Method: Remnant synovial fluid specimens, which were collected for routine clinical care at 13 study sites in the US and Europe, underwent testing using an IUC version of the BioFire BJI Panel. Performance of this test was determined by comparison to Standard of Care (SoC) consisting of bacterial culture performed at each study site according to their routine procedures.

Results: A total of 1544 synovial fluid specimens were collected and tested with the BioFire BJI Panel. The majority of specimens were from knee joints (77.9%) and arthrocentesis (79.4%) was the most common collection method. Compared to SoC culture, overall sensitivity was 90.2% and specificity was 99.8%. The BioFire BJI Panel yielded a total of 268 detected results, whereas SoC yielded a total of 215 positive results for on-panel analyses.

Conclusion: The BioFire BJI Panel is a sensitive, specific and robust tool for rapid detection of a wide range of analytes in synovial fluid specimens. The number of microorganisms and resistance genes included in the BioFire BJI Panel, together with a reduced time-to-result and increased diagnostic yield compared to culture, is expected to aid in the timely diagnosis and appropriate management of BJIs.

Disclosures: Benjamin von Bredow, PhD, BioFire (Grant/Research Support); Jennifer Dier Bard, PhD, BioFire Diagnostic (Consultant, Scientific Research Study Investigator) Bart Kensinger, PhD, BioFire Diagnostics (Employee) Benedicte Pons, PhD, bioMerieux SA (Employee) Corinne Jay, PhD, bioMerieux SA (Employee)

323. First case of Prosthetic joint infection due to Nocardia veterana-elegans

Tasadeq Fazli, MD, FACP, FIDSA1; Ekta Bansal, MD1; Dorothy C. Garner, MD2; Vijendra Bajwa, MD1; Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Virginia Tech Carilion School of Medicine, Carilion Clinic, Roanoke, VA

Session: P-10. Bone and Joint

Background: Nocardia are Gram-positive filamentous bacteria that cause Nocardiosis, a rare opportunistic infection. The most common site of infection is the lungs, with metastatic spread usually to the central nervous system. Prosthetic joint infection due to Nocardia is very rare.

Methods: We report the first case of prosthetic joint infection due to Nocardia veterana-elegans, and review the literature regarding Nocardia septic arthritis, with particular attention to prosthetic joint infection.

Results: The patient was a 35 year old male with history of Hodgkins Lymphoma for which he received chemotherapy previously, poorly controlled diabetes, motor vehicle accident in 2003 with right open tibial plateau fracture requiring hardware placement, who was admitted with a two week history of right knee pain and swelling. Knee aspiration revealed purulent fluid and synovial culture grew Nocardia species. He underwent right knee arthroscopy and debridement with removal of hardware. The Nocardia species were not associated with any other infection. The patient was treated with intravenous sulfamethoxazole, linezolid, clarithromycin, imipenem and amikacin. He was placed on oral linezolid for four weeks, which was then switched to oral trimethoprim/sulfamethoxazole, with a plan for a six month course of therapy. He has completed two months of therapy thus far and is doing well clinically.

Nocardia is an uncommon cause of septic arthritis. We found only 37 cases reported in the English literature thus far. Amongst these, only six involved prosthetic joints, including our case, which is the first one to be caused by N. veterana-elegans. Three cases were caused by N. nova and one each by N. farcinica and asteroides. Septic arthritis due to Nocardia has a favorable outcome with a combination of surgical debridement and prolonged antimicrobial therapy of three to six months. For prosthetic joint infections, removal of hardware seems to carry a better prognosis. Trimethoprim/sulfamethoxazole is the preferred antimicrobial, including for bone and joint infection, although susceptibilities can vary amongst the different species.

Conclusion: Nocardia is an uncommon cause of septic arthritis. Prosthetic joint infection is very rare. Prognosis is fair with a combination of hardware removal and prolonged antimicrobial therapy.

Disclosures: All Authors: No reported disclosures

324. Implant Sonication Improves Microbiologic Diagnosis of Elbow Prosthetic Joint Infection

Laure Flurin, n/a1; Kerry Greenwood-Quaintance, MS1; Ronda N. Esper, Undergraduate degree1; Joaichim Sanchez-Sotoelo, M.D, PhD1; Robin Patel, MD1; Robin Patel, MD1; Mayo Clinic, Rochester, Minnesota

Session: P-10. Bone and Joint

Background: With a reported incidence of up to 12%, periprosthetic joint infection (PJI) is a frequent complication of total elbow arthroplasty (TEA). Its microbiologic diagnosis is usually based on periprosthetic tissue culture. With a plan for a six month course of therapy. He has completed two months of therapy thus far and is doing well clinically.

Conclusion: The combination of sonicate fluid culture and tissue culture had a greater sensitivity than tissue culture alone for microbiologic diagnosis of elbow TEA infection.

Disclosures: Joaichim Sanchez-Sotoelo, M.D, PhD, Elsevier (Other Financial or Material Support, Publishing Royalties); Accelerate Diagnostics (Consultant); Oxford University Press (Other Financial or Material Support, Publishing Royalties); Stryker (Grant/Research Support); Wright (Consultant); Robin Patel, MD, Accelerate Diagnostics (Grant/Research Support); CDC Diagnostics (Grant/Research Support); ContracTech (Consultant); GenMark Diagnostics (Consultant); Heraeus Medical (Consultant); Hutchison Biofilm Medical Solutions (Grant/Research Support); Merck (Grant/Research Support); NextGen Diagnostics (Consultant); PathoQuest (Consultant); Qvella (Consultant); Samsung (Other Financial or Material Support, Dr. Patel has a patent on Bordenella pertussis/papertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued); Selux Dx (Consultant); Shionogi (Grant/Research Support); Specific Technologies (Consultant)

325. Invasive and Non-Invasive Osteomyelitis Caused by Group B Streptococcus Infection Among Veterans

Taisa A. Bei, MS1; Bridgid Wilson, PhD2; Richard Banks, BS2; Janet Briggs, RN, MSN, NP2; Sunah Song, MPH2; Frederico Perez, MD, MS1; Robin Jump, MD, PhD2; VA Northeast Ohio Healthcare System, Cleveland, Ohio; Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH; Case Western Reserve University, Cleveland, OH

Session: P-10. Bone and Joint

Background: Epidemiological studies that assess invasive Group B Streptococcus (GBS) infections may not capture cases of osteomyelitis diagnosed using non-invasive cultures in combination with imaging, laboratory tests, and clinical assessment. Here, we compare GBS osteomyelitis among individuals diagnosed using invasive and non-invasive cultures.

Methods: Using the Veterans Health Administration corporate data warehouse, we studied a national retrospective cohort review of Veterans diagnosed with GBS osteomyelitis between 2008 – 2017. Invasive cases were defined as an International Classification of Disease (ICD) code for osteomyelitis accompanied by a blood or bone culture positive for GBS within 2 weeks. Non-invasive cases were defined as an ICD code for osteomyelitis and a non-invasive culture positive for GBS from a cordant site within 2 weeks. We compared demographics, comorbid conditions, mortality, and time to below- or above-knee amputation among patients with invasive and non-invasive GBS osteomyelitis.

Results: We identified 1167 cases of invasive osteomyelitis among 1077 patients and 692 cases of non-invasive osteomyelitis among 644 patients. Most patients were male (98%) with an average age of 63.2 years (± standard deviation (SD) 10.1 years). Among patients with invasive osteomyelitis, Charlson Comorbidity Index (CCI) was similar among patients with invasive and non-invasive disease (3.85 ± SD 2.3 and 3.83 ± SD 2.4), respectively. Among those with lower extremity osteomyelitis, 11% of invasive cases had an amputation at 30 days while 2% of non-invasive cases had an amputation in the same time frame (Figure 1). Mortality was similar among those with invasive and non-invasive GBS osteomyelitis at 30 days (1% and 1%, respectively) and at 1-year (11% and 9%, respectively) (Figure 2).

Figure 1: Time to Amputation
Figure 2: Survival

Number at risk

Time (months)	Invasive Osteo	Non-Invasive Osteo
0	1000	1000
12	988	988
24	976	976
36	964	964
48	952	952
60	940	940
72	928	928
84	916	916
96	904	904
108	892	892
120	880	880
132	868	868
144	856	856
156	844	844
168	832	832
180	820	820
192	808	808
204	796	796
216	784	784
228	772	772
240	760	760
252	748	748

Conclusion: Over 1/3 of the cases of osteomyelitis caused by GBS do not meet the case definition for invasive disease. Whether diagnosed using invasive or non-invasive microbiological cultures, survival outcomes for people with GBS osteomyelitis were similar. These findings suggest that non-invasive GBS osteomyelitis is as clinically important as invasive GBS osteomyelitis and that the rates of GBS osteomyelitis may be higher than previously reported.

Disclosures: Federico Perez, MD, MS, Accelerate (Research Grant or Support); Pfizer (Research Grant or Support); Robin Jump, MD, PhD, Accelerate (Grant/Research Support); Merck (Grant/Research Support); Pfizer (Grant/Research Support, Advisor or Review Panel member); Roche (Advisor or Review Panel member).

326. More Specialties, Less Problems: Creating collaborative competency between Infectious Disease, Podiatry, and Pathology to co-managing diabetic foot infections

Vimal Jhaveri, MD; John Giurini, DFM; Christopher Sullivan, DPM; Ashley Ward, MD; John Karchmer, MD; Isaac Stillman, MD; Roger Davis, Sc.D; Jason Freed, MD; Mary LaSalvia, MD; Wendy Stead, MD; Beth Israel Deaconess Medical Center, DENVER, Colorado; Beth Israel Deaconess Medical Center, Boston, MA

Session: P-10. Bone and Joint

Background: According to the 2016 and 2017 National Health Interview Survey, 9.7% of the US population is estimated to have diabetes mellitus (either type 1 or type 2). Among patients with diabetes, there is a 15% lifetime risk of developing a foot ulcer, making it an extremely common medical problem seen in both outpatient and inpatient settings. In fact, Medicare spends $9–13 billion/year on diabetic foot osteomyelitis. This high prevalence and cost, experts have not agreed on a set of diagnostic criteria for diagnosing DFO, nor the optimal antibiotic management. Despite this high prevalence and cost, experts have not agreed on a set of diagnostic criteria for diagnosing DFO, nor the optimal antibiotic management. For example, while traditionally diabetic foot osteomyelitis has been treated with 4–6 weeks of IV antibiotics in the United States, oral antibiotics have been shown to be effective with similar cure rates in multiple studies. More recently, non-inferior in a Cochrane review, and are recommended in the most recent (2012) Infectious Disease Society of America (IDSA) DFO clinical practice guidelines.

Methods: Representatives from ID, Podiatry, and Pathology collaborated to develop consensus on aspects of management of DFO. We created an educational session, inviting providers from all three departments to develop consensus on some of the controversial aspects of DFO. We assessed for knowledge gain by having these providers complete a pre-test survey as well as a post-test survey 2 weeks after the intervention.

Results: 27 providers completed both a pre and post-tests after attending the educational session. Significant improvements were observed in learners understanding of duration of antibiotic treatment and the role of oral antibiotics in certain cases of diabetic foot osteomyelitis to obviate the need for an unnecessary intravenous antibiotics and Peripheral Inserted Central Catheter (PIVC) lines. Additionally, by working as an interdisciplinary group, many solvable misunderstandings were identified, and processes were adjusted to improve the quality and efficiency of care provided to these patients.

Disclosures: All Authors: No reported disclosures

327. Oritavancin Activity against Staphylococcus aureus Isolates Causing Bone and Joint Infections in European Hospitals (2010–2019)

Cecilia G. Carvalhaes, MD, PhD; Jennifer M. Streit, BS; Helio S. Sader, MD, PhD; Rodrigo E. Mendes, PhD; JMI Laboratories, Inc., North Liberty, Iowa; JMI Laboratories, North Liberty, IA

Session: P-10. Bone and Joint

Background: Bone and joint infections (BJI) frequently are caused by Staphylococcus aureus (SA), and since prolonged therapy courses typically are required, agents with convenient administration are preferred. Oritavancin (ORI) is a long-acting lipoglycopeptide approved as a single dose regimen for treating skin and skin structure infections. This study evaluates the activity of ORI and comparators against SA causing BJI in European (EU) hospitals.

Methods: A total of 575 SA isolates from the SENTRY Antimicrobial Surveillance Program causing BJI in 15 EU countries from 2010 to 2019 were included. Bacterial identification was confirmed by MALDI-TOF MS. Broth microdilution susceptibility (S) testing and interpretation was performed following current CLSI guidelines. The activities of ORI and comparators were evaluated across the years and by EU region: western Europe (W-EU; 491 isolates) and eastern EU/Mediterranean region (E-EU; 84 isolates).

Results: Methicillin resistance (MRSA) was observed in 20.5% of SA (18.5% in W-EU and 32.1% in E-EU), ranging from 31.1% in 2011 to 14.6% in 2016. MRSA rates were slightly lower in 2016–2019 (14.6%-19.2%) than previous years (2011–2013; 24.4%-31.1%). ORI exhibited 100.0% susceptibility across the entire SA collection with yearly MIC50 and MIC90 variations within 1 doubling dilutions (MIC50 and MIC90, 0.015–0.03 and 0.03–0.06 mg/L, respectively), regardless the MRSA phenotype or EU region. Daptomycin, vancomycin, teicoplanin, and linezolid also showed complete coverage against SA. Clindamycin (CLI; >99.0%) and levofloxacin (> 95.0%) were active against methicillin-susceptible SA, but less active against MRSA (67.8% and 50.0%, respectively), regardless the MRSA phenotype or EU region.

Conclusion: This multidisciplinary, educational session regarding management of DFO led to improved provider knowledge and collaborative competency between these three departments. Further study is being completed assessing patient outcomes before and after this intervention and will be available by IDWeek.

Disclosures: No reported disclosures