Civil Engineering Innovation for a Sustainable

Guest Editors:
Antoni
Ima Muljati
Djwantoro Hardjito

Available online at www.sciencedirect.com

ScienceDirect
Civil Engineering Innovation for a Sustainable

Guest Editors:
Antoni
Ima Muljati
Djwantoro Hardjito
Investigation of the Consolidation Drainage of High Water Content Clay by Siphon Method through Unsaturated Filter
S. Soda, R. Ichikaku, N. Yasuoka, L. Handoko
383

Dynamic Soil Compaction—recent Methods and Research Tools for Innovative Heavy Equipment Approaches
H. Park, K. M. Barthel, A. Kuhn, M. Brueckle, R. Thiele
390

Innovative Reinforced Soil Structures for High Walls and Slopes Combining Polymeric and Metallic Reinforcements
M. Lell, R. Laneri, P. Rimoldi
397

Bearing Capacity of Pile Foundations Embedded in Clays and Sands Layer Predicted Using PDA Test and Static Load Test
G.S. Budi, M. Kosasi, D.H. Wijaya
406

Generalized Additive Models for Estimating Motorcycle Collisions on Collector Roads
M. Machus, R. Basta, A.F. Mawardi
411

Predicting the Remaining Service Life of Road Using Pavement Condition Index
A. Satyawijaya, J. Nanggelen, A. Budiaro
417

The Effect of Pavement Condition on Vehicle Speeds and Motor Vehicles Emissions
A. Satyawijaya, I. Kusdiananto, S. Yaflit
424

Study on BIM Utilization for Design Improvement of Infrastructure Project
M. Minagawa, S. Kusayamag
431

Needs Analysis of the Bridge Infrastructures Crossing over the Musi River of Palembang
J. Arliansyah, A. Tanura, Rahadyan, A. Y. Kurnia
438

Trip Attraction Model Using Radial Basis Function Neural Networks
J. Arliansyah, Y. Hartono
445

Using Advanced Materials of Granular BPA Binder to Improve the Flexural Fatigue Performance of Asphalt Mixtures
M. Karanil, H. Nizak
452

Traffic Performance Analysis of u-turn and Fly Over u-turn Scenario; A Case Study at Soekarno Hatta Road, Palembang, Indonesia
R.H. Della, Hanafah, J. Arliansyah, R. Arliansyah
461

Modelling Road Traffic Noise for Collector Road (Case Study of Denpasar City)
P.A. Sutamahana
467

Development of Asphalt Pavement Temperature Model for Tropical Climate Conditions in West Bali Region
I.M.A. Ariawan, B.S. Subago, B.H. Setiadji
474

Does Demographic Pattern Matter for Sustainable Infrastructure Policy?
F. Hermawan, T. Rachmawati, H.L. Wahyono
481

Applying Input-output Model to Estimate the Broader Economic Benefits of Pipulang Toll Road Investment to Bandung District
R. Anis, O.Z. Tamin, S.S. Wibowo
489

Optimization of River Transport to Strengthen Multimodal Passenger Transport System in Inland Region
Said
498

An Analysis of Out-of-home Non-work Activity Time Use and Travel Behavior Based on Work Schedule and Trip Time
M. Agustien, A. Sjafruddin, H. Al Rasid, S. Lubis, S.S. Wibowo
504

Transportation Demand Management: A Park and Ride System to Reduce Congestion in Palembang City Indonesia
E. Buchari
512

The Importance of Human Resources Development and its Impact in Increasing of National Port Productivity
E. Buchari, H. Basri
519

The Delays for Signalized Intersection Using ATCS Data and Field Survey Method at Kertan-Intersection of Surakarta
A. Magiron, N. Hidayati, L. Setiyaningsih, G. Slamet
526

Simultaneous in-situ Stiffness and Anomalies Measurement on Pavement Subgrade Using Tomography Surface Waves Technique
S.A.P. Rosyid
534

The Effective Strategy in the Management of “Pantura” Lane Road, Java-Indonesia
H.A. Ruhandjo, D. Dinariana, F. Suryani
541

Railway Track Subgrade Failure Mechanisms Using a Fault Chart Approach
K. Usman, M. Burrow, G. Glantschnig
547

Analysis of Hub-and-Spoke Airport Networks in Java Island, Based on Cargo Volume and Freight Ratio
G. Sugiyanto, F.B. Santosa, A. Wibowo, M.Y. Santi
556

Traffic Flow Quality as Part of Network Quality for a Sparse Road Network
H. Suprayitno
564

Effect of Habit and Car Access on Student Behavior Using Cars for Traveling to Campus
R. Setiawati, W. Santosa, A. Sjafruddin
571

A Case Study of Low Compressive Strength of Concrete Containing Fly Ash in East Java Indonesia
M.S. Darmawan, R. Bayuaji, N.A. Husin, Chomadji, I. Sand
579

Experimental Investigation on the Properties of Lightweight Concrete Containing Waste Oil Palm Shell Aggregate
K.H. Mo, U.J. Alengaram, M.Z. Jamat
587

Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature
P.S. Deb, P. Nath, P.K. Sarkar
594

Early Age Properties of Low-calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing
P. Nath, P.K. Sarkar, V.B. Rangan
601
Improvement of Concrete Durability by Nanomaterials
Salama, A. Nasution, I. Irman, M. Abdullah

Building a Green Swimming Pool by Using Concrete with Aggregates from Demolition Waste
G.H.P. Hol

Mechanical Behavior of Reactive Powder Concrete with Glass Powder Substitute
W. Kushartono, I. Bali, B. Sulaiman

Corrosion Behaviours of High Strength TMT Steel Bars for Reinforcing Cement Concrete Structures
Md. Amimul Islam

Improving Microstructures of Concrete Using Ca(3C2H3O2)
A. Maryoto

Influence of Prestressed Force on the Waste Tire Reinforced Concrete
A. Maryoto, N.I.S. Hermanto, Y. Haruyanto, S. Wulanyo, N.A. Anisa

Flexural Capacity of Concrete Beams Strengthened Using GFRP Sheet after Seawater Immersion
M.A. Sultan, R. Djimaluddin, W. Tjaronge, H. Parung

The Strength of Alkali-activated Slag/fly Ash Mortar Blends at Ambient Temperature
A. Wardhono, D.W. Law, A. Strano

Compressive Strength of Asphalt Concrete Binder Course (AC-BC) Mixture Using Benton Granular Asphalt (BGA)
A. Gans, Tjaronge M.W., N. Ali, R. Djimaluddin

The Control of Response Time in Self-healing of Granulated Cementitious Material by Water-soluble Film Coating
Y.-S. Lee, H.-G. Kim, T.-H. Song, I.-S. Ryu

Optimization of the Use of Volcanic Ash of Mount Sinabung Eruption as the Substitution for Fine Aggregate
R. Karolina, Syahrizal, M.A. Putra, T.A. Prasetyo

Authenticity Principle in Conservation of De Javansche Bank of Surabaya: Materials, Substance and Form
T. Kwanda

Use of Biofuel Co-product for Pavement Geo-materials Stabilization
A. Ulvi Uzer

Identification of Source Factors of Carbon Dioxide (CO₂) Emissions in Concreting of Reinforced Concrete
Hermawan, P.F. Marzuki, M. Abdulh, R. Drijeana

Supplementary Cementitious Materials: Strength Development of Self-compacting Concrete Under Different Curing Temperature
G. Turuulio, M.N. Souto

Effect of High Volume Fly Ash on Shrinkage of Self-compacting Concrete
S.A. Kristiawan, M.T.M. Aditya

The Deteriorations of Reinforced Concrete and the Option of High Performances Reinforced Concrete
M. Chemrouk

Thermal Comfort of Wood-wall House in Coastal and Mountainous Region in Tropical Area
Hermawan, E. Prianto, E. Setiyowati

Enhancing the Performance of Porous Concrete by Utilizing the Pumice Aggregate
Haruyadi, H. Tunai

Utilization of Palm Oil Fuel Ash (POFA) in Producing Lightweight Foamed Concrete for Non-structural Building Material
A. Munir, Abdulkarim, Huzaim, Sofyan, Irlandi, Safwan

Improving the Durability of Pozzolanic Concrete Using Alkaline Solution and Geopolymer Coating
D. Wijoyo, Antoni, D. Hardjito

Impact of Concrete Quality on Sustainability
G.H. Kosuma, J. Budidarmawan, A. Susilowati

Mechanical Properties of Seashell Concrete
M. Olivia, A.A. Mitshella, L. Darmayant

Application of Coconut Fibres as Outer Eco-insulation to Control Solar Heat Radiation on Horizontal Concrete Slab Rooftop
D.S. Minterojo, W.K. Widigo, A. Juwadi

The Impact of Using Fly Ash, Silica Fume and Calcium Carbonate on the Workability and Compressive Strength of Mortar
Antoni, L. Chandra, D. Hardjito

Performance of Lime Kiln Dust as Cementitious Material
M.A. Latif, S. Nagaranthan, H.A. Razak, K.N. Mustapha

Evaluating the Performance of Calcium Carbide Kiln Dust in Mortar - Initial Study
M.A. Latif, S. Nagaranthan, H.A. Razak, K.N. Mustapha

Smart Cement Composites for Durable and Intelligent Infrastructure
B. Suryanto, W.J. McCarter, G. Stairs, S.A. Wilson, R.M. Traynor

Effect of Mixing Ingredient on Compressive Strength of Oil Palm Shell Lightweight Aggregate Concrete Containing Palm Oil Fuel Ash
K. Muthusamy, N. Zamri, M.A. Zubir, A. Kushiantoro, S.W. Ahmad

Long Term Investigation on Sulphate Resistance of Concrete Containing Lateritic Aggregate
K. Muthusamy, N.W. Kamatrzuzanan, M.A. Zubir, M.W. Hussin, A.R.M. Sam, A. Budica

Mechanical Properties of Steel-polypropylene Fibre Reinforced Concrete Under Elevated Temperature
A. Jametan, I.S. Ibrahim, S.H.S. Yazan, Siti Nor A.A. Rahim
The Effect of Combination between Crumb Rubber and Steel Fiber on Impact Energy of Concrete Beams
A.T. Noaman, B.H. Abu Bakar, H. Md. Akil
825

Porosity, Pore Size and Compressive Strength of Self-Compacting Concrete Using Sea Water
Erniati, M.W. Tjarongke, Zulharnah, U.R. Irfaa
832

Beam Column and Footings Connection of Simple Prefab Housing
S. Limanto, I.J. Swono
838

Testing of the Kriging-based Finite Element to Shell Structures with Varying Thickness
F.T. Wong, Y. Christabel, P. Pudjijusyadi, W. Kanok-Nukulchal
843

Development of Cold Formed Steel – Timber Composite for Roof Structures: Compression Members
A. Awaludin, K. Rachmawati, M. Aryati, A.D. Danastri
850

A Chart-based Method for Steel Beam Designs Using the Indonesian Section
W. Dewobroto, L. Hidayat, Yeltsin
857

Flexural Behavior of Steel Reinforced Lightweight Concrete Slab with Bamboo Formworks
Akmaluddin, Paturhabman, Suparjo, Z. Gazalba
865

Fragility Curves for Low- and Mid-rise Buildings in Malaysia
S.N.A. Saruddin, F.M. Nazri
873

Experimental Investigation of Reinforced Concrete Column Embedded with the Angle Steel Shapes
A. Lisantowo, A. Budimian, P.H.B. Siauruk
879

The Behavior of Graded Concrete, an Experimental Study
B.S. Gun, H. Ayle, M.M.A. Pintama
885

Designing Optimum Locations and Properties of MTMD Systems
R. Frans, Y. Arfacli
892

Innovative Use of Reinforced Concrete for Sustainability of Purse Seine Boat Building in Aceh
N.S. Triistanti, N. Soewarno
899

Dynamic Responses of a Steel Railway Bridge for the Structure’s Condition Assessment
A. Budiharyanto, T. Susanto
905

Brottle Shear Failure Prevention of a Non-ductile RC Column Using Glass Fiber Reinforced Polymer (GFRP)
K. Rodsin
911

The Effect of Different Shapes of Confinement in Compression Zone on Beam’s Ductility Subjected to Monotonic Loading
Y.A. Priastiti, I. Imran, Nuroji
918

Seismic Vulnerability Assessment of Soft Story Irregular Buildings Using Pushover Analysis
A. Fredrick C. Dya, A. Winston C. Oretua
925

Earthquake Response of RC Infilled Frame with Wall Openings in Low-rise Hotel Buildings
M. Sukrawa
933

Flexural Strength and Ductility of Concrete Brick Masonry Wall Strengthened Using Steel Reinforcement
A. Triwiyono, A.S.B. Nugroho, A.D. Firstyadi, F. Ottama
940

Revolution in Building and Fireproofing of Infrastructures
G.H.P. Hol, E. Roeloffsma
948

Effect of End Anchorage in External CFRP Confinement on Shear Damaged RC Beams
F.F.R. Frederick, U.K. Sharma, V.K. Gupta
953

Approximate Seismic Analysis of Multi-story Buildings with Mass and Stiffness Irregularities
G. Georgouis, A. Tsompelos, T. Makarios
959

Load Deflection Behaviour of Laterally Restrained TVC/GPC Slab Strips
Naresch Reddy G.N., Muthu K.U.
967

Partial Prestressed Concrete Slabs as an Alternative for Vehicle Decks of Steel Truss Bridges
I.N. Sutajar, D. Rati Widiasa
974

Flexural Strength Performance and Buckling Mode Prediction of Cold-formed Steel (C Section)
A. Susila, J. Tan
979

Behaviour of Macro Synthetic Fiber Reinforced Concrete Columns under Concentric Axial Compression
Rosidawati, I. Imran, S. Sugiri, I. Pane
987

Evolutionary Structural Optimization as Tool in Finding Strat-and-tie-models for Designing Reinforced Concrete Deep Beams
H. Haridaspatra
995

Dynamic Buckling of Stiffened Panels
O. Mouhat, K. Abbaddin
1001

Structural Behaviour of Cold-formed Cut-curved Channel Steel Section under Compression
M.S.H. Mohd Sani, F. Muftiah, C.S. Tan, M. Md Tahir
1008

Mechanical Behaviour of the Cold-formed Steel Channel Stub Column under Post-Earthquake Temperature
P. Muftiah, M.S.H. Mohd Sani, A.R. Osman, S. Mohammad
1015

The Influence of Graded Concrete Strength on Concrete Element
A. Hidayat, Purwanto, J. Purba, A.F. Aziz
1023

Experimental Study of Steel-fiber Reinforced Concrete Beams with Confinement
H. Ayle, Antonius, A.W. Okiyara
1030
Collapse Behaviour Assessment of Precast Soft Storey Building
A. Wibowo, I.L. Wilson, N.T. Lam, E.F. Gad
Performance of Square Reinforced Concrete Columns Externally Confined by Steel Angle Collars under Combined Axial and Lateral Load
P. Pudjisuryadi, Tavio, P. Suprasto
Performance of Force Based Design versus Direct Displacement Based Design in Predicting Seismic Demands of Regular Concrete Special Moment Resisting Frames
I. Muljat, F. Asisi, K. Willyanto
Direct Displacement Based Design on Moment Resisting Frame with Out-of-plane Offset of Frame
I. Muljat, A. Kusuma, F. Hindarto
Identification of Aerodynamic Derivatives of Two Box Girder of Cable Stayed Bridge
Sukamto, I. Guntorojati
An Experimental Study to the Influence of Fiber Reinforced Polymer (FRP) Confinement on Beams Subjected to Bending and Shear
S. Tudjono, H. Ay Lie, B.A. Hidayat
UHPC Compressive Strength Test Specimens: Cylinder or Cube?
Y. Kusumawardaningsih, E. Fehling, M. Ismail
Tensile Strength Behavior of UHPC and UHPFRC
Y. Kusumawardaningsih, E. Fehling, M. Ismail, A.A. Mohamed Aboubakr
A Study on Effects of Creep and Shrinkage in High Strength Concrete Bridges
A. Sagara, I. Pane
A Multi-hazard Risk Assessment of Buildings in Padang City
R. Mulyani, R. Ahmad, K. Pilakeutus, I. Hajirasouliha, Taufik
Estimating the Ultimate Energy Dissipation Capacity of Steel Pipe Dampers
J. Utomo, M. Moestepo, A. Surahman, D. Kusumastuti
Response Surface Application in Vibration-based Damage Detection of a Railway Bridge
Soiyan
Analyses of RC Columns in a Variety of Sizes
K. Kinoshita, S. Yamamoto
Bending Capacity Analysis of High-strength Reinforced Concrete Beams Using Environmentally Friendly Synthetic Fiber Composites
T.B. Aulia, Rinaldi
Finite Element Analysis for Torsion Behavior of Flat Web Profile Beam Steel Section with Opening
F. De'nan, H. Hasan, D.K. Nassir, M.H. Osman, S. Saad
Numerical Study of Buckling Behaviour of Cold-formed C-channel Steel Purlin with Perforation
J.Y. Ling, S.L. Keng, F. De'nan
Design Capacity Tables for Structural Steel Based on SNI 03-1729-2002: Built-up Sections
E. Tanoto, P. Pudjisuryadi, B.P. Candra, W. William
Effect of Geometries on the Natural Frequencies of Pratt Truss Bridges
J. Widjajakusuma, H. Wijaya
PREFACE

Papers published in this edition of Procedia Engineering have been presented in The 5th Euro Asia Civil Engineering Forum (EACEF-5) at Petra Christian University, Surabaya, Indonesia, from 15-18 September 2015. The theme for EACEF-5 is ‘Civil Engineering Innovation for a Sustainable Future’. The conference was jointly organized by Petra Christian University, Surabaya, Universitas Pelita Harapan, Jakarta and Universitas Atma Jaya Yogyakarta, Yogyakarta, Indonesia.

Civil engineers and researchers in the field are challenged to play important roles and responsibilities in constructing a sustainable future. EACEF-5 conference provided a platform for sharing ideas and findings, as well as the challenges involved. Publication of all of the aforementioned papers in Procedia Engineering enables a wider circulation of the valuable thoughts contained in the papers.

The Editors would like to express their highest gratitude to all of the contributing authors of the papers published in this volume, as well as to the Organizing Committee and other parties involved.

The Editors
“Civil Engineering Innovation for a Sustainable Future”

The 5th Euro Asia Civil Engineering Forum Conference (EACEF5)
Surabaya, Indonesia, 15-18 September 2015

Editors:
Antoni
Ima Muljati
Djwantoro Hardjito
ORGANIZING COMMITTEE

Chairman
Djwantoro Hardjito, Petra Christian University

Vice-Chairman
Rudy Setiawan, Petra Christian University

Members
Ima Muljati, Petra Christian University
Antoni, Petra Christian University
Gogot Setyo Budi, Petra Christian University
Jack Widjajakusuma, Universitas Pelita Harapan
Wiryanto Dewobroto, Universitas Pelita Harapan
Anastasia Yunika, Universitas Atma Jaya Yogyakarta
Johanes Januar Sudjati, Universitas Atma Jaya Yogyakarta
Daniel Tjandra, Petra Christian University
Wong Foek Tjong, Petra Christian University
Cilcia Kusumastuti, Petra Christian University
Sandra Loekita, Petra Christian University
Pamuda Pudjisuryadi, Petra Christian University
Paravita Sri Wulandari, Petra Christian University
Effendy Tanojo, Petra Christian University
Ratna S. Alifien, Petra Christian University
Indriani Santoso, Petra Christian University
Irwan Tanuadji, Petra Christian University
Sri Megawati Hermanto, Petra Christian University
COMMITTEES

STEERING COMMITTEE
Benjamin Lumantarna, Petra Christian University, Indonesia
Harianto Hardjasaputra, Universitas Pelita Harapan, Indonesia
Yoyong Arfiadi, Universitas Atma Jaya Yogyakarta, Indonesia
Timotinc Kwanda, Petra Christian University, Indonesia
Manlian A. Ronald, Universitas Pelita Harapan, Indonesia

INTERNATIONAL SCIENTIFIC COMMITTEE
Worsak Kanok-Nukulchai, Asian Institute of Technology, Thailand
B.V. Rangan, Curtin University, Australia
Koji Sakai, Kagawa University, Japan
Takahumi Noguchi, The University of Tokyo, Japan
Tamon Ueda, Hokkaido University, Japan
DongUk Choi, Hankyong National University, South Korea
Tawatchai Tingsanchali, Thailand
Piti Sukontasukkul, King Mongkut University of Technology, Thailand
Nguyen Van Chanh, Ho Chi Minh City University of Technology, Vietnam
Chan Weng Tat, National University of Singapore
Susanto Teng, Nanyang Technological University, Singapore
Mohd. Wardi Hussin, Universiti Teknologi Malaysia
Prabir K. Sarker, Curtin University, Australia
Drajat Hoedajanto, HAKI, Indonesia
Robby Soeanto, Loughborough University, United Kingdom
Iswandi Imran, Bandung Institute of Technology, Indonesia
Tavio, Institut Teknologi Sepuluh Nopember, Indonesia
Sholihin As‘ad, Sebelas Maret University, Indonesia
Han Ay Lie, Diponegoro University, Indonesia
Gideon Hadi Kusuma, Australia
Sugie Prawono, Petra Christian University, Indonesia
Wimpy Santosa, Parahyangan Catholic University, Indonesia
Ade Sjafruddin, Bandung Institute of Technology, Indonesia

EDITORS
Antoni, Petra Christian University
Ima Muljati, Petra Christian University
Djwantoro Hardjito, Petra Christian University
The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5)

Water turbidity impact on discharge decrease of groundwater recharge in recharge reservoir

Akhmad Azisa,*, Hamzah Yusufa, Zulfiyah Faisala, Muhammad Suradia

aUjung Pandang State Polytechnic, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Indonesia

Abstract

The need for groundwater supply is increasing. However, with excessive exploitation, the groundwater table has drawn down, and thus resulted in land subsidence, seawater intrusion and groundwater deterioration. In order to maintain the groundwater supply, various attempts, such as the use of natural or artificial recharges, have been done. One of the artificial recharging methods which were previously studied was recharge reservoir construction in the soils with permeability less than 10^{-5} cm3/sec using a sand column. However, sedimentation could occur at a site where the recharge reservoir was constructed. Therefore, the levels of water turbidity, which could lead to sedimentation and blockage of groundwater flow (seepage), should be investigated. This research aimed to investigate the rate of blockage impact resulting from sedimentation in the sand column. More specifically, the aim of the research was to determine what types of sand column should be used in the field to minimize the groundwater problems. Experimental tests were carried out in the laboratory to measure the discharge of seepage through the soil layers and the sand column. The size of the physical model testing instrument was 180 cm x 115 cm x 60 cm with 12 pieces of the sand column (35 cm high), the reservoir water level of 10 cm, and three variations of water turbidity and deposition time. The research revealed that the higher the water turbidity, and the longer the period of deposition, the less the flow rate of groundwater recharge. As a result, turbid water should be prevented to infiltrate sand columns in recharge reservoirs.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: recharge reservoirs; sand column; sedimentation; turbid.

* Corresponding author. Tel.: +62-411-832576; fax: +62-411-585367.
E-mail address: akhmad_azis@yahoo.com
1. Introduction

Based on studies performed by The Ministry of Research and Technology since 2003, the use of recharge reservoirs has been able to minimize the impact of annual flood and drought in Indonesia due to their capacity to absorb great amount of water. Such capacity has been investigated with the simulation of a recharge reservoir in the University of Indonesia at an area of 0.5 ha using finite difference. This study indicated that the reservoir could absorb surface water with infiltration rate of 1,933 m³/day [1,2]. Another study was also carried out in Sleman, Yogyakarta using the Tambakboyo recharge reservoir with an inundated area of 5.6 ha and storage volume of 427,349 m³. This study showed that the reservoir could absorb water into the ground at an average rate of 2,969 m³/day, indicating contribution to water supply for 49,479 people in Yogyakarta [3]. Simulated modelling design of a recharge reservoir using tank model in Bogor city was also studied by [4]. This simulation showed that the recharge reservoir could absorb water 1,150 m³/day into an aquifer layer. A recent study performed by [5] using sand columns in low-permeability soils at the base of the recharge reservoir indicated water absorption with the amount of 5.39 m³/day for density of 0.0157.

However, the flow of turbid water into a recharge reservoir causes sedimentation which can lead to very slow water absorption even it is sustained to reach an aquifer layer. As a result, the recharge reservoir may not work properly. Currently, one of recharge reservoirs in Indonesia, such as Griya Martubung Reservoir in Medan, does not work properly due to sedimentation. This has caused inundation during intense rainfall due to its less-capacity of rainwater absorption into the ground. The objective of this research is to study the use of sand column model in a recharge reservoir. This study also investigates the impact of water turbidity on groundwater recharge in recharge reservoirs.

2. Literature review

Groundwater crisis, especially in large cities in Indonesia has reached a severe level. Groundwater recharge tends to decrease whereas the groundwater utilization significantly increases. The superblock and high-rise building constructions also exploit groundwater supply. The building structures with deep basement also reduce the ground capacity to absorb rainwater. Meanwhile, the availability of green open spaces for water storage during rainy season has decreased [6].

According to [7], surface water quality in Jakarta is very poor that prompts people to consume groundwater. However, uncontrolled exploitation of the groundwater results in lowering groundwater table from 50 m to 150 m in depth, leading to land subsidence and inundation of seawater along beach areas. In Bandung and surrounding areas, if no restoration was carried out for the groundwater condition in 2013, there would be additionally critical and damaged zones of 116 % and 570 % [8].

2.1. Groundwater

Groundwater is the most important mineral resource obtained from underground at the zone of saturated soils. In Indonesian regulation UU No.7, 2004, it is declared that groundwater exists in the rock layer [9]. About 30% daily water consumption in the world is obtained from groundwater, indicating its significant contribution to daily human life and efforts. The rest of water consumption is supplied by surface water from rivers and lakes [6].

Groundwater requires energy to flow through spaces between soil particles, indicated by groundwater table (piezometric level) in a local area. Groundwater flows from a point with high potential energy to another with low potential energy while no groundwater flow among points with the same potential energy. Imaginary line connecting points with the same potential energy is called as groundwater surface contour line or isohypse line. Along the contour line, there is no groundwater flow because the flow direction is perpendicular to the contour line.

2.2. River water turbidity

Surface water, especially in rivers, usually has a high level of turbidity during the rainy season as shown in Fig. 1. Environmental degradation, particularly related to widely decreasing forest areas followed by agricultural practices ignoring the conservation rules, has given significant contribution to the alteration of river flow characteristics and the increase of turbidity. Turbidity is the amount of granules inundated in the water. Substances causing turbidity
include: clay, mud sediment, organic and non-organic materials consisting of fine granules, soluble organic color mix, plankton and microorganism [10].

Turbidity is caused by organic and non-organic substances that are suspended and dissolved, such as mud and fine sand. Turbidity is stated in a turbidity unit which equals to 1 mg/liter SiO$_2$. The first equipment used to measure turbidity is Jackson Candler Turbidimeter, which was calibrated using silica. This Jackson Candler Turbidimeter is then used as standard equipment for turbidity measurement. One turbidity unit of Jackson Candler Turbidimeter is stated in 1 JTU unit. The Jackson Candler Turbidimeter is a visual measurement that compares water sample to the standard. Water turbidity is also often measured with Nephelometric method. In this method, light source is passed through the sample and the light intensity reflected by materials which cause the turbidity measured using the formazin polymer suspension as the standard solution. NTU (Nephelometric Turbidity Unit) is a unit to measure turbidity when using the Nephelometric method. Suspended density is positively correlated to turbidity. The higher the value of suspended density the higher the level of turbidity. Various levels of water turbidity are presented in Table 1.

Table 1. Water turbidity level.

No	Turbidity level	TSM (NTU)
1	Fairly turbid	15 – 25
2	Rather turbid	25 – 35
3	Turbid	35 – 50
4	Very turbid	> 50

2.3. Recharge reservoir

One of artificial recharges is a recharge reservoir mainly used as the medium of water absorption that enables water to be easily and quickly absorbed into the aquifer layer. This reservoir model is suitable for areas with shallow groundwater table and the availability of wide areas [12, 13]. The recharge reservoir construction is different from the construction of common reservoirs. The recharge reservoir bed is directly connected to the aquifer layer. Principally, the recharge reservoir can be classified as a single purpose reservoir that is used to control flood for optimization of the aquifer usage with the increase of water storage capacity in the aquifer layer. The study performed by the Ministry of Research and Technology indicated that the absorption level (infiltration rate) of the recharge reservoirs was quite high.

2.4. Physical model of sand column

Sand column is used as a medium to absorb water in recharge reservoirs into the aquifer layer. The traditional method for constructing a sand column is drilling hole in a low-permeability clay layer and refilling it with coarse-
graded sand. Seepage through the sand columns should not bring fine soil particles (piping). Surface water is stored in the reservoir with a certain level, then it is flown through the sand columns with relatively high permeability to accelerate and enlarge recharge. The sand columns are also expected to filter the absorbed water, so only clean water can reach the aquifer layer [5,13].

3. Research method

Data collection was carried out using model testing as shown in Fig. 2. The rectangular container (180 cm x 115 cm x 60 cm) was used to perform this test [13]. This model used 12 sand columns (5 cm in diameter and 35 cm in height) with distance of 11.5 cm from one to adjacent columns. Selected soils, clays and sand columns which met the permeability requirement, were put into the container. Crushed stone was put on the container base as an aquifer layer. The rates of intake water flow Q_1 and Q_2 were varied within 3 levels of water turbidity i.e.: fairly turbid (21 NTU), rather turbid (30 NTU) and turbid (42 NTU). The intake water Q_1 flows through the sand columns to reach the aquifer layer whereas the intake water Q_2 directly flows through the aquifer layer. All the intake water Q_1 can either flow out through runoff Q_3 or flow out of the aquifer layer Q_4 while the intake water Q_2 can only flow out of the aquifer layer Q_4.

![Fig. 2. Model testing by using sand column.](image)

To measure the rates of flow into the container (Q_1 and Q_2), runoff (Q_3) and flow out of the aquifer layer (Q_4), filling time into the measuring cup per 1000 ml was recorded for 5 times. When the soil reached saturated condition, observations were performed for each of the 3 levels of water turbidity. Decrease of flow rate with deposition time was observed for 3 variations of sand column permeability as described in the following section.

4. Results and Discussions

The flow rates of groundwater recharge resulting from the observations for 3 variations of sand permeability were described in the following sections. The results showed that the flow rate of groundwater recharge decreased with the increase of water turbidity and deposition time.
4.1. Groundwater flow through high-permeability sand \((k = 0.201 \text{ cm/sec})\)

The flow rates of groundwater recharge through high-permeability sand (HPS) were presented in Table 2. The flow rate of groundwater with high level turbidity, such as turbid water, rapidly decreases with the increase of deposition time. In contrast, the flow rate of groundwater with low level turbidity, such as fairly turbid, slowly decreases with the increase of deposition time. Initially, the flow rates are the same \((56.51 \text{ cm}^3/\text{sec})\) among groundwater with the three levels of turbidity, then their flow rates continuously decreases as deposition time increases. However, the rate of these decreases is greater for groundwater with a higher level of turbidity. Such phenomenon can be attributed to the same permeability of sand columns in initial condition, then their permeability decreases in different rates imposed by groundwater with different levels of turbidity as deposition time increases. Turbid water makes much more granules deposited in pore spaces of the sand than less turbid water, such as rather turbid and fairly turbid respectively.

Deposition time (hours)	Fairly turbid	Rather turbid	Turbid			
	Volume (cm³)	Vol. decrease (%)	Volume (cm³)	Vol. decrease (%)	Volume (cm³)	Vol. decrease (%)
0	56.51	0.00	56.51	0.00	56.51	0.00
1	55.71	1.42	54.70	3.20	53.30	5.68
2	55.31	2.12	53.20	5.86	51.10	9.57
3	54.21	4.07	51.60	8.69	47.90	15.24
4	53.61	5.13	50.20	11.17	44.00	22.14
5	53.31	5.66	47.80	15.41	38.70	31.52
6	52.01	7.96	43.70	22.67	33.90	40.01

4.2. Groundwater flow through medium-permeability sand \((k = 0.034 \text{ cm/sec})\)

The effects of water turbidity on decrease in flow rates of groundwater through medium-permeability sand (MPS) with deposition time were presented in Table 3. These effects were in line with the flow rates through the HPS but they were generally less significant than those through the HPS. Although percentages of decrease in the flow rates relative to the initial flow rate \((26.67 \text{ cm}^3/\text{sec})\) were only slightly less than those through the HPS, the amount of decrease in the flow rates was much less than those through HPS due to much lower initial flow rate through the MPS \((26.67 \text{ cm}^3/\text{sec})\) than the HPS \((56.51 \text{ cm}^3/\text{sec})\). This could be ascribed to smaller pore spaces where granules were deposited in the MPS than those in the HPS.

Deposition time (hours)	Flow rates for different levels of water turbidity, \(Q_a\) (cm³/sec)					
	Fairly turbid	Rather turbid	Turbid			
	Volume (cm³)	Vol. decrease (%)	Volume (cm³)	Vol. decrease (%)	Volume (cm³)	Vol. decrease (%)
0	26.67	0.00	26.67	0.00	26.67	0.00
1	26.30	1.39	25.80	3.26	25.20	5.51
2	26.10	2.14	25.10	5.89	24.10	9.64
3	25.60	4.01	24.40	8.51	23.10	13.39
4	25.30	5.14	24.00	10.01	21.60	19.01
5	25.20	5.51	23.40	12.26	20.10	24.63
6	24.50	8.14	22.20	16.76	19.20	28.01
4.3. Groundwater flow through low-permeability sand \((k = 0.023 \text{ cm/sec})\)

The flow rates of groundwater recharge through low-permeability sand (LPS) were presented in Table 4. The results showed relatively negligible effects of water turbidity on decrease in flow rate of groundwater with deposition time due to its very low initial flow rate \((7.22 \text{ cm}^3/\text{sec})\) with respect to the initial rates through both the MPS and HPS. This can be attributed to very small pore spaces of the sand in initial condition, so only small decrease of the pore spaces can be imposed by the deposition of granules even from turbid groundwater. The flow rates of groundwater for the three levels of turbidity only showed very small decrease within 6 hours deposition time. Nevertheless, reduction rate of turbid groundwater flow was still slightly higher than those of rather and fairly turbid groundwater respectively.

Deposition time (hours)	Flow rates for different levels of water turbidity, \(Q_a\) (cm\(^3\)/sec)	Volume	Vol. decrease (%)	Volume	Vol. decrease (%)	Volume	Vol. decrease (%)
0		7.22	0.00	7.22	0.00	7.22	0.00
1		7.10	1.66	7.00	3.05	6.80	5.82
2		7.10	1.66	6.80	5.82	6.50	9.97
3		6.90	4.43	6.70	7.20	6.30	12.74
4		6.80	5.82	6.60	8.59	6.00	16.90
5		6.80	5.82	6.30	12.74	5.60	22.44
6		6.60	8.59	5.90	18.28	5.30	26.59

The effects of water turbidity and sand permeability on the flow rates of groundwater with deposition time were clearly illustrated in Fig. 3. The results generally indicated more significant effect of water turbidity on decrease in flow rates of groundwater with deposition time through the HPS than those through the MPS and LPS respectively. These are in line with the initial flow rates of groundwater through the HPS \((56.510 \text{ cm}^3/\text{sec} \text{ for an area of } 2.07 \text{ m}^2 = 2.357 \text{ m}^3/\text{day/m}^2)\) which is significantly greater than those through the MPS \((0.624 \text{ m}^3/\text{day/m}^2)\) and LPS \((0.301 \text{ m}^3/\text{day/m}^2)\) respectively. Even the initial flow rate through the HPS is much greater than those resulting from previous studies carried out in Bogor City \((0.387 \text{ m}^3/\text{m}^2)[4]\) and in Sleman, Yogyakarta \((0.053 \text{ m}^3/\text{day/m}^2)[3]\). However, this flow rate decreases more significantly with deposition time than those through sand with medium and low-permeability respectively. In the long run, the flow rate of turbid water through the HPS may reduce into lower values than those through the MPS and LPS respectively but it seems unlikely for fairly turbid water. Therefore, high-permeability sand columns should be used in recharge reservoirs to provide great amount of groundwater recharge when there is a mechanism to prevent flow of turbid water either into a recharge reservoir or through sand columns.

The reduction rates of groundwater flow through the HPS also significantly diverge among different levels of water turbidity as deposition time increases. The divergences become smaller as sand permeability decreases. When groundwater flows through sand columns, granules in groundwater will be deposited in pore spaces between sand particles leading to the pore space reduction. This mechanism reduces the flow rate through the sand columns as deposition time increases. The large pore size of high-permeability sand enables great amount of granules to be deposited in the pore spaces whereas only small amount of the granules can be deposited in the pore spaces of low-permeability sand. As a result, the more turbid the groundwater the greater the amount of granules will be deposited in the pore spaces particularly for high-permeability sand. This leads to greater differences of reduction rate of groundwater flow with deposition time among the three different levels of water turbidity but it is not so for low-permeability sand due to its very small pore spaces in initial condition. Therefore, turbid water should be avoided to flow either into recharge reservoirs or through sand columns for maintaining their maximum capacity. This can be achieved by using filter at entry gate of water flow into reservoirs or at the top of sand columns. The use of lower-permeability sand can also become filter to minimize deposition of granules in the sand pore spaces.
Fig. 3. Comparison of the flow rate of groundwater recharge with three levels of turbidity (fairly turbid, rather turbid and turbid) through sand columns with three different values of permeability (HPS, MPS and LPS).

5. Conclusions

The following conclusions can be drawn from this study:

- Using sand columns in a recharge reservoir have produced high capacity of water absorption (0.301 - 2.357 m3/day/m2) into the aquifer layer as shown in this study. This capacity is generally higher than those obtained from previous studies carried out in Bogor city (0.387 m3/day/m2) and Sleman, Yogyakarta (0.053 m3/day/m2). However, this study used a small-scale model, thus construction of recharge reservoirs should be adjusted in a real field to obtain such high absorption capacity. Therefore, the use of sand columns in recharge reservoirs would be an alternative solution to cope with the impacts of inundation and draught which usually occur in Indonesia every year.

- Turbidity of surface water has shown significant impact on decrease in flow rate of the water into the ground with deposition time. The use of high-permeability sand columns in recharge reservoirs can absorb considerable amount of water into the ground, but turbid water will significantly decrease the groundwater flow rate with deposition time. Therefore, high-permeability sand columns should be used in recharge reservoirs when there is a mechanism to prevent turbid water entering the reservoirs. Using filter material such as a graded-sand or geotextile layer on the top of sand columns might be an alternative to prevent sedimentation in pore spaces between sand particles. However, lower-permeability sand columns could also be considered when turbid water is unavoidable to flow in recharge reservoirs because this type of sand could be a filter to minimize deposition of granules in the sand pore spaces. Clearance of sediments in recharge reservoirs is also required every dry season to maintain their allowable capacity to absorb surface water.

Acknowledgements

We sincerely thank especially to Head of Civil Engineering Department, Ujung Pandang State Polytechnic for supporting and providing opportunity to conduct this research.

References

[1] T. Sudinda, Recharge reservoir to cope flood and drought, Available from http://www.mediaindonesia.com (accessed 20 July 2011).
[2] Sudinda, T, Potential recharge reservoir simulation on the aquifer depressed with finite difference method. Department of Civil Engineering FTSP Trisakti, Jakarta, 2004.
[3] Djudi, A Study on Recharge Reservoir of Tambakboyo, Kecamatan Ngemplak, Kabupaten Sleman, Propinsi DI Yogyakarta, Unpublished thesis, Civil Engineering Magister Programme of ITB, 2006.
[4] S. Broto, H. Susanto, Designing the effective model prediction of recharge reservoir of Kota Bogor for groundwater aquifer optimization, Engineering Journal. 29 (2008) pp. 220 – 227.
[5] A. Azis, Performance Analysis Of Sand Columns In Recharge Reservoir. International Journal of Engineering and Technology Vol. 4 No.7, (2014) pp. 577-581.
[6] G.D. Soedarmo, S.J. E. Purnomo, Soil Mechanics 1, Kanisius, Yogyakarta, 2001.
[7] A. Herlambang, R.H. Indriatmoko, The management of ground water and sea water intrusion, Water Journal of Indonesia. 2 (2005) pp. 211-225.
[8] L.M. Hutasoit, The condition of ground water surface with or without artificial catchment in Bandung : Numerical simulation result, Geology Journal Indonesia. Vol.4 No. 3 (2009) pp. 177-188.
[9] Sudjarwadi., Pandu, M., Anton, B., Asriningtyas, V, Development of water resources, JTS FT UGM, Yogyakarta, 2008.
[10] Lelykesehatan, Turbidity of Water, WordPress.Com, 2011.
[11] B.M. Das, Soil Mechanics: Principles of geotechnical engineering, Volume 1 and 2, Erlangga Publishing, Jakarta, 1995.
[12] Kusnaedi, Recharge Well for Settlements and Urban area, Swadaya, Jakarta, 2011.
[13] A. Azis, A Novelty of Sand Column Coefficient from Physical Modeling and Calculation, International Journal of Applied Engineering Research Vol. 9 No. 15 (2014) pp. 2995-3008.