This is a repository copy of The identification of poultry processing in archaeological ceramic vessels using in situ isotope references for organic residue analysis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/110715/

Version: Published Version

Article:
Colonese, Andre Carlo orcid.org/0000-0002-0279-6634, Lucquin, Alexandre Jules Andre, Craig, Oliver Edward orcid.org/0000-0002-4296-8402 et al. (10 more authors) (2017) The identification of poultry processing in archaeological ceramic vessels using in situ isotope references for organic residue analysis. Journal of archaeological science. pp. 179-192. ISSN 0305-4403

https://doi.org/10.1016/j.jas.2016.12.006

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The identification of poultry processing in archaeological ceramic vessels using in-situ isotope references for organic residue analysis

A.C. Colonese a, a, A. Lucquin a, E.P. Guedes b, R. Thomas c, J. Best d, B.T. Fothergill c, N. Sykes e, A. Foster c, H. Miller e, K. Poole f, M. Maltby d, M. Von Tersch f, O.E. Craig a

a BioArCh, Department of Archaeology, University of York, YO10 5DD, United Kingdom
b Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
c Department of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
d Department of Archaeology, School of Humanities, University of Nottingham, NG7 2RD, United Kingdom
e Department of Archaeology, Anthropology & Forensic Science, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
f Department of Archaeology, University of Sheffield, Northgate House, West Street, Sheffield, S1 4ET, United Kingdom

1. Introduction

Products from omnivorous animals, such as pigs and poultry, dominate global meat production and are important for fuelling the next “Livestock Revolution” (Delgado et al., 1999). Undoubtedly, these were also important commodities in many past contexts, as attested by the frequent occurrence of their skeletal remains on a wide range of archaeological sites (Maltby, 2014; O’Connor, 2014; Redding, 2015; Sykes, 2012). Whilst it is generally accepted that pig bones on archaeological sites provide evidence for the consumption of pork products, the use of poultry in the past is complicated by other historically and ethnographically documented uses, from recreation to ritual (Sykes, 2012). Even as a foodstuff, poultry have been overlooked and underinvestigated in the past despite their undisputed importance today as a major global resource. Therefore, whilst there is clear faunal evidence attesting to the presence of domestic chicken on European archaeological sites since later prehistory (Peters et al., 2015; Serjeantson, 2009), it is unclear when, where and why poultry became routinely raised for their meat and eggs and viewed primarily as a foodstuff. One way to unequivocally demonstrate this link is by directly detecting poultry products in domestic cooking vessels.

Archaeological ceramic vessels provide a wealth of information on resource use, offering a window into past production, storage, transport and processing of food and other commodities. Lipids (fats, oils and waxes) can be readily absorbed in unglazed, porous ceramic vessels (Evershed et al., 1999), and preserved for hundreds to thousands of years (Craig et al., 2013). Analytical techniques, involving gas chromatography (GC) and GC-mass spectrometry (GC-MS), provide a means of associating broad classes of compounds to their biological precursors (Evershed et al., 1999;
Evershed, 2008). Stable carbon isotope analysis of palmitic (C_{16:0}) and stearic (C_{18:0}) acids by GC-combustion—stable isotope ratio MS (GC-C-IRMS) provides a complementary method for animal fat identification in archaeological ceramic vessels (Copley et al., 2003; Craig et al., 2013; Evershed et al., 2002b; Mukherjee et al., 2008; Salque et al., 2013). This latter approach is routinely used to identify ruminant products (Craig et al., 2012), and dairying activities in the archaeological record. However, relatively few studies have considered using this approach to identify poultry products or to distinguish these from other omnivorous animals, such as pigs (Evershed et al., 2002b).

In a first attempt to determine the processing of poultry in ceramic vessels, we investigate a pottery assemblage from the Anglo-Saxon site of Flixborough in North Lincolnshire (England). The site was chosen as its faunal assemblage shows clear evidence of mixed monogastric and omnivorous animal exploitation, i.e. geese, chickens, pigs. To distinguish these, we measured carbon isotope values of fatty acids obtained from archaeological bones of monogastric-omnivorous animals associated with the pottery to provide in-situ reference values. Our aim was to determine whether different monogastric commodities were processed in ceramic vessels.

1.1. Isotopic variability in monogastric-omnivorous animal fats

The stable carbon isotopic ratios of monogastric and ruminant adipose fatty acids differ due to fundamental variations in digestive physiology and metabolic processes (Copley et al., 2003; Howland et al., 2003; Jim et al., 2004; Stott et al., 1997a). Notably, ruminants incorporate specific saturated compounds (e.g. C_{16:0}) directly from their diet into their tissues, following biodegeneration of the unsaturated precursors in the rumen (Harrison and Leat, 1975; Kroghdahl, 1985). This process leads to measurable 13C depletion compared to de novo synthesized components (e.g. C_{16:0}). However, distinguishing fat from economically important monogastric and omnivorous animals (e.g. pigs and poultry) is less straightforward using this approach. Omnivorous animals consume a broader range of food sources compared to herbivores and consequently the carbon in fatty acids can be derived from a wider range of macro-nutrient sources, including lipids, carbohydrates and proteins from both animals and plants (Budge et al., 2011; Howland et al., 2003; Stott et al., 1997a; Trust Hammer et al., 1998). Therefore, fatty acids from omnivores exhibit considerably larger isotopic variability (e.g. Delgado-Chavero et al., 2013; Recio et al., 2013) compared to ruminant and monogastric herbivores, depending on the animal’s diet and therefore husbandry practices. As these are variable in the past and most likely different from the present, modern references for omnivores may be inappropriate and ideally site specific “in-situ” baselines need to be constructed.

1.2. Archaeological bone as an in-situ baseline for organic residue analysis

All previous attempts to interpret fatty acids from archaeological pottery rely on comparison with reference fats from modern animals raised on known diets and preferably sourced close to the archaeological sites under investigation (Copley et al., 2003; Dudd and Evershed, 1998; Dunne et al., 2012; Evershed et al., 2002b; Gregg et al., 2009; Salque et al., 2013; Spangenberg et al., 2006). In Northern Europe, for example, comparative reference fats are typically derived from animals raised on C_{3} vegetation with the assumption that they represent the variety of environmental/dietary conditions experienced by past animals (Dudd and Evershed, 1998). While this is entirely reasonable for herbivore ruminants, it does not account for the greater variability in the diet of omnivores. Furthermore modern omnivore references may not be suitable analogues for animals raised in areas that have undergone substantial changes in vegetation composition during the Holocene (e.g. Near East, (Goodfriend, 1990); North Africa, (Castaneda et al., 2009)) or in cultural contexts where foddering strategies are known to have changed in the past (Hamilton and Thomas, 2012; Magdwick et al., 2012). Both geographic and temporal variability must be considered when deriving suitable isotopic reference ranges in order to capture environmental and cultural effects. Moreover, the use of modern reference fat inherently implies that animal fat preserved in ceramic vessels originate predominantly, or exclusively, from adipose tissue. Nevertheless, other animal tissues are similarly lipid rich (e.g. bone marrow) and thus are potential sources of animal fat preserved in ceramic vessels. The boiling of bone to release nutrients, for example in soups and broths, may provide another mechanism for transferring bone lipids to archaeological ceramics.

As soft tissues are very rarely preserved in archaeological contexts, animal bone may provide an alternative or complementary source of fatty acids for comparison. Animal bones are often found directly associated with pottery (i.e. in the same contexts, stratigraphic units or site areas, and in rare instances within the pots themselves) and are therefore chronologically coherent with cultural and environmental contexts. The lipid composition in adipose tissues and cortical bone are similar in nature (Kagawa et al., 1986; Ren et al., 2008) and studies have shown that lipids are preserved in archaeological bone (Evershed et al., 1995b; Spangenberg et al., 2014; Stott and Evershed, 1996). Recently Colonese et al. (2015) have demonstrated that endogenous palmitic (C_{16:0}) and stearic (C_{18:0}) fatty acids can be recovered in sufficient quantity from archaeological bones from a range of environments to permit stable isotope analysis by GC-C-IRMS. In agreement with earlier studies (Stott et al., 1997a, 1999) it has been shown that stable carbon isotope composition of bone lipid covaries with bone collagen (Colonese et al., 2015), supporting the endogenous origin of fatty acids and their potential for paleodietary reconstruction.

2. Flixborough

2.1. The site and economy

Excavations at Flixborough, North Lincolnshire, exposed a high-status Anglo-Saxon site with an occupation sequence stretching from the 7th to 11th centuries AD (with subsequent use in the 12th–15th centuries) (Loveland and Gaunt, 2007; Loveluck, 1998). Over 200,000 fragments of animal bone were recovered from Flixborough, making it one of the largest assemblages of Middle to Late Anglo-Saxon date in England (Jaques et al., 2007). A hand-collected and coarse-sieved assemblage of over 41,000 mammal and bird bone fragments dating from the early 7th to late 10th century was identified to taxon. The most numerous domesticates (average %NISP) were cattle (Bos taurus, 29.4%), followed by sheep/goat (Ovis aries/Capra hircus, 27%), pig (Sus scrofa domesticus, 19.4%), chicken (Gallus gallus domesticus, 15%), and goose (Anser sp., 9.2%) respectively, although the relative proportions of these changed through time (Jaques et al., 2007).

Whilst cattle and sheep/goat could have provided multiple secondary products such as milk, wool and traction, pigs would have primarily been a meat resource. Chickens would have been a useful source of meat and feathers, eggs and potentially fertiliser in the form of dung. However, so far the role of ceramic vessels for processing and preparing these various animal products has been only preliminarily considered (Young and Vince, 2005). In particular, the identification of domestic poultry in pottery would help clarify their role at the site and provide the first insights into the...
material culture associated with their processing.

3. Material and methods

3.1. Modern samples

In order to confirm the utility of bone lipids as reference samples, differences in δ13C values of C16:0 and C18:0 between adipose (subcutaneous and skin fat) and bone lipid was investigated in three distinct groups of modern chickens raised in Britain. Specimens were slaughtered for commercial purposes or died of natural causes before the experiment. Group 1 includes 10-week old, free range specimens acquired from an organic farm in Yorkshire (CH-FR, n = 10). These specimens were fed on organic, C3-plant derived pellets and grass; Group 2 includes 4-week old, commercial non-free range broilers (fresh class A), from a big-chain supermarket (CH-SP, n = 5); Group 3 includes >28-week old, non-commercial free-range specimens, fed ad libitum with occasional supplements of mealworms (CH-D, n = 8). Unfortunately the adipose tissue for the Group 3 was not available and could not be sampled. However, the bone isotope data was included to explore variability between the populations. Bone lipid δ13C values are also compared with previously reported values from chicken adipose tissues (Dudd and Evershed, 1998; Evershed et al., 2002b), which were 3-week old broilers fed with pellets. In chickens, de novo synthesis of fatty acids occurs mainly in the liver and it is transferred by lipoproteins to the site of deposition, whereas in pig it takes place mainly in the adipose tissue, similar to ruminants (Laliotis et al., 2010). In order to investigate any isotopic differences in fatty acids associated with biosynthesis, subcutaneous adipose and bone lipids were also investigated in commercial non-free range pigs from several supermarkets and a local butcher in Yorkshire (Pig-SP, n = 5). The stable carbon and nitrogen isotope composition of modern chickens was also analyzed from the modern specimens and compared with bone lipid δ13C values.

3.2. Archaeological samples

Animal bones retrieved from external refuse contexts at Flixborough (5983, 5653), dated to mid-8th to early-9th century (phase 3bv), were selected for collagen and bone lipid stable isotopic analysis. These included chicken (Chk, n = 10), goose (Gos, n = 10) and pig (Pig, n = 5). Whenever possible, samples were selected to represent individual animals by sampling the same-side of a specimen. Bone, adipose tissue and potsherds were screened by GC and injected 1 μl (details can be found in previous studies (e.g. Craig et al., 2010). Briefly, fragments of modern (100–186 mg) and archaeological bones (245–630 mg) were demineralised using 0.6 M HCl, at 4 °C for several days. Samples were then rinsed with distilled water and gelatinised with 0.001 M HCl at 80 °C for 48 h. Initially, the supernatant containing the collagen of modern bones were ultrafiltered (30 kDa, Amicon® Ultra-4 centrifugal filter units; Millipore, MA, USA). Given that the bones were modern, or very well-preserved, the remaining samples were filtered using Polyethylene Ezee filters (Elkay Laboratories Ltd., 9 mL, pore size 60–90 μm). There were no isotopic differences between ultra-filtered and non-ultra-filtered samples (t-test, t = -1.44; p = 0.223; t = -1.78; p = 0.148), in agreement with previous studies (Sealy et al., 2014). Samples were then frozen and lyophilised.

3.4. Lipid extraction: bone, adipose tissue and potsherds

Lipids were extracted from archaeological (−160–580 mg) and modern bones free of marrow (−20–250 mg) following a two-step method (Colonese et al., 2015). Archaeological and modern bones were rinsed several times in distilled water. Archaeological bones were dried at room temperature while modern bones were frozen and subsequently freeze-dried. Mechanically cleaned chunks or coarsely ground bones were lipid-extracted using the same procedure as for defatting modern bones (see above). Exogenous lipids were first removed with 2:1 DCM:MeOH (3 × 2 mL) from each bone sample. The supernatant was removed, discarded and the bone powder was dried completely under a gentle stream of N2. The remaining bone samples were lipid-extracted using acidified methanol (e.g. Correa-Ascencio and Evershed, 2014; Craig et al., 2013). After adding 2 mL of methanol, the samples were ultrasonicated for 15 min. Subsequently, 400 μL of H2SO4 was added and the samples were heated at 70 °C for 4 h. The samples were then centrifuged (850 × g) for 5 min. The supernatant was extracted with hexane (3 × 2 mL) and neutralised with K2CO3. The extracts were then dried under a gentle stream of N2 and an internal standard (10 μg hexatriacontane) added to each sample before further analysis by GC/MS and GC/CIRMS. The same method (acidified methanol) was applied for the subcutaneous adipose tissue (5 and 100 mg), after tissues were rinsed repeatedly with deionized water, frozen and lyophilised.

Ceramic powder drilled (d. 2 mm−5 mm) from the internal sherd surface (−1 g) was lipid-extracted using the methanol (4 mL) and H2SO4 (800 μL) procedure as for bone lipids. A selection of samples (n = 10) were solvent extracted (DCM:MeOH; 2:1 vol/vol, 3 × 2 mL, 15 min) using established protocols (e.g. Dunne et al., 2012). These were silylated N,O-bis(trimethylsilyl) trifluoroacetamide at 70 °C for 1 h and analyzed by high temperature GC (HT-GC) to determine the presence of any acyl lipids (mono-, di- and triglycerides).

Bone, adipose tissue and potsherd samples were screened by GC using an Agilent 7890A gas chromatograph (Agilent Technologies, Cheadle, Cheshire, UK). The injector was splitless and maintained at 300 °C and injected 1 μL of sample into the GC. The column used was a 100% Dimethylpolysiloxane DB-1 (15 m × 320 μm × 0.1 μm; J&W Scientific, Folsom, CA, USA). The carrier gas was hydrogen with a constant flow rate of 2 ml/min. The temperature program was set at 100 °C for 2 min, rising by 20 °C/min until 325 °C. This temperature was maintained for 3 min. The total run time was 16.25 min. The lipids were quantified according to the internal standard and diluted appropriately prior to GC-MS and GC-c-IRMS as described below. To avoid co-elution, samples with a higher concentration of C18:1 were also treated with AgNO3 to isolate the saturated counterpart prior to isotopic analysis. Stable isotope values of paired samples did not show evidence of isotopic fractionation between AgNO3 treated and untreated samples.
3.5. Carbon and nitrogen stable isotope analysis of bulk collagen

Collagen samples (1 mg) were analyzed in duplicate or triplicate by EA-IRMS in a GSL analyser coupled to a 20–22 mass spectrometer (Sercon, Crewe, UK) at the University of York. The analytical error for both δ13C and δ15N values, calculated from repeated measurements of each sample and measurements of the bovine control from multiple extracts, was <0.2% (1σ). δ13C, δ15N = ([Sample/Standard −1] × 1,000, where R = δ13C/12C and δ15N/14N. The standard for δ13C is Vienna PeeDee Belemnite (V-PDB), the standard for δ15N is air N2. In-house collagen standards (bovine control) were exchanged between laboratories (University of Bradford) to ensure accuracy.

3.6. Gas chromatography-mass spectrometry (GC-MS)

GC-MS was carried out on all samples using a 7890A Series chromatograph attached to a 5975C Inert XL mass-selective detector with a quadrupole mass analyser (Agilent Technologies, Cheadle, UK). The carrier gas used was helium, and the inlet/column head-pressure was constant. A splitless injector was used and maintained at 300 °C. The GC column was inserted directly into the ion source of the mass spectrometer. The ionisation energy of the mass spectrometer was 70 eV and spectra were obtained by scanning between m/z 290 and 800. Three different analytical columns were used.

General screening was performed using a DB-5ms (5%-phenyl)-methylpolysiloxane column (30 m × 0.250 mm × 0.25 μm; J&W Scientific, Folsom, CA, USA). The temperature for this column was set at 50 °C for 2 min, then raised by 10 °C min−1 to 325 °C, where it was held for 15 min. This column was also used with the MS in Single Ion Monitoring (SIM) mode to selectively detect ions characteristics of alkylphenyl alkanoic acids (APAA; m/z 105, m/z 262, m/z 290, m/z 318) in order to increase the sensitivity for the detection of lipids derived from aquatic products (Evershed et al., 2008a,b; Hansel et al., 2004). For this purpose, the temperature was set at 120 °C for 2 min, raised by 6 °C min−1 to 260 °C, and then raised by 20 °C min−1 to 325 °C where it was held for 10 min.

A second, more polar column (DB-23, 50%-cyanopropyl-methylpolysiloxane, 60 m × 0.25 mm × 0.25 μm; J&W Scientific) was used to provide better resolution of isoprenoid fatty acids. The temperature was set at 50 °C for 2 min, raised by 10 °C min−1 to 100 °C, then raised at 4 °C min−1 to 250 °C, where it was held for 20 min. This column was also used with the MS in Single Ion Monitoring (SIM) mode to selectively detect ions characteristics of APAA (m/z 105, m/z 262, m/z 290, m/z 318).

Solvent extracted samples were analyzed with a HT-DB1, 100% Dimethylpolysiloxane (15 m × 0.320 mm × 0.1 μm) (J&W Scientific, Folsom, CA, USA). The injector was maintained at 350 °C. The temperature of the oven was set at 50 °C for 2 min, and then raised by 10 °C min−1 to 350 °C, where it was held for 15 min.

3.7. Gas chromatography-combustion-isotope ratio mass spectrometry (GC-c-IRMS)

Carbon stable isotopes were determined on two fatty acid methyl esters; methyl palmitate (C16:0) and methyl stearate (C18:0) in each extract using an Isoprime 100 (Isoprime, Cheadle, UK) linked to a Hewlett Packard 78908 series gas chromatograph (Agilent Technologies, Santa Clara, CA, USA) with an Isoprime GC5 interface (Isoprime, Cheadle, UK). The gases eluting from the chromatographic column were split into two streams. One of these was directed into an Agilent 5975C inert mass spectrometer detector (MSD), for sample identification and quantification, while the other was directed through the GC5 furnace held at 850 °C to oxidise all carbon species into CO2. All samples were diluted with hexane and subsequently 1 μL of each sample was injected into a DB-5MS fused-silica column. The temperature was set for 0.5 min at 50 °C, and raised by 10 °C min−1 until 300 °C was reached, at which it stayed for 10 min. The carrier gas was ultra-high purity grade helium with a flow rate of 3 mL min−1. Eluted products were combusted to CO2 and ionized in the mass spectrometer by electron impact. Ion intensities of m/z 44, 45, and 46 were monitored in order to automatically compute the 13C/12C ratio of each peak in the extracts. Computations were made with IonVantage Software (Isoprime, Cheadle, UK) and were based on comparisons with a standard reference gas (CO2) of known isotopic composition that was repeatedly measured. The results from the analysis are reported in parts per mil (%) relative to an international standard (V-PDB). Replicate measurements of each sample and a mixture of fames fatty acid methyl esters (FAMES) with δ13C values traceable to international standards were used to determine instrument precision (<0.3%) and accuracy (<0.5%). Values were also corrected subsequent to analysis to account for the methylation of the carboxyl group that occurs during acid extraction. Corrections were based on comparisons with a standard mixture of C16:0 and C18:0 fatty acids of known isotopic composition processed in each batch as a sample.

3.8. Statistical analysis

Fatty acid δ13C values from bone and adipose tissue in modern chicken and pig samples were compared using a paired t-test (after checking for equality of variance with a F test) in PAST 3.x (Hammer et al., 2001).

Theoretical mixing curves were computed in order to estimate the effect of mixing of different animal fats on the fatty acid δ13C values of ceramic sherd (e.g. Dudd, 1999; Evershed, 2008; Mukherjee et al., 2008). Four mixing curves were computed between chicken and pig, goose, ruminant adipose and milk fat. This approach takes into account the average δ13C values and the relative abundance of C16:0 and C18:0 fatty acids from each animal fat. Fatty acid δ13C values for goose, pig, and chicken were taken from the archaeological bones, while fatty acid δ13C values for ruminant adipose and milk were sourced from the literature (Dudd and Evershed, 1998). The relative proportions of C16:0 and C18:0 fatty acids (average % of free fatty acid distribution) were taken from Dudd (1999).

4. Results and discussion

4.1. Molecular and stable isotope composition of modern bone and adipose tissue

Derivatized fatty acids from bone and adipose tissues were similar for both chicken and pig samples (Fig. 1), except for a lower concentration of unsaturated and polyunsaturated fatty acids recovered in bone, which can be in part attributed to the solvent wash. Similar results were obtained for pig samples. In chicken and pig, the main lipids extracted were C18:1, C16:0, C18:0, C18:2, C20:4. In chicken these were followed by other saturated (C12:0 to C24:0), monounsaturated (C14:1, C17:1), polyunsaturated fatty acids (C20:2, 22:3, 22:5) and cholesterol derivatives (particularly in bone). The fatty acid distribution is consistent with poultry fat reported in the literature (Givens et al. 2011; Koizumi et al., 1991) and some variation in relative abundance between groups most likely reflects diversification in dietary components (Crespo and Esteve-Garcia, 2002). In pig samples, other extracted lipids also include saturated (C12:0 to C24:0), monounsaturated (C17:1 to C24:1), polyunsaturated fatty acids (C20:2, C20:3, C20:5, C22:4, C22:5, C22:6) and...
cholesterol derivatives (particularly in bone).

The δ13C values of C16:0 and C18:0 in bone and adipose tissues are reported in Table 1. Free range organic C1 specimens (Group 1) have average δ13C values of C16:0 and C18:0 in subcutaneous fat of −29.2 ± 1.0‰ and −28.3 ± 1.2‰ respectively statistically indistinguishable from bone (−29.0 ± 0.9‰ and −28.5 ± 0.7‰ paired t-test, p = 0.335 and t = −1.659, p = 0.131 respectively). The mean pairwise differences in δ13C between adipose and bone lipids is 0.2‰ and 0.4‰ for C16:0 and C18:0 respectively. In commercial non-free range chickens (Group 2), the average δ13C values of C16:0 and C18:0 are significantly lower in adipose tissue (−29.2 ± 0.6‰ and −29.4 ± 0.4‰) compared to bone (−28.5 ± 0.3‰ and −28.3 ± 0.3‰) by 0.8‰ (paired t-test, t = −6.6, p = 0.003) and 1.1‰ (t = −7.78, p = 0.001) respectively. No significant differences were observed in the distribution of δ13C values of C16:0 and C18:0 between adipose tissue (−29.3 ± 0.6‰ and −28.4 ± 0.6‰) and bone (−29.5 ± 0.7‰ and −28.6 ± 0.3‰) from commercial pork samples (paired t-test, t = 1.15, p = 0.327 and t = −1.17, p = 0.304 respectively). The small isotopic offset between adipose and bone lipid in chicken noticed in Group 2 might reflect differential turnover rate and isotopic fractionation during de novo synthesis and assimilation from diet of fatty acid in liver, bone and adipose tissue (Nir et al., 1988). However, the magnitude of the adipose/bone pairs is small.

Comparisons between bone fatty acid δ13C values reveal no overall differences between specimens from Groups 1 and 2 (organic free range and battery) for both C16:0 (t = −1.18, p = 0.256) and C18:0 (t = −0.61, p = 0.549; Fig. 2). By contrast, non-commercial free-range specimens (Group 3) have δ13C values of C16:0 and C18:0 in bone (−25.4 ± 0.6‰ and −25.8 ± 0.9‰) significantly higher than specimens from both Groups 1 and 2 (p < 0.005 for both groups). Average δ13C values of C16:0 (−30.2‰) and C18:0 (−29.4‰) in adipose tissue reported by Dudd and Evershed (1998) also differ significantly from bone lipid from Groups 1, 2 and 3 (p < 0.005 for all groups). The dietary regime the animals were reared under have a clear effect on the isotopic composition of their fatty acid values.

In agreement with previous studies (Colonese et al., 2015; Stott et al., 1997b) both C16:0 and C18:0 are depleted in 13C relative to bulk collagen from the same samples (Table 2). However, the range of the offset (ca. 3‰−8‰) is greater than previously observed. The isotopic offset fundamentally reflects differences between the biosynthesis of collagen and fatty acids, and particularly the kinetic

Table 1
δ13C values of C16:0 and C18:0 fatty acids of bone and adipose tissues from modern chicken (CH) and pig samples. Fatty acid δ13C values are not corrected for the effect of modern atmospheric δ13C values.

Group	Sample	Anat. portion	Data of death	Adipose	Bone	δ13C C16:0	δ13C C18:0	Δ13C 16:0 adipose-bone	Δ13C 18:0 adipose-bone		
Group 1	CH-FR1	Femur	11/01/2013	−30.2	−30.3	−0.1	−29.9	−29.2	0.7	−0.3	−1.1
	CH-FR2	Femur	14/01/2014	−30.3	−30.3	0.0	−29.4	−28.7	0.7	−0.9	−1.6
	CH-FR3	Femur	14/03/2014	−28.1	−27.8	0.3	−27.6	−27.6	0.0	−0.5	−0.2
	CH-FR4	Femur	12/03/2014	−27.7	−26.9	0.8	−28.0	−27.4	0.6	0.3	−0.5
	CH-FR5	Femur	12/03/2014	−30.3	−30.4	−0.1	−29.5	−28.8	0.7	−0.8	−1.6
	CH-FR6	Femur	13/08/2014	−28.6	−28.3	0.3	−28.7	−28.6	0.1	0.1	0.3
	CH-FR7	Femur	05/05/2014	−28.7	−28.2	0.5	−29.7	−28.5	1.2	1.0	0.3
	CH-FR8	Femur	13/01/2016	−28.9	−28.7	0.2	−29.4	−29.3	0.1	0.5	0.6
	CH-FR9	Femur	10/11/2014	−30.4	−30.0	0.4	−29.6	−29.3	0.3	−0.8	−0.7
	CH-FR10	Femur	10/03/2016	−28.4	−28.4	0.0	−27.7	−27.4	0.3	−0.7	−1.0
Group 2	CH-SP1	Right wings	02/04/2015	−28.9	−29.1	−0.2	−28.4	−28.2	0.2	−0.5	−0.9
	CH-SP2	Right wings	02/04/2015	−29.2	−29.4	−0.2	−28.1	−27.9	0.2	−1.1	−1.5
	CH-SP3	Right wings	02/04/2015	−29.2	−29.3	−0.1	−28.2	−28.2	0.0	−1.0	−1.1
	CH-SP4	Right wings	02/04/2015	−29.5	−29.5	0.0	−28.7	−28.2	0.5	−0.8	−1.3
	CH-SP5	Right wings	02/04/2015	−29.3	−29.5	−0.2	−28.9	−28.8	0.1	−0.4	−0.7
Group 3	CH-D1	Femur	04/2012	−	−	−	−2.8	−2.4	0.3	−	−
	CH-D2	Femur	03/2013	−	−	−	−2.8	−2.4	0.3	−	−
	CH-D3	Femur	04/2012	−	−	−	−2.6	−2.2	0.0	−	−
	CH-D4	Femur	02/2011	−	−	−	−2.5	−2.0	0.1	−	−
	CH-D5	Femur	03/2013	−	−	−	−2.5	−2.6	−1.2	−	−
	CH-D6	Femur	03/2013	−	−	−	−2.5	−2.6	−0.8	−	−
	CH-D7	Femur	12/2010	−	−	−	−2.5	−2.6	−0.2	−	−
	CH-D8	Femur	03/2013	−	−	−	−2.5	−2.5	0.0	−	−
Pig-SP1	Rib	30/07/2015	−28.4	−27.4	1.0	−28.4	−27.3	1.1	0.0	−0.1	
Pig-SP2	Rib	01/08/2015	−29.9	−28.8	1.1	−29.8	−28.6	1.2	−0.1	−0.2	
Pig-SP3	Rib	31/07/2015	−29.1	−28.2	0.9	−29.1	−28.1	1.0	0.0	0.1	
Pig-SP4	Rib	29/07/2015	−29.4	−28.8	0.6	−30.1	−28.9	1.2	0.7	0.1	
Pig-SP5	Rib	31/07/2015	−29.9	−28.8	1.1	−30.1	−28.8	1.3	0.2	0.0	
Therefore, we conclude that fatty acids from bone are a reservoir of charcoal oxidation (cholesta-3,5-diene; Evershed et al., 1995b). Traces of linoleic acid (C18:2) were present in chicken, pig and goose bones, while phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) was recorded in all goose bones. These compounds are compelling evidence for the endogenous origin of lipids in the bone as they can only be incorporated through diet and are rare in the depositional environment. Phytanic acid in the goose samples is likely to be attributable to the direct ingestion of aquatic organisms (zooplanktons) (Lucquin et al., 2016; van den Brink et al., 2004; Wanders et al., 2011).

Archaeological bones yielded sufficient amounts of fatty acids for stable carbon isotopic analysis (Table 3). No significant correlations were observed between total fatty acid yield (μg g⁻¹) and the δ¹³C values for both C₁₆:₀ (R² = 0.04, p = 0.30) and C₁₈:₀ (R² = 0.10, p = 0.11) respectively. Similarly, no significant correlation was observed between C₁₆:₀ yields and their δ¹³C values (R² = 0.13, p = 0.06), while significant and a very weak correlation was found between C₁₈:₀ yields and their δ¹³C values (R² = 0.20, p = 0.02). The results confirm that degradation of fatty acids has no effect on their stable carbon isotope composition, as already demonstrated for fatty acids preserved in archaeological ceramics (e.g. Evershed et al., 1999). Furthermore moderate to high correlations between fatty acid and collagen δ¹³C values (Fig. 4) support the preservation of lipids in the archaeological bone assemblages analysed, as observed in previous studies (Colonese et al., 2015). The δ¹³C values of archaeological bone lipids are compared with modern authentic carcass fat and milk for the UK (Copley et al., 2003; Dudd and Evershed, 1998; Evershed et al., 2002a) from...
ruminant and monogastric-omnivorous animals raised on C₃ plants (Fig. 5). As the diet between ancient and modern herbivores is unlikely to be very different in this context, we consider these values to be a suitable proxy.

The $\delta^{13}C$ values of C₁₆:₀ and C₁₈:₀ in archaeological goose bone differ from UK modern references. There is larger variability in archaeological samples, which probably reflects different management strategies and environments, or potentially the presence of both wild and domestic goose in the archaeological sample (Budge et al., 2011; Trust Hammer et al., 1998). Finally, substantial isotopic differences are observed between omnivorous animals, notably chickens and pigs. Although pigs and chickens were being raised at elite settlements, historical documents indicate that pigs were often supplied by lower status people to elites as food rents, with chickens also being provided in this manner (Hagen, 1995). Accordingly, the observed isotopic differences may in part reflect different management strategies by groups not resident at Flixborough.

Fatty acids from archaeological pig bones have C₁₆:₀ and C₁₈:₀ consistently depleted in ^{13}C by -3% compared to those from modern pigs originating from the UK, but are within the observed range of $\delta^{13}C$ values for Central Europe (Spangenberg et al., 2006). Archaeological pig bones also have narrower ranges of $\delta^{13}C$ values for both C₁₆:₀ (0.4‰) and C₁₈:₀ (0.6‰) compared to modern reference fat. By contrast, the $\delta^{13}C$ values of C₁₆:₀ in chicken bones from Flixborough are higher by ~2‰ compared to the modern chicken sample. Differences between archaeological and modern samples may be related to differences in foddering practices and access to

Table 3

$\delta^{13}C$ values of C₁₆:₀ and C₁₈:₀ fatty acids of archaeological bones.

Samples	Context	Phase	Relative Age (AD)	Taxa	Anatomy	FA yield (µg/g)	C₁₆:₀ (µg/g)	C₁₈:₀ (µg/g)	$\delta^{13}C_{C₁₆:₀}$	$\delta^{13}C_{C₁₈:₀}$
GOS1	5983	3biv	8th–9th	Anser sp.	Sternum	300.2	96.8	56.7	-21.2	-20.5
GOS2	5983	3biv	8th–9th	Anser sp.	Sternum	313.0	89.4	96.4	-22.0	-20.9
GOS3	5983	3biv	8th–9th	Anser sp.	Sternum	511.0	140.0	123.5	-20.8	-21.4
GOS4	5983	3biv	8th–9th	Anser sp.	Sternum	84.7	18.4	9.5	-21.1	-20.9
GOS5	5983	3biv	8th–9th	Anser sp.	Sternum	65.7	16.9	7.7	-26.7	-25.4
GOS6	5983	3biv	8th–9th	Anser sp.	Sternum	126.5	41.0	14.3	-25.2	-24.4
GOS7	5983	3biv	8th–9th	Anser sp.	Sternum	310.2	98.0	82.4	-31.1	-30.4
GOS8	5983	3biv	8th–9th	Anser sp.	Sternum	181.4	46.2	26.7	-24.7	-23.3
GOS9	5983	3biv	8th–9th	Anser sp.	Sternum	122.3	25.1	13.5	-28.4	-28.3
GOS10	5983	3biv	8th–9th	Anser sp.	Sternum	254.2	80.5	42.4	-26.8	-26.3
Chk1	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	77.1	13.4	5.9	-26.8	-26.3
Chk2	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	161.6	32.3	24.6	-28.7	-28.3
Chk3	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	114.0	25.6	10.0	-27.1	-26.6
Chk4	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	230.7	51.1	33.1	-27.2	-27.8
Chk5	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	86.5	21.4	9.6	-27.5	-28.0
Chk6	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	137.0	23.2	11.6	-27.0	-28.0
Chk7	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	170.8	29.8	19.1	-26.9	-27.1
Chk8	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	94.9	15.9	6.6	-27.3	-28.6
Chk9	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	155.0	23.0	12.3	-26.7	-27.9
Chk10	5983	3biv	8th–9th	Gallus gallus domesticus	Right coracoid	284.6	35.2	13.4	-27.2	-28.3
PIG1	5653	3biv	8th–9th	Sus scrofa domesticus	Metacarpus	29.6	4.8	1.6	-28.2	-28.0
PIG2	5653	3biv	8th–9th	Sus scrofa domesticus	Phalange	19.4	4.3	4.1	-28.6	-28.2
PIG3	5653	3biv	8th–9th	Sus scrofa domesticus	Metatarsus	23.6	6.7	7.4	-28.3	-27.8
PIG4	5653	3biv	8th–9th	Sus scrofa domesticus	Radius	32.8	10.4	12.2	-28.4	-27.7
PIG5	5653	3biv	8th–9th	Sus scrofa domesticus	Phalange	49.4	11.8	15.6	-28.3	-28.1
PIG6	5653	3biv	8th–9th	Sus scrofa domesticus	Astragalus	28.5	7.9	9.6	-28.4	-28.0
food sources with variable lipid content and isotopic signatures. Most likely, Medieval pigs and chickens were raised on a mixture of plants and animal products, however measurable differences between pigs and chickens also point toward species-specific husbandry practices. This is further supported by collagen $\delta^{13}C$ and $\delta^{15}N$ values (Fig. 6; Table 4), which reveal that chickens had access to food sources at a higher trophic position than pigs or their diet contained a higher proportion of animal to plant products. Pathological data provide further information about how pigs were raised at Flixborough. Frequencies of linear enamel hypoplasia on pig teeth indicate the Flixborough pigs were kept in a semi-natural husbandry regime, including use of a woodland environment, which provided suitable foraging opportunities (Dobney et al., 2002). Interestingly, O’Connell and Hull’s (2011) synthesis of animal isotope data from the Anglo-Saxon period (predominantly Early and Middle-Saxon) indicated that the degree of omnivory among the pigs was not high, showing some overlap with sheep and cattle. This was consistent with the pigs being raised in a free-range system, including pannage. The chickens and geese in their samples also have elevated $\delta^{15}N$ values compared to other species. Data from Flixborough thus supports the view that chickens were generally raised in local/household settings, while pigs had greater access to woodland products and higher plant content in their diet.

The contribution of animal products to chicken diet is further confirmed by the correlations between $\delta^{13}C$ of fatty acids and collagen (Fig. 4). The high correlation between $\delta^{13}C$ values of C16:0 and collagen reveals that the C16:0 fatty acid in pig, chicken and goose bones was predominantly synthesized de novo from carbohydrates and protein precursors. By contrast the lower correlation observed between $\delta^{13}C$ values of C18:0 and collagen, mainly due to an overall ^{13}C-depletion in the C18:0 fatty acid of chickens is more difficult to explain. This could imply some degree of direct incorporation of C18:0 fatty acid in chicken bone from diet (Baião and
Appreciable amounts of absorbed lipids were extracted from the majority of analyzed potsherds (90%, \(n = 54 \)), demonstrating relatively good preservation, with concentrations up to ~2 mg g\(^{-1}\) (average 1.02 mg g\(^{-1}\)) compared to other studies (Evershed, 2008; Evershed et al., 2008a,b). They revealed a range of saturated and unsaturated mid-chain length \(n \)-alkanoic acids (fatty acids) with even numbers of carbon atoms, particularly dominated by \(C_{16:0} \) and \(C_{18:0} \) (Table 5; Fig. 7). Most of these samples contain trace amounts of isoprenoid fatty acids (phytanic acid), short chain diacids, scarce amounts of cholesterol and long mid-chain ketones. These compounds demonstrate that the vessels were used for heating animal fat, possibly along with plant resources (Baeten et al., 2013; Evershed et al., 1995a; Raven et al., 1997). Traces of \(C_{16:0} \) and \(C_{18:0} \) (\(\omega \)-alkylphenyl) alkanoic acids (APAAs), likely formed from mono-di and tri-unsaturated fatty acid precursors (Hansel et al., 2004) were found in most of the sherds, along with short-chain alkanes. Significantly however, longer chain length APAAs typically formed from processing aquatic organisms (Evershed et al., 2008a,b) were absent, even when the MS was used to selectively monitor ions from these compounds thereby maximising the chance of detection. Other lipids at high concentration in aquatic tissues, such as 4,8,12-TMTD (Hansel et al., 2004), were also absent. Therefore there is no evidence that fish were processed in pottery from Flixborough.

Triacylglycerols (TAGs) were recovered from only two sherds out of ten that were solvent extracted. The acyl carbon distribution of TAGs in these samples (\(C_{22} - C_{50} \) and \(C_{36} - C_{54} \)) is consistent with dairy and ruminant adipose fat respectively, and this inference is supported by their \(\delta^{13}C \) values of \(C_{16:0} \) and \(C_{18:0} \). Apart from these observations, there were no other compounds that could be used to further resolve the source of the residue. Most likely, extensive degradation has substantially altered the original lipid distributions.

Identification of the degraded animal fats recovered from the pottery was assessed through the determination of the \(\delta^{13}C \) values of \(C_{16:0} \) and \(C_{18:0} \) (Table 5). The results were compared with fatty acid \(\delta^{13}C \) values from archaeological bones (pig, chicken, goose) and modern ruminant adipose and milk reference for the UK (Dudd and Evershed, 1998). Over half of the potsherds (62.9%) have fatty acid \(\delta^{13}C \) values broadly consistent with modern ruminant adipose fat (Fig. 8). However, as these values fall between the ellipses of modern ruminant adipose and dairy as well as archaeological monogastric-omnivore bone fats, mixing of these commodities would produce similar results. Such equifinality cannot be easily resolved. The remaining potsherds have fatty acid \(\delta^{13}C \) values that fall within the reference ranges for archaeological bone fat from pig and goose (16.6%), chicken (9.25%) and modern ruminant milk (7.4%). Notably, the three vessels that produced almost identical values to archaeological chicken bones are from the 8–9th century. These data are not as easily explained by mixing of different fats. From theoretical mixing curves, it is crudely estimated that these three ceramic sherds must contain at least 90% chicken fat if mixed with pig/goose or ruminant carcass fat (Fig. 8). Modelling mixtures of other fats (curves not shown) does not produce values that plot within the chicken ellipse.

The results therefore represent the first direct identification of poultry lipids in archaeological ceramic vessels and implies that these three vessels, at least, were used largely for this purpose. However, further consideration of uncertainties associated with the reference ranges of different fatty acids in the source fats and their concentration is needed to discern the degree to which other commodities may have been mixed in these vessels. The deconvolution of multiple sources requires the development and application of more sophisticated mixing models.

The vessel typology was only evident in approximately half of the vessels that produced interpretable lipid residues but some preliminary observations could still be made (Table 5). For example, residues from the omnivorous animals were only clearly distinguishable in jars, which generally had a wider range of uses compared to bowls. Similar results were observed in the early medieval site of West Cotton, in Britain, where jars contained the...
Table 5
The description of the pottery sherds submitted for analysis and details of the absorbed lipid residues detected. Composition of lipid extracts. Abbreviations: SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; K, mid-chain ketones; ALK, n-alkanes; ALC, n-alkenes; D, diacids; CH, cholesterol, Phy, Phytanic acid; APAA, C16:0 and C18:0-(e-alkylphenyl) alkanic acids; MAG, monoacylglycerols; DAG, diacylglycerols; TAG, triacylglycerol. Phases, contexts and relative age (AD) from Young and Vince (2009). Samples trimethylsilylated. Attribution have been made according to the δ13C proximity to the reference ranges shown in Fig. 8 and therefore indicate only the most prominent source of animal fat contributing to the contents.

Sample	Context	Phase	Relative Age (AD)	Lipid concentration (μg/g)	Lipid detected	δ13C_δ18O	Attribution	
FLX1	6235	3bv	8th–9th	Fragment not described	238.7	SFA, MUFA, ALK	–28.6 –31.2	Ruminant mixed
FLX3	6235	3bv	8th–9th	Fragment not described	16.5	SFA, MUFA, D, ALK	–29.7 –30.1	Pig, goose mixed
FLX5	6235	3bv	8th–9th	Fragment not described	453.7	SFA, MUFA, D, ALK, Phy	–30.5 –34.7	Dairy mixed
FLX6	5983	3iv	8th–9th	Fragment not described	28.8	SFA, MUFA, ALK, Phy	–28.5 –31.6	Ruminant mixed
FLX7	5983	3iv	8th–9th	Fragment not described	1281.7	SFA, MUFA, D, APAA, ALK, Phy	–30.3 –33.3	Pig, goose mixed
FLX8	5983	3iv	8th–9th	Fragment not described	84.2	SFA, MUFA, ALK	–28.4 –30.1	Ruminant mixed
FLX10	5617	3iv	8th–9th	Fragment not described	532.4	SFA, MUFA, D, APAA, ALK, Phy	–29.2 –32.2	Pig, goose mixed
FLX11	5617	3iv	8th–9th	Fragment not described	41.8	SFA, MUFA, D, ALK	–29.5 –29.4	Pig, goose mixed
FLX12	5503	4ii	8th–9th	Fragment not described	228.2	SFA, MUFA, D, APAA, ALK	–28.1 –27.4	Dairy mixed
FLX13	5503	4ii	8th–9th	Fragment not described	9.1	SFA, MUFA, ALK	–27.9 –28.7	Chicken mixed
FLX14	5503	4ii	8th–9th	Fragment not described	6.3	SFA, ALK	–27.2 –29.0	Monogastric mixed
FLX16	5503	4ii	8th–9th	Fragment not described	367.6	SFA, MUFA, D, APAA, ALK, Phy	–30.1 –32.5	Ruminant mixed
FLX17	5503	4ii	8th–9th	Fragment not described	375.1	SFA, MUFA, D, APAA, ALK, Phy	–29.8 –33.2	Ruminant mixed
FLX18	5503	4ii	8th–9th	Fragment not described	615.0	SFA, MUFA, APAA, Phy	–28.6 –30.2	Ruminant mixed
FLX19	5503	4ii	8th–9th	Fragment not described	472.3	SFA, MUFA, D	–27.3 –28.9	Chicken mixed
FLX20	5503	4ii	8th–9th	Fragment not described	2216.4	SFA, MUFA, D, APAA, ALK	–27.3 –28.8	Pig, goose mixed
FLX21	5503	4ii	8th–9th	Fragment not described	20.9	SFA, MUFA, ALK	–29.2 –29.4	Pig, goose mixed
FLX22	5503	4ii	8th–9th	Fragment not described	17.4	SFA, MUFA, ALK, Phy	–27.3 –26.4	Monogastric mixed
FLX24	5503	4ii	8th–9th	Fragment not described	679.5	SFA, MUFA, ALK, Phy	–29.4 –31.4	Ruminant mixed
FLX25	5503	4ii	8th–9th	Fragment not described	1438.7	SFA, MUFA, D, APAA, ALK, Phy	–28.3 –30.4	Ruminant mixed
FLX26	5503	4ii	8th–9th	Fragment not described	1218.3	SFA, MUFA, ALK	–29.2 –31.8	Pig, goose mixed
FLX27	5503	4ii	8th–9th	Fragment not described	921.2	SFA, MUFA, APAA, ALK, Phy	–29.9 –33.8	Ruminant mixed
FLX28	5503	4ii	8th–9th	Fragment not described	1633.2	SFA, MUFA, APAA, ALK	–29.0 –32.6	Dairy mixed
FLX29	5503	4ii	8th–9th	Fragment not described	244.6	SFA, MUFA, D, APAA, ALK	–29.3 –33.1	Pig, goose mixed
FLX30	5503	4ii	8th–9th	Fragment not described	7.3	SFA	–27.9 –27.8	Chicken mixed
FLX45*	1012	2–3a	Mixed	Fragment not described	42.6	SFA, MUFA, ALC, Di, D, ALK, APAA, Phy	–26.8 –29.5	Pig, goose mixed
FLX54*	2024	6ii	9th	Fragment not described	303.6	SFA, MUFA, D, ALK, D, CH, Phy	–28.6 –31.3	Chicken mixed
FLX57*	3893	3a	8th–9th	Fragment not described	1243.2	SFA, MUFA, APAA, ALK, Phy	–28.5 –30.4	Ruminant mixed
FLX62*	3734	5a	9th	Fragment not described	207.50	SFA, MUFA, D, APAA, ALK, Phy, MAG, DAG, TAG	–27.9 –31.1	Ruminant mixed
FLX65	4917	4ii	8th–9th	Fragment not described	995.3	SFA, MUFA, D, K, ALK, Phy	–28.9 –31.4	Ruminant mixed
FLX69	2562	5b	9th	Fragment not described	1255.7	SFA, MUFA, D, APAA, AKA, Phy	–29.1 –32.3	Ruminant mixed
FLX70*	72	5a	9th	Fragment not described	1061.3	SFA, MUFA, D, APAA, ALK, Phy	–29.0 –29.6	Pig, goose mixed
FLX86	2024	6ii	9th	Fragment not described	965.4	SFA, MUFA, APAA, D, APAA, ALK, Phy	–29.2 –31.4	Ruminant mixed
FLX91	323	2–4ii	Mixed	Fragment not described	798.0	SFA, MUFA, D, APAA, ALK, Phy	–28.6 –31.5	Ruminant mixed
FLX104	2127	6ii	9th	Fragment not described	289.8	SFA, MUFA, D, DI, APAA, ALK, ALC, Phy	–29.6 –31.9	Ruminant mixed
FLX11*	72	5a	9th	Fragment not described	466.1	SFA, MUFA, D, APAA, ALC, Phy	–28.9 –30.7	Ruminant mixed
FLX130*	4737	4ii	8th–9th	Fragment not described	23.6	SFA, MUFA, ALK	–27.3 –28.8	Chicken mixed

Fig. 8 and
largest range of lipid compounds and may have had a more versatile function compared to other vessels (Charters et al., 1993). By contrast, pottery size and fabric did not influence lipid distribution and isotopic composition.

Study of the faunal bone assemblage from Flixborough has shown that animal exploitation was mainly focused on cattle and sheep, followed by pigs and poultry (chicken, geese) in the mid-8th to early 9th century. Organic residue analysis demonstrates that all of these animals were processed in ceramic containers, as well as dairy products, as may have been expected. The pottery evidence that poultry were processed in the same way and probably mixed with multiple products from other livestock and perhaps perceived similarly, at least in terms of their culinary value. However, it is important to point out that using this isotopic approach we cannot differentiate lipids derived from chicken eggs or meat. Ruminant products (meat and/or dairy) appear to be the most frequently differentiated lipids derived from chicken eggs or meat. Ruminant important to point out that using this isotopic approach we cannot similarly, at least in terms of their culinary value. However, it is shown that animal exploitation was mainly focused on cattle and sheep, followed by pigs and poultry (chicken, geese) in the mid-8th century. Organic residue analysis demonstrates that all of these animals were processed in ceramic containers, as well as dairy products, as may have been expected. The pottery evidence that poultry were processed in the same way and probably mixed with multiple products from other livestock and perhaps perceived similarly, at least in terms of their culinary value. However, it is important to point out that using this isotopic approach we cannot differentiate lipids derived from chicken eggs or meat. Ruminant products (meat and/or dairy) appear to be the most frequently processed animal resource in ceramic containers at Flixborough, followed by dairy products and then omnivorous animals, including chickens, which show some similarities with the relative abundance of faunal remains (Jaques et al., 2007). However, further determination of the proportional contribution of poultry and other products to the pottery at Flixborough currently lacks accurate quantification using the approach we have described.

4.4. Archaeological implications

This study emphasises the value of conducting isotopic analyses of residues and integrating zooarchaeological remains and ceramic artefacts. Compared to larger mammals such as cattle, sheep and pig, bird bones are often overlooked during excavation because of their small size and are therefore potentially under-represented in many faunal assemblages. Similarly, avian products are rarely considered in studies of pottery use or when reconstructing human diet using stable isotopes. These changes were not uniform across all of society however. Greater numbers of bones of chickens, and domestic birds more generally, are found at high status and ecclesiastical sites during the Middle and Late Anglo-Saxon periods (Poole and Lacey, 2014). Comparison of different sites thus has real potential to demonstrate differences in dietary intake and consumption practices between different parts of society. In earlier periods, residue analysis using the approach we describe is essential to understand the culinary role of poultry and distinguish this from other uses of chickens, such as in ritual practices or for fighting.

5. Conclusion

In this study we show that:

- $\delta^{13}C$ values of fatty acids ($\delta^{13}C_{FA}$) and collagen ($\delta^{13}C_{coll}$) from modern omnivorous animal bone are correlated and reflect diet.
- $\delta^{13}C_{FA}$ values in bone is a good proxy for adipose fat in modern omnivorous animals. However, it is reasonable to expect that different animal tissues (e.g. adipose, bone and bone marrow) were processed in the past and should also be considered.
- $\delta^{13}C_{FA}$ ($C_{16:0}$ fatty acid) and $\delta^{13}C_{coll}$ values in archaeological bone are highly correlated. The former are therefore endogenous and both reflect diet.
- There is substantial variation in $\delta^{13}C_{FA}$ values between archaeological bone and modern adipose tissues for monogastric-omnivorous animals reflecting different husbandry practices between past and present. Therefore it is highly unlikely that any global $\delta^{13}C_{FA}$ ranges can be derived for distinguishing monogastric-omnivorous animal fats.

Sample	Context	Phase	Age (AD)	Relative	Lipid concentration (µg/g)	Lipid detected	$\delta^{13}C_{16:0}$	$\delta^{13}C_{18:0}$	Attribution
FLX165	400	2i	Mixed	–3bv	Maxey type fabric E, type IV jar	3012.3	SFA, MUFa, Di, D, APAA, –28.8	–32.6	Ruminant mixed
FLX176	2024	9th	–10th	–6ii	Maxey type fabric E, medium-sized type Ivi bowl with –10th	777.0	SFA, MUFa, D, APAA, –29.1	–32.9	Ruminant mixed
FLX180*	3219	5b	–10th	–6ii	Maxey type fabric E, medium-sized type Vik bowl with –10th	474.3	SFA, MUFa, D, APAA, –28.1	–30.5	Ruminant mixed
FLX192	1462	9th	–10th	–9th	Maxey type fabric U, large type Ib jar, –10th	23.9	SFA, MUFa, D, K, ALK, –28.9	–30.2	Ruminant mixed
FLX199*	2024	8th	–10th	–9th	Maxey type fabric U with coarse shell, large round lugged –10th	431.1	SFA, MUFa, D, K, ALK, –27.9	–30.8	Ruminant mixed
FLX197	72	9th	–10th	5a	Maxey type fabric U with coarse shell, medium-sized –10th	118.5	SFA, MUFa, D, ALK, Phy –28.7	–31.6	Ruminant mixed
FLX199	968	3bi	8th–9th	–3bv	Maxey type fabric U.3, medium-sized type Iic jar with –3bv	709.5	SFA, MUFa, D, APAA, –28.4	–27.8	Pig, goose
FLX203*	968	3bi	8th–9th	–3bv	Maxey type fabric U. with large type Ib jar, medium-sized –3bv	18.0	SFA, MUFa, D, ALK, CH –28.1	–28.4	Pig, goose
FLX206	3666	1b	–	–	Maxey type fabric U.1, medium-sized jar with external –	1446.9	SFA, MUFa, APAA, ALK, –29.4	–30.9	Ruminant mixed
FLX217	2488	5b	9th	–6ii	Maxey type fabric U with coarse shell, type IIIF jar –6ii	2049.7	SFA, MUFa, D, K, APAA, –29.0	–30.9	Ruminant mixed
FLX220	636	9th	–10th	2i	Maxey type fabric U.3, type Ivi bowl with medium-sized –10th	296.8	SFA, MUFa, D, ALK, Phy –28.3	–31.4	Ruminant mixed
FLX227	687	2	–	–	Maxey type fabric U.3, medium sized type Vib bowl with –	994.5	SFA, MUFa, K, APAA, –29.4	–32.6	Ruminant mixed
FLX236	2611	9th	–10th	–9th	Maxey type fabric U, with coarse shell, medium-sized –10th	950.4	SFA, MUFa, K, Phy –28.4	–31.8	Ruminant mixed
FLX276	1672	9th	–10th	–6i	Grey burnished ware with white fabric, jar with rolled-out rim (sample AG190). Vessel 42	832.8	SFA, MUFa, K, APAA, –28.5	–31.3	Ruminant mixed
FLX105_11	1728	9th	–10th	–9th	Maxey type fabric B, small-type Vlla bowl, –10th	2452.0	SFA, MUFa, APAA, ALK, –28.6	–30.7	Ruminant mixed
FLX105_13	1728	9th	–10th	–9th	Maxey type fabric B, small-type Vlla bowl, –10th	210.8	SFA, MUFa, D, APAA, –28.9	–31.9	Ruminant mixed
Archaeological bone 13C FA values from omnivorous animals therefore complement or provide an alternative to modern reference fat for interpreting 13C FA values from archaeological ceramics. Fatty acids extracted from several vessels from the Anglo-Saxon site of Flixborough have similar 13C values as those from chicken bones in the same deposits providing the first compelling evidence of their processing.

Substantial mixing of different ruminant and monogastric-omnivore products needs to be resolved in order to determine the importance and nature of poultry processing in the past.

Acknowledgements

This work was supported by the Arts and Humanities Research Council as part of the project “Cultural and Scientific Perspectives of Human-Chicken Interactions” (Grant No AH/L006979/1) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors want to thank Deborah Jaques for providing information on the chicken remains. The authors are grateful to the comments of the two anonymous reviewers, which improved the quality of the manuscript.
Recio, C., Martín, Q., Raposo, C., 2013. GC-C-IRMS analysis of FAMEs as a tool to ascertain the diet of Iberian pigs used for the production of pork products with high added value. Grasas Aceites 64, 181–190.

Redding, R.W., 2015. The pig and the chicken in the Middle East: modeling human subsistence behavior in the archaeological record using historical and animal husbandry data. J. Archaeol. Res. 23, 325–368.

Ren, J., Dimitrov, I., Sherry, A.D., Malloy, C.R., 2008. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J. Lipid Res. 49, 2055–2062.

Salque, M., Bogucki, P.J., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szymt, M., Evershed, R.P., 2013. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525.

Sealy, J., Johnson, M., Richards, M., Nehlich, O., 2014. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J. Archaeol. Sci. 47, 64–69.

Serjeantson, D., 2009. Birds. In: Cambridge Manuals in Archaeology.

Spangenberg, J.E., Ferrer, M., Jacomet, S., Bleicher, N., Schibler, J., 2014. Molecular and isotopic characterization of lipids staining bone and antler tools in the Late Neolithic settlement, Zurich Opera Parking, Switzerland. Org. Geochem. 69, 11–25.

Spangenberg, J.E., Jacomet, S., Schibler, J., 2006. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland — evidence for dairying in the late Neolithic. J. Archaeol. Sci. 33, 1–13.

Stott, A.W., Davies, E., Evershed, R.P., 1997a. Monitoring the routing of dietary and biosynthesised lipids through compound — specific stable isotope (δ^{13}C) measurements at natural abundance. Naturwissenschaften 84, 82–86.

Stott, A.W., Evershed, R.P., 1996. δ^{13}C Analysis of cholesterol preserved in archaeological bones and teeth. Anal. Chem. 68, 4402.

Stott, A.W., Evershed, R.P., Jim, S., Jones, V., Rogers, J.M., Tuross, N., Ambrose, S., 1999. Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications. J. Archaeol. Sci. 26, 703–716.

Stott, A.W., Evershed, R.P., Tuross, N., 1997b. Compound-specific approach to the δ^{13}C analysis of cholesterol in fossil bones. Org. Geochem. 26, 99–103.

Sykes, N., 2012. A social perspective on the introduction of exotic animals: the case of the chicken. World Archaeol. 44, 158–169.

Trust Hammer, B., Fogel, M.L., Hoering, T.C., 1998. Stable carbon isotope ratios of fatty acids in seagrass and redhead ducks. Chem. Geol. 152, 29–41.

van den Brink, D.M., van Miert, J.N.I., Dacremont, G., Rontani, J.-F., Jansen, G.A., Wanders, R.J.A., 2004. Identification of fatty aldehyde dehydrogenase in the breakdown of phytol to phytanic acid. Mol. Genet. Metab. 82, 33–37.

Villaverde, C., Baucells, M.D., Cortinas, L., Barroeta, A.C., 2006. Effects of dietary concentration and degree of polyunsaturation of dietary fat on endogenous synthesis and deposition of fatty acids in chickens. Br. Poult. Sci. 47, 173–179.

Wanders, R.J.A., Komen, J., Ferdinandusse, S., 2011. Phytanic acid metabolism in health and disease. Biochim. Biophys. Acta 1811, 498–507.

Young, J., Vince, A., 2009. The Anglo-Saxon pottery. In: Evans, D.H., Loveluck, C. (Eds.), Life and Economy at Early Medieval Flixborough, C. AD 600–1000. Excavations at Flixborough, Oxbow Books, pp. 339–397.