ASSEMBLING THE BUILDING BLOCKS OF GIANT PLANETS AROUND INTERMEDIATE-MASS STARS

K. A. Kretke1, D. N. C. Lin1,2, P. Garaud3, and N. J. Turner4

1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; kretke@ucolick.org
2Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing, China
3Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Received 2008 June 9; accepted 2008 August 29; published 2008 December 1

ABSTRACT

We examine a physical process that leads to the efficient formation of gas giant planets around intermediate-mass stars. In the gaseous protoplanetary disks surrounding rapidly accreting intermediate-mass stars, we show that the midplane temperature (heated primarily by turbulent dissipation) can reach $\gtrsim 1000$ K out to 1 AU. The thermal ionization of this hot gas couples the disk to the magnetic field, allowing the magnetorotational instability (MRI) to generate turbulence and transport angular momentum. Further from the central star the ionization fraction decreases, decoupling the disk from the magnetic field and reducing the efficiency of angular momentum transport. As the disk evolves toward a quasi-steady state, a local maximum in the surface density and in the midplane pressure both develop at the inner edge of the MRI-dead zone, trapping inwardly migrating solid bodies. Small particles accumulate and coagulate into planetesimals which grow rapidly until they reach isolation mass. In contrast to the situation around solar-type stars, we show that the isolation mass for cores at this critical radius around the more-massive stars is large enough to promote the accretion of significant amounts of gas prior to disk depletion. Through this process, we anticipate a prolific production of gas giants at ~ 1 AU around intermediate-mass stars.

Key words: planetary systems: formation – planetary systems: protoplanetary disks

1. INTRODUCTION

The discovery of a plethora of extra-solar planets around solar-type main-sequence stars has established that planet formation must be a common process, not a peculiarity of our own solar system. As observational techniques for planetary detection have become more sophisticated, the discovery domain has expanded to include host stars with a wide range of masses. While on the main sequence, intermediate-mass stars (stars with $1.5 \, M_\odot \lesssim M_* \lesssim 3 \, M_\odot$) make poor radial velocity (RV) survey candidates as they have few spectral lines which also tend to be rotationally broadened (Griffin et al. 2000 but see Galland et al. 2006). However, once these stars evolve off the main sequence, their relatively cool and slowly rotating outer layers make them more suitable candidates for high-precision spectroscopic studies. Recent RV surveys targeting evolved intermediate-mass stars suggest that they differ from solar-type stars as planetary hosts in at least two respects. First, the total frequency of giant planets (with periods less than a few years) appears to be higher around intermediate-mass stars (Lovis & Mayor 2007; Johnson et al. 2007a). Second, the planets have different statistcal properties. Their semimajor axis distribution is concentrated at 1–2 AU, and there is an apparent lack of short-period (days to months) planets, despite observational selection effects favoring their discovery (Johnson et al. 2007b).

In this paper, we propose a common explanation for prolific gas giant formation with semimajor axes comparable to 1 AU and for the rarity of close-in planets around intermediate-mass stars. As it is unlikely that all planets within 1 AU have been engulfed or had their orbits disrupted by the current expanded envelope of the host stars (Johnson et al. 2007b), we attribute both properties to the formation and early evolutionary processes rather than to post-main-sequence evolution.

We begin by examining the physical properties of circumstellar disks which may affect the probability of forming giant planets. In the core-accretion model of planet formation (see Bodenheimer & Pollack 1986), the emergence of Jupiter-like gas giants requires that a population of solid cores forms within a gaseous protoplanetary disk. These cores grow through cohesive collisions with planetesimals, with a growth rate determined by the velocity dispersion of the planetesimal swarm. The magnitude of this velocity dispersion is set by a balance between excitation by gravitational perturbations and damping by gas drag. In the gas-rich environment of a typical protostellar disk, gas drag dominates so that field planetesimals only attain relatively small equilibrium velocity dispersion. As a result the most-massive protoplanetary embryos can access only those building blocks within their gravitational feeding zones (Kokubo & Ida 1998). When these embryos have collected all the planetesimals within about five times their Roche radius on either side of their orbits, their growth stalls. This maximum embryo mass, a function of planetesimal surface density and distance from the central star, is referred to as the embryo's isolation mass (M_{iso}). Gas giants can only form if the embryos' M_{iso} is sufficiently large for the cores to begin accreting gas prior to the depletion of their nascent disks (Ida & Lin 2004). Although the gravity of lunar-mass embryos is adequate to accrete disk gas with temperature $< 10^3$ K, efficient dynamical gas accretion is only possible for cores with masses greater than some critical value (M_{crit}). In a minimum mass solar nebula (Hayashi 1981) with an interstellar grain size distribution, $M_{\text{crit}} \sim 10 \, M_\oplus$ at a semimajor axis $a \sim 5$ AU (Pollack et al. 1996), although this critical mass decreases both with lowered grain opacity (Ikoma et al. 2000; Hubickyj et al. 2005) and with increased density of the ambient gas (Bodenheimer & Pollack 1986; Papaloizou & Terquem 1999). Gas giant formation therefore requires that the heavy elements in the disk can be efficiently assembled into massive cores with mass greater than M_{crit}. In order to understand the spatial distribution of the gas giant planets, we must understand how the building blocks of these cores migrate and are retained in gaseous disks.
In protoplanetary disks solid retention first becomes an issue once grains grow beyond a few cm in size. In most regions of protostellar disks, the midplane pressure (P_{mid}) decreases with distance from the central star (r) so that the gas is slightly pressure supported, resulting in a sub-Keplerian azimuthal velocity. Grains larger than a few cm are decoupled from the gas and move at Keplerian speeds. Consequently, grains typically experience head winds and undergo orbital decay (Weidenschilling 1977). However, if P_{mid} does not monotonically decrease with r then immediately interior to a local pressure maximum the gas attains super-Keplerian velocities. This motion introduces a tail wind on the decoupled grains and causes them to drift outward toward local pressure maxima (Bryden et al. 2000; Haghhighipour & Boss 2003).

Solid retention again becomes an issue once planetesimals grow into earth-mass embryos and tidal interactions with the gaseous disk become important. Before embryos are sufficiently massive to open up gaps in the disks (Lin & Papaloizou 1986), they can exchange angular momentum with the gas via their Lindblad and corotation resonances (Goldreich & Tremaine 1980). A geometric bias causes an imbalance between the Lindblad resonances which generally leads to a loss of angular momentum and orbital decay for the embryos (Ward 1986, 1997). However, embryos will gain angular momentum through their corotation resonances if there is a positive P_{mid} gradient (Tanaka et al. 2002; Masset et al. 2006). Numerical models which take into account these physical effects have reproduced the observed M_{p}-a distribution around solar-type stars (Ida & Lin 2008).

Several physical processes can lead to local maxima in P_{mid}. Various authors have explored the potential accumulation of grains at transient pressure maxima formed by turbulent fluctuations (Johansen et al. 2006; Fromang & Nelson 2005) or spiral waves (Rice et al. 2006). These mechanisms, while likely to be extremely important for forming planetesimals at a large range of radii, are still quite “leaky” as a significant fraction of the solid material simply undergoes a slightly slower random walk toward the central star. However, longer-lived pressure maxima may also exist due to large-scale changes in the disk viscosity (Kretke & Lin 2007).

We expect radial variations in viscosity if turbulence caused by the magnetorotational instability (MRI; Balbus & Hawley 1991) is the primary mechanism for transporting angular momentum. These variations result from changes in the ionization fraction at different radii in the disk since free electrons are needed to couple the gas to the magnetic field. The disk is thermally ionized in the hot inner regions, but further out stably X-rays and diffuse cosmic rays ionize only the surface layers, resulting in a viscously active turbulent surface sandwiching an inactive “dead zone” (Gammie 1996). At the critical radius marking the inner edge of the dead zone (a_{crit}), the effective viscosity decreases with increasing distance from the central star. In a quasi-steady-state situation (expected to develop rapidly in the inner regions of the disk) this decrease in viscosity leads to a local increase in the magnitude of Σ, and hence of P_{mid} with radius. This disk structure provides a promising barrier to the orbital decay of both boulders and embryos. The radial location of a_{crit} depends on the stellar mass and the mass accretion rate which we argue explains the observed differences between the statistical distributions of planets around solar-type stars and around intermediate-mass stars.

In this paper, we present a model for the formation of planets at the inner edge of the dead zone and argue why this process is more relevant for intermediate-mass than for solar-mass stars. In Section 2, we describe our quantitative numerical model for the evolution of solids in the disk, based upon the work of Garaud (2007). An important aspect of this model is the location of a_{crit} (the inner edge of the dead zone) which we derive in Section 2.2 as a function of stellar mass and mass accretion rate. In Section 3, we present the model results for a 2 M_\odot star and estimate how this planet-formation mechanism scales with stellar mass. In Section 4, we summarize our conclusions.

2. MODEL DESCRIPTION

In order to assess the probability of forming of gas giants at the inner edge of the dead zone, we must calculate the expected isolation mass of the cores (M_{iso}) at this location (a_{crit}). From the work of Kokubo & Ida (1998), it has been established that the embryo’s isolation mass is sensitive both to the distance from the host star and to the surface density of solids. For the purpose of computing the efficiency of solid retention, we calculate the dynamical evolution of the solids in the disk using a modification of the numerical scheme developed by Garaud (2007; hereafter G07). For full details we refer the readers to G07 but for reference the salient points are described here. In this model we assume that particles, as a result of a collisional cascade, maintain a power-law size distribution in which the number density of particles of size s goes as $dn/ds \propto s^{-3.5}$, with sizes ranging from a fixed s_{min} to s_{max} and where s_{max} is allowed to vary with time and distance from the central star. Using this assumption that the timescale to re-establish collisional quasi-equilibrium is shorter than the timescale for solids to move radially we are able to completely describe the evolution of the gas and solids in the disk by the total gas surface density ($\Sigma_g(r,t)$), the solid and vapor surface densities of the different species in the disk ($\Sigma_{p,i}(r,t)$ and $\Sigma_{v,i}(r,t)$ respectively), and the maximum size of the particles $s_{\text{max}}(r,t)$.

In the following sections, we describe how we have modified the G07 scheme. In Section 2.1, we describe how we account for the presence of an evolving dead zone. In particular, we describe in Section 2.2 how we calculate the location of the inner edge of the dead zone (a_{crit}) using a simple model of the vertical thermal structure. Finally, in Section 2.3 we model the drag on the gas caused by the particles in the limit of large $Z \equiv \Sigma_p/\Sigma_g$, an effect important near a_{crit} where solids are seen to accumulate.

2.1. Viscosity at a Function of r and t.

The original G07 model uses the standard α viscosity prescription ($\nu(r) = \alpha_{\text{eff}} c_s(r) h(r)$) where c_s is the midplane sound speed, h is the disk scale height ($h \equiv c_{\text{mid}} \Omega^{-1}_r$), and α_{eff} is constant. In this paper, we consider $\alpha_{\text{eff}} = \alpha_{\text{eff}}(r,t)$ to model the presence of an evolving MRI-dead zone. In fully MRI-active regions (e.g., interior to a_{crit}), we assume that $\alpha_{\text{eff}} = \alpha_{\text{MRI}}$, while exterior to a_{crit}, α_{eff} is modified to take into account the lower viscosity of the dead zone. In Section 2.2, we describe in detail how we calculate the location of a_{crit}.

Exterior to a_{crit} the disk is ionized by X-rays and cosmic rays, so only the surface layers are MRI active. The column density of this active layer (Σ_A) is strongly dependent on the ionizing source (i.e., the ability of cosmic rays to penetrate the stellar magnetosphere) and on the recombination rate, which is dominated by the amount of small grains. Due to these uncertainties, and the fact that the exact evolution of the outer parts of the dead zone is relatively unimportant in these calculations, we follow previous studies and assume that...
\[\Sigma_A = 100 \text{ g cm}^{-2} \text{ at all radii (outside of the thermally ionized region; e.g., Gammie 1996).} \]

Additionally, we assume that there is some amount of angular momentum transport in the dead zone. This transport may be due to the propagation of MRI-driven waves into the laminar dead zone (Fleming & Stone 2003; Turner et al. 2007) or to a mechanism unrelated to the MRI. This motivates the following prescription in regions beyond \(a_{\text{crit}} \):

\[
\alpha_{\text{eff}}(r, t) = \begin{cases}
2\alpha_{\text{MRI}}\Sigma_A + \alpha_{\text{eff,dead}}(\Sigma_e - 2\Sigma_A), & \text{if } \Sigma_e \geq 2\Sigma_A, \\
\alpha_{\text{MRI}}, & \text{otherwise},
\end{cases}
\]

where \(\alpha_{\text{eff,dead}} \) is the effective viscosity in the dead zone.

2.2. Location of \(a_{\text{crit}} \)

In order for the disk to be unstable to MRI turbulence the magnetic Reynolds number (\(\text{Re}_M \equiv v_A^2 / (\eta \Omega_K) \)) must be greater than one (Sano & Inutsuka 2001) where \(v_A \) is the Alfvén speed and resistivity \(\eta \) is inversely proportional to the electron fraction \(\langle x_e \rangle \) and can be approximated as \(\eta = 230\sqrt{T} / x_e \) (Blaes & Balbus 1994). Therefore, in a typical disk with a plasma beta \(\beta \) on the order of \(\sim 100 \) (consistent with an \(\alpha_{\text{MRI}} \sim 10^{-2} \)) \(x_e \) must be on the order of \(10^{-12} \) to become unstable to MRI turbulence. Since the degree of thermal ionization is a sensitive function of temperature, we must calculate the vertical structure of the disk in order to find the location of \(a_{\text{crit}} \), the inner edge of the dead zone.

While stellar irradiation may be important to the structure of the very innermost region of the disk around young intermediate-mass stars, the main effect of this radiation would be to produce a puffed-up inner rim which would shadow the disk immediately exterior to it (Dullemond et al. 2001). Even without a shadowing "wall," viscous heating will dominate the energy budget in the regions of the disk near \(a_{\text{crit}} \). Using the method from Garaud & Lin (2007) to calculate the location at which viscous heating dominates around a typical one Myr old star with \(M_* = 2 \, M_\odot \) and with a mass-accretion rate of \(M = 1.4 \times 10^{-7} \, M_\odot \, \text{yr}^{-1} \) the viscous heating dominates out to 2.4 AU. Therefore in subsequent calculations we neglect stellar irradiation and note that any effect of stellar radiation will be to heat the disk and move the location of \(a_{\text{crit}} \) farther from the central star.

We assume that the disk is in hydrostatic equilibrium,

\[
\frac{dP}{dz} = -\rho_g \Omega_K^2 z, \tag{2}
\]

and is viscously heated so that the vertical energy flux \((F) \) is described by

\[
\frac{dF}{dz} = \frac{9}{4} \rho_g \Omega_K^2. \tag{3}
\]

Here, we consider that \(v(r, z) \) is a function of both height and radius in the disk and assume that the orbital frequency can be approximated by the Keplerian frequency.

We also assume radiative energy transport so that

\[
F = -\frac{4ac}{3} \frac{T^3}{\kappa \rho_g} \frac{dT}{dz}, \tag{4}
\]

where \(\kappa \) is the Rosseland mean opacity. For the temperature range of interest (400–1200 K) the dominant opacity sources are silicate and iron grains. We adopt a gray opacity approximation in which \(\kappa = 1 \text{ cm}^2 \text{ g}^{-1} \). This approximation is consistent with the Ferguson et al. (2005) dust opacities. We only solve the optically thick region of the disk and use photospheric boundary conditions at \(z = z_s \), namely \(P(z_s) = (2/3)\Omega_K^2 z_s / \kappa \) and \(F(z_s) = \alpha T(z_s)^4 \). Finally, we assume symmetry about the midplane.

In order to parameterize the variation of the viscosity with height above the midplane, we follow the results of 3D MHD simulations which demonstrate that, in fully developed MRI turbulence, the shear stress \((u \equiv v_{\phi} \rho / (dQ / dr) = (3/2) \rho \Omega \kappa \) is approximately constant with height (Miller & Stone 2000). Based on these numerical results, we model the viscosity at a given radius as

\[
\nu(z) = \begin{cases}
\frac{2}{3} \frac{\alpha_p}{\rho_k \kappa} \Omega_K z, & \text{if } |z| < z_v, \\
0, & \text{otherwise,}
\end{cases} \tag{5}
\]

where \(z_v \approx 2h \). Note that this differs from the more common two-dimensional parameterization sometime referred to as the "\(\alpha P \)-formalism" (e.g., Cannizzo 1992) where \(\nu_{\alpha P} = \alpha_{\text{crit}} \nu_{\text{dead}} \Omega_K^{-1} \).

Equation (5) is applicable to MRI-active regions where the partially ionized gas is well coupled to the turbulent magnetic field through the entire thickness of the disk. As long as the midplane temperature is high enough to sufficiently ionize the gas this structure is self-consistent. We can therefore use it to determine \(a_{\text{crit}} \), the outermost radius where this condition is satisfied. In practice, we combine the equations for the vertical structure with the Saha equation to calculate the location at which the midplane just satisfies the ionization criterion of \(x_e \geq 10^{-12} \) which correspond to \(T \approx 1000 \text{ K} \) for typical disk midplane densities (Umebayashi 1983).

In Figure 2, the curves show the location of the inner edge of the dead zone as a function of stellar mass and accretion rate assuming that in the active region \(\alpha = 10^{-2} \). These theoretical curves can be approximated by

\[
a_{\text{crit}} = 0.77 \left(\frac{M}{1.4 \times 10^{-7} M_\odot \, \text{yr}^{-1}} \right)^{4/9} \left(\frac{M_*}{2 M_\odot} \right)^{1/3} \times \left(\frac{\alpha}{10^{-2}} \right)^{1/5} \left(\frac{\kappa D}{1 \text{ cm}^2 \text{ g}^{-1}} \right)^{1/4} \text{AU}, \tag{6}
\]

where the quasi-steady-state approximation for the mass accretion rate

\[
\dot{M} = 3\pi \int_{-\infty}^{\infty} \rho_{\text{g}} v \, dz = 4\pi \alpha p_{\text{mid}} \kappa \Omega_K^{-1} z_v \tag{7}
\]

was used to eliminate \(p_{\text{mid}} \). We find that this value for \(a_{\text{crit}} \) varies significantly from the \(\sim 0.1 \text{ AU} \) often quoted (i.e., Gammie 1996) if the stellar mass or the mass accretion rate are large.

By using the relationship

\[
\dot{M} = 3\pi v \Sigma_e = 3\pi \alpha_{\text{eff}} \kappa D \Omega_K^{-1} \Sigma_e \tag{8}
\]
et al. (2006). The dashed line shows the best fit for the observations of mass accretion rates for stars of various masses (see the text for a function of stellar mass and mass accretion rate. The symbols represent Curves show the position of the inner edge of the dead zone as Figure 2.

Comparison of the disk structure resulting from the viscosity prescription from Equation (5) (solid curves) to disks with the traditional “α-P formalism” (dashed curves). Panel (a) shows the accretion stress, panel (b) the viscosity, and panel (c) the temperature.

(prime 1981), we can relate the α in Equation (6) to the vertically averaged α_{eff} when the disk is fully MRI active and find that α_{MRI} ≈ α.

Observationally, M appears to be correlated with M*, although the exact relationship is both uncertain and shows significant scatter. For reference, the symbols in Figure 2 indicate measurements of mass accretion rates onto young stars. The solid points are from observations of the young cluster (< 1 Myr) ρ-Oph by Natta et al. (2006) and the dashed line shows the best fit to their data which is

\[\dot{M} \simeq 4 \times 10^{-8} (M_*/M_\odot)^{1.8} M_\odot \text{ yr}^{-1}. \]

As the mass accretion rate for the higher mass stars in the Natta et al. sample is dominated by a single object, we have also plotted (as open points) similar data from older, heterogeneously distributed intermediate-mass stars with estimated ages ranging from 1 to 10 Myr (Garcia Lopez et al. 2006). As suggested in this study, these systematically older stars may have had higher mass accretion rates consistent with the extrapolation from ρ-Oph when they were younger.

Using the best-fit relationship from ρ-Oph implies that a_{crit} \propto M_8^{1/3}. Clarke & Pringle (2006) suggest that the correlation between stellar mass and mass accretion rate may not be this steep due to observational biases. If instead we use their estimation that M \propto M_* then a_{crit} \propto M_*^{0.8}, which is a slightly less sensitive but nevertheless increasing function of M.* Therefore, in the light of these uncertainties, we will simply assume that a_{crit} \propto M_*.

2.3. Gas–Particle Feedback

In a thin disk, the global evolution of the gas surface density \(\Sigma_g \) is determined by the equation

\[\frac{\partial \Sigma_g}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\Sigma_g u_r r) = 0. \]

In a standard viscous accretion disk, the radial velocity \(u_r \) of gas equals \(u_v \), where

\[u_v = -\frac{3}{r^{1/2} \Sigma_g} \frac{\partial}{\partial r} (r^{1/2} \Sigma_g). \]

In our analysis, we consider the possibility that the radial velocity of the gas \(u_r \) is not only determined by the viscosity but also by momentum transferred via drag between the gas and the solid particles. We calculate the equation of motion for a parcel of gas and dust in a similar fashion to Nakagawa et al. (1986). However, instead of assuming a single-particle size for the solids we consider the power-law distribution \((dn/ds) \propto s^{-3.5} \). The equation of motion for a given particle of size \(s \) is

\[\frac{dV(s)}{dt} = -\frac{1}{\tau_s(s)} (V(s) - U) - \frac{GM_\ast}{r^3} r, \]

where \(\tau_s(s) = s \rho_s/(\rho g c_s) \) is the stopping time for a particle of size \(s \) and density \(\rho_s \) (in the Epstein regime; see G07 for a full description), where \(V(s) \) is the size-dependent particle velocity and \(U \) is the gas velocity.

Assuming that deviations from the Keplerian orbital velocity are small, we write \(V(s) = v_r(s) \hat{r} + (r \Omega_k + v_\phi(s)) \hat{\phi} \) and \(U = u_r \hat{r} + (r \Omega_k + u_\phi) \hat{\phi} \). The linearization of Equation (12) yields

\[\frac{\partial v_r}{\partial t} = -\frac{1}{\tau_s(s)} (v_r(s) - u_r) + 2 \Omega_k v_\phi(s), \]

\[\frac{\partial v_\phi}{\partial t} = -\frac{1}{\tau_s(s)} (v_\phi(s) - u_\phi) - \frac{1}{2} \Omega_k v_r(s). \]
The particles and gas adjust to a steady motion with respect to each other within a few stopping times, so we solve for the steady-state solutions only. Multiplying by the particle mass and integrating over the whole size distribution function yields
\[
\int_{s_{\text{min}}}^{s_{\text{max}}} \left[-m(s) \frac{dn}{ds} \frac{1}{\tau_I(s)} (v_I(s) - u_r) \
+ 2\Omega_K m(s) \frac{dn}{ds} v_\phi(s) \right] ds = 0, \tag{14}
\]
\[
\int_{s_{\text{min}}}^{s_{\text{max}}} \left[-m(s) \frac{dn}{ds} \frac{1}{\tau_I(s)} (v_I(s) - u_\phi) \
- \frac{1}{2} \Omega_K m(s) \frac{dn}{ds} v_r(s) \right] ds = 0.
\]

The momentum lost by the solids is acquired by the gas, so that the steady-state gas dynamic can be described by
\[
\int_{s_{\text{min}}}^{s_{\text{max}}} \frac{m(s)}{\tau_I(s)} \left[(v_I(s) - u_r) ds + 2\Omega_K \rho_g (u_\phi + \eta v_K) \right] = 0,
\]
\[
\int_{s_{\text{min}}}^{s_{\text{max}}} \frac{m(s)}{\tau_I(s)} \left[(v_I(s) - u_\phi) ds - \frac{1}{2} \Omega_K \rho_g (u_r - u_\phi) \right] = 0,
\]
where \(\eta\) is the nondimensional pressure gradient
\[
\eta \equiv -\frac{1}{2} \frac{h^2}{r^2} \frac{\partial \ln \rho}{\partial \ln r}, \tag{16}
\]
and \(v_K = r \Omega_K\). In most regions of the disk \(\eta\) is positive due to the negative pressure gradient, but its sign will change around pressure maxima. In the absence of particles, the gas will have an azimuthal velocity (relative to the Keplerian motion) of \(u_\phi = -\eta v_K\) and a radial velocity of \(u_r = u_\nu\).

Combining these equations and defining the mass-weighted average particle velocities as
\[
\bar{v}_r \equiv \frac{1}{\rho_p} \int_{s_{\text{min}}}^{s_{\text{max}}} m(s) \frac{dn}{ds} v_r(s) ds,
\]
\[
\bar{v}_\phi \equiv \frac{1}{\rho_p} \int_{s_{\text{min}}}^{s_{\text{max}}} m(s) \frac{dn}{ds} v_\phi(s) ds,
\]
where \(\rho_p \equiv \int_{s_{\text{min}}}^{s_{\text{max}}} m(s) \frac{dn}{ds} ds\) allows us to write
\[
u_r(s) = \frac{u_r + 2\Omega_K \tau_I(s) u_\phi}{1 + \Omega_K \tau_I(s)^2}, \tag{19}
\]
\[
u_\phi(s) = \frac{u_\phi - (1/2) \Omega_K \tau_I(s) u_r}{1 + \Omega_K \tau_I(s)^2}.
\]

Using the definition for the Stokes number \(\text{St}(s) = \Omega_K \tau_I(s)/(2\pi)\) and taking the mass-weighted integral over all particle sizes yields
\[
\bar{v}_r = I(\sqrt{2\pi \text{St}_{\text{max}}}) u_r + 2J(\sqrt{2\pi \text{St}_{\text{max}}}) u_\phi,
\]
\[
\bar{v}_\phi = I(\sqrt{2\pi \text{St}_{\text{max}}}) u_\phi - \frac{1}{2} J(\sqrt{2\pi \text{St}_{\text{max}}}) u_r, \tag{20}
\]
where \(I\) and \(J\) are the same as Equation (52) in G07 (reproduced in the Appendix for reference) and \(\text{St}_{\text{max}} = \text{St}(s_{\text{max}})\).

Equations (18) and (20) yields the final steady-state velocities for the particles and the gas where \(I \equiv I(\sqrt{2\pi \text{St}_{\text{max}}})\), \(J \equiv J(\sqrt{2\pi \text{St}_{\text{max}}})\), and \(\chi \equiv \rho_p/\rho_g\).

\[
\bar{v}_r = \frac{[I + \chi(1 + J^2)] u_r - 2J \eta v_K}{1 + 2\chi I + \chi^2 I^2 + J^2},
\]
\[
\bar{v}_\phi = -\frac{1}{2} \frac{I u_r + 2[I + \chi(1 + J^2)] \eta v_K}{1 + 2\chi I + \chi^2 I^2 + J^2}, \tag{21}
\]
\[
\bar{u}_r = \frac{(1 + \chi I) u_r + 2J \eta v_K}{1 + 2\chi I + \chi^2 I^2 + J^2},
\]
and
\[
\bar{u}_\phi = \frac{\chi I u_r - 2(1 + \chi I) \eta v_K}{1 + 2\chi I + \chi^2 I^2 + J^2}. \tag{22}
\]

In the gas-dominated limit (\(\chi \to 0\)) these equations reduce to those in G07. If \(\text{St}_{\text{max}}\) is large and \(\text{St}_{\text{max}} \gg \chi^2\), the solids will be decoupled from the gas and will not migrate significantly (\(v_r = 0\)) while the gas evolves viscously (\(u_r = u_\nu\)). In the limit \(\text{St}_{\text{max}} \ll 1\), the grains are well coupled to the gas so there will be little relative motion between the two (\(u_r = v_r = u_\nu/(1 + \chi)\)).

3. MODEL RESULTS

With these modifications to the G07 prescription we calculate the evolution of a disk around a 2 M$_\odot$ star including an MRI-dead zone (\(\alpha_{\text{MRI}} = 10^{-2}, \alpha_{\text{eff,dead}} = 10^{-3}\)). The initial disk has a surface density profile of
\[
\Sigma_\theta = \Sigma_0 \left(\frac{r}{1\text{AU}} \right)^{-1} \exp\left(-\frac{r}{R_0} \right), \tag{23}
\]
where \(R_0 = 30\) AU, and \(\Sigma_0 = 10^4\) g cm$^{-2}$ has been chosen such that the quasi-steady-state accretion rate \(\dot{M}\) from Equation (8) is $1.4 \times 10^{-7} M_\odot$ yr$^{-1}$ when \(\alpha_{\text{eff}} = \alpha_{\text{eff,dead}}\). For the chosen value of \(\alpha_{\text{eff,dead}}\) the total disk mass is 0.1 M$_\odot$. This relatively massive disk is still stable according to the Toomre criterion at all radii. For simplicity, we only track one species of solids, a generic refractory material which we take to be a combination of silicates and metals, materials which are assumed to sublime at 1500 K. Using the solar composition from Lodders (2003), we begin with a dust-to-gas ratio of 0.005 for these refractory materials. We do not track volatile ices as they will not contribute to the solid cores formed in the hot regions of interest. For other model parameters, we use the values presented in the fiducial model of G07.

3.1. Accumulation of Solids

We first study the accumulation of solids near the edge of the dead zone and emphasize the importance of feedback in terms of momentum exchange between the solids and the gas. We present two runs, the first neglecting momentum transfer from the dust to the gas and then including this feedback.

The top and middle panels of Figure 3 show the evolution of the gas and solids neglecting the feedback of the dust on the gas. For reference, Figure 4 shows \(\alpha_{\text{eff}}\) at 104 years and 105 years to indicate the location of the dead zone. Early on the dead zone extends from 0.9 to 20 AU, but as the disk evolves the dead zone shrinks. Within the first 104 years, the gaseous disk adjusts to a quasi-steady-state profile in the inner regions. The surface density of the gas in the fully MRI-active inner region \((r \lesssim 1\text{ AU})\) is reduced by a factor of \(\alpha_{\text{eff,dead}}/\alpha_{\text{MRI}}\) compared with that in the dead zone \((r \in [1, 10] \text{ AU})\), thus creating a local pressure
maximum near 1 AU. In this calculation neglecting feedback, the solids accumulate in a very narrow ring corresponding to this pressure maximum. After only \(5.3 \times 10^5\) years, the largest-size body at this location reaches \(5 M_\oplus\) and the core thus formed is expected to continue to grow significantly due to accretion of gas, not included in this numerical calculation. Crucially, in this model tidal interactions will not affect the orbital evolution of the core as the effect of Type I migration would be to keep the core at the pressure maximum (Masset et al. 2006). It is also interesting to note that when feedback is neglected, virtually all solids are trapped at the pressure maximum and negligible amounts of heavy elements accrete onto the star. This effect is associated with the clear spatial separation of the pressure maximum and the sublimation line (here at \(\sim 0.3\) AU) and would appear to predict that intermediate-mass stars should be strongly depleted in refractory elements. However, we now show that this is in fact unrealistic as the large build up of material makes it necessary to include the transfer of momentum from the solids to the gas.

The bottom panels of Figure 3 show the evolution of the same initial disk including this momentum feedback. The early evolution is essentially similar for \(t < 10^4\) years. However, once the amount of solids in the inner edge of the dead zone has increased by an order of magnitude, it begins affecting the gas properties (compare the middle and bottom panels of Figure 3). The mass accretion rate onto the star decreases as the gas receives angular momentum from the solids. The decrease in \(M\)
reduces the surface density and thus the midplane temperature, causing \(\dot{a}_{\text{crit}} \) to move inward. As \(\dot{a}_{\text{crit}} \) moves inward, the response of the solids lags behind that of the gas, smoothing the sharp peak in the solid surface density and allowing the trapped gases to accrete onto the central star. In this way, both \(M \) and the position of \(a_{\text{crit}} \) oscillate with time as seen in Figure 5. The period for these oscillations is determined by the local viscous diffusion timescale in the MRI-active region (\(\tau_{\text{vis}} \sim a_{\text{crit}}^2 / (\nu \Omega_{\text{MRI}}) \)) as this is the timescale on which material is removed from the inner region, changing the location of \(a_{\text{crit}} \). The oscillations grow in amplitude until the timescale for gas to diffuse from the outermost location of \(a_{\text{crit}} \) to the innermost location becomes comparable to the oscillation timescale. It is also interesting to note that these oscillations allow heavy elements to accrete onto the star since when \(\dot{a}_{\text{crit}} \) moves outward it leaves some solids interior to the “trap” of the pressure maximum. Thus, intermediate-mass stars will not, in fact, be significantly depleted in refractory elements.

In these simulations, we find that the total amount of solids trapped near the pressure maximum is of the order of 100 \(M_\oplus \) and that the dust-to-gas ratio in this region is of order unity. The core growth is slower than in the simulation without feedback as material is deposited over a wider range of radii. In \(5.3 \times 10^5 \) years the largest body has grown to 0.5 \(M_\oplus \) but the amount of material in its vicinity suggests that it will continue to grow larger still.

3.2. Core Formation

As the core mass increases much beyond 0.5 \(M_\oplus \), many effects not included in the numerical algorithm could affect its growth. For example, it may be important to include the effects of tidal interactions since the oscillations of the position of the pressure maximum could affect the orbital evolution of the core. Additionally, gravitational interactions between solids may start to impact their radial distribution. The cores may scatter each other out of the region of interest and radially migrating solids will be trapped into resonances with the existing core, stalling radial migration (Weidenschilling & Davis 1985). As a result, we do not continue integrating the simulations beyond this point but instead estimate the achievable core mass with simpler but robust scalings based on our most important results from the previous section: (1) the presence of a large reservoir of solids (> 100 \(M_\oplus \)) around \(a_{\text{crit}} \) and (2) the saturation of the dust-to-gas surface density ratio to \(Z \sim 1 \) near \(a_{\text{crit}} \) (as seen in Figure 3), which is a simple consequence of the saturation of the nonlinear momentum feedback between the solids and the gas.

Using these ideas, we estimate the maximum achievable core size from the isolation mass (Iida & Lin 2005) at \(a_{\text{crit}} \) is

\[
M_{\text{iso}} = 2\pi \Sigma P a_{\text{crit}} b r_T(a_{\text{crit}}),
\]

where \(r_T(a_{\text{crit}}) = a_{\text{crit}} (2M_{\text{iso}} / (3M_\star))^{1/3} \) is the Hill’s radius and \(b \simeq 10 \) (Lissauer 1987). We assume that \(\Sigma P \) is related to \(M \) by the quasi-steady-state approximation (8) and that \(\Sigma P \) is related to the gas density via \(Z = \Sigma P / \Sigma g \) where \(Z \sim 1 \). We find that

\[
M_{\text{iso}} \approx 60 Z^{3/2} \left(\frac{M}{1.4 \times 10^{-7} M_\odot \text{yr}} \right)^{11/6} \times \left(\frac{M_\star}{M_\odot} \right)^{1/2} \left(\frac{T}{10^4 \text{K}} \right)^{-3/2} \left(\frac{\alpha_{\text{MRI}}}{10^{-2}} \right)^{-4/3} M_\odot.
\]

Note that this estimate should be considered as a maximum achievable size and that, more realistically, cores may only reach a fraction of \(M_{\text{iso}} \). Therefore, in the following section we select the core mass \(M_c = f M_{\text{iso}} \). The isolation mass of the core at \(a_{\text{crit}} \) goes as \(M_{\text{iso}} \propto M^{11/6} M_\star^{1/2} \). If we assume that \(M \) is related to \(M_c \), as discussed in Section 2.2 then \(M_{\text{iso}} \propto M_c^2 \) to \(M_\star^4 \). Therefore, super-earth cores form preferentially at the inner boundary of the dead zone around more massive stars. We note that this dependence is dominated by the mass accretion rate; therefore if there are lower mass stars with sustained high accretion rates they may also form giant planets by this mechanism. However, the mass of a core as a function of time (prior to isolation) goes as \(M_c(t) \propto t^5 M_{-18/5} M_\star^{10/9} \) (Iida & Lin 2004) so if a star has a high mass accretion rate for a very short period of time there may not be time to assemble a large core. This implies that super-earth cores require sustained high mass accretion rates, more probably found around intermediate-mass stars.

3.3. Gas Giant Formation

As our numerical algorithm does not include gas accretion onto the cores we can use the estimate of core mass derived in the previous section to look at the potential for further growth using the approximations of Iida & Lin (2005). The growth of a planet of mass \(M_p \) due to the gas capture can be approximated as

\[
\frac{dM_p}{dt} \approx \frac{M_p}{\tau},
\]

where

\[
\tau \approx t_0 \left(\frac{M_p}{M_\oplus} \right)^{-3}
\]

with \(t_0 \approx 10^{10} \) years (see Iida & Lin 2005), although \(t_0 \) is likely to be smaller in the inner regions of the disk where \(\rho_p \) is relatively large). As long as the final mass of the planet is much greater than the original core mass, the timescale for giant planet formation is then

\[
I_{\text{giant}} \approx \frac{t_0}{3} \left(\frac{M_c}{M_\oplus} \right)^{-3}.
\]

This inference effectively means that in order for a gas giant to form within the lifetime of the evolving disk, the core mass must at least be of the order of 10 \(M_\oplus \). Using the relationship derived in Equation (25) implies that \(I_{\text{giant}} \propto M_{-11/2} M_\star^{-3/2} \). Folding
in the relationship between \dot{M} and M_* yields $t_{\text{giant}} \propto M_*^{-7}$ to M_*^{-12}. This very steep function demonstrates that giant planets will not have time to form at the inner edge of the dead zone around less-massive stars, but will form ubiquitously around higher-mass stars with higher accretion rates.

3.4. Asymptotic Mass and Multiple Planet Systems

The observationally inferred mass of the known planets around stars with $M_* > 2M_\odot$ is in the range of 2–20 M_J, which is near the upper end of the M_p distribution of known planets around solar-type stars. In the core-accretion scenario, the asymptotic mass of gas giants is determined by a thermal truncation condition (Lin & Papaloizou 1993) such that

$$M_p \simeq f_a (h/r)^3 M_*, \quad (29)$$

where the constant f_a is of the order of 1–10 and depends on the detailed thermal structure of the disk (Dobbs-Dixon et al. 2007; Ida & Lin 2005). We use Equation (6) to determine the value of $h/r = c_s/v_K$ at a_{crit}. The temperature and sound speed at the inner edge of a partially dead zone is, by construction, independent of M_* and M. We find from Equations (6) and (9) that, at $a_{\text{crit}}, h/r \sim 0.05$ during the main phase of disk evolution. From this result, we estimate that

$$M_p \approx 0.3 f_a \left(\frac{h/r}{0.05} \right)^3 \left(\frac{M_*}{2M_\odot} \right) M_J. \quad (30)$$

Figure 2 shows that the dependence of M on M_* in Equation (9) is an average relation with considerable dispersion. Furthermore, M declines with the stellar age t_*. Within our model planets with larger M_p on longer period orbits can form during the early epochs of disk evolution when M is much larger and a_{crit} is correspondingly further out. However, the rapid accretion phase may be too brief for embryos to reach their isolation mass. Nevertheless, cores with sufficient mass to initiate efficient gas accretion are likely to emerge when M is reduced to that approximated by Equation (9) and when the timescale for core formation at a_{crit} becomes comparable to the disk evolution timescale. Additionally, due to this spread in M around stars with similar M_*, we anticipate there will be a wide distribution of planetary masses, albeit the mean value of M_p should vary with M_*. In disks with protracted high-\dot{M} evolution, the first generation of gas giants forms rapidly. Once the first planet has formed and grown large enough to open a gap, the outer edge of this gap provides another pressure maximum capable of trapping solids and promoting the formation of the next planet (Bryden et al. 2000). We anticipate a prolific production of multiple planetary systems for intermediate-mass stars.

4. SUMMARY AND DISCUSSION

While planets are likely to form by the same basic mechanisms regardless of the environment in which they form, the properties of their host stars and the detailed structure of their nascent disks will strongly affect the statistical outcome of the formation process. Observations hint that planets may form systematically more efficiently around intermediate-mass stars, and that there is a statistically significant lack of giant planets on orbits with semimajor axes much smaller than 1 AU. In this paper, we propose a mechanism which forms giant planets preferentially around intermediate-mass stars with radial distributions roughly consistent with these observations. In this model the gaseous protoplanetary disk evolves due to MRI-driven turbulence, creating a pressure maximum at the inner edge of the dead zone (a_{crit}) which traps solid material. In order for the cores formed at this location to grow large enough to seed giant planets, the inner edge of the dead zone must be sufficiently far from the host star. We demonstrate that, as a_{crit} is roughly proportional to M_*, this condition is only likely to be met around intermediate-mass stars.

The amount of solids which accumulates near a_{crit} can also promote the emergence of additional gas giants at larger distances from the same host stars. We may expect the fraction of intermediate-mass stars with multiple Jupiter-mass planets is likely to be larger than that around solar-type stars. Nevertheless, we anticipate the peak in the planets’ semimajor axis distribution to be around 1 AU. This corresponds to the location of the original pressure maximum at the inner edge of the dead zone. Quantitative verification of this expectation requires population synthesis which will be carried out and presented elsewhere. Observational confirmation of this peaked period distribution will provide clues and constraints on the outstanding issue of magnetic turbulent transport in protostellar disks.

We thank D. Fischer, S. Ida, and P. Bodenheimer for many useful conversations. This work is supported by NASA (NAGS5-11779, NNG06-GF45G, NNX07A-L13G, NNX07AI88G), JPL (1270927), and NSF (AST-0507424).

APPENDIX

FUNCTIONS I AND J

The functions I and J used in Equations (20) and (22) are

$$I(x) = \frac{\sqrt{3}}{4x} [f_1(x) + f_2(x)],$$

$$J(x) = \frac{\sqrt{3}}{4x} [-f_1(x) + f_2(x)],$$

$$f_1(x) = \frac{1}{2} \ln \left(\frac{x^2 + x\sqrt{2} + 1}{x^2 - x\sqrt{2} + 1} \right),$$

$$f_2(x) = \arctan (x\sqrt{2} + 1) + \arctan (x\sqrt{2} - 1).$$

In the limit of $x \ll 1$, $I = 1$ and $J = x^2/3$, and in the limit of $x \gg 1$, $I = J = \sqrt{2\pi/(4x)} \approx 1/x$.

REFERENCES

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Blaes, O. M., & Balbus, S. A. 1994, ApJ, 421, 163
Bodenheimer, P., & Pollack, J. B. 1986, Icarus, 67, 391
Bryden, G., Różycka, M., Lin, D. N. C., & Bodenheimer, P. 2000, ApJ, 540, 1091
Cannizzo, J. K. 1992, ApJ, 385, 94
Clarke, C. J., & Pringle, J. E. 2006, MNRAS, 370, L10
Dobbs-Dixon, I., Li, S. L., & Lin, D. N. C. 2007, ApJ, 660, 791
Dullemond, C. P., Dominik, C., & Natta, A. 2001, ApJ, 560, 957
Ferguson, J. W., Alexander, D. R., Allard, F., Barman, T., Bodnarik, J. G., Hauschildt, P. H., Helfner-Wong, A., & Tamanai, A. 2005, ApJ, 623, 585
Fleming, T., & Stone, J. M. 2003, ApJ, 585, 908
Fromang, S., & Nelson, R. P. 2005, MNRAS, 364, L81
Galland, F., Lagrange, A.-M., Udry, S., Beuzit, J.-L., Pepe, F., & Mayor, M. 2006, A&A, 452, 709
Gammie, C. F. 1996, ApJ, 457, 355
Garaud, P. 2007, ApJ, 671, 2091
Garaud, P., & Lin, D. N. C. 2007, ApJ, 654, 606
Garcia Lopez, R., Natta, A., Testi, L., & Habart, E. 2006, A&A, 459, 837
Goldreich, P., & Tremaine, S. 1980, ApJ, 241, 425
Griffin, R. E. M., David, M., & Verschueren, W. 2000, A&AS, 147, 299
Haghighipour, N., & Boss, A. P. 2003, ApJ, 598, 1301
Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35
Hirose, S., Kroluk, J. H., & Stone, J. M. 2006, ApJ, 640, 901
Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2005, Icarus, 179, 415
Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388
Ida, S., & Lin, D. N. C. 2005, ApJ, 626, 1045
Ida, S., & Lin, D. N. C. 2008, ApJ, 685, 584
Ikoma, M., Nakazawa, K., & Emori, H. 2000, ApJ, 537, 1013
Johansen, A., Klahr, H., & Henning, T. 2006, ApJ, 636, 1121
Johnson, J. A., Butler, R. P., Marcy, G. W., Fischer, D. A., Vogt, S. S., Wright, J. T., & Peek, K. M. G. 2007a, ApJ, 670, 833
Johnson, J. A., et al. 2007b, ApJ, 665, 785
Kokubo, E., & Ida, S. 1998, Icarus, 131, 171
Kretke, K. A., & Lin, D. N. C. 2007, ApJ, 664, L55
Lin, D. N. C., & Papaloizou, J. 1986, ApJ, 309, 846
Lin, D. N. C., & Papaloizou, J. C. B. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson: Univ. of Arizona Press), 749–835
Lissauer, J. J. 1987, Icarus, 69, 249
Lodders, K. 2003, ApJ, 591, 1220
Lovis, C., & Mayor, M. 2007, A&A, 472, 657
Masset, F. S., Morbidelli, A., Crida, A., & Ferreira, J. 2006, ApJ, 642, 478
Miller, K. A., & Stone, J. M. 2000, ApJ, 534, 398
Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, Icarus, 67, 375
Natta, A., Testi, L., & Randich, S. 2006, A&A, 452, 245
Papaloizou, J. C. B., & Terquem, C. 1999, ApJ, 521, 823
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62
Pringle, J. E. 1981, ARA&A, 19, 137
Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G. 2006, MNRAS, 373, 1619
Sano, T., & Inutsuka, S.-i. 2001, ApJ, 561, L179
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257
Turner, N. J., Sano, T., & Dziourkevitch, N. 2007, ApJ, 659, 729
Umebayashi, T. 1983, Prog. Theor. Phys., 69, 480
Ward, W. R. 1986, Icarus, 67, 164
Ward, W. R. 1997, Icarus, 126, 261
Weidenschilling, S. J. 1977, MNRAS, 180, 57
Weidenschilling, S. J., & Davis, D. R. 1985, Icarus, 62, 16