The calculation of 29Si NMR chemical shifts of tetracoordinated silicon compounds in the gas phase and in solution†

Cong Zhang, Pascal Patschinski, David S. Stephenson, Robin Panisch, Josef Heinrich Wender, Max C. Holthausen and Hendrik Zipse*

Aiming at the identification of an efficient computational protocol for the accurate NMR assessment of organosilanes in low-polarity organic solvents, 29Si NMR chemical shifts of a selected set of such species relevant in organic synthesis have been calculated relative to tetramethysilane (TMS, 1) using selected density functional and perturbation theory methods. Satisfactory results are obtained when using triple zeta quality basis sets such as IGLO-III. Solvent effects impact the calculated results through both, changes in substrate geometry as well as changes in the actual shieldings. Spin–orbit (SO) corrections are required for systems carrying more than one chlorine atom directly bonded to silicon. Best overall results are obtained using gas phase geometries optimized at MPW1K/6-31+G(d) level in combination with shielding calculations performed at MPW1K/IGLO-III level in the presence of the PCM continuum solvation model.

Introduction

The measurement of 29Si NMR chemical shifts is exceedingly helpful in elucidating the identity of silicon-containing molecular systems. This is not only true for stable reactants and products of well-defined transformations, but also for silicon-based species generated as transient intermediates in the course of a reaction. In this latter case the combination of theoretically predicted and experimentally measured 29Si NMR chemical shifts is particularly helpful, as was amply demonstrated in detailed studies of, for example, silylenes and disilenes. When attempting to follow the course of base-catalyzed silylation reactions of alcohols, which constitute an important protecting group strategy in organic synthesis, we were confronted with the appearance of a number of silicon-based species with rather similar chemical shifts in the solution-phase 29Si NMR spectra. With the goal of identifying a computational protocol for the accurate theoretical prediction of the respective chemical shifts in low-polarity organic solvents, we analyze here the performance of strategies based on DFT- and MP2-level calculations. Our particular emphasis will be on the effects of geometry optimization, methods for actual shift calculations, the modeling of solvent effects, and the evaluation of relativistic effects.

Results and discussion

The effects of geometry optimization

We first investigated the influence of molecular structures optimized using several computationally efficient methods on the quality of 29Si chemical shifts evaluated on these structures at MP2(FULL)/IGLO-III level. These calculations were performed using SiMe$_2$Cl (2) as a model system for silyl chloride reagents used in organic synthesis. Experimentally measured chemical shifts for this system are available in selected solvents at room temperature such as benzene with δ(29Si, 2) = +30.21 ppm, benzene-d$_6$ with δ(29Si, 2) = +30.64 ppm, toluene-d$_8$ with δ(29Si, 2) = +30 ppm, and CDCl$_3$ with δ(29Si, 2) = +30.7 ppm. It thus appears that organic solvents of intermediate polarity have only a very limited influence on the 29Si chemical shift in 2. Using microwave spectroscopy the gas phase Si–Cl bond distance in 2 has been determined in two separate studies as r(Si–Cl, 2) = 202.2 ± 5 pm and 203 pm. In the solid state the Si–Cl bond distance has been determined to be of comparable length at r(Si–Cl, 2) = 209 pm and 201.0 pm (0.23 GPa and 296 K), and 208.6 pm (0.1 MPa and 157 K).

The marked dependence of computed chemical shifts on the molecular structure is illustrated in Fig. 1, which displays 29Si chemical shifts calculated for SiMe$_2$Cl (2) at MP2(FULL)/IGLO-III level employing structures optimized at various levels of theory in combination with the 6-31+G(d) basis set (the results...
obtained from MP2(FULL)/IGLO-III geometry optimizations are included as a reference. ²⁹Si chemical shifts evaluated for various points along a relaxed scan (MPW1K/6-31+G(d) structures) of the Si–Cl distance in 2 from 200 to 300 pm (solid line in Fig. 1) show an almost linear dependence with larger Si–Cl distances leading to systematically higher chemical shifts. This trend is also visible in the δ(²⁹Si) data evaluated on molecular structures fully optimized with different methods in the gas phase (Fig. 1, solid circles): the shortest Si–Cl bond distances (about 208.5 pm) are obtained in MPW1K and MP2(FC) optimizations, while the other density functionals tested yield longer Si–Cl bonds reaching 211 pm obtained with the B3LYP hybrid functional. The shift values calculated for these gas phase geometries at MP2(FULL)/IGLO-III level vary by approx. 2 ppm from +29.7 to +32.0 ppm. As detailed further below, use of the PCM solvent model for structure optimization (Fig. 1, empty squares) leads to systematically higher δ(²⁹Si) values, with larger deviations from experiment for the cases tested.

We further explored whether chemical shift predictions can be improved through the use of more sophisticated basis sets in gas phase geometry optimizations for selected Pople-style and correlation consistent (cc) basis sets (Table 1). Use of the systematically developed cc basis sets results in a systematic decrease of Si–Cl bond distances in the order cc-pVDZ, cc-pVTZ, and cc-pVQZ, irrespective of the theoretical method used. This directly impacts the ²⁹Si chemical shift calculations performed at MP2(FULL)/IGLO-III level, where shorter Si–Cl bonds are again observed to yield lower shift values. A comparable trend is not observed for Pople-style basis sets of double- and triple-zeta quality. Among all quantum mechanical methods the MP2(FC) level is most strongly affected by these variations. Taking the MP2(FC)/cc-pVQZ structure as reference, the best agreement is observed at the MPW1K/6-31+G(d) level, which was therefore chosen for all subsequent geometry optimizations.

Theoretical methods for chemical shift calculations

Chemical shift calculations at MP2(FULL)/IGLO-III level are quite challenging for larger molecular systems and an effort has therefore been made to identify more economical approaches. Table 2 displays ²⁹Si shift values for SiMe₃Cl (2) computed with selected combinations of methods and basis sets based on the MPW1K/6-31+G(d)-optimized geometry. Compared to the experimental value of δ(²⁹Si, 2) = +30.7 ppm the largest deviations are found for the 6-311+G(2d,2p) basis set, while the def2-TZVP, 37,38 cc-pVTZ, 39 and IGLO-III 40 triple zeta basis sets yield generally better results. The quadruple zeta pcS-3 basis set specifically developed for NMR calculations 41 performs as well as IGLO-III, but its use is computationally significantly more demanding. We note that second-order perturbation theory in its canonical (MP2) or local (LMP2) variants perform best, closely followed by the HCTH407 42 and MPW1K 20 hybrid functionals. Interestingly, the DF-LMP2/IGLO-III calculations closely reproduce the much more costly MP2(FULL)/IGLO-III calculations, which we chose as reference method for ²⁹Si chemical shift calculations. The worst performer found here is clearly the M06-2X 44 functional, which responds more sensitively to the individual basis set design than any other method listed in Table 2. The deviations of MPW1K and HCTH407 are comparable to those of the MP2 methods and the performance of these two methods is better than that of the other DFT methods tested here.

Solvent effects

The experimental reference shift data for SiMe₃Cl (2) has been determined in apolar organic solvents such as CDCl₃ or benzene. As a first straightforward approach to account for solvent effects we performed shift calculations in combination with the

Table 1 Influence of basis set choice on the gas phase geometry optimized with various methods and the gas phase ²⁹Si chemical shift of 2 (evaluated at MP2(FULL)/IGLO-III level)

Basis set	PBE1PBE	MPW1K	M06-2X	MP2(FC)				
r(Si–Cl) (pm)	δ(²⁹Si) (ppm)	r(Si–Cl) (pm)	δ(²⁹Si) (ppm)	r(Si–Cl) (pm)	δ(²⁹Si) (ppm)	r(Si–Cl) (pm)	δ(²⁹Si) (ppm)	
6-31+G(d)	209.5	+30.84	208.3	+30.32	209.4	+31.02	208.5	+29.70
6-31+G(2d,p)	209.6	+31.81	208.5	+31.37	209.5	+31.90	210.2	+32.60
6-31+G(2d,p)	209.6	+31.82	208.5	+31.38	209.5	+31.92	210.3	+32.63
6-311+G(2d,p)	208.9	+30.90	207.8	+30.43	211.4	+34.14	208.5	+30.44
cc-pVDZ	211.2	+32.98	210.2	+32.63	211.1	+33.16	210.7	+31.83
cc-pVTZ	209.1	+31.23	208.1	+30.81	209.1	+31.39	208.6	+30.79
cc-pVQZ	208.5	+30.77	207.6	+30.36	208.5	+30.92	207.8	+30.24
polarizable continuum model (PCM) for chlorof orm at PCM/
MP2(FULL)/IGLO-III level based on the MPW1K/6-31+G(d) gas-
phase geometry, which leads to downfield shifts of the 29Si
signal in SiMe$_3$Cl (2) by 1.5–2.0 ppm relative to the gas phase
value (+30.32 ppm), depending on the particular PCM variant
employed (Table 3). An additional downfield shift of the same
magnitute is obtained upon inclusion of the polarizable con-
tinuum also for geometry optimization at PCM/MPW1K/
6-31+G(d) level owing to the elongated Si–Cl bond present in
the optimized structure (Table 3). From a glance at the data
compiled in Table 3 it is apparent that the particular choice of
the atomic radii used to construc t the solute cavity in the PCM
calculations has only a minute influence on structures and
chemical shifts.

A more detailed picture is presented in Fig. 1 above, where
the PCM/MP2(FULL)/IGLO-III shift data using the gas-phase
geometries (empty circles) and the solution-phase geometries
(empty squares) for selected hybrid DFT methods are shown.
Taking the MPW1K/6-31+G(d) gas phase geometries as an
example, we can see that the PCM(UAHF)/MP2(FULL)/IGLO-III
shifts are 1.7 ppm larger as compared to the gas phase
MP2(FULL)/IGLO-III shifts. This is also found for all other
methods used for geometry optimization. Reoptimizing the
geometry of SiMe$_3$Cl (2) in the presence of the PCM reaction
field leads to elongation of the Si–Cl bond, which at PCM/
MPW1K/6-31+G(d) level reaches up to 210.4 pm. This geomet-
rical change is accompanied by a downfield shift in the 29Si
resonance to +35.0 ppm. This is found in a very similar manner
also for all other methods used for geometry optimization and
we may thus conclude that the PCM continuum solvation model
impacts 29Si shift calculations in a significant way
through changes in the molecular structure.

Table 3 Influence of continuum solvation models on 29Si chemical shift calculations (PCM/MP2(FULL))/IGLO-III) for SiMe$_3$Cl (2)

Method	6-311++G(2d,2p)	Def2-TZVP	cc-pVDZ	cc-pVTZ	cc-pVQZ	pcS-3	IGLO-III
HCTH407	+33.00	+32.37	+32.63	+32.91	+26.37	+31.94	+31.40
B3LYP	+36.37	+34.29	+34.13	+34.14	+27.60	+34.44	+32.94
B3PW91	+36.84	+34.92	+35.31	+34.64	+28.78	+34.15	+33.66
PBE1PBE	+36.56	+34.68	+35.35	+34.83	+29.37	+33.93	+33.31
MPW1K	+34.83	+33.06	+33.89	+33.59	+28.09	+32.44	+31.88
M06-2X	+42.67	+38.10	+38.85	+31.00	+36.82	+35.64	+37.24
DF-LMP2	+33.05	+31.47	+31.36	+33.09	+29.55	+30.25	+28.40
MP2(FULL)	+33.65	+31.92	+30.71	+32.54	+28.59	+31.31	+30.32

a Geometries optimized with MPW1K/6-31+G(d). b Method used for NMR chemical shift calculations.

Effects of explicit solvation were subsequently explored for
complexes of SiMe$_3$Cl (2) with one molecule of CHCl$_3$. A number
of minima were identified in MPW1K/6-31+G(d) geometry opti-
mizations (Fig. 2). The longest Si–Cl bond with 209.5 pm (and
thus the largest downfield shifted 29Si signal) is found for solute–
solvent complex 2_3, in which the chlorine atom of SiMe$_3$Cl
forms a hydrogen bond to chlorof orm (Table 4). In terms of gas
phase free energies ΔG_{298} structure 2_3 is not the most stable
conformer, but is 7 kJ mol$^{-1}$ less stable than the best structure
2_1. Due to only weak interactions between the methyl groups of

Table 4 29Si chemical shifts for complexes 2_1–2_5 of SiMe$_3$Cl (2) with
one chloroform molecule at MP2(FULL)/IGLO-III/MPW1K/6-31+G(d) level
(bond distances are in pm, free energies ΔG_{298} are in kJ mol$^{-1}$ and
chemical shifts are in ppm)

r(Si–Cl)	ΔG_{298}	δ^{29}Si
2_1	208.6	+30.70
2_2	208.6	+30.89
2_3	209.5	+31.81
2_4	208.5	+30.69
2_5	208.7	+31.28
Avea	+30.88	+35.12

a Solvent effects calculated at PCM(UAHF)/MP2(FULL)/IGLO-III/
MPW1K/6-31+G(d) level. b δ^{29}Si shift calculated as Boltzmann average,
for detail see ESI.
Spin–orbit corrections for chlorosilanes

29Si Chemical shifts calculated at MPW1K/IGLO-III/MPW1K/6-31+G(d) level for the SiMe$_4-x$Cl$_x$ compounds show a systematic deviation between theoretically calculated and experimentally measured shift data (Fig. 3). That the deviations are systematic in nature can readily be seen from the good linear correlation between the actual deviation and the number of chlorine atoms (Fig. 3).15 The importance of heavy-atom-induced spin–orbit (SO) effects for nuclear magnetic shifts of group 14 element halides have been highlighted by several groups.$^{45–50}$ According to these earlier reports, the experimentally observed normal halogen dependence (NHD), i.e. the characteristic high-field shift of the nucleus bound directly to the halogen substituents with increasing atomic number of the halogen, is mainly a result of spin–orbit effects. In these studies it was found that shifts calculated with the inclusion of SO effects agree significantly better with the experiment than their non-relativistic counterparts.

We evaluated contributions of relativistic spin–orbit effects to the nuclear magnetic shielding constants for the series of SiMe$_4-x$Cl$_x$ compounds employing the two-component zeroth-order regular approximation (ZORA)51,52 formalism, as implemented in ADF. The SO correction per chloro-substituent increases monotonously from approximately −2 ppm (SiMe$_2$Cl) to −3 ppm for SiMe$_3$Cl, −4 ppm for SiMeCl$_3$, and −5 ppm for SiCl$_4$. In line with the discussion of Kaupp et al. on SO-induced heavy-atom effects on NMR chemical shifts,47 this trend can readily be explained based on the analogy to the Fermi-contact
mechanism of spin–spin coupling. The increasing involvement of valence silicon s-type orbitals in the bonding orbitals to the chloro-substituents results in larger SO contributions in the series from SiMe₂Cl to SiCl₄. Aside from the chlorine count there is only a rather limited influence of other silicon substituents on the magnitude of the SO corrections. A SO correction of around \(-2 \pm 0.5 \text{ ppm} \) per chlorine substituent will thus be typical for different chloromonosilanes (see also Table 5). For systems with more than one conformer, Boltzmann-averaged SO corrections are close to the SO-correction for the most stable conformer.\(^{5,4}\)

\(^{29}\)Si chemical shifts for larger molecular systems

\(^{29}\)Si chemical shifts for a larger group of “typical” systems are collected in Table 5 and graphically shown in Fig. 4. Already the calculation of gas phase \(^{29}\)Si chemical shifts at MPW1K/IGLO-III//MPW1K/6-31+G(d) level provides a rather accurate agreement with experimental results obtained in low polarity organic solvents with \(R^2 = 0.872 \) and MD = 2.54 ppm (panel (a) in Fig. 4). The largest deviations occur for systems containing more than one chlorine atom directly attached to silicon, and inclusion of SO-corrections evaluated at ZORA-SO-PM06/TZ2P single point level improves correlation with experiment significantly for the entire dataset to \(R^2 = 0.978 \) and MD = 0.18 ppm (compare panel (a) and (b) in Fig. 4). Best theoretical predictions are then obtained through shielding calculations in the presence of the PCM continuum solvent model with gas phase structures and including the SO corrections. It is remarkable to see that the correlation for this approach based on gas phase structures \((R^2 = 0.984, \text{MD} = 0.97 \text{ ppm})\) is even slightly better as compared to the approach based on solution-phase structures with \(R^2 = 0.983 \) and \(\text{MD} = 2.34 \text{ ppm} \) (compare panel (c) and (d) in Fig. 4).

Performing the actual shielding calculations with different functionals such as HCTH407 or with the local DF-LMP2 method lead to no further systematic improvement (see ESI† for details).

Chemical shifts for ion pairs

Chemical shift calculations for the ion pair intermediates 18, 19, 23, and 24 included in Table 5 are somewhat less accurate as compared to all other systems at the MPW1K/IGLO-III+(ZORA-SO)//MPW1K/6-31+G(d) level. This may, in part, be due to significantly larger solvent effects for these polar species as well as their rather large conformational flexibility. How the
latter actually impacts chemical shift calculations is illustrated in detail in Fig. 5 for silylpyridinium ion pair 19, whose experimentally measured 29Si chemical shift amounts to +33.25 ppm in chloroform. For ion pairs, which have more than one conformer, chemical shifts are evaluated by Boltzmann averaging over individual conformers based on their relative free energies. When using gas-phase free energies the structures with the largest molecular dipole moment make the smallest contribution to the Boltzmann average due to their high relative energies (Table 6). In solution, however, these structures lead to the largest solvation energies: the dipole moment of conformer 19_1 is comparatively low at 10.30 D (MPW1K/6-31+G(d) level) and thus has the smallest solvation energy of -81.50 kJ mol$^{-1}$ (gas-phase geometry). Conformers 19_4 and 19_5 have slightly larger dipole moments and also slightly larger solvation energies around -96 kJ mol$^{-1}$. Conformer 19_6 has the largest dipole moment at 23.93 D, leading to a rather large solvation energy of -131.50 kJ mol$^{-1}$ (gas phase geometry) or -162.72 kJ mol$^{-1}$ (solution phase geometry). As a consequence of these variations in solvation energies, relative free energies in solution ($\Delta G^{(s)}$) are significantly smaller as compared to the gas phase. Despite these large changes in relative energies, the actual ion pair structure shows rather little change in gas-phase vs. solution-phase geometry optimization as exemplified for the Si–N bond distance (Table 6). This can also be stated for the electronic character of these ion pairs as characterized by the triflate ion charge, which assumes values between 0.94 and 0.96 for the best conformers 19_1 and 19_2 in gas-phase as well as in solution (Table 6).

The largest effects are observed for ion pair 19_6, whose structure also depends significantly on the chosen level of theory in the gas phase; geometry optimization at MPW1K/6-31+G(d) level leads to the structure shown as ‘19_6’ in Fig. 5, which can be characterized as a true ion pair with a comparatively long (387 pm) distance between silicon atom and triflate counter ion. Reoptimization with the same functional and added dispersion corrections (MPW1K-D2/6-31+G(d)) leads to a structure best described as pentacoordinated silicon intermediate (termed 19_6^0) with a much shorter Si–O(triflate)
IGLO-III(+ZORA-SO)//MPW1K/6-31+G(d) calculations are thus the (chloro)organosilane compound family studied here MPW1K/6-31+G(d) in many cases, also using gas phase shielding calculations. For predictions can thus be made using gas phase geometries and, are quite systematic, but only of moderate size, and reliable shift (low-energy) conformers.

been observed for conformer the ion pair structure to a pentacoordinated intermediate upon systems with tetracoordinate silicon atoms. The “collapse” of the ion pair structure to a pentacoordinated intermediate upon geometry optimization at MPW1K-D2/6-31+G(d) level has only been observed for conformer 19_6 and not for any of the other (low-energy) conformers.

Conclusions

Calculated 29Si chemical shifts of (chloro)organosilanes depend strongly on structural details of the respective systems. MPW1K/6-31+G(d) gas phase optimizations give structures close enough to experiment for reliable NMR shielding calculations. Relativistic spin–orbit effects are large for chlorosilane systems and reliable shielding calculations thus require SO corrections for these systems. For non-halosilane systems the SO effects are rather small and 29Si shift predictions are thus possible without any relativistic corrections. Solvent effects on 29Si NMR chemical shifts are quite systematic, but only of moderate size, and reliable shift predictions can thus be made using gas phase geometries and, in many cases, also using gas phase shielding calculations. For the (chloro)organosilane compound family studied here MPW1K/IGLO-III(+ZORA-SO)/MPW1K/6-31+G(d) calculations are thus recommended for 29Si NMR shift calculation.

Computational details

Chemical shifts of 29Si containing species ($\delta^{(29)Si}$) are calculated using eqn (1), where $\sigma^{(29)Si_{TMS}}$ is the chemical shielding for the reference compound tetramethylsilane (Si(CH$_3$)$_4$, TMS, 1) and $\sigma^{(29)Si}$ is the shielding of the 29Si nucleus in the compound under investigation:

$$\delta^{(29)Si} = \sigma^{(29)Si_{TMS}} - \sigma^{(29)Si}$$ (1)

Shieldings are calculated using the Gauge-Independent Atomic Orbital (GIAO) method.58 Shielding values of chemicals are calculated with Gaussian 09, revision C.0159 and MOLPRO, Version 2012.1.60,61

The relativistic spin–orbit corrections to the nuclear magnetic shielding constants for 29Si were calculated with the two-component zeroth-order regular approximation (ZORA)51,52 using the Amsterdam Density Functional (ADF 2013.01) code.62 The hybrid functional PBE0$^{53-55}$ in combination with the Slater-type basis set TZ2P56 optimized for relativistic ZORA calculations is used for these single point calculations at MPW1K/6-31+G(d) gas phase structures. The spin–orbit correction is calculated as $\delta^{(29)Si}_{ZORA} = \delta^{(29)Si}_{non-relativistic}$ and then Boltzmann-averaged for compounds with more than one conformer. For more details on different functionalities and basis sets see the ESL.†

Experimental details

All commercial chemicals were of reagent grade and were used as received unless otherwise noted. The substances tert-butyl(dimethyl)silyl cyanide (4), tert-butyl(dimethyl)silyl chloride (8), 1-(tert-butyl(dimethyl)silyl)imidazole (11), N-tert-butyl(dimethyl)silyl-N-methyltrifluoroacetamide (16), and trisopropylsilylex (20), were purchased in the highest purity from Sigma Aldrich and measured in freshly distilled CDCl$_3$ over CaH$_2$. 1H and 13C NMR spectra were recorded on Varian 300 or Varian INOVA 400 machines at room temperature. All 1H chemical shifts are reported in ppm (δ) relative to CDCl$_3$ (+7.26); 13C chemical shifts are reported in ppm (δ) relative to CDCl$_3$ (+77.16). All other

Table 6 Relative free energies, structural and charge parameters, and 29Si chemical shifts for individual conformational isomers of ion pair 19. Charge parameters have been obtained from the NBO analysis.56

Level for free energy calculation	19_1	19_2	19_3	19_4	19_5	19_6
MPW1K/6-31+G(d)//MPW1K/6-31+G(d)						
μ (Debye)	10.30	17.27	17.36	13.16	14.39	23.93
ΔG (kJ mol$^{-1}$)	0.00	0.67	4.01	11.81	13.35	52.89
r(Si–N) (pm)	184.3	184.9	184.9	184.7	182.9	190.1
$\sigma^{(29)Si}$ (ppm)	-0.96	-0.94	-0.94	-0.95	-0.96	-0.95
ΔG_{MPW1K} (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
$\Delta G_{PCM/UAHF/MPW1K}$ (kJ mol$^{-1}$)						
$\sigma^{(29)Si}$ (ppm)						
chemicals were purchased from commercial suppliers at the highest available grade, store over orange gel in a desiccator and used without any further purification.

General procedure 1

For all purchased substances this procedure was performed. In a pre-dried NMR tube 30 mg of the substance were dissolved in 0.6 mL of freshly distilled CDCl$_3$. The tube was closed with a cap and sealed with parafilm.

General procedure 2

For the ion pairs (18, 19, 23, 24) two stock solutions have been prepared in the concentration of 0.5 M in freshly distilled CDCl$_3$. Both solutions (Lewis base and TBSOTf) are mixed in a ratio 1 : 1 and therefore the concentration of the intermediates can be 0.25 M max. The tube was closed with a cap and sealed with parafilm.

General procedure 3 (silylation of alcohols)

One equivalent of alcohol and 1.2 equivalents of used silyl chloride were dissolved in 20 mL DCM and 1.2 equivalents triethylamine was added. After adding up to 30 mmol% of a catalyst DMAP the reaction mixture stirred at RT up to 7 d. The reaction mixture was washed with sat. aq. NH$_4$Cl solution, extracted three times with DCM (10 mL) and the combined organic phases dried over MgSO$_4$. The solvent was removed under reduced pressure and column chromatography was used to purify the product.

References

1. T. M. Alam and M. Henry, *Phys. Chem. Chem. Phys.*, 2000, 2, 23–28.
2. C. van Wüllen, *Phys. Chem. Chem. Phys.*, 2000, 2, 2137–2144.
3. U. Herzog, *J. Prakt. Chem.*, 2000, 342, 379–388.
4. X. Xue and M. Kanzaki, *Chem. Phys. Miner.*, 1998, 26, 14–30.
5. J. A. Tossell and P. Lazzaretto, *J. Chem. Phys.*, 1986, 84, 369–374.
6. D. H. Brouwer, *J. Magn. Reson.*, 2008, 194, 136–146.
7. D. Auer, M. Kaupp and C. Stoehrmann, *Organometallics*, 2004, 23, 3647–3655.
8. C. Corninboeuf, T. Heine and J. Weber, *Chem. Phys. Lett.*, 2002, 357, 1–7.
9. M. Profeta, F. Mauri and C. J. Pickard, *J. Am. Chem. Soc.*, 2003, 125, 541–548.
10. J. Casanovas, F. Illas and G. Pacchioni, *Chem. Phys. Lett.*, 2000, 326, 523–529.
11. R. Herges and F. Starck, *J. Am. Chem. Soc.*, 1996, 118, 12752–12757.
12. J. Ambati and S. E. Rankin, *J. Phys. Chem. A*, 2010, 114, 5279–5286.
13. T. Heine, A. Goursot, G. Seifert and J. Webert, *J. Phys. Chem. A*, 2001, 105, 620–626.
14. A. I. Poblador-Bahamonde, R. Poteau, C. Raynaud and O. Eisenstein, *Dalton Trans.*, 2011, 40, 11321–11326.
15. F. Meyer-Wegner, A. Nadji, M. Bolte, N. Auner, M. Wagner, M. C. Holthausen and H. W. Lerner, *Chem. – Eur. J.*, 2011, 17, 4715–4719.
16. M. Karni, Y. Apeloig, N. Takagi and S. Nagase, *Organometallics*, 2005, 24, 6319–6330.
17. M. Sugino and Y. Ito, *Chem. Rev.*, 2000, 100, 3221–3256.
18. R. P. Singh and J. M. Shreeve, *Tetrahedron*, 2000, 56, 7613–7632.
19. P. Patschinski, C. Zhang and H. Zipse, unpublished results.
20. B. J. Lynch, P. L. Fast, M. Harris and D. G. Truhlar, *J. Phys. Chem. A*, 2000, 104, 4811–4815.
21. A. F. Wallace, G. V. Gibbs and P. M. Dove, *J. Phys. Chem. A*, 2010, 114, 2534–2542.
22. A. D. Boese and N. C. Handy, *J. Chem. Phys.*, 2001, 114, 5497.
23. V. A. Du, G. N. Stipicic and U. Schubert, *Eur. J. Inorg. Chem.*, 2011, 3365–3373.
24. Y. Zhao, N. E. Schultz and D. G. Truhlar, *J. Chem. Theory Comput.*, 2006, 2, 364–382.
25. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2007, 120, 215–241.
26. B. Maryasim and H. Zipse, *Phys. Chem. Chem. Phys.*, 2011, 13, 5150–5158.
27. S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka and J. Sauer, *Phys. Chem. Chem. Phys.*, 2009, 11, 1237–1247.
28. E. V. van den Berghe and G. P. van der Kelen, *J. Organomet. Chem.*, 1973, 59, 175–187.
29. M. Tobisu, Y. Kita, Y. Ano and N. Chatani, *J. Am. Chem. Soc.*, 2008, 130, 15982–15989.
30. K. Ohmatsu, Y. Hamajima and T. Ooi, *J. Am. Chem. Soc.*, 2012, 134, 8794–8797.
31. B. J. Albert and H. Yamamoto, *Angew. Chem., Int. Ed.*, 2010, 49, 2747–2749.
32. J. R. Durig, Y. S. Li and R. O. Carter, *J. Mol. Spectrosc.*, 1972, 44, 18–31.
33. R. C. Mockler, J. H. Bailey and W. Gordy, *J. Chem. Phys.*, 1953, 21, 1710–1713.
34. P. W. Allen and L. E. Sutton, *Acta Crystallogr.*, 1970, 33, 15982–15989.
35. R. Gajda, K. Dziubek and A. Krasuski, *Acta Crystallogr., Sect. B: Struct. Sci.*, 2004, 60, 86–93.
36. J. Buschmann, D. Lentz, P. Lugger and M. Rötger, *Acta Crystallogr., Sect. C: Crystal. Struct. Commun.*, 2000, 56(Pt 1), 121–122.
37. F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, 8, 1057–1065.
38. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305.
39. T. H. Dunning, *J. Chem. Phys.*, 1989, 90, 1007.
40. W. Kutzelnigg, U. Fleischer and M. Schindler, in *NMR Basic Principles and Progress*, ed. P. Diehl, E. Fluck, H. Günther, R. Kosfeld and J. Seelig, Springer, Berlin/Heidelberg, 1991, vol. 213, pp. 165–262.
41. F. Jensen, *J. Chem. Theory Comput.*, 2008, 4, 719–727.
42. A. D. Boese and N. C. Handy, *J. Chem. Phys.*, 2001, 114, 5497–5503.
43. H-J. Werner, F. R. Manby and P. J. Knowles, *J. Chem. Phys.*, 2003, 118, 8149.
Taking ion pair system 19 as an example, the SO correction for the six different conformers shown in Fig. 5 vary from -0.3 to -0.5 ppm at ZORA-SO-PBE0/TZ2P level. After Boltzmann averaging, the SO correction amounts to -0.5 ppm, which is identical to the value of the most stable conformer 19_1 (see ESI† for details).