Multidimensional item response theory to assess psychometric properties of GHQ-12 in parents of school children

Elham Haem1, Marziyeh Doostfatemeh1

1 Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Corresponding author: Marziyeh Doostfatemeh
Mailing address: Department of Biostatistics, Medical school, Emam Hossein square, Shiraz, Iran
Office telephone number: +987130283015
Fax number: +987132349930
Email address: m.fatemi82@gmail.com

Abstract

Background: Multidimensional item response theory (MIRT) model provides an ideal foundation to assess psychological properties of a questionnaire designed with multidimensional structure. This study aimed to present the first use of MIRT models to investigate psychometric properties of general health questionnaire (GHQ-12) in parents of school children.

Methods: A total of 1104 parents of school children completed the Persian version of GHQ-12 questionnaire. Unidimensional IRT model and MIRT models with two and three factors were applied to model the observed scores for each GHQ-12 item as a function of the subject’s latent traits while taking the correlation between dimensions of the questionnaire into account. The goodness of fit indices were reported for the three models, and items fit were assessed for the best model. Individual items were described in detail through item characteristic curves, and the amount of information carried by different items was presented using information curves.

Results: The MIRT analysis with two factors corresponding to psychological distress and social dysfunction provided the best account of the GHQ-12 data. The model showed that all items were fitted adequately. Items varied in their discrimination ranged from 0.86 to 2.35 and 1.18 to 2.41 for psychological distress and social dysfunction, respectively. Moreover, items 8 and 2 provided the least information in psychological distress and social dysfunction dimensions, respectively.

Conclusions: The developed framework to evaluate psychometric properties of GHQ-12 can be a suitable alternative to traditional approaches and also unidimensional IRT models, the use of which has been restricted due to multidimensional structure of the questionnaire.

Keywords: Multidimensional item response theory, general health questionnaire, psychometrics properties, Psychological Distress
Background

The general health questionnaire (GHQ) is a self-report measure of minor psychiatric morbidity that has been widely used since its development by Goldberg in 1972 [1]. The original instrument consists of 60 items, but different shorter versions, including GHQ-30, GHQ-28 and GHQ-12, have also been adapted and validated in different studies [2]. The 12-item version of the questionnaire, GHQ-12, was used broadly due to its relatively good psychometric properties and its brevity [3,4]. Further, the GHQ-12 is recommended by the world health organization (WHO) as a well-validated and standard psychiatric screening instrument [5].

The GHQ-12 consists of 12 items, each of which is rated on a four-point scale, typically worded: less than usual, no more than usual, rather more than usual, or much more than usual. The two most commonly used scoring methods are bi-modal (0-0-1-1) and Likert scoring styles (0-1-2-3) [6].

Since the GHQ-12 exhibits considerable appeal as a quick and well-documented screening tool, it was translated into different languages to study its reliability and validity and explore its psychometric properties in various population and countries [6-12]. For the first time, the Persian version of the questionnaire was prepared and its psychometric properties were assessed by Montazeri et al. [13]. Since then, several studies have been conducted to assess its applicability among university students and Iranian elder population [14,5].

The questionnaire was designed as a unidimensional scale to capture a single trait, and some empirical studies supported this assumption [15,16]. However, studies have frequently revealed the existence of two or three factor solutions [12]. Most of the studies yielded a two factor solution named “anxiety/depression” and “social dysfunction” [17-19,7,20-22]. Some studies, however, revealed a third factor expressing “loss of confidence” [23-25]. For Persian version of the questionnaire, a two factor model was the best explanation of the Iranian sample[13].

Traditionally, classical test theory (CTT) including construct validity, reproducibility and sensitivity to change was used to assess psychometric properties of questionnaires [26]. Furthermore, confirmatory factor analysis (CFA), as a common method, can be used to evaluate hypothesis about the dimensionality of questionnaires [27]. Although CTT and CFA are popular methods, they do not consider the measurement errors that refer to the difference between an observed score and an individual’s actual trait [28].

The item response theory (IRT) is able to consider measurement error and provides a more detailed assessment of a questionnaire’s items. This theory, also known as the latent response theory attempts to explain the relationship between an individual response to the items on the questionnaire and the latent trait [29,30]. It establishes a link between the properties of items on a questionnaire, individuals responding to these items and the underlying trait being measured.

Despite IRT benefits, most studies on psychometric properties of GHQ-12 used CTT methods, exploratory factor analysis and confirmatory factor analysis. However, several studies used unidimensional IRT model to assess the hypothesis on factorial structure of GHQ-12 [31-33]. Further, Alexandrowicz et al. [34] applied IRT models with a different aim to compare the 30-, 20-, and 12 item version of GHQ with four different recording schemes.

When questionnaires comprise multiple dimensions, the utility of unidimensional IRT is largely restricted. An improved version of IRT models named multidimensional IRT (MIRT) models take
multiple latent traits into account simultaneously; also, the correlation amongst latent traits is considered. MIRT models have been rarely used in GHQ-12 although the aims were different in these studies [35,36].

Further, it appears that there is no reported MIRT-based study on the psychiatric morbidity of the parents of school children measured by GHQ-12. Whereas children’s quality of life is one of the important and complementary outcomes in clinical studies, several studies have focused on this subject [37-39]. On the other hand, health-related quality of life in children is strongly influenced by the mental health of their parents. Therefore, it is crucial to evaluate the parents’ psychiatric morbidity in a population.

The present study aimed to use MIRT models to investigate the properties of the questionnaire with more detail. The unidimensional IRT and MIRT models with two and three factors were applied to the data and the three models were compared to each other using several goodness of fit indices. Afterwards, in the best-fitted model, individual items were described in detail through item characteristic curves and item information curves.

Methods

Participants and instrument

The Persian version of the GHQ-12 translated and validated previously in Iran [13] was filled out by 1104 parents of Iranian secondary school adolescents aged 13-18 years. A two-stage cluster random sampling technique was used to select the participants randomly. At the first stage, four schools were selected at random from 60 secondary schools in each of the four educational districts in Shiraz, southern Iran. Afterwards, two classes from each school were chosen through a simple random sampling and all parents of the students in the chosen classes were considered as the study population in the second stage. The students took the informed consent forms and the questionnaires home for their parents, and then the filled questionnaires were returned to the schools. The ethics committee of Shiraz University of Medical Sciences approved the study.

The GHQ-12 includes 12 ordered categorical questions or items which are rated in four categories 0, 1, 2 and 3, indicating less than usual, no more than usual, rather more than usual, or much more than usual, respectively. The GHQ-12 scoring protocol has reversed-scored items such that the higher scores show better psychological health state, and model was fitted accordingly.

Multidimensional item response theory

IRT models assume that there is only one latent variable, \(\theta \), to explain the relationship between latent traits and observed responses. However, MIRT, as an extension of IRT models, attempts to explain an item response according to an individual’s standing multiple latent dimensions[40]. There are several forms of IRT models that have been used for ordered categorical data including rating scale model, partial credit model, generalized partial credit model (GPCM), and graded response model (GRM) [30]. The most common IRT-based approach for multiple-response questionnaires in patient-reported outcome studies has been GRM [29]. In this study, in the first step, a unidimensional GRM was used to analyze the data. Thereafter, a multidimensional
extension of GRM was used to describe the probability of a given score as a function of two and three latent variables.

The functional form of the multidimensional GRM is given by:

\[
P(Y_{ij} \geq K | \theta_i = \theta) = \frac{1}{1 + \exp[-(a_j^T \theta + c_{jk})]} \] \tag{1}

\[
P(Y_{ij} = K | \theta_i = \theta) = P(Y_{ij} \geq K | \theta_i = \theta) - P(Y_{ij} \geq K + 1 | \theta_i = \theta) \] \tag{2}

Where \(P(Y_{ij} \geq K | \theta_i = \theta) \) is the probability that observed scores for item j and subject i given the ability on latent trait \(\theta_i \) obtain a score greater or equal to k, with k=0 to 3. In this equation, \(a_j \) and \(c_{jk} \) denote, respectively, the item discrimination and intercept, where intercepts are ordered and one less than the number of response categories for each item. A high discrimination value shows that an item is able to differentiate between the subjects at different latent trait levels. The intercept, \(c_{jk} \), can be transformed into a difficulty parameter, \(b_{jk} \), through the following formula:

\[
b_{jk} = -\frac{c_{jk}}{a_j} \] \tag{3}

Where a low value for difficulty parameter indicates an easy item and a high difficulty indicates a difficult item. Further, in Eq (1), latent traits are distributed normally, \(\theta_i \sim N(0, \Omega) \), where \(\Omega \) is the covariance matrix for individual i’s latent traits. The correlation between the dimensions is taken into account in the multidimensional GRM model through \(\Omega \) [27].

Statistical analysis

All analyses were performed in the R programming environment with the multidimensional item response theory (mirt) package [41]. The unidimensional IRT model and the MIRT models with two and three factors were compared using Akaike information criterion (AIC). Further, the goodness of fit of the models was evaluated by comparative fit index (CFI), Tuker-Lewis index (TLI), root-mean-square error of approximation (RMSEA). The following cut-off values for good fit was suggested by Hu and Bentler [42]: CFI > 0.95, TLI > 0.95, RMSEA < 0.06.

Item characteristic curves (ICC) were provided to describe the probability of each score in each item visually. Furthermore, item information curves were included to investigate which items of GHQ-12 carried the most information to detect psychiatric morbidity of the parents. Information content of the items was calculated using Fisher information which is formulated as minus the expectation of the second derivative of the log-likelihood of the model [29]. To evaluate the item fit, the generalized Orlando and Thissen’s S-X^2 index for polychotomous data was used [43], comparing the observed and expected response frequencies under the estimated MIRT model. Eventually, the items with S-X^2 p-value<0.01 were considered poorly fitted [44,45].

Result

In this study, there were 13248 observations from 1104 parents of school children. A unidimensional IRT and MIRT models with two and three factors were fitted on the GHQ-12 data set. Table 1 summarizes the goodness of fit of the models, representing the MIRT model with two
Factors named psychological distress and social dysfunction, which reflected the data better compared to the other models. This model had the lowest AIC and met cut off values for a good fit. Thus, the MIRT model with two factors was considered for further evaluation.

The distributions of the observed responses of items for psychological distress and social dysfunction dimensions are shown in Fig.1. The frequency of ordinal items showed a diverse pattern in two dimensions. In psychological distress dimension, most items were skewed toward high scores (2 and more), indicating a better psychological health state, while items of social dysfunction were more symmetrically distributed.

In the MIRT model with two factors, item specific parameters and the correlation between the two factors were estimated successfully. Table 2 displays the estimation of item discrimination and item difficulty parameters and their standard error for two dimensions. For all items in the two dimensions, discrimination estimates ranged from 0.86 to 2.41, indicating that all items discriminated between low and high levels of GHQ-12 latent traits (or psychological health state) of parents very well. Further, the estimated correlation between the two factors was 0.85, showing that increasing in psychological distress of the parents leads to an increase in their social dysfunction latent trait. Fig 2. shows the obtained ICCs for all items in GHQ-12. This figure indicates that a person with better psychological health state (higher latent trait, the latent trait is either psychological distress or social dysfunction) has a higher probability of increased scores for each item. The lowest slope of 0.86 for face up to problems (item 8) indicates a lower discrimination power in psychological distress of parents. In other words, a large increment in health state just yields a small increment in the probability for the score on this item. However, the high slope parameter of 2.41 and 2.35 for feeling unhappy and depressed (item 9) and losing confidence (item 10) indicates a higher discrimination power in social dysfunction and psychological distress latent traits, respectively. For all items, when psychological health state score increases, the probability of a 0 score decreases.

Fig 3. presents the item information curves for all items of psychological distress and social dysfunction dimensions, separately. Item information curves as a function of latent traits, indicate which item carry the most information and where on the latent trait they are most informative. The information content carried by items was different. In social dysfunction, feeling unhappy and depressed (item 9) was the most informative over the moderate range of latent trait, while lost much sleep (item 2) was the least informative over a broad range of the latent trait. Moreover, in psychological distress, losing confidence (item 10) and thinking of self as worthless (item 11) carried the most information on the moderate latent trait. However, face up to problems (8) carried little to almost no information in this study.

Table 3 shows full results for item fit statistics. Based on S-X² p-value, all the items fit the GHQ-12 questionnaire properly.

Fig1. Distributions of observed item responses (0= much more than usual, 1= rather more than usual, 2= no more than usual, 3= less than usual) for each dimension. The name of the items is provided in Table 2.

Fig2. Item characteristic curves showing the probability for each individual score within each category of items.

Fig3. Item information curves for items of psychological distress and social dysfunction dimensions.

Discussion
The present study is the first to apply MIRT model to evaluate psychometric properties of GHQ-12 questionnaire in parents of school children. This study included 1104 parents to measure their minor psychiatric morbidity. Since maternal and paternal psychological health affects the children’s development and health during school, assessment of their psychiatric morbidity is essential. The analysis of questionnaires and assessment of their psychometric properties through CTT approach focusing on summated scores disregards the underlying nature of the data. Traditionally, CFA analysis has been used widely to assess the dimensionality or underlying latent variable structure of a questionnaire.

An IRT model provides some advantages over CFA to assess the hypothesis about the dimensionality of the questionnaires. The most important point is taking the measurement error into account, while CFA considers the observed scores as actual individual’s latent trait [46]. Moreover, IRT-based models are sample independent; that is the estimated latent trait is not seriously affected by the population [30]. Although the GRM is mathematically equivalent to factor analysis of the estimated polychoric correlation matrix, item difficulty and discrimination are the functions of item intercept and factor loading [47,48]. IRT-based models provide a deeper insight into the measurement properties of a questionnaire and its items. In this approach, ICC curves visually present the power of discrimination and difficulty of individual items. Further, item information functions are obtained through IRT models and estimate the precision and reliability of individual items independent of other items on the questionnaire. In addition, item information curves indicate the content of information carried by individual items. As a result, a subset of items can be selected, and a reduced questionnaire can be developed by omitting uninformative items.

Notwithstanding the advantages of IRT over CFA, it suffers from one limitation which is the need for large samples. A summary of the recommended sample sizes for various IRT models is provided by Yen and Fitzpatrick [49]. MIRT as an extension of IRT approach model multiple dimensions simultaneously to take the correlation amongst the dimensions into account. Since these correlation parameters are estimated amongst the dimensions, MIRT models need a larger sample compared to IRT models. In this study, a sufficiently large sample was employed to obtain stable parameter estimates in the MIRT model.

In the present study, the MIRT model with two factors reflected the data better than the other models. Our findings were in the same line with other studies that reported two dimensional structure including psychological distress and social dysfunction although they used CTT and CFA [14,13,5]. Smith et al. [31] applied a Rasch model and CFA to the 12-item GHQ and identified 6 misfitting items. In the mentioned study, they focused more on differential item functioning by age, gender, and treatment aims. However, the discrimination and difficulty parameters, ICC and information curves were not reported [31]. Our findings highlight no misfitting items which are not in line with the mentioned study. This inconsistency may be explained by the difference between MIRT models, considering correlation amongst dimensions, and unidimensional IRT models. Further, in our study, a graded response model was used through the MIRT model, while Smith et al. [31] applied the Rasch model in the IRT approach. Since graded response models have fewer assumptions compared to Rasch models, they are more flexible and likely to fit the data generated from the patients’ reported outcomes [50].

As noted before, MIRT models are seldom applied on GHQ-12. Stochl et al. [35] combined GHQ-12 and Affectometer-2 in an item bank through computerized adaptive testing method for public
mental health research. They applied the MIRT model on the pooled items and reported that the proposed item bank was more efficient than the use of either measure alone. Our findings are not comparable with the mentioned study because the MIRT model was not applied in the two questionnaires separately. Further, in another study, MIRT models were applied to GHQ-12, Warwick-Edinburgh Mental Well-being Scale (WEMWBS) and EQ-5D items (Health Survey for England) [36]. It was reported that a model with two factors provided the best account of the GHQ-12 data, which is in line with our findings.

As mentioned before, an advantage of IRT-based models is the amount of item information calculated based on item characteristic curves. They provide the relative contribution of different items to total information across different regions along the latent trait. Consequently, item information curves play a significant role in description of the items, optimal selection of the most informative subset of items, and comparing efficiency between different tests [28,29]. In psychological distress dimension, two items including face up to problems (item 8) and capable of making decision (item 4) were found to have the least information. Furthermore, in the social dysfunction dimension, the lost much sleep (item 2) included lower information in a broad range of the latent trait compared to other items. Hence, a subset of more informative items can be selected, and a shortened version of GHQ-12 can be developed.

The present study had a number of limitations which should be taken into consideration. First, the participants were from a general population. Thus, the results obtained could not be extended to subgroups suffering a serious chronic illness. Second, in this study, participants consisted of fathers or mothers of school children. Probably, fathers and mothers have a different perception of specific item in GHQ-12 questionnaire and, methodologically, combining them may be misleading [37]. Therefore, measurement invariance of GHQ-12 across fathers and mothers should be assessed in future studies. The third limitation of this study was that the estimation of the MIRT parameters was not adjusted according to cluster sampling. However, in this study, the number of cluster participants was almost the same in each cluster and a simulation study by Lee et al. [51] indicated that two stage cluster estimator should be used when the number of participants per cluster is significantly different. Therefore, this limitation cannot be considered as an effective issue to the results presented. Finally, it is recommended that future studies should address these limitations and try to expand our findings in GHQ-12 to different subgroups.

Conclusion

Based on GHQ-12 data from the parents of school children, a MIRT model with two factors, namely psychological distress and social dysfunction, was successfully developed to examine the psychometric properties of the questionnaire. Additionally, item fit statistics assessed individual items. Further, information curves described the amount of information carried by individual items. MIRT models can be adapted as a powerful tool to examine the psychometric properties of the questionnaires designed with an intentional multidimensional structure. It is hoped that the published articles on MIRT models stimulate its increased use in field of health psychology.

List of abbreviations

MIRT: multidimensional item response theory
IRT: item response theory
GHQ: general health questionnaire
GPCM: generalized partial credit model
GRM: graded response model (GRM)

Ethics approval and consent to participate
The study was approved by the local ethics committee of Shiraz University of Medical Sciences.

Consent for publication
Not applicable

Availability of data and materials
The datasets analyzed during the current study is available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was supported by no funding

Authors' contributions
Elham Haem analyzed and wrote the manuscript and researched the data, and Marziyeh Doostfatemeh analyzed and researched the data. All authors read and approved the final manuscript.

Acknowledgment
The authors wish to thank the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for the invaluable assistance in language editing of this manuscript.
References

1. Goldberg DP, Blackwell B (1970) Psychiatric illness in general practice: a detailed study using a new method of case identification. Br med J 2 (5707):439-443
2. Goldberg DP, Hillier VF (2009) A scaled version of the General Health Questionnaire. Psychological Medicine 9 (1):139-145. doi:10.1017/S0033291700021644
3. Romppel M, Braehler E, Roth M, Glaesmer H (2013) What is the General Health Questionnaire-12 assessing?: Dimensionality and psychometric properties of the General Health Questionnaire-12 in a large scale German population sample. Comprehensive Psychiatry 54 (4):406-413. doi:https://doi.org/10.1016/j.comppsych.2012.10.010
4. Salama-Younes M, Montazeri A, Ismaïl A, Roncin C (2009) Factor structure and internal consistency of the 12-item General Health Questionnaire (GHQ-12) and the Subjective Vitality Scale (VS), and the relationship between them: a study from France. Health Qual Life Outcomes 7:22. doi:10.1186/1477-7525-7-22
5. Rahmati Najarkolaei F, Raiisi F, Rahnama P, Gholami Fesharaki M, Zamani O, Safari MR, Montazeri A (2014) Factor structure of the Iranian version of 12-item general health questionnaire. Iran Red Crescent Med J 16 (9):e11794-e11794. doi:10.5812/ircmj.11794
6. Liang Y, Wang L, Yin X (2016) The factor structure of the 12-item general health questionnaire (GHQ-12) in young Chinese civil servants. Health Qual Life Outcomes 14 (1):136-136. doi:10.1186/s12955-016-0539-y
7. Politi PL, Piccinelli M, Wilkinson G (1994) Reliability, validity and factor structure of the 12-item General Health Questionnaire among young males in Italy. Acta Psychiatrica Scandinavica 90 (6):432-437. doi:10.1111/j.1600-0447.1994.tb01620.x
8. Daradkeh TK, Ghubash R, el-Rufaie OE (2001) Reliability, validity, and factor structure of the Arabic version of the 12-item General Health Questionnaire. Psychol Rep 89 (1):85-94. doi:10.2466/pr0.2001.89.1.85
9. Quek KF, Low WY, Razack AH, Loh CS (2001) Reliability and validity of the General Health Questionnaire (GHQ-12) among urological patients: a Malaysian study. Psychiatry Clin Neurosci 55 (5):509-513. doi:10.1046/j.1440-1819.2001.00897.x
10. Öztürk MO (1997) General Health Questionnaire (GHQ12 & GHQ28): psychometric properties and factor structure of the scales in a Turkish primary care sample. Soc Psychiatry Psychiatr Epidemiol 32 (6):327-331. doi:10.1007/bf00805437
11. Chan DW (1993) The Chinese General Health Questionnaire in a psychiatric setting: the development of the Chinese scaled version. Soc Psychiatry Psychiatr Epidemiol 28 (3):124-129. doi:10.1007/bf00801742
12. Sánchez-López MdP, Dresch V (2008) The 12-Item General Health Questionnaire (GHQ-12): reliability, external validity and factor structure in the Spanish population. Psicotherma 20 (4):839-843
13. Montazeri A, Harirchi AM, Shariati M, Garmaroudi G, Ebadi M, Fateh A (2003) The 12-item General Health Questionnaire (GHQ-12): translation and validation study of the Iranian version. Health Qual Life Outcomes 1:66-66. doi:10.1186/1477-7525-1-66
14. Namjoo S, Shaghaghii A, Sarbaksh P, Allahverdipour H, Pakpour AH (2017) Psychometric properties of the General Health Questionnaire (GHQ-12) to be applied for the Iranian elder population. Aging & Mental Health 21 (10):1047-1051. doi:10.1080/13607863.2016.1196337
15. Fernandes HM, Vasconcelos-Raposo J (2013) Factorial validity and invariance of the GHQ-12 among clinical and nonclinical samples. Assessment 20 (2):219-229. doi:10.177/1073191112465768
16. Hahn D, Reuter K, Härtter M (2006) Screening for affective and anxiety disorders in medical patients - comparison of HADS, GHQ-12 and Brief-PHQ. Psychosoc Med 3:Doc09
17. Vanheule S, Bogaerts S (2005) The factorial structure of the GHQ-12. Stress and Health: Journal of the International Society for the Investigation of Stress 21 (4):217-222. doi:doi.org/10.1002/smi.1058
18. Toyabe S-i, Shioiri T, Kobayashi K, Kuwabara H, Koizumi M, Endo T, Ito M, Honma H, Fukushima N, Someya T (2007) Factor structure of the General Health Questionnaire (GHQ-12) in subjects who had suffered from the 2004 Niigata-Chuetsu Earthquake in Japan: a community-based study. BMC Public Health 7 (1):175. doi:10.1186/1471-2458-7-175
19. Schmitz N, Kruse J, Tress W (2001) Improving screening for mental disorders in the primary care setting by combining the GHQ-12 and SCL-90-R subscales. Comprehensive psychiatry 42 (2):166-173. doi:10.1053/comp.2001.19751
20. Picardi A, Abeni D, Pasquini P (2001) Assessing psychological distress in patients with skin diseases: reliability, validity and factor structure of the GHQ-12. J Eur Acad Dermatol Venereol 15 (5):410-417. doi:10.1046/j.1468-3083.2001.00336.x
21. Kalliath TJ, O'Driscoll MP, Brough P (2004) A confirmatory factor analysis of the General Health Questionnaire-12. Stress and Health 20 (1):11-20. doi:10.1002/smi.993
22. Gureje O (1991) Reliability and the factor structure of the Yoruba version of the 12-item General Health Questionnaire. Acta Psychiatrica Scandinavica 84 (2):125-129. doi:10.1111/j.1600-0447.1991.tb03115.x
23. Campbell A, Walker J, Farrell G (2003) Confirmatory factor analysis of the GHQ-12: can I see that again? Aust N Z J Psychiatry 37 (4):475-483. doi:10.1046/j.1440-1614.2003.01208.x
24. French DJ, Tait RJ (2004) Measurement invariance in the General Health Questionnaire-12 in young Australian adolescents. Eur Child Adolesc Psychiatry 13 (1):1-7. doi:10.1007/s00787-004-0345-7
25. Shevlin M, Adamson G (2005) Alternative factor models and factorial invariance of the GHQ-12: a large sample analysis using confirmatory factor analysis. Psychol Assess 17 (2):231-236. doi:10.1037/1040-3590.17.2.231
26. Goetz C, Ecosse E, Rat A-C, Pouchot J, Coste J, Guillemin F (2011) Measurement properties of the osteoarthritis of knee and hip quality of life OAKHQOL questionnaire: an item response theory analysis. Rheumatology (Oxford) 50 (3):500-505. doi:10.1093/rheumatology/keq357
27. Depaoli S, Tiemensma J, Felt JM (2018) Assessment of health surveys: fitting a multidimensional graded response model. Psychology, Health & Medicine 23 (sup1):1299-1317. doi:10.1080/13548506.2018.1447136
28. Bortolotti SLV, Tezza R, de Andrade DF, Bornia AC, de Sousa Júnior AF (2013) Relevance and advantages of using the item response theory. Quality & Quantity 47 (4):2341-2360. doi:10.1007/s11135-012-9684-5
29. Haem E, Doostfatemeh M, Firouzabadi N, Ghazanfari N, Karlsson MO (2020) A longitudinal item response model for Aberrant Behavior Checklist (ABC) data from children with autism. J Pharmacokinet Pharmacodyn. doi:10.1007/s10928-020-09686-0
30. Doostfatemeh M, Taghi Ayatollah SM, Jafari P, Jafari P (2016) Power and Sample Size Calculations in Clinical Trials with Patient-Reported Outcomes under Equal and Unequal Group Sizes Based on Graded Response Model: A Simulation Study. Value Health 19 (5):639-647. doi:10.1016/j.jval.2016.03.1857
31. Smith AB, Fallowfield LJ, Fallowfield LJ, Stark DP, Velikova G, Jenkins V (2010) A Rasch and confirmatory factor analysis of the general health questionnaire (GHQ)--12. Health Qual Life Outcomes 8:45. doi:10.1186/1477-7525-8-45
32. Doyle F, Watson R, Morgan K, McBride O (2012) A hierarchy of distress and invariant item ordering in the General Health Questionnaire-12. Journal of Affective Disorders 139 (1):85-88. doi:https://doi.org/10.1016/j.jad.2011.10.022
33. Mayhew E, Stuttard L, Beresford B (2020) An Assessment of the Psychometric Properties of the GHQ-12 in an English Population of Autistic Adults Without Learning Difficulties. J Autism Dev Disord. doi:10.1007/s10803-020-04604-2
34. Alexandrowicz RW, Friedrich F, Jahn R, Soulier N (2015) Using Rasch-models to compare the 30-, 20-, and 12-items version of the general health questionnaire taking four recoding schemes into account. Neuropsychiatr 29 (4):179-191. doi:10.1007/s40211-015-0160-z
35. Stochl J, Böhnke JR, Pickett KE, Croudace TJ (2016) An evaluation of computerized adaptive testing for general psychological distress: combining GHQ-12 and Affectometer-2 in an item bank for public mental health research. BMC Med Res Methodol 16:58. doi:10.1186/s12874-016-0158-7
36. Böhnke JR, Croudace TJ (2016) Calibrating well-being, quality of life and common mental disorder items: psychometric epidemiology in public mental health research. Br J Psychiatry 209 (2):162-168. doi:10.1192/bjp.bp.115.165530
37. Doostfatemeh M, Ayatollahi SMT, Jafari P (2015) Testing parent dyad interchangeability in the parent proxy-report of PedsQL™ 4.0: a differential item functioning analysis. Qual Life Res 24 (8):1939-1947. doi:10.1007/s11136-015-0931-9
38. Christine E, Morse R (2001) Can Parents Rate Their Child’s Health-Related Quality of Life? Results of a Systematic Review. Quality of Life Research 10 (4):347-357
39. Varni JW, Limbers CA, Burwinkle TM (2007) Parent proxy-report of their children's health-related quality of life: an analysis of 13,878 parents' reliability and validity across age subgroups using the PedsQL 4.0 Generic Core Scales. Health Qual Life Outcomes 5:2-2. doi:10.1186/1477-7525-5-2
40. te Marvelde JM, Glas CA, Van Landeghem G, Van Damme J (2006) Application of multidimensional item response theory models to longitudinal data. Educational and Psychological Measurement 66 (1):5-34. doi:10.1177/0013164405282490
41. Chalmers RP (2012) mirt: A Multidimensional Item Response Theory Package for the R Environment. 2012 48 (6):29. doi:10.18637/jss.v048.i06
42. Hu Lt, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6 (1):1-55. doi:10.1080/10705519909540118
43. Kang T, Chen TT (2008) Performance of the Generalized S-X2 Item Fit Index for Polytomous IRT Models. Journal of Educational Measurement 45 (4):391-406. doi:10.1111/j.1745-3984.2008.00071.x
44. Lameijer CM, van Bruggen SGJ, Haan EJA, Van Deurzen DFP, Van der Elst K, Stouten V, Kaat AJ, Roorda LD, Terwee CB (2020) Graded response model fit, measurement invariance and (comparative) precision of the Dutch-Flemish PROMIS® Upper Extremity V2.0 item bank in patients with upper extremity disorders. BMC Musculoskelet Disord 21 (1):170. doi:10.1186/s12891-020-3178-8
45. McKinley RL, Mills CN (1985) A Comparison of Several Goodness-of-Fit Statistics. Applied Psychological Measurement 9 (1):49-57. doi:10.1177/014662168500900105
46. Doostfatemeh M, Ayatollahi SMT, Jafari P (2020) Assessing the effect of child’s gender on their father–mother perception of the PedsQL™ 4.0 questionnaire: an iterative hybrid ordinal logistic regression/item response theory approach with Monte Carlo simulation. Health Qual Life Outcomes 18 (1):348. doi:10.1186/s12955-020-01601-y
47. Kamata A, Bauer DJ (2008) A Note on the Relation Between Factor Analytic and Item Response Theory Models. Structural Equation Modeling: A Multidisciplinary Journal 15 (1):136-153. doi:10.1080/10705510701758406
48. Kappeenburg-ten Holt J (2014) A comparison between factor analysis and item response theory modeling in scale analysis. University of Groningen, 49. Yen W, Fitzpatrick A (2006) Item Response Theory. In.
50. Nguyen TH, Han HR, Kim MT, Chan KS (2014) An introduction to item response theory for patient-reported outcome measurement. Patient 7 (1):23-35
51. Lee Sang E, Lee Pu R, Shin K-I (2016) A composite estimator for stratified two stage cluster sampling. Communications for Statistical Applications and Methods 23 (1):47-55. doi:10.5351/CSAM.2016.23.1.047