Life-time of minimal tubes and coefficients of univalent functions in a circular ring

Vladimir G. Tkachev

Abstract. We obtain various estimates of the life-time of two-dimensional minimal tubes in \mathbb{R}^3 by potential theory methods.

1. Introduction.

Let $x = (x_1, x_2, \ldots, x_n, x_{n+1})$ be a point in Euclidean space \mathbb{R}^{n+1} with the time axis Ox_{n+1} and M be a p-dimensional Riemannian manifold, $2 \leq p \leq n$.

Definition 1. We say that a surface $M = (M, u)$ given by C^2-immersion $u : M \to \mathbb{R}^{n+1}$ is a tube with the projection interval $\tau(M) \subset Ox_{n+1}$, if (i) for any $\tau \in \tau(M)$ the sections $\Sigma_\tau = f(M) \cap \Pi_\tau$ by hyperplanes $\Pi_\tau = \{x \in \mathbb{R}^{n+1}_1 : x_{n+1} = \tau\}$ are not empty compact sets; (ii) for $\tau', \tau'' \in \tau(M)$ any part of M situated between two different $\Pi_{\tau'}$ and $\Pi_{\tau''}$ is a compact set.

Definition 2. A surface M is called minimal if the mean curvature of M vanishes everywhere.

It is the well known fact (see [5], p.331) that the minimality condition of M is equivalent to that all coordination functions of the immersion u are harmonic. For this reason, the two-dimensional minimal tubes can be considered as direct analog of the closed relative string conception in the modern nuclear physics (cf. [2]). This approach was proposed by V.M.Miklyukov and the author in [7] for an arbitrary dimension p.

From this point of view many intrinsic geometric invariants of M have the natural physical meaning. Namely, the length of the projection interval $|\tau(M)|$ can be interpreted as a life-time of the tube M.

To introduce the following important characteristic we denote by v the unit normal to Σ_τ with respect to M which is co-directed with the time-axis Ox_{n+1}. Then by virtue of the harmonicity of the coordinate functions $u_k(m) = x_k \circ u(m), \ldots$
1 \leq k \leq n + 1, the flow integrals

\[J_k = \int_{\Sigma_\tau} \langle \nabla u_k, \nu \rangle \, d\Sigma \]

are independent of \(\tau \in \tau(\mathcal{M}) \). Here \(d\Sigma \) is the 1-Hausdorff measure along \(\Sigma_\tau \).

Definition 3. We call \(Q(\mathcal{M}) = (J_1, J_2, \ldots, J_{n+1}) \in \mathbb{R}^{n+1} \) the **full flow-vector** of \(\mathcal{M} \).

We notice the positiveness of \(J_{n+1} \) as a consequence of the choice of \(\nu \) direction. Moreover, \(Q(\mathcal{M}) \) is an 1-homogeneous functional of \(\mathcal{M} \) under the homotheties group action in \(\mathbb{R}^{n+1} \). Let us denote by \(\alpha(\mathcal{M}) \) the angle between \(Q(\mathcal{M}) \) and the time-axis \(Ox_{n+1} \).

In this paper we are interested in the following question: What sufficient conditions yield the finiteness of the time-life of a two-dimensional minimal tube? As it shown in the series of papers [6]–[8], in the case \(p \geq 3 \) this quantity is always finite and the following estimation holds

\[|\tau(\mathcal{M})| \leq g(\mathcal{M})c_p, \]

where \(c_p \) depends only on \(p \), and \(g(\mathcal{M}) \) is the smallest diameter of sections \(\Sigma_\tau \). The last relationship is sharp and the equality occurs if and only if \(\mathcal{M} \) is a minimal surface of revolution.

A special feature of the two-dimensional case is that there exist tubes with finite as well as infinite values of the life-time. Indeed, a family of slanted minimal surfaces with circular cross-sections \(\Sigma_\tau \) was discovered by B. Riemann [10]. Some other recent examples can also be found in [4].

In this paper we prove

Theorem 1. Let \(\mathcal{M}, \dim \mathcal{M} = 2 \) be a minimal two-connected tube with univalent Gaussian mapping. If the angle \(\alpha(\mathcal{M}) \) is different from zero, then the life-time \(|\tau(\mathcal{M})| \) of \(\mathcal{M} \) is finite and

\[\tau(\mathcal{M}) \leq \frac{\pi \|Q\| \cos \alpha(\mathcal{M})}{\ln \tan(\frac{\pi}{4} + \frac{\alpha}{2})}. \]

Let us denote by \(a_0[f] \) the central coefficient of the Laurent decomposition of an holomorphic function \(f(z) \) in an annulus \(K_R = \{ z : 1/R < |z| < R \} \), i.e.

\[a_0[f] \equiv \int_{C_1} \frac{g(\zeta) \, d\zeta}{\zeta}, \]

where \(C_1 \) is the unite circle \(\{ z \in \mathbb{C} : |z| = 1 \} \). The following auxiliary assertion is a key ingredient in the proof of Theorem 1.

Theorem 2. Let \(g(z) \) be a univalent holomorphic function defined in the annulus \(K_R \) omitting zero. Assume that

\[a_0[g] = \lambda, \quad a_0[1/g] = -\lambda, \]

where

\[1 \leq k \leq n + 1, \]

the flow integrals

\[J_k = \int_{\Sigma_\tau} \langle \nabla u_k, \nu \rangle \, d\Sigma \]

are independent of \(\tau \in \tau(\mathcal{M}) \). Here \(d\Sigma \) is the 1-Hausdorff measure along \(\Sigma_\tau \).

Definition 3. We call \(Q(\mathcal{M}) = (J_1, J_2, \ldots, J_{n+1}) \in \mathbb{R}^{n+1} \) the **full flow-vector** of \(\mathcal{M} \).

We notice the positiveness of \(J_{n+1} \) as a consequence of the choice of \(\nu \) direction. Moreover, \(Q(\mathcal{M}) \) is an 1-homogeneous functional of \(\mathcal{M} \) under the homotheties group action in \(\mathbb{R}^{n+1} \). Let us denote by \(\alpha(\mathcal{M}) \) the angle between \(Q(\mathcal{M}) \) and the time-axis \(Ox_{n+1} \).

In this paper we are interested in the following question: What sufficient conditions yield the finiteness of the time-life of a two-dimensional minimal tube? As it shown in the series of papers [6]–[8], in the case \(p \geq 3 \) this quantity is always finite and the following estimation holds

\[|\tau(\mathcal{M})| \leq g(\mathcal{M})c_p, \]

where \(c_p \) depends only on \(p \), and \(g(\mathcal{M}) \) is the smallest diameter of sections \(\Sigma_\tau \). The last relationship is sharp and the equality occurs if and only if \(\mathcal{M} \) is a minimal surface of revolution.

A special feature of the two-dimensional case is that there exist tubes with finite as well as infinite values of the life-time. Indeed, a family of slanted minimal surfaces with circular cross-sections \(\Sigma_\tau \) was discovered by B. Riemann [10]. Some other recent examples can also be found in [4].

In this paper we prove

Theorem 1. Let \(\mathcal{M}, \dim \mathcal{M} = 2 \) be a minimal two-connected tube with univalent Gaussian mapping. If the angle \(\alpha(\mathcal{M}) \) is different from zero, then the life-time \(|\tau(\mathcal{M})| \) of \(\mathcal{M} \) is finite and

\[\tau(\mathcal{M}) \leq \frac{\pi \|Q\| \cos \alpha(\mathcal{M})}{\ln \tan(\frac{\pi}{4} + \frac{\alpha}{2})}. \]

Let us denote by \(a_0[f] \) the central coefficient of the Laurent decomposition of an holomorphic function \(f(z) \) in an annulus \(K_R = \{ z : 1/R < |z| < R \} \), i.e.

\[a_0[f] \equiv \int_{C_1} \frac{g(\zeta) \, d\zeta}{\zeta}, \]

where \(C_1 \) is the unite circle \(\{ z \in \mathbb{C} : |z| = 1 \} \). The following auxiliary assertion is a key ingredient in the proof of Theorem 1.

Theorem 2. Let \(g(z) \) be a univalent holomorphic function defined in the annulus \(K_R \) omitting zero. Assume that

\[a_0[g] = \lambda, \quad a_0[1/g] = -\lambda, \]
for some real positive \(\lambda \). Then

\[
(2) \quad \ln R \leq R_0(\lambda) = \frac{\pi^2}{\ln(\lambda + \sqrt{1 + \lambda^2})}
\]

Remark 1. We note that estimate (2) has well asymptotic behaviour for \(R \to \infty \) as shows Riemannian example mentioned above. But we cannot now present the sharp value of \(R_0(\lambda) \). Nevertheless, it seemed us very probably that the following conjecture is true.

Remark 2. The best upper bound in the left side of (2) is achieved for holomorphic function \(g_0(z) \) which provides a conformal map of the annulus \(K_R \) onto the plain \(\mathbb{C} \) with two slits: \((-1/\alpha; 0) \) and \((\alpha; +\infty)\), for the suitable choice of parameter \(\alpha \).

Acknowledgement. I wish to thank V.M. Miklyukov for many useful discussions concerning the topic of this paper.

2. Proof of Theorem 2

Let \(\Gamma = \{C_\rho : 1/R < \rho < R\} \) be a family of all concentric circles \(C_\rho = \{z : |z| = \rho\} \) in the annulus \(K_R \). It follows easily from the non-vanishing property of \(g(z) \) that the loop \(C_1 \) in the integrals (1) may be replaced by an arbitrary circle \(C_\rho \in \Gamma \). It follows from the mean value theorem and (1) that for every \(\rho \in (1/R; R) \) there exist \(t_1 \) and \(t_2 \) such that

\[
(3) \quad \text{Re } g(\rho e^{it_1}) = \lambda \quad \text{and} \quad \text{Re } \frac{1}{g(\rho e^{it_2})} = -\lambda.
\]

Let \(\gamma_\rho = g(C_\rho) \). Then by virtue of the univalence of \(g(z) \), the curve \(\gamma_\rho \) is the simple Jordan one. Let \(g(\rho e^{it}) = x(t) + iy(t) \) be the representation of \(\gamma_\rho \). Then we obtain from (3)

\[
x(t_1) = \lambda; \quad x^2(t_2) + y^2(t_2) + \frac{1}{\lambda} x(t_2) = 0.
\]

The last relations have the helpful geometric interpretation:

\(\star \) The curve \(\gamma_\rho \) has a non-empty intersection with the vertical rightline \(L_1 = \{z : \text{Re } z = \lambda\} \) and the circle \(L_2 = \{z : |z + 1/2\lambda| = 1/2\lambda\} \).

We shall make use the technique from the potential theory (the length-are method). Recall the exact definition. Let \(E \) be a family of locally rectifiable curves \(\gamma \) and \(\varphi(z) \geq 0 \) be a Baire function with the property

\[
\int_\gamma \varphi(z) |dz| \geq 1,
\]

for every \(\gamma \in E \). The infimum

\[
\text{mod } E = \inf \int \varphi^2(z) \, dx \, dy
\]

over all such \(\varphi(z) \) is called a conformal module of the family \(E \).
Then it is known (see [1]) that mod E is the conformal invariant. As a consequence we obtain in our situation

$$\text{mod } \Gamma = \text{mod } \Gamma_1,$$

where $\Gamma_1 = \{ \gamma_\rho : 1/R < \rho < R \}$.

Let us denote by D the two-dimensional domain

$$D = \left\{ z : \text{Re } z < \lambda; \frac{1}{2\lambda} < \frac{1}{2\lambda} \right\}. $$

Using the (\star)-property, we can find for every $\rho \in (1/R; R)$ the continuum $\gamma'_\rho \subset \gamma_\rho$ joining the boundary components of D. Then a family Γ_2 consisting of all continua γ'_ρ is “shorter” than Γ_1 and it follows from Theorem 1.2, [1] that

$$\text{mod } \Gamma_1 \leq \text{mod } \Gamma_2.$$

On the other hand, Γ_2 is the subfamily of $\Gamma(D)$, where the last term means the family of all curves joining the boundary components of a domain D. The monotonicity property of infimum and Definition 4 lead to the following inequality

$$\text{mod } \Gamma_2 \leq \text{mod } \Gamma(D).$$

Now, combining the standard fact

$$\text{mod } \Gamma = \frac{\ln R}{\pi}$$

with relations (4), (5) and (6) we arrive at the following inequality

$$\frac{\ln R}{\pi} \leq \text{mod } \Gamma(D).$$

To compute the last module we note that the linear-fractional function

$$f(z) = \frac{1}{\lambda^*} \cdot \frac{z + \lambda^*}{1 - z \lambda^*}$$

maps D onto an annulus $K_1 = \{ w : 1 < |w| < 1/\lambda^* \},$ where $\lambda^* = \sqrt{\lambda^2 + 1} - \lambda$. Thus, using the invariance property of conformal module we obtain

$$\frac{\ln R}{\pi} \leq \text{mod}(D) \equiv \frac{2\pi}{\ln (1/\lambda^* \pi)} = \frac{\pi}{\ln (\lambda + \sqrt{1 + \lambda^2})}.$$

and Theorem 2 is proved.

3. The Gaussian map of two-dimensional minimal tubes and their full-flow vector

In this section we express the full flow-vector of an arbitrary two-dimensional tube $\mathcal{M} \in \mathbb{R}^n$ via Chern-Weierstrass representation for minimal surfaces. Namely, if \mathcal{M} is a two-connected surface then we can arrange that \mathcal{M} is conformally equivalent
Life-time of minimal tubes and coefficients of univalent functions in a circular ring

to an annulus K_R for the appropriate $R > 1$. Then there exist the corresponding parametrization of \mathcal{M} (see [9]):

$$u(z) = \text{Re} \int_{z_0}^z F(\zeta) \, d\zeta : K_R \to \mathbb{R}^n,$$

where

$$F(z) = (\varphi_1(\zeta), \ldots, \varphi_n(\zeta))$$

and $\varphi_i(\zeta)$ are holomorphic functions satisfying the following conditions

$$(8) \quad \sum_{i=1}^n \varphi_i(\zeta)^2 = 0;$$

and

$$(9) \quad \text{Re} \int_{|z|=1} F(\zeta) \, d\zeta = 0.$$

Lemma 1. Under the above hypotheses we have

$$(10) \quad Q(\mathcal{M}) = \text{Im} \int_{|z|=1} F(\zeta) \, d\zeta.$$

Proof. It sufficient to show that

$$(11) \quad J_k = \int_{\Sigma^r} \langle \nabla u_k, \nu \rangle \, d\Sigma = \text{Im} \int_{|z|=1} \varphi_k(\zeta) \, d\zeta,$$

for every $k = 1, 2, \ldots, n + 1$.

To prove (11) we introduce the conjugate to $u_k(z)$ function $v_k(z)$ by

$$v_k^*(z) = \text{Im} \int_{z_0}^z \varphi_k(\zeta) \, d\zeta,$$

We notice that $v_k(z)$ in general is a multivalued function. On the other hand, the covariant derivative ∇v_k is well defined and using the properties of Hodge $*$- operator we have

$$\int_{\Sigma^r} \langle \nabla u_k, \nu \rangle \, d\Sigma = \int_{\Sigma^r} \langle *\nabla u_k, *\nu \rangle \, d\Sigma = \int_{\Sigma^r} \langle \nabla v_k, *\nu \rangle \, d\Sigma =$$

$$= \int_{\Sigma^r} d v_k = \text{Im} \int_{|z|=1} \varphi_k(\zeta) \, d\zeta,$$

and (11) is proved.

In our case $n = 2$, Chern-Weierstrass representation can be simplified in the following classic way. Namely, there exist a holomorphic function $f(z)$ and a meromorphic function $g(z)$ which are well defined in the annulus K_R and such that

$$(12) \quad F(z) = ((1 - g^2)f; i(1 + g^2)f; 2g f).$$
Moreover, poles of $g(z)$ coincide with zeros of $f(z)$ and the order of a pole of $g(z)$ is precisely the order of the corresponding zero of $f(z)$. We emphasize that $g(z)$ is a composition of the stereographic projection and Gaussian map of \mathcal{M}.

Lemma 2. In our assumptions

\begin{equation}
2fg \equiv \frac{(Q(\mathcal{M}), e_3)}{2\pi z},
\end{equation}

and $g(z)$ omits the zero and infinity values.

Proof. We use the method proposed by M. Schiffman in [11]. We recall that the coordinate function $u_3(z)$ is harmonic in the annulus K_R and by virtue of Definition 1,

\begin{equation}
\lim_{z \to 1/R} u_3(z) = \tau_1, \quad \lim_{z \to R} u_3(z) = \tau_2,
\end{equation}

where $\tau(\mathcal{M}) = (\tau_1; \tau_2)$ is the projection of the tube \mathcal{M} onto x_3-axis.

We consider an auxiliary harmonic function

$$
h(z) = \tau_1 + \frac{\tau_2 - \tau_1}{2 \ln R} \ln |z|.
$$

It is easily seen that $h(z)$ satisfies (14). Thus $h_1(z) = u_3(z) - h(z)$ is harmonic in the annulus and

$$
\lim_{z \to \partial K_R} h_1(z) = 0.
$$

Then the maximum principle implies that $h_1(z) \equiv 0$ everywhere in K_R and hence

\begin{equation}
\lim_{z \to \partial K_R} h_1(z) = 0.
\end{equation}

In particular, it follows from (15) that

$$
du_3(z) \equiv \frac{\tau_2 - \tau_1}{2 \ln R} \cdot \frac{z}{|z|^2}.
$$

doesn’t vanish in K_R. We have, as a consequence, the normal $n(z)$ to \mathcal{M} isn’t parallel to e_3 at any point. Taking into account the above remark about the geometrical sense of $g(z)$ we obtain that $g(z) : K_R \to \mathbb{C} - \{0; \infty\}$.

By comparing of (15) and (12) we deduce that

\begin{equation}
2g(z)f(z) = \frac{\tau_2 - \tau_1}{2 \ln R} \cdot \frac{dz}{z}.
\end{equation}

In order to eliminate $\ln R$ from the latter equality we substitute (16) into (12), and after using (10) we obtain

\begin{equation}
\ln R = \frac{\pi(\tau_2 - \tau_1)}{J_3}.
\end{equation}

On substituting of the found relationship into (16) we arrive at the conclusion of the lemma. \qed
4. Proof of Theorem 1

Let us denote \(w = (J_1 + iJ_2)/J_3 \). Combining Lemma 2, (12) and (9) we obtain
\[
\int_{C_1} \frac{1 - g^2(\zeta)}{2g(\zeta)} \frac{d\zeta}{\zeta} = 2\pi w_1 i,
\]
\[
\int_{C_1} \frac{1 + g^2(\zeta)}{2g(\zeta)} \frac{d\zeta}{\zeta} = 2\pi w_2.
\]
Simplifying the last expressions and denoting \(w = |w| \cdot e^{i\theta} \), \(g_1(z) = -e^{-i\theta} g(z) \) give the following system
\[
\frac{1}{2\pi} \int_{C_1} g_1(\zeta) d\zeta = |w|,
\]
\[
\frac{1}{2\pi} \int_{C_1} \frac{d\zeta}{g_1(\zeta)} = -|w|.
\]
Applying Theorem 2 we arrive at the inequality
\[
\ln R \leq \frac{\pi^2}{|w| + \sqrt{1 + |w|^2}}
\]
where \(|w| = |J_1 + iJ_2|/|J_3| = \tan \alpha(\mathcal{M}) \). Using (17) we obtain the required estimate and the theorem is proved.

References

[1] L. Ahlfors, Lectures on quasiconformal mappings, New York, Van Nostrand Math. Studies, 1966.
[2] L. Brink and M. Henneaux, Principles of string theory, Plenum Press, New York, 1988.
[3] M. Callahan, D. Hoffman and W. H. Meeks, Embedded minimal surfaces with an infinite number of ends, Invent. Math., 96(1989), 459-505.
[4] D. Hoffman and W. H. Meeks, Minimal surfaces based on the catenoid, Amer. Math. Monthly, 97(1990), 702-730.
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, Intersc. Publish., New York, 1969.
[6] V. A. Klyachin, Estimate of spread for minimal surfaces of arbitrary codimension, Sibirsk. Mat. Zh., 33(1992), N 5, p.201-207.
[7] V. M. Miklyukov and V. G. Tkachev, Some properties of tubular minimal surfaces of arbitrary codimension, Math. USSR-Sb., 180(1989), 1278-1295.
[8] V. M. Miklyukov and V. D. Vedenyapin, Extrinsic dimension of tubular minimal hypersurfaces, Math. USSR-Sb., 131(1986), 240-250.
[9] R. Osserman, A survey of minimal surfaces, New York: Dover Publications, 1987.
[10] B. Riemann, Oeuvres Mathematiques de Riemann, Paris, Gauthier-Villars, 1898.
[11] M. Schiffman, On surfaces of stationary area bounded of two circles, or convex curves, in parallel planes, Annals of Math., 63(1956), 77-90.