Modification of the structure and composition of Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ ceramic coatings by changing the deposition conditions in O$_2$ and Ar

N Donkov1, A Zykova2,6, V Safonov2, D Kolesnikov3, I Goncharov3, S Yakovin4 and V Georgieva5

1Acad. E. Djakov Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
2Kharkov Institute of Physics and Technology, National Science Centre, Kharkov, Ukraine
3Belgorod State National Research University, Belgorod, Russia
4Department of Physical Technologies, Kharkov National University, Kharkov, Ukraine
5Acad. G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

E-mail: zykova.anya@gmail.com

Abstract. Hydroxyapatite Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O$_2$ as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.

1. Introduction

The preparation of biomaterials for bone substitution, gene delivery and tissue engineering scaffolds applications has been the object of extensive research aimed at fulfilling the clinical requirements, namely, biocompatibility, biodegradability, mechanical and tribological stability [1]. Advances have been recently made in developing nano-crystalline hydroxyapatite (Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ HAp) ceramics for orthopedic and dental applications. Orthopedic implants made of HAp and HAp-coated metal prostheses bond readily to bone and other body tissues without rejection or inflammatory reactions [2-6]. In this respect, the deposition conditions influence strongly the HAp coatings’ structure, composition and capability of promoting bone regeneration [7-9]. Parameters, such as initial target

6To whom any correspondence should be addressed.
stoichiometry [10], gas pressure, discharge power, annealing and immersion treatment conditions [11], significantly affect the characteristics of the coatings [12]. The present study’s aim was to analyze the effect of the different deposition conditions on the properties of hydroxyapatite ceramic coatings.

2. Materials and methods

Hydroxyapatite Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ films were prepared by ion-beam sputtering of a ceramic HAp target in a vacuum chamber equipped with a gridless closed-drift ion-beam source allowing the use of different reactive working gases, such as O$_2$ and N$_2$ for etching, pre-cleaning and direct deposition processes [13]. The substrates were made of glass and a titanium alloy (Ti$_6$Al$_4$V).

The operating positive anode voltage was 2,0 – 4,0 kV. The working gas pressure (mixture of O$_2$ and Ar) was in the range (1 – 6)×10$^{-2}$ Pa. The ion current was in the range 130 – 150 mA, the ion current density on the target being 10 mA/cm2. The estimated coatings thickness was about 1.5 μm.

Figure 1 presents the current-voltage characteristics of the ion source at various working gas pressures. At pressures (5 – 6)×10$^{-2}$Pa, a transition takes place from the discharge acceleration mode (curves’ linear part) to the magnetron regime with stabilization of the current-voltage characteristics at current values above 100 mA. A pressure of approximately 5×10$^{-2}$ Pa ensured optimal deposition conditions.

The structure and composition of hydroxyapatite Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ films deposited by sputtering in inert Ar and reactive O$_2$ gases were studied by means of XRD and XPS. X-ray diffraction profiles of HAp were observed on a DRON-3 diffraction device with filtered Cu-Ku radiation. X-ray photoelectron spectroscopy was carried out using an ESCALAB MkII (VG Scientific) electron spectrometer at a base pressure in the chamber 5×10$^{-8}$ Pa (1×10$^{-6}$ P during the measurements) using an Al K-alpha X-ray source (excitation energy hν = 1486,6 eV). The coating surface structure and morphology was observed by AFM (Quesant Instrument Corporation, USA) and SEM (JEM 2100).

3. Results and discussion

The XRD patterns of the target’s composition and that of as-deposited and annealed HAp coatings are presented in figure 2. The target’s diffraction peaks are close to the standard HAp peak positions. The as-deposited coatings have an amorphous structure. Hydroxyapatite crystalline phases with the major HAp peaks corresponding to (002), (211), (300), (202), (310), (222), (213) reflections were observed after the as-deposited films were annealed at 600 °C and then immersed in deionized water for hydroxyl group formation [11]. We proceeded with a structural analysis of as-deposited hydroxyapatite Ca$_{10}$(PO$_4$)$_6$(OH)$_2$ films produced by sputtering in an inert (Ar) and a reactive (O$_2$) gas. We also conducted an XPS survey scan of HAp coatings and a narrow scan of the Ca2p, P2p, O1s peaks.

The survey spectrum shows the peaks of core-levels binding energy at about 438,7 eV related to Ca2s, 347,5 eV related to Ca2p, and 133,5 eV corresponding to P2p. The O1s peak was observed at 531,5 eV. The peak observed at about 284,6 eV is assigned to C1s and is due to surface contamination (figure 3). High-resolution XPS spectra of Ca (2p$_{1/2}$), (2p$_{3/2}$) and P (2p$_{3/2}$) peaks are presented in figure 4. Table 1 summarizes the differences in the atomic concentrations in HAp coatings deposited in an inert (Ar) and a reactive (O$_2$) gas.
Figure 2. XRD patterns of the target’s composition and that of as-deposited and annealed HAp coatings. a – annealed HAp (O2) coating, b – annealed HAp (Ar) coating, c – as-deposited, d – target composition.

Figure 3. XPS survey scan of HAp coatings deposited in reactive O2 gas.

Figure 4. High-resolution XPS spectra of Ca (2p1/2), (2p3/2) and P (2p3/2) peaks of HAp coatings deposited in reactive O2 gas.

Table 1. Atomic concentrations of HAp coatings deposited in Ar and in O2.

HAp samples	Peak area results (atomic concentration)	Ca/P ratio			
	P2p	O1s	Ca2p	F1s	
HAp deposited in O2	14.3	59.9	24.7	1.1	1.73
HAp deposited in Ar	13.2	58.5	26.9	1.4	2.04

The atomic ratio percentage Ca/P was 1.73 for deposition in reactive O2 and 2.04 for deposition in inert Ar. In the standard hydroxyapatite Ca10(PO4)6(OH)2 composition, the calcium/phosphate ratio is 1.67. The XPS data showed a higher Ca/P ratio, which is the result of a calcium-enriched surface. The deviation of Ca/P ratio from the stoichiometric value may be due to a surface layer with a composition differing from that of the bulk material. A difference in the surface and bulk stoichiometric ratios has
also been reported in [12, 14, 15].

The SEM micrographs of HAp samples showed a well defined platelet morphology. A uniform surface structure was observed in the case of HAp coatings deposited in the reactive O2 gas. The difference in the surface structure of HAp films deposited by sputtering in inert Ar and in reactive O2 was revealed by AFM (figure 5). Thus, the estimated average, \(S_a \) and mean-square \(S_q \) roughness parameters were \(S_a = 0.46 \) nm and \(S_q = 0.73 \) nm for HAp coatings deposited in O2; and \(S_a = 1.61 \) nm, \(S_q = 2.18 \) nm for HAp coatings deposited in Ar.

4. Conclusions
The results demonstrate the strong effect of the sputtering process conditions on the structural and surface properties of the coating produced, so that optimal technological deposition conditions can be recommended. The structure and composition of hydroxyapatite films deposited by sputtering in inert Ar and in reactive O2 gases were investigated by XPS, XRD, SEM and AFM. The atomic ratio percentage Ca/P was 1.73 for reactive O2 gas deposition and 2.04 for inert Ar gas deposition. The HAp films formed in a reactive ambient are of better quality as their surface is smoother and their composition is closer to the stoichiometric one. Varying the deposition conditions allows one to improve the quality of the sputtered hydroxyapatite \(\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 \) coatings by forming films of better stoichiometric composition with a fine crystalline structure.

Acknowledgement
This research was supported by the bilateral project 2011-2013 between BAS and NASU.

References
[1] Liu D, Savino K and Yates M Z 2011 Surf. Coat. Technol. 205 3975
[2] Leventouri Th 2006 Biomaterials 27 3339
[3] Onder A, Osman E-A and Sabri A 2008 Surf. Coat. Technol. 202 2482
[4] Peng P, Kumar S, Voelcker N H, Szili E, Smart R and Grieser H J 2006 J. Biomed. Mater. Res. A 76 347
[5] Eliaz N and Eliyahu M 2007 J. Biomed. Mater. Res. A 80 621
[6] Suchanek W L, Byrappa K, Shuk R E, Pavel R, Janas V F and Tenhuisen K S 2004 Biomaterials 25 4647
[7] Wang C X, Chen Z Q and Guan L M 2002 Surf. Coat. Technol. 130 39
[8] Kokubo T, Kim H M and Kawashita M 2003 Biomaterials 24 2167-75
[9] Silva C, Rocha H G B, Freire F N A, Santos M R P, Saboia K D A, Goes J C and Sombra A S B 2005 Material Chemistry and Physics 92 260
[10] Yamashita K, Matsuda M, Arashi T and Umgeki T 1998 Biomaterials 19 1239
[11] Zykova A V, Dudin S V and Polozhiy K I 2003 APP Spring Meeting, Book of Papers (Bad Honnef Germany) 95
[12] Boyd A R, Meenan B J and Leyland N S 2006 Surf. Coat. Technol. 200 6002
[13] Shabalin A, Kishinevsky M and Quinn C 2001 44th Annual Technical Conf. Proc. Society of Vacuum Coaters (Philadelphia) 23
[14] Zhang E and Yang K 2005 Trans. Nonferrous. Met. Soc. China 5/5 6326
[15] Zhang Q, Chen J, Feng J, Cao Y, Deng C and Zhang X 2003 Biomaterials 24 4741