Chiral Dynamics1,2

J. Gasser

Institut für Theoretische Physik, Universität Bern,
Sidlerstrasse 5, CH–3012 Bern, Schweiz
gasser@itp.unibe.ch

June 1999

Pacs: 11.30.Rd, 13.20.Eb, 13.75.Lb
Keywords: Chiral symmetries, semileptonic decays of K mesons,
meson-meson interactions, pion-pion scattering

Abstract

After a short summary of my talk, I discuss K_{l3} decays and elastic $\pi\pi$
scattering in the framework of chiral perturbation theory.

1Invited talk given at the International Workshop “e^+e^- collisions from ϕ to J/ψ ”,
March 1-5, 1999, Budker Institute of Nuclear Physics, Novosibirsk.

2Work supported in part by the Swiss National Science Foundation, and by
TMR, BBW–Contract No. 97.0131 and EC–Contract No. ERBFMRX–CT980169
(EURODAPHNE).
1 Introduction

In the first part of my talk, I gave an introduction to the effective theory of QCD at low energy, called chiral perturbation theory (CHPT) [1, 2]. There are many excellent reviews and lectures on the subject available on the market - for a comprehensive list, see Ref. [3]. Therefore, I do not try to add one more here. Instead, I refer the interested reader to Refs. [3] and [4]. In the second part, I illustrated the method with a few examples. Here, I shall consider two of them, K_{l3} decays and elastic $\pi\pi$ scattering. Both processes are presently under theoretical and experimental investigation. Finally, I also presented the EURODAFNE network, outlining the work planned in that enterprise. Lack of space prevents me to cover this topic here - I refer the interested reader to the relevant homepages [5] and to The Second DAFNE Physics Handbook [6].

2 K_{l3} decays

The so called K_{l3} decays are

\[
K^+(p) \rightarrow \pi^0(p')l^+(p_l)\nu_l(p_\nu) \quad [K^+_l]
\]

\[
K^0(p) \rightarrow \pi^-(p')l^+(p_l)\nu_l(p_\nu) \quad [K^0_l]
\]

and their charge conjugate modes. The symbol l stands for μ or e. I consider the isospin symmetry limit $m_u = m_d, \alpha_{\text{QED}} = 0$.

The matrix element for K_{l3} decays contains a leptonic and a hadronic factor. The hadronic part is

\[
\langle \pi^0(p') \mid V^4-i5(0) \mid K^+(p) \rangle = \langle \pi^-(p') \mid V^4-i5(0) \mid K^0(p) \rangle = \frac{1}{\sqrt{2}}[(p' + p)_\mu f_+(t) + (p - p')_\mu f_-(t)].
\]

In this formula, V^4-i5 denotes the hadronic vector current, and t is the momentum transfer to the lepton pair, $t = (p' - p)^2 = (p_l + p_\nu)^2$.

The quantity f_+ is referred to as the vector form factor, because it specifies the P-wave projection of the crossed channel matrix element. The S-wave projection is described by the scalar form factor

\[
f_0(t) = f_+(t) + \frac{t}{M_K^2 - M_\pi^2}f_-(t).
\]
Analyses of K_{l3} data often assume a linear dependence

\[f_{+,0}(t) = f_{+}(0) \left[1 + \lambda_{+,0} \frac{t}{M_{+}^{2}} \right] . \]

(4)

2.1 Previous measurements

I refer the reader to the 1982 version of the PDG [7] for a critical discussion of the wealth of experimental information on $\lambda_{+,0}$. Here I present a short summary.

K_{e3}-experiments

The λ_{+} values obtained are fairly consistent. The average values are

\[
\begin{align*}
K_{e3}^+ : \lambda_+ &= 0.0286 \pm 0.0022 \quad [8] \\
K_{e3}^0 : \lambda_+ &= 0.0300 \pm 0.0016 \quad [8].
\end{align*}
\]

(5)

$K_{\mu3}$-experiments

The result by Donaldson et al. [9]

\[
\begin{align*}
\lambda_+ &= 0.030 \pm 0.003 \\
\lambda_0 &= 0.019 \pm 0.004
\end{align*}
\]

(6)

dominates the statistics in the $K_{\mu3}^0$ case. The λ_+ value (5) is consistent with the K_{e3} value (4). However, the situation concerning the slope λ_0 is rather unsatisfactory, as the following list from $K_{\mu3}^0$ decays illustrates:

\[
\lambda_0 = \begin{cases}
0.019 & \pm & 0.004 & [9] \\
0.025 & \pm & 0.019 & [10] \\
0.047 & \pm & 0.009 & [11] \\
0.039 & \pm & 0.010 & [12] \\
0.050 & \pm & 0.008 & [13] \\
0.0341 & \pm & 0.0067 & [14].
\end{cases}
\]

(7)

The χ^2 fit to the $K_{\mu3}^0$ data yields $\lambda_+ = 0.034 \pm 0.005$, $\lambda_0 = 0.025 \pm 0.006$ with a $\chi^2/DF = 88/16$ [8, p.76]! The situation in the charged mode $K_{\mu3}^+$ is slightly better [7].

3The list is chronological, starting 1974, ending 1981. Earlier data may be found in Ref. [8]. More recent data are not yet available.
2.2 Theory

The theoretical prediction of K_{l3} form factors has a long history, starting in the sixties with the current algebra evaluation of $f_{\pm,0}$. For an early review of the subject and for references to work prior to CHPT evaluations of $f_{\pm,0}$, I refer the reader to [15]. Here I concentrate on the evaluation of the form factors in the framework of CHPT. The one-loop corrections have been evaluated in [16], with the result

$$\lambda_0 = 0.017 \pm 0.004,$$

where the error is an estimate of the uncertainties due to higher-order contributions. The prediction (8) is in agreement with the high-statistics experiment [9] quoted in (6,7), but in flat disagreement with some of the more recent data listed in (7). The double logarithms that occur at order p^6 in the K_{l3} form factors have been determined recently [17], the full two-loop calculation is under way [18], and the electromagnetic corrections are under investigation [19]. A particular combination of form factors of the vector currents has been studied at two-loop order in [20].

2.3 Future experiments

The semileptonic K_{l3} decays will be measured in the near future at DAFNE [21]. Of course, it will be very interesting to compare the data with the prediction (8).

3 Elastic $\pi\pi$-scattering

The interplay between theoretical and experimental aspects of elastic $\pi\pi$ scattering is illustrated in figure 1. On the theoretical side, Weinberg’s calculation [22] of the scattering amplitude at leading order in the low-energy expansion gives for the isospin zero S-wave scattering length the value $a_{I=0}^{l=0} = 0.16$ in units of the charged pion mass. This differs from the experimentally determined value $a_{I=0}^{l=0} = 0.26 \pm 0.05$ by two standard deviations. The one-loop calculation [24] enhances the leading order term to $a_{I=0}^{l=0} = 0.20 \pm 0.01$ - the correction goes in the right direction, but the result is still on the low side as far as the present experimental value is concerned. To decide about agreement/disagreement between theory and experiment, one should i) evaluate
the scattering lengths in the theoretical framework at order p^6, and ii) determine them more precisely experimentally. Let me first comment on the theoretical work.

$$A = \frac{s-M^2}{E^2} + O(p^4)$$

$A_0 = 0.16$

$+ O(p^4) \downarrow$

$A_0 = 0.26 \pm 0.05$

$K \rightarrow \pi\pi\nu \ (30\ 000 \text{ decays})$

$+ O(p^4) \downarrow$

$\text{DIRAC} \downarrow \ E865; \ KLOE$

$A_0 = 0.20 \pm 0.01$

$+ O(p^6) \downarrow$

$A_0 = ?$

Figure 1: Progress in the determination of the elastic $\pi\pi$ scattering amplitude. References are provided in the text.

3.1 Theoretical aspects

I consider QCD in the isospin symmetry limit $m_u = m_d \neq 0$. Elastic $\pi\pi$ scattering is then described by a single Lorentz invariant amplitude $A(s, t, u)$, that depends on the standard Mandelstam variables s, t, u. The effective lagrangian that describes this process is given by a string of terms, $\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + h\mathcal{L}_4 + h^2\mathcal{L}_6 + \cdots$, where \mathcal{L}_n contains m_1 derivatives of the pion fields and m_2 quark mass matrices, with $m_1 + 2m_2 = n$ (here, I consider the standard counting rules [1, 2]). The low-energy expansion corresponds to an expansion of the scattering amplitude in powers of h,

$$A(s, t, u) = \begin{cases} A_2 \uparrow & A_4 \uparrow & A_6 \uparrow & O(p^8) \uparrow \end{cases}$$

$$\begin{cases} \text{tree} & \text{1 loop} & \text{2 loops} \end{cases}$$

(9)
where \(A_n \) is of order \(p^n \). The tree-level result \([22]\) reads

\[
A_2 = \frac{s - M_\pi^2}{F_\pi^2},
\]

and the one-loop expression \(A_4 \) may be found in \([24]\). The two-loop contribution \(A_6 \) was worked out in \([25]\). (A dispersive evaluation of \(A_6 \) has been performed in Ref. \([26]\) in the framework of generalized chiral perturbation theory, see below. That calculation is not sufficient for the present purpose - what is needed for the analysis outlined below is the complete two-loop expression of \(A_6 \) as presented in \([23]\).)

The amplitude \(A_2 + A_4 + A_6 \) contains several of the low-energy constants that occur in \(\mathcal{L}_{\text{eff}} \). In \(\mathcal{L}_2 \), there are two of them, the pion decay constant \(F \) in the chiral limit, and the parameter \(B \), which are related to the condensate by \(F^2 B = -\langle 0|\bar{u}u|0 \rangle \). In the loop expansion, these two parameters can be expressed in terms of the physical pion decay constant \(F_\pi \approx 92.4 \) MeV and of the pion mass, \(M_\pi = 139.57 \) MeV. The \(\pi\pi \) scattering amplitude contains, in the two-loop approximation, in addition several LEC’s occurring in \(\mathcal{L}_4 \) and in \(\mathcal{L}_6 \).

\[
\begin{align*}
\mathcal{L}_2 : & F_\pi, M_\pi \\
\mathcal{L}_4 : & \tilde{\ell}_1, \tilde{\ell}_2, \tilde{\ell}_3, \tilde{\ell}_4 \\
\mathcal{L}_6 : & \tilde{r}_1, \ldots, \tilde{r}_6
\end{align*}
\]

occur in \(\pi\pi \rightarrow \pi\pi \) (two-loop approximation). \([11]\)

These LEC’s are not determined by chiral symmetry - they are, however, in principle calculable in QCD \([27]\). Once the amplitude is available in algebraic form, it is a trivial matter to evaluate the threshold parameters. To quote an example, the isospin zero S-wave scattering length is of the form

\[
a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left\{ 1 + c_4 x + c_6 x^2 + O(p^6) \right\}; \quad x = \frac{M_\pi^2}{16\pi^2 F_\pi^2}.
\]

The coefficients \(c_4, c_6 \) contain the low-energy constants listed in \([11]\). Similar formulae hold for all other threshold parameters - the explicit expressions for the scattering lengths and effective ranges of the S- and P-waves as well as for the D-wave scattering lengths at order \(p^6 \) may be found in \([25]\). It is clear that, before a numerical value for these parameters can be given, one needs an estimate of the low-energy constants. The calculation is under way - it is, however, quite involved: One has to solve numerically the Roy-equations.
with input from the high-energy absorptive part. Second, one assumes
that the couplings that describe the mass dependence of the amplitude may
be estimated from resonance exchange. Requiring that the experimental
amplitude agrees near threshold with the chiral representation allows one
finally to pin down the remaining couplings, as well as the scattering lengths
a_0^0 and a_2^0. The remaining threshold parameters may then be obtained from
the Wanders sum rules [29]. The first part of the program is completed,
and the report will appear soon [30]. The second part, that will allow us to
predict the values of all threshold parameters, is under investigation [31].

3.2 Threshold parameters from experimental data

On the experimental side, several attempts are under way to improve our
knowledge of the threshold parameters. The most promising ones among
them are i) semileptonic K_{l4} decays with improved statistics, E865 [32] and
KLOE [33], and ii) the measurement of the pionium lifetime - DIRAC [34] -
that will allow one to directly determine the combination $|a_0^0 - a_2^0|$ of S-wave
scattering lengths. It was one of the aims of last years workshop in Dubna
[35] to discuss the precise relation between the lifetime of the pionium atom
and the $\pi\pi$ scattering lengths - I refer the interested reader to the numerous
contributions to that workshop for details. Let me note that recently, using
the effective lagrangian framework proposed by Caswell and Lepage some
time ago [36], the width of pionium in its ground state has been determined
[37] at leading and next-to-leading order in isospin breaking and to all orders
in the chiral expansion. This result will allow one to evaluate the combination
$|a_0^0 - a_2^0|$ with high precision, provided that DIRAC determines the lifetime
at the 10% level, as is foreseen [34].

3.3 Why do we wish to know the scattering lengths?

Why are we interested in a precise value of the scattering length a_0^0? First,
it is one of the few occasions that a quantity in QCD can be predicted
rather precisely - which is, of course, by itself worth checking. Second, as
has been pointed out in [38], this prediction assumes that the condensate
has the standard size in the chiral limit - in particular, it is assumed to
be non vanishing. For this reason, the authors of Ref. [38] have reversed
the argument and have set up a framework where the condensate is allowed
to be small or even vanishing in the chiral limit - the so called generalized
chiral perturbation theory [3]. Whereas the S-wave scattering lengths cannot be predicted in that framework, one may relate their size to the value of the condensate. Hence, measuring a_0^0, a_0^2, or a combination thereof [34] may allow one to determine the nature of chiral symmetry breaking by experiment [38, 39].

4 Conclusion

Chiral perturbation theory has a wide field of applications. Many of its predictions have already been tested [6, 43, 44], and many more will be investigated in the near future, e.g. by E865 [32] in Brookhaven, by DIRAC [34] at CERN, and by DAFNE in Frascati [6].

Acknowledgements

It is a great pleasure to thank the organizers for the most interesting and enjoyable stay at the Budker Institute of Nuclear Physics in Novosibirsk.

References

[1] S. Weinberg, Physica 96A (1979) 327.

[2] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158 (1984) 142; Nucl. Phys. B250 (1985) 465.

[3] J. Bijnens and Ulf-G. Meiβner, Proceedings of the workshop Chiral Effective Theories held at the Physikzentrum Bad Honnef, Germany, November 30 to December 4, 1998, [hep-ph/9901381].

[4] J. Gasser, QCD at Low Energies, Lectures given at the Advanced School on Effective Theories, in: Advanced School on Effective Theories, Alumñécar, Granada, Spain, June 26 - July 1,1995, F. Cornet and M.J. Herrero (eds.), World Scientific, Singapore, 1997, ISBN 981-02-2908-9.

\footnote{Let me note that there is no sign for a small condensate in present lattice calculations [10]. Further interesting investigations of the small condensate scenario have been performed in Refs. [41, 42].}
Homepages of the EURODAFNE-network are http://www.cordis.lu/tmr/src/db169a.htm
http://www.lnf.infn.it/theory/tmr/

L. Maiani, G. Pancheri, and N. Paver (eds.), The Second DAΦNE Physics Handbook (INFN, Frascati, 1995).

Particle Data Group, *Phys. Lett.* **111B** (1982).

C. Caso et al., *Eur. Phys. J.* **C3** (1998) 1.

G. Donaldson et al., *Phys. Rev.* **D9** (1974) 2960.

C.D. Buchanan et al., *Phys. Rev.* **D11** (1975) 457.

A.R. Clark et al., *Phys. Rev.* **D15** (1977) 553.

D.G. Hill et al., *Nucl. Phys.* **B153** (1979) 39.

Y. Cho et al., *Phys. Rev.* **D22** (1980) 2688.

V.K. Birulev et al., *Nucl. Phys.* **B182** (1981) 1.

L.-M. Chounet, J.-M. Gaillard, and M.K. Gaillard, *Phys. Rep.* **C4** (1972) 199.

J. Gasser and H. Leutwyler, *Nucl. Phys.* **B250** (1985) 517.

J. Bijnens, G. Colangelo, and G. Ecker, *Phys. Lett.* **B441** (1998) 437.

J. Bijnens, private communication.

M. Knecht, H. Neufeld, H. Rupertsberger, and P. Talavera, Electromagnetic corrections to Semi-Leptonic decays of Pseudoscalar mesons, in Ref. [3, p.19].

P. Post and K. Schilcher, *Phys. Rev. Lett.* **79** (1997) 4088.

P. Franzini, private communication; E. De Lucia, Kaon Form Factors with the KLOE Detector, talk given at the EURODAFNE Collaboration meeting in Frascati, Italy, April 12-17, 1999.

S. Weinberg, *Phys. Rev. Lett.* **17** (1966) 616.
[23] L. Rosselet et al., *Phys. Rev.* **D15** (1977) 574.

[24] J. Gasser and H. Leutwyler, *Phys. Lett.* **125B** (1983) 325.

[25] J. Bijnens et al., *Phys. Lett.* **B374** (1996) 210; *Nucl. Phys.* **B508** (1997) 263; ibid. **B517** (1998) 639 (E).

[26] M. Knecht, B. Moussallam, J. Stern, and N.H. Fuchs, *Nucl. Phys.* **B457** (1995) 513; ibid. **B471** (1996) 445.

[27] S. Myint and C. Rebbi, *Nucl. Phys.* **B421** (1994) 241; A.R. Levi, V. Lubicz, and C. Rebbi, *Phys. Rev.* **D56** (1997) 1101; *Nucl. Phys. Proc. Suppl.* **53** (1997) 275.

[28] S.M. Roy, *Phys. Lett.* **36B** (1971) 353; *Helv. Phys. Acta* **63** (1990) 627.

[29] G. Wanders, *Helv. Phys. Acta* **39** (1966) 228.

[30] B. Ananthanarayan, G. Colangelo, J. Gasser, and H. Leutwyler, work in progress.

[31] G. Colangelo, J. Gasser, and H. Leutwyler, work in progress.

[32] Experiment E865 at Brookhaven AGS; S. Pislak, talk given at the K_{l4} workshop at the University of Bern, Switzerland, June 29-30, 1998.

[33] P. Franzini, private communication; P. De Simone, *Status of KLOE*, talk given at the K_{l4} workshop at the University of Bern, Switzerland, June 29-30, 1998, and private communication.

[34] B. Adeva et al., Proposal to the SPSLC: *Lifetime measurement of $\pi^+\pi^-$ atoms to test low-energy QCD predictions*, CERN/SPSLC/P 284, December 15, 1994.

[35] Proceedings of the International Workshop *Hadronic Atoms and Positronium in the Standard Model*, Dubna, May 26-31, 1998, (M.A. Ivanov et al., eds., Joint Institute for Nuclear Research, Dubna 1998), ISBN 5-85165-514-3.

[36] W.E. Caswell and G.P. Lepage, *Phys. Lett.* **167B** (1986) 437.
A. Gall, J. Gasser, V.E. Lyubovitskij, and A. Rusetsky, *The Lifetime of the \(\pi^+ \pi^- \) Atom*, hep-ph/9905309. See also V.E. Lyubovitskij and A.G. Rusetsky, *Phys. Lett.* B389 (1996) 181; V.E. Lyubovitskij, E.Z. Lipartia, and A.G. Rusetsky, *JETP Lett.* 66 (1997) 743; H. Jalilouli and H. Sazdjian, *Phys. Rev.* D58 (1998) 014011; M.A. Ivanov, V.E. Lyubovitskij, E.Z. Lipartia, and A.G. Rusetsky, *Phys. Rev.* D58 (1998) 094024; P. Labelle and K. Buckley, *A new order (alpha) correction to the decay rate of pionium*, hep-ph/9804201; X. Kong and F. Ravndal, *Phys. Rev.* D59 (1999) 014031; B. R. Holstein, *Hadronic atoms and effective interactions*, nucl-th/9901041; X. Kong and F. Ravndal, *Relativistic corrections to the Pionium Lifetime*, hep-ph/9905539; D. Eiras and J. Soto, *Effective Field Theory Approach to Pionium*, hep-ph/9905543. The earlier literature on the subject may be traced from these references.

N.H. Fuchs, H. Sazdjian, and J. Stern, *Phys. Lett.* B269 (1991) 183; J. Stern, H. Sazdjian, and N.H. Fuchs, *Phys. Rev.* D47 (1993) 3814; M. Knecht and J. Stern, in Ref. [6, p.169], and references cited therein; J. Stern, *Light quark masses and condensates in QCD*, in Ref. [43, p.26], and hep-ph/9712438.

M. Knecht, B. Moussallam, J. Stern, and N. Fuchs, *Nucl. Phys.* B457 (1995) 513; ibid. B471 (1996) 445.

G. Ecker, *Chiral symmetry*, Proc. of 37. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Feb. 1998, L. Mathelitsch and W. Plessas (eds.), Lecture Notes in Physics, Vol. 521, Springer (Heidelberg, 1999), and hep-ph/9805500; L. Giusti, F. Rapuano, M. Talevi, and A. Vladikas, *Nucl. Phys.* B538 (1999) 249, and hep-lat/9807014; V. Gimenez, L. Giusti, F. Rapuano, M. Talevi, and A. Vladikas, *Quark masses and the chiral condensate with a non-perturbative renormalization procedure*, hep-lat/9809037.

M. Knecht and E. de Rafael, *Phys. Lett.* B424 (1998) 355.

I. I. Kogan, A. Kovner, and M. A. Shifman, *Phys. Rev.* D59 (1999) 016001.

A.M. Bernstein, D. Drechsel, and T. Walcher (eds.), *Chiral Dynamics: Theory and Experiment*, Proceedings of the Workshop in Mainz, Ger-
many, September 1-5, 1997 (Lecture Notes in Physics, Vol. 513, Springer, Berlin, Heidelberg, 1998).

[44] A. Abele et al., Phys. Lett. B417 (1998) 193; A. Abele et al., Phys. Lett. B417 (1998) 197.