Supplementary Data
Supplementary Tables

Supplementary Table 1. Percentages of reconstituted animals for 16 experiments at 12 weeks post injection.

Experiment#	#injected animals	#reconstituted animals	% of reconstituted animals	#injected animals	#reconstituted animals	% of reconstituted animals
1	29	2	7	4	4	100
2	28	1	4	2	0	0
3	26	4	15	2	2	100
4	21	2	10	2	2	100
5	54	3	6	3	2	66
6	58	11	19	4	4	100
7	21	1	5	4	4	100
8	18	1	6	2	1	50
9	26	1	4	2	1	50
10	15	0	0	2	2	100
11	15	0	0	2	0	0
12	16	0	0	2	0	0
13	34	2	6	2	2	100
14	36	0	0	2	2	100
15	26	4	15	2	2	100
16	30	3	10	2	2	100
mean						7.7

| | | | | | | 76.9 |
Supplementary Table 2. List of genes with nonrandom allelic imbalance (AI) in the B and T cell samples of this study (TMM-normalized counts > 10) or reported in the literature to display parental imprinting.

Gene	Chr	Biased?	Imprinted	Control	E13.1	E13.2	E15.2	E13.24	E15.29	E15.10	E6.1	E6.2	E6.42	E6.43	Mean(AI)	Std(AI)	Mean	Std
Dyrk3	chr1	yes		0.10	0.12	0.11	0.11	0.07	0.08	0.08	0.10	0.13	0.12	0.08	0.10	0.02	29.45	6.98
Cyp27a1	chr1	yes		1.00	0.99	1.00	1.00	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.00	26.62	8.49
Kcnk2	chr1	yes		0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.02	0.01	0.01	20.76	5.10
Gm10075	chr1	yes		-	-	0.90	0.93	0.91	0.90	0.93	0.90	0.91	0.86	0.90	0.90	0.02	14.89	4.55
A530040E14Rk	chr1	yes		0.06	0.09	0.08	0.03	0.12	0.02	0.01	0.03	0.03	0.03	0.07	0.05	0.04	34.66	9.75
Nek6	chr2	yes		0.05	0.11	0.07	0.07	0.08	0.08	0.14	0.10	0.09	0.11	0.11	0.09	0.02	26.97	6.01
Fmn1	chr2	yes		0.01	0.05	0.03	0.01	0.07	0.05	0.02	0.05	0.07	0.07	0.10	0.05	0.03	28.41	7.02
Bmyc	chr2	yes		0.98	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.99	1.00	-	0.99	0.01	18.70	4.62
Gm13699	chr2	yes		1.00	1.00	0.99	1.00	0.99	0.99	1.00	0.99	0.97	1.00	0.98	0.99	0.01	52.72	22.39
Gm13654	chr2	yes		0.95	0.97	0.96	0.99	0.99	0.99	1.00	0.98	0.99	0.98	0.96	0.98	0.02	30.81	8.13
Gm13456	chr2	yes		0.00	0.10	0.07	0.00	-	0.15	0.12	-	-	-	-	0.07	0.06	25.22	6.60
Mir15115	chr2	yes		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	202.32	118.67
Adamsms44	chr3	yes		0.03	0.04	0.08	0.02	0.02	0.02	0.03	0.03	0.03	0.01	0.03	0.03	0.02	24.18	13.28
Gnb4	chr3	yes		0.02	0.04	0.03	0.02	0.12	0.05	0.03	0.01	0.04	0.08	0.08	0.05	0.03	69.14	11.29
Alpkl	chr3	yes		0.00	0.02	0.01	-	0.01	0.02	0.01	0.02	0.03	0.03	0.01	0.01	0.01	19.44	6.26
Sec24d	chr3	yes		0.11	0.08	0.13	0.07	0.09	0.13	0.12	0.04	0.09	0.06	0.05	0.09	0.03	33.45	12.01
Rpsa-ps10	chr3	yes		0.04	0.05	0.07	0.04	0.02	-	0.05	-	-	-	-	0.05	0.02	11.94	0.98
Synpo2	chr3	yes		0.00	0.01	0.01	-	-	-	0.02	0.08	0.02	-	0.03	0.03	0.03	15.36	3.89
Cgn	chr3	yes		0.01	0.01	0.02	0.00	0.04	0.05	0.00	0.01	0.04	0.07	0.11	0.03	0.04	14.70	3.38
Coro2a	chr4	yes		0.96	0.98	0.95	0.98	0.96	0.94	0.92	0.98	0.95	0.98	0.93	0.96	0.02	55.64	8.31

Mean(AI) represents the average mean of the TMM-normalized counts across all samples. **Abundance** represents the sum of the TMM-normalized counts across all samples.
Gene	Chr	Status	BP1	BP2	BP3	BP4	BP5	BP6	BP7	BP8	BP9	BP10	BP11	BP12	BP13	BP14	BP15	BP16	BP17	BP18	BP19	BP20	Value1	Value2												
ApoE	chr7	yes	0.97	0.98	0.97	0.98	0.97	0.97	0.98	0.96	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	107.02	46.32													
Gipre5b	chr7	yes	0.01	0.03	0.03	0.02	0.01	0.01	0.02	-	-	-	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	17.15	5.23												
Pglyrp1	chr7	yes	0.93	0.97	0.97	0.98	0.92	0.98	0.91	0.99	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	23.61	6.66													
Lilra6	chr7	yes	-	0.93	0.93	0.90	0.87	0.92	0.94	0.95	0.87	0.94	0.89	0.91	0.91	0.91	0.91	0.91	0.91	0.91	19.78	4.45														
Gene	Chr	Yes	0.95	0.96	0.97	0.98	0.99	1.00																												
--------	------	-----	-------	-------	-------	-------	-------	-------																												
Gm9855	chr7	yes	-0.05	-0.04	-0.02	-0.03	-0.02	-0.02	-0.03	-0.01	-0.01	-0.02	-0.03	-0.01	0.03	0.03	14.69	4.79																		
Gstt3	chr10	yes	-0.05	-0.10	-0.05	-0.02	-0.01	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	0.03	0.03	14.69	4.79																	
Rho49b	chr10	yes	-0.02	-0.05	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	0.03	0.03	14.69	4.79																	
Mtap7	chr10	yes	-0.94	-0.97	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	0.03	0.03	14.69	4.79																	
Tspan8	chr10	yes	-0.00	-0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.03	0.03	14.69	4.79																	
Gene	Chromosome	Case	Control	p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14	p15	p16	p17	p18	p19	p20	p21	p22	p23	p24	p25	p26	p27	p28	p29	p30	p31	p32	Average
------------	------------	------	---------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------				
Arhgap27	chr11	yes	-	0.06	0.04	0.03	0.03	0.04	0.04	0.04	0.03	0.03	0.02	0.03	0.01	25.44	5.30																			
Haver1	chr11	yes	-	0.93	0.95	0.94	0.95	0.90	0.94	0.93	0.94	0.95	0.96	0.95	0.94	0.01	86.25	18.85																		
Gm12185	chr11	yes	-	0.09	0.11	0.06	0.06	0.07	0.07	0.05	0.10	0.03	0.06	0.05	0.07	0.02	17.52	2.98																		
Gm3435	chr11	yes	-	0.08	0.09	0.13	0.08	0.08	0.11	0.10	0.08	0.14	0.10	0.15	0.10	0.03	29.21	5.81																		
Gm11428	chr11	yes	-	-	0.03	0.03	0.12	-	-	0.03	0.06	0.12	0.05	-	0.06	0.04	14.29	2.66																		
9930111321Rk1	chr11	yes	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	91.04	23.50																		
Gm12355	chr11	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	16.00	4.57																		
Hmga1-rs1	chr11	yes	-	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	24.46	12.21																		
Faau-pn2	chr11	yes	-	-	0.11	0.06	-	0.04	0.07	-	0.02	0.05	0.02	0.05	0.03	34.60	17.87																			
2610035D17Rik	chr11	yes	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	-	0.99	1.00	0.00	35.28	11.03																		
Itpk1	chr12	yes	-	0.92	0.95	0.95	0.92	0.90	0.94	0.95	0.96	-	0.94	0.94	0.94	0.02	15.62	3.64																		
AC073565.1	chr12	yes	-	-	0.07	0.05	0.04	0.12	0.07	0.06	0.04	0.04	0.06	0.05	0.06	0.02	27.18	8.57																		
AC160990.6	chr12	yes	-	-	0.06	0.06	0.04	0.07	-	0.05	0.03	-	0.04	0.06	0.05	0.01	13.17	2.35																		
Scamp1	chr13	yes	-	0.13	0.06	0.04	0.03	-	0.08	0.04	0.10	0.15	0.05	0.05	0.07	0.04	14.81	2.33																		
mmu-mir-2134-4	chr13	yes	-	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	128.09	100.87																		
Gm9800	chr14	yes	-	0.08	0.05	0.05	0.05	0.07	0.05	0.05	0.04	0.03	0.04	0.07	0.05	0.02	52.77	14.85																		
Lgals3	chr14	yes	-	-	0.95	-	0.95	0.99	0.95	0.97	0.93	-	-	0.96	0.02	15.45	4.66																			
Gm10076	chr14	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	78.84	21.72																		
AC242409.1	chr14	yes	-	-	0.01	0.02	-	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1802.84	1412.14																		
Ly6c	chr15	yes	-	0.94	0.95	0.97	0.96	0.97	0.98	0.97	0.96	0.96	0.95	0.98	0.96	0.01	1998.51	544.30																		
Ly6a	chr15	yes	-	0.97	0.99	0.99	0.99	0.99	1.00	1.00	0.99	0.99	0.98	1.00	0.99	0.01	264.51	97.88																		
Sdf2l1	chr16	yes	-	0.98	0.96	0.96	0.99	0.91	0.96	0.97	0.96	0.95	0.98	0.99	0.96	0.02	31.13	15.07																		
Mx2	chr16	yes	-	0.04	0.06	0.05	0.03	0.10	0.04	0.07	0.04	0.03	0.05	0.06	0.05	0.02	46.56	21.27																		
Pcp4	chr16	yes	-	0.09	0.12	0.12	0.13	0.14	0.15	0.12	0.02	16.33	6.40																							

Note: The table provides a summary of gene expression data across different conditions, with columns indicating gene names, chromosome locations, and various expression ratios or values.
Gene	chr	Status	-	0.02	0.04	0.04	0.01	0.03	0.04	0.04	0.01	0.03	0.02	0.02	0.03	0.01	213.75	48.73																																
H2-Q4	chr17	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1529.94	258.23																														
H2-Ea-ps	chr17	yes	-	0.97	0.89	-	1.00	0.92	-	-	0.94	-	0.96	-	0.95	0.04	11.70	1.09																																
Decr2	chr17	yes	-	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	50.80	9.51																														
Gm11127	chr17	yes	-	-	0.94	0.91	0.92	0.97	0.92	0.91	0.89	0.92	0.90	0.93	0.92	0.02	25.66	5.65																																
H2-Q2	chr17	yes	-	-	0.05	0.00	0.00	-	0.00	0.05	0.00	-	0.10	-	0.03	0.04	28.56	8.50																																
D17H6S56E-5	chr17	yes	-	0.99	0.99	0.98	0.99	0.99	0.99	0.98	0.99	0.98	0.99	0.99	0.99	0.00	614.17	129.62																																
Rnase2a	chr17	yes	-	1.00	0.99	1.00	0.99	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.01	23.76	5.11																																
Rnf125	chr18	yes	-	0.06	0.02	0.10	0.05	0.06	0.06	0.07	0.04	0.05	0.03	0.06	0.06	0.02	22.10	5.89																																
Osbpl11a	chr18	yes	-	0.01	0.04	0.04	0.02	0.06	0.04	0.03	0.06	0.10	0.04	0.09	0.05	0.03	22.08	5.77																																
Gm5506	chr18	yes	-	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.98	1.00	0.00	68.35	28.15																																		
4930481A15Rik	chr19	yes	-	-	-	-	-	0.97	0.98	1.00	1.00	-	1.00	0.99	0.99	0.01	13.24	1.95																																
Zrsr1*	chr11	yes	yes	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.00	49.36	14.26																																
Iqf2a*	chr17	yes	yes	-	0.97	1.00	-	1.00	0.97	0.94	0.97	0.92	0.97	0.87	0.96	0.04	18.65	5.97																																
Eoflhb2	chr1	no	yes	0.45	0.40	0.46	0.49	0.47	0.43	0.46	0.50	0.46	0.48	0.48	0.46	0.03	11.83	26.24																																
Stx6	chr1	no	yes	0.49	0.49	0.52	0.46	0.46	0.52	0.50	0.44	0.49	0.47	0.41	0.48	0.03	74.91	14.47																																
Mr1	chr1	no	yes	0.60	0.51	0.51	0.49	0.54	0.51	0.52	0.50	0.56	0.46	0.40	0.51	0.05	15.15	3.74																																
Bcl211	chr2	no	yes	-	0.36	-	-	-	-	-	0.60	-	0.48	0.17	10.77	0.49																																		
H13	chr2	no	yes	0.50	0.50	0.45	0.45	0.46	0.43	0.44	0.44	0.47	0.44	0.48	0.46	0.03	153.46	38.25																																
Rbms1	chr2	no	yes	0.48	0.55	0.52	0.56	0.56	0.54	0.52	0.51	0.59	0.54	0.55	0.54	0.03	112.54	25.06																																
Stx16	chr2	no	yes	0.37	0.54	0.55	0.46	0.53	0.49	0.48	0.53	0.53	0.56	0.52	0.51	0.05	37.78	8.41																																
Gnas	chr2	no	yes	0.24	0.37	0.44	-	0.30	0.32	0.38	-	-	-	0.30	0.34	0.06	32.03	45.22																																
Zlp64	chr2	no	yes	0.47	0.56	0.54	0.49	0.58	0.52	0.53	0.56	0.54	0.55	0.28	0.51	0.08	23.72	5.30																																
Npepl1	chr2	no	yes	0.48	0.52	0.52	0.52	0.50	0.50	0.50	0.51	0.49	0.54	0.48	0.51	0.02	155.37	28.31																																
Bicup	chr2	no	yes	0.68	0.54	0.47	0.55	0.63	0.52	0.61	0.51	0.28	0.54	0.55	0.53	0.10	27.23	6.29																																
Genes	Chromosome	TREATMENT	SHH	IRF1	INH	RUNX2	NOTCH	WNT	PI3K	MEK	MAPK	E2F3	OCT4	ETS	SOX	BRG1	SMARCA4	KSHV	HSP27	HSP22	HSP90	HSP70	90KDa	70KDa	50KDa	30KDa	10KDa	0.29	0.53	0.57	0.53	0.49	0.50	0.47	0.50	0.48	0.52	0.57	0.52	0.03	70.24	13.51								
-------	------------	-----------	-----	------	-----	------	-------	-----	------	-----	------	------	------	-----	-----	-----	------	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Gene	Chr	Biased	Imprinted	Control	E13.1	E13.2	E13.24	E13.29	Mean(AI)	Std(AI)	Mean	Std																																						
--------	-----	--------	-----------	---------	-------	-------	--------	-------	----------	--------	-------	-------																																						
Slc41a1	chr1	yes	-	0.13	0.13	0.13	0.12	0.12	0.13	0.01	159.17	27.98																																						
Ica1l	chr1	yes	-	0.04	0.07	0.05	0.05	0.05	0.05	0.01	93.14	13.99																																						
Chst10	chr1	yes	-	0.89	0.91	0.89	0.92	0.91	0.90	0.01	58.83	10.24																																						
Gene	Chromosome	Presence	Strand	Mean	SD	MOE	Median	Proportion	Mean	SD	MOE	Median	Proportion																																					
-----------	------------	----------	--------	------	----	-----	--------	-----------	------	----	-----	--------	-----------																																					
A630001G21Rik	chr1	yes	-	0.95	0.91	0.92	0.94	0.92	0.93	0.01	16.10	2.25																																						
Gm10075	chr1	yes	-	0.88	0.90	0.89	0.90	0.88	0.89	0.01	56.92	25.13																																						
Slc30a4	chr2	yes	-	0.97	0.98	0.94	0.96	0.98	0.97	0.02	27.91	11.33																																						
Sgrd1	chr2	yes	-	1.00	1.00	0.99	0.98	0.99	0.99	0.01	28.84	7.37																																						
Serinc3	chr2	yes	-	0.11	0.13	0.10	0.10	0.09	0.10	0.01	2287.71	472.72																																						
Eya2	chr2	yes	-	0.95	0.97	0.93	0.90	0.98	0.95	0.03	15.14	2.20																																						
Lypd6b	chr2	yes	-	1.00	1.00	0.99	1.00	1.00	1.00	0.00	26.13	2.72																																						
Ltk	chr2	yes	-	-	0.00	0.06	0.02	0.02	0.03	0.03	12.02	0.88																																						
Pkg	chr2	yes	-	0.04	0.04	0.05	0.04	0.04	0.04	0.00	200.04	112.50																																						
Ldrlad3	chr2	yes	-	0.92	0.95	0.96	0.95	0.95	0.95	0.01	75.77	17.22																																						
Rapgef4	chr2	yes	-	0.02	0.01	0.03	0.02	0.01	0.02	0.01	38.93	9.36																																						
Gm13699	chr2	yes	-	1.00	1.00	0.99	0.99	0.99	0.99	0.00	41.56	22.89																																						
D430041D05Rik	chr2	yes	-	0.02	0.01	0.02	0.02	0.03	0.02	0.01	98.80	30.47																																						
Gm13654	chr2	yes	-	0.98	0.99	0.99	0.98	0.97	0.98	0.01	19.98	8.29																																						
Gm13736	chr2	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	196.70	80.98																																						
MIR5115	chr2	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	74.54	21.42																																						
Serpini1	chr3	yes	-	0.04	0.08	0.05	0.11	0.07	0.07	0.03	22.81	4.81																																						
Ugt8a	chr3	yes	-	0.00	0.00	0.07	0.05	0.02	0.04	0.03	22.81	4.81																																						
Cnn3	chr3	yes	-	0.92	0.94	0.94	0.94	0.96	0.94	0.01	199.41	36.28																																						
Ptger1	chr4	yes	-	0.12	0.13	0.13	0.10	0.12	0.12	0.01	51.67	9.07																																						
S1c5a9	chr4	yes	-	0.96	0.98	0.95	0.97	0.95	0.96	0.01	16.36	3.16																																						
Spata6	chr4	yes	-	0.93	0.90	0.90	0.86	0.89	0.89	0.02	65.59	7.33																																						
2010015L04Rik	chr4	yes	-	0.91	0.92	0.85	0.86	0.87	0.88	0.03	66.96	8.51																																						
Tnfrsf14	chr4	yes	-	0.07	0.14	0.15	0.11	0.10	0.11	0.03	13.73	2.69																																						
Ubxn10	chr4	yes	-	0.02	0.02	0.02	0.06	0.03	0.03	0.02	22.41	2.61																																						
Gene	Chromosome	Stranded	Fold Change 1	Fold Change 2	Fold Change 3	Fold Change 4	Fold Change 5	Fold Change 6	Fold Change 7	Fold Change 8	Average 1	Average 2																																						
------------	------------	----------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	-----------	-----------																																						
Gm11223	chr4	yes	0.03	0.03	0.02	0.02	0.02	0.01	274.90	59.44																																								
Tmem245	chr4	yes	0.89	0.85	0.88	0.87	0.88	0.88	0.02	59.50	20.27																																							
Gm12715	chr4	yes	0.98	0.98	0.99	0.99	0.97	0.98	43.82	8.38																																								
Impad1	chr4	yes	0.95	0.89	0.90	0.88	0.87	0.90	0.03	37.78	10.39																																							
Gm12372	chr4	yes	0.00	-	0.01	0.04	0.00	0.01	18.85	2.02																																								
Crmp1	chr5	yes	0.06	0.04	0.04	0.03	0.03	0.04	132.65	23.10																																								
Acad12	chr5	yes	0.01	0.02	0.04	0.08	0.02	0.04	22.37	2.27																																								
Cltn4	chr5	yes	0.13	0.15	0.10	0.08	0.09	0.11	72.85	27.50																																								
Zip498	chr5	yes	0.05	0.08	0.07	0.11	0.10	0.08	11.94	2.29																																								
Ccld164	chr5	yes	0.10	0.08	0.12	0.07	0.08	0.09	135.51	26.84																																								
Mtr5105	chr5	yes	0.00	0.00	0.00	0.00	0.00	0.00	356.07	161.94																																								
Plekha8	chr6	yes	0.00	0.01	0.05	0.02	0.04	0.02	21.32	5.88																																								
Ctsm3	chr6	yes	0.00	0.01	0.03	0.02	0.01	0.01	21.45	4.25																																								
Gimap8	chr6	yes	0.95	0.87	0.94	0.93	0.91	0.92	39.72	6.51																																								
Lpar5	chr6	yes	0.05	0.06	0.07	0.05	0.06	0.06	13.87	2.77																																								
Trb21	chr6	yes	0.01	0.01	0.01	0.01	0.01	0.00	37.43	6.57																																								
Dynl1-ps1	chr6	yes	0.00	-	0.00	0.00	0.00	0.00	29.11	9.16																																								
Apoe	chr7	yes	0.95	0.98	0.90	0.94	0.97	0.95	24.59	8.53																																								
Capn5	chr7	yes	0.05	0.07	0.09	0.07	0.09	0.07	169.72	44.46																																								
Capn12	chr7	yes	-	-	0.01	0.01	0.03	0.00	14.92	3.14																																								
Trim12a	chr7	yes	0.92	0.95	0.98	0.96	0.97	0.96	49.85	7.66																																								
Plekhf1	chr7	yes	0.11	0.10	0.10	0.11	0.12	0.11	107.04	36.15																																								
Mtr5102	chr7	yes	0.00	0.00	0.00	0.00	0.00	0.00	155.10	16.95																																								
Lass4	chr8	yes	0.06	0.07	0.12	0.07	0.05	0.07	20.44	1.84																																								
Rab11fip1	chr8	yes	0.93	-	0.88	0.89	0.91	0.90	14.06	1.79																																								
Gene	Chromosome	Strata	p-value 1	p-value 2	p-value 3	p-value 4	p-value 5	p-value 6	p-value 7	p-value 8	p-value 9	p-value 10																																						
-------	------------	--------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------																																						
Nwd1	chr8	yes	-	0.99	0.96	0.97	0.98	0.98	0.01	32.60	14.59																																							
Lig4	chr8	yes	-	0.93	0.92	0.93	0.93	0.93	0.01	78.18	18.31																																							
Gm10282	chr8	yes	-	0.09	0.04	0.06	0.08	0.08	0.07	0.02	54.31	13.17																																						
Slc37a2	chr9	yes	-	0.90	0.92	0.94	0.91	0.94	0.92	0.02	46.03	5.23																																						
Arpp21	chr9	yes	-	0.91	0.89	0.91	0.89	0.89	0.90	0.01	590.87	66.46																																						
Ip6k2	chr9	yes	-	0.04	0.08	0.08	0.06	0.06	0.07	0.02	98.49	28.55																																						
Lars2	chr9	yes	-	0.07	0.15	0.10	0.09	0.11	0.10	0.03	5596.21	486.73																																						
Ncam1	chr9	yes	-	0.04	0.03	0.03	0.03	0.03	0.00	27.51	20.57																																							
Slc35f2	chr9	yes	-	0.06	0.07	0.06	0.11	0.10	0.08	0.02	52.46	3.76																																						
Rpl29	chr9	yes	-	0.87	0.93	0.96	0.86	0.88	0.90	0.04	92.68	25.55																																						
Mmp13	chr9	yes	-	0.01	-	0.00	0.03	0.00	0.01	0.01	15.18	3.71																																						
Pchp3	chr10	yes	-	0.08	0.06	0.06	0.06	0.04	0.06	0.01	200.81	60.52																																						
Perp	chr10	yes	-	0.01	0.01	0.00	0.00	0.00	0.00	0.00	20.42	4.97																																						
Slc17a8	chr10	yes	-	0.00	-	0.00	0.02	0.00	0.01	0.01	16.07	4.89																																						
Arkap12	chr10	yes	-	0.97	0.97	0.97	0.98	0.98	0.97	0.00	45.49	9.65																																						
Lyz2	chr10	yes	-	0.09	0.03	0.03	0.03	0.09	0.05	0.03	38.75	11.67																																						
P4ha2	chr11	yes	-	0.00	0.03	0.02	0.03	0.01	0.02	0.01	15.45	3.41																																						
Il9r	chr11	yes	-	0.13	0.10	0.08	0.08	0.06	0.09	0.02	20.33	6.78																																						
Cacng4	chr11	yes	-	0.09	0.06	0.00	0.08	0.05	0.06	0.03	39.10	9.33																																						
Nnt1	chr11	yes	-	0.91	0.96	0.89	0.91	0.88	0.91	0.03	19.86	5.28																																						
Arhgap27	chr11	yes	-	0.89	0.89	0.91	0.94	0.92	0.91	0.02	45.40	9.11																																						
Stit3	chr11	yes	-	0.08	0.04	0.03	0.10	0.02	0.05	0.03	30.59	14.82																																						
Gm12355	chr11	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.80	8.11																																						
Hmgal1-rs1	chr11	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	35.95	14.22																																							
2610035D17Rik	chr11	yes	-	1.00	1.00	0.99	1.00	1.00	1.00	0.00	28.46	6.97																																						
Gene	Chromosome	Status	Gene IDs																																															
-------	------------	--------	----------	----------	----------	----------	----------	----------																																										
Srp54a	chr12	yes	-	0.85	-	1.00	0.93	0.98	0.94	0.07	11.61	1.75																																						
Map4k5	chr12	yes	-	0.92	0.90	0.87	0.89	0.91	0.90	0.02	51.42	12.59																																						
Greb1	chr12	yes	-	0.08	0.11	0.08	0.10	0.08	0.09	0.02	35.51	13.28																																						
Fam177a	chr12	yes	-	0.02	0.07	0.12	0.08	0.07	0.07	0.03	11.91	0.86																																						
Cap2	chr13	yes	-	0.09	0.08	0.08	0.09	0.13	0.10	0.02	13.90	3.52																																						
Ctsl	chr13	yes	-	0.08	0.08	0.08	0.09	0.09	0.09	0.00	1196.91	252.12																																						
Gzma	chr13	yes	-	0.04	0.06	0.05	0.04	0.05	0.05	0.01	258.18	35.25																																						
Cdc14b	chr13	yes	-	0.06	0.09	0.09	0.09	0.07	0.08	0.01	64.69	11.97																																						
Tubb2b	chr13	yes	-	0.95	0.99	0.98	0.97	0.97	0.97	0.01	56.25	9.22																																						
Actn2	chr13	yes	-	0.09	0.09	0.06	0.05	0.04	0.07	0.02	11.98	1.41																																						
Tubb2a	chr13	yes	-	0.97	0.96	0.96	0.96	0.96	0.96	0.01	158.10	45.86																																						
mmu-mir-2134-4	chr13	yes	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	121.93	50.67																																						
Chth	chr14	yes	-	0.96	0.95	0.96	0.94	0.95	0.95	0.01	33.60	12.49																																						
Epsti1	chr14	yes	-	0.96	0.96	0.97	0.93	0.95	0.95	0.02	29.50	3.79																																						
Dzip1	chr14	yes	-	0.85	0.88	0.89	0.87	0.89	0.88	0.01	59.19	6.58																																						
Gm9800	chr14	yes	-	0.06	0.06	0.05	0.05	0.05	0.05	0.01	117.84	41.71																																						
Gm10076	chr14	yes	-	0.01	0.00	0.00	0.00	0.00	0.00	0.00	41.03	8.26																																						
Trav1	chr14	yes	-	0.08	0.13	0.13	0.09	0.14	0.11	0.03	21.39	10.01																																						
Itga5	chr15	yes	-	0.91	0.97	0.89	0.89	0.89	0.91	0.04	12.58	1.50																																						
Endou	chr15	yes	-	0.92	0.91	0.90	0.89	0.89	0.90	0.01	387.52	123.13																																						
Ly6e	chr15	yes	-	0.98	0.98	0.97	0.98	0.97	0.98	0.00	1177.22	420.62																																						
Prickle1	chr15	yes	-	0.98	0.99	0.96	0.98	0.98	0.98	0.01	28.64	7.53																																						
Apol11b	chr15	yes	-	0.00	0.00	0.00	0.01	0.00	0.00	0.00	13.82	2.38																																						
Cd96	chr16	yes	-	0.98	0.98	0.98	0.97	0.98	0.98	0.00	128.58	9.45																																						
Cd200	chr16	yes	-	0.07	0.03	0.05	0.03	0.02	0.04	0.02	68.90	11.12																																						
Gene	Chromosome	Imprint	Zygosity	Score1	Score2	Score3	Score4	Score5	Score6	Score7	Max Score	Min Score																																						
---------	------------	----------	----------	--------	--------	--------	--------	--------	--------	--------	-----------	-----------																																						
Sdf2l1	chr16	yes	-	0.99	0.94	0.93	0.95	0.95	0.03	20.04	11.85																																							
Bach1	chr16	yes	-	0.11	0.09	0.11	0.10	0.10	0.01	484.93	142.50																																							
A930003A15Rik	chr16	yes	-	1.00	1.00	1.00	0.99	1.00	0.00	29.01	5.67																																							
Plcxd2	chr16	yes	-	0.96	0.93	0.97	0.98	0.99	0.97	0.02	53.11	9.34																																						
Crim1	chr17	yes	-	0.10	0.13	0.07	0.11	0.09	0.03	17.41	3.50																																							
H2-T3	chr17	yes	-	0.01	0.01	0.01	0.01	0.01	0.00	1.00	473.51	111.29																																						
H2-Q5	chr17	yes	-	0.01	0.00	0.01	0.01	0.00	0.01	0.00	31.66	13.08																																						
H2-Q10	chr17	yes	-	0.00	0.00	0.00	0.06	0.02	0.03	48.31	13.36																																							
H2-B1I	chr17	yes	-	0.01	0.04	0.02	0.03	0.02	0.01	19.40	2.97																																							
H2-T10	chr17	yes	-	0.07	0.08	0.08	0.11	0.10	0.09	0.01	434.18	74.75																																						
H2-Q3	chr17	yes	-	0.01	0.01	0.01	0.01	0.01	0.00	106.11	45.78																																							
Rnase2a	chr17	yes	-	0.97	1.00	1.00	0.99	0.99	0.01	22.32	6.32																																							
Cyb5	chr18	yes	-	0.87	0.89	0.86	0.90	0.90	0.88	0.02	323.56	77.01																																						
Osbpl1a	chr18	yes	-	0.06	0.11	0.15	0.13	0.12	0.11	0.03	32.58	0.87																																						
Gm5506	chr18	yes	-	1.00	1.00	1.00	0.99	1.00	0.00	53.87	29.92																																							
Ptpnm1	chr19	yes	-	0.86	0.92	0.89	0.90	0.95	0.90	0.03	29.55	3.78																																						
Paps2	chr19	yes	-	1.00	0.99	0.99	0.99	0.99	0.99	0.00	24.48	3.40																																						
Nmrk1	chr19	yes	-	0.13	0.09	0.09	0.08	0.08	0.09	0.02	44.58	13.36																																						
Pcan-ps2	chr19	yes	-	0.00	0.00	0.01	0.01	0.01	0.01	0.00	19.69	13.79																																						
Hnuph2	chrX	yes	-	0.86	-	0.96	0.92	1.00	0.93	0.06	167.43	30.16																																						
Zrsr1*	chr11	yes	Imprinted	0.00	0.00	0.01	0.01	0.03	0.01	12.96	2.26																																							
Ifg2r*	chr17	yes	Imprinted	0.96	1.00	0.99	0.98	1.00	0.98	0.02	72.77	36.72																																						
Airn*	chr17	yes	Imprinted	-	0.00	0.01	0.05	0.00	0.01	0.02	14.28	1.59																																						
Cdkn1c	chr7	maybe	Imprinted	0.98	1.00	-	-	-	0.99	0.02	13.12	1.15																																						
Gm16299	chr19	maybe	Imprinted	-	-	-	0.01	-	0.01	-	11.85	-																																						
Gene	Chromosome	Imprinted	log2FoldChange1	log2FoldChange2	log2FoldChange3	log2FoldChange4	log2FoldChange5	log2FoldChange6	log2FoldChange7	log2FoldChange8	log2FoldChange9																																							
---------	------------	-----------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------																																							
Eef1b2	chr1	no	0.49	0.51	0.48	0.51	0.50	0.50	0.01	79.40	15.84																																							
Stx6	chr1	no	0.48	0.48	0.49	0.49	0.49	0.49	0.00	431.38	99.20																																							
Mr1	chr1	no	0.33	0.32	0.34	0.33	0.32	0.33	0.01	291.43	43.75																																							
Bcl2l1	chr2	no	0.48	0.48	0.49	0.48	0.48	0.48	0.01	599.45	98.84																																							
Bmp7	chr2	no	0.39	0.45	0.38	0.41	0.44	0.41	0.03	25.43	4.63																																							
H13	chr2	no	0.48	0.49	0.51	0.46	0.47	0.48	0.02	300.74	56.81																																							
Rhmsl1	chr2	no	0.48	0.55	0.51	0.47	0.52	0.51	0.03	91.87	24.27																																							
Tpx2	chr2	no	0.47	0.50	0.50	0.47	0.49	0.49	0.02	135.57	32.64																																							
Stx16	chr2	no	0.59	0.55	0.54	0.52	0.51	0.54	0.03	74.25	8.49																																							
Zlp64	chr2	no	0.54	0.51	0.48	0.48	0.48	0.50	0.03	52.93	9.22																																							
Npepl1	chr2	no	0.60	0.57	0.55	0.54	0.56	0.56	0.02	73.55	13.99																																							
Sfmbt2	chr2	no	0.72	-	0.77	0.64	0.53	0.67	0.10	11.43	0.53																																							
Bicup	chr2	no	0.67	0.45	0.71	0.42	0.62	0.57	0.13	17.58	2.21																																							
Mafb	chr2	no	0.55	0.54	0.52	0.62	0.49	0.54	0.05	21.42	12.51																																							
Casd1	chr6	no	0.49	0.45	0.53	0.52	0.50	0.50	0.03	57.56	8.67																																							
Copg2	chr6	no	0.47	0.45	0.44	0.44	0.45	0.45	0.01	77.31	21.66																																							
Kldlc100	chr6	no	0.44	0.36	0.48	0.44	0.44	0.44	0.05	60.90	13.34																																							
Herc3	chr6	no	0.35	0.41	0.37	0.36	0.39	0.38	0.02	71.32	22.53																																							
Etv6	chr6	no	0.46	0.46	0.56	0.60	0.54	0.52	0.06	30.21	4.28																																							
Lsp1	chr7	no	0.44	0.47	0.44	0.44	0.44	0.45	0.01	650.93	178.81																																							
Ube3a	chr7	no	0.53	0.42	0.52	0.51	0.51	0.50	0.04	155.62	27.91																																							
Cdh1	chr7	no	0.42	0.42	0.43	0.44	0.44	0.43	0.01	224.34	50.12																																							
Inpp5f6	chr7	no	0.36	0.35	0.36	0.43	0.35	0.37	0.04	21.92	3.71																																							
Tnfrsf26	chr7	no	0.73	0.71	0.72	0.70	0.72	0.71	0.01	26.71	3.42																																							
Tssc4	chr7	no	0.57	0.61	0.56	0.57	0.54	0.57	0.02	55.94	23.75																																							
Genes	Chromosome	Imprint	0.59	0.60	0.49	0.49	0.49	0.53	0.06	101.61	15.29																																							
-----------	------------	---------	------	------	------	------	------	------	------	--------	-------																																							
Dhcr7	chr7	no	0.59	0.60	0.49	0.49	0.49	0.53	0.06	101.61	15.29																																							
Nap1l4	chr7	no	0.48	0.47	0.46	0.48	0.45	0.47	0.01	266.64	64.05																																							
R74862	chr7	no	0.46	0.39	-	0.38	-	0.41	0.04	12.06	2.29																																							
Arrdc2	chr8	no	0.55	0.49	0.50	0.45	0.44	0.49	0.04	29.27	10.18																																							
Tle3	chr9	no	0.71	0.71	0.73	0.73	0.77	0.73	0.02	84.37	8.03																																							
Snx14	chr9	no	0.35	0.36	0.42	0.29	0.42	0.37	0.06	20.79	2.88																																							
Gramd1b	chr9	no	0.25	0.24	0.27	0.26	0.30	0.26	0.02	18.93	3.81																																							
Phactr2	chr10	no	0.45	0.52	0.61	0.43	0.59	0.52	0.08	55.94	18.73																																							
Commd1*	chr11	no	0.71	0.64	0.68	0.66	0.66	0.67	0.03	87.50	15.63																																							
Actn1	chr12	no	0.58	0.58	0.59	0.57	0.57	0.58	0.01	318.86	13.55																																							
Ppp2r5c	chr12	no	0.53	0.47	0.49	0.49	0.50	0.50	0.02	81.05	16.74																																							
Dyncl1	chr12	no	0.67	0.67	0.69	0.53	0.64	0.64	0.07	73.06	19.38																																							
Smoc1	chr12	no	0.45	0.45	0.50	0.49	0.45	0.47	0.02	73.17	7.26																																							
Wars	chr12	no	0.63	0.63	0.61	0.63	0.64	0.62	0.01	142.15	18.08																																							
E2f3	chr13	no	0.58	0.58	0.59	0.57	0.57	0.58	0.01	318.86	13.55																																							
Pde4d	chr13	no	0.68	0.64	0.69	0.69	0.69	0.68	0.02	366.56	76.16																																							
Mbnl2	chr14	no	0.54	0.56	0.47	0.49	0.50	0.51	0.04	177.38	18.60																																							
Slic38a2	chr15	no	0.58	0.45	0.51	0.53	0.52	0.52	0.05	98.36	12.03																																							
Slic38a3	chr15	no	0.63	0.65	0.69	0.54	0.63	0.63	0.05	25.34	5.74																																							
Eif2c2	chr15	no	0.56	0.53	0.49	0.50	0.48	0.51	0.03	63.74	7.71																																							
Gahrt6	chr15	no	0.45	0.56	0.52	0.52	0.55	0.52	0.04	64.57	26.40																																							
Chrac1	chr15	no	0.44	0.45	0.42	0.41	0.44	0.43	0.02	88.84	15.54																																							
Bbx	chr16	no	0.42	0.41	0.43	0.41	0.44	0.42	0.01	136.01	9.63																																							
Runx1	chr16	no	0.42	0.41	0.43	0.41	0.44	0.42	0.01	136.01	9.63																																							
Gene	Chromosome	Imprinted	Affymetrix Expression Mean 1	Affymetrix Expression Mean 2	Affymetrix Expression Mean 3	Affymetrix Expression Mean 4	Affymetrix Expression Mean 5	Affymetrix Expression Mean 6	Affymetrix Expression Mean 7	Affymetrix Expression Mean 8	Affymetrix Expression Mean 9	Affymetrix Expression Mean 10	Affymetrix Expression Mean 11	Affymetrix Expression Mean 12	Affymetrix Expression Mean 13	Affymetrix Expression Mean 14	Affymetrix Expression Mean 15	Affymetrix Expression Mean 16	Mean																															
--------	------------	-----------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-------																														
Qk	chr17	no	Imprinted	0.51	0.51	0.54	0.51	0.51	0.52	0.01	175.28	25.65																																						
Arid1b	chr17	no	Imprinted	0.58	0.55	0.56	0.54	0.56	0.56	0.02	131.69	36.87																																						
Impact*	chr18	no	Imprinted	0.28	0.35	0.41	0.53	0.00	0.31	0.20	13.81	3.72																																						
Xlr4c	chrX	no	Imprinted	0.71	-	0.99	0.96	1.00	0.91	0.14	17.94	7.80																																						
Xlr4b	chrX	no	Imprinted	0.49	0.56	0.89	0.96	0.99	0.78	0.23	42.19	3.33																																						
Xist	chrX	no	Imprinted	0.54	0.45	0.15	0.01	0.01	0.23	0.25	197.56	24.32							143.98																															

The list of imprinted genes was retrieved from https://www.geneimprint.com and Tucci et al., 2019. A total of 167 genes were discoverable in the annotation file used in this study (ftp://ftp.ensembl.org/pub/release-68/gtf/Mus_musculus.GRCm38.68.gtf). The “Bias” threshold was set at 15% expression for the silenced allele and inclusion criteria was “all samples with a measurement”. Additionally, an exclusion criteria due to missing datapoints was applied: for B cells (total = 11 samples), a minimum number of non-missing values was N=6, and if less than 6, the gene was classified as “maybe”; for T cell (total = 5 samples), one failed sample was enough for the gene to be classified as “maybe”. Of the reported imprinted genes, 55 were expressed in our B cell samples, and 62 in T cell samples. To our knowledge, there are no accounts of imprinted genes in B or T cells in the literature. Of the 55 imprinted genes expressed in B cells, only 4 have been confirmed as imprinted in a related lymphoid tissue, the spleen (asterisks [*]; Andergassen et al, 2017), while only 5 genes were imprinted in the thymus among the 62 “imprinted” genes that were also expressed in T cells (Andergassen et al, 2017). The rows in the table are ordered: first biased (yes>maybe=no), then imprinted. Blue highlights the genes described in the literature as imprinted and expressed biallelically in both B and T cells in our study. Purple highlights genes with nonrandom bias in both B and T cells. Red highlights genes with nonrandom bias in both B and T cells and described in the literature as imprinted. There are imprinted genes in the literature that in our samples do not reach the AI nonrandom bias threshold criteria (<15% expression for the silenced allele), but are biased (e.g., Impact, see also Supplementary Figure 6). The only confirmed lymphoid imprinted gene (in spleen or thymus) we studied that is not biased in our B or T cell samples is Commd1. The abundance mean of all analyzed genes is 115.03 ± 477.90 in B cells and 101.65 ± 218.74 in T cells (not significantly different from the abundance mean from this table by t-test). Genes with low expression levels (<10 TMM-normalized counts) and genes suspected of LOH (detected by WES) were removed from the study and this table.
Supplementary Table 3. XCI escapees identified by other studies and our study showing values of AI and expression in HSC-derived lymphocytes *in vivo* from our NGS data. Genes in bold are escapees identified in our study. Genes in red are X escapees reported in the literature that were not expressed in our samples. Genes in blue were not included in our study due to lack of SNPs to estimate allelic imbalance. The abundance mean is represented in TMM-normalized counts.

gene	T cells	B cells	Abundance mean	Xi expression							
	E13.2	E13.29	E13.24	E13.29	E15.10	E6.42	E6.43				
I810630007Rik	1.00	1.00	0.98	0.96	0.98	0.01	0.03	62.94			
5550601H04Rik	0.73	0.74	0.73	0.74	0.78	0.16	0.17	29.65 yes			
5730416F02Rik	-	-	-	-	-	-	-	0.23			
Abcb7	0.99	1.00	0.99	0.97	0.99	0.00	0.01	36.13			
Alg13	0.95	0.97	0.81	0.93	0.99	0.09	0.10	14.65			
Amot	0.42	-	-	-	-	0.32	0.28	1.93			
Apis2	0.97	1.00	0.93	0.90	0.96	0.01	0.01	30.45			
Atp7a	0.95	0.99	0.82	0.93	0.99	0.04	0.10	47.07			
AU0155836	-	-	-	-	-	-	-	0.49			
AU022751	-	-	0.00	-	-	-	-	0.21			
BC0229660	0.98	0.94	1.00	0.89	0.96	-	-	0.86			
Bcor	1.00	1.00	0.93	0.95	0.97	0.01	0.01	71.23			
Bgn	-	-	-	-	-	-	-	0.19			
Bhlhb9	0.99	1.00	0.97	0.92	0.97	0.02	0.01	53.61			
Bmp15	-	-	-	-	-	-	-	0.22			
Cur5b	0.48	0.77	0.28	0.45	0.59	0.44	0.35	1.18			
Cfp	0.89	NA	0.96	0.96	0.99	0.12	0.01	28.36			
Cols4a5	-	-	-	-	-	-	-	1.81			
Cstf2	0.99	1.00	0.94	0.95	0.97	0.00	0.01	118.51			
Ctns2	0.99	1.00	0.96	0.95	0.98	0.01	0.01	113.44			
Cybb	0.30	0.54	0.93	0.84	0.93	0.00	0.01	291.67			
Ddx3x	0.79	0.99	0.73	0.91	0.72	0.02	0.02	299.47			
Dlg3	0.97	0.99	0.94	0.91	0.98	0.01	0.08	16.77			
Dynl3	-	-	-	-	-	-	-	54.06			
Ebp	1.00	1.00	0.91	0.90	0.97	0.01	0.01	44.00			
Efg2x3x	0.49	0.52	0.53	0.56	0.56	0.25	0.19	46.76 yes			
Exc61	1.00	1.00	0.90	0.89	0.98	0.01	0.10	21.35			
F8	0.88	1.00	-	0.76	1.00	0.33	3.55	8.42			
Fam199x	0.99	1.00	0.98	0.97	0.94	0.06	0.05	21.38			
Fam3a	0.99	1.00	0.94	0.96	0.97	0.01	0.01	27.94			
Fam50a	0.98	0.99	0.97	0.90	0.96	0.00	0.00	48.07			
Farc	0.93	0.93	-	-	-	0.00	-	8.42			
Flna	1.00	0.99	0.96	0.94	0.96	0.01	0.01	811.48			
Fmr1	0.99	1.00	0.93	0.94	0.98	0.10	0.03	93.35			
Ftx	0.91	0.91	0.96	0.92	0.95	0.35	0.21	25.17			
Gene	1.00	1.00	0.97	0.92	0.98	0.01	0.00			29.13	
--------	------	------	------	------	------	------	------	------	------	-------	
G530011006Rik	0.20	0.13	0.57	0.71	0.48	0.61	0.44			1.66	
G6pd6c	0.99	1.00	0.96	0.95	0.97	0.01	0.01			73.63	
Gald1	0.99	0.98	0.93	0.94	0.95	0.01	0.01			463.40	
Gla	0.97	1.00	-	0.84	1.00	-				5.44	
Gn33l	0.99	0.99	0.95	0.92	0.94	0.03	0.03			64.96	
Gpm6b	0.58	-	0.93	0.79	0.95	0.23	0.24			3.03	
Gprasp1	0.98	0.99	0.93	0.90	0.94	0.01	0.01			51.27	
Griasp1	0.99	0.99	0.96	0.95	0.97	0.01	0.02			104.11	
Gk	0.95	0.99	0.97	0.89	0.99	0.01	0.10			15.92	
Hdac6	0.94	0.98	0.95	0.92	0.95	0.05	0.12			23.25	
Hesat2											
Huatsf1	0.99	1.00	0.95	0.96	0.96	0.01	0.00			75.27	
Howe1	0.98	0.99	0.92	0.93	0.95	0.02	0.03			100.25	
Idh3g	1.00	1.00	0.95	0.94	0.97	0.01	0.00			221.82	
Ids	1.00	0.99	0.97	0.92	0.96	0.01	0.02			47.79	
Ihkg	0.99	1.00	0.96	0.95	0.97	0.01	0.01			85.87	
Il13ral1	0.68	0.68	0.58	0.58	0.58	0.58	0.58			175.94	
Isx	0.96	1.00	0.98	0.95	0.96	0.01	0.00			4.83	
Magt1	0.99	0.99	0.94	0.94	0.97	0.01	0.01			70.50	
Mecp2	0.99	0.99	0.95	0.95	0.95	0.01	0.04			44.26	
Mid1	0.45	0.40	0.62	0.68	0.65	0.08	0.06			6.87	
Mid2	0.99	1.00	0.93	0.91	0.98	0.04	0.05			43.28	
Mngt1	0.96	0.99	0.91	0.91	0.90	0.00	0.06			134.74	
Nkd1	0.90	0.99	0.94	0.94	0.97	0.01	0.02			38.00	
Nudat1	0.97	0.99	0.94	0.94	0.96	0.02	0.06			5.44	
Og1	1.00	1.00	0.96	0.94	0.96	0.01	0.01			556.30	
Ond15	0.99	1.00	0.93	0.94	0.96	0.03	0.04			227.57	
Phd6c1	0.65	0.77	0.75	0.71	0.80	0.30	0.23			53.17	
Pdha1	1.00	1.00	0.93	0.96	0.96	0.01	0.02			107.61	
Pim2	0.99	0.99	0.83	0.88	0.95	0.01	0.01			55.97	
Plp1	1.00	0.97	0.89	0.92	0.99	0.23	0.12			2.59	
Ptx3	0.99	0.99	0.94	0.94	0.97	0.01	0.02			2.18	
Gene	V	V	V	V	V	V	V	V	V		
-------	---	---	---	---	---	---	---	---	---	---	
Pqbp1	0.99	0.99	0.95	0.90	0.96	0.01	0.01			104.39	
Rbbp7	-	-	-	-	-	-	-	-	-	192.46	
Rilm	0.98	1.00	0.93	0.96	0.96	0.01	0.01			84.62	
Rsp128	-	-	-	-	-	-	-	-	-	0.53	
Rps4x	0.99	1.00	0.95	0.94	0.96	0.01	0.01			196.71	
Sh3bg1	0.99	0.99	0.93	0.94	0.96	0.01	0.04			134.77	
Shroom4	-	-	-	-	-	-	-	-	0.65	1.07	
Stah1b	0.89	0.98	0.95	0.90	0.97	0.02	0.00			7.53	
Slec16a2	-	-	-	-	-	-	-	-	-	0.50	
Slec35a2	0.99	1.00	0.96	0.96	0.97	0.02	0.02			36.33	
Slec8	-	-	-	-	-	-	-	-	-	0.66	
Smul12	0.99	0.99	0.98	0.95	0.97	0.23	0.19			42.85	
Sxcb3	-	-	-	-	-	-	-	-	-	0.15	
Sx3901	0.99	1.00	0.88	0.93	0.97	0.05	0.14			62.48	
Syap1	0.99	1.00	0.99	0.96	0.97	0.01	0.00			35.80	
Syt	-	-	-	-	-	-	-	-	-	1.33	
Tab3	0.98	0.99	0.95	0.90	0.97	0.02	0.07			20.34	
Tal1	0.98	1.00	0.86	0.90	0.94	0.05	0.03			64.98	
S40427O19Rik	0.63	0.93	0.96	0.92	0.98	0.02	0.03			40.30	
Smem164	0.99	1.00	0.88	0.90	0.96	0.01	0.02			88.06	
Smem29	0.83	0.83	0.86	0.89	0.83	0.25	0.29			3.81	
Smem47	-	-	-	-	-	0.20	-	-	-	0.74	
Smem131	-	1.00	1.00	0.74	1.00	-	-	-	-	0.28	
Smem54x	1.00	1.00	0.96	0.96	0.97	0.00	0.00			2015.50	
Uba1	1.00	0.99	0.95	0.93	0.96	0.00	0.00			326.39	
Ub4a	1.00	0.99	0.95	0.90	0.95	0.01	0.00			69.97	
Usp9x	0.94	0.99	0.95	0.92	0.95	0.05	0.04			80.36	
Utp14a	0.99	0.62	0.94	0.77	0.77	0.03	0.03	26.22	yes		
Vbp1	1.00	1.00	0.95	0.96	0.98	0.01	0.01			121.16	
Vsig4	-	-	-	-	-	-	-	-	-	0.27	
Wdr13	0.99	1.00	0.95	0.95	0.96	0.03	0.00			43.80	
Xist	0.01	0.01	0.10	0.09	0.07	0.96	0.99			162.43	yes
Yif6	0.99	0.99	0.96	0.97	0.97	0.05	0.08			43.46	
Zbms33	1.00	-	-	-	-	-	-	-	5.64		
Zfp280a	0.96	0.99	0.90	0.92	0.94	0.03	0.06			26.07	
Zmys3	0.99	1.00	0.93	0.93	0.96	0.02	0.04			37.85	
Zrs2	0.98	1.00	0.92	0.93	0.95	0.01	0.11			33.89	
Gm8822	0.38	0.35	0.44	0.35	0.38	0.39	0.30		yes		
Gm8822	0.38	0.35	0.44	0.35	0.38	0.39	0.30		yes		
Supplementary Table 4. List of all statistically significant AI differences between samples for the 14 genes identified as putatively RME in B cells (related with Figure 4A). P-value associated with each comparison after applying the QCC correction to the binomial test (Mendelevich et al., 2021). The dAI is the difference between AI values. Clonality indicates whether the sample was originated upon expansion of 1, 50 or 200 transplanted cells. Shaded rows highlight comparisons between only monoclonal (shaded) or only polyclonal samples (unshaded).

Gene	chr	sample1	sample2	AI (1)	AI (2)	p-val (BT, CC)	dAI	Abundance (1)	Abundance (2)	clonality (1)	clonality (2)
Dpp7	chr2	E6.42_B	E6.43_B	0.70	0.21	9.10E-13	0.49	28.88	26.50	1 HSC	1 HSC
Dpp7	chr2	E13.29_B	E6.43_B	0.51	0.21	1.76E-06	0.30	39.69	26.50	1 HSC	1 HSC
Dpp7	chr2	E15.10_B	E6.42_B	0.46	0.70	1.45E-06	0.24	48.56	28.88	1 HSC	1 HSC
Dpp7	chr2	E13.2_B	E6.42_B	0.42	0.70	1.63E-07	0.28	55.67	28.88	200 HSCs	1 HSC
Dpp7	chr2	E13.2_B	E6.42_B	0.45	0.70	4.26E-07	0.25	42.23	28.88	200 HSCs	1 HSC
Dpp7	chr2	E13.2_B	E6.42_B	0.45	0.70	2.87E-07	0.25	56.67	28.88	50 HSCs	1 HSC
Aldh4a1	chr4	E15.10_B	E6.42_B	0.94	0.44	3.54E-31	0.50	10.42	40.17	1 HSC	1 HSC
Aldh4a1	chr4	E15.10_B	E6.43_B	0.94	0.48	1.02E-20	0.46	10.42	18.46	1 HSC	1 HSC
Aldh4a1	chr4	E13.24_B	E15.10_B	0.49	0.94	3.10E-18	0.45	13.12	10.42	1 HSC	1 HSC
Aldh4a1	chr4	E13.29_B	E15.10_B	0.58	0.94	8.23E-17	0.36	18.59	10.42	1 HSC	1 HSC
Aldh4a1	chr4	E15.10_B	E6.42_B	0.94	0.48	2.50E-27	0.49	35.58	10.42	200 HSCs	1 HSC
Aldh4a1	chr4	E15.10_B	E15.10_B	0.45	0.94	6.44E-27	0.46	10.42	34.19	1 HSC	50 HSCs
Aldh4a1	chr4	E15.10_B	E6.2_B	0.94	0.48	1.47E-19	0.46	10.42	13.83	1 HSC	50 HSCs
Aldh4a1	chr4	E13.1_B	E15.10_B	0.50	0.94	5.69E-24	0.45	22.65	10.42	200 HSCs	1 HSC
Aldh4a1	chr4	E13.2_B	E15.10_B	0.50	0.94	3.58E-24	0.44	21.88	10.42	200 HSCs	1 HSC
Gnpda2	chr5	E15.10_B	E6.42_B	0.71	0.31	2.85E-07	0.41	37.79	28.76	1 HSC	1 HSC
Gnpda2	chr5	E13.29_B	E6.42_B	0.69	0.31	5.44E-07	0.38	29.53	28.76	1 HSC	1 HSC
Gnpda2	chr5	E13.2_B	E6.42_B	0.68	0.31	7.53E-08	0.38	34.71	28.76	200 HSCs	1 HSC
Igkv6-25	chr6	E13.24_B	E15.10_B	0.72	0.34	5.66E-58	0.39	50.26	30.99	1 HSC	1 HSC
Igkv6-25	chr6	E13.24_B	E13.29_B	0.72	0.37	1.08E-44	0.35	50.26	26.51	1 HSC	1 HSC
Igkv6-25	chr6	E13.24_B	E6.42_B	0.72	0.37	1.41E-49	0.35	50.26	38.39	1 HSC	1 HSC
Igkv6-25	chr6	E13.24_B	E6.43_B	0.72	0.45	2.38E-20	0.27	50.26	26.38	1 HSC	1 HSC
Gene	Chr	E15.10_B	E6.43_B	0.34	0.45	5.44E-07	0.12	30.99	26.38	1 HSC	1 HSC
------------	------	----------	---------	------	------	----------	------	------	------	-------	-------
Igk6v-25	chr6	E13.24_B	E6.1_B	0.72	0.29	3.78E-74	0.43	50.26	25.65	1 HSC	50 HSCs
Igk6v-25	chr6	E13.24_B	E6.1_B	0.30	0.72	4.08E-65	0.42	39.43	50.26	200 HSCs	1 HSC
Igk6v-25	chr6	E13.24_B	E6.1_B	0.33	0.72	2.44E-60	0.39	24.48	50.26	200 HSCs	1 HSC
Igk6v-25	chr6	E13.24_B	E6.2_B	0.72	0.36	3.95E-36	0.36	50.26	18.01	1 HSC	50 HSCs
Igk6v-25	chr6	E6.1_B	E6.43_B	0.29	0.45	1.33E-12	0.16	25.65	26.38	50 HSCs	1 HSC
Igk6v-25	chr6	E13.24_B	E6.43_B	0.30	0.45	1.98E-10	0.15	39.43	26.38	200 HSCs	1 HSC
Igk6v-25	chr6	E13.24_B	E6.43_B	0.33	0.45	1.18E-07	0.12	24.48	26.38	200 HSCs	1 HSC
Igk6v-25	chr6	E13.29_B	E6.1_B	0.37	0.29	4.19E-06	0.08	26.51	25.65	1 HSC	50 HSCs
Igk6v-25	chr6	E6.1_B	E6.42_B	0.29	0.37	7.85E-07	0.08	25.65	38.39	50 HSCs	1 HSC
Plekha8	chr6	E15.10_B	E6.42_B	0.09	0.45	4.63E-11	0.37	13.41	13.31	1 HSC	1 HSC
Plekha8	chr6	E13.29_B	E6.42_B	0.15	0.45	1.83E-07	0.31	14.34	13.31	1 HSC	1 HSC
Plekha8	chr6	E13.10_B	E6.42_B	0.09	0.37	6.23E-07	0.29	13.41	16.40	1 HSC	1 HSC
Plekha8	chr6	E13.2_B	E4.42_B	0.20	0.45	1.72E-06	0.26	17.30	13.31	200 HSCs	1 HSC
Kdm8	chr7	E15.10_B	E6.43_B	0.03	0.55	3.53E-24	0.53	12.81	16.94	1 HSC	1 HSC
Kdm8	chr7	E13.29_B	E15.10_B	0.48	0.03	3.26E-24	0.45	24.54	12.81	1 HSC	1 HSC
Kdm8	chr7	E13.24_B	E15.10_B	0.44	0.03	1.41E-17	0.42	17.24	12.81	1 HSC	1 HSC
Kdm8	chr7	E15.10_B	E6.42_B	0.03	0.43	1.82E-20	0.40	12.81	25.94	1 HSC	1 HSC
Kdm8	chr7	E15.2_B	E15.10_B	0.56	0.03	8.42E-28	0.53	27.69	12.81	200 HSCs	1 HSC
Kdm8	chr7	E15.10_B	E6.2_B	0.03	0.53	1.35E-23	0.50	12.81	14.96	1 HSC	50 HSCs
Kdm8	chr7	E13.2_B	E15.10_B	0.41	0.03	1.01E-19	0.39	19.70	12.81	200 HSCs	1 HSC
Kdm8	chr7	E13.1_B	E15.10_B	0.41	0.03	8.32E-19	0.38	20.61	12.81	200 HSCs	1 HSC
Kdm8	chr7	E15.10_B	E6.1_B	0.03	0.39	3.98E-18	0.36	12.81	27.73	1 HSC	50 HSCs
Pkg3	chr7	E13.29_B	E6.42_B	0.94	0.12	8.75E-159	0.82	47.17	96.81	1 HSC	1 HSC
Pkg3	chr7	E13.29_B	E15.10_B	0.94	0.18	1.51E-132	0.76	47.17	79.42	1 HSC	1 HSC
Pkg3	chr7	E6.42_B	E6.43_B	0.12	0.84	5.12E-120	0.72	96.81	71.84	1 HSC	1 HSC
Pkg3	chr7	E15.10_B	E6.43_B	0.18	0.84	2.55E-96	0.66	79.42	71.84	1 HSC	1 HSC
Pkp3	chr7	E13.24_B	E13.29_B	0.43	0.94	4.60E-61	0.51	139.94	47.17	1 HSC	1 HSC
------	------	----------	----------	------	------	----------	------	--------	-----	-----	------
Pkp3	chr7	E13.24_B	E6.42_B	0.43	0.12	1.29E-36	0.30	139.94	96.81	1 HSC	1 HSC
Pkp3	chr7	E13.24_B	E15.10_B	0.43	0.18	9.35E-23	0.25	139.94	79.42	1 HSC	1 HSC
Pkp3	chr7	E13.29_B	E6.1_B	0.94	0.32	1.01E-97	0.62	47.17	110.71	50 HSCs	1 HSC
Pkp3	chr7	E13.2_B	E13.29_B	0.39	0.94	1.91E-74	0.55	79.17	47.17	200 HSCs	1 HSC
Pkp3	chr7	E6.1_B	E6.43_B	0.32	0.84	1.66E-64	0.52	110.71	71.84	50 HSCs	1 HSC
Pkp3	chr7	E13.1_B	E13.29_B	0.44	0.94	1.19E-60	0.50	75.25	47.17	200 HSCs	1 HSC
Pkp3	chr7	E13.29_B	E6.2_B	0.94	0.47	3.69E-45	0.48	47.17	55.39	1 HSC	50 HSCs
Pkp3	chr7	E13.2_B	E15.10_B	0.56	0.18	1.96E-46	0.38	119.50	79.42	200 HSCs	1 HSC
Pkp3	chr7	E6.2_B	E6.43_B	0.47	0.84	4.44E-24	0.37	55.39	71.84	50 HSCs	1 HSC
Pkp3	chr7	E6.2_B	E6.42_B	0.47	0.12	2.65E-33	0.34	55.39	96.81	50 HSCs	1 HSC
Pkp3	chr7	E13.1_B	E6.42_B	0.44	0.12	1.08E-40	0.32	75.25	96.81	200 HSCs	1 HSC
Pkp3	chr7	E15.10_B	E6.2_B	0.18	0.47	5.09E-21	0.29	79.42	55.39	1 HSC	50 HSCs
Pkp3	chr7	E15.2_B	E6.43_B	0.56	0.84	1.67E-19	0.28	119.50	71.84	200 HSCs	1 HSC
Pkp3	chr7	E13.2_B	E6.42_B	0.39	0.12	3.05E-34	0.27	79.17	96.81	200 HSCs	1 HSC
Pkp3	chr7	E13.1_B	E15.10_B	0.44	0.18	7.47E-26	0.26	75.25	79.42	200 HSCs	1 HSC
Pkp3	chr7	E13.2_B	E15.10_B	0.39	0.18	2.00E-20	0.21	79.17	79.42	200 HSCs	1 HSC
Pkp3	chr7	E6.1_B	E6.42_B	0.32	0.12	4.60E-21	0.19	110.71	96.81	50 HSCs	1 HSC
Pkp3	chr7	E15.10_B	E6.1_B	0.18	0.32	1.84E-10	0.14	79.42	110.71	50 HSCs	1 HSC
Pkp3	chr7	E15.2_B	E6.1_B	0.56	0.32	5.36E-21	0.24	119.50	110.71	200 HSCs	50 HSCs
Pkp3	chr7	E13.2_B	E15.2_B	0.39	0.56	7.22E-10	0.16	79.17	119.50	200 HSCs	200 HSCs
Pkp3	chr7	E6.1_B	E6.2_B	0.32	0.47	2.62E-06	0.15	110.71	55.39	50 HSCs	50 HSCs
Pkp3	chr7	E13.1_B	E6.1_B	0.44	0.32	4.24E-07	0.12	75.25	110.71	200 HSCs	50 HSCs
Trim5	chr7	E13.24_B	E6.43_B	0.63	0.29	6.30E-13	0.34	64.65	38.39	1 HSC	1 HSC
-------	------	----------	---------	------	------	----------	------	-------	------	------	------
Trim5	chr7	E15.10_B	E6.43_B	0.64	0.29	4.36E-14	0.34	39.52	38.39	1 HSC	1 HSC
Trim5	chr7	E13.29_B	E6.43_B	0.62	0.29	7.95E-16	0.33	88.81	38.39	1 HSC	1 HSC
Trim5	chr7	E13.24_B	E6.42_B	0.63	0.36	3.39E-11	0.27	64.65	42.07	1 HSC	1 HSC
Trim5	chr7	E15.10_B	E6.42_B	0.64	0.36	1.56E-12	0.27	39.52	42.07	1 HSC	1 HSC
Trim5	chr7	E13.29_B	E6.42_B	0.62	0.36	7.46E-15	0.26	88.81	42.07	1 HSC	1 HSC
Trim5	chr7	E6.2_B	E6.43_B	0.63	0.29	4.23E-14	0.33	78.92	38.39	50 HSCs	1 HSC
Trim5	chr7	E13.1_B	E6.43_B	0.59	0.29	8.62E-13	0.30	70.32	38.39	200 HSCs	1 HSC
Trim5	chr7	E6.1_B	E6.43_B	0.56	0.29	6.88E-11	0.27	88.97	38.39	50 HSCs	1 HSC
Trim5	chr7	E6.2_B	E6.42_B	0.63	0.36	1.30E-12	0.26	78.92	42.07	50 HSCs	1 HSC
Trim5	chr7	E13.1_B	E6.42_B	0.59	0.36	2.40E-11	0.23	70.32	42.07	200 HSCs	1 HSC
Trim5	chr7	E13.2_B	E6.43_B	0.51	0.29	5.15E-08	0.22	73.83	38.39	200 HSCs	1 HSC
Trim5	chr7	E15.2_B	E13.24_B	0.43	0.63	3.62E-07	0.20	71.47	64.65	200 HSCs	1 HSC
Trim5	chr7	E15.2_B	E15.10_B	0.43	0.64	4.56E-08	0.20	71.47	39.52	200 HSCs	1 HSC
Trim5	chr7	E6.1_B	E6.42_B	0.56	0.36	2.97E-09	0.20	88.97	42.07	50 HSCs	1 HSC
Trim5	chr7	E15.2_B	E13.29_B	0.43	0.62	1.85E-09	0.19	71.47	88.81	200 HSCs	1 HSC
Trim5	chr7	E13.2_B	E6.42_B	0.51	0.36	3.93E-06	0.15	73.83	42.07	200 HSCs	1 HSC
Trim5	chr7	E15.2_B	E6.2_B	0.43	0.63	5.15E-08	0.19	71.47	78.92	200 HSCs	50 HSCs
Trim5	chr7	E13.1_B	E15.2_B	0.59	0.43	1.13E-06	0.16	70.32	71.47	200 HSCs	200 HSCs
Fam32a	chr8	E13.29_B	E6.43_B	0.50	0.02	4.72E-119	0.48	203.22	102.07	1 HSC	1 HSC
Fam32a	chr8	E15.10_B	E6.43_B	0.47	0.02	9.48E-113	0.46	255.71	102.07	1 HSC	1 HSC
Fam32a	chr8	E6.42_B	E6.43_B	0.45	0.02	4.55E-103	0.44	239.69	102.07	1 HSC	1 HSC
Fam32a	chr8	E13.24_B	E6.43_B	0.42	0.02	6.73E-82	0.40	238.14	102.07	1 HSC	1 HSC
Fam32a	chr8	E13.24_B	E13.29_B	0.42	0.50	1.95E-06	0.08	238.14	203.22	1 HSC	1 HSC
Fam32a	chr8	E15.2_B	E6.43_B	0.44	0.02	8.56E-98	0.43	317.59	102.07	200 HSCs	1 HSC
Fam32a	chr8	E13.2_B	E6.43_B	0.44	0.02	8.11E-99	0.42	197.30	102.07	200 HSCs	1 HSC
Fam32a	chr8	E13.1_B	E6.43_B	0.41	0.02	8.05E-86	0.39	189.71	102.07	200 HSCs	1 HSC
Fam32a	chr8	E6.1_B	E6.43_B	0.39	0.02	6.52E-82	0.37	261.42	102.07	50 HSCs	1 HSC
	chr8	E6.2_B	E6.43_B								
-----	------	----------	----------	------	------	------	------	------	------	------	------
Fam32a	chr8	E13.29_B	E6.2_B	0.50	0.36	2.93E-15	0.13	203.22	163.06	102.07	50 HSCs
Fam32a	chr8	E13.29_B	E6.1_B	0.50	0.39	6.50E-18	0.11	203.22	261.42	1 HSC	50 HSCs
Fam32a	chr8	E15.10_B	E6.2_B	0.47	0.36	1.82E-11	0.11	255.71	163.06	1 HSC	50 HSCs
Fam32a	chr8	E13.1_B	E13.29_B	0.41	0.50	3.18E-11	0.09	189.71	203.22	200 HSCs	1 HSC
Fam32a	chr8	E15.10_B	E6.1_B	0.47	0.39	6.07E-13	0.09	255.71	261.42	1 HSC	50 HSCs
Fam32a	chr8	E6.2_B	E6.42_B	0.36	0.45	9.54E-08	0.09	163.06	239.69	50 HSCs	1 HSC
Fam32a	chr8	E13.1_B	E15.10_B	0.41	0.47	2.22E-07	0.07	189.71	255.71	200 HSCs	1 HSC
Fam32a	chr8	E13.2_B	E13.29_B	0.44	0.50	3.15E-06	0.06	197.30	203.22	200 HSCs	1 HSC
Fam32a	chr8	E6.1_B	E6.42_B	0.39	0.45	1.30E-07	0.06	261.42	239.69	50 HSCs	1 HSC
Fam32a	chr8	E15.2_B	E6.2_B	0.44	0.36	2.79E-06	0.08	317.59	163.06	200 HSCs	50 HSCs
SLC38a7	chr8	E13.24_B	E13.29_B	0.60	0.13	2.25E-18	0.47	21.53	11.72	1 HSC	1 HSC
SLC38a7	chr8	E13.29_B	E6.43_B	0.13	0.53	6.39E-14	0.40	11.72	20.15	1 HSC	1 HSC
SLC38a7	chr8	E13.29_B	E6.42_B	0.13	0.51	7.50E-17	0.38	11.72	30.82	1 HSC	1 HSC
SLC38a7	chr8	E13.29_B	E15.10_B	0.13	0.44	2.39E-11	0.31	11.72	20.46	1 HSC	1 HSC
SLC38a7	chr8	E13.29_B	E6.1_B	0.13	0.59	1.33E-23	0.46	11.72	32.01	1 HSC	50 HSCs
SLC38a7	chr8	E15.2_B	E13.29_B	0.57	0.13	3.51E-19	0.44	33.63	11.72	200 HSCs	1 HSC
SLC38a7	chr8	E13.2_B	E13.29_B	0.56	0.13	3.06E-20	0.43	22.21	11.72	200 HSCs	1 HSC
SLC38a7	chr8	E13.1_B	E13.29_B	0.49	0.13	1.60E-14	0.36	25.01	11.72	200 HSCs	1 HSC
SLC38a7	chr8	E13.29_B	E6.2_B	0.13	0.45	9.03E-10	0.32	11.72	16.73	1 HSC	50 HSCs
Apba3	chr10	E13.29_B	E6.43_B	0.52	0.02	9.71E-20	0.50	31.56	18.60	1 HSC	1 HSC
Apba3	chr10	E13.29_B	E15.10_B	0.52	0.05	2.04E-29	0.47	31.56	20.35	1 HSC	1 HSC
Apba3	chr10	E6.42_B	E6.43_B	0.48	0.02	1.26E-18	0.46	59.59	18.60	1 HSC	1 HSC
Apba3	chr10	E13.24_B	E6.43_B	0.46	0.02	9.78E-15	0.44	31.16	18.60	1 HSC	1 HSC
Apba3	chr10	E15.10_B	E6.42_B	0.05	0.48	7.11E-29	0.42	20.35	59.59	1 HSC	1 HSC
Apba3	chr10	E13.24_B	E15.10_B	0.46	0.05	1.55E-20	0.40	31.16	20.35	1 HSC	1 HSC
Apba3	chr10	E15.2_B	E6.43_B	0.60	0.02	1.84E-26	0.58	67.69	18.60	200 HSCs	1 HSC
Apba3	chr10	E13.2_B	E6.43_B	0.57	0.02	4.05E-24	0.55	34.72	18.60	200 HSCs	1 HSC

25
Gene	Chr	E15.2_B	E15.10_B	0.60	0.05	2.34E-40	0.55	67.69	20.35	200 HSCs	1 HSC
Apba3	chr10	E15.2_B	E15.10_B	0.54	0.02	4.77E-21	0.52	33.81	18.60	200 HSCs	1 HSC
Apba3	chr10	E6.2_B	E6.43_B	0.54	0.02	2.04E-18	0.52	25.21	18.60	50 HSCs	1 HSC
Apba3	chr10	E13.2_B	E15.10_B	0.57	0.05	4.62E-37	0.51	34.72	20.35	200 HSCs	1 HSC
Apba3	chr10	E6.1_B	E6.43_B	0.53	0.02	3.08E-22	0.51	53.93	18.60	50 HSCs	1 HSC
Apba3	chr10	E13.1_B	E15.10_B	0.54	0.05	1.21E-31	0.48	33.81	20.35	200 HSCs	1 HSC
Apba3	chr10	E15.10_B	E6.1_B	0.05	0.53	9.84E-35	0.48	20.35	53.93	1 HSC	50 HSCs
Apba3	chr10	E15.10_B	E6.2_B	0.05	0.54	2.67E-26	0.48	20.35	25.21	1 HSC	50 HSCs
Zfp873	chr10	E13.1_B	E6.43_B	0.54	0.06	1.60E-07	0.48	26.78	17.10	200 HSCs	1 HSC
Zfp873	chr10	E6.1_B	E6.43_B	0.52	0.06	1.39E-07	0.46	46.67	17.10	50 HSCs	1 HSC
Zfp873	chr10	E15.2_B	E6.43_B	0.52	0.06	1.52E-06	0.45	33.69	17.10	200 HSCs	1 HSC
Zfp873	chr10	E6.2_B	E6.43_B	0.48	0.06	4.06E-06	0.42	45.50	17.10	50 HSCs	1 HSC
Flnb	chr14	E15.10_B	E6.43_B	0.47	0.11	3.74E-08	0.36	32.79	15.31	1 HSC	1 HSC
Flnb	chr14	E13.24_B	E6.43_B	0.45	0.11	1.39E-06	0.34	26.12	15.31	1 HSC	1 HSC
Flnb	chr14	E6.42_B	E6.43_B	0.40	0.11	4.40E-06	0.29	34.86	15.31	1 HSC	1 HSC
Flnb	chr14	E13.29_B	E15.10_B	0.20	0.47	2.12E-10	0.27	25.82	32.79	1 HSC	1 HSC
Flnb	chr14	E13.24_B	E13.29_B	0.45	0.20	9.07E-07	0.24	26.12	25.82	1 HSC	1 HSC
Flnb	chr14	E13.29_B	E6.42_B	0.20	0.40	1.40E-06	0.20	25.82	34.86	1 HSC	1 HSC
Flnb	chr14	E15.2_B	E6.43_B	0.62	0.11	3.08E-12	0.51	23.97	15.31	200 HSCs	1 HSC
Flnb	chr14	E15.2_B	E13.29_B	0.62	0.20	7.49E-16	0.42	23.97	25.82	200 HSCs	1 HSC
Flnb	chr14	E13.1_B	E6.43_B	0.52	0.11	2.38E-10	0.41	39.50	15.31	200 HSCs	1 HSC
Flnb	chr14	E13.2_B	E6.43_B	0.45	0.11	6.92E-08	0.34	44.62	15.31	200 HSCs	1 HSC
Flnb	chr14	E13.1_B	E13.29_B	0.52	0.20	6.39E-15	0.32	39.50	25.82	200 HSCs	1 HSC
Flnb	chr14	E6.1_B	E6.43_B	0.41	0.11	2.80E-06	0.30	27.33	15.31	50 HSCs	1 HSC
Flnb	chr14	E13.2_B	E13.29_B	0.45	0.20	1.41E-10	0.25	44.62	25.82	200 HSCs	1 HSC
Flnb	chr14	E13.29_B	E6.1_B	0.20	0.41	7.56E-07	0.21	25.82	27.33	1 HSC	50 HSCs
Pacsin1	chr17	E13.24_B	E6.42_B	0.29	0.70	3.27E-10	0.40	24.21	29.09	1 HSC	1 HSC
Pacsin1	chr17	E6.42_B	E6.43_B	0.70	0.31	1.69E-06	0.38	29.09	10.74	1 HSC	1 HSC
Pacsin1	chr17	E13.29_B	E6.42_B	0.32	0.70	5.11E-11	0.37	17.04	29.09	1 HSC	1 HSC
---------	-------	----------	---------	-------	-------	-----------	-------	-------	-------	-------	-------
Pacsin1	chr17	E13.24_B	E15.10_B	0.29	0.63	6.09E-07	0.33	24.21	25.47	1 HSC	1 HSC
Pacsin1	chr17	E13.29_B	E15.10_B	0.32	0.63	3.14E-07	0.30	17.04	25.47	1 HSC	1 HSC
Pacsin1	chr17	E13.1_B	E13.24_B	0.62	0.29	6.78E-07	0.33	26.21	24.21	200 HSCs	1 HSC
Pacsin1	chr17	E13.1_B	E13.29_B	0.62	0.32	3.53E-07	0.30	26.21	17.04	200 HSCs	1 HSC
Pacsin1	chr17	E15.2_B	E6.42_B	0.42	0.70	1.89E-06	0.28	26.33	29.09	200 HSCs	1 HSC
Supplementary Table 5. Probability of finding AI for any given gene in the monoclonal animals due to somatic indels and single nucleotide variants (null hypothesis). The parameter values based on the literature that are overestimations (as explained in the comments) are shown in bold. We privileged studies of murine cells (references in bold) and used studies on human cells as the second-best option (references in italics). Most parameter values based on assumptions (in italics) are also overestimations. This estimation suggests that not all AI patterns of the 14 genes we identify can be explained by somatic mutations. The most notable example is *Pkp3*, for which we show the probability (which led us to reject the null hypothesis of a genetic mutation explanation for the AI pattern).

Parameter Description	Value for estimation	Comment	Ref.
SNV per HSC (n_s)	195	Overestimation. We used the HSC with the highest number of mutations (195). The average number is around 105. The animals used for WGS were 8-month old, and ours were <5 months (mutations accumulate over time).	(Druce, 2021)
Indels per HSC (n_i)	42	Overestimation. The HSC with the highest number of mutations (42) was used. The average number is around 26.	
Total number of genes expressed by a cell (n_g)	24,000	Overestimation. The average number of expressed genes in a given cell is 10,700, but all genes were assumed to be expressed.	(Ramsköld, Wang, Burge, & Sandber, 2009)
Intergenic mutations (P_intergenic)		These mutations were assumed to have no impact on AI.	
Mutations in cis			
Impact of indels in exons (P_{iie})	1.000	Overestimation. All indels are assumed to lead to non-sense mediated mRNA decay, which is unlikely.	
Impact of indels in introns (P_{iii})	0.200	Overestimation. 20% of indels in introns are assumed to lead to AI, which is unlikely.	
Impact of indels in regulatory regions (P_{iir})	0.200	Overestimation. 20% of indels in regulatory regions are assumed to lead to AI, which is unlikely.	
Frequency of indels in exons (P_{fie})	0.015	The values were assumed to be identical to the frequencies of SNVs.	
Frequency of indels in introns (P_{fii})	0.261		
Frequency of indels in regulatory regions (P_{fir})	0.020		
Probability of impactful cis indel in a given gene (P_{cis})	\(1 - (1 - P_{fie} P_{fii} n_g) (1 - P_{iie} P_{iii} n_g) (1 - P_{iir} P_{fir} n_g))^{m} \)	\(1.25 \times 10^{-4} \)	(Druce, 2021)
Impact on transcription of SNVs in exons (P_{iex})	0.061	Empirical frequency of premature stop codons.	(Druce, 2021)
Impact on transcription SNVs in introns (P_{iin})	0.200	20% of SNVs in introns are assumed to lead to AI, which is unlikely.	
Impact on transcription SNVs in regulatory regions (P_{isr})

Impact on transcription SNVs in regulatory regions (P_{isr})	0.200
20% of SNVs in regulatory regions are assumed to lead to AI, which is unlikely.	

Frequency of SNVS in exons (P_{fse})

Frequency of SNVS in exons (P_{fse})	0.015
Empirical estimations. (Druce, 2021)	

Frequency of SNVs in introns (P_{fsi})

Frequency of SNVs in introns (P_{fsi})	0.261

Frequency of SNVs in regulatory regions (P_{fsr})

Frequency of SNVs in regulatory regions (P_{fsr})	0.020

Probability of impactful cis SNV in a given gene (P_{scis})

Probability of impactful cis SNV in a given gene (P_{scis})	1-(1-P_{fsi}^{1-n/2}) = (1-P_{fsi}^{1-n/2})^{1-n/2}
4.64*10^{-4}	

Mutations in trans

Transcription factors

Number of transcription factors	1,500
(Zhou, Liu, Xia, Gong, Feng, Liu et al., 2017)	

Probability of affecting transcription in trans. Only mutations changing the protein (exonic non-synonymous) were assumed to impact the transcription of a gene in trans (if they affect a region of the protein that interacts with the alleles) (P_{TFtrans})

Probability of affecting transcription in trans. Only mutations changing the protein (exonic non-synonymous) were assumed to impact the transcription of a gene in trans (if they affect a region of the protein that interacts with the alleles) (P_{TFtrans})	0.2
Overestimation. Gene-specific transcription factors are relatively small (~50 kDa/1.35 kb). Promoters typically recognize binding sites of 10 bp (5-31 bp). The homeobox sequence encodes the homeodomain, a globular domain of about 60 amino acids that normally functions as a DNA-binding domain. That's roughly 13% of the TF.	

Probability of interfering with AI (if the mutation and SNP are close) (P_{TFtransAI})

Probability of interfering with AI (if the mutation and SNP are close) (P_{TFtransAI})	0.5
Overestimation.	

Number of transcription factors regulating a gene (n_{tfg})

Number of transcription factors regulating a gene (n_{tfg})	58
Overestimation. 90% of genes have between 0 and 26 transcription factor binding sites. The maximum number is 58. (Hurst, Sachenkova, Daub, Forrest, Huminecki, 2014)	

Probability of impactful mutation from a transcription factor gene (P_{TFtrans})

Probability of impactful mutation from a transcription factor gene (P_{TFtrans})	1-(1-P_{fsi} * P_{TFtrans}^{1-n/2})
1.95*10^{-4}	0.2

RNA binding proteins

Number of RNA binding proteins	1,870
The database contains 292 mouse RNA-seq datasets for a comprehensive list of 187 RNA-binding proteins (RBPs). These RBPs account for only 10% of all known RBPs annotated in Gene Ontology, indicating that most are still unexplored using high-throughput sequencing. (Li, Deng, Vieira, Thomas, Costa, Tseng et al., 2018)	

Assume only mutations changing the protein (exonic non-synonymous) can impact the transcription of a gene in cis if they affect a region of the protein that interacts with the SNP distinguishing the two alleles. (P_{RNAptrans})

Assume only mutations changing the protein (exonic non-synonymous) can impact the transcription of a gene in cis if they affect a region of the protein that interacts with the SNP distinguishing the two alleles. (P_{RNAptrans})	0.2

29
Probability of interfering with AI (if the mutation and SNP are close) \((P_{RNA\text{ptrans}AI})\)	0.1
Number of RNA binding proteins regulating a gene \(\left(n_{\text{rnap}}\right)\)	197
On average, a human mRNA transcript has 197 RBP binding sites (median 85 binding sites).	
Probability of impactful mutation from an RNA protein gene \((P_{RNA\text{ptrans}})\) \(= 1 - (1 - P_{icis}^* P_{scis}^* P_{Tf\text{trans}}^* P_{RNA\text{ptrans}AI}) \left(1 - P_{ise}^* P_{RNA\text{ptrans}}^* P_{RNA\text{ptrans}AI}^* n_{\text{rnap}} / n_{\text{g}} \right)^n \)	\(1.38 \times 10^{-4}\)
REGULATORY RNAs (miRNA, snRNA, miscellaneous small noncoding, and lncRNA)	
The number of RNA regulatory RNAs \(\left(n_{\text{rnareg}}\right)\)	3,918
(Isakova, Fehlmann, Keller, & Quake, 2020; Zhou, Wan, Jiang, Liu, Qiang, & Sun, 2020)	
Assume only mutations changing the RNA (exonic) can impact the transcription of a gene in cis if they affect a region of the RNA that interacts with the two alleles \((P_{RNA\text{regtrans}})\)	0.15
Informed assumption.	
Probability of interfering with AI (if the mutation and SNP are close) \((P_{RNA\text{regtrans}AI})\)	0.5
Overestimation.	
The average number of regulatory RNAs regulating a gene \(\left(n_{\text{rnareg}}\right)\)	195
(Genmarino, D'Angelo, Dharmalingam, Fernandez, Russolillo, Sanges et al., 2012)	
Probability of impactful mutation from a regulatory RNA gene \((P_{RNA\text{regtrans}})\) \(= 1 - (1 - P_{icis}^* P_{scis}^* P_{Tf\text{trans}}^* P_{RNA\text{regtrans}AI}) \left(1 - P_{ise}^* P_{RNA\text{regtrans}}^* P_{RNA\text{regtrans}AI}^* n_{\text{rnareg}} / n_{\text{g}} \right)^n \)	\(4.92 \times 10^{-4}\)
PROBABILITY OF AT LEAST ONE MUTATION IMPACTING AI IN A GIVEN GENE \((P_{AI})\) \(= 1 - (1 - P_{icis}^*)(1 - P_{scis}^*)(1 - P_{Tf\text{trans}}^*)(1 - P_{RNA\text{ptrans}}^*)(1 - P_{RNA\text{regtrans}}^*)\)	\(1.41 \times 10^{-3}\)
Considering \(P_{AI}\) and the binomial distribution, the probability of finding 4 animals in 5 with an AI deviating from 0.5 (in any direction) for a given gene (as observed for \(Pkp3\)) is:	
0.001 alpha value with Bonferroni correction for the total number of analyzed genes (7,088) is \(1.4 \times 10^{-6}\)	1.97 \times 10^{-11}\)
Supplementary Table 6. Pkp3 AI data from the 28 libraries. We emphasize the concordance of the AI data between replicas of the same samples (3rd and 4th columns; $r^2=0.987$, $P= 1.577\times10^{-14}$) and between B and T cells (AI average, in red; $r^2=0.976$, $P= 0.0123$) from the same animal (E13, in bold). The dispersion (standard deviation) of the monoclonal and polyclonal AI values for B cells is distinct (asterisks, F test, P-value = 0.0155).

Clonality	Sample	AI 1	AI 2	Average	Mean	STD
B cells						
nonclonal	Control	0.426	0.472	0.449	-	-
monoclonal	E13.1	0.451	0.431	0.441		
	E13.2	0.397	0.392	0.394		
	E6.1	0.313	0.323	0.318		
	E6.2	0.467	0.432	0.450		
	E15.2	0.560	0.554	0.557		
polyclonal	E13.24	0.417	0.435	0.426	0.380	0.373*
	E13.29	0.946	0.939	0.943		
	E6.42	0.148	0.101	0.124		
	E6.43	0.842	0.830	0.836		
	E15.10	0.176	0.185	0.181		
T cells						
nonclonal	Control	0.432	0.478	0.455	-	-
polyclonal	E13.1	0.531	0.535	0.533	0.464	0.097
	E13.2	0.370	0.421	0.395		
monoclonal	E13.24	0.433	0.411	0.422	0.708	0.404
	E13.29	0.987	1.000	0.994		
Supplementary Figures

Supplementary Figure 1. Ly5.1 and Ly5.2 pan-leukocytic markers were used to distinguish recipient and donor cells in reconstituted animals, respectively. Ly5.1 and Ly5.2 do not label the CAST progenitor line, and when CAST is crossed with B6Ly5.1/Ly5.1 or B6Ly5.2/Ly5.2 to produce the recipient and donor F1 animals, respectively, the recipient and donor cells are distinguishable by these two markers. Blood samples of progenitor and descendants (F1) were lysed for red cells, stained with FITC-conjugated anti-Ly5.2 and PE-conjugated anti-Ly5.1, and analyzed using FACSCanto.
Supplementary Figure 2. Percentages of chimerism identified in the blood of reconstituted animals for 16 experiments at 12 weeks post-injection (orange dots, monoclonal animals; blue dots, polyclonal animals). An animal was considered reconstituted if the chimerism percentage was above 1%. The sequenced samples in this study belong to experiments 6, 13, and 15 (marked with asterisk (*)).
Supplementary Figure 3. Representative plots of pre-sorted and post-sorted B/T-cell populations of an animal reconstituted with a single HSC. Cells from the spleen and thymus of recipient animals were isolated, stained for B-cell markers with PE anti-Ly5.2, FITC anti-Ly5.1, and PE-Cy7 anti-CD19 and APC anti-IgM (spleocytes), or T-cell markers with PE-Cy7 anti-CD4 and BV605 anti-CD8 (thymocytes), and sorted on a FACS Aria. The cells were gated for PI⁻ to exclude dead cells and on Ly5.2⁺/Ly5.1⁻ to obtain pure donor cells, and then for CD19⁺/IgM⁺ to select B-cells or for CD4⁺/CD8⁺ to select for T-cells. The purity of sorted cells was assessed by analyzing 150–250 of the sorted cells.
Supplementary Figure 4. Monoclonality screening was used to confirm if the recipient system was reconstituted with a single HSC. The cDNA Sanger sequencing chromatograms cover a region with two SNPs in the Xist locus that allow us to assign the Xist transcript to the CAST or B6 X chromosome. Due to XCI, when a single cell is used for the reconstitution, a single peak is expected in the position of the SNP; when multiple cells were used for reconstitutions, two peaks should be observed in each of the SNP positions. Samples E6.1, E6.2, E13.1, E13.2 and E13.5 are cells expanded after the injection of multiple HSCs (polyclonal samples), samples E6.42, E6.43, E13.24, E13.29 and E15.10 are cells expanded after the injection of a single HSC (monoclonal samples).
Supplementary Figure 5. Estimation of donor population contamination with recipient cells. (A) Identification and cDNA Sanger sequencing focusing on three different SNPs for the *Ly5* gene that distinguish two pan-leukocytic markers, *Ly5.1* and *Ly5.2*, present in the recipient and donor animals, respectively. CAST and B6 *Ly5.2* loci are indistinguishable, but B6 *Ly5.1* has different variation, allowing the estimation of the level of recipient cell contamination in the sorted donor cell populations. (B) Percentages of recipient cells (Ly5.1+ cells) estimated in the sorted donor cell populations based on next-generation sequencing results. Nucleotide bases for *Ly5.1* and *Ly5.2* were counted for each SNP position. The bar corresponds to the average of two replicates. The dashed line (0.5%) represents the percentage of artifactual SNPs due to errors introduced by sequencing, which was estimated by sequencing of an unmanipulated donor mouse.
Supplementary Figure 6. Imprinted genes expressed in B cells or T cells in this study. The list of imprinted genes was retrieved from https://www.geneimprint.com and from Tucci et al., 2019. A total of 66 imprinted genes were expressed (55 in B cells and 62 in T cells), out of 167 imprinted genes discoverable in the annotation file used in this study (ftp://ftp.ensembl.org/pub/release-68/gtf/Mus_musculus.GRCm38.68.gtf). Genes highlighted in purple are randomly biased in B cells and T cells. Genes highlighted in light blue or light red could have tissue-specific interest, although not necessarily reaching our criteria for “randomly biased”. Genes in bold were classified as randomly biased. Genes with low expression levels (<10 TMM-normalized counts) and genes suspected of LOH (detected by WES) were not included. This figure is related to Supplementary Table 2.
Supplementary Figure 7. Identification of XCI escapees. (A), (B) AI of X-linked genes for B and T cells. As a convention, an AI=1 means that the gene is 100% expressed from the allele of the inactive chromosome X (Xi); Xi allelic imbalance=1 means that the gene is 100% expressed from the inactive X-linked allele; Xi allelic imbalance=0 means that only the active X-linked allele was detected. Dots represent genes with expression higher than 10 TMM-normalized counts and only genes that were statistically different from the threshold at least once are shown. Yellow dots represent monoclonal samples; dotted violet stroke surrounding yellow dots denote statistical significance for that sample. Red dots represent the median of the AI observed for polyclonal and control samples (which are otherwise excluded from this top panel). Statistical significance was calculated by comparison of the AI with the sample-corrected threshold using binomial test and QCC correction. The threshold was calculated per sample, as 0.1 (which is the value usually found in the literature) + the value of the median of AI of all X-linked genes in the sample. (C), (D) Abundance (TMM-normalized counts) of the same genes and same samples represented in (A), (B). In addition, individual polyclonal and control samples are shown, as well as samples with abundance <10. Violet dots represent the monoclonal samples in which the AI significantly deviates from the sample-corrected threshold. Yellow dots represent the other monoclonal samples, blue dots, the polyclonal samples, and black dots are the control samples. Genes in violet (x-axis) were identified as escapees using three criteria: 1) only samples with abundance higher than 10 were considered; 2) the median of AI in the control samples (polyclonal and control samples) was balanced (0.5±0.2); and 3) the AI of the gene is statistically different from the threshold in at least two samples, irrespective of the tissue.
Supplementary Figure 8. Pairwise comparisons of AI between animals for B and T cells, with values of Pearson’s coefficient correlation and the number of genes with a significant differential AI after applying QCC correction on the binomial tests. Abundance values are TMM-normalized counts.
Supplementary Figure 9. Dot plot showing the AI standard deviation (SD) of five B-cell monoclonal samples (x-axis) against the AI SD of five polyclonal samples (y-axis). Dashed vertical and horizontal lines - arbitrarily set at an AI SD of 0.15 - represent the threshold above which genes were considered as potentially intrinsically imbalanced. Dots represent genes, black-circled dots highlight genes with the highest AI variance among monoclonal samples in the autosomes (from Figure 4A), while pink-circled dots denote the X-linked genes (control). In contrast to Figure 4A, here are shown all genes, and not only those statistically significant after QCC correction in at least one pairwise comparison (see Figure 3 and Supplementary Figure 8 - grey genes are included, not only the ones with at least one red dot). As in Figure 4A, only genes expressed in all the 10 B-cell samples were kept, and genes with evidence of nonrandom (genetic or imprinted) AI were excluded.
Supplementary Figure 10. Pairwise comparisons of AI between Abelson-immortalized B-cell clones, with values of Pearson’s coefficient correlation and the number of genes with a significant differential AI after applying QCC correction on the binomial tests. Abundance values are TMM-normalized counts.
Supplementary Figure 11. Location of 14 genes with persistent clone- and allele-specific autosomal transcriptional states across distributions of locus size, open reading frame (ORF) size, and expression in long-term hematopoietic stem cells (LT-HSCs), including all protein-coding genes. Gene sizes were obtained from the latest release of the gencode mouse genome annotations downloaded GTF file (http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencode.vM27.annotation.gtf.gz) with custom scripts. ORFs were generated from the downloaded gencode transcript
sequences fasta file (https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencode.vM27.transcripts.fa.gz) using the orfipy tool (Singh & Wurtele, 2021) with the standard codon table and default parameters. The longest ORF for each gene was plotted for distribution. Expression in LT-HSC was obtained from the Immunological Genome Project (https://www.immgen.org/), GEO:GSE109125. *Locus* and expression plots were zoomed-in for more fitting representation. The blue lines correspond to genes with stable allele-specific transcription through HSC differentiation and the red line corresponds to the gene *Pkp3*.
References

Andergassen, D., Dotter, C. P., Wenzel, D., Sigl, V., Bammer, P. C., Muckenhuber, M., et al. (2017). Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife, 6, e25125. https://doi.org/10.7554/eLife.25125

Bürglin, T. R., & Affolter, M. (2016). Homeodomain proteins: an update. Chromosoma, 125(3), 497-521. https://10.1007/s00412-015-0543-8

Druce, M. (2021). The impact of ageing, replication and stress on genome stability in hematopoietic stem cells. Ph.D. dissertation. Ruperto Carola University, Heidelberg. Germany. https://doi.org/10.11588/heidok.00029501

Gennarino, V. A., D'Angelo, G., Dharmalingam, G., Fernandez, S., Russolillo, G., Sanges, R., et al. (2012). Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome research, 22(6), 1163–1172. https://doi.org/10.1101/gr.130435.111

Hurst, L. D., Sachenkova, O., Daub, C., Forrest, A. R., & Huminiecki, L. (2014). FANTOM consortium. A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biology, 15(7), 413. https://10.1186/s13059-014-0413-3

Isakova, A., Fehlmann, T., Keller, A., & Quake, S. R. (2020). A mouse tissue atlas of small noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25634–25645. https://doi.org/10.1073/pnas.2002277117

Li, J., Deng, S. P., Vieira, J., Thomas, J., Costa, V., Tseng, C. S., et al. (2018). RBPMetaDB: a comprehensive annotation of mouse RNA-Seq datasets with perturbations of RNA-binding proteins. Database: the journal of biological databases and curation, 2018, bay054. https://doi.org/10.1093/database/bay054

Liu, Y., Pan, C., Kong, D., Luo, J., & Zhang, Z. (2020). A Survey of Regulatory Interactions Among RNA Binding Proteins and MicroRNAs in Cancer. Frontiers in genetics, 11, 515094. https://doi.org/10.3389/fgene.2020.515094

Mendelevich, A., Vinogradova, S., Gupta, S., Mironov, A. A., Sunyaev, S. R., and Gimelbrant, A. A. (2021). Replicate sequencing libraries are important for quantification of allelic imbalance. Nat. Commun. 12, 3370–3382. https://doi.org/10.1038/s41467-021-23544-8.

Ramsköld, D., Wang, E. T., Burge, C. B., & Sandberg R. (2009). An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Computational Biology, 5(12), e1000598. https://10.1371/journal.pcbi.1000598

Singh, U., & Wurtele, E. S. (2021). orfipy: a fast and flexible tool for extracting ORFs. Bioinformatics, 37(18), 3019–3020. https://doi.org/10.1093/bioinformatics/btab090

Stewart, A. J., Hannenhalli, S., & Plotkin, J. B. (2012). Why transcription factor binding sites are ten nucleotides long. Genetics, 192(3), 973-85. https://10.1534/genetics.112.143370
Tucci, V., Isles, A. R., Kelsey, G., Ferguson-Smith, A. C., Bartolomei, M. S., Benvenisty, N., et al. (2019). Genomic Imprinting and Physiological Processes in Mammals. Cell 176, 952–965. https://doi.org/10.1016/j.cell.2019.01.043.

Zhou, Q., Liu, M., Xia, X., Gong, T., Feng, J., Liu, W., et al. (2017). A mouse tissue transcription factor atlas. Nature Communications, 8, 15089. https://10.1038/ncomms15089

Zhou, Q., Wan, Q., Jiang, Y., Liu, J., Qiang, L., & Sun, L. (2020). A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. Cell reports, 31(8), 107694. https://doi.org/10.1016/j.celrep.2020.107694