Concurrent Plantar Stress Sensing and Energy Harvesting Technique by Piezoelectric Insole Device and Rectifying Circuitry for Gait Monitoring in the Internet of Health Things

Shuaibo Kang¹, Jingjing Lin¹, Junliang Chen¹, Yanning Dai¹, Zhiheng Wang¹ and Shuo Gao¹,²*
¹School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, China
²Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
*shuo_gao@buaa.edu.cn

Abstract—Concurrent high force detection accuracy and extended battery lifetime are strongly expected in wearable gait monitoring systems, which are important for many Internet of Health Things (IoHT) applications. In this article, a piezoelectric insole device and rectifying circuitry based technique is presented to achieve these two ultimate goals. Here, walking induced positive and negative charges are separated for plantar stress detection and energy harvesting respectively, realizing the two functions concurrently. Experimental results demonstrate that first, the high detection sensitivity of 55 mN and responsivity of 231 mV/N are achieved, satisfying the need for diagnosing various diseases; second, energy of 1.6 pJ is stored during a walking event, consequently extending the battery lifetime. The developed technique enhances the development of gait monitoring in IoHT.

Keywords—Gait monitoring; piezoelectric insole; plantar stress sensing; energy harvesting

I. INTRODUCTION

Gait analysis, based on plantar pressure detection, benefits varieties of applications, such as disease surveillance and analysis [1, 2], health monitoring [3-5], shoe designing [6], and sports training [7]. By integrating it with the Internet of Health Things (IoHT) architecture, a wearable assistant can provide physical data for further processing and analysis [8, 9]. Conventional sensing techniques for gait analysis are piezoresistive, capacitive, piezoelectric based architectures, satisfying different utilization purposes [10, 11]. However, for long-term monitoring applications (e.g., chronic disease monitoring), limited battery lifetime in conventional products brings users inconvenience [12, 13]. To address this issue, plenty of attempts have been made to boost the battery’s capability [14]. Nevertheless, no commercial product on the market provides high force detection accuracy and extends battery lifetime simultaneously, advancing the gait monitoring applications under IoHT, architecture in a simple and low-cost manner.

II. METHODOLOGY

A. Sensor Fabrication

To concurrently detect the plantar pressure and harvest energy, a multi-layer piezoelectric insole device is designed and fabricated, as shown in Fig. 1 (a). The polyvinylidene fluoride (PVDF) film (52 μm), which is placed in the middle as a force sensing function. Hence, the energy harvesting system has to be integrated into the insole plantar pressure sensing system for gait monitoring purpose, causing the increased volume in system size, circuitry complexity and component cost, which are undesired for commercial products. In [20], a piezoelectric and rectifying circuitry based technique for concurrent force sensing and energy harvesting is presented for touch panels utilization. Nevertheless, only part of the touch induced positive and negative voltages are used to interpret the force amplitude, which will lower detection accuracy. Hence, concurrent high force detection accuracy and energy harvesting are highly expected for gait monitoring systems in IoHT scenarios.

In this work, a piezoelectric based gait monitoring and energy harvesting technique are presented. Here, motion-induced positive charges are used for plantar stress sensing, while their counterparts are harvested. The presented technique provides high force detection accuracy and extends battery lifetime simultaneously, advancing the gait monitoring applications under IoHT, architecture in a simple and low-cost manner.

Fig. 1 (a) Architecture of the piezoelectric insole device. (b) Bridge rectifier based circuit for concurrent force sensing and energy harvesting.
sensing layer, generates charges when force is applied. The top and ground electrode layers (1 μm) conduct induced charges coat the PVDF layer. The top electrodes of one insole device are made of 32 circular copper sheets, which are distributed according to the suggestions in [21, 22] for diverse disease analysis. The ground electrode is a continuous copper sheet. The two outermost polyethylene terephthalate (PET) layers are the substrates (100 μm) for the copper electrodes, protecting the Cu/PVDF/Cu sandwiched structure. Different layers are laminated together, forming the piezoelectric insole device.

B. Circuitry Design

In [23], we learn that with a piezoelectric insole, a complete walking event (step tread and release) results in positive and negative voltage components. In this work, the positive amplitude indicates the tread action, based on the direction of the dipole. According to human walking behavior, the velocity of contacting with the ground is normally faster than its counterpart [23]. Hence, the absolute amplitude of stepping is higher compared to that of releasing. Considering that stepping tread related plantar stress is more important for disease analysis, e.g., diabetic foot diagnosis, the positive amplitudes are chosen for plantar stress sensing and the energy generated by release is harvested for extending battery’s lifetime.

As shown in Fig. 1 (b), modifications on the classic rectifier bridge are made to separate the positive and negative signals, then conduct them into the force sensing as well as energy harvesting systems. When positive charges are generated, the current, flows through the red path and enters the force sensing system due to the one way conduction effect of diodes. The positive charges induced by the plantar pressure are conveyed to amplifiers. Then the amplified signals are sampled by the analog-to-digital converter (ADC) chip. Digital gait data are sent to microcontroller unit (MCU) through I2C protocol, and then transmitted to the host computer through Bluetooth module for further processing and analysis.

Relatively, during the release period, the generated negative charges flow through the blue path and are stored by the energy harvesting system2 in Fig. 1 (b). To get higher collection efficiency, a passive, ultra-low current (10 μA), cold-start energy management chip (Bq25505) is used to manage the energy usage for the system. The Bq25505 chip is used to conduct the input charges to a large capacitor. After the accumulated voltage across the capacitor exceeds the set voltage threshold, the chip will connect the capacitor to the load instead of the backup battery and serve as the power to our equipment.
After the capacitor is discharged, the chip will reconnect the backup battery to the load. The circuit supplies power and waits for the next capacitor voltage to reach the set threshold. Besides the entire circuit block diagram of concurrent gait monitoring and energy harvesting is shown in Fig. 2 (a).

III. RESULTS AND DISCUSSION

A. Device Performance

Detection sensitivities and responsivities of the fabricated insoles are examined with the Berlincourt method [24]. The corresponding results are presented in Fig. 2 (b). We can indicate that the uniformity of both parameters is good, indicating the fabrication process is reliable. The average plantar stress detection sensitivity and responsivity are 55 mN and 231 mV/N, respectively. Besides, the system response at different force frequency has been tested, and the result shows high uniformity, the results here also demonstrate that the performance of the fabricated insoles can satisfy the need for diagnosing various diseases [25, 26].

B. Gait Monitoring

An overview of the gait monitoring system is shown in Fig. 2 (c). After experimental testing, its performance during walking is shown in Fig. 2 (d). Results of 4 main detection areas (first toe, heel, first metatarsal, and lateral plantar) for disease analysis are demonstrated, showing that a complete walking cycle can be monitored. The 2-dimensional plantar stress distribution of the right foot is presented in Fig. 2 (e), indicating that detailed plantar stress information can be captured. The system performance for gait monitoring is shown in Table I.

C. Concurrent Force Sensing and Energy Harvesting

Here we use a 1nF capacitor to recognize the increment of harvested energy during walking clearly, and the energy harvesting result from one electrode in Fig. 3. It can be observed that during a walking event, the stepping tread induced positive voltage component is interpreted as gait information, and the negative component related to electric energy is stored. With the voltage across the capacitor, harvested energy can be calculated by Eq. 1.

$$E = \frac{1}{2} U^2 C$$

where E represents the energy stored in the capacitor, C is the capacitance of the capacitor and U is the capacitor voltage. As shown in Fig. 3, the total stored energy is around 1.6 pJ by the piezoelectric insoles during an entire walking cycle.

Compared with the no-energy-harvesting circuit, this system adds only two passive components: diodes and Bq25505 chip. The diodes will cause a voltage drop of 0.5 V. According to the Bq25505 datasheet [27], when the input current is 10 μA and the voltage is 0.8 V, the collection efficiency is 70%. Experiments show that the input power before the bridge is 48 pW, the collected power is 32 pW, and the collection efficiency is 67%. It can be seen that the proposed system effectively stores energy and extends the battery lifetime.

IV. CONCLUSION

High plantar stress detection accuracy and long battery lifetime are two highly desired attributes for gait monitoring in wearable equipment in the Internet of Health Things (IoHT) applications. The technique presented in this article satisfies these requirements by implementing a piezoelectric insole device with rectifying circuitry. The amount of harvested energy is rather small during each walking cycle. But taking the numerous amount of everyday walking events and the potential prospect of higher mechanical-to-electrical conversion efficiency in advanced piezoelectric materials and low-power technique into consideration, the developed technique has a strong potential in providing sufficient power for future gait monitoring electronics.

REFERENCES

[1] H. Stolze et al., “Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry; vol. 70, no. 3, pp. 289-297, 2001.
[2] H. Stolze et al., “Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test?,” Clin. Neurophysiol., vol. 111, no. 9, pp. 1678-1686, 2000.
[3] W. Tao, T. Liu, R. Zheng, and H. J. S. Feng, “Gait analysis using wearable sensors,” Sensors vol. 12, no. 2, pp. 2255-2283, 2012.
[4] J. Bae, K. Kong, N. Byl, and M. Tomizuka, “A mobile gait monitoring system for gait analysis,” in 2009 IEEE International Conference on Rehabilitation Robotics, 2009, pp. 73-79: IEEE.
[5] I. González, J. Fontecha, R. Hervás, and J. Bravo, “An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles,” Sensors, vol. 15, no. 7, pp. 16589-16613, 2015.

Table I. Summary of the Major Circuit Parameters
Circuit Parameters
Input Dynamic Range
ADC Resolution
Data Rate
Scanning Rate
Processing Time
[6] M. Khoury, A. Wolf, E. M. Debbi, A. Herman, A. J. F. Haim, and M. international, "Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design," Foot Ankle Int., vol. 34, no. 4, pp. 593-598, 2013.

[7] J. A. García-Pérez, P. Pérez-Soriano, S. Llana, A. Martínez-Nova, D. J. G. Sánchez-Zurita, and posture, "Effect of overground vs treadmill running on plantar pressure: Influence of fatigue," Gait & Posture, vol. 38, no. 4, pp. 929-933, 2013.

[8] P. S. Malvade, A. K. Joshi, and S. P. Madhe, "IoT based monitoring of foot pressure using FSR sensor," in 2017 International Conference on Communication and Signal Processing (ICCCSP), 2017, pp. 0635-0639: IEEE.

[9] S. Jeon, C. Lee, Y. Han, D. Seo, and I. Jung, "The smart shoes providing the gait information on IoT," in 2017 IEEE International Conference on Consumer Electronics (ICCE), 2017, pp. 108-109: IEEE.

[10] R. Calio et al., "Piezoelectric energy harvesting solutions," Sensors (Basel), vol. 14, no. 3, pp. 4755-90, Mar 10 2014.

[11] L. Yiming et al., "Active Piezoelectric Energy Harvesting: General Principle and Experimental Demonstration," J. Intell. Mater. Syst. Struct., vol. 20, no. 5, pp. 575-585, 2008.

[12] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Leung, and Y. L. J. I. C. M. Guan, "Wireless energy harvesting for the Internet of Things," IEEE Communications Magazine, vol. 53, no. 6, pp. 102-108, 2015.

[13] Y.-H. Lam, W.-H. Ki, C.-Y. J. I. T. o. C. Tsui, and S. I. E. Briefs, "Integrated low-loss CMOS active rectifier for wirelessly powered devices," IEEE Trans. Circuits Syst. II-Express Briefs, vol. 53, no. 12, pp. 1378-1382, 2006.

[14] S. Priya, "Advances in energy harvesting using low profile piezoelectric transducers," Journal of Electromechanics, vol. 10, no. 1, pp. 167-184, 2007.

[15] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, "Parasitic power harvesting in shoes," in Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), 1998, pp. 132-139: IEEE.

[16] J. Zhao and Z. You, "A shoe-embedded piezoelectric energy harvester for wearable sensors," Sensors (Basel), vol. 14, no. 7, pp. 12497-510, Jul 11 2014.

[17] G. Zhu, P. Bai, J. Chen, and Z. Lin Wang, "Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics," Nano Energy, vol. 2, no. 5, pp. 688-692, 2013.

[18] G. D. Szarka, B. H. Stark, and S. G. Burrow, "Review of Power Conditioning for Kinetic Energy Harvesting Systems," IEEE Trans. Power Electron., vol. 27, no. 2, pp. 803-815, 2012.

[19] S. S. Kumar and K. I. I. J. o. R. E. R. Kashwan, "Research study of energy harvesting in wireless sensor networks," Int. J. Renew. Energ. Res., vol. 3, no. 3, pp. 745-753, 2013.

[20] S. Gao, C.-y. Huang, and L. Wu, "Piezoelectric material based technique for concurrent force sensing and energy harvesting for interactive displays," in 2017 IEEE SENSORS, 2018, pp. 1-3: IEEE.

[21] C. Lou et al., "Dynamic balance measurement and quantitative assessment using wearable plantar-pressure insoles in a pose-sensed virtual environment," Sensors, vol. 18, no. 12, p. 4193, 2018.

[22] S. Kürki, J. Lekkala, H. Kuokkanen, J. J. S. Halttunen, and A. A. Physical, "Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements," Elsevier, vol. 154, no. 1, pp. 57-64, 2009.

[23] A. Almusallam, R. Torah, D. Zhu, M. Tudor, and S. Beeby, "Screen-printed piezoelectric shoe-sole energy harvester using an improved flexible PZT-polymer composites," in Journal of Physics: Conference Series, 2013, vol. 476, no. 1, p. 012108: IOP Publishing.

[24] S. L. Kok, K. T. Lau, and Q. Ahsan, "Substrate-free thick-film lead zirconate titanate (pzt) performance measurement using berlincourt method," in Advanced Materials Research, 2014, vol. 895, pp. 204-210: Trans Tech Publ.

[25] A. Muro-De-La-Herran, B. Garcia-Zapirain, and A. J. S. Mendez-Zorrilla, "Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications," Sensors, vol. 14, no. 2, pp. 3362-3394, 2014.

[26] J. S. Petrofsky et al., "The effect of body fat, aging, and diabetes on vertical and shear pressure in and under a waist belt and its effect on skin blood flow," Diabetes Technol. Ther., vol. 12, no. 2, pp. 153-160, 2010.

[27] Texas Instruments, "Power management/ Battery management ICs," Bq25505 datasheet, Aug. 2013 [Revised March, 2019].