PARTICLES AND FIELDS

Determination of the number of ψ' events at BESIII

To cite this article: M. Ablikim et al 2013 Chinese Phys. C 37 063001

View the article online for updates and enhancements.

Related content

- Determination of the number of J'/ψ' events with J'/ψ' inclusive decays
 M. Ablikim, M. N. Achasov, D. J. Ambrose et al.

- Measurement of the integrated luminosities of the data taken by BESIII at $\sqrt{s} = 3.650$ and 3.773 GeV
 M. Ablikim, M. N. Achasov, O. Albayrak et al.

- Observation of a pp mass threshold enhancement in J'/pp decay
 M. Ablikim, M. N. Achasov, L. An et al.

Recent citations

- Study of J'/ψ' and (3686) decays to J/ψ'
 M. Ablikim et al

- Search for (3686)/$c(1405)$/$c0$ +0
 M. Ablikim et al

- Observation of $c2$ and $c0,2$
 M. Ablikim et al
Determination of the number of ψ' events at BESIII*

M. Ablikim(麦迪娜)1, M. N. Achasov6, O. Albayrak3, D. J. Ambrose39, F. F. An(安芬芳)1, Q. An(安琪)40
J. Z. Bai(白景芝)1, Y. Ban(班勇)26, J. Becker2, J. V. Bennett16, N. Berger1, M. Bertani17,4
J. M. Bian(边学梅)38, E. Boger19,4, O. Bondarenko20, I. Boyko19, R. A. Briere6, V. Bytev19, X. Cai(蔡菲)1
O. Cakir34, A. Calcaterra7,4, G. F. Cao(曹国富)1, S. A. Cotin34, J. F. Chang(常剑帆)1, G. Chelkova19,9
G. Chen(陈刚)1, H. S. Chen(陈生)1, J. C. Chen(陈家华)1, M. L. Chen(陈丽丽)1, S. J. Chen(陈申见)24
X. Chen(陈哲)26, Y. B. Chen(陈元柏)1, H. P. Cheng(程和平)24, Y. P. Chu(初元萍)1, D. Cronin-Hennessy38
H. L. Dai(代洪涛)1, J. Dai(代建平)1, D. Dedovich19, Z. Y. Deng(邓子艳)1, A. Denig18, I. Denysenko19,6
M.Destefanis43,4,43C W. M. Ding(丁伟民)28, Y. Ding(丁勇)22, L. Y. Dong(董凌原)1, M. Y. Dong(董明义)1
S. X. Du(杜书先)36, J. Fang(方健)1, S. S. Fang(房双世)1, L. Fava43,43C, C. Q. Feng(封常青)40, R. B. Ferroli17,4
P. Friedel2, C. D. Fu(傅俊栋)1, Y. Gao(高野宁)33, C. Geng(耿辉)40, K. Goetz7, W. X. Gong(龚斌文)1
W. Gradl18, M. Greco44,4,43C, M. H. Gu(顾曼曦)1, Y. T. Gu(顾润)1, Y. H. Guan(管颖慧)36
A. Q. Guo(郭爱强)25, L. B. Guo(郭立波)23, T. Guo(郭敏)23, Y. P. Guo(郭玉萍)25, Y. L. Han(韩艳良)1
F. A. Harriss37, K. L. He(何康林)1, M. He(何苗)1, Z. Y. He(何振亚)25, T. Held2, Y. K. Heng(何家民)1
Z. L. Hou(侯治龙)1, C. Hu(胡琛)23, H. M. Hu(胡海明)1, J. F. Hu(胡朝峰)35, T. Hu(胡涛)1
G. M. Huang(黄光明)1, G. S. Huang(黄光顺)40, J. S. Huang(黄庆)12, Huang(黄忠)1, X. T. Huang(黄庆波)28
Y. Huang(黄勇)24, Y. P. Huang(黄燕萍)1, T. Hussain42, C. S. Ji(姬长胜)40, Q. Ji(姬全)1, P. Q. Ji(姬乾平)25
X. B. Ji(季晓斌)1, X. L. Ji(季筱琳)1, L. L. Jiang(姜曼丽)1, X. S. Jiang(江晓山)1, J. B. Jiao(焦健文)28
Z. Jiao(焦辉)14, D. P. Jin(金大鹏)1, S. Jin(金盛)1, F. F. Jing(景凡)13, N. Kalantaryarastanaki20
M. Kavatsyzyn20, B. Kopf2, M. Kornicer37, W. Kuehn25, W. Lai(赖茵)1, J. S. Lange35, M. Levy2
C. H. Li(李春花)1, Cheng Li(李澄)40, Cui Li(李春)40, D. M. Li(李德民)46, F. Li(李飞)1, G. Li(李刚)1
H. B. Li(李海波)1, J. C. Li(李家才)1, K. Li(李康)10, Lei Li(李蕾)1, Q. J. Li(李秋菊)1, S. L. Li(李莉)1
W. D. Li(李卫东)1, W. G. Li(李卫国)1, X. L. Li(李晓玲)28, X. N. Li(李小男)1, X. Q. Li(李学潜)25
X. R. Li(李秀荣)37, Z. B. Li(李志平)12, H. Liang(梁戈)40, Y. F. Liang(梁勇)30, Y. T. Liang(梁翼飞)15
G. R. Liao(廖广瑞)33, X. T. Liao(廖小涛)1, D. Lin(林)11, B. J. Liu(刘北江)1, C. L. Liu3, C. X. Liu(刘秀春)1
F. H. Liu(刘福虎)29, Fang Liu(刘芳)1, Fei Liu(刘峰)1, H. Liu(刘虎)1, H. B. Liu(刘宏邦)9, H. H. Liu(刘慧)13
H. M. Liu(刘怀民)1, H. W. Liu(刘红薇)1, J. P. Liu(刘磐)44, K. Liu(刘凯)33, K. Y. Liu(刘勇辉)22
Kai Liu(刘凯)36, P. L. Liu(刘为耕)28, Q. Liu(刘倩)36, S. B. Liu(刘国荣)40, X. Liu(刘翔)21, Y. B. Liu(吕玉斌)25
Z. A. Liu(刘振安)1, Zhiqiang Liu(刘志强)1, Zhiqiang Liu(刘智强)1, H. Loechner20, G. R. Lu(鲁公儒)12
H. J. Lu(吕海江)14, J. G. Lu(吕宏伟)1, Q. W. Lu(吕晓睿)29, X. R. Lu(吕晓睿)36, Y. P. Lu(吕云鹏)1
C. L. Luo(罗成林)23, M. X. Luo(罗民兴)45, T. Luo27, X. L. Luo(罗小兰)1, M. Lv(吕蒙)1, C. L. Ma(马长利)36
F. C. Ma(马风才)22, H. L. Ma(马海龙)1, Q. M. Ma(马秋梅)3, S. Ma(马斯)1, T. Ma(马天)1, X. Y. Ma(马晓妍)1
F. E. Maas11, M. Maggiora43,43C, Q. A. Malik42, Y. J. Mao(毛亚军)26, Z. P. Mao(毛振彪)1
J. G. Messchendorp20, J. Min(闵建)1, T. J. Min(闵天觉)1, R. E. Mitchell16, X. H. Mo(毛晓虎)1

Received 29 September 2012, Revised 9 January 2013

*Supported by Ministry of Science and Technology of China (2009CB825000), National Natural Science Foundation of China (NSFC) (10625524, 10821063, 10825524, 10835001, 10935007, 10975143, 10979058), Joint Funds of the National Natural Science Foundation of China (11079008, 11179007), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-09ER46882, DE-FG02-09ER40823), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

©2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd
Introduction

In 2009, the world’s largest ψ' sample to date was collected at BESIII, allowing more extensive and precise studies of ψ' decays. The number of ψ' events, $N_{\psi'}$, is important in all ψ' analyses, including studies both of the direct decays of the ψ', as well as its daughters, χ_{cJ}, h_c, and η_c. The precision of $N_{\psi'}$ will directly affect the precision of all these measurements.

In this paper, we determine $N_{\psi'}$ with ψ' → inclusive hadrons, whose branching ratio is known rather precisely, $(97.85\pm0.13)\%$ [1]. Also, a large off-resonance continuum data sample at $E_{cm} = 3.650$ GeV was collected. These events are very similar to the continuum background under the ψ' peak. Since the energy difference is very small, we can use the off-resonance data to estimate this background.

BEPCII is a double-ring e^+e^- collider designed to provide e^+e^- interactions with a peak luminosity of $1.04\times(1.00\pm0.81\%)\times10^{36}$ cm$^{-2}$s$^{-1}$ at a beam current of 0.93 A. The cylindrical core of the BESIII detector consists of a helium-based main drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance for charged particles and photons is 93% over 4π stereo angle, and the charged-particle momentum and photon energy resolutions at 1 GeV are 0.5% and 2.5%, respectively.
The BESIII detector is modeled with a Monte Carlo (MC) simulation based on GEANT [2, 3]. For the simulation of inclusive ψ′ decays, we use the EVTGEN generator [4]. Known ψ′ decay channels are generated according to branching ratios in the PDG [1]; the remaining unknown decays are generated by the LUNDCHARM model [5]. An MC generated event is mixed with a random triggered event recorded in data taking to consider the possible background contamination such as beam-related background, cosmic rays, as well as the electronic noise and hot wires.

2 Event selection

There are many types of events in the data collected at the ψ′ energy point, including ψ′ → hadrons and lepton pairs (e+e−, μ+μ−, and τ+τ−), radiative returns to the J/ψ, and J/ψ decays from the extended tail of the J/ψ Breit-Wigner distribution. In addition, there are non-resonance (QED) processes, which make up the continuum background, including e+e− → γ → hadrons, lepton pairs, and e+e− → e+e− +X (X=hadrons, lepton pairs). Non-collision events include cosmic rays, beam-related background, and electronic noise. The signal channel is the process ψ′ → hadrons. The data collected at the off-resonance energy include all of the above except ψ′ decays.

Event selection includes track level selection and event level selection. At the track level, good charged tracks are required to pass within 1 cm of the beam line in the plane perpendicular to the beam and within ±15 cm from the Interaction Point (IP) in the beam direction. Photon candidate showers reconstructed from the EMC barrel region (|cosθ| < 0.8) must have a minimum energy of 25 MeV, while those in the end-caps (0.86 < |cosθ| < 0.92) must have at least 50 MeV. The showers in the angular range between the barrel and end-cap are poorly reconstructed and excluded from the analysis. Requirements on the EMC cluster timing are applied to suppress electronic noise and energy deposits unrelated to the event.

At the event level, at least one good charged track is required. If the number of good charged tracks is larger than 2, i.e., Ngood > 2, no additional selection is needed. If Ngood = 2, where the Bhabha and dimuon events are dominant backgrounds, the momentum of each track is required to be less than 1.7 GeV/c, and the opening angle between the two tracks is required to be less than 176° to suppress these backgrounds. Figs. 1(a) and (b) show scatter plots of the momentum of one track versus that of another for MC simulated Bhabha events and inclusive MC events with two charged tracks, respectively. Figs. 2(a) and (b) show the opening angle distributions of MC simulated Bhabha events and inclusive MC events with two charged tracks, respectively. In addition, Evisible/Ecm > 0.4 is required to suppress low energy background (LEB), comprised mostly of e+e− → e+e− +X and double ISR events (e+e− → γISRγISRX). Here, Evisible denotes the visible energy which is defined as the energy sum of all charged tracks (calculated with the track momentum and assuming a π± mass) and neutral showers, and Ecm denotes the center-of-mass energy. Fig. 3(a) shows the Evisible distribution for data and inclusive MC events with two charged tracks. The excess in data at low energy is from the LEB.

If Ngood = 1, at least two additional photons are required in an event. From all photon pair combinations, the combination whose invariant mass, Mγγ, is closest to the π0 mass is selected, and |Mγγ−Mπ0| < 0.015 GeV/c² is required. Evisible/Ecm > 0.4 is also required to suppress
Fig. 2. The distribution of angle between tracks. (a) For MC simulated Bhabha events, the arrow shows the angle requirement used to remove most Bhabha events; (b) For inclusive MC events with two charged tracks, the arrow shows the angle requirement used to remove most Bhabha and $e^+e^-\rightarrow\mu^+\mu^-$ events.

Fig. 3. The $E_{\text{visible}}/E_{\text{cm}}$ distribution normalized to $E_{\text{visible}}/E_{\text{cm}}>0.40$. Dots with error bars are data; the histogram is MC simulation (a) For $N_{\text{good}}=2$ events; (b) For $N_{\text{good}}=1$ events.

Fig. 4. (a) The $\gamma\gamma$ invariant mass ($M_{\gamma\gamma}$) distribution in the π^0 mass region for $N_{\text{good}}=1$ events. The events in the region of $0.11 \text{ GeV}/c^2 < M_{\gamma\gamma} < 0.15 \text{ GeV}/c^2$ are taken as π^0 candidates; (b) The distribution of number of π^0 for $N_{\text{good}}=1$ events. Dots with error bars are data while the histogram is MC simulation.

The average Z-direction vertex for an event is defined as:

$$\bar{V}_Z = \frac{\sum_{i=1}^{N_{\text{good}}} V_i}{N_{\text{good}}}$$

where V_i is the distance along the beam direction of the
point of closest approach of a track to the IP. Fig. 5(a) shows the \bar{V}_Z distribution for ψ' data after the above selection. Events satisfying $|\bar{V}_Z|<4.0$ cm are taken as signal, while events in the sideband region 6.0 cm$<|\bar{V}_Z|<10.0$ cm are taken as non-collision background events. The number of observed hadronic events (N_{obs}) is determined by

$$N_{\text{obs}} = N_{\text{signal}} - N_{\text{sideband}}.$$

(1)

Another method to determine the number of hadronic events (described below) is to fit the average Z-vertex with a double Gaussian to describe the signal and a polynomial to describe the non-collision events. This method is taken as cross check and to determine the systematic uncertainty.

$$f = \frac{L_{\psi'}}{L_{3.650}} \frac{3.650^2}{3.686^2} = 3.677,$$

(3)

where, $L_{\psi'}$ and $L_{3.650}$ are the integrated luminosities for ψ' data and 3.650 GeV data, respectively.

The contributions from radiative returns to J/ψ and J/ψ' decays from the extended tail of the Breit-Wigner are very similar at the ψ' peak and off-resonance energy due to the small energy difference. They are estimated to be 1.11 and 1.03 nb at the ψ' peak and the off-resonance energy point, respectively, and according to MC simulation, the efficiencies for the known continuum processes at the two energy points are also similar. Therefore, the off-resonance data can be employed to subtract both the continuum QED and J/ψ decay backgrounds using a scaling factor, f, determined from the integrated luminosity multiplied by a factor of $1/s$ ($s=E_{\text{cm}}^2$) to account for the energy dependence of the cross-section.

3 Background subtraction

In principle, the number of QED events can be estimated from:

$$N_{\text{QED}} = \mathcal{L} \sigma \epsilon,$$

(2)

where \mathcal{L} is the luminosity, and σ and ϵ are the cross-section and efficiency, respectively. σ is usually obtained from theoretical prediction, and ϵ is determined from MC simulation.

However in this analysis, we use the large sample of off-resonance data collected at 3.650 GeV to estimate the continuum background. The remained events, after imposing the same selection criteria in the off-resonance data, also form a peak in the \bar{V}_Z distribution, as shown in Fig. 5(b). The same signal and sideband regions are used as for the ψ' data to determine the collision and non collision events. With this method, the continuum background subtraction is independent of MC simulation, and little systematic bias is introduced.

The contributions from radiative returns to J/ψ and J/ψ' decays from the extended tail of the Breit-Wigner are very similar at the ψ' peak and off-resonance energy due to the small energy difference. They are estimated to be 1.11 and 1.03 nb at the ψ' peak and the off-resonance energy point, respectively, and according to MC simulation, the efficiencies for the known continuum processes at the two energy points are also similar. Therefore, the off-resonance data can be employed to subtract both the continuum QED and J/ψ decay backgrounds using a scaling factor, f, determined from the integrated luminosity multiplied by a factor of $1/s$ ($s=E_{\text{cm}}^2$) to account for the energy dependence of the cross-section.

$$f = \frac{L_{\psi'}}{L_{3.650}} \frac{3.650^2}{3.686^2} = 3.677,$$

(3)

where, $L_{\psi'}$ and $L_{3.650}$ are the integrated luminosities for ψ' data and 3.650 GeV data, respectively.

The luminosities at the two different energy points are determined from $e^+e^{-}\rightarrow\gamma\gamma$ events using the following track and event level selection criteria. At the track level, no good charged tracks and at least two showers are required. The energy for the most energetic shower should be higher than $0.7\times E_{\text{beam}}$ while the second most energetic shower should be larger than $0.4\times E_{\text{beam}}$, where E_{beam} is the beam energy. At the event level, the two most energetic showers in the ψ' rest frame should be back to back, and their phi angles must satisfy $178^\circ<|\phi_1-\phi_2|<182.0^\circ$. The luminosity systematic errors nearly cancel in calculating the scaling factor due to small energy difference between these two energy points. The f factor can also be obtained using luminosities determined with Bhabha events. It is found to be 3.685.

Also of concern is the LEB remaining in the ψ' events after the $E_{\text{visible}}/E_{\text{cm}}$ requirement. In order to test if the continuum background subtraction is also valid for these events, candidate LEB events are selected by requiring $E_{\text{visible}}/E_{\text{cm}} < 0.35$ where there are few QED events expected. Figs. 6(a) and (b) show the comparison of $E_{\text{visible}}/E_{\text{cm}}$ between peak and off-resonance data for $N_{\text{good}} = 1$ and $N_{\text{good}} = 2$ events, respectively. The agreement between the two energy points is good for these events. The ratios of the numbers of peak and off-
resonance events for \(N_{\text{good}} = 1 \) and \(N_{\text{good}} = 2 \) are 3.3752 and 3.652, respectively. Compared with the scaling factor obtained from luminosity normalization in Eq. (3), a difference of about 10% is found for \(N_{\text{good}} = 1 \) while there is almost no difference for \(N_{\text{good}} = 2 \) events. These differences will be taken as systematic errors.

The small numbers of events from \(\psi' \rightarrow e^+e^- \), \(\mu^+\mu^- \), and \(\tau^+\tau^- \) in data that pass our selection do not need to be explicitly subtracted since \(\psi' \rightarrow \text{lepton} \) events are included in the inclusive MC and those passing the selection criteria will contribute to the MC determined efficiency, so that their contribution cancels.

Table 1 shows the number of observed hadronic events for different multiplicity requirements for \(\psi' \) and off-resonance data. Figs. 7, 8, and 9 show the \(\cos \theta \), \(E_{\text{visible}} \), and charged-track multiplicity distributions after subtracting all backgrounds. In the comparison, QED background contribution has been subtracted from data.
4 Numerical result

The number of ψ' events is determined from

$$N_{\psi'} = \frac{N_{\text{obs,peak}} - f \cdot N_{\text{obs,off-resonance}}}{\epsilon},$$

(4)

where, $N_{\text{obs,peak}}$ is the number of hadronic events observed at the ψ' peak from Eq. (1), $N_{\text{obs,off-resonance}}$ is the number of hadronic events observed at the off-resonance energy point, $E_{cm}=3.650$ GeV, with the same selection criteria as those for peak data, and ϵ is the selection efficiency obtained from the inclusive ψ' MC sample, the branching fraction of $\psi'\rightarrow$ inclusive hadron is included in the efficiency. The relevant numbers are listed in Table 1 for different N_{good} selection requirements. The factor f is the scaling factor which has been introduced in Eq. (3). With these numbers, we obtain the numerical result for $N_{\psi'}$ listed in Table 2 for different choices of N_{good}. We take the result for $N_{\text{good}} \geq 1$ as the central value of our final result.

$N_{\text{good}} \geq 1$	$N_{\text{good}} \geq 2$	$N_{\text{good}} \geq 3$	$N_{\text{good}} \geq 4$	
ψ' data	106.928	102.791	81.158	63.063
off-resonance data	2.192	1.98	0.704	0.433
$\epsilon(\%)$	92.912	89.860	74.624	58.188

5 Systematic uncertainties

The systematic uncertainties include the uncertainties caused by tracking, the event start time (T_0), trigger efficiency, background contamination, the selection of the signal and sideband regions, etc.

5.1 Tracking

Generally, the tracking efficiency for MC events is higher than that of data according to various studies [6]. Assuming the average efficiency difference between data and MC is 1% per track, the effect can be measured by randomly tossing out 1% of MC simulated tracks. Only a difference of 0.03% on $N_{\psi'}$ is found for $N_{\text{good}} \geq 1$ events with and without this tracking efficiency change; $N_{\psi'}$ is not sensitive to the tracking efficiency.

5.2 Charged-track multiplicity

Figure 9 shows that the MC does not simulate the charged-track multiplicity very well. The uncertainty due to charged-track multiplicity simulation can be estimated by an unfolding method, which is described as follows. The generated true charged multiplicity in MC simulation is even, i.e., 0, 2, 4, 6, 8, ... The observed MC multiplicity distribution is obtained after simulation and event selection. For example, if the generated true multiplicity is 4, the observed multiplicities are 0, 1, 2, 3, 4 or higher with different probabilities. Therefore, an efficiency matrix, ϵ_{ij}, which describes the efficiency of an event generated with j charged tracks to be reconstructed with i charged tracks, is obtained from MC simulation. The distribution of the number of observed charged-track events in data, $N_{\text{obs, data}}$, is known. The true multiplicity distribution in data can be estimated from the observed multiplicity distribution in data and the efficiency matrix by minimizing the χ^2. The χ^2 is defined as

$$\chi^2 = \sum_{i=1}^{10} \left(\frac{N_{\text{obs, data}} - \sum_{j=0}^{10} \epsilon_{ij} \cdot N_j}{N_{\text{obs, data}}} \right)^2,$$

(5)

where the N_j $(j = 0, 2, 4, 6, 8, 10)$ describe the true multiplicity distribution in data and are taken as floating parameters in the fit. The simulation is only done up to a true multiplicity of 10, since there are few events at high multiplicity. The total true number of events in data can be obtained by summing all fitted N_j; it is 105.96×10^6 which is lower than the nominal value by 0.4%. We take this difference as the uncertainty due to the charged-track multiplicity distribution.

5.3 Momentum and opening angle

For $N_{\text{good}} = 2$ events, momentum and opening angle requirements are used to remove the huge number of Bhabha events. When the momentum requirement is changed from $P < 1.7$ GeV/c to $P < 1.55$ GeV/c, the corresponding $N_{\text{obs, peak}}$ for peak and off-resonance data, as well as the efficiency change, but the change in $N_{\psi'}$ is only 0.05%. When the angle requirement is changed from $\theta < 176^\circ$ to $\theta < 160^\circ$, the change in $N_{\psi'}$ is 0.01%. Therefore, the total uncertainty due to momentum and opening angle requirements is 0.05%. Figs. 10(a) and (b) show comparisons between data and MC simulations for momentum and opening angle distributions after subtracting backgrounds, respectively. In the comparison, QED background contribution has been subtracted from data.
5.4 LEB background contamination

$N_{\psi'}$ is insensitive to the visible energy requirement. The difference between a tight requirement, $E_{\text{visible}}/E_{\text{cm}} > 0.45$, and no requirement is only 0.1%. Conservatively, an uncertainty of 0.1% is assigned due to the background contamination.

5.5 Determination of number of hadronic events

Two methods are used to obtain N^{obs}. The first is to directly count the numbers of events in the signal and sideband regions; the second method is to fit the V_Z distribution with a double Gaussian for the signal and a polynomial for the background, as shown in Figs. 5(a) and (b). A difference of 0.28% is found between these two methods which is taken as the uncertainty due to the N^{obs} determination.

5.6 Vertex limit

When $V_z < 1$ cm is changed to $V_z < 2$ cm, $N_{\psi'}$ changes by 0.35%, while if $|V_Z| < 10$ cm is changed to $|V_Z| < 15$ cm, there is almost no change. Therefore, the difference of 0.35% is taken as the uncertainty from the vertex requirement.

5.7 Scaling factor

The scaling factor can be obtained for two different QED processes, $e^+e^- \rightarrow \gamma \gamma$ and $e^+e^- \rightarrow e^+e^-$. The corresponding results are 3.677 and 3.685. The difference on $N_{\psi'}$ due to the f factor can be calculated by $\Delta f \cdot N_{\gamma\gamma}^{\text{obs}}(3.650 \text{ GeV})/N_{\psi'} = (3.685 - 3.677) \times 1.92/106.41 = 0.016\%$, where 2.192 ($\times 10^6$) is the number of selected events for $N_{\text{good}} \geq 1$ in off-resonance data (see Table 1), and 106.41 ($\times 10^6$) is the measured total number of ψ'. This difference is taken as a systematic uncertainty.

5.8 Choice of sideband region

We take $|V_Z| < 4.0$ cm as the signal region and $6<|V_Z|<10$ cm as the sideband region. A difference of 0.45% in $N_{\psi'}$ is found by shifting the sideband region outward by 1.0 cm, which is about 1σ of the V_Z resolution, i.e., the sideband region is changed from 6 cm to 7 cm cm to 7 cm. We take this difference as the uncertainty caused by choice of the sideband region.

5.9 π^0 mass requirement

This requirement is only used for $N_{\text{good}} = 1$ events. $N_{\psi'}$ has a slight change of 0.11% when the mass window requirement is changed from $|M_{\gamma\gamma} - M_{\psi'}| < 0.015 \text{ GeV}/c^2$ to $|M_{\gamma\gamma} - M_{\psi'}| < 0.025 \text{ GeV}/c^2$; this difference is taken as the uncertainty due to π^0 mass requirement.

5.10 The cross section of $e^+e^- \rightarrow \tau^+\tau^-$

Since the off-resonance energy point is not very far from $\tau\tau$ threshold, $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ does not vary as $1/s$ between the off-resonance energy and the ψ' peak, as other QED processes. The difference between the observed and the cross section assuming a $1/s$ dependence causes a change of 0.17% in $N_{\psi'}$. This change is taken as a systematic uncertainty.

5.11 $B(\psi' \rightarrow X+J/\psi)$

The ψ' MC assumes $B(\psi' \rightarrow X+J/\psi) \approx 57\%$ from the PDG [1], while the CLEO experiment determined a branching ratio of 62% [7]. Using CLEO’s result, a new inclusive MC sample was generated. The corresponding efficiencies are 92.912%, 89.761%, 74.838% and 58.528% for $N_{\text{good}} \geq 1$, 2, 3 and 4, respectively. Compared with numbers in Table 1, the efficiency differences between these two MC samples are negligible.

5.12 Event start time determination

The Event Start Time (EST) algorithm is used to determine the common start time of the recorded tracks in an event. The efficiency of the EST determination affects the resolution of tracks from the tracking algorithm. These efficiencies for different charged tracks, e, μ, π, K, and p, and photons are studied with different control
samples for both data and inclusive MC events, for example, \(J/\psi \rightarrow \pi^+\pi^-\pi^0 \), \(\eta \), \(\pi^+\pi^-\pi^0 \), \(\eta \), \(J/\psi \rightarrow \gamma\chi_c2 \), etc. All comparisons indicate that the efficiencies of the EST determination are high for both track and event level (> 98%) selection, and the difference between data and MC simulated events is quite small (~0.1%). We take this difference as the uncertainty caused by the EST determination.

5.13 Trigger efficiency

The fraction of events with \(N_{\text{good}} \geq 2 \) is about 97%. The trigger efficiency for these events is close to 100.0% according to a study of the trigger efficiency [8]. For \(N_{\text{good}} = 1 \) events, an extra \(\pi^0 \) is required, and the hadron trigger efficiency for this channel is 98.7% [8]. Since the fraction of \(N_{\text{good}} = 1 \) events is only about 3%, the uncertainty caused by the trigger is negligible.

5.14 The missing 0-prong hadronic events

A detailed topology analysis is performed for \(N_{\text{good}} = 0 \) events in the inclusive MC sample. Most of these events come from known decay channels, such as \(\psi' \rightarrow X + J/\psi \) (\(X = \eta, \pi^0\pi^0 \)), \(\psi' \rightarrow \gamma\chi_c2 \), and \(\psi' \rightarrow e^+e^- \). The fraction of pure neutral events is less than 1.0%. For the known charged decay modes, the MC simulation works well according to many comparisons between data and MC simulation in Section 3. To investigate the pure neutral channels, the same selection criteria at the track level are used. The criteria at the event level include \(N_{\text{good}} = 0 \) and \(N_{\gamma} > 3 \). The latter requirement is used to suppress \(e^+e^- \rightarrow \gamma\gamma \) and beam-associated background events. The same selection criteria are imposed on the off-resonance data. Figs. 11(a) and (b) show the distribution of total energy in the EMC with \(N_{\text{good}} = 0 \) The dot-dashed line denotes the signal shape of \(\psi' \rightarrow \text{neutral channel} \), and the shaded region is the background shape from \(\psi' \) decay. (a) For \(\psi' \) data, the dashed line denotes the background shape from QED processes. (b) For inclusive MC events.

Table 3. The systematic uncertainty (%)

source	uncertainty
background contamination	0.10
\(N_{\text{obs.}} \) determination	0.28
choice of sideband region	0.45
vertex selection	0.35
momentum and opening angle	0.05
scaling factor (\(f \))	0.02
0-prong events	0.17
tracking	0.03
charged-track multiplicity	0.40
\(\sigma(e^+e^- \rightarrow \tau^+\tau^-) \)	0.17
\(B(\psi' \rightarrow X + J/\psi) \)	0.00
\(\pi^0 \) mass requirement	0.11
EST determination	0.10
trigger efficiency	negligible
\(B(\psi' \rightarrow \text{hadrons}) \)	0.13
total	0.81
been estimated. The possible imperfection from other MC modeling, in fact, can be reflected by tracking, charged-track multiplicity, and the missing of 0-prong events. The uncertainties caused by above sources have also been studied carefully. Therefore, it is not necessary to introduce an extra uncertainty due to MC modeling.

5.17 Total uncertainty

Table 3 lists all systematic errors. The total systematic uncertainty is determined by the quadratic sum of all uncertainties.

6 Summary

The number of \(\psi' \) events is determined using \(\psi' \rightarrow \) hadrons. The large off-resonance data sample at \(E_{cm} = 3.650 \) GeV is used to estimate the background under the \(\psi' \) peak. The number of \(\psi' \) events taken in 2009 is measured to be \((106.41 \pm 0.86) \times 10^6 \), where the error is systematic dominant and the statistical error is negligible.

The BES\textsc{iii} collaboration thanks the staff of BEPC\textsc{ii} and the computing center for their hard efforts.

References

1. Beringer J et al. (Particle Data Group). Phys. Rev. D, 2012, 86: 010001
2. Agostinelli S et al. (GEANT4 Collaboration). Nucl. Instrum. Methods A, 2003, 506: 250
3. Allison J et al. IEEE Trans. Nucl. Sci., 2006, 53: 270
4. PING R G et al. Chinese Physics C (HEP & NP), 2008, 32: 599
5. CHEN J C et al. Phys. Rev. D, 2005, 70: 011102(R)
6. Ablikim M et al. (BES\textsc{iii} collaboration). Phys. Lett. B, 2012, 710: 594
7. Mendez H et al. (CLEO collaboration). Phys. Rev. D, 2008, 78: 011102(R)
8. Berger N et al. Chinese Physics C (HEP & NP), 2010, 34: 1779