Effects of aged garlic extract and endurance exercise on skeletal muscle FNDC-5 and circulating irisin in high-fat-diet rat models

Dae Yun Seo1, Hyo Bum Kwak2, Sung Ryul Lee3, Yeun Suk Cho3, In-Sung Song1, Nari Kim1, Hyun Seok Bang4, Byoung Doo Rhee1, Kyung Soo Ko1, Byung Joo Park4 and Jin Han1

1Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Bokji-ro 75, Busanjin, Busan 633-165, Korea
2Department of Kinesiology, Inha University, Incheon 402-751, Korea
3Department of Physical Education, Pukyong National University, Busan 608-737, Korea
4Division of Humanities and Social Science, POSTECH, Gyecngbuk 790-784, Korea
5Division of Leisure & Sports Science, Dongseo University, Busan 617-716, Korea

BACKGROUND/OBJECTIVES: Irisin, a newly identified hormone, is associated with energy homeostasis. We investigated whether aged garlic extract (AGE) and exercise training intervention could improve body weight, insulin sensitivity, skeletal muscle fibronectin domain containing protein 5 (FNDC-5) levels, and plasma irisin in high-fat diet (HFD).

MATERIALS/METHODS: Male Sprague Dawley rats were fed a ND (normal diet, n = 5) or HFD (n = 28) for 6 weeks. After 6 weeks, all rats were divided into 5 groups for the next 4 weeks: ND (normal diet, n = 5), HFD (high-fat diet, n = 7), HFDA (high-fat diet + aged garlic extract, n = 7), HFDE (high-fat diet + exercise, n = 7), and HFDEA (high-fat diet + exercise + aged garlic extract, n = 7). Exercise groups performed treadmill exercises for 15-60 min, 5 days/week, and AGE groups received AGE (2.86 g/kg, orally injected) for 4 weeks.

RESULTS: Significant decreases in body weight were observed in the ND, HFDE, and HFDEA groups, as compared with the HFD group. Neither intervention affected the masses of the gastrocnemius muscle or liver. There were no significant differences in glucose levels across the groups. The homeostatic model assessments of insulin resistance were significantly higher in the HFD group, as compared with the ND, HFDA, HFDE, and HFDEA groups. However, skeletal muscle FNDC-5 levels and plasma irisin concentrations were unaffected by AGE or exercise in obese rats. AGE supplementation and exercise training did not affect skeletal muscle FNDC-5 or plasma irisin, which are associated with insulin sensitivity in obese rats.

CONCLUSION: Our results suggest that the protection against HFD-induced increases in body fat/weight and insulin resistance that are provided by AGE supplementation and exercise training may not be mediated by the regulation of FNDC-5 or irisin.

INTRODUCTION

Obesity, which is caused by energy imbalance and physical inactivity, is strongly associated with increased morbidity and mortality [1]. Rats that receive a high-fat diet (HFD) are suitable animals for obesity-related studies because they are generally sedentary, and the intensity and duration of their exercise can easily be regulated using treadmill machines [2-5].

Many researchers have attempted to inhibit the development of obesity through exercise, diet, and other interventions [6,7]. Preventive strategies that treat obesity through exercise with or without nutritional supplementation can have important effects on is important factor in obesity [8]. Aged garlic extract (AGE) is well-documented alternative source of garlic that is odorless and rich in antioxidants [9]. Moreover, it has been reported that AGE may play a role in the mitigation of cardiovascular disease [10,11], inflammation [12], hypertension [13], and cancer risk [14]. To examine the effects of AGE and exercise as a combined treatment, we recently performed a study of the efficacy of AGE and exercise interventions in HFD-induced obesity. The results of this study confirmed that AGE and exercise were associated with weight loss in obese rats [5].

Recent evidence indicates that numerous hormones regulate energy expenditure, inhibiting weight gain, and are released from adipose tissue and skeletal muscle in rats with HFD-induced obesity [15,16]. In addition, some studies have focused on the protein factors and hormones that are produced in skeletal muscle, and on the regulation of energy expenditure...
factors that are both secreted from skeletal muscle and measurable in the blood [17-19].

One of these hormones, irisin, is secreted into the circulation by contracting skeletal muscle after cleavage from the membrane protein fibronectin type III domain containing protein 5 (FNDC-5) as a result of exercise training [20,21]. Proteins that contain this domain are reported to be involved in the change of white adipose tissue into brown adipose tissue, a process that is associated with the expenditure of calories and, accordingly, the generation of heat. Moreover, FNDC-5/irisin is believed to mediate the beneficial effects of exercise on adipose tissues in humans and rodents [18,22]. For example, Elbelt et al. [23] have reviewed studies that examined whether FNDC-5/irisin can account for the beneficial effects of exercise in humans. Furthermore, Sanchis et al. [24] reported that irisin and the FNDC-5 gene are released from skeletal muscle, indicating that the release of irisin and FNDC-5 promotes energy expenditure during obesity leading to glucose homeostasis. In contrast, circulating levels of irisin, which regulates caloric expenditure, were shown to decrease in exercise-trained humans [25]. The results of other studies have shown that patients with type 2 diabetes have lower irisin levels than subjects with normal glucose tolerance [26,27]. Thus, there is still a paucity of evidence concerning the exact role of irisin in skeletal muscle metabolism.

Considering these previous results, it is clear that many studies are necessary to definitively identify the basic mechanisms by which skeletal muscle FNDC-5 and irisin levels are associated with weight loss in obese subjects. The objective of this study was to determine whether AGE supplementation and exercise training result in decreased weight, improved insulin sensitivity, elevated circulating levels of irisin and increased skeletal muscle FNDC-5 levels in obese rats.

MATERIALS AND METHODS

Animals
Thirty-three 3-week-old male Sprague Dawley rats were supplied by Dae Han Biolink Company (Chung Chung Bukdo, Korea), and were maintained (2 animals per cage) on a 12:12-h light-dark cycle at 25°C. The rats received water ad libitum with either a normal diet (15.8% kcal from fat) or a HFD (45% kcal from fat) for 10 weeks. The HFD rats received HFD for 6 weeks, and then were randomly divided into 4 groups for the remaining 4 weeks: the HFDE group (high-fat diet, n = 7), the HFDA group (high-fat diet + aged garlic extract, n = 7), the HFDE group (high-fat diet + exercise, n = 7), and the HFDEA group (high-fat diet + exercise + aged garlic extract, n = 7). The experimental study design is shown in Fig. 1. All research procedures were approved by the Institutional Animal Care and Use Committee of Pusan National University (PNU 2008-MY08-01).

Exercise training protocol
The exercise program consisted of endurance exercise training. The animals in the exercise groups trained on a motor-driven treadmill for 1 week for acclimation. The exercise groups trained at 15 m/min for 45 min during the first week and 60 min during the second week. Further, they trained at 20 m/min for 30 min during the third week and 45 min during the fourth week [5]. The rats were kept in their cages at all times between the exercise periods. The exercise protocols were performed 5 days per week for 4 weeks. These exercise programs are considered to be of moderate intensity [28].

Aged garlic extract supplementation
AGE was obtained from Uiseong Black-Garlic Farming Association of Korea, Co., Ltd. AGE supplementation, and placebo (water) was administrated orally via gavage. The supplementation protocol consisted of 1 daily dosage of 2.86 g/kg body weight administered 30 min before exercise for 4 weeks. We have previously shown that this protocol is an effective means of decreasing body weight in Sprague Dawley rats [5,29].

Blood and tissue collection
At the end of the 10 weeks of treatments, the rats were sacrificed by an ether-heparinized syringe via an intraperitoneal injection. Blood from the abdominal aorta was drawn into a heparinized tube. Visceral fat, the gastrocnemius muscle, and the liver were immediately removed and weighted. Subsequently, all tissues were frozen in liquid nitrogen and stored at -80°C for later analysis.

Plasma measurements
Plasma glucose concentrations were analyzed using an enzymatic kinetic assay (Roche, Germany). Insulin (Millipore, Corp., Billerica, USA) and irisin (Phoenix Pharmaceuticals, Inc., Burlingame, USA) in the blood were assessed using enzyme-linked immunosorbent assays (ELISA). The assay kit was highly sensitive to irisin in animals. Insulin sensitivity was determined using the homeostatic model assessment insulin resistance (HOMA-IR) index. HOMA-IR was calculated as fasting insulin (pmol) × fasting glucose (mmol/L)/22.5.

Immunoblotting
The levels of FNDC-5 were determined using the cytosolic protein fraction via a western immunoblot analysis. Gastrocnemius muscles were homogenized in an ice-cold buffer containing the following: 50 mM HEPES, 10 mM EDTA, 100 mM NaF, 50 mM Na pyrophosphate, and 10 mM Na orthovanadate supple-
ment with phosphatase and protease inhibitor cocktails (Sigma-Aldrich, Co., St. Louis, USA).

Muscles were homogenized 3 times and centrifuged for 15 min at 14,000 rpm (4°C). The protein concentration in the homogenates was determined using a bicinchoninic acid assay kit (Pierce Biotecology, Co., Rockford, USA). Proteins were subjected to SDS/PAGE, transferred onto polyvinylidene fluoride membranes (Millipore Corp., Billerica, MA, USA), blocked in 5% fat-free milk for 1 h at room temperature, and incubated with primary antibodies in 5% milk overnight at 4°C. The FNDC-5 antibody was from Abcam, and the GAPDH antibody was from the Cell Signaling Company. Following 3 washes in TBS-T, membranes were incubated at room temperature for 60 min in blocking buffer with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotecology, Dallas, USA). Following 3 washes in TBS-T, an enhanced chemiluminescence detection system (Amersham Biosciences, Piscataway, USA) was used for visualization. Densitometry was performed using an Eastman Kodak, Co. (Rochester, USA) film cartridge and film, a scanner interfaced with a microcomputer, and the Image Analysis 1.62 software program (National Institutes of Health, Bethesda, USA).

Statistical analysis

All data are presented as mean ± standard errors of the mean (SEM). Statistical analyses were performed using SPSS version 19.0 (IBM SPSS, Inc., Chicago, USA). The significance of differences among groups was assessed using one-way analysis of variance with an appropriate post hoc test (Tukey). Values of $P < 0.05$ were considered significant.

RESULTS

AGE and exercise interventions mediate weight loss in obese rats.

Thirty-three Sprague Dawley rats were fed ND ($n = 5$), or HFD ($n = 28$) for 6 weeks. This design is consistent with other studies that used the model of rats with HFD-induced obesity, which have previously shown that HFD promotes increases in body weight, food intake, and adipose tissue after 6 weeks [5]. During the AGE and exercise interventions, body weight decreased significantly in the ND, HFDE, and HFDEA groups, as compared with the HFD only group. In particular, reductions in the HFDEA group were significantly greater than other groups (Fig. 2A). These data on body weight distribution also revealed a strong inhibition of weight gain in the groups that received 4 weeks of exercise. Visceral fat increased significantly in the HFD group than in the other groups (Fig. 2B). We also found that exercise training played a role in controlling body fat. Despite dramatic reduction in body weight and visceral fat, neither intervention affected the mass of the gastrocnemius muscle (Fig. 2C) or liver (Fig. 2D).

AGE and exercise interventions improve insulin sensitivity in obese rats.

To test the hypothesis that AGE supplementation and exercise training induce insulin sensitivity in obese rats, we measured glucose, insulin, and HOMA-IR after overnight fasting. HFD-fed rats are known to cause obesity in rats, and increase the levels of glucose and insulin in their blood [30]. In the present study, glucose levels did not significantly differ across the groups (Fig. 3A). Although we observed no significant differences in glucose, we found that insulin (Fig. 3B) and HOMA-IR (Fig. 3C) were significantly higher in the HFD group, as compared with the ND, HFDA, HFDE, and HFDEA groups.

Neither AGE nor exercise improves skeletal muscle FNDC-5 protein and plasma irisin levels.

Recent studies have shown that FNDC-5 in skeletal muscle and serum irisin are markedly elevated in obesity and type 2 diabetes with exercise training [31]. To investigate whether the effects of the AGE and exercise interventions were mediated through a reduced body weight in rats with HFD-induced obesity, we examined the effects of the AGE and exercise interventions...
obtained that AGE supplementation and exercise training can
In accordance with previous studies, we also have recently
supplementation and exercise training reduced body weight [5].
and the weights of various organs and tissues, but AGE
our previous study of obese rats, HFD increased body weight
and glucose tolerance and insulin resistance, and thereby inhibit the
majority of people who are obese develop impaired glucose
tolerance and insulin resistance. Therefore, improvements to
impaired glucose tolerance and insulin resistance can be achieved
by decreasing body fat mass [33]. Additionally, recent studies
have suggested that exercise training and/or interventions
involving phytochemical compounds can improve impaired
glucose tolerance and insulin resistance, and thereby inhibit the
accumulation of fat in adipose tissue in obese rats [34, 35]. In
our previous study of obese rats, HFD increased body weight
and the weights of various organs and tissues, but AGE
supplementation and exercise training reduced body weight [5].
In accordance with previous studies, we also have recently
observed that AGE supplementation and exercise training can
inhibit the development of obesity and improve insulin levels,
as observed in the HFDEA group. Our results do not suggest
any specific mechanism by which the inhibition of weight gain
may be explained. Based on our results, however, one could
postulate that the modulatory effects of AGE supplementation
and exercise training appear to improve insulin sensitivity,
which is an attainable goal for anti-obesity interventions.
Recently, it has been established that irisin plays a significant
role in energy metabolism and glucose tolerance and, further,
that irisin can change the browning of adipose tissue in exercise
subjects [19, 36, 37]. In the original study on this topic, Bostom
et al. [20] and Swick et al. [38] reported that exercise training
induces the expression of FNDC-5 gene in the skeletal muscle
of mice. Moreover, Kraemer et al. [39] have observed that
prolonged aerobic exercise results in increased irisin concentra-
tions in young men and women. Previous studies also deter-
mined that decreased body weight and improved insulin
sensitivity were strongly associated with increased skeletal
muscle FNDC-5 and serum irisin [26, 27, 31].
Given the improvements in body weight and insulin sensitivity
that have been observed following AGE supplementation and
exercise interventions, we further investigated whether these
interventions may increase skeletal muscle FNDC-5 and serum
irisin. However, we could not observed any training-induced
increases in skeletal muscle FNDC-5 or plasma irisin levels,
despite decreases in body weight, decreases in tissue weights,
and improved insulin sensitivity in rats with HFD-induced obesity.
In accordance with previous studies, Huh et al. [40] observed
that obese individuals with surgical weight loss have decreased
the irisin levels. In addition, Timmons et al. [41] showed that
skeletal muscle FNDC-5 mRNA expression is not associated with
insulin sensitivity in endurance-trained subjects. Therefore, our
findings may imply that blood irisin and skeletal muscle FNDC-5
levels are not the only determinants of induced obesity; another
underlying mechanism of HFD-induced obesity must be present,
which blood irisin and skeletal muscle FNDC-5 levels both have
roles.
Although we observed improvements in body weight and
insulin resistance as a result of AGE administration and exercise,
there were no changes in plasma irisin or skeletal muscle
FNDC-5. However, further studies are necessary to investigate
the roles of plasma irisin and skeletal muscle FNDC-5 during
phytochemical supplementations and exercise interventions
for other physiological and pathological conditions.
In conclusion, the results of this study have demonstrated
that AGE supplementation and exercise training provided
protection against HFD-induced increased body fat/weight and
insulin resistance in obese rats. The results have also indicated
that these anti-obesity effects may not be mediated by improved
plasma irisin or skeletal muscle FNDC-5, which are associated
with insulin sensitivity in obese rats. However, the underlying
molecular mechanism by which and exercise treatments have
anti-obesity effects for HFD-induced obesity should be investi-
gated more extensively in further studies.

REFERENCE

1. Blair SN, Brodney S. Effects of physical inactivity and obesity on
morbidty and mortality: current evidence and research issues. Med Sci Sports Exerc 1999;31:5646-62.
2. Yang M, Li Y, Zhang R. Effect of intermittent versus continuous exercise on obesity and fatty liver in rats fed with high-fat diet. Nan Fang Yi Ke Da Xue Xue Bao 2013;33:61-5.
3. Miller WC, Bryce GR, Conlee RK. Adaptations to a high-fat diet that increase exercise endurance in male rats. J Appl Physiol Respir Environ Physiol 1984;56:78-83.
4. Touati S, Meziri F, Devaux S, Berthelot A, Toury RM, Laurant P. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats. Med Sci Sports Exerc 2011;43:398-407.
5. Seo DY, Lee S, Figueroa A, Kwak YS, Kim N, Rhee BD, Ko KS, Bang HS, Baek YH, Han J. Aged garlic extract enhances improvement of metabolic parameters in high fat diet-induced obese rats. Nutr Res Pract 2012;6:513-9.
6. Niederdeppe J, Roh S, Shapiro MA, Kim HK. Effects of messages emphasizing environmental determinants of obesity on intentions to engage in diet and exercise behaviors. Prev Chronic Dis 2013;10:E209.
7. Fock KM, Khoo J. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol 2013;28 Suppl 4:59-63.
8. Johansson K, Neovius M, Hemmingsson E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2014;99:14-23.
9. Colin-Gonzalez AL, Santana RA, Silva-Islas CA, Chánez-Cárdenas ME, Santamaría A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev 2012;2012:907162.
10. Morihara N, Sumioka I, Ide N, Moriguchi T, Uda N, Kyo E. Aged garlic extract maintains cardiovascular homeostasis in mice and rats. J Nutr 2006;136:7775-7815.
11. Seo DY, Lee SR, Kim HK, Baek YH, Kwak YS, Ko TH, Kim N, Rhee BD, Ko KS, Park BJ, Han J. Independent beneficial effects of aged garlic extract intake with regular exercise on cardiovascular risk in postmenopausal women. Nutr Res Pract 2012;6:226-31.
12. Park HJ, Jeon BT, Kim HC, Roh GS, Shin JH, Sung NJ, Han J, Kang D. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction. Acta Physiol (Oxf) 2012;205:61-70.
13. Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas 2010;67:144-50.
14. Wang X, Jiao F, Wang QW, Wang J, Yang K, Hu RR, Liu HC, Wang HY, Wang YS. Aged black garlic extract inhibits induction of gastric cancer cell growth in vitro and in vivo. Mol Med Rep 2012;5:66-72.
15. Ueta CB, Olivares EL, Bianco AC. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity. Endocrinology 2011;152:3571-81.
16. Johansen T, Richelsen B, Hansen HS, Din N, Malmlöf K. Growth hormone-mediated breakdown of body fat: effects of GH on lipases in adipose tissue and skeletal muscle of old rats fed different diets. Horm Metab Res 2003;35:243-50.
17. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013;98:E769-78.
18. Luo LJ, Zhang J. A novel myokine: Irisin. Sheng Li Ke Xue Xin Zhan 2013;44:111-4.
19. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crujeiras A, Seoane LM, Casanueva FF, Pardo M. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013;8:e60563.
20. Boström P, Wu J, Jedrychowski MP, Karde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hejlrud K, Gygi SP, Spiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463-8.
21. Cunha A. Basic research: Irisin—behind the benefits of exercise. Nat Rev Endocrinol 2012;8:195.
22. Roberts MD, Bayless DS, Company JM, Jenkins NT, Padilla J, Childs TE, Martin JS, Dalbo VJ, Booth FW, Rector RS, Laughlin MH. Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 2013;62:1052-6.
23. Elbelt U, Hofmann T, Stengel A. Irisin: what promise does it hold? Curr Opin Clin Nutr Metab Care 2013;16:541-7.
24. Sanchis-Gomar F, Lippi G, Mayoero S, Perez-Quilis C, Garcia-Giménez JL. Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes. J Diabetes 2012;4:196.
25. Polyzos SA, Kountouras J, Shields K, Mantzoros CS. Irisin: a renaissance in metabolism? Metabolism 2013;62:1037-44.
26. Choi YK, Kim MK, Bae KH, Seo HA, Jeong YJ, Lee WK, Kim JG, Lee IK, Park KG. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 2013;100:96-101.
27. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, Tavintharan S, Sum CF, Lim SC. Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications 2013;27:365-9.
28. Boor P, Celec P, Behuljak M, Granpic P, Kebis A, Kulam M, Pronayova N, Liptaj T, Ostendorf T, Sebekova K. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats. Metabolism 2009;58:1669-77.
29. Morihara N, Ushijima M, Kashimoto N, Sumioka I, Nishihama T, Hayama M, Takeda H. Aged garlic extract ameliorates physical fatigue. Biol Pharm Bull 2006;29:962-6.
30. Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, Lira FS, de Souza CT, Pinho RA. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipor1-2/APPL1 protein levels in mice. Lipids Health Dis 2012;11:134.
31. Hejlrud K, Boström P. Irisin in obesity and type 2 diabetes. J Diabetes Complications 2013;27:303-9.
32. Shaodong C, Haihong Z, Manting L, Guohui L, Zhengxiao Z, YM. Research of influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet. Lipids Health Dis 2013;12:21.
33. Kong LC, Willemin PH, Bastard JP, Sokolovska N, Gougis S, Fellahi S, Darakshian F, Bonnefont-Rousselot D, Bittar R, Doré J, Zucker JD, Clément K, Rizkalla S. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am J Clin Nutr 2013;98:1385-94.
body weight gain and metabolic endotoxemia in high-fat diet-fed mice. PLoS One 2012;7:e33858.

35. Baile CA, Yang JY, Rayalam S, Hartzell DL, Lai CY, Andersen C, Della-Fera MA. Effect of resveratrol on fat mobilization. Ann N Y Acad Sci 2011;1215:40-7.

36. Gouni-Berthold I, Berthold HK, Huh JY, Berman R, Spenrath N, Krone W, Mantzoros CS. Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS One 2013;8:e72858.

37. Boström PA, Fernández-Real JM. Metabolism: Irisin, the metabolic syndrome and follistatin in humans. Nat Rev Endocrinol 2014;10:11-2.

38. Swick AG, Orena S, O'Connor A. Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass. Metabolism 2013;62:1070-3.

39. Kraemer RR, Shockett P, Webb ND, Shah U, Castracane VD. A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Horm Metab Res 2014;46:150-4.

40. Huh JY, Panagioutou G, Mougiou S, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012;61:1725-38.

41. Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature 2012;488:E9-10.