THE WEYL ALGEBRA IS COHERENT

EIVIND ERIKSEN

Abstract. In this paper, we show that the Weyl algebra $A_n(k)$ is a coherent ring for any field k and any integer $n \geq 1$.

1. Introduction

It is well-known that the ring $D = D(A)$ of k-linear differential operators on an affine k-algebra A is not Noetherian in general. For instance, D is not Noetherian when $A = k[x_1, x_2, \ldots, x_n]$ and $\text{char}(k) = p > 0$ or when $A = k[x, y, z]/(x^3 + y^3 + z^3)$ and $\text{char}(k) = 0$. In this paper, we prove that in the first of these cases, the ring $D = A_n(k)$, called the Weyl algebra, is a coherent ring. It is, as far as we know, an open question if D is coherent in the second case.

Over a coherent ring, the category of finitely presented (or coherent) modules is well-behaved. For instance, any finitely presented module has a free resolution (L_\bullet, d_\bullet) such that L_i has finite rank for all i. This suggests that it is possible to do homological algebra for coherent modules over coherent rings.

When D is a ring of differential operators, any (finite) system of linear differential operators corresponds to a finitely presented left D-module. This seems to suggest that finitely presented D-modules are interesting to study.

This work was inspired by the recent paper Bavula [1], where the author studies the Weyl algebra $D = A_n(k)$ in prime characteristic $p > 0$ and its holonomic modules, and (among other things) obtains an explicit classification of the finitely presented simple D-modules. Unfortunately, it turns out that these modules are not very interesting considered as differential systems. In fact, the finitely presented holonomic D-modules are the finitely presented D-modules of finite length, and it follows from Bavula’s results that these D-modules correspond to systems of linear differential equations of order zero.

2. The Weyl algebra is a coherent ring

We recall that a ring D is left (right) coherent if any of its finitely generated left (right) ideals is finitely presented, and that D is coherent if it is left and right coherent. Clearly, any ring that is either Noetherian or semi-hereditary is coherent. We refer to Bourbaki [2] and Glaz [4] for details on coherent rings.

Let k be any field, and let $A = k[x_1, x_2, \ldots, x_n]$ be the polynomial algebra in n variables over k for an integer $n \geq 1$. We define the n’th Weyl algebra over k to be the ring of k-linear differential operators on A in the sense of Grothendieck [5], and denote it by $A_n(k)$.
We consider the partial derivations \(\partial_i = \partial/\partial x_i \in \text{Der}_k(A) \) for \(1 \leq i \leq n \), and define their \textit{divided powers} \(\partial_i^{[r]} : A \to A \) to be the \(k \)-linear operators given by

\[
\partial_i^{[r]}(x^m) = \binom{r}{m} x^{m - r},
\]

for all multi-indices \(m = (m_1, m_2, \ldots, m_n) \in \mathbb{N}_0^n \) and for all integers \(r \geq 0 \), where we use multi-index notation

\[
x^m = x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n}
\]

and write \(m - re_i = (m_1, \ldots, m_i - r, \ldots, m_n) \). Notice that the binomial coefficients in \(k \) are the canonical images of the usual integer-valued binomial coefficients. The name divided powers come from the fact that \(r! \partial_i^{[r]} = \partial_i^r \).

Lemma 1. The Weyl algebra \(A_n(k) \) is the \(k \)-subalgebra of \(\text{End}_k(A) \) generated by \(\{x_1, x_2, \ldots, x_n\} \cup \{\partial_i^{[r]} : 1 \leq i \leq n, r \geq 1\} \), with relations

1. \([x_i, x_j] = 0 \)
2. \([\partial_i^{[r]}, \partial_j^{[s]}] = 0 \)
3. \(\partial_i^{[r]} \partial_j^{[s]} = (r+s) \partial_i^{[r+s]} \)
4. \([\partial_i^{[r]}, x_j] = \delta_{ij} \partial_i^{[r-1]} \)

for all \(1 \leq i, j \leq n \) and all \(r, s \geq 1 \).

Proof. This result is well-known; see for instance Bavula [1]. \(\square \)

If \(\text{char}(k) = 0 \), then the Weyl algebra \(A_n(k) \) is a finitely generated Noetherian ring, generated by \(\{x_1, \ldots, x_n, \partial_1, \ldots, \partial_n\} \). We will assume that \(\text{char}(k) = p > 0 \) in the rest of this paper.

We shall use the following construction, introduced in Section 3 of Chase [3]. Let \(A_r \subseteq A = k[x_1, \ldots, x_n] \) be the \(k \)-subalgebra generated by \(\{a^{p^r} : a \in A\} \) for all \(r \geq 0 \). This implies that \(A_r = k[x_1^{p^r}, x_2^{p^r}, \ldots, x_n^{p^r}] \); see Lemma 2.6 in Smith [6]. We obtain a descending chain

\[
A = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_r \supseteq \cdots
\]

of \(k \)-algebras such that \(A_i \) is a free \(A_j \)-module of finite rank for all \(i \leq j \). We define \(D_r = \text{End}_{A_r}(A) \subseteq \text{End}_k(A) \) for \(r \geq 0 \), and identify \(D_0 = \text{End}_A(A) \) with \(A \). By Lemma 3.3 in Chase [3], it follows that

\[
A = D_0 \subseteq D_1 \subseteq \cdots \subseteq D_r \subseteq \cdots \subseteq D = A_n(k)
\]

is an ascending chain of subalgebras of \(D = A_n(k) \) such that \(D = \bigcup_{r \geq 0} D_r \). In fact, we may identify \(D_r \) with the matrix ring \(M_q(A_r) \), where \(q = \text{rk}_{A_r}(A) \).

Theorem 2. Let \(k \) be a field of characteristic \(p > 0 \), and let \(n \geq 1 \) be an integer. Then the Weyl algebra \(A_n(k) \) is a coherent ring.

Proof. Using the construction and notation from Chase [3] mentioned above, we have that \(D = A_n(k) \) is a direct limit

\[
D = \lim_{r \to \infty} D_r
\]

We note that \(A_r \) is a finitely generated commutative \(k \)-algebra, and therefore a Noetherian ring. Since \(D_r \cong M_q(A_r) \) is a matrix ring with \(q = \text{rk}_{A_r}(A) \), it is clear that \(D_r \) is Morita equivalent to \(A_r \) and that \(D_r \) is a flat (left and right) \(D_s \)-module.
for all $r \geq s$; see also the proof of Lemma 3.4 in Chase [3] and Proposition 3.2 in Smith [6]. In particular, D_r is Noetherian and therefore coherent for all $r \geq 0$. Hence the results follows from the well-known fact that a flat direct limit of coherent rings is coherent; see for instance Exercise I.2.12 in Bourbaki [2].

\[\square\]

Remark 1. It is known that first Weyl algebra $A_1(k)$ has global dimension one when k is a field of characteristic $p > 0$, and this implies that $A_1(k)$ is semi-hereditary and therefore a coherent ring. However, when $n \geq 2$, the Weyl algebra $A_n(k)$ is not semi-hereditary.

References

[1] V. V. Bavula. Dimension, multiplicity, holonomic modules, and an analogue of the inequality of Bernstein for rings of differential operators in prime characteristic. *Represent. Theory*, 13:182–227, 2009.

[2] N. Bourbaki. *Eléments de mathématique. Fascicule XXVII. Algèbre commutative. Chapitre 1: Modules plats. Chapitre 2: Localisation*. Actualités Scientifiques et Industrielles, No. 1290. Herman, Paris, 1961.

[3] Stephen U. Chase. On the homological dimension of algebras of differential operators. *Comm. Algebra*, 1:351–363, 1974.

[4] Sarah Glaz. *Commutative coherent rings*, volume 1371 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1989.

[5] A. Grothendieck. *Eléments de géométrie algébrique*. IV. Étude locale des schémas et des morphismes de schémas IV. *Inst. Hautes Études Sci. Publ. Math.*, (32):361, 1967.

[6] S. P. Smith. The global homological dimension of the ring of differential operators on a non-singular variety over a field of positive characteristic. *J. Algebra*, 107(1):98–105, 1987.