Measurement of the top-quark pair production cross-section in events with two leptons and bottom-quark jets using the full CDF data set

T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Anni, J. Antos, G. Apollinari, J. A. Appel, T. Ariasawa, A. Artikov, J. Asaadi, W. Ashmanskas, B. Auerbach, A. Aurișano, F. Azar, W. Badgett, T. Bae, A. Barbato, Galtier, V. E. Barnes, B. A. Barnett, P. Barria, P. Bartos, M. Basso, F. Bedeschi, S. Behari, G. Bellinetti, J. Bellinger, D. Benami, A. Beretvas, A. Bhatti, K. R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortoletto, J. Boudreau, A. Boveia, L. Brigliadori, C. Bromberg, E. Brucken, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, P. Bussey, P. Buttì, A. Buzatu, A. Calamba, S. Camarda, M. Campanelli, F. Canneli, B. Carls, D. Carlsmit, R. Carosi, S. Casillo, B. Casal, M. Casarsa, A. Castro, P. Castanini, D. Cațu, V. Cavalliere, M. Cavalli-Sforza, A. Cerri, L. Cerri, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Ch. Cho, D. Chokheli, M. A. Ciocchi, A. Clark, C. Clarke, M. E. Convery, J. Conway, M. Corbo, M. Cordell, C. A. Cox, D. J. Cox, M. Cremonesi, D. Cruz, J. Cueva, R. Cubertson, N. d’Ascenzo, M. Datta, P. De Barbaro, L. Demortier, M. Deninno, M. d’Errico, F. Devoto, A. Di Canto, B. Di Ruzza, J. R. Dittmann, M. D’Onofrio, S. Donati, M. Dorigo, A. Dritti, K. Ebina, R. Edgar, A. Elagin, R. Erbacher, S. Errede, B. Esham, R. Eusebi, F. S. Farrington, J. P. Fernández Ramos, R. Field, G. Flanagan, R. Forrest, M. Franklin, J. C. Freeman, H. Frisch, Y. Funakoshi, A. F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, V. Giakoumopoulou, K. Gibson, C. M. Ginsburg, N. Giotakis, P. Giromini, G. Giorgi, V. Glagolev, D. Glenskin, M. Gold, D. Goldin, G. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Gouchar, O. González López, I. Gorelov, A. G. Goushegh, K. Goulian, E. Gramellini, S. Grinstein, C. Grosso-Pilcher, R. C. Group, J. Guimarães da Costa, S. R. Han, J. Y. Han, J. F. Happpacher, K. Har, M. Hare, R. F. Harr, T. Harrington-Taber, K. Hatakeyama, N. Hays, J. Heinrich, M. Henrond, A. Hocker, Z. Hong, W. Phipps, S. Hou, R. E. Hughes, U. Husemann, M. Hussein, J. Huston, G. Introzzi, M. Iori, A. Ivanov, E. James, D. Jang, B. Jayatilaka, E. J. Jean, S. Jindariani, M. Jones, K. Joo, S. Y. Joon, T. R. Junk, K. Mambet, T. Kamon, P. E. Karchin, A. Kasmi, Y. Kato, W. Ketchum, J. Keung, B. Kilminster, D. H. Kim, H. S. Kim, M. J. Kim, S. H. Kim, J. Y. Kim, Y. K. Kim, N. Kimura, M. Kirby, K. Knoepfel, K. Kondo, J. D. Kong, J. Konigsberg, A. V. Kotwal, M. Kreps, J. Kroll, M. Kruse, T. Kuhr, M. Kurata, A. T. Laasanen, S. Lammell, M. Lancaster, K. Lannon, G. Latino, H. S. Lee, J. S. Lee, S. Leo, S. Leon, J. D. Lewis, A. Lmosani, E. Lipeles, A. Lister, H. Liu, Q. Liu, T. Liu, S. Lockwitz, A. Logino, A. Luch, D. Lucchesi, J. Lucek, P. Lujan, P. Lukens, G. Lungu, J. Lys, R. Lysak, R. Madrak, P. Maestroni, S. Malik, G. Manca, A. Manousakis-Katsikaklis, F. Margaroli, P. Marino, A. Martinez, K. Matera, M. Mattsson, A. Mazzacane, P. Mazzaanti, R. McNulty, A. Mehta, P. Mehta, M. Mesropian, T. Miao, J. Mietlicki, A. Mitra, H. Miyake, S. Moed, N. Moggi, C. S. Moon, R. Moore, M. Moiello, A. Mukherjee, T. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Naganoma, I. Nakano, A. Napier, J. Nett, C. Neuf, T. Nigonman, L. Nodulman, S. Y. Noh, O. Norniella, L. Oakes, S. H. Oh, Y. D. Oh, I. Oksuzian, T. Okusawa, R. Orava, L. Ortolan, C. Pagliarone, J. Palencia, P. Palni, J. Papadimitriou, W. Parker, G. Pauletta, M. Paulini, C. Paus, T. J. Phillips, G. Piacentino, E. Pianori, A. Pilot, K. Pitts, C. Plager, L. Pondrom, S. Poprocki, K. Potamianos, A. Pranko, P. Prokoshin, F. Ptohos, G. Punzini, R. Ranjan, I. Redondo Fernández, P. Renton, M. Rescigno, G. Rimondi, L. Ristori, A. Robson, T. Rodriguez, J. Rolli, M. Ronzani, R. Roser, J. L. Rosner, F. Ruffini, A. Russi, W. K. Sukamoto, Y. Sukzaki, L. Santik, K. Satoh, V. Saveliev, A. Savoy-Navarro, P. Schlabach, E. Schmidt, T. Schwarz, S. Scodellaro, F. Scuti, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, S. Z. Shallhout, T. Shears, P. S. Shepard, M. Shinojima, M. Shochet, I. Shreyer-Tecker, A. Simonenko, S. Sinervo, K. Sliwa, J. R. Smith, F. Sideris, J. Song, V. Sorin, M. Stancari, R. Stelzer, O. Stelzer-Chilton, D. Stenz, J. Strologas, Y. Sud, A. Sukhanov, I. Suslov, K. Takemasa, Y. Takeuchi, T. Tang, M. Teczico, P. K. Teng, J. Thom, E. Thomson, V. Thukral, D. Toback, S. Tokar, K. Tollefsen, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, F. Ukegawa, S. Uozumi, F. Vázquez, G. Velev, C. Vellidis,
C. Vernieri, M. Vidal, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R. Wallny, S.M. Wang, A. Warburton, D. Waters, W.C. Wester III, D. Whiteson, A.B. Wicklund, S. Wilbur, H.H. Williams, J.S. Wilson, P. Wilson, B.L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, D. Yamato, T. Yang, U.K. Yang, Y.C. Yang, W.-M. Yao, G.P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, A.M. Zanetti, Y. Zeng, C. Zhou, and S. Zucchelli

(CDF Collaboration)
We present a measurement of the top-quark pair production cross-section in proton-antiproton collisions at \(\sqrt{s} = 1.96 \text{ TeV} \). The data were collected at the Fermilab Tevatron by the CDF II detector and correspond to an integrated luminosity of 8.8 fb\(^{-1}\), representing the complete CDF Run II data set. We select events consistent with the production of top-quark pairs by requiring the presence of two reconstructed leptons, an imbalance in the total event transverse momentum, and jets. At least one jet is required to be identified as consistent with the fragmentation of a bottom quark using a secondary-vertex-finding algorithm. The 246 candidate events are estimated to have a signal purity of 91%. We measure a cross section of \(\sigma_{tt} = 7.09 \pm 0.84 \text{ pb} \), assuming a top-quark mass of 172.5 GeV/c\(^2\). The results are consistent with the standard model as predicted by next-to-leading-order calculations.

PACS numbers: 13.85.Ni, 13.85.Qk, 14.65.Ha

Beginning with the discovery of the top quark \((t)\) in 1995 [1, 2], the CDF and D0 experiments at Fermilab have studied its production, decays, and intrinsic properties [3–8]. This Letter continues that rich program by reporting the first top-antitop quark pair \((tt)\) production cross-section measurement by a Tevatron experiment that utilizes the complete Run II data set. Studies of the top quark provide both measurements of standard model (SM) parameters [9] and probes of non-SM particles or interactions [10]. Top-quark pairs are produced in proton-antiproton collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) by the Fermilab Tevatron. We select events for this measurement if both leptons in the decay chain \(t \rightarrow (W^+b)(W^-\bar{b})\) are identified. Only reconstructed electron or muon candidates are selected as leptons. Hadronic decays of tau leptons are not considered. The signal yield is measured as the number of selected events in the data after subtraction of the background expectation from other SM sources, and the cross section is measured by correcting the signal yield for acceptance, efficiency, and luminosity. This analysis uses the full CDF Run II data set collected between March 2002 and September 2011, which corresponds to 8.8 fb\(^{-1}\) of integrated luminosity after data-quality requirements are imposed. The result supersedes a previous analysis [5] by exploiting a three-fold increase in data set and improved \(tt\) signal-to-background ratio. Improved sample purity is obtained by requiring the presence of jets consistent with the fragmentation of \(b\) quarks (\(b\)-tagged jets) from the top quark.
We measure the vector-boson decays. Events in which the direction of a lepton or jet and the direction from processes that do not involve neutrinos from leptons. We require capture detection, so signal events are expected to produce 20 GeV ($p_T > 20$ GeV/c). The transverse energy and momentum are defined as $E_T = E \sin(\theta)$ and $p_T = p \sin(\theta)$ where E is the energy measured in the calorimeter and p is the momentum measured by the tracking system. In the offline analysis, we select events that contain at least one isolated [12] electron (muon) with $E_T > 20$ GeV ($p_T > 20$ GeV/c). We additionally require the presence of a second lepton with the same energy requirements, but without isolation requirements. Events with more than two reconstructed leptons are rejected.

The neutrinos from dilepton top-quark pair decays escape detection, so signal events are expected to produce a large imbalance in the event total transverse-energy (E_T) [13] compared to other SM processes containing two leptons. We require $E_T > 25$ GeV to reduce contamination from processes that do not involve neutrinos from vector-boson decays. Events in which E_T originates from instrumental effects typically feature a small angle between the direction of a lepton or jet and the direction of E_T. If this angle is smaller than 20°, we require $E_T > 50$ GeV to reject these backgrounds. To specifically reject events from Z/γ^* production, we require high E_T significance [5] if the identified leptons have the same flavor and dilepton mass consistent with the Z resonance. We also require the dilepton mass to be larger than 5 GeV/c^2 to remove events from low-mass dimuon resonances. The resulting sample is referred to as events meeting the dilepton selection. Jets are identified in the CDF frame using a modified cone algorithm [14], and are defined as having $E_T > 15$ GeV and pseudorapidity in the lab frame satisfying $|\eta| < 2.5$. Events satisfying the dilepton selection that contain exactly zero or one jet are used as control samples for background estimation. The $\text{pre} \tau \text{ag} \text{e} \text{m} \text{p} \text{a} \text{n} \text{e} \text{l}$ sample contains events passing the dilepton selection with at least two jets, summed transverse energy over all particles (H_T) satisfying $H_T > 200$ GeV, and whose two leptons are of opposite electric charge. The data sample corresponds to an integrated luminosity of 9.1 fb$^{-1}$, slightly higher than the signal sample, because the detector quality requirements for b tagging are not imposed. The pretag sample is used to validate the signal and background models. We measure the $t\bar{t}$ production cross-section using the tag sample, which is the subset of pretag events in which at least one of the jets in the event is b tagged by the secvtx algorithm [15].

The lifetime of B hadrons is approximately 1.5 picosecond, so relativistic B hadrons produced in collisions at the Tevatron can travel on the order of 450 micrometers from the primary interaction-point (primary vertex) before decaying. We use charged-particle tracks to reconstruct the primary vertex and secondary decay-vertices. We then compute the two-dimensional displacement of the secondary vertex from the primary vertex projected along the jet direction in the plane transverse to the beam (L_{2D}). A jet is considered b-tagged by the secvtx algorithm if L_{2D} and its uncertainty (σ) satisfy the significance $L_{2D}/\sigma > 7.5$. Jets with $L_{2D}/\sigma < -7.5$ are not topologically consistent with B-hadron decays, but are used to estimate the false-tag rate due to instrumental sources [15].

Selection efficiency for $t\bar{t}$ events is estimated using the pythia Monte Carlo event-generator [16] combined with a detailed simulation of the CDF II detector [17]. The $t\bar{t}$ signal is simulated assuming a top-quark mass of 172.5 GeV/c^2 and only contains events in which both W bosons produced by the decay of the top quarks subsequently decay into a charged lepton (e, μ, τ) and a neutrino. Only simulated events with a primary vertex reconstructed within ±60 cm of the nominal CDF detector center are retained. This requirement has an efficiency of $[97.47 \pm 0.02(\text{stat}) \%]$ of the full CDF luminous region. The total acceptance for the b-tagged (pretag) dilepton signal events is $[0.461 \pm 0.003(\text{stat}) \%]$ ($0.756 \pm 0.004(\text{stat}) \%$), including the branching fraction to leptons. The efficiency for simulated $t\bar{t}$ events is then corrected for high-transverse-energy electron and muon identification, using multiplicative factors that are measured by selecting Z-boson decays to leptons, in which one of the leptons from the decay is minimally biased by the Z-boson event selection. The simulation is also corrected for observed differences between experimental and simulated data due to the efficiency of the inclusive lepton trigger, which is measured using data samples selected by an independent set of triggering criteria. We correct for the difference in efficiency for the b-tagging algorithm between data and simulated samples by using a multiplicative correction factor, $S_b = 0.96 \pm 0.05$. This correction accounts for the differences between properties of jets in $t\bar{t}$ events and jets in the b-tagging calibration sample [15].

The relevant background processes yielding prompt lepton pairs are diboson (WW, WZ, ZZ) production and Z/γ^* production. Processes in which a photon or hadronic fragmentation are identified as a lepton are also considered, such as $W\gamma$ and W boson production in association with multiple jets. The signal sample contamination is predicted to predominantly comprise Z/γ^* and $W+\text{jets}$ production processes, so their normalizations are estimated using data samples enriched in these processes. The contamination for the remaining backgrounds is predicted using the same detector simulation and corrections used for signal.

Diboson production is simulated with pythia, nor-
normalized to the production cross-sections from the next-to-leading order calculations using MCFM [18] and MSTW2008 [19] parton distribution functions (PDF).

The predicted cross sections are σ and $\sigma_{WZ} = 3.47 \pm 0.21$ pb, and $\sigma_{ZZ} = 3.62 \pm 0.22$ pb [20]. The σ_{WZ} and σ_{ZZ} values are computed by restricting the phase space to dilepton masses greater than 2 GeV/c^2. The $Z/\gamma \rightarrow t\bar{t}e^+e^-$ production is simulated using the ALPGEN+PYTHIA event generator [21]. The $Z/\gamma \rightarrow e^+e^-$, $\mu^+\mu^-$ samples, which are only selected due to instrumental mismeasurements, are normalized in a data-derived process. The process $Z \rightarrow \tau^+\tau^-$ has significant E_T from neutrinos, and is treated separately: it is normalized to the ALPGEN production rate, corrected for next-to-leading-order contributions [5]. The $W\gamma$ decays are simulated with the BAUR event generator [22], assuming a leading-order production cross-section of $\sigma_{W\gamma} = 32 \pm 3$ pb and correcting for higher-order effects [23]. This process is observed to be relevant in low jet-multiplicity control samples, and negligible in the signal sample.

The WW and ZZ decays are simulated with the ALPGEN+PYTHIA event generator [21], assuming a leading-order production cross-section of $\sigma_{WW} = 3.6 \pm 0.2$ pb, and $\sigma_{ZZ} = 3.6 \pm 0.2$ pb [20]. The σ_{WW} and σ_{ZZ} values are computed by restricting the phase space to dilepton masses greater than 2 GeV/c^2. The $Z/\gamma \rightarrow t\bar{t}e^+e^-$ production is simulated using the ALPGEN+PYTHIA event generator [21]. The $Z/\gamma \rightarrow e^+e^-$, $\mu^+\mu^-$ samples, which are only selected due to instrumental mismeasurements, are normalized in a data-derived process. The process $Z \rightarrow \tau^+\tau^-$ has significant E_T from neutrinos, and is treated separately: it is normalized to the ALPGEN production rate, corrected for next-to-leading-order contributions [5]. The $W\gamma$ decays are simulated with the BAUR event generator [22], assuming a leading-order production cross-section of $\sigma_{W\gamma} = 32 \pm 3$ pb and correcting for higher-order effects [23]. This process is observed to be relevant in low jet-multiplicity control samples, and negligible in the signal sample.

The sample contamination from $Z/\gamma \rightarrow ee$ and $\mu\mu$ decays with instrumental missing energy is estimated in a data sample in which the dilepton mass for all events is consistent with the Z resonance, but all other selection criteria are that of the pretag sample. We subtract the contributions from other processes, and then extrapolate the observed rate outside of the resonance region by using simulated samples, independently for each lepton type and jet-multiplicity. The uncertainty on this background contribution is dominated by the limited number of Z/γ data events with high E_T used to normalize the overall prediction, from the finite size of the Z/γ events that meet the selection, and from the uncertainty on the jet-energy scale. The normalization of the $Z/\gamma + u, d, s, g$ event yield in the tagged sample is determined by applying the scalings determined in the pretag sample, and applying false b-tag rates [15] as weights to the ALPGEN+PYTHIA events. We obtain the $Z/\gamma + b, c$ event yield normalization in the tagged sample by requiring events with dilepton mass consistent with the Z resonance, but all other selection criteria as that of the tag sample. After subtracting the estimated $Z/\gamma + u, d, s, g$ component and other backgrounds, the multiplicative heavy-flavor-specific Z/γ normalization corrections are found to be 1.8 ± 0.1.

We estimate a small contribution to the sample of events with one electron and one muon from $Z/\gamma \rightarrow \mu\mu$ events, in which bremsstrahlung associated with one muon mimics an electron signature. These events are described using the $Z/\gamma \rightarrow \mu\mu$ simulation sample.

The background from jets misidentified as leptons is estimated by using data events with exactly one identified lepton and additional lepton candidates that satisfy less restrictive identification criteria. The probability that a lepton-like candidate is reconstructed as a lepton is parameterized in terms of the candidate’s transverse energy and isolation, and measured in large samples of events triggered by the presence of at least one jet. Misidentified leptons are modeled by applying these probabilities as weights to data events with only one high transverse-energy reconstructed lepton and a second electron-like or muon-like candidate. To remove events with two leptons from this sample, the lepton-like candidate is required to fail at least one lepton identification requirement. The misidentified-lepton events are required to meet all event selection requirements when treating the lepton-like candidates as the second lepton in the event. The uncertainty on the misidentified-lepton background model is dominated by the differences observed between identification rates determined in jet samples triggered by jets with E_T greater than 20, 50, 70, or 100 GeV.

A common systematic uncertainty for signal and simulated background estimates comes from the uncertainty on the lepton identification correction factors, which is measured to be 2.2%. The 3.3% uncertainty due to the jet-energy scale affects all simulated samples, and is estimated by varying the jet-energy corrections by $\pm 1\sigma$ of their systematic uncertainty and measuring the shift in signal and background acceptance. We consider several other sources of systematic uncertainties predominantly affecting the signal efficiency: difference in $t\bar{t}$ modeling by various simulation generators, simulation of initial- and final-state radiation, color reconnection, and PDF [19] uncertainty. These are determined by comparing the uncorrected simulation acceptance of the default tt PYTHIA sample to specialized simulation samples. The uncertainty due to each of these sources is estimated to be less than 2.0%. The systematic uncertainty due to the b-tagging efficiency correction is 5.0%, dominated by the light-flavor modeling. All simulated backgrounds have uncertainty due to the jet-multiplicity correction factor. Uncorrelated sources of systematic uncertainties affecting individual backgrounds include the 30% systematic uncertainty on the misidentified lepton contamination and individual theoretical uncertainties, ranging from 2% to 10%, on the production cross-sections of diboson and $Z \rightarrow \tau\tau$ processes. Each of these effects contributes to only a small fraction of the resulting 2.1% (7.1%) background systematic uncertainty for the b-tagged (pretag)
The expected and observed background events that are b-tagged in the 1-jet sample are used as a control sample. The final sample of events with two or more jets passing all candidate selection criteria is given in Table II. The signal purity in the tag sample is 91%, which can be compared to the 73% achieved in the pretag sample. In Fig. 1, we present the jet E_T spectrum for the leading two jets in events with at least two jets, and at least one b-tag. The signal yield in the figure is normalized to the measured cross section, and the shape of the distribution is well described by the prediction.

The measured cross section is calculated as

$$\sigma_{tt} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\sum_i A_i L_i},$$

where N_{obs} is the number of dilepton candidate events, N_{bkg} is the total number of expected background events, and the denominator is the weighted sum of the corrected acceptance for each class of events grouped by lepton reconstruction. We multiply A_i by the integrated luminosity corresponding to the reconstruction class L_i. Various values of integrated luminosities are used because the identification of events as belonging to each lepton class requires different CDF subdetectors to be fully functional. The total denominator for the b-tagged events is $31.60 \pm 0.19 \text{ pb}^{-1}$.

The expected and observed background events that are b-tagged in the 1-jet sample are used as a control sample. The final sample of events with two or more jets passing all candidate selection criteria is given in Table II. The signal purity in the tag sample is 91%, which can be compared to the 73% achieved in the pretag sample. In Fig. 1, we present the jet E_T spectrum for the leading two jets in events with at least two jets, and at least one b-tag. The signal yield in the figure is normalized to the measured cross section, and the shape of the distribution is well described by the prediction.

The measured cross section is calculated as

$$\sigma_{tt} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\sum_i A_i L_i},$$

where N_{obs} is the number of dilepton candidate events, N_{bkg} is the total number of expected background events, and the denominator is the weighted sum of the corrected acceptance for each class of events grouped by lepton reconstruction. We multiply A_i by the integrated luminosity corresponding to the reconstruction class L_i. Various values of integrated luminosities are used because the identification of events as belonging to each lepton class requires different CDF subdetectors to be fully functional. The total denominator for the b-tagged events is $31.60 \pm 0.19 \text{ pb}^{-1}$.
91%, and the total uncertainty of the measurement has been improved from 1.04 pb in the previous CDF publication to the current value of 0.84 pb.

In conclusion, we have measured the production cross-section of top-quark pairs at the Tevatron, using the full CDF Run II data set. This measurement offers a robust addition to global combined measurements of the top-quark production cross-section, which can then be used as constraints to theoretical calculations and limits on non-SM contributions in the top-quark sector.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Science and Technology of the Republic of Korea; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

In addition, we acknowledge support from the following agencies: the Région Île-de-France; the European Community’s Seventh Framework Programme (FP7/2007-2013); the Marie Curie Actions and the Marie Curie Fellowship contract 302103; the Slovak R&D Agency; the Academy of Finland; the Federation der Deutschen Wissenschaften and the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Academy of Finland; the Academy of Sciences, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 and references therein.