Genome Sequencing of Sub-Arctic Mesomycetozoean Sphaeroforma sirkka Strain B5, Performed with the Oxford Nanopore minION and Illumina HiSeq Systems

A.-L. Ducluzeau, a J. R. Tyson, b R. E. Collins, c T. P. Snutch, b B. T. Hassett d

a College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA

b Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada

c College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, Alaska, USA

d Department of Arctic and Marine Biology, Universitetet i Tromsø–Norges arktiske universitet, Tromsø, Norway

ABSTRACT The Mesomycetozoea branch near the animal-fungal divergence and are believed to be important to understanding the origins of multicellularity. In 2012, a free-living saprotrophic mesomycetozoean was isolated from the sub-Arctic Bering Sea. A hybrid assembly using Illumina and Nanopore sequences yielded 2,688 contigs with a total length of 125,635,304 bases.

Today, only a few Mesomycetozoea genomes have been deposited in public repositories, all of which are animal symbionts. In 2012, a free-living saprotrophic mesomycetozoean strain, Sphaeroforma sirkka B5, was isolated from pollen grains in a nearshore estuarine environment of the sub-Arctic Bering Sea. We performed a hybrid assembly using long-read Oxford Nanopore minION reads for scaffolding and Illumina HiSeq sequencing for error correction. DNA was extracted using the Mo Bio PowerFood (PF) kit from 48-h-old cells grown on PmTG agar medium with penicillin G and streptomycin (3). DNA was extracted by bead beating twice for 10 min. Lysates were combined on spin filters and subsequently washed twice with PF4 solution. The resulting DNA fragments ranged from 2 kbp to 30 kbp. We purified 5 μg of extracted DNA with AMPure magnetic beads with a bead-to-DNA (vol/vol) ratio of 0.4. We immediately prepared a DNA library with the Oxford Nanopore technology 1D ligation kit (SQK-LSK108) using an optimized protocol. Specifically, an input of 3.7 μg of DNA was used (the shearing step was omitted), and all incubations at 20°C were performed at room temperature. Magnetic bead clean-ups were performed with freshly prepared 80% ethanol solution, and the DNA control strain (DCS) was replaced by 5 μl of nuclease-free water. Sequencing was performed on Oxford Nanopore Mk1 minION system using a R9.4 SpotON FLO-MIN106 flow cell and the 48h_1D_LSK108 script. The device was controlled by minKNOW 1.5.12 implemented on a MacOS system. The library generated 2.19 × 10^8 reads, with an average size of 6 kbp. The Illumina HiSeq sequencing library was prepared using the TruSeq library kit and loaded on one lane of an Illumina HiSeq 2500 rapid run flow cell (v2). Sequencing was performed with HiSeq Rapid SBS reagents (v2) in a 2 × 100-bp paired-end format.

Nanopore reads were basecalled with Albacore 1.2.4, providing 13.04 Gbp of data subsequently filtered with NanoFilt (4), with a minimum Q score of 10. The final data set (1,141,813 reads with an N50 value of 7,793 bp, for a total of 7,200,406,494 bp) was assembled using the high-noise robust single-molecule sequencing assembler Canu version 1.7 (5), assuming a genome size of 100 Mbp. Raw contigs were corrected with
two iterations of the standalone consensus module Racon. For polishing, two rounds of Pilon (6) were performed with the adapter-trimmed (bbduk and bbtols package) HiSeq data set. Homology search with BLAST on the resulting contigs revealed no contamination. The assembled genome of *Sphaeroforma sirkka* consists of 2,688 contigs (all greater than 500 bp) with N_{50}/N_{90} values of 76,469/21,989 bp and a total length of 125,635,304 bp. The average contig coverage of the final assembled genome is 180×. Genome completeness was evaluated with BUSCO_V3 (7) using the eukaryote gene set odb9 and *Saccharomyces* (assessment represented in BUSCO notation), C:84.2% [S: 82.5.3%, D:1.7%), F:5.3%, M:10.5%, n:303. The mitochondrion was assembled into a single contig, for a total length of 194,049 bp.

Data availability. This whole-genome shotgun project has been deposited in GenBank under the accession number LUCW00000000. The version described in this paper is the third version, LUCW03000000.

ACKNOWLEDGMENTS

This work was supported by the University of Alaska’s Center for Global Change and Arctic System Research and the National Science Foundation grant DGE-0801720. A.-L.D. is supported by the University of Alaska Fairbanks-BlasT program. Work in the laboratory of T.P.S. is supported by the Canadian Institutes of Health Research (operating grant 10677) and the Canadian Epigenetics and Environment Health Research Consortium.

The funders had no role in the study design, data collection, or the decision to submit this work for publication.

REFERENCES

1. Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MV. 2007. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118. https://doi.org/10.1016/j.tig.2007.01.005.

2. Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ. 2006. Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts *Capsaspora owczarzaki* and *Sphaeroforma arctica*. J Eukaryot Microbiol 53:379 –384. https://doi.org/10.1111/j.1550-7408.2006.00118.x.

3. Hassett BT, López JA, Gradinger R. 2015. Two new species of marine saprotrophic sphaeroformids in the Mesomycetozoea isolated from the sub-Arctic Bering Sea. Protist 166:310 –322. https://doi.org/10.1016/j.protis.2015.04.004.

4. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long read sequencing data. Bioinformatics 34:2666 –2669. https://doi.org/10.1093/bioinformatics/bty149.

5. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116.

6. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakhkikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

7. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351.