INTRODUCTION

Although it is uncommon, a spinal epidural hematoma (SEH) is a well-known condition that is surgically removed to improve the neurological status of a patient. It can occur from either traumatic or atraumatic etiologies with a variety of underlying predisposing conditions. However, chronic SEH related to Kummell’s disease is extremely rare. To date, there has been only one case of chronic SEH related to Kummell’s disease. Kummell’s disease is a type of pseudoarthritis that gradually develops from osteoporotic compression fractures. Due to the chronic course of Kummell’s disease, it is not a likely cause of SEH; this is because it is not an acute compression fracture. Here, a rare case of a chronic spinal epidural hematoma in a patient with Kummell’s disease is reported with a review of literature.

CASE REPORT

An 82-year-old woman complained of severe back pain after a slight fall seven weeks earlier. She was transferred from a traditional oriental hospital to the emergency room of our institute. Lumbar spine magnetic resonance imaging revealed vertebral body collapse with the formation of a cavitary lesion at L1, and a chronic spinal epidural hematoma extending from L1 to L3. Because of intractable back pain, a percutaneous vertebroplasty was performed. The pain improved dramatically and follow-up magnetic resonance imaging obtained three days after the procedure showed a nearly complete resolution of the hematoma. Here, we present the rare case of a chronic spinal epidural hematoma associated with Kummell’s disease and discuss the possible mechanism.

Key Words : Spinal epidural hematoma · Kummell’s disease · Percutaneous vertebroplasty.
bone ischemia associated with non-healing vertebral collapse and it is indicative of bone changes with position or respiration\(^1\). SEH usually results from osteoporotic compression fractures; however, there are rare reports associated with Kummell's disease. In fact, Kummell's disease is not thought to cause SEH because it is not diagnosed during the acute phase of compression fractures\(^6\). However, in this case, Kummell's disease was likely responsible for the development of SEH. The pathophysiology seemed neither traumatic nor spontaneous. Kerslake et al.\(^7\) reported that a SEH resulting from spinal trauma is usually resolved within three weeks in most cases. The current case presented with an epidural hematoma seven weeks after the injury. This is based on a connection between the intravertebral cleft and epidural space. The integrity of the posterior cortex is an important consideration for the development of a SEH. The defect of posterior cortex may increase the chance of a SEH under weight bearing by nonunion with dynamic mobility. Oda et al.\(^10\) suggested the possibility that the fluid including the hemorrhage inside of the intravertebral cleft may be under pressure, and be pushed out into the epidural space during daily motion, and cause a subacute or chronic SEH.

MRI is considered the initial diagnostic imaging method for a SEH. The variability of the signal intensity can make the diagnosis difficult, but this phenomenon can also be helpful in determining the phase of the hematoma. In the acute phase, the hematoma appears isointense when compared with the spinal cord on T1-weighted images, and hyperintense on T2-weighted images. In the subacute stage, hematomas show characteristic high signal intensity on T1-weighted images, whereas they tend to be slightly hypointense or hyperintense on T2-weighted images. In the chronic stage, hematomas appear hyperintense on both T1- and T2-weighted images\(^1\).

The prognosis of SEH appears to be related to the severity of the preoperative neurological deficits and the time to intervention; early surgical treatment is crucial for good outcomes\(^9\). For this reason, urgent decompression is the treatment of choice for SEH\(^9\). However, in the case of a neurologically intact patient with SEH related to Kummell's disease, vertebroplasty alone may be effective treatment for the hematoma. A cleft or cavity completely filled with bone cement can block the connection between the intravertebral cleft and epidural space and aid in the spontaneous resolution of the hematoma over time.

CONCLUSION

This case illustrates an uncommon case of SEH in a patient with Kummell's disease. Although rare, the possibility of chronic
SEH should be kept in mind in patients with Kummell's disease.

References
1. Baek BS, Hur JW, Kwon KY, Lee HK: Spontaneous Spinal Epidural Hematoma. J Korean Neurosurg Soc 44: 40-42, 2008
2. Bruyn GW, Bosma NJ: Spinal extradural hematoma in: Vinken PJ, Bruyn GW (eds): Handbook of clinical neurology. Amsterdam: North-Holland Publishing, 1976, Vol 26, p1-30
3. Clarke DB, Bertrand G, Tampieri D: Spontaneous spinal epidural hematoma causing paraplegia: resolution and recovery without surgical decompression. Neurosurgery 30: 108-111, 1992
4. Groen RJ, van Alphen HA: Operative treatment of spontaneous spinal epidural hematomas: a study of the factors determining postoperative outcome. Neurosurgery 39: 494-508; discussion 508-509, 1996
5. Hentschel SJ, Woolfenden AR, Fairholm DJ: Resolution of spontaneous spinal epidural hematoma without surgery: Report of two cases. Spine 26: E525-E527, 2001
6. Ito Y, Hasegawa Y, Toda K, Nakahara S: Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture. Spine J 2: 101-106, 2002
7. Kerslake RW, Jaspan T, Worthington BS: Magnetic resonance imaging of spinal trauma. Br J Radiol 64: 386-402, 1991
8. Lawton MT, Porter RW, Heiserman JE, Jacobowitz R, Sonntag VK, Dickman CA: Surgical management of spinal epidural hematoma: relationship between surgical timing and neurological outcome. J Neurosurg 83: 1-7, 1995
9. Miyagi Y, Miyazono M, Kamikaseda K: Spinal epidural vascular malformation presenting in association with a spontaneously resolved acute epidural hematoma. Case report. J Neurosurg 88: 909-911, 1998
10. Oda I, Fujiya M, Hasegawa K, Terae S: Myelopathy caused by chronic epidural hematoma associated with L1 osteoporotic vertebral collapse: a case report and review of the literature. Open Orthop J 2: 40-42, 2008
11. Van Eenenaam DP, el-Khoury GY: Delayed post-traumatic vertebral collapse (Kummell's disease): case report with serial radiographs, computed tomographic scans, and bone scans. Spine 18: 1236-1241, 1993