Marine cold air outbreaks in the Russian Arctic: climatology, interannual variability, dependence on sea-ice concentration

A I Narizhnaya1,2, A V Chernokulsky1, M G Akperov1, D G Chechin1, I Esau3 and A V Timazhev1

1A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Nansen Environmental and Remote Sensing Centre, Bergen, Norway

E-mail: alex.narizhnaya@ifaran.ru, a.chernokulsky@ifaran.ru

Abstract. In this study, we evaluated the climatology and interannual variability of marine cold-air outbreaks (MCAOs) in the Russian Arctic marginal seas (from the Barents to Chukchi seas). We used a simple index for identifying MCAOs based on the vertical potential temperature gradient between the sea surface and the 800 hPa level. We calculated the index using 6-hourly Era-Interim data for the 1979–2018 period. Given the index, we evaluated spatial and temporal variability of weak, medium, and strong MCAOs frequency as well as their dependence on sea-ice concentration using non-parametric tests. The most intense MCAOs were found in the Barents and Kara seas. The annual cycle maximum for the western Russian Arctic (WRA) were found in wintertime, while it was revealed in mid-late autumn for the eastern Russian Arctic (ERA). In the WRA, we found a statistically significant decrease in amount of strong MCAOs in winter and late autumn and a general strengthening of MCAOs in spring. Meanwhile, over the ERA region, increase of moderate and weak cold-air intrusions during October and November was revealed.

1. Introduction

Marine cold-air outbreaks (MCAOs) are large-scale relatively rapid departures of cold, polar air masses over warm, ice-free waters in lower latitudes. MCAOs favor intensive heat exchange between the ocean and the atmosphere — in particular, the sum of sensible and latent heat fluxes in MCAO can be greater than 500 W/m2 [1]. Inhomogeneity of the underlying surface during transition of air mass from the open sea surface through the shoreline or ice edge directly affects as well the physical properties of clouds and its structural organization [2].

MCAOs, being sources of atmospheric convective system development [3], result in high vertical and horizontal temperature gradients and wind gusts which may lead to polar lows formation [4, 5] and arctic front intensification and regeneration. In its turn, polar lows and arctic fronts have considerable environmental and socio-economic impacts, that are essential for the developing regions of the Russian North. Thus, understanding the climatological characteristics of MCAOs and their dependence on sea-ice conditions is essential for minimizing risks associated with MCAOs impacts. The issues of MCAO characteristics changes under various future scenarios, especially taking into account sea-ice retreat and shifts in global circulation patterns such as North Atlantic Oscillation (NAO) and AO (Arctic Oscillation), is still understudied [6, 7].
In this study, we evaluated the climatology and interannual variability of MCAOs in the Russian Arctic marginal seas for the last four decades. The paper is organized as follows: section 2 describes the data used and defines the MCAO index. Section 3 demonstrates trends and interannual variability of MCAOs. Section 4 summarizes the results and indicates future work motivated by this study.

2. Data and methods
Several criteria have been suggested for MCAO identification (e.g. [6, 8, 9]). In this study, we identified MCAOs based on index M [10] that was calculated as follows:

$$M = \theta_{skt} - \theta_{800}$$ \hspace{1cm} (1)

where θ_{skt} is the potential skin temperature, defined as $\theta_{skt} = T_{skt} \left(\frac{p_o}{p_{msl}} \right) R/c_p$, R/c_p equals to 0.288, T_{skt} is the skin temperature (sea surface temperature (SST) over open ocean), p_o equals to 1000 hPa and p_{msl} is the mean sea level pressure; θ_{800} denotes potential temperature at 800 hPa. To avoid excessive variations of sea level pressure due to the high extratropical cyclonic activity in the region under consideration, θ_{skt} was used instead of skin temperature. M-index is similar to one developed by Kolstad and Bracegirdle [6] and can be looked at as a simple stability parameter similar to Brunt–Väisälä frequency.

For calculating index M, we used 6-hourly data form the ERA-Interim reanalysis [11] that comes with the horizontal resolution 0.75×0.75 degree for the 1979–2018 period. The ERA-Interim reanalysis was proved to reliably reproduce the Arctic climate parameters [12].

We defined MCAOs as oceanic regions where $M>0$. All MCAOs were then clustered by spatial connectivity with condition to contain not less than 8 neighboring grid-cells. Furthermore, all events were classified according to their intensity [13] as weak (0<M≤3 K), moderate (3<M≤6 K) and strong (M>6 K). All cells with negative M were excluded.

Frequencies (f) of strong, moderate, and weak MCAOs (f_s, f_m, and f_w, respectively) were calculated for each month for two regions, namely the Kara and Barents Seas (so called western Russian Arctic or WRA: 66°N-84°N; 10°E-120°E) and the Eastern Siberian and Chukchi Seas regions (so called eastern Russian Arctic or ERA: 66°N-84°N; 120°E-160°W). The frequency for each category was calculated as the ratio between number of reports with MCAO of this category to all reports per month. The intrannual and interannual variability of f was also calculated for two smaller domains — 30°E-50°E/70°N-75°N for the WRA and 67°N-73°N/170°E-160°W for the ERA (WRA$_D$ and ERA$_D$, respectively). For these domains, we also calculated monthly means of M-index averaged over cells with positive M only (M_{mean}). Trends of MCAO characteristics were calculated using the non-parametric Theil-Sen estimator, which is insensitive to outliers. Its significance was estimated using Mann-Kendall rank correlation.

To quantify the effects of ice concentration patterns on MCAOs, monthly mean data of sea ice concentration was calculated using the Ice Data Center Sea Ice Trends and Climatologies from satellite observations SMMR and SSM/I-SSMIS, version 3 [14]. The dataset provides information for the polar region on a 25 km × 25 km grid for the period 1978–2018 years. The data was bilinearly interpolated to the 0.75×0.75-degree grid. The coefficient of regression of MCAO frequency on sea-ice concentration was calculated using the Theil-Sen estimator for the aforementioned small domains and its significance was estimated based on the Mann-Kendall test.

3. Results
3.1 Inter-annual and seasonal variability
There are two main routes of invasion of polar air masses in the Northern Hemisphere [15]. The first flow is directed from the Siberian Arctic to East Asia with a dissipation over the northern basin of the Pacific Ocean. The second flow is from the Arctic across the North American continent to the northern Atlantic Ocean with a weakening over the North Atlantic Seas. This defines the contrast in the intensity of MCAOs that originate over the Russian Arctic seas. Larger sensible and latent heat fluxes that are
transferred from warm Atlantic current towards the Barents Sea basin lead to greater ocean-atmosphere vertical and horizontal temperature gradients [15]. In contrast to the ERA seas, which are less affected by warmer ocean waters due to a very narrow Bering strait, the Barents Sea is marked preference for significant MCAOs.

Prevailing of cyclone activity in the WRA compare to the ERA [16] favors greater frequency of MCAOs over the Barents and Kara seas that is few times higher than over the Eastern Seas (figure 1). In particular, over the WRA (figure 1a), f_S is around 5-7% and f_W is near 10%. In turn, over the ERA (figure 1b), f_W is around 1-2%, while strong events lack during some years. Moreover, M_{mean} has no prominent annual cycle in the ERA and shows non-linear relationship with MCAOs frequency.

A negative trend for MCAOs characteristics is found for the WRA (table 1) that is especially pronounced for f_S. This is in line with the study [17], where a declining trend for MCAO-index were determined for the Fram Strait region. In contrast, a positive trend is revealed for the ERA, that is statistically significant for f_M and f_W (table 1).

Because of relatively high difference between wintertime sea surface temperatures over ice-free Arctic seas and air temperature, strong MCAO events over the Barents and Kara Seas often happen during winter season (figure 1c), while summertime MCAOs are uncommon [13]. While the maximum of MCAO events over the WRA happen during the wintertime and reaches up to 20%, over the ERA (figure 1d) the maximum number of MCAOs is shifted towards mid-autumn. During winter and spring, this region is fully covered with ice and does not provide strong vertical and horizontal temperature gradients needed for MCAO development.

Figure 1. Upper panels show variability of annual-means of MCAOs characteristics. Lower panels depict seasonal cycle of MCAOs frequency of occurrence (%) averaged over the (a, c) WRA (solid lines) and (b, d) ERA (dotted lines). Blue lines stay for f_W, green for f_M, red for f_S; black dotted lines show M_{mean} mean MCAO index, averaged over cells with positive M only.
Table 1. The Theil-Sen slope regression coefficients for annual-mean MCAO characteristics (in % decade$^{-1}$ for f_i and in K decade$^{-1}$ for M_{mean}) for the ERAD and WRAD regions for the 1979–2018 period. Significant trends (at 95% level) are shown with the bold font.

	f_W	f_M	f_S	M_{mean}
WRAD	0.003	-0.09	-0.74	-0.12
ERAD	0.17	0.01	0.002	-0.03

3.2 Regional analysis

Figure 2 shows trends of MCAOs of different intensity for certain months over the WRA. For weak events, positive trend coefficients are prominent for the period from December to April. Meanwhile, for both moderate and especially strong events, a statistically significant decrease is revealed for cold season (down to -5% per decade in December and January). These trends in MCAOs can lead to pronounced changes in weather regimes. The decrease of strong and moderate MCAOs and increase of weak MCAOs are likely associated with the steady year-to-year so-called ‘atlantification’ or increased inflow of warm waters from the Atlantic ocean to the Atlantic Arctic region [1] together with air temperature increase in the Arctic [18-20], which results in smaller contrast in air-sea temperature and enlarged areas where sea ice cannot form [21]. Sea-ice retreat results in appearance of regions with positive trends near sea-ice edge.

Figure 2. Linear trends (Theil-Sen regression slope) of weak (left column), moderate (middle column) and strong (right column) MCAOs frequency, in % per decade, over the WRA region for months October–December-January–March during the 1979–2018 period. Black points show significant trends (at 95% level).
Because MCAO events are prevailed in the rear of cyclones [9, 10, 22], interannual variability of MCAO events, especially strong ones, is tied to cyclonic long-term variability. Number of cyclones over the WRA region significantly declines during winter season over the recent 30 years [23], which favors a decrease in MCAOs over the same area (table 1, figure 3). Meanwhile, during the spring-summer season, the cyclone frequency has positive trends over the central-northern part of the Barents Sea, which comprehends with intensification of spring MCAOs in this region.

For Eastern seas (figure 4), sea-ice concentration is substantially higher compared to the WRA region [24]. Thus, noticeable trends of MCAOs can be found only over a small area close to the Bering Strait. Trends are significant only during months from September to December. An increase (3-4% per decade) of weak events in autumn and a decrease of strong events are revealed (less than 1% per decade). The overall number of MCAOs over the ERA has increased because of increase of cyclonic activity [23, 25] and sea-ice retreat [24], while the decrease of strong events is likely linked to the air temperature increase.

Figure 3 Same as Figure 2 but for the ERA region for months from September to December.

Figure 4 shows the regressions of MCAOs on sea-ice coverage for the WRA region. The seasonal movement of sea-ice edge is traceable with sharp changes of regression coefficient values. In general, for weak MCAOs, negative regression coefficients are revealed for all the months from November to
April. Both moderate and strong MCAOs have significant positive regression on sea-ice concentration during autumn and winter season, and negative during spring. For the ERA basin (not shown), regression coefficients are negative for all types of MCAOs, with slight positive values only over the Chukchi sea for moderate and strong events and over almost all eastern seas for weak MCAO events in early spring.

Figure 4. The same as Figure 2, but for coefficient of regression of MCAO frequency on sea-ice concentration (%).

4. Conclusion

In this study, based on the ERA-Interim reanalysis data, we found that MCAO characteristics vary broadly from western to eastern Russian Arctic seas. Thus, cold intrusions primarily exist closer to the Atlantic region, namely in the Barents and Kara seas, with peaks during wintertime. Over the ERA region, the frequency of MCAOs is overall much smaller and has seasonal maximum in mid-late autumn. We found an overall weakening of MCAOs in winter and late autumn and strengthening in spring in the WRA region. Meanwhile, over the ERA region, increase of frequency of moderate and weak cold-air intrusions during October and November was revealed. These changes are likely connected with changes in dynamic and thermodynamic characteristics of the Arctic, namely, changes in cyclone activity [23, 25] and changes of air and sea surface temperature. In particular, Kolstad et al. [6] found that changes in atmospheric temperature play greater role in both seasonal cycle and inter-annual variability of MCAOs in comparison to SST fluctuations. Sea-ice retreat plays the
major role as well. Specifically, positive coefficients of regression of MCAO frequency on sea-ice concentration over the WRA region were found being positive in winter and negative in spring.

Understanding the climatological characteristics of MCAOs is essential for studying the processes that determine energy exchange in high-latitude regions between ocean and atmosphere, and the processes that lead to convective clouds developments. An observed increase of convective clouds and convective precipitation in the Russian Arctic [2, 27-29] may be associated with long-term changes in MCAOs frequency. Further analysis needs to be done for a better understanding of the connection between MCAOs and convection development over the Arctic including convective self-aggregation process [2]. Such analysis should be performed using numerical simulations; however, numerical modelling itself is not yet able to provide reliable reproduction and prediction of small-scale processes associated with MCAOs [30]. In particular, models do not correctly reproduce radiation fluxes and cloud characteristics in the Arctic [31, 32], which is presumably due to incorrect reproduction of clouds in the MCAOs.

Acknowledgements
This study was supported by the Russian Foundation for Basic Research (project no. 18-05-60216). The linkage between MCAOs and sea-ice concentration was evaluated with the support of the Russian Science Foundation (project no. 18-47-06203).

References

[1] Pithan F et al 2018 Role of air-mass transformations in exchange between the Arctic and mid-latitudes Nat. Geosci. 11 805-12
[2] Esau I N and Chernokulsky A V 2015 Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground-based observations Izvestiya, Atmospheric and Oceanic Physics 51 1007-20
[3] Papritz L et al 2015 A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific J Climate 28 342-64
[4] Carleton A M and Yudong S 1997 Synoptic climatology, and intrahemispheric associations, of cold air mesocyclones in the Australasian sector J Geophys. Res: Atmospheres 102 13873-887.
[5] Rasmussen E A et al 1992 Polar lows and arctic instability lows in the Bear Island region Tellus A 44 133-54
[6] Kolstad E W, Bracegirdle T J 2008 Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere Clim. Dyn. 30 871-85
[7] Schwartz C, Garfinkel C I 2017 Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate J. Geophys. Res.: Atmospheres 122 4184-201
[8] Boyle J S 1986 Comparison of the synoptic conditions in midlatitudes accompanying cold surges over eastern Asia for the months of December 1974 and 1978. Part I: Monthly mean fields and individual events Mon. weather rev. 114 903-18
[9] Kolstad E W, Bracegirdle T J and Seierstad I A 2009 Marine cold-air outbreaks in the North Atlantic: temporal distribution and associations with large-scale atmospheric circulation Clim. Dyn. 33 187-97
[10] Fletcher J, Mason S and Jakob C 2016 The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres J Climate 29 1990-2014
[11] Dee D P, Uppala S.M et al 2011 The ERA-Interim reanalysis: configuration and performance of the data assimilation system Q. J. R. Meteorol. Soc 137 553–97.
[12] Lindsay R et al 2014 Evaluation of seven different atmospheric reanalysis products in the Arctic J Climate 27 2588–606
[13] Fletcher J K, Mason S and Jakob C 2016 A climatology of clouds in marine cold air outbreaks in both hemispheres J Climate 29 6677-92
[14] Stroeve J and Meier W N 2018 Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS, Version 3, Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/IJ0T7HFHB9Y6.

[15] Papritz L, Spengler T A 2017 Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air–sea heat fluxes J Climate 30 2717-37

[16] Neu U et al 2013 IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms Bull. Am. Meteorol. Soc. 94 529-47

[17] Papritz L et al 2019 On the Thermodynamic Preconditioning of Arctic Air Masses and the Role of Tropopause Polar Vortices for Cold Air Outbreaks from Fram Strait J. Geophys. Res: Atmospheres 124 11033-50

[18] Polyakov I V et al 2003 Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000 J Climate 16 2067-77

[19] Inoue J, Hori M E and Takaya K 2012 The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly J Climate 25 2561-68

[20] Vavrus S et al 2006 The behavior of extreme cold air outbreaks under greenhouse warming Int. J. Climatol.: J. R. Meteorol. Soc 26 1133-47

[21] Lind S, Ingvaldsen R B and Furevik T 2018 Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import Nat. Clim. Change 8 634-9

[22] Pichugin M K and Mitnik L M 2009 Cold-air outbreaks over the Bering Sea: Satellite multisensor analysis Sovremennye problem distancionnogo zondirovanya Zemli is cosmosa. 6 172-9 [in Russian]

[23] Zahn M et al 2018 Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data J. Geophys. Res: Atmospheres 123 2737-51

[24] Yamaguchi J, Kanno Y, Chen G and Iwasaki T 2019 Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016 J. Meteorol. Soc. Japan. Ser. II.

[25] Sepp M and Jaagus J 2011 Changes in the activity and tracks of Arctic cyclones Clim. Change 105 577-95

[26] Kriegsmann A and Brümmer B 2014 Cyclone impact on sea ice in the central Arctic Ocean: a statistical study The Cryosphere 8 303

[27] Chernokulsky A V et al 2017 Climatology and interannual variability of cloudiness in the Atlantic Arctic from surface observations since the late nineteenth century J. Climate 30 2103-20

[28] Chernokulsky A V et al 2019 Observed changes in convective and stratiform precipitation over Northern Eurasia during the last decades Environ. Res. Lett. 14 045001

[29] Chernokulsky A and Esau I 2019 Cloud cover and cloud types in the Eurasian Arctic in 1936–2012 Int. J. Climatol. 39 5771-90

[30] Chechin D G and Pichugin M K 2015 Cold-air outbreaks over the ocean at high latitudes and associated mesoscale atmospheric circulation: Problems of numerical modelling Izvestiya, Atmospheric and Oceanic Physics 51 1034-50

[31] Jabouille P, Redelsperger J L and Lefore J P 1996 Modification of surface fluxes by atmospheric convection in the TOGA COARE region Mon. Weather Rev. 124 816-37

[32] Davy R and Esau I 2014 Global climate models’ bias in surface temperature trends and variability Environ. Res. Lett. 9 114024