Anti-triplet charmed baryon decays with SU(3) Flavor Symmetry

C.Q. Geng1,2, Y.K. Hsiao1,2, Chia-Wei Liu2 and Tien-Hsueh Tsai2

1School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China

2Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

(Dated: April 10, 2018)

Abstract

We study the decays of the anti-triplet charmed baryon state ($\Xi^0_c, \Xi^+_c, \Lambda^+_c$) based on the SU(3) flavor symmetry. In particular, after predicting $\mathcal{B}(\Xi^0_c \to \Xi^- \pi^+) = (15.7 \pm 0.7) \times 10^{-3}$ and $\mathcal{B}(\Xi^+_c \to \Xi^- \pi^+ \pi^+) = (14.7 \pm 8.4) \times 10^{-3}$, we extract that $\mathcal{B}(\Xi^0_c \to \Lambda K^- \pi^+, \Lambda K^+ K^-, \Xi^- e^+ \nu_e) = (16.8 \pm 2.3, 0.45 \pm 0.11, 48.7 \pm 17.4) \times 10^{-3}$ and $\mathcal{B}(\Xi^+_c \to p K^0_s K^0_s, \Sigma^+ K^- \pi^+, \Xi^0 \pi^+ \pi^0, \Xi^0 e^+ \nu_e) = (1.3 \pm 0.8, 13.8 \pm 8.0, 33.8 \pm 21.9, 33.8^{+21.9}_{-22.6}) \times 10^{-3}$. We also find that $\mathcal{B}(\Xi^0_c \to \Xi^0 \eta, \Xi^0 \eta') = (1.7^{+1.0}_{-1.7}, 8.6^{+11.0}_{-6.3}) \times 10^{-3}, \mathcal{B}(\Xi^0_c \to \Lambda^0 \eta, \Lambda^0 \eta') = (1.6^{+1.2}_{-0.8}, 9.4^{+11.6}_{-6.8}) \times 10^{-4}$ and $\mathcal{B}(\Xi^+_c \to \Sigma^+ \eta, \Sigma^+ \eta') = (28.4^{+8.2}_{-6.9}, 13.2^{+24.0}_{-11.9}) \times 10^{-4}$. These Ξ_c decays with the branching ratios of $O(10^{-4} - 10^{-3})$ are clearly promising to be observed by the BESIII and LHCb experiments.
I. INTRODUCTION

In terms of the $SU(3)$ flavor ($SU(3)_f$) symmetry, the Ξ_c decays should be in association with the Λ_c^+ ones as Ξ_c^0, Ξ_c^+ and Λ_c^+ are united as the lowest-lying anti-triplet of the charmed baryon states (B_c). Nonetheless, in accordance with $f_{\Xi_c^+} + f_{\Xi_c^0} + f_{\Omega_c^0} \simeq 0.136 f_{\Lambda_c^+}$ estimated in Refs. [1, 2], where f_{B_c,Ω_c} stand for the fragmentation fractions for the rates of the charmed baryon productions, the measurements of the Ξ_c decays are not easy tasks compared to the Λ_c^+ ones. For example, the two-body $\Lambda_c^+ \rightarrow B_n M$ decays with $B_n (M)$ the baryon (pseudoscalar-meson) have been extensively studied by experiments. Interestingly, six decay Λ_c^+ decay modes have been recently reexamined or measured by BESIII [3, 4]. In addition, LHCb has just observed the three-body $\Lambda_c^+ \rightarrow pM M$ decays [5], together with their CP violating asymmetries [6]. However, no much progress has been made in the Ξ_c decays. In particular, none of the absolute branching fractions in the Ξ_c decays has been given yet. Instead, these decays are experimentally measured by relating the decays of $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ or $\Xi_c^0 \rightarrow \Xi^- \pi^+$, and can only be determined once $f_{\Xi_c^0}$ are known.

Since BESIII and LHCb are expected to search for all possible anti-triplet charmed baryon decays, one can test whether or not the studies of $\Lambda_c^+ \rightarrow B_n M$ can be applied to $\Xi_c^0 \rightarrow B_n M$. Theoretically, the factorization for the b baryon decays [8–13] does not work for the charmed baryon decays, which receive corrections by taking into account the nonfactorizable effects [14–19]. On the other hand, the possible b or c hadron decay modes can be examined by the $SU(3)_f$ symmetry [20–31]. Furthermore, the symmetry approach has been extended to explore the doubly and triply charmed baryon decays [31], which helps to establish the spectroscopies of the doubly and triply charmed baryon states [32], such as the to-be-confirmed Ξ_{cc}^+ state [33–38].

Moreover, to test the validity of the $SU(3)_f$ symmetry in the anti-triplet charmed baryon decays, a complete numerical analysis for the decays is necessary. In fact, the decays of $\Lambda_c^+ \rightarrow B_n M$ have been explained well by the global fit in Ref. [30], together with the predictions of $B(\Xi_c^+ \rightarrow \Xi^0 \pi^+) = (8.0 \pm 4.1) \times 10^{-3}$ and $B(\Xi_c^0 \rightarrow \Lambda^0 \bar{K}^0) = (8.3 \pm 0.9) \times 10^{-3}$, in agreement with the values of $(7.2 \pm 3.5, 8.3 \pm 3.7) \times 10^{-3}$ extracted from the ratios of $B(\Xi_c^+ \rightarrow \Xi^0 \pi^+)/B(\Xi_c^+ \rightarrow \Xi^0 e^+ \nu_e)$ and $B(\Xi_c^0 \rightarrow \Lambda^0 \bar{K}^0)/B(\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e)$, respectively [31].

In this report, we will systematically study the two-body weak $\Xi_c \rightarrow B_n M$ decays based on the $SU(3)_f$ symmetry and give some specific numerical results, which can be tested in
the future measurements by BESIII and LHCb. By taking the predicted \(\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \) as the theoretical input, we will also estimate the branching ratios of other \(\Xi_c \) decays in the PDG [7], which are related to \(\Xi_c^0 \to \Xi^- \pi^+ \).

II. FORMALISM

For the two-body anti-triplet of the lowest-lying charmed baryon decays of \(\mathbf{B}_c \to \mathbf{B}_n M \), where \(\mathbf{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+) \) and \(\mathbf{B}_n (M) \) are the baryon (pseudoscalar) octet states, the effective Hamiltonian responsible for the tree-level \(c \to su\bar{d}, c \to uq\bar{q} \) and \(c \to du\bar{s} \) transitions are given by [39]

\[
\mathcal{H}_{\text{eff}} = \sum_{i=\pm, -} \frac{G_F}{\sqrt{2}} c_i \left(V_{cs} V_{ud} O_i + V_{cd} V_{ud} O_i^\dagger + V_{cd} V_{us} O_i^\dagger \right),
\] (1)

with \(q\bar{q} = d\bar{d} \) or \(s\bar{s} \), \(G_F \) the Fermi constant, \(V_{ij} \) the CKM matrix elements, and \(c_\pm \) the scale-dependent Wilson coefficients to take into account the sub-leading-order QCD corrections. The four-quark operators \(O_{\pm}^q \) and \(O_{\pm}^{\dagger} \equiv O_{\pm}^q - O_\mp^q \) in Eq. (1) can be written as

\[
O_{\pm} = \frac{1}{2} \left[(\bar{u}d)_{V-A}(\bar{s}c)_{V-A} \pm (\bar{s}d)_{V-A}(\bar{u}c)_{V-A} \right],
\]

\[
O_{\pm}^q = \frac{1}{2} \left[(\bar{u}q)_{V-A}(\bar{q}c)_{V-A} \pm (\bar{q}q)_{V-A}(\bar{u}c)_{V-A} \right],
\]

\[
O_{\pm}^\dagger = \frac{1}{2} \left[(\bar{u}s)_{V-A}(\bar{d}c)_{V-A} \pm (\bar{d}s)_{V-A}(\bar{u}c)_{V-A} \right],
\] (2)

where \((\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2 \). By using \((V_{cs} V_{ud}, V_{cd} V_{ud}, V_{cd} V_{us}) \simeq (1, -s_c, -s_c^2) \) in Eq. (1) with \(s_c \equiv \sin \theta_c = 0.2248 [7] \) representing the well-known Cabbibo angle \(\theta_c \), the decays with \(O_{\pm}, O_{\pm}^\dagger \) and \(O_{\mp}^q \) are the so-called Cabibbo-allowed, Cabibbo-suppressed, and doubly Cabibbo-suppressed processes, respectively. For instance of the Cabibbo-allowed decay, \(\mathcal{B}(\Lambda_c^+ \to p\bar{K}^0) = (3.16 \pm 0.16) \times 10^{-2} \) is measured to be 50 times larger than \(\mathcal{B}(\Lambda_c^+ \to \Lambda K^+) = (6.1 \pm 1.2) \times 10^{-4} \), which is the Cabibbo-suppressed case, whereas none of the doubly Cabibbo-suppressed ones has been observed [7].

Without explicitly showing the Lorentz indices, the operators in Eq. (2) behave as \((\bar{g}_k q \bar{g}^k)c \), with \(g_i = (u, d, s) \) as the triplet of 3, which can be decomposed as the irreducible forms under the \(SU(3)_f \) symmetry, that is, \((3 \times 3 \times 3)c = (\bar{3} + 3' + 6 + 15)c \). Accordingly, \((O_-, O_+) \) fall into the irreducible presentations of \((O_6, O_{15}) \), given by [25]

\[
O_6 = \frac{1}{2} (\bar{u}d\bar{s} - \bar{s}d\bar{u})c, \quad O_{15} = \frac{1}{2} (\bar{u}d\bar{s} + \bar{s}d\bar{u})c,
\] (3)
which correspond to the tensor notations of $1/2\epsilon^{i j l}H(6)_{l k}$ and $H(\overline{15})^{i j}_{k}$, respectively, with (i, j, k) representing the quark indices and the non-zero entries being $H_{22}(6) = 2$ and $H_{2}^{\overline{13}}(\overline{15}) = H_{2}^{\overline{31}}(\overline{15}) = 1$. Note that O_{\mp}^{+} and O_{\mp}^{-} also have similar irreducible representations, resulting in the non-zero entries of $H_{23, 32}(6) = -2s_{c}$, $H_{2}^{12, 21}(\overline{15}) = -H_{3}^{13, 31}(\overline{15}) = s_{c}$, $H_{33}(6) = 2s_{c}^{2}$, and $H_{3}^{12, 21}(\overline{15}) = -s_{c}^{2}$ [25]. By using the bases of the $SU(3)_{f}$ symmetry, the effective Hamiltonian in Eq. (1) is transformed as

$$H_{e f f} = \frac{G_{F}}{\sqrt{2}} \left[c_{-} \frac{\epsilon^{i j l}}{2} H(6)_{l k} + c_{+} H(\overline{15})^{i j}_{k} \right], \quad (4)$$

where the individual non-zero entries of $H(6)_{l k}$ and $H(\overline{15})^{i j}_{k}$ that include O_{\mp}^{+}, O_{\mp}^{i} and O_{\mp}^{i} can be presented as the matrix forms:

$$H(6) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2s_{c} \\ 0 & -2s_{c} & 2s_{c}^{2} \end{pmatrix}, \quad H(\overline{15}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & s_{c} & 1 \\ 0 & s_{c} & 0 \end{pmatrix}, \quad H(\overline{15}) = \begin{pmatrix} 0 & -s_{c}^{2} & -s_{c} \\ -s_{c}^{2} & 0 & 0 \\ -s_{c} & 0 & 0 \end{pmatrix}. \quad (5)$$

Correspondingly, the B_{c} anti-triplet and B_{n} octet states are written as

$$B_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+}), \quad B_{n} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda \end{pmatrix}. \quad (6)$$

The adding of the singlet η_{1} to the octet (π, K, η_{8}) leads to the nonet of the pseudoscalar meson, given by [30]

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c_{\phi}\eta + s_{\phi}\eta') & \pi^{-} & K^{-} \\ \pi^{+} & -\frac{1}{\sqrt{2}}(\pi^{0} - c_{\phi}\eta - s_{\phi}\eta') & \bar{K}^{0} \\ K^{+} & \bar{K}^{0} & -s_{\phi}\eta + c_{\phi}\eta' \end{pmatrix}, \quad (7)$$

where (η, η') are the mixtures of (η_{1}, η_{8}), with the mixing angle $\phi = (39.3 \pm 1.0)^{0}$ [40] for $(c_{\phi}, s_{\phi}) = (\cos \phi, \sin \phi)$.

The amplitudes of the $B_{c} \to B_{n}M$ decays via the effective Hamiltonian in Eq. (1) appear to be $A(B_{c} \to B_{n}M) = \langle B_{n}M | H_{e f f} | B_{c} \rangle$. Since $H_{e f f}$, $B_{c(n)}$ and M have been in the $SU(3)_{f}$
forms, the amplitudes of $B_c \to B_n M$ can be further derived as

$$\mathcal{A}(B_c \to B_n M) = |\langle B_n M | \mathcal{H}_{\text{eff}} | B_c \rangle| = \frac{G_F}{\sqrt{2}} T(B_c \to B_n M),$$

with $T(B_c \to B_n M)$ given by [28]

$$T(B_c \to B_n M) = T(\mathcal{O}_6) + T(\mathcal{O}_{15})$$

$$T(\mathcal{O}_6) = a_1 H_{ij}(6) T^{ik}(B_n)_k^j(M)_l^i + a_2 H_{ij}(6) T^{ik}(M)_l^i(B_n)_k^j$$

$$+ a_3 H_{ij}(6) (B_n)_k^j(M)_l^i T^{kl} + h H_{ij}(6) T^{ik}(B_n)_k^j(M)_l^i,$$

$$T(\mathcal{O}_{15}) = a_4 H_1^H(B_n)_k^j(M)_l^i T^{kl} + a_5 (B_n)_k^j(M)_l^i H(15)_i^j k(B_c)_k$$

$$+ a_6 (B_n)_k^j(M)_l^i H(15)_i^j k(B_c)_k + a_7 (B_n)_k^j(M)_l^i H(15)_i^j k(B_c)_k$$

$$+ h' H_1^{ik}(15)(B_n)_k^j(M)_l^i T^{kl}(B_c)_j,$$ (9)

where $T_{ij} \equiv (B_c)_k^i c^{ik}$, and (c_-, c_+) have been absorbed into the $SU(3)$ parameters of (a_1, a_2, a_3, h) and (a_4, a_5, a_6, a_7, h'), respectively, and the $h^{(l)}$ terms correspond to the contributions from the singlet η_1. With the T-amps expanded in Table I we are enabled to relate all possible two-body $B_c \to B_n M$ decays with the $SU(3)_f$ parameters. To compute the branching ratios, we use the equation given by [7]

$$B(B_c \to B_n M) = \frac{|\tilde{p}_{cM}|^2 \tau_{B_c}}{8\pi m_{B_c}^2} |\mathcal{A}(B_c \to B_n M)|^2,$$ (10)

where $|\tilde{p}_{cM}| = \sqrt{[m_{B_c}^2 - (m_{B_n} + m_M)^2][m_{B_c}^2 - (m_{B_n} - m_M)^2]/2m_{B_c}}$ and τ_{B_c} is the lifetime (the inverse of the total decay width) of B_c. In Eq. (10), the amplitude squared is defined by

$$|\mathcal{A}(B_c \to B_n M)|^2 = \frac{(G_F V_{ij} V_{kl})^2}{2} T^i(B_c \to B_n M) T^j(B_c \to B_n M).$$ (11)

Note that, since the Lorentz indices have been neglected in the language of the $SU(3)_f$ symmetry, no contractions of the baryon spins are needed, leading to $T^i(B_c \to B_n M) = T^*(B_c \to B_n M)$.

III. NUMERICAL RESULTS AND DISCUSSIONS

For the numerical analysis, we note that the contributions of the $SU(3)$ parameters (a_4, a_5, a_6, a_7, h') from $H(15)$ would be neglected based on the following reasons. First, the contributions to the decay branching rates from $H(15)$ and $H(6)$ lead to a small ratio of
\[\mathcal{R}(15/6) = c_+^2/c_-^2 \approx 17\% \] in terms of \((c_+, c_-) = (0.76, 1.78)\) from the QCD calculation at the scale \(\mu = 1\) GeV in the naive dimensional regularization (NDR) scheme [41, 42].
Second, it is pointed out in Ref. [19] that $O_+^{t,l}$ belong to $H(15)$ in the group structure and behave as symmetric operators in color indices, whereas the baryon wave functions are totally antisymmetric, such that the mismatch causes the disappearance of $c_+O_+^{t,l}$ in the calculation of the non-facotrizable effects, which are regarded to be significant in the charmed baryon decays. Note that even though the single ignoring of $H(15)$ is viable, a possible interference between the amplitudes with $H(6)$ and $H(15)$ may be sizable to fail this assumption, which will be tested in the fit. Hence, being from $H(6)$ the parameters (a_1, a_2, a_3, h) in Eq. (9) are kept for the fit, which are in fact complex. Since an overall phase can be removed without losing generality, we set a_1 to be real, such that there are seven real independent parameters to be determined, given by

$$a_1, a_2 e^{i\delta_{a_2}}, a_3 e^{i\delta_{a_3}}, h e^{i\delta_h}.$$

(12)

We use the minimum χ^2 fit for the determination, given by

$$\chi^2 = \sum_i \left(\frac{B_{i_{th}} - B_{i_{ex}}}{\sigma_{i_{ex}}} \right)^2 + \sum_j \left(\frac{R_{j_{th}} - R_{j_{ex}}}{\sigma_{j_{ex}}} \right)^2,$$

(13)

where $B_{i_{th}}$ and $R_{j_{th}}$ stand for the separated decay branching ratios and the ratios of the two-decay branching fractions from the $SU(3)$ amplitudes, while $B_{i_{ex}}$ and $R_{j_{ex}}$ are the corresponding experimental data, along with $\sigma_{i_{ex}}$ and $\sigma_{j_{ex}}$ the 1σ uncertainties, respectively. With the ten experimental data in Table 2 the global fit results in

$$(a_1, a_2, a_3, h) = (0.244 \pm 0.006, 0.115 \pm 0.014, 0.088 \pm 0.019, 0.105 \pm 0.073) \text{ GeV}^3,$$

$$(\delta_{a_2}, \delta_{a_3}, \delta_h) = (78.1 \pm 7.1, 35.1 \pm 8.7, 10.2 \pm 29.6)^\circ,$$

$$\chi^2/d.o.f = 5.32/3 = 1.77,$$

(14)

where $d.o.f$ represents the degree of freedom. The numerical values for the parameters in Eq. (14) are the theoretical inputs, which are used to predict the two-body $B_c \to B$ decays in Table 3.

Since the value of $\chi^2/d.o.f \simeq 1.8$ in Eq. (14) indicates a good fit, there exists no inconstancy by neglecting $H(15)$ in our analysis. Note that the determinations of $|a_1|$ and $|a_2|$ depend on $T(\Lambda_c^+ \to p\bar{K}^0) = -2a_1$ and $T(\Lambda_c^+ \to \Xi^0K^+) = -2a_2$ in Table 4 respectively, by ignoring $(a_5 + a_6)$ and $(a_4 + a_7)$, associated with $H(15)$. Similarly, one can extract $|a_3|$ based
TABLE 2. The data of the \(B_c \rightarrow B_n M \) decays.

Branching ratios	Data [4, 7]	Branching ratios	Data [4, 7]
\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow pK^0) \)	3.16 ± 0.16	\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^+ \eta) \)	0.70 ± 0.23
\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Lambda \pi^+) \)	1.30 ± 0.07	\(10^4 \mathcal{B}(\Lambda_c^+ \rightarrow \Lambda K^+) \)	6.1 ± 1.2
\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^+ \pi^0) \)	1.24 ± 0.10	\(10^4 \mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^0 K^+) \)	5.2 ± 0.8
\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^0 \pi^+) \)	1.29 ± 0.07	\(10^4 \mathcal{B}(\Lambda_c^+ \rightarrow p\eta) \)	12.4 ± 3.0
\(10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Xi^0 K^+) \)	0.50 ± 0.12	\(\mathcal{R} = \frac{\mathcal{B}(\Xi^0 \rightarrow \Lambda K^0)}{\mathcal{B}(\Xi^0 \rightarrow \Xi^{-} \pi^+)} \)	0.420 ± 0.056

TABLE 3. The numerical results of the \(B_c \rightarrow B_n M \) decays with \(\mathcal{B}_{B_n M} \equiv \mathcal{B}(B_c \rightarrow B_n M) \), where the number with the dagger (†) is the reproduction of the experimental data input, instead of the prediction.

\(\Xi^0 \)	our results	Ref. [43]	\(\Xi^+ \)	our results	Ref. [43]	\(\Lambda_c^+ \)	our results	Ref. [43]
\(10^3 \mathcal{B}_{\Sigma^+ K^-} \)	3.5 ± 0.9	3.1 ± 0.9	\(10^3 \mathcal{B}_{\Xi^+ K^-} \)	8.0 ± 3.9	0.1 - 102.2	\(10^3 \mathcal{B}_{\Sigma^0 p} \)	(1.3 ± 0.2)†	(1.27 ± 0.17)†
\(10^3 \mathcal{B}_{\Sigma^0 K^0} \)	4.7 ± 1.2	4.6 ± 1.4	\(10^4 \mathcal{B}_{\Xi^0 p} \)	8.1 ± 4.0	1.2 - 96.8	\(10^3 \mathcal{B}_{\Sigma^0 p} \)	(1.3 ± 0.2)†	(1.27 ± 0.17)†
\(10^3 \mathcal{B}_{\Xi^0 K^0} \)	4.3 ± 0.9	0.7 - 18.1	\(10^4 \mathcal{B}_{\Xi^0 \eta} \)	1.7 - 1.0	1.0 - 6.0	\(10^4 \mathcal{B}_{\Sigma^0 \eta} \)	(0.7 ± 0.3)†	(0.7 ± 0.3)†
\(10^4 \mathcal{B}_{\Xi^0 K^0} \)	8.6 ± 11.0	6.3	\(10^4 \mathcal{B}_{\Xi^0 \eta} \)	0.5 ± 0.1	(0.5 ± 0.1)†	\(10^4 \mathcal{B}_{\Xi^0 \eta} \)	(0.5 ± 0.1)†	(0.5 ± 0.1)†
\(10^4 \mathcal{B}_{\Xi^0 \eta} \)	15.7 ± 0.7	22.4 ± 3.4	\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	8.3 ± 0.9	9.4 ± 1.6	\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	(3.3 ± 0.2)†	(2.72 ± 3.60)†
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	2.0 ± 0.5		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	18.5 ± 2.2		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	(4.0 ± 0.8)†	(4.0 ± 0.8)†
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	9.0 ± 0.4		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	28.4 ± 8.2		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	5.7 ± 1.5	5.7 ± 1.5
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	3.2 ± 0.3		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	13.2 ± 24.0		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	(12.5 ± 3.8)†	(12.5 ± 3.8)†
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	3.6 ± 0.9		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	18.0 ± 4.7		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	12.2 ± 14.2	12.2 ± 14.2
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	1.7 ± 0.3		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	20.3 ± 4.2		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	11.3 ± 2.9	11.3 ± 2.9
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	7.6 ± 0.4		\(10^4 \mathcal{B}_{\Lambda^0 K^0} \)	1.6 ± 1.2		\(10^4 \mathcal{B}_{\Lambda^0 K^0} \)	4.6 ± 0.9†	4.6 ± 0.9†
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	6.3 ± 1.2		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	8.8 ± 0.4		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	12.2 ± 6.0	12.2 ± 6.0
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	2.1 ± 0.5		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	17.6 ± 0.8		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	12.2 ± 6.0	12.2 ± 6.0
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	7.9 ± 1.4		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	23.8 ± 6.1		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	23.8 ± 6.1	23.8 ± 6.1
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	0.2 ± 0.2		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	10.5 ± 4.5		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	10.5 ± 4.5	10.5 ± 4.5
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	1.2 ± 0.8		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	12.1 ± 6.7		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	12.1 ± 6.7	12.1 ± 6.7
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	1.4 ± 1.6		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	17.3 ± 24.4		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	17.3 ± 24.4	17.3 ± 24.4
\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	4.4 ± 3.7		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	56.8 ± 14.5		\(10^5 \mathcal{B}_{\Xi^0 K^0} \)	56.8 ± 14.5	56.8 ± 14.5
on $T(\Xi_c^+ \to \Xi^0\pi^+) = 2a_3 + (a_4 + a_6) \simeq 2a_3$. Consequently, we get

\[R_0 B(\Lambda_c^+ \to p\bar{K}^0) = B(\Xi_c^0 \to \Xi^-\pi^+) = (15.7 \pm 0.7) \times 10^{-3}, \]
\[R_0 B(\Lambda_c^+ \to \Xi^0 K^+) = B(\Xi_c^0 \to \Sigma^+ K^-) = (0.4 \pm 0.1) \times 10^{-2}, \]
\[B(\Xi_c^+ \to \Sigma^+\bar{K}^0) = B(\Xi_c^+ \to \Xi^0\pi^+) = (8.1 \pm 4.0) \times 10^{-3}, \]

without the contributions from $H(15)$, where $R_0 = \tau_{\Xi_c^0}/\tau_{\Lambda_c^+} = 0.56 \pm 0.07$. To check if the $H(15)$ terms are indeed negligible, we may use the relations from Table 1 given by

\[T(\Lambda_c^+ \to p\bar{K}^0) + T(\Xi_c^0 \to \Xi^-\pi^+) = 2(a_5 + a_6), \]
\[T(\Lambda_c^+ \to \Xi^0 K^+) + T(\Xi_c^0 \to \Sigma^+ K^-) = 2(a_4 + a_7), \]
\[T(\Xi_c^+ \to \Xi^0\pi^+) + T(\Xi_c^+ \to \Sigma^+\bar{K}^0) = 2(a_4 + a_6). \]

Clearly, if the results in Eq. (15) do not agree with the future measurements, the contributions from $H(15)$ should be reconsidered as seen in Eq. (16).

According to the PDG [7], the branching fractions in the Ξ_c^0 decays are observed to be relative to $B_{\Xi^-\pi^+} \equiv B(\Xi_c^0 \to \Xi^-\pi^+)$, predicted in Table 3. Hence, by using the partial observations of $B(\Xi_c^0 \to \Lambda K^-\pi^+) = (1.07 \pm 0.14)B_{\Xi^-\pi^+}$, $B(\Xi_c^0 \to \Lambda K^+ K^-) = (0.029 \pm 0.007)B_{\Xi^-\pi^+}$, and $B(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (3.1 \pm 1.1)B_{\Xi^-\pi^+}$, we obtain

\[B(\Xi_c^0 \to \Lambda K^-\pi^+) = (16.8 \pm 2.3) \times 10^{-3}, \]
\[B(\Xi_c^0 \to \Lambda K^+ K^-) = (4.5 \pm 1.1) \times 10^{-4}, \]
\[B(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (48.7 \pm 17.4) \times 10^{-3}. \]

Similarly, the branching fractions in the Ξ_c^+ decays are measured to be relative to $B(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$, which has not been theoretically and experimentally studied yet. With $B(\Xi_c^+ \to \Xi^0\pi^+)/B(\Xi_c^+ \to \Xi^-\pi^+\pi^+) = 0.55 \pm 0.16$ [7] and $B(\Xi_c^+ \to \Xi^0\pi^0)$ in Table 3, we find

\[B_{\Xi^-2\pi^+} \equiv B(\Xi_c^+ \to \Xi^-\pi^+\pi^+) = (14.7 \pm 8.4) \times 10^{-3}. \]

Subsequently, the relative branching fractions of $B(\Xi_c^+ \to pK_s^0 K_s^0) = (0.087 \pm 0.021)B_{\Xi^-2\pi^+}$, $B(\Xi_c^+ \to \Sigma^+ K^-\pi^+) = (0.94 \pm 0.10)B_{\Xi^-2\pi^+}$, $B(\Xi_c^+ \to \Xi^0\pi^+\pi^0) = (2.3 \pm 0.7)B_{\Xi^-2\pi^+}$ and $B(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (2.3^{+0.7}_{-0.5})B_{\Xi^-2\pi^+}$ lead to

\[B(\Xi_c^+ \to pK_s^0 K_s^0) = (1.3 \pm 0.8) \times 10^{-3}, \]
\[B(\Xi_c^+ \to \Sigma^+ K^-\pi^+) = (13.8 \pm 8.0) \times 10^{-3}, \]
\[B(\Xi_c^+ \to \Xi^0\pi^+\pi^0) = (33.8 \pm 21.9) \times 10^{-3}, \]
\[B(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = (33.8^{+21.9}_{-22.6}) \times 10^{-3}. \]
By adding the $h^{(0)}$ terms, we are able to include the contributions from the singlet η_1 in the $SU(3)_f$ amplitudes, which have been used to explain the observations of $B(\Lambda_c^+ \to \Sigma^+\eta)$ and $B(\Lambda_c^+ \to p\eta)$. Nonetheless, the estimations of $B(\Lambda_c^+ \to \Sigma^+(p)\eta') \approx B(\Lambda_c^+ \to \Sigma^+(p)\eta)$ show no inequality as $B(B \to K\eta') \gg B(B \to K\eta)$ or $B(B \to K^*\eta) \gg B(B \to K^*\eta')$. On the other hand, it is interesting to note that, despite of the large uncertainties, the $\Xi_c \to B_n\eta^{(0)}$ decays contain the similar inequalities between the η and η' modes, given by

$$B(\Xi_c^0 \to \Xi^0\eta, \Xi^0\eta') = (1.7^{+1.0}_{-1.7}, 8.6^{+11.0}_{-6.3}) \times 10^{-3},$$
$$B(\Xi_c^0 \to \Lambda^0\eta, \Lambda^0\eta') = (1.6^{+1.2}_{-0.8}, 9.4^{+11.6}_{-6.8}) \times 10^{-4},$$
$$B(\Xi_c^+ \to \Sigma^+\eta, \Sigma^+\eta') = (28.4^{+8.2}_{-6.9}, 13.2^{+24.0}_{-11.9}) \times 10^{-4}. \quad (20)$$

We remark that as shown in Table 3, our numerical results for the Cabibbo-allowed processes are consistent with those in Ref. [43], where $B(B_c \to B_n\bar{K}^0)$ are taken from $B(B_c \to B_nK^0_S)$. Finally, we emphasize that there is a discrepancy between the theory and data for $B(\Lambda_c^+ \to p\pi^0)$. In Table 3, $B(\Lambda_c^+ \to p\pi^0)$ is predicted to be $(5.7 \pm 1.5) \times 10^{-4}$, whereas it is measured to be less than 3×10^{-4} [4]. Nonetheless, the estimation in the factorization approach also gives $B(\Lambda_c^+ \to p\pi^0) = f_c^2/(2f_K^2)s_c^2B(\Lambda_c^+ \to p\bar{K}^0) = (5.5 \pm 0.3) \times 10^{-4}$ to be as large as our $SU(3)_f$ prediction in Table 3, with the experimental input of $B(\Lambda_c^+ \to p\bar{K}^0) = (3.16 \pm 0.16) \times 10^{-2}$ [7].

Clearly, to resolve this inconsistency, it is necessary to re-measure the decay of $\Lambda_c^+ \to p\pi^0$ in the future experiment.

IV. CONCLUSION

With the $SU(3)_f$ symmetry, we have studied the two-body anti-triplet charmed baryon weak decays. We have predicted that $B(\Xi_c^0 \to \Xi^-\pi^+) = (15.7 \pm 0.7) \times 10^{-3}$ and $B(\Xi_c^0 \to \Xi^-\pi^+\pi^+) = (14.7 \pm 8.4) \times 10^{-3}$, while the branching ratios of the Ξ_c^0 and Ξ_c^+ decays are measured to be relative to $B(\Xi_c^0 \to \Xi^-\pi^+)$ and $B(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$, respectively. Hence, we have extracted that $B(\Xi_c^0 \to \Lambda K^+\pi^+, \Lambda K^+K^-, \Xi^-e^+\nu_e) = (16.8 \pm 2.3, 0.45 \pm 0.11, 48.7 \pm 17.4) \times 10^{-3}$ and $B(\Xi_c^+ \to pK^0\bar{K}_S^0, \Sigma^+K^-\pi^+, \Xi^0\pi^+\pi^0, \Xi^0e^+\nu_e) = (1.3 \pm 0.8, 13.8 \pm 8.0, 33.8 \pm 21.9, 33.8^{+21.9}_{-22.6}) \times 10^{-3}$. In addition, we have shown that $B(\Xi_c^0 \to \Xi^0\eta, \Xi^0\eta') = (1.7^{+1.0}_{-1.7}, 8.6^{+11.0}_{-6.3}) \times 10^{-3}$, $B(\Xi_c^0 \to \Lambda^0\eta, \Lambda^0\eta') = (1.6^{+1.2}_{-0.8}, 9.4^{+11.6}_{-6.8}) \times 10^{-4}$ and $B(\Xi_c^+ \to \Sigma^+\eta, \Sigma^+\eta') = (28.4^{+8.2}_{-6.9}, 13.2^{+24.0}_{-11.9}) \times 10^{-4}$, representing the inequalities, similar to those of $B(B \to K\eta') \gg B(B \to K\eta)$ or $B(B \to K^*\eta) \gg B(B \to K^*\eta')$ in the mesonic B decays.
involving η^\prime. According to our predictions, the branching ratios of two and three-body Ξ_c decays are accessible to the experiments at BESIII and LHCb.

\section*{ACKNOWLEDGMENTS}

This work was supported in part by National Center for Theoretical Sciences, MoST (MoST-104-2112-M-007-003-MY3), and National Science Foundation of China (11675030).

[1] M. Lisovyi, A. Verbytskyi and O. Zenaiev, Eur. Phys. J. C \textbf{76}, 397 (2016).
[2] G. Alexander \textit{et al.} [OPAL Collaboration], Z. Phys. C \textbf{72}, 1 (1996).
[3] M. Ablikim \textit{et al.} [BESIII Collaboration], Phys. Rev. Lett. \textbf{116}, 052001 (2016).
[4] M. Ablikim \textit{et al.} [BESIII Collaboration], Phys. Rev. D \textbf{95}, 111102 (2017).
[5] R. Aaij \textit{et al.} [LHCb Collaboration], \texttt{arXiv:1711.01157} [hep-ex].
[6] R. Aaij \textit{et al.} [LHCb Collaboration], \texttt{arXiv:1712.07051} [hep-ex].
[7] C. Patrignani \textit{et al.} [Particle Data Group], Chin. Phys. C \textbf{40}, 100001 (2016).
[8] Y.K. Hsiao and C.Q. Geng, Phys. Rev. D \textbf{91}, 116007 (2015).
[9] Y.K. Hsiao, Y. Yao and C.Q. Geng, Phys. Rev. D \textbf{95}, 093001 (2017).
[10] Y.K. Hsiao, Y.H. Lin, Y. Yu and C.Q. Geng, Phys. Rev. D \textbf{93}, 114008 (2016).
[11] C.Q. Geng, Y.K. Hsiao, Y.H. Lin and Y. Yu, Eur. Phys. J. C \textbf{76}, 399 (2016).
[12] C.Q. Geng, Y.K. Hsiao and E. Rodrigues, Phys. Rev. D \textbf{94}, 014027 (2016).
[13] Y.K. Hsiao, P.Y. Lin, L.W. Luo and C.Q. Geng, Phys. Lett. B \textbf{751}, 127 (2015).
[14] H.Y. Cheng and B. Tseng, Phys. Rev. D \textbf{46}, 1042 (1992); \textbf{55}, 1697(E) (1997).
[15] H.Y. Cheng and B. Tseng, Phys. Rev. D \textbf{48}, 4188 (1993).
[16] P. Zenczykowski, Phys. Rev. D \textbf{50}, 402 (1994).
[17] Fayyazuddin and Riazuddin, Phys. Rev. D \textbf{55}, 255; \textbf{56}, 531(E) (1997).
[18] R. Dhir and C.S. Kim, Phys. Rev. D \textbf{91}, 114008 (2015).
[19] H.Y. Cheng, X.W. Kang and F. Xu, \texttt{arXiv:1801.08625} [hep-ph].
[20] X.G. He, Y.K. Hsiao, J.Q. Shi, Y.L. Wu and Y.F. Zhou, Phys. Rev. D \textbf{64}, 034002 (2001).
[21] H.K. Fu, X.G. He and Y.K. Hsiao, Phys. Rev. D \textbf{69}, 074002 (2004).
[22] Y.K. Hsiao, C.F. Chang and X.G. He, Phys. Rev. D \textbf{93}, 114002 (2016).
[23] X.G. He and G.N. Li, Phys. Lett. B 750, 82 (2015).
[24] M. He, X.G. He and G.N. Li, Phys. Rev. D 92, 036010 (2015).
[25] M.J. Savage and R.P. Springer, Phys. Rev. D 42, 1527 (1990).
[26] M.J. Savage, Phys. Lett. B 257, 414 (1991).
[27] G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 57B, 277 (1975).
[28] C.D. Lu, W. Wang and F.S. Yu, Phys. Rev. D 93, 056008 (2016).
[29] W. Wang, Z.P. Xing and J. Xu, [arXiv:1707.06570] [hep-ph].
[30] C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu, Phys. Lett. B 776, 265 (2018).
[31] C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, JHEP 1711, 147 (2017).
[32] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 119, no. 11, 112001 (2017).
[33] M. Mattson et al. [SELEX Collaboration], Phys. Rev. Lett. 89, 112001 (2002).
[34] A. Ocherashvili et al. [SELEX Collaboration], Phys. Lett. B 628, 18 (2005).
[35] S. P. Ratti, Nucl. Phys. Proc. Suppl. 115, 33 (2003).
[36] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 74, 011103 (2006).
[37] R. Chistov et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162001 (2006).
[38] R. Aaij et al. [LHCb Collaboration], JHEP 1312, 090 (2013).
[39] A.J. Buras, [hep-ph/9806471].
[40] T. Feldmann, P. Kroll and B. Stech, Phys. Rev. D 58, 114006 (1998); Phys. Lett. B 449, 339 (1999).
[41] H.n. Li, C.D. Lu and F.S. Yu, Phys. Rev. D 86, 036012 (2012).
[42] S. Fajfer, P. Singer and J. Zupan, Eur. Phys. J. C 27, 201 (2003).
[43] D. Wang, P.F. Guo, W.H. Long and F.S. Yu, JHEP 1803, 066 (2018).
[44] R.H. Li, C.D. Lu, W. Wang, F.S. Yu and Z.T. Zou, Phys. Lett. B 767, 232 (2017).
[45] M. Ablikim et al. [BESIII Collaboration], [arXiv:1803.04299] [hep-ex].