Molecular Cloning and Induced Expression of Six Small Heat Shock Proteins Mediating Cold-Hardiness in *Harmonia axyridis* (Coleoptera: Coccinellidae)

Hui-Juan Wang 1†, Zuo-Kun Shi 1†, Qi-Da Shen 1, Cai-Di Xu 1, Bing Wang 2, Zhao-Jun Meng 3, Shi-Gui Wang 1, Bin Tang 1* and Su Wang 2*

1 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 2 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China, 3 College of Forestry, Northeast Forestry University, Harbin, China

The main function of small heat shock proteins (sHSPs) as molecular chaperones is to protect proteins from denaturation under adverse conditions. Molecular and physiological data were used to examine the sHSPs underlying cold-hardiness in *Harmonia axyridis*. Complementary DNA sequences were obtained for six *H. axyridis* sHSPs based on its transcriptome, and the expression of the genes coding for these sHSPs was evaluated by quantitative real-time PCR (qRT-PCR) in several developmental stages, under short-term cooling or heating conditions, and in black and yellow females of experimental and overwintering populations under low-temperature storage. In addition, we measured water content and the super cooling and freezing points (SCP and FP, respectively) of *H. axyridis* individuals from experimental and overwintering populations. The average water content was not significantly different between adults of both populations, but the SCP and FP of the overwintering population were significantly lower than that of the experimental population. Overall, the six sHSPs genes showed different expression patterns among developmental stages. In the short-term cooling treatment, *Hsp16.25* and *Hsp21.00* expressions first increased and then decreased, while *Hsp10.87* and *Hsp21.56* expressions increased during the entire process. Under short-term heating, the expressions of *Hsp21.00*, *Hsp21.62*, *Hsp10.87*, and *Hsp16.25* showed an increasing trend, whereas *Hsp36.77* first decreased and then increased. Under low-temperature storage conditions, the expression of *Hsp36.77* decreased, while the expressions of *Hsp21.00* and *Hsp21.62* were higher than that of the control group in the experimental population. The expression of *Hsp36.77* first increased and then decreased, whereas *Hsp21.56* expression was always higher than that of the control group in the overwintering population. Thus, differences in sHSPs gene expression were correlated with the *H. axyridis* forms, suggesting that the mechanism of cold resistance might differ among them. Although, *Hsp36.77*, *Hsp16.25*, *Hsp21.00*, and *Hsp21.62* regulated cold-hardiness, the only significant differences between overwintering and experimental populations were found for *Hsp16.25* and *Hsp21.00*.

Keywords: *Harmonia axyridis*, super cooling point, freezing point, cold-hardiness, small heat shock protein, qRT-PCR, gene expression
INTRODUCTION

Harmonia axyridis (Coleoptera: Coccinellidae) has strong predation ability on aphids, spider mites, mealy bugs, and other important pests, thus being an important natural enemy (Koch, 2003). Due to its use in agricultural productions worldwide, it is now a cosmopolitan invasive species causing negative ecological impacts (Koch, 2003; Wang et al., 2015). The survival of *H. axyridis* winter adults is an important factor affecting population’s offspring (Zhao et al., 2008). Therefore, several studies on cold hardiness and overwintering strategies, as well as on the relationship between seasonal phenotypic plasticity and cold temperatures, have been developed in this species (Koch et al., 2004; Labrie et al., 2008; Wang et al., 2009; Berkvens et al., 2010; Michie et al., 2011; Ruan et al., 2012).

Under natural conditions, temperature greatly influences insect growth and development, their basic behavior, and evolutionary path (Lee and Denlinger, 1991). Lee (1989) defined cold tolerance as the survival ability of a living creature exposed to low temperature, for a long or short time, according to seasonal environmental changes, genetic factors, nutritional status, and the length of exposure to low temperature. Insects have evolved a variety of cold-resistance measures (Jing and Kang, 2002), mainly including ecological (or behavior) and physiological aspects. Whereas, the former include migrating or hiding to avoid the damages caused by low temperature, the latter include regulating the body's metabolic mechanisms and the accumulation of cold resistant compounds such as glycerol, trehalose, and polyol, among others (Watanabe, 2002; Guo et al., 2006; Gagnon et al., 2013). Many studies on insects' cold tolerance used the super cooling point (SCP) as an important indicator of the strength of cold tolerance (Nedved et al., 1998; Renault et al., 2002; Koch et al., 2004; Colinet et al., 2006). In natural conditions, insects experience a process of cold acclimation before winter that increases cold tolerance, helping to withstand the low temperature environment (Leather et al., 1993). Experiments showed that the cold tolerance of *H. axyridis* overwintering populations was higher than that of summer populations, due, to some extent, to winter acclimation (Zhao et al., 2010). Studies also indicated that insects moderating cold acclimation before low temperature stress have higher survival rate, lower lethal temperature, prolonged half-lethal time, and decreased SCP (Fields et al., 1998; Renault et al., 2004; Ma et al., 2006; Wang et al., 2006).

Heat shock proteins (HSPs) are highly conserved amino acid sequences, which are widely found in microorganisms, plants, and animals. They function as molecular chaperones to protect proteins from being denatured in high temperature stress (Montfort et al., 2001; Sun and MacRae, 2005), but also protect proteins under cold, drought, oxidation, hypertonic stress, UV, and heavy metals exposure (Dasgupta et al., 1992; Waters et al., 2008; Meijering et al., 2012; Senf, 2013), or under high population density (Wang et al., 2007). The classification of HSPs into five families, namely HSP100, HSP90, HSP70, HSP60, and small HSPs (sHSPs; Carper et al., 1987; Kim et al., 1998), is mainly based on their molecular weight and homologs relationships. With the exception of sHSPs, which are more diverse than the other HSPs, all these families are conserved among organisms (Li et al., 2009). As a family of molecular chaperones, small heat shock proteins (sHSPs) are characterized by a low subunit molecular mass (12–43 kDa), a conserved a-crystallin domain, and for forming large oligomers (Zhang et al., 2015). Small HSPs are conserved across species and play an important role in various developmental, biotic, and abiotic stresses (Bakthisaran et al., 2015; Pandey et al., 2015). The number of genes encoding sHSPs varies greatly among organisms, from as few as one to as many as 19 (Haslbeck et al., 2005). Small HSPs are widely distributed across tissues and play an important role in cell survival under stress conditions (Bakthisaran et al., 2015). The reversible dissociation of the homo-oligomers formed by sHSPs has been reported as important for their enhanced chaperone activity (Haslbeck et al., 1999, 2008).

Since their first description in fruit flies, great advances in the study of HSPs revealed their high conservation throughout evolution, suggesting they might have a vital role in protecting cells from injury (Luo et al., 2007). As molecular chaperones, HSPs participate in protein folding and degradation and in the transport of intracellular material. When stimulated, HSPs can promote protein folding, recovering their original spatial structure and biological activity. In the absence of external stimulation, HSPs can also promote peptide chain folding and ligation. Being a survival gene, Hsp70 can be rapidly expressed to build up protection against several cellular stresses, including elevated temperatures, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation (Yong et al., 2015). In addition, HSP90 has emerged as a major pharmaceutical target in cancer therapy, and it has been proven responsible for indirectly inducing multiple pathways leading to angiogenesis and metastasis in cancer (Kim et al., 2015; Sharma et al., 2016).

Heat shock proteins are ubiquitously present in cells and can modulate several cellular functions; inhibition of Hsp27 and Hsp40 potentiates 5-fluorouracil and carboplatin mediated cell killing in hepatoma cells (Sharma et al., 2009). As different classes of HSPs play several roles in governing proper protein assembly, folding, and translocation (Hightower, 1991; Hartl, 1996), the regulation of their synthesis establishes a unique defense system to maintain cellular protein homeostasis and to ensure cell survival (Hartl, 1996).

The elytra of *H. axyridis* adults have a rich color, usually black (melanic) or yellow (non-melanic) stained with red, orange, or black dots (Dobzhansky, 1933), which results from a series of expressed alleles (Tan and Li, 1934; Tan, 1946). Most of these alleles are rare in *H. axyridis* populations, with a combined frequency of <1%, except for the four major alleles after which the four major forms of *H. axyridis* are named—f. *conspicua*, f. *spectabilis*, f. *axyridis*, and f. *sucinea* (Michie et al., 2010). Because stain ratios differ among areas and seasons within the same area (Heimpel and Lundgren, 2000; Seo and Youn, 2000; Wang et al., 2009; Michie et al., 2011), environmental factors might lead to such elytral diversity (Tang et al., 2012). In the north of China, *H. axyridis* melanic and non-melanic types vary seasonally: in the summer adults are mainly black and the number of yellow type adults significantly increases in the autumn (Wang et al., 2009); in winter, the proportion of
yellow type *H. axyridis* was significantly higher than that of black adults. To survive through the cold winter, *H. axyridis* individuals move to concealed and sheltered locations where they aggregate, creating a protective microclimate in which insects experience less extreme temperatures than in the surrounding areas (Ruan et al., 2010; Durieux et al., 2015). In Northeast China, adults aggregate in some fixed locations where they overwinter (Wang et al., 2011). Although, pre-wintering and overwintering *H. axyridis* populations increase cold tolerance and compounds’ storage during extended periods at low temperature (Ruan et al., 2012), the changes occurring in their metabolism to achieve cold tolerance in winter have rarely been reported. Therefore, the water content, SCP, and freezing point (FP) of experimental and overwintering *H. axyridis* populations were obtained to analyze their cold tolerance. Six sHSPs were cloned and their differential expression at several developmental stages, short-term cooling temperature stress, and low-temperature storage conditions was determined, to study the potential molecular mechanisms of cold resistance in *H. axyridis*.

MATERIALS AND METHODS

Insects

Experimental populations of *H. axyridis* were collected from the Lab of Natural Enemy Research, Beijing Academy of Agriculture and Forestry Science, and reared and maintained in our laboratory over a 3-year period. Non-melanic and melanic populations were separated, maintained at 25°C, 70% relative humidity, and 16:8 h (light:dark) photoperiod, and fed *Aphis medicaeinus*. At each molt, developmental stages were synchronized by collecting new larvae, pupae, or adults. Overwintering populations were collected from Heilongjiang province, Northeast of China, in 2015. After *H. axyridis* elytra-staining stabilized, adults were divided into black (melanic) and yellow (non-melanic) types, according to their elytra background.

Water Content, SCP, and FP Determination

The wet and dry weights of each insect within each group (*n* = 15) were determined, and the water content of each insect’s body was calculated as the difference between wet and dry weight (weight of body water) divided by the wet weight.

The thermocouple method was used to measure SCP and FP, by determining latent heat release (Ju and Du, 2002). As the insect’s body temperature cools below the SCP, body fluids begin to freeze spontaneously. A temperature probe was fixed on the back of each *H. axyridis* individual and connected to a computer, which automatically recorded and processed body temperature variations. *H. axyridis* were placed in a refrigerator and their body temperature declined with decreasing temperature down to a point where it stopped decreasing and began to rise. This temperature is the SCP and that at which body temperature begins to decline again is the FP (Liu et al., 2005). A cooling curve was drawn, and the SCP was read from it.

Cloning Six sHSPs Genes

In our previous study (Tang et al., 2017), two *H. axyridis* groups were exposed to normal and low temperature conditions (5°C) for 2 h. These groups were named HaRT_Trans and HaCS_Trans, respectively, and their transcriptome sequencing and analysis revealed partial sequences of six *shsps* genes. In the present study, total RNA was isolated from *H. axyridis* using TRIzol® reagent (Invitrogen, Shanghai, China), and first-strand cDNA synthesis was carried out using a PrimeScript RT® with gDNA Eraser kit (TaKaRa, Dalian, China). Based on the six sHSPs found in the previous study, specific primers were designed and used to obtain full length cDNA sequences by Rapid Amplification of cDNA Ends (RACE) technology, together with a SMART™ kit (TaKaRa) and following the manufacturer’s protocol. The resulting PCR products were separated by electrophoresis on 1.0% agarose gels, and the cDNA fragments of interest were purified using a DNA gel extraction kit (OMEGA, Hangzhou, China). Purified DNA was ligated into a pMD18-T vector (TaKaRa) and sequenced using the Sanger method.

Sequence and Phylogenetic Analysis

Nucleic acid sequences of *H. axyridis* sHSPs were queried for similar sequences on the National Center for Biotechnology Information (NCBI). Multiple sHSPs sequences, belonging to *H. axyridis* and other insects, were aligned using ClustalW (Julie et al., 2002), and a neighbor-joining (NJ) phylogenetic tree was constructed in Mega 7.0 software and evaluated using 1000 bootstrap replications.

Expression of sHSPs Genes in Different Developmental Stages

The experimental population was used in this trial. Total RNA was extracted from larvae, pre-pupae, pupae, and adults (four individuals from each developmental stage; collected 1–3 days after molting or 2 h after eclosion) as described in the previous section. After cDNA synthesis (as described in the previous section), the relative expression of sHSPs genes was detected by quantitative real-time PCR (qRT-PCR). Primers used in qRT-PCR were designed based on the conserved regions of sHSPs genes from differently colored *H. axyridis* (*Table 1*). Details of the qRT-PCR are given below, in the section “Quantitative RT-PCR.”

Short-Term Cooling and Heating

The experimental population was used in this trial. Lee and Denlinger (1991) found that rapid cooling contributed to enhance cold-hardiness in arthropods. As the coming of winter or spring is a process of gradual cooling or warming, we designed a series of experiments using different temperatures (25, 15, 10, 5, 0, and −5°C) to measure sHSPs responses to temperature transitions. *H. axyridis* were placed in rapidly changing temperature environments. In treatment (i), hundreds of individuals were placed in plastic tubes sealed with a sponge (10 individuals per tube) and maintained at 25°C for 2 h; tubes were then rapidly cooled to 15°C, kept at this temperature for 2 h, rapidly cooled to 10°C, kept at this temperature for 2 h, and finally rapidly cooled to −5°C. Treatment (ii) involved a similar procedure, but the starting temperature was −5°C.
and individuals were heated to 25°C. As a control, 100 adults were maintained at 25°C without any cold stimulation before treatment (ii) (Shi et al., 2016). We randomly sampled three pieces of abdominal tissue from experimental insects at every changing temperature point. The above treatments were repeated three times. Total RNA isolation and cDNA synthesis were performed as described in the “Cloning six sHSPs genes” section, and details of the qRT-PCR are given below, in the “Quantitative RT-PCR” section.

Low Temperature Storage
Black and yellow females from the experimental and overwintering *Harmonia axyridis* populations stored at low temperature (5°C) were sampled at 0, 5, 10, 15, and 20 days after storage. At each time point, 5–10 individuals were removed and analyzed. The experiment was repeated three times.

Quantitative RT-PCR
Total RNA was isolated from *H. axyridis* adults after cold induction, and 1 μg total RNA was used to synthesize first-strand cDNA, as described in the “Cloning six sHSPs genes” section. The expression levels of the six sHSP genes obtained from cloning, namely *Hsp36.77*, *Hsp16.25*, *Hsp21.00*, *Hsp10.87*, and *Hsp21.56*, were estimated by qRT-PCR in a CFX96™ system, using the SsoFast™ EvaGreen® Supermix (both Bio-Rad Laboratories, Hercules, CA, USA). The qRT-PCR was performed in a 20 μl total reaction volume containing 1 μl cDNA template, 1 μl (10 μM) each primer, 7 μl RNase-free and DNase-free water, and 10 μl SsoFast™ EvaGreen® Supermix. Gene expression data was normalized using the housekeeping gene *Harp49* (*H. axyridis* ribosomal protein 49 gene, AB552923) as the internal control (Shi et al., 2016), which was amplified using the primers Harp49-qF (5′-GGGATCGGCTATGGGAAAACTC-3′) and Harp49-qR (5′-TACGATTTTGATCAACAGT-3′). Primers for the six sHSPs genes of *H. axyridis* were designed to target their unique regions; the annealing temperature of each primer pair is shown in Table 1. Target amplification efficiency was identical to that of the reference amplification at each annealing temperature. The cycling parameters were 94°C for 5 min (initial denaturation), followed by 40 cycles at 94°C for 15 s, 59°C for 30 s, and 65°C for 30 s; the fluorescence signal was collected at 63°C.

Expression was quantified using the ΔΔCt relative method (Shi et al., 2016).

Statistical Analysis
Data normality and variance homogeneity was evaluated based on three replicates at each temperature point. A multiple factorial three-way analyses of variance (ANOVA) was used to evaluated differences in water content, SCP, and FP among groups, considering color, treatments, and sex as independent factors. The expressions of sHSPs genes during cooling or heating processes were analyzed in IBM SPSS 22 (IBM Corporation, Armonk, NY, USA), and multiple comparisons of means were conducted using Tukey’s test. Differences between means were considered significant when *P* < 0.05, and extremely significant when *P* < 0.01.

Primer name	Nucleotide sequences (5′-3′)
Ha-rp49-QF	QGGATCGGCTATGGGAAAACTC
Ha-rp49-QR	TACGATTTTGATCAACAGT
Ha-Hsp58.77-F	TTCCTCAAGCGCTTCCTT
Ha-Hsp58.77-R	AACTCATGCTTCCTTCCTC
Ha-Hsp16.25-F	GACCTCAAGATACACAGA
Ha-Hsp16.25-R	TGAGCTTACCTCTTTACTTC
Ha-Hsp21.00-F	CACATAGAAAGCGACGA
Ha-Hsp21.00-R	AGCAAATCGATGTCACCC
Ha-Hsp21.62-F	TTCCTGAGACCAACATTTC
Ha-Hsp21.62-R	GTGCGTTAACGGTGATT
Ha-Hsp10.87-F	TGCCCTTGTTGGATAGA
Ha-Hsp10.87-R	TGTGGCCTTCCAQGACTT
Ha-Hsp21.56-F	AGGAGCATGGTGAGACTG
Ha-Hsp21.56-R	ACTCATTCTCTGGCAATC

RESULTS
Water Content, SCP, and FP
The average water contents of overwintering and experimental populations were 54.27 and 53.42%, respectively. There were no obvious differences between the same forms of *H. axyridis* adults belonging to overwintering or experimental populations (Figure 1A). The water content of black adults from the experimental population (56.34%) was slightly higher than that of yellow adults (50.50%), but no obvious differences between adult forms were detected in the overwintering population. There was no significant difference in water content between sexes in the overwintering or experimental populations.

The SCP and FP of the overwintering population were −17.28 and −9.89°C, respectively, whereas those of the experimental population were −11.70 and −5.74°C, respectively. For the same forms of *H. axyridis* adults, SCP and FP were significantly lower in the overwintering than in the experimental population (Figures 1B,C). Three-way ANOVA results showed there was no significant interaction between color, sex, and treatment (Table 2). Females’ SCP was significantly lower than that of males within same color *H. axyridis* adults (Figure 1B). There was a small gap in the FP and SCP of differently colored insects within the overwintering population, with the SCP and FP of black adults being slightly lower than that of yellow adults, although this difference was not significant (Table 2).

Phylogenetic Analysis of sHSPs
Among the numerous insect sHSPs genes logged into NCBI, those belonging the following representative species were selected for this study: *Tribolium castaneum*, *Drosophila melanogaster*, *Bombyx mori*, *Apis mellifera*, *Locusta migratoria*, and *Calaphellas bowringi*. Multiple protein alignments showed that *H. axyridis* sHSPs were highly homologous to that known and predicted for other insects, with HaraxHsp10.87 being 99.0% identical to TricaHsp10 (XP975179.2). Similar molecular weight sHSPs belonging to different insect species appeared in the same branch of the phylogenetic tree (Figure 2).
FIGURE 1 | Water content (A), super cooling point (B), and freezing point (C) of Harmonia axyridis in different populations. The overwintering population was obtained from Northeast China and the experimental population from Hangzhou. Bars with double asterisks indicate significant differences ($P < 0.01$).

TABLE 2 | Analysis of variance table realized by GLMM.

Source	Sum Sq	df	Mean Sq	F	Sig
Color	0.787	1	0.787	0.174	0.677
Treats	932.084	1	932.084	206.109	0
Sex	55.733	1	55.733	12.324	0.001
Color*treats	9.163	1	9.163	2.026	0.157
Color*sex	18.961	1	18.961	4.193	0.043
Treats*sex	0.08	1	0.08	0.018	0.894
Color*treats*sex	2.682	1	2.682	0.593	0.443
Error	506.496	112	4.522		
Total	26718.881	120			

$R^2 = 0.668$ (Corrected $R^2 = 0.647$).

Developmental Expression Patterns of sHSPs

According to the patterns of the six sHSPs genes determined by qRT-PCR, Hsp36.7 was continuously expressed from pupal stages to 3-day adults in the H. axyridis experimental population [$F_{(10, 25)} = 23.544, P < 0.001$; Figure 3A]. The expression of Hsp16.25 was high in adults but low in larvae and pupae [$F_{(10, 29)} = 391.653, P < 0.001$; Figure 3B], and Hsp21.00 [$F_{(10, 24)} = 18.652, P < 0.001$] and Hsp21.62 [$F_{(10, 26)} = 13.078, P < 0.001$] were expressed at higher levels in the later period of fourth-instar larvae and in early pupae than in 3-day adults (Figures 3C,D). A similar trend was found for the expression of Hsp10.87 [$F_{(10, 28)} = 14.906, P < 0.001$] and Hsp21.56 [$F_{(10, 26)} = 29.573, P < 0.001$], which were highly expressed in the later period of fourth-instar larvae (Figures 3E,F).

Expression of sHSPs under Short-Term Cooling and Heating

The mRNA levels of Hsp36.77, Hsp16.25, Hsp21.00, Hsp21.62, Hsp10.87, and Hsp21.56 determined during cooling and heating conditions in the H. axyridis experimental populations, revealed
complex patterns under cooling conditions. In the short-term cooling treatment, the expression at 25°C was used as reference. The expression of Hsp36.77 was highest at 0°C and significantly higher than that registered at −5 and 10°C $[F(5, 12) = 5.421, P = 0.023; \text{Figure 4A}]$; however, it was not significantly different from that observed in the control group (CK). The expressions of Hsp16.25 $[F(5, 11) = 7.658, P = 0.014]$ and Hsp21.00 $[F(5, 13) = 20.905, P < 0.001]$ were significantly higher at 10 and 15°C, respectively, than at other temperatures (Figures 4B,C). The expression of Hsp21.62 first increased when temperature dropped from 25 to 15°C, decreased in the following cooling to 5°C, and reached its highest level at −5°C $[F(5, 11) = 69.016, P < 0.001; \text{Figure 4D}]$; at this temperature, expression was significantly higher than at any other temperature. The expression of Hsp10.87 was highest at 10°C $[F(5, 13) = 4.032, P = 0.040; \text{Figure 4E}]$, although it was only significantly different from that obtained at 25°C. Expression of Hsp21.56 was significantly higher than that of the CK group at 10, 0, and −5°C $[F(5, 12) = 7.441, P = 0.010; \text{Figure 4F}]$.

In the short-term heating treatment, the expression of Hsp36.77 decreased when temperature changed from −5 to 10°C, increasing afterwards $[F(5, 13) = 5.946, P = 0.014; \text{Figure 5A}]$; however, expression levels were not significantly different from those registered in the CK. The expression of Hsp16.25 was significantly higher than that of the CK, especially...
FIGURE 3 | Relative expression levels of several sHSPs in *Harmonia axyridis* in different development stages. Experimental population is used for this trial. (A) *Hsp36.77*. (B) *Hsp16.25*. (C) *Hsp21.00*. (D) *Hsp21.62*. (E) *Hsp10.87*. (F) *Hsp21.56*. Changes in *H. axyridis* sHSPs mRNA levels from day 1 of fourth-instar larvae to adult stage in relation to those of *Harp49* (*H. axyridis* ribosomal protein 49 gene) were measured by quantitative real-time PCR. 4, fourth-instar larva; PP, pre-pupae; P, pupae; and A, adult. Each combination of letters and numbers represents the age of the individual at a certain developmental stage (e.g., 4.1: the 1st day of fourth-instar larva). Data are presented as means ± s.d. (*n* = 3). Bars with different letters indicate significant differences (*P* < 0.05) and used Tukey’s test, *α* = 0.05, a > b > c.

at 0 and 15°C [*F*(5, 12) = 42.868, *P* < 0.001; Figure 5B]. The expression levels of *Hsp21.00* [*F*(5, 12) = 61.788, *P* < 0.001] and *Hsp21.62* [*F*(5, 12) = 10.262, *P* = 0.004] generally increased with increasing temperature and significantly differed between temperatures below or above 10°C (Figures 5C,D). There was no significant difference in the expression of *Hsp10.87* and *Hsp21.56* [*F*(5, 14) = 2.438, *P* = 0.116] from −5 to 15°C during the heating process, but the expression level of these genes at 25°C the expression level *Hsp10.87* [*F*(5, 13) = 14.561, *P* = 0.001] was significantly higher than that obtained for the CK (Figures 5E,F).

Expression of sHSPs in Yellow and Black Forms during Low Temperature Storage

During storage at low temperature, the expression levels of sHSPs recorded at day 0 were considered the CK. The expression of *Hsp36.77* was always lower in black [*F*(4, 12) = 10.562, *P* = 0.030] and yellow females [*F*(4, 9) = 6.933, *P* = 0.028] than in the CK (Figure 6A). Compared to the CK, the expression of *Hsp16.25* in yellow females was significantly higher at days 5 and 10 [*F*(4, 9) = 35.738, *P* = 0.001], whereas in black females it was significantly higher at days 5 and 15 [*F*(4, 12) = 5.170,
The expression of *Hsp21.00* in yellow females was significantly higher than that of the CK at days 10–20 \([F(4, 9) = 4.147, P = 0.075]\), and it increased with increasing exposure to low temperature; expression levels of *Hsp21.00* in black females at days 10 and 20 were significantly higher than that of the CK \([F(4, 9) = 16.895, P = 0.004; \text{Figure 6C}]\). The expression level of *Hsp21.62* in yellow females was highest at day 5, but not significantly different from that of the CK \([F(4, 9) = 4.147, P = 0.075]\), while the expression of this gene in black females was significantly higher than that of the CK group at day 15 \([F(4, 9) = 16.895, P = 0.004; \text{Figure 6D}]\). The expressions of *Hsp10.87* [black females \(F(4, 11) = 15.007, P = 0.002\); yellow females \(F(4, 12) = 1.909, P = 0.202\)] and *Hsp21.56* [black females \(F(4, 11) = 11.074, P = 0.004\); yellow females \(F(4, 11) = 4.934, P = 0.033\)] presented a similar trend, and were generally not significantly different from those in the CK group, except in black females at day 5 (both genes) and in yellow females at day 20 (*Hsp21.56*; *Figures 6E,F*).

Analyses of expression levels in the *H. axyridis* overwintering population revealed *Hsp36.77* was highly expressed at day 10.
During the heating process, the control group (CK) comprised adults reared at an optimum temperature (25°C) without any heat stimulation. Data are presented as means ± s.d. (n = 3). Bars with different letters indicate significant differences (P < 0.05) and used Tukey’s test, α = 0.05, a > b > c.

Expression of sHSPs in Experimental and Overwintering Populations during Low Temperature Storage

Results showed that the six sHsps have different functions in the regulation of cold hardness in H. axyridis. The expression level of Hsp36.77 decreased in the experimental population (Figure 6A), expression was significantly higher at day 5 in black females [F(6, 13) = 16.136, P = 0.01] and yellow females [F(6, 15) = 420.816, P < 0.001; Figure 7A], generally differing significantly from expression levels in the control groups. In black females, the expression of Hsp16.25 was significantly higher than that of the CK group at day 5 [F(6, 13) = 10.691, P = 0.03], and in yellow females it generally increased from day 0 to day 20 (when it significantly differed from that in CK), decreasing afterwards [F(6, 13) = 19.867, P < 0.001; Figure 7B]. The highest expression level of Hsp21.00 in black females found at day 20 significantly differed from that of CK [F(6, 15) = 14.069, P < 0.001], but there were no significant differences in the expression of this gene in yellow females [F(6, 13) = 1.879, P = 0.190; Figure 7C]. The expression of Hsp21.62 was significantly highest at day 15 in yellow females [F(6, 14) = 21.062, P < 0.001] and black females [F(6, 13) = 15.579, P = 0.001; Figure 7D], whereas Hsp10.87 expression was significantly higher at day 5 in black females [F(6, 16) = 9.523, P = 0.001], but no significant differences were detected in yellow females [F(6, 19) = 1.521, P = 0.247; Figure 7E]. The expression of Hsp21.56 in yellow females was significantly higher at days 5, 10, and 40 [F(6, 16) = 3.234, P = 0.049], whereas no significant differences were detected in black females [F(6, 16) = 2.808, P = 0.072; Figure 7F].

Expression of sHSPs in Experimental and Overwintering Populations during Low Temperature Storage

Results showed that the six sHsps have different functions in the regulation of cold hardness in H. axyridis. The expression level of Hsp36.77 decreased in the experimental population (Figure 6A),
while it first increased and then decreased in the overwintering population (Figure 7A). Although, Hsp16.25 expression pattern was similar in experimental and overwintering population, in yellow females the expression of this gene first increased and then decreased while black females showed a different pattern (Figures 6B, 7B). In addition, Hsp16.25 expression increased with increasing storage time in the experimental population (Figure 6C) and presented an identical trend to Hsp36.77 and Hsp21.62 in the overwintering population (Figures 7C, D). The expression of Hsp21.62 increased in black females from the experimental population and in yellow females from the overwintering population and kept relatively high levels as storage time increased (Figures 6D, 7D). The expression levels of Hsp10.87 and Hsp21.56 were stable during storage times and similar between experimental and overwintering population (Figures 6E,F, 7E,F).

DISCUSSION

Insects are heterothermic organisms, and their survival through winter determines the perpetuation of their populations (Zhang and Ma, 2013). In temperate and cold zones, winter temperature is usually lower than the insects’ FP and their overwintering stages generally have a lower SCP than insects living in other...
zones. This is the case of *L. migratoria* eggs (−26°C), *Liromyza* spp. pupae (−19°C) (Jing and Kang, 2002), *Chrysoperla sinica* (−13°C) (Guo et al., 2006), *Ectomyelois ceratoniae* diapausing larvae (−17.3°C) (Heydari and Izadi, 2014), and *Pityogenes chalcographus* (−26.3°C) (Koštál et al., 2014). In the present study, *H. axyridis* were divided into black (melanic) and yellow (non-melanic) forms according to the background of their elytra, and into experimental and overwintering populations according to their source. The SCP and FP of the overwintering population was significantly lower than that of the experimental population for the same forms of *H. axyridis* (Figure 1), and females had a lower SCP than males, in either black or yellow *H. axyridis* (Figure 1B). Thus, overwintering populations seem to decrease their SCP to avoid the damages caused by fluid freezing, which agrees with the previously described seasonal changes in *H. axyridis* SCP and its significant decrease in winter (Zhao et al., 2008). Some studies reported that insects with low SCP had high levels of trehalose in the winter (Heydari and Izadi, 2014; Koštál et al., 2014; Vallières et al., 2015). This is an important winter adaptation strategy for survival at low temperature. Although, we found no significant differences in average water content between experimental and overwintering populations.
(Figure 1A), previous research found seasonal variations in the water contents of male and female *H. axyridis* adults, which decreased with decreasing temperature (Zhao et al., 2008). Water loss before winter has also been reported in other insects (Nedved et al., 1998; Holmstrup et al., 1999).

The sHSPs are HSPs that function as molecular chaperones (Li et al., 2009). Their molecular weight ranges from 12 to 43 kDa and is usually below 30 kDa (Kim et al., 1998; Waters et al., 2008). In *H. axyridis*, one *Hsp90* and three *Hsp70* family genes were cloned and reported as highly conserved (Tang et al., 2010; Shen et al., 2015). The homology of *HaHsp90* with other insect *Hsp90* varied from 81 to 90%, which was the homology with *T. castaneum* (Tang et al., 2010); *HaHsp70* also had a high sequence homology with other eukaryotic *Hsp70s*, the highest also with *T. castaneum* (93%) (Yang et al., 2009; Shen et al., 2015). Insect *Hsp70s* have three signatures -“IDLGTYSCGVGV” “IFDLGGGTFDVSL,” and “IVLVMGTRPQI,” one ATP/GTP binding site motif, “AEAYLG(K/T)T,” and a “MEEVD” motif at the C terminus (Shen et al., 2015). Members of the *Hsp90* family also have an “MEEVD” motif at the C terminus, but this was not found in sHSPs (Figure S1). These were reported to have a conserved secondary structure and functional domain (Sun and MacRae, 2005), and sHSPs with similar molecular weight were found in the same branch of the phylogenetic tree (Figure 2).

Small HSPs are molecular chaperones not only under stress conditions, but also during normal development (Sun and MacRae, 2005). Under thermal and other damaging stresses, sHSPs bind to other cellular proteins protecting them from denaturation; in addition, they participate in protein folding and transportation, embryo development, and immunization mechanisms (Li et al., 2009). In addition, the overexpression of sHSPs can enhance the tolerance of cells to heat shock and to temperature changes. Under normal or stress conditions, *Hsp90* is present in the cytoplasm of all cell types, where it acts as a molecular chaperone to recover the folding state of the denatured protein (Yonehara et al., 1996). Studies have shown that sHSPs are widely distributed in insects, and are closely related to their growth and development (Sun and MacRae, 2005). In the present study, *Hsp16.25* was highly expressed in adults and *Hsp36.77* was highly expressed from 1-day pupae to 3-day adults (Figures 3A,B). A previous study reported that *HaHsp68* was highly expressed from 2-day fourth-instar larvae to 3-day adults, while *HaHsp70A* was highly expressed in larvae (Shen et al., 2015). In the present study, *Hsp21.00*, *Hsp21.62*, and *Hsp10.87* expression levels varied according to developmental stages, whereas *Hsp21.56* expression increased gradually from 2-day pupae to 3-day adults, suggesting *Hsp21.56* and *Hsp16.25* might have important functions in adults (Figure 3). Thus, sHSPs genes might play different roles during *H. axyridis* growth and development.

The expression of *Hsp70*, *Hsp74*, and *Hsp83* among the several developmental stages of *Spodoptera exigua* differed between fat body and whole body tissues (Xu et al., 2011). *Drosophila* spp. long-term exposure to 0°C induced HSPs expression in the whole body (Burton et al., 1998) and cold-shock treatment induced the expression of *Hsp90*, *Hsp70*, *Hsp40*, and some sHSPs in *Liriomyza sativae* (Huang and Kang, 2007). The expression level of SeHsp70 and SeHsp74 increased quickly at 40°C, while SeHsp83 expression increased with heat-shock exposure time. These genes were also differently expressed during cold-shock treatment at 0°C; whereas SeHsp70 was highly expressed after 15 min of cold-shock, followed by a decrease from min 15 to min 60, SeHsp74 and SeHsp83 expressions increased from min 15 to min 45 (Xu et al., 2011). When *H. axyridis* adults were subject to different low temperatures, *Hsp70* expression at 0°C was higher than that of the control group and higher than at other temperature conditions (Shen et al., 2015). Under the short-term cooling treatment performed in the present study, the expression of *Hsp16.25* increased significantly at 10°C, followed by a decrease (Figure 4B), *Hsp21.00* expression increased significantly at 15°C and then decreased (Figure 4C), and *Hsp10.87* expression was highest at 10°C (Figure 4E); *Hsp21.62* and *Hsp21.56* expressions were highest at 15, 0, and −5°C, and were always higher than that of the control group (25°C; Figures 4D,F). These results indicated that sHSPs might increase their expression to provide insects’ with cold-hardiness. Given that, during the short-term heating treatment, *Hsp21.00*, *Hsp21.62*, and *Hsp21.56* expressions increased gradually from 10 to 25°C (Figures 5C,D,F), and *Hsp10.87* expression was higher than that of the control group (at −5°C; Figure 5E), sHSPs might also play a key role in heat-stress conditions.

Populations of the ladybird *H. axyridis* contain both melanic and non-melanic forms, and changes in allele frequency in some populations suggested melanism might be advantageous in winter but costly in summer (Michie et al., 2010; Wang et al., 2011). The ratio of *H. axyridis* elytral coloring varied seasonally (Wang et al., 2009), which might be related to the protection conferred by color (Geng and Tan, 1980), and is related to temperature changes (Michie et al., 2010; Purse et al., 2015; Roy et al., 2016). Previous research indicated that black and yellow populations of *H. axyridis* might have had different roles in temperature or climatic adaptation (Roy et al., 2016), so we analyzed sHSPs expression under different storage times in black and yellow female populations, separately. In the yellow population, *Hsp16.25* and *Hsp21.62* expressions increased significantly at day 5, decreasing gradually afterwards (Figures 6B,D), while *Hsp21.00* and *Hsp10.87* expressions increased gradually (Figures 6C,E), and *Hsp21.56* expression was relatively stable, except at day 20 (Figure 6F). In the black population, *Hsp16.25*, *Hsp10.87*, and *Hsp21.56* were highly expressed at day 5, decreasing and stabilizing afterwards (Figures 6B,E,F), while *Hsp21.62* expression was higher after day 15 (Figure 6D). In the experimental population, five of the studied genes played a role during cold-temperature storage and their function varied between melanic and non-melanic forms of *H. axyridis* adults. Thus, there might be differences between cold-resistance in *H. axyridis* melanic and non-melanic forms. There are many reasons for the elytral variety observed in *H. axyridis* (Tang et al., 2012), including mating selection, so the differences found in gene expression need to be further studied.

Winter in temperate zones imposes a substantial environmental stress on arthropods (Kang et al., 2009). Many studies revealed that cold acclimation, especially between 0 and 5°C, significantly improves cold tolerance in insects (Broufas and
Koštál, 2001). Cold acclimation may induce the accumulation of cryoprotectants (such as trehalose, glycerol, and polyol; Koštál et al., 2001; Slachta et al., 2002), and the synthesis of antifreeze proteins (HSP20.5, HSP70, and HSP90; Wang et al., 2006; Feng et al., 2007). Many insects mitigate seasonal stresses by entering diapause (Dong et al., 2014). Under the low-temperature storage experiment, the overwintering black population revealed a high expression of Hsp36.77 at day 10 and of Hsp16.26 and Hsp10.87 at day 5 followed by a decrease (Figures 7A,B,E), while Hsp21.00 presented a relatively high and stable expression from day 15 to day 60 (Figure 7C). In the yellow population, Hsp21.56 was highly expressed during the 60 days of cold storage (Figure 7F), Hsp36.77 was highly expressed at day 10, Hsp16.25 at day 20, and Hsp21.62 at day 15, all followed by a decrease (Figures 7A,B,D). The high expression of these genes might promote the expression of other cold-resistant genes and protect H. axyridis, as sHSPs seem to participate in stress response under low-temperature storage. As the cold winter starts, overwintering populations are ready to survive it, because they have adapted their physiology and behavior by entering diapause, decreasing body water content and SCP, accumulating fat, finding hiding places, etc. (Zhao et al., 2008). Moreover, overwintering populations live longer than experimental populations at appropriate storage temperatures (Ruan et al., 2012).

In summary, the present study found that average water content was not significantly different between adults of both populations, but the SCP and FP of the overwintering population were significantly lower than that of the experimental population. Differences in sHSPs expression between experimental and overwintering populations were correlated with H. axyridis elytral coloring, cooling, and heating and low temperature storage, suggesting that the mechanism of cold resistance might differ among black and yellow females of H. axyridis. In addition, different sHSPs might play different roles in the cold hardness process of H. axyridis populations.

ETHICS STATEMENT
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

AUTHOR CONTRIBUTIONS
Conceived and designed the experiments: SW, ZM, S-GW, BW, and BT. Performed the experiments and analyzed the data: HW, ZS, QS, and CX. Contributed reagents/materials/analysis tools: SW, ZM, S-GW, and BT. Wrote the paper: HW, SW, and BT.

ACKNOWLEDGMENTS
This work was supported by the National Basic Research Program of China (Grant Nos. 2013CB127600), National Natural Science Foundation of China (Grant Nos. 31071731), the Beijing NOVA Program (Grant No. Z121105002512039), and the Program for Excellent Young Teachers at Hangzhou Normal University (Grant No. JTAS 2011-01-031).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fphys.2017.00060/full#supplementary-material

REFERENCES
Bakthisaran, R., Tangirala, R., and Rao, C. H. M. (2015). Small heat shock proteins: role in cellular functions and pathology. Biochim. Biophys. Acta 1854, 291–319. doi: 10.1016/j.bbadis.2014.12.019
Berkvens, N. B. J. S., Berkvens, D., Tiry, L., and Clercq, P. D. (2010). Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. J. Insect Physiol. 56, 438–444. doi: 10.1016/j.jinsphys.2009.11.019
Broufas, G. D., and Koveos, D. S. (2001). Rapid cold hardening in the predatory mite Euseius (Aptilienseus) finlandicus (Acari: Phytoseiidae). J. Insect Physiol. 47, 699–708. doi: 10.1016/S0022-1910(00)00162-1
Burton, V., Mitchell, H. K., Young, P., and Petersen, N. S. (1998). Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8, 3530–3532.
Carper, S. W., Duffy, J. J., and Gerner, E. W. (1987). Heat shock proteins in thermo tolerance and other cellular physiological processes. Cancer Res. 47, 5249–5253.
Coblenz, H., Renault, D., Hance, T., and Vernon, P. (2006). The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani. Physiol. Entomol. 31, 234–240. doi: 10.1111/j.1365-3032.2006.00511.x
Dasgupta, S., Hohman, T. C., and Carper, D. (1992). Hypertonic stress induces α B-crystallin expression. Exp. Eye Res. 54, 461–470. doi: 10.1016/0014-4835(92)90058-Z
Dobzhansky, T. (1933). Geographic variation in ladybeetles. Am. Nat. 67, 97–126. doi: 10.1086/208472
Dong, Y. C., Nicolas, D., Lei, C. L., and Niu, C. Y. (2014). Transcriptome characterization analysis of Bactrocera minax and new insights into its pupal diapause development with gene expression analysis. Int. J. Biol. Sci. 10, 1051–1063. doi: 10.7150/ijbs.9438
Durieux, D., Passotte, B., Deneubourg, J. L., Brostaux, Y., Vandereycken, A., Joie, E., et al. (2015). Aggregation behavior of Harmonia axyridis under non-wintering conditions. Insect Sci. 22, 670–678. doi: 10.1111/1744-7917.12144
Feng, C. J., Lu, W. J., Dong, Q. A., Chen, J., and Fu, W. J. (2007). Effect of low Temperature treatment on larvae of the Asian cornborer, Ostrinia furnacalis (Guenée) (Lepidoptera:Pyralidae). Acta Entomol. Sin. 50, 1–6. doi: 10.1360/aas-007-0001
Fields, P. G., Fleurat-Lessard, F., Lavenseau, L., Febvay, G., Peypelut, L., and Bonnot, G. (1998). The effect of low temperature and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitosiphon lunatus and Cryptolestes ferrugineus Coleoptera. J. Insect Physiol. 44, 955–965. doi: 10.1016/S0022-1910(98)00055-9
Gagnon, D. D., Rintamäki, H., Gagnon, S. S., Cheung, S. S., Herzig, K. H., Porvari, K., et al. (2013). Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running. Front. Physiol. 4:99. doi: 10.3389/fphys.2013.00099
Geng, Z. C., and Tan, J. Z. (1980). Several genetic problems of Harmonia axyridis. J. Nat. 3, 512–518.
Guo, H. B., Xu, Y. Y., Ju, Z., and Li, M. G. (2006). Seasonal changes of cold hardiness of the green lacewing, Chrysaorpa sinica (Tjeder) (Neuroptera: Chrysopidae). Acta Ecol. Sin. 26, 3238–3244.
Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and Heydari, M., and Izadi, H. (2014). Effects of seasonal acclimation on.

Julie, D. T., Toby, J. G., and Des, G. H. (2002). Multiple sequence alignment.

Ju, R. T., and Du, Y. Z. (2002). Mensuration of super cooling.

Holmstrup, M., Costanzo, J., and Lee, R. E. (1999). Cryoprotective and Heimpel, G. E., and Lundgren, J. G. (2000). Sexual ration of commercially.

Harmonia axyridis

Kim, K. K., Kim, R., and Kim, S. H. (1998). Crystal structure of a small heat-shock protein.

The Ecology of Insect OverWintering. Cambridge: Cambridge University Press.

Lee, R. E. (1989). Insect cold hardiness: to freeze or not to freeze. Bioscienece 39, 308–313.

Lee, R. E., and Denlinger, D. L. (1991). Insects at Low Temperature. New York: Chapman and Hall.

Li, Z. W., Li, X., Yu, Q. Y., Xiang, Z. H., Kishino, H., and Zhang, Z. (2009). The small heat shock protein (sHSP) genes in the silkworm, Bombix mori, and comparative analysis with other insect sHSP genes. BMC Evol. Biol. 9:215.

Liu, K., Peng, Z. Q., Li, W. D., Fu, Y. G., and Jin, Q. A. (2005). The super-cooling point measure of Brontispa longissima. Plant Quarantine 19, 24–26.

Luo, G. R., Chen, S., and Le, W. D. (2007). Are heat shock proteins therapeutic target for Parkinson's disease? Int. J. Biol. Sci. 3, 20–26. doi: 10.7150/ijbs.10896.

Majerus, M. E. N., and Jiggins, F. M. (2010). Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J. Evol. Biol. 23, 1699–1707. doi: 10.1111/j.1420-9101.2010.02403.x.

Michie, L. J., Mallard, F., Majerus, M. E. N., and Jiggins, F. M. (2010). Landscape and climate determine patterns of spread for all colour morphs of the alien ladybird Harmonia axyridis. J. Biogeogr. 32, 575–588. doi: 10.1111/j.1365-2699.2009.01852.x.

Nedved, O., Lavy, D., and Verhoef, H. A. (1998). Modelling the time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill-sensitive colembolan. Funct. Ecol. 12, 816–824. doi: 10.1046/j.1365-2435.1998.00250.x.

Renault, D., Nedvéd, O., Hervant, F., and Vernon, P. (2015). Identification of HSP20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl. Biochem. Biotechnol. 175, 2427–2446. doi: 10.1007/s12010-015-1429-2.

Ruan, C. C., Du, W. M., Wang, X. M., Zhang, J. J., and Zang, L. S. (2012). Effect of long-term cold storage on the fitness of pre-wintering Harmonia axyridis, (Pallas). Biocontrol 57, 95–102. doi: 10.1007/s10526-011-9414-2.

Senf, S. M. (2013). Sensitization of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 95, 105–156. doi: 10.1016/B978-0-12-381500-X.00004-X.

Senf, S. M., and Youn, Y. N. (2000). The asian lady-bird, Harmonia axyridis, is an effective control agent for the rice blast pathogen, Pyricularia oryzae. Appl. Entomol. Zool. 35, 233–239. doi: 10.1007/s10494-000-00364.

Sharma, A., Upadhyay, A. K., and Bhat, M. K. (2009). Identification of Hsp20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl. Biochem. Biotechnol. 175, 2427–2446. doi: 10.1007/s12010-014-1429-2.

Senf, S. M. (2013). Sensitization of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 95, 105–156. doi: 10.1016/B978-0-12-381500-X.00004-X.

Siddiqui, M. H., et al. (2016). Elucidation of antiangiogenic potential of Vitexin obtained from Cucumis sativus. J. Ethnopharmacol. 175, 2427–2446. doi: 10.1007/s10494-015-2265-9.

Seo, M. J., and Youn, Y. N. (2000). The asian lady-bird, Harmonia axyridis, is an effective control agent for the rice blast pathogen, Pyricularia oryzae. Appl. Entomol. Zool. 35, 233–239. doi: 10.1007/s10494-000-00364.

Sharma, A., Upadhyay, A. K., and Bhat, M. K. (2009). Identification of Hsp20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl. Biochem. Biotechnol. 175, 2427–2446. doi: 10.1007/s12010-014-1429-2.

Sensitization of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 95, 105–156. doi: 10.1016/B978-0-12-381500-X.00004-X.

Siddiqui, M. H., et al. (2016). Elucidation of antiangiogenic potential of Vitexin obtained from Cucumis sativus. J. Ethnopharmacol. 175, 2427–2446. doi: 10.1007/s10494-015-2265-9.

Sharma, A., Upadhyay, A. K., and Bhat, M. K. (2009). Identification of Hsp20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl. Biochem. Biotechnol. 175, 2427–2446. doi: 10.1007/s12010-014-1429-2.

Sharma, A., Upadhyay, A. K., and Bhat, M. K. (2009). Identification of Hsp20 gene family in wheat and barley and their differential expression profiling under heat stress. Appl. Biochem. Biotechnol. 175, 2427–2446. doi: 10.1007/s12010-014-1429-2.

Sensitization of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 95, 105–156. doi: 10.1016/B978-0-12-381500-X.00004-X.

Siddiqui, M. H., et al. (2016). Elucidation of antiangiogenic potential of Vitexin obtained from Cucumis sativus. J. Ethnopharmacol. 175, 2427–2446. doi: 10.1007/s10494-015-2265-9.

Sensitization of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 95, 105–156. doi: 10.1016/B978-0-12-381500-X.00004-X.

Siddiqui, M. H., et al. (2016). Elucidation of antiangiogenic potential of Vitexin obtained from Cucumis sativus. J. Ethnopharmacol. 175, 2427–2446. doi: 10.1007/s10494-015-2265-9.
multidirectional targeted approach to restrain angiogenic phenomena. Med. Chem. doi: 10.2174/157340641366616111512720. [Epub ahead of print].

Shen, Q. D., Zhao, L. N., Xie, G. Q., Wei, P., Yang, M. M., Wang, S. G., et al. (2015). Cloning three Harmonia axyridis (Coleoptera: Coccinellidae) heat shock protein 70 family genes: regulatory function related to heat and starvation stress. J. Entomol. Sci. 50, 168–185. doi: 10.18474/JES14-30.1

Shi, Z. K., Liu, X. J., Xu, Q. Y., Qin, Z., Wang, S., Zhang, F., et al. (2016). Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comp. Biochem. Physiol. 198B, 10–18. doi: 10.1016/j.cbpb.2016.03.002

Slachta, M., Berková, P., Vambera, J., and Kostá, V. (2002). Physiology of cold-hardiness in Harmonia axyridis. Inheritance of the elytral colour patterns in Harmonia axyridis. Genetics 31, 195–210.

Sun, Y., and MacRae, T. H. (2005). Small heat shock proteins: molecular structure and chaperone function. Cell. Mol. Life Sci. 62, 2460–2476. doi: 10.1007/s00018-005-5390-4

Tang, B., Zhu, J., Guo, H. S., Fang, D., Chen, Q. D., Zheng, X. X., et al. (2012). Studies of the diversity of multiple elytral color morphs of Harmonia axyridis (Pallas). J. Entomol. Sci. Nat. Yat. Sen. Univ. 49, 72–78.

Wang, H. S., Zhou, C. S., Guo, W., and Kang, L. (2006). Thermoperiodic acclimations enhance cold hardiness of the eggs of the migratory locust. Cryobiology 53, 206–217. doi: 10.1016/j.cryobiol.2006.06.003

Wang, S., Michaud, J. P., Tan, X. L., Michaud, J. P., Shi, Z. K., and Zhang, F. (2015). Sexual selection drives the evolution of limb regeneration in Harmonia axyridis (Coleoptera: Coccinellidae). Bull. Entomol. Res. 105, 1–8. doi: 10.1017/S000748531500036

Watanabe, M. (2002). Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol. 99, 5–9. doi: 10.14411/je.2002.002

Waters, E. R., Averermann, B. D., and Sanders-Reed, Z. (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes. Cell Stress Chaperones 13, 127–142. doi: 10.1007/s12192-008-0023-7

Xu, Q., Zou, Q., Zheng, H. Z., Zhang, F., Tang, B., and Wang, S. G. (2011). Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. 159B, 92–102. doi: 10.1016/j.cbpb.2011.02.005

Yang, C. H., Pang, H., and Zhang, F. (2009). Cloning and sequence analysis of heat shock protein70 gene in Harmonia axyridis (Pallas). J. Environ. Entomol. 2, 124–131.

Yonehara, M., Minami, Y., Kawata, Y., Nagai, J., and Yahara, I. (1996). Heat-induced chaperone activity of HSP90. J. Biol. Chem. 271, 2641–2645.

Yong, E. L., Chung, Y. H., Yi, L. L., and Ruei, M. C. (2015). MicroRNA-1 participates in nitric oxide-induced apoptotic insults to MC3T3-E1 Cells by targeting heat-shock protein-70. Int. J. Biol. Sci. 11, 246–255. doi: 10.17530/ijbs.11138

Zhang, K., Ezemaduka, A. N., Wang, Z., Hu, H., Shi, X., Yin, C. C. et al. (2015). A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci. Rep. 5:8811. doi: 10.1038/srep08811

Zhang, R., and Ma, J. (2013). Insect super cooling point and its influence factors. Tianjin. Agric. Sci. 11, 76–84. doi: 10.16380/j.kcxb.2010.02.010

Zhao, J., Qu, J. J., Zhang, F., Yin, X. C., and Xu, Y. Y. (2010). Responses of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) adults to cold acclimation and the related changes of activities of several enzymes in their bodies. Acta Entomol. Sin. 53, 147–153.

Zhou, J., Qu, J. J., Zhang, F., Chen, L., Zheng, F. Q., Zhang, F., and Xu, Y. Y. (2008). Seasonal variation in cold tolerance of the multicolored lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) adults. Acta Entomol. Sin. 51, 1271–1278. doi: 10.18308/j.2008.12.001

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Wang, Shi, Shen, Xu, Wang, Meng, Wang, Tang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.