Biochemistry and physiology of zebrafish photoreceptors

Jingjing Zang 1 · Stephan C. F. Neuhauss 1

Received: 3 December 2020 / Revised: 25 January 2021 / Accepted: 28 January 2021 / Published online: 17 February 2021
© The Author(s) 2021

Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones. Rod photoreceptors are characterized by higher light sensitivity and slower kinetics, mainly mediating monochromatic low-light vision [191, 50, 57, 105]. Cone photoreceptors on the other hand function under bright light, conveying luminance and color information. In vertebrates, they come in up to four different subtypes, depending on their peak absorption. Both photoreceptor types share a peculiar morphology with a large outer segment comprised of an ordered stack of discs, which contain the proteins of the visual transduction cascade. This biochemical pathway transforms the physical stimulus of light into a biological signal. Outer segments are modified primary cilia that are connected via an axoneme to the mitochondrion-rich inner segment [84]. Synapses of the photoreceptors are among the most complex synapses in the vertebrate brain, featuring ribbons that are thought to enable tonic glutamate release into the synapse [162, 175].

Photoreceptors have been intensively studied in different model organisms. Biochemists favor large bovine eyes for their large yield of proteins. Electrophysiologists favor the amphibians for their comparatively large photoreceptors and geneticists have mainly focused on rodent eyes due to the genetic amenities available in these systems.

More recently, the small tropical teleost zebrafish (Danio rerio) joined the ranks of model system for retinal research. Besides their favorable biological properties, such as small body size, easy maintenance, and large number of offspring, there are several properties of their visual system that have endeared this model system to visual scientists [157]. Unlike the rod-dominant amphibian or rodent retina, the majority of photoreceptors in zebrafish are cones, with about 92% in zebrafish larvae and about 60% in the adult [49, 2, 222]. The larval retina also serves as a model for the primate fovea, featuring a cone-rich acute zone responsible for prey detection [212]. Moreover, more than 70% of human genes have direct orthologues in the zebrafish genome [69], making zebrafish an ideal model to study eye or more specifically cone diseases in humans [61, 11, 113]. The genetic toolbox to manipulate zebrafish has massively expanded during the past decade, including DNA insertion, precisely controlled transgene expression, and CRISPR/Cas genome editing [131]. Because the zebrafish retina starts to transmit visual information at very early stages (3 days post fertilization (dpf)), the function of the visual system can be assessed at early larval stages.

Keywords Zebrafish · Visual transduction · Photoreceptors · Cones

Introduction
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones. Rod photoreceptors are characterized by higher light sensitivity and slower kinetics, mainly mediating monochromatic low-light vision [191, 50, 57, 105]. Cone photoreceptors on the other hand function under bright light, conveying luminance and color information. In vertebrates, they come in up to four different subtypes, depending on their peak absorption. Both photoreceptor types share a peculiar morphology with a large outer segment comprised of an ordered stack of discs, which contain the proteins of the visual transduction cascade. This biochemical pathway transforms the physical stimulus of light into a biological signal. Outer segments are modified primary cilia that are connected via an axoneme to the mitochondrion-rich inner segment [84]. Synapses of the photoreceptors are among the most complex synapses in the vertebrate brain, featuring ribbons that are thought to enable tonic glutamate release into the synapse [162, 175].

Photoreceptors have been intensively studied in different model organisms. Biochemists favor large bovine eyes for their large yield of proteins. Electrophysiologists favor the amphibians for their comparatively large photoreceptors and geneticists have mainly focused on rodent eyes due to the genetic amenities available in these systems.

More recently, the small tropical teleost zebrafish (Danio rerio) joined the ranks of model system for retinal research. Besides their favorable biological properties, such as small body size, easy maintenance, and large number of offspring, there are several properties of their visual system that have endeared this model system to visual scientists [157]. Unlike the rod-dominant amphibian or rodent retina, the majority of photoreceptors in zebrafish are cones, with about 92% in zebrafish larvae and about 60% in the adult [49, 2, 222]. The larval retina also serves as a model for the primate fovea, featuring a cone-rich acute zone responsible for prey detection [212]. Moreover, more than 70% of human genes have direct orthologues in the zebrafish genome [69], making zebrafish an ideal model to study eye or more specifically cone diseases in humans [61, 11, 113]. The genetic toolbox to manipulate zebrafish has massively expanded during the past decade, including DNA insertion, precisely controlled transgene expression, and CRISPR/Cas genome editing [131]. Because the zebrafish retina starts to transmit visual information at very early stages (3 days post fertilization (dpf)), the function of the visual system can be assessed at early larval stages.
Finally, zebrafish larvae are transparent, making them well suited for live imaging (e.g., [135, 222]).

Zebrafish retina signaling with related ocular and retinal diseases have been reviewed recently [8, 123, 113, 126, 18, 11]. In this review, we will provide an overview of biochemical and physiological processes in zebrafish photoreceptors with a focus on the visual transduction cascade, the very first step of image-forming vision.

Zebrafish outer retina

The zebrafish retina possesses one rod type and four morphologically and spectrally distinct cone subtypes, namely short single cones (ultraviolet (UV)-sensitive), long single cones (blue-sensitive), double cone accessory members (green-sensitive), and double-cone principle members (red-sensitive). Double cones exist in most vertebrates, but are absent in most placental mammals, elasmobranchs, and catfish [44]. Zebrafish photoreceptors are coupled by gap junction, mainly mediated by Connexin 35 (the zebrafish homologue of mammalian Cx36) [111]. Fish photoreceptor coupling is regulated by the circadian clock, with cone-cone and rod-cone coupling being increased during nighttime [151, 111].

In the absence of pupillary reflexes, many lower vertebrates developed retinomotor movements to adapt to changes in light conditions. In darkness, a mobile part of photoreceptor inner segment, called the myoid, drives cones to elongate and rods to contract [124, 67]. Meanwhile, pigment granules (melanosomes) of the retinal pigment epithelium (RPE) concentrate at the basal part of the RPE. In this way, cone outer segments are buried deeply inside basal RPE while rod outer segments are optimally exposed to incoming light, by being situated far from pigment granules. During light adaptation, cones contract while rods elongate concomitant to pigment granule translocation towards the apical part of the RPE. Therefore, cone outer segments are exposed to light and the rod outer segments are protected by the RPE, akin to sunglasses [1]. The zebrafish retina shows adult-like retinomotor movements and increasing the probability of photon catch [92].

Rod and cone photoreceptors share a generally similar visual transduction cascade, but adopt rod- or cone-specific protein isoforms for many of the cascade’s components. The evolution of these photoreceptor-specific paralogues is a well-studied paradigm for the fate of duplicated genes in evolution [103]. This is particularly true for teleost genomes that underwent a lineage-specific whole-genome duplication, following two rounds of whole-genome duplications in the early vertebrate lineage [7, 190, 184].

The generation, deletion, and fate of these duplicated genes add a fascinating complexity to the teleost visual transduction cascade that is beyond the scope of this review. However, the multitude of gene variants to be discussed in the following is the direct consequence of whole-genome duplications in the past [63, 103, 104, 106, 99, 100, 60].

The visual transduction cascade is initiated by the absorption of photons by opsins. These G protein–coupled 7-transmembrane receptors are covalently bound to a light-sensitive chromophore via a Schiff base forming the photopigment complex [73]. Upon the absorption of a photon, chromophore (most commonly vitamin A1 11-cis-retinal) in the photopigment complex isomerizes to all-trans-retinal, which activates the opsin (now referred to R*) by inducing a

Springer
Retinal Pigment Epithelium

Outer Nuclear Layer

Outer Plexiform Layer

Inner Nuclear Layer

Outer Plexiform Layer

Retinal Ganglion Cell Layer

Fig. 1 Adult zebrafish retina and photoreceptor mosaic. Dark-adapted adult zebrafish retina section (a) and light-adapted section (b) are organized into different cellular layers. The nuclei of rod and cone photoreceptors are located in the outer nuclear layer. During light adaptation, photoreceptor myoid drives cones to contract and rods to elongate to protect rods from over-bleaching, known as retinomotor movement. UV opsin (sws1) is labeled by in situ hybridization. Arrowhead denotes double cone. Arrow denotes blue cone. Star denotes cell body of rod. Schematic of the zebrafish photoreceptor planar mosaic arrangement (c) [153, 2, 49]. UV, UV cone; R, red cone; G, green cone; B, blue cone

Fig. 2 Cone photoreceptor morphology (a). Schematic representation of vertebrate visual transduction cascade and Ca²⁺-regulated deactivation processes (b). Photon absorption activates R. R* then triggers the exchange of GTP for GDP on the Tα. Tα-GTP binds to cyclic nucleotide PDE. Stimulated PDE hydrolyzes free cyclic guanosine monophosphate (cGMP). In darkness, CNGC allows an influx of Na⁺ and Ca²⁺, while during illumination CNGC is shut off by cGMP decrease. NCKX is not affected by light, which results in a light-induced intracellular Ca²⁺ concentration decline. Rev modulates phosphorylation of R* via GRK in a Ca²⁺-dependent manner. Phosphorylated R then is fully deactivated by the binding of Arr. R, visual pigment (inactive); R*, light-activated visual pigment; Tα, transducin α subunit; Tβγ, transducin β and γ subunits; PDE, phosphodiesterase (inactive); PDE*, PDE-transducin α complex; NCKX, Na⁺/Ca²⁺, K⁺ exchanger; Arr, arrestin; GRK, G protein-coupled receptor kinase; Rev, Recoverin; CNGC, cyclic nucleotide-gated ion channel; P, phosphorylation; M, CNG-modulin; GC, guanylate cyclase; GCAP, guanylate cyclase activating protein. Figure was drawn using Inkscape. Inkscape http://www.inkscape.org/. Reproduced with permission from Zang and Neuhauss [217]
Gene name	Protein encoded	Expression pattern in photoreceptor layer	Phenotype in zebrafish with abnormal gene expression	Mouse homologs	Associated human eye diseases
opn1sw1	UV opsin	UV cones		Opn1sw	Tritan color blindness [200, 201]
opn1sw2	Blue opsin	Blue cones			
opn1mw1	Green opsin	Green cones		Opn1mw	Achromatopsia [130]
opn1mw2	Green opsin	Green cones			
opn1mw3	Green opsin	Green cones			
opn1lw1	Red opsin	Red cones		Opn1lw	Achromatopsia [130]
opn1lw2	Red opsin	Red cones			
rho	Rod opsin	Rods	Rod photoreceptor degeneration [218]	Rho	Night blindness [168], retinitis pigmentosa [43]
gnat1	Transducin α subunits	Rods and UV cones		Gnat1	Night blindness [128]
gnb1a	Transducin β subunits	Rods and UV cones		Gnb1	
gnb1b	Transducin β subunits	Rods and UV cones		Gnb1	
gnt1	Transducin γ subunits	Rods and UV cones		Gnt1	
gnat2	Transducin α subunits	Cones	Largely reduced photoreponse [21]	Gnat2	Achromatopsia [91]
gnb3a	Transducin β subunits	Cones		Gnb3	
gnb3b	Transducin β subunits	Cones		Gnb3	
gnt2a	Transducin γ subunits	Cones		Gnt2	
gnt2b	Transducin γ subunits	Cones		Gnt2	
pde6a	PDE catalytic α subunit	Rods and UV cones		Pde6a	Autosomal recessive retinitis pigmentosa [72]
pde6b	PDE catalytic β subunit	Rods and UV cones		Pde6b	Autosomal recessive retinitis pigmentosa [122]
pde6ga	PDE inhibitory γ subunit	Rods and UV cones		Pde6ga	
pde6gb	PDE inhibitory γ subunit	Rods and UV cones		Pde6gb	
pde6c	PDE catalytic α′ subunit	Cones	Diminished cone ERG and OKR, and cone degeneration [134, 172]	Pde6c	Cone dysfunction and achromatopsia [27, 59, 186]
pde6ha	PDE inhibitory γ′ subunit	Cones		Pde6ha	
pde6hb	PDE inhibitory γ′ subunit	Cones		Pde6hb	
pde6ia	PDE inhibitory γ′ subunit	Cones		Pde6ia	
cnga1a	CNG channel α1 subunit	Rods		Cnga1	Autosomal recessive retinitis pigmentosa [42]
cnga1b	CNG channel α1 subunit	Rods		Cnga1	Autosomal recessive retinitis pigmentosa [5, 14, 93]
cngb1a	CNG channel β1 subunit	Rods		Cngb1	
cngb1b	CNG channel β1 subunit	Rods		Cngb1	
cnga3a	CNG channel α3 subunit	Cones		Cnga3	
cnga3b	CNG channel α3 subunit	Cones		Cnga3	
cngb3.1	CNG channel β3 subunit	Cones		Cngb3	
cngb3.2	CNG channel β3 subunit	Cones		Cngb3	
grk1a	G protein–coupled receptor kinase la	Rods	Overexpression of grk1a in rods shows minor effect [194]	Grk1	Oguchi disease [209]
grk1b	G protein–coupled receptor kinase lb	Cones	Delayed ERG response recovery and reduced temporal contrast sensitivity [31]	Grk1	
Gene name	Protein encoded	Expression pattern in photoreceptor layer	Phenotype in zebrafish with abnormal gene expression	Mouse homologs	Associated human eye diseases
-----------	----------------	--	---	---------------	--------------------------------
grk7a	G protein–coupled receptor kinase 7a	Cones	grk7a knockdown [152], grk7a knockout [31], ectopic expression of grk7a in rods [194]	Arr1	Oguchi disease [58]
grk7b	G protein–coupled receptor kinase 7b	UV cones			
arr5a	Arrestin5a	Rods and UV cones		Arr1	
arr5b	Arrestin5b	Rods and UV cones		Arr1	
arr3a	Arrestin3a	Double cones	Delayed ERG response recovery and decreased temporal contrast sensitivity [148]	Arr3	
arr3b	Arrestin3b	Blue and UV cones			
rgs9a	Regulators of G protein signaling 9a	Cones		Rgs9	
rgs9b	Regulators of G protein signaling 9b	Rods		Rgs9	
gucy2e	Guanylate cyclase E	Rods and UV cones	Outer segment loss and shortening, OMR defects [176]	Gucy2e	Leber congenital amaurosis 1 [142]
gucy2f	Guanylate cyclase F	Rods and UV cones		Gucy2f	
gucy2d	Guanylate cyclase D	Cones	OKR and OMR impairments [127], PDE6c downregulation [79]	Gucy2d	
slc24a1	Na+/Ca2+, K+ exchanger 1			Slc24a1	
slc24a2	Na+/Ca2+, K+ exchanger 2			Slc24a2	
rcv1a	Recoverin 1a	Rods and UV cones	Accelerates photoresponse recovery [215]	Guca1a	
rcv1b	Recoverin 1b	Cones		Autosomal dominant cone dystrophy [140]	
rcv2a	Recoverin 2a	Cones	Accelerates photoresponse recovery [215]	Guca2b	
rcv2b	Recoverin 2b	Cones	Accelerates photoresponse recovery [215]	Autosomal dominant retinal dystrophies [160]	
gcap1	Guanylate cyclase activation protein 1	Rods and UV cones			
gcap2	Guanylate cyclase activation protein 2	Rods and UV cones			
gcap3	Guanylate cyclase activation protein 3	Cones	Prolonged photoresponse recovery [9]		
gcap4	Guanylate cyclase activation protein 4	Cones			
gcap5	Guanylate cyclase activation protein 5	Cones			
gcap7	Guanylate cyclase activation protein 7	Cones			
eml1	CNG-modulin	Cones	Reduced light sensitivity [94]	Eml1	

Table 1 (continued)
transformational change [51, 52]. Zebrafish cones express a total of 8 cone opsins, namely opn1sw1 (also known as sws1), opn1sw2 (also known as sws2), opn1lw1 (also known as rh2-1), opn1lw2 (also known as rh2-2), opn1lw3 (also known as rh2-3), opn1lw4 (also known as rh2-4), opn1lw1 (also known as lws1), and opn1lw2 (also known as lws2) [2, 145, 182]. Hence, there are four green (short wavelength) and two red (long wavelength) opsin variants. These variants have slightly different peak absorption properties potentially allowing a bewildering range of fine-tuning of color perception [30, 23]. The expressions of these multiple rh2 and lws genes follow a spatiotemporal order during development [182]. Rod photoreceptors express only a single-rhodopsin gene rho (also known as rh1) [218]. Mutations in human rod opsin may produce night blindness or retinal degeneration, while cone opsin defects may lead to achromatopsia [168, 43, 130, 200, 201]. For years, vitamin A1-based photopigment has been recognized as the sole photopigment existing in zebrafish photoreceptors under standard laboratory conditions [23, 30]. The peak absorption spectra (λmax) of A1-based photopigments differ markedly and cover a wide spectrum from 355 nm (UV) to 558 nm (red) in vivo. However, thyroid hormone (TH) treatment or colder water temperature may result in a transition from A1 to vitamin A2 (11-cis 3,4-didehydroretinal)-based photopigments. This demonstrates a functional A1-A2 photopigment interchange system in zebrafish [159, 3, 48]. The λmax of A2-based photopigments shifts towards longer wavelength relative to A1-based photopigment [115, 66]. This interchange system is frequently observed in freshwater fishes and amphibians, and may be adapted to the red-shifted light environment in fresh water compared with marine and terrestrial environments [149, 197, 222]. Another mechanism to tune photopigments is to change opsin expression levels. TH treatment has been reported to reduce lws2 (548 nm) and rh2-1 (467 nm), while increasing lws1 (558 nm) and rh2-2 (488 nm) in larvae, favoring the opsins with longer λmax [119]. Both the mechanisms red-shift the zebrafish photoreceptor spectral sensitivity. Moreover, in TH receptor-defective fish, retinal progenitors designed to become red cones are translocated into UV cones, providing another mechanism for TH to regulate long-wavelength vision [180, 195, 37].

Besides the visual opsins, the zebrafish genome harbors 32 nonvisual opsin genes, which encode opsins forming functional photopigments with different chromophores [35, 34, 56]. Many, but not all of them, are expressed in the photoreceptor layer. Their functions in photoreceptors are largely unknown, but a role in circadian light entrainment is discussed [56, 174, 26].

Activated opsin (R*) interacts with the trimeric G protein transducin [22, 50, 105]. Binding of R* to transducin results in the replacement of GDP by GTP at the active site of the transducin α subunit. This nucleotide exchange dissociates the activated α subunit (Gα*) and the heterodimer of β and γ subunits (Gβγ). Gα* then binds to the cGMP Phosphodiesterase 6 (PDE6) [91, 128].

Zebrafish rod and cone photoreceptors express different variants of three subunits [99, 28]. In rods, gnat1 encodes transducin α subunits, gnb1a and gnb1b encode β subunits, and gngt1 encodes γ subunits (all these variants possibly also in UV cones), while in cones, gnat2 encodes α subunits, gnb3a and gnb3b encode β subunits, and gngt2a and gngt2b encode γ subunits.

Surprisingly, a zebrafish mutant defective in the cone-specific gnat2 gene (no optokinetic response f (norf)) shows a residual photoresponse that needs to be mediated by an unknown transducin-independent mechanism [21].

Interestingly, both Gα and Gβ show massive light-induced translocation from rod outer segment to inner segment in mice, which may contribute to light adaptation in rods [170]. However, Gα translocation has not been observed in zebrafish cones (or mouse cone), indicating light adaptation mechanisms may vary between rods and cones [85, 46, 114].

When Gα binds to PDE6, two PDE6 inhibitory subunits dissociate from the active sites and allow the activation of PDE6 to hydrolyze cGMP [32]. The rod PDE6 variant is expressed as a heterotetramer consisting of two catalytic α and β subunits encoded by pde6a and pde6b, and two identical inhibitory γ subunits encoded by pde6g. Cone PDE6 comprises two homodimers of two catalytic α′ subunits encoded by pde6c and two inhibitory γ′ subunits encoded by pde6h [106, 62, 32, 72, 122]. Zebrafish retain the same set of catalytic subunit genes as in humans (pde6a, pde6b, and pde6c), while inhibitory subunits are encoded by duplicated paralogues: pde6ga and pde6gb in rods and possibly UV cones and pde6ha and pde6hb in all cones [100, 134]. An additional inhibitory subunit gene pde6i has also been found in zebrafish, and some other lower vertebrates including fish (teleost and non-teleost) and amphibians [100].

Mutations in the cone-specific pde6c gene are associated with cone dysfunction in human patients with achromatopsia [27, 59, 186]. Mutations in cone-catalytic subunit pde6c result in almost diminished cone electroretinogram (ERG) and optokinetic response (OKR), and cone photoreceptor degeneration in zebrafish [134, 172]. The mechanism underlying cone degeneration is unknown and is not linked to increased cytosolic Ca2+ levels [118].

Ultimately, the visual transduction cascade regulates the opening of cyclic nucleotide-gated (CNG) ion channels. These non-selective cation channels are opened by cGMP binding [210]. Falling cGMP concentration due to cGMP hydrolysis by PDE6 leads to the closure of these CNG channels, suppressing the circulating dark current and resulting in photoreceptor hyperpolarization. CNG channels are heteromeric proteins consisting of α and β subunits [81, 125]. Rod
Regulation of visual transduction

At the biochemical level, visual transduction is mainly regulated by its deactivation kinetics. To deactivate the visual transduction cascade, deactivation of both R* and Gα-PDE* complex and the restoration of cGMP concentrations are required [22, 50].

The lifetime of R* is tightly regulated by arrestin proteins that efficiently inactivate photopigment by binding to its phosphorylated form. Therefore, the first step of R* phosphorylation is phosphorylation. R* is phosphorylated by G protein–coupled receptor kinases (GRKs). Mice and rats express only GRK1 in both rods and cones, while humans express GRK1 in rods and GRK1 and GRK7 in cones [219, 117, 165, 199]. In zebrafish, both visual grk genes are present as two paralogues. grk1a is expressed exclusively in rods, grk1b and grk7a in all cones, and grk7b only in UV cones [152, 196] (unpublished data). GRK deficiency in humans leads to Oguchi disease, which is characterized by a delay of rod recovery [209]. A grk7a knockdown model produces largely delayed ERG response recovery and reduced temporal contrast sensitivity in the OKR [152]. Another study demonstrates similar but more modest effects in either grk1b or grk7a mutants [31].

Overexpression of grk1a in zebrafish rods shows minor effect on rod photoresponse, suggesting that endogenous GRK1a protein is already at saturation levels. Ectopic expression of cone grk7a in rods resulted in cone-like rod responses [194].

The binding of arrestin completely deactivates the phosphorylated photopigment [98, 203]. In the mouse retina, both rod (ARR1) and cone (ARR3) arrestins are co-expressed in cone photoreceptors [132, 203]. Mutations in ARR1 are a cause of Oguchi disease in human [58]. In zebrafish, arrsa and arrsb (orthologues of Arr1) are expressed in rods while arrsa exists in double cones and arrsb exists in blue and UV cones, indicating subfunctionalization of the two paralogues. arrsa knockdown resulted in a severe delay in ERG response recovery and decreased temporal contrast sensitivity [148].

Regulators of G protein signaling 9 (RGS9) act as GTPase activating protein to deactivate Gα*-PDE complex [17]. Mammals have a single Rgs9 gene, while zebrafish have two rgs9 genes, with rgs9a being expressed in cones and rgs9b in rods [33, 104] (unpublished data). Inactivating mutations in humans lead to bradypia, a rare condition characterized by slower photoreceptor deactivation [133]. A landmark study using Rgs9 overexpression in mice demonstrated its crucial role to rate-limit rod visual transduction recovery [96].

To restore the dark current, cGMP needs to be resynthesized by membrane-bound guanylate cyclases (GCs) [88, 167]. Photoreceptor-specific GCs are regulated by the small Ca2+-binding guanylate cyclase activation proteins (CGAPs) [90].

Mammals have two photoreceptor-specific GCs, GC-E (known as GC1) and GC-F (known as GC2), both of which are co-expressed in rods and cones [103, 88, 60]. GC-E is more concentrated in cones, while the expression of GC-F is more prominent in rods. Mutations in GC-E have been shown to cause Leber congenital amaurosis 1 (LCA1), a severe form of pediatric blindness in humans [142]. The zebrafish possess 3 GCs. GC-E (known as GC1), GC-F (known as GC2), and GC-D (known as GC3) are encoded by gucy2e (previous name gucy2f), gucy2f (previous name gc2), and gucy2d (previous name gc3), respectively. Both gucy2e and gucy2f are expressed in rods and UV cones, while gucy2d encodes the only cone-specific GC in all cone subtypes [55, 144].

A zebrafish gucy2d mutant has been identified in behavior screen by displaying OKR and optomotor response (OMR) impairments [127]. PDE6c protein levels are downregulated in gucy2d knockdown larvae, indicating the interdependence between these two regulators of cGMP metabolism [79]. A knockdown of the gucy2d gene results in the loss and shortening of outer segments and defects in the OMR [176].

In darkness, the open non-selective CNG channels mediate a Ca2+ influx into the photoreceptor outer segment. Ca2+ efflux via Na+/Ca2+, K+ exchanger (NCKX) balances this influx, producing a moderately high intracellular Ca2+ concentration as shown in rods of different species [101, 207]. Under light illumination, CNG channels are closed due to the decrease in cGMP concentration, while Ca2+ efflux continues, resulting in a decrease of intracellular Ca2+ concentration in the outer segment [211]. This light-induced Ca2+ decline can be simultaneously measured with light response in zebrafish UV cones, demonstrating similar kinetics of Ca2+ extrusion via NCKX to that of CNG channel current [109].

NCKX proteins are encoded by SLC24 gene family members. They show a cell-type-specific expression with NCKX1 being expressed in rods and NCKX2 in cones [193, 147, 143, 150]. NCKX2-deficient mice show no or only mild functional defect, suggesting that compensating transporters may mediate ion exchange as well [112, 156]. A recent study proposed that NCKX2 and NCKX4 cooperated to facilitate the rapid and efficient extrusion of Ca2+ from mouse cones. NCKX4 has its well-established function in olfactory sensory neurons and is similarly expressed in all cones in the zebrafish retina [192]. The expression pattern of the other NCKX coding
genes is unknown in zebrafish, but studies in the striped bass show expression of nek21 in rods and four splice variants of nek22 in cones [137].

The reduction of cytoplasmic Ca\(^{2+}\) negatively feedbacks to the phototransduction cascade, triggering the rapid photoresponse recovery and facilitating photoreceptor adaptation to background light [120, 129]. During light adaptation, photoreceptor light sensitivity is reduced and response kinetics is accelerated, to avoid saturation and to operate across a wide range of environmental light intensity [50]. This has been achieved by mechanisms that primarily involve the regulation of GRKs by Recoverin, GCs by GCAPs, and CNG channels by CNG-modulin (or Calmodulin) [138, 191].

Recoverin (RCV) is a small neuronal calcium sensor (NCS), which is primarily located in vertebrate photoreceptors. Upon Ca\(^{2+}\) binding, RCV undergoes a pronounced conformational change, the so-called Ca\(^{2+}\)-myristoyl switch, which translocates the proteins from a cytosolic form to a membrane tethered conformation, allowing targeting and inhibiting GRK proteins [82, 166, 183, 6, 40, 83, 217]. Light stimulation reduces intracellular Ca\(^{2+}\) concentration, allowing the Ca\(^{2+}\)-free RCV releasing GRK. GRK disinhibi- tion accelerates R* phosphorylation, enabling arrestin binding.

While there is only one RCV isoform in mammals (RCV1), four rcv genes are encoded in the zebrafish genome (rcv1a, rcv1b, rcv2a, and rcv2b) [215]. rcv1b, rcv2a, and rcv2b are cone RCV, while rcv1a is expressed in rods and UV cones. Mouse RCV1 experiences a remarkable light-induced translocation from outer and inner segment towards synaptic terminals in rods, which has not been observed in zebrafish photoreceptors by studying all zebrafish RCVs [177] (unpublished observation). Downregulation of cone RCV accelerates photoresponse recovery, but this effect is abolished when cone GRK7a is simultaneously knocked-down. This result not only indicates that RCV regulates opsin deactivation via GRK, but also demonstrates that the cone opsin deactivation kinetics dominates the overall photoresponse shut off kinetics in vivo [215]. Interestingly, different RCVs contribute at distinct light intensities. This implies different Ca\(^{2+}\) sensitivities for these RCVs, since intracellular Ca\(^{2+}\) concentration correlates with light levels [158]. Indeed, a recent biochemical work demonstrated distinct Ca\(^{2+}\) affinities, Ca\(^{2+}\)-dependent membrane binding, and Ca\(^{2+}\)-induced conformational changes among zebrafish isoforms [45]. Furthermore, salamander cone photoreponse, but not rod response, is also dominated by a Ca\(^{2+}\)-sensitive mechanism [121, 216]. If the Ca\(^{2+}\)-sensitive dominance is a general feature in cone photoresponse, it may contribute to the more powerful light adaptation of cones compared to rods.

To restore the dark current, cGMP needs to be resynthesized by GC, which is under the regulation of small Ca\(^{2+}\)-binding proteins called GCAPs [90, 39]. GCAPs belong to the superfamily of EF-hand Ca\(^{2+}\)-binding proteins, harboring four EF-hand Ca\(^{2+}\)-binding motifs, three of which are functional [89]. Unlike RCVs, GCAPs do not undergo a classical Ca\(^{2+}\)-myristoyl switch, but the myristoyl group does play an important role to regulate GCAP properties, including Ca\(^{2+}\) sensitivity, GC affinity, and the catalytic efficiency of the enzyme. Ca\(^{2+}\)-binding GCAPs together with GCs form GC/GCAP complex in darkness. Ca\(^{2+}\) reduction during light exposure triggers a conformational change in GCAPs, which results in a transformational change within the GC/GCAP complex, increases GC catalytic activity and reopens the CNG channels. During light adaptation, the Ca\(^{2+}\)-sensitive GCAP activity will also prevent the closure of all CNG channels and keep photoreceptors responsive.

GCAP1 and 2 are expressed in mammalian rods and cones. The human (but not the mouse) genome also processes a cone-specific GCAP3 [75, 140, 160]. Zebrafish photoreceptors express six GCAPs, of which gcap3, 4, 5, and 7 are restricted to cones and gcap1 and 2 are exclusively expressed in rods and UV cones [76, 144, 54]. These isoforms show distinct Ca\(^{2+}\) sensitivities of GC activation, Ca\(^{2+}/\)Mg\(^{2+}\)-dependent conformational changes, and Ca\(^{2+}\)-binding affinities [164, 179]. Light exposure allows intracellular Ca\(^{2+}\) fluctuating to different levels, in which distinct CGAPs may reach their optimal working range.

GCAP3 is first expressed in a non-myristoylated form in larvae and then becomes myristoylated in the adult retina [54]. Although GCAP3 has been shown to produce the highest Ca\(^{2+}\)-dependent activation of GCs in native zebrafish retina, gcap3 knockout does not induce any visual behavioral abnormalities [55]. In another study, GCAP3 in green cone was inactivated by antibody injections. Whole-cell patch clamp recordings demonstrated that the photoresponse recovery is strongly prolonged, confirming GCAP3 function to activate GC to restore CNG channel current in cones [9].

cGMP affinity of CNG channels is regulated in a Ca\(^{2+}\)-dependent manner in all sensory neurons [19]. Ca\(^{2+}\) cannot directly bind to the channels but work via modulator proteins, which have been identified as calmodulin in mammalian rods and CNG-modulin in fish cones [70, 146]. However, the contribution of CNG channel modulation by Ca\(^{2+}\) in regulating light adaptation is very limited in rods [29, 95]. On the other hand, CNG-modulin has been shown to regulate the cGMP dependence of CNG channels in a Ca\(^{2+}\)-sensitive manner, and to modulate the light response kinetics in striped bass cone [146]. CNG-modulin is encoded by the eml1 gene in zebrafish. eml1 knockout reduces the light sensitivity of dark-adapted and light-adapted cones; the sensitivity cannot be restored to wild-type levels [94]. These experiments demonstrate a stronger Ca\(^{2+}\) feedback to CNG channels in cones compared to rods.
Outer segment: a specialized primary cilium

Photoreceptor outer segments are strongly modified specialized primary cilia, sharing many general structural and biochemical features of cilia [77]. Outer segment stacked discs are arranged on the side of a microtubule-based axoneme, anchoring inside the inner segment through a connecting cilium and its basal body. Therefore, the connecting cilium, known as the transition zone in other cell types, connects outer and inner segment, mediating bi-directional protein trafficking [181]. Dysfunctions of primary cilia result in human disorders referred to as ciliopathies, which were reviewed elsewhere [11].

Outer segments are constantly bombarded by photons and their integrity is endangered by radical oxygen species. Since photoreceptors, like most neurons of the central nervous system, cannot be replaced, photoreceptors constantly rejuvenate themselves by renewing their outer segments. New discs are synthesized by ciliary membrane evagination at the base of the outer segment as the ciliary ectosomes, which then is elongated, flattened, and enclosed inside the outer segment [87, 173, 38, 171]. The tips of the outer segments, containing the oldest and potentially damaged membranes, are phagocytosed and digested by RPE cells. Although outer segment renewal/shedding is essential for photoreceptor homeostasis and survival, molecular mechanisms underlying its regulation are still poorly understood.

Recent works on zebrafish have contributed significantly to our understanding of the molecular mechanisms behind photoreceptor outer segment shedding and renewal. The zebrafish lends itself ideally to transgenically label cellular structures or cells, as Willoughby and colleagues have used elegantly for the outer segment [205]. They devised a stable line with heat shock-inducible fluorescent membrane protein that allowed them to follow the renewal and shedding of the rod outer segments as an updated experimental approach to the classic radioactive labeling method [214]. This line was then used in a high-content small-molecule screens that among others identified an involvement of cyclooxygenase in outer segment growth, gamma secretase in outer segment shedding, and mTOR in RPE phagocytosis [25].

Some earlier studies demonstrated that disc shedding in frog and cat was initiated by light [15, 53]. A recent zebrafish study using PDE6 inhibitors to block the visual transduction cascade mimicking constant dark conditions indeed inhibited rod outer segment shedding [24]. Interestingly, mammalian rod outer segment shedding remains in constant darkness, instead showing circadian clock controlling disc shedding mechanism [108, 185, 64, 74].

Given the nature of the outer segment, it comes as no surprise that many genes associated with intracellular and ciliary trafficking are involved in outer segment generation and maintenance.

The most abundant protein that needs to be shipped out to the outer segment is rhodopsin. Every second, around 70 rhodopsin molecules are trafficked from the inner to the outer segment [213, 204, 141]. Detailed studies of rhodopsin transport in frogs showed that RAB8, a small GTPase, coats rhodopsin-carrier vesicles and directs them to a selective barrier at the base of connecting cilium [139, 36]. In live imaging experiments in zebrafish, RAB8-directed rhodopsin trafficking in rods has been directly visualized in vivo [135]. The correct localization of RAB8 at the base of the outer segment is regulated by components of the connecting cilium itself, such as CC2D2A and further interaction partners, such as Ninl and MICAL3 [10, 12].

About 10% of outer segment is renewed every day in mammalian photoreceptors [108]. Therefore, intraflagellar transport (IFT), which contributes primarily to traffic visual transduction proteins into the outer segment, is important for outer segment development and structure [77]. IFT-B complex and kinesin motors mediate anterograde movement towards the distal outer segment, while IFT-A and dynein motors mediate retrograde movement towards the cell body [154].

A series of zebrafish studies contributed greatly to our understanding of the mechanism underlying IFT. Mutations affecting the IFT-B complex (IFT52, IFT57, IFT88, IFT172) lead to defects in outer segment formation and/or maintenance, finally resulting in both rod and cone degeneration [188, 41, 65]. Biochemical assays indicated that IFT20, a IFT-A member, requires IFT57 to associate with the IFT particle [97]. In another study, TNF receptor-associated factor 3 interacting protein 1 (TRAF3IP1) was shown to bind to IFT20. It can also interact with RAB8 via Rabaptin5, an endocytosis regulator. This demonstrates a connection between the IFT particle and the GTPase pathway, known to facilitate protein complex assembling [136].

Moreover, microtubular motors play an essential role in transporting IFT complexes. KIF17, kinesin-2 family member, is involved in ciliogenesis [206]. It is located all over zebrafish cones but concentrates at the basal body and the distal tip of the axoneme [13]. Knockdown of kif17 disrupts outer segment structure and mislocates visual transduction proteins [78]. Disc shedding is also promoted by KIF17 and eliminated in its absence [110].

Ribbon synapses

Non-spiking photoreceptors respond and adapt to a wide range of light intensities. The light-induced CNG channel closure generates the graded changes in membrane potential, which in turn regulates tonic neurotransmitter glutamate release at the presynaptic terminals [175, 163, 187]. This graded signaling is facilitated by specialized ribbon synapses, which hold a dense array of synaptic vesicles near active zones along
their surface and were firstly identified by electron microscopy as electron dense structures in guinea pig rod synapses [169].

Work on zebrafish has helped to identify the key components of ribbon synapses and their function in signal transmission.

Ribeye is the most abundant protein in the synaptic ribbon [163]. In the zebrafish retina, both ribeyea and ribeyeb are present in the photoreceptors while ribeyea also shows expression in bipolar cells. Downregulation of ribeyea diminishes OKR and reduces ribbon length and number [198, 116].

Synaptotagmin (Synj1) is a polyphosphoinositide phosphatase regulating clathrin-mediated endocytosis in conventional synapses [155]. A zebrafish synj1 null mutation (nrc) shows unanchored “floating” ribbons and reduced synaptic vesicles in cone but not rod synapses [189, 68], associated with defect in vision [4].

Photoreceptor L-type voltage-dependent calcium channels (Ca,1.4) are located in the vicinity of synaptic ribbons and mediate exocytosis [187]. In darkness, they are opened by the depolarized photoreceptor membrane potential, resulting in calcium-dependent glutamate release. Ca,1.4 are heteromultimeric protein complexes comprising of a pore-forming α1F subunit, encoded by CACNA1F, and accessory β and α2δ subunits, encoded by CACNB2 and CACNA2D4, respectively. Mutations in CACNA1F gene result in X-linked congenital stationary night blindness type 2 and cone-rod dystrophy in human [16, 178]. Two paralogues, cacna1fa and cacna1fb are identified in zebrafish with cacna1fa being expressed in photoreceptors while cacna1fb only existing in the inner retina [80]. CACNA1Fa protein exclusively accumulates at the outer plexiform layer and its null mutants (wud) present thinner outer plexiform layer, defective ERG, completely absent of synaptic ribbons, and mislocalized Ribeye.

Mutations in human CACNA2D4 are related to autosomal recessive cone dystrophy, while rods in different CACNA2D4 knockout mouse lines are even more severely affected, showing missing or largely defective scotopic and photopic ERG response [208, 86, 71]. More recently, another study focused on zebrafish cacna2d4 encoding Cav1.4 α2δ subunit [116]. cacna2d4 is duplicated in zebrafish as cacna2d4a and cacna2d4b. Double KO shows reduced pore-forming CACNA1Fa expression and minor defects in both visual function and ribbon structure. The zebrafish KO model is associated with similar moderate phenotype in human patients, providing a comprehensive tool to study the related human eye disorders.

Zebrafish show a peculiar phenomenon of disassembled ribbon synapses at least in the larval retina during the night. At light onset, the presynaptic structure is rapidly reassembled for function [47]. This unusual mechanism may have evolved to save energy in rapidly growing larvae.

Conclusion

The zebrafish retina serves as an important model of cone photoreceptor and has already contributed significantly to our understanding of photoreceptor maintenance and function. With its ever-increasing toolbox of imaging and genetic techniques, it will continue to crucially help us further in investigating the outer retina and its diseases.

Acknowledgements Open Access funding provided by Universität Zürich.

Funding This work was supported by the Swiss National Science foundation (31003A_173083).

Declarations

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ali MA (1971) Retinomotor response: characteristics and mechanisms. Vision Res 11:1225–1288. https://doi.org/10.1016/0042-6989(71)90010-1
2. Allison WT, Barthel LK, Skebo KM, Takechi M, Kawamura S, Raymond PA (2010) Ontogeny of cone photoreceptor mosaics in zebrafish. J Comp Neurol 518:4182–4195. https://doi.org/10.1002/cne.22447
3. Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE (2004) Visual pigment composition in zebrafish: evidence for a rhodopsin-porphyropsin interchange system. Vis Neurosci 21:945–952. https://doi.org/10.1017/S0952523804216145
4. Allwardt BA, Lall AB, Brockerhoff SE, Dowling JE (2001) Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J Neurosci 21:2330–2342
5. Alshamrani AA, Raddadi O, Schatz P, Lenzer S, Neuhaus C, Azzam E, Abdelkader E (2020) Severe retinitis pigmentosa phenotype associated with novel CNGB1 variants. Am J Ophthalmol Case Rep 19:100780. https://doi.org/10.1016/j.ajoc.2020.100780
6. Ames JB, Ishima R, Tanaka T, Gordon JL, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202. https://doi.org/10.1038/38310
7. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate
38. Ding JD, Salinas RY, Arshavsky VY (2015) Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J Cell Biol 211:495–502. https://doi.org/10.1083/jcb.201508093

39. Dizhoor AM, Lowe DG, Olsheskyva E, Laun RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC1, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352. https://doi.org/10.1016/0896-6273(94)90449-9

40. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L (1991) Recoverin: a calcium sensitive activator of retinal rod guanylyl cyclase. Science 251:915–918

41. Doerre G, Malicki J (2002) Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech Dev 110:125–138. https://doi.org/10.1016/s0925-4773(01)00571-8

42. Dryja TP, Finn JT, Pend JW, McGee TL, Benson EL, Yau KW (1996) Requirement of rigid-body motion of transmembrane helix 5 for the cell surface expression of the human photoreceptor membrane guanylyl cyclase. Proc Natl Acad Sci U S A 92:10177–10181. https://doi.org/10.1073/pnas.92.22.10177

43. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Brolley D, Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Brolley D, (1995) Mutations in the gene encoding the alpha subunit of the rod complex of human photoreceptor guanylyl cyclase. Invest Ophthalmol Vis Sci 36:364–366. https://doi.org/10.1093/iovs.36.3.34364a

44. Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94. https://doi.org/10.1016/s1352-3554(00)00014-8

45. Elbers D, Scholten A, Koch KW (2018) Zebrafish recoverin isoforms display differences in calcium switch mechanisms. Front Mol Neurosci 11:355. https://doi.org/10.3389/fnmol.2018.00355

46. Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Temporal kinetics of rod photoreceptors by converting vitamin A1 into A2. Curr Biol 14:3048–3057. https://doi.org/10.1016/j.cub.2004.10.018

47. Emran F, Rihel J, Adolph AR, Dowling JE (2010) Zebrafish larval photoreceptors form through the membrane evagination mechanism. J Cell Biol 211:495–502. https://doi.org/10.1083/jcb.201008093

48. Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR,doi.org/10.1083/jcb.201508093

49. Fadool JM (2003) Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev Biol 258:277–290. https://doi.org/10.1016/s0079-6107(03)00012-8

50. Fain GL, Matthews HR, Cormwell MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151. https://doi.org/10.1152/physrev.2001.81.1.117

51. Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262:1416–1419. https://doi.org/10.1126/science.8248781

52. Farrens DL, Aitenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770. https://doi.org/10.1126/science.274.5288.768

53. Fisher SK, Pfeffer BA, Anderson DH (1983) Both rod and cone disc shedding are related to light onset in the cat. Invest Ophthalmol Vis Sci 24:844–856

54. Fries R, Scholten A, Säftel W, Koch KW (2012) Operation profile of zebrafish guanylate cyclase-activating protein 3. J Neurochem 121:54–65. https://doi.org/10.1111/j.1471-4159.2011.07643.x

55. Fries R, Scholten A, Säftel W, Koch KW (2013) Zebrafish guanylate cyclase type 3 signaling in cone photoreceptors. PLoS One 8:e69656. https://doi.org/10.1371/journal.pone.0069656

56. Frøland Steindal IA, Whitmore D (2019) Circadian clocks in fish: what have we learned so far? Biology (Basel) 8. https://doi.org/10.3390/biology8010017

57. Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflügers Arch 454:805–819. https://doi.org/10.1007/s00424-006-0194-y

58. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362. https://doi.org/10.1038/ng0795-360

59. Georgiou M, Robson AG, Singh N, Pontikos N, Kane T, Hirji N, Ripamonti C, Rotsos T, Dubra A, Kalizteos A, Webster AR, Carroll J, Michaelides M (2019) Deep phenotyping of PDE6c-associated achromatopsia. Invest Ophthalmol Vis Sci 60:5112–5123. https://doi.org/10.1167/iovs.19-27761

60. Gesemann M, Neuhauß SCF (2020) Selective gene loss of visual and olfactory guanyl cyclase genes following the two rounds of vertebrate-specific whole-genome duplications. Genome Biol Evol 12:2153–2167. https://doi.org/10.1093/gbe/eva192

61. Gestri G, Link BA, Neuhauß SC (2012) The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 72:302–327. https://doi.org/10.1002/dneu.20919

62. Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-Sepharose chromatography. J Biol Chem 263:8133–8141

63. Gläsauer SM, Neuhauß SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–1060. https://doi.org/10.1007/s00438-014-0889-2

64. Grace MS, Wang LM, Pickard GE, Besharse JC, Menaker M (1996) The tau mutation shortens the period of rhythmic photoreceptor outer segment disc shedding in the hamster. Brain Res 735:93–100. https://doi.org/10.1016/0006-8993(96)00600-2

65. Gross JM, Perkins BD, Amsterdam A, Egaña A, Darland T, Matsui JI, Sciscia S, Hopkins N, Dowling JE (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–261. https://doi.org/10.1534/genetics.104.039727

66. Hárosi FFL (1994) An analysis of two spectral properties of vertebrate visual pigments. Vision Res 34:1359–1367. https://doi.org/10.1016/0042-6989(94)90134-1

67. Hodel C, Neuhauß SC, Bielmaier A (2006) Time course and development of light adaptation processes in the outer zebrafish retina. Anat Rec A Discov Mol Cell Biol Evol 288:653–662. https://doi.org/10.1002/ar.a.20329

68. Holzhausen LC, Lewis AA, Cheong KK, Brockerhoff SE (2009) Differential role for synaptotagmin 1 in rod and cone photoreceptors. J Comp Neurol 517:633–644. https://doi.org/10.1002/cne.22176

69. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu, B, Langleby E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Schra H, Almeida-King J, Loveland J, Trevorian S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McKay L, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Elliott D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Githero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Springer
Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raies C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gildertorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammedi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grahaim D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garrett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kim A, Konantz K, Konantz M, Oberlander M, Rudolph-Geiger S, Teucze M, Lanz C, Raddatz G, Oseogawa K, Zhu B, Rapp A, Widias S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LL, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498–503. https://doi.org/10.1038/nature12111

70. Hsu YT, Molday RS (1993) Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361:76–79. https://doi.org/10.1038/361076a0

71. Huang L, Zhang Q, Li S, Guan L, Xiao X, Zhang J, Jia X, Sun W, Zhu Z, Gao Y, Yin Y, Wang P, Guo X, Wang J (2013) Exome sequencing of 47 chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One 8:e65546. https://doi.org/10.1371/journal.pone.0065546

72. Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP (1995) Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod GMP phosphodiesterase. Nat Genet 11:468–471. https://doi.org/10.1038/ng1995-468

73. Hubbard R, Kropf A (1958) The action of light on rhodopsin. Proc Natl Acad Sci U S A 44:130–139. https://doi.org/10.1073/pnas.44.2.130

74. Ikarashi R, Akechi H, Kanda Y, Ahmad A, Takeuchi K, Morioka K, Zhu Z, Gao Y, Yin Y, Wang P, Guo X, Wang J (2013) Exome sequencing of 47 chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One 8:e65546. https://doi.org/10.1371/journal.pone.0065546

75. Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Insinna C, Besharse JC (2008) Intraflagellar transport and the function of retinal guanylate cyclase-activating protein 3 (GCAP3) in teleost fish: characterization of three novel GCAPs. J Biol Chem 283:21364–21370. https://doi.org/10.1074/jbc.M108.022010

76. Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W (2008) Photoreceptor protein s26, a cone homologue of S-modulin in frog retina. J Biol Chem 271:21359–21364

77. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:170–180. https://doi.org/10.1016/j.ydbio.2008.01.025

78. Iribarne M, Nishiwaki Y, Nakamura S, Araragi M, Oguri E, Masai J (2017) Aip1 is required for cone photoreceptor function and survival through the stability of Pde6c and Gc3 in zebrafish. Sci Rep 7:15496. https://doi.org/10.1038/s41598-017-11003-9

79. Ji S, Muto A, Orisme W, Henson HE, Parupalli C, Ju B, Baier H, Taylor MR (2014) Zebrafish Cacna1a is required for cone photoreceptor function and synaptic ribbon formation. Hum Mol Genet 23:2981–2994. https://doi.org/10.1038/hmg.2009

80. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824. https://doi.org/10.1152/physrev.00008.2002

81. Kawamura S (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362:855–857. https://doi.org/10.1038/362855a0

82. Kawamura S, Kuwata O, Yamada M, Matsuda S, Hisatomi O, Tokunaga F (1996) Photoreceptor protein s26, a cone homologue of S-modulin in frog retina. J Biol Chem 271:21359–21364

83. Kennedy B, Malicki J (2009) What drives cell morphogenesis: a look inside the vertebrate photoreceptor. Dev Dyn 238:2115–2138. https://doi.org/10.1002/dvdy.22010

84. Kennedy MJ, Dunn FA, Hurley JB (2004) Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 41:915–928

85. Kerov V, Laird JG, Joiner ML, Knecht S, Soh D, Hagen J, Gardner SH, Gutierrez W, Yoshimatsu T, Bhattacharai S, Puthussery T, Artemyev NO, Drack AV, Wong RO, Baker SA, Lee A (2018) α,δ-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. J Neurosci 38:6145–6160. https://doi.org/10.1523/JNEUROSCI.3818-16.2018

86. Kinney MS, Fisher SK (1978) The photoreceptors and pigment epithelium of the larval xenopus retina: morphogenesis and outer segment renewal. Proc R Soc Lond B Biol Sci 201:149–167. https://doi.org/10.1098/rspb.1978.0037

87. Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106

88. Koch KW, Duda T, Sharma RK (2010) Ca(2+)-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol Cell Biochem 334:105–115. https://doi.org/10.1007/s11010-009-0330-z

89. Koch KW, Strey L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66. https://doi.org/10.1038/33464a0

90. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadalà M, Jacobson SG, Wissinger B (2002) Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 71:422–425. https://doi.org/10.1086/341835

91. Kolb H, Fernandez E, Nelson R (1995) Webvision: the organization of the retina and visual system. In. doi:NBK482309

92. Konno H, Kim M, Mizota A, Kondo M, Hayashi H, Hayashi K, Oshima K, Tahira T (2004) A homozgyosity-based search for mutations in patients with autosomal recessive retinitis pigmentosa, using microsatellite markers. Invest Ophthalmol Vis Sci 45:4433–4439. https://doi.org/10.1167/iovs.04-05444

93. Korenbrot JI, Mehta M, Tserentsoodol N, Postlethwait JH, Rebrik TI (2013) EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 33:17763–17776. https://doi.org/10.1523/JNEUROSCI.2659-13.2013

94. Koutalos Y, Nakatani K, Yau KW (1995) The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol 106:891–921. https://doi.org/10.1085/jgp.106.5.891

95. Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov K.A, Quillinan N, Arshavsky VY, Wessle KG, Chen CK, Burns ME (2006) RGS expression rate-limits recovery of rod photoreceptors. Neuron 51:409–416. https://doi.org/10.1016/j.neuron.2006.07.010

96. Kroek BL, Perkins BD (2008) The intr flagged transport protein IFT57 is required for cilia maintenance and regulates IFT-particle...
provides insight into synaptic ribbon function. Neuron 28: 857–872. https://doi.org/10.1016/s0896-6273(00)00159-8

Scholten A, Koch KW (2011) Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina. PLoS One 6:e23117. https://doi.org/10.1371/journal.pone.0023117

Sears S, Erickson A, Hendrickson A (2000) The spatial and temporal expression of outer segment proteins during development of Macaca monkey cones. Invest Ophthalmol Vis Sci 41:971–979

Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW (2002) Ca2+-myristoyl switch in the neuronal calcium sensor requires different functions of Ca2+-binding sites. J Biol Chem 277:50365–50372. https://doi.org/10.1074/jbc.M204338200

Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30

Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nighblindness from the human rhodopsin Gly-90→Asp mutation. Proc Natl Acad Sci U S A 92:880–884. https://doi.org/10.1073/pnas.92.3.880

Sjostrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170. https://doi.org/10.1016/s0022-5320(58)90050-9

Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, A9 2:880. https://doi.org/10.1016/0006-8993(93)91748-h

Spencer WJ, Lewis TR, Pearring JN, Arshavsky VY (2020) The spatial and temporal expression of multiple red and green subtype opsins during zebrafish development. J Exp Biol 208:1337–1345. https://doi.org/10.1242/jeb.01532

Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Gotm/dv319.2004.11.009

Stamfood G, Evangelista M, Fadool JM, Brockerhoff SE (2007) A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27:13866–13874. https://doi.org/10.1523/JNEUROSCI.3136-07.2007

Steindal AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Lenoy BP, van den Born LI, Hoeyng CB, Cremers FP, Klaver CC (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247. https://doi.org/10.1016/j.ajhg.2009.06.016

Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508. https://doi.org/10.1002/jne.9901900307

Steindal IA, Whitmore D (2020) Zebrafish circular clock entrainment and the importance of broad spectral light sensitivity. Front Physiol 11:1002. https://doi.org/10.3389/fphys.2020.01002

Sterling P, Matthews G (2005) Structure and function of ribbon synapses. Trends Neurosci 28:20–29. https://doi.org/10.1016/j.tins.2004.11.009

Stiebel-Kalish H, Reich E, Rainy N, Vatine G, Nisgav Y, Tovar A, Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Sterling P, Matthews G (2005) Structure and function of ribbon synapses. Proc Natl Acad Sci U S A 102:1638–1643. https://doi.org/10.1073/pnas.1003551100

Stolten A, Koch KW (2015) Retina specific GCAps in zebrafish acquire functional selectivity in Ca2+-sensing by myristoylation and Mg2+-binding. Sci Rep 5:11228. https://doi.org/10.1038/srep11228

Suzuki SC, Blecker A, Williams PR, Takechi M, Kawamura S, Wong RO (2013) Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. Proc Natl Acad Sci U S A 110:15109–15114. https://doi.org/10.1073/pnas.1305511110

Szymanska K, Johnson CA (2012) The transition zone: an essential functional compartment of cilia. Cilia 1:10. https://doi.org/10.1186/2046-2530-1-10

Takechi M, Kawamura S (2005) Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. J Exp Biol 208:1337–1345. https://doi.org/10.1242/jeb.01532

Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447. https://doi.org/10.1038/376444a0

Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679. https://doi.org/10.1098/rstb.2001.0975

Terman JS, Remé CE, Terman M (1993) Rod outer segment disk shedding in rats with lesions of the suprachiasmatic nucleus. Brain Res 605:256–264. https://doi.org/10.1016/0006-8993(93)91748-h

Thiadiens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Lenoy BP, van den Born LI, Hoeyng CB, Cremers FP, Klaver CC (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247. https://doi.org/10.1016/j.ajhg.2009.06.016

Tom Dieck S, Brandstädttner JH (2006) Ribbon synapses of the retina. Cell Tissue Res 326:339–346. doi: https://doi.org/10.1007/s00441-006-0234-0

Tsuikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurones. Neuron 42:703–716. https://doi.org/10.1016/j.neuron.2004.07.026

Van Epps HA, Hayashi M, Lucart L, Stearns GW, Hurley JB, De Camilli P, Brockerhoff SE (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptotagmin I in cone photoreceptor ribbon anchoring. J Neurosci 24:8641–8650. https://doi.org/10.1523/JNEUROSCI.2892-04.2004

Vandepeele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: parameone age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A 101:1638–1643. https://doi.org/10.1073/pnas.0307968100

Vinberg F, Chen J, Kefalov VJ (2018) Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 67:87–101. https://doi.org/10.1016/j.preteyeres.2018.06.001

Vinberg F, Wang T, De Maria A, Zhao H, Bassnett S, Chen J, Kefalov VJ (2017) The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision. Elife 6. https://doi.org/10.7554/eLife.24550

Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ (2015) A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease. Hum Mol Genet 24:5915–5929. https://doi.org/10.1093/hmg/ddv319

Vogalis F, Shiraki T, Kojima D, Wada Y, Nishiwaki Y, Jarvinen JL, Sugiyaama J, Kawakami K, Masai I, Kawamura S, Fukada Y, Lamb TD (2011) Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower
205. Willoughby JJ, Jensen AM (2012) Generation of a genetically
204. Williams DS (2002) Transport to the photoreceptor outer segment
203. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation
206. Wong-Riley MT, Besharse JC (2012) The kinesin superfamily
207. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV,
Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration
in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854
208. Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F, Neidhardt J,
Glaus E, Nürnberg P, Ruether K, Berger W (2006) Structural and
197. Wald G (1939) The porphyropsin visual system. J Gen Physiol 55:75–94. https://doi.org/10.1085/jgp.22.6.775
198. Wan L, Almers W, Chen W (2005) Two ribeye genes in teleosts:
the role of Ribeye in ribbon formation and bipolar cell development.
J Neurosci 25:941–949. https://doi.org/10.1523/JNEUROSCI.4657-04.2005
199. Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S
(2001) Species-specific differences in expression of G-protein-coupled
receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell transduction. J Neurosci 21:9175–9184
200. Weitz CJ, Miyake Y, Shinzato K, Montag E, Zrenner E, Went LN,
Nathans J (1992) Human tritanopia associated with two amino
acid substitutions in the blue-sensitive opsin. Am J Hum Genet 50:498–507
201. Weitz CJ, Went LN, Nathans J (1992) Human tritanopia associated
with a third amino acid substitution in the blue-sensitive visual
pigment. Am J Hum Genet 51:444–446
202. Weitz D, Fiecek N, Kremmer E, Bauer PJ, Kaupp UB (2002)
Subunit stoichiometry of the CNG channel of rod photoreceptors.
Neuron 36:881–889. https://doi.org/10.1016/s0896-6273(02)
01098-x
203. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation
by photoexcited rhodopsin is quenched when rhodopsin is phos-
phorylated and binds the intrinsic 48-kDa protein of rod outer
segments. Proc Natl Acad Sci U S A 83:1178–1178. https://doi.
org/10.1073/pnas.83.5.1174
204. Williams DS (2002) Transport to the photoreceptor outer segment
by myosin VIIa and kinesin II. Vision Res 42:455–462. https://
doi.org/10.1016/s0042-6999(01)00228-0
205. Willoughby JJ, Jensen AM (2012) Generation of a genetically
encoded marker of rod photoreceptor outer segment growth and
renewal. Biol Open 1:30–36. https://doi.org/10.1242/bio.2011016
206. Wong-Riley MT, Besharse JC (2012) The kinesin superfamily
protein KIF17: one protein with many functions. Biomol Concepts 3:267–282. https://doi.org/10.1515/bmc-2011-0064
207. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV,
Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration
in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854
208. Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F, Neidhardt J,
Glaus E, Nürnberg P, Ruether K, Berger W (2006) Structural and
functional abnormalities of retinal ribbon synapses due to
Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523–3530.
https://doi.org/10.1167/iovs.06-06271
209. Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in
the rhodopsin kinase gene in the Oguchi form of stationary night
blindness. Nat Genet 15:175–178. https://doi.org/10.1038/ng0297-175
210. Yau KW, Baylor DA (1989) Cyclic GMP-activated conductance of
retinal photoreceptor cells. Annu Rev Neurosci 12:289–327.
https://doi.org/10.1146/annurev.ne.12.030189.001445
211. Yau KW, Nakatani K (1985) Light-suppressible, cyclic GMP-
sensitive conductance in the plasma membrane of a truncated
rod outer segment. Nature 317:252–255. https://doi.org/10.1038/317252a0
212. Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T (2020)
Fovea-like photoreceptor specializations underlie single UV cone
driven prey-capture behavior in zebrafish. Neuron 107:320–337.e326. https://doi.org/10.1016/j.neuron.2020.04.021
213. Young RW (1967) The renewal of photoreceptor cell outer seg-
ments. J Cell Biol 33:61–72. https://doi.org/10.1083/jcb.33.1.61
214. Young RW, Bok D (1969) Participation of the retinal pigment
epithelium in the rod outer segment renewal process. J Cell Biol
42:392–403. https://doi.org/10.1083/jcb.42.2.392
215. Zang J, Keim J, Kastenhuber E, Gesemann M, Neuhauss SC
(2015) Recoverin depletion accelerates cone photoreceptor recovery.
Open Biol 5. https://doi.org/10.1098/rsob.150086
216. Zang J, Matthews HR (2012) Origin and control of the dominant
time constant of salamander cone photoreceptors. J Gen Physiol
140:219–233. https://doi.org/10.1083/jgp.201110762
217. Zang J, Neuhauss SC (2018) The binding properties and physi-
ological functions of recoverin. Front Mol Neurosci 11:473.
https://doi.org/10.3389/fnmol.2018.00473
218. Želinka CP, Sotolongo-Lopez M, Fadool JM (2018) Targeted dis-
ruption of the endogenous zebrafish rhodopsin locus as models of
rapid rod photoreceptor degeneration. Mol Vis 24:587–602
219. Zhao X, Huang J, Khani SC, Palczewski K (1998) Molecular
biology of recoverin. Front Mol Neurosci 11:473. https://doi.
org/10.3389/fnmol.2018.00473
220. Zheng J, Traudeau MC, Zagotta WN (2002) Rod cyclic nucleotide-
gated channels have a stoichiometry of three CNGA1 subunits
and one CNGB1 subunit. Neuron 36:891–896. https://doi.org/10.
1016/s0896-6273(02)01099-1
221. Zhong H, Molday LL, Molday RS, Yau KW (2002) The heteromeric
cyclic nucleotide-gated channel adopts a 3A:1B stoichi-
ometry. Nature 420:193–198. https://doi.org/10.1038/
nature01201
222. Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson
DE, Berens P, Baden T (2018) Zebrafish differentially process
Fovea-like photoreceptor specializations underlie single UV cone
driver prey-capture behavior in zebrafish. Neuron 107:320–337.e326. https://doi.org/10.1016/j.neuron.2020.04.021