On Local Convexity of Quadratic Transformations

Yong Xia

Received: date / Accepted: date

Abstract In this paper, we improve Polyak’s local convexity result for quadratic transformations. Extension and open problems are also presented.

Keywords convexity · quadratic transformation · joint numerical range

PACS 52A05 · 35P30 · 90C22

1 Introduction

Let $x \in \mathbb{R}^n$ and $f(x) = (f_1(x), \ldots, f_m(x))$, where

$$f_i(x) = \frac{1}{2} x^T A_i x + a_i^T x, \ i = 1, \ldots, m$$

are quadratic functions. One interesting question is when the following joint numerical range

$$F_m = \{ f(x) : x \in \mathbb{R}^n \} \subseteq \mathbb{R}^m$$

is convex.

The first such result is due to Dines [4] in 1941. It states that if f_1, f_2 are homogeneous quadratic functions then the set F_2 is convex. In 1971, Yakubovich [18,19] used this basic result to prove the famous S-lemma, see [13] for a survey. Brickman [3] proved in 1961 that if f_1, f_2 are homogeneous quadratic functions and $n \geq 3$ then the set $\{(f_1(x), f_2(x)) : x \in \mathbb{R}^n, \|x\| = 1\} \subseteq \mathbb{R}^2$ is convex. Fradkov [5] proved in 1973 that if matrices A_1, \ldots, A_m commute and f_1, \ldots, f_m are homogeneous, then F_m is convex. In 1995, it was showed by Ramana and Goldman [14] that the identification of the convexity of F_m is NP-hard. In the

This research was supported by Beijing Higher Education Young Elite Teacher Project 29201442, and by the fund of State Key Laboratory of Software Development Environment under grant SKLSDE-2013ZX-13.

Y. Xia
State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing 100191, P. R. China E-mail: dearyxia@gmail.com
same paper, the quadratic maps, under which the image of every linear subspace is convex, was also investigated. Based on Brickman’s result, Polyak [10] proved in 1998 that if \(n \geq 3 \) and \(f_1, f_2, f_3 \) are homogeneous quadratic functions such that \(\mu_1 A_1 + \mu_2 A_2 + \mu_2 A_3 > 0 \) (where notation \(A > 0 \) means that \(A \) is positive definite) for some \(\mu \in \mathbb{R}^3 \), then the set \(F_3 \) is convex. Moreover, as shown in the same paper, when \(n \geq 2 \) and there exists \(\mu \in \mathbb{R}^2 \) such that \(\mu_1 A_1 + \mu_2 A_2 > 0 \), the set \(F_2 \) is convex. In 2007, Beck [1] showed that if \(m \leq n \), \(A_1 > 0 \) and \(A_2 = \ldots = A_m = 0 \), then \(F_m \) is convex. However, if \(A_1 > 0 \), \(A_2 = \ldots = A_{n+1} = 0 \) and \(a_2, \ldots, a_{n+1} \) are linearly independent, then \(F_{n+1} \) is not convex. When \(m = 2 \), Beck’s result reduces to be a corollary of Polyak’s result. Very recently, Xia et al. [17] used the new developed S-lemma with equality to establish the necessary and sufficient condition for the convexity of \(F_2 \) for \(A_2 = 0 \) and arbitrary \(A_1 \).

More generally, Polyak [11,12] succeeded in proving a nonlinear image of a small ball in a Hilbert space is convex, provided that the map is \(C^{1,1} \) and the center of the ball is a regular point of the map. Later, Uderzo [16] extended the result to a certain subclass of uniformly convex Banach spaces. When focusing on quadratic transformations, Polyak’s result reads as follows:

Theorem 1 [13] Let \(A = [a_1 \ldots a_m] \in \mathbb{R}^{n \times m} \) and define

\[
L := \sqrt{\sum_{i=1}^{m} \| A_i \|^2},
\]

\[
\nu := \sigma_{\min}(A) = \sqrt{\lambda_{\min}(A^T A)},
\]

where \(\| A_i \| = \sigma_{\max}(A_i) = \sqrt{\lambda_{\max}(A_i^T A_i)} \) is the spectral norm of \(A_i \), \(\sigma_{\min}(\cdot) \), \(\lambda_{\min}(\cdot) \), \(\sigma_{\max}(\cdot) \), \(\lambda_{\max}(\cdot) \), denote the smallest and largest singular value and eigenvalue, respectively.

If \(\epsilon < \epsilon^* := \nu/(2L) \), then the image

\[
F_m(\epsilon) = \{ f(x) : x \in \mathbb{R}^n, \| x \| \leq \epsilon \}
\]

is a convex set in \(\mathbb{R}^n \).

Polyak [11,12] used the following example to show his estimation \(\epsilon^* \) is tight, where \(n = m = 2 \) and

\[
f_1(x) = x_1 x_2 - x_1, \quad f_2(x) = x_1 x_2 + x_2.
\]

Actually, in this case, \(\epsilon^* = 1/(2\sqrt{2}) \approx 0.3536 \). It is trivially verified that \(F_m(\epsilon) \) is convex for \(\epsilon \leq \epsilon^* \) and loses convexity for \(\epsilon > \epsilon^* \).

In this paper, we improve the above Polyak’s result for quadratic transformations (i.e., Theorem 1) by strengthening the constant \(L \). Then, Theorem 4 is extended to the image of the ball of the same radius \(\epsilon \) centered at any point \(a \) satisfying \(|a| < 2(\epsilon^* - \epsilon) \). Furthermore, we propose two new approaches for possible improvement of \(L \).

The paper is organized as follows. In Section 1, we improve and extend Theorem 1. In Section 2, we discuss further possible improvements. In the final conclusion section, we propose two open questions.

Throughout the paper, all vectors are column vectors. Let \(v(\cdot) \) denote the optimal value of problem (\(\cdot \)). Notation \(A \succeq 0 \) implies that the matrix \(A \) is positive...
semidefinite, vec(A) denotes the vector obtained by stacking the columns of A one underneath the other. The trace of A is denoted by trace$(A) = \sum_{i=1}^{n} A_{ii}$. The Kronecker product and the inner product of the matrices A and B are denoted by $A \otimes B$ and $A \bullet B = \text{trace}(AB^T) = \sum_{i,j=1}^{n} a_{ij}b_{ij}$, respectively. The identity matrix is denoted by I. $\|x\| = \sqrt{x^T x}$ is the standard norm of the vector x.

2 Main Results

In this section, we first improve Theorem 1 and then extend it to the ball of the same radius centered at any point close enough to the zero point.

Theorem 2 Define

$$L_{\text{new}} := \sqrt{\lambda_{\text{max}} \left(\sum_{i=1}^{m} A_i^T A_i \right)}.$$ (3)

Then we have

$$L_{\text{new}} \leq L.$$ (4)

For any $\epsilon < \epsilon_{\text{new}}^{*} := \nu/(2L_{\text{new}})$, the image $F_{\text{new}}(\epsilon)$ defined in (2) is convex.

Proof. Let L_b be any upper bound of the Lipschitz constant of f, i.e.,

$$\|\nabla f(x) - \nabla f(z)\| \leq L_b \|x - z\|, \forall x, z \in \mathbb{R}^n.$$ (5)

According to the proof in [11], Theorem 1 remains true if L defined in (1) is replaced by L_b. It is sufficient to show that $L_b := L_{\text{new}}$ satisfies (3). To this end, we have

$$\max_{\|x-z\| = 1} \|\nabla f(x) - \nabla f(z)\|$$

$$= \max_{\|x-z\| = 1} \|\sum_{i=1}^{m} A_i(x - z)\|$$

$$= \|y\|_{\text{max}} \|\sum_{i=1}^{m} A_i y\|$$

$$\leq \sqrt{\lambda_{\text{max}} \left(\sum_{i=1}^{m} A^T_i A_i \right)} \|y\|$$

$$\leq \sqrt{\lambda_{\text{max}} \left(\sum_{i=1}^{m} A_i^T A_i \right)} \|y\|.$$
The inequality (4) holds since

\[
L_{\text{new}} = \max_{\|y\| = 1} y^T \left(\sum_{i=1}^{m} A_i^T A_i \right) y = \sqrt{\lambda_{\text{max}} \left(\sum_{i=1}^{m} A_i^T A_i \right)} = \sqrt{\lambda_{\text{max}} (A_i^T A_i)} = \sqrt{\sum_{i=1}^{m} \|A_i\|^2} = L.
\]

\[\square\]

Theorem 3 For any \(0 < \epsilon < \epsilon^*_\text{new} = \nu/(2L_{\text{new}})\) and any \(a \in \mathbb{R}^n\) such that \(\|a\| < 2(\epsilon^*_\text{new} - \epsilon)\), the image

\[
F_{m}(\epsilon, a) = \{ f(x) : x \in \mathbb{R}^n, \|x - a\| \leq \epsilon \}
\]

is a convex set in \(\mathbb{R}^m\).

Proof. For any \(a \in \mathbb{R}^n\) such that \(\|a\| < 2(\epsilon^*_\text{new} - \epsilon)\), we have

\[
\sigma_{\min}(A + [A_1a \ldots A_m a]) \geq \sigma_{\min}(A) - \sigma_{\max}([-A_1a \ldots A_m a])
\]

\[
\geq \sigma_{\min}(A) - \sup_{\|a\| < 2(\epsilon^*_\text{new} - \epsilon)} \sigma_{\max}([A_1a \ldots A_m a])
\]

\[
= \sigma_{\min}(A) - \sup_{\|a\| < 2(\epsilon^*_\text{new} - \epsilon)} \lambda_{\text{max}} ([A_1a \ldots A_m a]^T [A_1a \ldots A_m a])
\]

\[
\geq \sigma_{\min}(A) - \sup_{\|a\| < 2(\epsilon^*_\text{new} - \epsilon)} \text{trace} ([A_1a \ldots A_m a]^T [A_1a \ldots A_m a])
\]

\[
= \sigma_{\min}(A) - \sup_{\|a\| < 2(\epsilon^*_\text{new} - \epsilon)} a^T \left(\sum_{i=1}^{m} A_i^T A_i \right) a
\]

\[
= \sigma_{\min}(A) - 2(\epsilon^*_\text{new} - \epsilon) \lambda_{\text{max}} \left(\sum_{i=1}^{m} A_i^T A_i \right)
\]

\[
= \sigma_{\min}(A) - 2(\epsilon^*_\text{new} - \epsilon) L_{\text{new}}
\]

\[
= 2\epsilon L_{\text{new}},
\]

where the first inequality is Weyl’s inequality \(8\) for the singular values, see also Problem III.6.5 in \(2\) or Theorem 3.3.16 in \(4\).

Since the optimal value of the maximizing problem \(8\) is unattainable, the above inequality implies that

\[
\sigma_{\min}(A + [A_1a \ldots A_m a]) > 2\epsilon L_{\text{new}}, \forall a \in \mathbb{R}^n : \|a\| < 2(\epsilon^*_\text{new} - \epsilon).
\]

Notice that

\[
f_i(x) = f_i(a) + (A_i a + a_i)^T (x - a) + \frac{1}{2}(x - a)^T A_i (x - a), \ i = 1, \ldots, m.
\]
Then, we have

\[
F_m(\epsilon, a) - f(a) = \{ g(y) : y \in \mathbb{R}^n, \| y \| \leq \epsilon \} := G_m(\epsilon, a),
\]

where \(g(y) = ((A_1 a + a_1)^T y + \frac{1}{2} y^T A_1 y, \ldots, (A_m a + a_m)^T y + \frac{1}{2} y^T A_m y) \). According to Theorem 2 for any

\[
\epsilon < \sigma_{\min}(A + [A_1 a \ldots A_m a])/(2L_{\text{new}}),
\]

the image \(G_m(\epsilon, a) \) is a convex set in \(\mathbb{R}^m \). The proof is complete as (10) is ensured by (9). □

Remark 1 Theorem 2 is a special case of Theorem 3 by setting \(a = 0 \).

3 Discussion

The estimation of Theorem 2 is still not tight. Actually, \(L_{\text{new}} \) defined in (3) can be further improved to be the Lipschitz constant of \(f \), denoted by \(L_f \). According to (6), we have

\[
L_f^2 = \max_{\| y \| = 1} \lambda_{\max} \left([A_1 y \ldots A_m y]^T [A_1 y \ldots A_m y] \right).
\]

However, this is a nonlinear eigenvalue optimization problem and not easy to solve. Except for the upper bound \(L_{\text{new}} \), we further consider the other two relaxations of (11). We first need two lemmas.

Lemma 1 [2] Every eigenvalue of \(B \in \mathbb{R}^{m \times m} \) lies within at least one of the Gershgorin discs

\[
\left\{ \lambda : |\lambda - B_{ii}| \leq \sum_{j \neq i} |B_{ij}| \right\}, \quad i = 1, \ldots, m.
\]

Lemma 2 [7] For any \(m \times m \) matrix \(B \), all its eigenvalues are located in the same disk

\[
|\lambda - \frac{\text{trace}(B)}{m}| \leq \sqrt{\frac{m - 1}{m} \left(\frac{\text{trace}(B^T B) - (\text{trace}(B))^2}{m} \right)}.
\]

Remark 2 Let \(\lambda_i(B) \) be the \(i \)-th largest eigenvalue of \(B \). When \(B \succeq 0 \), substituting the following inequality

\[
\text{trace}(B^T B) = \sum_{i=1}^{m} \lambda_i^2(B) \leq \left(\sum_{i=1}^{m} \lambda_i(B) \right)^2 = (\text{trace}(B))^2
\]

into (12), we see that Lemma 2 improves the inequality

\[
\lambda_{\max}(B) \leq \text{trace}(B),
\]

which is used in (7).
Now, we apply Lemmas 1 and 2 to establish two new relaxations of $L_{f}(11)$.

Firstly, according to Lemma 1, we have:

$$\max_{\|y\|=1} \lambda_{\max}([A_1 y \ldots A_m y]^T [A_1 y \ldots A_m y])$$

$$\leq \max_{\|y\|=1} \max_{i=1, \ldots, m} \left\{ y^T (A_i^T A_i) y + \sum_{j \neq i} y^T |A_i^T A_j| y \right\}$$

$$= \max_{i=1, \ldots, m} \max_{\|y\|=1} y^T \left(A_i^T A_i + \sum_{j \neq i} |A_i^T A_j| \right) y$$

$$= \max_{i=1, \ldots, m} \lambda_{\max} \left(A_i^T A_i + \frac{1}{2} \sum_{j \neq i} (|A_i^T A_j| + |A_j^T A_i|) \right)$$

$$:= L_{\text{new}}.$$

Consequently, Theorem 1 holds true if we replace L with L_{new}.

Secondly, according to Lemma 2, we have:

$$\lambda_{\max} \left([A_1 y \ldots A_m y]^T [A_1 y \ldots A_m y] \right)$$

$$\leq \frac{1}{m} \sqrt{ \left(y^T \left(\sum_{i=1}^{m} A_i^T A_i \right) y \right)^2 + \frac{m-1}{m} \left(\sum_{i,j=1}^{m} (y^T A_i^T A_j y)^2 - \frac{1}{m} \left(y^T \left(\sum_{i=1}^{m} A_i^T A_i \right) y \right)^2 \right)}$$

$$= \frac{1}{m} \sqrt{ z^T \left(\sum_{i=1}^{m} A_i^T A_i \right) \otimes \left(\sum_{i=1}^{m} A_i^T A_i \right) z + \frac{m-1}{m} .}$$

$$= \frac{1}{m} \sqrt{ z^T \left(\sum_{i,j=1}^{m} (A_i^T A_j) \otimes (A_i^T A_j) - \frac{1}{m} \left(\sum_{i=1}^{m} A_i^T A_i \right) \otimes \left(\sum_{i=1}^{m} A_i^T A_i \right) \right) z + \frac{m-1}{m} .}$$

$$= \frac{1}{m} \sqrt{ \left(\sum_{i,j=1}^{m} (A_i^T A_j) \otimes (A_i^T A_j) - \frac{1}{m} \left(\sum_{i=1}^{m} A_i^T A_i \right) \otimes \left(\sum_{i=1}^{m} A_i^T A_i \right) \right) \cdot Z + \frac{m-1}{m} .}$$

$$:= B(Z)$$
where \(z = y \otimes y \) and \(Z = zz^T \). Since \(y^T y = 1 \), we have
\[
\text{trace}(Z) = z^T z = (y \otimes y)^T (y \otimes y) = (y^T y) \otimes (y^T y) = 1 \otimes 1 = 1,
\]
\[
\text{vec}(I)^T Z \text{vec}(I) = \left(\sum_{i=1}^{m} y_i^2 \right)^2 = 1,
\]
\[
\|Z\| = \|zz^T\| \leq 1,
\]
\[
Z = zz^T \succeq 0.
\]
Therefore, Theorem I remains true if \(L \) is replaced by \(\tilde{L}_{\text{new}} \), where
\[
\tilde{L}_{\text{new}}^2 = \max_B \text{tr}(Z)
\]
s.t. \(\text{trace}(Z) = 1 \),
\[
\text{vec}(I)^T Z \text{vec}(I) = 1,
\]
\[
\|Z\| \leq 1,
\]
\[
Z \succeq 0,
\]
which is a convex semidefinite programming (CSDP) problem, and hence can be efficiently solved. In the following examples, the CSDP problems are modeled by CVX 1.2 [6] and solved by SDPT3 [15] within CVX.

Example 1 Let \(n = 3, m = 2 \). Consider the two examples:

\[
(E_1) : A_1 = \begin{bmatrix} 2 & 0 & 6 \\ 0 & 0 & 6 \\ 6 & 6 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 6 & 5 & 2 \\ 5 & 4 & 0 \\ 2 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix},
\]
\[
(E_2) : A_1 = \begin{bmatrix} 0 & 5 & 3 \\ 5 & 0 & 6 \\ 3 & 6 & 4 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 4 & 2 \\ 4 & 0 & 4 \\ 2 & 4 & 4 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.
\]

We can verify that
\[
(E_1) : L \approx 14.4166, \quad L_{\text{new}} \approx 13.9094, \quad T_{\text{new}} \approx 12.8849, \quad \tilde{L}_{\text{new}} \approx 12.6747,
\]
\[
(E_2) : L \approx 13.8065, \quad L_{\text{new}} \approx 13.8043, \quad T_{\text{new}} \approx 14.5901, \quad \tilde{L}_{\text{new}} \approx 13.8009.
\]

It is observed that neither \(L_{\text{new}} \) nor \(T_{\text{new}} \) dominates each other. Moreover, both are dominated by \(\tilde{L}_{\text{new}} \).

Figure I shows the images of the \(\epsilon \)-discs for \((E_1)\) and \((E_2)\), respectively. It follows that \(\tilde{L}_{\text{new}} \) is not tight and the convexity loses when \(\epsilon \) is large enough.

4 Conclusions

In this paper, we improve and extend Polyak’s local convexity result for quadratic transformations by providing tighter bounds for
\[
\max_{\|y\|=1} \lambda_{\text{max}} \left([A_1 y \ldots A_m y]^T [A_1 y \ldots A_m y] \right).
\]

It is open whether the above nonlinear eigenvalue optimization problem can be efficiently globally solved. Moreover, we propose a convex semidefinite programming (CSDP) relaxation, which is conjectured to be the tightest among all existing upper bounds as we are unable to find a counterexample.
Fig. 1 Images of ϵ-discs for (E_1) with $\epsilon = 1/(2\bar{L}_{new}) \approx 0.0394$, 0.06, 0.14 in the left subgraph and for (E_2) with $\epsilon = 1/(2\bar{L}_{new}) \approx 0.0362$, 0.04, 0.08 in the right subgraph.

References

1. A. Beck, On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls, Journal of Global Optimization, 39(1), 113-126 (2007)
2. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997
3. L. Brickman, On the field of values of a matrix, Proceedings of the AMS, 12, 61-66 (1961)
4. L.L. Dines, On the mapping of quadratic forms, Bulletin of the AMS, 47, 494-498 (1941)
5. A.L. Fradkov, Duality theorems for certain nonconvex extremum problems, Siberian Math. J., 14, 247-264 (1973)
6. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21 (2010) [http://cvxr.com/cvx]
7. Y. Gu, The distribution of eigenvalues of a matrix, Acta Math. Appl. Sin., 17(4), 501-511 (1994)
8. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985
9. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Pr., 1991
10. B.T. Polyak, Convexity of quadratic transformations and its use in control and optimization, Journal of Optimization Theory and Applications, 99, 553-583 (1998)
11. B.T. Polyak, Convexity of Nonlinear Image of a Small Ball with Applications to Optimization, Set-Valued Analysis, 9, 159-168 (2001)
12. B.T. Polyak, The convexity principle and its applications, Bull.Braz.Math.Soc. (N.S.), 34(1), 59-75 (2003)
13. I. Polik, T. Terlaky, A Survey of S-lemma, SIAM review, 49(3), 371-418 (2007)
14. M. Ramana, A.J. Goldman, Quadratic maps with convex images, Report 36-94, Rutgers Center for Operations Research, Rutgers, The State University of New Jersey, 1994
15. K.C. Toh, M.J. Todd, R.H. Tutuncu, SDPT3 – a Matlab software package for semidefinite programming, Optimization Methods and Software, 11, 545-581 (1999)
16. A. Uderzo, On the Polyak convexity principle and its application to variational analysis, Nonlinear Analysis, 91, 60-71 (2013)
17. Y. Xia, S. Wang, R.L. Sheu, S-Lemma with Equality and Its Applications, [arXiv:1403.2816v2 (2014) http://arxiv.org/abs/1403.2816]
18. V.A. Yakubovich, S-procedure in nonlinear control theory, Vestnik Leningrad. Univ., 1, 62-77 (1971) (in Russian)
19. V.A. Yakubovich, S-procedure in nonlinear control theory, Vestnik Leningrad. Univ., 4, 73-93 (1977) (English translation)
