A topological space \(X \) is called a \(Q \)-space if every subset of \(X \) is of type \(F_{\sigma} \) in \(X \). For \(i \in \{1, 2, 3\} \) let \(q_i \) be the smallest cardinality of a second-countable \(T_i \)-space which is not a \(Q \)-space. It is clear that \(q_1 \leq q_2 \leq q_3 \). For \(i \in \{1, 2\} \) we prove that \(q_i \) is equal to the smallest cardinality of a second-countable \(T_i \)-space which is not perfect. Also we prove that \(q_3 \) is equal to the smallest cardinality of a submetrizable space, which is not a \(Q \)-space. Martin’s Axiom implies that \(q_i = c \) for all \(i \in \{1, 2, 3\} \).

A topological space \(X \) is called

- **perfect** if every open subset is of type \(F_{\sigma} \) in \(X \);
- a **\(Q \)-space** if every subset is of type \(F_{\sigma} \) in \(X \);
- a **non-\(Q \)-space** if \(X \) is not a \(Q \)-space.

A subset of topological space is of type \(F_{\sigma} \) if it can be written as the union of countably many closed sets.

It is clear that every \(Q \)-space is perfect. Under Martin’s Axiom, every metrizable separable space of cardinality \(< c \) is a \(Q \)-space, see [5, 4.2].

For a class \(\mathcal{T} \) of topological spaces, denote by \(q_{\mathcal{T}} \) the smallest cardinality of a non-\(Q \)-space \(X \in \mathcal{T} \). The cardinal \(q_{\mathcal{T}} \) is well-defined only for classes \(\mathcal{T} \) containing non-\(Q \)-spaces. In this paper we study the cardinals \(q_{\mathcal{T}} \) for classes \(\mathcal{T} \) of topological spaces satisfying various separation properties.

A topological space \(X \) is called

- a **\(T_1 \)-space** if every finite subset is closed in \(X \);
- a **\(T_2 \)-space** if \(X \) is Hausdorff, which means that any distinct points in \(X \) have disjoint neighborhoods;
- a **\(T_{2\frac{1}{2}} \)-space** if \(X \) is Urysohn, which means that any distinct points in \(X \) have disjoint closed neighborhoods;
- **functionally Hausdorff** if for any distinct points \(x, y \in X \) there exists a continuous function \(f : X \to \mathbb{R} \) such that \(f(x) \neq f(y) \);
- a **\(T_3 \)-space** if \(X \) is Hausdorff and every neighborhood of any point \(x \in X \) contains a closed neighborhood of \(x \);
- **Tychonoff** if \(X \) is Hausdorff and for any closed set \(F \subseteq X \) and point \(x \in X \setminus F \) there exists a continuous function \(f : X \to \mathbb{R} \) such that \(f(x) = 1 \) and \(f[F] \subseteq \{0\} \);
- **submetrizable** if there exists a continuous bijective map \(f : X \to Y \) onto a metric space \(Y \);
- **second-countable** if \(X \) has a countable base of the topology.
For every topological space we have implications

\[
\begin{align*}
\text{metrizable} & \longrightarrow \text{submetrizable} & \longrightarrow & \text{functionally Hausdorff} \\
\text{Tychoff} & \longrightarrow \text{T}_3\text{-space} & \longrightarrow \text{Urysohn} & \longrightarrow \text{Hausdorff} & \longrightarrow \text{T}_1\text{-space}
\end{align*}
\]

Observe that the one-point compactification of the discrete space of cardinality \(\omega_1\) is not perfect and hence \(q_T = \omega_1\) for the class \(T\) of (compact) Tychoff spaces of weight \(\leq \omega_1\). For classes \(T\) of second-countable spaces the cardinals \(q_T\) are more interesting.

For \(i \in \{1, 2, 2_1, 3\}\) denote by \(q_i\) the smallest cardinality of a second-countable \(T_i\)-space which is not a \(Q\)-space. It is clear that \(q_1 \leq q_2 \leq q_{2_1} \leq q_3\). Since each second-countable \(T_3\)-space (of cardinality < \(c\)) is metrizable (and zero-dimensional), the cardinal \(q_3\) coincides with the well-known cardinal \(q_0\), defined as the smallest cardinality of a subset of \(\mathbb{R}\) which is not a \(Q\)-space. The cardinal \(q_0\) is well-studied in Set-Theoretic Topology, see [5, §4], [3] or [1]. This cardinal has the following helpful property.

Proposition 1. Every submetrizable space of cardinality < \(q_0\) is a \(Q\)-space.

Proof. Let \(X\) be a submetrizable space of cardinality < \(q_0\). Find a continuous bijective map \(f : X \rightarrow Y\) onto a metrizable space \(Y\). The metrizable space \(Y\) has cardinality \(|Y| = |X| < q_0 \leq c\) and weight \(w(Y) \leq \omega \cdot |Y| \leq c\). By [4, 4.4.9], \(Y\) admits a topological embedding \(h : Y \rightarrow J(c)^\omega\) into the countable power of the hedgehog space \(J(c)\) with \(c\) many spikes. Here \(J(c)\) is the set \(\{x \in [0, 1]^c : |\{\alpha \in c : x(\alpha) > 0\}| \leq 1\}\) endowed with the metric

\[
d(x, y) = \max_{\alpha \in c} |x(\alpha) - y(\alpha)|.
\]

It is easy to see that the hedgehog space \(J(c)\) admits a continuous bijective map onto the triangle \(\{(x, y) \in [0, 1]^2 : x + y \leq 1\}\) and hence \(J(c)^\omega\) admits a continuous bijective map \(\beta : J(c)^\omega \rightarrow [0, 1]^\omega\) onto the Hilbert cube \([0, 1]^\omega\). Then \(g \overset{\text{def}}{=} \beta \circ f : X \rightarrow [0, 1]^\omega\) is a continuous injective map. The metrizable separable space \(g[X]\) has cardinality < \(q_0\) and hence is a \(Q\)-space. Then for every set \(A \subseteq X\) it image \(g[A]\) is of type \(F_\sigma\) in \(g[X]\). By the continuity of \(g\), the preimage \(g^{-1}[g[A]] = A\) of \(g[A]\) is an \(F_\sigma\)-set in \(X\), witnessing that \(X\) is a \(Q\)-space. \(\square\)

Now we prove some criteria of submetrizability among “sufficiently small” functionally Hausdorff spaces.

A family \(\mathcal{F}\) of subsets of a topological space \(X\) is called

- **separating** if for any distinct points \(x, y \in X\) there exists a set \(F \in \mathcal{F}\) that contains \(x\) but not \(y\);
- **a network** if for every open set \(U \subseteq X\) and point \(x \in U\) there exists a set \(F \in \mathcal{F}\) such that \(x \in F \subseteq U\).

We say that a topological space \(X\) is

- **Lindelöf** if every open cover of \(X\) has a countable subcover;
- **hereditarily Lindelöf** if every subspace of \(X\) is Lindelöf;
- **nw-countable** if \(X\) has a countable network;
- **sw-countable** if \(X\) has a countable separating family of open sets.

It is clear that every second-countable \(T_1\)-space is both nw-countable and sw-countable.
Lemma 2. Every functionally Hausdorff space X with hereditarily Lindelöf square is submetrizable.

Proof. Since X is functionally Hausdorff, for any distinct points $a, b \in X$, there exists a continuous function $f_{a,b} : X \to \mathbb{R}$ such that $f_{a,b}(a) = 0$ and $f_{a,b}(b) = 1$. By the continuity of $f_{a,b}$, the sets

$$f_{a,b}^{-1}(\downarrow \frac{1}{2}) \overset{\text{def}}{=} \{ x \in X : f_{a,b}(x) < \frac{1}{2} \} \quad \text{and} \quad f_{a,b}^{-1}(\uparrow \frac{1}{2}) \overset{\text{def}}{=} \{ y \in X : f_{a,b}(y) > \frac{1}{2} \}$$

are open neighborhoods of the points a, b, respectively. Since the space $X \times X$ is hereditarily Lindelöf, the open cover $\{ f_{a,b}^{-1}(\downarrow \frac{1}{2}) \times f_{a,b}^{-1}(\uparrow \frac{1}{2}) : (a,b) \in \nabla X \}$ of the subspace

$$\nabla X \overset{\text{def}}{=} \{(x,y) \in X \times X : x \neq y \}$$

of $X \times X$ has a countable subcover. Consequently, there exists a countable set $C \subseteq \nabla X$ such that

$$\nabla X = \bigcup_{(a,b) \in C} f_{a,b}^{-1}(\downarrow \frac{1}{2}) \times f_{a,b}^{-1}(\uparrow \frac{1}{2})$$

Consider the metrizable space \mathbb{R}^C and the continuous function

$$f : X \to \mathbb{R}^C, \quad f : x \mapsto (f_{a,b}(x))_{(a,b) \in C}.$$

This function is injective because for any distinct $x, y \in X$ there exists a pair $(a,b) \in C$ such that $(x,y) \in f_{a,b}^{-1}(\downarrow \frac{1}{2}) \times f_{a,b}^{-1}(\uparrow \frac{1}{2})$ and hence $f_{a,b}(x) < \frac{1}{2} < f_{a,b}(y)$, witnessing that $f(x) \neq f(y)$. □

Corollary 3. Every nw-countable functionally Hausdorff space of cardinality $< \aleph_0$ is a submetrizable Q-space.

Proof. Let X be an nw-countable functionally Hausdorff space. By [4, 3.8.12], the square $X \times X$ has countable network and is hereditarily Lindelöf. By Lemma 2, X is submetrizable and by Proposition 1, X is a Q-space. □

Propositions 1 and Corollary 3 will help us to prove the following characterization of the cardinal \aleph_0.

Proposition 4. The cardinal \aleph_0 is equal to:

- the smallest cardinality of a submetrizable space which is not a Q-space;
- the smallest cardinality of a non-perfect submetrizable space;
- the smallest cardinality of an nw-countable functionally Hausdorff non-Q-space;
- the smallest cardinality of an non-perfect nw-countable functionally Hausdorff space;
- the smallest cardinality of second-countable functionally Hausdorff non-Q-space.
- the smallest cardinality of non-perfect second-countable functionally Hausdorff space.

Proof. Let

- \aleph_{sm} be the smallest cardinality of a submetrizable non-Q-space;
- \aleph_{pm} be the smallest cardinality of a non-perfect submetrizable space;
- \aleph_{nw} be the smallest cardinality of an nw-countable functionally Hausdorff non-Q-space;
- \aleph_{nwp} be the smallest cardinality of an non-perfect nw-countable functionally Hausdorff space;
- \aleph_{w} be the smallest cardinality of second-countable functionally Hausdorff non-Q-space.
- \aleph_{w} be the smallest cardinality of non-perfect second-countable functionally Hausdorff space.
We should prove that all these cardinals are equal to q_0. The inclusions between corresponding classes of topological spaces yield the following diagram in which an arrow $\kappa \to \lambda$ between cardinals κ, λ indicates that $\kappa \leq \lambda$.

![Diagram]

Proposition 7 implies that $q_0 \leq q_{sm}$. To prove that all these cardinals are equal to q_0, it remains to prove that $p_w \leq q_0$.

By the definition of the cardinal q_0, there exists a second-countable metrizable non-Q-space X and hence X contains a subset A which is not of type G_δ in X. Let τ' be the topology on X, generated by the subbase $\tau \cup \{X \setminus A\}$ where τ is the topology of the metrizable space X. It is clear that $X' = (X, \tau')$ is a second-countable space containing A as a closed subset. Since $\tau \subseteq \tau'$, the space X' is submetrizable and functionally Hausdorff. Assuming that X' is perfect, we conclude that the closed set $\tau = \tau \cup \{X \setminus A\} \subseteq \tau'$.

By the choice of the topology τ', for every $n \in \omega$ there exists open sets $U_n, V_n \in \tau$ such that $W_n = U_n \cup (V_n \setminus A)$. It follows from $A \subseteq W_n = U_n \cup (V_n \setminus A)$ that $A = A \cap W_n = A \cap U_n \subseteq U_n$. Then

$$ A = \bigcap_{n \in \omega} W_n = A \cap \bigcap_{n \in \omega} W_n = \bigcap_{n \in \omega} (A \cap W_n) = \bigcap_{n \in \omega} (A \cap U_n) \subseteq \bigcap_{n \in \omega} U_n \subseteq \bigcap_{n \in \omega} W_n = A $$

and hence $A = \bigcap_{n \in \omega} U_n$ is a G_δ-set in X, which contradicts the choice of A. This contradiction shows that the functionally Hausdorff second-countable space X' is not perfect and hence $p_w \leq |X'| = q_0$.

Proposition 5. Is $q_2 = q_0$?

Repeating the argument of the proof of Proposition 7 we can prove the following characterization of the cardinals q_i for $i \in \{1, 2, 2^\frac{1}{2}\}$.

Proposition 6. Let $i \in \{1, 2, 2^\frac{1}{2}\}$. The cardinal q_i is equal to the smallest cardinality of a non-perfect second-countable T_i-space.

Proposition 7. Every sw-countable space of cardinality $< q_1$ is a Q-space.

Proof. Let X be an sw-countable space of cardinality $< q_1$. By the sw-countability of X, there exists a countable separating family \mathcal{U} of open sets in X. Consider the topology τ on X generated by the subbase \mathcal{U} and observe that $X_\tau \overset{\text{def}}{=} (X, \tau)$ is a second-countable T_1-space of cardinality $< q_1$. The definition of q_1 ensures that X_τ is a Q-space. Then every set $A \subseteq X$ is an F_σ set in X_τ. Since the identity map $X \rightarrow X_\tau$ is continuous, the set A remains of type F_σ in X, witnessing that X is a Q-space.

Proposition 8. The cardinal q_1 is equal to

1. the smallest cardinality of an sw-countable non-Q-space;
2. the smallest cardinality of a non-perfect sw-countable space.

Proof. Let

- q_{sm} be the smallest cardinality of an sw-countable non-Q-space;
Proposition 9. Every second-countable \(T_1 \)-space \(X \) of cardinality \(|X| < \text{adp} \) is a Q-space and hence
\[
p \leq \text{dp} \leq \text{adp} \leq q_1 \leq q_2 \leq q_{2\aleph_0} \leq q_3 = q_0.
\]

Proof. Given any subset \(A \subseteq X \), we should prove that \(A \) is of type \(G_\delta \) in \(X \). Let \(B = \{U_n\}_{n \in \omega} \) be a countable base of the topology of the space \(X \).

For every \(y \in X \setminus A \), let \(I_y = \{n \in \omega : y \in U_n\} \). Since \(\{U_n\}_{n \in \omega} \) is a base of the topology of \(X \), for every \(x \in A \) there exists an infinite set \(I_x \subseteq \omega \) satisfying two conditions:

- for any numbers \(n < m \) in \(I_x \) we have \(x \in U_m \subseteq U_n \);
- for every neighborhood \(O_x \) of \(x \) in \(X \) there exists \(n \in I_x \) such that \(x \in U_n \subseteq O_x \).
We claim that for any $x \in A$ and $y \in B$ the intersection $I_x \cap I_y$ is finite. Indeed, by the choice of the set I_y, there exists $n \in \omega$ such that $U_n \subseteq X \setminus \{y\}$. Then for every $m \geq n$ we have $U_m \subseteq U_n$ and hence $y \notin U_m$ and $m \notin I_y$. Therefore, the families $\{I_x : x \in A\}$ and $\{I_y : y \in X \setminus A\}$ are orthogonal. The same argument shows that the family $\{I_x : x \in A\}$ is almost disjoint.

Since $|A \cup B| = |X| < \mathfrak{d}$, the family $\{I_x : x \in A\}$ can be weakly separated from the family $\{I_y : y \in X \setminus A\}$ and hence there exists a set $D \subseteq \omega$ such that for any $x \in A$ the intersection $I_x \cap D$ is infinite and for any $x \in B$ the intersection $I_y \cap D$ is finite. For every finite set $F \subseteq D$ consider the open subset
\[
W_F \overset{\text{def}}{=} \bigcup_{n \in D \setminus F} U_n
\]
of X. For every $x \in A$ the infinite set $I_x \cap D$ contains a number $n \notin F$ and then $x \in U_n \subseteq W_F$. Therefore $G \overset{\text{def}}{=} \bigcap_{F \in |D| < \omega} W_F$ is a G_{δ}-set containing A. On the other hand, for every $x \in X \setminus A$, the intersection $F = I_y \cap D = \{n \in D : y \in U_n\}$ is finite and hence $y \notin \bigcup_{n \in D \setminus F} U_n = W_F$.

Therefore, $A = \bigcap_{F \in |D| < \omega} W_F$ is a G_{δ}-set in X witnessing that X is a Q-space. \qed

Since $p = \mathfrak{c}$ under Martin’s Axiom, Proposition \ref{prop:iso} implies the following corollary.

Corollary 10. Under Martin’s Axiom, $q_i = \mathfrak{c}$ for every $i \in \{0, 1, 2, 2^\omega, 3\}$.

It would be interesting to have any additional information on (im)possible inequalities between the cardinals q_i and other cardinal characteristics of the continuum. In particular, the following questions are natural and seem to be open.

Problem 11.
1. Is $\mathfrak{ap} \leq q_2$?
2. Is $q_1 \leq \text{add}(\mathcal{M})$?
3. Is $q_1 = q_2$?
4. Is the strict inequality $q_1 < q_0$ consistent?

Also the position of the new cardinal \mathfrak{adp} in the interval $[\mathfrak{d}, \mathfrak{ap}]$ is not clear.

Problem 12.
1. Is $\mathfrak{adp} = \mathfrak{d}$ in ZFC?
2. Is $\mathfrak{adp} = \mathfrak{ap}$ in ZFC?

By [3], the strict inequality $\mathfrak{d} < \mathfrak{ap}$ is consistent, so one of the questions in Problem 12 has negative answer. But which one? Or both?

References

[1] T. Banakh, M. Machura, and L. Zdomskyy, *On critical cardinalities related to Q-sets*, Math. Bull. Shevchenko Sci. Soc. **11** (2014), 21–32.
[2] A. Blass, *Combinatorial cardinal characteristics of the continuum*, Handbook of set theory. Vols. 1, 2, 3, 395–489, Springer, Dordrecht, 2010.
[3] J. Brendle, *Dow’s principle and Q-sets*, Canad. Math. Bull. **42**:1 (1999), 13–24.
[4] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.
[5] A. Miller, *Special subsets of the real line*, in: Handbook of set-theoretic topology, 201–233, North-Holland, Amsterdam, 1984.
[6] J. Vaughan, *Small uncountable cardinals and topology*, With an appendix by S. Shelah. Open problems in topology, 195–218, North-Holland, Amsterdam, 1990.

Ivan Franko National University of Lviv, Ukraine

Email address: t.o.banakh@gmail.com

Email address: izar@litech.lviv.ua