The Atacama Cosmology Telescope: The Persistence of Neutrino Self-Interaction in Cosmological Measurements

Christina D. Kreisch, Minsu Park, Erminia Calabrese, Francis-Yan Cyr-Racine, Rui An, J. Richard Bond, Olivier Doré, Jo Dunkley, Patricio Gallardo, Vera Gluscevic, J. Colin Hill, Adam D. Hincks, Mathew S. Madhavacheril, Jeff McMahon, Thomas W. Morris, Federico Nati, Lyman A. Page, Bruce Partridge, Maria Salatino, Cristóbal Sifón, David N. Spergel, Cristian Vargas, and Edward J. Wollack

1Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
2Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
3School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK
4Department of Physics and Astronomy, University of New Mexico, 210 Yale Blvd NE, Albuquerque, New Mexico 87106, USA
5Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90007, USA
6Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, ON M5S 3H8, Canada
7Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
8California Institute of Technology, Pasadena, California 91125, USA
9Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544
10Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
11Department of Physics, Columbia University, New York, NY, USA 10027
12Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
13David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4, Canada
14Specola Vaticana (Vatican Observatory), V-00120 Vatican City State
15Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo ON N2L 2Y5, Canada
16Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
17Department of Physics, University of Chicago, Chicago, IL 60637, USA
18Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
19Astrophysics Research Centre, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa
20School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa
21Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (MI), Italy
22Department of Astronomy, Haverford College, Haverford, PA 19041, USA
23Stanford University, Stanford, CA 94305, USA
24Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA
25Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
26Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
27NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with ΛCDM and one where neutrino self-interaction is largely driven by angular scales corresponding to 700 ≤ ℓ ≤ 1000 in the ACT E-mode polarization data. This region is expected to be key to discriminate between neutrino self-interacting modes and will soon be probed with more sensitive data.

I. INTRODUCTION

Neutrinos remain an elusive component of the Standard Models of particle physics and cosmology. While cosmological measurements have placed some of the strongest constraints on the sum of neutrino masses (see e.g., Refs. [1, 2]), we do not yet know the value. The precise mechanism for the generation of such neutrino masses is also still uncertain. Further, the presence of anomalies in terrestrial neutrino experiments [3–9] may...
indicate, if confirmed, that yet unknown physics exists in the neutrino sector, hence providing a window into physics beyond the Standard Model.

In particular, new physics altering the free-streaming nature of neutrinos in the early universe has received renewed interest in recent years (see e.g., Refs. [10–48]). In the Standard Model, neutrinos decouple from the primordial plasma and begin to free stream when the universe has cooled to a temperature of \(\sim 1.5 \text{ MeV} \). While freely streaming, neutrinos still interact gravitationally with the rest of the universe, tugging on any particles in their paths while they pass by. Observationally, this damps the amplitude of photon fluctuations and shifts them to slightly larger scales [49–51], impacting the amplitude and phase of the observed cosmic microwave background (CMB) temperature and polarization power spectra.

Introducing new physics in the neutrino sector by allowing them to self-interact can, however, significantly delay the time at which neutrinos begin to free-stream. Such a delay abates how long neutrinos gravitationally lag behind them, offering a potential simultaneous resolution to both the CMB multipoles and other large scale structure (LSS) measurements (see e.g., Refs. [13, 33, 34, 44, 52, 54–58]).

In its simplest implementation, self-interactions can be described by an effective four-fermion interaction parameterized by a dimensionful Fermi-like constant \(G_{\text{eff}} \) [59]. This effective coupling constant determines the neutrino self-interaction rate, \(\Gamma_\nu \propto G_{\text{eff}}^2 T_\nu^5 \), where \(T_\nu \) is the homogeneous temperature of the neutrino bath. Since this interaction only happens between neutrinos, it does not alter the physics and timing of neutrinos decoupling from the rest of the primordial plasma, as discussed in Ref. [60]. We note however that any ultraviolet cutoff of the effective four-fermion interaction is subject to several strong constraints, including from supernovae [61–74], big bang nucleosynthesis [75–77], neutrino observations with the IceCube experiment [59, 78, 79], particle colliders [80–84], and those arising from meson, leptons, tritium, and gauge boson decay kinematics [83–88]. Taken literally, these bounds exclude values of \(G_{\text{eff}} \) large enough to affect cosmological observables. Therefore, the \(G_{\text{eff}} \) parameterization used in this work should not be interpreted as an actual particle model of neutrino self-interaction, but rather as a proxy controlling the onset of neutrino free-streaming in our universe.

With this in mind, previous works [13, 33–35, 44, 52, 54–58] have interestingly found that an effective neutrino self-interaction strength orders of magnitude larger than the standard electroweak interaction can be compatible with CMB and BAO data. Unlike other popular cosmological extensions, the \(G_{\text{eff}} \) posterior probability distribution is characterized by two distinct islands in parameter space: a strongly interacting mode, SL\(\nu \), with \(G_{\text{eff}} \sim 10^{-1.5} \text{ MeV}^{-2} \), and a moderately interacting mode, MI\(\nu \), with \(G_{\text{eff}} \sim 10^{-4} \text{ MeV}^{-2} \) that is nearly indistinguishable from \(\Lambda \text{CDM} \). This bimodality stems from a multi-parameter degeneracy with \(G_{\text{eff}} \) involving the angular size of the baryon-photon sound horizon at last scattering \(\theta_* \), the amplitude of scalar fluctuations \(A_s \), and the scalar spectral index \(n_s \). The strong neutrino self-interactions of the SL\(\nu \) mode shift the phase and boost the amplitude of the multipoles entering the causal horizon before the onset of neutrino free-streaming. To reconcile these effects with cosmological data, larger \(\theta_* \) and lower \(n_s \) values are preferred when \(G_{\text{eff}} \) is large, which in turns result in a lower value of \(A_s \) to ensure consistency with low CMB multipoles. On the other hand, the MI\(\nu \) mode is characterized by values of \(\theta_*, A_s \), and \(n_s \) approximately equal to their \(\Lambda \text{CDM} \) values.

The recent special interest for this model arises from the fact that the SL\(\nu \) mode belongs to the family of scenarios that bring the CMB and Cepheid-calibrated SNIa measurements of the Hubble constant, \(H_0 \), closer by introducing a new species relevant in the early universe to reduce the sound horizon at recombination (see e.g., Refs. [89, 90]). Preferring a higher value of \(N_{\text{eff}} \), the SL\(\nu \) mode is coincident with larger values of \(H_0 \) and lower values of \(\sigma_8 \), the amplitude of linear density fluctuations at \(8 \text{ h}^{-1}\text{Mpc} \), offering a potential simultaneous resolution to both the \(\sigma_8 \) tension and discrepancies in \(H_0 \).

Nevertheless, as discussed in Refs. [33–35, 44, 54], the inclusion of the Planck CMB polarization data [1] disfavors the MI\(\nu \) mode compared to the MI\(\nu \), casting serious doubt on the viability of this mechanism to resolve the current tensions (see Ref. [91] for a more detailed explanation of this limitation). Despite being statistically suppressed, the SL\(\nu \) mode is not entirely ruled out by these analyses. This then asks the question of what kind of cosmological data could eliminate the viability of a late onset of neutrino free-streaming.

The low value of the spectral index \(n_s \) associated with the SL\(\nu \) mode provides an important clue: cosmological data probing a broad range of scales can provide an important lever arm to constrain the spectral tilt and detect any deviation from its \(\Lambda \text{CDM} \) value. High-resolution observations of the CMB temperature and polarization spectra probing small angular scales inaccessible to the Planck satellite are a promising candidate for such an observational constraint. In this work, we use high-resolution CMB data from four observing seasons of the Atacama Cosmology Telescope (ACT) [92] to probe neutrino self-interaction in the early universe, which is a step towards higher sensitivity measurements from the complete ACT dataset, the Simons Observatory [93] and CMB-S4 [94].

Previous works have shown the compatibility of ACT measurements with other models increasing the sound horizon at recombination, such as early dark
energy (EDE) and pseudoscalar sterile neutrino self-interactions [95, 96]. Though the physics of how they increase the inferred H_0 from the CMB is similar, the underlying physics and the subsequent perturbation theory and phenomenology can be vastly different, thus motivating further exploration of these class of models with a wide variety of future data-sets.

We show below that a delayed onset of neutrino free streaming brought on by significant neutrino self interactions still appears compatible with CMB observations at small angular scales from ACT. This is the case for both ACT alone and in combination with data from the Wilkinson Microwave Anisotropy Probe (WMAP) [97, 98].

The paper is organized as follows. In Sec. II, we present the cosmological models, data, parameter choices, and statistical tools used in our analyses. Our main results are presented in Sec. III. In Sec. IV we highlight the importance of the ACT E-mode polarization for our results. We consider the impact of BAO measurements on our results in Sec. V and briefly discuss our systematic tests in Sec. VI. We conclude in Sec. VII.

II. DATA & METHODOLOGY

A. Models, Data, and Parameter Choices

Our baseline cosmological model includes three massive neutrinos with degenerate masses that can scatter among themselves with an interaction rate $\Gamma_\nu \propto G_{\text{eff}}^2 T_\nu^5$. This parallels the analysis done by Planck [1]. The details of the Boltzmann equations involving such massive self-interacting neutrinos are provided in Ref. [54] (see also Ref. [99]). Within this baseline model, the parameters N_{eff} (which is used to adjust the neutrino temperature T_ν) and the sum of neutrino masses $\sum m_\nu$ are also allowed to vary freely from their standard values of 3.046 and 0.066eV respectively. Our baseline model is thus described by a total of 9 parameters once the six standard ΛCDM parameters are included. This model is denoted as $G_{\text{eff}} + N_{\text{eff}} + \sum m_\nu$.” in what follows. We also consider a simpler extension of ΛCDM in which only the neutrino interaction strength G_{eff} is added, with N_{eff} and $\sum m_\nu$ fixed at their standard values. This model is simply referred to as “G_{eff}”.

Throughout our analysis, we used modified versions of the codes CAMB3 [100] and CosmoMC+Multinest [101, 102], equivalent to those used in Ref. [54]. This analysis framework assumes a linear evolution of perturbations. Although negligible at the scales probed by Planck, at smaller scales like those measured by ACT, non-linear gravitational lensing effects impact Σm_ν and N_{eff} estimates and therefore it is likely that they will also alter estimates of G_{eff}. However, we will show later that, despite entering the non-linear regime for lensing, multipoles above 2500 contribute negligible information to the constraint and therefore a linear analysis here is valid. For future analyses with even stronger influence from $\ell > 2500$, analyzing neutrino self-interactions in the non-linear regime may become necessary.

We use uniform priors on all parameters, except for the Planck absolute map-level calibration parameter by the square which all Planck spectra are divided which has the Gaussian prior $\eta_{\text{cal}} = 1.0000 \pm 0.0025$, and the optical depth to reionization which has the Gaussian prior $\tau = 0.065 \pm 0.015$ (see Ref. [92]) and replaces low-ℓ polarization data. As in previous work, we place a uniform prior on the logarithm of the coupling constant G_{eff}, but we here extend the lower range of the prior to -8.0 to include smaller coupling values and allow for any shift in the Mi_ν mode location. We also utilize nested sampling [103] to thoroughly sample the multi-modal posteriors. For this we use 2000 live points, set the target sampling efficiency to 0.3, set the accuracy threshold on the log Bayesian evidence to 20% to ensure the accuracy of credible intervals. We refer to ‘modes’ as disjoint regions of parameter space that isolate the islands of the multi-modal posterior distribution. We utilize the mode separation feature in the Multinest algorithm [102] to isolate each mode and compute the parameter posterior distributions for that mode.

In this work we present results on neutrino self-interactions in the presence of the ACT DR4 data. We further combine ACT with WMAP and Planck CMB data, as well as a selection of low-redshift datasets. We denote the data as follows:

- **ACT**: ACT CMB actpollite_dr4 likelihood for observing seasons 2013-2016 (DR4), containing TT (temperature autocorrelation) measurements spanning $600 < \ell < 4126$ and TE (temperature-polarization correlation) and EE (polarization-autocorrelation) measurements spanning $350 < \ell < 4126$ [104].

- **Planck**: Planck 2018 CMB plik_lite high-ℓ likelihood, containing TT measurements spanning $30 < \ell < 2508$ and TE/EE measurements spanning $30 < \ell < 1996$, as well as the commander low-ℓ TT likelihood, with measurements spanning $2 < \ell < 29$ [105].

- **WMAP**: WMAP CMB 9-year observations, containing TT measurements spanning $2 < \ell < 1200$ and TE measurements spanning $24 < \ell < 800$ [97, 98].
• BAO: Baryon acoustic oscillation (BAO) measurements from Sloan Digital Sky Survey Main Galaxy Sample, Six-degree Field Galaxy Survey, and Data Release 12 [106–108].

• Lens: Planck CMB lensing data from the 2018 release containing lensing multipoles $8 \leq L \leq 400$ [109]. This is only included when also adding BAO to combinations with Planck. Thus, we do not make note of the lensing measurement when labeling the data combination.

When combining ACT with Planck or WMAP, we follow the procedure described in Ref. [92], i.e., we remove ACT TT data below $\ell < \text{low}$ the procedure described in Ref. [92], i.e., we remove ACT TT data below $\ell < 1800$ in analyses with Planck while we use the full ACT dataset in combination with WMAP.

B. Model-Comparison Tools

We use a variety of techniques to assess the statistical significance of the models we consider. To compare statistically distinct modes of the posterior, we compute their Bayes factor

$$B_{\text{SIv}} \equiv \frac{Z_{\text{SIv}}}{Z_{\text{Mlv}}}$$

which compares the modes’ Bayesian evidence Z, defined as the parameter-averaged likelihood of the data,

$$Z_j \equiv \Pr (d | M_j) = \int_{\Omega_{\theta}} \Pr (d | \theta, M_j) \Pr (\theta | M_j) d \theta,$$

where d is the data, θ are the parameters describing model M, M_j denotes the j-th mode of the posterior distribution on the space of θ, and Ω_{θ} is the entire parameter space. Note that we are using the Bayes factor to compare the modes’ statistical significances, instead of model comparison. [56]

We also assess the relative statistical significance between two modes of the posterior by computing their maximum likelihood ratio:

$$R_{\text{SIv}} = \max \left[\frac{\mathcal{L} (\theta_{\text{SIv}} | d)}{\mathcal{L} (\theta_{\text{Mlv}} | d)} \right],$$

where θ_{SIv} and θ_{Mlv} are the parameters describing the SIv and Mlv modes’ best-fit parameters, respectively.

To assess how well the different models fit the data, we also compute $\Delta \chi^2$ values. We then translate these values into a significance in terms of Gaussian standard deviations (i.e. σ). We assume that $\Delta \chi^2$ is distributed according to the χ^2-distribution. When comparing fits across different numbers of free parameters, we assume the χ^2-distribution with k degrees of freedom where k is the difference in parameter numbers. This effectively penalizes the additional parameters. Then we find the σ (Gaussian significance) whose C.L. matches the cumulative probability function at the given $\Delta \chi^2$, following the same method as in [95]. We note, however, that the multi-dimensional posteriors may not be sufficiently Gaussian for either mode (especially Mlv), so Gaussian significances should be interpreted with caution.

We finally compute the Akaike information criterion (AIC) [110] to penalize the extra parameters added to the interacting neutrino model. The ΔAIC between two models is computed as:

$$\Delta \text{AIC} = \text{AIC}_{\text{SIv}} - \text{AIC}_{\text{ACDM}} = \Delta \chi^2 + 2\Delta k.$$

A lower AIC value provides a better fit, so a negative ΔAIC value indicates preference for interacting neutrinos.

III. CMB-ONLY RESULTS WITH EMPHASIS ON ACT

The parameter constraints on our baseline $G_{\text{eff}} + N_{\text{eff}} + \sum m_{\nu}$ model using various combinations of ACT, WMAP, and Planck data are shown in Fig. 1. ACT data, both alone and when combined with WMAP, show some preference for strong neutrino self-interactions and the resulting delayed onset of neutrino free streaming. The distribution of G_{eff} is bimodal for all dataset combinations presented, but the strongly interacting mode is relatively preferred with the ACT data alone as well as the ACT data combined.
with WMAP data, whereas the weakly-interacting mode, compatible with ΛCDM, is preferred by the Planck data. Adding ACT data to Planck increases the probability of the SI ν mode compared to Planck alone, but keeps an overall preference for the MI ν mode. It is interesting to note that the ACT+WMAP combination, which together probe a broad range of angular scales, comparatively to Planck favors a late onset of neutrino free streaming, although ΛCDM still provides a good fit to the data. The improvement in overall $χ^2$ for this interacting model, compared to ΛCDM, is 13.7 for three extra parameters for ACT+WMAP, which we translate to a 2.9σ preference. For ACT+Planck the improvement in $χ^2$ is only 1.7 for the SI ν mode, with ΛCDM preferred. The physical reasons driving these preferences and differences will be discussed in the next few sections.

In Table I we quantify the relative significance of the SI ν and MI ν modes within our baseline model. For ACT-only, a Bayes factor of 1.5 ± 0.2 implies a minor preference for strong self interaction and is consistent with noise. With WMAP added, the Bayes factor grows to 2.8 ± 0.6, corresponding to an increased preference for SI ν [see Table 4 in Ref. 111, where the inverse corresponds to our definition of the Bayes factor]. Planck alone and ACT+Planck show values below 1, preferring an early onset of neutrino free streaming consistent with ΛCDM. Similar conclusions can be drawn from the maximum likelihood ratios.

Credible intervals for the different cosmological parameters within our baseline model are given in Appendix A in Table III for the SI ν mode and in Table IV for the MI ν mode. The estimated Hubble constant for these models are lower than for ΛCDM, due to marginalizing over a broad range of neutrino masses.

The Efficacy of G_{eff} alone. To explore how much of the slight preference for the SI ν mode we see when ACT is involved is influenced by some movements in other neutrino parameters degenerate with G_{eff}, we test a simplified model in which we fix $N_{\text{eff}} = 3.046$ and $\sum m_\nu = 0.06$ eV, letting only G_{eff} and the standard six ΛCDM parameters vary freely. We find that while removing the N_{eff} and $\sum m_\nu$ freedom has little impact on the SI ν mode for ACT+WMAP, it does significantly suppress the existence of the MI ν mode for this data combination. This indicates that the relevance of the MI ν mode depends on the values recovered for other neutrino parameters in the fit, while the existence of the SI ν mode is not driven by the specific values of N_{eff} and $\sum m_\nu$. In other words, the delayed onset of neutrino free-streaming caused by a large value of G_{eff} is key to ACT’s preference for the SI ν mode. Indeed, we find that adding the single G_{eff} parameter improves the fit to ACT data moderately more than other simple extensions considered in the literature or more than the combination $N_{\text{eff}} + \sum m_\nu$ – see Table V and Table VI in Appendix A. Here the G_{eff} model slightly increases H_0 compared to the ΛCDM result, with $H_0 = 69.3 \pm 1.1$ versus 67.6 ± 1.1 km/s/Mpc for ΛCDM [92].

Why does G_{eff} have such an impact on the fit to ACT+WMAP data? As a single parameter, it influences the CMB power spectra in 3 ways: amplitude, phase, and tilt as described in Ref. [54]. This can be seen by looking at the correlation between G_{eff} and the parameters $A_s e^{-2\tau}$, θ_s, and n_s (shown in Fig. 5 in Appendix C). Changing the value of G_{eff} between the two modes of the distribution is, thus, able to accomplish the equivalent of adjusting 3 parameters. We note, however, that G_{eff}’s impacts on the power spectra are coupled – large G_{eff} causes a boost in amplitude which coincides with a shift towards small scales and a blue tilt (all compared to ΛCDM). With 3 parameters that can either increase or decrease in values, there are a total of 8 different combinations of changes to the power spectra. Remarkably, G_{eff} is able to capture the one combination that is actually favored by the data (discussed more in Sec. IV).

The role of $\Omega_b h^2$, N_{eff}, and n_s. The three effects generated by G_{eff} are also able to compensate for other fluctuations seen in the ACT fits. As discussed in Ref. [92], ACT data alone prefer a $2.3 - 2.7\sigma$ low fluctuation of $\Omega_b h^2$ and high fluctuation of n_s within ΛCDM compared to WMAP and Planck. The low $\Omega_b h^2$ value damps the first acoustic peak and small angular scales, and also produces a slight phase shift towards larger scales (due to the reduced baryon loading of the primeval

4 We note that Multinest was not able to automatically separate the modes. To compare evidence, we ran two separate chains with a prior on $\log_{10}(G_{\text{eff}} \text{MeV}^2)$ of $[-4.0, -2.0]$ and $[-2.0, 0.0]$, respectively, and with equivalent priors for all other parameters. We chose these G_{eff} priors in order to maintain the same prior volume between the two modes, and we safely are able to cut at -4 instead of -8 since the ACT-only $1D$ G_{eff} posterior drops off, as in Fig. 1.

5 It captures only one combination rather than two because when G_{eff} is small, the physics is equivalent to ΛCDM.
plasma). This small-scale damping is then compensated by the high n_s value, which tilts the spectra up. This movement occurs along a strong degeneracy line and is alleviated when large angular scales are added to ACT. Allowing also N_{eff} to vary for ACT data alone yields similarly low $\Omega_b h^2$ values, but with an n_s value more similar to Planck accompanied by a low N_{eff} centered at ~ 2.3, disfavoring the larger relativistic degrees of freedom $N_{\text{eff}} = 3.5$ at 4σ, as discussed in Ref. [92]. N_{eff} and n_s are highly degenerate due to large N_{eff} causing small-scale damping [50] and higher n_s being able to undo this damping. While most of the $\Omega_b h^2 - n_s$ ACT fit can be shifted with WMAP data, the low fluctuation in N_{eff} remains (ACT+WMAP prefers N_{eff} values $\sim 2.3\sigma$ lower than the standard value) and leaves room for the neutrino strong mode.

Strong neutrino self-interactions, i.e., large values of G_{eff}, are able to undo the damping and phase shift from the low preferred $\Omega_b h^2$ by boosting the spectra and shifting it towards small scales. This is done by exploiting the multi-parameter degeneracy between G_{eff}, A_s and n_s described in Ref. [56], which results in lower values of both A_s and n_s as compared to ΛCDM. At the same time, strong neutrino self-interactions allow N_{eff} to be closer to its standard value due to absence of free-streaming phase and amplitude shift [49] on the CMB in this case – see Table III in Appendix A.

Appendix G explores the additional degeneracy with the primordial Helium abundance.

IV. THE ROLE OF E-MODE POLARIZATION

ACT’s preference for a delayed onset of neutrino free streaming is predominantly driven by its E-mode polarization spectrum. We show in Table II the $\Delta \chi^2$ between Siν (9 parameters) and ΛCDM (6 parameters) for different CMB data combinations. The largest $\Delta \chi^2$ in favor of the Siν mode occurs for ACT’s E-mode polarization data for ACT alone, with $\Delta \chi^2_{\text{ACT:EE}} = -7.3$, and ACT+WMAP, with $\Delta \chi^2_{\text{ACT:EE}} = -6.0$. In Fig. 2 we show the G_{eff} posterior distribution for the ACT combined dataset and separate constraints from its TT, TE, and EE data. While the TT and TE data show some preference for the Siν mode, ACT’s EE data dominates the preference for a delayed onset of neutrino free streaming as the MIν mode nearly disappears in this case.

The addition of Planck data neutralizes ACT’s E-mode polarization preference. Planck polarization data is signal dominated in windows below $\ell \approx 700$ (see Fig. 17 in Ref. [112]), and can therefore statistically overpower ACT’s polarization preferences in this multipole range, which, as we will see below, plays a significant role in these constraints. Given that WMAP does not include EE data, the inclusion of WMAP does not suppress ACT EE data’s preference for Siν. Further, this combination also sees a preference for Siν coming from the ACT TE data, with $\Delta \chi^2_{\text{ACT:TE}} = -7.0$.

Why does ACT’s E-mode polarization prefer a delayed onset of neutrino free streaming while Planck’s does not? To answer this question, we show the $-\chi^2$ per degree of freedom ($-\chi^2/\text{d.o.f.}$) for the Siν mode, MIν mode, and ΛCDM as a function of the maximum ℓ used for the TT, TE, EE, and combined ACT data in Fig. 3. We use the ACT+WMAP best-fit models and we indicate with a dashed line a reference value of $-\chi^2/\text{d.o.f.} = -1$.

Overall, both the Siν and MIν modes provide a better fit than ΛCDM to the ACT E-mode polarization data.

--

6 These were obtained by running separate nested sampling runs with ACT TT data alone, TE data alone, and EE data alone.

Parameter	ACT Planck	ACT+WMAP	ACT+Planck	
$\Delta \chi^2_{\text{ACT}}$	-10.0	-14.9	-5.2	
$\Delta \chi^2_{\text{ACT:TT}}$	-2.7	-1.9	-1.1	
$\Delta \chi^2_{\text{ACT:TE}}$	0.03	-7.0	-4.3	
$\Delta \chi^2_{\text{ACT:EE}}$	-7.3	-6.0	0.2	
$\Delta \chi^2_{\text{SI}}$	-3.1	-4.9		
$\Delta \chi^2_{\text{MI}}$	0.4	2.0		
$\Delta \chi^2_{\text{WMAP}}$	-0.8			
$\Delta \chi^2_{\text{CMB Total}}$	-10.0	3.5	-14.1	
$\Delta \chi^2_{\text{prior}}$	0.09	-3.1	0.4	-3.4
$\Delta \chi^2_{\text{Total}}$	-10.0	0.4	-13.7	
ΔAIC	-4.0	6.4	-7.7	

*Hereinafter, each $\Delta \chi^2_{\text{ACT:X}}$ accounts once for the cross-correlation with the other components of ACT data such that the three $\Delta \chi^2_{\text{ACT:X}}$ add up to $\Delta \chi^2_{\text{ACT}}$ without overconverging.
FIG. 3: $-\chi^2/N_{\text{bins}}$ as a function of ℓ_{max} where the former is the negative reduced χ^2 and the latter the maximum ℓ used in the likelihood, shown for Slν (in red), Mlν (in blue), and ΛCDM (in black) best fits to ACT+WMAP data. This is shown for the combined ACT data in top left, TT only in top right, TE only in bottom left, and EE only in bottom right. Overall, it is clear that for most choices of ℓ_{max}, Slν has the largest $-\chi^2/N_{\text{bins}}$ across all sectors of ACT data. The top left figure shows the greatest difference between Slν and Mlν in the $700 \lesssim \ell \lesssim 1000$ range, which is echoed only by the bottom right, indicating the importance of E-mode polarization in that ℓ range in promoting the favorability of Slν.

(see Appendix B for tables comparing the Mlν mode to ΛCDM). Both modes have larger $-\chi^2$/d.o.f. than ΛCDM in the bottom right panel of Fig. 3, which focuses on the E-mode polarization. For the range $700 \lesssim \ell \lesssim 1000$ in this panel, as ℓ_{max} increases the Slν mode rapidly provides a better fit to the data than either the Mlν mode or ΛCDM. The Mlν mode fits the TE cross-correlation data better than the Slν mode in the same range, but the margin between the modes is twice as large with the EE autocorrelation. Ultimately the effect in the $700 \lesssim \ell \lesssim 1000$ range of the E-mode polarization drives the total likelihood in favor of the Slν mode. Beyond $\ell \sim 1000$, there is not significant information added by smaller scales to further differentiate the two interacting neutrino modes. Finally, angular scales corresponding to $\ell \gtrsim 1700$ do not incorporate additional information to further improve the fit of ΛCDM over the 2 modes. More specifically, we find that removing ACT data at $\ell > 2500$ does not significantly change the posterior distribution on G_{eff}. By contrast, keeping only data at $\ell > 1000$ entirely removes the modest preference for $G_{\text{eff}} \sim 10^{-1.6}$ MeV$^{-2}$ and leaves a nearly flat posterior, reinforcing the fact that the preference for the Slν mode is driven by larger angular scales.

Our findings mirror those in Refs. [95, 96] showing that the most pertinent feature for the respective extensions to ΛCDM is in the $\ell \lesssim 1000$ range of the EE spectrum of ACT data. This is also in agreement with the theoretical expectation provided in Ref. [113], which concludes that CMB experiments are most sensitive to neutrino interactions at $\ell \lesssim 1000$.

Having identified this important range of angular scales in the E-mode polarization spectrum, we now study the residuals between the best-fit Planck ΛCDM cosmological model and the three leading datasets of ACT, Planck, and SPT-3G [114] E-mode polarization data in this range. As shown in Fig. 4, residuals for all experiments show a slight upward fluctuation in the range $700 \lesssim \ell \lesssim 1000$, with ACT showing the largest shift. A delayed onset of neutrino free streaming can
FIG. 4: Residuals of E-mode polarization data for ACT (orange), Planck (blue), and SPT-3G (green) data relative to Planck’s best-fit ΛCDM model. We overlay the best-fit for SIν for just ACT E-mode polarization in grey (best-fit further described in Sec. IV), and the grey band highlights the multipoles that drive ACT’s preference for SIν. Each bin spans 50 multipoles. Note the upwards deviation from the best fit in the 700 ≲ ℓ ≲ 1000 range of the ACT and SPT-3G data. The residuals of TT, TE, and EE power spectrum for the full ℓ range are presented in Appendix D.

better capture this upward fluctuation, driving the preference for the SIν mode in the ACT data. Indeed, as described in Ref. [56], Fourier modes corresponding to this particular ℓ range enter the causal horizon close to the onset of neutrino free streaming for the SIν mode, allowing them to be significantly influenced by the modified evolution of the gravitational potentials. The figure also clarifies why the preference is reduced when including Planck data: while consistent with both ACT and SPT-3G in this multipole range, Planck does not possess such a strong E-mode upward fluctuation.

V. CMB+LENSING+BAO RESULTS

We now expand our analysis beyond CMB-only results and as previously mentioned incorporate BAO and Planck CMB lensing data. Overall we find that adding BAO measurements increases the significance of the SIν compared to the MIν mode.7 Such preference is not surprising for the ACT+WMAP CMB dataset: the values of our baseline model’s parameters most relevant to BAO (i.e. H₀, Ω_m, and N_eff) for ACT+WMAP within the SIν mode are closer to their concordance ΛCDM values than those within the MIν mode and therefore BAO further consolidates this preference. We find that the SIν mode has a Δχ² = −13.2 compared to ΛCDM for ACT+WMAP once BAO is included (Table IX in Appendix B), roughly corresponding to a 2.9σ preference for a delayed onset of neutrino free streaming. ΛCDM continues to be preferred when adding BAO to ACT+Planck.

VI. ROBUSTNESS TESTS

We test the robustness of our results – and in particular the contribution to them from ACT – by examining different partitions of the ACT data independently, and revisiting some of the analysis assumptions.

- Fig. 2 shows that different spectra (TT, TE, EE) in ACT give very consistent results.

- ACT data are further composed of ‘deep’ maps, spanning 20-340 deg², and ‘wide’ maps, spanning 210-1400 deg² (see Refs. [92, 104]). Both sets contain TT, TE, and EE power spectra spanning the full ℓ ranges detailed in Sec. II. After constraining the interaction with each set separately, we conclude that the two patches give consistent results but the wide data prefer the SIν mode more than the deep data does. This weaker significance in the deep data is not unexpected, however, as the wide data has smaller errors at large scales, and therefore stronger constraining power, than the deep data at scales that are relevant for this model (See Appendix F for further discussion).

7 A slight preference for the SIν mode when including BAO and distance ladder H₀ measurements had been noted in Ref. [54], but only Planck temperature data were included in their analysis. We see that ACT+WMAP data when combined with BAO measurements, as well as when combined with local H₀ measurements from SH0ES, have some preference for late neutrino free streaming. See Appendix E for an updated discussion on neutrino free streaming and local H₀ measurements in light of ACT data.
In summary, despite the high-resolution observations of the CMB temperature and polarization spectra we find the posterior to be persistently bimodal and the preference between the modes to be dependent on choice of model (\(G_{\text{eff}}\) only or \(G_{\text{eff}}+N_{\text{eff}}+\Sigma m_\nu\)) and dataset combination. This indicates that we need more data to make any decisive judgements on this model, and motivates searches for unaccounted-for systematic effects in the \(500 \leq \ell \leq 1000\) region in polarization that we highlighted (see also Refs. [95, 96]). Alternative new-physics models could also be examined, including those where only a fraction of the neutrinos can self-interact (see e.g., Refs. [33–35]). Our results also call for detailed scrutiny of upcoming ACT polarization data, especially in the \(\ell \lesssim 1000\) region.

Acknowledgments

C.D.K.’s work is supported by the National Science Foundation (NSF) Graduate Research Fellowship under Grant DGE 1656466. EC acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 849169). The work of F.-Y. C.-R is supported by the NSF under grant AST-2008696. JD is supported by NSF grants 1814971 and 2108126. We would like to thank the UNM Center for Advanced Research Computing, supported in part by the NSF, for providing some of the research computing resources used in this work. Part of this work was performed at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. Part of this work was done at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. JCH acknowledges support from the Sutton Family Chair in Science, Christianity and Cultures and from the Faculty of Arts and Science, University of Toronto. KM acknowledges support from the National Research Foundation of South Africa. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Industry Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

Support for ACT was through the U.S. National Science Foundation through awards AST-0408698, AST-0965625, and AST-1440226 for the ACT project, as well as awards PHY-0355328, PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronómico Atacama in northern Chile under the auspices of the Agencia Nacional de Investigación y Desarrollo (ANID). The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. Detector research at NIST was supported by the NIST Innovations in Measurement Science program.

We acknowledge use of the matplotlib [115], numpy [116], GetDist [117], and CosmoMC [101] packages and use of the Boltzmann code CAMB [100].
Appendix A: Parameter Values

In this appendix, we list the credible intervals for the different model parameters used in our analyses. In Table III, we give the mean parameter values and their 1σ error bars for the SIν mode for four data combinations. The corresponding MB ν values are given in Table IV. The parameter values within our simpler G eff one-parameter extension are given in Table V. Table VI shows the ∆χ² between ΛCDM and its extension with Σmν + N eff and (the strong mode of) only G eff. For both models the SI ν mode prefers slightly higher values of H₀ and σs than the MB ν mode given all the listed dataset combinations. Overall, the estimated values of H₀ are lower than in ΛCDM due to its anti-correlation with neutrino mass, which is held fixed in ΛCDM.

Parameter	ACT	Planck	ACT + WMAP	ACT + Planck
Ω₀h²	0.02100 ± 0.00050	0.02240 ± 0.00023	0.02188 ± 0.00035	0.02214 ± 0.00024
Ω₀h²	0.0116 ± 0.00079	0.1165 ± 0.000345	0.1195 ± 0.00053	0.1171 ± 0.00031
100θMC	1.04709 ± 0.00090	1.04564 ± 0.00062	1.04757 ± 0.00077	1.04615 ± 0.00046
τ	0.065 ± 0.014	0.0736 ± 0.0067	0.060 ± 0.012	0.071 ± 0.010
Σmν [eV]	0.83 ± 0.28	0.816 ± 0.11	0.59 ± 0.30	0.246 ± 0.24
N eff	2.45 ± 0.53	2.79 ± 0.21	2.82 ± 0.33	2.74 ± 0.26
log₁₀(G eff MeV²)	−1.42 ± 0.19	−1.73 ± 0.17	−1.29 ± 0.11	−1.61 ± 0.077
ln(10¹⁰A_x)	2.983 ± 0.032	3.015 ± 0.025	2.976 ± 0.027	3.010 ± 0.021
r_s	0.915 ± 0.040	0.9312 ± 0.0079	0.921 ± 0.013	0.9267 ± 0.0078
H₀ [km/s/Mpc]	56 ± 3.5	66.7 ± 1.9	62.3 ± 3.3	64.7 ± 3.1
Ω_m	0.471 ± 0.009	0.315 ± 0.0011	0.385 ± 0.0059	0.344 ± 0.0015
σs	0.670 ± 0.042	0.817 ± 0.0001	0.704 ± 0.0046	0.780 ± 0.0022
Y_P	0.236 ± 0.0066	0.2418 ± 0.00024	0.2420 ± 0.0043	0.2410 ± 0.0027
r_s [Mpc]	149.2 ± 4.7	146.7 ± 1.6	145.9 ± 3.0	146.9 ± 1.9

Parameter	ACT	Planck	ACT + WMAP	ACT + Planck
Ω₀h²	0.02064 ± 0.00040	0.02229 ± 0.00023	0.02153 ± 0.00030	0.02200 ± 0.00021
Ω₀h²	0.1092 ± 0.0053	0.1186 ± 0.0029	0.1119 ± 0.0043	0.1155 ± 0.0025
100θMC	1.04341 ± 0.00099	1.04105 ± 0.00044	1.04255 ± 0.00082	1.04153 ± 0.00039
τ	0.065 ± 0.013	0.0749 ± 0.0014	0.060 ± 0.0011	0.071 ± 0.013
Σmν [eV]	< 0.771	0.112 ± 0.028	0.70 ± 0.30	0.171 ± 0.050
N eff	2.03 ± 0.28	2.95 ± 0.19	2.37 ± 0.25	2.71 ± 0.16
log₁₀(G eff MeV²)	−3.13 ± 0.45	−5.89 ± 0.99	−4.91 ± 2.2	−5.7 ± 1.3
ln(10¹⁰A_x)	3.019 ± 0.035	3.081 ± 0.029	3.029 ± 0.028	3.069 ± 0.027
r_s	0.905 ± 0.024	0.9616 ± 0.0007	0.933 ± 0.014	0.9523 ± 0.0082
H₀ [km/s/Mpc]	52.0 ± 2.4	66.3 ± 2.0	56.9 ± 2.4	63.9 ± 2.4
Ω_m	0.529 ± 0.075	0.329 ± 0.029	0.440 ± 0.055	0.342 ± 0.029
σs	0.631 ± 0.076	0.813 ± 0.014	0.665 ± 0.062	0.790 ± 0.041
Y_P	0.2297 ± 0.0964	0.2441 ± 0.0026	0.2354 ± 0.0041	0.2405 ± 0.0023
r_s [Mpc]	153.1 ± 3.6	145.3 ± 1.8	150.6 ± 3.0	147.7 ± 1.6
are not identical. In Ref. [95] both appear compatible with ACT data and capture similar features, their relationships with the data

The similarity of the N_{eff} that is most clearly demonstrated by the red contours (ΛCDM augmented by $10^9 A_s e^{-2\tau}$, n_s, and $\Omega_b h^2$) in each island, and the values of $100 \theta_s$, $10^9 A_s e^{-2\tau}$, and n_s, that is most clearly demonstrated by the red contours (ΛCDM augmented by $log_{10}(G_{\text{eff}} \text{MeV}^2)$ only). This indicates that $log_{10}(G_{\text{eff}} \text{MeV}^2)$ simultaneously impacts phase, amplitude, and tilt respectively.

The G_{eff} model does not change the posteriors of H_0 and σ_8 significantly from the ΛCDM result but the other extensions do. The similarity of the $N_{\text{eff}} + \sum m_{\nu}$ contours and the baseline model contours indicate that the shift to lower H_0 is largely due to the variation in N_{eff} and $\sum m_{\nu}$. This is in contrast to the results of Ref. [95] where fitting the EDE model to ACT data resulted in a shift to higher values of H_0. Though the new physics introduced here and in Ref. [95] both appear compatible with ACT data and capture similar features, their relationships with the data are not identical.

Appendix B: Mode Comparison

In this appendix we supplement the comparison of the χ^2 values of SIν, MIν, and ΛCDM best-fit models with respect to different datasets and their components. Table VII takes the SIν mode and MIν best fits to ACT, Planck, ACT+WMAP, and ACT+Planck datasets, and shows the difference in χ^2 between the two best fits for the components of the datasets. Table VIII does the same with ACT+WMAP+BAO and ACT+Planck+BAO as the datasets. Table X takes the MIν and ΛCDM best fits to ACT, Planck, ACT+WMAP, and ACT+Planck datasets, and shows the difference in χ^2 between the two best fits for the components of the datasets. Table IX does the same with ACT+WMAP+BAO and ACT+Planck+BAO as the datasets for the SIν mode. Note that though MIν provides a better fit to the data than ΛCDM, it does not fit better than SIν.

Appendix C: Complete Posterior Plots

We present the triangle plot showing $log_{10}(G_{\text{eff}} \text{MeV}^2)$, N_{eff}, H_0, σ_8, $100 \theta_s$, $10^9 A_s e^{-2\tau}$, n_s, and $\Omega_b h^2$ in Fig. 5. The posteriors were generated by varying the parameter spaces indicated in the legend with respect to ACT and WMAP. Note the correlation between the value of $log_{10}(G_{\text{eff}} \text{MeV}^2)$ in each island, and the values of $100 \theta_s$, $10^9 A_s e^{-2\tau}$, and n_s, that is most clearly demonstrated by the red contours (ΛCDM augmented by $log_{10}(G_{\text{eff}} \text{MeV}^2)$ only). This indicates that $log_{10}(G_{\text{eff}} \text{MeV}^2)$ simultaneously impacts phase, amplitude, and tilt respectively.

The G_{eff} model does not change the posteriors of H_0 and σ_8 significantly from the ΛCDM result but the other extensions do. The similarity of the $N_{\text{eff}} + \sum m_{\nu}$ contours and the baseline model contours indicate that the shift to lower H_0 is largely due to the variation in N_{eff} and $\sum m_{\nu}$. This is in contrast to the results of Ref. [95] where fitting the EDE model to ACT data resulted in a shift to higher values of H_0. Though the new physics introduced here and in Ref. [95] both appear compatible with ACT data and capture similar features, their relationships with the data are not identical.
TABLE VII: Mode comparison. B_{SI is the Bayes factor between the SI and the MI modes, R_{SI} is the maximum likelihood ratio, and $\Delta \chi^2 = \chi^2_{\text{SI}} - \chi^2_{\text{MI}}$.

Parameter	ACT	Planck	ACT + WMAP	ACT + Planck
B_{SI}	1.5 ± 0.2	0.01 ± 0.01	2.8 ± 0.6	6.5
R_{SI}	2.6	0.4	6.5	1.1
$\Delta \chi^2_{\text{ACT}}$	-1.9	-3.9	-3.9	-1.6
$\Delta \chi^2_{\text{ACT,TT}}$	-0.6	-4.5	-4.5	0.3
$\Delta \chi^2_{\text{ACT,TE}}$	-0.6	-0.4	-0.4	-2.2
$\Delta \chi^2_{\text{ACT,EE}}$	-1.3	-3.9	-3.9	3.9
$\Delta \chi^2_{\text{low } \ell}$	-2.8	-1.0	-1.0	3.2
$\Delta \chi^2_{\text{high } \ell}$	-0.1	-3.8	-3.8	5.5
$\Delta \chi^2_{\text{prior}}$	0.03	-2.0	8.6×10^{-3}	-5.7
$\Delta \chi^2_{\text{total}}$	-1.9	1.8	-3.7	-0.2

TABLE VIII: Mode comparison for data combinations containing BAO measurements. B_{SI} is the Bayes factor between SI and the MI modes, R_{SI} is the maximum likelihood ratio, and $\Delta \chi^2 = \chi^2_{\text{SI}} - \chi^2_{\text{MI}}$.

Parameter	ACT + WMAP	ACT + Planck + BAO
B_{SI}	17.2 ± 4.7	0.1 ± 0.04
R_{SI}	35.8	0.5
$\Delta \chi^2_{\text{ACT}}$	-5.8	1.5
$\Delta \chi^2_{\text{ACT,TT}}$	-0.5	-0.7
$\Delta \chi^2_{\text{ACT,TE}}$	0.2	1.5
$\Delta \chi^2_{\text{ACT,EE}}$	-5.5	0.8
$\Delta \chi^2_{\text{low } \ell}$	-3.8	-1.3
$\Delta \chi^2_{\text{high } \ell}$	-0.7	-1.3
$\Delta \chi^2_{\text{WMAP}}$	-1.1	-1.3
$\Delta \chi^2_{\text{BAO}}$	-0.3	-0.7
$\Delta \chi^2_{\text{CMB Total}}$	-6.9	4.7
$\Delta \chi^2_{\text{prior}}$	0.07	-2.7
$\Delta \chi^2_{\text{total}}$	-7.2	1.3

TABLE IX: Comparison to ΛCDM for the Strongly Interacting Neutrino Mode for data combinations containing BAO measurements ($\Delta \chi^2 = \chi^2_{\text{SI}} - \chi^2_{\text{CDM}}$).

Parameter	ACT + WMAP + BAO	ACT + Planck + BAO
B_{SI}	17.2 ± 4.7	0.1 ± 0.04
R_{SI}	35.8	0.5
$\Delta \chi^2_{\text{ACT}}$	-13.0	-2.7
$\Delta \chi^2_{\text{ACT,TT}}$	-2.9	-2.2
$\Delta \chi^2_{\text{ACT,TE}}$	-4.1	-1.0
$\Delta \chi^2_{\text{ACT,EE}}$	-6.0	0.5
$\Delta \chi^2_{\text{low } \ell}$	-5.6	-3.2
$\Delta \chi^2_{\text{high } \ell}$	-0.4	-3.2
$\Delta \chi^2_{\text{WMAP}}$	0.0	-0.3
$\Delta \chi^2_{\text{BAO}}$	-0.9	-0.3
$\Delta \chi^2_{\text{CMB Total}}$	-13.0	0.1
$\Delta \chi^2_{\text{prior}}$	0.7	-2.0
$\Delta \chi^2_{\text{total}}$	-13.2	-2.1
$\Delta \chi^2_{\text{AIC}}$	-7.2	3.9

TABLE X: Comparison to ΛCDM for the Moderately Interacting Neutrino Mode ($\Delta \chi^2 = \chi^2_{\text{SI}} - \chi^2_{\text{CDM}}$).

Parameter	ACT	Planck	ACT + WMAP	ACT + Planck
$\Delta \chi^2_{\text{ACT}}$	-8.1	-11.0	-3.6	
$\Delta \chi^2_{\text{ACT,TT}}$	-2.7	-2.1	-1.5	
$\Delta \chi^2_{\text{ACT,TE}}$	0.6	-7.4	-2.1	
$\Delta \chi^2_{\text{ACT,EE}}$	-6.0	-1.5	-0.03	
$\Delta \chi^2_{\text{low } \ell}$	-0.3	-1.1	1.1	
$\Delta \chi^2_{\text{high } \ell}$	-0.6	-1.2	-1.2	
$\Delta \chi^2_{\text{WMAP}}$	-0.7	0.8	-1.2	
$\Delta \chi^2_{\text{CMB Total}}$	-8.1	-10.3	-3.8	
$\Delta \chi^2_{\text{prior}}$	-7.5×10^{-4}	-1.1	0.4	2.3
$\Delta \chi^2_{\text{total}}$	-8.1	-1.4	-10.0	-1.5
$\Delta \chi^2_{\text{AIC}}$	-2.1	4.6	-4.0	4.5
FIG. 5: Posterior distributions for $\log_{10}(G_{\text{eff}} \text{MeV}^2)$, N_{eff}, H_0, σ_8, $10^9 A_s e^{-2\tau}$, n_s, and $\Omega_b h^2$ given ACT+WMAP data and various extensions of ΛCDM. The degeneracy between $\log_{10}(G_{\text{eff}} \text{MeV}^2)$ and $10^9 A_s e^{-2\tau}$, and n_s (in the direction between the peaks of the two modes) indicates $\log_{10}(G_{\text{eff}} \text{MeV}^2)$’s ability to impact phase, amplitude, and tilt simultaneously.

Appendix D: CMB Power Spectrum Residuals

We present CMB power spectra from data and from theory predictions as residuals to the ΛCDM best fit predictions. Fig. 6 shows the TT plots, Fig. 7 the TE plots, and Fig. 8 the EE plots. The left half of each Figure shows ACT data points and theory predictions from best fits to datasets including ACT. The right half shows Planck data points and theory predictions from best fits to datasets including Planck. The top half of each Figure shows SI ν best fits, and the bottom half MI ν best fits.
FIG. 6: Residuals of best-fit TT power spectra relative to ΛCDM (ACT best-fit ΛCDM for the left panel, Planck best-fit ΛCDM for the right panel). The upper panels are SIν best fits and the lower panels are MIν best fits.

FIG. 7: Residuals of best-fit TE power spectra relative to ΛCDM (ACT best-fit ΛCDM for the left panel, Planck best-fit ΛCDM for the right panel). The upper panels are SIν best fits and the lower panels are MIν best fits.
FIG. 8: Residuals of best-fit EE power spectra relative to ΛCDM (ACT best-fit ΛCDM for the left panel, Planck best-fit ΛCDM for the right panel). The upper panels are SIν best fits and the lower panels are MIν best fits.

Appendix E: Adding Distance Ladder Measurements

For completeness, we now discuss the addition of Cepheid calibrated distance-ladder Hubble constant measurements, \(H_0 = 73.24 \pm 1.74 \) km/s/Mpc measured by the SH0ES team in 2016 [118], to our parameter constraints. Though there are more recent local measurements using Cepheid calibrated SNIa [119, 120], TRGB calibrated SNIa [121, 122], and strong lensing time delay [123], we utilize the SH0ES team’s 2016 measurements to directly parallel the study done in [54]. Similar to when adding BAO measurements (see Sec. V), adding the SH0ES \(H_0 \) measurements decreases the significance of the MIν mode and decreases the width of the SIν mode (compare ACT + WMAP + BAO + SH0ES to ACT + WMAP + BAO in Fig. 9). Adding in distance ladder \(H_0 \) measurements from SH0ES nearly eliminates the MIν mode as a viable statistical possibility.
Appendix F: ACT Wide/ Deep

Fig. 10 shows the 1D posterior of \(\log_{10}(G_{\text{eff}} \text{MeV}^2) \) for ACT ‘deep,’ ACT ‘wide,’ and the full ACT dataset. We find that both the posteriors produced with ‘deep’ and ‘wide’ have a preference for \(\log_{10}(G_{\text{eff}} \text{MeV}^2) \sim -1.3 \) around which their tallest peaks and best fit models are located. However, the preference for SI\(_\nu \) over MI\(_\nu \) is much stronger with ‘wide’ than with ‘deep,’ resulting in the combined ACT posterior which is between the two other posteriors. We show \(\Delta \chi^2 \) values comparing SI\(_\nu \) to \(\Lambda \)CDM for the isolated ‘deep’ and ‘wide’ components of ACT in Table XI. The ‘wide’ E-mode polarization is the only component with a strong enough preference for SI\(_\nu \) to bring \(\Delta \text{AIC} < 0 \) compared to \(\Lambda \)CDM.

We show the ‘wide’ and ‘deep’ E-mode polarization residuals in Fig. 11. While the ‘wide’ data show a stronger fluctuation in \(700 \lesssim \ell \lesssim 1000 \), the large error bars of the ‘deep’ data are still consistent with this fluctuation. Therefore, the discrepancies between the preferences of ‘wide’ and ‘deep’ are within the margins of error of the two components of ACT.

This is again similar to the findings in Ref. [95] that the feature which the EDE model fits better than \(\Lambda \)CDM is more pronounced in the ‘wide’ component (specifically ‘wide’ EE) than the ‘deep,’ further suggesting that the two different physical models maybe describing the same feature in ACT data.
FIG. 10: 1D posterior for G_{eff}, obtained by varying the 6 ΛCDM parameters, Σm_ν, N_{eff}, and G_{eff} with all of ACT (in green), ‘deep’ ACT (in blue), and ‘wide’ ACT (in red). The ‘wide’ only posterior shows the strongest preference for SI ν but the blue posterior also does slightly prefer SI ν.

TABLE XI: ACT deep and wide comparisons to ΛCDM ($\Delta \chi^2 = \chi^2_{\text{SI }\nu} - \chi^2_{\Lambda \text{CDM}}$).

Parameter	ACT deep	ACT wide
$\Delta \chi^2_{\Lambda \text{CDM}}$	−4.4	−8.0
$\Delta \chi^2_{\text{ACT TT}}$	−5.0	0.8
$\Delta \chi^2_{\text{ACT EE}}$	0.3	1.4
$\Delta \chi^2_{\text{prior}}$	0.01	0.01
$\Delta \chi^2_{\text{Total}}$	−4.4	−7.9
ΔAIC	1.6	−1.9

FIG. 11: Difference for the E-mode polarization data for ACT wide, deep, and total compared to the best-fit ΛCDM model from Planck. In the $700 \lesssim \ell \lesssim 1000$ range of interest, the three datasets are not significantly far apart.

Appendix G: Helium Abundance

In this section, we consider the impact of freeing the helium abundance Y_{He} away from its Big-Bang Nucleosynthesis (BBN) value. We now thus consider a four-parameter extension of ΛCDM in which G_{eff}, N_{eff}, Σm_ν, and Y_{He} are allowed to vary freely. Our results are summarized in Fig. 12 for different data set combinations. For ACT + WMAP, freeing the helium fraction boosts the SI ν mode, largely due to the large range of N_{eff} and Y_{He} values that are now accessible within this mode of the posterior. In the Standard Model, BBN predicts a larger helium yield Y_{He} as N_{eff} is increased. However, maintaining the ratio of the photon scattering rate to the Hubble rate constant near
recombination, which is necessary to leave the CMB invariant \cite{91}, requires Y_{He} to decrease as N_{eff} is increased. This can be seen in the strong anticorrelation between N_{eff} and Y_{He} in Fig. 12 for the ACT + WMAP + Y_{He} case. Since the MIν mode is constrained to have low values of N_{eff} as explained above, only the SIν mode can exploit this degeneracy once the helium abundance is allowed to vary freely.

On the other hand, freeing Y_{He} in the presence of Planck data has little impact on the posterior, illustrating the ability of Planck data to constrain the helium abundance even without BBN inputs. Just as in our baseline model, the Planck data strongly disfavor the SIν mode compared to the MIν mode.

FIG. 12: Posteriors for $\log_{10}(G_{\text{eff}}\text{MeV}^2)$, N_{eff}, Y_{He}, and H_0 for various CMB dataset combinations. Notice how letting Y_{He} vary decreases the significance of MIν with ACT+WMAP, but when Planck is involved, there is hardly any change as Planck is able to constrain Y_{He} without BBN inputs.

[1] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], 1807.06209.

[2] M. Lattanzi and M. Gerbino, Front.in Phys. 5, 70 (2018), 1712.07109.

[3] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 121, 221801 (2018), 1805.12028.

[4] A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001), hep-ex/0104049.

[5] M. G. Aartsen et al. (IceCube), Phys. Rev. D95, 112002 (2017), 1702.05160.

[6] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117, 071801 (2016), 1605.01990.

[7] P. Adamson et al. (NOvA), Phys. Rev. D96, 072006 (2017), 1605.04592.

[8] P. Adamson et al. (MINOS+), Phys. Rev. Lett. 122, 091803 (2019), 1710.06488.

[9] M. Dentler, A. Hernández-Cabezudo, J. Kopp,
