Research Article

Genetic variability, divergence, and path coefficient analysis of yield and yield related traits of Durum wheat (*Triticum turgidum* L. var. Durum) genotypes at Jamma district, south wollo zone, amhara region, Ethiopia

Haile Tefera*

Department of Plant Science College of Agriculture and Natural Resource Mekdela Amba University, P.O. Box, 32, Tulu Awwilia, Ethiopia

Abstract

Durum wheat (*Triticum turgidum* L. var. durum) is a member of the Poaceae family and tetraploid (genomes of AABB) with 28 chromosomes (*2n*=4*x*=28). Narrow genetic variability was a problem to develop genotypes with better adaptation to different agro-ecologies. Therefore, the objective of this study was to investigate the genetic variability, divergence, and path coefficient analysis of durum wheat genotypes by using morphological traits and identifying essential yield-related traits of durum wheat, and to identify promising candidate genotypes to be used in future durum wheat breeding program. The study was carried out on 81 genotypes and the experiment was laid out in a triple lattice design with an arrangement of 9 x 9 x 3 treatment, which made 243 experimental units. Results obtained on genetic variability, path coefficient, and genetic divergent analysis among yield-related traits are presented here under the present study. Generally, the present study revealed the existence of significant genetic variability among the tested genotypes for different traits helpful for direct and indirect selection.

This study recommended that the potential durum wheat genotypes 214552, 208150, 238516, 5645, Mekuye, 236984, 7960, 7152, 231599, and 208242 could be used for durum wheat breeding programs for yield and yield component traits improvement under similar agro-ecologies.

Introduction

Durum wheat (*Triticum turgidum* L. var. durum) is the world’s leading cereal grain and staple food of the population in the world [1]. Durum wheat is a member of the Poaceae family. It is tetraploid (genomes of AABB) with 28 chromosomes (*2n*=4*x*=28). In the World, durum wheat is cultivated on 218 million hectares of land with average yields have risen from 2.3 to 4.6 tons per ha [2]. In Ethiopia, Durum wheat is one of the major cereal crops. The first wheat was diploid einkorn and grown in the Near Eastern Fertile Crescent [3]. Wild einkorn was then cultivated and produced in domesticated form (*Triticum monococcum*). Emmer was domesticated from its wild progenitor (*Triticum dicoccoides*) and was derived from the hybridization between wild diploid wheat and relative of goat grass (*Aegilops speltoides*) occurring from 300,000 to 500,000 years ago [3]. In Ethiopia, durum wheat is cultivated over 2.5 million hectares of land with an annual production of 5.7 million tons [4]. Durum wheat requires 350-950 mm annual precipitation and the optimum temperature is 23-26°C. Durum wheat can grow on fertile well-drained silt and clay loam soil with a soil pH of 5.2 - 8.5 [5]. Constraints of durum wheat production include lack of seeds of improved varieties and incidence of diseases. Besides in Ethiopia, production of durum wheat is restricted due to poor evaluation of the variability of durum wheat genotypes from major durum wheat-producing areas. Narrow genetic variability was a problem to develop genotypes with better...
adaptation to different agro-ecologies, resistant and tolerant to biotic and abiotic stresses. The targeted problem of durum wheat production was the use of poor yielder local durum wheat varieties. Similarly, there is no detailed information on the extent of genetic variability, the association between traits, genetic divergence, and path coefficient analysis among traits and their selection efficiency [6].

Identification of local genotypes adapted to different agro-ecologies that improve the productivity of durum wheat production is important. The experience of genetic variability in Ethiopian durum wheat genotypes is important for future breeding programs. Information on genetic divergence and path coefficient analysis of traits is essential for durum wheat improvement. The present study was important for the selection of promising candidate genotypes to be used in future durum wheat breeding programs. The objective of this study was to investigate the genetic diversity, divergence, and path coefficient analysis of Ethiopian durum wheat genotypes by using morphological traits and identify yield component traits of durum wheat, and further identify promising candidate genotypes to be used in future durum wheat breeding program.

Materials and methods

Description of experimental site

The genotypes were evaluated at Jamma district South Wollo Zone, Amhara Region, Ethiopia. Jamma is one of the major durum wheat-producing areas of South Wollo Zone, Amhara Region, Ethiopia and it describes as follows (Table 1).

Experimental materials

Eighty-one genotypes of durum wheat were used and the seeds of the genotypes were obtained from the Biodiversity Institute of Ethiopia. The genotypes are listed in (Table 2).

Experimental design

The experiment was prepared in a triple lattice design with the arrangement of 9 x 9 blocks with three replications. The total experimental units were 243. Area of the experimental field covered 925.6m² with 26m in width and 35.6m in length. Each treatment was assigned randomly to the experimental units within a block. Data were collected from three central rows for most of the variables and from randomly sampled plants for some of the traits. All experimental factors were applied uniformly to the entire plot except genotypes of durum wheat in the experiment.

Data collected

Data collection was done on a pilot basis and a sample plant basis. Besides the data were collected from the net plot that includes days to heading, days to maturity, above-ground biomass per hectare, grain yield in kg per hectare, thousand kernels weight, and harvest index.

On the other hand, the data were collected from randomly selected ten plants from the three middle rows of each plot that include plant height, number of tillers per plant, number of tillers per unit area, and number of spikelets per spike and spike length.

Table 1: Description of the study area

Description	Jamma (Location)
Longitude	15°E
Latitude	11°N
Altitude (m.a.s.l)	2626
Mean range of temperature (°c)	16 to 22
Mean annual rainfall (mm)	360 to 970
Soil type	Vertisol

Source: (Jamma Agricultural Sector Office, 2017)

Table 2: List of durum wheat genotypes used in the study and their origin

No	Genotypes	Origin	No	Genotypes	Origin
1	208168	Tigray	20	203958	Amhara
2	236303	Amhara	21	208327	Oromia
3	208327	Oromia	22	203882	Amhara
4	203958	Oromia	23	203790	Amhara
5	203882	Amhara	24	226946	Oromia
6	208316	Amhara	25	208321	Oromia
7	208251	Oromia	26	208222	Amhara
8	236975	Oromia	27	236306	Oromia
9	5429	Tigray	28	208478	Oromia
10	208222	Amhara	29	208478	Oromia
11	203790	Amhara	30	8034	Oromia
12	226946	Oromia	31	208222	Amhara
13	208321	Oromia	32	203940	Amhara
14	208320	Oromia	33	236975	Oromia
15	8034	Oromia	34	208478	Oromia
16	7165	Amhara	35	203940	Amhara
17	208257	Oromia	36	208222	Amhara
18	208155	Oromia	37	236975	Oromia
19	208325	Amhara	38	236306	Oromia
20	231599	Oromia	39	203940	Amhara
21	208309	Oromia	40	7508	Oromia
22	7508	Oromia	41	208320	Oromia
23	236975	Oromia	42	236270	Oromia
24	236270	Oromia	43	208222	Amhara
25	208274	Oromia	44	203940	Amhara
26	208230	Oromia	45	208155	Oromia
27	208478	Oromia	46	208222	Amhara
28	208478	Oromia	47	208222	Amhara
29	208478	Oromia	48	208478	Oromia
30	6859	Amhara	49	208222	Amhara
31	208273	Oromia	50	208478	Oromia
32	236310	Oromia	51	208222	Amhara
33	7961	Oromia	52	208478	Oromia
34	214874	Oromia	53	208478	Oromia
35	208307	Oromia	54	208478	Oromia
36	7960	Oromia	55	208478	Oromia
37	204548	Tigray	56	208478	Oromia
38	203940	Tigray	57	208478	Oromia
39	236315	Oromia	58	208478	Oromia
40	8205	Amhara	59	208478	Oromia
41	Felakit	Oromia	60	208478	Oromia

www.plantsciencejournal.com 076
Genetic variability, divergence, and path coefficient analysis of yield and yield related traits of Durum wheat (*Triticum turgidum l.* var. *Durum*) genotypes at Jamma district, south wollo zone, amhara region, Ethiopia

Statistical analysis

The data were analyzed as per the design used in the experiment using an R-Software computer. The data obtained for different traits were statistically analyzed using appropriate ways for analysis of variance, coefficient of variance, genetic advance, path coefficient, and genetic divergent analysis of traits for durum wheat genotypes.

Analysis of variance (ANOVA)

The analysis of variance (ANOVA) was performed using an R-Software computer for Triple-Lattice Design. The analyses of variances were done using the mean of ten sample plants for plant height, tillers per plant, tillers per unit area, spikelet per spike, and spike length on a plant basis. However, a plot basis was used for characters such as days to heading and maturity, grain yield per hectare, above-ground biomass yield, and harvest index for analysis of variance. Mean separation was performed with Duncan’s Multiple Range Test (DMRT) at (p < 0.05) 5% level of significance.

\[Y_{ijl} = \mu + r_j + g_i + p(l_{(j)}) + \varepsilon_{ijl} \]

Where, \(Y_{ijl} \) = the observed value of the trait Y for the \(i^{th} \) genotype in \(j^{th} \) replication

\(\mu \) = the general mean of trait Y

\(r_j \) = the effect of \(j^{th} \) replication

\(g_i \) = the effect of \(i^{th} \) genotypes

\(p(l_{(j)}) \) =block within replicate the effect

\(\varepsilon_{ijl} \) = the experimental error associated with the trait y for the \(i^{th} \) genotype in \(l^{th} \) block within replication and \(j^{th} \) replication [7].

Estimation of phenotypic and genotypic parameters

Environmental, genotypic, and phenotypic variance components and their coefficients of variation were estimated based on the methods detailed as follows (Sharma, 1998).

Genotypic variance \((\sigma_g^2) = \frac{MS_g - MS_e}{r} \)

Phenotypic variance on a mean basis \((\sigma_p^2) = \sigma_g^2 + \sigma_e^2 \)

Phenotypic coefficient of variation \((PCV) = \frac{\sigma_p^2}{\bar{X}} \times 100 \)

Genotypic Coefficient of variation \((GCV) = \frac{\sigma_g^2}{\bar{X}} \times 100 \)

Estimation of heritability in a broad sense and genetic advance under selection

Broad sense heritability \((H^2) \) was expressed as the percentage of the ratio of the genotypic variance \((\sigma_g^2) \) to the phenotypic variance \((\sigma_p^2) \) as described by [5]:

\[(H^2) = \frac{\sigma_g^2}{\sigma_p^2} \times 100 \]

Genetic advance under selection (GA): expected genetic advance for each character at 5% selection intensity was computed using the methodology described [3].

\[GA = K \cdot \sigma_p \cdot H^2 \]

Genetic advance as percent of the mean calculated to compare the extent of the predicted advance of different traits under selection, using the following formula [3].

\[GAM = \frac{GA \cdot 100}{X} \]

Estimation of phenotypic and genotypic correlations

Phenotypic and genotypic correlations coefficients between yield and yield-related traits would estimate using the standard method as described [8].

Phenotypic correlation coefficient \(r_{xy} = \frac{\text{Cov}_{xy}}{\sigma_x \cdot \sigma_y} \)

Genotypic correlation coefficient \(r_{xy} = \frac{\text{COV}_{xy}}{\sigma_x \cdot \sigma_y} \)

The phenotypic correlation coefficient was tested their significance using the formula suggested by [9].

\[t = \frac{r_{xy}}{SE(r_{xy})} \]

\[SE(r_{xy}) = \sqrt{\frac{1-r_{xy}^2}{n-2}} \]

The genotypic correlation coefficient was tested with the following formula as suggested by [9].

\[t_{cal} = \frac{r_{xy}}{SE(r_{xy})} \]

\[SE(r_{xy}) = \sqrt{\frac{1-r_{xy}^2}{2H^2 \cdot H^2}} \]

The calculated absolute t-value was tested against the tabulated t-value at n-2 degree of freedom for both phenotypic and genotypic correlations.

Path coefficient analysis

Path coefficient analysis was involved using the genotypic and phenotypic correlation coefficients to determine the indirect and direct effect of yield-related traits of durum wheat on grain yield of durum wheat by considering grain yield per hectare as the dependent variable. Path coefficients were obtained by solving the following simultaneous equations, which express the basic relationship between correlation and path coefficient by using the formula as follows [10].

\[r_{xy} = p_y + \varepsilon_{xy} \cdot p_x \]
Where, r_{ij}^2 = mutual relation between independent trait (i) and dependent trait (j) as measured by genotypic correlation coefficient.

\[p_{ij} = \text{Components of direct effects of the independent trait (i) on the dependent variable (j) as measured by genotypic path coefficient} \]

\[\varepsilon_{ij} = \text{Residual factor,} \]

\[e_{ij} = \text{Summation of components of the indirect effect of a given independent trait (i) on a given dependent trait (j) and vice versa for all other independent traits (k).} \]

The residual effect, which determines how best causal factors account for the variability of the dependent factor, was calculated using the following formula [11].

\[1 = p^T R + \sum p_{ij} \cdot r_{ij} \]

Where, $p^T R$ = the residual factor,

\[p_{ij} = \text{the direct effect of yield by } j^{th} \text{ trait, and} \]

\[r_{ij} = \text{the correlation of yield with the } j^{th} \text{ trait.} \]

The contribution of the remaining unknown factor was measured as the residual factor (P_2), which is calculated as [12].

\[P_2 = \sqrt{1 - e_{ij}^2 p_{ij}} \]

The magnitude of P_2 indicates how best the causal factors determine the variability of the dependent factor. If P_2 value is small for instance, nearly zero, and the yield is explained by the variability in the independent traits. However, higher P_2 the value indicates that other factors which have not been considered in the analysis to determine the variation in the yield.

Genetic divergence of genotypes

Error variance and covariance matrix were used to get the standardized uncorrelated means (Y) from the original mean values (X) through the pivotal condensation method. The D^2 value of a pair of varieties was obtained as the sum square of differences between the corresponding Y values. In matrix notation, the distance between two groups was estimated from the following relationship [12].

\[D_{ij}^2 = (X_i - X_j)^T \text{cov}^{-1} (X_i - X_j) \]

Where, D_{ij}^2 = distance between class i and j,

\[X_i \text{ and } X_j = \text{the vector means of the traits for the } i^{th} \text{ and } j^{th} \text{ groups,} \]

\[\text{cov}^{-1} = \text{the pooled within-group variance-covariance matrix.} \]

Genetic divergence is the statistical distance between the genotypes. It is determined by using cluster analysis, which assigns genotypes to different groups.

Results and discussion

Variability of traits

The analysis of variance showed significant variation among genotypes ($p < 0.01$) for days to maturity, tillers per plant, and tillers per unit area, plant height, spike length above-ground biomass, 1000 kernels weight, grain yield, and harvest index. Scicca, et al. [13] also reported considerable genetic variability for days to heading, days to maturity, plant height, spike length, tillers per plant, and grain yield except for above-ground biomass, 1000 kernel weight, and harvest index among durum wheat genotypes. Tsegaye, et al. [5] also reported highly significant differences among durum wheat genotypes for days to heading, plant height, tillers per plant, spikelet per spike, and spike length (Tables 3-5).

Estimates of phenotypic and genetic coefficient of variation

Phenotypic and genetic coefficients of variation of days to heading, days to maturity, plant height, spike length, tillers per plant and tillers per unit area, spikelet per spike, above-ground biomass, 1000 kernel weight, grain yield, and harvest index were shown (Table 5). The PCV values were slightly greater than GCV values in the present study although the difference was very small. This indicated that the environmental effect was very small for the expression of all traits.

Estimates of heritability

Broad sense heritability (H^2) of traits ranged from 57.9% to 89.7% (Table 5). Pramoda and Gangaprasad (2007) categorized heritability estimates as low (< 40%), medium (40% - 59%), moderately high (60% - 80%), and very high (> 80). Higher heritability estimates (> 80%) were recorded for traits days to heading (89.7%), spikes length (88.9%), spikelet per spike (88.2%), plant height (87.1%), 1000 kernels weight (85.6%), days to maturity (83.9%) and tillers per unit area (82.1%).

Estimates of expected genetic advance

Genetic advance as percent of mean was categorized as low (0% - 10%), moderate (10% - 20%), and high (20%) and above [3]. Accordingly, the expected genetic advance as the percent of means expressed ranged from 13.9% for days to maturity to 67.2% for grain yield (Table 5). GAM indicates that selecting the top 5% of the base population could result in an advance of 13.9% to 67.2% over the respective population mean. High GAM was observed in grain yield (67.2%), days to heading (24.5%), 1000 kernel weight (26.6%), above-ground biomass yield (26.5%), tillers per plant (38%), tillers per unit area (24.3), spike length (28.2%), spikelet per spike (28.5%), plant height (34.4) and harvest index (30%). This suggested that selection could be effective in genotypes for these traits and the possibility of improving durum wheat yield through a direct selection of grain yield-related traits.
Genetic variability, divergence, and path coefficient analysis of yield and yield related traits of Durum wheat (*Triticum turgidum* L. var. *Durum*) genotypes at Jamma district, south wollo zone, amhara region, Ethiopia

Estimates of correlation coefficients of traits

Estimates of the phenotypic and genotypic correlation coefficient between each pair of traits presented are (Tables 6,7), respectively. In the present study, the phenotypic correlation coefficients were less in magnitude than the genotypic correlation coefficients revealing the presence of inherent genetic relationships among various traits and less dependent on environmental effects (Tables 6,7).

Path coefficient analysis

Phenotypic and genotypic path coefficient analyses were used to determine essential yield attributes by estimating the direct effects of traits contributing to grain yield. Path coefficient analysis was separating direct effects from the indirect effects through other related traits by partitioning the correlation coefficient and searching out the relative essential traits as selection criteria. Grain yield is the complex outcome of various traits that are considered resultant traits. The other traits indicating significant relations with grain yield were considered causal traits. In the study area, the residual effects were not highly significant that indicates all traits that influenced grain yield were considered. Soriano, et al. [14] reported a negative association between above-ground biomass and grain yield.

Table 3: The mean square of traits of 81-durum wheat genotypes tested.

Traits	Rep(df=2)	Block(adj.) (df=24)	Tr(unadj.) (df=80)	Inbe (df=136)	Tr(adj.) (df=80)	CV
DH	4075	61	259**	8.6	234***	4.2
DM	26663	30.7	278**	15.7	262**	3.2
PH	17486	64	624**	35	744**	6.8
SL	169	0.4	5.2**	0.2	4.7**	6.3
TPP	117	0.7	2.6**	0.2	2.3**	8.6
TPUA	41753	340	1998**	113	1973**	6.0
SPS	4309	4.7	37.9**	1.4	33**	5.3
BM	34973599	1740097	8785515**	578799	7895636**	6.9
TKW	8668	15.4	109**	5**	94**	5.7
GY	8210245	644650	4742321**	435267	4336769**	13.7
H%	143	29	141**	24	123**	16.4

DF=Degree of freedom, DH=days to heading, DM=days to maturity, PH=plant height, SL=spike length, TPP=tillers per plant, TPUA=tillers per unit area, SPS=spikelet per spike, BM = above-ground biomass, TKW=1000kernel weight, GY=grain yield, SE= Standard Error, and H=Harvest index

Table 4: Range, mean, phenotypic, and genotypic variance for 11 traits of durum wheat genotypes tested.

Trait	Range	Mean + SE	σ_P^2	σ_G^2
DH	48-80	69 ± 0.98	83.7	75.1
DM	102-138	124 ± 1.04	97.8	82.1
PH	63-128	86 ± 1.78	271.3	236.3
SL	6.4-11.3	8 ± 0.14	1.8	1.6
TPP	3.4-7.0	5 ± 0.1	0.9	0.7
TPUA	131-232	176 ± 2.62	631	518
SPS	17-30	22 ± 0.37	11.9	10.5
BM	8909-1518	10923 ± 180	3017744	2438945
TKW	28-53.4	39 ± 0.62	34.7	29.7
GY	1876-6476	3360 ± 133	1813614	1378347
H%	16-43	30 ± 0.71	57	33

DF=Degree of freedom, DH=days to heading, TPP=tillers per plant, TPUA=tillers per unit area, SL=spike length, SPS=spikelet per spike, PH=plant height, DM=days to maturity, BM = above-ground biomass, TKW=1000kernel weight, GY=grain yield, SE= Standard Error, and H=Harvest index

Table 5: Environmental variance, phenotypic and genotypic coefficient of variability, broad-sense heritability, genetic advance, and genetic advance as percent of the mean for the 11 characters of durum wheat genotypes tested.

Trait	σ_G^2	PCV	GCV	H^2	GA	GAM
DH	8.6	13.3	12.6	89.7	16.9	24.5
DM	15.7	8.0	7.4	83.9	17.1	13.9
PH	35	19.2	17.9	87.1	29.6	34.4
SL	0.2	16.8	15.2	88.9	2.3	28.2
TPP	0.2	23.7	20.9	77.8	1.5	38
TPUA	113	14.4	13.0	82.1	42.5	24.3
SPS	1.4	15.7	14.7	88.2	6.3	28.5
BM	578799	15.9	14.3	80	2891	26.5
TKW	5	15.1	14.0	85.6	10.4	26.6
GY	435267	37.4	35	76	2259	67.2
H%	24	25.2	19.1	57.9	9.0	30.0

DF=Degree of freedom, DH=days to heading, TPP=tillers per plant, TPUA=tillers per unit area, SL=spike length, SPS=spikelet per spike, PH=plant height, DM=days to maturity, BM = above-ground biomass, TKW=1000kernel weight, GY=grain yield, HI= harvest index
Genetic variability, divergence, and path coefficient analysis of yield and yield related traits of Durum wheat (*Triticum turgidum* *l.* var. *Durum*) genotypes at Jamma district, south wollo zone, amhara region, Ethiopia

Phenotypic direct and indirect effects of traits on grain yield

In the study area, tillers per plant (0.508) and tillers per unit area (0.736) had a high phenotypic direct effect on the grain yield of durum wheat indicating the association between these traits as good contributors to grain yield (Table 8). Tillers per plant and tillers per unit area could be considered as the main components of selection in a breeding program for obtaining a higher grain yield of durum wheat. A highly significant positive correlation and considerable direct effects of tillers per plant and tillers per unit area on grain yield justified the need to identify the nature of relationships between yield and yield-related traits by using path coefficient analysis.

Genotypic direct and indirect effects of traits on grain yield

In the study area, the genotypic direct and indirect effects of traits on grain yield were presented in (Table 9). Tillers per plant (0.689) followed by thousand kernels weight (0.643), days to maturity (0.565), plant height (0.02), tillers per unit area (0.08); spike length (0.056), spikelets per spike (0.065), above-ground biomass (0.087) and harvest index (0.025) were exerted a positive direct effect on grain yield. In agreement with the present study, Qureshi, et al. [12] reported thousand kernels, days to maturity, tillers per unit area, spike length, spikelets per spike, and harvest index. However, plant height (-0.05) had a negative direct effect on grain yield. But, its negative direct effect was counterbalanced by its considerable positive indirect effect. Biomass yield and harvest index which showed a positive genotypic correlation with grain yield exerted a considerable direct effect on grain yield. Johnson, [15] reported that 1000-kernels weight exerted the highest direct positive effect on grain yield similar to the present study.

Genetic divergence

The qualitative and quantitative description of genotype collection for agronomical useful traits is an essential prerequisite for effective utilization of germplasm collection in the durum wheat breeding program. In the present study, divergence analysis helps to group the genotypes based on their similarity and differences that are similar into one group and others into different groups as well as analysis of *D*² revealed the presence of significant differences among the tested genotypes for all the traits that justify the need to estimate squared distance values for genotypes of durum wheat. Genetic improvement through hybridization and selection depends upon the extent of genetic diversity between parents. Based on the D-square value genotypes were grouped into six clusters. The number of clusters indicates that the

Table 6: Phenotypic correlation coefficients (*r*) of yield and yield-related traits of durum wheat genotypes tested.

	DM	TPP	TPUA	SL	SPS	PH	SKW	BM	GY	HI
DH	0.6**	0.1	0.4**	0.7**	0.4*	0.3	0.3	0.3**	0.4**	
DM	0.5**	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	
TPP	0.6**	0.4**	0.5**	0.1	-0.1	0.4*	0.6**	0.4*		
TPUA	0.5**	0.4**	0.3**	0.5**	0.3	0.3**	0.4**			
SL	0.5**	0.7**	0.5**	0.1	0.2	0.2	0.2	0.2	0.2	
SPS	0.2	0.7**	0.3**	0.4**	0.3	0.3**				
PH	-0.3*	0.3	0.2	0.3	0.2	0.3				
SKW	0.1	0.6**	0.5**							
BM	-0.1	-0.3	0.5**							
GY	0.5**									

Note: * and ** indicates highly significant at 1% and significant at 5% probability levels, respectively. DH = Days to heading, DM = Days to maturity, TPP = Tillers per plant, PH = Plant height (cm), TPA = Tillers per unit area, SL = Spike Length, SPS = Spike per spikelet, BM = above ground biomass (kg/ha), SKW = 100 seed weight (g), GY = Grain yield (kg/ha).

Table 7: Genotypic correlation coefficients (*r*) of yield and yield-related traits of durum wheat genotypes tested.

	DM	TPP	TPUA	SL	SPS	PH	SKW	BM	GY	HI
DH	0.9**	0.1	0.6	0.9**	0.8*	0.7	0.3	0.9**	0.8*	
DM	0.7	0.8*	0.8*	0.8*	0.9**	0.6	0.9**	0.7	0.7	
TPP	0.9**	0.8*	0.9**	0.8*	0.9**	0.8*	0.9**	0.8*		
TPUA	0.9**	0.7	0.8*	0.9**	0.9**	0.7	0.9**	0.7		
SL	0.9**	0.8*	0.9**	0.9**	0.7	0.9**	0.7			
SPS	0.8*	0.9**	0.9**	0.9**	0.8*					
PH	-0.9**	0.9**	0.8*							
SKW	-0.4	0.9**	0.9**							
BM	-0.6	-0.8*								
GY	0.9**									

DH = Days to heading, DM = Days to maturity, TPP = Tillers per plant, PH = Plant height (cm), TPA = Tillers per unit area, SL = Spike Length, SPS = Spike per spikelet, BM = Biomass (kg/ha), SKW = 100 kernel weight (g), GY = Grain yield (kg/ha), * = Significant at 5% probability level, respectively.
tested genotypes were divergent, due to the composition of the genotypes that were collected from different sources of germplasm in the biodiversity of Ethiopia.

Squared distance (D²)

In the present study, tested genotypes had average D-square values ranging from 88.95-354.72 (Table 10). This indicated the presence of genetic divergence among the 81 durum wheat genotypes. As per average D-square values of genotypes 236315 (354.72), 228768 (321.91), 214552 (283.81) and 208316 (305.84) and 204548 (302.76) were on an average maximum divergent from all the tested durum wheat genotypes (Table 9). However, genotypes of 203958 (98.86), 213310 (98.82), 226946 (97.86), and 5503 (88.95) were the least on average genetic divergent from all the tested durum wheat genotypes (Table 10).

Intra and inter-cluster square distances

In the presented study, average intra and inter-cluster D^2 values were presented in (Table 11). Maximum average inter-cluster D^2 value was obtained between cluster V and cluster VI (286.97) while moderate average inter-cluster D^2 value was obtained among cluster IV and cluster VI (276.86) as well as cluster III and cluster VI (254.75). However, the lowest inter clusters were recorded between cluster I and cluster III (103.65) which indicated the presence of less genetic diversity among this cluster.

The mean value of 11 quantitative traits in each cluster is presented in (Table 11). Cluster I consisted of 22 genotypes having the characteristic of late flowering (58), a medium number of days to mature (128), and a relatively high number of spikelets per spike (27) next to cluster VI (31). Cluster VI could be characterized by a low number of days to heading (46) and days to maturity. However, relatively high number of tillers per unit area (12), spikelets per spike (31), longest spike length (9 cm), plant height (129), heaviest 1000 kernels weight (57.5 gram per plot), above-ground biomass (14820kg per ha), grain yield (6281 kg per ha) and high harvest index (42.2) in (Table 12).

The distribution of the evaluated durum wheat genotypes was presented in (Table 13). According to the present experiment, 22 (27.16%) of genotypes in cluster I, 14 (17.28%) of genotypes in cluster II, 15 (18.52%) of genotypes in cluster III, 12 (14.81%) of genotypes in cluster IV, 8 (9.88%) of genotypes in cluster V and 10 (12.35%) of

Table 8: Estimate of indirect effects (off-diagonal) and direct effects (boldface and diagonal) at a phenotypic level in 81 durum wheat genotypes tested in the study area

DH	DM	TPP	TPUA	SL	SPS	PH	SKW	BM	HI	GY	
0.08	0.05	0.02	0.01	-0.04	0.03	0.02	0.02	0.03	0.03	0.61**	
0.04	0.05	0.04	0.02	0.04	0.04	0.04	0.08	0.02	0.03	0.53**	
0.02	0.06	0.51	0.07	0.01	0.02	0.03	0.03	0.04	0.03	0.75**	
0.07	0.04	0.74	0.02	-0.07	0.03	0.04	0.06	0.06	0.04	0.35**	
0.04	0.04	0.05	0.03	0.04	0.07	0.02	0.04	0.02	0.03	0.24*	
0.07	0.06	0.05	0.04	0.03	0.07	0.02	0.06	0.05	0.04	0.24*	
0.04	0.08	0.06	0.02	0.04	0.05	0.04	0.05	0.04	0.05	0.24**	
0.08	0.04	0.04	0.05	0.05	0.04	0.03	0.04	0.05	0.07	0.51**	
0.03	0.03	0.05	0.02	0.02	0.02	0.03	0.05	0.02	0.04	0.01	0.23**

Residual value = 0.11

Note, * and ** indicates significant at 5% and highly significant at 1% probability levels, respectively. DH = Days to heading, DM = Days to maturity, TPP = Tillers per plant, TPUA = Tillers per unit area, SL = Spike Length, SPS = Spikelet per spike, PH = Plant height (cm), SKW = 1000 seed weight (g), BM = Above ground biomass (kg/ha), HI= Harvest index and GY = Grain yield (kg/ha).

Table 9: Estimate of indirect effects (off-diagonal) and direct effects (boldface and diagonal) at a genotypic level in 81 durum wheat genotypes tested in the study area

DH	DM	TPP	TPUA	SL	SPS	PH	SKW	BM	HI	GY		
0.02	0.08	0.75	-0.09	0.08	0.68	0.08	0.08	0.76	0.08	0.39*		
0.16	0.59	0.06	0.09	0.07	0.08	0.08	0.09	0.07	0.47	0.79**		
0.07	0.08	0.69	-0.07	0.07	0.07	0.05	-0.08	0.06	0.07	0.93**		
0.14	0.21	0.06	0.08	0.76	0.06	0.09	0.09	0.08	0.04	0.65**		
0.07	0.07	0.03	0.06	0.06	0.08	0.09	0.07	0.58	0.67	0.08	0.44	0.58**
0.06	0.03	0.09	0.08	0.09	0.07	0.05	-0.05	0.07	0.76	0.08	0.46	
0.05	0.18	0.09	0.26	0.08	0.07	-0.05	-0.07	0.76	0.08	0.87**		
0.07	0.07	0.09	0.13	0.09	0.04	0.09	0.64	0.74	0.74	0.87**		
0.08	0.08	0.25	0.05	0.07	0.08	0.13	0.04	0.09	0.32	0.52**		
0.07	0.07	0.43	0.08	0.54	0.05	0.07	0.09	0.09	0.03	0.41**		

Residual value = 0.03

Note, ** and * indicates highly significant at 1% and significant at 5% probability levels, respectively. DH = Days to heading, DM = Days to maturity, TPP = Tillers per plant, TPUA = Tillers per unit area, SL = Spike Length, SPS = Spikelet per spike, PH = Plant height (cm), SKW = 1000 seed weight (g), BM = Above ground biomass (kg/ha), HI= Harvest index and GY = Grain yield (kg/ha).
Table 10: Average D^2 values for each durum wheat genotype.

Entry No	Genotype	Average D^2 value	Entry No	Genotype	Average D^2 value
1	208168	235.12	42	228768	321.91
2	236303	125.52	43	238120	132.65
3	208327	231.63	44	208319	236.84
4	203958	98.86	45	208170	163.62
5	203882	213.21	46	208482	163.83
6	208316	305.84	47	208281	236.91
7	208251	134.83	48	208127	152.83
8	236975	126.93	49	228763	125.70
9	5429	243.16	50	208141	297.54
10	208220	147.43	51	208531	129.52
11	203790	187.64	52	208484	238.31
12	226946	97.86	53	214861	161.92
13	208321	126.94	54	236984	162.87
14	208320	215.76	55	208142	192.85
15	8034	147.94	56	238133	231.64
16	7165	182.87	57	231597	238.13
17	208257	255.12	58	231599	123.64
18	208155	129.93	59	238555	213.65
19	208325	231.67	60	208198	172.73
20	231599	196.87	61	238165	186.27
21	208309	194.83	62	208471	272.23
22	5454	142.43	63	214552	320.00
23	203940	132.62	64	236279	217.82
24	7508	143.21	65	208173	154.90
25	236270	231.91	66	208150	132.43
26	208274	217.21	67	208309	142.96
27	208230	153.32	68	8034	216.12
28	236306	163.83	69	5645	231.54
29	208478	129.84	70	7148	127.42
30	6859	231.73	71	214555	287.32
31	208273	123.64	72	203966	164.32
32	236310	142.83	73	208254	182.74
33	7961	152.76	74	208242	147.92
34	214874	236.81	75	228862	124.65
35	208307	132.79	76	5503	88.95
36	7966	143.76	77	213310	98.82
37	204548	302.76	78	236982	127.84
38	208314	221.53	79	214887	187.98
39	236315	354.72	80	7152	183.72
40	8205	231.57	81	208319	142.87
41	Felakit	298.64			

Table 11: Average intra and inter-cluster divergence D^2 value in 81 durum wheat genotypes.

Cluster I	II	III	IV	V	VI	
I	98.76	121.32	103.65	185.72	205.21	243.32
II	94.86	112.21	207.83	210.51	260.82	287.32
III	143.76	215.14	217.81	254.75		
IV	97.94	206.93	276.86			
V	47.83	286.97				
VI	49.12					

Table 12: Mean values of six clusters for 11 traits

Group	DH	DM	TPP	TPA	SL	SPS	PH	SKW	BM	GY	HI
Cluster I	58	128	5	8	8	27	78	37.8	9074	2376	29.3
Cluster II	79	139	4	9	5	22	74	39.5	9089	3276	36.2
Cluster III	88	127	5	7	6	19	79	38.3	10790	2326	21.9
Cluster IV	79	126	5	6	5	23	90	49.6	12828	3877	32.9
Cluster V	77	138	5	8	6	19	78	39.7	10192	3452	31.7
Cluster VI	46	116	4	12	9	31	129	57.5	14820	6281	42.2

Note: ** and * indicates highly significant at 1% and significant at 5% probability levels, respectively. DH = Days to heading, DM = Days to maturity, TPP = Tillers per unit area, SL = Spike Length, SPS = Spikelet per spike, PH = Plant height (cm), SKW = 1000 seed weight (g), BM = Above ground biomass (kg/ha), HI= Harvest index and GY = Grain yield (kg/ha).
Genetic variability, divergence, and path coefficient analysis of yield and yield related traits of Durum wheat (Triticum turgidum l. var. Durum) genotypes at Jamma district, south wollo zone, amhara region, Ethiopia

References

1. Zecevic V, Boskovic J, Dimitrijevic M, Petrovic S. Genetic and phenotypic variability of yield components in wheat (triticum aestivum L). Bulgarian Journal of Agricultural Science, 2010; 16(4), 422–428. https://doi.org/10.2298/gensr0402151z

2. Sahri A, Chentoufi L, Arbaoui M, Ardisson M, Belqadi L, Birouk A, Roumet P, Muller MH. Towards a comprehensive characterization of durum wheat landraces in Moroccan traditional agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy and tetraploid wheat domestication history. BMC Evol Biol. 2014 Dec 21;14:264. doi: 10.1186/s12862-014-0264-2. PMID: 25528060; PMCID: PMC4300848.

3. Ahmadizadeh M, Shahbaz H, Valizadeh M, Zaeifzadeh M. Genetic diversity of durum wheat landraces using multivariate analysis under normal irrigation and drought stress conditions. African Journal of Agricultural Research, 2011; 6(10), 2294–2302.

4. Mehdiaabadi S, Mohammadi R, Etminan AR, Shooshtari L. Evaluation of Genetic Diversity in Durum Wheat Advanced Lines. 2015; 7(1), 236–240.

5. Tsegaye D, Dessalegn T, Dessalegn Y, Share G. Genetic variability, correlation and path analysis in durum wheat germplasm (Triticum durum Desf). Agricultural Research and Reviews, 1(May), 2012; 107–112.

6. Jaradat AA. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides Körn ex Asch. & Graebn) Thell. Australian Journal of Crop Science, 5(9 SPEC. ISSUE), 2011; 1072–1086.

7. Habash DZ, Kehel Z, Nachit M. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot. 2009;60(10):2805-15. doi: 10.1093/jxb/erp211. Erratum in: J Exp Bot. 2010 Feb;61(4):1249. PMID: 19584119.

8. Zaeifzadeh M, Khayatnezhad M, Ghasemi M, Azimi J, Vahabzadeh M. Path analysis of yield and yield components in synthetic bread wheat (Triticum aestivum L) genotypes. Advances in Environmental Biology, 2011; 5(1), 98–103.

9. Singh AK, Singh D. Genetic variability, heritability and genetic advance in marigold. Indian Journal of Horticulture, 2010; 67(1), 132–136.

10. Berhanu M, Wassu M, Yemane T. Genetic variability, correlation and path analysis of yield and grain quality traits in bread wheat (Triticum aestivum L) genotypes at Axum, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 2017; 9(10), 175–185. https://doi.org/10.5897/jpbcsc2017.0671

11. Medouri A, Bellili I, Khelifi D. Genetic diversity of high and low molecular weight glutenin subunits in Algerian aegilops geniculata. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014; 42(2), 453–459. https://doi.org/10.1583/nbha4229511

12. Qureshi N, Bariana H, Kolmer JA, Miah H, Bansal U. Genetic and Molecular Characterization of Leaf Rust Resistance in Two Durum Wheat Landraces. Phytopathology. 2017 Nov;107(11):1381-1387. doi: 10.1094/PHYTO-01-17-0005-R. Epub 2017 Aug 16. PMID: 28812937.

13. Sciacca F, Fichera C, Di Silvestro S, Conte E, Palumbo M. Genetic diversity of durum wheat as determined by AFLP in fluorescence. Biologia Plantarum, 2010; 54(1), 198–200. https://doi.org/10.1007/s10535-010-0035-x

14. Soriano JM, Villegas D, Aranzana MJ, Garcia Del Moral LF, Royo C. Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance. PLoS One. 2016 Aug 11;11(8):e0160983. doi: 10.1371/journal.pone.0160983. PMID: 27513751; PMCID: PMC4981446.

15. Johnson M, Johnson M. Association Mapping and Genetic Diversity Studies of Agronomic and Quality Traits in Durum Wheat [Triticum turgidum L. var. durum (Desf.)]. November. 2017. https://library.ndsu.edu/lir/handle/10365/27462