Symbionts and hosts behavioral interactions: a study from the perspective of host – parasitoid interactions

Caio Henrique Lopes Zitelli

Dissertation presented to obtain the degree of Master in Science. Area: Entomology

Piracicaba
2018
Symbionts and hosts behavioral interactions: a study from the perspective of host – parasitoid interactions

Advisor:
Prof. Dr. FERNANDO LUÍS CÔNSOLI

Dissertation presented to obtain the degree of Master in Science. Area: Entomology

Piracicaba
2018
RESUMO

Simiontes e interações comportamentais de hospedeiros: um estudo da perspectiva das interações hospedeiro-parasitoide

A simbiose é um dos principais agentes na evolução e ecologia de organismos. Tais interações são muito íntimas, podendo ser muito diversas e ter grandes impactos na diversidade biológica. Uma das principais associações que ocorrem na natureza é aquela entre insetos e microrganismos. Microrganismos associados a insetos são capazes de alterar uma gama de eventos fisiológicos, comportamentais, ecológicos e evolutivos em seus hospedeiros. Dois simiontes de insetos muito comuns são Wolbachia e Spiroplasma. Wolbachia é também muito comum a outros artrópodes e nematoides. Para melhor compreender como essas relações podem influenciar o comportamento de insetos, dois sistemas biológicos foram selecionados para investigar como esses simiontes podem interferir nas interações hospedeiro-parasitoide. O comportamento de duas espécies de parasitoides, Aphelinus asychis (Hymenoptera: Aphididae) e Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) foi investigado quando explorando patches com seus respectivos hospedeiros, Aphis citricidus (Hemiptera: Aphididae) e Anagasta kuehniella (Lepidoptera: Pyralidae). No primeiro caso foi investigado como a infecção do hospedeiro por Spiroplasma, e no segundo caso como a infecção do parasitoide por Wolbachia, afetariam a exploração da patch pelos parasitoides. O comportamento dos parasitoides ao explorarem suas patches foi registrado, assim como os comportamentos de defesa dos pulgões em resposta ao ataque do parasitoide. Os dados obtidos demonstraram que Spiroplasma afetaram o comportamento de defesa e a agressividade de A. citricidus em resposta aos ataques de A. asychis. Wolbachia aumentou o tempo de residência e reduziu o sucesso de parasitismo de ovos do hospedeiro por T. pretiosum. A compreensão de tais efeitos certamente contribuirá para o melhor entendimento dos efeitos da associação de insetos a simiontes, fornecendo bases sólidas para a melhor exploração de tais interações para propósitos de controle biológico de pragas.

Palavras-chave: Comportamento de insetos; Inimigos naturais; Parasitismo; Simiontes
ABSTRACT

Symbionts and hosts behavioral interactions: a study from the perspective of host – parasitoid interactions

Symbiosis is one of the main players in evolution and ecology of organisms. Such intimate interactions may be diverse and have a great impact in biological diversification. One of the main associations that occur in nature is that of insects and microbes. Insect associated microbes are, capable of altering a wide range of physiological, behavioral, ecological and evolutionary events for their hosts. Two very common insect microbial symbionts are Wolbachia and Spiroplasma. Wolbachia is also common to other arthropods and nematodes. To better understand how these relations could influence the behavior of insects, we selected two biological systems to investigate how these symbionts can interfere in the host – parasitoid interactions. We investigated the behavior of two species of parasitoids, Aphelinus asychis (Hymenoptera: Aphididae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) when exploiting patches with their respective hosts, Aphis citricidus (Hemiptera: Aphididae) and Anagasta kuehniella (Lepidoptera: Pyralidae). In the first case we looked into how Spiroplasma infecting hosts, and in the second case how Wolbachia infecting the parasitoid may affect parasitoid patch exploitation. We recorded the wasp’s behaviors when exploiting their patches, as well as the aphid defensive behavior in response to parasitoid attack. Our data demonstrate Spiroplasma and Wolbachia influence the parasitoid patch exploitation decisions. Spiroplasma also affected the defense behavior and aggressiveness of A. citricidus in response to A. asychis attack. Wolbachia increased the patch residence time and reduced the successful parasitization of host eggs in T. pretiosum. The understanding of such effects will certainly contribute to provide a better knowledge of the outcome of the associations of insects with microbial symbionts, providing ground base for the proper exploitation of such interactions for biological control purposes.

Keywords: Insect behavior; Natural enemies; Parasitism; Symbionts
1. INTRODUCTION

Symbiosis is a common process in nature and it is distributed in many hosts ranging from aquatic to terrestrial habitats, playing an important part in the evolution and ecology of organisms (Oliver et al. 2003; Wernegreen 2004). Symbiosis is so diverse and involves the living together of a range of organisms that the outcome of such associations can be extremely diverse (Nikoh et al. 2014; Lewis and Lizé 2015). The age of the association is one of the major factors affecting the type of relationship the associated organisms will establish. Longer the history of association more likely is the reduction of pathogenesis and high is the development of coadaptive processes due to the coevolutionary history (Hentschel et al. 2000; Steinert et al. 2000).

Symbiosis has a great impact in biological diversification (Zabalou et al. 2004). In the case of insects, microorganisms that established mutualistic associations can be fundamental in providing essential nutrients to insect hosts (Hansen and Moran 2011; McCutcheon and Moran 2012), recycling nitrogen (Fox-Dobbs et al. 2010), assisting with food digestion (Engel and Moran 2013) and in supporting host reproduction (Dedeine et al. 2001). These associations most involve endosymbionts or endocytobionts, but there are cases in which the coevolutionary history of the association led to the establishment of external mutualistic associations. One of such example is the ant – fungus association, in which fungus-growing ants rely on the cultivation and use of a mutualistic fungus as food resource (Weber 1966). From the many associations organisms present in the animal kingdom, the ones that are maternally transmitted, like bacteria in insects, are often obligate, reaching such an intimate relationship that one could not survive without the other (Douglas 1998; Ferrari and Vavre 2011).

Facultative symbionts in the other hand are not required for the completion of their hosts life cycle but usually establish beneficial symbiotic interactions (Oliver et al. 2010). Although not always required for their hosts survival, the facultative symbionts may contribute positively to several host fitness traits, such as resistance against natural enemies and xenobiotics, protection against heat stress, and expansion of food sources (Chen and Purcell 1997; Oliver et al. 2003; Ferrari et al. 2007; Kontsedalov et al. 2008; Burke et al. 2010; Xie et al. 2010; Simon et al. 2011). As shown by Oliver et al. (2003), the facultative symbiont Serratia symbiotica improved aphid resistance against its natural enemy, causing high mortality of the developing parasitoid larvae.
Other researchers have even found evidence that the presence of facultative symbionts could increase their host fitness, sometimes doubling their offspring (Leonardo and Muiru 2003). Moreover, non-parasitic microbial symbionts can also alter the behavior of their hosts in order to optimize their reproductive fitness or to protect them against pathogens (Brownlie and Johnson 2009).

Facultative symbionts can be acquired from the environment or be horizontally transmitted, but vertical transmission is not uncommon even if not leading to infection fixation (Werren et al. 2008). The most spread and common group of non-obligate symbiont associated with arthropods are the sex-determinant bacteria, particularly. *Wolbachia* is the most common representative microorganism associated with the reproductive system of arthropods, influencing progenie sex determination or even host reproductive fitness *Wolbachia* (Ma et al. 2013; Newton et al. 2016). Other known bacteria that also establish such type of relationship with their arthropod hosts are *Arsenophonus, Cardinium, Rickettsia* and *Spiroplasma* (Enigl and Schausberger 2007; Duron et al. 2008; Shropshire and Bordenstein 2016; Zhang et al. 2016).

The discoveries in the last decades of the importance of the microbiota in phenotype definition (Sonnenburg et al. 2005; Lyte et al. 2016) and the increased understanding of the role of obligate and non-obligate bacteria in insects, made clear the associated microbiota acts as manipulators of their hosts. In manipulating the host, the microbiome acts as one of the determinants of evolutionary, physiological and behavioral processes driving adaptation, diversification and speciation (Forsythe and Kunze 2013; Rohrscheib and Brownlie 2013; Rohrscheib et al. 2015).

Manipulators of behavioral responses of insect hosts are seen among symbiotic bacteria (Lewis and Lize 2015), fungi (Roy et al. 2006) and virus (Burand et al. 2005), but in many of these cases microorganisms established a pathogenic relationship with their host insects (Evans 1982; van Houte; Ros; van Oers 2013). The entomopathogenic fungus *Ophiocordyceps unilateralis* induces the infected host ant *Camponotus leonardi* (Hymenoptera: Formicidae) to wander towards the north/northwest direction as infected ants die around noon in a position that enhances fungus transmission and spread of infection to other workers of the colony (Holldobler and Wilson 1990; Hughes, et al. 2011). Pathogenic viruses are also reported to affect the behavior of infected hosts, inducing the precocius onset of the courtship behavior in *Gryllus texensis* (Orthoptera: Gryllidae) male crickets to assure female infection during mating (Knell and Webberley 2004; Adamo et al. 2014).
There are also a few cases of non-pathogenic symbionts that influence the host behavior. Viral particles infecting *Leptopilina boulardi* (Hymenoptera: Figitidae) alter the wasp parasitization behavior inducing a higher tendency to host superparasitization, increasing the chances of horizontal transmission within the parasitized host larva *Drosophila* (Varaldis et al. 2006). Reproductive parasites usually manipulate their hosts’ reproduction by increasing the production or survival of female hosts at some cost to the males (Montenegro et al 2006). *Wolbachia*-infected males and females of *Drosophila melanogaster* (Diptera: Drosophilidae) had higher locomotor activity and foraging behavior than uninfected adults probably due to an increase in their metabolic rates (Evans et al. 2009; Caragata et al. 2011). *Wolbachia* was also shown to reduce *D. melanogaster* male aggressiveness by lowering males octopamine levels (Rohrscheib et al. 2015). Additionally, *Wolbachia* was demonstrated to influence *Trichogramma brassicae* (Hymenoptera: Trichogrammatidae) oviposition behavior by affecting the capacity of females to discriminate previously parasitized hosts. In this case, infected females were less effective in host evaluation, leading female to select low quality hosts more frequently (Farahani et al. 2015). The manipulation of the reproductive fitness or traits of the host are very important for determination of the efficiency of symbiont infections. Nonetheless, such manipulations can directly affect host fitness and influence symbiont ability to persist in natural populations (Montenegro et al., 2005b).

Spiroplasma is another important symbiont present in nearly 5% of insects (Duron et al. 2008). *Spiroplasma* is better known as a male-killing symbiont (Harumoto et al. 2014), but that can also stimulate the host immune response capacity (Herren and Lemaitre 2011) and protect the host against natural enemies (Jaenike et al. 2010; Xie et al. 2010).

Thus, microbial manipulators can play important roles in the evolution and ecology of their hosts, and the understanding of these effects may have important applied implications (Lewis and Lizé 2015). Parasitoids are the most common biological control agents in applied biological control of a great number of insect pests, constituting one of the most important strategies in integrated pest management programs (Waage and Hassell 1982; Fernández-Arhex and Corley 2003; Yazdani and Keller 2016). As parasitoids usually have a very short lifespan, they maximize the deposition of their eggs early in their adult life to avoid dying before females are able to lay their full complement of eggs (Rosenheim 1999; Wajnberg et al. 2006; 2016).
Thus, female parasitoids evolved foraging strategies to avoid time limitation by optimization of patch use (Outreman et al. 2005; Wajnberg 2006). A patch is defined as a spatial subunit of the foraging area where host aggregations are available (Hassell and Southwood 1978; Wajnberg 2006). Hosts occurring in discrete and individual patches in the environment lead parasitoids to optimize the time they invest in host exploitation, actively contributing to the costs of reproduction (Charnov and Skinner 1984; Godfray 1994; Rosenheim 1999). A series of theoretical models was proposed to explain the decisions parasitoids make to allocate time for patch exploitation and to maximize the individual capacity of exploitation (Outreman et al. 2005). To enhance egg production, parasitoids need to balance their investments in longevity and host searching in an attempt to lay their full egg complement (Rosenheim et al. 2008).

Female parasitoids may locate patches ranging in quality within their foraging area. Differences in patch quality require females to decide the best time allocation to each particular patch in the process of host selection and exploitation. There are a number of factors that can affect the female’s decision to allocate time to exploit a patch. The identification of such factors and the understanding of how they influence female’s decision to select and exploit a particular patch are not only of relevance for comprehending the behavioral ecology of parasitoids (Outreman et al. 2001, 2005; Desneux et al. 2004; Tentelier et al. 2005; Wajnberg 2006), but also for predicting the efficacy of parasitoids selected for use as biocontrol agents (Waage 1990; Wajnberg et al. 2016).

Microbial associations are quite spread in insects and several insect-associated microorganisms are reported to affect the host insect behavioral decisions. In this dissertation we focused in evaluating two host-parasitoid systems to investigate the impact microbial associations would have on host-parasitoid interactions, particularly in parasitoid patch exploitation. In one of the systems used, the aphid *Aphis citricidus* (Hemiptera: Aphididae) – the wasp *Aphelinus asychis* (Hymenoptera: Aphelinidae), we used sister isolines of *Spiroplasma*-infected and uninfected aphids *A. citricidus* to investigate the role of host infection in patch time use by the parasitic wasp. In the second system, the host *Anagasta kuehniella* (Lepidoptera: Pyralidae) – the wasp *Trichogramma pretiosum* (Hymenoptera: Trichogrammatidae), we investigated how *Wolbachia* could affect patch exploitation by using sister isolines of *Wolbachia*-infected and uninfected *T. pretiosum*.
References

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25:3389–3402.

Adamo SA, Kovalko I, Easy RH, Stoltz D. 2014 A viral aphrodisiac in the cricket *Gryllus texensis*. *J Exp Biol.* 217:1970-1976.

Brownlie JC, Johnson KN. 2009 Symbiont-mediated protection in insect hosts. *Trends in Microbiology* 17:348-354.

Burand JP, Tan W, Nojima S, Roelofs W. 2005 Infection with the insect virus Hz-2v alters mating behavior and pheromone production in female *Helicoverpa zea* moths. *Journal of Insect Science* 5:6.

Burke G, Fiehn O, Moran N. 2010 Effects of facultative symbionts and heat stress on the metabolome of pea aphids. *The ISME Journal* 4:242-252.

Charnov EL, Skinner SW. 1984 Evolution of host selection and clutch size in parasitoid wasps. *Fla Entomologist* 67:5-21.

Chen D, Purcell AH. 1997 Occurrence and Transmission of Facultative Endosymbionts in Aphids. *Current Biology* 34:220–225.

Coelho A, Parra JR. 2013 Effect of carbon dioxide (CO₂) on mortality and reproduction of *Anagasta kuehniella* (Zeller, 1879), in a mass rearing, aiming at the production of *Trichogramma* spp. *An. Acad. Bras. Ciênc.* 85:823-831.

Dedeine F, Vavre F, Fleury, F, Loppin B, Hochberg ME, Boulétreau M. 2001 Removing symbiotic *Wolbachia* bacteria specifically inhibits oogenesis in a parasitic wasp. *PNAS* 98:11 6247-6252.

Desneux N, Wajnberg É, Fauvergue X, Privet S, Kaiser L. 2004 Oviposition behavior and patch-time allocation in two aphid parasitoids exposed to deltamethrin residues. *Entom Exp Appl* 112:227-235.

Douglas AE. 1998 Aphids and Their Symbiotic Bacteria *Buchnera*. *Ann. Rev. Entomol.* 43:17-37.

Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L. 2008 The diversity of reproductive parasites among arthropods: *Wolbachia* do not walk alone. *BMC Biol* 6:27.

Engel P, Moran NA. 2013 The gut microbiota of insects – diversity in structure and function. *FEMS Microbiol Rev* 37:699–735.
Enigl M, Schausberger P. 2007 Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp App Acarol 42:74-85.

Ferrari J, Scarborough CL, Godfray HCJ. 2007 Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323-329.

Ferrari J, Vavre F. 2011 Bacterial symbionts in insects or the story of communities affecting communities. Phil. Trans. R. Soc. B 366: 1389-1400.

Fernandez-arhéx V, Corley JC. 2003 The functional response of parasitoids and its implications for biological control. Biocontrol Science and Technology 13:403-413.

Forsythe P, Kunze WA. 2013 Voice from within: gut microbes and the CNS. Cell Mol Life Sci. 70:55-69.

Fox-Dobbs K, Oak DAFD, Rody ALKB. 2010 Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna. Ecology 91:1296–1307.

Godfray HCJ. 1994 Parasitoids, Behavioral and Evolutionary Ecology, Princeton University Press, Princeton, New Jersey, USA.

Hansen AK, Moran NA. 2011 Aphid genome expression reveals host – symbiont cooperation in the production of amino acids. PNAS 108: 2849–2854.

Hassel MP, Southwood TRE. 1978 Foraging strategies of insects. Ann Rev Ecolog Syst 9:75-98.

Hentschel U, Steinert M, Hacker J. 2000 Common molecular mechanisms of symbiosis and pathogenesis. Trends in Microbiology 8:226–231.

Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsa JJ. 2011 Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecology 11:1-10.

Jaenike J, Uncikess R, Cockburn SN, Boelio LM, Perlman SJ. 2010 Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212-215.

Knell RJ, Webberley KM. 2004 Sexually transmitted diseases of insects: distribution, evolution, ecology and host behavior. Biol Rev Camp Philos Soc. 79:557-581.

Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. 2008 The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag. Sci. 64:789–792.
Leonardo TE, Muiru GT. 2003 Facultative symbionts are associated with host plant specialization in pea aphid populations. *Proc. Soc. Lond. B (Suppl.*) 270: S209-S212.

Lewis Z, Lizé A. 2015 Insect behaviour and the microbiome. *Current Opinion in Insect Science* 9:86–90.

Lyte M, Fodor AA, Chapman CD, Martin GG, Perez-Chanona E, Jobin C, Dess NK. 2016 Gut microbiota and selectively bred taste phenotype: A novel model of microbiome-behavior relationships. *Psychosom Med.* 78:610-619.

Ma W, Vavre F, Beukeboom LW. 2013 Manipulation of Arthropod Sex Determination by Endosymbionts : Diversity and Molecular. *Sexual Development* 8:59–73.

McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. *Nature Reviews Microbiology* 10:13–26.

Meneghini M. 1946 Sobre a natureza e transmissibilidade da doença tristeza dos citrus. O Biológico, v.12, p.285-287, 1946.

Montenegro H, Solferini V, Klaczko LB, Hurst GDD. 2005 Male-killing *Spiroplasma* naturally infecting *Drosophila melanogaster*. *Insect Molecular Biology* 14:281-287.

Newton IL, Clark ME, Kent BN, Bordenstein SR, Qu J, Richards S, Kelkar YD, Werren JH. 2016 Comparative genomics of two closely related *Wolbachia* with different reproductive effects on hosts. *Genome Biol Evol* 3:1562-1542.

Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattor M. 2014 Evolutionary origin of insect – *Wolbachia* nutritional mutualism. *PNAS* 111: 10257-10262.

Oliver KM, Russel JA, Moran NA, Hunter MS. 2003 Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. *Proc. Natl. Acad. Sci. U.S.A.* 100:4 1803-1807.

Oliver KM, Degnan PH, Burke GR, Moran NA. 2010 Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. *Ann Rev Entomol* 55: 247–266.

Outreman Y, Ralec AL, Wajnberg É, Pierre JS. 2001 can imperfect host discrimination explain partial patch exploitation in parasitoids? *Ecological Entomology* 26:271-280.
Outreman Y, Ralec AL, Wajnberg É. 2005 Effects of within and among-patch experience on the patch-leaving decision rules in an insect parasitoid. *Behav Ecol Sociobiol* 58:208-217.

Parra JRP, Lopes JRS, Serra HJP, Sales O. 1989 Metodologia de criação de *Anagasta kuehniella* (Zeller, 1879) para produção massal de *Trichogramma* spp. *Ann. Soc. Entomol. Bras.* 18:403-415.

Parra JRP, Oliveira HN, Iarossi AR. 1994 Metodologia de criação de *Anagasta kuehniella* para produção de *Trichogramma* spp. In: Simpósio de Controle Biológico. Gramado, RS Brasil.

Parra JRP, Coelho A, Geremias LD, Bertin A, Ramos CJ. Criação de *Anagasta kuehniella*, em pequena escala, para produção de *Trichogramma*. Piracicaba, 32 p. 2014.

Rohrscheib CE, Brownlie JC. 2013 Microorganisms that manipulate complex animal behaviours by affecting the host's nervous system. *Springer Sci Rev* 1:133–140.

Rosenheim JA. 1999 The relative contributions of time and eggs to the cost of reproduction. *Evolution* 53:376-385.

Rosenheim JA, Jepsen SJ, Matthews CE, Smith DS, Rosenheim MR. 2008 Time limitation, egg limitation, the cost of oviposition, and lifetime reproduction by an insect in nature. *Am Nat* 172:486-496.

Shropshire JD, Bordenstein SR. 2016 Speciation by Symbiosis: the Microbiome and Behavior. mBio 7: e01785-15. doi:10.1128/mBio.01785-15.

Simon J, Boutin S, Tsuchida T, Koga R, Gallic JL, Frantz A, Outreman Y, Fukatsu T. 2011. Facultative symbiont infections affect aphid reproduction. *PLoS ONE* 6: e21831.

Steinert M, Hentschel U, Hacker JY. 2000 Symbiosis and Pathogenesis: Evolution of the Microbe-Host Interaction. *Naturwissenschaften* 11:1–11.

Tentelier C, Wajnberg É, Fauvergue X. 2005 Parasitoids use herbivore-induced information to optimise their patch residence time. *Ecol Entomol* 30:737-744.

Varaldi J, Petit S, Boulétreau M, Fleury F. 2006 The virus infecting the parasitoid *Leptopilina boulardi* exerts a specific action on superparasitism behaviour. *Parasitology* 132:6 747-756.

Waage JK, Hassel MP. 1984 Parasitoids as biological control agents – a fundamental approach. *Parasitology* 84:241-268.
Waage JK. 1990 Ecological theory and the selection of biological control agents. In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept, pp135-157.

Wajnberg É. 2006 Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. *Behav. Ecol. Sociobiol.* 60: 589-611.

Wajnberg É, Roitberg, BD, Boivin G. 2015 Using optimality models to improve the efficacy of parasitoids in biological control programmes. *Entomologia Experimentalis et Applicata* 158: 2-16.

Weber NA. 1966 Fungus-Growing Ants - A symbiotic relationship exists between an insect and a plant, involving an effective culturing technique. *Science* 153:587–604.

Wernegreen JJ. 2004 Endosymbiosis: Lessons in Conflict Resolution. *PLoS Biol* 2:e68.

Werren JH, Baldo L, Clark ME. 2008 *Wolbachia*: Master manipulators of invertebrate biology. *Nature Reviews Microbiology* 6: 741–751.

Xie J, Vilchez I, Mateos M. 2010 *Spiroplasma* Bacteria Enhance Survival of *Drosophila hydei* Attacked by the Parasitic Wasp *Leptopilina heterotoma*. *PLoS ONE* 5:8 e12149.

Yazdani M, Keller MA. 2016 The shape of the functional response curve of *Dolichogenidea tasmanica* (Hymenoptera: Braconidae) is affected by recent experience. *Biological Control* 97:63-69.

Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. 2004 *Wolbachia*-induced cytoplasmic incompatibility as a means for insect pest population control. *PNAS* 101:15042-15045.
2. SPIROPLASMA-INFECTIONING APHIDS INTERFERES WITH THE *Aphis citricidus* (HEMIPTERA: APHIDIDAE) – *Aphelinus asychis* (HYMENOPTERA: APHELINIDAE) INTERACTIONS

Abstract

There are a wide range of studies focusing on the benefits of secondary associations of insects and microorganisms at the molecular, physiological and behavioral levels. Secondary symbionts have been demonstrated to influence several insect host responses to a number of stressors, including the third trophic level. Insects associated with many secondary symbionts were shown to better survive to the attacks of their natural enemies. Understanding the effects associations with secondary symbionts may have on the output of host-parasitoid interactions are important in the implementation of biological control strategies in the field. Thus, we investigated the effects of *Aphis citricidus* infection with *Spiroplasma* in the patch-time exploitation by the aphid parasitoid *Aphelinus asychis*. We also investigated if *Spiroplasma* infection could affect the host defensive behavior. Investigations were done by recording the host defensive behaviors and the parasitoid patch use in a patch comprised of five-host aphids under controlled conditions (25±2°C; 70±10% RH; 14:10 h). We did not detect overall differences in the exploitation of *Spiroplasma* infected and uninfected hosts by *A. asychis*. The only factors leading to an effect on the patch leaving decisions of *A. asychis* were the time spent in grooming by the parasitic wasp and the host agitated behavior. The aphid’s agitated behavior was positively influenced by *Spiroplasma* infection. *Spiroplasma* also influenced the aphid kicking and whipping behaviors. Kicking was reduced and antennal whipping was increased by *Spiroplasma* infection in response to parasitoid attack. *Spiroplasma*-infected hosts were less accepted than uninfected aphids for egg laying by *A. asychis*, demonstrating *Spiroplasma* directly affects *A. asychis* parasitization efficiency by reducing host acceptance and indirectly by enhancing host defensive behaviors that limits parasitoid successful attacks.

Keywords: Host selection; Integrated pest management; Natural enemies; Parasitoid efficacy; Symbiosis

2.1. Introduction

A wide range of studies are focused on the diverse interactions insects have with non-pathogenic microorganisms, with some of which dedicated to understand and explain how these microorganisms interact with their hosts at the molecular, physiological and behavioral levels (Goodacre and Martin 2012). Bacteria that are obligately associated with insects are often involved with host-nutrition supplementation, while the non-obligate, secondary symbionts have been reported to affect a variety of host traits, influencing the host phenotype and the host interactions with other trophic levels (Oliver et al. 2003; Vásquez et al. 2012; Guidolin et al. 2018).
Non-obligate symbionts can affect host fitness traits by conferring resistance against natural enemies and xenobiotics, protection against heat stress, and the host diet breadth (Leonardo and Muiru 2003; Ferrari et al. 2004; Oliver et al. 2003; Kontsedalov et al. 2008; Burke et al. 2010; Xie et al. 2010), and even increase their response to selection pressures (Oliver et al. 2003). There are symbionts able to induce behavioral changes in the host and improve the host’s reproductive capacity (Brownlie and Johnson 2009) while others are capable to confer protection to hosts against entomophagous or entomopathogens (Oliver et al. 2003).

Spiroplasma is better known as a male-killer in a range of host associations (Ebbert 1991; Montenegro et al. 2000; 2005). Male-killing is due the production of high levels of a protein that contains ankyrin repeats and a deubiquitinase domain, which is designated Spaid. Male mortality was suggested to result from the effects of Spaid on the dosage compensation machinery on the male X-chromosome (Harumoto and Lemaitre 2018). Nevertheless, *Spiroplasma* can establish associations with insect hosts playing a range of roles (Jaenike et al. 2010; Xie et al 2010; Herren and Lemaitre 2011; Guidolin et al. 2018). In some of these associations, *Spiroplasma* infection can result in increased protection of the host against bacterial pathogens (Herren and Lemaitre 2011) and parasitoids (Jaenike et al. 2010; Xie et al. 2010). *Spiroplasma* is not commonly reported associated to aphids, but this secondary symbiont prevailed in field collected Brazilian populations of *Aphis citricidus* (Hemiptera: Aphididae) and *Aphis aurantii* (Hemiptera: Aphididae) (Guidolin and Cônsoli 2018). *Spiroplasma* infections of *A. citricidus* were also shown to affect the aphid proteome. Moreover, the aphid proteome was differently affected depending on the host plant quality, altering the abundance of proteins involved in protein-protein interactions, cell functioning and energy metabolism (Guidolin et al. 2018). Metabolomics analysis also indicated *Spiroplasma* infections affected a large variety of metabolites of *A. citricidus*, including metabolites involved in host selection by aphid’s parasitoids (Duarte 2017).

Thus, based on the fact secondary symbionts can alter host phenotypic traits, affect the interactions of the host insect with other trophic levels and that *Spiroplasma* did alter the proteome and metabolome of the host aphid *A. citricidus*, we hypothesize *Spiroplasma* infection affects *A. citricidus* interactions with the parasitoid *Aphelinus asychis* (Hymenoptera: Aphelinidae), and tested two predictions to prove our hypothesis: 1) *Spiroplasma*-infected aphids will display more efficient defensive
behavior against parasitoid attack, and 2) patch time allocation of female parasitoids will be affected when exploiting Spiroplasma-infected aphids.

2.2. Conclusions

- Spiroplasma infections affect the defensive behavior of Aphis citricidus;
- Spiroplasma-infected aphids kick and whip females of Aphelinus asychis with their antennae more often than uninfected aphids;
- The oviposition decisions of female A. asychis are negatively impacted in patches of Spiroplasma-infected A. citricidus.

References

Alexandrov ID, Alexandrova MV, Goryacheva II, Roshchina NV, Shaikevich EV, Zakharov IA. 2007 Elimination of endosymbiont Wolbachia specifically decreases competitive ability and longevity of females from laboratory strain of Drosophila melanogaster. Russ. J. Genet. 43:1147–1152.

Baldo L, Lo N, Werren JH. 2005 Mosaic nature of the Wolbachia surface protein. J Bacteriol. 187:15406-5418.

Bateson M, Desire S, Gartside SE, Wright GA. 2011 Agitated Honeybees Exhibit Pessimistic Cognitive Biases. Current Biology 21:12 1070-1073.

Braig HR, Zhou W, Dobson SL, O’Neill SL. 1998. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipiensis. Journal of bacteriology, 180:9 2373-2378.

Brownlie JC, Johnson KN. 2009 Symbiont-mediated protection in insect hosts. Trends in Microbiology 17:348-354.

Burke G, Fiehn O, Moran N. 2010 Effects of facultative symbionts and heat stress on the metabolome of pea aphids. The ISME Journal 4:242-252.

Caragata EP, Real KM, Zalucki MP, McGraw EA. 2011 Wolbachia infection increases recapture rate of field-released Drosophila melanogaster. Symbiosis 54:55-60.

Comins H, Hassell M. 1979 The dynamics of optimally foraging predators and parasitoids. Journal of Animal Ecology 48: 335–351.
Davenport AP, Evans PD. 1984 Stress-induced changes in the octopamine levels of insect haemolymph. *Insect Biochem.* 14:2 135-143.

Degnan PH, Moran NA. 2008 Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. *Molecular Ecology* 17: 916-929.

Desneux N, Wajnberg É, Fauvergue X, Privet S, Kaiser L. 2004 Oviposition behavior and patch-time allocation in two aphid parasitoids exposed to deltamethrin residues. *Entom Exp Appl* 112:227-235.

Dion E, Polin SE, Simon J, Outreman Y. 2011 Symbiont infection affects aphid defensive behaviors. *Biol Lett* 7:743-746.

Duarte FRM. 2017 Metabolômica de Aphis citricidus (Kirkaldy) (Hemiptera: Aphididae) infectado por Spiroplasma. Dissertation: Escola Superior de Agricultura “Luiz de Queiroz”. Available in: http://www.teses.usp.br/teses/disponiveis/11/11146/tde-22032018-165828/

Ebbert MA. 1991 The interaction phenotype in the *Drosophila willistoni*-Spiroplasma symbiosis. *Evolution* 45:971-988.

Evans HC. 1982 Entomogenous fungi in tropical forest ecosystems: an appraisal. *Ecological Entomology* 7: 47-60.

Evans O, Caragata EP, McMenimam CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA. 2009 Increased locomotor activity and metabolism of *Aedes aegypti* infected with a life-shortening strain of *Wolbachia pipitiens*. *J Exp Biol* 212:1436-1441.

Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE. 2004 Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. *Ecological Entomology* 29:1 60-65

Goodacre SL, Martin OY. 2012 Modification of insect and arachnid behaviors by vertically transmitted endosymbionts: Infections as drivers of behavioral change and evolutionary novelty. *Insects* 29:246-261.

Guidolin AS. 2016 Multipartite interactions of Aphis (Toxoptera) and their associated symbionts. Thesis: Escola Superior de Agricultura “Luiz de Queiroz”. Available in: http://www.teses.usp.br/teses/disponiveis/11/11146/tde-26092016-095921/
Guidolin AS, Cataldi TR, Labate CA, Francis F, Cônsoli FL 2018 *Spiroplasma* affects host aphid proteomics feeding on two nutritional resources. *Scientific Reports* 8:2466.

Guidolin AS, Cônsoli FL. 2018 Diversity of the most commonly reported facultative symbionts in two closely-related aphids with diferente host ranges. *Neotrop Entomol* 47: 440-446.

Harumoto T, Anbutsu H, Fukatsu T. 2014 Male-killing *Spiroplasma* induces sex-specific cell death via host apoptotic pathway. *PLoS Pathogens* 10: e1003956.

Harumoto T, Lemaître B. 2018 Male-killing toxin in a bacterial symbiont of *Drosophila*. *Nature* 557: 252-255.

Herren JK, Lemaître B. 2011 *Spiroplasma* and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in *Drosophila melanogaster*. *Cellular Biology* 13:9 1385-1396.

Hölldobler B, Wilson EO. 1990 The Ants. Springer, Berlin, 732 pp.

Jaenike J, Uncllkes R, Cockburn SN, Boelio LM, Perlman SJ. 2010 Adaptation via symbiosis: recent spread of a *Drosophila* defensive symbiont. *Science* 329:212-215.

Kapranas A, Federici BA, Luck RF, Johnson J. 2008 Cellular immune response of brown soft scale Coccus hesperidum L. (Hemiptera: Coccidae) to eggs of Metaphycus luteolus Timberlake (Hymenoptera: Encyrtidae). *Biological Control* 48:1-5.

Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. 2008 The presence of *Rickettsia* is associated with increased susceptibility of *Bemisia tabaci* (Homoptera: Aleyrodidae) to insecticides. *Pest Manag. Sci.* 64:789–792.

Kumar S, Stecher G, Tamura K. 2016 MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33:4 1870-1874.

Leonardo TE, Muiru GT. 2003 Facultative symbionts are associated with host plant specialization in pea aphid populations. *Proc. Soc. Lond. B (Suppl.)* 270: S209-S212.

McNair JN. 1982. Optimal Giving-Up Times and The Marginal Value Theorem. *The American Naturalist* 119:4 511-529.
Montenegro H, Solferini V, Klaczko LB, Hurst GDD. 2005 Male-killing Spiroplasma naturally infecting Drosophila melanogaster. *Insect Molecular Biology* 14:281-287.

Oliver KM, Russel JA, Moran NA, Hunter MS. 2003 Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. *Proc. Natl. Acad. Sci. U.S.A.* 100:4 1803-1807.

Outreman Y, Ralec AL, Wajnberg É, Pierre JS. 2001 Can imperfect host discrimination explain partial patch exploitation in parasitoids? *Ecological Entomology* 26:271-280.

Outreman Y, Ralec AL, Wajnberg É. 2005 Effects of within and among-patch experience on the patch-leaving decision rules in an insect parasitoid. *Behav Ecol Sociobiol* 58:208-217.

Pennachio F, Digilio MC, Tremblay E. 1995 Biochemical and metabolic alterations in *Acyrthosiphon pisum* parasitized by *Aphidius ervi*. *Archives of Insect Biochemistry and Physiology* 30:351-367.

Polin S, Simon J, Outreman Y. 2014 An ecological cost associated with protective symbionts of aphids. *Ecol Evol* 4:826-830.

Rambaut A. 2016 FigTree v.1.4.3, a graphical viewer of phylogenetic trees.

Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swinderen B, Weible MW, Brownlie JC. 2015 *Wolbachia* influences the production of octopamine and affects *Drosophila* male aggression. *Applied and Environmental Microbiology* 81:14 4573-4580.

Roitberg, BD, Myers JH. 1978 Adaptation of alarm pheromone responses of the pea aphid *Acyrthosiphon pisum* (Harris). *Can. J. Zool.* 56: 103–108.

Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK. 2006 Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. *Annu. Rev. Entomol.* 51:331-357.

R Development Core Team 2011 R: A language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org/.

Salt G. 1934 Experimental Studies in Insect Parasitism III – Host Selection. *Proceedings of the Royal Society B* 117:413-435.

Shelby KS, Adeyeye OA, Okot-Kotber BM, Webb BA. 2000 Parasitism-linked block of host plasma melanization. *J Invertebr Pathol* 75:218-225.
Shokal U, Yadav S, Atri J, Accetta J, Kenney E, Banks K, Katakam A, Jaenike J, Eleftherianos I. 2016 Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiology 16:16.

Stevenson PA, Rilich J. 2016 Controlling the decision to fight or flee: The roles of biogenic amines and nitric oxide in the cricket. Curr Zool 62:265-275.

Tentelier C, Wajnberg É, Fauvergue X. 2005 Parasitoids use herbivore-induced information to optimise their patch residence time. Ecol Entomol 30:737-744.

van Houte S, Ros VI, van Oers MM. 2013 Walking with insects: molecular mechanisms behind parasitic manipulation of host behavior. Mol Ecol 22:3458-3475.

van Lenteren JC, Ruschioni S, Romani R, van Loon JAJ, Qiu YT, Smi HM, Isidoro N, Bin F. 2007 Structure and electrophysiological responses of gustatory organs on the ovipositor of the parasitoid Leptopilina heterotoma. Arthropod Structure & Development 36:271-276.

Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, et al. 2012 Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLoS ONE 7(3): e33188.

Vinson SB 1976 Host selection by insect parasitoids. Annual Review of Entomology 21:109-133.

Vinson SB, Iwantsch GF. 1980a Host suitability for insect parasitoids. Annual Review of Entomology 25:397-419.

Vinson SB, Iwantsch GF. 1980b Host regulation by insect parasitoids. The Quartely Review of Biology 55:2 143-165.

Wajnberg É. 2006 Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. Behav. Ecol. Sociobiol. 60:589-611.

Wojda I, Jakubowicz T. 2007 Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. Journal of Insect Physiology 53:1134-1144.

Xie J, Vilchez I, Mateos M. 2010 Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLoS ONE 5:8 e12149.
3. *Wolbachia* INFECTION INTERFERES WITH THE PATCH EXPLOITATION DECISIONS OF THE EGG PARASITOID *Trichogramma pretiosum* (HYMENOPTERA: TRICHOGRAMMATIDAE)

Abstract

Several factors influence the host selection process and the behavioral ecology of parasitic wasps. The assessment and understanding of the factors that result in successful host selection and optimal patch time allocation by parasitic wasps are required for the implementation of successful applied biological control and promotion of conservation biological control. Insect microbial symbionts are diverse and are reported to influence several aspects of the physiology and behavior of their hosts, including *Wolbachia*, the most common non-obligate symbiont associated with arthropods. We investigated the effects of *Wolbachia* infection on patch time allocation and host selection behavior of *Trichogramma pretiosum* (Hymenoptera: Trichogrammatidae) using infected and cured sister lines, when exploiting patches with host eggs of *Anagasta kuehniella* (Lepidoptera: Pyralidae). A new sequence type (ST-493) of *Wolbachia* was identified infecting *T. pretiosum* using the multi-locus sequencing typing approach. We recorded the behaviors of infected and cured wasps when exploiting the patch. We found infected females remain longer in the patch when compared to cured females. We also detected mated females remained longer than virgin females regardless of their infection status. The patch leaving decisions of *T. pretiosum* females increased with rate of contact with previously parasitized eggs regardless the mating and infection status. In conclusion, the ST-493 of *Wolbachia* affects the patch leaving decisions and the efficiency of parasitization of *T. pretiosum*, influencing the field efficiency of this parasitoid if used as a biological control agent.

Keywords: Natural enemies; Parasitism; Quality control; Risk assessment; Symbiosis

3.1. Introduction

There is a wide range of symbiont bacteria directly related to their hosts attributes, which can alter the hosts physiology, phenotype expression and behavior. Some bacterial symbionts are key to their hosts as they provide essential nutrients to complement the host´s nutritional requirements, while other can contribute to host defense and host utilization, for example (Steinhaus 1960; Dillon and Dillon 2004).

Wolbachia is by far the most common and widely distributed symbiont in arthropods and nematodes. *Wolbachia* is better known by affecting sex host determination using several different processes, but a number of different interactions can also be established (Werren et al. 2008). There associations in which *Wolbachia* establishes highly pathogenic interactions with their hosts (Min and Benzer 1997; Woolfit et al. 2013), while in others they can be fundamental in providing nutrients to the host (Brownlie et al. 2009) or in inducing oogenesis in others (Dedeine et al. 2001;
Dedeine et al. 2005). In associations in which Wolbachia infection has low adaptive costs, infection by this bacterium enhances the host immune system and contributes to the host immune defense against pathogenic infections (Teixeira et al. 2008).

Several insect associated symbionts are also known to affect the host behavior even when leading of pathogenic interactions (Dion et al. 2011; Ferrari and Vavre 2011). Wolbachia is also one of such symbionts, and can induce high levels of octopamine synthesis in their hosts, resulting in increased host aggressiveness (Rohrscheib et al. 2015). Wolbachia has also been demonstrated to affect the host selection behavior of natural enemies, reducing the capacity of female parasitic wasps to discriminate parasitized from health hosts (Farahani et al. 2015).

There are also Wolbachia strains that adds high fitness costs to their associate hosts negatively affecting fitness traits that are of particular interest when hosts are important as biocontrol agents in applied or conservative biological control (Mochiah et al. 2002). Biological Control is one of the most important strategies available for sustainable pest control (Jonsson et al. 2014). Implementation of biological control strategies require the understanding of natural enemies’ behavior and ecology and their interactions with the hosts for their successful exploitation (Wajnberg et al. 2015).

Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) are the most common and important parasitoids used as biocontrol agents worldwide (Cônsoli et al. 2010). Trichogramma pretiosum is polyphagous and widely distributed in this genus, and it has been mass reared and released in millions of hectares for the control of pest species in a number of agroecosystems, including Brazil (Cônsoli et al. 2010; Parra and Zucchi 2004; Parra 2014). Trichogramma is also a common host to Wolbachia, with several species been associated with this bacterium (Pintureau et al. 2002; Werren et al. 2008; Almeida and Stouthamer 2017). Thelytokous parthenogenesis is the most common phenotype induced by Wolbachia infections in Trichogramma (Werren et al. 2008), and the fact that Wolbachia-infected Trichogramma would only produce females as progenies has been argued to favor the mass production and use of this natural enemy in applied biological control programs (Stouthamer et al. 1990; 1999; Stouthamer 1993;). But little is known on the effects of Wolbachia infections on behavioral and fitness traits that would interfere with the optimal strategies for host use and successful parasitization (Farahani et al. 2015).
There are a number of factors capable of altering the host selection and behavior ecology of parasitoids. Over recent years, the role of the host microbiome in host phenotype expression and fitness traits attributes has been discovered and increased concern to understand how associates microbes, particularly bacteria, can interfere in host biology, physiology and ecology has fostered investigations on a wide range of topics, from their role in speciation processes, host selection, host adaptation, among others (Brucker and Bordenstein 2012; Lewis and Lizé 2015; Shropshire and Bordenstein 2016).

In order to better understand the effects of *Wolbachia* in infected wasps target to use as biocontrol agents, we tested the hypothesis that *Wolbachia* affects patch utilization and host parasitization of *T. pretiosum* by analyzing the patch leaving decisions and the successful host paratization of *Wolbachia*-infected and *Wolbachia*-cured sister isolines when exploiting patches with eggs of *Anagasta kuehniella* (Lepidoptera: Pyralidae). We expect our data will contribute to the understanding of *Wolbachia – Trichogramma* associations, and the possible use of *Wolbachia*-infected strains in applied biological control programs.

3.2. Conclusions

- *Trichogramma pretiosum* is infected by the new ST-493 of *Wolbachia*;
- ST-493 of *Wolbachia* affects the patch leaving decisions and the patch residence time of *Trichogramma pretiosum*;
- ST-493 of *Wolbachia* decreases the rate of host encounter per unit time of *Trichogramma pretiosum*;
- ST-493 of *Wolbachia* decreases the number of eggs successfully parasitized by *Trichogramma pretiosum*;
- ST-493 of *Wolbachia* decreases the number of rejected hosts and increases the rate of rejection of eggs per unit time by *Trichogramma pretiosum*;
- Virgin females remain short in the patch as compared to mated females regardless of their infection status.
References

Abe J, Innocent TM, Reece SE, West SA. 2010 Virginity and the clutch size behavior of a parasitoid wasp where mothers mate their sons. Behav. Ecol. 21:730-738.

Almeida RP, Stouthamer R. 2017 Phylogeny of the Trichogramma endosymbiont Wolbachia, an alpha-proteobacteria (Rickettsiae). Brazilian Journal of Biology 78:421-428.

Baldo L, Lo N, Werren JH. 2005 Mosaic nature of the Wolbachia surface protein. J Bacteriol. 187:15 5406-5418.

Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL. 2009 Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipiensis, during periods of nutritional stress. PLoS Pathog. 5:e1000368.

Brucker RM, Bordenstein SR. 2012 Speciation by symbiosis. Trends Ecol Evol. 27:443-451.

Caragata EP, Rancès E, O'Neill SL, McGraw EA. 2014 Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb. Ecol. 67:205-218.

Charnov EL. 1979 The Genetical Evolution of Patterns of Sexuality: Darwinian Fitness. The American Naturalist 113:465-480.

Chen PS. 1996 The accessory gland proteins in male Drosophila: structural, reproductive, and revolutionary aspects. Experientia 52:503-510.

Christensen S, Pérez Dulzaides R, Hedrick VE, Momtaz AJMZ, Nakayasu ES, Paul LN, Serbus LR. 2016. Wolbachia endosymbionts modify Drosophila ovary protein levels in a context-dependent manner. Appl. Environ. Microbiol. 82:5354–5363. doi:10.1128/AEM.01255-16.

Collaza S, Salerno G, Wajnberg É. 1999 Volatile and Contact Chemicals Released by Nezara viridula (Heteroptera: Pentatomidae) Have a Kairomonal Effect on the Egg Parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biological Control 16:310-317.

Cônsoli FL, Parra JRP. 1995 Effects of constant and alternating temperatures on Trichogramma galloi Zucchi (Hym., Trichogrammatidae) biology. I. Development and thermal requirements. Journal of Applied Entomology 119:415–418.
Cônsoli FL, Parra JRP, Vinson SB. 2000 Estimating parasitoid immature mortality by comparing oviposition and pupal development of *Trichogramma galloi Zucchi* and *T. pretiosum Riley* on natural and factitious hosts. Rev. Brasi. Biol. 60:381-387.

Cônsoli FL, Parra JRP, Zucchi RA. 2010 Egg parasitoids in agroecosystems with emphasis on *Trichogramma*. Progress in Biological control, Springer, Heidelberg, London, New York, p. 479.

Darrouzet E, Bignon L, Chevrier C. 2007 Impact of mating status on egg-laying and superparasitism behavior in a parasitoid wasp. *Entomol. Exp. Et Appl.* 123:279-285.

Dedeine F, Vavre F, Fleury, F, Loppin B, Hochberg ME, Boulétreau M. 2001 Removing symbiotic *Wolbachia* bacteria specifically inhibits oogenesis in a parasitic wasp. *PNAS* 98:11 6247-6252.

Dedeine F, Boulétreau M, Vavre F. 2005 *Wolbachia* requirement for oogenesis: occurrence within the genus *Asobara* (Hymenoptera, Braconidae) and evidence for intraspecific variation in *A. tabida*. *Heredity* 95:394-400.

Dillon RJ, Dillon VM. 2004 The Gut Bacteria Of Insects: Nonpathogenic Interactions. *Annu. Rev. Entomol.* 49: 71-92.

Dion E, Polin SE, Simon J, Outreman Y. 2011 Symbiont infection affects aphid defensive behaviors. *Biol. Lett.* 7:743-746.

Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O’Neill SL, McGraw EA. 2009 Increased locomotor activity and metabolism of *Aedes aegypti* infected with a life-shortening strain of *Wolbachia pipienis*. *Journal of Experimental Biology* 212:1436-1441.

Farahani HK, Ashouri A, Goldansaz SH, Farrokhi S, Ainouche A, van Baaren J. 2015 Does *Wolbachia* infection affect decision-making in a parasitic wasp? *Entomol. Exp. Et Appl.* 155: 102-116.

Fatouros NE, Bukovinszkine’Kiss G, Kalkers LA, Gamborena RS, Hilker M. 2005 Oviposition-induced plant cues: do they arrest *Trichogramma* wasps during host location? *The Netherlands Entomological Society Entomologia Experimentalis et Applicata* 115:207–215.

Fernandes MR, Martins R, Pessoa EC, Casagrande EP, Araujo LA, Vaz IS, Moreira LA, Fonseca RN, Logullo C. 2014 The Modulation of the Symbiont/Host
Interaction between *Wolbachia pipientis* and *Aedes fluviatilis* Embryos by Glycogen Metabolism. *PLoS ONE* 9: e98966.

Ferrari J, Vavre F. 2011 Bacterial symbionts in insects or the story of communities affecting communities. *Phil. Trans. R. Soc. B* 366: 1389-1400.

Fleury F, Vavre F, Ris N, Fouillet P, Boulétreau M. 2000 Physiological cost induced by the maternally-transmitted endosymbiont *Wolbachia* in the *Drosophila* parasitoid *Leptopilina heterotoma*. *Parasitology* 121:493-500.

Fry AJ, Palmer MR, Rand DM. 2004 Variable fitness effects of *Wolbachia* infection in *Drosophila melanogaster*. *Heredity* 93: 379-389.

Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF. 2006 *Wolbachia* infection suppresses both host defence and parasitoid counter-defence. *Proc. Biol. Sci.* 273:791-796.

Gardner SM, van Lenteren JC. 1986 Characterisation of the arrestment responses of *Trichogramma evanescens*. *Oecologia* 68:265-270.

Giron D, Casas J. 2003 Lipogenesis in an adult parasitic wasp. *Journal of Insect Physiology* 49:141-147.

Godfray HCJ. 1994 *Parasitoids, Behavioral and Evolutionary Ecology*, Princeton University Press, Princeton, New Jersey, USA.

Jones WT. 1982 Sex Ratio and Host Size in a Parasitoid Wasp. *Behavioral Ecology and Sociobiology* 10:207-210.

Jones RL. 1983 Host-seeking stimulants (kairomones) for the egg parasite, *Trichogramma evanescens*. *Environmental Entomology* 2:593-596.

Jonsson M, Bommarco R, Ekbom B, Smith HG, Bengtsson J, Caballero-Lopez B, Winqvist C, Olsson O. 2014 Ecological production functions for biological control services in agricultural landscapes. *Methods in Ecology and Evolution* 5:243-252.

Kumar S, Stecher G, Tamura K. 2016 MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33:4 1870-1874.

Lewis Z, Lizé A. 2015 Insect behaviour and the microbiome. *Current Opinion in Science* 9:86–90.

Min K, Benzer S. 1997 *Wolbachia*, normally a symbiont of *Drosophila*, can be virulent, causing degeneration and early death. *Proc. Natl. Acad. Sci. USA* 94:10792-10796.
Mochiah MB, Ngii-Song AJ, Overholt WA, Stouthamer R. 2002 *Wolbachia* infection in *Cotesia sesamiae* (Hymenoptera: Braconidae) causes cytoplasmic incompatibility: implications for biological control. *Biological Control* 25:77-80.

Molloy JC, Sommer U, Viant MR, Sinkins SP. 2016 *Wolbachia* modulates lipid methabolism in *Aedes albopictus* mosquito cells. *Appl. Environ. Microbiol.* AEM.00275-16.

Parra JRP, Zucchi RA. 2004 *Trichogramma* in Brazil: feasibility of use after twenty years of research. *Neotropical Entomology* 33: 271-284.

Peng Y, Nielsen JE, Cunningham JP, McGraw EA. 2008 *Wolbachia* infection alters olfactory-cued locomotion in *Drosophila* spp. *Appl. Environ Microbiol.* 74:3943-3948.

Pintureau B, Grenier S, Abdelaziz H, Charles H. 2002 Biodiversity of *Wolbachia* and of their effects in *Trichogramma* (Hymenoptera: Trichogrammatidae). *Annales de la Société entomologique de France (N.S.): International Journal of Entomology* 38:333-338.

Pratissoli D, Zanuncio JC, Vianna U R, Andrade JS, Guimarães EM, Espindula MC. 2004 Fertility life table of *Trichogramma pretiosum* and *Trichogramma acacioi* on eggs of *Anagasta kuehniella* at different temperatures. *Pesq. Agropec. Bras.* 39:193-196.

Rambaut A. 2016 FigTree v.1.4.3, a graphical viewer of phylogenetic trees.

Rohrscheib CE, Bondy E, Josh P, Riegler M, Eyles D, van Swideren B, Weible MW, Brownlie JC. 2015 *Wolbachia* influences the production of octopamine and affects *Drosophila* male aggression. *Applied and Environmental Microbiology* 81:4573-4580.

Salt G. 1935 Experimental studies in insect parasitism III – Host selection. *Proc. R. Soc. Lond. B* 117:413-435.

Schimidt JM, Smith JJ. 1985 The mechanism by which the parasitoid wasp *Trichogramma minutum* responds to host clusters. *Entomol. Exp. Appl.* 39:287-294.

Shropshire JD, Bordenstein SR. 2016 Speciation by Symbiosis: the Microbiome and Behavior. *mBio* 7: e01785-15. doi:10.1128/mBio.01785-15.

Sirot LK, Wong A, Chapman T, Wolfner MF. 2015 Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. *Cold Spring Harb Perspect Biol.* 7:a017533.
Sonnenburg JL, Xu J, Leip DD, Chen C, Westover BP, Weatherford J, Buhler JD, Gordon JI. Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont. *Science* 307:1955–1960.

Steinhaus EA. 1960 The importance of environmental factors in the insect-microbe ecosystem. *Bacteriology Review* 4:365–373.

Stouthamer R, Luck RF, Hamilton WD. 1990 Antibiotics cause parthenogenetic *Trichogramma* (Hymenoptera/Trichogrammatidae) to revert to sex. *Proc. Natl. Acad. Sci. USA* 87: 2424-2427.

Stouthamer R. 1993 The use of sexual versus sexual wasps in biological control. *Entomophaga* 38: 3-6.

Stouthamer R, Breeuwer JAJ, Hurst GDD. 1999 *Wolbachia* *pipiens*is: Microbial manipulator of arthropod reproduction. *Annu. Rev. Microbiol.* 53:71-102.

Teixeira L, Ferreira A, Ashburner M. 2008 The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster. *PLoS Biology* 6:e1000002.

Tram U, Wolfner MF. 1999 Male seminal fluid proteins are essential for sperm storage in Drosophila melanogaster. *Genetics* 153:837-844.

Vala F, Egas M, Breeuwer JAJ, Sabelis MW. *Wolbachia* affects oviposition and mating behavior of its spider mite host. *J. Evol. Biol.* 17:692-700.

Vinson SB. 1998 The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. *Biological Control* 11:79-96.

Visser B, Lann CL, den Blanken FJ, Harvey JA, van Alphen JJM, Ellers J. 2010 Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. *Proceedings of the National Academy of Sciences* 107:8677-8682.

Voronin D, Bachu S, Shlossman M, Unnasch TR, Ghedin E, Lustigman S. 2016 Glucose and glycogen metabolism in Brugia malayi is associated with Wolbachia symbiont fitness. *PLoS One* 11:e0153812. https://doi.org/10.1371/journal.pone.0153812

Wajnberg E, Rosi MC, Colazza S. 1999 Genetic variation in patch time allocation in a parasitic wasp. *Journal of Animal Ecology* 68:121–133.

Wajnberg E, Fauvergue X, Pons O. 2000 Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model. *Behavioral Ecology* 11:577–586.
Wajnberg É, Gonsard P, Tabone E, Curty C, Lezcano N, Colazza S. 2003 A comparative analysis of patch-leaving decision rules in a parasitoid family. *Journal of Animal Ecology* 72:618-626.

Wajnberg É. 2006 Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. *Behav. Ecol. Sociobiol.* 60: 589-611.

Wajnberg É, Roitberg, BD, Boivin G. 2015 Using optimality models to improve the efficacy of parasitoids in biological control programmes. *Entomologia Experimentalis et Applicata* 158: 2-16.

Wang Z, He K, Zhang F, Lu X, Badendreier D. 2013 Mass rearing and release of *Trichogramma* for biological control of insect pests of corn in China. *Biological Control* 68: 136-144.

Werren JH, Zhang W, Guo LR. 1995 Evolution and phylogeny of *Wolbachia*: reproductive parasites of arthropods. *Proc. R. Soc. Lond. B* 261:55-71.

Werren JH, Baldo L, Clark ME. 2008 *Wolbachia*: Master manipulators of invertebrate biology. *Nature Reviews Microbiology* 6: 741–751.

Wolfner MF. 1997 Tokens of love: Functions and regulations of *Drosophila* male accessory gland products. *Insect Biochemistry and Molecular Biology* 27:179-192.

Wolfner, MF. 2002 The gift that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in *Drosophila*. *Heredity* 88:84-93.

Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Popovici J, Rancès E, Wee BA, Pavlides J, Sullivan MJ, Beatson SA, Lane A, Sidhu M, McMeniman CJ, McGraw EA, O’Neill SL. 2013 Genomic evolution of the pathogenic *Wolbachia* strain, *wMelPop*. *Genome Biol Evol.* 5:11 2189-2204.