The thermoelectric effect is attracting a renewed interest as a concept for energy harvesting technologies. Nanomaterials have been considered a key to realize efficient thermoelectric conversions owing to the low dimensional charge and phonon transports. In this regard, recently emerging two-dimensional materials could be promising candidates with novel thermoelectric functionalities. Here we report that FeSe ultrathin films, a high-\(T_c\) superconductor (\(T_c\): superconducting transition temperature), exhibit superior thermoelectric responses. With decreasing thickness \(d\), the electrical conductivity increases accompanying the emergence of high-\(T_c\) superconductivity; unexpectedly, the Seebeck coefficient \(\alpha\) shows a concomitant increase as a result of the appearance of two-dimensional natures. When \(d\) is reduced down to ~1 nm, the thermoelectric power factor at 50 K and room temperature reach unprecedented values as high as 13,000 and 260 \(\mu\text{W cm}^{-1}\text{K}^{-2}\), respectively. The large thermoelectric effect in high \(T_c\) superconductors indicates the high potential of two-dimensional layered materials towards multi-functionalization.
Two-dimensional (2D) materials are expanding their arena in terms of richness in material type, properties, and functions, which range from electronic devices to catalysts and medicines1,2. Thermolectric generation is one of the physical functions in which 2D materials are anticipated to be superior in comparison with their bulk counterparts. The density of states (DOS) in 2D semiconductors is considerably different from that of three-dimensional (3D) materials at the band edge singularity4. As the Seebeck coefficient α is related to the profile of the DOS at the Fermi energy, 2D or low dimensional structures are considered to be advantageous for enhancing thermolectric performance. Such a concept was proposed originally for semiconductor quantum wells and superlattices4 however, recently emerging 2D-layered materials provide naturally formed atomic layers and their hetero-structures5, which are an ideal platform to elicit their intrinsic 2D nature. For characterization of thermolectric properties of nanomaterials, on-chip device measurements have been often utilized6-8. Although the device configuration used for the measurements is not directly adapted to practical applications, it is highly powerful for realizing ideal conditions including the structures free from significant disorder and the tunable carrier density and thus for elucidating the intrinsic performance of materials. This method also fits the thermolectric characterization of 2D materials in the present study.

The performance of thermolectric semiconductors is measured by the figure of merit $ZT = \alpha^2 T/\rho k$ (where ρ is the electrical resistivity, k is the thermal conductivity, and T is the absolute temperature). Therefore, materials with the large power factor α^2/ρ can be candidates for high ZT. In order to maximize α^2/ρ, we propose to extensively investigate recent 2D layered materials. In addition to the possible enhancement of the Seebeck effect in 2D DOS, an important characteristic of the recent 2D materials is their excellent crystallinity, which is preferable for keeping a large conductivity even in nano-thick monolayers.

For our purpose, 3d transition-metal-based compounds should be more favorable than 4d and 5d counterparts because the wave functions of 3d-based compounds are more localized, generally causing a larger effective mass m^* and thus the larger DOS. Among 3d-based materials, we chose FeSe, first because a relatively large m^* ranging from 2 to 4 m_e, has been reported in heavily electron-doped regions9,10, where m_e is the free electron mass. The physical properties of ultrathin FeSe have attracted much attention because of the appearance of the unexpected high-\textit{T}_c superconducting phase by reducing the film thickness down to a monolayer, the T_c of which reaches 65 K11,12 or 100 K13. Surprisingly, the high conductivity value survives even in monolayer FeSe11,14,15 this is in stark contrast to conventional semiconductor thin films, where the resistance increases with reducing the thickness.

Here we report simultaneous measurements of α and ρ while controlling the thickness d of FeSe films on SrTiO\textsubscript{3} (001) substrates in an electric double-layer transistor configuration16. In previous studies, we succeeded in optimization of α^2/ρ with controlling n through the gate bias V_G and applied this technique to various materials16 (see Methods). When V_G is applied at ~220 K, which is just above the glass transition temperature of the ionic liquid used in this study (see Methods), the cations or anions are self-aligned on the surface of FeSe; thus, charge carriers are electrostatically accumulated to form the electric double layer17,18. On the other hand, when a certain level of V_G is applied at higher temperatures such as ~245 K or above, an electrochemical reaction takes place at the liquid–solid interface, and the topmost FeSe layer dissolves into the ionic liquid in a pseudo layer-by-layer manner15. Therefore, systematic investigation of the thermolectric properties from bulk to ultrathin FeSe now becomes possible at a wide temperature range from 10 K to around room temperature. We found that the thermolectric effect is dramatically enhanced with reducing d down to ~1 nm and thermolectric power factor at 50 K and room temperature reach unprecedented values as high as 13,000 and 260 μW cm$^{-1}$ K$^{-2}$, respectively. The coexistence of giant thermolectric power factor and high-\textit{T}_c superconductivity indicates the high potential of 2D layered materials towards multi-functionalization.

Results

Electrochemically enhanced Seebeck effect in FeSe thin film. Dimensionality is a possible key factor to induce the evolution of the thermolectric response owing to the characteristic DOS (Fig. 1a, b). The electric double layer transistor configuration shown in Fig. 1c enables us to control the film thickness d through the electrochemical etching on the surface of the FeSe films (Fig. 1d). Figure 2a shows the thermolectric voltage ΔV as a

Fig. 1 Schematic device structure for thermolectric measurement. **a** Schematic illustration of the electronic density of states (DOS) for three-dimensional (3D) and two-dimensional (2D) electrons. **b** The large effective mass m^* enhances the DOS, which is favorable to the enhancement of the Seebeck effect. **c** Device structure for thermolectric measurement. V_{SD} and V_{GD} stand for the source (S)–drain (D) voltage and the gate bias voltage, respectively. When V_G is applied to the Pt plate, ions in the ionic liquid are redistributed, forming an electric double layer on the surface of the FeSe film. **d** Enlarged illustration of the ionic liquid/FeSe interface. Under the positive gate bias, N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium cations, DEME $+\cdot$, align on the surface of FeSe. The thickness d of the FeSe thin film was tuned by electrochemical etching15. See Methods for details of the device structure and fabrication.
Thinning-induced enhancement of thermoelectric effect. a Thermoelectric voltage ΔV under temperature difference ΔT in an FeSe thin film, Sample A. The thermoelectric measurements were performed at 200 K with $V_G = 5$ V. The value of ΔV changed its sign and dramatically increased with decreasing thickness d from ~18 nm to ~1 nm. b Thickness d dependence of the Seebeck coefficient α. The values of α were estimated from the slope of the $\Delta V / \Delta T$ plot in a as $\alpha = -\Delta V / \Delta T$. The inset shows the temperature T dependence of the normalized sheet resistance ρ_{2D} with respect to 200 K.

Superconductivity appeared when $V_G = 5$ V was applied. c Variation of sheet resistance ρ_{2D} at 200 K as a function of d. The value of ρ_{2D} at $V_G = 5$ V showed a weak d dependence (blue circles), whereas that for $V_G = 0$ V increased with decreasing d (gray circles).

d Thickness d dependence of thermoelectric power factor ρ^2 / α exhibiting anomalous enhancement in the ultrathin limit. Here, ρ is the electrical resistivity, which is estimated as $\rho = \rho_{2D} \times d$. The value of α^2 / ρ at 200 K in the thick region is comparable to that in bulk FeSe, whereas α^2 / ρ increased with decreasing d because of the double-digit increase of α in ultrathin regions in b. The error bar of d corresponds to ± 0.5 nm, which was estimated from the surface roughness of the initial thin film.

function of the temperature difference ΔT between two thermocouples (see Fig. 1c) in Sample A at $V_G = 5$ V. Here, it is noted that the application of V_G not only induces the electrochemical etching of the thin films but also accumulates the electron carriers on the top surface. The thermoelectric measurement was done at 200 K; possible conduction paths through the ionic liquid are completely eliminated. The device was cooled down to 200 K for the measurement at each thickness d after electrochemical etching at higher temperatures. All the ΔV plots for different d‘s linearly depend on ΔT, securing the accurate characterization of the Seebeck effect. At 200 K, ΔV was dramatically enhanced across the sign change with decreasing d from ~18 nm to ~1 nm. Figure 2b plots the d dependence of α (= $\Delta V / \Delta T$) at 200 K for $V_G = 5$ V. A very small α of $+3.8$ μV K$^{-1}$ at d ~18 nm is consistent with the reported values on bulk FeSe, where such a small α value reflects the semimetallic electronic structure. With the thickness reduction, on the other hand, the absolute value of α was surprisingly enhanced by two orders of magnitude up to -454 μV K$^{-1}$.

It should be noted that the parasitic conduction of the SrTiO$_3$ substrate is ruled out because the gate electric field on SrTiO$_3$ through the FeSe thin films is negligible in the present configuration owing to the screening effect in the metallic conducting FeSe and also the formation of the Schottky barrier at the FeSe/SrTiO$_3$ interface (see Supplementary Figure 1, Supplementary Figure 2, and Supplementary Note 1). The existence of an oxygen deficient layer at the surface of SrTiO$_3$ substrate as a source of the large Seebeck response is also definitely ruled out as the large α is observed only under gate bias and is suppressed to bulk-like small values by switching off V_G to 0 V, as seen in the main panel of Fig. 2b. Importantly, the high-T_c superconductivity appears by applying $V_G = 5$ V and disappears by removing V_G, as shown in the inset of Fig. 2b. The simultaneous emergence of the giant thermoelectric response and
the high-T_c superconductivity proves that these two transport properties arise from the same electronic state of FeSe thin films. Another noticeable feature of FeSe thin films is the low electrical resistance realized even in ultrathin regions. Figure 2c shows the 2D sheet resistance ρ_{2D} of Sample A for $V_G = 0$ V (gray circles) and 5 V (blue circles) as a function of d. When starting from the initial state with $d \sim 18$ nm, the sheet resistance at 200 K, ρ_{2D}^{200}, first increased with decreasing d for both $V_G = 0$ V and 5 V. With further decreasing d, ρ_{2D}^{200} at $V_G = 5$ V showed a small peak at around $d \sim 11$ nm and kept small values down to $d \sim 1$ nm because the gated topmost layer of FeSe and the charge transfer layer at the FeSe/SrTiO$_3$ interface dominate the electrical transport of the thin film (see Supplementary Figure 3 and Supplementary Note 2 for the details of the d dependence of ρ_{2D}^{200}). Such a low electrical resistance irrespective of the film thickness is consistent with the previous studies; for example, the resistivity of monolayer or few layer MBE-grown FeSe11,14 is comparable to that of 10 nm thick (~15 layers) FeSe17,18 owing to the interface or surface electron doping. Actually, ρ_{2D}^{200} at $V_G = 5$ V in the thin limit (Fig. 2c) is close to that in doped FeSe monolayers11,14,15. On the other hand, the small α and high ρ_{2D}^{200} at $V_G = 0$ V indicate that the charge transfer layer does not produce the enhanced values of α. Consequently, the thermoelectric power factor α^2/ρ at 200 K achieved a dramatic development in Fig. 2d owing to the enhancement of α and the concomitant reduction of electrical resistivity $\rho = \rho_{2D} \times d$, which rarely occurs in the framework of conventional material design and fabrication. Along with the reduction of d from 18 nm to 1 nm, α^2/ρ kept increasing and finally reached $\sim 1500 \mu W cm^{-1}K^{-2}$.

Temperature-thickness mapping of thermoelectric response. Figures 3a, b display the temperature T—thickness d mappings of the absolute value of α (i.e., $|\alpha|$) and α^2/ρ, respectively, for another FeSe thin film, Sample B. The values of $|\alpha|$ and α^2/ρ showed dramatic developments in the nanometer-thick region, which agrees well with the results for Sample A (see Figs. 2b, c). Moreover, the enhancement for both $|\alpha|$ and α^2/ρ covers a wide temperature range from 50 K (just above T_c) to 280 K. Figure 3c summarizes α^2/ρ for representative thermoelectric materials that possess high α^2/ρ values (see Supplementary Table 1). The values of α^2/ρ for the FeSe ultrathin film increased from $\sim 260 \mu W cm^{-1} K^{-2}$ at 280 K up to $\sim 13,000 \mu W cm^{-1} K^{-2}$ at 50 K, being the largest among existing bulk materials reported so far. Assuming the thermal conductivity for bulk Fe-based superconductors25,26, $\kappa \approx 5 W m^{-1} K^{-1}$, the dimensionless figure of merit ZT of the FeSe ultrathin film reaches as large as ~ 1.5 at 280 K.

Common trend of Seebeck effect in Fe-based superconductors. The detailed temperature dependence of α for different d’s is presented in Fig. 4a to show the unusual thermoelectric response in FeSe. Except for the initial thickness (19.1 nm) with moderate

Fig. 3 Giant thermoelectric response in ultrathin FeSe. a Mapping of Seebeck coefficient α of FeSe (Sample B) against temperature T and thickness d. Here, the absolute value of α (i.e., $|\alpha|$) for $V_G = 3.95$ V was plotted. The white circles correspond to the onset temperature T_c of the superconducting transition. b Evolution of thermoelectric power factor α^2/ρ of FeSe (Sample B) above T_c. The value of α^2/ρ increased with decreasing d, mainly owing to the large enhancement of α shown in a. c Comparison of temperature dependence of α^2/ρ among representative thermoelectric materials. The values of α^2/ρ in the FeSe ultrathin film were larger than any existing bulk materials reported so far in a wide temperature range (see Supplementary Table 1 for the reference of the experimental values). The data point for Sample A at 200 K (open circle) shows fair reproducibility.
temperature dependence, α for Sample B showed a peak at around ~200 K, which follows neither the T-linear behavior expected in conventional metals nor the phonon drag thermopower (see Supplementary Figure 1 and Supplementary Note 1). Actually, the temperature dependence of α in the FeSe thin film is qualitatively similar to that in bulk Fe-based high-T_c superconductors such as Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$, LaFeAs(O$_{0.9}$F$_{0.1}$)$_2$, and La(Fe$_{0.9}$Co$_{0.1}$)$_2$AsO as shown in Fig. 4b. This trend can be seen even more clearly in Fig. 4c, where the data in Fig. 4a, b are normalized by the peak value α_{peak} of each sample. These similarities further prove that α observed in Fig. 4a is attributed to FeSe itself rather than other artifacts such as substrates and ionic liquids. The characteristic temperature dependence of $\alpha/\alpha_{\text{peak}}$ in Fig. 4c is considered unique to Fe-based superconductors and has been discussed in the context of quantum criticality30,32 or the two carrier model32,33. For example, it was reported that $\vert \alpha/T \vert$ in Ba(Fe$_{0.9}$Co$_{0.1}$)$_2$As$_2$ shows a divergence above T_c and a strong enhancement when in proximity to the quantum critical point.

Electronic band structure in gated FeSe thin film. The transfer characteristics (the V_G dependence of resistance) of a FeSe thin film (see Supplementary Figure 4 and Supplementary Note 3) indicates that the dominant carriers change from holes to electrons with reducing the thickness. This behavior is consistent with the band structure evolution derived from the angle-resolved photoemission spectroscopy (ARPES)$^{12,34–36}$ in monolayer FeSe on SrTiO$_3$ and in K-coated FeSe thin films, which clarified that the hole pocket at the Γ-point disappears and a gap of ~60 meV is opened at the M-point34 owing to the thinning and concomitant electron doping. The present ion-gated FeSe thin films should have a similar band structure because the electron density accumulated by the ionic gating, ~1014 cm$^{-2}$, is comparable to that of the charge transfer from SrTiO$_3$ substrate and of surface K coating. This band structure of FeSe monolayer should be beneficial for the enhancement of $\vert \alpha \vert$. We calculated the Seebeck coefficient for the undoped bulk FeSe and electron-doped monolayer FeSe at $T = 280$ K (see Supplementary Figure 5 and Supplementary Note 4), and obtained α values as $+5 \mu$V K$^{-1}$ and -200μV K$^{-1}$ for the bulk and the monolayer FeSe, respectively. These estimations reasonably explain the experimental values of α at 280 K: $+17 \mu$V K$^{-1}$ and -245μV K$^{-1}$ (Fig. 3a) for the initial ($d \sim 19.1$ nm) and final ($d \sim 1$ nm) thicknesses, respectively. On the other hand, our calculation based on the Fermi liquid picture predicts T-linear behavior and does not explain the non-monotonous temperature dependence of α in ultrathin FeSe. The experimentally observed broad peak in α located at ~200 K (Fig. 4a) is suggestive of a crucial role of electronic correlations in the Seebeck response of ultrathin FeSe; in fact, the recent ARPES studies pointed out a strong electronic correlation9 in the high-T_c phase of FeSe. A quantitative theoretical analysis of this effect remains to be performed.

Discussion

Nanostructures or low-dimensional structures have been a powerful guideline for the exploration of high-performance thermoelectric materials$^{37–40}$. The present results show that further enhancement of thermoelectric properties should be possible, if peculiar band structures of nano-structured systems including 2D layered materials are combined with additional ingredients such as strong electronic correlations. The unprecedented coexistence of giant thermoelectric power factor and high-T_c superconductivity in ultrathin FeSe exemplifies that there may exist unknown multifunctional materials waiting to be disclosed in extreme conditions, illuminating a next research direction of functional thermoelectric materials.

Methods

Device fabrication. We fabricated ion-gated devices based on FeSe-thin films on SrTiO$_3$ substrates15 with channel size of 1.2 × 2 mm2. The details of the thin-film preparation were reported in our previous study15. The device structure used in this study is schematically shown in Fig. 1c. The FeSe thin films were patterned by using a laser cutter to perform four-terminal resistance measurements. The gold wires were attached at both edges of the patterned film, working as a drain terminal D and a source terminal S. An ionic liquid, which worked as a gate dielectric, was placed on the FeSe surface. We used N,N-diethyl-N-(2-methoxyethyl)-N-methyl-lammonium bis-(trifluoromethanesulfonyl)-imide (DEME-TFSI) as the ionic liquid. A Pt plate was placed on top of them, working as a gate electrode.

Thermoelectric measurements under gate biases. As shown in Fig. 1c, a heater and a heat sink were attached to either side of the ion-gated device to produce a thermal gradient. The type E thermocouples were attached to monitor the temperature difference ΔT and the thermoelectric voltage ΔV. The thermocouples were also used for the four-terminal resistance measurements. The temperature difference ΔT (0–1 K) and the voltage ΔV between the thermocouples were measured, and the values of α were evaluated from the slope of the ΔV–ΔT plots (See Fig. 2a). This device configuration allows us to measure α and ρ simultaneously. The thermoelectric measurements with solid$^{41–45}$ and ion gate dielectrics$^{46–57}$ are widely accepted as a method to evaluate the thermoelectric properties of semiconductors with changing the carrier densities.
8. Ohta, H. et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Commun. 8, 214 (2017).
9. Wen, C. H. P. et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nat. Commun. 7, 10840 (2016).
10. Seo, J. J. et al. Superconductivity below 20 K in heavily electron-doped surface layers of FeSe thin films. Nat. Commun. 7, 11116 (2016).
11. Zuev, Y., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric effects in single-unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).
12. Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931 (2012).
13. Sun, Y. et al. High-temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 4, 6040 (2014).
14. Shigai, I., Ito, Y., Mitsuhashi, T., Nojima, T. & Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Mater. 12, 42–46 (2016).
15. Bursi, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endavour of iontronics: from fundamentals to applications of ion-controlled Electronics. Adv. Mater. 29, 1607054 (2017).
16. Lei, B. et al. Evolution of high-temperature superconductivity from a low Tc phase tuned by carrier concentration in FeSe thin Flakes. Phys. Rev. Lett. 116, 077002 (2016).
17. Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T. & Hosono, H. Electric-field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. USA 113, 3986–3990 (2016).
18. McQueen, T. M. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1-xSe. Phys. Rev. B 79, 014522 (2009).
19. Song, J. Y. et al. Superconducting properties of a stoichiometric FeSe compound and two anomalous features in the normal State. J. Korean Phys. Soc. 59, 312–316 (2011).
20. Nakayama, K. et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys. Rev. Lett. 113, 237001 (2014).
21. Wu, C. T. et al. Heterojunction of FeSe/TeFe superconductor on Nb-doped SrTiO3. Appl. Phys. Lett. 96, 125506 (2010).
22. Zhang, W. et al. Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates. Phys. Rev. B 89, 060506(R) (2014).
23. Zhang, H. et al. Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat. Commun. 8, 214 (2017).
24. Machida, Y. et al. Possible sign-reversing s-wave superconductivity in co-doped Ba1-xKxFe2As2 proved by thermal transport measurements. J. Phys. Soc. Jpn. 78, 073705 (2009).
25. Cheekelsky, J. G. et al. Thermal hall conductivity as a probe of gap structure in multiband superconductors: the case of Ba1-xKxFe2As2. Phys. Rev. B 86, 060502(R) (2012).
26. Arsenjevic, S. et al. Pressure effects on the transport coefficients of BaFe1-xCoxFexAs2. Phys. Rev. B 84, 075148 (2011).
27. Zhu, Z. W. et al. Nernst effect of a new iron-based superconductor LaO1-xFxFeAs. Phys. Rev. B 87, 224508 (2013).
28. Sales, B. C., McGuire, M. A., Sefat, A. S. & Mandrus, D. A. Semimetal model of the normal state magnetic susceptibility and transport properties of BaFe1-xCoxFexAs2. Phys. C 470, 304–308 (2010).
29. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).
30. He, J. et al. Electronic evidence of an insulator-superconductor transition in single-layer FeSe/SrTiO3 films. Proc. Natl Acad. Sci. USA 111, 18501–18506 (2014).
31. Miyata, Y., Nakayama, K., Sugawara, K., Sato, T. & Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 14, 775–779 (2015).
32. Choi, W. S., Ohta, H., Moon, S. J., Lee, Y. S. & Noh, T. W. Dimensional crossover of polaron dynamics in NbSe2/SrTiO3 superlattices: Possible mechanism of thermopower enhancement. Phys. Rev. B 82, 024301 (2010).
33. Ohta, H. et al. Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat. Commun. 1, 118 (2010).
34. Ohta, H. et al. Unusually large enhancement of thermopower in an electric field-induced two-dimensional electron gas. Adv. Mater. 24, 740–744 (2012).
35. Zhang, Y. et al. Double thermoelectric power factor of a 2D electron system. Nat. Commun. 9, 2224 (2018).
36. Zavaritsky, N. V. Phonon drag in two-dimensional electronic systems. Phys. B 126, 369–376 (1984).
37. Gallagher, B. L., Gibbons, C. J., Pepper, M. & Cantrell, D. G. The thermopower of Si inversion layers. Semicond. Sci. Technol. 2, 456–459 (1987).
38. Small, J., Perez, K. & Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91, 256801 (2008).
39. Yoshikawa, A. et al. Electric-field modulation of thermopower for the KTaO3 field-effect transistors. Appl. Phys. Express 2, 121103 (2009).
40. Cheekelsky, J. & Ong, N. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413 (2009).
41. Zuev, Y., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).
42. Ohta, H. et al. Field-modulated thermopower in SrTiO3-based field-effect transistors with amorphous 12CaO· 7Al2O3 glass gate insulator. Appl. Phys. Lett. 95, 113505 (2009).
43. Shimizu, S., Ono, S., Hatanari, T., Iwasa, Y. & Tokura, Y. Enhanced cryogenic thermopower in SrTiO3 by ionic gating. Phys. Rev. B 92, 165304 (2015).
44. Yoshida, M. et al. Gate-optimized thermoelectric power factor in ultrathin WS2 single crystals. Nano. Lett. 16, 2061–2063 (2016).
45. Shimizu, S. et al. Enhanced thermopower in ZnO two-dimensional electron gas. Proc. Natl Acad. Sci. USA 113, 6438–6443 (2016).
46. Shimizu, S. et al. Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes. Small 12, 3388–3392 (2016).
47. Yanagi, K. et al. Tuning of the thermoelectric properties of one-dimensional materials networks by electric double layer techniques using ionic liquids. Nano. Lett. 14, 6437 (2014).
48. Takayagani, R., Fujii, T. & Asamitsu, A. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device. Appl. Phys. Express 8, 051101 (2015).
49. Chien, Y.-Y., Yuan, H. T., Wang, C.-R. & Lee, W.-L. Thermoelectric power in bilayer graphene device with ionic liquid gating. Sci. Rep. 6, 20402 (2016).
55. Kawasugi, Y. et al. Simultaneous enhancement of conductivity and Seebeck coefficient in an organic Mott transistor. Appl. Phys. Lett. 109, 233301 (2016).
56. Pu, J. et al. Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers. Phys. Rev. B 94, 014312 (2016).
57. Kawai, H. et al. Thermoelectric properties of WS\textsubscript{2} nanotube networks. Appl. Phys. Express 10, 015001 (2017).
58. Perdew, J. P., Brueke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
59. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties. (Tech. Univ, Wien, 2001).
60. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
61. Kuneš, J. et al. Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers JP25000003, JP16H00923 (SATL), JP16H06345, JP17H02928, JP17K19060.

Author contributions
S.Sh. and J.S. equally contributed to this work. S.Sh., J.S., T.N., A.T. and Y.I. conceived and designed this work. S.Sh., T.N., S.Sa., A.T. and Y.I. wrote the paper. S.Sh. and J.S. performed all the measurements, and T.N., S.Sa., H.I. and R.A. conducted the calculations. All authors contributed to discussions.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-08784-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019