Expression and significance of angiopoietin-2 in gastric cancer

Xiao-Dong Sun, Xing-E Liu, Jin-Min Wu, Xiu-Jun Cai, Yi-Ping Mou, Jun-Da Li

Introduction

Angiogenesis is required for the growth and metastasis of malignant tumor, and is defined as the sprouting of blood vessels from pre-existing vessels that migrate into the tumor and form a new vascular network. Many factors attend the process of angiogenesis. Recently, several studies have shown that, the expression of angiopoietin-2 (Ang-2) probably correlates to tumor angiogenesis[1,2]. However, the role and mechanism of Ang-2 in tumor angiogenesis still remain to be determined. Here, we investigate the expression and significance of angiopoietin-2 in gastric cancer.

Materials and Methods

Materials

Primer: 5'-CCGCCTTGGCTTGTCACATCTGCA-3'. Following an initial denaturation at 94°C for 10 min, the primers of Ang-2, VEGF and β-actin were yielded 356-bp product and as following: 5’-end primer: 5’-GGGGGAGGACTGGTGACAGCCACGG-3’, 3’-end primer: 5’-GAAATCTGCTGGCGGATCATCAT-3’. Following an initial denaturation at 94°C for 30 s, and ended by extension at 72°C for 10 min. The primers of Ang-2 were increasing with advanced stage and vascular involvement.

CONCLUSION: The results manifested that Angiopoietin-2, coordinated with VEGF, play role in regulating tumor angiogenesis of gastric cancer.

Sun XD, Liu XE, Wu JM, Cai XJ, Mou YP, Li JD. Expression and significance of angiopoietin-2 in gastric cancer. World J Gastroenterol 2004; 10(9): 1382-1385

http://www.wjgnet.com/1007-9327/10/1382.asp

Results

Ang-2 was mainly expression in tumor cells. There were significantly difference between expression of Ang-2 in primary gastric cancer and in adjacent normal tissues (P=0.003). It was statistically correlation between Ang-2 and VEGF expression in tumors (P=0.0055).

METHODS: The expression of Angiopoietin-2 and VEGF were studied in 72 primary gastric cancers and adjacent normal tissues from the same patients by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immumohistochemistry.

RESULTS: Ang-2 was mainly expression in tumor cells. There were significantly difference between expression of Ang-2 in primary gastric cancer and in adjacent normal tissue samples (P=0.003). It was statistically correlation between Ang-2 and VEGF expression in tumors (P=0.0055). With regard to Ang-2 expression in tumors, there were significant difference between early stage and advanced stage (P=0.017), and significant difference between positive vascular involvement and negative vascular involvement (P=0.032). However, there was no significant difference between moderate-poor differential type and high differential type (P=0.908), between positive lymph node metastasis and negative lymph node metastasis (P=0.752), between positive serosal invasion and negative serosal invasion (P=0.764). The cases with expression of Ang-2 were increasing with advanced stage and vascular involvement.

METHODS

Detection of expression of Ang-2 AND VEGF

Expressions of Ang-2 and VEGF were assessed in every gastric cancer sample and its adjacent normal tissue by semi-quantitative RT-PCR.

RNA extraction

Total RNA was extracted by Trizol one step procedure, and suspended in DEPC-treated reverse osmosis-H2O, and conserved at -70°C for reverse transcription. RNA yield and purity were determined by standard UV spectrophotometric assay. The ratio of A260/A280 is 1.80.

First strand cDNA synthesis

A 5 μg of the total RNA was dissolved in 20 μL of a mixture containing 2 μL of 10× first-strand buffer, 20 μL of AMV reverse transcriptase, 2 μL of dNTP, 20 μL of RNAsin, 500 ng of OligdT14, and DEPC-treated reverse osmosis-H2O. The reaction conditions were as following: at 42°C for 60 min, at 95°C for 5 min. The first strand cDNA was stored at -20°C until use.

PCR amplification

Primers of Ang-2, VEGF and β-actin were synthesized according to primer design principles, all primer sets used span an intron to control amplification of genomic DNA sequences. A 3 μL of the first strand cDNA were amplified in 20 μL volume. The primers of Ang-2 were yielded 921-bp product and as following: 5’-end primer: S′-GGGGGAGGACTGGTGACAGCCACGG-3’, 3’-end primer: S′-GAAATCTGCTGGCGGATCATCAT-3’. Following an initial denaturation at 94°C for 5 min, the samples were amplified by 30 cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, extension at 72°C for 30 s, and ended by extension at 72°C for 10 min. The primers of VEGF were yielded 356-bp product and as following: 5’-end primer: S′-ACCATGAACTTTCTGCTCTCTTGG-3’, 3’-end primer: S′-CGGCCTTGGCTTTGTCACATGCG-3’. Following an initial denaturation at 94°C for 5 min, the samples were amplified by 28 cycles of denaturation at 94°C for 30 s, annealing at 58°C for 1 min, extension at 72°C for 1 min, and ended by extension at 72°C for 10 min. The primers of β-actin, which was...
amplified with Ang-2 and VEGF as internal control, were yielded 644 bp product and as following: 5’-end primer: 5’-ACGTTATG GATGATGATATCGC-3’, 3’-end primer: 5’-CTTAATGTCACG CACCATTTC-3’. PCR products were separated on 1.7% agarose gel, stained with ethidium bromide, and analysed with Quantity one 4.1.0 software. The ratios of Ang-2/β-actin, AEGF/β-actin were used to semiquantify the levels of Ang-2 and VEGF.

Immunohistochemical staining The immunohistochemical study of expression of Ang-2 and VEGF in gastric cancer and adjacent normal tissue was performed by the avidin-biotin-peroxidase technique using monoclonal antibody N-18 and P-20, as previously described.[3,4] Briefly, after formaldehyde-fixed paraffin-embedded tissue sections were deparaffinized in xylene and rehydrated in alcohol, they were incubated in 3 mL/L H2O2 to block endogeneous peroxidase activity. Each slide was incubated with normal horse serum for 20 min at room temperature, and then monoclonal antibody N-18 or P-20, the has significant differences from that in adjacent normal tissues detected under microscopy.

Expressions of Ang-2 and VEGF in primary gastric cancers and adjacent normal tissues were detected by semi-quantitative RT-PCR. In 72 cases of primary tumors, Ang-2 and VEGF were expressed in 46 (63.9%) and 48 cases (66.7%) respectively. However, in 72 adjacent normal samples, Ang-2 and VEGF were expressed in 10 (13.9%) and 16 (22.2%) respectively. The expression of Ang-2 in primary gastric cancer has significant differences from that in adjacent normal tissues (P=0.003), (Figure 1, Table 1).

RESULTS

Results of RT-PCR

Seventy-two primary gastric cancers and adjacent normal tissues from the same patients were examined for the expression of Ang-2 and VEGF by RT-PCR. In 72 cases of primary tumors, Ang-2 and VEGF were expressed in 46 (63.9%) and 48 cases (66.7%) respectively. However, in 72 adjacent normal samples, Ang-2 and VEGF were expressed in 10 (13.9%) and 16 (22.2%) respectively. The expression of Ang-2 in primary gastric cancer has significant differences from that in adjacent normal tissues (P=0.003), (Figure 1, Table 1).

Table 1 Expression of Ang-2 in primary gastric cancers and adjacent normal tissues detected by semi-quantitative RT-PCR

	Cases	Ang-2 (mean±SD)
Primary gastric cancers	72	0.497±0.393
Adjacent normal tissues	72	0.088±0.224

* a: P=0.003 vs adjacent normal tissues.

Table 2 Correlation between expression of Ang-2 and VEGF in 72 primary gastric cancer detected by semi-quantitative RT-PCR

Ang-2 expression (Cases)	VEGF expression (Cases)	P
Positive	Positive	0.0055
Positive	Negative	
Negative	Positive	
Negative	Negative	

Result of immunohistochemistry

Positive control included human placenta. Positive expression of Ang-2 and VEGF show brown staining in the cytoplasm of tumor or normal cells, Ang-2 was mainly expression in tumor cells (Figures 2,3).

Pathologic factors affecting expression of VEGF-C

Several pathological factors, including tumor stage, histological type, lymph node metastasis, serosal invasion and vascular involvement, were investigated to predicting expression of Ang-2 in gastric cancer. The results show that, in expression of Ang-2, there were significant difference between early stage and advanced stage (P=0.017), and significant difference between positive vascular involvement and negative vascular involvement (P=0.032). However, there was no significant difference between moderate-poor differential type and high differential type (P=0.908), no significant difference between positive lymph node metastasis and negative lymph node metastasis (P=0.752), and no significant difference between positive serosal invasion and negative serosal invasion (P=0.764), (Table 3).

Table 3 Correlation between pathological factors and Ang-2 expression in 72 primary gastric cancer

Pathological factors	No. of cases	Ang-2 mRNA (mean±SD)	P value
Tumor stage			
Early stage	26	0.222±0.310	
Advanced stage	46	0.593±0.318	0.017
Histological type			
Moderate-Poor differential type	45	0.425±0.350	0.908
High differential type	27	0.203±0.290	
Lymph node metastasis			
Positive	48	0.413±0.346	0.752
Negative	24	0.490±0.450	
Serosal invasion			
Positive	43	0.404±0.327	0.764
Negative	29	0.334±0.459	
Vascular involvement			
Positive	46	0.640±0.335	0.032
Negative	26	0.272±0.298	
growth factors and their receptors, a variety of proteases, adhesion receptors and ECM components.[10-11]

Angiopoietins, novel endothelial factors, were found to be ligands for the endothelium-specific tyrosin kinase receptor Tie-2.[12] Angiopoietins (Ang) included Ang-1, Ang-2, Ang-3 and Ang-4, the best characterized were Ang-1 and Ang-2. Ang-1 and Ang-2 were soluble 70-ku factors, which consist of an amino-terminal coiled-coil domain and a carboxy-terminal fibrinogen-like domain.[13,14]

Both of Ang-1 and Ang-2 could bind to the Tie-2 receptors. Ang-1 could bind to the Tie-2 receptor and activate it by inducing phosphorylation, and help to maintain and stabilize mature vessels by promoting interactions between endothelial cells and supporting cells.[15-17] Ang-2 could also bind to the Tie-2, but not activate phosphorylation. Ang-2 could block the action of Ang-1[18]. That is to say, Ang-2 was an antagonist of Ang-1 and induces the loosening of the interactions between endothelial and perivascular support cells and ECM, reducing vascular integrity and facilitating access to angiogenic induces.[19-20]. Recent studies have shown that the expression pattern of Ang-2 is strongly associated with that of VEGF in the process of tumor angiogenesis, VEGF and Ang-2 seemed to play complementary and coordinated roles in the development of new blood vessels.[21,22]. Angiopoietins were mainly produced by endothelial cells and pericytes, and their receptor Tie-2 was also expressed in endothelial cells and partly in hematopoietic cells.[23]. Ang-2 was selectively expressed in endothelial cells of tumors, ovaries, uterus and placenta, which are known to have extensive vascularization patterns.[24-26].

The role and mechanism of Ang-2 in tumor angiogenesis have not been clarified. Some studies suggested that the production of VEGF and Ang-2 must be coordinated in development of tumor angiogenesis.[27,28]. Ang-2 could produce destabilization and induce angiogenic response in the presence of VEGF, but lead to vessel regression in the absence of VEGF.[13,29]. While other studies manifested that VEGF upregulates expression of Ang-1, but not Ang-2.[30]. The expression of Ang-2 correlated with tumor size, but had no correlation with expression of VEGF[31]. Kuroda’s results showed that upregulation of Ang-1, Ang-2 and Tie-2 is closely associated with the development of microvascular proliferation in psoriasis, and the angiopoietin-Tie-2 system might act coordinately with VEGF to promote angiogenesis.[32]. Hatanaka’s results suggested that tumor-produced IL-10 promotes stromal vascularization through expression of Ang-1, Ang-2 and Tie-2[33]. Angiopoietin-Tie-2 system, particularly Ang-2, played critical role in the vascularization of prostate carcinoma, breast cancer, colon cancer, astrocytoma, gastric carcinoma, etc.[34-36]. Ang-2 expression was highest during the early stages of angiogenesis, perhaps reducing Tie-2 activity to allow the established vasculature to respond to angiogenic stimuli, consequently, Ang-2 expression was decreased and superseded by Ang-1 expression, perhaps activating Tie-2 and resulting in the stabilization and maturation of neovessels[37].

We studied the expression of Ang-2 in 72 primary gastric cancer and adjacent normal tissues by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohisto-chemistry. The results showed that Ang-2 was mainly expression in tumor cells, and there were significant difference in Ang-2 expression between primary tumor and adjacent normal tissue samples. The present study also clearly manifested that it was statistically correlated between Ang-2 and VEGF expression in tumors. The expression of Ang-2 was related with tumor stage and vascular involvement. Ang-2 overexpression by newly formed tumor blood vessels may lead to vessel destabilization and relative hypoxia, which could drive the release of VEGF, leading to robust angiogenesis[37].

DISCUSSION

Solid tumors could recruit blood vessels from the neighboring tissue by angiogenesis, and adequate blood supply could promote solid tumor growth to a clinically relevant size.[39]. The ability of a tumor to induce angiogenesis could determine its rate of growth and its likelihood of metastasis.[6-8]. It has been found angiogenesis is dependent on a tightly regulated balance between angiogenic promoters and inhibitors.[39]. Numerous factors have been implicated in regulate angiogenesis, including

Figure 2 Expression of Ang-2 and VEGF in gastric cancer. A: Ang-2 positive expression in gastric cancer (×400), B: VEGF positive expression in gastric cancer (×400).

Figure 3 Expression of Ang-2 and VEGF in adjacent normal tissue. A: Ang-2 negative expression in adjacent normal tissue (×400), B: VEGF negative expression in adjacent normal tissue (×400).
REFERENCES

1 Tanaka S, Mori M, Sakamoto Y, Makuchii M, Sugimachi K, Wands JR. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 1999; 103: 341-345

2 Yu Q, Stamenkovic I. Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 2001; 158: 563-570

3 Flens M, Zaman GJ, van der Valk P, Izquierdo MA, Schroegers AB, Scheffer GL, van der Groep P, de Haas M, Meijer CJ, Schaper RJ. Tissue distribution of the multidrug resistance protein. Am J Pathol 1998; 148: 1237-1247

4 Isubo M, Ishikawa T, Toda G, Tanaka M. Immunohistochemical study of expression and cellular localization of the multidrug resistance gene product P-glycoprotein in primary liver carcinoma. Cancer 1994; 73: 298-303

5 Folkman J. Tumor angiogenesis. Adv Cancer Res 1985; 43: 175-203

6 Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1-8

7 Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993; 143: 401-409

8 Macchiarini P, Fontanini G, Hardin MJ, Squarzini F, Angeletti CA. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 1992; 340: 145-146

9 Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895-898

10 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-364

11 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674

12 Peters KG. Vascular endothelial growth factor and the angiopoietins: working together to build a better blood vessel. Circ Res 1998; 83: 342-354

13 Masionpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55-60

14 Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Masionpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161-1169

15 Papapetroulos A, Garcia-Cardenas G, Dengler TJ, Masionpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213-223

16 Witzenbichler B, Masionpierre PC, Jones P, Yancopoulos GD, Isner JM. Chemotactic properties of angiopoietin-1 and -2 ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 1998; 273: 18514-18521

17 Suri C, Jones PF, Patan S, Bartunkova S, Masionpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-1180

18 Kämper H, Pfelschifter J, Frank S. Expression regulation of angiopoietin-1 and -2 and the tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest 2001; 81: 361-373

19 Lauren J, Gunji Y, Alitalo K. Is angiopoietin-2 necessary for the initiation of tumor angiogenesis? Am J Pathol 1998; 153: 1333-1339

20 Beck H, Acker T, Wissner C, Allegreni PR, Plate KH. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 2000; 157: 1473-1483

21 Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 1998; 153: 1459-1466

22 Holash J, Wiegand S, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 1999; 18: 5356-5362

23 Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 2001; 61: 2145-2153

24 Zaggag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand S, Yancopoulos GD, Grumet M. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 1999; 159: 391-400

25 Wulff C, Wilson H, Rudge JS, Wiegand SJ, Lunn SF, Fraser HM. Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). J Clin Endocrinol Metab 2001; 86: 3377-3386

26 Otani A, Takagi H, Oh H, Koyama S, Honda Y. Angiostatin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 2001; 50: 867-875

27 Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995; 55: 3964-3968

28 Woolf AS, Yuan HT. Angiopoietin growth factors and Tie receptor tyrosine kinases in renal vascular development. Pediatr Nephrol 2001; 16: 177-184

29 Sato TN, Tozawa Y, Deutsch U, Wolsburg-Buchholz K, Fujitaha Y, Gendron-Maquire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70-74

30 Hangai M, Murata T, Miyawaki S, Spee C, Lim JJ, He S, Hinton DR, Ryan SJ. Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2003; 44: 1617-1625

31 Holash J, Masionpierre PC, Compton D, Boland P, Alexander CR, Zaggag D, Yancopoulos GD, Wiegand SJ, Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994-1998

32 Kuroda K, Sapadin A, Shoji T, Fleischmajer R, Lebwohl M. Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis. J Invest Dermatol 2001; 116: 713-720

33 Hatanaka H, Abe Y, Naruke M, Tokunaga T, Oshika Y, Kawakami T, Osada H, Nagata J, Kamochi J, Tsuchida T, Kijima H, Yamazaki H, Inoue H, Ueyama Y, Nakamura M. Significant correlation between interleukin 10 expression and vascularization through angiopoietin/TIE2 networks in small cell lung cancer. Clin Cancer Res 2001; 7: 1287-1292

34 Wurmbach JH, Hammerer P, Sevic S, Huland H, Ergun S. The expression of angiopoietins and their receptor Tie-2 in human prostate carcinoma. Anticancer Res 2000; 20: 5217-5220

35 Currie MJ, Cunningham SP, Han C, Scott PA, Robinson BA, Harris AL, Fox SB. Angiopoietin-1 is inversely related to thymidine phosphorylase expression in human breast cancer, indicating a role in vascular remodeling. Clin Cancer Res 2001; 7: 918-927

36 Ding H, Roncari L, Wu X, Lau N, Shannon P, Nagy A, Guha A. Expression and hypoxic regulation of angiopoietins in human astrocytomas. Neuro Oncol 2003; 3: 1-10

37 Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM, Bucana CD, Ellis LM. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 2001; 61: 1255-1259

Edited by Xia HHH and Wang XL. Proofread by Xu FM