Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca\(^{2+}\) signaling and IK\(_{Ca}\) activation

Jingyu Xu\(^{1,2}\) | Andre Zeug\(^{3}\) | Brigitte Riederer\(^{1}\) | Sunil Yeruva\(^{1}\) | Oliver Griesbeck\(^{4}\) | Hannelore Daniel\(^{5}\) | Biguang Tuo\(^{2}\) | Evgeni Ponimaskin\(^{3}\) | Hui Dong\(^{6}\) | Ursula Seidler\(^{1}\)

\(^{1}\)Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
\(^{2}\)Research Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
\(^{3}\)Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
\(^{4}\)Max-Planck-Institut für Neurobiologie, Martinsried, Germany
\(^{5}\)Nutritional Physiology, Technical University of Munich, Freising, Germany
\(^{6}\)Department of Medicine, University of California, San Diego, La Jolla, CA, USA

Correspondence
Hui Dong, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
Email: h2dong@ucsd.edu

Ursula Seidler, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover D-30625, Germany.
Email: Seidler.Ursula@mh-hannover.de

Funding information
Deutsche Forschungsgemeinschaft; Volkswagen Vorab Foundation; National Natural Science Foundation of China, Grant/Award Number: 81970541

Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca\(^{2+}\) ([Ca\(^{2+}\)\(_{\text{cyt}}\)], (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca\(^{2+}\)\(_{\text{cyt}}\) signaling, and (c) what potential consequences of [Ca\(^{2+}\)\(_{\text{cyt}}\) signaling may enhance enterocyte dipeptide absorption.

Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca\(^{2+}\)\(_{\text{cyt}}\) in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, a phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (I\(_{\text{sc}}\)), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1\(^{-/-}\) animals, but Gly-Sar-induced [Ca\(^{2+}\)\(_{\text{cyt}}\) signaling was significantly decreased in Slc15a1\(^{-/-}\) villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca\(^{2+}\)-activated K\(^{+}\) channel (IK\(_{Ca}\)), but not iberiotoxin, a selective blocker of the large-conductance K\(^{+}\) channel (BK\(_{Ca}\)) and apamin, a selective blocker of the small-conductance K\(^{+}\) channel (SK\(_{Ca}\)), significantly inhibited Gly-Sar-induced I\(_{\text{sc}}\) in native tissues. We reveal a novel CaSR-PLC-Ca\(^{2+}\)-IK\(_{Ca}\) pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.

KEYWORDS
calcium sensing receptor, dipeptide absorption, intestine, intracellular calcium signaling, peptide transporter 1
After dietary proteins are digested to amino acids and di/tripeptides, they are absorbed into the intestinal epithelial cells (IEC) by a variety of amino acid transporters, and by the proton-coupled di/tripeptide transporter peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1) (Daniel, 2004; Shen & Matsui, 2018). Although PEPT1 is well characterized (Daniel & Zietek, 2016; Fei et al., 1994), its regulatory mechanisms remain incompletely understood (Spanier, 2014). Early experiments suggested that a proton gradient across the enterocyte luminal membrane may be an essential driving force for H⁺/dipeptide absorption (Ganapathy & Leibach, 1985; Shen & Matsui, 2018).

Chen et al. previously studied the dependence of murine jejunal dipeptide transport on luminal proton concentration, but they surprisingly found that dipeptides stimulate a similar H⁺/dipeptide absorption at low and high luminal pH, and that sustained H⁺/dipeptide absorption rates depend on the maintenance of a negative membrane potential rather than the transmembrane proton gradient. When the membrane depolarization by the inhibition of Na⁺/K⁺-ATPase was initiated in mouse jejunum, a major reduction in Gly-Sar-induced Isc response was observed (Chen et al., 2010). In addition, apical Na⁺/H⁺ exchange (Kennedy, Leibach, Ganapathy, & Thwaites, 2002) and apical anion exchange (Simpson, Walker, Supuran, Soleimani, & Clarke, 2010) augment intestinal peptide absorption. Deductions from the regulation of other intestinal electrolyte and nutrient absorptive processes suggest that intracellular signaling-dependent events may activate a variety of protein–protein interactions that may enhance the absorptive process, in particular Ca²⁺-dependent processes such as IP₃/R-binding protein released with inositol 1,4,5-trisphosphate (IRBIT) translocation (He, Zhang, & Yun, 2008; He et al., 2015) or calcium-sensing receptor (CaSR) activation (Macleod, 2013; Pacheco & Macleod, 2008; Tang et al., 2015b). It is unknown whether intestinal dipeptide absorption results in enterocyte Ca²⁺ signaling, whether PEPT1-mediated dipeptide transport is involved in dipeptide-elicited Ca²⁺ signaling and by which mechanisms this may occur, and what the consequences in the regulation of intestinal dipeptide absorption may be. Because Ca²⁺-sensitive dyes were found to load poorly into native villous enterocytes of intact villi, Förster resonance energy transfer (FRET) was employed to assess changes in cytosolic free Ca²⁺ concentrations ([Ca²⁺]cyt) in native microdissected microvilli of the CAG-TN-XXL and Scl15a1⁺/−-CAG-TN-XXL transgenic mouse, which encodes a genetically anchored calcium-sensing protein TN-XXL (Mank et al., 2008).

Under physiological conditions, various mechanisms contribute to the regulation of cellular and organ Ca²⁺ homeostasis. The CaSR is one of the most important regulators of Ca²⁺ homeostasis (Brown, 2013). Since the CaSR was first cloned from bovine parathyroid cells in 1993 (Brown et al., 1993), it has been reported to be widely expressed in multiple cell types of gastrointestinal (GI) tract (Chattopadhyay et al., 1998) and to involve in various roles of GI physiology (Chattopadhyay et al., 1998). CaSR can be activated by Ca²⁺, amino acids (L-Ala, L-Thr), peptides (Wang, Yao, Kuang, & Hampson, 2006), polyamines (spermine) (Quinn et al., 1997), and polycationic aminoglycoside antibiotics (Riccandi & Maldonado-Perez, 2005). Activation of CaSR can stimulate phospholipase C (PLC)-IP₃ signaling pathway and prompt Ca²⁺ release from the endoplasmic reticulum (Hofer & Brown, 2003). The CaSR has been described to be expressed both in the apical and basolateral membrane of enterocytes and to be activated by a large variety of agonists including peptides (Chattopadhyay et al., 1998; Wang et al., 2006). In addition, the CaSR was recently identified as a modulator of intestinal nutrient and electrolyte absorption (Liu et al., 2018; Tang et al., 2015b).

Therefore, we investigated the involvement of the CaSR in dipeptide absorption and the underlying mechanisms. The dipeptide Gly-Sar was chosen to the present study because it has been widely used to evaluate PEPT1-mediated dipeptide transport (Altheide et al., 2005; Buyse et al., 2001; Chen et al., 2010). Moreover, since [Ca²⁺]cyt is a critical second cell messenger for the activation of Ca²⁺-sensitive K⁺ channels, which are one of the key regulators for the maintenance of a negative membrane potential in IEC, we therefore wondered if K⁺ channels are involved in the luminal absorption of dipeptide; and if so, which type of K⁺ channels they are.

2 | MATERIAL AND METHODS

2.1 | Reagents and cell culture

Chemicals were obtained either from Sigma (Deisenhofen, Germany) or Merck (Darmstadt, Germany), if not indicated otherwise. Gly-Sar, spermine, U73122 were purchased from Sigma (Deisenhofen, Germany). Apamin was purchased from Sigma (Shanghai, China). TRAM-34 was purchased from MCE (Shanghai, China). NPS-2143 was purchased from Tocris (Wiesbaden-Nordenstadt, Germany). Iberotoxin and Clotrimazole were purchased from Tocris (Shanghai, China). Mouse anti-CaSR antibody was purchased from Abcam (Cambridge, USA). Polyclonal rabbit anti-Actin antibody was purchased from Thermofisher (Waltham, USA). Polycolonal rabbit anti-Actin antibody was purchased from Abcam (Cambridge, USA). The human colon cancer cell lines SW480 and SW620 were purchased from the Chinese Academy of Sciences in 2012. All cell lines were kept frozen in liquid nitrogen and after they were thawed, less than 20 of passages were used for 3 months in the present experiments.
2.2 | Animal breeding

The CAG-TN-XXL transgenic mouse strain was generated by Prof. Oliver Griesbeck (Max-Planck-Institut für Neurobiologie, Germany) (Direnberger et al., 2012). The Pept1-deficient mouse was generated by Hannelore Daniel (Department of Nutritional Physiology, Technical University of Munich, Germany) (Nässl et al., 2011), and was crossed with the CAG-TN-XXL transgenic mouse to obtain both Slc15a1^{−/−} and Slc15a1^{+/+} CAG-TN-XXL mice. The mice were bred in the animal research institute of Hannover Medical School on the C57/B6 background and were genotyped as recommended (Chen et al., 2010; Direnberger et al., 2012; Mank et al., 2008). Animal experiments followed the protocols approved by the Hannover Medical School and local authorities for the regulation of animal welfare (Regierungspärisdium). The mice were kept at a constant ambient temperature of 24 ± 1°C under a 12 hr light/dark cycle with free access to food and water before the experiments.

2.3 | Assessing changes in enterocyte Ca²⁺ concentrations in isolated intestinal villi

In order to assess [Ca²⁺]_{cyt} in jejunal villous enterocytes after Gly-Sar exposure, the proximal jejunum (approximately 6 cm distal to the pylorus) was removed and immediate placed in ice-cold Ringer’s solution (solution composition in mM: 147 NaCl, 4 KCl, 2.2 CaCl₂ with 500 µM DTT to prevent Gly-Sar exposure, the proximal jejunum (approximately 6 cm distal to the pylorus) was removed and immediate placed in ice-cold Ringer’s solution (solution composition in mM: 147 NaCl, 4 KCl, 2.2 CaCl₂ with 500 µM DTT to prevent Gly-Sar. The tissues was incubated with 20 mM Gly-Sar, 2 CaCl₂, 1.5 KH₂PO₄, 2 CaCl₂, 1.5 KH₂PO₄ and pH 7.4) in a 95% O₂/5% CO₂ atmosphere. The jejunal mucosa was mounted between chambers with an exposed area of 0.625 cm². Parafilm “O” rings were used to minimize edge damage to the tissue where it was secured between the chamber halves. Transepithelial short-circuit current (Isc; reported as µEq cm^{−2} h^{−1}) was measured via an automatic voltage clamp (voltage–current clamp EVC-4000; World Precision Instruments) After a 30 min measurement of basal parameters, the Gly-Sar (20 mM) or control vehicle was added to the mucosa side of tissue in Ussing chambers. When the inhibitor was used, it was added to the serosal side, mucosa side and both sides of tissue at 30 min before the Gly-Sar. Tissues were bathed with solutions containing HCO₃[−] (solution composition in mM: 108 NaCl, 22 NaHCO₃, 3 KCl, 1.3 MgSO₄, 2 CaCl₂, 1.5 KH₂PO₄, 2 CaCl₂, 1.5 KH₂PO₄ and pH 7.4) in a 95% O₂/5% CO₂ atmosphere.

2.4 | Ussing chamber experiments

Ussing chamber experiments were performed as previously described (Chen et al., 2010). The jejunal mucosa was mounted between chambers with an exposed area of 0.625 cm². Parafilm “O” rings were used to minimize edge damage to the tissue where it was secured between the chamber halves. Transepithelial short-circuit current (Isc; reported as µEq cm^{−2} h^{−1}) was measured via an automatic voltage clamp (voltage–current clamp EVC-4000; World Precision Instruments) After a 30 min measurement of basal parameters, the Gly-Sar (20 mM) or control vehicle was added to the mucosa side of tissue in Ussing chambers. When the inhibitor was used, it was added to the serosal side, mucosa side and both sides of tissue at 30 min before the Gly-Sar. Tissues were bathed with solutions containing HCO₃[−] (solution composition in mM: 108 NaCl, 22 NaHCO₃, 3 KCl, 1.3 MgSO₄, 2 CaCl₂, 1.5 KH₂PO₄, 2 CaCl₂, 1.5 KH₂PO₄ and pH 7.4) in a 95% O₂/5% CO₂ atmosphere.

2.5 | Immunofluorescence staining

Immunofluorescence staining was carried out as described previously (Chen et al., 2010). Briefly, the slides with mouse jejunum from C-57 mouse were incubated with an anti-primary antibodies incubated overnight at 4°C. Thereafter, followed by a second antibody and was incubated for 1h at room temperature. The tissues was incubated with Alexa Fluor 633 phalloidin. The nuclei are stained using slow fade antibody for 1 hr at 4°C, followed by another 1 hr incubation.

2.6 | Quantitative real-time PCR

Real-time PCR reactions were carried out using Rotor-Gene SYBR Green PCR Kit in the Rotor-Gen Q Cycler (Qiagen) were performed as described previously (Luo et al., 2017; Yeruva et al., 2015). PCR extensions were performed at 60°C with 40 repeats. Data were analyzed using Rotor-Gene Software and exported to Microsoft Excel. Values within the log-linear phase of the amplification curve were defined for each probe/primers set and analyzed using the ΔΔCt method. The primers for mRNA expression analysis were listed in Table 1.

2.7 | Western blotting

Tissues and cells were lysed with lysis buffer and centrifuged at 12,000×g for 15 min to remove insoluble material. For immunoprecipitation studies, lysates were incubated with a CaSR antibody for 1 hr at 4°C, followed by another 1 hr incubation.
with Protein A-agarose beads at 4°C. Proteins were eluted with 2× loading buffer, boiled for 5 min, and separated by SDS-PAGE (10%). Resolved proteins were transferred onto a PVDF membrane (Millipore Corporate). Membranes were blocked by 5% blocking buffer, followed by incubation with primary antibodies as indicated overnight. After washing with TBST, HRP conjugated secondary antibody was applied for 1 hour at room temperature. The signals were visualized using enhanced chemiluminescence (GE healthcare Life Sciences).

2.8 | Statistical analysis

All data are calculated as the means for a series of n experiments ± SEM. Data were analyzed by one-way ANOVA followed by the Student–Newman–Keul post hoc test or by Student’s t tests for paired or unpaired samples with GraphPad Prism 5.0. p < .05 was considered statistically significant.

3 | RESULTS

3.1 | Evaluation of [Ca^{2+}]_cyt response to Gly-Sar in villous enterocytes

Since native enterocytes within microdissected villi displayed strong autofluorescence when excited in the blue spectrum, and loaded poorly with the Ca^{2+}-sensitive dye Fura-2, the CAG-TN-XXL mouse, which expresses a genetically encoded FRET-based biosensor TN-XXL was used to study Gly-Sar elicited alterations in [Ca^{2+}]_cyt (Direnberger et al., 2012; Mank et al., 2008). We previously suggested that 20 mM was the best concentration of Gly-sar in the experiments, as this mimics the conditions of proteins after their digestion and hydrolysis in the small intestine (Chen et al., 2010). Therefore, 20 mM Gly-sar was used in all following experiments. Figure 1 showed that Gly-Sar (20 mM) stimulated an increase in [Ca^{2+}]_cyt (represented as A/D ratio) in villous enterocytes isolated from the jejunum of CAG-TN-XXL mouse (Chen et al., 2010). Consistently, ionomycin, a well-known Ca^{2+} ionophore, also caused a marked and long-lasting increase in [Ca^{2+}]_cyt which was reverted by adding the Ca^{2+}-chelator EGTA. These data suggest that Gly-Sar addition may induce an increase in [Ca^{2+}]_cyt in villous enterocytes. Spermine (3mM), a commonly used CaSR activator, also caused a strong increase in [Ca^{2+}]_cyt, which was significantly inhibited by the CaSR inhibitor NPS-2143 (30 μM), and U73122 (20 μM), a widely employed PLC inhibitor (Hou et al., 2004; Macmillan & McCarron, 2010) (Figure 2a,c). Gly-Sar induced increase in [Ca^{2+}]_cyt was also significantly blocked by NPS-2143 and U73122 (Figure 2b,d). These experiments suggest that dipeptide absorption is accompanied by CaSR activation-induced Ca^{2+} signaling in villous enterocytes.

3.2 | Role of PEPT1 in maintaining the [Ca^{2+}]_cyt response in villous enterocytes

PEPT1 is the major apical transporter for di- and tripeptides in the intestinal brush border membrane, but a certain fraction of a luminal peptide load can enter the systemic circulation in a PEPT1-independent manner (Hu et al., 2008). In order to assess whether the expression of PEPT1 is important for the generation of the Gly-Sar induced Ca^{2+} response, the Slc15a1^{-/-}-CAG-TN-XXL mouse was used. The [Ca^{2+}]_cyt measurements were performed in vitro as described for the experiments in Figure 3a, by superfusing the villi with solutions with 20 mM Gly-Sar. We found that in the Slc15a1^{-/-} CAG-TN-XXL mouse, both Gly-Sar and ionomycin caused a rapid increase in the A/D ratio, but the percentage of reactive villous enterocytes was significantly decreased in the Slc15a1^{-/-} as in the control mice (CAG-TN-XXL) (Figure 3b). However, the amplitudes of the signals were comparable in Slc15a1^{+/+}-CAG-TN-XXL and Slc15a1^{-/-}-CAG-TN-XXL mouse compared to that in control mice (CAG-TN-XXL) (Figure 3b). However, the amplitudes of the signals were comparable in Slc15a1^{+/+}-CAG-TN-XXL and Slc15a1^{-/-}-CAG-TN-XXL mouse (Figure S1). As in the Slc15a1^{+/+} villi, the Gly-Sar induced increase in [Ca^{2+}]_cyt was blocked by NPS-2143 (30 μM), and U73122 (20 μM) (Figure 3c). Spermine (3 mM) caused a similar calcium increase in the Slc15a1^{-/-} as in the Slc15a1^{+/+}-CAG-TN-XXL mouse, which was significantly inhibited by NPS 2143 (30 μM) (Figure 3d). These data demonstrate that the presence of PEPT1 is important for the CaSR-induced [Ca^{2+}]_cyt.

Table 1

Genotyping	Sequence	Product length, bp
BKCa.for	5′-TTC CTC AGC AAT CAG AGC CTC-3′	91
BKCa.rev	5′-ACA GCA TTT GCC GTA GTG TCT-3′	82
IKCa.for	5′-GTT CTA CAA ACA TAC TCG CAG GA-3′	103
IKCa.rev	5′-GGG TGT CAA TCT GTT TCT CAA-3′	
SKCa.for	5′-GAT TGA CCA TGC CAA AGT GAG-3′	138
SKCa.rev	5′-ACA TGA CAT TCT GCA TCT TGG-3′	
Actin(mouse).for	5′-AGA GGG AAA TCG TGC GTG AC-3′	
Actin(mouse).rev	5′-CAA TGA TGA CCT GGC CGT-3′	

Note: The details of primer sequence, product length and the accession number of different genes that we used.
increase, but that Gly-Sar also has an effect on \([\text{Ca}^{2+}]_{\text{cyt}}\) in the absence of PEPT1 expression. It is likely that at the rather high concentrations used to saturate the PEPT1 transporter, a significant fraction of the Gly-Sar permeates via the tight junctions, but transcellular transcytosis is also a highly active transport pathway in the intestine (Lundquist & Artursson, 2016). Both PEPT-1 dependent and –independent increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) was inhibited by CaSR inhibition.

3.3 Involvement of CaSR in Isc response to the dipeptide in mouse jejunum

Since \([\text{Ca}^{2+}]_{\text{cyt}}\) plays a critical role in modulating intestinal epithelial ion transports (Cheng, 2012), we conducted Ussing chamber experiments to test whether \([\text{Ca}^{2+}]_{\text{cyt}}\) is involved in jejunal dipeptide absorption. Early studies in intact isolated intestinal mucosa in Ussing chamber systems demonstrated the dipeptide transport is always accompanied by the \(I_{\text{sc}}\) (Addison, Burston, & Matthews, 1972; Clarke, 2009; Larsen, Mertz-Nielsen, Hansen, Poulsen, & Bindslev, 2001). As shown in Figure 4a, Gly-Sar (20 mM) induced a time-dependent increase in jejunal \(I_{\text{sc}}\) in the presence of external \(\text{Ca}^{2+}\) (2 mM). However, \(\text{Ca}^{2+}\) removal (\(\text{Ca}^{2+}\) omission plus 100 \(\mu\)M EGTA) from serosal side or both sides abolished Gly-Sar-stimulated jejunal \(I_{\text{sc}}\) (\(\Delta I_{\text{sc}}\), the difference between the baseline and the peak value at 5 min after addition of the drug). In contrast, \(\text{Ca}^{2+}\) removal from mucosal side failed to alter Gly-Sar-induced \(I_{\text{sc}}\) (Figure 4a&B). These data demonstrate an important role of external \(\text{Ca}^{2+}\) on the serosal side in the regulation of enterocyte dipeptide absorption. Since external \(\text{Ca}^{2+}\) is the CaSR activator, we further examined if the CaSR is involved in this process. Different concentrations (0.1–30 \(\mu\)M) of NPS-2143, a selective CaSR antagonist (Gwynne, Ly, Parry, & Bornstein, 2017; Zhou & Pestka, 2015), were added to the serosal side of the tissue. As shown in the time course of jejunal \(I_{\text{sc}}\) (Figure 4c,d), Gly-sar induced a significant increase in \(I_{\text{sc}}\), which was progressively smaller when the tissue was preincubated with NPS-2143 in the serosal solution in a dose-dependent manner. In contrast, addition of NPS-2143 in mucosal side did not evoke any obvious effect (Figure 4e,f). Therefore, activation of CaSR on serosal side is likely involved in the \(I_{\text{sc}}\) response to the dipeptide in mouse jejunum.

3.4 Expression of the CaSR in mouse jejunal mucosa

A specific antibody was used to examine the expression and distribution of CaSR in the jejunal mucosa by Western blot and immunofluorescence staining, respectively (Xie et al., 2014). CaSR expressions were detected in the mouse jejunal...
mucosa and human colon cancer cells SW480 and SW620 (Quinn et al., 1997) (Figure 5a). The distribution of CaSR was also identified in intestinal epithelial cells through immunofluorescence staining. Figure 5b shows images of the typical villous cells in mouse jejunal mucosa with different magnifications. The CaSR was found to primarily locate on the basolateral side of the villous cells and submucosal neurovascular structures. The localization of CaSR on the basolateral membrane of enterocytes, consistently with a previous report (Chattopadhyay et al., 1998). And further supports our notion described earlier that CaSR activation on serosal side is involved in jejunal I_{sc} response to the dipeptide.

3.5 Effects of K_{Ca} channel blockers on Gly-Sar-induced I_{sc}

The jejunal mucosal tissues were equilibrated in Ussing chambers for 30 min, basal I_{sc} was recorded for an additional 30 min. Subsequently, jejunal mucosal tissues were pre-treated with different K_{Ca} channel blockers, or their vehicle (DMSO or distilled water), to both sides of the tissues. As shown in Figure 6. TRAM-34 (10 μM) and Clotrimazole (30 μM), both of them selective blocker of Ca$^{2+}$-activated K$^+$ channel (IKCa), significantly inhibited the Gly-Sar-induced I_{sc}. However, neither Iberiotoxin (100 nM) a selective blocker of large-conductance K$^+$ channel (BKCa), nor Apamin (100 nM) a selective blocker of small-conductance K$^+$ channel (SKCa) evoked any obvious effect. These data suggest that IKCa rather than BKCa and SKCa are involved in H$^+$/dipeptide absorption.

3.6 mRNA expression of K_{Ca} channels in jejunal epithelium

Three different subtypes of K_{Ca} channels, BKCa (KCNNMA1), SKCa (KCNN3), and IKCa (KCNN4), have been identified to
be expressed in gastrointestinal epithelia and involved in intestinal absorptive and ion transport (Bleich et al., 1996; Bowley, Morton, Hunter, & Sandle, 2003; Joiner et al., 2003; Warth, 2003). To investigate whether these KCa subtypes are also expressed in the jejunum, the expression of mRNA specific for the three types of these channels was measured by qPCR. Figure 7 shows that the mRNA expression of KCNMA1, KCNN3 and KCNN4 in mouse jejunal mucosa. The data showed that KCNN4 amplification products were much higher than the KCNMA1 and KCNN3 in tissues, corresponding to previous reports (Dong, Smith, Hovaida, & Chow, 2006). Therefore, on the basis of the mRNA expression pattern, KCNN4 is the most likely candidate involved in the regulation of H+/dipeptide absorption, which is consistent with our functional data that IKCa plays a major role in this process.

4 DISCUSSION AND CONCLUSION

The proton-coupled di/tripeptide transporter PEPT1 has been accepted as the only intestinal peptide transporter, and is responsible for a significant part of protein-associated calorie uptake. PEPT1 can also transport a vast amount of substrates, including drugs and bacterial products, and may thus be both of important pathophysiological consequence, as well as an interesting target for drug design. Although much has been learned regarding its transcriptional regulation of PEPT1 expression and the influence of hormones and intracellular kinases (Spanier & Rohm, 2018), less is known about the trafficking, membrane retention, the interaction with other transporters, and the ionic requirements
for sustained H+/dipeptide absorption (Spanier & Rohm, 2018).

Early studies suggested that a proton gradient, possibly maintained by the activity of luminal Na+/H+ exchangers, is an essential driving force for H+/dipeptide uptake (Ganapathy & Leibach, 1985). However, while the abolition of a transapical protein gradient did not have a major effect on the rate of H+/dipeptide absorption, apical membrane depolarization strongly reduced H+/dipeptide absorption (Chen et al., 2010). Since the process of H+/dipeptide uptake by PEPT1 depolarizes the membrane (Matsumura, Miki, Jhomori, Gonoii, & Seino, 2005; Vig et al., 2006), it is not surprising that mechanisms are required to maintain the negativity of the membrane during H+/dipeptide absorption. Similar findings have been obtained in oocytes expressing PEPT1 in which low pH was shown to affect transport only at low but not at high substrate concentrations. Those data suggested that the inside negative membrane potential could increase the Vmax PEPT1 (Kottra & Daniel,
The basolateral Na⁺/K⁺ ATPase is one such mechanism (Chen et al., 2010), but the molecular nature of the involved K⁺ channels has not been investigated. In addition to the general mechanisms required for any persistent cation-coupled nutrient uptake, namely the activity of the Na⁺/K⁺ ATPase and of basolateral K⁺ channels through which a negative membrane potential is maintained despite the persistent depolarizing effect of the ongoing electrogenic cation import, a large variety of receptor-, second messenger- and protein–protein interaction events have been delineated that stimulate trafficking to the apical membrane, augment the interaction of electrolyte and nutrient transporters, and enhance intestinal nutrient and fluid absorption. In fact, a stimulatory network of signaling of glucose and amino acids or peptides through taste receptors that regulate the apical availability/function of glucose and peptide/amino acid transporters via Ca²⁺-signaling has been postulated, but data on the actual [Ca²⁺]_{cyst} during dipeptide absorption in enterocytes do not exist (Daniel & Zietek, 2016; Mace et al., 2010). Our first question was therefore whether dipeptide absorption elicits a rise in [Ca²⁺]_{cyst} in native jejunal enterocytes. Because our attempts to reliably measure changes in intracellular Ca²⁺ levels in native enterocytes with fluorescent dye loading was hampered by poor loading through the enterocyte apical membrane, potential interferences of this low signal with the change in intracellular pH value (pHi) that occur during H⁺/dipeptide uptake, and the strong autofluorescence of enterocytes in the blue spectral range. We therefore made use of the CAG-TN-XXL mouse, which expresses a genetically encoded FRET-based biosensor for Ca²⁺, namely a genetically optimized troponin C, TN-XXL to display an increased signal strength in the low-calcium regime (Geiger et al., 2012; Mank et al., 2008). The CAG-TN-XXL mouse displays expression of the TN-XXL in the intestine (Direnberger et al., 2012), but we noticed that the expression of TN-XXL in the intestinal enterocytes declines strongly with age, and the experiments need to be done in villi of adolescent mice. The acceptor/donor ratio provides a semiquantitative assessment of [Ca²⁺]_{cyst} and demonstrated a Gly-Sar induced increase in [Ca²⁺]_{cyst}. Experiments designed to understand the origin of this Ca²⁺ signaling showed that the CaSR activation with spermine also elicited a rise in [Ca²⁺]_{cyst}, and both the Gly-Sar and the spermine-induced Ca²⁺-signaling were attenuated by the CaSR inhibitor.

The CaSR, one member of the G protein-coupled receptor (GPCR) family, plays a critical role in maintaining Ca²⁺...
homeostasis. The CaSR is widely distributed in various human organs, including the entire gastrointestinal tract (Geibel & Hebert, 2004). It can be activated by Ca\(^{2+}\), amino acids (L-Ala, L-Thr), peptides (Wang et al., 2006), polyamines (spermine) (Quinn et al., 1997). Activation of the CaSR has been shown to increase \([\text{Ca}^{2+}]\)\(_{cyt}\) in many types of mammalian cells (Hofer & Brown, 2003). CaSR stimulation has been shown to reverse the colonic fluid secretory effect of enterotoxins by enhancing the phosphodiesterase-mediated destruction of cyclic nucleotides (Geibel et al., 2006). CaSR stimulation also results in
an increase in apical Cl−/HCO3− and SCFA/HCO3− exchange in the colon, which enhances fluid absorption (Tang et al., 2015a). In addition, CaSR stimulation elicits gastrointestinal hormone release and has an anti-inflammatory action in the colon (Tang et al., 2016). It also is involved in hVD3-induced duodenal Ca2+ absorption (Fleet & Schoch, 2010).

In this study, we also observed that the jejunal Isc response to Gly-Sar was significantly reduced by the exclusively serosal addition of either Ca2+ chelator EGTA or CaSR antagonist. This suggests that the stimulation of the CaSR by addition of Gly-Sar to the luminal bath occurred beyond the enterocyte brush border membrane, in which PEPT1 resides. Intestinal CaSR expression has been localized to the apical and basolateral membrane of enterocytes (Cheng, Okuda, Hall, Geibel, & Hebert, 2002). However, we could only detect CaSR immunostaining in the basal membrane and in cellular elements of the lamina propria (Figure 5). This is consistent with the exclusive effect of the CaSR.

Gly-Sar is a nonhydrolyzable dipeptide and therefore exclusively absorbed into enterocytes by PEPT1. Of the di- and tripeptides absorbed during a meal by PEPT1, the majority are further hydrolyzed and exported as aminoacids, but a fraction is also exported as dipeptides by as yet molecularly undefined carriers (Terada & Inui, 2004). In order to get more insight into the mechanisms we carried out studies in Slc15a1−/−-CAG-TN-XXL mouse, the percentage of reactive villous enterocytes were significantly decreased compare to CAG-TN-XXL. Previous reports suggested that 70% uptake of Gly-Sar was via transepacellular pathway in WT mice, the remaining 30% could be absorbed via paracellular pathways, passive diffusion or endocytosis (Chen et al., 2010; Hu et al., 2008). However, in the Slc15a1−/−-CAG-TN-XXL mouse, we still observed calcium response, suggesting that CaSR is also involved in PEPT1-independent increase of cytosolic calcium by Gly-Sar. Wenzel et al. reported that PEPT1-mediated cefixime uptake into

human intestinal epithelial cells was increased by nifedipine, a putative CaSR agonist (Wenzel, Kuntz, Diestel, & Daniel, 2002), suggesting a modulation of PEPT1 by CaSR (although they interpreted their findings differently at the time).

It is unclear which mechanism is responsible for the importance of CaSR-mediated signaling for Gly-Sar uptake. Earlier work has demonstrated that the H+-coupled electrogenic dipeptide uptake in the native small intestine mediated by PEPT1 was solely dependent on membrane potential, irrespective of extracellular pH. It is well known that the opening of the K+ channels lead to hyperpolarization of the cells, providing a driving force for HCO3− secretion, dipeptide absorption and Cl−/HCO3− exchangers, moreover keeping the potassium channel open requires only a brief calcium transient signal (Chen et al., 2010; Hogan et al., 1997; Seidler et al., 2010; Spiegel et al., 2003). Our Ussing chamber study showed that blockade of IKCa channels significantly inhibited Gly-Sar-induced Isc, indicating that the IKCa channels are involved in the Gly-Sar absorption. IKCa channels are functionally expressed on the basolateral side of duodenal epithelial cells and regulate intestinal transepithelial Cl− and HCO3− secretion (Dong et al., 2006). We speculate that an increase in [Ca2+]cyt may induce hyperpolarization via stimulation of IKCa, a process that increases the driving force for H+-coupled electrogenic dipeptide absorption. This concept is depicted in Figure 8. However, other mechanisms have
been suggested, such as the Ca2+-dependent activation of PKC isoforms with subsequent effects of PEPT1 trafficking (Brandsch, Miyamoto, Ganapathy, & Leibach, 1994).

What is the physiological relevance of this study? Food nutrients, such as dietary dipeptides and L-amino acids, can raise [Ca2+]\textsubscript{cyt} in intestinal epithelial cells via CaSR activation. It is followed by activation of the basolateral IK\textsubscript{Ca} channels by Ca2+ signaling and results in membrane hyperpolarization to promote further dipeptide absorption through a positive feedback loop. CaSR activation also triggers intracellular calcium release from the endoplasmic reticulum. Thus, CaSR-induced Ca2+ signaling might sustain K+ channel gating to promote peptide absorption. In adults, the calcium absorption rate is 1,000 mg per day (Bronner & Pansu, 1999). Most calcium was absorbed in the jejunal via the epithelial calcium channels like TRPV6 and TRPV5 (Nijenhuis, Hoenderop, & Bindels, 2005). The absorbed calcium enters the enterocytes, some of which binds calcium-buffering proteins and is transported inside the cell. However, not all free Ca2+ can bind the calcium-buffering proteins while some contributes refilling of ER calcium store and promotes the CaSR-PLC-Ca2+-IK\textsubscript{Ca} signaling cascade. Therefore, CaSR-PLC-Ca2+-IK\textsubscript{Ca} signaling pathway may be involved in intestinal nutrient absorption, suggesting the imbalance of this pathway may contribute to human nutritional disorders.

ACKNOWLEDGEMENTS
This work was supported by a grants from the Deutsche Forschungsgemeinschaft (Se460/19-1 and 21-1, SFB621/C9) and the Volkswagen Vorab Foundation (to U.S.) and from the National Natural Science Foundation of China Grant 81970541 (to J.X.)

CONFLICT OF INTEREST
The authors have no conflict of interest to disclose.

AUTHOR CONTRIBUTIONS
J.X., A.Z., B.R., S.Y., O.G., H.D., B.G., E.P., U.S., and H.D. conceived and designed research; J.X., A.Z., B.R., performed experiments; J.X., B.R., and A.Z., interpreted results of experiments; J.X., A.Z., and H.D., analyzed data. J.X. and A.Z prepared figures. J.X. and H.D. drafted the manuscript. H.D. and U.S. edited and revised the manuscript. J.X., E.P., H.D., approved the final version of the manuscript.

ORCID
Hui Dong https://orcid.org/0000-0002-2244-2040

REFERENCE
Addison, J. M., Burston, D., & Matthews, D. M. (1972). Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clinical Science, 43, 907–911. https://doi.org/10.1042/cs0430907

Altheheld, B., Evans, M. E., Gu, L. H., Ganapathy, V., Leibach, F. H., Jones, D. P., & Ziegler, T. R. (2005). Alanylglutamine dipeptide and growth hormone maintain PepT1-mediated transport in oxidatively stressed Caco-2 cells. Journal of Nutrition, 135, 19–26. https://doi.org/10.1093/jn/135.1.19

Bleich, M., Riedemann, N., Warth, R., Kerstan, D., Leipziger, J., Hör, M., … Greger, R. (1996). Ca2+ regulated K+ and non-selective cation channels in the basolateral membrane of rat colonic crypt base cells. Pflügers Archiv - European Journal of Physiology, 432, 1011–1022. https://doi.org/10.1007/s004240050229

Bowley, K. A., Morton, M. J., Hunter, M., & Sandle, G. I. (2003). Non-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells. Gut, 52, 854–860. https://doi.org/10.1136/gut.52.6.854

Brandsch, M., Miyamoto, Y., Ganapathy, V., & Leibach, F. H. (1994). Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochemical Journal, 299, 253–260. https://doi.org/10.1042/bj29900253

Bronner, F., & Pansu, D. (1999). Nutritional aspects of calcium absorption. Journal of Nutrition, 129, 9–12. https://doi.org/10.1093/jn/129.1.9

Brown, E. M. (2013). Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice and Research Clinical Endocrinology and Metabolism, 27, 333–343. https://doi.org/10.1016/j.beem.2013.02.006

Brown, E. M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., Kifor, O., … Hebert, S. C. (1993). Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature, 366, 575–580. https://doi.org/10.1038/366575a0

Buyse, M., Berfioz, F., Guilmeau, S., Tsocas, A., Voisin, T., Peranzi, G., … Bado, A. (2001). PepT1-mediated epithelial transport of dipeptides and cephalaxin is enhanced by luminal leptin in the small intestine. Journal of Clinical Investigation, 108, 1483–1494. https://doi.org/10.1172/JCI13219

Chattopadhyay, N., Cheng, I., Rogers, K., Riccardi, D., Hall, A., Diaz, R., … Brown, E. M. (1998). Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. American Journal of Physiology, 274, 122–130.

Chen, M., Singh, A., Xiao, F., Dringenberg, U., Wang, J., Engelhardt, R., … Seidler, U. (2010). Gene ablation for PEPT1 in mice abolishes the effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular pH. American Journal of Physiology Gastrointestinal and Liver Physiology, 299, 265–274. https://doi.org/10.1152/ajpgi.00055.2010

Cheng, S. X. (2012). Calcium-sensing receptor inhibits secretagogue-induced electrolyte secretion by intestine via the enteric nervous system. American Journal of Physiology-Gastrointestinal and Liver Physiology, 142, S49. https://doi.org/10.1152/ajpgi.00425.2011

Cheng, S. X., Okuda, M., Hall, A. E., Geibel, J. P., & Hebert, S. C. (2002). Expression of calcium-sensing receptor in rat colonic epithelium: Evidence for modulation of fluid secretion. American Journal of Physiology: Gastrointestinal and Liver Physiology, 283, 240–250. https://doi.org/10.1152/ajpgi.00500.2001

Clarke, L. L. (2009). A guide to Ussing chamber studies of mouse intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296, G1151–G1166. https://doi.org/10.1152/ajpgi.90649.2008

Daniel, H. (2004). Molecular and integrative physiology of intestinal Peptide transport. Annual Review of Physiology, 66, 361–384. https://doi.org/10.1146/annurev.physiol.66.032102.144149
Daniel, H., & Zietek, T. (2016). Taste and move: Glucose and peptide transporters in the gastrointestinal tract. *Experimental Physiology, 100*, 1441–1450. https://doi.org/10.1113/EP085029

Direnberger, S., Mues, M., Micale, V., Wojtak, C. T., Dietzel, S., Schubert, M., … Griesbeck, O. (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. *Nature Communications, 3*, 1031–1041. https://doi.org/10.1038/ncomms2035

Dong, H., Smith, A., Hovaida, M., & Chow, J. Y. (2006). Role of Ca\(^{2+}\)-activated K\(^+\) channels in duodenal mucosal ion transport and bicarbonate secretion. *American Journal of Physiology-Gastrointestinal and Liver Physiology, 291*, G1120–G1128.

Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., … Hediger, M. A. (1994). Expression cloning of a mammalian proton-coupled oligopeptide transporter. *Nature, 368*, 563–566. https://doi.org/10.1038/368563a0

Fleet, J. C., & Schoch, R. D. (2010). Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. *Critical Reviews in Clinical Laboratory Sciences, 47*, 181–195. https://doi.org/10.3109/10408363.2010.536429

Ganapathy, V., & Leibach, F. H. (1985). Is intestinal peptide transport energized by a proton gradient? *American Journal of Physiology, 249*, 153–160. https://doi.org/10.1152/ajpph.1985.249.2.G153

Geibel, J. P., & Hebert, S. C. (2004). The functions and roles of the extracellular Ca\(^{2+}\)-sensing receptor along the gastrointestinal tract. *Annual Review of Physiology, 35*, 239–247.

Geibel, J., Sridharan, K., Geibel, R., Geibel, P., Persing, J. S., Seeger, A., … Hebert, S. C. (2006). Calcium-sensing receptor abrogates sequestration-induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. *Proceedings of the National Academy of Sciences of the United States of America, 103*, 9390–9397. https://doi.org/10.1073/pnas.0602996103

Geiger, A., Russo, L., Gensch, T., Thestrup, T., Becker, S., Hopfner, K. P., … Griesbeck, O. (2012). Correlating Calcium binding, förster resonance energy transfer, and conformational change in the biosensor TN-XXL. *Biophysical Journal, 102*, 2401–2410. https://doi.org/10.1016/j.bpj.2012.03.065

Gwynne, R. M., Ly, K. D. K. N., Parry, L. J., & Bornstein, J. C. (2017). Calcium sensing receptors mediate local inhibitory reflexes evoked by L-phenylalanine in guinea pig jejunum. *Frontiers in Physiology, 8*, 991–1001. https://doi.org/10.3389/fphys.2017.00991

He, P., Zhang, H., & Yun, C. C. (2008). IRBIT, inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3, binds Na+/H+ exchanger NHE3 and activates NHE3 activity in response to calcium. *Journal of Biological Chemistry, 283*, 33544–33553.

He, P., Zhao, L., Zhu, L., Weinman, E. J., Giorgio, R. D., Koval, M., … Yun, C. C. (2015). Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss. *Journal of Clinical Investigation, 125*, 3519–3531. https://doi.org/10.1172/JCI79552

Hofer, A. M., & Brown, E. M. (2003). Extracellular calcium sensing and signalling. *Nature Reviews Molecular Cell Biology, 4*, 530–538. https://doi.org/10.1038/nrm1154

Hogan, D. L., Crombie, D. L., Isenberg, J. I., Svendsen, P., Schaflaitzky De Muckadell, O. B., & Ainsworth, M. A. (1997). CFTR mediates cAMP- and Ca\(^{2+}\)-activated duodenal epithelial HCO3- secretion. *American Journal of Physiology, 272*, G872–878. https://doi.org/10.1152/ajpgi.1997.272.4.G872

Hou, C., Kirchner, T., Singer, M., Matheis, M., Argentiere, D., & Cavender, D. (2004). In vivo activity of a phospholipase C inhibitor. \((-\{(17-beta-3-methoxyxestra-1,3,5(10)-trien-17-yl)amino\}xedy)-1H-pyrrole-2,5-di one (U73122), in acute and chronic inflammatory reactions. *Journal of Pharmacology and Experimental Therapeutics, 309*, 697–704.

Hu, Y., Smith, D. E., Ma, K., Jappar, D., Thomas, W., & Hillgren, K. M. (2008). Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipetide absorption in intestine. *Molecular Pharmacaceutics, 5*, 1122–1130.

Joiner, W. J., Basavappa, S., Vidyasagar, S., Nehrke, K., Krishnan, S., Binder, H. J., … Rajendran, V. M. (2003). Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. *American Journal of Physiology. Gastrointestinal and Liver Physiology, 285*, G185–G196.

Kennedy, D. J., Leibach, F. H., Ganapathy, V., & Thwaites, D. T. (2002). Optimal absorptive transport of the dipetide glycylysarcosine is dependent on functional Na+/H+ exchange activity. *Pflügers Archiv, 445*, 139–146. https://doi.org/10.1007/s00424-002-0910-1

Kottra, G., & Daniel, H. (2001). Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: Its asymmetry and symmetry. *Journal of Physiology, 536*, 495–503.

Larsen, R., Mertz-Nielsen, A., Hansen, M. B., Poulsen, S. S., & Bindslev, N. (2001). Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. *Acta Physiologica Scandinavica, 173*, 213–222. https://doi.org/10.1046/j.1365-201X.2001.00865.x

Liu, G., Cao, W., Jia, G., Zhao, H., Chen, X., & Wang, J. (2018). Calcium-sensing receptor in nutrient sensing: An insight into the modulation of intestinal homoeostasis. *British Journal of Nutrition, 120*, 881–890. https://doi.org/10.1017/S0007114518002088

Lundquist, P., & Artursson, P. (2016). Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. *Advanced Drug Delivery Reviews, 106*, 256–276. https://doi.org/10.1016/j.addr.2016.07.007

Luo, M., Yervua, S., Liu, Y., Chodisetti, G., Riederer, B., Menon, M. B., … Seidler, U. E. (2017). IL-1beta-Induced downregulation of the multifunctional PDZ adaptor PDZK1 is attenuated by ERK inhibition, RXRalpha, or PPARalpha stimulation in enterocytes. *Frontiers in Physiology, 8*, 61.

Mace, O. J., Lister, N., Morgan, E., Shepherd, E., Affleck, J., Helliswell, P., … Foley, D. (2010). An energy supply network of nutrient absorption coordinated by calcium and TLR taste receptors in rat small intestine. *Journal of Physiology, 587*, 195–210. https://doi.org/10.1113/jphysiol.2008.159616

Mackenzie, B., Luo, D. D., Fei, Y., Liu, W. J., Ganapathy, V., Leibach, F. H., … Wright, E. M. (1996). Mechanisms of the human intestinal H+–coupled oligopeptide transporter hPEPT1. *Journal of Biological Chemistry, 271*, 5430–5437. https://doi.org/10.1074/jbc.271.10.5430

Macleod, R. J. (2013). CaSR function in the intestine: Hormone secretion, electrolyte absorption and secretion, paracrine non-canonical Wnt signaling and colonic crypt cell proliferation. *Best Practice and Research Clinical Endocrinology and Metabolism, 27*, 385–402. https://doi.org/10.1016/j.beem.2013.05.005

Macmillan, D., & McCarron, J. G. (2010). The phospholipase C inhibitor U-73122 inhibits Ca(2+)-release from the intracellular sarcoplasmic reticulum Ca(2+) store by inhibiting Ca(2+) pumps in smooth...
muscle. British Journal of Pharmacology, 160, 1295–1301. https://doi.org/10.1111/1476-5381.2010.00771.x

Mank, M., Santos, A. F., Direnberger, S., Msrsc-Flogel, T. D., Hofer, S. B., Stein, V., … Griesbeck, O. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods, 5, 805–811. https://doi.org/10.1038/nmeth.1243

Matsumura, K., Miki, T., Jhomori, T., Gono, T., & Seino, S. (2005). Possible role of PEPT1 in gastrointestinal hormone secretion. Biochemical and Biophysical Research Communications, 336, 1028–1032. https://doi.org/10.1016/j.bbrc.2005.08.259

Nässl, A. M., Rubioaliaga, I., Fenselau, H., Marth, M. K., Kottra, G., & Matsumura, K., Miki, T., Jhomori, T., Gonoi, T., & Seino, S. (2005). Pacheco, I. I., & Macleod, R. J. (2008). CaSR stimulates secretion of

Quinn, S. J., Ye, C. P., Diaz, R., Kifor, O., Bai, M., Vassilev, P., & Tang, L., Peng, M., Liu, L., Chang, W., Binder, H. J., & Cheng, S. X. (2015b). Calcium-sensing receptor stimulates Cl(-) and SCFA-dependent but Inhibits cAMP-dependent HCO3- secretion in Colon. American Journal of Physiology-Gastrointestinal and Liver Physiology, 148, S-101–S-102.

Tang, L., Peng, M., Liu, L., Chang, W., Binder, H. J., & Cheng, S. X. (2015a). Calcium-sensing receptor stimulates Cl- and SCFA-dependent but Inhibits cAMP-dependent HCO3- secretion in colon. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G874–G883.

Terada, T., & Inui, K. (2004). Peptide transporters: Structure, function, regulation and application for drug delivery. Current Drug Metabolism, 5, 85–94.

Vig, B. S., Stouch, T. R., Timoszyk, J. K., Quan, Y., Wall, D. A., Smith, R. L., & Faria, T. N. (2006). Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. Journal of Medicinal Chemistry, 49, 3636–3644. https://doi.org/10.1021/jm0511029

Wang, M., Yao, Y., Kuang, D., & Hampson, D. R. (2006). Activation of family C G-protein-coupled receptors by the tripeptide glutathione. Journal of Biological Chemistry, 281, 8864–8870. https://doi.org/10.1074/jbc.M512865200

Warth, R. (2003). Potassium channels in epithelial transport. Pflügers Archiv-European Journal of Physiology, 446, 505–513. https://doi.org/10.1007/s00424-003-1075-2

Wenzel, U., Kunzt, S., Diestel, S., & Daniel, H. (2002). PEPT1-mediated cefixime uptake into human intestinal epithelial cells is increased by Ca2+ channel blockers. Antimicrobial Agents and Chemotherapy, 46, 1375–1380. 10.1128/AAC.46.5.1375-1380.2002

Wie, R., Dong, X., Wong, C., Vallon, V., Tang, B., Sun, J., … Dong, H. (2014). Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. Journal of Biological Chemistry, 289, 34642–34653. https://doi.org/10.1074/jbc.M114.592774

Yeruva, S., Chodisetti, G., Luo, M., Chen, M., Cinar, A., Ludolph, L., … Seidler, U. (2015). Evidence for a causal link between adaptor protein PDZK1 downregulation and Na(+)/H(+) exchanger NHE3 dysfunction in human and murine colitis. Pflügers Archiv-European Journal of Physiology, 467, 1795–1807. https://doi.org/10.1007/s00424-014-1608-x

Zhou, H. R., & Pestka, J. J. (2015). Deoxynivalenol (Vomitoxin)-induced cholecystokinin and glucagon-like peptide-1 release in the STC-1 enteroendocrine cell model is mediated by calcium-sensing receptor and transient receptor potential Ankyrin-1 channel. Toxicological Sciences, 145, 407–417. https://doi.org/10.1093/toxsci/kfv061

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.