Research Article Open Access

Investigation into Drug Solubilisation Potential of Sulfonated Calix[4]resorcinarenes

Hoskins C1, Papachristou A2, Ho TMH2, Hine J2 and Curtis ADM

1Institute of Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University, Keele, Staffordshire, UK
2School of Pharmacy, Faculty of Medicine and Health Sciences, Keele University, Keele, Staffordshire, UK

Abstract

Increasing importance is being placed on the role of drug solubilisation in the drug development pipeline. In order for drugs to successfully pass through the pre-clinical studies required before clinical trials they often require addition of excipients or solubility modifying agents. This study highlights the use of sulfonated calix[4]resorcinarenes as drug solubilising agents. The rigid nature of these compounds form cone-like structures with hydrophobic interiors which are capable of accommodation of hydrophobic entities such as drugs. The calix[4]resorcinarenes in this work have varied length of alkyl chains attached to their lower rim. This work investigated the effect of chain length (C = 4 (SC(4)RC4), C = 7 (SC(4)RC7)) on the degree of solubilisation of two model hydrophobic drugs: propofol and griseofulvin. The data showed that the compounds were capable of solubilising both drugs up to 8 mgmL⁻¹ (SC(4)RC7-propofol) and 3 mgmL⁻¹ (SC(4)RC4-griseofulvin). The size measurements carried out using photon correlation spectroscopy indicated that the SC(4)RC4 was likely to form 1:1 interactions with drug molecules whilst the SC(4)RC7 formed supramolecular structures capable of increased drug loading in the case of propofol. In the case of griseofulvin it is postulated that similar structures were formed however these exceeded the limit of the filter used and may have been lost. Additionally, the supramolecular structures appeared more stable with a reduction in drug release. In vitro testing on BxPC-3 cells demonstrated that the SC(4)RC4 was likely to form 1:1 interactions with drug molecules whilst the SC(4)RC7 formed supramolecular structures capable of increased drug loading in the case of propofol. In the case of griseofulvin it is postulated that similar structures were formed however these exceeded the limit of the filter used and may have been lost. Additionally, the supramolecular structures appeared more stable with a reduction in drug release. In vitro testing on BxPC-3 cells demonstrated that the SC(4)RC4 was likely to form 1:1 interactions with drug molecules whilst the SC(4)RC7 formed supramolecular structures capable of increased drug loading in the case of propofol. In the case of griseofulvin it is postulated that similar structures were formed however these exceeded the limit of the filter used and may have been lost. Additionally, the supramolecular structures appeared more stable with a reduction in drug release.

Keywords: Hydrophobic drug solubilisation; Drug delivery; Calixarene; Resorcinarene

Introduction

Over the past few decades, the development of solubilisers for hydrophobic drugs as drug delivery systems has attracted much attention among researchers in both pharmaceutical and biomedical fields [1,2]. More than 40% of therapeutic agents identified in combinatorial libraries are classified as hydrophobic [3]; in the UK drugs which possess aqueous solubility below 0.1 mgmL⁻¹ at 25°C are classed as practically insoluble according to the British Pharmacopoeia [4]. Such drugs which exhibit poor physicochemical properties may be significantly limited in their progress through the drug discovery pipeline. Particularly importantly are those drugs which show promising clinical relevance which may suffer from low bioavailability as a result of their inability to dissolve into aqueous media before further absorption. Formulation strategies are thus required to overcome these issues and improve drug efficacy and efficiency. It is well recognised that commonly used excipients possess undesirable properties in terms of their viscosity, excipient to drug rations required for drug solubilisation and their stability in aqueous media. Hence, novel technologies for drug solubilisation are required which can increase drug solubilisation and overcome the issues of traditional excipients. Calix[n]arenes are one such technology which hold potential as drug solubilisers due to their conformation and ability to form complexes with drug molecules.

Calix[n]arenes have been studied extensively as host molecules in supramolecular chemistry [5]. Derived from phenols, they are cyclic oligomers which can be envisaged as cone-shaped molecules with a hydrophobic interior. Calix[n]arenes themselves are inherently hydrophobic but possess an upper- and lower-rim which may be functionalised readily to modify their properties (Figure 1a). Calix[4] resorcinarenes are related to the calix[n]arenes in that they can also possess a cone-shaped structure with a hydrophobic interior and an upper- and lower rim [6] (Figure 1b). However, since resorcinol will react with a wide range of aldehydes under the conditions required for their synthesis, an extensive library of structurally diverse calix[4]resorcinarenes exists. The calix[4]resorcinarenes have found widespread use in host-guest and supramolecular chemistry, exemplified in the synthesis of cavitands and careplexes [7,8]. They have been demonstrated to form stable complexes with small molecular species but notably the majority of these studies have been undertaken in non-polar media - which would not be suitable for drug delivery applications.

Of the few examples in the literature, structurally modified calix[n]arenes have been shown to form stable complexes with small molecular species in aqueous media. In particular, there is an established evidence base confirming that water-soluble calix[n]arenes which possess sulfonate groups in the 4-position on the upper rim are capable of solubilising drug molecules which otherwise possess poor solubility in aqueous media [9-21]. However, few investigations into the properties and utility of simple calix[4]resorcinarenes which bear sulfonate groups in the 2-position on the upper rim have been reported.

Kazakov et al. first reported the synthesis of three sulfonated calix[4]resorcinarenes and their formation of 1:1 complexes with amino acids in aqueous media [22]. The group later reported a comparative study into the interactions of sulfonated calix[4]resorcinarenes bearing...
alkyl chains of either 1 carbon (methyl group) or 5 carbons (pentyl) on the lower rim with small molecules capable of multiple non-covalent interactions in aqueous media [23]. This study presented evidence that sulfonated calix[4]resorcinarenes are able to aggregate with the hydrophobic pentyl moieties entering the hydrophobic inner core of neighbouring calixes even in the presence of small molecular guests. More recently, Menon has reported detailed studies into the use of a sulfonated calix[4]resorcinarene derived from acetaldehyde for the solubilisation of pharmaceutical agents mycophenolate mofetil [24] and lamotrigine [25].

In this study two sulfonated calix[4]resorcinarenes which have alkyl chains on the lower rim of varied length (4 & 7 carbon) are compared for their ability to act as drug solubilisers. The chemical structure of the butylated (4 carbon) calix[4]resorcinarene (SC(4)RC4) and the heptylated (7 carbons) calix[4]resorcinarene (SC(4)RC7) are shown in Figure 2a. The potential of SC(4)RC4 and SC(4)RC7 as drug solubilisers is investigated using two model hydrophobic drug molecules: propofol and griseofulvin. Propofol (2,6-disopropylphenol) (Figure 2b) is a commonly used anaesthetic, licensed for both induction and maintenance of anaesthesia [26,27]. Due to its poor solubility in aqueous media (100 μgmL⁻¹ at 25ºC), propofol is currently formulated in soybean oil (100 mgmL⁻¹) forming an oil-in-water emulsion [26]. Despite the market success of propofol emulsions, the concomitant use of painkillers and antimicrobial agents are required due to its viscosity causing pain on administration and the high infection risk [28]. Additionally, hyperlipidemia, rhabdomyolysis and metabolic acidosis have been reported and linked to propofol-fat parental emulsions (propofol-Related Infusion Syndrome) [29]. Griseofulvin ((2S)-trans-7-chloro-2',4,6-trimethoxy 6'-methylspiro(benzofuran-2[3H],1',4'-dione) (Figure 2c) is an orally administered anti-fungal agent, used for the treatment of dermatophytes. The high degree of lipophilicity of griseofulvin (aqueous solubility of 30 μgmL⁻¹ at 25°C), results in long dissolution rates and consequently poor bioavailability in the GI tract [30]. Significant intersubject and intrasubject variations in bioavailability have also been reported, not only between different branded preparations but also between different physiological stages of the stomach, indicating clinical failure with griseofulvin therapy in most patients [31]. Moreover, a dosing regime is difficult to be established considering fluctuations in the drug’s bioavailability profile as it is currently formulated.

Materials and Methods

All materials were purchased from Sigma Aldrich (UK) unless otherwise stated.

Synthesis of sulfonated calix[4]resorcinarenes

Sulfonated calix[4]resorcinarenes SC(4)RC4 and SC(4)RC7 were prepared from the parent calix[4]resorcinarenes C(4)RC4 and C(4)RC7 using established procedures [22,32]. In brief, concentrated hydrochloric acid (12.5 mL) was added dropwise to a solution of either C(4)RC4 or C(4)RC7 (90 mmol) and resorcinol (90 mmol) in ethanol (75 mL). In each case the mixture was heated to reflux for 4 h and then allowed to cool to ambient temperature. The product precipitated upon cooling. Water (50 mL) was added slowly to the cooled mixture to complete the precipitation. The crude products were isolated by vacuum filtration and recrystallized from ethanol to give C(4)RC4 (yield 85%) and C(4)RC7 (yield 78%) as colourless solids.

C(4)RC4 or C(4)RC7 (0.01 mol), formaldehyde (37% solution, 0.05 mol) and sodium sulfite (0.05 mol) were combined with water (30 mL) and the stirred mixture was heated at 90°C for 16 h. The mixture was cooled to ambient temperature. Dilute hydrochloric acid (1 molar aqueous solution) was added to the cooled mixture until pH 7 was reached. Acetone (–50 mL) was added to the mixture to precipitate sulfonated calix[4]resorcinarene. The precipitate was isolated by filtration, washed with acetone on the filter and then dried under vacuum to give SC(4)RC4 (yield 53%) and SC(4)RC7 (yield 85%) as yellow solids.

Chemical characterisation of calix[4]resorcinarenes

¹H Nuclear Magnetic Resonance (NMR) spectra of SC(4)RC4 and SC(4)RC7 were acquired by making a solution of each compound in d₆-dimethylsulfoxide (d₆-DMSO) (Goss Scientific Instruments) and irradiating the solutions at 400 MHz using a Bruker DMX-400 NMR instrument.

FTIR was carried out on solid powder samples of SC(4)RC4 and SC(4)RC7 using a NICOLET iS5 fitted with a iD5 ATR laminated diamond crystal tip (Thermo Scientific®, UK). The average spectra of 64 scans was recorded.

Physical characterisation of calix[4]resorcinarenes in aqueous phase

The surface activity of SC(4)RC4 and SC(4)RC7 was determined by measurement of surface tension using a torsion balance (OS Instruments). Solutions of SC(4)RC4 and SC(4)RC7 were prepared over a concentration range 0.039 mgmL⁻¹ - 5mgmL⁻¹ in deionised water. Samples were probe sonicated for 5minutes using a Soniprep 150 (MSE Ltd, UK). The samples were cooled to room temperature, and the surface tension measured. Measurements were conducted in triplicate for each sample, and an average value was obtained over three independent samples.
The hydrodynamic diameter and polydispersity index (PDI) was measured using photon correlation spectroscopy (Zetasizer Nano-ZS, Malvern Instruments, UK). Aqueous solutions of SC(4)RC4 and SC(4)RC7 (1 mg mL⁻¹) were probe sonicated for 5 mins and once cooled were filtered using a 0.45 μm syringe filter. The mean particle size and PDI values were attained by averaging values of three measurements. Samples were measured at 24.9°C and pH 7.

Drug incorporation studies

Solutions of SC(4)RC4 and SC(4)RC7 at varied concentration (1 mg mL⁻¹, 3 mg mL⁻¹ and 6 mg mL⁻¹) were prepared in deionised water and probe sonicated for 10 min. Samples were cooled to room temperature and the appropriate volume of drug was added in 1:1, 5:1 and 10:1 initial drug: calix[4]resorcinarene ratio. The solutions were probe sonicated for 5 min and allowed to cool to room temperature. The solutions were filtered using a 0.45 μm syringe filter to remove any excess free drug. Drug quantification was carried out using UV-Vis spectroscopy (Cary 50 Bio, Agilent Technologies U.S.). Propofol was quantified at 272 nm and griseofulvin at 242 nm. Calibrations were run of the free drugs dissolved in acetonitrile and methanol (propofol and griseofulvin respectively), both obtaining R² of 0.999. The formulations were diluted in the appropriate solvent to liberate the free drug and enable measurement. Drug quantification was carried out in triplicate at room temperature.

Physical characterisation of formulations

Optimal formulations were measured for hydrodynamic radius as described above. The formulations were freeze dried and 64 scans run in order to qualitatively show drug presence as previously described.

In vitro drug release studies

Optimal formulation for each calix[4]resorcinarene and drug were dialysed against water to harness their drug release profile. Briefly, 2 mL of formulation was pipetted inside a visking tube (12-14 kDa) (Medicell, UK) and dialysed against distilled water (200 mL) at room temperature. The volume of dialysis fluid was in excess to “mimic” the “in sink” conditions experienced after injection into the blood stream. A 2 mL sample of the exterior solution was obtained at selected time points (5 min, 10 min, 15 min, 20 min, 30 min, 40 min, 50 min and 60 min) and replaced with deionised water. Drug quantification was carried out as previously described. All measurements were carried out in triplicate at room temperature.

Cytotoxicity of calix[4]resorcinarenes

An MTT assay was carried out using human pancreatic adenocarcinoma (BxPC-3) cells. Cells were cultured in RPMI medium containing 10% FBS and 1% penicillin streptomycin (Penstrep). Cells were subcultured into a 96-well plate at 15 million cells per well. SC(4) RC4 and SC(4)RC7 of varied concentration (0.019 - 10 mg mL⁻¹) were prepared in media. Once 80% confluency had been reached the cells were exposed to the calix[4]resorcinarenes (100 μL) for 24 h before being washed with fresh media (100 μL three times) and incubated for 4 h with media (100 μL) and MTT solution (20 μL). The absorbance of the plate was read at 570 nm and cell viability was calculated relative to 4 h with media (100 μL) and MTT solution (20 μL). The absorbance of the calix[4]resorcinarenes. J Nanomed Nanotechnol 7: 370. doi:10.4172/2157-7439.1000370
Figure 3: FTIR spectra of freeze dried calix[4]resorcinarenes formulations. FTIR run using a diamond tipped ATR and run over 64 scans of A) SC(4)RC4 and B) SC(4)RC7, 1) in the absence of drug and after complexation with 2) propofol and 3) griseofulvin.
Shield their lipophilic tails from the 'hostile' aqueous environment. Particle size measurements showed that SC(4)RC7 forms particles with a diameter of 92 nm at a concentration of 0.01 mgmL⁻¹ in water (Table 1). However, in agreement with the surface tension findings, larger diameter species form at higher concentrations: at a concentration of 1 mgmL⁻¹ the dominant species being 240 nm which increases further at increased concentration 5 mgmL⁻¹ the predominant species has a diameter of 363 nm. This indicates that supramolecular structures are indeed formed at these higher concentrations as discussed.

The difference in these two calix[4]resorcinarenes is the length of their alkyl chains attached to their lower rim. It is therefore deduced that the short butyl chain with only four carbons does not possess the degree of hydrophobicity of the heptyl chain with seven carbons and hence the different mechanisms of solution existence and stabilisation.

Figure 6 shows the drug loading data for both SC(4)RC4 (A1&2) and SC(4)RC7 (B1&2) with propofol and griseofulvin compared with the intrinsic drug solubility. The study used varied excipient (calix[4]resorcinarene) concentration and initial drug:excipient feed concentration. In general all studies showed that increasing the excipient concentration resulted in increased drug loading. Additionally, the drug feed ration impacted drug incorporation with increased feed ratios increasing drug content. For the propofol studies, the SC(4)RC4 was capable of reduced drug solubilisation compared with the SC(4)RC7 as maximum concentrations of 4 mgmL⁻¹ were achieved compared with 8.4 mgmL⁻¹ respectively. Given the size and surface tension data, this result is rational based on the SC(4)RC7 forming larger aggregates capable of drug solubilisation (Figure 5).

One of the perceived disadvantages to the use of calixarenes and calix[4]resorcinarenes is their rigid structure which can hinder drug incorporation. Often structures such as polymers can experience core expansion upon drug incorporation, however this is not likely to be possible for these rigid structures existing singularly. This is identified in the size data for SC(4)RC4-propofol formulation where the size is increased only marginally in the presence of drug. However, with the SC(4)RC7-propofol formulation, drug solubility was increased up to 84-fold compared to intrinsic levels. Here, the size data of the optimal formulation of SC(4)RC7-propofol (6 mgmL⁻¹, 1:1) showed that core expansion had occurred with a notable increase in core size compared with the empty vehicle. This may either be due to hydrophobic stabilisation of the lipophilic chains once drug is in the large core resulting in core expansion or the addition of further molecular units forming even larger supramolecules. This formation of stabilised supramolecular structures may increase applicability of such technologies to a wide range of drug molecules compared with the one-to-one interaction of the SC(4)RC4.

Propofol is a small molecule and therefore, testing with a second more bulky drug molecule such as griseofulvin is advantageous. Griseofulvin incorporation did not follow the same trend, infact the short chained SC(4)RC4 was capable of incorporation of concentrations up to 3 mgmL⁻¹ compared with only 0.75 mgmL⁻¹ for the SC(4)RC7. Additionally, no significant difference was found between 3 mgmL⁻¹ and 6 mgmL⁻¹ loading. The rationale for this is due to core expansion occurring. As mentioned griseofulvin is a bulky molecule and great steric hindrance would be experienced whilst drug incorporation is occurring. In fact, visually before filtration the SC(4)RC7 appeared to have solubilised greater drug content compared with the SC(4)RC4. Therefore, it is postulated that the core expansion experienced with the longer lipophilic chains is such that the aggregates exceeded the maximum cut off for the 0.45 μm filter. Hence, the larger aggregates did not pass through resulting in this reduction of drug concentration.

Table 1: Hydrodynamic radius and polydispersity index of calix[4]resorcinarenes and optimal drug formulations. Samples recorded in triplicate at 25°C.
In the case of griseofulvin, it is therefore more advantageous to use the one-to-one interaction of the short chain SC(4)RC4 (Figure 5). This work highlights the importance of looking at more than one excipient before final decision in drug solubilisation as in the case of these calix[4] resorcinarenes universal drug solubilisation is not achieved with every vehicle and they are dependant on factors such as hydrophobicity, molecular weight and architecture of the drug being solubilised.

Numerous evidence suggests that drug release rate is driven by drugs’ intrinsic aqueous solubility [35-37]. A drug molecule with low aqueous solubility, denotes a highly hydrophobic molecule which will experience high affinity for the similarly hydrophobic core of calix[n]-arenes. Thus, a slow release profile will be expected. The release data for SC(4)RC4 support the above statement, as griseofulvin with significant lower aqueous solubility (0.03 mgmL -1) than propofol (0.1 mgmL -1) shows a much lower release profile with only 15% being released after 1 h compared with 30% for propofol (Figure 6A3). Intrinsic hydrophobicity of nano-aggregates is also a determinant key in drug release rate. A notable lower drug release rate is observed when comparing SC(4)RC4 to SC(4)RC7 formulations. Consequently, propofol encapsulated in SC(4)RC4 with the shorter less lipophilic chain is released more rapidly (30% after 1 h) than when held in the more lipophilic supramolecular structure of the SC(4)RC7 (5% after 1 h) (Figure 6A3 and B3). In several drug formulation studies, low and sustained drug release is favoured over rapid release due to significant advantages of the former including; reduced local toxicity and increased in vivo half life [36,37]. From this aspect, SC(4)RC7 may be more desirable than SC(4)RC4 as this infers increased stability under sink conditions. In order for any drug delivery system to be clinically relevant it must itself be safe for administration. Therefore it is important to determine whether the empty vehicle exhibits any cytotoxic nature. This study was carried out on human pancreatic adenocarcinoma cell lines (BxPC-3) after exposure for 24 h. The data in Figure 7 shows that even up to extremely high (non clinically relevant) concentrations the calix[4]resorcinarenes remained relatively non-toxic. In fact, up to 10 mgmL -1, an IC 50 value (at which 50% of the cells were no longer viable) was not observed with the SC(4)RC7. In contrast the SC(4)RC4 exhibited an IC 50 at approximately 7.5 mgmL -1, however, this is extremely high compared with other excipients such as polymers [38]. The data is encouraging and shows the potential of these systems to not only carry drugs but to do so more safely and efficiently than traditional systems. Further biological work is required in order to fully appreciate their biosafety.

Conclusion

Both SC(4)RC4 and SC(4)RC7 have demonstrated to improve aqueous solubility of both hydrophobic drugs tested, suggesting the great potential of these molecules as novel drug solubilisers. Nonetheless, parameters affecting formation of inclusion complexes, not explored in this study need to be further investigated, including physical characteristics of aqueous environment (e.g. pH and temperature). Moreover, further toxicology, stability and in vivo studies need to be designed, to establish safety clinical relevance of these systems.

Acknowledgement

This work was funded by and carried out in the Institute of Science and Technology for Medicine, Keele University.

Figure 6: Drug incorporation studies using A) SC(4)RC4 and B) SC(4)RC7 with 1) propofol and 2) griseofulvin, 3) In vitro drug release over 1 h. All experiments carried out at room temperature (n = 3, ± SD).
References

1. Aliabadi HM, El Hasi S, Mahmud A, Gulamhusein, R, Mahdipoor P, et al. (2007) Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: The effect of solvent composition on micellar properties and drug loading. Int J Pharm 329: 158-165.

2. Wei H, Zhuo R, Zhang X (2013) Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci 38: 503-535.

3. Wang Y, Yan Y, Cui J, Hosta-Rigau L, Heath JK, et al. (2010) Encapsulation of Water-Implosive Drugs in Polymer Capsules Prepared Using Mesoporous Silica Templates for Intracellular Drug Delivery. Adv Mater 22: 4293-4297.

4. https://www.pharmacopoeia.com/

5. Gutsche CD (2008) Calixarenes: An Introduction. (2nd edn). The Royal Society of Chemistry, Cambridge, USA.

6. Sliwa W, Kozlowski C (2009) Calixarenes and Resorcinarenes: Synthesis, Properties and Applications. Wiley-VCH, Weinheim 48: 7121-7122.

7. Cram DJ, Cram JM (1997) Container molecules and their guests (Monographs in supramolecular chemistry). Stoddart JF edn, The Royal Society of Chemistry, London.

8. Hooley RJ, Rebek J Jr (2009) Chemistry and catalysis in functional cavitands. Chem Biol 16: 255-264.

9. Millership JS (2001) A preliminary investigation of the solution complexation of 4-sulfonic calix[n]arenes with testosterone. J Incl Phenom Macrocycl Chem 39: 327-331.

10. Da Silva E, Valmalle C, Becchi M, Cuilleron CY, Coleman AW (2003) The use of electrospray mass spectrometry (ES/MS) for the differential detection of some steroids as calix-[n]-arenesulfonate complexes. J Incl Phenom Macrocycl Chem 46: 65-69.

11. Wang GS, Zhang HY, Ding F, Liu Y (2011) Preparation and characterization of inclusion complexes of topotecan with sulfonatocalixarenes. J Incl Phenom Macrocycl Chem 69: 85-89.

12. Menon SK, Modi NR, Mistry B, Joshi K (2011) Improvement of some pharmaceutical properties of mycophenolate mofetil (MMF) by para sulfonatocalix[4]arenes inclusion complex. J Incl Phenom Macrocycl Chem 70: 121-126.

13. Patel MB, Valsand NN, Modi NR, Joshi, KV, Harirkishnan U, et al. (2013) Effect of p-sulfonatocalix[4]arenes (PSC [4] R) on the solubility and bioavailability of a poorly water soluble drug lamotrigine (LMM) and computational investigation. RSC Advances 36: 15971-15981.

14. Baker MT, Naguib M (2005) Propofol: the challenges of formulation. Anesthesiology 103: 860-867.

15. Ngamparasertwong P, Dong M, Niu Ju, Venkatasubramanian R, Vinks AA, et al. (2016) Propofol Pharmacokinetics and Estimation of Fetal Propofol Exposure during Mid-Gestational Fetal Surgery: A Maternal-Fetal Sheep Model. PLoS One 11: e0146553.

16. Bennett SN, McNeil MM, Bland LA, Arduino MJ, Villarino ME, et al. (1995) Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 333: 147-154.

17. de Assis JV, Teixeira MG, Soares CG, Lopes JF, Carvalho GS, et al. (2012) Experimental and theoretical NMR determination of isoniazid and sodium p-sulfonatocalix[n]arenes inclusion complexes. Eur J Pharm Sci 47: 539-548.

18. Wang X, Luo C, Lv Z, Lu F (2011) Investigation of the inclusion behaviour between p-sulfoniccalix[6] arene and norfloxacin by fluorescence spectroscopy. J Lumin 131:1896-1990.

19. Wang B, de Villiers MM (2004) Aqueous solubilization of furosemide by supramolecular complexation with 4-sulfonic calix[n]arenes. J Pharm Pharmacol 56: 703-708.

20. Wang B, de Villiers MM (2004) The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulfonic calix[n]arenes. Eur J Pharm Biopharm 58: 629-636.

21. Wang B, de Villiers MM (2005) Effect of 4-sulphonato-calix[n]arenes and cyclodextrins on the solubilization of niclosamide, a poorly water soluble antihelminthic. AAPS J 7: E241-248.

22. Kazakova EK, Makarova NA, Ziganhina AU, Muslinkina LA, Muslinkin AA, et al. (2000) Novel water-soluble tetrasulfonatocalix[4]arenes:resorcinarenes. Tet Lett 41: 10111-10116.

23. Morozova JE, Kazakova EK, Gubanov EP, Makarova NA, Archipov VP, et al. (2006) Aggregation and adsorption properties of tetratetrasulfonatocalixarenes and their associates with nonionicogenic guest molecules in aqueous solutions. J Incl Phenom Macrocycl Chem 55: 173-183.

24. Zili Z, Sfar S, Fessi H (2005) Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int J Pharm 294: 261-267.

25. Schnatwinkel B, Stoll I, Miesl A, Rekharsky MV, Borovkov VV, et al. (2008) Monomeric, dimeric and hexameric resorcin[4]arene assemblies with alcohols in apolar solvents. Chem Commun (Camb) : 3873-3875.

26. Beauvallois G, Soro C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2: 1-21.

27. Hoskins C, Papachristou A, Ho TMH, Hine J, Curtis ADM (2016) Investigation into Drug Solubilisation Potential of Sulfonated Calix[4]resorcinarenes. J Nanomed Nanotechnol 7: 370. doi:10.4172/2157-7439.1000370

![Figure 7: Cell viability of BxPC-3 cells after 24 h incubation with resorcinarenes measured via MTT assay at 570 nm.](Image)