Phytochemistry, Antioxidant, and Lipid Peroxidation Inhibition of the Essential Oils of *Lavandula Officinalis* L. in Iran

Somaye Miri

Department of Horticultural Science, Faculty of Agricultural Science and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran

ABSTRACT

The aim of present study was to evaluation the antioxidant potential of *Lavandula officinalis* on the basis of the chemical compositions of oils obtained by hydrodistillation. In the case of *L. officinalis*, 13 compounds were identified representing the 96.53% of the total oil. The major constituents of the oil were described as α-pinene (20.14%), camphor (14.36%), menthol (32.51%), and 1,8-cineole (20.14%). The oils were also subjected to screening for their possible antioxidant activity by using 2,2-diphenyl-1-picrylhydrazyl assays. 1,8-Cineole and menthol showed appreciable antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl test. Antioxidant activity guided fractionation of the oil was carried out by The TLC-bioautography screening and fractionation resulted in the separation of the main antioxidant compound which were identified as 1,8-cineole (48%) and menthol (39%).

ARTICLE HISTORY

Received 10 December 2014
Accepted 7 March 2015

KEYWORDS

Lavandula officinalis; Essential oil; Antioxidant; α-Pinene; 1,8-Cineole; Menthol

Introduction

The antioxidant activity (AA) of fruits is noteworthy, several associations have been made between fruit and vegetable intake and a reduced risk of cancer and incidences of chronic and degenerative diseases.\[1\] Oxidation reactions and the decomposition of oxidation products are major causes of deterioration of various food products. To prevent these processes, antioxidants are widely used as additives in some foods. Currently, scientific research reveals that the antioxidant property of the plant extracts gives beneficial effect to human health.\[2,3\] Essential oils have therapeutic uses in human medicine due to its anticancer, antinociceptive, antiphlogistic, antiviral, antibacterial, and antioxidant properties.\[4,5\] Aromatic and medicinal plants are known to produce certain bioactive molecules which react with other organisms in the environment, inhibiting bacterial or fungal growth.\[6–8\] *Lavandula officinalis* L. is indigenous to Southern Europe and is sometimes found growing wild in the Mediterranean area between the coast and the lower mountain slopes. Leaves and flower of *L. officinalis* have the highest amount of essential oils.\[9,10\] Iran is one of the richest countries of the world in terms of having a substantial number of different medicinal plants species grown in various ecological conditions. The present study was performed to investigate components of essential oils *L. officinalis* and to evaluate the efficacy of chemically characterized *L. officinalis* essential oil as antioxidant agent.

Materials and Methods

Plant Materials

The plant materials (fresh) were collected from Ilam, Iran in 2013-2014 (March–April). Voucher specimens were identified by Mr. Esmaeili and deposited, under the number 48, in the private
herbarium of Dr F. Esmaeili. The *L. officinalis* aerial parts were ground and the resulting powder was subjected to hydrodistillation for 3 h in an all glass Clevenger-type apparatus according to the method recommended by the European Pharmacopoeia.\(^{(11)}\) The obtained essential oils were dried over anhydrous sodium sulphate and after filtration, stored at +4°C until tested and analyzed.

Oil Isolation and Identification of the Oil Components

Compositions of the essential oils of the aerial parts of *L. officinalis* were determined by gas chromatography (GC) analysis, and gas chromatography–mass spectrometry (GC–MS; replicated three times). GC analysis was done on a an Agilent Technologies 7890 GC equipped with FID and a HP-5MS 5% capillary column (30.00 m × 0.25 mm, 0.25 µm film thicknesses). Oven temperature was kept at 60°C for 4 min initially, and then raised at the rate of 4°C/min to 260°C. Injector and detector temperatures were set at 290 and 300°C, respectively. Helium with purity 99.999% was used as carrier gas at a flow rate of 2 mL/min, and 0.1 µL samples were injected manually in the split mode. Peaks area percents were used for obtaining quantitative data. The EI-MS operating parameters were as follows: ionization voltage, 70 eV; ion source temperature, 200°C. Retention indices were calculated for all components using a homologous series of \(n\)-alkanes (C\(_5\)–C\(_{24}\)) injected in conditions equal to samples ones. Identification of oil components was accomplished based on comparison of their retention times with those of authentic standards and by comparison of their mass spectral fragmentation patterns (WILLEY/ChemStation data system).\(^{(12)}\)

Total Phenolic Determination

Total phenolic contents in aerial parts *L. officinalis* were determined by the Folin–Ciocalteu method.\(^{(13)}\) The total phenolic content was expressed as gallic acid equivalents (GAE; mg per g oil).

Total Flavonoid Determination

Total flavonoid contents in aerial parts *L. officinalis* were measured as described previously.\(^{(14)}\) The total flavonoid content was calculated as rutin equivalents (mg per g oil).

AA

The efficacy of the essential oils to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was evaluated using a spectrophotometry method.\(^{(15,16)}\) Briefly, a 50 µL volume of various dilutions of each sample was mixed with 5 mL of 0.004% methanol solutions of DPPH followed by 30 min incubation at ambient temperature. Thereafter, absorbance values of the sample were recorded against control at 517 nm. The inhibition percentages were measured using Eq. (1). The antioxidants activity of the test samples in concentration providing 50% inhibition, were considered as IC\(_{50}\) (µg/mL).

\[
\text{Inhibition percent} = \frac{\text{Abs}_{\text{control}} - \text{Abs}_{\text{sample}}}{\text{Abs}_{\text{control}}} \times 100 \quad (1)
\]

Butylhydroxyanisole (BHA) and ascorbic acid were used as positive controls. All experiments were repeated three times and the average results and standard deviations were calculated.

Rapid Screening for Antioxidants

For screening of antioxidant compounds in aerial parts of *L. officinalis* essential oil, the TLC-bioautography method was carried out.\(^{(17,18)}\) The diluted oil (1:20 in methanol) was spotted on silica gel sheets (silica gel 60 F254 TLC plates) and developed in \(n\)-hexane-ethyl acetate (9:1). Plates
were sprayed with the methanolic solution of DPPH (0.2%). The active constituents were detected as yellow spots on a violet background. Only zones where their color turned from violet to yellow within the first 30 min (after spraying) were taken as positive results.

Activity Guided Fractionation of the Essential Oil for Antioxidants

For the isolation and identification of the active compounds in the essential oil, TLC was performed using the conditions previously described. The regions showing DPPH scavenging activity were scrapped off then, they were eluted with chloroform. All resulting constituents were analyzed by GC–MS and also tested for their antioxidant activities.

β-Carotene-Linoleic Acid Model System (β-CLAMS)

The β-CLAMS method by the peroxides generated during the oxidation of linoleic acid at elevated temperature. The AA of the extracts was evaluated in term of β-carotene blanching using the following formula: AA (%) = [(A0 – A1)/A0] × 100. where A0 is the absorbance of the control at 0 min, and A1 is the absorbance of the sample at 120 min. The results are expressed as IC50 values (µg/mL). All samples were prepared and analyzed in triplicate.

Reducing Power and Lipid Peroxidation Inhibition

The ability of the extracts to reduce Fe3+ was assayed by the method of Oyaizu. One milliliter of aerial parts of *L. officinalis* essential oil and new component were mixed with 2.5 mL of phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of 1% K3Fe(CN)6. After incubation at 50°C for 25 min, 2.5 mL of 10% trichloroacetic acid was added and the mixture was centrifuged at 650 g for 10 min. Finally, 2.5 mL of the upper layer was mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% aqueous Fe Cl₃. The absorbance was measured at 700 nm. The mean of absorbance values were plotted against concentration and a linear regression analysis was carried out. Increase absorbance of the reaction mixture indicated increased reducing power. EC50 value (µg/mL) is the effective concentration at which the absorbance was 0.5 for reducing power. Ascorbic acid was used as positive control. Lipid peroxidation inhibition was determined by Shirwaikar et al. Ascorbic acid and trolox was used for comparison.

Statistical Analysis

The results are presented as mean ± SD and statistically analyzed by one-way analysis of variance (ANOVA) followed by Duncan’s test.

Results and Discussion

Chemical Composition of *L. Officinalis* EO

The chemical compositions of *L. officinalis* essential oil are shown in Table 1. Thirteen compounds representing 96.56% of *L. officinalis* essential oil were identified. The organic compounds detected in the aerial parts oils, were linalool oxide (0.34%), α-pinene (20.14%), α-terpinene (0.87%), borneol (3.45%), camphor (14.36%), menthol (32.51%), eucarvone (0.45%), terpinolene (0.71%), b-caryophyllene (0.14%), viridiflorol (0.7%), 1,8-cineole (20.114%), β-pinene (1.36%), and linalool (1.36%). The chemical compositions revealed that this leaves had compositions relatively similar to those of other *L. officinalis* essential oils analyzed by Rostami et al. *L. officinalis* oils and extraction contain more than 100 compounds, with the two major constituents being linalool and linalylacetate. The different qualitative and quantitative chemical compositions of these EOs with respect to previous
investigations could be related first and foremost to the different environmental conditions, genetics (degree of hybridization), geographical origin, and harvest period.

Extraction Yield, Total Phenolic Contents, and Total Flavonoid Contents

As shown in Table 2, the extraction yield of *L. officinalis* was 121.74 ± 07 mg per g oil. The total phenolic and total flavonoid contents were 164.75 ± 01 and 191.27 ± 02 mg per g oil. These results showed that the total phenolic and total flavonoid contents have an obvious variation in various concentrations.

AA

The DPPH is a stable free radical, which has been widely accepted as a tool for estimating the free radical scavenging activities of antioxidants. The results presented in Table 3 revealed that *L. officinalis* EO and its main constituents exhibited a remarkable activity. In particular, 1,8-cineole exhibited clearly a higher activity (11.04 ± 0.31 µg/mL) followed by menthol (11.54 ± 0.04 µg/mL; Table 3), while the activities of other terpenoid was weak (α-pinene and Camphor). The positive controls BHT and ascorbic acid exhibited IC\(_{50}\) values equal to 12.00 ± 0.01 µg/mL and 12.07 ± 0.08 µg/mL, respectively. Table 3 depicts the inhibition of β-carotene bleaching by the *L. officinalis* EO. The IC\(_{50}\) value was 11.84 ± 0.11 µg/mL. The reducing power of *L. officinalis* EO, expressed as CE\(_{50}\), was clearly more significant than that of the positive control BHA and AA. As the EO presented a significant AA in the assays and bioautography test, it was subjected to the TLC for isolation of the active compounds. Components identified and their AA relative percentages have been shown in Table 4. According to these results, there is a relationship between total phenolic contents and AA.

Table 1. Chemical compositions of *Lavandula officinalis*.

Components	%
1. Linalool oxide	0.34
2. α-Pinene	20.14
3. α-Terpinene	0.87
4. Borneol	3.45
5. Camphor	14.36
6. Menthol	32.51
7. Eucarvone	0.45
8. Terpinolene	0.71
9. β-Caryophyllene	0.14
10. Viridiflorol	0.7
11. 1,8-Cineole	20.14
12. β-Pinen	1.36
13. Linalool	1.36
Total	96.53

RI: Retention indices relative to C\(_4\)–C\(_{25}\) n-alkanes on the HP-5 column.

Table 2. Extraction yields, total phenolic contents, and total flavonoid contents of *L. officinalis* extracts.

Extract	Extraction yield\(^a\)	Total phenolic\(^b\)	Total flavonoid\(^c\)
L. officinalis	121.7 ± 07	164.75 ± 01	191.27 ± 02

\(^a\)Expressed as mg of extract per gram dry material;
\(^b\)Expressed as mg of gallic acid per gram dry extract;
\(^c\)Expressed as mg of rutin per gram dry extract (water).
According to the obtained results, *L. officinalis* EO and its main component significantly inhibited the formation of TBARS in brain homogenates in a concentration dependent manner (Table 5). The suppressive power on the lipid peroxidation of 1,8-cineole and menthol were found to be the most potent (91.01 ± 0.04 µg/mL and 89.21 ± 0.09 µg/mL). Ascorbic acid and trolox showed significant suppressive power on lipid peroxidation in mice brain homogenate with IC$_{50}$ value of 84.14 ± 0.06 and 85.21 ± 0.02 µg/mL (Table 5). Phenolics are important components of the human diet due to their potential AA, their capacity to diminish oxidative stress induced tissue damage resulted from chronic diseases and their potentially important properties such as anticancer activities.[24–26]

Conclusions

During recent years, the plant has received an increased attention due to its remarkable AA in the food industry. Our results show that *L. officinalis* oil and one of its main compounds, 1,8-cineole, may be a source of antioxidant drugs for the food, cosmetic, and pharmaceutical industries.

Table 3. Antioxidant activity of EO extract from *L. officinalis*: DPPH free radical scavenging activity (expressed as IC$_{50}$ values: µg/mL), and β-carotene bleaching test. Reducing power was expressed as EC$_{50}$ values (µg/mL). Butylhydroxyanisole and ascorbic acid were used as positive controls.

Tested compounds	IC$_{50}$ (µg/mL)
L. officinalis EO	12.07 ± 0.31 µg/mL
α-Pinene	14.07 ± 0.11 µg/mL
Camphor	12.18 ± 0.65 µg/mL
Menthol	11.54 ± 0.04 µg/mL
1,8-Cineole	11.04 ± 0.31 µg/mL
L. officinalis EO (β-Carotenes IC$_{50}$ µg/mL)	12.84 ± 0.11 µg/mL
L. officinalis EO (Reducing power EC$_{50}$ µg/mL)	11.69 ± 0.04 µg/mL
BHA (IC$_{50}$ µg/mL)	12.00 ± 0.01 µg/mL
AA (IC$_{50}$ µg/mL)	12.07 ± 0.08 µg/mL

Values are mean ± S.D. of three replications; *IC$_{50}$ values have been presented with their respective 95% confidence limits.

Table 4. Components identified and their antioxidant activity relative percentages.

Compounds	%
α-Pinene	3
Camphor	5
Menthol	39
1,8-Cineole	48

Values are given as mean ± SD (n = 3); Means in each column followed by different letters are significantly different (p < 0.05).

Table 5. Lipid peroxidation inhibition of EO extract from *L. officinalis* and its main samples (expressed as IC$_{50}$ values: µg/mL). Trolox and ascorbic acid were used as positive controls.

Tested compounds	IC$_{50}$ (µg/mL)
L. officinalis EO	82.21 ± 0.35 µg/mL
α-Pinene	61.21 ± 0.03 µg/mL
Camphor	75.21 ± 0.07 µg/mL
Menthol	89.21 ± 0.09 µg/mL
1,8-Cineole	91.01 ± 0.04 µg/mL
Trolox	85.21 ± 0.02 µg/mL
AA	84.14 ± 0.06 µg/mL

Experiments were carried out in triplicate and the results are expressed as mean ± SD.

Lipid Peroxidation Inhibition

According to the obtained results, *L. officinalis* EO and its main component significantly inhibited the formation of TBARS in brain homogenates in a concentration dependent manner (Table 5). The suppressive power on the lipid peroxidation of 1,8-cineole and menthol were found to be the most potent (91.01 ± 0.04 µg/mL and 89.21 ± 0.09 µg/mL). Ascorbic acid and trolox showed significant suppressive power on lipid peroxidation in mice brain homogenate with IC$_{50}$ value of 84.14 ± 0.06 and 85.21 ± 0.02 µg/mL (Table 5). Phenolics are important components of the human diet due to their potential AA, their capacity to diminish oxidative stress induced tissue damage resulted from chronic diseases and their potentially important properties such as anticancer activities.[24–26]
conclusion, the use of naturally occurring agents in this popular traditional plant in preserving and flavoring of various food products is recommended.

References

1. Sikorski, Z.E. *Chemical and Functional Properties of Food Components*; CRC Press: New York, NY, 2001.
2. Ali, S.S.; Kasoju, N.; Luthra, A.; Singh, A.; Sharanabasava, H.; Sahu, A.; Bora, U. Indian Medicinal Herbs As Sources of Antioxidants. Food Research International 2008, 41, 1–15.
3. Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical Composition of Essential Oils in *Zataria Multiflora* Boiss. from Different Parts of Iran and Their Radical Scavenging and Antimicrobial Activity. Food and Chemical Toxicology 2010, 48, 1562–1567.
4. Dorman, H.J.D.; Kosar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant Properties and Composition of Aqueous Extracts from Mentha Species, Hybrids, Varieties, and Cultivars. Journal Agriculture Food Chemistry 2003, 51, 4563–4569.
5. Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetable, and Grain Products. Journal Agriculture Food Chemistry 1998, 46, 4113–4117.
6. Moreno-Dourado, F.J.; Guerra, F.M.; Aladro, F.J.; Bustamante, J.M.; Jorge, Z.D.; Massanet, G.M. Synthesis of (-)-11α-hydroxy-3-oxo-6αH,7αH,10bMeendesman-1,2,4,5-tetraol. Journal Nature Production 2000, 53, 361–369.
7. Tavares, A.C.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Lopes, M.C.; Canhoto, J.; Salgueiro, L.R. Essential Oils from *Distichoselinum Tenuifolium*: Chemical Composition, Cytotoxicity, Antifungal, and Anti-Inflammatory Properties. Journal Ethnopharmacol 2010, 130, 593–598.
8. Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. *Lavandula Lusieri* As a Source of Antifungal Drugs. Food Chemistry 2012, 135, 1505–1510.
9. Mefahizadeh, H.; Moradkhani, H.; Fayazi Barjin, A.; Naseri, B. Application of *Lavandula officinalis* L. Antioxidant of Essential Oils in Shelf Life of Confectionary. African Journal of Biotechnology 2011a, 10(2), 196–200.
10. Mefahizadeh, H.; Moradkhani, H.; Fayazi, A.; Naseri, B. Application of *Lavandula officinalis* L. Antioxidant of Essential Oils in Shelf Life of Confectionary. African Journal of Biotechnology 2011b, 10(2), 196–200.
11. European Pharmacopoeia, 8th Ed; Maisonneuve S. A., Sainte-Ruffine, 2013.
12. Adams, R.P. *Identification of Essential Oils Components by Gas Chromatography/Quadra pole Mass Spectroscopy*; Allured: Carol Stream, IL, 2001; 61–367.
13. Jimo, F.O.; Soliidiya, M.O.; Afalayan, A.J. Antioxidant Properties of the Methanol Extracts from the Leaves of Paulinia Pinnata. Journal of Medicinal Food 2007, 10, 707–711.
14. Piccolella, S.; Fiorentino, A.; Pacifico, S.; D’Arosca, B.; Uzzo, P.; Monaco, P. Antioxidant Properties of Sour Cherries (*Prunus Cerasus* L.): Role of Colorless Phytochemicals from the Methanolic Extract of Ripe Fruits. Journal of Agricultural and Food Chemistry 1997, 56, 1928–1935.
15. Cuenet, M.; Hostettmann, K.; Poterat, O. Iridoid Glucosides with Free Radicial Scavenging Properties from Fagareae Blumei. Helvetica Chimica Acta 1997, 80, 1144–1152.
16. Kirby, A.J.; Schmidt, R.J. The Antioxidant Activity of Chinese Herbs For Eczema and of Placebo Herbs – I. Journal of Ethnopharmacology 1997, 56, 103–108.
17. Burits, M.; Bucar, F. Antioxidant Activity of *Nigella Sativa* Essential Oil. Phytother Research 2000, 14, 323–328.
18. Green, S.J.; Meltzer, M.S.; Hibbs, J.B.; Nacy, C.A. Activated Macrophages Destroy Intracellular Leishmania Major Amastigotes by An I-Arginine-Dependent Killing Mechanism. Journal of Immunology 1990, 144, 278–283.
19. Guleria, S.; Tiku, A.; Gupta, S.; Singh, G.; Koul, A.; Razdan, V. Chemical Composition, Antioxidant Activity, and Inhibitory Effects of Essential Oil of *Eucalyptus Teretecornis* Grown in North-Western Himalaya Against Alternaria Alternata. Journal Plant Biochemistry Biotechnology 2007, 11, 33–38.
20. Koleva, I.I.; Teris, A.B.; Jozef, P.H.; Linssen, A.G.; Lyuba, N.E. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochemistry Analysis 2002, 13, 8–17.
21. Oyaizu, M. Studies on Products of the Browning Reaction Prepared from Glucose Amines. Japanese Journal of Nutrition 1986, 44, 307–315.
22. Shirwaikar, A.; Shirwaikar, A.; Rajendra, K.; Punitha, I.S.R.; In Vitro Antioxidant Studies on the Benzyl Tetra Isonoulinine Alkaloid Berberine. Biological and Pharmaceutical Bulletin 2006, 29, 1906–1910.
23. Rostami, H.; Kazemi, M.; Shafiei, S. Antibacterial Activity of *Lavandula Officinalis* and *Melissa Officinalis* Against Some Human Pathogenic Bacteria. Asian Journal of Biochemistry 2012, 7(3), 133–142.
24. Doughari, J.H.; El-mahmood, A.M.; Tyyonia, I. Antimicrobical Activity of Leaf Extracts of *Senna Obtusifolia* (L.). African Journal of Pharmacy and Pharmacology 2008, 2, 7–013.
25. Tohma, H.S.; Gulç, I. Antioxidant and Radical Scavenging Activity of Aerial Parts and Roots of Turkish Liquorice (*Glycyrrhiza Glabra* L.). International Journal of Food Properties 2010, 657–671.

26. Szabo, M.R.; Radu, D.; Gavrilas, S.; Chambre, D. Iditoiu, C. Antioxidant and Antimicrobial Properties of Selected Spice Extracts. International Journal of Food Properties 2010, 13, 535–545.

27. Barazandeh, M.M. Essential Oil Composition of *Lavandula latifolia* Medik from Iran. Journal Essential Oil Research 2002, 14, 103–104.