On 2-closed abelian permutation groups

Dmitry Churikova,b and Ilia Ponomarenkoa,c

aSobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; bDepartment of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk, Russia; cSt. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

\textbf{Abstract}

A permutation group $G \leq \text{Sym}(\Omega)$ is said to be 2-closed if no group H such that $G < H \leq \text{Sym}(\Omega)$ has the same orbits on $\Omega \times \Omega$ as G. A simple and efficient inductive criterion for the 2-closedness is established for abelian permutation groups with cyclic transitive constituents.

\textbf{Article History}

Received 26 November 2020
Revised 13 May 2021
Communicated by Karl Auinger

\textbf{Keywords}

2-Closed groups; abelian groups; permutation groups

\textbf{2020 Mathematics Subject Classification}

20B25; 20B10

\section{Introduction}

The concept of m-closed permutation groups, $m \in \mathbb{N}$, was introduced by Wielandt \cite{10} in the framework of the method of invariant relations, developed by him to study group actions. He proved that the m-closed groups are exactly the automorphism groups of the relational structures formed by families of m-ary relations on the same set. The 1-closed groups are just the direct products of symmetric groups. In the present paper, we are interested in the 2-closed groups.

Let Ω be a finite set and $G \leq \text{Sym}(\Omega)$. Denote by $\text{Orb}_2(G)$ the set of all orbits of the induced action of G on $\Omega \times \Omega$. The \textit{2-closure} of the permutation group G is defined to be the largest subgroup $\overline{G} = G^{(2)}$ in $\text{Sym}(\Omega)$ that has the same 2-orbits as G, i.e.,

$$\text{Orb}_2(G) = \text{Orb}_2(\overline{G}).$$

The group G is said to be \textit{2-closed} if $G = \overline{G}$. The set $\text{Orb}_2(G)$ forms a relational structure on Ω, which is called a coherent configuration \cite{1}. Thus the 2-closed groups are the automorphism groups of coherent configurations. This fact makes the concept of 2-closed groups especially important for algebraic combinatorics \cite{5}.

Based on the definition alone, it is difficult to determine whether a given permutation group G is 2-closed. In some special cases (mostly for transitive groups the degree of which is the product of a small number of primes), good criteria for the 2-closedness are obtained via the full classification of permutation groups of given degree, see, e.g., \cite{3}. To the best of our knowledge, efficient algorithms recognizing 2-closed groups are known only for a few cases, e.g., for odd order groups \cite{4} and for supersolvable groups \cite{8}.
The present paper is motivated by the lack of good criteria for the 2-closedness even for abelian groups. A criterion found in [7, Theorem 6.1] does not seem quite satisfactory, because it requires for a group G to inspect all permutations in the direct product of the constituents G^A, $A \in \text{Orb}(G)$. Our first result reduces the 2-closedness question to the case of p-groups, and generalizes a Wielandt observation that the classes of p-groups and abelian groups are invariant with respect to taking the 2-closure.

Theorem 1.1. Let G be a nilpotent permutation group. Then \overline{G} is nilpotent. Moreover,

$$\overline{G} = \prod_{P \in \text{Syl}(G)} P.$$

Corollary 1.2. A nilpotent permutation group G is 2-closed if and only if every Sylow subgroup of G is 2-closed.

Probably, the first attempt to classify the 2-closed abelian groups was made by Zelikovskii in [11, Corollary 5]. However, the characterization appears to be wrong and infinitely many counterexamples were found in [6]. To explain the gap in Zelikovskii’s argument, let $G \leq \text{Sym}(\Omega)$. One can associate with G a permutation group on Ω, defined as follows:

$$\text{Zel}(G) = \prod_{\Delta} \bigcap_{\Delta' \neq \Delta} G^A_{\Delta'},$$

(2)

where Δ and Δ' run over the orbits of G, and $G^A_{\Delta} = (G^A_\Delta)^A$ is the restriction to Δ of the pointwise stabilizer of Δ' in G. In this notation, the necessary and sufficient condition claimed by Zelikovskii for an abelian group G to be 2-closed is that

$$\text{Zel}(G)^\Delta = (G_{\Omega\setminus\Delta})^\Delta \quad \text{for all } \Delta \in \text{Orb}(G).$$

It is not hard to see that this condition is equivalent to the inclusion $\text{Zel}(G) \leq G$. Essentially, the only gap in Zelikovskii’s argument consists in the wrong statement that if G is 2-closed, then so is the permutation group induced by the action of G on the orbits of $\text{Zel}(G)$. In this way we arrive at the second result of the present paper.

Theorem 1.3. Let G be an abelian permutation group and $Z = \text{Zel}(G)$. Then G is 2-closed if and only if $Z \leq G$ and $G^{\text{Orb}(Z)}$ is 2-closed.

The “only if” part of Theorem 1.3 can be illustrated by the two following examples in which we construct non-2-closed groups G and H, respectively. In the first example, $\text{Zel}(G) \not\leq G$, whereas in the second one, $\text{Zel}(H) \leq H$ but $H^{\text{Orb}(\text{Zel}(H))}$ is not 2-closed.

Example 1. Let p be a prime, and let $G \leq \text{Sym}(3p)$ be an elementary abelian group of order p^2. The action of G is chosen so that (a) there are exactly three G-orbits, each of size p, and (b) for any two points α and β belonging to different G-orbits, the stabilizers G_α and G_β are different subgroups of G of order p (if α and β belong to the same orbit, then, of course, $G_\alpha = G_\beta$). From Wielandt’s dissection theorem [10, Theorem 6.5], it follows that the group \overline{G} equals the direct product of its transitive constituents; since \overline{G} is abelian and $G \leq \overline{G}$, we conclude that $|\overline{G}| = p^3$. Thus, G is not 2-closed and $\overline{G} = \text{Zel}(G)$.

Example 2. Let Ω_1 and Ω_2 be disjoint sets, and let $G_1 \leq \text{Sym}(\Omega_1)$ and $G_2 \leq \text{Sym}(\Omega_2)$ be two copies of the permutation group G from Example 1. For any two permutations $g_1 \in G_1$ and $g_2 \in G_2$, corresponding to the same element of G, we define a permutation $g \in \text{Sym}(\Omega_1 \cup \Omega_2)$ such

1The cited statement was formulated for arbitrary intransitive groups with 2-closed transitive constituents.
that \(g^\Omega = g_i, \ i = 1, 2 \). Let \(H \) be the group of all these permutations \(g \); this group is isomorphic to \(G \) as an abstract group and has the same point stabilizers as \(G \) (again as abstract groups). Then \(H^\Delta_A = 1 \) for any two orbits \(\Delta \) and \(\Delta' \) corresponding to the same orbit of \(G \). It follows that \(H \) is not 2-closed (see Lemma 5.1) and \(\text{Zel}(H) = 1 \).

Theorem 1.3 reduces the question on the 2-closedness of an abelian group \(G \) to the case when the group \(\text{Zel}(G) \) is trivial. This case can really happen even if \(G \) is nontrivial, see Example 2. In a large class of abelian permutation groups, one can continue the reduction by “removing” unessential orbits defined as follows. An orbit \(\Delta \) of a group \(G \leq \text{Sym}(\Omega) \) is said to be unessential if \(G \) is 2-closed if and only if \(G^\Delta_A \) is 2-closed.

Theorem 1.4. Let \(G \) be an intransitive group and \(p \) a prime. Assume that every transitive constituent of \(G \) is a cyclic \(p \)-group. Then \(\text{Zel}(G) \) is trivial only if every orbit of \(G \) is unessential.

Combining the obtained results, we arrive at the following simple and efficient inductive criterion of the 2-closedness for an (abelian) permutation group \(G \) with cyclic transitive constituents. First, there is nothing to do if \(G \) is transitive, because in this case \(G \) is 2-closed by [10, Example 5.13]. Second, Theorem 1.1 reduces the problem to the case when \(G \) is a \(p \)-group. At this point a further reduction is needed. Namely, depending on whether the group \(Z = \text{Zel}(G) \) is trivial, we continue with

\[
G^{\text{Orb}(Z)} \text{ or } G^\Omega_A,
\]

where \(\Delta \) is an arbitrarily chosen orbit of \(G \). The correctness is provided by Theorems 1.3 and 1.4, respectively. Each of these two reductions decreases the degree of a group and hence the test is finished after at most \(|\Omega| \) reductions.

The proofs of Theorems 1.1, 1.3, and 1.4 are presented in Sections 3–5, respectively. The relevant notation and definitions are collected in Section 2.

2. Permutation groups

Throughout the paper, \(\Omega \) is a finite set. For a permutation group \(G \leq \text{Sym}(\Omega) \), we use the notation

\[
\text{Orb}(G) = \text{Orb}(G, \Omega) = \{x^G : x \in \Omega\}
\]

for the set of \(G \)-orbits \(x^G = \{x^g : g \in G\} \). A set \(\Delta \subseteq \Omega \) is said to be \(G \)-invariant if \(\Delta^\delta = \Delta \) for all \(g \in G \). In this case, we denote by \(G^\Delta \) the permutation group on \(\Delta \), induced by the natural action of \(G \) on \(\Delta \); it consists of the permutations \(g^\Delta \subseteq \text{Sym}(\Delta), g \in G \), taking \(\delta \) to \(\delta^g \), \(\delta \in \Delta \).

In general, when \(G \) acts on a set \(\Delta \) (which is not necessarily a subset of \(\Omega \)), we denote by \(G^\Delta \) the subgroup of \(\text{Sym}(\Delta) \), induced by the corresponding action.

For an arbitrary \(\Delta \subseteq \Omega \), we denote by \(G_\Delta \) and \(G_{(\Delta)} \) the pointwise and setwise stabilizer of \(\Delta \) in \(G \), respectively. Thus, if \(\Delta \) is \(G \)-invariant, then \(G_\Delta \) is the kernel of the restriction homomorphism \(G \to G^\Delta \), whereas \(G_{(\Delta)} = G \).

The groups \(G, H \leq \text{Sym}(\Delta) \) are said to be 2-equivalent if \(\text{Orb}_2(G) = \text{Orb}_2(H) \). Formula (1) implies that \(G \) and \(\overline{G} \) are 2-equivalent. In fact, the 2-closure \(\overline{G} \) is the largest group in the class of all groups 2-equivalent to \(G \).

All other undefined terms and notation are standard and can be found in [2].

3. Proof of Theorem 1.1

Let \(G \leq \text{Sym}(\Omega) \) be a nilpotent group of degree \(n = |\Omega| \). For a prime \(p | n \), the largest \(p \)-power divisor of \(n \) is denoted by \(n_p \); if \(\pi \) is a set of prime divisors of \(n \), then we put \(n_\pi := \prod_{p \in \pi} n_p \). The set of all prime divisors of the order of \(G \) is denoted by \(\pi(G) \).
Lemma 3.1. Assume that G is transitive and H a Hall subgroup of G. Then

1. the size of every H-orbit is equal to n_π, where $\pi = \pi(H)$,
2. G acts on $\text{Orb}(H)$; moreover, the kernel of this action is equal to H.

Proof. The nilpotency of G implies that $H \trianglelefteq G$. Therefore, G permutes the orbits of H and hence acts on $\Delta = \text{Orb}(H)$. Denote by L the kernel of this action.

The transitivity of G and normality of H imply that all H-orbits have the same size m. In particular, m divides both n and $|H|$. Taking into account that $\gcd(n, |H|)$ divides n_π, we conclude that

$$m \text{ divides } n_\pi.$$
(3)

Next, the group $G^\Delta \leq \text{Sym}(\Delta)$ is transitive. Consequently, $|\Delta|$ divides $|G^\Delta|$. However the numbers $|G^\Delta|$ and $|H|$ are coprime, because $H \leq L$ and H is a Hall subgroup of G. Since also $|\Delta|$ divides n, this implies that $|\Delta|$ divides n_π', where π' is the set of prime divisors of n, not belonging to π. Together with (3) this shows that

$$n = m \cdot |\Delta| = n_\pi \cdot n_\pi' = n,$$
whence $m = n_\pi$. This proves statement (1).

To prove statement (2), assume on the contrary that $H < L$. Then there exists an element $g \in L$ of prime order $q \not\in \pi$. Denote by Γ an orbit of L such that $g^\Gamma \neq \text{id}_\Gamma$. Then the Sylow q-subgroup Q of L^Γ is nontrivial. Since L^Γ is transitive and nilpotent, we can apply statement (1) to $G = L^\Gamma$ and $H = Q$. Then

$$|\Gamma| = |\Gamma|_q \cdot |\text{Orb}(Q)|.$$

On the other hand, we can apply statement (1) to $G = L^\Gamma$ and $H = H^\Gamma$. Since Γ is also an orbit of H, this statement implies that

$$|\Gamma| = |\Gamma|_\pi \cdot |\text{Orb}(H^\Gamma)| = |\Gamma|_\pi.$$

Thus, $|\Gamma|_q \cdot |\text{Orb}(Q)| = |\Gamma|_\pi$. However, the numbers $|\Gamma|_q$ and $|\Gamma|_\pi$ are relatively prime. Therefore $|\Gamma|_q = 1$ and hence $|\Gamma| = |\text{Orb}(Q)|$. It follows that $Q = 1$, a contradiction.

Lemma 3.2. Theorem 1.1 holds if G is transitive.

Proof. If G is a p-group, then G is a p-group [10, Exercise 5.28] and the required statement is true. Thus we may assume that $G = P \times H$, where P and H are the Sylow p-subgroup and Hall p'-subgroup of G, respectively. Let $\Delta \in \text{Orb}(P)$ and $\Gamma \in \text{Orb}(H)$. By Lemma 3.1(1), we have

$$|\Delta| = n_\rho \text{ and } |\Gamma| = n_{\rho'},$$
where $\rho' = \pi(H)$. Further, Δ and Γ are blocks of the transitive group G. Therefore, the intersection $\Delta \cap \Gamma$ is either empty or is a block the size of which divides both $|\Delta|$ and $|\Gamma|$. Thus, $|\Delta \cap \Gamma| \leq 1$.

Each point $\alpha \in \Omega$ lies in exactly one P-orbit, say Δ_α, and in exactly one H-orbit, say Γ_α. By the above, $|\Delta_\alpha \cap \Gamma_\alpha| = 1$. Consequently, the mapping

$$\rho : \Omega \to \text{Orb}(P) \times \text{Orb}(H), \quad \alpha \mapsto (\Delta_\alpha, \Gamma_\alpha)$$

is a bijection. Denote by P' and H' the permutation groups induced by the actions of G on $\text{Orb}(H)$ and on $\text{Orb}(P)$, respectively. By Lemma 3.1(2), we have

$$P' = P' \times 1 \text{ and } H' = 1 \times H'.$$
Thus the group G can be identified with the direct product $P' \times H'$ acting on $\text{Orb}(H) \times \text{Orb}(P)$.
From [4, Proposition 3.1(2)], it follows that
\[(P' \times H')^{(2)} = (P')^{(2)} \times (H')^{(2)},\]
which completes the proof by induction on the number \(|\pi(G)|\) with taking into account that \(\pi(G) = \pi(P) \cup \pi(H)\).

\[\textit{Proof.}\] The first part of the statement follows from the monotonicity of the 2-closure operator; in particular, \(P \leq \overline{P} \leq Q\). Thus, to prove the second part, it suffices to verify that each \(P\)-orbit \(\Delta\) is a \(Q\)-orbit. Denote by \(\Gamma\) the \(G\)-orbit containing \(\Delta\). Then \(\Gamma\) is also a \(\overline{G}\)-orbit. It follows that there exists a \(Q\)-orbit \(\Delta'\) such that
\[\Delta \subseteq \Delta' \subseteq \Gamma.\]
The groups \(G^\Gamma\) and \(\overline{G}^\Gamma\) are transitive and nilpotent. By Lemma 3.1(1), this implies that \(|\Delta| = |\Gamma|_p = |\Delta'|\). This shows that \(\Delta = \Delta'\), as required.

\[\textit{Lemma 3.3.} \text{ Let } P \text{ and } Q \text{ as above. Then } \overline{P} \leq Q. \text{ Moreover, } \text{Orb}(P) = \text{Orb}(Q). \]

\[\textit{Proof.}\] The first part of the statement follows from the monotonicity of the 2-closure operator; in particular, \(P \leq \overline{P} \leq Q\). Thus, to prove the second part, it suffices to verify that each \(P\)-orbit \(\Delta\) is a \(Q\)-orbit. Denote by \(\Gamma\) the \(G\)-orbit containing \(\Delta\). Then \(\Gamma\) is also a \(\overline{G}\)-orbit. It follows that there exists a \(Q\)-orbit \(\Delta'\) such that
\[\Delta \subseteq \Delta' \subseteq \Gamma.\]
The groups \(G^\Gamma\) and \(\overline{G}^\Gamma\) are transitive and nilpotent. By Lemma 3.1(1), this implies that \(|\Delta| = |\Gamma|_p = |\Delta'|\). This shows that \(\Delta = \Delta'\), as required.

\[\textit{Lemma 3.4.} \text{ Let } \Delta, \Gamma \in \text{Orb}(P). \text{ Then } (G_{\{\Delta\}} \cap G_{\{\Gamma\}})^{\Delta \cup \Gamma} \leq P^{\Delta \cup \Gamma}. \]

\[\textit{Proof.}\] The statement is trivial if \(G = P\). Now let \(G = P \times H\), where \(H\) is a Hall subgroup of \(G\). It follows that each \(g \in G\) can be written as \(g = xy\) with \(x \in P\) and \(y \in H\). Assume that
\[g \in G_{\{\Delta\}} \cap G_{\{\Gamma\}},\]
i.e., \(g\) leaves \(\Delta\) and \(\Gamma\) fixed (as sets). Then the permutation \(x^{-1} \in P\) leaves the sets \(\Delta\) and \(\Gamma\) fixed, because they are \(P\)-orbits. Thus, \(\Delta' = \Delta x^{-1}g = \Delta \Delta\) and similarly, \(\Gamma' = \Gamma\).

We claim that
\[y^\Delta = \text{id}_\Delta \text{ and } y^\Gamma = \text{id}_\Gamma. \]

Let us prove the first equality; the second one is proved analogously. The permutation \(y^\Delta\) belongs to the centralizer \(Z\) of the transitive group \(P^\Delta\) in \(\text{Sym}(\Delta)\). According to [9, Exercise 4.5'], the group \(Z\) is semiregular. In particular, \(|Z|\) divides \(|\Delta|\) which is a \(p\)-power. Therefore, \(Z\) is a \(p\)-group. Consequently, the order of \(y^\Delta\) is a \(p\)-power and hence \(y^\Delta \in P^\Delta\). Taking into account that \(P^\Delta \cap H^\Delta = 1\), we conclude that the first equality in (5) holds.

Using equalities (5), we have
\[g^{\Delta \cup \Gamma} = (xy)^{\Delta \cup \Gamma} = x^{\Delta \cup \Gamma} y^{\Delta \cup \Gamma} = x^{\Delta \cup \Gamma} \in P^{\Delta \cup \Gamma},\]
as required.
To complete the proof of the theorem, we note that \overline{Q} is a p-subgroup of \overline{G}, containing the Sylow p-subgroup Q. Therefore, Q is 2-closed. Thus it suffices to verify that given $\alpha, \beta \in \Omega$ and $g \in Q$, there exists $h \in P$ such that

$$(\alpha, \beta)^g = (\alpha, \beta)^h.$$

The 2-equivalence of G and \overline{G} implies that $(\alpha, \beta)^g = (\alpha, \beta)^\delta$ for some $g \in G$. Denote by Δ and Γ the Q-orbits containing the points α and β, respectively. Then obviously, $\alpha^\delta = \alpha^\delta$ belongs to Δ and $\beta^\delta = \beta^\delta$ belongs to Γ. Therefore,

$$\alpha, \beta^\delta \in \Delta \text{ and } \beta, \beta^\delta \in \Gamma.$$

In view of equality (4), Δ and Γ are also P-orbits. Since the group G permutes the P-orbits, it follows that $g \in G_{(\Delta)} \cap G_{(\Gamma)}$. By Lemma 3.4(1), there exists $h \in P$ such that $h^{\Delta \cup \Gamma} = g^{\Delta \cup \Gamma}$. Thus,

$$(\alpha, \beta)^g = (\alpha, \beta)^\delta = (\alpha, \beta)^h,$$

as required. Theorem 1.1 is completely proved.

Proof of Corollary 1.2. Let G be a nilpotent permutation group. Assume that G is 2-closed. Then $G = \overline{G}$ and hence $\text{Syl}(G) = \text{Syl}(\overline{G})$. It remains to note that by Theorem 1.1, any Sylow subgroup of \overline{G} is 2-closed. Conversely, assume that $P = \overline{P}$ for each $P \in \text{Syl}(G)$. Then again by Theorem 1.1, we have

$$\overline{G} = \prod_{P \in \text{Syl}(G)} \overline{P} = \prod_{P \in \text{Syl}(G)} P = G,$$

i.e., G is 2-closed. \square

4. Proof of Theorem 1.3

It is well known that a transitive abelian group is regular [9, Proposition 4.4]. Therefore every abelian permutation group G is quasiregular, i.e., every transitive constituent of G is regular. Thus Theorem 1.3 is an immediate consequence of Theorem 4.2. To formulate the latter, we need an auxiliary lemma.

Lemma 4.1. If G is a quasiregular permutation group and $Z = \text{Zel}(G)$, then $Z \leq \overline{G}$, and also $Z^\Delta \leq G^\Delta$ for all $\Delta \in \text{Orb}(\overline{G})$.

Proof. The group Z is generated by the permutations z satisfying the following condition: there exists $\Delta \in \text{Orb}(G)$ such that

$$z^\Delta \in Z^\Delta \text{ and } z^{\Omega \setminus \Delta} = \text{id}_{\Omega \setminus \Delta}.$$

(6)

Thus to prove the inclusion $Z \leq \overline{G}$, it suffices to verify that each such z belongs to \overline{G}, or equivalently that $z^\delta = z$ for every $s \in \text{Orb}_2(G)$.

Denote by Δ' and Δ'' the G-orbits such that $s \subseteq \Delta' \times \Delta''$. If $\Delta' \neq \Delta \neq \Delta''$, then $s^\delta = s$ by the second equality in (6), whereas if $\Delta = \Delta' = \Delta''$, then $s \in \text{Orb}_2(G\Delta)$ and again $s^\delta = s$, because $Z^\Delta \leq G^\Delta$. Thus without loss of generality, we may assume that $\Delta = \Delta'' \neq \Delta'$. Then by the definition of Z (see formula (2)), there exists $g \in G_{\Delta'}$ such that

$$z^{\Delta \cup \Delta'} = g^{\Delta \cup \Delta'}.$$

Thus, $s^\delta = s^\delta = s$, as required.
Let us prove that \(Z^\Delta \leq G^\Delta \). We have \(G^\Delta \leq G \) for every \(\Delta' \in \text{Orb}(G) \). Therefore, \(G^\Delta \leq G^\Delta \). Consequently, the intersection of all \(G^\Delta \) taken over all \(\Delta' \neq \Delta \) is also normal in \(G^\Delta \). Since this intersection coincides with \(Z^\Delta \) and \(G^\Delta = G^\Delta \), we are done. \(\square \)

From Lemma 4.1, it follows that for every \(\Delta \in \text{Orb}(G) \), the group \(G^\Delta \) acts on the set \(\text{Orb}(Z^\Delta) \). Therefore, \(G \) acts on the union \(\text{Orb}(Z) \) of all \(\text{Orb}(Z^\Delta) \).

Theorem 4.2. Let \(G \) be a quasiregular permutation group and \(Z = \text{Zel}(G) \). Then \(G \) is 2-closed if and only if \(Z \leq G \) and \(G^{\text{Orb}(Z)} \) is 2-closed.

Proof. Let \(\Delta \) be a \(G \)-orbit. Then the group \(G^\Delta \) is regular and hence 2-closed. Since \(G \) is contained in the direct product of the 2-closures of the groups \(G^\Delta \), this shows that \(G \) is quasiregular. In what follows, we assume that \(G \leq \text{Sym}(\Omega) \).

Let \(\bar{\rho}: \bar{G} \to G^{\text{Orb}(Z)} \) be the epimorphism corresponding the action of \(G \) on \(\text{Orb}(Z) \). Then obviously \(Z \) is a subgroup of \(L := \ker(\bar{\rho}) \). Moreover, if \(\Delta \) is a \(\bar{G} \)-orbit, then

\[
L^\Delta = Z^\Delta,
\]

because \(L^\Delta \) and \(Z^\Delta \) are subgroups of the regular group \(\bar{G}^\Delta \) (recall that the group \(\bar{G} \) is quasiregular) that have the same orbits. Since \(L \) is contained in the direct product of the \(Z^\Delta \), the definition of \(Z \) implies that \(L = Z \). This proves the following statement. \(\square \)

Lemma 4.3. \(\ker(\bar{\rho}) = Z \).

The epimorphism \(\bar{\rho} \) induces the action of \(G \leq \bar{G} \) on the set \(\text{Orb}(Z) \); denote by \(\rho \) the corresponding epimorphism from \(G \) to \(G^{\text{Orb}(Z)} \). It should be noted that while the group \(Z \) is not, in general, a subgroup of \(G \), the permutation group \(G^{\text{Orb}(Z)} \) is well defined.

Lemma 4.4. \(\text{im}(\bar{\rho}) = \bar{G}^{\text{Orb}(Z)} \).

Proof. The groups \(G^{\text{Orb}(Z)} \) and \(\bar{G}^{\text{Orb}(Z)} \) are 2-equivalent [8, Lemma 2.1(1)]. Therefore,

\[
\text{im}(\bar{\rho}) = \bar{G}^{\text{Orb}(Z)} \leq G^{\text{Orb}(Z)}.
\]

Conversely, we need to verify that for every \(\bar{g} \in \bar{G}^{\text{Orb}(Z)} \), there exists \(g \in G \) such that

\[
\bar{\rho}(g) = \bar{g}.
\]

(7)

Let \(\Delta \in \text{Orb}(G) \). The quasiregularity of \(\bar{G} \) implies that the group \(\bar{G}^\Delta = G^\Delta \) is regular. Since also \(Z^\Delta \leq G^\Delta \) (Lemma 4.1), the group \((\bar{G}^\Delta)^{\text{Orb}(Z^\Delta)} \) is also regular and hence 2-closed. It follows that

\[
\bar{G}^{\text{Orb}(Z)} = \bar{G}^{\text{Orb}(Z^\Delta)} = (G^\Delta)^{\text{Orb}(Z^\Delta)} = (\bar{G}^\Delta)^{\text{Orb}(Z^\Delta)} = (\bar{G}^\Delta)^{\text{Orb}(Z^\Delta)},
\]

where \(\bar{\Delta} \) is the \(\bar{G}^{\text{Orb}(Z)} \)-orbit the points of which are the \(Z \)-orbits contained in \(\Delta \). Thus for every \(\Delta \in \text{Orb}(\bar{G}) \), there exists a permutation \(g_\Delta \in \bar{G}^\Delta \) such that

\[
\bar{\rho}_\Delta(g_\Delta) = \bar{g}^\Delta,
\]

where \(\bar{\rho}_\Delta \) is the epimorphism from \(\bar{G}^\Delta \) to \((\bar{G}^\Delta)^{\text{Orb}(Z^\Delta)} \), induced by \(\bar{\rho} \). Now if the product \(g \) of all the \(g_\Delta \) lies in \(\bar{G} \), then

\[
\bar{\rho}(g) = \bar{\rho} \left(\prod_\Delta g_\Delta \right) = \prod_\Delta \bar{\rho}_\Delta(g_\Delta) = \prod_\Delta \bar{g}^\Delta = \bar{g},
\]

which proves equality (7).
It remains to verify that \(g \in G \). To this end, let \(s \in \text{Orb}_2(G) \). Then \(s \in \text{Orb}_2(\overline{G}) \) and hence \(s \subseteq \Delta \times \Gamma \) for some \(\Delta, \Gamma \in \text{Orb}(\overline{G}) \). Now if \(\Delta = \Gamma \), then \(s^g = s^{g_\Delta} = s \), because \(g_\Delta \in G^\Delta \). Assume that \(\Delta \neq \Gamma \). Then by Lemma 4.3 and the definition of \(Z \), we have \(Z^\Delta \times Z^\Gamma \subseteq \overline{G}^{\Delta \times \Gamma} \). It follows that

\[
(\alpha, \beta) \in s \iff \overline{\alpha} \times \overline{\beta} \subseteq s,
\]

where \(\overline{\alpha} = \alpha^g \) and \(\overline{\beta} = \beta^g \). Furthermore, the set \(\overline{3} = \{ (\overline{\alpha}, \overline{\beta}) : (\alpha, \beta) \in s \} \) is a 2-orbit of the group \(G^{\text{ Orb}(\overline{Z})} \) and hence \(s^g = \overline{3} \). Thus,

\[
\overline{3} = \left(\bigcup_{(\overline{\alpha}, \overline{\beta}) \in \overline{3}} \overline{\alpha} \times \overline{\beta} \right)^g = \bigcup_{(\overline{\alpha}, \overline{\beta}) \in \overline{3}} \overline{\alpha}^g \times \overline{\beta}^g = \bigcup_{(\overline{\alpha}, \overline{\beta}) \in \overline{3}} \overline{\alpha} \times \overline{\beta} = \bigcup_{(\overline{\alpha}, \overline{\beta}) \in \overline{3}} \overline{\alpha} \times \overline{\beta} = s
\]
as required.

To prove the “only if” part, assume that the group \(G \) is 2-closed. Then by Lemma 4.1, we have \(Z \leq \overline{G} = G \), whereas by Lemma 4.4, we have

\[
G^{\text{ Orb}(\overline{Z})} = \overline{G}^{\text{ Orb}(\overline{Z})} = \text{im}(\overline{\rho}) = \overline{G^{\text{ Orb}(\overline{Z})}};
\]
i.e., the group \(G^{\text{ Orb}(\overline{Z})} \) is 2-closed, as required.

To prove the “if” part, assume that \(Z \leq G \) and the group \(G^{\text{ Orb}(\overline{Z})} \) is 2-closed. By Lemma 4.3, the first condition implies that

\[
Z \leq \ker(\rho) \leq \ker(\overline{\rho}) = Z,
\]
in particular, \(\ker(\rho) = \ker(\overline{\rho}) \). Furthermore, by Lemma 4.4 the second condition implies that \(G^{\text{ Orb}(\overline{Z})} = G^{\text{ Orb}(\overline{Z})} \) and hence

\[
\text{im}(\rho) = G^{\text{ Orb}(\overline{Z})} = \overline{G^{\text{ Orb}(\overline{Z})}} = \text{im}(\overline{\rho}).
\]

Thus,

\[
|G| = |\ker(\rho)| \cdot |\text{im}(\rho)| = |\ker(\overline{\rho})| \cdot |\text{im}(\overline{\rho})| = |\overline{G}|.
\]

Since \(G \leq \overline{G} \), this means that \(G = \overline{G} \), i.e., \(G \) is 2-closed.

\[
\square
\]

5. Proof of Theorem 1.4

We begin with a sufficient condition for an orbit of quasiregular permutation group to be unessential. The proof is based on a special result from the theory of coherent configurations [1].

Lemma 5.1. Let \(G \) be a quasiregular permutation group and \(\Delta \in \text{Orb}(G) \). Assume that \(G^\Delta = 1 \) for some \(G \)-orbit \(\Delta' \neq \Delta \). Then the orbit \(\Delta \) is unessential.

Proof. The quasiregularity of \(G \) implies that \(G_{\delta'} = G_{\Delta'} \) for each \(\delta' \in \Delta' \). It follows that if \(\delta, \lambda \in \Delta \), then

\[
(\delta', \delta) \in (\delta', \lambda)^G \Rightarrow \delta = \lambda.
\]

Indeed, if \((\delta', \delta) = (\delta', \lambda)^g \) for some \(g \in G \), then \(g \in G_{\delta'} = G_{\Delta'} \). Since \(G^\Delta = 1 \), this implies that \(\delta = \delta^g = \lambda \).

Denote by \(\Omega \) the point set of \(G \) and put \(S = \text{Orb}_2(G) \). Then the pair \(\mathcal{X} = (\Omega, S) \) is a coherent configuration and \(\overline{G} = \text{Aut}(\mathcal{X}) \) is the automorphism group of \(\mathcal{X} \), see [1]. Formula (8) implies that the condition (3.3.14) from [1] is satisfied for the coherent configuration \(\mathcal{X} \) and the set \(\Delta \) equal to

\[
\Omega' := \Omega \setminus \Delta.
\]
By [1, Lemma 3.3.20(1)], the restriction homomorphism \(\text{Aut}(\mathcal{X}) \to \text{Aut}(\mathcal{X}_\mathcal{Y}) \) is an isomorphism; in particular,
\[
G^\mathcal{Y} = \text{Aut}(\mathcal{X})^\mathcal{Y} = \text{Aut}(\mathcal{X}_\mathcal{Y}) = G^\mathcal{Y}.
\] (9)
and \(|G| = |G^\mathcal{Y}|.

To prove that the orbit \(\Delta \) is unessential, first assume that the group \(G \) is 2-closed. Then formula (9) shows that the group \(G^\mathcal{Y} = G^\mathcal{Y} \) is also 2-closed. Conversely, assume that \(G^\mathcal{Y} \) is 2-closed. Then \(G^\mathcal{Y} = G^\mathcal{Y} \). Consequently,
\[
|G| \leq |G^\mathcal{Y}| = |G^\mathcal{Y}| = |G^\mathcal{Y}| \leq |G|,
\]
whence \(|G| = |G^\mathcal{Y}|\). Since \(G \leq G^\mathcal{Y} \), this implies that \(G = G^\mathcal{Y} \), i.e., \(G \) is 2-closed.

Turn to the proof of Theorem 1.4. Assume that the group \(\text{Zel}(G) \) is trivial. Then for each \(\Delta \in \text{Orb}(G) \), we have
\[
\bigcap_{\Delta' \neq \Delta} G^\Delta_{\Delta'} = 1.
\]
On the other hand, by the theorem hypothesis, \(G^\Delta_{\Delta'} \leq G^\Delta \) is a cyclic \(p \)-group for all \(G \)-orbits \(\Delta' \). Thus, \(G^\Delta_{\Delta'} = 1 \) for at least one \(\Delta' \). By Lemma 5.1, this implies that the orbit \(\Delta \) is unessential.

Acknowledgments

The authors thank S. Skresanov and A. Vasil’ev for their suggestions for improving the text, and are grateful to the anonymous referee for suggestions improving the presentation.

Funding

The research was supported by Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.

ORCID

Dmitry Churikov http://orcid.org/0000-0002-3013-4187
Ilia Ponomarenko http://orcid.org/0000-0003-2444-731X

References

[1] Chen, G., Ponomarenko, I. (2019). *Coherent Configurations*. Wuhan: Central China Normal University Press.
[2] Dixon, J. D., Mortimer, B. (1996). *Permutation Groups*. Graduate Texts in Mathematics, Vol. 163. New York: Springer-Verlag Inc.
[3] Dobson, E., Kovács, I. (2009). Automorphism groups of Cayley digraphs of \(\mathbb{Z}_3^p \). *Electron. J. Combin.* 16(1): R149.
[4] Evdokimov, S., Ponomarenko, I. (2001). Two-closure of odd permutation group in polynomial time. *Discrete Math.* 235(1–3):221–232. DOI: 10.1016/S0012-365X(00)00275-2.
[5] Evdokimov, S., Ponomarenko, I. (2009). Permutation group approach to association schemes. *European J. Combin.* 30(6):1456–1476. DOI: 10.1016/j.ejc.2008.11.005.
[6] Grech, M., Kisielewicz, A. (2018). 2-Closed abelian permutation groups. *Electron. Notes Discrete Math.* 68: 83–88. DOI: 10.1016/j.endm.2018.06.015.
[7] Grech, M., Kisielewicz, A. (2019). Abelian permutation groups with graphical representations. *arXiv: 1910.11816[math.CO]*, pp. 1–20.
Ponomarenko, I., Vasil’ev, A. (2020). Two-closure of supersolvable permutation group in polynomial time. *Comput. Complexity*. 29(1):5. DOI: 10.1007/s00037-020-00195-7.

Wielandt, H. (1964). *Finite Permutation Groups*. New York: Academic Press.

Wielandt, H. (1969). *Permutation Groups Through Invariant Relations and Invariant Functions*. Lect. Notes Dept. Math. Ohio St. Univ., Columbus, OH.

Zelikovskii, A. (1989). The König problem for abelian permutation groups [in Russian], *Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk*. (5):34–39.