Development of a chicken 5 K microarray targeted towards immune function

Citation for published version:
Smith, J, Speed, D, Hocking, PM, Talbot, RT, Degen, WGJ, Schijns, VEJC, Glass, EJ & Burt, DW 2006, 'Development of a chicken 5 K microarray targeted towards immune function', BMC Genomics, vol. 7, 49, pp. 49. https://doi.org/10.1186/1471-2164-7-49

Digital Object Identifier (DOI):
10.1186/1471-2164-7-49

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Genomics

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Methodology article

Development of a chicken 5 K microarray targeted towards immune function

Jacqueline Smith*1, David Speed1, Paul M Hocking1, Richard T Talbot2, Winfried GJ Degen3, Virgil EJC Schijns3, Elizabeth J Glass1 and David W Burt1

Address: 1Division of Genetics and Genomics, Roslin Institute, Roslin (Edinburgh), Midlothian, EH25 9PS, UK, 2Ark-Genomics, Roslin Institute, Roslin (Edinburgh), Midlothian, EH25 9PS, UK and 3Intervet International B.V., Dept. of Vaccine Technology and Immunology R&D, P.O. Box 31, 5830 AA, Boxmeer, The Netherlands

Email: Jacqueline Smith* - Jacqueline.smith@bbsrc.ac.uk; David Speed - David.speed@bbsrc.ac.uk; Paul M Hocking - Paul.hocking@bbsrc.ac.uk; Richard T Talbot - Richard.Talbot@bbsrc.ac.uk; Winfried GJ Degen - Winfried.Degen@intervet.com; Virgil EJC Schijns - Virgil.Schijns@intervet.com; Elizabeth J Glass - Liz.glass@bbsrc.ac.uk; David W Burt - Dave.burt@bbsrc.ac.uk

* Corresponding author

Abstract

Background: The development of microarray resources for the chicken is an important step in being able to profile gene expression changes occurring in birds in response to different challenges and stimuli. The creation of an immune-related array is highly valuable in determining the host immune response in relation to infection with a wide variety of bacterial and viral diseases.

Results: Here we report the development of chicken immune-related cDNA libraries and the subsequent construction of a microarray containing 5190 elements (in duplicate). Clones on the array originate from tissues known to contain high levels of cells related to the immune system, namely Bursa, Peyers patch, thymus and spleen. Represented on the array are genes that are known to cluster with existing chicken ESTs as well as genes that are unique to our libraries. Some of these genes have no known homologies and represent novel genes in the chicken collection. A series of reference genes (ie. genes of known immune function) are also present on the array. Functional annotation data is also provided for as many of the genes on the array as is possible.

Conclusion: Six new chicken immune cDNA libraries have been created and nearly 10,000 sequences submitted to GenBank [GenBank: AM063043-AM071350; AM071520-AM072286; AM075249-AM075607]. A 5 K immune-related array has been developed from these libraries. Individual clones and arrays are available from the ARK-Genomics resource centre.

Background

In recent years, the tools available to the field of chicken genomics have increased greatly. Detailed genetic and physical maps have been constructed [1], as well as BAC contig maps [2,3] and a radiation hybrid panel [4]. There is also a substantial EST collection [5], SNP database and many full-length cDNAs have been sequenced. The development of these resources has culminated with the recent publication of the chicken draft sequence [6]. The chicken can now be regarded as an important model organism for use in comparative genomics, residing in a potentially informative position in the evolutionary ladder. The
chicken is also an extremely useful model for developmental biologists and geneticists as well as being a commercially important species.

The latest tools being developed for the chicken are microarrays. There are several small tissue-specific arrays being used by individual labs. These include an intestinal array (3,072 clones) [7], a macrophage-specific array (4,906 clones) [8], a lymphocyte array (3,011 clones) [9] and an 11 K array based on genes found in heart progenitor cells [10]. A 13 K genome-wide array is also available from ARK-Genomics [11] (Roslin, UK) and from the Fred Hutchinson Cancer Research Centre (Seattle, USA) [12]. We have designed a 5 K immune-related array created from libraries developed from tissue (Bursa, spleen, Peyers patch, thymus) from birds which were previously inoculated with a combination of different vaccines to various common avian diseases including bacterial, protozoa and virus disease-causing organisms (E. coli, Newcastle Disease Virus (NDV), Infectious Bursal Disease Virus (IBDV), coccidiosis, Marek’s Disease (MD) and salmonella). The tissues we chose are highly representative of T and B cell populations and were used in order to optimise the numbers of immunologically – related genes that would be present in our libraries. Many known immune genes that have been recently identified in the chicken EST collections [13] have also been added to the array. This array provides a valuable, cost-effective resource for the investigation of immunological gene expression. It has been created from a pool of stimulated immune tissues and contains genes that represent a wide spectrum of immune functions as well as previously unidentified sequences. Each gene on the array is also functionally annotated as much as possible. Gene ontology [14] data and Blast [15] information is provided for each clone, where that information is available.

Results and discussion

Construction of the array

Six immune-related libraries were specifically developed for the construction of a 5 K chicken array. Immune tissue from birds inoculated with different vaccine regimes (see Methods) was used to develop two standard libraries. These both underwent two rounds of normalization, thus providing us with six libraries. Initially, 10,173 clones were randomly chosen from the libraries for sequencing. The number chosen from each library depended on the titre (colonies/micro litre) of that particular library. The 10,173 clones that were sequenced were searched for poor quality sequence (<100 bp after removal of vector, repeats etc.) and unwanted Blast homologies, as described in the Methods section. The numbers of high quality sequences (9,434 – which have been submitted to Genbank) from each library are shown in Table 1. Cluster analysis was then undertaken, which resulted in the grouping of clones from which we would choose the 5,000 that were to be represented on the array.

Genes on the array

The clones on the array are derived from custom-made immune-related chicken cDNA libraries. Libraries developed from tissue from Bursa, spleen and Peyers patch were our representative ‘B cell’ libraries, and libraries developed from thymus were so-called ‘T cell’ libraries (the names ‘B and T cell libraries’ are used purely for ease of reference and in no way indicate that the libraries consist of pure cell populations). Clones from both standard and normalized libraries are present on the array. One clone representing each of the 3,811 clusters is included on the array, along with a random selection of singleton clones (1,067). The sequence of each of the clones was also subjected to a Blast search of the SwissProt and TREMBL databases and the highest hit to each sequence was reported. Searches were carried out at a stringency of 1e-10 (this relatively low stringency was to ensure that we identified as many immune homologies as possible). Chicken immune genes have a relatively low level of sequence conservation with mammals; hence the lower stringency used in these searches. We wanted to ensure that certain genes were also represented on the array as ‘reference’ genes. This included a range of known immune-related genes for which a clone was already available – either from the existing EST databases [12] or from our novel libraries. Various cytokines, chemokines, cell surface antigens, receptors and MHC molecules were all included (Table 2). The expression profile of genes of unknown function can thus be compared with the profiles of these genes whose roles are known. Standard array controls were also spotted on the array, including various spot report buffers (positive and negative controls for the Cy3 and Cy5 dyes), salmon sperm DNA, calf thymus DNA, bovine genomic DNA (negative controls), chicken genomic DNA, gamma actin and GAPDH (positive controls). Each clone is represented in duplicate.

Analysis of the immune clones

All the sequences of the clones on the array were subject to Blast homology searches against the SwissProt and TREMBL databases using a cut-off value of 1e-10. Using
Table 2: List of known immune genes added as reference genes to the array.

Gene	EST	Clone ID	Accession no.
AH221	CTN2_C0000858F10.q1kT7SCF	C0000858F10	AM064266
AH294/RANTES	60340497F1	C0000737M17	BU37782
β2 microglobulin	CTst_C0000869a17.q1kT7SCF	C0000869A17	AM068376
BAFF	CBN1_C0000466j11.q1kT7SCF	C0000467J11	AM062201
BMP10	604156553F1	C0003869J14	BU210183
BMP2	603213309F1	C0003763A3	BU44424
BMP4	603363891F1	C0000429F23	BU473912
BMP6	603640370F1	C000381I1M1	BU287807
BMP8A	603956728F1	603956728F1	BU425800
CC chemokine receptor 6	603508559F1	C000279E15	BU267610
CC CRK 11	603367511F1	C000439E3	BU465158
CC LARC/MIP-3A	603354015F1	C000280N3	BU398190
cCAF	CBN1_C0000465h11.q1kT7SCF	C0000465H11	AM065832
CD135 antigen	603812446F1	C0001334K11	BU376898
CD137	pat.pk0038.d7.f	C0004737E4	A980851
CD153	pat.pk0072.b5.f	C0004738K22	A982035
CD154	603535227F1	C000106F7	BU398104
CD18	CBN1_C0000468e11.q1kT7SCF	C0000468E11	AM066422
CD2	pgm1.c0148.9	C0004738C17	A981679
CD200	pat.pk0062.e8.f	C0004739G22	A980296
CD226	pat.pk0020.d12		
CD28	CTst_C0000892d20.q1kT7SCF	C0000892D20	AM070143
CD3	C0001679M3_G02_008.AB1	C0001028A23	BU311027
CD4	603543789F1	C0001219F13	C0017654
CD40L	pgm2n.pk009.d11	C000389K15	BU253134
CD44-like	603745662F1	C000382K23	BU446679
CD45	603767294F1	C000363D13	BU447971
CD59	603212850F1	C0001268G14	BU243877
CD63 antigen	603783352F1	C0004737K4	A981043
CD7	pat.pk0040.d6.f		
CD79A	CBst_CHK2000003907.q1kT7SCF	C00020003F7	AM071949
CD8	CTst_C0000877h01.q1kT7SCF	C0000877K1	AM069165
CD82	CTst_C0000892l24.q1kT7SCF	C0000892L24	AM070329
CD83 antigen	603771889F1	C0001238B24	BU457418
CD84	CTN1_C0000798o19.q1kT7SCF	C0000798O19	AM070961
CD98 light chain	CBN1_C0000465c24.q1kT7SCF	C0000465C24	AM065739
Chemokine receptor like 2	603764351F1	C0001219F13	BU444213
Chicken cytokine	pat.pk0050.e9.f	C0004737J11	A981311
CHIR-A		C0003884A9	BU359209
CHIR-B	CBst_CHK2000003903.q1kT7SCF	C00020003L3	AM072078
cMGF	pat.pk0060.h1.f	C0004737P22	A981598
Complement C3	CBN1_C0000468j22.q1kT7SCF	C0000468J22	AM066546
Complement C4	603811612F1	C0001332G3	BU376477
Complement C7	603668434F1	C0001140D9	BU416108
Complement C8a	603782868F1	C0001642L21	BU421128
complement H	603819479F1	C0001154N6	BU295434
complement receptor 1		6038135G20	BU268120
Complement l	CBN2_C0000485f23.q1kT7SCF	C0000485F23	AM068123
Cremp	6031114782F1	C0003743C21	BU236768
C-type lectin	HFUJ603551466C18	C0004763C18	AM063354
CX3C chemokine receptor 1	603949695F1	C0003852N23	BU204148
CXCR4	CTst_C0000887f17.q1kT7SCF	C0000878F17	AM069849
Cytokine like protein 17	603773283F1	C0001242E21	BU457971
Cytokine receptor like 9	603472805F1	C0000591J1	BU477689
Death receptor 6	CBN1_C0000466l11.q1kT7SCF	C0000467L11	AM066244
DSL-I	603321647F1	C000418M11	BU239031
EMAP II	603364164F1	C0003776P16	BU475067
Table 2: List of known immune genes added as reference genes to the array. (Continued)

Gene Name	Accession Number	Reference Genes
ephrin type A receptor 2	603121949F1	C0000241A13
FAS antigen	603373578F1	C0001181L19
FASL decoy receptor 3	CTN2_C0000856L13	C0000856L13
GATA-3	CTN2_C0000858A24	C0000858A24
GDF10	603530236F1	C0000994G10
GDF8	603775823F1	C001248N6
GDF9	603741256F1	C001166O13
glycoprotein 130	603369157F1	C0002739A15
GMCSF	CF25805S	CF25805S
HCCI	pat.pk0059.g4.f	pk059g4
ICSBP	603568552F1	C0001037G14
IFNα	603486811F1	C0000622F3
IFNα/β-R2	603783234F1	C0001268C9
IFNγ	603766180F1	C0003825O20
IFNγ-R2	603606133F1	C001120B10
IFP35	603123028F1	C0000243H7
Ig light chain VJC region	C0000914E7_C03_018.AB1	C0000914E7
Ig heavy chain VDJ region	60334767F1	C0000440H3
IL-10	CF25807I	CF25807I
IL-11 receptor	603402722F1	C0000518K5
IL-12j1	603603078F1	603603078F1
IL-12-p35	603761859F1	C0002846F16
IL-13R2	603519773F1	C0000972A19
IL-15	603102154F1	C0002655L4
IL-16	603130176F1	C0001120B10
IL-17 receptor	603211483F1	C0000305E22
IL-18	603508766F1	C0002794D18
IL-1-l1	603217760F1	C0003766G15
IL-2	pat.pk022.e2	pk022e2
IL-20 receptor	603591538F1	C0001088K9
IL-2Rα	pat.pk0012.h3	pk0012h3
IL-2Rγ	CBN1_C0000360J15	C0000360J15
IL-4	603777277F1	ChEST700F19
IL-12	603490820F1	C0004739G21
IL-6	pat.pk0076.f2.f	C0000420J12
Interleukin enhancer binding factor 3	603322645F1	C0000718A21
IRAK2	603831145F1	ChEST185a21
IRAK4	603208981F1	C0002900N15
IRI1	603960463F1	C00018343
IRIF10	CBN1_C0000360L15	C0000360L15
IRIF2	604146465F1	C0003862A18
IRIF3	CTSt_C0000892J9	C0000892J9
IRIF4	604_B10_077	C0000885O4
IRIF5	pat.pk0067.c5.f	pk067c5
JSC	603111427F1	C0000188F7
MDV viL-8	CBN1_C0000360L15	C0000360L15
MHC class I	CTSt_C0000878m23	C0000878m23
MHC class I minor	CTSt_C0000873a15	C0000873a15
MHC class II beta	HFU603551341A11	HFU603551341A11
MIF	604141521F1	C0001517I5
MX	603775783F1	C0001248E22
NKL	603539011F1	C0001016E4
N-pac	604150709F1	604150709F1
Opioid receptor sigma 1	603341826F1	C0003775C8
Orphan chemokine receptor	603234142F1	C000403C12
Table 2: List of known immune genes added as reference genes to the array. (Continued)

Gene Name	Accession	Reference Accession	Cluster ID
PIT54	6031300061F1	C0000313I16	BU125272
platelet activating receptor	pat.pk0002.b12	C0004739A2	AI979750
PRCI	603475588F1	603475588F1	BU355257
prostaglandin synthase	CBN1_C0000466j02.q1kT7SCF	C0000467J2	AM066193
Regulator of cytokinesis 1	603475588F1	C0000598P22	BU355257
RING3	CBst_C0000222p04.q1kT7SCF	C0000222P4	AM071819
SCA-2	CTN1_C0000853f13.q1kT7SCF	C0000853F13	AM071100
SCY13	603354566F1	603354566F1	BU349077
SCY4	603321436F1	C000293H10	BU240159
SIGIRR	603375070F1	C000325K20/L1	BU183862
SOCS1	603322984F1	603322984F1	BU239280
SOCS5	603492126F1	C0000636C7	BU326390
STAT1	603957345F1	ChEST927i11	BU425993
STAT2	pat.pk0027.a6.f	C0004737C3	AI980571
STAT5b	CBst_C0000222j02.q1kT7SCF	C0000222J2	AM071688
TAP2	603732809F1	C0000758A3	BU298074
Tapsin	CTst_C0000873d22.q1kT7SCF	C0000873D22	AM068799
TARC	pat.pk0031.f10.f	C0004737K13	AI980713
T-bet	pgn1.l.pks10.3hB	pgn1.l.pks10.3hB	CBO16768
T cell receptor α	CBst_CHK2000003p10.q1kT7SCF	CHK2000003P10	AM071772
T cell receptor β	UEB603581072O18	C0004765O18	AM063533
T cell receptor γ	CTst_C0000878m08.q1kT7SCF	C0000878M8	AM069981
T cell receptor ζ	CTst_C0000874j17.q1kT7SCF	C0000874j17	AM069278
TGβf1	603758578F1	C0004765C4	AM063804
Thymosin beta 4	ODP403945810C04	C0004765C4	AM063804
TLR1/6/10	603760940F1	C000121I10	BU471724
TLR2	603358755F1	C0001081M13	BU374739
TLR3	60321018F1	C0001261D6	BU242827
TLR4	603470778F1	C0002774L20	BU475859
TLR5	603230983F1	C0000935E22	BU420427
TLR7/8/9	603162084F2	C0002711G22	BU435893
TRAF1	pat.pk0027.d3.f	C0004738M6	AI982046
TRAF2	603217872F1	C0003765O18	BU455745
TRAF5	CTst_C0000877n08.q1kT7SCF	C0000877N8	AM069687

The genes in bold come from the immune libraries described in this paper

This means of detection, many known immune-related molecules were identified, including cytokines, interferons, interleukins, transcription factors, receptors, cell differentiation antigens, MHC molecules and genes for proteins belonging to the TOLL receptor pathway. Proteins homologous to hypothetical human proteins and mouse cDNAs were also identified.

Sequences, which gave no Blast homology to anything in the nucleotide or protein databases, accounted for about 38% of the clones. Either the search parameters were too stringent to identify these genes or the chicken sequence was sufficiently divergent to be undetectable in a standard Blast search. This is a common feature of immune-related genes, and it is often very difficult to identify such genes by sequence homology to mammalian homologues. Some of these sequences may also represent non-conserved 3’ UTR regions of genes. This set of clones may also include genes that have never been identified before and are not represented in the sequence databases. Further, more detailed analysis of these sequences can sometimes help elucidate the nature of the gene in question. Protein sequences can be predicted from the EST nucleotide sequence using programs such as ESTscan [[16] and [17]], which takes in to account sequencing errors and thus potential frame-shift mutations which are often present when there is only one EST sequence available for study. Conserved motifs and domains can then sometimes be identified for example, using the Pfam database [18], which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. PSI-Blast searches can also help identify to which type of family a gene will belong.

During clustering analysis, our 10,000 immune sequences were aligned with 398,000 existing chicken ESTs. This highlighted 3,845 clusters that contained one or more sequence from our immune libraries and 1,959 singleton clones. This analysis also identified 40 novel clusters that
only contained sequences from our new libraries. Upon Blast analysis, 7 of these clusters were found to represent known chicken genes (initially appearing unique as they aligned to a different part of the gene sequence from existing ESTs), 18 showed homology to genes in other species and 15 clusters proved to have no known homology to anything currently in the databases. At the time, we searched against 398,000 existing chicken ESTs. Now however, there are currently 550,510 chicken ESTs in the databases (dbEST release 080505). A current search has shown that 9 of our sequences are indeed still unique to our libraries and have no known identifiable homologue, although two of the sequences do show some similarity to two predicted chicken sequences (AM065333 and the hypothetical protein XP_429359; AM065802 and the predicted P114-RHO-GEF protein XP_418249). Eight of these sequences are identifiable in the whole genome sequence, as shown in Table 3.

Gene ontology (GO) annotations

In order to try and elucidate the function of the genes on the array further, we tried to assign as much annotation to the sequences as possible. GO annotations were assigned to some sequences after searching the GGI and UMIST databases [19], while other annotation was derived from hits to orthologous human sequences from the ENSEMBL [20] and GENSCAN [21] databases, as described in the 'methods' section. Having annotation derived from orthologous human genes means that cross-species comparisons between chicken and human array data may be possible. A search of the ENSEMBL database provided information on 2,292 GO-term associations, the GGGI database 1,542 and GENSCAN 566, while the UMIST full-length cDNA database provided a further 365 annotations. The sequences on the array cover a total of 227 GO terms, with 73% of all the sequences having at least one GO entry assigned to it. The available annotation for the array sequences is broken down as follows: 52% of genes have a 'cellular component' term assigned, 60% have 'molecular function' and 56% of sequences have the 'biological process' described. 83% of all the genes on the array have some kind of gene description and after searching each sequence against the sequences in the Ensembl chicken genome collection (July 2005 genebuild [22]), 78% of sequences were found to have a known chromosomal location. Now that all these sequences have been added to GenBank and thus have an accession number which can be directly linked into the ENSEMBL databases (work currently underway), obtaining comprehensive, up-to-date annotation data will become much easier.

A file showing the complete annotation for all the sequences on the array is available as supplementary material (Additional file 1). However, Additional file 2 provides an overview of the broad functional classes that are represented by the genes on the array. These are based on more general GO annotations derived from the GOslims database at EBI, and allow us an insight into the different classes of genes present on the array without having to look at detailed functional annotation for each individual gene.

Annotation is also available for some (9,137) of the ESTs in the UMIST collection. By comparing the relevant GO slims [23] terms for the sequences in this collection with those present on our array, we are able to see which types of genes appear to be enriched in our set, compared with a larger, more general collection of EST sequences. As can be seen (shown in bold) in Additional file 2, certain classes of gene appear to be more highly represented. For instance, genes involved in protein transport are more abundant in our set of clones, as are those involved in the response to stimulus. This is consistent with our attempts to pre-select for higher numbers of genes involved in the immune system.

Quality of the array

To assess the quality of the array, various hybridization comparisons were undertaken. Three different conditions were addressed: 1) self v self 2) biological replicate A v biological replicate B and 3) Control sample v activated sample. Dye swap experiments were also carried out for
conditions 2 and 3. The 'self' sample was a reference RNA consisting of a pool of various chicken lung samples. The biological replicates were lung samples from two 6-week-old chickens that had not been treated or challenged in any way. In the third group of hybridisations, the 'control' sample was from a similarly, untreated bird and the 'activated' sample was obtained from the lungs of a bird that had been challenged with the avian influenza strain H9N2 five days previously. The graphs in Fig 1 show the tight correlation between self/self ($R^2 = 0.9273$) and between replicates ($R^2 = 0.8766$), whereas a much higher level of variance is seen when an activated sample is compared against a control ($R^2 = 0.7601$).

The boxplots in Fig 2 also demonstrate the differing variances between the comparisons. The greatest variance is shown for the activated animals compared with the controls as would be expected. Regression analysis for each of the data sets confirm the increased variance with correlation coefficients of $r = 0.872$ for activated samples, $r = 0.936$ for replicate samples and $r = 0.963$ for self/self sample data sets.

Using the array

This array is available from the Ark-Genomics resource facility at Roslin Institute, providing an immune-focused array which, for anyone interested in immune-research, offers a much more cost-effective and time-saving platform for gene expression experiments, instead of using the large oligo arrays which have thousands more genes, many of which will be of no interest. Analysis of data is also thus much easier and far less time-consuming. Information on the array has been deposited in ArrayExpress (Accession: A-MEXP-307) [[24] and [25]] (Additional file 1) and very soon all the sequences will be submitted to the Ensembl database with links to all the GO annotation information in the GOA database [26].

Conclusion

We have constructed a 5 K chicken cDNA microarray, which is highly selected for genes expressed in tissues which have an immune function. This targeted array contains enough widely-expressed genes (whose expression won’t be changing) to enable good normalization, as well as containing numerous known immune genes (from our novel libraries and from existing EST collections). The array also contains many genes with as yet unknown homology and function as well as a few novel genes which are specific to the libraries from which the array was created. These genes of unknown function could well have a role in either the adaptive or innate immune response, and thus provide a valuable resource for analysis of gene expression changes occurring in birds that have been subject to immune challenge. The array has been proven to provide highly reproducible results and is now available to the chicken/microarray community as a whole.

Methods

Sample collection

Eight groups of 38 chickens (3-week-old) were vaccinated with two different vaccine regimes. The eight groups were males and females of a commercial line of hybrid broiler (Ross 306, Aviagen, Newbridge, Midlothian, UK) and layer (Lohman Brown, Lohmann Tierzucht, Cuxhaven Germany) chicks given one of the two vaccination schemes. Group 1 were given vaccines for *E. coli* (0.5 ml in left breast muscle), ND and IB DV (0.5 ml in right breast muscle) formulated in alum-gel and oil-based immunopotentiators. Intramuscular injections were given to ensure that all the birds were given an equal dose. Group 2 vaccines consisted of Paracox 8 [*Eimeria* sp.] (0.1 ml in drinking water), Nobilis Rismavac-CA126 [MD] (0.2 ml intramuscularly in leg) and Salenovac [*S. enteritidis*] (0.5 ml intramuscularly in leg). Tissue samples were obtained (unvaccinated): 5 hr, 24 hr, 72 hr and 7 days post vaccination. Samples from groups of 5 birds were pooled. Tissues collected were Bursa, spleen, Peyers patch and thymus. Tissue from Bursa, spleen and Peyers patch were pooled to make the 'B-cell' libraries and the thymus tissue was used to construct the 'T-cell' libraries. The tissues and time points chosen were in order to try and maximise the number of immune-related transcripts, including those which may only be expressed transiently. All experimental protocols were authorized under the UK Animals (Scientific Procedures) Act, 1986.

Library construction

Six libraries were constructed at Incyte Genomics (Palo Alto, CA): a standard and 2 normalized Bursa/spleen/Peyers patch libraries and a standard and 2 normalized thymus libraries. cDNA synthesis was initiated using an oligo (dT) primer, using methylated C in the first strand synthesis reaction. Following this first strand reaction, double-stranded cDNA was blunted, ligated to NotI adapters, digested with *EcoRI*, size-selected, and cloned into the NotI and EcoRI compatible sites of a custom modified MCS of the pBluescript (KS+) vector. Normalization was done in two rounds using conditions adapted from [27] and [28] except that a significantly longer re-annealing hybridization was used. Around 10,000 clones were then sequenced at the Sanger Institute according to their protocols. Using the T7 primer, sequence was generated from the 5’ end of each clone by the dideoxy chain termination method using an ABI 3700 sequence analyser (Applied Biosystems, Foster City, CA).

EST sequence analysis

Bioinformatic analysis commenced with 10,173 sequences. After eliminating poor quality sequence and
Scatter plots showing the variance between A). self/self hybridisation B). two biological replicates and C). a control sample compared with an activated sample. Very little spread is seen with the self/self hybridisation and between the two replicates, as would be expected. However, differences in gene expression can be seen between the activated and control samples.

Figure 1

Scatter plots showing the variance between A). self/self hybridisation B). two biological replicates and C). a control sample compared with an activated sample. Very little spread is seen with the self/self hybridisation and between the two replicates, as would be expected. However, differences in gene expression can be seen between the activated and control samples.
repeats, 9,434 of these sequences remained after screening with phred [29], RepeatMasker [30], Crossmatch [31] and XNUN [32]. Certain unwanted sequences were then identified after using the Blast algorithm [[33] and [34]] and screening the results for specific keywords. These included ‘ribosomal’, ‘mitochondrial’, ‘Newcastle’, ‘Mareks’, ‘Eimeria’, ‘Salmonella’ and ‘E. coli’. 8,154 sequences passed these criteria. These sequences were then clustered against the existing UMIST and EMBL chicken EST sequences using TIGR’s clustering tool, tgicl [35]. This resulted in 3,845 clusters which contained one or more sequence from our libraries and 1,959 singletons. The following clones were chosen for inclusion on the array: 3,770 cluster representatives, 1,067 singletons and 157 reference immune genes: 93 clones from the UMIST collection, 41 from our immune libraries, 21 clones from the Delaware set [36] and 2 clones courtesy of R. Zoorob (CNRS, France) (Table 2).

Construction of the array

The immune array was constructed from 4994 chicken EST clones plus 196 control elements (landing lights (positional controls), GAPDH, gamma actin, salmon sperm DNA, calf thymus DNA, chicken and bovine genomic DNA and a variety of spotting buffers). Plasmid DNA was prepared using MagAttract 96 Miniprep chemistry on a Biorobot 8000 platform (Qiagen Ltd., Crawley, UK), and the cDNA inserts were amplified using CGAT-TAAGTGAGTACTCG (fwd) and CAAATTCACACAGGAAAC (rev) in 50 ul reactions using 1 ul of DNA as a template. Amplified DNA was purified by Multiscreen 384 well PCR purification plates (Millipore, Watford, UK) on a Multiprobe II liquid handling platform (Perkin Elmer, Beaconsfield, UK) and the reactions confirmed by agarose gel electrophoresis and quantified by Picogreen assay (Molecular Probes, Invitrogen, Paisley, UK) on a Fluoroscan Ascent fluorescent plate reader (Thermo Life Science, Basingstoke, UK). DNA was resuspended to 150 ng/ul in spot buffer (150 mM Sodium phosphate, 0.01% SDS) before being spotted in duplicate on to amino-silane coated slides (CMF-GAPSII, Corning, Schiphol-Rijk, The Netherlands) using a Biorobotics MicroGrid II spotter (Genomic Solutions, Huntington, UK). Slides were then treated using succinic anhydride and 1-methyl-2-pyrrolidinone (Sigma, Poole, UK) to block unbound amino groups, followed by a wash in 95°C MilliQ water before hybridisation.

RNA preparation and labelling

Total RNA was isolated from lung tissue using a Trizol extraction according to the manufacturer's protocol (Invitrogen, Paisley, UK) and subsequently purified using the RNaseasy Midi RNA Purification kit (Qiagen Ltd., Crawley, UK). RNA concentration was determined spectrophotometrically and RNA quality was determined using an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Cy3 or Cy5 was incorporated into each sample using the Fairplay labelling kit (Stratagene, La Jolla, CA) and the labelled cDNA cleaned-up after passage through DyeEx columns (Qiagen Ltd., Crawley, UK). Labelling efficiency was determined by running 0.5 μl of each sample on a 1% agarose gel and measuring the intensity of fluorescence on a GeneTac LS IV scanner (Genomic Solutions, Huntington, UK).

Hybridizations

Microarray hybridizations were carried out overnight using a GeneTAC automated hybridization system [37] (Genomic Solutions, Huntington, UK). Hybridizations (125 μl) were carried out in Genomic Solutions hybridization solution (Cat. no. RP#0025) in a stepped hybridization: 55°C for 3 hr, 50°C for 3 hr and then 45°C for 12 hr. Slides were then washed in Genomic Solutions wash buffers (Cat. nos. CS#0038, CS#0039 and CS#0040). Upon removal from the hybridization stations, slides were washed for 1 min in Post-Wash buffer (CS#0040) and a further minute in isopropanol, followed by centrifugation at 1000 rpm for 6 min. Dried slides were scanned in a Scanarray 5000 scanner (GSI Lumonics, Rugby, UK) fitted with Cy3 and Cy5 filters.
Data analysis

To indicate the suitability of the new array to discriminate the differences in the experimental treatments, hybridizations comparing samples with controls and controls with controls were performed. Control (vehicle treated) animals were compared with immunologically challenged animals (activated slides) and control animals were also compared with other control individuals (replicate slides). The same animal was also compared with itself (self/self). Each comparison was completed in duplicate and with a dye flip. Dye-swaps are carried out in order to deal with any residual dye-bias remaining after labelling. However, this is generally not a problem, due to the indirect labelling method employed. Data was extracted from the slide using Bluefuse software (BlueGnome, Cambridge, UK). Features with poor confidence information (confidence <0.30, flagged D and E) were eliminated from the analysis. M v A plots [where $M = \log_2(Cy5/Cy3)$ and $A = 1/2*(\log_2(Cy5) + \log_2(Cy3))$] of the data for each slide (data not shown) were suitably linear to require only a simple global normalisation of the data. Data from slides of similar treatments was pooled and a boxplot produced for each comparison (Genstat v8.1, VSN International Ltd., Hemel Hempstead, Herts, UK).

Databases and sequence sources

Ensembl and Genscan predicted genes/peptide sequences for the chicken genome assembly (March 2004) were downloaded from the Ensembl database using Ensmart or the UCSC table browser [38]. Chicken EST sequences were downloaded from the TIGR Gallus gallus gene index (GGGI) [release 10.0] [[39] and [40]]. Chicken full-length cDNA sequences were downloaded from the UMIST www site (Sept 2004). Ensembl predicted peptide sequences for the human genome assembly (May 2004) were downloaded from the Ensembl database using Ensmart or the UCSC table browser.

Mapping array probes to chicken ESTs, cDNAs, genes and genome

Unique ESTs used to create the immune array were mapped to chicken cDNAs, ESTs, genes or the chicken genome assembly using NCBI Blastn (version 2.2.11). Identity was defined with > 95% sequence identity over 100-bp and then taking the top-scoring match to each EST to provide a unique sequence assignment. All repeats and low-complexity sequences were masked using RepeatMasker (version 3.1.0).

Definition of Gene Ontology terms and Gene Descriptions for array probes

Gene Ontology (GO) annotations [41] were all based on database hits in sequence similarity searches using Blastn. GO annotations were automatically transferred from these database records to the array probe entries. GO annotations were available for GGGI and UMIST EST/cDNA sequences. For chicken Ensembl or Genscan gene predictions, GO annotations were based on orthologous human peptide sequences. Orthologues were defined based on two cycles of Blastp between human and chicken proteins. An E_value cut off of less than 10^-4, with the subject and query databases swapped between runs. By comparing E_values mutually best proteins pairs were selected as orthologues. When E_values were equal, bits score and sequence coverage were used as tiebreakers to select the top hit. For each array probe associated GO terms and a unique gene description was transferred from the orthologous database record. Finally a Perl script was used to create a non-redundant set of probe to GO records.

Frequency of GO and GO-Slim terms

GO terms (version 3.2.16) were downloaded from the Gene Ontology www site. More general GO terms were assigned using GoaSlim_map (June 2005) available from the GOA www site at EBI. The GO-Slim terms allowed us to estimate e.g. the frequency of array probes associated with the biological process Metabolism (GO:0008152).

Data processing

Perl scripts (version 5.8.5) and SQL were used throughout to manipulate and filter data sets.

Authors’ contributions

JS contributed to the design of the array, carried out the microarray experiments and drafted the manuscript. DS carried out quality control, clustering and BLAST searches of the DNA sequences. PH was responsible for tissue sample collection. RTT statistically analysed the microarray data. WGJD and VEJCS were involved in experimental design. EJG contributed to the array design. DWB carried out all the bioinformatics involved in establishing GO annotations. All authors read and approved the final manuscript.

Additional material

Additional File 1

The file supp_mat.xls is an excel file which contains annotation information on the sequences present on the immune array and is available as supplementary material. An ArrayExpress file is available under accession number A-MEXP-307. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2164-7-49-S1.xls]
Additional File 2

The file supp_mat_2.xls is an excel file and contains a summary of functional groups present on the array (GO slims). Percentages are calculated as a fraction of the total number of classes represented within one functional description. For example, 42.4% of all the genes are involved in some kind of physiological process. Of these, 14.3% are involved in transport, with 10.2% of these genes being specifically involved in electron transport. This breakdown of functional classes is compared to those represented by 9,137 of the ESTs in the UMIST collection (data available from http://chick.umist.ac.uk/). Entries shown in bold define the GO classifications that appear to be enriched in the sequences represented on the immune array compared with this subset of the UMIST chicken ESTs. Click here for file.

http://www.biomedcentral.com/content-supplementary/1471-2164-7-49-S2.xls

Acknowledgements

The authors would like to thank Incyte Genomics (Palo Alto, CA) for construction of the normalized cDNA libraries and The Wellcome Trust Sanger Institute (Hinxton, UK) for sequencing 10,000 cDNA clones from the libraries. Thanks also to Frazer Murray of ARK-Genomics (Roslin) for invaluable technical assistance and to Theo Jansen (Interret International B.V., Boxmeer, The Netherlands) for the preparation of the vaccine formulations. This project was funded by Interret International B.V. Boxmeer, The Netherlands, the Biotechnology and Biological Science Research Council (BBSRC) and partly by a BSIK VIRGO consortium grant, the Netherlands (grant nr. 03012).

References

1. Schmid M, Nanda I, Gutenbach M, Steinleink C, Hoehn M, Scharl M, Haaf T, Weigend S, Fries R, Buerstedde JM, Wimmers K, Burt DW, Smith J, A'Hara S, Law A, Griffin DK, Bumstead N, Kaufman J, Thomson PA, Burke T, Groenen MA, Crooijmans RP, Vignal A, Fillon V, Morrisson P, Piteil F, Tixier-Boichard M, Ladjali-Hammedi K, Hillel J, Maki-Tanila A, Cheng HH, Delaney ME, Bumsride J, Mizuno S: First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 2000, 90:169-218.

2. Aerts J, Crooijmans R, Cornelissen K, Hemmatian K, Veenendaal T, Koste J, Maki-Tanila A, Cheng HH, Delaney ME, Bumsride J, Mizuno S: First report on chicken genes and chromosomes 2000. Cytogenet Cell Genet 2000, 90:169-218.

3. Ren C, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang HB: A BAC-based physical map of the chicken genome. Genome Res 2003, 13:2754-2758.

4. Morisson P, Lemiere A, Bosc S, Galan M, Plisson-Petit F, Pinton P, Delcros JB, Feke V, Piteil F, Fillon V, Yerle M, Vignal A: ChickRH6: a chicken whole-genome radiation hybrid panel. Genet Sel Evol 2002, 34:521-533.

5. Boardman PE, Sanz-Ezquerro J, Overton IM, Burt DW, Bosch E, Fong WT, Tickle C, Brown WR, Wilson SA, Hubbard SJ: A comprehensive collection of chicken cDNAs. Curr Biol 2002, 12:1965-1969.

6. International Chicken Genome Sequencing Consortium (IGSC): Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432:695-716.

7. van Hemert S, Ebbelaar BH, Smits MA, Rebel JM: Generation of EST and microarray resources for functional genomic studies on chicken intestinal health. Anim Biotechnol 2003, 13:133-143.

8. Bliss TW, Dohms JE, Emara MG, Keeler CL Jr: Gene expression profiling of avian macrophage activation. Vet Immunol Immunopath 2005, 105:289-299.

9. Neiman PE, Ruddell A, Jasoni C, Loring G, Thomas SJ, Brandvold KA, Lee Rm, Burnside J, Delrow J: Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc Natl Acad Sci (USA) 2001, 98:6378-6383.

10. Afrahide M, Schultheiss TM: Construction and analysis of a subtracted library and microarray of cDNAs expressed specifically in chicken heart progenitor cells. Dev Dynam 2004, 230:290-298.

11. ARKGenomics http://www.ark-genomics.org

12. Burnside J, Neiman P, Tang J, Bascom R, Aronzajn M, Talbot R, Burt DW, Delrow J: Development of a cDNA array for chicken gene expression analysis. BMC Genomics 2005, 6:13.

13. Smith J, Speed D, Law AS, Glass BJ, Burt DW: In silico identification of chicken immune-related genes. Immunogenetics 2004, 56:122-133.

14. Gene ontology http://www.geneontology.org

15. Blast at NCBI http://www.ncbi.nlm.nih.gov/BLAST

16. Iseli C, Jongeneel CV, Bucher P: ESTScan-a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intel Syst Mol Biol 1999:138-148.

17. ESTScan http://www.ch.embnet.org/software/ESTScan.html

18. Pfam http://www.sanger.ac.uk/Software/Pfam

19. BBSRC chicken EST database http://chick.umist.ac.uk/

20. Ensemble genome databases http://www.ensembl.org

21. Genscan http://genes.mit.edu/GENSCAN.html

22. Ensemble 2005 chicken genome [ftp://ftp.ensembl.org/pub/chicken-2.1.1/](http://ftp.ensembl.org/pub/chicken-2.1.1/)

23. GO slims http://www.geneontology.org/GO.slims.shtml

24. Brazma A, Parkinson H, Sarkans U, Shojaatlab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone S: ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2003, 31:68-71.

25. ArrayExpress http://www.ebi.ac.uk/arrayexpress

26. Gene ontology annotation at EBI http://www.ebi.ac.uk/GOA

27. Soares MB, Bonaldo MF, Jeline P, Su L, Lawton L, Efstratiadis A: Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci U S A 1994, 91:9228-9232.

28. Bonaldo MF, Lennon G, Soares MB: Normalization and subtrac-
tion: two approaches to facilitate gene discovery. Genome Res 2005, 15:679-691.

29. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8:175-185.

30. RepeatMasker http://www.repeatmasker.org/

31. Crossmatch http://www.genome.washington.edu/UWGC/analy-sistools/Swat.cfm

32. Claverie MJ, States D: Information enhancement methods for large scale sequence analysis. Computers Chem 1993, 17:191-201.

33. Blast at NCBI http://www.ncbi.nlm.nih.gov/BLAST

34. Atsuchil SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.

35. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsi J, Quackenbush J: TIGR gene clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 2003, 19:651-652.

36. University of Delaware EST collection http://www.chick-es.udel.edu/

37. GenomicSolutions http://www.genomicsolutions.com/show page.php?url=GeneMachines%20HybStation

38. UCSC genome bioinformatics site http://genome.ucsc.edu/

39. TIGR gene indices http://www.tigr.org/dcb/tgi

40. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J: The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 2001, 29:159-64.

41. Gene Ontology Consortium: Gene Ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.