Mutagenic effect of ethyl methane sulfonate (EMS) on barnyard millet (Echinochloa frumentacea) variety CO(KV)2

R Sasikala, P Kannan, M Paramasivan and T Myrtle Grace

DOI: https://doi.org/10.22271/chemi.2020.v8.i3ao.9642

Abstract
Barnyard millet variety CO (KV) 2 was treated with 2 different doses of EMS (Ethyl Methane Sulfonate) (ie. 0.2%, 0.4%, 0.6%, 0.8% and 1.0%). Six days after treatment germination percentage was calculated and LD50 value were fixed as 0.51%EMS. M1 population was raised with two treatments 0.4% and 0.5%. Seedlings with normal growth and development were observed in 0.4% EMS dose and very poor establishment, stunted growth and 80% spikelet sterility was observed in 0.5% EMS treatment. In M2 generation macro-mutants such as plant type, earliness, study stem, bigger panicle size and higher plant yield (28g/plant) were obtained.

Keywords: Barnyard millet, EMS, LD50, macro-mutants

Introduction
Barnyard millet (Echinochloa frumentacea (Roxb.) Link) is one of the hardiest millets being cultivated for food and fodder in all types of soils and sustains adverse climatic conditions. The yield level of barnyard millet is as high as 10 t/ha in Japan, where as in India it is 1.5 to 2 t/ha. Thus, there is a greater scope for exploiting its potential under Indian conditions (Channappagoudar et al. (2008) [1]. In the rainfed tracts of Tamil Nadu viz., Ramanathapuram, Sivagangai and Pudukottai etc. cultivation of minor millets such as Barnyard millets seems to be a viable alternative to sustain cereal food grain production under changing climatic scenario.

Availability of limited genetic variation and difficulty in hybridization makes mutation breeding as one of the viable and feasible approaches in the genetic improvement of barnyard millet. Induced mutation has been perceived as an important tool to create additional variability for quantitative and qualitative traits in a number of crop plants (Bansal et al. (1990) [2]. This is evident from the fact that more than 2250 varieties of different crops had been released that were derived as direct mutants or from hybridization involving desirable mutants (Ahlswalia et al., (2004) [3]. In India alone, 300 and above mutant cultivars belonging to more than 55 plant species have been developed / released for cultivation.

Based on the above evidences, the present investigation was started with an aim of inducing novel variability in one of the hardiest minor millets “Barnyard millet” through mutagenesis. Chemical mutagenesis approach was followed to develop large number of mutants and mutants were screened for agronomic traits like earliness, high tiller numbers and higher yield.

Materials and Methods
A popular barnyard millet variety CO(KV)2 was used for studying the effect of mutation on germination and different agronomic traits. The chemical mutagen Ethyl Methyl Sulfonate (EMS) was used for generating the mutated population of CO(KV)2 barnyard millet. Initially germination test was carried out before treating of CO(KV)2 seeds with mutagen (EMS). Seeds with 10-12% moisture content were allowed for germination in petri plates with adequate amount water and around 100% germination was observed after 3 days.
Doses of EMS were fixed as 0.2%, 0.4%, 0.6%, 0.8%, 1.0% and germination studies were evaluated with control. Hundred seed were counted for each treatment as well as untreated control and placed in separate petri-plates. Different doses of EMS was prepared and added in separate petri-plates and seeds are allowed for germination. 6 days after treatment germination percentage was calculated and LD$_{50}$ value were fixed. Based on LD$_{50}$ value treatments were fixed for generating M$_1$ population. M$_2$ seeds were sown as plant to progeny rows by adopting 30cm and 10cm spacing between rows and plants respectively. M$_2$ plants were monitored for different morphological mutants expressed in the population. Field experiments were conducted at Dryland Agricultural Research Station, Chettinad, Sivangangai district of Tamil Nadu. Results and Discussion

Germination percentage and fixation of LD$_{50}$ value
Different doses of mutation treatments were influenced the effect on seed germination, seedlings shoot and root length. Germination status of different doses of treatments was presented in Fig 1. Around 91% germination was observed in 0.2% EMS dose. Higher doses of mutagen (0.8% EMS and 1.0% EMS) were observed with high rate of lethality (10% and 3% germination) (Table 1). Similar reports have been reported by Ambavane et al. (2015) [4]; Ambli and Mullainathan (2015) [5], Nivetha et al. (2018) [6]. Based on the germination percentage of CO(KV)2 seeds with different doses of EMS mutagen, the LD$_{50}$ value has been fixed as 0.51% (Fig 1 & Fig 2).

Generation of M$_1$ and M$_2$ population
Barnyard millet variety CO (KV) 2 was treated with 2 different doses of EMS (Ethyl Methane Sulfonate) (ie. 0.4% EMS and 0.5% EMS). Since LD$_{50}$ value for EMS dose is fixed as 0.5%, so 0.4% EMS (slight lower dose than LD$_{50}$) has fixed for raising the effective mutagenic population. Initially seeds were soaked in water for 8 hours then those seeds were used for EMS treatment. Treated seeds were sown in field for raising of M$_1$ generation. Intercultural operations such as weeding and thinning, fertilizer application was carried out at appropriate time. Seedlings with normal growth and development were observed in 0.4% EMS dose. Around half of the population was affected at germination stage in 0.5% EMS treatment, as well as very poor establishment, stunted growth and 80% spikelet sterility was also observed. There is no variation was observed in height and plants are harvested to raise the M$_2$ population. Results are concurrent with the earlier findings of Jayakumar and Selvaraj (2003) [7], Kavithamani et al. (2008) [8], Anju Pathania and Sood, (2011) [9], and Ramesh et al. (2019) [10].

Around ten thousand M$_1$ seeds were sown. Approximately around 9500 individuals were obtained and CO(KV)2 was used as check. Morphological mutants were observed in M$_1$ population and variants were noticed such as earliness (75-80 days), purple pigmentation on stems and panicles(M$_2$-59-1), sturdy and large stem size, more number of tillers, compact panicle, bigger size panicle, higher seed yield/plant (28g/plant). In M$_2$ population, compact panicle variant M$_2$-149-1 (Fig 3-i) were observed and purple pigmentation on stem (Fig.3-iii), panicle. Plant with broad leaf (M$_2$-74-3) with 3.8cm width was observed (Fig.3-ii). Mutant M$_2$-56-1 identified for its sturdiness, bigger size panicle and higher single plant yield of 28 g/plant (Fig.3-iv). Variations found among M$_2$ individuals were due to sudden mutagenic changes by chemical ethyl methane sulfonate. Earlier studies on mutation and macro-mutants identified in M$_2$ generation by Raveendran (1976) [11], Yadava et al. (2003) [12], Nivetha et al. (2018) [6] and Ramesh et al. (2019) [10] also confirmed the results of variations found in M$_2$ population.

Table 1: Germination percentage of different doses of EMS in barnyard millet

Doses	Germination percentage %
Control	100
0.2% EMS	91
0.4% EMS	74
0.6% EMS	37
0.8% EMS	10
1.0% EMS	3

Fig 1: Effect of EMS on seed germination and LD50 value in barnyard millet variety CO(KV)2 (6 days after EMS treatment)

Fig 2: Different doses of EMS with germination % variation in barnyard millet variety CO(KV)2
i. Compact panicle type, ii. Broad leaf mutant, iii. Pink pigmentation, iv. Sturdy stem and mutant for higher yield

Conclusion
In the present investigation chemical mutagen EMS was used to generate novel mutants in barnyard millet variety CO(KV)2. Study showed that macro-mutants with preferable phenotypic features were obtained in M2 generation. It was additional confirmation that EMS was better chemical mutagen to create variability in barnyard millet. The mutations acquired for leaf breadth, plant type, sturdiness and bigger panicle size are further being evaluated in subsequent generation and will be utilized in barnyard millet improvement.

References
1. Channappagoudar BB, Hiremath SM, Biradar NR, Koti RV, Bharamagoudar TD. Influence of Morphophysiological and Biochemical Traits on the Productivity of Barnyard Millet. Karnataka J Agric. Sci. 2008; 20(3):477-480.
2. Bansal V, Katoch PC, Plaha P. Mutagenic effectiveness of gamma rays, ethyl methane sulphonate and their combined treatments in rice. Crop Improvement. 1990; 17:73-75.
3. Ahloowalia BS, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004; 135:187–204.
4. Ambavane AR, Sawaiydekar SV, Sawantdesai SA, Gokhale NB. Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences. 2014; 8:120-125.
5. Ambli K, Mullainathan L. Chlorophyll and morphological mutants of Pearl millet (Pennisetum tephoides (Burn.) stapf. Var. CO(cu)9., European Journal of Experimental Biology. 2015; 5(3):72-77.
6. Nivetha C, Nivetha S, Palani M, Sakila M. Effect of mutagenic treatments of methyl glyoxal in producing high yielding mutants in finger millet (Eleusine coracana, Gaertn). International Journal of Agricultural Science and Research (IJASR). 2018; 8(1):137-146. ISSN(P): 2250-0057; ISSN(E): 2321-0087.
7. Jayakumar S, Selvaraj R. Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in sunflower (Helianthus annuus L.). Madras Agricultural Journal. 2003; 90(7-9):574-576.
8. Kavithamani D, Kalamani A, Vanniarajan C, Uma D. Mutagenic effectiveness and efficiency of gamma rays and EMS in Soybean (Glycine max (L.) Merrill). Madras Agricultural Journal. 2008; 95(7-12):448-451.
9. Anju Pathania, Sood BC. Comparative effectiveness and efficiency of physical and chemical mutagens in Chickpea (Cicer arietinum L.). Legume Research. 2007; 30(3):186-191.
10. Ramesh M, Vanniarajan C, Ravikesavan R, Eraivan Arutkani K Aiyananthan et al. Mutagenic effectiveness and efficiency in barnyard millet (Echinochloa frumentacea) using physical, chemical and combination of mutagens. Electronic Journal of Plant Breeding. 2019; 10(2):949-956.
11. Raveendran TS. Investigation on induced mutagenesis in finger millet (Eleusine coracana (L.). Gaertn. M.Sc. (Ag.). Dissertation. Tamil Nadu Agric. Univ. Coimbatore, 1976.
12. Yadava HS, Tikle AN, Bhagat DV. Effect of induced mutation through gamma rays on growth and yield parameters of Kodo-millet. J Soil and Crops. 2003; 13(1):25-28.