GREEN FUNCTION’S PROPERTIES AND EXISTENCE THEOREMS FOR NONLINEAR SINGULAR-DELAY-FRACTIONAL DIFFERENTIAL EQUATIONS

HASIB KHAN

1Department of Mathematics, Shaheed BB University, Sheringal, Dir Upper 18000
Khybar Pakhtunkhwa, Pakistan

CEMIL TUNC AND AZIZ KHAN

2Department of Mathematics, Faculty of Sciences
Van Yuzuncu Yil University
65080 Van, Turkey

3Prince Sultan University
P.O. Box 66833
11586 Riyadh, Saudi Arabia

Abstract. In this paper, we are dealing with singular fractional differential equations (DEs) having delay and p-Laplacian operator. In our problem, we contemplate two fractional order differential operators that is Riemann–Liouville and Caputo’s with fractional integral and fractional differential initial boundary conditions. The SFDE is given by

$$
\begin{align*}
&D^\gamma [u_0^{\gamma} (D^\kappa x(t))] + \varrho(t) \zeta_1(t, x(t - \varrho^*)) = 0, \\
&D^\delta x(0) = 0, \quad x(1) = x'(0), \quad x^{(k)}(0) = 0 \quad \text{for} \quad k = 2, 3, \ldots, n - 1,
\end{align*}
$$

ζ_1 is a continuous function and singular at t and $x(t)$ for some values of $t \in [0, 1]$. The operator D^γ, is Riemann–Liouville fractional derivative while D^δ, D^κ stand for Caputo fractional derivatives and $\delta, \gamma \in (1, 2]$, $n - 1 < \kappa \leq n$, where $n \geq 3$. For the study of the EUS, fixed point approach is followed in this paper and an application is given to explain the findings.

1. Introduction. The use of fractional calculus in different scientific fields has attracted the attention of scientists in last two decades to large extent. Mathematical models via FDEs were studied fluid dynamics, hydrodynamics, signals, control theory, biology, viscoelastic theory, image processing, computer networking and many others [6–8,22,26,32,33].

Recently, Ahmad and Luca [10], Ahmad et al. [1] contemplated EU of solution for sequential fractional integro DEs with the help of fixed point approach and provided applications of their results. Zhang et al. [40] studied some necessary conditions EU of solutions for singular fractional DEs and provided applications. Srivastava et al. [35] contemplated a fractional order DE for the EU of solutions using fixed approach and provided applications. Lopez et al. [30] established necessary

2010 Mathematics Subject Classification. Primary: 58F15, 58F17, Secondary: 53C35.

Key words and phrases. Fractional differential equations with singularity, existence of positive solution, Hyers-Ulam stability, Caputo’s fractional derivative.

* Corresponding author: Cemil Tunc.
conditions required for the EU of positive solutions of fractional DEs using classical results of fixed points approach in Hölder spaces. Luca [31] used Guo-Krasnosel’skii theorem for the existence of positive solutions and multiplicity results for a nonlinear class of singular fractional DEs and applications were given. Khan et al. [29] studied singular fractional DE with 0^p-operator for the EU of solutions and given applications of their results. Xie and Xie [36] studied high order nonlinear fractional DEs with singularity for the EU of solutions and multiplicity results with the help of topological degree approach. Yan et al. [37] used upper and lower solution technique for the existence and uniqueness of solutions for a fractional DE with 0^p-operator.

Guo et al. [18] studied EU solution for fractional DEs with p-Laplacian and several parameters. Ghanmia et al. [19] discussed necessary conditions for the EU of solutions for fractional DEs with singularity using the Riemann-Liouville definition of fractional derivative. Karimov and Sadarangani [25] studied the EU of solution for singular fractional DEs with initial and boundary conditions using fixed point technique. Chang and Ponce [15] studied integro-differential system for exponential stability and applications. Ji [24] studied singular fractional DEs with p-Laplacian using fixed point technique. Saoudi [34] produced the necessary conditions required for the study of multiplicity results for a class of singular fractional DEs. Henderson and Luca [17] studied singular and non-singular fractional DEs with multiple boundary conditions for existence of positive solution and multiplicity results.

Zhang and Zhang [39] studied high order fractional DEs with singularities with the help of Krasnosel’skii and Leggett-Williams fixed point results and presented applications. For some more related results, we refer the readers to [9,12–14].

Inspired from the recently produced results of the scientists in the fractional calculus and applications, we use fixed point theorems to prove EPS and HUS of the below nonlinear SFDE with 0^p-operator

\[
\begin{align*}
\mathcal{D}^\gamma \left[0^p \mathcal{D}^\kappa x(t) \right] + \mathcal{Q}(t)\zeta_1(t, x(t - g^s)) &= 0, \\
\mathcal{I}_0^{1-\gamma} (0^p \mathcal{D}^\kappa x(t))|_{t=0} &= 0 = \mathcal{I}_0^{2-\gamma} (0^p \mathcal{D}^\kappa x(t))|_{t=0}, \\
x'(0) &= 0, \quad x'(1) = 0 = \mathcal{D}^\delta x(1) = 0, \quad x^{(k)}(0) = 0, \quad \text{for} \quad k = 3, \ldots, n - 1,
\end{align*}
\]

where ζ_1 is continuous functions involving singularity with respect to t and s. The fractional orders $n-1 < \kappa, \gamma \leq n$, where $n \geq 3$, $\zeta_1 \in \mathcal{L}[0, 1]$ and $\mathcal{D}^\kappa, \mathcal{D}^\gamma$ are Caputo’s fractional derivative, $0^p \mathcal{D}^\kappa x = |x|^{p-2}x$ is the well-known p-Laplacian operator.

In this article, our goal is to study two important aspects of SFDE with 0^p (1.1) they are EPS and HUS. For these, we will convert the problem (1.1) into an integral equation form by the use of Green function. And will study the nature of the Green function whether decreasing or increasing and positive or negative. Then, some fixed point theorems will be utilized for the analysis of EPS and HUS will be examined by the same techniques as studied by Khan et al. in [28] for a class of Hybrid FDEs. Researchers can study the SFDE (1.1) with nonlinear 0^p for multiplicity results. For the recent related development in the fractional differential equations, we suggest the readers to [2–5,16,20,21,23,38,41].

Definition 1.1. Fractional order integral of $\zeta : (0, +\infty) \rightarrow \mathbb{R}$ for order $\kappa > 0$ is

\[
\mathcal{I}_0^\kappa \zeta(t) = \frac{1}{\Gamma(\kappa)} \int_0^t (t-s)^{\kappa-1} \zeta(s) \, ds,
\]
such that the integral is defined on \((0, +\infty)\), where
\[
\Gamma(\kappa) = \int_{0}^{+\infty} e^{-s^\kappa} ds.
\]

Definition 1.2. For a fractional order \(\kappa > 0\), Caputo’s derivative for \(\zeta(t) : (0, +\infty) \to \mathbb{R}\) is given by
\[
\mathcal{D}^\kappa \zeta(t) = \frac{1}{\Gamma(k - \kappa)} \int_{0}^{t} (t - s)^{k-\kappa-1} \zeta^{(k)}(s) ds,
\]
for \(k = [\kappa] + 1\), where \([\kappa]\) is used for the integer part of \(\kappa\).

Lemma 1.1. For \(\zeta \in C^{n-1}\) and \(\kappa \in (n-1, n]\), and we have
\[
\mathcal{I}_{0}^\kappa \mathcal{D}^\kappa \zeta(t) = \zeta(t) + k_{0} + k_{1}t + k_{2}t^{2} + \ldots + k_{m-1}t^{m-1},
\]
for the \(k_{i} \in \mathbb{R}\) for \(i = 0, 1, 2, \ldots, m - 1\).

Theorem 1.2. [29] Consider a Banach’s space \(\mathcal{S}\) and a cone \(\mathcal{B}^* \in \mathcal{S}\) be a cone. Let \(\mathcal{P}^*_1, \mathcal{P}^*_2\) be two bounded subsets of \(\mathcal{S}\) such that \(0 \in \mathcal{P}^*_1\), \(\overline{\mathcal{P}^*_1} \subset \mathcal{P}^*_2\). Then, a completely continuous operator \(T_0 : \mathcal{B}^* \cap (\overline{\mathcal{P}^*_2}\setminus \mathcal{P}^*_1) \to \mathcal{B}^*\), satisfying
\[
\begin{align*}
(A_1) \quad &\|T_0x\| \leq \|x\| \text{ if } x \in \mathcal{B}^* \cap \partial \mathcal{P}^*_1 \text{ and } \|T_0x\| \geq \|x\| \text{ if } x \in \mathcal{B}^* \cap \partial \mathcal{P}^*_2, \text{ or} \\
(A_2) \quad &\|T_0x\| \geq \|x\| \text{ if } x \in \mathcal{B}^* \cap \partial \mathcal{P}^*_1 \text{ and } \|T_0x\| \leq \|x\| \text{ if } x \in \mathcal{B}^* \cap \partial \mathcal{P}^*_2,
\end{align*}
\]
has a fixed point in \(\mathcal{B}^* \cap (\overline{\mathcal{P}^*_2}\setminus \mathcal{P}^*_1)\).

Lemma 1.3. [29] For a \(p\)-Laplacian operator \(\mathcal{U}^*_p\), we have
(1) If \(|\theta_1|, |\theta_2| \geq \rho > 0\), \(1 < p \leq 2, \theta_1\theta_2 > 0\), then
\[
|\mathcal{U}^*_p(\theta_1) - \mathcal{U}^*_p(\theta_2)| \leq (p - 1)p^{\rho - 2}|\theta_1 - \theta_2|.
\]
(2) If \(p > 2\), and \(|\theta_1|, |\theta_2| \leq \rho^*\), then
\[
|\mathcal{U}^*_p(\theta_1) - \mathcal{U}^*_p(\theta_2)| \leq (p - 1)p^{\rho^* - 2}|\theta_1 - \theta_2|.
\]

Organization. We have given five sections in the paper. The first section “Introduction” contains most relevant research including the literature, definitions and basic results. The second section is dedicated to the study of the properties Green’s function and its application to the existence and uniqueness of solution of the singular fractional DE with \(\mathcal{U}_p(1.1)\). The HU-stability is given in the third section. An application is presented for the explanation of the findings in the previous sections. Finally, the paper is summarized in the conclusion, section five.

2. Green’s function.

Theorem 2.1. Assume an integrable function \(\zeta_1 \in C[0,1]\) satisfying the singular fractional DE with \(\mathcal{U}_p(1.1)\). Then for \(\gamma \in (1,2]\), \(\kappa \in (n - 1, n]\) for \(n \geq 4\), the solution of SFDE with \(p\)-Laplacian operator and delay \(\rho^* > 0\):
\[
\begin{align*}
\mathcal{D}^\gamma [\mathcal{U}^*_p(\mathcal{D}^\kappa x(t))] + \zeta_1(t, x(t - \rho^*)) &= 0, \\
\mathcal{X}^{(1 - \gamma)} [\mathcal{U}^*_p(\mathcal{D}^\kappa x(t))] |_{t=0} &= 0 = \mathcal{X}^{2 - \gamma} [\mathcal{U}^*_p(\mathcal{D}^\kappa x(t))] |_{t=0}, \\
x'(0) = 0, x'(1) = 0 = \mathcal{D}^\kappa x(1) = 0, \quad x^{(j)}(0) = 0, \quad \text{for } j = 3, \ldots, n - 1,
\end{align*}
\]
is
\[
x(t) = \int_{0}^{1} \mathcal{M}^\kappa(t, s) \mathcal{U}^*_q \left(\frac{1}{\Gamma(\gamma)} \int_{0}^{s} (s - \zeta)^{\gamma - 1} Q(\zeta) \zeta_1(\zeta, x(x - \rho^*)) d\zeta \right) ds, \quad (2.2)
\]
where the multi valued Green's function $M^\kappa(t,s)$ is

$$
M^\kappa(t,s) = \begin{cases}
\frac{-(t-s)^{\kappa-1}}{\Gamma(\kappa)} + t\frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + t^2 \frac{\Gamma(3-\delta)}{\Gamma(1+\delta)}(1-s)^{\kappa-\delta-1}, & s \leq t \leq 1, \\
\frac{-(t-s)^{\kappa-2}}{\Gamma(\kappa-1)} + t\frac{(1-s)^{\kappa-3}}{\Gamma(\kappa-2)} + t^2 \frac{\Gamma(3-\delta)}{\Gamma(1+\delta)}(1-s)^{\kappa-\delta-1}, & t \leq s \leq 1.
\end{cases}
$$

(2.3)

Proof. With the help of integral operator of fractional order I_0^γ on (2.1) and Lemma 1.1, the singular fractional DE (2.1) converts to:

$$
U_p^* [D^\kappa x(t)] = -I_0^\gamma [\zeta_1(t,x(t\theta^*))] + c_1 t^{\gamma-1} + c_2 t^{\gamma-2}.
$$

(2.4)

By $I_0^\gamma (U_p^* [D^\kappa x(t)])|_{t=0} = 0 = I_0^\gamma (U_p^* [D^\kappa x(t)])|_{t=0}$, we have $c_1 = c_2 = 0$. Using values of c_i for $i = 1, 2$, (2.4) becomes

$$
U_p^* [D^\kappa x(t)] = -I_0^\gamma [\zeta_1(t,x(t\theta^*))].
$$

(2.5)

From (2.5), we have

$$
D^\kappa x(t) = -U_p^* (I_0^\gamma [\zeta_1(t,x(t\theta^*))] dt).
$$

(2.6)

Again, applying I_0^γ on (2.6) and using Lemma 1.1, we get

$$
x(t) = -I_0^\gamma (U_p^* (I_0^\gamma [\zeta_1(t,x(t\theta^*))])) + k_1 + k_2 t + k_3 t^2 + \ldots + k_n t^{n-1}.
$$

(2.7)

By the help of $x^{(j)}(0) = 0$ where $j = 3, \ldots, n - 1$ in (2.7), we evaluate $k_4 = k_5 = \ldots = k_n = 0$. Now using $x(0) = 0$, we find $k_1 = 0$. By condition $x'(1) = 0$, we devise $k_2 = I_0^{\gamma-1} (U_p^* (I_0^\gamma [\zeta_1(t,x(t\theta^*))]) dt)|_{t=1}$, and $D^\kappa x(1) = 0$ confer that $k_3 = \frac{\Gamma(3-\delta)}{\Gamma(3-\delta-1)}I_0^{\gamma-\delta} (I_0^\gamma [\zeta_1(t,x(t\theta^*))] dt)|_{t=1}$. Putting the calculated values of the constants in (2.7), we get

$$
x(t) = -I_0^\gamma (U_p^* (I_0^\gamma [Q(t)\zeta_1(t,x(t\theta^*))])) + tI_0^{\gamma-1} (U_p^* (I_0^\gamma [\zeta_1(t,x(t\theta^*))]))|_{t=1}
$$

$$
+ \frac{t^2 \Gamma(3-\delta)}{2} I_0^{\gamma-\delta} (U_p^* (I_0^\gamma [Q(t)\zeta_1(t,x(t\theta^*))]))|_{t=1}
$$

$$
= -\int_0^t (t-s)^{\kappa-1} \frac{1}{\Gamma(\kappa)} - \int_0^s (s-\zeta)^{\gamma-1} [Q(\zeta)\zeta_1(\zeta, x(\zeta, \theta^*))] d\zeta * ds
$$

$$
+ \int_0^1 (1-s)^{\kappa-2} \frac{1}{\Gamma(\kappa-1)} - \int_0^s (s-\zeta)^{\gamma-1} [Q(\zeta)\zeta_1(\zeta, x(\zeta, \theta^*))] d\zeta * ds
$$

$$
+ \frac{t^2 \Gamma(3-\delta)}{2} \int_0^1 (1-s)^{\kappa-\delta-1} \frac{1}{\Gamma(\kappa-\delta)} - \int_0^s (s-\zeta)^{\gamma-1} \frac{1}{\Gamma(\gamma)} - \int_0^s (s-\zeta)^{\gamma-1} [Q(t)\zeta_1(\zeta, x(\zeta, \theta^*))] d\zeta * ds,
$$

(2.8)

where $M^\kappa(t,s)$ is given in (2.3). \qed

Lemma 2.2. For the $M^\kappa(t,s)$ given by (2.3), the subsequent are satisfied:

\begin{enumerate}

 \item[(N_1)] $M^\kappa(t,s) > 0$ for all $0 < s, t < 1$;

 \item[(N_2)] $M^\kappa(t,s)$ is an increasing function and $\max_{t \in [0,1]} M^\kappa(t,s) = M^\kappa(1,s)$;

 \item[(N_3)] $t^{\kappa-1} \max_{t \in [0,1]} M^\kappa(t,s) \leq M^\kappa(1,s)$ for $0 < s, t < 1$.
\end{enumerate}
Proof. For \((N_1)\), we assume that

Case 1. When \(0 < s \leq t < 1\). Since \(\kappa \geq 4\) this confer \(\kappa - 1 \geq 3\). This confer

\[
M^\kappa(t,s) = \frac{-(t-s)^{\kappa-1}}{\Gamma(\kappa)} + \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
= -t^{\kappa-1} \frac{(1 - \frac{s}{t})^{\kappa-1}}{\Gamma(\kappa)} + \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
\geq -t^{\kappa-1} \frac{(1-s)^{\kappa-1}}{\Gamma(\kappa)} + t^{\kappa-1} \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
> 0.
\]

Case 2. For \(t \leq s\), we devise

\[
M^\kappa(t,s) = t \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + t^2 \frac{\Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{\Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} > 0. \tag{2.10}
\]

With \((2.9), (2.10)\), we get \(0 < M^\kappa(t,s) \forall s, t \in (0,1)\).

For \((N_2)\), we contemplate the subsequent two cases:

Case 1. For \(s \leq t\), we evaluate

\[
\frac{\partial}{\partial t} M^\kappa(t,s) = -\frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{\Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
= t \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{\Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
\geq 0.
\]

Case 2. Consider \(t \leq s\), then \(\forall s, t \in (0,1)\)

\[
\frac{\partial}{\partial t} M^\kappa(t,s) = \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{\Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} > 0. \tag{2.12}
\]

With \((2.11), (2.12)\), we have \(\frac{\partial^2}{\partial t^2} M^\kappa(t,s) > 0 \forall s, t \in (0,1)\). Correspondingly, we have \(\frac{\partial^2}{\partial t^2} M^\kappa(t,s) > 0 \forall s, t \in (0,1)\). This confer the increasing nature of \(M^\kappa(t,s)\) with respect to \(t\), which shows that

\[
\max_{t \in [0,1]} M^\kappa(t,s) = -\frac{(1-s)^{\kappa-1}}{\Gamma(\kappa)} + \frac{1}{2} \frac{(1-s)^{\kappa-3}}{\Gamma(\kappa-2)} = M^\kappa(1,s). \tag{2.13}
\]

For \((N_3)\), assume two cases.

Case 1. For \(s \leq t\), where \(\kappa \geq 4\) this confer \(\kappa - 1 \geq 3\), which implies

\[
M^\kappa(t,s) = -\frac{(t-s)^{\kappa-1}}{\Gamma(\kappa)} + \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
= -t^{\kappa-1} \frac{(1 - \frac{s}{t})^{\kappa-1}}{\Gamma(\kappa)} + \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1} \\
\geq -t^{\kappa-1} \frac{(1-s)^{\kappa-1}}{\Gamma(\kappa)} + t^{\kappa-1} \frac{(1-s)^{\kappa-2}}{\Gamma(\kappa-1)} + \frac{t^2 \Gamma(3 - \delta^*) (1-s)^{\kappa-\delta^*-1}}{2 \Gamma(1+\delta^*) \Gamma(\kappa-\delta^*)} (1-s)^{\kappa-\delta^*-1}.
\]

Case 2.
Assume by (2.14) and (2.15), the result is satisfied. Let \(Q \in \mathcal{S} \) be a Banach space in which we define \(\|v\| = \max_{t \in [0,1]} |v(t)| : x \in \mathcal{S} \). Let \(Q \) be a cone of positive functions in \(\mathcal{S} \) of the kind \(Q = \{v \in \mathcal{S} : v(t) \geq t^r \|v\|, \ t \in [0,1] \} \).

By the help of Theorem 2.1, (1.1) is equivalent to

\[
x(t) = \int_0^1 M^\kappa(t,s)\mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s-\varsigma)^{\gamma-1} [Q(\varsigma^*)\zeta_1(\varsigma^*,x(\varsigma^*-\varrho^*))]d\varsigma^* ds \right). \tag{2.16}
\]

Assume \(\mathcal{T}_0 : P \setminus \{0\} \to \mathcal{S} \) for \((i = 1, 2) \) such that

\[
\mathcal{T}_0 x(t) = \int_0^1 M^\kappa(t,s)\mathcal{U}_q \left(\int_0^s M^\gamma(s,\varsigma^*)[Q(\varsigma^*)\zeta_1(\varsigma^*,x(\varsigma^*-\varrho^*))]d\varsigma^* ds \right). \tag{2.17}
\]

With the help of Theorem 2.1, solution of the SFDE with \(\mathcal{U}_p \) given by (1.1) is a fixed point \(x(t) \) of \(\mathcal{F} \), where

\[
x(t) = \mathcal{T}_0 x(t). \tag{2.18}
\]

We assume that:

- (P1) \(\zeta_1 : ((0,1) \times (0, +\infty)) \to [0, +\infty) \) is continuous;
- (P2) \(Q : (0,1) \to [0, +\infty) \) is non vanishing and continuous on \((0,1)\) with \(\|Q\| = \max_{t \in [0,1]} |Q(t)| < +\infty \);
- (P3) With \(a_1, M_{\kappa_1}^* > 0 \) and \(k_1 \in [0,1] \), function \(\zeta_1 \) satisfying

\[
|\zeta_1(t,x(t-\varrho^*))| \leq \mathcal{U}_p^*(a_1|x(t)|^{k_1} + M_{\kappa_1}^*); \tag{2.19}
\]

- (P4) There are constants \(\lambda_{\zeta_1} \) such that for all \(u, v \in \mathcal{S} \), the subsequent is satisfied

\[
|\zeta_1(t,x(t-\varrho^*)) - \zeta_1(t,v(t-\varrho^*))| \leq \lambda_{\zeta_1} |x(t) - v(t)|.
\]

Theorem 2.3. Let (P1) – (P3) are hold true. Then \(\mathcal{T}_0 \) is completely continuous operator.

Proof. For any \(x \in \mathcal{L}^\kappa(\tau_2) \setminus \mathcal{L}^\kappa(\tau_1) \), with the help of Lemma 2.2 and (2.17), we evaluate

\[
\mathcal{T}_0 x(t) = \int_0^1 M^\kappa(t,s)\mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s-\varsigma)^{\gamma-1} [Q(\varsigma)\zeta_1(\varsigma^*,x(\varsigma^*-\varrho^*))]d\varsigma^* ds \right). \tag{2.19}
\]
\[T_0 x(t) = \int_0^1 \mathcal{M}^*(t, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \tag{2.20} \]

\[\geq t^{\gamma - 1} \int_0^1 \mathcal{M}^*(1, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds. \]

With help of (2.19) and (2.20), we proceed

\[T_0 x(t) \geq t^{\gamma - 1} \| T_0 x \|, \quad t \in [0, 1]. \tag{2.21} \]

This confer \(T_0 : L^\infty(\tau_2) \setminus L^\infty(\tau_1) \rightarrow P \). At the moment, for continuity of \(T_0 \), we show that \(\| T_0(x_n) - T_0(x) \| \rightarrow 0 \) as \(n \rightarrow \infty \), let us contemplate

\[
|T_0 x_n(t) - T_0 x(t)| = \left| \int_0^1 \mathcal{M}^*(t, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|
\]

\[
- \int_0^s \mathcal{M}^*(t, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right| \quad (2.22)
\]

\[
\leq \int_0^1 |\mathcal{M}^*(t, s)| \left| \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|
\]

\[
- \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds. \]

By continuity of the function \(\zeta_1 \) and (2.22), we contrive \(|T_0 x_n(t) - T_0 x(t)| \rightarrow 0 \) as \(n \) goes to \(+\infty \). This affirms that \(T_0 \) is continuous. At the moment, for uniformly boundedness of \(T_0 \), by (Q1) and (2.17), we conspire

\[
|T_0 x(t)| = \left| \int_0^1 \mathcal{M}^*(t, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|
\]

\[
= \int_0^1 |\mathcal{M}^*(t, s)| \left| \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|
\]

\[
\leq \int_0^1 |\mathcal{M}^*(1, s)| \left| \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \mathcal{Q} \left\| \overline{U}_q^* \right\| \left(a_1 \left\| x \right\| k_1 + M_{\zeta_1} \right) d\varsigma* \right) ds \right|
\]

\[
\leq \left(\frac{1}{\Gamma(\kappa + 1)} + \frac{1}{\Gamma(\kappa)} + \Gamma(\gamma) + \frac{1}{\Gamma(1 + \delta*)} \Gamma(\kappa - \delta* + 1) \right) \left(\frac{1}{\Gamma(\gamma + 1)} \right) ^{\gamma - 1} \mathcal{Q} \left\| \mathcal{Q} \right\| ^{\gamma - 1} \quad (2.23)
\]

\[
\times \left(a_1 \left\| x \right\| k_1 + M_{\zeta_1} \right),
\]

where \(\Delta_1 = \left(\frac{1}{\Gamma(\kappa + 1)} + \frac{1}{\Gamma(\kappa)} + \Gamma(3 - \delta*) \right) \Gamma(\gamma + 1) ^{\gamma - 1} \) By (2.23), the operator \(T_0 : L^\infty(\tau_2) \setminus L^\infty(\tau_1) \) is uniformly bounded. Now for the equiuniformity of the operator \(T_0 \), by (P3), (2.17) and Theorem 2.1, for \(t_1, t_2 \in [0, 1] \), we devise

\[
|T_0 x(t_1) - T_0 x(t_2)|
\]

\[
= \left| \int_0^1 \mathcal{M}^*(t_1, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|
\]

\[
- \int_0^1 \mathcal{M}^*(t_2, s) \overline{U}_q^*(s) \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma*)^{\gamma - 1} \left[\mathcal{Q}(\varsigma*) \zeta_1(\varsigma*, x(\varsigma* - \rho*)) \right] d\varsigma* \right) ds \right|.
\]
\begin{equation}
\begin{aligned}
&\leq \int_0^1 \left| \mathcal{M}^\kappa(t_1,s) - \mathcal{M}^\kappa(t_2,s) \right| \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} \|Q\| \right. \\
&\quad \times \mathcal{U}_q^* \left(a_1 \|x\|^k_1 + \mathcal{M}^\kappa_1 \right) \mathcal{A} \mathcal{U}^* \left. \right) ds \\
&\leq \left(\frac{|t_1^* - t_2^*|}{\Gamma(\kappa + 1)} + \frac{|t_1 - t_2|}{\Gamma(\kappa)} + |t_1^* - t_2^*| \frac{\Gamma(3 - \delta^*)}{\Gamma(\kappa - \delta^* + 1) \Gamma(1 + \delta^*)} \right) \frac{1}{\Gamma(\gamma + 1)} \|Q\|^{q-1} \\
&\quad \|Q\|^{q-1} (a_1 \|x\|^k_1 + \mathcal{M}^\kappa_1).
\end{aligned}
\end{equation}

It is clear from (2.24) that \(t_1 \to t_2 \) confer that \(|T_0^x(t_1) - T_0^x(t_2)| \to 0 \). Consequently, \(T_0(\mathcal{L}^*(\tau_2) \setminus \mathcal{L}^*(\tau_1)) \) is equicontinuous. By Arzela-Ascoli theorem \(T_0(\mathcal{L}^*(\tau_2) \setminus \mathcal{L}^*(\tau_1)) \) is compact which confer \(T_0 \) is compact in \(\mathcal{L}^*(\tau_2) \setminus \mathcal{L}^*(\tau_1) \). Subsequently, we conspire completely continuity of \(T_0 : \mathcal{L}^*(\tau_2) \setminus \mathcal{L}^*(\tau_1) \to P \).

Let us define the subsequent height functions as growth for function \(\zeta_1(t, x(t - \varphi^*)) \), \(\forall t \in (0, 1) \):

\[
\begin{align*}
\mathcal{U}^*_1(t, \varphi^*) &= \max\{\zeta_1(t, x(t - \varphi^*)) : t^{\kappa-1} \varphi^* \leq x \leq \varphi^*\}, \quad (t \in (0, 1), r > 0), \\
\mathcal{U}^*_0(t, \varphi^*) &= \min\{\zeta_1(t, x(t - \varphi^*)) : t^{\kappa-1} \varphi^* \leq x \leq \varphi^*\}, \quad (t \in (0, 1), \varphi^* > 0).
\end{align*}
\]

(2.25)

Theorem 2.4. Assume that \((P_1) - (P_3)\) hold true and there are \(a, b \in \mathbb{R}^+ \) such that any of the subsequent conditions is satisfied:

\((B_1)\) \(a \leq \int_0^1 \mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} \mathcal{U}^*_0(\varsigma, a) d\varsigma \right) ds < +\infty \) and

\(\int_0^1 \mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} \mathcal{Q}(\varsigma) \mathcal{U}^*_0(\varsigma, b) d\varsigma \right) ds \leq b; \)

\((B_2)\) \(b \leq \int_0^1 \mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \mathcal{U}^*_0(\varsigma, a)] d\varsigma \right) ds < a \) and

\(\frac{1}{\mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \mathcal{U}^*_0(\varsigma, b)] d\varsigma \right) ds} < +\infty. \)

Then the problem (1.1) has an increasing positive solution \(x^* \in P \) such that \(a \leq \|x^*\| \leq b. \)

Proof. With no loss of generality, we can contemplate \((B_1)\). If \(x \in \partial \mathcal{L}^*(a) \), then we devise \(\|x\| = a \) and \(\forall t \in (0, 1) \), \(t^{\kappa-1} a \leq x(t) \leq a. \) By (2.25), we devise \(\mathcal{U}^*_0(t,u) \leq \zeta_1(t,u - \varphi^*) \), we get

\[
\|T_0^x(t)\| = \max_{t \in [0,1]} \int_0^1 \mathcal{M}^\kappa(t,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \zeta_1(\varsigma, x(\varsigma - \varphi^*))] d\varsigma \right) ds
\]

\[
\geq t^{\kappa-1} \int_0^1 \mathcal{M}^\kappa(t,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \zeta_1(\varsigma, x(\varsigma - \varphi^*))] d\varsigma \right) ds
\]

\[
\geq \int_0^1 \mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \zeta_1(\varsigma, x(\varsigma - \varphi^*))] d\varsigma \right) ds \geq a = \|x\|.
\]

If \(x(t) \in \partial \mathcal{L}^*(b) \), then \(\forall t \in [0,1], \|x\| = b \) and \(t^{\kappa-1} b \leq x(t) \leq b \). With the help of (2.25), we devise \(\mathcal{U}^*_0(t,u) \leq \zeta_1(t,x(t - \varphi^*)) \) for \(t \in (0, 1) \), which implies

\[
\|T_0^x(t)\| = \max_{t \in [0,1]} \int_0^1 \mathcal{M}^\kappa(t,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \zeta_1(\varsigma, x(\varsigma - \varphi^*))] d\varsigma \right) ds
\]

\[
\leq t^{\kappa-1} \int_0^1 \mathcal{M}^\kappa(1,s) \mathcal{U}_q^* \left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \varsigma)^{\gamma-1} [\mathcal{Q}(\varsigma) \zeta_1(\varsigma, x(\varsigma - \varphi^*))] d\varsigma \right) ds
\]
Thus $x^\ast \in \mathcal{L}^2(b) \setminus \mathcal{L}^1(a)$ is a fixed of T_0. Consequently, $a \leq \|x^\ast\| \leq b$. Further, by Lemma 2.2 and Theorem 2.1, the $x^\ast(t) \geq t^\alpha \|x\ast\| \geq at^\alpha - 1 > 0$, $\forall t \in (0, 1)$, which confer that x^\ast is positive. We further have

$$\frac{\partial}{\partial t} x^\ast(t) = \frac{\partial}{\partial t} (T_0 x^\ast(t))$$

(2.28)

which confer the increase of solution x^\ast.

3. HU-stability

In this section, we discuss HU-stability of singular fractional DE with \mathcal{U}_p given by (1.1) with the help of work in [27, 28].

Definition 3.1. The fractional order integral system (2.16) is HU-stability provided that there is a constant $D^* > 0$ sustaining:

For every $\lambda > 0$, if

$$|x(t) - \int_0^1 \mathcal{M}^\ast(t, s) \mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds \right| \leq \lambda,$$

(3.1)

there exist a pair say $x^\ast(t)$ sustaining

$$x^\ast(t) = \int_0^1 \mathcal{M}^\ast(t, s) \mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x^\ast(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds,$$

such that

$$|x(t) - x^\ast(t)| \leq D^* \lambda.$$

(3.2)

Theorem 3.1. Assume that (P_1), (P_2) and (P_3) hold true. Then, the SFDE with nonlinear p-Laplacian operator (1.1) is HUS.

Proof. By Definition 3.1 and Theorem 2.4, assume that $x(t)$ be exact solution of (2.16) and $x^\ast(t)$ an approximation sustaining (3.2), then

$$|x(t) - x^\ast(t)|$$

$$= \left| \int_0^1 \mathcal{M}^\ast(t, s) \mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds \right|

- \int_0^1 \mathcal{M}^\ast(t, s) \mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x^\ast(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds$$

(3.3)

$$\leq (p - 1)\rho^{p - 2} \|Q\|^{q - 1} \left(\int_0^1 |\mathcal{M}^\ast(t, s)| \right)$$

$$\mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds$$

$$- \mathcal{U}_q \left(\frac{1}{\Gamma(\gamma)} \right) \int_0^s (s - \zeta^\ast)^{\gamma - 1} [Q(\zeta^\ast) \xi_1(\zeta^\ast, x^\ast(\zeta^\ast - \varrho^\ast))] d\zeta^\ast ds$$

$$\leq (p - 1)\rho^{p - 2} \lambda_{\xi_1} \left(\frac{1}{\Gamma(\kappa + 1)} + \frac{1}{\Gamma(\kappa)} + \frac{1}{\Gamma(\delta^* + 1)} \right) \left[\frac{1}{\Gamma(\gamma + 1)} \right]^{q - 1}$$

$$\times \|Q\|^{q - 1} \|x - x^\ast\|$$

\(\square\)
where $\mathcal{D}^* = \|Q\|^{-1}(p - 1)\rho^{p-2}\xi\frac{1}{\Gamma(\kappa+1)} + \frac{1}{\Gamma(\kappa)} + \frac{\Gamma(3-\delta^*)}{\Gamma(1+\delta^*)\Gamma(\kappa-\delta^*)+1})\frac{1}{\Gamma(\kappa+1)}\|Q\|^{-1}$. Thus, with the use of (3.3), the equation (2.16) is HU-stable. Ultimately, the singular fractional DE with \mathcal{U}_p operator (1.1) is HU-stable.

4. An application. In this section, we provide an application of our theorems.

Example 4.1. For $p = 3$, $\delta^* = 1.5$, $\gamma = 1.5$, $\kappa = 3.5$, $\rho = 0.5$, $t \in [0, 1]$, $Q = \frac{1}{\sqrt{t+1}}$, $\zeta_1(t, x(t - \rho^*)) = x^3(t) + \frac{1-x^*}{3\sqrt{x(t)}}$, we contemplate an example given by

\[
\begin{aligned}
\mathcal{D}^*[U_p^*(\mathcal{D}^*x(t))] + Q(t)\zeta_1(t, x(t - \rho^*)) &= 0, \\
(U_p^*[\mathcal{D}^*x(t)])^{(i)}|_{t=0} = 0 = x^{(i)}(0) = x^{(i)}(1), & \text{for } k = 0, 1, 2, i = 0, 1, 2.
\end{aligned}
\]

(4.1)

Clearly $Q \in C((0, 1), [0, +\infty))$, $\zeta_1 \in C((0, 1) \times (0, +\infty), [0, +\infty))$. Consider

\[
\begin{aligned}
\mathcal{U}^*_{\max}(t, r) &= \max\{u^3 + \frac{0.5}{3u^2} : t^2r \leq x \leq r^3 + \frac{0.5}{3t^2r^2}, \\
\mathcal{U}^*_{\min}(t, r) &= \min\{u^3 + \frac{0.5}{3u^2} : t^2r \leq x \leq r^3 + \frac{0.5}{3t^2r^2},
\end{aligned}
\]

\[
\int_0^1 \mathcal{M}(1, s)\mathcal{U}^*_q\left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} [Q(\zeta^*)\mathcal{U}^*_\max(\zeta^*, b)] d\zeta^* \right) ds
\]

\[
= \int_0^1 \mathcal{M}(1, s)\mathcal{U}^*_q\left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} [Q(\zeta^*)\mathcal{U}^*_\max(\zeta^*, 1)] d\zeta^* \right) ds
\]

(4.2)

\[
\int_0^1 \frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} \left[\frac{1}{\sqrt{1-\zeta^*} \left(1 + \frac{1}{3\sqrt{\zeta^*}}\right)}\right] d\zeta^* ds
\]

\[
= 0.0185946 < 1.
\]

Correspondingly, we have

\[
\begin{aligned}
\int_0^1 \mathcal{M}(t, s)\mathcal{U}^*_q\left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} [Q(\zeta^*)\mathcal{U}^*_\min(\zeta^*, a)] d\zeta^* \right) ds
\end{aligned}
\]

\[
= \int_0^1 \mathcal{M}(1, s)\mathcal{U}^*_q\left(\frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} [Q(\zeta^*)\mathcal{U}^*_\min(\zeta^*, 1)] d\zeta^* \right) ds
\]

(4.3)

\[
\int_0^1 \frac{1}{\Gamma(\gamma)} \int_0^s (s - \zeta^*)^{-1} \left[\frac{1}{\sqrt{1-\zeta^*} \left(1 + \frac{1}{3\sqrt{\zeta^*}}\right)}\right] d\zeta^* ds
\]

\[
= 0.00389515 > \frac{1}{1000}.
\]

Thus, with the help of Theorem 2.4, the singular fractional DE with \mathcal{U}_p (4.1) has a non trivial solution u^* which satisfies $\frac{1}{1000} \leq \|x^*\| \leq 1$.

5. **Conclusion.** In this paper we are considered stability and existence criteria for a SFDE with $\dot{U}_p(1.1)$. For these aims, the research problem was transferred into its equivalent integral equation form by the use of Green function. The Green function was studied for its nature in the interval $(0, 1)$ and it was proved that the function is an increasing and positive. After these, with the help of fixed point approach, existence and uniqueness results were established. Then HU-stability of (1.1) was also determined. At the end, for the application, an application was given in which the integral was evaluated for the numerical values by *Mathematica*. For future research, we suggest reconsideration of the singular fractional DE with $\dot{U}_p(1.1)$ for multiplicity results.

Contribution. All the authors of this paper claim equal contributions.

Competing interest. There is no competing interest regarding the publication of the paper.

Acknowledgment. The authors are thankful to the editor and anonymous reviewer whose comments have improved the quality of the paper.

REFERENCES

[1] B. Ahmad, A. Alsaedi, R. P. Agarwal and A. Alsharif, *On sequential fractional integro-differential equations with nonlocal integral boundary conditions*, Bull. Malays. Math. Sci. Soc., 41 (2018), 1725–1737.

[2] A. Atangana and J. F. Gómez-Aguilar, *Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws*, Chaos Solitons Fractals, 102 (2017), 285–294.

[3] A. Atangana and J. F. Gómez-Aguilar, *A new derivative with normal distribution kernel: Theory, methods and applications*, Phys. A, 476 (2017), 1–14.

[4] A. Atangana and J. F. Gómez-Aguilar, *Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena*, The European Physical Journal Plus, 133 (2018), 1–22.

[5] A. Atangana and J. F. Gómez-Aguilar, *Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu*, Numer. Methods Partial Differential Equations, 34 (2018), 1502–1523.

[6] T. Abdeljawad, F. Jarad and D. Baleanu, *On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives*, Sci. China Ser. A, 51 (2008), 1775–1786.

[7] T. Abdeljawad, D. Baleanu and F. Jarad, *Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives*, J. Math. Phys., 49 (2008), 083507, 11 pp.

[8] T. Abdeljawad and Q. M. Al-Mdallal, *Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality*, J. Comput. Appl. Math., 339 (2018), 218–230.

[9] T. Abdeljawad and J. Alzabut, *On Riemann-Liouville fractional q-difference equations and their application to retarded logistic type model*, Math. Methods Appl. Sci., 41 (2018), 8953–8962.

[10] B. Ahmad and R. Luca, *Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions*, Appl. Math. Comput., 339 (2018), 516–534.

[11] J. Alzabut, T. Abdeljawad and D. Baleanu, *Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model*, J. Comput. Anal. Appl., 25 (2018), 889–898.

[12] J. Alzabut, T. Abdeljawad and D. Baleanu, *Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model*, J. Comput. Anal. Appl., 25 (2018), 889–898.
[13] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, *Adv. Difference Equ.*, 2017 (2017), 11 pp.

[14] A. Babakhani and T. Abdeljawad, A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions, *J. Comput. Anal. Appl.*, 15 (2013), 753–763.

[15] Y. K. Chang and R. Ponce, Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces, *J. Integral Equations Appl.*, 30 (2018), 347–369.

[16] A. Coronel-Escamilla, J. F. Gómez-Aguilar, M. G. López-López, V. M. Alvarado-Martínez and G. V. Guerrero-Ramírez, Triple pendulum model involving fractional derivatives with different kernels, *Chaos Solitons Fractals*, 91 (2016), 248–261.

[17] J. Henderson and R. Luca, Systems of Riemann–Liouville fractional equations with multipoint boundary conditions, *Appl. Math. Comput.*, 309 (2017), 303–323.

[18] L. Guo, L. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, *Nonlinear Anal.*, Model. Control, 23 (2018), 182–203.

[19] A. Ghaninia, M. Kratoub and K. Saoudib, A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, *Filomat*, 32 (2018), 653–669.

[20] J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, *The European Physical Journal Plus*, 132 (2017), 13pp.

[21] J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, *Adv. Difference Equ.*, 2016 (2016), Paper No. 173, 13 pp.

[22] R. Hilfer, *Application of Fractional Calculus in Physics*, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[23] S. Hristova and C. Tunc, Stability of nonlinear volterra integro-differential equations with caputo fractional derivative and bounded delays, *Electron. J. Differential Equations*, 2019 (2019), Paper No. 30, 11 pp.

[24] D. Ji, Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian, *Bull. Malays. Math. Sci. Soc.*, 41 (2018), 249–263.

[25] E. T. Karimov and K. Sadarangani, Existence of a unique positive solution for a singular fractional boundary value problem, *Carpathian J. Math.*, 34 (2018), 57–64.

[26] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

[27] A. Khan, Y. Li, K. Shah and T. S. Khan, On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, *Complexity*, 2017 (2017), Art. ID 8197610, 9 pp.

[28] H. Khan, C. Tunc, W. Chen and A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, *J. Appl. Anal. Comput.*, 8 (2018), 1211–1226.

[29] H. Khan, W. Chen and H. Sun, Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space, *Math. Methods Appl. Sci.*, 41 (2018), 3430–3440.

[30] B. López, J. Harjani and K. Sadarangani, Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM*, 112 (2018), 1281–1294.

[31] R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, *Results Math.*, 73 (2018), Art. 125, 15 pp.

[32] I. Podlubny, *Fractional Differential Equations*, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[33] S. G. Samko, A. A. Kilbas and O. I Marichev, *Fractional Integrals and Derivatives: Theory and Applications*, Gordon and Breach Science Publishers, Yverdon, 1993.

[34] K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, *Fract. Calc. Appl. Anal.*, 20 (2017), 1507–1530.

[35] H. Srivastava, A. El-Sayed and F. Gaafar, *A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions*, Symmetry, 2018.
[36] S. Xie and Y. Xie, Nonlinear solutions of non local boundary value problems for nonlinear higher-order singular fractional differential equations, *J. Appl. Anal. Comput.*, **8** (2018), 938–953.

[37] F. Yan, M. Zuo and X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, *Bound. Value Probl.*, **2018** (2018), Paper No. 51, 10 pp.

[38] H. Yépez-Martínez, J. F. Gómez-Aguilar, I. O. Sosa, J. M. Reyes and J. Torres-Jíménez, The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, *Rev. Mexicana Fís.*, **62** (2016), 310–316.

[39] X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, *Appl. Math. Lett.*, **80** (2018), 12–19.

[40] L. Zhang, Z. Sun and X. Hao, Positive solutions for a singular fractional nonlocal boundary value problem, *Adv. Difference Equ.*, **2018** (2018), Paper No. 381, 8 pp.

[41] C. J. Zuñiga-Aguilar, J. F. Gómez-Aguilar and R. F. Escobar-Jíménez, Romero-Ugalde HM. Robust control for fractional variable-order chaotic systems with non-singular kernel, *The European Physical Journal Plus*, **133** (2018), 13pp.

Received January 2019; revised February 2019.

E-mail address: hasibkhan13@yahoo.com
E-mail address: cembunc@yahoo.com
E-mail address: azizkhan927@yahoo.com