Analysis of the mechanical behavior of spatially reinforced composites with open holes

E M Strungar1,*, D S. Lobanov1, E M Zubova1 and A V Babushkin1

1Perm National Research Polytechnic University, Centre of experimental mechanic, 29 Komsomolsky prospekt, Perm, Perm krai, Russia
E-mail: *cem.spaskova@mail.ru

Abstract. The paper deals with the experimental study of mechanical behavior and the common factors of deformation of structural composites in combined use of contactless optical video system and acoustic emission analysis and registration system. The experimental studies were conducted at the electromechanical testing system Instron 5989 in compliance with ASTM 5766 recommendations for the samples of spatially reinforced and fiber-laminated carbon fiber composites with open holes. The preform-based carbon plastic samples with spatially reinforced structure are obtained by 3D-weaving methods. The paper presents the results of mechanical strain tests of open-hole samples. The authors obtained stress and strain diagrams for carbon plastic of various structures and analyzed the evolution of non-homogeneous strain fields on the surface of 3D-reinforced composite samples of the studied structure. They observed the difference in mechanical behavior of spatially reinforced and fiber-laminated carbon fiber composites. The paper presents the images of the samples with the characteristic damages in the area of the opening. Using the acoustic emission signals recording data, the authors obtained the diagrams of dependence of cumulative power, which allowed to observe the diverse nature of damage accumulation for the studied groups of samples.

1. Introduction
The mechanical behavior of the laminated samples has been extensively studied since the date of their implementation in aviaspace industry in 1960s. The obvious disadvantage of the traditional polymer composite materials in the form of textolites and laminates is their relatively low inter-layer strength [1-4]. Today, to exclude this disadvantage, it is suggested to use the spatially reinforced fillers or 3D cloths [5]. The multilayer carbon voluminous cloths are used as a reinforcing material in carbon plastics operating under complex conditions of high-speed aerodynamic flow, vibration and high temperatures. The complexities of assessment of mechanical behavior of voluminous weaving composites related to the specific features of the structure, such as non-homogeneity and anisotropy occur even during the simplest tests (uniaxial tensile/compression, shear) [6].

Obtaining the extensive experimental information is of paramount importance for assessment of 3D composites destruction process [7-9]. The optical measurement of full displacement and strain field provides obtaining further qualitative calculation and experimental data. Using the grid method, Pierron etc. assessed the effect of the gap on distribution of deformations in point-loaded composite plate [10]. The paper [11] presents the measurements of strain fields during the tensile of open-hole composite samples using moiré interferometry. Nevertheless, these studies focus on
linear elastic behavior, they did not attempt to analyze the destruction process as such. Using the measurements of full field displacement and deformations to assess the process of deformations in composite materials, the digital image correlation method is a promising and developing method (DIC) [12,13]. Despite the fact that scientific literature has a great amount of works related to acoustic emission (AE) signals for various materials and at various types of loading, the emergence of new materials necessitates the expansion of experimental basis [22-24]. The behavior and the mechanisms of composite materials damage, that can be assessed based on deformation fields using DIC method, correlate with the data obtained using acoustic emission (AE) signals registration [14-21]. This study is devoted to mathematical peculiarities of the joint application of DIC method and AE signals registration for the samples of open-hole composite materials with spatially reinforced and laminated structure during tensile.

2. Equipment, method and material
This work was carried out in Perm National Research Polytechnic University using Unique Scientific Equipment «Complex of testing and diagnostic equipment for studying properties of structural and functional materials under complex thermomechanical loading».

Spatially reinforced coal plastic composite is selected as a material, epoxy resin is used as a filler. The authors performed a number of uniaxial tensile tests of composite samples with a round hole (concentrator) in the geometric center, test strip preforms are manufactured using 3D-weaving technology by orthogonal weaving method (A) and laminated preforms (B). The central holes of the samples were drilled using vertical drills.

The loading is implemented at the multipurpose electromechanical test system Instron 5989 (± 600 kN) according to ASTM D 5766 standard with the movable grip rate \(u'_0 = 2 \text{ mm/min} \). The recording of displacements and deformations on the surface of the samples was performed using the contactless optical video system Vic-3D and the digital images correlation (DIC) method. The load was registered by a 600 kN load cell. The measurement accuracy is no lower than 0.5% of the measured value.

The testing scheme (a) and the draft of the “open-hole” sample (b) are presented in the Figure 1. Videorecording of the deformation process was performed with Q-400 cameras with objectives Limess 2.0/28/0901. The shooting speed was 15 frames per second with the set cameras resolution of 4.0 MP. The total number of the tested samples was 10 per each group. To calculate the fields of longitudinal \((\varepsilon_{yy}) \), cross \((\varepsilon_{xx}) \) and shear deformations \((\varepsilon_{xy}) \), the authors used the finite strain tensor in the sense of Lagrange \(\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i} + u_{k,i}u_{k,j}) \). Here, the Oy axis is directed along the sample (along the tensile axis), the Ox axis – perpendicular to the load axis in the plain of the sample. To build the load diagrams, the authors used an additional module of the video system software “virtual extensometer”, where the principle of operation is based on tracking the mutual displacement between the two points of the sample surfaces according to the applied force.

![Figure 1](image-url)
Figure 1. Uniaxial tensile test of a sample with a hole (a), draft of a sample with a hole (b).
3. The experimental study results

According to ASTM D 5766, the following characteristics are determined from the test: the destructive load (kN); the tensile strength (MPa). To calculate the tensile strength, the area of the samples cross-section is calculated regardless the hole. The “load-displacement” diagrams (Figure 2) were built for each group of samples based on the test results, and the mechanical characteristics presented in the Table 2, were obtained in relative units.

№	Marking specimens	Destructive load	Tensile strength
1	A	1.00	1.00
2	B	0.37	0.38

Figure 2 presents load diagrams which are characteristic for each carbon plastic reinforcement scheme (A, B). The polymer composite samples with orthogonal (A) weaving scheme feature with higher values of the load limit in comparison with the laminated samples (B). The breaks related to structural failure are observed for the carbon plastic sample with orthogonal weaving scheme. Figure 2 presents the images of the samples with characteristic damages in the hole area.

![Figure 2](https://via.placeholder.com/500)

Figure 2. Diagram of loading of carbon plastic samples with orthogonal reinforcement scheme (A) and laminated one (B).

The assess the non-homogeneous strain fields obtained with the help of the video system, the Figure 3 and Figure 4 present the fields of cross, shear and longitudinal strain on the surface of A and B reinforcement type samples at various load levels.
The presented longitudinal strain fields at maximal load clearly demonstrate the place of the localization of the defects that result in complete destruction of the sample. The material deformation

Figure 3. Fields of cross ε_{xx} (a), shear ε_{xy} (b) and longitudinal strains ε_{yy} (c) on the surface of a specimen of reinforcement type A at a load of $P1 = 89$ kN, $P2 = 114.6$ kN, $P3 = 126.8$ kN.

Figure 4. Fields of cross ε_{xx} (a), shear ε_{xy} (b) and longitudinal strains ε_{yy} (c) on the surface of specimen B at a load of $P1 = 47.4$ kN, $P2 = 49.6$ kN, $P3 = 51$ kN.

The presented longitudinal strain fields at maximal load clearly demonstrate the place of the localization of the defects that result in complete destruction of the sample. The material deformation
process is non-homogeneous, the areas of localized damages in the form of longitudinal strips are recorded on the surface of the sample, that, in turn, reflect the material structure.

Besides, using the data obtained from the video system, the authors performed an assessment of longitudinal strain ε_{yy} distribution on the surface of the sample (Figure 5) along the line L drawn from the hole to the edge of the plate. The strain diagrams are built at certain strain levels of 10%, 40% and 70% of the threshold value σ_{max}.

The results obtained demonstrate that the behavior of the A-reinforced samples with the holes remains linearly elastic up to the very destruction. For B-reinforcement at higher tensile loads the strain peak appears at some distance from the hole. It has been observed that the higher the applied load is, the greater is the maximal strain value, and the strain variation increases.

The wide set of experimental data obtained using the contactless optical video system Vic-3D and the digital image correlation method, provides the assessment of composite material behavior all over the strain process. The data obtained provide the assessment of strain stages, the mechanisms of damages and localization of composite objects defects.

To study the acoustic-emission response of the samples studies, the authors used the acoustic emission measurement system AMSY-6 (VallenSysteme GmbH, Germany). AMSY-6 - it is a multi-channel AE-system of 8 parallel completely synchronized measurement channels. The analogue measurement chain of each channel includes: a piezoelectric AE sensor; pre-amplifier; acoustic signal preprocessor located in the body of the system; specialized software Vallen Systeme (Figure 6).
Figure 6. The composition of acoustic emission measurement system AMSY-6: piezoelectric AE sensor (a), pre-amplifier (b), AE signal preprocessor unit (c).

The broadband sensors AE105A with frequency range 450÷1150 kHz, AE-signal amplifiers AEP4 with amplification coefficient 34db were used in the work. A continuous mode with the true energy assessment and the absolute registration time recording was selected for AE signals recording. The test method includes the preparatory stage, when the AE sensors are installed on the surface of the experimental prototype in the working part with the help of a rubber and a high-vacuum silicone grease; Ae-sensor calibration using SuNielsen source or automatic calibration function; setting the necessary parameters in the software (discretization frequency, threshold value, digital filter parameters, duration limitation time, refitting time) for AE recording system. It should be noted that AE sensors are installed on the reverse side of the sample so that their fixtures does not come into the view of the optical systems shooting the front side of the sample (Figure 7). The power parameter was used in the work as an AE information parameter (1 eu = 1·10^{-18} J). The summing of this parameter provided the value of cumulative power (E_{cum}), reflecting the degree of defects accumulation in the material under the effect of the loading all over the test [19,21].

Figure 7. The photo of the front side (on the left) and rare side (on the right) of the sample with the AE sensors installed.

AE signal recording starts simultaneously with the beginning of the loading and is performed continuously all over the loading process. The obtained results processing is performed using the Vallen Systeme software with the help of VisualAE program.

The Figure 8 presents the typical diagrams of cumulative power dependence combined with load schedules for spatially reinforced (type A) and fiber-laminated (type B) composites. These groups of samples present the diverse nature of the damage accumulation for these groups of samples. Thus, in
A-samples (Figure 8, a) it is observed that the cumulative power growth occurs as early as at the initial load stage. After that, the growth slows down, however lasting up to the moment preceding the final destruction of the sample. For fiber-laminated composites (Figure 8, b), it could be observed that the cumulative power growth starts at approximately 60% of the maximal load. Besides, it should be noted that at the both diagrams the smooth growth of cumulative power is not accompanied with the breaks at the load diagram, and, vice versa, the drops at the load diagram is observed at step fast growth of cumulative power value.

![Graphs](image)

Figure 8. Graphs of the cumulative energy of acoustic emission signals versus displacement for open hole samples of type A (a) and type B (b).

4. **Conclusions**

Therefore, the work presents the results of experimental study of mechanical behavior and the regularities of deformation of composite open-hole samples with spatially reinforced and fiber-laminated structure during the tensile using digital image correlation methods and acoustic emission signals registration. The combined use of additional registration systems for composition materials samples provides obtaining a greater number of high-quality calculation-experiments data. The non-homogeneous strain fields obtained on the surface provide monitoring of defect localization sites as
well as the regularities of the materials strain process. The use of additional video system instruments provides a more detailed analysis and assessment of strain distribution on the sample surface.

The simultaneous recording of acoustic emission signals with the load make it possible to obtain the combined load diagrams with cumulative power, which, in turn, provides the assessment of the nature and the stages of accumulation of damages for the studied group of samples.

Acknowledgements
The research was carried out with the financial support of the Russian Foundation for Basic Research No. 19-41-590005, 18-01-00763, 19-31-90148.

The Experimental studies in the framework of the description of the mechanical behavior of structurally inhomogeneous materials were conducted within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (№ FSNM-2020-0027).

References
[1] Mouritz A P, Bannister M K, Falzon P J, Leong K H 1990 Review of applications for advanced three-dimensional fibre textile composites Composites: Part A Vol 30 Iss 12 P 1445-1461 doi: 10.1016/S1359-835X(99)00034-2
[2] Bilisik K 2012 Multiaxis three-dimensional weaving for composites: A review Textile Research Journal Vol 82 Iss 7 P 725-743 doi: 10.1177/0040517511435013
[3] Bilisik K 2013 Three dimensional braiding for composites: A review Textile Research Journal Vol 83 Iss 13 P 1414-1436 doi: 10.1177/0040517512450766
[4] Dell'Anno G, Partridge J, Cartié D 2012 Automated manufacture of 3D reinforced aerospace composite structures International Journal of Structural Integrity Vol 3 Iss 1 P 22-40 doi: 10.1080/17579861211209975
[5] Strungar E M, Feklistova E V, Babushkin A V, Lobanov D S 2019 Experimental studies of 3D woven composites interweaving types effect on the mechanical properties of a polymer composite material Procedia Structural Integrity Vol 17 pp 965–970
[6] Strungar E M, Yankin A S, Zubova E M, Babushkin A V, Dushko A N 2020 Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission Acta Mechanica Sinica 36(2) P 448–459 https://doi.org/10.1007/s10409-019-00921-7
[7] Xun Wu, Jonathan D Fuller, Marco L Longana, Michael R Wisnom 2018 Reduced notch sensitivity in pseudo-ductile CFRP thin ply angle-ply laminates with central 0° plies Composites Part A: Applied Science and Manufacturing Vol 111, pp 62-72
[8] Czél G, Rev T, Jalalvand M, Fotouhi M, Longana L M, Nixon-Pearson O J, Wisnom M R 2018 Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites Composites Part A: Applied Science and Manufacturing, Vol 104, pp 151-160
[9] Sket F, Enfedaque A, Díaz López C, González C, Molina-Aldareguía J, LLorca J 2016 X-ray computed tomography analysis of damage evolution in open hole carbon fiber-reinforced laminates subjected to in-plane shear Composites Science and Technology, Vol 133, pp 40-50
[10] Pierron F, Green B, Wisnom M R 2007 Full-field assessment of the damage process of laminated composite open-hole tensile specimens Part I: Methodology Composites Part A Applied Science and Manufacturing 38(11):2307-2320
[11] Chow CL, Xian XJ, Lam J 1990 Experimental investigation and modelling of damage evolution/propagation in carbon/epoxy laminated composites Compos Sci Technol;39:159–84
[12] Caminero M A, Lopez-Pedrosa M, Pinna C, Soutis C 2013 Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation Composites Part B: Engineering, Vol 53 pp 76-91
[13] Tretyakova T V, Dushko A N, Strungar E M, Zubova E M, Lobanov D S 2019 Comprehensive analysis of mechanical behavior and fracture processes of specimens of three-dimensional reinforced carbon fiber in tensile tests PNRPU Mechanics Bulletin, no 1, pp 173-183
[14] Sawan H A, Walter M E, Marquette B 2015 Unsupervised learning for classification of acoustic emission events from tensile and bending experiments with open-hole carbon fiber composite samples Composites Science and Technology 107 89–97

[15] Azadi M, Sayar H, Ghasemi-Ghalebahman A Jafari S M 2019 Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach Composites Part B: Engineering Vol 158, P 448-458

[16] Habibi M, Laperrière L 2020 Digital image correlation and acoustic emission for damage analysis during tensile loading of open-hole flax laminates Engineering Fracture Mechanics Vol 228, 106921

[17] Pan B, Yuana J, Xiab Y 2015 Strain field denoising for digital image correlation using a regularized cost-function Optics and Lasers in engineering 65 pp 9-17

[18] Lobanov D S, Zubova E M 2019 Research of temperature aging effects on mechanical behaviour and properties of composite material by tensile tests with used system of registration acoustic emission signal Procedia Structural Integrity Vol 18 pp 347-352 DOI: https://doi.org/10.1016/j.prostr.2019.08.174

[19] Lobanov D S, Strungar E M, Zubova E M, Wildemann V E 2019 Studying the Development of a Technological Defect in Complex Stressed Construction CFRP Using Digital Image Correlation and Acoustic Emission Methods Russian Journal of Nondestructive Testing, Vol 55, No 9, pp 631-638

[20] Lobanov D S, Wildemann V E, Spaskova E M, Chikhachev A I 2015 Experimental investigation of the defects influence on the composites sandwich panels strength with use digital image correlation and infrared thermography methods PNRPU Mechanics Bulletin, No 4, pp 159-170

[21] Zubova E M, Lobanov D S, Strungar E M, Wildemann V E, Lyamin Y B 2019 Application of the acoustic emission technique to the study of the damage accumulation in a functional ceramic coating PNRPU Mechanics Bulletin, no 1, pp 38-48

[22] Lomov S V, Karahan M, Bogdanovich A E, Verpoest I 2014 Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites Textile Research Journal Vol 84 No 13 P 1373-1384

[23] Feissel P, Schneider J, Aboura Z, Villon P 2013 Use of diffuse approximation on DIC for early damage detection in 3D carbon/epoxy composites Composites Science and Technology Vol 88 P 16-25 doi: 10.1016/j.compscitech.2013.08.027

[24] Bourchack M, Khan A, Badr S A, Harasani W 2013 Acoustic emission characterization of matrix damage initiation in woven CFRP composites Materials Sciences and Applications Vol 4 Iss 9 P 509-515