Draft Genome Sequence and Gene Annotation of *Stemphylium lycopersici* Strain CIDEFI-216

Mario E. E. Franco,a Silva López,b Rocio Medina,c Mario C. N. Saparrat,a,d,e Pedro Balatti,a,e

Centro de Investigaciones de Fitopatología (CIDEFI-CICBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Instituto de Fisiología Vegetal (INFIVE-CCT La Plata-CONICET), Facultad de Ciencias Agrarias y Forestales, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CCT La Plata-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Instituto Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina

Stemphylium lycopersici is a plant-pathogenic fungus that is widely distributed throughout the world. In tomatoes, it is one of the etiological agents of gray leaf spot disease. Here, we report the first draft genome sequence of *S. lycopersici*, including its gene structure and functional annotation.

REFERENCES

1. Wallroth FG. 1833. Flora Cryptogamica Germaniae; pars posterior, continens Algas et Fungos. Nuremberg: J.L. Schrag.
2. Câmara MP, O’Neill NR, van Berkum P. 2002. Phylogeny of Stemphylium spp. based on ITS and glyceraldehyde-3- phosphate dehydrogenase gene sequences. Mycologia 94:660–672. http://dx.doi.org/10.2307/3761717.

3. Wang Y, Zhang XG. 2006. Three new species of Stemphylium from China. Mycotaxon 96:77–81.

4. Simmons EG. 1969. Perfect states of Stemphylium. Mycologia 61:1–26. http://dx.doi.org/10.2307/3757341.

5. Ellis MB. 1971. Dematiaceous hyphomycetes, p 608. Commonwealth Mycological Institute, Kew, Surrey, United Kingdom.

6. Farr DF, Bills GF, Chamuris GP, Rossman AY. 1989. Fungi on plants and plant products in the United States. APS Publishing, St. Paul, MN.

7. Debbab A, Aly AH, Edrada-Ebel R, Wray V, Müller WE, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MH, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R. 2009. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72:626–663. http://dx.doi.org/10.1021/np8004997.

8. Nasehi A, Kadir J, Nasr-Esfahani M, Abed-Ashtiani F, Wong M, Rambe S, Golkhandan E. 2014. Analysis of genetic and virulence variability of Stemphylium lycopersici associated with leaf spot of vegetable crops. Eur J Plant Pathol 140:261–273. http://dx.doi.org/10.1007/s10658-014-0460-3.

9. Enjoji S. 1931. Two diseases of tomato. J Plant Protect 18:48–53. (In Japanese.)

10. Ellis MB, Gibson IAS. 1975. Stemphylium lycopersici. CMI Descr Pathog Fungi Bact 471:1–2.

11. Farr DF, Rossman AY. Fungal databases–quick search. United States Department of Agriculture, Agricultural Research Service, Washington, DC. http://nt.ars-grin.gov/fungaldatabases/.

12. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18. http://dx.doi.org/10.1186/2047-217X-1-18.

13. Solovyev V, Kosarev P, Seledsov I, Vorobyev D. 2006. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1) :. http://dx.doi.org/10.1186/gb-2006-7-s1-s10.

14. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. http://dx.doi.org/10.1093/nar/25.5.0955.

15. Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. http://dx.doi.org/10.1093/bioinformatics/14.9.755.

16. Huang Y, Gilna P, Li W. 2009. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25:1338–1340. http://dx.doi.org/10.1093/bioinformatics/btp161.

17. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 2002. SS Ribosomal RNA database. Nucleic Acids Res 30:176–178. http://dx.doi.org/10.1093/nar/30.1.176.

18. Wuys J, Perrière G, Van de Peer Y. 2004. The European ribosomal RNA database. Nucleic Acids Res 32:D101–D103. http://dx.doi.org/10.1093/nar/gkh065.

19. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable Web server for fast metagenomic sequence analysis. BMC Genomics 12:444. http://dx.doi.org/10.1186/1471-2164-12-444.

20. Conesa A, Gótz S, García-Gómez JM, Terol J, Talon M, Robles M 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. http://dx.doi.org/10.1093/bioinformatics/bti610.

21. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120. http://dx.doi.org/10.1093/nar/gki442.