Viable secret neutrino interactions with ultralight dark matter

James M. Cline

McGill University, Department of Physics, 3600 University St., Montréal, QC H3A2T8 Canada

Several anomalies in neutrino oscillation experiments point to the existence of a ~ 1 eV sterile neutrino ν_s, mixing with ν_e, at the level of $U_{e4} \cong 0.1$, but such a neutrino is strongly disfavored by constraints on additional light degrees of freedom (δN_{eff}) and total neutrino mass ($\sum m_\nu$) from cosmology. “Secret neutrino interactions” that have been invoked to suppress the cosmological production of ν_s typically falter, but recently it was pointed out that ν_s could get a large mass in the early universe by coupling to ultralight dark matter ϕ, which can robustly suppress its production. The model has essentially two free parameters: m_{ϕ}, and $m_{s,0}$, the mass of the sterile neutrino at early times, enhanced by its coupling to ϕ. I determine the parameter regions allowed by limits on δN_{eff} and $\sum m_\nu$ from the cosmic microwave background and big bang nucleosynthesis, using a simplified yet accurate treatment of neutrino oscillations in the early universe. This mechanism could have an important impact on laboratory experiments that suggest oscillations with sterile neutrinos.

Introduction. Short baseline (SBL) neutrino oscillation experiments at nuclear reactors suggest at 3σ an eV-scale sterile neutrino ν_s that mixes with ν_e [1,5]. A persistent deficit of low-energy solar ν_e flux in gallium experiments lends support to this interpretation. The NEOS [6] and DANSS [7] experiments that also search for ν_e-ν_s oscillations observe features that could be consistent with the SBL anomalies, though are not yet conclusive. Recent fits to the data favor a mass $m_s = 1.1$ eV and mixing matrix element $U_{e4} = 0.11$ [8]. Moreover there are hints from other experiments, LSND [9] and MiniBooNE [10], of $\nu_\mu \to \nu_\tau$ oscillations via a sterile neutrino with similar mass and mixing parameters. The sterile neutrino interpretation of $\nu_\mu \to \nu_\tau$ is clouded by constraints on ν_μ-ν_s oscillations from MINOS [11] and IceCube [12,13]. In this work I focus on the simpler ν_μ-ν_s scenario that could explain the SBL deficits. The KATRIN experiment will provide an independent probe in the near future [14].

A generic challenge to the existence of sterile neutrinos in the indicated mass and mixing range are their oscillations in the early universe that would fully equilibrate the sterile species [14,16]. This is strongly excluded by big bang nucleosynthesis (BBN) and cosmic microwave background (CMB) constraints on additional effective neutrino species, δN_{eff}, as well as the sum of neutrino masses $\sum m_\nu$. Some means of suppressing oscillations in the early universe while allowing them at the present time is needed.

The use of sterile neutrino interactions to inhibit oscillations has a long history [18,20]. With respect to the current anomalies, refs. [21,22] suggested that self-interactions of the sterile neutrino could impede the oscillations and thereby satisfy the cosmological constraints. This mechanism is referred to as “secret neutrino interactions,” despite the efforts of PRL to censor the name. Subsequent investigation showed that although the self-interactions in this context could prevent ν_4 production until freezeout of the active neutrinos, in accordance with bounds on N_{eff}, at lower temperatures their self-scattering combines with oscillations to convert active neutrinos to ν_4 and violate the CMB bound on $\sum m_\nu$. [23,27]. (An exception is found for self-interactions mediated by a light gauge boson of mass $\lesssim 10$ MeV [28].)

It was recently pointed out that an effective realization of secret interactions is to couple ν_s to ultralight bosonic dark matter ϕ [29]. In that case the scalar behaves as a coherent condensate, that has not yet started oscillating at early times. It can easily give a large mass to ν_s during this epoch, inhibiting the oscillations. Once the Hubble rate drops below m_ϕ, the field oscillates and redshifts with scale factor as $a^{-3/2}$ as the universe expands. Its contribution to m_s quickly disappears, leaving only the bare Lagrangian mass of ~ 1 eV. The “secret interaction” moniker is especially appropriate in this case, since the required coupling of ν_s to ϕ was shown to be exceedingly weak, $\lambda \sim 10^{-23}$. Similar interactions of light dark matter to standard model neutrinos were considered with respect to their effects on laboratory neutrino oscillations in refs. [30,33].

This model is quite economical, depending only upon m_s and the ν_e-ϕ coupling λ, assuming ϕ constitutes all of the dark matter (DM) so that its initial amplitude is determined by its relic density. Equivalently, one can trade λ for the new contribution $m_{s,0}$ to the ν_s mass at early times, before ϕ has started to oscillate. The purpose of this note is to determine the allowed parameter space, more quantitatively than was done in ref. [29].

Theoretical framework. Considering mixing between ν_s and ν_e only, the neutrino mass matrix is

$$
\begin{pmatrix}
m_{ee} & m_{es} \\
m_{es} & m_{ss}
\end{pmatrix}
$$

(1)

It is assumed that $m_{ss} \gg m_{ee}$. Then for small mixing one can show that m_{es} is related to the mass eigenvalue $m_4 \sim 1$ eV by

$$
m_{es} \cong U_{e4} m_4
$$

(2)

Fits to the SBL data favor $m_4 = 1.13 \pm 0.04$, $U_{e4} \in [0.04, 0.13]$ [4]; for definiteness I adopt the central value $m_4 = 1.1$ eV and $U_{e4} = 0.11$ of ref. [8], giving $m_{es} = 0.12$ eV and $m_{s,0} \cong m_4$.

arXiv:108.02278v1 [hep-ph] 6 Aug 2019
leading to the effective mass $m_{\text{eff}} = m_s + \lambda \phi$ when DM has a VEV. For ultralight DM, such a VEV is presumed to exist \cite{34, 35}, assuming some initial value in the early universe, that persists to account for the present relic density. If ϕ is sufficiently weakly coupled, it never thermalizes and remains coherent, behaving like a classical field. Its time dependence in the expanding cosmological background is

$$\phi(t) \equiv 1.08 \phi_0 J_{1/4}(m_{\phi} t) / (m_{\phi} t)^{1/4} \equiv \phi_0 \tilde{\phi}(t) \quad (4)$$

during radiation domination (when $a(t) \sim t^{1/2}$). The relevant combination of parameters affecting neutrino oscillations is

$$m_{s,0} = \lambda \phi_0 \quad (5)$$

so that $m_{\text{eff}} = m_s + m_{s,0} \tilde{\phi}(t)$.

For $t \gg m_{\phi}$ (but before matter-radiation equality) it can be shown that $\rho_{\phi} \approx 0.37 m_{\phi}^2 \phi_0^2 (m_{\phi} t)^{-3/2}$. Matching to the present DM density, one finds

$$\phi_0 = 1.0 \times 10^{15} \text{ GeV} \left(\frac{10^{-15} \text{ eV}}{m_{\phi}} \right)^{1/4} \quad (6)$$

Such a large VEV could arise if ϕ is an axion-like particle, the phase of a complex field $\Phi = |\Phi| e^{i\phi}/f_{\phi}$, with decay constant $f_{\phi} > \phi_0$. At early times $\rho_{\phi} \sim m_{\phi}^2 \phi_0^2$ would be negligible compared to the energy density of radiation, and ϕ_0 could take random values in the interval $[0, 2\pi f_{\phi}]$.

Production of ν_c. Although a rigorous study of $\nu_s - \nu_c$ oscillations in the early universe requires solving the Boltzmann equation for the density matrix \cite{36, 37}, a good approximation can be obtained in a simpler approach, described in refs. \cite{20, 38}, which in some regimes leads to analytic results\footnote{The normalization is such that $\tilde{\phi}(0) = 1$}. The method is based upon solving the Schrödinger equation for the two-state system, including an imaginary term $-i \Gamma / 2$ in the Hamiltonian representing scattering of ν_c in the plasma, that causes decoherence.

The solution yields the probability for a ν_s to oscillate into ν_c between an arbitrary initial time and a later time t. From this, a rate of ν_s production is derived, and the associated Boltzmann equation can be solved for the ratio of ν_s occupation number relative to that of ν_c, as a function of temperature and neutrino momentum\footnote{The quantitative agreement of the two formalisms was recently demonstrated in ref. \cite{39}}

$$R \equiv \frac{n_{\nu_s}}{n_{\nu_c}} = \frac{1}{2} \left(1 - \exp \left(-2 \int_T^{T_i} \left(\frac{\Gamma \sin^2 \theta_m}{H T'} \right) dT' \right) \right). \quad (7)$$

Here θ_m is the mixing angle including matter effects, and the initial temperature T_i can be taken to infinity. The total interaction rate, including elastic scattering, is $\Gamma = (7\pi/24)G_F^2 T^4 p$ for a ν_c of momentum p \cite{20, 40}. For relativistic neutrinos,

$$\sin^2 2\theta_m \approx \frac{4m_{\nu_s}^2}{4m_{\nu_s}^2 + (m_{\text{eff}}^2 + 2V_e p/m_{\text{eff}})^2} \quad (8)$$

(recall that $m_{\text{eff}} (t)$ is the total ν_s mass and $V_e = (7\pi/90\alpha) \sin^2 (2\theta \nu) G_F^2 T^4 p$ is the thermal self-energy for ν_e). The effective number of extra neutrino species produced by the oscillations requires integrating over momentum, weighted by the massless Fermi-Dirac distribution function $f(p)$ for ν_e,

$$\delta N_{\text{eff}}(T) = \int d^3 p f(p) R(T, p) \int d^3 p f(p) \quad (9)$$

Before numerically evaluating δN_{eff}, an analytic result can be found, in the regime where $m_{\phi} \lesssim 10^{-14} \text{ eV}$, sufficiently small that ϕ does not start oscillating until the integral in eq. (7) has converged. In that case $m_{\text{eff}} \approx m_{s,0}$ can be treated as constant, and $m_{s,0}^2$ can be ignored in the denominator. The integral can be evaluated analytically (ignoring the weak T-dependence of g_* in the Hubble rate $H = 1.66 \sqrt{g_* T^2 / M_p}$), to obtain

$$\delta N_{\text{eff}} \approx \frac{1}{2} \left[1 - \exp \left(- \frac{5\sqrt{7} \alpha^{1/2} G_F M_p m_{s,0}^2}{64 s_W c_W g_4^{1/2} m_{s,0}} \right) \right] \quad (10)$$

where W denotes the Weinberg angle, M_p is the reduced Planck mass, and $g_4 \approx 10.75$ for the parameters of interest. The dependence on T and p is negligible for $T \lesssim 1 \text{ MeV}$, making it unnecessary to integrate over momenta.

For larger values of m_{ϕ}, the DM starts oscillating before nucleosynthesis, which tends to activate the neutrino oscillations. This can be compensated by also increasing $m_{s,0}$, but an analytic treatment is no longer possible. One should numerically integrate over T' and p in eqs. (7)\footnote{The factors of 2^3 missing in \cite{20}, account for the back-reaction from $\nu_s \rightarrow \nu_c$ \cite{39}}.

Additionally for BBN, we should distinguish between oscillations that produced a real excess in N_{eff}, occurring before the freezeout temperature $T_f = 3.2 \text{ MeV}$ of ν_s, versus the subsequent oscillations that conserve total neutrino number but convert some ν_s into ν_c. The reduction in ν_c density impacts BBN by changing the
Figure 1. Contours of δN_{eff} (solid blue for CMB and dashed red for BBN) and corresponding to $\sum m_\nu$ (solid black) in the $m_{s,0}$-m_ϕ plane, illustrative of cosmological upper limits as described in the text.

For the CMB constraints, there is an analogous effect. Even though oscillations occurring after freezeout of ν_e should not change δN_{eff}, they can increase the sum of neutrino masses by converting some ν_e to ν_s. Therefore the extra contribution to $\sum m_\nu$ can be estimated as m_s, times the asymptotic value of δN_{eff} that results at low $T \sim 1$ eV, neglecting the conservation of neutrino number below T_f.

The results are shown in fig. 1, which displays three contours for δN_{eff} in a region constrained by CMB measurements \[11\]. The exact upper limit determined by the Planck Collaboration depends upon which data sets are combined. At 95% c.l. $\delta N_{\text{eff}} < 0.5$ is a typical value (using TT+lowE or TT,TE,EE+lowE+lensing+BAO+R18), although a more stringent bound $\delta N_{\text{eff}} < 0.23$ is derived from TT,TE,EE+lowE alone. To illustrate the BBN constraint I show the 2σ limit from ref. \[44\], which is somewhat weaker than that obtained in ref. \[43\]. The BBN contour at $\delta N_{\text{eff}} = 0.31$ illustrates the effect of conversions $\nu_e \rightarrow \nu_s$ after ν_e freezeout; for low m_ϕ it coincides with the corresponding CMB δN_{eff} (since no such conversions take place), but at higher m_ϕ, $\delta N_{\text{eff}}^{BBN}$ is seen to deviate from its CMB counterpart, as expected.

The strongest constraint is the CMB limit on neutrino masses. Their sum goes as

$$\sum m_\nu \cong [0.06 \text{eV} + m_4 \delta N_{\text{eff}}]$$

taking account of the standard contribution, assuming normal mass hierarchy. Ref. \[44\] recently constrained $\sum m_\nu < 0.145$ eV for the normal hierarchy, implying $\delta N_{\text{eff}} < 0.08$. This implies a lower limit on $m_{s,0} > 160$ eV, hence $\lambda > 10^{-22} \times (m_\phi/10^{-15} \text{eV})^{1/4}$.

Discussion. For DM with $m_\phi \lesssim 10^{-14}$ eV, we have seen that the cosmological analysis is relatively simple, since ν_e has frozen out before ϕ starts to oscillate. A favored value for m_ϕ from considerations of cosmological structure formation is considerably lower, $m_\phi \sim 10^{-22}$ eV. In this regime, the de Broglie wavelength is so large that structure at galactic scales can be suppressed, providing a possible solution to the cusp/core problem of DM halos \[44\].

Such light DM has an oscillation frequency of order 1y, which could have interesting consequences for laboratory oscillation experiments, if λ is large enough to significantly impact the effective mass m_{eff} of ν_s during the timescale of the experiment. For example, if the extra contribution to m_{eff} is as large as the bare mass m_4, one would need $\lambda \sim 10^{-17}$, which is technically natural since there are no significant loop corrections. In this situation, the usual analysis of oscillation data could lead to ambiguous results, since the Δm^2 being fitted would be varying in time. This effect has already been considered with respect to active neutrinos coupling to ϕ in refs. \[30\,32\]. It could be interesting to reconsider the experiments that suggest active-sterile neutrino oscillations in this light.

Acknowledgment. I thank K. Kainulainen and J. Kopp for very useful comments on the manuscript. This work was supported by NSERC (Natural Sciences and Engineering Research Council, Canada).

[1] C. Giunti, M. Laveder, Y. F. Li, Q. Y. Liu and H. W. Long, “Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance,” Phys. Rev. D 86, 113014 (2012) doi:10.1103/PhysRevD.86.113014 [arXiv:1210.5715] [hep-ph].

[2] C. Giunti, M. Laveder, Y. F. Li and H. W. Long, “Short-baseline electron neutrino oscillation length after tritons,” Phys. Rev. D 87, no. 1, 013004 (2013) doi:10.1103/PhysRevD.87.013004 [arXiv:1212.3805] [hep-ph].

[3] J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, “Sterile Neutrino Oscillations: The Global Picture,” JHEP 1305, 050 (2013) doi:10.1007/JHEP05(2013)050 [arXiv:1303.3011] [hep-ph].
A. Esmaili and O. L. G. Peres, “KATRIN Sensitivity to Sterile Neutrino Mass,” JHEP **1808**, 010 (2018) doi:10.1007/JHEP08(2018)010 arXiv:1803.10661 [hep-ph].

A. Diaz, C. A. Argüelles, G. H. Collins, J. M. Conrad and M. H. Shaevitz, “Where Are We With Sterile Neutrinos?”, arXiv:1906.00045 [hep-ex].

Y. J. Ko et al. [NEOS Collaboration], “Sterile Neutrino Search at the NEOS Experiment,” Phys. Rev. Lett. **118**, no. 12, 121802 (2017) doi:10.1103/PhysRevLett.118.121802 arXiv:1610.05134 [hep-ex].

I. Alekseev et al. [DANSS Collaboration], “Search for sterile neutrinos at the DANSS experiment,” Phys. Lett. B **787**, 56 (2018) doi:10.1016/j.physletb.2018.10.038 arXiv:1804.04040 [hep-ex].

J. Kostensalo, J. Suhonen, C. Giunti and P. C. Sivrastava, “The gallium anomaly revisited,” Phys. Lett. B **795**, 542 (2019) doi:10.1016/j.physletb.2019.06.057 arXiv:1906.10980 [nucl-th].

A. Aguilar-Arevalo et al. [LSND Collaboration], “Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam,” Phys. Rev. D **64**, 112007 (2001) doi:10.1103/PhysRevD.64.112007 [hep-ex/0104049].

A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], “Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment,” Phys. Rev. Lett. **121**, no. 22, 221801 (2018) doi:10.1103/PhysRevLett.121.221801 arXiv:1805.12028 [hep-ex].

P. Adamson et al. [MINOS+ Collaboration], Phys. Rev. Lett. **122**, no. 9, 091803 (2019) doi:10.1103/PhysRevLett.122.091803 arXiv:1710.06488 [hep-ex].

M. G. Aartsen et al. [IceCube Collaboration], “Search for sterile neutrino mixing using three years of IceCube DeepCore data,” Phys. Rev. D **95**, no. 11, 112002 (2017) doi:10.1103/PhysRevD.95.112002 arXiv:1702.05160 [hep-ex].

B. J. P. Jones [IceCube Collaboration], “IceCube Sterile Neutrino Searches,” EPJ Web Conf. **207**, 04005 (2019) doi:10.1051/epjconf/201920704005 arXiv:1902.06185 [hep-ex].

A. Esmaili and O. L. G. Peres, “KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass,” Phys. Rev. D **85**, 117301 (2012) doi:10.1103/PhysRevD.85.117301 arXiv:1203.2632 [hep-ph].

K. Enqvist, K. Kainulainen and M. J. Thomson, Nucl. Phys. B **373**, 498 (1992) doi:10.1016/0550-3213(92)90442-E.

A. D. Dolgov and F. L. Villante, “BBN bounds on active sterile neutrino mixing,” Nucl. Phys. B **679**, 261 (2004) doi:10.1016/j.nuclphysb.2003.11.031 [hep-ph/0308083].

S. Garaiuzzo, P. F. de Salas and S. Pastor, “Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix,” JCAP **1907**, no. 07, 014 (2019) doi:10.1088/1475-7516/2019/07/014 arXiv:1905.11290 [astro-ph.CO].

K. S. Babu and I. Z. Rothstein, “Relaxing nucleosynthesis bounds on sterile-neutrinos,” Phys. Lett. B **275**, 112 (1992) doi:10.1016/0370-2693(92)90860-7

K. Enqvist, K. Kainulainen and M. J. Thomson, “Cosmological bounds on Dirac-Majorana neutrinos,” Phys. Lett. B **280**, 245 (1992) doi:10.1016/0370-2693(92)90062-9

J. M. Cline, “Constraints on almost Dirac neutrinos from neutrino - anti-neutrino oscillations,” Phys. Rev. Lett. **68**, 3137 (1992) doi:10.1103/PhysRevLett.68.3137

S. Hannestad, R. S. Hansen and T. Tran, “How Self-Interactions can Reconcile Sterile Neutrinos with Cosmology,” Phys. Rev. Lett. **112**, no. 3, 031802 (2014) doi:10.1103/PhysRevLett.112.031802 arXiv:1310.5026 [astro-ph.CO].

B. Dasgupta and J. Kopp, “Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure,” Phys. Rev. Lett. **112**, no. 3, 031803 (2014) doi:10.1103/PhysRevLett.112.031803 arXiv:1310.6337 [hep-ph].

N. Saviano, O. Pisanti, G. Mangano and A. Mirizzi, “Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis,” Phys. Rev. D **90**, no. 11, 113009 (2014) doi:10.1103/PhysRevD.90.113009 arXiv:1409.1680 [astro-ph.CO].

J. P. Cherry, A. Friedland and I. M. Shoemaker, “Short-baseline neutrino oscillations, Planck, and IceCube,” arXiv:1605.06506 [hep-ph].

F. Forastieri, M. Lattanzi, G. Mangano, A. Mirizzi, P. Natoli and N. Saviano, “Cosmic microwave background constraints on secret interactions among sterile neutrinos,” JCAP **1707**, no. 07, 038 (2017) doi:10.1088/1475-7516/2017/07/038 arXiv:1704.00626 [astro-ph.CO].

X. Chu, B. Dasgupta, M. Dentler, J. Kopp and N. Saviano, “Sterile neutrinos with secret interactions—cosmological discord?,” JCAP **1811**, no. 11, 049 (2018) doi:10.1088/1475-7516/2018/11/049 arXiv:1806.10629 [hep-ph].

N. Song, M. C. Gonzalez-Garcia and J. Salvado, “Cosmological constraints with self-interacting sterile neutrinos,” JCAP **1810**, no. 10, 055 (2018) doi:10.1088/1475-7516/2018/10/055 arXiv:1805.08218 [astro-ph.CO].

A. Mirizzi, G. Mangano, O. Pisanti and N. Saviano, “Collisional production of sterile neutrinos via secret interactions and cosmological implications,” Phys. Rev. D **91**, no. 2, 025019 (2015) doi:10.1103/PhysRevD.91.025019 arXiv:1410.1385 [hep-ph].

Y. Farzan, “Ultra-light scalar saving the 3+1 neutrino scheme from the cosmological bounds,” arXiv:1907.04271 [hep-ph].

A. Berlin, Phys. Rev. Lett. **117**, no. 23, 231801 (2016) doi:10.1103/PhysRevLett.117.231801 arXiv:1608.01307 [hep-ph].

G. Krnjaic, P. A. N. Machado and L. Necib, “Distorted neutrino oscillations from time varying cosmic fields,” Phys. Rev. D **97**, no. 7, 075017 (2018) doi:10.1103/PhysRevD.97.075017 arXiv:1705.06740 [hep-ph].

V. Brdar, J. Kopp, J. Liu, P. Prass and X. P. Wang, “Fuzzy dark matter and nonstandard neutrino interactions,” Phys. Rev. D **97**, no. 4, 043001 (2018) doi:10.1103/PhysRevD.97.043001 arXiv:1705.09455 [hep-ph].

J. Liao, D. Marfatia and K. Whisnant, “Light scalar dark matter at neutrino oscillation experiments,”
[34] W. Hu, R. Barkana and A. Gruzinov, “Cold and fuzzy dark matter,” Phys. Rev. Lett. 85, 1158 (2000) doi:10.1103/PhysRevLett.85.1158 [astro-ph/0003365].

[35] L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, “Ultralight scalars as cosmological dark matter,” Phys. Rev. D 95, no. 4, 043541 (2017) doi:10.1103/PhysRevD.95.043541 [arXiv:1610.08297 [astro-ph.CO]].

[36] K. Enqvist, K. Kainulainen and J. Maalampi, “Refraction and Oscillations of Neutrinos in the Early Universe,” Nucl. Phys. B 349 (1991) 754. doi:10.1016/0550-3213(91)90397-G

[37] G. Sigl and G. Raffelt, “General kinetic description of relativistic mixed neutrinos,” Nucl. Phys. B 406, 423 (1993). doi:10.1016/0550-3213(93)90175-O

[38] K. Kainulainen, “Light Singlet Neutrinos and the Primordial Nucleosynthesis,” Phys. Lett. B 244 (1990) 191. doi:10.1016/0370-2693(90)90054-A

[39] T. Bringmann, J. M. Cline and J. M. Cornell, “Baryogenesis from neutron-dark matter oscillations,” Phys. Rev. D 99, no. 3, 035024 (2019) doi:10.1103/PhysRevD.99.035024 [arXiv:1810.08215 [hep-ph]].

[40] D. Notzold and G. Raffelt, “Neutrino Dispersion at Finite Temperature and Density,” Nucl. Phys. B 307, 924 (1988). doi:10.1016/0550-3213(88)90113-7

[41] N. Aghanim et al. [Planck Collaboration], “Planck 2018 results. VI. Cosmological parameters,” [arXiv:1807.06209 [astro-ph.CO]].

[42] M. Hufnagel, K. Schmidt-Hoberg and S. Wild, “BBN constraints on MeV-scale dark sectors. Part I. Sterile decays,” JCAP 1802, 044 (2018) doi:10.1088/1475-7516/2018/02/044 [arXiv:1712.03972 [hep-ph]].

[43] R. H. Cyburt, B. D. Fields, K. A. Olive and T. H. Yeh, “Big Bang Nucleosynthesis: 2015,” Rev. Mod. Phys. 88, 015004 (2016) doi:10.1103/RevModPhys.88.015004 [arXiv:1505.01076 [astro-ph.CO]].

[44] S. Roy Choudhury and S. Hannestad, “Updated results on neutrino mass and mass hierarchy from cosmology,” arXiv:1907.12598 [astro-ph.CO].