Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

Sareh Habibzadeh1*, Hamid Reza Rajati2, Habib Hajmiragha3, Shima Esmailzadeh4, Mohamadjavad Kharazifard5

1Department of Prosthodontics, Tehran University of Medical Sciences, International Campus, School of Dentistry, Tehran, Iran
2Department of Prosthodontics, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
3Department of Prosthodontics, Tehran University of Medical Sciences, School of Dentistry, Tehran, Iran
4Tehran University of Medical Sciences, International Campus, School of Dentistry, Tehran, Iran
5Dental Research Center, Tehran University of Medical Sciences, Tehran, Iran

PURPOSE. The aim of the present study was to evaluate the fracture resistances of zirconia, cast nickel-chromium alloy (Ni-Cr), and fiber-composite post systems under all-ceramic crowns in endodontically treated mandibular first premolars. MATERIALS AND METHODS. A total of 36 extracted human mandibular premolars were selected, subjected to standard endodontic treatment, and divided into three groups (n=12) as follows: cast Ni-Cr post-and-core, one-piece custom-milled zirconia post-and-core, and prefabricated fiber-glass post with composite resin core. Each specimen had an all-ceramic crown with zirconia coping and was then loaded to failure using a universal testing machine at a cross-head speed of 0.5 mm/min, at an angle of 45 degrees to the long axis of the roots. Fracture resistance and modes of failure were analyzed. The significance of the results was assessed using analysis of variance (ANOVA) and Tukey honest significance difference (HSD) tests (α=0.05).

RESULTS. Fiber-glass posts with composite cores showed the highest fracture resistance values (915.70±323 N), and the zirconia post system showed the lowest resistance (435.34±220 N). The corresponding mean value for the Ni-Cr casting post and cores was reported as 780.59±270 N. The differences among the groups were statistically significant (P<0.05) for the zirconia group, as tested by ANOVA and Tukey HSD tests. CONCLUSION. The fracture resistance of zirconia post-and-core systems was found to be significantly lower than those of fiber-glass and cast Ni-Cr post systems. Moreover, catastrophic and non-restorable fractures were more prevalent in teeth restored by zirconia posts. [J Adv Prosthodont 2017;9:170-5]

KEYWORDS: Fracture; Endodontically treated teeth; Post and core; Zirconia

INTRODUCTION

A tooth undergoing root canal treatment shows little resistance to occlusal forces due to the significant loss of their coronal structure. In order to increase the longevity of the final restoration, use of a post-and-core system is often indicated.1 Proper post selection and load distribution along the roots greatly reduces the risk of root fracture.2 Moreover, the amount of intact tooth structure, as well as the characteristics of the post, including its material, elastic modulus, diameter, and height, contribute to resistance to the fracture of teeth restored by post and cores.3

High success rate, favorable long-term prognosis, easy
Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

Manipulation, and low cost are responsible for the popularity of cast metal post-and-core systems. Furthermore, in these systems, posts are integrated and custom-made and reproduce the morphology of the canal with good accuracy. In fact, in most clinical situations, cast metal post-and-core systems are still among the best treatment options for restoring endodontically treated teeth. However, reports of low biocompatibility and chances of corrosion and root fracture, along with the negative effects they have on the esthetics of the teeth have prompted clinicians look for alternative techniques for the restoration of endodontically treated teeth. A progress in the field of tooth-colored materials has directed attention towards the use of composite and ceramics. The major problem in restoring anterior pulpless teeth is the dark shadow appearance of metal or carbon fiber under the ceramic crowns. Therefore, tooth-colored post-and-core systems such as zirconia-covered carbon fiber, zirconia and fiber reinforced posts, were introduced to improve the esthetics of endodontically treated teeth.

Castable glass ceramics and glass infiltrated ceramics were first used for this purpose. In 1995, Meyenberg introduced zirconia posts. Nowadays, zirconia is widely used in dentistry, due to its chemical stability, high mechanical strength, a Young's Modulus similar to stainless-steel alloys, and above all, the similarity of its color to that of teeth. Streacker and Awad developed the process of milling one-piece zirconia post and core out of yttrium tetragonal zirconium polycrystals using CAD-CAM machines. In this technique, milling is performed based on the data of the post pattern, which are transferred through a scanner to a computer. A case report has shown this technique to give rise to an aesthetic, yet stiff post-and-core system, along with its maximum canal fitness; however, the author indicated that a significant difference exists between the marginal gap of the produced post-and-core and its acrylic pattern.

On the one hand, application of these systems has always been a matter of debate, as the high elastic modulus of zirconia is responsible for catastrophic fractures of roots. Fracture resistances of zirconia, cast nickel-chromium alloy (Ni-Cr), and fiber-composite post systems under all-ceramic crowns in endodontically treated mandibular first premolars.

MATERIALS AND METHODS

Based on the data of the previous studies, with the help of Minitab software and a one-way analysis of variance (ANOVA) test, considering $\alpha = 0.05$ and $\beta = 0.2$, with a minimal difference of 160 N and pooled standard deviation of 140 N, the number of specimens required in each test group was determined to be 12. Thus, a total of 36 extracted mandibular first premolars extracted mostly for orthodontic reasons, with almost intact crowns, free of previous endodontic treatment, restorations, cracks, fractures, and significant erosion or enamel hypoplastic deficiencies, were selected. The patients had given their informed consents before extraction of their teeth for research purposes.

Samples were randomly divided into three groups ($n = 12$) and stored in 0.5% chloramine-T solution (Merek-Schuchardt, OHG, Germany) for a period of 2 days before the beginning of the study. Any calculus or residual debris from the teeth surface was removed, and the samples were cleaned using pumice and a slow-speed handpiece (NSK, Utsunomiya, Japan). For the teeth in the first two groups, the use of an appropriate size of peeso reamer (Mani, Konstanz, Germany). In order to prepare the teeth to receive all-ceramic crowns, a 1-mm wide radial shoulder finishing line was prepared at 0.5 mm above the CEJ. Leaving 4 mm of gutta percha for the apical seal, the dowel space was prepared with the use of an appropriate size of peeso reamer (Mani, Utsunomiya, Japan). For the teeth in the first two groups, one-piece patterns of post and cores were made directly with self-cure acrylic resin (GC Corporation, Tokyo, Japan) (Fig. 1). In the first group, the patterns were casted in Ni-Cr alloy (Wiron 99, Bego, Bremen, Germany). In the second group,
integrated zirconia post and cores were prepared using a MAD-MAM machine (Zirkonzahn, Gais, Italy). After making the required adjustments and ensuring suitability using radiography, all posts were cemented into their corresponding teeth using Panavia resin cement (Panavia F2.0, Kuraray, Noritake, Dental Inc., Tokyo, Japan) according to the manufacturer’s instructions. For the teeth in the third group, fiber-glass posts (Light post, Illusion X-RO, RTD, Saint egreve, France) and composite cores (PhotoCore, Kuraray Noritake, Tokyo, Japan) were used.

The appropriate size of fiber-glass post was selected, as confirmed by radiography, and cemented as described above (Panavia F2.0, Kuraray, Noritake, Dental Inc., Tokyo, Japan). The composite core was then formed. All samples were next scanned to receive all-ceramic crowns with zirconia coping using the CAD-CAM technique (Cerec 4.0, Sirona Dental Systems, Bensheim, Germany). Prepared crowns were cemented with Panavia cement, using the same protocol described above (Fig. 2).

In order to receive the loads, samples were embedded, with the help of a surveyor, parallel to their vertical axis in acrylic blocks (Acropars, Tehran, Iran) 2 mm above the CEJ. Load were then applied using a universal testing machine (Zwick Roell Group, Ulm, Germany) at a crosshead speed of 0.5 mm/min on the central fossa of each crown, through a 4-mm diameter spherical wedge, at an angle of 45 degrees to the long axis of the roots (Fig. 3). The first drop in the stress graph was considered to be the fracture point, and loading was stopped thereafter. Finally, the modes of fracture were inspected.

SPSS was used for statistical analysis. Mean fracture resistance and the frequency of fracture modes within the study groups were calculated. ANOVA and Tukey honest significance difference (HSD) tests served for comparison of fracture resistance among the study groups. Significance level was set at 0.05.

RESULTS

In the present study, fiber-glass posts with composite cores showed the highest fracture resistance values (915.70 ± 323 N) and the zirconia post system showed the lowest resistance (435.34 ± 220 N). The corresponding mean value for the Ni-Cr casting post and cores was reported as 780.59 ± 270 N (Table 1). These differences among the groups were statistically significant (P < .05) for the zirconia group, as tested by ANOVA and Tukey HSD tests. Although higher values of fracture resistance were recorded in the fiber-glass group compared with the cast metal post-and-core system, this difference was not statistically significant (P > .05). Error bars of mean fracture resistance, and 95% confidence intervals in the study groups are shown in Fig. 4.

In the cast metal group, the majority of fractures occurred in the veneering porcelain, with one case undergoing fracture in the cervical area of the root (at the CEJ) and another with a horizontal root fracture (Fig. 5). In the zirconia post-and-core group, the root fracture was observed in 10 samples (83.3%), of which the apical 2 mm of the post...
was broken in two, and porcelain was fractured in the other two (16.7%). Among the samples with a fiber-glass post and composite core, detachment of the crown at the CEJ was the prevailing fracture mode (91.7%), with just one case of root fracture (8.3%).

DISCUSSION

The present study investigated the fracture resistance of zirconia, cast Ni-Cr, and fiber-glass composite post systems in endodontically treated mandibular first premolars with all-ceramic crowns. According to the results, custom-made, one-piece zirconia post-cores showed the significantly lowest mean values for fracture resistance, and the values were higher in fiber-glass posts; however, this difference was not significant in comparison with the cast metal group.

The higher fracture resistance of fiber-glass posts can be attributed to the similarity of its elastic modulus to that of dentine, as well as its ability to bond to the tooth.18,21 Forces to a tooth that has been restored using a fiber-glass post are predominantly absorbed by the post itself, thus reducing stress on the root and leading to a lower probability of fracture.16,26,27 Several studies have supported this hypothesis.21,26 Gu et al.21 reported higher fracture resistance for fiber-glass posts restoring anterior teeth, especially when used with resin cements, compared with cast Ni-Cr posts. Similar results were achieved in a previous study in which the fracture resistance of fiber glass was compared with cast gold posts for restoring endodontically treated premolars.22 In another study comparing fracture resistance of stainless-steel and fiber-glass posts in teeth restored with all-ceramic crowns, Li et al.28 reported higher fracture resistance for fiber-glass posts.

One of the reasons for the lower fracture resistance of custom-milled zirconia post-cores could be the mechanical properties of zirconia. The yield strength of posts made from zirconia has been reported to be higher than that of fiber-glass and titanium posts (58 ± 4 vs. 27 ± 1 and 54 ± 3, respectively),27,28 and their flexural strength is similar to that of gold and titanium (900-1200 MPa).30,31 On the other hand, the high elastic modulus of these posts (200 MPa) makes them very strong and stiff, and prevents them from showing a plastic behavior.29,32 When a post-and-core system with a high elastic modulus is loaded, a slowly growing microcrack develops at the post cement-dentine interface and, as the post loses its integrity with the dentine, it acts in the manner of a wedge transferring stress to the dentine and causing root fracture.26,33

The fracture resistance of fiber-glass posts was not significantly different to that of custom-milled zirconia posts in a study by Beek et al.24 However, that study was performed on opaque plastic-made canals simulating the root canal system, in which the samples underwent 50-N cyclic.

Table 1
Mean, standard deviation, and standard error of fracture resistance in the three groups of extracted mandibular premolars undergoing three different post & core treatments

Post type	N	Mean	Std. Deviation	Std. Error
Casting	12	780.5917	270.53232	78.09595
Fiber	12	915.7083	323.59966	93.41517
Zirconia	12	435.3417	220.41138	63.62729

Fig. 4. Error bar and confidence interval of 95%.

Fig. 5. Porcelain fracture in cast Ni-Cr post-core system.
loading. Furthermore, although the crown was not placed on the samples, it has been shown that crown coverage leads to an even greater distribution of forces and makes it more similar to the clinical situation. In fact, crown placement significantly increases the fracture strength of teeth in these kinds of studies.34 Cormier et al.,35 investigating the fracture strength of zirconia posts, observed that fracture resistances in loading the post alone, in loading the post-and-core system without the crown, and in loading while complete coverage is placed upon the system were 105.1, 179.1, and 238.8 N, respectively. Friedel and Kern12 compared the fracture resistance of various systems of zirconia posts with and without crowns and concluded that when a crown is placed over the tooth, the post-and-core system does not play an important role in fracture resistance, as it helps balance the forces on the tooth-restoration complex.

Regarding the mode of fracture, in the cast metal group the majority of fractures occurred as micro-cracks in the porcelain of the crown at the CEJ. The most prevalent modes of fracture were root fracture at the apical area in the zirconia post-and-core group and fracture at the CEJ leading to detachment of the crown in the fiber-glass post group.

Fractures in teeth restored by post-core crown systems are sometimes restorable via crown displacement, crown lengthening, forced eruption, or re-build ups. On the contrary, non-restorable deep-root fractures are considered as catastrophic fractures leaving no choice other than tooth extraction.36 It should be taken into account that stress distribution along the root is significantly dependent on the characteristics of the post material. As noted previously, the elastic modulus of fiber-glass posts is between 30-40 GPa, which is more similar to that of dentin than either cast metal or zirconia. Consequently, using these posts to restore endodontically treated teeth facilitates the natural bending movements of the tooth, leading to less stress accumulation in the interfaces, and as a result, the tooth-restoration complex shows a biomechanical behavior similar to that of the intact tooth. Moreover, it is possible to remove these posts with a lower risk of perforation.37 From this point of view, in our study, the fractures in the zirconia post group were mostly non-restorable, while the fiber-glass post group showed more reparable fractures.38 This finding is consistent with various previous studies. Gu et al.21 also reported that most of the fractures in teeth restored by fiber-glass posts are restorable, contrary to those in teeth restored by zirconia and Ni-Cr. Freedman38 stated that due to greater stress accumulation in the apical area, cast Ni-Cr post-and-core systems caused more vertical root fractures compared with other systems. Akkayan and Gülmez18 also observed that catastrophic fractures are more prevalent among titanium and zirconia posts compared with quartz fiber and fiber-glass posts. They hypothesized that the rigidity and high elastic moduli of titanium and zirconia caused direct transfer of forces to the tooth without any decrease or absorption by the post-and-core system and were considered to be the main cause of these fractures.

In order to maintain sufficient resistance in zirconia custom-made posts, despite the adjustments needed to seat it, the post-core system requires sufficient bulk. This extra preparation of the canal can sometimes be problematic, especially in delicate and curved roots.38 We first tried to use the CAD-CAM system for milling of the zirconia patterns. However, due to technical problems, it was almost impossible to prepare the narrow parts of the acrylic patterns, especially in their 2-mm apical region using this system, and the final posts were made shorter than their acrylic counterparts. Thus, in order to preserve the tooth structure, we tried to avoid excessive canal preparation and use the MAD-MAM system for sample preparation. One of the weaknesses of this system, however, is its technical sensitivity, leading to decreased accuracy of the posts. Therefore, we recommend using a CAD-CAM system that is able to prepare the apical 2 mm of the zirconia post in future studies.

With regard to the demand for esthetic treatments and the increasing use of ceramic restorations, it is necessary to consider the fracture resistance of restorations in anterior teeth. It should be noted that, because of the unavailability of sufficient anterior teeth, we had to use premlors instead in our study. Although the maximum bite force on the anterior teeth is less than that of the premolars (323-485 vs. 424-583 N), the existence of horizontal forces and shear stress on these teeth challenges the applicability of our findings. Considering this fact, we suggest a similar study on a sufficient number of anterior teeth in the future. In our study, a universal testing machine was used to measure fracture resistance in a static manner. However, we suggest that the use of a chewing simulator and cyclic loading of the samples would provide more consistent results to the clinical situation.

CONCLUSION

Within the limitations of this study, fracture resistance of zirconia post-and-core systems was found to be significantly lower than those of fiber-glass and cast Ni-Cr post systems. Moreover, catastrophic and non-reparable fractures in teeth restored by zirconia posts were more prevalent. Therefore, until further clinical studies with long-term follow-ups on zirconia posts are available, the use of cast Ni-Cr post systems and tooth-colored systems with a similar elastic modulus to the dentin might provide more acceptable results.

ORCID

Sareh Habibzadeh https://orcid.org/0000-0002-5098-3880

REFERENCES

1. Torabinejad M, Walton RE, Fouad A. Endodontics: Principles and practice. 4th ed. Philadelphia; W.B. Saunders Co. 2012. p. 268-82.
2. Berman LH, Hargreaves KM, Cohen SR. Cohen's pathways of the pulp. Elsevier Health Sciences; 2013. p. 786-821.
3. Shillingburg HT, Sather DA, Wilson EL Jr, Cain JR, Mitchell
Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

DL, Blanco LJ, Kessler JC. Fundamentals of fixed prosthodontics. 4th ed. Quintessence Publishing, 2013, p 203-27.

4. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed. Mosby; 2006, p. 313-72.

5. Martínez-Insua A, da Silva L, Rilo B, Santana U. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent 1998;80:527-32.

6. Glantz PO, Nilner K. The devitalized tooth as an abutment in dentitions with a reduced but healthy periodontium. Periodontol 2000 1994;4:52-7.

7. Glazer B. Restoration of endodontically treated teeth with carbon fibre posts-a prospective study. J Can Dent Assoc 2000;66:613-8.

8. Luu KQ, Walker RT. Corrosion of a nonprecious metal post: a case report. Quintessence Int 1992;23:389-92.

9. Meyenberg KH, Lüthy H, Schärer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80.

10. Dean JP, Jeansson BG, Sarkar N. In vitro evaluation of a carbon fiber post. J Endod 1998;24:807-10.

11. Stewardson DA. Non-metal post systems. Dent Update 2001;28:326-32, 334, 336.

12. Friedel W, Kern M. Fracture strength of teeth restored with all-ceramic posts and cores. Quintessence Int 2006;37:289-95.

13. Bittner N, Hill T, Randi A. Evaluation of a one-piece milled zirconia post and core with different post-and-core systems: An in vitro study. J Prostheth Dent 2010;103:369-79.

14. Streacker AB, Geisserberger M. The milled ceramic post and core: A functional and esthetic alternative. J Prosthet Dent 2007;98:486-7.

15. Awad MA, Marghalani TY. Fabrication of a custom-made ceramic post and core using CAD-CAM technology. J Prosthet Dent 2007;98:161-2.

16. Stricker EJ, Göhring TN. Influence of different posts and cores on marginal adaptation, fracture resistance, and fracture mode of composite resin crowns on human mandibular premolars. An in vitro study. J Dent 2006;34:326-35.

17. Rosentritt M, Förster C, Behr M, Lang R, Handel G. Comparison of in vitro fracture strength of metallic and tooth-coloured posts and cores. J Oral Rehabil 2000;27:595-601.

18. Akkayan B, Gülmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prostheth Dent 2002;87:431-7.

19. Heydecke G, Butz F, Hussein A, Strub JR. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J Prosthet Dent 2002;87:438-45.

20. Xible AA, de Jesus Tavarez RR, de Araujo Cdos R, Conti PC, Bonachella WC. Effect of cyclic loading on fracture strength of endodontically treated teeth restored with conventional and esthetic posts. J Appl Oral Sci 2006;14:297-303.

21. Gu XH, Huang JP, Wang XX. An experimental study on fracture resistance of metal-ceramic crown incisors with different post-core systems. Zhonghua Kou Qiang Yi Xue Za Zhi 2007;42:169-72.

22. Torres-Sánchez C, Montoya-Salazar V, Córdoba P, Vélez C, Guzmán-Duran A, Gutierrez-Pérez JL, Torres-Lagares D. Fracture resistance of endodontically treated teeth restored with glass fiber reinforced posts and cast gold post and cores cemented with three cements. J Prosthet Dent 2013;110:127-33.

23. Aggarwal V, Singla M, Yadav S, Yadav H, Sharma V, Bhasin SS. The effect of ferrule presence and type of dowel on fracture resistance of endodontically treated teeth restored with metal-ceramic crowns. J Conserv Dent 2014;17:183-7.

24. Mobiliño N, Borelli B, Sortentinio R, Catapano S. Effect of fiber post length and bone level on the fracture resistance of endodontically treated teeth. Dent Mater J 2013;32:816-21.

25. Hou QQ, Gao YM, Sun L. Influence of fiber posts on the fracture resistance of endodontically treated premolars with different dental defects. Int J Oral Sci 2013;5:167-71.

26. Barcellos RR, Correia DP, Farina AP, Mesquita MF, Ferraz CC, Cecchin D. Fracture resistance of endodontically treated teeth restored with intra-radicular post: the effects of post system and dentine thickness. J Biomech 2013;46:2572-7.

27. Pfeiffer P, Schulz A, Nergiz I, Schmager P. Yield strength of zirconia and glass fibre-reinforced posts. J Oral Rehabil 2006;33:70-4.

28. Li Q1, Xu B, Wang Y, Cai Y. Effects of auxiliary fiber posts on endodontically treated teeth with flared canals. Oper Dent 2011;36:380-9.

29. Ozkurt Z, Išeri U, Kazazoglú E. Zirconia ceramic post systems: a literature review and a case report. Dent Mater J 2010;29:233-45.

30. Piconi C, Maccrao G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25.

31. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5.

32. Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent 1999;27:275-8.

33. da Silva NR, Raposo IJ, Versluis A, Fernandes-Neto AJ, Soares CJ. The effect of post, core, crown type, and ferrule presence on the biomechanical behavior of endodontically treated bovine anterior teeth. J Prosthet Dent 2010;104:306-17.

34. Beck N, Graef F, Wichmann M, Karl M. In vitro fracture resistance of copy-milled zirconia ceramic posts. J Prosthet Dent 2010;103:40-4.

35. Cormier CJ, Burns DR, Moon P. In vitro comparison of the fracture resistance and failure mode of fiber, ceramic, and conventional post systems at various stages of restoration. J Prosthodont 2001;10:26-36.

36. Newman MP, Yaman P, Dennison JR, Rafter M, Billy E. Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent 2003;89:360-7.

37. Cohen BI, Pagnillo MK, Condos S, Deutsch AS. Four different core materials measured for fracture strength in combination with five different designs of endodontic posts. J Prosthet Dent 1996;76:487-95.

38. Freedman GA. Esthetic post-and-core treatment. Dent Clin North Am 2001;45:103-16.