MAXIMAL SUBGROUPS OF FINITE SOLUBLE GROUPS
IN GENERAL POSITION

ELOISA DETOMI AND ANDREA LUCCHINI

Abstract. For a finite group \(G \) we investigate the difference between the maximum size \(\text{MaxDim}(G) \) of an “independent” family of maximal subgroups of \(G \) and maximum size \(m(G) \) of an irredundant sequence of generators of \(G \).

We prove that \(\text{MaxDim}(G) = m(G) \) if the derived subgroup of \(G \) is nilpotent. However \(\text{MaxDim}(G) - m(G) \) can be arbitrarily large: for any odd prime \(p \), we construct a finite soluble group with Fitting length 2 satisfying \(m(G) = 3 \) and \(\text{MaxDim}(G) = p \).

1. Introduction

Let \(G \) be a finite group. A sequence \((g_1, \ldots, g_n)\) of elements of \(G \) is said to be irredundant if \(\langle g_j \mid j \neq i \rangle \) is properly contained in \(\langle g_1, \ldots, g_n \rangle \) for every \(i \in \{1, \ldots, n\} \). Let \(i(G) \) be the maximum size of any irredundant sequence in \(G \) and let \(m(G) \) be the maximum size of any irredundant generating sequence of \(G \) (i.e. an irredundant sequence \((g_1, \ldots, g_n)\) with the property that \(\langle g_1, \ldots, g_n \rangle = G \)). Clearly \(m(G) \leq i(G) = \max \{ m(H) \mid H \leq G \} \). The invariant \(m(G) \) has received some attention (see, e.g., [2], [9], [7], [1], [4], [5]) also because of its role in the efficiency of the product replacement algorithm [6]. In a recent paper Fernando [3] investigates a natural connection between irredundant generating sequences of \(G \) and certain configurations of maximal subgroups of \(G \). A family of subgroups \(H_i \leq G \), indexed by a set \(I \), is said to be in general position if for every \(i \in I \), the intersection \(\cap_{j \neq i} H_j \) properly contains \(\cap_{j \in I} H_j \). Define \(\text{MaxDim}(G) \) as the size of the largest family of maximal subgroups of \(G \) in general position. It can be easily seen that \(m(G) \leq \text{MaxDim}(G) \leq i(G) \) (see, e.g., [3] Proposition 2 and Proposition 3). However the difference \(\text{MaxDim}(G) - m(G) \) can be arbitrarily large: for example if \(G = \text{Alt}(5) \wr C_p \) is the wreath product of the alternating group of degree 5 with a cyclic group of prime order \(p \), then \(\text{MaxDim}(G) \geq 2p \) but \(m(G) \leq 5 \) [3] Proposition 12. On the other hand Fernando proves that \(\text{MaxDim}(G) = m(G) \) if \(G \) is a finite supersoluble group [3] Theorem 25], but gives also an example of a finite soluble group \(G \) with \(m(G) \neq \text{MaxDim}(G) \) [3] Proposition 16].

In this note we collect more information about the difference \(\text{MaxDim}(G) - m(G) \) when \(G \) is a finite soluble group. In this case \(m(G) \) coincides with the number of complemented factors in a chief series of \(G \) (see [3] Theorem 2]). Our first result is that the equality \(\text{MaxDim}(G) = m(G) \) holds for a class of finite soluble groups, properly containing the class of finite supersoluble groups (see, e.g., [8] 7.2.13)].

Theorem 1. If \(G \) is a finite group and the derived subgroup \(G' \) of \(G \) is nilpotent, then \(\text{MaxDim}(G) = m(G) \).
However, already in the class of finite soluble groups with Fitting length equal to 2, examples can be exhibited of groups G for which the difference $\text{MaxDim}(G) - m(G)$ is arbitrarily large.

Theorem 2. For any odd prime p, there exists a finite group G with Fitting length 2 such that $m(G) = 3$, $\text{MaxDim}(G) = p$ and $i(G) = 2p$.

Notice that if G is a soluble group with $m(G) \neq \text{MaxDim}(G)$, then $m(G) \geq 3$. Indeed if $m(G) \leq 2$, then a chief series of G contains at most two complemented factors and it can be easily seen that this implies that G' is nilpotent.

2. **Groups whose derived subgroup is nilpotent**

Definition 3. A family of subgroups $H_i \leq G$, indexed by a set I, is said to be in general position if for every $i \in I$, the intersection $\cap_{j \neq i} H_j$ properly contains $\cap_{j \in I} H_j$ (equivalently, H_i does not contain $\cap_{j \neq i} H_j$).

Note that the subgroups $\{H_i \mid i \in I\}$ are in general position if and only, whenever $I_1 \neq I_2$ are subsets of S, then $\cap_{i \in I_1} H_i \neq \cap_{i \in I_2} H_i$ (see, e.g., Definition 1 in [3]).

Lemma 4. Let \mathbb{F} be a field of characteristic p. Let V a finite dimension \mathbb{F}-vector space, let $H = \langle h \rangle$ where $h \in \mathbb{F}^* \text{ such that } \mathbb{F} = \mathbb{F}_p[h]$ and set $G = V \rtimes H$.

If M_1, \ldots, M_r is a set of maximal subgroups of G supplementing V, then

$$M_1 \cap \ldots \cap M_r = W \rtimes K$$

where W is a \mathbb{F}-subspace of V and K is either trivial or a conjugate H^v of H, for some $v \in V$.

Proof. By induction on r we can assume that $T_1 = M_1 \cap \ldots \cap M_{r-1} = W_1 \rtimes K_1$, where W_1 is a subspace of V and $K_1 = \{1\}$ or $K_1 = H^v$, $v \in V$. The maximal subgroup M_r is a supplement of V, so we can write $M_r = W_2 \rtimes H^w$, where W_2 is a subspace of V and $w \in V$. For shortness, set $T_2 = M_r$ and $T = T_1 \cap T_2$. Since W_1 and W_2 are normal Sylow p-subgroups of T_1 and T_2, respectively, their intersection $W = W_1 \cap W_2$ is a normal Sylow p-subgroup of T. In the case where T is not a p-group, then $T = W \rtimes K$ where K is a non-trivial p'-subgroup of T. Then K is contained in some conjugates H^v_1 and H^v_2 of the p'-subgroups of T_1 and T_2, respectively. In particular, there exists $1 \neq y \in K$ such that $y = h_1^v = h_2^v$ for some $h_1, h_2 \in H$. It follows that $1 \neq h_1 = h_2 \in C_H(v_1 - v_2)$. From $C_H(v_1 - v_2) \neq \{1\}$, we deduce that $v_1 = v_2$. Thus we have $T_1 = W_1 \rtimes H^v_1$, $T_2 = W_2 \rtimes H^v_2$ and $T = W \rtimes H^v$. \hfill \square

Corollary 5. In the hypotheses of Lemma 4, if M_1, \ldots, M_r are in general position, then

1. $r \leq \dim(V) + 1$;
2. if $r = \dim(V)+1$, then, for a suitable permutation of the indices, $\bigcap_{i=1}^{r-1} M_i = H^v$ for some $v \in V$, and $\bigcap_{i=1}^r M_i = \{1\}$.

Proof. Let $n = \dim V$. Since the subgroups M_1, \ldots, M_r are in general position, the set of the intersections $T_j = \cap_{i=1}^j M_i$, for $j = 1, \ldots, r$, is a strictly decreasing chain of subgroups. By Lemma 4, $T_i = W_i \rtimes K_i$, where W_i is a \mathbb{F}-subspace of W_{i-1} and K_i is either trivial or a conjugate of H. Note that $n-1 = \dim W_1 \geq \dim W_2 \geq \dim W_{i+1}$. Moreover, if $\dim W_i = \dim W_{i+1}$ for some index i, then $W_i = W_{i+1}$ and, since $T_i \neq T_{i+1}$, we have that
• K_1, \ldots, K_i are non-trivial;
• $K_{i+1} = \cdots = K_r = \{1\}$.

In particular there exists at most one index i such that $\dim W_i = \dim W_{i+1}$. As $\dim W_1 = n - 1$, it follows that we can have at most $n + 1$ subgroups T_i, hence $r \leq n + 1$.

In the case where $r = n + 1$, we actually have that $\dim W_i = \dim W_{i+1}$ for at least one, and precisely one, index i. This implies that $W_i = W_{i+1}$ and, setting $J = \{1, \ldots, n + 1\} \setminus \{i + 1\}$ and $T = \cap_{i \in J} M_i$, we get that W_{n+1} coincides with the Sylow p-subgroup of T. Since $\dim W_{n+1} = 0$ and $T \neq 1$ we deduce that $T = H^v$, for some $v \in V$. Finally, $T \cap M_{i+1} = \{1\}$. □

A proof of the following lemma is implicitly contained in Section 1 of [3], but, for the sake of completeness, we sketch a direct proof here.

Lemma 6. Let H be an abelian finite group. The size of a set of subgroups in general position is at most $m(H)$.

Proof. The proof is by induction on the order of H. Let $\Omega = \{A_1, \ldots, A_r\}$ be a set of subgroups of H in general position. Without loss of generality we can assume that $\cap_{i=1}^{r} A_i = \{1\}$. If $m = m(H)$, then H decomposes as a direct product of m cyclic groups of prime-power order. Let B be one of these factors, and let X be the unique minimal normal subgroup of B. Since $\cap_{i=1}^{r} A_i = \{1\}$, there exists at least an integer i such that X is not contained in A_i. It follows that $A_i \cap B = \{1\}$, hence $A_i \cong A_i B / B \leq H / B$ and

$$m(A_i) \leq m(H / B) = m - 1.$$

Now, the set of subgroups of A_i

$$\Omega^* = \{A_j \cap A_i \mid j \neq i, \ 1 \leq j \leq r\}$$

is in general position, hence, by inductive hypothesis, $|\Omega^*| = r - 1 \leq m(A_i)$. Therefore $r \leq m$. □

Proof of Theorem 1. Since

$$m(G) = m(G / \Frat(G)) \quad \text{and} \quad \MaxDim(G) = \MaxDim(G / \Frat(G)),$$

without loss of generality we can assume that $\Frat(G) = 1$. In this case the Fitting subgroup F of G is a direct product of minimal normal subgroups of G, it is abelian and complemented. Let H be a complement of F in G; note that, being G' nilpotent by assumption, H is abelian. We can write F as a product of H-irreducible modules

$$F = V_1^{n_1} \times \cdots \times V_r^{n_r}$$

where V_1, \ldots, V_r are irreducible H-modules, pairwise not H-isomorphic.

By [4] Theorem 2] $m(G)$ coincides with the number of complemented factors in a chief series of G, hence

$$m(G) = \sum_{i=1}^{r} n_i + m(H).$$

Let \mathcal{M} be a family of maximal subgroups of G in general position. Let $M_{0,1}, \ldots, M_{0,v_0}$ the elements of \mathcal{M} containing F. We can write

$$M_{0,i} = F \rtimes Y_i$$
where \(Y_i \) is a maximal subgroup of \(H \). Note that \(Y_1, \ldots, Y_{\nu_0} \) are maximal subgroups of \(H \) in general position, hence, by Lemma 3, \(\nu_0 \leq \text{MaxDim}(H) \leq m(H) \).

If \(M \) is a maximal subgroup supplementing \(F \), then \(M \) contains the subgroup \(U_i = \prod_{j \not= i} V_j^{n_j} \) for some index \(i \). In particular \(M = (U_i \times W_i) \times H^v \) for some \(v \in V_i^{n_i} \) and some hyperplane \(W_i \) of \(V_i^{n_i} \).

Assume, by contradiction, that for example \(v_i \in V_i^{n_i} \). Our next task is to prove that \(U_i \) generated by a primitive element. In particular we can apply Corollary 5 to the group \(V_i^{n_i} \rtimes H_i \). Let \(M_{i,1}, \ldots, M_{i,\nu_i} \) the maximal subgroups in \(M \) containing \(U_i \); say

\[
M_{i,l} = (U_i \times W_{i,l}) \times H^v_{i,l},
\]

where \(v_{i,l} \in V_i^{n_i} \). Note that the subgroups \(\overline{M}_{i,l} = W_{i,l} \times H^v_{i,l} \), for \(l \in \{1, \ldots, \nu_i\} \), are maximal subgroups of \(V_i^{n_i} \rtimes H_i \) in general position, hence, by Corollary 5

\[
\nu_i \leq n_i + 1.
\]

If \(\nu_i \leq n_i \) for every \(i \neq 0 \), then

\[
|\mathcal{M}| = \sum_{i=1}^{r} \nu_i + \nu_0 \leq \sum_{i=1}^{r} n_i + m(H) = m(G),
\]

and the result follows.

Otherwise let \(J \) be the set of the integers \(i \in \{1, \ldots, r\} \) such that \(\nu_i = n_i + 1 \). By Corollary 5 we can assume that, for some \(v_i \in V_i^{n_i} \),

\[
\bigcap_{l=1}^{n_i} M_{i,l} = U_i \rtimes H^{v_i},
\]

\[
\bigcap_{l=1}^{n_i+1} M_{i,l} = U_i \rtimes C_i.
\]

Recall that the \(M_{0,j} = F \rtimes Y_j \), for \(j = 1, \ldots, \nu_0 \), are the elements of \(\mathcal{M} \) containing \(F \). Our next task is to prove that

\[
\Omega = \{C_i \mid i \in J\} \cup \{Y_j \mid j = 1, \ldots, \nu_0\}
\]

is a set of subgroups of \(H \) in general position.

Assume, by contradiction, that for example \(C_1 \geq (\cap_{i \not= 1} C_i) \cap (\cap_{j=1}^{\nu_0} Y_j) \); then

\[
M_{1, n_1+1} \geq U_1 \rtimes C_1 \geq (\cap_{l=1}^{n_1} M_{1,l}) \cap (\cap_{i \not= 1} (\cap_{l=1}^{n_i+1} M_{i,l})) \cap (\cap_{j=1}^{\nu_0} M_{0,j})
\]

against the fact that \(\mathcal{M} \) is in general position. Similarly, if \(Y_1 \geq (\cap_{i \in J} C_i) \cap (\cap_{j \not= 1} Y_j) \), then

\[
M_{0,1} = F \rtimes Y_1 \geq (\cap_{i \in J} (\cap_{l=1}^{n_i+1} M_{i,l})) \cap (\cap_{j \not= 1} M_{0,j}),
\]

a contradiction.

Now we can apply Lemma 5 to get that \(|\Omega| \leq m(H) \). Therefore we conclude that

\[
|\mathcal{M}| = \sum_{i=1}^{r} \nu_i + \nu_0 \leq \sum_{i=1}^{r} n_i + |J| + \nu_0 = \sum_{i=1}^{r} n_i + |\Omega| \leq \sum_{i=1}^{r} n_i + m(H) = m(G),
\]

and the proof is complete.
3. Finite soluble groups with \(m(G) = 3 \) and \(\text{MaxDim}(G) \geq p \)

In this section we will assume that \(p \) and \(q \) are two primes and that \(p \) divides \(q - 1 \). Let \(\mathbb{F} \) be the field with \(q \) elements and let \(C = \langle c \rangle \) be the subgroup of order \(p \) of the multiplicative group of \(\mathbb{F} \). Let \(V = \mathbb{F}^p \) be a \(p \)-dimensional vector space over \(\mathbb{F} \) and let \(\sigma = (1, 2, \ldots, p) \in \text{Sym}(p) \). The wreath group \(H = C \wr \langle \sigma \rangle \) has an irreducible action on \(V \) defined as follows: if \(v = (f_1, \ldots, f_p) \in V \) and \(h = (c_1, \ldots, c_p) \sigma \in H \), then \(v^h = (f_{1\sigma^{-1}c_1\sigma^{-1}}, \ldots, f_{p\sigma^{-1}c_p\sigma^{-1}}) \). We will concentrate our attention on the semidirect product

\[
G_{q,p} = V \rtimes H.
\]

Proposition 7. \(m(G_{q,p}) = 3 \).

Proof. Since \(V \) is a complemented chief factor of \(G_{q,p} \), by [4] Theorem 2 we have \(m(G) = 1 + m(H) = 1 + m(H / \text{Frat}(H)) = 1 + m(C_p \times C_p) = 3 \). \(\square \)

Proposition 8. \(i(G_{q,p}) = 2p \).

Proof. Let \(B \cong C^p \) be the base subgroup of \(H \) and consider \(K = V \rtimes B \cong (\mathbb{F} \rtimes C)^p \). A composition series of \(K \) has length 2 and all its factors are indeed complemented chief factors, so \(m(K) = 2p \). Now by definition \(i(G_{q,p}) = \max \{ m(X) \mid X \leq G_{q,p} \} \geq m(K) = 2p \). On the other hand, \(m(G) = 3 \) and, if \(X < G_{q,p} \), then \(|X| \) divides \(pq \) and the composition length of \(X \) is at most 2, so \(m(X) \leq 2p \). Therefore \(i(G_{q,p}) \leq 2p \), and consequently \(i(G_{q,p}) = m(K) = 2p \). \(\square \)

Lemma 9. \(\text{MaxDim}(G_{q,p}) \geq p \).

Proof. Let \(e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, \ldots, 0), \ldots, e_p = (0, 0, \ldots, 1) \in V \) and let \(h_1 = (c, 1, \ldots, 1), h_2 = (1, c, \ldots, 1), \ldots, h_p = (1, 1, \ldots, c) \in C^p \leq H \). For any \(1 \leq i, j \leq p \), we have

\[
h_i^{e_j} = h_i \text{ if } i \neq j, \quad h_i^{e_i} = ((1/c - 1)e_i)h_i.
\]

But then, for each \(i \in \{1, \ldots, p\} \), we have

\[
h_i \in \cap_{j \neq i} H^{e_j}, \quad h_i \notin H^{e_i},
\]

hence \(H^{e_1}, \ldots, H^{e_p} \) is a family of maximal subgroups of \(G_{q,p} \) in general position. \(\square \)

In order to compute the precise value of \(\text{MaxDim}(G_{q,p}) \), the following lemma is useful.

Lemma 10. Let \(v_1 = (x_1, \ldots, x_p) \) and \(v_2 = (y_1, \ldots, y_p) \) be two different elements of \(V = \mathbb{F}^p \) and let \(\Delta(v_1, v_2) = \{ i \in \{1, \ldots, p\} \mid x_i = y_i \} \). Then

- if \(|\Delta(v_1, v_2)| = 0 \), then \(|H^{v_1} \cap H^{v_2}| \leq p \);
- if \(|\Delta(v_1, v_2)| = u \neq 0 \), then \(|H^{v_1} \cap H^{v_2}| = p^u \).

Proof. Clearly \(|H^{v_1} \cap H^{v_2}| = |H \cap H^{v_2 - v_1}| = |C_H(v_2 - v_1)| \). If \(\Delta(v_1, v_2) = \emptyset \), then \(C_H(v_2 - v_1) \cap C^p = \{1\} \), hence \(|C_H(v_2 - v_1)| \leq p \). If \(|\Delta(v_1, v_2)| = u \neq 0 \), then

\[
C_H(v_2 - v_1) = \{c_1, \ldots, c_p \} \in C^p \mid c_i = 1 \text{ if } i \notin \Delta(v_1, v_2) \cong C^u
\]

has order \(p^u \). \(\square \)

Proposition 11. If \(p \neq 2 \), then \(\text{MaxDim}(G_{q,p}) = p \).

Proof. By Lemma 9 it suffices to prove that \(\text{MaxDim}(G_{q,p}) \leq p \). Assume that \(\mathcal{M} \) is a family of maximal subgroups of \(G = G_{q,p} \) in general position and let \(t = |\mathcal{M}| \). Let \(M \in \mathcal{M} \). One of the following two possibilities occurs:
(1) M is a complement of V in G: hence $M = H^v$ for some $v \in V$.

(2) M contains V: hence $M = V \rtimes X$ for some maximal subgroup X of H.

If M_1 and M_2 are two different maximal subgroups of type (2), then $M_1 \cap M_2 = V \rtimes \text{Frat}(X)$ is contained in any other maximal subgroup of type (2). Hence \mathcal{M} cannot contain more than 2 maximal subgroups of type (2). Now we prove the following claim: if \mathcal{M} contains at least three different complements of V in G, then $t \leq p$. In order to prove this claim, assume, by contradiction that $t > p$. This implies in particular that in the intersection X of any two subgroups of \mathcal{M}, the subgroup lattice $L(X)$ must contain a chain of length at least $p - 1$.

Assume that $H^{v_1}, H^{v_2}, H^{v_3}$ are different maximal subgroups in \mathcal{M}. It is not restrictive to assume $v_1 = (0, \ldots, 0)$. Let $v_2 = (x_1, \ldots, x_p)$ and $v_3 = (y_1, \ldots, y_p)$. For $i \in \{2, 3\}$, it must $|H \cap H^{v_i}| \geq p^{p-1}$, hence, by Lemma 10, $|\Delta(0, v_2)| = |\Delta(0, v_3)| = p - 1$, i.e. there exists $i_1 \neq i_2$ such that $x_{i_1} \neq 0$, $x_{j_1} = 0$ if $j \neq i_1$, $y_{i_2} \neq 0$, $y_{j_2} = 0$ if $j \neq i_2$. But then $|\Delta(v_2, v_3)| = p - 2$, hence $|H^{v_2} \cap H^{v_3}| = p^{p-2}$, a contradiction. We have so proved that either $t \leq p$ or \mathcal{M} contains at most 2 maximal subgroups of type (1) and at most 2 maximal subgroups of type (2), and consequently $t \leq 4$. It remains to exclude the possibility that $t = 4$ and $p = 3$. By the previous considerations it is not restrictive to assume $\mathcal{M} = \{H, H^v, V \rtimes X_1, V \rtimes X_2\}$ where X_1 and X_2 are maximal subgroups of H and $|\Delta(0, v)| = 2$. In particular we would have $H \cap H^v \leq C^3$: this excludes $C^3 \in \{X_1, X_2\}$ but then $X_1 \cap C^3 = X_2 \cap C^3 = \text{Frat} H = \{(e_1, e_2, e_3) | e_1e_2e_3 = 1\}$, hence $H \cap H^v \cap X_1 = H \cap H^v \cap X_2$, a contradiction.

Proposition 12. $\text{MaxDim}(G_{q, 2}) = 3$.

Proof. By Lemma 7, $\text{MaxDim}(G_{q, 2}) \geq m(G_{q, 2}) = 3$. Assume now, by contradiction, that M_1, M_2, M_3, M_4 is a family of maximal subgroups of $G_{q, 2}$. As in the proof of the previous proposition, at least two of these maximal subgroups, say M_1 and M_2, are complements of V in $G_{q, 2}$. But then, by Lemma 10, $|M_1 \cap M_2| \leq 2$, hence $M_1 \cap M_2 \cap M_3 = 1$, a contradiction. □

References

1. P. Apisa and B. Klopsch, A generalization of the Burnside basis theorem, J. Algebra 400 (2014) 8–16.
2. P. Cameron and P. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra 258 (2002), no. 2, 641-650.
3. R. Fernando, On an Inequality of Dimension-like Invariants for Finite Groups, arXiv:1502.00360, Feb 2015.
4. A. Lucchini, The largest size of a minimal generating set of a finite group, Arch. Math, 101 (2013), no. 1, 1-8.
5. A. Lucchini, Minimal generating sets of maximal size in finite monolithic groups, Arch. Math. 101 (2013), no. 5, 401-410.
6. I. Pak, What do we know about the product replacement algorithm?, in: Groups and computation, III, de Gruyter, Berlin (2001), 301–347.
7. J. Saxl and J. Whiston, On the maximal size of independent generating sets of $PSL_2(q)$, J. Algebra 258 (2002), 651–657.
8. W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964.
9. J. Whiston, Maximal independent generating sets of the symmetric group, J. Algebra 232 (2000), 255–268.

Eloisa Detomi and Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy