Crossover of phase qubit dynamics in presence of negative-result weak measurement

Rusko Ruskov1,*, Ari Mizel1, and Alexander N. Korotkov2

1Department of Physics and Materials Research Institute,
Penn State University, University Park, Pennsylvania 16802, U.S.A.
2Department of Electrical Engineering, University of California, Riverside, California 92521, U.S.A.

(Dated: April 10, 2018)

Coherent dynamics of a superconducting phase qubit is considered in the presence of both unitary evolution due to microwave driving and continuous non-unitary collapse due to negative-result measurement. In the case of a relatively weak driving, the qubit dynamics is dominated by the non-unitary evolution, and the qubit state tends to an asymptotically stable point on the Bloch sphere. This dynamics can be clearly distinguished from conventional decoherence by tracking the state purity and the measurement invariant (“murity”). When the microwave driving strength exceeds certain critical value, the dynamics changes to non-decaying oscillations: any initial state returns exactly to itself periodically in spite of non-unitary dynamics. The predictions can be verified using a modification of a recent experiment.

PACS numbers: 03.65.Ta, 85.25.Dq, 03.65.Yz

The problem of measurement of a single quantum system plays a fundamental role in our understanding of physical reality [1]. While the evolution of an isolated quantum system is governed by its Hamiltonian, the state evolution of a measured (open) quantum system arises from a non-trivial interplay between its internal Hamiltonian evolution and the “informational” evolution associated with a given measurement record [2].

Experimental advances in the fabrication of superconducting and semiconductor qubits [3] provide unique possibilities to probe the quantum behavior of a single quantum system by weakly measuring it via mesoscopic detectors. For example, the qubit evolution can be monitored by a weakly coupled quantum point contact or single-electron transistor, which behaves classically on the time scale defined by the qubit dynamics. The measurement record in this case is a fluctuating current [4] that is correlated with the quantum state. Given the continuous measurement record the qubit state is continuously collapsed due to quantum back action [5, 6].

Recently [7], a variant of weak continuous measurement was demonstrated experimentally in which partial collapse is achieved by means of registering no signal. Realized with a superconducting “phase” qubit measured via tunneling [8], it is the first solid-state demonstration of quantum null (negative-result) measurement effects proposed and discussed mainly in the context of quantum optics [9, 10]. Contrary to naive expectation, the no signal result leads to a change of the quantum state, providing a new type of qubit manipulation.

In this Letter we consider the interplay of coherent dynamics of a phase qubit (see Fig. 1) due to unitary evolution (because of microwave driving) and due to continuous collapse under a negative-result measurement. We show existence of a critical value for the ratio of the Rabi frequency Ω_R to the measurement rate Γ. For $2\Omega_R/\Gamma < 1$ the dynamics is dominated by the non-unitary evolution. The qubit state is continuously collapsed to a fixed asymptotic state, a special point on the Bloch sphere that depends on Ω_R/Γ but is independent of the initial conditions. Thus, every state purifies. For $2\Omega_R/\Gamma > 1$, the dynamics changes qualitatively and shows non-decaying oscillations of the qubit state, so that no asymptotic state is reached and any initial state returns to itself after an oscillation period. The qubit does not completely purify: the purity undergoes non-decaying oscillations as well.

We consider a phase qubit [11, 12] which consists of a superconducting loop interrupted by a Josephson junction [Fig. 1(a)] and controlled by an external magnetic flux ϕ_{ext}. The qubit basis states $|0\rangle$ and $|1\rangle$ are the two lowest energy states in the shallow “left” well [Fig. 1(b)] of the potential profile $V(\phi)$, where ϕ is the superconducting phase difference across the junction. A Rabi rotation of the qubit state is achieved by applying a resonant microwave signal $I_{\mu W}$. The measurement is performed by lowering the barrier (by changing flux ϕ_{ext} that biases the qubit) for a finite time t. While the tunneling from the ground state $|0\rangle$ is still strongly suppressed, the ex-

*On leave from INRNE, Sofia BG-1784, Bulgaria
cited state $|1\rangle$ may tunnel out, with a rate Γ, to the much deeper right well where it decoheres rapidly due to energy relaxation [Fig. 1(b)]. The tunneling event can be detected by an inductively coupled SQUID detector.

First we consider the case when no microwaves are applied. Measuring the qubit for sufficiently long time t, such that $\Gamma t \gg 1$, essentially results in a strong measurement: the qubit state is either collapsed onto state $|0\rangle$ (if no tunneling has happened) or destroyed (if tunneling has happened). However, measurement for a finite time $t \leq \Gamma^{-1}$ is weak: the qubit state is still destroyed if a tunneling event happens, but in the case of no tunneling, a negative result, the qubit density matrix ρ evolves continuously according to quantum Bayesian rule [5, 7, 10]:

$$\rho_{00}(t) = \frac{\rho_{00}(0)}{N(t)}, \quad \rho_{11}(t) = \frac{\rho_{11}(0)e^{-\Gamma t}}{N(t)}, \quad (1)$$

$$\rho_{01}(t) = \rho_{01}(0) \sqrt{\frac{\rho_{00}(t)\rho_{11}(t)}{\rho_{00}(0)\rho_{11}(0)}} e^{i\varphi}, \quad (2)$$

where $N \equiv \rho_{00}(0) + \rho_{11}(0)e^{-\Gamma t}$. Note that Eqs. (1) and (2) describe the ideal change in ρ in the rotating frame. The qubit acquires a known phase φ due to a small shift of the level spacing under the change of ϕ_{ext} [2]; in what follows we neglect this effect assuming $\varphi = 0$. Possible decoherence effects will be discussed later.

It proves convenient (Fig. 2) to characterize the quality of the qubit state by the purity $P = 2\text{Tr} \rho^2 - 1 = x^2 + y^2 + z^2$ which is an invariant of unitary transformations; here $x = 2\text{Re} \rho_{01}, \ y = 2\text{Im} \rho_{01}$, and $z = \rho_{00} - \rho_{11}$ are Bloch components. (Note that the linear entropy, $1 - P$, is a one-to-one function of the von Neumann entropy $S = -\text{Tr} [\rho \ln \rho]$, while $1 - P \leq S$.) Another important state characteristic is the “murity” $M = |\rho_{01}|^2/(\rho_{00} \rho_{11}) = (x^2 + y^2)/(1 - z^2)$ [2, 11], which is an invariant of the measurement evolution [see Figs. 2(a,b)]. Obviously, $P = M = 1$ for a pure state, and it is easy to show that $P \geq M$ always.

From Eqs. (1) and (2) it is easy to obtain the purity evolution due to negative-result measurement: $P(t) = P(0) + [1 - P(0)](1 - e^{-\Gamma t}/N^2)$. An initially pure state remains pure, while an initially mixed state tends to the pure state $|0\rangle$ asymptotically, for $t \gg 1/\Gamma$. However, the purity of an initially mixed state increases monotonically in time only if $\rho_{11}(0) \leq 1/2$ [see Figs. 2(a,b)]. In contrast, for $\rho_{11}(0) > 1/2$ the state first becomes more mixed, reaching minimal purity $P_{\text{min}} = M(0)$ at a time

$$\tau_{\text{meas}} = \frac{1}{\Gamma} \ln \left(\frac{\rho_{11}(0)}{1 - \rho_{11}(0)} \right), \quad (3)$$

when $\rho_{00}(t) = \rho_{11}(t)$, and only then starts to purify.

A qualitative explanation of the nonmonotonic behavior of $P(t)$ is purely classical and based on the informational character of the evolution due to negative-result measurement. Consider a (classical) qubit state which is known to be more likely in state $|1\rangle$ than $|0\rangle$. If the qubit does not tunnel out after a small time t, then the likelihood that the qubit is in the non-decaying state $|0\rangle$ slightly increases. Thus, the uncertainty (entropy) of the qubit state increases, and so the purity $P(t)$ decreases.

An important question is whether or not the qubit evolution (1)–(2) due to negative-result measurement can be imitated by the evolution due to conventional decoherence characterized by energy relaxation time T_1 and dephasing time T_2 [12]. As we show below, the answer is no, the two evolutions are significantly different.

Let us start the comparison assuming zero-temperature relaxation and minimal dephasing rate, $T_2 = 2T_1$. In the case $\rho_{01}(0) \neq 0$, the most obvious difference between the two kinds of evolution is the behavior of the murity $M(t)$ [see Figs. 2(b,d)]. The murity is a constant for the measurement evolution, while in the case of decoherence $M(t)$ decreases to a value $M(t)\rho_{00}(0)$, even though the qubit approaches the same ground state. If $\rho_{11}(0) > 1/2$, then the minimal purity in the decoherence scenario, $P_{\text{min}}^{T_1} = 1 - [1 - |\rho_{01}(0)|^2/\rho_{11}(0)]^2$ is also smaller than $P_{\text{min}} = M(0)$. This minimum is
reached at a time
\[\tau_{\text{min}}^{T_1} = T_1 \ln \left\{ 2 \rho_{11}(0) / \left[1 - |\rho_{01}(0)|^2 / \rho_{11}(0) \right] \right\} \]
that is much less sensitive than \[T_{\min}^{\rho_{11}} \text{[Eq. (3)]} \] to the initial conditions. In particular, \[\tau_{\text{min}}^{T_1} \] approaches the finite value \[T_1 \ln 2 \] for \[\rho_{11}(0) \rightarrow 1 \], while \[T_{\min}^{\rho_{11}} \] grows logarithmically. Notice [Figs. 2(b,d)] that in both evolutions the curve \[P(t) \] touches the curve \[M(t) \]; in the measurement case this happens at \[T_{\min}^{\rho_{11}} \] while in the decoherence case this happens at \[T_1 \ln 2 \rho_{11}(0) \] < \[\tau_{\text{min}}^{T_1} \] when \[P(t) = M(t) = 2M(0)/\rho_{00}(0) \]. If \[\rho_{01}(0) = 0 \], Eqs. (3) and (4) still imply a difference in their sensitivity to initial conditions that is evident in Figs. 2(a,c).

When dephasing exceeds its minimal value \(T_2 < 2T_1 \), the asymptotic purity \(M(\infty) \) in the decoherence scenario always tends to zero, thus making the two evolutions still different. Finite temperature leads to a similar effect and also makes the asymptotic qubit state different from the asymptotic state \(|0\rangle \) of the evolution due to negative-result measurement. Thus, the two evolutions are always significantly different.

Now let us consider the state dynamics due to negative-result measurement in the presence of microwave driving exactly at resonance. Differentiating Eqs. (1)–(2) over time and adding the evolution due to Rabi oscillations, we obtain the following evolution in the rotating frame:
\[
\begin{align*}
\dot{\rho}_{00} &= -\dot{\rho}_{11} = -\Omega_R \text{Im}\rho_{01} + \Gamma \rho_{00} \rho_{11} \\
\dot{\rho}_{01} &= i\frac{\Omega_R}{2} (\rho_{00} - \rho_{11}) - \frac{\Gamma}{2} (\rho_{00} - \rho_{11}) \rho_{01}.
\end{align*}
\]

Here we consider driving that shows up as a \(\sigma_z \)-term in the Hamiltonian, \[H = \frac{\Omega_R}{2} (|0\rangle \langle 1| + |1\rangle \langle 0|) \]; \(\sigma_z \)-evolution can be easily incorporated via a finite rotation (for simplicity we assume the absence of a \(\sigma_x \)-term). Though the equations (5) and (6) are deterministic, their non-linear terms resemble those in the case of noisy weak measurement [3].

The solution is conveniently expressed in terms of Bloch components. The evolution of \(x \) decouples, and setting \(h \equiv 2\Omega_R / \Gamma \) we solve for \(z \) and \(y \). Introducing \[\omega \equiv (\Gamma/2)\sqrt{1 - h^2} \] and \(\nu_0 \equiv \arctanh \left[\frac{\sqrt{1 - h^2}}{1 - h y(0)} \right] \), we obtain
\[
\begin{align*}
x(t) &= \frac{x(0) [1 - h^2] \cosh \nu_0}{[1 - h y(0)] \cosh(\omega t + \nu_0) - h[y - y(0)] \cosh \nu_0}, \\
y(t) &= \frac{h[y - y(0)] \cosh(\omega t + \nu_0) - [h - y(0)] \cosh \nu_0}{[1 - h y(0)] \cosh(\omega t + \nu_0) - h[y - y(0)] \cosh \nu_0}, \\
z(t) &= \frac{\sqrt{1 - h^2} \cosh(\omega t + \nu_0) - h y(0)}{[1 - h y(0)] \cosh(\omega t + \nu_0) - h[y - y(0)] \cosh \nu_0}.
\end{align*}
\]

The most important observation is a critical point at \(h = 1 \) (independent of \(\omega \) and \(\nu_0 \)). Below the critical value, \(h < 1 \), the evolution is dominated by the measurement, and the qubit state asymptotically collapses to a stable value on the Bloch sphere with coordinates \(x_\infty = 0, y_\infty = h, z_\infty = \sqrt{1 - h^2} \). This occurs independently of the initial conditions. The asymptotic state \(\rho_{as} \equiv \{ x_\infty, y_\infty, z_\infty \} \) attracts the trajectories on the Bloch sphere [see Fig. 3(a)], while the state \(\rho_{rp} \equiv \{ x_\infty, y_\infty, -z_\infty \} \) repels trajectories. It is simple to visualize the dynamics starting from a point on the great circle, \(y^2 + z^2 = 1 \). Then the presence of microwaves rotates the state around the circle in a clockwise direction (when viewed from the positive \(x \) axis), while the measurement evolution rotates it either clockwise or counterclockwise towards state \(|0\rangle \) (North Pole). At points \(\rho_{as} \) and \(\rho_{rp} \) the two rotations exactly compensate each other, creating the stable and unstable equilibrium states.

At the critical value, \(h = 1 \), the equilibrium states \(\rho_{as} \) and \(\rho_{rp} \) coincide, and the asymptote is achieved not exponentially, but in a power-law fashion: \(z(t) \simeq 4/(\Gamma t) \), while \(y(t) \simeq 1 - 8/(\Gamma t)^2 \). Above the critical value, \(h > 1 \), the state does not stabilize at all, and the qubit performs non-decaying oscillations with period \(T_{\text{osc}} = 4\pi/\Gamma\sqrt{h^2 - 1} \) [see Figs. 3(b) and 4]. This means that every state returns exactly to itself after \(T_{\text{osc}} \), in spite of the non-unitary dynamics [12] (thus being an example of Quantum Un-Demolition measurement [11]).

The state purity evolves as \(\dot{P} = \Gamma z (1 - P) \), so a pure state remains pure. For \(h < 1 \) a mixed state eventually purifies, and asymptotically, \(P \simeq 1 - e^{-z_\infty^2} \). Also, \(M(t) \) eventually approaches \(1 \), though at a later time than the purity (\(dM/dt \rightarrow 0 \) for \(h \rightarrow 0 \)). For \(h > 1 \) the purity and purity oscillate because of the state oscillation, so a mixed state does not purify completely. In the case when \(h \) is only a little over \(1 \), a mixed state purifies almost completely, but the purity still returns to its initial value after a long period.

Let us discuss now how, in the presence of microwaves, negative-result measurement evolution differs from decoherence evolution. In the decoherence case, the measurement terms in Eqs. (5) and (6) should be replaced by \(-\gamma_1 (\rho_{00} - P_{st}) \) and \(-\gamma_2 \rho_{01} \) respectively [12], where \(\gamma_{1,2} \equiv 1/T_{1,2} \) and \(P_{st} \) is the equilibrium ground state.
population (in experiment \[7, 8\] \(\rho_{\text{st}} \approx 1 \)). Introducing
\(h = 2\Omega R/\gamma_1 \) and \(d = \gamma_2/\gamma_1 = T_1/T_2 \geq 1/2 \), we find

\[
x(t) = x(0) \exp(-\gamma_2 t),
\]
\[
y(t) = y_a + \exp[-t(\gamma_1 + \gamma_2)/2] \times \left\{ c_y \cosh \omega t + (\gamma_1/2\omega)[h c_y + c_y(1 - d)] \sinh \omega t \right\},
\]
\[
z(t) = z_a + \exp[-t(\gamma_1 + \gamma_2)/2] \times \left\{ c_z \cosh \omega t - (\gamma_1/2\omega)[h c_y + c_z(1 - d)] \sinh \omega t \right\},
\]

where \(\omega \equiv (\gamma_1/2)[(1 - d)^2 - \bar{h}^2]^{1/2} \), \(c_z \equiv z(0) - z_a \), \(c_y \equiv y(0) - y_a \), and \(x_a = 0 \), \(y_a = 2(2p_{\text{st}} - 1)\bar{h}/(\bar{h}^2 + 4d) \), \(z_a = 4(2p_{\text{st}} - 1)d/(\bar{h}^2 + 4d) \) are the asymptotic values.

The evolution \((10)–(12)\) resembles that of a damped oscillator and is quite different from the evolution \((7)–(9)\).

For \(h < |1 - d| \) the overdamped regime is realized (no oscillations), while for \(h > |1 - d| \) we have damped oscillations (underdamped regime). For arbitrary \(h \) the Bloch components approach \(x_a, y_a, \) and \(z_a \), and the asymptotic purity is \(p_a = 4(2p_{\text{st}} - 1)^2(\bar{h}^2 + 4d)^2(\bar{h}^2 + 4d)^2 \) implying that a mixed state never becomes pure except at zero temperature \((p_{\text{st}} = 1) \) in the absence of microwaves. Even an initially pure state becomes mixed, with asymptotic purity and purity both close to zero for large \(h \). We can conclude that in presence of microwaves the qubit dynamics due to decoherence is still qualitatively different from the dynamics due to negative-result measurement.

The phase qubit evolution due to negative-result measurement discussed in this Letter can be verified experimentally using the quantum state tomography \([12, 13]\) in the same way as in the recent experiment of Ref. \([7]\) which has verified the evolution \((11)–(2)\). In a realistic situation the decoherence evolution is always added to the measurement evolution; however, as we discussed above, the qualitative effects of the two evolutions are easily distinguishable. Moreover, the decoherence can be made more than 10 times slower than the evolution due to measurement \([2]\), that justifies neglect of decoherence in our analysis of the crossover from asymptotic qubit purification to nondecaying oscillations.

Notice that the predicted qubit evolution due to negative-result measurement can be seen experimentally only as long as the qubit has not decayed. The probability that the qubit has not decayed by time \(t \) is \(P(t) = \exp[-\Gamma \int_0^t dt' \rho_{11}(t')] \). In absence of microwaves \((h = 0) \) it becomes \(P(t) = \rho_{00}(0) + \rho_{11}(0) e^{-\Gamma t} \) and remains finite with increasing time. However, with added microwaves \((h \neq 0) \) \(P(t) \) tends to zero at \(t \to \infty \), which means that the qubit eventually decays. Since predictions requiring unreasonably small values of \(P \) are hardly accessible experimentally, we have checked that the qualitative picture of our results can still be seen at the cut-off level \(P > 5\% \). While the close vicinity of the critical point \((h = 1) \) is the hardest regime for experimental analysis, the predicted non-oscillatory evolution at \(h < 1 \) as well as few non-decaying oscillations at \(h \gtrsim 3 \) should be observable experimentally with a minor modification of the experiment \([2]\).

The work was supported by the Packard foundation and DTO/ARO grant W911NF-0401-0204.

[1] Quantum theory and measurement, ed. by J. A. Wheeler and W. H. Zurek (Princeton Univ. Press, 1983).
[2] H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, Berlin, 1993); D. F. Walls and G. J. Milburn, Quantum Optics, (Springer, 2006).
[3] Y. Nakamura et al., Nature (London) 398, 786 (1999); D. Vion et al., Science 296, 886 (2002); J. M. Martinis et al., Phys. Rev. Lett. 89, 117901 (2002); I. Chiorescu et al., Science 299, 1869 (2003); T. Hayashi et al., Phys. Rev. Lett. 91, 226804 (2003); A. Wallraff et al., Phys. Rev. Lett. 95, 060501 (2005); J. R. Petta et al., Science 309, 2180 (2005).
[4] E. Buks et al., Nature 391, 871 (1998).
[5] A. N. Korotkov, Phys. Rev. B 63, 115403 (2001).
[6] S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997); D. V. Averin, Fortschr. Phys. 48, 1055 (2000); H. S. Goan and G. J. Milburn, Phys. Rev. B 64, 235307 (2001); A. A. Clerk, S. M. Girvin, and A. D. Stone, Phys. Rev. B 69, 245303 (2004); A. N. Jordan and M. Buttiker, Phys. Rev. Lett. 95, 220401 (2005); R. Ruskov, A. N. Korotkov, and A. Mizel, Phys. Rev. Lett. 96, 20404 (2006).
[7] N. Katz et al., Science, 312 1498 (2006).
[8] K. B. Cooper et al., Phys. Rev. Lett. 93, 180401 (2004).
[9] P. S. Epstein, Am. J. Phys. 13, 127 (1945); M. Renninger, Zeitschr. für Physik 158, 417 (1960); R. H. Dicke, Am. J. Phys. 49, 925 (1981); A. C. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993).
[10] J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett. 68, 580 (1992).
[11] A. N. Jordan and A. N. Korotkov, Phys. Rev. B 74, 085307 (2006); Phys. Rev. Lett. 97, 166805 (2006).
[12] U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 1993).
[13] At \(h > 1 \) two observers with different knowledge of \(\rho(0) \) will never agree with each other regarding the resulting state \(\rho(t) \), in contrast to the case of non-destructive mea-
measurement [3]. However, the disagreement becomes less probable with time because of qubit decay.

[14] I. L. Chuang et al., Proc. Roy. Soc. A 454, 447 (1998); Y. Liu, L. F. Wei, and F. Nori, Phys. Rev. B 72, 014547 (2005).

[15] M. Steffen et al., Phys. Rev. Lett. 97, 050502 (2006).