Manipal lifestyle modification score to predict major adverse cardiac events in postcoronary angioplasty patients

Tom Devasia a, Prasad Narayana Shetty a,*, Hashir Kareem a, Yeswanth Rao Karkala b, Ajit Singh c

a Department of Cardiology, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal-576104, India
b Department of Pharmacology, Melaka Manipal Medical College, Manipal University, Manipal-576104, India

c Abstract

Background: Lifestyle modification (LSM) such as prudent diet, physical activity, avoidance of smoking, and maintaining a healthy weight may considerably decrease the risk for coronary artery disease. Objective: The primary objective of this study was to develop a new LSM scoring system and investigate the correlation between adherence to LSM and incidence of major adverse cardiac events (MACEs) at 12-month follow-up.

Method: A total of 1000 consecutive patients who underwent percutaneous transluminal coronary angioplasty (PTCA) were included in this prospective single-center study. Manipal lifestyle modification score (MLSMS) was developed by using five lifestyle-related factors. Adherence to LSM at the baseline and subsequent follow-ups was determined by using MLSMS. The MACE at 1-, 6-, and 12-month follow-up were analyzed.

Results: There was a significant reduction in overall adherence to LSM ($p < 0.001$) at 12-month follow-up. Nonadherence to LSM [hazard ratio (HR) 0.575; 95% confidence interval (CI) 0.334–0.990; $p < 0.046$] and noncompliance to medication (HR 2.09; 95% CI 1.425–3.072; $p < 0.001$) were independent predictors of MACEs after PTCA. The cumulative MACE was 15.4%, which includes 4.9% of all-cause death, 5.2% of nonfatal myocardial infarction, 2.0% of target lesion revascularization, 1.8% of target vessel revascularization, and 1.3% of stroke at 12 months. The incidence of MACEs at 12 months was significantly ($p = 0.03$) higher in LSM nonadherent compared with LSM adherent patients.

Conclusion: There is an overall reduction in adherence to LSM on successive follow-ups and a significant association between the incidence of MACEs and the lack of adherence to LSM. MLSMS is a simple and effective evaluation tool in predicting MACEs in this group of patients.

© 2018 Published by Elsevier B.V. on behalf of Cardiological Society of India. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronary artery disease (CAD) is a major cause of morbidity and mortality in India and in the Western world. CAD is the most common type of heart disease, and an estimated 2.4 million deaths every year are attributed to it in India, of which 30% are in urban and 15% from rural population. Hypertension, obesity, hypercholesterolemia, diabetes, and smoking are the major risk factors for CAD. Treatment of CAD is multifactorial and includes medical therapy, interventional/surgical therapy, and lifestyle modification (LSM).

LSM includes physical exercise, appropriate diet, cessation of smoking, and stress management. LSMs are important for both primary and secondary prevention in CAD. LSM has been shown to not only prevent disease but also improve outcomes in patients with CAD after other therapies have been started. Recent guidelines recommend LSM as a part of the treatment strategy in patients being treated for CAD.

LSM is especially important in patients with diagnosed CAD who have undergone surgery/intervention. Many studies have revealed that sustained LSMs have a significant impact on reducing major adverse cardiac events (MACEs) after acute coronary
syndrome (ACS) and coronary intervention. Also, after major events such as ACS and/or percutaneous transluminal coronary angioplasty (PTCA), developing a habit of regular blood pressure (BP) and blood glucose (BG) checkup is also an important modification which is necessary for patient’s life.

Despite this, there is no simple tool available to assess adherence to LSMs and its impact on cardiovascular (CV) outcomes. Also, there have been no studies in the South Indian population linking adherence to LSM and MACES. Therefore, this study was conducted to develop a new tool/scoring system called Manipal lifestyle modification score (MLSMS) to assess adherence to LSM objectively and to correlate it with CV outcomes at the end of 1 year in patients who have undergone PTCA.

2. Methods

This is an observational, cohort study conducted in a tertiary care hospital in Karnataka from January 2015 to December 2017. A total of 1000 consecutive patients aged between 18 and 65 years who underwent PTCA for CAD (ACS or stable angina) during the study period were included. Patients who had undergone PTCA/CABG previously, had a cardiogenic shock at presentation/during hospitalization, left ventricular ejection fraction < 40, chronic kidney disease, chronic liver disease, terminal illness patients with life expectancy < 1 year, psychiatry illness, or pregnant were excluded from the study. A written informed consent was taken from all the study patients. The study protocol was approved by the institutional ethical committee and registered under the Clinical Trial Registry-India (CTR/2017/12/010728).

2.1. Patient population and study design

At index admission, the baseline characteristics such as demographic details, clinical data including a detailed medical history, past history and smoking history, and physical examination including height, weight, and body mass index (BMI) were recorded. Laboratory data including renal function tests (RFTs), Trop-T, N-terminal pro b-type natriuretic peptide (NT-proBNP), details of electrocardiography (ECG), echocardiography (ECHO), treadmill test (TMT) and coronary angiogram (CAG) reports were also recorded at the baseline during the index admission.

Patients underwent PTCA and started on medical therapy as per the existing guidelines. During the index admission, a simple five-point MLSMS questionnaire (see the following section) was administered to each study participants to grade/score their baseline lifestyle details. Details of medication prescribed to study populations on discharge were also recorded. The patient was counseled regarding LSMs, compliance to medicines, and regular follow-up before discharge from the hospital. Patients were requested to follow up at the end of 1, 6, and 12 months after index hospitalization. During each follow-up clinical data, including symptoms, height, weight, BMI as per the World Health Organization norms, physical examination, laboratory parameters such as, fasting blood sugar, glycated hemoglobin (HbA1C), fasting lipid profile, RFT were recorded. If available, ECG, ECHO, Trop-T, and NT-proBNP were also noted. MLSMS was administered at each follow-up to assess adherence to LSMs. Patients were inquired regarding adherence to medications.

2.2. Clinical end points

The primary end point of this study was to determine the 12-month incidence of MACES. MACE includes all-cause death, nonfatal myocardial infarction (MI), target lesion revascularization (TLR), target vessel revascularization (TVR), and stroke.

2.3. Manipal lifestyle modification score

A simple questionnaire for assessment of LSM, called MLSMS, was developed consisting of five questions (Fig. 1). Based on the total LSM score obtained by patients, they were divided into three groups: high (4–5), medium (2–3), and low (0–1) LSM scores. Patients with low and medium scores were considered to be non-adherent to LSM and those with a high score were considered to be adherent.

Internal validation of MLSMS questionnaire was performed by cardiologists, physicians, dieticians, and physiotherapists. For external validation, a pilot study was conducted on 100 patients where data regarding precoronary angioplasty lifestyle factors were collected based on this questionnaire. A reliability analysis was carried out on the perceived task values scale comprising five items. Cronbach’s alpha showed that the questionnaire had acceptable reliability, α = 0.703. After this, the questionnaire was validated on the entire study population both before and after PTCA at each follow-up (Cronbach’s alpha = 0.78).

2.4. Statistical analysis

Continuous variables were presented as mean ± standard deviation and compared using paired t-tests for normally distributed data and Wilcoxon signed-rank test for non-normal data. Categorical variables presented as counts and percentage. The analysis was performed by the chi-square test and Fisher’s exact test. Serial changes in various parameters were assessed at different time points, and comparison was made between the baseline and 1 year follow-up by repeated analysis of variance (ANOVA). The consistency of the LSM questionnaire was measured by Cronbach’s alpha. The impact of LSM, LSM variables, and other variables such as age, smoking, diabetes, hypertension, dyslipidemia, the number of coronary arteries involved, and medication adherence on MACES (death, MI, TLR, TVR, and stroke) was determined using the Cox’s proportional hazards regression model. The results were expressed as hazard ratio (HR) and 95% confidence interval (CI) where appropriate. Time to events between LSM adherent and LSM non-adherent group was summarized and displayed using the cumulative incidence curve by the Kaplan–Meier survival analysis method. All statistical analyses were performed using the Statistical Package for the Social Sciences [SPSS], version 15. A p-value < 0.05 was considered to be statistically significant.

3. Results

3.1. Patient characteristics

The baseline characteristics of patients are summarized in Table 1. At the baseline, the mean MLSMS was only 2. First month mean MLSMS increased to 4 but later decreased over the next two follow-ups [at 6 and 12 months (3.7 and 3.1 respectively), (Fig. 2)]. The proportion of patients with high, medium, and low MLSMS at the baseline and during each follow-up is shown in Fig. 3. Changes in CAD risk factor during the study period are summarized in Table 2. Changes in MLSMS from the baseline to 12-month follow-up were shown in Table 3.

3.2. Clinical outcomes

The MACE observed at 1- and 6-month follow-up was 44 (4.4%) and 116 (11.9%), respectively. Overall MACE (including mortality) at the end of 12-month follow-up was 15.4%, which includes 4.9% of all-cause death, 5.2% of nonfatal MI, 2.0% of TLR, 1.8% of TVR, and 1.3% of stroke. A patient who was adherent to LSM had a lower
Fig. 1. Flowchart of LSM questionnaire in precoronary and postcoronary angioplasty patients. BP, blood pressure; HbA1C, glycated hemoglobin; LSM, lifestyle modification.

Table 1
Baseline characteristics of the study population.

Characteristics	n = 1000
Age, mean ± SD	56.2 ± 7.4
Male	761 (76.1)
History of IHD	157 (15.7)
Smokers/tobacco users	406 (40.6)
Mixed diet	422 (42.2)
Hypertension	556 (55.6)
Diabetes mellitus	422 (42.2)
Dyslipidemia	86 (8.6)
SES of study population	
Upper class	68 (6.8)
Upper middle class	77 (7.7)
Lower middle class	209 (20.9)
Upper lower class	196 (19.6)
Lower class	450 (45)
Coronary artery disease profile of the study participants	
STEMI	549 (54.9)
NSTEMI	253 (25.1)
Unstable angina	147 (14.7)
Stable angina	51 (5.1)
Normal LVEF	862 (86.2)
Mild LV dysfunction	132 (13.8)
Thrombolysed	20 (2.0)
Primary PCI	424 (42.4)
SVD	465 (46.5)
DVD	369 (36.9)
TVD	166 (16.6)
LAD	500 (50)
Baseline medicine prescription	Number (%)
Aspirin	998 (99.8)
P2Y12 inhibitor	1000 (100)
Ticagrelor	557 (55.7)
Clopidogrel	443 (44.3)
Statins	992 (99.2)

SD, standard deviation; IHD, ischemic heart disease; STEMI, ST-elevation myocardial infarction; NSTEMI, non–ST-elevation myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; SVD, single-vessel disease; DVD, double-vessel disease; TVD, triple-vessel disease; LAD, left anterior descending artery; SES, socioeconomic status.

Fig. 2. Mean LSM score at the baseline and follow-ups. LSM, lifestyle modification; PTCA, percutaneous transluminal coronary angioplasty.

Fig. 3. Proportion of subjects with various LSM categories at different time points. LSM, lifestyle modification; PTCA, percutaneous transluminal coronary angioplasty.
Table 2
Changes in risk factors.

Risk factors	Baseline (n = 1000)	1 month (n = 999)	6 months (n = 985)	12 months (n = 975)	p value
BMI, kg/cm²	23.8 ± 4.0	23.0 ± 4.1	23.4 ± 4.1	23.8 ± 4.2	0.94
SBP, mmHg	132.5 ± 21.2	131.2 ± 20.4	132.5 ± 20.3	134.2 ± 21.5	0.08
DBP, mmHg	82.2 ± 12.0	81.9 ± 10.4	82.5 ± 10.0	82.9 ± 9.4	0.17
FBS, mg/dL	144.6 ± 61.8	127.6 ± 58.7	123.9 ± 46.1	124.4 ± 46.4	0.001
HbA1C, %	7.2 ± 2.2	7.2 ± 2.2	7.5 ± 1.6	7.5 ± 1.8	0.001
TC, mg/dL	171 ± 47.9	148.6 ± 41.2	148.6 ± 41.2	150.5 ± 39.5	0.001
TG, mg/dL	136.8 ± 73.7	132.0 ± 61.8	132.3 ± 72	135.5 ± 65.5	0.69
LDL, mg/dL	106.9 ± 40.2	88.9 ± 37.3	85.5 ± 36.1	83.9 ± 34.2	0.001
HDL, mg/dL	38.4 ± 12.2	40.2 ± 11.7	41.9 ± 11.2	43.6 ± 11.4	0.001
VLDL, mg/dL	28.8 ± 19.2	26.9 ± 16.05	25.3 ± 20.0	24.4 ± 22.3	0.001
NYHA classification	I 125	981	953	954	0.001
	II 521	13	21	12	
	III 282	4	9	4	
	IV 72	1	2	5	

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; HbA1C, glycated hemoglobin; TC, total cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein; TG, triglyceride; VLDL, very low-density lipoprotein; NYHA, New York Heart Association.

*p-value comparisons are made between the baseline and 12-month follow-up. Dahiru T. P-value, a true test of statistical significance? A cautionary note. Annals of Ibadan postgraduate medicine. 2008;6(1):21-6.

Table 3
Changes in MLSMS from the baseline to 12-month follow-up.

Changes in MLSMS	Baseline (n = 1000)	12-month follow-up (n = 975)	p value
Diet control	331 (33.1)	600 (64.3)	<0.05
Not smoking/not using tobacco	593 (59.3)	765 (81.9)	<0.05
Regular blood pressure checkup	464 (46.4)	638 (68.38)	<0.05
Regular blood sugar checkup	378 (37.8)	673 (72.13)	<0.05
Regular physical exercise	244 (24.4)	487 (52.19)	<0.05

*p-value<0.05 was considered as statistically significant. Dahiru T. P-value, a true test of statistical significance? A cautionary note. Annals of Ibadan postgraduate medicine. 2008;6(1):21-6.

MLSMS, Manipal lifestyle modification score.

Table 4
Cardiac events during 12-month follow-up.

Events	1-month follow-up (n = 999) (%)	6-month follow-up (n = 985) (%)	12-month follow-up (n = 975) (%)
All-cause death	22 (2.2)	40 (4.1)	46 (4.9)
Cardiac death	18 (1.8)	29 (2.9)	33 (3.5)
Noncardiac death	4 (0.4)	11 (1.1)	13 (1.3)
Nonfatal MI	11 (1.1)	40 (4.1)	49 (5.2)
TLR	5 (0.5)	16 (1.6)	19 (2.0)
TVR	0 (0.0)	10 (1.0)	17 (1.8)
Stroke	6 (0.6)	10 (1.0)	13 (1.3)
MACE	44 (4.4)	116 (11.9)	144 (15.4)
12-month follow-up	LSM nonadherence (n = 684)	LSM adherence (n = 291)	p-value
MACE	116 (16.9%)	28 (11.25)	0.03

MACE, major adverse cardiac event; MI, myocardial infarction; TLR, target lesion revascularization; TVR, target vessel revascularization; LSM, lifestyle modification.

*p-value<0.05 was considered statistically significant. Dahiru T. P-value, a true test of statistical significance? A cautionary note. Annals of Ibadan postgraduate medicine. 2008;6(1):21-6.

4. Discussion

LSM is an important component of both the prevention and treatment of ischemic heart disease/CAD. LSM has been shown to affect outcomes after PTCA.^{11} Diet control, weight control, cessation of smoking/tobacco use, and adherence to regular physical exercise solely depend on patient interest.^{16,19} However, optimum control of BP and BG purely depends on pharmacological therapy; it depends on how physician plans the treatment and how much patients adhere to the prescribed medication.^{14,15} Several studies have shown that there is an association between noncompliance to antihypertensive and antidiabetic medicine with MACEs. Titration of antihypertensive and antidiabetic treatment was performed by the cardiologist/physician on the basis of accurate BP and BG values as important as the initiation of treatment for hypertension and diabetes mellitus. However, some patients are irregular with BP and BG checkup. It is advised to check the BP regularly at least once in 4 weeks at a clinic/hospital visit or BP checkup at home at least once in 2 weeks.^{20} and BG checkup should be performed at least once in 4 weeks or HbA1C checkup once in 3 months for those who are on oral antihyperglycemic agents. In patients who are on insulin with poor BG control, it is recommended to check BG at least two times/day (after and before bedtime); for stable oral hypoglycemic agents (OHA) patients, it is advised to check fasting blood glucose (FBG) once in 4 weeks and nondiabetic patients, once in 6 months.^{21,22} Although dietary changes, cessation of smoking/tobacco use, and...
physical exercise are considered to be a component of LSM, 23,24–28 an attitude/habit of regular BP and BG monitoring should also be included. MLSMS includes all these components.

In this study, we found that after PTCA, adherence to LSMs is high during the initial period of follow-up, but by the end of 1 year, there is a significant decrease in adherence (4.1 ± 1.1 vs. 3.1 ± 1.6, p < 0.001). In a study by Sadeghzadeh et al., similar findings were seen.24 Therefore, it is important to reinforce the significance of LSM to patients on every follow-up. There were favorable changes in many of the risk factors of the CAD during our study; however, it would not be possible to attribute it entirely to LSM because medication also has a major role to play.

Patients who were adherent to LSM (MLSMS 4–5) were found to have a lesser MACE at 12-month follow-up (11.2%) compared with those who were nonadherent (16.9%), even on multivariate analysis, after adjusting for all major confounding factors, including drug noncompliance. Nonadherence to LSM was still associated with an increased MACE rate (HR 0.575; 95% CI 0.334–0.990; p < 0.046). These results are similar to the results of Stewart et al., Sadeghzadeh et al. and Akesson A, et al. 12,24,29

In our study, we also found drug noncompliance as an important predictor of MACEs. This was comparable to an earlier study conducted by Kappagoda et al. Therefore, it is important to emphasize the importance of LSM and drug compliance to patients at each hospital visit especially after PTCA to improve long-term outcomes.

4.1. Study limitation

It is a single-center study. Although the cohort study design might be a limitation, because LSMs such as continuation of smoking/tobacco use, irregular BP checkup, irregular BG checkup, and irregular physical exercise remains relatively constant from the beginning, the strong association with MACEs makes it possible to extrapolate this association to the beginning of the adverse cardiac event itself.

5. Conclusion

 MLSMS is a simple and effective evaluation tool to predict outcomes after PTCA. Adherence to LSM decreases over time, and therefore, it is important to emphasize its importance during each follow-up.

Table 5
Adjusted Cox and unadjusted Cox proportional analyses: MACE among different variables.

Variable	Unadjusted HR (95% CI)	p-value	Adjusted HR (95% CI)	p-value
Age	1.008 (0.985–1.031)	0.498	1.006 (0.982–1.031)	0.608
Male gender (vs female gender)	0.925 (0.628–1.362)	0.639	0.893 (0.592–1.349)	0.591
Smokers (vs nonsmokers)	0.981 (0.700–1.373)	0.918	0.992 (0.700–1.404)	0.963
Alcoholic (vs nonalcoholic)	1.069 (0.883–1.294)	0.493	1.082 (0.719–1.630)	0.705
Hypertensive (vs nonhypertensive)	1.049 (0.888–1.238)	0.577	1.082 (0.744–1.574)	0.678
Diabetic (vs nondiabetic)	1.038 (0.877–1.229)	0.633	1.222 (0.789–1.892)	0.37
Dyslipidemia (vs nondyslipidemia)	1.143 (0.600–2.177)	0.684	1.053 (0.544–2.039)	0.878
STEMI (vs non-STEMI)	1.084 (0.769–1.529)	0.644	0.998 (0.435–2.293)	0.997
NSTEMI (vs non-NSTEMI)	0.997 (0.679–1.465)	0.989	0.832 (0.360–1.919)	0.666
NYHA class	0.606 (0.364–1.009)	0.05	0.607 (0.237–1.552)	0.297
SVD (non-SVD)	1.202 (0.732–1.974)	0.467	0.969 (0.379–2.480)	0.948
Fasting blood sugar	0.999 (0.996–1.001)	0.394	0.998 (0.994–1.001)	0.225
HbA1c	1.031 (0.952–1.116)	0.455	1.121 (1.004–1.251)	0.043
Total cholesterol	0.995 (0.992–0.999)	0.009	0.997 (0.988–1.005)	0.458
Triglyceride	0.999 (0.997–1.002)	0.59	1.001 (0.998–1.004)	0.432
LDL	0.994 (0.990–0.998)	0.004	0.997 (0.987–1.006)	0.513
HDL	1.005 (0.992–1.018)	0.474	1.010 (0.996–1.023)	0.157
NYHA class	1.125 (0.908–1.395)	0.282	1.180 (0.931–1.491)	0.171
Irregular diet control (regular diet control)	1.135 (0.797–1.616)	0.483	1.033 (0.697–1.529)	0.873
Irregular BP checkup (regular BP checkup)	0.68 (0.490)	0.007	3.82 (1.4310.909)	0.007
Irregular BG checkup (regular BG checkup)	0.55 (0.400, 0.77)	<0.001	0.55 (0.40, 0.77)	<0.001
Continue to smoke/tobacco use (not smoking/not using tobacco)	1.47 (1.1, 1.97)	0.009	1.47 (1.1, 1.97)	0.009
Irregular physical exercise (regular physical exercise)	0.60 (0.48, 0.99)	0.04	4.60 (1.03–20.49)	0.04
Nondrug compliance (drug compliance)	2.270 (1.570–3.282)	<0.001	2.092 (1.425–3.072)	<0.001
Non-LSM adherence (LSM adherence)	0.595 (0.390–0.905)	0.015	0.573 (0.334–0.990)	0.046

MACE, major adverse cardiac event; STEMI, ST-elevation myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction; UA, unstable angina; SA, stable angina; SVD, single vessel disease; DVD, double vessel disease; TVD, triple vessel disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1C, glycated hemoglobin; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NYHA, New York Heart Association; BP, blood pressure; BG, blood glucose.

Fig. 4. Time-to-event curve by the Kaplan–Meier method. LSM, lifestyle modification.
Conflict of interest

All authors have none to declare.

Acknowledgments

The authors thank all the patients included in the study group. They thank Nadeem Sayyed for assistance with preparation of the manuscript.

References

1. Leung AW, Chan RS, Sea MM, Woon J. An overview of factors associated with adherence to lifestyle modification programs for weight management in adults. Int J Environ Res Publ Health. 2017;14(8):922.
2. Nag T, Ghosh A. Cardiovascular disease risk factors in Asian Indian population: a systematic review. J Cardiovasc Dis Res. 2013;4(4):222–228.
3. Chiuv SE, McCullough ML, Sacks FM, Rimm EB. Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation. 2006;114(2):160–167.
4. Sharif F, Mohshkelgosh F, Molazem Z, Kalyani MN, Vossoughi M. The effects of discharge plan on stress, anxiety and depression in patients undergoing percutaneous transluminal coronary angioplasty: a randomized controlled trial. Int J Community Based Nurs Midwifery. 2014;2(2):60.
5. Winslow E, Bohannon N, Brunton SA, Mayhew HE. Lifestyle modification: weight control, exercise, and smoking cessation. Am J Med. 1996;101(4):295–335.
6. Booth 3rd JN, Levitan EB, Brown TM, Farkhout ME, Safford MM, Muntner P. Effect of sustaining lifestyle modifications (nonsmoking, weight reduction, physical activity, and mediterranean diet) after healing of myocardial infarction, percutaneous intervention, or coronary bypass (from the REasons for Geographic and Racial Differences in Stroke Study). Am J Med. 2014;113(12):1933–1940.
7. Cheng S-J, Yu H-K, Chen Y-C, et al. Physical activity and risk of cardiovascular disease among older adults. Int J Gerontol. 2013;7(3):133–136.
8. Singh P, Singh G, Singh S. Clinical profile and risk factors in acute coronary syndrome. Chest. 2013;180:90.
9. Aminpour S, Shahamfar S, Shahamfar J. Effects of lifestyle modification program in reduction of risk factors in patients with coronary heart disease. Eur J Exp Biol. 2014;4(1):353–357.
10. Ganiyu AB, Mabuza LH, Malete NH, Goverender I, Ogumbojano GA. Non-adherence to diet and exercise recommendations amongst patients with type 2 diabetes mellitus attending Extension II Clinic in Botswana. Afr J Prim Health Care Fam Med. 2013;5(1):1–6.
11. Razavi M, Fournier S, Shepard DS, Ritter G, Strickler GK, Stason WB. Effects of lifestyle modification programs on cardiac risk factors. PLoS One. 2014;9(12):e114772.
12. Stewart RA, Wallentin L, Benatar J, et al. Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk patients with stable coronary heart disease. Eur Heart J. 2016;37(25):1991–2001.
13. Kappagoda CT, Ma A, Cort DA, et al. Cardiac event rate in a lifestyle modification program for patients with chronic coronary artery disease. Clin Cardiol. 2006;29(7):317–321.
14. Berg AD, Allan JD, Frame P, et al. Behavioral counseling in primary care to promote physical activity. Ann Intern Med. 2002;137(3):205–207.
15. Thompson PD, Buchner D, Piha IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Circulation. 2003;107(24):3109–3116.
16. Organization WHO. Physical Status: The Use and Interpretation of Anthropometric Indicators of Nutritional Status. 1995:854. WHO technical report series.
17. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee I-M. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;110, 010710. CIRCULATIONAHA.
18. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.
19. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 2014;63(25 Part B):2960–2984.
20. Stergiou GS, Karpettas N, Destounis A, et al. Home blood pressure monitoring alone vs. combined clinic and ambulatory measurements in following treatment-induced changes in blood pressure and organ damage. Am J Hypertens. 2013;27(2):184–192.
21. Hinson J, Raven P, Chew SL. The Endocrine System: Basic Science and Clinical Conditions. Churchill Livingstone/Elsevier; 2010.
22. Fillit HM, Rockwood K, Young JB. Brocklehurst’s Textbook of Geriatric Medicine and Gerontology E-book. Elsevier Health Sciences; 2016.
23. Xavier D, Gupta R, Kamath D, et al. Community health worker-based intervention for adherence to drugs and lifestyle change after acute coronary syn- drome: a multicentre, open, randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(3):244–253.
24. Sadeghzadeh V, Ghasemi I, Kelachayeh SSR, Naserian J. Effects of a lifestyle-change program on cardiac risk factors after angioplasty. I Res Appl Basic Sci. 2013;1:234–238.
25. Mann JI, Tipene-Leach DC, Pahau HL, et al. Insulin resistance and impaired glucose metabolism in a predominantly Maori community. Diabetes Res Clin Pract. 2006;72(1):68–74.
26. Liu HH, Tsai YF, Lin PJ, Tsay PK. Effects of a therapeutic lifestyle-change pro- gramme on cardiac risk factors after coronary artery bypass graft. J Clin Nurs. 2010;19(1-2):60–68.
27. Hachisunoishi R, Gózim S. The effect of patient education and home mon- itoring on medication compliance, hypertension management, healthy lifestyle behaviours and BMI in a primary health care setting. J Clin Nurs. 2011;20(5-6):692–705.
28. Hill MM, Hill A. Investigação por questionário. vol. 377. Lisboa: Silabo; 2000. ISBN 972-618-233-9/000.
29. Åkesson A, Larsson SC, Disaccaci A, Wolk A. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol. 2014;64(13):1299–1306.