Theory of Mind and Its Neuropsychological and Quality of Life Correlates in the Early Stages of Amyotrophic Lateral Sclerosis

Francesca Trojsi1*, Mattia Siciliano1,2, Antonio Russo1, Carla Passaniti2, Cinzia Femiano1, Teresa Ferrantino1, Stefania De Liguoro1, Luigi Lavorgna1, Maria R. Monsurrò1, Gioacchino Tedeschi1 and Gabriella Santangelo2

1 Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences – MRI Research Center SUN-FISM, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy, 2 Department of Psychology, Università degli Studi della Campania “L. Vanvitelli”, Caserta, Italy

This study aims to explore the potential impairment of Theory of Mind (ToM; i.e., the ability to represent cognitive and affective mental states to both self and others) and the clinical, neuropsychological and Quality of Life (QoL) correlates of these cognitive abnormalities in the early stages of amyotrophic lateral sclerosis (ALS), a multisystem neurodegenerative disease recently recognized as a part of the same clinical and pathological spectrum of frontotemporal lobar degeneration. Twenty-two consecutive, cognitively intact ALS patients, and 15 healthy controls, underwent assessment of executive, verbal comprehension, visuospatial, behavioral, and QoL measures, as well as of the ToM abilities by Emotion Attribution Task (EAT), Advanced Test of ToM (ATT), and Eyes Task (ET). ALS patients obtained significantly lower scores than controls on EAT and ET. No significant difference was found between the two groups on ATT. As regard to type of ALS onset, patients with bulbar onset performed worse than those with spinal onset on ET. Correlation analysis revealed that EAT and ET were positively correlated with education, memory prose, visuo-spatial performances, and “Mental Health” scores among QoL items. Our results suggest that not only “cognitive” but also “affective” subcomponents of ToM may be impaired in the early stages of ALS, with significant linkage to disease onset and dysfunctions of less executively demanding conditions, causing potential impact on patients’ “Mental Health.”

Keywords: amyotrophic lateral sclerosis, theory of mind, social cognition, emotion attribution, quality of life

INTRODUCTION

Theory of Mind (ToM), regarded as an essential prerequisite for successful human social interaction (Adolphs, 2003), is the ability to infer and predict intentions, thoughts, desires and behavioral reactions to oneself and others, through an awareness that others have a mind with “affective” and “cognitive” mental states that may differ from one’s own (Frith and Frith, 1999). Considering that social interaction, among the cognitive aspects that may impact adherence to treatment and patients’ quality of life (QoL), has been increasingly shown to be impaired in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS; Elamin et al., 2012; Santangelo et al., 2012; Yamada et al., 2015; Burke et al., 2016a), an early assessment of this domain in the disease course could be useful for positively conditioning patients’ management and prognosis. In particular, with regard to ALS, a multisystem neurodegenerative disease, not
only characterized by motor dysfunctions, but also by extra-
motor symptoms, belonging to the clinical and pathological
spectrum of FTLD (Lillo et al., 2012; Ling et al., 2013; Troisi
et al., 2015; Burrell et al., 2016), the growing evidence of social
cognition impairments may have important implications on
patient's QoL and ability to engage competently in end-of-life
decisions (Chiò et al., 2004; Lulé et al., 2013; Körner et al., 2015).

From the anatomical point of view, the cognitive and affective
aspects of ToM have been demonstrated to be supported by
dissociable, yet interacting, prefrontal networks (Shamay-Tsoory
et al., 2004). Specifically, the “cognitive” ToM network primarily
engages the dorsomedial prefrontal cortex, the dorsal anterior
cingulate cortex and the dorsal striatum, while the “affective”
ToM network engages the ventromedial and orbitofrontal
cortices, the ventral anterior cingulate cortex, the amygdala
and the ventral striatum (Poletti et al., 2012). In this regard,
several lesion studies have provided evidence that ToM could be
considered a multidimensional construct (Shamay-Tsoory et al.,
2005, 2006; Gupta et al., 2012; Sebastian et al., 2012) and the
different ToM subcomponents have been explored in vivo by
several cognitive and affective ToM tasks, such as the false-beliefs
tasks (Wimmer and Perner, 1983; Baron-Cohen et al., 1985) and
the Reading the Mind in the Eyes or Eyes Task (ET; Baron-Cohen
et al., 1997, 2001), the former prototypical for the assessment of
cognitive ToM, the latter for the assessment of the affective ToM.
However, there is a body of literature criticizing how ToM is used
and investigated (Frith and Happé, 1994a; Bloom and German,
2000).

With regard to the investigation of “affective” and “cognitive”
components of ToM in neurologic disorders, significant deficits
have been revealed in cortical (i.e., Alzheimer’s disease and
Frontotemporal Lobar Degeneration or FTLD; Poletti et al., 2012)
and frontal-subcortical (Snowden et al., 2003; Meier et al., 2010;
Crespi et al., 2014) neurodegenerative diseases. Impairment of
social cognition has also been described in several cohorts of
patients, with probable and probable laboratory-supported ALS,
that captures the observed progressive loss of independence and
function. Moreover, considering that correlations between ToM
performances and neurobehavioral and QoL aspects, although
remarkable for ALS patients’ management, are still largely
debated, we also explored neuropsychological and behavioral
correlates of cognitive and affective ToM performances in our
population, assessing potential impairment of executive, memory
[i.e., the two cognitive domains reported to be impaired in ALS
(Phukan et al., 2012; Montuschi et al., 2015)] and behavioral
domains, arising from alteration of frontal and subcortical
regions (Tsermentseli et al., 2012), and the impact of ToM
dysfunctions on patients’ QoL.

MATERIALS AND METHODS

Patients

In the present study, 22 right-handed and native Italian speakers
patients, with probable and probable laboratory-supported ALS,
according to the El-Escorial revised criteria (Brooks et al., 2000),
were consecutively recruited at the First Division of Neurology of
the Università degli Studi della Campania “L. Vanvitelli” (Naples,
Italy). To be included in this study, which aimed to evaluate
ToM performance in ALS patients without the confounding
effect of other cognitive abnormalities, patients had to satisfy the
following inclusion criteria: (a) to have an age- and education-
adjusted score >71.78 on Addenbrooke’s Cognitive Examination

To note, there are opposing views in the literature with regard
to the relationship between ToM performances and executive or
behavioral skills (Baron-Cohen et al., 1985; Bertoux et al., 2016)
and, with regard to ALS, some studies, which were performed
in small and phenotypically heterogeneous samples of patients,
showed that ToM deficits were not selectively associated with
executive dysfunctions (Meier et al., 2010; Cavallo et al., 2011;
Girardi et al., 2011). On the contrary, Carluer et al. (2015)
revealed a significant association between alterations of the
cognitive subcomponent of ToM and executive functions in the
early stages of the disease.

On this background, given that the potential existence of ToM
abnormalities in the early stages of ALS and in different ALS
onsets are not still completely elucidated, in the present study,
we aimed to investigate whether cognitive and affective ToM are
impaired in a small sample of well-characterized ALS patients,
who were in King’s stages 1 and 2 of the disease (Balendra et al.,
2015) and were stratified for disease onset. We classified the
patients according to the King’s staging system, that account for
having reached different milestones of the disease related to the
number of regions involved (Balendra et al., 2015), differently
from Milano-Torino Staging system (MITOS; Chiò et al., 2015),
that captures the observed progressive loss of independence and
function. Moreover, considering that correlations between ToM
performances and neurobehavioral and QoL aspects, although
remarkable for ALS patients’ management, are still largely
debated, we also explored neuropsychological and behavioral
correlates of cognitive and affective ToM performances in our
population, assessing potential impairment of executive, memory
function.
Revised (ACE-R) [according to the Italian validated version of ACE-R (Siciliano et al., 2016)], a tool used to screen participants in terms of overall cognitive ability; (b) to exhibit preserved verbal comprehension abilities, needed to correctly execute the ToM tasks adopted in this study, assessed by Token Test, according to previous evidence (Hermann et al., 1992; Santangelo et al., 2012; Maseda et al., 2014) [age- and education-adjusted score >26.25 (Spinnler and Tognoni, 1987)]; (c) to be in stages 1 and 2 of ALS according to the King's clinical staging system, based on the appearance of sequential clinical milestones during the ALS course, without including cognitive information (i.e., stage 1 = impairment of one body site; stage 2 = impairment of two body sites; stage 3 = impairment of three body sites; stage 4 = non-invasive ventilation or percutaneous endoscopic gastrostomy; Balendra et al., 2015); (d) to use no medication influencing cognitive performances. Clinical parameters were measured in all ALS patients using the ALSFRS-R score, an ALS-specific measure of functional ability (Cedarbaum et al., 1999), and the upper motor neuron (UMN) score, a measure of pyramidal dysfunction through the evaluation of the number of pathological reflexes elicited from 15 body sites (Turner et al., 2004).

None of patients carried C9ORF72, SOD1, TARDBP, and FUS/TLS genes mutation.

Fifteen healthy control subjects (HCs), enrolled by "word of mouth," were age-, sex-, and education-matched with ALS patients for adequately selecting the control group. Given that HCs underwent the same neuropsychological assessment of ALS patients, the recruited HCs were cognitively normal and those with comorbid neurological, psychiatric, or medical conditions that could affect cognition were excluded.

The research was conducted according to the principles expressed in the Declaration of Helsinki. Ethics approval was obtained from the Ethics Committee of the Università degli studi della Campania "L. Vanvitelli". Written informed consent was obtained from each participant.

Neuropsychological Assessment

A 60-min neuropsychological battery, assessing cognitive functioning/ability (global cognitive assessment and executive, memory and abstract reasoning abilities), ToM abilities, frontal behavioral disorders, and QoL, was designed by a team of neuropsychologists and neuropsychologists experienced in the study and management of motor neuron diseases and cognitive decline. Although this neuropsychological battery was not ALS-specific, the tests administered have been widely used in ALS and other movement disorders (Phukan et al., 2012; Santangelo et al., 2012; Montuschi et al., 2015; Burke et al., 2016a), since they were less influenced by motor symptoms. All tests were administered in the morning following the same sequence for avoiding possible interference of the answers of one test over the others (Montuschi et al., 2015). In particular, after 1 day from assessment of global cognitive functions and, then, executive, memory, visuospatial, behavioral, and mood functions, patients underwent ToM assessment. Moreover, if the subject was too tired during testing, a further session was scheduled to complete the battery within 2 weeks after the first one. Considering that respiratory dysfunction may impact cognitive performances (Kim et al., 2007; Gülhan et al., 2015; Braley et al., 2016), oxygen saturation, and forced vital capacity (FVC) were measured at the time of each examination (i.e., none participant showed oxygen saturation <92 mmHg and FVC < 80%; Montuschi et al., 2015).

Given the aim of exploring neuropsychological and behavioral correlates of cognitive and affective ToM performances in our population, the neuropsychological protocol adopted allowed to assess: (1) executive performances (i.e., mainly the inhibitory control as specific executive function) by Stroop Color-Word Interference test using the Stroop Executive Factor (SEF; Caffarra et al., 2002), that accounts for motor disability (Phukan et al., 2012; Burke et al., 2016a); (2) long-term verbal memory by memory prose test (Novelli et al., 1986); (3) non-verbal abstract reasoning and current intellectual functioning by Raven’s Colored Progressive Matrices (RCPM; Carlesimo et al., 1996); and (4) behavioral dysfunctions and mood by Frontal Systems Behaviour (FrSBe) Scale (Grace et al., 1999), referring to the total scores at the time of examination, derived from the caregivers’ forms, proven to be not influenced from motor symptoms (Terada et al., 2011; Chiò et al., 2012) and Beck Depression Inventory-II (BDI-II; Innamorati et al., 2013). Caregiver burden was assessed by means of Caregiver Burden Inventory (CBI), a self-administered questionnaire evaluating the effect of caring on the caregiver (Novak and Guest, 1989). It comprised 24-item and its scores ranged from 0 (lowest level) to 100 (highest level). Finally, the ALS patients completed the Italian version of the Short Form-36 (SF-36; Apolone and Mosconi, 1998), in order to evaluate eight domains of QoL (i.e., physical functioning, limitations in everyday activities, bodily pain, general health, vitality, social functioning, emotional problems, and mental health). For each domain an aggregate percentage score was produced, which ranged from 0% (lowest or worst possible level of functioning) to 100% (highest or best possible level of functioning). In the present study, we considered the Italian standards to calculate z-score for each domain of SF-36 (Apolone and Mosconi, 1998).

After this preliminary evaluation, to explore ToM abnormalities in the early stages of ALS and in different ALS onsets, the participants underwent three ToM tasks that covered both cognitive and affective subcomponents. In particular, the advanced test of ToM (ATT), mainly considered a cognitive task, has been designed to investigate the ability to attribute mental states to others (Happé, 1994; Prior et al., 2003). The task included 13 written stories describing naturalistic situations in which two or more characters interacted with each other as in familiar or social contexts (e.g., children arguing about a toy's property, a mother chiding a son for not appreciating food, children pretending to behave as adults). The examiner had to read each story and, then, asked the participants why the characters behaved as they did. The total score ranged from 0 (worst performance) to 13 (best performance). Successful performance requires attribution of mental states such as desires, beliefs or intentions, and also higher orders mental states such as one character’s belief about what another character knows. The emotion attribution task (EAT; Prior et al., 2003), used to assess the ability to attribute emotional states to others,
included 35 written stories describing emotional situations (e.g., an employee apprehending to receive an extra salary, a man attacked by a big black spider, a woman finding a worm in her food); the examiner had to read each story and, then, asked the participants what the main protagonists might feel in that situation. Five stories were designed to elicit attribution of sadness, fear, embarrassment, disgust, happiness, anger, or envy (five stories for each emotion). The total score ranges from 0 (worst performance) to 35 (best performance). Finally, we also administered the ET, consisting of the presentation of photographs of the eye regions of human faces to participants who were required to choose which word best describes what the individual in the photograph is thinking or feeling (Baron-Cohen et al., 2001). A control task, designed to investigate participants’ ability to correctly identify human physical attributes, such as gender, was undertaken subsequently. Participants provided verbal responses and could take as long as they wanted to respond. All participants were encouraged to consult a glossary of all mental state terms for a correct interpretation of the lexicon in any case where they were unsure of a word (Baron-Cohen et al., 2001). To note, with regard to HCs, the ATT and ET scores were similar to those revealed in other samples of normal adults (Baron-Cohen et al., 2001; Santangelo et al., 2012, 2013; Sato et al., 2016).

Statistical Analysis
With regard to continuous variables, a multivariate analysis of variance (MANOVA), followed by multivariate analysis of covariance (MANCOVA), where appropriate, were performed for between-group comparisons. To reduce the risk of type I error associated with multiple comparisons, Bonferroni adjustments were made, with \(\alpha \) set at \(\alpha/n \) (where \(n \) = number of variables considered: 0.05/8 = 0.006).

To compare ALS patients’ performance on cognitive and affective ToM tasks, standardized \(z \) scores were calculated with reference to control group’s means and SD. The \(z \) scores displayed the relative degree of impairment from normal performance in SD units, thereby allowing to compare scores on ET, ATT and EAT within ALS group by a one-way ANOVA for repeated measures. We checked the data for normality using several procedures (i.e., Shapiro–Wilk normality test, kurtosis and skewness). Within the ALS group, Pearson’s correlation analysis, followed by Bonferroni correction (0.05/5 = 0.01 for demographic and clinical variables; 0.05/14 = 0.003 for neuropsychological variables) was carried out to explore potential associations between ToM performances and demographic (age and education), clinical (disease duration, and disease severity assessed by ALSFRS-R and UMN), cognitive, behavioral, and QoL features.

RESULTS

Demographic Variables
Twenty-two (9 females and 13 males) ALS patients (i.e., 9 with bulbar-onset and 13 with spinal-onset ALS) and 15 HCs (7 females and 8 males), age- and education-matched, were included in the present study. With regard to characterization of clinical phenotypes of ALS (Chiò et al., 2011), patients exhibited “classic” (Charcot’s; i.e., onset of symptoms in the upper/lower limbs, with clear but not predominant pyramidal signs) and “bulbar” (i.e., bulbar onset without peripheral spinal involvement for the first 6 months after symptoms onset) phenotypes. Moreover, according to the King’s clinical staging system (Balendra et al., 2013), based on the identification of sequential “clinical milestones” during the ALS course, 10 patients were in stage 1 and 12 in stage 2. For more details about demographic and clinical characteristics, see Table 1.

Neuropsychological Assessment: Between-Group Comparisons
With regard to neuropsychological and neurobehavioral variables, MANOVA with Bonferroni post hoc test showed significant difference between ALS patients and HCs on memory prose test (\(p < 0.006; \) Table 2). Therefore, MANCOVA analysis, with memory prose test as covariate, showed that ALS patients performed significant lower scores than HCs on EAT and ET, but not on ATT task (Table 3). The values of \(\eta^2 \) (Table 3) for each ToM variable were > 0.14, indicating a large effect (Cohen, 1988). With regard to the within-group comparisons, no significant differences were revealed by comparing EAT, ATT, and ET scores in the ALS group (i.e., one-way ANOVA for repeated measures: \(F = 1.217, p = 0.301 \)).

With regard to phenotypic characterization, statistical analysis showed that patients with bulbar-onset had lower scores than patients with spinal-onset on ET, while no significant differences between the two groups were found on ATT and EAT (Table 4). Moreover, within both bulbar- and spinal-onset groups, EAT, ATT, and ET scores were not significantly different (by one-way ANOVA for repeated measures in bulbar-onset group, \(F = 0.605, p = 0.485 \); in spinal-group onset, \(F = 2.022, p = 0.156 \)).

TABLE 1	Demographic, clinical, and neuropsychological features of ALS patients and healthy control subjects (HCs; mean ± SD).			
Demographic and clinical parameters	ALS patients \((n = 22) \)	HCs \((n = 15) \)	\(F/\eta^2 \)	\(p \)
Age	58.19 ± 9.63	55.4 ± 8.72	1.586	0.218
Education (years)	11.38 ± 4.55	9.93 ± 2.68	2.584	0.119
Gender (M:F)	13:9	8:7	0.120	0.729
Disease duration*	18.73 ± 10.87	–	–	–
ALSFRS-R total score	41 ± 3.86	–	–	–
ALSFRS-R bulbar score	10.45 ± 1.68	–	–	–
ALSFRS-R arm subscore	9.54 ± 2.1	–	–	–
ALSFRS-R leg subscore	9.18 ± 2.46	–	–	–
ALSFRS-R respiratory subscore	11.7 ± 0.7	–	–	–
UMN score	6.50 ± 4.88	–	–	–

*Months from symptom onset to assessment. ALSFRS-R, amyotrophic lateral sclerosis functional rating scale; UMN, upper motor neuron.
Correlation Analysis
Within the ALS sample, EAT and ET scores were significantly correlated with each other ($r = 0.586$, $p = 0.011$), while ATT did not correlate with other ToM scores. EAT scores were significantly correlated with education ($r = 0.587$, $p = 0.006$), ACE-R ($r = 0.593$, $p = 0.008$), memory prose ($r = 0.659$, $p = 0.003$), RCPM ($r = 0.655$, $p = 0.003$), and SF-36 “Mental Health” ($r = 0.570$, $p = 0.033$; uncorrected level of significance) scores, while ET scores were correlated with ACE-R ($r = 0.581$, $p = 0.014$; uncorrected level of significance), memory prose ($r = 0.546$, $p = 0.029$; uncorrected level of significance) and RCPM ($r = 0.510$, $p = 0.044$; uncorrected level of significance) scores. Finally, EAT, ET, and ATT scores were not correlated with other executive and non-executive neuropsychological variables and behavioral measures were not associated with any ToM scores.

DISCUSSION
The present cross-sectional study revealed an early impairment of ToM abilities in ALS patients, especially in those with bulbar onset, thus suggesting that non-demented ALS patients may have difficulties in attributing emotions and mental states to others. Moreover, from early stages of ALS, this neuropsychological profile may be significantly related to altered memory prose and non-verbal abstract reasoning. Another evidence derives from the association between impaired performances on EAT and its impact on health-related QoL of ALS patients, considering the potential consequences of deficits of social conduct, linked to ToM alterations, on QoL.

Abnormalities of the attribution of emotional and social intentions, found in several cohorts of ALS patients (Cavallo et al., 2011; Girardi et al., 2011), resemble the affective profile that characterizes FTLD patients, especially in mild and moderate stages of bvFTD (Torralva et al., 2015), corroborating the theory of a clinicopathological continuum between ALS and FTLD (Lillo et al., 2012; Ling et al., 2013; Trojsi et al., 2015). In particular, patients with bvFTD are characterized, from the early stages of disease, by significant changes in personality and social conduct (Piguet et al., 2011), mainly related to early alterations of ventromedial prefrontal areas (Lillo et al., 2012), where a similar pattern of prefrontal structural (Lillo et al., 2012; Crespì et al., 2014) and functional (Trojsi et al., 2015) abnormalities may also be revealed in ALS patients, although in later stages of the disease. Our findings remark that an impairment of both subcomponents of ToM, especially of the affective one, explored by both EAT and ET, might be considered as an extra-motor symptom occurring since the early stages of ALS, allowing to speculate that these poor performances may reflect mainly an

TABLE 2 | Neuropsychological features of ALS patients and HCs (mean ± SD).

Neuropsychological parameters [raw scores]	ALS patients ($n = 22$)	HCs ($n = 15$)	F	p
ACE-R	87.71 ± 8.96	93.07 ± 3.24	4.522	0.042
Token test	33.72 ± 2.02	34.93 ± 1.38	3.429	0.075
Memory prose test	11.53 ± 2.83	15.13 ± 1.60	14.476	0.001
RCPM	26.15 ± 5.19	29.80 ± 4.52	5.554	0.026
Stroop executive factor	0.30 ± 0.73	0.20 ± 0.561	0.600	0.445
BDI	12.37 ± 6.57	10.40 ± 8.24	0.640	0.430
CBI	19.28 ± 15.74	–	–	–
SF-36: physical functioning (z score)	43.33 ± 27.23 (−1.7)	–	–	–
SF-36: role-physical (z score)	28.33 ± 39.94 (−1.3)	–	–	–
SF-36: bodily pain (z score)	57.73 ± 24.98 (−0.5)	–	–	–
SF-36: general health (z score)	43.13 ± 17.18 (−0.9)	–	–	–
SF-36: vitality (z score)	54 ± 20.80 (−0.3)	–	–	–
SF-36: social functioning (z score)	60.60 ± 23.06 (−0.7)	–	–	–
SF-36: role-emotional (z score)	50.87 ± 39.53 (−0.6)	–	–	–
SF-36: mental health (z score)	62.40 ± 20.2 (−0.2)	–	–	–
FrSBe [caregiver forms, total score]	79.33 ± 12.12	–	–	–
FrSBe [caregiver forms, apathy subscore]	25.77 ± 5.5	–	–	–
FrSBe [caregiver forms, disinhibition subscore]	22.06 ± 3.81	–	–	–
FrSBe [caregiver forms, executive dysfunction subscore]	31.5 ± 6.1	–	–	–

ACE-R, Addenbrooke’s cognitive examination; CBI, caregiver burden inventory; BDI, beck depression inventory; FrSBe, frontal systems behavior; RCPM, Raven’s colored progressive matrices; SF-36, short form-36. The z score for each domain of SF-36 was calculated using mean and SD of Italian normative sample (Apolone and Mosconi, 1998). The statistically significant results after Bonferroni correction ($p < 0.006$) are reported in bold.

TABLE 3 | Performance of ALS patients and control subjects on tasks assessing ToM abilities (mean ± SD).

Parameters	ALS patients ($n = 22$)	Controls ($n = 15$)	F	p	η^2
EAT	24.95 ± 3.72	27.47 ± 3.46	8.606	0.001	0.381
ATT	8.14 ± 2.57	8.67 ± 1.40	1.514	0.237	0.098
ET	20.67 ± 6.02	22.93 ± 5.12	6.878	0.004	0.329

ATT, advanced test of ToM; EAT, emotion attribution task; ET, eyes test; ToM, theory of mind.

The statistically significant results are reported in bold.
early medial and orbital prefrontal cortex dysfunction, as also shown in early clinical stages of frontal lobe degeneration in both ALS (Van der Hulst et al., 2015) and bvFTD (Torralva et al., 2015). However, despite the large amount of literature investigating the behavioral and neural bases of mentalizing abilities in neurological conditions, there is still a lack of validated neuropsychological tools specifically designed to assess each ToM subcomponent (Dodich et al., 2015; Schafaesma et al., 2015). To note, among the experimental approaches used in neurological disorders, not all investigations on ALS aimed to assess both cognitive and affective subcomponents of ToM (Girardi et al., 2011; Carluer et al., 2015) and some authors explored mainly the affective subcomponent using non-verbal tasks, based on visual emotion recognition (such as ET or preference judgment task or false-belief task; Cavallo et al., 2011; Girardi et al., 2011; Crespi et al., 2014; Carluer et al., 2015; Van der Hulst et al., 2015; Burke et al., 2016a).

The distinction between affective and cognitive subcomponents of ToM has been essentially demonstrated by using different ToM tests with respect to their cognitive (e.g., belief about belief) or affective (e.g., belief about feelings) request. In this regard, a sound tool to investigate both ToM subcomponents using a verbal task is the “faux pas recognition” (FPR) test in which the participants hear 10 stories read aloud, containing a social faux pas and 10 control stories. After each story, participants are asked whether anyone said anything that they should have not said (i.e., evaluation of the affective subcomponent) and, when a faux pas is detected, further clarifying questions are proposed in order to evaluate the understanding of the mental states of the agents involved in the stories (i.e., evaluation of the cognitive component). In our study a strength point of the experimental design was to have investigated both subcomponents using verbal and non-verbal tasks in order to adequately assess the multifaceted aspects of the ToM abilities. However, there are some intrinsic limitations of the ToM tasks that, we adopted. In fact, there are no specific considerations concerning the role of ATT in the affective rather than in the cognitive ToM (Happé, 1994): ATT could be considered mainly a cognitive task, although it seems to be less associated to executive functions and less sensitive to neurological disorders (Aboulafia-Brakha et al., 2011). Moreover, it is to take into account that personality traits, especially with regard to antisocial component and self-presentation (i.e., the tendency to report social desirability), may impact Happé’s test of ToM also in non-psychopathic subjects (Nentjes et al., 2015), probably influencing ToM performances also in HCs subjects.

With regard to ET, considered the prototypical test to explore the affective subcomponent, it has been proven that cognitive ToM and executive abilities may impact the performance on this test (Bull et al., 2008; Dal Monte et al., 2014) that, therefore, should not be considered as a purely affective task.

On this background, our correlation analysis between the ToM scores and those derived from memory prose and RCPM tests showed that these neuropsychological measures were related to both EAT and ET, although only correlations with EAT were significant after Bonferroni correction. Together, these results support the hypothesis that mechanisms involving not only executively demanding abilities may be linked to early defects of ToM in ALS. To note, with regard to the debated association existing between executive and ToM domains, Bertoux et al. (2016), by applying a “clustering” approach to a large neuropsychological database derived from a population of bvFTD patients, revealed that executive functions “clustered” separately from ToM measures, substantially demonstrating that they were distinct components. Interestingly, Bertoux et al. (2016) found different relationships with executive functions across ToM subcomponents, showing that only the intention and empathy components, as measured by the FPR test, were linked to attention/working memory and verbal abstraction performances. Moreover, the lack of significant association between executive performances (especially the inhibitory control) and ToM performances may be explained considering that the advanced ToM tasks adopted have been proven to be more associated to language and memory functions in other neurological disorders (Castelli et al., 2011; Freed et al., 2015; Robinson et al., 2016), as also shown in our study with regard to the association between EAT and memory prose performances.

Our observation of a significant association between dysfunctions of less executively demanding conditions (i.e., memory and RCPM performances) and impairment of ToM in early ALS may suggest a potential independence between executive abilities and ToM performances. Some evidence supports a stronger association between executive functions and “fluid intelligence,” both involving mainly dorsolateral prefrontal networks (Roca et al., 2012), in contrast to ToM processes, hypothesized to be probably more dependent from medial prefrontal networks, especially with regard to the affective subcomponent (Shamay-Tsoory et al., 2005, 2006; Xi et al., 2011; Bertoux et al., 2016). However, more recently, Burke et al. (2016b) demonstrated a significant impairment of EAT, as a measure of affective social cognition, in ALS patients with executive dysfunctions compared to healthy subjects. Probably, these inconsistent results may be due by the fact that the anatomical and biological bases of the ToM performances are still debated. In this regard, it has been suggested that ToM is

TABLE 4	Neuropsychological performances (mean ± SD) of ALS patients with bulbar-onset compared to those of patients with spinal-onset.			
Neuropsychological parameters (raw scores)	Bulbar-onset ALS	Spinal-onset ALS	F	p
ACE-R	87 ± 9.84	89.45 ± 8.07	0.045	0.834
Token test	33.20 ± 2.16	34.32 ± 1.87	0.725	0.406
Memory prose test	11.50 ± 3.0	12.36 ± 2.22	0.689	0.417
RCPM	25.40 ± 6.10	27 ± 5.27	0.641	0.434
Stroop executive factor	0.20 ± 0.477	0.38 ± 0.924	0.058	0.811
EAT	24 ± 4.69	25.82 ± 3.28	0.643	0.433
ATT	7.80 ± 2.77	8.82 ± 2.08	0.812	0.379
ET	16 ± 5.74	23 ± 5.58	0.438	0.033

ACE-R, Addenbrooke’s cognitive examination; ATT, advanced test of theory of mind; CBI, caregiver burden inventory; EAT, emotion attribution task; ET, eyes test; FPR, frontal systems behavior scale; RCPM, Raven’s colored progressive matrices; SF–36, short form–36.

The statistically significant results are reported in bold.
a complex function involving multiple subprocesses and, thus, the evidence for a ToM network may be considered limited and contentious (Poletti et al., 2012; Schaafisma et al., 2015). Moreover, there is an increasing propensity to abandon the notion that ToM is a single cognitive ability grounded in a single set of brain regions, in favor of the potential existence of a reliably activated functional brain network (Schaafisma et al., 2015).

To note, the patients examined in the present study did not show cognitive or behavioral impairment that would negatively impact their performance in the ToM tasks proposed, except for the performance on the memory prose test. This finding corroborated previous evidence that also memory functions, although to a milder degree than executive abilities, may be affected in the ALS course (Machts et al., 2014; Raaphorst et al., 2015; Beeldman et al., 2016). In particular, the anatomical hallmarks of memory dysfunction in ALS have been recently identified in a progressive disease-related decline of hippocampal volume (Abdulla et al., 2014; Raaphorst et al., 2015). Moreover, although memory impairment may characterize cognitive profile of ALS patients with C9ORF72 mutation (Patel and Sampson, 2015), no patient studied in our work exhibited the C9ORF72 gene expansion.

Previous neuropsychological evidence, derived from cross-sectional (Abrahams et al., 1997; Montuschi et al., 2015) and longitudinal (Abrahams et al., 2005; Schreiber et al., 2005; Elamin et al., 2012) studies, identified a prominent decline of executive and language performances in ALS patients, more strikingly in bulbar (Montuschi et al., 2015) and pseudobulbar (Abrahams et al., 1997) phenotypes. In particular, some longitudinal studies identified cognitive decline early in the disease course, showing a prominent impairment of cognitive domains attributed to frontal and temporal lobes (Abrahams et al., 2005; Schreiber et al., 2005; Elamin et al., 2012). With regard to deterioration of cognitive functions across the ALS course, Schreiber et al. (2005) showed that cognitive deficits did not progress in synchrony with motor decline, but more slowly, although patients with bulbar-onset ALS had a relatively greater cognitive impairment over time than subjects with spinal-onset. More recently, Elamin et al. (2012) showed that detection of executive dysfunctions at ALS onset might be associated with significantly faster motor decline, particularly in the bulbar sites. In line with this evidence, the results of our analysis, reporting significantly lower ET scores in patients with bulbar-onset compared to those with spinal-onset, more clearly suggest that ALS patients with bulbar-onset may be also more prone to impairment of social-affective abilities than those with spinal-onset, reflecting recent findings by Burke et al. (2016a), who revealed that bulbar-onset patients performed worse than spinal-onset ones on ET. Longitudinal studies looking at changes in ToM performance over time in case of both disease onsets should be performed to investigate if difference between bulbar and spinal onset patients persists or even increases as the disease progresses.

We also revealed that EAT scores were correlated with education and "Mental Health" measures of SF-36. The former correlation may suggest a potential role of years of education as a moderator factor of ToM abilities, especially for the affective subcomponent, as also demonstrated in studies performed in healthy populations that examined ET performances in relation to some demographic variables, including years of education (Fernández-Abascal et al., 2013; Ayesa-Arriola et al., 2016). In this regard, our results, although deserving further investigation because only correlational and not causal, may support the notion that education could influence and improve social cognition, thus encouraging the use of training programs, as demonstrated in other neuropsychiatric conditions (Rocha and Queirós, 2013; Sacks et al., 2013). Moreover, at the clinical level, the growing evidence of social cognition impairment in ALS may have crucial implications for patients’ and caregivers’ training during the whole course of the disease. However, the faster trajectory of ALS progression compared to the disease course of other neurological disorders could significantly impact the clinical efficacy and application of these approaches, thus requiring an earlier intervention for effectively impacting on social cognition. On the other hand, the crucial role of interventions aimed at reducing psychological distress in caregivers of ALS patients is in line with more recent results from our research group, performed on a larger population of patients and caregivers, which revealed significant associations between intensity of burden and caregivers’ coping strategies (unpublished data). Furthermore, the lack of correlation shown in the present work between caregiver burden and patients’ ToM scores, together with previous evidence that revealed significant associations between higher burden in carers and higher behavioral dysfunctions in patients with ALS (Chiò et al., 2010; Burke et al., 2015) and bvFTD (Brioschi Guevara et al., 2015), underlined the fact that mainly apathy and disinhibition, but also loss of empathy, more specifically explored by a more detailed behavioral assessment (Van der Hulst et al., 2015), may negatively impact caregiver burden.

In addition, the latter significant correlation observed between EAT scores and "Mental Health" dimension of SF-36 suggests that the impairment of ToM may negatively affect mainly this aspect of patients’ QoL. In agreement with this association, although demonstrated by our analysis as only “correlational” and not causal, QoL may be considered mainly dependent on psychological and existential factors in ALS (Simmons et al., 2000), thus inducing to emphasize the role of spiritual aspects and support systems in therapeutic interventions. However, “Mental Health” and “Role Emotional” domains of SF-36 have been demonstrated less impaired during the ALS course in comparison to “Physical Functioning” and “Role Physical” domains (De Groot et al., 2007), thereby depicting diverging patterns between “physical” and “mental health” domains of QoL in those patients.

Although the interesting insights discussed, our study has some limitations, principally related to the characteristics of the cohort studied (i.e., with regard to the size, the early stage of disease and the cognitive profile), the monocentric affiliation of the patients enrolled and the neuropsychological assessment performed [i.e., we did not use ALS-specific tools, such as the Edinburgh Cognitive and Behavioral ALS Screen battery (Abrahams et al., 2014), not still validated in Italian populations at the time of this study, and did not evaluate verbal fluency indices for accounting for motor disability, but only SEF (Phukan et al., 2012; Burke et al., 2016a)]. Moreover, especially
in case of full battery assessment, the use of ALS-specific psychometrics should be considered. To note, a significant limitation of our analysis is the lack of working memory assessment, although working memory may have a potential confounding effect on the ToM tasks adopted. With regard to the language domain, although verbal comprehension, screened in our study by Token Test, was not impaired in both patients and HC s, it is to take into account that social communication disorders may be more specifically linked to alterations of ToM performance. In particular, autism may provide a sound model for studying the important distinction between language and communication and, thus, the effects of communication deficit on social cognition. In fact, in case of subjects with autism spectrum disorders, who associate selective impairment of ToM performance, communication deficit has been proven to lie in the use of language to affect other minds and language has been revealed important only in so far as it may be used to give evidence of own and other people’s thoughts and intentions (Frith and Happé, 1994b; Pelphrey et al., 2011).

CONCLUSION

Our preliminary findings, although would need to be generalized in the context of larger samples using appropriate adjustment for executive dysfunctions, show that the ToM subcomponents are altered from the early stage of ALS and that this dysfunction may be related to the “Mental Health” of patients. Therefore, potential clinical implications derived from our study may concern the crucial role of early psychological interventions focused on deficit of both ToM subcomponents and aimed at strengthening patients’ coping strategies, interaction with caregivers and, thus, ability to engage competently therapeutic and end-of-life decisions, consequently improving patients’ QoL. Future research may stimulate the use in clinical practice of more detailed assessment of ToM and behavioral deficits.

AUTHOR CONTRIBUTIONS

All the authors have participated and have made substantial contributions to the approval of the final version. FT, GS, and MS contributed to the conception and design of the work; CP, CF, TF, SD, and LL contributed to the acquisition and analysis of data; FT, GS, MS, CP, AR, MM, and GT contributed to the interpretation of data for the work. FT, GS, MS, and GT drafted the work and AR, CP, CF, LL, SD, TF, and MM revised it critically for important intellectual content.

ACKNOWLEDGMENTS

The authors are grateful to patients with ALS and control subjects who kindly agreed to take part in this research and to Dr. Fabrizia Falco, who substantially contributed to the acquisition of neuropsychological data.

REFERENCES

Aboulafia-Brakha, T., Christe, B., Martory, M. D., and Annoni, J. M. (2011). Theory of mind tasks and executive functions: a systematic review of group studies in neurology. J. Neuropsychol. 5, 39–55. doi: 10.1348/174866410X533660
Abrahams, S., Goldstien, L. H., Al-Chalabi, A., Pickering, A., Morris, R. G., Passingham, R. E., et al. (1997). Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 62, 464–472. doi: 10.1136/jnp.62.5.464
Abrahams, S., Leigh, P. N., and Goldstein, L. H. (2005). Cognitive change in ALS: a prospective study. Neurology 64, 1222–1226. doi: 10.1212/01.WNL.0000156519.41681.27
Abrahams, S., Newton, J., Niven, E., Foley, J., and Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Scler. Frontotemp. Degener. 15, 9–14. doi: 10.3109/21678421.2013.805784
Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nat. Rev. Neurosci. 4, 165–178. doi: 10.1038/nrn1056
Apolone, G., and Mosconi, P. (1998). The Italian SF-36 health survey: translation, validation and norming. J. Clin. Epidemiol. 51, 1025–1036. doi: 10.1016/S0895-4356(98)00094-8
Ayesa-Arriola, R., Setién-Suero, E., Neergaard, K. D., Ferro, A., Fatjó-Vilas, M., Rios-Lago, M., et al. (2016). Evidence for trait related theory of mind impairment in first episode psychosis patients and its relationship with processing speed: a 3 year follow-up study. Front. Psychol. 7:592. doi: 10.3389/fpsyg.2016.00592
Balendra, R., Jones, A., Jivraj, N., Steen, I. N., Young, C. A., Shaw, P. J., et al. (2015). Use of clinical staging in amyotrophic lateral sclerosis for phase 3 clinical trials. J. Neurol. Neurosurg. Psychiatry 86, 45–49. doi: 10.1136/jnnp-2013-306865
Bartocci, M., O’Callaghan, C., Dubois, B., and Hornberger, M. (2016). In two minds: executive functioning versus theory of mind in behavioural variant frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 87, 231–234. doi: 10.1136/jnnp-2015-311643
Bloom, P., and German, T. P. (2000). Two reasons to abandon the false belief task as a test of theory of mind. Cognition 77, B25–B31. doi: 10.1016/S0010-0277(99)00096-2
Braley, T. J., Kratz, A. L., Kaplish, N., and Chervin, R. D. (2016). Sleep and cognitive function in multiple sclerosis. Sleep 39, 1525–1533. doi: 10.5665/sleep.6012
Brooks, B. R., Miller, R. G., Swash, M., Munsat, T. L., and World Federation of Neurology Research Group on Motor Neuron Diseases. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Scler. Other Motor Nervous System. 1, 293–299. doi: 10.1080/14602420300079536
Burke, T., Elamin, M., Bede, P., Pinto-Grau, M., Lonergan, K., Hardiman, O., et al. (2016a). Discordant performance on the ‘Reading the Mind in the Eyes’ test, based on disease onset in amyotrophic lateral sclerosis. *Amyotroph. Lateral Scler. Frontotem. Degener* 17, 467–472. doi: 10.1080/21678421.2016.1177088

Burke, T., Elamin, M., Galvin, M., Hardiman, O., and Pender, N. (2015). Caregiver burden in amyotrophic lateral sclerosis: a cross-sectional investigation of predictors. *J. Neurol.* 262, 1526–1532. doi: 10.1007/s00415-015-7746-z

Burke, T., Pinto-Grau, M., Lonergan, K., Elamin, M., Bede, P., Costello, E., et al. (2016b). Measurement of social cognition in amyotrophic lateral sclerosis: a population based study. *PLoS ONE* 11:e0168050. doi: 10.1371/journal.pone.0168050

Burrell, J. R., Halliday, G. M., Kril, J. J., Ittner, L. M., Götz, J., Kiernan, M. C., et al. (2012). ToM in Early ALS. *Frontiers in Psychology* | www.frontiersin.org

Chiò, A., Hammond, E. R., Mora, G., Bonito, V., and Filippini, G. (2015). Grey and white matter changes across the amyotrophic lateral sclerosis—dementia spectrum. *PLoS ONE* 10:e0125948. doi: 10.1371/journal.pone.0125948

Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., et al. (1999). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. *BDNF ALS Study Group* (Phase III). *J. Neurol. Neurosurg. Psychiatry* 65, 19–30. doi: 10.1136/jnnp.2003.033100

Choi, A., Iardi, A., Cammarosano, S., Moglia, C., Montuschi, A., and Calvo, A. (2012). Neurobehavioural dysfunction in ALS has a negative effect on outcome and use of PEG and NIV. *Neurology* 78, 1085–1089. doi: 10.1212/WNL.0b013e31824ef5f3

Choi, A., Vignola, A., Mastro, E., Giudici, A. D., Jazollo, B., Calvo, A., et al. (2010). Neurobehavioural symptoms in ALS are negatively related to caregivers’ burden and quality of life. *Eur. J. Neurol.* 17, 1298–1303. doi: 10.1111/j.1468-1331.2010.03016.x

Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences*, 2nd Edn. Hillsdale, NJ: Lawrence Erlbaum Associates.

Crespi, C., Camerl, C., Dodich, A., Canessa, N., Arpone, M., Iannaccone, S., et al. (2014). Microstructural white matter correlates of emotion recognition impairment in amyotrophic lateral sclerosis. *Cortex* 53, 1–8. doi: 10.1016/j.cortex.2014.01.002

Dal Monte, O., Schiunti, S., Pardini, M., Berti, A., Wassermann, E. M., Graffman, J., et al. (2014). The left inferior frontal gyrus is crucial for reading the mind in the eyes: brain lesion evidence. *Cortex* 58, 9–17. doi: 10.1016/j.cortex.2014.05.002

De Groot, I. J., Post, M. W., Van Heuveln, T., Van Den Berg, L. H., and Lindeman, E. (2007). Cross-sectional and longitudinal correlations between disease progression and different health-related quality of life domains in persons with amyotrophic lateral sclerosis. *Amyotroph. Lateral Scler.* 8, 356–361. doi: 10.1080/17482960701553949

Dodich, A., Cerami, C., Canessa, N., Crespi, C., Iannaccone, S., Marcone, A., et al. (2015). A novel task assessing intention and emotion attribution: Italian standardization and normative data of the Story-based empathy task. *Neurof. 36, 1907–1912. doi: 10.1017/S0016030015002831

Elamin, M., Noden, P., Hardiman, O., and Abrahams, S. (2012). Social cognition in neurodegenerative disorders: a systematic review. *J. Neurol. Neurosurg. Psychiatry* 83, 1071–1079. doi: 10.1136/jnnp-2012-302817

Fernández-Abascal, E. G., Cabello, R., Fernández-Berrocal, P., and Baron-Cohen, S. (2013). Test-retest reliability of the ‘Reading the Mind in the Eyes’ test: a one-year follow-up study. *Mol. Autism* 4:33. doi: 10.1186/2049-229X-4-33

Freed, J., McBean, K., Adams, C., Lockton, E., Nash, M., and Law, J. (2015). Performance of children with social communication disorder on the Happé story scenes task: a comparison with normal children and adults. *J. Commun. Disord.* 55, 1–14. doi: 10.1016/j.jcomdis.2015.03.002

Frith, C. D., and Frith, U. (1999). Interacting minds: a biological basis. *Science* 286, 1692–1695. doi: 10.1126/science.286.5454.1692

Frith, U., and Happé, F. (1994a). Autism: beyond ‘theory of mind’. *Cognition* 50, 113–132. doi: 10.1016/0169-8332(94)90024-x

Frith, U., and Happé, F. (1994b). Language and communication in autistic disorders. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 346, 97–104. doi: 10.1098/rstb.1994.0133

Girardi, A., Macpherson, M., and Abrahams, S. (2011). Deficits in emotional and social cognition in amyotrophic lateral sclerosis. *Neuropsychology* 25, 53–65. doi: 10.1037/a0020357

Grace, J., Stout, J. C., and Malloy, P. F. (1999). Assessing frontal lobe behavioral syndromes with the frontal lobe personality scale. *Assessment* 6, 269–284. doi: 10.1177/107319119900600307

Gregory, C., Lough, S., Stone, V., Erzinclioglu, S., Martin, L., Baron-Cohen, S., et al. (2002). Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: theoretical and practical implications. *Brain* 125, 752–764. doi: 10.1093/brain/awf079

Gülan, P. Y., Bulcun, E., Gülhan, M., Cimen, D., Ekici, A., and Ekici, M. (2015). Low cognitive ability in subjects with bronchiectasis. *Respir. Care* 60, 1610–1615. doi: 10.4187/rescare.03905

Gupta, R., Tanel, D., and Duff, M. C. (2012). Ventromedial prefrontal cortex damage does not impair the development and use of common ground in social interaction: implications for cognitive theory of mind. *Neuropsychologia* 50, 145–152. doi: 10.1016/j.neuropsychologia.2011.11.012

Happé, F. (1994). An advanced test of theory of mind: understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped and normal children and adults. *J. Autism Dev. Disord.* 24, 129–154. doi: 10.1007/BF02172093

Hermann, B. P., Seidenberg, M., Haltner, A., and Wyler, A. R. (1992). Adequacy of language function and verbal memory performance in unilateral temporo-lateral episodic. *Cortex* 28, 423–433. doi: 10.1016/0010-9452(92)90015-9

Himle, D., Tumbarello, S., Contardi, A., Imparatori, C., Tumbarello, A., Saggino, A., et al. (2013). Psychometric properties of the attitudes toward self-revised in Italian Young Adults. *Depres. Res. Treat.* 2013:209216.

Kim, S. M., Lee, K. M., Hong, Y. H., Park, K. S., Yang, J. H., Nam, H. W., et al. (2007). Relation between cognitive dysfunction and reduced vital capacity in amyotrophic lateral sclerosis. *J. Neurol. Neurosurg. Psychiatry* 78, 1387–1389. doi: 10.1136/jnnp.2006.111195

Körner, S., Kollewe, K., Abdulla, S., Zapf, A., Dengler, R., and Petri, S. (2015). Interaction of physical function, quality of life and depression in amyotrophic lateral sclerosis: characterization of a large patient cohort. *BMC Neurol.* 15:84. doi: 10.1186/s12883-015-0340-2

Lillo, P., Miøshi, E., Burrell, J. R., Kiernan, M. C., Hodges, J. R., and Hornberger, M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. *PLoS ONE* 7:e43993. doi: 10.1371/journal.pone.0043993
Ling, S. C., Polymenidou, M., and Cleveland, D. V. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. *Neuron* 79, 416–438. doi: 10.1016/j.neuron.2013.07.033

Lomen-Hoerth, C. (2004). Characterization of amyotrophic lateral sclerosis and frontotemporal dementia. *Dement. Geriatr. Cogn. Disord.* 17, 337–341. doi: 10.1159/000071767

Luleå, D., Ethich, B., Lang, D., Sorg, S., Heimrath, J., Kübler, A., et al. (2013). Quality of life in fatal disease: the flawed judgement of the social environment. *J. Neurol.* 260, 2836–2843. doi: 10.1007/s00415-013-7068-y

Machts, J., Bittner, V., Kasper, E., Schuster, C., Prudjo, J., Abdulla, S., et al. (2014). Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment. *BMC Neurol.* 15:83. doi: 10.1186/1471-2202-15-83

Maseda, A., Lodeiro-Fernández, L., Lorenzo-López, L., Nuñez-Javeira, L., Balo, A., and Millán-Calenti, J. C. (2014). Verbal fluency, naming and verbal comprehension: three aspects of language as predictors of cognitive impairment. *Aging Ment. Health* 18, 1037–1045. doi: 10.1080/13607863.2014.908457

Meier, S. L., Charlton, A. J., and Tippett, L. J. (2010). Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis. *Brain* 133, 3444–3457. doi: 10.1093/brain/awq254

Montuchi, A., Iazzolino, B., Calvo, A., Moglia, C., Lopiano, L., Restagno, G., et al. (2015). Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. *J. Neurol. Neurosurg. Psychiatry* 86, 168–173. doi: 10.1136/jnnp-2013-307223

Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). The syndrome of cognitive impairment in amyotrophic lateral sclerosis. *Brain* 121, 1546–1560. doi: 10.1093/brain/awq179

Pelphrey, K. A., Shultz, S., Hudac, C. M., and Vander Wyk, B. C. (2011). Research review: constraining heterogeneity: the social brain and its development in amyotrophic lateral sclerosis. *Clin. Neuropsychol.* 25, 786–815. doi: 10.1080/13854049.2011.551824

Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neumann, J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain* 134, 2456–2477. doi: 10.1093/brain/awr179

Robinson, S., Howlin, P., and Russell, A. (2016). Personality traits, autobiographical memory and knowledge of self and others: a comparative study in young people with autism spectrum disorder. *Autism* doi: 10.1177/1362361316645429 [Epub ahead of print].

Roca, M., Manes, F., Chade, A., Gleichgercht, E., Gershankin, O., Árvalo, G. G., et al. (2012). The relationship between executive functions and fluid intelligence in Parkinson’s disease. *Psychol. Med.* 42, 2445–2452. doi: 10.1017/S0033291712000451

Rocha, N. B., and Queirós, C. (2013). Metacognitive and social cognition training (MSCS) in schizophrenia: a preliminary efficacy study. *Schizophr. Res.* 150, 64–68. doi: 10.1016/j.schres.2013.07.057

Sacks, S., Fisher, M., Garrett, C., Alexander, P., Holland, C., Rose, D., et al. (2013). Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia. *Clin. Schizophr. Relat. Psychoses* 7, 78A–86A. doi: 10.3371/CSRP.SAFI.012513

Santangelo, G., Trojanio, L., Barone, P., Errico, D., Improta, I., Agosti, V., et al. (2013). Cognitive and affective theory of mind in patients with essential tremor. *J. Neurol.* 260, 513–520. doi: 10.1007/s00415-012-6668-2

Santangelo, G., Vitale, C., Trojanio, L., Errico, D., Amboni, M., Barbarulo, A. M., et al. (2012). Neuropsychological correlates of theory of mind in patients with Parkinson’s disease. * Mov. Disord.* 27, 98–105. doi: 10.1002/mds.23949

Sato, W., Kochiyauma, T., Uono, S., Sawada, R., Kubota, Y., Yoshimura, S., et al. (2016). Structural neural substrates of reading the Mind in the Eyes. Front. Hum. Neurosci. 10:151. doi: 10.3389/fnhum.2016.00151

Schaaf, S. M., Pfaff, D. W., Spunt, R. P., and Adolphs, R. (2015). Deconstructing and reconstructing theory of mind. Trends Cogn. Sci. 19, 65–72. doi: 10.1016/j.tics.2014.11.007

Schreiber, H., Gaigalat, T., Wiedenmuth-Catinescu, U., Graf, M., Uttner, I., Muche, R., et al. (2005). Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. *J. Neurol.* 252, 772–781. doi: 10.1007/s00415-005-0739-6

Sebastian, C. L., Fontaine, N. M., Bird, G., Blakemore, S. J., De Brito, S. A., McCrory, E. J., et al. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. *Soc. Cogn. Affect. Neurosci.* 7, 53–63. doi: 10.1093scan/nst023

Shamay-Tsoory, S. G., Tibi-Elhnanay, Y., and Aharon-Peretz, J. (2006). The ventromedial prefrontal cortex is involved in understanding affective but not cognitive theory of mind. *Soc. Neurosci.* 1, 149–166. doi: 10.1080/1740910060085589

Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D., and Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. *Cogn. Behav. Neurosci.* 15, 55–67. doi: 10.1097/01.wcn.0000152228.90129.99

Shamay-Tsoory, S. G., Tomer, R., Goldsher, D., Berger, B. D., and Aharon-Peretz, J. (2004). Impairment in cognitive and affective empathy in patients with brain lesions: anatomical and cognitive correlates. *J. Clin. Exp. Neuropsychol.* 26, 1113–1127. doi: 10.1080/13803930409515531

Siciliano, M., Raimo, S., Tufano, D., Basile, G., Grossi, D., Santangelo, F., et al. (2016). Theaddenbrooke’s cognitive examination revised (ACE-R) and its sub-scores: normative values in an Italian population sample. *Neurol. Sci.* 37, 385–392. doi: 10.1007/s10072-015-2410-z

Simmons, Z., Bremer, B. A., Robbins, R. A., Walsh, S. M., and Fischer, S. (2000). Quality of life in ALS depends on factors other than strength and physical function. *Neurology* 55, 388–392. doi: 10.1212/WNL.55.3.388

Snowden, J. S., Gibbons, Z. C., Blackshaw, A., Doull, M., Thompson, J., and McCrory, E. J., et al. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. *Soc. Cogn. Affect. Neurosci.* 7, 53–63. doi: 10.1093scan/nst023

Spinnler, H., and Tognoni, G. (1987). Standardizzazione e taratura italiana di test neuropsicologici. *Ital. J. Neurol. Sci.* 8, 1–120.

Tera, T., Oh, T., Yoshizumi, M., Murai, T., Miyajima, H., and Mizoguchi, K. (2011). Frontal lobe-mediated behavioral changes in amyotrophic lateral sclerosis: are they independent of physical disabilities? *J. Neurol. Sci.* 309, 136–140. doi: 10.1016/j.jns.2011.06.049

Torralva, T., Gleichgercht, E., Torres Ardila, M. J., Roca, M., and Manes, F. F. (2015). Differential cognitive and affective theory of mind abilities at mild and moderate stages of behavioral variant frontotemporal dementia. *Cogn. Behav. Neurosci.* 25, 68–73. doi: 10.1097/WNN.0000000000000553
Trojsi, F., Esposito, F., De Stefano, M., Buonanno, D., Conforti, F. L., Corbo, D., et al. (2015). Functional overlap and divergence between ALS and bvFTD. *Neurobiol. Aging* 36, 413–423. doi: 10.1016/j.neurobiolaging.2014.06.025

Tsermentseli, S., Leigh, P. N., and Goldstein, L. H. (2012). The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction. *Cortex* 48, 166–182. doi: 10.1016/j.cortex.2011.02.004

Turner, M. R., Cagnin, A., Turkheimer, F. E., Müller, C. C., Shaw, C. E., Brooks, D. J., et al. (2004). Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. *Neurobiol. Dis.* 15, 601–609. doi: 10.1016/j.nbd.2003.12.012

Van der Hulst, E. J., Bak, T. H., and Abrahams, S. (2015). Impaired affective and cognitive theory of mind and behavioural change in amyotrophic lateral sclerosis. *J. Neurol. Neurosurg. Psychiatry* 86, 1208–1215. doi: 10.1136/jnnp-2014-309290

Wimmer, H., and Perner, J. (1983). Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. *Cognition* 13, 103–128. doi: 10.1016/0010-0277(83)90004-5

Xi, C., Zhu, Y., Niu, C., Zhu, C., Lee, T. M. C., Tian, Y., et al. (2011). Contributions of subregions of the prefrontal cortex to the theory of mind and decision making. *Behav. Brain Res.* 221, 587–593. doi: 10.1016/j.bbr.2010.09.031

Yamada, K., Inoue, Y., and Kanba, S. (2015). Theory of mind ability predicts prognosis of outpatients with major depressive disorder. *Psychiatry Res.* 230, 604–608. doi: 10.1016/j.psychres.2015.10.011

Conflict of Interest Statement: Outside this study, FT perceived grants from Novartis, AR grants from AISLA and Allergan, MM grants from Italfarmaco and AISLA and GT fees from Biogen and Merck Serono and grants from AISLA. All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Trojsi, Siciliano, Russo, Passaniti, Femiano, Ferrantino, De Liguoro, Lavorgna, Monsurrò, Tedeschi and Santangelo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.