Greenhouse gas emission reduction by the selection of efficient lighting systems

L Maldonado1, 2, A Hidalgo1 and R Hechavarria1
1Universidad Técnica de Ambato, Ambato, Ecuador
E-mail: lr.maldonado@uta.edu.ec

Abstract. Indoor lighting is one of the most important consumer of the energy worldwide, driving to a high GHG emissions. Current state of the lighting system in the classrooms of the Technical University of Ambato (UTA), Tungurahua, Ecuador has been assessed in this work. A sample of classrooms were selected to quantify its illumination levels, with the Luxometer (Sper Scientific 850007), these data were computed by means of DIALUX software, whose generates the light distribution of different lighting systems scenarios and the lamps geometric distribution. Number of luminaires, luminous distribution and the energy efficiency value of the installation (VEEI) were compared among all the different cases, also a luminance analysis and the energy efficiency of installation was performed. First results show an important reduction of around 40% of the energy at present consumed, decreasing the emission of almost 200 tons of CO2 equivalent per year.

1. Introduction
One of the most pressing debates worldwide nowadays is savings in all forms of energy and natural resources conservation [1, 2]. Only the consumption of buildings is around 40% of the energy produced on the planet and its responsible for almost the 30% of greenhouse gas (GHG) emissions [3, 4]. Indoor lighting is the greatest part of the building energy requirement [5]; therefore, in the latest years, new methodologies have been proposed that addresses lamp distribution, to ensure greater illumination [6, 7], as well as several policies that demand the use of better lighting technology.

Regarding to the energy savings by means of luminaries with higher quality, there are, for instance, the use of electroluminescent diodes (LED), which have high energy efficiency standards and are demand in buildings all over the world [8, 9]. LEDs save about 30 and 50% of electricity in buildings due to a remarkable luminous efficiency comparing with fluorescent lamps (LFL) [10, 11]. LFL light is commonly required in Ecuadorian buildings, even though its poor performance; causing visual fatigue and stress after long exposure [12]. These reasons lead to members of the European Union establish the regulations and protocols for energy saving in buildings [13, 14]. Latin-American regulations replicate the good energy saving practices of EU [15], starting by the acquisition and adequate use of low consumption equipment and better technology.

Regarding to the energy savings by rearranging the spatial configuration of the lamp-luminaire assembly, parameters like indoor placement location, work conditions such as: reflectance of ceiling and walls, entry of natural light into the environment, among others [16], are considered, that significantly reduce the electric energy consumption [17]. All the parameters above mentioned contribute to enhance the energy efficiency, whose can be tested based on a modeling analysis of the lighting systems before the construction of buildings [18, 19].
A correct lighting inside classrooms is vital for academic activities. However, this factor represents about 19% of the total amount of energy and 15% of the GHG’s emission all over the world [20]; these are reasons why, before installing lamps, it is essential to consider an exhaustive analysis in terms of lighting requirements and luminary types that minimize the consumption of electricity and GHG’s emission; by means of the DIALUX software (or any else), lighting systems can be performed to appraise the quality of the lamp-luminaire assembly [21].

On the other hand, GHG’s emissions related to electricity consumption depends directly on the type of generation, distribution and use at the destination. Ecuadorian electricity comes largely from hydro power (50.7%), fossil fuels (34.5%) and natural gas (12.6%), however, bio fuels, solar and wind power are not out of the scene.

The main goal of this study is to assess the performance of the current lighting systems of the UTA based on the traditional LFL, versus a most updated system based on the LEDs. Lighting level is the ratio between the luminous flux delivered by the luminaire and the area to be illuminated, for academic activities, the average illumination is between 300 and 700 lux [22]. Lighting level, energy consumption, energy efficiency, homogeneous light distribution, number of luminaries and GHG’s emissions are compare; for having better criteria to install the lighting points in all types of buildings, as specified in the BT25 regulation [23].

2. Methodology
Classroom characteristics were established based on the SLL Code for Lighting 2012. Length, width, height, workplace, spacing, ceiling, wall and floor reflectance of the classrooms and the height of the students’ desk were identified. The reflectance was estimated by utilizing standardized tables [24]. Maximum distance between the measurement points is determined by using equation 1, and the number of points to make the measurements was founded based on the dimensions of the classrooms [25].

\[p = 0.2 \times 5^{\log(d)} \]
\[\text{(1)} \]

Where \(p \) represents maximum distance between point and \(d \) represents longest distance of the classroom.

An observation form designed by Pattini et al [26] was used to collect all the information of the classroom and its lamp luminaire assembly. Once, the parameter \(p \) has been calculated, and the classroom characteristics established, the Sper Scientific 850007 certified luxmeter was used to perform the luminance measurements which provide the needed information to generate the isolines of the selected classrooms. Based on the measurements of the lighting level, the average illumination, maximum and minimum values of the areas presented are estimated, and the installed power of the lighting system is determined. To select the best lamp-luminaire assembly and the analysis of the installed assemblies, equation (2) is used, which corresponds to the energy efficiency value of the installation and installed power in lighting [14].

\[VEEI = (P \times 100 \text{lux})/(A \times E_m) \]
\[\text{(2)} \]

Where \(A \) represents evaluated area of the classroom (\(m^2 \)) and \(E_m \) represents minimum lighting level.

The total amount of electricity consumed was evaluated for one month of operation of the lighting system (MWh/month). Finally, GHG emissions was evaluated by using equation (3), which consider the total energy consumed and emission factor of electricity for generation, distribution and consumption at the destination point.

\[GHG's \text{ Emissions} = TEC \times (Ef_G + Ef_D) \]
\[\text{(3)} \]

Where \(TEC \) represents Total Energy consumed, \(Ef_G \) represents Emission Factor due to electricity generation and \(Ef_D \) represents Emission Factor due to electricity distribution and consumption.
3. Results and discussion
The data has been collected from the UTA’s existing classrooms and based on the current lighting system. Table 1 shows the characteristics of the classrooms and the lamp luminaire assembly used. Considering table 1 and equation (1), measurement points for the current lighting models are obtained and with this data, the behavior of the illuminance in the selected classrooms is determined. The illuminance maintenance factor is the ratio of the luminous flux at a given time to the initial flow, and is estimated based on [23,27].

Table 1. Current characteristics of classroom and lamp luminaire assembly.

Characteristics	Current classroom
Length	9.9 m
Width	5.8 m
Height	2.9 m
Plane space work	0.8 m
Reflectance of ceiling and wall	79%
Number of luminaires	8
Number of fluorescent lamps	16
Type of lamp	32W LFL
Maintenance factor	0.89

Figure 1 shows the average illumination levels measured in the classrooms, the variation of illumination is shown in matrix by using different colors that represent the measured light values. It is observed a low lighting value at the edges of the classroom, the maximum values are below the luminaires. In the center of the classroom, high lighting values are shown, refer to the yellow color, where the luminaires are located, the minimum values are represented by green and cream colors which are located near to the walls due to the luminaries are not available to supply lumens of light properly.

Figure 2 presents the photometric diagram of the LFL SMARTFORM TPS460 luminaire used in classrooms, which expresses the maximum angles of light opening allowed by the lamp housing (90°), lumens emitted by LFL are distributed in a diffuse general form, although, the housing directs this luminous flux to the area to be illuminated, the use of housings with LFL produces a luminous...
efficiency of 70%, losing 30% due to the use of low quality luminaires.

Once the current state of the illumination of the classrooms was analyzed, the selection of several lamp-luminaire sets for the analysis with the DIALux software is considered. Table 2 indicates the characteristics of the proposed sets, 1 type using LED technology and 1 type using LFL technology; the final selection is made based on performance and luminous efficiency.

Characteristics of the luminaire	LED	LFL
Luminaire power [W]	ENDO RAD706N	TBS318 3xTLD
φ luminaire [lm]	39,3	108
φ lamps [lm]	5717	7204
Luminous efficiency	5743	9750
Luminous performance [lm/W]	100,45%	73,89%
	145,5	66,7

Assemblies based on LED technology have a superior performance and luminous efficiency compared to the fluorescent ones, the RAD706N set possesses the highest values of luminous efficiency since it delivers the highest luminous flux using lower power.

Figure 3 illustrates the 2-simulation model performed, DiaLUX software calculates and generates isolines of the lighting levels based on the number of luminaires selected for the simulation, the luminaires are automatically located being adjusted to the lighting parameters recommended for academic activities, in addition, the distribution of luminaires must meet with a minimum number of installation points over an area [23]. In simulation results presented in figure 3, the luminous distribution is shown; minimum points of illumination located at the edges and corners of the work plane, maximum points of illumination located below the luminaires because they are direct points of incidence of the luminous flux. Figure 3(a) shows a more homogeneous or uniform luminous distribution of the model (b), which, on the contrary, there are more variations in its distribution.

![Figure 3](image)

Figure 3. Scenarios generated by the DIALux software for luminaires (a) RAD706N (b) TBS318x3.

Table 3 compares the energy efficiency and lighting levels of the current model Ac_1 and the 2 proposed models (a, b). The Ac_1 model has a higher VEEI, this efficiency value is higher than models TBS318x3 based on LFL, on the other hand, LED models RAD706N, denote low values, in addition, the specific power of connection or power relation of the system and the area to be illuminated in LED systems is much lower. Of the proposed models, the average lighting is within the accepted range, except for the Ac_1 model, with values below the recommended one.

In order to select the efficient lighting system, four variables are analyzed (table 4): number of luminaires, light distribution, recommended lighting and relative VEEI; its respective weighting will allow to make an adequate selection, each variable is weighted according to the valuation on the group
of luminaires. There are 3 ways to consider the weighting of each variable: 5% when it does not meet the requirements, 15% when it meets the requirements and 25% when it stands out among the group of luminaires analyzed.

Table 3. Comparison of VEEI parameters and averages of lighting levels.

Parameters	Ac_1 (a)	RAD706N (b)	TBS318x3
Number of luminaires installed	8	8	8
VEEI	3.36	1.03	2.12
Total power of the classroom [W]	512	314.4	864
Specific power of the connection [W/m²]	8.91	5.53	15.2
Average level of lighting [lux]	265	536	714
Minimum level of illumination [lux]	142	280	347
Maximum level of illumination [lux]	414	670	929

Table 4. Weighting of variables that contribute to the outcome of a scenario.

Variable	Weighting	5%	15%	25%	
Number	High	High	Average	Low	
Luminous distribution	Heterogeneous	Heterogeneous	Average	Homogeneous	
Lighting within the range	Do not meet	Do not meet	Partially meet	Homogeneous	
Relative VEEI	High	High	Normal	Low	

Based on the recommendations stated on table 5, the best scenario (100%) would be a classroom with a small number of luminaires, homogeneous light distribution, compliance with the range of illuminance, and a low relative VEEI value.

Table 5. Evaluation of the selection results of the luminaire models.

Variable	RAD706N	TBS318x3
Number of luminaires	15	15
Light distribution	15	15
Lighting within the range	25	15
Relative VEEI	25	15
TOTAL	80%	60%

Table 5 indicates the evaluation of the selected models according to the sum of the weighted variables, model RAD706N shows the best performance (80%) for its use within the proposed classroom, due to it has the lowest number of luminaries, homogeneous lighting distribution, higher average recommended illuminance and relative energy efficiency value lower than TBS318x3 model.

Table 6 shows the estimate GHG emissions produced by: the model AC_1, which represents the current state of the classrooms, and model RAD706N, which represents the highest lighting efficiency model simulation. It is determined that there is a reduction of around 25% of GHG emissions, which signifies 17.40 tons CO₂e per month and 220 tons CO₂e per year.

In this study, a lighting selection methodology is proposed based mainly on the energy efficiency of the installation, and with several parameters proposed by the lamp luminaire assemble. A correct selection will be the one that meets at least 60% (which means that all its parameters are at least found with average values, according to table 6) of the rating; in case of uncertainty, select the one with the lowest specific connection power.
R would avoid the emission of about 200 tons of CO₂ equivalent each year [29].

4. Conclusions
The selection of efficient lighting system reduces considerably GHG´s emissions. It is estimated that by replacing the LFL luminaires with LEDs, (model RAD760), 0.2 kW of electrical energy will be consumed per classroom, 100 kW in the entire university campus, which means a monthly savings of 25 MWh/month compared to the current status of the lighting systems (close to 105 MW/h) [28], this would avoid the emission of about 200 tons of CO₂ equivalent each year [29].

References
[1] Ikeda S and Ooka R 2016 A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes Ener Buildings 125 75-85
[2] Mandelli S, Barbieri J, Mereu R and Colombo E 2016 Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review Renew Sust Energ Rev 58 1621-46
[3] Ahmad M W, Moursheed M, Mundow D, Sisinni M and Rezgui Y 2016 Building energy metering and environmental monitoring – A state-of-the-art review and directions for future research Ener Buildings 120 85-102
[4] Call D, Osterhage T, Streblow R and Müller D 2016 Energy performance gap in refurbished German dwellings: Lesson learned from a field test Ener Buildings 127 1146-58
[5] De Paz J F, Bajo J, Rodríguez S, Villarrubia G and Corchado J M 2016 Intelligent system for lighting control in smart cities Inf Sci 372 241-55
[6] Liu J, Zhang W, Chu X and Liu Y 2016 Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight Ener Buildings 127 95-104
[7] Chew I, Kalavally V, Oo N W and Parkkinen J 2016 Design of an energy-saving controller for an intelligent LED lighting system Ener Buildings 120 1-9
[8] Kandilli C and Külahlı G 2017 Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting Renew Energy 101 713-27
[9] Madias E N D, Kontaxis P A and Topalis F V 2016 Application of multi-objective genetic algorithms to interior lighting optimization Ener Buildings 125 66-74
[10] Gil R, Gil S and Iannelli L 2015 1, 5 GW saving in the peaks of electricity consumption-Led Lighting Petrotecina
[11] Guamán J, Vargas C, García M and Ríos A 2017 Intelligent Interior Lighting Control Platforms integrated in LVDC Distribution Systems Energy Technical Journal
[12] Ixtaina P R 2016 Scientific report of research: Ixtaina, Pablo Rubén (2015-2016)
[13] De Boeck L, Verbeke S, Audenaert A and De Mesmaeker L 2015 Improving the energy performance of residential buildings: A literature review Renew Sust Energ Rev 52 960-75
[14] C T of the Building Basic document of energy saving (DB-HE) BOE 08/11/2013

Table 6. GHG’s emissions – AC_1 vs. RAD706N.

Type of Generation	Installed Power	Electric Consumption (KWh/month)	GHG Emissions (tons CO₂e / month)	CO₂e Reduction
Hydro power	50,70%	53235	32,13	7,65
Oil	34,50%	36225	30,99	7,38
Gas	12,60%	13230	8,56	2,04
Bio fuels	1,50%	1575	1,30	0,31
Solar + Wind	0,70%	546	0,08	0,02
TOTAL:	100,00%	104811	73,06	17,40

Table 6. GHG’s emissions – AC_1 vs. RAD706N.
[15] C M - C Q of Construction Ecuadorian Construction Standard (NEC-11) Energy Efficiency in Construction in Ecuador 2011
[16] Kummer D C Prus C and De Oliveira D D Optimization of natural light in a classroom: a case study at the University of Santa Cruz do Sul Energy Efficiency of the Environment 2015
[17] Dávi G A, Caamaño-Martín E, Rüther R and Solano J 2016 Energy performance evaluation of a net plus-energy residential building with grid-connected photovoltaic system in Brazil Energy Buildings 120 19-29
[18] Kamaruddin M A, Arief Y Z and Ahmad M H 2016 Energy analysis of efficient lighting system design for lecturing room using DIALux Evo 3 Applied Mechanics and Materials 818 174-178
[19] Hidalgo A, Villacrés L, Hechavarria R and Moya D 2017 Proposed integration of a photovoltaic solar energy system and energy efficient technologies in the lighting system of the UTA-Ecuador Energy Procedia 134 296-305
[20] Bonomolo M, Baglivo C, Bianco G, Maria Congedo P and Beccali M 2017 Cost optimal analysis of lighting retrofit scenarios in educational buildings in Italy Energy Procedia 126 171-8
[21] Mukherjee P 2016 An overview of energy efficient lighting system design for indoor applications of an office building Key Eng Mater 692 45-53
[22] Pattini A Recommendations for Lighting Levels in Non-Residential Buildings: an international comparison Renewable Energy and Environment 9 7-12 2005
[23] Alcalde P Electrotechnical Regulation for Low Voltage Spain: Recovered Madrid 2015
[24] Energía M Technical Regulation of Lighting and Public Lighting ed: Colombia 2010
[25] Raynham P 2012 The SLL code for lighting The Society of Light and Lighting
[26] Pattini A Rodriguez R Monteoliva J and Garretón J Y Lighting in work spaces. Proposals to the measurement protocol of the lighting factor of the Superintendency of Work Risks ed: AVERMA 2012
[27] RAMIREZ J A R and LLANO C A Guide for Interior Lighting Installations Design Using Dialux Technological University of Pereira 2012
[28] Figueroa Barrionuevo E A Energy audit of the administrative and teaching buildings of the Faculty of Civil and Mechanical Engineering of the Technical University of Ambato, to reduce electrical energy consumption Technical University of Ambato School of Civil Engineering and Mechanics Mechanical Engineering Course 2015
[29] Ministry of Environment (2013 - 2018) CO2 emission factor of the National Interconnected System of Ecuador Available: www.ambiente.gob.ec/wp-content/uploads/downloads/2014/03/Factor-de-emisi%C3%B3n-2013-PUBLICADO.pdf