Part-of-Speech Tagging for Code-mixed Indian Social Media Text at ICON 2015

Kamal Sarkar
Computer Science & Engineering Dept.
Jadavpur University
Kolkata-700032, India
jukamal2001@yahoo.com

ABSTRACT
This paper discusses the experiments carried out by us at Jadavpur University as part of the participation in ICON 2015 task: POS Tagging for Code-mixed Indian Social Media Text. The tool that we have developed for the task is based on Trigram Hidden Markov Model that utilizes information from dictionary as well as some other word level features to enhance the observation probabilities of the known tokens as well as unknown tokens. We submitted runs for Bengali-English, Hindi-English and Tamil-English Language pairs. Our system has been trained and tested on the datasets released for ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text. In constrained mode, our system obtains average overall accuracy (averaged over all three language pairs) of 75.60% which is very close to other participating two systems (76.79% for IIITH and 75.79% for AMRITA_CEN) ranked higher than our system. In unconstrained mode, our system obtains average overall accuracy of 70.65% which is also close to the system (72.85% for AMRITA_CEN) which obtains the highest average overall accuracy.

Keywords
Part-of-Speech Tagging, Code Mixed, Social Media, HMM.

1. INTRODUCTION
Part-of-Speech (POS) tagging is the task of assigning grammatical categories (noun, verb, adjective etc.) to words in a natural language sentence [1]. POS tagging can be used in various NLP (Natural Language Processing) applications. The interest in applying NLP methods for analyzing non-standardized texts, such as social media texts, rapidly is growing [2], because the automatic analysis of social media texts is one of essential requirements for the task of sentiment analysis [3]. Since social media texts contain blog comments or chat messages, it differs from standardized texts in the word usage but also in their grammatical structure. This creates the need for adapting NLP methods to analyzing social media text and in particular, for the adaption of POS tagging methods to such text types. Most state-of-the art taggers have been developed for standardized texts.

This paper presents a description of HMM (Hidden Markov Model) based system for POS tagging from Social Media Text in Indian Languages.

The ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text is defined in this year to build the POS tagger systems for code mixed Indian social media text - Bengali-English, Hindi-English and Tamil-English language pairs for which training data and test data were provided. Data set for a language pair contains the social media text written in the languages of the concerned pair. For example, for Bengali-English language pair, data set contains the social media text written in English and Hindi. We have participated for all three language pairs.

POS Tagger can be developed using both linguistic models and stochastic models. The earliest works on POS tagging [4][5][6] use supervised learning methods.

Some research work has already done for developing POS tagger for standard texts in Indian languages [7].

Dandapat et. al [8].presents HMM and Maximum Entropy (ME) based approaches for Bengali POS tagging.

Ekbal et. al. [9] presented a POS tagger for Bengali language using Conditional Random Fields (CRF). They also discussed another machine learning based POS tagger using SVM algorithm in [10].

An unsupervised Parts-of-Speech Tagger for the Bangla language was proposed by Ali et.al. in [11]. Chakrabarti et.al.[12] has proposed a Layered Parts of Speech Tagging for Bangla.

A detailed survey on POS tagging for other Indian languages has been presented in [13][14].

A few attempts have also been made for developing POS tagger for code mixed Indian social media text. A POS Tagging System of English-Hindi Code-Mixed Social Media Content has been presented in [15]. A POS tagging system for Indian Social Media Text on Twitter has been presented in [16].
2. PREPARATION OF TRAINING DATA

The training data released for the ICON 2015 shared task contains three files: one file for Bengali-English Language pair, one file for Hindi-English language pair and one file for Tamil-English language pair. Each line in a file contains tokens in the languages of concerned pair, Language tag and Part-of-Speech tag. The participants are instructed to produce the output in the same format after testing the system on the test data where the test data contains per line a tab separated token and the corresponding language tag. Our system uses a training file which contains tokens in the languages of concerned pair, Hindi-English language pair. Each line in a file contains three files: one file for Bengali-English Language pair, one file for Hindi-English language pair and one file for Tamil-English language pair. Each line in this new format is formed by combining the source token and some other information such as language tag. The detailed format of this is discussed in the later sections.

3. HMM MODEL FOR POS TAGGING

A POS tagger based on Hidden Markov Model (HMM) finds the best sequence of POS tags \(t^n \) that is optimal for a given observation sequence \(o^n \). The tagging problem becomes equivalent to searching for

\[
\hat{t}^n = \arg \max_{t^n} P(o^n | t^n) P(t^n)
\]

(1).

Where \(t^n \) is a tag sequence and \(o^n \) is an observation sequence, \(P(t^n) \) is the prior probability of the tag sequence and \(P(o^n | t^n) \) is the likelihood of the word sequence.

In general, HMM based POS tagging use words in a sentence as an observation sequence [1] [7]. But, we use some additional information such as language tag for disambiguating each token in text. We also use some other information such as whether the token contains any hash tag or not. We use this information in a form of meta tag (details are presented in the subsequent sections). We use a small dictionary of words which contains words with its broad POS categories. If any token is found in the dictionary, we use the broad POS tag as some additional information which we combines with the observation token (details are presented in the subsequent sections).

Unlike the traditional HMM based POS tagging system, to use this additional information for POS tagging task, we consider a triplet as an observation symbol: \(<\text{word}, \text{meta-tag}, \text{Language tag}>\). This is a pseudo token used as an observed symbol, that is, for a sentence of \(n \) words, the corresponding observation sequence will be as follows:

\(<\text{word}^1, \text{meta-tag}^1, \text{L-tag}^1, >, <\text{word}^2, \text{meta-tag}^2, \text{L-tag}^2>, <\text{word}^3, \text{meta-tag}^3, \text{L-tag}^3>, \ldots, <\text{word}^n, \text{meta-tag}^n, \text{L-tag}_n>\) .

Here an observation symbol \(o_i \) corresponds to \(<\text{word}_i, \text{meta-tag}_i, \text{L-tag}_i>\) and L-tag is the language tag and meta-tag is decided based on the additional information (e.g. Hash tag).

Since Equation (1) is too hard to compute directly, HMM taggers follows Markov assumption according to which the probability of a tag is dependent only on short memory (a small, fixed number of previous tags). For example, a bigram tagger considers that the probability of a tag depends only on the previous tag

For our proposed trigram model, the probability of a tag depends on two previous tags and thus \(P(t^n) \) is computed as:

\[
P(t^n) \approx \prod_{i=1}^{n} P(t_i | t_{i-1}, t_{i-2})
\]

(2)

Depending on the assumption that the probability of a word appearing is dependent only on its own tag, \(P(o^n | t^n) \) can be simplified to:

\[
P(o^n | t^n) \approx \prod_{i=1}^{n} P(o_i | t_i)
\]

(3)

Plugging the above mentioned two equations (2) and (3) into (1) results in the following equation by which a bigram tagger estimates the most probable tag sequence:

\[
\hat{t}^n = \arg \max_{t^n} P(t^n) \approx \arg \max_{t^n} \prod_{i=1}^{n} P(o_i | t_i) P(t_i | t_{i-1})
\]

(4)

Where: the tag transition probabilities, \(P(t_i | t_{i-1}) \), represent the probability of a tag given the previous tag. \(P(o_i | t_i) \) represents the probability of an observed symbol given a tag.

Considering a special tag \(t_{n+1} \) to indicate the end sentence boundary and two special tags \(t_1 \) and \(t_0 \) at the starting boundary of the sentence and adding these three special tags to the tag set [4], gives the following equation for POS tagging:

\[
\hat{t}^n = \arg \max_{t^n} P(t^n) \approx \arg \max_{t^n} \prod_{i=1}^{n} P(o_i | t_i) P(t_i | t_{i-1}, t_{i-2}) P(t_{n+1} | t_n)
\]

(5)

The equation (5) is still computationally expensive because we need to consider all possible tag sequence of length \(n \). So, dynamic programming approach is used to compute the equation (5).

At the training phase of HMM based POS tagging, observation probability matrix and tag transition probability matrix are created. A general Architecture of our developed POS tagger is shown in Figure 1.

As we can see from the equation (4), to find the most likely tag sequence for an observation sequence, we need
to compute two kinds of probabilities: tag transition probabilities and word likelihoods or observation probabilities.

\[
P(o \mid t) = \frac{C(o,t)}{C(o)}
\]

(7)

3.1 Viterbi Decoding

We have used Viterbi algorithm to find the best hidden state sequence given an input HMM and a sequence of observation symbols.

The Viterbi algorithm is a standard application of the classic dynamic programming algorithm [18].

Given a tag transition probability matrix and the observation probability matrix, Viterbi decoding (used at the testing phase) accepts a sentence from code mixed social media text and finds the most likely tag sequence for the test sentence which is also L-tagged and Meta tagged. Here a sentence is submitted to the viterbi as the observation sequence of triplets:

\[<\text{word}_1, \text{meta-tag}_1, \text{L-tag}_1>, <\text{word}_2, \text{meta-tag}_2, \text{L-tag}_2>, <\text{word}_3, \text{meta-tag}_3, \text{L-tag}_3>, \ldots, <\text{word}_n, \text{meta-tag}_n, \text{L-tag}_n>\] . Here an observation symbol \(o_i\) corresponds to \(<\text{word}_i, \text{meta-tag}_i, \text{L-tag}_i>\) and L-tag is a language tag and Meta tag is determined based on the dictionary information and Hash tag feature.

After assigning the tag sequence to the observation sequence as mentioned above, L-tag and meta-tag information are removed from the output and thus the output for an input sentence is converted to a POS-tagged sentence.

One of the important problems to apply Viterbi decoding algorithm is how to handle unknown triplets in the input. The unknown triplets are triplets which are not present in the training set and hence their observation probabilities are not known. To handle this problem, we estimate the observation probability of an unknown one by analyzing L-tag, meta-tag and the suffix of the word associated with the corresponding triplet. We estimate the observation probability of an unknown observed triplet in the following ways:

The observation probabilities of unknown triplet \(<\text{word}, \text{meta-tag}, \text{L-tag}>\) corresponding to a word in the input sentence are decided according to the suffix of a pseudo word formed by adding L-tag and meta-tag to the end of the word. We find the observation probabilities of such unknown pseudo words using suffix analysis [17][4], of all rare pseudo words (frequency <=2) in the training corpus for the concerned language pairs.

4. SPECIAL TAGS

4.1 Meta Tag

Each token has some properties by which one token differs from another. For example, a token may contain “Hash tag” which is frequent in the social media text.

Meta-tag=“YYYY”(default)
if the first character of the token is a Hash symbol (‘#’)
then
metatag = “HB”
else if the hash tag is present in any other position of a
token
metatag = “HE”
End If

4.2 Dictionary

In earlier sections, we have mentioned that we have used
some dictionary information as the meta-tag also. A meta-
tag is set to the value of broad POS tag for a token after
matching it with the dictionary words and retrieving the
corresponding broad POS tag found in the dictionary. The
description of dictionary is shown in Table 1.

Language Pair	Broad POS categories	Number of entries in the dictionary(to kens are not normalized)
Bengali-English	Pronoun, verb, and conjunction	192, 1791, 60
Hindi-English	Pronoun, verb, and conjunction	274, 1851, 56
Tamil-English	Pronoun, verb, and conjunction	203, 1633, 56

We follow the following rules for assigning to the token
this type of broad POS tag extracted from the dictionary:
If raw token is found in the dictionary and the broad POS tag of
the concerned token is XXXX then
 meta-tag = “XXXX”
end if

Since we have used only verb, pronoun and conjunctions in the dictionaries, XXXX can take one three
values: VERB, PNON and CONJ.

5. EVALUATION AND RESULTS

We train separately our developed POS tagger based on the
training data and tune the parameters of our system on the
training data for the respective language pair. After
learning the tuning parameters, we test our system on the
test data for the concerned language pair. The description of the data for three language pairs is shown in the Table 2.

Our developed POS system has been evaluated using the
traditional accuracy measure. For training, tuning and
testing our system, we have used the datasets for three
different language pairs: Bengali-English, Hindi-English
and Tamil-English, released by the organizers of ICON
2015 shared task: POS Tagging For Code-mixed Indian
Social Media Text.

The organizers of the shared task released the data in
two phases: in the first phase, training data is released
where training data was language tagged and POS tagged.
In the second phase, the test data is released where test data
was only language tagged. The contestants are instructed to
assign POS tags to the sentences in the test file using their
developed systems. The tagged test files for test data sets
were finally sent to the organizers for evaluation. The
organizers evaluate the different runs submitted by the
various teams and send the official results to the participating teams. A total of 10 teams submitted their
runs for this contest. For each language pair the contests
were done in two different modes: Constrained mode and
unconstrained mode. In constrained mode, the participant
team is only allowed to use the training corpus. No external
resource is allowed. In unconstrained mode, the participant
team is allowed to use any external resources (POS tagger,
NER, Parser, and additional data) to train their system.

In constrained mode, we have not used any dictionary
and only Hash tag has been used as the meta-tag. In
unconstrained mode, we have used a small dictionary as
mentioned in Table 1 and Hash tag has been used as the
meta-tag.

The results obtained by our system (team code: KS_JU)
have been shown in the tables 3 to 8. The results obtained
by other participating systems have also been shown in the
Tables. The second row of the each table shows the overall
accuracy obtained by the various systems participated in
the contest.

We have also evaluated the system based on its
consistency across the languages in constrained and
unconstrained mode.

Average overall accuracy is computed by taking the
average of overall accuracy of the system obtained for all
three language pairs in a particular mode.

In constrained mode, our system obtains average
overall accuracy (averaged over all three language pairs) of
75.60% which is very close to other participating two
systems (76.79% for IIITH and 75.79% for
AMRITA_CEN) ranked higher than our system. In
unconstrained mode, our system obtains average overall
accuracy of 70.65% which is also close to the system
(72.85% for AMRITA_CEN) which obtains the highest
average overall accuracy.

Language Pair	Total of sentences						
	Training data	Test data					
Bengali-English	2837	1459					
Hindi-English	729	377					
Tamil-English	639	279					
POS/Categorical	HIITH	AMRITA_CEN	KS_JU	CDACMUMBAI	DD_JU	SN_JU	Amrita
----------------	-------	------------	-------	------------	-------	-------	--------
Overall	79.84%	78.50%	78.42%	75.46%	75.22%	72.64%	10.13%
E	97.11%	94.22%	97.11%	97.11%	95.95%	97.11%	0.00%
@	100.00%	93.33%	93.33%	93.33%	86.67%	86.67%	0.00%
JJ	65.25%	61.12%	61.92%	62.72%	58.19%	52.46%	20.51%
N_NST	80.00%	80.00%	80.00%	80.00%	0.00%	80.00%	0.00%
DT	95.90%	96.29%	94.92%	95.51%	93.75%	94.73%	0.00%
RD_SYM	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RB_AMN	81.48%	77.78%	80.79%	77.31%	76.16%	66.20%	0.00%
N_NN	81.26%	79.80%	78.18%	81.73%	83.56%	67.66%	11.20%
U	100.00%	13.64%	81.82%	100.00%	0.00%	100.00%	0.00%
RD_RDF	47.96%	40.52%	42.94%	39.22%	36.06%	33.64%	0.00%
QT_QTF	48.75%	55.63%	57.50%	56.25%	53.13%	50.00%	0.00%
RP_RPD	71.24%	74.51%	76.47%	69.28%	49.02%	77.78%	0.00%
N_NNV	59.68%	62.90%	56.45%	35.48%	66.13%	56.45%	0.00%
V_VM	79.76%	81.87%	78.49%	80.66%	74.76%	71.81%	0.54%
PR_PRQ	83.93%	87.50%	75.00%	87.50%	91.07%	82.14%	0.00%
#	95.35%	97.67%	97.67%	88.37%	74.42%	74.42%	0.00%
PR_PRP	87.48%	90.19%	88.77%	89.29%	87.10%	87.61%	0.00%
N_NNP	65.46%	55.47%	59.52%	59.81%	43.08%	61.55%	60.68%
V_VAUX	39.08%	31.03%	35.06%	27.59%	20.69%	30.46%	0.00%
S	64.71%	69.85%	61.76%	61.76%	41.91%	44.85%	0.00%
RP_INJ	53.61%	50.52%	60.82%	54.64%	26.80%	49.48%	0.00%
RB_ALC	54.41%	70.59%	58.82%	63.24%	75.00%	54.41%	0.00%
DM_DMD	71.34%	72.61%	74.52%	70.70%	78.98%	76.43%	0.00%
PR_PRF	55.56%	77.78%	44.44%	55.56%	77.78%	66.67%	0.00%
CC	82.76%	85.17%	85.52%	83.79%	83.10%	81.38%	0.34%
DM_DMQ	50.00%	50.00%	50.00%	50.00%	0.00%	50.00%	0.00%
PSP	87.69%	89.38%	92.36%	90.54%	87.56%	89.25%	3.89%
DM_DMR	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RD_PUNC	98.79%	99.11%	98.46%	76.74%	97.67%	93.57%	0.51%
PR_PRL	60.00%	80.00%	80.00%	80.00%	60.00%	40.00%	0.00%
Table 4. Official results (Bengali unconstrained) obtained by the various systems participated in ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text

POS/Categorical	KS JU	AMRITA CEN	DD JU
Overall	78.29%	76.73%	47.08%
E	58.96%	94.80%	95.95%
@	66.67%	93.33%	86.67%
JJ	45.94%	61.38%	56.32%
N _NST	50.00%	80.00%	0.00%
DT	59.96%	96.29%	61.72%
RD_SYM	0.00%	0.00%	0.00%
RB_AMN	53.70%	80.56%	0.23%
N_NN	57.68%	76.18%	44.86%
U	31.82%	9.09%	0.00%
RD_RDF	29.74%	36.62%	36.06%
QT_QTF	41.25%	54.37%	53.13%
RP_RPD	52.94%	66.67%	33.33%
N_NNV	33.87%	59.68%	48.39%
V_VM	48.37%	79.46%	15.54%
PR_PRQ	48.21%	89.29%	91.07%
#	74.42%	95.35%	74.42%
PR_PRP	60.52%	89.03%	18.32%
N_NNP	38.23%	50.18%	42.22%
V_VAUX	16.09%	35.63%	20.69%
$	38.24%	72.79%	28.68%
RP_INJ	25.77%	60.82%	14.43%
RB_ALC	45.59%	66.18%	75.00%
DM_DMD	54.14%	74.52%	78.98%
PR_PRF	33.33%	100.00%	77.78%
CC	59.66%	83.79%	73.79%
DM_DMQ	25.00%	25.00%	0.00%
PSP	59.33%	88.86%	16.97%
DM_DMR	0.00%	0.00%	0.00%
RD_PUNC	64.34%	98.93%	97.67%
PR_PRL	40.00%	80.00%	60.00%
Table 5. Official results (Hindi-constrained) obtained by the various systems participated in ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text

POS/Categorical	KS_JU	AMRITA_CEN	HIITH	DD_JU	CDACMUMBAI	SN_JU	Anu_IITB	Amrita
Overall	77.74%	75.58%	75.04%	73.16%	71.11%	68.85%	64.52%	13.45%
E	7.94%	94.44%	94.44%	92.06%	94.44%	91.27%	96.03%	1.59%
@	16.67%	83.33%	50.00%	33.33%	83.33%	33.33%	83.33%	0.00%
JJ	9.93%	52.23%	56.40%	54.10%	56.55%	55.68%	64.60%	0.86%
DT	15.74%	93.77%	92.07%	90.26%	90.49%	91.39%	86.98%	0.00%
N_NST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RB_AMN	15.58%	75.88%	76.42%	78.32%	77.78%	65.18%	69.65%	0.00%
RD_SYM	0.00%	91.67%	91.67%	91.67%	91.67%	91.67%	91.67%	0.00%
N_NN	13.93%	79.83%	82.77%	81.75%	82.77%	71.97%	48.38%	20.89%
U	0.00%	12.50%	62.50%	0.00%	62.50%	93.75%	93.75%	0.00%
RD_RDF	0.76%	4.55%	3.03%	3.79%	3.79%	4.55%	3.79%	0.00%
QT_QTF	0.00%	10.00%	10.00%	10.00%	10.00%	10.00%	20.00%	0.00%
RP_RPD	0.00%	0.00%	0.00%	27.78%	0.00%	5.56%	5.56%	0.00%
N_NNV	4.76%	9.52%	9.52%	4.76%	9.52%	9.52%	9.52%	0.00%
RP_INTF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V_VM	16.68%	83.32%	81.42%	84.49%	82.46%	74.62%	52.30%	56.84%
PR_PRQ	0.00%	88.89%	66.67%	22.22%	33.33%	44.44%	44.44%	0.00%
#	20.97%	100.00%	100.00%	100.00%	100.00%	80.65%	100.00%	0.00%
RD_UNK	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PR_PRP	18.68%	87.18%	82.67%	88.54%	79.69%	88.09%	73.01%	0.45%
N_NNP	11.99%	67.54%	69.30%	67.84%	53.22%	35.38%	69.88%	2.63%
V_VAUX	8.98%	34.04%	41.13%	6.38%	36.41%	43.26%	50.35%	1.65%
S	9.81%	69.16%	65.89%	36.45%	57.94%	37.38%	57.01%	0.00%
RP_INJ	4.76%	61.90%	55.24%	43.81%	54.29%	43.81%	47.62%	0.95%
RB_ALC	0.00%	6.67%	6.67%	0.00%	6.67%	0.00%	6.67%	0.00%
PR_PRF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CC	11.92%	34.89%	45.94%	7.60%	41.45%	44.21%	53.54%	0.00%
PSP	9.07%	75.67%	62.37%	82.99%	69.18%	62.78%	58.66%	0.82%
~	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RD_PUNC	18.44%	98.30%	97.85%	95.85%	70.52%	85.33%	96.22%	14.44%
PR_PRL	1.45%	0.00%	1.45%	0.00%	1.45%	0.00%	5.80%	0.00%
Table 6. Official results (Hindi-Unconstrained) obtained by the various systems participated in ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text

POS/Categorical	IIITH	KS_JU	AMRITA_CEN	Rudra_IITB	DD_JU	CDACMUMBAI
Overall	80.68%	77.60%	73.66%	68.94%	27.60%	6.84%
E	98.41%	7.94%	93.65%	96.03%	92.06%	5.56%
@	83.33%	16.67%	66.67%	50.00%	33.33%	16.67%
JJ	82.88%	10.36%	61.73%	52.37%	54.82%	2.45%
DT	93.54%	15.52%	94.11%	87.32%	76.90%	2.49%
N_NST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RB_AMN	89.70%	15.58%	79.27%	53.66%	0.27%	5.15%
RD_SYM	91.67%	0.00%	50.00%	75.00%	91.67%	0.00%
N_NN	88.48%	14.47%	81.57%	71.91%	4.44%	26.83%
U	62.50%	0.00%	37.50%	93.75%	0.00%	0.00%
RD_RDF	3.03%	0.76%	8.33%	2.27%	3.03%	0.76%
QT_QTF	10.00%	0.00%	10.00%	10.00%	10.00%	0.00%
RP_RPD	16.67%	0.00%	44.44%	11.11%	0.00%	0.00%
N_NNV	9.52%	4.76%	9.52%	0.00%	4.76%	4.76%
RP_INTF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
V_VM	86.82%	15.57%	88.78%	75.17%	3.49%	5.70%
PR_PRQ	66.67%	0.00%	11.11%	22.22%	22.22%	0.00%
#	100.00%	20.97%	100.00%	90.32%	100.00%	0.00%
RD_UNK	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PR_PRP	87.00%	18.59%	87.45%	90.52%	2.26%	1.08%
N_NNP	71.64%	11.99%	59.94%	68.71%	67.84%	0.29%
V_VAUX	43.03%	8.04%	6.62%	48.46%	4.02%	6.62%
$	68.22%	10.28%	66.36%	48.60%	23.36%	0.00%
RP_INJ	74.29%	4.76%	63.81%	54.29%	30.48%	9.52%
RB_ALC	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PR_PRF	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CC	50.26%	11.74%	8.64%	89.12%	3.11%	0.52%
PSP	65.15%	10.21%	60.62%	13.71%	3.61%	1.24%
-	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RD_PUNC	98.15%	18.37%	99.11%	97.04%	95.85%	5.48%
PR_PRL	1.45%	1.45%	1.45%	0.00%	0.00%	0.00%
Table 7. Official results (Tamil_Constrained) obtained by the various systems participated in ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text

POS/Categorical	IIITH	AMRITA_CEN	CDACMUMBAI	KS_JU	DD_JU	SN_JU	Amrita
Overall	75.48%	73.30%	71.04%	70.64%	64.83%	62.44%	17.07%
N NNP	100.00%	99.09%	80.91%	99.09%	98.64%	69.55%	8.64%
PR PRP	80.92%	69.08%	77.10%	71.37%	81.30%	66.41%	3.44%
QT_QTO	55.56%	100.00%	62.96%	81.48%	96.30%	70.37%	0.00%
V VAUX	0.00%	0.00%	0.00%	0.00%	0.00%	27.27%	0.00%
JJ	69.70%	52.02%	64.65%	64.14%	61.11%	56.57%	3.54%
RP INJ	0.00%	0.00%	0.00%	0.00%	25.00%	25.00%	0.00%
DT	79.59%	65.31%	71.43%	73.47%	91.84%	61.22%	0.00%
RB AMN	59.57%	46.10%	59.57%	53.90%	43.26%	43.97%	7.09%
N NN	76.52%	77.64%	75.72%	72.52%	60.70%	64.70%	16.61%
CC	73.46%	79.01%	77.78%	76.54%	62.96%	78.40%	0.62%
PSP	66.67%	52.38%	49.21%	50.79%	58.73%	60.32%	0.00%
V VM	76.81%	84.54%	71.98%	69.81%	57.49%	61.59%	56.76%
X	58.06%	48.39%	46.77%	45.16%	33.87%	46.77%	0.00%
RD_PUNC	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8. Official results (Tamil_unconstrained) obtained by the various systems participated in ICON 2015 shared task: POS Tagging For Code-mixed Indian Social Media Text

POS/Categorical	AMRITA_CEN	KS_JU	CDACMUMBAI	DD_JU
Overall	68.16%	56.05%	48.03%	44.21%
N NNP	80.91%	99.09%	7.73%	98.64%
PR PRP	72.52%	27.48%	39.31%	54.20%
QT_QTO	74.07%	81.48%	51.85%	96.30%
V VAUX	0.00%	0.00%	9.09%	0.00%
JJ	59.09%	66.16%	38.38%	54.04%
RP INJ	50.00%	0.00%	0.00%	0.00%
DT	77.55%	63.27%	38.78%	83.67%
RB AMN	51.77%	56.03%	37.59%	23.40%
N NN	68.85%	71.88%	90.58%	16.29%
CC	80.86%	32.10%	75.31%	60.49%
PSP	53.97%	19.05%	22.22%	57.14%
V VM	69.81%	41.06%	17.39%	42.51%
X	40.32%	43.55%	40.32%	30.65%
RD_PUNC	56.25%	0.00%	0.00%	0.00%
6. CONCLUSION

This paper describes a POS tagging system for code mixed social media text in Indian Languages. The features such as dictionary based information and some other word level features have been introduced into the HMM model. The experimental results show that performance of our system is comparable with the best performing systems participated in ICON 2015 task: POS Tagging for Code-mixed Indian Social Media Text. The POS tagging system has been developed using Visual Basic platform so that a suitable user interface can be designed for the novice users. The system has been designed in such a way that only changing the training corpus in a file can make the system portable to other Indian languages.

References

[1] Sarkar, K. and Gayen, V., 2012, November. A practical part-of-speech tagger for Bengali. In Emerging Applications of Information Technology (EAIT), 2012 Third International Conference on (pp. 36-40). IEEE.

[2] Neunerdt, M., Trevisan, B., Reyer, M. and Mathar, R., 2013. Part-of-speech tagging for social media texts. In Language Processing and Knowledge in the Web (pp. 139-150). Springer Berlin Heidelberg.

[3] Trevisan, B., Neunerdt, M. and Jakobs, E.M., 2012. A multi-level annotation model for fine-grained opinion detection in German blog comments. In Proceedings of KONVENS (Vol. 2012, pp. 179-188).

[4] Brants, T., “TnT – A statistical part-of-speech tagger”, In Proc. Of the 6th Applied NLP Conference, pp. 224-231, 2000.

[5] Dandapat, S., Sarkar, S., Basu, A., 2007. “Automatic part-of-speech tagging for bengali: an approach for morphologically rich languages in a poor scenario,” Proceedings of the Association for Computational Linguistic, pp. 221-224.

[6] Ekbal, et al., 2007, “Bengali part of speech tagging using conditional random field” in Proceedings of the 7th International Symposium of Natural Language Processing (SNLP-2007), Pattaya, Thailand 13-15 December, pp. 131-136.

[7] Sarkar, K. and Gayen, V., 2013. A Trigram HMM-Based POS Tagger for Indian Languages. In Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) (pp. 205-212). Springer Berlin Heidelberg.

[8] Dandapat, S., Sarkar, S., Basu, A., 2007, “Automatic part-of-speech tagging for bengali: an approach for morphologically rich languages in a poor scenario,” Proceedings of the Association for Computational Linguistic, pp. 221-224.

[9] Ekbal, A., et al., “Bengali part of speech tagging using conditional random field” in Proceedings of the 7th International Symposium of Natural Language Processing (SNLP-2007), Pattaya, Thailand, 13-15 December, pp. 131-136, 2007.

[10] Ekbal, A., Bandyopadhyay, S., 2008, “Part of speech tagging in bengali using support vector machine”, ICIT-08, IEEE International Conference on Information Technology, pp. 106-111.

[11] Ali, H., 2010., “An unsupervised parts-of-speech tagger for the bangla language”, Department of Computer Science, University of British Columbia

[12] Chakrabarti, D., 2001, “Layered parts of speech tagging for Bangla”, Language in Indian www.languageindia.com, Special Volume: Problems of Parsing in Indian Languages.

[13] Antony, P. J., Soman, K. P., 2011, “Parts of speech tagging for Indian languages: a literature survey”, International Journal of Computer Applications (0975-8887) Volume 34-No.8.

[14] Kumar, D., Singh Josan G., 2010, “Part of speech taggers for morphologically rich indian languages: a survey,” International Journal of Computer Applications(0975-8887) Volume 6-No.5.

[15] Vyas, Y., Gella, S., Sharma, J., Bali, K. and Choudhury, M., 2014, October. Pos tagging of english-hindi code-mixed social media content. In Proceedings of the First Workshop on Codeswitching, EMNLP.

[16] Jamatia, A., Gambäck, B. and Das A., 2015. Part-of-Speech Tagging for Code-Mixed English-Hindi Twitter and Facebook Chat Messages. In the Proceeding of 10th Recent Advances of Natural Language Processing (RANLP), September, Pages 239–248, Bulgaria

[17] Gayen, V. and Sarkar, K., 2014. "An HMM based named entity recognition system for Indian languages: the JU system at ICON 2013." arXiv preprint arXiv:1405. 7397 (2014).

[18] Jurafsky, D. and Martin, J. H., 2002, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Preason Education Series.