Itraconazole	25 (73)	6 (18)	3 (9)		
Voriconazole	31 (91)	0 (0)	3 (9)		
Fluconytosine	33 (97)	0 (0)	1 (3)		
C. parapsilosis	31 (15)				
Fluconazole	30 (97)	0 (0)	1 (3)		
Itraconazole	26 (84)	5 (16)	0 (0)		
Voriconazole	30 (97)	1 (3)	0 (0)		
Fluconytosine	31 (100)	0 (0)	0 (0)		
C. krusei	5 (2)				
Fluconazole	0 (0)	3 (60)	2 (40)		
Itraconazole	0 (0)	5 (100)	0 (0)		
Voriconazole	5 (100)	0 (0)	0 (0)		
Fluconytosine	0 (0)	4 (80)	1 (20)		
C. lusitaniae	8 (4)				
Fluconazole	7 (88)	1 (12)	0 (0)		
Itraconazole	8 (100)	0 (0)	0 (0)		
Voriconazole	8 (100)	0 (0)	0 (0)		
Fluconytosine	8 (100)	0 (0)	0 (0)		
C. guillermondi	2 (1)				
Fluconazole	2 (100)	0 (0)	0 (0)		
Itraconazole	0 (0)	2 (100)	0 (0)		
Voriconazole	2 (100)	0 (0)	0 (0)		
Fluconytosine	2 (100)	0 (0)	0 (0)		

a S, susceptible; S-DD, susceptible dose dependent; I, intermediate; R, resistant. Values were as determined by the CLSI M27-A2 broth microdilution reference method.
b Proposed breakpoints were used to determine interpretive category for voriconazole (23).

Candida species with all antifungal agents are summarized in Table 5. Low percent categorical agreements for C. krusei, C. lusitaniae, and C. guillermondi were possibly exaggerated by the relatively small number of these Candida species tested. Otherwise, C. glabrata and C. tropicalis showed the lowest rates of categorical agreement in both test systems; categorical agreement was lowest for C. glabrata to fluconazole and C. glabrata and C. tropicalis to itraconazole for both test systems and C. parapsilosis to itraconazole for Sensititre. The percent essential and categorical agreements at 24 h were compared to percent essential and categorical agreements at 48 h for Etest and Sensititre for theazole antifungals. When organisms with insufficient growth at 24 h were excluded from the analysis, the overall categorical agreement was not significantly different at the 24- and 48-h readings for Etest (P = 0.141); for Sensititre, significantly better categorical agreement was obtained with 24-h readings (P = 0.005) (Table 6). Similar results were obtained when the 24-h versus the 48-h readings for fluconazole and itraconazole were assessed independently (data not shown).

For C. glabrata, there was no significant difference in the percent essential agreement between the 24- and 48-h readings with Etest; however, the categorical agreement was improved at 24 h (P = 0.024). For Sensititre, significantly better essential (P = 0.0001) and categorical (P = 0.005) agreements were achieved with 24 h compared to the 48-h results. For C. tropicalis, reading at 48 h provided significantly better essential agreement than reading at 24 h (P = 0.0001) for Etest, although this provided no improvement in categorical agreement. For the Sensititre system, no significant difference in essential or categorical agreement was observed between the 24- and 48-h readings. Minor errors accounted for the majority of all categorical errors for both systems. For C. glabrata and C. parapsilosis, 100% of errors for itraconazole were minor with both test systems; for C. tropicalis, 92 and 91% of errors for itraconazole were minor with Etest and Sensititre, respectively. For C. glabrata, 88 and 96% of the errors for fluconazole were minor for Etest and Sensititre, respectively. Only two very major errors were documented. Both very major errors occurred with the Etest system for different isolates of C. tropicalis: one with itraconazole and one with voriconazole.

Agreement between technologists for both the Etest and the Sensititre methods was 98% or greater for each antifungal agent against all organisms tested. Of the 1,484 total tests

Drug	MIC (µg/ml)					
	CLSI microdilution	Etest	Sensititre			
	MIC50	Range	MIC50	Range	MIC50	Range
Amphotericin B	1	0.125–2	1	0.125–4	2	0.25–4
Caspofungin	1	<0.03–2	0.5	0.03–8	0.5	0.03–4
Fluconazole	16	<0.03–>64	32	0.06–256	64	<0.125–>256
Itraconazole	2	<0.03–16	4	0.016–32	2	0.008–>16
Voriconazole	0.5	<0.03–>64	1	0.008–32	1	<0.008–16
Posaconazole	1	<0.03–16	2	0.016–32	NA	NA
Fluconytosine	1	<0.03–>64	4	0.008–32	0.5	<0.03–16

a NA, not applicable.
interpreted by using the Etest, eight disagreements of more than two doubling dilutions were documented, resulting in 99.46% essential agreement overall (95% CI 98.94 to 99.77%). For Sensititre, of 1,272 tests interpreted, five disagreements were recorded, resulting in 99.61% essential agreement overall (95% CI 99.09 to 99.87%).

DISCUSSION

The goal of the present study was to validate the performance in our laboratory of two new commercially available systems for antifungal susceptibility testing before implementing the test systems for clinical use. In our hands, the overall percent essential agreement for the Etest and Sensititre systems was 90%. When discrepancies compared to the CLSI method were found, Etest tended to yield higher MICs for all drugs except caspofungin, whereas Sensititre tended to yield higher MICs for all drugs tested except for caspofungin and flucytosine. The essential agreement was 90% for all drugs tested, except for fluconazole and voriconazole with the Sensititre system. Despite only 85% overall essential agreement for voriconazole with the Sensititre system, the categorical agreement was still 97%. On the other hand, the lack of essential agreement for fluconazole with the Sensititre system did lead to lower categorical agreement (83%) for this drug.

In general, the number of categorical errors was low for both test systems for the four agents with CLSI MIC breakpoints. When categorical errors did occur, minor errors accounted for the majority. We observed two very major (falsely susceptible) errors for the Etest. The purpose for calculating very major errors is to determine whether a test system can detect resistance since failure to do so could place a patient in jeopardy. The criteria for categorical errors used by the FDA in considering a susceptibility test system for clearance specify 1.5% very major errors and 3% major errors (10). For a clinical laboratory and test system to meet this stringent requirement for very major errors, at least 65 isolates resistant to each drug under study would need to be tested to allow one very major error per drug tested and still have an acceptable error rate of

TABLE 4. Agreement by drug: Etest and Sensititre are compared with the CLSI M27-A2 broth microdilution reference method

| Drug tested | Etest | | | | | Sensititre | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | No. (%) of category errors | | | | | No. (%) of category errors | | | | |
| | Minor | Major | Very major | No error | EA | Minor | Major | Very major | No error | EA |
| Fluconazole | 23 (11) | 2 (1) | 0 | 187 (88) | 195 (92) | 33 (16) | 1 (1) | 0 | 176 (83) | 174 (82) |
| Itraconazole | 41 (19) | 0 | 1 (3) | 170 (80) | 202 (95) | 55 (26) | 2 (1) | 0 | 155 (73) | 204 (96) |
| Voriconazole | 9 (4) | 0 | 1 (14) | 202 (95) | 195 (92) | 4 (2) | 2 (1) | 0 | 206 (97) | 180 (85) |
| Flucytosine | 5 (2) | 2 (1) | 0 | 205 (97) | 203 (96) | 2 (1) | 0 | 0 | 210 (99) | 194 (92) |
| Posaconazole | NA | NA | NA | NA | 210 (99) | NA | NA | NA | NA | NA |
| Amphotericin B | NA | NA | NA | NA | 211 (99) | NA | NA | NA | NA | 212 (100) |
| Caspofungin | NA | NA | NA | NA | 195 (92) | NA | NA | NA | NA | 194 (92) |
| Overall (%) | 9 | 0.5 | 4 | 90 | 95 | 11 | 0.7 | 0 | 88 | 91 |

* No (%). EA, discrepancies between MIC endpoint determinations of no more than two doubling dilutions were used to calculate the percent essential agreement (% EA). CA, categorical agreement. NA, not applicable. Major, calculations include only isolate susceptible by CLSI M27-A2 broth microdilution reference method. Very major, calculations include only isolates resistant by CLSI M27-A2 broth microdilution reference method.

TABLE 5. Agreement by Candida species: Etest and Sensititre compared with CLSI M27-A2 broth microdilution reference method

Test system	Candida species	No. of isolates	% Categorical agreement	% Essential agreement											
			SFC	FLC	ITC	VRC	Overall	SFC	FLC	ITC	VRC	PSC	AMB	CSP	Overall
Etest	C. albicans	94	97	98	94	100	97	100	93	98	93	100	99	89	96
	C. glabrata	38	100	55	74	76	76	94	100	94	95	100	90	92	
	C. tropicalis	34	100	97	62	97	89	94	100	94	85	100	88	94	
	C. parapsilosis	31	100	97	81	100	94	100	87	100	97	100	100	98	
	C. krusei	5	20	40	0	100	40	100	40	80	100	100	89		
	C. lusitaniae	8	100	88	88	100	94	100	100	100	100	100	97		
	C. guillermondii	2	100	100	50	100	88	100	100	100	100	100	100		
Overall	212	97	97	88	95	90	96	92	95	92	99	92	95		
Sensititre	C. albicans	94	99	97	100	100	99	96	96	100	82	NA	100	90	94
	C. glabrata	38	100	34	68	87	72	97	66	89	89	NA	100	97	90
	C. tropicalis	34	100	94	32	97	81	79	85	88	76	NA	100	79	85
	C. parapsilosis	31	100	90	48	100	85	87	48	100	90	NA	100	97	87
	C. krusei	5	80	40	80	100	75	100	100	100	100	NA	100	100	
	C. lusitaniae	8	100	100	50	100	88	100	100	100	100	NA	100	100	
	C. guillermondii	2	100	100	50	100	88	0	100	100	100	NA	100	100	
Overall	212	99	83	73	97	88	92	82	96	85	NA	100	92	91	

* FLC, fluconazole; PSC, posaconazole; ITC, itraconazole; VRC, voriconazole; SFC, 5 fluconazole; AMB, amphotericin B; CSP, caspofungin. NA, not applicable.
TABLE 6. Etest and Sensititre compared with the CLSI M27-A2 reference method: 24-h versus 48-h agreement results for azole antifungals

Organism	Test system	No. TYTR	24 h	48 h	P	No. TYTR	24 h	48 h	P
All Candida species	Etest	17	90	88	0.141	23	93	94	0.162
	Sensititre	61	87	85	0.005	61	89	87	0.171
Candida glabrata	Etest	5	81	68	0.024	6	93	88	0.189
	Sensititre	10	77	62	0.005	10	97	80	0.0001
Candida tropicalis	Etest	0	85	86	1.000	0	85	95	0.0001
	Sensititre	3	78	76	0.754	3	91	83	0.077

a The azole antifungals tested with Etest included fluconazole, itraconazole, voriconazole, and posaconazole; azole antifungals tested with Sensititre included fluconazole, itraconazole, and voriconazole. TYTR, too young to read (number of organisms with insufficient growth to read MIC endpoint at 24 h). For the P values, the percent categorical agreement (CA) and percent essential agreement (EA) at 24 h and 48 h were compared using McNemar’s chi-square test and excluded isolates TYTR at 24 h.

b The % CA does not include posaconazole for the Etest since no interpretive breakpoints are currently approved.

<1.5% (7, 18). Our cohort included 212 isolates with 56 total resistant results (the numbers of isolates resistant to fluconazole, itraconazole, voriconazole, and fluconazole, itraconazole, and voriconazole). TYTR, too young to read (number of organisms with insufficient growth to read MIC endpoint at 24 h). For the P values, the percent categorical agreement (CA) and percent essential agreement (EA) at 24 h and 48 h were compared using McNemar’s chi-square test and excluded isolates TYTR at 24 h.

Regardless of the exact criterion used, it is important to examine a collection of challenge strains that contains enough resistant isolates to verify the ability of the new test to detect resistance. We tested a relatively large cohort of isolates with 56 instances of resistance to one or more drugs; the Etest system failed to detect resistance only twice. The Sensititre system did not fail to detect resistance.

Importantly, both very major errors for the Etest system were found in testing C. tropicalis against azole antifungals. One potential explanation is related to known limitations of the reference method. Trailing endpoints, a well-described phenomenon with azole antifungals and the CLSI M27-A2 microdilution method, can lead to overinterpretation of the MIC results. Based on the current literature, however, it is not clear whether reading endpoints at 24 h provides better agreement than reading at 48 h for the different species of Candida. For instance, in a study of fluconazole that compared Etest with CLSI M27-A2, there was better essential agreement at 24 h than at 48 h for C. tropicalis and C. albicans, but lower agreement at both times for C. glabrata (30). In a study of posaconazole, C. glabrata and C. tropicalis showed the lowest concordance rates between Etest and CLSI M27-A2 at both times. However, C. glabrata essential agreement was higher at 24 h (72%) than at 48 h (56%), whereas C. tropicalis was higher at 48 h (71%) than at 24 h (39%) (31). In studies comparing the Sensititre system with the CLSI M27-A2 method, agreement at 24 h compared to 48 h also seemed to vary for the different Candida species. In one study that defined essential agreement as within three dilutions of the reference standard, the best performance of the Sensititre system was with 24 h MICs (92 to 100% essential agreement) with the azoles and fluconazole for all of the species tested, with the exception of C. albicans (87 to 90%) (9). In another study, overall agreement between the Sensititre and CLSI M27-A2 methods was better at 24 h (95 to 99%) agreement than at 48 h (80 to 97% agreement) for all species and antifungal agents (posaconazole, ravuconazole, and voriconazole) because Sen-
sititre MICs were consistently more than two dilutions higher than the reference MICs, especially for isolates of *C. albicans*, *C. glabrata*, and *C. tropicalis* (8). Finally, in a study comparing the Sensititre to the CLSI M27-A2 method for voriconazole, agreement was <90% for *C. glabrata*, despite the 24-h readings (24). In the present study, we also compared essential and categorical agreement with 48-h CLSI reference results for the azole antifungals read at 24 h and at 48 h with Etest and Sensititre. We were unable to compare 24-h MICs obtained by the reference method with 24-h MICs obtained by the test systems since the 24-h CLSI MIC results were not recorded. For Etest, 24-h categorical agreement with the CLSI M27-A2 method was significantly better only for isolates of *C. glabrata*. For *C. tropicalis*, reading at 48 h actually provided significantly better essential agreement than reading at 24 h, although this provided no improvement in categorical agreement. For Sensititre, categorical agreement was significantly better at 24 h than at 48 h when data were analyzed for the entire cohort of isolates. When data for the various *Candida* species were analyzed separately, categorical agreement was better at 24 h for *C. glabrata* but not for *C. tropicalis*. Despite significant improvement in categorical agreement by reading MICs at 24 h for *C. glabrata* with both test systems, the categorical agreement for fluconazole to *C. glabrata* remained low (75% Etest, 62% Sensititre). In our opinion, further investigation with an even larger cohort of non-*albicans* species into the cause for these discrepancies is needed. In the meantime, for isolates with sufficient growth, reading MIC results at 24 h, particularly for *C. glabrata* to the azole antifungals, is suggested.

Despite widespread and growing use of echinocandins and the concomitant risk for development of drug resistance (5, 13), there is no current CLSI method for MIC determinations. One published study suggested that using RPMI medium, the lowest concentration of caspofungin resulting in a significant diminution of growth below control growth levels as the endpoint, and reading endpoints at 24 h provides the best inter-laboratory agreement when testing caspofungin (21). Under these conditions, a high level of discrimination was achieved between strains known to have lowered caspofungin susceptibility (based on molecular evidence of mutations in the FKS1 gene) and normally susceptible isolates. The range of caspofungin MICs in our cohort of pedigree isolates was <0.03 to 2 \(\mu g/ml \), a finding consistent with ranges published by other investigators (22). Further, the MIC for the quality control isolates fell almost perfectly within expected limits, despite reading at 48 h. Our study suggests that the new test systems may provide results in concordance with those obtained with RPMI medium by the CLSI M27-A2 method in testing caspofungin.

In order to ensure general applicability of the study results, our selection of isolates for testing included a spectrum of *Candida* species typically isolated in a clinical microbiology laboratory and mirrored national and international epidemiological data (35). Moreover, a broad range of MICs was also exhibited by the isolates from blood cultures. For example, 50% of the *C. glabrata* blood isolates demonstrated an MIC of \(\leq 8 \mu g/ml \) (susceptible), 42% demonstrated an MIC of 16 to 32 \(\mu g/ml \) (susceptible dose dependent), and 8% demonstrated an MIC of \(\geq 64 \mu g/ml \) (resistant) to fluconazole. Nonetheless, 66% (25 of 38) of *C. glabrata* isolates tested were resistant to itraconazole, whereas only 8% (3 of 38) tested resistant to fluconazole based on current interpretive categorical breakpoints. Given drug utilization at our hospital, one might have expected fluconazole resistance to exceed itraconazole resistance for *C. glabrata* if this finding were attributable to treatment-induced resistance. This paradox has been observed in other epidemiologic studies as well (22). In a large study including 949 clinical isolates of *C. glabrata*, all of the 78 strains that were resistant to fluconazole were also resistant to itraconazole (25). Conversely, of the 567 isolates found to be susceptible to fluconazole, only 4% were susceptible to itraconazole (inhibited by itraconazole at an MIC of \(\leq 0.12 \mu g/ml \)). Whether this finding reflects a unique mechanism for resistance to itraconazole that does not impart resistance to fluconazole in *C. glabrata*, inappropriate thresholds for categorical classifications of resistance for itraconazole, or inability of the reference method to detect resistance to fluconazole in *C. glabrata* is uncertain, but we suspect one of the latter.

In order to comply with the recommended guidelines for verification studies that use a reference method that is known to be an imperfect standard, discrepant test results were resolved by retesting in triplicate both the new test system and the reference method. Initial discrepancies that resolved with repeat testing included three major errors (all for fluconazole) with Etest and five major errors (two for fluconazole, two for itraconazole, and one for voriconazole) with Sensititre. All major error resolutions were due to changes in initial results with the Etest or Sensititre systems. Using initial test results for Etest, 0.9% major errors occurred compared to 0.5% major errors when repeat test results were used. Using initial test results for Sensititre, 1.4% major errors occurred compared to 0.7% major errors when repeat test results were used. Thus, using the initial test results, major errors were still within the acceptable overall categorical agreement for major errors (3%) with both test systems.

Seven very major error discrepancies (two with fluconazole, five with voriconazole) resolved with repeat testing for Etest and six very major error discrepancies (one with fluconazole, five with voriconazole) resolved with repeat testing for Sensititre. All very major error resolutions were due to changes in the initial CLSI reference method result. Interestingly, all but one of the very major discrepancies that resolved for both test systems were with the same isolates. This highlights known limitations of the current CLSI standard and supports the importance of repeating discrepancies in triplicate with both systems when performing verification studies for the clinical laboratory.

Clinical laboratories are playing an increasingly important role in antifungal drug selection by performance of susceptibility testing of *Candida* isolated from infected patients. It is essential that the antifungal drug testing systems used clinically provide accurate results when compared to the reference standard. The most important use of antifungal susceptibility testing in the clinical laboratory is to detect resistant isolates, and both Etest and Sensititre performed well in this regard. The methods also performed well for some of the newer antifungal agents including voriconazole, posaconazole, and caspofungin. Furthermore, interobserver variability between the two tech-
nologists for Etest and Sensititre methods was minimal, which shows that intralaboratory variability should be minimal with appropriate training. However, our study underscores the influence of incubation time on MIC results, especially with the azole agents. The Sensititre system provided better overall categorical agreement with the reference standard when there was sufficient growth for the results to be read at 24 h rather than at 48 h. For Etest, reading at 24 h also provided better categorical agreement for C. glabrata. However, despite improved agreement by reading at 24 h, categorical agreement for C. glabrata remained disappointingly low (<80% for fluconazole) with both test systems. Fortunately, the majority of errors encountered with the new test systems were minor, and both tended to overall resistance for C. glabrata and thereby yield a conservative result for patient care. Nonetheless, because assessing fluconazole activity against C. glabrata is commonly needed clinically, further evaluation of both test systems (and the CLSI reference method and breakpoints) is warranted.

ACKNOWLEDGMENTS

This study was a component of NIH/NIAID K23-AI25222-01 (B.D.A.).

Testing supplies were provided by AB BIODISK and Trek Diagnostic Systems. Merck Research Laboratories, Pfizer Laboratories, and Schering-Plough Research Institute provided drugs for the investigation.

REFERENCES

1. Alexander, B. D., W. A. Schell, J. L. Miller, G. D. Long, and J. R. Perfect. 2005. Candida glabrata fungemia in transplant patients receiving voriconazole after fluconazole. Transplantation 80:866–871.
2. Barry, A. L., M. A. Pfaller, S. D. Brown, A. Espinel-Ingroff, M. A. Ghanoun, C. Knapp, R. P. Rennie, J. H. Rex, and M. G. Rinaldi. 2000. Quality control limits for broth microdilution susceptibility tests of ten antifungal agents. J. Clin. Microbiol. 38:3447–3459.
3. Borst, A. M. T., E. van Dijk, D. W. Warnock, C. J. Morrison, and B. A. Arthington-Skaggs. 2005. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole. Antimicrob. Agents Chemother. 49:783–787.
4. Department of Health and Human Services, Centers for Medicare and Medicaid Services. 2003. Clinical laboratory improvement amendments of 1988: final rule. Fed. Regist. 3704 [42CFR493.1105(3)(i)].
5. Douglas, C. M., J. A. Marrinan, W. Li, and M. B. Kurtz. 1994. A Surechromyces cerevisiae mutant with echinocandin-resistant 1,3-

β-D-glucan synthase. J. Bacteriol. 176:5686–5696.
6. Edmond, M. B., E. S. Wallace, D. K. McClish, M. A. Pfaller, R. N. Jones, and R. P. Wenzel. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29:239–244.
7. Elder, B. L., S. H. Hansen, J. A. Kellogg, F. J. Marsik, and R. J. Zabrinsky. 1997. Cunitech 31: verification and validation of procedures in the clinical microbiology laboratory. ASM Press, Washington, DC.
8. Espinel-Ingroff, A., M. Pfaller, S. A. Messer, C. C. Knapp, N. Holliday, and S. B. Killian. 2004. Multicenter comparison of the Sensititre YeastOne colorimetric antifungal panel with the NCCLS M27–A2 reference method for testing new antifungal agents against clinical isolates of Candida spp. J. Clin. Microbiol. 42:715–721.
9. Espinel-Ingroff, A., M. Pfaller, S. A. Messer, C. C. Knapp, S. Killian, H. A. Norris, and M. A. Ghanoun. 1999. Multicenter comparison of the Sensititre YeastOne colorimetric antifungal panel with the National Committee for Clinical Laboratory standards M27–A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J. Clin. Microbiol. 37:591–595.
10. Food and Drug Administration. 2003. Class II special controls guidance document: antimicrobial susceptibility test systems: guidance for industry. Food and Drug Administration, Washington, DC.
11. Imhof, A., A. Balajee, D. Fredricks, and K. Marr. 2004. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin. Infect. Dis. 39:743–746.
12. Jorgensen, J. H. 1993. Selection criteria for an antimicrobial susceptibility testing system. J. Clin. Microbiol. 31:2841–2844.
13. Kurtz, M. B., G. Abruzzo, A. Flattery, K. Bartizal, J. A. Marrinan, W. Li, J. Milligan, K. Nollstadt, and C. M. Douglas. 1996. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect. Immun. 64:3244–3251.
14. Losekoot, S., J. L. L. de Liefde, W. R. Kirkpatrick, M. G. Rinaldi, and T. F. Patterson. 1999. Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 43:1621–1628.
15. Marr, K. A., C. N. Lyons, K. Ha, T. R. Rusted, and T. C. White. 2001. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob. Agents Chemother. 45:52–59.
16. Margesin, M. J., L. L. Edwards, W. R. Kirkpatrick, J. P. Bachmann, S. Perea, M. T. Ruesga, and T. F. Patterson. 2002. Heterogenous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidiasis. J. Antimicrob. Chemother. 49:515–524.
17. Maxwell, M. J., S. A. Messer, R. J. Hollis, L. Boyken, S. Tendolkar, D. J. Diekema, and M. A. Pfaller. 2003. Evaluation of Etest method for determining fluconazole and voriconazole MICs for 279 clinical isolates of Candida species infrequently isolated from blood. J. Clin. Microbiol. 41:1087–1091.
18. Mulder, R. H., S. M. Farnham, and B. Grinius. 1992. Evaluating antimicrobial susceptibility test systems. p. 5.231–5.233. In H. D. Isenberg (ed.), Clinical microbiology procedures handbook. American Society for Microbiology, Washington, DC.
19. NCCLS. 2001. Development of in vitro susceptibility testing criteria and quality control parameters. Approved guideline, 2nd ed. NCCLS document M24–A2, p. i-29. NCCLS, Wayne, PA.
20. NCCLS. 2002. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard, 2nd ed. NCCLS document M27–A2. NCCLS, Wayne, PA.
21. Odds, F. C., M. Motyl, R. Andrane, J. Bille, E. Canton, M. Cuenca-Estrella, A. Davidson, C. Durusell, D. Ellis, E. Foraker, A. W. Fothergill, M. A. Ghanoun, R. A. Giacobbe, M. Gobernado, R. A. Gobernado, R. A. Mangino, and J. Lee. 2003. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob. Agents Chemother. 47:3149–3154.
22. Pfaller, M. A., D. J. Diekema, J. H. Rex, P. R. Pappas, R. J. Hamill, R. A. Larsen, H. W. Horowitz, W. G. Powderly, N. Hyslop, C. A. Kaufman, J. Cleary, J. E. Mangino, and J. Lee. 2003. Antifungal susceptibility testing of 2,000 bloodstream Candida isolates in the United States. Antimicrob. Agents Chemother. 47:3149–3154.
23. Pfaller, M. A., D. J. Diekema, J. H. Rex, A. Espinel-Ingroff, E. M. Johnson, D. Andes, V. Chaturvedi, M. A. Ghanoun, F. C. Odds, M. G. Rinaldi, D. J. Sheehan, P. Troke, T. J. Walsh, and D. W. Warnock. 2006. Correlation of MIC with outcome for Candida species: analysis of a cohort of MIC with an interpretive breakpoints. J. Clin. Microbiol. 44:819–826.
24. Pfaller, M. A., A. Espinel-Ingroff, and R. N. Jones. 2004. Clinical evaluation of the Sensititre YeastOne colorimetric antifungal plate for antifungal susceptibility testing of the new triazoles voriconazole, posaconazole, and ravuconazole. J. Clin. Microbiol. 42:4775–4782.
25. Pfaller, M. A., S. A. Messer, R. J. Hollis, R. N. Jones, and D. J. Diekema. 2002. In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob. Agents Chemother. 46:5477–5480.
26. Pfaller, M. A., A. Espinel-Ingroff, L. P. van Burik, J., V. Ratanatharathorn, D. Stepan, C. Miller, J. Lipton, D. W. Warnock. 2004. Correlation between microdilution, E-test, and disk diffusion antifungal susceptibility testing of posaconazole against Candida spp. J. Clin. Microbiol. 42:2015–2018.
27. Van Burik, J., V. Ratanatharathorn, D. Stepan, C. Miller, J. Lipton, D.
Versole, N., Bunin, D., Wall, J., Hiemenz, Y., Satô, J., Lee, T., Walsh, et al. 2004. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin. Infect. Dis. 39:1407–1416.

33. Wingard, J. R., W. G. Merz, M. G. Rinaldi, T. R. Johnson, J. E. Karp, and R. Saral. 1991. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N. Engl. J. Med. 325:1274–1277.

34. Wingard, J. R., W. G. Merz, M. G. Rinaldi, C. R. Miller, J. E. Karp, and R. Saral. 1993. Association of Torulopsis glabrata infections with fluconazole prophylaxis in neutropenic bone marrow transplant patients. Antimicrob. Agents Chemother. 37:1847–1849.

35. Wisplinghoff, H., T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel, and M. B. Edmond. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39:309–317.