2-Aminoethyl Diphenylborinate (2-APB) Analogues: Part 3 - Regulators of Huntington Aggregation and Transglutaminase

Shoichiro Ozaki*
The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract
Huntington aggregation inhibitory activities and transglutaminase inhibitory activities of 2APB analogues were measured. 2-APB analogues regulated the Huntington aggregation. This fact provided an example that 2-APB analogues can regulate cellular processes. Bifunctional analogues of Huntington aggregation and 2-APB analogues have moderate transglutaminase inhibitory activities 2-Aminoethyl di(4-trifluorophenyl) borinate is a good transglutaminase regulator.

Keywords: 2-APB; 2-APB analogue; Regulator of transglutaminase; Regulator of huntington aggregation; Huntington disease

Introduction
Extracellular signal molecules attach to the plasmatic membrane where they are recognized by cell surface receptors. Upon binding of the ligand to the appropriate receptor, activation of G protein activates in turn phospholipase C. Active phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) giving rise to two products: 1,2-diacylglycerol and inositol 1,4,5-triphosphate (IP3). IP3 stimulates the release of Ca2+ from the intracellular stores in the endoplasmic reticulum through IP3 receptor while regulating a wide range of cellular processes [1-20].

In 1997, we identified 2-aminoethyl diphenylborinate (2-APB) as an IP3 receptor inhibitor and regulator IP3-induced calcium release [21,22]. This discovery rose a substantial interest and had a great impact as it gained more than 600 citations and more than 1000 studies on 2-APB [23-37] have been published so far. This was supported by increasing sales of 2-APB by Sigma-Aldrich as membrane-permeable modulator of intracellular IP3-induced cellular calcium release. We aimed to generate better modulator of calcium release than 2-APB.

We synthesized several 2-APB analogues and measured their inhibitory activities on Store-Operated Calcium Entry (SOCE) and IP3-induced Calcium Release (IICR). We found that bis boron compound DBP 161 and DBP 163 were 10 times more effective than 2-APB [38]. We extended these studies and synthesized 493 2-APB analogues using synthetic methods of the compounds are in example 1-493 [43].

This time, we report about 2 tests how these 2-APB analogues show the ability to regulator Ca2+ related enzyme inhibitory activity and regulation of cellular process. One test is a regulation of transglutaminase. Second test is a regulation of Huntington aggregation using 2APB analogs having various Ca2+ release-related activities: SOCE. We wish to tell the relations of transglutaminase activity (TG), Huntington aggregation inhibition (x-Fold) and SOCE and chemical structures of compounds.

Transglutaminases (TG) [52-54] are calcium-dependent enzymes that catalyze various post-translational modifications including protein cross-linking, amine incorporation, and deamidation. The protein-crosslink is formed with isopeptide bonds between the carboxamide group of glutamine residues and the β-amino group of lysine residues to form N-(γ-glutamyl)-L-lysine accompanied by loss of the ammonia [55]. TG is implicated in various pathological roles in many neurodegenerative diseases [56-58] including Alzheimer’s disease [59], Huntington’s disease [60-63]. TG is also implicated in diseases like cataractous lens [64], Psoriasis skin injury [65], liver injury [66], fibrin injury [67,68], immune system injury [69,70] and Celiac disease [71]. Numerous transglutaminase inhibitors are reported [72-75]. We have reported aryl-β-amino ketones [76], dithio β-amino ketones [77] as transglutaminase inhibitors.

We measured transglutaminase (TG) inhibitory activities and Huntington aggregation inhibitory activities (x-Fold) of 276 2APB analogues. And we analyzed the result and relation of TG, x-Fold and SOCE IC50.

Materials and Methods

APB analogues
2-APB was first synthesized by Ronderstvent et al. [44] in 1954 from triphenylboranes and ethanolamine. Later, hydroxy diphenyl borane and ethanolamine methods for 2-APB synthesis were reported by Weidman and Zimmermann [45], Letsinger and Skoog [46], Povlock and Lippincott [47].

We have synthesized 493 2-APB analogues [38-43] using methods described by us [38-43] and others [44-49] and the structures, names and synthetic methods of the compounds are in example 1-493 [43].
Methods

We measured transglutaminase (TG) inhibitory activities as described at ref 76 and Huntington aggregation inhibitory activities (x-Fold) [62].

Transglutaminase inhibitory activities measurement

TG (TransGlutaminase) inhibiting activity assay: Inhibition of TG enzyme was determined by assaying the enzyme activity in accordance with an optionally modified version of the enzyme activity in accordance with an optionally modified version of the method of Lorand et al. [53]. An enzyme reaction solution (0.1 ml) (100 mM HEPES-NaOH, pH 7.5, 1 mM CaCl₂, 20 M, monodansyl cadaverine, 0.05 mg/ml N,N-dimethylcasein, 5 μg/ml TGase) was introduced into wells of a 86-well plate (Nunc, 96 well Black Plate with Clear Bottom). A test compound was added in concentration of 100 μM. The plate was set in the fluorescence drug screening system FDSS3000 (hamamatsu Photonics K.K) TGase-inhibiting activity of the compound was calculated by assaying changes in fluorescence wavelength (at 340 nm) per unit time. The assay level at which a fluorescence change was observed with the addition of DMSO (1 μl) used as control instead of the test compound was designated as 100. The assay level at which TGase activity decreased by half in the presence of the test compound was designated as TG 50.

Huntington aggregation inhibitory activities measurement

Truncated N-terminal Huntington 150 Q-EGFP-Neuron 2a cells are cultured in 96 well plates. for 1day, 1 μM Ponasterone A (2 μl), 5 M Dibutyl cyclic AMP (2 μl) are added as to the test compound is to be 20 μM and cultured for 20 hours. The cells are fixed with 4% paraformaldehyde and washed with PBS after 30 minutes, and stained with Hoechst 53342. Aggregated cell numbers and total cell numbers are counted by Array Scan V T1 (Cellomics company, Pittsburg, USA). Ratio of aggregated cell to total cells (x-Fold) was measured. Without test compounds, ratio of aggregated cell to total cell x-Fold is 1. The smaller the x-Fold, the aggregation inhibition is stronger.

SOCE inhibition activities measurement

Inhibitory activities of the 2APB analogues for SOCE were measured using our improved assays as described previously [50].

Results and Discussion

We measured transglutaminase inhibitory activities (TG) and Huntington aggregation inhibition activity (x-Fold), and SOCE inhibition activities IC₅₀ of 2APB analogues The results are shown in Supplementary Figure S1.

Typical 42 compounds are picked up from Figure S1 and grouped them into three groups and lined up from SOCE smaller value 0.2 to >10. 1) Amino acid adducts compounds, 2) Aminothiol adducts compounds & 3) Aminoalcohol adducts compounds.

Amino acid adduct compounds

Amino acid adduct compounds are majority of effective compounds. The compounds having small IC₅₀ (SOCE) like 0.2 showed strong Huntington aggregation inhibiting activities (x-Fold). TG has no relation with IC₅₀ (SOCE).

TG of 911 Diphenyl (2,6-diaminohexanate-O,N) borane is 90, x-Fold is 0.53, IC₅₀ is 0.2. TG of 855 Diphenyl asparaginate-O,N- borane is 105 x-Fold is 0.54 and IC₅₀ is 0.2 (Figure 1).

The compounds having big IC₅₀ (SOCE) like 10 showed no transglutaminase activity and no Huntington aggregation activity. TG of 901 Diphenyl (methionate-O,N) borane is 106, x-Fold is 0.90, IC₅₀ is >10. TG of 4129 Diphenyl (2-aminohexanecarboxylate-O,N) borane is 90, x-Fold is 0.97, IC₅₀ is >10.

Aminothiol adduct compounds

This group compounds showed moderate transglutaminase inhibition and Huntington aggregation inhibition. 2APB belongs to this group. TG of 2APB is 80, x-Fold is 0.64, IC₅₀ is 3. TG of 1022 Bis-(4,4′ phenyl aminoethoxy boryl)phenyether is 4 and x-Fold is 0.50. SOCE is 0.2. TG of 424 2-aminoethyl di(4-trifluorophenyl) borinate is 54, x-Fold is 0.69, SOCE is 0.5. TG of 372 2-aminoethyl di(5-chloro-2-methyl-phenyl) borinate is 74, x-Fold is 0.78 and IC₅₀ is 1 (Figure 2).

Aminoalcohol adduct compounds

Some compounds of this group showed remarkable transglutaminase inhibition, showed no Huntington aggregation activities. TG of 6014 2-aminoethylthio di (4-chloro-2-fluorophenyl) borane is 28, x-Fold is 0.96, SOCE is <1. TG of 1031 2-aminoethylthio diphenyl borane is 33, x-Fold is 0.87, and SOCE is 2. TG of 3115 2-aminoethylthio di (3-chloro-4-methylphenyl) borane is 12, x-Fold is 1.01, SOCE is 2. TG of 6039 2-aminoethylthio di (4-cyanophenyl) borane is 23. X-Fold is 0.92, SOCE is >10. This thiol adducts compounds showed toxicity. Cell numbers decreased during assay. Therefore this group compounds would be not suitable for clinical use.

Relations of chemical structures and activities

Active compounds of 2APB analogues, nitrogen atom must come in this order B-O-C-C-N as 2-APB C₆H₅B(OCH₂CH2NH₂)C₆H₅. The compounds having other order like B-O-C-N, or B-O-C-C-C-N have no activities. When phenyl group is substituted with aliphatic or aryaliphatic group, they lost their activities. When compared mono-boron, bis-boron and poly-boron compounds, mono-boron compounds were best and bis-boron compounds come next.

Relation of SOCE IC₅₀ value and TG and x-Fold

Relation of SOCE IC₅₀ and x-Fold: When look at Figure S1, the compounds having strong Ca²⁺ release activity, low IC₅₀ value (IC₅₀<1) except aminothiol adduct compounds, showed strong Huntington aggregation inhibiting activity The compounds having weak Ca²⁺ releasing activity (IC₅₀ is >10) showed weak or no transglutaminase inhibiting activity (TG is near 100), and showed weak or no Huntington aggregation inhibiting activity (x-Fold is near 1). These results indicated that 2APB analogues were effective as regulators of cellular process.
Compound	TG x-Fold IC50	65	0.59	3
855		109	0.54	0.2
5019		50	1.02	0.2
1024 (24	0.6	0.2
2051 (140	0.99	0.2
1023 (66	0.59	0.3
1024 (24	0.6	0.2
2051 (140	0.99	0.2
1023 (66	0.59	0.3
855		109	0.54	0.5
907		86	0.91	0.7
4124		35	0.98	<1

Figure 1: Amino acid adducts compounds.
Figure 2: Amino alcohol adduct compounds & Aminothiol adduct compounds.
Regulator of huntington aggregation

Many compounds belong to amino acid adducts especially basic amino acid adduct such as 911 Diphenyl (2,6-diaminoxaneoate 0,N)borane TG:136, x-Fold:0.41, IC50:0.2 and 919 Diphenyl (2,3-diaminopropionate O,N) borane TG:90, x-Fold:0.53, IC50:0.2 showed strong Huntington aggregation inhibiting activity and no transglutaminase inhibiting activity. These compound look like to be good and selective regulator of Huntington aggregation inhibitor.

Regulator of transglutaminase

Aminoalcohol adduct, 1022 Bis-(4,4’ (phenyl aminoethoxy boryl) phenyl)ether: TG: 4 and x-Fold: 0.50 SOCE:0.2 and 422 2-aminoethyl di-(4-trifluorophenyl) borinate: TG: 54, x-Fold:0.69, SOCE : 0.5 are good candidate as transglutaminase inhibitors. I have measured transglutaminase inactivation activities at 100 μM. The activities like these TG:4 or 54 at 100 μM are not so strong as aryl β-aminoethyl ketones IC50: 0.1 μM reported by us [76,77] or thienopyrimidines IC 50: 0.13 μM reported by Duval [74]. Transglutaminase is necessary enzyme for our lives. Strong inhibitor will give toxicity. Moderate activity is required for clinical use. We are reporting many TG inhibitors .differing activities. People will be able to choose most suitably active compounds. Some of these compounds were shown to inhibit the calcium dependent enzyme transglutaminase [43]. Transglutaminase inhibitors block the abnormal cross-link of protein [43,76-78] and they may slow down or even stop the progression of disease caused by over cross-linked proteins, such as Huntington’s disease.

I have analyzed the SOCE and TG(transglutaminase inhibition activities and x-Fold (Huntington aggregation inhibition) of 262 2APB analogues . 2-APB analogues regulated the Huntington aggregation This fact provided an example that 2-APB analogues can regulate cellular process. DAB (Diphenyl aminoacidonate (N,O) boranes TG:90, x-Fold:0.53, IC50:0.2 showed strong Huntington aggregation inhibiting activity and no transglutaminase inhibiting activity. These compound look like to be good and selective regulator of Huntington aggregation inhibitor.

Conclusion

2-APB analogues regulated the Huntington aggregation has provided an example that 2-APB analogues can regulate cellular process. Diphenyl (aminoacidonate N,O) boranes are effective regulators of Huntington aggregation. It was also found that many of 2-APB analogues had moderate transglutaminase inhibition activities.

References

1. Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212: 473-482.
2. Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem J 212: 849-858.
3. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67-69.
4. Berridge MJ, Heslop JP, Irvine RF, Brown KD (1984) Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor. Biochem J 222: 195-201.
5. Fein A, Payne R, Corson DW, Berridge MJ, Irvine RF (1984) Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature 311: 157-160.
6. Brown JE, Rubin LJ, Ghalayini AJ (1984) A biochemical and electrophysiological examination of myo-inositol polyphosphate as a putative messenger for excitation in Limulus ventral photoreceptor cells. Nature 311: 160-163.
7. Burgess GM, Godfrey RP, McKinney JS, Berridge MJ, Irvine RF, et al. (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309: 63-66.
8. Pretelli M, Baid T, Janic D, Irvine RF, Berridge MJ, et al. (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309: 562-564.
9. Irvine RF, Brown KD, Berridge MJ (1984) Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J 222: 269-272.
10. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986) The inositol tris/tetrakisphosphate pathway - demonstration of Ins 1,4,5P3 3-kinase activity in animal cells. Nature 320: 631-634.
11. Rapp PE, Berridge MJ (1981) The control of transmembrane potential oscillations in the salivary gland of Calliphora erythrocephala. Exp Biol 93: 119-132.
12. Missiaen L, Taylor CW, Berridge MJ (1991) Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature 352: 241-244.
13. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-319.
14. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159-193.
15. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341: 197-205.
16. Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59: 411-419.
17. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361: 315-325.
18. Bootman MD, Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83: 675-678.
19. Berridge MJ (1993) Cell signalling. A tale of two messengers. Nature 365: 388-389.
20. Decrock E, De Bock M, Wang N, Gadicherla AK, Bol M, et al. (2013) IP3, a small molecule with a powerful message. Biochim Biophys Acta 1833: 1772-1786.
21. Maruyama T, Kanaji T, Nakade S, Kanno T, Mkoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5) PS-induced Ca2+ release. J Biochem 122: 498-505.
22. Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, et al. (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels 7: 429-439.
23. Bilmen JG, Michelangeli F (2002) Inhibition of the type 1 inositol 1,4,5-trisphosphate receptor by 2-aminoethoxydiphenylborate. Cell Signal 14: 955-960.
24. Ma HT, Venkatachalam K, Parys JB, Gill DL (2002) Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenylborate in DT40 lymphocytes. J Biol Chem 277: 695-692.
25. Dobrydneva Y, Blackmore P (2001) 2-Aminoethoxydiphenylborate directly inhibits store-operated calcium entry channels in human platelets. Mol Pharmacol 60: 541-552.
26. Bilmen JG, Wootton LL, Godfrey RE, Smart OS, Michelangeli F (2002) Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenylborate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem 269: 3678-3687.
27. Missiaen L, Callwaert H, De Smedt H, Parys JB (2001) 2-Aminoethoxydiphenylborate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29: 111-116.
Extracellular calcium concentration controls the frequency of intracellular compounds and their strong inhibitory activity on store-operated calcium entry.

InsP3 receptors that may modulate excitation-contraction coupling in the heart.

Aminoalkoholen. Justus Liebigs Ann Der Chemie 619: 28-35.

Weidmann H, Zimmerman HK (1959) Borsäure-ester von N-substituierten Goto J, Suzuki Brown HC, Povlock TP, Letsinger RL, Skoog IJ (1955) Organoboron Compounds. IV. Aminoethyl diethyldimethylborane (2-APB) analogues: regulation of Ca2+ signaling. Biochem Biophys Res Commun 416: 13-17.

Hovhanissyan Z, Weiss A, Martin A, Wiesner M, Tollefson S, et al. (2008) The role of HLA-DQB beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456: 534-538.

Watts RE, Siegel M, Khosla C (2006) Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49: 7439-7501.

Pardini P, Nilsson JL, Eriksson O, Lundén R (1971) Fibrin-stabilizing factor. Justus Liebigs Ann Chem 619: 28-35.

Fitsus L (1982) Transglutaminase activation: significance with respect to immunologic phenomena. Surv Immunol Res 1: 297-304.

Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoreactive gliadin peptides: implications for celiac sprue. Biochemistry 41: 386-393.

Brown HC, Colet TE (1983) A simple preparation of boronic esters from organolithium reagents and selected trialkoxyboranes. Organometallics 2: 1316-1319.

Mori Y, Kobayashi J, Manabe K, Kobayashi S (2002) Use of boron enolates in water. The first boron enolate-mediated diastereoselective aldol reactions using catalytic boron sources. Tetrahedron 58: 8263-8268.

Ozaki S, Suzuki AZ, Bauer PO, Ebitani E, Mikoshiba K (2013) 2-Aminooethyl diphenylborinate (2-APB) analogues: regulation of Ca2+ signaling. Biochem Biophys Res Commun 441: 280-290.

Ozaki S (2014) 2-Aminooethyl diphenylborinate (2-APB) analogues: Part 3 - Regulators of Huntington Aggregation and Transglutaminase. J Bioengineer & Biomedical Sci 4: 1000131

Pardin P, Nilsson JL, Eriksson O, Lundén R (1971) Fibrin-stabilizing factor. Justus Liebigs Ann Chem 619: 28-35.

Fitsus L (1982) Transglutaminase activation: significance with respect to immunologic phenomena. Surv Immunol Res 1: 297-304.

Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoreactive gliadin peptides: implications for celiac sprue. Biochemistry 41: 386-393.

Hovhanissyan Z, Weiss A, Martin A, Wiesner M, Tollefson S, et al. (2008) The role of HLA-DQB beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456: 534-538.

Watts RE, Siegel M, Khosla C (2006) Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49: 7439-7501.

Pardini P, Nilsson JL, Eriksson O, Lundén R (1971) Fibrin-stabilizing factor. Justus Liebigs Ann Chem 619: 28-35.

Fitsus L (1982) Transglutaminase activation: significance with respect to immunologic phenomena. Surv Immunol Res 1: 297-304.

Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoreactive gliadin peptides: implications for celiac sprue. Biochemistry 41: 386-393.

Hovhanissyan Z, Weiss A, Martin A, Wiesner M, Tollefson S, et al. (2008) The role of HLA-DQB beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456: 534-538.
74. Choi K, Siegel M, Piper JL, Yuan L, Cho E, et al. (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12: 469-475.

75. Ozaki S, Ebisui E, Hamada K, Goto J, Suzuki AZ, et al. (2010) Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorg Med Chem Lett 20: 1141-1144.

76. Ozaki S, Ebisui E, Hamada K, Suzuki AZ, Terauchi A, et al. (2011) Potent transglutaminase inhibitors, dithio 𐄃-aminoethyl ketones. Bioorg Med Chem Lett 21: 377-379.

77. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21: 13-26.

78. Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459: 441-449.

79. Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7: 2-13.