The origin of constant phase element in equivalent circuit of MIS (n) GaAs structures

Łukasz Drewniak1,∗ and Stanisław Kochowski1

1 Institute of Physics – Centre for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland

Received: 15 July 2020
Accepted: 5 September 2020
Published online: 23 September 2020
© The Author(s) 2020

ABSTRACT

The Au/Pd/Ti–SiO2-(n) GaAs properties have been analyzed via impedance spectroscopy (IS), as well as DLTS and ICTS, to identify the origin of electron processes responsible for existence of constant phase elements (CPE) in an equivalent circuits of that structure. We showed that CPEs connected in series with resistance represents the electron processes associated with deep levels in GaAs and/or interface states at SiO2-(n) GaAs interface, depending on the value of n of CPE parameter. CPE with n close to 1 characterize the electron processes associated with EL2 deep level, and CPE with n = 0.5–0.65 the complex electron processes associated with EL3 deep level and interface states together. We stated that constant phase elements in equivalent circuits of MIS-GaAs structures with large frequency dispersion of electrical characteristics can be the result of more than one electron process.

1 Introduction

The metal–insulator-semiconductor (MIS) and the metal–oxide–semiconductor (MOS) structures are both the basic components of complex electronic systems and good tool for characterizing the insulator-semiconductor (I-S) interface properties of different materials. The use of MIS/MOS structures in electronics strongly depends on their I-S interface properties, which are determined by the localized electronic states (interface states) and semiconductor bulk states (deep states). It is well known that the high density of interface states prevent for a long time a fabrication of field effect devices based on III–V semiconductor compounds in 90s. However, since the beginning of the twenty-first century, renewed interest in such devices has been observed [1–15]. It is associated with the development of new passivation technologies, the construction of new metal–insulator-semiconductor field effect transistors (MISFET), and a number of issues related to silicon device scaling [16–18].

In general, the MIS/MOS capacitance and conductance measurements, vs. gate voltage and frequency, can be used to characterize electron processes at the I-S interface and determination of interfacial parameters [19]. Unfortunately, these measurements cannot be simply used in MIS-GaAs systems because of many peculiarities observed in their electrical characteristics, including the large capacitance and conductance frequency dispersion,
hysteresis effects, Fermi level pinning, and difficulties in recording high-frequency characteristics [20–23].

In systems with a large frequency dispersion of electrical characteristics, the impedance spectroscopy is widely used. The idea of IS is a measurement of a linear electrical response of system to a small AC signal varying over a wide frequency range, and the analysis of this response to obtain specific information about the investigated system [24]. The goal of the analysis is to find the simplest electrical circuit(s) (including resistance (R), capacitance (C), and inductance (L) elements, and eventually constant phase elements (CPE)) to describe the impedance system (i.e., the equivalent circuit). Such circuit(s) is applied for simulation of the physical phenomena occurring in the various areas of the system. The CPE has admittance defined as, \(Y_{\text{CPE}} = Q_{0}(j\omega)^{-n} \) where \(Q_{0} \) and \(n (0 < n < 1) \) are frequency independent. CPE is frequently used for phenomenological description of a system with a broad spectrum of time constants. Originally, it was used in electrochemistry to characterize solid-electrolyte systems. For analysis of MIS-GaAs systems it was proposed for the first time in the paper [25], wherein the authors attributed the CPE (with \(n = 0.53–0.57 \)) to complex electron processes evoked by insulator-semiconductor interface states and calculated their time constants. A similar approach was applied in their later works as well [26–28]. It has been shown that impedance spectroscopy is a relatively simple as compared with other methods which employed very complex formulas to analyze experimental characteristics [29]. The equivalent circuits with CPE components are also used in analysis of other semiconductor-insulator systems, such as MIS AlGaN/GaAs [30] or FET AlGaN/GaAs [31], solar cells based on CdTe [32], CIGS [33–35], or CZTSe [36], and other NiO-SiO2-Si [37], Au/n-CdS/p-porous GaAs/p+-GaAs [11]. However, to date, there is no experimental data concerning the origin of the CPEs used in the equivalent circuits of those systems. Only preliminary results are presented in the paper [38].

Several well-established methods for determining the time constants of semiconductor electron states involve deep level transient spectroscopy (DLTS) [39–41] and isothermal capacitance transient spectroscopy (ICTS) [42]. These techniques are highly sensitive to both the bulk states and the interfacial states, and provide quantitative information about their energy, electron (hole) capture cross section, and their density. The DLTS involves temperature scanning; therefore, some problems may occur when the parameters related to electron states are temperature dependent. The advantage of the ICTS is a constant measurement temperature and the fact that the values of the emission time constants are determined directly from the ICTS spectra.

The purpose of this work is to identify the source of electron processes responsible for the existence of constant phase elements in equivalent circuits of MIS-GaAs structures. The Au/Pd/Ti–SiO2-(n) GaAs structure is investigated using impedance spectroscopy method, as well as ICTS and DLTS data, in order to identify the bulk states and insulator-semiconductor interface states in this system and determine their time constants. The parameters of the equivalent circuit and the time constants of the electron processes related to the frequency behavior of the MIS structure admittance are also assessed. Finally, the relationship between the time constants obtained from admittance characteristics and from transient capacitance spectra is analyzed.

2 Experimental

The Au/Pd/Ti–SiO2-GaAs MIS structures with SiO2 layers were obtained by a plasma-enhanced chemical vapor deposition (PECVD) process (SiH4 with NH3, N2O, N2, \(p = 50 \) Pa, 13.56 MHz, \(T = 583.15 \) K) in a GIR 200 ALCATEL apparatus). The n-type GaAs wafer with a doping concentration of \((1–4) \times 10^{22} \) m\(^{-3}\) and crystallographic orientation of (100) was used as a substrate. No special treatment was applied to the GaAs surface prior to SiO2 deposition. The wafers were cleaned with H2SO4 and successively rinsed with deionized water, trichloroethylene, acetone, and isopropanol with ultrasonic at all steps. The SiO2 thickness was 0.16 \(\mu \)m, Au 150 nm, Pd 15 nm and Ti 15 nm.

The capacitance \(C \) and conductance \(G \) vs. frequency \(f \) (from 200 Hz to 5 MHz), at different gate voltages \(U_{G} \) (from \(-10 \) to 20 V) and temperatures \(T \) (300 K, 320 K, 340 K, 360 K, 380 K) were recorded using an Agilent 4294A precision impedance analyzer. The AC signal was kept at 25 mV. The SULA Technologies DLTS spectrometer with Temperature Controller 311 from Lake Shore Cryogenics was used for recording DLTS and ICTS spectra. The sample was placed on the cold finger in the liquid N\(_2\).
Cryostat Janiss VPF-700 connected to a vacuum pump. The DLTS scanning was performed with a heating rate of 0.2 K/s. The ICTS spectra were obtained by averaging 50 capacitance transients (measured under the same conditions). The DLTS and ICTS spectra were recorded at a low filling pulse amplitude (1 V), and with a 10 ms pulse duration. These parameters were carefully chosen in preliminary experiments, as suggested in [41].

3 Results and discussion

The capacitance vs. frequency (C–f) and normalized conductance vs. frequency (G/ω–f) spectra for different gate voltages at different temperatures are shown in Fig. 1. The broadened, unsymmetrical normalized conductance peaks are observed for all measured temperatures, and their positions depend on the gate voltage (i.e., higher voltage leads to peaks at higher frequency). Additionally, complex peaks are observed for some negative gate voltages at 360 K and 380 K. In general, the capacitance dispersion and the maximum of the normalized conductance occur in the same frequency range, and a significant increase in conductance occurs at the high-frequency range.

The equivalent circuits displayed in Fig. 2 were used to fit the spectra (Fig. 1) using ZView 3.1c software. The (a) circuit was used for fitting the spectra recorded from 300 to 340 K, and (b) was used to fit the spectra at 360 K and 380 K. These circuits consist of insulator capacitance (Cox), the capacitance of semiconductor space charge layer (Csc), constant phase elements (CPE1 and CPE2), resistances (R1 and R2), series resistance (Rs), and inductance (L). All circuit parameters were free during the computation and were fitted simultaneously. The best fitting values of circuit parameters are presented in Fig. 3 and the calculated capacitance and conductance curves in Fig. 1. The estimated inductance L = 0.3 μH, resulting from the connection of wires in the measurement chamber, was also used in the calculations. The circuit parameters were fitted with errors under a few percent, and all the capacitance and normalized conductance spectra are very well reproduced by the model circuits, as shown in the Fig. 1. This fact, followed by monotonous dependence on the gate voltage, demonstrates the reliability of the circuits.

Fig. 1 The Au/Pd/Ti–SiO2-(n) GaAs structure’s capacitance, C, and normalized conductance, G/ω, vs. frequency, f, at different gate voltages, and temperatures, T, ω = 2πf (symbols, the experimental data; solid lines represent the best fit of experimental data using the circuits from Fig. 2; fitted circuit parameters are presented in Fig. 3)
voltage at different temperatures, confirm correctness of the equivalent circuits. Further, it means that their elements (i) can be associated with the physical phenomena occurring in the different regions of the investigated structure and (ii) can be used to calculate the appropriate parameters of these processes.

As expected, the C_{ox} is independent of the gate voltage, U_G (Fig. 3a). The series resistance, R_s, can arise from different sources (e.g., resistance of the semiconductor material, contacts, and/or electrical connection resistance [19]), and leads generally to increase of normalized conductance at high frequencies (Fig. 1). The CPE1, with $n_1 = 0.55–0.65$, and CPE2, with $n_2 = 0.92$, in series with resistances, R_1 and R_2, simulate the processes resulting in frequency dispersion of capacitance and conductance shown in Fig. 1. These processes are characterized by the time constants of $\tau_1 = (R_1Q_1)^{1/n_1}$ and $\tau_2 = (R_2Q_2)^{1/n_2}$ [43] presented in Fig. 4. A completely different dependence of τ_1 and τ_2 on the gate voltage suggests that

Fig. 2 The electrical equivalent circuits of the Au/Pd/Ti–SiO$_2$–(n) GaAs structure (C_{ox} insulator capacitance; R_s series resistance; L_s inductance; C_{sc} space charge layer capacitance; CPE1 constant phase element; R_1 resistance; CPE2 constant phase element; R_2 resistance)

Fig. 3 Values of parameters of the equivalent circuits from Fig. 2, obtained at different gate voltages, U_G, and temperatures for the Au/Pd/Ti–SiO$_2$–(n) GaAs structure
the nature of τ_1 is different from that of τ_2. The τ_2 time constant is relevant for the electron processes evoked by deep levels (bulk traps, deep traps) [44] in GaAs. The admittance of monoenergetic deep traps is represented by a capacitor connected in series with resistance. The estimated value of $n_2 = 0.92$ shows the "capacitive" character of CPE2 (for a capacitor, $n_{\text{CPE}} = 1$), and suggests some distribution of these traps. The CPE1, with $n_1 = 0.55$–0.65, can be attributed to the electron processes at the GaAs-SiO$_2$ interface region. According to the surface disorder model [45], there are localized electron states distributed in energy and in space at the semiconductor-insulator interface. The electrons are exchanged via tunneling between the semiconductor and those spatially distributed states. Their effective electron capture cross section exponentially decreases with tunneling distance, therefore, a large spectrum of time constants exists. As a consequence, a significant frequency

![Fig. 4](image)

τ_1 and τ_2 time constants vs. gate voltages, U_G, at different temperatures, T, calculated using the Q_1, n_1, R_1 and Q_2, n_2, R_2 parameter values presented in Fig. 3

![Fig. 5](image)

(a) ICTS spectra recorded at different temperatures and gate voltages, U_G; (b) DLTS spectra recorded at different time constants and gate voltages, U_G, for the Au/Pd/Ti–SiO$_2$–(n) GaAs structure
dispersion of MIS-GaAs capacitance and conductance is observed. In next, the time constants, τ_1 and τ_2, are compared with data obtained from DLTS and ICTS spectra in order to verify the conclusions presented above.

The recorded DLTS and ICTS spectra at different gate voltages and temperatures (Fig. 5) display more complex behavior than the capacitance and normalized conductance data. They both contain a number of composite peaks; therefore, deconvolutions of the spectra were performed prior to further analysis. Some results obtained with Origin Pro 9.0 software using the Gauss function are shown in Fig. 6. The five peaks were identified in the ICTS spectra, two at low temperatures (α, β; Fig. 6a), and three at high temperatures (γ, δ, ϵ; Fig. 6b), and six peaks were found in the DLTS spectra (Fig. 6c), three below 225 K (A, B, C), and three at higher temperatures (D, E, F). In order to determine the nature of these peaks, the evolution of the ICTS and DLTS spectra with gate voltage (pulse baseline) were performed, and the results are presented in Fig. 7. Since the behavior of the γ, ϵ, and A, C, and D peaks is clearly visible, an additional figure (Fig. 8) has been attached to highlight these peaks. Considering both figures, it is clear that the A, B, C, D, F, and α, β, γ, ϵ peaks are associated with deep level processes, whereas δ and E are attributed to insulator-semiconductor interface states. Continuous distribution of energy density in GaAs-insulator interface states is generally observed. Despite this fact, the sharp peaks in the DLTS and ICTS spectra...
occur at high densities of interface states for the “small pulse” conditions, as shown in [41].

Based on the time constant values obtained from the ICTS and DLTS spectra, the Arrhenius analyses were performed. The activation energy ($E_c - E_T$) and electron capture cross section (σ_n) of deep traps were estimated. An effective value of $\gamma_n = 1.9 \times 10^{24} \text{ m}^{-2} \text{ s}^{-1} \text{ K}^{-2}$ was used for these calculations [46], and the exemplary plots are presented in Fig. 9. The energy and capture cross section values obtained at different gate voltages have been averaged and summarized in Table 1. The trap densities (N_t) were estimated with typical formulae for DLTS [46] and ICTS [47], and are also presented. The Arrhenius plot analysis was not performed for the ϵ and F peaks, because of the dependence of these peaks amplitudes on temperature and time constant, respectively. Such tendencies suggest the further capture cross section’s dependence on temperature [48, 49], which is a basic limitation of Arrhenius analysis. A similar problem was identified in the case of interface states associated with δ and E peaks.

Similar values of capture cross section and activation energy for α and B, β and C, and γ and D levels (Table 1) suggest their common nature. For this reason, no differences between the similar levels (identified in ICTS and DLTS spectra) will be discussed, and different labels will not be used. The A level has no equivalent in the ICTS data because its time constant is out of the range of the method, regardless of the temperature. Comparing the calculated deep level parameters with literature data, it was found that all levels are associated with point defects, which are typical for GaAs. The A, B, C, D, and F levels corresponding to electron traps, EL9, EL6, EL5, EL3, and EL2 defects, respectively [50–55]. The origin of the EL9 level was not specified because this information was not determined. It is worth noting that the nature of the F level was deduced, despite the lack of its parameters. It was stated that the...
temperature-dependent position of the F peaks corresponds to the EL2 level, although this trap is generally difficult to investigate. A strong dependence of the capture cross section on the temperature, high concentration (comparable to dopant concentration), heterogeneous distribution in the semiconductor, and presence of deep levels with similar activation energies, prevents the use of standard methods of analysis (also for DLTS) and is a source of results discrepancies in the literature [54]. For example, the activation energy of the EL2 trap changes from 0.58 to 0.83 eV, depending on the determination method used [54].

In order to ascertain the frequency and temperature ranges in which the identified deep levels contribute to the impedance spectra in Fig. 1, the frequency responses of these traps were calculated (Fig. 10). The frequency responses of the EL3 and EL6 traps were obtained using the data from Table 1 and the equation, \(f = 1/(2 \pi \tau) \), where \(\tau = (1/\gamma \sigma_n T^2) - \exp((E_c - E_T)/k_B T) \) [46]. The \(\tau \) values of the EL2 trap have been determined from the peak positions in the ICTS spectra recorded at different temperatures. The contributions of the EL5 and EL9 traps have not been considered due to their relatively low concentrations compared to others. As shown in Fig. 10, the EL2 trap should be present in the lower frequency range for the conductance spectra recorded at 360 K and 380 K (Fig. 1h, j), whereas the EL6 trap should appear in the upper frequency range for spectra recorded above 360 K (Fig. 1h, j). The EL3 trap contribution may appear in the lower and middle frequency range for
Conductance spectra recorded below 340 K and above 340 K, respectively (Fig. 1f). However, only the EL2 trap is clearly visible in the specified range, visible in -7.5 V and -5 V at 360 K, and -10 V, -7.5 V, and -5 V at 380 K. In the MIS equivalent circuits, the EL2 trap contribution is represented by the CPE2-R2 branch. The comparison of time constants estimated from impedance data (τ_2, Figure 4) with time constants of the EL2 trap obtained from ICTS spectra at 360 K ($\tau_{EL2} = 1.2 \times 10^{-5}$ s) and 380 K ($\tau_{EL2} = 3.0 \times 10^{-4}$ s), confirmed this fact. However, detailed analysis of the normalized conductance spectra shows that the influence of the other traps is present but not clearly visible. The increase of normalized conductance in the high-frequency range can be also related to the influence of the EL6 trap. The contribution of this trap characteristics measured at 300 K has been observed also in the paper [38]. The asymmetrical broadening of the G/ω peaks (visible in Fig. 1) is associated with the influence of the EL3 trap, and this fact was confirmed by comparing the interface states time constants.

Table 1: Estimated deep levels parameters and corresponding literature data

Experimental data	Literature data							
σ_n, cm2	$E_C - E_T$, eV	N_I, cm$^{-3}$	Symbol	σ_n, cm2	$E_C - E_T$, eV	Origin	Refs.	
A	$(3.1 \pm 1.1) \times 10^{-15}$	0.23 ± 0.01	5.0 × 1013	EL9	6.8×10^{-15}	0.225	No data	[50]
B	$(7.3 \pm 0.6) \times 10^{-14}$	0.34 ± 0.01	3.9 × 1014	EL6	1.3×10^{-13}	0.35	$A_{Ga} - V_{Ga}$ or As$_{Ga}$	[50]
C	$(9.1 \pm 2.2) \times 10^{-14}$	0.41 ± 0.01	1.1 × 1014	EL5	$(0.5 - 2) \times 10^{-13}$	0.42	$V_{Ga} - V_{As}$	[50]
D	$(1.6 \pm 0.4) \times 10^{-13}$	0.57 ± 0.01	3.7 × 1014	EL3	$(0.8 - 1.7) \times 10^{-13}$	0.57	$V_{Ga} - V_{As}$ or Ga$_{As}$	[50]
F	–	–	–	EL2	Temperature dependent	0.58–0.83	A_{As} or As$_{As}$	[50–53]
α	$(1.2 \pm 0.2) \times 10^{-13}$	0.34 ± 0.01	5.8 × 1014	The same as B	V_{As} and V_{Ga}—arsenic and gallium atomic vacancies, As$_{Ga}$ and Ga$_{As}$—substitutional atoms, I_{As}—arsenic interstitial atom			
β	$(7.1 \pm 1.0) \times 10^{-13}$	0.40 ± 0.1	1.7 × 1014	The same as C	V_{Ga} and V_{Ga}			
γ	$(1.4 \pm 0.3) \times 10^{-13}$	0.56 ± 0.02	4.7 × 1014	The same as D	V_{Ga} and V_{Ga}			
δ	–	–	–	The same as F	V_{Ga} and V_{Ga}			

Fig. 10 Frequency response, f, of identified deep levels vs. temperature, T, for the Au/Pd/Ti–SiO$_2$-(n) GaAs structure (dashed lines, range of frequency measurement)

Fig. 11 τ and τ interface states time constants vs. gate voltage, $U_{G \dagger}$, at selected temperatures, obtained from impedance spectroscopy (open symbols) and ICTS data (filled symbols), respectively, for the Au/Pd/Ti–SiO$_2$-(n) GaAs structure
obtained from ICTS data with the time constants calculated from impedance spectroscopy (τ_1 in Fig. 4), as shown in Fig. 11. The values of τ_1 have been determined using the Q_1, n_1, and R_1 parameters obtained at 360 K and 380 K. At these temperatures, the contribution of EL2 trap to the measured MIS capacitance and conductance spectra was separated in the CPE2-R2 branch of the equivalent circuit. The significant difference of two orders of magnitude between the compared time constants suggests that τ_1 (of CPE1) is not a parameter describing the processes evoked by interface states, as it was previously interpreted, but rather, an effective parameter which characterize the complex contributions of electron processes from both the EL3 trap and interface states. In fact, it means that the CPE1, with $n_1 = 0.55–0.65$, is an effect of the superposition of electron processes evoked by interface states and deep levels. In this case, the Q_1 and n_1, and calculated on their basis τ_1, are the parameters characterizing these processes together.

In general, the results showed that the constant phase elements in equivalent circuits of MIS systems with large frequency dispersions of electrical characteristics can represent by more than one electron process. Therefore, the use of single impedance spectroscopy for characterizing such systems can lead to incomplete information regarding the analyzed phenomena.

4 Conclusions

The aim of this study was to identify the origin of constant phase elements in equivalent circuits of Au/Pd/Ti–SiO$_2$-(n) GaAs structures. It has been shown that the frequency behavior of the capacitance and normalized conductance of the structure, measured over a wide range of temperatures and gate voltages, can be very well reproduced by an equivalent circuit with CPE1, with $n_1 = 0.55–0.65$, at all temperature range, and with the addition of CPE2, with $n_2 = 0.92$, at some (higher) temperatures. These elements, connected in series with resistances, R_1 and R_2, determine the characteristic time constants of the electron processes (τ_1 and τ_2), leading to the frequency dispersion of measured capacitance and conductance. Based on their gate voltage dependence, τ_1 seems to be connected to the electron processes evoked by insulator-GaAs interface states, whereas τ_2 is attributed to GaAs deep levels. The deconvolution of the complex ICTS and DLTS spectra revealed signals from five deep levels and interface states. Based on the activation energy and capture cross sections of these levels, it was associated with point defects typical for GaAs, including EL2, EL3, EL5, EL6, and EL9. Furthermore, the deep level represented by the CPE2-R2 branch in the equivalent circuit of the structure has been identified as EL2 traps. A discrepancy between the interface states time constants obtained from ICTS spectra and those obtained from impedance spectroscopy (τ_1) was observed, demonstrating that the CPE1, with $n_1 = 0.55–0.65$, represents not only interface states, but also the complex electron processes evoked by interface states and EL3 levels together. Finally, it was shown that constant phase elements in equivalent circuits of MIS-GaAs structures with large frequency dispersion of electrical characteristics can be the result of more than one electron process. In this case, the Q_1 and n_1 of CPE1 as well as τ_1 are the effective parameters characterizing these processes together.

Acknowledgements

We would like to acknowledge Prof. Regina Paszkiewicz, Prof. Karol Nitsch and PhD. Bogdan Paszkiewicz from Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology for their suggestions, scientific advice and structures fabrication. The work was partially funded by the research program BK-224/RMS-0/2012 from the Silesian University of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
References

1. S. Sommezoglu, S. Akin, High performance GaAs metal-insulator-semiconductor devices using TiO2 as insulator layer. Curr. Appl. Phys. 17, 1372–1377 (2017)
2. S. Kundu, A. Kumar, S. Banerjee, P. Banerji, Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer. Mater. Sci. Semicond. Proc. 15, 386–392 (2012)
3. P.S. Das, A. Biskwas, Investigations on electrical characteristics and reliability properties of MOS capacitors using HfAlOx on n-GaAs substrates. Microelectron. Reliab. 52, 112–117 (2012)
4. S. Kundu, Y. Anitha, S. Chakraborty, P. Banerji, Interface studies of high-k GaAs MOS capacitor by deep level transient spectroscopy. J. Vac. Sci. Technol. B 30, 051206 (8pp.) (2012)
5. R.B. Konda, C. White, D.T. Thomas, Q. Yang, A.K. Pradhan, Electrical characteristics of ZrO2/GaAs MOS capacitor fabricated by atomic layer deposition. J. Vac. Sci. Technol. A 31, 0415905 (6pp.) (2013)
6. L.S. Wang, J.P. Xu, S.Y. Zhu, Y. Huang, P.T. Lai, Improved interfacial and electrical properties of of GaAs metal-oxide-semiconductor capacitors with HfTiOON as gate dielectric and TaON as passivation interlayer. Appl. Phys. Lett. 103, 092901 (2013)
7. G.K. Dalapati, S. Chakraborty, C. Mahata, M.A. Bhuiyan, J. Dong, A. Iskander, S. Masudy-panah, S. Dinda, R.B. Yang, Atomic layer deposited Al2O3 on high quality p-type epitaxial-GaAs/Ge for advanced III-V/Ge based device application. Mater. Lett. 156–159, 105–108 (2015)
8. A. Turut, A. Karabulut, K. Ejderha, C. Biyikli, Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Proc. 39, 400–407 (2015)
9. Y. Safak-Asar, T. Asar, S. Altindal, S. Ozelik, Investigation of dielectric relaxation and ac conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(110) Schottky barrier diodes. J. Alloys Compd. 628, 442–449 (2015)
10. G.S. Guclu, A.F. Ozdemir, A. Kokce, S. Altindal, Frequency and voltage—dependent dielectric properties and ac electrical conductivity of (Au/Ti)/Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys. Pol. A 130(1), 325–330 (2016)
11. N. Hamdouli, L. Beji, Electrical characterization and dielectric impedance of Au/n-CdS/p-porous GaAs/p++-GaAs thin film structures. J. Appl. Phys. 12, 185703-1-185703(8 pp.) (2017)
12. A. Turut, A. Karabulut, E. Efeoglu, Electrical characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs Mis structures over a wide measurement temperature. J. Optoelectron. Adv. Mater. 19, 424–433 (2017)
13. A. Karabulut, A. Turut, S. Karatas, The electrical and dielectric properties of Au/Ti/HfO2 n-GaAs structures. J. Mol. Struct. 1157, 513–518 (2018)
14. M. Benhaliba, Ac conductivity and impedance spectroscopy and dielectric response of MgPc/GaAs organic hetrojunction for solar energy application. Phys. B 578, 411782 (2020)
15. A. Karabulut, Barrier height modification in Au/Ti/n-GaAs devices with HfO2 interfacial layer formed by atomic layer deposition. Bull. Mat. Sci. (2019). https://doi.org/10.1007/s12034-018-1696-x
16. H. Hasegawa, M. Akazawa, Surface passivation technology for III-V semiconductor nanoelectronics. Appl. Surf. Sci. 255, 628–632 (2008)
17. H. Hasegawa, M. Akazawa, Interface models and processing technologies for surface passivation and interface control in III-V semiconductor nanoelectronics. Appl. Surf. Sci. 254, 8005–8015 (2008)
18. H. Hasegawa, M. Akazawa, A. Domanowska, B. Adamowicz, Surface passivation of III-V semiconductors for future CMOS devices—past research, present status and key issues for future. Appl. Surf. Sci. 256, 5698–5707 (2010)
19. E.H. Nicollian, J.R. Brews, MOS (Metal-Oxide-Semiconductor) Physics and Technology (Wiley, New Jersey, 2003)
20. G. Brammertz, H.C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W.E. Wang, M. Caymax, M. Meuris, M. Heyns, Capacitance-voltage characterization of GaAs-Al2O3 interfaces. Appl. Phys. Lett. 93, 183504 (2008)
21. K. Martens, C.O. Chui, G. Brammertz, B.D. Jaeger, D. Kuzum, M. Meuris, M.M. Heyns, T. Krishnamohan, K. Sarawat, H.E. Meas, G. Groeseneken, On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor surfaces. IEEE Trans. Electron. Dev. 55, 547–556 (2008)
22. K. Martens, W.F. Wang, A. Dimoulas, G. Borghs, M. Meuris, G. Groeseneken, H.E. Meas, Determining weak Fermi-level pinning in MOS devices by conductance and capacitance analysis and application to GaAs MOS devices. Solid State Electron. 51, 1101–1108 (2007)
23. C.W. Cheng, G. Apostolopoulos, E.A. Fitzgerald, The effect of interface processing on the distribution of interfacial defect states and C-V characteristics of III-V metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 109, 023714 (2011)

This licence, visit http://creativecommons.org/licenses/by/4.0/.
24. T.M. Nahir, in Impedance Spectroscopy Theory, Experiment, and Applications, ed by E. Borsoukov, J. Ross Macdonald. (Wiley, Hoboken, 2005)
25. S. Kochowski, K. Nitsch, Description of the frequency behaviour of metal-SiO$_2$-GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films 415, 133–137 (2002)
26. S. Kochowski, K. Nitsch, B. Paszkiewicz, R. Paszkiewicz, Two constant phase element behaviour of the admittance characteristics of GaAs metal-insulator-semiconductor structure with deep traps. Thin Solid Films 444, 208–214 (2003)
27. S. Kochowski, K. Nitsch, B. Paszkiewicz, R. Paszkiewicz, M. Szydłowski, Studies of GaAs metal-insulator-semiconductor structures by the admittance spectroscopy method. Appl. Surf. Sci. 235, 389–394 (2004)
28. S. Kochowski, K. Nitsch, B. Paszkiewicz, R. Paszkiewicz, Characterization of the interface and bulk phenomena in metal-SiO$_2$-GaAs structure by analysis of the equivalent circuit parameters at different temperatures. Thin Solid Films 467, 190–196 (2004)
29. S. Kochowski, K. Nitsch, R. Paszkiewicz, Electrical properties of SiO$_2$-(n) GaAs interface on the basis of measurements of MIS structure capacitance and conductance. Thin Solid Films 348, 180–187 (1999)
30. B. Paszkiewicz, Impedance spectroscopy analysis of AlGaInN/GaN HFET structures. J. Cryst. Growth 230, 590–595 (2001)
31. M. Donahue, B. Lubbers, M. Kittler, P. Mai, A. Schober, Impedance characterization of AlGaInN/GaN Schottky diodes with metal contacts. Appl. Phys. Lett. 102, 141607 (2013)
32. G. Friesen, M.E. Ozsar, E.D. Dunlop, Impedance model for CdTe solar cells exhibiting constant phase element behaviour. Thin Solid Films 361, 303–308 (2000)
33. M. Sugiyama, M. Hajashi, Ch Yamazaki, N.B. Hamidon, Y. Hirose, M. Itagaki, Application of impedance spectroscopy to investigate the electrical properties around the pn interface of Cu(In, Ga)S$_2$ solar cells. Thin Solid Films 535, 287–290 (2013)
34. M. Sugiyama, H. Sakakura, S.-W. Chang, M. Itagaki, Investigation of sputtering damage around pn interfaces of Cu(In, Ga)Se$_2$ solar cells by impedance spectroscopy. Electrochim. Acta 131, 236–239 (2014)
35. H. Sakakura, M. Itagaki, M. Sugiyama, Estimation of defect activation energy around pn interfaces of Cu(In, Ga)Se$_2$ solar cells using impedance spectroscopy. Jpn. J. Appl. Phys. 55, 012301 (2016)
36. E. Kask, J. Krustok, S. Giraldo, M. Neuschitzer, S. Lopez-Marino, E. Saucedo, Temperature dependent electrical characterization of thin films Cu$_2$ZnSnSe$_4$ solar cells. J. Phys. D 49, 085101 (2016)
37. S. Huseyn, S. Hidenori, K. Daisuke, I. Masayuki, S. Mutsumi, Quantification of sputtering damage during NiO film deposition on Si/SiO$_2$ substrate using electrochemical impedance spectroscopy. Thin Solid Films 592, 150–154 (2015)
38. S. Kochowski, L. Drewniak, K. Nitsch, B. Paszkiewicz, R. Paszkiewicz, Analysis of MIS equivalent circuit of Au/Pd/Ti-SiO$_2$-GaAs structure based on DLTS measurements. Mater. Sci. Pol. 31(3), 446–453 (2015)
39. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3013–3032 (1974)
40. P. Bogdanski, R. Carin, O. Gardais, J. Vizot, Characterisation de structures MIS (Al-Si$_3$N$_4$-GaAs) par differentes methodes capacitives. Phys. Status Solidi (a) 80, 185–193 (1983)
41. F. Murray, R. Carin, P. Bogdanski, Determination of high-density interface state parameters in metal-insulator-semiconductor structures by deep-level transient spectroscopy. J. Appl. Phys. 60(10), 3592–3598 (1986)
42. E. Yamaguchi, Isothermal capacitance transient spectroscopy. Jpn. J. Appl. Phys. 21, 1628–1632 (1982)
43. G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 176, 275–295 (1984)
44. K.M. Brunson, D. Sands, C.B. Thomas, H.S. Reehal, The contribution of bulk states to the ac conductance of metal-insulator-semiconductor diodes. J. Appl. Phys. 62, 185–189 (1987)
45. H. Hasegawa, T. Sawada, On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible origin of interface states. Thin Solid Films 103, 119–130 (1983)
46. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1990)
47. SULA Technologies Deep Level Transient Spectrometer, User Manual, (2004)
48. J.H. Zhao, T.E. Schlesinger, A.G. Milnes, Determination of capture cross sections of traps by deep level transient spectroscopy of semiconductors. J. Appl. Phys. 62, 2865–2870 (1987)
49. D. Cavalcoli, A. Cavallini, E. Gombia, Anomalous temperature dependence of deep-level-transient spectroscopy peak amplitude. Phys. Rev. B 56, 14890–14892 (1997)
50. G.M. Martin, A. Mitonneau, A. Mircea, Electron traps in bulk and epitaxial GaAs crystals. Electron. Lett. 13, 191–193 (1977)
51. H. Shiraki, Y. Tokuda, K. Sassa, Bistable behaviour of medium-deep center related to EL5 and EL6 in n-type bulk GaAs. J. Appl. Phys. 84, 3167–3174 (1998)
52. N.P. Khuchua, L.V. Khvedelidze, M.G. Tigishvili, N.B. Gorev, E.N. Privalov, I.F. Kodzhespirova, Deep-level effects in GaAs microelectronics: a review. Russ. Microelectron. 32, 257–274 (2003)

53. D.C. Look, Z.Q. Fang, Simple measurement of 300K electron capture cross section for EL2 in GaAs. J. Appl. Phys. 80, 3590–3591 (1996)

54. J.C. Bourgoin, T. Neffati, The energy level of the EL2 defects in GaAs. Solid State Electron. 43, 153–158 (1999)

55. E.F. Schubert, Doping in III-V Semiconductors (Cambridge University Press, Cambridge, 2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.