Anomalous Hall Effect in non-commutative mechanics

P. A. Horváthy *
Laboratoire de Mathématiques et de Physique Théorique
Université de Tours
Parc de Grandmont
F-37200 TOURS (France)

January 3, 2022

Abstract

The anomalous velocity term in the semiclassical model of a Bloch electron deviates the trajectory from the conventional one. When the Berry curvature (alias noncommutative parameter) is a monopole in momentum space, as found recently in some ferromagnetic crystals while observing the anomalous Hall effect, we get a transverse shift, similar to that in the optical Hall effect.

cond-mat/0606472

1 Introduction

The Anomalous Hall Effect (AHE), characterized by the absence of a magnetic field, is observed in some ferromagnetic crystals. While this has been well established experimentally, its explanation is still controversial. One, put forward by Karplus and Luttinger [1] fifty years ago, suggests that the effect is due to an anomalous current.

Many years later, it has been argued [2] that the semiclassical dynamics of a Bloch electron in a crystal should involve a Berry curvature term, Θ.

*e-mail: horvathy@lmpt.univ-tours.fr.
In the \(n^{th} \) band the equations of motion read, in an electromagnetic field,

\[
\dot{\mathbf{r}} = \frac{\partial \epsilon_n(\mathbf{k})}{\partial \mathbf{k}} - \dot{\mathbf{k}} \times \Theta, \tag{1}
\]

\[
\dot{\mathbf{k}} = e\mathbf{E} + e\dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r}), \tag{2}
\]

where \(\mathbf{r} = (x^i) \) and \(\mathbf{k} = (k_j) \) denote the electron’s intracell position and quasimomentum, respectively; \(\epsilon_n(\mathbf{k}) \) is the band energy. The relation (1) exhibits an anomalous velocity term, \(\dot{\mathbf{k}} \times \Theta \), which is the mechanical counterpart of the anomalous current.

The model is distinguished by the non-commutativity of the position coordinates: in the absence of a magnetic field, \(\{x^i, x^j\} = \epsilon_{ijn} \Theta \) \([3, 4]\). In the free noncommutative model in 3 space dimensions, \(\Theta \) can only be momentum-dependent such that \(\partial_{k^i} \Theta^i = 0 \) \([3]\).

A remarkable discovery concerns the AHE in the metallic ferromagnet \(\text{SrRuO}_3 \). Fang et al. \([5]\) found in fact that the experimental data are consistent with \(\Theta \) taking the form of a monopole in momentum space,

\[
\Theta = \theta \frac{\mathbf{k}}{k^3}, \tag{3}
\]

\(k \neq 0 \). \([3]\) is, furthermore, the only possibility consistent with rotational symmetry \([3]\).

Here we propose to study the AHE in the semiclassical framework (as advocated in \([6]\)), with non-commutative parameter \([3]\). For \(\mathbf{B} = 0 \) and a constant electric field, \(\mathbf{E} = \text{const.} \) and assuming a parabolic profile \(\epsilon_n(\mathbf{k}) = k^2/2 \), eqn. (2), \(\mathbf{k} = e\mathbf{E} \), is integrated as \(\mathbf{k}(t) = e\mathbf{E}t + \mathbf{k}_0 \). The velocity relation (1) becomes in turn

\[
\dot{\mathbf{r}} = \mathbf{k}_0 + e\mathbf{E}t + e\theta \frac{Ek_0}{k^3} \hat{n}, \tag{4}
\]

where \(\hat{n} = \hat{k}_0 \times \hat{E} \) [“hats” denote vectors normalized to unit length]. The component of \(\mathbf{k}_0 \) parallel to \(\mathbf{E} \) has no interest; we can assume therefore that \(\mathbf{k}_0 \) is perpendicular to the electric field. Writing \(\mathbf{r}(t) = x(t)\hat{k}_0 + y(t)\hat{E} + z(t)\hat{n} \), eqn. (4) yields that the component parallel to \(\mathbf{k}_0 \) moves uniformly, \(x(t) = k_0 t \), and its component parallel to the electric field is uniformly accelerating, \(y(t) = \frac{1}{2}eEt^2 \). (Our choices correspond to choosing time so that the turning point is at \(t = 0 \).) However, owing to the anomalous term in (1), the particle is also deviated perpendicularly to \(\mathbf{k}_0 \) and \(\mathbf{E} \), namely by

\[
z(t) = \frac{\theta}{k_0} \frac{eEt}{\sqrt{k_0^2 + e^2E^2t^2}}. \tag{5}
\]
Figure 1: The anomalous velocity term deviates the trajectory from the plane.

It follows that the trajectory leaves its initial plane and suffers, between \(t = -\infty \) to \(t = \infty \), a finite transverse shift, namely

\[
\Delta z = \frac{2\theta}{k_0}.
\]

(6)

Most contribution to the shift comes when the momentum is small, i.e., "near the \(k \)-monopole."

\(\theta \) becomes a half-integer upon quantization, \(\theta = N/2 \), and hence (6) is indeed \(N/k_0 \). The constant \(k_0 \neq 0 \), the minimal possible value of momentum, plays the role of an impact parameter. Let us observe that while (6) does not depend on the field \(E \) or the electric charge \(e \), the limit \(eE \to 0 \) is singular. For \(eE = 0 \), the motion is uniform along a straight line.

The transverse shift is reminiscent of the recently discovered optical Hall effect [7] and can also be derived, just like in the optical case, using the angular momentum. The free expression \([3] \), \(J = \mathbf{r} \times \mathbf{k} - \theta \hat{\mathbf{k}} \), is plainly broken by the electric field to its component parallel to \(\mathbf{E} \),

\[
J = J_y = z(t)k_0 - \theta \frac{eEt}{\sqrt{k_0^2 + e^2E^2t^2}}.
\]

(7)
whose conservation yields once again the shift $\left< \mathbf{k} \right>$. How can the same argument work for a Bloch electron and for light? The answer relies, for both problems, on having the same “k-monopole” contribution, $-\theta \mathbf{k}$, in the angular momentum.

Our model is plainly not realistic: what we described is, rather, the deviation of a freely falling non-commutative particle from the classical parabola found by Galileo. Particles in a metal are not free, though, and their uniform acceleration in the direction of \mathbf{E} should be damped by some mechanism. It is nevertheless remarkable that we obtain qualitative information from such a toy model.

Note added. I am indebted to Dr. S. Murakami for calling my attention to similar work in the context of the spin Hall effect in semiconductors [8]. I would also like to thank Dr. Y. Kats for informing me about the experimental status of the AHE, see [9].

References

[1] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

[2] M. C. Chang and Q. Niu, Phys. Rev. Lett. 75, 1348 (1995).

[3] A. Bérard and H. Mohrbach, Phys. Rev. D 69, 127701 (2004) [hep-th/0310167].

[4] C. Duval et al. Mod. Phys. Lett. B20, 373 (2006) [cond-mat/0506051].

[5] Fang et al. Science 302, 92 (2003) [cond-mat/030232].

[6] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 90, 207208 (2002).

[7] M. Onoda, S. Murakami, N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004); K. Yu. Bliokh and Yu. P. Bliokh, Phys. Lett. A333, 181 (2004) [physics/0402110]; A. Bérard and H. Mohrbach, Phys. Lett. A352, 190; [hep-th/0404165]; C. Duval, Z. Horváth, P. A. Horváthy, [math-ph/0509031], to appear in Journ. Geom. Phys.

[8] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003) [cond-mat/0308167]

[9] Y. Kats et al., Phys. Rev. B 70, 180407(R) (2004).