Coverage Probability Analysis of RIS-Assisted High-Speed Train Communications

Changzhu Liu1, Ruisi He1,4, Yong Niu1*, Bo Ai1,2, Zhu Han3, Meilin Gao4, and Zhangdui Zhong1

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
2Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China
3Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004 USA
4Beijing National Research Center for Information Science and Technology, Tsinghua University, China

*Corresponding Author: Ruisi He, Yong Niu (ruisi.he@bjtu.edu.cn; niuyong@bjtu.edu.cn)

Abstract—Reconfigurable intelligent surface (RIS) has received increasing attention due to its capability of extending cell coverage by reflecting signals toward receivers. This paper considers a RIS-assisted high-speed train (HST) communication system to improve coverage probability. We derive the closed-form expression of coverage probability. Moreover, we analyze impacts of some key system parameters, including transmission power, signal-to-noise ratio threshold, and horizontal distance between base station and RIS. Simulation results verify the efficiency of RIS-assisted HST communications in terms of coverage probability.

Index Terms—Reconfigurable intelligent surface, high-speed train, coverage probability.

I. INTRODUCTION

High-speed train (HST) communications have attracted a lot of attention in recent years. Compared with the traditional wireless communication networks, HST communications have high mobility of onboard transceivers and large signal penetration loss through train cars, and it leads to many challenges such as channel modeling, coverage enhancement, Doppler shift compensation, time-varying channel estimation, beamforming design, and resource management [1]–[7]. Reconfigurable intelligent surface (RIS) is one of key technologies for future wireless communication, and it is capable of smartly designing radio environment [8], [9]. Moreover, the wireless coverage can be expected to increase with the aid of RIS [10], and it is thus helpful for HST communication enhancement.

In the design of HST communication systems, cell coverage performance is an important indicator. However, in terms of coverage performance analysis and improvement of HST communications, there are only few works in the literature. In [11], a beamforming based coverage performance improvement scheme was proposed for HST communication systems with elliptical cells. In [12], the authors considered overlap area between adjacent cells and hard handoff scheme, and coverage performance for HST systems were further analyzed. In [13], coverage efficiency of HST communications was improved by exploiting the radio-over-fiber technology. The coverage analysis of HST communication systems with carrier aggregation was investigated in [14], where theoretical expressions for edge coverage probability and percentage of cell coverage area were derived.

RIS-assisted HST communications have been rarely investigated. In [1], the authors provided a novel RIS-aided HST wireless communication paradigm, including its main challenges and application scenarios, and provided effective solutions to solve the problem of signal processing and resource management. In [15], outage probability of a RIS-assisted multiple-input-multiple output downlink system with statistic channel state information for HST communications was investigated. In [16], the authors considered a train-ground time division duplexing wireless mobile communication paradigm to deploy two RISs for HST communication systems, and further solved the spectrum effective maximization problem. In [17], the authors investigated spectral efficiency of a RIS-assisted millimeter-wave HST communication by exploiting the deep reinforcement learning method.

Wireless coverage in complex environment can be significantly enhanced with the aid of RIS [18]. For coverage analysis of RIS-assisted communications, there are some works in recent years [19]–[21]. In [19], a RIS-assisted network model was investigated, and a RIS placement optimization problem was formulated to maximize cell coverage. In [20], the authors investigated a RIS-assisted point-to-point network without direct link, and analyzed network coverage, SNR gain, and delay outage rate. A RIS-assisted single-input single-output (SISO) system was considered in [21], where coverage probability and ergodic capacity were analyzed.

To the best of the authors’ knowledge, there are a few literatures dealing with wireless coverage probability analysis for RIS-assisted HST communications. Motivated by the above gap, this paper investigates coverage performance in downlink single-input-single-output (SISO) RIS-assisted HST communication systems, as shown in Fig. 1, where a single-antenna base station (BS) serves a single-antenna mobile relay (MR) with the help of one RIS. We consider the practical case that RIS only has a finite number of discrete phases. Considering the complexity and validity, we exploit the local search method to optimize the RIS phase. Moreover, we analyze the impact of critical system parameters, including transmission power, SNR threshold, and horizontal distance between BS and RIS, on coverage probability. The major contributions of our work can be summarized as follows:

- We consider a RIS-assisted SISO downlink HST commu-
communication model to extended the coverage of HST, where RIS is deployed within the coverage of BS to provide reflective paths to enhance the received power at MR. The RISs communicate with BS and the MR mounted on top of the train.

- The closed-form expression of coverage probability is derived for RIS-assisted HST communications. Then, RIS phase is optimized by exploiting local search method.
- The simulation demonstrates the impact of some key system parameters on coverage probability including transmission power, SNR threshold, and horizontal distance between BS and RIS. The simulation results for the traditional HST communication systems without using RIS are provided for the sake of comparison. The results demonstrate that the deployment of RISs can effectively improve coverage probability and enhance coverage of HST communication systems.

The rest of this paper is organized as follows. The system model is introduced in Section II. In Section III, coverage probability is derived and RIS phases are optimized. In Section IV, numerical results are presented to show the impact of key system parameters on coverage probability. Section V concludes this work.

II. SYSTEM MODEL

A. Scenario Description

In this section, we introduce a RIS-assisted HST communication system model, as shown in Fig. 1, where a single-antenna BS serves a single-antenna MR with the help of RIS. The trackside BS transmits signals to a train through a MR antenna BS serves a single-antenna MR with the help of RIS. This communication system model, as shown in Fig. 1, where a single-antenna BS serves a single-antenna MR with the help of RIS. Each element is capable of independently rescattering signal, which can be dynamically adjusted by RIS controller [22], and assume that HST firstly moves with speed v close to BS from the left of BS, and then far away from BS.

We consider total time T slots, τ is the slot duration, and $\mathcal{N} = \{1, \cdots, N\}$, $x(t) \sim \mathcal{C}\mathcal{N}(0, 1)$ denotes the signal transmitted to MR during time slot $t \in \{1, \cdots, T\}$ with zero mean and variance equal 1. The received signal at MR in time slot t can be given as

$$y(t) = \sqrt{P} \left(\sum_{n=1}^{N} h_n(t) e^{j\theta_n(t)} g_n(t) \right) x(t) + z(t),$$

(1)

where P denotes transmission power, $h(t)$ denotes the equivalent channel between BS and MR. The channels in time slot t from BS to MR, from BS to the n-th RIS, and from the n-th RIS to MR, are denoted by $h_n(t)$, $g_n(t)$, and $h_n^R(t)$, respectively. $z(t) \sim \mathcal{C}\mathcal{N}(0, \sigma^2)$ denotes i.i.d. additive white Gaussian noise at MR. $\theta_n(t)$ represents phase of the n-th RIS element. For ease of actual implementation, we consider that the phase at each element of RIS can only take a finite discrete values with equal quantization intervals $[0, 2\pi)$. Let δ denote the number of the quantization bits. Then the set of phases at each element is given by $\Theta = \{0, \Delta \theta, \cdots, \Delta \theta (M-1)\}$, where $\Delta \theta = \frac{2\pi}{\delta}$ and $M = 2^\delta$. Note that, the transceiver distances (BS-MR and RIS-MR links) always change across time slots due to high mobility of HST.

Accordingly, the SNR at MR in time slot t is given by

$$\gamma(t) = \frac{P |h_d(t)|^2}{\sigma^2},$$

(2)

where $|\cdot|$ is the absolute value of a complex number.

B. Channel Model

For simplicity, we assume that the Doppler shift caused by the high-mobility can be completely mitigated [23], and all the links follow the Rician fading since line-of-sight (LoS) and non-line-of-sight (NLoS) components exist [24]. In time slot t, BS-MR link $h_d(t)$ can be expressed as

$$h_d(t) = \frac{\kappa_d}{\kappa_d + 1} h_\text{LoS}(t) + \frac{1}{\kappa_d + 1} h_\text{NLoS}(t),$$

(3)

where $\kappa_d \geq 0$ is the Rician K-factor, $h_\text{LoS}(t) \in \mathbb{C}$ is the LoS component depending on BS-MR link and remains stable with each time slot, $h_\text{NLoS}(t) \in \mathbb{C}$ is the NLoS component. The LoS component of the channel between BS and MR can be given as [26]

$$h_\text{LoS}(t) = d_{\text{LoS},d}^{-\eta_d}(t) e^{-j\theta_\text{LoS}(t)},$$

where $d_{\text{LoS},d}(t)$ denotes distance between BS and MR, as shown in Fig. 2, $\varepsilon_d(t)$ denotes path-loss parameter, and $\theta_\text{LoS}(t)$ denotes phase. Similarly, the NLoS component can be written as

$$h_\text{NLoS}(t) = d_{\text{NLoS},d}(t) \tilde{h}_\text{NLoS}(t),$$

where $d_{\text{NLoS},d}(t)$ is the distance between BS and MR for the NLoS case, $\varepsilon'_d(t)$ is the path-loss parameter, $\tilde{h}_\text{NLoS}(t) \sim \mathcal{C}\mathcal{N}(0, 1)$ denotes small-scale component.

For all $n \in \mathcal{N}$, in time slot t, $g_n(t)$ and $h_n^R(t)$ can be given as

$$g_n(t) = \sqrt{\kappa_n} \tilde{h}_n(t) + \sqrt{\frac{1}{\kappa_n + 1}} \tilde{h}_n^R(t),$$

(4)

\footnote{We ignore shadowing effects and assume that large-scale component is determined only by distance-based path-loss [25].}
and θ denote distance between BS and the RIS, written as \tilde{h}_r and \tilde{h}_t.

$$h^n_r(t) = \sqrt{\frac{\kappa_t}{\kappa_t + 1}} \tilde{h}^n_r(t) + \sqrt{\frac{1}{\kappa_t + 1}} \tilde{h}^n_r(t),$$

(5)

where $\kappa_g \geq 0$ and $\kappa_t \geq 0$ are the Rician K-factors, $\tilde{h}^n_g \in \mathbb{C}$ and $\tilde{h}^n_r(t) \in \mathbb{C}$ denote LoS components, and $\tilde{h}^n_g(t) \in \mathbb{C}$ and $\tilde{h}^n_t(t) \in \mathbb{C}$ denote NLoS components.

Similar to BS-MR link, we have $\tilde{h}^n_g = \sqrt{(d^n_{RIS})^{-\epsilon_g} e^{-j\theta^n_g}}$, $\tilde{h}^n_t(t) = \sqrt{(d^n_B(t))^{-\epsilon_t} e^{-j\theta^n_t(t)}}$, where d^n_B and d^n_t denote distance between BS and the n-th RIS and between the n-th RIS and MR, as shown in Fig. 2, respectively. Moreover, d^n_{RIS} denotes vertical distance from BS to rail track, d^n_B denotes vertical distance from RIS to rail track, and d^n_{RIS} denotes horizontal distance between BS and RIS. Parameters ϵ_g and ϵ_t are path-loss parameters, and θ^n_g and θ^n_t are phases. Similarly, the NLoS component can be written as $\tilde{h}^n_g(t) = \sqrt{(d^n_{NLoS,g})^{-\epsilon'} g_{NLoS,g}(t)}$, $\tilde{h}^n_t(t) = \sqrt{(d^n_{NLoS,t})^{-\epsilon'} g_{NLoS,t}(t)}$, where $d^n_{NLoS,g}$ and $d^n_{NLoS,t}$ denote distance between BS and the n-th RIS and between the n-th RIS and MR in the NLoS case, respectively. Parameters ϵ'_g and ϵ'_t are path-loss parameters in the NLoS case, and $g_{NLoS,g}(t), g_{NLoS,t}(t) \sim \mathcal{CN}(0, 1)$ denote small-scale components.

III. COVERAGE PROBABILITY ANALYSIS AND RIS PHASE OPTIMIZATION

In this section, we derive the expression of coverage probability for RIS-assisted HST communications. Then, we proposed a local search method to optimize the RIS phase.

A. Coverage Probability

Coverage probability is defined as the probability that the effectively received SNR $\gamma(t)$ at MR is larger than a given SNR threshold γ_{th}, which can be given by

$$P_{cov}(t) = \Pr(\gamma(t) \geq \gamma_{th}) = 1 - \Pr(\gamma(t) < \gamma_{th}).$$

(6)

Let $P_{out}(t)$ denote $\Pr(\gamma(t) < \gamma_{th})$, and it is given by

$$P_{out}(t) = \Pr \left(\frac{P|h_d(t)+\sum^n_{n=1} h^n_r(t)e^{j\theta^n_t(t)}g_{NLoS,g}(t)}{\sigma^2} < \gamma_{th} \right)$$

$$= \Pr \left(\left| h_d(t) + \sum^n_{n=1} h^n_r(t)e^{j\theta^n_t(t)}g_{NLoS,g}(t) \right|^2 < \frac{2\gamma}{\bar{\gamma}} \right)$$

(7)

$$= \Pr \left(|h(t)|^2 < \frac{2\gamma}{\bar{\gamma}} \right),$$

where $\bar{\gamma} = \frac{P}{\sigma^2}$ denotes the average transmission SNR.

The type of probability distribution of $h(t)$ is given by Theorem 1.

Theorem 1. The equivalent channel $h(t)$ between BS and MR, follows complex-valued Gaussian distribution with mean $\mu_h(t)$ and variance $\sigma^2_h(t)$, namely, $h(t) \sim \mathcal{CN}(\mu_h(t), \sigma^2_h(t))$, and we have

$$\mu_h(t) = \rho_d \sqrt{D_d^{-\epsilon_g}} e^{-j\theta_d(t)}$$

$$+ \sum^n_{n=1} \rho_n \rho_g \sqrt{(d^n_{NLoS,g}(t))^{-\epsilon'_g} g_{NLoS,g}(t)^{-\epsilon'_g}},$$

(8)

$$\sigma^2_h(t) = \frac{2^\epsilon_g e^{-\epsilon'_g}}{\rho_d D_d^{-\epsilon_g}}$$

$$+ \sum^n_{n=1} \rho_n^2 \rho_g^2 (d^n_{NLoS,g}(t))^{-\epsilon'_g} g_{NLoS,g}(t)^{-\epsilon'_g},$$

(9)

where $\rho_d = \sqrt{\frac{\kappa_f}{\kappa_f + 1}}$, $\rho_d = \sqrt{\frac{1}{\kappa_f + 1}}$, $\rho_g = \sqrt{\frac{\kappa_f}{\kappa_f + 1}}$, $\varphi_g = \sqrt{\frac{1}{\kappa_f + 1}}$

Proof. See Appendix A.

According to Theorem 1, coverage probability can be derived as in Theorem 2.

Theorem 2. $P_{out}(t)$ follows a non-central chi-square distribution, i.e., $\chi^2(\nu, \zeta(t))$, with the degree of freedom $\nu = 2$, and the non-centrality parameter $\zeta(t) = \frac{\mu_h(t)^2}{\sigma^2_h(t)}$, where

$$|\mu_h(t)|^2 = \rho_d \frac{(d^n_{NLoS,g}(t))^{-\epsilon_g}}{e^{-j\theta_d(t)}}$$

$$+ \sum^n_{n=1} \rho_n \rho_g \sqrt{(d^n_{NLoS,g}(t))^{-\epsilon'_g} g_{NLoS,g}(t)^{-\epsilon'_g}}.$$

(10)

With the corresponding cumulative distribution function (CDF), $P_{out}(t)$ is given by

$$P_{out}(t) = 1 - Q_1 \left(\sqrt{\zeta(t)}, \gamma_0(t) \right),$$

(11)

where $\gamma_0 = \frac{2g_d}{\bar{\gamma}^2}$, and $Q_m(a, b)$ is the Marcum Q-function defined in [27]. Thus, coverage probability can be expressed as

$$P_{cov} = 1 - P_{out} = Q_1 \left(\sqrt{\zeta(t)}, \gamma_0(t) \right).$$

(12)

Proof. See Appendix B.

□
Algorithm 1 Local Search for Discrete phase

Initialization: the toal time \(T \) slots, the number of quantization bits \(b \)

Output: \(\theta_n^* (t) \), \(\forall n \in N \)

1: for \(t = 1 : T \) do
2: for \(n = 1 : N \) do
3: Assign all possible values to \(\theta_n (t) \), and select the value maximizing coverage probability \(P_{\text{cov}} (t) \) denoted as \(\theta_n^* (t) \);
4: \(\theta_n (t) = \theta_n^* (t) \);
5: end for
6: end for

B. RIS Phase Optimization

The set of discrete phase \(\Theta \) contains a series of discrete variables, and the range available for each phase depends on RIS quantization bits. Considering the complexity and validity, we exploit the local search method as shown in Algorithm 1 to optimize the phase. Specifically, keeping the other \(N - 1 \) phase values fixed, for each element \(\theta_n (t) \), we traverse all possible values and choose the optimal one. Then, use this optimal solution \(\theta_n^* (t) \) as the new value of \(\theta_n (t) \) for the optimization of another phase, until all phases in the set \(\Theta \) are fully optimized.

IV. NUMERICAL ANALYSIS

In this section, we analyze coverage probability of RIS-assisted HST communications. Simulation results are provided to validate system performance in terms of coverage probability. For comparison, the scheme without using RIS is considered, which does not use RIS for signal reflection and MR can only receive signals through BS-MR channels. The simulation parameters are set as listed in Table I.

![Fig. 3. Coverage probability vs. transmission power.](image)

![Fig. 4. Coverage probability vs. transmission power.](image)

Parameter	Symbol	Value
Speed of HST	\(v \)	360 km/h
Height of BS	\(H_{\text{BS}} \)	10 m
Height of RIS	\(H_{\text{RIS}} \)	2 m
Height of MR	\(H_{\text{MR}} \)	2.5 m
Bandwidth	\(B \)	20 MHz
Noise power	\(\sigma^2 \)	\(-174 \text{ dBm/Hz} + 10 \log_{10} B + 10 \text{ dB} \)
Carrier frequency	\(f \)	2.35 GHz
Rician factor	\(\kappa (d, \sigma, \rho) \)	10 dB

Fig. 3 illustrates coverage probability \(P_{\text{cov}} \) against transmission power under two schemes and varying numbers of RIS elements. It can be observed that coverage probabilities under these two schemes increase with the increase of transmission power. Coverage probability of using RIS outperforms the case without RIS. It can be further observed that \(P_{\text{cov}} \) increases as the number of RIS elements \(N \) increases. This is because more RIS elements in the system result that more signal paths and energy can be reflected to enhance the signal quality at MR.

Fig. 4 shows coverage probability \(P_{\text{cov}} \) against transmission power under different schemes and varying numbers of RIS quantization bits. From the results, we observe that \(P_{\text{cov}} \) increases with the increase of \(b \). Moreover, it can be observed that coverage probability of \(b = 1 \) is significantly lower than \(b = 3 \) and \(b = 5 \), which means that coverage probability is significantly improved when \(b > 1 \). This is because phase resolution increases as \(b \) increases, which results that the received power at MR is enhanced. It can be further observed that the narrow coverage probability gap exists between \(b = 3 \) and \(b = 5 \), which indicates that coverage probability may remain unchanged as \(b \) further increases.

Fig. 5 illustrates coverage probability \(P_{\text{cov}} \) versus the SNR threshold \(\gamma_{\text{th}} \) under different numbers of RIS elements. It can be observed that coverage probabilities under these two schemes decrease with the increase of SNR threshold. Obviously, improving SNR threshold requirement means more outage events and lower coverage probability. When \(N \) increases, channel gain of \(h (t) \) increases, which results that the received power at MR is enhanced and coverage probability is thus improved.

Fig. 6 shows impact of horizontal distances \(d_{\text{BR}}^h \) between RIS and BS, as shown in Fig. 2, on coverage probability. It is observed that coverage probability of the cases using RIS firstly increases and then decreases, while the case with using RIS dose not change with location. It is found that when horizontal distance \(d_{\text{BR}}^h \) is equal to \(-600 \text{ m} \) or \(600 \text{ m} \), i.e., at the edge of the investigated area, coverage probability is lowest. While horizontal distance \(d_{\text{BR}}^h \) is equal to 0, which is the center of the long axis of BS elliptical coverage area.
coverage probability is high. This is owing to the fact that when RIS moves towards the center of the area, path loss of reflection link changes accordingly, which leads to an enhancement of the reflected signal and the benefits of RIS are fully utilized. This shows that system performance is sensitive to placement of RIS.

V. CONCLUSION

In this paper, we investigate wireless coverage probability analysis of downlink SISO RIS-assisted HST communication system. The closed-form expression of coverage probability is derived. We have analyzed impacts of different system parameters on coverage probability, including transmission power, SNR threshold, and horizontal distance between BS and RIS. Numerical results have demonstrated that better coverage performance can be achieved by using well RIS. The results in this paper can serve as a guidance for RIS-assisted HST communication coverage analysis.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of China under Grant 2020YFB1806903, the National Natural Science Foundation of China under Grant 62271037 and 62001519, and the State Key Laboratory of Rail Traffic Control and Safety under Grant RCS2022ZZ004; in part by the National Natural Science Foundation of China Grants 62231009 and 62221001.

APPENDIX A

Substituting (3), (4) and (5) into \(h(t) \), we have

\[
\begin{align*}
 h(t) &= \rho_d \hat{h}_d(t) + \sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \\
 &+ \sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) + \sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \\
 &+ \sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t),
\end{align*}
\]

where \(\rho_d = \sqrt{\frac{\kappa_d}{\kappa_d + 1}} \), \(\vartheta_d = 1 \), \(\rho_g = \sqrt{\frac{\kappa_g}{\kappa_g + 1}} \), \(\vartheta_g = \sqrt{\frac{\kappa_g}{\kappa_g + 1}} \), \(\vartheta_r = \sqrt{\frac{1}{\kappa_r + 1}} \). Note that, the LoS components of BS-MR link, RIS-MR link and BS-RIS link depend on the corresponding link distances. For a given location, the components \(\rho_d \hat{h}_d(t) \) and \(\sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \) of (13) turn to be deterministic. Since the NLoS component \(\hat{h}_d(t) \) follows complex Gaussian distribution with zero mean and variance \(d_{NLoS,d}^2 \), \(\bar{h}_d(t) \) and \(\bar{h}_g(t) \) follow complex Gaussian distribution with zero mean and variance \((d_{NLoS,g}^2 - \varepsilon') e^{j\theta_g'} \), \((\sigma_r^2) e^{j\theta'} \), respectively, and the parts \(\vartheta_r \bar{h}_g(t) \), \(\sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \), \(\sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \) and \(\sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \) of (13) also follow a Gaussian distribution.

The expectation of \(h(t) \) can be written by

\[
\begin{align*}
 \mu_h(t) &= \mathbb{E}\{h(t)\} \\
 &= \rho_d \hat{h}_d(t) + \sum_{n=1}^{N} \rho_{t} \rho_{g} \hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t) \\
 &= \rho_d \sqrt{D_d^2(t)} e^{-j\theta_d(t)} \\
 &+ \sum_{n=1}^{N} \rho_{t} \rho_{g} \sqrt{(d_r^2(t) - \varepsilon)^2 + (\sigma_r^2 - \varepsilon)^2} e^{j\theta_g^n(t) - \theta_r^n(t) - \theta_g^n(t)}.
\end{align*}
\]

The variance of \(h(t) \) is derived as

\[
\begin{align*}
 \sigma_h^2(t) &= \text{var}\{h(t)\} \\
 &= \rho_d^2 \var\{\hat{h}_d(t)\} + \sum_{n=1}^{N} \rho_{t}^2 \rho_{g}^2 \var\{\hat{h}_g^n(t) e^{j\theta_g^n(t)} \bar{h}_g^n(t)\} \\
 &= \rho_d^2 (d_{NLoS,d}^2 - \varepsilon' \sigma_r^2) + \sum_{n=1}^{N} \rho_{t}^2 \rho_{g}^2 \left((d_{NLoS,g}^2)^2 - \varepsilon' \right) \left((\sigma_r^2)^2 - \varepsilon' \right).
\end{align*}
\]

Therefore, \(h(t) \) is proved to follow a complex-valued Gaussian distribution, \(h(t) \sim CN(\mu_h(t), \sigma_h^2(t)) \). This completes the proof.

APPENDIX B

Due to the Gaussian channel proved above, \(h(t) \sim CN(\mu_h(t), \sigma_h^2(t)) \). Therefore, \(\frac{\bar{h}_d(t)}{\sigma_h^2(t)} \) follows the non-central chi-squared distribution, i.e., \(\chi^2(\nu, \zeta(t)) \), with the degree of freedom \(\nu = 2 \), and the non-centrality parameter is in (16).
\[
\zeta(t) = \frac{[\mu_h(t)]^2}{\sigma^2_h(t)} = \left[p_a \sqrt{D_a^e + \zeta(t)} e^{-j\theta(t)} + \sum_{n=1}^{N} p_r p_b \sqrt{\left(d_p^{e,n}(t) \right)^{-\zeta(t)} e^{-j\phi(t)} + \left(d_p^{c,n}(t) \right)^{-\zeta(t)} e^{-j\phi(t)}} \right]^2.
\]

With the corresponding CDF of \(\chi^2(\nu, \zeta(t)) \), \(P_{out}(t) \) defined in (7) is given by

\[
P_{out}(t) = \Pr\left(|h(t)|^2 < \frac{\gamma_{th}}{\zeta(t)} \right) = 1 - Q_{\epsilon\eta}\left(\sqrt{\zeta(t)}, \sqrt{\gamma_{th}} \right),
\]

where \(\gamma_{th} = \frac{\gamma}{\sigma^2_h(t)} \), and \(Q_m(a, b) \) is the Marcum Q-function defined in [27]. As a result, coverage probability defined in (6) can be rewrite as

\[
P_{cov} = 1 - P_{out}(t) = Q_1\left(\sqrt{\zeta(t)}, \sqrt{\gamma_{th}} \right).
\]

This completes the proof.

REFERENCES

[1] J. Zhang, H. Liu, Q. Wu, Y. Jin, Y. Chen, B. Ai, S. Jin and T. J. Cui, “RIS-aided next-generation high-speed train communications: challenges, solutions, and future directions,” IEEE Wireless Communications, vol. 28, no. 6, pp. 145–151, Dec. 2021.

[2] R. He et al., “High-speed railway communications: from GSM-R to LTE-R,” IEEE Vehicular Technology Magazine, vol. 11, no. 3, pp. 49–58, Sep. 2016.

[3] R. He, B. Ai, G. Wang, M. Yang, C. Huang and Z. Zhong, “Wireless channel sparsity: measurement, analysis, and exploitation in exploitation,” IEEE Wireless Communications, vol. 28, no. 4, pp. 113–119, Aug. 2021.

[4] C. Huang et al., “Artificial intelligence enabled radio propagation for communications—part I: channel characterization and antenna-channel optimization,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3939–3954, Jun. 2022.

[5] C. Huang et al., “Artificial intelligence enabled radio propagation for communications—part II: scenario identification and channel modeling,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3955–3969, Jun. 2022.

[6] R. He et al., “5G for railways: the next generation dedicated communications,” IEEE Communications Magazine, vol. 60, no. 12, pp. 130–136, Dec. 2022.

[7] R. He, B. Ai, G. L. Stüber, G. Wang and Z. Zhong, “Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 2848–2863, Apr. 2018.

[8] M. A. ElMossallamy, H. Zhang, L. Song, K. G. Seddik, Z. Han and G. Y. Li, “Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 990–1002, Sep. 2020.

[9] G. Sun, R. He, B. Ai, Z. Ma, P. Li, Y. Niu, W. J. Ding, D. Fei and Z. Zhong, “A 3D wideband channel model for RIS-assisted MIMO communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8016–8029, Aug. 2022.

[10] R. Liu, Q. Wu, M. Di Renzo and Y. Yuan, “A path to smart radio environments: an industrial viewpoint on reconfigurable intelligent surfaces,” IEEE Wireless Communications, vol. 29, no. 1, pp. 202–208, Feb. 2022.

[11] X. Liu and D. Qiao, “Elliptical cell based beamforming design with an improved β-fairness power allocation for HSR communication systems,” China Communications, vol. 19, no. 5, pp. 112–128, May 2022.

[12] S.-H. Lin, Y. Xu, and J.-Y. Wang, “Coverage analysis and optimization for high-speed railway communication systems with arrow-shaped cells,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11544–11556, Oct. 2020.

[13] J.-Y. Zhang, Z.-H. Tan and X.-X. Yu, “Coverage efficiency of radio-over-fiber network for high-speed railways,” in Proc. International Conference on Wireless Communications Networking and Mobile Computing, Chengdu, China, Sep. 2010, pp. 1–4.

[14] S.-H. Lin, Y. Xu, L. Wang and J.-Y. Wang, “Coverage analysis and chance-constrained optimization for HSR communications with carrier aggregation,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15107–15120, Sep. 2022.

[15] M. Gao, B. Ai, Y. Niu, Z. Han and Z. Zhong, “IRS-assisted high-speed train communications: outage probability minimization with statistical CSI,” in Proc. IEEE International Conference on Communications, Montreal, QC, Canada, Jun. 2021, pp. 1–6.

[16] T. Li, H. Tong, Y. Xu, X. Su and G. Quo, “Double-IRSs aided massive MIMO channel estimation and spectrum efficiency maximization for high-speed railway communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8630–8645, Aug. 2022.

[17] J. Xu and B. Ai, “When mmWave high-speed railway networks meet reconfigurable intelligent surface: a deep reinforcement learning method,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 533–537, Mar. 2022.

[18] R. Liu, Q. Wu, M. Di Renzo and Y. Yuan, “A Path to smart radio environments: an industrial viewpoint on reconfigurable intelligent surfaces,” IEEE Wireless Communications, vol. 29, no. 1, pp. 202–208, Feb. 2022.

[19] S. Zeng, H. Zhang, B. Di, Z. Han and L. Song, “Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization,” IEEE Communications Letters, vol. 25, no. 1, pp. 269–273, Jan. 2021.

[20] L. Yang, Y. Yang, M. G. Hasna and M.-S. Alouini, “Coverage, probability of SNR gain, and DOR analysis of RIS-aided communication systems,” IEEE Wireless Communications Letters, vol. 9, no. 8, pp. 1268–1272, Aug. 2020.

[21] T. Van Chien, L. T. Tu, S. Chatzinotas and B. Ottersten, “Coverage probability and ergodic capacity of intelligent reflecting surface-enhanced communication systems,” IEEE Communications Letters, vol. 25, no. 1, pp. 69–73, Jan. 2021.

[22] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamatals, digital metamatals and programable metamatals,” Light Sci Appl , vol. 3, no. 10, p. e218, Oct. 2014.

[23] W. Wu, H. Wang, W. Wang and R. Song, “Doppler mitigation method aided by reconfigurable intelligent surfaces for high-speed channels,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 627–631, Mar. 2022.

[24] Y. Cai, M.-M. Zhao, K. Xu, and R. Zhang, “Intelligent reflecting surface aided full-duplex communication: passive beamforming and deployment design,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 383–397, Jan. 2022.

[25] T. Zhang and L. Dai, “A closed-form approximation for uplink average ergodic sum capacity of large-scale multi-user distributed antenna systems,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1745–1756, Feb. 2019.

[26] A. Goldsmith, Wireless Communications, Cambridge Press, 2005.

[27] V. M. Kapinas, S. K. Mihos, and G. K. Karagiannidis, “On the monotonicity of the generalized Marcum and Nuttall Q-functions,” IEEE Transactions on Information Theory, vol. 55, no. 8, pp. 3701–3710, Aug. 2009.