De Novo Assembly and Characterization of Early Embryonic Transcriptome of the Horseshoe Crab Tachypleus tridentatus

Mingliang Chen1☯, Chenying Wang1☯, Wei Wang1☯, Gubiao Ji1, Bin Hu1, Mi Du1, Guosheng Liu1, Zengpeng Li1, Weiyi Wang1, Xiangzhi Lin2, Weibing Zheng2, Jianming Chen1*

1 State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China, 2 Center of Marine Biotechnology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, China

☯ These authors contributed equally to this work.
* chenjm@xmu.edu.cn

Abstract

The horseshoe crab Tachypleus tridentatus is a unique marine species and a potential model for marine invertebrate. Limited genomic and transcriptional data are currently available to understand the molecular mechanisms underlying the embryonic development of T. tridentatus. Here, we reported for the first time the de novo transcriptome assembly for T. tridentatus at embryonic developmental stage using Illumina RNA-seq platform. Approximately 38 million reads were obtained and further assembled into 133,212 unigenes. Sequence homology analysis against public databases revealed that 33,796 unigenes could be annotated with gene descriptions. Of the annotated unigenes, we identified a number of key components of several conserved metazoan signaling pathways (Hedgehog, Wnt, TGF-beta and Notch pathways) and other important regulatory genes involved in embryonic development. Targeted searching of Pax family genes which play critical roles in the formation of tissue and organ during embryonic development identified a complete set of Pax family genes. Moreover, the full length T. tridentatus Pax1/9a (TtPax1/9a) and Pax1/9b (TtPax1/9b) cDNA sequences were determined based on the transcriptome, demonstrating the immediate application of our database. Using quantitative real time PCR, we analyzed the expression patterns of TtPax1/9a and TtPax1/9b in different tissues of horseshoe crab. Taking advantage of Drosophila model, we further found that TtPax1/9b, but not TtPax1/9a, can partly rescue the Drosophila homolog Poxm dysfunction-caused lethality at the larval stage. Our study provides the embryonic transcriptome of T. tridentatus which could be immediately used for gene discovery and characterization, functional genomics studies in T. tridentatus. This transcriptome database will also facilitate the investigations of molecular mechanisms underlying embryonic development of T. tridentatus and other marine arthropods as well.
Introduction

Emergence of new model organisms plays increasingly critical roles in embryogenesis and evolutionary developmental study. Until now, the most well-known model organism in arthropods is the fruit fly *Drosophila melanogaster* (belonging to Class Insecta), which is widely used in studies of genetics and embryogenesis [1,2]. The genome of water flea *Daphnia pulex* (belonging to Class Crustacea) was also published recently, which facilitates the study of cellular response to environmental challenges [3]. Nevertheless, due to lack of genomic information, understanding of developmental and molecular mechanisms of most arthropods is still lagged far behind that of the vertebrates, which consequentially hinders the appearance of new model organisms within arthropods. Fortunately, high throughput *de novo* transcriptome assembly has proven to be a valuable technology to obtain sequence information and expression level of large-scale target genes involved in a particular biological process without any prior knowledge of reference genome [4–7]. In fact, this technology has been applied to analyze transcriptomes from a variety of species in metazoan [8–12].

Horseshoe crabs (Family Limulidae, Order Xiphosura, Class Merostomata), which are an extremely ancient marine group, have emerged as a valuable laboratory animal model in developmental study of marine invertebrate for decades [13–16]. They inhabit the areas around the shallow coastal seas and breed on intertidal shores. Even though horseshoe crabs show some common features of crustaceans (crab-like shell and claws), they are more closely related to arachnids, such as spiders and scorpions [17,18]. To date, only four extant horseshoe crab species have been discovered in two distinctly separate regions of the world, viz. *Tachypleus tridentatus*, *Tachypleus gigas*, *Carcinoscorpius rotundicauda* (mainly found in Southeast Asia) and *Limulus polyphemus* (only found in western Atlantic coast of North America). *T. tridentatus* was once very common along the southeast coast of Mainland China. Unfortunately, its population has been declining for several decades due to excessive hunting by humans and environmental pollution. Fossil evidence revealed that the earliest horseshoe crab lived during the late Ordovician period, around 445 million years ago [19]. More strikingly, the horseshoe crab remains unchanged in overall morphology for over 200 million years, and therefore is considered as a “living fossil” [20]. Besides their importance for the evolutionary studies and preservation of ecological diversity, horseshoe crabs also serve as a multiple-use animal resource. For example, the Limulus Amebocyte Lysate test, which is widely applied in the detection and quantification of bacterial endotoxins, is based on an aqueous extract of amebocytes from horseshoe crab [21]. Moreover, it is believed that horseshoe crabs are essential for the maintenance of the ecology of estuarine and coastal communities [22].

It is reported that the horseshoe crabs take about 10–15 years to reach sexual maturity from fertilized eggs and more than ten molts occur during this period [23], which makes it difficult to record the whole growth process of horseshoe crab in natural habitat without interruption. Growth observation of horseshoe crabs from larvae to adulthood in laboratory also turned out to be a failure [24]. On the other hand, over the recent decades, the horseshoe crab has emerged as an experimental model for studying marine invertebrate embryology, structure-function relationship of the visual system and nervous system [15,25]. Morphological changes during early embryonic development of two horseshoe crab species, including *T. tridentatus* and *L. polyphemus*, have been studied [14,23]. According to Sekiguchi’s classification [23], the embryonic development of horseshoe crab could be roughly divided into the 21 stages, mainly including cleavage, blastula, gastrula, appearance of germ disc, formation of appendages and finally hatch-out to the first instar “trilobite larvae”. During hatch-out stage, the embryo grows remarkably and several organs further develop. For instance, the central eye becomes discernable as a brownish spot. The appendages of the prosoma are further expanded [23]. All these
changes enable the horseshoe crab to survive in the new challenging circumstance without the protection of chorion.

Although the study of horseshoe crab morphological changes during embryonic development has been described, the detailed molecular mechanism underlying this process remains unknown, which is largely due to the lack of genomic information. In the present study, we employed high-throughput Illumina Solexa sequencing and gene annotation to characterize the transcriptome of T. tridentatus embryo at the hatch-out stage. We reported for the first time a comprehensive analysis of large-scale gene expression profile during T. tridentatus embryonic development, which could be immediately used for further gene discovery and functional genomics study. Our data indicated that the major signaling pathways and key regulatory factors involved in embryonic development were highly conserved between T. tridentatus and other metazoans, especially D. melanogaster. Molecular cloning and functional study of T. tridentatus Pax1/9a and Pax1/9b were also investigated in our study. Therefore, the transcriptome analysis reported here have important applications to the understanding of molecular mechanisms underlying T. tridentatus embryonic development.

Materials and Methods

Horseshoe crab maintenance and breeding

Adult T. tridentatus were maintained in a 3 m×1 m×2 m tank containing natural seawater (temperature 25°C, salinity 30 ppt) and fed with bivalves. Fertilized eggs were obtained by natural spawning and cultured in the laboratory with standard procedures [26]. The staging of embryos was according to Sekiguchi’s developmental tables [23]. The embryos at Stage 21 (the hatch-out stage) were collected for high throughput transcriptome sequencing.

RNA extraction and quality determination

Total RNA of T. tridentatus embryos was isolated by TRIzol (Invitrogen, Carlsbad, CA, USA) according to the standard protocol. The RNA samples were treated with DNase I (TaKaRa, Japan) for 4 h. RNA was quantified by measuring the absorbance at 260 nm using a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., San Jose, CA, USA). The purity of RNA was assessed by the ratio of the absorbance at 260 and 280 nm. The integrity of the RNA samples was examined with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Cloning of full length T. tridentatus Pax1/9 cDNAs

To obtain the full length cDNAs of Pax1/9 genes, the BLAST search of human Pax1 and Pax9 genes were performed against the T. tridentatus transcriptome database, which resulted in two sequences with high homology. The 3’ and 5’ ends were obtained by rapid amplification of cDNA ends (RACE) approaches using 3’-Full RACE Core Set with PrimeScript™ RTase and 5’-Full RACE Kit with TAP (TaKaRa, Japan) following the manufacturer’s instructions. Primers for 3’-RACE and 5’-RACE were listed in S1 Table. The PCR products were ligated into pMD-19T vector (TaKaRa, Japan) and transformed into the competent E. coli TOP10 cells. Positive clones with the expected-size inserts were determined by colony PCR and DNA sequencing.

cDNA library preparation, Illumina sequencing and sequence assembly

The cDNA library was prepared using the TruSeq™ RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Poly(A)-containing mRNA was purified by Oligo(dT) magnetic beads from 10 μg total RNA sample and fragmented using divalent cations. The cleaved RNA fragments were used for the first strand
cDNA synthesis using reverse transcriptase and random primers, followed by second strand cDNA synthesis using DNA polymerase I and RNase H. After second strain cDNA synthesis, fragments were treated with end repair, A-base tailing and adapter ligation consecutively. The sample was further treated by gel size fractionation and PCR amplification to create final cDNA library. The cDNA library was sequenced on the Illumina Cluster Station and Illumina Genome Analyzer system according to the manufacturer’s instructions. The Trinity method was used for de novo assembly of Illumina reads of *T. tridentatus* embryos [27]. Briefly, the trinity using de Bruijn graph algorithm was run on the paired-end sequences with the fixed default k-mer size of 25, minimum contig length of 200 and paired fragment length of 500.

Functional annotation

All possible coding sequences were predicted by GetORF model of EMBOSS (http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html) with default parameters. The longest ORF was considered as the candidate coding sequence (CDS). The assembled unigenes were annotated based on sequence similarity by sequential BLAST searches against National Center for Biotechnology Information (NCBI) non-redundant protein database (NR) and nucleotide sequences database (NT), the Swiss-Prot protein database, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the Cluster of Orthologous Groups (COG) database and the Translated EMBL Nucleotide Sequence Database (TrEMBL). The Blast2GO software was used for blasting and assigning associated gene ontology (GO) terms describing biological processes, molecular functions and cellular components.

Phylogenetic analysis

Related sequences from *homo sapiens* and *Drosophila melanogaster* were included in the phylogenetic analysis (S2 Table). The DNA binding domains of Pax family proteins was aligned manually and Mega 3 [28] was used to generate the phylogenetic trees. The neighbor joining method with 1000 bootstrap replications was used to calculate each tree.

Expression of TtPax1/9a and TtPax1/9b in T. tridentatus tissues

To assess the tissue distribution of *TtPax1/9a* and *TtPax1/9b* transcripts, total RNA was extracted from intestine, liver, yellow connective tissue, heart, stomach, muscle and gill, respectively. First strand cDNA synthesized from 2 μg total RNA was used as templates for quantitative real time PCR using IQ™ 5 Multicolor Real-time PCR Detection System (Bio-Rad, Richmond, CA, USA). The *TtPax1/9a* specific primers are Pax1/9a-Fw (5’-AGCCGTGTACCTGAATCGAC-3’) and Pax1/9a-Rv (5’-AAATATTGTGCACTTGCTGGA-3’). The *TtPax1/9b* specific primers are Pax1/9b-Fw (5’-CCAGTGTCCATGCCATTAAG-3’) and Pax1/9b-Rv (5’-GGTTTGCGGTGACACTGTCTTCT-3’). The *T. tridentatus* GAPDH gene was used as the internal control. Specific primers for *T. tridentatus* GAPDH are GAPDH-Fw (5’-CATCAGCAATGCCTCTTG-3’) and GAPDH-Rv (5’-GCCTTAGAGCTTGGTCCATC-3’).

Generation of transgenic flies

D. melanogaster were cultured on standard medium with 12/12 light/dark cycle at 25°C. The *poxm* loss-of-function mutant fly *Poxm*Δ2-361 and transgenic line *poxm8.4-Gal4* have been described previously [29]. Taking advantage of *EcoR I* and *Xho I* restriction sites, the full length cDNA of *TtPax1/9a* and *TtPax1/9b* were subclone into pUAST vector. The UAS-*TtPax1/9a* and UAS-*TtPax1/9b* transgenic fly lines were generated by germline transformation with co-injection of the helper plasmid Δ2–3 according to standard protocol [30]. The UAS-*TtPax1/9a*
or UAS-TtPax1/9b transgenic fly lines were crossed with poxm8.4-Gal4 fly to obtain the TtPax1/9a- and UAS-TtPax1/9b-expressing flies under the control of poxm8.4 upstream region. The transgenic flies were imaged with Leica M205FA microscope (Leica, Wetzlar, German).

Results and Discussion

Sequencing and transcriptome assembly

In this study, 10 μg of total RNA isolated from the *T. tridentatus* embryos at hatch-out stage were used to prepare cDNA library for subsequent transcriptome sequencing using an Illumina HiSeq2000 sequencer. RNA was pooled from multiple *T. tridentatus* embryos to prepare one sample for sequencing. The summary of Illumina sequencing and annotation was shown in **Table 1**. Sequencing of cDNA library generated a total of 37,902,792 paired end reads. These data are available from the NCBI Short Read Archive under accession number SRR946952. Transcriptome assembly was completed using RNAseq *de novo* assembler Trinity (*k*-mer length = 25). 4,864,778 contigs were identified with the nucleotide composition of A, T, C and G being 30.98%, 29.67%, 20.22% and 19.12% respectively, which gives rise to an overall GC content of 39.34% in the whole transcriptome. The contigs were further assembled into 176,231 transcripts falling into 133,212 unigenes (> 200 bp) with a mean unigene length of 746 bp and an N50 of 568 bp (**Table 1**). The length distribution of transcripts and unigenes were shown in S1 Fig.

Unigene annotation was achieved by BLASTx and BLASTn searches against NR, NT, Swissprot, and TrEMBL with an e-value less than 1×10^{-5}. In total, there were 33,796 unigenes showing hits in one or more databases (**Table 1**), among which the NR database gave rise to the most annotations (29,918 hits). However, a large proportion of the sequences did not show significant blast hit. This was probably due to the lack of characterization of genes from closely related species, as the length distribution and the coverage of the annotated and unannotated unigenes were in a similar pattern (S2 Fig). The assembled sequences generated in our study are available from the authors upon request.

Table 1. Summary of *T. tridentatus* transcriptome sequencing, assembly and annotation.

Stage	Sequence reads	Total transcripts	N50 length of transcripts (bp)	Mean length of transcripts (bp)	Max length of transcripts (bp)	Total unigenes	N50 length of unigenes (bp)	Mean length of unigenes (bp)	Max length of unigenes (bp)
Sequencing	37,902,792	176,231	1147	713	11,337	133,212	746	568	11,337
Assembly									
N50 length									
Mean length									
Max length									
Total									
Unigenes									
Annotation	33,796	99,416	29,918	11,116	24,118	29,884	15,768	6,920	10,999
Total									
Unigenes									
annotated									
against NR									
database									
against NT									
database									
against Swiss-Prot database									
against TrEMBL database									
against GO database									
database									
against COG database									
database									
against KEGG database									

doi:10.1371/journal.pone.0145825.t001
Functional annotation

In order to predict the functions of these unigenes, all the sequences were analyzed according to gene ontology (GO) database and clusters of orthologous groups (COGs). 15,768 genes were successfully annotated with 95,305 GO terms and were separated into three categories: biological process, cellular component, and molecular function, which were further divided into 15, 12 and 21 functional groups, respectively (Fig 1). Among these GO terms, 49,724 unigene sequences were assigned to biological process, 27,948 to molecular function, and 17,363 to cellular component. Interestingly, the top 5 groups with most unigenes involved in the biological process were: cellular process, metabolic process, biological regulation, developmental process, and multicellular organismal process. While the cell part and the cell functional groups were dominant in the cellular component category, and the binding and the catalytic activity were dominant in the molecular function category. The integral to membrane (GO: 0016021) contained 1572 unigenes, which belonged to the cellular component category. It had the largest number of unigenes among all the groups. In addition, the ATP binding (GO: 0005524) containing 1478 unigenes and the oxidation-reduction process (GO: 0055114) containing 619 unigenes were the most represented GO terms for the molecular function and biological process categories, respectively. A high percentage of unigenes involved in the following functional groups should also be noted: cellular process (GO: 0009987) with 561 unigenes, protein phosphorylation (GO: 0006468) with 596 unigenes and regulation of transcription, DNA-dependent (GO: 0006355) with 556 unigenes. We were interested in the embryonic development process of *T. tridentatus*, and thus investigated the unigenes with GO

![Fig 1. GO distribution of the T. tridentatus unigenes.](Image) Go ontology distribution of the T. tridentatus unigenes were derived using BLAST2GO. The X-axis represents three main GO categories: cellular component, molecular function and biological process, which further separated into 15, 12 and 21 functional groups, respectively. The Y-axis represents percentages and numbers of unigenes mapping to the given functional GO group.

doi:10.1371/journal.pone.0145825.g001
terms containing “embryo” or “development”. As a result, a total of 183 GO terms were found with unigene numbers ranging from 1 to 241. The top 20 terms with the most number of unigenes were listed in Table 2. This demonstrated that our transcriptome database contained a variety of unigenes related to the embryonic development, which provided an abundant resource for further investigation of regulatory mechanisms of *T. tridentatus* embryonic development.

Meanwhile, COG annotation was used for phylogenetic classification of the putative proteins from the *T. tridentatus* transcriptome, in which a total of 6,920 proteins were assigned to 25 clusters (Fig 2). Among the COG library, the cluster of “General function prediction only” consisted of the largest number of unigenes. The other five largest categories were: “replication, recombination and repair” (14.47%), “signal transduction mechanisms” (13.42%), “transcription” (13.12%), “translation, ribosomal structure and biogenesis” (8.44%), and “posttranslational modification, protein turnover, chaperones” (8.24%), suggesting the specific responses and molecular mechanisms of *T. tridentatus* early development to some extent.

To investigate the biological pathways which are possibly involved in early embryonic development process of *T. tridentatus*, we further mapped the unigenes to the reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 10,999 unigenes were assigned to 298 KEGG pathways. The pathways most represented by numbers of unigene sequences were “transcription factors” (865 unigenes), “chromosome” (802 unigenes), “ubiquitin system” (798 unigenes), “protein kinases” (784 unigenes), and “pathways in cancer” (518 unigenes).

Signaling pathways and regulatory genes involved in the development of *T. tridentatus*

Formation of different cell types and patterns during development of multicellular organisms depends on a complex cascade of developmental decisions. An evolutionarily conserved

GO term	GO index	No. of unigenes
mushroom body development	0016319	241
peripheral nervous system development	0007422	207
mesoderm development	0007498	173
central nervous system development	0007417	162
multicellular organismal development	0007275	153
open tracheal system development	0007424	146
muscle organ development	0007517	140
embryo development ending in birth or egg hatching	0009792	125
compound eye development	0048749	113
neuromuscular junction development	0007528	105
embryonic development via the syncytial blastoderm	001700	86
wing disc development	0035220	86
nervous system development	0007399	85
nematode larval development	0002119	82
organ development	0048513	75
chaeta development	0022416	74
gonad development	0008406	69
heart development	0007507	68
instar larval development	0002168	65
sensory organ development	0007423	62

Table 2. Top 20 GO terms with most unigenes involved in embryonic development.

doi:10.1371/journal.pone.0145825.t002
network of signaling pathways and regulatory genes plays key roles during this process [31]. Analyzing these pathways and factors involved in the early embryonic development of *T. tridentatus* is of great importance for understanding of the developmental mechanisms of this ancient marine creature and may provide insights into the evolutional study of conserved signaling pathways and regulatory genes. In all the annotated unigenes of *T. tridentatus* transcriptome, we identified a number of key components of four major signaling pathways (including Hedgehog, Wnt, transforming growth factor-β and Notch pathways) conserved in metazoan. As shown in Fig 3, 98 possible homologues were identified from 126 key genes involved in these signaling pathways, representing 77.78% coverage of the total genes. The percentage of genes found in each pathway is 78.85% (Wnt), 77.27% (TGF-β), 77.78% (Hedgehog) and 87.5% (Notch) respectively. In case of *D. melanogaster*-specific pathways, the percentage was much higher, about 91.57% (76/83) homologues could be found in *T. tridentatus* transcriptome, indicating the higher similarity of *T. tridentatus* with *D. melanogaster* than other animal models in the aspect of signaling transduction pathways. It should also be noted that the sequence length of most gene fragments (>200 bp) is sufficient for functional studies of these genes by modern molecular technology, such as real-time PCR quantification, in situ hybridization and antibody preparation. Moreover, with the sequence information of these gene fragments, it would be more efficient and reliable to obtain the full length of desired genes comparing with common degenerate PCR method. This is particularly helpful in case of gene discovery and functional study in the "non-model" organism horseshoe crab.

Fig 2. COG functional classification of the *T. tridentatus* transcriptome.
doi:10.1371/journal.pone.0145825.g002
Regulatory genes are also key players in the network governing embryonic development [32]. *D. melanogaster* is one of the best understood models of embryonic development, especially pattern formation process, and thus we analyzed the regulatory genes potentially involved in the *T. tridentatus* axis specification and patterning by using *D. melanogaster* as a reference model. The genetic control of axis specification and patterning in *D. melanogaster* requires a cascade of gene regulation events before the onset of blastoderm stage. The major genes involved in this developmental process of *D. melanogaster* can grouped into four categories, viz. maternal effect genes, gap genes, pair rule genes and segment polarity genes [33,34]. This developmental process starts with the diffusion of the maternal effect genes which are responsible for setting the anterior-posterior polarity of the embryo. The gap genes, which are among the first genes transcribed in the embryo, participate in the establishment of the subdomain of body plan under the control of maternal gradients. The pair rule genes subsequently divide the embryo into periodic units, whereas the segment polarity genes activated by pair rule genes further establish the periodicity of the embryo by dividing it into 14 segment-wide units [35,36]. Key regulatory genes of each category used in our study were selected according to S.F. Gilbert’s and R.M. Twyman’s classification [37,38]. Among all the 53 genes listed in Table 3, we identified a total of 40 genes (75.47%) which had homologs in *T. tridentatus*, suggesting that functions of these genes conserved in *T. tridentatus*. It should be pointed out that the percentage of gene homologs identified in the maternal effect genes category was much lower (11/18, 61.11%) comparing to that of the other categories: gap genes (12/14, 85.71%), pair rule genes (7/8, 87.5%) and segment polarity genes (13/16, 81.25%). This is possibly...
Table 3. Representative regulatory genes involved in the early embryonic development of *T. tridentatus*.

Name	Length (range)	No. of transcripts	Read number	Hit ID	target organism	E-value	
Major maternal effect genes							
bicoid	215–717	7	84	gb	EHJ3092.1	Danaus plexippus	3E-96
hunchback^a	281	2	3	gb	CAK05841.1	Glomeris marginata	1E-13
odd-skipped	286–1412	5	967	ref	XP_002405030.1	Ixodes scapularis	5E-06
cap'n'collar	3588	1	3580	gb	ELT94341.1	Capitella teleta	3E-141
hunchback^a	214–4349	14	13341	ref	XP_0004932537.1	Bombyx mori	2E-34
even-skipped	480–1849	4	358	gb	EKC34332.1	Crassostrea gigas	1E-11
vasa	257–3575	2	4032	gb	ACT35657.1	Haliothis asinina	2E-180
even-skipped	274–322	2	5	ref	XP_002601469.1	Branchiostoma floridæ	1E-45
torso	256–344	5	22	ref	XP_002408935.1	Ixodes scapularis	2E-10
trunk	236–2925	13	754	gb	EFX70037.1	Daphnia pulex	3E-03
rolled	442–858	2	58876	gb	ADV40083.1	Latrodectus hesperus	6E-59

Maternal effect genes not found in *T. tridentatus* transcriptome: exuperantia, swallow, nanos, valios, torsolike, nasrat and polehole.

Major gap genes

Name	Length (range)	No. of transcripts	Read number	Hit ID	target organism	E-value	
hunchback^a	281	3	3	gb	CAK05841.1	Glomeris marginata	1E-13
knot	369–4091	3	1306	ref	XP_002435294.1	Ixodes scapularis	4E-09
giant	468–1490	4	210	ref	XP_002429035.1	Pediculus humanus corporis	5E-43
caudal^a	286–1412	5	967	ref	XP_002405030.1	Ixodes scapularis	5E-06
hucklebein	321	1	322	ref	NP_524221.1	Drosophila melanogaster	9E-27
buttonhead	388	1	7	ref	XP_004375586.1	Trichecchus manatus latroistris	5E-59
cap'n'collar	522–3345	4	1471	gb	EFA11557.1	Tribolium castaneum	5E-46
knot	652–787	2	118	gb	EEZ99300.1	Tribolium castaneum	7E-108
crocodile	289–588	2	28	gb	CAK05838.1	Glomeris marginata	3E-47
empty spiracles	209–1313	2	142	ref	NP_001107793.1	Tribolium castaneum	3E-47
orthodonticle	226–975	5	83	gb	AAU85255.1	Euschoriopsis flavicaudis	2E-05
sloppy paired^a	336	1	2	ref	NP_001071091.1	Tribolium castaneum	1E-62

Gap genes not found in *T. tridentatus* transcriptome: knirps and tailless.

Major pair rule genes

Name	Length (range)	No. of transcripts	Read number	Hit ID	target organism	E-value	
fushi tarazu	240–714	3	45	ref	XP_002406407.1	Ixodes scapularis	6E-17
hairy	242–2184	8	355	gb	EFA13687.1	Tribolium castaneum	1E-29
runt	499–2102	3	696	gb	CAB89493.1	Cupiennius salei	7E-75
odd-paired	1488	1	72	ref	NP_001158430.1	Saccoglossus kowalevski	7E-169
odd-skipped	691–2683	4	1333	ref	XP_002399401.1	Ixodes scapularis	3E-79
paired	363	1	11	gb	ACT79975.1	Nasonia vitripennis	5E-62
sloppy paired^a	336	1	2	ref	NP_001071091.1	Tribolium castaneum	1E-62

Pair rule genes not found in *T. tridentatus* transcriptome: even-skipped.

Major segment polarity genes

Name	Length (range)	No. of transcripts	Read number	Hit ID	target organism	E-value	
engrailed	565–1432	2	154	gb	AA840144.1	Branchiostoma floridæ	3E-48
hedgehog	224–569	2	15	gb	CAE83646.1	Glomeris marginata	3E-16
patched	680–3166	2	550	gb	BAI83404.1	Parasteatoda tepidariorum	5E-103
smoothened	1739	1	170	gb	BAI83345.1	Parasteatoda tepidariorum	3E-48
pangolin	473–3616	3	711	gb	EKC28444.1	Crassostrea gigas	4E-75
decapentaplegic	390–2164	6	280	gb	AEK81570.1	Ptychodera flavia	3E-45
wingless	1711	1	135	ref	XP_002403230.1	Ixodes scapularis	6E-14
cubitus interrupt	405–1012	3	99	ref	XP_002435743.1	Ixodes scapularis	6E-43
frizzled	290–1569	8	292	ref	XP_002433979.1	Ixodes scapularis	6E-39
Disheveled-1	706–1987	2	254	ref	XP_002403641.1	Ixodes scapularis	1E-07

(Continued)
because the mRNA products of the maternal gene homologs have been consumed at the hatch-out stage, the last stage of *T. tridentatus* embryonic development. In addition, we also failed to identify some well-studied gene homologs (including *knirps*, *tailless*, *even-skipped*, *invected*, *fused* and *costal 2*), which may be due to the extremely low expression of these gene homologs in our sample. Anyway, we identified the majority of the candidate regulatory genes that are potentially involved in the axis specification and patterning of *T. tridentatus* embryo. Further study is required to characterize the function of these putative genes.

Case study: Detailed analysis of Pax family genes

In addition to transcriptome analysis of conserved signaling pathway components and regulatory genes, we also tried to identify genes known to be important for embryogenesis based on our transcriptome data. Here, we focused specifically on the *Pax* family genes. *Pax* genes, which are grouped into 4 subfamilies (*Pax1/9, Pax2/5/8, Pax3/7 and Pax4/6*), encode a group of transcription factors that have been conserved through millions of years of evolution and play roles in early development [39–41]. According to the homology within the highly conserved paired domain, the putative horseshoe crab *Pax* genes were identified. A complete set of *Pax* family gene homologs was found in *T. tridentatus*. Phylogenetic tree was constructed by aligning the conserved paired domain with neighbor joining method using *Pseudomonas transposase* as outgroup (Fig 4). Genes belonging to *Pax4/6* subfamily branched out at the base of the tree. Genes from *Pax4/6* subfamily were divided into two clades. One included *Pax4/6* genes from *Homo sapiens* (*HsPax4* and *HsPax6*), *D. melanogaster* (*Dmtoy* and *Dmey*) and *T. tridentatus* (*TtPax4/6a* and *TtPax4/6b*). The second clade was composed of two sister groups with one containing the genes *Dmeyg* and *Dmtoe* from *D. melanogaster*, and the other consisting of *TtPax4/6a* and *TtPax4/6b* from *T. tridentatus*. Interestingly, all the *Dmeyg, Dmtoe, TtPax4/6a* and *TtPax4/6b* had a truncated paired domain. It is possible that the truncated paired domain already existed in the common ancestor of horseshoe crab and Drosophila. After split into two lineages, specific gene duplications occurred independently in horseshoe crab and *Drosophila*. The second clade includes *Pax2/5/8* subfamily genes. All members of *TtPax2/5/8* genes were gathered closely, indicating that relatively recent duplications appear to have occurred in horseshoe crabs. The third clade was composed of *Pax1/9* subfamily genes. *TtPax1/9a* branched out at the base against all other genes in this clade, whereas *TtPax1/9b* gathered with the vertebrate *Pax1* and *Pax9* genes. The last clade was constituted of *Pax3/7* subfamily. The horseshoe crab *TtPax3/7a* was clustered with *Drosophila Dmsgb* and *Dmsgbn* genes.

While the majority of horseshoe crab genes of the *Pax* family show obvious homology to their respective subfamily, the placement of *TtPax3/7b* in the phylogenetic tree is ambiguous. It occupied the most basal position of the tree without obvious orthologs. The homeodomain
Fig 4. Phylogenetic analysis of paired domains of T. tridentatus Pax family proteins. Neighbour joining tree of the paired domains of Pax proteins with paired deletion option. Since TtPax4/6 has only partial paired domain available, the phylogeny of Pax4/6 subfamily was constructed with complete deletion option. A pseudomonas transposase sequence (AF169828) serves as outgroup. Numbers above branches are the percentage of the trees in which the topology appears. Paired domain sequences of Pax proteins were shown in S2 Table. Tt: Tachypleus tridentatus. Hs: homo sapiens. Dm: Drosophila melanogaster.

doi:10.1371/journal.pone.0145825.g004
Fig 5. Multiple alignment of paired domain of Pax1/9 proteins from representative metazoan. The polypeptides were aligned using ClustalX 2.1 program and Boxshade online software (http://www.ch.embnet.org/software/BOX_form.html) were employed to highlight conserved amino acids. Conserved DNA binding motifs were underlined. The sequences used in the alignment are as follows: AmPaxA: Acropora millepora PaxA [GenBank: AAC15713.2], BbPax1/9: Branchiostoma belcheri Pax1/9 [GenBank: ABK54274.1], CqPaxA1: Chrysaora quinquecirrha PaxA1 [GenBank: AAB58292.1], DmPoxm: Drosophila melanogaster Poxm [GenBank: ABE69189.1], HsPax1: Homo sapiens Pax1 [GenBank: NP_006183.2], HsPax9: Homo sapiens Pax9 [GenBank: NP_006185.1], MmPax1: Mus musculus Pax1 [GenBank: AAK01146.1], MmPax9: Mus musculus Pax9 [GenBank: NP_035171.1] and NvPaxA: Nematostella vectensis PaxA [GenBank: AAW29066.1].

doi:10.1371/journal.pone.0145825.g005

DrPax1 1 TTYEVNQLGVGFVNRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
HsPax9 1 --GEVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
MmPax1 1 TTYEVNQLGVGFVNRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
BbPax1/9 1 TFGVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
DrPax1 1 --GEVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
TtPax1/9b 1 TYYEVNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
DmPoxm 1 TYYEVNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
HsPax1 1 TYYEVNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
TtPax1/9a 1 TFLGYNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
MmPax9 1 TYYEVNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
AmPaxA 1 GFCYVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
NvPaxA 1 GFGYVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
HlPaxA 1 SPFQYNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
CqPaxA1 1 GFCGYNQLGVGFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV
consensus 1 tyGeVNLGGVFVFRPLPNMLRELAQQLGIRPDCISRQPLRVSQCV

DrPax1 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
HsPax9 49 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
MmPax1 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
BbPax1/9 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
DrPax1 49 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
TtPax1/9b 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
DmPoxm 50 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
HsPax1 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
TtPax1/9a 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
MmPax9 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
AmPaxA 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
NvPaxA 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
HlPaxA 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
CqPaxA1 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR
consensus 51 SKLRARNETGSILPLGAISSKPRRTVPVVKYKDRDYKQKDPGIFAWEIR

DrPax1 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
HsPax9 99 DRLLLHAGCDKYNVPVSSISIRLRN-1
MmPax1 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
BbPax1/9 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
DrPax1 99 DRLLLHAGCDKYNVPVSSISIRLRN-1
TtPax1/9b 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
DmPoxm 100 DRLLLHAGCDKYNVPVSSISIRLRN-1
HsPax1 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
TtPax1/9a 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
MmPax9 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
AmPaxA 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
NvPaxA 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
HlPaxA 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
CqPaxA1 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
consensus 101 DRLLLHAGCDKYNVPVSSISIRLRN-1
sequence of TtPax3/7b was blasted against the GenBank database. Sequence comparison result showed that all the genes highly similar (over 78%) with TtPax3/7b homeodomain belonged to the Pax3/7 subfamily. Therefore, it is possible that TtPax3/7b genes belong to the Pax3/7 subfamily, but have been evolving at a rate that obscures its orthology.

To further test the reliability of our database in gene discovery, the full length cDNAs encoding TtPax1/9a and TtPax1/9b proteins were cloned based on the partial sequences obtained from transcriptome assembly. The complete TtPax1/9a cDNA contained 258 bp of 5’ untranslated region (UTR), 681 bp of open reading frame (ORF) and 150 bp of 3’ UTR. The TtPax1/9a ORF can be translated into a polypeptide of 226 amino acids (aa) with a predicted molecular weight (MW) of 25.4 KDa. A conserved paired domain of 127 aa was included in the predicted protein sequence (S3 Fig). The full length TtPax1/9b cDNA contains 1893 bp, while the ORF is of 912 bp encoding 303 aa with a predicted MW of 33.2 KDa. A conserved paired domain with 127 aa in length is also present in the TtPax1/9b protein sequence (S4 Fig). A multiple alignment of the paired domain sequences of Pax1/9 was performed in T. tridentatus and other representative metazoan species. As shown in Fig 5, the Pax1 and Pax9 showed high similarity among all the species examined. Interestingly, although both T. tridentatus and D. melanogaster belong to the Arthropoda, TtPax1/9a and TtPax1/9b showed higher protein identity to zebrafish (Danio rerio), human (Homo sapiens) and mouse (Mus musculus) which belong to Chordata, comparing to D. melanogaster. Whereas, polypeptide identities of Pax paired domain between T. tridentatus and the Coelenterata species, including Acropora millepora, Chrysaora quinquecirrha, Hydra littoralis and Nematostella vectensis, were relatively low. In summary, our data demonstrated the immediate application of the transcriptome data for gene discovery in the “non-model” organism T. tridentatus.

Tissue distribution of Pax1/9a and Pax1/9b

Expression patterns of TtPax1/9a and TtPax1/9b genes in different tissues of horseshoe crab were analyzed by quantitative RT-PCR. The highest expression level of TtPax1/9a was found in the heart (Fig 6). TtPax1/9a was also abundantly expressed in the muscle, liver and intestine. On the other hand, the expression level of TtPax1/9a in the stomach, yellow connective tissue

![Fig 6: Tissue distribution of TtPax1/9a and TtPax1/9b determined by quantitative real-time PCR.](https://example.com/figure6.png)
and gill was significantly lower. Expression pattern of TtPax1/9b is similar to that of TtPax1/9a, albeit at much lower levels.

TtPax1/9b partly rescues Poxm dysfunction-caused larval lethality of Drosophila

Due to lack of genetic manipulation tools for the gene function study in *T. tridentatus*, we further explore the function of TtPax1/9a and TtPax1/9b genes by taking advantage of Drosophila model. Drosophila Pax gene *Pox meso* (*Poxm*) plays a crucial role in the early development. Our previous study showed that the loss-of-function mutant in *poxm, Poxm*R361, causes the Drosophila death [29]. According to our protein sequence alignment data, TtPax1/9a and TtPax1/9b genes are homologs of the Drosophila *poxm* gene. Therefore in this experiment, we investigated whether the TtPax1/9a and TtPax1/9b genes rescue *Poxm*R361-caused embryonic lethality of Drosophila. The TtPax1/9a and TtPax1/9b genes were expressed in the Drosophila under the control of the 8.4 kb *poxm* upstream region using GAL4/UAS system [29]. The

Fig 7. Rescue study of PoxmR361 mutant by the expression of TtPax1/9a and TtPax1/9b genes. (a) *Poxm*R361 mutant. (b) *Poxm*R361 mutant with TtPax1/9a gene expression. (c) *Poxm*R361 mutant with TtPax1/9b gene expression. Anterior is to the left.

doi:10.1371/journal.pone.0145825.g007
\(\text{Poxm}^{R361} \) mutant alone (Fig 7A) and the \(\text{Poxm}^{R361} \) mutant with \(\text{TtPax1/9a} \) gene expression (Fig 7B) resulted in the Drosophila death at the larval stage. Surprisingly, the \(\text{Poxm}^{R361} \) mutant in the presence of \(\text{TtPax1/9b} \) survived at the pupal stage (Fig 7C). These results imply that the \(\text{TtPax1/9b} \) can at least partly rescue \(\text{Poxm} \) dysfunction-caused larval lethality of Drosophila.

Conclusions

In this study, we, for the first time, performed de novo transcriptome sequencing of \(\text{T. tridentatus} \) embryos in the absence of a reference genome using Illumina Solexa platform. Of 133,212 unigenes obtained, 33,796 were annotated by BLAST with NR, NT, Swiss-Prot, GO, COG and KEGG databases. We further identified a number of candidate genes potentially involved in embryonic development of \(\text{T. tridentatus} \), shedding light on future study on the characterization and function of genes of interest and detailed molecular mechanisms underlying embryonic development of \(\text{T. tridentatus} \). Moreover, the cloning and phylogenetic analysis of Pax family genes were performed, demonstrating that the transcriptome sequencing is a fast and reliable technology for high-throughput gene discovery in "non-model" organisms and for evolutionary developmental biology study as well. Rescue study further indicated that \(\text{TtPax1/9b} \) gene is functionally relative to Drosophila \(\text{Poxm} \) gene.

Supporting Information

S1 Fig. Sequence length distribution of transcripts and unigenes assembled from Illumina reads. All Illumina transcripts and unigenes with length over 200 bp were analyzed. (TIF)

S2 Fig. Contour plot of length and coverage distribution of annotated and unannotated unigenes. Transcripts were annotated using Blast2GO software. The Burrows-Wheeler Aligner (BWA) program was used for reads mapping. The color bar indicates log10 transformed count values. (TIF)

S3 Fig. Nucleotide and deduced amino acid sequence of \(\text{T. tridentatus Pax1/9a} \). Numbers on the left indicate numbers of nucleotides or amino acids. Boxing indicates the conserved paired domain and * stands for putative stop codon. The polyadenylation signal is underlined. (TIF)

S4 Fig. Nucleotide and deduced amino acid sequence of \(\text{T. tridentatus Pax1/9b} \). Numbers on the left indicate numbers of nucleotides or amino acids. Boxing indicates the conserved paired domain and * stands for putative stop codon. (TIF)

S1 Table. List of primer sequences used in this study. (DOCX)

S2 Table. Paired domain amino acid sequences used in the phylogenetic analysis. Tt: \(\text{Tachypleus tridentatus} \), Hs: \(\text{homo sapiens} \), Dm: \(\text{Drosophila melanogaster} \). (DOCX)

Acknowledgments

We thank Biomarker Technology Company (Beijing, China) for technical support. We are also grateful to Prof. Yi Tao from Xiamen University and Prof. Chaohong Weng from Jimei University for their thoughtful discussion and manuscript revision.
Author Contributions
Conceived and designed the experiments: MC JC. Performed the experiments: MC CW Wei Wang. Analyzed the data: MC GJ BH MD ZL. Contributed reagents/materials/analysis tools: GL XL WZ Weiyi Wang. Wrote the paper: MC GJ JC.

References
1. Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, et al. VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res. 2009; 37: D583–587. doi:10.1093/nar/gkn857 PMID: 19028744
2. Arias AM. Drosophila melanogaster and the development of biology in the 20th century. Methods Mol Biol. 2008; 420: 1–25. doi:10.1007/978-1-59745-583-1_1 PMID: 18641938
3. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011; 331: 555–561. doi:10.1126/science.1197761 PMID: 21292972
4. Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, et al. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour. 2012; 12(5): 834–845. doi:10.1111/j.1755-0998.2012.03148.x PMID: 22540679
5. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011; 12(10): 671–682. doi: 10.1038/nrg3068 PMID: 21897427
6. Surget-Groba Y, Montoya-Burgos JI. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res. 2010; 20(10): 1432–1440. doi:10.1101/gr.103846.109 PMID: 20693479
7. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7): 644–652. doi:10.1038/nbt.1883 PMID: 21572440
8. Sugita H, Sekiguchi K. Physiological adaptation of Japanese Scallop Mizuhopecten yessoensis to the environment during embryonic development. Prog Clin Biol Res. 1982; 81: 75–82. PMID: 7122560
9. Sekiguchi K, Yamamichi Y, Costlow JD. Horseshoe crab developmental studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Prog Clin Biol Res. 1982; 81: 53–73. PMID: 7122559
10. Mittmann B. Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull. 2002; 203(2): 221–222. PMID: 12414588
19. Rudkin DM, Young GA, Nowlan GS. The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology. 2008; 51(1): 1–9.
20. Fisher DC. The Xiphosurida: archetypes of bradytely? In: Eldredge N, Stanley SM editors. Living Fossils. New York: Springer; 1984. pp. 196–213.
21. Cooper JF, Pearson SM. Detection of endotoxin in biological products by the limulus test. Dev Biol Stand. 1997; 34: 7–13.
22. Bolton ML. The Ecological Importance of Horseshoe Crabs in Estuarine and Coastal Communities: A Review and Speculative Summary. In: Tanacredi JT, Bolton ML, Smith DR, editors. Biology and Conservation of Horseshoe Crabs. New York: Springer; 2009. pp. 45–64.
23. Sekiguchi K. Biology of horseshoe crabs. Portland: International Specialized Book Service Incorporated; 1988.
24. Sekiguchi K, Seshimo H, Sugita H. Post-embryonic development of the horseshoe crab. Biological Bulletin. 1988; 174(3): 337–345.
25. Mittmann B, Scholtz G. Development of the nervous system in the “head” of Limulus polyphemus (Chelicera: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol. 2003; 213(1): 9–17. PMID: 12590348
26. Smith SA, Berkson J. Laboratory culture and maintenance of the horseshoe crab (Limulus polyphemus). Lab Anim (NY). 2005; 34(7): 27–34.
27. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7): 644–652. doi: 10.1038/nbt.1883 PMID: 21572440
28. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 2004; 5(2): 150–163. PMID: 15260895
29. Duan H, Zhang C, Chen J, Sink H, Frei E, Noll M. A key role of Pox meso in somatic myogenesis of Drosophila. Development. 2007; 134: 3985–3997. PMID: 17942482
30. Del Valle Rodriguez A, Didiano D, Desplan C. Power tools for gene expression and clonal analysis in Drosophila. Nat Methods. 2011; 9(1): 47–55. doi: 10.1038/nmeth.1800 PMID: 2205518
31. Pires-daSilva A, Sommer RJ. The evolution of signalling pathways in animal development. Nat Rev Genet. 2003; 4(1): 39–49. PMID: 12509752
32. Davidson EH, Levine MS. Properties of developmental gene regulatory networks. Proc Natl Acad Sci U S A. 2008; 105(51): 20063–20066. doi: 10.1073/pnas.0806007105 PMID: 19104053
33. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, et al. Dynamic control of positional information in the early Drosophila embryo. Nature. 2004; 430(6997): 368–371. PMID: 15254541
34. Wunderlich Z, DePace AH. Modeling transcriptional networks in Drosophila development at multiple scales. Curr Opin Genet Dev. 2011; 21(6): 711–718. doi: 10.1016/j.gde.2011.07.005 PMID: 21889888
35. Jaeger J. The gap gene network. Cell Mol Life Sci. 2011; 68(2): 243–274. doi: 10.1007/s00018-010-0536-y PMID: 20927566
36. Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, et al. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol. 2004; 2(9): E271. PMID: 15340490
37. Gilbert SF. Developmental biology. 8th ed. Oxford, UK: Sinauer Associates Inc; 2006.
38. Twyman RJ. BIOS Instant Notes in Developmental Biology. Oxford, UK: Taylor & Francis Group; 2001.
39. Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development. 2014; 141(4): 737–751. doi: 10.1242/dev.091785 PMID: 24496612
40. Lang D, Powell SK, Plummer RS, Young KF, Ruggeri BA. PAX gene: role in development, pathophysiology, and cancer. Biochem Parmacol. 2007; 73(1): 1–14.
41. Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev. 1993; 3(4): 595–605. PMID: 8241771