CP–VIOLATING PARAMETERS FOR NEUTRAL B–MESONS
AND THEIR COMPLETE MEASUREMENT

Ya. AZIMOV
Petersburg Nuclear Physics Institute
Gatchina, St. Petersburg, 188350, Russia
e-mail: azimov@pa1400.spb.edu

Phenomenological CP-violating parameters in decays of neutral B-mesons are dis-
cussed with special attention to the degree of their measurability. Important role
of the sign of Δm_B is emphasized. We briefly describe how it could be determined
experimentally.

1 Introduction

Twenty years ago the statement

\bullet The origin of CP-violation will not be established till its manifestations
are known only for neutral kaons

could be considered as somewhat heretical. Now it and one more statement:

\bullet The most promising testing ground for detailed studies of CP-violation
is provided by decays of neutral B-mesons,

became generally accepted (see, e.g., reviews\cite{2,3,4}).

As a result, many papers have been devoted to discussion of B-meson decay
modes favorable for CP-violation searches and to experimental manifestations
of possible sources of the violation (see, e.g., references in reviews\cite{2,3,4}). A more
straightforward problem, degree of measurability of phenomenological parameters
describing CP-violation in B-meson decays, has not been considered.
One possible reason could be a close similarity of neutral B-mesons to neutral
kaons. However, heavier masses of the third quark generation produce various
differences, sometimes rather essential, in the meson decay properties. Here
we discuss basic CP-violating parameters for neutral B-mesons with special
attention to the question how one could achieve their complete measurement.
The presentation is essentially based on the papers\cite{5,6}.
2 Standard CP–violating parameters

Time evolution of neutral B-mesons is known to be determined by the two eigenstates

$$B_{\pm} = \sqrt{\frac{1}{2(1 + |\varepsilon_B|^2)}} \left[(1 + \varepsilon_B)B^0 \pm (1 - \varepsilon_B)\bar{B}^0\right].$$ \hspace{1cm} (1)

If we apply the phase convention $\bar{B}^0 = (CP)B^0$, exact CP-conservation would imply $\varepsilon_B = 0$ and the states B_{\pm} having the definite CP-parities equal ± 1. Generally, they are eigenstates of an effective (non-Hermitian) Hamiltonian. Since ε_B changes under rephasing B^0 and \bar{B}^0 (without influencing B_{\pm}), it cannot be measurable itself. Only $\frac{1 + \varepsilon_B}{1 - \varepsilon_B}$ is rephasing-invariant and admits measurement in experiment. The value

$$\delta_B = \frac{|1 + \varepsilon_B|^2 - |1 - \varepsilon_B|^2}{|1 + \varepsilon_B|^2 + |1 - \varepsilon_B|^2} = \frac{2\text{Re} \varepsilon_B}{1 + |\varepsilon_B|^2},$$ \hspace{1cm} (2)

directly similar to the quantity δ_K for neutral kaons, may be considered as the measure of CP-violation in $B^0\bar{B}^0$ mixing.

The Standard Model leads to an extremely small, really unmeasurable, value of δ_B (see, e.g., discussion in Ref. 7), much smaller than δ_K. More promising are studies of decays

$$B^0(\bar{B}^0) \to f$$ \hspace{1cm} (3)

with final states f of definite CP-parities. To measure CP-violation in a particular decay mode one can use deviation of the parameter

$$\lambda_{B}^{(f)} = \frac{1 - \varepsilon_B}{1 + \varepsilon_B} \cdot \frac{\langle f | B^0 \rangle}{\langle f | \bar{B}^0 \rangle}$$ \hspace{1cm} (4)

from the CP-parity value of the state f. Any $\lambda_{B}^{(f)}$ is rephasing-invariant and, hence, its complete measurement (i.e., of both the absolute value and phase) should be possible.

Parameters λ_B are similar to analogous parameters λ_K in nonleptonic kaon decays which are equivalent to more familiar parameters η. Both sets satisfy many relations if CPT is conserved (see discussion in Ref. 6). Unitarity gives one more relation for each set. Those relations, together with the fact that a single partial width of neutral kaons (for the mode $K^0 \to (2\pi)_{I=0}$) is more than 3 orders above any other, provide the known structure of kaon decays with only one parameter of CP-violation being independent and large enough.
for measurement. An essential preference of B-physics is that having many decays with more comparable probabilities it can reveal many independent and measurable CP-violating parameters.

Standard calculations for the decay (3) with the initially pure B^0-meson lead to the time distribution

$$W_B^{(f)}(t) \sim \left| \frac{1 + \lambda^{(f)}_B}{2} \right|^2 \exp(-\Gamma_+ t) + \left| \frac{1 - \lambda^{(f)}_B}{2} \right|^2 \exp(-\Gamma_- t)$$

$$+ \exp \left(-\frac{\Gamma_+ + \Gamma_-}{2} t \right) \left(1 - \frac{1}{2} \lambda^{(f)}_B \right) \cos \Delta m_B t - \text{Im} \lambda^{(f)}_B \sin \Delta m_B t$$

(5)

which exhibits degree of measurability of parameters λ_B. Here we denote $\Delta m_B = m_+ - m_{+\pm}$, m_+, Γ_+ and m_-, Γ_- are the mass and width of the corresponding state $B_{+\pm}$. Eq.(5) has the same structure as, e.g., decay yield of $K^0(t) \to \pi\pi$. The first two terms are contributions of the eigenstates $B_{+\pm}$, the last two terms describe their interference.

Distribution (5) contains contributions of $|\lambda^{(f)}_B|^2$, $\text{Re} \lambda^{(f)}_B$ and $\text{Im} \lambda^{(f)}_B$ multiplied by different functions of time. So, at first sight, all the three quantities can be easily extracted if the distribution is found experimentally with necessary accuracy. It is just the case in two-pion decays of neutral kaons where parameters $\lambda^{(\pi\pi)}_K$ have been completely measured indeed.

But $\text{Re} \lambda^{(f)}_B$ would not appear at all in distribution (5) if Γ_+ and Γ_- coincided. So, a very small expected difference of Γ_+ and Γ_-, contrary to neutral kaons, may prevent direct measurement of $\text{Re} \lambda^{(f)}_B$. Indirect measurement is still possible, of course, since $|\lambda^{(f)}_B|$ can be calculated from $|\lambda^{(f)}_K|$ and $|\text{Im} \lambda^{(f)}_B|$, and the sign of $\text{Re} \lambda^{(f)}_B$ may be fixed by choosing approximate CP-parities of the neutral B eigenstates (detailed discussion of the procedure and its relation to experiments see in Refs. [3,4]).

The situation for $\text{Im} \lambda^{(f)}_B$ is less simple. Eq.(5) contains it multiplied by $\sin \Delta m_B t$, which sign is still unknown since only $|\Delta m_B|$ has been measured. For kaons, special experiments on K_S regeneration in several plates have allowed to measure the sign of $\Delta m_K = m_L - m_S$ in respect to the known sign of the regeneration phase (collection of results see in Ref. [9]). Similar experiments for B-mesons are impossible because of too small lifetime. However, without knowing the sign of Δm_B one cannot achieve the complete measurement of CP-violating parameters in neutral B-meson decays. Below we discuss how to find the sign on the base of the method suggested in Ref. [4].
3 Unusual properties of heavy meson decays

Specific feature of neutral B-mesons, having no analogues for neutral kaons, is the existence of decays

$$B^0(B^0) \rightarrow fK^0(K^0),$$

with f, again, being definite CP-parity states. They are mainly induced by the quark decay $b \rightarrow c\bar{s}s$. The most popular final state of such a kind is $J/\psi K^0(K^0)$. Decays (6) generate a new set of CP-violating parameters

$$\lambda_{BK}^{(f)} = \frac{1 - \varepsilon_B}{1 + \varepsilon_B} \cdot \frac{1 + \varepsilon_K}{1 - \varepsilon_K} \cdot \frac{\langle fK^0|B^0 \rangle}{\langle fK^0|B^0 \rangle},$$

similar to (4). They are invariant under rephasing of both B and K mesons and should also be completely measurable.

However, the most interesting and unique property of decays (6) is the coherence of neutral B and neutral K evolutions. It leads to double flavor oscillations which, as was recently emphasized, are similar to the long-known EPR effect.

Let us consider, as an example, the cascades

$$B^0(B^0) \rightarrow J/\psi K^0(K^0), \quad K^0(K^0) \rightarrow \pi \pi (\pi^\mp l^\pm \nu(\bar{\nu})),$$

Coherence arises here since only transitions $B^0 \rightarrow K^0$ and $B^0 \rightarrow K^0$ are possible. As a result, kaon evolution is an immediate continuation of B-evolution (though they do not coincide, of course). This produces unusual properties of such cascades. E.g., their double-time distributions over B and K decay times t_B and t_K are non-factorisable. What is most essential for our present purposes is their sensitivity to the sign of Δm_B in respect to the known sign of Δm_K. Corresponding terms in time distributions are generated by interference at both stages of the evolution (i.e., we need interference between both B^+, B^- and K_S, K_L).

Manifestations of the sign of Δm_B have been considered in more detail for the B-factory and LHC environments. Necessary experiments require very high statistics. Indeed, from available data we find that any of cascades (8), appended by decays $J/\psi \rightarrow l^+l^-$, has small $\mathrm{Br}_{eff} \approx 5 \cdot 10^{-5}$. Due to necessity of K_S, K_L interference the sign effect always contains an additional small factor of order 10^{-3} (CP-violation in two-pion kaon decays, or small semileptonic branching ratios of K_S). Required statistics seems to be unreachable at the projected B-factories. LHC may be promising, but statistics of LHC-B at moderate luminosity also looks insufficient. Effect of the sign of Δm_B
could be searched for either by other detectors at LHC or by LHC-B working at full luminosity. Accurate consideration shows as well that semileptonic kaon decays in cascades (8) might be more favorable than two-pion ones, but detailed studies of experimental efficiencies are still necessary.

In summary, we have demonstrated that CP-violating parameters in neutral B-meson decays can be completely measured only if the sign of Δm_B is known. This sign might be determined in special experiments, e.g., at LHC.

Acknowledgments

I thank the Organizing Committee of the 2nd International Conference on B-physics and CP-violation and the Russian Scientific Program "High Energy Physics" for support of my participation in the Conference.

References

1. A.A. Anselm and Ya.I. Azimov, *Phys. Lett.* B 85, 72 (1979).
2. I.I. Bigi, V.A. Khoze, N.G. Uraltsev and A.I. Sanda in *CP Violation*, ed. C. Jarlskog (World Scientific, Singapore, 1989) p.175.
3. Y. Nir and H.R. Quinn, *Ann. Rev. Nucl. Part. Sc.* 42, 211 (1992).
4. T. Browder, K. Honsheid and D. Pedrini, preprint UH 511-848-96 (to appear in *Ann. Rev. Nucl. Part. Sc.*, vol. 46); e-print hep-ph/9606354.
5. Ya.I. Azimov, *Phys. Rev.* D 42, 3705 (1990).
6. Ya.I. Azimov, V.L. Rappoport and V.V. Sarantsev, *Z. Phys.* A 356, 437 (1997); e-print hep-ph/9608478.
7. Ya.I. Azimov, N.G. Uraltsev and V.A. Khoze, *Yad. Fiz.* 45, 1412 (1987) (*Sov. J. Nucl. Phys.* 45, 878 (1987)).
8. I. Dunietz and J. Rosner, *Phys. Rev.* D 34, 1404 (1986).
9. J.S. Bell and J. Steinberger in *Proc. Int. Conf. on Elementary Particles, Oxford, 1965*, (Chilton, Rutherford High En. Lab., 1966) p.193.
10. Particle Data Group, *Phys. Lett.* B 170, 132 (1986).
11. B. Kayser and L. Stodolsky, preprint MPI-PhT/96-112; e-print hep-ph/9610522.
12. A. Einstein, B. Podolsky and N. Rosen, *Phys. Rev.* 47, 777 (1935).
13. G.V. Dass and K.V.L. Sarma, *Int. J. Mod. Phys.* A 7, 6081 (1992); (E) A 8, 1183 (1993).
14. Particle Data Group, *Phys. Rev.* D 54, 1 (1996).
15. LHC-B, *Letter of intent*. CERN/LHCC 95–5, August 1995.