Theory of Flux-Flow Resistivity near H_{c2} for s-wave Type-II Superconductors

Takafumi Kita

Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

(Dated: March 22, 2002)

This paper presents a microscopic calculation of the flux-flow resistivity ρ_f for s-wave type-II superconductors with arbitrary impurity concentrations near the upper critical field H_{c2}. It is found that, as the mean free path l becomes longer, ρ_f increases gradually from the dirty-limit result of Thompson [Phys. Rev. B1, 327 (1970)] and Takayama and Ebisawa [Prog. Theor. Phys. 44, 1450 (1970)]. The limiting behaviors suggest that $\rho_f(H)$ at low temperatures may change from convex downward to upward as l increases, thus deviating substantially from the linear dependence $\rho_f \propto H/H_{c2}$ predicted by the Bardeen-Stephen theory [Phys. Rev. 140, A1197 (1965)].

PACS numbers: 74.25.Op, 74.25.Fy, 72.10.Bg

Kim et al. [1] attributed finite resistivity observed in type-II superconductors to the motion of flux lines, calling it “flux-flow resistivity” ρ_f. Whereas the idea has been accepted widely, it still has poor quantitative understanding of the phenomenon. The early phenomenological theories based on single-flux considerations [2, 3, 4] cannot explain the steep decrease of ρ_f observed near H_{c2} [1]. This region, where microscopic calculations may be performed most easily, has been a subject of later theoretical works [5, 6, 7, 8]. We thereby have a quantitative theory on the flux-flow resistivity near H_{c2} [5, 10], but its validity is still restricted to the dirty limit. Reasonable agreements with the theory have been reported later in a couple of experiments on microwave surface resistivity [2, 3] and flux-flow resistivity [4]. However, the latter experiment found a small discrepancy that ρ_f near T_c is larger than the theoretical prediction [2, 3, 4], which was attributed by Larkin and Ovchinnikov [11] to the extra phonon scattering effective at finite temperatures.

With these backgrounds, this paper provides a quantitative theory on the flux-flow resistivity near H_{c2} applicable to arbitrary impurity concentrations. I thereby hope to establish the domain in which the dirty-limit theory [2, 3, 4] is valid, and look into whether the experiments [2, 3] may be explained by impurity scattering alone. Although a similar study was carried out by Ovchinnikov [12], the behaviors of ρ_f at intermediate impurity concentrations have not been clarified explicitly.

I consider the s-wave pairing with an isotropic Fermi surface and the s-wave impurity scattering in an external magnetic field $H \parallel z$. I calculate the complex conductivity $\sigma(\omega)$ below microwave frequencies ω using the quasiclassical equations of superconductivity [13], and finally put $\omega \to 0$. I use the notation of Ref. [14] but leave the Hall terms out of consideration. Hence I start from the same equations as Eschrig et al. [13] in clarifying the motion of a single flux line within the linear-response regime.

The vector potential without perturbation is given by $A(r) = Br\hat{y} + A(r)$, where B is the average flux density and \hat{A} expresses the spatially varying part of the magnetic field satisfying $\int \nabla \times A \, dr = 0$. The corresponding retarded quasiclassical Green’s functions f^R and g^R can be obtained as Ref. [14] with the replacement of the Matsubara frequency ϵ_n by $-i\omega$. I adopt the units where the energy, length, magnetic field, and electric field are measured by the zero-temperature energy gap $\Delta(0)$ at $H = 0$, the coherence length $\xi_0 \equiv h\nu_f/\Delta(0)$ with ν_f the Fermi velocity, $B_0 \equiv \phi_0/2\pi\xi_0^2$ with $\phi_0 \equiv hc/2e$ the flux quantum, and $E_0 \equiv h\nu_f/e\xi_0^2$, respectively. I also put $\hbar = k_B = 1$.

Now, consider the response to a spatially uniform but time-dependent perturbation $\delta A e^{-i\omega t} = \delta E e^{-i\omega t}/i\omega$ with $\delta E \perp H$. A straightforward calculation based on Eq. (71) of Ref. [14] leads to the following equation for the first-order response $\delta f^R = \delta f^R(\epsilon, k, \omega, r)$:

\[
\begin{align*}
& \left[-2i\omega + \frac{(g^R_+) + (g^R_-)}{2\tau} + \hat{v} \cdot (\nabla - iA) \right] \delta f^R \\
& = f^R_+ f^R_- \hat{v} \cdot \delta E/\omega + (g^R_+ + g^R_-) \delta \Delta \\
& + \left(\Delta + \frac{(f^R_+)}{2\tau} \right) \delta g^R_+ + \left(\Delta + \frac{(f^R_-)}{2\tau} \right) \delta g^R_- \\
& - \frac{f^R_+ \delta g^R_+}{2\tau} + f^R_- \delta g^R_- + \frac{g^R_+ + g^R_-}{2\tau} \delta f^R \\
& \equiv \Delta + \frac{(f^R_+ \delta g^R_+)}{2\tau} + \frac{(f^R_- \delta g^R_-)}{2\tau} + \frac{g^R_+ + g^R_-}{2\tau} \delta f^R .
\end{align*}
\]

(1a)

Here τ is the relaxation time in the Born approximation, $\langle \cdots \rangle$ denotes the Fermi-surface average satisfying $\langle 1 \rangle = 1$, and $\Delta(r)$ and $\delta \Delta(r, \omega)$ are the pair potential and its first-order response, respectively. The unit vector $\hat{v} = k$ specifies a point on the spherical Fermi surface, $f^R_+ \equiv f^R(\epsilon_+, k, r)$ and $g^R_+ \equiv g^R(\epsilon_+, k, r)$ with $\epsilon_+ \equiv \epsilon_{\pm}\omega/2$, and the superscript l denotes simultaneous operations of complex conjugation and $(\epsilon, k, \omega) \rightarrow (-\epsilon, -k, -\omega)$, e.g., $\delta g^R(\epsilon, k, \omega, r) = \delta g^L(-\epsilon, -k, -\omega, r)$. Finally, the normalization condition [15] enables us to write δg^R in terms of δf^R as

\[
\delta g^R = -\left(f^R_+ \delta f^R_+ + f^R_- \delta f^R_- \right)/(g^R_+ + g^R_-) .
\]

(1b)

Equation (1b) determines the retarded functions δf^R and δg^R for given δE and $\delta \Delta$. In addition, the advanced functions are obtained directly by using Eq. (72) of Ref. [14] as $\delta f^A(\epsilon, k, \omega, r) = \delta f^R(-\epsilon, -k, \omega, r)$ and $\delta g^A(\epsilon, k, \omega, r) = -\delta g^R(\epsilon, k, -\omega, r)$.

As for the Keldysh functions, I write them following Eschrig et al. 12 as \(\delta g^F = \delta g^F(\phi_+ - \phi_-) \) and \(\delta f^R = \delta f^R(\phi_+ - \phi_-) + \delta f^R(\phi_+ + \phi_-) \) with \(\phi_\pm = \text{tanh}(\varepsilon_\pm/2T) \). Then a simplified equation results for \(\delta g^\alpha = \delta g^\alpha(\varepsilon, \mathbf{k}, \omega, \mathbf{r}) \) as

\[
\left(-i\varepsilon + \frac{\langle R^R \rangle - \langle g^\Lambda \rangle}{2\tau} + \mathbf{v} \cdot \nabla \right) \delta g^\alpha = (\phi_+ - \phi_-) \left[\frac{\langle g^R \rangle - \langle g^\Lambda \rangle}{\varepsilon} \mathbf{v} \cdot \mathbf{E}/\omega + f^R_+ \delta \Lambda^\dagger - f^F_+ \delta \Lambda \right]
\]

\[
+ \left(\Delta + \frac{\langle f^R_+ \rangle}{2\tau} \right) \delta f^\dagger + \left(\Delta^\dagger + \frac{\langle f^R_+ \rangle}{2\tau} \right) \delta f^\alpha
\]

\[
- \frac{f^R_+ \langle \delta f^\dagger \rangle + \langle f^R_+ \rangle \langle \delta f^\dagger \rangle + (g^R_+ - g^\Lambda)}{2\tau} \right), \quad (2a)
\]

It also follows from the normalization condition that \(\delta f^\alpha = \delta f^\alpha(\varepsilon, \mathbf{k}, \omega, \mathbf{r}) \) is given in terms of \(\delta g^\alpha \) by

\[
\delta f^\alpha = \left(f^R_+ \delta g^\dagger + f^F_+ \delta g^\alpha \right) \left(g^R_+ - g^\Lambda \right). \quad (2b)
\]

Finally, the pair potential \(\Delta \) is determined by

\[
\delta \Delta = \frac{N(0)V_0}{4i} \int_{-\varepsilon_c}^{\varepsilon_c} d\varepsilon \left\langle \delta f^R(\phi_+ - \phi_-) \right. \right.
\]

\[
\left. \left. + \delta f^\alpha \right\rangle , \quad (3)
\]

where \(N(0) \) is the density of states per spin at the Fermi level, \(V_0 > 0 \) is the s-wave pairing interaction, and \(\varepsilon_c \) is the cut-off energy. Once the solution to Eqs. (1)-(3) is obtained self-consistently, the transport current \(\delta j = \delta j(\omega, \mathbf{r}) \) is calculated by

\[
\delta j = -\frac{eN(0)V_0}{2} \int_{-\infty}^{\infty} d\varepsilon \left\langle \mathbf{v} \left(\delta g^R(\phi_+ - \delta g^\Lambda(\phi_+ + \delta g^\alpha) \right) \right. \right.
\]

\[
\left. \left. \right\rangle . \quad (4)
\]

The corrections caused by \(\delta j \) to the magnetic field and the charge density may be neglected safely for the relevant weak-coupling superconductors. Equations (1)-(4) are still exact within the linear-response regime and form a basic starting point to calculate complex conductivity of type-II superconductors at arbitrary magnetic fields.

I now concentrate on the region near \(H_c2 \) and solve Eqs. (1)-(4) by expanding every quantity up to second order in \(\Delta(\mathbf{r}) \) as \(f^R = f^R(1) + f^R(2), f^F = f^F(1) + f^F(2), \mathbf{A} = \tilde{\mathbf{A}}(2), \delta \Delta = \delta \Delta(1) + f^R(2), \delta \Lambda = \delta \Lambda(1) + f^F(2), \) and \(\delta g(2) = \delta g(0) + \delta g(2) \), with \(g^R(0) = 0 \) as seen from Eq. (1). The superscript (1) in \(\delta f^\alpha \) and \(\delta \Lambda(\mathbf{r}) \) will be dropped as it causes no confusions.

The zeroth-order quantity \(\delta g^{(0)} \) is obtained easily from Eq. (2a) as

\[
\delta g^{(0)} = \frac{2\tau}{1 - i\omega\tau} \frac{\phi_+ - \phi_-}{\omega} \mathbf{v} \cdot \mathbf{E}. \quad (5)
\]

When put into Eq. (1), this expression yields the normal-state Drude conductivity \(\sigma_n \), as it should.

Next, Eq. (1) is simplified for the first-order \(\delta f^R \) into

\[
\left[-i\varepsilon + \frac{1}{2\tau} + \sqrt{B} \sin \frac{\theta}{2} \left(e^{-i\varphi_\alpha} - e^{i\varphi_\alpha} \right) \right] \delta f^R
\]

\[
= \frac{f^R_+ + f^F_+}{2\tau} \frac{\mathbf{v} \cdot \mathbf{E}}{\omega} + \delta \Delta + \frac{\langle \delta f^R \rangle}{2\tau}, \quad (6)
\]

where \(\alpha^\dagger \) and \(\alpha \) are creation and annihilation operators satisfying \([\alpha, \alpha^\dagger] = 1 \) and \(\langle \theta, \varphi \rangle \) are the polar angles of \(\mathbf{v} \). Equation (6) can be solved with the Landau-level expansion (LLE) method 17 by expanding \(\delta \Delta \) and \(\delta f^R \) in periodic basis functions of the vortex lattice as

\[
\delta \Delta(\omega, \mathbf{r}) = \sqrt{V} \sum_{N=0}^{\infty} \delta \Delta_N(\omega) \psi_{N\mathbf{q}}(\mathbf{r}), \quad (7a)
\]

\[
\delta f^R(\varepsilon, \mathbf{k}, \omega, \mathbf{r}) = \sqrt{V} \sum_{m=-\infty}^{\infty} \sum_{N=0}^{\infty} \delta f^R_{mN}(\varepsilon, \theta, \omega) e^{im\varphi} \psi_{N\mathbf{q}}(\mathbf{r}), \quad (7b)
\]

where \(N \) denotes the Landau level, \(\mathbf{q} \) is an arbitrary chosen magnetic Bloch vector, \(V \) is the volume of the system, and \(\psi_{N\mathbf{q}}(\mathbf{r}) \) satisfies \(a\psi_{N\mathbf{q}} = \sqrt{V} \psi_{N-1\mathbf{q}} \) and \(a^\dagger \psi_{N\mathbf{q}} = \sqrt{V} + 1 \psi_{N+1\mathbf{q}} \). The quantities without perturbations are expanded similarly. Near \(H_c2, \Delta(\mathbf{r}) \) may well be approximated using only the \(N = 0 \) level as \(\Delta(\mathbf{r}) = \sqrt{V} \Delta_0(\varepsilon_0\mathbf{q}) \). The coefficients \(\Delta_0 \) and \(f^R_{mN} \) have already been obtained in Ref. 16 satisfying \(f^R_{mN} = \delta mN\Delta_0 f^R_{mN} \) and \(\Delta(\mathbf{r}) = \sqrt{V} \Delta_0(\varepsilon_0\mathbf{q}) \). It then follows from Eqs. (6) and (8) that \(\delta f^R_{mN} \) and \(\delta \Delta_N \) may be written as

\[
\delta \Delta_N = \delta \Delta_0 \delta \Delta_1, \quad (8a)
\]

\[
\delta f^R_{mN} = \Delta_0 \left(\delta f^R_{mN-1} + \delta f^R_{mN+1} \right), \quad (8b)
\]

Equation (8b) is thereby transformed into \((\mu = \pm) \)

\[
\sum_{N'} \mathcal{M}_{NN'} \delta f^R_{N'\mu} = \left(f^R_{N+} + f^R_{N-} \right) \delta E_\mu \sin \theta/4\omega
\]

\[
+ \delta_{N0} \delta_{\mu+} \left(\delta \Delta_0 + \langle \delta f^R_{N+} \rangle/2\tau \right), \quad (9)
\]

where \(E_\pm \equiv E_x \pm iE_y, f^R_{N\pm} \equiv f^R_{N}(\varepsilon_0\mathbf{q}) \), and

\[
\mathcal{M}_{NN'} \equiv -i\varepsilon \delta \Delta_{N'} + \beta \sqrt{N+1} \delta \Delta_{N'} - \beta \sqrt{N} \delta \Delta_{N-1}, \quad (10a)
\]

with \(\varepsilon \equiv \varepsilon + i/2\tau \) and \(\beta = \sqrt{B} \sin \theta/2\sqrt{2} \). To solve Eq. (9), let us write the inverse of the matrix \(\mathcal{M} \) as

\[
K^\prime_{NN'} \equiv (\mathcal{M}^{-1})_{NN'}. \quad (10b)
\]

Then \(\delta f^R_{N\mu} \) is obtained formally as

\[
\delta f^R_{N\mu} = K^{R\mu}_{NN'} \delta E_\mu /\omega + \delta_{\mu+} K^{R}_{N} \left(\delta \Delta_0 + \langle \delta f^R_{N+} \rangle/2\tau \right), \quad (10c)
\]

where \(K^{R}_{N} \) is defined by

\[
K^{R}_{N} \equiv \frac{\sin \theta}{4} \sum_{N'} \mathcal{M}_{NN'} \left(f^R_{N+} + f^R_{N-} \right), \quad (10d)
\]

with \(f^R_{N} \) already obtained as

\[
f^R_{N} = K^{R}_{N}/(1 - \langle K^{R}_{0} \rangle/2\tau). \quad (10e)
\]
Taking the average angle of Eq. (10), we obtain
\[\langle \delta f^{R+} \rangle = \frac{\langle K_1^R \rangle}{1 - (K_1^R)^2} \delta E_+ + \frac{\langle K_1^I \rangle}{1 - (K_1^I)^2} \delta \Delta_1 \] (10f)
Equation (10) determines \(\delta f^{R+}_{N\mu} \) efficiently and fixes the retarded response \(\delta f^{R-} \).

We next consider \(\delta f^a \) and substitute Eqs. (3), (7b), and (8b) into Eq. (2b) with \(g^{R} = -g^{I} = 1 \). Expanding \(\delta f^a \) as Eq. (7b), we find that the coefficient of \(\delta f^a_{mN} \) can also be written as Eq. (8b). The corresponding \(\delta f^a_{N\mu} \) (\(\mu = \pm \)) is obtained easily as
\[\delta f^a_{N\mu} = K_N^a \frac{\phi_+ - \phi_-}{\omega} \delta E_\mu, \] (11a)
with
\[K_N^a = -\frac{\tau \sin \theta}{2(1 - i\omega \tau)} \left[\frac{\langle f^{R+} \rangle}{1} + (-1)^N \frac{\langle f^{R-} \rangle}{1} \right]. \] (11b)

Now we are ready to calculate the pair potential \(\delta \Delta_1 \). Let us substitute the above results for \(\delta f^{R+} \) and \(\delta f^a \) into Eq. (3). Then a straightforward calculation yields the expression for \(\delta \Delta_1 \) defined by Eqs. (7a) and (8a) as
\[\delta \Delta_1(\omega) = D(\omega) \frac{\delta E_+}{\omega}, \] (12a)
with
\[D(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{\langle K_1^R(\epsilon, \omega) \rangle}{1 - (K_1^R(\epsilon, \omega))^2} - \frac{\langle K_1^I(\epsilon, \omega) \rangle}{1 - (K_1^I(\epsilon, \omega))^2} \right] \phi(\epsilon - \omega) d\epsilon. \] (12b)

In deriving the formula, use has been made of the symmetries: \(K_N^R(\epsilon) = K_N^R(-\epsilon) \), \(K_N^I(\epsilon) = K_N^I(-\epsilon, \omega) = K_N^I(\epsilon, -\omega) = K_N^I(\epsilon, -\omega) \), and \(K_N^I(\epsilon, \omega) = (-1)^N K_N^I(\epsilon, -\omega) \). I also substituted the result \(1/N(0)\delta_0 = \frac{\tau}{2} \) at \(H = 0 \) and put \(\epsilon \to \infty \), noting \(K_1^I(\epsilon) \to i/\epsilon \) as \(\epsilon \to \infty \). One can see easily that Eq. (12b) satisfies \(D(\omega) = D^*(\omega) \).

The second-order quantities \(\delta g^{R,a}(2) \) can be calculated similarly by expanding them as
\[\delta g^{R,a}(2) = \sum_m \sum_K \delta g^a_{mK}(\epsilon, \theta, \omega) e^{im\varphi + iK \cdot r}, \] (13)
where \(K \) is a reciprocal lattice vector of the magnetic Brillouin zone 17. Since \(\delta \mathbf{E} \) is spatially uniform, we only need the \(K = 0 \) component within the linear-response regime. It also follows from Eq. (4) that \(m \neq \pm 1 \) are irrelevant for the current density. Let us substitute the expansions for \(f^{R} \) and \(\delta f^{R+} \) into Eq. (13) with \(g^{R} = 1 \), multiplies it by \(e^{i\varphi}/2\pi V \), and perform integrations over \((r, \varphi) \). We thereby obtain \(g^a_{\pm} \equiv g^a_{m=\pm 1, K=0} \) as
\[\delta g^{R}_{\pm} = \Delta_0^2 \frac{\delta E^+_{\pm}}{\omega}, \] (14a)
This algorithm can be put into a more convenient form in terms of $\mathcal{R}_N \equiv D_{N+1}/D_N$ and $\tilde{\mathcal{R}}_N \equiv \mathcal{D}_{N-1}/\mathcal{D}_N$ as follows. Let us calculate \mathcal{R}_N and $\tilde{\mathcal{R}}_N$ by

\[
\begin{aligned}
\mathcal{R}_{N-1} &= (-i\bar{\varepsilon} + \beta^2 N\mathcal{R}_N)^{-1}, \quad \mathcal{R}_{N,\text{cut}} = i/\bar{\varepsilon}, \\
\tilde{\mathcal{R}}_{N+1} &= (-i\bar{\varepsilon} + \beta^2 N\tilde{\mathcal{R}}_N)^{-1}, \quad \tilde{\mathcal{R}}_1 = i/\bar{\varepsilon},
\end{aligned}
\tag{17a}
\]

for an appropriately chosen large N_{cut}. Then K_N^N for $N' \leq N$ is obtained by

\[
\begin{aligned}
K_0^0 &= \mathcal{R}_0, \quad K_N^{N'} = (\mathcal{R}_N'/\tilde{\mathcal{R}}_N')K_{N-1}^{N'-1}, \\
K_N^{N+1} &= \beta\sqrt{N+1}\mathcal{R}_{N+1}K_N^{N'},
\end{aligned}
\tag{17b}
\]

One can check the convergence by increasing N_{cut}. It turns out that $N_{\text{cut}} = 2$ is sufficient both near T_c and in the dirty limit where an analytic calculation is also possible. One can thereby reproduce the formula by Thompson [5] and Takayama and Ebisawa [8] which satisfies $\text{Im} \sigma_f^0(\omega \to 0) = 0$. In contrast, $N_{\text{cut}} \gtrsim 1000$ is required in the clean limit at low temperatures.

Using Eq. (16b) and taking the limit $\omega \to 0$, I have calculated the initial slope of the flux-flow resistivity:

\[
\alpha = \frac{H}{\rho_n} \frac{\partial \rho_f}{\partial H} \bigg|_{H=H_{c2}},
\tag{18}
\]

for various impurity concentrations and various values of the Ginzburg-Landau parameter κ_{GL}. The main H dependence in Eq. (10b) lies in $\Delta_0^2 \propto H_{c2}-H$, which can be obtained accurately following Ref. [10].

Figure 1 displays the slope α for several values of $\xi_E/l \equiv 1/2\pi T_c \tau$ with $\kappa_{\text{GL}} = 50$. The curve TTE denotes the prediction of the dirty-limit theory by Thompson [5] and Takayama and Ebisawa [8]. Marked mean-free-path dependence is clearly seen. In fact, the slope at $T = T_c$ ($T = 0$) decreases from 4.99 (1.72) in the dirty limit to 0.89 (0.73) at $\xi_E/l = 4.0$. Thus, nonlocal effects in clean systems tend to increase the resistivity substantially over the prediction of the dirty-limit theory. This result near H_{c2} also suggests that $\rho_f(H)$ at low temperatures may change from convex downward to upward as l increases and may not be fit quantitatively by the Bardeen-Stephen theory $\rho_f \propto H/H_{c2}$ [2]. The slope has also been found to become steeper as κ_{GL} approaches $1/\sqrt{2}$ due to the increase of the coefficient of $\Delta_0^2 \propto H_{c2}-H$, reaching $\alpha = 9.57$ (2.59) at $T = T_c$ ($T = 0$) for $\kappa_{\text{GL}} = 1$ and $\xi_E/l = 50$. This fact indicates the necessity of correctly identifying the material parameters, such as κ_{GL}, ξ, and l, for any detailed comparisons between the theory and experiments on the flux-flow resistivity. Besides, a careful experiment will be required, especially near T_c, to determine the slope α which may change appreciably near H_{c2} [2].

In summary, this paper has developed a reliable and efficient method to calculate the flux-flow resistivity near H_{c2} over all impurity concentrations and clarified large dependence of ρ_f on both l and κ_{GL}.

This research is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

\[\begin{align}
[1] \text{Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. B 139, A1163 (1965); for a review, see, Y. B. Kim and M. J. Stephen, in Superconductivity, edited by R. D. Parks (Dekker, NY, 1969), Vol. 2, p. 1107.}
\[2] \text{M. Tinkham, Phys. Rev. Lett. 13, 804 (1964).}
\[3] \text{J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).}
\[4] \text{P. Nozi`eres and W. F. Vinen, Philos. Mag. 14, 667 (1966).}
\[5] \text{A. Schmid, Phys. Kondens. Materie 5, 302 (1966).}
\[6] \text{C. Caroli and K. Maki, Phys. Rev. 159, 306 (1967); 164, 591 (1967).}
\[7] \text{R. S. Thompson, Phys. Rev. B1, 327 (1970).}
\[8] \text{H. Takayama and H. Ebisawa, Prog. Theor. Phys. 44, 1450 (1970).}
\[9] \text{R. J. Pedersen, Y. B. Kim, and R. S. Thompson, Phys. Rev. B7, 982 (1973).}
\[10] \text{R. Meier-Hirmer, M. D. Maloney, and W. Gey, Z. Phys. B23, 139 (1976).}
\[11] \text{A. I. Larkin and Y. N. Ovchinnikov, in Nonequilibrium Superconductivity Vol. 12, edited by D. N. Langenberg and A. I. Larkin (Elsevier, Amsterdam, 1986) p. 493.}
\[12] \text{Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 66, 1100 (1974); Sov. Phys. JETP 39, 538 (1974). His analytic formula for long mean free paths at low temperatures, i.e. Eq. (45), predicts that α should increase as T increases, which is opposite to what is seen in Fig. 1.}
\[13] \text{For a review, see e.g., J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).}
\[14] \text{T. Kita, Phys. Rev. B64 (2001) 054503.}
\[15] \text{M. Eschrig, J. A. Sauls, and D. Rainer, Phys. Rev. B60, 10447 (1999).}
\[16] \text{T. Kita, cond-mat/0306231}
\[17] \text{T. Kita, J. Phys. Soc. Jpn. 67, 2067 (1998).}
\end{align}\]