Fatores de risco para embolia pulmonar em pacientes com COVID-19 anticoagulados na unidade de terapia intensiva submetidos à angiografia por tomografia computadorizada

RESUMO

Objetivo: Avaliar a incidência de embolia pulmonar, seu relacionamento com os níveis de dímero D e outros possíveis fatores associados, além dos efeitos adversos da anticoagulação e meios de contraste.

Métodos: Conduziu-se um estudo de coorte retrospectiva em um hospital público chileno. Foram incluídos os pacientes com idade acima de 18 anos com COVID-19, mecanicamente ventilados na unidade de terapia intensiva, admitidos entre março e junho de 2020. Todos os pacientes receberam tromboprofilaxia com heparina, que foi aumentada até uma dose de anticoagulação com níveis de dímero D acima de 3µg/mL.

Resultados: Foram acompanhados 127 pacientes, dos quais 73 foram submetidos à angiografia por tomografia computadorizada (média de idade de 54 ± 12 anos; 49 homens). Sessenta e dois dos 73 pacientes (84,9%) receberam anticoagulação total antes da angiografia por tomografia computadorizada. Além disso, 18 dos 73 pacientes tiveram embolia pulmonar (24,7%). Na comparação entre pacientes com e sem embolia pulmonar, não se observaram diferenças significantes em termos de idade, sexo, obesidade, tabagismo, escores de Wells e Genebra revisado, dímero D ou mortalidade. O uso de anticoagulantes foi similar em ambos os grupos. O número de dias desde o início da anticoagulação até a angiografia por tomografia computadorizada foi significativamente menor no grupo com embolia pulmonar (p = 0,002). Três pacientes tiveram lesão renal aguda após o contraste (4,1%), e um paciente teve sangramento importante.

Conclusão: Apesar da anticoagulação, um em cada quatro pacientes com COVID-19 submetidos à ventilação mecânica e avaliados com angiografia por tomografia computadorizada apresentou embolia pulmonar. Com uma maior demora para realização da angiografia por tomografia computadorizada após início de anticoagulação empírica, identificou-se um número significativamente menor de embolias.

Descritores: Embolismo pulmonar; Coagulação sanguínea; Infecções; Respiração artificial; Insuficiência respiratória; COVID-19; Meios de contraste/efeitos adversos; Unidades de terapia intensiva; Angiografia por tomografia computadorizada

INTRODUÇÃO

A infecção causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2), também conhecida como doença pelo coronavírus 2019...
(COVID-19), apresenta espectro clínico amplo variando desde pacientes assintomáticos para pneumonia viral, até condições mais graves, como a síndrome do desconforto respiratório agudo grave, falência de múltiplos órgãos e óbito.\(^{(1)}\) Dentre os parâmetros bioquímicos associados com um pior prognóstico, destacam-se os distúrbios da coagulação. Relatou-se que níveis plasmáticos elevados de dímero D se associam com menor sobrevivência de pacientes com COVID-19,\(^{(2)}\) o que poderia indicar certa predisposição a lesão renal aguda.\(^{(10,11)}\) É importante conhecer a incidência de contraste acarreta o risco de certas complicações, como trombose e sangramento.\(^{(6)}\) O exame de escolha para o diagnóstico de EP é a angiografia por tomografia computadorizada (angiotomo), um exame que nem sempre é viável realizar no contexto de pacientes com COVID-19, especialmente naqueles em condição crítica.\(^{(6,9)}\) Além disso, o uso de meios de contraste acarreta o risco de certas complicações, como lesão renal aguda.\(^{(10,11)}\) É importante conhecer a incidência de complicações trombóticas em pacientes com COVID-19 e seu relacionamento com distúrbios da coagulação, para determinar a avaliação do uso de anticoagulante, especialmente em pacientes de UTI, que têm maior risco de trombose e sangramento.

Considerando-se os antecedentes aqui caracterizados, estudou-se uma coorte de pacientes com COVID-19 admitidos à UTI em um centro terciário em Santiago, no Chile, que foi submetida à angiotomo. O objetivo foi avaliar a incidência de EP e seu relacionamento com os níveis de dímero D e outros possíveis fatores associados com maior risco de EP, além da presença de eventos adversos secundários ao tratamento anticoagulante e aos meios de contraste.

MÉTODOS

Conduziu-se um estudo observacional retrospectivo no Hospital San Juan de Dios, um centro de ensino, o mais antigo do país, que atende uma população de cerca de 1,1 milhão de pessoas. Admitiram-se à UTI pacientes com idade de pelo menos 18 anos e diagnóstico de COVID-19, submetidos à ventilação mecânica no período entre 24 de março e 4 de junho de 2020. A confirmação do diagnóstico por SARS-CoV-2 foi realizada por técnica de transcrição reversa seguida de reação em cadeia da polimerase em amostras do trato respiratório. Excluíram-se os pacientes que foram extubados antes de 48 horas, intubados por causas não respiratórias, casos de pacientes mal documentados, casos com angiotomo realizada antes da admissão à UTI, transferidos para outro hospital em menos de 7 dias ou sem realização de angiotomo durante seu tratamento. A pesquisa foi aprovada pelo Comitê de Ética em Pesquisa da instituição (resolução 024667), e, devido ao delineamento do estudo, o comitê dispensou a necessidade de se obter a assinatura de um Termo de Consentimento Livre e Esclarecido.

Os pacientes foram seguidos desde sua admissão à UTI por 45 dias, ou até seu óbito, transferência para outro centro de atendimento ou alta, de forma que alguns dos pacientes completaram seu seguimento nas alas do hospital. Obteve-se dados demográficos, clínicos e laboratoriais a partir dos registros clínicos eletrônicos, que foram avaliados em pacientes com e sem EP. Além disso, para avaliar a probabilidade de EP antes do exame, aplicaram-se o escore de Wells e o escore de Genebra revisado dentro das 24 horas prévias à realização da angiotomo. Para ambas as escalas, definiram-se três grupos de nível de risco. No caso do escore de Wells, pontuações de zero a um, dois a seis e maior que seis foram definidas, respectivamente, como risco baixo, moderado e alto. Para o escore de Genebra revisado, os níveis com zero a três, quatro a dez e maior que dez pontos foram, respectivamente, definidos como baixo, moderado e alto risco. Todos os pacientes receberam tromboprofilaxia durante a hospitalização, e alguns deles estavam sob anticoagulação desde sua admissão, em razão de condições clínicas prévias. Em caso de níveis de dímero D acima de 3µg/mL, a dose de heparina foi aumentada para doses de anticoagulação, segundo as diretrizes clínicas locais (Tabela 1).

Tabela 1 - Guia local para terapia anticoagulante

Dímero D (µg/mL)	Dose de anticoagulante
< 3	Dalteparina 5.000UI, 1 vez ao dia, por via subcutânea*
> 3	Dalteparina 5.000UI, 2 vezes ao dia, por via subcutânea (< 80kg) ou 7.500UI, 2 vezes ao dia, por via subcutânea (≥ 80kg)†
> 3 e suspeita de EP/TVP, ou deterioração respiratória não explicada por outra causa	Dalteparina 100UI/kg, 2 vezes ao dia, por via subcutânea (dose máxima 10.000UI 2 vezes ao dia)†

EP – embolia pulmonar; TVP – trombose venosa profunda. * Se clearance de creatinina < 30mL/minuto, foi administrada heparina não fracionada em dose profilática (5.000UI 3 vezes ao dia) por via subcutânea; † se clearance de creatinina < 30mL/minuto, foi administrada heparina não fracionada em dose terapêutica (alvo de tempo de tromboplastina parcial ativada 1,5-2 vezes o controle).
Exames laboratoriais

Registrou-se o nível mais alto de dímero D no plasma (medido pelo método de aglutinação de látex) e de fibrinogênio (com utilização do método de Clauss), assim como se documentaram os níveis iniciais de creatinina plasmática (antes da realização da angiotomo) e seu valor mais alto de controle nas 48 horas após o contraste.

Eventos adversos

A ocorrência de lesão renal aguda pós-contraste (PC-AKI, sigla do inglês postcontrast acute kidney injury) foi avaliada como evento adverso relacionado ao meio de contraste e definido como uma diferença entre os níveis iniciais de controle da creatinina plasmática superior ou igual a 0,3mg/dL, segundo o consenso do American College of Radiology (ACR) e da National Kidney Foundation (NKF) de 2020.(12) Com relação à utilização de anticoagulantes, a presença de hemorragia secundária foi avaliada como um evento adverso. A gravidade do sangramento foi definida como determina o Anticoagulation Control Subcommittee do Scientific Committee of the International Society of Thrombosis and Haemostasis, determinando sangramento importante como queda na hemoglobina maior ou igual a 2g/dL ou necessidade de transfusão de duas ou mais unidades de concentrado de hemácias e/ou sangramento sintomático em um órgão crítico e/ou hemorragia fatal. Considerou-se como hemorragia não importante um sangramento que necessitou de intervenção clínica, porém sem cumprir os critérios para sangramento importante.(13)

Angiografia pulmonar por tomografia computadorizada

Conduziu-se angiotomo em equipamentos com 16 e 64 canais após injeção de 70 a 90mL de um meio de contraste isomolar, utilizando a técnica de rastreio de bólus e um limite gatilho entre 160 e 250 HU no tronco da artéria pulmonar. As imagens foram reconstruídas com espessura de corte de 1 mm, tanto na janela pulmonar quanto na mediastinal. Os relatórios dos radiologistas foram recebidos, e a localização da EP foi classificada segundo o local do defeito luminal mais proximal e a condição de ser única ou múltipla. Mais ainda, a experiência do radiologista foi registrada como uma medida do número de anos desde a obtenção do título de especialista, para avaliar se existiam diferenças entre os grupos positivo e negativo para EP, com a finalidade de afastar um viés de informação.

Análise estatística

Os resultados são expressos como percentagens ou médias ± desvios-padrão, conforme apropriado. O intervalo de confiança (IC) para a taxa de incidência de EP foi obtido pela metodologia de Agresti-Coull. Para análise da influência de cada fator nos resultados referentes à EP, utilizaram-se respectivamente o teste exato de Fisher (valores de razão de chance - RC) e o teste t para comparação de médias, na comparação dos dados binários e contínuos.

Considerou-se estatisticamente significante valor de p < 0,05. A análise estatística foi realizada com o programa RStudio (v 1.2.5033, R v 3.6.3).

RESULTADOS

Durante o período do estudo foram admitidos à UTI e submetidos à ventilação mecânica um total de 139 pacientes com COVID-19. Doze pacientes foram excluídos, sendo sete com angiografia pulmonar por tomografia computadorizada realizada antes da admissão à UTI, dois por documentação incompleta, um intubado por causas não respiratórias, um extubado antes de 48 horas e um transferido para outro centro nos 7 dias após a admissão. Assim, foram seguidos 127 pacientes, dos quais 54 não foram submetidos a angiotomo dentro do seu período de seguimento (Figura 1). Finalmente, foram incluídos 73 pacientes com realização de angiotomo em razão de suspeita de EP (média de idade de 54 ± 12 anos; 49 homens). Antes da angiotomo, 62 dos 73 pacientes (84,9%) tinham recebido doses plenas de anticoagulação, e 11 dos 73 pacientes receberam doses profiláticas. Ao final do período do estudo, nove pacientes tinham morrido, atingindo taxa de mortalidade de 12,3%; 23 pacientes permaneciam hospitalizados (31,5%); 39 pacientes tiveram alta (53,4%), e dois pacientes foram transferidos para outro hospital (2,7%). Todos os pacientes foram submetidos à angiotomo em razão de suspeita clínica de EP.

Figura 1 - População de pacientes do estudo.

angiotomo - angiografia por tomografia computadorizada; UTI - unidade de terapia intensiva.
Foram detectados, no total, 18 casos de EP, com incidência de 24,7% (IC95% 16,1 - 35,7%), dos quais dez tinham localizações múltiplas (56,6%). Com relação às artérias afetadas, 11 eram segmentais (61,1%), quatro eram subsegmentais (22,2%) e três eram lobares (16,7%). A figura 2 mostra um caso de EP segmentar. Ao comparar pacientes com e sem EP, não se observaram diferenças relacionadas com idade, sexo ou mortalidade. Dois pacientes com EP (2/18; 11,1%) e nove sem EP (9/55; 16,4%) morreram. Os pacientes com EP mostraram uma tendência à menor frequência de obesidade (50% versus 61,8%). Embora sem alcançar significância estatística em razão do tamanho da amostra, tabagismo e os escores de Wells e de Genebra revisado foram os fatores mais previdos para EP. Uma frequência mais elevada de tabagismo (33,3% versus 21,8%; RC de 1,75), escore de Wells moderado ou alto (100% versus 89,1%; RC de 1,3) e escore de Genebra revisado moderado (83,3% versus 76,3%; RC de 1,33) foram encontrados nos pacientes com EP em comparação aos sem EP. O uso de anticoagulação plena foi similar entre os grupos (83,3% versus 85,5%).

Com relação aos dados laboratoriais, ocorreu tendência a níveis mais altos de dímero D nos pacientes com EP (média 8,6µg/mL ± 4,8 versus 7,9µg/mL ± 5,7), sem obter significância. O pico de níveis de fibrinogênio foi significantemente menor nos pacientes com EP (média 739,8mg/dL ± 124,6 versus 829,8mg/dL ± 214,6; p = 0,02).

As características clínicas e laboratoriais dos pacientes são resumidas na tabela 2.

Em relação ao tempo entre os níveis plasmáticos mais elevados de dímero D até a angiotomo, não se observaram diferenças significantes entre os grupos. Em contraste, ao avaliar o número de dias desde a admissão à UTI até a angiotomo (17,9 ± 9,7 versus 23 ± 9,9; p = 0,03) e desde o início da anticoagulação até a angiotomo (7,5 ± 8,2 versus 14,8 ± 10,9; p = 0,002), esse número foi significantemente mais baixo no grupo com EP. A experiência dos radiologistas que avaliaram as imagens foi de 5,1 ± 2,8 e 5 ± 3,7 anos, respectivamente, para os pacientes com e sem EP (diferença não significante). Os dados são resumidos na tabela 3.
Finalmente, com relação a eventos adversos, três pacientes apresentaram PC-AKI (4,1%). Apenas um paciente teve hemorragia relacionada com o uso de anticoagulação e teve um hematoma de parede torácica com critérios para sangramento importante. Nenhum dos pacientes com eventos adversos teve EP.

DISCUSSÃO

Este estudo mostrou que 24,6% das angiotos pulmonares realizadas em pacientes com COVID-19 admitidos à UTI apresentaram EP. Essa incidência é coerente com estudos prévios em pacientes com COVID-19 submetidos à angioto (22% - 37%).\(^{15-19}\)

Contudo, tais estudos consideraram tanto pacientes de enfermarias quanto da UTI. Quando se analisam apenas os pacientes da UTI, a incidência de EP varia entre 25% e 50% nos pacientes submetidos à angioto,\(^{5,18}\) apesar de receberem anticoagulação profilática. A incidência neste estudo foi no limite inferior da faixa, o que pode ser explicado pelo longo tempo de anticoagulação antes da angioto e o tempo prolongado entre a admissão à UTI e a realização da angioto.

A alta incidência de EP relatada neste estudo foi detectada, embora 84,9% dos pacientes estivessem anticoagulados, o que reflete o alto risco de complicações trombóticas nos pacientes com COVID-19. Assim, alguns autores propõem o uso de anticoagulação em pacientes críticos com alto risco,\(^{5-7}\) considerando que as complicações de sangramento associadas com seu uso são infrequentes,\(^{8,20}\) como ocorreu neste estudo, no qual apenas um paciente teve sangramento importante. Por outro lado, o achado mais significante foi que quanto maior a demora para realização da angioto, uma vez iniciada a anticoagulação empírica, significamente menos identificações de EP ocorreram. Este fato pode refletir um subdiagnóstico, considerando que tais estudos foram realizados em pacientes sob tratamento. Isso tem um impacto nas ações terapêuticas, já que a anticoagulação poderia ser suspensa em pacientes sem achados de EP, o que, em alguns casos, poderia levar a subtratamento.

Contrariamente a relatos prévios,\(^{15-18}\) não se identificou uma associação entre os níveis de dímero D e EP. Isso pode ser explicado pelo fato de que tais estudos incluíram pacientes internados nas enfermarias, além de pacientes na UTI, o que salienta que, nos grupos com EP, houve maior percentagem de pacientes na UTI em comparação aos sem EP. Isso difere da presente coorte, que incluiu apenas pacientes de UTI. Outras potenciais explicações envolvem erro tipo II devido ao tamanho limitado da amostra e o efeito de confusão relacionado ao uso de dose plena de anticoagulantes iniciado dias antes da angioto.

Relatou-se que pacientes na UTI têm níveis mais altos de dímero D do que os de fora da UTI,\(^{21}\) mais ainda, níveis altos de dímero D se associam com maior grau de inflamação em pacientes com COVID-19,\(^{22}\) assim, pacientes com condições mais graves teriam níveis de dímero D mais elevados. Consequentemente, os níveis de dímero D teriam papel limitado na predição de trombose em pacientes críticos, considerando-se sua baixa especificidade.

Com respeito aos níveis de fibrinogênio, foram relatados valores elevados em pacientes com COVID-19 no contexto de inflamação aguda, assim como foram descritas disfunção endotelial e fatores protrombóticos.\(^{23,24}\) Independente do que foi descrito pela literatura, esta coorte mostrou que os pacientes com EP tiveram níveis de pico de fibrinogênio significantemente mais baixos do que os sem EP. Essa associação não foi relatada previamente, e não foi encontrada uma explicação para esse fenômeno. São necessários futuros estudos para esclarecimento dessa associação.

Com relação à segurança da angioto, nesta coorte, tal método se mostrou seguro, quando se considera o baixo número de pacientes com PC-AKI. Entretanto, é importante considerar o risco para os profissionais de saúde durante o transporte dos pacientes com COVID-19 a serem submetidos à TC, assim como o risco de descompensação e instabilidade para o paciente, inerente a um paciente crítico.\(^{25,26}\)
Fatores de risco para embolia pulmonar em pacientes com COVID-19 anticoagulados na unidade de terapia intensiva

Com relação a escores para avaliar a probabilidade antes do exame, nem o escore de Wells nem o de Genebra revisado foram úteis para predizer a EP em pacientes da UTI. Outro estudo realizado com pacientes de COVID-19 também não encontrou associação entre o valor do escore de Wells e a presença de EP,[17] o que poderia indicar que a aplicação desses escores preditivos teria utilidade limitada para distinguir quais pacientes devem ser submetidos a exames de imagem para confirmação de EP. Embora os valores de OR para cada fator de risco tenham sido obtidos separadamente, com essa análise demos um primeiro passo para um modelo logístico preditivo múltiplo, que deve fazer sentido com a adequação quando se atingir uma amostra maior.

Este estudo é um ensaio observacional retrospectivo e tem diversas limitações. Como a avaliação das complicações tromboembólicas não foi padronizada, ocorreu um longo prazo até a realização da angiotomo, de forma que, em sua maioria, os pacientes permaneceram anticoagulados durante todo o tempo, o que pode ter afetado a incidência de EP, que foi, provavelmente, subestimada. Por outro lado, outra limitação deste estudo foi que nem todos os pacientes foram submetidos à angiotomo, mas apenas aqueles com suspeita clínica de EP. Essa característica do estudo provavelmente superestimaria a incidência de EP. Além disso, não houve protocolo para de dados laboratoriais, o que pode ter afetado a investigação do pico de níveis plasmáticos de dímero D e fibrinogênio. Assim, para avaliar a incidência de EP e seu relacionamento dos níveis de dímero D, são necessários e devem ser realizados ensaios prospectivos que incluam um número maior de pacientes.

CONCLUSÃO

Apesar da anticoagulação, um em cada quatro pacientes com COVID-19, submetidos à ventilação mecânica e avaliados por meio de angiografia pulmonar por tomografia computadorizada, tinha embolia pulmonar. O número de dias desde a admissão à unidade de terapia intensiva e o início da anticoagulação até a realização da angiografia pulmonar por tomografia computadorizada foi significativamente menor no grupo com embolia pulmonar. Contudo, não houve relação estatisticamente significante com os escores preditivos recomendados para embolia pulmonar ou com os níveis de dímero D. São necessários mais estudos, com maior número de pacientes, para aceitar ou rejeitar estes achados.

AGRADECIMENTO

Gostaríamos de agradecer à chefia da Unidade de Terapia Intensiva e da Unidade de Imagem por facilitar nosso acesso às bases de dados para realização deste estudo.

ABSTRACT

Objective: To assess pulmonary embolism incidence, its relationship with D-dimer levels and other possible associated factors in addition to anticoagulation and contrast medium adverse effects.

Methods: A retrospective observational cohort study at a Chilean public hospital was performed. Intensive care unit mechanically ventilated COVID-19 patients older than 18 years old between March and June 2020 were included. All patients received heparin thromboprophylaxis, which was increased to the anticoagulation dose with D-dimer greater than 3µg/mL.

Results: A total of 127 patients were followed up, of whom 73 underwent pulmonary computed tomography angiography (mean age, 54 ± 12 years; 49 men). Sixty-two of the 73 patients (84.9%) received full anticoagulation before computed tomography angiography. In addition, 18 of the 73 patients had pulmonary embolism (24.7%). When comparing patients with and without pulmonary embolism, no significant differences were observed in age, sex, obesity, smoking, Wells and revised Geneva scores, D-dimer or mortality. Anticoagulant use was similar in both groups. Days from the start of anticoagulation until computed tomography angiography were significantly lower in the pulmonary embolism group (p = 0.002). Three patients presented post contrast-acute kidney injury (4.1%), and one patient had major bleeding.

Conclusion: Despite anticoagulation, one in four COVID-19 patients connected to mechanical ventilation and evaluated with pulmonary computed tomography angiography had pulmonary embolism. With a longer delay in performing computed tomography angiography once empirical anticoagulation was started, significantly less pulmonary embolism was identified.

Keywords: Pulmonary embolism; Blood coagulation; Infections; Respiration, artificial; Respiratory insufficiency; COVID-19; Contrast media/adverse effects; Intensive care units; Computed tomography angiography
REFERÊNCIAS

1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.

2. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7.

3. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merjdi H, Clerc-Jehl R, Schenck M, Fatog Gandet F, Fafi-Kremmer S, Castelain V, Schneider F, Grunebaum L, Angles-Cano E, Sattler L, Mertes PM, Meziani F; CRICS TRIGGERSEF Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1088-98.

4. Poissy J, Goutay J, Cambier M, Parmentier E, Duburcq T, Lassalle F, Jeanpierre E, Rauch A, Labreuche J, Susen S; Lille ICU Haemostasis COVID-19 Group. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020;142(2):184-6.

5. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6.

6. Bidkeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Ngogohissian C, Ageno W, Madjid M, Guo Y, Tang L, Hu Y, Giri J, Cushman M, Queré I, Dimakakos EP, Gibson CM, Lippi G, Favaloro EJ, Fareed J, Caprini JA, Tafur AJ, Burton JR, Francese DP, Stone GW, Rosenkranz S, Jaeger JA, Tafur AJ, Burton JR, Francese DP, Wang EY, Falanga A, McLintock C, Desborough MJ, Doyle AJ, Griffiths A, Retter A, Breen KA, Hunt BJ. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb Res. 2020;193:1-4.

7. Parangie I, Foster V, Lala A, Russak AJ, Glicksberg BS, Levin MA, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122-4.

8. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

9. Yu B, Li X, Chen J, Qiuang M, Zhang H, Zhao X, et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis. J Thromb Thrombolysis. 2020;50(3):548-57.

10. Maier CL, Trautman AC, Asplin B, Nierenberg H, Won C, et al. The thromboembolic disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020;2(1):85-93.

11. Schulman S, Kearsen C, Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692-4.

12. RStudio Team. RStudio. Boston, MA: RStudio; 2020. Available from: https://www.rstudio.com/