A STUDY OF SURGICAL SITE INFECTIONS CASES IN ORTHOPEDIC WARD

Neelam A. Bagwan¹, Sanjay More², V. M. Gujar³

HOW TO CITE THIS ARTICLE:
Neelam A. Bagwan, Sanjay More, V. M. Gujar. “A Study of Surgical Site Infections Cases in Orthopedic Ward”. Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 19, May 12; Page: 5196-5200, DOI: 10.14260/jemds/2014/2573

ABSTRACT: AIMS AND OBJECTIVES: Study was conducted to find out incidence of surgical site infection rate in orthopedic cases, evaluate various factors contributing to infection, identifying causative pathogens and their antibiogram patterns. MATERIAL METHOD: All Clean and clean contaminated operative cases admitted in orthopedic ward in study period of 18 months were included. Preoperative, operative and post-operative management protocols of the cases were recorded in detail. RESULTS: Total of 474 cases were studied of which 8 were infected. SSI rate was 1.69%. Staphylococcus aureus and Staphylococcus epidermidis were the commonest pathogen isolated from the infected wound. 42.94% were MRSA among them. CONCLUSION: SSI rate of a hospital can be reduced easily by following proper pre-operative protocol for the patient. Those patients with surgical site infection can be treated effectively by following the antibiotic policy as provided by the Department of Microbiology.

KEYWORDS: Antibiotics, Hospital stay, Surgical site infection (SSI), MRSA, orthopedic cases.

INTRODUCTION: This study was conducted for 18 months from November 2011 to 2012 in Medical College with aim of evaluating the rate of surgical site infection in the hospital and also the various factors contributing the infection.

MATERIAL METHOD: Study group included patients of orthopedic ward. Depending on CDC criteria for defining type of wound, the surgeries were categorized respectively.¹ All clean, clean contaminated and planned operatives were a part of this study. Contaminated and dirty operatives and those operated under an emergency were not included.

Within 24 hr. of admission, normal flora of patients were studied and recorded. Other patient’s details including method of preoperative preparation, type of pre and post-operative antibiotic prophylaxis, use of drain, total days of pre and post-operative hospital stay were also noted.

Wound infection was identified by the presence of signs and symptoms.² The sample from the infected wound was collected and inoculated on Blood agar, Macconkey agar, and incubated for 18 – 24 hours at 37 C. Organism responsible were identified by colony morphology and biochemical reactions.³

Isolated organisms were subjected to a battery of antibiotics. Antibiotic susceptibility testing was done using Kirby Bauer disk diffusion method according to CLSI (Clinical Laboratory Standard Institute) guidelines.⁴

Antibiotic used were Ampicillin(10 mcg), Penicillin(10 units), Cotrimoxazole (1.25/23.75mcg), Ciprofloxacin (5mcg), Amoxy-Clavulanic acid(20/10mcg), Tetracycline(30mcg), Vancomycin (30mcg), Oxacillin (1mcg), Cefotaxime (30mcg), Ceftriaxone(30mcg), Gentamicin(10mcg), Amikacin (30mcg), Imepenem (10mcg), Piperacillin (100mcg), Piperacillin–tazobactum (100/10mcg).
RESULTS AND OBSERVATIONS: A total of 474 cases were included among which 08 cases i.e. 1.69% cases were infected. The observations were as follows.

Organisms isolated	Number of isolates
Staphylococcus aureus	03
Staphylococcus epidermidis	02
Proteus mirabilis	02
E. coli	01
Sterile	02

Table 1: Organism isolated from infected wounds

Operation performed	Total cases	Infected cases	SSI rate
Interlock femur nailing	42	00	00
Interlock tibial nailing	12	02	16.67%
Ostinmoore’s prosthesis	58	00	00
Dynamic hip screw	22	00	00
Hemiarthroplasty	23	00	00
Radius plating	47	00	00
Ulnar plating	61	00	00
Humerus plating	45	00	00
JESS external fixator	23	01	4.35%
Pedicular screw fixation	18	02	11.11%
Laminectomy	26	01	3.85%
Discectomy	10	00	00
Radial distractor	09	00	00
Open reduction of femur	40	02	5.0%
Femur plating	38	00	00
Total	**474**	**08**	**1.69%**

Table 2: Distribution of Surgical site infection (SSI) cases in various surgeries

Preoperative days of hospitalization	Total case admitted for surgery	Total case infected	SSI percentage
0 – 1	00	00	00
2 – 7	398	06	1.51%
8 – 14	76	02	2.63%
15 onwards	00	00	00

Table 3: Preoperative days of hospitalization and SSI rate
Age in years	**No. of cases operated**	**No. of cases infected**	**SSI percentage**
< 9 years | 15 | 00 | 00%
10 – 20 | 24 | 00 | 00%
21 – 30 | 73 | 00 | 00%
31 – 40 | 170 | 01 | 0.59%
41 – 50 | 64 | 01 | 1.56%
51 – 60 | 65 | 03 | 4.62%
61 – 70 | 52 | 03 | 5.77%
71 – 80 | 09 | 00 | 00%
> 81 | 02 | 00 | 00%
Total | 474 | 08 | 1.69%

Table 4: Age wise distribution of SSI rate

Duration in hours	**No of cases**	**No of infected cases**	**SSI percentage**
< 1 hour | 396 | 01 | 0.25%
1 – 2 hour | 55 | 03 | 5.45%
> 2 hour | 23 | 04 | 17.39%

Table 5: Duration of surgery and SSI rate

Organisms	**Resistance pattern in %**
Proteus mirabilis | A | Cf | Ce | Ci | Ak | I | Pt
--- | --- | --- | --- | --- | --- | --- | ---
100 | 84 | 60.87 | 48.6 | 17 | 8 | 28
E.coli | P | Co | At | T | Va | Ox | G
--- | --- | --- | --- | --- | --- | --- | ---
100 | 100 | 64.53 | 39 | 9 | 21.5 | 12.09

Table 6: Resistance pattern of organisms isolated

DISCUSSION: Surgical site infection (SSI) is the major cause of mortality and morbidity in surgical patients. These nosocomial infections continue to consume a considerable proportion of health care finances. The present study was to identify the pathogens responsible for surgical site infections and determining the factors influencing the infection rate.

The 474 cases of orthopedics were taken from 3 units of the department. The management protocol was same in all units. An infection rate of 1.69% was found. The results match with study reports of other workers.
Organism commonly isolated was Staphylococcus aureus with 42.94% strains of MRSA. The SSI surveillance of England\(^8\) also isolated Staphylococcus aureus as frequent pathogen but only 30% strains were of MRSA. The normal flora of the patient posted for the orthopedic surgery was also studied but there was no similarity between strains of normal flora and pathogens causing infection.

Thus proving that skin was not the source of pathogen.

SSI rate was highest with tibial surgeries followed by spinal surgeries. Studies available included only a few orthopedic procedures. The list is as follows.

Procedure	Orthopedic surveillance 2005\(^9\)	SSI surveillance 2005\(^9\)	Present study
Joint prosthesis	1.24%	1.8%	00
Hemiarthroplasty	4.05%	4.5%	00
Open reduction of long femur	2.01%	3.0%	5%

There have been no cases of SSI found with joint prosthesis and Hemiarthroplasty. The SSI rate with open reduction of long bones is slightly more in comparison to the 2 surveillance reports conducted in England\(^9\). The difference is significant and could be due to low standard population and operation setup.

SSI rate was more with tibial surgeries. The relative avascular nature of the bone might have predisposed to poor healing and wound infection. 2 cases of pedicular screw fixation were identified as infected. Only one sample showed presence of Staphylococcus aureus and Staphylococcus epidermidis. Out of 26 cases of laminectomy only one case developed infection. Proteus mirabilis was isolated from the infection. Only one case of open reduction of long bone showed presence of E. coli in the wound swab.

Duration of preoperative stay varied from 2 to 15 days depending upon the general condition of the patient. SSI rate was found to increase with the increase in the preoperative stay.

Age is an important contributing factor in the outcome of surgery. The patient subjected to elective procedure in this study were from the elderly group. Their general condition was already compromised. Hence the risk of infection in them was twice.

Surgical site infection has been more after the age of 31. Patients below this age did not show any trace of infection. SSI rate varied from 0.59% to 5.77%, increasing proportionately with the age. The highest SSI has been seen in the age group of 61 yrs. – 70 yrs.

In the surveillance study of orthopedic,\(^8\) maximum cases of infection were seen in the age group of more than 84 operated for Hemiarthroplasty and open reduction of long bone.

The SSI surveillance of England found same results. But the patients above the age group of 84 were very less hence the SSI rate could not be studied in them.
Longer duration of surgery increase the SSI rate. This has again been proved by findings in this study on orthopedic cases. The protocol of orthopedic unit of administering antibiotics preoperative and intra operatively has also helped in reducing the infection.

REFERENCES:
1. Teresa C Horan, T. Grace Emori. CDC Definitions of Nosocomial infections, Chapter 4. Guideline 4 – 1. Saunder’s Infection control reference service. The Expert’s guide to Guidelines. By Abrutyn Goldmann, Scheckler. 2nd Edition. Pg. 25 – 32.
2. Mark Collier. Worldwide wounds. Recognition and management of wound infections. An 2004. http://www.worldwidewounds.com/2004/january/Collier/Management-of-Wound-infections.html
3. Mackie and Mc Cartney Practical Medical Microbiology. Edited by J. G. Collee, A G Fraser, B P Marmion, A Simmons. 14th Edition. Pg. 53 – 94.
4. Mathew A Wikler; Franklin R Cockerill; William A Craig et al. Performance standards for Antimicrobial Susceptibility testing; 17th informational supplement. Clinical and Laboratory Standard Institute. January 2000; Vol.27 (1).
5. M J Gil Egea MD; L Torre Eleizegui MD. Surgical wound infections: Prospective study of 4, 468 wounds. Infection control 1987; Vol. 8, No.7:Pg. 277 – 279.
6. Mary M Oslon, RN James, T. Lee, Jr. Continuous 10 year wound infection surveillance. Results, Advantages and unanswered questions. Arch Surg June 1990; Vol. 125: 794 – 803.
7. A N Yalcin, M Bakir, Z Bakici, I Dokmetas and N Sabir. Post-operative wound infections. Journal of Hospital infection 1995; 29: 305 – 309.
8. Health Protection Agency. Mandatory Surveillance of surgical site infection in orthopedic surgery: April 2004 to March 2005. London: Health Protection Agency, October 2005.
9. Health Protection Agency. Surveillance of surgical site infections in England: October 1997 – September 2005. London: Health Protection Agency, July 2006.

AUTHORS:
1. Neelam A. Bagwan
2. Sanjay More
3. V. M. Gujar

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Microbiology, Government Medical College, Nanded.
2. Associate Professor, Department of Microbiology, Government Medical College, Nanded.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Neelam A. Bagwan,
C/o Dr. Riyaz Aminuddin Attar,
Niyaz Manzil, Plot No. 369,
Shahunagar, Near Nandninaka,
Jaysingpur- 416101,
Tal-Shiroli District, Kolhapur.
Email: dr.neelambagwan@yahoo.in

Date of Submission: 04/04/2014.
Date of Peer Review: 05/04/2014.
Date of Acceptance: 26/04/2014.
Date of Publishing: 09/05/2014.