Modulation of Brain b-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

Michel Botbol, Pierre L. Roubertoux, Michèle Carlier, Severine Trabado, Sylvie Brailly-Tabard, Fernando Perez-Diaz, Olivier Bonnot, Guillaume Bronsard, Sylvie Tordjman

To cite this version:
Michel Botbol, Pierre L. Roubertoux, Michèle Carlier, Severine Trabado, Sylvie Brailly-Tabard, et al.. Modulation of Brain b-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice. PLoS ONE, 2011, 6 (3), pp.1-5. 10.1371/journal.pone.0016704. hal-00586208

HAL Id: hal-00586208
https://hal.science/hal-00586208
Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modulation of Brain β-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

Michel Botbol¹*, Pierre L. Roubertoux², Michèle Carlier³, Séverine Trabado⁴, Sylvie Brailly-Tabard⁴, Fernando Perez-Diaz⁵, Olivier Bonnot⁶, Guillaume Bronsard⁷, Sylvie Tordjman⁸,⁹,¹⁰

1 INSERM U 669, Troubles des Conduites Alimentaires à l’Adolescence, Paris, France; 2 Aix Marseille Université, INSERM U 910, Génétique Médicale Génomique Fonctionnelle, Marseille, France; 3 Aix Marseille Université and Institut Universitaire de France, Laboratoire de Psychologie Cognitive, CNRS UMR 6146, Marseille, France; 4 INSERM U 693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France; 5 Centre Emotion, UFR 3 Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent 246 CNRS, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; 6 Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Hôpital Pitié-Salpêtrière, Paris, France; 7 Laboratoire de Santé Publique (EA3279), Ecole de Médecine de LaTimone, Marseille, France; 8 Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent de Rennes, CHGR et Université de Rennes 1, Rennes, France; 9 Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France; 10 CNRS UMR 8158, Paris, France

Abstract

Background: Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (YNPAR) on brain opioid, and more specifically on brain β-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with YNPAR.

Methodology/Principal Findings: Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the YNPAR. An indirect effect of the YNPAR on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P<0.0001) of the YNPAR in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen’s procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the YNPAR.

Conclusions/Significance: The contribution of YNPAR on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the YNPAR encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry), carried by YNPAR to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the propiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males.

Introduction

The Y chromosome includes the YNPAR and the YPAR. The YNPAR is called non-pairing or specific region and is transmitted from father to sons exclusively. The YPAR recombines with the X chromosome at the male meiosis and is called pairing or pseudoautosomal region for this reason. Few functional genes are mapped on YNPAR (histocompatibility Y antigen, RNA binding motif protein, and several other genes contributing to male reproduction such as Sry and genes necessary for the spermatozoon development and maintenance). Several lines of evidence suggest a possible effect of YNPAR on brain opioid, and more specifically on brain β-endorphin (BE). Neonatal injection of testosterone decreases brain BE concentration and the number of μ receptors in the hypothalamus (μ receptors are receptors of BE) [1,2]. In addition, neonatal injection or exposure to testosterone contributes to the “male pattern” of the ontogenesis of μ receptors in the hypothalamus and to the development of BE innervations in the brain [2–6]. Inversely, intracerebro-ventriculaire injection of BE decreases plasma Luteinizing Hormone concentration and consequently plasma testosterone concentration; this effect involves the μ receptors and is blocked by the preliminary administration of Naloxone (an antagonist of the μ receptors) [7–10]. Given these previous observations and because YNPAR is involved in plasma testosterone concentration and testicular reactivity to testosterone [11,12], the YNPAR is expected to be associated with brain BE.
This hypothesis of an effect of the \(Y_{\text{PNP}} \) on brain BE is also supported by studies in mice models and in humans showing an inhibitory influence of central opioid acting through the \(\mu \) receptors (such as BE) on aggressive behavior [13–20], and an effect of the murine \(Y_{\text{PNP}} \) on aggression [21–25]. In addition, Laarakker et al.’s study [26] reporting a contribution of the \(Y_{\text{PNP}} \) to anxiety-related behavior in mice, strengthens the hypothesis of an effect of the \(Y_{\text{PNP}} \) or brain BE, given that BE is considered as a stress hormone [27–29].

Finally, in humans, and more precisely in autistic disorder, two other arguments support our hypothesis: on one hand, the fourfold higher prevalence of autism in male compared to female [30] (autism is a pervasive developmental disorder for which family and twin studies suggest a genetic contribution [31–33]) could indicate a contribution of the \(Y_{\text{PNP}} \), on the other hand, several studies have reported abnormal central as well as peripheral BE levels in individuals with autism [34].

The present study was designed first to test directly the effect of \(Y_{\text{PNP}} \) on brain BE levels in two highly inbred strains of mice, NZB/BINJ (N) and CBA/HGnc (H), and their consomic strains for the \(Y_{\text{PNP}} \). Second, an indirect effect of the \(Y_{\text{PNP}} \) on brain BE level via plasma testosterone was tested by studying the genetic correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains of mice.

Methods

Mice and rearing conditions

Brain \(\beta \)-endorphin and plasma testosterone were measured in a set of inbred strains of mice and of a quartet of parental and their consomic strains for the \(Y_{\text{PNP}} \). The set of inbred strains consisted in 11 inbred mouse strains A/J, XLII, BA, BALB/cBy, C57BL/10Bg, C57BL/6jBy, CBP-K, DBA/1Bq, DBA/2j, CBA/HGnc and NZB/BINJ. The strains were maintained in the laboratory for six or more generations of brother-sister mating regimen. The quartet of parental and their consomic strains for the \(Y_{\text{PNP}} \) was developed as follows: we selected two strains of laboratory mice NZB/BINJ \((N) \) and CBA/HGnc \((H) \), and their consomic strains for the \(Y_{\text{PNP}} \). Second, an indirect effect of the \(Y_{\text{PNP}} \) on brain BE level via plasma testosterone was tested by studying the genetic correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains of mice.

Biochemical analyses

Brain tissues were homogenized in 5 volumes of 0.1\(\text{M} \) HCl and heated for 15 min at 95°C. After centrifugation (38,000 \(\times \)g, 10 min, 4°C), the supernatant was adjusted to pH 7.0 with 1\(\text{M} \) Tris base, and the resulting precipitate was spun down at 6,000 \(\times \)g for 10 min at 4°C. Protein concentrations were determined in the pellets by the method of Lowry et al. [40] with bovine serum albumin as the standard. Brain BE levels are expressed in picomoles per gram of fresh tissue.

The plasma testosterone was assayed according to RIA in coated tubes using a specific testosterone antibody exhibiting a reduced cross-reaction (7.5%) with other androgen steroids (\(^{125} \text{I} \)-TESTOSTERONE COATRIA, kit Biomérieux). The competitive inhibition reaction was measured between a fixed amount of \(^{125} \text{I} \)-labelled testosterone and the testosterone to be determined (standards or samples) for a fixed number of binding sites on the anti-testosterone antibody. Coated tubes, containing plasma and \(^{125} \text{I} \)-testosterone tracer, were incubated for 2 h at 37°C. The \(^{125} \text{I} \)-testosterone tracer was separated from that remaining in solution. The bound radioactivity counted for 1 min was then inversely proportional to the testosterone quantity in standards or samples. Each individual sample was assayed in duplicate and the sample again assayed when the difference between the two results was over 20%.

Statistical analyses

The effect of the \(Y_{\text{PNP}} \) on brain BE level and plasma testosterone concentration was studied using a two-way ANOVA, with genetic background -H versus N- and origin of the \(Y_{\text{PNP}} \) -H versus N- as main factors. Effect size was calculated using the \(\theta^2 \) statistic and expressed as a percentage of variance [41]. Comparisons between the 11 inbred mouse strains for BE or testosterone variables were performed using ANOVA. The Kolmogorov-Smirnov test indicated that BE and testosterone levels were not normally distributed; thus all ANOVAs were performed using log-transformed BE and testosterone values. Correlations between brain BE levels and plasma testosterone concentrations in the 11 inbred mouse strains (each strain is represented by the mean of five animals for biological variables) were determined by Spearman rank-order correlation analyses. According to Hegmann and Possidente [42], these correlations between biological measures can be considered as an estimation of genetic correlations. The significance level was set at 0.05; however, the usual
level of 0.05 is very conservative when the correlations are computed on mean scores and not on individual scores.

Results

Effect of the YNPAR on brain β-endorphin levels

Brain BE levels were significantly modified by the non-YNPAR genotype and the YNPAR in interaction with non-YNPAR genotype (F(1,17) = 4.80, P<0.04, η² = 0.10 and F(1,17) = 27.18, P<0.0001, η² = 0.56, respectively). The YNPAR alone did not contribute significantly to BE concentration (F(1,17) = 1). Partial comparisons indicated that BE levels were significantly higher in the H strain than in the N strain (t (1.47) = 2.43, P<0.05). The substitution of the YNPAR from H by the YNPAR from N, in the H strain, reduced significantly the brain BE concentration, and the substitution of the YNPAR from N by the YNPAR from H, in the N strain, reduced the brain BE level to the lowest concentration.

Effect of the YNPAR on plasma testosterone concentration

The non-YNPAR genotype, the YNPAR region and their interactions modulated significantly plasma testosterone concentration (F(1,17) = 48.42, P<0.0001, η² = 18.20; F(1,17) = 109.15, P<0.0001, η² = 0.41 and F(1,17) = 72.63, P<0.0001, η² = 27.28, respectively). Partial comparisons indicated that testosterone concentration were significantly higher in the N strain than in the H strain (t (5.99) = 11.97, P<0.0001). The substitution of the YNPAR from N by the YNPAR from H, in the N strain, reduce significantly the testosterone concentration (t (5.99) = 13.37, P<0.001), whereas the opposite replacement of the YNPAR from H by the YNPAR from N, in the H strain, did not modify the testosterone concentration.

Figure 1. Brain BE concentration (mean ± SEM) in NZB and CBA/H and their consomic strains for YNPAR. The N.H-YNPAR differs only from the NZB by the YNPAR from CBA/H, and the H.N-YNPAR differs only from the CBA/H by the YNPAR from NZB. Partial comparisons with Student’s t test showed that the parental NZB and CBA/H strains differed significantly (P<0.05), and each parental strain differed significantly from its consomic strain (CBA/H vs. H.N-YNPAR, P<0.001; NZB vs. N.H-YNPAR, P<0.01); n = 5 animals for each strain, except for NZB (n = 6); SEM = standard error of the mean.

doi:10.1371/journal.pone.0016704.g001

Figure 2. Plasma testosterone concentration (mean ± SEM) in NZB and CBA/H and their consomic strains for YNPAR. The N.H-YNPAR differs only from the NZB by the YNPAR from CBA/H, and the H.N-YNPAR differs only from the CBA/H by the YNPAR from NZB. Partial comparisons with Student’s t test showed that the parental NZB and CBA/H strains differed significantly (P<0.0001), and the parental NZB strain differed significantly from its consomic strain (NZB vs. N.H-YNPAR, P<0.001); n = 10 animals for each strain; SEM = standard error of the mean.

doi:10.1371/journal.pone.0016704.g002
Correlation between β-endorphin and testosterone

The data of brain BE levels and plasma testosterone concentrations (mean ± SEM) in 11 inbred strains are presented in Table 1. The 11 inbred mouse strains did not differ significantly for BE or testosterone concentrations. In addition, there was no correlation between brain BE levels and plasma testosterone concentration when the analysis was conducted on the eleven different inbred strains including the same N and H males contributing to the present study ($r_{\text{Spearman}} = 0.09$, $P > 0.1$).

Discussion

Our main data indicated a significant and major effect of the Y_{NPAR} in interaction with the genetic background on brain BE levels. The controls to ensure the isogenicity of the background in each parental strain and its consomic strain rule out a possible contribution of residual autosomal alleles from the donor strain to this effect of the Y_{NPAR} in interaction with the genetic background. None of the annotations of the genes carried by the Y_{NPAR} allows us to consider that one of them contributes directly in the BE production [43].

An indirect effect of the Y_{NPAR} in interaction with the genetic background on brain BE levels via plasma testosterone is not supported by our findings. Indeed, there was no correlation in this study between brain BE levels and plasma testosterone concentrations, although this research is limited by the absence of variability of BE or testosterone concentration between the 11 inbred strains. In addition, our results on plasma testosterone measured in the parental N and H and their consomic strains confirm our previous study [12] and indicate that the strain distribution pattern differs for brain BE levels and plasma testosterone concentrations; the Y_{NPAR} from N, which depleted BE on the H background, had no effect on testosterone. Thus, the strong decremental effect on brain BE levels resulting from the transfer of the Y_{NPAR} from N to H, cannot be explained by variations of plasma testosterone concentrations. Furthermore, the statistical effects of the Y_{NPAR} substitution are not the same in BE and testosterone: first, the Y_{NPAR} modulates BE concentration via an interactive effect with the genetic background and with no significant effect of Y_{NPAR} alone, whereas testosterone concentration is modulated by the Y_{NPAR} substitution alone and by an interaction between the Y_{NPAR} and the genetic background. Finally, effect size of the non-Y_{NPAR} genotype, the Y_{NPAR} and their interactions differ for BE and testosterone.

The indirect effect of the Y_{NPAR} in interaction with the genetic background on brain BE levels might be explained by a contribution of the sex-determining region of the Y chromosome ($S\text{ry}$) carried by Y_{NPAR} [44–47]. Thus, the transcription of the Melanocortin receptor (M2R) gene depends on the presence of $S\text{ry}$ [45,48]. M2R gene, located on chromosome 18, has been identified as the gene of the receptor of proopiomelanocortin. Proopiomelanocortin plays an important role in the BE system given that BE is directly derived from proopiomelanocortin. The Y_{NPAR} has different origins in inbred strains of mice. The N and H strains are from Asian and European origins, respectively. Analysis of the Y_{NPAR} patterns of restriction reveals that the N and H strains belong to different groups [49] suggesting $S\text{ry}$ polymorphisms. We hypothesized that $S\text{ry}$ polymorphisms between Y_{NPAR} from N and Y_{NPAR} from H, modify the transcription of several genes including M2R, resulting in the modification of BE brain concentration.

The effect of the Y_{NPAR} on brain BE concentration in interaction with the genetic background reported in the present study is the first demonstration of Y-chromosome mediated control of brain opioid. The results open new perspectives to better understand sex differences observed in some disorders such as autistic disorder, where abnormal central BE levels have been reported. Finally, the findings could have important implications for research on the genetic control of BE metabolic pathways.

Author Contributions

Conceived and designed the experiments: S. Tordjman PR MC. Performed the experiments: S. Tordjman PR MC. S. Trabaldo SB-T OB GB. Analyzed the data: FP-D MC MB. Wrote the paper: MB S. Tordjman PR.

References

1. Diaz-Guerra FJ, Bicknell RJ, Mansfield S, Emson PC, Dyer RG (1987) Effect of neonatal testosterone upon opioid receptors and the content of beta-endorphin, neuropeptide Y and neurotransin in the medial preoptic and the medial basal hypothalamic areas of the rat brain. Brain Res 424: 225–230.
2. Marini E, Donati D, Lamonti P, Maggi R, Proc P (1989) Modulation by sex steroids of brain opioid receptors: implications for the control of gonadotropins and prolactin secretion. J Steroid Biochem 33: 673–681.
3. Barraclough CA (1966) Modifications in the CNS regulation of reproduction after exposure of prepuberal rats to steroid hormones. Recent Prog Horm Res 22: 503–539.
4. MacLusky NJ, Naftolin F (1981) Sexual differentiation of the central nervous system. Science 211: 1294–1302.
5. Hammer RP, Jr. (1984) The sexually dimorphic region of the preoptic area in rats contains denser opiate receptor binding sites in females. Brain Res 308: 172–176.
6. Hammer RP, Jr. (1985) The sex hormone-dependent development of opiate receptors in the rat medial preoptic area. Brain Res 360: 65–74.
7. Taya K, Sasamoto S (1989) Inhibitory effects of corticotrophin-releasing factor on LH and FSH secretion in the lactating rat. J Endocrinol 120: 509–515.
8. Horton RJ, Francis H, Clarke JJ (1989): Seasonal and steroid dependent effects on the modulation of LH secretion in the ewe by intracerebroventricular administered beta-endorphin or naltrexone. J Endocrinol 122: 503–517.
9. Meites J, Bruni JF, Van Vught DA, Smith AF (1979): Relation of endogenous opioid peptides and morphine to neuroendocrine functions. Life Sci 24: 1325–1336.
10. Pfeiffer DG, Pfeiffer A, Shamoehigashi Y, Merriam GR, Loriers DL (1983): Predominant involvement of mu-receptor than delta- or kappa-opiate receptors in LH secretion. Peptides 4: 647–679.
11. Le Roy I, Tordjman S, Migliore-Samour D, Degrelle H, Roubertoux PL (2001): Genetic Architecture of testes and seminal vesicle weights in mice. Genetics 158: 1–5.
12. Tordjman S, Roubertoux PL, Carlier M, Moutier R, Anderson G, et al. (1995): Linkage between brain serotonin concentration and the sex-specific part of the Y-chromosome in mice. Neurosci Lett 183: 190–192.
13. Tordjman S, Carlier M, Cohen D, Cesnulin F, Bourgeais S, et al. (2003): The role of Endorphins, Enkephalins and Dynorphins in aggression. Behav Genet 33: 529–536.
14. Ibbarra P, Bruehl SP, McCubbin JA, Carlton CR, Wilson JF, et al. (1994): An unusual reaction to opioid blockade with naloxone in a case of post-traumatic stress disorder. J Trauma Stress: 7: 303–309.
15. Haney M, Miczek KA (1989): Morphine effects on maternal aggression, pup care and analgesia in mice. Psychopharmacology 98: 68–74.
16. Shaikh MB, Dalsass M, Siegel A (1990): Opioidergic mechanisms mediating aggressive behavior in the cat. Aggress Behav 16: 191–206.
17. Expert R, Navarro JF, Salvador A, Simon VM (1993): Effects of morphine hydrochloride on social encounters between male mice. Aggress Behav 19: 377–383.
18. Miner LL, Elmer GI, Pieper JO, Marley RJ (1993): Aggression modulates genetic influences on morphine analgesia as assessed using a classical mendelian cross analysis. Psychopharmacology 111: 17–22.
19. Shaikh MB, Lu CL, Siegel A (1991): An enkephalinergic mechanism involved in amygdala-oid suppression of affective defence behavior elicited from the midbrain periaqueductal gray in the cat. Brain Res 559: 109–117.
20. Weiner S, Shaikh MB, Shaikh AB, Siegel A (1991): Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Physiol Behav 49: 1099–1105.
21. Maxson SC, Didier-Erickson A, Ogawa S (1989): The Y chromosome, social signals, and offense in mice. Behav Neural Biol 52: 231–239.
22. Guillot PV, Carlier M, Maxson S, Roubertoux P (1995): Intramale aggression tested in two procedures, using four inbred strains of mice and their reciprocal congenics: Y chromosomal implications. Behav Genet 25: 357–360.
23. Canastar A, Maxson SC, Bishop CE (2008): Aggressive and mating behaviors in two types of sex reversed mice: XY females and XN males. Arch Sex Behav 37(1): 2–8.
24. Miczek KA, Maxson SC, Fish EW, Facchidono S (2001): Aggressive behavioural phenotype in mice. Behav Brain Res 125: 167–181.
25. Sluyter F, Van Ooijenmaass GA, De Ruiter AJ, Koelhaas JM (1996): Aggression in wild house mice: current state of affairs. Behav Genet 26(5): 489–496.
26. Laarakker MC, Ohl F, Van Lith HA (2008): Chromosomal assignment of quantitative trait loci influencing modified hole board behavior in laboratory mice using somatic strains, with special reference to anxiety-related behavior and mouse chromosome 19. Behav Genet 38(2): 159–184.
27. Angelou联谊ian P, Gianoulakis C (1989): Ontogeny of the beta-endorphin response to stress in the rat: role of the pituitary and the hypothalamus. Neuroendocrinology 50: 372–381.
28. Gerra G, Volpi R, Delignore R, Cacchiari V, Gaggiotti MT, et al. (1992): ACTH and beta-endorphin responses to physical exercise in adolescent women tested for anxiety and frustration. Psychiatry Res 41: 179–186.
29. Kjaer A, Knig B, Bach FW, Warberg J (1992): Histamine-and stress-induced secretion of ACTH and beta-endorphin: involvement of corticostatin-releasing hormone and vasopressin. Neuroendocrinology 56: 419–428.
30. Tordjman S, Guttinecht I, Carlier M, Spitz E, Antoine C, et al. (2001): Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 5: 831–836.
31. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, et al. (1995): Autism as a strongly genetic disorder. Evidence of a British twin study. Psychol Med 25: 63–77.
32. Smalley SL, Azarnoff RF, Spence MA (1988): Autism and genetics. A decade of research. Arch Gen Psychiatry 45: 953–961.
33. Steffenburg S, Gilberg C, Hellgren L, Andersson L, Gilberg CC, et al. (1989): A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30: 405–416.
34. Tordjman S, Anderson GM, Botbol M, Brailly-Tabard S, Perez-Diaz F, et al. (2009): Pain reactivity and plasma beta-Endorphin in children and adolescents with autistic disorder. Plos One 4(3): e5289, 1–10.
35. Roubertoux P, Le Roy I, Mortaud S, Perez-Diaz F, Tordjman S (1999): Measuring aggression in the mouse. In WECruin, RTGerlai, eds. Handbook of molecular-genetic techniques for brain and behavior research (Vol. 13: Techniques in the Behavioral and Neural Science; pp. 696–709). Amsterdam: Elsevier.
36. Roubertoux PL, Degrelle H, Maxson SC, Phillips J, Tordjman S, et al. (1994): Alleles of the microsomal steroid sulfatase gene (So) in the pseudosomicosatomial region of the heterosomes of the mouse. CR Acad Sci 317: 532–537.
37. Moutier R, Carlier M (1991): Mandible shape analysis in Y-congenic strains of mice. Lab Anim 25: 303–307.
38. Bayley DW (1985): Genes that affect the shape of the murine mandible. Congenic strain analysis. J Hered: 76: 107–114.
39. Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Migea S, et al. (1982): Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22: 222–226.
40. Lowry OH, Rosebrough AL, Farr AL, Randall RJ (1951): Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
41. Cohen J (1977): Statistical power analysis for the behavioral sciences (2nd edn). New York: Academic Press.
42. Hegmann JP, Possidente B (1981): Estimating genetic correlations from inbred strains. Behav Genet 1: 103–113.
43. Mouse Genome Database (MGD) at the Mouse Genome Informatics website, The Jackson Laboratory, Bar Harbor, Maine. World Wide Web (URL: http://www.informatics.jax.org/ September 10, 2009).
44. Bouma GJ, Hart GT, Washbhum LL, Recknagel AK, Eicher EM (2004): Using real time RT-PCR analysis to determine multiple gene expression patterns during XX and XY mouse fetal gonad development. Gene Expr Patterns 5: 63–77.
45. Bouma GJ, Alfouirit JP, Bult CJ, Eicher EM (2007): Transcriptional profile of mouse pre-granulosa and Sertoli cells isolated from early-differentiated fetal gonaids. Gene Expr Patterns 7: 113–123.
46. Wertz K, Herrmann BG (2008): Large-scale screen for genes involved in gonad development. Mech Dev 98: 51–70.
47. Neildlarit J, Gasca S, Wertz K, Obermayr F, Warpenborg S, et al. (2000): Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos. Mech Dev 90: 77–94.
48. Meenke DB, Page DC (2002): Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns 2: 359–367.
49. Tucker PK, Lee BK, Lundrigan BL, Eicher EM (1992): Geographical origin of the Y Chromosomes in “old” inbred strains of mice. Mann Genome 3: 254–261.