SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients

Xi Liu,1,8 Yan-Zi Wen,1,8 Zi-Liang Huang,1,8 Xia Shen,1,6,7 Jun-Hao Wang,1 Yi-Hai Luo,1 Wen-Xin Chen,1 Zhao-Rong Lun,1 Hui-Bin Li,1 Liang-Hu Qu,1 Hong Shan,3,4,5 and Ling-Ling Zheng1

1MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; 2Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China; 3Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China; 4Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China; 5Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China; 6Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, P. R. China; 7Center for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3′CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (snRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.

Received 2 March 2021; accepted 29 December 2021; https://doi.org/10.1016/j.omtn.2021.12.034.

*These authors contributed equally

Correspondence: Liang-Hu Qu, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
E-mail: lssqhl@mail.sysu.edu.cn

Correspondence: Hong Shan, Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.
E-mail: shanhong@mail.sysu.edu.cn

Correspondence: Ling-Ling Zheng, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
E-mail: zhengll33@mail.sysu.edu.cn
genes for virus entry, regulate virus replication or translation cofactors, affect initial or adaptive immune genes, silence genes triggering cell apoptosis, or promote/inhibit viral replication by targeting the viral genome sequence. To date, there have been many studies on the abnormal expression of miRNAs in infectious diseases and the pathogenic mechanism, including enterovirus 71 (EV71) infections, sepsis, chronic hepatitis C, and various infectious diseases, implying that they have potential clinical applications in infectious diseases in the future. Recently, a "nose cocktail" of miRNA was suggested to treat COVID-19 patients.

In addition to miRNAs, tRNA-derived small RNAs (tsRNAs) are a novel kind of stable functional small molecule produced by reprocessing the precursors or mature transcripts of tRNA whose levels have been found to be induced by stress conditions (including temperature, starvation, virus infection, and cancer). For instance, tsRNA has been found to be induced under stress conditions; thus we next analyzed the characteristics of these small RNAs and their potential clinical applications in infectious diseases in the future. Recently, we performed high-throughput sequencing to identify the repertoire of small RNAs expressed in the blood of moderate/severe COVID-19 patients compared with that of healthy controls and predicted the potential post-transcriptional regulatory network of the significantly changed small RNAs.

RESULTS

The vast majority of small RNAs in COVID-19 patients are 21 nt and 22 nt

We first collected blood samples from 10 COVID-19 patients and 4 healthy people. COVID-19 patients were divided into moderate and severe case groups according to the clinical classification, which is shown in Table S1. Next, we extracted small RNAs from each sample's cell lysates and performed high-throughput sequencing (Figure 1A). Raw data were subjected to adaptor trimming and quality control analysis (Table 1). The majority (nearly 99%) of reads originated from humans (Table 1), while small RNAs barely matched the SARS-CoV-2 genome.

We next analyzed the characteristics of these small RNAs and found that small RNAs with 21 nt and 22 nt lengths accounted for the largest proportion in each group (Figure 1B). Further results showed that 97.05% of all small RNAs were miRNAs. Interestingly, a small batch (accounting for 0.55%) of 22 nt tsRNAs gradually increased in abundance with the progression of the disease. We next investigated the changes in these small RNAs in different groups of samples.

The levels of stress-induced tsRNAs are significantly upregulated after SARS-CoV-2 infection

All the identified small RNAs were compared among the different groups. To our surprise, the most significantly changed small RNAs were tsRNAs, and their maximum change in expression exceeded 200-fold (Figures 2A and 2B). In addition, the expression of these tsRNAs was significantly upregulated in the patients after SARS-CoV-2 infection, which was even more dramatic in the severe group (Figures 2A and 2B). For example, the expression level of tRNA-Ala tsRNAs in healthy people was very low (mean RPM [reads per million mapped reads] = 33.82). However, in the COVID-19 patients, its average expression level (mean RPM value) rose to 321.61 (Figure 2C). It was more surprising that tsRNAs derived from tRNA-Val and tRNA-Asp were almost not expressed in either healthy controls or moderate cases (mean RPM = 0), but were significantly highly expressed in severe cases (mean RPM = 692.23 and 1735.43, p value = 1.26 × 10⁻³ and 1.38 × 10⁻³) (Figures 2D and 2E).

tsRNAs can be divided into five types according to their different sources, tRF-5 (5′ tRF), tRF-3 (3′ CCA tRF), tRF-1 (3′ trailer tRF), tRF-i (internal tRF), and tRH (tRNA half), each of which has a related function. To investigate whether the upregulated tsRNAs in COVID-19 patients are type specific, the source and length distribution of tsRNAs were further analyzed. To our surprise, the majority of 22 nt tsRNAs were derived from tRF-3 (3′CCA tRF), and their expression increased by approximately 20% in severe cases (Figures 2F–2H).

In particular, the expression level of tsRNAs derived from the 3′CCA region of tRNA-Gly (Figure 3A and 3B) gradually increased with the development of the disease (Figure 3C). Compared with those in healthy controls, their levels were upregulated more than 4-fold in severe patients according to the sequencing data (Figure 3C) and more than 200-fold according to qRT-PCR results (Figure 3D). More interestingly, we analyzed 30 clinical characteristics of patients (Table S1) and finally found that in patients with a high level of the inflammation marker C-reactive protein (CRP), this tsRNA was significantly upregulated (logFC = 1.28, p value = 7.9 × 10⁻³) (Figure 3E). The levels of tsRNA are often induced under stress conditions; thus we next wanted to know, in addition to these stress-induced tsRNAs, what role does the large number of miRNAs play in disease?

Highly expressed miRNAs are significantly downregulated in severe COVID-19 patients

Principal component analysis results showed that, based on the expression level of miRNAs, 10 COVID-19 patients and 4 healthy people could be clearly divided into different groups (Figure 4A). For COVID-19 patients, moderate and severe cases could be basically grouped into two categories, indicating that the expression level of miRNAs in the blood was significantly different between COVID-19 patients and healthy controls, which was consistent with the clinical classification of patients. To illustrate that the expression level of these miRNAs is mainly driven by the disease rather than sex, treatment methods, or other factors, we conducted different regression modeling..
Figure 1. Small RNA analysis and length distribution
(A) Flowchart of the small RNA extraction, preparation, sequencing, and analysis process. (B) Histogram of the length distribution of small RNAs in each group of samples, in which the types of small RNAs with lengths of 21 nt and 22 nt are displayed separately.
treatment effects on the miRNA expressions (Figure S1). Neverthe-
less, the miRNA expressions and sex and some slight
suggested as a potential therapeutic target for COVID-19 manage-
Furthermore, these miRNAs were divided into high- and low-expres-
sion groups according to their average expression levels compared
with the middle of the expression range of these miRNAs (Figure 4B).
Interestingly, six highly expressed miRNAs all were downregulated in
severe patients. We therefore named these miRNAs HI-DOWN
(miRNAs (highly expressed and signifi-
cantly downregulated in severe
patients).)

Table 1. Reads number and alignment rate in each sample

Sample ID	Clinical type	Total number of reads	Mapped to human genome	Overall alignment rate
H1	Healthy	26,130,020	25,932,012	99.24
H2	Healthy	33,220,438	33,081,293	99.58
H3	Healthy	25,507,591	25,417,197	99.65
H4	Healthy	27,511,432	27,383,911	99.54
M1	Moderate	42,539,283	42,341,314	99.53
M2	Moderate	32,905,763	32,716,049	99.42
M3	Moderate	23,063,364	22,936,188	99.45
M4	Moderate	42,938,961	42,383,435	98.71
M5	Moderate	28,662,930	28,534,787	99.55
M6	Moderate	24,586,678	24,432,128	99.37
S1	Severe	19,635,465	19,413,071	98.88
S2	Severe	22,074,028	21,882,645	99.13
S3	Severe	22,220,577	21,940,039	98.74
S4	Severe	27,059,405	26,923,097	99.5

(Figure S1). Across the miRNAs tested, we observed no association be-
between the miRNA expressions and sex and some slight γ-globulin
treatment effects on the miRNA expressions (Figure S1A). Neverthe-
less, in a joint regression including these factors as covariates in the
patients, the γ-globulin treatment effects on the miRNA expressions
all can be captured by the disease status. Namely, the variation in
the miRNA expressions is mainly driven by the disease status.

Furthermore, these miRNAs were divided into high- and low-expres-
sion groups according to their average expression levels compared
with the middle of the expression range of these miRNAs (Figure 4B).
Interestingly, six highly expressed miRNAs all were downregulated in
severe patients. We therefore named these miRNAs HI-DOWN
(miRNAs (highly expressed and significantly downregulated in severe
patients).

**Target molecules of differentially expressed miRNAs are
enriched in the endoplasmic reticulum stress pathway**

Based on miRNA function, we investigated 6,053 experimentally vali-
dated target genes of the differentially expressed miRNAs and built
interaction networks among them. Furthermore, Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis revealed that these genes were significantly
enriched in the endoplasmic reticulum (ER) lumen (Figure 5A) and
involved in the "protein digestion and absorption" and "protein pro-
cessing in ER" pathways (Figure 5B).

Studies have found that coronavirus proteins can cause damage to the
ER and affect the secretory pathway.27,28 In addition, the ER has been
suggested as a potential therapeutic target for COVID-19 manage-
ment.29,30 We therefore speculated whether the activation of ER-
related pathways may be regulated by miRNAs. We thus established
the regulatory network of target genes involved in key signaling path-
ways in the ER lumen. Surprisingly, the hub miRNAs (degree >4) in
the network all were consistent with the HI-DOWN miRNAs (Fig-
ure 5C), whose expression was found to be downregulated in severe
patients (Figure 5D). For instance, miR-335-5p may regulate 24
ER-related genes, including sensor genes in the three downstream
pathways of the unfolded protein response (UPR), including the
PERK pathway, ATF6 pathway, and IRE1 pathway (Figures 5 and
S2). Furthermore, the enrichment analysis of the target genes of all
differentially expressed miRNAs showed that they were involved in
a series of downstream signaling pathways induced by the stress
response, including inflammation and apoptosis pathways, such as
the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, p38
mitogen-activated protein kinase (MAPK) pathway, Janus kinase
(JAK)-signal transducer and activator of transcription (STAT)
signaling pathway, and transforming growth factor β (TGF-β)
signaling pathway (Figure S3).

DISCUSSION

SARS-CoV-2 has posed a tremendous threat to human health. This
study revealed the key molecules of host cells in the response against
viruses from the perspective of small RNAs. We found two types of
small RNAs with significant changes, tRNAs and miRNAs, which
are both related to the stress response and downstream pathway
changes, including inflammation, immunity, and even apoptosis.
Upon virus infection, the internal and external environment of cells
undergoes drastic changes, which might cause the cell to deviate
from homeostasis or even induce programmed cell death.31 Our
research indicates that small RNAs are involved in these severe stress
and response processes. Although we are using whole-blood samples,
which contains multiple cell types, we believe snRNA-induced stress
response is a common pathway in cells and the affection of these
stress-related small RNAs should be shared by most types of cells.
Future research can sort cells on this basis and then study the changes
in these small RNAs separately to verify our conclusion. In the future,
in-depth verification of the expression and function of these small
RNAs will be needed to clarify the role and mechanisms of small
RNAs in the occurrence and development of COVID-19.

The most recent studies have shown that miRNAs can be used as in-
dicator molecules for detecting infections by a variety of pathogens,32
including Hendra virus infection,33 HIV infection,34 tuberculosis,35
malaria,36 and Ebola.37 Our study revealed that the expression pro-
file of miRNAs can accurately distinguish different groups of COVID-19
patients. This finding was consistent with another study showing that
miRNAs can predict the prognosis of mild/severe cases and can also
detect asymptomatic infections in HBsAg carriers and chronic hep-
atitis B patients.38

As the most important type of sncRNAs in cells, miRNAs are
estimated to regulate 60% of all protein-coding genes at the post-trans-
criptional level39 and therefore play an important role in cell develop-
ment, differentiation, and immune processes. In this study, we
found that some HI-DOWN miRNAs in the blood of COVID-19 pa-
tients have been previously reported to have antiviral functions. For
example, miR-181 can target the receptor gene CD163 to affect virus entry,40 miR-130 can regulate hepatitis C virus (HCV) cofactors and affect its replication,41 miR-24 can directly interact with the viral genome to inhibit its translation,42 and miR-29 is an antiviral factor induced by IL-21 in CD4 T cells.43 In addition, the expression level of serum miR-29 is negatively correlated with liver fibrotic stages and necroinflammation grades in patients with chronic hepatitis B virus (HBV) infection.44 Studies have confirmed that miR-335 directly regulates the stress response.45,46

The UPR is induced by ER stress caused by the accumulation of misfolded protein, which is highly activated after virus infection.47 Based on the results that miRNAs are enriched in the ER stress pathway, it can be speculated that after SARS-CoV-2 infection, cells may downregulate the expression of a series of miRNAs to activate the downstream pathway of the UPR. Previous studies have revealed that the p38 MAPK pathway is involved in viral replication48 and that the downregulation of miR-29 expression is involved in the activation of caspases (CASP) and affects cell apoptosis.49 In addition, the TGF-β signaling pathway, affected by miRNAs, can also induce apoptosis.50 The activation of these pathways further amplifies the stress response of cells. As all differentially expressed genes are involved in a series of downstream signaling pathways of stress, we believe that miRNA-target genes should control the specificity, timing, and severity of the cell response to SARS-CoV-2 infection stresses. Considering the extensive and cascade amplification effect of miRNAs on target regulation, the use of miRNAs for the treatment and monitoring of infectious diseases can be considered, which may also lead to a different way to treat COVID-19.”

Our research revealed that small RNAs from the blood of COVID-19 patients are mainly produced by the human genome, not by the SARS-CoV-2 genome. Growing evidence has shown that a variety of viruses can produce small viral RNAs (svRNAs), including influenza,51 EV71,52 hepatitis A virus (HAV),53 West Nile virus,54 and SARS-CoV.55 These svRNAs can use the host’s RNAi mechanism to control the mRNAs in cells, which in turn affects the fate of both viruses and host cells. In addition, some studies have speculated on potential svRNAs derived from the SARS-CoV-2 genome by analysis of the virus genome sequence.56–58 In our transcriptome data, we could barely detect small RNAs from SARS-CoV-2, which may be caused by two hypothetical possibilities. First, SARS-CoV-2 cannot produce small RNAs after entering host cells. Second, SARS-CoV-2 can produce svRNAs only in the lungs or other invading tissues but cannot release them into the
blood, or its production and release are affected by other factors. In the future, it will be necessary to detect the presence of SARS-CoV-2 small RNA in cell lines or lung tissues to verify the above hypothesis.

We conducted a “power analysis” to investigate whether the existing number of duplicate samples in our study can support our conclusion. The results of this type of analysis have been widely recognized. We first downloaded the data of Zheng et al. on miRNA analysis of COVID-19 patients during recovery, which contains peripheral blood mononuclear cell (PBMC) data from 6 mild, 7 moderate, and 5 severe patient blood samples. We performed the power analysis of the three group sets separately (moderate versus mild, severe versus mild, and severe versus moderate) using the ssize.fdr R package. The results showed that along with the increase in sample size, the power value also gradually increased (Figure S4A). When the sample size was 4, the power value of each group ranged from 0.81 to 0.92. In general, when the power value is greater than 0.8, the conclusion is considered plausible. It follows that for the analysis of blood small RNA data for COVID-19, to obtain reliable conclusions, the minimum number of samples in each group should be 4. The number of samples in each group in our study was 4 healthy, 6 moderate, and 4 severe. Theoretically, the power value obtained by each group should be greater than 0.8. To prove this, we next performed a power analysis between groups of our research data (Figure S4B). The results showed that the power values of our results were 0.95 (moderate versus healthy), 0.88 (severe versus healthy), and 0.97 (severe versus moderate), which are all greater than 0.8. Therefore, we believe that the sample size used in our study supports our conclusions. However, additional samples and experiments are needed before conducting clinical research. We will continue to follow up the progress in this area and hope that through the collaboration of researchers worldwide, we can finally reveal the mechanism of SARS-CoV-2 triggering the body’s response from various perspectives.

MATERIALS AND METHODS

COVID-19 patient clinical information collection

The clinical data of patients with COVID-19 treated in the Fifth Affiliated Hospital of Sun Yat-sen University in Zhuhai from January 17, 2020, to March 2, 2020, were collected. In this retrospective study, the clinical, biochemical, and immunological characteristics of 10 patients with COVID-19 were analyzed. These patients were classified as severe (4 cases) or moderate (6 cases). We diagnosed COVID-19 in accordance with the criteria in the World Health Organization (WHO) interim guidelines and the Diagnosis and Treatment Plan for Novel Coronavirus Pneumonia by the National Health Commission (seventh trial version).
Figure 4. The expression profile of miRNAs in healthy controls, moderate patients, and severe patients

(A) Principal component analysis of miRNAs in different groups of samples. (B) (Left) Heatmap of the expression level of miRNAs in each sample. The unit of expression value is log2RPM. The black box in the figure indicates the group of highly expressed miRNAs. Clustering was performed based on the expression value of miRNAs and split into three gene sets. (Middle) Boxplot of the expression of each miRNA in all samples. The green background indicates the low-expression miRNAs (mean value less than the mid-range), and the yellow bottom indicates the high-expression miRNAs (mean value greater than the mid-range). (Right) The names of the miRNAs and the HI-DOWN miRNAs are highlighted.
Total RNA isolation and small RNA sequencing

RNA was isolated after red blood cell lysis from peripheral blood by using TRIzol (Life Technologies, cat. 265709, CA, USA). Total RNA was isolated from cell lysates and purified using TRIzol following the manufacturer’s procedure. After quality inspection with an Agilent 2100 Bioanalyzer (Agilent, cat. G2939AA, CA, USA) and Qubit assay tubes (Life Technologies, cat. 1604220, CA, USA), 10 ng of total miRNA was used as the input for library preparation with a NEXTag Small RNA-Seq Kit v3 (Bio Scientific Corporation, cat. NOVA-5132-05, TX, USA) following the manufacturer’s instructions. We added a linker to the 3’ end and then added another linker to the 5’ end after removing and inactivating the excess 3’ linker. miRNAs with adaptors were reverse transcribed to generate cDNA by reverse transcription reagent. After purification by NEXTag Cleanup Beads (Bio Scientific...
Quality control and adaptor trimming
The raw FASTQ files were subjected to adaptor trimming and low-quality and short read (<18 bp) removal using Fastp 0.20.1. The human reference genome GRCh38 and SARS-CoV-2 reference genome NC_045512.2 were indexed with Bowtie2’s default indexing parameters. For alignment, all clean reads were mapped to the human and SARS-CoV-2 reference genomes using Bowtie2 with default parameters. Bam files were transformed and sorted by Samtools 1.9.

miRNA expression quantification
We used miRDeep2 v.2.0.1.3 to process and quantify the clean reads. The human genome (assembly GRCh38) and human miRBase v.22 precursor and mature miRNA sequences were used as reference files. The clean reads were processed with the mapper.pl script. The reads shorter than 18 nt were discarded. Quantification and expression profiling of processed reads were performed by the quantifier.pl script. We allowed three mismatches when mapping reads to precursors. Counts of reads mapping to each miRBase mature miRNA were obtained from the miRDeep2 output and normalized by its default method.

tsRNA identification and quantification
tsRNA expression profiles were constructed using the tRFinder tool, which we established previously. Briefly, the clean data were mapped to the human genome (assembly GRCh38), and the unmatched data were mapped to tRNA precursors. According to the length and location of these tRFs, we classified them as tRF-5, tRF-3, tRF-1, or tRF-1. The read counts were normalized into RPM values. The RPM is evaluated using Equation 1:

$$\text{RPM} = \frac{R \times 10^6}{N}$$

where R represents the number of reads mapped to a particular small RNA, and N represents the total number of all mapped reads from given library. The power calculation was performed with the ssize.fdr R package. The power calculation was performed with the ssize.twoSamp function. It was assumed that the actual difference between the average expression in the different group pairs as well as the standard deviations of the expression were identical for all miRNAs. The common value of the standard deviations was estimated from the data using the function sd_pooled (effectsize R package) and conservatively set to the 90th percentile of the residual standard deviations of gene expression. The proportion of non-differentially expressed genes (\(\pi_0\)) was estimated using the function pi0est (qvalue R package) on the vector of p values obtained from the differential expression analysis in the different group pairs, and the mean of \(\pi_0\) was used for power calculation. Both datasets used 3 as the delta argument, and a false discovery rate (FDR) controlled at 10% was used. Other arguments of ssize.twoSamp were set to default.

Regression modeling
The function lm is used to fit linear models in R for regression. In univariable regressions of the miRNA expressions on \(\gamma\)-globulin treatment and multivariable regression, healthy individuals are excluded in order to clarify the effect of treatment on the disease. The visualization is done with function qplot.

Ethical approval and consent to participate
The study was approved by the Research Ethics Committee at the Fifth Affiliated Hospital of Sun Yat-Sen University to allow retrospective access to patients’ records and files (No. ZDWY2020 Lunzi No●K22-1).

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.omtn.2021.12.034.

ACKNOWLEDGMENTS
This research was supported by the National Natural Science Foundation of China (31771459, 31370791, 31471223, 91440110, 91739103, 91739203).

31770879, and 81702945), the State Key Laboratory of Biocontrol (33000-32030732), Guangdong Province (2021A151010542), and Fundamental Research Funds for the Central Universities (14lgic18). This research was supported in part by the Guangdong Province Key Laboratory of Computational Science (13lgic05), the Guangdong Province Computational Science Innovative Research Team (14lgic18), the project of Science and Technology New Star in Zhubiang Guangzhou city (201806010151), the “Three Major” constructions emergency projects for the new coronavirus prevention and control in 2020 of Sun Yat-sen University, the Natural Science Foundation of Guangdong Province (2018A030313187), and the Zhuhai “SARS-CoV-2 Infection Prevention and Control” Emergency Science and Technology Research Project. Thanks to Zhao Xiuyu for her help on the Graphical Abstract and Bin Li for his great advice about the methods.

AUTHOR CONTRIBUTIONS
Conceptualization and Data curation: L.-L.Z., H.S., and L.-H.Q.; Formal analysis and Writing – original draft: X.L., Y.-Z.W.; Investigation of the experiments: X.L., Y.-Z.W., Z.-L.H., J.-H.W., Y.-H.L., W.-X.C., X.S.; Validation and investigation: Z.-R.L., H.-B.L. All authors have read and agreed to the published version of the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. World Health, O (2020). Clinical Management of COVID-19: Interim Guidance, 27 May 2020 (World Health Organization).
2. Tay, M.Z., Poh, C.M., Renia, L., MacAry, P.A., and Ng, L.F.P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374.
3. Siam, M., Abedin, S., Ahsan, A., Hannan, N., and Nishat, M.S. (2020). Pathophysiological mechanisms of disease severity in COVID-19: an update.(Special Issue: covid-19: conventional therapies, fates, and mechanisms.) J. Adv. Biotechnol. Exp. Ther. 68–78.
4. Verhoef, P.A., Kannan, S., Sturgill, J.L., Tucker, E.W., Morris, P.E., Miller, A.C., Sexton, T.R., Koyner, J.L., Hejal, R., Brakenridge, S.C., et al. (2021). Severe acute respiratory syndrome-associated coronavirus 2 infection and organ dysfunction in the ICU: opportunities for translational research. Crit. Care Explor. 3, e0374.
5. Calado, M.R., da Silva Santana, C.E., and Crovella, S. (2021). Do inflammasome impact COVID-19 severity? Viruses Disease 32, 1–11.
6. Ali, N. (2020). Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 92, 2409–2411.
7. Misrazi, R., Mahdavi, F., Badrzadeh, F., Hosseini-Fard, S.R., Heidary, M., Joda, A.S., Mohammadi, T., Roshani, M., Yousefimashoof, R., Keyvani, H., et al. (2021). The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Int. Immunopharmacol. 90, 107204.
8. Girardi, E., Lopez, P., and Pfeffer, S. (2018). On the importance of host MicroRNAs during viral infection. Front. Genet. 9, 439.
9. Ho, R.C., Yu, I.S., Lu, L.F., Rudensky, A., Chen, H.Y., Tsai, C.W., Chang, Y.L., Wu, C.T., Chang, Y.L., Shih, S.R., et al. (2014). Inhibition of mir-146a prevents enterovirus-induced death by restoring the production of type 1 interferon. Nat. Commun. 5, 3344.
10. Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., Wang, Y., Caldwell, C.C., Peng, T., Zingarelli, B., et al. (2015). Exosomal mir-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci. Rep. 5, 13721.
11. van der Ree, M.H., van der Meer, A.I., de Breijne, J., Maan, R., van Vliet, A., Welzel, T.M., Zeuzem, S., Lawitz, E.J., Rodriguez-Torres, M., Kupcova, V., et al. (2014). Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir. Res. 111, 53–59.
12. van der Ree, M.H., de Vree, J.M., Stelma, F., Willemsen, S., van der Valk, M., Rietdijk, S., Molenkamp, R., Schinkel, J., van Nuenen, A.C., Beuers, U., et al. (2017). Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389, 709–717.
13. Stelma, F., van der Ree, M.H., Sinning, M.J., Brown, A., Swadling, L., de Vree, J.M.L., Willemsen, S.B., van der Valk, M., Grunt, P., Neben, S., et al. (2017). Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. Hepatology 66, 57–68.
14. Drury, R.E., O’Connor, D., and Pollard, A.J. (2017). The clinical application of MicroRNAs in infectious disease. Front. Immunol. 8, 1182.
15. Pulzele, S., Sahay, B., Yusufu, I., Lee, T.J., Sharma, A., Kolhe, R., and Isales, C.M. (2020). COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis. 11, 509–522.
16. Li, S., Xu, Z., and Sheng, J. (2018). tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes 9, 246.
17. Li, X., Loo, J., Zhou, H., Liao, J.Y., Ma, L.M., Chen, Y.Q., and Qu, L.H. (2008). Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res. 36, 6048–6055.
18. Liao, J.Y., Guo, Y.H., Zheng, L.L., Li, Y., Xu, W.L., Zhang, Y.C., Zhou, H., Lun, Z.R., Ayala, F.J., and Qu, L.H. (2014). Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc. Natl. Acad. Sci. U S A 111, 14159–14164.
19. Deng, J., Pawson, R.N., Chen, Y., Cheng, Z., Liu, G., Phan, T., Deng, X., Zhou, J., Lee, I., Lee, Y.S., et al. (2015). Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol. Ther. 23, 1622–1629.
20. Wang, Q., Lee, I., Ren, J., Ayaj, S.S., Lee, Y.S., and Bao, X. (2013). Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther. 21, 368–379.
21. Keystone, E.C., Taylor, P.C., Tanaka, Y., Gaich, C., DeLozier, A.M., Dudek, A., Zamora, J.V., Cobos, J.A.C., Rooney, T., Bono, S., et al. (2017). Patient-reported outcomes from a phase 3 study of baricitinib versus placebo or adalimumab in rheumatoid arthritis: secondary analyses from the RA-BEAM study. Ann. Rheum. Dis. 75, 1853–1861.
22. Schorn, A.J., Gutbrod, M.L., LeBlanc, C., and Martinsen, R. (2017). LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e1.
23. Roggero, K., Guillanti, A., Corradin, A., Sharma, V.K., De Bellis, G., Corti, G., Grassi, A., Zanovello, P., Bronte, V., Cicinale, V., et al. (2014). Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for tRNA fragment as a primer for reverse transcriptase. J. Virol. 88, 3612–3622.
24. Cao, J., Cowan, D.B., and Wang, D.Z. (2020). tRNA-derived small RNAs and their potential roles in cardiac hypertrophy. Front. Pharmacol. 11, 572941.
25. Xu, W.L., Yang, Y., Wang, Y.D., Qu, L.H., and Zheng, L.L. (2017). Computational approaches to tRNA-derived small RNAs. Noncoding RNA 3, 2.
26. Zheng, L.L., Xu, W.L., Liu, S., Sun, W.J., Li, J.H., Wu, J., Yang, J.H., and Qu, L.H. (2016). RF3Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res. 44, W185–W193.
27. Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., and Jin, D.Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 80, 9279–9287.
28. Gordon, D.E., Jiang, G.M., Boubadou, M., Xu, J., Obernir, K., White, K.M., O’Meara, M.J., Rezeli, V.V., Guo, J.Z., Swaney, D.L., et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468.
29. Sureda, A., Alizadeh, J., Nabavi, S.F., Berindan-Neagoe, I., Cismaru, C.A., Jeandet, P., Los, M.J., Clementi, E., Nabavi, S.M., and Ghavami, S. (2020). Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol. 862, 173288.
30. Banerjee, A., Czinn, S.I., Reiter, R.J., and Blanchard, T.G. (2020). Crosstalk between endoplasmic reticulum stress and anti-viral activities: a novel therapeutic target for COVID-19. Life Sci. 255, 117842.

31. Leung, A.K., and Sharp, P.A. (2010). MicroRNA functions in stress responses. Mol. Cell 40, 205–215.

32. Tribolet, L., Kerr, E., Cowled, C., Bean, A.D.G., Stewart, C.R., Dearley, M., and Farr, R.J. (2020). MicroRNA biomarkers for infectious diseases: from basic research to bio-sensing. Front. Microbiol. 11, 1197.

33. Stewart, C.R., Marsh, G.A., Jenkins, K.A., Gantier, M.P., Tizard, M.L., Dearnley, M., and Farr, R.J. (2010). MicroRNA functions in stress responses. Mol. Cell 40, 205–215.

34. Slattery, M.L., Mullany, L.E., Sakoda, L.C., Wolk, R.K., Samowitz, W.S., and Herrick, J.S. (2018). Dysregulated genes and miRNAs in the apoptosis pathway in colorectal cancer patients. Apoptosis 23, 237–250.

35. Zhang, X., Guo, J., Fan, S., Li, Y., Wei, L., Yang, X., Jiang, T., Chen, Z., Wang, C., Liu, J., et al. (2013). Screening and identification of six serum miRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One 8, e81076.

36. Li, J.J., Huang, M.J., Li, Z., Li, W., Wang, F., Wang, L., Li, X.L., Zhong, X., and Zou, Y. (2018). Identification of potential whole blood MicroRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling. Biochem. Biophys. Res. Commun. 506, 471–477.

37. Duy, J., Koehler, J.W., Honko, A.N., Schoepp, R.J., Gonzalez, J.P., Pitt, M.L., Mucker, E.M., Johnson, J.C., O’Hearn, A., et al. (2016). Circulating microRNA profiles of Ebola virus infection. Sci. Rep. 6, 24496.

38. Hou, X., Liang, Y., Chen, J., Wei, Y., Zeng, P., Wang, L., Lu, C., and Diao, H. (2017). Expression profiling of cellular MicroRNA in asymptomatic HBeAg carriers and chronic hepatitis B patients. Biomed. Res. Int. 2017, 6484835.

39. Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.

40. Gao, L., Guo, X.K., Wang, L., Zhang, Q., Li, N., Chen, X.X., Wang, Y., and Feng, W.H. (2013). MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRSV) infection by targeting PRSSV receptor CD163. J. Virol. 87, 8808–8812.

41. Li, Q., Lowey, B., Sodroski, C., Krishnamurthy, S., Aloo, H., Chah, H., Chiu, S., El-Diwany, R., Ghany, M.G., and Liang, T.J. (2017). Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat. Commun. 8, 1789.

42. Keeley, M.L., Storch, E.A., Dhungana, P., and Geffken, G.R. (2009). Pediatric obsessive-compulsive disorder: a Guide to assessment and treatment. Issues Ment. Health Nurs. 28, 555–574.

43. Adoro, S., Cubillos-Ruiz, J.R., Chen, X., Deruaz, M., Vrbanac, V.D., Song, M., Park, S., et al. (2015). Longitudinal transcriptome analyses show robust T cell immunity during recovery from COVID-19. Signal. Transduct. Target Ther. 5, 294.

44. Zheng, H.Y., Xu, M., Yang, C.X., Tian, R.R., Zhang, M., Li, J.J., Wang, X.C., Ding, Z.L., Li, G.M., et al. (2020). miR-335 directs combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One 15, e1000764.

45. Li, H., Handsaker, B., Wysoker, A., Marth, G., Ruan, J., Homer, N., et al. (2013). De novo assembly of human genome using single-read short-read data. Sci. Signal. 6, pe105.

46. Daniels, S.I., Sille, F.C., Goldbaum, A., Yee, B., Key, E.F., Zhang, L., Smith, M.T., and Thomas, R. (2014). Improving power to detect changes in blood miRNA expression by accounting for sources of variability in experimental designs. Cancer Epidemiol. Biomarkers Prev. 23, 2658–2666.

47. Kok, M.G.M., de Ronde, M.W.J., Moorland, P.D., Ruijter, J.M., Creemers, E.E., and ten Oever, B.R. (2010). Infection with porcine epidemic diarrhea virus (PEDV) induces microRNA expression changes. Viruses 2, 1555–1568.

48. Friedländer, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. (2011). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 57–52.

49. Kozioma, A., and Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.

50. Zheng, L.L., Xu, W.L., Liu, S., Sun, W.J., Li, J.H., Wu, J., Yang, J.H., and Qu, L.H. (2017). The MiRDeep2 Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res. 44, W185–W193.

51. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.
70. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849.
71. Chou, C.H., Shrestha, S., Yang, C.D., Chang, N.W., Lin, Y.L., Liao, K.W., Huang, W.C., Sun, T.H., Tu, S.J., Lee, W.H., et al. (2018). miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302.
72. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.
73. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.
74. Orr, M., and Liu, P. (2009). Sample size estimation while controlling false discovery rate for microarray experiments using the ssize.fdr package. R. J. 1, 47.
75. Ben-Shachar, M.S., Lüdecke, D., and Makowski, D. (2020). effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815.
76. Dabney, A., Storey, J.D., and Wares, G. (2010). Qvalue: Q-Value Estimation for False Discovery Rate Control. R Package Version 1 (Bioconductor).