Metabolic utilization of intravenously injected iron from different iron sources in target tissues of broiler chickens

Lin Lu, Xueyu Dong, Xuelian Ma, Liyang Zhang, Sufen Li, Xugang Luo, Xiudong Liao

Metabolic utilization of intravenously injected iron from different iron sources in target tissues of broiler chickens

Lin Lu, Xueyu Dong, Xuelian Ma, Liyang Zhang, Sufen Li, Xugang Luo, Xiudong Liao

1. Introduction

Iron (Fe) is an essential trace element required in numerous important biological processes of animals (Hansen et al., 2009; Ganz and Nemeth, 2011). Rapidly growing chicks have a high demand for Fe (Ma et al., 2016), so Fe additives are routinely supplemented into diets for optimal growth. Traditionally, Fe is added to diets in the form of inorganic salts which have many disadvantages, such as low bioavailability, high hygroscopicity and oxidation (Ma et al., 2014). In recent years, organic Fe sources have been developed as alternatives to traditional inorganic Fe sources. However, reported results on bioavailabilities of organic Fe sources are inconsistent (Cao et al., 1996; Yu et al., 2000; Shinde et al., 2011; Luiggi et al., 2014). Previous studies from our laboratory indicated that the bioavailabilities of organic Fe sources for broilers were closely correlated with their chelation strengths (quotient of formation [Qf] values) between Fe and their ligands (Ma et al., 2014; Zhang et al., 2016). The Fe proteinate with...
moderate chelation strength is more available than iron sulfate in enhancing hemoglobin (Hb) and total body Hb Fe of broilers fed a casein–dextrlose diet (Ma et al., 2014). Relative to Fe sulfate (assigned 100%), the bioavailabilities of organic Fe sources with weak, moderate and extremely strong chelation strength for broilers fed a conventional maize–soybean meal basal diet were 129%, 164% and 174%, respectively, therefore, organic Fe sources with greater Qf values showed higher Fe bioavailabilities (Zhang et al., 2016). However, it is not clear whether the differences in bioavailabilities of Fe from different sources were due to the differences in Fe absorption or in Fe metabolic utilization, or in both aspects because the method of Fe administration in the above studies was dietary supplementation. Recent studies from our laboratory have further indicated that organic Fe sources with greater Qf values showed higher Fe absorption in the small intestine of broilers (Li et al., 2017; Zhang et al., 2017; Lu et al., 2018). However, different absorptions of organic Fe sources in the small intestine of broilers could not fully explain the differences in their bioavailabilities, and thus, part of them might be associated with the different metabolic utilization of Fe from organic Fe sources at a target tissue level. However, no studies on this aspect have been reported before.

Direct injection of Fe sources into a vein might be an effective method to study the Fe metabolic utilization at a target tissue level by bypassing intestinal absorption (Davidsson et al., 1989; Li et al., 2008; Shen et al., 2013). Previous studies from our laboratory demonstrated that an intravenously injected organic manganese (Mn) or zinc (Zn) source with strong chelation strength had the lowest Mn or Zn utilization in the target tissues of broilers (Li et al., 2008; Shen et al., 2013). We hypothesized that the intravenously injected organic Fe source with extremely strong chelation strength would have the lowest Fe utilization in the target tissues of broilers. Therefore, the objective of the present study was to investigate the effect of intravenously injected Fe from different Fe sources on growth performance, hematological parameters, tissue Fe concentrations and Fe-containing enzyme activities and gene expressions of Fe-containing enzymes or protein to detect the differences in metabolic utilization of Fe from different Fe sources in the target tissues of broilers.

2. Materials and methods

2.1. Animal ethics

All experimental procedures were approved by the Animal Management Committee (in charge of animal welfare issue) of the Institute of Animal Science, Chinese Academy of Agricultural Sciences (IAS-CAAS, Beijing, China) and performed in accordance with the ARRIVE guidelines for reporting animal research. Ethical approval on animal survival was given by the animal ethics committee of IAS-CAAS.

2.2. Experimental design and treatments

A completely randomized design was adopted in this experiment. The 9 treatments included a 0.9% (wt/vol) NaCl injection solution without Fe (the control), and the 0.9% saline solution supplemented with either Fe sulphate (FeSO₄·7H₂O, reagent grade; 19.5% Fe by analysis) or 1 of 3 organic Fe sources, at 2 injected Fe dosages (see the details below). The 3 organic Fe sources used in the current study were the same as those used in our previous studies (Zhang et al., 2017; Lu et al., 2018), and they included Fe methionine with weak chelation strength (Fe-MetW, feed grade; 14.7% Fe and Qf = 1.37 by analysis), Fe proteinate with moderate chelation strength (Fe-ProtM, feed grade; 14.2% Fe and Qf = 43.6 by analysis), and Fe proteinate with extremely strong chelation strength (Fe-ProtES, feed grade; 10.2% Fe and Qf = 8,590 by analysis).

It was assumed that the amount of Fe injected should be close to the normal amount of Fe absorbed when chickens were fed a diet containing the optimal Fe. Therefore, the injected dosage of Fe was calculated using the following equation:

\[
Fe \text{ injected (mg/bird)} = Fe \text{ absorbability (％)} \times \text{Average daily feed intake (kg/d)} \times \text{Dietary supplemental Fe level (40 mg/kg)} \times 2 \text{ (d)}.
\]

It has been reported that dietary Fe absorption in animals ranges from about 5% to 30% (Ni et al., 1995; Liu et al., 2019), so the values of 10% and 20% were used. The average daily feed intake was adjusted every 7 d based on the feed intakes from 22 to 42 d of age according to published guidelines (Yang, 2003). An inclusion of 40 mg/kg of Fe in a corn–soybean meal basal diet is a normally added Fe level as determined by a previous study from our laboratory (Ma et al., 2016). The “2 (d)” in the equation represents a single injection interval for every 2 d. The injected Fe concentrations in the saline solution supplemented with either Fe sulphate or 1 of 3 organic Fe sources were 2.08 mg of Fe/mL (10% Fe absorbability solution) and 4.16 mg of Fe/mL (20% Fe absorbability solution) from 22 to 28 d of age, and 2.75 mg of Fe/mL (10% Fe absorbability solution) and 5.50 mg of Fe/mL (20% Fe absorbability solution) from 29 to 35 d of age, and 3.17 mg of Fe/mL (10% Fe absorbability solution) and 6.34 mg of Fe/mL (20% Fe absorbability solution) from 36 to 42 d of age.

2.3. Animals and diets

During 1 to 21 d of age, a total of 500 one-d-old Arbor Acres commercial male broilers (Huadiu Broiler Breeding Corp., Beijing, China) were fed the same Fe-unsupplemented corn–soybean meal basal diet with all nutrients (except Fe) meeting or exceeding the requirements (NRC, 1994; Feeding standard of chicken, 2004, Table 1) of starting broilers to enhance their sensitivity to Fe injection. At 22 d of age, 432 birds were selected according to BW and randomly allotted to 1 of 9 treatments (8 replicate cages of 6 birds per cage) according to above experimental treatments. All injected solutions for all treatments contained the same concentration of methionine or lysine. All birds were fed on the same Fe-unsupplemented corn–soybean meal basal diet with all nutrients, except Fe, meeting or exceeding the requirements for growing broilers (NRC, 1994; Feeding standard of chicken, 2004, Table 1).

Birds were housed in electrically heated, thermostatically controlled stainless steel cages coated with plastic and equipped with plastic feeders and waterers. They were handled in accordance with the Arbor Acres Broiler Management Guide (Aviagen, 2009) for lighting and feeding, and allowed ad libitum access to tap water containing no detectable Fe. Each individual bird was injected with 0.5 mL of either the saline without Fe or with Fe addition through the vein of the wing every other day for 20 d. Feed intake and BW were recorded per cage on d 10 or 20 after injections to calculate ADFI, ADG and FCR during d 1 to 10 or d 10 to 20 after injections.

2.4. Sample collections and preparations

On d 10 and 20 after injections, 2 birds from each cage were selected according to the average BW of birds within the cage after fasting for 12 h. Blood samples were taken from each bird via heart puncture with stainless-steel needles equipped with heparinized blood-collection tubes. One part of the blood samples was stored at 4 °C for the analyses of hemoglobin (Hb) concentration and
hematocrit (Hct), and the other was centrifuged at 3,000 × g for 10 min at 4 °C to isolate plasma, and then stored at −20 °C until analyses of plasma iron (PI) and total iron binding capacity (TIBC).

The birds were subsequently killed by cervical dislocation; and their liver, kidney and heart samples were taken. A subsample was frozen at −20 °C for the analyses of Fe content, and succinate dehydrogenase (SDH), catalase (CAT) or cytochrome C oxidase (COX) activities, and another subsample on d 20 after infections was frozen at −80 °C for the analyses of enzyme activities. The SDH, CAT and COX activities were determined as described by Liao et al. (2017).

Primer sequences for real-time PCR amplification are shown in Table 2. The primer sequences for ferritin heavy chain 1 (FTH1) mRNA were expressed as the abundance of the target gene mRNA to the geometrical mean of β-actin and GAPDH mRNA (Liao et al., 2017).

2.5.5. Western blotting

The liver, heart, spleen or femur marrow samples were homogenized in ice-cold RIPA lysis buffer (Beyotime Institute of Biotechnology, Haimen, China). Then they were centrifuged for 10 min at 12,000 g at 4 °C, and the supernatants were subjected to western-blot analysis (Zhang et al., 2017). The GAPDH protein was used to normalize the expression levels of SDH, CAT, COX or FTH protein (Qin et al., 2017).

2.6. Statistical analyses

Data were analyzed using SAS software (version 9.2; SAS Inst. Inc., Cary, NC, USA). To test the effect of the injected Fe, a single degree of freedom contrast was used to compare all injected Fe treatments with the control. Data excluding the control were further analyzed by two-way ANOVA with a model that included interactions.
the main effects of the injected Fe source, injected Fe concentration and their interaction using the general linear model procedure of SAS. The replicate cage served as the experimental unit. Differences among the means were tested by the LSD test. $P \leq 0.05$ was considered to be statistically significant.

3. Results

3.1. Growth performance

Compared with the control, Fe injection had no effect ($P > 0.05$) on the ADG, ADFI or FCR during either 1 to 10 d or 11 to 20 d after injections (Table 3). Neither injected Fe source, Fe concentration, nor their interaction influenced ($P > 0.05$) the ADG, ADFI or FCR of broilers during either 1 to 10 or 11 to 20 after injections.

3.2. Hematological indices

Compared with the control, Fe injection increased ($P = 0.02$) Hct on d 10 after injections but did not affect ($P > 0.05$) all of the other blood parameters on d 10 or 20 after injections (Table 4). Injected Fe source, injected Fe concentration and their interaction did not influence ($P > 0.05$) TIBC and TS on both d 10 and 20 after injections, and Hb concentration on d 10 after injections. The PI on d 10 after injections was not affected ($P > 0.05$) by injected Fe source and injected Fe concentration, but was affected ($P = 0.04$) by their interaction. When the injected Fe level was high, the chickens injected with Fe-ProtES or Fe-MetW had higher ($P < 0.05$) PI than those injected with FeSO$_4$·7H$_2$O on d 10 after injections. The Hct on d 10 after injections, and Hb concentration and Hct on d 20 after injections were not affected ($P > 0.05$) by injected Fe source and injected Fe concentration, but were increased ($P < 0.05$) by injected Fe level. The PI on d 20 after injections was not influenced ($P > 0.05$) by injected Fe level and the interaction between the injected Fe source and Fe level, but was affected ($P = 0.02$) by injected Fe source. The chickens injected with Fe-ProtES had lower ($P = 0.002$) PI than those injected with FeSO$_4$·7H$_2$O on d 20 after injections, but no differences ($P > 0.05$) were detected among the three organic Fe sources or among FeSO$_4$·7H$_2$O, Fe-MetW and Fe-ProtM.

3.3. Iron concentrations

Compared with the control, Fe injection increased ($P < 0.01$) Fe concentrations in the liver and kidney on d 10 after injections, and Fe concentrations in the tibia bone ash on d 20 after injections (Table 5). Injected Fe source affected ($P < 0.01$) liver Fe concentrations on both d 10 and 20 after injections. The chickens injected with Fe-MetW or Fe-ProtM had higher ($P < 0.05$) liver Fe concentrations than those injected with FeSO$_4$·7H$_2$O or Fe-ProtES on d 10 after injections. Injected Fe level affected ($P < 0.01$) Fe concentrations in the liver, kidney and tibia bone ash on d 10 after injections, and Fe concentrations in the liver, pancreas and kidney on d 20 after injections, and the values of these parameters increased as injected Fe level increased ($P < 0.01$). The interaction between the injected Fe source and Fe level only affected ($P < 0.05$) Fe concentrations in the liver and kidney on d 20 after injections. When the injected Fe level was low, the chickens injected with Fe-ProtM had higher ($P < 0.05$) liver Fe concentrations than those injected with FeSO$_4$·7H$_2$O or Fe-ProtES on d 20 after injections. However, when the injected Fe level was high, the chickens injected with FeSO$_4$·7H$_2$O, Fe-MetW or Fe-ProtM had higher ($P < 0.01$) liver Fe concentrations than those injected with Fe-ProtES, and the chickens injected with Fe-MetW or Fe-ProtM had higher ($P < 0.01$) kidney Fe concentrations than those injected with Fe-ProtES on d 20 after injections.

Table 3

Effect of intravenously injected iron (Fe) on growth performance of broilers.

Source	Days after intravenous injections	Days 11 to 20 (32 to 41 d of age)					
	Day 1 to 10 (22 to 31 d of age)	Day 11 to 20 (32 to 41 d of age)					
	ADFI, g/d	ADG, g/d	FCR, g/g	FCR, g/g			
Control							
FeSO$_4$·7H$_2$O	122	74.2	1.65	147	77.6	1.90	
		123	74.0	1.67	153	79.2	1.98
Fe-MetW		121	73.1	1.72	154	80.6	1.92
Fe-ProtM		124	74.7	1.66	146	77.8	1.88
Fe-ProtES		122	71.8	1.71	152	81.2	1.88
Fe-ProtM		123	76.3	1.62	150	73.5	2.09
Fe-ProtES		121	72.8	1.66	153	83.7	1.83
Fe-MetW		119	72.3	1.65	152	83.5	1.83
Fe-ProtM		123	73.6	1.67	151	77.3	1.98
Fe-ProtES		120	72.6	1.65	152	83.6	1.83
Fe-MetW		122	73.8	1.67	151	80.4	1.89
Fe-ProtM		122	73.3	1.66	151	78.1	1.96
Fe-ProtES		121	0.75	0.02	1.50	1.40	0.03
Fe source		0.33	0.70	0.61	0.22	0.06	0.13
Fe concentration		0.91	0.03	0.62	0.09	0.24	0.13
Fe concentration × Fe		0.73	0.21	0.25	0.79	0.40	0.20

Fe-MetW – Fe-Met with a weak chelation strength ($Q_f = 1.37$); Fe-ProtM – Fe proteinate with moderate chelation strength ($Q_f = 43.6$); Fe-ProtES – Fe proteinate with extremely strong chelation strength ($Q_f = 8.59 \times 10^6$).

1 L represents the low injected Fe levels of 1.04, 1.38 and 1.58 mg (10% Fe absorbability solution) for each bird during d 22 to 28, d 29 to 35 and d 36 to 42, respectively; H represents the high injected Fe levels of 2.08, 2.76 and 3.16 mg (20% Fe absorbability solution) for each bird during d 22 to 28, d 29 to 35 and d 36 to 42, respectively.

2 Data represent the means of 8 replicate cages (5 to 6 birds per cage during d 1 to 10 and 3 to 4 birds per cage during d 11 to 20; $n = 32$).

3 Data represent the means of 16 replicate cages (5 to 6 birds per cage during d 1 to 10 and 3 to 4 birds per cage during d 11 to 20; $n = 16$).

4 Data represent the means of 32 replicate cages (5 to 6 birds per cage during d 1 to 10 and 3 to 4 birds per cage during d 11 to 20; $n = 32$).
Table 4

Effect of intravenously injected iron (Fe) on blood parameters of broilers.

Injected Fe source	Injected Fe level	Day 10 after intravenous injections (31 d of age)	Day 20 after intravenous injections (41 d of age)								
		PL μg/mL	TIBC μg/mL	TS, %	Hb, g/L	Hct, %	PL μg/mL	TIBC μg/mL	TS, %	Hb, g/L	Hct, %
Control	O	0.456	2.38	19.8	76.3	30.4*	0.548	2.84	20.2	79.9	31.3
FeSO₄·7H₂O	L²	0.682ab	2.66	25.5	79.4	31.0	0.789	2.77	29.1	78.0	31.2
	H²	0.504b	2.43	22.4	83.0	32.9	0.756	2.49	32.0	81.0	32.2
Fe-MetW	L²	0.495b	2.47	20.2	82.1	31.7	0.577	2.37	24.6	76.3	32.8
	H²	0.765b	2.48	33.4	83.6	32.6	0.756	2.91	28.1	82.0	32.8
Fe-ProtM	L²	0.595ab	2.08	31.8	81.6	31.7	0.697	2.66	26.7	78.8	31.6
	H²	0.680ab	2.41	29.6	85.7	33.4	0.678	2.69	25.5	78.0	31.4
Fe-protes	L²	0.562ab	2.56	23.1	80.3	30.9	0.587	2.70	22.1	80.4	32.2
	H²	0.753b	2.56	32.4	81.9	32.3	0.585	2.48	22.8	82.1	33.0
SEM											
Injected Fe source											
FeSO₄·7H₂O	L³	0.079	0.19	4.21	2.14	0.62	0.055	0.19	2.82	1.61	0.63
Fe-MetW	L³	0.593	2.54	23.9	81.2	31.9	0.773ab	2.63	30.5	79.5	31.7
Fe-ProtM	L³	0.630	2.47	26.8	82.9	32.1	0.671ab	2.63	26.3	79.2	31.6
Fe-protes	L³	0.638	2.24	30.7	83.7	32.6	0.688ab	2.67	26.1	78.4	31.5
SEM		0.039	0.10	2.22	1.019	0.33	0.028	0.09	1.53	0.81	0.31

P-value

- Fe source
- Fe level
- Fe source × Fe level

Table 5

Effect of intravenously injected iron (Fe) on tissue Fe concentrations of broilers.

Injected Fe source	Injected Fe level	Day 10 after intravenous injections (31 d of age)	Day 20 after intravenous injections (41 d of age)						
		Liver Fe, μg/g fresh tissue	Pancreas Fe, μg/g fresh tissue	Kidney Fe, μg/g fresh tissue	Tibia bone ash Fe, μg/g fresh tissue	Liver Fe, μg/g fresh tissue	Pancreas Fe, μg/g fresh tissue	Kidney Fe, μg/g fresh tissue	Tibia bone ash Fe, μg/g fresh tissue
Control	O²	73.6*	63.8	39.1*	542	115*	14.3*	47.6	623
FeSO₄·7H₂O	L²	88.9	69.5	46.2	569	175	23.3	44.6	709
	H²	204	69.7	56.2	603	346	29.9	57.0	748
Fe-MetW	L²	113	61.2	49.8	547	224	17.4	44.1	718
	H²	242	58.9	56.7	632	364	27.5	64.1	782
Fe-ProtM	L³	131	63.1	46.3	558	195	17.8	46.0	690
	H³	227	68.2	48.0	626	361	28.3	62.1	756
Fe-protes	L³	106	53.8	41.8	581	171	20.9	51.7	689
	H³	177	66.3	57.0	611	237	22.4	53.7	676
SEM		2.55	11.3	1.39	24.9	10.1	1.21	1.28	21.1
Injected Fe source		146b	69.6	51.2	616	260	26.6	50.7	726
FeSO₄·7H₂O	H³	177b	60.1	53.3	590	289	22.5	54.1	752
Fe-MetW	H³	179b	65.6	47.1	592	278	23.1	54.0	713
Fe-ProtM	H³	141b	60.0	49.4	596	204	21.6	52.7	683
Fe-protes	H³	112	7.9	2.34	9.4	202	19.9	46.7	699
SEM		5.66	6.27	1.64	12.9	6.81	6.27	1.24	11.7

P-value

- Fe source
- Fe level
- Fe source × Fe level

Notes

1. Data represent the means of 16 replicate cages (2 birds per cage; n = 16).
2. Data represent the means of 32 replicate cages (2 birds per cage; n = 32).
3. Data represent the means of 32 replicate cages (2 birds per cage; n = 32).
4. Data represent the means of 16 replicate cages (2 birds per cage; n = 8).
5. Data represent the means of 8 replicate cages (2 birds per cage; n = 8).

Fe-MetW = Fe proteinate with a weak chelation strength (<Qf = 0.137>); Fe-ProtM = Fe proteinate with moderate chelation strength (<Qf = 43.6>); Fe-Protes = Fe proteinate with extremely strong chelation strength (<Qf = 8.59 × 10¹⁰>).
3.4. Enzyme activities

Compared with the control, Fe injection increased \((P < 0.05)\) liver, heart and kidney CAT activities on d 20 after injections. Injected Fe source, injected Fe level and their interaction had no effect \((P > 0.05)\) on the CAT and SDH activities in the heart and kidney on d 10 or 20 after Fe injections, and CAT and SDH activities in the liver on d 20 after Fe injections. Liver CAT activity was not affected \((P > 0.05)\) by injected Fe source and the interaction between injected Fe source and injected Fe level, but was influenced \((P = 0.05)\) by injected Fe level. Liver SDH activity on d 10 after injections and heart COX activity on d 10 or 20 after Fe injections were not influenced \((P > 0.05)\) by injected Fe source and the interaction between injected Fe source and injected Fe level, but were affected \((P < 0.05)\) by injected Fe level, respectively. All of the above detailed data are not shown because these parameters were not influenced by either injected Fe source or the interaction between injected Fe source and injected Fe level.

3.5. mRNA levels

Injected Fe source, injected Fe level and their interaction did not affect \((P > 0.05)\) the mRNA levels of liver Cat, Sdh, and spleen and Femur marrow Fth1 on d 20 after Fe injections (Table 6). Injected Fe source and injected Fe level had no effect \((P > 0.05)\) on the liver Cox mRNA levels, but their interaction affected them \((P = 0.005)\). When the injected Fe level was high, the birds injected with Fe-MetW had greater \((P < 0.01)\) liver Cox mRNA levels than those injected with Fe-ProtM and Fe-ProtES, and the birds injected with FeSO4 \(\cdot 7H_2O\) had greater \((P = 0.02)\) liver Cox mRNA levels than those injected with Fe-ProtES. The heart Cat and Cox mRNA levels on d 20 after injections were not affected \((P > 0.05)\) by injected Fe source and the interaction between injected Fe source and injected Fe level, but decreased \((P \leq 0.05)\) as injected Fe level increased.

3.6. Protein expression levels

Compared with the control, Fe injection increased \((P < 0.05)\) FTH1 protein expression levels in the liver and spleen on d 20 after injections (Table 7). Injected Fe source, Fe level and their interaction did not affect \((P > 0.05)\) the protein expression levels of liver Fth1, heart Sdh, and spleen and Femur marrow Fth1 on d 20 after Fe injections. The FTH1 protein expression in the liver was affected \((P < 0.05)\) by injected Fe source and Fe level, but was not affected \((P = 0.15)\) by their interaction. The chickens injected with Fe-MetW had greater \((P < 0.05)\) FTH1 protein expression levels in the liver than those injected with FeSO4 \(\cdot 7H_2O\) or Fe-ProtES, and there were no differences \((P > 0.05)\) between Fe-ProtM and one of the other Fe sources, or FeSO4 \(\cdot 7H_2O\) and Fe-ProtES. The SDH protein expression levels in the heart were not influenced \((P > 0.05)\) by injected Fe source and the interaction between injected Fe source and Fe level, but increased \((P = 0.02)\) with increasing injected Fe level. Injected Fe source, injected Fe level and their interaction affected \((P < 0.05)\) FTH1 protein expression levels in the spleen. As the injected Fe level was high, the birds injected with Fe-MetW or Fe-ProtM had greater \((P < 0.05)\) FTH1 protein expression in the spleen than those injected with FeSO4 \(\cdot 7H_2O\) or Fe-ProtES, and there were no differences \((P > 0.05)\) between Fe-MetW and Fe-ProtM, or FeSO4 \(\cdot 7H_2O\) and Fe-ProtES. The FTH1 protein expression levels in femur marrow were not affected \((P > 0.37)\) by injected Fe level and the interaction between injected Fe source and Fe level, but were affected \((P = 0.005)\) by injected Fe source. The birds injected with FeSO4 \(\cdot 7H_2O\) had greater \((P < 0.05)\) FTH1 protein expression in femur marrow than those injected with Fe-ProtM or Fe-ProtES, and the birds injected with Fe-MetW had greater \((P = 0.04)\) FTH1 protein expression in femur marrow than those injected with Fe-ProtES, but no differences \((P > 0.05)\) were detected between FeSO4 \(\cdot 7H_2O\) and Fe-MetW, or Fe-ProtM and Fe-ProtES.

4. Discussion

The results from the present study indicated that based on the liver Fe concentration on d 10 or 20 after Fe injections, and PI and femur marrow FTH1 protein expression level on d 20 after Fe injections, the intravenously injected organic Fe source with extremely strong chelation strength had the lowest Fe utilization in the target tissues of broilers, which has supported our hypothesis. Our results provided scientific experimental bases for developing and applying the organic Fe sources with appropriate chelation strengths and high metabolic utilization of Fe in broiler production.

The intrinsically labeled radioisotope method is a good way to verify mineral metabolism and utilization in animals. In the present study, we did not adopt this method because none of the commercial organic Fe products used had been manufactured with intrinsic radiotracers or stable isotopes of Fe. The intravenous injection method was considered an effective method to detect differences in metabolic utilization of minerals in the sensitive target tissues of animals (Zhou et al., 1994; Li et al., 2008; Shen et al., 2013). Therefore, the intravenous injection technique was used in the current study to detect differences in the metabolic utilization of Fe from different Fe sources in the sensitive target tissues of broilers. As an evaluation marker of utilization, growth observation is generally unresponsive for many trace elements (Luo et al., 2007; Lu et al., 2007; Huang et al., 2009). In the present study, injected Fe source did not influence growth performance of birds, which is in line with our previous studies (Ma et al., 2014; Zhang et al., 2016), indicating that growth performance might be affected by factors other than Fe source, and was not sensitive in assessment of the metabolic utilization of Fe sources for broilers.

Hematologic indices are commonly used to assess iron status for chicks. In the present study, Hb concentration on d 20 after Fe injections and Hct on d 10 or 20 after Fe injections increased as the injected Fe dosage increased. These results were similar to those of Zhang et al. (2016), who found that Hb and Hct could be positively affected by dietary Fe level in broilers. Blood Hb concentration and Hct have been considered as responsive criteria to assess the bioavailability of Fe (Spears et al., 1992; Aoyagi and Baker, 1995; Ettle et al., 2008; Ma et al., 2014), Ma et al. (2014) reported that blood Hb concentration was a sensitive index in reflecting differences in bioavailability among different Fe sources. However, Zhang et al. (2016) demonstrated that Hb, Hct and PI lack the sufficient sensitivity required to detect differences of bioavailabilities among Fe sources. The disparity might be mainly due to the different diets used in the above 2 studies (purified diet in the study of Ma et al. (2014) vs. corn–soybean meal diet in the study of Zhang et al. (2016)). The PI represents the Fe concentration that binds to transferrin. The results from the present study indicated that PI, but not Hb and Hct, was a sensitive indicator to detect the differences in metabolic utilization of injected Fe among Fe sources. The Fe from injected Fe-ProtES was less utilizable for PI accumulation in broilers on d 20 after injection than that from injected FeSO4 \(\cdot 7H_2O\). The different methods of Fe administration (present intravenously injection vs. dietary supplementation in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Previous studies in broilers demonstrated that Fe concentrations in the liver and kidney, especially in the liver, increased as dietary Fe concentration increased (Ma et al., 2014, 2016; Zhang et al., 2016). Our present study indicated that liver and kidney Fe
concentrations increased as the injected Fe dosage increased, which was similar to the previous findings (Ma et al., 2014, 2016; Zhang et al., 2016), suggesting that the injected Fe from different Fe sources could be mobilized and deposited in the liver and kidney of chickens. Target tissue accumulations of trace minerals have been considered to be sensitive criteria for assessment of their bioavailabilities (Baker and Ammerman, 1995; Cao et al., 1996, 2002). The findings (Ma et al., 2014, 2016; Liao et al., 2017) observed that COX activity in the brain of rats increased as supplemental Fe increased. In the present study, COX activity in the heart on d 10 or 20 after injections increased as the injected Fe doses increased, which is consistent with the previous results. Additionally, in our present study, no differences were found in the CAT, SDH or COX activities in the liver, heart and kidney among Fe sources, indicating that these enzyme activities in the tissues lack enough sensitivity to detect the differences in tissue utilization of injected Fe from different Fe sources in broilers.

The gene expression of Fe-containing enzymes might be another type of new and more sensitive biomarker to reflect the iron status in the body of chickens (Ma et al., 2016; Liao et al., 2017). In the present study, Cat and Cox mRNA levels in the heart on d 20 after injections decreased as the injected Fe doses increased, indicating that higher Fe injection might repress the gene transcription of these enzymes. The same trend was observed for Cat mRNA in the heart of broilers at 7 d of age when more Fe was added to the basal diet (Zhang et al., 2016). Ma et al. (2016) and Liao et al. (2017) also found that Cox mRNA in heart of broilers increased as dietary added Fe concentration increased from 0 to 60 mg/kg, and then began to decrease as dietary added Fe concentration was equal to or higher than 80 mg/kg. These above phenomena might be due to the Fe homeostatic control mechanisms in the body, but the exact mechanism is still unknown. Our previous study showed that

Table 6

Effect of intravenously injected iron (Fe) on mRNA levels of Fe-containing enzymes and protein in the tissues of broilers on d 20 after intravenous injections.

Injected Fe source	Injected Fe level	Liver	Heart	Spleen	Femur marrow						
		Cat, RQ₂	Sdh, RQ₂	Cox, RQ₂	Fth1, RQ₂		Cat, RQ₂	Sdh, RQ₂	Cox, RQ₂	Fth1, RQ₂	
Control	0¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FeSO₄·7H₂O	L³	0.93	1.04	0.95^{bc}	0.98	1.18	1.06	1.02	0.57	0.96	
	H³	1.18	1.02	1.02^{ab}	0.86	0.97	0.91	0.92	0.98	1.13	
Fe-MetW	L³	0.89	0.99	0.91^{bc}	0.84	0.91	1.01	0.88	0.96	1.18	
	H³	0.93	1.01	1.10^{bc}	0.90	0.87	0.96	0.85	0.93	0.95	
Fe-ProtM	L³	1.03	1.03	0.96^{bc}	0.83	1.09	1.04	0.93	0.94	0.86	
	H³	1.09	0.96	0.94^{bc}	0.99	0.94	1.04	0.71	0.97	0.98	
Fe-ProtES	L³	1.11	1.03	0.96^{bc}	0.87	1.10	1.16	0.93	0.87	0.98	
	H³	1.06	1.06	0.88^c	0.94	0.78	1.10	0.76	0.73	0.91	
SEM		0.10	0.04	0.04	0.08	0.13	0.06	0.06	0.07	0.09	

Cat = catalase; Sdh = succinate dehydrogenase; Cox = cytochrome C oxidase; Fth1 = ferritin heavy chain 1; RQ = relative quantities; Fe-MetW = Fe-Met with a weak chelation strength (Qf = 43.6); Fe-ProtES = Fe proteinate with extremely strong chelation strength (Qf = 8.59 × 10⁻³).

¹ L represents the low injected Fe levels of 1.04, 1.38 and 1.58 mg (10% Fe absorbability solution) for each bird during d 22 to 28, d 29 to 35 and d 36 to 42, respectively; H represents the high injected Fe levels of 2.08, 2.76 and 3.16 mg (20% Fe absorbability solution) for each bird during d 22 to 28, d 29 to 35 and d 36 to 42, respectively.

² The mRNA levels were calculated as the RQ of the target gene mRNA to the geometric mean of β-actin mRNA and GAPDH mRNA.

³ Data represent the means of 32 replicate cages (2 birds per cage; n = 32).

⁴ Data represent the means of 16 replicate cages (2 birds per cage; n = 16).

⁵ Data represent the means of 8 replicate cages (2 birds per cage; n = 32).

^{a,b} Significant differences (P < 0.05).

ⁿ Data represent the means of replicate cages (2 birds per cage; n = 8).
liver Cox mRNA level was affected by dietary Fe concentration, and was a new and sensitive criterion for assessing the Fe requirements of broilers (Ma et al., 2016). The present study indicated that injected Fe concentrations had no effect on the liver Cox mRNA levels on d 20 after Fe injections, but the interaction of injected Fe source and Fe concentration influenced them. When the injected Fe concentration was high, the birds injected with Fe-MetW had greater liver Cox mRNA levels than those injected with Fe-ProtM and Fe-ProtES, and the birds injected with FeSO₄·7H₂O had greater liver Cox mRNA levels than those injected with Fe-ProtES. Therefore, under higher Fe injection, the liver Cox mRNA level was sensitive enough to detect the differences in the tissue utilization of injected Fe among Fe sources, and injected Fe from organic Fe source with extremely strong chelation strength was the least utilisable for liver Cox mRNA expression of broilers. This results are similar to those of Li et al. (2008), who found that based on the heart manganese-containing superoxide dismutase mRNA level of broilers, the injected Mn amino acid chelate with strong chelation strength was the least favorable for tissue Mn utilization by broilers. Zhang et al. (2016) reported that when the Fe level was low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for additional, the difference in ages of broilers between the 2 studies (the present study: d 31 and 41 vs d 21 in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Ferritin is a ubiquitous intracellular Fe storage protein. Although the genomes of many species contain multiple copies of heavy-chain and light-chain sequences, the chicken genome contains only a single copy of the heavy-chain gene (Stevens et al., 1987). Ferritin has been found in many tissues, and is deposited mainly in the spleen, liver, and bone marrow (Matsumo et al., 1985; Oshtrakh et al., 2006). The expression of ferritin is tightly controlled by the intracellular Fe concentration (Muckenthaler and Hentze, 1997). When the Fe level is low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for additional, the difference in ages of broilers between the 2 studies (the present study: d 31 and 41 vs d 21 in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Ferritin is a ubiquitous intracellular Fe storage protein. Although the genomes of many species contain multiple copies of heavy-chain and light-chain sequences, the chicken genome contains only a single copy of the heavy-chain gene (Stevens et al., 1987). Ferritin has been found in many tissues, and is deposited mainly in the spleen, liver, and bone marrow (Matsumo et al., 1985; Oshtrakh et al., 2006). The expression of ferritin is tightly controlled by the intracellular Fe concentration (Muckenthaler and Hentze, 1997). When the Fe level is low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for additional, the difference in ages of broilers between the 2 studies (the present study: d 31 and 41 vs d 21 in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Ferritin is a ubiquitous intracellular Fe storage protein. Although the genomes of many species contain multiple copies of heavy-chain and light-chain sequences, the chicken genome contains only a single copy of the heavy-chain gene (Stevens et al., 1987). Ferritin has been found in many tissues, and is deposited mainly in the spleen, liver, and bone marrow (Matsumo et al., 1985; Oshtrakh et al., 2006). The expression of ferritin is tightly controlled by the intracellular Fe concentration (Muckenthaler and Hentze, 1997). When the Fe level is low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for additional, the difference in ages of broilers between the 2 studies (the present study: d 31 and 41 vs d 21 in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Ferritin is a ubiquitous intracellular Fe storage protein. Although the genomes of many species contain multiple copies of heavy-chain and light-chain sequences, the chicken genome contains only a single copy of the heavy-chain gene (Stevens et al., 1987). Ferritin has been found in many tissues, and is deposited mainly in the spleen, liver, and bone marrow (Matsumo et al., 1985; Oshtrakh et al., 2006). The expression of ferritin is tightly controlled by the intracellular Fe concentration (Muckenthaler and Hentze, 1997). When the Fe level is low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for additional, the difference in ages of broilers between the 2 studies (the present study: d 31 and 41 vs d 21 in the study of Zhang et al. (2016)) might partially explain the inconsistency.

Ferritin is a ubiquitous intracellular Fe storage protein. Although the genomes of many species contain multiple copies of heavy-chain and light-chain sequences, the chicken genome contains only a single copy of the heavy-chain gene (Stevens et al., 1987). Ferritin has been found in many tissues, and is deposited mainly in the spleen, liver, and bone marrow (Matsumo et al., 1985; Oshtrakh et al., 2006). The expression of ferritin is tightly controlled by the intracellular Fe concentration (Muckenthaler and Hentze, 1997). When the Fe level is low, the expression of ferritin is suppressed to avoid intracellular Fe sequestration. The opposite scenario takes place as Fe is abundant. Iron modulates ferritin synthesis post-transcriptionally in animals (Hentze and Kühn, 1996; Eisenstein et al., 1997). Han et al. (2000) reported that dietary supplemental Fe increased the protein expression of FTH1 in the brain of rats. The present study demonstrated that FTH1 protein expression in the liver and spleen increased as the injected Fe dosages increased, which is in line with the results of Han et al. (2000). To our knowledge, no information is available regarding the effect of supplemental Fe as different Fe sources on the FTH1 protein expression in the tissues of chickens. In the current study, FTH1 protein expression levels in the spleen of broilers on d 20 after injections were sensitive enough to detect differences in the tissue utilization of injected Fe in broilers among Fe sources. Based on the criterion, intravenously injected Fe from Fe-ProtES was the least utilisable Fe source. This might be due to its extremely strong chelation strength of the bonds between Fe and ligands, which retarded Fe from the organic Fe source being mobilized for
metabolic utilization in the target tissues of broilers. The results from the present study and our previous studies (Zhang et al., 2016, 2017; Liu et al., 2018) suggest that more organic Fe from Fe-ProtES could better resist interference from the low pH in the stomach and complex factors in the gut and directly reach the intestinal brush border, where it is hydrolyzed and absorbed as an ion, resulting in higher Fe bioavailability. The results from the present study also indicate that there are differences not only in the absorption of Fe in the small intestine, but also in the metabolic utilization of Fe from organic Fe sources with different chelation strengths in the target tissues of broilers. Obviously and surely, in practice with dietary supplemental Fe, we should choose organic Fe with a strong chelation strength because it has the highest bioavailability reflecting both the Fe absorption in the gut and metabolic Fe utilization in the target tissues of broilers. However, further studies will be needed to address the relative bioavailability, absorption and metabolic utilization of Fe from the most strongly chelated EDTA Na–Fe in broilers.

5. Conclusions

The results from the current study indicated that liver and kidney Fe concentrations, and liver Ccm mRNA levels and spleen FTH1 protein expression levels were sensitive enough for detecting differences in tissue utilization of injected Fe from different Fe sources in broilers. Based on the above biomarkers, intravenously injected Fe from the organic Fe source with extremely strong chelation strength was the least usable Fe source and functioned in the sensitive target tissue less effectively than Fe from Fe sulfate or the other 2 organic Fe sources with weak or moderate chelation strength. These findings might provide a further insight into the metabolic utilization mechanism of Fe in the target tissues of chickens.

Author contributions

Lin Lu: Conceptualization, Methodology, Funding acquisition, Writing – original draft preparation. Xueyu Dong: Investigation, Data curation. Xuelian Ma: Investigation. Liyang Zhang: Resources, Project administration. Sufen Li: Resources, Software. Xugang Luo: Supervision, Funding acquisition, Writing – review & editing. Xu dong Liao: Validation, Writing – review & editing.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (project number 31672440; Beijing, China); the Research Program of State Key Laboratory of Animal Nutrition (project number 2004DA125184G1606; Beijing, China); the Agricultural Science and Technology Innovation Program (ASTIP-IAS09; Beijing, China), and the China Agriculture Research System of MOF and MARA (project number CARS-41; Beijing, China).

References

Aoyagi S, Baker DH. Iron requirement of chicks fed a semipurified diet based on casein and soy protein concentrate. Avian. Arbor Acres broiler management Guide. Huntsville, AL, USA: Aviagen; 2009.

Baker DH, Ammerman CB. Zinc bioavailability. In: Ammerman CB, editor. Bioavailability of nutrients for animals. San Diego: Academic Press; 1995. p. 367–98.

Brandsch C, Ringseder R, Eder K. High dietary iron concentrations enhance the formation of cholesterol oxidation products in the liver of adult rats fed salmon oil with minimal effects on antioxidant status. J Nutr 2002;132:2263–5.

Cao J, Lu G, Henry PR, Ammerman CB, Littell RC, Miles RD. Effect of dietary iron concentration, age, and length of iron feeding on feed intake and tissue iron concentration of broiler chicks for use as a bioassay of supplemental iron sources. Poultry Sci 1996;75:405–504.

Cao J, Henry PR, Davis SR, Cousins RJ, Miles RD, Littell RC, et al. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Anim Feed Sci Technol 2002;91:161–70.

de Deugnier M, Rao R, Wohlen JD, Luciana M, Nelson CA, Georgieff MK. Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 2000;48:169–76.

Eisenstein RS, Kennedy MC, Beinert H. The iron responsive element (IRE), the iron regulatory protein (IRP) and cytosolic aconitase: posttranscriptional regulation of mammalian iron metabolism. In: Silver S, Walden W, editors. Metal ions and gene regulation. New York: Chapman & Hall; 1997.

Ettle T, Schlegel P, Roth FX. Investigations on iron bioavailability of different sources and supply levels in piglets. J Anim Physiol Anim Nutr 2008;92:35–43.

Feng J, Ma WQ, Xu ZR, He JX, Wang YZ, Liu JX. The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weaning pigs. Anim Feed Sci Technol 2009;150:106–13.

Ganz T, Nennest E, Hepcindin and disorders of iron metabolism. Annu Rev Med 2011;62:347–60.

Han J, Day JR, Thomson K, Connor JR, Beard JD. Iron deficiency alters H- and L-ferritin expression in rat brain. Cell Mol Biol 2000;46:517–20.

Hansel SN, Trakoolnul J, Liu H, Moeser AJ, Spears JW. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese bioavailability in young pigs. Poultry Sci 2009;139:1474–9.

Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996;93:8175–82.

Huang X, Lu L, Li SF, Luo XG, Liu B. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2009;87:2038–46.

Huebers HA, Eng MJ, Josephson BM, Epkoon N, Retterm LR, Labbe RF, et al. Plasma iron and transferrin-binding iron capacity evaluated by colorimetric and immunoprecipitation methods. Clin Chem 1987;33:273–7.

Li SF, Luo XG, Lu L, Liu B, Kuang X, Shao GZ, et al. Effect of intravenously injected manganese on the gene expression of manganese-containing superoxide dismutase in broilers. Poultry Sci 2008;87:2593–600.

Li XF, Zhang LY, Zhang LY, Liu L, Luo XG. Effect of iron source on iron absorption by in situ ligated intestinal loops of broilers. Anim Prod Sci 2017;57:308–14.

Liao X, Ma C, Liu L, Zhang L, Luo X. Determination of dietary iron requirements by full expression of iron-containing cytochrome c oxidase in the heart of broilers from 22 to 42 d of age. Br J Nutr 2011;118:493–9.

Liu GQ, Li SF, Su X, He Y, Zhang LY, Liu L, et al. Estimation of standardized mineral availabilities in feedstuffs for broilers. J Anim Sci 2019;97:794–802.

Luo L, Luo XC, Ji C, Liu B, Yu SX. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. J Anim Sci 2007;85:812–22.

Luo L, Zhang L, Li X, Zhang LY, Luo XD, Luo XG. Organic iron absorption by in situ ligated jejunal and ileal loops of broilers. J Anim Sci 2018;96:5198–208.

Luiggi FG, Berto DA, Mello GD, Girao LVC, Villela CCEJ, Tierzo VL, et al. Relative bioavailability of iron from organic sources for weaning piglets. Semina Ciencias Agrarias 2014;35:2807–16.

Luo XG, Li SF, Lu L, Liu B, Kuang X, Shao GZ, et al. Gene expression of manganese-containing superoxide dismutase as a biomarker of manganese bioavailability for manganese sources in broilers. Poultry Sci 2007;86:888–94.

Ma XY, Liu SB, Lu L, Li SF, Xie JX, Zhang LY, et al. Relative bioavailability of iron protinate for broilers fed a casein-dextrose diet. Poultry Sci 2014;93:556–63.

Ma XY, Luo X, Liu L, Zhang L, Luo X. Determination of dietary iron requirements by full expression of iron-containing enzymes in various tissue samples of broilers. J Nutr 2016;146:2267–73.

Matsumoto T, Moti M, Awai M. Distribution of ferritin and hemosiderin in the liver, spleen and bone marrow of normal, phlebotomized and iron overloaded rats. Acta Med Okayama 1985;395:347–60.
Ministry of Agriculture of the People’s Republic of China. Feeding standard of chicken (NY/T 33-2004). Beijing: China Agricultural Press; 2004.

Muckenthaler M, Hentze MW. Mechanisms for posttranscriptional regulation by iron-responsive elements and iron regulatory proteins. In: Jeanteur P, editor. Cytoplasmic fate of messenger RNA. Berlin: Springer; 1997. p. 93–115.

NRC. Nutrient requirements of poultry. 9th ed. Washington, DC: National Academy Press; 1994.

Ni K, Yan S, Hao J, Song LH, Wu LH, Lu D. Mineral nutrition of agricultural livestock. Shanghai: Shanghai Scientific and Technological Literature Press; 1995.

Oshtrakh MI, Milder OB, Semionkin VA, Malakheeva LI, Prokopenko PC. Analysis of iron storage proteins in chicken liver and spleen tissues in comparison with human liver ferritin by Mossbauer spectroscopy. J Radioanal Nucl Chem 2006;269:671–7.

Qin S, Liao X, Lu L, Zhang L, Xi L, Guo Y, et al. Manganese enhances the expression of the manganese superoxide dismutase in cultured primary chick embryonic myocardial cells. J Integr Agric 2017;16:2038–46.

Shinde PL, Ingale SL, Choi JY, Kim JS, Pak SI, Chae BJ. Efficiency of inorganic and organic iron sources under iron depleted conditions in broilers. Br Poultry Sci 2013;52:578–83.

Spears JM, Schoenherr WS, Kegleg EB, Flowers WL, Alhusen HD. Efficiency of iron methionine as a source of iron for nursing pigs. J Anim Sci 1992;70(Suppl 1):243.

Stevens PW, Dodgson JB, Engel JD. Structure and expression of the chicken ferritin H-subunit gene. Mol Cell Biol 1987;7:1751–6.

Yang QM. The handbook for raising of broilers. Beijing: China Agriculture University Press; 2003.

Yu B, Huang WJ, Chiu PW. Bioavailability of iron from amino acid complex in weanling pigs. Anim Feed Sci Technol 2000;86:39–52.

Zhang LX, Li XF, Liao XD, Zhang LY, Lu L, Luo XC. The chemical characteristics of organic iron sources and their relative bioavailabilities for broilers fed a conventional corn–soybean meal diet. J Anim Sci 2013;94:2378–96.

Zhou W, Komegay ET, Lindemann MD, Swinkels JW, Welten MK, Wong EA. Stimulation of growth by intravenous injection of copper in weanling pigs. J Anim Sci 1994;72:2395–403.