Search for the baryon- and lepton-number violating decays $B^0 \rightarrow p\mu^-$ and $B^0_s \rightarrow p\mu^-$

LHCb collaboration†

Abstract

A search for the baryon- and lepton-number violating decays $B^0 \rightarrow p\mu^-$ and $B^0_s \rightarrow p\mu^-$ is performed at the LHCb experiment using data collected in proton-proton collisions at $\sqrt{s} = 7, 8$ and 13 TeV, corresponding to integrated luminosities of 1, 2 and 6 fb$^{-1}$, respectively. No significant signal for $B^0 \rightarrow p\mu^-$ and $B^0_s \rightarrow p\mu^-$ decays is found and the upper limits on the branching fractions are determined to be $B(B^0 \rightarrow p\mu^-) < 2.6 (3.1) \times 10^{-9}$ and $B(B^0_s \rightarrow p\mu^-) < 12.1 (14.0) \times 10^{-9}$, respectively, at 90% (95%) confidence level. These are the first limits on these decays to date.

Published in Phys. Rev. D108 (2023) 012021

© CERN on behalf of the LHCb collaboration. CC BY 4.0 licence

†Authors are listed at the end of this paper.
1 Introduction

Despite the tremendous success of the Standard Model (SM) of particle physics in the past few decades, there are still some important questions that are not answered. One of them is the observation of the matter-antimatter asymmetry in the universe, which brings a serious challenge to our understanding of nature. In 1967, Andrei Sakharov proposed three necessary conditions that must be satisfied to produce such a large matter-antimatter asymmetry, one of which is baryon number violation (BNV) \[1\]. Various extensions of the SM that include BNV processes, known as Grand Unified Theory (GUT) models, have been proposed, such as SU(5) \[2\], SO(10) \[3\], E\(_6\) \[4\] and flipped SU(5) \[5,6\]. These GUT models usually require two hypothetical gauge bosons, \(X\) and \(Y\), with electric charges of \(\pm \frac{4}{3}e\) and \(\pm \frac{1}{3}e\), that couple quarks to leptons and lead to both BNV and lepton number violation (LNV).

Proton decay is a BNV process of the lightest baryon: none of its decay modes, although predicted by many GUT models, have been observed \[7\]. However, since proton decay only involves first-generation quarks, experimental searches for BNV decays of heavy-flavour hadrons are very important and represent additional probes for new physics effects. Various BNV processes have been searched for in \(\tau\), \(\Lambda\), \(D\), \(J/\psi\), and \(B\) decays by the CLEO \[8\], CLAS \[9\], BESIII \[10 –13\] and BABAR \[14\] experiments, but no evidence has been found so far. The large data samples accumulated by the LHCb experiment are expected to lead to the best sensitivity for investigating BNV decays of \(B\) mesons. The \(B^0\to p\mu^-\) decay modes, with possible hypothetical Feynman diagrams shown in Fig. 1, are relevant BNV and LNV processes that are forbidden in the SM with a prediction of \(B(\bar{b}\to uu\mu^-) < 2.4 \times 10^{-27}\) \[15\] derived from the constraint of proton stability.

In this paper, we present the first search for \(B^0\to p\mu^-\) and \(B^0\to p\mu^+\) decays using proton-proton (pp) collisions collected with the LHCb detector and corresponding to an integrated luminosity of 1 fb\(^{-1}\) at a center-of-mass energy \(\sqrt{s} = 7\) TeV, 2 fb\(^{-1}\) at \(\sqrt{s} = 8\) TeV and 6 fb\(^{-1}\) at \(\sqrt{s} = 13\) TeV. The first two data sets are referred to as Run 1 and the latter as Run 2. Two normalisation channels are used: the \(B^0\to K^+\pi^-\) decay, which has a similar topology to that of the signal, and the \(B^+\to J/\psi(\mu^+\mu^-)K^+\) decay, due to its high abundance and the high purity that can be achieved at the LHCb experiment. The \(B^0\to p\mu^-\) candidates with \(p\mu^-\) pair invariant mass \(m_{p\mu^-}\) in the range \([5067, 5667]\) MeV/c\(^2\) are selected. To avoid potential biases, \(B^0\to p\mu^-\) candidates in the signal region, \(m_{p\mu^-}\) \(\in\) \([5217, 5457]\) MeV/c\(^2\), were not examined until the selection and fitting procedure were finalised.

2 Detector and simulation

The LHCb detector \[16,17\] is a single-arm forward spectrometer covering the pseudo-rapidity range \(2 < \eta < 5\), designed for the study of particles containing \(b\) or \(c\) quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the \(pp\) interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The

\(^1B^0_{(s)}\to p\mu^-\) represents \(B^0_{(s)}\to p\mu^-\) and \(p\mu^+\) and the inclusion of charge-conjugate processes is implied throughout this paper, unless otherwise noted.
Figure 1: Hypothetical Feynman diagrams of $B_{(s)}^0 \rightarrow p\ell^−$ and $p\ell^+$ mediated by a hypothetical Y boson.

tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T)\, \mu\text{m}$, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger [18], which consists of a hardware stage, based on information from the muon and calorimeter systems, followed by a software stage that applies a full reconstruction of the event. At the hardware stage, the presence of a muon with high p_T is required, while at the software level both tracks are used. A first software stage requires the presence of at least one track with high p_T that is well separated from the PV. It is followed by a second stage that requires a two-track secondary vertex with significant displacement from any PV, and a multivariate algorithm [19][20] is used for the identification of secondary vertices consistent with the decay of a b hadron.

Simulated samples of signal and background channels are used to evaluate geometrical, reconstruction and selection efficiencies, to train multivariate classifiers and to determine the shapes of invariant mass distributions of both signal and background contributions. In the simulation, pp collisions are generated using PYTHIA [21] with a specific LHCb configuration [22]. Decays of hadronic particles are described by EvtGen [23], in which final-state radiation is generated using PHOTOS [24]. The signal events are generated by assuming the $B_{(s)}^0$ decays do not produce any preferred polarization of the proton. The interaction of the generated particles with the detector, and its response, are simulated using the GEANT4 toolkit [25][26] as described in Ref. [27].
3 Selection

The \(B^0(\text{s}) \rightarrow p\mu^-\) candidates are reconstructed by combining two oppositely charged tracks with transverse momentum in the range \(0.25 < p_T < 40\text{ GeV/c}\), momentum \(p < 500\text{ GeV/c}\), as in Ref. [28]. The tracks are also required to have a good track fit quality, with a track fit \(\chi^2\) per degree of freedom smaller than three. Only candidate tracks with \(\chi^2_{\text{IP}} > 25\) for any PV are selected, where \(\chi^2_{\text{IP}}\) is defined as the difference between the vertex-fit \(\chi^2\) of the PV formed with and without the particle in question. The distance of closest approach between the two tracks is required to be below 0.1 mm. The proton candidates are required to be in the geometric acceptance of the LHCb muon stations to mimic the selection of the muon pair of the normalisation channel \(B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+\). This requirement has a negligible effect on the signal efficiency. The two candidate tracks are required to form a secondary vertex with a vertex-fit \(\chi^2\) per degree of freedom (\(\chi^2_{\text{vtx}}\)) smaller than nine. Furthermore, the resulting \(B^0(\text{s})\) candidates must have a decay time less than nine times the \(B^0(\text{s})\) lifetime, \(\chi^2_{\text{IP}} < 25\) with respect to the PV for which the \(\chi^2_{\text{IP}}\) is minimal and \(p_T > 0.5\text{ GeV/c}\), to suppress background from random combinations of tracks originating from the PV.

Particles forming the \(B^0(\text{s}) \rightarrow p\mu^-\) candidates are required to be well identified as a proton and a muon [29], using information from the Cherenkov detectors, the calorimeters and the muon stations. The stringent requirements on the \(p\) and \(\mu\) candidates retain more than 60% of the signal candidates and eliminate more than 99% of the background candidates from decays with misidentified particles, particularly the two-body peaking backgrounds, but have almost no discriminating power on the semileptonic decay \(\Lambda^0_b \rightarrow p\mu^-\nu\mu\), which has the same visible final state particles as the signal channels. This decay represents the main physics background in this analysis. The \(\Lambda^0_b \rightarrow pX\mu^-\nu\mu\) decays with any additional unreconstructed particles (\(X\)) are expected to have negligible contribution in the fit region of \(p\mu^-\) mass.

For the normalization channels, the selection for \(B^0 \rightarrow K^+\pi^-\) candidates is the same as for the \(B^0(\text{s}) \rightarrow p\mu^-\) channel, except for the particle identification (PID) criteria. Similarly, the \(B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+\) candidate selection is also kept as similar as possible, applying the same selection used for the signal to the dimuon pair from the \(J/\psi\) decay. Additionally, loose quality requirements are applied on the \(J/\psi\) vertex, \(\chi^2_{\text{vtx}} < 9\). Finally, a 100 MeV/c\(^2\) mass window around the known \(B^+\) mass and a 60 MeV/c\(^2\) mass window around the known \(J/\psi\) mass [30] are used.

4 MLP training and calibration

A Multilayer perceptron (MLP) [31] classifier implemented in the TMVA toolkit [32] is used to separate the \(B^0(\text{s}) \rightarrow p\mu^-\) signal from the combinatorial background, which arises from random combinations of tracks. The classifier is trained using a sample of simulated \(B^0 \rightarrow p\mu^-\) events to describe the signal, and a data sample of same-sign \(p\mu^+\) candidates to describe the combinatorial background. The same-sign sample reproduces the distributions of the MLP input variables from the data sidebands (5067 < \(m_{\mu^-}\) < 5100 MeV/c\(^2\) or 5500 < \(m_{\mu^-}\) < 5667 MeV/c\(^2\)). The following input variables are used: the minimum \(\chi^2_{\text{IP}}\) of the two tracks in the final state and the \(\chi^2_{\text{IP}}\) of the \(B^0\) candidate, the vertex fit \(\chi^2\) of the \(B^0\) decay and its displacement from the production vertex, the \(B^0\) transverse momentum
and its proper decay time, the distance of closest approach between the two tracks in the final state, the difference of pseudorapidity between the two final-state tracks, the angular difference between the direction of B^0 momentum and the direction defined by the secondary and primary vertices, and the angular difference between the direction of the μ momentum and the vector perpendicular to the B^0 momentum and the beam axis in the B^0 rest frame. Distributions of two classifier input variables, the vertex fit χ^2 of the B^0 decay and the minimum χ^2_{IP} of the two tracks in the final state, for the same-sign sample and the data sidebands in Run 2 are compared in Fig. 2.

The response of the MLP classifier is constructed to be uniform in the range [0,1] for signal after the full selection without PID requirements. For background, the MLP response peaks near zero. Its linear correlation with the $p\mu^-$ pair mass is below 1%. The MLP response is divided into eight intervals with boundaries of 0.0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. The MLP response is required to be greater than 0.25 in the final $p\mu^-$ mass distribution fit.

Since the MLP classifier is trained using only kinematic information of a two-body B^0 decay, its response is calibrated using $B^0 \rightarrow K^+\pi^-$ decays. To avoid biases, $B^0 \rightarrow K^+\pi^-$ candidates are selected from candidates where the trigger decision does not depend on the $B^0 \rightarrow K^+\pi^-$ candidates themselves. The number of $B^0 \rightarrow K^+\pi^-$ candidates in each interval of the MLP response is determined by fitting the $K^+\pi^-$ invariant mass distribution after the full selection. Furthermore, the candidates are corrected for PID efficiency and weighted to emulate the effect of the $B^0_{(s)} \rightarrow p\mu^-$ triggers. The distributions of the MLP response on $B^0 \rightarrow K^+\pi^-$ simulated samples and data samples show good agreement. The distribution of the MLP response from the $B^0 \rightarrow K^+\pi^-$ data samples is corrected by the ratio of the $B^0 \rightarrow p\mu^-$ and $B^0 \rightarrow K^+\pi^-$ MLP responses in simulated samples. The corrected MLP response is shown in Fig. 3 and regarded as the expected probability density function (PDF) of the MLP response for $B^0_{(s)} \rightarrow p\mu^-$ decays, due to negligible kinematic differences between the B^0 and B^s decays.
Figure 3: Expected distribution of the MLP response for $B_{(s)}^0 \to p\mu^-$ decays as obtained from the $B^0 \to K^+\pi^-$ control channel, for (left) Run 1 and (right) Run 2 data. The total (statistical and systematic combined) uncertainty is shown as a light grey band, and the thickness of each horizontal line at the centre indicates the statistical uncertainty. Each interval is normalised to its width.

5 Normalisation

The $B_{(s)}^0 \to p\mu^-$ yields are obtained from a fit to the $p\mu^-$ invariant mass distribution and translated into branching fractions with the normalisation channel $B^+ \to J/\psi (\mu^+\mu^-)K^+$, according to

$$B(B_{(s)}^0 \to p\mu^-) = \frac{f_{\text{norm}}}{f_{\text{sig}}} \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}} \frac{N_{\text{sig}}}{N_{\text{norm}}} \frac{B_{\text{norm}}}{B_{\text{sig}}} \equiv \alpha_{\text{sig}} N_{\text{sig}},$$

where B, ϵ, and N are the branching fraction, efficiency and yield of the corresponding channel and $f_{\text{sig(norm)}}$ indicates the fragmentation fraction of the relevant B meson. The parameter α_{sig} is the single-event sensitivity.

The $B^0 \to K^+\pi^-$ and $B^+ \to J/\psi (\mu^+\mu^-)K^+$ decays are used as control channels. The $B^0 \to K^+\pi^-$ mode is used as a proxy to determine the MLP PDF for signal channels (Sec. 4) and the $B^+ \to J/\psi (\mu^+\mu^-)K^+$ mode is used to extract the signal branching fraction. To validate the normalisation procedure, the ratio between the measured branching fractions of $B^0 \to K^+\pi^-$ and $B^+ \to J/\psi (\mu^+\mu^-)K^+$ is determined as

$$R_{\text{norm}} \equiv \frac{B(B^0 \to K^+\pi^-)}{B(B^+ \to J/\psi (\mu^+\mu^-)K^+)} = \frac{N_{B^0 \to K^+\pi^-} \times \epsilon_{B^+ \to J/\psi (\mu^+\mu^-)K^+}}{N_{B^+ \to J/\psi (\mu^+\mu^-)K^+} \times \epsilon_{B^0 \to K^+\pi^-}},$$

where ϵ and N are the selection efficiency and yield. Using the same fit models as in Ref. [33], the yields of the normalisation channels are obtained through fits to the mass distributions of the candidates separately for Run 1 and Run 2 datasets. The results of the fits are shown in Figs. [4] and [5].

The selection efficiency for signal and normalisation channels includes efficiencies due to detector acceptance, tracking, reconstruction, trigger, and PID. All parts of the efficiency are evaluated using simulation, in which trigger and PID efficiencies are corrected using data [34,35].

Calibration samples where the trigger decision is independent of the candidate decay products are used to study the trigger efficiency. From these samples, $B^+ \to J/\psi (\mu^+\mu^-)K^+$
The results of the invariant mass fits are superimposed.

Figure 4: Mass distribution of $B^0 \rightarrow K^+\pi^-$ candidates in data for (left) Run 1 and (right) Run 2. The results of the invariant mass fits are superimposed.

Figure 5: Mass distribution of $B^+ \rightarrow J/\psi K^+$ candidates in data for (left) Run 1 and (right) Run 2. The results of the invariant mass fits are superimposed.

candidates are used to estimate the trigger efficiency for muons as a function of the muon p_T and IP. No proton trigger is used in this analysis. For the two normalisation channels, $B^+ \rightarrow J/\psi (\mu^+\mu^-)K^+$ data samples are also used to determine the trigger efficiency map as a function of the B meson p_T. The resulting trigger efficiency maps are then applied to the simulation to determine the integrated trigger efficiency for a specific channel.

Particle identification efficiencies are evaluated using high-purity control samples of each particle species obtained from data \cite{35,36}. These control samples are obtained by means of kinematic requirements only, with muons obtained from $J/\psi \rightarrow \mu^+\mu^-$ and $B^+ \rightarrow J/\psi K^+$ decays, pions and kaons from $D^0 \rightarrow K^-\pi^+$ decays selected via $D^+ \rightarrow D^0\pi^+$, and protons from $\Lambda \rightarrow p\pi^-$ and $\Lambda^+_c \rightarrow pK^-\pi^+$ decays. The muon PID efficiencies are evaluated as a function of the muon p_T and η. The PID efficiencies for different hadrons are evaluated as a function of p and η. The single-track efficiencies are then combined and averaged using the kinematic distributions of the corresponding simulated sample.

The ratios R_{norm} between the measured branching fractions of $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow J/\psi (\mu^+\mu^-)K^+$ in Eq. \cite{2} are $R_{\text{norm}} = 0.329 \pm 0.012$ and $R_{\text{norm}} = 0.341 \pm 0.010$ for
Run 1 and Run 2, respectively, where the uncertainties are statistical only and include the efficiency uncertainties from both channels. These values are in agreement with the ratio of the world averages of these branching fractions, \(R_{PDG} = 0.326 \pm 0.012 \) [7].

6 Background contributions

In addition to the combinatorial background, the signal region is also potentially contaminated by background contributions from exclusive decays where one or more of the final-state particles are misidentified or not reconstructed. The most dangerous of these backgrounds are hadronic \(X_b \to h^+h'^- \) decays, such as: \(B^0 \to K^+\pi^- \), \(B^0_s \to K^+K^- \), \(B^0 \to K^+\pi^- \), \(A_b^0 \to pK^- \) and \(A_b^0 \to p\pi^- \), and partially reconstructed semileptonic decays: \(B^0 \to p\mu^-\nu_\mu \), \(B^0_s \to K^-\mu^+\nu_\mu \) and \(B^0 \to \pi^-\mu^+\nu_\mu \). The partially reconstructed decays do not peak in the signal region, but are potentially abundant. The expected number of candidates from each possible background decay that pass the signal selection is evaluated using simulation. The candidates from \(B^0(s) \) decays are normalised to the number of \(B^+ \to J/\psi (\mu^+\mu^-)K^+ \) decays found in data as

\[
N_X = \frac{N_{B^+ \to J/\psi (\mu^+\mu^-)K^+}}{f_d \frac{B(X)}{f_a \frac{B(B^+ \to J/\psi (\mu^+\mu^-)K^+)}{\varepsilon(X)}},
\]

where \(N_X \) is the expected number of candidates from the \(X \) decay that fall into the \(B^0(s) \to p\mu^- \) signal mass window; \(N_{B^+ \to J/\psi (\mu^+\mu^-)K^+} \) is the yield of \(B^+ \to J/\psi (\mu^+\mu^-)K^+ \) decays in the data; \(f_d \) is the fragmentation fraction for a \(b \) quark to produce either a meson with secondary quark content \(q \) or a baryon; and \(B \) and \(\varepsilon \) are the branching fraction and selection efficiency for a particular channel, respectively. For \(A_b^0 \) decays, the fragmentation fraction \(f_{A_b^0}/f_d \) depends on the \(p_T \) of the \(A_b^0 \) baryon [37][38]. The \(A_b^0 \to pK^- \) decay is used as a normalisation channel to estimate the number of background \(A_b^0 \) candidates, thereby removing a potential bias due to the correlation between \(f_{A_b^0}/f_d \) and \(p_T \). The selection criteria on \(A_b^0 \to pK^- \) candidates are largely the same as for the \(B^0 \to K^+\pi^- \) normalisation channel except for the \(p \) and \(K \) identification requirements.

The expected total number of \(X_b \to h^+h'^- \) decays in the full MLP range is found to be negligible. The only background sources which are found to be relevant are the semileptonic decays \(A_b^0 \to p\mu^-\nu_\mu \), \(B^0_s \to K^-\mu^+\nu_\mu \) and \(B^0 \to \pi^-\mu^+\nu_\mu \), with yields estimated to be roughly \(8500 \pm 2600 \), \(50 \pm 13 \) and \(310 \pm 16 \), respectively, for Run 1 and \(21000 \pm 6400 \), \(64 \pm 17 \) and \(410 \pm 23 \), respectively, for Run 2. The Run 2 to Run 1 yield ratios of \(B^0 \to K^-\mu^+\nu_\mu \) and \(B^0 \to \pi^-\mu^+\nu_\mu \) are considerably smaller than that of \(A_b^0 \to p\mu^-\nu_\mu \), which is mainly due to improved discrimination of protons from pions and kaons in Run 2. These three decay modes are included in the final fit model.

7 Measurement of signal branching fractions

The branching fractions of the signal decays are determined using an unbinned extended maximum-likelihood fit to the \(p\mu^- \) mass distributions, performed simultaneously on all the subsets. The fit is performed in the mass window \(5067 < m_{p\mu^-} < 5667 \text{ MeV}/c^2 \). The
full fit model in the data-taking period r and MLP interval i, $\text{PDF}_{\text{Full}}^{r,i}(m)$ is:

$$
\text{PDF}_{\text{Full}}^{r,i}(m) = \mathcal{P} \left(N_{\text{meas}} | N_{\text{com},r,i} + \sum_j N_{r,j} F_{r,i,j} + N_{\text{sig},r,i} \right) \times \frac{1}{N_{\text{com},r,i} + \sum_j N_{r,j} F_{r,i,j} + N_{\text{sig},r,i}}
\times \left(N_{\text{com},r,i} \text{PDF}_{\text{com},r}(m) + \sum_j N_{r,j} F_{r,i,j} \text{PDF}_{r,i,j}(m) + N_{\text{sig},r,i} \text{PDF}_{\text{sig}}(m) \right),
$$

(4)

where \mathcal{P} is the Poisson probability of measuring N, given the fitted yields. The signal model, denoted PDF_{sig}, is described in detail below. Also $\text{PDF}_{\text{com},r}$ is the PDF for combinatorial background, which is described with an exponential function with an independent shape parameter in each data-taking period and independent yield $N_{\text{com},r,i}$ in each subset. $\text{PDF}_{r,i,j}$ represents the PDF for the physical background with index j, which is modelled based on histograms determined from simulation and smoothed with a second order interpolation. $N_{r,j}$ and $F_{r,i,j}$ represent the expected yield and the yield fraction in each subset for physical backgrounds.

PDF_{sig} is a sum of a double-sided Crystal Ball (DSCB) function \cite{39} and a Gaussian function. The signal shape parameters are obtained from simulation, with data-driven scale factors applied to the core resolution to correct for minor data-simulation discrepancies. For this purpose, since there is no appropriate control channel with a proton and a muon in the final state, $\Lambda^0_c \to pK^-$ and $J/\psi \to \mu^+\mu^-$ decays are analysed comparing the invariant mass resolution in data and simulation. The results are then combined to reproduce the effect on an μ^\pm final state. Corrections to the mass resolution are of the order of 10%.

The mass shape parameters are found to be independent of the particular MLP interval and only two models, for the Run 1 and Run 2 data samples, are used.

The yield in each subset, $N_{\text{sig},r,i}$, is expressed as

$$
N_{\text{sig},r,i} = \frac{B_{\text{sig}} f_{\text{sig}} \varepsilon_{\text{PID},r,i} \varepsilon_{\text{others},r} F_{\text{sig},r,i} N_{\text{norm},r}}{B_{\text{norm}} f_{\text{norm}} \varepsilon_{\text{norm},r}}.
$$

(5)

Here, B and f represent the branching fraction and fragmentation fraction of the signal channel or the normalisation channel. The quantities $N_{\text{norm},r}$ and $\varepsilon_{\text{norm},r}$ are the yield and efficiency of the normalisation mode $B^+ \to J/\psi (\mu^+\mu^-) K^+$. Furthermore, $\varepsilon_{\text{PID},r,i}$ and $\varepsilon_{\text{others},r}$ are the PID efficiency and the total efficiency without the PID requirements for signal channels. $F_{r,i,j}$ represents the fraction in each subset for signal channels (Fig. 3).

The quantities B_{sig} and $N_{\text{com},r,i}$ are free to vary in the fit, while f_{sig}, $N_{\text{norm},r}$, B_{norm}, f_{norm}, $\varepsilon_{\text{norm},r}$, $N_{r,j}$, $F_{r,i,j}$, $\varepsilon_{\text{PID},r,i}$, $\varepsilon_{\text{others},r}$, $F_{\text{sig},r,i}$ and $N_{\text{norm},r}$ are Gaussian-constrained, according to the expected value and uncertainty.

The result of the fit in each subset is shown in Figs. 6 and 7. The resulting branching fractions are:

$$
B(B^0 \to p\mu^-) = (0.84 \pm 1.17 \pm 0.57) \times 10^{-9},
$$

$$
B(B_s^0 \to p\mu^-) = (4.28 \pm 3.99 \pm 2.29) \times 10^{-9},
$$

where the first uncertainty is statistical and the second systematic. No significant excess of $B^0 \to p\mu^-$ or $B_s^0 \to p\mu^-$ decays is observed and upper limits on the branching fractions are set using the CL$_s$ method \cite{40} with a one-sided test statistic \cite{41} as implemented in Refs. \cite{42,43}. The one-sided test statistic for a given branching fraction value is...
defined as twice the negative logarithm of the profile likelihood ratio if it is larger than the measured branching fraction and zero otherwise. Its distribution is determined from pseudoexperiments, where nuisance parameters are set to their best fit values when generating pseudoexperiments. The central values of the Gaussian-constraints are independently varied within their uncertainties for each pseudoexperiment as described in Ref. [44]. With the inclusion of systematic effects as discussed below, the CL$_s$ curves as a function of the branching ratios are shown in Fig. 8, and the upper limits at 90 (95)% confidence level (CL) are reported in Table 1, where the observed upper limits are both above the expected ones. This is likely due to a fluctuation of the concentration of $\Lambda_0^b \to p\mu^-\nu_\mu$ events around the known $B^0(s)$ masses in MLP regions with large MLP response values.

Table 1: Expected and observed upper limits for $B(B^0 \to p\mu^-)$ and $B(B^0_s \to p\mu^-)$ at 90% (95%) CL, with systematic effects included. No signal is assumed for the expected upper limits.

Channel	Expected	Observed
$B^0 \to p\mu^-$	1.9 (2.4) $\times 10^{-9}$	2.6 (3.1) $\times 10^{-9}$
$B^0_s \to p\mu^-$	7.0 (8.6) $\times 10^{-9}$	12.1 (14.0) $\times 10^{-9}$

Several systematic uncertainties can affect the evaluation of the limit on the $B^0 \to p\mu^-$ and $B^0_s \to p\mu^-$ branching fractions through the normalisation formula (Eq. 1). The systematic uncertainties considered are related to the fraction of signal and physical backgrounds in each MLP interval; expected total yields of physical backgrounds; signal efficiency; mass resolution of signal shape; fragmentation fraction $f_{\text{sig}}/f_{\text{norm}}$ (only applicable for the B^0_s mode); branching fraction, efficiency and yield of the normalisation channel $B^+ \to J/\psi(\mu^+\mu^-)K^+$. The systematic uncertainties on the efficiencies of the signal and normalisation channels include the uncertainties arising from modelling the dependencies of the trigger (PID) efficiency maps. The effect on the $p\mu^-$ mass distribution and yield fraction from $\Lambda_0^b \to p\mu^-\nu_\mu$ form factor uncertainty and different $\Lambda_0^b \to p\mu^-\nu_\mu$ physics models have been studied and found to be negligible. No systematic uncertainty is assigned due to the assumptions of unpolarized final states. These systematic uncertainties are taken into account for the limit computation by constraining the respective parameters in the likelihood fit with a Gaussian distribution having the central value of the parameter as the mean and its uncertainty as the width. The overall impact on the limits is evaluated to be 4% on $B^0 \to p\mu^-$ and 11% on $B^0_s \to p\mu^-$.

8 Summary

In summary, a search for the LNV and BNV decays $B^0 \to p\mu^-$ and $B^0_s \to p\mu^-$ is performed using the full Run 1 and Run 2 data samples of the LHCb experiment, using a sample of proton-proton collision data corresponding to a total integrated luminosity of 9 fb$^{-1}$. No excesses are observed for these two modes and upper limits on the branching fractions are set to be $\mathcal{B}(B^0 \to p\mu^-) < 2.6 (3.1) \times 10^{-9}$ and $\mathcal{B}(B^0_s \to p\mu^-) < 12.1 (14.0) \times 10^{-9}$ at 90% (95%) CL. These results represent the first upper limits on these decays to date.
Figure 6: Mass distribution of signal candidates (black dots) for Run 1 samples in regions of MLP. The results of the fit described in the text are also shown. The contributions from the two signal channels, $B^0 \rightarrow p\mu^-$ (red dashed lines) and $B^0_s \rightarrow p\mu^-$ (green dashed lines), are scaled by a factor of 10 for better visibility.
Figure 7: Mass distribution of signal candidates (black dots) for Run 2 samples in regions of MLP. The results of the fit described in the text are also shown. The contributions from the two signal channels, $B^0 \to p\mu^-$ (red dashed lines) and $B_s^0 \to p\mu^-$ (green dashed lines), are scaled by a factor of 10 for better visibility.
Figure 8: Results from the CLs scan used to obtain the limit on (left) $\mathcal{B}(B^0 \to p\mu^-)$ and (right) $\mathcal{B}(B^0_s \to p\mu^-)$. The background-only expectation is shown by the red line and the 1σ and 2σ bands are shown as light blue and blue bands respectively. The observation is shown as the solid black line. The two dashed lines intersecting with the observation indicate the limits at 90% and 95% CL for the upper and lower line, respectively.
Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), Polish WLCG (Poland) and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); Minciencias (Colombia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); GVA, XuntaGal, GENCAT and Prog. Atracción Talento, CM (Spain); SRC (Sweden); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).
References

[1] A. D. Sakharov, *Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe*, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

[2] H. Georgi and S. L. Glashow, *Unity of all elementary-particle forces*, Phys. Rev. Lett. 32 (1974) 438.

[3] H. Fritzsch and P. Minkowski, *Unified interactions of leptons and hadrons*, Annals Phys. 93 (1975) 193.

[4] F. Gursey, P. Ramond, and P. Sikivie, *A universal gauge theory model based on E6*, Phys. Lett. B60 (1976) 177.

[5] S. M. Barr, *A new symmetry breaking pattern for SO(10) and proton decay*, Phys. Lett. B112 (1982) 219.

[6] J. P. Derendinger, J. E. Kim, and D. V. Nanopoulos, *Anti-SU(5)*, Phys. Lett. B139 (1984) 170.

[7] Particle Data Group, P. A. Zyla et al., *Review of particle physics*, PTEP 2020 (2020) 083C01.

[8] CLEO collaboration, R. Godang et al., *Search for baryon and lepton number violating decays of the tau lepton*, Phys. Rev. D59 (1999) 091303, arXiv:hep-ex/9902005.

[9] M. E. McCracken et al., *Search for baryon-number and lepton-number violating decays of A hyperons using the CLAS detector at Jefferson Laboratory*, Phys. Rev. D92 (2015) 072002, arXiv:1507.03859.

[10] BESIII collaboration, M. Ablikim et al., *Search for baryon and lepton number violating decay D± → n(n¯)e±*, Phys. Rev. D106 (2022) 112009, arXiv:2209.05787.

[11] BESIII collaboration, M. Ablikim et al., *Search for baryon- and lepton-number violating decays D0 → pe+ and D0 → pe−*, Phys. Rev. D105 (2022) 032006, arXiv:2112.10972.

[12] BESIII collaboration, M. Ablikim et al., *Search for baryon and lepton number violating decays D+ → A(Σ0)e+ and D+ → A(Σ0)e+*, Phys. Rev. D101 (2020) 031102, arXiv:1911.13116.

[13] BESIII collaboration, M. Ablikim et al., *Search for baryon and lepton number violation in J/ψ → Λc+e− + c.c.*, Phys. Rev. D99 (2019) 072006, arXiv:1803.04789.

[14] BaBar collaboration, P. del Amo Sanchez et al., *Searches for the baryon- and lepton-number violating decays B0 → Λc+e−, B− → Λc−, and B− → Λc−*, Phys. Rev. D83 (2011) 091101, arXiv:1101.3830.

[15] W.-S. Hou, M. Nagashima, and A. Soddu, *Baryon number violation involving higher generations*, Phys. Rev. D72 (2005) 095001, arXiv:hep-ph/0509006.
[16] LHCb collaboration, A. A. Alves Jr et al., The LHCb detector at the LHC, JINST 3 (2008) S08005

[17] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022 arXiv:1412.6352

[18] R. Aaij et al., The LHCb Trigger and its Performance in 2011, JINST 8 (2013) P04022 arXiv:1211.3055.

[19] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013 arXiv:1210.6861

[20] T. Likhomanenko et al., LHCb Topological Trigger Reoptimization, J. Phys. Conf. Ser. 664 (2015) 082025 arXiv:1510.00572

[21] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 arXiv:0710.3820.

[22] LHCb collaboration, I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. : Conference Series 331 (2011) 032047.

[23] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[24] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[25] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

[26] GEANT4 collaboration, S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[27] LHCb collaboration, M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[28] LHCb collaboration, R. Aaij et al., Measurement of the $B^0_s \rightarrow \mu^+\mu^-$ decay properties and search for the $B^0 \rightarrow \mu^+\mu^-$ and $B^0_s \rightarrow \mu^+\mu^-\gamma$ decays, Phys. Rev. D 105 (2022) 012010 arXiv:2108.09283

[29] F. Archilli et al., Performance of the muon identification at LHCb, JINST 8 (2013) P10020 arXiv:1306.0249.

[30] Particle Data Group, P. A. Zyla et al., Review of particle physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01.

[31] A. Hoecker et al., TMVA 4 — Toolkit for multivariate data analysis with ROOT. Users Guide., arXiv:physics/0703039.

[32] H. Voss, A. Hoecker, J. Stelzer, and F. Tegenfeldt, TMVA - Toolkit for multivariate data analysis with ROOT, PoS ACAT (2007) 040.
[33] LHCb collaboration, R. Aaij et al., *Measurement of the $B^0_s \rightarrow \mu^+\mu^-$ decay properties and search for the $B^0 \rightarrow \mu^+\mu^-$ and $B^0_s \rightarrow \mu^+\mu^-\gamma$ decays*, Phys. Rev. D105 (2022) 012010, arXiv:2108.09283

[34] S. Tolk, J. Albrecht, F. Dettori, and A. Pellegrino, *Data driven trigger efficiency determination at LHCb*, LHCb-PUB-2014-039, 2014.

[35] L. Anderlini et al., *The PIDCalib package*, LHCb-PUB-2016-021, 2016.

[36] R. Aaij et al., *Selection and processing of calibration samples to measure the particle identification performance of the LHCb experiment in Run 2*, EPJ Tech. Instrum. 6 (2019) 1, arXiv:1803.00824.

[37] LHCb collaboration, R. Aaij et al., *Study of the kinematic dependences of Λ^0_b production in pp collisions and a measurement of the $\Lambda^0_b \rightarrow \Lambda^+_c \pi^-\pi^0$ branching fraction*, JHEP 08 (2014) 143, arXiv:1405.6842.

[38] LHCb collaboration, R. Aaij et al., *Measurement of b hadron fractions in 13 TeV pp collisions*, Phys. Rev. D100 (2019) 031102, arXiv:1902.06794.

[39] T. Skwarnicki, *A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances*, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[40] A. L. Read, *Presentation of search results: The CLs technique*, J. Phys. G: Nuclear and Particle Physics 28 (2002) 2693.

[41] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C71 (2011) 1554, arXiv:1007.1727 [Erratum: Eur.Phys.J.C 73, 2501 (2013)].

[42] M. Kenzie et al., *GammaCombo: A statistical analysis framework for combining measurements, fitting datasets and producing confidence intervals*, doi: 10.5281/zenodo.3371421.

[43] LHCb collaboration, R. Aaij et al., *Measurement of the CKM angle γ from a combination of LHCb results*, JHEP 12 (2016) 087, arXiv:1611.03076.

[44] S. Bodhisattva, M. Walker, and M. Woodrooffe, *On the unified method with nuisance parameters*, Statist. Sinica 19 (2009) 301, http://www3.stat.sinica.edu.tw/statistica/oldpdf/A19n116.pdf.
LHCb collaboration

R. Aaij, A.S.W. Abdelmotteleb, C. Abellan Beteta, F. Abudinen, T. Ackermley, B. Adeva, M. Adinolfi, H. Afsharnia, C. Agapopoulou, C.A. Aidala, S. Aiola, Z. Ajaltouni, S. Akar, K. Akiba, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J.L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, M. Andreotti, D. Andreou, D. Ao, F. Archilli, A. Artamonov, M. Artuse, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J.J. Back, A. Bailly-reyrel, P. Baladron Rodriguez, V. Balaguera, W. Baldini, J. Baptista da Souza Leite, M. Barbetti, R.J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J.M. Basels, G. Bassi, B. Batsukhi, A. Battig, A. Bay, A. Beck, M. Becker, F. Bedeschi, L.B. Bediago, A. Beite, V. Belavin, S. Belin, V. Bellec, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, B. Rennert, S. Bernet Andres, D. Berninghoff, H.C. Bernstein, C. Bertella, A. Bertolini, C. Betancourt, F. Betti, Ia. Bezhiksa, S. Bhasin, J. Bhom, L. Bian, M.S. Bieker, N.V. Biesius, S. Bifani, P. Billoir, A. Biolchini, M. Birch, F.C.R. Bishop, A. Bitadze, A. Bizzeti, M.P. Blago, T. Blake, F. Blanc, S. Blusk, D. Bobulka, J.A. Boelhaufe, O. Boente Garcia, T. Boettcher, A. Boldyrev, C.S. Bolognani, R. Bolzoniella, N. Bondar, F. Borgato, S. Bortli, M. Borsato, J.T. Borsuk, S.A. Bouchiba, T.J.V. Bowcock, A. Boyer, C. Bozzi, M.J. Bradley, S. Braun, A. Brea Rodriguez, J. Brodzicka, A. Brossa Gonzalo, J. Brown, F. Brundo, A. Buonaccorsi, W. Barter, J.J. Back, J. Crkovská, J. Buytaert, W. Byczynski, S. Cadeddu, R. Calabrese, M. Cattaneo, J.T. Dean, C.T. Dean, F. Debernardis, D. Decamp, V. Denu, L. Del Buono, B. Delaney, H.-P. Dembinski, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, A. Di Cicco, P. Di Nezza, I. Diachkov, S. Didenko.
Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Center for High Energy Physics, Tsinghua University, Beijing, China
Institute Of High Energy Physics (IHEP), Beijing, China
School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
Université Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
School of Physics, University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
INFN Sezione di Ferrara, Ferrara, Italy
INFN Sezione di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
INFN Sezione di Milano, Milano, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
INFN Sezione di Cagliari, Monserrato, Italy
Universitá degli Studi di Padova, Università e INFN, Padova, Padova, Italy
INFN Sezione di Pisa, Pisa, Italy
INFN Sezione di Roma La Sapienza, Roma, Italy
INFN Sezione di Roma Tor Vergata, Roma, Italy
Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
National Center for Nuclear Research (NCBJ), Warsaw, Poland
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Mugurele, Romania
Affiliated with an institute covered by a cooperation agreement with CERN
ICCUB, Universitat de Barcelona, Barcelona, Spain
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain

Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Physik-Institut, Universität Zürich, Zürich, Switzerland

NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

University of Birmingham, Birmingham, United Kingdom

H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Warwick, Coventry, United Kingdom

STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Imperial College London, London, United Kingdom

Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Department of Physics, University of Oxford, Oxford, United Kingdom

Massachusetts Institute of Technology, Cambridge, MA, United States

University of Cincinnati, Cincinnati, OH, United States

University of Maryland, College Park, MD, United States

Los Alamos National Laboratory (LANL), Los Alamos, NM, United States

Syracuse University, Syracuse, NY, United States

School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to

Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to

Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to

Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to

Lanzhou University, Lanzhou, China, associated to

School of Physics and Technology, Wuhan University, Wuhan, China, associated to

Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to

Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to

Eotvos Lorand University, Budapest, Hungary, associated to

INFN Sezione di Perugia, Perugia, Italy, associated to

Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to

Universiteit Maastricht, Maastricht, Netherlands, associated to

DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to

Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, associated to

University of Michigan, Ann Arbor, MI, United States, associated to

a Universidade de Brasília, Brasília, Brazil
b Central South U., Changsha, China
c Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
d Excellence Cluster ORIGINS, Munich, Germany
e Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
f Università di Bari, Bari, Italy
g Università di Bologna, Bologna, Italy
h Università di Cagliari, Cagliari, Italy
i Università di Ferrara, Ferrara, Italy
j Università di Firenze, Firenze, Italy
k Università di Genova, Genova, Italy
l Università degli Studi di Milano, Milano, Italy
m Università di Milano Bicocca, Milano, Italy
n Università di Modena e Reggio Emilia, Modena, Italy
o Università di Padova, Padova, Italy
Università di Perugia, Perugia, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Pisa, Pisa, Italy
Università della Basilicata, Potenza, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Siena, Siena, Italy
Università di Urbino, Urbino, Italy
Universidad de Alcalá, Alcalá de Henares, Spain

† Deceased