INTRODUCTION

Bipolar disorder (BD) associated seasonal pattern (mania during spring and summer together with depression during fall and winter) referred to as seasonal affective disorder (SAD) is associated with disrupted circadian rhythms.[1]

Aryl hydrocarbon receptor nuclear translocator-like (ARNTL) protein is a transcription factor and a core component of mammalian circadian rhythms regulatory network. Convergent functional genomics approach, integrating the genetics with functional genomics in human as well as animal models identified the ARNTL gene as the top candidate associated with BD.[2] The ARNTL gene knockout mice are reported to be complete arrhythmic in constant darkness.[3] Several polymorphisms in ARNTL gene

Key words: Aryl hydrocarbon receptor nuclear translocator-like, circadian rhythms, seasonal affective disorder, single nucleotide polymorphism

www.indianjpsychiatry.org
10.4103/0019-5545.174374
reprints@medknow.com
How to cite this article: Rajendran B, Janakarajan VN. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study. Indian J Psychiatry 2016;58:57-60.

© 2016 Indian Journal of Psychiatry | Published by Wolters Kluwer - Medknow
are reported to be associated with BD and SAD in different ethnic groups.\(^{[4,9]}\)

As the family members in the study were experiencing SAD, this study was undertaken to delineate the role of ARNTL gene in SAD. We attempted to decipher the five single nucleotide polymorphisms (SNPs) (rs2279287, rs1982350, rs7126303, rs969485, and rs2290035) in ARNTL gene [Figure 1] and correlated it to differential seasonal behavior. However, the interaction between photoperiodic mechanisms (light-dark cycle) and the circadian system in the onset of SAD is obscure.

MATERIALS AND METHODS

Study subjects

The subjects comprised 30 members of close-knit family with SAD (DSM-5 criteria was used in diagnosis) and age- and sex-matched 30 controls of the same caste with no prior history of psychiatric illness. In addition, 30 age- and sex-matched controls with no prior history of psychiatric illness belonging to 17 different castes formed as a negative control. All investigations were conducted in compliance with the principles of the declaration of Helsinki. Informed consents were obtained from all subjects. The Human Ethical Committee of Bharathiar University, Tamil Nadu, India approved the study. The clinical investigations of all the study participants were carried out in KG Hospital, Coimbatore, Tamil Nadu, India.

DNA isolation

DNA was isolated from the blood samples using Hi-PurA mini blood DNA isolation kit (HiMedia, India).

Selection of single nucleotide polymorphisms

Five SNPs across the ARNTL gene namely rs2279287 (A/G), rs1982350 (C/T), rs7126303 (C/T), rs969485 (A/G), and rs2290035 (A/T) were selected to test for their association as the risk factor in SAD.

TaqMan single nucleotide polymorphisms genotyping

SNPs were genotyped using TaqMan allele-specific genotyping assay (Applied Biosystems). Briefly, polymerase chain reaction (PCR) reactions were run in a total volume of 5 µl, containing 10 ng DNA, 2.5 µl 1 × PCR buffer, and 0.125 µl 40 × allelic discrimination primer-probe mix. Reactions were run in ABI 7500 real-time system (Applied Biosystems, USA) with the following cycle parameters: 95°C for 10 min; followed by 40 cycles at 95°C for 15 s and 60°C for 30 s. The post-PCR run was done at 60°C for 1 min. The assays were carried out in triplicate.

Statistical analysis

The allelic frequency was calculated using Hardy–Weinberg law. Statistical significance was assessed by more powerful quasi-likelihood score test (MQLS)-XM,\(^{[10]}\) a program written in C, that performs single-SNP, case-control association testing on the autosomal chromosomes in samples with related individuals. The program is applicable to association studies with completely general combinations of related and unrelated individuals, where the relationship among the sampled individuals is assumed to be known. For each SNP, the program computes three different test statistics for association. For autosomal SNPs, the three test statistics computed are MQLS,\(^{[11]}\) WQLS and corrected \(\chi^2\).\(^{[12]}\) The link to the statistical software used is https://galton.uchicago.edu/~mcpeek/software/MQLS_XM/index.html.

RESULTS AND DISCUSSION

The polymorphic count and allele frequency distribution of different SNPs in ARNTL gene in cases and controls of the same caste are given in Table 1. The polymorphic count and allele frequency distribution of different SNPs in ARNTL gene in cases and controls of different castes are given in Table 2. Among the five SNPs of ARNTL gene, there was a significant variation in SNP rs2279287 between the cases and controls of same caste [Table 1]. The allelic frequency of the mutant allele (G) was found to be 0.75 in cases. Genotyping of the cases for this SNP showed that 50% of the cases are homozygous, and the remaining individuals are heterozygous for the mutant allele. None of the cases were found to be wild. In the control group belonging to the same caste, 20% were homozygous, 47% were heterozygous, and 33% were wild type. In the control group of different castes, 26% were homozygous, 66% were heterozygous, and 6% were wild type. The other 4 SNPs (rs1982350, rs7126303, rs969485, and rs2290035) were almost equally distributed both in the cases and controls [Tables 1 and 2]. Among the 90 subjects (30 cases and 30 controls of the same caste and 30 controls of different castes), only one individual is wild for all the five SNPs studied.

SNP rs2279287, which is a significant marker in the family under study is located in the promoter region of ARNTL gene and hence the polymorphism in this region could affect the clock regulated processes.

The controls in this study carried the mutant alleles, and the same finding was reported by other studies.\(^{[15,17,18]}\)
significant marker rs2279287 in the present study is a part of the most significant haplotype of ARNTL gene of Caucasians\cite{[4,8]}

Similar to this study, association of ARNTL gene variation with a seasonal pattern in BD has been reported in different populations recently\cite{[13,15]}. People with wild-type genotype of SNP rs2290035 in ARNTL gene are associated with less seasonal variation in energy level\cite{[15]}. About 96% of patients with the mutant genotype of ARNTL gene have a routine seasonal variation of energy which is observed in SAD subjects. Thus, one cannot rule out the essential nature of fully functional ARNTL gene.

CONCLUSION

SAD is a highly heritable psychiatric disorder. Several studies have reported the association of ARNTL gene polymorphisms with BD and SAD. Similar to previous reports, the present study also identified a potentially functional polymorphism, rs2279287 in ARNTL gene in an Indian family diagnosed with SAD. Conclusively, we propose that polymorphisms in ARNTL gene disrupt the circadian rhythms causing SAD, and genetic predisposition becomes more deleterious in the presence of adverse environment. This is the first report on ARNTL gene mutations aggravated by environment associated with SAD in Indian population.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, et al. Seasonal affective disorder: A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984;41:72-80.

2. Le-Niculescu H, Patel SD, Bhat M, Kuczynski R, Faraone SV, Tsuang MT, et al. Convergent functional genomics of genome-wide association data for bipolar disorder: Comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009;150B: 155-81.

3. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000;103:1009-17.

4. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 2006;5:150‑7.

5. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006;141B: 234-41.

6. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, et al. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 2007;39:229-38.

7. Patel SD, Le-Niculescu H, Koller DL, Green SD, Lahiri DK, McMahon FJ, et al. Coming to grips with complex disorders: Genetic risk prediction in bipolar disorder using panels of genes identified through convergent functional genomics. Am J Med Genet B Neuropsychiatr Genet 2010;153B: 850-77.

8. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, et al. Differential association of circadian genes with mood disorders: CRYP and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010;35:1279-89.

9. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 2012;7:e32091.

10. Thornton T, Zhang Q, Cai X, Ober C, McPeek MS. Association testing on the X-chromosome in case-control samples with related individuals. Genet Epidemiol 2012;36:438-50.

11. Thornton T, McPeek MS. Case-control association testing with related individuals: A more powerful quasi-likelihood score test. Am J Hum Genet 2007;81:321-37.

12. Bourgain C, Hoffjan S, Nicolae D, Newman D, Steiner L, Walker K, et al. Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 2003;73:612-26.

13. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klimens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008;13:197-207.

14. Geoffroy PA, Lajnef M, Bellivier F, Jamain S, Gird D, Kahn JP, et al. Genetic association study of circadian genes with seasonal pattern in bipolar disorders. Sci Rep 2015;5:10232.

15. Kovanen L, Saarikoski ST, Aromaa A, Lönnqvist J, Partonen T, ARNTL (BMAL1) and NPAS2 gene variants contribute to fertility and seasonality. PLoS One 2010;5:e10007.

16. Magnusson A, Partonen T. The diagnosis, symptomatology, and epidemiology of seasonal affective disorder. CNS Spectr 2005;10:625-34.

17. Greenwood TA, Schork NJ, Eskin E, Kelsoe JR. Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 2006;11:125-33, 115.

18. Berk M, Dodd S, Kauer-Sant’anna M, Malhi GS, Bourin M, Kapczinski F, et al. Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Suppl 2007;434:41-9.

19. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 2008;18:678-83.

20. Huang JZ, Edery I, Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 1993;364:259-62.

“Quick Response Code” link for full text articles

The journal issue has a unique new feature for reaching to the journal’s website without typing a single letter. Each article on its first page has a “Quick Response Code”. Using any mobile or other hand-held device with camera and GPRS/other internet source, one can reach to the full text of that particular article on the journal’s website. Start a QR-code reading software (see list of free applications from http://tinyurl.com/yzh2tc) and point the camera to the QR-code printed in the journal. It will automatically take you to the HTML full text of that article. One can also use a desktop or laptop with web camera for similar functionality. See http://tinyurl.com/Zbw7h3 or http://tinyurl.com/3ys3me for the free applications.