Adsorption of ammonia using mesoporous alumina prepared by a templating method

Changjoo Yeom, Younghun Kim†

Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea

ABSTRACT

Ammonia, NH₃, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb NH₃. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of NH₃. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an NH₃ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for NH₃. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for NH₃ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb NH₃.

Keywords: Adsorbents, Ammonia, Mesoporous alumina, Nanopore, Toxic gases

1. Introduction

Ammonia (NH₃) is a valuable chemical resource for use in industry as a fertilizer, refrigerant, and to refine petroleum [1]. However, NH₃ is also a toxic gas that has a pungent odor and it has potentially harmful effects on the public [2]. When the NH₃ content in the atmosphere exceeds 35 ppm, it impacts the health of humans and animals [3]. In addition, an aerodynamic study of particulate matter (PM) in the presence of NH₃ found that it played a vital role in the formation of the fine fraction of the aerosol (PM₂.₅) [4]. Hence, NH₃ adsorption is of great importance for human health.

Ideal adsorbents with high surface areas and small pore sizes are preferred for high capacities to remove contaminants. Research into such porous materials has gradually addressed these applications with respect to NH₃ adsorption or filtration [5-7]. The traditional inorganic adsorbents, including activated carbon, alumina, silica gel, and 13X zeolite, have low adsorption capacities in the range from 2.3 to 12.0 mol/kg (37 to 192 mg/g) [7]. In recent years, the number of available nanoporous materials, such as mesoporous silica (MS) has increased substantially and emerged as a gas adsorbent alternative to zeolite and activated carbon. The highly regular pore structure and internal surface area of ordered MS make these particles attractive substrates that can be tailored for NH₃ adsorption [8]. For example, MS particles showed very high uptake capacities and selectivities for CH₄ [9], CO₂ [10], H₂S [11], NH₃ [12], and volatile organic vapors [13]. Few studies on the removal of hazardous gases by adsorption using MA are reported, even though MA and MS share similar pore properties and high thermal stabilities, as seen in comparison to reports about MS in the literature [14, 15].

Therefore, herein, MA prepared by a templating method was used as an NH₃ adsorbent. In previous studies [16, 17], MA showed a high adsorption capacity for metal ions (Hg²⁺, Pb²⁺, and As³⁺) from the aqueous phase. We found that the surface area provided by different adsorbents did not significantly affect the adsorption capacity, and in fact, the key factor was a uniform pore size and an interlinked pore system. Since those particle properties of MA enhanced the adsorption capacity of the substrate for the removal of metal ions, MA might also be helpful to use as gas-adsorbent. Because zeolite, activated carbon and silica nanoparticles were used as commercial gas adsorbents in re-
al-world applications, we also evaluated these materials for their NH₃-adsorption capacities.

2. Materials and Methods

2.1. Materials

As described in our previous reports [16-18], stearic acid and aluminum sec-butoxide were used as the anionic surfactant, and an aluminum precursor was used to prepare MA. The aluminum precursor and stearic acid were dissolved separately in sec-butyl alcohol, and then the two solutions were mixed. A small amount of water was slowly added dropwise to the mixture, generating a white precipitate. After further stirring for 24 h, the resulting materials were calcined for 3 h at 500°C. The molar ratio of this reaction mixture was 1 Al(sec-BuO)₃: 0.2 C₁₇H₃₅COOH: 0.04 NaOH: 5 sec-BuOH: 4 H₂O. Zeolite (Ze, < 45 μm, CAS#1318-02-1), activated carbon (AC, 100 mesh), and silica (Si, 12 nm) were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further treatment as commercial adsorbents. The porosities of the adsorbents were analyzed by transmission electron microscopy (TEM, JEM-2010, Jeol, Japan). N₂ adsorption/desorption experiments were carried out using a BELSORP-mini volumetric adsorption measurement instrument (BEL, Japan), and pore size distributions were calculated using the Barret-Joyner–Halenda (BJH) pore size and volume analytical model on the desorption branch.

2.2. Adsorption of NH₃

Helium (99.999%) and NH₃ (99.999%) were used as carrier and target gas molecules, respectively. As shown in Fig. 1, the experimental setup for measuring the isotherm consisted of a stainless-steel column (18 cm length and 2.54 cm inner diameter) with 5 g of packed adsorbent sample, a mass flow controller (max. 5 L/min), a pressure controller (max. 5 bar), and a continuous gas analyzer (AR8500, Smart Sensor, USA). The gas hourly space velocity was fixed as 28 min⁻¹. The desorption of NH₃ adsorbed on MA was carried out at 400°C at 5 L/min He for 2 h. After regeneration, three recycling tests were carried out at a given pressure. In addition, to define the Gibbs free energy for the adsorption of NH₃ on MA, the temperature of the reactor was changed from 25 to 5°C.

3. Results and Discussion

3.1. Characterizations of Adsorbents

As shown in Fig. 2 and Fig. 3, MA showed a pore diameter of 3.4 nm with a narrow and uniform pore size distribution (D₉₅₋₁₅ ~ 2 nm). In the N₂ adsorption/desorption isotherm of MA, a typical type of IV isotherm of mesoporous porosity and a hysteresis loop in the range 0.4-0.8 P/P₀ was observed, showing both the framework and textural porosity of the substrate. The framework porosity was in the range 0.4-0.7 P/P₀, indicating that the porosity was contained within the uniform channels of the templated framework, whereas the textural porosity in the range 0.8-1 P/P₀ was indicative of the porosity arising from the non-crystalline intra-aggregate voids and spaces formed by interparticle contacts [16]. The TEM images (Fig. 3(a)) of MA showed a sponge-like porous appearance and an interconnected pore system, consistent with the analysis for the N₂ adsorption/desorption result of MA. An interconnected pore structure has an advantage of a reduced diffusion limitation and an enhanced molecular accessibility to the inner surface.

However, other adsorbents (AC, Ze, and Si samples) showed irregular and broad pore size distributions, as shown in Fig. 2. The AC sample had a small pore at the inner surface and a large surface area (1,024.2 m²/g), but both the non-uniform pore structure and very broad pore distribution in the range 1-25 nm did not match with the physical properties of ideal adsorbents. A molecular sieve such as the Ze sample generally has a very small pore (2-10 Å), which is too small to be able to adsorb NH₃ into the inner surface of Ze. The Si sample consisted of single particle with a size of 12 nm and aggregates of these particles are depicted in Fig. 2(d). Because the void fraction originated from aggregation between the primary particles, it acted as pores in the N₂ adsorption/desorption test. The pore properties of all the adsorbents are listed in Table 1. Therefore, NH₃ might be adsorbed on the outer surface of Ze and Si samples, but on both inner and outer surface of MA and AC samples.
Table 1. Pore Properties of the Samples

Samples	Surface area (m²/g)	Pore size (nm)	Pore volume (cm³/g)
MA	334.2	3.39	0.759
AC	1,024.2	1 to 25	0.704
Ze	1.9	NA	NA
Si	365.8	4.92	1.097

*Since silica nanoparticles have not porous nanostructure, its pore size and pore volume in the table mean the void fraction originated from agglomeration or aggregation between primary particles.

3.2. Adsorption Equilibrium Study

Applied pressure is the controlling parameter to adjust the gas uptake on adsorbents. When increasing the applied pressure of the NH₃ gas, the uptake capacities of adsorbents generally increased to saturation levels at high pressure. As shown in Fig. 4, the saturation curve for all adsorbents followed a typical Langmuir isotherm. While the uptake of NH₃ gas on MA increased steadily up to 3 bar, AC, Ze, and Si samples showed rapid saturation after 1.5 bar. NH₃ molecules were first adsorbed on the outer surface of the adsorbent at a relatively low pressure and then gradually penetrated into the inner surface of the adsorbent to adsorb at a relatively high pressure. Since MA has a uniform pore diameter, NH₃ could easily penetrate into the inner surface, leading to an enhancement of the adsorption capacity. Although AC has the largest surface area among the 4 samples, its uptake capacity was smaller than MA and similar to Ze and Si samples. It was noted that the irregular pore structure of AC acted as a bottle-neck for the intrusion of NH₃ molecules into the inner surface, and thus there was a decrease in the uptake of NH₃. Although the Si sample had a similar surface area with MA, induced by the formation of aggregates between single silica nanoparticles, Si also showed a low uptake capacity. These results showed that the surface area of adsorbents did not significantly affect the
adsorption capacity. A common feature of the AC and Si is their irregular pore size distribution. Namely, ill-defined pore structure reduces the adsorption of NH₃ to adsorbents. Therefore, the surface area of the adsorbent is likely to be large, but the pore structure (i.e., regular interlinked pore system) is the most important factor for the NH₃ adsorption.

The maximum uptake capacities (Qₘₐₓ, mg/g) for NH₃ was calculated with Langmuir isotherm. As summarized in Table 2, the Qₘₐₓ values of the NH₃ uptake on MA, AC, Ze, and Si adsorbents was 214.8, 45.8, 43.3, and 33.0 mg/g, respectively. MA had 4.7 times higher uptake capacity for NH₃, compared to AC. It was reported that commercial AC and zeolite have adsorption capacities for NH₃ in the range 37-144 mg/g [7]. Therefore, MA used here is referred as a good gas-adsorbent with a very high adsorption capacity for NH₃.

Because the adsorption of gas is strongly affected by temperature, the Gibbs energy and the uptake capacity for MA adsorbent were evaluated at different temperatures (25, 30, and 50°C). As shown in Fig. 5, the adsorption curve at high temperature was located below that of the room temperature. The maximum capacities of NH₃ at 30 and 50°C were 174.5 and 132.6 mg/g, respectively, which were lower than those obtained at 25°C. With increasing temperature, -ΔG was slightly decreased from 12.0 to 11.7 kJ/mol, decreasing the interaction between NH₃ and supports. Therefore, the adsorption system under high temperature poses a negative impact on the adsorption capacity, decreasing the amount of adsorbed gas.

Chemisorption and physisorption of NH₃ on oxide material have been studied [12]. In the past literatures, it is reported that NH₃ was chemisorbed on silica surface forming the NH₂-O-Si [19] or NH₂-Si [20] with a siloxane bond (Si-O-Si). For physisorption of NH₃, the hydroxyl group was the preferred site to bond NH₃ [NH₃-OH-Si] [21]. Although the walls of calcined oxide (MS and MA) are made of multiple oxide bridges (Si-O-Si or Al-O-Al bonds), the pore surfaces contain free hydroxyl groups. These free polar groups serve as useful sites for adsorption of polar gas, such as NH₃ [22]. In addition, the additional hydroxyl groups formed by hydrothermal conditioning with water increase the acidity of oxide materials, which results in an increase in NH₃ capacity [5]. Therefore, similar to the investigation of NH₃ adsorption on the silica surface, alumina (MA) has free hydroxyl groups, serving as a useful adsorption site for NH₃. As calculated in our previous work [16], the moles of total surface sites per gram of solid were estimated to be 2.5 mol/kg for MA, assuming 5 hydroxyls/nm² [23]. The maximum capacity of MA was higher than the total moles of hydroxyl sites (as described in isotherm results), and thus, NH₃ adsorbed on the inner and outer surface of MA via both physisorption and chemisorption using hydroxyl groups and o xo-bridge.

In field applications of NH₃ adsorbents, maintaining the initial uptake capacity after regeneration is also an important factor for ideal adsorbents. After the regeneration, the feasibility of the adsorption–desorption cyclic operation was examined to investigate the reproducibility of MA performance, as shown in Fig. 6. The amount of adsorbed NH₃ decreased slightly with repeated use of adsorbent (214.8 to 204.2 mg/g after 3 times recycling). While > 95% of the initial uptake capacity of NH₃ was maintained after three cycles of operations, notably MA could undergo repeated adsorption-desorption cycles without any loss of activity.
4. Conclusions

MA was prepared by a post-hydrolysis method to use as the gas adsorbent for NH3. The MA adsorbent showed pore properties of ideal gas-adsorbents, such as uniform pore size, regular pore size distribution, interlinked sponge-like pore system, and large surface area. The NH3 adsorption performance of MA was compared to ideal gas-adsorbents, such as uniform pore size, regular pore size distribution, interlinked sponge-like pore system, and large surface area. The NH3 adsorption performance of MA was compared to commercial gas-adsorbents for H2S, PH3, and NH3. The NH3 adsorption performance of MA was compared to commercial gas-adsorbents for H2S, PH3, and NH3. It was possible to apply as-prepared MA readily as conventional gas-adsorbents for H2S, PH3, and NH3.

Acknowledgments

This study was supported by the Research Grant from the Korea Environmental Industry and Technology Institute (2015001960003) and the National Research Foundation of Korea (NRF-2017R1A2B4001829).

References

1. Barea E, Montoro C, Navarro JAR. Toxic gas removal: Metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014;43:5419-5430.
2. Hung CM. Decomposition kinetics of ammonia in the gaseous stream by a nanoparticle copper-cerium bimetallic catalyst. J. Hazard. Mater. 2008;150:53-61.
3. Chen Y, Li L, Li J, Ouyang K, Yang J. Ammonia capture and flexible transformation of M-2[IN] (M=Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 2016;306:340-347.
4. Behera SN, Sharma M. Transformation of atmospheric ammonia and acid gases into components of PMA: An environmental chamber study. Environ. Sci. Pollut. Res. Int. 2012;19:1187-1197.
5. Furtado AMB, Liu J, Wang Y, LeVan MD. Mesoporous silica-met-al organic composite: Synthesis, characterization, and ammonia adsorption. J. Mater. Chem. 2011;21:6698-6706.
6. Johnson BJ, Melde BJ, Peterson GW, Schindler BJ, Jones P. Functionalized organosilicate materials for inert gas removal. Chem. Eng. Sci. 2012;68:376-382.
7. Helminen J, Helenius J, Paatero E, Turunen I. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. J. Chem. Eng. Data 2001;46:391-399.
8. Ruckart KN, Zhang Y, Reichert WM, Peterson GW, Glover TG. Sorption of ammonia in mesoporous-silica ionic liquid composites. Ind. Eng. Chem. Res. 2016;55:12191-12120.
9. Chiang WS, Fratini E, Baglioni P, Chen JH, Liu Y. Pore size effect on methane adsorption in mesoporous silica materials studied by small-angle neutron scattering. Langmuir 2016;6:8849-8857.
10. Hanif A, Dasgupta S, Nanoti A. High temperature CO2 adsorption by mesoporous silica supported magnesium aluminum mixed oxide. Chem. Eng. J. 2015;15:703-710.
11. Belmabkhout Y, Weireld GD, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 2009;25:13275-13278.
12. Zamani C, Ila X, Abdollahzadeh-Ghom S, Morante JR, Rodriguez AR. Mesoporous silica: A suitable adsorbent for amines. Nanoscale Res. Lett. 2009;4:1303-1308.
13. Hung CT, Bai H. Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chem. Eng. Sci. 2008;63:1997-2005.
14. Thote JA, Chatti RV, Iyer KS, et al. N-doped mesoporous alumina for adsorption of carbon dioxide. J. Environ. Sci. 2012;24:1979-1984.
15. Chen C, Ahn WS. CO2 capture using mesoporous alumina prepared by a sol-gel process. Chem. Eng. J. 2011;1666:646-651.
16. Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 2004;38:924-931.
17. Rengaraj S, Yeon JW, Kim Y, Kim WH. Application of Mg-meso-porous alumina prepared by using magnesium stearate as a template for the removal of nickel: Kinetics, isotherm, and error analysis. Ind. Eng. Chem. Res. 2007;46:2834-2842.
18. Kim Y, Lee B, Yi J. Effect of framework or textural nanoporosity on the bulk morphology of mesoporous aluminas. Korean J. Chem. Eng. 2007;24:679-682.
19. Griffiths DWL, Hallam HE, Thomas WJ. Infrared study of adsorption and oxidation of ammonia on silica-supported platinum and silica. Trans. Faraday Soc. 1968;64:3361-3369.
20. Peri JB. Infrared study of OH and NH$_3$ groups on the surface of a dry silica aerogel. *J. Phys. Chem.* 1966;70:2937-2945.

21. Blomfield GA, Little LH. Chemisorption of ammonia on silica. *Can. J. Chem.* 1973;51:1771-1781.

22. Barpaga D, LeVan MD. Functionalization of carbon silica composites with active metal sites for NH$_3$ and SO$_2$ adsorption. *Microporous Mesoporous Mater.* 2016;221:197-203.

23. Wang Y, Bryan C, Xu H, Pohl P, Yang Y, Brinker CJ. Interface chemistry of nanostructured materials: Ion adsorption on mesoporous alumina. *J. Colloid Interface Sci.* 2002;254:23-30.