An alternative way to solve the Cohen-Macaulay-ness conjecture in the quiver variety

Mohammed Bouhada

Department of Mathematics, University of Sherbrooke, Québec, CANADA J1K 2R1

October 22, 2018

Abstract

This short paper is another way to say that one can attack the Cohen-Macaulay-ness conjecture in the geometry of quiver variety using homological algebra.

Mathematics Subject Classification (2010): 16E10, 16E65, 16G20

Keywords: Projective dimension, Quiver variety, Cohen-Macaulay variety

1 Introduction

We fix an algebraically closed field k. A quiver Q is a quadruple $Q = (Q_0, Q_1, s, t)$, where Q_0 is a finite set of vertices, Q_1 is a finite set of arrows, and $s, t : Q_1 \to Q_0$ are two applications assigning to each arrow $\alpha \in Q_1$ its source $s(\alpha) \in Q_0$ and target $t(\alpha) \in Q_0$. Q is a Dynkin quiver if its underlying graph \overline{Q} is one of the following:

- A_n
- D_n
- E_6
- E_7
- E_8

when \overline{Q} is connected without cycles, we say that Q is a tree quiver. Clearly, a Dynkin quiver is a tree quiver.
A representation of Q is a couple $M = ((V_i)_{i \in Q_0}, (f_a)_{a \in Q_1})$ of k-vector spaces and linear applications such that for any couple of point $(i, \alpha) \in Q_0 \times Q_1$ we associates a k-vector space V_i and a linear application f_a.

Fix a dimension vector $d = (d_i)_{i \in Q_0}$, and denote by $rep(Q, d)$ the k-vector space $\prod_{a \in Q_1} \text{Hom}_k(k^{d(\alpha)}, k^{t(\alpha)})$, this is a topological space under Zariski topology, we will always denoted by \mathbb{A}^l, where $l = \sum_{a \in Q_1} d_a t(a)$, thus any representation of Q is a point of \mathbb{A}^l.

The algebraic group $\prod_{i \in Q_0} \text{GL}_d(k)$ acts on \mathbb{A}^l by conjugation, this mean that for any $(g_i)_{i \in Q_0} \in \prod_{i \in Q_0} \text{GL}_d(k)$ and $(f_a)_{a \in Q_1} \in \mathbb{A}^l$, $(g_i g)_{i \in Q_0} = (g_i(g_a f_a g_i^{-1}))_{a \in Q_1} \in \mathbb{A}^l$. Let O_M be the orbit of the representation M and \overline{O}_M its closure, it’s very interesting to study the elements which lie on the boundary of \overline{O}_M (degeneration), and the geometric properties such as regularity, normality, Cohen-Macaulayness, Gorensteinness... somehow this help to understand the category of finite-dimensional modules over the path algebra kQ, especially the classification problem of representations. Let $k[\overline{O}_M]$ be the coordinate ring of the variety \overline{O}_M, this is isomorphic to the affine k-algebra $k[rep(Q, d)]/I(\overline{O}_M)$, where $k[rep(Q, d)]$ is the polynomial algebra $k[x_{i,j}, \alpha \in Q_1, 1 \leq i \leq t(\alpha), 1 \leq j \leq s(\alpha)]$ and $I(\overline{O}_M)$ is the ideal of vanishing polynomials on \overline{O}_M. A fundamental question arises: what is the projective dimension of the $k[rep(Q, d)]$-module $k[\overline{O}_M]$? Hilbert’s syzygy theorem [5,6] ensures that the projective dimension of the $k[rep(Q, d)]$-module $k[\overline{O}_M]$ is finite, this mean that there exist a $k[rep(Q, d)]$-free resolution

$$0 \to F_p \to \cdots \to F_1 \to F_0 \to k[\overline{O}_M] \to 0$$

where $F_0, F_1, ..., F_p$ are finitely generated free $k[rep(Q, d)]$-modules. Sometimes the projective dimension of the coordinate ring $k[\overline{O}_M]$ (as a $k[rep(Q, d)]$-module) can tell us something on the ideal of the variety \overline{O}_M, see for example Hilbert-Burch theorem, more precisely if $\text{pd} k[\overline{O}_M] = 2$, then $I(\overline{O}_M) = a I_4(A)$ where $a \in k[rep(Q, d)]$ and $I_4(A)$ is the ideal generated by the $t \times t$ subdeterminants of the matrix A with entries in $k[rep(Q, d)]$, therefore we know exactly what are the equations that define the variety \overline{O}_M (see [5,6] for more details). it has been proven that when Q is of type A_n or D_n the orbit closures are normal and Cohen-Macaulay with rational singularities (see [1,2,3]), unfortunately for the quivers E_6, E_7 and E_8 the answer is unknown. In this paper, we will restrict our consideration to the Cohen-Macaulayness case. According to the theorem below (theorem 3), it seems that there is a strong connection of this last property and the projective dimension of the $k[rep(Q, d)]$-module $k[\overline{O}_M]$. We believe that this connection can help to solve the Cohen-Macaulay problem for the quivers E_6, E_7 and E_8, however finding this invariant is not an easy task at all, see [6].

2 Basic Concepts

In this section, we recall some background of representation theory and algebraic geometry. To gain a deeper understanding we refer the reader to [4,5,6,7].

Let $Q = (Q_0, Q_1, s,t)$ be a finite quiver.

Q is said to be finite if Q_0 and Q_1 are finite sets, and connected if the underlying graph \overline{Q} of Q is a connected graph. Consider two representations $M = ((M_i)_{i \in Q_0}, (f_a)_{a \in Q_1})$ and $N = ((N_i)_{i \in Q_0}, (g_a)_{a \in Q_1})$ of Q, a morphism $(h_i)_{i \in Q_0} : M \to N$ of representations is given by a family of linear applications
Theorem 1. [Artin-Voigt, 7]

If \(M \) is a representation of dimension \(d \), then \(\dim(\text{rep}(Q,d)) - \dim(O_M) = \dim_k \text{Ext}^1_Q(M, M) \).

We finish this section recalling several well known and useful tools about commutative algebra. Let \(L \) be a finitely generated module over the polynomial algebra \(R = k[x_1, \ldots, x_l] \) and \(p \) a prime ideal of \(R \). We define these five homological invariants: depth, Krull dimension, height, grade and the projective dimension by:

* \(\text{depth}(m, L) = \min \{ n : \text{Ext}_R^n(k, L) \neq 0 \} \), with \(m = (x_1, x_2, \ldots, x_l) \),
* \(\dim(L) = \dim(R/\text{ann}(L)) \),
* \(\text{ht}(p) = \sup \{ p_0 \subset p_1 \subset \cdots \subset p_s = p \}, \) where \(p_0, \ldots, p_s \in \text{spec}(R) \),
* \(\text{grade}(p) = \text{grade}(R/p, R) = \min \{ n : \text{Ext}_R^n(R/p, R) \neq 0 \} \),
* \(\text{pd}(L) = \sup \{ n : \text{Ext}_R^n(L, -) \neq 0 \} \) We say that \(L \) is Cohen-Macaulay \(R \)–module if \(\text{depth}(m, L) = \dim(L) \), when \(L = R \), this is equivalent to saying that \(R_p \) is Cohen-Macaulay for every prime ideal \(p \) of \(R \). An affine variety \(X \) is said to be Cohen-Macaulay if its coordinate ring \(k[X] \) is Cohen-Macaulay.
Theorem 2. [Auslander-buchsbaum,[4,5]]

Let L be a finitely generated graded module over the polynomial algebra $k[x_1, ..., x_i]$. Then, $pd(L) + \text{depth}(m, L) = \dim(R)$.

3 Main results

Definition 3.1. Let M be a representation of some bound quiver (Q, I), where I is a homogeneous graded ideal. M will be called homogeneous if \mathcal{O}_M is an affine cone, that is \mathcal{O}_M contains all lines spanned by its elements.

We denote by λM the representation with the point λm in the variety $\text{rep}(Q,d)$.

Lemma 3.2. M is homogeneous $\iff \lambda M \cong M$ for all $\lambda \neq 0$.

Proof. If M is homogeneous, then $\lambda m \in \mathcal{O}_M$, thus there exist a morphism $\phi : k \rightarrow \mathcal{O}_M$ such that $\phi(t) = m$, $\forall t \neq 0$ and $\phi(0) = \lambda m$. Using this fact, we can easily get a decreasing sequence of orbit closures $\mathcal{O}_M \supseteq \mathcal{O}_{\lambda M} \supseteq \mathcal{O}_{\lambda^2 M} \supseteq ... \supseteq \mathcal{O}_{\lambda^k M} \supseteq ...$. Now by the noetherianity of $k[\text{rep}(Q,d)]$ there exists N^* such that $\mathcal{O}_{\lambda^N M} = \mathcal{O}_{\lambda^{N+1} M}$, but we know that orbits are constructible, therefore $\lambda^p M \cong \lambda^{p+1} M$ and in particular $\lambda M \cong M$. For the converse, let $\psi : k \rightarrow \text{rep}(Q,d)$ defined by $\psi(t) = tm$. The inverse image of the orbit closure of M is closed set of k and by the hypothesis, it is infinite. Thus it must be k and $\psi(0) = 0 \in \mathcal{O}_M$.

Remark 3.3. In general, one can find representations which are not homogeneous. Fix $k = \mathbb{C}$ and consider the following quiver:

\[
\begin{array}{c}
\alpha \\
\downarrow \\
\beta
\end{array}
\]

$\alpha^2 = 0$ and $\beta^3 = 0$. Then take

\[
M_\alpha = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}, \quad M_\beta = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]

one can easily prove that for $\lambda \neq \pm 1$, λM is not isomorphic to M. More generally we have this direct implication: If any representation M of a quiver Q is homogeneous, then Q has no oriented cycle. This later come from the fact that homogeneous representations are nilpotent.

Theorem 3. Let Q be a tree quiver and M a representation of Q.

\[\mathcal{O}_M \text{ is Cohen-Macaulay} \iff pd(k[\mathcal{O}_M]) = \dim(k) + \dim_k \text{End}_Q(M) - \dim_k \prod_{i \in Q_0} \text{End}(M_i)\]

Proof. Assume that \mathcal{O}_M is CM, and let $0 = M_0 \subsetneq M_1 \subsetneq ... \subsetneq M_r = M$ be a composition series of M.

Since Q is an acyclic quiver, every composition factor M_i/M_{i-1} is isomorphic to some simple representation of the form S_j for $j \in Q_0$. This means that M degenerates to $\bigoplus_{i=1}^r S_1$, hence $0 \in \mathcal{O}_M$.

Let $\alpha : 1 \rightarrow 2$ be an arrow in Q_1. Put $\phi_1 = \text{Id}_{M_1}$ and $\phi_2 = \lambda M_{M_2}$, now if $\beta : d \rightarrow c$, we take
\(\phi_d = \lambda' \text{Id}_{M_d} \) if \(\phi_c = \lambda'^{-1} \text{Id}_{M_c} \) or \(\phi_c = \lambda' \text{Id}_{M_c} \) if \(\phi_d = \lambda'^{-1} \text{Id}_{M_d} \). Thus, the diagram below

\[
\begin{array}{ccc}
M_a & \xrightarrow{f_a} & M_b \\
\phi_c \downarrow & & \downarrow \phi_b \\
M_a & \xrightarrow{\lambda M_a} & M_b
\end{array}
\]

commutes for every arrow : \(a \to b \). Therefore, the representations \(M \) and \(\lambda M \) lie in the same orbit, i.e., \(O_M = O_{\lambda M} \). Note that we have proved that \(\overline{O}_M \) is an affine cone, thus the ideal \(I(O_M) \) is graded.

By Auslander-Buchsbaum and Artin-Voit formulas, we have the equality \(pd(k[\overline{O}_M]) = dim(k[\text{rep}(Q,d)]) - \text{depth}(m,k[\overline{O}_M]) = \text{dim}_k \text{Ext}^1_Q(M,M) + \text{dim}(k[\overline{O}_M]) - \text{depth}(m,k[\overline{O}_M]) \), this can be written \(pd(k[\overline{O}_M]) = \text{dim}_k \text{Ext}^1_Q(M,M) = \text{dim}(k[\overline{O}_M]) - \text{depth}(m,k[\overline{O}_M]) \).

Now by the Cohen-Macaulayness of the orbits closure, the projective dimension of \(k[\overline{O}_M] \) is exactly the dimension of the space \(\text{Ext}^1_Q(M,M) \). Finally using Ringel’s canonical exact sequence [8] :

\[
\begin{array}{c}
0 \longrightarrow \text{End}_Q(M) \longrightarrow \prod_{i \in \mathbb{Q}_0} \text{End}_k(M_i) \longrightarrow \text{rep}(Q,d) \longrightarrow \text{Ext}^1_Q(M,M) \longrightarrow 0
\end{array}
\]

We obtain the desired result, \(pd(k[\overline{O}_M]) = \text{dim}(\Lambda^1) + \text{dim}_k \text{End}_Q(M) - \text{dim}_k \prod_{i \in \mathbb{Q}_0} \text{End}_k(M_i) \).

Conversely, \(pd(k[\overline{O}_M]) = \text{dim}(\Lambda^1) + \text{dim}_k \text{End}_Q(M) - \text{dim}_k \prod_{i \in \mathbb{Q}_0} \text{End}_k(M_i) = \text{dim}_k \text{Ext}^1_Q(M,M) = \text{dim}(k[\text{rep}(Q,d)]) - \text{dim} \overline{O}_M = h(I(\overline{O}_M)) = \text{grade}(I(\overline{O}_M)). \) Hence, \(I(\overline{O}_M) \) is a perfect ideal, and by exercise 19.9 in [5], the variety \(\overline{O}_M \) is CM. \(\square \)

Corollary 3.4. Let \(Q \) be a tree quiver and \(M \) a representation of \(Q \). Assume that \(\overline{O}_M \) is CM. Then,

1- \(pd(k[\overline{O}_M]) = \min\{pd(k[\overline{O}_N]), M \leq_{d_{Qg}} N\} \)

2- \(O_M \) is closed \(\Leftrightarrow \) \(pd(k[\overline{O}_M]) = pd(k[\overline{O}_N]) \) for every \(n \in \overline{O}_M \)

Proof. If \(\overline{O}_M \) is CM then by the previous theorem \(pd(k[\overline{O}_M]) = \text{dim}_k \text{Ext}^1_Q(M,M) \leq \text{dim}_k \text{Ext}^1_Q(N,N) = \text{grade}(I(\overline{O}_M)) = \min\{n : \text{Ext}^n_k(k[\overline{O}_M],k[\text{rep}(Q,d)]) \neq 0 \} \leq \text{pd}(k[\overline{O}_N]) \).

If \(O_M \) is closed, then its boundary is empty, thus every degeneration of \(M \) has a closed orbit with equal to \(O_M \).

If \(pd(k[\overline{O}_M]) = pd(k[\overline{O}_N]) \) for every \(n \in \overline{O}_M \), then \(\overline{O}_M = \overline{O}_N \). We know that orbits are locally closed, thus \(M \) is isomorphic to \(N \). \(\square \)

Corollary 3.5. Let \(Q \) be a quiver of type \(\mathbb{A}_n \) or \(\mathbb{D}_n \).

Then, \(pd(k[\overline{O}_M]) = \text{dim}(\Lambda^1) + \text{dim}_k \text{End}_Q(M) - \text{dim}_k \prod_{i \in \mathbb{Q}_0} \text{End}_k(M_i). \)

Proof. by [1,2,3] orbits closure are CM in \(\mathbb{A}_n \) and \(\mathbb{D}_n \). \(\square \)

Remark 3.6. There exist a quiver \(Q \) and a representation \(M \) such that the projective dimension formula does not hold. In fact, we can take

\[
Q : 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1
\]

and \(m \) is the point \((M_\alpha, M_\beta) \) in \(\text{rep}(Q,d = (3,3)) \) with:
\[
M_\alpha = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}, \quad M_\beta = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

See [9].

4 References

[1] Abeasis.S, Fra.A.del, Kraft.H, The geometry of representations of \(A_m\), AMS,256(1981),401-418.

[2] Bobinski.G,Zwara.G, Normality of orbit closures for Dynkin quivers of type \(A_n\), Manuscripta Math.105 (2001), 103-109.

[3] Bobinsky.G,Zwara.G, Schubet varieties and representations of Dynkin quivers, Colloq.Math-94(2002),285-309.

[4] Bruns.W, Herzog.J, Cohen-Macaulay rings, Cambridge stud.Adv Math,39,Cambridge Univ Press (1993).

[5] Eisenbud.D, Commutative algebra with a view toward algebraic geometry, volume 150, Springer-Verlag,New York,1995.

[6] Eisenbud.D, The geometry of syzygies, volume 229, Springer-Verlag, New York,2005.

[7] Hazewinkel.M, Gubareni.N Kirichenko.V.V, Algebras,rings and Modules, volume 2, Springer netherlands, volume586,2007.

[8] Ringel.C.M, Representations of K-species and modules, J.Algebra,41(2),269-302,1976.

[9] Zwara.G An orbit closure for a representation of the Kronecker quiver with bad singularities, Colloq.Math.97,(2003),81-86.

[10] Skowronski.A, Yamagata.Kunio Representations of algebras and related topics, EMP, Switzerland,2011.