Abstract

Accreting black holes can release enormous amounts of energy to their surroundings, in various forms. Such feedback may profoundly influence a black hole’s environment. After briefly reviewing the possible types of feedback, I focus on the injection of kinetic energy through jets and powerful winds. The effects of these outflows may be especially apparent in the heating of the X-ray–emitting atmospheres that pervade clusters of galaxies. Analogous heating effects, during the epoch of galaxy formation, could regulate the growth of supermassive black holes.

1.1 Introduction

Active galactic nuclei (AGNs) release large amounts of energy to their environments, in several forms. In luminous AGNs such as Seyfert nuclei and quasars, the most obvious output is radiative; indeed, radiation can affect the environment through both radiation pressure and radiative heating. Although jets and winds are usually associated with radio galaxies, recent theoretical and observational developments suggest that the kinetic energy output may be as important as (or more important than) the radiative output for most accreting black holes. Finally, significant outputs of energetic particles, whether charged ("cosmic rays") or neutral (relativistic neutrons, neutrinos), cannot be ruled out.

In this review, I focus on the effects of kinetic energy feedback, since these are probably most relevant to the coevolution of black holes and galaxies. Recent observations of galaxy clusters suggest that AGN feedback plays a crucial role in regulating the thermodynamics of the intracluster medium (ICM). I discuss the nature of this interaction, then extrapolate to similar effects that may have operated in protogalaxies, during the era when supermassive black holes were growing toward their present masses.

1.2 Forms of Feedback

Before specializing to the case of kinetic energy injection in cluster atmospheres, I briefly review the various forms of energy injection and summarize their likely effects. This section is an updated version of the discussion given in Begelman (1993).
1.2.1 Radiation Pressure

Radiation pressure can exert a force on the gas via electron scattering, scattering and absorption on dust, photoionization, or scattering in atomic resonance lines. Electron scattering is the simplest mechanism to treat, with a cross section of $\langle \sigma / H \rangle \sim 7 \times 10^{-25} x$ cm$^{-2}$ per hydrogen atom, where x is the ionized fraction. The maximum column density over which the force can be exerted is given by $N_{H,max} \sim \langle \sigma / H \rangle^{-1} \sim 2 \times 10^{24} x^{-1}$ cm$^{-2}$.

If the radiation flux from the nucleus does not greatly exceed the Eddington limit of the central black hole, the radiation force exerted through electron scattering will have a relatively minor dynamical effect on the gas in the host galaxy, compared to gravitational and thermal pressure forces. In contrast, radiation pressure acting on dust can exert a much larger force per H atom, although over a correspondingly smaller column density. If we assume a dust-to-gas ratio (by mass) of 0.01, a typical grain size a, and a total cross section per grain of the same order as the geometric cross section (a reasonable assumption for UV and soft X-ray photons hitting $\sim 0.1 \mu$m grains), then the cross section per H atom exceeds that for electron scattering in fully ionized gas by a factor of order $10^{3} (a/0.1 \mu$m$^{-1})$. The force exerted per particle is higher by the same factor, but the column density affected is only $2 \times 10^{19} (a/0.1 \mum^{-1}$) cm$^{-2}$. Dopita and collaborators have argued that this form of pressure could dominate the dynamics of narrow emission-line regions in AGNs, under certain conditions, and could be crucial for regulating the ionization state (Dopita et al. 2002; Dopita 2003).

The force exerted on $\sim 10^{4} - 10^{5}$ K gas as a result of steady-state photoionization and recombination is characterized by the mean cross section $\langle \sigma / H \rangle \sim 10^{-18} (1-x)$ cm2. Photoionization equilibrium predicts that $(1-x) \sim 10^{-4} p_{gas}/p_{rad}$, where p_{gas} and p_{rad} are the gas pressure and pressure of ionizing radiation, respectively. (Strictly speaking, one should use $4\pi J/c$ instead of p_{rad}, where J is the mean intensity. However, use of p_{rad} is quantitatively correct and promotes a more physically intuitive discussion.) Thus, we can write $\langle \sigma / H \rangle \sim 10^{-22} p_{gas}/p_{rad}$ cm2. Note that p_{gas}/p_{rad} is just the reciprocal of the “ionization parameter” Ξ defined by Krolik, McKee, & Tarter (1981). The force per H atom exerted through photoionization is $200 p_{gas}/p_{rad}$ times greater than that exerted through electron scattering.

The largest forces per H atom are possible through scattering in UV resonance lines. For species i, the effective cross section is

$$\langle \sigma / H \rangle \sim \frac{1}{\Delta \nu_{D} m_{H} c} (A_{i} X_{i} f_{i}),$$

(1.1)

where $\Delta \nu_{D}$ is the Doppler width of the line and A_{i}, X_{i}, and f_{i} are, respectively, the abundance of element i, the fraction of the element in the relevant ionization state, and the oscillator strength of the transition. For important resonance lines such as those of C IV, Si IV, and N V, $A_{i} X_{i} f_{i}$ can attain values of order 10^{-4} for cosmic abundances. The fractional Doppler width, at $T \sim 10^{4}$ K, is $\Delta \nu_{D}/\nu \sim 10^{-4}$; hence, we find that the mean cross section can be as large as 10^{-17} cm2 and the corresponding force as much as seven orders of magnitude larger than electron scattering. The drawback is that the bandwidth over which resonance-line scattering is effective is extremely small, fractionally of order $\sim 10^{-4}$ of the ionizing spectrum for each strong resonance line. The amount of momentum available from such a small bandwidth is very small. Therefore, in order for resonance-line scattering to be dynamically important, (1) the gas must accelerate, so that new portions of the spectrum are continuously Doppler shifted into the line (the basis for the Sobolev approximation), and (2)
there must be a significant number of lines contributing at different wavelengths. Models of UV resonance-line acceleration for O-star winds (Castor, Abbott, & Klein 1975a) have been adapted to explain the fast ($v \rightarrow 0.1c$) outflows in broad absorption-line (BAL) QSOs (Arav & Li 1994; Arav, Li, & Begelman 1994; Murray et al. 1995), where there is circumstantial evidence for acceleration by radiation pressure (Arav 1996; Arav et al. 1999).

For AGN radiation acting on general interstellar matter, the radiation pressure force will be exerted mainly through dust and photoionization. Dynamical effects can be significant if $p_{rad} > p_{ISM}$, where p_{ISM} is the pressure in the undisturbed gas and

$$p_{rad} = \frac{L}{4\pi R^2 c} = 3 \times 10^{-9} L_{46} R_{kpc}^{-2} \text{ dyne cm}^{-2} \quad (1.2)$$

for gas situated R_{kpc} kpc from an isotropic source of ionizing radiation with luminosity $10^{46} L_{46}$ erg s$^{-1}$.

The maximum column density in a slab of gas that can be fully ionized by AGN continuum is given by

$$N_{H,ion} \sim 10^{22} \ln \left(1 + \frac{p_{rad}}{p_{ISM}}\right) \text{ cm}^{-2} \quad (1.3)$$

if dust absorption is neglected, and only slightly smaller if a cosmic dust abundance is taken into account. If $p_{ISM} < p_{rad}$, then $N_{H,ion}$ gives the depth to which an irradiated cloud will be “pressurized” by the radiation. Differential pressure forces between the front and back of a cloud can lead to a “pancake effect” (Mathews 1982), which tends to squash irradiated clouds down to a column density of order $N_{H,ion}$.

Radiative Heating

Gas exposed to ionizing radiation from an AGN tends to undergo an abrupt transition from the typical H II region temperature, $\sim 10^4$ K, to a higher temperature and ionization state when p_{gas}/p_{rad} falls below some critical value, which lies in the range $\sim 0.03-0.1$ (McCray 1979; Krolik et al. 1981). The “hot phase” equilibrium temperature is close to the temperature at which Compton cooling balances inverse Compton heating, which can be $T_{IC} \sim 10^6 - 10^7$ K for AGN spectra.

Clouds with column densities greater than $N_{H,ion}$ will not heat up all at once. Only the surface layers will be ablated, and the back-pressure of the ablated gas will keep the cloud interior at a high enough pressure to avoid immediate heating (Begelman, McKee, & Shields 1983; Begelman 1985). Depending on the size of the cloud and the timescales involved, the heated gas may reach a temperature $T_s \sim 10^5 - 10^6$ K at the point at which it becomes supersonic with respect to the cloud surface. A critical condition at the sonic point determines the mass flux per unit area, which is proportional to $p_{rad}/T_{s}^{1/2}$:

$$\dot{N} \sim \left(6 \times 10^6 - 6 \times 10^7\right) \frac{L_{46}}{R_{kpc}^2} \text{ cm}^{-2} \text{ s}^{-1}. \quad (1.4)$$

The lifetime of a cloud against ablation by X-ray heating is given by

$$\frac{N}{\dot{N}} \sim \left(5 \times 10^6 - 5 \times 10^7\right) \frac{R_{kpc}^2}{L_{46}} \frac{N_H}{10^{22}} \text{ cm}^{-2} \text{ yr}, \quad (1.5)$$

which corresponds to a global ablation rate of
M. C. Begelman

\[\dot{M}_{\text{det}} \sim (20 - 200)C L_{46} \ M_\odot \ \text{yr}^{-1} \] \hspace{1cm} (1.6)

for gas with a covering factor \(C \). The effects of X-ray heating on the evolution of the ISM in a spiral galaxy were studied by Begelman (1985) and by Shanbhag & Kembhavi (1988). Possible observable consequences of X-ray heating include: (1) elimination of cool ISM phases from the inner parts of the galaxy, which would allow UV radiation to penetrate to much larger distances than would otherwise be possible; (2) modification of ISM phase structure by preferential destruction of small clouds; only clouds (e.g., giant molecular clouds) with a sufficiently large column density would survive long enough to be observed; and (3) generation of peculiar cloud velocities > 100 km s\(^{-1}\), via the "rocket effect," with a random component introduced through cloud-cloud shadowing. The importance of these effects is highly uncertain as they depend critically on the geometric distribution of the dense phases of the ISM, and on the replenishment of ISM through stellar evolutionary and other processes.

1.2.3 Energetic Particles

In addition to charged relativistic particles that can diffuse through the surrounding medium ("cosmic rays"), AGNs may also emit "exotic" particle outflows, consisting, for example, of relativistic neutrons and neutrinos (Begelman, Rudak, & Sikora 1990). These would tend to deposit their energy in a volume-distributed fashion, rather than in impulsive fashion at a shock front. Even neutrinos, if they are sufficiently energetic — TeV or above — could be absorbed by nearby stars and heat their interiors (Czerny, Sikora, & Begelman 1991).

Ultrarelativistic neutrons could have particularly interesting effects since relativistic time dilation would allow them to travel large distances unimpeded before they decay and couple to the ambient plasma (Sikora, Begelman, & Rudak 1989). This form of energy injection could drive powerful, fast winds that start far from the central engine (e.g., Begelman, de Kool, & Sikora 1991). We note, however, that to date there is no compelling evidence that most AGNs emit a large fraction of their energy in this form. Dynamical effects of neutron winds have been invoked recently to explain certain features of gamma-ray burst afterglows (Beloborodov 2003; Bulik, Sikora, & Moderski 2003).

1.2.4 Kinetic Energy

In addition to the obvious example of radio galaxies, which often release the bulk of their power in the form of jets (Rees et al. 1982; Begelman, Blandford, & Rees 1984), most if not all accreting black holes could produce substantial outflows. Numerical simulations suggest that accretion disks, which transfer angular momentum and dissipate binding energy via magnetorotational instability, may inevitably produce magnetically active coronae (Miller & Stone 2000). These likely generate outflows that are further boosted by centrifugal force (Blandford & Payne 1982). We have already mentioned the possible role of radiation pressure in accelerating winds in BAL QSOs — such outflows could also be boosted hydromagnetically. Whatever the acceleration mechanism(s), these winds are probably accelerated close to the central engine, and therefore should be regarded as part of the kinetic energy output. New spectral analyses of BAL QSOs, made possible by observations with the Hubble Space Telescope, imply that the absorption can be highly saturated (Arav et al. 2001) and may originate far from the nucleus (de Kool et al. 2001). This indicates that...
the kinetic energy in the BAL outflow is larger than previously thought and can approach the radiation output. Moreover, new evidence suggests that relativistic jets are common or ubiquitous in X-ray binaries containing black hole candidates. While the energetics of these outflows are not yet fully established, their environmental impacts may be substantial (Heinz 2002).

Unless radiation removes at least 2/3 of the liberated binding energy, very general theoretical arguments indicate that rotating accretion flows must lose mass. The physical reason is that viscous stresses transport energy outward, in addition to angular momentum. If radiation does not remove most of this energy, then a substantial portion of the gas in the flow will gain enough energy to become unbound (Narayan & Yi 1995; Blandford & Begelman 1999). Blandford (this volume) discusses this effect and its consequences in more detail. While it may sometimes be possible to tune the system so that the gas circulates without escaping, any excess dissipation (i.e., increase of entropy) near a free surface of the flow will lead to outflow. There are several possible sources of such dissipation, including magnetic reconnection, shocks, radiative transport, and the magnetocentrifugal coupling mentioned above. If radiative losses are very inefficient, outflows can remove all but a small fraction of the matter supplied at large radii.

1.3 Energy Budget

At an energy conversion efficiency of ϵc^2 per unit of accreted mass, an accreting black hole liberates $10^{19}(\epsilon/0.01)$ erg per gram. In principle the efficiency could be ~ 6 to more than 40 times larger than this (depending on the black hole spin and boundary conditions near the event horizon: Krolik 1999; Agol & Krolik 2000), but we have chosen deliberately to be conservative. ϵ might be viewed as the efficiency of kinetic energy production, since this is probably the most effective means by which black holes affect their surroundings. In a galactic bulge with a velocity dispersion of $200\sigma_{200}$ km s$^{-1}$, the accretion of one gram liberates enough energy to accelerate $2 \times 10^4(\epsilon/0.01)\sigma_{200}^2$ gm to escape speed — provided that most of the energy goes into acceleration. Given a typical ratio of black hole mass to galactic bulge mass of $\sim 10^{-3}$, feedback from a supermassive black hole growing toward its final mass could easily exceed the binding energy of its host galaxy’s bulge.

Under many circumstances, feedback via kinetic energy injection can be quite efficient. Both radiative heating and acceleration by radiation pressure, on the other hand, have built-in inefficiencies. In both photoionization heating and Compton heating, only a fraction of the photon energy goes into heat, the majority being reradiated. For example, the Compton heating efficiency per scattering is $\sim kT_{IC}/m_e c^2 < 10^{-2}$ for typical AGN Compton temperatures. Acceleration by radiation pressure extracts only a fraction $\sim v/c$ of the available energy per scattering, where v is the speed of the accelerated gas. For outflows in BAL QSOs, with velocities of up to $\sim 0.2c$, this can represent an efficient energy injection mechanism, even for single scattering. The energetic efficiency of radiative acceleration is increased if the photons scatter multiple times, to $\tau v/c$, where τ is the optical depth.

Even the efficacy of kinetic energy injection depends on the structure of the medium in which it is deposited. The speed of a shock or sound wave propagating through a medium with a “cloudy” phase structure will be highest in the phase with the lowest density (the intercloud medium). Dense regions will be overrun and left behind by the front, as first pointed out by McKee & Ostriker (1977) in connection with supernova blast waves propagating into
the interstellar medium. Consequently, most of the energy goes into the gas which has the lowest density (and is the hottest) to begin with. The global geometric structure of the ambient gas is important as well. Since a wind or hot bubble emanating from an AGN will tend to follow the “path of least resistance,” a disklike structure can lead to a “blowout” of the hot gas along the axis. A more spherically symmetric gas distribution will tend to keep the AGN energy confined in a bubble.

1.4 AGN Feedback in Clusters

AGN feedback due to kinetic energy injection is perhaps most evident in clusters of galaxies. Recent observations of intracluster gas by Chandra and XMM-Newton indicate that some energy source is quenching so-called “cooling flows” in clusters of galaxies (Allen et al. 2001; Fabian et al. 2001; Peterson et al. 2001). Energy injected by intermittent radio galaxy activity at the cluster center is the most likely culprit. The same form of energy input, spread over larger scales, could be responsible for an inferred “entropy floor” in the gas bound to clusters of galaxies (Valageas & Silk 1999; Nath & Roychowdury 2002).

1.4.1 Evolution of Radio Galaxies

Radio galaxies evolve through three stages, only the first of which is dominated by the jet momentum. Although the radio morphologies in powerful (Fanaroff-Riley class II) sources are dominated by the elongated lobes and compact hotspots, most of the energy accumulates in a faint “cocoon” that has a thick cigar shape (Blandford & Rees 1974; Scheuer 1974). The same is probably true of the weaker FR I sources, which appear to be dominated by emission from turbulent regions along the jet. The cocoon is overpressured with respect to the ambient medium, and drives a shock “sideways” at the same time as the jets are lengthening their channels by depositing momentum. The sideways expansion quickly becomes competitive with the lengthening. The archetypal FR II source Cygnus A, for example, which appears to be long and narrow in the radio, displays an aspect ratio \(< 3\) in X-rays (although the hotspots remain prominent in the X-ray image: Wilson, Young, & Shopbell 2000).

Dynamically, active radio galaxies with overpressured cocoons resemble spherical, supersonic stellar wind bubbles (Castor, McCray, & Weaver 1975b; Begelman & Cioffi 1989). To zeroth order, the evolution of the bubble can be described by a self-similar model in which the internal and kinetic energy are comparable, and share the integrated energy output of the wind. The speed of expansion is then

\[\nu \sim \left(\frac{L_j}{\rho} \right)^{1/5} R^{-2/3}, \]

where \(L_j\) is the power of the jets, \(\rho\) is the ambient density, and \(R\) is the radius of the shock. The supersonic expansion phase ends when the expansion speed drops below the sound speed in the ambient medium. This occurs at a radius

\[R_{\text{sonic}} \sim 5 \left(\frac{\langle L_{43} \rangle}{n} \right)^{1/2} T_{\text{keV}}^{-1/4} \text{ kpc}, \]

where \(\langle L_{43} \rangle\) is the time-averaged jet power in units of \(10^{43}\) erg s\(^{-1}\), \(n\) is the ambient particle density in units of cm\(^{-3}\), and \(T_{\text{keV}}\) is the ambient temperature in units of keV. Thereafter the evolution is dominated by buoyancy (Gull & Northover 1973). We have chosen fiducial
parameters that are fairly typical of conditions in cD galaxies at the centers of rich clusters — note how small R_{sonic} is, compared to a typical cluster core radius, or even the core radius of the host galaxy. Cygnus A, which has been expanding for several million years, is hundreds of kpc across, and is still overpressured by a factor $\sim 2-3$ with respect to the ambient medium, is the exception rather than the rule. It is a very powerful source expanding into a relatively tenuous ambient medium (Smith et al. 2002). In the X-ray emitting clusters that we discuss below the central radio galaxies seem to have evolved into the buoyancy-driven stage fairly early.

At least two additional caveats must be taken into account in considering the effects of radio galaxies on their surroundings. First, the active production of jets is probably intermittent — there is indirect statistical evidence that the duty cycle may be as short as 10^5 yr (Reynolds & Begelman 1997). During "off" periods, the overpressured bubble continues to expand as a blast wave with fixed total energy, but the radio emissivity may rapidly fade. Second, the direct influence of the radio galaxy on its surroundings does not end with the onset of buoyancy-driven evolution. As I describe below, the buoyant bubbles of very hot (possibly relativistic) plasma seem fairly immiscible with their surroundings. They can "rise" for considerable distances, spreading the AGN's energy output widely. Both of these points will figure prominently in the next section.

1.4.2 Quenching of Cooling Flows

Radiative cooling of gas in the central regions of galaxy clusters often occurs on a timescale much shorter than the Hubble time. In the absence of any heat sources, this implies that the ICM must settle subsonically toward the center in order to maintain hydrostatic equilibrium with the gas at larger radii. The mass deposition rates predicted by this "cooling flow" model are very high and range typically from 10 to 1000 solar masses per year. X-ray observations made prior to the launch of Chandra seemed to be broadly consistent with this picture (Fabian 1994). However, the picture has not held up well in the era of Chandra and XMM-Newton. Although both gas temperatures and cooling times are observed to decline toward cluster cores, new observations show a remarkable lack of emission lines from gas at temperatures below ~ 1 keV in the central regions of clusters (Allen et al. 2001; Fabian et al. 2001; Peterson et al. 2001), suggesting a temperature "floor" (Peterson et al. 2003) at about $1/2 \sim 1/3$ of the temperature at the "cooling radius" (where the cooling timescale equals the Hubble time). Moreover, the mass deposition rates obtained with Chandra and XMM-Newton using spectroscopic methods are many times smaller than earlier estimates based on ROSAT and Einstein observations, as well as more recent morphological estimates based on cooling rates alone (David et al. 2001; McNamara et al. 2001; Peterson et al. 2001, 2003). The strong discrepancies between these results indicate that the gas is prevented from cooling by some heating process.

The most plausible candidates for heating the ICM are thermal conduction from the outer parts of the cluster (Bertschinger & Meiksin 1986; Narayan & Medvedev 2001; Voigt et al. 2002; Zakamska & Narayan 2003) and kinetic energy injected by a central AGN. Given the metallicities and colors of the galaxies hosting cooling flows, heating by supernovae and hot stellar winds seems marginally adequate at best (Wu, Fabian, & Nulsen 2000). AGN heating is especially attractive because $\sim 70\%$ of cD galaxies in the centers of cooling flow clusters are radio galaxies (Burns 1990). The ensemble-averaged power from radio galaxies is more than sufficient to offset the mean level of cooling (Peres et al. 1998; Böhringer et al. 2002),
although not every cluster shows strong radio galaxy activity at the present time. Moreover, AGN heating is naturally concentrated toward the center of the cluster, where the risk of runaway cooling ("cooling catastrophe") is greatest.

It is one thing to argue, on energetic grounds, that AGN feedback is capable of replenishing the heat lost to radiation in cooling flows. It is quite another to determine how this happens in detail. Because of the steep dependence of the radiative cooling function on density, it has proven notoriously difficult to "stabilize" cooling flows, so that heating approximately balances cooling at all radii. For example, Meiksin (1988) found that conduction could not stop cooling catastrophes in the central regions of clusters, although it could offset cooling in the outer parts if the temperature gradient were not too large. But even this requires fine tuning of the conductivity (via a "magnetic suppression factor" relative to the Spitzer value) and boundary conditions, as too large a conduction rate will lead to a nearly isothermal temperature distribution, contrary to observations. Indeed, as Loeb (2002) points out, a large enough conductivity to suppress cooling flows, if extrapolated to cluster envelopes, would cause them to evaporate. Early attempts to offset cooling using a central heat source (e.g., Loewenstein, Zweibel, & Begelman 1991, using cosmic rays) ran into similar fine-tuning problems.

The episodic model for cluster heating (Binney & Tabor 1995; Ciotti & Ostriker 1997, 2001) attempts to avoid these generic difficulties. No steady state is sought. Instead, the cluster atmosphere goes through repeated cycles of cooling and infall — which fuel the central AGN — followed by heating and outflow. The rapid heating and expansion of the ICM turns off the fuel supply to the AGN, the initial conditions of the cluster atmosphere are "reset," and the process repeats. The energy injection process, whether due to jets (as in Binney & Tabor) or inverse Compton heating (as in Ciotti & Ostriker), is violent and heats the ICM from the inside out. This creates an observational challenge for this class of models, since they generally predict that the temperature should decrease outward during the heating phase — the opposite to what is seen. Nor are the expected strong shocks observed. If one concludes from this that the heating episodes somehow elude observation, the same can be said for the cooling catastrophes — the inevitable conclusion of each cooling phase. These are also not seen, although Kaiser & Binney (2003) point out that they may be sufficiently short-lived to have evaded detection in existing datasets. (We also note that the Compton temperatures assumed by Ciotti & Ostriker are based on extreme — and highly beamed — spectra of blazars, and are probably far too high to be realistic. Using more realistic AGN Compton temperatures will weaken this mechanism to the point where it is probably not effective. Thus, if episodic mechanisms work at all, it is probably through kinetic energy injection.)

The absence of strong shocks bounding radio galaxy lobes is a major observational surprise. For example, the X-ray–bright rims surrounding the radio lobes of 3C 84 (NGC 1275) in the Perseus cluster are cooler than their surroundings (Fabian et al. 2000; Fig. [1], contrary to predictions (Heinz et al. 1998). This probably results from the entrainment and lifting of low-entropy gas, from the cluster center, into regions where the ambient entropy is higher (Reynolds, Heinz, & Begelman 2001, 2002; Quilis, Bower, & Balogh 2001; Brighenti & Mathews 2002; Nulsen et al. 2002). It is probably not due to the in situ radiative cooling of shock-compressed gas bounding the radio lobes. This shows that 3C 84 has already evolved to the buoyancy-driven stage; similar conclusions can be drawn for other cluster cores with prominent radio sources.
Another surprise is the apparent “immiscibility” of the hot (possibly relativistic) plasma injected by the jets and the thermal ICM. It has been known since the time of ROSAT (Böhringer et al. 1993; McNamara, O’Connell, & Sarazin 1996) that the plasma in radio lobes can displace cooler thermal gas, creating “holes” in the X-ray emission. More sensitive Chandra imaging has shown not only how common such holes are, but also how long they can persist. In particular, numerous examples of “ghost cavities” have been found (e.g., McNamara et al. 2001; Johnstone et al. 2002; Mazzotta et al. 2002). These are presumably buoyant bubbles left over from earlier epochs of activity; several examples are seen in Fig. 1.1.

The persistence of highly buoyant bubbles may be key to understanding how AGNs heat cluster atmospheres. Strongly positive entropy gradients observed in cluster atmospheres (David et al. 2001; Böhringer et al. 2002) appear to rule out standard convection. But the Schwarzschild criterion refers to heat transport by marginally buoyant fluid elements, not
the highly buoyant bubbles that appear to be present. Numerical simulations are beginning to address how buoyant plumes of plasma injected by jets can increase the potential and thermal energy of the ICM (Quilis et al. 2001; Reynolds et al. 2001, 2002; Churazov et al. 2002; Brüggen & Kaiser 2002); spread out laterally (into “mushroom clouds”: Churazov et al. 2001), yielding more even distribution of the injected energy; and persist long after the observable radio lobes have faded (Brüggen et al. 2002; Reynolds et al. 2002; Basson & Alexander 2003). The latter point is especially important given statistical (Reynolds & Begelman 1997) and morphological (e.g., Virgo cluster: Young, Wilson, & Mundell 2002; Forman et al. 2003; Perseus cluster: Fabian et al. 2000, 2002) evidence that typical radio galaxy activity is intermittent, possibly with a short duty cycle. Moreover, both radio and X-ray observations suggest that the energy ultimately gets distributed remarkably evenly (e.g., Owen, Eilek, & Kassim 2000), despite the apparent immiscibility noted above. Whether this mixing is due to the propagation of (magneto-) acoustic waves, buoyancy, Kelvin-Helmholtz instabilities, unsteadiness in the jets, mixing by “cluster weather” (due, e.g., to galaxy motion or cluster mergers), or other effects remains unclear.

Bubbles rising subsonically do pdV work on their surroundings as they traverse the pressure gradient. Since the timescale for the bubbles to cross the cluster (of order the free-fall time) is much shorter than the cooling timescale, the flux of bubble energy through the ICM approaches a steady state, implying that details of the energy injection process — such as the number flux of bubbles (e.g., one big one or many small ones), the bubble size, filling factor, and rate of rise — do not affect the mean heating rate. If we assume that the acoustic energy generated by the pdV work is dissipated within a pressure scale height of where it is generated, we can devise an average volume heating rate for the ICM, as a function of radius (Begelman 2001b):

$$H \sim \langle L \rangle \left(\frac{p}{p_0} \right)^{1/4} \left| \frac{d \ln p}{d \ln r} \right| .$$

In eq. (1.9), $\langle L \rangle$ is the time-averaged power output of the AGN, $p(r)$ is the pressure inside the bubbles (and p_0 is the pressure where the bubbles are formed), and the exponent $1/4$ equals $(\gamma - 1)/\gamma$ for a relativistic plasma (the exponent would be $2/5$ for a nonrelativistic gas). A major assumption of the model, that the pdV work is absorbed and converted to heat within a pressure scale height, will have to be assessed using 2D and 3D numerical simulations and studies of the microphysics of cluster gas. We have also assumed that the energy is spread evenly over 4π sr, a likely consequence of buoyancy.

The most important property of the above “effervescent heating” rate is its proportionality to the pressure gradient (among other factors), since this determines the rate at which pdV work is done as the bubbles rise. Since thermal gas that suffers excess cooling will develop a slightly higher pressure gradient, the effervescent heating mechanism targets exactly those regions where cooling is strongest. Therefore, it has the potential to stabilize radiative cooling (Begelman 2001b). This potential is borne out in 1D, time-dependent numerical simulations (Ruszkowski & Begelman 2002), which show that the flow settles down to a steady state that resembles observed clusters, for a wide range of parameters and without fine-tuning the initial or boundary conditions (Fig. 1.2). Even though these models include conduction (at 23% of the Spitzer rate), which may be necessary for global stability (Zakamska & Narayan 2003), the heating is overwhelmingly dominated by the AGN ($\geq 4 : 1$, at all radii; see Fig. 1.3). The mass inflow rate through the inner boundary, which determines the
AGN feedback in these simulations, stabilizes to a reasonable value far below that predicted by cooling flow models.

1.4.3 The “Entropy Floor”

AGN feedback may do more than offset radiative losses in the cores of certain clusters. Cluster X-ray luminosities and gas masses increase with temperature more steeply than predicted by hierarchical merging models (Markevitch 1998; Nevalainen, Markevitch, & Forman 2000). In other words, the atmospheres in less massive clusters and groups are hotter than they should be, given the gravitational interactions that assembled them. These correlations apply to regions of clusters well outside the cooling radius, as well as to clusters without cooling cores. They can be interpreted as evidence for an entropy “floor” (Lloyd-Davies, Ponman, & Cannon 2000), indicating that low-entropy material is removed either by cooling and mass dropout (presumably to form stars: Bryan 2000; Voit et al. 2002) or...
by substantial AGN heating before or during cluster assembly (e.g., Valageas & Silk 1999; Nath & Roychowdury 2002; McCarthy et al. 2002, and references therein).

Mechanisms like those described above should also operate on these larger scales. For example, if the pressure gradient inside the cooling radius is not too steep, the effervescent heating model predicts that a substantial fraction of the injected energy will escape to radii where the cooling time is longer than the Hubble time. The calculations have not been done yet.

1.5 Feedback and the Growth of Supermassive Black Holes

The correlations measured between black hole masses and the velocity dispersions and/or masses of their host galaxies’ bulges (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000) suggest a direct relationship between supermassive black hole (SMBH) formation and galaxy formation. Inventories of quasar light (Soltan 1982; Yu & Tremaine 2002, and references therein) and the hard X-ray background (Fabian & Iwasawa 1999) suggest that much of the black hole growth occurred through (radiatively efficient) accretion, rather than through hierarchical mergers of smaller black holes. If even a few per-
cent of the liberated energy emerged in kinetic form, as seems very likely, then there would have been more than enough energy to unbind the gas in the protogalactic host. Thus, several authors have suggested that SMBHs limited their own growth, or even the growth of the host galaxy, by depositing this energy in their surroundings (e.g., Silk & Rees 1998; Blandford 1999; Fabian 1999). If the energy is deposited adiabatically, the feedback luminosity L_f can unbind the gas provided that

$$L_f > \frac{\sigma^5}{G} = 5 \times 10^{41} \sigma_{200}^5 \text{erg s}^{-1}. \quad (1.10)$$

This implies a limiting black hole mass

$$M_\bullet \sim 10^8 \left(\frac{L_f}{0.004L_E} \right)^{-1} \sigma_{200}^5 \text{M}_\odot. \quad (1.11)$$

where L_E is the Eddington limit. SMBHs must have accreted a significant fraction of their masses at close to the Eddington limit (Blandford 1999; Fabian 1999), since statistical arguments suggest that black hole growth took only a few Eddington e-folding times (\sim few \times 40 Myr), and since at least some supermassive black holes existed only 1–2 Gyr after the Big Bang. Arguments based on the quasar luminosity function suggest that the most massive black holes might even have grown at several times the Eddington rate (Begelman 2001a, 2002) or with a higher radiative efficiency than is normally assumed (Yu & Tremaine 2001).

The above estimate assumes weak radiative losses in the protogalactic medium. However, the protogalactic environment is likely to be even more cooling-dominated than cluster cores (White & Rees 1978; Fabian 1999). If cooling is important it would require more energy to unbind the gas, by a factor that could be as large as $c/\sigma = 1500\sigma_{200}^{-1}$. The limiting mass is then

$$M_\bullet \sim 6 \times 10^8 \left(\frac{L_f}{L_E} \right)^{-1} \sigma_{200}^4 \text{M}_\odot. \quad (1.12)$$

The difference between these two limiting cases is analogous to the difference between the expansion of a supernova remnant in the energy-conserving Sedov (blast wave) phase, and its rapid deceleration during the momentum-conserving (radiative) “snowplow” phase. Reality is likely to be somewhere in between, with the flow of AGN energy partially trapped by density inhomogeneities that result from rapid cooling.

1.6 Conclusions

AGN feedback effects, potentially enormous on the basis of energetic arguments, depend sensitively on both the form of feedback and the detailed structure of the environment. The efficiency of feedback due to radiation is often small, except under particular circumstances. Kinetic energy injected by the AGN tends to be trapped by the ambient medium, leading to a higher efficiency. Recent theoretical advances suggest that accreting black holes often return a large fraction of the liberated energy to the environment in the form of winds and jets.

The X-ray emitting atmospheres in clusters of galaxies provides an excellent testbed for the effects of AGN feedback. Recent X-ray observations show that radio galaxies can blow long-lasting “holes” in the ICM, and may offset the effects of radiative losses well enough to
M. C. Begelman

hamper large-scale inflows. Further observations, and sophisticated numerical simulations, will be needed to fully understand these interactions.

This work was supported in part by NSF grant AST–9876887. I thank Mateusz Ruszkowski for many useful discussions, and for supplying Fig. 1.3.

References

Agol, E., & Krolik, J. H. 1999, ApJ, 528, 161
Allen, S. W., et al. 2001, MNRAS, 324, 842
Arav, N. 1996, ApJ, 465, 617
Arav, N., et al. 2001, ApJ, 561, 118
Arav, N., Korista, K. T., de Kool, M., Junkkarinen, V. T., & Begelman, M. C. 1999, ApJ, 516, 27
Arav, N., & Li, Z. Y. 1994, ApJ, 427, 700
Arav, N., Li, Z. Y., & Begelman, M. C. 1994, ApJ, 432, 62
Basson, J. F., & Alexander, P. 2003, MNRAS, submitted [astro-ph/0207668]
Begelman, M. C. 1985, ApJ, 297, 492
——. 1993, in The Environment and Evolution of Galaxies, ed. J. M. Shull & H. A. Thronson Jr. (Dordrecht: Kluwer), 369
——. 2001a, ApJ, 551, 897
——. 2001b, in Gas and Galaxy Evolution, ed. J. E. Hibbard, M. P. Rupen, & J. H. van Gorkum (San Francisco: ASP), 363
——. 2002, ApJ, 568, L97
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, Rev. Mod. Phys., 56, 255
Begelman, M. C., & Cioffi, D. F. 1989, ApJ, 345, L21
Begelman, M. C., de Kool, M., & Sikora, M. 1991, ApJ, 382, 416
Begelman, M. C., McKee, C. F., & Shields, G. A. 1983, ApJ, 271, 70
Begelman, M. C., Rudak, B., & Sikora, M. 1990, ApJ, 362, 38 (Erratum: 370, 791 [1991])
Beloborodov, A. M. 2003, ApJ, submitted [astro-ph/0209228]
Bertschinger, E., & Meiksin, A. 1986, ApJ, 306, L1
Binney, J., & Tabor, G. 1995, MNRAS, 276, 663
Blandford, R. D. 1999, in Galaxy Dynamics, ed. D. R. Merritt, M. Valluri, & J. A. Sellwood (San Francisco: ASP), 87
Blandford, R. D., & Begelman, M. C. 1999, MNRAS, 303, L1
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Blandford, R.D., & Rees, M. J. 1974, MNRAS, 169, 395
Böhringer, H., Matsushita, K., Churazov, E., Ikebe, Y., & Chen, Y. 2002, A&A, 382, 804
Böhringer, H., Voges, W., Fabian, A. C., Edge, A. C., & Neumann, D. M. 1993, MNRAS, 318, L25
Brighenti, F., & Mathews, W. G. 2002, ApJ, 574, L11
Brüggen, M., & Kaiser, C. R. 2002, Nature, 418, 301
Brüggen, M., Kaiser, C. R., Churazov, E., & Enßlin, T. A. 2002, MNRAS, 331, 545
Bryan, G. L. 2000, ApJ, 544, L1
Bulik, T., Sikora, M., & Moderski, R. 2003, in Proc. XXXVIIth Rencontres de Moriond, Les Arcs, France, 4-9 March 2002, in press [astro-ph/0209339]
Burns, J. O. 1990, AJ, 99, 14
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975a, ApJ, 195, 157
Castor, J., McCray, R., & Weaver, R. 1975b, ApJ, 200, L107
Churazov, E., Brüggen, M., Kaiser, C. R., Böhringer, H., & Forman, W. 2001, ApJ, 554, 261
Churazov, E., Sunyaev, R., Forman, W., & Böhringer, H. 2002, MNRAS, 332, 729
Ciotti, L., & Ostriker, J. P. 1997, ApJ, 487, L105
——. 2001, ApJ, 551, 131
Czerny, M., Sikora, M., & Begelman, M. C. 1991, in Relativistic Hadrons in Cosmic Compact Objects, Lecture Notes in Physics, Vol. 391 (Berlin: Springer-Verlag), 23
David, L. P., Nulsen, P. E. J., McNamara, B. R., Forman, W., Jones, C., Ponman, T., Robertson, B., & Wise, M. 2001, ApJ, 557, 546
M. C. Begelman

de Kool, M., Arav, N., Becker, R. H., Gregg, M. D., White, R. L., Laurent-Muehleisen, S. A., Price, T., & Korista, K. T. 2001, ApJ, 548, 609
Dopita, M. A. 2003, in The Evolution of Galaxies III - From Simple Approaches to Self-Consistent Models, ed. G. Hensler et al., ApS&S, in press [astro-ph/0208429]
Dopita, M. A., Groves, B. A., Sutherland, R. S., Binette, L., & Cecil, G. 2002, ApJ, 572, 753
Fabian, A. C. 1994, ARA&A, 32, 277
——. 1999, MNRAS, 308, L39
Fabian, A. C., et al. 2000, MNRAS, 318, L65
Fabian, A. C., Celotti, A., Blundell, K. M., Kassim, N. E., & Perley, R. A. 2002, MNRAS, 331, 369
Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., & Peterson, J. R. 2001, MNRAS, 321, L20
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Forman, W., Jones, C., Markevitch, M., Vikhlinin, A., & Churazov, E. 2003, in XIII Rencontres de Blois 2001, ed. M. Celnikier, in press [astro-ph/0207165]
Gebhardt, K., et al. 2000, ApJ, 539, L13
Gull, S. F., & Northover, K. J. E. 1973, Nature, 244, 80
Heinz, S. 2002, A&A, 388, L40
Heinz, S., Reynolds, C. S., & Begelman, M. C. 1998, ApJ, 501, 126
Johnstone, R. M., Allen, S. W., Fabian, A. C., & Sanders, J. S. 2002, MNRAS, 336, 299
Kaiser, C. R., & Binney, J. 2003, MNRAS, 338, 837
Krolik, J. H. 1999, ApJ, 515, L73
Krolik, J. H., McKee, C. F., & Tarter, C. B. 1981, ApJ, 249, 422
Lloyd-Davies, E. J., Ponman, T. J., & Cannon, D. B. 2000, MNRAS, 315, 698
Loeb, A. 2002, NewA, 7, 279
Loewenstein, M., Zweibel, E. G., & Begelman, M. C. 1991, ApJ, 377, 392
Magorrian, J., et al. 1998, AJ, 115, 2285
Markevitch, M. 1998, ApJ, 504, 27
Mathews, W. G. 1982, ApJ, 252, 39
Mazzotta, P., Kaasts, J. S., Paerels, F. B., Ferrigno, C., Colafrancesco, S., Meve, R., & Forman, W. R. 2002, ApJ, 567, L37
McCarthy, I. G., Babul, A., & Balogh, M. L. 2002, ApJ, 573, 515
McCray, R. 1979, in Active Galactic Nuclei, ed. C. Hazard & S. Mitton (Cambridge: Cambridge Univ. Press), 227
McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148
McNamara, B. R., et al. 2001,ApJ, 562, L149
McNamara, B. R., O’Connell, R. W., & Sarazin, C. L., 1996, AJ, 318, 91
Meiksin, A. 1988, ApJ, 334, 59
Miller, K. A., & Stone, J. M. 2000, ApJ, 534, 398
Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, ApJ, 451, 498
Narayan, R., & Medvedev, M. V. 2001, ApJ, 562, L129
Narayan, R., & Yi, I. 1995, ApJ, 444, 231
Nath, B. B., & Roychowdhury, S. 2002, MNRAS, 333, 145
Nevalainen, J., Markevitch, M., & Forman, W. 2000, ApJ, 532, 694
Nulsen, P. E. J., David, L. P., McNamara, B. R., Jones, C., Forman, W. R., & Wise, M. 2002, ApJ, 568, 163
Owen, F. N., Eilek, J. A., & Kassim, N. E. 2000, ApJ, 543, 611
Peres, C. B., Fabian, A. C., Edge, A. C., Allen, S. W., Johnstone, R. M., & White, D. A. 1998, MNRAS, 298, 416
Peterson, J. R., et al. 2001, A&A, 365, L104
Peterson, J. R., Kahn, S. M., Paerels, F. B., Kastra, J. S., Tamura, T., Bleeker, J. A. M., Ferrigno, C., & Jernigan, J. G. 2003, ApJ, submitted [astro-ph/03021062]
Quilis, V., Bower, R. G., & Balogh, M. L. 2001, MNRAS, 328, 1091
Rees, M. J., Begelman, M. C., Blanford, R. D., & Phinney, E. S. 1982, Nature, 295, 17
Reynolds, C. S., & Begelman, M. C. 1997, ApJ, 487, L135
Reynolds, C. S., Heinz, S., & Begelman, M. C. 2001, ApJ, 549, L179
——. 2002, MNRAS, 332, 271
Ruszkowski, M., & Begelman, M. C. 2002, ApJ, 581, 223
Scheuer, P. A. G. 1974, MNRAS, 166, 513
Shanbhag, S., & Kembhavi, A. 1988, ApJ, 334, 34
Sikora, M., Begelman, M. C., & Rudak, B. 1989, ApJ, 341, L33
Silk, J., & Rees, M. J. 1998, A&A, 331, L1
M. C. Begelman

Smith, D. A., Wilson, A. S., Arnaud, K. A., Terashima, Y., & Young, A. J. 2002, ApJ, 565, 195
Sołtan, A. 1982, MNRAS, 200, 115
Valageas, P., & Silk, J. 1999, A&A, 350, 725
Voigt, L. M., Schmidt, R. W., Fabian, A. C., Allen, S. W., & Johnstone, R. M. 2002, MNRAS, 335, L7
Voit, G. M., Bryan, G. L., Balogh, M. L., & Bower, R. G. 2000, ApJ, 576, 601
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
Wilson, A. S., Young, A. J., & Shopbell, P. L. 2000, ApJ, 544, L27
Wu, K. K. S., Fabian, A. C., & Nulsen, P. E. J. 2000, MNRAS, 318, 889
Young, A. J., Wilson, A. S., & Mundell, C. G. 2002, ApJ, 579, 560
Yu, Q., & Tremaine, S. 2002, MNRAS, 335, 965
Zakamska, N. L., & Narayan, R. 2003, ApJ, in press [astro-ph/0207127]