The bondage number of chordal graphs

V. Bouquet

March 18, 2022

Abstract

A set $S \subseteq V(G)$ of a graph G is a dominating set if each vertex has a neighbor in S or belongs to S. Let $\gamma(G)$ be the cardinality of a minimum dominating set in G. The bondage number $b(G)$ of a graph G is the smallest cardinality of a set edges $A \subseteq E(G)$ such that $\gamma(G - A) = \gamma(G) + 1$. A chordal graph is a graph with no induced cycle of length four or more.

In this paper, we prove that the bondage number of a chordal graph G is at most the order of its maximum clique, that is, $b(G) \leq \omega(G)$. We show that this bound is best possible.

Keywords: Bondage number, domination, chordal graphs, maximum clique.

1 Introduction

Given a graph $G = (V, E)$, a set $S \subseteq V$ is called a dominating set if every vertex $v \in V$ is an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set in G is called the domination number and is denoted by $\gamma(G)$. A dominating set $S \subseteq V$, with $|S| = \gamma(G)$, is called a minimum dominating set. For an overview of the topics in graph domination, we refer to the book of Haynes et al. [8]. The bondage number has been introduced by Fink et al. in [5] has a parameter to measure the criticality of a graph with respect to the domination number. The bondage number $b(G)$ of a graph G is the minimum number of edges whose removal from G increases the domination number, that is, with $E' \subseteq E(G)$ such that $\gamma(G - E') = \gamma(G) + 1$. To this date, the bondage number and related properties have been extensively studied. We refer to the survey of Xu [10] for an extending overview of the bondage number and its related properties. One result we would like to highlight is a tight upper bound on the bondage number of trees. It has been discovered independently by Bauer et al. in [1] and Fink et al. in [5].

Theorem 1 ([1][5]) If G is a tree, then $b(G) \leq 2$.

We would also like to point out an upper bound on the bondage number of block graphs. The block graphs are the chordal diamond-free graphs (a diamond is a clique of order four minus an edge). The following upper bound on block graphs has been shown by Teschner in [9].

*Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris (France). Email: valentin.bouquet@cnam.fr
Theorem 2 ([9]) If G is a block graph, then $b(G) \leq \Delta(G)$.

In this paper, we prove the following upper bound that encapsulates Theorem [1] and is a stronger statement than the one of Theorem [2]

Theorem 3 Let G be a chordal graph. If G is a clique, then $b(G) = \lceil \omega(G) / 2 \rceil$. Else $b(G) \leq \omega(G) \leq \Delta(G)$.

2 Preliminaries

The graphs considered in this paper are finite and simple, that is, without directed edges or loops or parallel edges. The reader is referred to [2] for definitions and notations in graph theory.

Let $G = (V, E)$ be a graph with vertex set $V = V(G)$ and edge set $E = E(G)$. Let $v \in V(G)$ and $xy \in E(G)$. We say that x and y are the endpoints of the edge. Let $\delta(G)$ and $\Delta(G)$ denote its minimum degree and its maximum degree, respectively. The degree of v in G is $d_G(v)$ or simply $d(v)$ when the referred graph is obvious. If $d(v) = 0$, we say that v is isolated in G. We denote by $d(u, v)$ the distance between two vertices, that is, the length of a shortest path between u and v. Note that when $uv \in E$, $d(u, v) = 1$. We denote by $N_G(v)$ the open neighborhood of a vertex v in G, and $N_G[v] = N_G(v) \cup \{v\}$ its closed neighborhood in G. When it is clear from context, we write $N(v)$ and $N[v]$. The open neighborhood of a set $U \subseteq V$ is $N(U) = \{N(u) \setminus U \mid u \in U\}$. For a subset $U \subseteq V$, let $G[U]$ denote the subgraph of G induced by U which has vertex set U and edge set $\{uv \in E \mid u, v \in U\}$. We may refer to U as an induced subgraph of G when it is clear from the context. If a graph G has no induced subgraph isomorphic to a fixed graph H, we say that G is H-free. For $n \geq 1$, the graph $P_n = u_1 - u_2 - \cdots - u_n$ denotes the cordless path or induced path on n vertices, that is, $V(P_n) = \{u_1, \ldots, u_n\}$ and $E(P_n) = \{u_i u_{i+1} \mid 1 \leq i \leq n - 1\}$. For $n \geq 3$, the graph C_n denotes the cordless cycle or induced cycle on n vertices, that is, $V(C_n) = \{u_1, \ldots, u_n\}$ and $E(C_n) = \{u_i u_{i+1} \mid 1 \leq i \leq n - 1\} \cup \{u_n u_1\}$. For $n \geq 4$, C_n is called a hole. A set $U \subseteq V$ is called a clique if any pairwise distinct vertices $u, v \in U$ are adjacent. We denote by $\omega(G)$ the size of a maximum clique in G. The graph K_n is the clique with n vertices. A set $U \subseteq V$ is called a stable set or an independent set if any pairwise distinct vertices $u, v \in U$ are not adjacent.

We recall the two following results on the upper bound of the bondage number. They will be of use to prove Theorem [3] in the next section.

Theorem 4 (Fink et al. [5]) Let $G = (V, E)$ be a graph, and $u, v \in V$ such that $d(u, v) \leq 2$. Then $b(G) \leq d(u) + d(v) - 1$.

Theorem 5 (Hartnell and Rall [7]) Let $G = (V, E)$ be a graph, and $uv \in E$. Then $b(G) \leq d(u) + d(v) - 1 - |N(u) \cap N(v)|$.

3 Chordal graphs

A chordal graph is a graph that has no hole. Stated otherwise, every subgraph that is a cycle of length at least four has a chord. We prove our main Theorem.
Theorem 3 Let G be a chordal graph. If G is a clique, then $b(G) = \lceil \omega(G)/2 \rceil$. Else $b(G) \leq \omega(G) \leq \Delta(G)$.

Proof: We can assume that G is connected with at least two vertices. Note that $\Delta(G) \geq \omega(G) - 1$ and $\Delta(G) = \omega(G) - 1$ if and only if G is a clique. When G is an even clique, one can see that $b(G) = \omega(G)/2$ by removing a perfect matching of G. When G is an odd clique, then one can see that $b(G) = (\omega(G) - 1)/2 + 1$ by removing a perfect matching of G and any edge incident to the remaining universal vertex. So when G is a clique, then $b(G) = \lceil \omega(G)/2 \rceil$. Therefore we can assume that G is not a clique and so $\omega(G) \leq \Delta(G)$.

For the sake of contradiction, we suppose that $b(G) > \omega(G)$. Let K be a clique of G. The partition distance in G with respect to K is the partition (A_0, \ldots, A_k) of V such that $A_0 = V(K)$ and $A_i = \{v \in V \mid v \in N(u), u \in A_{i-1}\}$, for $i = 1, \ldots, k$. Note that A_i is the set of vertices at distance i from K.

Claim 1 Let $C \subseteq A_i$ where $i \neq 0$, be such that $G[C]$ is a connected component of $G[A_i]$, and let $Q = N(C) \cap A_{i-1}$. Then $G[Q]$ is a clique.

For contradiction, suppose that $G[Q]$ is not a clique. Since A_0 is a clique, we can consider that $i \geq 2$. Let $u, u' \in Q$ such that $uu' \notin E$. There is a path from u to K and from u' to K in $G[A_0 \cup \ldots \cup A_{i-2} \cup \{u, u'\}]$. Therefore there is an induced path $P = u - \cdots - u'$ from u to u' in $G[A_0 \cup \ldots \cup A_{i-2} \cup \{u, u'\}]$. Let $P' = u - \cdots - u'$ be an induced path from u to u' in $G[C \cup \{u, u'\}]$. Then $G[V(P) \cup V(P')]$ is an induced cycle of length at least four, a contradiction. So $G[Q]$ is a clique. This proves Claim 1.

Let $W \subseteq A_i$, where $i = 0, \ldots, k$, such that $G[W]$ is a connected component of $G[A_i]$ with at least two vertices. We restrict W such that $F = N(W) \cap A_{i+1}$ is either empty or an independent set of G, and such that $N(F) \cap A_{i+2} = \emptyset$. We choose W so that $\psi(K) = |F \cup W|$ is minimum. When $W \neq V(K)$, we denote $Q = N(W) \cap A^{i-1}(K)$. Note that when $W = V(K)$, then $Q = \emptyset$.

We show that W exists such as described above. Since G is not a clique, it follows that $A_{k-1}, A_k \neq \emptyset$. If A_k is not an independent set of G, then there is a connected component C of $G[A_k]$ with at least two vertices. Since $|C| \geq 2$ and $N(C) \cap A_{k+1} = \emptyset$, it follows that W exists. Now we can assume that A_k is an independent set of G. Let C be a connected component of $G[A_{k-1}]$ such that $N(C) \cap A_k \neq \emptyset$. If $|C| \geq 2$, then W exists since $N(C) \cap A_k$ is an independent set of G and $A_{k+1} = \emptyset$. Hence it remains the case where $|C| = 1$. Let $C = \{u\}$ and $v \in N(u) \cap A_k$. From Claim 1 $G[N(v) \cap A_{k-1}]$ is a clique. Thus $N(v) = \{u\}$ and $d(v) = 1$. From Claim 1 $N(u) \cap A_{k-2}$ is a clique. Therefore $d(u) \leq \omega(G)$. Then from Theorem 2 $b(G) \leq d(u) + d(v) - 1 \leq \omega(G)$, a contradiction. Hence $|C| \geq 2$ and so W exists.

Let K be a clique of G such that $\psi(K) = \min\{\psi(K') \mid K' \text{ is a clique of } G\}$. We consider the sets $A_0, \ldots, A_k, F, Q, W$ as described above in the partition distance with respect to K.

3
Claim 2 For every $u \in W$ such that $Q = N(u) \cap A_{i-1}$, the sets $W \setminus \{u\}$ and $N(u) \cap (F \cup W)$ are independent in G, and $W = N[u] \cap W$.

For contradiction, suppose that $W \setminus \{u\}$ or $N(u) \cap (F \cup W)$ is not an independent set of G. Let $K' = G[Q \cup \{u\}]$. Note that Q is empty when $W = A_0$. From Claim 1 Q is a clique and it follows that K' is also a clique. Let $A'_0, A'_1, \ldots, A'_{m'}$ be the partition distance with respect to K'. Hence $A'_0 = K'$. Since $W \setminus \{u\}$ or $N(u) \cap (F \cup W)$ are not an independent set, there is $W' \subseteq A'_i \cap (F \cup W)$ such that W' is a connected component of $G[A'_i]$ with at least two vertices. Let $F' = N(W') \cap A'_3$. Note that $F' \subseteq F$. Therefore either $F' = \emptyset$ or F' is an independent set of G, and $N(F') \cap A'_3 = \emptyset$. Then $|F' \cup W'| \leq |F \cup W| - 1$ and thus $\psi(K)$ is not minimum, a contradiction. Hence $W \setminus \{u\}$ and $N(u) \cap (F \cup W)$ are two independent sets of G. Since $G[W]$ is connected, it follows that $W \subseteq N[u]$. This proves Claim 2.

Claim 3 There exists $u \in W$ such that $Q = N(u) \cap Q$.

For contradiction, suppose that for every vertex $u \in W$, we have $Q \not\subseteq N(u)$ i.e. $Q \not\subseteq N(u)$. Let $u \in W$ such that $|N(u) \cap Q|$ is maximal. Since every vertex of Q has a neighbor in W, there is $u' \in W$ such that $q'u' \in E$ and $q'u \not\in E$, where $q' \in Q$. We choose u' so that $d(u, u')$ is minimal. From the maximality of $|N(u) \cap Q|$, there is $q \in Q$ such that $qu \in E$ and $qu' \not\in E$. Since $G[W]$ is connected, there is a shortest path $P = u - \cdots - u'$ between u and u' in $G[W]$. If $P = u - u'$, then $C_4 = q - q' - u' - u - q$ is an induced cycle of length four, a contradiction. Let $v \in V(P) \setminus \{u, u'\}$. Suppose that $q'v \in E$. From the minimality of $d(u, u')$, it follows that $N(u) \cap Q \subseteq N(v) \cap Q$. Then $|N(v) \cap Q| > |N(u) \cap Q|$ is a contradiction of the maximality of $|N(u) \cap Q|$. Hence for every $v \in V(P) \setminus \{u, u'\}$, we have $vq' \not\in E$. Therefore if no vertex of $V(P) \setminus \{u, u'\}$ is a neighbor of q, it follows that $G[V(P) \cup \{q, q'\}]$ is an induced cycle of length at least five, a contradiction. So there is $v \in V(P) \setminus \{u, u'\}$ such that $qv \in E$. We choose v such that $d(u', v)$ is minimum. Let $P' = v - \cdots - u'$ be a shortest path between u' and v. Then $G[V(P') \cup \{q, q'\}]$ is an induced cycle of length at least four, a contradiction. This proves Claim 3.

Claim 4 For every $u \in W$, $|N(u) \cap F| \leq 1$, and for every $v \in F$, $d(v) = 1$.

For contradiction, suppose there exists $u \in W$ such that $v, v' \in N(u) \cap F$. From Claim 3 there is $w \in W$ such that $Q = N(w) \cap Q$. From Claim 2 $W = N[w] \cap W$, and $W \setminus \{w\}$, $(F \cup W) \cap N(w)$ are two independent sets of G. From Claim 1 $N(v) \cap A_1$, $N(v') \cap A_2$ are two cliques and therefore $N(v) \subseteq W$ and $N(v') \subseteq W$. If $d(v) \geq 2$ or $d(v') \geq 2$, then $(F \cup W) \cap N(w)$ is not an independent set. Hence $d(v), d(v') \leq 1$. Yet from Theorem 4 it follows that $b(G) \leq d(v) + d(v') - 1 \leq 1$, a contradiction. This proves Claim 4.

Claim 5 $|Q| \leq \omega(G) - 1$

From Claim 1 Q is a clique and from Claim 3 there is $u \in W$ such that $Q = N(u) \cap Q$. Hence $Q \cup \{u\}$ is a clique and therefore $|Q| \leq \omega(G) - 1$. This proves Claim 5.
From Claim 3 there is \(u \in W \) such that \(Q = N(u) \cap Q \). Recall that \(|W| \geq 2\) and that \(G[W] \) is a connected. Suppose that there is \(v \in W \), \(u \neq v \), such that \(Q = N(v) \cap Q \). From Claim 2 \(W \setminus \{u\} \) and \(W \setminus \{v\} \) are two independent sets of \(G \). Thus \(W = \{u, v\} \). From Claim 1 \(Q \) is a clique, and therefore \(|Q| \leq \omega(G) - 2\). From Claim 4 \(|N(u) \cap F|, |N(v) \cap F| \leq 1\). Hence \(d(u) \leq |Q \cup W \setminus \{u\}| + 1 \leq \omega(G) \) and \(d(v) \leq |Q \cup W \setminus \{v\}| + 1 \leq \omega(G) \). Suppose that \(u \) has a neighbor \(x \in F \). It follows from Claim 4 that \(d(x) = 1 \). Thus from Theorem 4 \(b(G) \leq d(u) + d(x) - 1 \leq \omega(G) \), a contradiction. Hence \(N(u) \cap F, N(v) \cap F = \emptyset \). Therefore \(d(u) = d(v) = \omega(G) - 1 \). From Theorem 5 it follows that \(b(G) \leq d(u) + d(v) - 1 - |N(u) \cap N(v)| \leq \omega(G) \), a contradiction.

So we can assume that \(u \) is the only vertex in \(W \) such that \(Q = N(u) \cap Q \). We show that \(F \) is empty. Recall that from Claim 1 \(G[Q] \) is a clique, from Claim 5 \(|Q| \leq \omega(G) - 1\), and from Claim 4 every vertex of \(W \) has at most one neighbor in \(F \). Moreover from Claim 2 \(W = N[u] \) and \((F \cup W) \setminus \{u\} \) is an independent set of \(G \). Hence for every \(v \in W \setminus \{u\} \), we have \(d(v) \leq |Q| + 1 \leq \omega(G) \). Let \(x \in F \). From Claim 4 \(d(x) = 1 \). If there is \(v \in W \setminus \{u\} \) a neighbor of \(x \), then from Theorem 4 it follows that \(b(G) \leq d(v) + d(x) - 1 \leq \omega(G) \), a contradiction. Hence \(x \) is a neighbor of \(u \). Yet for every \(v \in W \setminus \{u\} \), we have \(d(v, x) \leq 2 \). Therefore from Theorem 4 it follows that \(b(G) \leq d(v) + d(x) - 1 \leq \omega(G) \), a contradiction. Hence \(F = \emptyset \). It follows that for every \(v \in W \setminus \{u\} \), we have \(d(v) \leq |Q| \leq \omega(G) - 1 \).

Let \(S \) be a minimum dominating set of \(G \). Suppose that \(|S \cap W| \geq 2\). Then \((S \setminus W) \cup \{u\}\) is a dominating set, a contradiction. Hence for every minimum dominating set of \(G \), we have \(|S \cap W| \leq 1\). Let \(v \in W \setminus \{u\} \) and \(E_v = \{vv' \in E \mid v' \in N(v)\} \). Recall that \(d(v) \leq \omega(G) - 1 \), and therefore \(|E_v| \leq \omega(G) - 1\). Let \(w \in W \setminus \{v\} \) (\(u = w \) is possible). Let \(E_w = \{qw \in E \mid q \in (N(w) \cap Q) \setminus N(v)\} \), that is, the edges incident to \(w \) with an extremity in \(Q \) that is not a neighbor of \(v \). Note that \(|E_v| \leq Q \setminus N(v)|\), and therefore \(|E_v \cup E_w| \leq |Q| + 1 \leq \omega(G) \). We remove the edges \(E_v \cup E_w \) from \(G \) to construct \(G' = (V, E - (E_v \cup E_w)) \). Since \(b(G) > \omega(G) \), it follows that \(\gamma(G') = \gamma(G) \). Let \(S' \) be a minimum dominating set of \(G' \). Since \(G' \) is the graph \(G \) minus some edges, any dominating set of \(G' \) is a dominating set of \(G \). Hence \(S' \) is a minimum dominating set of \(G \). Therefore from previous arguments, we have \(|S' \cap W| \leq 1\). Note that \(v \) is isolated in \(G' \), and thus \(v \in S' \). If \(S' \cap N_G(v) \neq \emptyset \), then \(S' \setminus \{v\} \) is a dominating set of \(G \), a contradiction. Hence \(S' \cap N_G(v) = \emptyset \). Recall that \(N_{G'}(w) \cap Q \subseteq N_G(v) \cap Q \). Hence \(N_{G'}(w) \cap S' \cap W \neq \emptyset \). Yet it follows that \(|S' \cap W| \geq 2\), a contradiction.

Hence \(\gamma(G') > \gamma(G) \). Since we removed at most \(\omega(G) \) edges from \(G \) to construct \(G' \), it follows that \(b(G) \leq \omega(G) \). This completes the proof. \(\square \)

We show that the bound of Theorem 5 is sharp. The corona \(G_1 \circ G_2 \) (introduced by Frucht and Harary in [3]) is the graph formed from \(|V(G_1)|\) copies of \(G_2 \) by joining the \(i \)th vertex of \(G_1 \) to the \(i \)th copy of \(G_2 \). Let \(G = K_n \circ K_n \). Note that \(\omega(G) = \Delta(G) = n \). Carlson and Develin in [3] have shown that \(\gamma(G) = \omega(G) \) and that \(b(G) = \omega(G) \).

For non-chordal graphs, we show that there is an infinite family of graphs \(C \), where for every \(G \in C \), we have \(b(G) > \omega(G) \), and its longest induced cycle has
length four. The cartesian product $G \boxtimes H$ of two graphs G and H is the graph whose vertex set is $V(G) \times V(H)$. Two vertices (g_1, h_1) and (g_2, h_2) are adjacent in $G \boxtimes H$ if either $g_1 = g_2$ and $h_1 h_2$ is an edge in H or $h_1 = h_2$ and $g_1 g_2$ is an edge in G. Consider $G = (P_3 \boxtimes P_k) \circ K_1$, where $k \geq 2$. The longest cycle of G is four and $\omega(G) = 2$. Then one can easily check that $\gamma(G) = 2k$ and that $b(G) = 3 = \omega(G) + 1$. We remark that it would be of interest to know if there exists a graph G for which the longest cycle is C_4, and such that $b(G) > \omega(G) + 1$. Graphs for which the longest cycle is C_4 may be known as the class of quadrangulated graphs (an extension of chordal graphs, that is, chordal graphs where C_4 are allowed).

Since for a planar graph G, we have $\omega(G) \leq 4$, we obtain the following bound:

Corollary 6 Let G be a planar chordal graph. When G is not a clique, then $b(G) \leq 4$. If $G = K_2$, then $b(G) = 1$. If $G = K_3$ or $G = K_4$, then $b(G) = 2$.

We remark that Corollary 6 may be of used to tackle the following conjecture of Dunbar et al. on the bondage number of planar graphs (see Chapter 17 p. 475, Conjecture 17.10 of [4]).

Conjecture 6.1 ([4]) If G is a planar graph, then $b(G) \leq \Delta(G) + 1$.

We leave the following problem:

Problem: Characterize the chordal graphs for which $b(G) = \omega(G)$.

Acknowledgements: The author would like to thank Christophe Picouleau, Stéphane Rovedakis and François Delbot for providing helpful comments.

References

[1] D. Bauer, F. Harary, J. Nieminen, and C. L. Suffel, *Domination alteration sets in graphs*, Discret. Math., 47 (2-3) (1983), 153-161.

[2] J. A. Bondy, and U.S.R. Murty, *Graph Theory*, Springer, (2008).

[3] K. Carlson and M. Develin, *On the bondage number of planar and directed graphs*, Discret. Math., 306 (8-9) (2006), 820-826.

[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Domination in graphs Advanced Topics*, CRC Press, (1998).

[5] J.F. Fink, M.S. Jacobson, L.F. Kinch, and J. Roberts, *The bondage number of a graph*, Discret. Math., 86(1-3) (1990), 47-57.

[6] R. Frucht and F. Harary, *On the corona of two graphs*, Aequationes Mathematicae, 4 (1970), 322-325.

[7] B. L. Hartnell and D. F. Rall, *Bounds on the bondage number of a graph*, Discret. Math., 128 (1-3) (1994), 173-177.
[8] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater *Fundamentals of Domination in Graphs*, Marcel Dekker Inc., (1998).

[9] U. Teschner, *On the bondage number of block graphs*, Ars. Comb., 46 (1997), 25-32.

[10] J-M. Xu, *On Bondage Numbers of Graphs: A Survey with Some Comments*, Inter. J. of Comb., 2013 (2013).