Blocking and Other Enhancements for Bottom-Up Model Generation Methods

Peter Baumgartner
National ICT Australia

Renate A. Schmidt
The University of Manchester
Motivation: Disproving

• **Disproving**
 – Show that a given (first-order) formula (with equality) is not valid
 – This can be done by **computing a model**, i.e. a counterexample

• **Applications of Disproving**
 – Mathematics
 • Refute conjectures
 • Finite group existence
 – Verification: disproving verification conditions
 – Knowledge representation
 • Knowledge base is consistent
 • Speculated subsumption relation does not hold

Existing methods? Limits? What’s new here?
Disproving Methods (1)

• **Finite model building**
 – Assume a fixed, finite domain \{d_1, ..., d_n\}
 – Decide if there is a model of the given formula over that domain
 – If not, add a new domain element and repeat

• **Methods**
 – MACE-style: by reduction to
 • propositional SAT (Paradox, Mace2) or
 • function-free clause logic (FM-Darwin)
 – SEM-style: guess function tables and check for model
 – (Tableaux) algorithms by Bry&Torge, Bezem, Nivelle&Meng

✓ No syntactic restrictions on input formula
✗ Finite models sometimes not sufficient
✗ Poor scaling
Consider the clause set consisting of the $O(n^2)$ unit clauses

$$p(c_1, \ldots, c_n)$$

$$\neg p(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{j-1}, x, x_{j+1}, \ldots, x_n) \quad \text{for all } 1 \leq i < j \leq n$$

Second clause says no c_i and c_j can be mapped to the same element

- Therefore, smallest model has n domain elements

109 instances for $n=10$

- For which n do current finite model finders give up?

Any resolution method will terminate here

Finite model builders / (our) resolution methods are rather different

Our approach doesn’t iterate on domain size
Our approach doesn’t identify different constants
Disproving Methods (2)

• **Identify decidable fragment of FOL**
 – Guarded Fragment
 – Description and modal logics
 – Positive-variable dominated clauses
 – Prefix-classes: $\exists^*\forall^*$, $\exists^*\forall\exists^*$, ...

• **Design decision procedure for it**
 – From scratch. E.g. tableaux algorithms for description logics
 – By showing that a certain (resolution) refinement decides it. E.g. with axiomatic translation [Schmidt&Hustadt 2005], ordered resolution + splitting decides many modal logics

✔ Powerful
✗ Resolution not practical for $\exists^*\forall^*$
Really?
Problems of Using Resolution for \(\exists^* \forall^* \)

- \(\exists^* \forall^* \) fragment corresponds to function-free clause logic
 - Important for many database-like applications (Datalog)
- Pathological example for resolution:

\[
\text{Res} \quad \frac{p(x, y) \lor p(y, z) \leftarrow p(x, z) \quad p(a, z) \lor p(z, a)}{p(a, y) \lor p(y, z) \lor p(z, a)}
\]

Derived clauses pattern:

\[
\begin{align*}
p(a, z) \lor p(z, a) \\
p(a, y) \lor p(y, z) \lor p(z, a) \\
p(a, x) \lor p(x, y) \lor p(y, z) \lor p(z, a) \\
\vdots
\end{align*}
\]

- \(\times \) Refinements like subsumption, condensing, splitting don’t help
- \(\times \) Hyperresolution + range restriction works, but inefficiently
- \(\checkmark \) (One) contribution here: improved range restriction
Classical Approach

Input Clause Set

Standard Range Restriction

Bottom-Up Model Generation

Transformation

“Standard” prover
Classical Approach

Input Clause Set

Standard Range Restriction

Bottom-Up Model Generation

Transformation

“Standard” prover
Standard Range Restriction

[Manthey & Bry 88]

- A clause is **range restricted** iff each variable in its head also occurs in its body, as in \(p(x, z) \lor p(z, a) \leftarrow q(x, z) \)
- Every clause (set) can be made range restricted:
 - Restrict all extra variables in head in all input clauses to \(\text{dom} \), e.g.
 \[
 p(x, z) \lor p(z, a) \quad \text{becomes} \quad p(x, z) \lor p(z, a) \leftarrow \text{dom}(x) \land \text{dom}(z)
 \]
 - Add "dom"-clauses to enumerate Herbrand universe:
 \[
 \begin{align*}
 \text{dom}(a) \\
 \text{dom}(b) \\
 \text{dom}(f(x_1, \ldots, x_n)) & \leftarrow \text{dom}(x_1) \land \cdots \land \text{dom}(x_n)
 \end{align*}
 \]

All positive clauses derived by hyperresolution are ground
Classical Approach

- Input Clause Set
 - Standard Range Restriction
 - Bottom-Up Model Generation
 - "Standard" prover
 - E.g. based on **hyperresolution**
Hyperresolution + Range Restriction + Splitting

Given clause set:
\[p(a, z) \lor p(z, a) \]
\[p(x, y) \lor p(y, z) \quad \leftarrow \quad p(x, z) \]

Derivation by hyperresolution + splitting after range restriction

\[
\text{H-Res} \quad \frac{p(a, z) \lor p(z, a) \leftarrow \text{dom}(z) \quad \text{dom}(b)}{p(a, b) \lor p(b, a)}
\]

\[
\text{Split} \quad \frac{p(a, b) \lor p(b, a)}{p(a, b) \mid p(b, a)}
\]

\[
\text{H-Res} \quad \frac{p(x, y) \lor p(y, z) \leftarrow \text{dom}(y) \land p(x, z) \quad \text{dom}(a) \quad p(a, b)}{p(a) \lor p(a, b)}
\]

\[
\text{Split} \quad \frac{p(a, a) \lor p(a, b)}{p(a, a) \mid p(a, b)}
\]

\[\checkmark \quad \text{Decides function-free clause logic (BS class)} \]

\[\times \quad \text{Search space too big} \]

Improvement?
Our Approach

Input Clause Set

Improved

Standard
Range Restriction

Bottom-Up
Model Generation

Transformation

“Standard” prover
Improved Range Restriction

Here: idea by means of an example, see paper for details

(1) **Domain elements from clause heads**

Clause	Transformation
\(P(x) \lor Q(b) \)	\(P(x) \lor Q(b) \leftarrow \text{dom}(x) \)
	\(\text{dom}(x) \leftarrow P(x) \) for each head
	\(\text{dom}(x) \leftarrow Q(x) \) predicate symbol

✓ May yield smaller domain, depending on splits chosen
(2) Domain elements from clause bodies

Clause	Transformation
$P(x)$	$P(x) \leftarrow \text{dom}(x)$
	$\text{dom}(x) \leftarrow P(x)$
$\bot \leftarrow P(a) \land P(b)$	$\bot \leftarrow P(a) \land P(b)$
	$\text{dom}(a) \leftarrow P(x)$ for each body
	$\text{dom}(b) \leftarrow P(x)$ predicate symbol

- May yield smaller domain, depending on satisfied literals
Improved Range Restriction

(2) Domain elements from clause bodies

Clause	Transformation
$P(x)$	$P(x) \leftarrow \text{dom}(x)$
$\text{dom}(x) \leftarrow P(x)$	
$\bot \leftarrow Q(a) \land Q(b)$	$\bot \leftarrow Q(a) \land Q(b)$
$\text{dom}(a) \leftarrow Q(x)$
$\text{dom}(b) \leftarrow Q(x)$ for each body | predicate symbol |

- **May yield smaller domain, depending on satisfied literals**
Soundness and Completeness

- \(\text{rr}(M) := \) transformation of clause set \(M \) into range-restricted form

- **Proposition**
 A clause set \(M \) is satisfiable iff \(\text{rr}(M) \) is satisfiable
 Proof (completeness):
 - Given a Herbrand model \(I_{\text{rr}} \) of \(\text{rr}(M) \).
 - Define Interpretation \(I \) for \(M \):
 - Domain \(|I| = \{ t \mid I_{\text{rr}} \models \text{dom}(t) \} \)
 - Terms in \(|I| \) evaluate to themselves ("Quasi-Herbrand")
 - Show that \(I \) is a model of \(M \):

- **Corollary**
 A clause set \(M \) is E-satisfiable iff
 \(\text{rr}(M) \cup \{ x \approx x \leftarrow \text{dom}(x) \} \) is E-satisfiable
 Proof: Use equality axioms. Only equality axiom affected is reflexivity
Problem with Improved Range Restriction

- **Problem**: function symbols in clause bodies may lead to non-termination of BUMG

- **Example**:

 From \(r(x) \leftarrow q(x) \land p(f(x)) \)

 obtain \(\text{dom}(f(x)) \leftarrow p(y) \)

 and finally \(\text{dom}(f(x)) \leftarrow \text{dom}(x) \land p(y) \)

- Together with \(p(b), q(a), \text{dom}(a) \)

 derive \(\text{dom}(f(a)) \)

 \(\text{dom}(f(f(a))) \)

 \(\text{dom}(f(f(f(a)))) \)

 ...
Our Approach

Input Clause Set

Shifting

Improved Range Restriction

Bottom-Up Model Generation

Transformations

“Standard” prover
Shifting

- Moves body literals with function terms into the head:
 \[r(x) \leftarrow q(x) \land p(f(x)) \]

 Shifting:
 \[r(x) \lor \neg p(f(x)) \leftarrow q(x) \]
 \[\bot \leftarrow p(x) \land \neg p(x) \]

- Advantage: critical head atom \(\neg p(f(x)) \) possibly avoided now:

- With, say \(p(b), q(a) \)
 \(\text{dom}(a) \)

 derive \(r(a) \lor \neg p(f(a)) \)

 then split \[r(a) \]

 and done

\[\checkmark \text{ Improved RR + Shifting already quite effective} \]

Next: going beyond \(\exists^* \forall^* \) by “blocking”
Our Approach

Input Clause Set

- Shifting
- Improved Range Restriction
- Blocking

Transformations

"Standard" prover

Bottom-Up Model Generation
Blocking: Idea

- Detect periodicity in models and achieve termination by exploiting standard redundancy criteria
- Example from Tambis KB

```
Chapter(a)
Book(f_{Book}(x)) \leftarrow \text{Chapter}(x)
Chapter(f_{Chapter}(x)) \leftarrow \text{Book}(x)
\bot \leftarrow \text{Chapter}(x) \land \text{Book}(x)
```

- BUMG without blocking derives infinite model:

 `{\text{Chapter}(a), \text{Book}(f_{Book}(a)), \text{Chapter}(f_{Chapter}(f_{Book}(a))), \ldots}`

- But same model represented finitely by

 `{\text{Chapter}(a), \text{Book}(f_{Book}(a))}` and `f_{Chapter}(f_{Book}(a)) \approx a`

Blocking transformation encodes this search for equations
Blocking

• If y is a subterm of x then speculate $x \approx y$ - or not:

$$x \approx y \lor x \not\approx y \leftarrow \text{sub}(x, y)$$
$$\bot \leftarrow x \approx y \land x \not\approx y$$

To be effective, BUMG must consider the case $x \approx y$ first

• The subterm relation, restricted to dom elements:

$$\text{sub}(x, x) \leftarrow \text{dom}(x)$$
$$\text{sub}(x, f(x_1, \ldots, x_n)) \leftarrow \text{sub}(x, x_i) \land \text{dom}(x) \land \text{dom}(f(x_1, \ldots, x_n))$$

for every n-ary function symbol $f \in \Sigma_f$ and all $i \in \{1, \ldots, n\}$

• This way, say, $\text{dom}(f(a))$ will be simplified to $\text{dom}(a)$ when equation $f(a) \approx a$ has been speculated

Never equates two constants, search limited to subterms in domain
Experiments

- TPTP Version 3.1.1, tried all 514 clausal satisfiable problems
- Main prover: slightly modified superposition prover MSPASS
- Environment: Linux PC, Intel Pentium 4, 3.8 GHz, 1 GByte
- Timeout 5 minutes
 Memory limit 300 MByte (never a problem for MSPASS and KRHyper)
- Results: MSPASS + our transformations vs. ...
 - ... SPASS auto mode: orthogonal
 - ... Paradox: about 20 problems unsolvable for Paradox that can be solved by our methods
- Next slides:
 - Detailed evaluation of MSPASS + our transformations
 - On non-equational problems also tried KRHyper
MSPASS on Satisfiable TPTP Problems

Category	#	rr −sp	rr +sp	sh ◦ rr −sp	sh ◦ rr +sp	rr ◦ bl +sp	sh ◦ rr ◦ bl +sp	crr ◦ bl +sp
ALG	1	0	0	0	0	1	0	0
BOO	13	0	0	0	0	2	3	2
COL	5	0	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	7	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218
MSPASS on Satisfiable TPTP Problems

Category	#	rr	rr	sh \(\circ\) rr	sh \(\circ\) rr	rr \(\circ\) bl	sh \(\circ\) rr \(\circ\) bl	crr \(\circ\) bl
ALG	1	0	0	0	0	1	1	0
BOO	13	0	0	0	0	0	0	0
COL	5	0	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	7	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

Splitting is advisable
MSPASS on Satisfiable TPTP Problems

Category	# rr	# rr	# sh o rr	sh o rr	rr o bl	sh o rr o bl	crr o bl
	-sp	+sp	-sp	+sp	+sp	+sp	+sp
ALG	1	0	0	0	1	0	0
BOO	3	0	398		3	2	
COL	5	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0
GRP	25	7	7		14	12	
KRS	8	1	1	4	8	4	6
LAT	1	0	0	0	0	1	1
LCL	4	0	1	1	1	1	1
MGT	10	1	1	3	4	4	5
MSC	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160
NUM	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	9
RNG	4	0	0	0	0	0	0
SWV	8	0	0	0	0	1	0
SYN	176	20	50	20	52	124	125
All	514	86	147	111	177	252	328

sh o rr and rr o bl orthogonal
MSPASS on Satisfiable TPTP Problems

Category	#	rr	rr	sh ○ rr	sh ○ rr	rr ○ bl	sh ○ rr ○ bl	crr ○ bl
ALG	1	0	0	0	0	1	0	0
BOO	13	0	0	0	0	2	3	2
COL	5	0	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	7	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

Shifting is generally best.
MSPASS on Satisfiable TPTP Problems

Category	#	rr	rr	sh ∘ rr	sh ∘ rr	rr ∘ bl	sh ∘ rr ∘ bl	crr ∘ bl
		−sp	+sp	−sp	+sp	+sp	−sp	+sp
ALG	1	0	0	0	0	1	0	0
BOO	13	0	0	0	0	2	3	2
COL	5	0	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	3	3	5	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

Note: sh ∘ rr ∘ bl much better than crr ∘ bl.
KRHyper on Satisfiable non-Equational Problems

Rating	#	MSPASS	KRHyper additional	Rating	#	MSPASS	KRHyper additional
1.00	4	0	0	0.40	47	26	1
0.80	57	24	4	0.33	8	4	1
0.67	26	5		0.20	70	50	
0.60	44	23	10	0.17	31	10	
0.50	5	0		0.00	223	198	1
Conclusions

• Various improvements to BUMG paradigm, based on
 – Shifting, improved range restriction, blocking
 – Hyperresolution + splitting
 • State-of-the-art equality inference rules
 • Standard notion of redundancy
• Improves model building capabilities of standard BUMG provers
 – E.g. MSPASS, KRHyper, but not limited to these
 – Method generates domain elements on a by need basis
 – Never identifies constants (unlike finite model finders)
• Future work
 – Sorts
 – Nonmonotonic reasoning