Broadband metamaterial absorber

Xia Ma1, Feng Tian1*, Xiaoyan Li2, Liang Guo3 and Xiaojun Huang1,*

1 College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi, 710054, People’s Republic of China
2 College of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, People’s Republic of China
3 College of Physics and Electrical Engineering, Kashi University, Kashi 844007, People’s Republic of China

* Authors to whom any correspondence should be addressed.

E-mail: tianfeng@xust.edu.cn and hxj@xust.edu.cn

Keywords: polarization-insensitivity, metamaterial, absorber, oblique incidence

Abstract

In this paper, we present a broadband metamaterial absorber with excellent performances of oblique incidence and polarization insensitivity for enhancing the absorbance of electromagnetic waves at oblique incidence. Simulated results show that absorbance is larger than 0.9 in 1.61–4.45 GHz with the full width half maximum is 122.44%, and absorbance can be maintained stably as the incidence angle increases to 45° both in the case of transverse electric and transverse magnetic waves. The simulated results are successfully verified by microwave experiment in the anechoic chamber. The physics of absorption are revealed by the electric and magnetic fields energy distribution. We believe that the proposed absorber has many promising applications in electromagnetic stealth and energy harvesting.

1. Introduction

Electromagnetic (EM) metamaterial absorber (MMAs), usually composed of periodic sub-wavelength cells [1], have extensive applications in EM civil and military fields because of their unique properties not existed in natural materials [2]. C M Watts et al summarized the design methods, applications, and the performance of MMAs ranging from microwave to visible light [3]. MMAs have the clear advantages of bandwidth, geometry and fabrication compared with the conventional absorber [4–8], thus MMAs have been widely used in thermal radiation, sensors, EM stealth, energy harvesting and other fields [9–18]. Recently, all-dielectric and nonlinear saturated materials with 3D printing technology have been used to implement MMAs [9, 19–25]. So far, MMAs still suffer from the narrow bandwidth, polarization sensitivity and non-ideal oblique incidence, which greatly limit the applications of the MMAs [26–28]. The absorption bandwidth can be extended by iterating on a single cell with different geometric dimensions or stacking multiple layers on a single cell, but the disadvantages of this artistry are robust geometry and thickness [3, 29, 30]. High impedance surface (HIS) and lumped elements are also the effective ways to enhance the bandwidth of the MMAs [31–39]. Due to the difference of resonance and coupling response, the huge challenge of the MMAs is that the absorbance is quite unstable in the case of transverse electric (TE) and transverse magnetic (TM) wave oblique incidence.

In this paper, we present a broadband MMA by loading lumped resistor into double loop split-ring and sector shaped resonators, which shows the remarkable performance of the absorbance enhancement of the oblique incidence and polarization insensitivity. The simulated results show that the absorbance is larger than 0.9 in 1.61–4.45 GHz covering the S and L bands with the full width half maximum is 122.44%. Moreover, the absorbance remained stable at 0.9 when the incident angle increased to 45°. Microwave experiments accurately verify the simulation, and the experimental results are coincided with the simulated results. The effects of geometry and resistors on the absorbance are analyzed in detail during the simulation and optimization. The physics of the absorption of the designed MMA is investigated by using the electric and magnetic fields energy distribution. The proposed MMA has a good application prospect in electromagnetic stealth and energy harvesting, especially in the case of very sensitive to oblique incidence.

© 2020 The Author(s). Published by IOP Publishing Ltd
2. Structure design, simulation and experiments

The designed MMA is illustrated in figure 1, which consists of four layers, the top layer is composed of double loop split-rings and a set of metal sector. The lumped resistors are inserted into the gaps of the loop split-rings and sectors for expanding the absorption bandwidth shown in figure 1 (a), and the cross-polarization reflectance will not exist due to the symmetric structure. The second layer is the dielectric of FR-4, whose relative permittivity, loss tangent and thickness are 4.3, 0.025, and 1 mm, respectively. The third layer is the air, and the significance of which is matching impedance in the free space via adjusting the thickness of the layer. A copper plate with $\sigma = 5.8 \times 10^7$ S m$^{-1}$ and thickness of 0.03 mm serves as the bottom reflector to block the transmission. The final optimized dimensions of the unit cell are shown in table 1. For the sake of detail, figures 1 (a)–(c) depict the top view, side view and perspective view of the unit cell, respectively. Herein, the absorbance is calculated as $A(\omega) = 1 - R(\omega) = 1 - |S_{11}|^2$, $A(\omega)$, $R(\omega)$ stand for the absorbance and co-polarization reflectance, and S_{11} is the reflection coefficient of the electromagnetic wave.

In the simulation, the commercial software CST Microwave Studio is used for numerical simulation. We first model a single cell structure on x-y plane, and then the unit cell boundary condition is set along x- and y-axis, this means the structure is modelling on the infinite plane (xoy plane). In addition, open add space boundary is applied in z-axis, and transverse electric (TE) and transverse magnetic (TM) waves are normally incident on the metamaterial, respectively. The boundary conditions of unit cell are applied in x- and y-directions and open (add space) boundary condition is applied in z-direction, and the tetrahedron mesh with the size of $\lambda/10$ (\lambda is the center wavelength of the working frequency) is also used in the simulation. In the

Table 1. Optimized dimensions of single sub-cell.

Parameter	t_1	t_2	R_1	R_2	R_3
Dimension	2 mm	16 mm	250 Ω	250 Ω	450 Ω
Parameter	L	r_1	r_2	r_3	g
Dimension	40 mm	16 mm	12 mm	9 mm	1 mm
experiment, the experimental and measurement methods are the same as those in [40]. We fabricate the experimental sample with the identical geometry in the simulation by using print circuit board (PCB) technology, and a part of the fabricate sample which is shown in figure 1(d). Because of the limitation on fabrication techniques, we just fabricate the sample with the geometry of 480 × 480 mm² (10 × 10 units). In the anechoic chamber, the vector network analyzer (R&S ZNB40) connects two horn antennas through the coaxial line, one antenna is used as the transmitter and the other is used as the receiver. We first use the same size metal plate to test the reflectance for normalization after calibration, and then the sample was put on the same position to measure the reflectance.

3. Results and discussion

First of all, we simulate the absorptance of loading resistors and no loading resistors, and the results for the two different cases are presented in figure 2. From the results in figure 2, we can see that there are three resonances located at 2.48, 3.89 and 4.91 GHz with the absorptance of 0.12, 0.78 and 0.90 without lumped resistors loaded, respectively. With the lumped resistors loaded, there are two resonance obviously located at 2.01 and 4.12 GHz respectively. With the lumped resistors loaded, there are two resonance obviously located at 2.01 and 4.12 GHz with the absorptance of 0.99 and 0.95, respectively. Meanwhile, the bandwidth of the absorptance greater than 0.9 is 1.61–4.45 GHz with the full width half maximum (FWHM) is 122.44%. Therefore, we can conclude that the achievement of broadband and high absorptance MMA is basically due to the addition of the lumped resistors.

Figure 3 shows the simulated and measured results of absorptance under TE wave. It can be seen that both the simulated and measured absorptances are larger than 0.9 in 1.61–4.45 GHz when the incident angle increasing from 0° to 45° in figures 3(a) and (c). For the TM wave, the simulated and measured absorptance also exceeded to 0.9 at 1.61–4.45 GHz when the incident angle reaches 45° in figures 4(a) and (c). Distributed diagrams of the absorptance are visually showed in figures 3(b), (d), 4(b), and (d). Specifically, we need to emphasize the difference between the EM coupling of TE and TM waves, and the absorptance of the MMA is mainly due to magnetic coupling. The H-field direction of TE wave along y-axis, and the coupling in this case, so the magnetic coupling will not be weakened as the incident angle increases. For the TM wave, the H-field direction along x-axis, and the absorptance decreases gradually with the increase of the incident angle because of the decrease of magnetic coupling. However, it is satisfied that the absorptance does not decrease as the incident angle increases in the case of TM waves in figures 4(c) and (d). It means that the proposed MMA can well overcome the defect of oblique incidence of TM wave and has the same performance as TE wave in the case of oblique incidence. We can see that the simulation results are consistent with the experimental results from figures 3 and 4.

Figure 5 shows the simulation and measurement absorptance with different polarizations. The simulation result from figure 5(a) shows that the bandwidth is 1.21–5.04 GHz with the relative bandwidth of 122.83% for TE wave normal incidence. The absorptance of the measurement in FWHM shown in figure 5(b) is 1.15–5.21 GHz with the relative bandwidth of 127.67%. It is obviously seen that the absorptance is completely stable when changing the polarization angle from 0° to 45°. We can conclude that the MMA has an excellent performance of polarization insensitivity.

To visualize the mechanism of the absorption of the designed MMA, electric and magnetic fields energy distributions are examined in 1.8, 3.0 and 4.0 GHz, respectively, as illustrated in figure 6. From figures 6(a)–(c), it is found that the electric field energy is gradually concentrated toward the center of the unit as the frequency
Figure 3. Absorptance under oblique incidence in TE wave. (a), (b) simulated and (c), (d) measured results.

Figure 4. Absorptance under oblique incidence in TM wave. (a), (b) simulated and (c), (d) measured results.
increases. The electric field energy at 1.8 GHz in figure 6(a) is mainly concentrated on the outermost ring and a strong energy concentration is distributed at the resistance position. As the frequency increases to 2.5 GHz, the electric field energy concentration is moved on the two rings in the middle and gradually disappears on the outermost ring. Similarly, the electric field energy is mainly concentrated in the center of the unit when the frequency rises to 4 GHz. The magnetic field energy distributions are depicted in figures 6(d)–(f), we can see that the magnetic field energy distributions at 1.8, 3.0 and 4.0 GHz are the same as that of electric field energy distributions. The reason is that the wide bandwidth of the designed MMA is realized by combing the individual response of different geometric dimensions, and each geometric dimension has a resonant frequency. In addition, although the absorbance with larger geometry is dominant at lower frequencies, and the smaller geometry is dominant at higher frequencies within the operating bandwidth, the mutual coupling between adjacent structures has great significance in enhancing absorbance and enlarging the bandwidth. It is also
indicated in figure 6 that most of energy dissipation for the designed MMA originates from Ohmic loss in lumped resistors.

In what follows, we discuss in-depth the design procedure for optimizing the proposed MMA to reach a perfect absorptance with different geometric parameters. To avoid design complications, the significant parameters including the thickness of the air and substrate and the value of resistors are set as variable and their effects on the absorptance are optimized. Figure 7(a) shows the absorptance with different thickness of the FR-4 layer (t_1). In the simulation, we change the thickness of FR-4 from $t_1 = 0$ mm to $t_1 = 2$ mm by the step of 0.5 mm while fixing the thickness of the air of 18 mm. When changing t_1, the absorptance remains basically stable while the bandwidth changes significantly. From the figure, we can see that the bandwidth is gradually narrowed and red shift occurs with the increase t_1. Figure 7(b) shows the absorptance with different thickness of the air (t_2). Similarly, we change t_2 from $t_2 = 10$ mm to $t_2 = 26$ mm while fixing $t_1 = 1$ mm. In addition to the bandwidth narrowing and red shift, the absorptance decreases significantly when t_2 increases from $t_2 = 10$ mm to $t_2 = 26$ mm.

Figure 7. Simulated absorptance with different thickness. (a) the FR-4 layer, (b) the substrate of air layer.

Figure 8. Simulated absorptance with different resistors. (a) R_1, (b) R_2, (c) R_3.
We simulated the resistor values of R_1, R_2 and R_3, as shown in figures 8(a)–(c), respectively. We can find that when other parameters remain unchanged and either R_1, R_2 or R_3 is changed, the absorptance of the absorber will not change significantly. Thus, it is concluded that the designed absorber has sufficient resistance tolerance.

4. Conclusions

In conclusion, we have proposed a broadband metamaterial absorber with the excellent performances of polarization-insensitivity and wide oblique incidence covering the S and L bands. The simulated and measured results demonstrated that the absorptance of the designed MMA was beyond 90% in 1.61–4.45 GHz. The absorptance keeps high value for both under TE and TM polarizations with the incident angle up to 45°. The physics of the absorptance was revealed by the electric–fields energy distributions and magnetic–fields energy distributions. We believe that our design can improve the design for achieving the broadband, low-frequency absorbers, and the proposed absorber also has the potential applications in electromagnetic stealth and energy harvesting.

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No.61701206), the Project of Science and Technology of Shaanxi (No.2020GY-029), Research Project of Education Department of Shaanxi Province (No.19JK0527), Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2016D01A015, 2018D01B01)

ORCID iDs

Xiaojun Huang https://orcid.org/0000-0002-7685-2678

References

[1] Hedayat M K, Faupel F and Elbahri M 2014 Review of plasmonic nanocomposite metamaterial absorber Materials 7 1221
[2] Andrieuxski A, Kuznetsova S, Zhukovsky S V, Kivshar Y S and Lavrinenko A V 2015 Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials Sci. Rep. 5 13535
[3] Watts C M, Liu X and Padilla W J 2012 Metamaterial electromagnetic wave absorbers Adv. Mater. 24 OP98
[4] Sun L, Cheng H, Zhou Y and Wang J 2012 Design of a lightweight magnetic radar absorber embedded with resistive FSS IEEE Antennas Wirel. Propag. Lett. 11 675
[5] Yang Z H, Che Y X, Sun X, Zhang J L, Tian J X, Yu H T and Huang Q 2019 Broadband polarization-insensitive microwave-absorbing composite material based on carbon nanotube film metamaterial and ferrite J. Appl. Phys. 125 185103
[6] Li W, Zhang Q and Zhang C 2019 High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms IEEE Access 7 57259
[7] Liu D, Yu H, Yang Z and Duan Y 2016 Ultrathin planar broadband absorber through effective medium design Nano Res. 9 2354
[8] Wu L, Xi X, Li B and Zhou J 2017 A Mie resonant antenna with high sensitivity for force and strain measurement Sci. Rep. 7 4615
[9] Fan K, Suen J Y, Liu X and Padilla W J 2017 All-dielectric metasurface absorbers for uncooled terahertz imaging Optica 4 601
[10] Li Y, Lin J, Guo H, Sun W, Xiao S and Zhou L 2020 A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption Adv. Optical Mater. 8 1901548
[11] Chen H, Ma W, Huang Z, Zhang Y, Huang Y and Chen Y 2019 Graphene-based materials toward microwave and terahertz absorbing stealth technologies Adv. Opt. Mater. 7 1801318
[12] Sun J U N, Chen K E and Ding G 2019 Achieving directive radiation and broadband microwave absorptance by an anisotropic metasurface IEEE Access 7 93919
[13] Su J, Lu Y, Zhang H, Li Z, Yang Y, Che Y and Qi K 2017 Ultra-wideband, wide angle and polarization-insensitive specular reflection reduction by metasurface based on parameter-adjustable meta-atoms Sci. Rep. 7 42283
[14] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y and Li S 2016 A programmable metasurface with dynamic polarization, scattering and focusing control Sci. Rep. 6 35692
[15] Xie T, Chen Z, Ma R and Zhong M 2017 A wide-angle and polarization insensitive infrared broadband metamaterial absorber Opt. Commun. 383 81
[16] Kalraiy S, Chaudhary R K and Abdalla M A 2019 Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators J. Appl. Phys. 125 134904
[17] Xie J, Quader S, Xiao F, He C, Liang X, Geng G and Jin R 2019 Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free IEEE Antennas Wirel. Propag. Lett. 18 536
[18] Liang J, Song X, Li J, Lan K and Li P 2017 A visible-near infrared wavelength-tunable metamaterial absorber based on the structure of Au triangle arrays embedded in VO2 thin films J. Alloys Compd. 708 999
[19] Xu Y, Fu Y and Chen H 2016 Planar gradient metamaterials Nat. Rev. Mater. 1 16067
[20] Yuan X, Zhang C, Chen M, Cheng Q, Cheng X, Huang Y and Fang D 2019 Wideband high-absorption electromagnetic absorber with chaos patterned surface IEEE Antennas Wirel. Propag. Lett. 18 197
[21] Yue J, Luo X, Zhai X, Wang L and Lin Q 2018 A tunable dual-band graphene-based perfect absorber in the optical communication band Opt. Laser Technol. 108 404
[22] Keiser G R, Zhang J D, Zhao X G, Zhang X and Averitt R 2016 Terahertz saturable absorptance in superconducting metamaterials J. Opt. Soc. Am. B 33 2649
[23] García-Etxarri A, Gómez-Medina R, Froufe-Pérez I S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M and Sáenz J J 2011 Strong magnetic response of submicron Silicon particles in the infrared Opt. Express 19 4815
[24] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Perfect metamaterial absorber Phys. Rev. Lett. 100 207402
[25] Tittl A, Harats M G, Walter R, Yin X, Schaferling M, Liu N, Rapaport R and Giessen H 2014 Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: Impedance matching and disorder effects ACS Nano 8 10885
[26] Okano Y, Ogino S and Ishikawa K 2012 Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system IEEE Trans. Microw. Theory Tech. 60 2456
[27] Tuan T S and Hoa N T Q 2019 Numerical study of an efficient broadband metamaterial absorber in visible light region IEEE Photonics J. 11 4600810
[28] Sun J, Liu L, Dong G and Zhou L 2011 An extremely broadband metamaterial absorber based on destructive interference Opt. Express 19 21155
[29] Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Broadband metamaterial absorbers Adv. Opt. Mater. 7 1800995
[30] Mulla B and Sabah C 2017 Multi-band metamaterial absorber topology for infrared frequency regime Phys. E Low-Dimensional Syst. Nanostructures 86 64
[31] Holloway C L, Kuster E F, Gordon J A, O’Hara J, Booth J and Smith D R 2012 An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials IEEE Antennas Propag. Mag. 54 10
[32] Agarwal M, Behera A K and Meshram M K 2016 Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber Appl. Phys. A 122 166
[33] Qian G, Zhao J, Ren X, Chen K, Jiang T, Feng Y, Liu Y and Member S 2019 Switchable broadband dual-polarized frequency-selective rasorber/absorber IEEE Antennas Wirel. Lett. 18 2508
[34] Mishra R, Sahu A and Panwar R 2019 Cascaded graphene frequency selective surface integrated tunable broadband terahertz metamaterial absorber IEEE Photonics J. 11 1
[35] Han Y, Che W, Xiu X, Yang W and Christopoulos C 2017 Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays IEEE Trans. Antennas Propag. 65 6998
[36] Zhang H F, Tian X L, Liu G B and Kong X R 2019 A gravity tailored broadband metamaterial absorber containing liquid dielectrics IEEE Access 7 25827
[37] Rana A S, Mehmood M Q, Jeong H, Kim I and Rho J 2018 Tungsten-based ultrathin absorber for visible regime Sci. Rep. 8 2443
[38] Yang Z, Luo F, Zhou W, Zhu D and Huang Z 2016 Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces J. Alloys Compd. 687 384
[39] Ding F, Dai J, Chen Y, Zhu J, Jin Y and Bohevolny S I 2016 Broadband near-infrared metamaterial absorbers utilizing highly lossy metals Sci. Rep. 6 39445
[40] Huang X, Yang H, Shen Z, Jiao Chen J, Hail Lin H and Yu Z 2017 Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime J. Phys. D 50 385304