Occurrence and molecular characterization of metallo-β-lactamases (MBLs) among *Acinetobacter baumannii* isolates from cancer patients

Abstract

Background: During the last decade, the prevalence of carbapenem-resistant infection associated with multidrug resistant (MDR) *Acinetobacter baumannii* patients has been continuously increasing. This prospective study aimed to determine the occurrence and molecular characterization of metallo-β-lactamases (MBLs) and carbapenem hydrolyzing oxacillinases among *A. baumannii* isolates from cancer patients over a period of 6-month.

Methods: Antimicrobial susceptibility profile of 70 randomly collected *A. baumannii* isolates was first determined using disc diffusion test, and second, the MICs of 45 representative multidrug resistant (MDR) isolates were tested to most clinically used drugs in treatment of their infections using E-test. PCR assays were used to detect the common four types of class D carbapenem hydrolyzing oxacillinases, two types of class A carbapenemases, four types of class B metallo-β-lactamases, and prevalence of Class 1 Integron among MDR isolates.

Results: All 70 isolates were MDR, including 100% resistance to meropenem, aztreonam, piperacillin/tazobactum and 99% to carbapenem. All isolates carried *blaOXA-23* and *blaOXA-51*, but none carried a *blaOXA-24* like or *blaOXA-58*. The isolates were also positive for NDM-1, VIM, GES, KPC and SPM at the rates of 29%, 20%, 29%, 19%, 7% and 2%, respectively. Class 1 Integron was positive in 82% of *A. baumannii* isolates.

The clonal relationship of 42 MDR *A. baumannii* isolates using ERIC-PCR and constructed dendrogram showed 3 major genotype clusters.
of genetically related isolates. These include 4 genotype groups, each composed of 2 isolates with 100% similarity of DNA bands.

Conclusion: This study demonstrates that *A. baumannii* colonize frequently cancer patients in association with antibiotic treatment. The organism is mostly carrying wide spectrum of antibiotic resistance genetic factors, especially many types of ESBLs and MBLs and Class 1 Integron. This fact should be considered when therapy is selected for treatment of patients infected with MDR *A. baumannii*.

Keywords
Acinetobacter baumannii, ESBLs, MBLs, Class 1 Integron, Jordanian cancer patients.

Introduction
In recent years worldwide including Jordan, most clinical *A. baumannii* isolates have developed resistant to most clinically used drugs, and caused increased morbidity and mortality among hospitalized patients in intensive care units (ICUs) [1-4].

Acinetobacter spp. develop multidrug resistance through mechanism of mutation in penicillin-binding proteins (PBPs), alterations in outer membrane proteins (OMPs) and increased activity of efflux pumps [5]. However, resistance to β-lactams appears to be primarily caused by production of β-lactamases which include extended-spectrum-β-lactamases (ESBLs), oxacillinases, and metallo-β-lactamases [6].

A. baumannii acts first often as colonizer rather than a pathogen because of its wide distribution and colonizing capability [1, 7], especially in immune-compromised and among patients with prolonged hospital stay [8]. The spectrum of infections caused by this pathogen include ventilator-associated pneumonia (VAP) which is developed after prolonged hospitalization or mechanical ventilation and prior use of antibiotics [4, 9-10].

Many factors contribute to the ability of *A. baumannii* to cause infections in hospitalized patients. First, *A. baumannii* has the capacity to survive for long periods in various body parts of patients and their environment. Secondly, the genomic makeup of this organism allows it to acquire resistance to many antibiotics within a short period [11]. However, the rates of antibiotic resistance vary from region to region and among hospitals [12]. Almost all studies indicate that MDR *A. baumannii* infections are difficult to treat, spread quickly among hospitalized patients and can be associated with high mortality due to blood sepsis or ventilator associated pneumonia [2, 4, 12-14].

This study describes the occurrence and the mechanism of antibiotic resistance of *A. baumannii* isolated from cancer patients.

Patients and Methods

Collection of *A. baumannii* isolates
This prospective study included a total of 70 *A. baumannii* isolates, were recovered from clinical specimens of patients who were investigated for
presence of *A. baumannii* during hospitalization or investigation as outpatients at a Cancer Center in Amman, Jordan, over a period of 6-months (2016) as shown in the Table 2. Approval was obtained from the Institution Ethical Review Board (IERB) at the King Hussein Cancer Center (KHCC), Amman, Jordan, for conducting and publishing this study.

Identification of *A. baumannii* isolates

All isolates were first identified using BioMerieux VI-TEK 2 Automated Microbiology System (France). Later all collected isolates were sub-cultured on Blood and MacConkey agar plates and incubated at 37°C for 24 hr. Pure growth was again confirmed as *A. baumannii* according to the following characteristics; negative oxidase test, negative lactose and glucose fermentation in Kligler iron tubes, and later by presence of OXA-51 gene using PCR. Five fresh colonies were inoculated in brain-heart infusion agar plus 15% glycerol and kept frozen at -70 ºC until used for further investigation.

Antibiotic susceptibility tests

The susceptibility of *A. baumannii* isolates to antibiotics was determined using the disc diffusion method according to the guidelines of CLSI 2016 [15]. The minimum inhibitory concentrations (MICs) of isolates were determined by the E-test (ABBioMérieux, France) for imipenem, amikacin and colistin. Interpretations of the MICs in the E-test were done according to the guidelines of CLSI 2016 [15].

Genomic DNA Extraction from *A. baumannii* Isolates

Genomic DNA was extracted according to the manufacturer’s instructions of Wizard Genomic DNA purification kit (Promega, USA).

Plasmid DNA extraction from *A. baumannii* isolates

The bacterial plasmid was extracted using the EZ-10 Spin Column Plasmid DNA Minipreps Bio Basic kit (Canada) according to manufactures protocol.

Detection of genes encoding blaOXA carbapenemases, metalo-beta-lactamases, and class-1 integron in *A. baumannii* using PCR

All primer target genes of blaOXA carbapenemases, metalo-beta-Lactamases, their sequences, product sizes, annealing temperatures were used according to references as shown in Table 1. β-lactamases genes (OXA-58, OXA-51, OXA-24, OXA-23 [16], IMP-2, VIM-2, SPM, NDM, [17], GES [18], NDM-1(19)KPC [20] and class-1integron [21].

The following control strains were used in the experiment, which were kindly donated by Prof. Monzer Hamza, Laboratoire Microbiologie Sante et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculte de Sante Publique, Universite Libanaise, Tripoli, Lebanon): *A. baumannii* (OXA-51 positive), *A. baumannii* (OXA-23 positive), *A. baumannii* (IMP-2 positive), *K. pneumonia* (blaKPC positive; ATCC BAA-1705), *K. pneumonia* (blaNDM-1 positive; ATCC BAA-2146), and *P. aeruginosa* (ATCC 2 7853) was used in susceptibility test.

PCR tests were carried out in 25 µl reaction with 2.5 µl of extracted DNA, 20 pmol of each primer (Alpha DNA, Montreal, Canada), 12.5 µl GoTaq® Green master mix (Promega, USA). The volume was made up to 25 µl using nuclease free water. DNA concentrations of each sample was evaluated using Nanodrop 2000c (Thermo scientific, USA). The PCR amplification assays for the target genes were performed using programmable PCR-Thermocycler (Bioerxp cycler, China). Control tubes containing master mix without template DNA were included in each run as negative control. Tubes were held at 4°C when the cycles were ended. The amplified products and the PCR DNA marker were separated via electrophoresis on 2% agarose gels containing 15% Red safe™ stain (5 µl), for 40-50 min at 120 volts, and then visualized using Gel documentation system including:UV camera, monitor and printer (UVP, USA).
Table 1. Primers of blaOXA - carbapenemases, Metalo-beta-Lactamases ,Class-1 integrons, ERIC.

Gene targets	Primer Sequence (5’→3’)	Annealing Temp.oC	Product size (bp)	Reference
blaOXA-51	F→TAATGCTTTTGATCGGCTTG R→TGGATGCTCTCATCTTTGG	60	353	16
blaOXA-23	F→GATCAGATGGGAGAAACCA G→ATTCTGCAACGGTTTCCTTTTG	57	501	
blaOXA-24	F→GGTTAGTTGCGCCCCCTAAA R→AGTTGACCGAAGAAAAGGGATT	57	246	
blaOXA-58	F→AAGATTGGGGCTTTGTGCTG R→CCCCCTGCTCGCTCTACATAC	57	599	
IMP	F→GGA ATA GAG TGG CTT AAY TCTC R→GCT TTA AYA AAA CAA CCA CC	52	232	17
VIM	F→GAT GGT GTT TGG CAT A R→CGA ATG CGC AGC ACC AG	52	390	
SPM	F→AAA ATC TGG GTA CGC AAA CG R→5’-ACA TTA TCC GCT GGA ACA G	52	271	
NDM	F→GCT GTA GCC ATG TGG TTT TC R→CGG AAT GCC TCA TCA CGATC	52	621	
GES	F→ATG CGC TTC ATT GAC GCA C R→CTA TTT GTG GCT GCT CAG GA	56	863	18
NDM-1	F→ATT AGC CGC TGC ATT GAT R→CAT GTC GAG ATA GGA AGT G	58	154	19
KPC	F→GATACCAGTTCGCTCTGG R→GCAGGTTGCTCTGTTTGTTCG	52	246	20
int1	F→CAATGATGGCGACGCAGCA R→ATTCTGCTCGTCGTCGCA	55	600	21
ERIC-1	ATGTAAGCTCTGGGAGATCCACAG R→TAAGTGACTGGGTTGAGCG	52	Multiple Bands	22

Enterobacterial repetitive consensus (ERIC)-PCR

This test was performed in 50 μl volumes containing 10 ng of genomic DNA from *A. baumannii* clinical isolates, 4 mM MgCl2, 50 pM each of primer ERIC-1 and 2 as described by Jeong et al. [22].

Statistical analysis

Statistical analysis was done using SPSS version 20, chi square test and t-test were used to analyzed categorical variablesand to measure the significance of the association between the study variables. If less than 5 a fisher exact test was used. P-value of ≤ 0.05 was considered significant \.

Results

Table 2 shows the sources of 70 *A. baumannii* isolates within the period of study (March 2016 to October 2016). The majority of samples were collected from nasal swabs (30%) and perianal swabs (21%). Table 3 shows the demographic characteristics of cancer patients with positive *A. baumannii* isolates. The majority of patients (56%) were over 50 years old and were in-patient (90%) rather than out-patient (10%). Most of the patients (68%) have received medication prior to collection their specimens. The results of antimicrobial susceptibility using disc diffusion method are presented in Table 4. *A. baumannii* isolates were 100% resistant.
Table 2. Sources, number and percent of collected samples from patients.

Source	Samples*	
	No	%
Nasal swab NS)	21	30
Perianal swab PS)	15	21
TRAP	8	11
Wound swab WS)	8	11
Blood	4	6
Urine	5	7
High vaginal Swab HVS)	3	4
Sputum	2	3
Broncho alveolar lavage BAL)	2	3
Throat	1	1.5
Pleural fluid	1	1.5
Pleural fluid	1	1.5

*: Only one sample was included from each patient.

Table 3. Demographic characteristics of 70 cancer patients with positive A. baumannii isolates.

Patients characteristics	Hospitalized patients	Out-patients	Total	P-Value			
	No	%	No	%	No	%	
Skills							
Males	38	54	1	1	39	55	0.026**
Females	25	36	6	9	31	45	
Total	63	90	7	10	70	100	
Age /year							
Less than 14	2	3	0	0	2	3	0.601
15-50	26	37	2	3	28	40	
More than 50	34	49	5	7	39	56	0.667
Total	63	90	7	10	70	100	
Prior use of antibiotic							
No antibiotic	18	26	4	6	22	32	0.033**
Treatment with antibiotics*	45	64	3	4	48	68	
Total	63	90	7	10	70	100	

*: Mostly amikacin and colistin. **: Significant

To meropenem, piperacillin/tazobactum, aztreonam and ceftazidime, 99% resistant to imipenem, and ciprofloxacin, 76%, 77% resistant to amikacin and gentamycin, respectively. The results of MICs for the three commonly used drugs amikacin, colistin and imipenem against A. baumannii isolates are shown in Table 4.

A total of 45 A. baumannii isolates were 100% positive to OXA23 like and OXA51, and all of these were negative to OXA58 like and OXA24 genes. Table 5 shows the distribution of other potential genes of \(\text{VIM, GES, NDM-1, NDM, IMP}_{a}, \text{KPC, and SPM} \) were found in 64%, 42%, 29, 20%, 7%, 7%, 2%, respectively, while integron-1 was presented in 83% of the isolates.

The genetic relationship of 42 MDR A. baumannii isolates from hospitalized patients as shown in the dendrogram indicated 3 major genotype clusters of genetically related isolates (Figure 1). These include...
Table 4. Antimicrobial resistance patterns of 70 *A. baumannii* isolates using disc diffusion and E-tests for MICs.

Antimicrobial agent	resistant isolates	MIC\(_{50}\) mg/L	MIC\(_{90}\) mg/L	MIC-range mg/L
Meropenem (Mem)	70	-	-	-
Aztreonam (Atm)	70	-	-	-
Piperacillin/Tazobactum (Ptz)	70	-	-	-
Ceftazidime (Caz)	70	-	-	-
Ciprofloxacin (Cip)	69	-	-	-
Imipenem (IMI)	69	15.6	28.5	0.38-32
Gentamicin (GM)	54	-	-	-
Amikacin (Ak)	53	98.3	177	1-256
Colistin	-	0.26	0.47	0.019-2

Table 5. Distribution of bla OXA-carbapenemases, MBLs and Integron-1 genes among 45 *A. baumannii* isolates.

Gene name	Positive isolates	No	%
OXA-23	45	100	
OXA-24	0		
OXA-51	45	100	
OXA-58	0		
VIM	29	64	
GES	19	42	
NDM-1	13	29	
NDM	9	20	
IMP	3	7	
KPC	3	7	
SPM	1	2	
Integron-1	37	82	

Figure 1: Dendrogram of the 42 *A. baumannii* isolates from hospitalized patients.
4 genotype groups, each composed of 2 isolates with 100% similarity of DNA bands.

The identity of class-1 integron PCR products of 5 A. baumannii isolates were confirmed by sending them to Macrogen Inc. (Seoul, Korea) for sequencing and the results were analyzed using alignment search tool of Blast. (http://www.ncbi.nlm.nih.gov/BLAST) and the multiple sequence alignment program, CLUSTALW (http://www.ebi.ac.uk/clustalw).

Discussion

This study has demonstrates that many body sites of cancer patients are frequently colonized with A. baumannii, especially their nares and perianal site. Invasive blood infection was detected among few percentage (6%) of hospitalized cancer patients during the 6-month study period (Table 2). The rest of the isolates can be considered colonizers and might become potential pathogens for patients under certain condition, especially in association with the use of invasive procedures [23-24]. There is no significance difference in general demographic characteristics between male and female patients or their ages, whereas treatment with antibiotics showed increased significantly the chance of (P=0.033) colonization with A. baumannii. Additionally, hospitalized patients were at increased risk for colonization with AB (90%; P=0.026) when compared to outpatients (10%) with A. baumannii (Table 3). Recent studies from Jordan and other countries reported that A. baumannii frequently colonizes hospitalized patients, causing sporadic invasive infection and nosocomial outbreaks, especially among critically ill patients and in ICUs [2, 25-27].

This study demonstrates that the majority of A. baumannii species isolates were resistant in the range between 76% to 100% to commonly useful antimicrobial agents in the treatment of gram-negative infections, including infections due to A. baumannii (Table 4). Previous studies which has been performed over the last few years at the Jordan University Hospital and KHCC in Amman, have also found that the majority of A. baumannii isolates from patients and hospital environment sources was also multidrug resistant [2, 3, 28].

The ability to acquire resistance to a broad range of antimicrobial agents within a short period and during treatment is commonly observed in A. baumannii [4, 29]. High mortality rates among critically ill patients infected with MDR or extensively drug-resistant (XDR) A. baumannii strains (resistant to all antibiotics except colistin and tigecycline), have been recently described in many regions [30-32].

This study shows extremely high rate of carbapenems-resistance (99-100%) among A. baumannii isolates. The prevalence of imipenem-resistance among A. baumannii isolates was 99%. This rate is very high compared to resistance rates of clinical isolates reported few years ago from Jordan and neighboring countries which ranged between 90% to 64% [3, 31, 32, 33]. A previous Jordanian study has also indicated that majority of A. baumannii isolates from environmental and clinical sources was multidrug resistant, except for colistin and tigecycline similar to the case in other countries such as Lebanon [3, 32].

Carbapenems are frequently used as the drugs of choice in treatment of infections caused by MDR Gram-negative bacteria including A. baumannii. Increased resistance to carbapenems in A. baumannii has raised special concerns during the last decade, especially since it is associated mostly with the production of acquired carbapenemases belonging to either carbapenem-hydrolyzing OXA-type class D -β-lactamases or class B metallo-β-lactamases [32, 35-36]. The results of this study demonstrate that all representative examined 45 MDR A. baumannii isolates were 100% positive for genes of blaOXA-51, and blaOXA-23, but none of the isolates was positive to OXA-24 or OXA-58. A recent Jordanian study carried at the Jordan University Hospital also showed that all examined A. baumannii isolates harbored a blaOXA-51 gene, 58% has a blaOXA-
23gene, and 38.8% has a blaOXA-24 gene [3]. It is well known that blaOXA-51 gene, is an enzyme that naturally exists in A. baumannii and has very weak carbapenem hydrolyzing activity [37]. While the presence of plasmid-borne blaOXA-23 and blaOXA-58 genes have been shown to contribute significantly to carbapenem resistance in A. baumannii worldwide [38]. However, the distribution of carbapenem-hydrolyzing oxacillinases varies among regions and hospitals [3, 32-35, 38]. A study used multivariate analysis demonstrated that the risk factors for acquisition of MDR A. baumannii were not related specifically to presence of cancer, but rather due to exposure of patients to health care procedures, especially dialysis, antibiotic treatment and length of stay in intensive care units [4, 7].

The present study also demonstrates that all A. baumannii isolates were susceptible to colistin. This result is similar to most recent studies from neighboring countries which has reported high susceptibility rates of clinical A. baumannii isolates to colistin [2-3, 25, 32, 35]. However, with an increase of using colistin to treat carbapenem-resistant A. baumannii infections, colistin resistance could be later emerged [39].

This study revealed that 37 of the 45 (82%) MDR A. baumannii isolates harbored class-1 Integrons (Table 5). Previous studies from Jordan has demonstrated that class 1- integrons is frequently found in clinical and environmental isolates of Gram-negative bacteria such as A. baumannii and E. coli and are often associated with their MDR strains [28, 40]. The presence of the integrase gene in the majority of our A. baumannii clinical isolates in association with other resistance markers provided a strong evidence that these isolates have the potential for acquisition more antimicrobial resistance genes in future. It has been often observed that MDR A. baumannii strains involved in hospital outbreaks have carried class 1 integrons [41-42].

The ERIC-PCR analysis as shown by dendrogram demonstrated that few A. baumannii isolates might have been circulated among cancer patients (Figure 1). Further testing of these isolates using multilocus sequence typing (MLST) or DNA sequencing could confirm this result.

In conclusion, the results of this study demonstrate that body colonization with A. baumannii increased in association with antibiotic treatment of cancer patients. The majority of A. baumannii are carrying a wide spectrum of genetic resistance factors, especially many important types of blaOXA-carbapenemases which will limit using valuable drugs in treatment of A. baumannii invasive infection.

Acknowledgement
This work was supported by grant from The University of Jordan, Dean of Research (No. 22/2016-2017). We thank the KHCC for providing the clinical isolates of A. baumannii in this study.

Conflicts of interest
There is no conflict of interests

References
1. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017; 30:409-447.
2. Nazer L, Karabsheh A, Rimawi D, Hawari F. Characteristics and Outcomes of Acinetobacter baumannii Infections in Critically Ill Patients with Cancer: A Matched Case-Control Study. Microb Drug Resist 2015; 21(5):556-561
3. Obeidat N, Jawdat F, Al-Bakr GA, Shehabi AA. Major biological characteristics of Acinetobacter baumannii isolates from hospital environmental and patients’ respiratory tract sources. American J Infect Control 2014; 42:401-404.
4. Antunes L, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292-301.
5. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. J Infect Dis 2011; 205:1305-1313.
6. Noori M, Karimi A, Fallah F, Hashemi A, Alimehr S, et al. Prevalence of Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated From Two Hospitals of Tehran, Iran, Arch Pediatr Infect Dis. 2014; 2(3).
7. Garc‘ia-Garmendia J-L, Ortiz-Leyba C, Garnacho-Montero J, Jiménez-Jiménez F-J, Pérez-Paredes C, et al. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: a cohort study. Clin Infect Dis 2001; 33:939-946.

8. Montefour K, Frieden J, Hurst S, Helmich C, Headley D, et al. Acinetobacter baumannian: emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 2008; 28:15-25.

9. Routsi C, Pratikaki M, Platsouka E, Sotiropoulou C, Nanas S, et al. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: risk factors, clinical features and outcomes. Infection 2010; 38:173-180.

10. Luna CM, Aruj PK. Nosocomial Acinetobacter pneumonia. Respiriology 2007; 12:787-791.

11. Lei Gao, Yuan Lyu, Yun Li. Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program. Chin Med J (Engl). 2017; 20; 130(6):659-664.

12. Hurley JC. World-wide variation in incidence of Acinetobacter associated ventilator-associated pneumonia: a meta-regression. BMC Infect Dis 2016; 16:577.

13. Chang K-C, Lin M-F, Lin N-T, Wu W-J, Kuoet H-Y, al. Clonal spread of multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Inmunol Infect 2012; 45:37-42.

14. Lee C-R, Lee JH, Park M, Park KS, Bae IK, et al. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell Infect Microbiol 2017; 7:1-8.

15. Clinical Laboratory and Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - tenth edition. CLSI document M07-A10 Villanova, PA, USA:CLSI, 2016.

16. Woodford N, Ellington MJ, Coelho LM, Turton JF, Ward ME, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27(4):351-3.

17. Poirot L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70(1):119-23.

18. Cicek AC, Saral A, Iraz M, Ceylan A, Duzgun AO, et al. OXA- and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Eur J Clin Microbiol Infect Dis 2014; 20(5):410-5.

19. Naas T, Ergani A, Carrer A, Nordmann P. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother 2011; 55(9):4038-43.

20. Hindiyeh M, Smollen G, Grossman Z, Ram D, Davidson Y, et al. Rapid detection of blaKPC-carbapenemase genes by real-time PCR. J Clin Microbiol 2008; 46(9):2879-83.

21. PloyMC, DenisF, CourvalinP, LamberT. Molecular Characterization of Integrons in Acinetobacter baumannii: Description of a Hybrid Class 2 Integron. Antimicrob Agents Chemother 2000; 44(10):2684-2688.

22. Jeong SH , IL KB , Seung GS , Kwang OP, Young J AN, et al. First Detection of blaMP-1 in Clinical Isolate Multiresistant Acinetobacter baumannii from Korea. J. Microbiol. Biotechnol 2006; 16(9):1377-1383.

23. Helal S, El Anany M, Ghaith D, RabeeaA. The Role of MDR-Acinetobacter baumannii in Orthopedic Surgical Site Infections. Surg Infect (Larchmt) 2015; 16:518-522.

24. Al-Hassan L, El Mehallawy H, Amyes SGB. Diversity in Acinetobacter baumannii isolates from paediatric cancer patients in Egypt. Clin Microbiol Infect 2013; 19:1082-1088.

25. Ghaith DM, Zafer MM, Al-Agamy MH, Alyamani EJ, Boooq RY, et al. The emergence of a novel sequence type of MDR Acinetobacter baumannii from the intensive care unit of an Egyptian tertiary care hospital. Ann Clin Microbiol Antimicrob 2017; 16:34.

26. Gecgel KS, Demircan N. Antibiotic resistance rates among bacterial isolates from infected patients of intensive care unit over the period (2011-2016) in Bursa, Turkey. IAJAA 2017; Vol. 7 No. 2-4.

27. Anudit C, Kooltheat N, Potup P, Srnanuit RP, Usuwanthik K. Nosocomial infection of multidrug-resistant Acinetobacter baumannii in Thailand. Am J Infect Control 2016; 44:1161-1163.

28. Al-Dabaibah N, Obeidat NM, Shehabi AA. Epidemiology features of Acinetobacter baumannii colonizing respiratory tracts of ICU patients. IAJAA 2012; 2:1, 1-7.

29. Peleg AY, de Breij A, Adams MD, Cerqueira GM, Mocali S, et al. The success of Acinetobacter species; genetic, metabolic and virulence attributes. PLoS One 2012; 7:e46984.

30. Spellberg B, Bonomo RA. Combination Therapy for Extreme Drug Resistant (XDR) Acinetobacter baumannii: Ready for Prime-Time? Crit Care Med 2015; 43:1332.

31. Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015; 85-98.

32. Dahdouh E, Hajjar M, Suarez M, Daoud Z. Acinetobacter baumannii Isolated from Lebanese Patients: Phenotypes and Genotypes of Resistance, Clonality, and Determinants of Pathogenicity. Front. Cell. Infect. Microbiol. 2015; 6.

33. Alyamani EJ, Khiyami MA, Booq RY, Alnafjan BM, Altammami MA, et al. Molecular characterization of extended-spectrum β-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia. Ann Clin Microbiol Antimicrob 2015; 14:38.

34. Cicek AC, Saral A, Iraz M, Ceylan A, Duzgun AO, et al. OXA and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect 2014; 20:410-415.
35. Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol. 2017 Feb; 43(1):43-61.

36. Touati M, Diene SM, Racherache A, Dekhil M, Djahoudi A, et al. Emergence of blaOXA-23 and blaOXA-58 carbapenemase-encoding genes in multidrug-resistant Acinetobacter baumannii isolates from University Hospital of Annaba, Algeria. Int J Antimicrob Agents 2012; 40:89-91.

37. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013; 41:11-19.

38. Mostachio AK, Levin AS, Rizek C, Rossi F, Zerbini J, et al. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil. Int J Antimicrob Agents 2012; 39:396-401.

39. Qureshi AZ, Hittle EL, O’Hara AJ, Rivera IJ, Syed A, et al. Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance. Clin Infect Dis 2015; 60(9):1295-303.

40. Shehabi AA, Odeh JF, Fayyad M. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from human stools and drinking water sources in Jordan. J Chemother 2006; 18:468-472.

41. Sung JY, Koo SH, Kim S, Kwon KC. Epidemiological characterizations of class 1 integrons from multidrug-resistant Acinetobacter isolates in Daejeon, Korea. Ann Lab Med 2014; 34:293-299.

42. Lin M-F, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787.