Original Article

Comparison of Ultrasound Guided Modified Pectoral Nerve Block 2 versus Erector Spinae Plane Block For Post Operative Pain Relief in Patients Undergoing Modified Radical Mastectomy

Authors

Dr Amutha Rani R*, Dr Ahila K2, Dr Pavithra S A3

1Professor & HOD, Department of Anaesthesiology, Tirunelveli Medical College
2Assistant Professor, Department of Anaesthesiology, Tirunelveli Medical College
3Junior Resident, Department of Anaesthesiology, Tirunelveli Medical College

*Corresponding Author

Dr Amutha Rani R MD

Prof & HOD, Department of Anaesthesiology, Tirunelveli Medical College

Abstract

Background: Breast carcinoma is most common malignancy among female patients. Pain is the most common symptom encountered during post operative period after MRM. Peripheral nerve block is the emerging procedure in anaesthesiology and modified pectoral nerve block 2 and erector spinae plane blocks are given for post operative pain relief in patients undergoing MRM without any side effects.

Aim and Objectives: To compare the effect of modified pectoral nerve block 2 and erector spinae plane block in patients undergoing MRM for post operative pain relief.

Methodology: It is a prospective randomized comparative study conducted in 64 patients undergoing MRM in tirunelveli medical college and hospital. Age group includes 18-65 years of female sex who have given informed written consent. Preanaesthetic evaluation done, checked for iv access, all monitors connected, hemodynamics before the procedure were noted. Group 1 received modified pectoral nerve block 2 with 0.2% ropivacaine 25ml and group 2 received erector spinae plane block with 0.2% ropivacain 20ml. pain score after the procedure noted by using VAS score[0-10].

Results: PEC 2 Group recorded a better VAS Recovery score than the ESP Group (mean: 2.5 versus 3.65). Opioid requirment is lower in PEC 2 Group compared to ESP group.

Conclusion: Ultrasound guided regional anaesthesia is playing a major role in terms of providing the patients better post operative care. Modified pectoral nerve block 2 is safe and effective procedure during breast cancer surgeries especially modified radical mastectomy. It shows lower intraop and postoperative opioid consumption than erector spinae plane block.

Aim of the Study

- To compare the modified pectoral nerve block 2 with erector spinae plane block for post operative pain relief in patients undergoing modified radical mastectomy.
Materials and Methodology

Study Design
- Prospective randomized comparative study
- Sample size: 64 patients
- Conducted at: Tirunelveli Medical College and Hospital.

Inclusion Criteria
- Age group: 18-65 years of female sex
- Who have given written informed consent
- Undergoing modified radical mastoidectomy.

Exclusion Criteria
- Patients not satisfying inclusion criteria
- Patients with severe cardiovascular, respiratory, hepatic, renal, neurological or metabolic diseases.
- Local infection at the site of block
- Patients with known allergy to local anaesthetics.
- Patient refusal
- Patients with coagulopathies

Ethical Considerations
- After approval from institutional ethical committee, the study will be conducted
- The procedure will be explained in a local language to the patient and informed written consent will be obtained.

Methodology
- Group 1: Modified pec 2 block with 0.2% ropivacaine 25ml.
- Group 2: Erector spinae plane block with 0.2% ropivacaine 20ml.

Preparation for procedure
- Preanaesthetic evaluation
- Informed written consent
- Peripheral iv access
- Equipments and monitors.

Data collation
- Hemodynamics before and after the procedure
- Pain score before and after the procedure by using vas[0-no pain; 10- worst pain]

Procedure
- In this randomized prospective comparative study 64 patients scheduled for MRM are included.
- Patients are distributed in two groups through computer generated random numbers table.
- Group 1 patients will receive modified pec2 block given between pectoralis major and pectoralis minor/pectoralis minor and serratus anterior.
- Group 2 patients will receive erector spinae plane block given deep to the erector spinae muscle.

Observation
- Hemodynamics monitoring including heart rate, nibp, respiratory rate and oxygen saturation.
- Visual analog score monitoring before and after the procedure.
- After the procedure vas noted at 0.5,6,12,18,24 hrs post operatively.
Statistical Flow-Chart

Patients assessed for eligibility → Randomised → Patients allocated to Group I → Underwent USG guided ESP block → Lost to follow-up (none) → Number of patients analyzed finally = 32

Patients allocated to Group II → Underwent USG guided PECS block → Lost to follow-up (none) → Number of patients analyzed finally = 32
Results

Age Distribution
The study involves most of the patients above the age category of 60 years with frequency 34.38% among Erector spinae block group and 28.13% among PEC II block group.

Age	ESB	PEC 2		
	Frequency	Percentage	Frequency	Percentage
45-49	7	21.88	6	18.75
50-54	7	21.88	9	28.13
55-60	7	21.88	8	25.00
>60	11	34.38	9	28.13
Grand Total	32	100	32	100

Mean 55.6563
Standard Deviation 6.7995
Median 55
Mode 46

BMI of the study population:
Most of the patients fall into healthy category when the BMI is concerned with frequency 71.88% among Erector spinae block group and 68.75% among PEC II block group.

BMI	ESB	PEC 2		
Underweight	1	3.13	0	0.00
Healthy	23	71.88	22	68.75
Overweight	8	25.00	10	31.25
Grand Total	32	100.00	32	100.00

p=0.53
ASA Grade
Almost all of the patients come under the ASA Grade II with the frequency of 93.75% among both the groups.

ASA Grade	ESB	PEC 2
Grade-3	30	30
Grade-4	2	2
Grand Total	32	32

p=1
Nausea
Both the group has minimal incidence of nausea and vomiting following the procedure which makes them a better alternative for opioid analgesics.

Nausea	ESB	PEC 2		
	Frequency	Percentage	Frequency	Percentage
No	29	90.63	30	93.75
Yes	3	9.38	2	6.25
Grand Total	32	100.00	32	100.00

p=0.6414

Duration of surgery
The mean time duration of surgery for both the group are almost similar with mean value around of 115min.

Duration of surgery (min)	Mean	Standard Deviation	p value
ESB	114.3438	10.76916	
PEC 2	116.0625	13.11472	0.568754
Preoperative Heart Rate

Mean pre-operative heart rate is lesser for erector spinae block than the PEC-II block group

	Mean	Standard Deviation	p value
ESB	83.8125	5.710418	
PEC 2	118.5313	6.445726	0.634629

![Graph showing duration of surgery (min) for ESB and PEC 2]

![Graph showing preoperative heart rate for ESB and PEC 2]
Heart rate after Injection

Like the pre-operative heart rate, the heart rate measured after injection of the anaesthetic agent is again found to be higher in PEC-II block group (116.25) than the Erector spinae block group.

Parameter	ESB	Mean	Standard Deviation	p value
HR after injection				
ESB	85.875	83.9375	5.523776	0.002417
PEC 2	116.25	83.21875	5.840539	1.93E-05

Parameter	ESB	Mean	Standard Deviation	PEC 2	Mean	Standard Deviation	p value
HR 15 min	79.46875	83.21875	4.695464	83.1875	5.840539	5.52695	1.11E-06
HR 30 min	78.21875	83.1875	5.52695	1.11E-06			
HR 60 min	77.0625	83.1875	5.52695	1.11E-06			
HR 75 min	76.625	83.21875	5.840539	1.93E-05			
HR 90 min	75.96875	83.21875	5.840539	1.93E-05			
HR 2 hr	75.6875	83.21875	5.840539	1.93E-05			
HR 3 hr	74.6875	82.125	5.463958	0.000129			
HR 4 hr	78.03125	82.9375	5.84718	0.00168			
HR 5 hr	80.40625	83.5	6.064173	0.039481			
HR 6 hr	83.1875	82.96875	5.625314	0.859473			
Systolic Blood pressure pre-operative period

Systolic Blood pressure in the pre-operative period is almost identical among the two group (approx. 118)

SBP Preop	Mean	Standard Deviation	p value
ESB	118	5.435843	0.722742
PEC 2	118.5313	6.445726	
Systolic Blood pressure after injection

The systolic pressure is found to decrease a bit after injection of the dose in PEC-II block (116.25) but not on the ESP group.

Parameter	ESB	Mean	Standard Deviation	p value	
SBP 15 min	109.25	7.322083	118.375	6.068161	1.01E-06
SBP 30 min	108.8125	7.136627	117.7188	6.279688	1.63E-06
SBP 60 min	107.5313	6.237164	117.9063	5.771786	3.12E-09
SBP 75 min	108.9063	5.479342	116.625	4.770541	1.07E-07
SBP 90 min	107.7188	7.663211	116.9375	5.752629	9.52E-07
SBP 2 hr	109.7188	7.05844	117.7813	6.583138	1.36E-05
SBP 3 hr	109.25	7.530583	117.5938	6.015353	7.29E-06
SBP 4 hr	109.4375	5.999664	117.125	5.762784	2.14E-06
SBP 5 hr	111.625	5.868176	117.625	5.884644	0.000129
SBP 6 hr	113.9375	7.335013	117.25	6.355084	0.058088
Diastolic Blood pressure pre-operative period
Diastolic Blood pressure in the pre-operative period is identical in the groups
(Mean value of 80)

	Mean	Standard Deviation	p value
DBP Preop			
ESB	80.15625	4.925964	1
PEC 2	80.15625	4.033004	

DBP Preop
Diastolic Blood pressure after injection

Diastolic Blood pressure after injection seems to reduce following PEC-II block(mean of 79.09375) but not for ESP group.

Parameter	ESB Mean	ESB Standard Deviation	PEC 2 Mean	PEC 2 Standard Deviation	p value
DBP 15 min	74.71875	4.820885	78.875	3.498848	0.000205
DBP 30 min	74	4.758693	79.5	3.885457	3.93E-06
DBP 60 min	73	4.778986	79.1875	3.745427	2.77E-07
DBP 75 min	72.65625	4.756045	78.59375	3.545641	4.12E-07
DBP 90 min	73.1875	5.006045	79.21875	3.405256	4.56E-07
DBP 2 hr	74.40625	5.387317	78.65625	3.375523	0.000353
DBP 3 hr	75.53125	5.339955	79.3125	3.67588	0.001608
DBP 4 hr	76.65625	5.319528	78.96875	3.771578	0.049215
DBP 5 hr	78.3125	5.509157	79.1875	3.37388	0.446468
DBP 6 hr	79.3125	5.509157	78.84375	3.538811	0.686896
SpO2 pre-operative period

SpO2 in the pre-operative period almost identical in the 2 groups

SpO2 Preop	Mean	Standard Deviation	p value
ESB	98.9375	0.840027	0.350294
PEC 2	99.125	0.751343	
SpO2 after injection:
SpO2 after injection not altered following the blocks in both the groups.

SpO2 after injection	Mean	Standard Deviation	p value
ESB	98.9375	0.840027	0.350294
PEC 2	99.125	0.751343	
Visual Analog Score at recovery

PEC-II group recorded a better VAS recovery score than the ESP group (mean value 2.5 vs 3.65625)

VAS at recovery	Mean	Standard Deviation	p value
ESB	3.65625	1.180743	0.000105
PEC 2	2.5	1.04727	
Parameter

Parameter	ESB	PEC 2	p value
VAS recovery 1 hr	3.5625	2.28125	2.47E-05
Mean	Standard Deviation	Mean	Standard Deviation
VAS recovery 2 hr	3.6875	2.03125	2.07E-08
VAS recovery 4 hr	4.0625	2.1875	2.33E-06
VAS recovery 6 hr	4.21875	2.34375	1.23E-06

Visual analog recovery score is the symbolic representation of the alleviation of post-operative pain. The comparison between the groups revealed the PECTORAL NERVE BLOCK-II performed better than the ERECTOR SPINAЕ BLOCK in all the recorded periods namely,

- 1 hour
- 2 hours
- 4 hours
- 6 hours

Hence giving the absolutely better outcome of PEC-II block compared with ESR block.

Opioid requirement at recovery:

Again pectoral block II group gives a standout performance in terms of post-operative requirement of opioid drugs (mean of 3.125 for PEC-II) on comparison with Erector Spinae Group (mean 17.96875 for ESP group)

Opioid req (mg) at recovery	Mean	Standard Deviation	p value
ESB	17.96875	22.21084	0.001126
PEC 2	3.125	10.53029	
Parameter Table

Parameter	ESB	PEC 2	p value
Opioid req (mg) recovery 1 hr	10.9375 (16.72537)	3.90625 (11.19723)	0.052593
Opioid req (mg) recovery 2 hr	9.375 (17.67767)	7.03125 (15.85516)	0.57863
Opioid req (mg) recovery 4 hr	11.71875 (19.03348)	9.375 (17.67767)	0.611586
Opioid req (mg) recovery 6 hr	10.9375 (17.89023)	3.125 (8.400269)	0.028956
Discussion
Satisfactory postoperative pain management is a critical part in surgical patient care. Compelling postoperative pain not only further develops the patient's degree of comfort and fulfillment yet additionally is related with earlier mobilization, less cardiopulmonary complications, decreased danger of thromboembolism, earlier return of bowel function, faster recovery, and reduced hospital costs. Traditionally, opioid analgesics that follows up in treating postoperative pain. While narcotic drugs, including morphine, hydromorphone, fentanyl, and meperidine, are exceptionally successful analgesics, they are likewise connected with various adverse effects that incorporate drowsiness, respiratory depression, cardiac instability including hypotension and bradycardia, and nausea, vomiting, pruritus, and constipation
A modification of PVB block is ESP block which was introduced by Forero et al. He used this simple interfascial plane block in cases of severe neuropathic pain post trauma/malignancy/thoracotomy. The local anaesthetic deposited between the two muscles (rhomboidus major and erector spinae) is speculated to penetrate anteriorly through costotransverse foramina and enter the thoracic paravertebral space. The ventral and dorsal rami and rami communicants get subsequently blocked.
In 2019 Altiparmik et al. published a study where they compared PECS block with ESP in 40 patients undergoing MRM surgery. They concluded PECs block is better than ESP block with lower tramadol intake and lower pain scores in the postoperative period. They analysed median pain scores were significantly lower in PECS group at the postoperative 60th min, 120th min, 12th hour and 24th hour. They speculated that the better analgesic profile was due to the blockade of medial, lateral pectoral and long thoracic and thoracodorsal nerves. These results were similar to our studies.
As per the study by Orcun Sercan et.al, Postoperative VAS scores were significantly lower which is same as that of our study in both groups. No block-related complications were observed in their study which reflected our study as well.
In a study by Gürkan et al., 32% of patients in an ESP group and 40% of patients in a control group had nausea in the postoperative period. The incidences of nausea in the present study were very similar to those reported by Gürkan et al.
Postoperative opioid consumption is believed to be the most important reason for PONV, with a reported incidence as high as 79% following opioid use. In the present study, the ESP and PEC II block performed with a higher concentration of bupivacaine significantly reduced postoperative tramadol consumption and rescue analgesic consumption.
Bakshi et al. have reported difficulty during surgery due to fluid filled spaces after PECS block. We did not encounter this problem in any of our patients. This could be explained due to the time gap between the block and the surgery (>30 minutes) which could have led to the absorption of local anaesthetic.
Singh et al., in their study, reported less pain scores and less morphine usage in patients receiving ESP preoperatively in MRM surgeries. Results of Sinha et al showed, total morphine consumption in 24 hours was less in PEC II (4.40 ± 0.94 mg), compared to ESP group (6.59 ± 1.35 mg; P = 0.000). The mean duration of analgesia in patients of PEC II was 7.26 ± 0.69 hours while that in the ESP was 5.87 ± 1.47 hours (P value = 0.001). 26 patients in group II (PECS) had blockade of T2 as compared to only 10 patients in group I. (P value = 0.00). There was no incidence of adverse effects in either group.
Du H et al. observed the hemodynamic parameters, that is, MAP, HR, and SpO2 preoperatively, at intraoperative 30 minutes and postoperatively and observed modest elevation of MAP and HR same as our study.
Conclusion
Ultrasound guided Modified Pecs block or PEC-II Block is a safe and effective analgesic procedure during breast cancer surgeries especially modified radical mastectomy with or without reconstruction. It shows lower intra and postoperative opioid consumption than Erector spinae block procedure, and has better alleviation of post-operative pain which is evident in the form of better Visual Analog scales.

References
1. Schnabel A, Reichl SU, Kranke P, Pogatzki-Zahn EM, Zahn PK. Efficacy and safety of paravertebral blocks in breast surgery: A meta-analysis of randomized controlled trials. Br J Anaesth. 2010;105:842–52.
2. Blanco R, Fajardo M, Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): A novel approach to breast surgery. Ref Esp Anestesiol Reanim. 2012;59:470–5.
3. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41:621–7.
4. Bashandy GM, Abbas DN. Pectoral nerves I and II blocks in multimodal analgesia for breast cancer surgery: A randomized clinical trial. Reg Anesth Pain Med. 2015;40:68–74.
5. Khemka R, Chakrborty A, Agrawal S, Ahmed R. Is COMBIPECS the answer to perioperative analgesia for breast surgery? A double blinded randomized controlled trial. Indian J Anaesth. 2019;63:530–6.
6. Altiparmak B, Korkmaz Toker M, Uysal Al, Turan M, Gümüş Demirbilek S. Comparison of the effects of modified pectoral nerve block and erector spinae block on postoperative opioid consumption and pain scores in patients after radical mastectomy surgery: A prospective, randomized, controlled trial. J Clin Anesth. 2019;54:61–5.
7. Kwekkeboom K. Postmastectomy pain syndromes. Cancer Nurs. 1996;19:37–43.
8. Vecht CJ, van de Brand HJ, Wajer OJ. Post-axillary dissection pain in breast cancer due to a lesion of the intercostobrachial nerve. Pain. 1989;38:171–6.
9. Wahba SS, Kamal SM. Thoracic paravertebral block versus pectoral nerve block for analgesia after breast surgery. Egypt J Anaesth. 2014;30:129–35.
10. Bakshi SG, Karan N, Parmar V. Pectoralis block for breast surgery: A surgical concern? Indian J Anaesth. 2017;61:851–2.
11. Kulhari S, Bharti N, Bala I, Arora S, Singh G. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: A randomized controlled trial. Br J Anaesth. 2016;117:382–6.
12. Gürkan Y, Aksu C, Kuşş A, Yörükogğlu UH, Kılıç CT. Ultrasound guided erector spinae plane block reduces postoperative opioid consumption following breast surgery: A randomized controlled study.
13. Singh S, Kumar G, Akhileshwar Ultrasound-guided erector spinae plane block for postoperative analgesia in modified radical mastectomy: A randomised control study. Indian J Anaesth. 2019;63:200–20.
14. Wijayasinghe N, Andersen KG, Kehlet H. Analgesic and sensory effects of the pecs local anesthetic block in patients with persistent pain after breast cancer surgery: A pilot study. Pain Pract. 2017;17:185–91.
15. Efficacy and Safety of Pectoral Nerve Block (Pecs) Compared With Control, Paravertebral Block, Erector Spinae Plane Block, and Local Anesthesia in Patients Undergoing Breast Cancer Surgeries A Systematic Review and Meta-analysis Elshanbary, Alaa Ahmed MBBCh*
16. Chin KJ, Malhas L, Perlas A. The erector spinae plane block provides visceral abdominal analgesia in bariatric surgery a
report of 3 cases. Reg Anesth Pain Med. 2017;42(3):372–376. doi: 10.1097/AAP.0000000000000581.

17. Apfel CC, Läärä E, Koivuranta M, Greim CA, Roewer N. A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology.

18. J. P. Kline, “Ultrasound guidance in anesthesia,” AANA Journal, vol. 79, no. 3, pp. 209–217, 2011.

19. C. R. Falyar, “Ultrasound in anesthesia: applying scientific principles to clinical practice,” AANA Journal, vol. 78, no. 4, pp. 332–340.

20. A. Hatfield and A. Bodenham, “Ultrasound: an emerging role in anaesthesia and intensive care,” British Journal of Anaesthesia, vol. 83, no. 5, pp. 789–800, 1999.

21. M. S. Kristensen, “Ultrasonography in the management of the airway,” Acta Anaesthesiologica Scandinavica, vol. 55, no. 10, pp. 1155–1173, 2011.

22. K. Stefanidis, S. Dimopoulos, and S. Nanas, “Basic principles and current applications of lung ultrasonography in the intensive care unit,” Respirology, vol. 16, no. 2, pp. 249–256, 2011.

23. Z. J. Koscielniak-Nielsen, “Ultrasound-guided peripheral nerve blocks: what are the benefits?” Acta Anaesthesiologica Scandinavica, vol. 52, no. 6, pp. 727–737, 2008.

24. J. Griffin and B. Nicholls, “Ultrasound in regional anaesthesia,” Anesthesia, vol. 65, supplement 1.

25. G. Ivani and V. Mossetti, “Pediatric regional anesthesia,” Minerva Anestesiologica, vol. 75, no. 10, pp. 577–583, 2009.

26. K. Rubin, D. Sullivan, and S. Sadhasivam, “Are peripheral and neuraxial blocks with ultrasound guidance more effective and safe in children?” Paediatric Anaesthesia, vol. 19, no. 2, pp. 92–96, 2009.