Analysis of microbial community biodiversity in activated sludge from a petrochemical plant

ARTICLES doi:10.4136/ambi-agua.2655

Received: 02 Oct. 2020; Accepted: 03 May 2021

Themis Collares Antunes¹; Leticia Marconatto²; Luiz Gustavo dos Anjos Borges²; Adriana Giongo²; Sueli Teresinha Van Der Sand³*

¹Instituto de Ciências Básicas da Saúde. Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente. Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, n°500, CEP: 90050-170, Porto Alegre, RS, Brazil. E-mail: themis.antunes@gmail.com
²Instituto do Petróleo e dos Recursos Naturais. Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, n° 6681, CEP: 90619-900, Porto Alegre, RS, Brazil. E-mail: leticia.marconatto@pucrs.br, luizgaborges@gmail.com, adrianagiongo@gmail.com
³Departamento de Microbiologia, Imunologia e Parasitologia. Instituto de Ciências Básicas da Saúde. Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, n°500, CEP: 90050-170, Porto Alegre, RS, Brazil.
*Corresponding author. E-mail: svands@ufrgs.br

ABSTRACT

The active sludge process is one of the most-used techniques for the biodegradation of organic compounds present in effluents from an assortment of wastewaters. This study investigated the bacterial community structure of a petroleum industry’s activated sludge and its physical and chemical parameters using high-throughput sequencing. Samples were collected over one year: autumn 2015 (C1), winter 2015 (C2), spring 2015 (C3), and summer 2016 (C4). Total DNA was extracted, and the primers targeting the V4 region of the 16S rRNA gene were used for amplicon sequencing. The majority of the detected microorganisms were considered rare microbiota, presenting a relative abundance below 1% of the total sequences. All of the sequences were classified at the phylum level, and up to 55% of the ASVs (Amplicon Sequence Variants) were associated with known bacterial genera. Proteobacteria was the most abundant phylum in three seasons, while the phylum Armatimonadota dominated in one season. The genus Hyphomicrobium was the most abundant in autumn, winter and summer, and an ASV belonging to the family Fimbriimonadaceae was the most abundant in the spring. Canonical Correspondence Analysis showed that physicochemical parameters of SS, SD and TSS are correlated, as well as ammoniacal nitrogen. Sample C3 presented the highest values of COD, AN, and solids (SS, SD and TSS). The highest COD, AN, and solids values are correlated to the high frequency of the phylum Armatimonadota in C3.

Keywords: bacterial community, high throughput sequencing, wastewater sludge.
O lodo ativo da planta de uma indústria de petróleo é constituído por uma microbiota ainda a ser identificada

RESUMO

O processo de lodo ativo é uma das técnicas mais utilizadas para biodegradação de compostos orgânicos presentes nos efluentes de uma variedade de águas residuais. A estrutura da comunidade bacteriana do lodo ativado de uma indústria de petróleo e sua relação com parâmetros físicos e químicos foram investigadas por meio de sequenciamento de alto rendimento. As amostras foram coletadas durante um período de um ano: outono de 2015 (C1), inverno de 2015 (C2), primavera de 2015 (C3) e verão de 2016 (C4). O DNA total foi extraído e para amplificação foram utilizados primers específicos para região V4 do gene 16S rRNA. A maioria dos microrganismos detectados foi considerada microbiota rara, apresentando abundância relativa abaixo de 1% do total de sequências. Em geral, quase a totalidade das sequências (99,9%) foi classificada em nível de filo, mas apenas algumas ASVs (23,7%) foram associadas a gênero bacteriano conhecido. As proteobactérias foram o filo mais abundante em três das estações, enquanto o filo Armatimonadota dominou em uma estação. O gênero Hyphomicrobium foi o gênero mais abundante no outono, inverno e verão, e uma ASV pertencente à família Fimbriimonadaceae (filo Armatimonadetes) foi o microrganismo mais abundante na primavera. A Análise de Correspondência Canônica (CCA) indica uma diferença consistente da comunidade bacteriana da primavera quando comparada com amostras de outras estações. Os resultados mostram uma correlação entre o filo Armatimonadota e a alta concentração de DQO, NA e sólidos.

Palavras-chave: comunidade bacteriana, lodo ativado, sequenciamento de alto rendimento.

1. INTRODUCTION

Biological and industrial wastewater treatment plants (WWTP) are standout biotechnological processes in operation worldwide (Figuerola and Erijman, 2007), whose significance is increasing in a consistently developing human society. Most wastewater treatment processes use the natural self-depuration limit of aquatic conditions, which is the effect of microbial activity (Heidenwag et al., 2001). It is crucial to recognize the relationship between microbial communities and their performance in the full-scale installations, since bacterial metabolism is essential for effective biological treatment of wastewater (Kwiatkowska and Zielinska, 2016).

Biological treatment by the active-sludge process is well known. This most-used technique for the biodegradation of organic compounds in effluents from a variety of wastewaters and their microbial community has been studied in urban, industrial, and petrochemical wastewaters (Zhang et al., 2011; Sánchez et al., 2013; Ye and Zhang, 2013). These studies have demonstrated that the most prevalent microorganisms in these samples are Betaproteobacteria, Alphaproteobacteria, Nitrobacteria, Bacteroidetes, Firmicutes, and Actinobacteria.

High-throughput sequencing technologies provide deep insights into the bacterial populations (Ibarbalz et al., 2013) and have been used to reveal the bacterial range of some complex environments, including activated sludge samples (Claesson et al., 2010; Zhang et al., 2011; Yang et al., 2014; Gwin et al., 2018). Some microorganisms have not been completely identified (Krishnan et al., 2016; Abe et al., 2017), showing that there is much more to discover about the biodiversity of activated sludge. In this study, we accessed the microbial community diversity present in activated sludge from the petrochemical industry using amplicon sequencing based on the 16S rRNA gene.
2. MATERIAL AND METHODS

2.1. Active sludge samples collection

Activated sludge samples were collected from a wastewater treatment plant (WWTP) located in Triunfo, Rio Grande do Sul, Brazil (29°51'01.1" S 51°22'50.9" W) previously described by Antunes et al. (2018). The WWTP handles 450-m³ h⁻¹ of wastewater and is operated as a conventional activated-sludge treatment process, mechanically aerated by blades. One liter of sludge was collected directly from the input aeration tank (Figure 1) during four sampling collections over one year: Autumn 2015 (C1), Winter 2015 (C2), Spring 2015 (C3), and Summer 2016 (C4). Samples were collected using a collection bucket and transported on ice to the laboratory. The samples were thereafter kept at -80°C until further analysis. Active sludge chemical composition and physical parameters were summarized in Antunes et al. (2018).

Figure 1. Schematic representation of the wastewater treatment plant. The black star indicates the sampling point. Arrows represent the effluent pathway.

The following parameters were determined by a certified laboratory, according to the American Public Health Association (APHA et al., 2012): total organic carbon (TOC), chemical oxygen demand (COD), dissolved oxygen (DO), total suspended solids (TSS), solids suspended (SS), solids dissolved (SD); and total Kjeldahl nitrogen (TKN). The chemical results are listed in Table 1.

Table 1. Active sludge chemical parameters. Results are shown in mg L⁻¹. (Modified from Antunes et al., 2018).

Parameter	Sampling time			
	C1	C2	C3	C4
Total organic carbon (TOC)	115	20	100	91
Chemical oxygen demand (COD)	399.5	13.33	637	83.6
Dissolved oxygen (DO)	2.1	2.02	0.7	0.5
Total suspended solids (TSS)	1286	788	1477	1625
Solids suspended (SS)	48	22	56	53
Solids dissolved (SD)	1241	678	1428	1508
Total Kjeldahl nitrogen (TKN)	67.67	13.08	25.54	27.53
Ammoniacal Nitrogen (AN)	8.74	4.32	11.49	8.44
2.2. DNA isolation and 16S rRNA gene fragment sequencing

Total DNA was extracted from 0.25 g of active sludge using the Dneasy PowerSoil Kit (Qiagen) following the manufacturer’s standard protocol. The concentration and purity of the isolated DNA were determined using an ND-100Nanodrop spectrophotometer (Thermo Fisher). Partial 16S rRNA gene sequences were amplified using universal primers 515F and 806R, previously identified as suitable for bacteria and archaea (Bates et al., 2011). Amplification was performed in a 25 μL mixture, consisting of 1 μL of genomic DNA, 2 mM MgCl₂, 0.2 μM of each primer, 200 μM of each dNTP, 1U Taq DNA polymerase and 1X reaction buffer. These primers amplify 291 bp from the V3-V4 hypervariable region of the prokaryotic 16S rRNA gene. Amplification was carried out in a Mastercycler Personal 5332 Thermocycler (EppendorfR) according to the following program: initial denaturation at 94°C for 2 min, followed by 25 cycles of 45 s at 94°C, 45 s at 55°C, 1 min at 72°C and a final cycle at 72°C for 6 min. For library construction, 100 ng of DNA was used as described in the Ion Plus Fragment Library manual kit. Barcode sequences were added to identify each sample from the total sequencing output, since all samples were sequenced in a multiplexed run. Amplicon sequencing was conducted on the Ion PGM System (Thermo Fisher) using an Ion 316 chip, following the manufacturer’s instructions.

Sequences from 16S rRNA amplicon sequencing were processed using DADA2 (Divisive Amplicon Denoising Algorithm) (Callahan et al., 2016) in R (R Core Team, 2019). Filtering, dereplication, sample inference, and chimera identification were performed, and the generated amplicon sequence variants (ASVs) were taxonomically assigned based on the SILVA database v. 138 (Quast et al., 2013). The ASV data were imported into R using phyloseq (McMurdie and Holmes, 2013). Unassigned taxa and any residual ASVs identified as chloroplast, mitochondria, or eukaryote were excluded from the analysis. The remaining sequences were analyzed as described by Heinz et al. (2017). Sequencing results were deposited in the National Center for Biotechnology Information (NCBI) under BioProject ID PRJNA471748.

Canonical Correspondence Analysis (CCA) was used to evaluate linkages between microbial communities (ten most-abundant phyla) and chemical parameters (TOC, COD, DO, TSS, SS, SD, and TKN) using Past3 software (Hammer et al., 2001).

3. RESULTS AND DISCUSSION

After removing the low-quality sequences, the amplicon sequencing from the four samples collected seasonally from the petrochemical industry active sludge yielded a total of 241,859 16S rRNA gene sequences samples, representing an average of 60,465 sequences per sample. The average sequence length was 273 bp.

The microbiota was classified within 31 phyla, 65 classes, 146 orders, 167 families and 185 genera or respective taxa. The domain Bacteria had the highest number of classified microorganisms (94.9% of the total sequences). The occurrence of four archaeal phyla was observed: Crenarchaeota, Halobacterota, Nanoarchaeota, Aenigmarchaeota. The phylum Aenigmarchaeota was present only in sequences from sample C3, comprising 0.10% of the total sequences in sample C3.

The classified bacterial community was composed of thirteen phyla with an abundance higher than 1% of the total sequences (Figure 2). Proteobacteria was the most abundant phylum in samples C1, C2, and C4, representing up to 37% of the total sequences in C2, followed by the phylum Bacteroidota present in samples C1, C2 and C4 (16.22%, 15.36% and 17.59% of the total sequences, respectively). In sample C3, the most abundant phylum was Armatimonadota and Proteobacteria; they represented 49.16% and 21.09% of the total sequences, respectively (Figure 2). Armatimonadota was the second-most abundant phylum in C1, after Proteobacteria, accounting for 11.74% of the total sequences. Unclassified sequences at the phylum level presented an average of 0.01% of the total sequences in the samples.
Figure 2. Classification of the most abundant phyla (≥ 1% of the total sequences in at least one sample) of microorganisms present in activated sludge samples over a year (samples C1 to C4). “Others” represents the phyla whose abundances are lower than 1% of the total sequences. * Archaea phyla.

From the 336 detected taxa, 33 presented a relative abundance higher than 1% in at least one sample (Table 2) and were considered the predominant microbiota. From that, seventeen microorganisms were classified at the genus level. *Hyphomicrobi um* was the most abundant genus in samples C1, C2, and C4, accounting for 13.98%, 12.72%, and 13.07% of the total sequences, respectively. The most abundant microorganism of sample C3 was a taxa belonging to the family *Fimbriimonadaceae* (phylum *Armatimonadota*), representing 48.96% of the total sequences in that sample. The majority of the 336 detected taxa were considered rare microbiota for presenting a relative abundance below 1% of the total sequences. From that, 185 microorganisms were classified at the genus level (Supplementary Table 1).

Canonical Correspondence Analysis (CCA) showed that the values of the physicochemical parameters of SS, SD, and TSS are correlated, as well as ammoniacal nitrogen (Figure 3). According to the analyzed chemical parameters (Table 1), C3 presents the highest COD, AN and solids (SS, SD and TSS) compared to the other samples. These microbiological and chemical characteristics found in sample C3 make it different from C1, C2, and C4 (Figure 4). The highest COD, AN, and solids values are correlated to the high frequency of the phylum *Armatimonadota*.

Our study provided 16S rRNA gene sequence analyses of the microbial community present in activated sludge from the petrochemical industry. Our findings are in accordance with previous studies of activated sludge, with the predominance of *Proteobacteria* (Xia et al., 2010). Sidhu et al. (2017) characterized and dissected the phylogenetic and functional structures from the sludge community at the phylum level and found the dominance of *Proteobacteria* in raw and dried sludge samples, representing 97.9% and 92.6%, respectively.
Table 2. Most abundant bacterial taxa present in the activated sludge samples.

Phylum	Class	Order	Family	Genus (or taxa)	Relative abundance (%)			
					C1	C2	C3	C4
Acidobacteriota	Blastocatellia	Blastocatellales	Blastocatellaceae	Blastocatellaceae	3.59	1.46	2.15	2.03
				OLB17	0.83	0.61	0.98	1.05
				JGI_0001001-H03	1.38	0.64	1.41	2.09
				Stenotrophobacter	1.64	1.41	0.95	1.35
Actinobacteriota	Thermoleophilia	Gaiellales	Gaiellales		1.61	5.61	0.88	1.56
		Solirubrobacterales			0.77	1.31	0.23	0.50
Armatimonadota	Fimbrimonadadia	Fimbrimonadales	Fimbrimonadaceae	Fimbrimonadaceae	11.07	4.92	48.96	7.49
Bacteroidota	SJA-28				10.64	12.50	1.80	8.61
	Bacteroidia	Sphingobacteriales	AKYH767	AKYH767	3.45	0.41	0.35	2.93
		Chitinophagales	Saprosiraceae	Saprosiraceae	0.66	0.49	0.97	2.81
Crenarchaeota*	Thermoprotei	Desulfurococcales	Desulfurococaceae		2.51	4.18	1.25	3.03
				Sulfophobococcus	1.49	1.18	0.24	0.04
Halobacterota*	Archaeoglobi	Archaeoglobales	Archaeoglobaceae		0.59	1.19	0.30	0.67
				Ferroglobus	0.39	1.70	0.97	3.11
Myxococcota	Polyangia	Haliangiales	Haliangiaceae	Haliangium	1.42	1.05	0.75	1.15
Nitrospirata	Nitrospira	Nitrospirales	Nitrospiraceae	Nitrospira	1.44	0.98	0.65	1.13
Planctomycetota	Phycisphaerica	S-70			0.87	0.80	0.58	1.31
				OM190	0.30	1.09	0.32	0.74
	Planctomycetes	Pirellulales	Pirellulaceae	Pirellulaceae	1.59	1.15	0.55	0.69
		Gemmatales	Gemmataceae	Gemmataceae	1.10	0.86	0.35	0.22
Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaceae	Hyphomicrobiun	13.98	12.72	4.79	13.07
		Rhodobacteriales	Rhodobacteraceae	Rhodobacter	1.27	0.79	0.78	0.33
				AB1	0.00	2.09	0.35	0.00
				Alphaproteobacteria	0.27	0.39	0.45	1.08
	Gammaproteobacteria	Burkholderiales	Rhodocyctaceae	Sulphurilae	1.21	1.24	0.64	0.72
				Nitrosomonadaceae	0.98	2.19	0.84	1.60
				Comamonadaceae	1.08	1.82	0.37	0.72
				SC-1-84	1.57	1.86	0.74	1.75
				Coxiellae	1.06	0.99	0.73	0.68
				Diplorickettsiales	0.66	2.74	0.92	0.13
				Diplorickettsiacae				
				Gammaproteobacteria				
				Unknown_Family				
				Candidatus Berkiella	0.83	0.16	2.11	0.93
Verrucomicrobiota	Verrucomicrobiae	Chthoniobacterales	Chthoniobacteraceae	Candidatus Udaeobacter	1.24	0.36	0.41	0.95

*Archaea phyla.
Analysis of the microbial community revealed key groups for degradation of recalcitrant compounds present in the industrial effluent. *Proteobacteria* prevail in WWTPs treating pharmaceutical, oil refinery, and biological reactors (Xia *et al.*, 2010; Ibarbalz *et al.*, 2013;...
Kwiatkowska and Zielinska, 2016). *Alphaproteobacteria* and *Gammaproteobacteria* were the most dominant class in *Proteobacteria*. The filamentous *Alphaproteobacteria* are versatile consumers of various organic substrates (Kragelund et al., 2006). Most species are aerobic or facultatively anaerobic; many are oligotrophic, preferring to grow in environments with low nutrient concentration (Madigan et al., 2016).

Activated sludge has a very diverse microbial community structure depending on both wastewater composition and operational conditions in the treatment plant. However, in several studies of microbial community structure, it has been found that the composition of activated sludge from different plants is quite similar in terms of overall dominating bacterial phylogenetic groups. In nutrient removal of activated sludge, the dominating group frequently found is *Alphaproteobacteria, Gammaproteobacteria* and *Betaproteobacteria* (Klausen et al., 2004; Lee et al. 2002; Schmid et al., 2003; Wagner and Loy, 2002). Studies in WWTPs suggested a higher diversity of active denitrifiers, including uncharacterized *Alphaproteobacteria, Gammaproteobacteria* and *Actinobacteria* (Osaka et al. 2006; Hagman et al., 2008; Morgan-Sagastume et al., 2008). Filamentous *Alphaproteobacteria* have been shown as essential microorganisms in industrial WWTPs, often related to bulking incidents or deteriorating settling sludge properties (Levantesi et al., 2004).

At the order level, it was found that the dominant populations in the activated sludge samples were *Burkolderiales* and *Rhizobiales*, which represented 8.03% and 7.44% of those populations. This low percentage indicates a great diversity of the bacterial populations present in the activated sludge.

Sample C3 presented the most different microbial composition of the four samples, mainly because of the dominance of the individuals from the phylum *Armatimonadota* (Lee et al., 2013). This phylum is found in a diverse array of environments, such as geothermal soils (Stott et al., 2008), freshwater lakes and rivers (Crump and Hobbie, 2005), the water discharged from manures (Simpson et al., 2004), and activated sludge (Dalevi et al., 2001). Portillo et al. (2009) pointed out that this bacterial phylum could constitute an average of 5% among the total bacterial sequences recovered in hypersaline soils, geothermal springs, lake and river, bioreactors, and endolithic environments. Among the phylum *Armatimonadetes*, a more extensive geographical distribution was found in anaerobic niches (Harris et al., 2004; Stott et al., 2008). Chemical parameters influenced the bacterial community of C3. The canonical correlation analysis (CCA) shows that the phylum *Armatimonadota* presented a positive correlation with the increasing COD, TOC and total dissolved and suspended solids of the C3 sample. This sample showed the highest COD and the second-highest TOC and Solids (TSS, SS, and SD) quantification; these parameters contribute to the formation of an environment with low oxygen concentrations, which may have favored the occurrence of the phylum *Armatimonadota*. Also, sample C3 showed bacterial diversity differences between the other collections of activated sludge, such the phyla *Aenigmarchaeota, Caldisericota, Cloacimonadota*, MBNT15 and Sva0485, which were only detected in C3 (Supplementary Table 1).

CCA analysis also showed the correlation of *Actinobacteriota* with the presence of dissolved oxygen (DO). Most genera from this phylum are aerobic (Goodfellow and Williams, 1983) and this phylum presented significant quantification in sample C2 (2 mg per liter).

Nitrospirae shows a correlation with the presence of NTK. The ability to perform nitrite reduction was a physiological characteristic observed in *Nitrospirae* (Sidhu et al., 2017). According to Ward et al. (2009), genomic evidence suggested that the role of acidobacteria in nitrogen cycling in soils and sediments is the reduction of nitrate, nitrite, and possibly nitric oxide due to assimilatory nitrate reductase gene sequences. The presence of *nif* genes related to conventional nitrogenase was found in a study by Inoue et al. (2015), suggesting nitrogen fixation ability in some *Bacteroidetes* species.
Acidobacteriota shows a correlation with the presence of AN, SS, SD and TSS. Bacteria belonging to the phylum Acidobacteria have also been observed in a wide variety of environments, including extreme (Hobel et al., 2005), polluted (Bobbink et al., 2010), and effluent wastewater environments (LaPara et al., 2000). Ward et al. (2009) found that Acidobacteria were involved in nitrogen cycling, promoting the conversion of nitrate and nitrite.

All the sequences were classified at the phylum level, and up to 55% were associated with a bacterial genus. Among the most abundant microorganisms, Hyphomicrobium and Fimbriimonadaceae were described in the literature as potential denitrifiers and degraders. The genus Hyphomicrobium is a denitrifier and can degrade C-1 compounds such as methanol (Rissanen et al., 2017). Sequences representing the phylum Armatimonadetes have been isolated by culture-independent methods from various environments, including aerobic and anaerobic wastewater treatment processes, the rhizosphere, hypersaline microbial mats and subsurface geothermal water streams (Portillo and Gonzalez, 2009; Lee et al., 2013; Tamaki et al., 2011). Fimbriimonadaceae belonging to Armatimonadetes was detected in an anammox consortia where ammonium was removed without nitrite and oxygen (Liang et al., 2014).

4. CONCLUSION

Even with the advances brought about by the new generation sequencing, there are still challenges regarding the classification of the microorganisms in environmental samples. The classification of sequences at a lower taxonomic level, such as family or genus, is essential to understanding a WWTP as a whole and the real participation of each microorganism in the different stages of treatment. The present study contributed to the characterization of the microbial communities involved in the sewage treatment of the petrochemical industry. Identifying the microorganisms has the broader impact of contributing to the knowledge of biological wastewater treatment.

5. ACKNOWLEDGMENTS

We would like to thank Sistema Integrado de Tratamento de Efluentes Líquidos do Polo Petroquímico (SITEL-CORSAN) for authorizing the sample collection. We thank High Performance Computing Lab - LAD/PUCRS for allowing access to run the high-throughput sequences analyses. Luiz Gustavo A. Borges thanks PEGA/PUCRS. We also thank CNPq and CAPES for their financial support.

6. REFERENCES

ABE, T.; USHIKI, N.; FUJITANI, H.; TSUNEDA, S. A rapid collection of yet unknown ammonia oxidizers in pure culture from activated sludge. Water Research, v. 108, p. 169-178, 2017. https://doi.org/10.1016/j.watres.2016.10.070

ANTUNES, T. C.; BALLARINI, A. E.; VAN DER SAND, S. Temporal variation of bacterial population and response to physical and chemical parameters along a petrochemical industry wastewater treatment plant. Annals of the Brazilian Academy of Sciences, v. 91, n. 2, 2018. https://doi.org/10.1590/0001-3765201920180394

APHA; AWWA; WEF. Standard Methods for the examination of water and wastewater. 22nd ed. Washington, 2012. 1496 p.

BATES, S. T.; BERG-LYONS, D.; CAPORASO, W. W. A; KNIGHT, R.; FIERER, N. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, v. 5, p. 908-17, 2011. https://doi.org/10.1038/ismej.2010.171
BOBBINK, R.; HICKS, K.; GALLOWAY, J.; SPRANGER, T.; ALKEMADE, R.; ASHMORE, M. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. *Ecological Applications*, v. 20, p. 30–59, 2010. http://dx.doi.org/10.1890/08-1140.1

CALLAHAN, B. J.; MCMURDIE, P. J.; ROSEN, M. J.; HAN, A. W.; JOHNSON, A. J.; HOLMES, S. P. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*, v. 13, p. 581-583, 2016. https://dx.doi.org/10.1038/nmeth.3869

CLAESSON, M. J.; WANG, Q.; O'SULLIVAN, O.; GREENE-DINIZ, R.; COLE J. R.; ROSS, R. P.; O'TOOLE, P. W. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. *Nucleic Acids Research*, v. 38, p. e200, 2010. https://doi.org/10.1093/nar/gkq873

CRUMP, B. C.; HOBBIE, J. E. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. *Limnology Oceanography*, v. 50, p. 1718–1729, 2005. https://doi.org/10.4319/lo.2005.50.6.1718

DALEVI, D.; HUGENHOLTZ, P.; BLACKALL, L. L. A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data. *International Journal of Systematic Evolutionary Microbiology*, v. 51, p. 385–391, 2001. https://doi.org/10.1099/00207713-51-2-385

FIGUEROLA, E. L.; ERIJMAN, L. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. *Environmental Microbiology*, v.9, p.1780-1789, 2007. https://doi.org/10.1111/j.1462-2920.2007.01298.x

GOODFELLOW, M.; WILLIAMS, S. T. Ecology of Actinomycetes. *Annual Review of Microbiology*, v. 37, n. 1, p. 189-216, 1983. https://doi.org/10.1146/annurev.mi.37.100183.001201

GWIN, C. A.; LEFEVRE, E.; ALITO, C. L.; GUNSCH, C. K. Microbial community response to silver nanoparticles and Ag+ in nitrifying activated sludge revealed by ion semiconductor sequencing. *The Science of the Total Environmental*, v. 616–617, p. 1014–1021, 2018. https://doi.org/10.1016/j.scitotenv.2017.10.217

HAGMAN, M.; NIELSEN, J. L.; NIELSEN, P. H.; JANSEN J. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. *Water Research*, v. 42, p. 1539-1546, 2008. https://doi.org/10.1016/j.watres.2007.10.034

HAMMER, O.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontology Electronica*, v. 4, n. 1, p. 1-9, 2001.

HARRIS, J. K.; KELLEY, S. T.; PACE, N. R. New perspective on uncultured bacterial phylogenetic division OP11. *Applied Environmental Microbiology*, v. 70, p. 845–849, 2004. https://dx.doi.org/10.1128/AEM.70.2.845-849.2004

HEIDENWAG, I.; LANGHEINRICH, U.; LÜDERITZ, V. Self Purification in upland and lowland streams. *Acta Hydrochimica at Hydrobiologica*, v. 29, n. 1, p. 22-33, 2001.
HEINZ, K. G. H.; ZANONI, P. R. S.; OLIVEIRA, R. R.; MEDINA-SILVA, R.; SIMÃO, T. L. L.; TRINDADE, F. J. et al. Recycled paper sludge microbial community as a potential source of cellulase and xylanase enzymes. *Waste Biomass Valorization*, v. 8, p. 1907-1917, 2017. https://dx.doi.org/10.1007/s12649-016-9792-x

HOBEL, C. F. V.; MARTEINSSON, V. T.; HREGGVIDSSON, G. O.; KRISTJÁNSSON, J. K. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. *Applied Environmental Microbiology*, v. 71, p. 2771–2776, 2005. https://dx.doi.org/10.1128/aem.71.5.2771-2776.2005

IBARBALZ, F. M.; FIGUEROLA, E. L. M.; ERIJMAN, L. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. *Water research*, v. 47, p. 3854-3864, 2013. https://10.1016/j.watres.2013.04.010

INOUE, J.; OSHIMA, K.; SUDA, W.; SAKAMOTO, M.; IIINO, T.; NODA, S.; OHKUMA, M. Distribution and Evolution of Nitrogen Fixation Genes in the Phylum Bacteroidetes. *Microbes Environmental*, v. 30, n. 1, p. 44–50, 2015. http://doi.org/10.1264/jsme2.ME14142

KLAUSEN, M. M.; THOMSEN, T. R.; NIELSEN, J. L.; MIKKELSEN, L. H.; NIELSEN, P. H. Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. *FEMS Microbiology Ecology*, v. 50, p.123–132, 2004. https://doi.org/10.1016/j.femsec.2004.06.005

KRAGELUND, C.; KONG, Y.; VAN DER, W. J.; THELEN; K.; EIKELBOOM, D.; TANDOI, V. et al. Ecophysiology of different filamentous Alphaproteobacteria species from industrial wastewater treatment plants. *Microbiology*, v. 152, p.3003–3012, 2006. https://doi.org/10.1099/mic.0.29249-0

KRISHNAN, M.; SUGANYA, T.; PANDIARAJAN, J. Bacterial community exploration through Ion Torrent sequencing from different treatment stages of CETP for tannery. *Expert Opinion Environmental Biology Journal*, v. 5, p. 3, 2016. https://dx.doi.org/10.4172/2325-9655.1000136

KWATKOWSKA, A. C.; ZIELINSKA, M. Bacterial communities in full-scale wastewater treatment systems. *World Journal Microbiology Biotechnology*, v. 32, p. 66, 2016. https://dx.doi.org/10.1007/s11274-016-2012-9

LAPARA, T. M.; NAKATSU, C. H.; PANTEA, L.; ALLEMAN, J. E. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. *Applied Environmental Microbiology*, v. 66, p. 3951–3959, 2000. https://dx.doi.org/10.1128/aem.66.9.3951-3959.2000

LEE, N.; LA COUR JANSSEN, J.; ASPEGREN, H.; HENZE, M. N. P. H.; WAGNER, M. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated without nitrogen removal. *Water Science Technology*, v. 46, p.163–170, 2002. https://doi.org/10.2166/wst.2002.0472

LEE, K. C. Y.; HERBOLD, C. W.; DUNFIELD, P. F.; MORGAN, X. C.; MCDONALD, I. R.; STOTT, M. B. Phylogenetic delineation of the novel phylum Armatimonadetes (former candidate division OP10) and definition of two novel candidate divisions. *Applied Environmental Microbiology*, v. 79, p. 2484-2487, 2013. https://doi.org/10.2166/wst.2002.0472
LEVANTESI, C.; BEIMFOHR, C.; GEURKINK, B.; ROSSETTI, S.; THELEN, K.; KROONEMAN, J. et al. Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. *System Applied Microbiology*, v. 27, p.716–727, 2004. https://doi.org/10.1078/0723202042369974

LIANG, Y.; LI, D.; ZHANG, X.; ZENG, H.; YANG, Z.; ZHANG, J. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. *Bioresource Technology*, v.169, p.103-109, 2014. https://doi.org/10.1016/j.biortech.2014.06.064

MADIGAN, M. T.; MARTINKO, J. M.; BENDER, K. S.; BUCKLEY, D. H.; STAHL, D. A. *Microbiologia de Brock*. Porto Alegre: Artmed, 2016. 1032 p.

MCMURDIE P. J.; HOLMES, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS ONE*, v. 8, p. e61217, 2013. https://dx.doi.org/10.1371/journal.pone.0061217

MORGAN-SAGASTUME, F.; NIELSEN, J. L.; NIELSEN, P. H. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. *FEMS Microbiology Ecology*, v. 66, p. 447-461, 2008. https://doi.org/10.1111/j.1574-6941.2008.00571.x

OSAKA, T.; YOSHIE, S.; TSUNEDA, S.; HIRATA, A.; IWAMI, N.; INAMORI, Y. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. *Microbiology Ecology*, v. 52, p. 253-266, 2006. https://doi.org/10.1007/s00248-006-9071-7

PORTILLO, M. C.; GONZALEZ, J. M. Members of the Candidate Division OP10 are spread in a variety of environments. *World Journal Microbiology Biotechnology*, v. 25, p. 347–353, 2009. https://dx.doi.org/10.1007/s11274-008-9895-z

QUAST, C.; PRUESSE, E.; YILMAZ, P.; GERKEN, J.; SCHWEER, T.; YARZA, P. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research*, v. 41, p. D590–D596, 2013. https://dx.doi.org/10.1093/nar/gks1219

R CORE TEAM. *R*: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019.

RISSANEN, A. J.; OJALA, A.; FRED, T.; TOIVONEN, J.; TIOROLA, M. Methylophilaceae and Hyphomicrobiaceae as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants. *Journal of Industrial Microbiology Biotechnology*, v. 44, p. 35–47, 2017. https://doi.org/10.1007/s10295-016-1860-5

SÁNCHEZ, O.; FERRERA, I.; GONZÁLEZ, J.M.; MAS, J. Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. *Microbial Biotechnology*, v. 6, n. 4, p. 435–442, 2013. https://dx.doi.org/10.1111/1751-7915.12052

SCHMID, M.; THILL, A.; PURK Hold, U.; WALCHER, M.; BOTTERO, J. Y.; GINESTET, P. et al. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. *Water Research*, v. 37, p. 2043–2052, 2003. https://doi.org/10.1016/S0043-1354(02)00616-4
SIDHU, C.; VIKRAM, S.; PINNAKA, A. K. Unraveling the microbial interactions and metabolic potentials in pre- and post-treated sludge from a wastewater treatment plant using metagenomic studies. *Frontiers in Microbiology*, v. 8, p. 1382, 2017. https://dx.doi.org/10.3389/fmicb.2017.01382

SIMPSON, J. M.; DOMINGO, J. W.; REASONER, D. J. Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. *FEMS Microbiology Ecology*, v. 47, p. 65–75, 2004. https://doi.org/10.1016/S0168-6496(03)00250-2

STOTT, M. B.; SAITO, J. A.; CROWE, M. A.; DUNFIELD, P. F.; HOU, S.; NAKASONE, E. *et al.* Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. *Journal of Geophysical Research: Solid Earth*, v. 113, p. 113, 2008. https://dx.doi.org/10.1029/2007JB005477

TAMAKI, H.; TANAKA, Y.; MATUSAWA, H.; MURAMATSU, M.; MENG, X.Y.; HANADA, S. *et al.* Armatimonas rosea gen. nov., sp nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. *International Journal Systematic and Evolutionary Microbiology*. v.61, p.1442–1447, 2011. https://doi.org/10.1099/ijs.0.025643-0

WAGNER, M.; LOY, A. Bacterial community composition and function in sewage treatment systems. *Current Opinion Biotechnology*. v. 13, p. 218-227, 2002. https://doi.org/10.1016/S0958-1669(02)00315-4

WARD, N. L.; CHALLACOMBE, J. F.; JANSENS, P. H.; HENRISSAT, B.; COUTINHO, P. M.; WU, M. *et al.* Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. *Applied Environmental Microbiology*, v. 75, p. 2046-56, 2009. https://dx.doi.org/10.1128/AEM.02294-08

XIA, S.; DUAN. L.; SONG, Y.; LI, J.; PICENO, Y. M.; ANDERSEN, G. L.; COHEN, A. L. *et al.* Bacterial community structure in geographically distributed biological wastewater treatment reactors. *Environmental Science and Technology*, v. 44, p. 7391–7396, 2010. https://doi.org/10.1021/es101554m

YANG, Y.; YU, K.; XIA, Y.; LAU, F. T.; TANG, D. T.; FUNG, W. C.; FANG, H. H. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. *Applied Microbiology Biotechnology*, v. 98, p. 5709, 2014. https://doi.org/10.1007/s00253-014-5648-0

YE, L.; ZHANG, T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. *Applied Microbiology Biotechnology*, v. 97, p. 2681, 2013. https://doi.org/10.1007/s00253-012-4082-4

ZHANG, T.; SHAO, M. F.; YE, L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. *The ISME Journal*, v. 6, p. 1137–1147, 2011. https://doi.org/10.1038/ismej.2011.188
Supplementary Table 1.

Kingdom	Phylum	Order	Family	Genus (or taxa)	C1	C2	C3	C4
Bacteria	Armatimonadota	Fimbribionadiales	Fimbribionadaceae		11.07	4.92	48.96	7.49
Bacteria	Bacteroidota	SIA-28			10.64	12.50	1.80	8.61
Bacteria	Proteobacteria	Alpha-proteobacteria			13.98	12.72	4.79	13.07
Bacteria	Acidobacteriota	Blastocellales	Blastocellaceae	OLB17	1.38	0.82	1.32	1.01
Bacteria	Acidobacteriota	Blastocellales	Blastocellaceae	OLB17	0.83	0.61	0.98	1.05
Bacteria	Actinobacteriota	Thermopliciophila	Gaeellales		1.61	5.61	0.88	1.56
Bacteria	Bacteroidota	Bacteroidia	Sphingobacteriales	AKYH767	3.45	0.41	0.35	2.93
Bacteria	Proteobacteria	Gammaproteobacteria			1.21	1.24	0.64	0.72
Archaea	Crenarchaeota	Thermoprotei	Desulfurococcaceae	Sulfolobococcus	2.51	4.18	1.25	3.03
Bacteria	Proteobacteria	Gammaproteobacteria			0.98	2.19	0.84	1.60
Bacteria	Acidobacteriota	Blastocellales	Blastocellaceae	JGI_0001001-H03	1.38	0.64	1.41	2.09
Bacteria	Proteobacteria	Gammaproteobacteria			0.66	2.74	0.92	0.13
Bacteria	SAR324_clade (Marine_group_B)				4.33	3.59	1.68	4.77
Bacteria	Proteobacteria	Alphaproteobacteria			1.27	0.79	0.78	0.33
Archaea	Halobacterota	Archaeoglobi	Archaeoglobaceae		0.59	1.19	0.30	0.67
Bacteria	Proteobacteria	Alphaproteobacteria			0.00	2.09	0.35	0.00
Bacteria	Myxococcota	Polyangia	Haliangiales		1.42	1.05	0.75	1.15
Bacteria	Proteobacteria	Gammaproteobacteria			1.08	1.82	0.37	0.72
Bacteria	Actinobacteriota	Thermopliciophila			0.77	1.31	0.23	0.50
Bacteria	Nitrospirota	Nitrospira			1.44	0.98	0.65	1.13
Bacteria	Bacteroidota	Bacteroidia	Citinophagales		0.66	0.49	0.97	2.81
Bacteria	Acidobacteriota	Blastocellales	Blastocellaceae		2.20	0.64	0.83	1.02
Bacteria	Acidobacteriota	Blastocellales	Blastocellaceae		1.64	1.41	0.95	1.35
Bacteria	Verrucomicrobiota	Chthoniobacteriales			1.24	0.36	0.81	1.05
Bacteria	Proteobacteria	Chthoniobacteriales			0.27	0.39	0.45	1.08
Bacteria	Proteobacteria	Gammaproteobacteria			1.06	0.99	0.73	0.68
Bacteria	Proteobacteria	Gammaproteobacteria			1.57	1.86	0.74	1.75
Bacteria	Planctomycetota	Physiciscphae	S-70		0.87	0.80	0.58	1.31
Bacteria	Planctomycetota	Planctomyces	Pirellulales		1.59	1.15	0.55	0.69
Bacteria	Planctomycetota	OM190			0.30	1.09	0.32	0.74
Bacteria	Planctomycetota	Planctomyces	Gemmate		1.10	0.86	0.35	0.22
Archaea	Halobacterota	Archaeoglobi	Archaeoglobale		0.39	1.70	0.97	3.13
Archaea	Crenarchaeota	Thermoprotei	Desulfurococcaceae		1.49	1.18	0.24	0.04
Bacteria	Proteobacteria	Gammaproteobacteria			0.83	0.16	2.11	0.93
Bacteria	Proteobacteria	Gammaproteobacteria			0.53	0.57	0.41	0.79
Bacteria	Verrucomicrobiota	Chlamydiace	Chlamydiace		0.15	0.07	0.60	0.19
Bacteria	Bacteroidota	Bacteroidia	Citinophagae		0.50	0.73	0.51	0.91
Bacteria	Proteobacteria	Alphaproteobacteria			0.57	0.15	0.24	0.75
Bacteria	Acidobacteriota	Blastocellales	Sphingomonadales		0.41	0.41	0.40	0.46
Bacteria	Proteobacteria	Gammaproteobacteria			0.07	0.24	0.51	0.26

Continue...
Analysis of microbial community biodiversity in activated... Continued...

Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	Bradyrhizobium	0.40	0.48	0.51	0.61
Bacteria	Thermotogota	Thermotogae	Mesosaciditogales	Mesosaciditogaeae	0.17	0.82	0.30	0.39	
Archeae	Halobacterota	Halobacterota	Halobacterota	Halobacterota	0.00	0.00	0.29	0.71	
Bacteria	Proteobacteria	Gammaproteobacteria	Nitrosooccales	Nitrosooccalesae	0.00	0.21	0.18	0.76	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteralesae	0.00	0.68	0.19	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkhorderiales	Comamonadasae	0.46	0.44	0.16	0.33	
Archeae	Nanoarchaeota	Nanoarchaeota	Nanoarchaeota	Nanoarchaeota	0.82	0.71	0.30	0.81	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkhorderiales	Sutterelleae	0.41	0.26	0.11	0.46	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkhorderiales	B1-7BS	0.46	0.30	0.15	0.47	
Bacteria	Verrucomicrobiota	Chlamydiaceae	Chlamydiaceae	Simkaniaeae	Ga0074140	0.22	0.04	0.27	0.00
Bacteria	Firmicutes	Clostridiae	Clostridiales	Clostridialesae	0.00	0.20	0.24	0.09	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaeae	0.59	0.92	0.24	0.43	
Bacteria	Armatimonadota	Fimbirimonadiales	Fimbirimonadiales	Fimbirimonadiales	0.68	0.15	0.21	0.13	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraeae	0.52	0.34	0.21	0.10	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaeae	0.54	0.00	0.27	0.00	
Bacteria	Acidobacteriota	Vicinamibacteriae	Subgroup_17	Rhizobiales	0.43	0.73	0.30	0.44	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	0.43	0.44	0.26	0.21	
Bacteria	Proteobacteria	Gammaproteobacteria	Thermoanaerobaculi	Thermoanaerobaculi	0.04	0.00	0.26	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	EhV818WSAP88	EhV818WSAP88	0.36	0.13	0.28	0.10	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	0.36	0.23	0.27	0.32	
Bacteria	Gemmatimonadota	Gemmatimonadetes	Gemmatimonadetes	Gemmatimonadetes	0.17	0.17	0.11	0.34	
Bacteria	Armatimonadota	Fimbirimonadiales	Fimbirimonadiales	Fimbirimonadiales	0.69	0.33	0.03	0.81	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	0.69	0.33	0.03	0.81	
Bacteria	Acidobacteriota	Acidobacteriota	Acidobacteriota	Acidobacteriota	0.31	0.42	0.14	0.00	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	0.00	0.00	0.33	0.00	
Bacteria	Planctomycetota	Physiophaeae	Physiophaeae	Physiophaeae	0.31	0.41	0.28	0.62	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacterales	0.46	0.00	0.21	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	PLTA13	PLTA13	0.03	0.16	0.13	0.30	
Bacteria	Proteobacteria	Alphaproteobacteria	Paracaeldibacterales	Paracaeldibacterales	0.08	0.07	0.07	0.06	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraeae	0.52	0.58	0.21	0.00	
Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Hirschualae	0.00	0.21	0.14	0.08	
Bacteria	Verrucomicrobiota	Verrucomicrobiota	Pedosphaeraeae	Pedosphaeraeae	0.04	0.19	0.35	0.29	
Bacteria	Bacteroidota	Bacteroidae	Chitinophagales	Chitinophagalesae	0.34	0.46	0.29	0.81	
Bacteria	Bacteroidota	Bacteroidae	Cytophagales	Microscillaeeae	0.24	0.18	0.17	0.29	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkhorderiales	Nitrosomonadasae	966-1	0.00	0.40	0.14	1.04
Bacteria	Planctomycetota	Physiophaeae	Physiophaeae	Physiophaeae	0.15	0.38	0.40	0.80	
Bacteria	Planctomycetota	Physiophaeae	Physiophaeae	Physiophaeae	0.12	0.04	0.19	0.02	
Bacteria	Myxococcota	Polyania	Polyania	Polyania	0.00	0.13	0.09	0.43	
Bacteria	Dependientes	Babelae	Babelae	Vermiphilaeaeae	0.00	0.45	0.45	0.09	
Bacteria	Proteobacteria	Alphaproteobacteria	Micavibronales	Micavibronales	0.00	0.00	0.00	0.81	

Rev. Ambient. Água vol. 16 n. 3, e2655 - Taubaté 2021
Continued...

Domain	Phylum	Class	Order	Family	Genus	Percentage	0.10	0.20
Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	0.00	0.00	0.18	0.00
Bacteria	Desulfobacterota	Desulfobacterota	Desulfobacterota	Desulfitobacterota	0.03	0.06	0.13	0.46
Bacteria	Gammaproteobacteria	Betaproteobacteria	Burkholderiales	Rhodocyclaceae	0.10	0.07	0.17	0.21
Bacteria	Desulfobacterota	Desulfobacterota	Desulfobacterota	Sulfitobacterota	0.10	0.07	0.16	0.16
Bacteria	Planctomycetota	Planctomycetes	Planctomycetes	Planctomycetaceae	0.33	0.40	0.22	0.20
Bacteria	Actinobacterota	Actinobacteria	Actinobacteria	Micrococcaceae	0.24	0.40	0.11	0.09
Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	0.00	0.00	0.13	0.34
Archaea	Crenarchaeota	Thermoprotei	Geoarchaeae	SCGC_AAA261-C22	0.49	0.00	0.16	0.38
Bacteria	Chloroflexi	KD4-96	Chloroflexi	Geobacillus	0.47	0.54	0.07	0.23
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Burkholderiaceae	0.00	0.23	0.06	0.10
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Comamonadaceae	0.00	0.00	0.14	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Beggiatoaceae	0.00	0.00	0.10	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Candidatus_Allobeggiato	0.00	0.00	0.17	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Rhodocyclaceae	0.08	0.05	0.08	0.39
Bacteria	Proteobacteria	Alphaproteobacteria	Reynoldsellae	Reynoldsellaceae	0.00	0.27	0.06	0.00
Bacteria	Dependentiae	Bacteriellae	Bacteriellae	Parachlamydiaceae	0.44	0.13	0.13	0.62
Bacteria	Verrucomicrobiota	Chlamydiaceae	Chlamydiaceae	Candidatus_Proteochlamydia	0.27	0.00	0.17	0.00
Bacteria	Chloroflexi	Anaerolineae	RBG-13-54-9	Anaerolineae	0.32	0.24	0.15	0.16
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacteriales	Rhodobacteraceae	0.00	0.00	0.14	0.28
Bacteria	Bdellovibrionota	Oligoflexia	0.0319-6G20	0.0319-6G20	0.25	0.06	0.28	0.12
Bacteria	Acidobacterota	Vicinamibacteria	Vicinamibacteria	Vicinamibacteria	0.00	0.08	0.09	0.24
Bacteria	Actinobacterota	Actinobacteria	Micrococcaceae	Micrococcaceae	0.00	0.32	0.12	0.12
Bacteria	Actinobacterota	Actinobacteria	Coriobacteriales	Coriobacteriales	0.10	0.13	0.13	0.12
Bacteria	Actinobacterota	Actinobacteria	Corynebacteriales	Corynebacteriales	0.30	0.13	0.13	0.12
Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	0.00	0.00	0.11	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Acidithiobacillales	Acidithiobacillaceae	0.16	0.00	0.06	0.09
Bacteria	Acidobacterota	Vicinamibacteria	Vicinamibacteria	Vicinamibacteria	0.00	0.39	0.10	0.25
Bacteria	Acidobacterota	Blastocellata	Blastocellata	Blastocellata	0.06	0.06	0.08	0.46
Bacteria	Myxococciota	Myxococcaceae	Myxococcaceae	Myxococcaceae	0.02	0.38	0.04	0.00
Archaea	Aenigmarchaeota	Aenigmarchaeota	Aenigmarchaeota	Aenigmarchaeota	0.06	0.06	0.10	0.00
Archaea	Crenarchaeota	Thermoprotei	Desulfurococcales	Desulfurococcales	0.00	0.09	0.12	0.00
Archaea	Acidobacterota	Holophagae	Subgroup_7	Staphylothermus	0.21	0.13	0.09	0.00
Archaea	Bacteroidota	Kryptonina	Kryptonina	BSV26	0.23	0.31	0.13	0.69
Archaea	Myxococciota	Polyangia	MSB-4B10	0.02	0.00	0.09	0.00	
Archaea	Planctomycetota	Psychrophila	Tepidisphaeriales	WD2101_soil_group	0.27	0.10	0.10	0.09
Archaea	Chloroflexi	Dehalococcoidia	S085	Uliginosobacterium	0.15	0.07	0.06	0.00
Archaea	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Rhodanobacteraceae	0.10	0.18	0.02	0.00

Continue...
Analysis of microbial community biodiversity in activated ...

Continued...

Kingdom	Phylum	Class	Order	Family	Genus	TAo	TAo^2	TAo^3	
Bacteria	Acidobacteriota	Acidobacteria	Bryobacteriales	Bryobacteriales	Bryobacter	0.00	0.07	0.11	0.15
Bacteria	Bacteroidota	Ignavibacteriales	LD-RB-34	Neochlamydiaceae	Neochlamydia	0.03	0.07	0.07	0.16
Bacteria	Verrucomicrobiota	Chlamydiaceae	Parachlamydiaceae	Crenarchaeota	Caldivirga	0.16	0.30	0.12	0.19
Bacteria	Latescibacterota	Verrucomicrobiota	Pedosphaerales	ADurb.Bin063-1	ADurb.Bin063-1	0.00	0.20	0.08	0.07
Bacteria	Proteobacteria	Alphaproteobacteria	Hyphomonadales	Simkaniaceae	Candidatus_Fritschea	0.12	0.00	0.08	0.21
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales_Incertae_Sedis	Bauldia	0.00	0.21	0.16	0.16
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Rhodocyclaceae	Methylversatilis	0.00	0.00	0.07	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Chromatiales	Thermoproteales	Rhodobacter	0.00	0.14	0.05	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Chloroflexi	Flavobacteriales	Thermonema	0.04	0.03	0.06	0.05
Bacteria	Verrucomicrobiota	Chlamydiaceae	Planctomycetes	Planctomycetes	Chlamydiaceae	0.00	0.00	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	Candidatus_Peregrinibacteria	0.05	0.00	0.05	0.03
Bacteria	Dependatiae	Bacteroidota	Bacteroidiales	Burkholderiales	Cytophagales	0.00	0.15	0.06	0.00
Bacteria	Verrucomicrobiota	Chlamydiaceae	Latescibacterota	Criblamydiaceae	Eubacteriales	0.01	0.03	0.06	0.05
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	Thermomembrana	0.00	0.00	0.00	0.00
Bacteria	Myxococcota	Polyania	Polyaniales	Chlamydiaceae	Chlamydiaceae	0.00	0.00	0.00	0.00
Bacteria	Planctomycetota	Planctomycetes	Planctomycetes	Planctomycetes	Planctomycetes	0.00	0.00	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	Planctomycetes	0.00	0.00	0.00	0.00
Bacteria	Chloroflexi	Anaerolineae	Planctomycetes	Planctomycetes	Planctomycetes	0.00	0.00	0.00	0.00
Bacteria	Bacteroidota	Bacteroidia	Flavobacteriales	Flavobacteriales	Flavobacteriales	0.00	0.00	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Rhizobiales	Planctomycetes	0.00	0.00	0.00	0.00
Bacteria	Zixibacteria	Dablubiecta	Dablubiecta	Frigoripilosa	Frigoripilosa	0.00	0.00	0.00	0.00
Bacteria	Dadabacteria	Dadabacteria	Dadabacteria	Dadabacteria	Dadabacteria	0.00	0.00	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Kiloniellaes	Kiloniellaes	Kiloniellaes	0.00	0.00	0.00	0.00
Bacteria	Acidobacteriota	Vicinamibacteria	Vicinamibacteria	Vicinamibacteria	Vicinamibacteria	0.00	0.00	0.00	0.00
Bacteria	Chloroflexi	Anaerolineae	SBR1031	A4b	A4b	0.05	0.09	0.09	0.14
Bacteria	Verrucomicrobiota	Chlamydiaceae	Criblamydiaceae	Criblamydiaceae	Criblamydiaceae	0.00	0.00	0.04	0.00
Archaea	Crenarchaeota	Thermoprotei	Thermoprotei	Thermoprotei	Thermoprotei	0.00	0.04	0.04	0.00
Bacteria	Planctomycetota	Planctomycetes	Planctomycetes	Planctomycetes	Planctomycetes	0.18	0.04	0.04	0.03
Bacteria	Patescibacteria	Microgenomatia	Candidatus_Amesbacteria	Candidatus_Amesbacteria	Candidatus_Amesbacteria	0.27	0.00	8.45E-03	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Methylocystis	0.00	0.15	0.02	0.00

Continue...
Bacteria	MBNT15	Gammaproteobacteria	Legionellales	Legionellaceae	Legionella	0.00	0.00	0.04	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Legionellales	Legionellaceae	Legionella	0.12	0.03	0.02	0.00	
Bacteria	Chloroflexi	Anaerolineae	01_20	Burkholderiales	Burkholderiaceae	Lautropia	0.00	0.00	0.04	0.00
Bacteria	Aquificota	Desulfo bacteriota	Desulfurobacteriota	Desulfurobacteriota	Balneum	0.00	0.00	0.04	0.00	
Bacteria	Bdellovibrio	Oligoflexia	Silvanigrellaes	Silvanigrellaes	Silvanigrella	0.00	0.02	0.02	0.26	
Bacteria	Verrucomicrobiota	Verrucomicrobiae	Oputiales	Punicoecococcus	Cerasicoccus	0.13	0.05	0.00	0.00	
Bacteria	Planctomycetota	Planctomycetes	Planctomycetales	Rubinisphaeraceae	Planctomicrobium	0.11	0.08	0.01	0.00	
Bacteria	Firmicutes	Clostridiales	Peptostreptococcales-Tissierellales	Peptostreptococci	Romboutsia	0.07	0.05	0.02	0.03	
Bacteria	Patesicibacteria	Saccharimonadiales	Saccharimonadales	Saccharimonadaceae	GTL1	0.19	0.00	0.03	0.00	
Bacteria	Firmicutes	Clostridiales	Clostridiales	Clostridium_sensu_stricto	Clostridium_sensu_stricto	0.11	0.10	0.01	0.00	
Bacteria	Dependetiae	Baeliae	Baeliae	Baeliae	Baeliae	0.00	0.02	0.04	0.14	
Bacteria	Proteobacteria	Gammaproteobacteria	Steroidobacteriota	Steroidobacteriota	Steroidobacteriota	0.00	0.00	0.04	0.00	
Bacteria	Archaea	Nanoarchaeota	Woesearchaeales	SCGC_AAA286-E23	SCGC_AAA286-E23	0.00	0.12	0.00	0.00	
Bacteria	Verrucomicrobiota	Verrucomicrobiota	Chthoniobacteriota	Terrimicrobiaceae	FukuN18_freshwater_group	0.01	0.00	0.03	0.00	
Bacteria	Patesicibacteria	Saccharimonadiales	Saccharimonadales	Saccharimonadaceae	0.05	0.03	0.03	0.00		
Bacteria	Acidobacteriota	Acidobacteriota	Acidobacteriota	Acidobacteriota	Acidobacteriota	0.04	0.00	0.02	0.05	
Bacteria	Proteobacteria	Alphaproteobacteria	Reynellales	Candidatus_Konhacter	Candidatus_Konhacter	0.00	0.04	0.08	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Burkholderiales	Burkholderiales	0.00	0.00	0.03	0.00	
Bacteria	Dependetiae	Baeliae	Baeliae	Baeliae	UBA12411	0.09	8.83E-03	0.03	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Nitrosomonadaceae	Nitrosomonadaceae	0.00	0.05	0.03	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Alcaligenaceae	Alcaligenaceae	0.00	0.00	0.03	0.00	
Bacteria	Verrucomicrobiota	Chlamydiaceae	Chlamydiaceae	Parachlamydiaceae	Parachlamydiaceae	0.00	0.00	0.02	0.14	
Bacteria	Verrucomicrobiota	Verrucomicrobiota	Opinotales	Punicoecococcus	Punicoecococcus	0.11	0.03	0.01	0.03	
Bacteria	Myxococota	Pongyia	Pongyia	Pongyica	Pongyica	0.13	0.13	0.04	0.00	
Bacteria	Acidobacteriota	Acidobiaceae	Elev-16S-1166	Elev-16S-1166	Elev-16S-1166	0.00	0.00	0.03	0.00	
Bacteria	Actinobacteriota	Thermoleophilia	Thermophileales	Thermoleophilia	Thermoleophilia	0.04	0.02	0.03	0.00	
Bacteria	Proteobacteria	Alphaproteobacteria	Azospirillales	Inquilinaceae	Inquilinus	0.05	0.00	0.03	0.00	
Bacteria	Chloroflexi	Anaerolineae	SBR1031	Alcaligenaceae	Alcaligenaceae	0.00	0.00	0.05	0.06	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Nitrosomonadaceae	Nitrosomonadaceae	0.00	0.00	0.03	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales	Alcaligenaceae	Alcaligenaceae	0.00	0.00	0.03	0.00	
Bacteria	Proteobacteria	Gammaproteobacteria	Immundisolibacteriota	Immundisolibacteriota	Immundisolibacteriota	0.00	0.00	0.03	0.13	
Bacteria	Verrucomicrobiota	Chlamydiaceae	Chlamydiaceae	cvE6	cvE6	0.14	0.00	8.54E-03	0	
Bacteria	Proteobacteria	Alphaproteobacteria	Azospirillales	Azospirillales_Incertae_Sedis	Stella	0.00	0.00	0.03	0	
Bacteria	Bdellovibrio	Bdellovibrionia	Bdellovibrio	Bdellovibriaceae	Bdellovibriaceae	0.15	0.00	0.03	0.10	
Bacteria	Proteobacteria	Gammaproteobacteria	Steroidobacteriota	Steroidobacteriota	Steroidobacteriota	0.00	0.00	0.04	0.02	
Bacteria	Proteobacteria	Gammaproteobacteria	JG36-GS-52	JG36-GS-52	JG36-GS-52	0.05	0.00	0.02	0.06	
Bacteria	Chloroflexi	Anaerolineae	Anaerolineae	Anaerolineae	Anaerolineae	0.00	0.02	0.03	0.03	
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Pleomorphonanadaceae	Pleomorphonanadaceae	0.00	0.00	0.02	0.00	
Bacteria	Proteobacteria	Alphaproteobacteria	Holosporales	Holosporaceae	Candidatus_Parholospora	0.00	0.00	0.02	0.00	
Bacteria	Verrucomicrobiota	Verrucomicrobiae	Methylacidiphilales	Methylacidiphilales	Methylacidiphilales	0.00	0.00	0.02	0.00	

Rev. Ambient. Água vol. 16 n. 3, e2655 - Taubaté 2021
Analysis of microbial community biodiversity in activated ... Continued...

Domain	Phylum	Class	Order	Family	Genus	Abundance
Archaea	Crenarchaeota	Caldiarchaeales	Geothermarchaeaceae			0.00
Bacteria	Chloroflexi	Dehalococoidia	GIF9	AB-539-J10	Dsci	0.00
Bacteria	Bacteroidota	Bacteroidia	Chitinophagales			0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Qingshengania	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Boeae	0.00
Bacteria	Patensibacteria	Parcubacteria	NA			0.00
Bacteria	Desulfo bacterota	Desulfarcula	Desulfarculaceae	Dethiosulfatatarculus		0.03
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales			0.00
Bacteria	Myxococcota	Myxococcaceae	Myxococcales			0.00
Bacteria	Bacteroidota	Bacteroidia	Bacteroidales			0.00
Bacteria	Myxococcota	Polyangia	mlle-27			0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales_Incertae_Sedis	Candidatus_Branchiomonas		0.00
Bacteria	Bacteroidota	Bacteroidia	Sphingobacteriales			0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales		Neisseriaceae	0.04
Bacteria	Planctomycetota	Phycisphaeraceae	Tepidiphylaceae		Tepidisphaeraceae	0.00
Bacteria	Aquificota	Aquificae	Aquificae		Aquificae	0.00
Bacteria	Planctomycetota	Planctomyces	Prevellulaceae		Prevellulae	0.10
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales		Xanthobacteraceae	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales			0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Gammaproteobacteria_Incertae_Sedis	Unknown_Family	Acidibacter	0.09
Bacteria	Actinobacteriota	Acidimicrobia	Microtrichales		Iamiaceae	0.00
Bacteria	Myxococcota	Myxococcaceae	Myxococcales			0.00
Bacteria	Cyanobacteria	Vampirivibrio	Obscuribacteriales		Obscuribacteraceae	0.08
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales		Devosiaece	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales			0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadaceae		Sphingomonadaceae	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	EC3			0.08
Bacteria	Actinobacteriota	Actinobacteria	Frankeniales		Nakamurellace	0.00
Bacteria	Verrucomicrobiota	Verrucomicrobiae	Verrucomicrobiae			0.00
Bacteria	Planctomycetota	Phycisphaeraceae	Phycisphaeraceae			0.00
Bacteria	Nitrospina					0.00
Bacteria	Verrucomicrobiota	Verrucomicrobiae	Chthoniobacterae			0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiales		T34	0.00
Bacteria	Cyanobacteria	Vampirivibrio	Vampirivibrio		Vampirivibrio	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Methylococcales		Methylococcaceae	0.08
Bacteria	Chloroflexi	Anaerolineae	C10-SB1A			0.00
Bacteria	Desulfo bacterota	Syntrophobacteria	Syntrophobacteraceae		Desulfacinum	0.00
Bacteria	Caldisericota	Caldisericia	TTA_B15			0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Acetobacteriales		Acetobacteraceae	0.00
Bacteria	Bacteroidota	Bacteroidia	Cytophagales			0.00

Continue...
Domain	Phylum	Class	Order	Family	Genus
Archaea	Halobacterota	Methanomicrobia	Methanomicrobiales	Methanomicrobiaceae	Methanomicrobium
Bacteria	Proteobacteria	Gammaproteobacteria	Gammaproteobacteriales	Thiomicrospirales	Thiomicrospiraceae
Bacteria	Myxococota	Polyangiales	Polyangiales	Polyangiales	Laihlihrix
Bacteria	Chloroflexi	Chloroflexia	Thermomicrobiales	JG30-KF-CM45	Unknown_Family
Bacteria	Proteobacteria	Gammaproteobacteria	Gammaproteobacteriales	Unknown_Family	Candidatus_Ovatusbacter
Bacteria	Planctomycetota	Physicphaeae	Pfla1_lineage	0.00	0.00
Bacteria	Verrucomicrobiota	Verrucomicrobiae	Pedosphaeriales	0.01	0.00
Bacteria	Firmicutes	Bacilli	Acholeplasmatales	DMI	0.00
Bacteria	Verrucomicrobiota	Kiritimatiellae	Kiritimatiellae	0.00	0.00
Bacteria	Patesicibacteria	Microgenomatia	Candidatus_Gottesmanbacteria	0.00	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Rhodanobacteraceae	Tahibacter
Bacteria	Chloroflexi	Ktedonobacteria	C0119	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Labrys	0.00
Bacteria	Proteobacteria	Gammaproteobacteria	sediment-surface35	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rickettsiales	SM2D12	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rickettsiales	Rickettsiaceae	Candidatus_Arcanobacter
Bacteria	Proteobacteria	Alphaproteobacteria	Rickettsiales	Candidatus_Megaira	0.00
Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales	0.00	0.00
Bacteria	Proteobacteria	Alphaproteobacteria	Rickettsiales	Solirubrobacteraceae	Connexibacter
Bacteria	Firmicutes	Desulfitomaculata	Carboxydomethanales	SM1B06	0.00
Bacteria	Bodellovibroniota	Bodellovibronia	Bodellovibionales	Carboxydomethanaceae	Carboxydomethanacem
Bacteria	Chloroflexi	OLB14	Bodellovibionales	0.00	0.00
Bacteria	Planctomycetota	Planctomycetes	Planctomycetes	Schlesneriaceae	Schlesneria
Bacteria	Actinobacteria	Acidimicrobia	Microtrichiales	Ilumatobacteraceae	0.05
Bacteria	Actinobacteria	Acidimicrobia	Microtrichiales	0.05	7.25E-03
Bacteria	Firmicutes	Bacilli	Eryssipelotrichales	Bulledia	0.00
Bacteria	Bodellovibroniota	Oligoflexia	Silvanigrellales	0.00	9.66E-03
Bacteria	Planctomycetota	Planctomycetes	Planctomycetes	0.01	8.35E-03

Continued...

Rev. Ambient. Água vol. 16 n. 3, e2655 - Taubaté 2021

Themis Collares Antunes et al.
Continued...

Bacteria	Planctomycetota	Planctomycetes	Gemmatales	Gemmataceae	Gemmata	0.00	0.00	0.01	0.00		
Bacteria	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Nereida	0.00	8.83E-03	0.00	0.03		
Bacteria	Planctomycetota	Physicisphaerae	MSBL9			0.06	0.00	0.00	0.00		
Bacteria	Proteobacteria	Alphaproteobacteria	rickettsiales		AB1	0.00	0.00	6.04E-03	0.00		
Bacteria	Firmicutes	Clostridia	Oscillospirales	Oscillospircaeae	NK4A214_group	0.00	0.00	6.04E-03	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiiales	Alcaligenaeae	Ampullimomnas	0.00	0.00	6.04E-03	0.00		
Bacteria	Bacteroidota	Bacteroidia	Sphingobacteriales		FFC9454	0.03	0.00	0.00	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Nitrococcales	Nitrococcaeae	Arthomonas	0.03	0.00	0.00	0.00		
Bacteria	Verrucomicrobiota	Verrucomicrobacia	Pedosphaerales	Pedosphaarceae	SH3-11	0.00	0.018	0.00	0.02		
Bacteria	Proteobacteria	Alphaproteobacteria	Holosporales	Holosporaceae	Candidatus Bealia	0.00	0.018	0.00	0.00		
Bacteria	Patocicbacteria	Microgenomata	Candidatus Pacebacteria								
Bacteria	Patocicbacteria	MD2896-B216									
Bacteria	Planctomycetota	Planctomycetes	Isosphaerales	Isosphaeraceae		0.00	0.00	4.83E-03	0.00		
Bacteria	Proteobacteria	Alphaproteobacteria	Rickettsiales	Anaplasmataceae	Candidatus_Xenolissocinum	0.00	0.00	4.83E-03	0.00		
Bacteria	Firmicutes	Clostridia	Eubacteriales	Eubacteriaceae		0.00	0.00	4.83E-03	0.00		
Bacteria	Sva0485					0.00	0.00	4.83E-03	0.00		
Bacteria	Myxococcota	Polyangia	Polyangiales	Amb-16S-1034		0.00	8.83E-03	0.00	0.02		
Bacteria	Verrucomicrobiota	Chlamydiae	Chlamydiales	Simkianiaceae		0.00	0.00	0.00	0.02		
Bacteria	Acidobacteriota	Acidobacteriaceae	Acidobacteriaceae_or	Acidobacteria_ea	Paludibaculum	0.00	0.00	0.00	0.02		
Bacteria	Chloroflexi	Anaerolineae	Anaerolineae	Anaerolineae		0.02	0.00	2.42E-03	0.00		
Bacteria	Actinobacteriota	Actinobacteria				0.02	0.00	0.00	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Ectothiorhodospirales	Ectothiorhodospiraceae	Thiolohospira	0.00	0.01	0.00	0.00		
Bacteria	Firmicutes	Bacilli	Thermoactinomyceteae	Thermoactinomycetaceae	Risungbinella	0.00	0.01	0.00	0.00		
Bacteria	Firmicutes	Bacilli	Paenibacillales	Paenibacillceae	Oxalaphagus	0.00	0.01	0.00	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Burkholderiiales	Rhodocyclaceae	Niveibacterium	0.00	0.01	0.00	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae		0.00	0.01	0.00	0.00		
Bacteria	Archaea	Carnarchaeota	Thermoprotei	Desulfurococcales	Desulfurococcaceae	Thermosphaera	0.00	0.00	3.62E-03	0.00	
Bacteria	Planctomycetota	BD7-11				0.00	0.00	3.62E-03	0.00		
Bacteria	Verrucomicrobiota	Verrucomicrobcia	Optitales	Optitaceae	Ereoglobus	0.00	0.00	3.62E-03	0.00		
Bacteria	Armatimonadota					0.00	0.00	3.62E-03	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Oceanospirillales	Halomonadaceae	Hdn1	0.00	0.00	3.62E-03	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Legionellales	Legioniaceae		0.00	0.00	3.62E-03	0.00		
Bacteria	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteriaceae	Varioibacter	0.00	0.00	3.62E-03	0.00		
Bacteria	Archaea	Carnarchaeota	Nitrosotherpaeeae	Nitrosothpearceae	Candidatus Nitrocosmicus	0.00	0.00	0.00	0.02		
Bacteria	Actinobacteriota	Acidimicrobiota	Acidimicrobiaceae	Acidimicrobiaceae	Fermicrobium	0.00	0.00	0.00	0.02		
Bacteria	Firmicutes	Thermovenabulaila	Thermovenabulales	Thermovenabulales_fa	Fervidicola	0.00	0.00	0.00	0.02		
Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia/Shigella	0.01	0.00	0.00	0.00		
Bacteria	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Rhodanobacteriaceae	Pseudofulvimonas	0.00	8.83E-03	0.00	0.00		
Bacteria	Firmicutes	Clostridia	Clostridia_or	Hungateiclostridiaceae	Ruminicolastriod	0.00	8.83E-03	0.00	0.00		
Bacteria	Phylum	Class	Order	Family	Genus	cr616	cr616	0.00	0.00	2.42E-03	0.00
-----------------	------------------	-------------------	------------------	-------------------	-------------	--------	--------	--------	--------	----------	--------
Proteobacteria	Alphaproteobacteria	Elsterales	Acidimicrobiales	Acidimicrobiaceae							
Actinobacteriota	Acidimicrobia	Acidimicrobiales	Opitutales	Opitutaceae							
Acidobacteriota	Acidobacteriota	Acidobacteriota	Acidobacteriota	Acidobacteriota							
Planctomycetota	Planctomycetota	Planctomycetota	Planctomycetota	Planctomycetota							
Verrucomicrobiota	Verrucomicrobiota	Verrucomicrobiota	Phycisphaerales	Phycisphaerales							
Myxococcota	Polyangia	Polyangia	Polyangia	Polyangia							
Bacteroidota	Bacteroidia	Bacteroidia	Bacteroidia	Bacteroidia							

Continued...