Infection by Ralstonia Species in Cystic Fibrosis Patients: Identification of R. pickettii and R. mannitolilytica by Polymerase Chain Reaction

Tom Coenye,* Peter Vandamme,† and John J. LiPuma*

The frequency of respiratory tract infections caused by Ralstonia species in persons with cystic fibrosis (CF) and the role of these species in CF pulmonary disease are not well documented. In fact, this lack of documentation may be attributed to the difficulty in accurately identifying Ralstonia species; R. mannitolilytica and R. pickettii in particular may be misidentified as other closely related species, particularly those of the Burkholderia cepacia complex. We used polyphasic analyses to identify 42 Ralstonia isolates from sputum cultures of 38 CF patients. Several isolates that could not be identified to the species level may belong to novel Ralstonia species. We demonstrated chronic colonization by using genotyping of serial isolates recovered from the same patient. To facilitate identification of R. mannitolilytica and R. pickettii, we developed 16S ribosomal DNA-based polymerase chain reaction assays that allow sensitive and specific identification of these species.

Cystic fibrosis (CF) is the most frequent hereditary disease in Caucasian populations (1); chronic microbial colonization of the large airways, leading to exacerbations of pulmonary infection, is the major cause of illness and death in CF patients. Typical CF pathogens include Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, and Burkholderia cepacia complex; other species, including Stenotrophomonas maltophilia, Alcaligenes (Achromobacter) xylosoxidans, B. gladioli, and R. pickettii have been recovered from sputum cultures of CF patients as well (2,3). Recently, we showed that a number of unusual bacterial species (including several novel species within the α-Proteobacteria) are also occasionally isolated from CF patients (4). Infection with mucoid P. aeruginosa and members of the B. cepacia complex is associated with increased illness and death in CF patients (5–7), but the clinical importance of infection with these other species is less clear.

The genus Ralstonia was proposed in 1995 (8). Since its creation, the taxonomy of the genus has expanded to include 11 species, which are R. pickettii, R. solanacearum, R. eutropha, R. gilardii, R. paucula, R. basilensis, R. oxalata, R. mannitolilytica, R. taiwanensis, R. campinensis, and R. metal-lidurans (8–14). Ralstonia spp. are isolated from a wide variety of ecologic niches, including plants and soils contaminated with heavy metals. R. pickettii has been associated with nosocomial outbreaks caused by contaminated solutions used for patient care and with pseudoepidemics caused by contaminated solutions in the diagnostic laboratory (15–21). Several hospital-associated outbreaks attributed to R. mannitolilytica (formerly known as R. pickettii biovar 3 or P. thomasii) have been described (12,22,23). R. paucula and R. gilardii have only sporadically been isolated from human clinical samples, including cerebrospinal fluid, bone marrow, wounds, and the respiratory tract (9,10). A complete assessment of the frequency of human infection due to Ralstonia species is confounded by the difficulty in accurate species identification by using standard microbiologic techniques. Indeed, these species are frequently misidentified as P. fluorescens or B. cepacia complex (12,24–26).

We describe the occurrence of several Ralstonia species in the respiratory secretions of CF patients. We also describe the development and evaluation of two polymerase chain reaction (PCR) assays for rapid, accurate identification of R. pickettii and R. mannitolilytica.

Materials and Methods

Bacterial Strains and Study Population

Since early 1997, the Burkholderia cepacia Research Laboratory and Repository (University of Michigan, Ann Arbor, MI) has received more than 4,000 bacterial isolates, collected from CF patients receiving care in 145 CF treatment centers in 130 U.S. cities. Isolates received were tentatively identified by the referring microbiology laboratory as B. cepacia complex or a related species or were not identified to the species level. From these isolates, we identified 42 Ralstonia isolates obtained from 38 patients who had received care in 19 treatment centers in 18 U.S. cities. The type and reference strains of Ralstonia, Pandoraea, Burkholderia, Alcaligenes, and Bordetella species have been described (9–14). These strains were obtained from the BCCM/LMG-Bacteria Collection.
Species Identification

We used a polyphasic approach to identify all isolates, including biochemical tests, 16S ribosomal (r)DNA-based PCR assays and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole-cell proteins. Biochemical tests (determination of oxidase, lysine decarboxylase, and o-nitrophenyl-β-D-galactoside activity; growth on B. cepacia selective agar; and oxidation-fermentation of sucrose) were performed as described (27). SDS-PAGE of whole-cell proteins was performed as described (9,10), and isolates were identified by comparison with a database containing protein profiles of all Ralstonia species. We used 16S rDNA-based PCR assays (28) to determine whether or not isolates belonged to the genera Burkholderia or Ralstonia or to the B. cepacia complex.

Genotyping of Serial Isolate

Multiple isolates from a single patient were genotyped by randomly amplified polymorphic DNA (RAPD) genotyping as described (29). We digitized gel images with a GelDoc2000 gel analyzer (Bio-Rad Laboratories, Hercules, CA) and stored them as tagged image files. After normalization with the molecular weight marker, patterns were analyzed with Molecular Analyst Fingerprinting Plus software (Bio-Rad Laboratories). Similarities between patterns were calculated by using Pearson’s product-moment correlation coefficient. We considered isolates to belong to the same genotype if they shared 90% or more similarity.

Development of Primers for Species-Specific PCR Assays

We retrieved 16S rDNA sequences of all Ralstonia isolates (both clinical isolates and reference strains) and 73 isolates representing phylogenetically related species that may be found in sputum cultures of CF patients. Isolates tested were as follows: R. pickettii (27 isolates), R. mannotolytica (34), R. gilardii (4), R. paucula (2), R. taiwanensis (1), R. basileensis (1), R. eutropha (1), R. oxalatia (1), R. solanacearum (1), R. campinensis (1), R. metallidurans (1), Ralstonia sp. (5), B. cepacia genomovar I (3), B. multivorans (2), B. cepacia genomovar III (7), B. stabilis (2), B. vietnamensis (2), B. cepacia genomovar VI (5), B. ambifaria (3), B. gladioli (6), B. fungorum (1), Pandoraea apista (5), P. norimbergensis (3), P. pseudomena (2), P. putuatorum (4), P. pulmoniola (2), Alcaligenes xylosoxidans (5), P. aeruginosa (5), S. maltophilia (5), and one isolate each of A. denitrificans, A. piechaudii, A. faecalis, A. ruhlandii, Bordetella avium, B. hinzii, B. trematum, B. bronchiseptica, B. pertussis, B. parapertussis, and B. holmesii.

Results

Species Identification

Isolates were tentatively identified as belonging to the genus Ralstonia if they 1) reacted with primer pair RHG-F/RHG-R (specific for Burkholderia and Ralstonia spp.) (28), 2) showed no lysine decarboxylase and o-nitrophenyl-β-D-galactoside activity, 3) produced no acid from sucrose, and 4) showed oxidase activity. Using these criteria, we identified 42 putative Ralstonia sp. isolates. These isolates were further identified to the species level by using SDS-PAGE of whole-cell proteins. Most isolates (25) were identified as R. mannotolytica; 9 were identified as R. pickettii. Two isolates were identified as R. gilardii, and another as R. taiwanensis. Five isolates clearly belonged to the genus Ralstonia but could not be classified into one of the known species. Pending further investigations, these isolates were classified as Ralstonia sp.

Genotyping of Serial Isolates

We identified two patients (A and B) who were sputum-culture positive for R. mannotolytica and one patient (C) who was culture positive for R. pickettii on more than one occasion. The three R. mannotolytica isolates cultured from patient A were recovered over a period of >2 years. RAPD genotyping...
indicated that the first isolate clearly differed from the two isolates recovered subsequently; the latter two isolates (recovered 20 months apart) were the same genotype (Figure 1). Similarly, the two R. mannitolilytica isolates recovered from patient B (cultured 8 weeks apart) were the same genotype, as were the two R. pickettii isolates recovered from patient C (cultured 6 weeks apart) (Figure 1).

Primer Design

Alignment of 16S rRNA gene sequences of Ralstonia sp. available in GenBank showed similarity values ≥93.1% and ≥98.2% within the species R. pickettii and R. mannitolilytica, respectively. Identity of sequences between these two species ranged from 89.9% to 96.8%. Several species-level sequence signatures were detected and were incorporated into the species-specific primers Rp-F1 and Rp-R1 (forward and reverse primer for R. pickettii) and Rm-F1 and Rm-R1 (forward and reverse primer for R. mannitolilytica). PCR with these primers resulted in the amplification of fragments of 210 bp and 398 bp, respectively (Figure 2). Each of the 152 strains included in this study was examined by PCR with the primer pairs described (Table).

Discussion

The occurrence and clinical role of Ralstonia sp. in the respiratory secretions of persons with CF have not been systematically investigated because of the rapidly changing taxonomy of the genus Ralstonia and the absence of rapid, reliable methods for species identification. We used a polyphasic approach to identify Ralstonia sp. in sputum cultures of CF patients and developed two PCR assays for identifying R. pickettii and R. mannitolilytica.

Previous reports describing the bacterial flora of the respiratory tract of CF patients have focused mainly on P. aeruginosa and B. cepacia complex organisms (3,5,31); reports describing the presence of Ralstonia sp. in sputum cultures of CF patients (4). In this study, we identified Ralstonia species recovered from sputum cultures of 38 CF patients. Collectively, these data indicate that the prevalence of Ralstonia sp. in the CF population is rather low. However, because we did not specifically survey all referring laboratories for all Ralstonia species that may have been recovered from CF specimens, we were not able to define a more precise prevalence of Ralstonia sp. in the CF population.

Our data do not provide evidence for patient-to-patient spread of Ralstonia sp. because no clustering of cases occurred within centers or geographic regions (data not shown). However, we were able to document persistent colonization with Ralstonia species in three patients. Patient A’s infection is particularly interesting. In this patient, an initial R. mannitolilytica strain was apparently replaced with another strain, which then persisted for >20 months. However, the bacterial and host factors involved in infection by more than one R. mannitolilytica strain or with chronic colonization remain to be defined.

Five Ralstonia isolates could not be identified to the species level. 16S rDNA PCR and SDS-PAGE of whole-cell proteins clearly indicated that these isolates belong to the genus Ralstonia, suggesting that they may represent novel Ralstonia sp. Further polyphasic taxonomic studies are needed to clarify their status. The finding of R. mannitolilytica, R. gilardii, R. taiwanensis, and possible novel Ralstonia species in respiratory secretions of CF patients suggests that these organisms may be emerging human pathogens and again highlights the fact that the bacterial biodiversity in the respiratory tract of CF patients has thus far been underestimated (4).

Of the 25 R. mannitolilytica strains identified in this study, 9 were initially identified by the referring laboratory as R. pickettii, 8 as B. cepacia complex, 6 as Burkholderia sp., 1 as B. gladioli, and 1 as P. fluorescens. Of the 9 R. pickettii strains identified, 3 were identified by the referring laboratory as R. pickettii, 2 as Burkholderia sp., 1 as Pseudomonas sp., 1 as B. cepacia complex, and 2 isolates as unidentified. The R. gilardii and R. taiwanensis isolates were received as B. cepacia complex and S. maltophilia, respectively. Most (81%) of these isolates were capable of growth on B. cepacia selective agar. These observations reiterate that identification of these species is not straightforward and that their misidentification as other CF pathogens, such as B. cepacia complex, is not uncommon. Such misidentification has an important impact on infection control in CF since the efficiency of these measures depends on accurate identification of the microorganisms involved. Infection-control policies, particularly those recommended to prevent interpatient spread of B. cepacia complex, have a tremendous impact on the quality of life of CF patients (6,7). To enhance accurate identification of CF pathogens, several PCR assays have been developed recently (28,30,32–35). We
sought to design similar PCR tests to allow the identification of *R. pickettii* and *R. manitollitytica* based on species-level signature sequences in the 16S rRNA gene. By comparing available *R. pickettii* and *R. manitollitytica* 16S rRNA gene sequences with sequences from other *Ralstonia* species and representatives of the phylogenetically closely related genera *Burkholderia* and *Pandorea*, we identified several regions that showed sufficient diversity to allow the design of primer pairs Rp-F1/Rp-R1 and Rm-F1/Rm-R1, permitting the sensitive and specific identification of *R. pickettii* and *R. manitollitytica*, respectively (Table).

The results of our study indicate that a number of *Ralstonia* species can be isolated from sputum cultures of CF patients. The correct identification of these species presents a challenge for diagnostic microbiology laboratories. Our study supports the use of genotypic methods to augment routine phenotypic evaluation. The combined use of the two PCR assays described will allow the identification of most *Ralstonia* species encountered in sputum cultures of CF patients. Most importantly, the use of these assays will substantially reduce the misidentification of *R. pickettii* and *R. manitollitytica* as *B. cepacia* complex. These tests will be a valuable adjunct in the evaluation of CF sputum culture isolates and will allow more precise study of the prevalence and natural history of human infection by these emerging pathogens.

Acknowledgments

We thank T. Spilker and A. Martin for excellent technical assistance.

This work was supported by a grant from the Cystic Fibrosis Foundation (United States) to J.J.L. TC is supported by the Caroll Haas Research Fund in Cystic Fibrosis.

Dr. Coenye is a postdoctoral research fellow in the Department of Pediatrics and Communicable Diseases at the University of Michigan. His major research interests are the identification, biodiversity, and molecular epidemiology of bacteria associated with pulmonary infections in cystic fibrosis patients.

References

1. Rosenstein BJ, Zeitlin PL. Cystic fibrosis. Lancet 1998;351:277–82.
2. Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, et al. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 1998;27:158–63.
3. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 1991;4:35–51.
4. Coenye T, Vandamme P, LiPuma JJ. Characterisation of unusual bacteria isolated from CF sputum [abstract]. Pediatr Pulmonol 2001;Suppl 22:297.
5. Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid *Pseudomonas aeruginosa* and *Burkholderia cepacia*. Microbiol Rev 1996;60:539–74.
6. LiPuma JJ. *Burkholderia cepacia*. Management issues and new insights. Clin Chest Med 1998;19:473–86.
7. LiPuma JJ. *Burkholderia cepacia* epidemiology and pathogenesis: implications for infection control. Curr Opin Pulm Med 1998;4:337–41.
8. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two *Burkholderia* and an *Alcaligenes* species to *Ralstonia* gen. nov.: proposal of *Ralstonia pickettii* (Ralston, Pallorini and Doddorf 1973) comb. nov., *Ralstonia solanacearum* (Smith 1896) comb. nov. and *Ralstonia estrophila* (Davis 1969) comb. nov. Microbiol Immunol 1995;39:897–904.
9. Coenye T, Falsen E, Vancannet M, Hoste B, Govan JRW, Kersters K, et al. Classification of some *Alcaligenes faeaulensis*-like isolates from the environment and human clinical samples as *Ralstonia gilardii* sp. nov. Int J Syst Bacteriol 1999;49:405–13.
10. Vandamme P, Goris J, Coenye T, Hoste B, Janssens D, Kersters K, et al. Assignment of Centers for Disease Control group IVc-2 to the genus *Ralstonia* as *Ralstonia pseudulca* sp. nov. Int J Syst Bacteriol 1999;49:663–9.
11. Sahin N, Isik K, Tamer AU, Goodfellow M. Taxonomic position of “*Pseudomonas oxalaticus*” strain ox14T (DSM 1105T) (Kambhata and Bhat, 1953) and its description in the genus *Rualstonia* as *Rualstonia oxalatica* comb. nov. Syst Appl Microbiol 2000;23:206–9.
12. De Baere T, Steyaert S, Wauters G, De Vos P, Goris J, Coenye T, et al. Classification of *Ralstonia pickettii* biovar 3/thomassii strains (Pickett 1994) and of new isolates related to nosocomial recurrent meningitis as *Ralstonia pickettii* sp. nov. Int J Syst Evol Microbiol 2001;51:547–58.
13. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, et al. *Ralstonia taiwanensis* sp. nov., isolated from root nodules of *Mimosa* species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51:1729–35.
14. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, et al. Classification of metal-resistant bacteria from industrial biotopes as *Ralstonia campinisens* sp. nov., *Ralstonia metalcluduran* sp. nov. and *Ralstonia basulensis*. Steinle et al. 1998 emend. Int J Syst Evol Microbiol 2001;51:1737–82.
15. Riley PS, Weaver RE. Recognition of *Pseudomonas pickettii* in the clinical laboratory: biochemical characterization of 62 strains. J Clin Microbiol 1975;1:61–4.

16. Labarca JA, Trick WE, Peterson CL, Carson LA, Holt SC, Arduino MJ, et al. A multistate nosocomial outbreak of *Ralstonia pickettii* colonization associated with an intrinsically contaminated respiratory care solution. Clin Infect Dis 1999;29:1281–6.

17. Lacey S, Want SV. *Pseudomonas pickettii* infections in a paediatric oncology unit. J Hosp Infect 1991;17:45–51.

18. Fernandez C, Wilhelmi I, Andrades E, Gaspar C, Gomez J, Romero J, et al. Nosocomial outbreak of *Burkholderia pickettii* colonization due to a manufactured intravenous product used in three hospitals. Clin Infect Dis 1996;22:1092–5.

19. McNeil MM, Solomon SL, Anderson RL, Davis BJ, Spengler RF, Reisberg BE, et al. Nosocomial *Pseudomonas pickettii* colonization associated with a contaminated respiratory therapy solution in a special care nursery. J Clin Microbiol 1985;22:903–7.

20. Verschraegen G, Claeys G, Meeus G, Delanghe M. *Pseudomonas pickettii* as a cause of pseudobacteremia. J Clin Microbiol 1985;21:278–9.

21. Centers for Disease Control and Prevention. Nosocomial *Ralstonia pickettii* colonization associated with intrinsically contaminated saline solution—Los Angeles, California, 1998. MMWR Morb Mortal Wkly Rep 1998;47:285–6.

22. Phillips I, Eykyn S, Laker M. Outbreak of hospital infection caused by contaminated autoclaved fluids. Lancet 1972;1:1258–60.

23. Costas M, Holmes B, Sloss LL, Heard S. Investigation of a pseudo-outbreak of *Pseudomonas thomaisii* in a special-care baby unit by numerical analysis of SDS-PAGE protein patterns. Epidemiol Infect 1990;105:127–37.

24. Henry DA, Mahenthiralingam E, Vandamme P, Coenye T, Speert DP. Phenotypic methods for determining genomovar status of the *Burkholderia cepacia* complex. J Clin Microbiol 2001;39:1073–8.

25. Kiska DL, Kerr A, Jones MC, Caracciolo JA, Eskridge B, Jordan M, et al. Accuracy of four commercial systems for identification of *Burkholderia cepacia* and other gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis. J Clin Microbiol 1996;34:886–91.

26. Gilligan P. *Pseudomonas and Burkholderia*. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of clinical microbiology. 6th edition. Washington: ASM Press; 1995. p. 509–32.

27. McMenamin JD, Zacone TM, Coenye T, Vandamme P, LiPuma JJ. Misdentification of *Burkholderia cepacia* in US cystic fibrosis treatment centers: an analysis of 1051 recent sputum isolates. Chest 2000;117:1661–5.

28. LiPuma JJ, Dulaney BJ, McMenamin JD, Whithby PW, Stull TL, Coenye T, et al. Development of rRNA-based PCR assays for identification of *Burkholderia cepacia* complex isolates recovered from cystic fibrosis patients. J Clin Microbiol 1999;37:3167–70.

29. Chen JS, Witzmann KA, Spilker T, Fink RJ, LiPuma JJ. Endemicity and inter-city spread of *Burkholderia cepacia* genomovar III in cystic fibrosis. J Pediatr 2001;139:643–9.

30. Coenye T, Liu L, Vandamme P, LiPuma JJ. Identification of *Pandoraea* species by 16S ribosomal DNA-based PCR assays. J Clin Microbiol 2001;39:4452–5.

31. Klinger JD, Thomassen MJ. Occurrence and antimicrobial susceptibility of gram-negative nonfermentative bacilli in cystic fibrosis patients. Diagn Microbiol Infect Dis 1985;3:149–58.

32. Coenye T, Vandamme P, Govan JRW, LiPuma JJ. Taxonomy and identification of the *Burkholderia cepacia* complex. J Clin Microbiol 2001;39:3427–36.

33. Whitby PW, Carter KB, LiPuma JJ, Stull TL. Species-specific PCR as a tool for the identification of *Burkholderia gladioli*. J Clin Microbiol 2000;38:282–5.

34. Whitby PW, Carter KB, Burns JL, Royall JA, LiPuma JJ, Stull TL. Identification and detection of *Stenotrophomonas maltophilia* by rRNA-directed PCR. J Clin Microbiol 2000;38:4305–9.

35. Liu L, Coenye T, Burns JL, Whithby PW, Stull TL, LiPuma JJ. Ribosomal DNA-directed PCR for identification of *Achromobacter (Alcaligenes) xylosoxidans* recovered from sputum samples from cystic fibrosis patients. J Clin Microbiol 2002;40:1210–3.

Address for correspondence: Tom Coenye, Department of Pediatrics and Communicable Diseases, 8301 MSRB III, Box 0646, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0646, USA; fax: 734-615-4770; e-mail: tcoenye@umich.edu