REVISION OF THE DINOFLAGELLATE SPECIES COMPOSITION OF THE BLACK SEA

Data on the diversity of dinoflagellates of the Black Sea (BS) obtained from all BS countries (Russia, Georgia, Turkey, Bulgaria, Romania and Ukraine) from 1886 to 2018 are critically summarized. The revised list of the BS *Dinoflagellata* includes 420 species (447 including infraspecific taxa) from 92 genera that belong to 47 families, 16 orders and 4 classes. This significantly exceeds the number of dinoflagellate taxa previously cited for the BS. This is mainly due to an increased interest in phytoplankton in recent decades and to international cooperation. Additionally, climate change and intensification of international shipping have contributed to the appearance of invasive species of dinoflagellates in various areas of the sea. The list also includes freshwater species recorded from the less saline areas of the sea. Recent progress in taxonomy has expanded our knowledge about diversity of the BS dinoflagellates; however, the leading orders remained unchanged. *Peridiniales* (124 species/129 including infraspecific taxa), *Gymnodiniales* (96/96), *Gonyaulacales* (73/91), *Dinophysiales* (40/41), *Prorocentrales* (23/25) and *Amphidiniales* (21/22) include 85% of the species found. Genera with the highest species richness are *Protoperidinium* (59/62), *Gymnodinium* (48/48), *Ceratium* (34/52), *Dinophysis* (33/34), *Prorocentrum* (22/24), *Amphidinium* (21/22), *Gyrodinium* (20/20), *Gonyaulax* (19/19) and *Oxytoxum* (14/14). Fifty-two genera are represented in the BS by one species each, 201 species and infraspecific
Revision of the dinoflagellate species

taxa were first cited after 1990. A list of the BS dinoflagellates was compiled with currently accepted taxonomic names and their synonyms cited for the BS. References contain 116 literary and unpublished original data sources. Further efforts to study the species diversity of the BS should be aimed at more accurate identification of species using modern methodologies. Continuing to update the BS phytoplankton database, where complete information on each species is freely available, will also contribute to the progress in studying the biodiversity of the BS.

Key words: *Dinoflagellata*, phytoplankton, species composition, taxonomic structure, Black Sea

Introduction

The Black Sea (BS) is an economically important brackish-water basin on the southeastern border of Eastern Europe surrounded by six countries: Russia, Georgia, Turkey, Bulgaria, Romania and Ukraine (Figure). As part of the Mediterranean Basin, this semi-enclosed inland sea, with a volume of 547 thousand km3, is connected by the Strait of Kerch with the Sea of Azov in the northeast, and through the Bosphorus Strait and the Strait of the Dardanelles with the small Sea of Marmara and the Aegean Sea in the southwest. It has an area of 436,402 km2 and a maximum depth of 2,212–2,245 m (average depth 1,350 m).

![Map of the Black Sea with the borders of the maritime countries](image)

Figure. Map of the Black Sea with the borders of the maritime countries

In the NW part are the mouths of the largest European rivers: the Danube, the Dnieper, the Dniester and the Southern Bug. Their runoff causes a drop in the salinity of the seawater in the narrow coastal area to 10 from nearly 17 in the surface layer of the sea. The salinity difference on the surface (on average 17) and in the lower layers (about 34) of the sea causes a high
density gradient. As a result, there is a blocking layer that prevents water mixing and the penetration of oxygen into the depths. Near the surface the temperature of the water is determined by the air temperature; in the deeper layers it can be 7–8 °C lower. At a depth 150–200 m below, the water lacks oxygen and instead contains dissolved hydrogen sulfide (Sorokin, 1982; Zaitsev, 1998). In terms of biological diversity, the BS is 1.5–2 times poorer than the neighboring Mediterranean Sea, but its productivity is higher.

Dinoflagellates (*Dinoflagellata*) are one of the two most important taxonomic groups of phytoplankton in the study area playing a significant role in food webs. Along with diatoms, they contribute a major part of the primary production in the sea. They remove nutrients purifying the water and serve as indicators of the ecological state of the marine environment. Approximately 80 dinoflagellate species are toxic, causing human health problems and marine animal intoxications and mortalities (Moestrup et al., 2018); about 23 of them have been recorded in the BS.

In last decades several reports summarizing the species composition of microalgae, including dinoflagellates, have been published for selected regions of the BS (Zaitsev, Alexandrov, 1998; Krakhmalnyi, Panina, 2000; Polikarpov et al., 2003; Gynnez, Boicenco, 2004; Terenko, 2005a, b; Krakhmalnyi et al., 2006, 2012; Nesterova et al., 2006; Senicheva, 2008; Krakhmalnyi, 2011; Cărăuş, 2012; Feyzioğlu, Şahin, 2017). In our previous work (Krakhmalnyi et al., 2012) we presented a historic review of the dinoflagellates studied in the BS and analyzed their diversity, but without publication of a species list. Since the mentioned article provides a detailed review of the dinoflagellate studies from the past, here we briefly discuss only the main periods of research.

Research on dinoflagellates of the BS was begun by Pereyaslavtseva (1886), who identified 19 dinoflagellate species in samples collected near Sevastopol (Crimea). Twenty years later Reinhard (1909) compiled both literary and unpublished original data on BS phytoplankton, presenting a list of 44 species and infraspecific taxa (i.s.t.) of dinoflagellates. Research on the BS phytoplankton continued between World War I and World War II. Studies were summarized by Morozova-Vodyanitskaya (1948, 1954) who reported 100 species and i.s.t. that belong to 22 genera and 13 families. The next two decades were marked by a high activity of phytoplankton research in various areas of the sea. As a result, from 1950 to 1969, 177 species and i.s.t. of dinoflagellates from 25 genera and 17 families were identified (Kiselev, 1950; Pitsyk, 1954; Petrova, 1957, 1963 1964, 1965; Valkanov, 1957; Ivanov, 1960, 1964, 1965, 1967; Skolka, 1960, 1963; Georgieva, 1961, 1969; Kuzmenko, 1966; Kovaleva, 1969; Makarova, 1969). In the 1970s–1990s the BS dinoflagellates were mentioned in publications of many authors (Roukhlyajnen, 1975; Gomoiu, 1977; Ivanov, 1977; Bodeanu, Usurelu, 1979; Nesterova, 1979, 1985, 1987; Nezlin, Zernova, 1983; Senicheva, 1983; Senichkina, 1983; Ilyash, 1984; Petrova-Karadjova, 1984, 1990; Ilyash, Fedorov, 1985; Sukhanova et al., 1987, 1991; Bityukov et al., 1993; Bodeanu, 1993). Pitsyk (1979) cited 205 taxa of the BS dinoflagellates but did not list them. In total, 48 taxa new to the BS were published during this period.
In the last decades, the study of the BS plankton, including dinoflagellates, has been intensified, largely due to international support and cooperation. Information appeared about dinoflagellates of the BS coast of Georgia (Gvarishvili, 1998a, b; Komakhidze, Mazmanidi, 1998) and Turkey (Eker, 1998; Öztürk, 1999; Türkoğlu, Koray, 2002; Eker-Develi, Velikova, 2009; Baytut et al., 2010; Özdemir et al., 2012; Feyzioğlu, Şahin, 2017). Phytoplankton research continued off the coast of Ukraine (Sukhanova, Cheban, 1990; Vinogradova, Velikova, 1992; Krakhmalnyi, 1994а, b, 2001, 2002, 2005, 2014; Bryantseva et al., 1996, 2003, 2008; Bryantseva, 2000, 2008; Senichkina et al., 2001, 2004; Terenko L., 2001, 2002, 2005а, b, 2007, 2010, 2011; Krakhmalnyi, Terenko, 2002а, b; Senicheva, 2002, 2004; Terenko G., 2004; Derezyuk, 2008; Terenko L., Terenko G., 2009; Terenko G. et al., 2011), Bulgaria (Moncheva, Krastev, 1997; Konsulov, 1998; Velikova, 1998; Velikova, Larsen, 1999; Velikova et al., 1999; Moncheva et al., 2001; Moncheva, Kamburska, 2002; Moncheva, Parr, 2010), Romania (Petranu, 1997; Bodeanu, 2002; Cărăuş, 2002; Bodeanu et al., 2004; Boicenco, 2010, 2011) and Russia (Mikaelyan, 1997, 2008; Vershinin, Moruchkov, 2003; Vershinin, Morton, 2005; Vershinin et al., 2005; Vershinin, Orlova, 2008; Vershinin, Velikova, 2008; Yasakova, 2010).

Recently, considerable achievements have been made in the study of dinoflagellates due to the development of new technologies (scanning electron microscopy and molecular methods), resulting in significant changes in taxonomic structure and species number of the BS dinoflagellates. Furthermore, some previously known dinoflagellate species of the BS have been re-described, new records have been reported and revisions of the species composition have been published.

In the present study we aimed to: 1) analyze and review the available literature and original data on the species composition of *Dinoflagellata* of the BS and 2) present a list of the BS dinoflagellates that takes into account the latest taxonomic changes.

Materials and methods

This revision of the dinoflagellate species composition of the BS was based both on an analysis of literature published from 1886 through 2018 and on unpublished original data of the authors of the present study. The original materials were collected in the Ukrainian sector of the BS from 1992 to 2018. They include the results of studies of the coastal and open BS waters (1992–1993), the Strait of Kerch (2003, 2006–2009), the Sevastopol coast (1991, 2008–2016), the Odessa coast (1986, 1998–2002, 20089–2018) and the Zmiinyi Island coast (2003–2018).

Here we present the *Dinoflagellata sensu* Fensome & al. (1993), as revised by Fensome & al. (1998) and updated by Okolodkov (2011). The genera *Tovellia* Moestrup & al. and *Opisthoaulax* Calado (Calado, 2011) have been included in the family *Tovelliaceae* Moestrup & al. (Lindberg et al., 2005). The genera *Nusuttodinium* Takano & Horiguchi and *Karenia* Hansen & Moestrup have been placed in the order *Gymnodiniales* (Takano et al., 2014);
the genus *Akashiwo* Hansen & Moestrup (Daugbjerg et al., 2000) was separated from *Gymnodinium* Stein; the genus *Margalefidinium* Gyme, Richlen & D.M. Anderson was erected for some species of *Cochlodinium* F. Schütt (Gyme et al., 2017); the genus *Prosoaulax* Calado & Moestrup (Calado, Moestrup, 2005) was added to the order Suessiales; the genera *Glochidinium* Boltovskoy (Boltovskoy, 1999), *Palatinus* Craveiro & al. (Craveiro et al., 2009), *Parvodinium* Carty (Carty, 2008), *Bysmatrum* Faust & Steidinger (Faust, Steidinger, 1998), *Lessardia* Saldarriaga & al. (Saldarriaga et al., 2003), *Apocalathium* Craveiro, Daugbjerg, Moestrup & Calado (Craveiro et al., 2016) and Huia H. Gu, K.N. Mertens & T. Liu (H. Gu et al., 2016) were added to the order *Peridiniales*; the genera *Blixaea* Gottschling and *Unruhdinium* Gottschling were added to the reestablished family *Kryptooperidiinaeae* (Gottschling et al., 2017); the family *Amphidomataceae* Tillmann and the genus *Azadinium* Elbrächter & Tillmann (Elbrächter et al., 2009) were ascribed to *incerti ordinis*. *Chimonodinium* gen. nov. was added to the order *Toracosphaerales* Tangen, the family *Toracosphaeraceae* Schiller (Craveiro et al., 2011). Recently, the new order *Torodinales* Boutrup, Moestrup & Daugbjerg, with the new family *Kapelodiniaceae* Boutrup, Moestrup & Daugbjerg and a new genus *Kapelodinium* Boutrup, Moestrup & Daugbjerg were described (Boutrup et al., 2016). The order *Amphidiales* was erected (Moestrup, Calado, 2018). AlgaeBase (Guiry, Guiry, 2018) was consulted to verify currently accepted taxonomic names (with some exceptions, e.g., *Ceratium/Tripos, Oxytoxum/Corythodinium* and some others). The summary list presented here was compiled using the BSPC database developed under the EU Sixth Framework Programme (2002–2006, project BS SCENE). BSPC was located on the server housed by the Institute of Biology of the Southern Seas, NAS of Ukraine (IBSS). Experts from all BS countries, including the authors of this article, took part in the BSPC updating, contributing both published and unpublished data on the records of microalgal species in the BS. The BS phytoplankton database first appeared online in 2008. In 2014, updating and support of the BSPC on the server of the IBSS was discontinued. Since 2018 it is available at http://phyto.bss.plankton.kiev.ua. The checklist published here* is tied to the list of BSPC references and follows their numbering as it given on the site http://phyto.bss.plankton.kiev.ua/wiki/References.

Results and Discussion

According to generalized literary and unpublished original data, 420 species (447 including i.s.t.) from 92 genera of *Dinoflagellata* are cited for the BS. These significantly exceed the annotated checklist published by Gómez and Boicenko (2004) and Terenko (2007), where 267 and 345 species names are listed respectively. They belong to 47 families, 16 orders and 4 classes (Table).

* See the electronic supplement in the online version of the article:
 https://algologia.co.ua/archive/28/4/428

432
The taxonomic structure of dinoflagellates has been substantially expanded in recent years (Table). The increase in the number of taxonomic ranks has been due to the progress in taxonomy of the group in the last decade. A number of new taxa were introduced, including new classes, orders and families; new genera were described using both light and scanning electron microscopy and molecular identification. A number of species were assigned to new taxa of different ranks. At the same time, the leading orders remained unchanged: Peridiniales (124 species/129 including i.s.t.), Gymnodiniales (96/96), Gonyaulacales (73/91), Dinophysiales (40/41) Prorocentrales (23/25) and Amphidiniales (21/22) incorporate 85% of the species found. The Peridiniales ranked first in species diversity of the BS dinoflagellates at all stages of the study. The exception is late 1990s-2013, when the Gymnodiniales contribution to the taxonomic structure increased due to the studies on the naked Gymnodiniales species identified in vivo. Recent taxonomic changes dropped their number; in 2018, the Gymnodiniales ranks second again.

Table

Taxon	Number of species (including infraspecific taxa)				
	1886-1949	1950-1969	1970-1990	Late 1990s-2013	1886-2018
Class DIOPHYCEAE Pascher 1914					
Order AMPHIDINIALES Moestrup & Calado 2018					
na¹ na na na 21(22)					
Family Amphidiniales Moestrup & Calado 2018					
13 20 11 36 40					
(13) (20) (11) (36) (41)					
Order DINOPHYSIALES Kof. 1926					
33(34)					
(33)					
Family Amphisoleniaceae Er. Lindem. 1928					
Amphisolenia F. Stein 1883					
1(1) 1(1)					
Family Dinophysiae F. Stein 1883					
Dinophysis Ehrenb. 1839					
13(13) 19(19) 11(11) 32(32) 33(34)					
(13) (19) (11) (32) (33)					
Family Oxyphysiaceae Sournia 1984					
Phalacroma F. Stein 1883					
- 1(1) - 2(2) 6(6)					
Oxyphysis Kof. 1926					
- - - 1(1) s					
Order GONYAULACALES Taylor 1980					
21 40 28 87 73					
(21) (42) (31) (107) (91)					
Family Ceratiaceae Wiley & Hickson 1909					
Ceratium Schrank 1793					
6(6) 17(19) 11(14) 34(54) 34(52)					
Monaster F. Schütt 1895					
- - - 1(1)					
Family Cladopyxidaceae F. Stein 1883					
[Amphidoma] F. Stein 1883					
- - - 1(1) t					
Cladopyxis F. Stein 1883					
- 1(1) - 1(1) 1(1)					
Micracanthodinium Deflandre 1937					
- - - 2(2) 2(2)					
Palaeophalacroma Schiller 1928					
- - - 1(1) 1(1)					

433
Family	Genus	Species
Goniomaceae	*Alexandrium* Halim 1960	1(1)
	Gonioma F. Stein 1883	1(1)
Heterodiniaceae	*Heterodinium* Kof. 1907	-
Ostreopsidaceae	*Alexandrium* Halim 1960	t
Protoceratiaceae	*Proteroceratium* Bergh 1881	-
Pyrophacaceae	*Pyrophacus* F. Stein 1883	1(1)
Gymnodinales	*Gymnodiniales* Apstein 1909	15
Amphitholaceae	*Achradina* Lochmann 1903	-
Brachydiniaceae	*Karenia* G. Hansen & Moestrup 2000	-
Ceratoperidiniaceae	*Ceratoperidinium* Margalef ex A.R. Loebli. 1980	-
Gymnodiniaceae (Bergh) Lankester 1885	*Akashiwo* G. Hansen & Moestrup 2000	-
Amphidiniaceae	*Amphidinium* Clap. & Lachm. 1859	3(3)
Cochlodiniaceae	*Cochlodinium* F. Schütt 1896	3(3)
Gymnodiniaceae (Bergh) Lankester 1885	*Gymnodinium* F. Stein 1878	15
Katodiniaceae	*Katodinium* Fott 1957	-
Gymnodiniales	*Margarodinium* F. Gyme, Richlen & D.M. Anderson 2017	-
Nisutodiniaceae	*Nisutodinium* Takano, Yamaguchi, Inouye, Moestrup & Horiguchi 2014	-
Paulsenellina	*Paulsenella* Chatton 1920	-
Pleodiniaceae	*Pleodinium* Chatton 1933	-
Spiniferodiniaceae	*Spiniferodinium* T. Horiguchi & M. Chinara 1987	-
Polykrikos	*Polykrikos* Bützlchi 1873	-
Gyrodiniaceae	*Gyrodinium* Kof. & Swezy 1921	11(11)
Tovelliaceae	*Opisthoaulax* Calado 2011	1(1)
Warnowiaceae	*Warnowiaceae* Er. Lindem. 1928	-
Revision of the dinoflagellate species

Family	Gymnodiniales familia incertae sedis
Warnowia	Er. Lindem. 1928

Order	PERIDINIALES
Haeckel 1894	

Family	Diplopsalidaceae
Matsuka 1988	

Family	Gymnodiniales
Warnowia	Er. Lindem. 1928

Family	Lebouridinium
Lebouridinium	G. Gu, Takayama, Moreira & Lopey-Garcia 2016

Family	Preperidinium
Mangin 1913	

Family	Glenodiniales
Glenodiniales	Wiley & Hickson 1909 (na)

Family	Lebouridinium
Glenodiniales	Warnowia

Family	Glenodiniaceae
Glenodiniaceae	Luebroidinium

Family	Glenodiniopsidaceae
Glendeninopsidaceae	J. Schiller 1935

Family	Glenodiniaceae
Glenodiniaceae	Glenodiniales

Family	Heterocapsaceae
Heterocapsaceae	Glenodiniaceae

Family	Heterodiniaceae
Heterodiniaceae	Glenodiniaceae

Family	Kolkwitziellaceae
Kolkwitziellaceae	Glenodiniaceae

Family	Peridiniaceae
Peridiniaceae	Peridiniaceae

Family	Peridiniopsidaceae
Peridiniopsidaceae	Glenodiniaceae

Family	Podolampaceae
Podolampaceae	Peridiniaceae

Family	Protoperidiniaceae
Protoperidiniaceae	Peridiniaceae

435
Family	Genus	Species							
Preperiadinum	Mangin 1913	-	I(1)	-	2(2)	t			
Properiadinum	Bergh 1881	23	33	22	59	(60)	59	(62)	
Thecadiniaceae	Balech 1956	-	-	-	-	1(1)			
Peridiiniellae familia incertae sedis	Bysmatrum Faust & Steidinger 1998	-	-	-	t	1(1)			
Thecadiniaceae	Balech 1956	-	-	-	-	1(1)			
Peridiiniellae familia incertae sedis	Glenodinium Ehrenb. 1836	t	t	t	t	6(6)			
Thecadiniaceae	Balech 1956	-	-	-	1(1)				
Peridiiniellae familia incertae sedis	Peridiiniellae	-	-	-	3(3)	3(3)			
Order PHYTODINIALES	T. Christensen 1962	2(2)	2(2)	1(1)	2(2)	2(2)			
Prorocentrales	Lemmerm. 1910	8(8)	14(14)	8(8)	22(23)	23(25)			
Order PHYTODINIALES	T. Christensen 1962	2(2)	3(3)	3(3)	3(3)	3(3)			
Parodiaceae	F. Stein 1883	-	-	-	1(1)				
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Pyrocystaceae	F. Stein 1883	1(1)	2(2)	2(2)	5(5)	5(5)			
Order PHYCOCYSTACEAE	Apstein 1909	-	-	-	1(1)				
Revision of the dinoflagellate species

Order TOVELLIALES Moestrup & Calado 2018	na	na	na	na	5(5)
Family Tovelliaeae Moestrup, Lindberg & Daugbjerg 2005					
Katodinium Fott 1957	-	-	t	1(1)	
Opisthoaulax Calado 2011 1(1)					
Tovella Moestrup, Lindberg & Daugbjerg 2005 1(1)					
Woloszynska Thompson 1951					
Order DINOPHYCEAE ORDO INCERTAE SEDIS Chatton ex A.R. Loebl. III					
Katodinium Fott 1957 - - - - 1(1)					
Family Amphidomataceae Sournia 1984					
Azadinium Elbrächter & Tillmann 2009 - - - 1(1)					
Family Psychodiscaceae Willey & Hickson 1909					
Katodinium F. Stein 1883 - - - - 1(1)					

Class NOCTILUCO PHYCEAE	na	na	na	na
Order NOCTILUCALES Haeckel 1894				
Spatulodinium J. Cachon & M. Cachon 1968				

Family Kofoidiaceae Taylor 1976
Kofoidinium Pavill. 1928 - - - 1(1)
Family Leptodiscaceae Taylor 1976
Petalodinium J. Cachon & M. Cachon 1996 - - - 1(1)
Scaphodinium Margalef 1963 - - - 1(1)
Family Noctiluaceae Saville-Kent 1881
Noctiluca Suriray in Lamarck 1816 1(1)
Spatulodinium J. Cachon & M. Cachon 1968 - - - 1(1)
Family Protodinisphaeraceae Kof. & Swezy 1921
Pronoctiluca Fabre-Domergue 1889 - - - 1(1)
Class OXYRRHIDOPHYCEAE Cavalier-Smith 1998 - - - 1(1)
Order OXYR RHINAELES Sournia 1993 - - - - 1(1)
Family Oxyrrhinaceae Sournia 1984
Oxyrrhis Dujardin 1841 - - - - 1(1)
Class SYNDINIO PHYCEAE A.R. Loebl. 1976 - - - - 1(1)
Order SYNDINIALES A.R. Loebl. 1976 - - - - 1(1)
Family Syndiniaceae Chatton 1920
Syndinium Chatton 1910 - - - - 1(1)

In total	98	189	122	419	420

Note: na — not accepted; the taxon was not accepted or recognized in the analyzed period of study; s — taxon (the genus or one of its species previously cited for the BS) currently regarded as a synonym; [] — a genus in square brackets means that now its taxonomic position has changed; t — taxon was transferred to another family.

The generic spectrum of the BS dinoflagellates includes 92 taxonomically accepted genera. Among them Protoperidinium (59 species), Gymnodinium (48), Ceratium (34), Dinophysis (33), Prorocentrum (22), Gyrodinium (20), Amphidinium (21), Gonyaulax (19) and Oxytoxum (14) lead in species number. They incorporate 65% of the revealed species diversity, while 52 genera are represented in the BS by one species each. From the point of view of the
reliability of their records in the BS, their composition is heterogeneous. Among them are several recent records including the newly described genus *Azadinium*, which is a producer of azaspiracid toxins causing shellfish poisoning in mussels (Elbrächter et al., 2009; Salas et al., 2011). It has been cited for Bulgarian coast (Moncheva, 2010; see references in the supplement). Some of abovementioned genera are represented by species that are widely distributed in the BS and are a common component of phytoplankton. These are *Monaster rete* (= *Achradinia pulchra, A. sulcata*), *Levanderina fissa*, *Kapelodinium vestifici* (= *Amphidinium extensum, Gyrodinium glaucum*), *Spatulodinium pseudonsoctiluca* (= *Gymnodinium pseudonsoctiluca, G. conicum, G. viride*) and others; some of them are often developed in mass: *Akasiwo sanguinea, Lessardia elongata* and *Noctiluca scintillans*.

According to analyzed data, the composition of dinoflagellate dominating species varied in various periods of study. In the period before 1950, *Ceratium furca, C. fusus, C. tripos, Prorocentrum micans, Protoperidinium divergens, Dinophysis caudata, Diplopsalis lenticula* and *Protoperidinium steinii* were the most common. Later, *Protoperidinium conicum, Pyrophacus horologium, Dinophysis rotundata, Prorocentrum micans, P. cordatum, P. compressum, Ceratium furca* and *C. tripos* formed the dominating complex of phytoplankton. In the 1970—1990s, *Ceratium furca, C. fusus, C. tripos, Dinophysis caudata, Phalacroma rotundatum* and *Diplopsalis lenticula* led in abundance. At present, dominating dinoflagellates include *Prorocentrum cordatum, P. micans, P. compressum, Scrippsiella acuminata, Heterocapsa triqueta* and *Lingulodinium polyedra*; they are likely to be more resistant to anthropogenic contamination.

According to our data, 201 taxa were first found after the 1990s. Three species — *Dinophysis mucronata* (Ivanov, 1965), *Gymnodinium dissimile* and *G. paulseinii* (Denisenko, 1965), were cited only once more than half a century ago and have been never found again. These are probably misidentifications (in the list they are marked with an asterisk). The sharp (almost threefold) increase in the number of species after 1990 is due to a number of reasons. They include development of new technologies promoting microalgae research and international cooperation in marine phytoplankton studies; the climate change causing “mediterranization” of the BS (Kuzmenko, 1966; Andrusovich et al., 1994; Bryantsev, 1994) and intensification of cross-border shipping have also contributed to the appearance of invasive species of dinoflagellates in the various areas of the sea (Alexandrov, 2004; Shiganova et al., 2012). A number of freshwater species recorded in the desalinated areas of the sea have also been added to the list.

The number of citations of a particular species may be an additional marker of its reliable identification. 116 species were mentioned only in one or two sources. All of them, except for *Prorocentrum cordatum var. aralensis*, until the 1970s, were not indicated for the BS. 229 taxa have been cited in more than six sources and 167 — in ten or more ones.
Conclusions

The present article can be considered as a summary of the studies of the BS dinoflagellates. An annotated list is far from being perfect. It may contain the names of erroneously identified species, given that most experts deal with the routine processing of phytoplankton samples without access to high-precision optics. Microalgae sample processing protocols are virtually unavailable to other users, many institutions do not store collected samples, and most of the identified species were not documented with illustrations in scientific publications. In addition, our knowledge of the epibenthic, symbiotic and parasitic dinoflagellate species remains negligible. With the ongoing discovery of new species and new groups of cryptic species based on molecular phylogenetic analyses, it is clear that species diversity is presently underestimated. Further efforts to study the species diversity of the BS should be aimed at more accurate identification of species using modern methodologies. To continue updating the BS phytoplankton database, where complete information on each species is freely available, will also contribute to the progress in studying the biodiversity of the BS.

The authors thank Snejana Moncheva (Bulgaria), Laura Boicenco (Romania), Alexander S. Mikaelyan and Olga N. Yasakova (Russia), Tsiuri Gvarishvili (Georgia) and Fatih Sahin (Turkey) for valuable discussions on the BS phytoplankton checklist. The authors are grateful to Michael D. Guiry and Wendy Guiry of the AlgaeBase project for their helpful assistance in checking the taxonomy of species included to the list. Marcia M. Gowing (University of California at Santa Cruz, California, USA), Martin J. Head (Brock University, Ontario, Canada) and Stephen S. Bates (Fisheries and Oceans Canada, New Brunswick, Canada) kindly improved the English style.

REFERENCES

Alexandrov B.G. Problem of aquatic organisms transportation by ships and some approaches for risk assessment of the new invasions. Mar. Ecol. J. 2004. 3(1): 5–17.

Andrusovich A.I., Mikhaylova E.N., Shapiro N.V. Numerical model and calculation of water circulation of the northwestern Black Sea. Morsk. Gidrofiz. Zhurn. 1994. 5: 28–42.

Baytut Ö., Gönülol A., Koray T. Temporal variations of phytoplankton in relation to eutrophication in Samsun Bay, southern Black Sea. Turkish J. Fisher. Aquat. Sci. 2010. 10: 363–372.

Bityukov E.P., Evstigneev P.V., Tokarev Y.N. Luminescent Dinoflagellata of the Black Sea impacted by anthropogenic factors. Gidrobiol. Zhurn. 1993. 29: 27–34.

Bodeanu N. Microalgal blooms in the Romanian area of the Black Sea and contemporary eutrophication conditions. In: Toxic phytoplankton blooms in the sea. T.J. Smayda, Y. Shimizu (Ed.). Amsterdam: Elsevier Sci. Publ., 1993. Pp. 203–209.

Bodeanu N. Algal blooms in Romanian Black Sea waters in the last two decades of the XXth century. Cercet. Mar. 2002. 34: 7–22.
Bodeanu N., Usurelu M. Dinoflagellate blooms in Romanian Black sea coastal waters. In: *Toxic dinoflagellate blooms*. D.J. Taylor, H.H. Seliger (Eds). Amsterdam: Elsevier Sci. Publ., 1979. Pp. 151–154.

Bodeanu N., Andrei C., Boicenco L., Popa L., Sburlea A. A new trend in the phytoplankton structure and dynamics in the Romanian marine waters. *Cercet. Mar.* 2004. 35: 77–86.

Boicenco L. Spatio-temporal dynamics of phytoplankton composition and abundance from the Romanian Black Sea coast. *Ovidius Univ. Annals Nat. Sci.*, Biol.-Ecol. Ser. 2010. 14: 163–169.

Bryantseva Yu.V. Peculiarities of seasonal phytocenosis succession in Sevastopol Bay in 2004–2006. In: *Microalgae of the Black Sea: problems of biodiversity, preservation and use for biotechnology*. Y.N. Tokarev, Z.Z. Finenko, N.V. Shadrin (Eds). Sevastopol: EKOSI-Gidrofizika, 2008. 1(2). Pp. 20–31.

Bryantseva Yu.V., Bryantsev V.A., Kovalchuk L.A., Samyshev E.Z. Long-term changes of Diatomea and Peridinea biomass in the Black Sea in relation to atmospheric transport. *Ecol. Mor.* 1996. 45: 18–25.

Calado A.J. On the identity of the freshwater dinoflagellate *Glenodinium edax*, with a discussion on the genera *Tyrannodinium* and *Katodinium*, and the description of *Opisthoaulax* gen. nov. *Phycologia*. 2011. 50(6): 641–649.

Calado A.J., Moestrup Ø. On the freshwater dinoflagellates presently included in the genus *Amphidinium*, with a description of *Prosoaulax* gen. nov. *Phycologia*. 2005. 44(1): 112–119.
Craveiro S.C., Calado A.J., Daugbjerg N., Hansen G., Moestrup Ø. Ultrastructure and LSU rDNA-based phylogeny of *Peridinium lomnickii* and description of *Chimonodinium* gen. nov. (*Dinophyceae*). *Protist*. 2011. 162: 590–615.

Daugbjerg N., Hansen G., Larsen J., Moestrup Ø. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. *Phycologia*. 2000. 39: 302–317.

Denisenko V.V. About phytoplankton of the Adriatic, Ionian, Aegean and Black seas in August 1958. *Proc. Sevastop. Biol. St*. 1964. 17: 13–20.

Derezyuk N.V. List of phytoplankton species observed in the water area near Zmiinyi Island in 2004–2007. In: *Zmiinyi Island. Ecosystem of coastal waters*. V.A. Smyntyna, V.I. Medinets, I.O. Suchkov (Eds). Odessa: Astroprint, 2008. Pp. 208–218.

Eker E. Abundance and biomass of micro and nanophytoplankton in the northwestern and southern Black Sea in 1995: MSc Thesis. Erdemli, Icel: Middle East Techn. Univ. IMS (Turkey), 1998.

Eker-Develi E., Velikova V. New record of a dinoflagellate species, *Lessardia elongata* in the Black Sea. *Mar. Biodivers. Records*. 2009. 2(104): 1–3.

Elbracht U., Tillmann U., Krock B., Uwe J., Cembella A. *Azadinium spinosum* gen. et sp. nov. (*Dinophyceae*) identified as a primary producer of azaspiracid toxins. *Europ. J. Phycol*. 2009. 44(1): 63–79.

Faust M.A., Steidinger K. *Bysmatrum* gen. nov. (*Dinophyceae*) and three new combinations for benthic scrippsiellloid species. *Phycologia*. 1998. 37(1): 47–52.

Feyzioglu A.M., Sahin F. Phytoplankton in the Black Sea. In: *Black Sea Marine Environment: The Turkish Shelf*. M. Sezgin, L. Bat, D. Ürkmez, E. Arici, B. Öztürk (Eds). *Turkish Mar. Res. Found*. 2017. 46: 148–167.

Fensome R.A., Taylor F.J.R., Norris G., Sarjeant W.A.S., Wharton D.I. et al. A classification of living and fossil dinoflagellates. Hanover: Sheridan Press, 1993. 351 p.

Fensome R.A., Bujak J., Dale B. et al. Proposal to conserve the name *Protoperidiniaceae* against *Congruentidiaceae*, *Diplopsalaceae* and *Kolkwitziellaceae* (*Dinophyceae*). *Taxon*. 1998. 47: 727–730.

Georgieva L.V. Composition and quantitative development of phytoplankton of Bosphorus region of the Black Sea. In: *Problems of marine biology*. Kiev: Nauk. Dumka Press, 1961. Pp. 24–25.

Georgieva L.V. Phytoplankton of Bosphorus region of the Black Sea: qualitative composition and quantitative development of phytoplankton. In: *Water exchange through Bosphorus and its influence on hydrology and biology of the Black Sea*. Kiev: Nauk. Dumka Press, 1969. Pp. 184–195.

Gómez F., Boicenco L. An annotated checklist of dinoflagellates in the Black Sea. *Hydrobiologia*. 2004. 517: 43–59.

Gómez F., Richlen M.L., Anderson D.M. Molecular characterization and morphology of *Cochlodinium strangulatum*, the type species of *Cochlodinium*, and *Margalefidinium* gen. nov. for *C. polykrikoides* and allied species (*Gymnodiniales, Dinophyceae*). *Harmful Algae*. 2017. 63: 32–44.

Gomoiu M.T. Les conséquences négatives de la “floraison” des eaux a *Exuvia cordata* Ostenf. du littoral de la mer Noir. *Rapp. et Procus-verbaux des Réunions Conseil Int. pour l’Explorat. de la Mer. Méditér.*. 1977. 24: 121–124.
Gottschling M., Žerdoner, Čalasan A., Kretschmann J., Gu H. Two new generic names for dinophytes harbouring a diatom as an endosymbiont, Blixaea and Unruhdinium (Kryptoperidiniaceae, Peridiniales). Phyto-taxa. 2017. 306(4): 296–300.

Guiry M.D., Guiry G.M. AlgaeBase. World-wide electronic publication. Nat. Univ. Ireland, Galway, 2018. http://www.algaebase.org

Gvarishvili T. Biodiversity of Lake Paliastomi. In: Black Sea biological diversity, Georgia. A. Komakhidze, N. Mazmanidi (Eds). New York: Unit. Nat. Publ., 1998a. Pp. 51–63.

Gvarishvili T. Species composition and biodiversity of Georgian Black Sea phytoplankton. In: Conservation of the biological diversity as a prerequisite for sustainable development in the Black Sea Region. V.M. Kotliakov, M. Uppenbrink, V. Metreveli (Eds). Dordrecht: Kluwer Acad. Publ., 1998b. Pp. 95–100.

Ilyash L.V. Interaction of three Black Sea dinoflagellate species in the mixed cultures: Synopsis Ph.D. Thesis. Moscow, 1984. 18 p.

Ilyasch L.V., Fedorov V.D. Abundance dynamics of three Black Sea dinoflagellate species in the mixed cultures. Nauch. Dokl. Vyssh. Shkoly. Biol. Nauki. 1985. 11: 67–74.

Ivanov A.I. Peculiarities of the taxonomic composition and quantitative distribution of the phytoplankton of the northwestern Black Sea. Trudy Vsesoyuz. Gidrobol. Obshch. 1960. 10: 182–196.

Ivanov A.I. Notes on phytoplankton taxonomic composition in the northwestern Black Sea. Nauch. Zap. Odes. Biol. St. 1964. 5: 51–54.

Ivanov A.I. Characteristics of the qualitative composition of Black Sea phytoplankton. In: The study of plankton of the Black Sea and the Sea of Azov. Kiev: Naukova Dumka Press, 1965. Pp. 17–35.

Ivanov A.I. Phytoplankton of the northwestern Black Sea. In: Biology of the northwestern Black Sea. Kiev: Naukova Dumka Press, 1967. Pp. 59–75.

Ivanov A.I. Plankton algae as an indicator of eutrophication and salinization of brackish waters (in the northwestern Black Sea). In: Scientific bases of the control of the quality of the surface waters based on the hydrobiological indicators (12–14 July, 1976). Trudy Sov.-angl. Seminara. Moscow: Gidrometeoizdat, 1977. Pp. 221–229.

Kiselev I.A. Thecate flagellates (Dinoflagellata) of the seas and freshwater bodies of the USSR. Moscow; Leningrad: Izd-vo AN SSSR, 1950. 280 p.

Komakhidze A., Mazmanidi N. Black Sea biological diversity, Georgia. Black Sea Environ. Ser. 8. New York: Unit. Nat. Publ., 1998. 167 p.

Konsulov A. Black Sea biological diversity, Bulgaria. Black Sea Environ. Ser. 5. York: Unit. Nat. Publ., 1998. 131 p.

Kovaleva T.M. Seasonal changes of phytoplankton in neritic zone of the Black Sea near Sevastopol. Biol. Morya. 1969. 17: 18–31.

Krakhmalnyi A.F. Annotated checklist of the Dinophyta algae from the continental basins and seas of Ukraine. Kiev: Deposited in VINITI, 1994a. 48 p.

Krakhmalnyi A.F. Dinophyta of the Black Sea (brief history of investigation and species diversity). Algologia. 1994b. 4(3): 99–108.

Krakhmalnyi A.F. Gymnodinium radiatum Kofoid et Swezy (Gymnodiniales, Dinophyta): new species for Black Sea flora. Ukr. Bot. J. 2001. 58(5): 593–595.

Krakhmalnyi A.F. Dinoflagellates of the Black Sea ecosystems. In: XXI International Conference organized by the Phycological Section of the Polish Botanical Society, Algae of
Revision of the dinoflagellate species

various ecosystems – problems of protection, ecology and taxonomy. Sosnywka Gyrna (Poland): Kaf. Bot. i Fiziol. Roslin AR, 2002. 40 p.

Krakhmalnyi A.F. Prorocentrum dentatum (Dinoflagellata) Stein – new for the Black Sea species of Dinoflagellata. Vestn. Zool. 2005. 39(6): 61–64.

Krakhmalnyi A.F. Dinophyta of Ukraine (illustrated book for identification). P.M. Tsarenko (Ed.). Kiev: Altermass, 2011. 444 p.

Krakhmalnyi A.F. Peridiniopsis cunningtonii Lemmerm. – a new for the Black Sea species of dinoflagellates (Dinoflagellata). Mar. Ecol. J. 2014. 13(3): 43–46.

Krakhmalnyi A.F., Panina Z.A. Dinophyta. Algal biodiversity of Ukraine. Algologia. 2000. 10(4): 68–83.

Krakhmalnyi A.F., Terenko G.V. Prorocentrum ponticus Krakhmalnyi & Terenko sp. nov., a new species of Dinophyta from the Black Sea. Algologia. 2002a. 12(3): 371–375.

Krakhmalnyi A.F., Terenko G.V. New form of Prorocentrum micans Ehr. (Prorocentrales, Dinophyta) from the plankton of the Black Sea. Algologia. 2002b. 12(4): 476–480.

Krakhmalnyi A.F., Panina Z.A., Krakhmalnyi M.A. Dinophyta. In: Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. P.M. Tsarenko, Wasser S.P., Neve E. (Eds). Rugell: A.R.G. Gantner Verlag K.-G., 2006. Vol. 1. Pp. 470–532.

Krakhmalnyi A.F., Bryantseva Yu.V., Velikova V.N., Sergeeva O.V., Skuratova K., Dereziuk N.V. Black Sea Dinoflagellata (history of the research and current biodiversity). Turkish J. Fisher. Aquat. Sci. 2012. 12: 539–546.

Kuzmenko L.V. Two new Dinoflagellata species new for the Black Sea. Novosti Sistemat. Nizhn. Rast. Moscow; Leningrad: AN USSR Press, 1966. Pp. 51–54.

Lindberg K., Moestrup Ø., Daugbjerg N. Studies on woloszynskiioid dinoflagellates: Woloszynskia coronata re-examined using light and electron microscopy and partial LSU rDNA sequences, with description of Tovellia gen. nov. and Jadwigia gen. nov. (Tovelliaceae fam. nov.). Phycologia. 2005. 44(4): 416–440.

Makarova I.V. Development and relationship of phytoplankton from the Black Sea, the Sea of Azov and the Caspian Sea. Bot. J. 1969. 54(3): 389–398.

Mikaelyan A.S. Long-term variability of phytoplankton communities in open Black Sea in relation to environmental changes. In: Sensitivity to change: Black Sea, Baltic Sea and North Sea. E. Ozsoy, A. Mikaelyan (Eds). Ser. 2. London, UK: Kluwer Acad. Publ., 1997. Pp. 105–116.

Mikaelyan A.S. Long-term changes in taxonomic structure of phytoplankton communities in the northern part of the Black Sea. In: 2nd Biannual and Black Sea Scene EC Project Joint Conference on Climate Change in the Black Sea – Hypothesis, Observations, Trends, Scenarios and Mitigation Strategy for the Ecosystem (6–9 Oct., 2008), Sofia, Bulgaria, 2008. P. 30.

Moestrup III., Akselmann R., Fraga S., Hoppenrath M., Iwataki M., Komförek J., Larsen J., Lundholm N., Zingone A. IOC-UNESCO taxonomic reference list of harmful microalgae. (2018-04-04).

Moncheva S., Kamburska L. Plankton stowaways in the Black Sea – impacts on biodiversity and ecosystem health. In: Alien marine organisms introduced by ships in the Mediterranean and Black seas. Workshop Monographs. F. Briand (Ed.). Monaco, CIESM Publ., 2002. Pp. 47–51.
Moncheva S., Krastev A. Some aspect of phytoplankton long-term alterations off Bulgarian Black Sea shelf. In: Sensitivity to change: Black Sea, Baltic Sea and North Sea. E. Oszoy, A. Mikhaelian (Eds). London, UK: Kluwer Acad. Publ., 1997. Pp. 79–94.

Moncheva S., Parr B. Manual for phytoplankton sampling and analysis in the Black Sea. 2010. 68 p. http://documents.blacksea—commission.org

Moncheva S., Doncheva V., Kamburska L. On the long-term response of harmful algal blooms to the evolution of eutrophication off the Bulgarian Black Sea coast: Are the recent changes a sign of recovery of the ecosystem — the uncertainties. In: Proceedings of the Ninth International Conference on Harmful Algal Blooms (Hobart, Australia, 7–11 Febr., 2000). Paris: UNESCO, 2001. Pp. 177–182.

Morozova-Vodyanitskaya N.V. Phytoplankton of the Black Sea. Pt 1. Trudy Sevastop. Biol. St. 1948. 6: 39–72.

Morozova-Vodyanitskaya N.V. Phytoplankton of the Black Sea. Pt 2. Trudy Sevastop. Biol. St. 1954. 8: 11–99.

Moestrup Ø., Calado A.J. Freshwater Flora of Central Europe. Vol. 6. Dinophyceae. In: Süßwasserflora von Mitteleuropa. Berlin, Heidelberg: Springer Spektrum, 2018. xii+560 p.

Nesterova D.A. Development of Exuviaella cordata Ostenfeld and «red tide» phenomenon in the northwestern part of the Black Sea. Biol. Mor. 1979. 5: 24–29.

Nesterova D.A. Mass development of Exuviaella cordata Ostf. and Cerataulina bergonii Perag. in the western Black Sea. Gidrobiol. Zhurn. 1985. 21(4): 44–65.

Nesterova D.A. Peculiarities of phytoplankton succession in the northwestern Black Sea. Gidrobiol. Zhurn. 1987. 23(1): 16–21.

Pereyaslavtseva S.M. Black Sea Protozoa. Zap. Novoross. Obshch. Estestvoispyt. 1886. 10(2): 79—114.

Petrova V.J. The phytoplankton along the Bulgarian coast of the Black Sea during the 1954—1957 period. Bull. de l’Inst. Central de Recher. Sci. de Piscicult. et de Pêcher. (Bulgaria). 1963. 3: 31–60.

Petrova V.J. Black Sea phytoplankton in Bulgarian coastal waters in 1958–1960. Bull. de l’Inst. Central de Recher. Sci. de Piscicult. et de Pêcher. (Bulgaria). 1964. 5: 5–32.
Revision of the dinoflagellate species

Petrova V.J. Characteristics of phytoplankton development in the Black Sea Bulgarian coastal waters in 1961–1963. Proc. Res. Inst. Fisher. Oceanography (Bulgaria). 1965. 6: 63–74.

Petrova-Karadjova V.J. Changes in planktonic flora in Bulgarian Black Sea waters under the influence of eutrophication. Proc. Res. Inst. Fisher. Oceanography (Bulgaria). 1984. 21: 105–112.

Petrova-Karadjova V.J. Monitoring of the blooms along the Bulgarian Black Sea coast. Rapports et Procès-verbaux des Réunions. Commis. Int. l’Explorat. Sci. de la Mer Médit. 1990. 31(1): 209.

Pitsyk G.K. About quantitative development and distribution of phytoplankton in the Black Sea. Trudy AzCherNIRO. 1954. 28: 224–238.

Pitsyk G.K. Taxonomic composition of phytoplankton. In: Bases for biological production of the Black Sea. Kiev: Naukova Dumka Press, 1979. Pp. 63–69.

Polikarpov I.G., Saburova M.A., Manzhos T.V., Pavlovskaya T.V., Gavriloa N.A. Microplankton biological diversity in the Black Sea coastal zone near Sevastopol (2001–2003). In: Modern condition of biological diversity in near-shore zone of Crimea (the Black Sea sector). Sevastopol: EKOIS-Gidrofizika, 2003. Pp. 16–42.

Reinhard L.V. Phytoplankton of the Black Sea, Kerch Strait, Bosporus Strait and the Sea of Marmara. Trudy Obschh. Ispyt. Prirody pri Khark. Univ. 1909. 18: 295–323.

Roukhiyajnen M.I. Daily dynamics and production of small flagellates in Sevastopol Bay. In: Self-purification, biological productivity and protection of water bodies and water courses in Ukraine. Kiev: Naukova Dumka Press, 1975. Pp. 51–52.

Salas R., Tillmann U., Uwe J., Kilcoyne J., Burson A., Cantwell C., Hess F., Jauffrais T., Silke J. The role of *Azadinium spinosum* (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels. Harmful Algae. 2011. 10 (6): 774–783.

Saldarriaga J.F., Leander B.S., Taylor F.J.R., Keeling P.J. *Lessardia elongata* gen. et sp. nov. (*Dinophagellata*, *Peridinales*, *Podolampaceae* and the taxonomic position of the genus *Roscoffia*). J. Phycol. 2003. 39: 368–378.

Senicheva M.I. Long-term dynamics of *Exuviella cordata* Ost. in Sevastopol Bay. Condition, perspectives of improvement and usage of marine ecological system of Crimean coastal zone. Sevastopol, 1983: 26–28.

Senicheva M.I. New and rare for the Black Sea diatom and dinophyceae species. Ekol. Mor. 2002. 62: 25–29.

Senicheva M.I. Phytoplankton seasonal dynamics near Karadag. In: Collection of scientific works, dedicated to 90 years of the Karadag Scientific Station and 25 years of the Karadag Nature Reserve. Simferopol, 2004. Pp. 58–65.

Senicheva M.I. Species diversity, seasonal and annual variability of planktonic microalgae near Crimea coast. In: The Black Sea microalgae: problems of biodiversity conservation and biotechnological applications. Sevastopol, EKOIS-Gidrofizika, 2008. Pp. 5–18.

Senichkina L.G. Phytoplankton of the northwestern Black Sea in winter. In: Seasonal dynamics of Black Sea phytoplankton. Moscow: Nauka, 1983. Pp. 55–65.

Senichkina L.G., Altukhov D.A., Kuzmenko L.V., Georgieva L.V., Kovaleva T.M., Senicheva M.I. Species diversity of the Black Sea phytoplankton in the southeastern coast of Crimea. In: Karadag: History, biology, archaeology. Collection of papers dedicated to the 85th anniversary of the Karadag Scientific Station. Simferopol: Sonat, 2001. Pp. 119–125.

445
Senichkina L.G. et al. Dinophyta algae. In: Karadag. Hydrobiological studies. Collection of scientific works dedicated to 90 years of the Karadag Scientific Station and 25 years of the Karadag Nature Reserve. Simferopol, 2004. Pp. 235–244.

Shiganova T.A., Musaeva E.I., Lukasheva T.A., Stupnikova A.N., Zas'ko D.N., Anokhina L.L., Sivkovich A.E., Gagarin V.I., Bulgakova Y.V. Increase in findings of Mediterranean nonnative species in the Black Sea. Russ. J. Biol. Invas. 2012. 3(4): 255–280.

Skolka H.V. Cateva date asupra compozitiei calitative si cantitative fitoplanctonului din dreptul litoralului romanesc al Marri Negre. Communicarile Acad. R.P.R., 1960. 10(12): 117–121.

Skolka H.V. Phytoplankton dynamics in the Romanian Black Sea coastal zone in 1961. Rapports et Procus-Verbaux des Réunions Conseil Int. pour l’Exploration de la Mer Méditer. (Monaco). 1963. 17: 467–477.

Sorokin Y.I. The Black Sea. Moscow: Nauka, 1982. 217 p.

Sukhanova I.N., Georgieva L.V., Mikaelyan A.S., Sergeeva O.M. Phytoplankton of the Black Sea open waters in late spring. In: Modern state of the Black Sea ecosystem. Moscow, 1987. Pp. 86–97.

Sukhanova I.N., Cheban A.E. Heterotrophic phytoplankton of the Black Sea in the early spring development of the phytocenosis. Oceanology. 1990. 30: 724–792.

Sukhanova I.N., Mikaelyan A.S., Georgieva L.V. Spatial distribution and temporal variations of the Black Sea phytoplankton during the period of spring blooming. In: Phytoplankton studies in the system of monitoring of the Baltic Sea and other seas of Russia. Moscow: Gidrometeoizdat, 1991. Pp. 135–151.

Takano Y., Yamaguchi H., Inouye I., Moestrup M., Horiguchi T. Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates. Protist. 2014. 165: 759–778.

Terenko G.V. Contemporary state of the northwestern Black Sea coastal phytoplankton and the role of dinophyte algae in it. Abstr. Ph.D. (Biol.) Thesis. Sevastopol, 2004. Pp. 192–197.

Terenko G.V., Kovalyshyna S., Grandova M. Long-term structural changes in the phytoplankton community of the northwestern Black Sea. In: The 3rd Biannual Black Sea Scientific Conference and the UP-GR ADE BS-SCENE Project Joint Conference. Abstracts (Odessa, 1–4 Nov., 2011). Odessa, 2011. P. 192.

Terenko L.M. Exotic species in the Aegean, Marmara, Black, Azov and Caspian seas. In: Turkish Marine Research Foundation. Y. Zaitsev, B. Ozturk (Eds). Istanbul, 2001. Pp. 82–83.

Terenko L.M. Gymnodinium uberrimum (Allaman) Kof. et. Sw. (Dinophyta) from the littoral of the Black Sea (Ukraine). Algologia. 2002. 12(1): 142–146.

Terenko L.M. New dinoflagellate (Dinoflagellata) species from Odessa Bay of the Black Sea. Oceanol. Hydrobiol. Stud. 2005a. 34 (Suppl. 3): 205–216.

Terenko L.M. New Dinophyta species from the Black Sea. Algologia. 2005b. 15(2): 236–244.

Terenko L.M. Species composition and distribution of Dinophyta. Algologia. 2007. 17(1): 53–70.

Terenko L.M. Benthic dinoflagellates of Odessa Bay of the Black Sea. Nauk. Zap. Ternop. Nats. Ped. Univ. 2010: 277–279.
Terenko L.M. The genus Dinophysis Ehrenb. in Ukrainian coastal Black Sea waters: species composition, distribution, dynamics. *Algologia*. 2011. 21(3): 346–356.

Terenko L.M., Terenko G.V. Littoral phytoplankton and periphyton of the northwestern Black Sea (Ukraine). In: *II Russian scientific-practical conference «The Algae: problems of taxonomy, ecology and use in the monitoring»* (5–9 Oct., 2009). Syktyvkar, 2009. Pp. 145–147.

Tillmann U., Elbrachtner M., Krock B., John U., Cembella A. *Azadinium spinosum* gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. *Eur. J. Phycol.* 2009. 44(1): 63–79.

Türkoğlu M., Koray T. Phytoplankton species succession and nutrients in the southern Black Sea (Bay Sinop). *Turkish J. Bot.* 2002. 26: 235–252.

Valkanov A. Catalogue of our Black Sea fauna. *Proc. Mar. Biol. St. in Varna* (Bulgaria). 1957. 19: 1–62.

Velikova V.N. Long-term study of red tides in the western part of the Black Sea and their ecological modeling. In: *Proceedings of the 8th International Conference on Harmful Algae*. B. Reguera, J. Blanco, M.L. Fernández, T. Wyatt (Eds). Paris, 1998. Pp. 261–265.

Velikova V., Larsen J. The *Prorocentrum cordatum/Prorocentrum minimum* taxonomic problem. *Grana*. 1999. 38: 108–112.

Velikova V., Moncheva S., Petrova D. Phytoplankton dynamics and red tides (1987–1997) in the Bulgarian Black Sea. *Water Sci. and Technol*. 1999. 39(8): 27–36.

Vershinin A.O., Morton S.L. *Protoperidinium ponticum* sp. nov. (Dinophyceae) from the northeastern Black Sea coast of Russia. *Bot. Mar.* 2005. 48: 244–247.

Vershinin A.O., Moruchkov A.A. Toxic microalgae in the Black Sea phytoplankton. *Ekol. Morya*. 2003. 64: 45–50.

Vershinin A.O., Orlova T.Y. Toxic and harmful algae in coastal waters of the Russian federation. *Oceanology*. 2008. 48(4): 568–582.

Vershinin A.O., Velikova V. New records and commonly misidentified dinoflagellates from the Black Sea. In: *Modern problems of algology: Abstr. of the Int. Sci. Conf. and the VII Workshop on Marine Biology* (9–13 June 2008, Rostov-on-Don). Rostov-on-Don, 2008. 448 p.

Vershinin A.O., Moruchkov A.A., Leighfield T., Sukhanova I.N., Pankov S.L., Morton S.L., Ramsdell J.S. Potentially toxic algae in the coastal phytoplankton of the northeastern Black Sea in 2001–2002. *Oceanology*. 2005. 5(2): 224–232.

Vinogradova L.A., Velikova V.N. Long-term dynamics and modeling the ecosystem of coastal waters of the northwestern Black Sea. St. Petersburg, 1992. 108 p.

Yasakova O.N. The new species of phytoplankton in the northeastern part of the Black Sea. *Rus. J. Biol. Invas.* 2010. 4: 90–97.

Zaitsev Y.P. *The most blue in the world*. New York: Unit. Nat. Publ., 1998. 142 p.

Zaitsev Y.P., Alexandrov B.G. *Black Sea biological diversity, Ukraine. Black Sea Environ*. Ser. 7. New York: Unit. Nat. Publ., 1998. 351 p.
Крахмальный А.Ф., 1 Околодов Ю.Б., 2 Брянцева Ю.В.3, Сергеева А.В.4, Великова В.Н.5, Дерезюк Н.В.6, Теренко Г.В.7, Костенко А.Г.8, Крахмальный М.А.9

1 Институт эволюционной экологии НАН Украины
ул. Акад. Лебедева, 37, Киев 03143, Украина
2 Институту Ciencias Marinas y Pesquerias, Universidad Veracruzana, Laboratorio de Botánica Marina y Plantología, Calle Mar Mediterraneo 314, Fracc. Costa Verde, Boca del Rio, Veracruz, C.P. 94294, Mexico
3 Институт ботаники им. Н.Г. Холодного НАН Украины
Терещенковская, 2, Киев 01004, Украина
4 Институт морских биологических исследований им. А.О. Ковалевского РАН,
Ленинский просп., 14, Москва, Россия
5 SurDEP, Centurion, Pretoria, Wierda Glen Estate, South Africa
6 Региональный центр мониторинга Национального уч-та им. И.И. Мечникова
пер. Майковского, 7, Одесса 65082, Украина
7 Украинский центр экологии моря, 89, Французский бульвар, Одесса 65000, Украина
8 Институт экологии Университета Хайфы

РЕВИЗИЯ ВИДОВОГО СОСТАВА ДИНОФЛАГЕЛЛЯТ ЧЕРНОГО МОРА

Критически обобщены данные о разнообразии динофлагеллят Черного моря (ЧМ) авторов всех причерноморских стран (России, Грузии, Турции, Болгарии, Румынии и Украины) за период с 1886 по 2018 гг. Проверенный список динофлагеллят включает 420 видов (447, включая внутривидовые таксоны — ввт) из 92-х родов, которые относятся к 47 семействам, 16 порядкам и 4 классам. Это значительно превышает количество таксонов динофлагеллят, ранее указанных для ЧМ, что обусловлено повышенным интересом к этой группе водорослей в последние десятилетия, а также благодаря международной кооперации исследований. Изменение климата и интенсификация международного судоходства способствовали проникновению в ЧМ инвазивных видов. Список также дополнен пресноводными видами, зарегистрированными в опресненных районах моря. Имеющиеся данные о таксонах существенно расширили наши представления о разнообразии динофлагеллят ЧМ, однако состав ведущих порядков не изменился: Peridiniales (124 ввт), Gymnodiniales (96/96), Gonyaulacales (73/91), Dinophysiales (40/41), Prorocentrales (23/25) и Amphidiniales (21/22) составляют 85% найденных видов. По количеству таксонов самыми богатыми оказались роды: Protoperidinium (59/62), Gymnodinium (48/48), Ceratium (34/51), Dinophysis (33/34), Prorocentrum (22/24), Gyrodinium (20/20), Amphidinium (21/22), Gonyaulax (19/19) и Ostreopsis (14/14). Единственным видом были представлены 52 рода, 201 таксон видового и внутривидового ранга был впервые приведен после 1990 г. Чек-лист причерноморских динофлагеллят приведен с приметами в настоящее время таксона-менскими названиями и их синонимами, указанными для Черного моря. Ссылки содержат 116 литературных источников и неопубликованных оригинальных данных. Дальнейшее изучение видового разнообразия Черного моря должно быть направлено на более точную идентификацию видов согласно современной методологии. Продолжение формирования базы данных по фитопланктону ЧМ с доступной полной информацией о каждом виде, также будет способствовать прогрессу в изучении биоразнообразия Черного моря.

Ключевые слова: Dinoflagellata, Черное море, микроводоросли, фитопланктон, видовой состав

ISSN 0868-854 (Print)
ISSN 2413-5984 (Online). Algologia. 2018, 28(4): 428–448
https://doi.org/10.15407/alg28.04.428

Krakhmalnyi A.F. et al.

448
Supplement

A checklist of dinoflagellates of the Black Sea (1886–2018)

The species are arranged alphabetically. Synonyms (which are found in references used to create checklist) are given below the corresponding valid name after the “=” sign. The numbers following a species name in the checklist refer to the list of references. References where the valid name was found are given in bold. References to the synonyms are given in parentheses (semicolon delimited if several synonyms are used). References 1-124 were numbered according in the database on the website http://phyto.bss.plankton.kiev.ua/wiki, 125-144 were added by the authors of the article and not included in the database.

Taxa	References
1 Akashiwo sanguinea (K. Hirasaka) G. Hansen & Moestrup = Gymnodinium sanguineum K. Hirasaka; Gymnodinium splendens M. Lebour	9, 10, 11, 19, 20, 27, 57, 68, 81, 82, 83, 99, 126, 129, 130, 131, 136, 138, 142, 144 (2, 3, 12, 14, 25, 27, 33, 36, 42, 100, 108, 125, 132; 1, 4, 6, 7, 8, 21, 23, 24, 34, 49, 74, 85, 86, 89, 92, 94, 107)
2 Alexandrium affine (Inoue & Fukuyo) Balech	11, 131, 135
3 Alexandrium catenella (Whedon & Kof.) Balech	131, 135
4 Alexandrium minutum Halim	11, 19, 77, 99, 111, 130, 131
5 Alexandrium monilatum (J.F. Howell) Balech = Gessnerium mochimaense Halim ex Halim	9, 11, 82, 107, 142 (6)
6 Alexandrium ostenfeldii (Paulsen) Balech & Tangen = Gonioblastis ostenfeldii Paulsen	9, 11, 12, 19, 20, 27, 36, 79, 126, 129, 132, 136, 138, 142 (1, 4, 14, 15, 18)
7 Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex K. Yuki & Fukuyo	27, 47, 131, 132, 135, 142
8 Alexandrium tamarense (M. Lebour) Balech	2, 11, 12, 27, 33, 125, 127, 131, 132, 135, 142
9 Amphidinium aculeatum Schröd.	1, 18, 129
10 Amphidinium acutissimum J. Schiller	2, 8, 9, 10, 14, 24, 27, 67, 126, 129, 132, 140, 142
11 Amphidinium conradii J. Schiller	9, 27, 38, 47, 131, 132, 142
12 Amphidinium crassum Lohmann = Amphidinium phaeocystica M. Lebour	1, 2, 6, 8, 11, 12, 14, 20, 21, 23, 27, 93, 126, 132, 142 (1, 2, 8, 23)
13 Amphidinium cucurbita Kof. & Swezy	1, 9, 14, 23, 126, 142
14 Amphidinium curvatum J. Schiller	1, 2, 9, 14, 23, 126, 142
15 Amphidinium flagellans J. Schiller	1, 9, 14, 23, 126, 142
16 Amphidinium fusiforme G.W. Martin	27, 132, 142
17 Amphidinium globosum Schröd.	1, 9, 11, 14, 23, 126, 136, 142
18 Amphidinium inflatum Kof.	11, 27, 47, 132, 142
19 Amphidinium klebsii Kof. & Swezy	10, 14, 126
20 Amphidinium klebsii f. ponticum Roukh.	69, 126
21 Amphidinium lanceolatum Schröd.	5, 9, 14, 27, 38, 47, 126, 132, 140, 142
22 Amphidinium longum Lohmann	1, 2, 6, 8, 9, 10, 11, 12, 14, 21, 23, 24, 27, 109, 126, 129, 132, 136, 142
23 Amphidinium mananninii Herdman	38, 131
24 Amphidinium operculatum Clap. & J. Lachm.	1, 2, 6, 8, 9, 10, 11, 13, 14, 18, 19, 24, 27, 36, 126, 129, 132, 142
25 Amphidinium ovum Herdman	1, 3, 5, 9, 11, 14, 15, 18, 19, 23, 126, 129, 142
26 Amphidinium rhynchochalum Anissimowa	6, 14, 126, 142
27 Amphidinium sphenoides A. Wulff	2, 10, 11, 12, 142

continued on the next page
Taxa	References
28 Amphidinium stigmatum	J. Schiller
29 Amphidinium turbo	Kof. & Swezy
30 Amphidinium wigrense	Wolosz.
31 Amphidoma languida	Tillmann, Salas & Elbrächter
32 Amphisolenia bidentata	Schröd.
33 Amylax triacantha	= Gonyaulax triacantha Jörg.
34 Apocalathium aciculiferum	(Lemmerm.) Craveiro, Daugbjerg, Moestrup & Calado
35 Archaeperidinium minutum	(Kof.) Jörg.
36 Azadinium spinosum	Elbrächter & Tillmann
37 Blixaea quinquecornis	(T.H. Abé) Gottschling
38 Bysmatrum subsalsum	(Ostenf.) M.A. Faust & Steidinger
39 Centrodinium intermedium	Pavill.
40 Ceratium arietinum	Cleve
41 Ceratium belone	Cleve
42 Ceratium biceps	Clap. & J. Lachm.
43 Ceratium candelabrum	(Ehrenb.) F. Stein
44 Ceratium carriense	Gourret
45 Ceratium carriense var. volans	(Cleve) Jörg.
46 Ceratium compressum	Gran
47 Ceratium contrarium	Pavill.
48 Ceratium dalmaticum	Schröder
49 Ceratium declinatum	(Karsten) Jörg.
50 Ceratium declinatum f. majus	Jörg.
51 Ceratium declinatum f. normale	Jörg.
52 Ceratium dens	Ostenf. & Schmidt
53 Ceratium extensum	(Gourret) Cleve
54 Ceratium falcatus	(Kof.) Jörg.
Taxa	References
------	------------
55	Ceratium furca (Ehrenb.) Clap. & J. Lachm. 130, 137, 139 (as *Tripos furca*); 1-4, 6-14, 18-22, 25-27, 33-35, 38, 49, 51, 54-59, 63, 67, 68, 72-75, 78, 84-87, 89, 92, 94, 99, 103, 105, 108-110, 116, 117, 119, 123, 125, 127, 129, 132, 136, 142, 144 (126)
	= Neoceratium furca (Ehrenb.) Gómez, Moreira & López-García
56	Ceratium furca var. berghii Jörg. 1, 6, 11, 14, 27, 72, 73, 132, 142 (115, 126)
	= Neoceratium furca var. berghii (Jörg.) Krachm.
57	Ceratium furca var. eugrammum (Ehrenb.) J. Schiller 7, 10, 11, 14, 15, 19, 24, 25, 27, 38, 47, 99, 117, 129, 131, 132, 136, 140, 142 (115, 126)
	= Neoceratium furca var. eugrammum (Ehrenb.) Krachm.
58	Ceratium fusus (Ehrenb.) Dujardin 130 (as *Tripos fusus*); 1-4, 6-14, 18, 20-22, 26, 27, 33-36, 49, 51, 54, 55-59, 63, 67, 68, 72-75, 78, 85-87, 89, 92, 94, 99, 103, 105, 108-110, 116-119, 123, 125, 127, 129, 132, 136, 139, 142, 144 (126)
	= Neoceratium fusus (Ehrenb.) Gómez, Moreira & López-García
59	Ceratium fusus var. schuettii Lemmerm. 132, 142
60	Ceratium fusus var. seta (Ehrenb.) Sournia 7, 11, 14, 25, 27, 38, 84, 131, 132, 142
61	Ceratium hexacanthum Gourret 2, 7, 9, 14, 142 (126)
	= Neoceratium hexacanthum (Gourret) Gómez, Moreira & López-Garcia
62	Ceratium hexacanthum var. aestuarium (Schröd.) J. Schiller 38, 131
63	Ceratium hexacanthum var. contortum (Lemmerm.) Jörg. 38, 131
64	Ceratium hircus Schröd. 10, 142
65	Ceratium hirundinella (O. Müll.) Dujardin 1, 6, 14, 18, 19, 56, 99, 108, 126, 136, 142, 144
66	Ceratium horridum Gran 7, 9, 25, 125, 142 (142; 142)
	= Ceratium tenue Ostenf. & Schmidt; Ceratium tenue var. buceros (Zacharias) Balech
67	Ceratium horridum f. denticulatum Jörg. 25
68	Ceratium horridum var. buceros (Zacharias) Sournia 7 (9)
69	Ceratium incisum (Karsten) Jörg. 9, 25, 142
70	Ceratium inflatum (Kof.) Jörg. 1, 7, 9, 10, 14, 23, 25, 38, 51, 68, 74, 99, 142 (126)
	= Neoceratium inflatum (Kof.) Gómez, Moreira & López-Garcia
71	Ceratium kofoidii Jörg. 9, 25, 142
72	Ceratium lineatum (Ehrenb.) Cleve 1, 2, 9-11, 14, 19, 25, 38, 125, 129, 136, 142 (126)
	= Neoceratium lineatum (Ehrenb.) Gómez, Moreira & López-Garcia
73	Ceratium longipes (Bailey) Gran 2, 7, 9, 11, 14, 142 (126)
	= Neoceratium longipes (Bailey) Gómez, Moreira & López-Garcia
74	Ceratium longirostrum Gourret 7, 9, 14, 25, 27, 47, 132, 140, 142 (126)
	= Neoceratium longirostrum (Gourret) Gómez, Moreira & López-Garcia
75	Ceratium macroceros (Ehrenb.) Vanhöffen 1, 7, 9, 10, 14, 51, 74, 142 (126, 131)
	= Neoceratium macroceros (Ehrenb.) Gómez, Moreira & López-Garcia
76	Ceratium massiliense (Gourret) O. Jörg. 9, 38, 142 (131)
	= Neoceratium massiliense (Gourret) Gómez, Moreira & López-Garcia

continued on the next page
Taxa	References
77 Ceratium massiliense f. armatum	(25, 142; 115, 126)
(Karsten) J. Schiller	
= Ceratium massiliense var. armatum	
(G. Karst.) Jörg.; Neoceratium massiliense	
var. armatum (G. Karst.) Krachm.	
78 Ceratium massiliense f. protuberans	14
(G. Karst.) Jörg.	
= Ceratium massiliense var. protuberans	
(G. Karst.) Jörg.	
79 Ceratium minutum	1, 6, 9, 10, 14, 15, 23, 72, 129, 142 (126)
Jörg.	
= Neoceratium minutum (Jörg.) Gómez,	
Moreira & López-García	
80 Ceratium pavillardii	142
Jörg.	
81 Ceratium pentagonum	1, 2, 7, 9, 10, 14, 23, 24, 38, 67, 108, 129, 136, 142 (126)
Gourret	
= Neoceratium pentagonum (Gourret)	
Gómez, Moreira & López-García	
82 Ceratium protuberans	1, 23
(G. Karst.) Paulsen	
83 Ceratium pulchellum	2, 7, 9, 11, 27, 142 (7, 25)
Schröd.	
= Ceratium tripos var. pulchellum (Schröd.)	Lopez ex Sournia
84 Ceratium teres	9, 14, 25, 34, 38, 142 (126, 131)
Kof.	
= Neoceratium teres (Kof.) Gómez, Moreira	
& López-Garcia	
85 Ceratium trichoceros	38 (131)
(Ehrenb.) Kof.	
= Neoceratium trichoceros (Ehrenb.)	
Gómez, Moreira & López-Garcia	
86 Ceratium tripos (O. Müll.) Nitzsch	130 (as Tripus muelleri); 1-14, 18-22, 26, 27, 33-36, 38, 47, 49, 51, 54-59, 63, 67, 72-75, 78, 84-87, 89, 92, 94, 103-105, 108, 109, 116, 117, 123, 125, 127, 129, 132, 142, 144 (126, 136)
= Neoceratium tripus (O. Müll.) Gómez,	
Moreira & López-Garcia	
87 Ceratium tripos f. ponticum	132, 142 (19, 27; 115)
Jörg.	
= Ceratium tripos var. ponticum Jörg.;	
Neoceratium tripus f. ponticum (Jörg.)	
Krachm.	
88 Ceratium tripos f. subsalsum	14, 15 (115, 126)
Ostenf.	
= Neoceratium tripos f. subsalsum (Ostenf.)	Krachm.
89 Ceratium tripos var. atlanticum	25, 38, 131 (115)
Ostenf.	
= Neoceratium tripos var. atlanticum	
(Ostenf.) Krachm.	
90 Ceratium tripos var. neglectum	142
Ostenf.	
91 Ceratium volans	9
Cleve	
92 Chimonodinium lomnickii	144 (19)
(Wołosz.) Craveiro, Calado, Daughbjerg, G.	
Hansen & Moestrup	
= Peridinium lomnickii Wołosz.	
93 Cladopycis brachiolata	1, 9, 10, 14, 126
F. Stein	
94 Cochlodinium adriaticum	9, 10, 11, 14, 35, 100, 126, 129 (1, 8, 23, 27, 38, 68, 78, 132, 142)
(J. Schiller) J. Schiller	
= Gyrodinium adriaticum J. Schiller	
95 Cochlodinium archimedes	1, 10, 11, 14, 15, 18, 21, 24, 126, 129, 142
(C.H.G. Pouchet) Lemmerm.	
96 Cochlodinium brandii	2, 3, 9, 10, 14, 15, 19, 126, 129
A. Wulff	
97 Cochlodinium helicoideas	9, 14, 27, 47, 126, 132, 142 (12, 23, 27, 50, 132)
M. Lebour	
= Cochlodinium helix Kof. & Swezy	
98 Cochlodinium lebouriae	1, 9, 14, 23, 126, 142
Kof. & Swezy	

continued on the next page
Taxa	References
99 Cochlodinium pirum (F. Schütt) Lemmerm.	1, 3, 9, 14, 15, 27, 126, 129, 132, 142 (18, 101)
= Gymnodinium pirum F. Schütt	
100 Cochlodinium pupa M. Lebour	11, 27, 85, 132, 142
101 Cochlodinium schuetii Kof. & Swezy	142
102 Cystodinium bataviense G.A. Klebs	1, 10, 14, 23, 27, 126, 129, 132, 142
103 Dinophysis acuminata Clap. & J. Lachm.	1, 2, 4, 6-11, 14, 15, 18, 19, 21, 25, 27, 33, 34, 36, 38, 58, 63, 67, 72, 73, 75, 77, 85, 89, 92, 94, 99, 109, 116, 125, 126, 129, 130, 132, 136, 141, 142, 144 (1, 2, 6, 8, 14, 20, 21, 23, 27, 72, 73, 77, 89, 92, 100, 109, 126, 132, 141, 142; 1, 2, 8, 14, 21, 23, 77, 126, 141, 142; 1, 12, 14, 23, 77, 126, 129, 141, 142; 13, 29, 21)
= Dinophysis baltica (Paulsen) Kof. & Skogsb.; Dinophysis baltica (Paulsen) Wołosz.; Dinophysis levanderi Wołosz.; Dinophysis paulsenii Wołosz.; Dinophysis ventricosa Clap. & J. Lachm.; Dinophysis cassubica Wołosz.	
104 Dinophysis acuta Ehrenb.	1, 2, 3, 6-12, 14, 15, 18, 20, 21, 25-27, 33, 34, 36, 54-56, 58, 67, 72, 73, 77, 85, 89, 92, 100, 105, 108, 109, 125, 126, 129, 130, 132, 141, 142 (142)
= Dinophysis dens Pavill.	
105 Dinophysis amandula Sournia	2, 14, 27, 126, 132, 142
106 Dinophysis apiculata Meunier	1, 9, 10, 14, 23, 77, 126, 141, 142
107 Dinophysis arctica Mereschk.	1, 9, 13, 14, 15, 18, 27, 67, 77, 126, 129, 132, 141, 142
108 Dinophysis caudata W.S. Kent	1-4, 6-12, 14, 15, 18-21, 25, 26, 27, 33, 34, 36, 38, 45, 49, 54, 58, 63, 67, 72, 73, 75, 77, 78, 85, 89, 92, 94, 99, 105, 108, 109, 117, 123, 125, 126, 127, 129, 130, 132, 136, 141, 142, 144 (25; 7, 22, 55, 56, 87, 101, 105)
= Dinophysis diegensis Kof.; Dinophysis homuncula F. Stein;	
109 Dinophysis caudata f. acutiformis Kof. & Skogsb.	14, 15
110 Dinophysis dentata J. Schiller	7, 9, 67, 77, 142
111 Dinophysis fortii Pavill.	1, 2, 7-10, 12, 14, 15, 18, 21, 24-27, 33, 34, 36, 38, 45, 49, 57, 58, 67, 74, 77, 78, 86, 89, 92, 126, 127, 129, 130, 132, 136, 141, 142, 144
112 Dinophysis hastata F. Stein	1, 2, 4, 6, 7, 9, 10, 12, 14, 15, 18, 20, 25, 26, 33, 54, 58, 67, 72-74, 77, 85, 94, 105, 109, 125, 126, 129, 130, 136, 141, 142, 144
113 Dinophysis infundibulum J. Schiller	25, 142
114 Dinophysis irregularis (M. Lebour) Balech	(2, 21)
= Phalacroma irregularare M. Lebour	
115 Dinophysis islandica Paulsen	27, 132, 141, 142
116 Dinophysis laevis Clap. & J. Lachm.	142
117 Dinophysis meunieri J. Schiller	9, 136
118 Dinophysis minutaf (Cleve) Balech	9, 14, 27, 77, 126, 132, 141, 142
119 Dinophysis mucronata (Kof. & Skogsb.) Sournia	1
120 Dinophysis nasuta (F. Stein) Parke & Dixon	141
121 Dinophysis norvegica Clap. & J. Lachm.	1, 2, 8, 9, 11, 14, 15, 27, 33, 36, 56, 67, 77, 126, 130, 132, 136, 141, 142
122 Dinophysis odiosa (Pavill.) L.S. Tai & Skogsb.	10, 42, 79, 129, 131, 141
123 Dinophysis ovata Clap. & J. Lachm.	7, 13, 14, 18, 20, 77, 126, 129, 141, 142 (1, 9, 15, 21, 67, 123)
= Phalacroma ovatum (Clap. & J. Lachm.) Jörg.	
124 Dinophysis ovum F. Schütt	1-10, 14, 15, 18, 19, 21, 24, 27, 34, 36, 38, 57, 67, 72, 73, 74, 77, 78, 85, 89, 92, 94, 109, 116, 117, 123, 126, 129, 132, 136, 141, 142
125 Dinophysis parva J. Schiller	7, 9
A checklist of dinoflagellates of the Black Sea - continued from the previous page

Taxa	References
126 Dinophysis parvula (F. Schütt) Balech	= Phalacroma parvulum (F. Schütt) Jörg. 25, 142 (2, 7, 9)
127 Dinophysis pulchella (M. Lebour) Balech	= Phalacroma pulchellum M. Lebour 126, 129, 136, 141, 142 (1, 4, 9, 10, 15, 18, 21, 24, 58, 94, 116)
128 Dinophysis punctata Jörg.	7, 9, 25, 142
129 Dinophysis recurva Kof. & Skogs.	21, 27, 132, 141, 142
130 Dinophysis rudgei G. Murr. & Whitting	= Phalacroma rudgei G. Murr. & Whitting 19, 25, 126, 141, 142 (1, 6, 15, 18, 72, 74, 75, 129, 136)
131 Dinophysis sacculus F. Stein	1-4, 6-12, 14, 15, 18-22, 24, 25, 27, 33, 35, 36, 38, 49, 58, 67, 72, 73, 74, 77, 84, 85, 86, 89, 92, 94, 100, 109, 117, 123, 126, 129, 130, 132, 136, 141, 142, 144
132 Dinophysis schuettii G. Murr. & Whitting	9, 14, 39, 126, 131
133 Dinophysis similis Kof. & Skogs.	7, 9, 77
134 Dinophysis sphaerica F. Stein	1, 2, 7-10, 14, 15, 21, 27, 38, 89, 92, 100, 126, 132, 141, 142
135 Dinophysis sphaeroidea (J. Schiller) Balech	= Phalacroma sphaeroideum J. Schiller; Dinophysis schilleri Sournia 77 (1, 4, 6, 10, 15, 18, 21, 38, 129, 136; 14, 6, 9, 10, 14, 126, 141;142)
136 Dinophysis tripus Gourret	1, 9, 14, 15, 18, 19, 33, 36, 45, 77, 126, 129, 141, 142
137 Diplopelta asymmetrica (Mangin) Balech	= Peridiniopsis asymmetrica Mangin 126, 142 (14)
138 Diplopsalis lenticula Bergh	= Glenodinium lenticula (Bergh) J. Schiller 2, 3, 9-12, 14, 19-22, 25-27, 33, 38, 50, 56, 57, 63, 68, 78, 83, 99, 100, 101, 108, 111, 116, 125-127, 129, 130, 132, 136, 137, 139, 142, 144 (1, 4, 6, 8, 18, 21, 34, 49, 51, 54, 55, 58, 72, 73, 74, 74, 84, 85, 86, 89, 92, 94, 105, 109, 110, 117, 123, 125)
139 Diplopsalis lenticula var. globularis Kisselev	10, 12, 26, 129, 142
140 Diplopsalis orbicularis var. temaris (T.H. Abé) Krachm.	14
141 Diplopsalopsis bomba (F. Stein) J.D. Dodge & S. Toriumi	= Dissodium asymmetricum (Mangin) A.R. Loebl.; Peridiniopsis asymmetrica M. Lebour
142 Diplopsalopsis orbicularis (Paulsen) Meunier	= Peridinium orbiculare Paulsen 9, 14, 111, 126, 129, 132, 136, 142, 144 (1, 4, 8, 15, 18, 21, 27, 50, 89, 92, 94)
143 Durinskia agilis (Kof. & Swezy) Saburova, Chomérat & Hoppenrath	= Gymnodinium agile Kof. & Swezy 144 (1, 2, 4, 6, 8, 9, 12, 14, 15, 18, 20, 21, 27, 68, 74, 94, 126, 129, 132, 136, 142)
144 Durinskia dybowskii (Wolosz.) S. Carty	= Durinskia baltica (Levander) S. Carty & Cox; Peridinium balticum (Levander) Lemmerm. 144 (126; 2)
145 Durinskia oculata (F. Stein) G. Hansen & Flaim	= Glenodinium oculatum F. Stein; Peridiniopsis oculata (F. Stein) Bourr. 126, 134 (1, 8-10, 20, 24, 101; 14, 27, 129, 132, 142)
146 Ensiculifera carinata Matsuoka, Kobayashi & Gains	111
147 Glenodiniopsis steinii Wolosz. = Glenodinium cinctum Ehrenb.; Sphaerodinium cinctum (Ehrenb.) Wolosz.	14, 129 (11, 18, 101; 1, 14, 27, 126, 132, 142)
148 Glenodinium behningii (Er. Lindem.) Kisselev	1, 8, 9, 14, 27, 89, 92, 132, 142
149 Glenodinium inflatum Meunier	1, 4, 9, 11, 14, 23, 27, 94, 126, 132, 136, 142
150 Glenodinium obliquum C.H.G. Pouchet	1, 2, 9, 14, 15, 18, 27, 126, 129, 132, 142

continued on the next page
A checklist of dinoflagellates of the Black Sea - continued from the previous page

Taxa	References
151 Glenodinium paululum Er. Lindem.	1-4, 6, 8-11, 14, 15, 18, 20, 21, 24, 26, 27, 34, 38, 49, 57, 74, 84, 85, 89, 92, 94, 110, 117, 118, 119, 123, 126, 129, 132, 136, 142
152 Glenodinium pilula (Ostenf.) J. Schiller = Diplopsalis pilula Ostenf.	1, 2, 4-6, 8-12, 14, 15, 18, 20, 21, 26, 27, 74, 84, 89, 92, 94, 129, 132, 142 (126)
153 Glenodinium pulvisculus (Ehrenb.) F. Stein	1, 8, 9, 14, 18, 27, 101, 126, 129, 132, 142
154 Glochidinium penardiforme (Er. Lindem.) Boltovskoy = Glenodinium penardiforme (Er. Lindem.) J. Schiller; Peridintopsis penardiformis (Er. Lindem.) Bourr.	126, 134, 137, 144 (8, 132;14, 27;142)
155 Goniodoma orientale (Er. Lindem.) Balech = Gonyaulax orientalis Er. Lindem.	(1, 2, 6-11, 14, 23, 126, 132, 142, 144)
156 Goniodoma sphaericum G. Murr. & Whitting	85, 142
157 Goniodoma striatum Mangin	132, 142
158 Gonyaulax africana J. Schiller	7, 9, 130, 142
159 Gonyaulax apiculata (Penard) Entz	2, 6, 9, 11, 14, 19, 20, 51, 126, 129, 136, 142
160 Gonyaulax birostris F. Stein	9, 25
161 Gonyaulax cocklea Meunier	1, 4-6, 8, 9, 11, 14, 19, 20, 23, 26, 27, 68, 94, 126, 129, 132, 136, 142, 144
162 Gonyaulax diegensis Kof.	1, 2, 4-6, 14, 15, 18, 25, 27, 34, 49, 58, 67, 72, 89, 92, 94, 100, 126, 129, 132, 136, 142
163 Gonyaulax digitalis (C.H.G. Pouchet) Kof.	1, 2, 4, 6-12, 14, 15, 18, 20, 21, 26, 27, 49, 51, 54, 55, 58, 67, 68, 74, 93, 94, 99, 100, 105, 116, 125, 126, 127, 129, 130, 132, 136, 142, 144
164 Gonyaulax elegans Rampi	7, 9, 142
165 Gonyaulax fragilis (F. Schütt) Kof.	1, 9, 14, 23, 126, 142
166 Gonyaulax gracilis J. Schiller	9, 10, 14, 126, 142
167 Gonyaulax lebouriae Balech	132, 142
168 Gonyaulax minima Matzen.	1, 2, 5, 6, 8, 10, 14, 15, 18-21, 26, 27, 34, 35, 38, 58, 67, 72, 78, 100, 110, 123, 126, 129, 132, 142, 144
169 Gonyaulax minuta Kof. & Michener	9, 11
170 Gonyaulax monacantha Pavill.	7, 9, 11, 25, 142
171 Gonyaulax monospina Rampi	7, 9, 142
172 Gonyaulax polygramma F. Stein	1-4, 6-12, 14, 15, 18-21, 25-27, 33, 34, 36, 38, 49, 51, 54, 58, 63, 67, 72, 73, 85, 86, 89, 92, 94, 99, 101, 105, 109, 111, 126, 127, 129, 132, 136, 142
173 Gonyaulax scrippae Kof.	1, 2, 5, 6, 8-11, 14, 15, 18-21, 26, 27, 33, 54, 55, 58, 68, 89, 92, 99, 105, 126, 129, 132, 142, 144
174 Gonyaulax spinifera (Clap. & J. Lachm.) Diesing = Peridinium spiniferum Clap. & J. Lachm.	1, 2, 4, 6-15, 18-21, 25-27, 33, 35, 38, 49, 51, 54, 55, 58, 67, 74, 77, 84, 85, 89, 92, 94, 100, 105, 108, 116, 117, 123, 125, 126, 127, 129, 130, 132, 136, 142, 144 (1, 4, 8, 13, 15, 18, 51, 58, 94)
175 Gonyaulax turbynei G. Murr. & Whitting	34
176 Gonyaulax verior Sournia = Gonyaulax diacantha (Meunier) J. Schiller; Gonyaulax longispina M. Lebour	7, 9, 11, 14, 27, 126, 132, 142 (1, 6-8, 25, 93; 6)
177 Gymnodinium agiliforme J. Schiller	1-5, 8-12, 14, 15, 18-21, 24, 27, 84, 126, 129, 132, 136, 142, 144

continued on the next page
Taxa	References
Gymnodinium albulum Er. Lindem.	19, 21, 132, 142
Gymnodinium antarcticum A.E. Thessen, D.J. Patterson & S.A. Murray = *Gymnodinium frigidum* Balech	(2, 27, 132, 142)
Gymnodinium arcticum A. Wulff	2, 10, 12, 27, 129, 132, 142
Gymnodinium arcuatum Kof.	14, 27, 126, 132, 142
Gymnodinium aureolum (Hulburt) G. Hansen	**Gyrodinium aureolum** Hulbert *(12, 27, 68, 132, 135)*
Gymnodinium biconicum J. Schiller	2, 7, 9, 142
Gymnodinium cneoides T.M. Harris	144
Gymnodinium dissimile Kof. & Swezy	84
Gymnodinium excavatum Van Meel	27, 132, 142
Gymnodinium eurytopum Skuja	142
Gymnodinium flavum Kof. & Swezy	6, 9, 11, 21, 142
Gymnodinium fuscum (Ehrenb.) F. Stein	3, 4, 8, 9, 11, 14, 27, 38, 49, 94, 126, 129, 132, 136, 142
Gymnodinium fusiforme Kof. & Swezy	136
Gymnodinium galeiforme Matzen.	6, 9
Gymnodinium gibbera J. Schiller	9, 49, 136
Gymnodinium gracile Bergh	11, 142 (9)
Gymnodinium grammaticum (C.H.G. Pouchet) Kof. & Swezy = *Gymnodinium grammaticum* C.H.G. Pouchet	1, 9, 14, 23, 27, 84, 126, 132, 142 (21)
Gymnodinium hamulus Kof. & Swezy	6, 11, 142
Gymnodinium heterostriatum Kof. & Swezy	2, 11, 19, 27, 47, 132, 142
Gymnodinium impudicum (S. Fraga & I. Bravo) G. Hansen & Moestrup = *Gyrodinium impudicum* S. Fraga & I. Bravo	(14, 27, 126, 132, 142)
Gymnodinium inversum Nygaard	27, 132, 142
Gymnodinium kowalevskii Pitzik	10, 12, 21, 24, 38, 129
Gymnodinium lachmannii W.S. Kent	6, 9
Gymnodinium lacustre J. Schiller	11, 14, 21, 27, 47, 126, 129, 132, 140, 142, 144
Gymnodinium lanskoii Roukh.	10, 129
Gymnodinium lantzschii Utermöhl	11, 144
Gymnodinium latum Skuja	142
Gymnodinium marinum W.S. Kent	1, 9, 11, 14, 23, 27, 126, 132, 142
Gymnodinium minor M. Lebour	1, 8, 10, 14, 23, 27, 126, 132, 142
Gymnodinium mirabile Penard	27
Gymnodinium najadeum J. Schiller	1-6, 8-12, 14, 15, 18-21, 24, 27, 34, 49, 57, 68, 84, 89, 92, 100, 126, 129, 132, 136, 142, 144
Gymnodinium neapolitanum J. Schiller	1, 3, 4, 8, 9, 11, 14, 15, 18, 20, 27, 84, 89, 92, 100, 126, 129, 132, 136, 142
Gymnodinium paradoxum J. Schiller	4, 9, 14, 27, 38, 126, 131, 132, 136, 142
Gymnodinium palseini J. Schiller	84
Gymnodinium punctatum C.H.G. Pouchet	5, 11, 21

continued on the next page
Taxa	References		
Gymnodinium pygmaeum	9, 14, 27, 38, 47, 126, 131, 132, 142		
Gymnodinium radiatum	Kof. & Swezy	9, 14, 48, 126, 142	
Gymnodinium rhomboides	F. Schütt	1, 4-6, 8-11, 14, 15, 18, 21, 24, 27, 49, 67, 74, 86, 89, 92, 94, 100, 126, 129, 136	
Gymnodinium semidivisum	J. Schiller	1, 9, 14, 23, 84, 126, 142	
Gymnodinium simplex	(Lohmann) Kof. & Swezy	2, 3, 7-12, 14, 19, 20, 21, 23, 24, 26, 27, 36, 38, 84, 99, 126, 127, 129, 132, 142, 144	
Gymnodinium sphaericum	(Calkins) Kof. & Swezy	9, 27, 132, 136, 142	
Gymnodinium stellatum	Hulburt	12, 19, 27, 47, 79, 132, 142	
Gymnodinium sulcatum	Kof. & Swezy	1, 8, 9, 11, 14, 23, 27, 126, 132, 142	
Gymnodinium uberrimum	(G.J. Allman) Kof. & Swezy	= Gymnodinium rotundatum G.A. Klebs; Gymnodinium uberrimum var. rotundatum (G.J. Allman) Kof. & Swezy	2, 9, 11, 14, 27, 36, 47, 82, 106, 107, 126, 132, 135, 140, 142, 144 (2, 7, 9, 21, 49, 85; 136)
Gymnodinium variabile	Herdman	9-11, 14, 21, 27, 35, 84, 126, 129, 132, 142	
Gymnodinium wulffii	J. Schiller	1, 2, 3, 5, 6, 8-10, 12, 14, 19-21, 23, 24, 26, 27, 35, 110, 117, 119, 120, 123, 126, 129, 132, 136, 137, 139, 142, 144	
Gyrodinium britannia	Kof. & Swezy	1, 2, 8, 9, 14, 23, 126, 142	
Gyrodinium capsulatum	Kof. & Swezy	1, 9, 14, 23, 126, 142	
Gyrodinium cornutum	(C.H.G. Pouchet) Kof. & Swezy	8, 9, 14, 27, 68, 100, 126, 129, 132, 140, 142	
Gyrodinium dorsum	Kof. & Swezy	1, 9, 14, 23, 126, 142	
Gyrodinium estuariale	Hulburt	19	
Gyrodinium flagellare	J. Schiller	11, 12	
Gyrodinium flavum	Kof.	85	
Gyrodinium fusiforme	Kof. & Swezy	2-4, 6-8, 10, 12, 14, 19-21, 23, 24, 26, 27, 33-36, 38, 49, 50, 57, 72, 74, 84-86, 89, 92, 94, 117, 123, 126, 127, 129, 132, 136, 142, 144	
Gyrodinium fusus	(Meunier) Akselman	1, 2, 9, 11, 129	
Gyrodinium helveticum	(Penard) Y. Takano & T. Horiguchi = Gymnodinium helveticum Penard; Gymnodinium helveticum var. apiculatum Utermöhl; Glenodinium apiculatum Zacharias	(9, 14, 126, 129, 142; 136; 1, 4, 6, 8, 10, 11, 15, 18, 20, 24, 49, 74, 86, 132)	
Gyrodinium hyalinum	(A.J. Schill.) Kof. & Swezy	6, 142	
Gyrodinium lacryma	(Meunier) Kof. & Swezy	1, 2, 4, 6-11, 14, 20, 21, 23, 24, 26, 27, 34, 49, 50, 74, 84, 86, 89, 92, 94, 118, 126, 129, 132, 136, 139, 142, 144	
Gyrodinium nasutum	(A. Wulff) J. Schiller	1, 2, 4, 6, 8, 9, 11, 14, 27, 34, 50, 85, 93, 126, 132, 136, 142, 144	
Gyrodinium ovum	(F. Schütt) Kof. & Swezy	11, 27, 47, 132, 142	
Gyrodinium pellucidum	(A. Wulff) J. Schiller	7, 9, 20, 136, 142	
Gyrodinium pingue	(F. Schütt) Kof. & Swezy	1-4, 6, 9-12, 14, 19, 21, 23, 24, 27, 34, 38, 57, 74, 84, 94, 116, 117, 126, 129, 132, 136, 142, 144	
Gyrodinium prunus	(A. Wulff) M. Lebour	9, 14, 23, 126	
Gyrodinium pusillum	(A.J. Schill.) Kof. & Swezy = Gymnodinium pusillum A.J. Schill.	7, 9-11, 24, 142 (2)	
Gyrodinium spirale	(Bergh) Kof. & Swezy = Spirodinium spirale Entz	1, 2, 6, 8, 9, 11, 12, 14, 15, 18, 19, 20, 27, 33, 34, 50, 72, 73, 85, 126, 127, 129, 130, 132, 142, 144 (18)	

continued on the next page
Taxa	References
Gyrodinium wulffii	11, 38
Hemidinium nasutum	144
Herdmania litoralis	1, 2, 3, 11, 129
Heterocapsa rotundata	9, 11, 13, 129
Heterocapsa triquetra	2-4, 6-12, 14, 19, 20, 24-27, 33-36, 68, 81, 82, 94, 99, 100, 108, 118, 125, 126, 127, 129, 130, 132, 136, 138, 139, 140, 142, 144
Heterodinium mediterraneum	2, 63
Heterodinium murrayi	7, 9, 142
Huia caspica	1, 2, 8, 9, 14, 15, 20, 23, 27, 93, 132, 136, 142; 126
Hypnodinium sphaericum	1, 4, 14, 15, 18, 49, 86, 94, 126, 129, 136
Kapelodinium vestifici	1, 4, 9, 10, 11, 14, 21, 23, 49, 129, 136, 142
Karenia brevis	12, 36 (12, 19)
Karenia mikimotoi	(12)
Kofoidinium lebouriae	2, 9, 20, 27, 126, 129, 132, 142
Kofoidinium velleloides	99
Kolkwitzia acuta	14, 126, 136, 144; 1, 4, 8, 20, 27, 49, 89, 92, 132, 142
Kryptoperidinium foliaceum	2, 9, 20, 27, 126, 129, 132, 142
Kryptoperidinium foliaceum var. ponticum	115, 129 (10, 98)
Lebouridinium glaucum	144 (2, 12, 126, 129, 142; 109, 136)
Lessardia elongata	11, 52, 129, 139, 144
Levanderina fissa	1, 2, 3, 6, 9, 14, 15, 19, 27, 34, 38, 126, 129, 132, 142; 18, 101; 4, 9, 136; 142

continued on the next page
Taxa	References
Lingulodinium polyedra (F. Stein) J.D. Dodge	
= *Gonyaulax polyedra* F. Stein	2, 3, 6, 9-12, 14, 15, 20, 26, 27, 35, 36, 68, 77, 81, 82, 99, 100, 108, 126, 129, 130, 132, 136, 137, 139, 142, 144 (1, 4, 5, 7, 8, 18, 19, 21, 25, 34, 38, 49, 51, 54, 55, 58, 67, 72, 73, 74, 85, 89, 92, 94, 104, 105, 109, 110, 123, 125, 140)
Margalefidinium citron (Kof. & Swezy) Gómez, Richlen & D.M. Anderson	
= *Cochlodinium citron* Kof. & Swezy	2, 14, 27, 33, 47, 77, 126, 131, 132, 135, 139, 142
Mesoporos perforatus (Gran) Lillick	
= *Exuviaella perforata* Gran; *Porella perforata* (Gran) J. Schiller	2, 7, 9, 10, 12, 14, 19, 25, 27, 111, 126, 129, 132, 142, 144 (1, 15, 18, 21, 34, 38, 38, 78)
Micracanthodinium bacilliferum (J. Schiller) Deflandre	
= *Cladopyxis bacillifera* J. Schiller	129 (10, 142)
Micracanthodinium setiferum (Lohmann) Deflandre	
= *Cladopyxis setifera* Lohmann	11 (8, 27, 132, 142)
Noctiluca scintillans (Macartney) Kof. & Swezy	
= *Noctiluca miliaris* Suriray & Lamarck	7, 9, 14, 19, 25, 27, 33, 36, 45, 99, 108, 125, 126, 129, 130, 132, 136, 139, 142 (1, 13, 15, 18, 22, 50, 51, 59, 72, 73, 87, 93, 105, 109)
Nusuttodinium aeruginosum (F. Stein) Takano & T. Horiguchi	
= *Gymnodinium aeruginosum* F. Stein	(9, 14, 27, 47, 126, 132, 140, 142)
Nusuttodinium amphidinioides (Geitler) Takano & T. Horiguchi	
= *Amphidinium amphidinioides* (Geitler) J. Schiller	(9, 14, 126, 142)
Oblea rotunda (M. Lebour) Balech & Sournia	
= *Glenodinium rotundatum* (M. Lebour) J. Schiller; *Peridiniopsis rotunda* M. Lebour	5, 9-12, 14, 19, 27, 111, 126, 127, 129, 132, 136, 142, 144 (1, 3, 4, 6, 18, 23, 55, 67, 74, 93, 94, 105;10)
Opisthoaulax vorticella (F. Stein) Calado	
= *Katodinium vorticella* (F. Stein) A.R. Loebl.; *Katodinium vorticellum* (F. Stein) Fott; *Gymnodinium vorticella* F. Stein; *Massartia vorticella* (F. Stein) J. Schiller	129, 130 (132, 142; 9, 14, 27, 126, 142;18, 101; 1, 6, 8, 15, 21, 27)
Oxyrrhis marina Dujardin	2, 129, 132, 142
Oxytoxum adriaticum J. Schiller	2, 9, 21, 142
Oxytoxum brunelli Rampi	142
Oxytoxum caudatum J. Schiller	10, 12, 24, 142
Oxytoxum gladiolus F. Stein	2, 3, 10, 24, 129, 142
Oxytoxum laticeps J. Schiller	67
Oxytoxum milneri G. Murr. & Whitting	7, 9, 142
Oxytoxum mitra F. Stein	7, 9, 142
Oxytoxum parvum J. Schiller	9, 14, 38, 117, 126, 131
Oxytoxum reticulatum Bütschli	10, 142
Oxytoxum scolopax F. Stein	10, 142
Oxytoxum sphaeroideum F. Stein	10, 34, 142

continued on the next page
Taxa	References
289 Oxytoxum turbo Kof.	27, 47, 126, 132, 142
290 Oxytoxum variabile J. Schiller	2, 9, 10, 12, 14, 24, 27, 38, 57, 79, 84, 126, 129, 131, 132, 142
291 Oxytoxum viride J. Schiller	10, 38, 67, 131
292 Palaeophalacroma uncinatum J. Schiller	9
293 Palatinus apiculatus (Ehrenb.) Craveiro, Calado, Daugbjerg & Moestrup = Peridinium palatinum Lauterborn	129
294 Parvodinium goslaviense (Wołosz.) S. Carty = Peridinium goslaviense Wołosz.	144 (11)
295 Parvodinium inconspicuum (Lemmerrn.) S. Carty = Peridinium inconspicuum Lemmerrn.	(1, 6, 8, 27, 72, 73, 93, 132, 142)
296 Parvodinium lubieniense (Wołosz.) S. Carty = Peridinium lubieniense Wołosz.	(6)
297 Parvodinium umbonatum (F. Stein) S. Carty = Peridinium umbonatum F. Stein; Peridinium pusillum (Penard) Lemmerrn.	(9, 11, 14, 126, 137, 142; 6, 20, 27, 132, 142)
298 Paulsenella chaetoceratis (Paulsen) Chatton	1, 8, 10, 14, 23, 27, 93, 126, 132, 142
299 Pentapharsodinium dalei Indelicato & A.R. Loebl.	27, 111
300 Pentapharsodinium tyrhenicum (Balech) Montresor, Zingone & Marino	27, 111
301 Peridiniella catenata (Levander) Balech	2, 10, 142
302 Peridiniella danica (Paulsen) Okolodkov & J.D. Dodge = Glenodinium danicum Paulsen	9, 20, 126, 129, 136, 142, 144 (1, 2, 4, 6, 8-11, 14, 15, 18, 21, 27, 67, 68, 72, 73, 74, 84, 89, 92, 94, 118, 129, 132)
303 Peridiniella sphaeroidea Kof. & Michener	111
304 Peridiniopsis cunningtonii Lemmerrn.	143
305 Peridiniopsis elpatiewskyi (Ostenf.) Bourr. = Peridinium elpatiewskyi (Ostenf.) Lemmerrn.	14, 126, 143 (9)
306 Peridiniopsis quadridens (F. Stein) Bourr. = Glenodinium quadridens (F. Stein) J. Schiller	136 (4, 21)
307 Peridiniopsis thompsonii (Thomps.) Bourr.	9, 14, 143
308 Peridinium bipes F. Stein = Peridinium bipes f. tabulatum (Ehrenb.) Lefèvire; Peridinium tabulatum Ehrenb.	4, 5, 8-10, 14, 20, 49, 126; 136 (1, 13, 18, 129)
309 Peridinium cinctum (O. Müll.) Ehrenb.	1, 2, 4, 7-11, 14, 19, 21, 24, 27, 38, 85, 89, 92, 94, 100, 117, 126, 129, 132, 136, 142
310 Peridinium willei Huittf.-Kaas	1, 4, 9, 14, 18, 126, 129, 136, 142
311 Petalodinium porcelio J. Cachon & M. Cachon	9, 91, 142
312 Phalacroma acutum (F. Schütt) Pavill. = Dinophysis acutoides Balech	1, 9, 23 (14, 126)
313 Phalacroma cuneus F. Schütt = Dinophysis cuneus (F. Schütt) T.H. Abé	A.F. Krakhmalnyi (pers. obs.)*
314 Phalacroma cuneolus Kof. & Skogsbl.	136
315 Phalacroma favus Kof. & Michener = Dinophysis favus (Kof. & Michener) T.H. Abé	9 (142)
316 Phalacroma oxytoxoides (Kof.) Gómez, Moreira & López-Garcia = Oxyphysis oxytoxoides Kof.	(6, 9, 11, 82, 107, 125, 142)

continued on the next page
Taxa	References
317 Phalacroma rotundatum (Clap. & J. Lachm.) Kof. & Michener	1, 2-4, 6, 8, 9, 15, 18, 21, 34, 38, 49, 54, 55, 58, 63, 67, 72, 73, 74, 78, 84, 85, 86, 89, 92, 94, 99, 105, 108, 109, 116, 117, 118, 125, 129, 130, 136, 144 (7, 10-14, 18, 20, 22, 25-27, 33, 36, 50, 56, 77, 100, 125-127, 130, 132, 141, 142; 14; 10)
318 Plectodinium nucleovolvatum Biecheler	7, 9
319 Podolampas bipes F. Stein	19
320 Podolampas elegans F. Schütt	7, 9, 19, 142
321 Podolampas palmipes F. Stein	99
322 Podolampas spinifera Okamura	9, 14, 39, 99, 126, 131
323 Polykrikos geminatus (F. Schütt) D.X. Qiu & Senjie Lin	(9, 14, 15, 19, 21, 26, 27, 47, 126, 129, 132, 140, 142; 19)
324 Polykrikos hartmannii W.M. Zimmermann	(2, 10, 11, 21, 24, 129, 142)
325 Polykrikos schwartzii Bütschli	2, 4, 8-11, 12, 14, 20, 21, 23, 24, 26, 27, 34, 36, 50, 51, 68, 85, 94, 126, 129, 132, 136, 139, 142, 144
326 Preperidinium meunieri (Pavill.) Elbrächter	2, 9, 11 (12; 27, 132, 142; 1, 6, 58; 14, 126)
327 Pronoctiluca acuta (Lohmann) J. Schiller	2, 8-10, 21, 24, 27, 38, 50, 129, 131, 132, 142
328 Pronoctiluca pelagica Fabre-Dom.	2, 3, 7, 8, 9, 10, 11, 12, 21, 24, 27, 34, 38, 50, 63, 85, 129, 130, 131, 132, 142
329 Pronoctiluca spinifera (Lohmann) J. Schiller	7, 9, 11, 85
330 Prorocentrum aporum (J. Schiller) J.D. Dodge	7, 9, 10, 25, 26, 129, 130, 142 (6, 21, 84)
331 Prorocentrum balticum (Lochmann) A.R. Loebl.	2, 4, 8-11, 14, 25-27, 33, 35, 36, 45, 94, 99, 111, 125, 126, 129, 132, 136, 142 (1, 7, 15, 18, 21, 54, 55, 58, 89, 92, 105)
332 Prorocentrum caspicum (Kisselev) Krachm.	14, 27, 126, 132, 142 (1, 34, 89, 92)
333 Prorocentrum compressum (Bailey) T.H. Abé & J.D. Dodge	2-4, 8-12, 14, 19, 20, 25-27, 33, 36, 57, 68, 94, 99, 100, 108, 109, 111, 126, 127, 129, 130, 132, 136, 142, 144 (1, 5-7, 15, 18, 21, 22, 34, 38, 49, 51, 54-56, 58, 63, 67, 72-75, 78, 84-86, 89, 92, 105, 110, 116, 117, 123, 125)
334 Prorocentrum cordatum var. aralensis (Kisselev) Krachm.	14, 23
335 Prorocentrum dentatum F. Stein	2, 7, 9, 19, 25, 30, 126, 142
336 Prorocentrum gracile F. Schütt	11, 19, 108

continued on the next page
A checklist of dinoflagellates of the Black Sea - continued from the previous page

Taxa	References
339 *Prorocentrum lima* (Ehrenb.) F. Stein	
= *Exuviaella marina* Cienk.; *Prorocentrum marinum* J.D. Dodge & B.T. Bibby; *Exuviaella marina* var. *lima* (Ehrenb.) J. Schiller	2, 7, 9-11, 14, 24, 33, 36, 77, 111, 125, 126, 129, 142 (1, 6, 13, 18, 21, 34, 38, 84, 117; 3-5, 8, 10, 19, 57, 94, 100, 132, 136, 142; 1)
340 *Prorocentrum maximum* (Gourret) J. Schiller	7-9, 14, 25, 27, 100, 126, 132, 142
341 *Prorocentrum micans* Ehrenb.	1-15, 18-22, 25-27, 33-36, 38, 45, 49, 54-59, 63, 67, 68, 72-75, 78, 81, 82, 84-86, 89, 90, 92, 94, 99, 100, 105, 108-110, 116, 117, 120, 123, 125-127, 129, 130, 132, 137, 139, 140, 142, 144
342 *Prorocentrum micans* var. *micans* f. *duplex* Krachm. & Terenko	126, 128, 132, 142
343 *Prorocentrum nanum* J. Schiller	
= *Exuviaella pusilla* (J. Schiller) J. Schiller; *Prorocentrum pusillum* (J. Schiller) J.D. Dodge & B.T. Bibby	10, 84, 126, 129 (1, 10, 15, 18, 84, 142; 5, 9, 14)
344 *Prorocentrum oblongum* (J. Schiller) T.H. Abé	27, 132, 142
345 *Prorocentrum obtusum* Ostenf.	1, 4, 8, 9, 11, 14, 23, 34, 36, 38, 74, 94, 126, 136
346 *Prorocentrum ovum* (J. Schiller) J.D. Dodge	7, 9, 142
347 *Prorocentrum ponticus* Krachm. & Terenko	14, 27, 95, 111, 126, 132, 142
348 *Prorocentrum pyriforme* (J. Schiller) Taylor	7, 25
349 *Prorocentrum reticulatum* M.A. Faust	2, 21
350 *Prorocentrum rostratum* F. Stein	9, 142
351 *Prorocentrum rotundatum* J. Schiller	7, 9, 25, 84, 142
352 *Prorocentrum scutellum* Schröd.	
= *Prorocentrum sphaeroideum* J. Schiller	1, 2, 4, 5, 7-10, 12, 14, 15, 18, 19, 21, 25, 27, 34, 36, 38, 49, 74, 86, 108, 116, 126, 129, 132, 136, 137, 139, 142, 144 (27, 132, 142)
353 *Prorocentrum triestinum* J. Schiller	9, 11, 25, 108, 142
354 *Prorocentrum vaginula* (F. Stein) J.D. Dodge	
= *Exuviaella vaginula* (F. Stein) Lemmerm.; *Prorocentrum vaginulum* (Ehrenb.) J.D. Dodge	5, 8, 14, 27, 36, 126, 132, 142 (1, 15, 23, 67; 2, 9, 10, 24, 129)
355 *Prosoaulax lacustris* (F. Stein) Calado & Moestrup	
= *Amphidinium eilenkinii* Skvortsov; *Amphidinium larvale* Er. Lindem.; *Amphidinium lacustre* F. Stein; *Amphidinium turicense* Huber-Pestalozzi	144 (9, 14, 126; 27, 47, 132, 140, 142; 9, 14, 19, 27, 47, 132, 142; 27, 132, 142)
356 *Protoceratium areolatum* Kof.	2, 6, 7, 9, 10, 14, 25, 27, 126, 129, 132, 142
357 *Protoceratium reticulatum* (Clap. & J. Lachm.) Bütschli	
= *Peridinium reticulatum* Clap. & J. Lachm.; *Gonyaulax grindleyi* Reinecke; *Peridiniopsis reticulatum* (Clap. & J. Lachm.) Starmach	1, 4-12, 14, 15, 18, 19, 26, 27, 34, 36, 49, 54, 55, 58, 67, 72-75, 77, 84-86, 94, 100, 105, 109, 117, 125-127, 129, 130, 132, 142, 144 (13; 2, 7, 10, 20, 33, 108; 136)
358 *Protoceratium spinulosum* (G. Murr. & Whitting) J. Schiller	108
359 *Protoperidinium abei* (Paulsen) Balech	5, 9, 12, 142
360 *Protoperidinium achromaticum* (Levander) Balech	
= *Peridinium achromaticum* Levander	9, 11, 27, 50, 126, 129, 132, 142 (1, 5, 6, 8, 14, 15, 18, 67, 72, 73, 89, 92)
361 *Protoperidinium bipes* (Paulsen) Balech	
= *Glenodinium bipes* Paulsen; *Minuscula bipes* M. Lebour.; *Peridinium minusculum* Pavill.	2, 4, 9-12, 14, 15, 19, 27, 35, 108, 126, 129, 130, 132, 136, 142, 143, 144 (55, 105; 7, 20; 1, 3, 4, 6-8, 10, 18, 21, 26, 34, 38, 49, 50, 57, 58, 67, 72, 73, 86, 89, 92, 94, 109, 110, 117, 118, 136)
362 *Protoperidinium breve* Paulsen	2, 11, 12, 20, 26, 27, 34, 57, 126, 129, 132, 142

continued on the next page
Taxa	References
363	Protoperidinium brevipes (Paulsen) Balech
= Peridinium brevipes Paulsen	2, 9-11, 14, 19, 20, 24-27, 33, 34, 99, 108, 126, 129, 130, 132, 136, 142, 144 (1, 4, 5, 7, 8, 15, 18, 21, 38, 49, 51, 58, 74, 86, 94, 117)
364	Protoperidinium brochii (Kof. & Swezy) Balech
= Peridinium brochii Kof. & Swezy	2, 9-11, 14, 25, 50, 108, 126, 142, 144 (1, 6, 15, 18, 21, 51, 54, 55, 58, 67, 72, 73, 105, 109, 116)
365	Protoperidinium bulla (Meunier) Balech
= Peridinium bulla Meunier	14, 126 (8)
366	Protoperidinium claudicans (Paulsen) Balech
= Peridinium claudicans Paulsen	2, 9, 11, 14, 25, 27, 57, 125, 129, 132, 142 (1, 7, 8, 51, 89, 92)
367	Protoperidinium compressum (T.H. Abé) Balech
368	Protoperidinium conicoides (Paulsen) Balech
= Peridinium conicoides Paulsen	2, 3, 9-12, 14, 20, 27, 33, 50, 108, 125, 126, 130, 132, 142 (1, 4, 6-8, 15, 18, 38, 49, 51, 54-56, 58, 59, 63, 72, 73, 85, 87, 89, 92, 94, 103, 105, 109, 116, 117)
369	Protoperidinium conicum (Gran) Balech
= Peridinium conicum (Gran) Ostenf. & A.W.F. Schmidt;	
Protoperidinium conicum f. concavum Matzen.;	
Protoperidinium conicum f. concavum (Matzen.) Krachm.	9-11, 14, 20, 25, 27, 33, 50, 108, 125, 126, 130, 132, 142 (1, 18)
370	Protoperidinium conicum var. concavum (Matzen.) Balech
= Peridinium conicum f. concavum Matzen.;	
Protoperidinium conicum f. concavum (Matzen.) Krachm.	142 (1, 8, 58, 93; 14, 132)
371	Protoperidinium crassipes (Kof.) Balech
= Peridinium crassipes Kof.	2, 3, 9-12, 14, 20, 26, 27, 34, 36, 77, 108, 119, 120, 126, 127, 129, 130, 132, 142, 143, 144 (1, 4, 6-8, 15, 18, 38, 49, 51, 54, 55, 58, 67, 72-74, 78, 85, 86, 93, 94, 105, 109, 110, 116, 123)
372	Protoperidinium curtipes (Jörg.) Balech
= Peridinium curtipes Jörg.	9, 10, 14, 19, 20, 68, 126, 129, 136, 142 (1, 4, 5, 15, 18, 38, 54, 55, 94, 105)
373	Protoperidinium curvipes (Ostenf.) Balech
= Peridinium curvipes Ostenf.	2, 3, 9-12, 14, 19, 20, 25-27, 33, 34, 50, 57, 68, 99, 108, 125-127, 129, 130, 132, 136, 142, 143, 144 (1, 4, 6-8, 18, 21, 38, 49, 51, 54, 55, 58, 67, 72-74, 78, 85, 86, 93, 94, 105, 109, 110, 116, 117)
374	Protoperidinium decipiens (Jörg.) Parke & J.D. Dodge
= Peridinium decipiens Jörg.	9, 10, 14, 19, 20, 26-27, 33, 34, 50, 57, 68, 99, 108, 125-127, 129, 130, 132, 136, 142, 143, 144 (1, 4, 6-8, 18, 21, 38, 49, 51, 54, 55, 58, 67, 72-74, 78, 85, 86, 93, 94, 105, 109, 110, 116, 117)
375	Protoperidinium deficiens (Meunier) Balech
= Peridinium deficiens Meunier	9, 142 (7)
376	Protoperidinium depressum (Bailey) Balech
= Peridinium depressum Bailey	2, 9-12, 14, 15, 25-27, 33, 34, 50, 99, 108, 125-127, 129, 130, 132, 136, 142, 143 (1, 4, 7, 8, 18, 21, 38, 49, 51, 54, 55, 67, 74, 85, 86, 89, 92, 94, 105, 117)
377	Protoperidinium diabolus (Cleve) Balech
= Peridinium diabolus Cleve	2, 9, 14, 25, 27, 50, 108, 126, 129, 132, 142 (1, 7, 8, 15, 51, 85)
378	Protoperidinium divergens (Ehrenb.) Balech
= Peridinium divergens Ehrenb.	2, 3, 9-12, 14, 19, 20, 25-27, 33, 34, 50, 57, 68, 99, 108, 125-127, 129, 130, 132, 136, 142, 144 (1, 4, 6-8, 18, 21, 22, 38, 49, 51, 54-56, 58, 59, 63, 72, 73, 78, 85, 87, 89, 92, 94, 103, 105, 109, 110, 116, 117)
379	Protoperidinium elegans (Cleve) Balech
= Peridinium elegans Cleve	9, 10, 14, 19, 26, 142 (1, 5, 6, 15, 51, 55, 105)
380	Protoperidinium excentricum (Paulsen) Balech
= Peridinium excentricum Paulsen	9, 10, 11, 14, 19, 27, 126, 129, 130, 132, 136, 142 (1, 5-8, 15, 18, 20, 72-74, 89, 92, 109)
381	Protoperidinium globulus (F. Stein) Balech
= Peridinium globulus F. Stein	2, 9-12, 14, 25, 27, 33, 50, 99, 108, 126, 129, 132, 136, 142 (1, 4, 6, 7, 8, 18, 21, 38, 49, 51, 58, 67, 72, 73, 93, 94, 109, 116)
382	Protoperidinium gracile Gran & Braar.
Taxa	References
---	---
383 Protoperidinium grande (Kof.) Balech	9, 12, 25, 142 (7)
= Peridinium grande Kof.	
384 Protoperidinium granii (Ostenf.) Balech	2, 9-12, 14, 19, 20, 24-27, 33, 34, 50, 57, 68, 99, 100, 119, 125-127, 129, 130, 132, 136, 142 (1, 3, 4, 6-8, 18, 21, 38, 49, 51, 58, 67, 74, 85, 89, 92, 94, 110, 118, 123)
= Peridinium granii Ostenf.	
385 Protoperidinium grenlandicum (Wołosz.) Balech	27, 132, 142
386 Protoperidinium inflatum (Okamura) Balech	9, 50, 142
387 Protoperidinium joergensenii (Balech) Balech	2, 9-11, 14, 27
388 Protoperidinium knipowitschii (Usachev) Balech	2, 9, 11, 12, 14, 126, 129, 136, 144 (4, 6, 8, 10, 89, 92, 109, 129, 132, 136, 142)
= Peridinium knipowitschii Usachev	
389 Protoperidinium leonis (Pavill.) Balech	2, 6, 8, 9, 11, 14, 27, 50, 125, 126, 130, 132, 142, 144 (7, 20, 51)
= Peridinium leonis Pavill.	
390 Protoperidinium leonis var. concavilaterale (Kisselev) Krachmalny	14, 27, 126
391 Protoperidinium longipes Balech	25, 27, 35, 132, 142
392 Protoperidinium longispinum (Kof.) Balech	2, 9, 12, 14, 27, 126, 132, 142 (136)
= Peridinium longispinum Kof.	
393 Protoperidinium mariellebouriae (Paulsen) Balech	7, 9, 33, 142
394 Protoperidinium mediterraneum (Kof.) Balech	33, 142
395 Protoperidinium mite (Pavill.) Balech	14, 126, 129, 132, 142 (8, 10, 15, 100)
= Peridinium granii f. mite (Pavill.) J. Schiller	
396 Protoperidinium monovelum (T.H. Abé) Balech	(136)
= Peridinium monovelum T.H. Abé	
397 Protoperidinium nudum (Meunier) Balech	27, 132, 142
398 Protoperidinium oblongum (Auriv.) Parke & J.D. Dodge	9, 12, 26, 129, 130, 142, 143
399 Protoperidinium oceanicum (Vanhöffen) Balech	2, 9-11, 14, 19, 27, 33, 50, 99, 108, 126, 129, 132, 142 (1, 6, 8, 15, 18, 38, 51, 54, 55, 58, 67, 72, 73, 89, 92, 105, 109)
= Peridinium oceanicum Vanhöffen	
400 Protoperidinium ovatum C.H.G. Pouchet	126, 132, 142, 144 (1, 8, 14, 15, 23, 93; 2, 10, 14, 19, 27)
= Peridinium globulus var. ovatum (C.H.G. Pouchet)	J. Schiller; Protoperidinium globulus var. ovatum (C.H.G. Pouchet) Balech
401 Protoperidinium ovum (J. Schiller) Balech	34
402 Protoperidinium pallidum (Ostenf.) Balech	2, 9-12, 14, 15, 27, 50, 99, 108, 125-127, 129, 130, 132, 136, 142, 144 (1, 4, 6, 7, 18, 51, 54, 55, 58, 72, 73, 74, 94, 105, 109)
= Peridinium pallidum Ostenf.	
403 Protoperidinium parthenopes Zingone & Montresor	111
404 Protoperidinium paulsenii (Pavill.) Balech	130
405 Protoperidinium pedunculatum (F. Schütt) Balech	2, 9-11, 14, 27, 126, 129, 132, 136, 142 (1, 4, 7, 8, 15, 18, 21, 51, 54, 55, 56, 58, 93, 105)
= Peridinium pedunculatum F. Schütt	
406 Protoperidinium pellucidum Bergh	2, 3, 9-12, 14, 15, 19, 20, 25-27, 33-35, 50, 57, 99, 108, 125-127, 129, 130, 132, 136, 139, 142, 144 (1, 4-8, 18, 21, 49, 51, 54, 55, 58, 72, 73, 85, 89, 92, 101, 105, 109)
= Peridinium pellucidum (Bergh) F. Schütt	
407 Protoperidinium pentagonum (Gran) Balech	2, 9-11, 14, 25, 27, 50, 99, 108, 125, 126, 129, 132, 136, 142, 144 (1, 6-8, 15, 18, 20, 38, 49, 51, 54, 55, 72-74, 85, 86, 93, 105, 109, 116, 117)
= Peridinium pentagonum Gran	
408 Protoperidinium ponticum Vershinin & Morton	80, 111, 126, 131, 142
409 Protoperidinium punctulatum (Paulsen) Balech	7, 9, 25, 108, 125, 142

continued on the next page
A checklist of dinoflagellates of the Black Sea - continued from the previous page

Taxa	References
410 Protoperidinium pyriforme (Paulsen) Balech	2, 9, 11, 14, 15, 25, 27, 35, 126, 108, 132, 136, 142 (1, 4, 6, 7, 23, 67)
= Peridinium pyriforme Paulsen	(2, 9-11, 14, 15, 25, 27, 35, 126, 108, 132, 136, 142)
411 Protoperidinium pyriforme subsp. breve (Paulsen) Balech	142 (4-6, 8, 10, 21, 26, 38, 49, 136)
= Peridinium breve (Paulsen) Paulsen	(10, 11, 24, 126, 132, 136, 142)
412 Protoperidinium quarneresense (Schröd.) Balech	10, 11, 24, 126, 132, 136, 142 (1, 23, 89; 14, 27, 136)
= Peridinium globulus var. quarneresense Schröd.; Protoperidinium globulus var. quarneresense (Schröd.) Krachm.	(2, 9-12, 14, 126, 131, 142)
413 Protoperidinium sinaicum (Matzen.) Balech	2, 9, 14, 126, 131, 142 (38, 51, 85)
= Peridinium sinaicum (Matzen.) Balech	(2, 9-12, 14, 126, 131, 142)
414 Protoperidinium solidicorne (Mangin) Balech	2, 9-12, 14, 126, 131, 142, 144 (1, 4-8, 15, 18, 21, 51, 54, 55, 58, 94, 105, 136)
= Peridinium solidicorne Mangin	(1, 4-8, 15, 18, 21, 51, 54, 55, 58, 94, 105, 136)
415 Protoperidinium spiniferum Balech	12, 14, 19, 27, 50, 126, 132, 142, 144
416 Protoperidinium steinii (Jörg.) Balech	2, 9-12, 14, 15, 19, 20, 25-27, 34, 50, 57, 68, 99, 108, 125-127, 129, 130, 136, 142, 144 (1, 3, 4, 6-8, 18, 21, 22, 38, 49, 51, 55, 58, 63, 67, 72-74, 78, 84-86, 89, 92, 94, 105, 109, 116, 117; 13, 18, 22)
= Peridinium steinii Jörg.; Peridinium michaelis Ehrenb.	(1, 3, 4, 6-8, 18, 21, 22, 38, 49, 51, 55, 58, 63, 67, 72-74, 78, 84-86, 89, 92, 94, 105, 109, 116, 117; 13, 18, 22)
417 Protoperidinium subinerme (Paulsen) A.R. Loebl.	2, 9-11, 14, 19, 25, 26, 50, 125, 126, 129, 130, 142, 144 (1, 5-7, 15, 18, 58, 72, 73, 109)
= Peridinium subinerme Paulsen	(2, 9-11, 14, 19, 25, 26, 50, 125, 126, 129, 130, 142, 144)
418 Protoperidinium thorianum (Paulsen) Balech	9, 10, 19, 125, 129, 142 (6)
= Peridinium thorianum Paulsen	(9, 10, 19, 125, 129, 142)
419 Protoperidinium tuba (J. Schiller) Balech	(10)
= Peridinium tuba J. Schiller	(10)
420 Protoperidinium verrucosum (Meunier) Balech	20
= Gymnodinium fusus F. Schütt; Peridinium verrucosum Meunier	(20)
421 Pseliodinium fusus (F. Schütt) Gömez	(1, 2, 4, 8, 14, 19, 21, 23, 26, 27, 34, 49, 84, 89, 92, 94, 100, 126, 129, 132, 136, 142; 9)
= Gymnodinium fusus F. Schütt; Gyrodinium falcatum Kof. & Swezy	(1, 2, 4, 8, 14, 19, 21, 23, 26, 27, 34, 49, 84, 89, 92, 94, 100, 126, 129, 132, 136, 142; 9)
422 Pseliodinium vaubanii Sournia	10
423 Ptychodiscus noctiluca F. Stein	2, 6, 9, 10, 11, 142
424 Pyrocystis elegans Pavill.	9, 10, 25, 99, 142
425 Pyrocystis fusiformis Wyville-Thompson	7, 131, 142
426 Pyrocystis hamulus Cleve	38, 131
427 Pyrocystis lunula (F. Schütt) F. Schütt	1, 9, 10, 14, 26, 51, 84, 85, 117, 126, 129, 142 (18)
= Diplodinium lunula (F. Schütt) G.A. Klebs	(1, 9, 10, 14, 26, 51, 84, 85, 117, 126, 129, 142)
428 Pyrocystis pseudonociluca Wyville-Thompson	38 (2, 10, 24, 129, 131, 142)
= Pyrocystis nociluca G. Murr. & Haeckel	38 (2, 10, 24, 129, 131, 142)
429 Pyrophacus horologium F. Stein	1, 4, 6-11, 14, 15, 18, 20, 25, 27, 34, 35, 49, 54, 55, 58, 67, 72-75, 84, 85, 89, 92, 94, 99, 101, 105, 108, 109, 126, 129, 132, 136, 142, 144
430 Pyrophacus steinii (J. Schiller) Wall & Dale	2, 7, 9, 11, 99, 142 (14, 15, 24, 126)
= Pyrophacus horologium var. steinii J. Schiller	2, 7, 9, 11, 99, 142 (14, 15, 24, 126)
431 Scaphodinium mirabile Margalef	9, 91, 112, 130, 142

continued on the next page
Taxa References

Taxa	References
432 Scrippsiella acuminata (Ehrenb.) Kretschmann, Elbrachté, Zinsmeister, S. Soehner, Kirsch, Kusber & Gottschling	
= Scrippsiella trochoidea (F. Stein) A.R. Loebl.; Glenodinium trochoidea F. Stein; Peridinium trochoidea (F. Stein) Lemmerm.; Goniodoma acuminatum (Ehrenb.) F. Stein	129, 144 (2-4, 6, 8-12, 14, 20, 25-27, 33-36, 57, 68, 81, 82, 83, 94, 99, 100, 108, 111, 118-120, 125-127, 129, 130, 132, 136, 139, 142; 18, 54; 1, 5, 7, 19, 21, 23, 38, 51, 84, 85, 93, 105, 110, 116, 117, 123; 9, 18, 22, 59, 101)
433 Scrippsiella sweeneyae Balech & A.R. Loebl.	11, 142
434 Spatulodinium pseudonocelitica (C.H.G. Pouchet) J. Cachon & M. Cachon	
= Gymnodinium pseudonocelitica C.H.G. Pouchet; Gymnodinium conicum Kof. & Swezy; Gymnodinium viride M. Lebour	9, 11, 14, 27, 47, 91, 126, 129, 132, 135, 142, 144 (2, 21, 34; 6, 9, 142; 20)
435 Sphaerodinium limneticum Wołosz.	27, 132, 142
436 Spiniferodinium palustre (A.J. Schill.) Kretschmann & Gottschling	
= Gymnodinium palustre A.J. Schill.	(20)
437 Syndinium turbo Chatton	136
438 Thecadinium kofoidii (Herdm.) J. Schiller	142
439 Torodinium robustum Kof. & Swezy	1, 9-12, 14, 19, 23, 78, 126, 129, 130, 142, 144
440 Torodinium teredo (C.H.G. Pouchet) Kof. & Swezy	2, 12
441 Tovellia coronata (Wołosz.) Moestrup, Lindberg & Daugbjerg	
= Gymnodinium coronatum Wołosz.	11, 144
442 Triadinium polyedricum (C.H.G. Pouchet) J.D. Dodge	
= Goniodoma polyedricum (C.H.G. Pouchet) Jörg.	(1, 2, 4, 6-9, 11, 14, 15, 18, 19, 22, 27, 67, 94, 126, 129, 132, 136, 142)
443 Unruhdinium penardii (Lemmerm.) Gottschling	
= Glenodinium penardii Lemmerm.; Peridiniopsis penardii (Lemmerm.) Bour.	144 (8, 100; 14, 27, 126, 132, 133, 134, 137, 142, 143)
444 Warnowia maculata (Kof. & Swezy) Er. Lindem.	11, 27, 47, 132, 142
445 Warnowia schuettii (Kof. & Swezy) J. Schiller	27, 33, 47, 132, 142
446 Woloszynskia neglecta (A.J. Schill.) Wyville-Thompson	
= Gymnodinium neglectum (A.J. Schill.) Er. Lindem.	9, 142, 144 (6, 21)
447 Woloszynskia pascheri (Suchlandt) Stosch	27, 132, 142, 144

References

1. Ivanov A.I. Characteristics of the qualitative composition of Black Sea phytoplankton. In: Issledovaniya planktona Cher- nogo i Azovskogo morej [The study of plankton of the Black Sea and the Sea of Azov]. Kiev: Naukova Dumka, 1965. Pp. 7–35.
2. Mikaelyan A.S., Senichkina L.G., Pautova L.A., Georgieva L.V., Dyakonov V. Cell volumes of phytoplankton of the Black Sea. Database. 2008.
3. Polikarpov I.G., Saburova M.A., Manzhos T.V., Pavlovskaya T.V., Gavrilova N.A. Microplankton biological diversity in the Black Sea coastal zone near Sevastopol (2001–2003). In: Modern condition of biological diversity in near-shore zone of Crimea (the Black Sea sector). Sevastopol: EKOSI-Gidrofizika, 2003. Pp. 16–42.
4. Petranu A. Black Sea biological diversity, Romania. Black Sea Environmental. Ser. 4. New York: Unit. Nat. Publ., 1997. 314 p.
Komakhidze A., Mazmanidi N. *Black Sea biological diversity, Georgia*. Black Sea Environmental. Ser. 8. New York: Unit. Nat. Publ., 1998. 167 p.

Konsulov A. *Black Sea biological diversity, Bulgaria*. Black Sea Environmental. Ser. 5. New York: Unit. Nat. Publ., 1998. 161 p.

Öztürk B. *Black Sea biological diversity, Turkey*. Black Sea Environmental. Ser. 9. New York: Unit. Nat. Publ., 1999. 144 p.

Zaitsev Y.P., Alexandrov B.G. *Black Sea biological diversity, Ukraine*. Black Sea Environmental. Ser. 7. New York: Unit. Nat. Publ., 1998. 351 p.

Gómez F., Boicenco L. *An annotated checklist of dinoflagellates in the Black Sea*. Hydrobiologia. 2004. 517: 43–59.

Senicheva M.I. Species diversity, seasonal and annual variability of planktonic microalgae near Crimea coast. In: *Chernomorskie mikrovodorosli: problemy sokhraneniya bioraznoobraziya i primeneniya biotekhnologiy* (*The Black Sea microalgae: problems of biodiversity conservation and biotechnological applications*). Sevastopol: Inst. Biol. South. Seas NAS Ukraine, 2008. Pp. 5–18.

Moncheva S. *Species lists based on sampling identifications and literature. Bulgarian waters (IO-BAS, unpubl. data)*. 2010.

Yasakova O.N. *Phytoplankton of the northeastern Black Sea, 1999–2009* (unpubl. data). 2010.

Pereyaslvtseva S.M. *The Black Sea Protozoa*. Mémoires de la Soc. Impériale des Natur. de la Nouvelle-Russie. 1886. 10(2): 79–114.

Kiselev I.A. *Pantsirnye zhgutikonostsy (Dinoflagellata) moreji presnyh vod SSSR* (*Thecate flagellates (Dinoflagellata) of the seas and freshwater bodies of the USSR*). Moscow; Leningrad: USSR Acad. Sci. Publ., 1950. 280 p.

Bryantseva Yu. *Izmenchivost strukturnykh kharakteristik fitoplanktona Chernogo morya* (*Variability of the Black Sea phytoplankton structural characteristics*). Ph.D. Thesis, Sevastopol, 2000. Pp. 171–178.

Reinhard L.V. *Phytoplankton of the Black Sea, Kerch Strait, Bosphorus Strait and the Sea of Marmara*. Trudy Obschestva Ispytatelei Prirody pri kharkovskom Universitete [Travaux de la Société des naturalists l’Université Impériale de Kharkov]. 1909. 43: 295–323.

Bryantseva Yu.V. *Baza dannykh monitoringa fitoplanktona Sevastopol’skoy bukhty* (*The Sevastopol Bay phytoplankton monitoring database* (unpubl. data)). 2016.
27 Nesterova D.A., Terenko L.M., Terenko G.V. Phytoplankton species list. In: The northwestern Black Sea: Biology and ecology. Y.P. Zaytsev, B.G. Alexandrov (Eds). Kiev: Naukova Dumka, 2006. Pp. 557–576.

30 Krakhmalny A.F. *Prorocentrum dentatum* (Dinoflagellata) Stein – new for the Black Sea species of Dinoflagellata. *Vestnik Zoologii*. 2005. 39(6): 61–64.

31 Velikova V., Larsen J. The *Prorocentrum cordatum/Prorocentrum minimum* taxonomic problem. *Grana*. 1999. 38: 108–112.

33 Vershinin A.O., Moruchkov A.A., Leightfield T., Sukhanova I.N., Pan’kov S.L., Morton S.L., Ramsdell J.S. Potentially toxic algae in the coastal phytoplankton of the northeastern Black Sea in 2001–2002. *Oceanology*. 2005. 45(2): 224–232.

34 Eker E. Abundance and biomass of micro and nanoprytoplankton in the northwestern and southern Black Sea in 1995. MSc Thesis. Erdemli, Icel, Turkey, 1998.

35 Nesterova D.A. Phytoplankton of the dry estuary and contiguous part of the Black Sea. *Ekologicheskaya bezopasnost pribrezhnoi shelfovoy zony i kompleksnoye ispolzovaniye resursov shelfa*. 2002. 1(6): 328–337.

36 Ryabushko L.I. Potentzialno vrednyye mikrovodorosli Azovskogo i Chernomorskogo basseyno [Potentially harmful micro-algae of the Sea of Azov and Black Sea basin]. Sevastopol: EKOSI-Gidrofizika, 2003. 288 p.

38 Georgieva L.V. *Fitoplankton prolivov i blizhayshikh vod Sredizemnomorskogo basseyna* [Phytoplankton of straits and nearest waters of the Mediterranean Basin]. Ph.D. Thesis. Sevastopol, 1979.

39 Kuzmenko L.V. Two new Dinoflagellata species new for the Black Sea. *Novosti sistematiki nizshikh rasteni*. 1966. 3: 51–54.

42 Senicheva M.I. New and rare species of the diatoms and dinoflagellates in the Black Sea. *Ekol. Morya*. 2002. 62: 25–29.

45 Koray T. Potentially toxic and harmful phytoplankton species along the coast of the Turkish Seas. In: *Harmful Algae* 2002. K.A. Steidinger, J.H. Landsberg, C.R. Tomas, G.A. Vargo (Eds). St. Petersburg; Florida, USA: Florida Fish and Wildlife Conservation Commis., Florida Inst. Oceanography and Intergovernmental Oceanographic Commis. UNESCO, 2004. Pp. 335–337.

47 Terenko L.M. New dinoflagellate (Dinoflagellata) species from Odessa Bay of the Black Sea. *Oceanol. and Hydrobiol. Stud*. 2005. 34 (Suppl. 3): 205–216.

48 Krakhmalny A.F. *Gymnodinium radiatum* Kofoet and Swezy (Gymnodiniales, Dinophyta): new species for Black Sea flora. *Ukr. Bot. J*. 2001. 58(5): 593–595.

49 Skolka V.H., Roban A. La repartition et la dynamique du phytoplancton sur la plateforme continental eroumaine au cours des années 1980–1981. *Recher. Mar*. 1989. 22: 147–171.

50 Sukhanova I.N., Cheban A.E. Heterotrophic phytoplankton of the Black Sea in the early spring development of the phyto-cenosis. *Oceanology*. 1990. 30: 724–792.

52 Eker-Develi E., Velikova V. New record of a dinoflagellate species, *Lessardia elongata* in the Black Sea. *Mar. Biodivers. Records*. 2009. 2: e104.

53 Stroikina V.G. [Black Sea phytoplankton near Karadag and its seasonal dynamics]. *Trudy Karadag. Biol. St*. 1950. 10: 38–52.

56 Nikitin V.N. The plankton of Batumi Bay and its annual quantitative changes. In: *Shornik statey, posvyashchennykh nauchnymy rabote pochetnogo chlena Akademii nauk SSSR, zasluzhennogo deyatelya nauki i tekhniki N M. Knipovicha [Collection of papers dedicated to scientific work of honorary member of the USSR Academy of Science, honoured master of sciences and engineering N.M. Knipovich]*. Moscow: VNIRO, 1939. Pp. 63–86.

57 Manzhos L.A. Abundance and distribution of phytoplankton in the Feodosia coastal waters in December 2006. *Ekol. Morya*. 2008. 75: 16–22.
58 Mikhaylovskaya Z.N. [Phytoplankton of Novorossiysk Bay and its vertical distribution]. Trudy Novoros. Biol. St. 1936. 2(1): 37–54.

59 Zernov S.A. [To the issue of annual changes in the Black Sea plankton near Sevastopol]. Bull. de l'Acad. impériale des sci. de St.-Pétersbourg. 1904. 20(4): 119–134.

63 Senichkina L.G. Phytoplankton of the northwestern Black Sea in winter. In: Sezonnye izmeneniya chernomorskogo planktona [Seasonal dynamics of Black Sea phytoplankton]. Yu.I. Sorokin, V.I. Vedernikov (Eds). Moscow: Nauka, 1983. Pp. 55–65.

67 Nezlin N.P., Zernova V.V. [Phytoplankton species composition in the northeastern Black Sea and size characteristic of some representatives]. Moscow: Nauka, 1983. Pp. 6–12.

68 Nesterova D.A., Terenko L.M. Karkinit Bay phytoplankton in September 2008. Ekologicheskaya bezopasnost pribrezhnykh i shelfovykh zon i kompleksnoye ispolzovaniye shelfovykh resursov. 2009. 20: 293–300.

69 Roukhıyajnen M.I. De flagellatis nonnullis maris Nigrinotula. Novosti sistematiki nizshikh rasteniy [Novitates systematicae plantarum non vascularum]. 1971. 8: 3–9.

70 Petrova V.J. Phytoplankton along the Bulgarian coast of the Black Sea during the 1954–1957 period. Bull. del’Institut Central de Recher. Sci. de Pisciculture et de Pécherie (Varna). 1963. 3: 31–60.

72 Senicheva M.I. [Composition and quantitative development of phytoplankton in the neritic zone of the Sevastopol area during autumn-winter 1968–1969]. Biol. Morya. 1971. 24: 3–12.

73 Yasakova O.N. The new species of phytoplankton in the northeastern part of the Black Sea. Rus. J. Biol. Invas. 2010. 4: 90–97.

75 Vershinin A.O., Morton S.L. Protoperidinium ponticum sp. nov. (Dinophyceae) from the northeastern Black Sea coast of Russia. Bot. Mar. 2005. 48: 244–247.

80 Vershinin A.O., Morton S.L. Protoperidinium ponticum sp. nov. (Dinophyceae) from the northeastern Black Sea coast of Russia. Bot. Mar. 2005. 48: 244–247.

82 Velikova V., Moncheva S., Petrova D. Phytoplankton dynamics and red tides (1987–1997) in the Bulgarian Black Sea. Water Sci. and Technol. 1999. 39(8): 27–36.
89 Ivanov A.I. [Mass development of phytoplankton in the northwestern Black Sea in 1954–1956]. Nauch. Zap. Odes. Biol. St. 1959. 1: 6–33.

90 Usachev P.I. [Notes on phytoplankton of the northwestern Black sea]. In: Dnevnik vsesoyuznogo s'ezda botanikov v Leningrade v yanvare 1928 g. [Diary of the All–Union Congress of Botanists, Leningrad, January 1928]. Leningrad, 1928. Pp. 163–164.

91 Stoyanova A.P. New representatives of Noctilucales in the Bulgarian Black Sea coastal water. Compt. Ren. de'l Acad. Bul. Des Sci. 1999. 52(9–10): 119–122.

92 Ivanov A.I. [Peculiarities of the taxonomic composition and quantitative distribution of the phytoplankton of the northwestern Black Sea]. Trudy Vsesoyuz. Gidrobiol. Obshch. (USSR). 1960. 10: 182–196.

93 Ivanov A.I. [Notes on phytoplankton taxonomic composition in the northwestern Black Sea]. Nauch. Zap. Odes. Biol. St. 1964. 5: 51–54.

94 Bodeanu N. Structure et dynamique d’algoflore unicellulaire dans les eaux du littoral roumain de la mer Noire. Recher. Mar. 1987–1988. 20/21: 19–250.

95 Krakmalny A.F., Terenko G.V. Prorocentrum ponticus Krakmalny & Terenko sp. nov., a new species of Dinophyta from the Black Sea. Algologia. 2002. 12(3): 371–375.

96 Roukhiyajnen M.I. De habitatione Glenodinii foliacei Stein in mari Nigro notula. Novosti sistematiki nizshikh rasteni. 1970. 7: 23–26.

97 Baytut O., Gonulol A., Koray T. Temporal variations of phytoplankton in relation to eutrophication in Samsun Bay, southern Black Sea. Turkish J. Fisher. and Aquat. Sci. 2010. 10: 363–372.

98 Nesterova D.A. Variability of specific surface of cells of phytoplankton in the western Black Sea. Algologia. 2003. 13(1): 16–25.

99 Minkevich R.K. Rapport préliminaire d’un séjour à la station biologique de Sevastopol pendant l’été de 1899. Travaux de Soc. Impériale des Natur. de St. Pétersbourg. 1899. 30(1).

100 Geineman V. A. [Some data on the phytoplankton of the Black Sea]. Vestnik Ryboprom. 1903. 12: 661–665.

101 Zernov S.A. [To the problem of the study of life in the Black Sea]. Bull. de l’Acad. des Sci. des St. Pétersbourg. 1913. 32(1): 1–299.

102 Prokudina L.A. [Catalogue of Black Sea fauna and flora near the Karadag Biological Station]. Trudy Karadag. Biol. St. 1952. 12: 116–127.

103 Terenko L.M. Gymnodinium uberrimum (Allman) Kof. et. Sw. (Dinophyta) from the littoral of the Black Sea. Algologia. 2002. 12(1): 142–146.

104 Moncheva S., Doncheva V., Kamburska L. On the long–term response of harmful algal blooms to the evolution of eutrophication off the Bulgarian Black Sea coast: are the recent changes a sign of recovery of the ecosystem — the uncertainties. In: Proceedings of the Ninth International Conference on Harmful Algal Blooms. Hobart, Australia, 7–11 Feb., 2000. G.M. Hallegraeff, S.I. Blackburn, C.J. Bolch, R.J. Lewis (Eds). Paris, UNESCO, 2000. Pp. 177–182.

105 Tas S., Okus E. Investigation of qualitatively phytoplankton in the Turkish coasts of the Black Sea and a species list. J. Black Sea/Mediterranean Environ. 2006. 12: 181–191.

106 Valkanov A. Catalogue of our Black Sea fauna. Proc. Mar. Biol. St. in Varna. 1957. 19: 1–62.

107 Zaremba N.V. Changes in phytoplankton community in the southern Kerch Strait in 2003–2008. The main results of complex research in the basins of the Azov and Black seas and in the world ocean. Proc. YugNIRO. 2011. 49: 72–79.

108 Vershinin A.O., Velikova V.N. New records and commonly misidentified dinoflagellates from the Black Sea. In: Modern problems of algology: abstracts of the International Scientific Conference and the VII Workshop on Marine Biology (9–13 June, 2008, Rostov-on-Don). Rostov-on-Don, 2008. P. 448.

109 Gavrilova N.A. On findings of noctiluicid dinoflagellate Scaphodinium mirabile Margalef, 1963 in the northwestern Black Sea and the coastal waters of Crimea. Mar. Ecol. J. 2012. 21(2): 64.
Yasakova O.N., Kreneva E.V. "Red high tide" in Novorossysk Bay in July 2011 caused by Heterocaspa rotundata (Dinophyceae, Heterocapsaceae), Myrionecta rubra, and Mesodinium pulex (Ciliophora, Litostomatea). Mar. Ecol. J. 2012. 11(2): 9.

Krahnmalny A.F. New nomenclature and taxonomical combinations of Dinophyta. Int. J. Algae. 2011. 13(3): 301–304.

Senichkina L.G. [Phytoplankton of clear and sewage-contaminated waters near Yalta]. Biol. Morya. 1973. 28: 135–150.

Georgieva L.V. [Phytoplankton of Bosporus region of the Black Sea: qualitative composition and quantitative development of phytoplankton]. In: Vodoobmen cherez Bosfor i ego vliyanie na gidrologiyu i biologiyu Chernogo morya [Water exchange through Bosphorus and its influence on hydrology and biology of the Black Sea]. V.A. Vodjanitsky, M.A. Dolgopol'skaya (Eds). Kiev: Naukova Dumka, 1969. Pp. 184–195.

Bodeanu N., Ruta G. Phytoplankton structure and dynamics in the contingency zone between the waters of the Danube – Black Sea canal and the sea waters. Recher. Mar. 1994–1995. 27–28: 81–99.

Bryantseva Yu.V. et al. State of the phytoplankton near Kerch strait after technogenic accident of 2007. In: IV International conference Modern problems of Azov and Black seas region ecology (Kerch, 8–9 Oct., 2008). Kerch, 2008. Pp. 76–81.

Bryantseva Yu.V. et al. State of the phytoplankton near Kerch strait in August 2009. In: V International conference Modern problems of Azov and Black seas region ecology (Kerch, 8–9 Oct., 2009). Kerch, 2009. Pp. 26–32.

Zaremba N.B. Phytoplankton community of the southern Kerch Strait during late spring period in 2009–2012. YugNIRO Proc. 2013. 51: 40–43.

Özdemyr G., Ak O. Qualitative and quantitative changes of phytoplankton in the South East Black sea (Trabzon coasts). 2012. Aquacult. Stud. 12(4): 13–25.

Krahnmalny A.F. Dinophyta of Ukraine (illustrated book for identification). P.M. Tsarenko (Ed.). Kiev: Alterpress, 2011. 444 p.

Yasakova O.N. The annual dynamics of the phytoplankton in the Novorossiysk bay in 2007. Mar. Ecol. J. 2011. 12(1): 92–102.

Krahnmalny A.F., Terenko G.V. New form of Prorocentrum micans Ehr. (Prorocentrales, Dinophyta) from the plankton of the Black Sea. Int. J. Algae. 2002. 4(4): 76–80.

Bryantseva Yu.V., Krahnmalny A.F., Velikova V., Sergeeva O. Dinoflagellates in the Sevastopol Coastal Zone (Black Sea, Crimea). Int. J. Algae. 2016. 18(1): 21–32.

Feyzioglu A.M., Sahin F. Phytoplankton in the Black Sea. In: Black Sea Marine Environment: The Turkish Shelf. M. Sezgin, L. Bat, D. Urkmez, Arici E., Ozturk B. (Eds). Turkish Mar. Res. Foundat. 2017. 46: 148–167.

Shiganova T.A., Musaeva E.I., Lukasheva T.A., et al. Increase in findings of Mediterranean nonnative species in the Black Sea. Rus. J. Biol. Invas. 2012. 3(4): 255–280.

Terenko L.M. (2005). Dinoflagellates of the northwestern Black Sea Coastal Zone: biodiversity and ecology. Ph.D. Thesis. Appendix A. Sevastopol, 2005. Pp. 191–197.

Terenko G.V. The winter phytoplankton in the Odessa bay of the Black Sea. Visnyk Ternop. Volodymyr Hnatiuk Nat. Ped. Univ. Ser. Biology. 2015. 3–4(64): 633–636.

Terenko G.V. Dynamics of freshwater dinoflagellate Peridiniopsis penardii in Odessa bay of the Black Sea (Ukraine). Visnyk Ternop. Volodymyr Hnatiuk Nat. Ped. Univ. 2017. 3(70): 109–115.

Alexandrov B.G. Problem of aquatic organisms transportation by ships and some approaches for risk assessment of the new invasions. Mar. Ecol. J. 2004. 3(1): 5–17.

Cărăuş I. Algae of Romania. A distributional checklist of actual algae. Studii și Cercetări (Biologie). Univ. Bacău. 7, 2002. Third revision. 2012. 809 p.

Derezyuk N.V., Konareva O.P., Soltys I.V. Summer phytoplankton blooms in water area of the Dniester Estuary (2003–2016). In: Proceedings of International Conference “Transboundary Dniester River Basin Management: Platform for Cooperation and Current Challenges” (Tiraspol, Moldova, 26–27 Oct., 2017). Tiraspol: Eco-TIRAS, 2017. Pp. 96–100.
138 Derezyuk N.V., Konareva O.P. Phytoplankton biodiversity in the Zmiinyi Island coastal waters. In: Proceedings of the International scientific and practical conference “Ecological problems of the Black Sea” (Odessa, 30–31 Oct., 2008). Odessa, 2008. Pp. 100–104.

139 Terenko L.M., Terenko G.V. Dynamics of Scrippsiella trochoidea (Stein) Balech 1988 (Dinophyceae) blooms in Odessa Bay of the Black Sea (Ukraine). Oceanol. and Hydrobiol. Stud. 2009. 38: 107–112.

140 Terenko L.M., Terenko G.V. Species diversity of the plankton phytocenosis in the Odessa Bay of the Black Sea. Ecol. Morya. 2000. 52: 56–59.

141 Terenko L.M. The genus Dinophysis Ehrenb. (Dinophyta) in the coast of the Ukrainian Black Sea: species composition, distribution, dynamics. Algologia. 2011. 21(3): 346–357.

142 Terenko L.M. Species composition and distribution of Dinophyta in the Black Sea. Algologia. 2007: 17(1): 53–69.

143 Krachmalny A.F. Peridinopsis cunningtoni Lemmerm. – new species of the dinoflagellates (Dinoflagellata) for the Black Sea. Mar. Ecol. J. 2014. 13(3): 43–46.

144 Derezyuk N.V. Microalgae species of the Odessa Bay and Zmiinyi Island (unpubl. data). 2018.