Gating of the TrkH ion channel by its associated RCK protein TrkA

Yu Cao1*, Yaping Pan1,2*, Hua Huang1,2*, Xiangshu Jin1, Elena J. Levin1,2, Brian Kloss4 & Ming Zhou1,2

TrkH belongs to a superfamily of K+ transport proteins required for growth of bacteria in low external K+ concentrations. The crystal structure of TrkH from Vibrio parahaemolyticus showed that TrkH resembles a K+ channel and may have a gating mechanism substantially different from K+ channels. TrkH assembles with TrkA, a cytosolic protein comprising two RCK (regulate the conductance of K+) domains, which are found in certain K+ channels and control their gating. However, fundamental questions on whether TrkH is an ion channel and how it is regulated by TrkA remain unresolved. Here we show single-channel activity of TrkH that is upregulated by ATP via TrkA. We report two structures of the tetrameric TrkA ring, one in complex with TrkH and one in isolation, in which the ring assumes two markedly different conformations. These results suggest a mechanism for how ATP increases TrkH activity by inducing conformational changes in TrkA.

K+ is concentrated in all living cells and is essential for many physiological processes. In bacteria, homeostasis of K+ is largely mediated by specialized K+ transport proteins known as the superfamily of K+ transport (SKT) proteins1. The bacterial TrkH, TrkG and KtrB proteins form the largest subfamily of SKT proteins, and the crystal structure of TrkH from Vibrio parahaemolyticus, VpTrkH, was reported recently2. Each of the four connected homologous domains of TrkH resembles a subunit of the KcsA K+ channel, comprising two transmembrane helices connected by a re-entrant P-loop (M1-P-M2)3, and the four domains encircle a central ion permeation pathway. In addition, TrkH has two structural features atypical of K+ channels: a dimeric quaternary structure, with each protomer containing its own pore; and a long membrane-embedded loop, inserted into the middle of a pore-lining helix, that occludes the ion permeation pathway. The loop is conserved across the TrkH/TrkG/KtrB family, and previous studies have shown that deletion of this intramembrane loop increases KtrB-mediated K+ uptake, indicating that it may act as a gate3,6.

The TrkH, TrkG and KtrB integral membrane proteins form a complex with an intracellular regulatory protein, and the genes encoding the membrane protein and the regulatory protein reside in the same operon in many bacteria. The protein that assembles with TrkH and TrkG is TrkA, whereas KtrB interacts with KtrA9–8. Both TrkA and KtrA are composed of RCK domains9–16, which can be classified into two types based on their cognate ligands: bacterial RCK domains possessing conserved GXGXXG motifs that bind to nucleotides8,12,14,17,18, sometimes referred to as KTN domains, and the bacterial and mammalian RCKs that lack a nucleotide-binding motif and bind to ions such as Ca2+ (refs 11, 15, 16, 19). The organization of RCK domains varies considerably. For example, the KtrA and TrkA protomers contain one and two RCK domains, respectively, expressed as separate cytoplasmic proteins, whereas for K+ channels the RCK domains are directly connected to the termini of their associated channels. Previous RCK structures suggest that regardless of gene architecture, a total of eight RCK domains associate in a configuration known as a gating ring11,14–16,19.

The TrkH, TrkG and KtrB proteins were initially thought to be either H+ or Na+-dependent K+ transporters20–22, but their sequence and structural similarity to K+ channels suggests that these proteins could function as ion channels. However, ion channel activity has never been demonstrated for any member of the TrkH/TrkG/KtrB family of proteins. Furthermore, if TrkH is an ion channel, what effect does its associated protein TrkA have on gating of the channel? Current models of gating in K+ channels with RCK domains propose that a dilation in the diameter of the gating ring directly translates into movement of the four pore-lining helices and opening of the permeation pathway9,11,13,16,19,25. However, this model of a four-fold symmetric gating ring expansion seems to be incompatible with the dimeric architecture of TrkH, and does not account for the intramembrane loop. In this study, we attempt to address these unresolved issues by characterizing the structure and function of the TrkH–TrkA complex.

Single-channel activities of the TrkH–TrkA complex

Patch clamp was performed on Escherichia coli spheroplasts heterologously expressing TrkH and TrkA from V. parahaemolyticus using an inside-out configuration. A single-channel current trace in 200 mM symmetrical K+ solution is shown in Fig. 1a. Occasional bursts of channel activities were observed, and these bursts were interrupted by prolonged closures. Within each burst of openings there are two current levels: level 1 and 2, with level 2 approximately double the size of level 1 in amplitude (Supplementary Table 1). Every burst of openings starts with a sojourn from the baseline directly to level 2 followed by openings alternating between levels 1 and 2, and terminates >91% of the time directly from level 2. This behaviour is inconsistent with two entirely independent channels, but strongly suggests a single TrkH dimer, the two pores of which open and close in a mostly concerted fashion. As a control, currents from spheroplasts expressing only TrkH were also recorded. Similar bursts of channel activities with two levels of amplitudes were observed (Supplementary Table 1 and Supplementary Fig. 1a). However, the overall open probability of TrkH without TrkA is higher than that of the complex (0.65 ± 0.03 versus 0.17 ± 0.01), suggesting that TrkA affects the activity of TrkH. To verify that the

1Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA. 2Verna and Marrs McLennan Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. 3National Institute of Biological Sciences, Beijing 102206, China. 4New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA.

*These authors contributed equally to this work.
single-channel currents were from TrkH, a cysteine substitution was made to a pore-lining residue (I220C) based on the known TrkH structure. Perfusion of the cysteine-modifying reagent (2-(trimethylammonium)ethyl) methanethiosulphonate (MTSET) reversibly reduced current amplitudes as well as the overall open probability for the I220C mutant for either TrkH alone or the TrkH–TrkA complex (Supplementary Fig. 1b, c). Wild-type TrkH was not affected by MTSET (Supplementary Fig. 1c).

The open-channel current–voltage (I–V) plot relationship is plotted in Fig. 1b and shows slight inward rectification: level 2 has a chord conductance of 350 pS at +50 mV and 550 pS at −60 mV. Selectivity of the TrkH ion channel was examined by changing the solution on the intracellular side of the patch. Although TrkH does not discriminate Rb⁺ and Cs⁺ from K⁺, it conducts Na⁺ and Li⁺ at a significantly slower rate (Supplementary Table 1 and Supplementary Fig. 2). Given that the K⁺ channel signature sequence, TVGYG, which lines the selectivity filter, is not highly conserved in TrkH, the weak selectivity of TrkH is not surprising. In addition, substituting most of the intracellular Cl⁻ with a large organic anion, gluconate, does not affect the reversal potential, indicating that the TrkH channel does not conduct Cl⁻ (Supplementary Fig. 2d).

Because TrkA contains a conserved nucleotide-binding motif, we examined channel activity in the presence of NAD⁺, NADH and ATP. Whereas perfusion of NADs to the intracellular side of the channel did not produce significant changes in the currents, perfusion of 5 mM ATP substantially increased the open probability (P_open) of the TrkH–TrkA complex (Fig. 1c). This result is consistent with earlier studies indicating that the Trk system in bacteria requires ATP26 but is not an ATPase26. Notably, ADP had the opposite effect to that of ATP and significantly reduced the P_open whereas AMP had a negligible effect (Fig. 1c and Supplementary Fig. 3).

Structure of the TrkH–TrkA complex

To understand how TrkH and TrkA interact, we co-expressed the two proteins and crystallized the stable purified complex (Supplementary Fig. 4). Although NADH does not affect channel activity (Fig. 1c), inclusion of NADH in the crystallization solution improved crystal size and quality. The structure of the complex was solved at a resolution of 3.8 Å (Supplementary Fig. 5 and Supplementary Table 2). In the asymmetric unit, two TrkH dimers interact with a ring of four TrkA protomers; this probably occurs because the internal symmetry of the TrkA tetramer creates two equivalent interfaces on both sides of the ring, as discussed in detail below. In the membrane, one TrkH dimer would interact with one TrkA tetramer (Supplementary Fig. 6).

The tetrameric TrkA gating ring associates with the cytoplasmic face of the TrkH dimer (Fig. 2a, b). The structure of TrkH in the complex is almost identical to the previously solved structure of TrkH in isolation (Supplementary Fig. 7a). In particular, the pore of the ion conduction pathway is still obstructed by the intramembrane loop (Fig. 2b inset and Supplementary Fig. 7b). Each TrkH monomer interacts with TrkA through a cytosolic loop following the second half of the broken M2 helix in domain 3, D3M2b (Fig. 2b and Supplementary Fig. 4), which is tilted to lie nearly parallel to the bilayer and is connected directly to the intramembrane loop. The interface includes a number of salt bridges between positively charged residues on the D3M2b–D4 loop and negatively charged residues on TrkA (Supplementary Fig. 8b). A number of residues on the cytosolic side of TrkH are missing from the electron density, including an 18-residue stretch on the loop connecting domains 1 and 2 (Supplementary Fig. 8a). Although this cytosolic loop is not highly conserved among the TrkG, TrkH and KtrB proteins, because of its proximity to TrkA it may be involved in additional contacts not resolved in the crystal structure.
Fold and quaternary structure of TrkA RCK gating ring
The TrkA protomer contains two tandem RCK domains, RCK1 and RCK2, so that the gating ring contains a total of eight RCK domains. Each RCK domain comprises an amino-terminal lobe assuming a Rossman fold, connected to a smaller carboxy-terminal lobe by a 'hinge' helix (Fig. 2c, d). A key difference between the TrkA structure and the BK and MthK channel-associated RCK structures is that the TrkA tetramer has point group symmetry, involving three perpendicular, intersecting, two-fold rotational symmetry axes (Fig. 2d, f), whereas the BK gating ring has symmetry (Fig. 2e). As a consequence of its 'dimer of dimers' arrangement, the TrkA tetramer provides a two-fold symmetric interaction surface to match the two-fold symmetry of the TrkH dimer. Additionally, the tetramer contains two distinct types of subunit interfaces: N1–N1 interfaces, formed between the N-terminal lobes of the RCK1 domains; and N2–N2 interfaces, formed by the N-terminal lobes of the RCK2 domains. In contrast, the four-fold symmetric BK gating ring contains four identical N1–N2 interfaces.

The TrkA protomer contains two GXGXXG nucleotide-binding motifs, one in the N-lobe of each RCK domain. The N2 lobe binding site in each TrkA protomer is occupied by a large electron density consistent with NADH, which was included as an additive to facilitate crystallization. At this low resolution the oxidized and reduced forms cannot be distinguished (Supplementary Fig. 9). The N1 lobe binding site is unoccupied.

Structure of the isolated TrkA tetramer
We were also able to obtain crystals of TrkA without TrkH and in the presence of 10 mM ATP-γS that diffracted to a resolution of 3.05 Å, and solved the structure by molecular replacement (Fig. 3a and Supplementary Table 2). Isolated TrkA forms a tetramer in solution (Supplementary Fig. 10) as well as in the crystal lattice (Supplementary Fig. 11). Each protomer contains two large densities consistent with ATP-γS molecules, with one bound to the GXGXXG motif in the N lobe of each RCK domain, so that the gating ring contains a total of eight bound nucleotides (Supplementary Fig. 12).

Comparison of the structure of isolated TrkA to the structure from the TrkH–TrkA complex shows a substantial conformational change (Fig. 3a). This change is generated by markedly different behaviour of the N1–N1 and N2–N2 interfaces. The N lobes of the N2–N2 interface rotate and slide past each other (Fig. 3b and Supplementary Video 1), with one N2–N2 interface undergoing a larger translation than the other (Supplementary Fig. 13 and Supplementary Video 2). In contrast, the N1–N1 interface shows no change between the two structures (Fig. 3c and Supplementary Video 3). The different behaviour of the N1–N1 and N2–N2 interfaces converts TrkA from a roughly planar conformation to a twisted conformation (Fig. 3a).

The conformational change within individual protomers driving the 'flat' to 'twisted' transition in the gating ring can be visualized by aligning protomers from the ATP-γS-bound structure and the complex by their immobile N1 lobes only, which reveals rigid-body rotations of the N2, C1 and C2 lobes about the hinge helix connecting N1 to C1 (Fig. 3d and Supplementary Video 4). Given that the two structures were obtained at low resolution and bound to non-physiological ligands, it is difficult to identify specific protein–ligand interactions that may drive this conformational change. However, we note that the γ-phosphate groups on the bound ATP-γS molecules are located very close to the cleft between the two N lobes (Fig. 3e and Supplementary Fig. 13). The width of this cleft changes between the two structures, as measured by a change in the intersection angle of the hinge helices from 120° in the TrkH–TrkA structure to approximately 100° in the ATP-γS-bound TrkA structure (Fig. 3e).

The change in the angle of intersection between hinge helices (Fig. 3e) is not unique to TrkA; similar movements have been observed in the KefC12,13, KtraA14 and MthK15 gating rings. In contrast, the interfaces corresponding to the subunit interfaces in TrkA (referred to as 'assembly' interfaces in MthK and BK channels) seem to vary in their behaviour between the different gating rings. In BK
and MthK channels, all four assembly interfaces are fixed, forcing the ring to accommodate the change in the angle of the N-lobe cleft through a uniform, four-fold symmetric dilation. In KtRA and TrkA, two of the four assembly interfaces are able to move relative to each other, resulting in a conformational change that is two-fold symmetric (Fig. 3f). It may be that the change in the angle of the cleft between the N1–N2 lobes represents a conserved response of RCK domains to ligand binding that introduces a strain on the gating ring, and that differences in the architecture and strength of the intersubunit or assembly interfaces determines how this strain is relieved, resulting in an overall conformational change to the ring that is suitable for the particular associated channel.

Mechanistic implications for channel regulation by TrkA

Comparison of the two TrkA conformations suggests a possible mechanism for opening of the channel by nucleotide-induced conformational changes on the gating ring. In the closed state bound to ADP, probably corresponding to the structure of the TrkH–TrkA complex, the ion permeation pathway is blocked by an intramembrane loop connected to helix D3M2b. Although the ‘twisted’ conformation of TrkA was observed in the absence of the channel, possible effects of this conformational change on the channel can be probed by mapping the locations of residues forming the interface in the TrkH–TrkA structure onto the TrkA-only structure (Fig. 4a). The surface residues interacting with the channel are located primarily in two patches on the diagonally positioned N2 domains facing the channel, each of which interacts with one of the channel D3M2b helices. These two interface regions are farther apart by ~24 Å in the isolated TrkA structure (Fig. 4a and Supplementary Video 5). If ATP binding causes the gating ring to adopt a twisted conformation similar to the free TrkA structure, separation of the two interfaces on the tetramer could pull the helix D3M2b away from the centre of the N1 subdomains. N1 is shown as surface representation, whereas the other three lobes are shown as cartoon representation. The N1 and N2 lobes in a subunit of TrkA from the NADH-bound TrkH–TrkA complex (top) and the ATP-γS-bound TrkA (bottom) structures are shown with their hinge helices highlighted. NADH or ATP-γS are shown in green. Cartoons of the TrkA, BK and KtRA gating rings showing only the N lobes. The hinge helices are marked with red rectangles. Description of interfaces as ‘fixed’ or ‘rotating’ is based on comparison of structures 2HMS and 2HMW (Protein Data Bank accessions) for KtRA, and 3NAF and 3U6N (Protein Data Bank accessions) for BK.

Discussion

This study presents, to our knowledge, the first demonstration that TrkH, and by extrapolation the TrkG and KtR family of proteins, are ion channels. Additionally, we demonstrate that ion flux through the TrkH–TrkA complex is upregulated by ATP and downregulated by ADP. It is likely that in a cell the ratio of ATP to ADP determines the probability of gating of TrkH by TrkA, further structural and functional studies are necessary to reveal the molecular mechanism governing regulation of channel activity.
channel to conductance in its partner. However, why this behaviour occurs more prominently when Na\(^+\) or Li\(^+\) occupies the selectivity filter remains unknown.

In addition, we present two different structures of the TrkA gating ring, solved in complex with TrkH or in isolation. From these structures we have proposed a model for the gating of TrkH by TrkA that assigns the conformation in the complex to the closed state of TrkA, and the conformation in isolation to the open state. However, although the ‘open’ structure was obtained bound to an analogue of the channel opener ATP, it should be noted that crystal packing and the absence of the channel probably have a significant effect on the gating ring’s energy landscape, and these factors rather than the identity of the bound ligand may be responsible for the conformation observed in the crystal structure of the isolated TrkA tetramer. In fact, a recently reported structure of TrkA from *Vibrio vulnificus* (Protein Data Bank accession 4G65) assumes a conformation highly similar to the twisted conformation reported here despite containing no bound nucleotide. Nonetheless, although it may not correspond exactly to the structure in the open complex, the isolated TrkA structure reveals the range of flexibility accessible to the gating ring. Confirmation for the proposed model will require further structural and functional studies of the intact complex.

Figure 4 | Proposed mechanism of regulation of TrkH gating by TrkA. (a) Surface representation of the TrkA tetramer from the TrkA-only (top) and TrkH–TrkA structures, viewed from the membrane-facing side. Residues forming the channel-gating ring interface, defined as residues with at least one atom within 4 Å of TrkH in the complex structure, are marked in yellow. (b) Diagram illustrating a possible gating mechanism, with the closed channel shown on the left, and the open channel on the right. The D3M2b helix is represented as a red cylinder. For clarity, gating of only one TrkH protomer is shown. (c) Left panel: single-channel currents through the TrkH–TrkA (Aloop–WT) complex before and after addition of ATP. The holding potential is +50 mV. Right panel: the \(P_{\text{open}} \) of TrkH–TrkA (WT–WT) and TrkH–TrkA (Aloop–WT) before and after addition of 5 mM ATP. The error bars are s.e.m. from three independent patches.

METHODS SUMMARY

Vibrio parahaemolyticus TrkH (GenBank accession D5M57342.1) and TrkA (EDM59790.1) were overexpressed in BL21(DE3) cells and purified by affinity chromatography, followed by cleavage of the tag and a second purification step on a size-exclusion column. For purification of the TrkH–TrkA complex, TrkA was expressed with a C-terminal polyhistidine affinity tag; for the purification of isolated TrkA, TrkA was expressed with an N-terminal GST domain as an affinity tag. The TrkH–TrkA complex was solubilized in 40 mM n-decyl-β-D-maltoside, which was decreased to 3.5 mM during the size-exclusion chromatography step. TrkH–TrkA crystals were grown in the presence of 10 mM ATP (saturating) by the sitting-drop vapour diffusion method. The structures of TrkA and the complex were solved using molecular replacement or combined molecular replacement/single-wavelength anomalous dispersion, respectively, with the PHENIX software suite.

Patch-clamp recording of the TrkH–TrkA complex was performed on *E. coli* giant spheroplasts as described previously. Single-channel currents were recorded on inside-out patches, with both the bath solution and the pipette solution containing 200 mM KCl, 0.5 M sucrose, and 10 mM HEPES at pH 7.4. The data were analysed with pClamp9.

Full Methods and any associated references are available in the online version of the paper.

Received 4 October 2012; accepted 5 March 2013.

1. Corratgé-Faillie, C. et al. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. *Cell. Mol. Life Sci.* 67, 2511–2532 (2010).
2. Cao, Y. et al. Crystal structure of a potassium ion transporter, TrkH. *Nature* 471, 336–340 (2011).
3. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K\(^+\) conduction and selectivity. *Science* 280, 69–77 (1998).
4. Hänelt, I. et al. Membrane region M2C2 in subunit KtrB of the K\(^+\) uptake system KtrAB from *Vibrio alginolyticus* forms a flexible gate controlling K\(^+\) flux: an electron paramagnetic resonance study. *J. Biol. Chem.* 285, 28210–28219 (2010).
5. Hänelt, I. et al. Gain of function mutations in membrane region M2C2 of KtrB open a gate controlling K\(^+\) transport by the KtrAB system from *Vibrio alginolyticus*. *J. Biol. Chem.* 285, 10318–10327 (2010).
6. Bossemeyer, D. et al. K\(^+\)-transport protein TrkA of *Escherichia coli* is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. *J. Biol. Chem.* 264, 16403–16410 (1989).
7. Nakamura, T., Yuda, R., Umemoto, T. & Bakker, E. P. KtrAB, a new type of bacterial K\(^+\)-uptake system from *Vibrio alginolyticus*. *J. Bacteriol.* 180, 3491–3494 (1998).
8. Schloesser, A., Hamann, A., Bossemeyer, D., Schneider, E. & Bakker, E. P. NAD\(^+\) binding to the Escherichia coli K\(^+\)-transport protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD\(^+\) in bacterial transport. *Mol. Microbiol.* 9, 533–543 (1993).
9. Kong, C. et al. Distinct gating mechanisms revealed by the structures of a multiligand gated K\(^+\) channel, eLF1, e01B14 (2012).
10. Jiang, Y., Pico, A., Cadene, M., Chait, B. T. & MacKinnon, R. Structure of the RCK domain from the *E. coli* K\(^+\) channel and demonstration of its presence in the human BK channel. *Neuron* 29, 593–601 (2001).
11. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. *Nature* 417, 515–522 (2002).
12. Roosild, T. P., Miller, S., Booth, I. R. & Choe, S. A. Mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. *Cell* 109, 781–791 (2002).
13. Roosild, T. P. et al. KTN (RCK) domains regulate K\(^+\) channels and transporters by controlling the dimer-hinge conformation. *Structure* 17, 893–903 (2009).
14. Albright, R. A., Ibar, J. L., Kim, C. U., Gruner, S. M. & Morais-Cabral, J. H. The RCK domain of the KtrAB K\(^+\) transporter: multiple conformations of an octameric ring. *Cell* 126, 1147–1159 (2006).
15. Wu, Y., Yang, Y., Ye, S. & Jiang, Y. Structure of the gating ring from the human large-conductance Ca\(^{2+}\)-gated K\(^+\) channel. *Nature* 466, 393–397 (2010).
16. Yuan, P., Leonetti, M. D., Pico, A. R., Hsing, Y. & MacKinnon, R. Structure of the human BK channel Ca\(^{2+}\)-activation apparatus at 3.0 Å resolution. *Science* 329, 182–186 (2010).
17. Buehner, M., Ford, G. C., Morris, D., Olsen, K. W. & Rossman, M. G. D-glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. *Proc. Natl Acad. Sci. USA* 70, 3052–3054 (1973).
18. Roosild, T. P. et al. Mechanism of ligand-gated potassium efflux in bacterial pathogens. *Proc. Natl Acad. Sci. USA* 107, 19784–19789 (2010).
19. Ye, S., Li, Y., Chen, L. & Jiang, Y. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K\(^+\) channels. *Cell* 126, 1161–1173 (2006).
20. Tholena, N. et al. All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K\(^+\) uptake by the KtrAB system from *Vibrio alginolyticus*. *J. Biol. Chem.* 280, 41146–41154 (2005).
21. Matsuda, N. et al. Na\(^+\)-dependent K\(^+\) uptake Ktr system from the cyanobacterium *Synechocystis* sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. *J. Biol. Chem.* 279, 54952–54962 (2004).
22. Bakker, E. P. & Mangerich, W. E. The effects of weak acids on potassium uptake by *Escherichia coli* K-12 inhibition by low cytoplasmic pH. *Biochim. Biophys. Acta* 730, 379–386 (1983).

23. Yuan, P., Leonetti, M. D., Hsiung, Y. & MacKinnon, R. Open structure of the Ca$^{2+}$-gating ring in the high-conductance Ca$^{2+}$-activated K$^+$ channel. *Nature* 481, 94–97 (2012).

24. Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. *Science* 258, 307–310 (1992).

25. Rhoads, D. B. & Epstein, W. Energy coupling to net K$^+$ transport in *Escherichia coli* K-12. *J. Biol. Chem.* 252, 1394–1401 (1977).

26. Stewart, L. M., Bakker, E. P. & Booth, I. R. Energy coupling to K$^+$ uptake via the Trk system in *Escherichia coli*: the role of ATP. *J. Gen. Microbiol.* 131, 77–85 (1985).

27. Wierenga, R. K., Terpstra, P. & Hol, W. G. Prediction of the occurrence of the ADP-binding pap-fold in proteins, using an amino acid sequence fingerprint. *J. Mol. Biol.* 187, 101–107 (1986).

28. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D* 66, 213–221 (2010).

29. Long, W. S., Slayman, C. L. & Low, K. B. Production of giant cells of *Escherichia coli*. *J. Bacteriol.* 133, 995–1007 (1978).

30. Felle, H., Porter, J. S., Slayman, C. L. & Kaback, H. R. Quantitative measurements of membrane potential in *Escherichia coli*. *Biochemistry* 19, 3585–3590 (1980).

31. Kuo, M. M., Saimi, Y., Kung, C. & Choe, S. Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K$^+$ channel using *Escherichia coli* as a host. *J. Biol. Chem.* 282, 24294–24301 (2007).

Supplementary Information is available in the online version of the paper.

Acknowledgements Diffraction data for this study were measured at beamlines X4A, X4C, X25 and X29 of the National Synchrotron Light Source, ID-17 and ID-24 at the Advanced Photon Source, 5.0.2 and 8.2.2 at the Advanced Light Source, and 5.0.2 and 5.0.3 at the Cornell High Energy Synchrotron Source. M.Z. thanks E. Bakker, I. Booth, R. Kraemer and C. Slayman for discussions and insights, and K. R. Rajashankar for help with X-ray crystallography. This work was supported by the US National Institutes of Health (DK088057, GM098878 and HL086392 to M.Z., and a subcontract (sub 5808 to M.Z.) from the PSI: Biology grant U54GM095315 to W. Hendrickson), the American Heart Association (12EIA8850017 to M.Z. and 0826067D to Y.P.), and the Irma T. Hirschl Trust Award to M.Z. M.Z. was a Pew Scholar in Biomedical Sciences.

Author Contributions Y.C., Y.P., H.H., E.J.L., X.J. and M.Z. designed the experiments. Y.C. and H.H. expressed, purified and crystallized the proteins, and collected and processed the diffraction data. H.H., X.J. and E.J.L. solved and refined the structures. Y.P. prepared spheroplasts and performed patch-clamp recordings. B.K. provided reagents and the VpTrkH clone. All authors participated in data analysis. Y.P., E.J.L. and M.Z. wrote the manuscript with inputs from all authors.

Author Information Atomic coordinates and structure factors have been deposited with the Protein Data Bank under accession numbers 4J9U and 4J9V. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to M.Z. (mzhou@bcm.edu).
METHODS
Cloning and purification of the TrkH–TrkA complex. The trkH gene was amplified from *Vibrio parahaemolyticus* genomic DNA and was cloned into the pET31b plasmid (Novagen) with an ampicillin-resistance gene. The *Vibrio parahaemolyticus* trkA gene was cloned into a modified PET plasmid (Novagen) with a C-terminal polyhistidine tag and a TEV protease recognition site with a kanamycin-resistance gene. For large-scale purification of the VpTrkH–TrkA complex, BL21(DE3) cells were co-transformed with a 1:1.5 ratio of plasmids with a C-terminal polyhistidine tag and a TEV protease recognition site with a *Vibrio parahaemolyticus* trkA. Once the OD 600 nm reached 1.0, expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) after the optical density at 600 nm reached 1.0. The cell membranes were solubilized with 40 mM n-decyl-β-D-maltoside (Anacatre) and the VpTrkH–TrkA complex was purified with TALON Metal Affinity Resin (Clontech Inc.). After removal of the His tag with TEV protease, the TrkH–TrkA was subjected to size-exclusion chromatography with a Superdex 200 10/300 GL column (GE Health Sciences) pre-equilibrated in a 20 mM MgCl₂ and 5% glycerol; or 30% PEG400, 100 mM glycine, pH 9.0 and obtained in two conditions: 10% polyacrylic acid 5100, 100 mM Tris, pH 8.0, 200 mM MgCl₂, or 30% PEG400, 100 mM glycine, pH9.0 and 200 mM MgSO₄. Before flash-freezing in liquid nitrogen, the crystals were cryo-protected by soaking for 2–5 s in a solution obtained by sitting-drop vapour diffusion with equal volumes of protein solution and well solution containing 35% PEG400, 400 mM ammonium sulphate, 100 mM HEPES, pH 6.75 and 25 μg ml⁻¹ Ta₄Br₁₂. Isolated VpTrkA was co-crystallized with ATP-γS by vapour diffusion in sitting drops, where 1.5 μl of the protein solution was mixed with an equal volume of crystallization solution containing 37.5% PEG400, 400 mM ammonium sulphate and 100 mM HEPES, pH 6.75. Before collecting crystals, tandem bromide clusters (Jena Bioscience) were applied by dissolving approximately 25 μg ml⁻¹ powder directly into the crystal growth solution and incubating for 10–12 h. Before flash-freezing in liquid nitrogen, the crystals were cryo-protected by soaking for 2–5 s in a solution obtained by sitting-drop vapour diffusion with equal volumes of protein solution and well solution containing 35% PEG400, 400 mM ammonium sulphate, 100 mM HEPES, pH 6.75 and 25 μg ml⁻¹ Ta₄Br₁₂. Isolated VpTrkA was co-crystallized with ATP-γS by vapour diffusion in sitting drops, where 1.5 μl of the protein solution was mixed with an equal volume of crystallization solution. Crystals were obtained in two conditions: 10% polyacrylic acid 5100, 100 mM Tris, pH 8.0, 20 mM MgCl₂, and 5% glycerol; or 30% PEG400, 100 mM glycine, pH9.0 and 200 mM MgSO₄. Before flash-freezing in liquid nitrogen, the crystals were cryo-protected by increasing the concentration of glycerol (25% v/v) and PEG400 (35% v/v) in the mother liquor.

X-ray diffraction data were collected at the beamlines X29 and X4A and C at the National Synchrotron Light Source, ID-24 and ID-17 at the Advanced Photon Source, 5.0.2 and 8.2.2 at the Advanced Light Source, and A1 and F1 at CHESS. The structure of the TrkH–TrkA complex was solved by MRSAD using the Phenix software suite, with the TrkH structure (3P2Z) as a search model and experimental phases from the 18 Ta₄Br₁₂ clusters in the asymmetric unit. Iterative rounds of manual and automatic structure refinement were carried out with Coot and phenix.refine, respectively, and protein geometry was monitored using Molprobity. The final model contains 18 tandem bromide clusters, 4 NADH molecules, 4 TrkA molecules and 4 TrkH molecules. Residues 63–65 and 159–177, located on cytoplasmic loops, are unresolved in the TrkH molecules; residues 162–163 and 178–181 are unresolved in TrkA. The isolated TrkA structure was solved using molecular replacement with the TrkA structure from the complex, and refined by a similar method to the structure of the complex. The final model of the isolated TrkA structure contained four molecules of ATP-γS and two TrkA molecules.

Electrophysiology. The VpTrkH– and VpTrkA-containing vectors used in expressing the TrkH–TrkA complex were used. All mutations were made with the QuikChange kit (Agilent Technologies) and verified by sequencing through the entire coding regions. Giant spheroplasts were prepared from *E. coli* following a protocol described previously, with minor modifications. In brief, a single colony co-transformed with TrkH and TrkA was incubated in 5 ml of modified LB medium (0.5% NaCl, 1% tryptone and 0.5% yeast extract) by shaking at 250 r.p.m., 37°C. When the OD₆₀₀ nm reached 0.5, the culture was diluted by 10-fold into 5 ml fresh modified LB with the addition of 60 μg ml⁻¹ cephalexin. The elongated filaments were then collected by centrifuging 2 ml of the culture at 3,000g for 1 min. The supernatant was removed carefully and 0.5 ml 0.8 M sucrose was added to re-suspend the pellet. The following solutions were added sequentially: 30 μl of 1 M Tris-HCl (pH 8.0), 24 μl of 0.5 mg ml⁻¹ lysosome, 6 μl of 5 mg ml⁻¹ DNase I, and 6 μl of 0.125 M EDTA-NaOH (pH 8.0). The mixture was incubated for 7.5 min at room temperature and 100 μl of the stop solution (0.7 M sucrose, 20 mM MgCl₂, and 10 mM Tris-HCl, pH 8.0) was added to stop the digestion. The spheroplasts were aliquoted and stored at − 20°C. The frozen spheroplasts were thawed on ice and used in electrophysiology.

Patch-clamp currents were recorded on inside-out patches pulled from the spheroplasts placed on clean glass coverslips. Electrodes were drawn from patch glass (TW100F-4, World Precision Instruments) and polished (MP-803, Narishige Co.) to a resistance of 7–10 MΩ. Both bath solution and the pipette solution contained 200 mM KCl, 0.5 M sucrose and 10 mM HEPES at pH 7.4. All solutions of perfused nucleotides were prepared from sodium salts. No pressure was applied to the membrane after the GΩ seal formation was achieved, which excluded the endogenous mechanosensitive channel activities. The analogue signals were amplified by an Axon-200B patch-clamp amplifier (Molecular Devices Inc.), and filtered at 1 kHz using the built-in Bessel filter, digitized at 100 μs by Digidata 1322a (Molecular Devices Inc.), and recorded to a computer hard disk. The data were analysed with pCLAMP9 software.