C-VECTORS VIA τ-TILTING THEORY

CHANGJIAN FU

ABSTRACT. Inspired by the tropical duality in cluster algebras, we introduce c-vectors for finite-dimensional algebras via τ-tilting theory. Let A be a finite-dimensional algebra over a field k. Each c-vector of A can be realized as the (negative) dimension vector of certain indecomposable A-module and hence we establish the sign-coherence property of this kind of c-vectors. We then study the positive c-vectors for certain classes of finite-dimensional algebras. More precisely, we establish the equalities between the set of positive c-vectors and the set of dimension vectors of exceptional modules for quasitilted algebras and representation-directed algebras respectively. This generalizes the equalities of c-vectors for acyclic cluster algebras obtained by Chávez. To this end, a short proof for the sign-coherence of c-vectors for skew-symmetric cluster algebras has been given in the appendix.

1. INTRODUCTION

The c-vectors and g-vectors introduced by Fomin-Zelevinsky [15] are two kinds of integer vectors, which have played important roles in the theory of cluster algebras with coefficients. Both the vectors are conjectured to have a so-called sign-coherence property [15]. For skew-symmetric cluster algebras, Nakanishi [29] noticed a so-called tropical duality between c-vectors and g-vectors (cf. also [23, 28, 32]). With the assumption of sign-coherence of c-vectors, the tropical duality between c-vectors and g-vectors has been further generalized to skew-symmetrizable cluster algebras by Nakanishi and Zelevinsky [31]. Moreover, they showed that many properties/conjectures of cluster algebras follow from the tropical duality and hence follow from the sign-coherence of c-vectors. The sign-coherence conjecture is still open for general cluster algebras. But we do know that it holds for all the skew-symmetric cluster algebras due to the work of Derksen-Weyman-Zelevinsky [14], Plamondon [32] and Nagao [28]. All of the proofs involve the representation theory of algebras associated to quivers with potentials and no combinatorial proof is yet known.

On the other hand, c-vectors may be seen as a generalization of root systems. It follows from Nagao’s work [28] that each c-vector of a given skew-symmetric cluster algebra can be realized as the (negative) dimension vector of certain exceptional module for the associated Jacobian algebra. In particular, the set of c-vectors of
an acyclic cluster algebra is a subset of real Schur roots for the corresponding Kac-Moody algebra. In [11], Chávez showed the inverse inclusion is also true for acyclic cluster algebras (cf. also [33]). Moreover, he also proved in [12] that the set of positive c-vectors of a skew-symmetric cluster algebra of finite type coincides with the set of dimension vectors of all the exceptional modules over the corresponding representation-finite cluster-tilted algebra. Nakanishi and Stella [30] gave a diagrammatic description of c-vectors for cluster algebras of finite type. They proposed the root conjecture for any cluster algebras: for any skew-symmetrizable matrix B any c-vector of the cluster algebra $A(B)$ is a root of the associated Kac-Moody algebra $g(A(B))$, where $A(B)$ is the Cartan counterpart of B.

In this paper, we pursue the representation-theoretic approach to study c-vectors. We introduce the notion of c-vectors for any finite-dimensional algebras via τ-tilting theory introduced by Adachi-Iyama-Reiten [3]. Let A be a finite-dimensional algebra over a field k. In [3], the authors showed that the indices $\text{ind}(M, Q)$ of a basic support τ-tilting pair (M, Q) form a \mathbb{Z}-basis for the Grothendieck groups $G_0(\text{per}A)$ of the preflect derived category $\text{per}A$. Let $D^b(\text{mod}A)$ be the bounded derived category of finitely generated right A-modules and $\langle -, - \rangle_A : G_0(\text{per}A) \times D^b(\text{mod}A) \to k$ the corresponding Euler bilinear form. We then define the c-vectors associated to (M, Q) to be the dual basis of $\text{ind}(M, Q)$ in $G_0(D^b(\text{mod}A))$ with respect to the Euler bilinear form $\langle -, - \rangle_A$. Using the bijection between 2-term silting objects in $\text{per}A$ and the immediate t-structure on $D^b(\text{mod}A)$ in [26, 6], we show the sign-coherence property holds for this kind of c-vectors. When the algebra A is a 2-Calabi-Yau tilted algebra, it follows from [16] and the tropical duality that the c-vectors we obtained here do coincide with the c-vectors for the corresponding cluster algebra. Let us mention here that, as a generalization of cluster algebras, Caldero-Chapoton algebras has been introduced in [10] for an arbitrary basic algebra, we hope that the c-vector we introduced here may provide new perspective in the investigation of Caldero-Chapoton algebras for finite-dimensional algebras.

The paper is organized as follows: After recall some definitions and basic properties related to τ-tilting theory in Section 2, we introduce the definition of c-vectors for finite-dimensional algebras in Section 3. We show that each c-vector can be realized as the (negative) dimension vector of certain indecomposable module and establish the sigh-coherence property for c-vectors. Moreover, the relationship between positive c-vectors and negative c-vectors are also given. Section 4.1 is devoted
to study the c-vectors for quasitilted algebras. We show that the set \(cv^+(A) \) of positive c-vectors for a quasitilted algebra \(A \) coincides with the set \(\text{exdv}(A) \) of dimension vectors of exceptional \(A \)-modules. This generalizes the equalities for acyclic algebras established by Chávez [11]. These equalities also implies that an indecomposable \(A \)-module \(M \) of the quasitilted algebra \(A \) can be completed to a 2-term simple-minded collection of \(A \) if and only if \(M \) is an exceptional module (we refer to [6] for the definition of 2-term simple-minded collections). In Section 4.2 and 4.3, we also establish the equalities between the set \(cv^+(A) \) of positive c-vectors and the set \(\text{exdv}(A) \) of dimension vectors of exceptional modules for representation-directed algebras and cluster-tilted algebras of finite type respectively. A short proof for the sign-coherence of c-vectors for skew-symmetric cluster algebras has been given in Appendix A.

Notations. Throughout this paper, \(k \) denotes an algebraically closed field, \(A \) a finite-dimensional basic \(k \)-algebra. All modules are right modules. Let \(C \) be a category over \(k \), for an object \(M \in C \), denote by \(\text{add} \ M \) the full subcategory of \(C \) whose objects are direct summands of finite direct sum of \(M \).

Acknowledgements. The author thanks Dong Yang for pointing out the bijection between 2-term silting objects and immediate t-structures to prove the sign-coherence of c-vectors. He is also grateful to Tomoki Nakanishi for his interest and helpful comments. This work was partially supported by the Fundamental Research Funds for the Central Universities (No.2013SCU04A44).

2. Recollection

In this section, we recall some definitions and basic properties of (support) \(\tau \)-tilting modules and (2-term) silting objects. We mainly follow [3, 11, 20].

2.1. Support \(\tau \)-tilting modules. Let \(A \) be a finite-dimensional algebra over \(k \) and \(\text{mod} \ A \) the category of finitely generated right \(A \)-modules. Let \(S_1, \cdots, S_n \) be all the pairwise non-isomorphic simple \(A \)-modules and \(P_1, \cdots, P_n \) the corresponding projective covers of \(S_1, \cdots, S_n \) respectively. Denote by \(\tau \) the Auslander-Reiten translation of \(\text{mod} \ A \).

An \(A \)-module \(M \) is called rigid if \(\text{Ext}^1_A(M, M) = 0 \). A module \(M \in \text{mod} \ A \) is called \(\tau \)-rigid provided \(\text{Hom}_A(M, \tau M) = 0 \). Let \(P_1^M \xrightarrow{f} P_0^M \rightarrow M \rightarrow 0 \) be a minimal projective resolution of \(M \), then \(M \) is \(\tau \)-rigid if and only if \(\text{Hom}_A(f, M) \) is surjective. Note that \(\tau \)-rigid implies rigid, but the converse is not true in general.

A \(\tau \)-rigid pair is \((M, P) \) with \(M \in \text{mod} \ A \) and \(P \) a finitely generated \(A \)-modules, such that \(M \) is \(\tau \)-rigid and \(\text{Hom}_A(P, M) = 0 \). A \(\tau \)-rigid pair is called support \(\tau \)-tilting pair if \(|M| + |P| = n \), where \(|X| \) denotes the number of non-isomorphic
indecomposable direct summands of X. In this case, M is a support τ-tilting A-
module and P is uniquely determined by M.

Recall that a full subcategory \mathcal{T} of $\text{mod} \, A$ is a torsion class of $\text{mod} \, A$ provided that \mathcal{T} is closed under quotients and extensions. An object $X \in \mathcal{T}$ is Ext-projective if $\text{Ext}^1_A(X, \mathcal{T}) = 0$. A torsion pair $(\mathcal{T}, \mathcal{F})$ is uniquely determined by its torsion class \mathcal{T} in the sense that $\mathcal{F} = \perp \mathcal{T} := \{ N \in \text{mod} \, A| \text{Hom}_A(M, N) = 0 \text{ for all } M \in \mathcal{T} \}$. A torsion pair $(\mathcal{T}, \mathcal{F})$ is functorially finite provided that \mathcal{T} is functorially finite, equivalently, there is an object $X \in \text{mod} \, A$ such that $\mathcal{T} = \text{Fac} \, X$, where $\text{Fac} \, X$ is the subcategory of $\text{mod} \, A$ formed by quotients of finite direct sum of X. Let $P(\mathcal{T})$ be the direct sum of one copy of each of the indecomposable Ext-projective objects in \mathcal{T} up to isomorphism. It is well-known that $\mathcal{T} = \text{Fac} \, P(\mathcal{T})$. The following result due to [2] will be used frequently (cf. Theorem 5.10 in [2]).

Proposition 2.1. Let A be a finite-dimensional algebra over k. If M is a τ-rigid A-module, then $\text{Fac} \, M$ is a functorially finite torsion class and $M \in \text{Fac} \, M$ is Ext-projective.

Let f-tors A be the set of isomorphism classes of functorially finite torsion classes of $\text{mod} \, A$ and $s\tau$-tilt A the set of isomorphism classes of basic support τ-tilting A modules. It has been shown [3] that the support τ-tilting A-modules are closely related to the functorially finite torsion classes of $\text{mod} \, A$. Namely, we have the following bijection (cf. Theorem 2.7 of [3]).

Theorem 2.2. Let A be a finite-dimensional algebra over k. There is a bijection between $s\tau$-tilt A and f-tors A given by

$$M \in s\tau \text{-tilt } A \leftrightarrow \text{Fac} \, M \in f \text{-tors } A,$$

and its inverse is given by $\mathcal{T} \leftrightarrow P(\mathcal{T})$, where $\mathcal{T} \in f$-tors A.

2.2. **Silting objects.** Let A be a finite-dimensional algebra over k and $D^b(\text{mod} \, A)$ the bounded derived category of finitely generated right A-modules with suspension functor Σ. Recall that n is the number of pairwise non-isomorphic simple A-modules. Let per A be the perfect derived category of A, that is the smallest thick subcategory of $D^b(\text{mod} \, A)$ containing the object A. An object $Q \in \text{per} \, A$ is called presilting if $\text{Hom}_{\text{per} \, A}(Q, \Sigma^i Q) = 0$ for all $i > 0$. A presilting object $Q \in \text{per} \, A$ is called a silting object provided moreover $\text{thick}(Q) = \text{per} \, A$, where $\text{thick}(Q)$ is the smallest thick subcategory of $\text{per} \, A$ containing Q. It has been proved in [4] that each basic silting object has exactly n indecomposable direct summands. A presilting object P is called almost silting if the number of non-isomorphic indecomposable direct
summands of P is $n - 1$. If there is an indecomposable object $X \in \text{per } A$ such that $P \oplus X$ is a silting object, then X is called a complement of P. In general, an almost presilting object may have infinite complements.

Let $Q = X \oplus P$ be a basic silting object with X indecomposable. Consider the triangle

$$X \xrightarrow{f} Q \rightarrow Y \rightarrow \Sigma X,$$

where f is a minimal left $\text{add } P$-approximation of X. It has been shown in [4] that $Y \oplus P$ is a basic silting object and called the left mutation of Q with respect to X. Dually, if we consider the triangle induced by a minimal right $\text{add } P$-approximation of X, we obtain the right mutation of Q with respect to X.

A silting object $Q \in \text{per } A$ is 2-term silting if there is a triangle $P_1^Q \rightarrow P_0^Q \rightarrow Q \rightarrow \Sigma P_1^Q$, where $P_0^Q, P_1^Q \in \text{add } A$.

Denote by $\text{2-silt } A$ the set of isomorphism classes of 2-term silting objects of $\text{per } A$. The following has been established in [3].

Theorem 2.3. Let A be a finite-dimensional algebra over k.

1. Let P be an almost 2-term silting object in $\text{per } A$, there exists exactly two indecomposable objects X, Y such that $P \oplus X$ and $P \oplus Y$ are 2-term silting objects in $\text{per } A$; Moreover, $P \oplus X$ and $P \oplus Y$ are related by a left or right mutation;
2. There is a bijection between τ-tilt A and $\text{2-silt } A$ given by

$$M \in \tau\text{-tilt } A \mapsto (P_1^M \oplus P \xrightarrow{(f,0)} P_0^M) \in \text{2-silt } A,$$

where $P_1^M \xrightarrow{f} P_0^M \rightarrow M$ is a minimal projective resolution of M and (M, P) is the support τ-tilting pair.

2.3. t-structures on triangulated categories.

Let \mathcal{D} be a triangulated category over k with suspension functor Σ. A pair of full subcategory $(\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})$ of \mathcal{D} is called a t-structure on \mathcal{D} provided that

1. $\Sigma \mathcal{U}^{\leq 0} \subseteq \mathcal{U}^{\leq 0}$;
2. $\text{Hom}_\mathcal{D}(\mathcal{U}^{\leq 0}, \Sigma^{-1} \mathcal{V}^{\geq 0}) = 0$;
3. for each $X \in \mathcal{D}$, there is a triangle $U_X \rightarrow X \rightarrow V_X \rightarrow \Sigma U_X$ with $U_X \in \mathcal{U}^{\leq 0}$ and $U_X \in \Sigma^{-1} \mathcal{V}^{\geq 0}$.

A bounded t-structure on \mathcal{D} is a t-structure $(\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})$ such that

$$\mathcal{D} = \bigcup_{n \in \mathbb{Z}} \Sigma^n \mathcal{U}^{\leq 0} = \bigcup_{n \in \mathbb{Z}} \Sigma^n \mathcal{V}^{\geq 0}.$$
For a given t-structure \((\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})\) on \(\mathcal{D}\), the subcategory \(\mathcal{A} = \mathcal{U}^{\leq 0} \cap \mathcal{V}^{\geq 0}\) of \(\mathcal{D}\) is called the heart of \((\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})\), which is an abelian category with the exact structure induced by the triangles of \(\mathcal{D}\). Moreover, for any \(X, Y \in \mathcal{A}\), we have \(\text{Hom}_\mathcal{A}(X, Y) = \text{Hom}_\mathcal{D}(X, Y)\) and \(\text{Ext}^1_\mathcal{A}(X, Y) = \text{Hom}_\mathcal{D}(X, \Sigma Y)\). The triangles in (3) are canonical and yield endofunctors \(\tau_{\leq 0}\) and \(\tau_{\geq 1}\) of \(\mathcal{D}\) such that \(\tau_{\leq 0}X = U_X\) and \(\tau_{\geq 1}X = V_X\). The functors \(\tau_{\leq 0}\) and \(\tau_{\geq 1}\) yield a family of cohomological functors \(H^i = \tau_{\leq i} \circ \tau_{\geq i} : \mathcal{D} \to \mathcal{A}\), where \(\tau_{\leq i} = \Sigma^{-i} \circ \tau_{\leq 0} \circ \Sigma^i\) and \(\tau_{\geq i} = \Sigma^{-i+1} \circ \tau_{\geq 1} \circ \Sigma^{-i}\).

Moreover, for each \(X \in \mathcal{D}\), we have a family of triangles
\[
\tau_{\leq i}X \to X \to \tau_{\geq i+1} \to \Sigma \tau_{\leq i}X, \quad \text{where } i \in \mathbb{Z}.
\]

The following is a consequence of the bijection between silting objects and bounded t-structures studied in [26].

Lemma 2.4. Let \(A\) be a finite-dimensional \(k\)-algebra and \(\mathcal{D}^b(\text{mod } A)\) the bounded derived category of finitely generated right \(A\)-modules. Let \((\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})\) be a bounded t-structure with length heart on \(\mathcal{D}^b(\text{mod } A)\) and \(\mathcal{A}\) the heart associated to \((\mathcal{U}^{\leq 0}, \mathcal{V}^{\geq 0})\). Then there is a silting object \(T \in \text{per } \mathcal{A}\) such that \(\text{mod } \text{End}_A(T) \cong \mathcal{A}\).

2.4. Negative dg algebra associated to a silting object.

Recall that \(A\) is finite-dimensional \(k\)-algebra. Let \(T = \bigoplus_{i=1}^n \in \text{per } \mathcal{A}\) be a silting object with indecomposable direct summands \(T_1, \ldots, T_n\) and \(\bar{T} = \text{RHom}_A(T, T)\) the dg endomorphism algebra of \(T\). By the definition of silting object, we know that the homology groups \(H^i(\bar{T})\) vanish for all \(i > 0\). Denote by \(\Gamma = \tau_{\leq 0}\bar{T}\) the truncation algebra of \(\bar{T}\). Let \(i : \Gamma \to \bar{T}\) be the canonical injective homomorphism of dg algebras. It is clear that \(i\) induces an equivalence of derived categories \(\mathcal{D}(\Gamma) \cong \mathcal{D}(\bar{T})\). On the other hand, we also have the surjective homomorphism \(\pi : \Gamma \to H^0(\Gamma) \cong \text{End}_A(T)\) of dg algebras, where \(\text{End}_A(T)\) is the endomorphism algebra of \(T\) in \(\text{per } \mathcal{A}\).

Let \(e_i = 1_{T_i} \in \text{Hom}_A(T_i, T_i), 1 \leq i \leq n\), be the primitive orthogonal idempotents in \(\text{End}_A(T)\), which will induce a decomposition of the identity of \(\Gamma\) into a sum of primitive idempotents. By abuse of notations, we still denote the corresponding primitive idempotents by \(e_1, \ldots, e_n\). Thus we have the decomposition of \(\Gamma = \bigoplus_{i=1}^n e_i \Gamma\) into indecomposable right \(\Gamma\)-modules. Moreover, the images \([e_1 \Gamma], \ldots, [e_n \Gamma]\) form a \(\mathbb{Z}\)-basis of the Grothendieck group \(G_0(\text{per } \Gamma)\) for the perfect derived category of \(\Gamma\). Let \(S_1^T, \ldots, S_n^T\) be pairwise non-isomorphic simple right \(\text{End}_A(T)\)-modules. Via the homomorphism \(\pi\), each simple \(\text{End}_A(T)\)-module \(S_i^T\) lifts to a simple dg \(\Gamma\)-module \(S_i^T\). Let \(\mathcal{D}_{fd}(\Gamma)\) be the finite-dimensional derived category of \(\Gamma\), that is the full triangulated subcategory of \(\mathcal{D}(\Gamma)\) formed by the dg \(\Gamma\)-modules whose homology has finite total dimension over \(k\). Similarly, the images \([S_1^T], \ldots, [S_n^T]\) form a \(\mathbb{Z}\)-basis of
the Grothendieck group $G_0(D_{fd}(\Gamma))$ of the finite-dimensional derived category $D_{fd}(\Gamma)$ of Γ. Let $\langle - , - \rangle_{\Gamma} : G_0(\text{per}\ \Gamma) \times G_0(D_{fd}(\Gamma)) \rightarrow k$ be the non-degenerate Euler bilinear form given by

$$\langle [P], [X] \rangle_{\Gamma} = \sum_{i \in \mathbb{Z}} \dim_k \text{Hom}_{\Gamma}(P, \Sigma^i X),$$

where $P \in \text{per}\ \Gamma$ and $X \in D_{fd}(\Gamma)$. For any $X \in D(\Gamma), t \in \mathbb{Z},$ we clearly have

$$\text{Hom}_{\Gamma}(e_t \Gamma, \Sigma^t X) = \begin{cases} k & t = 0; \\ 0 & \text{otherwise.} \end{cases}$$

if and only if $X \cong S^r_1$ in $D(\Gamma)$. In other words, $[e_1 \Gamma], \cdots, [e_n \Gamma]$ and $[S^r_1], \cdots, [S^n_1]$ are dual bases with respect to the Euler bilinear form $\langle - , - \rangle_{\Gamma}$.

Recall that T is a silting object in $\text{per} A$, we have an equivalence $D(\Gamma) \cong D(\text{Mod } A)$ and hence an equivalence between $D(\Gamma)$ and $D(\text{Mod } A)$. Indeed, view T as $\Gamma^{\text{op}} \otimes_k A$-module, the equivalence is given by $F := \otimes_k T : D(\Gamma) \rightarrow D(\text{Mod } A)$, which restricts to equivalences $\text{per } \Gamma \cong \text{per } A$ and $D_{fd}(\Gamma) \cong D^b(\text{mod } A)$ respectively.

Since Γ is a finite-dimensional negative dg algebra, there is a standard t-structure $(D^{\leq 0}, D^{\geq 0})$ on $D(\Gamma)$ induced by the homology. More precisely,

$$D^{\leq 0} = \{X \in D(\Gamma) | \text{Hom}_{\Gamma}(\Gamma, \Sigma^i X) = 0 \text{ for all } i > 0\},$$

$$D^{\geq 0} = \{X \in D(\Gamma) | \text{Hom}_{\Gamma}(\Gamma, \Sigma^i X) = 0 \text{ for all } i < 0\}.$$

This t-structure restricts to the standard t-structure $(D^{\leq 0}_{fd}, D^{\geq 0}_{fd})$ on $D_{fd}(\Gamma)$, where $D^{\leq 0}_{fd} = D^{\leq 0} \cap D_{fd}(\Gamma)$ and $D^{\geq 0}_{fd} = D^{\geq 0} \cap D_{fd}(\Gamma)$. Moreover, the heart $D^{\leq 0}_{fd} \cap D^{\geq 0}_{fd}$ is equivalent to $\text{mod } \text{End}_A(T)$. The standard t-structure $(D^{\leq 0}_{fd}, D^{\geq 0}_{fd})$ induces a t-structure on $D^b(\text{mod } A)$ via the functor F. Denote by $(D^{\leq 0}_T, D^{\geq 0}_T)$ the resulting t-structure, that is

$$D^{\leq 0}_T = \{X \in D^b(\text{mod } A) | \text{Hom}_A(T, \Sigma^i X) = 0 \text{ for all } i > 0\},$$

$$D^{\geq 0}_T = \{X \in D^b(\text{mod } A) | \text{Hom}_A(T, \Sigma^i X) = 0 \text{ for all } i < 0\}.$$

Let $A = D^{\leq 0}_T \cap D^{\geq 0}_T$ be the heart of the t-structure $(D^{\leq 0}_T, D^{\geq 0}_T)$. It is clear that $F(S^r_1), \cdots, F(S^n_1)$ are all the simple objects of A. If T is a 2-term silting object, by Theoerem 2.2 and 2.3, there is a support τ-tilting module and a functorially finite torsion class corresponding to T. We have the following characterization of A by torsion pair, which is a consequence of the bijections investigated in [26] (cf. also [5]), for completeness and later use, we include a proof.
Proposition 2.5. Keep the notations above. Assume that T is a 2-term silting object and $M \in \text{mod} \ A$ is the associated support τ-tilting A-module. Let $\mathcal{T}_M = \text{Fac} M$ be the functorially finite torsion class associated to M and $\mathcal{F}_M = ^\perp \mathcal{T}_M$ the torsion free class. Then $(\Sigma \mathcal{F}_M, \mathcal{T}_M)$ is a torsion pair of \mathcal{A}. As a consequence, each simple object of \mathcal{A} lies either in $\Sigma \mathcal{F}_M$ or in \mathcal{T}_M.

Proof. Let $P_1^M \xrightarrow{f} P_0^M \rightarrow M \rightarrow 0$ be a minimal projective resolution of M and (M, Q) the associated basic support τ-tilting pair. We have $T = \cdots \rightarrow 0 \rightarrow P_i^M \oplus Q \xrightarrow{(f, 0)} P_0^M \rightarrow 0 \cdots$, where P_0^M is in the zeroth component. Note that $X \in \mathcal{A}$ if and only if $\text{Hom}_A(T, \Sigma^i X) = 0$ for $i \neq 0$. A direct calculation shows that $\Sigma \mathcal{F}_M \subset \mathcal{A}$ and $\mathcal{T}_M \subset \mathcal{A}$. On the other hand, we clearly have $\text{Hom}_A(\Sigma \mathcal{F}_M, \mathcal{T}_M) = 0$. Note that the exact sequences of \mathcal{A} are induced from the triangles of $\mathcal{D}^b(\text{mod} \ A)$. Thus to prove $(\Sigma \mathcal{F}_M, \mathcal{T}_M)$ is a torsion pair of \mathcal{A}, it remains to show that for each $X \in \mathcal{A}$, there is a triangle $\Sigma F_0 \rightarrow X \rightarrow T_0 \rightarrow \Sigma^2 F_0$ in $\mathcal{D}^b(\text{mod} \ A)$ with $T_0 \in \mathcal{T}_M$ and $F_0 \in \mathcal{F}_M$.

We claim that if $X \in \mathcal{A} \subset \mathcal{D}^b(\text{mod} \ A)$, then $H^i(X) = 0$ for $i \neq 0, -1$. Let $(C_{\leq 0}, C_{\geq 0})$ be the standard t-structure on $\mathcal{D}^b(\text{mod} \ A)$. For any $X \in \mathcal{A} \subset \mathcal{D}^b(\text{mod} \ A)$, consider the following triangle induced by the standard t-structure $(C_{\leq 0}, C_{\geq 0})$

$$\tau_{\leq -2} X \rightarrow X \rightarrow \tau_{\geq -1} X \rightarrow \Sigma \tau_{\leq -2} X.$$

Applying the functor $\text{Hom}_A(T, ?)$ yields the long exact sequence

$$\cdots \rightarrow \text{Hom}_A(T, \Sigma^i \tau_{\leq -2} X) \rightarrow \text{Hom}_A(T, \Sigma^i X) \rightarrow \text{Hom}_A(T, \Sigma^i \tau_{\geq -1} X) \rightarrow \text{Hom}_A(T, \Sigma^i \tau_{\leq -2} X) \rightarrow \cdots.$$

We have $\text{Hom}_A(T, \Sigma^i \tau_{\leq -2} X) = 0$ for all i since $\text{Hom}_A(T, \Sigma^i X) = 0$ for all $i \neq 0$.

Recall that we have $\text{thick}(T) = \text{per} \ A$, which implies that $\tau_{\leq -2} X = 0$ in $\mathcal{D}^b(\text{mod} \ A)$.

As a consequence, $X \cong \tau_{\geq -1} X \in \Sigma C_{\geq 0}$. Now consider the triangle

$$\tau_{\leq 0} X \rightarrow X \rightarrow \tau_{\geq 1} X \rightarrow \Sigma \tau_{\leq 0} X,$$

applying the functor $\text{Hom}_A(T, ?)$ to the triangle yields a long exact sequence

$$\cdots \rightarrow \text{Hom}_A(T, \Sigma^i \tau_{\leq 0} X) \rightarrow \text{Hom}_A(T, \Sigma^i X) \rightarrow \text{Hom}_A(T, \Sigma \tau_{\geq 1} X) \rightarrow \text{Hom}_A(T, \Sigma^i \tau_{\leq 0} X) \rightarrow \cdots.$$

Again one can show that $\text{Hom}_A(T, \Sigma^i \tau_{\geq 1} X) = 0$ for all i, and hence $\tau_{\geq 1} X = 0$ in $\mathcal{D}^b(\text{mod} \ A)$. In particular, we have proved that $X \cong \tau_{\leq 0} \circ \tau_{\geq -1} X \in C_{\leq 0} \cap \Sigma C_{\geq 0}$, which implies that $H^i(X) = 0$ for $i \neq 0$ or -1.

By the standard t-structure $(C_{\leq 0}, C_{\geq 0})$, for each $X \in \mathcal{A}$, we have the following triangle in $\mathcal{D}^b(\text{mod} \ A)$

$$\Sigma^{-1} H^{-1}(X) \rightarrow X \rightarrow H^0(X) \rightarrow \Sigma^2 H^1(X).$$
It remains to show that $H^0(X) \in \mathcal{T}_M$ and $H^{-1}(X) \in \mathcal{F}_M$ for $X \in \mathcal{A}$. It is easy to see that $\text{Hom}_A(T, \Sigma^i H^0(X)) = 0$ for all $i \neq 0$ and $\text{Hom}_A(T, \Sigma^i H^{-1}(X)) = 0$ for all $i \neq 1$. Consider the short exact sequence $0 \to T_{H^0(X)} \to H^0(X) \to F_{H^0(X)} \to 0$ in $\text{mod} \ A$ with $T_{H^0(X)} \in \mathcal{T}_M$ and $F^0_H(X) \in \mathcal{F}_M$. Applying $\text{Hom}_A(T, ?)$ to the exact sequence, one can show that $\text{Hom}_A(T, \Sigma F_{H^0(X)}) = 0$. Recall that we also have $\text{Hom}_A(T, \Sigma^i F_{H^0(X)}) = 0$ for all $i \neq 1$. Consequently, $F_{H^0(X)} = 0$ in $\mathcal{D}^b(\text{mod} \ A)$. In particular, we have $T_{H^0(X)} \cong H^0(X) \in \mathcal{T}_M$. Similarly, one can show that $H^{-1}(X) \in \mathcal{F}_M$. This finishes the proof. \hfill \square

3. C-vectors and its sign-coherence

3.1. Definition of c-vectors. Recall that A is a finite-dimensional algebra over k and n is the number of non-isomorphic simple A-modules. Let $\mathcal{G}_0^{sp}(\text{add} \ A)$ be the split Grothendieck group of finitely generated projective A-modules. For a given τ-rigid A-module M, let $P_i^M \xrightarrow{\ell} P_0^M \to M \to 0$ be a minimal projective resolution of M, the index of M is defined to be $\text{ind}(M) = [P_0^M] - [P_1^M] \in \mathcal{G}_0^{sp}(\text{add} \ A)$. The g-vector of M is $g(M) = (g_1, \cdots, g_n) \in \mathbb{Z}^n$, where $g_i = [\text{ind}(M) : P_i], 1 \leq i \leq n$. It has been proved in [3] that different τ-rigid A-modules have different indices and hence different g-vectors.

For a given basic support τ-tilting pair (M, P) with decomposition of indecomposable modules $M = \bigoplus_{i=1}^n M_i, \ P = \bigoplus_{i=t+1}^n P_i^M$, we have the following G-matrix of (M, P)

$$G_{(M,P)} = (g(M_1), g(M_2), \cdots, g(M_t), -g(P_{t+1}^M), \cdots, -g(P_n^M)) \in M_n(\mathbb{Z}).$$

We know from [3] that for any basic support τ-tilting pair (M, P) the G-matrix $G_{(M,P)}$ is invertible over \mathbb{Z}. Inspired by the tropical duality between g-vectors and c-vectors in cluster algebras, we introduce the C-matrix of a basic support τ-rigid pair (M, P) to be the inverse of the transpose of the G-matrix $G_{(M,P)}$, i.e.

$$C_{(M,P)} := (G^T_{(M,P)})^{-1} \in M_n(\mathbb{Z}).$$

Each column vector of $C_{(M,P)}$ is called a c-vector of A and denote by $cv(A)$ the set of all the c-vectors of A.

Remark 3.1. Let \mathcal{C} be a 2-Calabi-Yau triangulated category with a cluster-tilting object T which admits a cluster structure in the sense of [7]. Let $A = \text{End}_\mathcal{C}(T)$ be the endomorphism algebra of T. Let $cv_0(A)$ be the subset of $cv(A)$ formed by the c-vectors associated to support τ-tilting A-modules which are connected with the support
By Proposition 6.2 of [10], we deduce that \(cv_0(A) \) coincides with the \(c \)-vectors of the cluster algebra associated to \(A \).

3.2. Sign-coherence of \(c \)-vectors. A vector \(c \) in \(\mathbb{Z}^n \) is called sign-coherence if \(c \) has either all entries nonnegative or all entries nonpositive. A non-zero vector in \(\mathbb{Z}^n \) is positive (resp. negative) if all components are nonnegative (resp. nonpositive). The sign-coherence phenomenon holds for this general setting.

Theorem 3.2. Let \(A \) be a finite-dimensional algebra over \(k \). Then each \(c \)-vector of \(A \) is sign-coherence.

Proof. Let \(S_1, \cdots, S_n \) be all the pairwise non-isomorphic simple \(A \)-modules and \(P_1, \cdots, P_n \) the corresponding projective covers of \(S_1, \cdots, S_n \) respectively. Let \(G_0(\text{per} \ A) \) and \(G_0(\mathcal{D}^b(\text{mod} \ A)) \) be the Grothendieck groups of \(\text{per} \ A \) and \(\mathcal{D}^b(\text{mod} \ A) \) respectively. Denote by \(\langle -,- \rangle_A : G_0(\text{per} \ A) \times G_0(\mathcal{D}^b(\text{mod} \ A)) \to k \) the Euler bilinear form given by \(\langle [P],[X] \rangle_A = \sum_{i \in \mathbb{Z}} \dim_k \text{Hom}_A(P, X^i) \) for any \(P \in \text{per} \ A \) and \(X \in \mathcal{D}^b(\text{mod} \ A) \).

It is clear that \([P_1],\cdots,[P_n]\) and \([S_1],\cdots,[S_n]\) are dual bases with respect to the Euler bilinear form \(\langle -,- \rangle_A \).

Let \((M,Q)\) be a basic support \(\tau \)-tilting pair of \(A \) and \(T \) the corresponding 2-term silting object in \(\text{per} \ A \). Let \(\Gamma = \bigoplus_{i=1}^n e_i \Gamma \) be the negative truncated dg algebra associated to \(T \) (cf. Section 2.4). Recall that we also have the Euler bilinear form \(\langle -,- \rangle_\Gamma : G_0(\text{per} \ \Gamma) \times G_0(\mathcal{D}^b(\text{mod} \ \Gamma)) \to k \) and there is an equivalence of triangulated categories \(F = \bigotimes \Gamma T_A : \mathcal{D}^b(\text{mod} \ A) \to \mathcal{D}^b(\text{mod} \ A) \). It is clear that the functor \(F \) induces an isomorphism of bilinear forms such that the following diagram is commutative

\[
\begin{array}{ccc}
\langle -,- \rangle_\Gamma : G_0(\text{per} \ \Gamma) \times G_0(\mathcal{D}^b(\text{mod} \ \Gamma)) & \to & k \\
\downarrow F & & \\
\langle -,- \rangle_A : G_0(\text{per} \ A) \times G_0(\mathcal{D}^b(\text{mod} \ A)) & \to & k.
\end{array}
\]

Note that the column vectors the \(G \)-matrix associated to \((M,Q)\) is the dimension vector of \(F(e_i \Gamma) \) in \(G_0(\text{per} \ A) \) with respect to the basis \([P_1],\cdots,[P_n]\). By the duality between \(G \)-matrix and \(C \)-matrix, we deduce that the \(c \)-vectors associated to \((M,Q)\) are the dimension vectors of \(F(S_i^\Gamma) \) for all the simple \(d \Gamma \)-module \(S_i^\Gamma \). Now the result follows from Proposition 2.5. \(\square \)

As a byproduct of the proof, we have the following criterion of \(c \)-vectors.

Corollary 3.3. Let \(A \) be a finite-dimensional algebra over \(k \). A vector \(c \in \mathbb{Z}^n \) is a \(c \)-vector of \(A \) if and only if there is a 2-term silting object \(T \in \text{per} \ A \) and an indecomposable \(A \)-module \(M \) satisfying one of the following conditions:
(1) \(\text{Hom}_A(T, \Sigma^i M) = \begin{cases} k & i = 0; \\ 0 & \text{otherwise.} \end{cases} \), i.e. \(c = \dim M \) is a positive c-vector.

(2) \(\text{Hom}_A(T, \Sigma^i M) = \begin{cases} k & i = 1; \\ 0 & \text{otherwise.} \end{cases} \), i.e. \(c = -\dim M \) is a negative c-vector.

3.3. Positive c-vectors and negative c-vectors. Let \(\text{cv}^+(A) \) be the set of positive c-vectors of \(A \) and \(\text{cv}^-(A) \) the set of negative c-vectors. The following result is a consequence of the bijection between 2-term silting objects and 2-term simple-minded collections investigated in [6]. In order to avoid more notations, we give a proof using the mutation of silting objects.

Theorem 3.4. Let \(A \) be a finite-dimensional algebra over \(k \). We have \(\text{cv}^-(A) = -\text{cv}^+(A) \). In particular, \(\text{cv}(A) = -\text{cv}^+(A) \cup \text{cv}^+(A) \).

Proof. We show the inclusion \(-\text{cv}^+(A) \subseteq \text{cv}^-(A) \). The inverse inclusion is similar. Let \(c \) be an arbitrary positive c-vector of \(A \). Then there is a 2-term silting object, say \(T \in \text{per} A \) and an indecomposable \(A \)-module \(M \) such that \(\text{Hom}_A(T, M) = k \) and \(\text{Hom}_A(T, \Sigma^i M) = 0 \) for all \(i \neq 0 \). We may rewrite \(T \) as \(T = T_M \oplus Q \) with \(T_M \) indecomposable such that \(\text{Hom}_A(T_M, M) = k, \text{Hom}_A(T_M, \Sigma^i M) = 0 \) for \(i \neq 0 \) and \(\text{Hom}_A(Q, \Sigma^i M) = 0 \) for all \(i \in \mathbb{Z} \). It is known that there is an indecomposable 2-term presilting, say \(T_N \), such that \(T' = T_N \oplus Q \) is a basic 2-term silting object in \(\text{per} A \). By (1) of Theorem 2.3 we know that \(T \) and \(T' \) are related by a left or right mutation. We claim that \(T' \) is the left mutation of \(T \). Otherwise, \(T \) is the left mutation of \(T' \) and we have the triangle \(T_N \to Q' \to T_M \to \Sigma T_N \) with \(Q' \in \text{add} Q \). Applying the functor \(\text{Hom}_A(?, M) \), we have a long exact sequence

\[
\cdots \text{Hom}_A(T_M, \Sigma^i M) \to \text{Hom}_A(Q', \Sigma^i M) \to \text{Hom}_A(T_N, \Sigma^i M) \to \text{Hom}_A(T_M, \Sigma^{i+1} M) \cdots,
\]

which implies that \(\text{Hom}_A(T', \Sigma^{-1} M) = k \) and \(\text{Hom}_A(T', \Sigma^i M) = 0 \) for all \(i \neq -1 \). Let \(\Gamma_{T'} \) be the negative dg algebra associated to \(T' \). The conditions \(\text{Hom}_A(T', \Sigma^{-1} M) = k \) and \(\text{Hom}_A(T', \Sigma^i M) = 0 \) for all \(i \neq -1 \) imply that \(R\text{Hom}_A(T', \Sigma^{-1} M) \) is a simple \(\Gamma_{T'} \)-module, which contradicts to Proposition 2.5.

Therefore \(T' \) has to be the left mutation of \(T \) and there is a triangle

\[
T_M \to Q_1 \to T_N \to \Sigma T_M, \text{where } Q_1 \in \text{add} Q.
\]

Applying the functor \(\text{Hom}_A(?, M) \), we obtain a long exact sequence

\[
\cdots \text{Hom}_A(T_N, \Sigma^i M) \to \text{Hom}_A(Q_1, \Sigma^i M) \to \text{Hom}_A(T_M, \Sigma^i M) \to \text{Hom}_A(T_N, \Sigma^{i+1} M) \cdots.
\]
We have \(\text{Hom}_A(T_N, \Sigma M) = k \) and \(\text{Hom}_A(T^i_N, \Sigma^i M) = 0 \) for all \(i \neq 1 \). As a consequence, \(\text{Hom}_A(T', \Sigma M) = k \) and \(\text{Hom}_A(T', \Sigma^i M) = 0 \) for all \(i \neq 1 \). In particular, \(-\dim M \) is a negative c-vector by Corollary 3.3 and and we have \(-\text{cv}^+(A) \subseteq \text{cv}^-(A) \). □

3.4. The left-right symmetry of c-vectors. Let \(A^{\text{op}} \) be the opposite \(k \)-algebra of \(A \). We have the dualities

\[
D = \text{Hom}_k(?, k) : \text{mod} A \to \text{mod} A^{\text{op}} \quad \text{and} \quad (-)^* = \text{Hom}_A(?, A) : \text{add} A \to \text{add} A^{\text{op}}.
\]

For any \(X \in \text{mod} A \), let

\[
P_1^d \xrightarrow{d} P_0 \to X \to 0
\]

be a minimal projective resolution of \(X \), its transpose \(\text{Tr} X \in \text{mod} A^{\text{op}} \) is defined by the following exact sequence

\[
P_0^* \xrightarrow{d^*} P_1^* \to \text{Tr} X \to 0.
\]

For any \(M \in \text{mod} A \), we can decompose \(M \) as \(M = M_{pr} \oplus M_{np} \), where \(M_{pr} \) is a maximal projective direct summand of \(M \). The following left-right symmetry of \(\tau \)-rigid modules has been established in [3] (cf. Theorem 2.14 of [3]).

Theorem 3.5. Let \(A \) be a finite-dimensional \(k \)-algebra. There is a bijection \((-)^\circ \) between \(\tau \)-tilt \(A \) and \(\tau \)-tilt \(A^{\text{op}} \) given by \((M, Q)\circ = (\text{Tr} M_{np} \oplus Q^*, M_{pr}^*) \), where \((M, Q) \) is a support \(\tau \)-tilting pair of \(A \). Moreover, \((-)^{\circ \circ} = \text{id} \).

Let \(M \) be an indecomposable non-projective \(\tau \)-rigid \(A \)-modules. By Theorem 3.5 we infer that \(\text{Tr} M \) is also \(\tau \)-rigid as \(A^{\text{op}} \)-module. Moreover, we clearly have \(g(M) = -g(\text{Tr} M) \). On the other hand, for any indecomposable projective \(A \)-module \(P \), we also have \(g(P) = -g(P^*) \). Now the following result is an immediate consequence of the definition of c-vectors and Theorem 3.5, Theorem 3.2 and Theorem 3.4.

Proposition 3.6. Let \(A \) be a finite-dimensional \(k \)-algebra and \(A^{\text{op}} \) its opposite algebra. Then we have \(\text{cv}(A) = -\text{cv}(A^{\text{op}}) \) and \(\text{cv}^+(A) = \text{cv}^+(A^{\text{op}}) \).

4. C-VECTORS AND DIMENSION VECTORS

For an algebra \(A \), let \(\text{dv}(A) \) be the set of dimension vectors of indecomposable \(A \)-modules. By Corollary 3.3 we know that each positive c-vector can be realized as the dimension vector of an indecomposable \(A \)-module, that is, \(\text{cv}^+(A) \subseteq \text{dv}(A) \). However, the inverse inclusion is not true in general. The aim of this section is to study the positive c-vectors for quasitilted algebras, representation-directed algebras and cluster-tilted algebras of finite type.
4.1. c-vectors of quasitilted algebras.

4.1.1. Hereditary abelian categories. We follow [27]. Throughout this section, let \(\mathcal{H} \) be a hereditary abelian \(k \)-category with finite-dimensional morphism and extension spaces. As a consequence of finite-dimensional morphism space, \(\mathcal{H} \) is a Krull-Schmidt category, i.e. each object of \(\mathcal{H} \) is a finite direct sum of indecomposable objects with local endomorphism ring. We refer to [27] for examples and basic properties of hereditary categories.

Let \(D^b(\mathcal{H}) \) be the bounded derived category of \(\mathcal{H} \) with the suspension functor \(\Sigma \). An object \(X \) in \(D^b(\mathcal{H}) \) is called rigid provided that \(\text{Hom}_{D^b(\mathcal{H})}(X, \Sigma X) = 0 \). A rigid object \(X \) is exceptional if \(\text{dim}_k \text{Hom}_{D^b(\mathcal{H})}(X, X) = 1 \). In particular, an exceptional object has to be indecomposable. The following fundamental result is due to Happel-Ringel [20] (cf. also [1, 27]).

Lemma 4.1. Let \(E \) and \(F \) be indecomposable objects in \(\mathcal{H} \) such that \(\text{Hom}_{D^b(\mathcal{H})}(F, \Sigma E) = 0 \). Then all non-zero homomorphism \(f : E \to F \) is a monomorphism or epimorphism. In particular, each indecomposable \(E \) without self-extensions is exceptional.

Let \(\mathcal{C} \) be a full subcategory of \(D^b(\mathcal{H}) \) and \(M \) an indecomposable object in \(\mathcal{C} \). A path in \(\mathcal{C} \) from \(M \) to itself is called a cycle in \(\mathcal{C} \), that is a sequence of non-zero non-isomorphism between indecomposable objects in \(\mathcal{C} \) of the form

\[
M = M_0 \xrightarrow{f_1} M_1 \xrightarrow{f_2} M_2 \cdots \xrightarrow{f_r} M_r = M.
\]

The following result is a consequence of Lemma 4.1 which is crucial for our investigation of c-vectors for quasitilted algebras.

Lemma 4.2. Let \(T \) be an object in \(D^b(\mathcal{H}) \) such that \(\text{Hom}_{D^b(\mathcal{H})}(T, \Sigma T) = 0 \). Then the subcategory \(\text{add} T \) has no cycle.

Proof. Suppose that there is a cycle in \(\text{add} T \), say \(M = M_0 \xrightarrow{f_1} M_1 \xrightarrow{f_2} \cdots \xrightarrow{f_r} M_r = M \), where \(M_1, \cdots, M_r \) are indecomposable objects in \(\text{add} T \). We may assume that \(M_0 \in \mathcal{H} \). Note that \(M_0 \) is exceptional and \(f_1 \) is non-zero non-isomorphism, which imply that \(M_1 \not\cong M_0 \). We claim that some of \(M_1, \cdots, M_{r-1} \) are not in \(\mathcal{H} \). Otherwise, by Lemma 4.1 each \(f_i \) is either monomorphism or epimorphism. If there is an epimorphism \(f_i \) followed by a monomorphism \(f_{i+1} \), then \(f_{i+1} \circ f_i : M_{i-1} \to M_{i+1} \) is non-zero and is neither a monomorphism nor an epimorphism, which contradicts to Lemma 4.1. On the other hand, if there is a monomorphism \(f_i \) followed by an epimorphism \(f_{i+1} \), we may consider the cycle \(M_i \xrightarrow{f_{i+1}} \cdots \xrightarrow{f_r} M_r \xrightarrow{f_1} M_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{r-1}} M_{i-1} \xrightarrow{f_i} M_i \). This cycle turns out to admit an epimorphism followed by a monomorphism, a contradiction. Hence all of the \(f_i \) are either epimorphisms or monomorphisms.
Remark 4.4. In the above Corollary, if f is a positive c-vector of A and all f_i are non-zero, we deduce that some of M_1,\cdots, M_{r-1} belong to $\Sigma^t \mathcal{H}$ for certain $t > 0$. In particular, M_{r-1} belongs to $\Sigma^m \mathcal{H}$ for some $m > 0$. Consequently, $\text{Hom}_D(M_{r-1}, M_0) = 0$, which contradicts to $f_r \neq 0$.

Corollary 4.3. Let A be a finite-dimensional k-algebra such that $\text{mod} A$ is equivalent to the heart of a bounded t-structure on $\mathcal{D}^b(\mathcal{H})$. Then the Gabriel quiver Q_A has no cycle.

Proof. Let \mathcal{A} be the heart of a bounded t-structure on $\mathcal{D}^b(\mathcal{H})$ which is equivalent to $\text{mod} A$. We consider A as an object in $\mathcal{D}^b(\mathcal{H})$ via the equivalence. We clearly have $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(A, \Sigma A) = \text{Ext}_A^1(A, A) = 0$. Note that any cycle in the Gabriel quiver Q_A induces an oriented cycle in $\text{add} A$. Now the result follows from Lemma 4.2.

Remark 4.4. In the above Corollary, if \mathcal{H} is the category of finitely generated right H-modules for certain hereditary algebra H, then by Lemma 2.4 there is a silting object $T \in \mathcal{D}^b(\mathcal{H})$ such that $A \cong \text{End}_{\mathcal{D}^b(\mathcal{H})}(T)$.

For any finite-dimensional k-algebra A, let $\tau \text{dv}(A)$ be the set of dimension vectors of indecomposable τ-rigid A-modules. The following result gives a lower bound of c-vector for algebras related to the hearts of bounded t-structures on $\mathcal{D}^b(\mathcal{H})$.

Proposition 4.5. Let A be a finite-dimensional k-algebra such that $\text{mod} A$ is equivalent to the heart of a bounded t-structure on $\mathcal{D}^b(\mathcal{H})$. Then we have $\tau \text{dv}(A) \subseteq \text{cv}^+(A)$.

Proof. We need to prove that for any indecomposable τ-rigid A-module M, $\dim k M \in \text{cv}^+(A)$. Since M is τ-rigid, the subcategory $\text{Fac} M$ is a functorially finite torsion class. Let $P = P(\text{Fac} M)$ be the one copy of each indecomposable Ext-projective object in $\text{Fac} M$. We may write $P = M \oplus M_1 \oplus \cdots \oplus M_r$. Note that P is a support τ-tilting A-module, hence $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(P, \Sigma P) = \text{Ext}_A^1(P, P) = 0$. On the other hand, by the definition of $\text{Fac} M$, we deduce that $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(M_i, M_i) = \text{Hom}_A(M_i, M_i) \neq 0$ for any i. Now Lemma 4.2 implies that $\text{Hom}_D(M_i, M) = 0$ for all i. Let T be the 2-term silting object in $\mathcal{D}^b(\text{mod} A)$ corresponding to P. A direct calculation shows that $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, M) = k$ and $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, \Sigma M) = 0$ for all $i \neq 0$. Hence $\dim M$ is a positive c-vector of A by Corollary 3.3. In particular, we have proved that $\tau \text{dv}(A) \subseteq \text{cv}^+(A)$.

□
4.1.2. Piecewise hereditary algebras. Recall that \mathcal{H} is a hereditary abelian category with finite-dimensional morphism and extension spaces, $\mathcal{D}^b(\mathcal{H})$ is the bounded derived category of \mathcal{H}. An object $T \in \mathcal{D}^b(\mathcal{H})$ is a tilting complex if

1. $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, \Sigma^n T) = 0$ for all $0 \neq n \in \mathbb{Z}$;
2. for each $X \in \mathcal{D}^b(\mathcal{H})$, the condition $\text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, \Sigma^n X) = 0$ for all $n \in \mathbb{Z}$ implies that $X = 0$ in $\mathcal{D}^b(\mathcal{H})$.

A tilting complex T of $\mathcal{D}^b(\mathcal{H})$ is called a tilting object of \mathcal{H} if $T \in \mathcal{H}$. A finite-dimensional k-algebra A is called piecewise hereditary if A is isomorphic to the endomorphism algebra of a tilting complex in $\mathcal{D}^b(\mathcal{H})$. It is called quasi-tilted if moreover T is a tilting object in \mathcal{H}. A tilting complex T induces an equivalence of triangulated categories $\mathcal{L} \otimes \text{End}_{\mathcal{D}^b(\mathcal{H})}(T) : \mathcal{D}^b(\mathcal{H}) \rightarrow \mathcal{D}^b(\mathcal{H})$. By Happel’s theorem [19], if \mathcal{H} is a connected hereditary abelian k-category with finite-dimensional morphism and extension spaces which admits a tilting complex, then \mathcal{H} is derived equivalent to the category $\text{mod} \ H$ for certain finite-dimensional hereditary k-algebra or to the category $\text{coh} X$ of coherent sheaves over a weighted projective line [17].

Note that when \mathcal{H} is the category $\text{mod} \ A$ for some finite-dimensional hereditary k-algebra, the endomorphism algebra of a tilting module in $\text{mod} \ A$ is called a tilted algebra [5, 20]. In particular, tilted algebras are quasi-tilted.

Let A be a finite-dimensional k-algebra which is derived equivalent to \mathcal{H}. The algebra A turns out to be piecewise hereditary. Indeed, let $K : \mathcal{D}^b(\text{mod} \ A) \rightarrow \mathcal{D}^b(\mathcal{H})$ be the equivalent functor. It is clear that $K(A)$ is a tilting complex of $\mathcal{D}^b(\mathcal{H})$ and $A \cong \text{End}_{\mathcal{D}^b(\mathcal{H})}(K(A))$. For a finite-dimensional k-algebra A, a module M is called exceptional provided $\dim_k \text{Hom}_A(M, M) = 1$ and $\text{Ext}^1_A(M, M) = 0$. We define

$$\text{exdv}(A) = \{ \dim M | M \in \text{mod} A \text{ is exceptional} \}.$$

Our next result gives a upper bounded of positive c-vectors by exceptional modules for piecewise hereditary algebras.

Theorem 4.6. Let A be a piecewise hereditary k-algebra. Then we have $\tau \text{dv}(A) \subseteq \text{cv}^+(A) \subseteq \text{exdv}(A)$.

Proof. The first inclusion $\tau \text{dv}(A) \subseteq \text{cv}^+(A)$ follows from Proposition [45] directly.

Let c be a positive c-vector, by Corollary 3.2, there is a 2-term silting object $T \in \text{per} A$ and an indecomposable A-module M with $\dim M = c$ such that $\text{Hom}_A(T, M) = k$ and $\text{Hom}_A(T, \Sigma^i M) = 0$ for all $i \neq 0$. Let Γ be the negative dg algebra associated to T and $F := L \otimes_T T : \mathcal{D}^b(\Gamma) \rightarrow \mathcal{D}^b(\text{mod} A)$ the equivalent functor. The condition $\text{Hom}_A(T, M) = k$ and $\text{Hom}_A(T, \Sigma^i M) = 0$ for all $i \neq 0$ implies that there is a simple
Let H be the hereditary abelian category H such that $D^b(\text{mod } A) \cong D^b(H)$, then we have $D^b(\text{mod } A) \cong D^b(H)$. Therefore A is equivalent to the heart of a bounded t-structure on $D^b(H)$. On the other hand, we have $A \cong \text{mod } \text{End}_A(T)$. Hence $\text{Hom}_A(M, M) = \text{Hom}_A(S, S) = \text{Hom}_A(S, S) = k$. Moreover, by Corollary 4.3, we deduce that $0 = \text{Hom}_A(S, \Sigma S) = \text{Hom}_A(S, \Sigma S) = \text{Ext}_A^1(M, M) = 0$. In particular, $c \in \text{exdv}(A)$. This completes the proof.

If A is a finite-dimensional hereditary algebra over k, then we clearly have $\tau \text{dv}(A) = \text{exdv}(A)$. Hence we obtain the equalities for acyclic cluster algebras established by Chávez in [11].

Corollary 4.7. Let A be a finite-dimensional hereditary algebra over k. Then we have $\text{cv}^+(A) = \text{exdv}(A)$.

4.1.3. Quasitilted algebras. Let A be a quasitilted algebra. By definition, there is a hereditary abelian k-category H with a tilting object $T \in H$ such that $A \cong \text{End}_H(T)$. In this case, the category $\text{mod } A$ of finitely generated right A-modules has a nice interpretation via torsion theory of H.

Let \mathcal{T} (resp. \mathcal{F}) be the full subcategory of H consisting of all objects X (resp. Y) of H satisfying $\text{Ext}_H^1(T, X) = 0$ (resp. $\text{Hom}_H(T, Y) = 0$). Let $F : D^b(\text{mod } A) \to D^b(H)$ be the triangle equivalent functor. Then the standard t-structure $(D^{\leq 0}, D^{\geq 0})$ on $D^b(\text{mod } A)$ induces a t-structure $(D^{\leq 0}, D^{\geq 0})$ via the functor F (cf. Section 2.4). Moreover, $\text{mod } A$ is equivalent to the heart A of $(D^{\leq 0}, D^{\geq 0})$ via the functor F. The following results are well-known, see [5, 20, 27].

Lemma 4.8.

1. $(\mathcal{T}, \mathcal{F})$ is a torsion pair over H;
2. $(\Sigma \mathcal{F}, \mathcal{T})$ is a splitting torsion pair over A;
3. Under the identification of $\text{mod } A$ with A, we have $\text{pd } M_A \leq 1$ for $M \in \mathcal{T}$ and $\text{id } N_A \leq 1$ for $N \in \Sigma \mathcal{F}$.

Theorem 4.9. Let A be a quasitilted algebra over k, then we have $\text{cv}^+(A) = \text{exdv}(A)$.

Proof. We need to show that for each exceptional A-module M, the dimension vector $\text{dim } M$ is a positive c-vector of A. We identify $\text{mod } A$ with A as above. Let M be an exceptional A-module. Since $(\Sigma \mathcal{F}, \mathcal{T})$ is splitting, M lies either in \mathcal{T} or in $\Sigma \mathcal{F}$. If $M \in \mathcal{T}$, then by Lemma 4.8 we have $\text{pd } M \leq 1$. As a consequence, M is an
indecomposable τ-rigid A-module. By Proposition 4.5, we deduce that $\dim M$ is a positive c-vector of A.

Now suppose that $M \in \Sigma \mathcal{F}$, then $\text{id} M \leq 1$. Recall that we have the usual duality $D = \text{Hom}_k(?, k) : \text{mod} A \to \text{mod} A^{\text{op}}$. It is clear that $D(M) \in \text{mod} A^{\text{op}}$ is an exceptional A^{op}-module and has projective dimension at most one. Therefore $D(M)$ is an indecomposable τ-rigid A^{op}-module. On the other hand, we clearly have $D^b(\text{mod} A^{\text{op}}) \cong D^b(\mathcal{H}^{\text{op}})$, where \mathcal{H}^{op} is the opposite category of \mathcal{H}, which is a hereditary abelian category. By Proposition 4.5 again, we deduce that $\dim D(M)$ is a positive c-vector of A^{op}. Note that $\dim D(M) = \dim M \in \text{cv}^+(A)$. Now the result follows from Theorem 4.6. □

4.2. c-vectors of representation-directed algebras. A finite-dimensional k-algebra is called representation-directed if there is no cycle in $\text{mod} A$. Let A be a finite-dimensional representation-directed k-algebra. By the definition, we know that every indecomposable A-module is τ-rigid and also exceptional. This section is devoted to study the c-vectors for representation-directed algebras. Namely, we have the following equality.

Theorem 4.10. Let A be a representation-directed algebra over k. We have $\text{cv}^+(A) = \text{exdv}(A)$.

Proof. We need to prove the dimension vector of each indecomposable A-module is a positive c-vector. Let M be an arbitrary indecomposable A-modules. Consider the torsion class $\text{Fac} M$ generated by M, which is a functorially finite torsion class. Let $N := P(\text{Fac} M)$ be the direct sum of one copy of each of the indecomposable Ext-projective objects in $\text{Fac} M$. We clearly have $M \in \text{add} N$. By Theorem 2.2, we deduce that N is a support τ-tilting A-module. Equivalently, there is a projective A-module P such that (N, P) is a support τ-tilting pair. Let T be the corresponding 2-term silting complex and Γ the negative dg algebra of T. Let $G := \text{RHom}_A(T, ?) : D^b(\text{mod} A) \to D^b(\Gamma)$ be the inverse of the functor $F := ? \otimes_{\Gamma} T$. A direct calculation shows that $H^0(G(M)) = k$ and $H^i(G(M)) = 0$ for $i \neq 0$. In particular, the dimension vector $\dim M$ is a c-vector of A by Corollary 3.3. This finishes the proof. □

Note that an algebra derived equivalent to a representation-finite hereditary algebra has to be a representation-direct algebra. We have the following special case of the above theorem.

Corollary 4.11. Let A be finite-dimensional algebra over k. If A is derived equivalent to a representation-finite hereditary algebra, then $\text{cv}^+(A) = \text{exdv}(A)$.
4.3. c-vectors of cluster-tilted algebras. Let H be a finite-dimensional hereditary k-algebra and $\mathcal{D}^b(H)$ the bounded derived category of finitely generated right H-modules. Denote by Σ the suspension functor of $\mathcal{D}^b(H)$ and τ the Auslander-Reiten translation functor. The cluster category \mathcal{C}_H has been introduced in [9] as the orbit category $\mathcal{D}^b(H)/\tau^{-1} \circ \Sigma$ of $\mathcal{D}^b(H)$. It admits a canonical triangle structure such that the projection $\pi_H : \mathcal{D}^b(H) \to \mathcal{D}^b(H)/\tau^{-1} \circ \Sigma$ is a triangle functor [21]. An object T in \mathcal{C}_H is called a cluster-tilting object provided that

- $\circ \operatorname{Hom}_{\mathcal{C}_H}(T, \Sigma T) = 0$;
- \circ if $X \in \mathcal{C}_H$ such that $\operatorname{Hom}_{\mathcal{C}_H}(T, \Sigma X) = 0$, then $X \in \operatorname{add} T$.

Let n be the number of pairwise non-isomorphic simple H-modules. Each basic cluster-tilting object in \mathcal{C}_H has exactly n indecomposable direct summands. The endomorphism algebra $\operatorname{End}_{\mathcal{C}_H}(T)$ of a cluster-tilting object $T \in \mathcal{C}_H$ is a cluster-tilted algebra [8]. It is known that cluster-tilted algebras are 1-Gorenstein algebras. Moreover, the functor $\operatorname{Hom}_{\mathcal{C}_H}(T, ?) : \mathcal{C}_H \to \operatorname{mod} \operatorname{End}_{\mathcal{C}_H}(T)$ yeilds an equivalence $\mathcal{C}_H/\Sigma T \cong \operatorname{mod} \operatorname{End}_{\mathcal{C}_H}(T)$, where $\mathcal{C}_H/\Sigma T$ is the additive quotient of \mathcal{C}_H by the morphism factorizing through ΣT (cf. [8, 24]).

Proposition 4.12. Let H be a finite-dimensional hereditary k-algebra and \mathcal{C}_H the corresponding cluster category. Let T be a cluster-tilting object and A the endomorphism algebra of T. Let M be an indecomposable preprojective or preinjective H-module such that $\operatorname{Hom}_{\mathcal{C}_H}(T, M) \neq 0$, then the dimension vector $\dim \operatorname{Hom}_{\mathcal{C}_H}(T, M)$ of A-module is a positive c-vector of A.

Proof. It is easy to see that there is a cluster tilting object $T_M = M \oplus M_1 \cdots \oplus M_{n-1}$ such that $\operatorname{Hom}_{\mathcal{C}_H}(M_i, M) = 0$ for all $1 \leq i \leq n-1$. Applying the functor $\operatorname{Hom}_{\mathcal{C}_H}(T, ?)$, we deduce that $N_A := \operatorname{Hom}_{\mathcal{C}_H}(T, T_M)$ is a support τ-tilting A-module. Let P be the 2-term silting object corresponding to N_A. A direct calculation shows that

$$\operatorname{Hom}_A(P, \Sigma^i \operatorname{Hom}_{\mathcal{C}_H}(T, M)) = \begin{cases} k & i = 0; \\ 0 & \text{else} \end{cases}$$

In particular, $\dim \operatorname{Hom}_{\mathcal{C}_H}(T, M)$ is a positive c-vector of A by Corollary 3.3. \qed

Note that for a representation-finite hereditary algebra H, each H-module is a preprojective module. As a consequence, we recover the following equality of c-vectors for skew-symmetric cluster algebras of finite type in [12].

Corollary 4.13. Let A be a cluster-tilted algebra of representation-finite type. We have $\operatorname{cv}^+(A) = \operatorname{dv}(A)$.

A. Cluster algebras with principal coefficients and c-vectors. We follow [15, 16]. For an integer \(x \), we set \([x]_+ = \max\{x, 0\} \) and \(\text{sgn}(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases} \). Let \(1 \leq n \leq m \in \mathbb{N} \). Let \(\mathbb{QP} \) be the algebra of Laurent polynomials in the variables \(x_{n+1}, \ldots, x_m \) and \(\mathcal{F} \) the field of fractions of the ring of polynomials with coefficients in \(\mathbb{QP} \) in \(n \) indeterminates. A seed in \(\mathcal{F} \) is a pair \((\tilde{B}, \mathbf{x}) \) consisting of an \(m \times n \) integer matrix \(\tilde{B} \) whose principal part (that is the submatrix formed by the first \(n \) rows) is skew-symmetrizable and a free generating set \(\mathbf{x} = \{x_1, x_2, \ldots, x_n\} \) of the field \(\mathcal{F} \). The matrix \(\tilde{B} \) is the exchange matrix and \(\mathbf{x} \) is the cluster of the seed \((\tilde{B}, \mathbf{x}) \).

Elements of the cluster \(\mathbf{x} \) are cluster variables of the seed \((\tilde{B}, \mathbf{x}) \).

For any \(1 \leq k \leq n \), the seed mutation of \((\tilde{B}, \mathbf{x}) \) in the direction \(k \) transforms \((\tilde{B}, \mathbf{x}) \) into a new seed \(\mu_k(\tilde{B}, \mathbf{x}) = (\tilde{B}', \mathbf{x}') \), where

- the entries \(b'_{ij} \) of \(\tilde{B}' \) are given by
 \[
 b'_{ij} = \begin{cases}
 -b_{ij} & \text{if } i = k \text{ or } j = k, \\
 b_{ij} + \text{sgn}(b_{ik})[b_{ik}b_{kj}]_+ & \text{else}.
 \end{cases}
 \]

- the cluster \(\mathbf{x}' = \{x'_1, \ldots, x'_n\} \) is given by \(x'_j = x_j \) for \(j \neq k \) and \(x'_k \in \mathcal{F} \) is determined by the exchange relation
 \[
 x'_k x_k = \prod_{i=1}^{m} x^{|b_{ik}|}_i + \prod_{i=1}^{m} x^{|-b_{ik}|}_i.
 \]

It is clear that mutation in a fixed direction is an involution. The cluster algebra with coefficients \(\mathcal{A}(\tilde{B}) = \mathcal{A}(\tilde{B}, \mathbf{x}) \) is the subalgebra of \(\mathcal{F} \) generated by all the cluster variables which can be obtained from the initial seed \((\tilde{B}, \mathbf{x}) \) by iterated mutations.

If \(m = 2n \) and the coefficient part of \(\tilde{B} \) (that is the submatrix formed by the last \(m - n \) rows) is the identity matrix \(E_n \), then \(\mathcal{A}(\tilde{B}) \) is a cluster algebra with principal coefficients.

Let \(T_n \) be the \(n \)-regular tree, whose edges are labeled by the numbers \(1, 2, \ldots, n \) so that the \(n \) edges emanating from each vertex carry different labels. A cluster pattern is the assignment of a seed \((\tilde{B}_t, \mathbf{x}_t) \) to each vertex \(t \) of \(T_n \) such that the seeds assigned to vertices \(t \) and \(t' \) linked by an edge labeled \(k \) are obtained from each other
by the seed mutation \(\mu_k \). A cluster pattern is uniquely determined by an assignment of the initial seed \((B, x)\) to any vertex \(t_0 \in T_n \).

Let \(A(B) \) be a cluster algebra with principal coefficients. We fix a cluster pattern of \(A(B) \). For any \(t \in T_n \), let \(C_t \) be the coefficient part of the matrix \(B_t \). Each column vector of \(C_t \) is called a c-vector of \(A(B) \). It has been conjectured that each c-vector of \(A(B) \) is sign-coherence. The following positive answer has been established in [14] for skew-symmetric cluster algebras. We refer to [28, 32] for two alternative proofs.

Theorem A.1. Let \(B \) be a \(2n \times n \) integer matrix whose principal part is skew-symmetric and whose coefficient part is the identity matrix \(E_n \). Then each c-vector of the cluster algebra \(A(B) \) is sign-coherence.

We shall give a direct proof basing on Proposition 6.10 of [16] in the end of this section.

A.2. Quivers with potentials and mutations. We follow [13, 22]. Let \(Q = (Q_0, Q_1) \) be a finite quiver, where \(Q_0 \) is the set of vertices and \(Q_1 \) is the set of arrows. Let \(kQ \) be the path algebra of \(Q \) and \(\widehat{kQ} \) its completion with respect to path length. Thus, \(\widehat{kQ} \) is a topological algebra and the paths of \(Q \) form a topological basis. The continuous zeroth Hochschild homology of \(\widehat{kQ} \) is the vector space \(HH_0(\widehat{kQ}) \) obtained as the quotient of \(\widehat{kQ} \) by the closure of the subspace \([kQ, \widehat{kQ}]\) of all commutators. It has a topological basis formed by the classes of cyclic paths of \(Q \). For each arrow \(a \) of \(Q \), the cyclic derivative with respect to \(a \) is the unique continuous map

\[
\partial_a : HH_0(\widehat{kQ}) \rightarrow \widehat{kQ}
\]

which takes the class of a path \(p \) to the sum

\[
\sum_{p=uvu} vu
\]

taken over all decompositions of \(p \) as a concatenation of path \(u, a, v \), where \(u, v \) are of length \(\geq 0 \). A potential on \(Q \) is an element \(W \) of \(HH_0(\widehat{kQ}) \) which does not involve cycles of length \(\leq 2 \).

Let \((Q, W) \) be a quiver with potential and \(k \) a vertex of \(Q \). With certain mild condition for \((Q, W)\) at the vertex \(k \), Derksen-Weyman-Zelevinsky [13] introduced the mutation of \((Q, W)\) in the direction \(k \) which transforms \((Q, W)\) into a new quiver with potential \(\mu_k(Q, W) = (Q', W') \) (for the precisely definition, we refer to [13]). In this case, we call the quiver with potential \((Q, W)\) is mutable at vertex \(k \). The quiver \(Q \) and \(Q' \) have the same vertices but different arrows. In general, the resulting quiver with potential \(\mu_k(Q, W) \) may not be mutable at certain vertices. But if the quiver
Q has no loops nor 2-cycles, there exists a non-degenerate potential W on Q such that we can indefinitely mutate the quiver with potential (Q, W). Moreover, each quiver with potential obtained from (Q, W) by iterated mutations has no loops nor 2-cycles.

Let Q be a finite quiver without loops nor 2-cycles with vertex set $Q_0 = \{1, 2, \cdots, m\}$. We define an $m \times m$ integer matrix $B(Q)$ associated to Q such that

$$b_{ij} = |\{\text{arrows from vertex } i \text{ to vertex } j\}| - |\{\text{arrows from vertex } j \text{ to vertex } i\}|.$$

Conversely, for a given integer skew-symmetric matrix B, there is a unique quiver Q without loops nor 2-cycles such that $B(Q) = B$. Let W be a non-degenerate potential on Q. We may assign each vertex $t \in \mathbb{T}_m$ a quiver with potential (Q_t, W_t) which can be obtained from (Q, W) by iterated mutations such that the quivers with potentials assigned to t and t' linked by an edge labeled k are obtained from each other by the mutation μ_k. By Proposition 7.1 in [13], if (Q_t, W_t) and $(Q_{t'}, W_{t'})$ are linked by an edge k, then we have $B(Q_t) = \mu_k(B(Q_{t'}))$.

A.3. Ginzburg dg algebras and derived equivalences

Let Q be a finite quiver and W a potential on Q. The Ginzburg dg algebra $\Gamma(Q_0, W)$ of (Q, W) introduced by Ginzburg [18] is constructed as follows: Let \overrightarrow{Q} be the graded quiver with the same vertices as Q and whose arrows are

- the arrow of Q, which are of degree 0;
- an arrow $a^* : j \to i$ of degree -1 for each arrow $a : i \to j$ of Q;
- a loop $t_i : i \to i$ of degree -2 for each vertex i of Q.

The underlying graded algebra of $\Gamma(Q, W)$ is the completion of the graded path algebra $k\overrightarrow{Q}$ in the category of graded vector spaces with respect to the ideal generated by the arrows of \overrightarrow{Q}. In particular, the n-component of $\Gamma(Q, W)$ consisting of elements of the form $\sum_{p} \lambda_p p$, where p runs over all paths of degree n. The differential d of $\Gamma(Q, W)$ is the unique continuous linear endomorphism homogenous of degree 1 which satisfies the Leibniz rule

$$d(uv) = (du)v + (-1)^p uv,$$

for all homogeneous u of degree p and all v, and takes the following values on the arrows of \overrightarrow{Q}:

- $da = 0$ for each arrow a of Q;
- $d(a^*) = \partial_a W$ for each arrow a of Q;
- $d(t_i) = e_i(\sum_{a}[a, a^*])e_i$ for each vertex i of Q, where e_i is the lazy path at i and the sum runs over the set of arrows of Q.

Let Q be a finite quiver without loops nor 2-cycles with vertex set $\{1, 2, \cdots, m\}$ and W a non-degenerate potential on Q. Denote by $\Gamma_{(Q,W)}$ the Ginzburg dg algebra associated to (Q,W). Let k be a vertex of Q and $\Gamma_{\mu_k(Q,W)}$ the Ginzburg dg algebra associated to $\mu_k(Q,W)$. Let e_1, \cdots, e_m be the idempotents of $\Gamma_{(Q,W)}$ and $\Gamma_{\mu_k(Q,W)}$ associated to the vertices of (Q,W) and $\mu_k(Q,W)$. Let $\mathcal{D}(\Gamma_{(Q,W)})$ and $\mathcal{D}(\Gamma_{\mu_k(Q,W)})$ be the derived categories of $\Gamma_{(Q,W)}$ and $\Gamma_{\mu_k(Q,W)}$ respectively. The following result is due to Keller-Yang [25].

Theorem A.2. There is a triangle equivalence

$$\Phi : \mathcal{D}(\Gamma_{\mu_k(Q,W)}) \rightarrow \mathcal{D}(\Gamma_{(Q,W)})$$

which sends the $e_i\Gamma_{\mu_k(Q,W)}$ to $e_i\Gamma_{(Q,W)}$ for $i \neq k$ and to the mapping cone of the morphism $e_k\Gamma_{\mu_k(Q,W)} \rightarrow \oplus_{k \rightarrow j} e_j\Gamma_{(Q,W)}$ for $i = k$, where the sum is taken over the arrows in Q.

A.4. Proof of Theorem [A.1] We fix a cluster pattern of $\mathcal{A}(\tilde{B})$ by assigning the initial seed (\tilde{B}, x) to the vertex $t_0 \in \mathbb{T}_n$.

Let $Q = (Q_0, Q_1)$ be a finite quiver without loops nor 2-cycles with vertex set $Q_0 = \{1, 2, \cdots, n\}$ such that $B(Q)$ is the principal part of the initial matrix \tilde{B}. We define a new quiver \tilde{Q} such that the set of vertices $\tilde{Q}_0 = Q_0 \cup \{1 + n, 2 + n, \cdots, 2n\}$ and the set of arrows $\tilde{Q}_1 = Q_1 \cup \{i + n \rightarrow i | i \in Q_0\}$. Let W be a non-degenerate potential on \tilde{Q}. We may assign each vertex $t \in \mathbb{T}_n$ a quiver with potential (\tilde{Q}_t, W_t) which can be obtained from (\tilde{Q}, W) by iterated mutations of μ_k for $1 \leq k \leq n$ such that the quivers with potentials assigned to t and t' linked by an edge labeled k are obtained from each other by the mutation μ_k. Let (\tilde{Q}_0, W_0) be the quiver with potential (\tilde{Q}, W). For each quiver with potential (\tilde{Q}_t, W_t), let $B(\tilde{Q}_t)$ be the corresponding skew-symmetric matrix and $B(\tilde{Q}_t)^\circ$ the submatrix of $B(\tilde{Q}_t)$ formed by the first n columns. Recall that for each vertex $t \in \mathbb{T}_n$, we have a seed (\tilde{B}_t, x_t) by the fixed cluster pattern. By Proposition 7.1 in [13], we deduce that $B(\tilde{Q}_t)^\circ = \tilde{B}_t$ for all $t \in \mathbb{T}_n$. Let $C_t = (c_{ij}^t) \in M_n(\mathbb{Z})$ be the coefficient part of B_t, we clearly have $c_{ij}^t = |\{\text{arrows from vertex } i + n \text{ to vertex } j\}| - |\{\text{arrows from vertex } j \text{ to vertex } i + n\}|$.

Note that we have $\text{Hom}_{\mathcal{D}(\Gamma_{(Q,W)})}(e_{i+n}\Gamma_{(Q,W)}, e_{j+n}\Gamma_{(Q,W)}) = 0$ for any $1 \leq i \neq j \leq n$. It follows from Theorem [A.2] that there is no arrow between vertex $i + n$ and $j + n$ in the quiver Q_t for any $t \in \mathbb{T}_n$. Suppose that there is a vertex $t \in \mathbb{T}_n$ such that the kth column vector of C_t is not sign-coherence. Hence there exist vertices $i + n$ and $j + n$ for $1 \leq i \neq j \leq n$ such that $c_{ik}^t > 0$ and $c_{jk}^t < 0$. Now consider the mutation at
vertex k, we obtain that in the quiver with potential $\mu_k(\tilde{Q}_t, W_t)$ there are $c_{ik}^t \times c_{jk}^t$ arrows from $i + n$ to $j + n$, a contradiction.

References

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 1 Techniques of Representation Theory, London Math. Soc. Students Texts 65, Cambridge University press, 2006.

[2] M. Auslander and S.O. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981), 426-454. Addendum: J. Algebra 71(1981),592-594.

[3] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math. 150(2014), no. 3, 415–452.

[4] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. London Math. Soc. 85(2012), no.3, 633-668.

[5] K. Bongartz, Tilted algebras, In: Representations of algebras, Springer Lect. Notes Math. 903(1981),26-38.

[6] T. Brüstle and D. Yang, Ordered Exchange graphs, Advances in Representation Theory of Algebras (ICRA 2012), Euro. Math. Soc., 135-193, 2013.

[7] A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145(2009), no. 4, 1035–1079.

[8] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(2007), no.1, 323-332.

[9] A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204(2006), no.2, 572-618.

[10] G. Cerulli Irelli, D. Labardini-Fragoso and J. Schröer, Caldero-Chapoton algebras, to appear in Trans. Amer. Math. Soc., arXiv:1208.3310.

[11] A. N. Chávez, On the c-vectors of an acyclic cluster algebra, Int. Math. Res. Notices(2013), doi: 10.1093/imrn/rnt264.

[12] A. N. Chávez, C-vectors and dimension vectors for cluster-finite quivers, Bull. London Math. Soc. (2013), doi: 10.1112/blms/bdt062.

[13] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14(2008), no.1, 59-119.

[14] H. Derksen, Quivers with potentials and their representations II: Application to cluster algebras, J. Amer. Math. Soc. 23(2010), 749-790.

[15] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Compositio Math. 143(2007), 112-164.

[16] C. Fu and B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer. Math. Soc. 362(2010), 859-895.

[17] W. Geigle and H. Lenzing, A class of weighted projective lines arising in representation theory of finite dimensional algebras, Lect. Notes Math. 1273(1987),265-297.

[18] V. Ginzburg, Calabi-Yau algebras, arXiv:0612139v3.

[19] D. Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144(2001), 381-398.
[20] D. Happel and C.M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. **274**(1982), 399-443.

[21] B. Keller, *On triangulated orbit categories*, Doc. Math. **10**(2005), 551-581.

[22] -----, *Cluster algebras and derived categories*, to appear in Proc. GCOE Conference Derived categories, arXiv: 1202.4161.

[23] -----, *The periodicity conjecture for pairs of Dynkin diagrams*, Ann. Math. **177**(2013), no. 1, 111-170.

[24] B. Keller and I. Reiten, *Cluster-tilted algebras are Gorenstein and stably Calabi-Yau*, Adv. Math. **211**(2007), no.1, 123-151.

[25] B. Keller and D. Yang, *Derived equivalences from mutations of quivers with potential*, Adv. Math. **226**(2011), 2118-2168.

[26] S. König and D. Yang, *Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras*, Doc. Math. **19**(2014), 403-438.

[27] H. Lenzing, *Hereditary categories*, Chapter 6 of Handbook of tilting theory, London Math. Soc. Lecture Notes **332**, 105-146.

[28] K. Nagao, *Donaldson-Thomas theory and cluster algebras*, Duke Math. J. **162**(2013), no.7, 1313-1367.

[29] T. Nakanishi, *Periodicities in cluster algebras and dilogarithm identities*, in Representations of algebras and related topics (A. Skowronski and K. Yamagata, eds.), EMS Series of Congress Reports, European Mathematical Society, 2011, pp.407-444.

[30] T. Nakanishi and S. Stella, *Diagrammatic description of c-vectors and d-vectors of cluster algebras of finite type*, Electron. J. Combin. **21**(2014), 107 pages.

[31] T. Nakanishi and A. Zelevinsky, *On tropical dualities in cluster algebras*, Contemp. Math. **565**(2012), 217-226.

[32] P. Plamondon, *Cluster algebras via cluster categories with infinite-dimensional morphism spaces*, Compositio Math. **147**(2011),921-1954.

[33] D. Speyer and H. Thomas, *Acyclic cluster algebras revisited*, Algebras Quivers and Representations, Abel Symposium **8**(2013), 275-298.

CHANGJIAN FU, DEPARTMENT OF MATHEMATICS, SIChUAN UNIVERSITY, 610064 CHENGDU, P.R.CHINA

E-mail address: changjianfu@scu.edu.cn