Preparation of a Nanoemulsion of Essential Oil of Acroptilon repens Plant and Evaluation of Its Larvicidal Activity against Malaria Vector, Anopheles stephensi

Samira Firoozian1,2, Mahmoud Osanloo3, Seyed Hassan Moosa-Kazemi1, Hamid Reza Basseri1, Habib Mohammadzadeh Hajipirloo4, Ali Sadaghianifar2, *Amir Amani5,6, *Mohammad Mehdi Sedaghat1

1 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Urmia Health Center, Disease Control Unit, Urmia University of Medical Sciences, Urmia, Iran
3 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
4 Medical Parasitology Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
5 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
6 Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran

*Corresponding author: Dr. Mohammad Mehdi Sedaghat, E-mail: sedaghmm@tums.ac.ir; Dr. Amir Amani, E-mail: amani76@gmail.com

(Received 07 June 2021; accepted 20 Sept 2021)

Abstract

Background: Extensive use of chemical larvicides to control larvae, has led to resistance in vectors. More efforts have been conducted the use of natural products such as plant essential oils and their new formulations against disease vectors. Nanoformulation techniques are expected to reduce volatility and increase larvicidal efficacy of essential oils. In this study for the first time, a larvicide nanoemulsion from the essential oil of Acroptilon repens was developed and evaluated against Anopheles stephensi larvae under laboratory conditions.

Methods: Fresh samples of A. repens plant were collected from Urmia, West Azarbaijan Province, Iran. A cleevenger type apparatus was used for extracting oil. Components of A. repens essential oil (AEO) were identified by gas chromatography–mass spectrometry (GC–MS). All larvicidal bioassay tests were performed according to the method recommended by the World Health Organization under laboratory condition. Particle size and the morphologies of all prepared nanoformulations determined by DLS and TEM analysis.

Results: A total of 111 compounds were identified in plant. The LC90 and LC99 values of AEO calculated as 7 ppm and 35 ppm respectively. AEO was able to kill 100% of the larvae in 4 days.

Conclusion: The nanoemulsion of AEO showed a weak effect on the larvar mortality. It may therefore be suggested that this kind of nanoemulsion is not appropriate for the formulation as a larvicide. It is important to screen native plant natural products, search for new materials and prepare new formulations to develop alternative interventions with a long-lasting impact.

Key words: Acroptilon repens; Nanoemulsion; Larvicidal effect; Vector control; Anopheles stephensi
Introduction

Vector borne diseases are infections which are transmitted by the bite of infected arthropod species and account for 17% of all infectious diseases. Every year more than one billion people are infected and more than one million people die from vector-borne diseases including malaria, dengue, schistosomiasis, leishmaniasis, chagas disease, yellow fever, lymphatic filariasis and onchocerciasis (1). The most important diseases transmitted by mosquitoes are malaria, dengue fever, lymphatic filariasis, yellow fever, chikungunya, Zika virus, as well as viral encephalitis (2). *Anopheles* mosquitoes are widely distributed and found in the tropics temperate regions (3). The most important disease transmitted by *Anopheles* mosquitoes is human malaria, which is the most important parasitic disease in the world (4). The disease is still a major health problem worldwide, including Iran. Most malaria cases were reported from the south and southeastern of Iran. *Plasmodium vivax* was the dominant species (5). *Anopheles stephensi* is an important malaria vector in the Middle East and south Asia (6, 7).

To control the disease, larval control is currently being performed in 55 countries (8, 9). The use of natural products is an interesting approach in this regards. Today, there are loads of studies and recommendations on plant extracts and essential oils as larvicides, insecticides and repellents (10, 11). Extracts and essential oils (EOs) are biocompatible and have minimum toxic effects on non-target organisms. Along with many novel formulations, nanoemulsions of pesticides have been considered recently due to their greater efficiency, lesser adverse effects on non-target organisms (12, 13). However, extracts and EOs have volatile components that restrict their use in natural environments (14-16). This can be overcome by formulating them in the form of nanoemulsions. There has been a lot of research recently on EOs as natural larvicides, but there are a few available articles on nanoemulsions as larvicides. In a study, the larvicidal activity of eucalyptus essential oil and its nanoemulsion against *Culex quinquefasciatus* was investigated. The result showed that the bioactivity of the nanoemulsion was improved than the bulk EO (17). In a study, nanoemulsion of *Artemisia dracunculus* essential oil showed better larvicidal efficiency on *An. stephensi* larvae in comparison with its essential oil (18). Likewise, encapsulation of *A. dracunculus* essential oil in chitosan nanoparticles presented very good larvicidal activity with 9 days residual effect (19). Volpato et al (2016) investigated the effect of essential oil and its nanoemulsion against *Alphitobius diaperinus*. The nanoemulsion showed a three-fold better effect as compared to the essential oil (20). Balasubramani et al (2017) in their experiments obtained similar results with the nanoformulation of *Vitex negundo* essential oil compared to its essential oil against *Aedes aegypti* (21). In a recent study, larvicidal activity of *Cinnamomum zeylanicum* essential oil was compared with its nanoemulsion. The formulated nanoemulsion showed 32% better larvicidal effect as compared to the essential oil, the residual effect of the formulation was 3 days. These results indicated an increase in larvicidal activity and residual effects of an essential oil nanoemulsion compared to bulk essential oil (11).

As the extract of *A. repens* had very good larvicidal activity against *Anopheles stephensi*, *Culex pipiens* and *Culex quinquefasciatus* in the previous work (22), we decided to extract its essential oil and provide the nanoformulation in order to investigate their larvicidal effect against *An. stephensi* larvae.

Materials and Methods

Collection, identification and extraction of *Acroptilon repens*

Fresh samples of *A. repens* were collected in Jun- Jul 2018 from Urmia, West Azarbaijan province, Iran (45.08° E, 37.55° N, elevation ~ 1332 m above sea level) (Fig. 1).
Collection and identification of plant

Acroptilon repens plants were collected (Fig. 2), rapidly transferred to the laboratory and then was identified by experts in Department of Plant Sciences, Tehran University.

Extraction of essential oil

All collected plants were washed with water, then shad dried. Dried samples were hydrodistilled, using clevenger type apparatus for five hours. The extracted oil dried over anhydrous sodium sulfate. In total, 65 ml extracted oil obtained from 650 kg of dried plant. To prevent degradation and oxidation, the essential oil was stored in dark glass containers, completely away from sun light at 4-8 °C.

Analysis of essential oil by gas chromatography–mass spectrometry (GC-MS)

GC-MS analysis used to identify compounds of the essential oil. The essential oil diluted using hexane with the specifications given in Table 1. The compounds of the essential oil were analyzed using GC-MS and compared with standard mass spectra available in the device library.

Mosquito rearing

Anopheles stephensi larvae were reared in the insectary at 29 ± 1°C with relative humidity of 70 ± 5% under 12 h light/12 h dark conditions. The cages for keeping mosquitoes were wooden cubes with dimensions of 30 cm × 30 cm × 30 cm, covered with fine mesh. The stock culture of adult *An. stephensi* fed twice a week on sheep blood (artificial feeding). The egg rafts laid transferred to enamel larval trays. The larvae were fed with fish food.

Preparation of nanoemulsion

In this study, surfactant (Tween 80) and co-surfactant (Span 20) were stirred for 6 minutes at 600 rpm. The essential oil was then added at 90% lethal concentration of the bulk essential oil and stirred for 10 minutes at 600 rpm. Water was then added dropwise and stirring was continued at 600 rpm for 38 minutes. Ten different nanoemulsion preparations having a constant amount of essential oil (1.4 %) and different amounts of surfactant (2 to 9.2 %) and co-surfactant (0.8 %). The nanoemulsion stored in a dark place at room temperature for 24 hours, then checked visually for signs of phase

![Fig. 1. Collection site of plant Acroptilon repens in Urmia, West Azarbaijan Province, Iran](http://jad.tums.ac.ir)
Fig. 2. *Acroptilon repens*

separation, precipitation or creaming.
Dynamic light scattering (DLS, K-ONE.
LTD, Korea) used to determine the particle
size (PS) of the prepared nanoformulations.
Transmission electron microscopy (TEM)
used to confirm the PS and to investigate the
morphology of the particles.

Determining the larvicidal efficacy

Larvicidal bioassays performed according
to the WHO guideline. Logarithmic
dilutions prepared from bulk essential oil by
dissolving in ethanol. All the nanoemulsion/bulk
samples diluted 200 times before
performing the larvicidal tests (23). Third
and early 4th instars larvae were used. One
ml of the essential oil was added to 249 ml of
chlorine-free (pH=7) water and stirred and
25 healthy larvae added to the containers.
Containers were covered and after 24 hours,
the number of living and dead larvae counted.

Table 1. Analysis conditions and specifications of GC-MS device

Instrument Specifications
Manufacturer company
1. GC system
2. Mass Selective Detector
3. Ion source
4. Analyzer
5. Column
-Length
-I.D.
-Film thickness

Conditions

Initial temperature (°C)	40
Initial time (min)	1
Program rate (°C/min)	3
Final temperature (°C)	270
Final time (min)	10
Split ratio (ml/min)	100
Septum purge (ml/min)	---
Flow rate (ml/min)	1

Temperate Program

http://jad.tums.ac.ir

Published Online: Sep 30, 2021
Determining the duration of action of bulk and nanoemulsions of A. repens essential oil

To determine the duration of larvicidal activity, according to the instructions of the WHO, the formulation prepared for the larvicidal test dilute 100 times (23). One ml of specified concentrations of bulk or nanoemulsion samples added to 249 ml of chlorine-free (pH=7) water, then, 25 live larvae were added to the solution. After 24 hours, the number of dead/live larvae was counted, without changing the solution; the larvae (dead and live) were removed from the containers, followed by the addition of 25 new live larvae in the containers. The larvae were replaced for 8 days. All the larvicidal bioassays repeated 16 times in four different replicates. In each replicate, two control groups containing ethanol were considered.

Statistical analysis

The lethal concentrations of 50% and 90% (LC50 and LC90) were calculated using Probit analysis (24). The regression line plotted using Excel 2007 software. If mortality of the control group was less than 5%, the data from the bioassay tests were considered correct. When the control mortality was between 5-20%, it was corrected using the Abbott formula (24). If the larvae became pupae or the larvae mortality were more than 20% in the control group, the test was repeated.

Results

Determination of chemical composition of A. repens essential oil

Components of AEO identified by GC–MS analysis. One hundred and eleven components were determined, with five major components including Caryophyllene oxide (12.055%), α-Cubeene (12.054%), 1-Heptadecene (5.181%), delta-Cadinene (3.771%) and β-Cubeene (3.771%) as listed in supplementary data (Table 2).

Characterization of AEO nanoemulsion

From preliminary studies to find on the optimum nanoemulsion (i.e., highest stability and lowest particle size), a nanoemulsion preparation with 6.8% Tween 80, 0.8% Span 20, 1.4% AEO and water was prepared. Figure 3 shows DLS results of the nanoemulsion with d50= 106 nm.

The morphology of nanoemulsion particles was determined using transition electron microscopy (TEM) (Fig. 4). The results show that the nanoemulsion was well-formed and the particles were almost spherical.

The AEO nanoemulsion did not show any sign of phase separation after 4-month storage (4 °C and room temperature) and centrifugation (25000 rpm, 30 min).

Larvicidal bioassay of A. repens essential oil

The results of larvicide activity of six different concentrations of AEO are shown in Figure 5. Mortality rate at 3.125 ppm was 0% and increased to 100% at 50 ppm. There was no mortality in the control groups. In regression line, a positive correlation was observed between essential oil concentrations and the probit mortality (Fig. 6). The LC50 and LC90 values of AEO against An. stephensi larvae calculated as 7 and 34 ppm, respectively.

Figure 7 shows comparison of the residual larvicidal properties. AEO killed 100% of the larvae in the first four days of the experiment. After the 4th day, larval mortality decreased and reached 76%. AEO nanoemulsion showed weaker activity. It had 84% mortality on the first day and the mortality rate decreased to 0% on the 7th day.

To compare larvicidal activity of AEO with AEO nanoemulsion against An. stephensi larvae, equal concentrations of AEO used in the short time test (24 hours). The larvicidal effects of AEO were 88%, while the nanoemulsion properties of AEO reduced to 44% (Fig. 8).

Figure 9 shows the particle size of the nanouemulsion after 200 times dilution, showing instability for the preparation after dilution.
No.	RT (min)	Compound	Peak area	%	Quality	Mol Weight (amu)
1	37.993	Caryophyllene oxide	503332611	12.055	96	220.183
2	29.563	α-Cubebeene	503308397	12.054	99	204.188
3	41.823	1-Heptadecene	216337204	5.181	99	238.266
4	35.537	delta-Cadinene	188186597	4.507	98	204.188
5	30.091	β-Cubebeene	157435883	3.771	97	204.188
6	31.287	Caryophyllene	155313108	3.720	99	204.188
7	28.316	α-Cubebeene	148603368	3.559	98	204.188
8	38.858	3-Unsocene	128983727	3.089	55	152.157
9	47.078	2-Pentadecanone	108810045	2.606	96	268.277
10	33.756	Tricyclo[2210(2.6)]heptane-3,5-diol	96224253	2.305	91	284.201
11	40.881	1,3-Cyclooctadiene	93566390	2.241	74	108.094
12	34.201	1-Pentadecene	91513407	2.192	99	210.235
13	38.285	Dihydrotanshinone I	87244445	2.090	91	220.183
14	37.172	[1.5]Naphthylidine-4-carbaldehyde	77809615	1.864	58	220.183
15	38.673	2(1H)-Naphthalenone	64550157	1.546	86	220.183
16	41.231	Azulene	63504092	1.521	97	198.141
17	38.063	β-Copaen	62409995	1.495	70	220.183
18	30.689	4,4-Dimethyl-3	56695349	1.358	47	202.172
19	33.406	delta-Elemene	53675197	1.286	58	204.188
20	41.422	Methyl α-oxo-7-azaindole-3-acetate	50884172	1.219	59	218.167
21	32.655	5,9-Undecadien-2-one	46366238	1.110	90	194.167
22	40.652	Bicyclo	45385061	1.086	89	204.188
23	29.881	β-Damascenone	45288877	1.085	98	190.136
24	36.249	Calacoene	44746403	1.072	78	172.125
25	25.752	1-Tridecene	41473191	0.993	98	182.203
26	36.612	Caryophyllene oxide	39040647	0.935	60	220.183
27	33.972	β-Selinene	37808861	0.906	99	204.188
28	39.526	Naphthalene	36960428	0.885	90	204.188
29	30.212	3,5-Octadiene	33754464	0.808	64	194.203
30	39.869	10,10-Dimethyl-2,6-dimethylenebicyclo	33082573	0.792	99	220.183
31	33.546	β-Selinene	32759075	0.785	96	204.188
32	40.048	Bicyclo	30063246	0.720	84	204.188
33	33.945	δ-Cadinene	29461311	0.706	80	204.188
34	32.922	Bicyclo[221]heptane	27543459	0.660	98	204.188
35	36.641	Tricosane (CAS)	25909857	0.621	98	324.376
36	35.212	δ-Cadinene	25336335	0.607	62	204.188
37	36.803	Bicyclo[310]hexane	24755522	0.593	42	136.125
38	55.424	Phytol	23404833	0.561	90	296.308
39	37.579	Cyclohexane	22932610	0.549	84	192.188
40	75.287	Nonacosane	21848026	0.523	99	408.47
41	51.238	Hexadecanoic acid	20517153	0.491	99	256.24
42	34.557	Naphthalene	19954822	0.478	99	204.188
43	32.77	Trimethylcyclohex	19947825	0.478	80	278.134
44	70.75	Heptacosane	18873599	0.452	95	300.438
45	67.226	Benzenedicarboxylic acid	18814084	0.451	91	211.012
46	30.925	Methanazulene	18182957	0.435	99	204.188
47	40.474	Isoaromadendrene epoxide	18089104	0.433	43	220.183
48	31.904	Bicyclo[311]hept	17605938	0.422	98	204.188
Table 2. Chemical composition of the essential oil of *Acroptilon repens*

No.	RT (min)	Compound	Peak area	%	Quality	Mol Weight (amu)
49	30.409	7-Methanoazulene	15474913	0.371	99	204.188
50	35.823	Naphthalene	14843167	0.356	99	204.188
51	32.515	Khusimene	14686454	0.352	91	204.188
52	21.929	Decanal	13680181	0.328	91	156.151
53	33.851	Tricyclo	13035063	0.312	91	204.188
54	39.717	Dimethyl-2	12491034	0.299	83	220.183
55	40.347	4-Methanoazulene	12398829	0.297	55	204.188
56	34.977	Tridecanal	12181378	0.292	94	198.198
57	34.474	Pentadecane	11697698	0.280	93	212.25
58	49.457	13-Pentadecatrien-2-one	11566338	0.277	86	262.23
59	25.161	Vitispirane	11436343	0.274	98	192.151
60	28.914	Cycloisosativeness	11154885	0.267	97	204.188
61	40.226	gamma-Selinene	11037619	0.264	64	204.188
62	41.097	Quinoline, 2,6-dimethyl-	10239966	0.245	35	157.089
63	65.877	Heneicosane	9939147	0.238	91	296.344
64	41.988	Heptadecane	9896521	0.237	97	240.282
65	36.491	2-Methyl-6-nitrophenol	9850609	0.236	53	153.043
66	44.463	Alloaromadendrene oxide-(2)	8884878	0.213	83	220.183
67	32.146	4-Dimethylaminopyridin-2-amine	8576066	0.205	52	137.095
68	39.316	6-Methoxy-1-acetonaphthone	8242200	0.197	78	200.084
69	48.751	Nonadecane (CAS)	8087481	0.194	98	268.313
70	26.408	1H-Indene	7844665	0.188	92	174.141
71	30.835	1H-Cycloprop[e]azulene	7747134	0.186	99	204.188
72	54.941	Heneicosene	7588497	0.182	99	296.344
73	37.045	Naphthalene	7339014	0.176	80	172.125
74	42.192	Vulgarol B	7325012	0.175	55	220.183
75	44.164	Ledene oxide-(II)	7233022	0.173	60	220.183
76	39.138	Trimethyl-2'-methylidene-9'-oxabicyclo	7090758	0.170	41	220.146
77	43.025	2-Dodecen-1-yl(-)succinic anhydride	7006122	0.168	30	266.188
78	45.735	Eicosane	6974224	0.167	38	282.329
79	28.443	Naphthalene dihydro 1 16 trimethyl	6527008	0.156	97	172.125
80	39.221	Tricyclo	6429488	0.154	38	220.183
81	45.43	Octadecane	6266398	0.150	98	254.297
82	31.618	Germacrane-D	5570492	0.133	98	204.188
83	43.407	Valerenol	5558781	0.133	70	220.183
84	43.559	Isopropylidene	5353049	0.128	42	218.167
85	49.673	Hexadecanoic acid	5318288	0.127	98	270.256
86	22.323	Pentylthiophene	5122791	0.123	83	154.082
87	54.547	1-Heptadecanol	5095930	0.122	95	256.277
88	46.066	Bicyclo[1310]hexadecan-2-one	4816216	0.115	55	236.214
89	13.595	dl-Limonene	4755721	0.114	99	136.125
90	36.129	a-Calacorene	4672444	0.112	38	200.157
91	51.906	Eicosane	4631346	0.111	96	282.329
92	28.997	Cycloisosativeness	4487495	0.107	99	204.188
93	42.554	Tetradecanal	4420395	0.106	91	212.214
94	48.178	Cyclotetradecane	4361575	0.104	90	196.219
95	16.483	Benzene	4265136	0.102	96	132.094
96	22.075	Naphthalene, 1,2,3,4-tetrahydro	4132000	0.099	97	174.141
97	44.666	7,8-Dihydroxyran	4116843	0.099	50	173.084
98	27.68	Benzene, 1,2,3,4-tetramethyl-	4066183	0.097	46	134.11
99	11.991	Furan, 2-pentyl-	3750856	0.090	91	138.104
Continued Table 2. Chemical composition of the essential oil of *Acroptilon repens*

No.	RT (min)	Compound	Peak area	%	Quality	Mol Weight (amu)
100	32.019	Aromadendrene	3697814	0.089	99	204.188
101	33.189	Widdrene	3626118	0.087	83	204.188
102	13.423	Benzene, 1-methyl-4-(1-methylethyl)-	3546573	0.085	97	134.11
103	57.836	Docosane	3527160	0.084	94	310.36
104	17.214	Nonanal	3429151	0.082	91	142.136
105	56.277	4,4,6-Trimethyl	3326248	0.080	43	140.12
106	42.923	4,4-Dimethyl-3	3080628	0.074	89	202.172
107	63.294	Tetracosane	2968794	0.071	97	338.391
108	32.324	Bicyclo[3.1.1]heptane	2911317	0.070	60	204.188
109	43.311	4-Tetradecene	2856951	0.068	84	196.219
110	23.316	cis-3-Hexenyl isovalerate	2576062	0.062	72	184.146
111	43.19	2-Cyclopenten-1-one	2205731	0.053	90	164.12

Fig. 3. DLS results of AEO nanoemulsion

Fig. 4. Transition electron microscopy (TEM) image of AEO nanoemulsion
Fig. 5. Larvicidal activity of AEO against Anopheles stephensi

Fig. 6. Probit regression line of AEO against Anopheles stephensi larvae

Larvicidal effects of AEO and AEO nanoemulsion

Fig. 7. Comparison of residual larvicidal effect of AEO vs. AEO nanoemulsion (after diluting 100 times) during an 8-day study
Discussion

Today, associated with extensive use of various chemical pesticides, serious damages have been observed in the environment and non-target organisms which is being carefully considered by international organizations such as United States Environmental Protection Agency (USEPA), World Health Organization (WHO) and Food and Agriculture Organization (FAO) (25). In addition, frequent use of insecticides has led to their resistance for vectors (26). To reduce environmental damages and increase the effectiveness of insecticides on target organisms, the use of novel preparations such as nano-formulations has been suggested (10).

In this study the most components of AEO were identified in comparison with the similar studies. Total number of components in AEO in earlier studies varied from 11 to 77 compounds (27-32) while we were able to identify 111 components in the essential oil due to timely GC analysis. Our research showed LC$_{50}$ and LC$_{90}$ of AEO as 7 and 34 ppm against An. stephensi, respectively. Reviewing other reports have shown different values for other essential oils against An. stephensi. Depending on the obtained results, LC$_{50}$ values are summarized as follows: LC$_{50}$ < 10 ppm: 1 EO (Kelussia odoratissima), 10 ppm < LC$_{50}$ < 50 ppm: 22 EOs (C. zeylanicum (11), Ar. dracaunculus, Platycladus orientalis, Tagetes patula, Ferulago carduchorum, Chloroxylon

Fig. 8. Comparison of larvicidal activity of AEO vs. AEO nanoemulsion (after diluting 200 times) during an 24

Fig. 9. DLS results of AEO nanoemulsion after dilution
In this study, AEO showed that nanoemulsions would not indicate positive results, although all prepared nanoformulations had no similar effects. It is possible that different effects can be observed among different plant natural products and their formulations. In this experiment, the comparison has been made between the larvicidal activity of bulk essential oil and its nanoemulsion against one of the main vectors spreading malaria, *An. stephensi*. In this study, AEO showed complete mortality of larvae for up to 4 days, while its corresponding nanoemulsion failed to indicate 100% mortality even on the first day after diluting 100 times. Besides, the bulk preparation showed more larvicidal effect compared with the nanoemulsion after diluting 200 times (i.e. 88% vs. 44%). In a similar study, nanoemulsion of *Artemisia dracunculus* essential oil was broken or at least showed substantial changes in its nanostructures; it was not able to show a change in larvicidal activity of the essential oil (18). In another study, after dilution, by breaking nanostructure of *Anethum graveolens* essential oil, practically, no difference may be determined between nanoemulsion and bulk essential oil (36).

According to proposed categories of larvicidal activity of plant essential oils against mosquito larvae, AEO lies in the third category as an active plant (33). In previous work, LC$_{50}$ and LC$_{90}$ of *A. repens* extract against *An. stephensi* were 0.37 ppm and 3.39 ppm, against *Culex pipiens* were 3.5 ppm and 60 ppm and against *Cx. quinquefasciatus* were 4 ppm and 39.7 ppm, respectively (22).

With the help of nano-techniques, the stability of essential oils in nature increases. Additionally, nano-products cause faster absorption in the target insect (25, 34). In a report, nanoemulsions of *Azadirachta indica* essential oil with different particle sizes (31, 93 and 251 nm) were prepared and tested against *Cx. pipiens*. The nanoemulsion with smallest particle size was found to be the most effective larvicidal agent (35). In another study, nanoemulsion of *Ar. dracunculus* essential oil was investigated against *An. stephensi*. The size of the prepared nanoemulsions was 12 to 291 nm. Similar to the above, larvicidal properties of the nanoemulsion increased significantly with decreasing droplet size (18). Previous studies had shown good results of new nanoformulations as larvicides (11), although all prepared nanoformulations had no similar effects. It is possible that different effects can be observed among different plant natural products and their formulations. In this study, AEO showed complete mortality of larvae for up to 4 days, while its corresponding nanoemulsion failed to indicate 100% mortality even on the first day after diluting 100 times. Besides, the bulk preparation showed more larvicidal effect compared with the nanoemulsion after diluting 200 times (i.e. 88% vs. 44%). In a similar study, nanoemulsion of *Artemisia dracunculus* essential oil was broken or at least showed substantial changes in its nanostructures; it was not able to show a change in larvicidal activity of the essential oil (18). In another study, after dilution, by breaking nanostructure of *Anethum graveolens* essential oil, practically, no difference may be determined between nanoemulsion and bulk essential oil (36).

In total, our nanoemulsion preparation failed to show good efficacy compared with the bulk essential oil. To investigate the possible reason, we measured the particle size after 200 dilutions and found that the nanoemulsion breaks up after dilution. In other studies, nanoemulsions of essential oils have been tested against larvae. The results appear to be promising. For instance, nanoemulsion of *Copaifera duckei* (37), *Rosmarinus officinalis* (32) and *Ocimum basilicum* (38) have shown potential against *Ae. aegypti* however, considering the reports, the nanoemulsions have not been diluted 100 or 200 times (as recommended by WHO). Additionally, in these studies, the results of nanoemulsions have not been compared with the bulk essential oils. It is arguable that by performing the studies similar to ours, the nanoemulsions would not indicate positive results. Based on the result of the current study, difficulty in obtaining AEO and the negative larviciding results, we therefore do
not recommend considering AEO as a good candidate for the next studies. However, it is suggested that for performing the larvicidal studies, nanoemulsions which are stable after 200 dilutions, should be considered.

Different extractions of the following Iranian native plants were evaluated against main malaria vector, An. stephensi, such as Mentha spicata, Cymbopogon olivieri, Azadirachta indica, Melia azedarach, Tagetes minuta, Calotropis procera, Eucalyptus camaldulensis, Cupressus arizonica, Thymus vulgaris, Lawsonia inermis, Cedrus deodara, Cionura erecta, Bunium persicum, Carum carvi, Artemisia dracunculus, Rosmarinus officinalis. (39-44). World Health Organization recommended several biological and chemical insecticides for mosquito larval control including: Bacillus thuringiensis H-14, B. sphaericus, Chlorpyrifos, Chlorpyrifos-methyl, Deltamethrin, Diflubenzuron, Etofenprox, Fenitrothion, Fenthion, Fuel oil, Malathion, Methoprene, Permethrin, Phoxim, Pirimiphos-methyl, Pyriproxyfen, Temephos, and Triflumuron (45). Monitoring and mapping of insecticide resistance is appr-opriate measure for vector control.

Conclusion

The larvicidal effects of AEO compared to its nanoformulation against An. stephensi larvae reported. According to the LC$_{50}$ and LC$_{90}$ of AEO, it is considered an active natural product. However, the prepared nanoemulsion did not show even equal efficacy in comparing with AEO, probably due to instability after 200 times dilution. Use of nanoemulsions with better stability profiles or other types of nanoparticles such as polymeric ones may be suggested. Furthermore because of the increasing importance of these alternative larvicides for vector control, the study and screening of native plant natural products should not be neglected.

Acknowledgment

This research has been supported by 344 Tehran University of Medical Sciences & Health Services grant No. IR. TUMS. VCR. REC. 1397. 584.

Conflict of Interest

The authors declare that there is no conflict of Interest.

References

1. WHO. Global plan for insecticide resistance management in malaria vectors: World Health Organization; 2012.
2. Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ. Integrated vector management for malaria control. Malar J. 2008;7(S1):54.
3. Ward RD. Service MW: Medical entomology for students. Springer; 2008.
4. Barati M, Khoshdel A, Salahi-Moghaddam A. An overview and mapping of Anopheles in Iran. Paramedical Sciences and Military Health. 2015;10(1):9-16.
5. Ferreira MU, Castro MC. Challenges for malaria elimination in Brazil. Malar J. 2016;15(1):1-18.
6. Vatandoost H, Oshaghi M, Shahi M, Yaaghoobi F, Baghaii M, et al. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan province, southern Iran, 2002. Acta Trop. 2006;97(2):196-203.
7. Manouchehri A, Javadian E, Eshighy N, Motabah M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976;28(3):228-32.
8. Service M. A guide to Medical Entomology (Macmillan tropical and subtropical Medical Texts), Macmillan International College editions London, Basingstoke; 1980.
9. Organization WH. World malaria report 2015: World Health Organization; 2016.
10. Osanloo M, Sedaghat MM, Sanei-Dehkordi A, Amani A (2019) Plant-derived essential oils; their larvicidal properties and potential application for control of Mosquito-Borne diseases. Galen Med J. 8: e1532.
11. Firooziyan S, Amani A, Osanloo M, Moosa-Kazemi SH, Basseri HR, Hajipirloo HM, et al. (2021) Preparation of nanoemulsion of Cinnamomum zeylanicum oil and evaluation of its larvicidal activity against a main malaria vector Anopheles stephensi. J Environ Health Sci. Eng. 19(1): 1025-1034.
12. Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. http://jad.tums.ac.ir

Published Online: Sep 30, 2021
13. Isman MB, Machial CM. Pesticides based on plant essential oils: from traditional practice to commercialization. Advances in phytomedicine. 2006;3:29-44.

14. Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops Prod. 2015;76:174-87.

15. Singh G, Kapoor IP, Pandey SK, Singh UK, Singh RK. Studies on essential oils: part 10; antibacterial activity of volatile oils of some spices. Phytother Res. 2002 Nov;16(7):680-2.

16. Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 2007;21(4):308-23.

17. Sugumar S, Clarke S, Nirmala M, Tyagi B, Mukherjee A, Chandrasekaran A. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res. 2014;104(3):393-402.

18. Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM. Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crop Prod. 2017;109:214-9.

19. Osanloo M, Sedaghat M, Sereshti H, Rahamanian M, Saeedi Landi F, Amani A. Chitosan nanocapsules of tarragon essential oil with low cytotoxicity and long-lasting activity as a green nano-larvicide. J Nanostruct. 2019;9(4):723-35.

20. Volpato A, Baretta D, Zortéa T, Campigotto G, Galli GM, Glombowsky P, et al. Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J Asia Pac Entomol. 2016;19(4):1159-65.

21. Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res Int. 2017;24(17):15125-33.

22. Toolabi R, Abai MR, Sedaghat MM, Vatandoost H, Shayeghi M, Tavakoli S, et al. Larviciding activity of Acroptilon repens extract against Anopheles stephensi, Culex pipiens and Culex quinquefasciatus under laboratory conditions. Pharmacogn J. 2018;10(3).

23. Organization WH. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization; 2005.

24. Finney DJ. Probit analysis, Cambridge University Press. Cambridge, UK. 1971.

25. Guan H, Chi D, Yu J, Li H. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot. 2010;29(9):942-6.

26. Enayati A, Hemingway J. Malaria management: past, present, and future. Annu Rev Entomol. 2010;55:569-91.

27. Zhao DB, Zhang W, Li MJ, Liu XH. [Studies on chemical constituents of Acroptilon repens]. Zhongguo Zhong Yao Za Zhi. 2006; 31(22):1869-72.

28. Mirza M, Shahmir F, Nik ZB. Chemical composition of essential oil from Acroptilon repens (L.) DC. Flavour Fragr J. 2005;20(6):615-6.

29. Norouzi-Arasi H, Yavari I, Chalabian F, Kiarostami V, Ghaffarzadeh F, Nasirian A. Chemical constituents and antimicrobial activities of the essential oil of Acroptilon repens (L.) DC. Flavour Fragr J. 2006;21(2):247-9.

30. Nadaf M, Nasrabadi M, Halimi M, Yazdani Z, Javanshir A, Ramazani S, et al. Identification of non-polar chemical compounds Acroptilon repens growing in Iran by GC-MS. Middle East J Sci Res. 2013;17:590-2.

31. Tunalier Z, Candan NT, Demirci B, Baser KHC. The essential oil composition of Acroptilon repens (L.) DC. of Turkish origin. Flavor Fragr J. 2006;21(3):462-4.

32. Duarte JL, Amado JR, Oliveira AE, Cruz RA, Ferreira AM, Souto RN, et al. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras Framacogn. 2015;25(2):189-92.

33. Vatandoost H, Dehkordi AS, Sadeghi S, Davari B, Karimian F, Abai M, et al. Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozzafarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Exp Parasitol. 2012;132(4):470-4.

34. Kale NJ, Allen Jr LV. Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants. Int J Pharm. 1989;57(2):87-93.

35. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N, Neem oil (Azadirachta indica) nanoemulsion—a potent larvical agent against Culex quinquefasciatus. Pest Manag Sci. 2012;68(2):158-63.

36. Osanloo M, Sereshti H, Sedaghat MM, Amani A. Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int. 2018;25(7):6466-73.

37. Rodrigues EdC, Ferreira AM, Vilhena JC, Almeida FB, Cruz RA, Florentino AC, et al. Development of a larvical nanoemulsion with Copaiba (Copaifera dieckeii) oleoresin. Rev Brashttp://jad.tums.ac.ir

Published Online: Sep 30, 2021
38. Ghosh V, Mukherjee A, Chandrasekaran N. Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian J Chem. 2013;25(Supplementary Issue):S321.

39. Hajiakjoondi A, Aghel N, Xumanizeh-Nadgar N, Vatandoost H (2008) Chemical and biological study of Mentha spica-vita L. essential oil from Iran. Daru. 8 (1–2): 19–21.

40. Vatandoost H, MoinVaziri V (2004) Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. East Mediterr Health J. 10(4/5): 573–581.

41. Sedaghat MM, Sanei-Dehkordi AR, Khanavi M, Abai MR, Hadjiakhoondi A, Mohtarami F, Vatandoost H (2010) Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pacific J Trop Med. 3(11): 841–845.

42. Sedaghat MM, Sanei-Dehkordi AR, Khanavi M, Abai MR, Mohtarami F, Vatandoost H (2011) Chemical composition and larvicidal activity of essential oil of Cupressus arizona E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacognosy Res. 3(2): 135–139.

43. Sanei-Dehkordi A, Vatandoost H, Abai MR, Davari B, Sedaghat M (2016) Chemical composition and larvicidal activity of Bunium persicum essential oil against two important mosquito vectors. J Essent Oil-Bear Plants. 19(2): 49–53.

44. Torabi Pour H, Shayeghi M, Vatandoost H, Abai MR (2016) Study on larvicidal effects of essential oils of three Iranian native plants against larvae of Anopheles stephensi (Liston). Vector Biol J. 1(2): 2–6.

45. World Health Organization. (2006). Pesticides and their application for the control of vectors and pests of public health importance, pp 125.