Scopafungin, a Crystalline Antibiotic Produced by Streptomyces hygroscopicus var. enhygrus var. nova

LEROY E. JOHNSON and ALMA DIETZ

Infectious Diseases Research, The Upjohn Company, Kalamazoo, Michigan 49001

Received for publication 13 May 1971

Scopafungin (U-29,479) is a crystalline, nonpolyenic antimicrobial agent obtained from the culture broth of Streptomyces hygroscopicus var. enhygrus var. nova UC-2397. Scopafungin inhibits, in vitro, a variety of pathogenic fungi, yeasts, and gram-positive bacteria.

Streptomyces hygroscopicus var. enhygrus var. nova produces an antibiotic designated scopafungin (U-29,479). S. hygroscopicus var. enhygrus also produces the polyenic endomycin complex reported for S. endus NRRL-2339 (Gottlieb and Carter, U.S. Patent 2,746,902, 1956). Scopafungin was isolated as a white crystalline, nonpolyenic compound from the complex produced by the new culture. It is soluble in methanol, ethanol, n-propanol, and glacial acetic acid but is only slightly soluble in water, acetone, methylene chloride, chloroform, butanol, and ether.

The isolation and chemical properties of scopafungin will be described by M. E. Bergy (in preparation). Studies on the mode of action of this antibiotic will be reported by F. Reusser (in preparation).

This paper describes the organism, the fermentation, the paper chromatogram characterization, and some of the biological properties of the antibiotic.

MATERIALS AND METHODS

Culture. S. hygroscopicus var. enhygrus was characterized by the methods cited by Dietz (1) and by Shirling and Gottlieb (8). S. hygroscopicus var. enhygrus UC 2397 was compared with the type species S. hygroscopicus (Jensen) Waksman, CBS, UC 2317 and the type species S. endus NRRL 2339, UC 2020.

Medium. Seed flasks were inoculated with spore preparations of the culture which were maintained in soil. The culture was incubated at 28 C for 72 hr in a seed medium consisting of, per liter: 25 g of glucose monohydrate, 20 g of Hi-starch (Illinois Cereal Mills, Inc., Paris, Ill.), 4 g of CaCO₃, 4 g of NaNO₃, 20 g of Pharmamedia. The pH was adjusted to 7.2 before sterilization. Shaken-flask fermentations were run in 500-ml Erlenmeyer flasks containing 100 ml of medium and for optimal yields were incubated at 28 C on a Gump rotary shaker operating at 250 rev/min with a 2.5-inch (6.4 cm) stroke.

Antibiotic assay procedure. The antibiotic concentrations were determined with a disc-plate agar diffusion assay. The antibiotic standards and all samples were prepared in a 20% dimethylformamide (DMF) solution. Samples (0.08 ml) and dilutions (also made in 20% DMF) were placed on 12.7-mm paper discs and were assayed against Saccharomyces cerevisiae (UC-1337). A liquid suspension of S. cerevisiae was inoculated into an agar medium consisting of, per liter: 10 g of dextrose, 2.5 g of yeast extract (BBL), 1.0 g of KH₂PO₄, and 17.5 g of agar; final pH, 5.65. The zones of inhibition of growth were measured after incubation for 18 hr at 37 C. The antibacterial activity was expressed as micrograms of scopafungin standard per milliliter run by a standard curve assay. The range of assay is between 31.25 and 250 μg per ml.

The antibacterial in vitro spectrum was determined by twofold dilution end points in Brain Heart Infusion (Difco) broth. Readings were made after 20 hr of incubation at 37 C. The antifungal in vitro spectrum was determined by the agar dilution plate assay of Whiffen (12) with readings made after 72 hr at 28 C.

Scopafungin was differentiated from other antibiotics by its antibacterial and antifungal spectra, by its chemical properties, and by paper chromatography. The antibiotic was spotted on Whatman no. 1 filter paper and developed without prior equilibration by use of the descending method and the solvent systems listed in Fig. 1. Antibiotic activity was located by plating the developed strips on trays of agar seeded with S. cerevisiae.

RESULTS AND DISCUSSION

Taxonomy. Streptomyces hygroscopicus var. enhygrus Dietz var. nova.

Color characteristics. Aerial growth white to gray-white or gray-cream to gray. Moist, black, hygroscopic patches on some media. Melanin-negative. Appearance on Ektachrome is given in Table 1. Reference color characteristics are given in Tables 2 and 3. The cultures may be placed in
TABLE 1. Appearance of Streptomyces hygroscopicus cultures on Ektachrome

Agar medium	S. hygroscopicus var. enigmaticus UC 2397	S. hygroscopicus CBS 2317	S. endus NRRL B339	S. hygroscopicus var. enigmaticus UC 2397	S. endus NRRL B339
Bennett's	S: Gray; R: Yellow-tan	S: Gray; R: Yellow	S: Yellow	S: Gray; R: Yellow-tan	S: Yellow
Czapek's sucrose	S: Gray; R: Yellow	S: Gray; R: Yellow	S: Yellow	S: Gray; R: Yellow-tan	S: Yellow
Maltose-tryptone	S: Trace gray-white; R: Yellow	S: Trace gray-white	S: Yellow	S: Trace gray-white; R: Yellow	S: Yellow
Peptone-iron	S: Yellow	S: Yellow	S: Yellow	S: Yellow	S: Yellow
0.1% Tyrosine	S: Yellow	S: Yellow	S: Yellow	S: Yellow	S: Yellow
Caseln starch	S: Gray; R: Yellow	S: Gray; R: Yellow	S: Yellow	S: Gray; R: Yellow	S: Yellow

* S, surface; R, reverse.

TABLE 2. Reference color characteristics of Streptomyces hygroscopicus cultures

Agar medium	Determination	S. hygroscopicus var. enigmaticus UC 2397	S. hygroscopicus CBS 2317	S. endus NRRL B339	S. hygroscopicus var. enigmaticus UC 2397	S. endus NRRL B339
Bennett's	S: b(m)	1fe(g)	2ig(m)	263m, 264g	90gm	112m, 122g
	R: 2gc(m)	2gc(g)	2ge(g)	90gm		90gm
	P: 2gc(m)	2gc(g)	2ge(g)	90gm		90gm
Czapek's sucrose	S: 2fe(g)	3fe(m)	c(g)	94g, 112gm	63gm	112m, 122g
	R: 2dc(g)	1fe(m)	c(g)	93gm		112m, 122g
	P: 2dc(g)	1fe(m)	c(g)	93gm		112m, 122g
Maltose-tryptone	S: b(m)	2cb(m)	1dc(g)	263m, 264g	90gmg	121m, 92m, 93m
	R: 1ca(g)	2ec(g)	2cb(g)	104g, 121m		92m, 93m
	P: 1ca(g)	2ec(g)	2cb(g)	104g, 121m		92m, 93m
Yeast extract-malt extract (ISP-2)	S: 2fe(g)	1dc(m)	3fe(m)	94g, 112gm	63gm	121m, 122g
	R: 2gc(g)	2gc(m)	2ie(m)	90gm		90gmg
	P: 1ec(m)	2gc(g)	2ge(g)	90gm		90gmg
Oatmeal (ISP-3)	S: 2ml(m)	2fe(g)	1dc(m)	121m, 122g		121m, 122g
	R: 3fe(g)	2dc(m)	13ge(c)	93gm		121m, 122g
	P: 2dc(m)	1dc(m)	1ca(g)	93gm		121m, 122g
Inorganic-salts starch (ISP-4)	S: 3fe(g)	2fe(g)	1cb(g)	63gm		94g, 112gm
	R: 2eb(g)	3fe(g)	2gc(m)	92m, 93gm		90gmg
	P: 1eb(m)	2dc(g)	13ge(c)	121g, 93g		90gmg
Glycerol-asparagine (ISP-5)	S: 2fe(m)	2fe(g)	1cb(g)	63gm		121g, 93g
	R: 2ge(g)	2eb(m)	1ca(g)	90gmg		90gmg
	P: 2ge(g)	2eb(m)	1ca(g)	90gmg		90gmg

* S, surface; R, reverse; P, pigment; (m), matte; (g), glossy.

*(b) See Table 3 for color names.

* The white (W) and gray (GY) color series of Tresner and Backus (10).

Microscopic characteristics. Sporophores in light spirals. Sporophores spiral in the sense of Pridham et al. (7). Spores frequently forming dark, hygroscopic patches. Spores smooth with an irregularly possibly warty surface by direct electron microscope examination. Spore surface rugged when examined by the carbon replication method of Dietz and Mathews (2,3). Coremia present on some media.

Cultural and biochemical characteristics. Cultural and biochemical characteristics are described in Table 4.

Carbon utilization. The ability of the culture to grow on carbon compounds was determined in the synthetic medium of Pridham and Gottlieb (6) and in their modified medium (8; Tables 5 and 6).

Temperature. All cultures grew moderately well to well at temperatures of 18 to 37 C on Bennett’s,
Czapek's sucrose, and maltose-triptone agars. Trace to fair vegetative growth occurred in 24 hr at 55 C.

Antibiotic-producing properties. The culture produces the antibiotic scopafungin (U-29,479).

Type culture. Streptomyces hygroscopicus CBS, UC 2317.

Variety nova. Streptomyces hygroscopicus var. enhygrus UC 2397, NRRL 3664.

S. hygroscopicus var. enhygrus is a new soil isolate of the genus Streptomyces which has been found to differ in certain characteristics from the type culture S. hygroscopicus CBS, notably in its production of the antibiotic scopafungin, and from the type culture S. endus NRRL 2339 (in its cultural characteristics). S. endus has been shown to have the main characteristics of the hygroscopicus type (2, 9). Minor distinguishing characteristics of the new variety may be noted by referring to the tables.

The new soil isolate, which has been compared to and differentiated from the type cultures S. hygroscopicus and S. endus, is designated S. hygroscopicus var. enhygrus var. nova.

Fermentation studies. A typical fermentation pattern at 28 C is shown in Table 7. The new Upjohn strain fermented in the medium described gave yields of greater potency than were obtained with S. endus NRRL 2339. These beers were thus sufficiently potent to permit the successful extration and crystallization of scopafungin.

Paper chromatography. The paper chromatographic patterns of crystalline scopafungin in six solvent systems is shown in Fig. 1.

In Vitro spectra. Table 8 shows the in vitro antibacterial spectrum. Inhibition of gram-positive microorganisms occurred at concentrations from 4 to 31 \(\mu \)g/ml. Scopafungin inhibited a wide spectrum of human pathogenic fungi at concentrations of 0.1 to 10 \(\mu \)g/ml (Table 9).

ACKNOWLEDGMENTS

The authors express their appreciation to various members of The Upjohn Co. who contributed to this work. In particular, we thank John A. Fox for the paper chromatography and Walter T. Sokolski for the standard curve assays.
Medium	Determinationa	\textit{S. hygroscopicus var. enhygrus UC 2397}	\textit{S. hygroscopicus} CBS, UC 2317	\textit{S. endus} NRRL 2339, UC 2020
Agar				
Peptone-iron	S	Trace white	Very slight trace white	Pale gray white
	R	Yellow-tan	Yellow-tan	Yellow-tan
	P	Melanin negative	Melanin negative	Melanin negative
Calcium malate	S	Trace white	Trace white	Trace white
	R	Colorless	Colorless	Colorless
	P	None	None	None
	O	Malate not solubilized	Malate not solubilized	Malate not solubilized
Glucose asparagine	S	Gray-white	Gray-white	Pale gray white
	R	Cream gray	Cream	Yellow-pink
	P	None	None	None
Skim milk	S	Gray-pink-white	Gray-pink-white	Pale gray white
	R	Yellow-pink-tan	Yellow-pink-tan	Yellow-pink
	P	Yellow-pink	Yellow-pink	Yellow
	O	Casein solubilized around growth	Casein solubilized around growth	Casein solubilized
Tyrosine	S	Gray	Gray	Gray-white
	R	Red-tan	Red-tan	Yellow
	P	Red-tan	Red-tan	Pale yellow
	O	Tyrosine solubilized	Tyrosine solubilized	Tyrosine solubilized
Xanthine	S	Gray-white	Gray-white	Gray-white
	R	Pale yellow	Pale yellow	Yellow
	P	None	None	None
	O	Xanthine not solubilized	Xanthine not solubilized	Xanthine not solubilized
Yeast extract-malt	S	Cream-gray-white with moist black patches	Cream-gray-white with moist black patches	Cream-gray-white
extract	R	Yellow-olive	Yellow-olive	Gray-brown
Casein starch	S	Gray	Gray	None
	R	Gray	Gray	None
	P	Gray	Gray	Starch hydrolyzed
	O	Starch hydrolyzed	Starch hydrolyzed	White
Nutrient starch	S	White	White	Cream
	R	Cream	Cream	Pale yellow
	P	Pale yellow	Pale yellow	Starch hydrolyzed
	O	Starch hydrolyzed	Starch hydrolyzed	White
Sabouroud dextrose	S	White	White	Cream
	R	Yellow-tan-orange	Yellow-tan-orange	Pale yellow
Bennett	S	Heavy gray-white	Heavy gray-white	Yellow
	R	Yellow	Yellow	Yellow
	P	None	None	None
	S	Heavy gray	Heavy gray	Trace gray
Czapek's sucrose	R	Gray	Gray	Gray
	P	None	None	None
Maltose-tryptone	S	Gray	Gray	White
	R	Yellow	Yellow	Yellow
	P	None	None	None
Peptone-yeast extract	S	No aerial growth	No aerial growth	Fair gray
iron (ISP-6)	R	Yellow	Yellow	Cream
	P	Pale yellow	Pale yellow	None
Tyrosine (ISP-7)	S	Gray	Gray	None
	R	Tan	Tan	None
	P	Pale pink becoming pink-tan	Pale pink becoming pink-tan	None
TABLE 4. continued

Medium	Determination	\(S. \) hygroscopicus var. enhygrus UC 2397	\(S. \) hygroscopicus CBS, UC 2317	\(S. \) endus NRRL 2339, UC 2020
Gelatin				
Plain	P	Tan, \(\frac{1}{4} \)	Tan, \(\frac{1}{4} \)	Tan, \(\frac{1}{4} \)
Nutrient	P	Liquefaction, \(\frac{1}{4} \)	Liquefaction, \(\frac{1}{4} \)	Liquefaction, \(\frac{1}{4} \)
Nutrient	O	Complete liquefaction	Complete liquefaction	Complete liquefaction
Broth				
Synthetic nitrate	S	No surface growth	Gray aerial growth on surface pellicle	White aerial growth on surface pellicle
Nutrient nitrate	P	Pale yellow	Pale yellow	Pale pink-yellow
Nutrient nitrate	O	Compact to flocculent growth at base Nitrate not reduced to nitrite	Compact to flocculent growth at base Nitrate not reduced to nitrite	Compact to flocculent growth at base Nitrate not reduced to nitrite
Litmus milk				
Nutrient nitrate	S	No surface growth	No surface growth	Trace white aerial growth on surface pellicle
Nutrient nitrate	P	None	None	None
Nutrient nitrate	O	Compact to flocculent growth at base Nitrate not reduced to nitrite	Compact to flocculent growth at base Nitrate not reduced to nitrite	Compact to flocculent growth at base Nitrate not reduced to nitrite
Litmus milk				
Nutrient nitrate	S	Trace gray aerial growth on surface ring	Peptonization complete, \(pH \) 6.5	Peptonization complete, \(pH \) 7.75
Nutrient nitrate	O	Peptonization complete, \(pH \) 6.5	Peptonization complete, \(pH \) 7.75	Peptonization complete, \(pH \) 7.75

* S, surface; R, reverse; P, pigment; O, other characteristics.

TABLE 5. Utilization of carbon compounds in the synthetic medium of Pridham and Gottlieb (6)*

Carbon Compound	\(S. \) hygroscopicus var. enhygrus UC 2397	\(S. \) hygroscopicus CBS, UC 2317	\(S. \) endus NRRL 2339, UC 2020
Control	\(-\)	\(-\)	\(-\)
D-Xylose	+	(+)	(+)
L-Arabinose	+	+	(+)
Rhamnose	+	+	+
D-Fructose	+	+	+
D-Galactose	+	+	+
D-Glucose	+	+	+
D-Mannose	+	+	+
Maltose	+	+	(+)
Sucrose	(+)	(+)	(+)
Lactose	+	(+)	(+)
Cellobiose	+	+	+
Raffinose	+	+	(+)
Dextrin	+	+	+
Inulin	\(-\)	\(+\)	\(-\)
Soluble starch	+	+	+
Glycerol	+	+	+

* Symbols: +, positive utilization; (+), positive utilization—slight growth; \(-\), slight growth—no utilization; \(-\), no growth.
Table 6. Utilization of carbon compounds in the modified medium of Pridham and Gottlieb (8)*

Compound	S. hygroscopicus var. enhygrii UC 2399	S. hygroscopicus CBS, UC 2317	S. endus NRRL 2339, UC 2020
Negative control (basal agar)	Slight growth	Slight growth	Slight growth
Positive control (basal agar plus d-glucose)	Good growth	Good growth	Good growth
1-Arabinose	+	+	+
Sucrose	+	+	+
Inositol	-	-	-
Xylose	+	+	+
Mannitol	+	+	+
Fructose	+	+	+
Raffinose	+	+	+
Cellulose	+	+	+

* Symbols: –, growth similar to or less than growth on basal medium without carbon compound; +, vegetative growth equal to or more than with glucose; ++, vegetative growth significantly better than on basal medium without carbon compound, but somewhat better than with glucose; ++, doubtful, growth only slightly better than on basal medium without carbon compound and significantly less than with glucose.

Table 7. Production of scopafungin* and pH patterns in fermentations of Streptomyces hygroscopicus var. enhygrii

Age (hr)	Run 1	Run 2		
	Scopafungin (µg/ml)	pH	Scopafungin (µg/ml)	pH
0	0	7.0	0	6.9
48	1.400	7.0	1,125	7.0
72	2.350	7.6	1,500	7.6
96	3.050	7.6	2,390	7.6
120	4.050	7.2	3,900	7.2
144	>5,000	7.2	4,125	7.2

* Total antifungal activity expressed as scopafungin.

Table 8. Antibacterial spectrum of scopafungin in Brain Heart Infusion broth

Organism	Minimal inhibitory concentration (µg/ml)
Staphylococcus aureus UC-76	8
S. aureus UC-552	8
Streptococcus hemolyticus UC-152	31
S. faecalis UC-3235	31
Escherichia coli UC-51	>500
Proteus vulgaris UC-93	>500
Klebsiella pneumoniae UC-57	>500
Salmonella schottmulleri UC-126	>500
Pseudomonas aeruginosa UC-95	>500
Bacillus subtilis UC-564	4
Diplodocus pneumoniae UC-41	16

Table 9. Antifungal spectrum of scopafungin in Whitten's agar medium

Organism	Minimal inhibitory concentration (µg/ml)
Nocardia asteroides UC-2052	10
Blastomyces dermatitidis UC-1911	1
Coccidiodes immitis UC-1119	1
Geotrichum sp. UC-1207	1
Hormodendrum compactum UC-1222	1
Phialophora verrucosa UC-1807	1
Cryptosporium neoformans UC-1139	1
Histoplasma capsulatum UC-1220	0.1
Sporotrichum schenckii UC-1364	10
Monosporum apiospermum UC-1248	10
Trichophyton rubrum UC-1458	10
T. interdigitale UC-1399	10
Candida albicans Ab UC-1077	10
T. violaceum UC-1459	1
T. mentagrophytes UC-4797	10
Microsporum canis UC-1395	1
T. asteroides UC-4775	10
T. mentagrophytes UC-4860	10

* Tested at concentrations of 100, 10, 1, and 0.1 µg/ml.

LITERATURE CITED

1. Dietz, A. 1967. *Streptomyces stflfiburgensis* sp. n. J. Bacteriol. 94:2022-2026.
2. Dietz, A., and J. Mathews. 1962. Taxonomy by carbon replication. I. An examination of *Streptomyces hygroscopicus*. Appl. Microbiol. 10:258-263.
3. Dietz, A., and J. Mathews. 1968. Taxonomy by carbon replication. II. An examination of eight additional cultures of *Streptomyces hygroscopicus*. Appl. Microbiol. 16:935-941.
4. Jacobson, E. W. C. Granville, and C. E. Foss. 1948. Color harmony manual, 3rd ed. Container Corp. of America, Chicago.
5. Kelly, K. L., and D. B. Judd. 1955. The ISCC-NBS method of designating colors and a dictionary of color names. U.S. Department of Commerce Circular 553.
6. Pridham, T. G., and D. Gottlieb. 1948. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bacteriol. 56:107-114.
7. Pridham, T. G., C. W. Hesseltine, and R. G. Benedict. 1958.

A guide for the classification of streptomycetes according to selected groups. Placement of strains in morphological sections. Appl. Microbiol. 6:52-79.
8. Shirling, E. B., and D. Gottlieb. 1966. Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16:313-340.
9. Tressner, H. D., and E. J. Backus. 1956. A broadened concept of the characteristics of *Streptomyces hygroscopicus*. Appl. Microbiol. 4:243-250.
10. Tressner, H. D., and E. J. Backus. 1963. System of color wheels for streptomycete taxonomy. Appl. Microbiol. 11:335-338.
11. Waksman, S. A. 1961. The actinomyces, vol. 2. The Williams & Wilkins Co., Baltimore.
12. Whitten, A. J. 1948. The production, assay, and antibiotic activity of actidione, an antibiotic from *Streptomyces griseus*. J. Bacteriol. 56:283-291.