Prevalence of ESBL and AmpC genes in E. coli isolates from urinary tract infections in the north of Iran

M. Sadeghi1, H. Sedigh Ebrahim-Saraie2 and A. Mojtahedi3
1 Burn and Regenerative Medicine Research Center, 2 Razi Clinical Research Development Unit, Razi Hospital and 3 Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Abstract

Beta-lactam resistance in Gram-negative bacteria, especially Escherichia coli, is a main clinical problem. It is often caused by the production of β-lactamases, particularly extended-spectrum β-lactamases (ESBLs) or AmpC enzymes. This study was undertaken to characterize ESBL and AmpC producers among Escherichia coli isolates from urine samples. During six months, 263 E. coli isolates were detected by standard biochemical tests. The isolates were screened for ESBL production by the double-disk synergy test using Ceftazidime (30 μg) and Cefotaxime (30 μg) disks and confirmed by combined disk diffusion test using Clavulanic acid. AmpC production was confirmed by an AmpC disk test based on filter paper disks impregnated with EDTA. The presence of genes encoding TEM, SHV, CTX-M, CIT, FOX, MOX, ACC, and EBC were detected by PCR. 263 E. coli isolates were selected for the combined disk (Ceftazidime, Cefotaxime, and Clavulanic acid) assay in the disk agar diffusion test. In the combined disk assay, among 263 isolates, 121 (46%) isolates were detected as ESBLs, and none of the isolates were AmpC producers. PCR performed on all ESBL producers and blaSHV, blaTEM, and blaCTX-M were detected in 42 (34.7%), 44 (36.4%), and 47 (38.8%) cases, respectively. Also, from 48 Isolates with zone diameters of less than or equal to 18 mm to Cefoxitin, 7 (14.6%), 4 (8.3%), and 9 (18.8%) cases contained MOX, EBC, and CIT genes, respectively. DHA, FOX, and ACC genes were not detected in any sample. Since pathogens evolve in the hospital setting, updating local data, such as this research, offers scientific evidence to improve the outcome of nosocomial infections.

Keywords: AmpC, antibiotics, ESBL, Escherichia coli, extended spectrum β-lactamase

Original Submission: 10 April 2021; Revised Submission: 2 October 2021; Accepted: 3 November 2021
Article published online: 20 November 2021

Corresponding author: A. Mojtahedi, Department of Microbiology, School of Medicine, Guilan University Campus, 7th Km of Rasht-Tehran Highway, Rasht, Guilan, Iran
E-mail: mojtahedii.ali@gmail.com

Introduction

Escherichia coli is one of the important causes of hospital-associated infections in humans, such as urinary tract infection (UTI), bloodstream infection (BSI), and gastrointestinal infection (GI) [1]. β-lactams have been used extensively to treat different types of human infections caused by E. coli [2]. However, the widespread use of antibiotics poses a selective pressure leading to the selection of resistant bacteria [3]. β-lactamase are the primary causes of resistance to β-lactam agents that hydrolyse the β-lactam ring [4]. Extended-spectrum β-lactamases (ESBLs) belonging to class A and AmpC β-lactamases belonging to class C Ambler classification are the two prevalent β-lactamases in Gram-negative bacteria, particularly in Enterobacteriales [5]. Both ESBLs and AmpC β-lactamases confer resistance to a broad spectrum of β-lactams includes Penicillins and Cephalosporins [6]. But, unlike ESBLs, plasmid-encoded AmpC β-lactamases are effectively active against cephapencins and are not inhibited by a β-lactamase inhibitor such as Clavulanic acid [7]. Harbouring these enzymes is usually associated with multiple antibiotic resistance (MDR) means that there are fewer antibiotic options available to treat [8]. Knowing the epidemiology of ESBLs and AmpC producing organisms is important to ensure effective therapy, as well as infection control measures [8]. Therefore,
this study aimed to investigate the occurrence of ESBLs and AmpC producing E. coli isolates among hospitalized patients with UTI. Results of the present work can be used for the evidence-based improvement of available infection control policies and antimicrobial stewardship programs.

Materials and methods

Study design and bacterial isolation
From September 2018 to March 2019, 263 nonrepetitive E. coli strains (one per patient) were isolated from hospitalized patients with UTI in Razi hospital in the North of Iran. The study design was approved by the regional Ethics Committee of Guilan University of Medical Sciences (IR.GUMS.REC.1397.230) and was following the declaration of Helsinki. Briefly, each urine sample was streaked on the Blood agar and EMB agar (Merck, Germany) media, and plates were incubated aerobically at 37 °C for 24-48 h. After incubation, E. coli isolates were identified by routine microbiological tests and confirmed by API 20E strip (API-bioMérieux, France).

Antimicrobial susceptibility testing
An antimicrobial susceptibility test was performed on all isolates by disk-diffusion method on Mueller-Hinton agar medium (Merck, Germany) according to Clinical and Laboratory Standards Institute (CLSI) guidelines [9]. Antibiotic disks, including Ampicillin (10 μg), Co-amoxiclav (30 μg), Cefazidine (30 μg), Ceftriaxone (30 μg), Cefepime (30 μg), Cefotaxin (30 μg), Aztreonam (30 μg), Gentamicin (10 μg), Amikacin (30 μg), Meropenem (10 μg), Imipenem (10 μg), Ciprofloxacin (5 μg), Levofloxacin (5 μg), Norfloxacin (10 μg), and Nalidixic acid (30 μg) (MAST, UK) were used. The plates were incubated aerobically at 37 °C for 16–18 h. E. coli ATCC 25922 was used for quality control purposes.

ESBLs and AmpC screening tests
ESBLs production was investigated using the double-disk synergy test by Cefazidine (30 μg) and Cefotaxime (30 μg) disks, and combination with Clavulanic acid (10 μg) disk-based on CLSI recommendation [9]. The presumptive AmpC β-lactamas producing isolates were screened by the standard disk diffusion test using 30 μg Cefoxitin disks. Cefoxitin non-susceptible isolates were selected for further investigation. The AmpC production was confirmed based on the method described by Black et al. based on the use of Tris-EDTA to permeabilize a bacterial cell and release β-lactamases into the external environment [6]. An AmpC positive clinical strain of Pluralibacter gergoviae was provided by a colleague (formerly Enterobacter gergoviae) for quality control purposes [10].

DNA extraction and polymerase chain reaction
The bacterial DNA was extracted from pure overnight cultures using the boiling method [11]. The ESBLs encoding genes (blaTEM, blaCTX-M, and blaCTX-A) and AmpC genes (MOX, EBC, CIT, DHA, FOX, and ACC) were amplified individually on a SimpliAmp™ thermal cycler (Applied Biosystems, Foster City, CA) using the specific primers (Metabion Co, Germany). The list of primer sequences is displayed in Table 1. The amplification reaction was performed in a final volume of 20 μL containing Master Mix (Bioneer, South Korea), primers at concentrations of 10 pM, 50–100 ng of extracted DNA templates, and ddH2O. The PCR conditions for the amplifications were as follows, 5 min at 95°C for the initial denaturation step; 30 cycles of 30 sec at 95°C for DNA denaturation, 30 sec for primer annealing). The temperature depended on the sequences of primers (primer extension at 72°C for 1 min and a final extension of 5 min at 72°C. The PCR products were separated on 1.5% agarose gel prepared in 1x TBE (Tris/Boric/EDTA) buffer and visualized using ultraviolet light after staining with safe stain (CinaGen Co., Iran).

Statistical methods
Statistical analysis was performed using SPSS™ software, version 21.0 (IBM Corp., USA). The results were presented as descriptive statistics in terms of relative frequency. The Chi-square or Fisher’s exact tests were used to analyse the data whenever appropriate. A p-value <0.05 was considered statistically significant.

Results
The antibiotic susceptibility results in Table 2 revealed that the majority of E. coli isolates were nonsusceptible to Ampicillin

| TABLE 1. The primer sequences of the ESBL and AmpC genes amplified by PCR [36–38] |
|---|----|----|----|----|--------|
Primers	Sequences 5’ –3’	Size (bp)	Reference
SHV	F: TCGACGAAAACACCCTTG	471	[38]
R	CCGGCAATGAAATGACCCA		
TEM	F: GAGTTATCCAATCTTCCGTTGC	861	[38]
R	TAATCAGTGAGCCACACTTCTC		
CTX-M	F: TTTCGGATGTCGACAGTACGC	544	[38]
R	CGATGATTCGAGCTGTCGAT		
DHA	F: AACCTTCAGAGTCGCTGGGT	405	[40]
R	CGGTGACATCGTGGTTTGC		
FOX	F: AAACATTGGGGTATCCAGGAGAT	190	[40]
R	CAAAGCCCCCTGTTGAGGTC		
MOX	F: GCTGTCAAGAGGCAAGAGAT	520	[40]
R	CACATTTGATGGTGTGTCGTT		
ACC	F: AAGACGCTACAGCCGCTTGA	346	[40]
R	TGCACGCGCAATCCTCCTGAG		
CIT	F: TGCCCGCAACATCGACAGGAAA	462	[40]
R	TTCTCTCGTACAGCTGGTGGC		
EBC	F: TCGGTAAAAGGCGCAGTGTCCGG	302	[40]
R	CTTCCAGTGCGCTGGCATG		

F: Forward, R: Reverse.
(83.7%), Nalidixic acid (77.2%), and Co-amoxiclav (58.6%). In comparison, most of the isolates were susceptible to carbapenems, including Meropenem (99.2%) and Imipenem (95.8%). Based on phenotypic results, of 263 *E. coli* isolates, 121 (46%) isolates were ESBLs producers. Moreover, none of the isolates showed AmpC production. According to the results of Table 2, among 121 ESBL-producing *E. coli*, the highest resistance was observed to Ceftriaxone (99.2%) and the lowest resistance to Meropenem (0.8%). Also, antibiotic resistance was significantly higher among ESBL-producing isolates compared to non-ESBLs (P < 0.05), except for Amikacin, Imipenem and Meropenem. PCR for detection of ESBL encoding genes was performed on all of the 121 ESBL-isolates, of which the prevalence of SHV, TEM, and CTX-M were 42 (34.7%), 44 (36.4%), and 47 (38.8%) isolates, respectively. AmpC genes, including MOX, EBC, and CIT among 48 cefoxitin-resistant isolates were 7 (14.6%), 4 (8.3%), and 9 (18.8%), respectively. Meanwhile, DHA, FOX, and ACC genes were not found in any isolates. The occurrence patterns of ESBL and AmpC genes in studied isolates are shown in Tables 3 and 4, respectively. As shown, seven different patterns were identified for each of them. The most prevalent pattern for ESBL genes were *blaTEM* (14%), and *blaSHV* + *blaTEM* + *blaCTX-M* (14%). While for AmpC genes, *blaCIT* (10.4%) was the predominant pattern. Also, 48 and 33 of *E. coli* isolates had no genes for ESBLs and AmpC, respectively.

Discussion

Trends of resistance to β-lactam antibiotics in Gram-negative bacteria isolated from clinical samples have been increased over recent years [12]. The main mechanism of β-lactam resistance in *Enterobacteriales*, particularly *E. coli*, is often due to the production of ESBL or AmpC enzymes [13]. In this study, the phenotypic data indicated that in the north of Iran, a large number of *E. coli* isolates were ESBLs producers (46%). Despite the heterogeneity in reported rates, our results are consistent with the average reported in these studies. The prevalence reported in our study (46%) is higher than those reported, Semnan (Central, 26.6%) [14], Shiraz (South, 34.6%) [15], Kermanshah (West, 24.5%) [16], and Kerman (South, 41%) [17]. In contrast, it is lower than those reported

Table 2. Results of antibiotic resistance pattern of *E. coli* isolates by ESBL

Class	Antimicrobials	Total *E. coli* N = 263	Non-ESBL-producing *E. coli* N = 142	ESBL-producing *E. coli* N = 121
β-lactam/β-lactamase inhibitor	Amoxicillin/clavulanate	154 (58.6%)	58 (40.8%)	96 (79.3%)
β-lactam	Ampicillin	220 (83.7%)	99 (69.7%)	121 (100%)
Monobactams	Aztreonam	137 (52.1%)	19 (13.4%)	118 (97.5%)
Cephalosporins II	Cefoxitin	36 (13.7%)	12 (8.5%)	24 (19.8%)
Cephalosporins III	Cefazolin	145 (55.1%)	30 (21.1%)	115 (95)
Cephalosporins III	Ceftriaxone	148 (56.3%)	28 (19.7%)	120 (99.2%)
Cephalosporins IV	Ceftazidime	104 (39.5%)	12 (8.5%)	92 (76)
Carbapenem	Meropenem	148 (56.3%)	12 (8.5%)	116 (95.5)
Carbapenem	Imipenem	2 (0.8%)	1 (0.8%)	1 (0.8)
Aminoglycosides	Amikacin	37 (14.1%)	20 (14.1%)	17 (14)
Aminoglycosides	Gentamicin	54 (20.5%)	11 (7.7%)	43 (35.5)
Quinolones	Norofloxacin	135 (51.3%)	42 (29.6%)	93 (76.9)
Quinolones	Levofloxacin	134 (51)	41 (28.9%)	93 (76.9)
Quinolones	Ciprofloxacin	148 (56.3)	50 (35.2%)	98 (81)
Quinolones	Nalidixic acid	203 (77.2%)	90 (63.4%)	113 (93.4%)

Table 3. The occurrence patterns of genes encoding ESBL-beta lactamase

Pattern	ESBL-P	
blaTEM	4	
blaSHV	17	
blaTEM + *blaSHV*	9	
blaSHV + *blaTEM*	5	
blaTEM + *blaCTX-M*	16	
blaTEM + *blaSHV* + *blaCTX-M*	5	
blaSHV + *blaTEM* + *blaCTX-M*	17	
No gene	48	
Total	121	100

Table 4. The occurrence patterns of genes encoding AmpC-beta lactamase

Pattern	Cefoxitin-R	
blaDOX	4	
blaMIC	2	
blaUTC	5	
blaCTX	0	
*blaDOX + *blaUTC*	2	
*blaMIC + *blaMIC*	1	
*blaDOX + *blaDOX*	1	
No gene	33	
Total	48	100
from Ahvaz (South, 46.1%) [18], Shiraz (South, 69.2%) [19], and Mashhad (East, 72.9%) [20]. Same heterogeneity was observed from other countries include Brazil (7.1%) [21], India (41.6%) [22], Pakistan (40%) [23], France (69.4%) [24], and Nepal (91.7%) [25]. The difference observed in the prevalence of ESBL in UroPathogenic Escherichia coli (UPEC) isolates in Iran and other parts of the world is probably due to differences in geographical distribution, infection control policies, source and size of the sample [26]. The lack of a standard phenotypic method for detecting AmpC producing bacteria is the biggest obstacle to comparing the results of this enzyme. In this study, we identified 48 presumptive AmpC producing isolates, While none of them was an AmpC producer with a double disk test. Previously, the prevalence of AmpC beta-lactamase in E. coli isolates was noted from Zahedan (East of Iran, 2013) (5%) [12], Tehran (Capital city of Iran, 2015) (25%) [27], Brazil in 2016 (1.8%) [28], India (14.6%) [29], and Uganda (22.9%) [30].

In our study, the investigated ESBL genes were detected with almost a significant equal frequency. Previously, similar to our results, Naziri et al. Shiraz (South, 2020) reported the high prevalence of SHV (47.4%) and then CTX-M (37.2%) and TEM (15.4%) among UPEC isolates [15]. In another study in Kermanshah (West, 2013), the frequency of the CTX-M (93.3%) gene was reported more than the other ESBL genes, TEM (68.2%) and SHV (43.2%) among UPEC isolates [31]. Also, several studies in other parts of the world, such as Saudi Arabia, Vietnam, China, and Mexico, introduced the CTX-M, SHV, and TEM genes as the most important mechanisms of ESBL production in E. coli strains [32–35]. Based on molecular analysis, we found three types of AmpC genes in 31.2% isolates of cefoxitin-resistant strains, indicating the low prevalence of AmpC beta-lactamases in the north of Iran. Also, the CIT gene was the most prevalent plasmid-mediated AmpC enzyme in our region, followed by MOX and EBC. Maleki et al. in Ilam (West of Iran) introduced CIT and DHA as the most frequent AmpC genes in E. coli isolates [36]. Ghanavati et al. in Tehran (North of Iran) also reported the clusters of CITM, EBCM, and DHAM genes as the most abundant genes in Klebsiella isolates, respectively [37].

According to the results, it seems that the CITM gene is the most important factor in the plasmid dissemination of AmpC-producing isolates in Iran. The significant rate of ESBL-producing UPEC isolates indicates the need for infection control policies to prevent the further spread of resistant strains. Due to meagre resistance to carbapenems and aminoglycosides, these antibiotics can be the choice for complicated UTIs. Identifying resistant strains and updating bacterial susceptibility pattern information will prevent the over-administration of antibiotics and the development of new resistant strains. Furthermore, to avoid treatment failure and infection control, ESBLs and AmpC production monitoring is recommended. Updating of local data, such as this study, provides empirical evidence to improve the outcome of nosocomial infections because the evolution of pathogens continues in the hospital environment.

Author contributions

All authors contributed to data analysis, drafting or revising the article, finalizing the version to be published, and agreed to be accountable for all aspects of the work.

All raw data are available by corresponding author on reasonable request.

Transparency declaration

The authors report no conflicts of interest in this work. This study was supported by Guilan University of Medical Sciences, Grant No. 97052012.

References

[1] Katouli M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iranian Journal of Microbiology 2010;2(2):59.
[2] Bajaj P, Singh NS, Virdi JS. Escherichia coli β-lactamases: what really matters. Frontiers in Microbiology 2016;7:417.
[3] Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C. β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrobial Agents and Chemotherapy 2002;46(10): 3156–63.
[4] Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor Perspectives in Medicine 2016;6(8):a025247.
[5] Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. Journal of Clinical Microbiology 2010;48(4):1019–25.

TABLE 5. The co-occurrence patterns of genes encoding ESBL and AmpC-beta-lactamase

Pattern	Total	Cefoxitin-R	ESBL-P
	No %	No %	No %
blaMOX + blaCIT	2 0.76 2 4.16 2 1.65		
blaMOX + blaCIT + blaTEM	1 0.38 1 2.08 1 0.82		
blaTEM + blaCTX-M	2 0.76 2 4.16 2 1.65		
blaMOX + blaTEM	1 0.38 1 2.08 1 0.82		
blaTEM + blaCTX-M + blaTEM	3 1.14 3 6.25 3 2.47		
blaCIT + blaTEM + blaCTX-M	1 0.38 1 2.08 1 0.82		
blaCIT + blaTEM + blaCTX-M + blaTEM	2 0.76 2 4.16 2 1.65		
Total	263 100	48 100	121 100

© 2021 The Authors. Published by Elsevier Ltd. NMNI, 45, 100947
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
Sadeghi et al. Prevalence of ESBL and AmpC genes in E. coli isolates

[6] Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. Journal of Clinical Microbiology 2005;43(7):3110–3.

[7] Coudron PE, Hanson ND, Climo MW. Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. Journal of Clinical Microbiology 2003;41(2):772–7.

[8] Zhu L-X, Zhang Z-W, Liang D, Jiang D, Wang C, Du N, et al. Multiplex asymmetric PCR-based oligonucleotide microarray for detection of drug resistance genes containing single mutations in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 2007;51(10):3707–13.

[9] CLSI. In: Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute. 2020. CLSI Supplement M100.

[10] Khashi R, Sarvestani FE, Malekzadegan Y, Motamedifar M. The first report of Enterobacter gergoviae carrying blaNDM-1 in Iran. Iranian Journal of Basic Medical Sciences 2020;23(9):1.184.

[11] Nobari S, Shahcheraghi F, Rahmati Ghezelgeh F, Valizadeh B. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blαKPC gene in Iran. Microbial Drug Resistance 2014;20(4):285–93.

[12] Shayan S, Bokaean M. Detection of ESBL-and AmpC-producing E. coli isolates from urinary tract infections. Advanced Biomedical Research 2015;4.

[13] Mehrabi MR. Detection of AmpC beta-lactamase genes in clinical isolates of Escherichia coli in Kermanshah city. New Cellular and Molecular Biotechnology Journal 2017;7(25):69–76.

[14] Tabar MM, Mirkalantani S, Amoli RI. Detection of ctt-X-M gene in ESBL-producing E. coli strains isolated from urinary tract infection in Semnan, Iran. Electronic Physician 2016;8(7):2686.

[15] Naziri Z, Derakhshandeh A, Borchaloee AS, Poormalekinia M, Azimazadeh N. Treatment failure in urinary tract infections: a warning witness for virulent multi-drug resistant: ESBL-producing Escherichia coli. Infection and Drug Resistance 2020;13:1839.

[16] Mohajeri P, Darfaran G, Farahani A. Genotyping of ESBL producing Enterobacteriaceae in west of Iran. International Journal of Microbiology 2014. 2014.

[17] Hashemizadeh Z, Kalantar-Neyestani D, Mansouri S. Clonal relationships, antimicrobial susceptibilities, and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolates from urinary tract infections in Tabriz, Iran. Revista da Sociedade Brasileira de Medicina Tropical 2018;51(1):44–51.

[18] Moosavian M, Ahmadkhosravny S. Survey of CTX-M gene frequency in extended-spectrum Beta-Lactamase-Producing Enterobacteriaceae isolates using the combination disk and PCR methods in Ahvaz, Iran. Jundishapur Journal of Microbiology 2016;9(11).

[19] Poulsdfar G, Basiratnia M, Anvarinejad A, Abbasi P, Amirimoee F, Zare S. The antibiotic susceptibility patterns of uropathogens among children with urinary tract infection in Shiraz. Medicine 2017;96(37).

[20] Harmif Mood E, Meshkati Z, Izadi N, Rezaei M, Amel Jamelchand S, Naderi Nasab M. Prevalence of quinolone resistance genes among extended-spectrum β-lactamase-producing Escherichia coli in Mashhad, Iran. Jundishapur Journal of Microbiology 2015;8(12).

[21] Gonçalves LF, de Oliveira Martins-Júnior P, de Melo ABF, da Silva RCRM, de Paulo Martins V, Pitondo-Silva A, et al. Multidrug resistance dissemination by extended-spectrum β-lactamase-producing Escherichia coli causing community-acquired urinary tract infection in the Central-Western Region, Brazil. Journal of Global Antimicrobial Resistance 2016;6:1–4.

[22] Bajpai T, Pandye M, Varma M, Bhatambare GS. Prevalence of extended spectrum beta-lactamase producing uropathogens and their antibiotic resistance profile in patients visiting a tertiary care hospital in central India: implications on empiric therapy. Indian Journal of Pathology and Microbiology 2014;57(3):407.

[23] Ali I, Rafaque Z, Ahmad S, Malik S, Dasti JL. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Pothohar region of Pakistan. Asian Pacific Journal of Tropical Biomedicine 2016;6(1):60–6.

[24] Chervet D, Lortholary O, Zahar J-R, Dufougery A, Piltmis B, Partouche H. Antimicrobial resistance in community-acquired urinary tract infections in Paris in 2015. Medecine et maladies infectieuses 2018;48(3):188–92.

[25] Shapka Y, Shrestha D, Maharjan E, Sharma VK, Paudyal R. ESBL production among E. coli and Klebsiella spp. causing urinary tract infection: a hospital based study. The Open Microbiology Journal 2017;11:33.

[26] Halaji M, Shahidi S, Atapour A, Ataei B, Feizi A, Havae SA. Characterization of extended-spectrum β-lactamase-producing uropathogenic Escherichia coli among Iranian kidney transplant patients. Infection and Drug Resistance 2020;13:1429.

[27] Bahramian A, Eslami G, Hashemi A, Tabibi A, Heidary M. Emergence of fosfomycin resistance among isolates of Escherichia coli harboring extended-spectrum and AmpC β-lactamases. Acta microbiologica et immunologica Hungarica 2018;65(1):15–25.

[28] Rocha DAC, Campos JC, Passadore LF, Sampaio SCF, Nicodemo AC, Sampaio JL.M. Frequency of plasmid-mediated AmpC β-lactamases in Escherichia coli isolates from urine samples in são paulo, Brazil. Microbial Drug Resistance 2016;22(4):321–7.

[29] Jena J, Debata NK, Sahoo RK, Gaur M, Sudhbi E. Genetic diversity study of various β-lactamase-producing multidrug-resistant Escherichia coli isolates from a tertiary care hospital using ERIC-PCR. The Indian Journal of Medical Research 2017;146(Suppl. 1):523.

[30] Nakaye M, Bwanga F, Isabangi H, Stanley J, Bashir M, Bazria J, AmpC-BETA lactamases among enterobacteriaceae isolated at a tertiary hospital, South western Uganda. British Biotechnology Journal 2014;4(9):1026.

[31] Mohajeri P, Rostami Z, Farahani A, Norrozi B. Distribution of ESBL producing Uropathogenic Escherichia coli and carriage of selected β-lactamase genes in Hospital and community isolates in west of Iran. Annals of Tropical Medicine and Public Health 2014;7(5):219.

[32] Alaymani J, Kliyami AM, Booq KY, Majrashi MA, Bahwerth FS, Rechikina E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Annals of Clinical Microbiology and Antimicrobials 2017;16(1):1–13.

[33] Ramirez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, Marquez-Diaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Annals of Clinical Microbiology and Antimicrobials 2018;17(1):1–13.

[34] Trang NHT, Nga TVT, Campbell JL, Hiep NT, Farrar J, Baker S, et al. The characterization of ESBL genes in Escherichia coli and Klebsiella pneumoniae causing nosocomial infections in Vietnam. The Journal of Infection in Developing Countries 2013;7(12):922–8.

[35] Zhao R, Shi J, Shen Y, Li Y, Han Q, Zhang X, et al. Phylogenetic distribution of virulence genes among ESBL-producing uropathogenic Escherichia coli isolated from long-term hospitalized patients. Journal of Clinical and Diagnostic Research. JCDR 2015;9(7):DC01.

[36] Maleki A, Khosravi A, Ghavfournia S, Paladzi I, Hossinei S, Ramazanzadeh R, et al. High prevalence of AmpC β-lactamases in clinical isolates of Escherichia coli in Ilam, Iran. Osong Public Health and Research Perspectives 2015;6(3):201–4.

[37] Ghanavati R, Darban-Sarokhalli D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta microbiologica et immunologica Hungarica 2017;64(4):455–62.
Zaniani FR, Meshkat Z, Nasab MN, Khaje-Karamadini M, Ghazvini K, Rezsee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iranian Journal of Basic Medical Sciences 2012;15(1):654.

Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrobial Agents and Chemotherapy 2003;47(12):3724–32.

Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology 2002;40(6):2153–62.