PSEUDOMONAS AERUGINOSA VOLATILOME CHARACTERISTICS AND ADAPTATIONS IN CHRONIC CYSTIC FIBROSIS LUNG INFECTIONS

Trenton J. Davisa,b, Ava V. Karanjiaa,c, Charity N. Bhebhea, Sarah B. Westa, Matthew Richardsond,e, and Heather D. Beana,b,#

aSchool of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
bCenter for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ, USA
cSchool of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
dDepartment of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
eNIHR Biomedical Research Centre (Respiratory theme), Institute for Lung Health, Leicester, UK

\#Corresponding author: Heather D. Bean
Heather.D.Bean@asu.edu
ABSTRACT

Pseudomonas aeruginosa chronic lung infections in individuals with cystic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortality. Tracking these infections is critical for monitoring patient health and informing treatments. We are working toward the development of novel breath-based biomarkers to track chronic *P. aeruginosa* lung infections *in situ*. Using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS), we characterized the *in vitro* volatile metabolomes (or volatilomes) of 81 *P. aeruginosa* isolates collected from 17 CF patients over at least a five-year period of their chronic lung infections. We detected 539 volatiles produced by the *P. aeruginosa* isolates, 69 of which were core volatiles that were highly conserved. We found that each early infection isolate has a unique volatilome, and as infection progresses, the volatilomes of isolates from the same patient become increasingly dissimilar, to the point that these intra-patient isolates are no more similar to one another than to isolates from other patients. We observed that the size and chemical diversity of *P. aeruginosa* volatilomes do not change over the course of chronic infections; however, the relative abundances of core hydrocarbons, alcohols, and aldehydes do change, and are correlated to changes in phenotypes associated with chronic infections. This study indicates that it may be feasible to track *P. aeruginosa* chronic lung infections by measuring changes to the infection volatilome, and lays the groundwork for exploring the translatability of this approach to direct measurement using patient breath.

IMPORTANCE

Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), and are correlated with lung function declines. Significant clinical efforts are, therefore, aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections relies on sputum cultures, but due to improvements in CF therapies, sputum production is declining though risks for lung infections...
persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study we characterized of the volatile metabolomes of 81 *P. aeruginosa* clinical isolates collected from 17 CF patients over a duration of at least five years of a chronic lung infection. We found that the volatilome of *P. aeruginosa* adapts over time, and correlates to infection phenotype changes, suggesting it may be possible to track chronic CF lung infections with a breath test.

KEYWORDS

Pseudomonas aeruginosa; cystic fibrosis; metabolomics; volatile organic compounds; chronic infection; adaptation

RUNNING TITLE

P. aeruginosa cystic fibrosis volatilome
INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disease caused by a mutation in the CFTR protein that regulates ion transport across epithelia. In the lungs, reduced or lost CFTR function leads to defective mucociliary transport, facilitating infection and colonization by a plethora of microorganisms (1). Pseudomonas aeruginosa is one of the most prevalent lung pathogens in CF—especially after adolescence (2)—and is able to establish chronic infections that can last for years to decades (3, 4). P. aeruginosa lung infection is associated with more rapid lung function decline, increased risk of hospitalization, and increased risk of death (5, 6). Significant clinical efforts are, therefore, aimed at diagnosing and treating new infections to delay the onset of chronic infection (7).

As P. aeruginosa transitions from an acute infection to chronicity, it undergoes a variety of genotypic, phenotypic, and metabolic changes (8, 9). It has been well-established that several phenotypes are correlated with chronic infection, including reduced motility and increased mucoidy, antibiotic resistance, and biofilm formation (9-11), and some of these phenotypes are also correlated with poorer patient outcomes (6, 12, 13). In light of this, P. aeruginosa phenotypes could be used to evaluate infection stage, CF disease progression, and patient morbidity risk (10, 12, 14, 15). Poor access to infection sites in the lower airways, however, delays the detection of new P. aeruginosa infections and reduces the feasibility and accuracy of disease state tracking via bacterial phenotypes, whether by culture-dependent or culture-independent methods (16).

We are developing breath-based diagnostics to detect new P. aeruginosa infections and track chronic infection phenotypes in the CF lung. Breath consists of thousands of volatile organic compounds containing a wealth of information about human health and disease (17, 18), and is being leveraged for the development of diagnostics for wide-ranging conditions (19, 20). In the context of chronic lung infections, breath-based diagnostics possess significant advantages over other diagnostic modalities. First, breath provides a non-invasive way of
sampling the entire ventilated lung, a limitation of both sputum and bronchoalveolar lavage fluid
that leads to delayed diagnosis of new infections, or the detection of infection phenotype
changes (16, 21-24). Second, breath sampling captures metabolic information about the
pathogens in situ, eliminating the need for microbial enrichment steps and speeding the time-to-
diagnosis by days to weeks (25, 26). Additionally, in situ metabolic measurements provide
information on the physiology of the pathogens in the context of disease versus the context of
the lab. We propose that a breath-based diagnostic can be created for detecting and tracking
CF P. aeruginosa lung infections by correlating the microbial genotypic and phenotypic changes
that occur during chronic infections to changes in the infection volatile metabolome, or
“volatilome”.

In order to develop a set of biomarkers for diagnosing and tracking P. aeruginosa lung
infections in CF, we must consider the genomic, phenomic, and volatilomic diversity of the
species, and how that diversity may be altered via adaptation to the CF lung environment. A
recent effort to sequence more than 1300 P. aeruginosa isolates demonstrates that the
genomes are highly flexible, with only 1% of the pan-genome conserved across all isolates (27).
An untargeted analysis of the volatile metabolites produced in vitro by 24 P. aeruginosa clinical
isolates shows that the volatilomes are also diverse, with 18% of the pan-volatilome conserved
in this comparatively small study (28). In the context of CF, most early P. aeruginosa infections
in young patients are caused by unique strains that come from the patients’ environments (29-
32). We therefore expect the volatilomes early in infection to have high inter-patient dissimilarity,
reflecting the genomic diversity of P. aeruginosa CF isolates (3, 33-35), and to be chemically
diverse (i.e., volatiles from a wide range of chemical classes). Once chronic infections are
established, however, the “founder” P. aeruginosa strain evolves into a population of clonal sub-
strains (3, 8, 36-40), many of which harbor CF-typical loss-of-function mutations in regulatory
genes and sigma factors (e.g., lasR and mucA) (3, 41, 42). From this, we posit that the size of
the *P. aeruginosa* volatilome will shrink during chronic infection, with a concomitant decrease in chemical diversity and a reduction in inter-patient dissimilarity.

The primary goal of this study is to build a foundation for using volatilomes to diagnose and track *P. aeruginosa* CF lung infections by exploring how the *in vitro* volatilome of *P. aeruginosa* CF isolates change over the course of chronic infection. We used comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) to characterize the volatilomes of 81 *P. aeruginosa* isolates from early and late chronic lung infections from 17 persons with CF. Using an untargeted metabolomics approach, we characterized the size and chemical composition of the CF *P. aeruginosa* volatilome, and identified core volatiles that would be a primary source of breath biomarkers for diagnosing infections. We also investigated how the *P. aeruginosa* volatilome is shaped by the CF lung environment, characterizing changes in volatilome sizes and compositions over time, and how these changes relate to intra-patient and inter-patient volatilome dissimilarities. A secondary goal of this study is to provide further data on the *P. aeruginosa* volatilome via the largest single analysis of *P. aeruginosa* headspace volatiles, to-date.

METHODS

Bacterial isolates

Eighty one *P. aeruginosa* isolates from 17 individuals with CF were acquired from the Cystic Fibrosis Isolate Core at Seattle Children’s Center for Global Infectious Disease Research. From the majority of patients we obtained three isolates: one early isolate, defined as the first cultured *P. aeruginosa* isolate, and two late isolates collected a minimum of five years after the first isolate. For one patient (Patient 23), 32 additional isolates were collected at intervals over 7.5 years between the collections of the early and two late isolates. For one patient, only one isolate was included in this study. The full strain names of the isolates are
provided in Table S1, and all isolates are available upon request to the CF Isolate Core

(https://www.seattlechildrens.org/research/resources/cystic-fibrosis-isolate/).

We quantified five phenotypes that are correlated with chronic infections: proteases, pyocyanin, rhamnolipids, twitching motility, and mucoidy. *P. aeruginosa* was cultured from glycerol stocks on LB agar for 24 h, then a single colony was cultured aerobically to stationary phase in LB Lennox broth (10 g tryptone, 5 g yeast extract, 5 g NaCl per liter) at 37 °C with shaking at 200 RPM, unless otherwise noted. Results of phenotype assays are reported in Table S1 as means of biological triplicates, except for mucoidy for which five replicates were measured. Pyocyanin production was evaluated by methods adapted from (43). Cell-free *P. aeruginosa* culture supernatant (7.5 mL) was extracted with 4.5 mL of chloroform, inverted for 2 min and centrifuged at 4,122 × g for 15 min. Three milliliters of the organic phase was removed and extracted with 750 µL of 0.2 N hydrochloric acid and vortexed for 2 min. The aqueous phase was aliquoted into a 96-well plate and absorbance was measured at 520 nm. Protease production was evaluated by methods adapted from (15). A sterile wooden inoculation stick was dipped into a culture of *P. aeruginosa* and then gently touched to the surface of a brain-heart infusion-skim milk agar (1.5%) plate. Plates were incubated upright at 37 °C and zones of clearance were measured at 48 h. Rhamnolipids production was evaluated by methods adapted from (44). Proteose peptone-glucose-ammonium salts (PPGAS) medium was inoculated from an LB pre-culture of *P. aeruginosa* and cultured at 37 °C to stationary phase with shaking at 200 RPM. Cultures were centrifuged at 21,694 × g for 1 min to pellet cells. The supernatant was serially diluted two-fold in PPGAS and 20 µL of each dilution was spotted onto a microtiter plate lid. Spots were classified as drops or collapsed drops and assigned numeric scores corresponding to the number of dilutions needed to obtain a drop. Twitching motility was evaluated by methods adapted from (45, 46). The pointed end of a sterile toothpick was touched to the edge of a single *P. aeruginosa* colony and then stabbed to the bottom of a twitching
motility agar plate (per 1 L: 10 g tryptone, 5 g NaCl, 5 g yeast extract, 10 g agar). Plates were incubated at 37 °C for 24 h and the radius of the interstitial biofilm was measured. For mucoidy, frozen glycerol stocks of *P. aeruginosa* were streaked onto LB Lennox agar (1.5%) plates and grown for 48 hrs. Colonies were visually inspected and the degree of mucoid morphology was scored from 0 to 2, in 0.5 increments (0 = highly mucoid, 2 = non-mucoid). Twenty pairs of isolates (one Early and one Late) from ten patients were selected for additional statistical analyses, described below, based on changes to their phenotypes during chronic infections.

Sample preparation

Isolates were cultured as previously described (47). Briefly, isolates were cultured aerobically for 16 h at 37 °C in 5 mL of lysogeny broth-Lennox (LB), and then diluted 1000-fold into 25 mL of fresh LB and grown for 24 h under the same conditions. For metabolomics analyses, cells were removed via centrifugation through a 0.2 µm filter and 2 mL of each filtrate was transferred to a 10 mL GC headspace vial with screw caps. Samples were prepared in biological triplicate, with LB media controls prepared in parallel, and stored at –20 °C prior to analysis.

GC×GC analysis and data processing

Culture filtrates were thawed and maintained at 4 °C until analyzed, as previously described (47). Headspace volatiles were characterized using a Pegasus® 4D GC×GC-TOFMS (LECO® Corporation, St. Joseph, MI) equipped with a MPS Pro® rail autosampler (Gerstel® Inc, Linthicum Heights, MD). Column set configuration, and GC×GC, MS, and data processing method parameters are previously reported (47), and summarized in Miscellaneous Table 1 (https://doi.org/10.1101/2020.06.13.126698).
Data processing steps are outlined in Miscellaneous Figure 1. Chromatographic artifacts and suspected contaminants based on peak names and comparisons to blanks were removed (Miscellaneous Table 2), as well as poorly modulated peaks eluting prior to 358 s (acetone retention time) in the first dimension. Missing values were handled as follows: if detected in one of three replicates, the measured value was permuted to 0; if detected in two of three replicates, the missing value was imputed as half of the minimum detected value for that compound across all samples.

Probabilistic quotient normalization (PQN) was applied to account for differences in peak abundance due to variations in culture cell density, followed by a log_{10} transformation (48). Peaks were further filtered out based on the following criteria: (1) within-triplicate intraclass correlation coefficient (ICC) < 0.75 (definition: absolute agreement; model: two-way mixed effects; type: mean of k measurements) (49); and (2) only detected in sterile media, or not significantly greater in abundance compared to sterile media using the Wilcoxon rank-sum test with Benjamini-Hochberg adjustment (significance threshold of .05) (50).

For statistical analyses beyond the reporting of detected peaks, peaks that showed significant correlations to run order were identified using Kendall’s tau with Benjamini-Hochberg adjustment (-0.6 ≤ τ ≥ 0.6, significance threshold of .05) and removed. Principal component analysis (PCA) revealed an apparent batch effect that was attributed to, at least in part, a non-biological phenomenon and was described previously (47). This batch effect was corrected using an empirical Bayes approach (51). The geometric means of triplicates of the batch-corrected data were used for further statistical analyses. For analysis of the ten paired early and late chronic infection isolates, batch-corrected data was not used as all of these isolates were contained within the same batch.

Peaks were putatively identified using published reporting standards (52). Level 2 identifications were determined based on the following criteria: (1) ≥ 80% mass spectral forward match using the NIST 2011 library; (2a) first dimension retention times that possess a strong
linear fit with carbon number in homologous series ($r^2 \geq 0.995$, for the identification of select 2-, 3-, and 4-ketones), or (2b) experimentally determined linear retention indices (LRI) consistent with published LRIs, as determined by the following acceptance criteria based on the differences between experimental and published non-polar and polar column RIs for Grob's test mix:

$$\left(\frac{\text{RI}_{\text{experimental}} - \text{RI}_{\text{non-polar}}}{\text{RI}_{\text{polar}} - \text{RI}_{\text{non-polar}}}\right) \times 100 = 0 - 43\%$$

Level 3 identifications were based on at least an 80% mass spectral forward match score.

Chemical classifications (alcohols, aldehydes, aromatics, carboxylic acids, esters, hydrocarbons, ketones, thiols, or other) were assigned based primarily on their mass spectral identity, and secondarily by their chromatographic characteristics. Using polar second dimension columns, compounds of differing functional classes elute at easily discernible second-dimension retention times in a stratified manner, typically (from smallest t_R to largest): hydrocarbons < ketones < aromatics (53-57). In this study, compounds identified as hydrocarbon, ketones, and aromatics eluted at approximately 0.71 s ± 0.05 s, 0.88 s ± 0.22 s, and 1.12 s ± 0.26 s, respectively. Level 4 identifications are those that meet none of the above-mentioned criteria.

Statistical analyses

A Phenotype Score was determined, for each replicate, by scaling the data for each phenotype to a range of 0 to 1, where 1 is the maximum value and 0 is the minimum value (excluding outliers). Scaled phenotype data were then summed to yield the Score, and averaged across replicates. Patient age was not included in calculation of Scores. Two-tailed Wilcoxon signed-rank tests (with continuity correction, where appropriate; significant threshold of .05) were used to test for significant differences between Late and Early isolate Scores.
Volatile compounds that were detected in at least 95% of all samples were classified as "core" volatiles. Significant differences between inter-isolate phenotypes were tested using the Wilcoxon signed-rank test (significance threshold of .05). Significant differences between intra- and inter-patient volatilomes were tested using one-way analysis of variance (ANOVA) (significance threshold of .05), and Tukey’s honestly significant differences (HSD) multiple comparison procedure (significance threshold of .05). The relatedness of isolates based on their volatilomes were assessed using agglomerative hierarchical clustering analysis (HCA), non-metric multidimensional scaling (NMDS), and permutational multivariate analysis of variances (PERMANOVA) on the Euclidean distances between isolates. Linear regression and Pearson’s correlation of Euclidean distances of Patient 23 isolates were used to assess intra-patient isolate dissimilarity over time. All statistical analyses were performed using R version 3.3.2 (The R Foundation for Statistical Computing) with the following packages (version): ICC (2.3.0), pairwiseAdonis (0.0.1), pheatmap (1.0.8), stats (3.3.2), and sva (3.22.0).

Data availability

Metabolomic data (chemical feature peak areas and retention time information) included in this study are available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, at www.metabolomicsworkbench.org, where it has been assigned Project ID PR000970, Study ID ST001414 (DOI: http://dx.doi.org/10.21228/M89Q4F). Additional Miscellaneous Information mentioned can be found alongside Supplementary Information at bioRxiv (DOI: https://doi.org/10.1101/2020.06.13.126698).

RESULTS

Characteristics of *P. aeruginosa* CF isolates
We obtained from a biorepository 81 *P. aeruginosa* chronic infection isolates, which had been collected from 17 individuals with CF. From 14 patients, two or three *P. aeruginosa* isolates were obtained: one isolate that was the first cultured *P. aeruginosa*, and one or two isolates that were collected at least five years after the first. We refer to these isolates as Early and Late, respectively. For one patient (Patient 75), four isolates were collected: two Early isolates collected one month apart and two Late isolates, collected ten and 16 years after the first. For one patient (Patient 23), 32 additional isolates were collected over the course of a 7.5 y infection period, which we have termed Intermediate isolates. For one patient, only one isolate was collected. These isolates were genetically characterized in a study by Smith *et al.*, who determined that the intra-patient replicate isolates are all clonally related, with the exception of the four isolates from patient 75, which are actually two clonally-related Early/Late pairs (isolates 75E-1 and 75L-2 are clonal, and isolates 75E-2 and 75L-1 are clonal) (3).

For all isolates, we characterized five clinically relevant phenotypes *in vitro*: mucoidy, pyocyanin production, rhamnolipids production, protease production, and twitching motility (Fig. 1; Table S1). These phenotypes are commonly altered during the course of chronic CF lung infections (15). There were wide ranges in the expression of these phenotypes across all isolates, as expected. Several isolate sets exhibited phenotypes consistent with age of collection in that Early isolates possessed higher degrees of motility, higher quantities of pyocyanin, rhamnolipids, and proteases (indicating intact quorum regulation), and lower mucoidy compared to their cognate Late isolates (*e.g.*, Patients 23, 31, 33, 36, and 76). The associations between relative patient age at isolate collection and *P. aeruginosa* phenotypes were not perfect, however. For example, Early isolate 62E had no detectable pyocyanin, proteases, rhamnolipids, or twitching motility, and many of the Late isolates retained more early-like phenotypes (*e.g.*, both Late isolates of 41, 66, 71, 75, and 101, and 60L-1, 74L-2, and 100L-2). Despite observable changes in isolate phenotype within patient, no phenotypes were significantly different when comparing Late isolate(s) to the Early isolate. Collectively, the 81
isolates were highly varied, and represented the array of phenotypes we expect to observe in the span of *P. aeruginosa* CF lung infections from initial infection to long-established chronic infections.

The *in vitro* volatilome of *P. aeruginosa* CF isolates

Taking an untargeted metabolomics approach, we cultured the clinical *P. aeruginosa* isolates *in vitro* and characterized their volatilomes using GC×GC-TOFMS. Following extensive data processing, including removal of analytically biased chromatographic features, we conservatively attribute 539 non-redundant volatile compounds to the growth and metabolism of the *P. aeruginosa* isolates (Table S2). Among these, 69 compounds are shared by at least 95% (n ≥ 77) of the isolates, representing core volatiles. Using minimum metabolomics reporting standards, we assigned compound identification levels 1-4 (1 high, with 2 being the highest in this study) based on a combination of mass spectral and chromatographic characteristics. We were able to assign putative names to 14 core and 33 non-core compounds with an ID level 2 (Table 1), many of which have been previously reported as *P. aeruginosa* volatiles (Table 1). While we detected 2-aminoacetophenone (the volatile compound responsible for the grape-like odor of *P. aeruginosa*), it possessed an intraclass correlation slightly lower than the applied threshold of 0.75 and was ultimately filtered out of our peak list. We also identified several compounds of a variety of chemical classes that have not been previously reported for *P. aeruginosa*, including: alcohols (3-methyl-1-buten-1-ol, 1-butoxy-2-propanol, 2-butyl-1-octanol), esters (butanoic acids, methyl isovalerate), aromatics (tetrahydrofuran, tetramethylpyrazine, 2-butylnurran, 3-cyano-2,5-dimethylpyrazine, 2,4-(1,1-dimethyl)-phenol), unsaturated ketones (3-hydroxy-butan-2-one, 4-undecanone, 1-octen-3-one, 3-penten-2-one, 6-methyl-2-heptanone, 1-(4-ethylphenyl)-ethanone), and an aldehyde (decanal).

Chemical classifications were assigned to ID level 2 and 3 compounds (187 compounds) using mass spectral match and retention time characteristics (Fig. 2). Among Level 2 and 3 core
volatiles, the majority of classified compounds were hydrocarbons (41%), followed by ketones (16%). Other oxidized compounds, including alcohols, aromatics, acids, and thiols, accounted for an additional 43%. The non-core volatiles had similar chemical compositions, which are consistent with previous studies of the *P. aeruginosa* volatilome (25, 28, 53, 58, 59). Of the entire volatilome, 65% of the volatiles (*n* = 352) possessed less than an 80% mass spectral match to the 2011 NIST MS library, and as such were classified as unknowns.

Table 1 Putatively identified volatile compounds metabolized by *P. aeruginosa* CF isolates.

Compound Name*	Formula	Chemical Class	Samples (*n* = 81)	Refs.*b
Core volatile compounds				
3-methylbutanal	C₅H₁₀O	Aldehyde	79	
thiocyanic acid, methyl ester	C₂H₄NS	Ester	77	(53)
3-methyl-1-butanol	C₅H₁₂O	Alcohol	77	(58, 60, 61)
pyridine	C₆H₅N	Aromatic	77	
3-penten-2-one	C₅H₈O	Ketone	77	
3-methyl-1-butene-1-ol	C₅H₁₀O	Alcohol	78	
hexanal	C₅H₁₂O	Aldehyde	81	(58, 60, 62)
heptanal	C₇H₁₄O	Aldehyde	80	
2,5-dimethylpyrazine	C₆H₈N₂	Aromatic	81	(53)
2-nonanone	C₃H₁₈O	Ketone	81	(28, 53, 58, 59, 61-67)
Non-core volatile compounds				
dimethyl sulfide	C₂H₄S	Other	29	(28, 53, 58, 60, 61, 64, 68, 69)
2-methyl-3-buten-2-ol	C₃H₁₀O	Alcohol	35	(28, 53, 58, 59, 61, 63, 66, 70)
2-butanoic acid	C₄H₈O	Ketone	1	(28, 53, 58, 59, 61, 63, 66, 70)
tetrahydrofuran	C₄H₈O	Aromatic	1	
acetic acid	C₂H₄O₂	Carboxylic acid	55	
methyl thioacetate	C₃H₆OS	Thiol	3	(58, 60, 62)
Chemical Name	Molecular Formula	Functional Group	pIC₅₀	References
---------------	------------------	------------------	-------	------------
2,4-dimethylfuran	C₆H₈O	Aromatic	66	(28)
butanoic acid, methyl ester	C₅H₁₀O₂	Ester	3	
3-hydroxybutan-2-one	C₄H₈O₂	Ketone	18	
dimethyl disulfide	C₂H₆S₂	Other	1	(28, 58-62, 66, 68-73)
2-methyl-butanoic acid, methyl ester	C₆H₁₂O₂	Ester	3	
3-methyl-butanoic acid, methyl ester	C₆H₁₂O₂	Ester	3	
furfural	C₅H₄O	Aromatic	67	(60)
2-butyldifuran	C₅H₁₀O₂	Aromatic	6	
2-hexen-1-ol	C₅H₁₀O	Alcohol	51	(28)
1-butoxy-2-propanol	C₇H₁₄O₂	Alcohol	61	
6-methyl-2-heptanone	C₇H₁₆O	Ketone	33	
1-methylethylbenzene	C₈H₁₂	Aromatic	57	
3-octanone	C₈H₁₆O	Ketone	56	(28, 61)
4,6-dimethyl-2-heptanone	C₉H₁₈O	Ketone	47	
2-ethyl-5-methylpyrazine	C₇H₁₀N₂	Aromatic	58	
4-nonanone	C₉H₁₈O	Ketone	49	(28)
tetramethylpyrazine	C₁₀H₁₈N₂	Aromatic	5	
2-octenal	C₈H₁₄O	Aldehyde	48	(53)
octanenitrile	C₈H₁₅N	Other	73	(28)
2,4-octadienal	C₈H₁₂O	Aldehyde	9	(28)
3-decanone	C₁₀H₂₀O	Ketone	41	(53)
decanal	C₁₀H₂₀O	Aldehyde	65	
2-decanone	C₁₀H₂₀O	Ketone	13	(28)
4-undecanone	C₁₁H₂₂O	Ketone	30	
2-dodecanone	C₁₂H₂₄O	Ketone	18	(28, 53)
2-butyl-1-octanol	C₁₂H₂₆O	Alcohol	48	
2,4-bis(1,1-dimethyl)-phenol	C₁₄H₂₂O	Aromatic	26	

*Bolded compounds have not been previously reported as *P. aeruginosa* volatile compounds.

*Previous references for these volatiles in *P. aeruginosa* cultures are provided.

Relationships in the *P. aeruginosa* CF volatilome within and between patients

Because every patient is infected by a genetically-unique strain, we hypothesized that the dissimilarities of intra-patient volatilomes would be lower than inter-patient. Additionally, due to the greater metabolic potential of early-infection isolates with intact regulatory networks, we hypothesized that the volatilomes of inter-patient Early isolates would be more dissimilar than...
those of inter-patient Late isolates. We calculated the pairwise Euclidean distances as a measure of dissimilarity between all Early isolate volatilomes (“inter-Early dissimilarity”), all Late isolate volatilomes (“inter-Late dissimilarity”), and between Early and Late isolate volatilomes from the same patient (“intra-patient dissimilarity”). Significant differences between means were tested using one-way ANOVA with Tukey’s HSD multiple comparison procedure. Interestingly, the inter-Early isolate dissimilarity was the lowest (mean 35.2, median 33.8) and the inter-Late isolate dissimilarity was the highest (mean 39.1, median 39.1), and these differences were significant (95% CI: 3.05 – 4.86; \(P = 0^+ \)) (Fig. 3). Similarly, mean inter-Late volatilome dissimilarity was significantly greater than that of intra-Patient volatilomes (mean 36.4, median 35.6) (95% CI: 0.41 – 4.97; \(P = .013 \)). Even more intriguing was that the inter-Early dissimilarity was lower than even the intra-patient dissimilarity, though this difference was not significant (95% CI: -1.11 – 3.66; \(P = .515 \)). For comparison, we also calculated the pairwise Euclidean distances of all isolates in this study (Pooled; mean 38.0, median 37.9); the mean inter-Early and mean inter-Late dissimilarities were both significantly lower than the mean dissimilarity of the Pooled isolates (95% CIs: 1.99 – 3.77, -1.65 – 0.51; \(P = 0^+ \)).

Visualizing the Euclidean distances between isolate volatilomes via non-metric multidimensional scaling (NMDS) and ordered dissimilarity images (ODI), we looked for clustering of clonal isolates, indicating intra-patient similarities. The NMDS and ODI of the Euclidean distances of all 81 isolate volatilomes show a primary cluster comprised mostly of intermediate isolates of Patient 23 (Fig. S1). To reduce the influence of the over-represented Patient 23 isolates in data visualization, we truncated our data set to 48 isolates by removing the Intermediate isolates of Patient 23, and the lone Patient 21 isolate. The ODI plot and NMDS of the truncated set revealed three clusters of similarity, none of which include all isolates from a single patient (Fig. 4; Fig S2a,b). This refutes our hypothesis that isolates from the same patient maintain a similar volatilome over time. To determine if any inter-patient or intra-patient isolate
pairs are significantly different, we performed permutational multivariate analysis of variance (PERMANOVA) on the Euclidean distances for all possible pairs. Following Benjamini-Hochberg adjustment of P values, no pairs of isolates were identified as having significantly different volatilomes ($q \geq .1$ for all isolate pairs). However, PERMANOVA conducted on all isolates indicated strong significant differences between the 81 volatilomes ($pseudo-F_{80,161} = 28.0$, $P < .01$), as well as between the volatilomes of the truncated set of 48 isolates ($pseudo-F_{47,96} = 29.2$, $P = 0+$), reinforcing the inference from the ODI and NMDS that the CF $P. aeruginosa$ volatilome is heterogeneous.

Though we do not find that patient isolates maintain similar volatilomes over the duration of chronic infection, it is noteworthy that the majority of Patient 23’s isolates have strong similarities (Fig. S1). Taking a closer look at the 35 isolates from Patient 23 (Fig. 5; Fig. S2c), the ODI and NMDS revealed four distinct similarity neighborhoods: one neighborhood consisting of only the Early isolate 23E, which stands alone; a second consisting of the four latest-collected isolates 23I-32, 23I-33, 23L-1, 23L-2; a third consisting of isolates 23I-7, 23I-9, 23I-12, 23I-14, 23I-29; and a fourth encompassing the remainder of the isolates. The four latest-collected isolates are less defined by their similarity to each other than their dissimilarity to all other isolates collected during the infection. A linear regression of the Euclidean distances between the Early isolate and the Intermediate and Late isolates as a function of patient age showed that isolates became increasingly dissimilar to the Early isolate over time (Pearson’s $r = 0.70$, $P = 0+$) (Fig. 6). These observations are underpinned by the phenotypic differences of the four latest isolates, and the number and types of known mutations that were accumulated in the 23L versus 23E isolates (3). As described by Smith et al., the $P. aeruginosa$ infection sampled from Patient 23 (referred to as Patient 1 in the referenced publication) diversified from patient ages 1.5 to 3 y into a population of isolates, with mutations in virulence, motility, quorum sensing, iron transport, efflux, and transcription and translation genes. The volatilome dissimilarities we measured reflect the genotypic diversification of the infection as a function of time (Fig. 6).
Chemical characteristics of the volatilomes of Early and Late isolates

We compared the chemical characteristics of the Early and Late volatilomes, positing that the size and chemical diversity of the volatilomes would decrease from Early to Late infection due to loss-of-function mutations. To perform the comparison, we needed to balance the size of the isolate groups, and did so by selecting ten pairs of P. aeruginosa isolates that had large changes in phenotypes over the duration of infection, thereby enhancing the differences we may find in the Early vs. Late volatilomes (Fig. 1; Table S1). Visual inspection of the ten pairs of GC×GC chromatograms suggests reductions in the number and variety of volatile compounds produced by Late isolates (Fig. 7, Miscellaneous Figure 2). Contrary to the appearance of the chromatograms, however, the overall size and chemical compositions of the Early and Late volatilomes were similar to each other (Fig. S3a-d), with hydrocarbons representing approximately 50% and alcohols and ketones together representing approximately 30% of the 410 Early and 441 Late volatiles. We quantified the chemical richness and diversity of the pooled Early and pooled Late isolates using the Shannon-Wiener diversity index (Table S3) and found the volatilomes of Early and Late isolates were similar, whether using all volatiles or only the non-core volatiles.

The uniformity in the Early versus Late volatilomes is not a function of data aggregation, as the volatilomes of the individual isolates are highly similar in number and chemical composition, with the exception of one Late isolate (76L) that has a slow-growth phenotype (Fig. S3e-h). Furthermore, when looking at individual isolate pairs, for the vast majority there were no differences in the richness and diversity of their volatilomes (Table S3). Together, these results suggest that there are not major differences between the number and diversity of chemical compounds when comparing Early and Late infection isolates. Hierarchical clustering analysis (HCA) of the P. aeruginosa isolates by their volatilomes underscores this observation; we
observed no discernible clustering of the Early versus Late isolates based on the presence and absence of volatiles (Fig. S4a).

Abundance of volatile compounds in Early and Late isolates

Though we did not observe any differences in the Early and Late isolate volatilomes based on presence and absence of metabolites, the chromatograms suggest a reduced volatilome in late infection. We therefore posited that while the numbers of volatiles do not significantly change from Early to Late infection isolates, the relative concentrations of volatiles do. Using volatile abundances, we performed HCA on the 20 selected Early and Late isolates and found clustering by the time of isolate collection and phenotype score (Fig. S4b). We were interested in whether or not clustering still occurs in the larger, less curated set of 48 isolates (i.e., the truncated set), which has more discordance between phenotype and time of collection (Fig. 1). HCA of the truncated set of isolates shows that Early isolates are generally more similar to one another than Late isolates are (Fig. 8), reinforcing observations made by calculating Euclidean distances; however, significant proportions of the Early and the Late isolates are mis-clustered. Interestingly, the majority of the Late isolates clustering with the Early isolates in the upper clade have more early-like phenotypes, and several Early isolates that have more late-like phenotypes (e.g., 62E, 73E, 70E) cluster in the lower clade with Late isolates, indicating a relationship between the isolate phenomes and volatilomes. We also observed clustering by phenotype when the volatilomes of all 81 isolates were analyzed (Fig. S5). Similar phenomena are observed when clustering the truncated set or all 81 isolates by the core volatilome (Fig. S6), and even when using only the 23 core alcohols, aldehydes, and hydrocarbons (Fig. 9; Fig. S7), suggesting that a set of conserved volatiles could be identified and used as biomarkers for detecting phenotypic changes in chronic infections.
DISCUSSION

P. aeruginosa isolates from cystic fibrosis lung infections have a large and diverse volatilome. We conservatively attribute 539 detected volatiles to P. aeruginosa growth and metabolism, only 13% of which were core volatiles. For volatiles that we could assign to a chemical class, hydrocarbons represented the highest proportion, followed by ketones, which we observed both in the pan-volatilome and for individual patient isolates. Approximately 40% of core volatiles have been identified in other P. aeruginosa metabolomic studies, including the most frequently detected in vitro volatiles 2-butanone, 2-nonanone, dimethyl sulfide, and dimethyl disulfide (see Table 1 for references). The majority of the core volatiles we detected, however, are reported here for the first time. This opens up speculation that there may be a unique core volatile profile for strains colonizing the CF lung, though due to the inter-strain variation in the P. aeruginosa volatilome, many more CF and non-CF isolates will need to be characterized via untargeted GC×GC analyses to determine if this may be the case. To date, a number of studies have attempted to identify collections of volatiles to differentiate P. aeruginosa-positive or -negative subjects from breath (58, 74-81) and lavage (25) with promising results. Compared to this study, however, the referenced analyses were either targeted at single compounds (e.g., hydrogen cyanide or 2-aminoacetophenone), did not characterize the volatilome of P. aeruginosa in detail, and/or did not draw inferences to infection stage or changes across time. This study represents the first untargeted comparative analysis of P. aeruginosa volatilomes over long-term chronic infections, expanding the body of knowledge on P. aeruginosa metabolism and broadening the potential applications for breath-based diagnostics.

Despite the trend toward reduced or loss-of-phenotype expression in late infection isolates – which we hypothesized would correspond to a reduced metabolome size – we observed that Late isolates produce the same number and variety of volatile compounds as Early isolates. However, the relative abundance of volatiles produced by the Late isolates is
significantly reduced. Our data suggest that mutations that arise in *P. aeruginosa* chronic infection isolates do not result in complete inhibition of metabolic pathways, but may instead reduce metabolic flux. This observation has implications for diagnostics, signifying that presence and absence of *P. aeruginosa* volatile metabolites would provide little diagnostic value for tracking chronic lung infections. Rather, a breath-based diagnostic for monitoring *P. aeruginosa* adaptations in CF will likely need to measure the relative abundance of metabolites. Importantly, a subset of core volatiles can be used to cluster isolates based on commonalities in phenotypes, indicating that a diagnostic based upon the relative abundances of conserved hydrocarbons, alcohols, and aldehydes (or a few selected volatiles from these classes) may be sufficient to track *P. aeruginosa* infection in most patients. It should be noted that core *P. aeruginosa* volatiles are not necessarily unique to *P. aeruginosa*. In fact, a review of the mVOC 2.0 microbial volatile organic compound database (82) shows nearly half of the core volatiles (and a third of named compounds overall) have been reported as being produced by other CF lung bacterial pathogens, including *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Haemophilus influenzae*, *Stenotrophomonas maltophilia*, and *Burkholderia spp*. This further highlights the necessity of developing a breath-based diagnostic based on the relative abundances of sets of volatiles, which has been shown to accurately discriminate between human pathogens (distantly or closely related to *P. aeruginosa*) in numerous *in vitro*, *ex vivo*, and *in vivo* analyses (25, 62, 83-85).

Based on the genomic heterogeneity of *P. aeruginosa* (3, 33-35), we hypothesized that every patient would have a unique *P. aeruginosa* volatilome, and that intra-patient isolates would have more similar volatilomes than inter-patient isolates. To the contrary, we observed that the volatilomes of Early and Late isolates from a single patient are no more similar to one another than they are to any other isolate (intra-patient vs. pooled data, Fig. 3). Interestingly, the volatilomes of inter-patient Early isolates are even more similar than intra-patient isolates, while the volatilomes of inter-patient Late isolates have the highest dissimilarity. These data indicate
that the genomic similarity within patient is less influential on the volatilome than the post-transcriptional diversity that evolves within a chronic *P. aeruginosa* infection population. The data from Patient 23, however, suggest that intra-patient isolates are more likely to have similar volatilomes when there are fewer mutational and phenotypic differences between them. From these results, we propose that a breath-based diagnostic to track *P. aeruginosa* chronic lung infections would be personalized, with each patient’s breathprint at initial infection serving as a baseline to which subsequent breathprints are compared. Sustained, significant deviations from the patient’s baseline breathprint would indicate that the *P. aeruginosa* population phenotype has changed, and therefore the patient may be at higher risk for associated poor clinical outcomes (*e.g.*, higher risk of exacerbation) (15) and at higher risk of infection eradication failure after antibiotic treatment (12). In a longitudinal case study of a single CF patient, we have shown that changes in the dominant species colonizing the lung correlate to changes in the volatile metabolites detected in sputum (86), and therefore monitoring for breathprint deviations may also work for *P. aeruginosa* infections, as these data suggest. Despite this, the issue of specificity becomes a concern unless biomarkers for individual *P. aeruginosa* phenotypes are identified and used for tracking; this is the subject of ongoing work.

We highlight some limitations in this study. Although we make reference to Early isolates and those phenotypes associated with early infection, it is important to recognize that these isolates were merely the first culturable *P. aeruginosa* from the patients included in this study. It is likely that some patients had *P. aeruginosa* in the lung for some years in spite of persistent negative cultures into late childhood or adolescence (15), exemplified by isolates 62E and 73E exhibiting late-like phenotypes. Phenotypes discordant with collection time or apparent infection stage underscores a major drawback of culture-based methods for infection staging (*e.g.*, *in vitro* phenotyping) in that the respiratory microbiome is prone to under-sampling, especially during initial colonization, due to the complex structure of the lung. The increased use of new therapeutics (*e.g.*, CFTR modulators) also impacts culture-based diagnostics as they reduce
sputum production, limiting the opportunity for clinical cultures. Utilizing breath-based biomarkers, on the other hand, can overcome these challenges as breath represents a sample of the entire ventilated lung environment.

P. aeruginosa chronic infection phenotypes are positively correlated with advanced patient age (15, 87-89), and we observe a moderate, but significant correlation (Kendall’s tau – 0.41, *P* < .001) between subject age and late-infection phenotype scores in this study. The variability of isolate volatilomes we observed might, therefore, be explained by the age of their corresponding patients. Testing this would require analyzing isolate volatilomes from a larger number of subjects that were diagnosed with their first *P. aeruginosa* infections at younger and older ages. In either case, the issue of the potential covariance between age and volatilome on *P. aeruginosa* diagnostics could be overcome by taking a multifactorial approach as opposed to volatile biomarkers only. We may find that using a combination of several clinical predictors such as age, *P. aeruginosa* phenotype, and volatilome together provides more diagnostic power than any individual metric. It will be important to explore this more closely in future work.

Additionally, while we only presented volatilome trends in relation to five clinically-relevant phenotypes in this study (production of pyocyanin, rhamnolipids, and proteases, twitching mobility, and mucoidy), there are additional clinically-relevant phenotypes, including antibiotic resistance, that should be included in future analyses.

In summary, current methods for tracking *P. aeruginosa* lung infection progression are predominantly culture-based (16, 21), and our results suggest a potential role for *in vitro* volatile metabolomics in staging chronic infections in conjunction with established clinical laboratory methods. The clinically-correlated *P. aeruginosa* phenotypes we measured in this study – mucoidy, motility, and quorum-regulated traits – are sensitive to environment (90-93); as such, the metabolomes we characterized from *in vitro* cultures are unlikely to directly reflect the metabolomes these isolates produced in the CF lung. For the development of a breath test for tracking infections *in situ*, it will be necessary to utilize culture models that are more reflective of
the lung (94-97) and to collect ex vivo and in vivo infection volatilomes (25, 75, 98). The utility of breath for tracking chronic lung infections is being demonstrated in tuberculosis lung infection models (26), and therefore we anticipate that the development of a breath-based diagnostic for tracking P. aeruginosa chronic lung infections is feasible. It will also be important to ensure that the P. aeruginosa volatiles we have identified are detectable in breath. This is the primary goal of the observational clinical study IMproving P. Aeruginosa detectIion using Breath (IMPACT-Breath) that is underway. Despite the limitations of in vitro analyses, this study presents the first comprehensive analysis of the P. aeruginosa volatilome from chronic CF lung infections, and lays the groundwork for the application of volatile metabolomics in tracking CF lung disease.

ACKNOWLEDGEMENTS

Funding to support this work was provided by the Cystic Fibrosis Foundation (Hill17P0, Hill18A0-CI), the National Institutes of Health (R56HL139846), and the ASU School of Life Sciences Undergraduate Research (SOLUR) program. Isolates were obtained from the Cystic Fibrosis Isolate Core at Seattle Children’s Research Institute, funded by the National Institutes of Health (P30 DK089507) and the Cystic Fibrosis Foundation (HOFFMA20Y2-OUT).

AUTHOR CONTRIBUTIONS

HB conceived of the study; HB, TD designed the experiments; AK, CB, SW, and TD collected phenotype data; TD collected metabolomics data; TD and MR processed and analyzed the metabolomics data; HB and TD wrote and edited the manuscript; all authors approved the final version.

CONFLICTS OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
REFERENCES

1. Gibson RL, Burns JL, Ramsey BW. 2003. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918-951.

2. Marshall B, Faro A, Fink A, Loeffler D, Elbert A, O’Neil T, Rush T, Rizvi S. 2018. Cystic Fibrosis Foundation patient registry: 2017 annual data report. Cystic Fibrosis Foundation, Foundation CF, Bethesda, MD.

3. Smith EE, Buckley DG, WuZN, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487-8492.

4. Li ZH, Kosorok MR, Farrell PM, Laxova A, West SEH, Green CG, Collins J, Rock MJ, Splaingard ML. 2005. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 293:581-588.

5. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. 2002. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91-100.

6. Kosorok MR, Zeng L, West SEH, Rock MJ, Splaingard ML, Laxova A, Green CG, Collins J, Farrell PM. 2001. Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 32:277-287.

7. Davidson AG, Chilvers MA, Lilquist YP. 2012. Effects of a Pseudomonas aeruginosa eradication policy in a cystic fibrosis clinic. Curr Opin Pulm Med 18:615-21.
8. Winstanley C, O'Brien S, Brockhurst MA. 2016. *Pseudomonas aeruginosa* evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327-337.

9. Hogardt M, Heesemann J. 2013. Microevolution of *Pseudomonas aeruginosa* to a chronic pathogen of the cystic fibrosis lung, p 91-118. *In* Dobrindt U, Hacker JH, Svanborg C (ed), Between pathogenicity and commensalism, vol 358. Springer-Verlag Berlin, Berlin.

10. Sanders DB. 2014. Phenotypes that matter: *Pseudomonas aeruginosa* and progression of cystic fibrosis lung disease. Am J Respir Crit Care Med 190:245-246.

11. Pritt B, O'Brien L, Winn W. 2007. Mucoid *Pseudomonas* in cystic fibrosis. Am J Clin Pathol 128:32-34.

12. Mayer-Hamblett N, Ramsey BW, Kulasekara HD, Wolter DJ, Houston LS, Pope CE, Kulasekara BR, Armbruster CR, Burns JL, Retsch-Bogart G, Rosenfeld M, Gibson RL, Miller SI, Khan U, Hoffman LR. 2014. *Pseudomonas aeruginosa* phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis 59:624-631.

13. Courtney JM, Bradley J, McCaughan J, O'Connor TM, Shortt C, Bredin CP, Bradbury I, Elborn JS. 2007. Predictors of mortality in adults with cystic fibrosis. Pediatr Pulmonol 42:525-532.

14. Hauser AR, Jain M, Bar-Meir M, McColley SA. 2011. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 24:29-70.
15. Mayer-Hamblett N, Rosenfeld M, Gibson RL. 2014. *Pseudomonas aeruginosa in vitro* phenotypes distinguish cystic fibrosis infection stages and outcomes. Am J Respir Crit Care Med 190:289-297.

16. Héry-Arnaud G, Nowak E, Caillon J, David V, Dirou A, Revert K, Munck MR, Frachon I, Haloun A, Horeau-Langlard D, Le Bihan J, Danner-Boucher I, Ramel S, Pelletier MP, Rosec S, Gouriou S, Pouhazan E, Payan C, Ferec C, Rault G, Le Gal G, Le Berre R. 2017. Evaluation of quantitative PCR for early diagnosis of *Pseudomonas aeruginosa* infection in cystic fibrosis: A prospective cohort study. Clin Microbiol Infect 23:203-207.

17. Kim K-H, Jahan SA, Kabir E. 2012. A review of breath analysis for diagnosis of human health. Trends Anal Chem 33:1-8.

18. Ahmed WM, Lawal O, Nilsen TM, Goodacre R, Fowler SJ. 2017. Exhaled volatile organic compounds of infection: A systematic review. ACS Infect Dis 3:695-710.

19. Oakley-Girvan I, Davis SW. 2018. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 21:29-39.

20. Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T, Pleil J, Risby T. 2014. Analysis of exhaled breath for disease detection. Annu Rev Anal Chem, Vol 7 7:455-482.

21. Smith WD, Bardin E, Cameron L, Edmondson CL, Farrant KV, Martin I, Murphy RA, Soren O, Turnbull AR, Wierre-Gore N, Alton EW, Bundy JG, Bush A, Connett GJ, Faust SN, Filloux A, Freemont PS, Jones AL, Takats Z, Webb JS, Williams HD, Davies JC. 2017. Current and future therapies for *Pseudomonas aeruginosa* infection in patients with cystic fibrosis. FEMS Microbiol Lett 364.
22. Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, Hiatt P, McCoy K, Castile R, Smith AL, Ramsey BW. 2001. Longitudinal assessment of *Pseudomonas aeruginosa* in young children with cystic fibrosis. J Infect Dis 183:444-452.

23. Hoppe JE, Towler EE, Wagner BD, Accurso FJ, Sagel SD, Zemanick ET. 2015. Sputum induction improves detection of pathogens in children with cystic fibrosis. Pediatr Pulmonol 50:638-646.

24. West SEH, Zeng L, Lee BL, Kosorok MR, Laxova A, Rock MJ, Splaingard MJ, Farrell PM. 2002. Respiratory infections with *Pseudomonas aeruginosa* in children with cystic fibrosis - early detection by serology and assessment of risk factors. JAMA 287:2958-2967.

25. Nasir M, Bean HD, Smolinska A, Rees CA, Zemanick ET, Hill JE. 2018. Volatile molecules from bronchoalveolar lavage fluid can 'rule-in' *Pseudomonas aeruginosa* and 'rule-out' *Staphylococcus aureus* infections in cystic fibrosis patients. Sci Rep 8.

26. Beccaria M, Bobak C, Maitshotlo B, Mellors TR, Purcaro G, Franchina FA, Rees CA, Nasir M, Black A, Hill JE. 2019. Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques. J Breath Res 13.

27. Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RC. 2019. The *Pseudomonas aeruginosa* pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 11:109-120.

28. Bean HD, Rees CA, Hill JE. 2016. Comparative analysis of the volatile metabolomes of *Pseudomonas aeruginosa* clinical isolates. J Breath Res 10.
29. Kelly NM, Fitzgerald MX, Tempany E, O’Boyle C, Falkiner FR, Keane CT. 1982. Does Pseudomonas cross-infection occur between cystic-fibrosis patients. Lancet 2:688-90.

30. Grothues D, Koopmann U, von der Hardt H, Tummler B. 1988. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 26:1973-7.

31. Thomassen MJ, Demko CA, Doershuk CF, Root JM. 1985. Pseudomonas aeruginosa isolates: Comparisons of isolates from campers and from sibling pairs with cystic fibrosis. Pediatr Pulmonol 1:40-5.

32. Wolz C, Kiosz G, Ogle JW, Vasil ML, Schaad U, Botzenhart K, Doring G. 1989. Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe. Epidemiol Infect 102:205-14.

33. Ashish A, Paterson S, Mowat E, Fothergill JL, Walshaw MJ, Winstanley C. 2013. Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. J Cyst Fibros 12:790-3.

34. Cramer N, Klockgether J, Wrasman K, Schmidt M, Davenport CF, Tummler B. 2011. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ Microbiol 13:1690-704.

35. Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, Brockhurst MA, Winstanley C. 2011. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 183:1674-1679.

36. Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, Rejman J, Di Serio C, Doring G, Tummler B. 2009. Pseudomonas aeruginosa microevolution during cystic fibrosis lung
infection establishes clones with adapted virulence. Am J Respir Crit Care Med 180:138-45.

37. Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Wamecke G, Haussler S. 2019. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 10:3397.

38. Clark ST, Guttman DS, Hwang DM. 2018. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 365.

39. Schick A, Kassen R. 2018. Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Proc Natl Acad Sci U S A 115:10714-10719.

40. Wilder CN, Allada G, Schuster M. 2009. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun 77:5631-9.

41. Smania AM, Segura I, Pezza RJ, Becerra C, Albesa I, Argarana CE. 2004. Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology 150:1327-1338.

42. Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Hoiby N. 2010. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: Strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156:1108-1119.

43. Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate aynthase in Pseudomonas aeruginosa.
Interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884-900.

Caiazza NC, Shanks RMQ, O'Toole GA. 2005. Rhamnolipids modulate swarming motility patterns of *Pseudomonas aeruginosa*. J Bacteriol 187:7351-7361.

Tumbull L, Whitchurch CB. 2014. Motility assay: Twitching motility. Methods Mol Biol 1149:73-86.

Glessner A, Smith RS, Iglewski BH, Robinson JB. 1999. Roles of *Pseudomonas aeruginosa* las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623-9.

Higgins Keppler EA, Jenkins CL, Davis TJ, Bean HD. 2018. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. Trends Anal Chem 109:275-286.

Dieterle F, Ross A, Schlotterbeck G, Senn H. 2006. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in ¹H NMR metabonomics. Anal Chem 78:4281-4290.

Koo TK, Li MY. 2016. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155-163.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57:289-300.

Johnson WE, Li C, Rabinovic A. 2007. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8:118-27.
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. 2007. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211-221.

Bean HD, Dimandja J-MD, Hill JE. 2012. Bacterial volatile discovery using solid-phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr B 901:41-46.

Vogt L, Gröger T, Zimmermann R. 2007. Automated compound classification for ambient aerosol sample separations using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr A 1150:2-12.

Seeley JV, Kramp F, Hicks CJ. 2000. Comprehensive two-dimensional gas chromatography via differential flow modulation. Anal Chem 72:4346-4352.

Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT. 2006. Recent developments in comprehensive two-dimensional gas chromatography (GC x GC): IV. Further applications, conclusions and perspectives. Trends Anal Chem 25:821-840.

Baptista I, Santos M, Rudnitskaya A, Saraiva JA, Almeida A. 2019. A comprehensive look into the volatile exometabolome of enteroxic and non-enteroxic Staphylococcus aureus strains. Int J Biochem Cell Biol 108:40-50.

Shestivska V, Španěl P, Dryahina K, Sovová K. 2012. Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. Journal of Applied Microbiology.
59. Labows JN, McGinley KJ, Webster GF, Leyden JJ. 1980. Headspace analysis of volatile metabolites of *Pseudomonas aeruginosa* and related species by gas chromatography-mass spectrometry. J Clin Microbiol 12:521-6.

60. Lawal O, Knobel H, Weda H, Nijsen TME, Goodacre R, Fowler SJ, BreathDx c. 2018. TD/GC-MS analysis of volatile markers emitted from mono- and co-cultures of *Enterobacter cloacae* and *Pseudomonas aeruginosa* in artificial sputum. Metabolomics 14:66.

61. Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, Nagl M, Troppmair J, Amann A. 2012. Molecular analysis of volatile metabolites released specifically by *Staphylococcus aureus* and *Pseudomonas aeruginosa*. BMC Microbiol 12:113.

62. Neerincx AH, Geurts BP, Habets MFJ, Booij JA, van Loon J, Jansen JJ, Buydens LMC, van Ingen J, Mouton JW, Harren FJM, Wevers RA, Merkus P, Cristescu SM, Kluijtmans LAJ. 2016. Identification of *Pseudomonas aeruginosa* and *Aspergillus fumigatus* mono- and co-cultures based on volatile biomarker combinations. J Breath Res 10:9.

63. Boots AW, Smolinska A, van Berkel J, Fijten RRR, Stobberingh EE, Boumans MLL, Moonen EJ, Wouters EFM, Dallinga JW, Van Schooten FJ. 2014. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J Breath Res 8:12.

64. Zscheppank C, Wiegand HL, Lenzen C, Wingender J, Telgheder U. 2014. Investigation of volatile metabolites during growth of *Escherichia coli* and *Pseudomonas aeruginosa* by needle trap-GC-MS. Anal Bioanal Chem 406:6617-28.

65. Senecal AG, Magnone J, Yeomans W, Powers EM. 2002. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis. Proc SPIE 4575:610-613.
66. Zechman JM, Aldinger S, Labows JN, Jr. 1986. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J Chromatogr 377:49-57.

67. Briard B, Heddergott C, Latge JP. 2016. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio 7:e00219.

68. Preti G, Thaler E, Hanson CW, Troy M, Eades J, Gelperin A. 2009. Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2011-8.

69. Allardyce RA, Langford VS, Hill AL, Murdoch DR. 2006. Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 65:361-5.

70. Rudzinski CM, Herzig-Marx R, Lin J, Szpiro A, Johnson B. 2004. Pathogen detection using headspace analysis abstr Scientific Conference on Chemical and Biological Defense Research, Hunt Valley, MD, MIT Lincoln Laboratory.

71. Carroll W, Lenney W, Wang T, Spanel P, Alcock A, Smith D. 2005. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr Pulmonol 39:452-6.

72. Thorn RM, Reynolds DM, Greenman J. 2011. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258-64.
73. Schöller C, Molin S, Wilkins K. 1997. Volatile metabolites from some gram-negative bacteria. Chemosphere 35:1487-95.

74. Lammers M, Kos R, De Vries R, Brinkman P, Dagelet JWF, Rutjes NW, Majoor CJ, Terheggen-Lagro SWJ, Weersink EJM, Bos LDJ, Sterk PJ, Maitland-Van Der Zee A-H, Neerinx AH, Group TACR. 2018. Detection of *Pseudomonas aeruginosa* infections in cystic fibrosis patients by enose technology. 52:PA3412.

75. Neerinx AH, Brinkman P, Van der Gouwe P, Paff T, Fens N, Gerritsen MG, Haarman E, Van Aalderen WMC, Majoor CJ, Weersink EJM, Bos LD, Sterk PJ. 2018. Detection of *Pseudomonas aeruginosa* in exhaled breath of cystic fibrosis patients. Eur Respir J 52.

76. Pabary R, Huang J, Kumar S, Alton EW, Bush A, Hanna GB, Davies JC. 2016. Does mass spectrometric breath analysis detect *Pseudomonas aeruginosa* in cystic fibrosis? Eur Respir J 47:994-7.

77. Gilchrist FJ, Belcher J, Jones AM, Smith D, Smyth AR, Southern KW, Spanel P, Webb AK, Lenney W. 2015. Exhaled breath hydrogen cyanide as a marker of early *Pseudomonas aeruginosa* infection in children with cystic fibrosis. ERJ Open Res 1.

78. Gilchrist FJ, Bright-Thomas RJ, Jones AM, Smith D, Spanel P, Webb AK, Lenney W. 2013. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without *Pseudomonas aeruginosa* infection. J Breath Res 7:026010.

79. Robroeks C, van Berkel J, Dallinga JW, Jobsis Q, Zimmermann LJI, Hendriks HJE, Wouters MFM, van der Grinten CPM, van de Kant KDG, van Schooten FJ, Dompeling E. 2010. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatric Research 68:75-80.
80. Scott-Thomas AJ, Syhre M, Pattemore PK, Epton M, Laing R, Pearson J, Chambers ST. 2010. 2-aminoacetophenone as a potential breath biomarker for *Pseudomonas aeruginosa* in the cystic fibrosis lung. BMC Pulmonary Medicine 10:10.

81. Enderby B, Smith D, Carroll W, Lenney W. 2008. Hydrogen cyanide as a biomarker for *Pseudomonas aeruginosa* in the breath of children with cystic fibrosis. Pediatr Pulmonol 44:142-147.

82. Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R. 2018. mVOC 2.0: A database of microbial volatiles. Nucleic Acids Res 46:D1261-D1265.

83. Dryahina K, Sovová K, Nemec A, Španěl P. 2016. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their *in vitro* cultures: *Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia* and the *Burkholderia cepacia* complex. J Breath Res 10:037102.

84. Zhu J, Bean HD, Jiménez-Díaz J, Hill JE. 2013. Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. J Appl Physiol 114:1544-1549.

85. Zhu J, Jiménez-Díaz J, Bean HD. 2013. Robust detection of *P. aeruginosa* and *S. aureus* acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: From initial infection to clearance. J Breath Res 7.

86. Hahn A, Whiteson K, Davis TJ, Phan J, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Bean HD. 2020. Longitudinal associations of the cystic fibrosis airway microbiome and volatile metabolites: A case study. Front Cell Infect Microbiol 10.
Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller SI. 2009. *Pseudomonas aeruginosa lasR* mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8:66-70.

Ren CL, Konstan MW, Yegin A, Rasouliyan L, Trzaskoma B, Morgan WJ, Regelmann W, Scientific Advisory Group I, Coordinators of the Epidemiologic Study of Cystic F. 2012. Multiple antibiotic-resistant *Pseudomonas aeruginosa* and lung function decline in patients with cystic fibrosis. J Cyst Fibros 11:293-9.

Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. 2012. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 47:738-745.

Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G. 2014. *Pseudomonas aeruginosa* clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15.

Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, Hentzer M, Andersen JB, Givskov M, Conese M, Doring G. 2005. Nonmucoid *Pseudomonas aeruginosa* expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 192:410-419.

Moskowitz SM, Emerson JC, McNamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL. 2011. Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatr Pulmonol 46:184-192.
93. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Moller K, Wolcott RD, Rumbaugh KP, Bjarnsholt T, Whiteley M. 2018. *Pseudomonas aeruginosa* transcriptome during human infection. Proc Natl Acad Sci U S A 115:E5125-E5134.

94. Harrison F, Muruli A, Higgins S, Diggle SP. 2014. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of *Pseudomonas aeruginosa*. Infect Immun 82:3312-3323.

95. Bayes HK, Ritchie N, Irvine S, Evans TJ. 2016. A murine model of early *Pseudomonas aeruginosa* lung disease with transition to chronic infection. Sci Rep 6.

96. Crabbé A, Ledesma MA, Nickerson CA. 2014. Mimicking the host and its microenvironment in vitro for studying mucosal infections by *Pseudomonas aeruginosa*. Pathog Dis 71:1-19.

97. Sønderholm M, Kragh KN, Koren K, Jakobsen TH, Darch SE, Alhede M, Jensen PO, Whiteley M, Kühl M, Bjarnsholt T. 2017. *Pseudomonas aeruginosa* aggregate formation in an alginate bead model system exhibits in vivo-like characteristics. Appl Environ Microbiol 83.

98. Bean HD, Jiménez-Díaz J, Zhu J, Hill JE. 2015. Breathprints of model murine bacterial lung infections are linked with immune response. Eur Respir J 45:21-24.
FIG 1 Relative phenotype production of 81 *P. aeruginosa* CF chronic lung infection isolates. Each phenotype was independently scaled to a range of 0 to 1, with 0 representing the minimum data point and 1 representing the maximum data point (excluding outliers), and the relative productions are depicted in the heat map as standardized values (mean-centered and scaled to unit variance) across isolates. Phenotype Score (“Score”) is the sum of the scaled, non-standardized phenotype values, rounded to the nearest integer.

FIG 2 Size and chemical composition of volatile compounds metabolized by 81 *P. aeruginosa* CF chronic infection isolates. (a) Identified compounds; (b) Identified and unknown compounds; (c) Identified compounds, scaled to 100%; (d) Identified and unknown compounds, scaled to 100%. C = Core compounds, defined as detected in 95% or more of samples; NC = Non-core compounds; C+NC = sum of Core and Non-core compounds.
FIG 3 Violin plots and box plots of pairwise dissimilarities (defined as Euclidean distance) of *P. aeruginosa* chronic infection isolate volatilomes. Inter-Early are between-patient Early-Early isolate dissimilarities. Inter-Late are between-patient Late-Late isolate dissimilarities. Intra-Patient are within-patient Early-Late isolate dissimilarities. Pooled represents all pairwise volatilome dissimilarities. Red circles indicate the mean. Significant differences between means were identified using one-way ANOVA with Tukey's HSD. *P < .05, **P < .01, ***P < .001.
FIG 4 Ordered dissimilarity image (ODI) of the truncated set of 48 *P. aeruginosa* clinical isolates depicting volatilome dissimilarity defined by Euclidean distance.
FIG 5 Ordered dissimilarity image (ODI) of the 35 *P. aeruginosa* clinical isolates from Patient 23 depicting volatilome dissimilarity defined by Euclidean distance. For visual clarity, the isolate labels do not include patient number (e.g., 23).
FIG 6 Dissimilarity of Patient 23 volatilomes over time, defined as Euclidean distance from the Early isolate (not shown). For visual clarity, the isolate labels do not include patient number (e.g., 23) and intermediate isolate labels have been truncated to only include the numeral that signifies collection order (e.g., I-1 is represented as 1). The black line represents the linear regression fit ($r = 0.70$, $P = 0+$), and the shaded region represents the standard error of the regression line.
FIG 7 Representative GC×GC chromatograms of Early (top) and Late (bottom) chronic infection isolates (41E and 41L-2 are depicted). Dark blue represents the baseline, and peak intensity is depicted using a color gradient from light blue (low) to dark red (high). Chromatographic regions of $t_R < 200$ s and $2t_R < 0.5$ s were excluded for visual clarity. All chromatograms for the ten selected Early and Late isolate pairs are provided in Supplementary Fig. 7.

FIG 8 Hierarchical clustering analysis (HCA) of the truncated set of 48 *P. aeruginosa* clinical CF isolates, based on the relative abundance of 539 volatile compounds. Volatiles are in columns (standardized relative abundance). Clustering is based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block).
block). ALC = alcohols, ALD = aldehydes, ARO = aromatics, CA/EST = carboxylic acids and esters, HC = hydrocarbons, KET = ketones, THI = thiols, OTH = other compounds, UNK = unknown identity.

FIG 9 Hierarchical clustering analysis (HCA) of the truncated set of 48 *P. aeruginosa* clinical CF isolates, based on the relative abundance of 23 core alcohols, aldehydes, and hydrocarbons. Volatiles are in columns (standardized relative abundance). Clustering is based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block). ALC = alcohols, ALD = aldehydes, HC = hydrocarbons.
FIG S1. Non-metric multidimensional scaling (NMDS) plots of 81 *P. aeruginosa* clinical isolates depicting volatilome dissimilarity defined by Euclidean distance (a) colored by collection time and (b) colored by patient; (c) Ordered dissimilarity image (ODI) of 81 *P. aeruginosa* clinical isolates depicting volatilome dissimilarity defined by Euclidean distance.

FIG S2. Non-metric multidimensional scaling (NMDS) plots of the truncated set of 48 *P. aeruginosa* clinical isolates depicting volatilome dissimilarity defined by Euclidean distance (a) colored by collection time and (b) colored by patient; (c) NMDS plot of the 35 *P. aeruginosa* clinical isolate volatilomes from Patient 23 depicting volatilome dissimilarity defined by Euclidean distance.

FIG S3. Size and chemical composition of volatile compounds metabolized by the selected ten Early-Late pairs of *P. aeruginosa* chronic infection CF isolates. (a) Identified compounds; (b) Identified and unknown compounds; (c) Identified compounds, scaled to 100%; (d) Identified and unknown compounds, scaled to 100%. Size and chemical composition of volatile compounds metabolized by each of the ten Early-Late pairs of *P. aeruginosa* chronic infection CF isolates. (e) Identified compounds; (f) Identified and unknown compounds; (g) Identified compounds, scaled to 100%; (h) Identified and unknown compounds, scaled to 100% C = Core compounds, defined as detected in 95% or more of samples; NC = Non-core compounds; C+NC = sum of Core and Non-core compounds.
FIG S4. Hierarchical clustering analysis (HCA) of the ten Early-Late pairs of *P. aeruginosa* clinical CF isolates, based on (a) presence and absence and (b) relative abundance of 472 volatile compounds. Core compounds are present in at least 95% of isolates; Non-core compounds are present in less than 95%. Volatiles are in columns. Clustering is based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block).

FIG S5. Hierarchical clustering analysis (HCA) of the 81 *P. aeruginosa* clinical CF isolates, based on the relative abundance of 539 volatile compounds. Core compounds are present in at least 95% of isolates; Non-core compounds are present in less than 95%. Volatiles are in columns (standardized relative abundance). Clustering is based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block).

FIG S6. Hierarchical clustering analysis (HCA) of (a) the truncated set of 48 and (b) full set of 81 *P. aeruginosa* clinical CF isolates, based on the relative abundance of the 69 core volatile compounds. Volatiles are in columns (standardized relative abundance). Clustering is based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block).

FIG S7. Hierarchical clustering analysis (HCA) of the 81 *P. aeruginosa* clinical CF isolates, based on the relative abundance of 23 core alcohols, aldehydes, and hydrocarbons. Volatiles are in columns (standardized relative abundance). Clustering is
based on rows (isolates), which are color-coded by their phenotype score (left color block) and relative time of collection (right color block).