Measurement and simulation of mechanical and optical properties of sputtered amorphous SiC coatings

G. Favaroa, A. Amatob, F. Arcipretec,d, M. Bazzana, E. Cesarinid, F. De Matteisc,d, T. H. Daoc,d, M. Granatae, C. Honrado-Benítezf, N. Gutiérrez-Lunaf, J. I. Larruquertf, G. Lorenzina, D. Lumacac,d, G. Maggionia, M. Magnozzig, E. Placidih, P. Prospostoc,d, and F. Puosii

aUniversità di Padova, I-35131, Padova, Italy
bUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
cUniversità di Roma Tor Vergata, I-00133 Roma, Italy
dINFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
eLaboratoire des Matériaux Avancés - IP2I - CNRS, F-69622 Villeurbanne, France
fGOLD-IO-CSIC, Serrano 144, S-28006 Madrid, Spain
gUniversità di Genova, I-16146 Genova, Italy
hUniversità di Roma “La Sapienza”, I-00185 Roma, Italy
iINFN, Sezione di Pisa, I-56127 Pisa, Italy

February 10, 2022

Abstract

In this work we report on the extensive characterization of amorphous silicon carbide (a-SiC) coatings prepared by physical deposition methods. We compare the results obtained on two different sputtering systems (a standard RF magnetron sputtering and a ion-beam assisted sputtering) to seize the impact of two different setups on the repeatably of the results.

After a thorough characterization of structural, morphological, and compositional characteristics of the prepared samples, we focus on a detailed study of the optical and mechanical losses in those materials.
Mechanical losses are further investigated from a microscopic point of view by comparing our experimental results with molecular dynamic simulations of the amorphous SiC structure: first we define a protocol to generate a numerical model of the amorphous film, capturing the main features of the real system; then we simulate its dynamical behaviour upon deformation in order to obtain its mechanical response. Our results are discussed within the perspective application of a-SiC as an optical material for high-precision optical experiments and in particular in gravitational wave interferometry.

1 Introduction

Crystalline silicon carbide (SiC) is one of the most mature among the wide band-gap semiconductors \((2.0 \text{ eV} \lesssim E_g \lesssim 7.0 \text{ eV}) \) for high-temperature, high-power, high-frequency, and radiation hardened applications, due to its favorable physical properties and its commercial availability. One of the most distinctive features of SiC is the rich variety of its crystal forms. SiC is part of a family of materials which exhibit a one-dimensional polymorphism called polytypism. An almost infinite number of SiC polytypes are possible, and approximately 200 polytypes differentiated by the stacking sequence of each tetrahedrally bonded Si-C bilayer have already been discovered [1]. Even though individual bond lengths are nearly identical, the crystal symmetry is determined by the stacking periodicity. This variety of structural arrangements is mirrored by the large variability of SiC physical properties such as optical bandgap, thermal and electrical conductivity and so on.

More recently, silicon carbide has attracted a renewed interest in its amorphous form (a-SiC) as a material for optical and optoelectronic applications, as well as for more cutting-edge research. In the case of the amorphous structure, the variety of the allowable bond configurations offered by the SiC polytypism together with the possibility of doping control allow to tune the optical and mechanical properties in situations where high refractive index, mechanical stability and low absorption is required.

In particular, a-SiC could have the potential to address very critical issues in high-precision optical experiments such as interferometric gravitational-wave detectors (GWDs) [2], opto-mechanical resonators [3], and frequency standards [4]. Those experiments and in particular GWDs such as Advanced...
LIGO [5], Advanced Virgo [6] and KAGRA [7] require high-reflection (HR) optical coatings made up of Bragg reflectors of alternating layers of low- and high-refractive-index materials, where a-SiC could be considered as a potential candidate for the high-index layer. In fact, despite the superb optical properties of the coatings used in present GWDs [8, 9, 10], HR coatings still constitute a severe limitation for further sensitivity improvement in GWDs due to their thermal noise issue, i.e. the presence of thermally-driven random structural relaxations distributing the thermal energy of the normal modes of vibration across a wide frequency range, giving rise to Brownian coating thermal noise (CTN) [11, 12]. The power spectral density of such thermally induced surface fluctuations is determined by the rate of energy dissipation in the coating material, which is measured by the mechanical loss angle φ, as stated by the fluctuation-dissipation theorem [13]. Thus, in the last two decades, a considerable research effort has been committed to finding an alternative high-index material featuring both low mechanical and optical losses [10, 14, 15, 16].

In this paper we report on the optical and mechanical properties of sputtered amorphous silicon carbide (a-SiC) thin films, and we discuss their potential application in current and future GWDs. The main goal of our research is to determine precisely the properties of a-SiC from the standpoint of GWDs requirement, taking into account that the deposition method may strongly affect the structure and thus the properties of the optical film. In order to elucidate how strongly the obtained films are influenced by the deposition methods, we compared coatings produced in two different sputtering systems: (i) a home-made standard laboratory magnetron sputtering apparatus and (ii) an ion-beam sputtering system, which is the technology of choice to produce the tantalum pentoxide (Ta_2O_5, also known as tantala, high index) and silicon dioxide (SiO_2, silica, low index), thin coating layers presently used in the mirrors of GWDs [8, 17]. We determined the physico-chemical characteristics of the a-SiC thin film samples by a wide range of techniques, with particular attention to their optical and mechanical properties in order to assess the potential of SiC as a material for GWDs. Finally, in order to obtain a microscopic insight on the material, the experimental results are compared with the results of an atomistic calculation simulating the amorphous structure of SiC and its mechanical properties.
2 Sample production

Thin layers of amorphous SiC have been deposited on different substrates for different purposes: (i) silicon wafers (⌀ 25.4 mm, 5-mm thick) and sapphire substrates (⌀ 25.4 mm, 5-mm thick) as witness samples to measure the optical properties, stoichiometry and structure of the coatings, (ii) amorphous carbon (a-C) with a thin layer of MS gold (Au) to perform accurate Rutherford back-scattering spectrometry experiments, (iii) fused-silica disks (⌀ 50 mm, 0.1 to 1-mm thick) to measure the coating mechanical properties.

Due to the nature of the mechanical loss measurements, which are particularly sensitive to the experimental conditions, the fused-silica disks were prepared according to the following specific protocol: (i) in order to release the internal stress due to manufacturing and induce relaxation, the disks were annealed in air at 900 °C for 10 hours prior to coating deposition; (ii) in order to cancel out the coating-induced curvature that would affect the measurement of their resonant frequencies, thin film of equal thickness have been grown on both their optically polished surfaces.

In some selected cases, the coated samples were annealed to relax internal stresses and improve the coating optical properties. The effects of this treatment from the standpoint of the optical properties will be discussed below.

In order to seize how much the properties of the deposited materials are dependent upon the specific growth conditions, we compared the results obtained using two different sputtering systems. The first one is a standard radio-frequency magnetron sputtering (MS) setup located inside Laboratori Nazionali di Legnaro1 (INFN-LNL). The second is an ion-beam sputtering system (IBS) located at the GOLD facility of the Instituto de Óptica Daza de Valdés2 (IO-CSIC).

2.1 Magnetron sputtering (MS) samples

In this apparatus a commercial 2-inches SiC target with a purity of 99.999% was used within a radio-frequency source (Torus® 2C Kurt J. Lesker) operated at 100 W by means of an appropriate RF power supply (RFX600 Advanced Energy). All the processes were performed in an Ar atmosphere.

1www.lnl.infn.it
2www.io.csic.es
The value of the pressure inside the chamber was around 8×10^{-7} mbar before the injection of argon and around 6×10^{-3} mbar during the sputtering process. The distance between the target and the substrate was 14 cm and the flux of argon in the chamber was 17 sccm for all depositions. The substrates are mounted on a rotating sample holder for improved coating thickness homogeneity. The velocity of rotation was set at 30 RPM for all the depositions. The thickness of the samples deposited in this system ranges from 40 nm to 400 nm, with a deposition rate of 0.017 nm/s. In order to modify the film stoichiometry, a varying number of Si pieces were placed on the SiC target for some deposition runs. This allowed us to produce a set of samples with different Si/C ratios, in order to explore the influence of the composition on the optical properties.

2.2 Ion beam sputtering (IBS) samples

Prior to deposition, the residual pressure inside the coater vacuum chamber was less than 3×10^{-8} mbar. Ar was used as sputtering gas, the total pressure was 1×10^{-3} mbar during the coating process. Sputtering ions were produced by means of a 3-cm diameter hollow cathode ion gun working with a hollow cathode neutralizer, both without filament in order to minimize contamination. Energy and discharge beam current of the ions were 1.0 keV and 50 mA, respectively, yielding a deposition rate of 0.05 nm/s, as measured with a quartz crystal monitor. A 96.5-mm diameter SiC target of 99.9995% purity was used, mounted in a multi-target rotating holder cooled down with water. Substrates during rotation were kept at a distance of 21 cm above the target, with the ion beam impinging on the latter at 45 deg. Each thin film was grown separately, but all coating samples were grown under identical conditions.

3 Physico-chemical Characterizations

Grazing-incidence X-Ray Diffraction (GIXRD) and X-Ray Reflectivity (XRR) analyses have been performed using a Philips MRD diffractometer equipped with a Cu tube operated at 40 kV and 40 mA. The beam was collimated and partially monochromatized by a parabolic multilayer mirror, while the detector was equipped with a parallel plate collimator (PPC) to define the angular acceptance. To perform XRR measurements an additional high-resolution
four-bounce Ge (2 2 0) symmetric Bartels monochromator was mounted on the primary optics and the PPC was replaced with a three-bounce symmetric (2 2 0) Ge analyzer.

The morphology of samples were studied by a Veeco Multiprobe Nanoscope IIIa atomic force microscope (AFM). Topographies were acquired in tapping mode (amplitude modulation) by means of a silicon tip with a stiffness of 42 N/m (resonance frequency around 300kHz) and radius of curvature below 7 nm. The measurements were performed in the MBE laboratory in the Physics Department of University of Rome Tor Vergata.

The composition of the films was investigated by Rutherford back-scattering spectrometry (RBS) using a 2.0 MeV 4He+ beam at the Van der Graaf accelerator at the INFN-LNL with a 160-deg scattering angle, normal incidence, and a silicon solid state detector.

3.1 Results

3.1.1 X-ray analysis

In figure 1 are presented the results of the GIXRD and XRR analyses on two representative samples prepared by the MS and IBS deposition systems on two different substrates. The GIXRD spectra were recorded for different values of the incidence angle $\omega = 1, 2, 3$ deg in order to compare a different penetration depth of the X-ray beam. In all cases the samples did not demonstrate any diffraction peak confirming that the grown SiC layers were amorphous. Note that the difference between the two spectra reported in Fig 1 (a) and (b) is due to the different substrates: the former is obtained from a film deposited on amorphous silica, which contributes to the diffracted signal with the smooth diffraction pattern typical of this material; the second sample has a crystalline sapphire substrate which does not induce any significant background.

The XRR analysis allows to determine the average density and the surface roughness for the two films. For films thinner than 500 nm, our reciprocal space resolution also allowed us to measure thickness fringes and hence determine the film thickness from an analysis of the curve. Experimental data of the MS sample, shown in Figure 1 (c), is well fit with a simple single-layer model using the REFLEX software [18]. The obtained average density, $\rho = (2.82 \pm 0.05)$ g/cm3, is in agreement with previous works [19], and the roughness resulted in $\sigma = (2.3 \pm 0.1)$ nm. In the case of the IBS sample, the
Figure 1: GIXRD and XRR spectra for two a-SiC thin film samples prepared by MS and IBS on different substrates. (a) GIXRD of MS a-SiC on a SiO$_2$ substrate; (b) GIXRD of IBS a-SiC on an Al$_2$O$_3$ substrate; (c) XRR of the same sample as in (a); XRR of the same sample as in (b). The red lines in (c) and (d) are model fits. The model is slightly more complex as it required the introduction of a thin low-density cap layer of about 13 nm to model the low-frequency modulations visible in Figure 1 (d). The results for that layer are $\rho = (2.87 \pm 0.01)$ g/cm3 and $\sigma = (0.5 \pm 0.1)$ nm, so the MS and IBS samples have a very similar density but the IBS sample has a much smoother surface. Note however that, besides being deposited on different substrates, those values were obtained in two samples with significantly different thicknesses, $t = (423.1 \pm 0.1)$ nm for the MS sample and $t = (104.3 \pm 0.1)$ nm for the IBS sample, as measured by XRR curves. Those aspects may also contribute to the observed difference in the surface roughness [20].
3.1.2 Atomic Force Microscopy

MS samples were also characterized by AFM, in order to investigate the details of the surface topography. The results presented in Fig. 2 show that MS samples exhibit a surface morphology characterized by raw textures, probably related to the substrate polishing. In excellent agreement with XRR analysis, the RMS roughness measured by AFM is around 2.2 nm for all the examined maps. On the very surface, small grains with average height and diameter respectively of 5 nm and 20 nm can be observed (as pointed out in panel (b) of Fig. 2).

Figure 2: AFM topographies of SiC surface. The image scale-bars are respectively (a) 5µm and (b) 500 nm.

3.1.3 Rutherford Backscattering Spectrometry

Figure 3 compares experimental RBS spectra of two a-SiC samples, grown by MS and by IBS on different substrates.

The 50 nm thick MS sample was deposited on a gold-coated a-C substrate; the additional 80 nm thick Au layer allowed us to separate the signal of the a-SiC film from that of the substrate. On Figure 3 (a), the first part of the spectrum between 200 keV and 400 keV results from collisions of incident α particles reaching the carbon substrate after losing some energy by passing through the first layers of the sample. The peaks due to collisions with the C and Si atoms in the film are clearly visible (the peak related to collisions with Au atoms is outside the range displayed in the figure). The areal density and the composition of the deposited films is thus obtained by direct integration.
of the peak area. The average areal density of the measured MS samples is $(2.8 \pm 0.1) \times 10^{17}$ SiC molecules per cm2 which, taking into account the film thickness, results in a density of $\rho = (2.9 \pm 0.1)$ g/cm3, in agreement with the results obtained from the XRR data. Some contamination of other elements has also been detected as traces, mainly O (around 2 mol. percent) while other contamination (Ar from the sputtering atmosphere and Fe from the target holder) are below 1 mol percent. The Si/C ratio of an as-deposited MS sample is around 0.74, showing a tendency towards a Si deficiency with respect to the stoichiometric composition. By adding some Si pieces on the target, the Si/C ratio of the deposited films could be varied between 0.74 and 1.15, providing a set of samples with different stoichiometries to be used in the next analysis.

When different substrates are used, the RBS spectrum cannot be analyzed by direct integration as the signals from the different elements of the film overlap with the substrate signal. Moreover, for non conducting substrate like SiO$_2$, to avoid the sample charging and producing artifacts in the RBS spectrum, an additional Au layer is deposited on top of the sample. This, for example, can be seen in Figure 3 (b), which presents the spectrum of an IBS sample grown on a SiO$_2$ substrate. In this case the analysis can be performed by fitting the experimental spectrum with numerical simulations obtained by the RUMP software [21], at the price of a higher uncertainty in the elemental analysis. In figure 3 (b) the signal of Si and C coming from

Figure 3: (a) RBS spectrum for MS sample deposited on a Au/C substrate; (b) RBS spectrum for an IBS sample deposited on a SiO$_2$ substrate.
the film is clearly visible, while the incorporation of other elements such as oxygen is not visible. The areal density of the IBS film given by the analysis is \((9.3 \pm 0.1) \times 10^{17}\) SiC molecules per cm\(^2\). By dividing by the film thickness, one gets a film density of \(\rho = (2.8 \pm 0.2)\) g/cm\(^3\), once again in agreement with XRR data. Differently from what observed with MS samples, as-deposited IBS samples appear to be more stoichiometric, with a Si/C ratio close to 1.

4 Optical Properties

Optical ellipsometry is an established technique for the study of the optical properties of thin films and in particular of gravitational-wave detectors coatings [9, 22, 23]. The optical characterization of a-SiC coating samples was performed using a J. A. Woollam Co. Variable Angle Spectroscopic Ellipsometer (VASE), which exploits the rotating analyzer configuration. The setup is equipped with a computer-controlled compensator (AutoRetarderTM) which allows measurement of \(\Psi\) and \(\Delta\), both functions of the complex refractive index and of the sample thickness, in the whole range 0-360\(^\circ\) without ambiguity. SE measurements were performed between 300-1700 nm at incidence angles of 55\(^\circ\), 60\(^\circ\) and 65\(^\circ\) in the probed spectral range in order to maximize the sensitivity around the Brewster’s angle. Furthermore, the same setup adjusted in transmission mode allowed for a direct absorbance measurement on the same spectral range. Since the absorbance is defined as \(\alpha = \frac{4\pi}{\lambda}\kappa\) (where \(\kappa\) is the imaginary part of the refractive index), the absorption and SE measurements can be combined in a global minimization analysis using the J. A. Woollam Co. WVASE software package. A Tauc-Lorentz dielectric function \((\varepsilon^{(TL)})\) with an additional Lorentzian component \((\varepsilon^{(L)})\) has been used to model the imaginary part of the dielectric constant of all the samples in the investigated spectral range:

\[
\varepsilon_2(E) = \varepsilon_2^{(TL)}(E) + \varepsilon_2^{(L)}(E)
\]

\[
\varepsilon_2^{(TL)}(E) = A^{(TL)} \frac{(E - E_g)^2}{E^2} \frac{B_r E_n E}{(E - E_n)^2 + (B_r E)^2}
\]

\[
\varepsilon_2^{(L)}(E) = A^{(L)} \frac{C E_0 E}{(E - E_0)^2 + (C E)^2}
\]

The real part of the dielectric constant is then obtained by Kramers-Kronig trasformation. The surface roughness is modeled within the effective
medium approximation (EMA) as a 50/50 mix of SiC and voids; this layer include also the effect of surface oxide [24].

4.1 Results

![Absorption spectra of two a-SiC samples](image)

Figure 4: Absorption spectra of two a-SiC samples grown via MS on a 0.1 mm thick silica substrate and of an a-SiC sample grown via IBS on a 5 mm thick sapphire substrate.

Figure 4 shows the absorption spectra of two MS samples deposited on a 0.1 mm thick silica substrate and of an IBS sample deposited on a 5 mm thick sapphire substrate. The nominal thicknesses of the a-SiC layers were respectively 500 nm, 400 nm and 100 nm. A typical comparison between the experimental SE data and the fitted model function is shown in Figure 5 for the IBS sample grown on a sapphire substrate. The parameters of the dielectric model (Eq. (1)) are reported in Table 1 for all samples.

Optical data indicate that the optical gap E_g ranges from 1.8 to 2.25 eV, and confirm the higher roughness of MS samples as compared to that of the IBS samples. Exemplary plots of the refractive index and absorption coefficient as a function of the wavelength measured in two different positions and on two different MS samples are reported in Fig. 6. Although a certain variability is present from point to point and on the two different samples, the values of the n and κ optical constants at 1064 nm are around 3.0 and 0.1, respectively. Those results fall within the quite wide range of
Figure 5: Spectroscopic ellipsometry of an a-SiC sample grown by means of IBS on a 5 mm thick sapphire substrate. The experimental data (symbols) was measured at an incidence angle of 55°, 60° and 65°. The red lines are fit curves obtained by the global optimization of the dielectric model function.

Table 1: Fitting parameters for the Tauc-Lorentz (TL) plus Lorentzian (L) dielectric model for the a-SiC samples grown via MS and IBS.

	Sample	MS 1	MS 2	IBS					
Substrate		SiO₂ 0.1 mm	SiO₂ 0.1 mm	Al₂O₃ 5 mm					
MSE		7.7	8.3	1.4					
Roughness (nm)	8.3 ± 0.2	5.8 ± 0.2	1.5 ± 0.03						
Thickness (nm)	401.8 ± 0.7	478.8 ± 0.8	101.48 ± 0.03						
TL		A^{(TL)}	Eₙ (eV)	Eₙ (eV)					
		150 ± 9	5.7 ± 0.2	208 ± 10	4.80 ± 0.04				
		Eₙ (eV)	1.79 ± 0.04	2.01 ± 0.03	2.25 ± 0.01				
		Bₙ (eV)	7 ± 1	9.1 ± 1.0	6.8 ± 0.2				
L		A^{(L)}	Eₙ (eV)	C (eV)					
		1.42 ± 0.09	2.26 ± 0.05	1.40 ± 0.03	1.73 ± 0.07	1.29 ± 0.03	2.74 ± 0.04	2.66 ± 0.01	1.44 ± 0.01
optical-constant data reported in literature for SiC, corresponding to different deposition techniques and conditions [25]. Yet this result indicates that our as-deposited SiC samples are characterized by a very high absorption level, several orders of magnitude higher than typical values encountered in other optical coatings for such as e.g. Tantala.

Other MS samples with different compositions Si/C ranging from 0.74 to 1 were analyzed as well (data not shown), not providing a clear trend with respect to composition. We conclude that the optical properties of the different as-deposited samples exhibit a certain degree of variability up to 10%, which can not be unambiguously correlated to the composition and deposition technique.

After 6 month, the two MS samples have been annealed at 500 °C in air for 10 h with a ramp rate of 1.6 °C/min. The temperature was chosen in order to allow relaxation of the amorphous phase, avoiding any microcrystallization process [26]. Figure 6 shows the effect of the annealing on the optical constants for the MS sample 1 (measured in two points) and MS sample 2. Both the real and imaginary part of the refractive index decrease to about 2.9 and 0.02 respectively and become much less scattered, hinting that the different optical behaviors observed in the as-deposited samples are related to an initial unrelaxed state bearing a certain level of spatial inhomogeneity. Still, in spite of a considerable decrease of the imaginary part of the refractive index κ upon annealing, the absorption remain way above the level of $10^{-6} - 10^{-7}$ required for GW detectors.

5 Mechanical properties

Three fused-silica disks with a nominal diameter of 50 mm were used for the characterization of the coating mechanical properties: disks A and B, 1-mm thick, coated with IBS a-SiC thin films, were measured at LMA; disk C, 0.35-mm thick, coated with MS a-SiC thin films, was measured at Università degli Studi di Roma Tor Vergata (UniToV). All the samples had nearly-stoichiometric composition, as verified via RBS measurements (see Sect. 3.1.3). XRR data was used to estimate the density and thickness of the thin films (see Sect. 3.1.1).

We used the ring-down method [27] to measure the frequency f and ring-down time τ of the first vibrational modes of each disk, before and after the
Figure 6: Real (left) and imaginary (right) part of the refractive index of two MS a-SiC samples. Sample S1, which was measured at two different positions P1 (black) and P2 (red), and sample S2 (blue) were annealed for 10 h at 500 °C with heating and cooling rates of 100 °C/h: the optical constants are reported before (dashed) and after (full) annealing.

coating deposition, and calculated the coating loss angle

\[\varphi_c = \varphi + \frac{(D-1)\varphi_0}{D}, \]

(2)

where \(\varphi_0 = (\pi f_0 \tau_0)^{-1} \) is the measured loss angle of the bare substrate, \(\varphi = (\pi f \tau)^{-1} \) is the measured loss angle of the coated disk. \(D \) is the measured frequency-dependent dilution factor \[28],

\[D = 1 - \frac{m_0}{m} \left(\frac{f_0}{f} \right)^2, \]

(3)

where \((m_0, m)\) is the disk mass with and without the coating, respectively. We measured modes from \(\sim 2.5 \) kHz to \(\sim 38.5 \) kHz for disks A and B and from \(\sim 900 \) Hz to \(\sim 18 \) kHz for disk C, in a frequency band which partially overlaps with the detection band of ground-based gravitational-wave detectors (10 – \(10^4 \) Hz). In order to avoid systematic damping from suspension and ambient pressure, we used two clamp-free, in-vacuum Gentle Nodal Suspension (GeNS) systems \[29\], shown in Fig. 7. This kind of system is currently the reference solution of the Virgo and LIGO Collaborations for performing loss angle measurements on thin films \[22, 30\].
The diameter of all disks was measured with a caliper. Mass values m_0 and m of disks A and B were measured with an analytical balance, before and after coating deposition. Mass values of disk C were estimated from known properties: substrate and coating thicknesses measured via spectroscopic ellipsometry (see Section 4.1), top and bottom surface areas estimated from diameter measurements, substrate density 2.20 g/cm3 taken from the literature [31], coating density measured via XRR analysis.

By definition, the measured dilution factor D of Eq. (3) is very sensitive to variations of frequencies and masses [32], so we took special care to prevent the curvature of the disks induced by the presence of the coating layers by performing a double-deposition on both the substrate faces, as explained in section 2, and monitored the temperature of the disks during the ring-down measurements. Indeed, the frequency ratio in Eq. (3) depends on the sample Young modulus, which is in turn temperature dependent. To keep track of this issue, each GeNS setup has its temperature probe: right under the copper base plate of the LMA system (visible in the foreground of Fig. 7), and fixed to the optical bench at UniToV. The GeNS system at LMA is installed in a clean room where the temperature is stabilized to (21.9 ± 0.5) °C, whereas the temperature of the GeNS system at UniToV is not stabilized. Therefore, in order to obtain resonant frequency values $f(T_0)$ at a reference temperature
Table 2: Disks used to characterize the mechanical properties of the a-SiC sputtered thin films: diameter \varnothing, thickness d_0, mass m_0 before coating, mass m after coating, coating thickness d_i on each side ($i = 1, 2$). Mass values m_0 and m for disk C are estimations derived from known properties (see text for more details). Disks A and B were coated with IBS thin films, disk C with MS thin films.

	A	B	C
m_0 [g]	4.6453 ± 0.0003	4.6448 ± 0.0003	1.52 ± 0.18
m [g]	4.6472 ± 0.0002	4.6468 ± 0.0002	1.52 ± 0.18
\varnothing [mm]	49.93 ± 0.01	49.92 ± 0.01	50.8 ± 0.1
d_0 [mm]	1.08 ± 0.01	1.08 ± 0.01	0.34 ± 0.04
d_1 [nm]	220 ± 5	221 ± 5	430.7 ± 0.3
d_2 [nm]	220 ± 5	222 ± 5	422.5 ± 0.3

$T_0 = 22.9$ °C, $f(T)$ values measured at UniToV were corrected according to the following equation,

$$f(T_0) = \frac{f(T)}{1 + \eta T + q},$$

(4)

where $\eta \sim 9.5 \times 10^{-3}$ K$^{-1}$ and $q \sim 1.9 \times 10^{-5}$ are coefficients we previously measured on nominally identical fused-silica disks. This correction is critical, whenever mode frequencies are measured in a system where temperature may drift [32]. Further details about our GeNS systems are available elsewhere [29, 33].

5.1 Results

The main features of the disks used for the measurements of the coating mechanical properties are presented in Table 2. Figure 8 shows the measured loss angles as a function of frequency: the loss angle of the IBS a-SiC coatings decreases from about 10 to 8×10^{-4} rad, whereas the loss angle of the MS a-SiC coatings increases from about 6 to 10×10^{-4} rad. Such different behavior might be explained by the nature of the coating samples, due to the different growth techniques. For instance, AFM measurements (see Fig. 2) showed that MS samples present a grainy structure which is not observed in IBS ones, indicating a difference in the film microstructure which could possibly reflect the difference in their mechanical behaviour.
Figure 8: Characterization of mechanical loss of disks A and B, coated with IBS a-SiC thin films (left column), and C, coated with MS a-SiC thin films (right column), as a function of frequency. Top row: measured loss angle before and after deposition of sputtered a-SiC thin films (ϕ_0 and ϕ, respectively). Bottom row: coating loss angle ϕ_c of as-deposited IBS (left) and MS (right) a-SiC thin films (see Eq.(2) for more details); for the MS a-SiC coating samples, the best-fit power-law model of Eq.(5) is also shown (dashed line).
Table 3: Measured mechanical properties of a-SiC sputtered thin films: density ρ (see Section 3.1.1), best-fit Young modulus Y and Poisson ratio ν of the IBS samples and best-fit parameters (a, b) of the power-law model used to describe the data of the coating loss angle of MS samples (see Eq.(5) for more details).

Disk	ρ [g/cm3]	Y [GPa]	ν	a [10^{-4} rad]	b
Disk A	2.87 ± 0.01	273 ± 1	0.22 ± 0.02		
Disk B	276 ± 2	0.20 ± 0.01			
Disk C	2.82 ± 0.05	1.8 ± 0.4	0.18 ± 0.03		

For the MS a-SiC samples only, we could fit a power-law model [34, 35, 36]

$$\varphi_c(f) = af^b$$

(5)

to our data via least-squares linear regression. Table 3 lists the obtained best-fit parameters (a, b), together with the best-fit estimations of coating Young modulus Y and Poisson ratio ν of the IBS a-SiC coatings, obtained by fitting finite-element simulations to the measured dilution factor via least-squares numerical regression [22, 33].

Overall, the loss angle of the sputtered a-SiC coatings is a few times higher than that of the as-deposited high-index layers of current GWDs [22].

6 Molecular Dynamic simulations

6.1 Model and methods

In order to model from a microscopic point of view the observed mechanical properties of our films, we developed a numerical analysis of the structure and properties of amorphous SiC. Classical Molecular Dynamics simulations were carried out using LAMMPS software [37]. We model SiC using an effective interatomic potential consisting of two- and three-body interactions. The potential energy of the system is given by:

$$V = \sum_{i<j} V_{ij}^{(2)}(r_{ij}) + \sum_{i,j<k} V_{ijk}^{(3)}(r_{ij}, r_{ik})$$

(6)

The two-body term $V_{ij}^{(2)}(r_{ij})$ includes steric repulsion between ions, Coulomb repulsion due to charge-transfer effects between ions, charge-dipole interactions due to electronic polarizability of ions and van der Waals interactions.
The three-body term $V_{ijk}^{(3)}(r_{ij}, r_{ik})$ is written as the product of a bond stretching and bending dependence. Full details about the interatomic potential, including the specific values of the parameters, are given in [38].

Each simulation consists of 10648 atoms contained in a cubic box with periodic boundary conditions. The structure of an amorphous solid sample was obtained by simulating a steep cooling from a high-temperature liquid. Silicon carbide crystal is first equilibrated at 300 K and then rapidly heated to 5000 K. The melting of the crystal, resulting in a liquid structure, is confirmed after examining the pair distribution function. The liquid at 5000 K is equilibrated for 50 ns and then cooled down to 0 K at constant rate within the NPT ensemble (constant number of particles N, pressure P and temperature T). Different values of the cooling rate have been considered. During the quench run, configurations at the temperatures of interest were collected, equilibrated again for 50 ps and finally energy minimized. With this protocol, we generated 20 independent samples for each cooling rate.

Macroscopic elastic moduli are obtained following the quasistatic deformation protocol [39]. The system is deformed in small increments $\delta \epsilon = 10^{-5}$ followed by energy minimization at fixed applied strain via a conjugate gradient method. The deformation is performed until the applied strain reached $\epsilon = 0.005$, which is small enough to ensure that the systems deforms elastically and the corresponding stress-strain curve is linear. The values of the bulk modulus K and shear modulus G are obtained from the slopes of the curves in the case of isotropic bulk deformation and shear deformation respectively. Assuming isotropic behavior, the Young modulus E and the Poisson ratio ν can be estimated as $E = 9KG/(3K + G)$ and $\nu = (3K − 2G)/(2(3K + G))$ respectively.

Mechanical loss is directly obtained using Dynamical Mechanical Spectroscopy (DMS) on the simulated system. DMS is performed by imposing to the simulation box a sinusoidal tensile strain $\epsilon_{ii}(t) = \epsilon_0 \sin(\omega t)$ in the i-direction ($i = X, Y, Z$) and measuring the corresponding tensile stress along the same direction, σ_{ii}. No deformation of the simulation box takes place in the other directions. The results were averaged over all the three directions. We fixed the strain amplitude $\epsilon_0 = 0.01$, such that the deformation is in the linear elastic regime. The frequency dependent quality factor $Q(f)$ is determined by the ratio $Q(f) = E'(f)/E''(f)$ where $E'(f)$ and $E''(f)$ are the storage and the dissipative parts of the dynamic elastic modulus. The inverse quality factor Q^{-1} is a direct estimate of the loss angle φ since $Q^{-1} \approx \varphi$ holds.
in the case of small mechanical loss.

6.2 Results

6.2.1 Competition between crystallization and glass formation

In Figure 9 we show for a given sample the evolution of the potential energy per atom U/N (left panel) and density ρ (right panel) upon cooling for different quench rates, ranging from 10^3 K/ns to 10^5 K/ns. We observe that for the slowest cooling rate 10^3 K/ns both the energy and the density exhibit a sharp change at about 2000 K. This is the signature of crystallization occurring in the system, confirmed by direct visual inspection of the sample which features apparent ordered structures (not shown). Crystallization occurs also for a faster rate 5×10^3 K/ns, though changes are less marked. This behavior is common to all the 20 samples we considered. As the experimental results indicate that our samples are amorphous, we have an indication that a proper representation of our SiC films must be obtained by employing sufficiently fast cooling rates.

Visual inspection of configurations is not sufficient to understand the evo-
solution for rates faster than 10^5 K/ns. Therefore, we resort to statistical structural analysis based on the partial pair distribution function $g_{X-Y}(r)$ with $X,Y = \text{Si,C}$ which is plotted in Figure 10 for configuration at $T = 300$ K. Data are shown for different quench rates $q = 10^5$ K/ns, 5×10^4 K/ns, 10^4 K/ns and corresponds to the average over 20 independent samples for each rate. For comparison we also show the pair distribution function for a fully crystallized sample produced with a rate $q = 10^3$ K/ns. For the two fastest rates 10^5 K/ns and 5×10^4 K/ns the pair distribution functions points to an amorphous structure. Conversely, for 10^4 K/ns the incipient splitting of the peak corresponding to the second coordination shell suggest the development of order in the system which is presumably of crystalline nature. A rough estimate of the crystalline fraction in our system can be obtained using the method proposed in [40], which allows one to identify cubic and hexagonal crystalline order. We find that for 10^4 K/ns the crystalline fraction in the 20 independent samples range from 50% to 80% whereas it is less than 10% and less than 5% in the samples produced with rates 5×10^4 K/ns and 10^5 K/ns respectively.

6.2.2 Mechanical properties

In this section we report the results on the modelling of the dynamical response of amorphous SiC samples. We focus on samples quenched with a cooling rate 5×10^4 K/ns. This choice represents a compromise between a fast quench rate, which limits the crystalline fraction in the system, as previously discussed, and a slow quench rate which is known to results in more relaxed samples, with lower mechanical losses [41]. Further, SiC samples produced with this cooling rate have a density $\rho = 2.98$ g/cm3 which is in reasonable agreement with the experimental value of a-SiC thin films grown via IBS and MS techniques.

First, we calculate the elastic properties of SiC samples. We obtain $E = 274 \pm 1$ GPa and $\nu = 0.21 \pm 0.01$ for the Young modulus and the Poisson ratio, respectively, in agreement with values measured on the IBS samples (see Section 5.1). In Figure 11 we show the frequency dependence of the loss angle φ_c, computed as the inverse quality factor Q^{-1} in the range accessible to Molecular Dynamics simulations. Unfortunately, this range is quite far from the one studied experimentally in Section 5.1. However, it can be noted that in the GHz range a well defined power-law regime is found, i.e., $\varphi_c = Q^{-1} \propto f^b$ with $b = 0.14$. Remarkably, the power-law behavior, and in
Figure 10: Partial pair distribution function at $T = 300$ K. Data are shown for different quench rates and corresponds to the average over 20 independent samples for each rate.
Figure 11: Frequency dependence of the coating loss angle $\varphi_c = Q^{-1}$, where Q is the quality factor obtained from Molecular Dynamics simulations; the dashed line is the best fit curve with a power-law equation $\varphi_c \propto f^b$ in the GHz range. *Inset:* low-frequency extrapolation of the power-law regime of φ_c; the vertical line marks the value $f = 1$ KHz.

particular the value of the exponent b, are in reasonable agreement with the experimental results obtained on the MS samples presented in Section 5.1 ($b = 0.18$), as well as on previous simulation results on amorphous tantala [41, 42]. Assuming the validity of the power-law frequency dependence down to lower frequencies, we may estimate the value of the loss angle in the acoustic region (see the inset of Figure 11). We find $\varphi_c(f = 1$ kHz $) = Q_{1$kHz}^{-1} = 2.34 \times 10^{-3}$, which is of the same order of magnitude of our experimental results.

7 Conclusions

In this work we produced and studied thin films of a-SiC to evaluate the viability of this material for the realization of coatings with ultra-low optical and mechanical losses for their use in ultra-sensitive optical apparatuses, in particular in GWDs.

Several samples of SiC thin films were successfully grown in their amorphous form, as demonstrated by GIXRD data, using two different sputtering systems. Samples produced via MS exhibited a tendency to grow poor of
Si, with a typical Si/C ratio around 0.74, while IBS samples were nearly stoichiometric. The Si deficiency in the MS system could however be easily cured by enriching the Si content on the target. Apart from this aspect, the two set of samples presented a very similar density and a morphology whose differences can be attributed to the different substrates used.

From the optical point of view, our results show that the obtained films present a certain level of variability in the optical constants, which seems however not to be related to differences in composition or on the production method, either MS or IBS. The fact that ageing or annealing can contribute to lower the values of the optical constants suggests that as-deposited samples are in a sort of non-stabilized state and that the observed variability of the optical constants can be attributed to this initial non-equilibrium condition. Anyway, all the analyzed a-SiC films display an absorption level which is at least five orders of magnitude higher than the one of current coatings used in GWDs, such as tantala-titania or silica [8, 17]. This seems to indicate that a-SiC thin films are intrinsically much more absorbing in the infrared range than their crystalline bulk counterpart [43], for reasons that appear to be related to their amorphous structure rather than to the presence of dopants or other extrinsic factors.

The mechanical properties were measured in the range of frequencies around 10 kHz. The MS sample exhibited a power law dependency of the loss angle upon the frequency, similarly to what was reported in Ta$_2$O$_5$ and Ti : Ta$_2$O$_5$ and with a characteristic exponent $b \approx 0.18$ which is in line with previous investigations, but about a factor of 2 larger [22]. Quite surprisingly, IBS samples tested with the same method produced a qualitatively different result. It is not clear yet whether this discrepancy has to be attributed to a real difference in the thin film structure due to the different deposition method, or to some measurement issues. Further investigations on this aspect are ongoing; in particular, as optical measurements indicate that the as-deposited samples appear to be in an initial non-equilibrium condition, it will be interesting to check the effect of annealing procedures on mechanical losses. In any case the overall loss angle for all the studied samples is very close $\varphi \approx 10^{-3}\text{rad}^{-1}$ at 10 kHz, which is several times higher than the corresponding value for currently used low-loss high refractive index coatings [22].

Finally, our experimental results were used as an input to develop a protocol to simulate the structure and the dynamics of amorphous SiC using a molecular dynamic approach. The procedure to generate the sample follows
the same protocol already developed to simulate other low-mechanical loss materials [41, 42] and consists in simulating a fast quenching of a SiC volume starting from a high-temperature liquid state. By selecting the proper cooling rate we succeeded in obtaining a model which is in large part amorphous and displaying a density very close to the experimentally measured one. Furthermore, the model was able to correctly reproduce the power-law dependence of the mechanical losses on the frequency, as it was experimentally observed in our MS samples, with a coherent estimation of the characteristic exponent and of the order-of-magnitude of the losses in the acoustic frequency region, of interest for gravitational wave science.

The main conclusion of this work is that amorphous SiC, despite its favorable properties, seems not competitive with respect to other materials used in ultra low optical and mechanical loss experiments. However the interest in amorphous SiC remains due to its wide range of applications. We thus believe that the data obtained along this work and in particular the molecular dynamics model could serve as valuable resources for further developments in this sense.
References

[1] G Pensl and WJ Choyke. Electrical and optical characterization of sic. Physica B: Condensed Matter, 185(1-4):264–283, 1993.

[2] P. R. Saulson. Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific, 2nd edition, 2017.

[3] Tobias J. F. Marquardt M. Aspelmeyer, T. J Kippenberg. Cavity optomechanics. Rev. Mod. Phys., 86:1391–1452, 2014.

[4] D. G. Matei et al. 1.5 μm lasers with sub-10 mhz linewidth. Phys. Rev. Lett., 118:263202, 2017.

[5] J. Aasi et al. Advanced LIGO. Class. and Quantum Grav., 32(7):074001, 2015.

[6] F. Acernese et al. Advanced virgo: a second-generation interferometric gravitational wave detector. Class. and Quantum Grav., 32:024001, 2014.

[7] Y. Aso et al. Interferometer design of the kagra gravitational wave detector. Phys. Rev. D, 88:043007, 2013.

[8] Degallaix J et al. Large and extremely low loss: the unique challenges of gravitational wave mirrors. J. Opt. Soc. Am. A, 36:C85, 2019.

[9] Alex Amato, Silvana Terreni, Vincent Dolique, Danièle Forest, Gianluca Gemme, Massimo Granata, Lorenzo Mereni, Christophe Michel, Laurent Pinard, Benoit Sassolas, et al. Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors. Journal of Physics: Materials, 2(3):035004, 2019.

[10] M. Granata et al. Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors. Appl. Opt., 59:A229–A235, 2020.

[11] P. R. Saulson. Thermal noise in mechanical experiments. Phys. Rev. D, 42:2437–2445, 1990.

[12] Y. Levin. Internal thermal noise in the ligo test masses: A direct approach. Phys. Rev. D, 57:659–663, 1998.
[13] H. B. Callen and R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev., 86:702–710, 1952.

[14] L Anghinolfi, M Prato, A Chtanov, M Gross, A Chincarini, M Neri, G Gemme, and M Canepa. Optical properties of uniform, porous, amorphous ta2o5coatings on silica: temperature effects. Journal of Physics D: Applied Physics, 46(45):455301, oct 2013.

[15] Alex Amato, Silvana Terreni, Massimo Granata, Christophe Michel, Benoit Sassolas, Laurent Pinard, Maurizio Canepa, and Gianpietro Cagnoli. Observation of a correlation between internal friction and urbach energy in amorphous oxides thin films. Scientific reports, 10(1):1–9, 2020.

[16] A Amato, G Cagnoli, M Granata, B Sassolas, J Degallaix, D Forest, C Michel, L Pinard, N Demos, S Gras, et al. Optical and mechanical properties of ion-beam-sputtered nb 2 o 5 and tio 2- nb 2 o 5 thin films for gravitational-wave interferometers and an improved measurement of coating thermal noise in advanced ligo. Physical Review D, 103(7):072001, 2021.

[17] L. Pinard et al. Mirrors used in the ligo interferometers for first detection of gravitational waves. Appl. Opt., 56:C11, 2017.

[18] Guillaume Vignaud and Alain Gibaud. Reflex: a program for the analysis of specular x-ray and neutron reflectivity data. Journal of Applied Crystallography, 52(1):201–213, 2019.

[19] V Heera, F Prokert, N Schell, H Seifarth, W Fukarek, M Voelskow, and W Skorupa. Density and structural changes in sic after amorphization and annealing. Applied physics letters, 70(26):3531–3533, 1997.

[20] A-L Barabási, Harry Eugene Stanley, et al. Fractal concepts in surface growth. Cambridge university press, 1995.

[21] Lawrence R. Doolittle. Algorithms for the rapid simulation of rutherford backscattering spectra. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 9(3):344–351, 1985.
[22] M Granata et al. Amorphous optical coatings of present gravitational-wave interferometers. Class. and Quantum Grav., 37:095004, 2020.

[23] Mirko Prato, Andrea Chincarini, Gianluca Gemme, and Maurizio Canepa. Gravitational waves detector mirrors: Spectroscopic ellipsometry study of ta2o5 films on sio2 substrates. Thin Solid Films, 519(9):2877–2880, 2011.

[24] S. Zollner et al. Dielectric functions of bulk 4h and 6h sic and spectroscopic ellipsometry studies of thin sic films on si. Journal of Applied Physics, 85(12):8353–8361, 1999.

[25] J.I. Larruquert et al. Self-consistent optical constants of sic thin films. J. Opt. Soc. Am. A, 28(11):2340–2345, Nov 2011.

[26] P. Musumeci et al. Relaxation and crystallization of amorphous silicon carbide probed by optical measurements. Philosophical Magazine B, 76(3):323–333, 1997.

[27] A. S. Nowick and B. S. Berry. Anelastic relaxation in crystalline solids. Academic Press, New York and London, 1972.

[28] Li Tianjun et al. Measurements of mechanical thermal noise and energy dissipation in optical dielectric coatings. Phys. Rev. D, 89:092004, 2014.

[29] Cesarini E et al. A “gentle” nodal suspension for measurements of the acoustic attenuation in materials. Review of Scientific Instruments, 80:053904, 2009.

[30] Vajente et al. A high throughput instrument to measure mechanical losses in thin film coatings. Review of Scientific Instruments, 88:073901, 2017.

[31] Corning Incorporate. Corning® HPFS® 7979, 7980, 8655 Fused Silica Optical Materials Product Information, 2015.

[32] M. Granata et al. Optical and mechanical properties of ion-beam-sputtered MgF2 thin films for gravitational-wave interferometers. https://arxiv.org/abs/2111.01646, 2021. arXiv:2111.01646v1 [physics.ins-det].
[33] Granata M et al. Mechanical loss in state-of-the-art amorphous optical coatings. Phys. Rev. D, 93:012007, 2016.

[34] K S Gilroy and W A Phillips. An asymmetric double-well potential model for structural relaxation processes in amorphous materials. Philosophical Magazine B, 43:735, 1981.

[35] F Travasso et al. Low-frequency internal friction in silica glass. Europhysics Letters, 80:50008, 2007.

[36] G Cagnoli et al. Mode-dependent mechanical losses in disc resonators. Physics Letters A, 382:2165, 2018.

[37] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117:1, 1995.

[38] Priya Vashishta, Rajiv K. Kalia, Aiichiro Nakano, and José Pedro Rino. Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. Journal of Applied Physics, 101(10):103515, 2007.

[39] Michel Tsamados, Anne Tanguy, Chay Goldenberg, and Jean-Louis Barrat. Local elasticity map and plasticity in a model lennard-jones glass. Phys. Rev. E, 80:026112, Aug 2009.

[40] E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jónsson. Global transition path search for dislocation formation in ge on si(001). Computer Physics Communications, 205:13–21, 2016.

[41] F. Puosi, F. Fidecaro, S. Capaccioli, D. Pisignano, and D. Leporini. In silico broadband mechanical spectroscopy of amorphous tantala. Phys. Rev. Research, 1:033121, 2019.

[42] F. Puosi, F. Fidecaro, S. Capaccioli, D. Pisignano, and D. Leporini. Non-local cooperative atomic motions that govern dissipation in amorphous tantala unveiled by dynamical mechanical spectroscopy. Acta Materialia, 201:1–6, 2020.
[43] Anne M Hofmeister, KM Pitman, AF Goncharov, and Angela K Speck. Optical constants of silicon carbide for astrophysical applications. ii. extending optical functions from infrared to ultraviolet using single-crystal absorption spectra. The Astrophysical Journal, 696(2):1502, 2009.