Abstract

Goblet Cells identification in the chicken small intestine is generally carried out through a microscope directly. Although identification can be conducted in visual calculation, but in its implementation not only takes a lot of time and effort, but also is relatively subjective. In addition nowadays identification can also be done automatically by digital image processing. This method is in the type of image segmentation. Here the purpose of image segmentation is to separate objects (goblet cells) with other networks. The results of image segmentation are usually still eroded, even objects that stick or merge between several objects, as well as nose around objects and the presence of holes in the object. So that, the morphological operation is needed to improve the image. This study aims to determine the type of morphological operations in improving segmented image results to identify goblet cells of chicken intestine automatically. Erosion, dilation, image filling and open area morphological operations are used to improve segmented image results. In conclusion, we provide that the type of erosion morphology operations, dilation using disk types of 10 pixels, image filling with parameters "holes" and open area of 10 pixels have the greatest percentage of success in improving
segmented image results.

References

1. Horn, N. L., Donkin, S. S., Applegate, T. J., and Adeola, O. 2009. Intestinal mucin dynamics: response of broiler chicks and White Pekin ducklings to dietary threonine. Poultry science. 88(9), 1906-1914.
2. Contreras-Ruiz, L., Ghosh-Mitra, A., Shatos, M. A., Dartt, D. A., and Masli, S. 2013. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators of inflammation.
3. Johnston, G. 2010. Automated handheld instrument improves counting precision across multiple cell lines. BioTechniques. 48(4), 325-327.
4. Jahanian, E., Mahdavi, A. H., Asgary, S., and Jahanian, R. 2016. Effect of dietary supplementation of mannanoligosaccharides on growth performance, ileal microbial counts, and jejunal morphology in broiler chicks exposed to aflatoxins. Livestock Science. 190, 123-130.
5. Kim, S. I., Kim, H. J., Lee, H. J., Lee, K., Hong, D., Lim, H., and Yi, Y. W. 2016. Application of a non-hazardous vital dye for cell counting with automated cell counters. Analytical biochemistry. 492, 8-12.
6. Ji, X., Zhao, C., Gong, P., Li, Q., and Yu, Y. 2016. Research on high-accuracy biological microscopic imaging and cell counting system. Optik-International Journal for Light and Electron Optics. 127(23), 11483-11491.
7. Sharif, J. M., Miswan, M. F., Ngadi, M. A., Salam, M. S. H., and bin Abdul Jamil, M. M. 2012. Red blood cell segmentation using masking and watershed algorithm: A preliminary study. In International Conference on Biomedical Engineering (ICoBE). 258-262.
8. Santos, E. M. D. S., and Marcal, A. R. S. 2017. Segmentation of microscopic images for pollen grains detection. In 8th International Conference of Pattern Recognition Systems. 1-6.
9. Osho, S. O., Wang, T., Horn, N. L., and Adeola, O. 2017. Comparison of goblet cell staining methods in jejunal mucosa of turkey poults. Poultry science. 96(3), 556-559.
10. Smith, A. R. 1978. Color gamut transform pairs. ACM Siggraph Computer Graphics. 12(3), 12-19.
11. Bhat, R., and Mehandia, B. 2014. Recognition of vehicle number plate using matlab. International journal of innovative research in electrical, electronics, instrumentation and control engineering. 2(8), 1899-1903.
12. Viazzi, S., Bahr, C., Van Hertem, T., Schlageter-Tello, A., Romanini, C. E. B., Halachmi, I., and Berckmans, D. 2014. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Computers and Electronics in Agriculture. 100, 139-147.

Index Terms

Computer Science Image Processing
Keywords

Goblet Cells Identification, Segmentation, Morphological Surgery.