Anisotropic Magnetic Response in Kondo Lattice with Antiferromagnetic Order

Taku Kikuchi¹, Shintaro Hoshino² and Yoshio Kuramoto¹

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan
²Department of Basic Science, The University of Tokyo, Meguro 153-8902, Japan

(Received April 24, 2014)

Magnetic properties are investigated for the Kondo lattice by using the continuous time quantum Monte Carlo (CT-QMC) and the dynamical mean field theory (DMFT). The DMFT+CT-QMC approach is extended so as to derive the anisotropic magnetic response in the antiferromagnetic phase. The longitudinal and transverse magnetic susceptibilities are numerically calculated in the antiferromagnetic phase. For the RKKY regime with a small Kondo coupling, the transverse susceptibility does not decrease below the transition temperature while the longitudinal susceptibility decreases as expected from the mean field picture. In the competing region between the RKKY interaction and the Kondo effect, however, both longitudinal and transverse susceptibilities decrease below the transition temperature. The obtained results naturally explain the temperature dependence of the magnetic susceptibility observed in CeT₂Al₁₀ (T=Ru,Os,Fe) family.

KEYWORDS: CeT₂Al₁₀, continuous-time quantum Monte Carlo, dynamical mean-field theory, magnetic susceptibility, two-particle Green function

1. Introduction

Heavy electron systems show various intriguing phenomena caused by interactions between nearly localized f electrons and conduction (c) electrons. Recently the Kondo-insulator family CeT₂Al₁₀ (T=Ru,Os,Fe)¹-² attract much attention due to their unusual magnetic properties. CeRu₂Al₁₀ and CeOs₂Al₁₀ show antiferromagnetic (AFM) orders at low temperatures.³-⁷ The magnetic susceptibility starts to decrease for all the directions slightly above the AFM transition temperature.¹,²,⁸-¹⁰ This decreasing behavior continues even inside the AFM phase. According to the mean-field theory, only the longitudinal susceptibility decreases below the magnetic transition temperature. On the other hand, CeFe₂Al₁₀, which remains paramagnetic down to the lowest experimentally accessible temperature, shows a typical Kondo-insulator behavior. For example, the susceptibility in this compound has a peaked structure around 80K.¹¹ A motivation of this paper is to understand these magnetic susceptibilities of CeT₂Al₁₀, which might originate from the interplay between the RKKY interaction and the Kondo effect.

The simplest description for Kondo insulators is given by the Kondo lattice model with one c electron per site (half filling). In this model, the periodically aligned localized f electrons are coupled to c electrons by the Kondo exchange interaction J at each site. For small Kondo interactions, the system has a magnetic ground state by the RKKY interaction. If the Kondo energy dominates the RKKY one at larger J, on the other hand, the paramagnetic Kondo insulator is realized. Thus we have the quantum critical point at J = J_c where the magnetic state changes into paramagnetic one in the ground state, which is included in the Doniach phase diagram.¹² This quantum phase transition has been actively investigated.¹³-¹⁸

For analysis of the Kondo lattice model, a framework using the dynamical mean-field theory (DMFT) combined with continuous-time quantum Monte Carlo (CT-QMC), has reasonably reproduced the finite-temperature Doniach phase diagram.¹⁷ By using this framework, we numerically derive the anisotropic magnetic properties in this paper. For this purpose, we extend the previous J-expansion CT-QMC method⁹ to the one that can also treat transverse magnetization. This makes it possible to calculate transverse moments and transverse magnetic susceptibilities. Especially we focus on the behavior of susceptibilities in the competing region between the RKKY interaction and the Kondo effect.

The most direct way to estimate the susceptibility is to apply a small magnetic field and measure the magnetic moment. We can alternatively use two-particle Green functions for evaluation of susceptibilities. With use of this method, we can decompose the susceptibility into each contribution from c and f electrons. The framework has been formulated for longitudinal susceptibilities.²⁰ In this paper we describe the calculation method for transverse susceptibilities.

This paper is organized as follows. In the next section, we introduce the Kondo lattice model and extend the DMFT and J-expansion CT-QMC to the systems with transverse magnetizations. Section 3 provides numerical results for magnetic-field and Kondo interaction dependences of magnetization. We discuss in §4 magnetic susceptibilities, and make a comparison with experimental results in CeT₂Al₁₀. We summarize the results in §5. The Appendix describes how to derive susceptibilities from two-particle Green functions.

2. Model and Extension of DMFT+CTQMC method

2.1 Kondo lattice model

In this paper, we deal with the bipartite Kondo lattice model in magnetic fields. The Hamiltonian with hopping only between different sublattices is given by

$$\mathcal{H}_{KL} = \sum_{k} \sum_{\sigma} \varepsilon_k c_k^{\dagger \sigma} c_{k\sigma} + h.c. - \sum_{\Delta} \sum_{k} \sum_{\sigma} \mu c_{k\Delta \sigma}^{\dagger} c_{k\Delta \sigma}$$
We define the local Green function by

$$
(1)
$$

where \(\lambda = A, B \) and \(\sigma = \uparrow, \downarrow \) are the sublattice and spin indices, respectively. The summation \(\sum_{i} \) is taken over the half Brillouin zone, and \(\sum_{i \in \Lambda} \) over the sites which belong to the sublattice \(\lambda \). The summation symbol for spins. With transverse magnetization, the Green function is diagonalized with respect to spin index. Then we need to consider the following 2 \(\times \) 2 diagonal components as in eq. (6).

We then evaluate the determinant of the effective impurity. We first define the Green function of \(c \) electrons is given by the 4 \(\times \) 4 matrix as

$$
\hat{G}_{c,\lambda}(\epsilon_{n}) = \begin{pmatrix}
\hat{S}_{\lambda} & \hat{E} \\
\hat{E} & \hat{S}_{\lambda}^\dagger
\end{pmatrix}
\begin{pmatrix}
\Sigma_{\lambda \uparrow \uparrow}(\epsilon_{n}) \\
\Sigma_{\lambda \downarrow \downarrow}(\epsilon_{n})
\end{pmatrix}
$$

where \(\epsilon_{n} = (2n + 1)\pi/\beta \). Note that the self-energies are independent of wavenumber in the DMFT, but depend on the sublattice. With A and B sublattices combined, the Green function of \(c \) electrons is given by the 4 \(\times \) 4 matrix as

$$
\hat{G}_{c,k}(\epsilon_{n}) = \begin{pmatrix}
\hat{S}_{\lambda} & \hat{E} \\
\hat{E} & \hat{S}_{\lambda}^\dagger
\end{pmatrix}
\begin{pmatrix}
\Sigma_{\lambda \uparrow \uparrow}(\epsilon_{n}) \\
\Sigma_{\lambda \downarrow \downarrow}(\epsilon_{n})
\end{pmatrix}
\begin{pmatrix}
\epsilon_{n} + \mu + H_{c} - \Sigma_{\lambda \uparrow \downarrow}(\epsilon_{n}) \\
\epsilon_{n} + \mu - H_{c} - \Sigma_{\lambda \downarrow \uparrow}(\epsilon_{n})
\end{pmatrix}
$$

We define the local Green function by

$$
\hat{G}_{c,\lambda}(\epsilon_{n}) = \frac{1}{N/2} \sum_{k} \hat{G}_{c,k}(\epsilon_{n})
$$

where \(N \) is the total number of sites. In the DMFT, the bipartite lattice is mapped onto the two effective impurity systems for A and B sublattices systems. The cavity Green functions at each sublattice are introduced as

$$
\hat{G}_{c,\lambda}(\epsilon_{n}) = \left(\hat{G}_{c,\lambda}(\epsilon_{n}) \right)^{-1} + \Sigma_{\lambda \uparrow \downarrow}(\epsilon_{n})^{-1}
$$

The matrix elements are explicitly written as

$$
\hat{G}_{c,\lambda}(\epsilon_{n}) = \begin{pmatrix}
\hat{G}_{c,\lambda \uparrow \uparrow}(\epsilon_{n}) & \hat{G}_{c,\lambda \downarrow \uparrow}(\epsilon_{n}) \\
\hat{G}_{c,\lambda \uparrow \downarrow}(\epsilon_{n}) & \hat{G}_{c,\lambda \downarrow \downarrow}(\epsilon_{n})
\end{pmatrix}
$$

In numerical simulations, we start from the following initial condition: \(\Sigma_{\uparrow \downarrow}(\epsilon_{n}) = \Sigma_{\downarrow \uparrow}(\epsilon_{n}) = 0 \) and \(\Sigma_{\lambda \uparrow \downarrow}(\epsilon_{n}) = \Sigma_{\lambda \downarrow \uparrow}(\epsilon_{n}) = \Sigma_{0} \). We then seek for the self-consistent solutions by performing the DMFT iteration.

2.3 Extension of CT-QMC

We can relate the cavity Green function to the local Green function by solving the effective impurity problem at each sublattice. We use the CT-QMC based on J-expansion scheme as the impurity solver.

In the following we omit the site and sublattice indices for simplicity. In the CT-QMC, the partition function is expanded with respect to J. For the \(k \)-th order contribution, we have to evaluate the quantities

$$
P_{c}(k) = \left(T_{c} c_{\sigma \uparrow}(\tau_{k}) c_{\sigma \downarrow}(\tau_{k}) \cdots c_{\sigma \uparrow}(\tau_{1}) c_{\sigma \downarrow}(\tau_{1}) \right)_{f},
$$

$$
P_{f}(k) = \left(T_{f} X_{\sigma \uparrow \sigma \downarrow}(\tau_{k}) X_{\sigma \downarrow \uparrow}(\tau_{k}) \cdots X_{\sigma \uparrow \sigma \downarrow}(\tau_{1}) X_{\sigma \downarrow \uparrow}(\tau_{1}) \right)_{f},
$$

where the interaction representation is used: \(A(\tau_{i}) = e^{-J_{\sigma \tau} A \sigma \tau} \). The averages \(\langle \cdots \rangle_{f} \) are taken without interactions between \(f \) and \(c \) electrons and we have omitted the summation symbol for spins. With transverse magnetization, \(P_{c}(q_{k}) \) cannot be factorized into each spin component.

We then evaluate the determinant of the \(k \times k \) matrix whose elements are given by the Fourier transform of cavity Green functions given by eq. (6). Namely eq. (7) is rewritten using the \(k \times k \) matrix \(\hat{G}_{c}^{(k)} \) as

$$
P_{c}(k) = \phi_{k} \text{det} \hat{G}_{c}^{(k)},
$$

$$
\hat{G}_{c,\lambda}^{(k)} = \hat{G}_{c,\sigma \sigma \sigma \sigma}(\tau_{i} - \tau_{j}),
$$

where \(\phi_{k} \) is a sign factor. On the other hand, the localized-spin contribution \(P_{f}(q_{k}) \) defined by eq. (8) can be calculated in the same way as the previous J-expansion CT-QMC, as long as the external field is applied along the quantization axis of localized spin. We have numerically checked that the negative sign problem does not appear even when the transverse components in \(P_{f}(q_{k}) \) are finite.

The local self-energy can be evaluated by simulation for the effective impurity. We first define the t-matrix by

$$
\hat{G}_{c}(\epsilon_{n}) = \hat{G}_{c}(\epsilon_{n}) + \hat{G}_{c}(\epsilon_{n}) \hat{n}(\epsilon_{n}) \hat{G}_{c}(\epsilon_{n}),
$$

where the left-hand side is the local Green function at the impurity site. If the solutions are self-consistent, the relation \(\hat{G}_{c} = \hat{G}_{c} \) holds. Note that the t-matrix has also off-diagonal components as

$$
\hat{n}(\epsilon_{n}) = \begin{pmatrix}
t_{\uparrow \downarrow}(\epsilon_{n}) & t_{\downarrow \uparrow}(\epsilon_{n}) \\
t_{\downarrow \uparrow}(\epsilon_{n}) & t_{\uparrow \downarrow}(\epsilon_{n})
\end{pmatrix}
$$

In the CT-QMC simulation, the t-matrix is evaluated by the
Note that the direction of AFM moments here is perpendicular to the magnetic field which is consistent with the earlier results. The competition between the RKKY interaction and the Kondo effect is responsible for the behavior. Namely, the magnetic field weakens the Kondo effect because it tends to break the Kondo singlet, which results in larger role of the RKKY interaction than the Kondo effect. Thus the competition between them is reflected in the characteristic magnetic field dependence of magnetizations. Even larger magnetic field breaks AFM moment as shown in Fig. 2(a–c).

3. Magnetization Process in Kondo Lattice Model

In this section, we discuss both uniform and staggered magnetizations for several values of interaction \(J \) at temperature \(T = 0.01 \). We define the magnetic moment

\[
M^{\alpha,\beta}_e = \frac{1}{N/2} \sum_{i \in [\lambda]} \langle S^{\alpha,\beta}_{c,i} \rangle,
\]

where \(M^{\alpha,\beta}_e \) is the \(\alpha (=x,y,z) \)-oriented magnetizations of electron \(e = f,c \) at sublattice \(\lambda \). The uniform (ferro, F) magnetizations \(M_F^e \) and the staggered (antiferro, AF) magnetizations \(M_{AF}^e \) are calculated by

\[
M_F^e = (M^A + M^B)/2 \quad \text{and} \quad M_{AF}^e = (M^A - M^B)/2,
\]

respectively. Figures 1 and 2 show \(M_F^e \) and \(M_{AF}^e \) in the \(J-H_c \) plane. Here (a), (b) and (c) in both figures correspond to the magnetization \(M_f \) of \(f \) electrons, \(M_c \) of \(c \) electrons and the total value \(M_{\text{total}} = M_c + M_f \). We have confirmed that the moments \(M_F^c \) and \(M_{AF}^c \) are zero.

As shown in Fig. 2, for \(J < J_c \approx 0.27 \) with \(J_c \) being the quantum critical point, the AFM moment is finite at zero magnetic field which is consistent with the earlier results.\(^{18,20}\) Note that the direction of AFM moments here is perpendicular to the magnetic field. With increasing field, the staggered magnetizations disappear at sufficiently large \(H_c \). On the other hand, both uniform and staggered \(c \) magnetizations take opposite direction to that of \(f \) magnetization for weak fields. The behavior is due to the antiferromagnetic Kondo interaction.

Now we discuss the antiferromagnetism near \(J_c \). The staggered magnetization around \(J = 0.25 \) increases with increasing field at small \(H_c \), which can be seen only near the quantum critical point near \(J \lesssim J_c \). This indicates that the competition between the RKKY interaction and the Kondo effect is responsible for the behavior. Namely, the magnetic field weakens the Kondo effect because it tends to break the Kondo singlet, which results in larger role of the RKKY interaction than the Kondo effect. Thus the competition between them is reflected in the characteristic magnetic field dependence of magnetizations. Even larger magnetic field breaks AFM moment as shown in Fig. 2(a–c).

On the other hand, the paramagnetic Kondo insulator is realized for \(J > J_c \). This state is robust against small magnetic

\[
l_{\sigma\sigma'}(\tau) = -\frac{1}{\beta} \left(\sum_{i,j=1}^N \left[\hat{G}^{(k)}_{ij}(\tau) \right]^{-1} \delta_{\sigma\sigma'} \delta(\tau - \tau_i) \right)_{\text{MC}}.
\]

The label “MC” means the Monte Carlo average. This expression can be derived in a manner similar to Ref. 19. From eqs. (5) and (11), the local self-energy is related to the \(t \)-matrix as

\[
\Sigma(i\epsilon_n) = i(i\epsilon_n) \left[1 + \hat{G}_c(i\epsilon_n) i(i\epsilon_n) \right]^{-1}.
\]

Thus we obtain the new self-energy by solving the effective impurity. The calculation is repeated until the cavity Green functions converge.

The expectation values for one-body quantities are derived from \(t \)-matrix and local Green functions:

\[
\frac{J}{2} \langle X_{\sigma\sigma'} \rangle = \lim_{n \to +\infty} t_{\sigma\sigma'}(i\epsilon_n),
\]

\[
\langle c^\dagger_{\alpha} c_{\sigma'} \rangle = G_{c,\sigma',\sigma}(\tau = -0),
\]

where eq. (15) is obtained by differentiating a Green function \(G_\sigma(\tau, \tau' = 0 \rangle \) with respect to \(\tau \) and \(\tau' \). In this paper, we choose \(x \) direction as the transverse moment, so that Green functions in the imaginary-time domain are always real.

We can now evaluate the transverse moment perpendicular to the magnetic field. The transverse susceptibilities are then calculated by measuring the magnetic moments in the presence of small external fields as explained in §4.

![Fig. 1](https://example.com/fig1.png)

Fig. 1. (Color online) Uniform magnetizations of \(f \) (a), \(c \) (b) and the total electrons (c) in the \(J-H_c \) plane at \(T = 0.01 \).
fields as shown in Fig. 1. However, transverse magnetizations appear at certain strength of magnetic fields. The origin for the induced AFM moment is ascribed to weakening the Kondo effect by the magnetic field. Such behavior has also been reported in earlier study. It is characteristic in Figs. 1 and 2 that the AFM moment appears almost simultaneously with appearance of longitudinal uniform magnetization. With increasing interactions \(J \), larger magnetic field is necessary for the appearance of the staggered magnetization. In this case, the magnitude of staggered moments becomes smaller.

Our calculation is qualitatively consistent with the \(J-H_z \) phase diagram in Ref. 23 for the two-dimensional Kondo lattice model at half filling.

4. Temperature Dependence of Magnetic Susceptibilities

In this section, we discuss temperature dependences of both longitudinal and transverse susceptibilities by evaluating the magnetic moment under finite magnetic field. At zero field, the antiferromagnetism along \(x \) and \(z \) axes are degenerate. With magnetic field along the \(z \) axis, the longitudinal susceptibility is calculated as

\[
\chi_{\text{longi}} = \frac{\delta M_z^c}{H_z} \bigg|_{M_{\mu\text{ll}}} \tag{18}
\]

where \(\delta M_z^c \) is the change of magnetization under small magnetic field. On the other hand, the transverse susceptibility is given by

\[
\chi_{\text{trans}} = \frac{\delta M_{x}^c}{H_z} \bigg|_{M_{\mu\text{ll}}} \tag{19}
\]

where the staggered magnetization is along the \(x \)-axis. Figure 3 illustrates the situations for eqs. (18) and (19). When we evaluate the susceptibilities, we must choose a small enough magnetic field. For this purpose, we take the two different magnetic fields and compute the susceptibilities. We have confirmed that these two results are almost the same. The \(J-H_z \) dependence of magnetizations in §3 is useful for choosing appropriate magnitude of fields.

Figure 4(a) shows temperature dependence of the susceptibilities for \(J = 0.10 \) where the RKKY interaction is dominant. Here we have chosen \(H_z = 0.0025 \) and 0.001 for the magnetic field. As shown in Fig. 4(a), we confirm that the two results with different strength of magnetic fields are almost the same. The susceptibility show the Curie law at high temperatures. Below the Néel temperature \(T_N \), on the other hand, the longitudinal susceptibility decreases, while the transverse one does not. This is a typical behavior for small \(J \). It is also characteristic that the transverse susceptibility continue to increase with decreasing temperature even below \(T_N \). This result is unlike the mean field results for the ordinary Heisenberg model where the transverse susceptibility becomes constant below the transition temperature.

Next we show the results for \(J = 0.20 \) in Fig. 4(b), which is close to the quantum critical point with \(J_c \approx 0.27 \). We have chosen \(H_z = 0.01, \ 0.02 \) in this case. The peak of the longitudinal susceptibility coincides with the Néel temperature as in the case of \(J = 0.10 \) shown in Fig. 4(a). However, both longitudinal and transverse susceptibilities decrease below the transition temperature for \(J = 0.20 \). This behavior is due to...
the Kondo effect, which becomes clearer for larger J.

We now take the larger Kondo interaction $J = 0.25$ as shown in Fig. 4(c). Similar to the $J = 0.20$ case, the longitudinal and transverse susceptibilities decrease below T_N reflecting the Kondo behavior in the AFM phase. However, the peak temperature of the susceptibility is different from T_N. The peak in the paramagnetic state means the characteristic temperature T_{KI} for the Kondo insulator. Namely, the collective Kondo singlet state starts to develop below T_{KI}. The peculiar temperature dependence shown in Fig. 4(c) is a consequence of the condition $T_N < T_{KI}$. In the region with $J \lesssim 0.20$, on the other hand, the peak of the susceptibility occurs of T_N because the relation $T_N > T_{KI}$ is satisfied.

Figure 4(d) shows temperature dependence of the susceptibilities for $J = 0.30$ which is larger than J_c. As shown in this figure, there is no AFM order. Hence we have only T_{KI} as the characteristic energy scale, which gives a peak in the magnetic susceptibility.

On the other hand, we also calculate the susceptibility by using the two-particle Green function as described in Appendix. The results are indicated as $\chi_{\text{longi}}^{\text{2part}}$ and $\chi_{\text{trans}}^{\text{2part}}$ in Fig. 4, which show a good agreement with those calculated by eqs. (18) and (19) at $T \gtrsim 0.01$. However, numerical accuracy decreases at lower temperature, since the number (= 180) of Matsubara frequencies kept in the calculation become too small.
The contributions to the magnetic susceptibility can be separated into the parts χ_{cc}, χ_{cf} ($= \chi_{ff}$) and χ_{ff}. Firstly, we discuss the uniform susceptibilities $\chi_{cc}^{2\text{part}}$, $\chi_{f}^{2\text{part}}$, $\chi_{c}^{2\text{part}}$, and χ_{longi}^2 for $J = 0.20$, which are defined by eqs. (A.20–A.23). Figures 5(a) and 5(b) show the longitudinal ($\alpha = c$) and transverse ($\alpha = f$) susceptibilities, respectively. The value of $\chi_{cf}^{2\text{part}}$ is negative because of the antiferromagnetic c-f coupling in the Kondo lattice, so that $\chi_{cf}^{2\text{part}}$ reduces the total susceptibility $\chi_{c}^{2\text{part}}$. The main contribution at $J = 0.20$ comes from $\chi_{cf}^{2\text{part}}$ and $\chi_{c}^{2\text{part}}$ as shown in the figures. If we take $J = 0.10$, (not shown in the Figure) the dominant contribution comes only from $\chi_{cf}^{2\text{part}}$. At large couplings such as $J = 0.30$, all the components equally contribute to the total susceptibility.

Table 1 summarizes the J-dependent characteristics of $\chi(T)$. There is a good correspondence to experimental results of CeT$_2$Al$_{10}$ ($T = \text{Ru, Os}$).$^{1,8-10}$ Namely, CeRu$_2$Al$_{10}$ shows a behavior similar to the result for $J = 0.20$, where both longitudinal and transverse susceptibilities decrease below the AFM transition temperature. The peak position of $\chi(T)$ is nearly the same as T_N in this case. On the other hand, CeOs$_2$Al$_{10}$ with T_K larger than CeRu$_2$Al$_{10}$ corresponds qualitatively to the result for $J = 0.25$. The susceptibilities also decrease below T_N, but the peak position is located in the paramagnetic region with $T > T_N$. CeFe$_2$Al$_{10}$8 is paramagnetic down to experimentally accessible temperature, and hence it corresponds to the result for $J = 0.30$. Thus we roughly understand the temperature dependence of susceptibilities in CeT$_2$Al$_{10}$ family through the isotropic Kondo lattice model.

5. Summary and discussion

We have extended the CT-QMC algorithm together with the DMFT so as to deal with transverse magnetizations. With use of this framework, we have discussed the anisotropic magnetic response inside the AFM phase of the Kondo lattice model. We have evaluated the temperature dependence of both longitudinal and transverse susceptibilities with high accuracy by two ways: One is to evaluate the magnetic moment under a small field, and the other is to employ the two-particle Green functions. We have found that the effect of the competition between the RKKY interaction and the Kondo effect is reflected in the decrease of both longitudinal and transverse susceptibilities below the transition temperature, which cannot be explained by the RKKY interaction alone. The results thus obtained reasonably account for the characteristics in CeT$_2$Al$_{10}$: (1) peak positions of temperature dependence of susceptibilities, (2) decrease of susceptibilities below T_N for all the directions.

The present study is still an intermediate step toward understanding the peculiar magnetism of CeT$_2$Al$_{10}$. In particular we note that the direction of the ordered moment in CeRu$_2$Al$_{10}$ is different from the easy axis of the susceptibility in the paramagnetic state.25 Consideration of anisotropy in the Kondo lattice is necessary for this aspect, which deserves further study.

Acknowledgments

One of the authors (T.K.) was supported by the global COE program of the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

The numerical calculations were partly performed on supercomputer in the ISSP, University of Tokyo.

Appendix: Susceptibilities Evaluated from Two-Particle Green Functions

The susceptibilities can be calculated from the two-particle Green functions. The merit of the method is that we do not need the extrapolation to the zero-field limit. Furthermore, this method also makes it possible to separate the contributions from f and c electrons.

In the previous study,20 c-c and f-f correlation functions have been calculated in the framework of the DMFT+CT-QMC. We show in this Appendix that both f-f and c-f correlation functions can be derived from the two-particle Green function for c electrons by taking the large frequency limit.

First of all, we consider c-c correlation functions. The wave-vector dependent two-particle Green function is defined by

$$\chi_{cc,k\lambda\sigma',\epsilon,\lambda'}(\tau_1, \tau_2, \tau_3, \tau_4) = \langle T_c c^{\dagger}_{k\lambda\sigma_1}(\tau_1) c_{k\lambda\sigma_2}(\tau_2) c_{k'\lambda'\sigma_3}(\tau_3) c^{\dagger}_{k'\lambda'\sigma_4}(\tau_4) \rangle$$

and its inverse transform by

$$\chi_{cc,k\lambda\sigma',\epsilon,\lambda'}(\tau_1, \tau_2, \tau_3, \tau_4) =$$
where γₘ = 2π/β is a bosonic Matsubara frequency. The Bethe-Salpeter equation relates the two-particle Green function to the vertex part which is local in the DMFT but can depend on the sublattice index. The explicit form is given by\(^{(3)}\)

\[
\hat{X}^{\lambda'\nu'}_{\sigma'\sigma''} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right) = \hat{\Gamma}_{\sigma'\sigma''}^{\lambda'\nu'} \left(\epsilon_\sigma, \epsilon_{\sigma''} \right) \delta_{\nu,\nu'} \delta_{\hat{\nu},\hat{\nu'}} \\
+ \sum_{n_1 a_1} \sum_{k_1 \sigma'_{1}\sigma''_{1}} \sum_{\lambda_1 \nu'_{1}} \hat{X}^{\lambda_1 \nu'_{1}}_{\sigma'_{1}\sigma''_{1}} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right) \Gamma^{\lambda_1 \nu'_{1}}_{\sigma'_{1}\sigma''_{1}} \left(\epsilon_\sigma, \epsilon_{\sigma''} \right) \delta_{\nu,\nu'} \delta_{\hat{\nu},\hat{\nu'}} \\
\times \Gamma^{\lambda_{1}' \nu'_{1}}_{\sigma'_{1}\sigma''_{1}} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right) \hat{X}^{\lambda_{1}' \nu'_{1}}_{\sigma'_{1}\sigma''_{1}} \left(\epsilon_\sigma, \epsilon_{\sigma''} \right),
\]

(A-4)

where \(\Gamma^{\lambda \nu}_{\sigma' \sigma''} (\epsilon_\sigma, \epsilon_{\sigma''})\) is the vertex part, which can be calculated in the effective impurity system.\(^{(20)}\) The two-particle Green function without the vertex correction is defined by

\[
\hat{X}^{\lambda \nu}_{\sigma' \sigma''} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right) = -\hat{G}^{\lambda \nu}_{\sigma' \sigma''} (\epsilon_\sigma + i\nu) \hat{G}^{\lambda \nu}_{\sigma' \sigma''} (\epsilon_{\sigma''}),
\]

(A-5)

where \(\hat{G}^{\lambda \nu}_{\sigma' \sigma''} (\epsilon_\sigma)\) is given in eq (3). Taking the summation over the wave vectors \(k, k'\) and the Matsubara frequencies \(n, n'\) in eq. (A-4), we obtain the dynamical susceptibility for c electrons as

\[
\hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\nu \nu') = \frac{1}{2} \int_0^{\beta} d\tau (\hat{n}_{\sigma' \sigma''}(\tau) \hat{n}_{\sigma' \sigma''}(\nu \nu') e^{i\nu \tau})
\]

where \(\hat{n}_{\sigma' \sigma''}(\nu \nu') = n_{\sigma' \nu'} - \langle n_{\sigma' \nu'} \rangle \) and \(\langle n_{\sigma' \nu'} \rangle = \sqrt{2N} \sum_k c_k^{\dagger}_{\sigma'} c_{k \sigma''}\).

According to the earlier study,\(^{(26)}\) we can extract the \(f-f\) correlation function from the two-particle Green function in eq. (A-1). Here we show that it is also possible to calculate the \(c-f\) correlation function in a similar manner. For this purpose, it is convenient to use the following identity instead of eq. (A-1):

\[
\hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\lambda \nu \lambda' \nu') (\tau_1, \tau_2, \tau_3, \tau_4) \\
= \hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\lambda \nu \lambda' \nu') (\tau_1, \tau_2, \tau_3, \tau_4) \\
- \langle T_c c_{k, k \sigma'}^\dagger (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma'}^\dagger (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma''} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma''}^\dagger (\tau_1) j_{k, k \sigma'} (\tau_2) \rangle \\
- \langle T_c c_{k, k \sigma''}^\dagger (\tau_3) j_{k, k \sigma'} (\tau_2) \rangle \\
- \langle T_c c_{k, k \sigma'} (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma'} (\tau_3) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle.
\]

(A-7)

The second term of the right hand side is the Fourier transform of eq. (A-5). We use eq. (A-7) instead of eq. (A-1) simply for easier derivation of the formula. Differentiating both sides of eq. (A-7) with respect to \(\tau_1\) and \(\tau_4\), we obtain

\[
\frac{\partial^2}{\partial \tau_1^2} \hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\nu \nu') = \left\{ \frac{1}{4} \int_0^{\beta} d\tau (T_c c_{k, k \sigma'}^\dagger (\tau) c_{k, k \sigma''} (\tau) j_{k, k \sigma'} (\tau)) \\
- \langle T_c c_{k, k \sigma'}^\dagger (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma'}^\dagger (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma''} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma''}^\dagger (\tau_1) j_{k, k \sigma'} (\tau_2) \rangle \\
- \langle T_c c_{k, k \sigma''}^\dagger (\tau_3) j_{k, k \sigma'} (\tau_2) \rangle \\
- \langle T_c c_{k, k \sigma'} (\tau_1) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle \\
- \langle T_c c_{k, k \sigma'} (\tau_3) c_{k, k \sigma''} (\tau_2) j_{k, k \sigma'} (\tau_3) \rangle \right\} e^{i\nu \tau}.
\]

(A-8)

where \(j_{k, k \sigma}^\dagger\) and \(j_{k, k \sigma}^\dagger\) are defined by

\[
j_{k, k \sigma}^\dagger = \frac{\partial c_{k, k \sigma} (\tau)}{\partial \tau} = [H, c_{k, k \sigma}],
\]

(A-9)

\[
j_{k, k \sigma}^\dagger = \frac{\partial c_{k, k \sigma} (\tau)}{\partial \tau} = -j_{k, k \sigma}^\dagger.
\]

(A-10)

On the other hand, the left hand side of eq. (A-8) can be expressed by using eq. (A-3) as

\[
\frac{\partial^2}{\partial \tau_1^2} \hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\nu \nu') = \frac{1}{2} \sum_{\nu \nu'} \langle \epsilon_\sigma + \nu \rangle \hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\nu \nu') \hat{X}^{\lambda \nu}_{\sigma' \sigma''} (\nu \nu') e^{i\nu \tau}.
\]

(A-11)

The anticommutation relations in eq. (A-13) are then calculated in the Kondo lattice as

\[
\left(c_{k, k \sigma}^\dagger, j_{k, k \sigma} \right) = -\left(\mu + \frac{J}{2} \right) \delta_{\sigma', \sigma''} + \frac{1}{N/2} \sum_{\nu \nu' \nu''} X_{\nu \nu' \nu''}^\lambda.
\]

(A-14)

Substituting eq. (A-14) into eq. (A-13) and taking the summation over the wave vectors \(k, k'\), we obtain the c-f component of the local dynamical susceptibility as

\[
\hat{X}^{\lambda \nu}_{\sigma' \sigma''} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right) = \frac{1}{4} \int_0^{\beta} d\tau \hat{n}_{\sigma' \sigma''} (\nu \nu') e^{i\nu \tau}.
\]

(A-15)

where we have defined \(\hat{X}^{\lambda \nu}_{\sigma' \sigma''} = X^{\lambda \nu}_{\sigma' \sigma''} - \left(X^{\lambda \nu}_{\sigma' \sigma''} \right)\) and \(X^{\lambda \nu}_{\sigma' \sigma''} = \frac{1}{2} \sum_{\nu = -\infty}^{\nu = \infty} \hat{X}^{\lambda \nu}_{\sigma' \sigma''} \left(\epsilon_\sigma, \epsilon_{\sigma''}; \nu \right)\).
Similarly, we can also derive f-c component. In this case, we take the derivative of eq. (A-7) with respect to τ_1 and τ_2, and obtain
\[
\chi^{A'\nu}_{fc,\tau_1\tau_2\sigma_1\sigma_2}(i\nu_m) = \frac{1}{2J} \frac{1}{N^2/2} \sum_{kk'} \sum_{n'\rightarrow\infty} \sum_{n\rightarrow\infty} \epsilon_2^{A'\nu} \epsilon_2^{\lambda\nu} \chi_{c,c,k\kappa',\sigma_1\sigma_2}(i\nu_m, i\epsilon_{\sigma'}; i\nu_m).
\]
(A-16)

Furthermore, if we differentiate eq. (A-7) with respect to $\tau_1, \tau_2, \tau_3, \tau_4$, we derive the f-f component as
\[
\chi^{A'\nu}_{ff,\tau_1\tau_2\tau_3\tau_4}(i\nu_m) = \frac{1}{2J} \frac{1}{N^2/2} \sum_{kk'} \sum_{n'\rightarrow\infty} \sum_{n\rightarrow\infty} \epsilon_1^{A'\nu} \epsilon_1^{\lambda\nu} \chi_{c,c,k\kappa',\sigma_1\sigma_2}(i\nu_m, i\epsilon_{\sigma'}; i\nu_m).
\]
(A-17)

Thus we derive $\chi_{fc,fc}$ and χ_{ff} by taking the high-frequency limit of the two-particle Green function (A-4) for e electrons.

We now consider the static and uniform components of eqs. (A-6) and (A-15–A-17) which are given by
\[
\chi^{ee',\tau_1\tau_2\sigma_1\sigma_2}(i\nu_m = 0) = \frac{1}{2} \sum_{A,A'} \chi^{A'\nu}_{ee',\tau_1\tau_2\sigma_1\sigma_2}(i\nu_m = 0).
\]
(A-18)

The label e or e' corresponds to c or f. We define the uniform susceptibility by
\[
\chi^{ee'} = \frac{1}{\sqrt{2N}} \sum_{A,A'} \int_0^\beta d\tau \langle S^{\alpha_1}_{e'}(\tau) S_{e'}^{\alpha_1} \rangle,
\]
(A-19)

where $\langle S^{\alpha_1}_{e'} \rangle = S^{\alpha_1}_{e'} - \langle S^{\alpha_1}_{e'} \rangle$ and $\langle S^{\alpha_1}_{e'} \rangle = \sqrt{2N} \sum_{\kappa,\alpha,\kappa'} S^{\alpha_1}_{\kappa,e}$ with $\alpha, \alpha' = x, y, z$. If the AFM moments point to the z direction, the longitudinal and transverse susceptibilities are calculated as
\[
\chi^{zz}_{ee'} = \sum_\sigma \langle \chi^{ee',\alpha_1\sigma'r}\sigma_1 - \chi^{ee',\sigma\sigma_1}\sigma_1 \rangle,
\]
(A-20)
\[
\chi^{xx}_{ee'} = \sum_\sigma \langle \chi^{ee',\alpha_1\sigma'r}\sigma_1 + \chi^{ee',\sigma\sigma_1}\sigma_1 \rangle.
\]
(A-21)

Finally the total magnetic susceptibility is given by
\[
\chi^{2\text{part}}_{\text{longi}} = \sum_{ee'} \chi^{zz}_{ee'},
\]
(A-22)
\[
\chi^{2\text{part}}_{\text{trans}} = \sum_{ee'} \chi^{zz}_{ee'}.
\]
(A-23)

Section 4 provides the numerical results for the susceptibilities derived from eqs. (A-20–A-23).

1) T. Nishioika, Y. Kawamura, T. Takesaka, R. Kobayashi, H. Kataki, M. Matsumura, K. Kodama, K. Matsubayashi, and Y. Uwatoke: Phys. Soc. Jpn. 78 (2009) 123705.

2) Y. Muro, J. Kajino, K. Umeo, K. Nishimoto, M. Takabatake, Phys. Rev. B 81 (2010) 214401.