Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Introduction

The COVID-19 pandemic (caused by the virus SARS-CoV-2) has presented the world with a crisis of incredible scale and made wildlife markets the focal point of authorities. Scientific literature on COVID-19 and wildlife trade overwhelmingly focused on the zoonotic risks of wildlife markets. As many physical marketplaces for wildlife were faced with closure or restrictions to curb the spread of COVID-19, alternative sale platforms were sought. I monitored social media platforms in Thailand during the pandemic and compared this with data obtained in 2016. I found a significant reduction of lizards and snakes offered for sale on social media, compared with before the pandemic. Although the quantity decreased, I found that the number of species almost doubled in snakes, of which unprotected native species increased by 245%. Transport restrictions would limit the mobility of harvesters and interrupts trade chains, and thus could explain the reduced number of snakes and lizards for sale. However, the increase in native species for sale shows that the impact of this international trade disruption could shift focus from international trade to what is locally available. Potentially having serious consequences for the conservation of local species and in line with previous studies documented increasing poaching rates and wildlife crime incidents.

Article info

Article history:
Received 1 July 2022
Received in revised form 16 August 2022
Accepted 21 August 2022
Available online 8 September 2022

Keywords:
COVID-19
pandemic
reptiles
social media
wildlife trade

Abstract

The recent COVID-19 pandemic presented the world with a crisis of incredible scale and made wildlife markets the focal point of authorities. Scientific literature on COVID-19 and wildlife trade overwhelmingly focused on the zoonotic risks of wildlife markets. As many physical marketplaces for wildlife were faced with closure or restrictions to curb the spread of COVID-19, alternative sale platforms were sought. I monitored social media platforms in Thailand during the pandemic and compared this with data obtained in 2016. I found a significant reduction of lizards and snakes offered for sale on social media, compared with before the pandemic. Although the quantity decreased, I found that the number of species almost doubled in snakes, of which unprotected native species increased by 245%. Transport restrictions would limit the mobility of harvesters and interrupts trade chains, and thus could explain the reduced number of snakes and lizards for sale. However, the increase in native species for sale shows that the impact of this international trade disruption could shift focus from international trade to what is locally available. Potentially having serious consequences for the conservation of local species and in line with previous studies documented increasing poaching rates and wildlife crime incidents.

© 2022 National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA). Publishing Services by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
commerce/animals), trade of these species via online platforms has been gaining in popularity (Krishnasamy and Stoner 2016; Siriwat and Nijman 2020). As many physical marketplaces for wildlife were faced with closure or restrictions to curb the spread of COVID-19, alternative sale platforms are most likely sought. This manuscript aims to add to the literature on the impact of the COVID-19 pandemic on wildlife trade by focusing on live animals (snakes and lizards) for sale on online platforms and comparing observed species with data obtained prior to the pandemic. I hypothesize that due to the closure of physical markets, online platforms should see an increased number of live animals offered for sale. In addition, due to transport restrictions (e.g. on new wildlife imports) during the pandemic, species composition is expected to shift toward more easily obtainable species (e.g. native species or species for which breeding stock is available).

Material and methods

I focused here on online trade in live reptiles in Thailand. Thailand has been identified as a hub for wildlife trade, with a particular focus on physical markets like Chatuchak Market (Shepherd and Nijman 2008) and is known as a hub for wildlife trade, with a particular focus on physical markets like Chatuchak Market (Shepherd and Nijman 2008) and is known as a hub for wildlife trade, with a particular focus on physical markets like Chatuchak Market (Shepherd and Nijman 2008). I used data collected in 2016 (TRAFFIC, unpublished) and collected data for this study in 2022. Methodology was kept as similar as possible to facilitate easier comparison.

Data methodology 2016

Data from 2016 was obtained from TRAFFIC (unpublished) and was also collected by the author. Nine Facebook groups were monitored for 8 weeks in May and June 2016. These nine groups had an initial total of 71,244 members. The Facebook groups selected were previously identified as groups where exotic wildlife, and in particular reptiles, was offered for sale and included both public groups (advertisements visible for everyone) and private groups (advertisements only visible for members). All groups were in the Thai language. Group members were not informed a priori of the data collection. Advertisements were documented based on date of placement. For all advertisements, the minimum number of individuals was recorded based on what was indicated in the text or attached photos. Duplicates were removed or not recorded. Posts were translated by a native Thai speaker where required.

Data methodology 2022

As not all the Facebook groups monitored in 2016 were still active, a new selection of Facebook groups was made, which included 12 groups that were created after the survey in 2016. Data was gathered once a week in January and February 2022. Thirteen Facebook groups, of which one was included in 2016, with a total of 66,400 members, were selected. These groups were previously identified as groups where exotic wildlife and in particular reptiles were offered for sale. This included both public groups (advertisement visible for everyone) and private groups (advertisements only visible for members). All groups were in the Thai language. Although technological advances would allow the use of automated techniques to systematically scrape these pages, to keep methodology as similar as possible, similar methodology was used compared with 2016. In addition, unauthorized scraping violates the terms of service of Facebook. Group members were not informed a priori of the data collection. A priori informing group members of data collection was not desirable as it could have influenced what wildlife was offered for sale. Posts showing personal collections of animals or videos were ignored, only posts that showed an indication that the animal was for sale were included. For all advertisements, the minimum number of individuals was recorded based on what was indicated in the text or attached photos. Collected data included: species, quantity, price, and if advertisements were coded or not (e.g. “rehoming” instead of “for sale”). No personal data were collected, ensuring ethical data collection and compliance with the Personal Data Protection Act (“PDPA”) Thailand.

Both datasets were analyzed using RStudio 2022.07.1 Build 554 (Allaire 2012) to gain an overview of traded species, their legality and compliance with national and international legislation. I used Chi-squared tests to investigate any temporal changes between both datasets.

National Legislation

Within Thailand, the main legislation governing the protection of species varied between 2016 and 2022. In 2016, the main legislation was the Wildlife Preservation and Protection Act, B.E. 2535 (1992) (WARPA). A revised version of the Wildlife Conservation and Protection Act B.E. 2562 (2019) (WARPA) came into effect in 2019. Under both the 1992 and 2019 WARPA legislation, 14 snake species and 47 lizard species were protected. It is illegal to hunt, possess or trade in protected wildlife and their derivates (see Section 16-20), unless it comprises protected wildlife which has been designated under Section 17 of WARPA as approved type of propagaded wildlife. Under Ministry Regulation B.E. 2546 (2003), four species of snakes are listed as approved species for exemption of the prohibitions listed under Section 16-20.

1. Reticulated python: *Malayopython reticulatus*
2. Burmese python: *Python bivittatus*
3. Indo-Chinese rat snake: *Ptyas korros*
4. Oriental rat snake: *Ptyas mucosus*

These four snake species are popular in the global skin and meat trade (Magnino et al. 2009; Suzuki et al. 2015). In addition to WARPA, the Thai Government issued a Cabinet Resolution on October 9, 1999, suspending all export of live snakes to protect snakes and control the rat population but the Cabinet Resolution does not cover snake products (e.g. skins), which can be exported regardless. This Cabinet Resolution also prohibits the export of all non-protected snake species, but no restrictions are placed on the import of snake species. The Supreme Court however, ruled (14/2546) that no attempt has been made to enact or revoke the resolution. Therefore, the Cabinet Resolution is technically not law, but Governmental Agencies are expected to follow the resolution.

In 1983, Thailand became a Party to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The obligations from the CITES Convention are also implemented in WARPA.

Results

In 2016, a total of 3,207 reptiles were observed, of which 2,660 were lizards (83%) and 547 were snakes (17%), compared with 564 reptiles in 2022, of which 371 were lizards (65.7%) and 193 were snakes (34.2%), constituting a significant reduction in total numbers of 64% (X², N = 25) = 36.067, p = <0.001). However, the differences in quantity did not differ significantly between lizards and snakes (X²(24, N = 25) = 20.847, p = >0.05).

Snakes

In 2016, 547 snakes consisting of 20 species were documented for sale, comprising 485 Pythonidae (5 species) and 62 Colubridae...
(15 species). In 2022, however, only 193 snakes were observed for sale, consisting of 51 species of 11 families (Table 1). In 2016, Pythonidae were the most observed snake family, but this was reduced to merely 59 Pythonidae in 2022. Colubridae (19 species) accounted for 87 of the 193 snakes observed in 2022 and were the most encountered snake family. In 2016, Python regius was the most frequently documented snake species with 278 documented individuals, followed by Python bivittatus (n = 166). Although the Ball Python was still the most frequently documented species in 2022, only 39 individuals were observed. Of all the species observed, only 9 species were observed during both 2016 and 2022, 11 species were only in 2016, and 42 species were only observed in 2022.

Of all the 20 species observed in 2016, 11 species were native to Thailand, of which six are protected under WARPA. In 2022, 27 native species were observed (245% increase), of which only two are protected under WARPA. Of all the 20 species observed for sale in 2016, 11 were listed on the CITES Appendices (6 in 2016, 9 in 2022), all in Appendix II. Most snake species (n = 47) were listed on the IUCN Red List as Least Concern, except for five species, which were listed as Vulnerable (3), or Near Threatened (2).

Lizards

In 2016, 2660 lizards (46 species) were documented for sale, consisting primarily of Iguanidae (n = 1863, 4 species) and Agamidae (n = 538, 12 species). In contrast, in 2022 only 364 lizards (26 species) were offered for sale (Table 2). Although Iguanidae remained the dominant lizard family offered for sale, only 251 lizards belonging to this family were documented. Where the diversity in snake species increased from 2 families to 11 in 2022, the number of lizard families documented for sale was relatively similar with 10 and 11 in 2016 and 2022 respectively. In both 2016 and 2022, the Iguana iguana was most observed with respectively 1836 and 246 animals observed. Only 14 species were observed during both 2016 and 2022 surveys, 32 species only in 2016, and 12 species were only observed in 2022.

Of all 46 lizard species observed in 2016, 14 species were native to Thailand, and of which six are protected under WARPA. In 2022, only two native lizard species were observed, both unprotected under WARPA. Of all lizard species observed during both surveys, 32 are listed on the CITES Appendices (26 in 2016, 17 in 2022), of which 2 are listed on CITES Appendix I (Varanus nebulosus and Cyclura cornuta) and the remaining species on Appendix II. Of all species offered for sale during both surveys, 54 are listed on the IUCN Red List, of which 35 were considered Least Concern, followed by Vulnerable (n = 8), Data Deficient (n = 4), Endangered (n = 3) and Near Threatened (n = 3). One species (Iguana delicatissima) offered for sale was considered Critically Endangered on the IUCN Red List.

Legality of observed trade

Several species (33 lizards and 11 snakes; Tables 1 and 2) observed in 2016 and 2022 are listed in CITES, but there were no CITES import records for 6 lizard species and 2 snake species. For several species, advertisements were observed in 2016, with species not being listed until 2017 (Abonia deppii) or 2019 (Conurosaurus lichtenfelderi, Cekko gecko, Ctenosaurus sp.). Several species were observed for which the nomenclature used by CITES has not been updated yet, for example, Heloderma alvarezi or Boa imperator, which could be traded under previously recognized names, that is, Heloderma horridum and Boa constrictor imperator. Two species (Varanus nebulosus and Ptyas mucosus) listed in CITES were also native to Thailand, and thus lack of trade records does not provide a direct indication of illegal trade. It is important to note that for one species observed, endemic to the Philippines, (Varanus olivaceus), there is no reasonable explanation to the lack of import records. It is likely that these specimens observed in 2016 have an illegal origin, as there are no import records into Thailand, nor has this species been exported from range state the Philippines to Thailand or other Parties.

Six lizard species were observed that are both native and protected under Thai legislation, all observations were made in 2016. No observations of native and protected lizards were made in 2022. Similar observations were made for snakes, where in 2016, five protected snake species were offered for sale, only one protected species was found in 2022.

Discussion

In contrast to my hypothesis, a significant reduction of the number of snakes and lizards was observed between 2016 and 2022. The number of snakes offered for sale on social media decreased by 64% between both study periods. However, the number of species observed more than doubled (62 vs. 128). The number of native snake species was 245% higher in 2022 compared with 2016. Such a pattern was not visible in the lizards offered for sale, where not only the quantity decreased over time, but also the number of species offered for sale.

With travel and transport restrictions in place, it can be expected that wildlife offered for sale might shift toward native species as their availability is not as much influenced by travel restrictions to the same extent as international travel. Native species might be harvested in people’s gardens or nearby forests. This confirmed our hypothesis that species composition shifted during the pandemic. However, it is unclear why this pattern is not observed in lizards. Although the trade in reptiles for pets affects more species than any other form of trade (Janssen 2021), it is dominated by a small number of species which make up the bulk of the reptiles traded (Valdez 2021). These are often considered inexpensive, charismatic and relatively easy to keep (Valdez 2021). It could well be possible that this points toward different motivations of drivers fuelling the trade in lizards versus snakes. It might also reflect the availability of species in the domestic Thai market or simply a reflection of changing trends in what species are desired by consumers (Valdez 2021). Historically, demand has continuously shifted and frequently toward rarer species (Lyons and Natusch 2013; Robinson et al. 2015; Chen 2016). Travel restrictions could have reduced opportunities to obtain species from abroad, increasing desirability of domestic species or previously less desired alternatives. This could be the underling reason as to why the number of CITES listed species reduced from 26 to 17 in lizard advertisements. Lucas (2022) reported a decrease in poaching and trafficking of wildlife for international markets due to the disruption of transport routes. This disruption also affected the legal (CITES) trade. Additionally, the decrease in CITES-listed species for lizards could reflect what species are kept by hobbyists in, and what is bred in captivity supply might be more reliant on import. The hypothetical link between COVID-19 and wildlife trade could have reduced demand for these species (Morcatty et al. 2021), despite reptiles not being considered host species (Lam et al. 2020).

Although Morcatty et al. (2021) did not find evidence that the online wildlife trade decreased during the pandemic, this is the case for this study. Several other studies have also reported that disease outbreaks did not stop wildlife trade (Leroy et al. 2004; Ordaz-Németh et al. 2017), although differences were observed between disease outbreaks among wild animals versus domesticated animals (Rassy and Smith 2013). Another potential
Scientific name	Common name	IUCN	CITES	Native	Protected in Thailand	Quantity
Acrochordidae						
Acrochordus javanicus	Elephant trunk snake	Least Concern		Yes		5
Boidae						
Boa imperator	Central American boa	Least Concern	II			3
Gongylithus colubrinus	Kenyan sand boa	Least Concern	II			4
Colubridae						
Ahaetulla prasina	Gunther's whip snake	Least Concern		Yes		2
Boa imperator	Central American boa	Least Concern	II			3
Boa dendrophila	Mangrove cat snake	Least Concern				4
Boa dendrophila gemmicincta	Sulawesi cat snake	Least Concern				2
Boa siamensis	Gray cat snake	Least Concern		Yes		1
Chrysopeza ornata	Ornate flying snake	Least Concern		Yes		2
Coelognathus radiatus	Copperhead racer	Least Concern		Yes		1
Dryophis gansii	Giri's egg eater	Least Concern				1
Dendrelaphis cyanochlorus	Wall's Bronzeback	Least Concern				1
Dendrelaphis pictus	Common Bronzeback	Least Concern				2
Dryophis rubescens	Least Concern					1
Elaphe taeniura ridleyi	Ridley cave racer	Yes		Yes		2
Fowlea piscator	Checkered keelback	Least Concern		Yes		2
Gonyosoma oxycephalum	Red-tailed racer	Least Concern		Yes		3
Heterodon nasica	Western Hognose	Least Concern				2
Lampropeltis abnorma	Least Concern					
Lampropeltis californiae	Least Concern					
Lampropeltis californiae hybrid	Least Concern					
Lampropeltis getula	Common kingsnake	Least Concern				3
Lampropeltis leonis						3
Lampropeltis polypoloma	Atlantic Central American milk snake	Least Concern				2
Lampropeltis triangulum	Eastern milk snake	Least Concern				4
Lyodra luwisi	Laotian wolf snake	Least Concern		Yes		1
Oligodon purpureusens	Purple kuki snake	Least Concern		Yes		2
Pantherophis guttatus	Red corn snake	Least Concern				26
Pantherophis hybrid						18
Pantherophis obesusus lindheimeri	Texas rat snake					7
Ptyas korros	Javan rat snake	Least Concern				3
Ptyas mucosus	Oriental rat snake	Least Concern	II	Yes		1
Ptyas mucosus	Indo-Chinese spitting cobra	Vulnerable	II	Yes		2
Homalopsidae						
Cerberus rhynchops	South Asian bockadam	Least Concern		Yes		2
Enhydris enhydris	Rainbow mud snake	Least Concern		Yes		1
Enhydris plumbea	Boie's mud snake	Least Concern		Yes		1
Eryxent tapentaculum	Least Concern					
Homalopsis buccata	Dog-face water snake	Least Concern		Yes		2
Lamprophiidae						4
Boaedon fuliginosus	African house snake	Least Concern				1
Boaedon microphyes pulverulentus	Common mock viper	Least Concern				3
Natricidae						
Rhabdophis subminuates	Red-necked keelback	Least Concern				1
Pareidae						
Pareas carinatus	Keeled slug-eating snake	Least Concern		Yes		2
Pareas margaritophorus	White-spotted slug snake	Least Concern		Yes		1
Pythonidae						
Leiolepis albertii	Northern white-lipped python	Least Concern	II			1
Malagophis albertii	Reticulated python	Least Concern	II	Yes		33
Morelia viridis	Green tree python	Least Concern	II			9
Python bivittatus	Burnese python	Vulnerable	II	Yes		166
Python brongersma	Brongersma's short-tailed python	Least Concern	II			4
Python curtis	Sumatran short-tailed python	Least Concern	II	Yes		6
Python regius	Ball python	Near Threatened	II			278
Viperidae						39
Trimeresurus albolabris	White-lipped pit viper	Least Concern		Yes		2
Trimeresurus insularis	Sunda Island pit viper	Least Concern				2
Trimeresurus macrospus	Large-eyed pit viper	Least Concern		Yes		2
Trimeresurus papuorum	Pope's pit viper	Least Concern		Yes		2
Trimeresurus venustus	Brown-spotted pit viper	Vulnerable				2
Xenopeltidae						
Xenopeltis unicolor	Sunbeam snake	Least Concern		Yes		4
Table 2. Overview of live lizards offered for sale on social media in Thailand in 2016 and 2022.

Scientific name	Common name	IUCN	CITES	Native	Protected in Thailand	Quantity	
Agamidae							
Calotes emma	Emma Gray's forest lizard	Least Concern	Yes	Yes	1		
Calotes mystaceus	Blue crested lizard	Least Concern	Yes	2			
Calotes versicolor	Oriental garden lizard	Least Concern	Yes	3			
Draco spp.							
Hydroboerus amoebensis	Amboina sail fin lizard	Least Concern			1		
Hydroboerus weberi	Weber's sail fin lizard	Vulnerable	3	3			
Leiolepis belliana	Common butterfly lizard	Least Concern	Yes	21			
Leiolepis guttata	Spotted butterfly lizard	Data Deficient	12				
Physignathus cocincinus	Chinese water dragon	Vulnerable	Yes	16			
Podora viticps	Central bearded dragon	Least Concern	439	23			
Uromastyx aegyptia	Egyptian spiny-tailed lizard	Vulnerable	II	10			
Uromastyx geyri	Geyr's spiny-tailed lizard	Near Threatened	II	7			
Uromastyx ornata	Ornate spiny-tailed lizard	Least Concern	II	22			
Anguidae							
Abronia deppii	Deppe's arboreal alligator lizard	Endangered	II	4			
Chamaeleonidae							
Chamaeleo calyptratus	Veiled chameleon	Least Concern	II	8	5		
Furcifer pardalis	Panther chameleon	Least Concern	II	1			
Cordylidae							
Cordylus tropidosternum	East African spiny-tailed lizard	Least Concern	II	2			
Corytophanidae							
Basiliscus plumifrons	Green basilisk	Least Concern	16				
Crotaphyidae							
Crotaphys collaries	Eastern collared lizard	Least Concern	2				
Diplodactylidae							
Correlophus ciliatus	Crested gecko	Vulnerable			1		
Rhacodactylus leachianus	New Caledonia giant gecko	Least Concern	1				
Eublepharididae							
Eublepharis mutilatus	Leopard gecko	Least Concern	71	3			
Goniodactylus lichtenfelderi	Lichtenfelder's gecko	Vulnerable	II	1			
Hemithoneopsia caulicinctus	Fat-tail gecko	Least Concern	3				
Gekkonidae							
Dixonius siamensis	Siamese leaf-tail gecko	Least Concern	Yes	44			
Gekko gecko	Topkay	Least Concern	II	Yes	27	1	
Hemidactylus platynotus	Flat-tailed house gecko	Least Concern	Yes	2			
Phelsuma grandis	Giant Madagascar day gecko	Least Concern	1				
Gekko plumatus	Smooth-backed flying gecko	Least Concern	Yes	Yes	1		
Helodermatidae							
Heloderma alvarezi	Chiapan beaded lizard	Vulnerable	II	2			
Heloderma suspectum	Gila monster	Near Threatened	II	7			
Iguanidae							
Cachryx defensor	Yucatan spiny-tailed iguana	Vulnerable	II	2			
Ctenosaura pectinata	Western spiny-tailed iguana	Least Concern	II	21			
Ctenosaura similis	Black spiny-tailed iguana	Least Concern	II	2			
Cyclura cornuta	Rhinoceros rock iguana	Endangered	I	4	1		
Iguana delicatissima	Lesser antillean iguana	Critically Endangered	II	2			
Iguana iguana	Green iguana	Least Concern	1536	246			
Phrynosomatidae							
Phrynosoma asio	Giant horned lizard	Least Concern	35				
Scincidae							
Eutropis spp.		Yes	1				
Tiliqua gigas	Giant bluetongue skink	Least Concern	7	8			
Tiliqua scincoides chimera	Tambari bluetongue skink	Least Concern	3				
Tribolonotus gracilis	Red-eyed crocodile skink	Least Concern	23				
Teiidae							
Dracaena guianensis	Northern caiman lizard	Least Concern	II	1			
Varanidae							
Varanus albigularis albigerarius	White-throated monitor	Least Concern	II	1			
Varanus beccarii	Black tree monitor	Data Deficient	II	1			
Varanus dumerilii	Dumeril's monitor	Data Deficient	II	Yes	Yes	1	
Varanus exanthematicus	Savannah monitor	Least Concern	II	54	4		
Varanus indicus	Mangrove monitor	Least Concern	II	2	2		
Varanus melinus	Quince monitor	Endangered	II	2	1		
Varanus nebulosus	Clouded monitor	Near Threatened	I	Yes	Yes	5	
Varanus olivaceus	Gray's monitor	Vulnerable	II	2			
Varanus prasinus	Green tree monitor	Least Concern	II	1			
Varanus reisingeri	Reisinger's tree monitor	Data Deficient	II	2			
Varanus salvadorii	Crocodile monitor	Least Concern	II	1			
Varanus salvator	Water monitor	Least Concern	II	Yes	55	6	
alternative explanation for the reduction in wildlife offered for sale online as during this study could be increased efforts by social media companies to reduce wildlife sales. For instance, Facebook does not allow the sale of live animals on their platforms, and actively counters this by removing groups used for this practice.

The largest Facebook group was dismantled during the study period (May 2016) after a hornbill chick was offered for sale on one of the monitored groups (Samart 2016). This led to a new growth of different groups selling wildlife, however, this time under “secret” privacy settings instead of as a closed group, which operated like a private group, except they were undiscoverable by searching, and new members could only join the group if invited by current members. Currently, Facebook now has only two categories of groups, Public and Private, with Private groups having the option of being Visible or Hidden. A similar situation occurred in 2022, where two of the monitored Facebook groups were dismantled during the survey period. Disrupting trade by removing the platforms has the potential to push the trade even more underground (Patel et al. 2015).

Algorithms are trained to detect posts that mention common terms like “for sale,” forcing advertisers to use codewords. The use of codewords is increasingly common practice in wildlife trade and has been observed in several studies (D’Cruze et al. 2018; Alfino and Roberts 2020). This was also the case for this study, where terms were used as “ready to fly,” “rehoming,” and even the use of airplane emoji to signal that the animal was for sale. In addition to using code words, information provided in the advertisements is reduced to provide as little opportunity as possible for algorithms to detect the post, price was for instance only mentioned for 24 animals total in 2022. Frequent removal of social media platforms frequently merely displaces trade instead of reducing opportunities to trade (J. Jansen, pers. obs.), resulting in a game of cat and mouse between the platforms and advertisers. This could have caused or contributed to the reduced number of animals offered for sale, yet not for the increase in species and shift toward native species as observed.

Conclusion

I hypothesized that due to the closure of physical markets, online platforms should see an increased number of live animals offered for sale. Yet, I observed a significant reduction of the number of live snakes and lizards offered for sale. One could argue that transport restrictions would limit the mobility of harvesters and interrupts trade chains, and thus could explain the reduced number of animals for sale. However, the increase in native species for sale (this study) shows that the impact of this international trade disruption could shift focus from international trade to what is locally available, potentially having serious consequences on the conservation of local species. This is in line with what has been observed in other studies that observed increased poaching rates and other wildlife crime incidents (Cherkawi et al. 2020; Koju et al. 2021).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author would like to thank a donor that wishes to remain anonymous for generously funding Monitor’s work on reptile and amphibian trade. B.T.C. Leupen and L. Shepherd are thanked for feedback on earlier versions of this manuscript. Two anonymous reviewers are thanked for their constructive feedback. TRAFFIC in Southeast Asia is thanked for allowing me to use the unpublished dataset and guidance during collection of the data.

References

Aguirre AA, Catherina R, Frye H, et al. 2020. Illicit wildlife trade, wet markets, and COVID-19: preventing future pandemics. World Medical & Health Policy 12:256–265.

Aguirre AA, Gore ML, Kammer-Kerrick M, et al. 2021. Opportunities for trans-disciplinary science to mitigate biosecurity risks from the intersectionality of illegal wildlife trade with emerging zoonotic pathogens. Frontiers in Ecology and Evolution 9:15.

Akinsorotan OA, Olanuyi OE, Adeyemi AA, et al. 2021. Coronavirus pandemic: Implication on biodiversity conservation. Frontiers in Water 3:635529.

Allaire J. 2012. Rsstudio: integrated development environment for R. Boston, MA, 770(394). pp 165–171.

Alfino S, Roberts DL. 2020. Code word usage in the online ivory trade across four European member states. Orx 54:494–498.

Belzera-Santos MA, Mendoza-Roldan JA, Thompson RA, et al. 2021. Illegal wildlife trade: a gateway to zoonotic infectious diseases. Trends in Parasitology 37:181–184.

Booth H, Arias M, Brittain S, et al. 2021. “Saving lives, protecting livelihoods, and safeguarding nature”: risk-based wildlife trade policy for sustainable development outcomes post-COVID-19. Frontiers in Ecology and Evolution 9:94.

Borsky S, Henningshausen H, Leiter A, et al. 2020. CITES and the zoonotic disease content in international wildlife trade. Environmental and Resource Economics 76:1001–1017.

Borch A, McNeely J, Magellan K, et al. 2020. COVID-19 highlights the need for more effective wildlife trade legislation. Trends in Ecology & Evolution 35:1052–1055.

Bueno I, Smith KM, Sampedro F, et al. 2016. Risk Prioritization Tool to Identify the potential to push the trade even more underground (Patel et al. 2015).

Lyons JA, Natusch DJ. 2013. Effects of consumer preferences for rarity on the harvest of wild mammals. Ecological Economics 93:278–283.

Magnino S, Colin P, de-Cas E, et al. 2009. Biological risks associated with consumption of reptile products. International Journal of Food Microbiology 134 (3): 163–175.

Malapati S. 2020. Scientists call for pandemic investigations to focus on wildlife trade. Nature 583:344–345.

Cruze N, Singh B, Mookerjee A, et al. 2018. What in a name? Wildlife traders evade authorities using code words. Orx 52:13.

Eskew EA, Carlson CJ. 2020. Overselling wildlife trade bans will not bolster conservation or pandemic preparedness. The Lancet Planetary Health 4:e215–e216.

Greatorex ZF, Olson SH, Singhalath S, et al. 2016. Wildlife trade and human health in Southeast Asia is thanked for allowing me to use the unpublished dataset and guidance during collection of the data.
Morcatty TQ, Feddema K, Nekaris KAI, et al. 2021. Online trade in wildlife and the lack of response to COVID-19. *Environmental Research* 193:110439.

Nijman V, Shepherd CR. 2007. Trade in non-native, CITES-listed, wildlife in Asia, as exemplified by the trade in freshwater turtles and tortoises (Chelonidae) in Thailand. *Contributions to Zoology* 76:207–212.

Nijman V, Shepherd CR. 2010. The role of Asia in the global trade in CITES II-listed poison arrow frogs: hopping from Kazakhstan to Lebanon to Thailand and beyond. *Biodiversity and Conservation* 19:1963–1970.

Nijman V, Shepherd CR. 2015. Ongoing trade in illegally sourced tortoises and freshwater turtles highlights the need for legal reform in Thailand. *Natural History Bulletin Siam Society* 61 (1):3–6.

Ordaz-Németh I, Arandjelovic M, Boesch L, et al. 2017. The socio-economic drivers of bushmeat consumption during the West African Ebola crisis. *PLoS Neglected Tropical Diseases* 11:e0005450.

Patel NG, Rorres C, Joly DO, et al. 2015. Quantitative methods of identifying the key nodes in the illegal wildlife trade network. *Proceedings of the National Academy of Sciences of the United States of America* 112:7948–7953.

Rahman MS, Alam MA, Salekin S, et al. 2021. The COVID-19 pandemic: A threat to forest and wildlife conservation in Bangladesh? *Trees, Forests and People* 5:100119.

Rassy D, Smith RD. 2013. The economic impact of H1N1 on Mexico’s tourist and pork sectors. *Health Economics* 22:824–834.

Robinson JE, Griffiths RA, John FAS, et al. 2015. Dynamics of the global trade in live reptiles: Shifting trends in production and consequences for sustainability. *Biological Conservation* 184:42–50.

Roe D, Dickman A, Kock R, et al. 2020. Beyond banning wildlife trade: COVID-19, conservation and development. *World Development* 136:105121.

Samart S. 2016, May 22. Baby hornbill snatched from nest and sold by teenagers back in livestock care. *The Nation (Thailand)*. The Nation. Available from, http://www.nationmultimedia.com/national/Baby-hornbill-snatched-from-nest-and-sold-by-teens-back-in-livestock-care-30286448.html.

Shepherd CR, Nijman V. 2008. *Pet freshwater turtle and tortoise trade in Chatuchak Market, Bangkok, Thailand*. Petaling Jaya, Selangor, Malaysia: TRAFFIC.

Siriwat P, Nijman V. 2018. Using online media-sourced seizure data to assess the illegal wildlife trade in Siamese rosewood. *Environmental Conservation* 45:352–360.

Siriwat P, Nijman V. 2020. Wildlife trade shifts from brick-and-mortar markets to virtual marketplaces: A case study of birds of prey trade in Thailand. *Journal of Asia-Pacific Biodiversity* 13:454–461.

Suzuki D, Fuse K, Aizu M, et al. 2015. Reptile diversity in food markets in Laos. *Current Herpetology* 34 (2):112–119.

Valdez JW. 2021. Using Google trends to determine current, past, and future trends in the reptile pet trade. *Animals* 11:676.

Xiao X, Newman C, Buesching CD, et al. 2021. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. *Scientific Reports* 11:11898.