ON PARTIAL SUMS OF NORMALIZED q-BESSEL FUNCTIONS

HALİT ORHAN AND İBRAHİM AKTAŞ

Abstract. In the present investigation our main aim is to give lower bounds for the ratio of some normalized q-Bessel functions and their sequences of partial sums. Especially, we consider Jackson’s second and third q-Bessel functions and we apply one normalization for each of them.

1. Introduction

Let A denote the class of functions of the following form:

\begin{equation}
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\end{equation}

which are analytic in the open unit disk

$$U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$$

We denote by S the class of all functions in A which are univalent in U.

The Jackson’s second and third q-Bessel functions are defined by (see [4])

\begin{equation}
 J^{(2)}_\nu(z; q) = \frac{(q^{\nu+1}; q)_\infty}{(q; q)_\infty} \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{q}\right)^{2n+\nu}}{(q; q)_n (q^{\nu+1}; q)_n} q^{n(n+\nu)}
\end{equation}

and

\begin{equation}
 J^{(3)}_\nu(z; q) = \frac{(q^{\nu+1}; q)_\infty}{(q; q)_\infty} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+\nu}}{(q; q)_n (q^{\nu+1}; q)_n} q^{\frac{1}{2}n(n+1)},
\end{equation}

where $z \in \mathbb{C}, \nu > -1, q \in (0, 1)$ and

$$\frac{a}{q} = 1, (a; q)_n = \prod_{k=1}^{n} (1 - aq^{k-1}), (a, q)_\infty = \prod_{k=1}^{\infty} (1 - aq^{k-1}).$$

Here we would like to say that Jackson’s third q-Bessel function is also known as Hahn-Exton q-Bessel function.

Recently, the some geometric properties like univalence, starlikeness and convexity of the some special functions were investigated by many authors. Especially, in [1 5 6 8] authors have studied on the starlikeness and convexity of the some normalized q-Bessel functions. In addition, the some lower bounds for the ratio of some special functions and their sequences of partial sums were given in [3 7 10 11]. Moreover, results related with partial sums of analytic functions can be found in [2 9 12 13 14] etc.

Motivated by the previous works on analytic and some special functions, in this paper our aim is to present some lower bounds for the ratio of normalized q-Bessel functions to their sequences of partial sums.
Due to the functions defined by (1.2) and (1.3) do not belong to the class A, we consider following normalized forms of the q-Bessel functions:

\begin{equation}
 h^{(2)}_\nu (z; q) = 2^\nu c_\nu (q) z^{1-\frac{\nu}{2}} J^{(2)}_\nu (\sqrt{z}; q) = \sum_{n \geq 0} K_n z^{n+1}
\end{equation}

and

\begin{equation}
 h^{(3)}_\nu (z; q) = c_\nu (q) z^{1-\frac{\nu}{2}} J^{(3)}_\nu (\sqrt{z}; q) = \sum_{n \geq 0} T_n z^{n+1},
\end{equation}

where $K_n = \frac{(-1)^n q^{n(n+\nu)}}{4^n (q; q)_n (q^{\nu+1}; q)_n}$, $T_n = \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{(q; q)_n (q^{\nu+1}; q)_n}$ and $c_\nu (q) = (q; q)_\infty / (q^{\nu+1}; q)_\infty$. As a result of the above normalizations, all of the above functions belong to the class A.

2. Main Results

The following lemmas will be required in order to derive our main results.

Lemma 1. Let $q \in (0, 1)$, $\nu > -1$ and $4(1-q)(1-q^\nu) > q^\nu$. Then the function $h^{(2)}_\nu (z; q)$ satisfies the next two inequalities for $z \in U$:

\begin{equation}
 |h^{(2)}_\nu (z; q)| \leq \frac{4(1-q)(1-q^\nu)}{4(1-q)(1-q^\nu) - q^\nu},
\end{equation}

\begin{equation}
 \left| (h^{(2)}_\nu (z; q))' \right| \leq \left(\frac{4(1-q)(1-q^\nu)}{4(1-q)(1-q^\nu) - q^\nu} \right)^2.
\end{equation}

Proof. It can be easily shown that the inequalities

\begin{align*}
 q^{n(n+\nu)} &\leq q^{n\nu},
 (1-q)^n &\leq (q; q)_n \quad \text{and} \quad (1-q^\nu)^n \leq (q^{\nu+1}; q)_n
\end{align*}

are valid for $q \in (0, 1)$ and $\nu > -1$. Making use the above inequalities and well-known triangle inequality, for $z \in U$, we get

\begin{align*}
 |h^{(2)}_\nu (z; q)| &= \left| z + \sum_{n \geq 1} \frac{(-1)^n q^{n(n+\nu)}}{4^n (q; q)_n (q^{\nu+1}; q)_n} z^{n+1} \right| \\
 &\leq 1 + \sum_{n \geq 1} \frac{q^n}{4^n (q; q)_n (q^{\nu+1}; q)_n} \\
 &\leq 1 + \sum_{n \geq 1} \left(\frac{q^\nu}{4(1-q)(1-q^\nu)} \right)^n \\
 &\leq 1 + \frac{q^\nu}{4(1-q)(1-q^\nu)} \sum_{n \geq 1} \left(\frac{q^\nu}{4(1-q)(1-q^\nu)} \right)^{n-1} \\
 &= \frac{4(1-q)(1-q^\nu)}{4(1-q)(1-q^\nu) - q^\nu}.
\end{align*}
and

\[\left| (h_\nu^{(3)}(z; q))' \right| = \left| 1 + \sum_{n \geq 1} \frac{(-1)^n(n + 1)q^{n(n+\nu)}}{4^n(q; q)_n(q^{\nu+1}; q)_n} z^n \right| \]
\[\leq 1 + \sum_{n \geq 1} \frac{(n + 1)q^{n(n+\nu)}}{4^n(q; q)_n(q^{\nu+1}; q)_n} \]
\[\leq 1 + \sum_{n \geq 1} (n + 1) \left(\frac{q^{\nu}}{4(1-q)(1-q^{\nu})} \right)^n \]
\[= \left(\frac{4(1-q)(1-q^{\nu})}{4(1-q)(1-q^{\nu}) - q^{\nu}} \right)^2. \]

Thus, the inequalities (2.1) and (2.2) are proved. \(\square \)

Lemma 2. Let \(q \in (0, 1) \), \(\nu > -1 \) and \((1-q)(1-q^{\nu}) > \sqrt{q} \). Then the function \(h_\nu^{(3)}(z; q) \) satisfies the inequalities

(2.3) \[\left| h_\nu^{(3)}(z; q) \right| \leq \frac{(1-q)(1-q^{\nu})}{(1-q)(1-q^{\nu}) - \sqrt{q}}, \]

and

(2.4) \[\left| (h_\nu^{(3)}(z; q))' \right| \leq \left(\frac{(1-q)(1-q^{\nu})}{(1-q)(1-q^{\nu}) - \sqrt{q}} \right)^2 \]

for \(z \in \mathcal{U} \).

Proof. It is known that the inequalities

\[q^{\frac{1}{2}n(n+1)} \leq q^{\frac{1}{2}n}, (1-q)^n \leq (q; q)_n \text{ and } (1-q^{\nu})^n \leq (q^{\nu+1}; q)_n \]

are valid for \(q \in (0, 1) \) and \(\nu > -1 \). Now, using the well-known triangle inequality for \(z \in \mathcal{U} \), we have

\[\left| h_\nu^{(3)}(z; q) \right| = \left| z + \sum_{n \geq 1} \frac{(-1)^n q^{\frac{1}{2}n(n+1)}}{(q; q)_n(q^{\nu+1}; q)_n} z^{n+1} \right| \]
\[\leq 1 + \sum_{n \geq 1} \frac{q^{\frac{n}{2}}}{(1-q)^n(1-q^{\nu})^n} \]
\[\leq 1 + \frac{\sqrt{q}}{(1-q)(1-q^{\nu})} \sum_{n \geq 1} \left(\frac{\sqrt{q}}{(1-q)(1-q^{\nu})} \right)^{n-1} \]
\[= \frac{(1-q)(1-q^{\nu})}{(1-q)(1-q^{\nu}) - \sqrt{q}}. \]
Theorem 1. Let $\nu > -1, q \in (0, 1)$, the function $h^{(2)}_\nu : \mathcal{U} \to \mathbb{C}$ be defined by (1.4) and its sequences of partial sums by $h^{(2)}_\nu(z; q) = z + \sum_{n=1}^{\infty} K_n z^{n+1}$. If the inequality $2(1-q)(1-q^\nu) \geq q^\nu$, then the following inequalities hold true for $z \in \mathcal{U}$:

\[\Re \left\{ \frac{h^{(2)}_\nu(z; q)}{(h^{(2)}_\nu)_m(z; q)} \right\} \geq \frac{4(1-q)(1-q^\nu) - 2q^\nu}{4(1-q)(1-q^\nu) - q^\nu}. \]

(2.5)

\[\Re \left\{ \frac{(h^{(2)}_\nu)_m(z; q)}{h^{(2)}_\nu(z; q)} \right\} \geq \frac{4(1-q)(1-q^\nu) - q^\nu}{4(1-q)(1-q^\nu)}. \]

(2.6)

Proof. From the inequality (2.1) we have that

\[1 + \sum_{n \geq 1} |K_n| \leq \frac{4(1-q)(1-q^\nu)}{4(1-q)(1-q^\nu) - q^\nu}. \]

(2.7)

The inequality (2.7) is equivalent to

\[\frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n \geq 1} |K_n| \leq 1. \]

(2.8)

In order to prove the inequality (2.5), we consider the function $w(z)$ defined by

\[\frac{1+w(z)}{1-w(z)} = \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \left\{ \frac{h^{(2)}_\nu(z; q)}{(h^{(2)}_\nu)_m(z; q)} - \frac{4(1-q)(1-q^\nu) - 2q^\nu}{4(1-q)(1-q^\nu) - q^\nu} \right\} \]

which is equivalent to

\[\frac{1+w(z)}{1-w(z)} = 1 + \sum_{n=1}^{m} K_n z^n + \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n=m+1}^{\infty} K_n z^n. \]

(2.9)
By using the equality (2.9) we get

\[w(z) = \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n=m+1}^{\infty} K_n z^n \]

and

\[|w(z)| \leq \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n=m+1}^{\infty} |K_n|.
\]

The inequality

(2.10)

\[\sum_{n=1}^{m} |K_n| + \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n=m+1}^{\infty} |K_n| \leq 1 \]

implies that \(|w(z)| \leq 1\). It suffices to show that the left hand side of (2.10) is bounded above by

\[\frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu} \sum_{n \geq 1} |K_n|, \]

which is equivalent to

\[\frac{4(1-q)(1-q^\nu) - 2q^\nu}{q^\nu} \sum_{n \geq 1} |K_n| \geq 0. \]

The last inequality holds true for \(2(1-q)(1-q^\nu) \geq q^\nu\).

In order to prove the result (2.6) we use the same method. Now, consider the function \(p(z)\) given by

\[\frac{1 + p(z)}{1 - p(z)} = \left(1 + \frac{4(1-q)(1-q^\nu) - q^\nu}{q^\nu}\right) \left\{\frac{\left(h_{\nu}^{(2)}\right)(z, q)}{\left(h_{\nu}^{(2)}\right)(z, q)} - \frac{4(1-q)(1-q^\nu) - q^\nu}{4(1-q)(1-q^\nu)}\right\}.
\]

Then from the last equality we get

\[p(z) = \frac{-4(1-q)(1-q^\nu) \sum_{n=m+1}^{\infty} K_n z^n}{2 + 2 \sum_{n=1}^{m} K_n z^n - \frac{4(1-q)(1-q^\nu)}{q^\nu} \sum_{n=m+1}^{\infty} K_n z^n} \]

and

\[|p(z)| \leq \frac{4(1-q)(1-q^\nu) \sum_{n=m+1}^{\infty} |K_n|}{2 - 2 \sum_{n=1}^{m} |K_n| - \frac{4(1-q)(1-q^\nu)}{q^\nu} \sum_{n=m+1}^{\infty} |K_n|}.
\]

The inequality

(2.11)

\[\sum_{n=1}^{m} |K_n| + \frac{4(1-q)(1-q^\nu)}{q^\nu} \sum_{n=m+1}^{\infty} |K_n| \leq 1 \]

implies that \(|p(z)| \leq 1\). Since the left hand side of (2.11) is bounded above by

\[\frac{4(1-q)(1-q^\nu) - q^\nu \sum_{n=1}^{m} |K_n|}{q^\nu} \geq 0 \]

the proof is completed. \(\Box\)
Theorem 2. Let $\nu > -1, q \in (0, 1)$, the function $h^{(2)}_\nu : \mathcal{U} \to \mathbb{C}$ be defined by (1.4) and its sequences of partial sums by $(h^{(2)}_\nu)_m(z; q) = z + \sum_{n=1}^{m} K_n z^{n+1}$. If the inequality $(1-q)(1-q^\nu) \geq q^\nu$ is valid, then the following inequalities hold true for $z \in \mathcal{U}$:

$$
\Re \left\{ \left(\frac{h^{(2)}_\nu(z; q)}{(h^{(2)}_\nu)_m(z; q)} \right)' \right\} \geq \frac{16(1-q)(1-q^\nu) ((1-q)(1-q^\nu) - q^\nu) + 2q^{2\nu}}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}},
$$

(2.12) \hspace{1cm}

$$
\Re \left\{ \left(\frac{(h^{(2)}_\nu)_m(z; q)}{(h^{(2)}_\nu(z; q))' \right) \right\} \geq \frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}},
$$

(2.13)

Proof. From the inequality (2.2) we have that

$$
1 + \sum_{n \geq 1} (n+1) |K_n| \leq \left(\frac{4(1-q)(1-q^\nu)}{4(1-q)(1-q^\nu) - q^\nu} \right)^2.
$$

(2.14)

The inequality (2.14) is equivalent to

$$
\frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n \geq 1} (n+1) |K_n| \leq 1.
$$

(2.15)

In order to prove the inequality (2.12), we consider the function $h(z)$ defined by

$$
\frac{1 + h(z)}{1 - h(z)} = \frac{(1-h(z))(1-q^\nu)}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n \geq 1} (n+1) |K_n|,
$$

where $\delta = \frac{16(1-q)(1-q^\nu)((1-q)(1-q^\nu) - q^\nu) + 2q^{2\nu}}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}}$. The last equality is equivalent to

$$
\frac{1 + h(z)}{1 - h(z)} = 1 + \sum_{n=1}^{m} (n+1) K_n z^n + \frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) K_n z^n.
$$

(2.16)

By using the equality (2.13) we get

$$
h(z) = \frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) K_n z^n
$$

and

$$
|h(z)| \leq \frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) |K_n|.
$$

The inequality

$$
\sum_{n=1}^{m} (n+1) |K_n| + \frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) |K_n| \leq 1
$$

(2.17)

implies that $|h(z)| \leq 1$. It suffices to show that the left hand side of (2.17) is bounded above by

$$
\frac{(4(1-q)(1-q^\nu) - q^\nu)^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n \geq 1} (n+1) |K_n|,
$$

(2.17)
which is equivalent to
\[
\delta \sum_{n \geq 1} (n+1) |K_n| \geq 0.
\]

Thus, the result (2.12) is proved.

To prove the result (2.13), consider the function \(k(z) \) defined by
\[
1 + k(z) = \left\{ 1 + \frac{(4(1-q)(1-q^\nu) - q^{2\nu})^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \right\} \left\{ \frac{\left(h_{\nu}^{(2)} (z; q) \right)' - (4(1-q)(1-q^\nu) - q^{2\nu})^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \right\}.
\]

The last equality is equivalent to
\[
(2.18) \quad \frac{1 + k(z)}{1 - k(z)} = 1 + \sum_{n=1}^{m} (n+1) K_n z^n - \frac{(4(1-q)(1-q^\nu) - q^{2\nu})^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) K_n z^n.
\]

From the equality (2.17) we have
\[
(2.19) \quad \sum_{n=1}^{m} (n+1) |K_n| + \frac{(4(1-q)(1-q^\nu) - q^{2\nu})^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) |K_n| \leq 1
\]

implies that \(|k(z)| \leq 1 \). Since the left hand side of (2.19) is bounded above by \(\frac{(4(1-q)(1-q^\nu) - q^{2\nu})^2}{8(1-q)(1-q^\nu)q^\nu - q^{2\nu}} \sum_{n=m+1}^{\infty} (n+1) |K_n| \),

which is equivalent to
\[
\delta \sum_{n=m+1}^{\infty} (n+1) |K_n| \geq 0,
\]

the proof of result (2.13) is completed. □

Theorem 3. Let \(\nu > -1, q \in (0,1) \), the function \(h_{\nu}^{(3)} : U \to \mathbb{C} \) be defined by (1.5) and its sequences of partial sums by \((h_{\nu}^{(3)})_m(z; q) = z + \sum_{n=1}^{m} T_n z^{n+1} \). If the inequality \((1-q)(1-q^\nu) \geq 2\sqrt{q}\) is valid, then the next two inequalities are valid for \(z \in U \):
\[
\Re \left\{ \frac{h_{\nu}^{(3)} (z; q)}{(h_{\nu}^{(3)})_m (z; q)} \right\} \geq \frac{(1-q)(1-q^\nu) - 2\sqrt{q}}{\sqrt{q}},
\]
\[
\Re \left\{ \frac{(h_{\nu}^{(3)})_m (z; q)}{h_{\nu}^{(3)} (z; q)} \right\} \geq \frac{(1-q)(1-q^\nu) - \sqrt{q}}{\sqrt{q}}.
\]
Proof. From the inequality (2.23) we have that

\[1 + \sum_{n \geq 1} |T_n| \leq \frac{(1 - q)(1 - q^\nu)}{(1 - q)(1 - q^\nu) - \sqrt{q}}. \]

The inequality (2.22) is equivalent to

\[\frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n \geq 1} |T_n| \leq 1. \]

In order to prove the inequality (2.20), we consider the function \(\phi(z) \) defined by

\[\frac{1 + \phi(z)}{1 - \phi(z)} = \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \left\{ \frac{h^{(3)}(z; q)}{(h^{(3)}_m(z; q) - (1 - q)(1 - q^\nu) - 2\sqrt{q})} \right\}, \]

which is equivalent to

\[\frac{1 + \phi(z)}{1 - \phi(z)} = \frac{1 + \sum_{n=1}^{m} T_nz^n + \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} T_nz^n}{1 + \sum_{n=1}^{m} T_nz^n}. \]

From the equality (2.24) we obtain

\[\phi(z) = \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{2 + 2\sum_{n=1}^{m} T_nz^n + \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} T_nz^n}, \]

and

\[|\phi(z)| \leq \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{2 - 2\sum_{n=1}^{m} T_nz^n - \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} T_nz^n} \sum_{n=m+1}^{\infty} |T_n|. \]

The inequality

\[\sum_{n=1}^{m} |T_n| + \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} |T_n| \leq 1 \]

implies that \(|\phi(z)| \leq 1 \). It suffices to show that the left hand side of (2.25) is bounded above by

\[\frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n \geq 1} |T_n|, \]

which is equivalent to

\[\frac{(1 - q)(1 - q^\nu) - 2\sqrt{q}}{\sqrt{q}} \sum_{n=1}^{m} |T_n| \geq 0. \]

The last inequality holds true for \((1 - q)(1 - q^\nu) \geq 2\sqrt{q} \).

In order to prove the result (2.21), we consider the function \(\varphi(z) \) given by

\[\frac{1 + \varphi(z)}{1 - \varphi(z)} = \left(1 + \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \right) \left\{ \frac{(h^{(3)}_m(z; q) - (1 - q)(1 - q^\nu) - \sqrt{q})}{h^{(3)}(z; q)} \right\}. \]

Then from the last equality we get

\[\varphi(z) = \frac{-\frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} T_nz^n}{2 + 2\sum_{n=1}^{m} T_nz^n - \frac{(1 - q)(1 - q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} T_nz^n}. \]
and

\[|\varphi(z)| \leq \frac{(1-q)(1-q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} |T_n|.\]

The inequality

\[
\sum_{n=1}^{m} |T_n| + \frac{(1-q)(1-q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=m+1}^{\infty} |T_n| \leq 1
\]

implies that \(|\varphi(z)| \leq 1\). Since the left hand side of (2.26) is bounded above by

\[
\frac{(1-q)(1-q^\nu) - \sqrt{q}}{\sqrt{q}} \sum_{n=1}^{m} |T_n|,
\]

which is equivalent to

\[
\frac{(1-q)(1-q^\nu) - 2\sqrt{q}}{\sqrt{q}} \sum_{n=1}^{m} |T_n| \geq 0.
\]

This completes the proof of the theorem.

\[\square\]

Theorem 4. Let \(\nu > -1, q \in (0,1)\), the function \(h_{\nu}^{(3)} : U \to \mathbb{C}\) be defined by (1.3) and its sequences of partial sums by \((h_{\nu}^{(3)})_{m}(z; q) = z + \sum_{n=1}^{m} T_n z^{n+1}\). If the inequality \((1-q)(1-q^\nu) \geq 4\sqrt{q}\), then the next two inequalities are valid for \(z \in U\):

\[
\Re\left\{ \left(\frac{h_{\nu}^{(3)}(z; q)}{(h_{\nu}^{(3)}(z; q))'}\right) \right\} \geq \frac{(1-q)^2(1-q^\nu)^2 - 4(1-q)(1-q^\nu)\sqrt{q} + 2q}{2(1-q)(1-q^\nu)\sqrt{q} - q},
\]

\[
\Re\left\{ \left(\frac{(h_{\nu}^{(3)})_{m}(z; q)}{(h_{\nu}^{(3)}(z; q))'}\right) \right\} \geq \frac{(1-q)(1-q^\nu) - \sqrt{q})^2}{2(1-q)(1-q^\nu)\sqrt{q} - q}.
\]

Proof. From the inequality (2.4) we have that

\[
1 + \sum_{n=1}^{m} (n+1)|T_n| \leq \left(\frac{(1-q)(1-q^\nu)}{(1-q)(1-q^\nu) - \sqrt{q}}\right)^2.
\]

The inequality (2.29) is equivalent to

\[
\frac{(1-q)(1-q^\nu) - \sqrt{q})^2}{2(1-q)(1-q^\nu)\sqrt{q} - q} \sum_{n=1}^{m} (n+1)|T_n| \leq 1.
\]

In order to prove the inequality (2.27), we consider the function \(\psi(z)\) defined by

\[
\frac{1 + \psi(z)}{1 - \psi(z)} = \frac{(1-q)(1-q^\nu) - \sqrt{q})^2}{2(1-q)(1-q^\nu)\sqrt{q} - q} \left\{ \left(\frac{h_{\nu}^{(3)}(z; q)}{(h_{\nu}^{(3)}(z; q))'}\right) - \lambda \right\},
\]

where \(\lambda = \frac{(1-q)^2(1-q^\nu)^2 - 4(1-q)(1-q^\nu)\sqrt{q} + 2q}{2(1-q)(1-q^\nu)\sqrt{q} - q}\). The last equality is equivalent to

\[
\frac{1 + \psi(z)}{1 - \psi(z)} = 1 + \sum_{n=1}^{m} (n+1) T_n z^n + \frac{(1-q)(1-q^\nu) - \sqrt{q})^2}{2(1-q)(1-q^\nu)\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n+1) T_n z^n.
\]
By using the equality (2.31) we get

$$
\psi(z) = \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) T_n z^n
$$

and

$$
|\psi(z)| \leq \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) |T_n|
$$

The inequality

$$
\sum_{n=1}^{m} (n + 1) |T_n| + \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) |T_n| \leq 1
$$

implies that $|\psi(z)| \leq 1$. It suffices to show that the left hand side of (2.32) is bounded above by

$$
\frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=1}^{\infty} (n + 1) |T_n|,
$$

which is equivalent to

$$
\lambda \sum_{n=1}^{m} (n + 1) |T_n| \geq 0.
$$

Thus, the result (2.27) is proved.

To prove the result (2.28), consider the function $\rho(z)$ defined by

$$
\frac{1 + \rho(z)}{1 - \rho(z)} = \left\{1 + \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q}\right\} \left\{\frac{\left(h^{(3)}_{\nu}(z; q)\right)'}{\left(h^{(3)}_{\nu}(z; q)\right)} - \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q}\right\}.
$$

The last equality is equivalent to

$$
\frac{1 + \rho(z)}{1 - \rho(z)} = \frac{1 + \sum_{n=1}^{m} (n + 1) T_n z^n - \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) T_n z^n}{1 + \sum_{n=1}^{\infty} (n + 1) T_n z^n}.
$$

From the equality (2.33) we get

$$
\rho(z) = -\frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) T_n z^n
$$

and

$$
|\rho(z)| \leq \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) |T_n|.
$$

The inequality

$$
\sum_{n=1}^{m} (n + 1) |T_n| + \frac{\{(1-q)(1-q^\nu) - \sqrt{q}\}^2}{2(1-q)(1-q^\nu)/\sqrt{q} - q} \sum_{n=m+1}^{\infty} (n + 1) |T_n| \leq 1
$$
implies that $|\rho(z)| \leq 1$. Since the left hand side of (2.31) is bounded above by
\[
\frac{(1-q)(1-q^{\nu})-\sqrt{q}}{2(1-q)(1-q^{\nu})\sqrt{q}-q} \sum_{n \geq 1} (n+1)|T_n|,
\]
which is equivalent to
\[
\frac{(1-q)(1-q^{\nu}) ((1-q)(1-q^{\nu})-4\sqrt{q}) + 2q}{2(1-q)(1-q^{\nu})\sqrt{q}-q} \sum_{n=1}^{m} (n+1)|T_n| \geq 0,
\]
the proof of result (2.28) is completed.
\[\square\]

References

[1] İ. Aktaş, Á. Baricz, Bounds for the radii of starlikeness of some q-Bessel functions, Results Math, (2017). doi:10.1007/s00025-017-0668-6.
[2] İ. Aktaş, H. Orhan, Distortion bounds for a new subclass of analytic functions and their partial sums, Bull. Transilv. Univ. Braşov Ser. III, 57, 2 (2015), 1–12.
[3] İ. Aktaş, H. Orhan, Partial sums of Normalized Dini Functions, J. Classical Anal., 9, 2 (2016), 127–135.
[4] M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations (Lecture Notes in Mathematics 2056), Springer, Berlin, Germany, 2012.
[5] Á. Baricz, D.K. Dimitrov, I. Mező, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl. 435 (2016) 968–985.
[6] Á. Baricz, D.K. Dimitrov, H. Orhan, N. Yağmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144(8) (2016) 3355–3367.
[7] M. Çağlar, E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl., 18, 3 (2015), 1189–1199.
[8] H. Orhan, İ. Aktaş, Bounds for the radii of convexity of some q-Bessel functions, arXiv:1702.04549.
[9] S. Owa, H.M. Srivastava, N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math., 81, 10 (2004), 1239–1256.
[10] H. Orhan, N. Yağmur, Partial sums of Generalized Bessel Functions, J. Math. Inequal., 8, 4 (2014), 863–877.
[11] D. Răducanu, On partial sums of normalized Mittag-Leffler functions, arXiv:1606.04690.
[12] T. Sheil-Small, A note on partial sums of convex schlicht functions, Bull. London Math. Soc., 2, (1970), 165–168.
[13] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209, (1997), 221–227.
[14] E.M. Silvia, On partial sums of convex functions of order α. Houston J. Math., 11 (1985), 397–404.

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey
E-mail address: orhanhali607@gmail.com

Department of Mathematical Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey
E-mail address: aktasibrahim38@gmail.com