Case Report

Retroperitoneal lymphangiectasia: a great clinical masquerade

Siddhant Uttam Manwar1, Manisha Vishnu Joshi2*, Devdas Sudhakar Shetty2, Upendra Diwakar Bhalerao3

1Department of Radio-Diagnosis, B.Y.L. Nair Ch. Hospital and Topiwala National Medical College, Mumbai, Maharashtra, India
2Department of Radio-Diagnosis, Topiwala National Medical College, Mumbai, Maharashtra, India
3Department of Cardiovascular and Thoracic Surgery, Sir JJ Group of Hospitals and Grant Medical College, Mumbai, Maharashtra, India

Received: 06 November 2019
Revised: 20 November 2019
Accepted: 05 December 2019

*Correspondence:
Dr. Manisha Vishnu Joshi,
E-mail: drmanishavjoshi@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Retroperitoneal lymphangiectasia is a very rare lymphatic disorder characterized by abnormal proliferation of lymphatics. We present series of 3 cases of retroperitoneal lymphangiectasia which are diagnosed in our institute with the help of Ultrasonography (USG), Computed Tomography (CT) and Magnetic resonance imaging (MRI) of abdomen and pelvis with unusual clinical presentation. We include clinical features and imaging findings of this disorder with its pathogenesis and diagnosis. Two of the cases were clinically masquerading as hernia and one case was mimicking varicocele. Thorough clinical examination and USG, colour Doppler, CT and MRI are extremely helpful imaging investigation that aid in differentiating these lesions from hernia/ varicocele and the cross sectional imaging like CT and MRI can depict the anatomical extent of the disease.

Keywords: Computed Tomography, Contrast enhanced Computed Tomography, Magnetic resonance imaging Retroperitoneal lymphangiectasis, Ultrasonography

INTRODUCTION

Retroperitoneal lymphangiectasia is a rare benign developmental malformation of the lymphatic system characterized by abnormal focal or diffuse dilatation of lymphatics in retroperitoneal tissues, however it can occur anywhere in the body.1 USG, CT scan and MRI are the commonly used imaging modalities to evaluate intra-abdominal lymphangiectasia. It appears as intraabdominal cystic low attenuation nonenhancing masses encasing retroperitoneal vessels on computed tomography. The diagnosis is confirmed by aspiration of chylous fluid. Author present series of 3 cases of retroperitoneal lymphangiectasia which are diagnosed in the institute with unusual clinical presentation. Valid consent was taken from these patients.

CASE REPORT

Case 1

A 20-year-old gentleman was referred with history of right inguinal swelling, which he noticed since 4 months. It used to expand on straining. He was an otherwise healthy male with no significant medical history. Physical examination revealed an elastic soft mass without any tenderness in right inguinal region which used to increase in size on prolonged standing and Valsalva manoeuvre...
delayed retroperitoneal advice, imaging filarial extension diagnosis within limb. Bilateral bowel suspicious Doppler extending bilaterally on presentation.

There was no direct communication seen with deep or superficial venous system of pelvis and thigh. Bilateral Sapheno-femoral junctions were patent. Lower limb venous Doppler evaluation for patency and competency of superficial and deep venous system was within normal limits. On USG and colour Doppler diagnosis of low flow vascular malformation with extension into right thigh was given.

The tortuous channels were seen extending adjacent to right great saphenous vein and superficial femoral vein, however there was no direct communication seen with deep or superficial venous system of pelvis and thigh. Bilateral Sapheno-femoral junctions were patent. Lower limb venous Doppler evaluation for patency and competency of superficial and deep venous system was within normal limits. On USG and colour Doppler diagnosis of low flow vascular malformation with extension into right thigh was given.

On CECT (Figure 2 c to f), there was large retroperitoneal non enhancing cystic lesion of average attenuation +15 to +19 HU seen extending into perirenal and pararenal spaces and encasing aorta, its branches and IVC. The lesion did not show any enhancement even on delayed (7 minutes post-injection) imaging. It also revealed a cystic tubular structure in the posterior mediastinum adjacent to the gastro-esophageal junction and to the right of the aorta. It extended from the mid thoracic level to the level below the diaphragmatic crura. Inferiorly the retroperitoneal lesion was extending into pelvis in perivesical as well perirectal region up to the pelvic diaphragm.

The lesion was encasing both the ureters laterally but there was no hydronephrosis seen. On right side the lesion was creeping into the right inguinal region along right iliac vessels through inguinal canal and it followed the course of GSV for short segment in upper one third of thigh. On CECT the diagnosis of retroperitoneal low flow vascular malformation i.e. retroperitoneal lymphangiectasia with dilatation of cisterna chyli and right thigh extension was kept.

MRI of abdomen and pelvis was also performed and the findings were confirmed with better soft tissue contrast (Figure 3 a, b, c). The lesion was hyperintense on T2 and short tau inversion recovery (STIR) and hypointense on T1 with extent and morphology similar to CT scan findings.

(Figure 1 a, b). This patient also had dilated venous channels along the anteromedial aspect of thigh and hence associated varicose veins were suspected (Figure 1 c). Surgeons referred this patient to USG department with diagnosis of inguinal hernia with varicose veins as they wanted to rule out possibility of intra-abdominal space occupying lesion commonly associated with such clinical presentation.

Figure 1: (a) Right inguinal swelling (b) increases in size on Valsalva maneuver (c) associated dilated vascular channels along anteromedial aspect of right thigh.

On USG and Doppler evaluation, there were multiple elongated, tortuous, cystic, anechoic spaces seen bilaterally in retroperitoneum involving paraaortic region, extending anterior to both psoas muscles. On colour Doppler examination, the tortuous spaces showed suspicious flow. There was no evidence of herniation of bowel loops from bilateral inguinal canals.

The tortuous channels were seen extending adjacent to right great saphenous vein and superficial femoral vein, however there was no direct communication seen with deep or superficial venous system of pelvis and thigh. Bilateral Sapheno-femoral junctions were patent. Lower limb venous Doppler evaluation for patency and competency of superficial and deep venous system was within normal limits. On USG and colour Doppler diagnosis of low flow vascular malformation with extension into right thigh was given.

There was no evidence of filarial larvae and abnormal filarial dance was not evident in these dilated cystic spaces. As the diagnosis based on USG and Doppler imaging were contradicting with the surgeon’s clinical perspective, contrast enhanced CT (CECT) scan was advised for further confirmation and evaluation of anatomical extent of the disease.

On CECT (Figure 2 c to f), there was large retroperitoneal non enhancing cystic lesion of average attenuation +15 to +19 HU seen extending into perirenal and pararenal spaces and encasing aorta, its branches and IVC. The lesion did not show any enhancement even on delayed (7 minutes post-injection) imaging. It also revealed a cystic tubular structure in the posterior mediastinum adjacent to the gastro-esophageal junction and to the right of the aorta. It extended from the mid thoracic level to the level below the diaphragmatic crura. Inferiorly the retroperitoneal lesion was extending into pelvis in perivesical as well perirectal region up to the pelvic diaphragm.

The lesion was encasing both the ureters laterally but there was no hydronephrosis seen. On right side the lesion was creeping into the right inguinal region along right iliac vessels through inguinal canal and it followed the course of GSV for short segment in upper one third of thigh. On CECT the diagnosis of retroperitoneal low flow vascular malformation i.e. retroperitoneal lymphangiectasia with dilatation of cisterna chyli and right thigh extension was kept.

MRI of abdomen and pelvis was also performed and the findings were confirmed with better soft tissue contrast (Figure 3 a, b, c). The lesion was hyperintense on T2 and short tau inversion recovery (STIR) and hypointense on T1 with extent and morphology similar to CT scan findings.
Case 2

A 22-year-old gentleman presented with swelling in scrotum since 6 months with a sudden onset excruciating pain 5 days back. The pain was partially relieved after medications. The swelling was progressively increasing in size and used to become prominent on standing and decreases on lying down (Figure 4 a marked with arrow). There was no other significant medical or surgical history. On clinical examination in standing position, there was increase in size of swelling on Valsalva maneuver. On palpation, a large mass was felt in scrotum with few dilated channels. There was no erythema or warmth noted over the swelling. A provisional clinical diagnosis of varicocele was made.

On USG and Doppler examination (Figure 4 b and c), there were multiple dilated and tortuous channels noted in scrotum, few of them were showing suspicious venous colour flow. However, most of the dilated channels in scrotum showed no internal vascularity. Mild scrotal wall edema with bilateral mild hydrocele was noted. Bilateral testis and epididymis was unremarkable. Patient was advised CECT abdomen and scrotum for further evaluation.

On CECT (Figure 5 a to d), There was ill defined hypodens non-enhancing lesion of average HU 20-22 seen involving retroperitoneal region extending from D11 to L4 vertebral level. It was encasing aorta its branches as well as inferior vena cava and its tributaries without causing mass effect on it. It was also seen to abut adjacent structures. Multiple dilated and tortuous cystic channels were also seen in bilateral spermatic cord with no postcontrast enhancement.

Thus, diagnosis of retroperitoneal lymphangiectasia with scrotal extension and secondary complication of haemorrhage within dilated lymphatic channels was made.
On CECT (Figure 8 a and b), an ill-defined hypodense non-enhancing lesion of fluid density seen involving retroperitoneal region encasing aorta, bilateral renal arteries as well as inferior vena cava and its tributaries.

Figure 8: (a) CT scan of abdomen and pelvis in venous phase, shows nonenhancing retroperitoneal cystic lesion in pre and paraaortic region in axial (b) and coronal reconstruction. (c) MRI of abdomen and pelvis in axial reconstruction showing T2/STIR hyperintense multiple dilated cystic lesions in pelvis (d) in axial reconstruction and in retroperitoneum and scrotum in coronal reconstruction.

On MRI (Figure 8 c and d), there were multiple cystic areas seen involving retroperitoneum encasing aorta and inferior vena cava. It appears hypointense on T1, hyperintense on T2. No postcontrast enhancement noted. Thus, diagnosis of retroperitoneal lymphangiectasia was made on the basis of imaging findings.

DISCUSSION

Lymphangiectasia is a type of lymphatic malformation which is classified under low flow vascular malformation. Mulliken and Glowacki described a helpful classification scheme for vascular anomalies. They have classified vascular anomalies as either vascular tumor with endothelial hyperplasia or vascular malformations secondary to an error of embryonic development with normal endothelial turnover. This classification scheme is supported by clinical, histologic, histochemical, and biochemical differences as well as imaging features. Vascular malformations are also classified as slow-flow malformations (capillary, venous, lymphatic, capillary-venous, and capillary-lymphatic-venous malformations) and high-flow malformations (arteriovenous fistulas, arteriovenous malformations).

A classification scheme for vascular anomalies based on cellular features, flow characteristics and clinical behavior was updated during the 1992 meeting of the
International Society for the Study of Vascular Anomalies (ISSVA). This classification divides vascular anomalies into 2 categories: tumours and vascular malformations. The etiology of tumors (e.g. hemangiomas) is one of endothelial cell proliferation, histologically showing endothelial hyperplasia and more mast cells during proliferative phase.

On the other hand, vascular malformations are developmental errors resulting in collections of abnormal vessels with normal endothelium and normal mast cell count. The capillary venous malformation (CVM) composed of arterial malformations are called high flow venous malformation (HFVM). In contrast, two thirds of CVM are predominantly venous, and a quarter of these lesions is completely or partly of lymphatic origin (termed low flow venous malformation- LFVM). Most of LFVM occur in the region of the head or neck, and those in the retroperitoneal region are rare. It has been reported that retroperitoneal lesions account for approximately 1% of all lymphatic malformations.

Because most vascular anomalies occur in the head or neck region, which can be observed percutaneously, clinical behavior plays a large role in preoperative diagnosis. However, retroperitoneal lesions, being deeper, are not accessible for clinical examination and it is difficult to evaluate and differentiate them by their clinical behavior. Thus, imaging evaluation is significant in preoperative diagnosis, especially in retroperitoneal vascular anomalies. Moreover, the imaging characteristics in vascular malformations are extremely variable, relying upon its vessel components and flow characteristics.

According to the literature, USG and MRI are useful in evaluation of vascular lesions. Ultrasonography is the initial imaging procedure, but its inability to evaluate the entire extent of large, deep lesions may be a disadvantage. On grey scale imaging heterogeneous lesion with anechoic channels can be seen in 50% of cases. Hyperechoic foci giving strong posterior acoustic shadowing can be seen in less than 20% of cases. Doppler USG plays valuable role as it helps to evaluate vascularity and flow pattern in the lesion. In most cases, Doppler USG demonstrates monophasic, low-velocity flow in 20%. At times, no flow is demonstrable. This absence of flow may indicate thrombosis or limitation of the equipment.

MRI is extremely helpful to evaluate the extent and flow dynamics of the lesion. Because of excellent soft tissue contrast of MRI, the relationship of the lesion with adjacent soft tissue is seen nicely. LFVM are usually iso to hypointense on T1W images and hyperintense on T2W images.

Lymphatic malformation or lymphangiectasia unlike other vascular malformations demonstrates insignificant mass effect and tends to insinuate along anatomical planes.

CONCLUSION

Retroperitoneal lymphangiectasia is a type of lymphatic malformation with clinical behavior similar to inguinal hernia/ varicocele due to its characteristic features of insinuating along anatomical planes without causing mass effect. A careful clinical examination with mindful application of clinical tests like transillumination would help differentiate it from inguinal hernia. Ultrasonography and colour Doppler, CT and MRI are extremely helpful imaging investigation which aid in differentiating these lesions from hernia/ varicocele and the cross sectional imaging like CT and MRI can depict the anatomical extent of the disease.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not Required

REFERENCES

1. Kosir MA, Sonnino RE, Gauderer MWL. Pediatric abdominal lymphangiomas: a plea for early recognition. J Pediatr Surg.1991;26(11):1309-13.
2. Jackson IT, Carreño R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg. 1993;91(07):1216-30.
3. Joshua A, Cox, Bartlett E, Lee EI. Vascular Malformations: A Review. Semin Plast Surg. 2014 May;28(2):58-63.
4. Davidson AJ, Hartman DS. Lymphangioma of the retroperitoneum. CT and sonographic characteristics. Radiol. 1990;175:507-10.

International Journal of Research in Medical Sciences | February 2020 | Vol 8 | Issue 2 | Page 752
5. Ko SF, Ng SH, Shieh CS, Lin JW, Huang CC, Lee TY. Mesenteric cystic lymphangioma with myxoid degeneration: unusual CT and MR manifestations. Pediatr Radiol. 1995;25:525-7.

6. Moukaddam H, Pollak J, Haims AH. MRI characteristics and classification of peripheral vascular malformations and tumors. Skeletal Radiol. 2009;38(6):535-47.

7. Donnelly LF, Adams DM, Bisset GS. Vascular malformations and hemangiomas: a practical approach in a multidisciplinary clinic. AJR Am J Roentgenol. 2000;174(3):597-608.

8. Kajal P, Rattan KN, Malik VS, Garsa V. Scrotal Lymphangioma—a rare cause of scrotal swelling. APSP J Case Reports. 2013 Jan;4(1):5.

Cite this article as: Manwar SU, Joshi MV, Shetty DS, Bhalerao UD. Retroperitoneal lymphangiectasia: a great clinical masquerade. Int J Res Med Sci 2020;8:748-53.