Characterization and Plasmid Profile of Resistant *Klebsiella pneumoniae* Isolates in Patients with Urinary Tract Infection in Nasarawa State, Nigeria

Olukayode Olugbenga Orole¹*, Naja’atu Shehu Hadi¹

¹Department of Microbiology, Federal University of Lafia, Nigeria

Article Information

Received: 15 February 2020
Revised version received: 18 March 2020
Accepted: 20 March 2020
Published: 29 March 2020

Cite this article as:
O.O. Orole and N.S. Hadi (2020) Int. J. Appl. Sci. Biotechnol. Vol 8(1): 21-28.
DOI: 10.3126/ijasbt.v8i1.28252

Corresponding author

Olukayode Olugbenga Orole,
Department of Microbiology, Federal University of Lafia, Nigeria
Email: orolekayode@gmail.com

Peer reviewed under authority of IJASBT
© 2020 International Journal of Applied Sciences and Biotechnology

Abstract

Klebsiella pneumoniae has been identified as an urgent threat to human health based on its increasing antimicrobial resistance to the beta-lactamases and Carbapenemases. The pathogen has become a threat to both patients and healthcare providers as its incidence is on the increase, becoming a major global healthcare issue. The study was aimed at characterizing and determining the plasmid profile of resistant *Klebsiella pneumoniae* isolates from urinary tract of patients at Dalhatu Araf Specialist Hospital Lafia, Nasarawa State, Nigeria. Early morning mid-stream urine samples were collected from patients with urinary tract infections between April and May, 2019 and *Klebsiella pneumoniae* characterized on the basis of its antibiotic resistance pattern, and the plasmid DNA profile determined. Thirty-eight strains of resistant *Klebsiella pneumoniae* were obtained of which 33 showed resistance to more than three antibiotics. About 51.1% of the isolates were resistant to Tetracycline, while the isolates were least resistant to Azithromycin and Cefotaxime (30.3%) respectively. *Klebsiella pneumoniae* isolates showed 32 different resistance patterns, 24 of the strains had the capacity to produce Extended Spectrum Beta-lactamases enzymes: CTX-M 24(72.7%), SHV 19(57.6%) and TEM 16(48.5%) respectively. All the resistant *Klebsiella pneumoniae* isolated had the same plasmid size of 48.5 kilobases and only 1 plasmid each though they all obtained a multiple antibiotic resistance (MAR) index > 0.2. The study concluded that *Klebsiella pneumoniae* harbours genes which confer antibiotic resistance on the isolates. The study exposes further the challenge of antibiotic resistance and need for concerted effort at stopping the challenge of drug resistance.

Keywords: Resistance; *Klebsiella*; Plasmid; Beta-lactamases; Antibiotics

Introduction

Klebsiella pneumoniae and other bacteria of health importance are pathogens causing concern globally due to resistance acquired to more than two lines of antibiotic classes (Nordmann *et al.*, 2009). *Klebsiella pneumoniae* strains have the capacity to take up traits (genetic) leading to more virulence and resulting in multidrug resistance. These resistant bacterial strains produce enzymes like cephalosporinase or Carbapenemases that can deactivate antibiotic drug administered on patients (Long *et al.*, 2018), and so integrons, plasmid genes, and transposons harboured by the pathogen induces resistance to antibiotics drugs (Paterson and Bonomo, 2005).

Klebsiella pneumoniae causes nosocomial infection and it is a prevalent bacterium that abound in health facilities with special ability to take-up resistance genes from the environment. It is implicated in developing states of the world and poor communities as one of the major cause of diseases. About 78 serogroups have been identified each with a different capsular K antigen in the bacteria (Janda,
2015; Pan et al., 2019). Spagnolo et al. (2014) reported that *K. pneumoniae* is responsible for some healthcare-associated and community-associated infections. Colonization of the gastrointestinal (GI) tract is usually a pre-requisite for induction of infection, and medical personnel are culpable reservoir of infection contagion (Calbo et al., 2011). *Klebsiella pneumoniae* exerts resistance using a) the capability to produce resistance enzymes that inactivates cephalosporins and monobactams, b) ability to express production of carbapenemases which confers resistance to all β-lactams antibiotics, including the carbapenems (CDC, 2015).

The burden of infection caused by the pathogen is associated with high morbidity and mortality which might not be unconnected with the high number of resistance genes the bacteria harbours (CDC, 2013; Hoban et al., 2014). The bacterium attaches to host cells employing fimbrae and adhesins which promote tissue infection (Ong et al., 2010). Prolong hospital stay, prior use of antibiotics and ventilation type are risk factors associated with colonization and infection by *Klebsiella pneumoniae*. The study was aimed at characterizing and determining the plasmid profile of resistant *Klebsiella pneumoniae* isolates from urinary tract of patients at Dalhatu Araf Specialist Hospital Lafia, Nasarawa State, Nigeria.

Materials and Methods

Sampling and Collection of Samples

A total of 194 urine samples were collected from Dalhatu Araf Specialist Hospital (DASH), Lafia, Nasarawa State determined by a prevalence rate of 14.8% (Yusuf et al., 2014), after obtaining ethical approval from DASH, Ethical committee. Early morning Mid-stream urine samples were collected from patients with urinary tract infections with symptoms such as vomiting, fever lasting more than 7 days, and those who had lower abdominal pain.

Inclusion and Exclusion Criteria

Samples were obtained from patients of both sexes and all ages to include: inpatients and out patients. Patients already on antibiotics and intensive care unit were excluded from the sampled group.

Isolation and Identification

Urine samples was inoculated on Cysteine Lactose Electrolyte Deficient (CLED) agar plates and streaked to obtain discrete colonies which were then sub-cultured unto Mac-Conkey agar to obtain pure colonies and incubated overnight at 37°C. Identification was based on colonial appearance, Gram reactions and biochemical tests.

Determination of Antibiotic Susceptibility Profile of Isolated Klebsiella pneumoniae

Antibiotic susceptibility pattern of *Klebsiella pneumonia* isolate from urinary tract patients was determined using the methods of Clinical and Laboratory Standards Institute Guidelines CLSI (2012). Broth cultures containing the different isolates were separately prepared using sterile peptone water comparable to 0.5 McFarland’s standard and inoculated using Kirby-Bauer disc diffusion method on Mueller Hinton agar, and tested against antibiotics. The antibiotics tested were Ceftriaxone/Cefotaxime (30/30 μg), Cefotaxime (30 μg), Ofloxacin (30 μg), tetracycline (30 μg), Gentamycin (10 μg), levofloxacin (5 μg), Imipenem (10 μg), Amoxicillin + Clavulanic acid (20/10 μg) Azithromycin (30 μg), and Ciprofloxacin (5 μg). Incubation was done at 37°C for between 18-24 h after which the inhibition zones around the discs were measured and interpreted according to Performance Standards for Antimicrobial Disk Susceptibility Tests, CLSI.

Determination of Plasmid Patterns in Resistant Klebsiella Pneumoniae Isolates

i) Extraction of DNA from resistant Klebsiella pneumoniae isolates

One thousand microliters of phosphate buffer saline (PBS) was added to each tube containing the isolates. It was then added into a tube and centrifuge at 2000 rpm for 5 minutes. Discard the supernatant. Two- hundred and fifty μl of PBS was again added to the pelleted isolates and re-suspend 250 μl p2 buffer was then added and turn upside then down the tube for like four times (p2 is a lysis buffer). Three hundred and fifty μl N3 buffer (N3 is a neutralization buffer). The tubes were turn upside then down for four times. It was then centrifuge at 1300 rpm for 10 minutes. Eight- hundred microliters of the supernatant of the supernat was now added into a column and centrifuge at 13000 rpm for 1 minute. Five-hundred microliters of PB buffer was also added to the binding column and centrifuge at 13000 rpm for 1 min. Three-hundred microliters of wash buffer 1 was added and centrifuge for 1 min, 300 μl of wash buffer 2 was added and centrifuge for 1 min. The empty tube was centrifuge at 13000 rpm to remove residual. The tube was transferred to a new tube for elution in which 500 μL of elution was added. It was centrifuge at 8,000 rpm for 1 min to elute the DNA.

ii) Multiplex Polymerase Chain Reaction

A mixture of 20 mL in 0.5 mL tube containing 2 mL of Sulphhydryl variable primer, 2 mL of Temoneria primer, 2 mL of Cefotaximase primer, 12 mL of H2O and 2 mL of the extracted DNA was mix together. An addition of 50 mL of nuclease was added to avoid evaporation during the cycling period. The PCR begins with: Pre-denaturation at one cycle for 5 min at a temperature of 94°C then denaturation for 30 s at a temperature of 94°C, followed by annealing at a temperature of 52°C for 30 s and, extension at 72°C for 1 min at 35 cycles. Finally, extension for 5 min at a temperature of 72°C. At the end of cycling, the tubes were stored at – 20°C.
Bacterial count in urine samples from UTI patients

Isolates	Number of isolates	Percentage (%)
Klebsiella pneumoniae	66	33
Escherichia coli	6	3
Staphylococcus sp	9	5
Proteus sp	5	2.5
Pseudomonas sp	3	1.5
Streptococcus sp	7	3.5
Chlamydia trachomatis	3	1.5

Susceptibility Profile of Klebsiella pneumoniae Isolates

As shown in the Table 2 below, Klebsiella pneumoniae strains were most susceptible to Azithromycin and Cefotaxime (69.7%) respectively, followed by Gentamicin (68.2%), Imipenem, Ceftriaxone, Levofloxacin, and Ofloxacin (63.6%) each, while Augmentin and Ciprofloxacin (57.6%) respectively. The least sensitivity was observed in Tetracycline (34.8%). Hence, Klebsiella pneumoniae strains were most resistant to Tetracycline (65.2%) and least resistant to Azithromycin and Cefotaxime (30.3%).

Antibiotic Resistance Pattern of Klebsiella Pneumoniae Isolated from Urine

Klebsiella pneumoniae strains showed 32 different resistance patterns with Ceftriaxone (CRO), Ciprofloxacin (CIP), Imipenem (IMP) and Tetracycline (TET) been the most encountered (Table 3). Out of the 33 isolates, 2 isolates showed resistance to 9 antibiotics, 1 isolate showed resistance to 7 antibiotics, 3 isolates to 6 antibiotics while 14 isolates showed resistance to 5 antibiotics respectively. The multidrug resistant Klebsiella pneumonia strains identified in the present study all had one plasmid with 48.5 kilobases each, and a MAR index greater than 0.2 each as reported in Table 3. Klebsiella pneumoniae isolates with MAR index of 0.5 were 14 which was the highest recorded, while the least occurrence was a MAR index of 0.7.

Table 2: Antibiotic Susceptibility pattern of Klebsiella pneumoniae isolates from UTI patients

Antibiotics	Resistance (%)	Susceptibility (%)	Correlation coefficient
Number of isolates = 66	0.962		
Augmentin	28(42.4)	38(57.6)	
Ceftriaxone	24(36.4)	42(63.6)	
Cefotaxime	20(30.3)	46(64.9)	
Levofloxacin	24(36.4)	42(63.6)	
Ciprofloxacin	28(42.4)	38(57.6)	
Imipenem	24(36.4)	42(63.6)	
Ofloxacin	24(36.4)	42(63.6)	
Gentamicin	21(31.8)	45(68.2)	
Azithromycin	20(30.3)	46(69.7)	
Tetracycline	43(65.2)	23(34.8)	
Table 3: Antibiotic resistance pattern and plasmid profile of *Klebsiella pneumoniae* isolates in patients with urinary tract infection

Bacterial isolates	Number of plasmid	Plasmid size (kb)	Resistance pattern	Antibiotic resistance	MAR index
Kleb 1	-	-	Cro, Cip, Gn	3	0.3
Kleb 2	1	48.5	Lev, Cip, Ofx, Azn	4	0.4
Kleb 3	1	48.5	Aug, Lev, Cip, Imp	4	0.4
Kleb 4	1	48.5	Cro, Cip, Ofx, Gn	5	0.5
Kleb 5	1	48.5	Aug, Lev, Cip, Gn	4	0.4
Kleb 6	1	48.5	Aug, Cro, Zem, Lev, Cip, Ofx, Azn, Tet	9	0.9
Kleb 7	1	48.5	Aug, Cip, Ofx, Gnz	5	0.5
Kleb 8	1	48.5	Cro, Lev, Cip, Imp, Tet	5	0.5
Kleb 9	1	48.5	Aug, Lev, Imp, Gnz, Tet	5	0.5
Kleb 10	1	48.5	Cro, Lev, Cip, Gnz, Tet	5	0.5
Kleb 11	1	48.5	Cro, Zem, Lev, Gnz	4	0.4
Kleb 12	1	48.5	Zem, Imp, Azn	3	0.3
Kleb 13	1	48.5	Cip, Imp, Azn	3	0.3
Kleb 14	1	48.5	Cro, Cip, Imp, Tet	4	0.4
Kleb 15	1	48.5	Zem, Lev, Cip, Ofx, Gnz, Tet	6	0.6
Kleb 16	1	48.5	Aug, Zem, Lev, Tet	4	0.4
Kleb 17	1	48.5	Aug, Zem, Lev, Ofx, Azn	5	0.5
Kleb 18	1	48.5	Zem, Lev, Ofx, Azn, Tet	5	0.5
Kleb 19	1	48.5	Cip, Imp, Gnz, Azn, Tet	5	0.5
Kleb 20	1	48.5	Aug, Lev, Cip, Gnz, Azn	5	0.5
Kleb 21	1	48.5	Aug, Zem, Tet	3	0.3
Kleb 22	1	48.5	Aug, Zem, Ofx, Gnz, Azn, Tet	6	0.6
Kleb 23	1	48.5	Aug, Cro, Zem, Ofx, Gnz, Azn, Tet	7	0.7
Kleb 24	1	48.5	Zem, lev, Cip, Gnz, Azn, Tet	6	0.6
Kleb 25	1	48.5	Cro, Cip, Imp, Azn, Tet	5	0.5
Kleb 26	1	48.5	Cro, Lev, Cip, Imp, Tet	5	0.5
Kleb 27	1	48.5	Cro, Cip, Ofx, Gnz, Tet	5	0.5
Kleb 28	-	-	Aug, Cro, Lev, Ofx, Gnz, Tet	6	0.6
Kleb 29	1	48.5	Aug, Cro, Zem, Lev, Cip, Imp, Ofx, Gnz, Tet	9	0.9
Kleb 30	1	48.5	Zem, Ofx, Gnz, Azn	4	0.4
Kleb 31	1	48.5	Cip, Imp, Gnz	3	0.3
Kleb 32	1	48.5	Aug, Cro, Lev, Imp, Azn	5	0.5
Kleb 33	-	-	Cro, Zem, Ofx, Gnz, Tet	5	0.5

CRO: ceftriaxone, AUG: Augmentin, OFX: Ofloxacin, LEV: Levofloxacin, TET: Tetracycline, AZN: Azithromycin, CIP: Ciprofloxacin, GN: Gentamicin, IMP: Imipenem, ZEM: Cefotaxime

Table 4: Antimicrobial Resistance Gene Profiles of *Klebsiella pneumoniae* strains

ESBL-Enzyme	Strains	Number of isolates (%)
Temonemia	2,3,4,5,6,7,8,9,10,12,13,14,15,17,20,29	16 (48.5)
Sulphhydryl Variable	2,3,4,5,6,7,8,9,12,13,14,15,17,19,22,24,26,29,30	19 (57.6)
Active on cefotaxime	2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,26,29,30	24 (72.7)

Molecular Detection of Antimicrobial Resistance Genes

24 strains out of the 33 strains isolated contained extended spectrum beta-lactamase (ESβL) enzymes with CTX-M as the highest (72.7%), followed by SHV (57.6%) and TEM (48.5%) respectively. However, 9 strains such as strain 1, 21, 23, 25, 27, 28, 31, 32 and 33 did not produce such enzymes as shown in Fig. 1 and 2.
Discussion

Treatment of nosocomial infections is becoming a challenge as a result of resistance to antibiotics and the associated burden (Cao et al., 2014). Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Proteus spp, Pseudomonas spp., and other isolated bacteria have been implicated as contributing agents of nosocomial infections, and were also reported in the study by Kibret and Abera (2014), Derese et al. (2016), and Anejo-Okopi et al. (2015). The Klebsiella pneumoniae obtained in the study though had the highest incidence of occurrence when compared with other isolates at 33% was still low generally which aligns with other studies where the occurrence was reported to be low (Farajnia et al., 2009; Kamrul et al., 2012).

Isolates obtained in this study are known to be ubiquitous in nature, and are easily acquired and transmitted due to poor hygienic conditions in the hospital setting and community. High occurrence of Klebsiella pneumoniae in this study agrees with findings by Idomir et al. (2014) who reported that the pathogen can be readily isolated at high percentage in urinary diseased patients. High occurrence of Klebsiella pneumoniae in this study agrees with findings by Idomir et al. (2014) who reported that the pathogen can be readily isolated at high concentration in urinary diseased patients.

The prevalence obtained for E. coli in our study was 3.50% which was similar to the value recorded in the study by Derese et al. (2016) but, contrasted by the report of Kibret and Abera (2014) and Oladehinde et al. (2011). The presence of Pseudomonas aeruginosa agrees with the study of Oladehinde et al. (2011). The presence of these bacterial isolates could be result in multiple infections and were
likely introduced through sexual activities or poor hygienic conditions or disease conditions. The *Klebsiella pneumoniae* isolates showed varied susceptibility to the tested antibiotics and many of the isolates were susceptible to Azithromycin followed by Gentamicin. The result obtained in the study was similar to results recorded in the research carried out by Iyoha and Tula (2015).

Resistance recorded by the *K. pneumoniae* could be attributed to drug abuse through self-medication, over the counter access to drugs, and consumption of residual antibiotics present in food as meat (chicken, beef, pork, fish – growth promoters), and plants (roots, leaves, tubers, stems, grains). The resistance exhibited by the *Klebsiella pneumoniae* isolates against tetracycline corroborates findings by Olusola *et al.* (2013) who explained that the pathogens were ineffective against the antibiotic using mechanisms such as biofilm formation, evasion, and their capacity to acquire resistance gene and plasmid to overcome the stress factor.

Antibiotic resistance patterns exhibited by the *Klebsiella pneumoniae* isolates showed that 32 patterns were found with Ceftriaxone, Ciprofloxacin, Imipenem and Tetracycline being the most encountered. This finding agrees with the study of Arezoo *et al.* (2018) who reported several resistance patterns. The different antibiotic resistance patterns observed is an indication of a widespread unregulated use of these antimicrobials coupled with factors such as sexual activity, age, sex, poor immunity, personal hygiene, history of recurrent UTI’s, and social behaviour.

Pathogenicity of MDR *Klebsiella pneumoniae* has been attributed to the possession and production of resistance genes, virulence genes, integrons, production of toxins (Li *et al.*, 2013; Firoozeh *et al.*, 2019). Extended Spectrum Beta-Lactamases genes from isolated resistant *Klebsiella pneumoniae* include TEM, SHV, and CTX-M. These genes promote virulence and resistance in the bacteria hence Akingbade *et al.* (2012) reiterated the importance of determining the plasmid profile of isolates along with the resistance pattern for effective and efficient diagnosis because plasmid harbouring these genes confers broad antibiotic resistance on the bacteria. Generally, it was observed in the study that all *Klebsiella pneumoniae* strains were multidrug resistant as they were resistant to three or more antibiotics. *Klebsiella pneumoniae* MDR isolates from this study produced extended β-lactamase. Further analysis using sequencing showed the isolates contained CTX-M, SHV and TEM Extended Spectrum Beta-Lactamases genes. CTX-M (Active on Cefotaxime) was the highest being harbour by 24 isolates. The three ESBL genes detected in the isolates have been reported to confer resistance on the bacterial isolates and peculiar to the Enterobacteriaceae family (Arcilla *et al.*, 2017).

High prevalence of resistance genes obtained in the present study agrees with the report of Anes *et al.* (2017). The SHV and TEM both contributed to conferring resistance on the isolates which is transferable. The issues of *Klebsiella pneumoniae* resistance genes between human and animals have been raised by Wu *et al.* (2019). The authors investigated the mechanism of multiple resistance and dissemination of resistance genes by the pathogen, and recommended proactive surveillance of florfenicol-resistant strains in animals. The MAR index obtained in the study were many with only two isolates been ineffective against 9 antibiotics, 14 isolates scoring MAR index of 0.5, and one isolate scoring 0.7. The isolates were multidrug resistant. Our finding agrees with that of Christopher *et al.* (2013) who obtained a MAR index of 0.89 in their study. All MDR *K. pneumoniae* isolates analysed possess only one plasmid with the same size of 48.5 base pairs.

Conclusion

The study established the possession of Temoneria, Sulphydryl Variable, and Active on Cefotaxime genes in the isolated *Klebsiella pneumoniae* strains with only one plasmid (48.5bp). The finding affirms the fact that resistance is not only conferred by the presence of plasmid bearing genetic agents but that other factors are involved in resistance noted in pathogens. CTX-M genes was found more in the isolates and reports showed that the genes are also found in animals which calls for concern so as to avoid cross dissemination. The study also revealed that a host of antibiotics employed in the treatment of *Klebsiella pneumoniae* infections are becoming ineffective. Use of multiple antibiotics in treatment is not encouraged to reduce resistance but we are left with little option of surveillance to better manage the challenge of resistant pathogens. Based on the results obtained *Klebsiella pneumoniae* is the frequent pathogen associated with urinary tract infections (UTI) in DASH, Lafia.

Author’s Contribution

O.O. Orole Author 1 conceptualize and designed the research, did critical revision of the manuscript, and participated in the interpretation of data. N.S. Hadi Author 2 designed the research, acquired data, drafted the manuscript, and carried out analysis of data. Final form of manuscript was approved by both authors.

Conflict of Interest

The authors declare that there is no conflict of interest with present publication.

References

Akingbade OA, Ogiogwa IJ, Okonko IO, Okerentugba PO, Innocent-Adiele HC, Nwanze JC and Onoh CC (2012) Plasmid Profile of Isolated Klebsiella Species in a Tertiary Hospital in Abeokuta, Ogun State, Nigeria. *World Applied Science Journal* 3: 371-378.
Anejo-Okozi JA, Okojokwu OJ, Ramyi SM, Bakwet PB, Okechalu J, Agada G, Bassi PA and Adeniyi SD (2015) Bacterial and antibiotic susceptibility pattern of urinary tract infection isolated from asymptomatic and symptomatic diabetic patients attending tertiary hospital in Jos, Nigeria. Trends in Medicine 17(1): 1-5. DOI: 10.15761/TIM.1000108

Anes J, Hurley D, Martins M and Fanning S (2017). Exploring the Genome M and Phenotype of Multi-Drug Resist Klebsiella pneumoniae of Clinical Origin. Frontiers in Microbiology, 8: 1913. 10.3389/fmicb.2017.01913

Arcilla MS, Van Hattem J.M, Van Genderen O.O Orole and N.S. Hadi (2017). Exploring the Genome M and Phenotype of Multi-Drug Resist Klebsiella pneumoniae of Clinical Origin. Frontiers in Microbiology, 8: 1913. 10.3389/fmicb.2017.01913

Christopher A, Broberg MP and Virginia LM (2009) Performance standards for antimicrobial susceptibility: Nineteenth informational supplement. Wayne PA: Clinical and Laboratory Standards Institute (CLSI),M100, 19thed, January 2009. ISBN-13:978-0012769010.

Derese B, Kedir H, Teklemariam Z, Weldegebreal F and Balakrishnan S (2016) Bacterial profile of urinary tract infection and antimicrobial susceptibility pattern among pregnant women attending antenatal Clinic in DilChora Referral Hospital, Dire Dawa, Eastern Ethiopia. Therapeutics and Clinical Risk Management, 12: 251-260. doi: 10.2147/TCRM.S99831 10.2147/TCRM.S99831

Farajnia S, Alilkhani MY, Ghotaslou R, Naghili B and Nakhliand A (2009) Causative agents and antimicrobial resistibilities of urinary tract infections in the northwest of Iran. International Journal of Infectious Diseases, 13(2): 140-144. 10.1016/j.ijid.2008.04.014

Firoszef F, Mahluji Z, Khorschied A and Zibaei M (2019) Molecular characterization of class 1, 2 and 3 integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrobial Resistance and Infection Control, 8(59), 10.1186/s13756-019-0509-3

Hoban DJ, Badal R, Bouchillon S, Hackel M, Kazmierczak K, Lasclos C and Hawser S (2014) In vitro susceptibility and distribution of beta-lactamases in Enterobacteriaceae causing intra-abdominal infections in North America 2010-2011. Diagnostic Microbiology and Infectious Disease, 79: 367-72. 10.1016/j.diagmicrobio.2014.03.026

Idomir ME, Mateesu GG and Nemet C (2014) Etiological and therapeutically particularities of urinary tract infections in urological patients. Bulletin of the Transilvania University of Brasov, 7(56): 1.

Iyoha O and Tula MY (2015) Plasmid-mediated multiple antibiotic Resistance among Klebsiella pneumoniae and Escherichia coli in a tertiary hospital in Nigeria. Journal of Annual Tropical Pathology, 6(1): 23-32.

Janda MJ (2015) The Genus Klebsiella: An ever- expanding panorama of infections, Disease- associated syndromes, and problems for Clinical Microbiologists. Clinical Microbiology and Case Reports, 1: 4-22.

Kamrul L, Eliza R, Habibura R and Ranjith R (2012) Urinary Tract Infection in Children: An Update Bangladesh. Journal of Child Healthcare, 36(2): 90-97. 10.3329/bjch.v36i2.13085

Kibret M and Abera B (2014) Prevalence and antibiogram of bacterial isolates from urinary tract infections at Dessie Health Research Laboratory, Ethiopia. Asian Pacific Journal of Tropical Biomedical Science, 4(2): 164-168. 10.1016/S2221-1691(14)00226-4

Li B, Hu Y, Wang Q, Yi Y, Woo PC, Jing H, Zhu B and Liu CH (2013) Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PLoS One, 8(9), e75805.dio:10.1371/journal.pone.10.1371/journal.pone.075805

Long SW, Linson SE, Ojeda Suavedra M, Cantu C, Davis JJ, Brettin T and Olsen RJ (2018) Discovery and whole genome sequencing of a human clinical isolate of the novel species Klebsiella quasivariusico sp. nov.bioRxiv. Genome announcement, 19(5): 42. 10.1128/genomeA.01057-17

This paper can be downloaded online at http://ijasbt.org & http://nejol.info/index.php/IJASBT
Nordmann P, Cuzon G and Naas T (2009) The real threat of
Klebsiella pneumonia carbapenemase producing bacteria.
Lancet Infectious Disease, 9: 228-236. 10.1016/S1473-
3099(09)70054-4

Oladeinde BH, Omoregie R, Olley M and Anunibe JA (2011)
Urinary tract infection in a rural community of Nigeria.
North American of Journal Medical Sciences, 3(2): 75-77.
10.4297/najms.2011.375

Olusola AA, Ogiogwa IJ, Iheanyi OO, Philip OO, Hope C,
Innocent A, Jonathan CN and Charles CO (2013) Plasmid
profile of Isolated Klebsiella species in a tertiary Hospital
in Abeokuta, Ogun State, Nigeria. *World Applied Science
Journal*, 21(3):371-378.

Ong CLY, Beatson SA, Totsika M, Forestier C, McEwan AG and
Schembri MA (2010) Molecular analysis of type 3fimbrial
genes from Escherichia coli, Klebsiella and Citrobacter
species. *BMC Microbiology*, 10: 183. 10.1186/1471-2180-
10-183

Pan JY, Tzu-lung L, Yi-yin C, Peng-Hsuan L, Yi-Tsung L and Jin-
Town W (2019) Identification of three podoviruses infecting
Klebsiella encoding capsule depolymerases that
digest specific capsular types. *Microbial Biotechnology*,
12(3): 472-486. 10.1111/1751-7915.13370

Paterson DL and Bonomo RA (2005) Extended-spectrum beta-
lactamases: A clinical update. *Clinical Microbiology
Reviews*, 18(4): 657-686. 10.1128/CMR.18.4.657-
686.2005

Spagnolo AM, Orlando P and Panatto D (2014) An overview of
carbapenem-resistant Klebsiella pneumoniae: epidemiology and control measures. *Reviews in Medical
Microbiology*, 25: 7-14. 10.1097/MRM.0b013e328365c51e

Wu F, Ying Y, Yin M, Jiang Y, Wu C, Qian C, Chen Q, Shen K,
Cheng C, Zhu L, Li K, Xu T, Bao Q and Lu J (2019)
Molecular Characterization of a Multidrug-Resistant
Klebsiella pneumoniae Strain R46 Isolated from a Rabbit.
International Journal of Genomics, 1-12.
10.1155/2019/5459190

Yusuf I, Arzai AH, Haruna M, Sharif AA and Getso MI (2014)
Detection of multidrug resistant bacteria in major hospitals
in Kano, North-west, Nigeria. *Brazilian Journal of
Microbiology*, 45(3): 791-798. ISBN 1678-4405.