Atherogenic low density lipoprotein phenotype in long-term survivors of childhood acute lymphoblastic leukemia

Jyoti Malhotra,† Emily S. Tonorezos,† Marina Rozenberg,† Gloria L. Vega,§ Charles A. Sklar,† Joanne Chou,† Chaya S. Moskowitz,† Debra A. Eshelman-Kent,‡‡ Peter Janiszewski,†† Robert Ross,†† and Kevin C. Oeffinger††

Mount Sinai Medical Center,* New York, NY; Memorial Sloan-Kettering Cancer Center,† New York, NY; University of Texas Southwestern Medical Center,** Dallas, TX; Cincinnati Children’s Hospital Medical Center,** Cincinnati, OH; and Queen’s University,†† Kingston, Canada

Abstract Survivors of childhood acute lymphoblastic leukemia (ALL) have an increased risk of cardiovascular disease. Small density lipoproteins are atherogenic but have not been studied in this population. We conducted a cross-sectional analysis of 110 ALL survivors (mean age, 24.3 years) to determine prevalence of small dense LDL (pattern B) phenotype in ALL survivors and identify associated factors. Lipid subfractions were measured using Vertical Auto Profile-II. Participants with greater than 50% of LDL-cholesterol (LDL-c) in small dense LDL fractions (LDL_{3+4}) were classified as LDL pattern B. Visceral and subcutaneous adipose tissue (VAT, SAT) volumes were also measured by computed tomography. While the mean LDL-c level of ALL survivors was 108.7 ± 26.8 mg/dl, 36% (40/110) of survivors had atherogenic LDL pattern B. This pattern was more common in males (26/47; 55%) than in females (14/63; 22%; P = 0.001) and more common in survivors treated with cranial radiotherapy (15/33; 45%) than in those who were treated with chemotherapy alone (25/77; 33%; P = 0.04, adjusted for age, gender, history of hypertension, and smoking history). VAT was associated with atherogenic lipids: LDL pattern B and LDL_{3+4} levels. This association was independent of other measures of body fat.

We conclude that a substantial proportion of ALL survivors had an atherogenic LDL phenotype despite normal mean LDL-c levels. An atherogenic LDL phenotype may contribute to the increase in cardiovascular mortality and morbidity in this population.—Malhotra, J., E. S. Tonorezos, M. Rozenberg, G. L. Vega, C. A. Sklar, J. Chou, C. S. Moskowitz, D. A. Eshelman-Kent, P. Janiszewski, R. Ross, and K. C. Oeffinger. Atherogenic low density lipoprotein phenotype in long-term survivors of childhood acute lymphoblastic leukemia. J. Lipid Res. 2012. 53: 2747–2754.

Supplementary key words cancer • dyslipidemias • lipids • lipoproteins • LDL subfractions

Acute lymphoblastic leukemia (ALL) constitutes more than 80% of newly diagnosed acute leukemias in children and has a current five-year overall survival rate exceeding 85 percent (1). At the same time, data from the Childhood Cancer Survivor Study (CCSS) suggest that adult survivors of childhood leukemia are at significantly increased risk for myocardial infarction [Hazard rate (HR) 3.3; 95% CI, range 1.2–8.6] and congestive heart failure (HR 4.2; 95% CI, range 2.3–7.4) compared with their noncancer siblings (2, 3). Therefore, it is imperative to identify potential cardiac risk factors in this population at an early stage in the atherosclerotic process.

Low-density lipoprotein (LDL) is composed of multiple subfractions based on particle size and density. Among these LDL subfractions, small dense LDL is more atherogenic than larger particles (4) and is associated with an increased risk for coronary artery disease (CAD) (5). There are two main subclass patterns of LDL based on predominant LDL particle size: large, buoyant LDL pattern A (particle diameter ≥ 25 nm) and small dense LDL pattern B (particle diameter < 25 nm) (6). LDL pattern B is independently associated with higher rate of CAD progression (7, 8). Conventional lipid panels measure total LDL-cholesterol (LDL-c) level, which is the sum of cholesterol in all LDL subparticles. Elevated LDL-c is a known cardiac risk factor and has been associated with increased risk for CAD even in the absence of other established risk factors, such as diabetes mellitus and hypertension (9). However, it is well known that the atherogenic properties of LDL are determined not only by its total mass but also by its composition, particularly the ratio of small dense LDL to large buoyant LDL particles (10).

Elevated small dense LDL levels have been associated with increased risk of atherosclerotic cardiovascular disease (11). Small dense LDL is more atherogenic than larger particles and has been associated with increased risk of CAD even in the absence of other established risk factors, such as diabetes mellitus and hypertension (12). However, it is well known that the atherogenic properties of LDL are determined not only by its total mass but also by its composition, particularly the ratio of small dense LDL to large buoyant LDL particles (13).

In addition, small dense LDL particles are more easily oxidized than larger particles, which may contribute to their atherogenic properties (14). In vivo, small dense LDL particles may accumulate in the arterial wall, where they may promote inflammation and recruit macrophages, leading to the formation of foam cells and the development of atherosclerotic plaques (15). Therefore, small dense LDL may contribute to the increased risk of cardiovascular disease seen in survivors of childhood leukemia.

In conclusion, we have demonstrated that a substantial proportion of ALL survivors have an atherogenic LDL phenotype despite normal mean LDL-c levels. This finding suggests that small dense LDL may contribute to the increased risk of cardiovascular disease seen in this population. Further investigation is needed to determine the role of small dense LDL in the atherosclerotic process and to identify strategies for preventing cardiovascular disease in survivors of childhood leukemia.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health Grants R01-CA-100474, K05-CA-160724, MO1-RR-00633, and UL1-RR-024982; the Howard J. and Dorothy Adelta Foundation; an American Cancer Society Cancer Control Career Development Award; and the Donald W. Reynolds Cardiovascular Research Center at Dallas. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Manuscript received 22 June 2012 and in revised form 13 September 2012.

Published, JLR Papers in Press, September 13, 2012
DOI 10.1194/jlr.P029785

Copyright © 2012 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 53, 2012 2747

Abbreviations: ALL, acute lymphoblastic leukemia; BMI, body mass index; CAD, coronary artery disease; CRT, cranial radiotherapy; CT, computed tomography; GHD, growth hormone deficiency; HDL-c, HDL-cholesterol; HOMA-IR, homeostasis model of assessment-insulin resistance; HR, hazard rate; IDL, intermediate-density lipoprotein; LDL-c, LDL-cholesterol; SAT, subcutaneous adipose tissue; VAP-II, Vertical Auto Profile-II; VAT, visceral adipose tissue.

†To whom correspondence should be addressed. e-mail: oeffingk@mskcc.org
risk factor (9), but 30–40% of patients with cardiovascular events have normal LDL-c levels (10). Therefore, patients with CAD may have small dense pattern B despite having normal LDL-c levels (11, 12). This finding represents a potential source of unrecognized atherogenic risk when using a routine lipid panel instead of measuring LDL subfractions. LDL pattern B prevalence in young adults has been reported to be 18.5–29.2% (13, 14).

Although ALL survivors have a high prevalence of obesity, including visceral adiposity, and are at an increased risk for cardiovascular disease (15–18), studies have not shown any significant difference in mean LDL-c and HDL-cholesterol (HDL-c) levels between ALL survivors and noncancer controls (15, 19). We are unaware of any prior study of subfraction lipid analysis in this population. The objectives of the current analysis were i) to estimate the prevalence of small dense LDL (pattern B) phenotype in ALL survivors and identify associated treatment factors and ii) to assess the relationship between measures of body fat and LDL pattern B in this cohort of survivors.

METHODS

Study population
Between May 2004 and January 2007, a cohort of 118 adult survivors of childhood ALL participated in the ALLIFE Study, as described in prior reports (15, 18, 20). Eligible survivors (N = 189) were based upon the cancer registry, diagnosed between 1970 and 2000, and lived in the Dallas-Fort Worth metropolitan area. Nonparticipants (passive nonrespondents, 21.2%; active refusals, 16.4%) were not significantly different than participants with respect to sex, race and ethnicity, age at study, age at ALL diagnosis, interval from diagnosis to study, or history of attending Southwestern Medical Center and the Cooper Institute. We are unaware of any prior study of subfraction lipid analysis in this population. The objectives of the current analysis were i) to estimate the prevalence of small dense LDL (pattern B) phenotype in ALL survivors and identify associated treatment factors and ii) to assess the relationship between measures of body fat and LDL pattern B in this cohort of survivors.

TABLE 1. Characteristics of 110 survivors of childhood ALL

Characteristic	All (n = 110)	Male (n = 47)	Female (n = 63)
Age at time of study, years	24.3 (5.0)	23.9 (5.0)	24.6 (5.0)
Age at diagnosis, years	6.6 (4.2)	7.3 (4.3)	6.1 (4.2)
Time since cancer, years	17.6 (6.0)	16.6 (5.8)	18.4 (6.0)
Ethnicity, n (%)			
African American	13 (11.8%)	4 (8.5%)	9 (14.3%)
White, non-Hispanic	79 (71.8%)	38 (80.9%)	41 (65.1%)
Hispanic	16 (14.6%)	4 (8.5%)	12 (19.1%)
Height, m (cm)	1.7 (0.1)	1.7 (0.07)	1.6 (0.07)
Weight, kg	78.4 (19.7)	82.7 (16.9)	75.2 (21.2)
BMI, kg/m^2	28.4 (7.4)	27.1 (5.6)	29.4 (8.4)
Cranial radiotherapy, n (%)	33 (30.0%)	11 (23.4%)	22 (34.9%)
Cumulative anthracycline dose, n (%)			
None	32 (29.1%)	10 (21.3%)	22 (34.9%)
1–249 mg/m^2	59 (53.6%)	29 (61.7%)	30 (47.6%)
≥250 mg/m^2	19 (17.3%)	8 (17.0%)	11 (17.5%)

Data presented as mean (SD) or as a number (%).
RESULTS

Characteristics of participants

Of the 110 participants, 47 (42.7%) were male (Table 1). Non-Hispanic white patients made up 80.9% of the males and 65.1% of the females. Median age at ALL diagnosis was 5.2 years (range 0.9–17.7 years), and median number of years since initial cancer diagnosis was 17.5 years (range 4.9–34.0 years). Two subjects were receiving lipid therapy.

LDL-c, HDL, triglycerides, and LDL pattern B

On average, participants in this study had normal mean LDL-c levels ($\text{Fig. 1; } 108.7 \pm 26.8 \text{ mg/dl}$). Mean levels of HDL-c ($48.3 \pm 10.3 \text{ mg/dl}$) and triglycerides ($108.4 \pm 70.0 \text{ mg/dl}$) were also within normal range. However, 36.4% (40/110) of the study participants were found to have atherogenic LDL pattern B; mean LDL 3+4 level for the 110 participants was 50.9 ± 20.0 mg/dl.

In analyses that were adjusted for age, gender, history of smoking, and hypertension history, mean LDL-c levels were not significantly different between participants with LDL pattern B (Fig. 1; 114.8 mg/dl) and those with pattern A (105.3 mg/dl; adjusted $P = 0.18$). In contrast, mean

Statistical analysis

Continuous variables were compared using the Student t-test, and discrete variables were compared using Fisher's exact test. Logistic regression analysis was used to examine whether select factors were associated with the presence of LDL pattern B. Linear regression models were used to explore relationships between LDL 3+4 and covariates. Regression analyses were adjusted for age, gender, history of hypertension, and smoking history. Statistical analyses was performed using STATA version 9.1 (College Station, TX) (29) with a two-sided $P < 0.05$ considered statistically significant.

Fig. 1. Mean LDL-c, HDL-c, and triglyceride levels among survivors of childhood ALL with LDL pattern A and LDL pattern B. P adjusted for age, history of hypertension, and smoking history.
HDL-c was lower in those with LDL pattern B (41.5 mg/dl) compared with those with pattern A (52.1 mg/dl; adjusted \(P < 0.001 \)). HDL subfractions (HDL\(_2\) and HDL\(_3\)) were also lower in survivors with LDL pattern B compared with survivors with LDL pattern A (Table 2). Participants with LDL pattern B also had higher triglyceride levels (152.6 versus 83.2 mg/dl; adjusted \(P < 0.001 \)) and higher triglyceride/HDL-c ratio than those with pattern A (3.9 versus 1.7; adjusted \(P < 0.001 \)).

Males had a higher prevalence of LDL pattern B (26/47, 55.3%) than females (14/63, 22.2%; \(P = 0.001 \)). There was no difference in prevalence of LDL pattern B by race or ethnicity.

Atherogenic lipids and cancer therapy factors

Participants receiving cranial radiotherapy (CRT) had a higher prevalence of LDL pattern B (Table 3; 15/33, 45.5%) compared with those who did not receive CRT (25/77, 32.5%; \(P = 0.04 \), adjusted for age, gender, history of hypertension, and smoking history). CRT also showed a significant association with LDL\(_{3+4}\) levels (mean, 57.7 versus 48.0 mg/dl; adjusted \(P = 0.02 \)). However on a linear regression model, CRT accounted for only 5% of the variation in the LDL\(_{3+4}\) levels (\(R^2 = 0.05 \)). Survivors receiving CRT also had higher VAT volume compared with those who did not receive CRT (mean, 390.3 versus 228.5 cm\(^3\); adjusted \(P = 0.002 \)). No difference was found in the prevalence of LDL pattern B based on prior exposure to anthracyclines, methotrexate, glucocorticoids, or any other chemotherapeutic agents. Age at diagnosis and interval since cancer diagnosis were not associated with the presence of LDL pattern B.

Atherogenic lipids and measures of body fat

In analyses that were adjusted for age, gender, history of smoking, and hypertension history, all measures of body fat, including increased BMI, waist circumference, and visceral pattern of obesity, were associated with atherogenic lipids: LDL pattern B and LDL\(_{3+4}\) levels (Table 4 and Fig. 2). The highest prevalence of LDL pattern B was found among participants with a visceral pattern of obesity (73.7% versus 28.2% in participants without the visceral pattern of obesity; adjusted \(P = 0.03 \)). This association was independent of other measures of body fat. Increased prevalence of LDL pattern B was observed in survivors with a visceral pattern of adiposity irrespective of therapy. Of survivors who received CRT and chemotherapy and had a visceral pattern of obesity, 80.0% (4/5) had LDL pattern B compared with 71.4% (10/14) of survivors who received only chemotherapy and had a visceral pattern of obesity (adjusted \(P = 0.41 \)).

Atherogenic lipids and other cardiovascular risk factors

Insulin resistance was present in 67 of the 110 participants; 30 (45%) of the insulin-resistant survivors exhibited LDL pattern B compared with only 10 (23%) survivors without insulin resistance (\(P = 0.03 \), adjusted for age, gender, history of hypertension, and smoking history; Table 2). In a multivariate model adjusted for age, gender, history of hypertension, and smoking history, HOMA-IR was significantly associated with LDL\(_{3+4}\) levels (\(P = 0.03 \), adjusted for age, gender, history of hypertension, and smoking history; Table 2). However, this association was not significant after inclusion of VAT in the model. Metabolic syndrome was found in 14 participants, 13 (92.9%) of whom had LDL pattern B; 28% of participants without the metabolic syndrome had LDL pattern B (adjusted \(P < 0.001 \)).

DISCUSSION

In this study of 110 young adult survivors of childhood ALL, we have shown that a substantial proportion (over one third) have an atherogenic LDL profile despite mean LDL-c levels within the normal range. To our knowledge, this study is the first to describe these lipid abnormalities in long-term ALL survivors, and it may lead to a better understanding of the cardiovascular risk in this population. Although we saw a modest relationship between CRT and atherogenic lipid profile, nearly one third (32.5%) of survivors without a history of CRT had an atherogenic pattern. Importantly, visceral adiposity was associated with small

TABLE 2. Lipid subfractions among 110 survivors of childhood leukemia with LDL pattern A and LDL pattern B

Lipid Subfraction	LDL pattern A (n = 70)	LDL pattern B (n = 40)
Total cholesterol	173.9 (28.3)	178.6 (30.5)
Triglycerides	83.2 (37.8)	152.6 (89.6)*
LDL	105.3 (25.5)	114.8 (28.2)
LDL\(_1\)	14.6 (5.9)	16.6 (5.5)
LDL\(_2\)	36.3 (13.8)	15.1 (6.8)*
LDL\(_3\)	36.4 (12.1)	51.3 (15.7)*
LDL\(_4\)	4.7 (2.3)	16.7 (9.5)*
LDLR	92.1 (22.7)	99.8 (25.6)
HDL	52.1 (9.6)	41.5 (7.8)*
HDL\(_1\)	12.6 (4.1)	7.8 (3.0)*
HDL\(_2\)	9.0 (3.5)	6.2 (2.2)*
HDL\(_3\)	2.5 (1.0)	1.4 (1.2)*
HDL\(_4\)	1.1 (0.2)	0.2 (0.9)*
HDL\(_5\)	39.5 (6.2)	33.8 (5.4)*
HDL\(_6\)	12.8 (3.9)	8.7 (2.9)
HDL\(_7\)	6.9 (1.3)	6.5 (1.9)
HDL\(_8\)	10.0 (2.0)	8.2 (1.9)*
HDL\(_9\)	9.7 (1.4)	10.2 (1.3)
IDL	5.6 (4.8)	9.9 (6.1)*
IDL\(_1\)	1.0 (1.5)	3.5 (2.8)*
IDL\(_2\)	4.7 (3.5)	6.4 (3.8)
VLDL\(_1\)	16.5 (3.3)	22.4 (7.6)*
VLDL\(_2\)	7.3 (1.5)	10.4 (4.1)*
VLDL\(_3\)	9.2 (1.9)	12.1 (3.7)*
VLDL\(_4\)	4.1 (0.9)	5.6 (1.9)*
VLDL\(_5\)	5.2 (1.0)	6.4 (1.9)*
VLDL\(_6\)	7.5 (3.8)	5.2 (3.3)*
VLDL\(_7\)	1.3 (2.3)	0.4 (1.4)
VLDL\(_8\)	0.9 (1.8)	<0.1 (0.2)*
VLDL\(_9\)	2.9 (2.7)	0.7 (1.6)
VLDL\(_10\)	1.6 (2.6)	1.9 (2.3)*
VLDL\(_11\)	0.8 (1.6)	2.2 (2.0)*
Non-HDL	119.8 (20.7)	139.7 (33.0)*
Non-HDL/HDL	2.4 (0.2)	3.5 (1.1)
Remnant\(_1\)	14.9 (6.1)	21.9 (5.5)*

\(^a \) Lipoprotein(a).
\(^* \) \(P < 0.05 \) when comparing survivors with LDL pattern A and survivors with LDL pattern B; adjusted for age, gender, history of hypertension, and smoking history. Data presented as mean measured in mg/dl (SD).

\(^\text{1} \) Remnant lipoproteins = IDL + VLDL\(_5\).
LDL atherogenic phenotype in ALL survivors

Increasing LDL-c and decreasing HDL-c levels in 44 ALL survivors, on average 19 years from treatment (31). However, this study included only patients who received CRT doses of more than 18 Gy. None of these studies reported lipid subfraction data.

Despite normal mean LDL-c, HDL-c, and triglyceride levels, more than one third of our patients exhibited the atherogenic LDL pattern B; this finding suggests that an atherogenic LDL pattern might contribute to the increased cardiovascular risk observed in ALL survivors (2, 3). Importantly, measurement of LDL-c alone might not be sufficient for cardiovascular risk stratification in this patient population. Prior studies in noncancer populations have shown that routine lipid profile with normal LDL-c might understate the atherogenic risk (10) and that the presence of LDL pattern B is more predictive of CAD than is elevated LDL-c (11). Our findings suggest that the same may be true of the survivor population.

TABLE 3. Lipid subfractions among 110 survivors of childhood leukemia, by history of treatment with cranial radiotherapy
All (n = 110)

Total cholesterol
Triglycerides
LDL
LDL1
LDL2
LDL3
LDL4
LDLR
HDL
HDL1
HDL2
HDL3
HDL4
HDL5
HDL6
HDL7
HDL8
HDL9
IDL
IDL1
IDL2
VLDL
VLDL1
VLDL2
VLDL3
VLDL4
Lp(a)
Lp(a)1
Lp(a)2
Lp(a)3
Lp(a)4
Lp(a)5
Non-HDL
Non-HDL/HDL
Remnant
LDL pattern
A
B

Lp(a), lipoprotein(a). *P < 0.05 when comparing survivors who received CRT and survivors who did not receive CRT; adjusted for age, gender, history of hypertension, and smoking history. Data presented as mean measured in mg/dl (SD) or number (%).

Remnant lipoproteins = IDL + VLDL.

dense LDL regardless of therapy. An atherogenic pattern was present in 71.4% of survivors without a history of CRT but with a visceral pattern of obesity. Further, small dense LDL was strongly associated with other cardiovascular risk factors, including insulin resistance and metabolic syndrome. As observed in the general population (30), male ALL survivors in our study were more likely than females to have LDL pattern B.

In a previously reported analysis from ALLIFE, we found no difference in mean LDL-c and HDL-c levels in ALLIFE compared with 782 noncancer controls from the Dallas Heart Study (15). Furthermore, no significant difference in mean LDL-c levels was found among subjects with a history of CRT compared with those who had no history of CRT. A separate study by Geenen et al. compared 79 ALL survivors (16.5–21 years from time of diagnosis) to noncancer sibling controls and found no significant difference in mean LDL-c or HDL-c (19). Of note, mean LDL-c levels in the 48 patients in that study who received CRT were not different from those who did not receive CRT. Link et al. reported increased LDL-c and decreased HDL-c levels in 44 ALL survivors, on average 19 years from treatment (31). However, this study included only patients who received CRT doses of more than 18 Gy. None of these studies reported lipid subfraction data.

Despite normal mean LDL-c, HDL-c, and triglyceride levels, more than one third of our patients exhibited the atherogenic LDL pattern B; this finding suggests that an atherogenic LDL pattern might contribute to the increased cardiovascular risk observed in ALL survivors (2, 3). Importantly, measurement of LDL-c alone might not be sufficient for cardiovascular risk stratification in this patient population. Prior studies in noncancer populations have shown that routine lipid profile with normal LDL-c might underestimate the atherogenic risk (10) and that the presence of LDL pattern B is more predictive of CAD than is elevated LDL-c (11). Our findings suggest that the same may be true of the survivor population.

Studies in similarly aged noncancer populations have demonstrated a much lower prevalence of LDL pattern B.
LDL phenotype in ALL survivors that may help explain the observed increase in cardiovascular risk in this population. Some interventions that have been documented to reduce small dense LDL in noncancer populations include the use of statins (33) and fibrates (34), as well as diet and exercise to reduce weight (35).

The increased prevalence of LDL pattern B seen in ALL survivors could be related to increased visceral adiposity in this group. It is well established that ALL survivors have a higher BMI, increased visceral adiposity, and increased waist-to-height ratio; possible mechanisms include growth hormone deficiency (GHD), leptin dysregulation, poor dietary choices, and reduced physical activity (15–17, 19, 36). We found a strong independent association of visceral adiposity with small dense LDL levels. This finding is consistent with previous studies in noncancer populations that have demonstrated that visceral adiposity is independently associated with smaller LDL particle size (37) and increased prevalence of the small dense LDL phenotype (38). Intra-abdominal adipocytes are more lipolytically active, resulting in increased influx of free fatty acids into the liver via the portal circulation. This leads to an unfavorable lipid profile, as well as a reduction in hepatic insulin sensitivity and dysregulation of glucose metabolism (39). As visceral adiposity can increase both small dense LDL prevalence and insulin resistance through this mechanism, excess visceral adiposity may explain our finding of an association between insulin resistance and small dense LDL levels that was not independent of visceral adiposity.

Visceral adiposity may also be mediating the higher prevalence of LDL pattern B observed among those who were treated with CRT. Cancer survivors who receive CRT are at increased risk for obesity, especially if they received more than 18 Gy, were less than 5 years of age at the time of diagnosis, or developed GHD (16, 17). The association between CRT and small dense LDL in our study was attenuated by statistical adjustment for visceral adiposity.

LDL phenotype in ALL survivors that may help explain the observed increase in cardiovascular risk in this population. Some interventions that have been documented to reduce small dense LDL in noncancer populations include the use of statins (33) and fibrates (34), as well as diet and exercise to reduce weight (35).

The increased prevalence of LDL pattern B seen in ALL survivors could be related to increased visceral adiposity in this group. It is well established that ALL survivors have a higher BMI, increased visceral adiposity, and increased waist-to-height ratio; possible mechanisms include growth hormone deficiency (GHD), leptin dysregulation, poor dietary choices, and reduced physical activity (15–17, 19, 36). We found a strong independent association of visceral adiposity with small dense LDL levels. This finding is consistent with previous studies in noncancer populations that have demonstrated that visceral adiposity is independently associated with smaller LDL particle size (37) and increased prevalence of the small dense LDL phenotype (38). Intra-abdominal adipocytes are more lipolytically active, resulting in increased influx of free fatty acids into the liver via the portal circulation. This leads to an unfavorable lipid profile, as well as a reduction in hepatic insulin sensitivity and dysregulation of glucose metabolism (39). As visceral adiposity can increase both small dense LDL prevalence and insulin resistance through this mechanism, excess visceral adiposity may explain our finding of an association between insulin resistance and small dense LDL levels that was not independent of visceral adiposity. Visceral adiposity may also be mediating the higher prevalence of LDL pattern B observed among those who were treated with CRT. Cancer survivors who receive CRT are at increased risk for obesity, especially if they received more than 18 Gy, were less than 5 years of age at the time of diagnosis, or developed GHD (16, 17). The association between CRT and small dense LDL in our study was attenuated by statistical adjustment for visceral adiposity.

LDL phenotype in ALL survivors that may help explain the observed increase in cardiovascular risk in this population. Some interventions that have been documented to reduce small dense LDL in noncancer populations include the use of statins (33) and fibrates (34), as well as diet and exercise to reduce weight (35).

The increased prevalence of LDL pattern B seen in ALL survivors could be related to increased visceral adiposity in this group. It is well established that ALL survivors have a higher BMI, increased visceral adiposity, and increased waist-to-height ratio; possible mechanisms include growth hormone deficiency (GHD), leptin dysregulation, poor dietary choices, and reduced physical activity (15–17, 19, 36). We found a strong independent association of visceral adiposity with small dense LDL levels. This finding is consistent with previous studies in noncancer populations that have demonstrated that visceral adiposity is independently associated with smaller LDL particle size (37) and increased prevalence of the small dense LDL phenotype (38). Intra-abdominal adipocytes are more lipolytically active, resulting in increased influx of free fatty acids into the liver via the portal circulation. This leads to an unfavorable lipid profile, as well as a reduction in hepatic insulin sensitivity and dysregulation of glucose metabolism (39). As visceral adiposity can increase both small dense LDL prevalence and insulin resistance through this mechanism, excess visceral adiposity may explain our finding of an association between insulin resistance and small dense LDL levels that was not independent of visceral adiposity. Visceral adiposity may also be mediating the higher prevalence of LDL pattern B observed among those who were treated with CRT. Cancer survivors who receive CRT are at increased risk for obesity, especially if they received more than 18 Gy, were less than 5 years of age at the time of diagnosis, or developed GHD (16, 17). The association between CRT and small dense LDL in our study was attenuated by statistical adjustment for visceral adiposity.

LDL pattern B is associated with increased triglycerides and lower HDL-c levels and together form the triad of atherogenic dyslipidemia (24). Fasting plasma triglycerides

![Fig. 2. Association of small dense LDL (LDL3+4) levels with visceral adiposity volume by gender, among 110 survivors of childhood leukemia.](image)
have been shown to be the strongest independent correlate of LDL peak particle size (40). In fact, triglycerides/HDL-c ratio is the best predictor of the presence of LDL pattern B phenotype (41). It has been reported that more than 80% of patients with triglyceride/HDL-c ratio ≥ 3.8 will have LDL pattern B (42). In our study, 88% of participants with triglyceride/HDL-c ratio ≥ 3.8 had LDL pattern B, implying that the ratio of triglycerides/HDL-c can be used as a surrogate measure of small dense LDL phenotype if lipid subclass analysis is not available in the clinical setting.

A limitation of our study was that it was a cross-sectional analysis; therefore, causal inferences cannot be derived. Future longitudinal studies are needed to delineate underlying mechanisms associated with development of visceral adiposity and small dense LDL in ALL survivors. Additionally, this study did not include a noncancer population for comparison. Nonetheless, as described above, previous studies in young adults without a history of cancer have described a lower prevalence of LDL pattern B than that reported here (13, 14).

In conclusion, this study of 110 adult survivors of childhood ALL found a high prevalence of atherogenic LDL pattern B, even in the setting of normal range LDL-c levels. Because atherogenic small dense LDL may contribute to increased cardiovascular morbidity and mortality, further study in this area is warranted.

REFERENCES

1. Altekruse, S. F., C. L. Kosary, M. Krapcho, N. Neyman, R. Aminou, W. Waldron, J. Ruhl, N. Howlader, Z. Tatalovich, H. Cho, et al. 2010. SEER Cancer Statistics Review, 1973–2007. National Cancer Institute, Bethesda, MD.
2. Mulrowney, D. A., M. W. Yeazel, T. Kawashima, A. C. Mertens, P. Mithby, M. Stovall, S. S. Donaldson, D. M. Green, C. A. Sklar, L. L. Robison, et al. 2009. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 339: b4606.
3. Armstrong, G. T., Q. Liu, Y. Yasui, J. P. Neglia, W. Leisenring, L. L. Robison, and A. C. Mertens. 2009. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J. Clin. Oncol. 27: 2328–2338.
4. Lamarche, B., A. Tchernof, S. Moorjani, B. Cantin, G. R. Dagenais, P. J. Lupien, and J. P. Despres. 1997. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 95: 60–75.
5. Rosenow, R. S., J. J. Otos, and D. S. Freedman. 2002. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am. J. Cardiol. 90: 89–94.
6. Austin, M. A., and R. M. Krauss. 1986. Genetic control of low-density lipoprotein subclasses. Lancet. 2: 592–595.
7. Austin, M. A., J. L. Breslow, C. H. Hennekens, J. E. Buring, W. C. Willett, and R. M. Krauss. 1988. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 260: 1917–1921.
8. St-Pierre, A. C., B. Cantin, G. R. Dagenais, P. Mauriege, P. M. Bernard, J. P. Despres, and B. Lamarche. 2005. Low-density lipoprotein subclass fractions and the long-term risk of ischemic heart disease in men: 15-year follow-up data from the Quebec Cardiovascular Study. Arterioscler. Thromb. Vasc. Biol. 25: 553–559.
9. Castelli, W. P., R. J. Garrison, P. W. Wilson, R. D. Abbott, S. Kalsoudian, and W. B. Kannel. 1986. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 256: 2835–2838.
10. Hamsten, A., G. Waldlius, A. Szamosi, G. Dahlen, and U. de Faire. 1986. Relationship of angiographically defined coronary artery disease to serum lipoproteins and apolipoproteins in young survivors of myocardial infarction. Circulation. 73: 1097–1110.
11. Toft-Petersen, A. P., H. H. Tibsted, J. Aaroe, K. Rasmussen, T. Cfin, B. Cantin, B. A. Aandrestrup, A. Andreassen, and E. B. Schmidt. 2011. Small dense LDL particles—a predictor of coronary artery disease evaluated by invasive and CT-based techniques: a case-control study. Lipids Health Dis. 10: 21.
12. Hirano, T., Y. Ito, S. Koba, M. Toyoda, A. Ikejiri, H. Saegusa, J. Yamazaki, and G. Yoshino. 2004. Clinical significance of small dense low-density lipoprotein cholesterol levels determined by the simple precipitation method. Arterioscler. Thromb. Vasc. Biol. 24: 555–563.
13. Watson, T. D., M. J. Caslake, D. J. Freeman, B. A. Griffin, J. Hinnie, C. J. Packard, and J. Shepherd. 1994. Determinants of LDL subclass distribution and concentrations in young normolipidemic subjects. Arterioscler. Thromb. 14: 902–910.
14. Szirmayvas, S. R., J. P. Segrest, A. M. Elkasabany, and G. S. Berenson. 2001. Distribution and correlates of lipoproteins and their subclasses in black and white young adults. The Bogalusa Heart Study. Atherosclerosis. 159: 391–397.
15. Oeffinger, K. C., B. Adams-Huet, R. G. Victor, T. S. Church, P. G. Snell, A. L. Dunn, D. A. Eshelman-Kent, R. Ross, P. M. Janiszewski, A. J. Turoff, et al. 2009. Insulin resistance and risk factors for cardiovascular disease in young adult survivors of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 27: 3688–3704.
16. Oeffinger, K. C., A. C. Mertens, C. A. Sklar, Y. Yasui, T. Fears, M. Stovall, T. A. Vik, P. D. Inskip, and L. L. Robison. 2005. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 23: 3559–3565.
17. Garvey, E. G., Q. Liu, C. A. Sklar, L. R. Meacham, A. C. Mertens, M. A. Stovall, Y. Yasui, L. L. Robison, and K. C. Oeffinger. 2008. Longitudinal changes in obesity and body mass index among adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 26: 4639–4645.
18. Janiszewski, P. M., K. C. Oeffinger, T. S. Church, A. L. Dunn, D. A. Eshelman, R. G. Victor, S. Brooks, A. J. Turoff, E. Sinclair, J. C. Murray, et al. 2007. Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J. Clin. Endocrinol. Metab. 92: 3816–3821.
19. Geenen, M. M., P. J. Bakker, L. C. Kremer, J. J. Kastelein, and F. E. van Leeuwen. 2010. Increased prevalence of risk factors for cardiovascular disease in long-term survivors of acute lymphoblastic leukemia and Wilms tumor treated with radiotherapy. Pediatr. Blood Cancer. 55: 690–697.
20. Tonorezos, E. S., G. L. Vega, C. A. Sklar, J. F. Chou, C. S. Moskowitz, Q. Mo, T. S. Church, R. Ross, P. M. Janiszewski, and K. C. Oeffinger. 2012. Adipokines, body fat distribution, and insulin resistance among survivors of childhood leukemia. Pediatr. Blood Cancer. 58: 31–36.
21. Halonen, P., J. Mattila, T. Ruuska, M. K. Salo, and A. Makipernaa. 2003. Liver histology after current intensified therapy for childhood acute lymphoblastic leukemia: microvesicular fatty change and siderosis are the main findings. Med. Pediatr. Oncol. 40: 148–154.
22. Matthews, D. R., J. P. Hosker, A. S. Rudens, B. A. Naylor, D. F. Treacher, and R. C. Turner. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28: 412–419.
23. Chen, J., R. P. Wildman, L. L. Hamm, P. Muntner, K. Reynolds, P. K. Whelton, and J. He. 2004. Association between inflammation and insulin resistance in US nondiabetic adults: results from the Third National Health and Nutrition Examination Survey. Diabetes Care. 27: 2960–2965.
24. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. 2001. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 285: 2486–2497.
25. Kulkarni, K. R. 2006. Cholesterol profile measurement by vertical auto profile method. Clin. Lab. Med. 26: 787–802.
26. Kulkarni, K. R., D. W. Garber, M. K. Jones, and J. P. Segrest. 1995. Identification and cholesterol quantification of low density lipoprotein subclasses in young adults by VAP-II methodology. J. Lipid Res. 36: 2291–2302.

LDL atherogenic phenotype in ALL survivors 2753
27. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. 1998. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. *Am. J. Clin. Nutr.* 68: 899–917.

28. Fujikawa, S., Y. Matsuzawa, K. Tokunaga, and S. Tarui. 1987. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. *Metabolism* 36: 54–59.

29. Stata Statistical Software: Release 9. 2005. StataCorp., College Station, TX.

30. McNamara, J. R., H. Campos, J. M. Ordovas, J. Peterson, P. W. Wilson, and E. J. Schaefer. 1987. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. *Atherosclerosis* 7: 483–490.

31. Link, K., C. Moell, S. Garwicz, E. Cavallin-Stahl, J. Bjork, U. Thilen, B. Ahren, and E. M. Erfurth. 2004. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. *J. Clin. Endocrinol. Metab.* 89: 5003–5012.

32. Bowers, D. C., Y. Liu, W. Leisenring, E. McNeil, M. Stovall, J. G. Gurney, L. L. Robison, R. J. Packer, and K. C. Oeffinger. 2006. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. *J. Clin. Oncol.* 24: 5277–5282.

33. Kostapanos, M. S., H. J. Milionis, K. G. Lagos, C. B. Rizos, A. D. Tselepis, and M. S. Elisaf. 2008. Baseline triglyceride levels and insulin sensitivity are major determinants of the increase of LDL particle size and buoyancy induced by rosuvastatin treatment in patients with primary hyperlipidemia. *Eur. J. Pharmacol.* 590: 327–352.

34. Superko, H. R., K. K. Berneis, P. T. Williams, M. Rizzo, and P. D. Wood. 2005. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. *Am. J. Cardiol.* 96: 1266–1272.

35. Siri-Tarino, P. W., P. T. Williams, H. S. Fernstrom, R. S. Rawlings, and R. M. Krauss. 2009. Reversal of small, dense LDL subclass phenotype by normalization of adiposity. *Obesity (Silver Spring)* 17: 1768–1775.

36. Siuero-Miachon, A. A., A. M. Spinola-Castro, and G. Guerra-Junior. 2009. Adiposity in childhood cancer survivors: insights into obesity physiopathology. *Arq. Bras. Endocrinol. Metabol.* 53: 190–200.

37. Nieves, D. J., M. Cnop, B. Retzlaff, C. E. Walden, J. D. Brunzell, R. H. Knopp, and S. E. Kahn. 2003. The atherogenic lipoprotein profile associated with obesity and insulin resistance is largely attributable to intra-abdominal fat. *Diabetes* 52: 172–179.

38. Tchernof, A., B. Lamarche, D. Prud’Homme, A. Nadeau, S. Moorjani, F. Labrie, P. J. Luptien, and J. P. Despres. 1996. The dense LDL phenotype. Association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. *Diabetes Care* 19: 629–637.

39. Bergman, R. N., and S. D. Mittelman. 1998. Central role of the adipocyte in insulin resistance. *J. Basic Clin. Physiol. Pharmacol.* 9: 205–221.

40. Stan, S., E. Levy, E. E. Delvin, J. A. Hanley, B. Lamarche, J. O’Loughlin, G. Paradis, and M. Lambert. 2005. Distribution of LDL particle size in a population-based sample of children and adolescents and relationship with other cardiovascular risk factors. *Clin. Chem.* 51: 1192–1200.

41. Tsimihodimos, V., I. Gazi, C. Kostara, A. D. Tselepis, and M. Elisaf. 2007. Plasma lipoproteins and triacylglycerol are predictors of small, dense LDL particles. *Lipids* 42: 403–409.

42. Hanak, V., J. Munoz, J. Teague, A. Stanley, Jr., and V. Bittner. 2004. Accuracy of the triglyceride to high-density lipoprotein cholesterol ratio for prediction of the low-density lipoprotein phenotype B. *Am. J. Cardiol.* 94: 219–222.