Examining the impact of social stressor stimuli in eliciting physiological reactivity in children and adolescents with autism spectrum disorder: a systematic review and meta-analysis protocol

Agnes S K Wong ☉, Samantha Burns ☉, Earl Woodruff

ABSTRACT

Introduction Stress is not experienced the same by everyone. Some individuals, such as individuals with autism spectrum disorder (ASD), are at risk of heightened sensitivity to stress responses. ASD is a neurodevelopmental disorder commonly characterised by deficits in social communication and social interaction. Among different stressor stimuli, social stressors are particularly worth our attention due to the social and communication challenges inherent in ASD. This study aims to systematically evaluate different social stressor stimuli in eliciting physiological reactivity in ASD, focusing on the children and adolescent population. Methods and analysis We designed a study protocol for this study and submitted it to PROSPERO for systematic review registration. Any studies with children and adolescents with ASD between the ages of 0 and 18 in clinical and community settings will be included. All types of social stressor interventions will be included. The outcome of interest will include studies with physiological activity of the participants being measured, for example, measures related to autonomic functioning, electrodermal functioning and cortisol level. The primary literature sources will be across four electronic databases: MEDLINE, Embase, PsycInfo and CINAHL in August 2021. The second source of literature will be across grey literature, including ProQuest Dissertations & Theses Global and across clinical trial registries in August 2021. Hand searching of references will be performed on the reference lists of all included studies. Two volunteers pursuing postgraduate-level studies will independently search and screen potential studies for eligibility. Finally, all references considered by hand searching will be reviewed by two researchers. The methodological quality of the research will be assessed by adopting the quality assessment used by a previous study. The assessment consists of four primary categories: descriptive validity, internal validity, external validity and statistical conclusion validity. Ethics and dissemination No ethical approval is required for this study. Results will be disseminated through conferences and publications in relevant peer-reviewed journals.

STRENGTHS AND LIMITATIONS OF THIS STUDY

⇒ This study comprehensively and uniquely examines the impact of social stressor stimuli in eliciting physiological reactivity in children and adolescents with autism spectrum disorder (ASD).
⇒ The results will have important implications for clinical practice and future research studies.
⇒ Only studies written in English will be included.
⇒ Only studies which adopted children and adolescents with ASD will be included.

INTRODUCTION

Stress can be defined as a real or perceived threat to an individual’s physiological or psychological integrity. An optimal amount of stress leads to positive outcomes such as learning and health. However, outcomes of stress generally function as an inverted U-shaped curve, where too high or too low a level of stress leads to detrimental consequences. For example, higher or lower than the optimal level of stress decreases memory. In addition, stress leads to different physiological responses such as changes in cardiac activity, perspiration and skin temperature. Neurobiologically, stress leads to changes in the autonomic nervous system (ANS) and the hypothalamic–pituitary–adrenal (HPA) axis. The ANS and HPA axes are essential regulators of modulating stress-related cardiovascular responsiveness and the vulnerability to stress-related disorders. For example, several studies have found elevated heart rate (HR) and cortisol level in participants
following a high level of stress,9 10 and prolonged exposure to stress predisposes us to illness.11

Research on stress impacts has primarily used experimental methods, such as providing participants with stimuli and recording the physiological responses, referred to as stressor stimuli. In this study, stressor stimuli refer to the situations hypothesised or intended to cause stress in the participants.12 Physiological reactivity refers to the difference between physiological activation in response to the stressor stimuli compared with the baseline level, which is commonly measured as the amount of activation in the ANS and HPA axes.12 The activation of the ANS is commonly measured by two categories of functioning: (1) autonomic functioning such as HR, heart rate variability (HRV) and respiratory sinus arrhythmia (RSA), and (2) electrophysiological functioning such as electrodermal activity (EDA) or skin conductance level (SCL).12-15 The HPA axis is measured largely through cortisol levels.12 16 For example, using the blood draw stressor, we found that participants displayed elevated HR17 by assessing the activation of the ANS and elevated cortisol level18 by determining the HPA axis activation.

Stress is not homogeneous, that is, not experienced the same by everyone. Some individuals are at risk of heightened sensitivity in their responses to stress. For example, individuals with autism spectrum disorder (ASD) are particularly vulnerable as they have been found to exhibit heightened physiological reactivity to stress18 19 compared with the typically developing (TD) group. It requires our attention as heightened physiological reactivity to stress may increase the vulnerability to psychopathology such as anxiety and depression.20 21 For example, as compared with the TD group, children with ASD are found to have an elevated level of stress in different contexts, leading to dysregulated arousal and vulnerability to psychopathology.21 ASD is a neurodevelopmental disorder commonly characterised by deficits in social communication and social interaction and the presence of restricted and repetitive patterns of behaviours and interests.22 For example, children with ASD were found to have significantly higher EDA during routine oral care than their TD peers,23 which correlated to their behavioural stress and anxiety, implying more physiological distress to these stressor stimuli in the ASD group. Among different stressor stimuli, social stressors, which include exposure to other individuals (ie, through interactions or human images), cause more stress in ASD as compared with their TD peers, particularly worth our attention due to the social and communication challenges inherent to ASD, such as abnormalities in eye contact and failure to respond to social interactions.22 Undoubtedly, social communication and interaction are unavoidable and crucial for employment and education. Several studies have found enhanced physiological responses in the ASD group using social stressor stimuli, such as significantly higher SCL24 and cortisol level25 than their TD peers. Another study which adopted the Trier Social Stress Test found that children with ASD showed higher and sustained cortisol levels.26 However, these findings are inconsistent. For example, some studies found blunted cortisol response27 or no between-group differences in EDA,28 29 HR and SCL,30 in the ASD group even using similar social stressor stimuli. One potential mechanism for the lack of consistency is the heterogeneity with overall symptomatology that encompasses ASD.31-33

Due to the heterogeneity of ASD and the use of different physiological measures and different types of stressor stimuli across studies, the literature to date is characterised by inconsistent findings with an unclear magnitude of effects among other social stressor stimuli.15 33 34 Given the importance attached to social communication and interaction, such as maintaining eye contact in everyday interactions, and the fact that many social stressor stimuli are unavoidable, the atypical physiological reactivity to these stressors may create difficulties in everyday life and predispose to health problems in ASD. Considering the additional vulnerabilities to psychopathology and complexity of the different types of social stressor stimuli experienced by people with ASD, findings must be integrated to inform further research and practice best. Therefore, this systematic review and meta-analysis aims to integrate evidence on the physiological response to social stressor stimuli in children and adolescents with ASD.

Considering the vulnerability to psychopathology among children and adolescents with ASD, the objective of this systematic review will be to investigate different stressor stimuli in eliciting physiological reactivity in ASD, with a particular focus on the children and adolescent population. Precisely, this review will aim to

1. Identify and describe evidence that investigates the relationship between physiological responses and exposure to social stressor stimuli in children and adolescents with ASD.
2. Quantify the magnitude of the differences in response to social stressor stimuli in children and adolescents with ASD as compared with their TD peers.

METHODS AND ANALYSIS

Protocol

To integrate evidence across a range of sources with a common focus, this study protocol is part of an ongoing project that incorporates evidence across various methodological approaches to produce an extensive summary of the literature on physiological reactivity on social stressor stimuli in children and adolescents with ASD. Specifically, this review will assess the overall effect and strength of evidence on this topic. This integration of evidence will use principles of integrative reviews.35 This systematic review integrates similar conceptual and methodological studies.

This protocol is reported following the guidance provided in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols statement36 (online supplemental file 1).
The inclusion and exclusion criteria are listed in Table 1.

Table 1 Inclusion and exclusion criteria

Inclusion	Exclusion
Any studies that include participants with the entire sample with ages between 0 year and 18 years of age, inclusive.	The publication was not in English.
At least one participant diagnosed with ASD with the method of diagnosis said explicitly.	Only physiological activity at baseline was measured.
Participants were exposed to at least one stressor stimulus condition different from the baseline.	The physiological measures were collected during challenging behaviours.
The physiological activity of the participants was measured, for example, measures related to autonomic functioning (eg, HR, HRV and RSA), electrodermal functioning (eg, EDA and SCL) or cortisol level.	The physiological measures were used for examining the treatment effects.
The participants with different diagnoses were grouped together for analysis.	Physiological responses to more than one stimulus were grouped together for analysis.
ASD, autism spectrum disorder; EDA, electrodermal activity; HR, heart rate; HRV, heart rate variability; RSA, respiratory sinus arrythmia; SCL, skin conductance level.	ASD, autism spectrum disorder; EDA, electrodermal activity; HR, heart rate; HRV, heart rate variability; RSA, respiratory sinus arrythmia; SCL, skin conductance level.

Information source and literature search

The primary literature sources will be across four electronic databases: MEDLINE, Embase, PsycInfo and CINAHL in August 2021. The second source of literature will be across grey literature, including ProQuest Dissertations & Theses Global and across clinical trial registries in August 2021. In addition, the references of all studies included after full-text screening will be reviewed. Hand searching of references will be performed on the reference lists of all included studies. Specifically, two independent RAs will conduct title screening on the reference list to determine eligible articles to then be reviewed at the full-text level. An academic librarian will be consulted during the development of the search strategy. The search will consist of a broad range of terms and keywords related to ASD, social stressors, physiological responses, and children and adolescents (online supplemental file 2). One example of search syntax can be found in online supplemental file 3.

Eligibility criteria

This study will follow the study design framework population, intervention, comparator, outcome(s) of interest. The inclusion and exclusion criteria are listed in Table 1.

- Participants: We will include any studies with children and adolescents with ASD with the method of diagnosis said explicitly, with the entire sample between 0 year and 18 years of age, of both genders, in both clinical and community settings, and from any country. Participants’ intelligence levels will not be restricted.

- Interventions and comparators: All types of social stressor interventions will be included if related to the eligibility criteria. As physiological reactivity refers to the difference between physiological activation in response to the stressor stimuli compared with the baseline level, the physiological reactivity will be examined by comparing it to the baseline level.

- Outcome(s) of interest: The intended results will not be restrictive. The outcome of interest will include studies with physiological activity of the participants being measured, for example, measures related to autonomic functioning (eg, HR, HRV and RSA), electrodermal functioning (eg, EDA and SCL) and cortisol level.

Selection and screening procedures

After the instructions by two of the authors, two volunteers pursuing postgraduate level of studies will independently search and screen potential studies for eligibility. The first screening will be applied at title and abstract levels, based on the criteria specified previously. The second will include screening at the full-text level. Finally, all references considered by hand searching will be reviewed by two researchers. A third-party senior researcher will resolve any disagreements. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart detailing studies included and excluded will be provided.

Data collection

Following screening and selection procedures of eligible articles, data extraction will occur using a predetermined template (online supplemental file 4). First, information on physiological outcome variables will be extracted. Next, social stressor stimuli information will be extracted based on whether the stimuli will be direct (social stressor stimuli which involve direct contact such as face-to-face interactions) or indirect (such as images and videos). Finally, demographic information will be collected and used as covariates in the pooled effect size calculations.

Risk of bias and methodological quality assessment

Considering the importance of the methodological quality of studies in affecting the interpretation of the systematic reviews, we will assess the methodological quality of studies. Since existing quality assessment instruments are not suitable for non-interventional psychophysiological research studies which are included in this study, the quality assessment used by a study was considered to be very suitable after careful consideration because it was devised according to the methodological quality standards, and the research area is exactly related to psychophysiological reactivity to stimuli in ASD, which is same as our study. Two independent raters will assess the methodological quality of the studies using the same criteria with minor adjustments. The assessment consists of 22 items in four main categories, including descriptive validity,
internal validity, external validity and statistical conclusion validity.12

Methods for evidence synthesis
Regarding the approach in previous studies,39 42 to calculate the effect size of different social stressor stimuli in eliciting physiological reactivity, all studies will receive the bias-corrected transformation, with the use of corrected standardised mean difference effect size (Hedges’ g).

Concerning the approach in other related studies,39 the Q statistical analysis will be used to examine whether the sampling error alone and then determine the use of a random-effects model or fixed-effects model. In addition, I-squared and Birge ratio tests will be used to examine heterogeneity and to determine whether possible moderators should be tested subsequently.39

Additional analyses
Possible moderators such as sample type, participants’ age, gender, physiological measures, social stressor stimuli and intelligence level (if reported) will be examined if there are enough studies for each subgroup of stressor stimuli. A power analysis will be conducted to determine the feasibility on the summary main effect. Analysis for each prespecified moderator will be evaluated and interpreted with caution.

Bibliometric and software considerations
Identified records will be imported into Covidence, an online systematic review manager, where duplicates will be identified and removed. Bibliographic data management system (RefWorks) will be used to store and manage the results of the searches. To conduct the analyses, the ‘Metafor’ package in R statistical software will be used.43

Ethics, dissemination and research integrity
No ethical approval is required for this study. Any amendments made to this protocol when conducting the study will be reported in the final manuscript. In addition, results will be disseminated through conferences and publications in relevant peer-reviewed journals.

Patient and public involvement statement
Patients or the public were not involved in the design, conduct, reporting or dissemination plans of our research. One of the study protocol coauthors (ASKW) offered occupational therapy training for children with ASD. We will evaluate whether the included studies had any patient or public involvement.

DISCUSSION
Different social stressor stimuli and physiological measures were used across previous studies, and the results varied even when the same social stressor was used. Considering the inconsistent research methodologies and findings, a systematic review and meta-analysis study in this area is required. This study will identify and describe evidence that investigates the relationship between physiological responses and exposure to social stressor stimuli in children and adolescents with ASD and determine the strength of the evidence. To our current knowledge, there is no other systematic review and meta-analysis study discussing this specific issue. The findings will have important implications for clinical practice and future research studies. Specifically, if certain social stressor stimuli are found to elicit higher physiological reactivity in ASD as compared with the other stimuli, this may require our attention in clinical practice, such as the consideration of reducing the duration or intensity of that stimuli, and providing prevention and intervention early. We anticipate that the results will be of interest to multiple audiences, including the individuals with ASD, their families and caregivers, healthcare professionals, educators, researchers and scientists.

There are limitations of our planned, systematic review methods. For example, only studies written in English will be included, limiting the generalisability of the findings. Furthermore, this study explicitly examines the previous studies that adopted children and adolescents with ASD as participants, limiting the generalisability to the adult population. Despite the limitations, one of the important strengths of this study would be that it comprehensively and uniquely examines the impact of social stressor stimuli in eliciting physiological reactivity in children and adolescents with ASD, using both studies from the major databases as well as the grey literature. We anticipate that we will be able to identify the strength of the evidence among several commonly used social stressor stimuli and some moderators.

Twitter Samantha Burns @Samanth21984892

Contributors ASKW submitted this study for systematic review registration, provided the ideas, and contributed to the whole manuscript and all additional files. SB mainly contributed to the methods and analysis section, and provided feedbacks on other sections. EW provided feedbacks and edited the whole manuscript before submission.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, reporting or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is
REFERENCES

1. McEwen BS. The neurobioloy of stress: from serendipity to clinical relevance.
 Brain Res. 2000;886:172–9.
2. Salehi B, Cordero MI, Sandi C. Learning under stress: the inverted-U shape function of
 neural plasticity. Nat Neurosci. 2010;13:522–30.
3. Rudland JR, Golding C, Wilkinson TJ. The stress paradox: how stress can be good for
 learning. Med Educ. 2020;54:40–5.
4. Zastrow C. How to handle stress. JUSW 1984;44:365–75.
5. Kushki A, Drumm E, Pla Mobarak M, et al. Investigating the
 autonomic nervous system response to anxiety in children with autism spectrum disorders.
 PLoS One 2013;8:e69730.
6. Levine S. Developmental determinants of sensitivity and resistance to
 stress. Psychoneuroendocrinology 2005;30:939–46.
7. Kemeny ME. The psychobiology of stress. Curr Dir Psychol Sci
 2003;12:124–9.
8. Agrastos A, Heing A, Stiedl O, et al. Vagal effects of endocrine HPA
 axis challenges on resting autonomic activity assessed by heart rate
 variability measures in healthy humans. Psychoneuroendocrinology
 2019;102:196–203.
9. Ditzen B, Neumann ID, Bodenmann G, et al. Efects of different kinds of
 couple interaction on cortisol and heart rate responses to stress in
 women. Psychoneuroendocrinology 2007;32:565–74.
10. Reinhardt T, Schmalzl C, Wüst S, et al. Salivary cortisol, heart
 rate, electrodemral activity and subjective stress responses to the
 Mannheim multicomponent stress test (MMST). Psychiatry Res
 2012;198:106–11.
11. Khansari DN, Mungo AJ, Faith RE. Effects of stress on the immune
 system. Immunit Today 1990;11:170–5.
12. Lydon S, Healy G, Reed P, et al. A systematic review of physiological
 reactivity to stimuli in autism. Dev Neurorehabil 2016;19:335–55.
13. Cuev HC, Gao Y, Fuse A. Is it avoidance or hypoarousal? A
 systematic review of emotion recognition, eye-tracking, and
 psychophysiological studies in young adults with autism spectrum
 conditions. Res Autism Spectrum Disord 2018;55:1–13.
14. Stroud LR, Foster E, Papandonatos GD, et al. Stress response and
 the adolescent transition: performance versus peer rejection
 stressors. Dev Psychopathol 2009;21:47–68.
15. Benevides TW, Lane SJ. A review of cardiac autonomic measures:
 considerations for examination of physiological response in
 children with autism spectrum disorder. J Autism Dev Disord
 2015;45:560–75.
16. Meekeins I, Didden R, Verhoeven EWM. Exploring the relationship
 of autonomic and endocrine activity with social functioning in
 adults with autism spectrum disorders. J Autism Dev Disord
 2015;45:495–505.
17. Tordjan S, Anderson GM, Botbol M, et al. Pain reactivity and
 plasma beta-endorphin in children and adolescents with autistic
 disorder. PLoS One 2009;4:e6289.
18. Spratt EG, Nicholas JS, Brady KT, et al. Enhanced cortisol response
 to stress in children with autism. J Autism Dev Disord 2012;42:75–81.
19. Taylor JL, Corbett BA. A review of rhythm and responsiveness of
 cortisol in individuals with autism spectrum disorders.
 Psychoneuroendocrinology 2014;49:207–28.
20. Spear LP. Heightened stress responsivity and emotional reactivity
 during pubertal maturation: implications for psychopathology. Dev
 Psychopathol 2009;21:87–97.
21. Corbett BA, Simon D, Adolescence SD. Adolescence, stress and
 cortisol in autism spectrum disorders. OA Autism 2014;1:2.
22. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Publishing,
 2013.
23. Stein LI, Lane CJ, Williams ME. Physiological and behavioral stress
 and anxiety in children with autism spectrum disorders during routine
 oral care. Biomed Res Int 2014:2014:694876:10.
24. Joseph RM, Ehrman K, McNally R, et al. Affective response to
 eye contact and face recognition ability in children with ASD. J Int
 Neuropsychol Soc 2008;14:974–57.
25. Schupp CW, Simon D, Corbett BA. Cortisol responsivity differences
 in children with autism spectrum disorders during free and
 cooperative play. J Autism Dev Disord 2013;43:2405–17.
26. Corbett BA, Schupp CW, Lanni KE. Comparing biobehavioral profiles
 across two social stress paradigms in children with and without
 autism spectrum disorders. Mol Autism 2012;3:213:2209:3–13.
27. Edmondst BK, Blain SD, Corbett BA. Salivary cortisol and behavioral
 response to social evaluative threat in adolescents with autism spectrum disorder.
 Autism Res 2017;10:346–58.
28. Levine TP, Shienkopf SJ, Pescosolido M, et al. Physiologic arousal
 to social stress in children with autism spectrum disorders: a pilot
 study. Res Autism Spectr Disord 2012;6:177–83.
29. Kaartinen M, Puura K, Mäkelä T, et al. Autonomic arousal to direct
 gaze correlates with social impairments among children with ASD.
 J Autism Dev Disord 2012;42:1917–27.
30. Louwarse A, van der Geest JN, Tulen JH, et al. Effects of eye gaze
 directions of facial images on looking behaviour and autonomic
 responses in adolescents with autism spectrum disorders. Res
 Autism Spectr Disord 2013;7:1043–53.
31. Rice K, Moriiuchi JM, Jones W, et al. Parsing heterogeneity in autism
 spectrum disorders: visual scanning of dynamic social scenes
 in school-aged children. J Am Acad Child Adolesc Psychiatry
 2012;51:238–48.
32. Louwarse A, Tulen JH, van der Geest JN, et al. Autonomic
 responses to social and nonsocial pictures in adolescents with
 autism spectrum disorder. Autism Res 2014;7:17–27.
33. Eilenbrock B, Sengul H. Autism spectrum disorders: autonomic
 alterations with a special focus on the heart. Heart Mind 2017;1:78.
34. Corbett BA, Muscatello RA, Kim A, et al. Developmental effects in
 physiological stress in early adolescents with and without autism
 spectrum disorder. Psychoneuroendocrinology 2021;125:105115.
35. Whittemore R, Knaff K. The integrative review: updated methodology.
 J Adv Nurs 2005;52:546–53.
36. Page MJ, McKenzie JE, Bossuyt PM. The PRISMA 2020 statement:
 an updated guideline for reporting systematic reviews. J Clin
 Epidemiol 2021,372.
37. Joanna Briggs Institute. Joanna Briggs Institute Reviewers’ Manual.
 edition. Australia: The Joanna Briggs Institute, 2014.
38. Crane S, Broome ME. Understanding ethical issues of research
 participation from the perspective of participating children and
 adolescents: a systematic review. Worldviews Evid Based Nurs
 2017;14:200–9.
39. Seddon JA, Rodriguez VJ, Provencher Y, et al. Meta-Analysis of the
 effectiveness of the Trier social stress test in eliciting
 physiological stress responses in children and adolescents.
 Psychoneuroendocrinology 2020;116:105482.
40. Farrington DP. Methodological quality standards for evaluation
 research. Ann Am Acad Pol Sci Soc 2003;587:49–68.
41. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for
 systematic review and meta-analysis protocols (PRISMA-P) 2015
 statement. Syst Rev 2015;4:1.
42. Frazier TW, Strauss M, Klinghemier EW, et al. A meta-analysis of gaze
 differences to social and nonsocial information between individuals
 with and without autism. J Am Acad Child Adolesc Psychiatry
 2017;56:548–55.
43. Viechtbauer W. Conducting Meta-Analyses in R with the metafor
 Package. J Stat Softw 2010;36:1–48.