Injection-locking of violet laser diodes with a 3.2GHz offset frequency for driving Raman transitions in $^{43}\text{Ca}^+$

B. C. Keitch1,*, N.R. Thomas, D. M. Lucas2

1IQE, ETH Zürich, Schafmattstrasse 16, 8093 Zurich, Switzerland

2Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K.

*Corresponding author: bkeitch@ethz.ch

Compiled May 6, 2014

Two cw single-mode violet (397nm) diode lasers are locked to a single external-cavity master diode laser by optical injection locking. A double-pass 1.6GHz acousto-optic modulator is used to provide a 3.2GHz offset frequency between the two slave lasers. We achieve up to 20mW usable output in each slave beam, with as little as 25μW of injection power at room temperature. An optical heterodyne measurement of the beat note between the two slave beams gives a linewidth of \leq10Hz at 3.2GHz. We also estimate the free-running linewidth of the master laser to be approximately 3MHz, by optical heterodyning with a similar device. © 2014 Optical Society of America

OCIS codes: 000.0000, 999.9999.

1. Introduction

Injection-locking laser diodes has been a standard technique in the infrared for some time [1], and has useful applications in spectroscopy, metrology and interferometry. It can also be used for driving Raman transitions, where a stable frequency offset is required, but the absolute wavelength is not critical [2]. Offsets can be added to the master beam using an AOM to generate two beams with a tunable frequency difference. This makes the technique very useful for quantum information experiments with trapped ions and neutral atoms [3].

The availability of blue and violet diode lasers is a relatively recent development; however it has already been shown that it is possible to directly inject a bare InGaN laser diode from an Extended Cavity Diode Laser (ECDL) [4,5].

We are interested in Raman transitions between two of the hyperfine states of the $4S_{1/2}$ ground level of a $^{43}\text{Ca}^+$ ion for use in a quantum information processing scheme [6]. Two beams drive Raman transitions from $4S_{1/2}(F=4)$ to $4S_{1/2}(F=3)$ with a frequency difference of 3 225 608 286Hz [7], via the $4P_{1/2}$ level at a wavelength of 397nm. Using laser beams rather than microwaves provides a mechanism of imparting coherent motion to a calcium ion in a Paul trap. This allows both cooling of the ion and preparation of the ion in a given motional state.

Whilst the frequency difference needs to be very stable, we off-resonantly drive the transition [8], and therefore the absolute wavelength is not critical. Grating-stabilisation gives an output power of about 50% of the free-running diode’s power. Use of EOMs or direct modulation of the laser are possible; however, unlike an AOM, this would not allow spatial filtering of the upper-sideband from the lower-sideband and carrier. Direct modulation of either beam is inefficient, due to the low diffraction efficiency (25%) and low damage threshold (\approx1mW at the necessary beam-diameter) of high-frequency AOMs. By using an injection scheme, both slave lasers can give maximum power with the required frequency offset.

Currently tapered amplifiers are not commercially available at the required atomic wavelengths, though there has been recent work in this direction [9]. It is also possible to use frequency-doubled systems [10] but these require more experimental complexity, and are less desirable for experiments of long duration.

In section 2 the linewidth of an unlocked ECDL is measured, to give reference data to compare against the locked system. In section 3 direct injection of a diode laser gives a powerful slave beam to both compare with the modulated slave, and to use in our application. In section 4 we demonstrate offset injection-locking using the AOM. Due to the delicate nature of AOM crystals that are efficient at this drive-frequency, the requirement for successful injection at very low powers is even more stringent.

2. Laser linewidth

A heterodyning method ("beating") was used to measure the linewidth of the ECDL used in the following experiments. Two independent ECDLs were tuned to run \approx3GHz apart, with similar powers and operating conditions. The InGaN diode was supplied by Nichia and used in a Toptica DL110 system. The ECDLs were grating-stabilised in the Littrow configuration. Current control, temperature stabilisation and tuning of the grating via a piezo-actuator were all included in the system. The temperature stabilisation was specified to be 2mK RMS. The grating was tuned to give wavelengths of 395.5nm, 396nm and 397nm, measured using a NIST LM10 wavemeter. In final use, the wavelength will be tuned near to the $4S_{1/2} \leftrightarrow 4P_{1/2}$ transition in $^{43}\text{Ca}^+$ at 397nm.
The two beams were superimposed on each other using a beam-splitter, and the resultant beam focused on to a high-speed photodiode (Newfocus 1437, 25GHz). The beat-note was amplified and measured on a RF Spectrum Analyser (Agilent E4405B). The sweep time of the analyser was reduced to a minimum of 10ms. However, the relative jitter of the two free-running lasers during the sweep time gives a significant contribution to the measured linewidth. The results are shown in figure 1. It can be seen that at a power of about 7mW the linewidth of the ECDL is better than $\sqrt{2} = 2.3 \text{ MHz}$. The specified linewidth of these ECDL systems is $<5 \text{ MHz}$ over 100 μs.

3. Direct injection

An ECDL was used as a master laser to inject a bare diode laser (the slave). The system is shown in figure 2. The lasers were protected from stray back-reflection using Faraday-rotator isolators (OFR IO-5-397-PHU-Z) which gave an isolation of $>30 \text{ dB}$, with a transmission loss of about 1.5dB. The total power available from the master ECDL (after its isolator) was 12 mW, at a current of 51 mA. The slave laser had a power of about 20mW after its isolator, at maximum current. Both lasers were running close to room temperature.

Injection was investigated by launching a small amount of light from the master into the slave via the side-port of the Faraday isolator. No beam-shaping was done, as the master’s beam shape closely matched that of the slave.

Throughout the experiment the output from each laser was monitored using an optical spectrum analyser (OSA). The OSA was a CVI Technical Optics SA2-12, with a free spectral range of 7.5GHz. Care was taken to ensure that the lasers were operating single-mode. A plot of stable injection regions is shown in figure 3. The power of the injection beam was reduced to the lowest level that stable single-mode operation of the slave could be observed. Successful injection was achieved with an injection power entering the isolator as low as 25μW.

By monitoring both the master and the slave laser on an OSA simultaneously, the slave could be seen to “track” the master as its wavelength was changed using a piezo control on the grating. The master was not locked to a fixed reference, and so instability in the master laser could cause the slave to lose its lock. However, it was observed that the injection remained stable over a period of hours.

4. Injection with 3.2GHz offset

In the second part of the experiment, a fraction of the master power was passed through an AOM using a
double-pass setup. The setup is shown in figure 4, continuing from 2. The AOM was a TeO$_2$ device (Brimrose TEF1600-150-395). Care was taken to keep the intensity below the damage threshold (1W/mm2). As there is evidence that high-powers rapidly age this type of crystal [11], the power was further reduced. The double-pass arrangement allows the RF drive frequency to be changed without altering alignment of the injection beam. The RF drive frequency was 1.6GHz, giving a frequency-offset of 3.2GHz after the double-pass. A lens (f=250mm) was used to focus the beam into the AOM. The peak intensity at the waist was 0.3W/mm2 and efficiencies of 25% on the first pass and 29% on the second pass were measured. An identical lens was used to recollimate the beam on the second pass and it was found that the second pass was more efficient than the first due to the beam shape being better matched. Vertically polarised input light was the most efficient for the AOM. After the first pass the polarisation was rotated returning through the AOM and separated off using a PBS. The RF was generated using a synthesizer (Agilent E4422B) and amplified to 1W.

Injection via the double-pass AOM was achieved and the power was once again reduced to a minimum. Successful injection at 60µW optical power at a frequency offset of 3.2GHz was achieved. To measure the relative stability (coherence length), a heterodyne signal was generated as in section 2. This beat signal is shown in figure 5.

5. Conclusion

Two violet diode lasers were injection locked to give two 20mW beams with a 3.2GHz frequency offset. A heterodyne signal between the beams with a width of 10Hz at the −3dB points was observed, and this was the minimum width that could be measured with a RF spectrum analyser that had a minimum bandwidth of 10Hz. This remained stable over a period of hours, without the master laser being locked to any external frequency reference. The offset was tunable via the RF source, and the injection remained aligned, due to the double-pass technique. The absolute frequency was tunable using the external grating of the master laser, along with its current and temperature.

This technique is suitable for high-fidelity experiments for quantum information processing and to drive coherent motion of a calcium ion in a Paul trap. It can also be extended to other Raman transitions at other wavelengths. By showing that successful injection can be obtained at very low power we avoid the complication of amplified or frequency-doubled systems and avoid damage to the AOM crystal.

We would like to thank Ursula Pavlish for her work in the laboratory.

References

1. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, Opt. Lett. 21, 1502 (1996).
2. S. M. Angel, M. Carrabba, and T. F. Cooney, Spectrochim Acta A 51, 1779 (1995).
3. D. C. McKay, D. Jervis, D. J. Fine, J. W. Simpson-Porco, G. J. A. Edge, and J. H. Thywissen, Phys. Rev. A 84, 063420 (2011).
4. K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Jpn J Appl Phys 42, 5059 (2003).
5. I. Hirano and N. Ito, Opt Laser Technol 37, 81 (2005).
6. J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, and A. M. Steane, New J Phys 8, 188 (2006).
7. F. Arbes, M. Benzing, T. Gudjons, F. Kurth, and G. Werth, Z Phys D Atom Mol Cl 31, 27 (1994).
8. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, Phys. Rev. A 75, 042329 (2007).
9. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kamamoto, M. Ikeda, and H. Yokoyama, Appl Phys Lett 97, 021101 (2010).
10. K. Hayasaka, Opt Commun 206, 401 (2002).
11. T. Körber, private communication (2004). Quantum Optics and Spectroscopy, University of Innsbruck.
References

1. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, “Microwave signal generation with optical injection locking,” Opt. Lett. 21, 1502–1504 (1996).

2. S. M. Angel, M. Carrabba, and T. F. Cooney, “The utilization of diode lasers for Raman spectroscopy,” Spectrochim Acta A 51, 1779 – 1799 (1995).

3. D. C. McKay, D. Jervis, D. J. Fine, J. W. Simpson-Porco, G. J. A. Edge, and J. H. Thywissen, “Low-temperature high-density magneto-optical trapping of potassium using the open 4s→5p transition at 405 nm,” Phys. Rev. A 84, 063420 (2011).

4. K. Komori, Y. Takasu, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Injection-locking of blue laser diodes and its application to the laser cooling of neutral ytterbium atoms,” Jpn J Appl Phys 42, 5059–5062 (2003).

5. I. Hirano and N. Ito, “Spectral characteristics of cascade master/slave/slave injection-locking of laser diodes,” Opt Laser Technol 37, 81 – 86 (2005).

6. J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, and A. M. Steane, “Deterministic entanglement and tomography of ion–spin qubits,” New J Phys 8, 188 (2006).

7. F. Arbes, M. Benzing, T. Gudjons, F. Kurth, and G. Werth, “Precise determination of the ground state hyperfine structure splitting of 43Ca II,” Z Phys D Atom Mol Cl 31, 27–30 (1994).

8. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).

9. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl Phys Lett 97, 021101 (2010).

10. K. Hayasaka, “Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback,” Opt Commun 206, 401 – 409 (2002).

11. T. Kürber, private communication (2004). Quantum Optics and Spectroscopy, University of Innsbruck.