Eigen-entropy measure to study phase separation in market behavior

Anirban Chakraborti1,2,*, Hrishidev3, Kiran Sharma1, and Hirdesh K. Pharasi4

1School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
2Centro Internacional de Ciencias, Cuernavaca-62210, México
3Indian Institute of Science Education and Research, Pune-411008, India
4Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca-62210, México

*anirban@jnu.ac.in

ABSTRACT

One of the spectacular examples of a complex system is the financial market, which displays rich correlation structures among price returns of different assets. The eigenvalue decomposition of a correlation matrix into partial correlations — market, group and random modes, enables identification of dominant stocks or “influential leaders” and sectors or “communities”. The correlation-based network of leaders and communities changes with time, especially during market events like crashes, bubbles, etc. Using a novel entropy measure – eigen-entropy, computed from the eigen-centralities (ranks) of different stocks in the correlation-network, we extract information about the “disorder” (or randomness) in the market and its modes. The relative-entropy measures computed for these modes enable us to construct a “phase space”, where the different market events undergo “phase-separation” and display “order-disorder” transitions, as observed in critical phenomena in physics. We compare and contrast the empirical results against the numerical results for Wishart orthogonal ensemble (WOE), which has the maximum disorder (randomness) and hence, the highest eigen-entropy. This new methodology helps us to better understand market dynamics, and characterize the events in different phases as anomalies, bubbles, crashes, etc. This can be easily adapted and broadly applied to the studies of other complex systems such as in brain science or environment.

Introduction

A financial market is a spectacular example of a complex system that is generally composed of many constituents, which may be diverse in forms but largely interconnected, such that their strong inter-dependencies and emergent behavior change with time. Thus, it becomes almost impossible to describe the dynamics of the system through some simple mathematical equations, and so new tools and interdisciplinary approaches are needed. An interesting representation of the financial market has been in the form of a correlation-based network. This has given new and useful insights into the underlying patterns and mechanisms that drive the overall behavior of this seemingly unpredictable complex system. One can look at the cross-correlations between price return time series of various stocks in a particular time epoch and infer a temporal cross-section of the underlying network structure that evolves with time. There are multitudes of methods such as Minimum Spanning Trees, Planar Graphs, Asset Graphs to extract the network structure from the correlation matrices.

In earlier studies, interesting correlation patterns and thereby network structures were observed as time evolved, especially during critical events such as market crashes, bubbles, etc. Recently, Pharasi et. al confirmed that during a market crash all the stocks start behaving similarly and the whole market begins to act like a single huge cluster or community. In contrast, during a bubble period, a particular sector gets overpriced or over-performs, causing accentuation of disparities among the various sectors or communities. Thus, if one were able to monitor the evolution of this network structure continuously, one would be able to acquire useful insights that would help in developing better investment strategies and manage risk.

A very recent work proposed an entropy measure called “structural entropy”, as a numerical characterization of the network topology based on the cross-correlation matrix of a financial market at a particular time. This way of quantifying the community structures present in financial markets can be interpreted as a method to measure the “diversity”. The structural entropy measure S varies with the change in the number of communities and its heterogeneity (see S_I). To calculate the entropy one has to first get the communities in the correlation matrix based network using a community detection algorithm, and look at the normalized sizes of the communities. Then one applies the information theory based entropy formula to compute the value of S. A major drawback of this method is that there is information loss and arbitrariness in the detection of the community
structure from correlation matrix. In order to circumvent the information loss during the conversion of correlation matrices to adjacency matrices, an algorithm was used that utilizes random matrix theory and eigenvalue decomposition method in order to get a “modularity” matrix directly from a correlation matrix without relying on any arbitrary parameter or a threshold. However, this prescription only manages to detect certain features (based on group or sectoral dynamics of the financial market) and hence the problem of information loss is partially resolved.

Here, we are proposing a novel entropy measure based on the eigenvector centrality of a correlation-based network, which can be determined from the Pearson correlation matrix of time series. The eigenvalue decomposition of a correlation matrix into partial correlations – market, group and random modes enables identification of dominant stocks (influential leaders) and sectors (communities). The correlation-based network of leaders and communities changes with time, especially during market events like crashes, bubbles, etc. Using a novel entropy measure – eigen-entropy, computed from the eigen-centralities (ranks) of different stocks in the correlation-network, we extract information about the “disorder” (or randomness) in the market and its eigenmodes. The relative-entropy measures computed for these eigenmodes enable us to construct a “phase space”, where the different market events undergo “phase-separation” (akin to many physical phenomena; see Refs. and display “order-disorder” transitions as in physics. This type of behavior has never been recorded for financial markets. Our proposed methodology helps one to extract crucial information regarding the evolving structure of the correlation network and better understand market dynamics as well as characterize the events in different phases as anomalies, bubbles, crashes, etc. in the market dynamics. This methodology is very general, robust and flexible to be employed in the studies of other complex systems as well.

Methodology and Results

Our aim is to study the time evolution of the cross-correlation matrices for N stocks over different time-epochs (of size M), as traditionally analyzed in RMT or in the analysis of adaptive complex systems like financial markets, and characterize the epochs as different “phases” in the space of eigen-entropies. Thus, we begin by constructing a equal-time cross-correlation matrix (see Methods) with elements: $C_{ij}(\tau) = (\langle r_i \rangle \langle r_j \rangle - \langle r_i \rangle \langle r_j \rangle)/\sigma_i \sigma_j$, where $i, j = 1, \ldots, N$ and τ indicates the end date of the time-epoch of size M. We then study the evolution of the cross-correlation structures of return matrices $C(\tau)$ and the eigenmodes over different overlapping time-epochs, shifted by Δ days. In this paper, we compute correlation matrices for the short-time-epochs of $M = 40$ days with a shift of $\Delta = 20$ days, for the stock markets of (a) United States of America with $N = 194$ stocks of S&P-500 (USA) for a return series of $T = 8060$ days, and (b) Japan with $N = 165$ stocks of Nikkei-225 (JPN) for $T = 7990$ days, over a period 1985–2016.

Fig. 1 shows the schematic diagram for computation of eigen-entropy from market returns. The plot of return time-series for arbitrarily chosen stocks (here three), with a chosen epoch (of size M days) ending on day τ for the computation of Pearson correlation coefficients is shown in Fig. 1 (A). Fig. 1 (B) shows four arbitrarily chosen cross-correlation matrices $C(\tau)$: Anomaly (06/01/1988), Bubble (01/09/2000), Crash (22/09/2011) and Normal (28/02/1985) periods, in the S&P500 market with $N = 194$ stocks and epoch of $M = 40$ days; the stocks are arranged according to their sectors (abbreviations given in the data description). The evolution of the market structure is captured by the cross-correlation matrices $C(\tau)$. As mentioned in details in the Methods section, we define $A = |C|^2$ and use the characteristic equation $|A - \lambda I| = 0$ to compute the eigenvalues $\{\lambda_1, \ldots, \lambda_N\}$; we denote the maximum eigenvalue as λ_{max} and the eigenvector corresponding to the maximum eigenvalue as p, such that $A p = \lambda_{\text{max}} p$. The normalized eigenvector has components: $p = \{p_i\}$, that are known as eigen-centralities. Fig. 1 (C) shows the ranked (sorted) eigen-centralities $\{p_i\}$ of the normalized eigenvector corresponding to the maximum eigenvalue – anomalous (green circles), bubble (blue diamonds), crash (red triangles) and normal (grey stars) periods of the financial market. Fig. 1 (D) shows the evolution of the eigen-entropy $H = -\sum_{i=1}^{N} p_i \ln(p_i)$, evaluated from the correlation matrices using a rolling epoch of $M = 40$ days and a shift of $\Delta = 20$ days, for the 32-year period 1985-2016.

For any matrix, we can perform the eigenvalue decomposition (see Methods). Fig. 2 shows the eigenvalue decompositions of the correlation matrices, for (A) normal, (B) anomalous, (C) bubble, (D) crash periods of the financial market, corresponding to the frames in Fig. 1, and in addition (E) shows the results for a random matrix taken from a Wishart orthogonal Ensemble (WOE), where we have denoted the different matrices as: full correlation (C), market mode (CM), group mode (CG), random mode (CR), group-random mode (CGR) and displayed the results in Fig. 2 (Left to Right). The last column shows the results for the ranked eigen-centralities (p_i) of the different correlation modes: full (C in black curve), market mode (CM in turquoise curve) and group-random mode (CGR in grey curve). Interestingly, for a normal period, the three curves are distinct and there are hierarchies in ranks in all curves; for the market anomaly, all the three curves almost coincide; for the bubble period, the curves corresponding to the full and the group-random modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode; for crash period, the curves corresponding to the full and the market modes coincide while there is a strict hierarchy in the eigen-centralities of the group-random mode; and for the WOE, once again the curves corresponding to the full and the group-random modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode. This feature is then exploited in characterizing the anomalies, bubbles, crashes and normal periods in the market, with the help of the
Figure 1. Schematic diagram for computation of eigen-entropy from market returns. (A) Return time-series plots for three arbitrarily chosen stocks (out of a total N stocks), with a chosen epoch (of size M) ending on day τ for the computation of Pearson correlation coefficients. (B) Four arbitrarily chosen cross-correlation matrices $C(\tau)$: Anomaly (06/01/1988), Bubble (01/09/2000), Crash (22/09/2011) and Normal (28/02/1985) periods, in the S&P500 market with $N = 194$ stocks and epoch of $M = 40$ days; the stocks are arranged according to their sectors (abbreviations given in the data description). The market structure changes as time evolves, which is captured by the cross-correlation matrices $C(\tau)$. We define $A = |C|^2$ and use the characteristic equation $|A - \lambda I| = 0$ to compute the eigenvalues $\{\lambda_1, ..., \lambda_N\}$; we denote the maximum eigenvalue as λ_{max} and the eigenvector corresponding to the maximum eigenvalue as p, such that $A p = \lambda_{\text{max}} p$. The normalized eigenvector has components: $p = \{p_i\}$, that are known as eigen-centralities. (C) The ranked (sorted) eigen-centralities $\{p_i\}$ of the normalized eigenvector corresponding to the maximum eigenvalue are plotted, for the anomalous (green circles), bubble (blue diamonds), crash (red triangles) and normal (grey stars) periods of the financial market. (D) Eigen-entropy ($H = -\sum_{i=1}^{N} p_i \ln p_i$), evaluated from the correlation matrices using a rolling epoch of $M = 40$ days and a shift of $\Delta = 20$ days, is plotted for the 32-year period 1985-2016.
Table 1. Important Stock Market Events

Sl. No	Crisis	Period Date	Region Affected
1	Black Monday	1987-10-19	USA, JPN
2	Dot Com Bubble	1994-2000	USA, JPN
3	Lost Decade	2001-2010	JPN
4	US Housing Bubble	2005-2007	USA
5	Lehman Brothers Crash	2008-09-16	USA, JPN
6	DJ Flash Crash	2010-05-06	USA, JPN
7	Tsunami/Fukushima	2011-03-11	JPN
8	August 2011 Stock Markets Fall	2011-08-08	USA, JPN
9	Chinese Black Monday	2015-06-12	USA, JPN

The eigen-entropies may be computed (see Methods) from the full correlation (C), market mode (C_M) and group-random mode (C_{GR}). Fig. 3 (A) and (C) show the evolution of market returns r_τ, mean market correlations μ_τ, and different eigen-entropies H_τ, H_M_τ and H_{GR_τ} (shown in different colors; see legend), for S&P-500 and Nikkei-225 markets, respectively. The vertical dashed lines correspond to some indicative dates for bubbles (blue) and crashes (red) (see Table 1). These eigen-entropies can then be used for the characterization of market events, such as bubbles and crashes. We used a rolling mean and rolling standard deviation (with a window size of 40 days), and computed the standardized values of eigen-entropies H_{M_τ}, H_{GR_τ} and $H_{GR_\tau}^{Std}$. Fig. 3 (B) and (D) show the 3D-plots of the standardized values of eigen-entropy ($H_{M_\tau}^{Std}$) corresponding to the full (along z-axis), eigen-entropy ($H_{GR_\tau}^{Std}$) corresponding to the group-random (x-axis), and eigen-entropy ($H_{GR_\tau}^{Std}$) corresponding to the market mode (along y-axis), for S&P-500 and Nikkei-225 markets, respectively. The sequence of frames display the “order-disorder” transitions in case of bubble bursts (Dot-com in USA and JPN; shown in blue) and crashes (Lehman Brothers in USA and Fukushima in JPN; shown in red).

Fig. 4 shows evolution of relative-entropies and “phase separation” for S&P-500 and Nikkei-225 markets. We compute the relative-entropies $H - H_M$, $H - H_{GR}$, and $H_M - H_{GR}$, starting from the eigen-entropies corresponding to the full correlation, market mode and group-random mode, respectively. We then use these new variables to characterize and identify the different market events as anomalies, bubbles, bubble bursts, crashes and normal periods. Fig. 4 (B) and (D) show the 2D-plots of the phase space using relative-entropies $H - H_M$, and $H - H_{GR}$, for S&P-500 and Nikkei-225 markets, respectively. As evident, the epochs (event frames) clearly undergo “phase separation” – segregate into different market events: anomalies (green), bubbles (light blue), bubble bursts (blue), crashes (red) and normal (grey). For the first time, we have been able to display such a phenomenon in the context of financial markets, which can be very significant. The characterized events (corresponding to Fig. 4 (B) and (D)) are then indicated as vertical lines in the time-evolution plots in Fig. 4 (A) and (C). Interestingly, we find that anomalies occur just around the major crashes. Similarly, there are intriguing patterns in the appearances of bubble formations and bubble bursts.

Once we are able to characterize the epochs (event frames) into different “phases”, we can create the different ensembles of anomalies, bubbles, bubble bursts, crashes and normal events. For each type of event, we find that eigen-centralities have distinct ranges of values and the sorted eigen-centrality curves have interesting features (hierarchies) in the eigenmodes. The eigen-entropies actually quantify these features appropriately. For the S&P-500 and Nikkei-225 markets, we compute the histograms of the eigen-centralities (p_i). Fig. 5 shows the histograms (for S&P-500 (Top) and Nikkei-225 (Bottom)) for all the characterized anomalies (green circles), bubbles (light blue diamonds), bubble bursts (blue squares), crashes (red triangles), normal events (grey stars), averaged over the respective ensembles, for the full/decomposed matrices. For comparison, we also plot the results for the WOE (black squares). This helps us understand what actually happens in the market, during these different types of events (phases) and what type of hierarchies exist within the stocks’s eigen-centralities. This would shed new light into the understanding of formation of bubbles, development of bursts and crashes, etc.

Summary and discussions

In summary, we have proposed a novel entropy measure, eigen-entropy, which is based on the eigenvector centrality of the different stocks in a correlation-based network, that can be determined directly from the Pearson correlation matrix of return time series. The eigenvalue decomposition of a correlation matrix into partial correlations – market, group and random modes, enabled the identification of dominant stocks and sectors (communities). The correlation-based network of leaders and
Figure 2. Eigenvalue decomposition of the correlation matrices. For (A) normal, (B) anomalous, (C) bubble, (D) crash periods of the financial market, as in Fig. 1, and (E) random matrix taken from uncorrelated WOE. (Left to right) Plots showing the correlation matrices: full (C), market mode (C_M), group mode (C_G), random mode (C_R), group-random mode (C_{GR}) and the ranked eigen-centralities (p_i) of the different correlation modes: full (C in black curve), market mode (C_M in turquoise curve) and group-random mode (C_{GR} in grey curve). Interestingly, for a normal period, the three curves are distinct and there are hierarchies in ranks in all curves; for the market anomaly, all the three curves almost coincide; for the bubble period, the curves corresponding to the full and the group-random modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode; for crash period, the curves corresponding to the full and the market modes coincide while there is a strict hierarchy in the eigen-centralities of the group-random mode; and for the WOE, once again the curves corresponding to the full and the group-random modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode. This feature is then exploited in characterizing the market events into anomalies, bubbles, crashes, normal periods, etc. with the help of the corresponding entropy functions as in Fig. 3 and Fig. 4.
Figure 3. Evolution of market returns ($r(\tau)$), mean market correlations ($\mu(\tau)$), eigen-entropies. The eigen-entropies are computed from the full correlation, market mode and group-random mode (shown in different colors; see legend), for (A) S&P-500 and (C) Nikkei-225 markets. Characterization of market events as bubbles and crashes. The 3D-plots of the standardized values of eigen-entropy (H_{std}) corresponding to the full (along z-axis), eigen-entropy (H_{std}^{GR}) corresponding to the group-random (x-axis), and eigen-entropy (H_{std}^{M}) corresponding to the market mode (along y-axis), for (B) S&P-500, and (D) Nikkei-225 markets. The sequence of frames display the “order-disorder” transitions in case of bubble bursts (Dot-com in USA and JPN; shown in blue) and crashes (Lehman Brothers in USA and Fukushima in JPN; shown in red).
Figure 4. Evolution of relative-entropies and “phase separation”. For (A) S&P-500 and (C) Nikkei-225 markets, the relative-entropies $H_M - H$, $H_M - H_{GR}$, & $H - H_{GR}$ are evaluated from the full, market and group-random mode to characterize and identify the different market events as anomalies, bubbles, bubble bursts, crashes and normal periods. The 3D-plots of the phase space using relative-entropies $H_M - H$, $H_M - H_{GR}$, & $H - H_{GR}$, which are evaluated from the full, market and group-random mode to characterize and identify the different market events, for (B) S&P-500, and (D) Nikkei-225 markets. The event frames clearly segregate into different market events: anomalies (green), bubbles (light blue), bubble bursts (blue), crashes (red) and normal (grey).
Figure 5. Averaged distributions of the eigen-centralities. Histograms of the eigen-centralities (p_i) for anomalies (green circles), bubble (light blue diamonds), bubble bursts (blue squares), crash (red triangles) and normal (grey stars) and WOE (black squares), averaged over the respective ensembles for USA (top row) and for JPN (bottom row). Histograms are evaluated using (A and D) full correlation matrices (C) and decomposed correlation matrices of (B and E) market mode (C_M), and (C and F) group and random mode (C_{MGR}).
We have shown that the eigen-entropy is a simple yet robust prescription to quantify the disorder in a financial market. The methodology does not have any arbitrary thresholds. Further, the relative-entropy measures computed for these eigenmodes enabled us to construct a “phase space”, where the different market events undergo “phase-separation” and display “order-disorder” transitions. The crashes occupy the region in the phase space, where $H - H_M \simeq 0$. During the crashes, the H and H_M almost touch the maximum disorder, $\ln N$ (corresponding to the random WOE). The events like “Dotcom bubble bursting” appear in the $H - H_{GR} \simeq 0$ axis. The events lying far away from the origin and axes are happening during bubble formation periods. The events lying close to the origin are like anomalies happening right before or right after major crashes. This type of phase-separation behavior in financial markets is being reported for the first time. We have laid a clear prescription in how to characterize the market events as anomalies, bubbles, crashes, etc. using the relative entropies. It is not well-understood how and when bubbles form and when they burst. Our proposed methodology help us to understand the market dynamics and find the time-ordering and appearances of the bubbles (formations or bursts) and crashes, separated by normal periods. We have studied the evolution of events around major crashes and bubbles (from historical records in SI). Of course, further studies are required.

We have studied two different markets USA S&P-500 and JPN Nikkei-225, across a period of 32 years. We have observed that market behavior changes radically after 2000 (USA) and 1990 (JPN) corroborating to the findings of our earlier work, where we had found that the markets have “states” with different mean market correlations and market volatilities. These results are certainly of deep significance for the understanding of financial market behaviour and designing strategies for risk management.

Methods

Data Description

We have used the adjusted closure price time series from the Yahoo finance database, for two countries: United States of America (USA) S&P-500 index and Japan (JPN) Nikkei-225 index, for the period 02-01-1985 to 30-12-2016, and for the stocks as follows:

- USA — 02-01-1985 to 30-12-2016 ($T = 8068$ days); Number of stocks $N = 194$;
- JPN — 04-01-1985 to 30-12-2016 ($T = 7998$ days); Number of stocks $N = 165$;

where we have included the stocks which are present in the indices for the entire duration. The sectoral abbreviations are as follows: CD—Consumer Discretionary; CS—Consumer Staples; EG—Energy; FN—Financial; HC—Health Care; ID—Industrials; IT—Information Technology; MT—Telecommunication Services; and UT—Utilities. The list of stocks (along with the sectors) for the two markets are given in the Table S2 and Table S3 in SI.

It may be noted that we have $T = 7897$ days data for the Nikkei-225 index whereas $T = 7998$ days data for stocks. So, we add zero return entries corresponding to the missing days in the time series of JPN index for the purpose of comparison, without affecting the results or conclusions.

Cross-correlation Matrix

Returns series are constructed as $r_i(\tau) = \ln P_i(\tau) - \ln P_i(\tau - \Delta)$, where $P_i(\tau)$ is the adjusted closure price of stock i on day τ, and Δ is the shift in days. Instead of working with a long time series to determine the correlation matrix for N USA stocks, we work with a short time epoch of M days with a shift of Δ days.

Then, the equal time Pearson correlation coefficients between stocks i and j is defined as $C_{ij}(\tau) = (\langle r_i r_j \rangle - \langle r_i \rangle \langle r_j \rangle) / \sigma_i \sigma_j$, where $\langle \ldots \rangle$ represents the expectation value computed over the time-epochs of size M and the day ending on τ, and σ_k represents standard deviation of the k-th stock evaluated for the same time-epochs. We use $C(\tau)$ to denote the return correlation matrix for the time-epochs ending on day τ.

Eigen-centrality

Generally, for any given graph $G := (N, E)$ with $|N|$ nodes and $|E|$ edges, let $A = (a_{ij})$ be the adjacency matrix, such that $a_{ij} = 1$, if node i is linked to node j, and $a_{ij} = 0$ otherwise. The relative centrality, p_i, score of node i can be defined as: $p_i = \frac{1}{N} \sum_{j \in M(i)} p_j = \frac{1}{N} \sum_{j \in G} a_{ij} p_j$, where $M(i)$ is a set of the neighbors of node i and λ is a constant. With a small mathematical rearrangement, this can be written in vector notation as the eigenvector equation

$$Ap = \lambda p.$$
In general, there may exist many different eigenvalues \(\lambda \) for which a non-zero eigenvector solution exists. We use the characteristic equation
\[
|A - \lambda I| = 0
\]
to compute the eigenvalues \(\{\lambda_1, \ldots, \lambda_N\} \). However, the additional requirement that all the entries in the eigenvector be non-negative \((p_i \geq 0) \) implies (by the Perron–Frobenius theorem) that only the maximum eigenvalue \((\lambda_{\text{max}}) \) results in the desired centrality measure. The \(i \)th component of the related eigenvector then gives the relative eigen-centrality score of the node \(i \) in the network. However, the eigenvector is only defined up to a common factor, so only the ratios of the centralities of the nodes are well defined. To define an absolute score one must normalise the eigenvector, such that the sum over all nodes \(N \) is unity, i.e., \(\sum_{i=1}^{N} p_i = 1 \). Furthermore, this can be generalised so that the entries in \(A \) can be any matrix with real numbers representing the connection strengths. For correlation matrices \(C(\tau) \), in order to enforce the Perron–Frobenius theorem, we work with \(A = |C|^{n} \), where \(n \) is any positive integer (we have used \(n = 2 \) in the paper; other values are discussed in SI).

Eigenvalue decomposition of the empirical cross-correlation matrix

We have used the eigenvalue decomposition of the correlation matrices into market mode \((C_M) \), the group modes \((C_G) \) and the random modes \((C_R) \) and a composite group and random modes \(C_{GR} \). From such a decomposition, it is also possible to reconstruct the correlation matrix as aggregates of the contributions of modes \(C_M, C_G, \) \& \(C_R \) or \(C_M \) \& \(C_{GR} \) as we show below.

In general, the correlation matrix of size \(N \times N \) will have \(N \) eigenvalues, say \(\{\lambda_1, \ldots, \lambda_N\} \) arranged in descending order of magnitude. Then the maximum eigenvalue \(\lambda_1 = \lambda_{\text{max}} \) of the correlation matrix, corresponds to a market mode that reflects the aggregate dynamics of the market common across all stocks, and strongly correlated to the mean market correlation \(\mu \). The group modes capture the sectoral behavior of the market, which are next few eigenvalues subsequent to the largest eigenvalue of the correlation matrix. Remaining eigenvalues capture the random modes behavior of the market (see Fig. 2). By using the eigenvalue decomposition, we can thus filter the true correlations (coming from the signal) and the spurious correlations (coming from the random noise).

For this, we first decompose the aggregate correlation matrix as
\[
C = \sum_{i=1}^{N} \lambda_i e_i e_i^T,
\]
where \(\lambda_i \) and \(e_i \) are the eigenvalues and eigenvectors, respectively, of the correlation matrix \(C \). An easy way of handling the reconstruction of the correlation matrix is to sort the eigenvalues in descending order, and then rearranging the eigenvectors in corresponding ranks. This allows one to decompose the matrix into three separate components, viz., market, group and random
\[
C = C_M + C_G + C_R,
\]
\[
= \lambda_1 e_1 e_1^T + \sum_{i=2}^{N_G} \lambda_i e_i e_i^T + \sum_{i=N_G+1}^{N} \lambda_i e_i e_i^T,
\]
where \(N_G \) is the number of eigenvalues that satisfy the constraint \(\lambda_+ \leq \lambda_G < \lambda_1 \), with
\[
\lambda_+ = \sigma^2 \left(1 + \frac{1}{\sqrt{Q}} \right)^2.
\]
For empirical matrices, it is very difficult to determine the exact value of \(\lambda_+ \) and hence figure out \(N_G \), for which the eigenvectors from 2 to \(N_G \) would describe the sectoral dynamics. Here, we choose \(N_G = 20 \) arbitrarily for the correlation decomposition (Fig. 2), corresponding to the 20 largest eigenvalues after the largest one.

In order to avoid the arbitrariness, we prefer the following decomposition:
\[
C = C_M + C_{GR}
\]
\[
= \lambda_1 e_1 e_1^T + \sum_{i=2}^{N} \lambda_i e_i e_i^T.
\]

Eigen-entropy

Following the tradition in information theory, we propose a new measure, the eigen-entropy \(H = -\sum_{i=1}^{N} p_i \ln p_i \), since all the normalised eigen-centralities are non-negative \((p_i \geq 0) \) and \(\sum_{i=1}^{N} p_i = 1 \), as explained above. The eigen-entropy may be described as kind of measure of disorder or the degree of randomness in the matrix \(A = |C|^2 \); higher the eigen-entropy, higher is the disorder in the matrix; the highest being in the case of WOE, where \(H \sim \ln N \).

Thus, corresponding to \(A = |C_M|^2 \) and \(A = |C_{GR}|^2 \), we have \(H_M \) and \(H_{GR} \), respectively.
References

1. Vemuri, V. Modeling of Complex Systems: An Introduction (Academic Press, New York, 1978).
2. Gell-Mann, M. What is complexity? Complexity 1, 16–19 (1995).
3. Bar-Yam, Y. General features of complex systems. Encyclopedia of Life Support Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK (2002).
4. Mantegna, R. N. & Stanley, H. E. An introduction to econophysics: correlations and complexity in finance (Cambridge University Press, Cambridge, 2007).
5. Bouchaud, J.-P. & Potters, M. Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management (Cambridge University Press, 2003).
6. Sinha, S., Chatterjee, A., Chakraborti, A. & Chakrabarti, B. K. Econophysics: an introduction (John Wiley & Sons, 2010).
7. Chakraborti, A., Muni Toke, I., Patriarca, M. & Abergel, F. Econophysics review: I. empirical facts. Quantitative Finance 11, 991–1012 (2011).
8. Chakraborti, A., Muni Toke, I., Patriarca, M. & Abergel, F. Econophysics review: II. agent-based models. Quantitative Finance 11, 1013–1041 (2011).
9. Chakraborti, A. et al. Statistical mechanics of competitive resource allocation using agent-based models. Physics Reports 552, 1–25 (2015).
10. Bonanno, G., Caldarelli, G., Lillo, F. & Mantegna, R. N. Topology of correlation-based minimal spanning trees in real and model markets. Phys. Rev. E 68, 046130 (2003). URL https://link.aps.org/doi/10.1103/PhysRevE.68.046130. DOI 10.1103/PhysRevE.68.046130.
11. Onnela, J.-P., Kaski, K. & Kertész, J. Clustering and information in correlation based financial networks. The European Physical Journal B 38, 353–362 (2004). URL https://doi.org/10.1140/epjb/e2004-00128-7. DOI 10.1140/epjb/e2004-00128-7.
12. Tumminello, M., Di Matteo, T., Aste, T. & Mantegna, R. N. Correlation based networks of equity returns sampled at different time horizons. The European Physical Journal B 55, 209–217 (2007). URL https://doi.org/10.1140/epjb/e2006-00414-4. DOI 10.1140/epjb/e2006-00414-4.
13. Tumminello, M., Lillo, F. & Mantegna, R. N. Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior & Organization 75, 40–58 (2010). URL http://www.sciencedirect.com/science/article/pii/S0167268110000077. DOI https://doi.org/10.1016/j.jebo.2010.01.004. Transdisciplinary Perspectives on Economic Complexity.
14. Newman, M. E., Barabási, A.-L. & Watts, D. J. The structure and dynamics of networks (Princeton University Press, Princeton, 2006).
15. Barabási, A.-L. Network science (Cambridge University Press, Cambridge, 2016).
16. Bonanno, G., Caldarelli, G., Lillo, F. & Mantegna, R. N. Topology of correlation-based minimal spanning trees in real and model markets. Phys. Rev. E 68, 046130 (2003). URL https://link.aps.org/doi/10.1103/PhysRevE.68.046130. DOI 10.1103/PhysRevE.68.046130.
17. Bonanno, G. et al. Networks of equities in financial markets. The European Physical Journal B 38, 363–371 (2004). URL https://doi.org/10.1140/epjb/e2004-00129-6. DOI 10.1140/epjb/e2004-00129-6.
18. Newman, M. E. Networks: an introduction (Oxford University Press, Oxford, 2010).
19. Pharasi, H. K. et al. Identifying long-term precursors of financial market crashes using correlation patterns. New Journal of Physics 20, 103041 (2018).
20. Pharasi, H. K., Sharma, K., Chakraborti, A. & Seligman, T. H. Complex Market Dynamics in the Light of Random Matrix Theory, 13–34 (Springer International Publishing, Cham, 2019).
21. Almog, A. & Shmueli, E. Structural entropy: Monitoring correlation-based networks over time with application to financial markets. Scientific reports 9, 10832 (2019).
22. Fortunato, S. Community detection in graphs. Physics reports 486, 75–174 (2010).
23. Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002).
24. MacMahon, M. & Garlaschelli, D. Community detection for correlation matrices. Phys. Rev. X 5, 021006 (2015).
25. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. *Reviews of Modern Physics* **74**, 47 (2002).
26. Mazurin, O. V. & Porai-Koshits, E. *Phase separation in glass* (Elsevier, 1984).
27. Lloyd, D. R., Kinzer, K. E. & Tseng, H. Microporous membrane formation via thermally induced phase separation. i. solid-liquid phase separation. *Journal of Membrane Science* **52**, 239 – 261 (1990). DOI https://doi.org/10.1016/S0376-7388(00)85130-3. Selected papers presented at the Third Ravello Symposium on Advanced Membrane Science and Technology.
28. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. *Nature* **360**, 324 (1992).
29. van de Witte, P., Dijkstra, P., van den Berg, J. & Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. *Journal of Membrane Science* **117**, 1 – 31 (1996). DOI https://doi.org/10.1016/0376-7388(96)00088-9.
30. Nagaev, E. L. *et al.* Colossal magnetoresistance and phase separation in magnetic semiconductors (World Scientific, 2002).
31. Plerou, V., Gopikrishnan, P. & Stanley, H. E. Two-phase behaviour of financial markets. *Nature* **421**, 130 (2003).
32. Stanley, H. E. *Phase transitions and critical phenomena* (Clarendon Press, Oxford, 1971).
33. Sethna, J. *Statistical mechanics: entropy, order parameters, and complexity*, vol. 14 (Oxford University Press, 2006).
34. Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, J. & Kanto, A. Dynamics of market correlations: Taxonomy and portfolio analysis. *Physical Review E* **68**, 056110 (2003).
35. Münnix, M. C. *et al.* Identifying states of a financial market. *Scientific Reports* **2**, 644 (2012).
36. Yahoo finance database. https://finance.yahoo.co.jp/ (2017). Accessed on 7th July, 2017, using the R open source programming language and software environment for statistical computing and graphics.
37. List of stock market crashes and bear markets. https://en.wikipedia.org/wiki/List_of_stock_market_crashes_and_bear_markets (2019). Accessed on 7th July, 2019.
38. Bull markets. https://bullmarkets.co/u-s-stock-market-in-1996/ (2019). Accessed on 7th July, 2019.
39. United states housing bubble. https://en.wikipedia.org/wiki/United_States_housing_bubble (2019). Accessed on 7th July, 2019.
40. A short history of stock market crashes. https://www.cnbc.com/2016/08/24/a-short-history-of-stock-market-crashes.html (2019). Accessed on 7th July, 2019.
41. Stock market selloff. https://en.wikipedia.org/wiki/2015-16_stock_market_selloff (2019). Accessed on 7th July, 2019.

Acknowledgements

The authors are grateful to Anindya S. Chakraborti and Francois Leyvraz for their critical inputs and suggestions. H.K.P. is grateful for financial support provided by UNAM-DGAPA and CONACYT Proyecto Fronteras 952. A.C. and K.S. acknowledge support from the project UNAM-DGAPA-PAPIIT AG 100819 and CONACyT Project FRONTERAS 201.

Author contributions statement

A.C. designed research; A.C., H., K.S. and H.K.P. performed research; H., K.S., and H.K.P. analyzed data and prepared the figures; A.C. wrote the manuscript with input from all authors.

Supplementary information

We present the supplementary information to the methodology used in the paper, especially with respect to the variations of different parameters that affect the calculation and understanding of eigen-entropy H.

We also present some detailed analyses of benchmark comparisons with the Wishart Orthogonal Ensemble (WOE) and the critical events (bubbles and crashes) in USA and JPN. The table of major events (bubbles and crashes) is given in Table S1. The tables for the lists of stocks of USA and JPN are given in Table S2 and Table S3, respectively.

Finally, we also make a very brief comparison of the measures: eigen-entropy H that we propose in this paper, with the structural entropy S that was recently introduced by Almog et al.21.
Methodology

Effects of the variation of the epoch size M and shift Δ

The continuous monitoring of the market can be done by dividing the total time series data into smaller epochs of size M. The corresponding correlation matrices generated from these smaller epochs are used for calculating the eigen-entropy H. In Fig. S1, we investigate the effects of the variation of parameters, epoch size M and shift Δ.

We observe that either the increase in the epoch M or shift Δ makes the time series plot of H more smooth (less fluctuations), and vice versa. The choice of these parameters are thus arbitrary to some extent, depending on the research questions and time scale we are interested.

Effect of the variation in the powers of correlation matrices $|C|^n$

Instead of taking the square of individual elements of the correlation matrix C, to make all the elements non-negative, we can also use the even powers or the odd powers of absolute values to accomplish the same. The effect of the same is shown in Fig. S2. As observed the values of eigen-entropy H differ with the variation of the power n of correlation matrices. This is due to the fact that with the increase in power, the dissimilarities in the elements of the correlation matrix are amplified which will then in turn changes the centrality of the matrix. For very high powers the transformed correlation matrices will act like an adjacency matrix with very high values (close to 1s) and very low values (close to 0s).

It is also interesting to note that, depending on the problem, we can decide the range of correlations to focus on by adjusting the power of the elements of the correlation matrix.

Results

Wishart Orthogonal Ensemble Results

Fig. S3 (A) shows the plot of sorted eigen-centralities (p_i) against rank, computed from the normalized eigenvectors corresponding to the maximum eigenvalues for 1000 independent realizations of a Wishart orthogonal ensemble (WOE). Filled

Figure S1. Effects of epoch size M and shift Δ on the time series of eigen-entropy H. The evolution of eigen-entropy H is calculated from correlation matrices corresponding to four different time epochs (A) $M = 200$, (B) $M = 100$, (C) $M = 40$, and (D) $M = 20$ days and each with four different shifts (i) $\Delta = 1$ day, (ii) $\Delta = 10$ days, (iii) $\Delta = 20$ days, and (iv) $\Delta = 40$ days over a period of 1985-2016. The fluctuations (local) of the eigen-entropy H are smoothened (smaller) for bigger shifts Δ.

13/26
Figure S2. Comparison of the variation of n for $|C|^n$. The eigen-entropy H is calculated for different powers (n) of correlation matrix C by raising the elements of C to even powers or the absolute value of C to odd powers. (A) shows the time series of the eigen-entropies H of the correlation matrices of epoch $M = 40$ days and $\Delta = 20$ days for five different powers upto $n = 5$. The correlations among these five time series of eigen-entropy H is shown in (B).

Figure S3. Eigen-centralities (ranks) and eigen-entropy. (A) Plots of sorted eigen-centralities (p_i) against rank, computed from the normalized eigenvectors corresponding to the maximum eigenvalues for 1000 independent realizations of a Wishart orthogonal ensemble (WOE). Filled black squares represent the mean eigen-centralities computed from 1000 independent realizations of the WOE, that serves as a reference (the maximum disorder or randomness) in the market correlation with $N = 194$. (B) Plot showing the variation of eigen-entropy H as a function of system size (correlation matrix size) N, where each point represents a mean computed from 1000 independent realizations of a WOE. The theoretical curve (red dash) shows the variation $\sim \ln N$. (C) Histograms of the eigen-centralities (p_i) for typical anomalous (green circles), bubble (blue diamonds), crash (red triangles) and normal (grey stars) and WOE (black squares).
Study of critical events (Crashes and Bubbles)

For the events listed in Table S1, we look at the frames around that particular event and see how it moves around in the phase space in Fig. S4 and Fig. S5.

Comparison with structural entropy S

Recently, the measure of structural entropy S was introduced for the extraction of information from a correlation-based network in the form of a single representative value21,24. The structural entropy depends on the communities of the network and quantifies the "structural diversity". One finds that evolution of structural entropy may provide information about extreme events in the financial market, e.g., crises, bubbles, etc.

Following the prescription given in Almog et al.21, the structural entropy may be calculated from the normalized sizes of the "communities" detected in the market after applying a community detection algorithm24. The detected communities can be represented by a vector $(\vec{\sigma})$ of the length equal to the total number of stocks, whose i^{th} component σ_i denotes the community to which node i was assigned to. In general, $\vec{\sigma}$ can possess values ranging from 1 to M, where M is the total number of communities detected by the algorithm. From this, one can then calculate the probability vector (\vec{P}) by normalizing the sizes of different communities as

$$\vec{P} \equiv \left[\frac{c_1}{N}, \frac{c_2}{N}, \ldots, \frac{c_M}{N} \right],$$

where c_i is the size of community i.

On this probability vector \vec{P}, one can apply Shannon entropy formula to obtain an entropy measure, called the structural entropy, as:

$$S \equiv - \sum_{i=1}^{M} P_i \log(P_i).$$

In Fig. S6, we compare the eigen-entropy H measure with the structural entropy S using the community detection algorithm24, where they obtain a modularity matrix directly from a correlation matrix, by applying random matrix theory tools and separating out just the group mode. The advantage of this method is that a modularity matrix can be supplied directly to a community detection algorithm, without using any arbitrary threshold.

When one compares the two entropy measures, it is evident that the structural entropy is very sensitive to the community detection algorithm (different algorithms yield different community structures). Even the community detection algorithm24, which involves identifying the group mode from the correlation matrix is not easy because the boundary (determined by the eigenvalues of the correlation matrix) between the random mode and the group mode, is not distinct (and often arbitrary). In this way, our eigen-entropy measure has an advantage that it is uniquely determined and non-arbitrary (and also has less computational complexity). Also, during a market crash, the structural entropy S behaves differently from the eigen-entropy H, as the market starts behaving like a single (huge) super-community. So, during a crash S (measure of diversity) decreases in contrast to H (measure of disorder or randomness) that increases.

Structural Entropy(Using different community detection algorithms)

Table S1. List of major crashes and bubbles for USA and JPN markets and their characterization$^{37-41}$. All the events are plotted in Figs. S4 and S5.

Sl. No	Major crashes and bubbles	Period Date	Region Affected
1	Black Monday	19-10-1987	USA, JPN
2	Friday the 13th Mini Crash	13-10-1989	USA
3	Early 90s Recession	1990	USA
5	Mini Crash Due To Asian Financial Crisis	27-10-1997	USA
6	Lost Decade	2001-2010	JPN
7	9/11 Financial Crisis	11-09-2001	USA, JPN
8	Stock Market Downturn Of 2002	09-10-2002	JPN, USA
9	US Housing Bubble	2005-2007	USA
10	Lehman Brothers Crash	16-09-2008	USA, JPN
11	DJ Flash Crash	06-05-2010	USA, JPN
12	Tsunami/Fukushima	11-03-2011	JPN
13	August 2011 Stock Markets Fall	08-08-2011	USA, JPN
14	Chinese Black Monday and 2015-2016 Sell Off	24-08-2015	USA
Figure S4. Evolution around the important events in USA market. Eigen-entropy H calculated from the correlation matrices: (full) C, market mode C_M and group-random mode C_{GR} for all the frames (epoch $M = 40$ days and shift $\Delta = 20$ days) over a period of 1985-2016 of USA (S&P-500). After standardizing the variables with moving average and moving standard deviation, each frame (grey dot) is embedded in a 3-D space with axes H_{std}, H_{std}^M and H_{std}^{GR}. Eleven important events with seven frames around those events (three before and three after the event) were taken from the history and shown in the plots. Bubbles are connected with blue line and other critical events with red lines. The frame containing the important event is marked with black circle for better visibility.
Figure S5. Evolution around the important events in JPN market. Eigen-entropy H calculated from the correlation matrices: (full) C, market mode C_{M} and group-random mode C_{GR} for all the frames (epoch $M = 40$ days and shift $\Delta = 20$ days) over a period of 1985-2016 of JPN (Nikkei-225). Three co-ordinates axes H_{std}^{M}, H_{std}^{M}, and H_{std}^{GR} are the standardized variables, same as Fig. S4. Plots show thirteen important events from the history. Bubbles are connected with blue line and other critical events with red lines. The frame containing the important event is marked with black circle for better visibility.
Figure S6. Comparison of eigen-entropy H and structural entropy S. Evolution of (i) average correlation μ, (ii) eigen-entropy H, and (iii) structural entropy S: (A) and (B) $M = 40$ days epoch and $\Delta = 20$ days shift for USA and JPN, respectively, and (C) and (D) $M = 200$ days epoch and $\Delta = 20$ days shift for USA and JPN, respectively.
Table S2. List of all stocks of USA market (S&P-500) considered for the analysis. The first column has the serial number, the second column has the abbreviation, the third column has the full name of the stock, and the fourth column specifies the sector as given in the S&P-500.

S.No.	Code	Company Name	Sector	Abbrev
1	CMCSA	Comcast Corp.	Consumer Discretionary	CD
2	DIS	The Walt Disney Company	Consumer Discretionary	CD
3	F	Ford Motor	Consumer Discretionary	CD
4	GPC	Genuine Parts	Consumer Discretionary	CD
5	GPS	Gap Inc.	Consumer Discretionary	CD
6	GT	Goodyear Tire & Rubber	Consumer Discretionary	CD
7	HAS	Hasbro Inc.	Consumer Discretionary	CD
8	HD	Home Depot	Consumer Discretionary	CD
9	HRB	Block H&R	Consumer Discretionary	CD
10	IPG	Interpublic Group	Consumer Discretionary	CD
11	JCP	J. C. Penney Company, Inc.	Consumer Discretionary	CD
12	JWN	Nordstrom	Consumer Discretionary	CD
13	LEG	Leggett & Platt	Consumer Discretionary	CD
14	LEN	Lennar Corp.	Consumer Discretionary	CD
15	LOW	Lowe’s Cos.	Consumer Discretionary	CD
16	MAT	Mattel Inc.	Consumer Discretionary	CD
17	MCD	McDonald’s Corp.	Consumer Discretionary	CD
18	NKE	Nike	Consumer Discretionary	CD
19	SHW	Sherwin-Williams	Consumer Discretionary	CD
20	TGT	Target Corp.	Consumer Discretionary	CD
21	VFC	V.F. Corp.	Consumer Discretionary	CD
22	WHR	Whirlpool Corp.	Consumer Discretionary	CD
23	ADM	Archer-Daniels-Midland Co	Consumer Staples	CS
24	AVP	Avon Products, Inc.	Consumer Staples	CS
25	CAG	Conagra Brands	Consumer Staples	CS
26	CL	Colgate-Palmolive	Consumer Staples	CS
27	CPB	Campbell Soup	Consumer Staples	CS
28	CVS	CVS Health	Consumer Staples	CS
29	GIS	General Mills	Consumer Staples	CS
30	HRL	Hormel Foods Corp.	Consumer Staples	CS
31	HSY	The Hershey Company	Consumer Staples	CS
32	K	Kellogg Co.	Consumer Staples	CS
33	KMB	Kimberly-Clark	Consumer Staples	CS
34	KO	Coca-Cola Company (The)	Consumer Staples	CS
35	KR	Kroger Co.	Consumer Staples	CS
36	MKC	McCormick & Co.	Consumer Staples	CS
37	MO	Altria Group Inc	Consumer Staples	CS
38	SYY	Sysco Corp.	Consumer Staples	CS
39	TAP	Molson Coors Brewing Company	Consumer Staples	CS
40	TSN	Tyson Foods	Consumer Staples	CS
41	WMT	Wal-Mart Stores	Consumer Staples	CS
42	APA	Apache Corporation	Energy	EG
43	COP	ConocoPhillips	Energy	EG
44	CVX	Chevron Corp.	Energy	EG
45	ESV	Enesco plc	Energy	EG
46	HAL	Halliburton Co.	Energy	EG
47	HES	Hess Corporation	Energy	EG
48	HP	Helmerich & Payne	Energy	EG
49	MRO	Marathon Oil Corp.	Energy	EG
50	MUR	Murphy Oil Corporation	Energy	EG
	Stock Symbol	Company Name	Sector	Industry
---	--------------	-------------------------------------	------------	----------
51	NBL	Noble Energy Inc	Energy	EG
52	NBR	Nabors Industries Ltd.	Energy	EG
53	SLB	Schlumberger Ltd.	Energy	EG
54	TSO	Tesoro Corp	Energy	EG
55	VLO	Valero Energy	Energy	EG
56	WMB	Williams Cos.	Energy	EG
57	XOM	Exxon Mobil Corp.	Energy	EG
58	AFL	AFLAC Inc	Financials	FN
59	AIG	American International Group, Inc.	Financials	FN
60	AON	Aon plc	Financials	FN
61	AXP	American Express Co	Financials	FN
62	BAC	Bank of America Corp	Financials	FN
63	BBT	BB&T Corporation	Financials	FN
64	BEN	Franklin Resources	Financials	FN
65	BK	The Bank of New York Mellon Corp.	Financials	FN
66	C	Citigroup Inc.	Financials	FN
67	CB	Chubb Limited	Financials	FN
68	CINF	Cincinnati Financial	Financials	FN
69	CMA	Comerica Inc.	Financials	FN
70	EFX	Equifax Inc.	Financials	FN
71	FHN	First Horizon National Corporation	Financials	FN
72	HBAN	Huntington Bancshares	Financials	FN
73	HCN	Welltower Inc.	Financials	FN
74	HST	Host Hotels & Resorts, Inc.	Financials	FN
75	JPM	JPMorgan Chase & Co.	Financials	FN
76	L	Loews Corp.	Financials	FN
77	LM	Legg Mason, Inc.	Financials	FN
78	LNC	Lincoln National	Financials	FN
79	LUK	Leucadia National Corp.	Financials	FN
80	MMC	Marsh & McLennan	Financials	FN
81	MTB	M&T Bank Corp.	Financials	FN
82	PSA	Public Storage	Financials	FN
83	SLM	SLM Corporation	Financials	FN
84	TMK	Torchmark Corp.	Financials	FN
85	TRV	The Travelers Companies Inc.	Financials	FN
86	USB	U.S. Bancorp	Financials	FN
87	VNO	Vornado Realty Trust	Financials	FN
88	WFC	Wells Fargo	Financials	FN
89	WY	Weyerhaeuser Corp.	Financials	FN
90	ZION	Zions Bancorp	Financials	FN
91	ABT	Abbott Laboratories	Health Care	HC
92	AET	Aetna Inc	Health Care	HC
93	AMGN	Amgen Inc	Health Care	HC
94	BAX	Baxter International Inc.	Health Care	HC
95	BCR	Bard (C.R.) Inc.	Health Care	HC
96	BDX	Becton Dickinson	Health Care	HC
97	BMY	Bristol-Myers Squibb	Health Care	HC
98	CAH	Cardinal Health Inc.	Health Care	HC
99	CI	CIGNA Corp.	Health Care	HC
100	HUM	Humana Inc.	Health Care	HC
	Symbol	Name	Sector	Group
---	--------	-------------------------------	------------	-------
101	JNJ	Johnson & Johnson	Health Care	HC
102	LLY	Lilly (Eli) & Co.	Health Care	HC
103	MDT	Medtronic plc	Health Care	HC
104	MRK	Merck & Co.	Health Care	HC
105	MYL	Mylan N.V.	Health Care	HC
106	SYK	Stryker Corp.	Health Care	HC
107	THC	Tenet Healthcare Corp	Health Care	HC
108	TMO	Thermo Fisher Scientific	Health Care	HC
109	UNH	United Health Group Inc.	Health Care	HC
110	VAR	Varian Medical Systems	Health Care	HC
111	AVY	Avery Dennison Corp	Industrials	ID
112	BA	Boeing Company	Industrials	ID
113	CAT	Caterpillar Inc.	Industrials	ID
114	CMI	Cummins Inc.	Industrials	ID
115	CSX	CSX Corp.	Industrials	ID
116	CTAS	Cintas Corporation	Industrials	ID
117	DE	Deere & Co.	Industrials	ID
118	DHR	Danaher Corp.	Industrials	ID
119	DNB	The Dun & Bradstreet Corporation	Industrials	ID
120	DOV	Dover Corp.	Industrials	ID
121	EMR	Emerson Electric Company	Industrials	ID
122	ETN	Eaton Corporation	Industrials	ID
123	EXPD	Expeditors International	Industrials	ID
124	FDX	FedEx Corporation	Industrials	ID
125	FLS	Flowserve Corporation	Industrials	ID
126	GD	General Dynamics	Industrials	ID
127	GE	General Electric	Industrials	ID
128	GLW	Corning Inc.	Industrials	ID
129	GWW	Grainger (W.W.) Inc.	Industrials	ID
130	HON	Honeywell Int’l Inc.	Industrials	ID
131	IR	Ingersoll-Rand PLC	Industrials	ID
132	ITW	Illinois Tool Works	Industrials	ID
133	JEC	Jacobs Engineering Group	Industrials	ID
134	LMT	Lockheed Martin Corp.	Industrials	ID
135	LUV	Southwest Airlines	Industrials	ID
136	MAS	Masco Corp.	Industrials	ID
137	MMM	3M Company	Industrials	ID
138	ROK	Rockwell Automation Inc.	Industrials	ID
139	RTN	Raytheon Co.	Industrials	ID
140	TXT	Textron Inc.	Industrials	ID
141	UNP	Union Pacific	Industrials	ID
142	UTX	United Technologies	Industrials	ID
143	AAPL	Apple Inc.	Information Technology	IT
144	ADI	Analog Devices, Inc.	Information Technology	IT
145	ADP	Automatic Data Processing	Information Technology	IT
146	AMAT	Applied Materials Inc.	Information Technology	IT
147	AMD	Advanced Micro Devices Inc.	Information Technology	IT
148	CA	CA, Inc.	Information Technology	IT
149	HPQ	HP Inc.	Information Technology	IT
150	HRS	Harris Corporation	Information Technology	IT
---	---	---		
151	IBM	International Business Machines	Information Technology	IT
152	INTC	Intel Corp.	Information Technology	IT
153	KLAC	KLA-Tencor Corp.	Information Technology	IT
154	LRCX	Lam Research	Information Technology	IT
155	MSI	Motorola Solutions Inc.	Information Technology	IT
156	MU	Micron Technology	Information Technology	IT
157	TSS	Total System Services, Inc.	Information Technology	IT
158	TXN	Texas Instruments	Information Technology	IT
159	WDC	Western Digital	Information Technology	IT
160	XRX	Xerox Corp.	Information Technology	IT
161	AA	Alcoa Corporation	Materials	MT
162	APD	Air Products & Chemicals Inc	Materials	MT
163	BLL	Ball Corp	Materials	MT
164	BMS	Bemis Company, Inc.	Materials	MT
165	CLF	Cleveland-Cliffs Inc.	Materials	MT
166	DD	DuPont	Materials	MT
167	ECL	Ecolab Inc.	Materials	MT
168	FMC	FMC Corporation	Materials	MT
169	IFF	Intl Flavors & Fragrances	Materials	MT
170	IP	International Paper	Materials	MT
171	NEM	Newmont Mining Corporation	Materials	MT
172	PPG	PPG Industries	Materials	MT
173	VMC	Vulcan Materials	Materials	MT
174	CTL	CenturyLink Inc	Telecommunication Services	TC
175	FTR	Frontier Communications Corporation	Telecommunication Services	TC
176	S	Sprint Nextel Corp.	Telecommunication Services	TC
177	T	AT&T Inc	Telecommunication Services	TC
178	VZ	Verizon Communications	Telecommunication Services	TC
179	AEP	American Electric Power	Utilities	UT
180	CMS	CMS Energy	Utilities	UT
181	CNP	CenterPoint Energy	Utilities	UT
182	D	Dominion Energy	Utilities	UT
183	DTE	DTE Energy Co.	Utilities	UT
184	ED	Consolidated Edison	Utilities	UT
185	EIX	Edison Int’l	Utilities	UT
186	EQT	EQT Corporation	Utilities	UT
187	ETR	Entergy Corp.	Utilities	UT
188	EXC	Exelon Corp.	Utilities	UT
189	NEE	NextEra Energy	Utilities	UT
190	NI	NiSource Inc.	Utilities	UT
191	PNW	Pinnacle West Capital	Utilities	UT
192	SO	Southern Co.	Utilities	UT
193	WEC	Wec Energy Group Inc	Utilities	UT
194	XEL	Xcel Energy Inc	Utilities	UT
S.No.	Code	Company Name	Sector	Abbrv
-------	--------	-------------------------------------	--------------	-------
1	S-8801	MITSUI FUDOSAN CO., LTD.	Capital Goods	CG
2	S-8802	MITSUBISHI ESTATE CO., LTD.	Capital Goods	CG
3	S-8804	TOKYO TATEMONO CO., LTD.	Capital Goods	CG
4	S-8830	SUMITOMO REALTY & DEVELOPMENT CO., LTD.	Capital Goods	CG
5	S-7003	MITSUI ENG. & SHIPBUILD. CO., LTD.	Capital Goods	CG
6	S-7012	KAWASAKI HEAVY IND., LTD.	Capital Goods	CG
7	S-9202	ANA HOLDINGS INC.	Capital Goods	CG
8	S-1801	Taisei Corp.	Capital Goods	CG
9	S-1802	OBayashi Corp.	Capital Goods	CG
10	S-1803	SHIMIZU CORP.	Capital Goods	CG
11	S-1808	HASEKO CORP.	Capital Goods	CG
12	S-1812	KAJIMA CORP.	Capital Goods	CG
13	S-1925	DAIWA HOUSE IND. CO., LTD.	Capital Goods	CG
14	S-1928	SEKISUI HOUSE, LTD.	Capital Goods	CG
15	S-1963	JGC CORP.	Capital Goods	CG
16	S-5631	THE JAPAN STEEL WORKS, LTD.	Capital Goods	CG
17	S-6103	OKUMA CORP.	Capital Goods	CG
18	S-6113	AMADA HOLDINGS CO., LTD.	Capital Goods	CG
19	S-6301	KOMATSU LTD.	Capital Goods	CG
20	S-6302	SUMITOMO HEAVY IND., LTD.	Capital Goods	CG
21	S-6305	HITACHI CONST. MACH. CO., LTD.	Capital Goods	CG
22	S-6326	KUBOTA CORP.	Capital Goods	CG
23	S-6361	EBARA CORP.	Capital Goods	CG
24	S-6366	CHIYODA CORP.	Capital Goods	CG
25	S-6367	DAIKIN INDUSTRIES, LTD.	Capital Goods	CG
26	S-6471	NSK LTD.	Capital Goods	CG
27	S-6472	NTN CORP.	Capital Goods	CG
28	S-6473	JTEKT CORP.	Capital Goods	CG
29	S-7004	HITACHI Zosen CORP.	Capital Goods	CG
30	S-7011	MITSUBISHI HEAVY IND., LTD.	Capital Goods	CG
31	S-7013	IHI CORP.	Capital Goods	CG
32	S-7911	TOPPAN PRINTING CO., LTD.	Capital Goods	CG
33	S-7912	DAI NIPPON PRINTING CO., LTD.	Capital Goods	CG
34	S-7951	YAMAHA CORP.	Capital Goods	CG
35	S-1332	NIPPON SUISAN KAISHA, LTD.	Consumer Goods	CN
36	S-2002	NISSHIN SEIFUN GROUP INC.	Consumer Goods	CN
37	S-2282	NH FOODS LTD.	Consumer Goods	CN
38	S-2501	SAPPORO HOLDINGS LTD.	Consumer Goods	CN
39	S-2502	ASAHI GROUP HOLDINGS, LTD.	Consumer Goods	CN
40	S-2503	KIRIN HOLDINGS CO., LTD.	Consumer Goods	CN
41	S-2531	TAKARA HOLDINGS INC.	Consumer Goods	CN
42	S-2801	Kikkoman Corp.	Consumer Goods	CN
43	S-2802	Aijinomoto CO., INC.	Consumer Goods	CN
44	S-2871	NIchirei Corp.	Consumer Goods	CN
45	S-8233	TAKASHIMAYA CO., LTD.	Consumer Goods	CN
46	S-8252	Marui Group CO., LTD.	Consumer Goods	CN
47	S-8267	AEON CO., LTD.	Consumer Goods	CN
48	S-9602	TOHO CO., LTD.	Consumer Goods	CN
49	S-9681	TOKYO DOME CORP.	Consumer Goods	CN
50	S-9735	SECOM CO., LTD.	Consumer Goods	CN
S-	Company Name	Industry		
-------	--	------------		
S-8331	THE CHIBA BANK, LTD.	Financials		
S-8355	THE SHIZUOKA BANK, LTD.	Financials		
S-8253	CREDIT SAISON CO., LTD.	Financials		
S-8601	DAIWA SECURITIES GROUP INC.	Financials		
S-8604	NOMURA HOLDINGS, INC.	Financials		
S-3405	KURARAY CO., LTD.	Materials		
S-3407	ASAHI KASEI CORP.	Materials		
S-4004	SHOWA DENKO K.K.	Materials		
S-4005	SUMITOMO CHEMICAL CO., LTD.	Materials		
S-4021	NISSAN CHEMICAL IND., LTD.	Materials		
S-4042	TOSOH CORP.	Materials		
S-4043	TOKUYAMA CORP.	Materials		
S-4061	DENKA CO., LTD.	Materials		
S-4063	SHIN-ETSU CHEMICAL CO., LTD.	Materials		
S-4183	MITSUI CHEMICALS, INC.	Materials		
S-4208	UBE INDUSTRIES, LTD.	Materials		
S-4272	NIPPON KAYAKU CO., LTD.	Materials		
S-4452	KAO CORP.	Materials		
S-4901	FUJIFILM HOLDINGS CORP.	Materials		
S-4911	SHISEIDO CO., LTD.	Materials		
S-6988	NITTO DENKO CORP.	Materials		
S-5002	SHOWA SHELL SEKIYU K.K.	Materials		
S-5201	ASAHI GLASS CO., LTD.	Materials		
S-5202	NIPPON SHEET GLASS CO., LTD.	Materials		
S-5214	NIPPON ELECTRIC GLASS CO., LTD.	Materials		
S-5232	SUMITOMO OSAKA CEMENT CO., LTD.	Materials		
S-5233	TAIHEIYO CEMENT CORP.	Materials		
S-5301	TOKAI CARBON CO., LTD.	Materials		
S-5332	TOTO LTD.	Materials		
S-5333	NGK INSULATORS, LTD.	Materials		
S-5706	MITSUI MINING & SMELTING CO.	Materials		
S-5707	TOHO ZINC CO., LTD.	Materials		
S-5711	MITSUBISHI MATERIALS CORP.	Materials		
S-5713	SUMITOMO METAL MINING CO., LTD.	Materials		
S-5714	DOWA HOLDINGS CO., LTD.	Materials		
S-5715	FURUKAWA CO., LTD.	Materials		
S-5801	FURUKAWA ELECTRIC CO., LTD.	Materials		
S-5802	SUMITOMO ELECTRIC IND., LTD.	Materials		
S-5803	FUJIKURA LTD.	Materials		
S-5901	TOYO SEIKAN GROUP HOLDINGS, LTD.	Materials		
S-3865	HOKUETSU KISHU PAPER CO., LTD.	Materials		
S-3861	OJI HOLDINGS CORP.	Materials		
S-5101	THE YOKOHAMA RUBBER CO., LTD.	Materials		
S-5108	BRIDGESTONE CORP.	Materials		
S-5401	NIPPON STEEL & SUMITOMO METAL CORP.	Materials		
S-5406	KOBE STEEL, LTD.	Materials		
S-5541	PACIFIC METALS CO., LTD.	Materials		
S-3101	TOYOBO CO., LTD.	Materials		
S-3103	UNITIKA, LTD.	Materials		
S-3401	TEIJIN LTD.	Materials		
No.	Code	Company Name	Industry	
-----	-------	--	----------------	
101	S-3402	TORAY INDUSTRIES, INC.	Materials	
102	S-8001	ITOCHU CORP.	Materials	
103	S-8002	MARUBENI CORP.	Materials	
104	S-8015	TOYOTA TSUSHO CORP.	Materials	
105	S-8031	MITSUI & CO., LTD.	Materials	
106	S-8053	SUMITOMO CORP.	Materials	
107	S-8058	MITSUBISHI CORP.	Materials	
108	S-4151	KYOWA HAKKO KIRIN CO., LTD.	Pharmaceuticals	
109	S-4503	ASTELLAS PHARMA INC.	Pharmaceuticals	
110	S-4506	SUMITOMO DAINIPPON PHARMA CO., LTD.	Pharmaceuticals	
111	S-4507	SHIONOGI & CO., LTD.	Pharmaceuticals	
112	S-4519	CHUGAI PHARMACEUTICAL CO., LTD.	Pharmaceuticals	
113	S-4523	EISAI CO., LTD.	Pharmaceuticals	
114	S-7201	NISSAN MOTOR CO., LTD.	Information Technology	
115	S-7202	ISUZU MOTORS LTD.	Information Technology	
116	S-7205	HINO MOTORS, LTD.	Information Technology	
117	S-7261	MAZDA MOTOR CORP.	Information Technology	
118	S-7267	HONDA MOTOR CO., LTD.	Information Technology	
119	S-7270	SUBARU CORP.	Information Technology	
120	S-7272	YAMAHA MOTOR CO., LTD.	Information Technology	
121	S-3105	NISSHINBO HOLDINGS INC.	Information Technology	
122	S-6479	MINEBEA MITSUMI INC.	Information Technology	
123	S-6501	HITACHI, LTD.	Information Technology	
124	S-6502	TOSHIBA CORP.	Information Technology	
125	S-6503	MITSUBISHI ELECTRIC CORP.	Information Technology	
126	S-6504	FUJI ELECTRIC CO., LTD.	Information Technology	
127	S-6506	YASKAWA ELECTRIC CORP.	Information Technology	
128	S-6508	MEIDENSHA CORP.	Information Technology	
129	S-6701	NEC CORP.	Information Technology	
130	S-6702	FUJITSU LTD.	Information Technology	
131	S-6703	OKI ELECTRIC IND. CO., LTD.	Information Technology	
132	S-6752	PANASONIC CORP.	Information Technology	
133	S-6758	SONY CORP.	Information Technology	
134	S-6762	TDK CORP.	Information Technology	
135	S-6770	ALPS ELECTRIC CO., LTD.	Information Technology	
136	S-6773	PIONEER CORP.	Information Technology	
137	S-6841	YOKOGAWA ELECTRIC CORP.	Information Technology	
138	S-6902	DENSO CORP.	Information Technology	
139	S-6952	CASIO COMPUTER CO., LTD.	Information Technology	
140	S-6954	FANUC CORP.	Information Technology	
141	S-6971	KYOCERA CORP.	Information Technology	
142	S-6976	TAIYO YUDEN CO., LTD.	Information Technology	
143	S-7752	RICOH CO., LTD.	Information Technology	
144	S-8035	TOKYO ELECTRON LTD.	Information Technology	
145	S-4543	TERUMO CORP.	Information Technology	
146	S-4902	KONICA MINOLTA, INC.	Information Technology	
147	S-7731	NIKON CORP.	Information Technology	
148	S-7733	OLYMPUS CORP.	Information Technology	
149	S-7762	CITIZEN WATCH CO., LTD.	Information Technology	
150	S-9501	TOKYO ELECTRIC POWER COMPANY HOLDINGS, I	Transportation & Utilities	
---	---	---	---	
151	S-9502	CHUBU ELECTRIC POWER CO., INC.	Transportation & Utilities	TU
152	S-9503	THE KANSAI ELECTRIC POWER CO., INC.	Transportation & Utilities	TU
153	S-9531	TOKYO GAS CO., LTD.	Transportation & Utilities	TU
154	S-9532	OSAKA GAS CO., LTD.	Transportation & Utilities	TU
155	S-9062	NIPPON EXPRESS CO., LTD.	Transportation & Utilities	TU
156	S-9064	YAMATO HOLDINGS CO., LTD.	Transportation & Utilities	TU
157	S-9101	NIPPON YUSEN K.K.	Transportation & Utilities	TU
158	S-9104	MITSUI O.S.K.LINES, LTD.	Transportation & Utilities	TU
159	S-9107	KAWASAKI KISEN KAISHA, LTD.	Transportation & Utilities	TU
160	S-9001	TOBU RAILWAY CO., LTD.	Transportation & Utilities	TU
161	S-9005	TOKYU CORP.	Transportation & Utilities	TU
162	S-9007	ODAKYU ELECTRIC RAILWAY CO., LTD.	Transportation & Utilities	TU
163	S-9008	KEIO CORP.	Transportation & Utilities	TU
164	S-9009	KEISEI ELECTRIC RAILWAY CO., LTD.	Transportation & Utilities	TU
165	S-9301	MITSUBISHI LOGISTICS CORP.	Transportation & Utilities	TU