Littlewood-Paley decomposition of operator densities and application to a new proof of the Lieb-Thirring inequality

Julien Sabin

To cite this version:

Julien Sabin. Littlewood-Paley decomposition of operator densities and application to a new proof of the Lieb-Thirring inequality. Mathematical Physics, Analysis and Geometry, 2016, 10.1007/s11040-016-9215-z. hal-01166315

HAL Id: hal-01166315
https://hal.science/hal-01166315
Submitted on 22 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LITTLEWOOD-PALEY DECOMPOSITION OF OPERATOR DENSITIES
AND APPLICATION TO A NEW PROOF OF THE LIEB-THIRRING
INEQUALITY

JULIEN SABIN

Abstract. The goal of this note is to prove an analogue of the Littlewood-Paley decomposition for densities of operators and to use it in the context of Lieb-Thirring inequalities.

Introduction

Let $d \geq 1$ and ψ a smooth function on \mathbb{R}^d, supported in $\mathbb{R}^d \setminus \{0\}$, satisfying
\[1 = \sum_{j \in \mathbb{Z}} \psi(2^{-j}\xi), \quad \forall \xi \in \mathbb{R}^d \setminus \{0\}. \tag{1} \]

An example of such a function is given in [11, Lemma 8.1]. In particular, the function ψ can be chosen to be radial and non-negative. We define the Littlewood-Paley multiplier localizing on frequencies $|\xi| \sim 2^j$ by
\[P_j u := F^{-1}(\xi \mapsto \psi_j(\xi)F u(\xi)), \quad \psi_j := \psi(2^{-j} \cdot), \quad j \in \mathbb{Z}, u \in S'(\mathbb{R}^d), \]
where F denotes the Fourier transform. The Littlewood-Paley theorem [11, Thm. 8.3] states that for any $1 < p < \infty$, there exists $C > 0$ such that for any $u \in L^p(\mathbb{R}^d)$ one has
\[\frac{1}{C} \| u \|_{L^p} \leq \left\| \left(\sum_{j \in \mathbb{Z}} |P_j u|^2 \right)^{1/2} \right\|_{L^p} \leq C \| u \|_{L^p}. \tag{2} \]

This harmonic analysis result has countless applications, from functional inequalities to nonlinear PDEs. It allows to obtain information about L^p-properties of a function u from the frequency-localized pieces $P_j u$. For instance, it leads to a very short proof of the Sobolev embedding $H^s(\mathbb{R}^d) \hookrightarrow L^p(\mathbb{R}^d)$ for $p = 2d/(d - 2s)$, $0 < s < d/2$, as we recall in Section 2.1. It was also used, for instance, to prove Strichartz-type inequalities [9, 3]. We refer to [8] for more general applications of Littlewood-Paley theory.

This note is devoted to a generalization of (2) to densities of operators. When $\gamma \geq 0$ is a finite-rank operator on $L^2(\mathbb{R}^d)$, its density is defined as
\[\rho_{\gamma}(x) := \gamma(x, x), \quad \forall x \in \mathbb{R}^d, \]
where $\gamma(\cdot, \cdot)$ denotes the integral kernel of γ. We prove that for any $1/2 < p < \infty$, there exists $C > 0$ such that for any finite-rank $\gamma \geq 0$ with $\rho_{\gamma} \in L^p(\mathbb{R}^d)$ we have
\[\frac{1}{C} \| \rho_{\gamma} \|_{L^p(\mathbb{R}^d)} \leq \sum_{j \in \mathbb{Z}} \rho_{P_j \gamma P_j} \|_{L^p(\mathbb{R}^d)} \leq C \| \rho_{\gamma} \|_{L^p(\mathbb{R}^d)}. \tag{3} \]
When γ is a rank-one operator, this last inequality is equivalent to the usual Littlewood-Paley estimates (2). Indeed, if u with $\|u\|_{L^2} = 1$ belongs to the range of γ, then $\rho_\gamma = |u|^2$.

The motivation to generalize the Littlewood-Paley decomposition to operator densities comes from many-body quantum mechanics. Indeed, a simple way to describe a system of N fermions in \mathbb{R}^d is via an orthogonal projection γ on $L^2(\mathbb{R}^d)$ of rank N. The quantity ρ_γ then describes the spatial density of the system. Variational or time-dependent models depending on γ then typically include interactions between the particles via non-linear functionals of ρ_γ, like in Hartree-Fock models [10, 1, 2, 4]. As a consequence, L^p-properties of ρ_γ are often needed to control these interactions. When γ is a rank-one operator, these properties can be derived via Littlewood-Paley estimates (we typically think of Sobolev-type or Strichartz-type estimates). The estimate (3) allows to treat the rank N case, and we illustrate this on the concrete example of the Lieb-Thirring inequality, which is a rank N generalization of the Sobolev inequality.

In Section 1 we prove the inequality (3). In Section 2 we apply it to give a new proof of the Lieb-Thirring inequality.

1. Littlewood-Paley for densities

In this section we prove the generalization of the Littlewood-Paley theorem to densities of operators. We will see that the proof is a simple adaptation of the proof of the usual Littlewood-Paley theorem. Thus, let us first recall briefly the proof of (2). It is usually done via Khinchine’s inequality [11, Lemma 5.5], see the proof of Theorem 8.3 in [11]: if one denotes by (r_j) a sequence of independent random variables taking values in $\{-1, 1\}$ and satisfying $\mathbb{P}(r_j = \pm 1) = 1/2$, one has

$$\frac{1}{C} \left(\sum_j |a_j|^2 \right)^{p/2} \leq \mathbb{E} \left| \sum_j a_j r_j \right|^p \leq C \left(\sum_j |a_j|^2 \right)^{p/2},$$

for any set of coefficients $(a_j) \subset \mathbb{C}$, for some $C > 0$, and for any $1 \leq p < \infty$. From this one deduces that

$$\left\| \left(\sum_j |P_j u|^2 \right)^{1/2} \right\|_{L^p} \leq \mathbb{E} \int_{\mathbb{R}^d} \left| \sum_j r_j P_j u(x) \right|^p dx.$$

The Fourier multiplier by the function $\xi \mapsto \sum_j r_j \psi_j(\xi)$ is bounded from $L^p(\mathbb{R}^d)$ to $L^p(\mathbb{R}^d)$ for any $1 < p < \infty$, with a bound independent of the realization of the (r_j). Indeed, one has to notice that for any given $\xi \in \mathbb{R}^d$, there are only a finite number of non-zero terms in the sum $\sum_j r_j \psi_j(\xi)$ (and this number only depends on ψ). The Mikhlin multiplier theorem [11, Thm. 8.2] shows the boundedness of the Fourier multiplier. We deduce from all this the inequality

$$\mathbb{E} \int_{\mathbb{R}^d} \left| \sum_j r_j P_j u(x) \right|^p dx \lesssim \mathbb{E} \int_{\mathbb{R}^d} |u(x)|^p dx = \|u\|_{L^p}^p.$$
The reverse inequality is done by a duality argument where the condition \((1)\) appears: we use the identity
\[
\int_{\mathbb{R}^d} f \overline{g} \, dx = \sum_j \int_{\mathbb{R}^d} P_j f \overline{P_j g} \, dx,
\]
where \(\overline{P_j}\) is another sequence of Littlewood-Paley multipliers such that \(\overline{P_j} P_j = P_j\) (which may be built from a \(\overline{\psi}\) which is identically 1 on the support of \(\psi\)). The fact that we cannot take \(\overline{P_j} = P_j\) is related to the deep fact that we cannot choose \(P_j\) to be a projection (that is, we cannot take \(\psi_j = 1(2^j \leq \cdot < 2^{j+1})\)); indeed such a \(P_j\) is not bounded on \(L^p(\mathbb{R}^d)\) (except for \(d = 1\) or \(p = 2\)) by Fefferman’s famous result \([5]\).

The main result of this section is the following lemma.

Lemma 1. For any \(1/2 < p < \infty\), there exists \(C > 0\) such that for any \(N \geq 1\), for any \((\lambda_k)_{k=1}^N \subset \mathbb{R}_+\) and any functions \((u_k)_{k=1}^N\) in \(L^{2p}(\mathbb{R}^d)\) we have
\[
\frac{1}{C} \left\| \sum_k \lambda_k |u_k|^2 \right\|_{L^p} \leq \left\| \sum_{j,k} \lambda_k |P_j u_k|^2 \right\|_{L^p} \leq C \left\| \sum_k \lambda_k |u_k|^2 \right\|_{L^p}. \tag{4}
\]

Lemma 1 implies the Littlewood-Paley decomposition \((3)\) for densities using the spectral decomposition of \(\gamma\). We first need a version of Khinchine’s inequality for tensor products, which is proved for instance in \([13]\ \text{Appendix D}]\). We however include a proof here for completeness.

Lemma 2. Let \((a_{j,k}) \subset \mathbb{C}\) a sequence of coefficients and \((r_j)\) a sequence of independent random variables such that \(\mathbb{P}(r_j = \pm 1) = 1/2\). Then, we have
\[
\left(\sum_{j,k} |a_{j,k}|^2 \right)^{p/2} \leq \mathbb{E} \left[\sum_{j,k} a_{j,k} r_j r_k \right]^{p/2},
\]
for all \(1 \leq p < \infty\), where the implicit constant is independent of \((a_{j,k})\).

Remark 3. The reverse inequality also holds; we however do not need it here.

Remark 4. This inequality does not follow from the Khinchine inequality from abstract arguments because the sequence \((r_j r_k)\) is not independent anymore: knowing \(r_1 r_2\) and \(r_1 r_3\) implies that we know \(r_2 r_3\) as well.

Proof of Lemma 2. We only prove it for \(1 \leq p \leq 2\), which is sufficient since \(\mathbb{E}|g|^p \geq (\mathbb{E}|g|^2)^{p/2}\) for \(p \geq 2\). We first apply Khinchine’s inequality with respect to the random parameter associated to \((r_k)\):
\[
\mathbb{E} \left[\sum_{j,k} a_{j,k} r_j r_k \right]^{p/2} \geq \mathbb{E} \left(\sum_k \left| \sum_j a_{j,k} r_j \right|^2 \right)^{p/2},
\]
where \mathbb{E}_1 denotes the expectation with respect to the random parameter associated to (r_j). Since $p/2 \leq 1$, we may apply the reverse Minkowski inequality to infer that
\[
\mathbb{E}_1 \left(\sum_k \left(\sum_j a_{j,k} r_j \right)^2 \right)^{p/2} \geq \left(\sum_k \left(\mathbb{E}_1 \left(\sum_j a_{j,k} r_j \right)^p \right)^{2/p} \right)^{p/2}.
\]
Using a second time Khinchine’s inequality leads to
\[
\left(\sum_k \left(\mathbb{E}_1 \left(\sum_j a_{j,k} r_j \right)^p \right)^{2/p} \right)^{p/2} \geq \left(\sum_{j,k} |a_{j,k}|^2 \right)^{p/2}.
\]
From this tensorized Khinchine inequality, we deduce one side of the desired inequality.

Lemma 5. Let $(\lambda_k) \subset \mathbb{R}_+$ a finite sequence of coefficients and (u_k) a finite sequence in $L^{2p}(\mathbb{R}^d)$. Then, we have
\[
\left\| \sum_{j,k} \lambda_k |P_j u_k|^2 \right\|_{L^p} \leq \left\| \sum_k |u_k|^2 \right\|_{L^p},
\]
for all $1/2 < p < \infty$, where the implicit constant is independent of $(\lambda_k), (u_k)$.

Proof. By Lemma 2
\[
\left\| \sum_{j,k} \lambda_k |P_j u_k|^2 \right\|_{L^p} \leq \mathbb{E} \int_{\mathbb{R}^d} \left| \sum_{j,k} \lambda_k^{1/2} r_j r_k P_j u_k(x) \right|^{2p} dx.
\]
By the boundedness of the Fourier multiplier by $\xi \mapsto \sum_j r_j \hat{\psi}_j(\xi)$ on L^{2p}, we have
\[
\mathbb{E} \int_{\mathbb{R}^d} \left| \sum_{j,k} \lambda_k^{1/2} r_j r_k P_j u_k(x) \right|^{2p} dx \leq \mathbb{E} \int_{\mathbb{R}^d} \left| \sum_k \lambda_k^{1/2} r_k u_k(x) \right|^{2p} dx.
\]
Applying again Khinchine’s inequality, we have
\[
\int_{\mathbb{R}^d} \mathbb{E} \left| \sum_k \lambda_k^{1/2} r_k u_k(x) \right|^{2p} dx \leq \int_{\mathbb{R}^d} \left(\sum_k \lambda_k |u_k(x)|^2 \right)^p dx.
\]

The other side of the inequality uses Lemma 5.

Lemma 6. Let $(\lambda_k) \subset \mathbb{R}_+$ a finite sequence of coefficients and (u_k) a finite set of functions in $L^{2p}(\mathbb{R}^d)$. Then, we have
\[
\left\| \sum_k \lambda_k |u_k|^2 \right\|_{L^p} \leq \left\| \sum_{j,k} \lambda_k |P_j u_k|^2 \right\|_{L^p},
\]
for all $1/2 < p < \infty$, where the implicit constant is independent of $(\lambda_k), (u_k)$.

\footnote{Stating that $\| \sum f_k \|_{L^{p/2}} \geq \sum_k \| f_k \|_{L^{p/2}}$ for any $f_k \geq 0$.}
Remark 7. The right side of (6) is well-defined due to Lemma 5.

Proof. For any $V \geq 0$, we have

$$\int_{\mathbb{R}^d} \left(\sum_k \lambda_k |u_k(x)|^2 \right) V(x) \, dx = \sum_k \lambda_k \int_{\mathbb{R}^d} u_k(x) V(x) u_k(x) \, dx$$

$$= \sum_{j,k} \lambda_k \int_{\mathbb{R}^d} \tilde{P}_j u_k(x) \tilde{P}_j V u_k(x) \, dx,$$

where the sequence \tilde{P}_j was defined earlier. By H"older’s inequality,

$$\sum_{j,k} \lambda_k \int_{\mathbb{R}^d} \tilde{P}_j u_k(x) \tilde{P}_j V u_k(x) \, dx \leq \int_{\mathbb{R}^d} \left(\sum_{j,k} \lambda_k |P_j u_k(x)|^2 \right)^{1/2} \left(\sum_{j,k} \lambda_k |\tilde{P}_j V u_k(x)|^2 \right)^{1/2}$$

$$\leq \left\| \sum_{j,k} \lambda_k |P_j u_k(x)|^2 \right\|_{L^p}^{1/2} \left\| \sum_{j,k} \lambda_k |\tilde{P}_j V u_k(x)|^2 \right\|_{L^p/(2p-1)}^{1/2}.$$

By Lemma 5 using that $p/(2p-1) > 1/2$, we have

$$\left\| \sum_{j,k} \lambda_k |\tilde{P}_j V u_k(x)|^2 \right\|_{L^p/(2p-1)} \lesssim \left\| V^2 \sum_k \lambda_k |u_k|^2 \right\|_{L^p/(2p-1)},$$

which leads to the desired result by choosing $V = (\sum_k \lambda_k |u_k|^2)^{p-1}$. \qed

2. Application: Lieb-Thirring inequalities

In this section, we explain how to use the Littlewood-Paley decomposition (3) to provide a simple proof of the Lieb-Thirring inequality. We first compare the Littlewood-Paley decompositions (2) and (3), and argue why they cannot be used in the same way.

2.1. Comparison of the two Littlewood-Paley decompositions. The Lieb-Thirring inequality generalizes to densities of operators the Gagliardo-Nirenberg-Sobolev inequality

$$\| u \|_{L^{2+4/d}} \lesssim \| u \|_{L^2}^{2/d} \| \nabla u \|_{L^2}^{d/(d-2)} , \ \forall u \in H^1(\mathbb{R}^d). \quad (7)$$

This last inequality can be proved very easily using the usual Littlewood-Paley decomposition (2). Indeed, by H"older’s inequality we have

$$\| P_j u \|_{L^{2+4/d}} \leq \| P_j u \|_{L^2}^{2/d} \| P_j u \|_{L^\infty}^{2/d}$$

$$\lesssim \| P_j u \|_{L^2}^{2/d} \| \mathcal{F}(P_j u) \|_{L^1}^{2/d}$$

$$\lesssim 2^{j(2/d)} \| P_j u \|_{L^2}^{2/d}$$

$$\lesssim \| P_j u \|_{L^2}^{2/d} \| \nabla P_j u \|_{L^2}^{d/(d-2)}.$$
meaning that the Gagliardo-Nirenberg-Sobolev inequality is immediate for frequency-localized functions. To get it for any function, we use the Littlewood-Paley decomposition \((2)\) and obtain

\[
\|u\|_{L^{2+4/d}}^2 \lesssim \sum_j \|P_j u\|_{L^{2+4/d}}^2 \
\lesssim \sum_j \|P_j u\|_{L^2}^{4/2 + d} \|\nabla P_j u\|_{L^2}^{2d/2}
\lesssim \left(\sum_j \|P_j u\|_{L^2}^2 \right)^{2/d + 2} \left(\sum_j \|\nabla P_j u\|_{L^2}^2 \right)^{d/d + 2}
\lesssim \|u\|_{L^2}^{4/d + 2} \|\nabla u\|_{L^2}^{2d/d + 2}.
\]

We see here the power of the Littlewood-Paley decomposition: it allows to deduce functional inequalities from their version for frequency-localized functions. This has been used in several contexts, for instance concerning Strichartz inequalities \([9, 3]\). In particular, notice that we have used something much weaker than the Littlewood-Paley decomposition, namely the inequality

\[
\|u\|_{L^p}^2 \lesssim \sum_j \|P_j u\|_{L^p}^2,
\]

which follows from \((2)\) by a triangle inequality. We now explain why the same strategy does not work in the context of the Lieb-Thirring inequality. This inequality reads

\[
\text{Tr}(-\Delta) \gamma \gtrsim \int_{\mathbb{R}^d} \rho_\gamma(x)^{1+\frac{d}{4}} \, dx,
\]

for any finite-rank \(0 \leq \gamma \leq 1\). To see that it is indeed a generalization of the Gagliardo-Nirenberg-Sobolev inequality, notice that it is equivalent to the inequality

\[
\int_{\mathbb{R}^d} \left(\sum_{k=1}^N \lambda_k |u_k(x)|^2 \right)^{1+\frac{d}{4}} \, dx \lesssim \sum_{k=1}^N \lambda_k \int_{\mathbb{R}^d} |\nabla u_k(x)|^2 \, dx,
\]

for any \((\lambda_k) \subset \mathbb{R}_+, (u_k) \subset H^1(\mathbb{R}^d)\) orthonormal in \(L^2(\mathbb{R}^d)\), and any \(N \geq 1\). The usual Gagliardo-Nirenberg-Sobolev inequality thus corresponds to the particular case \(N = 1\) of the Lieb-Thirring inequality. However, the Lieb-Thirring inequality does not follow from the Gagliardo-Nirenberg-Sobolev and the triangle inequalities, they only imply that

\[
\int_{\mathbb{R}^d} \left(\sum_{k=1}^N \lambda_k |u_k(x)|^2 \right)^{1+\frac{d}{4}} \, dx \lesssim \left(\sum_{k=1}^N \lambda_k \right)^{\frac{d}{4}} \sum_{k=1}^N \lambda_k \int_{\mathbb{R}^d} |\nabla u_k(x)|^2 \, dx,
\]

which is weaker than the Lieb-Thirring inequality, especially for large \(N\). Let us notice that Frank, Lieb, and Seiringer have proved in \([7]\) an equivalence between the Gagliardo-Nirenberg-Sobolev and (the dual version of) the Lieb-Thirring inequality.
Again, for frequency-localized γ, this inequality is elementary: the constraint $0 \leq \gamma \leq 1$ implies that $0 \leq P_\gamma P_j \leq P_j^2$ and hence $0 \leq \rho_{P_j \gamma} P_j(x) \lesssim 2^{d j}$ for all $x \in \mathbb{R}^d$. As a consequence,

$$\left\| \rho_{P_j \gamma} P_j \right\|_{L^{1+2/d}} \leq \left\| \rho_{P_j \gamma} P_j \right\|_{L^{1+2/d}}^{\frac{d}{2}} \left\| \rho_{P_j \gamma} P_j \right\|_{L^{1+2/d}} \lesssim \left(\text{Tr} (\Delta) P_j \gamma P_j \right)^{\frac{d}{2}} \lesssim \left(\text{Tr} (\Delta) P_j \gamma P_j \right)^{\frac{d}{4+2}},$$

which is exactly the Lieb-Thirring inequality. Here, we used the fact that $\int \rho_\gamma = \text{Tr} \gamma$. Using the same idea as in the proof of the Gagliardo-Nirenberg-Sobolev inequality, we find that for any γ,

$$\left\| \rho_\gamma \right\|_{L^{1+2/d}} \lesssim \sum_j \left\| \rho_{P_j \gamma} P_j \right\|_{L^{1+2/d}} \lesssim \sum_j \left(\text{Tr} (\Delta) P_j \gamma P_j \right)^{\frac{d}{4+2}},$$

which we cannot sum. Indeed, the inequality

$$\sum_j \left(\text{Tr} (\Delta) P_j \gamma P_j \right)^{\frac{d}{4+2}} \leq \left(\sum_j \left(\text{Tr} (\Delta) P_j \gamma P_j \right) \right)^{\frac{d}{4+2}} \sim \left(\text{Tr} (\Delta) \gamma \right)^{\frac{d}{4+2}}$$

is of course wrong because $d/(d+2) < 1$. We thus see the difference between the applications of the Littlewood-Paley decompositions for functions or for densities of operators: one cannot directly resum the frequency-localized inequalities in the context of operators. Of course, the reason behind it is the use of the rough triangle inequality $\|\rho_\gamma\|_{L^p} \lesssim \sum_j \|\rho_{P_j \gamma} P_j\|_{L^p}$, which one should not do for operators. We now explain how to go beyond this difficulty.

2.2. Proof of the Lieb-Thirring inequality. Let us prove the Lieb-Thirring inequality using the Littlewood-Paley decomposition for densities. Hence, let $0 \leq \gamma \leq 1$ an operator on $L^2(\mathbb{R}^d)$, which we may assume to be of finite rank. Since $1 = \sum_j P_j$ with $P_j \geq 0$, we deduce that $1 \geq \sum_j P_j^2$.

We thus have

$$\text{Tr} (\Delta) \gamma \geq \sum_j \text{Tr} \sqrt[\gamma]{P_j (\Delta) P_j \sqrt[\gamma]{\gamma}} \geq \sum_j 2^{2j} \text{Tr} \sqrt[\gamma]{P_j^2} \sqrt[\gamma]{\gamma} = \int_{\mathbb{R}^d} \sum_j 2^{2j} \rho_{P_j \gamma} P_j(x) \, dx. \quad (8)$$

Lemma 8. Let $(\alpha_j)_{j \in \mathbb{Z}}$ a sequence of real numbers satisfying $0 \leq \alpha_j \leq 2^{jd}$ for all j. Then, we have the inequality

$$\left(\sum_j \alpha_j \right)^{\frac{1}{1+\frac{d}{4}}} \lesssim \sum j 2^{2j} \alpha_j.$$

Let us first notice that the lemma implies the Lieb-Thirring inequality: indeed, since $0 \leq \gamma \leq 1$ we deduce that $0 \leq P_j \gamma P_j \leq P_j^2$ and hence $0 \leq \rho_{P_j \gamma} P_j(x) \lesssim 2^{jd}$ for all $x \in \mathbb{R}^d$. Hence, from the Lemma and (8) we deduce that

$$\text{Tr} (\Delta) \gamma \gtrsim \int_{\mathbb{R}^d} \left(\sum_j \rho_{P_j \gamma} P_j(x) \right)^{1+\frac{d}{4}} \, dx \gtrsim \int_{\mathbb{R}^d} \rho_\gamma(x)^{1+\frac{2}{d}} \, dx,$$

where in the last inequality we used the Littlewood-Paley theorem for densities. Let us now prove the lemma.
Proof of Lemma 8. We split the following sum as
\[
\sum_j \alpha_j = \sum_{j \leq J} \alpha_j + \sum_{j > J} \alpha_j.
\]
We estimate the first sum using that \(0 \leq \alpha_j \leq 2^j d\):
\[
\sum_{j \leq J} \alpha_j \lesssim 2^d J,
\]
and the second sum is estimated in the following way:
\[
\sum_{j > J} \alpha_j \lesssim 2^{-2J} \sum_j 2^{2j} \alpha_j.
\]
We thus find that for all \(J\),
\[
\sum_j \alpha_j \lesssim 2^d J + 2^{-2J} \sum_j 2^{2j} \alpha_j.
\]
Optimizing over \(J\) leads to the result. \(\square\)

Of course, the same strategy of proof allows to obtain more general inequalities of the type
\[
\text{Tr}(-\Delta)^{b} \gamma \gtrsim \int_{\mathbb{R}^d} \rho_\gamma(x)^{1 + \frac{2b}{d+2}} dx,
\]
for all \(0 \leq \gamma \leq (-\Delta)^a\), with \(b \geq 0\) and \(a > -d/2\). In particular, the case \(d \geq 3\), \(a = -1\), \(b = 1\) is due to Rumin [12] and was shown to be equivalent to the CLR inequality by Frank [6]. Our method is similar to the one used by Rumin, except that he uses a continuous decomposition
\[
-\Delta = \int_0^{\infty} 1(-\Delta > \tau) d\tau
\]
instead of a dyadic decomposition coming from Littlewood-Paley. Rumin’s method is actually far more powerful when dealing with these kind of inequalities, and was shown to work when replacing \(-\Delta\) by general \(a(-i\nabla)\) by Frank [6]. The dyadic decomposition seems useless in these more general cases since it does not distinguish the high/low values of \(a\). We expect that the Littlewood-Paley decomposition might be useful when one wants to exploit the “almost orthogonality” between the blocks \((P_j)\): we have \(P_j P_k = 0\), except for finite number of blocks, a phenomenon which does not appear in Rumin’s decomposition. This orthogonality might be useful when dealing with higher Schatten spaces \(\mathcal{S}^\alpha\) compared to the trace-class \(\mathcal{S}^1\) which appears for instance in the Lieb-Thirring inequality. We hope to find such applications in the future.

Acknowledgments. The author is grateful to Rupert Frank for useful discussions. Financial support from the ERC MNIQS-258023 is acknowledged.
References

[1] A. Bove, G. Da Prato, and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Commun. Math. Phys., 37 (1974), pp. 183–191.

[2] ———, On the Hartree-Fock time-dependent problem, Commun. Math. Phys., 49 (1976), pp. 25–33.

[3] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), pp. 569–605.

[4] J. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104.

[5] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2), 94 (1971), pp. 330–336.

[6] R. L. Frank, Cwikel’s theorem and the CLR inequality, J. Spectr. Theory, 4 (2014), pp. 1–21.

[7] R. L. Frank, E. H. Lieb, and R. Seiringer, Equivalence of Sobolev inequalities and Lieb-Thirring inequalities, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, pp. 523–535.

[8] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, vol. 79 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991.

[9] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980.

[10] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), pp. 185–194.

[11] C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis. Vol. I, vol. 137 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2013.

[12] M. Rumin, Spectral density and Sobolev inequalities for pure and mixed states, Geom. Funct. Anal., 20 (2010), pp. 817–844.

[13] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, 1970.

Département de Mathématiques (UMR 8628), Faculté des Sciences d’Orsay, Université Paris-Sud, F-91405 Orsay Cedex

E-mail address: Julien.Sabin@math.u-psud.fr