The dominance of the $\nu(0d_{5/2})^2$ configuration in the $N = 8$ shell in ^{12}Be from the breakup reaction on a proton target at intermediate energy

Le Xuan Chunga,* , Carlos A. Bertulanib,c , Peter Egelhofd , Stoyanka Ilievd,e , Dao T. Khoaa , Oleg A. Kiselevd

a Institute for Nuclear Science and Technology, VINATOM, 179 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
b Department of Physics and Astronomy, Texas A & M University-Commerce, Commerce, TX 75429-3011, USA
c Department of Physics and Astronomy, Texas A & M University, College Station, TX 77843, USA
d GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
e Technische Universität Darmstadt, D-64289 Darmstadt, Germany

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 21 April 2017
Received in revised form 16 August 2017
Accepted 22 September 2017
Available online 27 September 2017
Editor: V. Metag

\textbf{Keywords:}
(p, pn) knock-out reaction
$N = 8$ shell in ^{12}Be

\textbf{A B S T R A C T}

The momentum distribution of ^{11}Be fragments produced by the breakup of ^{12}Be interacting with a proton target at 700.5 MeV/u energy has been measured at GSI Darmstadt. To obtain the structure information on the anomaly of the $N = 8$ neutron shell, the momentum distribution of ^{11}Be fragments from the one-neutron knock-out $^{12}\text{Be}(p, pn)$ reaction, measured in inverse kinematics, has been analysed in the distorted wave impulse approximation (DWIA) based on a quasi-free scattering scenario. The DWIA analysis shows a surprisingly strong contribution of the neutron $0d_{5/2}$ orbital in ^{12}Be to the transverse momentum distribution of the ^{11}Be fragments. The single-neutron $0d_{5/2}$ spectroscopic factor deduced from the present knock-out data is 1.39(10), which is significantly larger than that deduced recently from data of ^{12}Be breakup on a carbon target. This result provides a strong experimental evidence for the dominance of the neutron $\nu(0d_{5/2})^2$ configuration in the ground state of ^{12}Be.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The anomaly of the neutron $N = 8$ shell has been known since many years, for example, from the abnormal spin-parity of the ^{11}Be ground state. The systematic change from the conventional sp shell for neutrons in carbon isotopes to a mixture of $0p_{1/2}$, $1s_{1/2}$ and $0d_{5/2}$ shells in the neutron rich Be isotopes was discussed already 20 years ago by Tanihata [1]. The recent studies have focused on the disappearance of the $N = 8$ shell closure when the $1s_{1/2}$ orbital is shifted below the $0d_{5/2}$ orbital, giving rise to the formation of neutron halos [2]. While the extended sizes of the halo nuclei can be accurately deduced from the measured interaction (or reaction) cross section [3,4], or from the angular distribution of intermediate energy proton elastic scattering in inverse kinematics [5–11], the shell structure of the unstable neutron-rich nuclei has been studied mainly based on the analysis of momentum distributions of fragments from breakup reactions [12–14].

The ground-state structure of ^{12}Be with $N = 8$ is of high interest from the shell-model point of view. It should be noted that the $\nu(0d_{5/2})^2$ ($J^T = 0^+, T = 1$) intruder state in ^{12}Be was pointed out as highly possible by Barker [15] some 40 years ago. A more recent microscopic particle-vibration coupling study by Gori et al. [16] shows a quite strong coupling between the valence neutrons and the lowest 2^+ and 3^- excited states of the ^{10}Be core, leading to a dominance of the $\nu(0d_{5/2})^2$ configuration in the ground state of ^{12}Be. So far, ^{12}Be has been studied in several experiments, and quite interesting are the measurements of the ^{12}Be breakup on a ^8Be target by Navin et al. [17], and on a ^{12}Be target by Pain et al. [18]. In the first experiment, the observation of ^{12}Be fragmentation followed by the γ-emission from the bound states of ^{11}Be has shown that the $1s_{1/2}$ neutron shell is mixed with the $0p_{1/2}$ shell in the ground state of ^{12}Be. In the second experiment, the γ rays following the neutron emission from the (unbound) 1.78 MeV ($d_{5/2}$) and 2.69 MeV ($p_{3/2}$) excited states of ^{11}Be fragments [18] have been observed, which show a strong mixing of the neutron p and sd shells in the ground state of ^{12}Be.
The present work presents the momentum distributions of 11Be fragments produced in the one-nucleon knockout 12Be(p, pn)11Be reaction measured at GSI Darmstadt in inverse kinematics at an energy of 700.5 MeV/nucleon. The transverse momentum distribution of the 11Be fragments was analyzed in the distorted wave impulse approximation (DWIA), using the quasi-free scattering (QFS) assumption for the single nucleon knockout reaction [19]. Evidence for a strong dominance of the $v(0d_{5/2})^2$ configuration in the ground state of 12Be was found from the present DWIA analysis.

A primary 18O beam, produced from the MEVVA (Metal Vapour Vacuum Arc) source, was accelerated to the energy of 750 MeV/u by the UNILAC (UNiversal Linear Accelerator) and the heavy-ion synchrotron (SIS) at GSI Darmstadt. The beam was further focused on an 8 g/cm2 beryllium production target at the entrance of the FRagment Separator (FRS) [20]. The beryllium ions produced by the fragmentation of 18O nuclei were separated by the FRS according to their magnetic rigidity and nuclear charge. At the entrance of the secondary target IKAR [7,9,21], the secondary 12Be beam energy was 700.5 MeV/u with 1.1% FWHM. Its intensity was about 6000 ions/s, and the contamination from other isotopes was approximately 1%. The time projection ionization chamber IKAR [7, 9, 21], which was filled with hydrogen gas and operated at 10 bar pressure, served simultaneously as a gas target and a recoil proton detector.

A schematic view of the experimental layout is presented in Fig. 1. The proton recoil signal, obtained from the IKAR detector, was coincident with that of the scattered Be particle. The scattering angle θ_x and the vertex point were determined from the coordinates measured by a tracking system consisting of 2 pairs of 2-dimensional multi-wire proportional chambers (MWPC1-MWPC2 and MWPC3-MWPC4), arranged upstream and downstream with respect to IKAR. The scintillators S1 and S2 were used for triggering and beam identification. The beam was identified via the time-of-flight (ToF) between scintillators S1 and S8 (located at the FRS, not shown in Fig. 1) and energy loss measurements in the scintillators S1 and S2, while a circular-aperture scintillator VETO with a 2 cm diameter hole at its center selected the projectiles which entered IKAR within an area of 2 cm in diameter around the central axis. The helium bags were used to reduce the multiple Coulomb scattering of the incoming and outgoing particles. The analysis for the elastic 12Be(p, p) channel was presented in details in Ref. [10]. For the present one-neutron knockout 12Be(p, pn) channel, the difference is the selection of the 11Be fragments which is illustrated in Fig. 2. The residual Be nuclei were identified via a position sensitive scintillator wall placed at the end of the setup (see Fig. 1) after passing through the ALADIN magnet (A Large Acceptance Dipole magnet) which separated the isotopes according to their magnetic rigidity, and the outgoing angle of the residue.

At the high incident energy considered in the present work, the one-neutron knockout from the loosely bound 12Be projectile occurs promptly, inducing almost no perturbation on the other nucleons (adiabatic approximation). The non-participating nucleons in 12Be can be considered as “spectators” [22] which scatter elastically off the p target. Following this idea, the kinematic of the elastic 11Be + p scattering was used to determine the momentum of the outgoing 11Be fragment (p_{out}), with the scattering angle θ_x determined as discussed above, and the velocity of the incoming 11Be core (with momentum p_{in}) assumed to be equal to that of the 12Be projectile. At very low momentum transfer, the x projection of the fragment’s transverse momentum can be calculated as

$$p_x = p_{\text{in}}\theta_x \sin \theta_x - p_{\text{out}}\theta_x,$$

where, $\theta_x^i(\theta_x)$ are angle of the incoming (outgoing) particle in the laboratory frame. As the result, the x-component distribution of the 11Be fragment’s transverse momentum deduced in such an approximation for the nucleon knockout $p^{(12)}$Be,11Be reaction at an energy of 700.5 MeV/u is shown in Fig. 3. Its total width (FWHM) after defolding from the momentum resolution is around 248.7(153) MeV/c. The momentum resolution of p_x is determined from the uncertainty of the scattering angle ($\sigma_{\theta} \approx 0.61$ mrad) to be about 12.0(12) MeV/c which is less than 5% of the FWHM of the p_x distribution determined for the 11Be fragments. The main contributions to the momentum resolution were due to the position resolution (≈2 mm) of the MWPCs and the multiple Coulomb scat-
tering in material along the flight path of the particle which was estimated to be approximately 0.49 mrad. The total momentum acceptance was determined to be about 1000 MeV/c thus ensuring the full coverage of the fragment’s momentum.

The motivation of the present study is focused on the structure information concerning the anomaly of the \(N = 8 \) neutron shell in the Be isotopes. Therefore, the momentum distribution of the \(^{11}\text{Be} \) fragments from the one-neutron knockout \(^{12}\text{Be}(p, pn) \) reaction (in inverse kinematics) was carefully studied in the DWIA analysis of the knockout reaction. The DWIA has been well proven as a reliable approach to describe the single-nucleon knockout reaction \([19,23,24]\). There are three particles emerging in the exit channel of the \(^{12}\text{Be}(p, pn) \) reaction, whose exact kinematics cannot be determined by the present experimental setup. Therefore, as discussed above, the \(^{11}\text{Be} \) core of the \(^{12}\text{Be} \) projectile was assumed to scatter on the proton target elastically during the breakup reaction, and the elastic \(^{11}\text{Be} + p \) kinematics was used to determine the momenta of the \(^{11}\text{Be} \) fragments. This is in fact the quasi-free scattering (QFS) approximation usually adopted in the DWIA studies of the quasi-elastic scattering at high energies \([19]\).

In such a QFS scenario, the DWIA scattering amplitude for the \(A(p, pn)B \) reaction can be determined \([19,23]\) as

\[
T_{p, pn} = \sqrt{S(ij)} \left[\chi_{A,0}^{\text{in}}(k_{0}^{'}) | \tau_{pn}(k_{pn}^{'}, k_{pn}; E) | \chi_{A,0}^{\text{in}}(\psi_{jm}) \right],
\]

where \(\chi_{A,0}^{\text{in}} \) and \(\chi_{A,0}^{\text{in}} \) are the incoming and outgoing distorted waves of the proton and knockon neutron, \(S(ij) \) is the spectroscopic factor of the \(ij \) component in the wave function of the valence neutron in \(A \), which is described by the \(\psi_{jm} \) function. \(\tau_{pn} \) is the proton-neutron scattering matrix that depends on the energy and the relative proton-neutron momenta in the entrance \((k_{pn}) \) and exit \((k_{pn}^{'}) \) channels.

At high energies, the distorted waves are determined in the eikonal approximation as

\[
\chi_{A,0}^{\text{in}}(k_{0}^{'}) = S_{\text{in}}^{(p)} \exp(i\alpha k_{p} \cdot r) \exp[i(k_{0}^{'}) \cdot r],
\]

\[\chi_{A,0}^{\text{out}}(k_{0}) = S_{\text{out}}^{(p)} \exp[i(k_{p} + k_{n}) \cdot r]\]

where \(S_{\text{in}}^{(p)} \) is the \(pA \) scattering matrix in the entrance channel, and \(S_{\text{out}}^{(p)} \) and \(S_{\text{out}}^{(n)} \) are the \(pB \) and \(nB \) scattering matrices in the exit channel. They are obtained from the (real) nuclear optical potentials given by the folding model, and the corresponding imaginary parts given by the \(t\rho \rho \) approach \([25]\). A recoil correction \(\alpha = (A - 1)/A \) due to the center of mass (c.m.) motion is also introduced \([19,23]\). The single-nucleon wave function \(\psi_{jm} \) is generated by the standard method using a Woods–Saxon potential supplemented with a spin-orbit term, whose parameters were adjusted to reproduce the observed neutron separation energy of \(^{12}\text{Be} \). Adopting the free-proton-neutron scattering amplitude for \(\tau_{pn} \), the DWIA transition amplitude \((2)\) at a given impact parameter \(b \) can be written as

\[
T_{p, pn} = \sqrt{S(ij)} \tau_{pn}(k_{pn}^{'}, k_{pn}; E) \exp(-i\mathbf{q} \cdot \mathbf{r}) \psi_{jm}(\mathbf{r}),
\]

where \(\theta_{p} \) and \(\theta_{n} \) are the c.m. angles of the outgoing proton and neutron, respectively, and the momentum transfer \(\mathbf{q} = k_{p} + k_{n} - \alpha k_{p} \). The total scattering matrix is a product of the nucleon scattering matrices

\[
S_{\text{in}}(\theta_{p}, \theta_{n}) = S_{\text{in}}(E_{p}, b) S_{\text{in}}(E_{p}', \theta_{p}', b) S_{\text{in}}(E_{n}, \theta_{n}, b).
\]
Expressing q explicitly in terms of the transverse (q_x) and longitudinal (q_z) momentum transfers, the transverse momentum distribution of the neutrons knocked out from the single-particle state ψ_{jml} is obtained (after integrating over q_z) as [19]

$$\frac{d\sigma_{ij}}{d^2q_t} = \frac{S(j)S(i)}{2\pi q_t dq_t} = \frac{S(j)}{2\pi (2j + 1)} \sum_m \left| \frac{\langle p_{lm} \rangle}{d^2q_t} \right|^2 \int_{-\infty}^{\infty} dz \left[\int_0^\infty \frac{d\sigma_{ij}}{dq_t} (S(b) \frac{u_j(r)}{r} \sum_{m} \langle p_{lm} \rangle b_z \right] \right| \right|^2,$$

(7)

where $\frac{d\sigma_{ij}}{d^2q_t}$ and $(S(b))$ are averaged over the energies of the outgoing proton and neutron (at the given transverse momentum q_t), the latter also averaged over the scattering angles of the protons, $u_j(r)$ is the radial part of the single-particle wave function $\psi_{jml}(r)$, $\sum_{m} \langle p_{lm} \rangle$ are the cylindrical Bessel function and Legendre polynomials, respectively, and

$$C_{lm} = \sqrt{\frac{2l + 1}{4}} \sqrt{\frac{(l - m)!}{(l + m)!}}.$$

To compare with the experimental momentum distribution, we need to reduce the distribution (7) to that along the x-component of q_t. Inserting $q_t = \sqrt{p_x^2 + p_y^2}$, we obtain [26] the inclusive momentum distribution of the one-neutron knockout $^{12}\text{Be}(p, p n)$ ^{11}Be reaction as

$$\frac{d\sigma}{dp_x} = \sum_{ij} S(j) \frac{d\sigma}{dp_x} = \sum_{ij} S(j) \int_0^\infty \frac{d\sigma_{ij}}{d^2q_t} (p_x, p_y).$$

The measured transverse momentum distribution of ^{11}Be fragments ejected from the one-neutron knockout $^{12}\text{Be}(p, p n)^{11}\text{Be}$ reaction was subjected to the DWIA analysis (7)–(8), with the spectroscopic factors $S(j)$ of the single-particle configurations $v_{1s1/2}$, $v_{0d5/2}$ and $v_{1p3/2}$ of the valence neutron in ^{12}Be adjusted independently as free parameters of the best DWIA fit of the calculated momentum distribution (8) to the measured data.
[8] G.D. Alkhazov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, H. Irrich, A.V. Khandadeev, G.A. Korolev, A.A. Lobodenko, G. Münzenberg, M. Mutterer, S.R. Neumaier, W. Schwab, D.M. Seliverstov, T. Suzuki, A.A. Vorobyov, Nucl. Phys. A 712 (2002) 269.

[9] A.V. Dobrovolsky, G.D. Alkhazov, M.N. Andronenko, A. Bauchet, P. Egelhof, S. Fritz, H. Geissel, C. Gross, A.V. Khandadeev, G.A. Korolev, G. Kraus, A.A. Lobodenko, G. Münzenberg, M. Mutterer, S.R. Neumaier, T. Schäfer, C. Scheidenberger, D.M. Seliverstov, N.A. Timofeev, A.A. Vorobyov, V.I. Yatsoua, Nucl. Phys. A 766 (2006) 1.

[10] S. Ilieva, F. Aksouh, G.D. Alkhazov, L. Chulkov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, M. Gorska, A. Inglessi, R. Kanungo, A.V. Khandadeev, D.A. Kiselev, G.A. Korolev, X.C. Le, Yu.A. Litvinov, C. Nociforo, D.M. Seliverstov, L.O. Sergeyev, H. Simon, V.A. Volkov, A.A. Vorobyov, H. Weick, V.I. Yatsoua, A.A. Zhdanov, Nucl. Phys. A 875 (2012) 8.

[11] L.X. Chung, O. Kisele, D.T. Khoa, P. Egelhof, Phys. Rev. C 92 (2015) 034608.

[12] M. Zahar, M. Belbot, J.J. Kolata, K. Lamin, R. Thompson, N.A. Orr, J.H. Kelley, R.A. Kryger, D.J. Morrissey, B.M. Sherrill, J.A. Winger, J.S. Winfield, A.H. Wuosmaa, Phys. Rev. C 48 (1993) R1464.

[13] T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto, T. Shimoda, N. Takahashi, I. Tanihata, Phys. Rev. Lett. 60 (1988) 2599.

[14] Y. Kondo, T. Nakamura, Y. Satou, T. Matsumoto, N. Aoi, N. Endo, N. Fukuda, T. Cozi, Y. Hashimoto, M. Ishihara, S. Kawai, M. Kitayama, T. Kobayashi, Y. Matsuda, N. Matsui, T. Motohayas, T. Nakabayashi, T. Okumura, H.J. Ong, T.K. Onishi, K. Ogata, H. Otsu, H. Sakurai, S. Shimoura, M. Shinohara, T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, Y. Yanagisawa, Phys. Lett. B 690 (2010) 245.

[15] F.C. Barker, J. Phys. G, Nucl. Part. Phys. 2 (1976) 145.

[16] G. Gori, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. Rev. C 69 (2004) 041302(R).

[17] A. Navin, D.W. Anthony, T. Aumann, T. Baumann, D. Bazin, Y. Blumenfeld, B.A. Brown, T. Glasnaker, P.G. Hansen, R.W. Sitborton, P.A. Lofy, V. Maddalena, K. Miller, T. Nakamura, B.V. Pritivchenko, B.M. Sherrill, E. Spears, M. Steiner, J.A. Tostevin, J. Yurkon, A. Wagner, Phys. Rev. Lett. 85 (2000) 266.

[18] S.D. Pain, W.N. Catford, N.A. Orr, J.C. Angelique, N.L. Ashwood, V. Bouchat, N.M. Clarke, N. Curtis, M. Freer, B.R. Fulton, F. Hanappe, M. Labiche, J.L. Lecouey, R.C. Lemmon, D. Mahboub, A. Ninane, G. Normand, N. Soic, L. Stuttge, C.N. Timis, J.A. Tostevin, J.S. Winfield, V. Ziman, Phys. Rev. Lett. 96 (2006) 032502.

[19] T. Aumann, C.A. Bertulani, J. Ryckebusch, Phys. Rev. C 88 (2013) 064610.

[20] H. Geissel, P. Armbuster, K.H. Behr, A. Brünle, K. Burkard, M. Chen, H. Folger, B. Franzlak, H. Keller, O. Klepper, B. Langenbeck, F. Nickel, E. Pfeng, M. Fützner, E. Roeckl, K. Rykaczewski, D. Schardt, C. Scheidenberger, K.-H. Schmidt, A. Schröter, T. Schwab, K. Sümmerer, M. Weber, G. Münzenberg, Nucl. Instrum. Methods B 70 (1992) 286.

[21] A.A. Vorobyov, G.A. Korolev, V.A. Schegelsky, G.Ye. Solynakin, G.L. Sokolov, Yu.K. Zalite, Nucl. Instrum. Methods 119 (1974) 509.

[22] M.S. Hussein, K.W. McVoy, Nucl. Phys. A 445 (1988) 125.

[23] Gerhard Jacob, Th.A.J. Maris, Rev. Mod. Phys. 38 (1966) 121.

[24] T. Udagawa, A. Schulte, F. Osterfeld, Nucl. Phys. A 474 (1987) 131.

[25] M.S. Hussein, R.A. Rego, C.A. Bertulani, Phys. Rev. 201 (1991) 279.

[26] C.A. Bertulani, A. Cade, Comput. Phys. Commun. 175 (2006) 372.