Effect of functional appliances on the airway dimensions in patients with skeletal class II malocclusion: A systematic review

Annapurna Kannan, Haritha Pottipalli Sathyanarayana and Sridevi Padmanabhan

Abstract:

OBJECTIVES: The aim of the present systematic review was to assess the effect of functional appliances on the airway dimensions in patients with skeletal Class II malocclusion.

MATERIALS AND METHODS: Articles were identified through a literature survey carried out through the following databases: (1) PUBMED, (2) Google Scholar, (3) The Cochrane Library, (4) Embase, (5) Lilac, and (6) Web of Scholars. The systematic review analyzed 12 articles comprising removable functional appliances, 3 articles with fixed functional appliances, and 2 articles having both fixed and removable functional appliances.

RESULTS: Qualitative assessment was done for all the 17 studies. The effect of functional appliances in the dimensions of three airway spaces – nasopharynx, oropharynx, and hypopharynx were analyzed.

CONCLUSIONS: Significant increase in the dimensions of nasopharynx and oropharynx was observed with Activator. Significant increase in the nasopharynx and hypopharynx (male patients) was observed with Bionator. Insignificant increase in the oropharynx was observed with the same. Significant increase in the oropharynx and hypopharynx was observed with Twin Block. Insignificant increase in the nasopharynx was observed with the same. Significant increase was observed only in the hypopharynx for Frankel II. Decreased or insignificant change was observed with FMA, MPA IV, and Herbst appliances.

Keywords:
Airway dimension, class II malocclusion, fixed functional appliances, removable functional appliances, retrognathic mandible

Introduction

Facial esthetics plays a pivotal role in the perception of beauty and is also the key reason for patients with skeletal Class II malocclusion to seek orthodontic treatment. This malocclusion is frequently caused by a mandibular deficiency. Mandibular deficiency can be attributed to a small or retruded mandible relative to the maxilla. From the days of Edward Angle, a frequently debated area in orthodontics has been the efficacy of various modalities in treating patients with Class II malocclusion with a retruded mandible. According to him, when a normal function is established, the adaptation of the craniofacial morphology subsequently follows it.[1] Growth modifications are attempted to alter a developing skeletal Class II relationship in young children, predominantly during the growth phase by modifying the patients’ remaining facial growth to a favorable size or position of the jaws using functional appliances. Functional appliances enhance the proprioceptive sensory feedback mechanisms of various
periomusculatures that control the function and position of the mandible and transmit the generated forces to the dentition and basal bone.[2-5] This modifies the growth of the mandible and maxilla, guiding them into a favorable relationship.[4]

Severe mandibular deficiency has been linked to reduced oropharyngeal airway dimension increasing the chances of impaired respiratory function and possibly causing problems such as snoring, upper airway resistance syndrome, and obstructive sleep apnea-hypoapnea syndrome.

Harvold et al. suggested that in patients with skeletal Class II malocclusion caused by a retrognathic mandible, the reduced space present between the cervical column, and the mandibular body may lead to posterior positioning of the tongue and soft palate causing impairment in the airway.[6] This obstruction in the nasal airway can also lead to changes in the physiological rest position of the mandible.[7] Similarly, Linder-Aronson et al. and Quinn et al. have shown that, in children with decreased anterior facial height, retrognathism of mandible, and steeper mandibular planes, constriction is present in the nasopharyngeal region.[8,9] Further, airway disturbances can lead to a myriad of developmental deformities such as “long face syndrome,” anterior and posterior open bites, and temporomandibular joint problems.[9]

Thus, it has been hypothesized that, as the mandible is repositioned forwards with the help of functional appliances, an increase in the airway space occurs indirectly. Graber et al. further added that, as the size and shape of the nasopharyngeal space enlarges, due to the usage of functional appliances, the effectiveness of these appliances also tends to improve simultaneously, which automatically results in improved respiration.[10]

However, contrary to these studies, Vig et al. and Horowitz et al. concluded that the mentioned interrelationship between the mandibular position and airway dimension is unproven.[11,12]

Zymperdikas et al. and Kevin O’Brien et al. have concluded that functional appliances do not have clinically significant skeletal effect on the mandible,[13,14] though other clinical studies proved functional appliances to be effective.[15-34] Hence, it can be inferred from their study that, through functional appliance therapy, no significant change occurs in the airway dimensions.

Lateral cephalograms and cone beam computer tomography (CBCT) have been used often in evaluating the airway dimensions in several airway spaces. Whether the three-dimensional measurements obtained using a CBCT will be able to make a significant difference to the assessment of the airway over the linear measurements acquired with lateral cephalograms is debatable with no consensus.

Research question

With the current controversy in the literature regarding the relationship between the airway dimension and functional appliances, a systematic review is needed to assess the changes seen in different airway spaces using functional appliances; no systematic review exists that provides this information.

Objectives

The aim of the present systematic review was to assess the effect of functional appliances on the airway dimension in patients with skeletal Class II malocclusion.

Materials and Methods

Search method

Articles were identified through a literature survey carried out through the following databases: (1) PUBMED, (2) Google Scholar, (3) The Cochrane Library, (4) Embase, (5) Lilac, and (6) Web of Scholars. The search algorithms used in each database are given in Table 1. A manual search was also performed by reviewing the references within the studies examined and the titles of the papers published over the last twenty years in various journals.

As this research was a systematic review, the institutional ethics committee was not required to approve the data abstraction.

Data abstraction

The selection process was done by two authors. The data extracted from each article was compared and discussed to resolve any discrepancies to reach a unanimous consensus.

Inclusion criteria

- Randomized controlled trials (RCTs), prospective, or retrospective case control studies

Table 1: Summary of the search database

Key words	Database	No. of articles
Functional appliances and airway	PUBMED	298
Activator, orthodontics, Airway	PUBMED	19
Bionator and airway	PUBMED	20
Twin Block and airway	PUBMED	10
Functional appliances, airway, Class II, orthodontics	Google Scholar	4910
Bionator, airway, orthodontics	Google Scholar	263
Airway, Class II, Orthodontics	PUBMED	81
• Healthy growing patients with skeletal Class II malocclusion without any systemic diseases treated with functional appliances
• Studies with a comparable control group.

Exclusion criteria
• Case reports, case series with no statistical analysis, comments, letters to the editor, and reviews
• Studies using functional appliances for the treatment of obstructive sleep apnea
• Studies using headgear as treatment modality in Class II patients and other functional appliances in treating patients’ with Class III malocclusion
• Class I control groups.

The selected and rejected articles, after assessment of the full text articles, are listed in Tables 2 and 3, respectively; Figure 1 describes the search strategy. A summary of the articles included in this systematic review is presented in Table 4.

Quality assessment
The selected articles were graded based on the criteria proposed by the Cochrane Collaboration for Prospective Case-Control studies [Table 5] and the National Institutes of Health, Department of Health and Human Services, U.S.A for Retrospective Case-Control studies [Table 6]. The risk of bias within studies was assessed independently by the two authors and across studies by an independent reviewer. Any disagreement was resolved by discussion with the reviewer.

Results
The results were analyzed based upon the effect of functional appliances in the dimensions of three airway spaces – the nasopharynx, oropharynx, and hypopharynx.

Nasopharynx
• Significant increase in the dimension was observed with Activator, Bionator, Bite jumping appliance, and Farmand appliance
• Significant increase was observed with Twin Block in two studies, whereas three studies did not show any significant change
• Insufficient increase was observed with Frankel II and Herbst appliance
• A decrease was observed with MPA IV and FMA appliances [Table 7].

Oropharynx
• Significant increase was measured with Twin block, Bite jumping appliance, MPA IV, and X bow
• Significant increase was measured with Activator in four studies and insufficient increase in one study
• Insufficient increase was measured with Bionator, Forsus, and Herbst appliance
• Significant increase was measured with Farmand appliance, although 2 years after treatment, a decrease in the airway, when compared to the posttreatment values, were measured with this appliance
• A decrease was measured with FMA appliance [Table 7].

Table 2: Selected articles based on title and abstract

Key words	Database	No. of articles selected based on title and abstract, exclusion of repetition
Functional appliances and airway	PUBMED	7
Activator, orthodontics, Airway	PUBMED	4
Bionator and airway	PUBMED	1
Twin Block and airway	PUBMED	4
Functional appliances, airway, Class II orthodontics	Google Scholar	1
Bionator, airway, orthodontics	Google Scholar	1
Airway and Class II and Orthodontics	PUBMED	1
Similar articles	PUBMED	1

Table 3: Rejected articles after full text assessment

Name of the article	Reason for rejection
A. Horitata et al. (2013)	Class I control group
S. Han et al. (2014)	Class I control group
T. Iwasaki et al. (2014)	Class I control group

Figure 1: Flow chart describing the search strategy
Table 4: Summary of full text articles included in qualitative synthesis

Author	Sample	Appliances used	Control	Study design
C. Ulusoy et al. (2014)	16 (8 girls, 8 boys)	Activator	19 (11 girls, 8 boys)	Retrospective case control
	Growth Period: Prepubertal	Treatment Duration: 11±3.4 months	Observation period: 11.37±1.2 months	
		Retention Phase: 29.75±5.17 months		
MP. Hänggi et al. (2008)	32 (16 girls, 16 boys)	Activator-headgear appliance	32 (16 girls, 16 boys)	Prospective case control
	Growth Period: Not Mentioned	Treatment Duration: 17±6.5 months (range 9-32 months), followed by fixed orthodontic treatment in 27 patients		
MM. Ozbek et al. (1998)	26 (15 girls, 11 boys)	14: Harvold Type activator	15 (8 girls, 7 boys)	Retrospective case control
	Growth Period: Significant growth potential	12: Harvold type activator with occipital headgear		
		Treatment Duration:		
A. Godta et al. (2011)	308	Headgear :209 (m/f%: 47/53), Activator: 50 (m/f%: 45/55), BJA: 49(m/f%: 44/56)	Self	Retrospective case control
	Growth Period: Not Mentioned	Treatment Duration: Duration of first phase		
		Bite jumping appliance: 2.9±1.15 years		
		Duration of overall treatment		
		Activator: 6.24±1.67 years		
		Bite jumping appliance: 6.42±1.14 years		
C. Restrepo et al. (2011)	50 (28 girls, 22 boys)	Klammt activator	Self	Retrospective case control
	Growth Period: Pre-pubertal	(n=31) or a Bionator (n=19)		
		Treatment Duration: 1 year		
YC. Yen-Chun Lin et al. (2011)	86 (35 girls, 51 boys)	Modified Bionator	Self	Prospective case control
	Growth Period: Pubertal growth phase	Treatment Duration:		
		Treatment time: 1.86 years		
		56 patients: 2 years follow-up		
		22 patients: 4 years follow-up		
S. Ghodke et al. (2014)	20 (9 girls, 11 boys)	Twin-block appliance	18 (9 girls, 9 boys)	Prospective case control
	Growth Period: Not Mentioned	Treatment Duration:		
		Twin Block Group: 244.63±35.58 days		
		Control Group: 222.80±32.91 days		
L. Li et al. (2014)	30 (17 girls, 13 boys)	Twin-block appliance	30 (17 girls, 13 boys)	Retrospective case control
	Growth Period: Not Mentioned	Treatment Duration:		
		Twin Block Group: 13.67±1.51 months		
		Control Group: 16-		
		MPA-IV (girls - 7, boys - 9), 21-		
		twin-block (girls - 10, boys - 11)		
		Treatment Duration:		
		Twin Block: 9.38±1.68		
		MPA IV: 6.8±1.20		
		Control Group: 9.86±1.79		
AK. Jenaa et al. (2013)	37	Twin Block	46 :	Prospective case control
	Growth Period: Not Mentioned	Treatment Duration:	30 Class I malocclusion subjects (girls – 17, boys-13), 16 Class II malocclusion subjects (girls – 7, boys -9)	
		Not mentioned		
SK. Vinoth et al. (2013)	25 (13 girls, 12 females)	Twin Block	Self	Retrospective case control
	Growth Period: Before peak mandibular growth	Treatment Duration: Not mentioned		
G. Verma et al. (2012)	40 (22 girls, 18 boys)	Twin block	Self	Retrospective case control
	Growth Period: Not assessed	Treatment Duration: Not mentioned		

"Contd..."
Hypopharynx

- Significant increase was observed with Twin block and Frankel II.
- Significant increase was observed in male patients with Bionator, and an insignificant increase was observed in female patients.
- Significant increase was observed with Farmand appliance, although 2 years after treatment, a decrease in the airway, when compared to the posttreatment values, were seen with the same.
- Insignificant increase was observed with Herbst appliance, FMA, and MPA IV [Table 7].

Discussion

Functional appliances are primarily used in growing children to bring about a change in the position of the mandible. As the mandible moves forward, it is said to cause an indirect increase in the airway size. Although the restricting effect on the airway caused by the retrognathic mandible is no longer present, variable results are seen with the airway space dimensions.

Though the articles studied in this systematic review support the view of functional appliances bringing about a clinically significant skeletal change to the

Table 4: Contd...

Author	Sample	Appliances used	Control	Study design
G. Kinzinger et al. (2011)	43	FMA-18 (10 girls, 8 boys)	Self	Retrospective case control
		Herbst appliance - 25 (13 girls, 12 boys)		
		Treatment Duration: FMA: 18 months		
		Herbst: 19.5 months		
		Treatment Duration:		
F. Ozdemira et al. (2014)	23	Farnand	Self	Retrospective case control
	(12 girls, 11 boys)	Treatment Duration:		
		Forsus FRD		
		Treatment Duration:		
		5 months13 days±1 month 4 days		
G. Hui et al. (2003)	20	Frankel II	Self	Retrospective case control
	(10 girls, 10 boys)	Treatment Duration: 7.4 months		
		Prepeak or peak pubertal growth stage		
B. Erbas et al. (2014)	25	Xbow	Self	Retrospective case control
	(14 girls, 11 boys)	Treatment Duration: 6 months		
S. Yassaei et al. (2007)	28	Farmand	Self	Retrospective case control
	(females 10, males 11)	Treatment Duration: 12 months		
		Active growth		
S. Yassaei et al. (2012)	23	Farmand	Self	Prospective case control
	(8 girls, 15 boys)	Treatment Duration: 12 months, follow up- 2 years		

Table 5: Summary of the quality assessment of prospective case control studies

Study Name	Exposed and Nonexposed Cohorts from Same Population	Assessment of Exposure	Absence of Outcome Interest	Matching of variables during sampling	Assessment of the presence or absence of prognostic factors	Outcome assessment	Follow up of cohort	Co-intervention	Quality of study			
M. P. Hänggi et al. (2008)	Definetely yes	Definetely yes	Probably yes	Probably yes	Probably yes	Definetely yes	Definetely yes	Low risk bias				
S. Ghodke et al. (2014)	Definetely yes	Definetely yes	Probably yes	Probably yes	Probably yes	Definetely yes	Definetely yes	Low risk bias				
AK. Jenaa et al. (2013)	Definetely yes	Definetely yes	Probably yes	Probably yes	Probably yes	Definetely yes	Definetely yes	Moderte risk bias				
YC. Yen-Chun Lin et al. (2011)	Definetely yes	Definetely yes	Probably yes	Probably no	Probably no	Definetely yes	Definetely yes	Low risk bias				
S. Yassaei et al. (2007)	Probably no	Definetely yes	Probably yes	Probably yes	Probably yes	Definetely yes	Definetely yes	Moderte risk bias				
Quality Assessment	Study Name											
--	------------											
	C. Ulusoy et al. (2014)	M. Ozbek et al. (1998)	A. Godta et al. (2011)	C. Restrepo et al. (2011)	L. Li et al. (2014)	SK. Vinoth et al. (2013)	G. Verma et al. (2012)	G. Kinzinger et al. (2011)	F. Ozdemira et al. (2014)	G. Hui et al. (2003)	B. Erbas et al. (2014)	S. Yassaei et al. (2007)
Appropriate research question	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Defined study population	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Target population and case representation	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample size justification	Yes	No	No	Yes	No	No	No	No	No	No	No	No
Recruited groups from same population	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Inclusion and exclusion criteria prespecified and applied uniformly	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Defined case and control	Yes	Yes	No	No	No	No	No	No	No	No	No	No
Random selection of study participants	No	No	No	No	No	No	No	No	No	No	No	No
Concurrent controls	No	No	No	No	No	No	No	No	No	No	No	No
Exposure assessed prior to outcome measurement	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Exposure measures and assessment	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Blinding of exposure assessors	No	No	No	No	No	No	No	No	No	No	No	No
Statistical analysis	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Quality assessment	Good	Good	Fair	Good	Good	Good	Good	Good	Good	Good	Good	Good

(1-5: Poor; 6-8: Fair; 9-13: Good)
Table 7: Summary of the influence of the appliance on the airway spaces

Author	Investigating method	Nasopharynx	Oropharynx	Hypopharynx
C. Ulusoy et al. (2014)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Control - *P* value: Not Significant	Comparison between pretreatment and posttreatment: Control - *P* value: Not Significant	Not Assessed
		Activator - *P* value: Significant	Activator - *P* value: Significant; End of retention: Significant	
		Comparison between the groups: *P* value: Not significant	Comparison between the groups: *P* value: Not significant	
M P. Hänggi et al. (2008)	Lateral Cephalogram	Comparison between pretreatment, posttreatment and end of retention:	Comparison between pretreatment, posttreatment and end of retention:	Not Assessed
		Control - *P* value: Significant	Activator-Headgear - *P* value: Significant	
		Activator-Headgear - *P* value: Significant	Comparison between the groups: *P* value: Significant	
M.M. Ozbek et al. (1998)	Lateral Cephalogram	Not Assessed	Comparison between pretreatment and posttreatment: Control - *P* value:	Not Assessed
			Significant	
			Activator-Headgear - *P* value: Significant	
			Comparison between the groups: *P* value: Significant	
A. Godta et al. (2011)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: BJA - *P* value: Significant	Comparison between pretreatment and posttreatment: BJA- *P* value: Significant	Not Assessed
		Activator-Headgear - *P* value: Significant	Activator-Headgear - *P* value: Significant	
			Comparison between the groups: *P* value: Significant	
C. Restrepo et al. (2011)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Bionator - *P* value: Significant	Comparison between pretreatment and posttreatment: Bionator- *P* value:	Not Assessed
		Significant	Not Significant	
		Klammt Activator - *P* value: Significant	Klammt Activator - *P* value: Not Significant	
YC. Yen-Chun Lin et al. (2011)	Lateral Cephalogram	Female: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Significant	Female: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Not significant	Female: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Not significant
		Male: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Significant	Male: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Not significant	Male: Comparison between pretreatment, posttreatment, 2 years after Retention and 4 year follow-up: Modified Bionator - *P* value: Not significant
S. Ghodke et al. (2014)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Control - *P* value: Not Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Significant
		Twin Block - *P* value: Not Significant	Twin Block- *P* value: Significant	Comparison between pretreatment and control group: *P* value: Significant
		Comparison between treatment and control group: *P* value: Not Significant	Comparison between treatment and control group: *P* value: Significant	Comparison between treatment and control group: *P* value: Not Significant
Author	Investigating method	Nasopharynx	Oropharynx	Hypopharynx
------------------------	----------------------	--	--	--
L. Li et al. (2014)	Cone Beam Tomography	Comparison between pretreatment and posttreatment: Control- *P* value: Not Significant Twin Block- *P* value: Significant Control- *P* value: Significant Twin Block- *P* value: Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Significant Twin Block- *P* value: Significant Control- *P* value: Significant Twin Block- *P* value: Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Significant Twin Block- *P* value: Significant Control- *P* value: Significant Twin Block- *P* value: Significant
AK. Jenaa et al (2013)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Control- *P* value: Not Significant Twin Block- *P* value: Not Significant MPA IV- *P* value: Not Significant Comparison between Twin Block and control group- *P* value: Not Significant Comparison among MPA IV and control group *P* value: Not Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Not Significant Twin Block- *P* value: Not Significant MPA IV- *P* value: Not Significant Comparison between Twin Block and control group- *P* value: Significant Comparison among MPA IV and control group *P* value: Not Significant	Comparison between pretreatment and posttreatment: Control- *P* value: Not Significant Twin Block- *P* value: Not Significant MPA IV- *P* value: Not Significant Comparison between Twin Block and control group- *P* value: Not Significant Comparison among MPA IV and control group *P* value: Not Significant
SK. Vinoth et al. (2013)	Lateral Cephalogram	Not Assessed	Not Assessed	Not Assessed
G. Verma et al. (2012)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Twin Block- *P* value: Significant	Not Assessed	Not Assessed
G. Kinzinger et al. (2011)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Herbst- *P* value: Not Significant FMA- *P* value: Not Significant Comparison between Herbst and FMA: *P* value: Not Significant	Comparison between pretreatment and posttreatment: Herbst- *P* value: Not Significant FMA- *P* value: Not Significant Comparison between Herbst and FMA: *P* value: Not Significant	Comparison between pretreatment and posttreatment: Herbst- *P* value: Not Significant FMA- *P* value: Not Significant Comparison between Herbst and FMA: *P* value: Not Significant
F. Ozdemira et al. (2014)	Lateral Cephalogram	Not Assessed	Not Assessed	Not Assessed
G. Hui et al. (2003)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Frankel 2- *P* value: Significant	Not Assessed	Comparison between pretreatment and posttreatment: Frankel 2- *P* value: Significant
B. Erbas et al. (2014)	Cone Beam Tomography	Not Assessed	Comparison between pretreatment and posttreatment: X- Bow- *P* value: Significant	Not Assessed
S. Yassaei et al. (2007)	Lateral Cephalogram	Not Assessed	Comparison between pretreatment and posttreatment: Farmand- *P* value: Significant	Not Assessed
S. Yassaei et al. (2012)	Lateral Cephalogram	Comparison between pretreatment and posttreatment: Farmand- *P* value: Significant 2 years after treatment: *P* value- Not Significant	Comparison between pretreatment and posttreatment: Farmand- *P* value: Significant 2 years after treatment: *P* value- Not Significant with decrease in mean value	Comparison between pretreatment and posttreatment: Farmand- *P* value: Significant 2 years after treatment: *P* value- Not Significant with decrease in mean value
mandible.[15–34] Zymperdikas \textit{et al.} and Kevin O’Brien \textit{et al.} concluded that functional appliances do not provide a clinically significant skeletal effect. Kevin O’Brien \textit{et al.}’s study found that the Twin Block does not appreciably modify mandibular growth and that it is simply a tooth modifying appliance. Thus, it can be inferred from their results that no pharyngeal size modification occurs with functional treatments as the advancement of mandibular position is not significant enough to cause the change.[15,14]

The need for clarity regarding the effect of functional appliances on airway space sizes led to this systematic review.

The literature search revealed absence of RCTs in this area of research. RCTs are considered the gold standard among all research designs in the evidence pyramid. In orthodontics, a lacuna is present in this topic probably due to the ethical considerations in denying treatment to a patient with malocclusion. Absence of historic growth studies with untreated Class II subjects where airway was assessed was taken into account while contemplating the inclusion criteria. This led to the inclusion of both retrospective and prospective studies in this systematic review. Studies which had a comparable Class II control group, or those in which Class II patients were assessed pre and posttreatment, were included. Class I control groups were not taken into consideration due to difference in growth pattern between them and Class II patients.[37–42]

Case reports and case series were not taken into consideration due to the inadequacies in their study designs to address the objective of this systematic review. Studies involving functional appliances to treat obstructive sleep apnoea patients were not used as the patients have a pathological reason for decreased airway space.[19,29]

The literature is divided about the effect of functional appliances on airway space sizes led to this systematic review. Absence of historic growth studies with untreated Class II subjects where airway was assessed was taken into account while contemplating the inclusion criteria. This led to the inclusion of both retrospective and prospective studies in this systematic review. Studies which had a comparable Class II control group, or those in which Class II patients were assessed pre and posttreatment, were included. Class I control groups were not taken into consideration due to difference in growth pattern between them and Class II patients.[37–42]

The literature search showed that Yassaei \textit{et al.} had the same content published in two different journals. Their study dealt with the effect of the Farmund appliance on 28 Class II patients, namely in Arabic, in the Shiraz University Dental Journal, 2007, and in English, in the Journal of Clinical Paediatric Dentistry; the article, published in the English language, was taken into consideration.[10]

The present systematic review analyzed 12 articles comprising removable functional appliances, 3 articles with fixed functional appliances, and 2 articles having both fixed and removable functional appliances [Tables 8 and 9].

A significant number of selected studies appeared in the PUBMED database. A few of the studies did not specify the precise regions where the airway spaces were measured. Correlating with the anatomical structures, measurements of the airway dimensions were taken into consideration.

| Article | Oropharynx and hypopharynx | Nasopharynx, oropharynx, and hypopharynx |
|---------|---------------------------|--|--|--|--|--|--|
| Overall effect of appliance on airway | Increase in airway |

Table 9: Fixed functional appliance

Appliance	Number of articles	Airway space analyzed	Overall effect on appliance
Herbst	1	Nasopharynx, oropharynx, and hypopharynx	Increase in airway
FMA	1	Nasopharynx, oropharynx, and hypopharynx	Decrease in airway
MPA IV	1	Nasopharynx, Oropharynx and Hypopharynx	Increase in oropharynx and hypopharynx, Decrease in nasopharynx
Bite jumping appliances	1	Nasopharynx, and Oropharynx	Increase in airway
X bow appliance	1	Oropharynx	Increase in airway
Forsus	1	Oropharynx	Increase in airway
An insignificant increase in the region of the nasopharynx with Twin Block was seen with three studies that have a higher rating in the quality of assessment scale than the two studies which show a significant increase.[24‑28] Lin et al. in 2011 reported an insignificant increase in the oropharyngeal region while using Bionator due to the connection of the lateral wall of the soft palate to the base of the tongue through the palatoglossus arch. In relation to the hypopharyngeal area, an insignificant increase was reported in the same study only in female patients.

Though Herbst and FMA appliances are known to have better patient compliance, Kinzinger et al. have shown them to have an insignificant or adverse effect, respectively, in the airway dimensions. Further, they have questioned the reliability of the assessment of posterior airway space with lateral cephalograms due to its limitations in studying three-dimensional structures.[29] Yassaei et al. in 2012 also found a decrease in the airway space in the long term with the usage of the Farmund appliance.[34]

The interrelationship present between the craniofacial form and the function of the airway gets established during the growth and development stage, making it vital to establish a good harmony between them as early as possible.[40] Future research is required to unearth the reasons behind the insignificant increase or decrease in a specific airway space with some appliances, though an increase is seen in other airway spaces.

Limitations of the study
• Many studies did not have a Class 2 untreated control group. Thus, quantification of the changes due to functional appliances alone, without the effect of growth changes, could not be assessed. Absence of blinding while analyzing cephalometric or CBCT values could have eliminated reviewer bias. All these point out the need for additional RCTs in this area
• Absence of a standard rating scale for quality assessment of retrospective studies.

Potential studies should consider analyzing the most proficient functional appliance using dynamic contrast magnetic resonance imaging as it provides stereomaging of the airway region. Although a volumetric quantification is possible with CBCT imaging, a potential underestimation of the same is present when compared to that of MRI.[48]

Conclusions
Cephalometric and CBCT imaging provide sufficient data to analyze the airway dimension changes in the nasopharynx, oropharynx, and hypopharyngeal areas. A significant change was seen in the airway due to the repositioning of the mandible, especially with removable functional appliances.
• Significant increase in the nasopharynx and oropharynx was observed with Activator
• Significant increase in the nasopharynx and hypopharynx (male patients) was observed with Bionator. Insignificant increase in the oropharynx was observed with the same
• Significant increase in the oropharynx and hypopharynx was observed with Twin Block. Insignificant increase in the nasopharynx was observed with the same
• Significant increase was observed only in the hypopharynx with Frankel II
• Decrease or insignificant change was observed with FMA, MPA IV, and Herbst appliances.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Angle EH. Treatment of Malocclusion of the Teeth. Angle’s System. 7th ed. Philadelphia: S.S. White Dental Mfg. Co; 1907.
2. Pancherz H. Treatment of Class II malocclusions by Jumping the Bite with Herbst appliance. Am J Orthod 1979;76:423‑42.
3. Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics. 4th edition. St. Louis, Mo: Elsevier; 2007. pp. 397‑402.
4. Bishara SE, Ziaja RR. Functional appliances: A review. Am J Orthod Dentofacial Orthop 1989;95:250‑8.
5. Yamin CL, Woodside DG, Sektakof PA, Sessle BJ. The action of three types of functional appliances on the activity of the masticatory muscles. Am J Orthod Dentofacial Orthop 1997;112:560‑72.
6. Harvold EP, Chierici G, Vargervik K. Experiments on the development of dental malocclusions. Am J Orthod 1972;61:38‑44.
7. Rubin MR. Mode of respiration and facial growth. Am J Orthod 1980;78:504‑9.
8. Linder‑Aronson S. Effects of adenoidectomy on dentition and nasopharynx. Am J Orthod 1974;65:1‑15.
9. Quinn GW. Airway interferences and its effect upon the growth and development of the face, jaws, dentition and associated parts. N C Dent J 1978;60:28‑31.
10. Graber TM. Dentofacial Orthopedics with Functional Appliances. 2nd ed. St. Louis, Mo: Elsevier; 1984. pp. 16‑23.
11. Vig PS. Respiration, nasal airway and orthodontics: A review of current clinical concepts and research. New vistas in orthodontics. Philadelphia, Lea and Febiger; 1985. pp. 76‑99.
12. Horowitz S, Hixon E. The nature of orthodontic diagnosis. St. Louis: The C. V. Mosby Company; 1966.
13. Zymperdikas VF, Koretsi V, Papageorgiou SN, Papadopoulos MA. Treatment effects of fixed functional appliances in patients with Class II malocclusion: A systematic review and meta‑analysis. Eur J Orthod 2016;38:113‑26.
14. O’Brien K, Wright J, Conboy F, Sanjie Y, Mandall N, Chadwick S, et al. Effectiveness of early orthodontic treatment with the Twin‑block appliance: A multicenter, randomized, controlled...
15. Horihata A, Ueda H, Koh M, Watanabe G, Tanne K. Enhanced increase in pharyngeal airway size in Japanese class II children following a 1-year treatment with an activator appliance. Int J Orthod Milwaukee 2013;24:35-40.

16. Han S, Choi YJ, Chung CJ, Kim JY, Kim KH. Long-term pharyngeal airway changes after bionator treatment in adolescents with skeletal Class II malocclusions. Korean J Orthod 2014;44:13-9.

17. Iwasaki T, Takemoto Y, Inada E, Sato H, Saitho I, Kakuno E, et al. Three-dimensional cone-beam computed tomography analysis of enlargement of the pharyngeal airway by the Herbst appliance. Am J Orthod Dentofacial Orthop 2014;146:776-85.

18. Ulusoy C, Canigur Bavbek N, Tuncer BB, Tuncer C, Turkoz C, Gencturk Z. Evaluation of airway dimensions and changes in hyoid bone position following class II functional therapy with activator. Acta Odontol Scand 2014;72:917-25.

19. Hänggi MP, Teuscher UM, Roos M, Feltomäki TA. Long-term changes in pharyngeal airway dimensions following activator-headgear and fixed appliance treatment. Eur J Orthod 2008;30:598-605.

20. Ozbek MM, Memikoglu TUT, Gogen H, Lowe AA, Baspinar E. Oropharyngeal airway dimensions and functional orthopaedic treatment in skeletal class 2 cases. Angle Orthod 1998;68:327-36.

21. Godt A, Koos B, Hagen H, Göz G. Changes in upper airway width associated with Class II treatments (headgear vs activator) and different growth patterns. Angle Orthod 2011;81:440-6.

22. Restrepo C, Santamaría A, Peláez S, Tapia A. Oropharyngeal airway dimensions after treatment with functional appliances in Class II retrognathic children. J Oral Rehabil 2011;38:588-94.

23. Yen-Chun Lin YC, Hsiang-Chien Lin HC, Tsai HH. Changes in pharyngeal airway and Position of the Hyoid Bone after Treatment With a Modified Bioclear in Growing Patients With Retrognathia. J Exp Clin Med 2013;3:93e98.

24. Ghodke S, Utreja AK, Singh SP, Jena AK. Effects of twin-block appliance on the anatomy of pharyngeal airway passage (PAP) in class II malocclusion patients. Prog Orthod 2014;15:68.

25. Li L, Liu H, Cheng H, Han Y, Wang C, Chen Y, et al. CBCT evaluation of the upper airway morphological changes in growing patients of class II division 1 malocclusion with mandibular retraction using twin block appliance: A comparative research. PLoS One 2014;9:e94378.

26. Jena AK, Singh SP, Utreja AK. Effectiveness of twin-block and Mandibular Protraction Appliance-IV in the improvement of pharyngeal airway passage dimensions in Class II malocclusion subjects with a retrognathic mandible. Angle Orthod 2013;83:728-34.

27. Vinoth SK, Thomas AV, Nethravathy R. Cephalometric changes in airway dimensions with twin block therapy in growing Class II patients. J Pharm Bioallied Sci 2013;5(Suppl 1):525-9.

28. Verma G, Tandon P, Nagar A, Singh GP, Singh A. Cephalometric evaluation of hyoid bone position and pharyngeal spaces following treatment with Twin block appliance. J Orthod Sci 2012;1:77-82.

29. Kinzinger G, Czapka K, Ludwig B, Glasi B, Gross U, Lisson J. Effects of fixed appliances in correcting Angle Class II on the depth of the posterior airway space: FMA vs. Herbst appliance—a retrospective cephalometric study. J Orofac Orthop 2011;72:301-20.

30. Ozdemir F, Ulkur F, Nalbantgil D. Effects of fixed functional therapy on tongue and hyoid positions and posterior airway. Angle-Orthod 2014;84:260-4.

31. Gao H, Xiao D, Zhao Z. Effects of Fränkel II appliance on sagittal dimensions of upper airway in children. Hua Xi Kou Qiang Yi Xue Za Zhi 2003;21:116-7.

32. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy evaluated with cone beam computed tomography. Angle Orthod 2014;84:693-700.

33. Yassaei S, Bahrololoomi Z, Sorush M. Changes of Tongue Position and Oropharynx Following Treatment with Functional Appliance. J Clin Pediatr Dent 2007;31:287-90.

34. Yassaei S, Tabatabaei Z, Ghafurifard R. Stability of pharyngeal airway dimensions: Tongue and hyoid changes after treatment with a functional appliance. Int J Orthod Milwaukee 2012;22:35-9.

35. Cochrane.org. Tool to Assess Risk of Bias in Cohort Studies. Retrieved from http://methods.cochrane.org/sites/methods.cochrane.org.basics/files/public/uploads/Tool%20Assess%20Risk%20of%20Bias%20in%20Cohort%20Studies.pdf. [Last accessed on 2015 Nov 02].

36. National Institutes of Health, Department of Health & Human Services, U.S.A. (2014, March). Quality Assessment of Case-Control Studies. Retrieved from https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/case-control. [Last accessed on 2015 Nov 02].

37. Bishara SE, Jakobsen JR, Vorhies B, Bayati P. Changes in dentofacial structures in untreated Class II division I and normal subjects: A longitudinal study. Angle Orthod 1997;67:55-6.

38. Björk A. Variations in the growth of the human mandible: Longitudinal radiographic study by the implant method. J Dent Res Suppl 1963;42:400-11.

39. Björk A, Skjeller V. Facial development and tooth eruption. An implant study at the age of puberty. Am J Orthod 1972;62:339-83.

40. Björk A, Skjeller V. Normal and abnormal growth in the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod 1983;5:1-46.

41. Buschang PH, Tanguay R, Turkewicz J, Bayati P. Polynomial approach to craniofacial growth: Description and comparison of adolescent males with normal occlusion and those with untreated Class II malocclusion. Am J Orthod Dentofacial Orthop 1986;90:437-42.

42. Buschang PH, Tanguay R, Demirjian A, LaPalme L, Turkewicz J. Mathematical models of longitudinal mandibular growth for children with normal and untreated Class II, division 1 malocclusion. Eur J Orthod 1988;10:227-34.

43. Pirila-Farkkinen K, Lopponen H, Nieminen P, Tolonen U, Paakko E, Pirittiniemi P. Validity of upper airway assessment in children: A clinical, cephalometric, and MRI study. Angle Orthod 2011;81:433-9.

44. Vizzotto MB, Liedke CS, Delamare EL, Silveira HD, Dutra V, Silveira HE. A comparative study of lateral Cephalograms and cone-beam computed tomographic images in upper airway assessment. Eur J Orthod 2012;34:390-3.

45. Malkoc S, Usumez S, Nur M, Donaghy CE. Reproducibility of airway dimensions and tongue and hyoid positions on lateral cephalograms. Am J Orthod Dentofacial Orthop 2005;128:513-6.

46. Rose EC, Staats R, Lehner M, Jones IE. Cephalometric analysis in children with a history of oral squamous cell carcinoma. Br J Oral Maxillofac Surg 1994;32:347-59.