GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

XUE-FENG WU1,2,3, SHU-JIN HOU4, AND WEI-HUA LEI5

1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China; xfwu@pmo.ac.cn
2 Chinese Center for Antarctic Astronomy, Chinese Academy of Sciences, Nanjing 210008, China
3 Joint Center for Particle Nuclear Physics and Cosmology of Purple Mountain Observatory and Nanjing University, Nanjing 210008, China
4 Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005, China
5 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; leiwh@hust.edu.cn

Received 2013 February 11; accepted 2013 March 19; published 2013 April 8

1 INTRODUCTION

The most popular models of long-duration gamma-ray bursts (GRBs) invoke a collapse of a massive star (Woosley 1993; Paczynski 1998; MacFadyen & Woosley 1999). The accretion of the stellar core by the central black hole (BH) fuels the central engine activity does not cease after the prompt phase, which is especially supported by prompt emission. However, the central engine activity does not cease after the prompt phase, which is especially supported by prompt emission. Woosley1993; Liu 2012). In order to have a successive GRB jet penetrating the surrounding material, the progenitor is usually assumed to be a Wolf–Rayet star that has an evolved compact helium envelope.

For the GRB BH central engine models, there are two main energy reservoirs to provide the jet power: the accretion energy in the disk which is carried by neutrinos and anti-neutrinos that annhilate and power a bipolar outflow, and the spin energy of the BH which can be tapped by a magnetic field connecting the outer world through the Blandford & Znajek (1977, hereafter BZ) mechanism. Both models have been extensively investigated by many authors (e.g., Popham et al. 1999; Lee et al. 2000; Li 2000; Narayan et al. 2001; Di Matteo et al. 2002; Kohri & Mineshige 2002; Wang et al. 2002; McKinney 2005; Gu et al. 2006; Chen & Beloborodov 2007; Janiuk et al. 2007; Lei et al. 2009; Liu et al. 2007).

GRB 121027A may provide us a good opportunity to study the properties of a GRB progenitor as well as the central engine models. As presented in the next section, the rising behavior of the giant X-ray bump in GRB 121027A is quite different from typical X-ray flares, so it should have a different physical origin. In Section 2, we describe the prompt trigger and late XRT observations of GRB 121027A. In Section 3, we propose the fall-back accretion model and apply this model to the giant X-ray bump observed in GRB 121027A. In Section 4, we briefly summarize our results and discuss the implications.

2 GRB 121027A OBSERVATIONS

GRB 121027A was discovered at $T_0 = 07:32:29$ UT on 2012 October 27 by the Burst Alert Telescope (BAT) on board the Swift satellite. The X-ray afterglow re-brightens sharply at $T_0 + 220$ s and lasts for more than 300 s. The X-ray afterglow re-brightens sharply at $T_0 + 220$ s and lasts for more than 300 s. This X-ray bump lasts for more than 10^4 s. It is quite different from typical X-ray flares, so it should have a different physical origin. As presented in the next section, the rising behavior of the giant X-ray bump in GRB 121027A is quite different from typical X-ray flares, so it should have a different physical origin. The rising behavior of the giant X-ray bump in GRB 121027A is quite different from typical X-ray flares, so it should have a different physical origin.

Figure 1 shows the XRT light curve, which is the temporal evolution of the unabsorbed flux in the 0.3–10 keV band. The time-averaged spectrum is best fit by a simple power law with a photon index $\Gamma = 1.82 \pm 0.09$. The fluence in the 15–150 keV band is $F_{15-150} = 2 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$, yielding an isotropic gamma-ray energy release $E_{\gamma,iso} = 4 \pi D_L^2 f_r / (1 + z) = 1.58 \pm 0.08 \times 10^{52}$ erg. Here we adopt the concordance cosmology with $\Omega_m = 0.27$, $\Omega_k = 0.73$, and $h_0 = 0.71$.

The XRT began observing the burst at $T_0 + 0.4$. The XRT light curve shows several components (Evans et al. 2012b). Figure 1 shows the XRT light curve, which is the temporal evolution of the unabsorbed flux in the 0.3–10 keV band. The time-averaged spectrum is best fit by a simple power law with a photon index $\Gamma = 1.82 \pm 0.09$. The fluence in the 15–150 keV band is $F_{15-150} = 2 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$, yielding an isotropic gamma-ray energy release $E_{\gamma,iso} = 4 \pi D_L^2 f_r / (1 + z) = 1.58 \pm 0.08 \times 10^{52}$ erg. Here we adopt the concordance cosmology with $\Omega_m = 0.27$, $\Omega_k = 0.73$, and $h_0 = 0.71$.

The XRT began observing the burst at $T_0 + 0.4$. The XRT light curve shows several components (Evans et al. 2012b). Figure 1 shows the XRT light curve, which is the temporal evolution of the unabsorbed flux in the 0.3–10 keV band. The time-averaged spectrum is best fit by a simple power law with a photon index $\Gamma = 1.82 \pm 0.09$. The fluence in the 15–150 keV band is $F_{15-150} = 2 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$, yielding an isotropic gamma-ray energy release $E_{\gamma,iso} = 4 \pi D_L^2 f_r / (1 + z) = 1.58 \pm 0.08 \times 10^{52}$ erg. Here we adopt the concordance cosmology with $\Omega_m = 0.27$, $\Omega_k = 0.73$, and $h_0 = 0.71$.

The XRT began observing the burst at $T_0 + 0.4$. The XRT light curve shows several components (Evans et al. 2012b). Figure 1 shows the XRT light curve, which is the temporal evolution of the unabsorbed flux in the 0.3–10 keV band. The time-averaged spectrum is best fit by a simple power law with a photon index $\Gamma = 1.82 \pm 0.09$. The fluence in the 15–150 keV band is $F_{15-150} = 2 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$, yielding an isotropic gamma-ray energy release $E_{\gamma,iso} = 4 \pi D_L^2 f_r / (1 + z) = 1.58 \pm 0.08 \times 10^{52}$ erg. Here we adopt the concordance cosmology with $\Omega_m = 0.27$, $\Omega_k = 0.73$, and $h_0 = 0.71$. This X-ray flare is very steep, $\alpha_2 = 6.6$.
The most interesting discovery in GRB 121027A is the giant X-ray bump in the subsequent observations. The flux of the giant X-ray bump increases sharply at $\sim T_0 + 10^3$ s by more than two orders of magnitude in less than 200 s. The flux is 1.2×10^{-11} erg cm$^{-2}$ s$^{-1}$ at $T_0 + 1033$ s (Windowed Timing mode), and suddenly increases to 1.7×10^{-6} erg cm$^{-2}$ s$^{-1}$ at $T_0 + 1198$ s (Photon Counting mode). Such “step-like” re-brightening of the X-ray bump in GRB 121027A is quite different from those of typical X-ray flares detected by Swift in the past eight years. For X-ray flares, the rise and decay timescales are compatible, which are close to the peak time of the flare (e.g., Liang et al. 2006; Chincarini et al. 2010). For the giant X-ray bump of GRB 121027A, the decay timescale, as shown in Figure 1, is $\sim 10^4$ s, much longer than the rising timescale. There is no XRT observation between $T_0 + 1.2$ ks and $T_0 + 5.3$ ks; however, the MAXI/Gas Slit Camera (GSC) detected the X-ray counterpart of GRB 121027A with a flux of ~ 150 mCrab in the 4–10 keV band at $T_0 + 2424$ s (Serino et al. 2012). Although the decay of the bump is not smooth and may have flaring features, its envelope can be roughly divided into two stages. Initially the decay slope is ~ 1.6 until $T_0 + 1.2 \times 10^8$ s. After that, the decay slope is ~ 3.8. The spectrum becomes softer during the decay phase. The time-averaged photon index $\Gamma = 1.66 \pm 0.20$ between $T_0 + 5.3$ ks and $T_0 + 1.9$ ks, while it changes to a much softer value of 2.47 ± 0.13 between $T_0 + 16.3$ ks and $T_0 + 30$ ks. The late XRT emission is dominated by another component after $T_0 + 50$ ks, which can be attributed to the forward shock emission. More detailed data analysis of the spectra and light curves of BAT and XRT emission of GRB 121027A can be found in Peng et al. (2013) and Levan et al. (2013).

3. FALL-BACK ACCRETION MODEL

We suggest that the X-ray bump seen in GRB 121027A is the result of the fall-back accretion, as shown in Figure 2. The fall-back accretion is expected to start at the fall-back time $t_{fb} = t_0$ (in the following, time is defined in the cosmologically local frame). The fall-back time is the time it takes a parcel of gas of the progenitor star at radius r_{fb} to fall to the center, and it is approximately equal to the free-fall time, $t_{fb} \sim (\pi^2 r_{fb}^3 / 8 GM_\ast)_{1/2}$, where M_\ast is the BH mass.

Following MacFadyen et al. (2001), Zhang et al. (2008), and Dai & Liu (2012), the fall-back accretion rate initially increases with time as $M_{\text{early}} \propto t^{1/2}$ until it reaches a peak value at t_p. The late-time fall-back accretion behavior follows $M_{\text{late}} \propto t^{-5/3}$, as suggested by Chevalier (1989). Therefore, we assume that the fall-back accretion rate evolves as a smooth broken power-law function of time,\(^6\)

$$
\dot{M} = \dot{M}_p \left[\frac{1}{2} \left(\frac{t - t_0}{t_p - t_0} \right)^{-\alpha_r} + \frac{1}{2} \left(\frac{t - t_0}{t_p - t_0} \right)^{-\alpha_d} \right]^{-1/s},
$$

where $\alpha_r = 1/2$, $\alpha_d = -5/3$, and s describes the sharpness of the peak. The dimensionless accretion rate is defined as $\dot{m} = \dot{M} / (M_\odot s^{-1})$.

As suggested by Lei et al. (2013); see also W.-H. Lei et al., in preparation), the jet may be dominated by the BZ power especially at late times (Fan et al. 2005; Zhang & Yan 2011). For this reason, we connect the observed X-ray luminosity to the BZ power through

$$
\eta \dot{E}_B = f_B L_X,_{\text{iso}},
$$

where η is the efficiency of converting BZ power to X-ray radiation and f_B is the beaming factor of the jet.

The BZ jet power from a BH with mass M_\ast (or dimensionless mass $m_\ast = M_\ast / M_\odot$) and angular momentum J_\ast is (Lee et al. 2000; Li 2000; Wang et al. 2002; McKinney 2005; Lei & Zhang 2011; Lei et al. 2013)

$$
\dot{E}_B = 1.7 \times 10^{50} a_\ast^2 m_\ast^2 B_{15}^2 F(a_\ast) \text{ erg s}^{-1},
$$

\(^6\) The actual peak time and peak accretion rate in Equation (1) are slightly different from t_p and M_p.

Figure 1. BAT (gray) and XRT (black) light curves of GRB 121027A. BAT flux is calculated at 10 keV. XRT flux is absorption-corrected in the 0.3–10 keV. The prompt and afterglow emission is separated by the dashed vertical line. Also plotted is the Japanese MAXI/GSC observation (open pentagram), whose flux has been extrapolated from the 4–10 keV band (3.6×10^{-9} erg cm$^{-2}$ s$^{-1}$) to the 0.3–10 keV band (8.3×10^{-9} erg cm$^{-2}$ s$^{-1}$).

Figure 2. Illustration of our model. The fall-back and accretion of the stellar envelope produce the X-ray bump seen in GRB 121027A. The jet is powered by the Blandford-Znajek mechanism, which extracts the rotational energy of the Kerr BH through the large-scale magnetic field (oblique and spiral lines). (A color version of this figure is available in the online journal.)
where \(B_{*,15} = B_* / 10^{15}\) G and

\[
F(a_*) = [(1 + q^2)/q^2][(q + 1/q) \arctan q - 1].
\]

Here \(a_* = J_*/(GM_*)^2\) is the BH spin parameter, and \(q = a_*/(1 + \sqrt{1 - a_*>^2})\). For \(0 < a_* < 1\), \(2/3 < F(a_*) < \pi - 2\). It is obvious that the BZ power depends on the BH spin, i.e.,

\[
\dot{E}_B = 3.36 \times 10^{45}a_*^2q^{-1}m_3^2B_{*,15}^2F(a_*) \mathrm{ergs s}^{-1}.
\]

It is obvious that the BZ power depends on the BH spin, i.e.,

\[
\dot{E}_B = \frac{3(3\sqrt{R_{ms}} - 2a_*)}{\sqrt{3\sqrt{R_{ms}}}},
\]

where \(R_{ms} = r_{ms}/r_g\) is the radius of the marginally stable orbit in terms of \(r_g\). The expression for \(R_{ms}\) is (Bardeen et al. 1972)

\[
R_{ms} = 3 + Z_2 - [(3 - Z_1)(3 + Z_1 + 2Z_2)]^{1/2},
\]

for \(0 \leq a_* \leq 1\), where \(Z_1 = 1 + (1 - a_*^{1/3})(1 + a_*^{1/3} + (1 - a_*^{1/3})/2); Z_2 = (3a_*^{2/3} + Z_1^{1/2})/2\).

In Equation (10), \(\dot{E}_B / \Omega_B\) is the total magnetic torque applied on the BH, i.e.,

\[
\dot{E}_B = 3.36 \times 10^{45}a_*^2q^{-1}m_3^2B_{*,15}^2F(a_*) \mathrm{ergs s}^{-1}.
\]

Here \(\Omega_B = 0.5\Omega_\odot\) is usually taken to maximize the BZ power, and

\[
\Omega_B = \frac{c^3}{GM_3^2(1 + \sqrt{1 - a_*^2})}
\]

is the angular velocity of the BH horizon.

One can calculate the evolution of the BH spin by integrating the above expressions into Equation (11), and then study the time-dependent X-ray luminosity by substituting the evolution of the BH spin and fall-back accretion rate into Equation (7) of the BZ power.

For GRB 121027A, the X-ray bump appears at \(\sim T_0 + 1000\) s after the GRB trigger, which, divided by \(1 + z\), corresponds to \(r_{fb} \sim t_0 \sim 360\) s. This suggests that the minimum radius around which matter starts to fall back is

\[
r_{fb} \sim 3.5 \times 10^{19}(M_*/3 \odot)(t_{fb}/360\) s \()2/3 \mathrm{cm}.
\]

The peak flux of the bump in the 1–10 keV band is \(F_{X, peak} > 8.3 \times 10^{-9}\) erg cm\(^{-2}\) s\(^{-1}\), corresponding to a peak luminosity \(L_{X, peak} > 1.8 \times 10^{50}\) erg s\(^{-1}\). From Equation (7), we can estimate the peak accretion rate

\[
\dot{M}_p \sim 1.1 \times 10^{-4}L_{X, iso, 50}a_*^{-2}X^{-1}(a_*) \eta_{-2}^{-1}f_{b, -2} \odot \mathrm{M}_\odot \mathrm{s}^{-1}.
\]

where \(\eta_{-2} = \eta/10^{-2}\) and \(f_{b, -2} = f_b/10^{-2}\).

The total rising time of the bump is about 1800 s (Figure 3); we thus have \(t_p - t_0 \sim 1800/(1 + z)\) s \(\sim 650\) s. By Equation (1), the total fall-back/accreted mass should be

\[
M_{fb} \sim \int_{t_0}^{t_p} \dot{M} dt \sim 2\dot{M}_p (t_p - t_0)/3
\]

\[
\sim 4.6 \times 10^{-2}L_{X, iso, 50}a_*^{-2}X^{-1}(a_*) \eta_{-2}^{-1}f_{b, -2} \odot \mathrm{M}_\odot.
\]

From Equation (6), the maximum magnetic field strength around BH is

\[
B_{*,\odot} \sim 7.8 \times 10^{14} L_{X, iso, 50} a_*^{-1/2} q^{-1/2} \sqrt{3} \odot \mathrm{G}.
\]

The exact values of the above parameters depend strongly on the BH spin \(a_*\) at time \(t_p\).

To constrain the above parameter values in GRB 121027A, we carried out numerical calculation of Equations (1)–(11). We obtain the time evolution of the BZ power, and compare it with the observations of the X-ray bump in GRB 121027A. In our calculation, we assume \(\eta = 10^{-2}\) and \(f_b = 10^{-2}\) (the jet half-opening angle is constrained to be \(\theta_j > 0.2\) radians by late XRT observations; Peng et al. 2013). The BH is initially set up with

\[
L_{ms} = \frac{GM_3 2(3\sqrt{R_{ms}} - 2a_*)}{\sqrt{3\sqrt{R_{ms}}}},
\]

where \(R_{ms} = r_{ms}/r_g\) is the radius of the marginally stable orbit in terms of \(r_g\). The expression for \(R_{ms}\) is (Bardeen et al. 1972)
a mass of \(m_\ast = 3 \) and a spin of \(a_\ast = 0.9 \). The calculation starts at \(t_0 = 1150/(1 + z) \) s. Figure 3 shows our model fit to the X-ray bump in GRB 121027A. The parameters for the fitting are \(M_{fb} = 6.1 \times 10^{-4} \), \(s = 1.9 \), and \(t_p = 2950/(1 + z) \) s. The total fall-back mass is \(M_{fb} = 0.9 M_\odot \). The total fall-back mass is one order of magnitude higher than that estimated with Equation (19), which underestimates the actual duration of smoothed peak accretion (see Figure 3). The initial spin of the BH for the X-ray bump phase has large uncertainty. We also considered low-spin cases. For \(a_\ast = 0 \), the model parameters are \(M_{fb} = 7.0 \times 10^{-3} \), \(s = 0.35 \), \(t_p = 1350/(1 + z) \) s, and \(M_{fb} = 2.6 M_\odot \). For \(a_\ast = 0.5 \), the model parameters are \(M_{fb} = 1.7 \times 10^{-3} \), \(s = 0.70 \), \(t_p = 2050/(1 + z) \) s, and \(M_{fb} = 1.8 M_\odot \). Note that for the decay phase of the bump, we focus on the temporal evolution of the envelope of XRT emission. There may be fragmentation during the fall-back phase (King et al. 2005), which can account for the variations in XRT flux during the decay phase.

There is a break in the light curve at time \(t_b \sim 1.2 \times 10^4 \) s, after which the photon index \(\Gamma \) changes from 1.66 ± 0.20 to 2.47 ± 0.13. If the central engine ceases at this time, one can expect a transition in the light curve from the fall-back phase to the tail emission phase. In this scenario, the temporal decay index after \(t_b \) is \(\alpha = 1 + \Gamma = 3.47 ± 0.13 \) due to the curvature effect, which is consistent with the observed one (3.8). It requires that the mass fall-back should stop at \(t_b \). Therefore, remnant emission comes from high latitude and the observed XRT flux fades as \(t^{-3.8} \) for \(t > t_b \).

4. CONCLUSIONS AND DISCUSSION

The X-ray afterglow light curve of GRB 121027A is unusual. The “step-like” re-brightening at about 1000 s since the burst with a duration longer than \(10^4 \) s, which we refer to as the giant X-ray bumps in this Letter, is quite different from typical X-ray flares observed by Swift. We propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for long-duration GRBs. The fall-back radius of \(r_{fb} \sim 3.5 \times 10^{10} \) cm and mass \(M_{fb} \sim 9.0 - 2.6 M_\odot \) for this burst require that the helium envelope of the progenitor be partly survived before the ending of the massive star. One may ask why this burst shows the fall-back signature, while most other long GRBs do not. One should always have fall-back. The reason may be that in the collapsar models, the bounding shock responsible for the associated supernova transfers kinetic energy to the envelope materials. The more energetic the supernova shock, the less envelope material falls back into the center. The potential energy of the fall-back material at \(r_{fb} \) is negative, with an absolute value of \(GM_\odot M_{fb}/r_{fb} \sim 2 \times 10^{59} (M_{fb}/M_\odot) \) erg for GRB 121027A, assuming \(M_\ast \sim 3 M_\odot \). If the kinetic energy delivered from the supernova shock is less than the potential energy, then this material will fall back. In our scenario, GRB 121027A might be accompanied by a low-energy supernova, or even a failed supernova.

We thank the referee for helpful suggestions that improved this Letter. We also thank Ziqiao Dai, Yizhong Fan, Enwei Liang, Jufu Lu, and Bing Zhang for helpful discussions. This work was made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This work was supported by the National Basic Research Program (“973” Program) of China under grant Nos. 2009CB824800 and 2013CB834900, and the National Natural Science Foundation of China (grants 11233006, 11003004, 11173011, and U1231101). X.-F. Wu acknowledges support from the One-Hundred Talents Program and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

REFERENCES

Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347
Barthelmy, S. D., Baumgartner, W. H., Cummings, J. R., et al. 2012, GCN, 13910, 1
Beardmore, A. P., Evans, P. A., Goad, M. R., & Osborne, J. P. 2012, GCN, 13916, 1
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Burrows, D. N., Romano, P., Falcone, A., et al. 2005, Sci, 309, 1833
Chen, W.-X., & Beloborodov, A. M. 2007, ApJ, 657, 383
Chevalier, R. A. 1989, ApJ, 346, 847
Chincarini, G. Mao, J., & Margutti, R. 2010, MNRAS, 406, 2113
Dai, Z. G., & Liu, R. Y. 2012, ApJ, 759, 58
Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706
Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2007, A&A, 469, 379
Evans, P. A., Beardmore, A. P., Page, K. L., et al. 2009, MNRAS, 397, 1177
Evans, P. A., Gronwall, C., Krimm, H. A., et al. 2012a, GCN, 13906, 1
Evans, P. A., Page, K. L., & Osborne, J. P. 2012b, GCN, 13921, 1
Fan, Y. Z., & Wei, D. M. 2012, MNRAS, 364, L42
Fan, Y. Z., Zhang, B., & Proga, D. 2005, ApJL, 635, L129
Gu, W. M., Liu, T., & Lu, J. F. 2006, ApJL, 643, L87
Janiuk, A.-K., & Yuan, Y.-F. 2010, A&A, 509, 55
Janiuk, A.-K., Yuan, Y., Perna, R., & Di Matteo, T. 2007, ApJ, 664, 1011
King, A., O’Brien, P. T., Goad, M. R., et al. 2005, ApJL, 630, L113
Kohri, K., & Mineshige, S. 2002, ApJ, 577, 311
Kruhler, T., Tanvir, N. R., de Ugarte Postigo, A., et al. 2012, GCN, 13930, 1
Kumar, P., Narayan, R., & Johnson, J. L. 2008a, MNRAS, 388, 1729
Kumar, P., Narayan, R., & Johnson, J. L. 2008b, Sci, 321, 376
Lee, H. K., Wijers, R. A. M. J., & Brown, G. E. 2000, PhR, 325, 83
Lei, W.-H., Wang, D.-X., Zhang, L., et al. 2009, ApJ, 700, 1970
Lei, W.-H., & Zhang, B. 2011, ApJL, 740, L27
Lei, W.-H., Zhang, B., & Liang, E. W. 2013, ApJ, 765, 125
Levan, A. J., Tanvir, N. R., Starling, R. L. C., et al. 2013, ApJ, submitted (arXiv:1302.2352)
Li, L.-X. 2000, PrRvD, 61, 084016
Li, L., & Paczynski, B. 2000, ApJL, 534, L197
Liang, E. W., Zhang, B., O’Brien, P. T., et al. 2006, ApJ, 646, 351
Liu, T., Gu, W. M., Xue, L., & Lu, J. F. 2007, ApJ, 661, 1025
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410
McKinney, J. C. 2005, ApJL, 630, L5
Moderski, R., Sikora, M., & Lasota, J. P. 1997, in Proc. International Conf. on
Relativistic Jets in AGNs, ed. M. Ostrowski, M. Sikora, G. Madejski, & M.
Belgelman (Krakow: Univ. Jagiellonski Obs. Astron.), 110
Nagataki, S. 2009, ApJ, 704, 937
Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356
Serino, M., Nakahira, S., Negoro, H., et al. 2012, GCN, 13908, 1
Tanvir, N. R., Wiersema, K., Levan, A. J., et al. 2012, GCN, 13929, 1
Wang, D. X., Xiao, K., & Lei, W. H. 2002, MNRAS, 335, 655
Woosley, S. E. 1993, ApJ, 405, 273
Zhang, B., Fan, Y. Z., Dyks, J., et al. 2006, ApJ, 642, 354
Zhang, B., & Yan, H. 2011, ApJ, 726, 90
Zhang, W., Woosley, S. E., & Heger, A. 2008, ApJ, 679, 639

Narayan, R., Piran, T., & Kumar, P. 2001, ApJ, 557, 949
Novikov, I. D., & Thorne, K. S. 1973, in Black Holes, ed. C. DeWitt-Morette &
B. S. DeWitt (New York: Gordon & Breach), 345
Paczynski, B. 1998, ApJL, 494, L45
Peng, F. K., Hu, Y. D., Xi, S. Q., et al. 2013, ApJL, submitted (arXiv:1302.4876)
Serdan, M., Nakahira, S., Negoro, H., et al. 2012, GCN, 13908, 1
Tanvir, N. R., Wiersema, K., Levan, A. J., et al. 2012, GCN, 13929, 1
Wang, D. X., Xiao, K., & Lei, W. H. 2002, MNRAS, 335, 655
Woosley, S. E. 1993, ApJ, 405, 273
Zhang, B., Fan, Y. Z., Dyks, J., et al. 2006, ApJ, 642, 354
Zhang, B., & Yan, H. 2011, ApJ, 726, 90
Zhang, W., Woosley, S. E., & Heger, A. 2008, ApJ, 679, 639