K2-113b: A dense hot-Jupiter transiting a solar analogue

Néstor Espinoza1,2, Markus Rabus1, Rafael Brahms1,2, Matías Jones3, Andrés Jordán1,2,4, Felipe Rojas1, Holger Drass1, Maja Vučković5, Joel D. Hartman6, James S. Jenkins7, Cristián Cortés8,2

1 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile.
2 Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile.
3 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile.
4 Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg 69 117, Germany.
5 Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102, Chile.
6 Department of Astrophysical Sciences, Princeton University, NJ 08544, USA.
7 Departamento de Astronomía, Universidad de Chile, Camino al Observatorio 1515, Cerro Calán, Santiago, Chile.
8 Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de la Educación, Av. José Pedro Alessandri 774, 7760197, Ñuñoa, Santiago, Chile.

Accepted XXX. Received YYY; in original form ZZZ

\begin{abstract}
We present the discovery of K2-113b, a dense hot-Jupiter discovered using photometry from Campaign 8 of the Kepler-2 (K2) mission and high-resolution spectroscopic follow up obtained with the FEROS spectrograph. The planet orbits a \(V = 13.68 \) solar analogue in a \(P = 5.81760^{+0.0003}_{-0.0003} \) day orbit, has a radius of \(0.93^{+0.10}_{-0.07} \) and a mass of \(1.29^{+0.13}_{-0.11} \). With a density of \(1.97^{+0.60}_{-0.33} \ gr/cm^3 \), the planet is among the densest systems known having masses below 2 \(M_J \) and \(T_{\text{eq}} > 1000 \), and is just above the temperature limit at which inflation mechanisms are believed to start being important. Based on its mass and radius, we estimate that K2-113b should have a heavy element content on the order of \(\sim 110 M_{\oplus} \) or greater.

\textbf{Key words:} keyword1 – keyword2 – keyword3
\end{abstract}

\section{Introduction}

Transiting extrasolar planets are one of the most precious systems to discover because they allow for a wide range of characterization possibilities. Combined with radial velocity or transit timing variation analysis, the mass of these systems can be extracted, which in turn allow us to compute their densities, an important measurement that sheds light on the composition of these distant worlds.

Despite their importance, only a small fraction (\(\sim 10\% \)) of the currently \(\sim 2500 \) known transiting extrasolar planets1 are well suited for further characterization studies, mainly because the bulk of these discoveries have been made with the original \textit{Kepler} mission (Borucki et al. 2010), whose stars are generally too faint and most of the planets too small to characterize. Although the bulk of the transiting extrasolar planets fully characterized to date come from ground-based transit surveys such as HATNet (Bakos et al. 2004), HATSouth (Bakos et al. 2013) and WASP (Pollacco et al. 2006), the search for transiting exoplanets around relatively bright stars has also benefited from the discoveries made by the repurposed \textit{Kepler} mission, dubbed K2, which has allowed to push discoveries even to smaller planets, with hundreds of new systems discovered to date2 (see, e.g., Crossfield et al. 2016, and references therein) and many more to come.

Among the different types of transiting extrasolar planets known to date, short-period (\(P \lesssim 10 \)), Jupiter-sized exoplanets – the so-called “hot-Jupiters”3 – have been one of the most studied, mainly because they are the easiest to detect and characterize. However, these are also one of the most intriguing systems to date. One of the most interesting properties of these planets is their “inflation”, i.e., the fact that most of them are larger than what is expected from structure and evolution models of highly irradiated planets (Baraffe et al. 2003; Fortney et al. 2007). Although the inflation mechanism is as of today not well understood, at

1 \url{http://www.exoplanets.org}, retrieved on 2016/11/19.
2 \url{keplerscience.arc.nasa.gov}
3 The authors

\citet{key}
irradiation levels of about 2×10^6 ergs/cm2/s (\sim 1000 K) evidence suggests it stops being important (Kovács et al. 2010; Miller & Fortney 2011; Demory & Seager 2011). Planets cooler than this threshold, which here we refer to as “warm” Jupiters, appear on the other hand more compact than pure H/He spheres, which in turn implies an enrichment in heavy elements that most likely makes them deviate from the composition of their host stars (Thomgren et al. 2016).

Here we present a new planetary system which is in the “hot” Jupiter regime, but whose structure resembles more that of a “warm” Jupiter: K2-113b, a planet \sim 10% smaller than Jupiter but \sim 30% more massive orbiting a star very similar to our Sun. The paper is structured as follows. In Section 2 we present the data, which includes photometry from Campaign 8 of the K2 mission and spectroscopic follow-up using the FEROS spectrograph. In Section 3 we present the analysis of the data. Section 4 present a discussion and Section 5 our conclusions.

2 DATA

2.1 K2 Photometry

The candidate selection for the photometry of Campaign 8 of the K2 mission was done as described in Espinoza et al. (2016). Briefly, the photometry is first normalized with respect to any long-term variation (either of instrumental and/or stellar nature) and candidates are selected using a Box Least Squares algorithm (BLS; Kovács et al. 2002). Here we decided to obtain the photometry for the candidate selection using our own implementation of the EVEREST algorithm described in Luger et al. (2016), due to its potential of conserving stellar variability (which we filter for our candidate selection with a 20-hour median filter smoothed with a 3-hour gaussian filter, but which we also use in our analysis: see Section 3), although the full, final analysis performed here is done on the EVEREST lightcurve released at the MAST website3, using the new updated method described in Luger et al. (2017). Our candidate selection procedure identified a planetary companion candidate to the star K2-113 (EPIC 220504338), with a period of 5.8 days and a depth of \sim 7500 ppm. The overall precision of the lightcurve is \sim 138 ppm; the photometry is shown in Figure 1.

2.2 Spectroscopic follow-up

In order to confirm the planetary nature of our candidate, high-resolution spectroscopic follow-up was performed with the FEROS spectrograph (Kaufer & Pasquini 1998) mounted on the MPG 2.2m telescope located at La Silla Observatory in August (3 spectra) and November (6 spectra) of 2016, in order to obtain both initial stellar parameters for the candidate stellar host and high-precision radial velocity (RV) measurements. The spectra were obtained with the simultaneous calibration method, in which a ThAr calibration lamp is observed in a comparison fiber next to the science fiber, allowing us to trace instrumental RV drifts.

3 ANALYSIS

3.1 Stellar properties

In order to obtain the parameters of the host star, we first use the Zonal Atmospheric Stellar Parameters Estimator (ZASPE; Brahm et al. 2015, 2016b) algorithm. In brief, ZASPE compares the observed spectrum against a grid of stellar spectra in the most sensitive spectral zones to atmospheric parameters and determines the errors in the parameters by considering the systematic mismatch between the data and the models. In this case we run ZASPE on a high signal-to-noise (SNR; \sim 100) spectrum that was generated by co-adding the 9 individual FEROS spectra, which obtains a $T_{\text{eff}} = 5627 \pm 88$ K, $\log g = 4.400 \pm 0.146$ dex, [$Fe/H] = 0.180 \pm 0.062$ dex and projected rotational velocity $v_{\text{sin}i} = 2.06 \pm 0.77$ km/s, which make the host star a (slightly metal-rich) solar analogue.

In order to derive the radius, mass, age, luminosity and distance to the star, we used the latest version of the isochrones package (Morton 2015), which uses the derived atmospheric parameters along with photometric data in order to estimate them with evolutionary tracks. The photometric data for our star was obtained from different sources; these are presented in Table 2. We used the MESA Isochrones & Stellar Tracks (MIST; Dotter 2016; Choi et al. 2016) instead of the Dartmouth (Dotter et al. 2014).

Table 1. Radial velocities obtained with the FEROS spectrograph along with the measured bisector spans.

Time (BJD UTC)	RV (km/s)	σ_{RV}	BIS (km/s)	σ_{BIS}
2457643.6804163	-41.315	0.012	-0.048	0.017
2457645.7862304	-41.236	0.010	-0.001	0.015
2457647.8755248	-41.133	0.011	0.035	0.015
2457700.7309840	-41.201	0.011	0.008	0.016
2457701.6407003	-41.313	0.010	0.031	0.015
2457702.7358066	-41.406	0.011	0.005	0.015
2457703.6386414	-41.296	0.009	-0.008	0.014
2457704.6259996	-41.137	0.013	0.038	0.013
2457705.6178241	-41.072	0.010	-0.028	0.013

The data was reduced with a dedicated pipeline (CERES; Jordán et al. 2014; Brahm et al. 2016a) which, in addition to the radial-velocities and bisector spans, also calculates rough atmospheric parameters for the target star. This indicated the candidate host star was a G dwarf, with an effective temperature of $T_{\text{eff}} = 5500 \pm 100$ K, surface log-gravity of $\log g = 4.2 \pm 0.3$ dex and a metallicity of [$Fe/H] = 0.2 \pm 0.1$ dex, all very much consistent with solar values.

The obtained RVs phased up nicely with the photometric ephemerides, hinting at a semi-amplitude of \sim 140 m/s, consistent with an object of planetary nature (see Section 3). In addition, the measured bisector spans (BIS) showed no correlation with the RVs, which is illustrated on Figure 2; performing a monte-carlo simulation by assuming the errors on the RVs and BIS are gaussian gives a correlation coefficient of $\rho = 0.15 \pm 0.16$, which is consistent with zero. The obtained radial velocities and bisector spans are presented in Table 1. These results prompted us to perform a full analysis of the system, which we present in the next section.

3.2 Orbital parameters

The RVB and BIS data from Table 1 are shown in Figure 2 and 3 respectively. The RVB data (Figure 2) show a semi-amplitude of $K = 180 \pm 38$ m/s, which is consistent with a planet of mass $M_p = 1.8 \pm 0.3$ M$_J$ (assuming a Jupiter mass). The BIS data (Figure 3) show a semi-amplitude of $K = 180 \pm 38$ m/s, which is consistent with a planet of mass $M_p = 1.8 \pm 0.3$ M$_J$ (assuming a Jupiter mass). The uncertainties are computed by the ZASPE package. The radial velocities obtained with the FEROS spectrograph along with the measured bisector spans are presented in Table 1. These results prompted us to perform a full analysis of the system, which we present in the next section.
isochrones and stellar tracks, as the former cover wider ranges of radius, mass and age (although both gave results which were consistent within the errors). In order to explore the parameter space, the MULTINEST (Feroz et al. 2009) algorithm as implemented in PyMultinest (Buchner et al. 2014) was used because it is well suited for problems like the one at hand, which are inherently degenerate. The derived stellar properties are presented in Table 2, all of which are consistent with the star being very similar to our own Sun \((R_\star = 1.047^{+0.011}_{-0.009} R_\odot, M_\star = 1.007^{+0.040}_{-0.039}, L_\star = 1.02^{+0.24}_{-0.18})\). As can be observed, the only parameter that significantly deviates (at 3-sigma) from that of a “solar twin” is the metallicity which, as mentioned above, is slightly super-solar. We therefore consider the star a solar analogue.

Table 2. Stellar parameters of K2-113.

Parameter	Value	Source
Identifying Information		
EPIC ID	220504338	EPIC
2MASS ID	01174783+0652080	2MASS
R.A. (J2000, h:m:s)	01^17^47.829s	EPIC
DEC (J2000, d:m:s)	+06°52'08.029"	EPIC
R.A. p.m. (mas/yr)	22.3 ± 1.7	UCAC4
DEC p.m. (mas/yr)	−15.8 ± 4.1	UCAC4
Spectroscopic properties		
\(T_{\text{eff}}\) (K)	5627 ± 88	ZASPE
Spectral Type	G	ZASPE
[Fe/H] (dex)	0.180 ± 0.062	ZASPE
\(\log g\) (cgs)	4.400 ± 0.146	ZASPE
\(v\sin(i)\) (km/s)	2.06 ± 0.77	ZASPE
Photometric properties		
\(K_S\) (mag)	13.51	EPIC
\(B\) (mag)	14.445 ± 0.050	APASS
\(V\) (mag)	13.684 ± 0.030	APASS
\(g^\prime\) (mag)	14.016 ± 0.030	APASS
\(r^\prime\) (mag)	13.459 ± 0.020	APASS
\(I\) (mag)	13.299 ± 0.030	APASS
\(J\) (mag)	12.347 ± 0.023	2MASS
\(H\) (mag)	11.998 ± 0.025	2MASS
\(K_s\) (mag)	11.949 ± 0.021	2MASS
Derived properties		
\(M_\star\) (\(M_\odot\))	1.007^{+0.040}_{-0.039}	isochrones*
\(R_\star\) (\(R_\odot\))	1.047^{+0.011}_{-0.009}	isochrones*
\(\rho_\star\) (g/cm\(^3\))	1.25^{+0.36}_{-0.32}	isochrones*
\(L_\star\) (\(L_\odot\))	1.02^{+0.24}_{-0.18}	isochrones*
Distance (pc)	553.4^{+39.0}_{-33.9}	isochrones*
Age (Gyr)	5.9^{+2.7}_{-3.4}	isochrones*

Note. Logarithms given in base 10.

Using stellar parameters obtained from ZASPE.
3.2 Planet scenario validation

We performed a blend analysis following Hartman et al. (2011b, a), which attempts to model the available light curves, photometry calibrated to an absolute scale, and spectroscopically determined stellar atmospheric parameters, using combinations of stars with parameters constrained to lie on the Girardi et al. (2000) evolutionary tracks. Possible blend scenarios include blended eclipsing binary (bEB) and hierarchical triple (hEBs) systems. The analysis includes fits of the secondary eclipses and out of transit variations using the photometric data. We find that the data are best described by a planet transiting a star. All of the above mentioned blend scenarios are rejected at more than 5 − σ using the photometry alone. Including the RV data, the scenarios are further ruled out: the simulated RVs for the blend model that provides the best fit to the photometric data imply variations in RV on the order of 500 m/s, which are much higher than what we observe. Based on this analysis, we consider our planet validated.

It is important to note that with our validation procedures, we can’t rule out the possibility that the planetary transit is being diluted by a star within the 12” aperture used to obtain the K2 photometry. However, there is no known blending source within this radius in catalogs such as the Gaia Data Release 1 (Gaia Collaboration et al. 2016) and UCAC4 (Zacharias et al. 2013), while there is some stars within the 12” aperture in the Sloan Digital Sky Survey (SDSS) that have g > 20, which would produce negligible dilutions in the K2 lightcurve.

3.3 Joint analysis

As in Brahm et al. (2016c), the joint analysis of the K2 photometry and the FEROS RVs was performed using the EXOplanet traNsits and raDial veLocity fittER (EXONAILER; Espinoza & Jordán 2016) algorithm, which is available at GitHub4. The algorithm makes use of the batman package (Kreidberg 2015) in order to perform the transit modelling, which has the advantage of allowing the usage of any limb-darkening law, which has been proven to be of importance if unbiased transit parameters are to be retrieved from high-precision photometry (Espinoza & Jordán 2015). As recommended in the study of Espinoza & Jordán (2015), we decided to let the limb-darkening coefficients be free parameters in the fit. Following the procedures outlined in Espinoza & Jordán (2016), we concluded that the square-root law is the optimal law to use in our case, as this is the law that retrieves the smaller mean-squared error (i.e., the best bias/variance trade-off) on the planet-to-star radius ratio, which is the most important parameter to derive for this exoplanet, as it defines the planetary density. The mean-squared error was estimated by sampling lightcurves with similar geometric, noise and sampling properties as the observed transit lightcurve, taking the spectroscopic information in order to model the real, underlying limb-darkening effect of the star. We sampled the coefficients of this law in our joint analysis using the efficient uninformative sampling scheme outlined in Kipping (2013). In order to take into account the smearing of the lightcurve due to the ~27 minute “exposures” of the Kepler long-cadence observations, we use the selective resampling technique described in Kipping (2010) with N = 20 resampled points per data-point in our analysis.

The RV analysis in our exonailer fit includes a radial-velocity jitter term that is added in quadrature to the measured uncertainties. We tried both, circular and non-circular models, but computing the BIC-based evidence of both models the non-circular model was indistinguishable from the circular one (the evidence for the non-circular model was ~1.4 that of the circular model). As such, we decided to use the most parsimonious model of both, and fixed the eccentricity to zero. We note that the non-circular model allowed us to put a 3-sigma upper limit on the eccentricity of e < 0.13. Figure 3 shows the phase-folded photometry along with the best-fit model and Figure 4 shows the radial-velocity measurements and the corresponding best-fit model from our joint analysis. Table 3 presents the retrieved parameters. Note the moderate jitter of the star, on the order of σRV ~ 20 m/s. As can be observed, the planet has a radius of \(R_p = 0.930_{-0.065}^{+0.060} \) R\(_J\), and a mass of \(M_p = 1.29_{-0.14}^{+0.17} \) M\(_J\), giving a density of \(1.97_{-0.60}^{+0.50} \) g/cm\(^3\) for this planet, which is on the high side when compared to a “typical” hot-Jupiter (where \(\rho_p \lesssim 1 \) g/cm\(^3\)). We discuss these planetary parameters in the context of the discovered exoplanets in the next section.

3.4 Searching for additional signals in the K2 photometry

The K2 photometry was inspected in order to search for additional transiting planets, secondary eclipses and/or optical phase variations. After masking out the transits, the BLS algorithm was used in order to search for additional transiting planets, but no additional signals were found. Given the lightcurve precision is 138 ppm (Table 3), our data rule out any companion larger than ~2R\(_{\oplus}\) at 3-sigma with periods \(P \lesssim 39 \) days. As for secondary eclipses, we ran an eclipse fit at the expected times, fixing all parameters except for the planet-to-star flux ratio, \(\frac{F_p}{F_*} \), and a time shift from the expected eclipse times from our circular model in order to allow departures from non-circularity present in the secondary eclipses (and not detected on our RV analysis). The result of our fit is presented in Figure 5. The retrieved flux

4 https://github.com/nespinoza/exonailer
Table 3. Orbital and planetary parameters for K2-113b.

Parameter	Prior	Posterior Value
Lightcurve parameters		
P (days)	$\mathcal{N}(5.8177, 0.1)$	$5.817608^{+0.000031}_{-0.000029}$
$T_0 - 2450000$ (BJD)	$\mathcal{N}(7392.888575, 0.1)$	$7392.88605^{+0.00019}_{-0.00019}$
a/R_*	$\mathcal{U}(1, 15)$	$11.39^{+0.32}_{-0.32}$
R_p/R_*	$\mathcal{U}(0.01, 0.2)$	$0.0911^{+0.000070}_{-0.000083}$
i (deg)	$\mathcal{U}(70, 90)$	$86.21^{+0.20}_{-0.21}$
q_1	$\mathcal{U}(0, 1)$	$0.72^{+0.17}_{-0.16}$
q_2	$\mathcal{U}(0, 1)$	$0.33^{+0.11}_{-0.15}$
σ_μ (ppm)	$\mathcal{J}(10, 500)$	$138.4^{+1.8}_{-1.6}$
RV parameters		
K (m s$^{-1}$)	$\mathcal{N}(0, 100)$	$144.5^{+13.5}_{-15.4}$
μ (km s$^{-1}$)	$\mathcal{N}(-41.24, 0.01)$	$-41.2375^{+0.0063}_{-0.0065}$
σ_{RV} (m s$^{-1}$)	$\mathcal{J}(1, 100)$	$24.3^{+10.1}_{-6.6}$
e		0 (fixed; upper limit $e < 0.13$)
Derived Parameters		
s_1		$0.30^{+0.20}_{-0.19}$
s_2		$0.55^{+0.26}_{-0.29}$
M_p (M_J)		$1.29^{+0.13}_{-0.14}$
R_p (R_J)		$0.93^{+0.10}_{-0.07}$
ρ_p (g/cm3)		$1.97^{+0.83}_{-0.53}$
log g_p (cgs)		$3.56^{+0.08}_{-0.10}$
a (AU)		$0.0558^{+0.0059}_{-0.0049}$
log(F') (cgs)		$8.640^{+0.033}_{-0.034}$
V_{esc} (km/s)		$69.7^{+4.9}_{-4.8}$
$T_{eq}(K)$		
Bond albedo of 0.0		1178^{+22}_{-23}
Bond albedo of 0.75		833^{+16}_{-16}

Note. Logarithms given in base 10. $\mathcal{N}(\mu, \sigma)$ stands for a normal prior with mean μ and standard-deviation σ. $\mathcal{U}(a, b)$ stands for a uniform prior with limits a and b and $\mathcal{J}(a, b)$ stands for a Jeffrey’s prior with the same limits. Times are given in BJD TDB.

aThe q_1 and q_2 parameters are the triangular sampling coefficients used to fit for the square-root limb-darkening law (Kipping 2013). The s_1 and s_2 limb-darkening coefficients are recovered by the transformation $s_1 = \sqrt{\mathcal{U}(1 - 2q_1)}$ and $s_2 = 2 \sqrt{\mathcal{U}q_2}$.

bOrbit averaged incident stellar flux on the planet.

c3-sigma upper limit obtained from a non-circular joint fit to the data (see text).

dFull energy redistribution has been assumed.

The geometric albedo of the planet is $A_g = \left[\frac{F_p}{F_\star} - \frac{\pi}{2} \int_0^{q_2} \frac{B_\lambda(T_{eq})d\lambda}{F} \left(\frac{R_p}{R_\star} \right) \left(\frac{a}{R_p} \right)^2 \right]^{1/2}$, where F is the irradiation level at the substellar point calculated in Table 3 for our planet, $B_\lambda(T_{eq})$ is a blackbody of temperature T_{eq} (i.e., we approximate the thermal emission of the planet by a blackbody), with

$$T_{eq} = T_\star \left(\frac{R_\star f}{a} \right)^{1/2} (1 - A_g)^{1/4},$$

where f is the efficiency of heat redistribution from the dayside to the nightside of the planet and A_g is the Bond albedo. We assume a Lambertian sphere (i.e., isotropic scattering), so $A_g = 3A_s/2$ in our calculations. With this, we consider
6 Espinoza et al.

Figure 4. Phase-folded FEROS radial-velocities along with the best-fit model obtained from the joint analysis performed with the EXONAILER algorithm.

Figure 5. Secondary eclipse constrain using the K2 photometry (grey points; red points indicate binned data using 40-minute bins in phase-space, which have median errorbars of 35 ppm per point). The best-fit eclipse depth using this data (red solid line) is $F_p/F_\star = 35.7^{+16.8}_{-19.0}$ ppm.

contributes from both reflected light (first term in the equation for A_λ) and thermal emission (second term) from the planet. Integrating the blackbody from $\lambda_1 = 0.4 \mu$m to $\lambda_2 = 0.9 \mu$m (i.e., over the Kepler bandpass), we constrain the geometric albedo to be $A_\lambda = 0.47^{+0.12}_{-0.16}$ if we assume complete heat redistribution (i.e., $f = 1/2$), and $A_\lambda = 0.16^{+0.05}_{-0.06}$ if no redistribution is assumed (i.e., $f = 2/3$). These values are within the expected geometric albedos of other giant planets measured by the Kepler spacecraft (see, e.g., Heng & Demory 2013; Angerhausen et al. 2015). Fixing the time shift to zero gives the same constraint on the geometric albedo. Optical phase variations were not detected in the lightcurve.

4 DISCUSSION

Figure 6 puts the newly discovered planet in the context of the population of known hot-Jupiters in the mass-radius diagram (left panel, $P \lesssim 10$ days, $M \gtrsim 0.1 M_\star$) and of the known hot and warm Jupiters in the equilibrium temperature-radius diagram (right panel). As can be observed, K2-113b falls on a region in the mass-radius diagram that is currently not very well populated, and which hosts the densest hot-Jupiters with masses below $2 M_\oplus$ (~ 2 gr/cm3). In the equilibrium temperature-radius diagram, on the other hand, it falls on the typical sizes of warm Jupiters, despite the fact that K2-113b would be typically classified as being “hot” due to its orbit-averaged flux of $F = 4 \times 10^6$ ergs/cm2/s, which is above (but very close to) the 2×10^6 ergs/cm2/s threshold where it is believed “inflation” mechanisms of giant planets stop being important (Miller & Fortney 2011; Demory & Seager 2011). Using the relations of Enoch et al. (2012), K2-113b would be expected to have a radius of $\sim 1.1 R_\star$, which is anyways consistent (at 2-sigma) with the measured radius.

The mass and radius of K2-113b could be explained in terms of the amount of heavy elements in the planet. In Figure 6, we see that our planet falls just where the planet evolution models of Fortney et al. (2007) predict it to be if it had a $100 M_\oplus$ core, which is a proxy for the amount of heavy elements in the planet. Of course, giant planets are probably not just H/He envelopes sitting on top of a heavy-element core. As shown by Thorngren et al. (2016), heavy-element enrichment of the envelope is also a very important factor to take into account, although difficult to estimate based on planetary mass alone due to the high scatter in the planetary mass-heavy element relation derived in that work, which is both due to the errors on the masses, radii and ages of the planets used to derive that relation, and the stochasticity of the planet formation process, which allow for planets of similar mass to have inherently different heavy element content. For example, using this relation, where a $10 M_\oplus$ heavy-element core is assumed, the amount of heavy elements present in the envelope of K2-113b could be anywhere from $\sim 30 M_\oplus$ to $\sim 120 M_\oplus$ at 1-sigma.

Instead of trying to estimate the heavy element mass in K2-113b directly which is rather hard to do due to the possibility that inflation could be impacting on K2-113b’s radius, we can compare it in terms of its radius and mass to the “warm” Jupiter WASP-130b ($M_\star = 1.23^{+0.04}_{-0.03} M_\odot$ and $R_\star = 0.89^{+0.03}_{-0.03} R_\odot$; Hellier et al. 2016). This comparison is interesting because WASP-130b is probably not affected by any inflation mechanisms due to its relatively low irradiation level ($\log (F) = 10^6$, with F in cgs units). Because of this, Thorngren et al. (2016) was able to use structure models in order to estimate a heavy element mass of $\sim 110 M_\oplus$ for WASP-130b based on its mass, radius and age. Assuming that the ages of both systems are similar, we can use the heavy element mass estimated for WASP-130b as a lower limit on the heavy element mass of K2-113b. This is because, as discussed above, K2-113b is within the regime where inflation mechanisms are expected to act, and, thus, the observed radius of K2-113b should be larger to what contraction models as the ones used by Thorngren et al. (2016) would predict for its heavy element mass, total mass and age. Following this logic, if K2-113b’s radius without this inflation mechanism were, say, the radius of WASP-130b, then with inflation the observed radius of K2-113b should be larger than WASP-130b’s. This is why the estimated heavy element content on WASP-130b is a lower limit on the heavy element content of K2-113b – of course assuming the observed mass, radius and age of both planets are indistinguishable; a reasonable assumption given the error bars on those properties.

Following a similar logic to the one used above, we can also estimate an upper limit on the heavy element content of K2-113b by comparing it to CoRoT-13b ($M_\star = 1.31^{+0.07}_{-0.06}$ and $R_\star = 0.885^{+0.014}_{-0.014}$ Cabrera et al. 2010), which is the
The closest planet in mass and radius to K2-113b among the known hot-Jupiters, despite the fact that the former orbits a hotter star and, hence, has a larger equilibrium temperature (1700 K). This difference again could be explained (if we assume again the system ages, masses and radii are indistinguishable) in terms of the amount of heavy elements in these planets, with K2-113b having a lower amount than CoRoT-13b, which is estimated to have between ~ 140 – 300M⊙ of heavy elements.

The difference in heavy element content between WASP-130b, K2-113b and CoRoT-13b would most likely be a signature of their different formation histories rather than a correlation with other physical parameters of the system, such as the metallicities of the parent stars, whose correlation with the heavy element content on a given planet is rather weak (Thorngren et al. 2016). In fact, in this case the metallicity of WASP-130 is the largest of the three, while the metallicity of CoRoT-13 is the smallest, which casts further doubts on the prediction power of such a correlation if it were to exist.

5 CONCLUSIONS

In this work, we have presented the discovery of K2-113b, a new hot-Jupiter orbiting a slightly metal rich solar analogue discovered using photometry from Campaign 8 of the K2 mission and follow-up radial velocities using the FEROS spectrograph. The planet has a radius of $R_p = 0.91^{+0.19}_{-0.12} R_J$, and a mass of $M_p = 1.28^{+0.16}_{-0.14} M_J$. With a density of $2.08^{+0.66}_{-0.37}$ gr/cm3, the planet is denser than most hot-Jupiters with masses under $2M_J$. We explain its mass and radius in terms of the amount of heavy elements in the planet, which should be of the order of $\sim 110M_\oplus$ or greater.

ACKNOWLEDGEMENTS

We would like to thank R. Luger for sharing the EVEREST lightcurves for the exoplanet presented in this work as soon as they were available, and an anonymous referee for her/his comments which greatly improved the presented work. N.E. is supported by the CONICYT-PCHA/Doctorado Nacional graduate fellowship. N.E., R.B., A.J. and C.C. acknowledge support from the Ministry for the Economy, Development, and Tourism Programa Iniciativa Científica Milenio through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS). A.J. acknowledges support from FONDECYT project 1171208 and from BASAL CATA PFB-06. Support for C. C. is provided by Proyecto FONDECYT Iniciación a la Investigación 11150768.

REFERENCES

Angerhausen D., DeLarme E., Morse J. A., 2015, PASP, 127, 1113
Bakos G., Noyes R. W., Kovács G., Stanek K. Z., Sasselov D. D., Domínguez I., 2004, PASP, 116, 266
Bakos G. A., et al., 2013, PASP, 125, 154
Baraffe I., Chabrier G., Barman T. S., Allard F., Hauschildt P. H., 2003, A&A, 402, 791
Borucki W. J., et al., 2010, Science, 327, 977
Brahm R., et al., 2015, AJ, 150, 33
Brahm R., Jordán A., Espinoza N., 2016a, preprint, (arXiv:1609.02279)
Brahm R., Jordan A., Hartman J., Bakos G., 2016b, preprint, (arXiv:1607.05792)
Brahm R., et al., 2016c, PASP, 128, 124402
Buchner J., et al., 2014, A&A, 564, A125
Cabrerá J., et al., 2010, A&A, 522, A110
Choi J., Dotter A., Conroy C., Cantiello M., Paxton B., Johnson B. D., 2016, ApJ, 823, 102
Crossfield I. J. M., et al., 2016, ApJS, 226, 7
Demory B.-O., Seager S., 2011, ApJS, 197, 12
Dotter A., 2016, ApJS, 222, 8
Dotter A., Chaboyer B., Jevremović D., Kostov V., Baron E.,
Ferguson J. W., 2008, ApJS, 178, 89
Enoch B., Collier Cameron A., Horne K., 2012, A&A, 540, A99
Espinoza N., Jordán A., 2015, MNRAS, 450, 1879
Espinoza N., Jordán A., 2016, MNRAS, 457, 3573
Espinoza N., et al., 2016, ApJ, 830, 43
Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601
Fortney J. J., Marley M. S., Barnes J. W., 2007, ApJ, 659, 1661
Gaia Collaboration Brown A. G. A., Vallenari A., Prusti T.,
de Bruijne J., Mignard F., Drimmel R., co-authors., 2016,
preprint, (arXiv:1609.04172)
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&AS,
141, 371
Hartman J. D., et al., 2011a, ApJ, 728, 138
Hartman J. D., et al., 2011b, ApJ, 742, 59
Hellier C., et al., 2016, preprint, (arXiv:1604.04195)
Heng K., Demory B.-O., 2013, ApJ, 777, 100
Jordán A., et al., 2014, AJ, 148, 29
Kaufer A., Pasquini L., 1998, in D’Odorico S., ed., Proc. SPIE Vol.
3355, Optical Astronomical Instrumentation. pp 844–854
Kipping D. M., 2010, MNRAS, 408, 1758
Kipping D. M., 2013, MNRAS, 435, 2152
Kovács G., Zucker S., Mazeh T., 2002, A&A, 391, 369
Kovács G., et al., 2010, ApJ, 724, 866
Kreidberg L., 2015, PASP, 127, 1161
Luger R., Agol E., Kruse E., Barnes R., Becker A., Foreman-
Mackey D., Deming D., 2016, AJ, 152, 100
Luger R., Kruse E., Foreman-Mackey D., Agol E., Saunders N.,
2017, preprint, (arXiv:1702.08488)
Miller N., Fortney J. J., 2011, ApJ, 736, L29
Morton T. D., 2015, isochrones: Stellar model grid package, ApJ,
831, 44
Pollacco D. L., et al., 2006, PASP, 118, 1407
Thorngren D. P., Fortney J. J., Murray-Clay R. A., Lopez E. D.,
2016, ApJ, 831, 64
Zacharias N., Finch C. T., Girard T. M., Henden A., Bartlett
J. L., Monet D. G., Zacharias M. I., 2013, AJ, 145, 44

This paper has been typeset from a TeX/LaTeX file prepared by
the author.