New insights into cochlear sound encoding [version 1; referees: 2 approved]

Tobias Moser¹-⁴, Christian Vogl¹,²

¹Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
²Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
³Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
⁴Auditory Neuroscience and Optogenetics Group, German Primate Center, Göttingen, Germany

Abstract
The inner ear uses specialized synapses to indefatigably transmit sound information from hair cells to spiral ganglion neurons at high rates with submillisecond precision. The emerging view is that hair cell synapses achieve their demanding function by employing an unconventional presynaptic molecular composition. Hair cell active zones hold the synaptic ribbon, an electron-dense projection made primarily of RIBEYE, which tethers a halo of synaptic vesicles and is thought to enable a large readily releasable pool of vesicles and to contribute to its rapid replenishment. Another important presynaptic player is otoferlin, coded by a deafness gene, which assumes a multi-faceted role in vesicular exocytosis and, when disrupted, causes auditory synaptopathy. A functional peculiarity of hair cell synapses is the massive heterogeneity in the sizes and shapes of excitatory postsynaptic currents. Currently, there is controversy as to whether this reflects multiquantal release with a variable extent of synchronization or uniquantal release through a dynamic fusion pore. Another important question in the field has been the precise mechanisms of coupling presynaptic Ca²⁺ channels and vesicular Ca²⁺ sensors. This commentary provides an update on the current understanding of sound encoding in the cochlea with a focus on presynaptic mechanisms.
Introduction

In the mammalian cochlea, inner hair cells (IHCs) — the genuine sensory cells of the cochlea transform sound-induced mechanical signals into a neural code at their ribbon synapses. Upon hair bundle deflection, mechanotransducer channels, located in the stereociliary tips, provide hair cell depolarization. This process leads to presynaptic glutamate release from IHCs onto spiral ganglion neurons (SGNs), and ultimately activates the auditory pathway. Coding of sound at IHC ribbon synapses achieves impressive performance: each glutamatergic presynaptic active zone (AZ) of an IHC provides the sole excitatory input to a postsynaptic SGN. Yet, each single AZ drives SGN spike rates at sound onset in the kilohertz range and supports firing at hundreds of hertz during ongoing stimulation. Moreover, these synapses are capable of transmitting information on the timing of the stimulus with submillisecond precision.

The underlying mechanisms that mediate this performance have remained enigmatic but likely relate to the molecular anatomy and structural specializations of the IHC ribbon-type AZ. Here, we briefly review the latest progress on the molecular anatomy and physiology of the IHC ribbon synapse, with a focus on the presynaptic AZ (for recent reviews of the postsynaptic SGN, see 1,2.) Dysfunction or loss of IHC synapses causes a specific form of sensorineural hearing impairment: auditory synaptopathy (recently reviewed in 3). We will then summarize recent experimental and theoretical work that has corroborated the Ca\(^{2+}\) nanodomain hypothesis of Ca\(^{2+}\) influx–exocytosis coupling at IHC ribbon synapses. Finally, we will provide a brief overview of the current state of the debate on the mode of exocytosis at the hair cell AZ, which remains a hot topic of current research.

Unconventional presynaptic molecular composition

The synaptic ribbon represents the most prominent structural deviation from “conventional” glutamatergic synapses of the vertebrate central nervous system (Figure 1). Depending on the cell type, developmental stage, and animal species under investigation, the ribbon can assume various shapes and sizes. The main structural component of synaptic ribbons is RIBEYE\(^{1}\), a protein assembled from an aggregation-prone A domain and an enzymatically active B domain, both of which are transcribed from the CtBP2 gene.\(^{2}\) The synaptic ribbons help cluster large complements of Ca\(^{2+}\) channels and readily releasable vesicles at the IHC AZ, thereby enabling synchronous auditory signaling and also promoting continuous vesicle replenishment.\(^{3-11}\) Ribbons are also critical for sensory processing in the retina, where they seem biologically similar.\(^{12-14}\) and, in addition, seem to play a role in coupling Ca\(^{2+}\) channels to release sites.\(^{15}\)

In addition to unexpectedly finding that IHC ribbon synapses appear to operate without neuronal SNAREs\(^{16}\) and the classic neuronal Ca\(^{2+}\) sensors synaptotagmin 1 and 2,\(^{17,18}\) we have recently come to realize that SNARE regulators such as complexins\(^{19,20}\), as well as priming factors of the Munc13 and CAPS families\(^{21}\) which are critical for transmission at many synapses, also seem to be missing from IHCs. Instead, hair cells employ the multi-C\(_2\) domain protein otoferlin\(^{22}\), a member of the ferlin family of membrane fusion-related proteins (reviewed in 23,24), which is a tail-anchored protein and requires the TRC40 pathway for efficient targeting to the endoplasmic reticulum.\(^{25}\) Otoferlin clusters below the synaptic ribbon\(^{26}\) and seems to assume multiple roles in hair cell exocytosis. For example, otoferlin has been suggested (i) to act as the putative Ca\(^{2+}\) sensor in IHCs\(^{22,23}\), (ii) to facilitate vesicular priming and replenishment\(^{21,27}\), and (iii) to participate in exocytosis–endocytosis coupling through direct interaction with the adaptor protein 2 (AP-2) complex\(^{28,29}\). It is tempting to speculate that IHCs evolved this unconventional molecular machinery in order to achieve the utmost performance. One possible requirement could be a rapid and low-affinity engagement of synaptic vesicles with release sites with molecular links to a nearby Ca\(^{2+}\) channel, followed by rapid clearance of vesicular lipid and proteins from that site for it to be quickly reloaded. Clearly, more work is required to elucidate the molecular fusion machinery of IHCs.

Besides the presence of otoferlin, IHC AZs are characterized by large Ca\(^{2+}\) channel clusters, which localize underneath the presynaptic density\(^{30}\) and consist predominantly of pore-forming L-type Ca\(_{\alpha1.3}\) subunits\(^{31,32}\), auxiliary Ca\(_{\beta}\) subunits\(^{33}\), and likely yet-to-be-identified Ca\(_{\alpha2\delta}\) subunits.\(^{34}\) Ca\(^{2+}\) channel clustering depends on multiple molecular scaffolds, such as Bassoon or the ribbon (or both)\(^{35,36}\) as well as RIIM2\(\alpha\) and \(\beta\). The seamless interplay and correct localization of these proteins is not only required for establishing a normal Ca\(^{2+}\) channel complement\(^{35,36}\) but also critical to stabilize a large readily releasable pool of vesicles at the
AZ10,31,36. Moreover, IHC AZs contain additional scaffolds such as Piccolino, a short splice variant of Piccolo37, and the Usher protein harmonin that directly interacts with presynaptic Ca2+ channels, regulates their gating, and likely promotes their pro-teasomal degradation38,39. Although the endocytic machinery is still largely uncharted, it was recently shown to include AP-240-42, dynamin43-45, amphiphysin, and clathrin heavy chain46.

Tight spatial coupling of Ca2+ channels and vesicular Ca2+ sensors

The manner in which Ca2+ influx couples to vesicle fusion critically determines the properties of synaptic transmission. Two limiting cases can be distinguished (reviewed recently in 42–44): (i) “pure” Ca2+ nanodomain control, in which the Ca2+ driving the fusion of a given vesicle is contributed by an individual voltage-gated Ca2+ channel, and (ii) “pure” Ca2+ microdomain control, where the amount of Ca2+ at the Ca2+ sensor is governed by a population of Ca2+ channels, with negligible impact of individual channels. Aside from the precise topography of the channels with respect to the vesicular Ca2+ sensors and their numbers and open probabilities, the Ca2+-binding properties of the vesicular Ca2+ sensor and the cytosolic Ca2+ buffering at the AZ govern the coupling47. Previous work has examined the Ca2+-binding properties of the Ca2+ sensor of fusion by combining whole-cell Ca2+ uncaging and membrane capacitance measurements in IHCs of mice right after hearing onset48. In these experiments, a requirement for four to five Ca2+ ions to bind cooperatively prior to fusion was indicated, and an overall low Ca2+ affinity of the sensor can be assumed. Note however, that this approach yielded massive exocytosis (added membrane equivalent to 15% of the cell’s surface). Hence, it is unlikely to be entirely mediated by exocytosis at IHC AZs, but probably also involved extrasynaptic exocytosis. This calls for revisiting the intrinsic Ca2+ dependence of synaptic vesicle fusion by using refined approaches to exocytosis at AZs, ideally of more mature IHCs.

Classic41 and more recent30,31,46 work indicates that hair cell AZs harbor tens of Ca2+ channels on average. However, within a given IHC, regardless of its tonotopic position, the number of Ca2+ channels per AZ varies dramatically. This presynaptic heterogeneity is thought to be related to the requirements of wide dynamic range sound encoding50,51-54. Interestingly, IHCs display opposing gradients of their AZs for Ca2+ channel complement (higher at the modiolar side, facing the ganglion) and voltage-dependence of activation (voltage for half-maximal activation more hyperpolarized at the pillar side, facing away from the ganglion)55.

Moreover, depending on the experimental strategy, estimates for the maximal Ca2+ channel open probability at IHC AZs vary between 0.246 and 0.450. To date, the exact topography of individual Ca2+ channels within the observed stripe-like clusters beneath the ribbon and their putative molecular linkers to vesicular release sites remains to be experimentally determined. Here, biophysically constrained modeling has proven to be a useful tool in exploring the consequences and feasibility of various scenarios (see below, 30,53). Moreover, another interesting aspect in this context will be the detailed identification of the molecular processes governing AZ maturation, in particular, in regard to the progressive tightening of Ca2+ channel-synaptic vesicle coupling during early postnatal development51,54,55.

Endogenous Ca2+ buffering has been studied in hair cells of various species56-58 typically revealing substantial concentrations of Ca2+-binding sites (up to a few millimolar). Recently, measurements of exocytic membrane capacitance changes in mature IHCs lacking the three major cytosolic EF-hand Ca2+-binding proteins (that is, calbindin-28k, calretinin, and parvalbumin) were combined with Ca2+ buffer substitution—using different concentrations of synthetic Ca2+ chelators with either slow (EGTA) or fast (BAPTA) kinetics—and computational modeling of stimulus-secretion coupling59. With this combinatorial approach, the effective average coupling distance between the Ca2+ sensor of the release site and the nearest Ca2+ channels was estimated to equate to approximately 17 nm in mature IHCs and this is well in line with a Ca2+ nanodomain-like control of exocytosis and similar to previous estimates (approximately 23 nm;60).

The notion of a Ca2+ nanodomain-like control of exocytosis is supported by observations of a lower apparent Ca2+ cooperativity (approximately 1.4) of IHC exocytosis upon changes in the channel open probability, when compared with that found with changes in single-channel Ca2+ current (3–4;30,31,59). The interpretation of these discrepant apparent cooperativity estimates as evidence for Ca2+ nanodomain-like control of exocytosis was further substantiated by modeling60. There, 50 Ca2+ channels were distributed over an area of 80 × 400 nm, aiming to match the Ca2+-channel clusters, assuming different topographies of the Ca2+ channels to a dozen release sites that were placed at the rim of the Ca2+ channel cluster. Modeling of Ca2+-triggered exocytosis was constrained by experimental observations as much as possible. When channels were randomly positioned, the apparent Ca2+ cooperativity of exocytosis during changes in the number of Ca2+ channels was close to two, and hence higher than the experimentally observed value of 1.4. The physiological Ca2+ cooperativity was best matched when allocating one molecularly coupled channel to each release site, while the other channels were distributed randomly but respected an exclusion zone of 10 nm around the coupled channels. This was taken to support the notion of Ca2+ nanodomain-like control of exocytosis at the IHC AZs of mice after hearing onset, likely realized by molecular coupling of a “private” channel to the release site.

During development, Ca2+ influx-exocytosis coupling tightens from Ca2+ microdomain-like control to Ca2+ nanodomain-like control60, as also found for other synapses60. At this point, Ca2+ microdomain control of exocytosis seems less likely for mature IHC synapses. Initially, this mechanism had been considered as an explanation for the low apparent Ca2+ cooperativity of exocytosis in mature IHCs, which was thought to employ a linear Ca2+ sensor (one Ca2+-binding step by synaptotagmin 4) after the onset of hearing61. Alternatively, a lower cooperativity, even in the presence of a sensor with several Ca2+-binding steps, was suggested to result in a linear apparent Ca2+ dependence in whole-cell membrane capacitance measurements, due to summing exocytosis from heterogeneous, but Ca2+ microdomain-governed AZs in IHC
capacitance measurements of exocytosis45. However, whereas the former hypothesis seems hard to reconcile with the comparable and supralinear intrinsic Ca2+ dependence of fusion prior and after hearing onset48, the latter appears incompatible with the indications for Ca2+ nanodomain control of exocytosis at the single-synapse level39.

Future experiments should elucidate the topography and mobility of individual Ca2+ channels within the cluster and dissect putative linker proteins connecting release sites to the nearest Ca2+ channel(s). Moreover, further characterization of the molecular composition of the Ca\textsubscript{a,1.3} Ca2+ channel complexes, also testing the presence and role of splice variants of the pore-forming Ca\textsubscript{a,1.3\alpha} subunit, will assist in understanding (i) the molecular mechanisms that govern the heterogeneity of Ca2+ channel expression, (ii) the developmental tightening of excitation-secretion coupling, and (iii) the respective contributions of individual Ca2+ channel variants to shaping the efficiency of presynaptic Ca2+ influx at individual IHC AZs.

Large and variable excitatory postsynaptic currents: the uniquantal versus multiquantal release debate

We will now focus on the mode of vesicular release at auditory ribbon synapses, a mechanism that remains only partially understood. The phenomena that raised uncertainty about this fundamental process of synaptic transmission are (i) a remarkable heterogeneity of AMPA receptor-mediated excitatory postsynaptic current (EPSC) amplitudes, that can range from about 20 to more than 800 pA at postsynaptic SGN terminals of rodents and (ii) the differences in release kinetics, as reflected in variable rise times and waveforms of the EPSCs46.

Conventionally, quanta of neurotransmitter are released spontaneously (“uniquantal release”), thereby producing so-called miniature EPSCs (mEPSCs). These mEPSCs are uniform in size and have characteristic monexponentially decaying waveforms. Such mEPSCs are thought to correspond to spontaneous and statistically independent fusion of individual vesicles, constituting the basis of the quantal hypothesis of transmitter release44. At IHC synapses, large variance of EPSC amplitudes and waveforms is found in individual postsynaptic boutons even in complete absence of stimulation. Synchronized (statistically dependent) release of multiple vesicles (“synchronized multiquantal release”) was offered as a plausible mechanism explaining such EPSC heterogeneity39,63,65. Synchronized multiquantal release has also been indicated for hair cell synapses of turtle and bullfrog papillae46-49, and for other sensory synapses, such as those in retinal bipolar cells50,72.

Heterogeneity of the EPSC shape might result from varying degrees of synchronicity of multiquantal release51,73. Potential mechanisms mediating synchronized multiquantal release include release site synchronization and compound or cumulative fusion of vesicles (reviewed in 2,4,74). The synaptic ribbon might contribute to synchronizing multiquantal release by clustering presynaptic Ca2+ channels and tethering a large complement of release-ready synaptic vesicles0,21,36,71,75. One thought is that Ca2+ influx through an individual Ca2+ channel could synchronously trigger the fusion of several nearby vesicles underneath the synaptic ribbon46. Alternatively, vesicles might pre-fuse to each other to form larger quanta prior to fusion to the plasma membrane (compound exocytosis), or fuse to a vesicle that is in the process of release (cumulative exocytosis).

Recently, uniquantal release through a dynamic fusion pore has been suggested as an alternative hypothesis for IHC synapses of rodents36. The motivation came from considering the spike rates of hundreds of hertz over prolonged periods of time, which, according to the multiquantal hypothesis (on average, six vesicles per EPSC39), would require at least sixfold-higher vesicle release rates, which seem very high considering measured rates of sustained exocytosis of about 700 vesicles per second37. Moreover, in conditions omitting the synchronizing effect of presynaptic Ca2+ entry, large monophasic, as well as multiphasic, EPSCs persisted76, seemingly arguing against a Ca2+-synchronized multiquantal release scenario at the IHC ribbon synapse. In addition, biophysically constrained mathematical modeling of compound exocytosis suggested the presence of large vesicles near the AZ membrane, which was not found in electron microscopy of stimulated samples. These latter findings are difficult to reconcile with a synchronized multiquantal release mode to take place at mammalian IHC ribbon synapses. So, could a uniquantal release model offer an explanation for the large heterogeneity of EPSC amplitudes?

Uniquantal release through a dynamic fusion pore has also been proposed for other synapses77,78; however, for this scenario to be plausible at IHC synapses, two major questions arise: (i) could the glutamate content of a single synaptic vesicle elicit the observed large EPSCs (on average, about 300 pA) and (ii) could transmitter release be governed by a fusion pore that might regulate the extent and timing of release events? Using mathematical modeling—constrained by morphological estimates of the postsynaptic AMPA receptor clusters (Figure 1) and assumptions on glutamate content and AMPA receptor density and function—the study concluded that single-vesicle release might suffice to trigger large-amplitude EPSCs76. Moreover, model prediction and deconvolution of EPSCs suggested that fusion pore regulation could account for the observed variable EPSC shapes. In detail, the authors suggested a model in which there is either immediate and full collapse upon vesicle fusion (potentially explaining monophasic EPSCs) or alternatively the formation of a transitory stable fusion pore prior to collapse, potentially flickering open and closed—a mechanism permitting progressive glutamate unloading that may explain the observation of multiphasic EPSCs. In addition, variable vesicle size that occurs also in the absence of homotypic vesicle-to-vesicle fusion and different filling states of vesicles79 might contribute to the EPSC heterogeneity at IHC synapses. Finally, other mechanisms such
as spill-over of glutamate from neighboring synapses and postsynaptic receptor properties need to be considered when relying on postsynaptic recordings.

These different hypotheses might not be mutually exclusive, and appear to strongly depend on the chosen experimental model system. Further experiments, such as (i) membrane capacitance recordings of individual fusion events, (ii) electron tomography of synapses immobilized within milliseconds after stimulation, or (iii) super-resolution fluorescence live-cell imaging of vesicular exocytosis, will help in the future to pinpoint the mode of exocytosis at hair cell ribbon synapses.

References

1. Reijntjes DO, Pyott SJ: The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery, Hear Res. 2018; 336: 1–16. Published Abstract | Publisher Full Text
2. Rutherford MA, Moser T: The Ribbon Synapse Between Type I Spiral Ganglion Neurons and Inner Hair Cells. In The Primary Auditory Neurons of the Mammalian Cochlea, (Springer Verlag, New York, Berlin, Heidelberg), 2016; 52: 117–156. Published Abstract | Publisher Full Text
3. Moser T, Starr A: Hair cell ribbon synapses. Cell Tissue Res. 2006; 326(2): 347–69. Published Abstract | Publisher Full Text | Free Full Text
4. Moser T, Brandt A, Lysakowski A: Synaptic vesicle replenishment in cochlear inner hair cells. Cell Tissue Res. 2015; 361(1): 95–114. Published Abstract | Publisher Full Text | Free Full Text
5. Schmitz F, Königstorfer A, Sudhof TC: RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron. 2000; 28(5): 857–72. Published Abstract | Publisher Full Text
6. Schmitz F: The making of synaptic ribbons: how they are built and what they do. Neuronscientist. 2009; 15(6): 611–24. Published Abstract | Publisher Full Text
7. Buran BN, Strenzke N, Neef A, et al.: Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci. 2010; 30(22): 7587–97. Published Abstract | Publisher Full Text
8. Frank T, Rutherford MA, Strenzke N, et al.: Bassoon and the synaptic ribbon organize Ca²⁺ channels and vesicles to add release sites and promote refilling. Neuron. 2010; 68(4): 724–38. Published Abstract | Publisher Full Text | Free Full Text
9. Khimich D, Nouvian R, Pujol R, et al.: Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature. 2005; 434(7035): 889–94. Published Abstract | Publisher Full Text
10. Dick O, tom Dieck S, Altrock WD, et al.: The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synthesis formation in the retina. Neuron. 2003; 37(5): 775–86. Published Abstract | Publisher Full Text | F1000 Recommendation
11. Snellman J, Mehta B, Babai N, et al.: Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat Neurosci. 2011; 14(9): 1135–41. Published Abstract | Publisher Full Text | F1000 Recommendation
12. Vaihianathan T, Henry D, Akmentin W, et al.: Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone. eLife. 2016; 5: pii: e31245. Published Abstract | Publisher Full Text | F1000 Recommendation
13. Maxeiner S, Luo F, Tan A, et al.: How to make a synaptic ribbon: RIBEYE detection abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J. 2016; 35(10): 1098–114. Published Abstract | Publisher Full Text | F1000 Recommendation
14. F1000 recommended

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by grants from the German Research Foundation through the Collaborative Research Center 889 and the Leibniz Program (to TM).

Acknowledgments

We thank Darina Khimich and Alexander Egner for contributing the 4Pi image and Hartmut Sebesse for the artwork.
onset in mice. J Neurosci. 2013; 33(26):10661–6.

52. Ohn TL, Rutherford MA, Jing Z, et al.: Hair cells use active zones with different voltage dependence of Ca\(^{2+}\) influx to decompose sounds into complementary neural codes. Proc Natl Acad Sci U S A. 2013; 110(32): E4716–25.

53. Pangrati T, Gabrielatis M, Michanski S, et al.: EF-hand protein Ca\(^{2+}\) buffers regulate Ca\(^{2+}\) influx and exocytosis in sensory hair cells. Proc Natl Acad Sci U S A. 2015; 112(9): E1028–37.

54. Beutner D, Moser T: The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci. 2001; 21(13): 4593–9.

55. Edmonds B, Reyes R, Schwallier B, et al.: Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci. 2000; 3(8): 786–90.

56. Hackney CM, Mahendrasingam S, Penn A, et al.: The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci. 2005; 25(34): 7867–75.

57. Keller S, Bell AM, Denis CS, et al.: Parvalbumin 3 is an abundant Ca\(^{2+}\) buffer in hair cells. J Assoc Res Otolaryngol. 2002; 3(4): 488–98.

58. Ricci AJ, Wu YC, Fettipace R: The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci. 1998; 18(20): 8261–77.

59. Goutman JD, Glowiak E: Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A. 2007; 104(41): 16341–6.

60. Fedychshyn MJ, Wang LY: Developmental transformation of the release modality at the calyx of Held synapse. J Neurosci. 2005; 25(16): 4313–40.

61. Johnson SL, Franz C, Kuhn S, et al.: Synaptotagmin IV determines the linear Ca\(^{2+}\) dependence of vesicle fusion at auditory ribbon synapses. Nat Neurosci. 2010; 13(1): 45–52.

62. Neef A, Ghim D, Pint H, et al.: Probing the mechanism of exocytosis at the hair cell ribbon synapse. J Neurosci. 2007; 27(47): 12933–44.

63. Graydon CW, Cho S, Li GL, et al.: Sharp Ca\(^{2+}\) nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses. J Neurosci. 2011; 31(4): 1525–36.

64. Keen EC, Hodgkin AJ: Transfer characteristics of the hair cell’s afferent synapse. Proc Natl Acad Sci U S A. 2006; 103(14): 5537–42.

65. Li GL, Keen E, Andor-Ardó D, et al.: The unitary event underlying multiquantal EPSCs at a hair cell’s ribbon synapse. J Neurosci. 2009; 29(23): 7558–68.

66. Schnee ME, Castellano-Muñoz M, Ricci AJ: Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses. J Neurophysiol 2013; 110(1): 204–20.

67. Jarsky T, Tian M, Singer JH: Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse. J Neurosci. 2010; 30(36): 11885–95.

68. Mehta B, Snellman J, Chen S, et al.: Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. Neuron. 2013; 77(3): 516–27.

69. Singer JH, Lassová L, Vardi N, et al.: Coordinated multivesicular release at a mammalian ribbon synapse. Nat Neurosci. 2004; 7(8): 826–33.
73. Grant L, Yi E, Glowatzki E: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci. 2010; 30(12): 4210–20. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Rudolph S, Tsai MC, von Gersdorff H, et al: The ubiquitous nature of multivesicular release. Trends Neurosci. 2015; 38(7): 428–38. PubMed Abstract | Publisher Full Text | Free Full Text

75. Lenzi D, Crum J, Ellisman MH, et al: Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron. 2002; 36(4): 649–59. PubMed Abstract | Publisher Full Text | F1000 Recommendation

76. Chapochnikov NM, Takago H, Huang CH, et al: Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron. 2014; 83(6): 1389–403. PubMed Abstract | Publisher Full Text

77. Pawlu C, DiAntonio A, Heckmann M: Postfusional control of quantal current shape. Neuron. 2004; 42(4): 607–18. PubMed Abstract | Publisher Full Text | F1000 Recommendation

78. Staal RG, Mosharov EV, Sulzer D: Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci. 2004; 7(4): 341–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

79. Wu XS, Xue L, Mohan R, et al: The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci. 2007; 27(11): 3046–56. PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Ian Russell, Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
 Competing Interests: No competing interests were disclosed.

2 Sonja Pyott, Department of Otorhinolaryngology, University Medical Center Groningen, Groningen, Netherlands
 Competing Interests: No competing interests were disclosed.