Limitations of Quantitative Blush Evaluator (QuBE) as myocardial perfusion assessment method on digital coronary angiograms

Prasetya, Haryadi; Beijk, Marcel A M; Konduri, Praneeta R; Epema, Thabiso; Hirsch, Alexander; van der Harst, Pim; van Bavel, Ed; de Mol, Bas A J M; Marquering, Henk A

Published in:
Clinical and translational science

DOI:
10.18053/jctres.03.2017S2.008

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Prasetya, H., Beijk, M. A. M., Konduri, P. R., Epema, T., Hirsch, A., van der Harst, P., van Bavel, E., de Mol, B. A. J. M., & Marquering, H. A. (2018). Limitations of Quantitative Blush Evaluator (QuBE) as myocardial perfusion assessment method on digital coronary angiograms. Clinical and translational science, 3(Suppl 2), 394-400. https://doi.org/10.18053/jctres.03.2017S2.008

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Limitations of Quantitative Blush Evaluator (QuBE) as myocardial perfusion assessment method on digital coronary angiograms

Haryadi Prasetya*,1,2, Marcel A.M. Beijk3, Praneeta R. Konduri1,4, Thabiso Epema1, Alexander Hirsch5, Pim van der Harst6, Ed van Bavel1, Bas A.J.M. de Mo1, Henk A. Marquering1,4

1Department of Biomedical Engineering Physics, Academic Medical Center, Amsterdam, the Netherlands
2Department of Cardio-thoracic Surgery, Academic Medical Center, Amsterdam, the Netherlands
3Department of Cardiology, Academic Medical Center, Amsterdam, the Netherlands
4Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
5Department of Cardiology and Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
6Department of Cardiology and Thorax Surgery, University Medical Center Groningen, Groningen, the Netherlands

1. Introduction

Myocardial infarction is commonly treated by primary percutaneous coronary intervention (PCI) in which various procedures such as coronary angioplasty, stent placement, or thrombus aspiration are performed. PCI aims to reestablish epicardial blood flow in the infarct-related artery and myocardial perfusion. After successful PCI, myocardial perfusion can be assessed using angiography in order to determine if the restored epicardial patency also leads to proper perfusion in the infarcted area [1,2]. The Myocardial Blush Grade (MBG) is one of the most common reperfusion scales for categorization of the quality of perfusion in this area [1]. Although MBG has been proven to be a strong predictor of mortality in patients with restored epicardial flow as indicated by Thrombolysis in Myocardial Infarction flow grade 3, it is a rather coarse scale and is also sensitive to observer de-

*Corresponding author:
Haryadi Prasetya, Department of Biomedical Engineering Physics, Academic Medical Center, Amsterdam
E-mail: h.prasetya@amc.uva.nl
pendency. This has prompted the need for an automated and quantitative approach for assessing myocardial perfusion.

Currently, quantification of myocardial perfusion is possible with Single Photon Emission Computed Tomography, Positron Emission Tomography, Cardiovascular Magnetic Resonance, and CT imaging [3–5]. However, these methods require other imaging modalities in addition to the current standard practice of using x-ray angiography during PCI. Therefore, Quantitative Blush Evaluator (QuBE) has been introduced to semi-quantitatively assess myocardial perfusion from coronary angiograms [6].

QuBE is an open-source computer program, which has been developed by the University Medical Center Groningen, the Netherlands [6]. In general, angiographic quantification of myocardial blush poses some difficulties including cumbersome assessment because of poor blush signal to noise ratio and superimposition of irrelevant structures. Recognizing and solving these issues are important in developing a blush quantification method such as QuBE. QuBE has been validated as a good risk predictor in the TAPAS trial, which was a study that included patients with PCI and in which the MBG score was assessed on angiograms. In this study, high QuBE values were associated with high MBG scores, more ST-segment elevation resolution, smaller infarct size, and lower 1-year mortality rate [6]. Although QuBE has been shown to be reproducible, unknown effects of different angiography hardware and techniques, median filter insufficiency as the default large structure removal method, and uncalibrated scoring remain as limitations [7–9]. These inherent limitations might obstruct accurate calculation of myocardial blush. Another possible limitation is the effect of cardiac motion on QuBE score calculation, which has not been studied before. In this study, we evaluate the accuracy of QuBE in a clinical trial data and analyze whether general difficulties of blush quantification and inherent limitations of QuBE can be resolved with enhanced image analysis methods.

2. Materials and Methods

2.1. Patients

We included patients with ST-segment elevation myocardial infarction who underwent primary PCI in the HEBE trial [10]. The HEBE trial was a multi-center randomized trial with blinded evaluation of endpoints. This trial was designed to assess the effects of intracoronary infusion of bone marrow mononuclear cells and peripheral blood mononuclear cells in improving left ventricular recovery after acute myocardial infarction. Patients from the bone marrow mononuclear cells, peripheral blood, and control groups were included based on the following criteria: age 30-75 years old, successful PCI within 12h after onset of symptoms, >3 hypokinetic or akinetic left ventricular segments observed on echocardiography at least 12h after PCI, and an elevation of creatine kinase in venous blood >10 times the local upper limit of normal. In addition, patients with hemodynamic instability, upcoming additional PCI, coronary-artery bypass grafting within the next 4 months, severe comorbidity, and contraindications for MRI were excluded from this trial. We included patients from the two largest of the eight participating centers in this study. We included 58 patients from the Academic Medical Center and 87 patients from the University Medical Center Groningen. 14 Coronary angiograms made during primary PCI were collected. The inclusion criteria for accepted angiogram adhered to the guideline provided in the initial study of QuBE [6]. We included complete blush sequence and no major overlapping of other non-infarct related area in myocardial region of interest.

2.2. QuBE evaluations and myocardial blush grade

In coronary angiograms, tissue perfusion appears as a blush surrounding the coronary artery. Therefore, myocardial perfusion can be observed by monitoring the dynamics of average contrast intensity within a certain region of interest (ROI), which is shown as a typical curve in Figure 1.

![Figure 1.](image)

Figure 1. Left: Coronary angiogram with a ROI containing distal infarct-related area of right coronary artery. Right: Blush curve representing the average intensity of ROI for each frame. The QuBE score is defined as the sum of the maximum increase (a) and the maximum decrease (b) of intensity.

The accuracy of QuBE score calculation assumes that the blush can be isolated by removal of contributions from coronary arteries and background structures such as the diaphragm and catheter from the image using filters. This implemented removal of these structures is based on differences between the spatial frequencies of myocardial blush compared to the unwanted structures (Figure 2). QuBE applies a median filter, which creates an image depicting large-scale structures only [11]. Subsequently, this background image is subtracted from the original frame.

Distributed under creative commons license 4.0

DOI: [http://dx.doi.org/10.18053/jctres.03.2017S2.008](http://dx.doi.org/10.18053/jctres.03.2017S2.008)
This process results in an image representing myocardial blush and other high-spatial frequency noise. The noise characteristics, such as the sparsity and the intensity, depend on the kernel size of the median filter.

The native QuBE software uses a fixed kernel size of 35 pixels × 35 pixels. We evaluated the appropriateness of this kernel size for removal of large structures by comparing with results obtained from two different kernel sizes: 20 pixels × 20 pixels and 50 pixels × 50 pixels. The performance of median filters with different kernel sizes was qualitatively and quantitatively assessed.

Since QuBE uses a fixed ROI location, a bias may be introduced due to the cardiac motion. The QuBE only includes a rudimentary panning motion correction by calculating a possible translation offset of every frame, while cardiac motion is a complex combination of translation, rotation, and non-isotropic contraction and relaxation. We evaluated whether additional cardiac motion correction improves the agreement of QuBE score with MBG. The comparison was made because MBG is the most commonly used angiographic measure to assess myocardial perfusion and has moderate to good inter- and intra-observer agreement [1,12,13]. For this, a single experienced cardiologist who was blinded to clinical data first indicated the ROI on a frame of reference. Two trained observers subsequently manually adjusted the ROIs for all time frames, ensuring that the ROI indicates the same area of myocardium at all times. The cardiac motion correction was performed for 40 patients (10 of each MBG group).

The suitability of the angiographic angulation was assessed by an experienced cardiologist to avoid an overlap between infarcted and healthy myocardium. The right anterior oblique view of −30° and the left anterior oblique view of −60° to −90° were considered to be the appropriate angulations for perfusion assessment for the left anterior descending artery. A deviation of ±10° from the two proposed projections was allowed. In appropriate angiograms, the MBG was assessed by the same cardiologist. The cardiologist delineated the ROI that contained the distal part of the perfusion area of the infarct-related artery. The MBG was scored based on the following classification: MBG 0 for no myocardial blush, MBG 1 for minimal myocardial blush, MBG 2 for moderate myocardial blush but less than that obtained during angiography of the reference artery, and MBG 3 for normal myocardial blush that is comparable to the angiographically healthy reference artery.

2.3. Statistical analysis

QuBE scores were summarized as medians (interquartile range, IQR). Associations between QuBE scores and MBG grades were analyzed by calculating the Spearman rank correlation coefficients. Kruskal-Wallis tests were performed to analyze the differences in QuBE scores between MBG groups. Lin’s concordance coefficient was calculated to quantify inter-observer agreement on the QuBE scores acquired after manually correcting the cardiac motion. The significance of the difference of the QuBE scores with and without cardiac motion on QuBE score was analyzed using Wilcoxon signed-rank test. The similarity of the native and motion-corrected blush curves was analyzed using Pearson correlation where the intensities for every time frame was compared for both assessments. P-values lower than 0.05 were considered statistically significant. All statistics were performed using IBM SPSS software (version 19.0.0).

Distributed under creative commons license 4.0

DOI: http://dx.doi.org/10.18053/jctres.03.2017S2.008
Table 1. MBG and QuBE score of 117 patients

| QuBE score | n  | MBG0 | MBG1 | MBG2 | MBG3 |
|-----------|----|------|------|------|------|
| Kernel Size 20x20 | 70 | 4.2(1.1-2.4) | 4.0(1.4-9.4) | 4.7(2.3-8.6) | 4.9(2.4-9.0) |
| Kernel Size 35x35 (Native) | 14 | 12(3.0-22) | 15(8.5-19) | 12(4.1-29) |
| Kernel Size 50x50 | 13 | 15(4.0-35) | 12(5.0-22) | 15(7.9-18) | 13(4.7-36) |

Figure 3. Association of myocardial blush grade with QuBE. MBG 0: no myocardial blush; MBG 1: minimal myocardial blush; MBG 2: moderate myocardial blush; MBG 3: normal myocardial blush.

3. Results

Out of 145 patients, 28 were excluded due to an unsuitable angulation. The remaining 117 patients (48 patients from the Academic Medical Center and 69 from the University Medical Center Groningen) were included in this analysis. The QuBE score distribution for the MBG grades are represented in Figure 3. The correlation between QuBE score and MBG was not significant ($p = 0.14$) and no significant differences were found between the grades ($p = 0.22$). Table 1 summarizes the QuBE scores stratified for MBG scores for varying kernel sizes of the median filter.

Figure 4 shows the resulting images after subtracting median filtered images for various sizes of the median filters for a single patient. For all kernel sizes the right coronary and right marginal artery were successfully removed. However, the resulting images were commonly noisy, especially around the edge of the angiogram’s border, arteries, and diaphragm. This figure indicates that a kernel size of 20x20 resulted in more pronounced and higher frequency noise. On the other hand, a kernel size of 50x50 resulted in a lower noise level but in larger areas around the edges of large structures.

Figure 5a shows the distribution of the QuBE scores for varying kernel size and MBG score. We found that there were no significant correlations between QuBE score and MBG for kernel size 20 pixels x 20 pixels ($p = 0.33$) and 50 pixels x 50 pixels ($p = 0.16$). Additionally, no significant QuBE differences were found between MBG groups for all kernel sizes ($p = 0.70$ and 0.28 for kernel size 20 pixels x 20 pixels and 50 pixels x 50 pixels, respectively).

There were no significant differences among QuBE scores of different MBG groups of the native and motion-corrected QuBE score ($p = 0.70$), as can be seen in Figure 5b. For both observers, 38 patients demonstrated strong correlation between blush curves of native and motion-corrected QuBE and the remaining 2 patients showed moderate correlation (observer 1: median $R = 0.97$, range 0.47-1.00; observer 2: median $R = 0.98$, range 0.53-1.00). The Lin’s inter-observer concordance was 90%. The native and motion corrected blush curves with the worst and the best correlation are shown in Figure 6. The Wilcoxon signed-rank test showed that additional manual cardiac motion correction performed by the two observers did not elicit a statistically significant change in QuBE scores ($p = 0.66$, 0.72).

4. Discussion

In our population, we found no association between QuBE scores and the MBG score, suggesting that QuBE is not suitable for myocardial blush quantification. We found that the implemented median filter is not accurate in the removal of large structures and that in the filtered images many artefacts associated with large structures remain and influence the QuBE score. We explored different sizes of filters without better results. Furthermore, cardiac motion correction did not strongly affect QuBE calculation. These findings suggest that despite the reported high reproducibility, QuBE scores may not represent the actual reperfusion state.

The feasibility of QuBE has been evaluated in a number of...
trials, notably the TAPAS and PREPARE trials [8,9,14,15]. These authors found that a high QuBE score significantly correlates with high MBG, ST-segment elevation resolution, smaller infarct sizes, survival at 1 year, improved functional outcome, and contrast-enhanced Cardiac Magnetic Resonance outcomes [6,8,9]. Our results do not confirm these findings.

Because QuBE is open source, it allowed for detailed inspection of the algorithms that are employed in the software. We found that the underlying cause of the lack of association between QuBE and MBG may reside within QuBE itself. We have shown that the median filter used in QuBE may not be appropriate for blush isolation. It was demonstrated that the filtered image may contain noise around the edges of removed structures that has the same spatial characteristics as the blush. QuBE calculates the local average of the intensities of the few brightest pixels as the blush value of a single frame of angiogram [6]. This calculation leads to the inclusion of the noise in the equation since there is no earlier process in QuBE that distinguishes blush from the noise.

We considered cardiac motion as a potential important limitation in the calculation of the QuBE score. Our observation, however, revealed that in most cases cardiac motion did not have a large influence on the QuBE calculation. We suspect that the improved improvement of cardiac motion correction is because the ROIs were large enough for the infarct-related artery and its perfusion area to remain inside the ROI during the cardiac cycle. On the other hand, in the cases where the ROI is close to a coronary artery bifurcation but does not include it, i.e., during reperfusion assessment of myocardium supplied by the right coronary artery, cardiac motion did have an effect. Since the most prominent cluster of noise was formed in curving arteries and bifurcations, the cardiac motion which subsequently included and excluded this bifurcation in a cardiac cycle introduced subsequent spikes and dips in the blush curve. In these particular cases, motion correction may improve the accuracy of the QuBE score.

Describing and visualizing intermediate results in QuBE calculations set this study apart from previous QuBE studies. This allowed for careful analysis of the limitations of the specific algorithms in QuBE. Although we investigated different kernel sizes of the filter, we did not explore other large-scale structure removal methods that might provide better isolation of the myocardial blush. Several enhanced-image and segmentation methods could be employed as alternatives to
median filter, i.e., digital subtraction angiography for coronary arteries or vesselness filters for better artery removal [16,17]. Since this is a retrospective analysis of trial data, no power analysis and sample size calculation were performed. Uneven distribution of samples across MBG groups may have reduced the statistical power of our findings. Additionally, the trial data used by previous studies that showed positive findings with QuBE were not available, thus, a comparison study could not be performed. However, aside from the particular limitation of the local algorithm, this discrepancy of QuBE performance may also have been caused by a number of other factors. For instance, type and volume of contrast agent, speed of injection, and the configuration of acquisition machine have not been yet standardized. Besides, the infarct location and body mass index has been known to confound QuBE value [7]. If the image acquisition protocol is standardized and the known confounders are controlled, QuBE may give a more reliable assessment. This information should be incorporated in the guidelines on the use of QuBE to assess myocardial perfusion.

In summary, QuBE may not reliably describe myocardial perfusion and extensive motion correction does not improve its performance. Alternatives for the currently used large-scale structure removal algorithms should be investigated.

Acknowledgments

The work presented in this article was supported by the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, Republic of Indonesia through LPDP Scholarship Program for Doctorate Students.

Conflict of interest disclosure

Henk Marquering is co-founder and shareholder of Nico.lab. The other authors declare that they have no conflict of interest.

References

[1] Henriques JPS, Zijlstra F, van ’t Hof AWJ, et al. Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation. 2003;107:2115-2119.

[2] Gibson CM, Cannon CP, Murphy SA, et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation. 2000;101:125-130.

[3] Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374-379.

[4] Bratis K, Mahmoud I, Chiribiri A, Nagel E. Quantitative myocardial perfusion imaging by cardiovascular magnetic resonance and positron emission tomography. J Nucl Cardiol. 2013;20:860-870.

[5] Pelgrim GJ, Handayani A, Dijkstra H, et al. Quantitative myocardial perfusion with dynamic contrast-enhanced imaging in MRI and CT: Theoretical models and current implementation. Biomed Res Int. 2016;2016:1-12.

[6] Vogelzang M, Vlaar PJ, Svilas T, Amo D, Nijsten MWN, Zijlstra F. Computer-assisted myocardial blush quantification after percutaneous coronary angioplasty for acute myocardial infarction: A substudy from the TAPAS trial. Eur Heart J. 2009;30:594-599.

[7] Gu YL, Haeck JDE, Vogelzang M, et al. Computer-assisted quantification of myocardial reperfusion after primary percutaneous coronary intervention predicts functional and contrast-enhanced cardiovascular magnetic resonance outcomes in patients with ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv. 2011;77:174-181.
[8] Haeck JDE, Gu YL, Vogelzang M, et al. Feasibility and applicability of computer-assisted myocardial blush quantification after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv. 2010;75:701-706.

[9] Porto I, Hamilton-Craig C, De Maria GL, et al. Quantitative Blush Evaluator accurately quantifies microvascular dysfunction in patients with ST-elevation myocardial infarction: Comparison with cardiovascular magnetic resonance. Am Heart J. 2011;162:372-381.e2.

[10] Hirsch A, Nijveldt R, van der Vleuten P a, et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE. Eur Heart J. 2011;32:1736-1747.

[11] Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm. IEEE Trans Acoust. 1979;27:13-18.

[12] van ’t Hof AWJ, Liem A, Suryapranata H, Hoornhje JC a., de Boer M-J, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Circulation. 1998; 97: 2302-2306.

[13] Korosoglou G, Haars A, Michael G, et al. Quantitative evaluation of myocardial blush to assess tissue level reperfusion in patients with acute ST-elevation myocardial infarction. Incremental prognostic value compared with visual assessment. Am Heart J.2007;153:612-620.

[14] Fokkema ML, Vlaar PJ, Vogelzang M, et al. Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction a randomized controlled trial. Circ Interv. 2009;2:323-329.

[15] Gu YL, Kampina MA, Wieringa WG, et al. Intracoronary versus intravenous administration of abciximab in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration the comparison of intracoronary versus intravenous abciximab administration during emergency reperfusion of ST-segment elevation myocardial infarction (CICERO) trial. Circulation. 2010; 122: 2709-2717.

[16] Yamamoto M, Okura Y, Ishihara M, Kagemoto M, Harada K, Ishida T. Development of digital subtraction angiography for coronary artery. J Digit Imaging. 2009; 22: 319-325.

[17] Frangi AF, Niessen WJ, Vincken KL, Viergever M a. Multiscale vessel enhancement filtering. Medial Image Comput Comput Intervention - MICCAI’98 Lect Notes Comput Sci vol 1496. 1998;1496:130-137.