A Natural Framing for Asymptotically Flat Integral Homology 3-Sphere

Su-Win Yang

Communicated with W. H. Lin

Abstract
For an integral homology 3-sphere embedded asymptotically flatly in an Euclidean space, we find a natural framing extending the standard trivialization on the asymptotically flat part.

Suppose \overline{M} is a 3-dimensional closed smooth manifold which has the same integral homology groups as the 3-sphere S^3. x_0 is a fixed point in \overline{M}. Embed \overline{M} in a Euclidean space \mathbb{R}^n such that x_0 is the infinite point of the 3-dimensional flat space $\mathbb{R}^3 \times \{0\}$ of \mathbb{R}^n and a neighborhood of x_0 contains the whole flat space $\mathbb{R}^3 \times \{0\}$ except a compact set. Precisely, for any positive number r, let B_r denote the closed ball of radius r in \mathbb{R}^3 and $N_r = (\mathbb{R}^3 - B_r) \times \{0\}$; there exists r_0, a positive number, such that N_{r_0} is contained in \overline{M} and $N_{r_0} \cup \{x_0\}$ is an open neighborhood of x_0 in \overline{M}.

Let $M = \overline{M} - \{x_0\}$, it is an asymptotically flat 3-dimensional manifold with acyclic homology. The main purpose of this article is to define a natural framing for M. If we identify the tangent spaces of points in the flat part N_{r_0} with $\mathbb{R}^3 \times \{0\}$, then the tangent bundle of M can be thought as a 3-dimensional vector bundle over the closed manifold $M_0 = M/N_s$, where s is a number greater than r_0 and $\overline{N_s}$ is the closure of N_s; we shall call this vector bundle the tangent bundle $T(M_0)$ of M_0. And our natural framing is just a trivialization of $T(M_0)$, which corresponds to a trivialization of the tangent bundle $T(M)$ whose restriction to the flat part is the standard trivialization on \mathbb{R}^3. Because M_0 is a closed 3-manifold, there are countably infinite many
choices of framings associated with the infinite elements in \([M_0, SO(3)]\). (When \(H_*(M_0) \approx H_*(S^3), [M_0, SO(3)] \approx [S^3, SO(3)] \approx \mathbb{Z}.\) Therefore, our natural framing is a special choice from the infinite many.

On the other hand, this natural framing for \(T(M_0)\) can also provide a special one-to-one correspondence between the infinite framings of \(S^3\) and that of \(\overline{M}\). (Note: Here, we do not think that \(\overline{M}\) and \(M_0\) have the same tangent bundle. Conversely, we may think that the tangent bundle of \(\overline{M}\) is equal to the connected sum of the tangent bundles of \(M_0\) and \(S^3\).)

There are two main steps to the natural framing on \(T(M_0)\).

Step 1 A special map from \(C_2(M)\) to \(S^2\)

We define \(C_2(M)\) at first.

For any set \(X\), \(\Delta(X)\) denote the diagonal subset \(\{(x, x) \in X \times X, x \in X\}\) of \(X \times X\) and \(C_2(X) = X \times X - \Delta(X)\). Thus \(C_2(M)\) is the configuration space of all pairs of distinct two points in \(M\).

Fix some large number \(s\) such that \(M \subset (B_s \times \mathbb{R}^{n-3}) \cup N_s\).

For any \(r \geq s\), let \(B_r = \{x \in \mathbb{R}^3 : |x| \leq r\},\) \(N_r = (\mathbb{R}^3 - B_r) \times \{0\}\) and \(M_r = M - N_r\).

Let \(Y\) denote the union of the following three subsets of \(C_2(M)\):

\[
\begin{align*}
(i) & \quad Y_0 = C_2(N_s) \\
(ii) & \quad Y_1 = \bigcup_{r \geq s} (N_{r+s} \times M_r) \\
(iii) & \quad Y_2 = \bigcup_{r \geq s} (M_r \times N_{r+s})
\end{align*}
\]

Let \(\pi : \mathbb{R}^n \longrightarrow \mathbb{R}^3\) denote the projection

\[
\pi(t_1, t_2, \cdots, t_n) = (t_1, t_2, t_3)
\]
and $f : Y \longrightarrow S^2$ denote the map

$$f(x, y) = \frac{\pi(y - x)}{|\pi(y - x)|}$$

for $(x, y) \in Y$, $x, y \in M$.

For the well-defining of the map f, we should check that $|\pi(y - x)|$ is a non-zero value. When (x, y) is in Y_0, $|\pi(y - x)| = |y - x|$, it is non-zero. When (x, y) is in Y_1, (x, y) is in $N_{r+s} \times M_r$ for some $r \geq s$; thus $\pi(x)$ is outside of B_{r+s} and $\pi(y)$ is in B_r, and hence $\pi(y - x) = \pi(y) - \pi(x)$, it has also a non-zero norm. It is similar for the case that (x, y) is in Y_2.

The following proposition describes some homology properties for the space Y and the map f.

Proposition 1

(i) $H_*(Y) \approx H_*(S^2)$

(ii) $f_*: H_2(Y) \longrightarrow H_2(S^2)$ is an isomorphism.

(iii) Let $j : Y \longrightarrow C_2(M)$ denote the inclusion map.

$$j_* : H_i(Y) \longrightarrow H_i(C_2(M))$$

is isomorphic, for all integer $i \geq 0$.

In the proof of the proposition, we strongly use the assumption that $H_*(M)$ is acyclic.

Remark: All the homologies in this article are with integral coefficients.

By Proposition 1, the continuous map $f : Y \longrightarrow S^2$ uniquely extends to a continuous map $\overline{f} : C_2(M) \longrightarrow S^2$ up to homotopy relative to the subspace Y. (That is, if both \overline{f}_1 and \overline{f}_2 are the extensions of f to the whole space $C_2(M)$, then there is a homotopy $F : C_2(M) \times [0, 1] \longrightarrow S^2$ such that
\[F(\xi, 0) = \mathcal{F}_1(\xi), \quad F(\xi, 1) = \mathcal{F}_2(\xi), \text{ for all } \xi \in C_2(M), \text{ and } F(\xi', t) = f(\xi') \text{ for all } \xi' \in Y \text{ and } t \in [0, 1]. \]

Usually, the homotopy class of a map from \(C_2(M) \) to \(S^2 \) cannot give any framing on \(T(M_0) \). But the extension of \(f \) does give a framing on \(T(M_0) \) as shown in Step 2.

Step 2 The framing determined by the map \(\mathcal{F} \) on \(C_2(M) \)

The normal bundle of \(\Delta(M) \) in \(M \times M \) can be identified as the tangent bundle \(T(M) \) of \(M \). Consider a suitable compactification of \(C_2(M) \), the spherical bundle \(S(TM) \) become a part of boundary of \(C_2(M) \). Let \(h : S(TM) \longrightarrow S^2 \) denote the restriction of \(\mathcal{F} \) to \(S(TM) \). On the flat part \(N_s \) of \(M \), the spherical bundle \(S(TN_s) = N_s \times S^2 \) and \(h \) on \(S(TN_s) \) is equal to the map restricted from \(f \) which is exactly the projection from \(N_s \times S^2 \) to \(S^2 \). Thus \(h \) induces a map \(h_0 : S(TM_0) \longrightarrow S^2 \).

\(S(TM_0) \) is a \(SO(3) \)-bundle over \(M_0 \).

Can \(h_0 : S(TM_0) \longrightarrow S^2 \) determine uniquely an orthogonal map, that is, a fibrewise orthogonal map? (An orthogonal map is exactly a framing for the vector bundle.) There is also an interesting question that can \(h_0 \) be homotopic to an orthogonal map; if such an orthogonal map exists, is it unique up to homotopy? We shall answer the questions partially.

Choose a framing for \(S(TM_0) \) and we may think \(h_0 \) as a map from \(M_0 \times S^2 \) to \(S^2 \). Let \(y_0 \) denote the point in \(M_0 \) representing the set \(N_s \). Then the restriction of \(h_0 \) to \(y_0 \times S^2 \) is the identity map of \(S^2 \). Thus the restriction of \(h_0 \) to each fibre \(x \times S^2, x \in M_0, \) is also a homotopy equivalence; and hence, \(h_0 \) induces a map \(\hat{h}_0 \) from \(M_0 \) to \(G(3) \), the space of all homotopy equivalences of \(S^2 \) to itself. Choose a base point \(z_0 \) in \(S^2 \), and consider the subspace \(F(3) \) of \(G(3) \) consisting of all the homotopy equivalences which fix the base point \(z_0 \). Then \(F(3) \) is the fibre of the fibration \(G(3) \) over \(S^2 \), it is the key fact for the homotopic computations.
For any two spaces X_1 and X_2 with base points x_1 and x_2, respectively, $[X_1, X_2]$ denotes the set of homotopy classes of continuous maps from X_1 to X_2 and sending x_1 to x_2. In the following, M_0 is with base point y_0 representing the set \mathbb{N}_s; $SO(3)$, $G(3)$ and $F(3)$ are with the base point the identity of S^2. We shall consider only the maps sending the base point to base point and consider only the homotopies which keep the base point fixed.

M_0 has the same homology as S^3. Usually, we can not expect they also have the same homotopy behavior. But we still have the following proposition.

Proposition 2 Suppose $\phi : M_0 \rightarrow S^3$ is a degree 1 map. Then the homotopy classes $[M_0, SO(3)]$, $[M_0, G(3)]$, $[M_0, F(3)]$ are all groups, and the group homomorphisms induced by ϕ,

$$[S^3, SO(3)] \xrightarrow{\phi^\ast} [M_0, SO(3)]$$

$$[S^3, G(3)] \xrightarrow{\phi^\ast} [M_0, G(3)]$$

$$[S^3, F(3)] \xrightarrow{\phi^\ast} [M_0, F(3)]$$

$$[S^3, S^2] \xrightarrow{\phi^\ast} [M_0, S^2]$$

are all isomorphisms of groups. □

There are further relations between these homotopy classes.

Proposition 3 Let $p : SO(3) \rightarrow G(3)$ and $q : F(3) \rightarrow G(3)$ denote the inclusions. Then, for any integral homology 3-sphere M_0, the homomorphism

$$p_* \oplus q_* : [M_0, SO(3)] \oplus [M_0, F(3)] \rightarrow [M_0, G(3)]$$

is an isomorphism.

Especially, when $M_0 = S^3$, we have

$$\pi_3(G(3)) \approx \pi_3(SO(3)) \oplus \pi_3(F(3))$$

5
Furthermore, the group isomorphism
\[q_*^{-1} : [M_0, G(3)]/q_*([M_0, SO(3)]) \longrightarrow [M_0, F(3)] \]
induces a group homomorphism
\[Q : [M_0, G(3)] \longrightarrow [M_0, F(3)] \cong \mathbb{Z}_2 \ . \]

For a continuous map \(g : M_0 \times S^2 \longrightarrow S^2 \), let \(\tilde{g} \) denote the map from \(M_0 \) to \(G(3) \) defined by \(\tilde{g}(x)(y) = g(x, y) \), for \(x \in M_0 \) and \(y \in S^2 \) and let \(Q(g) = Q([\tilde{g}]) \).

Theorem 4 A continuous map \(g : M_0 \times S^2 \longrightarrow S^2 \) is homotopic to an orthogonal map, if and only if, \(Q(g) = 0 \) in \([M_0, F(3)]\). ■

Now, \(h_0 \) still denotes the map from \(S(TM_0) \) to \(S^2 \) given by the map \(\overline{f} : C_2(M) \longrightarrow S^2 \). Choose a framing for \(TM_0 \), \(\psi : S(TM_0) \longrightarrow M_0 \times S^2 \), it is a fibre map and fibrewise orthogonal. Then \(h_0 \circ \psi^{-1} \) is a map from \(M_0 \times S^2 \) to \(S^2 \) and the value \(Q(h_0 \circ \psi^{-1}) \) is independent of the choice of the framing \(\psi \). Therefore, \(Q(h_0 \circ \psi^{-1}) \) is an invariant of the integral homology 3-sphere \(\overline{M} \), it is the obstruction for \(h_0 \) to be homotopic to an orthogonal map. We hope that this is not really an obstruction.

Conjecture 5 \(Q(h_0 \circ \psi^{-1}) = 0 \), for any integral homology 3-sphere \(\overline{M} \). ■

On the other hand, the group isomorphism
\[p_*^{-1} : [M_0, G(3)]/p_*([M_0, F(3)]) \longrightarrow [M_0, SO(3)] \]
induces a group homomorphism
\[P : [M_0, G(3)] \longrightarrow [M_0, SO(3)] \ . \]
For a continuous map \(g : M_0 \times S^2 \to S^2 \), let \(P(g) = P([\hat{g}]) \).

For the map \(h_0 \) and the corresponding element \(P(h_0 \circ \psi^{-1}) \) in \([M_0, SO(3)]\), choose an orthogonal map \(g_0 : M_0 \times S^2 \to S^2 \) such that the associated map \(\hat{g}_0 \) is in the homotopy class \(P(h_0 \circ \psi^{-1}) \). Then we get an orthogonal map \(g_0 \circ \psi : S(TM_0) \to S^2 \) which represents a homotopy class of framings determined by \(h_0 \), also by the map \(\overline{f} : C_2(M) \to S^2 \). This framing can also be characterized by the following theorem.

Theorem 6 There exists a framing \(\psi_0 : S(TM_0) \to M_0 \times S^2 \) unique up to homotopy such that \(P(h_0 \circ \psi_0^{-1}) = 0 \).

Proofs

Outline of Proof of Proposition 1

\(N_s \) is a subset of \(\mathbb{R}^3 \times \{0\} \). In \(N_s \), we choose a subspace \(S_3 \) which is a deformation retract of \(N_s \) and a point \(x_1 \) in the bounded component of \(\mathbb{R}^3 \times \{0\} - S_3 \). Let \(S = \{x_1\} \times S_3 \), it is a subspace of \(Y \). We show that the three maps, the inclusion of \(S \) in \(Y \), the restriction of \(f \) to \(S \), and the restriction of \(j \) to \(S \), all induce isomorphisms of homology groups of the corresponding spaces. That is, \(H_*(S) \to H_*(Y) \), \((f|_S)_* : H_*(S) \to H_*(S) \), and \((j|_S)_* : H_*(S) \to H_*(C_2(M)) \) all are isomorphisms.

Proof of Proposition 1

First we compute the homology of \(Y_0, Y_1, Y_2 \), separately.

\[Y_0 = C_2(N_s) = N_s \times N_s - \Delta(N_s) \subset N_s \times N_s. \] \(N_s \) is homeomorphic to \(S^2 \times (s, \infty) \). Thus \(H_*(N_s \times N_s) \approx H_*(S^2 \times S^2) \). By Thom Isomorphism, \(H_*(N_s \times N_s, Y_0) \approx H_{i-3}(N_s) \).

Now, we use the long exact sequence of the pair \((N_s \times N_s, Y_0) \) to determine \(H_*(Y_0) \).
\[\rightarrow H_{i+1}(N_s \times N_s, Y_0) \xrightarrow{\partial_*} H_i(Y_0) \rightarrow H_i(N_s \times N_s) \rightarrow \]
\[\rightarrow H_i(N_s \times N_s, Y_0) \rightarrow \cdots \]

When \(i\) is odd, both \(H_{i+1}(N_s \times N_s, Y_0)\) and \(H_i(N_s \times N_s)\) are the trivial group \(\{0\}\). Thus we have

\[H_4(Y_0) \approx H_4(N_s \times N_s) \oplus \partial_*(H_5(N_s \times N_s, Y_0)) \approx \mathbb{Z} \oplus \mathbb{Z} \]
\[H_2(Y_0) \approx H_2(N_s \times N_s) \oplus \partial_*(H_3(N_s \times N_s, Y_0)) \approx \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \]

and \(H_i(Y_0)\) is trivial, if \(i\) is odd.

(\(\mathbb{Z}\) denotes the group of integers.)

To find the generators of \(H_4\) and \(H_2\) of \(Y_0\), we choose three 2-spheres \(S_1, S_2, S_3\) in \(\mathbb{R}^3 \times \{0\}\) of radius \(2s, 4s, 6s\), respectively, all with center the origin. (\(S_i\) is the boundary of \(N_{2s \times i}\), \(i = 1, 2, 3\).) For each \(i\), \(i = 1, 2, 3\), choose a point \(x_i\) in \(S_i\). The 2-spheres are also oriented in the same way, that is, the natural diffeomorphisms of the 2-spheres are orientation-preserving. Then \(S_i \times x_j\) and \(x_j \times S_i, 1 \leq i \neq j \leq 3\), are 2-cycles in \(Y_0\), also in \(N_s \times N_s\); \(S_i \times S_j, 1 \leq i \neq j \leq 3\), are 4-cycles in \(Y_0\), also in \(N_s \times N_s\).

In the following, if \(c\) is a cycle in \(Y_0\), \([c]\) shall denote the corresponding homology class in \(Y_0\).

Lemma 7

(i) \([S_1 \times S_3]\) is the generator of \(H_4(N_s \times N_s)\).

(ii) \([(S_1 - S_3) \times S_2]\) is the generator of the subgroup \(\partial_*(H_5(N_s \times N_s, Y_0))\) in \(H_4(Y_0)\).

We use the lemma to prove Proposition 1, and prove the lemma later.

There are some relations between these classes in \(H_4(Y_0)\):

\[[(S_1 - S_3) \times S_2] = [S_1 \times S_2] - [S_3 \times S_2], \quad [(S_1 \times S_2) = [S_1 \times S_3] \]
\[\text{and} \quad [S_3 \times S_2] = [S_3 \times S_1]. \]

Thus \([S_1 \times S_3]\) and \([S_3 \times S_1]\) form the basis of \(H_4(Y_0)\).
Similarly, \([S_1 \times S_3, x_1 \times S_3]\] are the basis of \(H_2(N_s \times N_s)\);
\([(S_1 - S_3) \times x_2] = \epsilon_0[x_2 \times (S_1 - S_3)]\), \(\epsilon_0\) is 1 or \(-1\) is the generator of the subgroup \(\partial_*(H_3(N_s \times N_s, Y_0))\) in \(H_2(Y_0)\).

Thus \([S_1 \times x_3, x_1 \times S_3]\) and \([(S_1 - S_3) \times x_2]\) form a basis of \(H_2(Y_0)\).

Now we study the homology of \(Y_1\) and \(Y_2\).
It is easy to see that the inclusion of \(N_4s \times M_3s\) in \(Y_1\) and the inclusion of \(S_3 \times M_3s\) in \(N_4s \times M_3s\) both are homotopy equivalences. Thus \(H_*(Y_1) \approx H_*(S_3 \times M_3s) \approx H_*(S_3)\). (Recall: \(M_r\) is acyclic, for any \(r \geq s\).) Similarly, \(Y_2\) also has the same homology as 2-sphere.

\(Y_1\) and \(Y_2\) are disjoint, and hence the homology of their union \(Y_1 \cup Y_2\) is also determined. We can use the Mayer-Vietoris Sequence of the triple \((Y, Y_0, Y_1 \cup Y_2)\) to find the homology of \(Y\). In fact, we have

(i) The cycle \(S_1 \times S_3\) is contained in \(Y_2\) and is killed in \(Y_2\).

(ii) The cycle \(S_3 \times S_1\) is contained in \(Y_1\) and is killed in \(Y_1\).

(iii) The cycle \(x_3 \times S_1\) is contained in \(Y_1\) and is killed in \(Y_1\).

(iv) The cycle \(S_1 \times x_3\) is contained in \(Y_2\) and is killed in \(Y_2\).

Therefore, \(H_4(Y) = \{0\}\) and in \(H_2(Y)\), we have \([x_1 \times S_3, S_3 \times x_2]\) left; the equality \([(S_1 - S_3) \times x_2] = \epsilon_0[x_2 \times (S_1 - S_3)]\) become the new equality \(-[S_3 \times x_2] = -\epsilon_0[x_2 \times S_3]\). Thus \([x_1 \times S_3] = [x_2 \times S_3] = \epsilon_0[S_3 \times x_2] = \epsilon_0[S_3 \times x_1]\]. This proves that \(H_*(Y) \approx H_*(S^2)\). Actually, we know more than that: the inclusion of the space \(\{x_1\} \times S_3\) in \(Y\) induces isomorphisms of the homology groups. It is easy to see that the map \(f\), restricted to \(\{x_1\} \times S_3\), is an homotopy equivalence from \(\{x_1\} \times S_3\) to \(S^2\). This proves the second statement that \(f_*\) is an isomorphism.

To prove the third statement that \(j_*\) is an isomorphism, it is also enough to show that the restriction of \(j\) to \(\{x_1\} \times S_3\) induces isomorphisms for the
homology groups. Similar to the computation of the homology of $C_2(N_s)$, we consider the long exact sequence of pair $(M \times M, C_2(M))$

$$H_{i+1}(M \times M) \rightarrow H_{i+1}(M \times M, C_2(M)) \xrightarrow{\partial_*} H_i(C_2(M)) \rightarrow H_i(M \times M).$$

Because $H_*(M)$ is acyclic, $H_*(M \times M)$ is also acyclic.

We have

$$H_i(C_2(M)) \approx H_{i+1}(M \times M, C_2(M)), \text{ for all } i \geq 1.$$

But $H_{i+1}(M \times M, C_2(M)) \approx H_{i-2}(M)$, by the Thom Isomorphism. Thus $C_2(M)$ has the same homology as 2-sphere.

And it is easy to see that the inclusion of $\{x_1\} \times (M, M - x_1)$ in $(M \times M, C_2(M))$ induces isomorphisms of homology groups, and hence, the inclusion of $\{x_1\} \times (M - x_1)$ in $C_2(M)$ also induces isomorphisms of homology groups. The cycle $\{x_1\} \times S_3$ is a generator of $H_2(\{x_1\} \times (M - x_1))$, and hence also a generator of $H_2(C_2(M))$. This proves the third statement that j_* is an isomorphism.

(i) of Lemma 7 is obvious. Now, we are going to prove (ii) in Lemma 7.
Consider the following commutative diagram

\[
\begin{array}{c}
H_2(S^2) \otimes H_3(N_s, N_s - S^2) \xrightarrow{id \otimes \partial_*} H_2(S^2) \otimes H_2(N_s - S^2) \\
\downarrow \tau_1 \hspace{2cm} \downarrow \eta_1 \\
H_5(S^2 \times N_s, S^2 \times N_s - S_2 \times S_2) \xrightarrow{\partial_*} H_4(S^2 \times N_s - S_2 \times S_2) \\
\downarrow \tau_2 \hspace{2cm} \downarrow \eta_2 \\
H_5(S^2 \times N_s, S^2 \times N_s - \Delta(S_2)) \xrightarrow{\partial_*} H_4(S^2 \times N_s - \Delta(S_2)) \\
\downarrow \tau_3 \hspace{2cm} \downarrow \eta_3 \\
H_5(N_s \times N_s, Y_0) \xrightarrow{\partial_*} H_4(Y_0)
\end{array}
\]

The maps \(\tau_1\) and \(\eta_1\) are isomorphisms from Kunneth formula. Other homomorphisms are induced by the corresponding inclusion maps. \(\tau_2\) is an isomorphism by the result of Lefschetz Duality in the 5-dimensional manifold \(S^2 \times N_s\); \(\tau_3\) is an isomorphism by the result of Thom Isomorphism Theorem. Precisely, consider the following commutative diagram

\[
\begin{array}{c}
H_5(S^2 \times N_s, S^2 \times N_s - S_2 \times S_2) \xrightarrow{\sigma_1} H^0(S^2 \times S_2) \\
\downarrow \tau_2 \hspace{2cm} \downarrow \tau_4 \\
H_5(S^2 \times N_s, S^2 \times N_s - \Delta(S_2)) \xrightarrow{\sigma_2} H^0(\Delta(S_2))
\end{array}
\]

where \(\sigma_i, i = 1, 2\), are the isomorphisms of Lefschetz Duality, \(\tau_4\) is the homomorphism induced by the inclusion.

Because \(\tau_4\) is an isomorphism, \(\tau_2\) is also an isomorphism. The proof of isomorphism of \(\tau_3\) is in some sense analogous to that for \(\tau_2\), we omit it.

From the long exact sequence of the pair \((N_s, N_s - S_2)\), it is easy to see that \([S_1 - S_3]\) is the generator of \(\partial_*(H_3(N_s, N_s - S_2))\), and hence, \([S_2 \times (S_1 - S_3)]\)
is the generator of $(id \otimes \partial_*)(H_2(S_2) \otimes H_3(N_s, N_s - S_2))$. By the commutativity of the above diagram, $[S_2 \times (S_1 - S_3)] = -[(S_1 - S_3) \times S_2]$ is the generator of $\partial_*(H_3(N_s \times N_s, Y_0))$. This proves Lemma 7 and completes the long proof of Proposition 1.

Proof of Proposition 2

We need to show the isomorphisms between $[M_0, X]$ and $[S^3, X]$, for $X = SO(3), G(3), F(3)$ and S^2.

For the case of $SO(3)$, we consider the classifying space $BSO(3)$ of the $SO(3)$-bundles. Then

$$[M_0, SO(3)] \approx [SM_0, BSO(3)] \text{ and } [S^3, SO(3)] \approx [S^4, BSO(3)] ,$$

where SM_0 is the suspension of M_0. On the other hand, because SM_0 is simply connected and the map $S(\phi) : SM_0 \rightarrow SS^3(= S^4)$ induces isomorphisms of homology groups, $S(\phi)$ is a homotopy equivalence. Thus $S(\phi)^* : [SM_0, BSO(3)] \rightarrow [S^4, BSO(3)]$ is isomorphic, and hence,

$$[M_0, SO(3)] \approx [S^3, SO(3)] .$$

For the cases of $G(3)$ and $F(3)$, we may also consider the corresponding classifying spaces, by the result of Fuchs [2]; and the proof is completely similar.

The group property of the associated homotopy classes is a result of Dold and Lashof [1]; for the convenience of interested reader, we give a proof in the appendix.

For the case of S^2, it is enough to note that $[M_0, S^2] \approx [M_0, S^3]$ ($\approx H^3(M_0)$), which implies the isomorphism we need.

Proof of Proposition 3

By Proposition 2, it is enough to prove the result for the case that $M_0 = S^3$.

12
Consider the commutative diagram of fibrations over S^2

\[
\begin{array}{ccc}
S^1 & \longrightarrow & SO(3) & \longrightarrow & S^2 \\
\downarrow & & \downarrow p & & \downarrow id \\
F(3) & \longrightarrow & G(3) & \longrightarrow & S^2
\end{array}
\]

and the associated commutative diagram of exact sequences of homotopy groups

\[
\begin{array}{ccc}
\pi_i(S^1) & \longrightarrow & \pi_i(SO(3)) & \longrightarrow & \pi_i(S^2) \\
\downarrow & & \downarrow p_* & & \downarrow id \\
\pi_i(F(3)) & \longrightarrow & \pi_i(G(3)) & \longrightarrow & \pi_i(S^2)
\end{array}
\]

For $i \geq 3$, $\pi_i(S^1) = \pi_{i-1}(S^1) = \{0\}$, and hence

\[\pi_i(SO(3)) \approx \pi_i(S^2).\]

Thus $p_* : \pi_i(SO(3)) \longrightarrow \pi_i(G(3))$ can be thought as the right-inverse of $\alpha : \pi_i(G(3)) \longrightarrow \pi_i(S^2)$. This implies that α is an epimorphism, q_* is a monomorphism, and p_* supplies the necessary homomorphism for splitting. Therefore,

\[\pi_i(G(3)) = q_*(\pi_i(F(3)) \oplus p_*(\pi_i(SO(3))), \text{ for all } i \geq 3\]
Appendix

The proof of the appendix is essentially from the proof of the main result in Dold and Lashof [1]. The author just write it for self-interesting.

Suppose H is a path-connected space and has an associative multiplication which has a two-sided unit e. For $h_1, h_2 \in H$, $h_1 \cdot h_2$ denotes the product of h_1 and h_2. Thus $h \cdot e = e \cdot h = h$, for all $h \in H$. Furthermore, assume X is a polyhedron. The purpose of this appendix is to show that the homotopy classes in $[X,H]$ form a group under the following multiplication:

For any two maps $f, g : X \to H$, $(f \cdot g)(x) = f(x) \cdot g(x)$.

The associative law of this multiplication in $[X,H]$ is obvious. It is enough to show that for any $f : X \to H$, there is a map $g : X \to H$ such that $f \cdot g$ is homotopic to the constant map $e : X \to H$, $e(x) = e$, for all $x \in X$.

We shall construct the map $g : X \to H$ and the homotopy $D : X \times I \to H$ satisfying $D(x,0) = e$, $D(x,1) = f(x) \cdot g(x)$, inductively on the skeleton of X. (I is the unit interval $[0,1]$.)

$X^{(k)}$ denotes the k-skeleton of X.

Assume g is defined on $X^{(k)}$ and D is defined on $X^{(k)} \times I$ such that $D(x,0) = e$ and $D(x,1) = f(x) \cdot g(x)$, for all $x \in X^{(k)}$. If necessary, we may ask that the base point x_0 of X is in $X^{(0)}$ and $f(x_0) = g(x_0) = D(x_0, t) = e$, for any $t \in I$.

For any $(k+1)$-simplex Δ in $X^{(k+1)}$, we want to extend g to the part Δ and D to the part $\Delta \times I$. Let S denote the boundary of Δ, it is a k-sphere. S is in $X^{(k)}$, g is defined on S and D is defined on $S \times I$.

Claim $g|_S : S \to H$ is null-homotopic.

Proof Δ is a simplex, there is a contraction map $\gamma : \Delta \times I \to \Delta$, $\gamma(x,0) = x$ and $\gamma(x,1) = x_1$, for all $x \in \Delta$. x_1 is some fixed point in S. Let $\beta : S \times I \to H$ denote the map $\beta(x,t) = f(\gamma(x,t)) \cdot g(x)$, for $x \in S$. Let
$y_1 = f(x_1)$ and $\overline{y}_1 : S \rightarrow H$ denote the constant map sending the points of S to y_1. Then β is a homotopy between $f \cdot g$ and $\overline{y}_1 \cdot g$ on S. H is path-connected, $\overline{y}_1 \cdot g$ is homotopic to $\overline{\tau} \cdot g = g$. Thus g is homotopic to $f \cdot g$ on S. On the other hand, the restriction of D to $S \times I$ provides a homotopy between the restrictions of $f \cdot g$ and $\overline{\tau}$. This proves that $g|_S$ is null-homotopic.

Therefore, we can extend $g|_S$ to the part Δ, say, $g' : \Delta \rightarrow H$, and we can also extend $D|_{S \times I}$ to the whole boundary of $\Delta \times I$ as follows:

We use $D' : \partial(\Delta \times I) \rightarrow H$ to denote the extension. $\partial(\Delta \times I) = \Delta \times \{0\} \cup \Delta \times \{1\} \cup S \times I$.

$D'(x,0) = e$ and $D'(x,1) = f(x) \cdot g'(x)$, for all $x \in \Delta$;

$D'(y,t) = D(y,t)$, for all $y \in S$ and $t \in I$.

The map D' may not be extended to $\Delta \times I$. We shall find a map $g_1 : \Delta \rightarrow H$ with $g_1|_S = \overline{e}|_S$ and modify the map D' by multiplying D' with g_1 on the part $\Delta \times \{1\}$ such that the new map is null-homotopic. Precisely, let $D'' : \partial(\Delta \times I) \rightarrow H$ denote the map, $D''(\xi) = D'(\xi)$, for all $\xi \in \Delta \times \{0\} \cup S \times I$, $D''(x,1) = D'(x,1) \cdot g_1(x)$, for all $(x,1) \in \Delta \times \{1\}$.

We may think the map g_1 as a map on $\Delta \times \{1\}$ and extend it trivially to the whole boundary $\partial(\Delta \times I)$, that is, sending all points undefined to e. Then D'' is just equal to $D' \cdot g_1$. To let D'' be null-homotopic, we can choose g_1 such that $[g_1] = [D']^{-1}$ in $\pi_{k+1}(H)$. Of course, g' should be changed to the new map $g' \cdot g_1$. Therefore, D'' is null-homotopic and its extension to $\Delta \times I$ also gives the homotopy between $f \cdot (g' \cdot g_1)$ on Δ. This finishes the extension of g and D to Δ.

References

[1] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illi. J. Math. 3 (1959), 285-305.

[2] M. Fuchs, Verallgemeinerte Homotopie-Homomorphismen und klassi-
