Stationary probability vectors of higher-order two-dimensional transition probability tensors

Zheng-Hai Huang∗ Liqun Qi†

February 28, 2018

Abstract

In this paper we investigate stationary probability vectors of higher-order two-dimensional symmetric transition probability tensors. We show that there are two special symmetric transition probability tensors of order m dimension 2, which have and only have two stationary probability vectors; and any other symmetric transition probability tensor of order m dimension 2 has a unique stationary probability vector. As a byproduct, we obtain that any symmetric transition probability tensor of order m dimension 2 has a unique positive stationary probability vector; and that any symmetric irreducible transition probability tensor of order m dimension 2 has a unique stationary probability vector.

Key words: Transition probability tensor; higher-order Markov chain; stationary probability vector; eigenvalue of tensor.

Mathematics Subject Classifications(2000): 15A18; 15A69; 65F15; 60J10; 60J22.

∗School of Mathematics, Tianjin University, Tianjin 300354, P.R. China (huangzhenghai@tju.edu.cn). This author was supported by the National Natural Science Foundation of China (Grant No. 11431002).

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (maqil@polyu.edu.hk). This author’s work was partially supported by the Hong Kong Research Grant Council (Grant No. PolyU 15302114, 15300715, 15301716 and 15300717).
1 Introduction

It is well known that higher-order Markov chains have various applications in many areas [1–6]. An \((m - 1)\)-order \(n\)-dimensional Markov chain is basically characterized by its associated nonnegative tensor \(P\) which is an \(m\)-order \(n\)-dimensional tensor with entries \(p_{i_1i_2\ldots i_m} \geq 0\) for all \(i_j \in \{1, 2, \ldots, n\}\) and \(j \in \{1, 2, \ldots, m\}\) satisfying

\[
0 \leq p_{i_1i_2\ldots i_m} = \text{Prob}(X_{t+1} = i_1|X_t = i_2, \ldots, X_{t-m+2} = i_m) \leq 1 \tag{1.1}
\]

where \(\{X_t : t = 0, 1, \ldots\}\) represents the stochastic process that takes on \(n\) states \(\{1, 2, \ldots, n\}\), and for any \(i_2, \ldots, i_m \in \{1, 2, \ldots, n\}\),

\[
\sum_{i_1=1}^{n} p_{i_1i_2\ldots i_m} = 1. \tag{1.2}
\]

We will use \(\mathbb{T}_{m,n}\) to denote the set of all \(m\)-order \(n\)-dimensional real tensors. For any \(P = (p_{i_1\ldots i_m}) \in \mathbb{T}_{m,n}\), if the entries \(p_{i_1i_2\ldots i_m}\) are invariant under any permutation of their indices, then \(P\) is called a symmetric tensor. A tensor \(P \in \mathbb{T}_{m,n}\) is called a transition probability tensor if it satisfies (1.1) and (1.2). A vector

\[x^* \in \left\{ x \in \mathbb{R}^n : x_i \geq 0 \text{ for all } i \in \{1, 2, \ldots, n\} \text{ and } \sum_{i=1}^{n} x_i = 1 \right\}\]

is called a stationary probability vector of \(P \in \mathbb{T}_{m,n}\) if

\[\sum_{i_2,\ldots,i_m=1}^{n} p_{i_2\ldots i_m} x^*_{i_2} \cdots x^*_{i_m} = x^*_i\]

holds for all \(i \in \{1, 2, \ldots, n\}\), which is just a \(Z_1\)-eigenvector associated with the \(Z_1\)-eigenvalue 1 [7]. It is also closely related to the \(Z\)-eigenvector of a tensor [8,9].

Transition probability tensors and the associated stationary probability vectors are important issues in studies of higher-order Markov chains [7,10–15]. In particular, the uniqueness of the stationary probability vector of transition probability tensors has attracted a lot of interest. Li and Ng [12] proposed some conditions which ensure the uniqueness of the stationary probability vector of transition probability tensors and the linear convergence of the proposed iterative method; Hu and Qi [11] studied the uniqueness of the stationary probability vector of the third order \(n\)-dimensional positive transition probability tensor, and they proved that an irreducible transition probability tensor of order 3 dimension 2 has a unique stationary probability vector; and Chang and Zhang [7] investigated sufficient conditions for transition probability tensors to ensure the uniqueness of the stationary probability vector by using three different methods: contraction mappings, monotone operators, and the Brouwer index of fixed points.
More recently, Culp, Pearson and Zhang [15] investigated symmetric irreducible transition probability tensors of order 4 dimension 2 and of order 3 dimension 3, and showed that a symmetric irreducible transition probability tensor in these orders and dimensions has a unique stationary probability vector.

In this paper, we give a full characterization on the stationary probability vectors of \(m \)-order 2-dimensional symmetric transition probability tensors. We show that there are two special symmetric transition probability tensors of order \(m \) dimension 2, which have and only have two stationary probability vectors, where one is \((\frac{1}{2}, \frac{1}{2})^\top\), and the other one is \((1, 0)^\top\) or \((0, 1)^\top\). In particular, we show that if the concerned symmetric transition probability tensor of order \(m \) dimension 2 is not one of the above two tensors, then it has a unique stationary probability vector, which is \((\frac{1}{2}, \frac{1}{2})^\top\). As a byproduct, we obtain that any symmetric irreducible transition probability tensor of order \(m \) dimension 2 has a unique stationary probability vector. When \(m = 4 \), such a result was obtained by Culp, Pearson and Zhang in [15].

Throughout this paper, we assume that \(m \geq 3 \) is an integer number.

2 Main results

Let \(\mathcal{P} = (p_{i_1i_2...i_m}) \in T_{m, 2} \) be a transition probability tensor. Then \(z = (z_1, z_2)^\top \in \mathbb{R}^2 \) is a stationary probability vector of \(\mathcal{P} \) if and only if \(z_1, z_2 \geq 0 \), \(z_1 + z_2 = 1 \), and

\[
\begin{align*}
f_1(z_1, z_2) := \sum_{i_2, ..., i_m = 1}^2 p_{i_1i_2...i_m} z_{i_2} \cdots z_{i_m} = z_1, \\
f_2(z_1, z_2) := \sum_{i_2, ..., i_m = 1}^2 p_{i_1i_2...i_m} z_{i_2} \cdots z_{i_m} = z_2.
\end{align*}
\] (2.1) (2.2)

In the following, we denote \(x := z_1 \) and \(y := z_2 \), and

\[
\Delta := \{(x, y)^\top \in \mathbb{R}^2 : x \geq 0, y \geq 0, x + y = 1\}.
\] (2.3)

Then, \((x, y)^\top \in \mathbb{R}^2\) is a stationary probability vector of \(\mathcal{P} \) if and only if \((x, y)^\top \in \Delta\) and

\[
f_1(x, y) = x \quad \text{and} \quad f_2(x, y) = y.
\] (2.4)

Throughout this paper, we denote \(a := p_{11...11} \) and \(b := p_{21...11} \).

Lemma 2.1 Suppose that \(\mathcal{P} = (p_{i_1i_2...i_m}) \in T_{m, 2} \) is a symmetric transition probability tensor. Let \(f_1(\cdot, \cdot) \), \(f_2(\cdot, \cdot) \), and \(\Delta \) be defined by (2.1), (2.2), and (2.3), respectively. Then, for any \((x, y)^\top \in \Delta\), we have the following results.
(i) If m is an even number, then

\[f_1(x, y) = ax^{m-1} + bC_{m-1}^1 x^{m-2} y + aC_{m-1}^2 x^{m-3} y^2 + bC_{m-1}^3 x^{m-4} y^3 + \cdots + ax^3 y^{m-4} + bC_{m-1}^3 x^2 y^{m-3} + aC_{m-1}^2 x y^{m-2} + by^{m-1}, \]

\[f_2(x, y) = bx^{m-1} + aC_{m-1}^1 x^{m-2} y + bC_{m-1}^2 x^{m-3} y^2 + aC_{m-1}^3 x^{m-4} y^3 + \cdots + bx^3 y^{m-4} + aC_{m-1}^3 x^2 y^{m-3} + bC_{m-1}^2 x y^{m-2} + ay^{m-1}. \]

(ii) If m is an odd number, then

\[f_1(x, y) = ax^{m-1} + bC_{m-1}^1 x^{m-2} y + aC_{m-1}^2 x^{m-3} y^2 + bC_{m-1}^3 x^{m-4} y^3 + \cdots + ax^4 y^{m-5} + bx^3 y^{m-4} + aC_{m-1}^3 x^2 y^{m-3} + bC_{m-1}^2 x y^{m-2} + ay^{m-1}, \]

\[f_2(x, y) = bx^{m-1} + aC_{m-1}^1 x^{m-2} y + bC_{m-1}^2 x^{m-3} y^2 + aC_{m-1}^3 x^{m-4} y^3 + \cdots + bx^4 y^{m-5} + ax^3 y^{m-4} + bC_{m-1}^3 x^2 y^{m-3} + aC_{m-1}^2 x y^{m-2} + ay^{m-1}. \]

Proof. Since \mathcal{P} is a symmetric tensor, the above equalities can be rewritten as

\[f_1(x, y) = p_{1\cdots 11} x^{m-1} + p_{1\cdots 12} C_{m-1}^1 x^{m-2} y + p_{1\cdots 122} C_{m-1}^2 x^{m-3} y^2 + p_{1\cdots 122} C_{m-1}^3 x^{m-4} y^3 + \cdots + p_{11112\cdots 2} x y^{m-2} + p_{112\cdots 2} y^{m-1}, \]

\[f_2(x, y) = p_{21\cdots 11} x^{m-1} + p_{21\cdots 12} C_{m-1}^1 x^{m-2} y + p_{21\cdots 122} C_{m-1}^2 x^{m-3} y^2 + p_{21\cdots 122} C_{m-1}^3 x^{m-4} y^3 + \cdots + p_{21112\cdots 2} x^2 y^{m-3} + p_{212\cdots 2} y^{m-1} = y. \]

Suppose that m is an even number. Since \mathcal{P} is a transition probability tensor, it follows that

\[p_{1\cdots 11} + p_{1\cdots 12} + p_{1\cdots 122} = 1, \quad p_{1\cdots 122} + p_{1\cdots 1222} = 1, \quad \ldots, \]

\[p_{11112\cdots 2} + p_{112\cdots 2} = 1, \quad p_{1112\cdots 2} + p_{112\cdots 2} = 1, \quad p_{11\cdots 2} + p_{12\cdots 2} = 1, \]

\[p_{21\cdots 11} + p_{21\cdots 12} + p_{21\cdots 122} = 1, \quad p_{21\cdots 122} + p_{21\cdots 1222} = 1, \quad \ldots, \]

\[p_{21112\cdots 2} + p_{2112\cdots 2} = 1, \quad p_{2112\cdots 2} + p_{212\cdots 2} = 1, \quad p_{212\cdots 2} + p_{22\cdots 2} = 1, \]

and hence,

\[p_{1\cdots 11} = p_{1\cdots 122} = \cdots = p_{11112\cdots 2} = p_{112\cdots 2} = a, \]

\[p_{1\cdots 12} = p_{1\cdots 122} = \cdots = p_{1112\cdots 2} = p_{12\cdots 2} = b, \]

\[p_{21\cdots 11} = p_{21\cdots 122} = \cdots = p_{21112\cdots 2} = p_{212\cdots 2} = b, \]

\[p_{21\cdots 12} = p_{21\cdots 122} = \cdots = p_{2112\cdots 2} = p_{22\cdots 2} = a. \]

Thus, two equalities given in (i) hold from (2.5).

Suppose that m is an odd number. Then two equalities given in (ii) can be showed similarly. We omit them here. \(\square\)
Denote
\[g_1(x) := f_1(x, 1-x) \quad \text{and} \quad g_2(y) := f_2(1-y, y). \] (2.6)

Suppose that \(\mathcal{P} = (p_{i_1 i_2 \cdots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor. Then, it is obvious that (2.4) has a (unique) solution \((x^*, y^*) \top \in \Delta \) if and only if \(g_1(x) - x = 0 \) has a (unique) solution \(x^* \in [0,1] \), and \(1 - x^* \) solves \(g_2(y) - y = 0 \). Thus, (2.4) can be investigated by considering \(g_1(x) - x = 0 \) and \(g_2(y) - y = 0 \). In order to give an appropriate reformulation of the function \(g_1(\cdot) \), we need to use the following combinatorial identity.

Lemma 2.2 If \(n \) is an even number, then
\[
C_n^0 + C_n^2 + \cdots + C_n^m = C_n^1 + C_n^3 + \cdots + C_n^{m-1} = 2^{n-1};
\]
and if \(n \) is an odd number, then
\[
C_n^0 + C_n^2 + \cdots + C_n^{m-1} = C_n^1 + C_n^3 + \cdots + C_n^m = 2^{n-1}.
\]

Now, we derive a simple expression of the function \(g_1(\cdot) \), which is a key to our discussions later.

Lemma 2.3 Suppose that \(\mathcal{P} = (p_{i_1 i_2 \cdots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor, and the function \(g_1(\cdot) \) is defined by (2.6). Then, the following results hold.

(i) If \(m \) is an even number, then
\[
g_1(x) = \frac{a - b}{2} (2x - 1)^{m-1} + b.
\]

(ii) If \(m \) is an odd number, then
\[
g_1(x) = \frac{a - b}{2} (2x - 1)^{m-1} + a.
\]

Proof. (i) Suppose that \(m \) is an even number. In this case, we first show that
\[
g_1(x) = (a - b)(m - 1) \sum_{t \in \{1,3,\ldots,m-2\}} \left\{ \frac{2^{m-t-1}}{m-t} C_{m-2}^{t-1} x^{m-t} - \frac{2^{m-t-2}}{m-t-1} C_{m-2}^{t} x^{m-t-1} \right\} + b.
\] (2.7)
Since m is an even number, it follows from Lemma 2.1 that
\[
\begin{align*}
g_1(x) &= ax^{m-1} + bC_{m-1}^1x^{m-2}(1-x) + aC_{m-1}^2x^{m-3}(1-x)^2 \\
&
+ bC_{m-1}^3x^{m-4}(1-x)^3 + \cdots + ax^{3}(1-x)^m-4 \\
&
+ bC_{m-1}^{m-3}x^{m-5}(1-x)^{m-3} + aC_{m-1}^{m-2}x(1-x)^{m-2} + b(1-x)^{m-1}.
\end{align*}
\] (2.8)

Let
\[
g_1(x) = \sum_{t=1}^{m} \alpha_{m-t}x^{m-t},
\]
then it follows from (2.8) that $\alpha_0 = b$, and

- if $t \in \{1, 3, \ldots, m - 1\}$, then
 \[
 \alpha_{m-t} = \sum_{s \in \{0, 2, \ldots, m-t-1\}} \left\{ C_{m-1}^{t-1+s}C_{t-s}^{s}a - C_{m-1}^{t+s}C_{t-s+1}^{s+1}b \right\};
 \]
- if $t \in \{2, 4, \ldots, m - 2\}$, then
 \[
 \alpha_{m-t} = \sum_{s \in \{2, 4, \ldots, m-t-2\}} \left\{ C_{m-1}^{t+s}C_{t-s}^{s}b - C_{m-1}^{t+s+1}C_{t-s+1}^{s+1}a \right\} + C_{m-1}^{m-1}C_{m-1}^{m-t-1}b.
 \]

Since
\[
C_{m-1}^{t-1+s}C_{t-1+s}^{s} = \frac{(m-1)!}{(t-1+s)!(m-t-s)!} \times \frac{(t-1+s)!}{s!(t-1)!}
= \frac{(m-1)!}{(t-1)!} \times \frac{1}{s!(m-t-s)!}
= \frac{m-1}{m-t} \times \frac{(m-2)!}{(t-1)!(m-t-1)!} \times \frac{(m-t)!}{s!(m-t-s)!}
= \frac{m-1}{m-t} C_{m-2}^{t-1}C_{m-t}^{s},
\]
it follows that for any $t \in \{1, 3, \ldots, m - 1\},$
\[
\alpha_{m-t} = \frac{m-1}{m-t} C_{m-2}^{t-1} \sum_{s \in \{0, 2, \ldots, m-t-1\}} \left\{ C_{m-t}^{s}a - C_{m-t}^{s+1}b \right\}
= \frac{m-1}{m-t} C_{m-2}^{t-1} \left[2^{m-t-1}a - 2^{m-t-1}b \right]
= 2^{m-t-1}(a-b) \frac{m-1}{m-t} C_{m-2}^{t-1},
\]
where the first equality holds by Lemma 2.2 and for any $t \in \{2, 4, \ldots, m - 2\},$
\[
\alpha_{m-t} = 2^{m-t-1}(b-a) \frac{m-1}{m-t} C_{m-2}^{t-1}.
\]
Thus, (2.7) holds.

Furthermore, it is easy to see that for any $t \in \{1, 2, \ldots, m - 1\}$,

\[
\frac{m - 1}{m - t} C_{m-2}^{t-1} = C_{m-1}^{t-1},
\]

and hence,

\[
g_1(x) = (a - b) \sum_{t \in \{1, 3, \ldots, m - 2\}} \left\{ 2^{-1} C_{m-1}^{t-1} (2x)^m - 2^{-1} C_{m-1}^{t} (2x)^m - 1 \right\} + b
\]

\[
= \frac{a - b}{2} \sum_{t=1}^{m-2} \left\{ C_{m-1}^{t-1} (2x)^m - (1)^{t-1} \right\} + b
\]

\[
= \frac{a - b}{2} (2x - 1)^m + b,
\]

where the last equality follows from the binomial theorem. Thus, we complete the proof of the result in (i).

(ii) Suppose that m is an odd number. In this case, it follows from Lemma 2.1 that

\[
g_1(x) := ax^{m-1} + bC_{m-1}^1 x^{m-2} (1 - x) + aC_{m-1}^2 x^{m-3} (1 - x)^2 + bC_{m-1}^3 x^{m-4} (1 - x)^3 + \cdots + ax^4 (1 - x)^{m-5} + b x^3 (1 - x)^{m-4}
\]

\[
+ aC_{m-1}^{m-3} x^2 (1 - x)^{m-3} + bC_{m-1}^{m-2} x (1 - x)^{m-2} + a(1 - x)^{m-1}.
\]

Let $g_1(x) = \sum_{t=1}^{m} \beta_{m-t} x^{m-t}$. Then, it follows from (2.9) that $\beta_0 = a$, and

- if $t \in \{1, 3, \ldots, m - 2\}$, then
 \[
 \beta_{m-t} = \sum_{s \in \{0, 2, \ldots, m-t-1\}} \left\{ C_{m-1}^{t+s} C_{t+1+s} C_{m-1}^{t+s+1} a - C_{m-1}^{t+s} C_{t+1+s} C_{m-1}^{t+s+1} \right\} + C_{m-1}^{m-t-1} C_{m-1}^{m-t} a;
 \]

- if $t \in \{2, 4, \ldots, m - 1\}$, then
 \[
 \beta_{m-t} = \sum_{s \in \{2, 4, \ldots, m-t-2\}} \left\{ C_{m-1}^{t+s} C_{t+s} C_{m-1}^{t+s+1} b - C_{m-1}^{t+s} C_{t+s} C_{m-1}^{t+s+1} \right\}.
 \]

Thus, similar to (i), we can obtain that

\[
g_1(x) = (a - b)(m - 1) \sum_{t \in \{1, 3, \ldots, m - 2\}} \left\{ \frac{2^{m-t-1}}{m - t} C_{m-2}^{t-1} x^{m-t} - \frac{2^{m-t-2}}{m - t - 1} C_{m-2}^{t} x^{m-t-1} \right\} + a,
\]
and furthermore,
\[
g_1(x) = (a - b) \sum_{t \in \{1, 3, \ldots, m-2\}} \left\{ 2^{-1} C_{m-1}^{t-1}(2x)^{m-t} - 2^{-1} C_{m-2}^{t}(2x)^{m-t} \right\} + a
\]
\[
= \frac{a - b}{2} \sum_{t=1}^{m-2} \left\{ C_{m-1}^{t-1}(2x)^{m-t}(-1)^{t-1} \right\} + a
\]
\[
= \frac{a - b}{2} (2x - 1)^{m-1} + a
\]
which implies that the result in (ii) holds. \qed

Lemma 2.4 Suppose that \(P = (p_{112 \ldots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor, and the function \(g_1(\cdot) \) is defined by (2.6). Then,
\[
g'_1(x) = (a - b)(m - 1)(2x - 1)^{m-2}.
\]

Proof. The desired result follows from Lemma 2.3 directly. \qed

The following result is a special case of the one in [15, Theorem 3.1].

Lemma 2.5 Suppose that \(P = (p_{112 \ldots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor. Then, \(\left(\frac{1}{2}, \frac{1}{2} \right)^\top \) is a stationary probability vector of \(P \).

We now give our main results in this paper.

Theorem 2.1 Suppose that \(P = (p_{112 \ldots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor. If \(p_{11 \ldots 1} = 1 \) and \(p_{21 \ldots 1} = 0 \), then the corresponding tensor \(P \) is denoted by \(P_1 \); and if \(p_{1\ldots 1} = 0 \) and \(p_{21 \ldots 1} = 1 \), then the corresponding tensor \(P \) is denoted by \(P_2 \). Then, we have the following results.

(i) The transition probability tensor \(P_1 \) has and only has two stationary probability vectors: \(\left(\frac{1}{2}, \frac{1}{2} \right)^\top \) and \((0, 1)^\top \).

(ii) The transition probability tensor \(P_2 \) has and only has two stationary probability vectors: \(\left(\frac{1}{2}, \frac{1}{2} \right)^\top \) and \((1, 0)^\top \).

(iii) If \(P \neq P_1 \) and \(P \neq P_2 \), then \(P \) has a unique stationary probability vector: \(\left(\frac{1}{2}, \frac{1}{2} \right)^\top \).

Proof. Let
\[
h(x) := g_1(x) - x. \quad (2.10)
\]
Then, it follows from Lemma 2.4 that
\[h'(x) := g'_1(x) - 1 = (a - b)(m - 1)(2x - 1)^{m-2} - 1. \] (2.11)

We divide the proof into the following three parts.

Part 1. Suppose that \(a = b \). By (2.11) we have that for any \(x \in [0, 1] \),
\[h'(x) = -1 < 0, \]
which implies that the function \(h(\cdot) \) defined by (2.10) is strictly decreasing on \([0, 1]\). This, together with \(h(\frac{1}{2}) = 0 \) by Lemma 2.1, implies that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, 1]\). Furthermore, by Lemma 2.1 it follows that \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique solution of (2.4) on \([0, 1]\), i.e., \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

Part 2. Suppose that \(1 \geq a > b \geq 0 \). Let \(h'(x^*) = 0 \), then by (2.11), we have
\[x^* = \frac{1}{2} \left(1 + \frac{1}{m-2/(a-b)(m-1)} \right). \] (2.12)

We consider the following three cases.

(a) If \((a-b)(m-1) = 1\), then by (2.12), we have \(x^* = 1 \). Since \(m \geq 3 \), it follows that \(1 > a > b > 0 \). Since \(g_1(1) = a \) by (2.8) and (2.9), it follows by (2.11) that \(h(1) = a - 1 < 0 \), i.e., \(1 \) is not a solution of \(h(x) = 0 \) on \([0, 1]\). Moreover, by (2.11) it follows that the function \(h(\cdot) \) is strictly decreasing on \([0, 1]\). This, together with \(h(\frac{1}{2}) = 0 \) implies that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, 1]\). Thus, \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, 1]\). This, together with Lemma 2.5, implies that \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique solution of (2.4) on \([0, 1]\), i.e., \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

(b) If \((a-b)(m-1) < 1\), then by (2.12), we have \(x^* > 1 \). Thus, by (2.11) it follows that the function \(h(\cdot) \) is strictly decreasing on \([0, 1]\). This, together with \(h(\frac{1}{2}) = 0 \), implies that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, 1]\). Furthermore, by Lemma 2.5 it follows that \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique solution of (2.4) on \([0, 1]\), i.e., \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

(c) If \((a-b)(m-1) > 1\), then by (2.12), we have \(\frac{1}{2} < x^* \leq 1 \). Furthermore, by (2.11) it follows that \(h'(x) < 0 \) when \(x \in [0, x^*) \) and \(h'(x) > 0 \) when \(x \in (x^*, 1] \). On one hand, since the function \(h(\cdot) \) is strictly decreasing on \([0, x^*) \) and \(h(\frac{1}{2}) = 0 \) with \(\frac{1}{2} \in [0, x^*) \), it follows that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, x^*) \); and in the meantime, we have \(h(x^*) < h(\frac{1}{2}) = 0 \). On the other hand, by (2.8) and (2.9), we have \(g_1(1) = a \), and hence, by (2.10), \(h(1) = a - 1 \leq 0 \). If \(a = 1 \), then since
the function \(h(\cdot) \) is strictly increasing on \((x^*, 1]\) with \(h(1) = 0 \), it follows that 1 is the unique solution of \(h(x) = 0 \) on \((x^*, 1]\); and if \(a < 1 \), then since the function \(h(\cdot) \) is strictly increasing on \((x^*, 1]\) with \(h(1) < 0 \) and \(h(x^*) < 0 \), it follows that \(h(x) = 0 \) has no solution on \((x^*, 1]\). Thus, if \(\mathcal{P} = \mathcal{P}_2 \), then it has and only has two stationary probability vectors: \((\frac{1}{2}, \frac{1}{2})^\top \) and \((1, 0)^\top \); otherwise, it has a unique stationary probability vector: \((\frac{1}{2}, \frac{1}{2})^\top \).

Part 3. Suppose that \(1 \geq b > a \geq 0 \). If \(m \) is an even number, then for any \(x \in [0, 1] \),

\[
h'(x) = (a - b)(m - 1)(2x - 1)^{m-2} - 1 < 0,
\]

and hence, the function \(h(\cdot) \) is strictly decreasing on \([0, 1]\). In this case, \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique solution of \((2.4) \) on \([0, 1]\), i.e., \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

In the following, we assume that \(m \) is an odd number. Let \(h'(x^*) = 0 \), then by \((2.11) \), we have

\[
x^* = \frac{1}{2} \left(1 - \frac{1}{\sqrt{(b-a)(m-1)}} \right). \tag{2.13}
\]

We consider the following three cases.

(a) If \((b-a)(m-1) = 1\), then by \((2.13) \), we have \(x^* = 0 \). Since \(m \geq 3 \), it follows that \(1 > b > a > 0 \). Since \(m \) is an odd number, we have \(g_1(0) = a \) by \((2.9) \), and hence, it follows by \((2.10) \) that \(h(0) = a - 0 > 0 \), i.e., \(0 \) is not a solution of \(h(x) = 0 \). Moreover, by \((2.11) \) it follows that \(h'(x) < 0 \) on \((0, 1]\), which implies that the function \(h(\cdot) \) is strictly decreasing on \((0, 1]\), and hence, \(\frac{1}{2} \) is a unique solution of \(h(x) = 0 \) on \((0, 1]\). So, \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

(b) If \((b-a)(m-1) < 1\), then by \((2.13) \), we have \(x^* < 0 \); and by \((2.11) \), we have \(h'(x) < 0 \) for any \(x \in [0, 1] \). Thus, the function \(h(\cdot) \) is strictly decreasing on \([0, 1]\). This, together with \(h(\frac{1}{2}) = 0 \), implies that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \([0, 1]\). Thus, \((\frac{1}{2}, \frac{1}{2})^\top \) is the unique stationary probability vector of the transition probability tensor \(\mathcal{P} \).

(c) If \((b-a)(m-1) > 1\), then it is easy to see from \((2.13) \) that \(0 < x^* < \frac{1}{2} \). Furthermore, by \((2.11) \), we have \(h'(x) > 0 \) when \(x \in [0, x^*) \) and \(h'(x) < 0 \) when \(x \in (x^*, 1] \). On one hand, since the function \(h(\cdot) \) is strictly decreasing on \((x^*, 1]\) and \(h(\frac{1}{2}) = 0 \) with \(\frac{1}{2} \in (x^*, 1]\), it follows that \(\frac{1}{2} \) is the unique solution of \(h(x) = 0 \) on \((x^*, 1]\). Meantime, we have \(h(x^*) > h(\frac{1}{2}) = 0 \). On the other hand, since \(m \) is an odd number, it follows by \((2.9) \) that \(g_1(0) = a \), and hence, by \((2.10) \), \(h(0) = a \geq 0 \). If \(a = 0 \), then \(b = 1 \), and hence, \(\mathcal{P} = \mathcal{P}_2 \). In this case, \(0 \) is a solution of \(h(x) = 0 \). Otherwise, since
The function \(h(\cdot) \) is strictly decreasing on \((0, x^*)\) with \(h(0) > 0 \) and \(h(x^*) > 0 \), it follows that \(h(x) = 0 \) has no solution on \((0, x^*)\). Thus, if \(\mathcal{P} = \mathcal{P}_2 \), then it has and only has two stationary probability vectors: \((\frac{1}{2}, \frac{1}{2})^T\) and \((1, 0)^T\); otherwise, it has a unique stationary probability vector: \((\frac{1}{2}, \frac{1}{2})^T\).

Therefore, by combining Part 1 with Part 2 and Part 3, we can obtain the desired results.

By Theorem 2.1, we have the following result immediately.

Corollary 2.1 Suppose that \(\mathcal{P} = (p_{i_1i_2\ldots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric transition probability tensor. Then, \(\mathcal{P} \) has a unique positive stationary probability vector, which is \((\frac{1}{2}, \frac{1}{2})^T\).

Recall that a tensor \(\mathcal{P} = (p_{i_1i_2\ldots i_m}) \in \mathbb{T}_{m,n} \) is called reducible if there exists a nonempty proper index subset \(I \subset \{1, 2, \ldots, n\} \) such that

\[p_{i_1i_2\ldots i_m} = 0, \quad \forall i_1 \in I, \; \forall i_2, \ldots, i_m \notin I. \]

If \(\mathcal{P} \) is not reducible, then it is called irreducible [16]. It is easy to see that both tensors \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) given in Theorem 2.1 are reducible. Thus, by Theorem 2.1 we have the following result immediately.

Corollary 2.2 Suppose that \(\mathcal{P} = (p_{i_1i_2\ldots i_m}) \in \mathbb{T}_{m,2} \) is a symmetric irreducible transition probability tensor. Then, \(\mathcal{P} \) has a unique stationary probability vector, which is \((\frac{1}{2}, \frac{1}{2})^T\).

When \(m = 4 \), Corollary 2.2 is just Theorem 3.1 given in [15].

3 Concluding remarks

In this paper, we gave a full characterization on the stationary probability vectors of \(m \)-order 2-dimensional symmetric transition probability tensors. In particular, for any integer number \(m \geq 3 \), any symmetric irreducible transition probability tensor of order \(m \) dimension 2 has a unique stationary probability vector. In our analysis, the “symmetry” of transition probability tensor plays an important role. It is worthy of studying the stationary probability vectors of \(m \)-order 2-dimensional transition probability tensors in the absence of symmetry. Moreover, it is also worthy of investigating the uniqueness of the stationary probability vectors of \(m \)-order \(n \)-dimensional symmetric transition probability tensors when \(m, n \geq 3 \).
References

[1] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, SIAM, 1994.

[2] I. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series, Chapman & Hall, London, 1997.

[3] A. Raftery, A model of high-order Markov chains, Journal of the Royal Statistical Society, Series B, 47 (1985): 528-539.

[4] A. Raftrey and S. Tavare, Estimation and modelling repeated patterns in high order Markov chains with the mixture transition distribution model, Applied Statistics, 43 (1994): 179-199.

[5] M. Waterman, Introduction to Computational Biology, Chapman & Hall, Cambridge, 1995.

[6] W. Ching and M. Ng, Markov Chains: Models, Algorithms and Applications, International Series on Operations Research and Management Science, Springer, 2006.

[7] K.C. Chang and T. Zhang, On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl., 208 (2013): 525-540.

[8] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005): 1302-1324.

[9] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP’05, vol. 1, 2005, pp. 129-132.

[10] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl., 31 (2009): 1090-1099.

[11] S. Hu and L. Qi, Convergence of a second order Markov chain, Appl. Math. Comput., 241 (2014): 183-192.

[12] W. Li and M. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014): 362-385.

[13] C.-K. Li and S. Zhang, Stationary probability vectors of higher-order Markov chains, Linear Algebra Appl., 473 (2016): 114-125.
[14] H. Bozorgmanesh and M. Hajarian, Convergence of a transition probability tensor of a higher-order Markov chain to the stationary probability vector, Numer. Linear Algebra Appl., 23 (2016): 972-988.

[15] J. Culp, K. Pearson and T. Zhang, On the uniqueness of the Z_1-eigenvector of transition probability tensors, Linear Multilinear Algebra, 65 (2017): 891-896.

[16] K.C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008): 507-520.