Isolation, characterization and screening of rhizospheric bacteria of *Pittosferum resiniferum* Hemsl.

Hanirah R., Piakong M. T. and Syaufi L.
Faculty of Science and Natural Resources
University Malaysia Sabah
Email: hanirahramli@gmail.com

Abstract - The bacterial rhizosphere species of host plant, Petroleum Nut (*Pittosferum resiniferum*) were isolated and characterized morphologically. The isolates were designated as, TSArp- Cr2, TSArp- Cr3, TSArp- Cr4, TSArp- Cr5, TSArp- Cr6 and TSArp- Cr7. All of the species were tested on three different concentration of phenol (1mM, 3mM and 5mM). Only species TSArp- Cr4 and TSArp- Cr6 growth were detected. The highest growth is 6Log_{10}CFU/ml in 1mM by TSA-Cr4. The lowest reading was 3.6 Log_{10}CFU/ml in 3mM by TSA-Cr6. Species TSArp- Cr4 has higher tolerance on phenol compared to TSArp- Cr6.

1. Introduction

The existence of anthropogenic (man-made) organic compounds in the environment is a serious issue to the world residents. The man-made organic compounds such as BTEX (benzene, toluene, ethyl-benzene, o-, m-, p- xylene), and phenol are important industrial raw materials for paints, pesticides, resins, fiber, glass unit, varnish, phenolic resin manufacture, textile unit, making of organic dyes and as solvents for rubber and plastic as well [1] [2]. These aromatic compounds has a high toxicity level and carcinogenic that commonly found as contamination relatable to human activities [3][4][5] [6][7].

The variation of microorganism undergo biodegradation ranging from *Pseudomonads* [8][9][10][11], fungi [12][13][14] [15] yeast [16][17][18]. The source of these bacteria can be found at oil effluent water [19], contaminated oil mousse from beach simulator tank [20], Crude oil-polluted river [21], natural lake and soil [22], soil contaminated with Crude oil spills [23] and rhizosphere soil [24][25]. Rhizospheric soil is the zone that is surrounded by the root of plant and the area of biological and chemicals activity are influenced by the compounds discharged by the root [26]. The most common rhizospheric bacterial can be found is *Pseudomonads*, *Bacillus* sp. and *Streptomyces* sp. [24] [25]. These isolated rhizospheric bacteria can degrade toxic compounds, especially petroleum compounds up until 13g/l [24][25].

Metabolism of these compounds by microorganism is well known with physiological, biochemical and molecular research of the degradation report [27][28]. Microorganisms usually can be as pathogenic and harmful to human. But, apart from that, they can be beneficial to the environment. There are numerous type of pollutant that can be degraded by microorganism, phenol [29] n-alkane [30][31], TCE [32][33].

Since *Pittosferum resiniferum* (petroleum nut) can produce biofuels, the hypothesis of rhizospheric bacteria of *Pittosferum resiniferum* has the potential to degrade hydrocarbon can be made. But currently there are no reports from the isolated *Pittosferum resiniferum* rhizospheric bacteria.

The aim of the study is to isolate and characterize the bacteria from rhizosphere soil and screening the bacteria with various concentration of phenol (1mM, 3mM and 5mM).
2. Material and methods

2.1 Sampling
Rhizospheric soil from *Pittosferum resinisferum* was collected in Kundasang, Sabah.

2.2 Physical properties of rhizospheric soil
The value of pH soil *Pittosferum resinisferum* was measured by using pH meter tool (Hanna Instrument, USA) (5.4). 1g of rhizospheric soil sample was mixed together with 3ml of distill water and the reading of the pH value was taken. Thermometer was used to determine the soil temperature (18°C).

2.3 Culture media preparation for isolation and screening of bacteria
For isolation of heterotrophic microorganism, Trypticase Soy Agar or TSA medium was prepared. The composition of TSA media consisting (g/L): 15.0g of Tryptone (Pancreatic Digest of Casein), 15.0g of Soytone (Papaic Digest of Soybean Meal), 5.0g of Sodium Chloride, 15.0g of Agar.

2.4 Isolation and Characterization of bacteria
10g of soil sample rhizospheric soil was taken for serial dilution series (10^-1 until 10^-9) by using saline water (0.85%). The bacteria were originally isolated by direct technique on TSA agar and incubated for 24 hours at 37°C. The developed colonies was purified by streaking on nutrient agar for bacterial identification according to colony and cellular characteristics [34].

2.4.1 Colony morphological characteristics
The identification colony morphology based on colour, margin, elevation and configuration. The colony morphology was viewed and determined by under light microscope, Olympus 9800

2.4.2 Cellular morphological characteristics
Cellular morphology was done by doing Gram staining [35] and being viewed under light microscope, Olympus 9800.

2.5 Screening isolated rhizospheric bacteria with phenol.
The isolated bacteria were tested into 3 different concentration of phenol (1mM, 3mM and 5mM). The isolated rhizospheric bacteria were tested on 3 different concentration of phenol that is 1mM, 3mM and 5mM. The growth of isolated rhizospheric bacteria was cultivated in Ramsay broth for 24 hours under 37°C. After the incubation period, the dilution siries was done and the incubation condition is the same as the inoculum preparation.
3. Result and Discussion

3.1 Isolation and characterization of bacteria.

The rhizospheric bacteria were isolated and colony morphology and cellular morphology were identified. There are 5 isolated bacteria from the soil sample taken at the area of Kundasang Sabah namely: TSARp-Cr2, TSARp-Cr3, TSARp-Cr4, TSARp-Cr5, TSARp-Cr6 and TSARp-Cr7. The colony morphology of the isolated strains are Cream with the margins figure of smooth, wavy and branching. The elevations of the strains are round with scalloped margin, filamentous and round gram staining for each strain is positive. Table 1 shows the characteristics of the isolated bacteria. All of the isolated bacteria comprises of gram positive and negative bacteria.

Compared to other research, of the isolated rhizospheric bacteria was gram negative done by reference [36]. Other than that, there were gram negative and gram positive bacteria was isolated from rhizosphere soil [37]. So, it was agreeable that rhizospheric bacteria dominated by both of gram negative and gram positive bacteria. Those positive and negative bacteria belongs to Proteobacteria, Actinobacteria and Firmicutes [37].

3.2 Physical and growth test

There were 6 species of isolated rhizospheric bacteria. Only 2 species were able to grow in three different concentration of phenol (1mM, 3mM and 5mM). The growth of the rest of the species were not detected. There were no colonies observed. Fig. 1 shows the trend of microbial growth (Log{10}CFU/ml) of two different species.

Table 1 The colony morphology of selected isolates grown on TSA agar at 37°C after 24 hours incubation.

Strains	Colour	Colony characteristics	Gram Reaction
TSARp-Cr2	Cream	Round with scalloped margin	Positive
TSARp-Cr3	Cream	Round	Negative
TSARp-Cr4	Cream	Round	Negative
TSARp-Cr5	Cream	Filementous	Positive
TSARp-Cr6	Cream	Round	Positive
TSARp-Cr7	Cream	Round	Positive
The total number of culturable bacteria for TSARp-Cr4 ranging from 5.8 Log\(_{10}\)CFU/ml to 6 Log\(_{10}\)CFU/ml. While TSARp-Cr6 has the reading of total colony bacteria (Log\(_{10}\)CFU/ml) ranging from 3.6 Log\(_{10}\)CFU/ml to 4.9 Log\(_{10}\)CFU/ml. Species TSARp-Cr4 growth on 3 different concentration did not vary significantly as the value of Log\(_{10}\)CFU/ml in 3mM and 5mM is approaching 6Log\(_{10}\)CFU/ml. Whereas species TSARp-Cr6 growth on 1mM, 3mM and 5mM of phenol concentration shows fluctuation result.

Species TSARp-Cr4 has the optimum growth value (Log\(_{10}\)CFU/ml) at 1mM of phenol while TSARp-Cr6 has the optimum growth at 5mM of phenol. The results of the growth species on 3 different concentration of phenol (1mM, 3mM and 5mM), TSARp-Cr4 able to grow greater than TSARp-Cr6.

4. Conclusion

Based on the screening result above, it illustrate that metabolically diverse and healthy community of microorganisms in the rhizosphere in different plants might be the ‘hot spot’ for hydrocarbon degrader [38]. The isolated rhizospheric bacteria could be highly potential of hydrocarbon degrader. This research could be continued for the biodegradation study on phenol by using these two species.

5. References

[1] Kumar A, Kumar S, Kumar S 2005 Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194 Bio-chemical Engineering Journal 22 151–159
[2] Yeom, S-H and Daugulis, A J 2001 A two-phase partitioning bioreactor system for treating benzene-contaminated soil Biotechnol. Lett 23 467–473
[3] ASTDR (Agency for Toxic Substances and Disease Registry), ASTDR-HE-CS-2001-0003, U.S Department of Health and Human Services. 1992
[4] Baun A. Reitzel L A, Ledin A, Christensen T H, Bjerg P L 2003 Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark) Journal of Contaminant Hydrology 65 269-291
[5] Fang M Z, Shin M. K, Park K W, Kim Y S, Lee J W, Cho M H 2000 Analysis of urinary S-phenylmercapturic acid and trans, trans-muconic acid as exposure biomarkers of benzene in petrochemical and industrial areas of Korea.Scand J. Work Environ. Health 26 (1) 62-68
[6] Fraile J, Niairola J M, Olivella L, Figueras M, Ginebreda A, Vilanova M, Barcela D 2002 Monitoring of the gasoline oxygenate MTBE and BTEX compounds in groundwater in Catalonia (northeast Spain) Scientific World J. 8 (2) 1235-1242
[7] Kato M, Rocha M L, Carvalho A B, Chaves M E, Rana M C, Oliveira F C 1993 Occupational exposure to neurotoxicants: preliminary survey in five industries of the Camaçari Petrochemical Complex Brazil Environ. 61(1) 133-139

[8] Folsom B R, Chapman P J, Pritchard P H 1990 Phenol and trichloroethylene degradation by Pseudomonas cepacia G4. : Kinetics and interactions between substrate Appl. Environ. Microbiol. 56 (5) 1279–1285

[9] Anmadurair G, Ling L, Jiunn-Fwulee Y, 2007 Biodegradation of phenol by Pseudomonas pictrom on immobilized with chitin African J. Biotechnol. 24 541-547

[10] Kotresha D and Vidyasagar G M 2008 Isolation and characterization of phenol- degrading Pseudomonas aeruginosa MTCC 4996 World J. Microbiol. Biotechnology 24 541-554

[11] Ahmed, A M Phenol degradation by Pseudomonas aeruginosa 1995 J. Environ. Sci. Health 30 99-103

[12] Adav S S, Chen M-Y, Lee D-J, Ren N-Q 2006 Degradation of Phenol by Aerobic Granules and Isolated Yeast Candida tropicalis Biotechnology and Bioengineering 96 844 -852

[13] Jiang Y, Wen J, Lan L, Hu Z 2007 Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis Biodegradation 18 719–729

[14] Varma R J and Gaikwad B G 2009 Biodegradation and phenol tolerance by recycled cells of Candida tropicalis NCIM 3556 International Biodeterioration & Biodegradation 63 539–542, 2009.

[15] Weijian C, Li J, Zhang Z 2007 The characteristics and mechanisms of phenol biodegradation by Fusarium sp. J. Hazard. Mater. 148 38 –42

[16] Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M, Mofarrah E 2005 Phenolic removal in live oil mill waste water using loofah-immobilized Phanerochaete chrysosporium World J. Microbiol. Biotechnol 22 119 – 127

[17] Begona P M, Aurelio H, Juan L S, Maria L S 2002 Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed- bed reactor J. Biotechnol 97 1-11

[18] Krallish I, Gonta S, Savenkova , Bergauer P, Margesin R, 2006 Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula Creatinivora Extremophiles 10 441-449

[19] Piakong M T 2006 The performance of Phenol biodegradation by Candida tropicalis RETL-Cr1 using Batch and Fed-Batch Fermentation Techniques,” Thesis for Philosophy Doctrate. UTM,

[20] Suntiknowati L I, 2007 Hydrocarbon Degrading Bacteria : Isolation and Identification 11 (2) 98-103

[21] Koyode-Isola T M, Eniola K I T, Olayemi A B, Igumnugbemi A 2008 Response of resident bacteria of a crude oil-polluted river to diesel oil American-Eurasian Journal of Agronomy 1 (1) 06-09

[22] Malatova K 2005 Isolation and characterization of hydrocarbon degrading bacteria from environmental habitats in western New York state, Rochester, NY

[23] Mittal A and Singh P 2009 Isolation of hydrocarbon degrading bacteria from soils contaminated with Crude oil spills Indian J. Exp. Biol. 47 (9) 7650-7655

[24] Wang Z, Liu X, Zhang X, Hu X, Liu F 2011 Degradation of diesel with microorganisms in rhizosphere of Carex phacota Spr. Second International Conference on Environmental Science and Technology 6 224-227

[25] Jussila V, Lindstrom K, Suominen L 2006 Genetic diversity of culturable bacteria in oil contaminated rhizosphere of Galega orientalis Environ. Pollut. 139 244-257

[26] Lines-Kelly, R. 2005. The rhizosphere : Soil Biology basics, Profitable and Sustainable Primary Industries. http://www.dpi.nsw.gov.au. Accessed on 15 October 2015 at 3.22 PM

[27] Smith M R 1990 The biodegradation of aromatic hydrocarbons by bacteria Biodegradation 253 111-118

[28] Pieper D H, Martins dos Santos V A, Golysinh P N 2004 Genomic and mechanistic insights into the biodegradation of organic pollutants Curr. Opin. Biotechnol. 15 215-224

[29] Sridevi V, Lakshmi M V V C, Manasa M, Sravani M, 2012 Metabolic Pathways for the biodegradation of phenol International Journal of Engineering Science & Advanced Technology 2(3) 695 – 705

[30] Piasentier E, Bovolenta S, Malossini F, Suusmel P, 1995 Comparison of n-alkanes or chromium oxide methods for estimation of herbage intake by sheep Small Ruminant Research 18 27-32

[31] Hwang C W, Yano K, Takagi M 1990 The biodegradation of aromatic hydrocarbons by bacteria Biochemical Engineering Journal 15 215-224

[32] Morono Y, Unno H, Hori K, 2006 Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene- degrading bacteria Biochemical Engineering Journal 31 173-179

[33] Kocamemi B A and Cecen F 2005. Cometabolicdegradation of TCE in richned nitrifying batch systems. Journal of Hazardous Materials. 125 : 260-265
[34] EPA (Environmental Protection Agency). Method validation of U.S. Environmental Protection Agency Microbiological Methods of Analysis. Versar Inc., Springfield, VA, 2009

[35] Gram C 1884 The differential staining of schizomycetes in tissue sections and in dried preparations 2 185-189

[36] Bahig A E, Aly E A, Khaled, Amel K A 2008 Isolation, characterization and application of bacterial population from agricultural soil at Sohag Province, Egypt Malaysian Journal of Microbiology 4 (2) 42-50

[37] Nijhuis E H, Maat M J, Zeegers I W E, Waalwijk C, Van Veen J A 1993 Selection of bacteria suitable for introduction into the rhizosphere of grass Soil Biol. Biochem. 25 885–895

[38] Cunningham S D, Anderson T A, Schwab A P, Hsu F C 1996 Phytoremediation of soils contaminated with organic pollutants Advances in Agron 56 114