EXISTENCE RESULTS FOR THE σ–HILFER HYBRID FRACTIONAL BOUNDARY VALUE PROBLEM INVOLVING A WEIGHTED ϕ–LAPLACIAN OPERATOR

NADIR BENKACI-ALI

(Communicated by F. Atici)

Abstract. In this paper, we are interested in the existence of positive solutions for the Hilfer hybrid fractional equation involving a weighted two dimensional ϕ-Laplacian operator with the integral-infinite point boundary conditions. In this approach, we transform the given fractional differential equation into an equivalent integral equation. Then we establish sufficient conditions and employ the fixed point index arguments to obtain new results on the existence of positive solutions. Examples illustrating the main results are also constructed. This work contains several new ideas, and gives a unified approach applicable to many boundary value problems involving (p, q)-Laplacian type operators.

1. Introduction

Boundary value problems involving a $p(t)$-Laplacian operator have attracted a great deal of attention in the last ten years (see [11, 12, 13, 34]). At the same time, boundary value problems with fractional order and Hilfer fractional order differential equations are of great importance and are interesting class of problems. Such kind of BVPs in Banach space have been studied by many authors, see, [4, 6, 10, 14, 17, 19, 21, 22, 23, 27, 28, 30, 31] and the references therein.

In [23], by using some fixed point theorems, the authors considered the existence and uniqueness of positive solution for the following nonlinear weighted problem

\[
\begin{aligned}
&cD^{\eta, \alpha, \Psi}_{0+} (z) (x) = f(x, z(x)), \quad x \in (0, 1], \\
&z(0) = z_0 > 0,
\end{aligned}
\]

and nonlinear weighted relaxation problem

\[
\begin{aligned}
&cD^{\eta, \alpha, \Psi}_{0+} (z) (x) + \lambda z(x) = f(x, u(x)), \quad x \in (0, 1], \\
u(0) = z_0 > 0,
\end{aligned}
\]

where $cD^{\eta, \alpha, \Psi}_{0+}$ is the weighted Caputo fractional derivative with respect to Ψ of order $\eta \in (0, 1)$, $\lambda > 0$ and $f : [0, 1] \times \mathbb{R}^+ \to \mathbb{R}^+$ is a given continuous function.

Mathematics subject classification (2020): 34B15, 34B16, 34B18.
Keywords and phrases: Hybrid bvp, positive solution, fixed point index.
In [21], the authors investigated the existence and uniqueness of positive solution for nonlinear generalized fractional problem of the form

\[
\begin{cases}
D^{\eta, \Psi}_{0+} (u)(x) + f(x, u(x)) = 0, & x \in (0, 1], \\
u(0) = u(0) = 0,
\end{cases}
\]

where \(1 < \eta \leq 2 \), \(D^{\eta, \Psi}_{0+} \) is the \(\Psi \)-Riemann-Liouville fractional derivative of order \(\eta \) and \(f : [0, 1] \times \mathbb{R}^+ \to \mathbb{R}^+ \) is a continuous function.

On the other hand, Hybrid fractional differential equations have also received a lot of attention (see [5, 2, 7, 9, 15, 24, 26]), because some real world problems in physics, mechanics and other fields can be described better with the help of Hybrid fractional differential equations. Examples include automotive control, mobile robotics and manufacturing (see [1, 3, 32]).

In 2010, Dhage and Lakshmikantham [9] initiated the study of initial value problems for first order hybrid differential equation of the form:

\[
\begin{cases}
\frac{\partial}{\partial t} \left(D^{p, \omega, \Psi}_{a+} \left(\frac{u(x)}{g(x, u(x))} \right) \right) = f(x, u(x)), & x \in (0, T), \\
u(0) = x_0 \in \mathbb{R},
\end{cases}
\]

where \(D^{p, \omega, \Psi}_{a+} \) is the \(\Psi \)-Hilfer Hybrid fractional derivative operator of order \(p > 0 \) and \(f, g \in C([0, T] \times \mathbb{R}) \). They gave the existence, uniqueness results, and some theorems on differential inequalities.

In [7], the authors proved the existence of solutions for the following three point \(\Psi \)-Hilfer Hybrid fractional integro-differential boundary value problem

\[
\begin{cases}
D^{\alpha, \omega, \Psi}_{a+} \left(D^{p, \omega, \Psi}_{a+} \left(\frac{u(x)}{g(x, u(x))} \right) \right) = D^{\alpha, \omega, \Psi}_{a+} H(x, u(x)) + f(x, u(x)), & x \in (a, b), \\
u(a) = D^{\rho, \omega, \Psi}_{a+} u(a) = 0, \quad u(b) = \theta u(\xi)
\end{cases}
\]

via a generalization of the Krasnosel’skii’s fixed point theorem, where \(D^{\mu, \omega, \Psi}_{a+} \) is the \(\Psi \)-Hilfer Hybrid fractional derivative operator of order \(\mu \in \{\alpha, p\} \), with \(0 < \alpha \leq 1 < p \leq 2 \), \(H(x, u) = \sum_{i=1}^{n} I^{\beta_i, \Psi}_{a+} h_i(x, u(x)) \), \(I^{\beta_i, \Psi}_{a+} \) is the \(\Psi \)-Riemann-Liouville fractional integral of order \(\beta_i > 0 \) for \(i = 1, 2 \ldots n \).

In [15], the authors studied a \(p \)-Laplacian Hybrid fractional differential equation of the form

\[
D^{\beta}_{0+} \left(\phi_p \left(D^{\alpha}_{0+} (u(t) - g(t, u(t))) \right) \right) = f(t, u(t)), \quad 0 < t < 1
\]

where \(p > 1 \), \(D^{\mu}_{0+} \) is the Caputo fractional derivative of order \(\mu \in \{\alpha, \beta\} \), \(\alpha, \beta \in (n - 1, n] \), \(n \in \mathbb{N}^+ \), with the boundary conditions

\[
\left[\phi_p \left(D^{\alpha}_{0+} (u(t) - g(t, u(t))) \right) \right]^{(i)}(0) = 0, \quad \text{for } i = 0, 2 \ldots n - 1
\]

\[
\left[\phi_p \left(D^{\alpha}_{0+} (u(t) - g(t, u(t))) \right) \right]'(\eta) = 0 = u^{(j)}(0), \quad \text{for } j = 2, 3 \ldots n - 1
\]
where \(\int_0^a \) is Riemann-Liouville fractional integral of order \(\alpha \), \(a, \eta \in (0, 1) \) and \(f, g \) are continuous functions. The existence and stability results are discussed by means of the topological degree method.

Motivated and inspired by the works mentioned above, in this paper, we give the existence and stability results of a nontrivial positive solution to the following integral and infinite point Hilfer hybrid fractional boundary-value problem involving a weighted and generalized \(\phi \)-Laplacian operator

\[
\begin{align*}
&H D_{0+}^{\alpha, \omega, \sigma} \phi \left(x, p(x) D_{0+}^\beta u(x) \right) + q(x) f(x, u(x)) = 0, \quad x \in (0, 1), \\
&u(0) = 0, \quad \frac{u(1)}{\pi(1, u)} = \sum_{n=1}^{\infty} \alpha_n \frac{u(\eta_n)}{\pi(u, \eta_n)} + \int_0^1 \frac{g(s)}{\pi(u, s)} u(s) ds.
\end{align*}
\]

where \(D_{0+}^{\alpha, \omega, \sigma} \) is the \(\sigma \)-Hilfer fractional derivative of order \(\alpha \) and type \(0 \leq \omega \leq 1 \), \(D_{0+}^\beta \) is the \(\sigma \)-Riemann-Liouville derivative of order \(\beta \), \(\sigma \) is a function, \(0 < \alpha < 1 < \beta \leq 2 \) and \(\alpha_n, \eta_n \in (0, 1) \) for \(n \geq 1 \) such that

\[
\sum_{n=1}^{\infty} \alpha_n < \infty.
\]

Noting that the generalized \(\phi \)-Laplacian operator can turn into the well known \(p(t) \)-Laplacian operator when we replace \(\phi \) by \(\phi_{p(t)}(x) = |x|^{p(t) - 2} x \), so our results extend and enrich some existing papers.

Throughout this paper, we assume that the following conditions are satisfied;

(A1) \(\eta_0 = 0 < \eta_n < \eta_{n+1} \) for \(n \in N \) with

\[
\lim_{n \to +\infty} \eta_n = \eta < \infty.
\]

(A2) The functions \(f : [0, 1] \times \mathbb{R}^+ \to \mathbb{R}^+ \) and \(p, \sigma : [0, 1] \to \mathbb{R}^+ \) are continuous where \(\sigma \in C^1([0, 1]) \) is increasing such that for all \((t, x) \in [0, 1] \times \mathbb{R}^+ \),

\[
p(t) \sigma'(t) \neq 0
\]

and \(q, g : [0, 1] \to \mathbb{R}^+ \) are measurable functions such that \(g \) is integrable with

\[
0 < \sup_{t \in [0, 1]} \int_0^t \sigma'(s) (\sigma(s) - \sigma(s))^{\alpha - 1} q(s) ds < \infty
\]

and

\[
\int_0^1 t^{\beta - 1} g(t) dt + \sum_{n=1}^{\infty} \alpha_n \eta_n^{\beta - 1} < 1.
\]

(A3) \(\pi : C([0, 1], \mathbb{R}) \to C^1([0, 1], \mathbb{R}^+) \) is a compact mapping such that

\[
w_1 \leq \pi(u)(x) \leq w_2 \text{ for all } (x, u) \in [0, 1] \times C([0, 1])
\]
where \(w_1, w_2 > 0 \) and \(C([0,1],\mathbb{R}) \) is the set of all real-valued continuous functions equipped with the sup-norm \(\|u\| = \sup_{t \in [0,1]} |u(t)|. \)

(A4) \(\phi : [0, 1] \times \mathbb{R} \to \mathbb{R} \) is continuous and for \(t \in [0, 1] \), the function \(\phi(t,.) \) is odd and increasing, \(\phi^{-1}(t,.) \) is the inverse function of \(\phi(t,.) \) denoted by \(\psi(t,.) \) where \(\psi : [0, 1] \times \mathbb{R} \to \mathbb{R} \) is continuous.

(A5) There exist \(p^+, p^- \in \mathbb{R} \) with \(p^+ \geq p^- > 1 \) such that

\[\phi^-(x) \leq \phi(., x) \leq \phi^+(x) \text{ for } (t, x) \in [0, 1] \times \mathbb{R}, \tag{1.2} \]

with

\[\phi^-(x) = \begin{cases} \phi_{p^+}(x) & \text{if } x \in [0, 1] \cup (-\infty, -1) \\ \phi_{p^-}(x) & \text{if } x \in [-1, 0] \cup [1, +\infty) \end{cases} \tag{1.3} \]

and

\[\phi^+(x) = \begin{cases} \phi_{p^-}(x) & \text{if } x \in [0, 1] \cup (-\infty, -1) \\ \phi_{p^+}(x) & \text{if } x \in [-1, 0] \cup [1, +\infty) \end{cases} \tag{1.4} \]

The paper is organized as follows. In Section 2, we recall some lemmas giving fixed point index calculations. In Section 3, we present a fixed point formulation for bvp \((1.1) \) and we close this section by some lemmas making use of homotopical arguments. After that, we give our main results and their proofs. An example is given at the end of the paper to illustrate the main results.

2. Preliminaries

For sake of completeness let us recall some basic facts needed in this paper.

Definition 1. [20, 25] The Riemann-Liouville fractional integral of order \(p > 0 \) of \(f \in L^1([a,b], \mathbb{R}^+) \), is defined by

\[I_{a^+}^p f(x) = \frac{1}{\Gamma(p)} \int_a^x (x-t)^{p-1} f(t) dt, \tag{2.1} \]

where \(\Gamma \) is the gamma function.

Definition 2. [20, 25] The Riemann-Liouville fractional derivative of order \(p \geq 0 \) of a function \(f \) is defined by

\[D_{a^+}^p f(x) = \frac{d^n}{dx^n} I_{a^+}^{n-p} f(x), n = [\alpha] + 1, \tag{2.2} \]

where \([\alpha]\) is the integer part of \(\alpha \).

Lemma 1. [18] Let \(p > 0 \), and let \(u(t) \) be an integrable function in \([a,b]\).

\[I_{a^+}^p D_{a^+}^p u(x) = u(x) + c_1(x-a)^{p-1} + c_2(x-a)^{p-2} \ldots + c_n(x-a)^{p-n}, \tag{2.3} \]

where \(c_k \in \mathbb{R}, k \in \{1,2,\ldots,n\}, n = [\alpha] + 1 \) and \([\alpha]\) is the integer part of \(\alpha \).
DEFINITION 3. [20] Let $-\infty < a < b < +\infty$ and $\alpha > 0$. Also, let $\sigma(x)$ be an increasing and positive function on $(a,b]$, having a continuous derivative $\sigma'(x)$ on (a,b). Then the left-sided fractional integral of a function u with respect to another function σ on $[a,b]$ is defined by

$$I_{a+}^{\alpha,\sigma} u(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \sigma'(t) (\sigma(x) - \sigma(t))^{\alpha-1} u(t) dt.$$

DEFINITION 4. [30] Let $\alpha \in (n-1,n)$ with $n \in \mathbb{N}$, $I = [a,b]$ is the interval such that $(-\infty < a < b < +\infty)$ and $u, \sigma \in C^n(I,\mathbb{R})$ two functions such that σ is increasing and $\sigma'(t) \neq 0$, for all $t \in I$. The σ-Hilfer fractional derivative $H D_{a+}^{\alpha,\omega,\sigma}$ of u of order $n-1 < \alpha < n$ and type $0 \leq \omega \leq 1$ is defined by

$$H D_{a+}^{\alpha,\omega,\sigma} u(x) = I_{a+}^{\omega(n-\alpha),\sigma} \left(\frac{1}{\sigma'(x)} \frac{d}{dx} \right) I_{a+}^{(1-\omega)(n-\alpha),\sigma} u(x).$$

Let’s also recall the following important result [30]:

THEOREM 1. If $u \in C^n(I)$, $n-1 < \alpha < n$, $0 \leq \omega \leq 1$ and $\xi = \alpha + \omega(n-\alpha)$, then

$$I_{a+}^{\alpha,\sigma} H D_{a+}^{\alpha,\omega,\sigma} u(x) = u(x) - \sum_{k=1}^{n} \frac{(\sigma(x) - \sigma(a))^{\xi-k}}{\Gamma(\xi - k + 1)} \left(\frac{1}{\sigma'(x)} \frac{d}{dx} \right)^{n-k} I_{a+}^{(1-\omega)(n-\alpha),\sigma} u(a).$$

Moreover,

$$(H D_{a+}^{\alpha,\omega,\sigma} I_{a+}^{\alpha,\sigma} u = u.$$

REMARK 1. In this paper, we assume that $\sigma(x)$ is increasing and positive on $(0,1]$ with $\sigma(0) = 0$, having a continuous derivative $\sigma'(x)$ on $(0,1)$ and $\sigma'(x) \neq 0$ for all $x \in [0,1]$. If $\alpha \in (0,1)$, then $n = 1$ and

$$I_{0+}^{\alpha,\sigma} H D_{0+}^{\alpha,\omega,\sigma} u(x) = u(x) - \frac{(\sigma(x))^{\xi-1}}{\Gamma(\xi)} (H D_{0+}^{(1-\omega)(1-\alpha),\sigma} u)(0).$$

Let E be a real Banach space equipped with its norme noted $\| . \|$, $L(E)$ is the set of all linear continuous mapping from E into E. For $L \in L(E)$, $r(L) = \lim_{n \to \infty} \| L^n \|^{\frac{1}{n}}$ denotes the spectral radius of L. A nonempty closed convex subset K of E is said to be a cone if $K \cap (-K) = 0$ and $(tK) \subset K$ for all $t \geq 0$.

Let K be a cone in E. A cone K induces a partial ordering “\leq”, defined so that $x \leq y$ if and only if $y - x \in K$.

K is said to be normal if there exists a positive constant N such that for all $u,v \in K$,

$$u \leq v \text{ implies } \| u \| \leq N \| v \|.$$

$L \in L(E)$ is said to be positive in K if $L(K) \subset K$, it is said to be strongly positive in K if $\text{int}(K) \neq \emptyset$ and $L(K \setminus \{0\}) \subset \text{int}(K)$, and it is said to be K-normal if for all $u,v \in K$,

$$u \leq v \text{ implies } \| Lu \| \leq \| Lv \|.$$
Let $R > 0$, $B(0,R)$ be the ball of radius R in E and $A : K_R \to K$ a completely continuous mapping, where $K_R = B(0,R) \cap K$ and K is a cone in E. We will use the following lemmas concerning computations of the fixed point index, i, for a compact map A (See [16]).

Lemma 2. If $\|Ax\| < \|x\|$ for all $x \in \partial B(0,R) \cap K$, then

$$i(A,K_R,K) = 1.$$

Lemma 3. If $\|Ax\| > \|x\|$ for all $x \in \partial B(0,R) \cap K$, then

$$i(A,K_R,K) = 0.$$

Lemma 4. If $Ax \not\geq x$ for all $x \in \partial B(0,R) \cap K$, then

$$i(A,K_R,K) = 1.$$

Lemma 5. If $Ax \not\leq x$ for all $x \in \partial B(0,R) \cap K$, then

$$i(A,K_R,K) = 0.$$

Lemma 6. If $Ax \not= \lambda x$ for all $x \in \partial B(0,R) \cap K$ and $\lambda > 1$, then

$$i(A,K_R,K) = 1.$$

3. Related lemmas

Let $(E,|||)$ and $(F,|||_F)$ be real Banach spaces, let K be a normal cone in a real Banach space E, and consider the partial ordering “\leq” in E, defined so that $x \leq y$ if and only if $y - x \in K$.

Let $\rho \in K^*$, and consider the following cone $P = K(\rho) = \{u \in K : u \geq ||u||\rho\}$ and the positive value

$$\lambda_0(K) = \inf \Lambda^-(K)$$

where

$$\Lambda^-(K) = \{\lambda \geq 0 : \text{there exists } u \in K \cap \partial B(0,1) \text{ such that } Nu \leq \lambda u\}.$$

We assume that $N : E \to E$ and $N_0 : F \to E$ are positively 1-homogeneous and completely continuous operators, such that N is increasing and

$$N(K \setminus \{0\}) \subset P \setminus \{0\}$$

(for simplicity, we assume that the constant of normality $n = 1$).
LEMMA 7. [4] Let \(Q, G_2 : K \to K, Q_0 : K \to F \) be continuous mappings with
\[
\lim_{\|u\| \to +\infty} \frac{|Qu|}{\|u\|} < +\infty \quad \text{and} \quad \lim_{\|u\| \to +\infty} \frac{|G_2u|}{\|u\|} = 0 \leq \lim_{\|u\| \to +\infty} \frac{|Q_0u|}{\|u\|} < +\infty, \quad (3.1)
\]
such that
\[
NQu - G_2u \leq N_0Q_0u, \text{ for } u \in K.
\]
Suppose that there exist \(\lambda_1 \in \mathbb{R}^+ \) and \(G_1 : K \to K \) with
\[
\lim_{\|u\| \to +\infty} \frac{G_1u}{\|u\|} = 0,
\]
such that
\[
Qu \geq \lambda_1u - G_1(u), \text{ for } u \in K.
\]
If
\[
\lambda_1 > \lambda_0^{-1}(K),
\]
then there exists \(R_1 > 0 \) such that for all \(R \geq R_1, \)
\[
i(N_0Q_0, KR, K) = i(NQ, PR, P).
\]
Moreover, if
\[
\lambda_1 > \|N(\rho)\|^{-1},
\]
then there exist \(R_2 > 0 \) such that for all \(R \geq R_2 \)
\[
i(N_0Q_0, KR, K) = 0.
\]

LEMMA 8. Let \(h \in L(0, 1) \). The unique continuous solution of
\[
\left\{ \begin{array}{l}
H D_0^\alpha \phi(x, p(x)D_0^\beta \frac{u(x)}{\pi(u(x))}) + h(x) = 0, \quad x \in (0, 1), \\
u(0) = 0, \quad \frac{u(1)}{\pi(1, u)} = \int_0^1 \frac{g(t)}{\pi(t, u)} u(t) dt + \sum_{n=1}^{\infty} \alpha_n \frac{u(\eta_n)}{\pi(\eta_n, u)},
\end{array} \right. \quad (3.7)
\]
is given by
\[
u = N_0 H
\]
where
\[
N_0u(x) = \pi(u(x)) \int_0^1 G(x, t) u(t) dt,
\]
\[
H(t) = \frac{1}{p(t)} \psi\left(t, \frac{1}{\Gamma(\alpha)} \int_0^t \sigma^{\alpha-1} h(s) ds\right),
\]
and
\[
G(x, t) = \frac{1}{\Gamma(\beta)} \left\{ \begin{array}{ll}
x^{\beta-1} G_m(t) - (x - t)^{\beta-1} & \text{if } 0 \leq t < \min\{x, \eta\}, \\
x^{\beta-1} G_\eta(t) - (x - t)^{\beta-1} & \text{if } \eta \leq t \leq x, \\
x^{\beta-1} G_m(t) & \text{if } x \leq t < \eta, \\
x^{\beta-1} G_\eta(t) & \text{if } t \geq \max\{x, \eta\},
\end{array} \right. \quad (3.8)
\]
with
\[\eta = \lim_{n \to \infty} \eta_n, \]
and \(m \in \mathbb{N}^* \) such that \(\eta_{m-1} \leq t \leq \eta_m \), where
\[G_m(t) = \frac{\mu(t) - \sum_{n \geq m} \alpha_n (\eta_n - t)^{-1}}{1 - L}, \]
\[G_\eta(t) = \frac{\mu(t)}{1 - L}, \]
\[\mu(t) = (1 - t)^{-1} - \int_t^1 (s-t)^{-1} g(s) ds \]
and
\[L = \sum_{n \geq 1} \alpha_n \eta_n^{\beta-1} + \int_0^1 s^{\beta-1} g(s) ds < 1. \]

Proof. Let \(u \in C([0, 1]) \). By Theorem 1, equation
\[H D_0^{\alpha, \omega, \sigma} \phi \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right) + h(x) = 0, \]
gives
\[\phi \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right) = -I_0^\alpha \sigma \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right) \]
\[+ \lim_{x \to 0} \frac{\sigma(x) - \sigma(0)}{\Gamma(\xi - k + 1)} I_0^{(1-\omega)(1-\alpha)} \sigma \phi \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right). \]
As \(x \mapsto \phi \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right) \) is bounded on \([0, 1]\), we have
\[\lim_{x \to 0} I_0^{(1-\omega)(1-\alpha)} \sigma \phi \left(x, p(x) D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) \right) = 0, \]
and so
\[D_0^\beta \left(\frac{u(x)}{\pi(u)(x)} \right) = -H(t) \]
with
\[H(t) = \frac{1}{p(t)} \psi(t, \frac{1}{\Gamma(\alpha)} \int_0^t \sigma'(s) (\sigma(t) - \sigma(s))^{\alpha-1} h(s) ds). \]
And also from Lemma 1, we have
\[\frac{u(x)}{\pi(u)(x)} = \begin{cases} -I_0^\beta H(x) + d_1 x^{\beta-1} + d_2 x^{\beta-2} & \text{if } 1 < \beta < 2 \\ -I_0^\beta H(x) + d_1 x + d_2^2 + d_3 x^{-1} & \text{if } \beta = 2. \end{cases} \]
As u is continuous at 0 and $u(0) = 0$, then $d_2 = d'_2 = d_3 = 0$, then
\[
\frac{u(x)}{\pi(u)} = -I^\beta_0 H(x) + d_1 x^{\beta-1}, \text{ for } \beta \in (1, 2].
\]

In addition, from equation
\[
\frac{u(1)}{\pi(u)(1)} = \sum_{n \geq 1} \alpha_n \frac{u(\eta_n)}{\pi(u)(\eta_n)} + \int_0^1 \frac{g(s)}{\pi(u)(s)} u(s) ds,
\]
we deduce that
\[
\Gamma(\beta)(1-L)d_1 = -\sum_{n \geq 1} \alpha_n \int_0^{\eta_n} (\eta_n - t)^{\beta-1} H(t) dt
- \int_0^1 g(t) \int_0^t (t-s)^{\beta-1} H(s) ds dt
+ \int_0^1 (1-t)^{\beta-1} H(t) dt,
\]
with $L = \sum_{n \geq 1} \alpha_n \eta_n^{\beta-1} + \int_0^1 s^{\beta-1} g(s) ds$. Then
\[
\frac{u(x)}{\pi(u)(x)} = \frac{1}{\Gamma(\beta)} \left[C, x^{\beta-1} \right] - \int_0^x (x-t)^{\beta-1} H(t) dt,
\]
where
\[
C = \int_0^1 (1-t)^{\beta-1} H(t) dt - \int_0^1 H(t) \int_0^1 (t-s)^{\beta-1} g(s) ds dt
- \sum_{n \geq 1} \alpha_n \int_0^{\eta_n} (\eta_n - t)^{\beta-1} H(t) dt.
\]
Consequently, the solution of 3.7 is
\[
u(x) = \pi(u)(x) \int_0^1 G(x,t) H(t) dt.
\]
This finishes the proof. \(\Box\)

Lemma 9. G is continuous in $[0,1]^2$, and for $x,t \in [0,1]$, we have
\[
h_1(t)x^{\beta} \leq G(x,t) \leq h_2(t)x^{\beta-1},
\]
where
\[
h_1(t) = \frac{(1-t)^{\beta-1} \int_0^t s^{\beta-1} g(s) ds}{\Gamma(\beta)(1-L)}
\]
and
\[
h_2(t) = \frac{\mu(t)}{\Gamma(\beta)(1-L)}.
\]
Proof. It’s clear that G is continuous in $[0,1]^2$ and
\[G(x,t) \leq h_2(t)x^{\beta-1}. \]

Now, we show that
\[G(x,t) \geq h_1(t)x^{\beta}. \]

Let $x,t \in [0,1]$. For $n \in N^*$, as $t \geq t\eta_n$ and $t \geq tx$, we have
\[(\eta_n - t)^{\beta-1} \leq \eta_n^{\beta-1}(1-t)^{\beta-1}, \]
\[(x - t)^{\beta-1} \leq x^{\beta}(1-t)^{\beta-1}, \]
and $t \geq ts$ gives
\[\int_t^1 (s-t)^{\beta-1}g(s)ds \leq (1-t)^{\beta-1} \int_t^1 s^{\beta-1}g(s)ds. \]

For $t,x \in [0,1]$, we have
\[
\begin{align*}
G(x,t) &\geq \frac{x^{\beta}(1-t)^{\beta-1}}{\Gamma(\beta)} \left[1 - \frac{\int_0^1 s^{\beta-1}g(s)ds - \sum_{n \geq 1} \alpha_n \eta_n^{\beta-1}}{1-L} - 1 \right] \\
&\geq \frac{x^{\beta}(1-t)^{\beta-1}}{\Gamma(\beta)} \left[\int_0^1 s^{\beta-1}g(s)ds - \int_0^1 s^{\beta-1}g(s)ds \right].
\end{align*}
\]

thus
\[G(x,t) \geq x^\beta h_1(t). \quad \square \]

Remark 2. According to Lemma 8, u is solution of 1.1 if and only if
\[u = Tu, \]

where
\[Tu(x) = N_0(Qu)(x), x \in [0,1], \]

with
\[N_0(v)(x) = \int_0^1 G(x,t)v(x,t),dt \]

and
\[v(x,t) = Q_0(u)(x,t) = \frac{\pi(u)(x)}{p(t)} \psi \left(t, \frac{1}{\Gamma(\alpha)} \int_0^t \sigma^{\alpha-1}q(s)f(s,u(s))ds \right). \]

Let $E = C([0,1])$ and $F = C([0,1] \times [0,1])$ be the Banach spaces, and K be a cone in E defined by
\[K = E^+ = \{ u \in E; u \geq 0 \} \]

where E and F are equipped with the sup-norms $\|u\| = \sup_{x \in [0,1]} |u(x)|$ and $\|u\|_F = \sup_{x \in [0,1]} |u(x)|$ respectively.
LEMMA 10. \(T : E \to E \) is completely continuous and \(TK \subset K \).

Proof. \(T = N_0Q_0 \) is the composition of the compact operator \(N_0 \) and the continuous operator \(Q_0 \), so, the Theorem of Ascoli-Arzela guarantees that \(T \) is completely continuous. Moreover, since \(\pi, f, p \) and \(q \) are positive, then \(TK \subset K \). \(\square \)

REMARK 3. We have from 1.2 of the condition (A5) that
\[
\psi^+(x) \leq \psi(.,x) \leq \psi^-(x) \text{ for } t \in [0, 1],
\]
where \(\psi^-, \psi^+ \) are the inverse functions of \(\phi^-, \phi^+ \) respectively, defined by
\[
\psi^-(x) = \begin{cases}
\psi^+(x) & \text{if } x \in [0, 1] \cup (-\infty, -1], \\
\psi^-(x) & \text{if } x \in [-1, 0] \cup [1, +\infty),
\end{cases}
\]
and
\[
\psi^+(x) = \begin{cases}
\psi^-(x) & \text{if } x \in [0, 1] \cup (-\infty, -1], \\
\psi^+(x) & \text{if } x \in [-1, 0] \cup [1, +\infty).
\end{cases}
\]
Then there exist \(c, \epsilon > 0 \) such that for all \((t, x) \in [0, 1] \times \mathbb{R}^+ \),
\[
\psi_{p^-}(x) + \epsilon \geq \psi(t, x) \geq \psi_{p^+}(x) - c.
\]

4. Main results

Let \(N : K \to P = K(\rho) \) be an operator defined by
\[
Nu(x) = w_1\rho(x) \int_0^1 \frac{h_1(t)}{p(t)} \psi^+(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^\alpha q_0(s)\phi^+(u(s))ds)dt,
\]
where \(\rho(x) = x^\beta \), \(q_0(s) = \sigma'(s).q(s) \) and set
\[
Qu(t) = \psi^+(f(t, u(t))),
\]
and
\[
\lambda = \phi^+ \left[\int_0^1 \frac{w_2h_2(t)}{p(t)} \psi^+(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^\alpha q_0(s)ds)dt \right]^{-1}.
\]

THEOREM 2. Assume that there exist \(r_0 > 0, r_1 > 0 \) and
\[
\gamma > \phi^+\left(||N(\rho)||^{-1}\right),
\]
such that
\[
f(t, x) < \lambda \phi^+(x), \text{ for } (t, x) \in [0, 1] \times [0, r_0],
\]
and
\[
f(t, x) \geq \gamma \phi^+(x), \text{ for } (t, x) \in [0, 1] \times [r_1, +\infty),
\]
with
\[
\lim_{x \to +\infty} \sup_{t \in [0,1]} \left\{ f(t,x) \right\} / \phi_p^-(x) < \infty.
\] (4.3)

Then problem 1.1 has at least one nontrivial positive solution.

Proof. In first, we show that \(i(T, K_r, K) = 1 \) for some
\[
r \leq \min \left\{ r_0, 1, \psi_p^+ \left(\frac{\Gamma(\alpha + 1)}{\lambda q_0} \right) \right\}.
\]

We have
\[
\lim_{r \to 0^+} \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s) \lambda \phi_p^+(r) ds = 0
\]
uniformly in the compact \([0, 1]\), and so, there exists \(r \leq \min \{r_0, 1\} \) such that for all \(t \in [0, 1] \),
\[
\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s) \lambda \phi_p^+(r) ds \leq 1.
\]
From 4.1, we have
\[
f(t, x) < \lambda \phi_p^+(x), (t, x) \in [0, 1] \times [0, r].
\]
For \(u \in \partial B(0, r) \cap K \),
\[
Tu(x) = \pi(u)(x) \int_0^1 \frac{G(t,x)}{p(t)} \psi \left(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s)f(s, u(s)) ds \right) dt
\]
\[
\leq w_2 \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi \left(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s)f(s, u(s)) ds \right) dt
\]
\[
< \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s) \lambda \phi_p^+(u(s)) ds \right) dt
\]
\[
< \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s) \lambda \phi_p^+(r) ds \right) dt
\]
\[
= r \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha - 1} q_0(s) ds \right) dt.
\]
Then
\[
||Tu|| < ||u||.
\]

By Lemma 2, we deduce that
\[
i(T, K_r, K) = 1.
\]

Now, by using Lemma 7, we show that there exists \(R > 0 \) such that
\[
i(T, K_R, K) = 0.
\]
In first, we have

\[T = N_0Q_0 \geq NQ - G_2, \]

and

\[\lim_{||u|| \to +\infty} \frac{G_2(u)}{||u||} = 0, \]

where

\[G_2u = c_x \beta \int_0^1 w_1 h_1(t) \frac{p(t)}{p(t)} dt. \]

Then the condition 3.2 of Lemma 7 is satisfied.

Now, we have from 4.2, for \(x \geq r_1 \)

\[\psi_p^+(f(t,x)) \geq \lambda_1 x, \]

with

\[\lambda_1 = \psi_p^+(\gamma) > ||N(\rho)||^{-1}. \]

Then there exists \(d \in R \) such that

\[\psi_p^+(f(t,x)) \geq \lambda_1 x - d, \quad \text{for} \quad x \geq 0. \]

and set

\[G_1(u) = d. \]

We have for \(u \in K \)

\[Q(u)(t) \geq \lambda_1 u(t) - G_1(u)(t), \]

with

\[\lim_{||u|| \to \infty} \frac{G_1(u)}{||u||} = 0. \]

Moreover, from Remark 3, for \(u \in K \),

\[Qu(t) = \psi_p^+(f(t,u(t))) \leq \psi_p^-(f(t,u(t))) + e + c, \quad \text{for} \quad t \in [0,1], \]

and

\[Q_0u(x,t) = \frac{\pi(u)(x)}{p(t)} \psi \left(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) f(s,u(s)) ds \right) \]

\[\leq \frac{w_2}{p(t)} \psi_p^-(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) f(s,u(s)) ds) + \frac{w_2}{p(t)} e. \]

then from 4.3 we have

\[\lim_{||u|| \to +\infty} \frac{||Q(u)||}{||u||} < \infty \]

and

\[\lim_{||u|| \to +\infty} \frac{||Q_0(u)||}{||u||} < \infty. \]
By Lemma 7, there exist $R > r_0$ such that
\[i(N_0Q_0, K_R, K) = 0. \]
Hence, $T = N_0Q_0$ has at least one fixed point u in $K \cap (B(0, R) \setminus B(0, r))$, which is a nontrivial positive solution for problem 1.1. □

Now, set
\[\lambda_2 = \phi_p \left[\int_0^1 w_2h_2(t) \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) ds \right) dt \right]^{-1}, \]
and
\[N_2(u)(x) = x^\beta \int_0^1 w_1h_1(t) \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) \phi_p - (u(s)) ds \right) dt. \]

Theorem 3. Assume that there exist $r_2 > 0$, $r_3 > 0$ and
\[\gamma > \phi_p^{-1}(||N_2(\rho)||^{-1}), \]
such that
\[f(t, x) < \lambda_2 \phi_p^{-1}(x), \text{ for } (t, x) \in [0, 1] \times [r_2, +\infty), \quad (4.4) \]
and
\[f(t, x) \geq \gamma \phi_p^{-1}(x), \text{ for } (t, x) \in [0, 1] \times [0, r_3]. \quad (4.5) \]

Then problem 1.1 has at least one nontrivial positive solution.

Proof. In first, by using Lemma 4, we show that ther exists $R \geq r_2$ such that
\[i(T, P_R, P) = 1. \] In the contrary, we assume that there exits a sequence $(u_n)_n$ in P with
\[\lim_{n \to \infty} ||u_n|| = \infty, \]
such that
\[Tu_n \geq u_n. \]
From (4.4), there exist $\varepsilon > 0$ and $b \in R$ such that
\[f(t, x) \leq (\lambda_2 - \varepsilon) \phi_p^{-1}(x) + b, \text{ for } (t, x) \in [0, 1] \times [0, +\infty). \]
Then for \(n \in \mathbb{N} \)
\[
\begin{align*}
 u_n & \leq Tu_n(x) \\
 &= \pi(u_n)(x) \int_0^1 G(t,x) \frac{G(t,x)}{p(t)} \psi(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) f(s, u_n(s)) \, ds) \, dt \\
 &\leq \int_0^1 \chi^{\alpha-1} \frac{w_2 h_2(t)}{p(t)} \psi(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) f(s, u_n(s)) \, ds) \, dt \\
 &\leq \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi_p^{-} \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) f(s, u_n(s)) \, ds \right) \, dt + e \int_0^1 \frac{h_2(t)}{p(t)} \, dt \\
 &\leq ||u_n|| \psi_p^{-}(\lambda_2 - \epsilon) \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi_p^{-} \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) (1 + r_n) \, ds \right) \, dt \\
 &\quad + e \int_0^1 \frac{w_2 h_2(t)}{p(t)} \, dt
\end{align*}
\]

where
\[
 r_n = \frac{b}{\phi_p^{-}(||u_n||)(\lambda_2 - \epsilon)}.\]

Then
\[
 1 \leq \psi_p^{-}(\lambda_2 - \epsilon) \int_0^1 \frac{w_2 h_2(t)}{p(t)} \psi_p^{-} \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s) (1 + r_n) \, ds \right) \, dt \\
 + \frac{e \int_0^1 \frac{w_2 h_2(t)}{p(t)} \, dt}{||u_n||},
\]

and with
\[
 \lim_{n \to \infty} r_n = 0 = \lim_{n \to \infty} \frac{e \int_0^1 \frac{w_2 h_2(t)}{p(t)} \, dt}{||u_n||},
\]

it follows the following contradiction
\[
 1 \leq \psi_p^{-}(\lambda_2 - \epsilon) \psi_p^{-}(\lambda_2 - 1) < 1.
\]

Then there exists \(R \geq r_2 \) such that
\[
i(T, P_R, P) = 1.
\]

Now, we prove that \(i(T, P_{r_3}, P) = 0 \).

Let \(u \in P \cap \partial B(0, r_0) \), with
\[
r_0 = \min \{ 1, r_3, \psi_p^{-}\left(\frac{\Gamma(\alpha + 1)}{\gamma}\right) \}.
\]
We have $u \geq \rho ||u||$, and from 4.5

$$Tu(1) \geq w_1 \int_0^1 \frac{h_1(t)}{p(t)} \psi(t, \frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s)(\gamma \phi_p - (u(s)))\,ds)\,dt$$

$$\geq \int_0^1 \frac{w_1 h_1(t)}{p(t)} \psi_p - \left(\frac{1}{\Gamma(\alpha)} \int_0^t (\sigma(t) - \sigma(s))^{\alpha-1} q_0(s)(\gamma \phi_p - (\rho(|u||))\,ds)\,dt. $$

Then

$$||Tu|| \geq \psi_p - (\gamma)||N_2(\rho)|| ||u|| > ||u||.$$

From Lemma 2, we have

$$i(T, P_{r_0}, P) = 0.$$

Consequently, $T = N_0 Q_0$ has at least one fixed point u in $K \cap (\bar{B}(0, R) \setminus B(0, r_0))$, which is a nontrivial positive solution for problem 1.1. □

EXAMPLE 1. We consider the following $(p_1(x), p_2(x), \ldots, p_N(x))$-Laplacian boundary value problem

$$\begin{cases}
\sum_{k=1}^{N} D_{0+}^{\alpha, \omega, \sigma} \phi_{p_k(x)}(x, (x + 1)D_0^{\beta} \left(\frac{u(x)}{\pi(x)} \right) + \frac{\sin x}{x} h(x, u(x)) = 0, & x \in (0, 1),

u(0) = 0,

u(1) = \int_0^1 g(t)u(t)\,dt + \sum_{n=1}^{+\infty} c_n u(\eta_n),
\end{cases}$$

(4.6)

where $\phi_{p_k(t)}$ is the $p_k(t)$-Laplacian operator defined in $[0, 1] \times R$ as

$$\phi_{p_k(t)}(t, x) = |x|^{p_k(t)-2} \cdot x, \text{ for } k \in \{1, 2, \ldots, N\}, \ N \in \mathbb{N}^*,$$

with

$$p_{k(t)} \in C^1([0, 1], (1, +\infty)),$$

and

$$\pi(u)(t) = 1 + \exp(-\int_0^t u^2(s)\,ds).$$

π is bounded and compact verifying

$$w_1 \leq \pi(u) \leq w_2,$$

where $w_1 = 1$ and $w_2 = 2$. We consider the problem 1.1 with $f(t, x) = \frac{h(t, x)}{N}$, $\phi(t, x) = \frac{1}{N} \sum_{k=1}^{N} \phi_{p_k(t)}(t, x)$, $p(x) = (x + 1)$ and $q(x) = \frac{\sin x}{x}$. Moreover, the conditions (A1), (A2) and (A3) are satisfied, and ϕ verifies (A4) and (A5) with

$$p^+ = \max\{p_k(t), t \in [0, 1], k \in 1, 2, \ldots, N\},$$

and

$$p^- = \min\{p_k(t), t \in [0, 1], k \in 1, 2, \ldots, N\}.$$

We deduce from theorems 2 and 3 that, if there exist $R_0, R_1 > 0$ and $\gamma > \gamma_0$ such that h verifies one of the following conditions.
(H1) \[h(t,x) < N\lambda \phi_p^-(x), \text{ for } (t,x) \in [0,1] \times [0,R_0], \] (4.7) and \[h(t,x) \geq N\gamma \phi_p^-(x), \text{ for } (t,x) \in [0,1] \times [R_1, +\infty) \] (4.8) with \[
\lim_{x \to +\infty} \sup_{t \in [0,1]} \frac{h(t,x)}{\phi_p^-(x)} < \infty,
\] (4.9) or

(H2) \[h(t,x) < N\lambda_2 \phi_p^-(x), \text{ for } (t,x) \in [0,1] \times [R_1, +\infty), \] (4.10) and

\[h(t,x) \geq N\gamma \phi_p^-(x), \text{ for } (t,x) \in [0,1] \times [0,R_0], \] (4.11) then problem 4.6 has at least one nontrivial positive solution.

REFERENCES

[1] C. ALTAFINI, A. SPERANZON AND K. H. JOHANSSON, Hybrid control of a truck and trailer vehicle. In Hybrid Systems, Computation and Control, Tomlin, C. J., Greenstreet, M. R. (Eds.), Lecture Notes in Computer Science, Springer, New York, NY, USA, 2289, (2002).

[2] D. BALLEANU, S. ETEMAD, S. POURRAZI AND S. REZAPOUR, On the new fractional hybrid boundary value problems with three-point integral hybrid conditions, Adv. Differ. Equ., 473 (2019).

[3] A. BALLUCHI, P. SOUERES AND A. BICCHI, Hybrid feedback control for path tracking by a bounded-curvature vehicle. In Hybrid Systems, Computation and Control, Benedetto, M. D., Sangiovanni-Vincentelli, A. L. (Eds.), Lecture Notes in Computer Science, Springer, New York, NY, USA, 2034, (2001).

[4] NADIR BENKACI-ALI, Positive Solution for the Integral and Infinite Point Boundary Value Problem for Fractional-Order Differential Equation Involving a Generalized \(\phi \)-Laplacian Operator, Abstract and Applied Analysis, 11 (2020).

[5] A. BOUTIARA, S. ETEMAD, A. HUSSAIN AND S. REZAPOUR, The generalized U–H and U–H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving \(\phi \)-Caputo fractional operators, Adv. Differ. Equ. 95 (2021).

[6] E. CAPELAS DE OLIVEIRA AND J. VAN TERLER DA C. SOUSA, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results in Mathematics, 73 (3), 1–16 (2018).

[7] CHANAKARN KIATARAMKUL, SOTIRIS K. NTIOYAS AND JESSADA TARIBOON, An Existence Result for \(\Psi \)-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems, Fractal. Fract. 5, 136 (2021).

[8] G. DAI, Infinitely many non-negative solutions for a Dirichlet problem involving \(p(x) \)-Laplacian, Nonlinear Analysis TMA 71, 5840–5849 (2009).

[9] B. C Dhage, V. LAKSHMIKANTHAM, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4, 414–424, (2010).

[10] FAHD JARAD, THABET ABDELJAWAD AND KAMAL SHAH, On the Weighted Fractional Operators of a Function with Respect to Another Function, Fractals, 28 (08), 2040011, (2020).

[11] X. FAN, On the sub-supersolution method for \(p(x) \)-Laplacian equations, J. Math. Anal. Appl. 330, 665–682 (2007).

[12] X. FAN, Remarks on eigenvalue problems involving the \(p(x) \)-Laplacian, J. Math. Anal. Appl. 352, 85–98 (2009).

[13] X. FAN AND Q. ZHANG, Existence of solutions for \(p(x) \)-Laplacian Dirichlet problems, Nonlinear Anal. 52, 1843–1852 (2003).

[14] GHADEH MOHAMMED ALQURISHI, Existence of Solutions for Fractional Boundary Value Problem Involving \(p \)-Laplacian Operator, Open Access Library Journal, 8–7192 (2021).
[15] Hasib Khan, Cemil Tunc, Wen Chen and Aziz Khan, Existence Theorems and Hyers-Ulam Stability for a Class of Hybrid Fractional Differential Equations with p-Laplacian Operator, Journal of Applied Analysis and Computation, Vol. 8, no. 4, 1211–1226 (2018).
[16] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
[17] R. Hilfer, Applications of fractional calculus in Physics, World Scientific, Singapore, 2000.
[18] D. Jiang and C. Yuan, The positive properties of the green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal. TMA 72, 710–719 (2010).
[19] U. N. Katugampola, A new approach to generalized fractional derivatives, 1106, 0965, (2011).
[20] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Academic Press, San Diego, (2006).
[21] B. Mdi Jeelani, M. Abdulkafi Saeed, Mohammed, S. Abdo and Kamal Shah, Positive Solutions for Fractional Boundary Value Problems under a Generalized Fractional Operator, Mathematical Methods in the Applied Sciences, 44 (11), 9524–9540, (2021).
[22] Mehboob Alam, Akbar Zada, Ioan-Lucian Popa, Alireza Kheiryan, Shahram Rezapour and K. A Mohammed Kaabar, A Fractional Differential Equation with Multi-point Strip Boundary Condition Involving the Caputo Fractional Derivative and its Hyers–Ulam Stability, Boundary Value Problems, 73 (2021).
[23] S. Mohammed Abdo, Thabet Abdeljawadb, M. Saeed Ali, Kamal Shah and Fahd Jarad, Existence of Positive Solutions for Weighted Fractional Order Differential Equations, Chaos, Solitons and Fractals, 141, 110341, (2020).
[24] Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad and Aziz Khan, Existence of Mild Solutions for Impulsive Neutral Hilfer Fractional Evolution Equations, Advances in Difference Equations, 2020, 155 (2020).
[25] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego (1999).
[26] M. S Shabna and M. C. Ranjini, On existence of Ψ-Hilfer hybrid fractional differential equations, South East Asian J. Math. Math. Sci. 16, 41–56 (2020).
[27] Tengfei Shen, Wenbin Liu and Ren Zhao, Fractional boundary value problems with p(t)-Laplacian operator, Advances in Difference Equations, 118 (2016).
[28] Tengfei Shen and Wenbin Liu, Solvability of fractional p-Laplacian boundary value problems with controlled parameters, J. Nonlinear Sci. Appl., 10, 2366–2383 (2017).
[29] P. Ubilla, Multiplicity results for the 1-dimensional generalized p-Laplacian, J. Math. Anal. Appl. 190, 611–623 (1995).
[30] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72–91 (2018).
[31] J. Vanterler da C. Sousa, K. D. Kucche, E. Capelas de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Applied Mathematics Letters, 88 (2019), 73–80.
[32] P. Varaiya, Smart cars on smart roads: Problems of control, IEEE Trans. Automat. 38, 195–207, Control (1993).
[33] E. Zeidler, Nonlinear Functional Analysis and its applications, Fixed point theorems, Springer-Verlag, New-York Vol. I (1986).
[34] Q. Zhang, X. Liu and Z. Qu, Existence of solutions and multiple solutions for a class of weighted p(r)-Laplacian system, J. Math. Anal. Appl. 355, 620–633 (2009).

(Received May 19, 2021)