230. Nontyphoidal Salmonella from Clinical and Retail Meat Sources Reveal Antimicrobial Resistance Genes for Ceftriaxone and Ciprofloxacin

Nkuchla M. M’kanatha, DrPH, MPH; 1 Xinyin Yin, DrPH; 1 Yezi Fu, PhD; 1 Sameer Jayed, PhD; 1 Christopher Carr, PhD; 2 Lisa Dettinger, Medical Technologist; 1 Nicole Hackman, MD; 2 Edward Dudley, PhD; 1 Heather Tate, PhD; 2 Pennsylvania Department of Health, Harrisburg, PA; 2 Penn State College of Medicine, Hershey, Pennsylvania; 2 Penn State University, State College, Pennsylvania; 2 Georgia Tech University, Atlanta, Pennsylvania; 2 Penn State Health, Hershey, Pennsylvania; 2 Food and Drug Administration, Laurel, MD

Session: P-11. Basic and Translational Science

Background. Pennsylvania participates in the National Antimicrobial Resistance Monitoring System (NARMS), which includes monitoring of Nontyphoidal Salmonella (NTS), a leading cause of bacterial foodborne illnesses in the United States.

Methods. Clinical NTS isolates submitted to the Pennsylvania Department of Health (2015-18) were tested for susceptibility to 15 antimicrobial agents and analyzed by whole-genome sequencing (WGS). Concurrently, we conducted a prospective microbiological survey of NTS in retail meat products (chicken breasts, ground turkey, and pork chops) with susceptibility testing and WGS.

Results. A total of 426 clinical Salmonella isolates from humans analyzed for antimicrobial susceptibility, 65 (15.3%) had decreased susceptibility to ciprofloxacin (DSC). Ampicillin resistance was observed in 39 (9.2%) and 15 (3.5%) were ceftriaxone-resistant. Ten ceftriaxone-resistant isolates had genetic elements that confer resistance to third generation extended-spectrum cephalosporins (ESC) [\(\text{bla}_{ESCMX} \) n=8 and \(\text{bla}_{CTX-M-16} \) n=2]. The \(\text{bla}_{CTX-M-16} \) positive isolates had a mutation in \(\text{gyrA} \) that confers fluoroquinolone resistance. Thirteen clinical isolates carried plasmid-mediated fluoroquinolone resistance genes (PMQR) [\(\text{gyrB91}, \text{gyrB51}, \text{gyrA1} \)]. We detected NTS in 131 (3.8%) of 3480 meat samples tested. 7 (5.3%) were resistant to amoxicillin-clavulanate (AMC), ceftriaxone, and decreased susceptibility to ciprofloxacin (DSC) to nine antimicrobial classes tested. 7 (5.3%) had DSC, while 38 (29%) and 21 (16%) were resistant to ceftriaxone, a third-generation cephalosporin (ESC) [\(\text{PMQR}_{\text{n=8}} \) and \(\text{PMQR}_{\text{n=2}} \)]. The \(\text{PMQR}_{\text{n=8}} \) positive isolates had a mutation in \(\text{gyrA} \) that confers resistance to third generation extended-spectrum cephalosporins (ESC) [\(\text{bla}_{CMY-2} \) n=8 and \(\text{bla}_{CMY-9} \) n=2]. The \(\text{PMQR}_{\text{n=2}} \) positive isolates had a mutation in \(\text{gyrA} \) that confers resistance to third generation extended-spectrum cephalosporins (ESC) [\(\text{bla}_{CTX-M-16} \) n=8 and \(\text{bla}_{CTX-M-16} \) n=2].

Conclusion. NTS isolated from patients, resistance to ceftriaxone, a third-generation cephalosporin preferred for severe infections in children, increased from zero in 2015 to 5.8% in 2017. Overall, DSC increased in isolates from human sources while in strains from meat sources, DSC increased from zero in 2015 to over five percent in 2018.

Disclosures. All Authors: No reported disclosures

232. Safety and Effectiveness of Intravenous to Oral De-escalation Compared to Concomitant Vancomycin Therapy in Orthopedic Infections

Chanah Gallagher, PharmD, MS; Russell J. Benefield, PharmD;2 Laura Certain, MD, PhD,1 University of Utah, Salt Lake City, Utah; 3University of Utah Health, Salt Lake City, UT

Session: P-12. Bone and Joint

Background. The Oral versus Intravenous Antibiotics for Bone and Joint Infection (OVIVA) trial determined oral antibiotics administered during the first six weeks of therapy were non-inferior to parenteral antibiotics. There was no difference in the incidence of serious adverse events. The objective of this study was to evaluate the safety and effectiveness of de-escalating to oral therapy compared to continuing parenteral vancomycin therapy in patients with orthopedic infections in a real-world setting.

Methods. We conducted a single-center, retrospective cohort study of patients discharged between April 1, 2018 and April 1, 2020 with an orthopedic infection, a prescription for at least four weeks of parenteral vancomycin, and documented follow-up. The primary outcome was incidence of adverse events defined as provider documentation of the outcome resulting in therapy changes. The secondary outcome was incidence of 6-month treatment failure defined as repeat surgical intervention or therapy escalation.

Results. One hundred fifty-seven patients were included. Twenty-nine (18.5%) patients were de-escalated to oral therapy. Three (10%) patients in the oral therapy group had an adverse event compared to 35 (27%) in the intravenous group (p=0.058). Of the 35 patients with an adverse event in the vancomycin group, eight were due to parenteral access-related complications. Treatment failure occurred in three (10%) patients in the oral therapy group compared to 27 (21%) patients in the vancomycin group (p=0.29). Three (10%) patients in the oral therapy group had an unplanned readmission compared to 25 (20%) patients in the vancomycin group (p=0.24).

Baseline Characteristics, Unplanned Readmission Rates, and Incidence of Adverse Events and 6-Month Treatment Failure

Characteristic or Outcome	Oral De-escalation (n=29)	Concomitant IV Vancomycin (n=128)	P-value
Indication			
Prosthetic Joint infection, n (%)	6 (21)	55 (43)	0.03
Native Joint infection, n (%)	7 (24)	7 (5)	0.002
Osteomyelitis, n (%)	11 (38)	35 (27)	0.26
Concomitant Osteomyelitis, n (%)	4 (14)	29 (22)	0.26
Total Duration of Therapy, days, median (IQR)	42 (40-54)	42 (42-58)	0.37
Comorbid Therapy, n (%)	29 (100)	118 (92)	0.12
Comorbid Antimicrobial, n (%)	16 (55)	63 (49)	0.56
Antibiotic Allergies Present, n (%)	3 (10)	40 (30)	0.62
Unplanned Readmissions, n (%)	3 (10)	25 (20)	0.24
Adverse Reaction, n (%)	0 (0)	15 (12)	0.32
Treatment Failure, n (%)	3 (10)	27 (21)	0.29

Abstracts • OFID 2021:8 (Suppl 1) • S225