Error-Trellis Construction for Tailbiting Convolutional Codes

Masato Tajima
Graduate School of Science and Engineering
University of Toyama
3190 Gofuku, Toyama 930-8555, Japan
Email: tajima@eng.u-toyama.ac.jp

Koji Okino
Information Technology Center
University of Toyama
3190 Gofuku, Toyama 930-8555, Japan
Email: okino@itc.u-toyama.ac.jp

Abstract—In this paper, we present an error-trellis construction for tailbiting convolutional codes. A tailbiting error-trellis is characterized by the condition that the syndrome former starts and ends in the same state. We clarify the correspondence between code subtrellises in the tailbiting code-trellis and error subtrellises in the tailbiting error-trellis. Also, we present a construction of tailbiting backward error-trellises. Moreover, we obtain the scalar parity-check matrix for a tailbiting convolutional code. The proposed construction is based on the adjoint-obvious realization of a syndrome former and its behavior is fully used in the discussion.

I. INTRODUCTION

In this paper, we always assume that the underlying field is \(F = \mathbb{GF}(2) \). Let \(G(D) \) be a generator matrix of an \((n, k)\) convolutional code \(C \). Let \(H(D) \) be a corresponding \(r \times n \) parity-check matrix of \(C \), where \(r = n - k \). Both \(G(D) \) and \(H(D) \) are assumed to be canonical \([1, 5]\). Denote by \(L \) the memory length of \(G(D) \) (i.e., the maximum degree among the polynomials of \(G(D) \)) and by \(M \) the memory length of \(H(D) \). Then \(H(D) \) is expressed as

\[
H(D) = H_0 + H_1 D + \cdots + H_M D^M. \tag{1}
\]

Consider a terminated version of \(C \) with \(N \) trellis sections. That is, each codeword is a path starting from the all-zero state at time \(t = 0 \) and ending in the all-zero state at time \(t = N \). In this case, \(C \) is specified by the following scalar parity-check matrix \([1, 6]\):

\[
H_{\text{scalar}} = \begin{pmatrix}
H_0 \\
H_1 & H_0 \\
\vdots & \vdots & \ddots \\
H_M & \cdots & \cdots & H_0 \\
H_M & \cdots & \cdots & H_1 \\
\vdots & \ddots & \cdots & \ddots \\
H_M & \cdots & \cdots & \cdots & \cdots & H_M
\end{pmatrix} \tag{2}
\]

with size \((N + M)r \times Nn \) (blanks indicate zeros).

Tailbiting is a technique by which a convolutional code can be used to construct a block code without any loss of rate \([4, 7, 10]\). Let \(C_{tb} \) be a tailbiting convolutional code with an \(N \)-section code-trellis \(T_{tb}^{(c)} \). The fundamental idea behind tailbiting is that the encoder starts and ends in the same state, i.e., \(\beta_0 = \beta_N \) (\(\beta_k \) is the encoder state at time \(k \)). Suppose that \(T_{tb}^{(c)} \) has \(\Sigma_0 \) initial (or final) states, then it is composed of \(\Sigma_0 \) subtrellises, each having the same initial and final states. We call these subtrellises tailbiting code subtrellises. For example, a tailbiting code-trellis of length \(N = 5 \) based on the generator matrix

\[
G_1(D) = (1, 1 + D^2, 1 + D + D^2) \tag{3}
\]

is shown in Fig. 1. Since \(\Sigma_0 = 4 \), this tailbiting code-trellis is composed of 4 code subtrellises. In Fig. 1, bold lines correspond to the code subtrellis with \(\beta_0 = \beta_5 = (1, 0) \).

On the other hand, it is reasonable to think that an error-trellis \(T_{tb}^{(e)} \) for the tailbiting convolutional code \(C_{tb} \) can be constructed. In this case, each error subtrellis should have the same initial and final states like a code subtrellis. In this paper, taking this property into consideration, we present an error-trellis construction for tailbiting convolutional codes. We also clarify the correspondence between code subtrellises in \(T_{tb}^{(e)} \) and error subtrellises in \(T_{tb}^{(c)} \). In this relationship, we see that dual states (i.e., syndrome-former states corresponding to encoder states) play an important role. Also, a kind of superposition rule associated with a syndrome former is used.

Next, we present a construction of tailbiting backward error-trellises. Using the backward error-trellis, each tailbiting error path is represented in time-reversed order. Moreover, we derive the general structure of the scalar parity-check matrix for a
tailbiting convolutional code. Similar to a scalar generator matrix, it is shown that the obtained scalar parity-check matrix has a cyclic structure. In general, unlike code-trellises, error-trellises enable decoding with remarkably low average complexity [1]. Hence, we think an error-trellis construction presented in this paper is very important.

II. SYNDROME FORMER $H^T(D)$

A. Adjoint-Obvious Realization of a Syndrome Former

Consider the adjoint-obvious realization (observer canonical form [2], [3]) of the syndrome former $H^T(D)$ (T means transpose). Let $e_k = (e_k^{(1)}, e_k^{(2)}, \ldots, e_k^{(n)})$ and $\zeta_k = (\zeta_k^{(1)}, \zeta_k^{(2)}, \ldots, \zeta_k^{(r)})$ be the input error at time k and the corresponding output syndrome at time k, respectively. Denote by $\sigma_k^{(q)}$ the contents of the memory elements in the above realization. Here, the contents of the memory array corresponding to the syndrome bit $\zeta_k^{(q)}$ are labeled with q. For any fixed q, $\sigma_k^{(q)}$ corresponds to the memory element which is closest to the qth output of the syndrome former (i.e., $\zeta_k^{(q)}$). If a memory element is missing, the corresponding $\sigma_k^{(q)}$ is set to zero. Using $\sigma_k^{(q)}$, the syndrome-former state at time k is defined as

$$\sigma_k \triangleq (\sigma_k^{(1)}, \ldots, \sigma_k^{(r)}, \sigma_k^{(1)}_{k_M}, \ldots, \sigma_k^{(r)}_{k_M}).$$ (4)

(Remark: The effective size of σ_k is equal to the overall constraint length of $H(D)$.)

Let $\xi_k = (\zeta_k, \sigma_k)^T$ be the extended state augmented with the syndrome ζ_k. Then ξ_k has an expression [8], [9]:

$$\xi_k = \begin{pmatrix} H_M & H_{M-1} & \cdots & H_1 & H_0 \\ 0 & H_M & \cdots & H_2 & H_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & H_M & H_{M-1} \\ 0 & 0 & \cdots & 0 & H_M \end{pmatrix} \times (e_{k-M}, e_{k-M+1}, \ldots, e_k)^T \\ \triangleq H^* \times (e_{k-M}, e_{k-M+1}, \ldots, e_k)^T. \tag{5}$$

From this expression, we have

$$\sigma_k \triangleq (\sigma_k^{(1)}, \sigma_k^{(2)}, \ldots, \sigma_k^{(M)}) \\ = (e_{k-M+1}, \ldots, e_{k-1}, e_k) \\ \times \begin{pmatrix} H_T^{(M)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & H_T^{(1)} \end{pmatrix} \\ \triangleq (e_{k-M+1}, \ldots, e_{k-1}, e_k) \times H^{*T}. \tag{6}$$

Note that σ_k has an alternative expression:

$$\sigma_k = (\sigma_k^{(2)}, \ldots, \sigma_k^{(M)}, 0) + e_k(H_T^{(1)}H_T^{(2)}, \ldots, H_T^{(M)}). \tag{7}$$

Similarly, ζ_k is expressed as

$$\zeta_k = e_{k-M}H_T^{(M)} + \cdots + e_{k-1}H_T^{(1)} + e_kH_T^{(0)} \tag{8}$$

$$\sigma_k + \sigma_k' \triangleq (\sigma_k^{(2)}, \ldots, \sigma_k^{(M)}, \sigma_k^{(0)}) \\ + (e_k + e_k')H_T^{(1)}H_T^{(2)}, \ldots, H_T^{(M)}). \tag{18}$$

B. Dual States

The encoder states can be labeled by the syndrome-former states (i.e., dual states [2]). The dual state β_k' corresponding to the encoder state β_k is obtained by replacing e_k in σ_k by $y_k = u_kG(D)$ (u_k is the information at time k). We have

$$\beta_k' = (y_{k-M+1}, \ldots, y_{k-1}, y_k) \times \begin{pmatrix} H_T^{(M)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & H_T^{(1)} \end{pmatrix} \tag{10}$$

Example 1: Consider the parity-check matrix

$$H_1(D) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \tag{11}$$

corresponding to $G_1(D)$. $H_1(D)$ is expressed as

$$H_1(D) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} D \tag{12}$$

Hence ($M = 1$), the dual state corresponding to the encoder state $\beta_k = (u_k-1, u_k)$ is obtained as follows.

$$\beta_k' = y_kH_1^T \\ = (y_k^{(1)}, y_k^{(2)}, y_k^{(3)}) \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \tag{13}$$

C. Behavior of a Syndrome Former

Lemma 1: Let σ_{k-1} be the syndrome-former state at time $k-1$. Here, assume that an error e_k is inputted to the syndrome former and it moves to the state σ_k at time k. Also, assume that the syndrome ζ_k is outputted according to this transition. (This relation is denoted as

$$\sigma_{k-1} + e_k \xrightarrow{\zeta_k} \sigma_k.$$

Similarly, assume the relation

$$\sigma_{k-1} + e_k \xrightarrow{\sigma'_k} \sigma'_k.$$

Then we have

$$\sigma_{k-1} + \sigma'_k \xrightarrow{\zeta_k + \sigma'_k} \sigma_k + \sigma'_k.$$

Proof: From the assumption, the relations

$$\sigma_k = (\sigma_k^{(2)}, \ldots, \sigma_k^{(M)}, 0) + e_k(H_T^{(1)}H_T^{(2)}, \ldots, H_T^{(M)}). \tag{16}$$

$$\sigma'_k = (\sigma'_k^{(2)}, \ldots, \sigma'_k^{(M)}, 0) + e'_k(H_T^{(1)}H_T^{(2)}, \ldots, H_T^{(M)}). \tag{17}$$

hold. Hence, we have

$$\sigma_k + \sigma'_k \triangleq (\sigma_k^{(2)}, \ldots, \sigma_k^{(M)}, \sigma_k^{(0)}) \\ + (e_k + e_k')H_T^{(1)}H_T^{(2)}, \ldots, H_T^{(M)}). \tag{18}$$
On the other hand, using the relations
\begin{align}
\zeta_k &= \sigma_k^{(1)} + e_k H_0^T \\
\zeta_k' &= \sigma_k'^{(1)} + e'_k H_0^T,
\end{align}
we have
\[\zeta_k + \zeta_k' = (\sigma_k^{(1)} + \sigma_k'^{(1)}) + (e_k + e'_k) H_0^T.\]
These expressions imply that
\[\sigma_{k-1} + \sigma_{k-1}' + e_k + e'_k \sigma_k + \sigma_k' \]
holds.

Lemma 2: Let \(\beta_0 \) and \(\beta_N \) be the initial and final states of the code-trellis, respectively. Denote by \(y \) a code path connecting these states. (This is denoted as \(\beta_0 \overset{y}{\rightarrow} \beta_N \).)

Then we have
\[\beta_0 \overset{y}{\rightarrow} \beta_N.\]
That is, assume that the syndrome former is in the dual state \(\beta_0 \) of \(\beta_0 \). In this case, if \(y \) is inputted to the syndrome former, then it moves to the dual state \(\beta_N \) of \(\beta_N \) and the syndrome \(\zeta = 0 \) is outputted.

Proof: By extending the code-trellis in both directions by \(L \) sections, if necessary, we can assume the condition
\[\beta_0 = 0 \overset{y}{\rightarrow} \beta_L \overset{y''}{\rightarrow} \beta_{N+L+2L} = 0,\]
where \(y' \) and \(y'' \) are augmented code paths (initial and final states are both 0). Hence, we can apply the standard scalar parity-check matrix \(H_{\text{scalar}} \) (cf. (2)). Then we have
\[\beta_0^* = 0 \overset{y}{\rightarrow} \beta_L^* \overset{y''}{\rightarrow} \beta_{N+L+2L}^* = 0.\]
That is, the output of the syndrome former is zero for all time. In the above relation, we can note the following subsection:
\[\beta_L^* \overset{y}{\rightarrow} \beta_{N+L}^*.\]

Proof: From the assumption, we have
\[\sigma_{\text{fin}} \overset{z+y+e}{\rightarrow} \zeta^* \overset{\zeta}{\rightarrow} \sigma_{\text{fin}}.\]

Also, from Lemma 2,
\[\beta^* \overset{y}{\rightarrow} \beta^*.\]
is obtained. Hence, by applying Lemma 1, we have
\[\sigma_{\text{fin}} + \beta^* \overset{z+y+e}{\rightarrow} \zeta \overset{\zeta+0=\zeta}{\rightarrow} \sigma_{\text{fin}} + \beta^*.\]

III. ERROR-TRELLISES FOR TAILBITING CONVOLUTIONAL CODES

A. Error-Trellis Construction

Suppose that the tailbiting code-trellis based on \(G(D) \) is defined in \([0, N]\), where \(N \geq M \). In this case, the corresponding tailbiting error-trellis based on \({H^T}(D) \) is constructed as follows.

Step 1: Let \(z = \{z_k\}_{k=1}^N \) be a received data. Denote by \(\sigma_0 \) the initial state of the syndrome former \({H^T}(D) \). Let \(\sigma_{\text{fin}}(= \sigma_N) \) be the final syndrome-former state corresponding to the input \(z \). Note that \(\sigma_{\text{fin}} \) is independent of \(\sigma_0 \) and is uniquely determined only by \(z \).

Step 2: Set \(\sigma_0 \) to \(\sigma_{\text{fin}} \) and input \(z \) to the syndrome former. Here, assume that the syndrome sequence \(\zeta = \{\zeta_k\}_{k=1}^N \) is obtained. (Remark: \(\zeta_k \) \((k \geq M + 1)\) has been obtained in Step 1.)

Step 3: Concatenate the error-trellis modules corresponding to the syndromes \(\zeta_k \). Then we have the tailbiting error-trellis.

Example 2: Again, consider the parity-check matrix \(H_1(D) \).

Let \(z = z_1, z_2, z_3, z_4, z_5 = 111110111000 \) be the received data. According to Step 1, let us input \(z \) to the syndrome former \({H^T}(D) \). Then we have \(\sigma_{\text{fin}}(= (0, 0)) \). Next, we set \(\sigma_0 \) to \(\sigma_{\text{fin}} = (0, 0) \) and input \(z \) to the syndrome former. In this case, the syndrome sequence
\[\zeta = \zeta_1, \zeta_2, \zeta_3, \zeta_4, \zeta_5 = 0000100111 \]
is obtained. The tailbiting error-trellis is constructed by concatenating the error-trellis modules corresponding to \(\zeta_k \). The obtained tailbiting error-trellis is shown in Fig.2.

B. Correspondence Between Code Subtrellises and Error Subtrellises

With respect to the correspondence between tailbiting code subtrellises and tailbiting error subtrellises, we have the following.

Proposition 2: Let \(\beta_0(= \beta_N) = \beta \) be the initial (final) state of a tailbiting code subtrellis. Then the initial (final) state of the corresponding tailbiting error subtrellis is given by \(\sigma_{\text{fin}} + \beta^* \).

Proof: Direct consequence of Proposition 1.
Example 2 (Continued): Consider the tailbiting error-trellis in Fig. 2. In this example, we have $\sigma_{\text{fin}} = (0, 0)$. The corresponding tailbiting code-trellis based on $G_1(D)$ is shown in Fig. 1. In Fig. 1, take notice of the code subtrellis with initial (final) state $\alpha = (1, 0)$ (bold lines). The dual state of $\alpha = (1, 0)$ is calculated as $\beta^* = u_{-1} + u_0, u_0 = (1 + 0, 0) = (1, 0)$. Hence, the initial (final) state of the corresponding error subtrellis is given by $\sigma_{\text{fin}} + \beta^* = (0, 0) + (1, 0) = (1, 0)$ (bold lines in Fig. 2).

C. Backward Error-Trellis Construction

Let $\tilde{G}(D)$ and $\tilde{H}(D)$ be the reciprocal encoder and the reciprocal dual encoder [6] associated with $G(D)$, respectively. Then the tailbiting backward error-trellis corresponding to the original tailbiting error-trellis is constructed as follows.

Step 1: Let $\tilde{z} = \{\tilde{z}_k\}_{k=1}^N = \{z_{N-k+1}\}_{k=1}^N$ be the time-reversed received data. Denote by $\tilde{\sigma}_0$ the initial state of the syndrome former $\tilde{H}(D)$. Let $\tilde{\sigma}_{\text{fin}} (= \tilde{\sigma}_N)$ be the final syndrome former state corresponding to the input \tilde{z}. Note that $\tilde{\sigma}_{\text{fin}}$ is independent of $\tilde{\sigma}_0$ and is uniquely determined only by \tilde{z}.

Step 2: Set $\tilde{\sigma}_0$ to $\tilde{\sigma}_{\text{fin}}$ and input \tilde{z} to the syndrome former. Here, assume that the syndrome sequence $\eta = \{\eta_k\}_{k=1}^N$ is obtained.

Remark: It is shown that $\zeta = \{\zeta_k\}_{k=1}^N$ and $\eta = \{\eta_k\}_{k=1}^N$ have the following correspondence:

$$\eta = \eta_1 \eta_2 \cdots \eta_M \eta_{M+1} \cdots \eta_N = \zeta_M \zeta_{M-1} \cdots \zeta_{M+1} \cdots \zeta_1 \cdots \zeta_N$$

(32)

Step 3: Concatenate the error-trellis modules corresponding to the syndromes η_k. Then we have the tailbiting backward error-trellis.

Example 3: Take notice of Example 2. The reciprocal dual encoder $\tilde{H}_1(D)$ associated with $G_1(D)$ is given by $\tilde{H}_1(D) = \begin{pmatrix} 1 + D & 1 & 1 + D \\ 1 & D & D \end{pmatrix}$.

(33)

Let $\tilde{z} = \tilde{z}_1 \tilde{z}_2 \tilde{z}_3 \tilde{z}_4 \tilde{z}_5 = 000 111 110 110 111$ be the time-reversed received data. According to Step 1, let us input \tilde{z} to the syndrome former $\tilde{H}(D)$. Then we have $\tilde{\sigma}_{\text{fin}} = (0, 0)$. Next, we set $\tilde{\sigma}_0$ to $\tilde{\sigma}_{\text{fin}} = (0, 0)$ and input \tilde{z} to the syndrome former. In this case, the syndrome sequence $\eta = \eta_1 \eta_2 \eta_3 \eta_4 \eta_5 = 00 11 01 10 00$ (35) is obtained. Since $M = 1$, we see that the correspondence

$$\eta = \eta_1 \eta_2 \eta_3 \eta_4 \eta_5 = \zeta_1 \zeta_5 \zeta_4 \zeta_3 \zeta_2$$

(36)

holds. The tailbiting backward error-trellis is constructed by concatenating the error-trellis modules corresponding to η_k. The obtained tailbiting backward error-trellis is shown in Fig. 3.

Next, consider the correspondence between forward error subtrellises and backward error subtrellises. First, note the following.

Proposition 3: Let $\tilde{\beta}_0(= \tilde{\beta}_N) = \tilde{\bar{\beta}}$ be the initial (final) state of a tailbiting backward code subtrellis. Then the initial (final) state of the corresponding backward error subtrellis is given by $\tilde{\sigma}_{\text{fin}} + \tilde{\beta}^*$.

Proof: Direct consequence of Proposition 1.

Example 3 (Continued): Consider the reciprocal encoder $\tilde{G}_1(D) = (D^2, 1 + D^2, 1 + D + D^2)$ (37) and the reciprocal dual encoder $\tilde{H}_1(D)$ associated with $G_1(D)$. $\tilde{H}_1(D)$ is expressed as $\tilde{H}_1(D) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} D$ (38)
Hence, the syndrome \(\mathbf{H}(D) \) becomes

\[
\mathbf{H}(D) = \begin{pmatrix}
H_0 & H_M & \ldots & H_2 & H_1 \\
H_1 & H_0 & \ldots & \ldots & H_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
H_{M-1} & \ldots & H_0 & H_M \\
H_M & H_{M-1} & \ldots & H_1 & \ldots \\
\vdots & \vdots & \ldots & \ldots & \ldots \\
H_H & H_{M-1} & \ldots & \ldots & \ldots \\
\end{pmatrix}
\]

with size \(N_R \times N_n \).

Proof: Consider the tailbiting convolutional code \(C_{tb} \) with \(N \) trellis sections specified by a parity-check matrix \(H(D) \). \(C_{tb} \) can be regarded as an \((Nn, Nk) \) block code [4]. In this case, we have the following.

Proposition 5: Assume that \(H(D) \) has the form (1). Then the scalar parity-check matrix \(H_{scalar} \) for \(C_{tb} \) is given by

\[
H_{scalar} = \begin{pmatrix}
H_0 & H_M & \ldots & H_2 & H_1 \\
H_1 & H_0 & \ldots & \ldots & H_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
H_{M-1} & \ldots & H_0 & H_M \\
H_M & H_{M-1} & \ldots & H_1 & \ldots \\
\vdots & \vdots & \ldots & \ldots & \ldots \\
H_H & H_{M-1} & \ldots & \ldots & \ldots \\
\end{pmatrix}
\]

Similarly, we have

\[
\zeta_2 = (e_{-M+1}H^T_{M} + \ldots + e_1H^T_2 + e_0H^T_1) + e_1H^T_0 = (e_{N-M+2}H^T_M + \ldots + e_NH^T_2) + e_1H^T_0
\]

The same argument can be applied to \(\zeta_k \) \((3 \leq k \leq N)\). Then we see that \(H_{scalar}^{T} \) is written as

\[
\begin{pmatrix}
H^T_0 \\
H^T_1 \\
\vdots \\
H^T_M \\
H^T_{M-1} \\
\vdots \\
H^T_H \\
\end{pmatrix}
\]

By transposing this matrix, \(H_{ scalar } \) is obtained.

V. Conclusion

In this paper, we have presented an error-trellis construction for tailbiting convolutional codes. A tailbiting error-trellis is characterized by the condition that the syndrome former starts and ends in the same state. We have clarified the correspondence between code subtrellises in the tailbiting code-trellis and error subtrellises in the tailbiting error-trellis. Also, we have presented a construction of tailbiting backward error-trellises. Moreover, we have obtained the general structure of the scalar parity-check matrix for a tailbiting convolutional code. We see that the obtained results correspond to those for tailbiting code-trellises in the natural manner.

References

[1] M. Ariel and J. Snyders, “Error-trellises for convolutional codes—Part I: Construction,” IEEE Trans. Commun., vol. 46, no. 12, pp. 1593–1601, Dec. 1998.

[2] G. D. Forney, Jr., “Structural analysis of convolutional codes via dual codes,” IEEE Trans. Inform. Theory, vol. IT-19, no. 4, pp. 512–518, July 1973.

[3] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding, New York: IEEE Press, 1999.

[4] H. H. Ma and J. K. Wolf, “On tailbiting convolutional codes,” IEEE Trans. Commun., vol. COM-34, no. 2, pp. 104–111, Feb. 1986.

[5] R. J. McEliece and M. P. C. Fossorier, “Two decoding algorithms for convolutional codes,” IEEE Trans. Inform. Theory, vol. 43, no. 2, pp. 512–518, Feb. 1998.

[6] M. J. McEliece and W. Lin, “The trellis complexity of convolutional codes,” IEEE Trans. Inform. Theory, vol. 51, no. 10, pp. 1658–1665, Oct. 2003.

[7] V. Sidorenko and V. Zyablov, “Decoding of convolutional codes using syndrome trellis,” IEEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1653–1666, Sep. 1994.

[8] M. Tajima and T. Miyagoshi, “Minimal code (error-)trellis module construction for rate-k/n convolutional codes: Extension of Yamada-Harashima-Miyakawa’s construction,” IEICE Trans. Fundamentals, vol. E90-A, no. 11, pp. 2629–2634, Nov. 2007.

[9] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fujii, and D. J. Costello, Jr., “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2966-2984, Dec. 2004.