Implementation of a Multidisciplinary Care Pathway via an Emergency Department-ICU to Improve Care of Emergency Department Patients Presenting With Leukostasis

Nathan L. Haas, MD1,2; Abhinav Nafday, MD1; James A. Cranford, PhD1; Sarah E. Yentz, MD3; Dale L. Bixby, MD, PhD3; Benjamin S. Bassin, MD1,2,4

Objectives: Leukostasis is a life-threatening complication of acute hyperleukocytic leukemia, and is associated with substantial mortality. Management of leukostasis requires time-sensitive diagnostics and therapeutics, and leukapheresis remains a mainstay of treatment in select patients. Leukapheresis requires coordination of multi-disciplinary resources, which can prove challenging in the emergency department setting, and delays in treatment due to the complexity and coordination required are common. The objective of this study was to assess the effect of utilization of an emergency department-ICU and a multidisciplinary care pathway on outcomes of critically ill leukostasis patients presenting to the emergency department.

Design: Retrospective cohort study.

Setting: Single large academic medical center in the United States.

Patients: Adult emergency department patients with signs and symptoms of leukostasis requiring emergent leukapheresis from 2012-2019.

Interventions: Implementation of a hybrid emergency department-ICU setting (emergency critical care center) and a multidisciplinary care pathway with members from Emergency Medicine, Hematology, Blood Bank, and Clinical Pathology.

Measurements and Main Results: A total of 70 patients were identified and included for analysis: 14 preemergency critical care center; 32 postemergency critical care center, premultidisciplinary care pathway; and 24 postemergency critical care center, postmultidisciplinary care pathway. A statistically significant reduction in the time from emergency department presentation to initiation of leukapheresis was observed from preemergency critical care center to postemergency critical care center, premultidisciplinary care pathway and postemergency critical care center, postmultidisciplinary care pathway (11.5 vs 7.9 vs 7.7 hr; \(p = 0.004 \)). Statistically significant reductions in in-hospital mortality were observed from preemergency critical care center to postemergency critical care center, premultidisciplinary care pathway and postemergency critical care center, postmultidisciplinary care pathway (64.3% vs 21.9% vs 25.0%; \(p = 0.01 \)). A trend toward decreased inpatient ICU utilization was observed, although was not statistically significant (35.7% vs 12.5% vs 25.0%; \(p = 0.14 \)).

Conclusions and Relevance: Implementation of a multidisciplinary care pathway via use of an emergency department-ICU for critically ill patients with leukostasis was associated with statistically significant reductions in time to leukapheresis and in-hospital mortality. These findings suggest an emergency department-ICU model may allow for maximal resource and care coordination at the point of contact with critically ill patients and improved clinical outcomes.

Key Words: blast crisis; emergency department; emergency department-intensive care unit; leukapheresis; leukemia; leukostasis

Leukostasis is a medical emergency associated with substantial mortality. It develops from white cell plugs in the microvasculature resulting in decreased tissue perfusion and is potentially related to increased blood viscosity from less deformable leukemic blasts obstructing capillary beds (1–4). Leukostasis most commonly occurs in patients with acute myeloid leukemia...
or chronic myeloid leukemia in blast crisis, and typical presenting
symptoms relate to involvement of the lungs (dyspnea, hypoxia)
or CNS (headache, numbness, somnolence, etc.). Additional signs
and symptoms can result from decreased tissue perfusion of other
organs (myocardial infarction, priapiism, limb ischemia, bowel
infarction) (1, 4, 5). Mortality associated with leukostasis has been
reported as high as 20–40% (6–10). Thus, prompt diagnosis and
expedited management are essential.

Management of leukostasis can prove challenging due to the
medical complexity, multidisciplinary care coordination, and
degree of resources required. Mainstays of initial management
include cytoreduction (induction chemotherapy, hydroxyurea,
and/or leukapheresis), prevention/management of tumor lysis
syndrome, management of coagulation abnormalities including
disseminated intravascular coagulation, and supportive
care measures including IV hydration. Management requires
clinicians from multiple specialties, which at our institution
include Emergency Medicine, Hematology, Blood Bank, Clinical
Pathology, and Critical Care. This complexity can strain the extent
of resources available in the emergency department (ED) setting
and potentially lead to delays in care of critically ill leukostasis
patients, a diagnosis associated with substantial early mortality.

Prolonged ED boarding of critically ill patients is a challenge fac-
ing many healthcare organizations, and ED boarding of greater than
or equal to 5 hours has been associated with poor outcomes for criti-
cally ill patients (11, 12). Resuscitative care units (including ED-based
ICUs) have been implemented in response to this challenge (13), and
the ED-ICU model has been associated with reduced risk-adjusted
mortality of ED patients and reduced ED to ICU admissions (14).
The impact of early, aggressive, coordinated critical care on patients
presenting to the ED with leukostasis is unknown.

The objective of this study was to assess the effect of utiliza-
tion of an ED-ICU and a multidisciplinary care pathway on out-
comes of critically ill leukostasis patients presenting to the ED. We
hypothesized that implementing a multidisciplinary care path-
way through utilization of an ED-ICU would be associated with
reductions in time to leukapheresis, rate of ICU admission, and
in-hospital mortality.

MATERIALS AND METHODS

Design, Setting, Participants

This retrospective cohort study was conducted at a single large
academic medical center in the United States. The Institutional
Review Board at the University of Michigan reviewed and
approved this study. This study is presented in accordance with
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) statement (15).

Adult ED patients with signs and symptoms of leukostasis
requiring emergent leukapheresis per hematologist recommen-
dation were included and analyzed via a retrospective review of
prospectively collected electronic health records. The preemerg-
cency critical care center (EC3) cohort included patients present-
ing from September 2012 to February 2015, and the two post-EC3
cohorts (pre- and postmultidisciplinary care pathway) included
patients presenting from February 2015 to May 2019. This date
range (which determined the study size) was selected as a new
electronic medical record was deployed at our institution in 2012.

We implemented a hybrid ED-ICU setting (EC3) in February
2015 and subsequently implemented a multidisciplinary care path-
way with members from Emergency Medicine, Hematology, Blood
Bank, and Clinical Pathology in September 2017 (Supplemental
Fig. 1, Supplemental Digital Content 1, http://links.lww.com/
CCX/A132; legend, Supplemental Digital Content 2, http://links.
lww.com/CCX/A133). The interventions in this study (implemen-
tation of an ED-ICU and implementation of a multidisciplinary
care pathway) may have manipulated processes and/or a patient's
environment to modify outcomes.

Main Outcomes and Measures

Age, gender, diagnosis, percent blasts, total ED length of stay
(LOS), rate of admission from ED to inpatient ICU, time from ED
presentation to initiation of leukapheresis, and in-hospital mor-
tality were collected from the electronic medical record and ana-
alyzed. ED LOS in the post-EC3 cohort is inclusive of time in both
the main ED and the EC3.

Analysis

Analysis compared three cohorts: 1) pre-EC3; 2) post-EC3, pre-
multidisciplinary care pathway; and 3) post-EC3, postmultidis-
ciplinary care pathway. Statistical analysis was performed using
SAS software (SAS Institute, Cary, NC). An alpha level of 0.05 was
used for all analyses. One-way analyses of variance were used for
continuous outcome variables, and chi-squared analyses were per-
fomed for categorical outcome variables. Statistically significant
effects of cohort were followed-up with post hoc comparisons.
Analysis was conducted from July to September of 2019.

RESULTS

A total of 70 patients were identified and included for analysis, 14
pre-EC3 and 56 post-EC3 (Table 1). Of the 56 post-EC3 patients,
32 presented to the ED prior to release of our multidisciplinary
care pathway, and 24 presented to the ED after release of our mul-
disciplinary care pathway. Results showed that age was similar
across cohorts, F(2, 57) = 1.2 ns, and more patients in the two post-
EC3 cohorts were male. The three cohorts (pre-EC3; post-EC3,
premultidisciplinary care pathway; and post-EC3, postmultidis-
ciplinary care pathway) were not statistically significantly differ-
ent with respect to diagnosis or percent blasts on presentation.

With implementation of a multidisciplinary care pathway and uti-
ilization of an ED-ICU, we observed a statistically significant reduc-
tion in the time from ED presentation to initiation of leukapheresis,
F(2, 67) = 6.0 (p = 0.004). Post hoc comparisons showed that time
to leukapheresis was longest for pre-EC3 patients (M = 11.5 hr)
and was statistically significantly shorter for both post-EC3, premultidis-
ciplinary care pathway patients (M = 7.9 hr; p = 0.002) and post-EC3,
postmultidisciplinary care pathway patients (M = 7.7 hr; p = 0.003).
Time to leukapheresis in the latter two cohorts was not statistically
significantly different (p = 0.90).

With implementation of a multidisciplinary care pathway and uti-
ilization of an ED-ICU, a statistically significant reduction in in-
hospital mortality was observed, χ²(2) = 8.8 (p = 0.01). Post hoc
comparisons showed that in-hospital mortality was highest among pre-EC3 patients (64.3%) and was statistically significantly lower for both post-EC3, premultidisciplinary care pathway patients (21.9%; \(p = 0.006 \)) and post-EC3, postmultidisciplinary care pathway patients (25.0%; \(p = 0.02 \)). In-hospital mortality in the latter two cohorts was not statistically significantly different (\(p = 0.84 \)).

While the overall effect of cohort was not statistically significant (\(p = 0.14 \)), inpatient ICU utilization decreased from 35.7% in the pre-EC3 cohort to 12.5% in the post-EC3, premultidisciplinary care cohort, then increased to 25.0% in the post-EC3, postmultidisciplinary care cohort.

DISCUSSION

We observed that implementation of a multidisciplinary care pathway via use of an ED-ICU for ED patients with leukostasis was associated with substantial and statistically significant reductions in time to leukapheresis and in-hospital mortality.

Under recognition, delays in diagnosis, and delays in management can prove lethal for patients with leukostasis, given the extremely high early mortality of this condition. Initial management and resuscitation of patients presenting to the ED with leukostasis is resource intensive, multidisciplinary, and medically complex. Arrangements for cytoreduction (especially via leukapheresis) can be associated with substantial delays if not undertaken in a coordinated, streamlined fashion, given the multiple required steps and consultants involved.

At our institution, initiating leukapheresis consists of diagnosis/recognition, peripheral smear review, hematology consultation, pathology consultation and coordination for leukapheresis, correction of coagulopathy, placement of a hemodialysis line, and arrangements for an ICU bed. In our Pre-EC3 cohort, the mean time to accomplish these tasks was 11.5 hours, with a maximum of 25.2 hours. Furthermore, coordination among subspecialists (which at our institution include Hematology, Blood Bank, Interventional Radiology, and Clinical Pathology) can prove extremely challenging in a busy ED setting, especially as many U.S. EDs are facing increasing volume and acuity of critically ill patients (16). Our results showed an average reduction of more than 3 hours in time to leukapheresis in both post-EC3 cohorts, and this may have contributed to the substantial reductions in mortality observed in both Post-EC3 cohorts.

An ED-based ICU is one strategy to address the increasing critical care requirements despite decreasing ICU availability facing many EDs across the United States. This unique setting provides one solution to the “Right Care, Right Now” approach championed by the Society of Critical Care Medicine (17). One of the founders of critical care, Ake Grenvik, predicted decades ago that “Many critically ill patients

TABLE 1. Differences Between Preemergency Critical Care Center; Postemergency Critical Care Center, Premultidisciplinary Care Pathway; and Postemergency Critical Care Center, Postmultidisciplinary Care Pathway Patients

Characteristic	Preemergency Critical Care Center (\(n = 14 \))	Postemergency Critical Care Center (\(n = 56 \))	Premultidisciplinary Care Pathway (\(n = 32 \))	Postmultidisciplinary Care Pathway (\(n = 24 \))	\(P \)
Mean age, yr (sd)	53.9 (±14.1)	52.8 (±19.7)	60.0 (±16.8)		0.31
Male gender, n (%)	6 (42.9)a	24 (75.0)b	19 (79.2)b		0.04
Mean emergency department length of stay, hr (sd)	7.0 (±3.7)	14.1 (±6.6)	18.1 (±5.5)		<0.001
Time to leukapheresis, hr (sd)	11.5 (±5.4)	7.9 (±2.2)	7.7 (±3.8)		0.004
Admission to inpatient ICU, n (%)	5 (35.7)	4 (12.5)	6 (25.0)		0.14
In-hospital mortality, n (%)	9 (64.3)a	7 (21.9)b	6 (25.0)b		0.01
Diagnosis, n (%)					
Acute myeloid leukemia	10 (71)	22 (69)	15 (63)		0.10
Acute lymphoblastic leukemia	1 (7)	3 (9)	4 (17)		0.42
Diffuse large B-cell lymphoma	1 (7)	0	0		0.38
Plasma cell leukemia	1 (7)	0	0		0.38
Mantle cell lymphoma	1 (7)	1 (3)	0		0.61
Other	0	6 (19)	5 (21)		0.06
Percent blasts, mean (sd)	53.7 (37.4)	43.5 (39.5)	67.3 (35.4)		0.07

Analysis compared three cohorts: 1) preemergency critical care center (EC3); 2) post-EC3, premultidisciplinary care pathway; and 3) post-EC3, postmultidisciplinary care pathway. \(p \) values are from omnibus tests (analysis of variable or analysis of variance for continuous variables and \(\chi^2 \) for categorical variables) and indicate that at least one cohort is statistically significantly different from at least one other cohort. Means and percentages not sharing a common superscript are statistically significantly different from each other at \(p < 0.05 \) based on post hoc comparisons.
no longer need admission to the hospital if the diagnostic work-up and treatment may be completed in an ED short-term ICU” (18).

These findings suggest an ED-ICU model, through use of a multidisciplinary care pathway, may allow for maximal resources and care coordination at the point of contact with critically ill patients. Future research is needed to quantify the impact of an ED-ICU on additional critically ill patient populations and disease states, including at other institutions, to assess external validity and generalizability.

LIMITATIONS
Several limitations of this study are appreciated. The observational nature of this study limits interpretation of results to association, and we are unable to draw causal inferences. This study was conducted at a single academic medical center in the United States, and generalizability of results is uncertain. The sample size in each cohort is relatively small, given the relative infrequency of ED presentation of the diagnosis of leukostasis. The before-and-after nature of this study is inherently prone to favoring of the “after” cohort. The pragmatic, uncontrolled nature of this study may contribute to the differences observed. The quality improvement efforts assessed in this study were implemented in 2015. Since 2015, some studies have suggested no benefit of leukapheresis for patients with leukostasis (19–21). The intention of this study was not to report on the efficacy of leukapheresis but rather was to report on the effect of an ED-ICU and a multidisciplinary care pathway on outcomes of critically ill leukostasis patients presenting to the ED.

CONCLUSIONS
Implementation of a multidisciplinary care pathway via use of an ED-ICU for critically ill ED patients with leukostasis was associated with statistically significant and clinically meaningful reductions in time to leukapheresis and in-hospital mortality. These findings suggest that an ED-ICU model may allow for maximal resource and care coordination at the point of contact with critically ill patients. Future research is needed to quantify the impact of an ED-ICU on additional critically ill patient populations and disease states.

ACKNOWLEDGEMENTS
We would like to acknowledge leadership and colleagues from multiple disciplines across the University of Michigan that were integral in completing this study, including Emergency Medicine, Hematology, Blood Bank, Clinical Pathology, and Critical Care.

REFERENCES
1. Cutner J, Conjalka MS, Reilly M, et al: Association of monocytic leukemia in patients with extreme leukocytosis. Am J Med 1980; 69:555–558
2. Lichtman MA, Weed RI: Peripheral cytoplasmic characteristics of leukocytes in monocyctic leukemia: Relationship to clinical manifestations. Blood 1972; 40:52–61
3. Lichtman MA, Rowe JM: Hyperleukocytic leukemias: Rheological, clinical, and therapeutic considerations. Blood 1982; 60:279–283
4. Lester TJ, Johnson JW, Cutner J: Pulmonary leukostasis as the single worst prognostic factor in patients with acute myelocytic leukemia and hyperleukocytosis. Am J Med 1985; 79:43–48
5. Porcu P, Cripo LD, Ng EW, et al: Hyperleukocytic leukemias and leukostasis: A review of pathophysiology, clinical presentation and management. Leuk Lymphoma 2000; 39:1–18
6. Dutcher JP, Schiffer CA, Wiernik PH: Hyperleukocytosis in adult acute nonlymphocytic leukemia: Impact on remission rate and duration, and survival. J Clin Oncol 1987; 5:1364–1372
7. van Buchem MA, te Velde J, Willemze R, et al: Leucostasis, an underestimated cause of death in leukaemia. Blut 1988; 56:39–44
8. Vaughan WP, Kimball AW, Karp JE, et al: Factors affecting survival of patients with acute myelocytic leukemia presenting with high wbc counts. Cancer Treat Rep 1981; 65:1007–1013
9. Bug G, Anargyrou K, Tonn T, et al: Impact of leukapheresis on early death rate in adult acute myeloid leukaemia presenting with hyperleukocytosis. Transfusion 2007; 47:1843–1850
10. Porcu P, Danielsen CF, Orazi A, et al: Therapeutic leukapheresis in hyperleucytic leukaemias: Lack of correlation between degree of cytoreduction and early mortality rate. Br J Haematol 1997; 98:433–436
11. Chiafifi DB, Trzeciak S, Likourezos A, et al; DELAY-ED study group: Impact of delayed transfer of critically ill patients from the emergency department to the intensive care unit. Crit Care Med 2007; 35:1477–1483
12. Singer AJ, Thode HC Jr, Vicciole P, et al: The association between length of emergency department boarding and mortality. Acad Emerg Med 2011; 18:1324–1329
13. Leibner E, Spiegel R, Hsu CH, et al: Anatomy of resuscitative care unit: expanding the borders of traditional intensive care units. Emerg Med J 2019; 36:364–368
14. Gunnerson KJ, Bassin BS, Havey RA, et al: Association of an emergency department–Based intensive care unit with survival and inpatient intensive care unit admissions. JAMA Netw Open. 2019; 2:e197584
15. von Elm E, Altman DG, Egger M, et al; STROBE Initiative: The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J Clin Epidemiol 2008; 61:344–349
16. Herring AA, Ginde AA, Fahimi J, et al: Increasing critical care admissions from US emergency departments, 2001-2009. Crit Care Med 2013; 41:1197–1204
17. Angood PB: Right care, right now–you can make a difference. Crit Care Med 2005; 33:2729–2732
18. Shoemaker WC, Grewink A, Ayres SM, et al: Textbook of Critical Care. Fourth Edition. Philadelphia, W.B. Saunders, 2000
19. Sanz MA, Fenaux P, Tallman MS, et al: Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European leukaemianet. Blood 2019; 133:1630–1643
20. Choi MH, Choe YH, Park Y, et al: The effect of therapeutic leukapheresis on early complications and outcomes in patients with acute leukemia and hyperleukocytosis: A propensity score-matched study. Transfusion 2018; 58:208–216
21. Malkan UY, Ozcebe OI: Leukapheresis do not improve early death rates in acute myeloid leukemia patients with hyperleukocytosis. Transfus Apher Sci 2017; 56:880–882