Potential considerations in decision making on laparoscopic colorectal resections in Hungary based on administrative data

Zsófia Benedek1*, Cecília Surján1,2, Éva Belicza1,2

1 Mental Health Sciences Doctoral School, Semmelweis University, Budapest, Hungary, 2 Health Services Management Training Centre, Semmelweis University, Budapest, Hungary

* benedek.zsofi0411@gmail.com

Abstract

Background
Laparoscopic colorectal surgeries offer numerous advantages over their open counterparts. To compare these measurable short-time outcomes of open and laparoscopic resections in Hungary, data of colorectal surgeries were collected and analysed. The study focused on identifying patients' characteristics that can influence the decision on laparoscopic colorectal resections and on comparing efficiency of Hungarian colorectal operations with international data.

Methods
Using patients' data of laparoscopic and open colorectal surgery performed in 2015 and 2016 from the National Health Insurance Fund of Hungary, a countrywide retrospective comparative analysis was done. Logistic regression was used to explore main influencing factors for laparoscopic colorectal surgery.

Results
A total of 17,876 colorectal surgical cases, including 14,876 open and 3,000 laparoscopic resections were selected and analysed. Laparoscopy was used only in 16.78% of all cases. Comparison of age groups showed that odds ratio (OR) of laparoscopic colorectal resections was significantly lower in over 40 years than in younger patients (18–39 years). In university institutes patients had higher odds (OR: 2.23 p<0.0001) for laparoscopic colorectal resections. Presence of comorbidity codes and preoperative treatment in internal medicine department decreased odds for laparoscopic colorectal operations.

Conclusions
Patients’ age, comorbidities and hospital type influenced the likelihood of decision on laparoscopic colorectal resection. Selection of patients contributed to improved laparoscopic outcomes.
Laparoscopic colorectal resection (LCR) techniques offer numerous advantages over their open counterparts, including shorter hospitalization, faster recovery and reduced morbidity. Short-term physical benefits include decreased pulmonary and gastrointestinal morbidity, improved pain control, less dehiscence and surgical site infections, less postoperative hernia and blood loss [1–7]. There is no significant difference in oncological outcomes [6–11]. Laparoscopic resections are superior to open colorectal resections regarding physical functioning and vitality [12] and complication rates [6,13–15]. Studies have shown that laparoscopic resection was a safe and viable alternative to open colorectal surgery [7,16]. In Hungary, laparoscopic colorectal surgeries have been used since the 2000s. Nowadays, laparoscopic colorectal procedures have become a daily routine in many surgical departments. LCR were not clearly documented in the Hungarian healthcare database before 2014; surgeons could use only the intervention codes of open colorectal resections (OCR) at administration, and hospitals received the same funding both for laparoscopic and open surgeries [17]. Financial constraints decelerated the spread of modern laparoscopic colorectal procedures, and administrative deficiency caused untraceable data of LCR [18]. In February 2014 the codes were modified, and the health insurer started to finance the investment for special laparoscopic equipment. Since then LCR and OCR data can be compared from the National Health Insurance Fund of Hungary (Nemzeti Egészségbiztosítási Alapkezelő). Data transparency seems to be improved because identified and unique coded OCR and LCR cases can be followed up. The aim of our study is to identify independent predictors that influence the decision to use laparoscopic techniques for colorectal resections in Hungary.

Methods

Using the National Health Insurance Fund Administration database, we have collected and analysed data of elective colorectal surgeries between January 1, 2015 and December 31, 2016. This study involves only anonymized administrative medical data. According to the Article 18 of Act XLVII of 1997 on the processing and protection of health care data and associated personal data, there is no need for the approval of the Research Ethics Committee for the analysis of administrative data requested from the National Healthcare Service Center (Állami Egészségügyi Ellátó Központ- AEEK). According to the above statement, the request and analysis of administrative data under the contract between Semmelweis University and the National Healthcare Service Center (registration number: AEEK/000810-001/2017) are not subject to the need for an ethical permission request. Elements of database were collected from 70 hospitals in Hungary, where colorectal surgeries were performed. Our research units were colorectal surgeries. In order to identify the type of colon or rectal procedures performed (Table 1), we used the Hungarian classification of procedures.

Table 1. Open and laparoscopic colorectal surgical procedures included in the study.

Laparoscopic colorectal procedures	Open colorectal procedures
Resection of the rectum	
Laparoscopic abdominoperineal resection of the rectum	Open abdominoperineal resection of the rectum
Laparoscopic resection of the rectum with saving sphincter function	Open resection of the rectum with saving sphincter function
Large bowel resection	
Laparoscopic sigmoidectomy or resection of rectosigmoid colon	Open sigmoidectomy or resection of rectosigmoid colon
Right laparoscopic hemicolecotomy	Open right hemicolecotomy
Laparoscopic partial colectomy	Open partial colectomy
Left laparoscopic hemicolecotomy	Open left hemicolecotomy
Laparoscopic colectomy	Open colectomy
Laparoscopic proctocolectomy with ileostomy	Proctosigmoidectomy (Hartmann’s operation)

https://doi.org/10.1371/journal.pone.0257811.t001
Procedure codes were associated with patient characteristics (age, sex, postoperative morbidity and comorbidity International classification of diseases (ICD) codes), 30-day mortality, and hospital identification code. ICD diagnoses were divided into two groups: main diagnosis (indicating the surgery) and secondary diagnoses (comorbidities and complications). The 70 inpatient hospitals involved, where colorectal surgeries were performed during the study time period were categorized by their type, and divided into three groups: university clinics and national centres, county centres and rural hospitals. Data of hospitalization (immediate before the operation) in department of internal medicine were also collected. Inclusion criteria were: age over 18 years, included open and laparoscopic colorectal surgical procedures (Table 1), elective surgical treatment, surgery performed between 1 January 2015 and 31 December 2016. Exclusion criteria were: inadequate main diagnosis (surgery-indicated morbidity, inadequate length of stay (number of days less than zero), length of hospital stay longer than 150 days and length of stay in the surgical department longer than 60 days until discharge or until transfer to a rehabilitation unit. After applying the inclusion and exclusion criteria, 17,876 colorectal surgical cases were categorized by SPSS into either LCR or OCR groups. 15,549 of main diagnoses were categorized into major main diagnosis groups (Table 2).

To determine factors influencing surgical decision-making for open versus laparoscopic colorectal procedures, multivariable logistic regression analysis was performed. Odds ratio (OR) with a 95% confidence interval was calculated to determine the combined effect of various preoperative factors for laparoscopic colon and rectal operations. These variables included patient age and sex, comorbidities (Table 2), main diagnosis groups (Table 2), and hospital type. To determine factors influencing 1–30 day unadjusted postoperative mortality, a second multivariate logistic regression was performed. OR with a 95% confidence interval was calculated. Mortality was included as the dependent variable and surgical procedure (OCR and LCR groups), patient age, comorbidities (Table 2), main diagnosis groups (Table 2), and complications (Table 2) were independent factors. Age categories and surgical procedures were

Table 2. Included diagnosis groups categorized by type.

Main diagnosis groups (Hungarian version of ICD codes)	Secondary diagnosis groups (Hungarian version of ICD codes)	Comorbidities
Malignant neoplasm of colon (C18*-C19**)	Pneumonia and other acute lower respiratory infections (J12*-22**)	Secondary malignant neoplasm of liver and intrahepatic bile duct (C7870)
Malignant neoplasm of rectum (C20H0)	Abscess, perforation, fistula, and ulcer of intestine (K631*-K633*)	Essential (primary) hypertension (I10H0)
Benign tumours of colon and rectum (D12**)	Peritonitis (K65**)	Hypertensive heart disease, Chronic ischaemic heart disease (I11*, I25*)
Neoplasms of uncertain behaviour of colon and rectum (D3740-D3750)	Cutaneous abscess, furuncle and carbuncle and pressure ulcer (L023*,L023*, L89**)	Peritoneal adhesions (K66**)
Crohn’s disease, large intestine (K5010-K5190)	Acute posthaemorrhagic anaemia, and anaemia, unspecified (D62**, D649*)	Symptoms and signs concerning food and fluid intake (R6330)
Diverticular disease of large intestine without perforation or abscess (K5730, K5750, K5790)	Disorders of electrolyte intake and/or acid base balance (E87**)	Chronic obstructive pulmonary disease (COPD) (I44*)
	Paralytic ileus and intestinal obstruction without hernia (K56**)	Atrial fibrillation and flutter (I48**)
	Acute renal failure(N17**)	Non-insulin-dependent diabetes mellitus (E11**)
	Complications of procedures, not elsewhere classified (T81**)	Atherosclerosis (I70*)
	Acute pulmonary insufficiency following nonthoracic surgery, respiratory failure, not classified elsewhere (I952*, J96*)	Chronic renal failure (N18*)
	Other respiratory disorders (J98**)	Septicaemia (A40**-A41**)

*or **: Third or fourth variable values were marked with * and ** in diagnosis codes, as diagnosis groups were used in the study.

https://doi.org/10.1371/journal.pone.0257811.t002
categorical, and diagnoses were binary variables. A statistical significance level was defined at alpha <0.05. All statistical analyses for the database were conducted using SPSS (25th version).

Results

Of the 17,876 colorectal resections that met inclusion criteria, 14,876 were open and 3,000 were laparoscopic. Overall, laparoscopy was used only in 16.78% of all colorectal cases. Mean age was 66.35 (SD: 12.68) years in the OCR group and 63.78 (SD: 12.62) years in the LCR group (p<0.0001). Distribution of sexes was statistically not significant between the two groups (p = 0.124) with Pearson Chi² test (χ²(1) = 2,363; p = 0.124). Patient sex and age data for the laparoscopic and open groups are given in Table 3.

In the study population, it seemed that the rate of LCR cases decreased in both sexes over the age of 70 (LCR% was between 14.9% and 9.4%). Although there was a low incidence of colorectal resection in women between the age of 18–39 and 40–49, this group had the highest proportion of LCR (28.4% and 27.1% of all operated cases, respectively). Distribution of main diagnosis groups was analysed (Table 4) in context of LCR, OCR groups and sex.

The most common indication for surgery was malignant neoplasm of the colon (58.3%), of which 16.3% were performed laparoscopically. The condition with the highest proportion of patients receiving LCR was diverticulosis, with a rate of 23.9%. Colon and rectal malignant tumours were the most frequent reasons in men for open and laparoscopic procedures as well (4,213 vs. 767 cases). We found some distributional differences of main diagnoses regarding open and laparoscopic surgeries in the two sexes. The rate of LCR in cases of female patients was higher than in male patients in all (main) diagnoses indicating the surgery, except for diverticulosis: male with 25.4% vs. female with 22.9% (Table 4). 40.2% (1,206 of 3,000) of LCR were performed in university or national institutes, and 35.5% (5281 of 14,876) of OCR were performed in county centre hospitals. Rate of LCR technique was 4.4% (780 of 17,876) in rural, 5.7% (1,014 of 17,876) in county hospitals, and 6.7% in university and national institutes (1,206 of 17,876).

Characteristics were analysed as independent risk factors influencing the decision on the LCR technique in multivariable forward logistic regression analysis (Table 5).

Table 3. Distribution of laparoscopic and open colorectal surgeries by sex and age.

Surgery type	Cross-tabulation of sex, age categories of LCR and OCR	LCR (number of cases)	OCR (number of cases)	Total(number of cases) = LCR+OCR and (LCR% of Total)
age				
male				
18–39	331	69	400 (LCR: 17.3%)	
40–49	428	109	537 (LCR: 20.3%)	
50–59	1,125	256	1,381 (LCR: 18.5%)	
60–69	2,804	625	3,429 (LCR: 18.2%)	
70–79	2,495	437	2,932 (LCR: 14.9%)	
80–x	954	99	1,053 (LCR: 9.4%)	
Total	8,137	1,595	9,732 (LCR: 16.3%)	
female				
18–39	230	91	321 (LCR: 28.4%)	
40–49	328	122	450 (LCR: 27.1%)	
50–59	928	221	1,149 (LCR: 19.2%)	
60–69	1,975	467	2,442 (LCR: 19.1%)	
70–79	2,114	379	2,493 (LCR: 15.2%)	
80–x	1,164	125	1,289 (LCR: 9.7%)	
Total	6,739	1,405	8,144 (LCR: 17.3%)	

https://doi.org/10.1371/journal.pone.0257811.t003
Table 4. Main diagnoses indicating surgery in laparoscopic and open surgery groups.

	Malignant neoplasm of colon	Malignant neoplasm of rectum	Benign neoplasm of colon and rectum	Neoplasm of uncertain behaviour of colon and rectum	Crohn’s disease, large intestine	Diverticular disease of large intestine without perforation or abscess	Total (N)
Male OCR (N)	4,213	1,934	158	309	290	170	7,074
LCR (N)	767	521	84	86	49	58	1,565
LCR %	15.4	21.2	34.7	21.8	14.5	25.4	18.1
Female OCR (N)	3,380	1,195	123	327	254	263	5,542
LCR (N)	709	335	93	92	61	78	1,368
LCR %	17.3	21.9	43.1	22	19.4	22.9	19.8
Total (N)	9,069	3,985	458	814	654	569	15,549
LCR %	16.3	21.5	38.6	21.9	16.8	23.9	18.9

LCR% = Number of cases LCR/(Number of cases OCR+LCR) x 100, (N) = number of cases in the main diagnosis groups of Table 4.

https://doi.org/10.1371/journal.pone.0257811.t004

Table 5. Variables influencing the choice of LCR by multiple logistic regression.

Variables	Odds ratio (OR)	95% C.I.	p value
Age category (Ref.: 18–39 years)			
40–49 years	0.844	(0.650–1.095)	p = 0.202
50–59 years	0.644	(0.504–0.821)	p < 0.0001
60–69 years	0.633	(0.500–0.800)	p < 0.0001
70–79 years	0.555	(0.437–0.706)	p < 0.0001
80–x years	0.403	(0.342–0.515)	p < 0.0001
Female (Ref.: Male)	1.128	(1.038–1.226)	p = 0.004
Preoperative treatment in department of internal medicine	0.420	(0.342–0.515)	p < 0.0001
Main diagnoses			
Malignant neoplasm of colon	6.382	(4.954–8.221)	p < 0.0001
Malignant neoplasm of rectum	7.597	(5.864–9.842)	p < 0.0001
Benign neoplasm of colon and rectum	17.651	(12.886–24.177)	p < 0.0001
Neoplasm of uncertain behaviour of colon and rectum	8.695	(6.442–11.737)	p < 0.0001
Crohn’s disease, large intestine	3.068	(2.174–4.330)	p < 0.0001
Diverticular disease of large intestine without perforation or abscess	8.265	(6.026–11.336)	p < 0.0001
Secondary diagnoses			
Secondary malignant neoplasm of liver and intrahepatic bile duct	0.420	(0.329–0.538)	p < 0.0001
Essential (primary) hypertension	0.847	(0.772–0.929)	p < 0.0001
Hypertensive heart disease or chronic ischaemic heart disease	0.755	(0.663–0.861)	p < 0.0001
Peritoneal adhesions	0.683	(0.542–0.861)	p = 0.001
Symptoms and signs concerning food and fluid intake	0.779	(0.596–1.022)	p = 0.071
Chronic obstructive pulmonary disease	0.596	(0.441–0.805)	p = 0.001
Atrial fibrillation and flutter	0.687	(0.547–0.863)	p = 0.001
Diabetes mellitus	0.918	(0.794–1.062)	p = 0.251
Atherosclerosis	0.556	(0.414–0.745)	p < 0.0001
Chronic renal failure	0.383	(0.245–1.333)	p = 1.233
Hospital type (Ref.: Rural)			p < 0.0001
County centre	1.019	(0.918–1.130)	p = 0.728
University or national centre	2.229	(2.0006–2.476)	p < 0.0001
Number of cases (n)	17,876		

https://doi.org/10.1371/journal.pone.0257811.t005
Age categories, sex, main diagnoses, majority of secondary diagnoses, and university or national centres were significantly associated with choosing LCR technique over OCR (Table 5). Multivariable logistic regression (Table 5) showed that the chance of patients being selected for LCR progressively decreased over the age of 40. Over 80 years OR was only 0.4 (p < 0.0001). Table 5 highlights differences of OR of main diagnoses. OR was over 6 in any type of neoplasms, with the highest value in benign colorectal tumours (OR: 17.65; p < 0.0001).

Overall, we found that women had a slightly higher chance for laparoscopic colorectal surgery (OR: 1.13; p = 0.004). Logistic regression model demonstrated that patients with comorbidity diagnoses in their medical records (e.g. secondary malignant neoplasm of liver and intrahepatic bile duct, peritoneal adhesions, COPD, atrial fibrillation, atherosclerosis, hypertensive heart disease and chronic ischaemic heart disease) had reduced likelihood for LCR. Regarding comorbidity diagnoses, preoperative treatment in internal care units seemed to decrease the probability of laparoscopic colorectal surgery (OR: 0.42; p < 0.0001). Considering the type of operating institutes, we found high odds ratio (OR: 2.23; p < 0.0001) for LCR in university and national institutes compared to rural and county centre hospitals.

We collected and categorized complications into diagnosis groups by frequency (Table 2). 36% of open and 3.1% of laparoscopic colorectal procedures were associated with a minimum of one complication code. We found that postoperative (unadjusted) mortality within 1 to 30 days was considerably higher if open surgery was performed (8.2% and 1.2% in the OCR and LCR group, respectively). To show the effect of LCR procedure on 1–30 day postoperative mortality- as it was recommended- we made a second multivariate logistic regression, where mortality was dependent and surgical procedures were presented as independent risk factors (Table 6). After checking multicollinearity, we had to exclude some of our previous variables like hospital types or comorbidity (e.g. COPD), or patient sex.

The multivariate logistic regression (Table 6) showed that having LCR procedure reduced likelihood for the 1–30 day postoperative death, if OCR group was the reference (OR: 0.326; p < 0.0001). The mortality of patients progressively increased with age. Complications involved in regression (Table 6) are associated with elevated odds for mortality, the highest value belonged to septicaemia (OR: 3.710; p < 0.0001). Acute renal failure (OR: 2.720; p < 0.0001) and respiratory insufficiency (OR: 2.631; p < 0.0001) or respiratory disorders (OR: 2.156; p < 0.0001) showed also high OR values, their presence in medical records more than doubling odds of mortality. Our second regression model demonstrated that patients with comorbidity diagnosis in their medical records e.g. secondary malignant neoplasm of liver and intrahepatic bile duct, atherosclerosis and chronic renal failure diagnoses had an improved likelihood for mortality with the highest OR values. The elective surgical main diagnoses in this regression had a reduced likelihood for mortality as an independent predictor. The lowest OR value (OR: 0.204; p < 0.0001) is connected to benign neoplasm of the colon and rectum.

Discussion

In Hungary, the rate of laparoscopic colorectal resection among all elective colorectal surgery was only 16.7% in 2015–2016. Our study indicates that laparoscopic colorectal surgery was underused in Hungary, especially, if compared with international reports. The Surgical Care and Outcomes Assessment Program (SCOAP) evaluated the use of laparoscopy for elective colorectal resections in 48 hospitals in the United States in 2010, and a rate of 41.6% was found [19]. Askari et al reported that the percentage of laparoscopic colorectal resections was 20.9% in England between 2001 and 2011 [20]. We share the opinion of the National Institute for Health and Clinical Excellence (NICE) [21] that the limiting factor for the implementation of LCR is the number of surgeons capable of performing laparoscopic colorectal resections.
rather than the characteristics of the tumour or the patient. We complement this opinion with the fact that financial constraints decelerated the spread of modern laparoscopic colorectal procedures in Hungary before 2014 [18]. If the increasing efficiency were aimed at, it would be useful to utilize the positive effect of a standardized surgical technique, training courses and surgical simulation on the implementation of laparoscopic colorectal procedures [22,23].

The most important findings of our study are the relationship between age, comorbidities, main diagnoses, type of operating hospitals and laparoscopic colorectal procedures (Table 5). Hungarian and international experiences [24–26] show a selection of healthier and younger...
patients for LCR during the learning period of laparoscopic colorectal surgery. Pascual reported that the number of absolute contraindications of LCR is currently almost negligible [27]. She found that appropriate patient selection is important to maintain conversion rates below 10%. We hypothesize that these selections played a role in better outcomes at laparoscopic colorectal resections, and should carefully planning methods (e.g.: randomized methods of sample groups) to analyse LCR and OCR outcomes or institutional results with other hospitals outcomes. The result of our second logistic regression (Table 6) confirms that having LCR against OCR and well-chosen indications had positive effect on unadjusted postoperative mortality. To analyse output data clearly, it would be necessary to standardize surgical indication for LCR and OCR. The standardized procedure could help to establish indicators of colorectal surgical quality like MTL30 [28]. In our database it seems that women had slightly higher odds for laparoscopic colorectal resections (OR: 1.128; p = 0.004) than men. In the logistic regression, the OR pattern of age, presence of comorbidities and existence of preoperative medical treatment in internal medical departments suggested that older and multimorbid (more than one comorbidity) patients had less chance for LCR.

We found that the most frequent main diagnosis codes were malignant colorectal tumours (Table 4). These results can be related to the composition of indication of elective surgical cases and the high prevalence of colorectal cancer in Hungary [29]. Unfortunately, we could not use the data of preoperative staging survey in our study, as this information is not reported accurately in the database of the National Health Insurance Fund of Hungary. In our research, hospital types were factors associated with the laparoscopic colorectal resections as mentioned in SCOAP [19] or by Kemp [26] and Pascual [27]. In Hungary, universities or national institutes are more likely to be predictive factors for laparoscopic colorectal procedures (OR: 2.23; p<0.0001). We are convinced that it is related to education and technical possibilities in addition to financial support.

We noticed some limitation of our research at the beginning. We found a shockingly high rate of postoperative 1-30-day mortality (8.2%) in the OCR group, especially, if compared with 1.28% 30-day–mortality rate reported by Kellers nationwide study [4] or 2% in the COLOR II findings [30], or 1.4% in the Nationwide Inpatient Sample (NIS) database study [31]. We could not find any failure in our database or calculations. Mortality data could be influenced by a generally bad health status [29] of middle-aged and elderly Hungarian patients, as well as the lack of primary prevention of colorectal diseases and of the colonoscopy screening for colorectal tumours or quality of postoperative care and surgical experience. Our study implies that there was patient selection for LCR which could positively affect the outcome such as mortality or reoperation. To date, there is no specific procedure code for conversion from laparoscopic resection to open surgery, thus, our procedure code system does not allow quantifying number of conversions and early (on the same day of operation) reoperations. Surgical reports by emergency classification can be potentially inaccurate in OCR too. Therefore, our results should be interpreted critically.

The authors are confident that the present research will support the improvement of insurance data transparency and the development of patient care.

Author Contributions

Conceptualization: Zsófia Benedek.

Formal analysis: Zsófia Benedek.

Methodology: Éva Belicza.

Supervision: Éva Belicza.
Writing – original draft: Zsófia Benedek.
Writing – review & editing: Cecília Surján, Éva Beliczá.

References

1. Delaney CP, Marcello PW, Sonoda T, Wise P, Bauer J, Techner L. Gastrointestinal recovery after laparoscopic colectomy: results of a prospective, observational, multicenter study. Surg Endosc. 2010; 24:653–61. https://doi.org/10.1007/s00464-009-0652-7 PMID: 19688390.

2. Raymond TM, Kumar S, Dastur JK, Adamek JP, Khot UP, Stewart MS, et al. Case controlled study of the hospital stay and return to full activity following laparoscopic and open colorectal surgery before and after the introduction of an enhanced recovery programme. Colorectal Dis. 2010; 12:1001–6. https://doi.org/10.1111/j.1463-1318.2009.01925.x PMID: 19438889.

3. Guillou PJ, Quirk P, Thorpe H, Walker J, Jayne DG, Smith AMH, et al, MRC CLASICC trial group. Short-term endpoints of conventional versus laparoscopic assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomized controlled trial. Lancet. 2005; 365:1718–26. https://doi.org/10.1016/S0140-6736(05)66545-2 PMID: 15894098.

4. Keller DS, Delaney CP, Hashemi L, Haas EM. A national evaluation of clinical and economic outcomes in open versus laparoscopic colorectal surgery. Surg Endosc. 2016; 30:4220 –8. https://doi.org/10.1007/s00464-015-4732-6 PMID: 26715021.

5. Stefanou AJ, Reickert CA, Velanovich V, Falvo A, Rubinfeld I. Laparoscopic colectomy significantly decreases length of stay compared with open operation. Surg Endosc. 2012; 26:144–8. https://doi.org/10.1007/s00464-011-1840-9 PMID: 21792714.

6. Chen K, Cao G, Chen B, Wang B, Xu X, Cai W et al. Laparoscopic versus open surgery for rectal cancer: A meta-analysis of classic randomized controlled trials and high-quality Nonrandomized Studies in the last 5 years. Int J Surg. 2017; 39:1–10. https://doi.org/10.1016/j.ijjsu.2016.12.123 PMID: 2445673.

7. Lacy AM, García-Valdecasas JC, Delgado S, Castells A, Taurá P, Piqué JM et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomized trial. Lancet 2002; 359:2224–9. https://doi.org/10.1016/S0140-6736(02)09290-5 PMID: 12103285.

8. Janson M, Lindholm E, Anderberg B, Haglind E. Randomized trial of health-related quality of life after open and laparoscopic surgery for colon cancer. Surg Endosc. 2007; 21:747–53. https://doi.org/10.1007/s00464-007-9217-9 PMID: 17342556.

9. Colon Cancer Laparoscopic or Open Resection Study Group; Buunen M, Veldkamp R, Hop WCJ, Kuhry E, Jeekel J, et al. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol. 2009; 10:44–52. https://doi.org/10.1016/S1470-2045(08)70310-3 PMID: 19071061.

10. Sokolovic E, Buchmann P, Schlomowitsch F, Szucs TD. Comparison of resource utilization and long-term quality-of-life outcomes between laparoscopic and conventional colorectal surgery. Surg Endosc. 2004; 18:1663–7. https://doi.org/10.1007/s00464-003-9168-8 PMID: 15930377.

11. Laurent C, Leblanc F, Bretagnet F, Capdepon M, Ruiller E. Long-term wound advantages of the laparoscopic approach in rectal cancer. Br J Surg. 2008; 95:903–8. https://doi.org/10.1002/bjs.6134 PMID: 18515006.

12. Delaney CP, Chang E, Senagore AJ, Broder M. Clinical outcomes and resource utilization associated with laparoscopic and open colectomy using a large national database. Ann Surg. 2006; 247:819–24. https://doi.org/10.1097/SLA.0b013e31816d950e PMID: 18439119.

13. Veldkamp R, Kuhry E, Hop WCJ, Jeekel J, Kazemier G, Bonjer HJ et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005; 6:477–84. https://doi.org/10.1016/S1470-2045(05)70221-7 PMID: 15992696.

14. The Clinical Outcomes of Surgical Therapy Study Group; Nelson H, Sargent DJ, Wieand HS, Fleshman J, Anvari M et al. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004; 350:2050–9. https://doi.org/10.1056/NEJMoa032651 PMID: 15141043.

15. Krenyácz É, Benedek Zs. Costs and benefits of the laparoscopic colorectal operations- a micro and mezo level analysis. [A laparoszkópos kolorektális műtétek haszna és költségei–mikro és mezzo szintű
18. Benedek Zs, Krenyácz É. Economic aspects of laparoscopic colorectal surgery in inpatient care. [A laparoszkópos colorectális sebészet gazdasági vonatkozásai a fekvőbeteg ellátás szintjén.] LAM 2013; 23:125–133. Hungarian. Available at: https://elitmed.hu/kiadvanyaink/lege-artis-medicinae/a-laparoszkopos-colorectalis-sebeszet-gazdasagi-vonatkozasai-a-fekvolbeteg-ellatas-szintjen.

19. Surgical Care and Outcomes Assessment Program (SCOAP) Collaborative, Kwon S, Billingham R, Farrokhi E, Florence M, Herzig D et al. Adoption of laparoscopy for elective colorectal resection: a report from the Surgical Care and Outcomes Assessment Program. J Am Coll Surg. 2012; 214:909–18.e1. https://doi.org/10.1016/j.jamcollsurg.2012.03.010 PMID: 22533998.

20. Askari A, Nachiappan S, Currie A, Bottle A, Athanasiou T, Faiz O. Selection for laparoscopic resection confers a survival benefit in colorectal cancer surgery in England. Surg Endosc. 2016; 30:3839–47 https://doi.org/10.1007/s00464-015-4686-8 PMID: 27059969.

21. National Institute for Health and Clinical Excellence. Laparoscopic surgery for colorectal cancer. 2006. Available at: https://www.nice.org.uk/guidance/ta105/resources/laparoscopic-surgery-for-colorectal-cancer-pdf-8259801409229.

22. Luglio G, De Palma GD, Tarquini R, Giglio MC, Soliasso V, Esposito E, et al. Laparoscopic colorectal surgery in learning curve: Role of implementation of a standardized technique and recovery protocol. A cohort study. Ann Med Surg (Lond) 2015; 4:89–94. https://doi.org/10.1016/j.amsu.2015.03.003 PMID: 25859386.

23. Palazuelos CM, Martín JA, Parra Jim, Ruiz MG, Maestre JM, Figuero CR, et al. Effects of surgical simulation on the implementation of laparoscopic colorectal procedures. Cir Esp. 2014; 92:100–6. https://doi.org/10.1016/j.ciresp.2013.03.004 PMID: 24060161 [Article in Spanish].

24. Kang CY, Chaudhry OO, Halabi WJ, Nguyen V, Carmichael JC, Stamos MJ, et al. Outcomes of laparoscopic colorectal surgery: data from the Nationwide Inpatient Sample 2009. Am J Surg. 2012; 204:952–7. https://doi.org/10.1016/j.amjsurg.2012.07.031 PMID: 23122910.

25. Simorov A, Shaligram A, Shostrom B, Boilesen E, Thompson J, Oleynikov D. Laparoscopic Colon Resection Trends in Utilization and Rate of Conversion to Open Procedure A National Database Review of Academic Medical Centers. Ann Surg. 2012; 256:462–8. https://doi.org/10.1097/SLA.0b013e3182657ec5 PMID: 22868361.

26. Kemp JA, Finlayson SRG. Nationwide trends in laparoscopic colectomy from 2000 to 2004. Surg Endosc. 2008; 22:1181–7. https://doi.org/10.1007/s00464-007-9732-8 PMID: 18246394.

27. Pascual M, Salvans S, Pera M. Laparoscopic colorectal surgery: Current status and implementation of the latest technological innovations. World J Gastroenterol. 2016; 14;22:704–17. https://doi.org/10.3748/wjg.v22.i2.704 PMID: 26811618.

28. Matthes N, Diers J, Schiegel N, Hankir M, Haubitz I, Germer C-T, et al. Validation of MTL30 as a quality indicator for colorectal surgery. PLoS ONE 15:e0238473 https://doi.org/10.1371/journal.pone.0238473 PMID: 32857807.

29. OECD, Systems EOH, Policies. Hungary: Country Health Profile 2017. Available at: https://www.oecd-ilibrary.org/content/publication/9789264283411-en.

30. van der Pas MH, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WC, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): Short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013; 14:210–8. https://doi.org/10.1016/S1470-2045(13)70016-0 PMID: 23395398.

31. Steele SR, Brown TA, Rush RM, Martin MJ. Laparoscopic versus open colectomy for colon cancer: results from a large nationwide population-based analysis. J Gastrointest Surg. 2008; 12:583–591 https://doi.org/10.1007/s11605-007-0286-9 PMID: 17846852.