Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
5’-Hydroxy-5’-homoaristeromycin: Synthesis and antiviral properties

Qi Chen,a,b Chong Liu,c Terry L. Bowlin,c Stewart W. Schneller,a,*

a Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, United States
b Department of Chemistry, Slippery Rock University, Slippery Rock, PA 16057, United States
c Microbiotix, Inc., One Innovation Drive, Worcester, MA 01605, United States

A R T I C L E I N F O

Article history:
Received 9 March 2018
Accepted 30 March 2018
Available online 31 March 2018

Keywords:
Carbocyclic nucleosides
C-4’ aristeromycin derivatives
Hepatitis B
Cytomegalovirus

A B S T R A C T

Synthetically combining the C-4’ side-chain structural features of the antiviral candidates 5’-methylaristeromycin and 5’-homoaristeromycin into a diastereomeric pair of C-4’ side-chain dihydroxylated aristeromycins (6 and 7) is reported. Broad antiviral analyses of the both targets found promising effects towards HBV (6, 6.7 μM and 7, 7.74 μM) and HCMV (only 7, 0.72 μM). No other activity was found. Neither of the diastereomers was cytotoxic in the assays performed.

© 2018 Elsevier Ltd. All rights reserved.

While the report of biologically inactive carbocyclic thymidine (1) in 1962a introduced a new class of nucleosides, it was the synthesis of racemic carbocyclic adenosine (aristeromycin, 2) and subsequent isolation of the (−)-enantiomer from Streptomyces citricolorb that the era of carbocyclic nucleosides began and became a focal point for the pursuit of carbocyclic nucleosides as therapeutic candidates and as probes for biological processes.4 Our interest in aristeromycin and analogs therefrom began with the report of 5’-noraristeromycin (3) with activity towards human cytomegalovirus.5 Over the years6 since 1992 we have looked back in an undesirable outcome for future development of fever antiviral candidate. A similar conclusion can be reached for in an undesirable outcome for future development of 4 and 7 (see Scheme 1.). Oxidation of alkenes to glycols is well established in the synthetic organic toolbox. Thus, for this investigation, the known N-6 protected carbocyclic adenine nucleoside with the unsaturated C-4’ side chain 8 (available from D-ribose)6 served as the starting point. To achieve the requisite diastereomers 9a and 9b ADmix-α (for 9a) and ADmix-β (for 9b) were employed, respectively. Deprotection of 9a and 9b with 2 N hydrochloric acid produced 6 and 7.

The stereochemistry of 6 and 7 was determined by mesylation of 9a/9b to 10a/10b that were deprotected to 11a/11b. Reductive removal of the 6’-mesylate with lithium aluminum hydride yielded 12a/12b (a convenient, alternative synthesis of those diastereomers). The spectroscopic properties of 12a were identical to that previously reported for 4 (same as 12a).7 To address any possible structural ambiguity in this study, confirmation of 6 was achieved by an X-ray structural analysis.10

In an antiviral analysis,11 both 6 and 7 showed moderate activity towards hepatitis B (EC50 7.1 μM and 7.4 μM, respectively; CC50 >100 μM) while only 7 was potent against human cytomegalovirus (EC50 0.72 μM; CC50 >300 μM). Compound 6 was found to lack the significant yellow fever properties reported for 4 indicating addition of a hydroxyl to the methyl carbon of 4 (12a), resulted in an undesirable outcome for future development of 4 as a yellow fever antiviral candidate. A similar conclusion can be reached for the loss of the orthopox activity of 5 due to the presence of the extra hydroxyl group on the C-5’ position of both diastereomers 6 and 7 (see Scheme 1.).

In an antiviral analysis,11 both 6 and 7 showed moderate activity towards hepatitis B (EC50 7.1 μM and 7.4 μM, respectively; CC50 >100 μM) while only 7 was potent against human cytomegalovirus (EC50 0.72 μM; CC50 >300 μM). Compound 6 was found to lack the significant yellow fever properties reported for 4 indicating addition of a hydroxyl to the methyl carbon of 4 (12a), resulted in an undesirable outcome for future development of 4 as a yellow fever antiviral candidate. A similar conclusion can be reached for the loss of the orthopox activity of 5 due to the presence of the extra hydroxyl group on the C-5’ position of both diastereomers 6 and 7.

* Corresponding author.
E-mail address: schnell@auburn.edu (S.W. Schneller).

https://doi.org/10.1016/j.bmcl.2018.03.088
0960-894X © 2018 Elsevier Ltd. All rights reserved.
Compounds 6 and 7 were inactive towards polio virus, SARS coronavirus, respiratory syncytial virus, hepatitis C virus, herpes simplex 1 and 2 viruses, vaccinia virus, dengue, Rift Valley fever, Venezuelan equine encephalitis, H1N1 influenza A virus, and West Nile virus. No cytotoxicity was found for either 6 or 7 in the assays conducted.

In conclusion, a convenient synthesis of the diastereomeric hybridization of 5'-methylaristeromycin (4) and 5'-homoaristeromycin (5) to 5'-hydroxy-5'-homoaristeromycin (6 and 7) has provided a new C-4' structural entity for the aristeromycin family of analogs that showed potent HBV (6 and 7) and moderate HCMV activities (7). It should be noted that the hydroxyl substituents offer the opportunity of making substituent changes at those centers for possible new aristeromycin structural variations.
Acknowledgements

We are grateful to the Molette Fund and Auburn University for support. We are also indebted to the NIAID in vitro assay team for the viral data presented herein.11

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.bmcl.2018.03.088.

References

1. Murdock KC, Angier RBJ. Am Chem Soc. 1962;84:3758–3764.
2. Shealy YF, Clayton JDJ. Am Chem Soc. 1966;88:3885–3887.
3. Rusaka T, Yamamoto H, Shibata M, Murai M, Kishi T, Mizuno K. J Antibiot. 1968;21:255–263.
4. (a) Mieczkowski A, Agrofoglio LA. In: Herdewijn P, ed. Modified nucleosides. Weinheim: Wiley-VCH; 2008:393–420;
(b) Tosh DK, Kim HO, Pal S, Lee JA, Jeong LS. In: Herdewijn P, ed. Modified nucleosides. Weinheim: Wiley-VCH; 2008:525–566.
5. Patil S, Schneller SW, Hosoya M, et al. J Med Chem. 1992;35:3372–3377.
6. Yin X, Chen Q, Liu C, Schneller SW. Heterocycles. 2017;95:445–461.
7. Wei Y, Schneller SW. J Org Chem. 2006;71:8641–8643.
8. Yang M, Schneller SW. Bioorg Med Lett. 2005;15:149–151.
9. Yin X-Q, Li W-K, Schneller SW. Tetrahedron Lett. 2006;47:9187–9189.
10. Crystallographic data (excluding structure factors) for 6 has been deposited with the Cambridge Crystallographic Data Centre with deposition number CCDC 1578521. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44 (0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk.
11. These assays are presented in reference 12 (strain, host cell): yellow fever (17D, Vero), human cytomegalovirus (AD169, HFF), hepatitis B (ayw, 2.2.15), polio virus (type 1, LLC-MK2 clone 7.1), SARS coronavirus (Toronto-2, Vero 6), respiratory syncytial virus (A, HEP 2), hepatitis C virus (CON-1, Huh-Luc(Neo), herpes simplex 1 (E-377, HFF) and 2 (G, HFF), vaccinia virus (Copenhagen, HFF), dengue (Type 2/New guinea, Vero76), Rift Valley fever (MP-12, Vero 76), Venezuelan equine encephalitis (TC-83, Vero), H1N1 influenza A virus (Influenza A/California/7/2009, MDCK), and West Nile virus (KERN 515/ WN02, Vero 76).
12. For the assay methods see reference 12 in Chen Q, Liu C, Komazin G, Bowlin T, Schneller SW. Bioorg Med Chem. 2014;22:6961–6964.