Matrix Rearrangement Inequalities Revisited

Victoria M. Chayes

Abstract. Let \(\|X\|_p = \text{Tr}((X^*X)^{p/2})^{1/p} \) denote the \(p \)-Schatten norm of a matrix \(X \in M_{n \times n}(\mathbb{C}) \), and \(\sigma(X) \) the singular values with \(\uparrow \downarrow \) indicating its increasing or decreasing rearrangements. We wish to examine inequalities between \(\|A+B\|_p^p + \|A-B\|_p^p, \|\sigma_1(A) + \sigma_1(B)\|_p^p + \|\sigma_1(A) - \sigma_1(B)\|_p^p \) and \(\|\sigma_1(A) + \sigma_1(B)\|_p^p + \|\sigma_1(A) - \sigma_1(B)\|_p^p \) for various values of \(1 \leq p < \infty \). It was conjectured in [6] that a universal inequality \(\|\sigma_1(A) + \sigma_1(B)\|_p^p + \|\sigma_1(A) - \sigma_1(B)\|_p^p \leq \|A+B\|_p^p + \|A-B\|_p^p \) might hold for \(1 \leq p < 2 \), potentially providing a stronger inequality to the generalization of Hanner’s Inequality to complex matrices \(\|A+B\|_p^p + \|A-B\|_p^p \geq (\|A\|_p + \|B\|_p\|p^p + ||A\|_p - \|B\|_p\|p^p \). We extend some of the cases in which the inequalities of [6] hold, but offer counterexamples to any general rearrangement inequality holding. We simplify the original proofs of [6] with the technique of majorization. This also allows us to characterize the equality cases of all of the self-adjoint matrices to the \(\{A,B\} = 0 \) case for all ranges of \(p \).

Mathematics subject classification (2010): 15A42.

Keywords and phrases: Matrix inequality, Hanner’s inequality, singular value inequalities, \(p \)-Schatten norm, majorization.

References

[1] F. J. Almgren Jr, E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous Journal of the American Mathematical Society, pp. 683–773 (1989).
[2] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra and its Applications 118, 163–248 (1989), https://doi.org/10.1016/0024-3795(89)90580-6, http://www.sciencedirect.com/science/article/pii/0024379589905806.
[3] K. Ball, E. A. Carlen, E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Inventiones mathematicae 115 (1), 463–482 (1994), https://doi.org/10.1007/BF01231769.
[4] J. C. Bourin, E. Y. Lee, Clarkson-McCarthy inequalities with unitary and isometry orbits, Linear Algebra and its Applications 601, 170–179 (2020), https://doi.org/10.1016/j.laa.2020.04.019, http://www.sciencedirect.com/science/article/pii/S0024379520302135.
[5] A. Burchard, Cases of equality in the riesz rearrangement inequality, Annals of Mathematics 143 (3), 499–527 (1996), http://www.jstor.org/stable/2118534.
[6] E. Carlen, E. H. Lieb, Some matrix rearrangement inequalities, Annali di Matematica Pura ed Applicata 185 (5), S315–S324 (2006), https://doi.org/10.1007/s10231-004-0147-z.
[7] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proceedings of the National Academy of Sciences of the United States of America 37 (11), 760–766 (1951), 10.1073/pnas.37.11.760, https://www.ncbi.nlm.nih.gov/pubmed/16578416.
[8] I. M. Gelfand, M. A. Naimark, The relation between the unitary representations of the complex unimodular group and its unitary subgroup, Izv. Akad. Nauk SSSR Ser. Mat. 14 (3), 239–260 (1950).
[9] G. H. Hardy, J. E. Littlewood, G. Polya, Some simple inequalities satisfied by convex functions, Messenger Math. 58, 145–152 (1929), https://ci.nii.ac.jp/naid/10009422169/en/.
[10] G. H. Hardy, G. Pólya, *Inequalities*, Cambridge: Cambridge University Press (1934), Bibliography: p. 300–314.

[11] F. Hiai, *Equality cases in matrix norm inequalities of golden-thompson type*, Linear and Multilinear Algebra 36 (4), 239–249 (1994), doi:10.1080/03081089408818297, https://doi.org/10.1080/03081089408818297.

[12] F. Hiai, D. Petz, *Introduction To Matrix Analysis And Applications*, 1 edn., chap. 6, pp. 227–271, Springer International Publishing, Cham (2014).

[13] A. Horn, *On the singular values of a product of completely continuous operators*, Proceedings of the National Academy of Sciences of the United States of America 36 (7), 374 (1950).

[14] A. W. Marshall, I. Olkin, B. C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, 2 edn., Springer, New York (2011).

[15] C. McCarthy, *Cp cp*, Isr. J. Math. 5, 249–271 (1967).

[16] N. Tomczak-Jaegermann, *The moduli of smoothness and convexity and the Rademacher averages of the trace classes S_p(1 \leq p \leq \infty)^**, Studia Mathematica 50 (2), 163–182 (1974), http://eudml.org/doc/217886.

[17] M. Tomić, *Théorème de gauss relatif au centre de gravité et son application*, Bull. Soc. Math. Phys. Serbie 1, 31–40 (1949).

[18] H. Weyl, *Inequalities between two types of eigenvalues of a linear transformation*, Proceedings of the National Academy of Sciences of the United States of America 35 (7), 408–411 (1949).