Cu(II), Zn(II), Cd(II), La(III), AND Sn(IV) COMPLEXES OF BIDENTATE 3-TRIAZINYL THIO ACETIC ACID: SYNTHESSES, CHARACTERIZATION AND THEIR IN VITRO ANTIBACTERIAL EVALUATION

Manoj Kumar¹, Tanuja Kumari², Jyoti Joshi³, Sunil Chhimpa⁴, P.J. John⁵, Bidya S. Joshi⁶
E-Mail Id: kmanoj.ru@gmail.com, bsj_jaipur@yahoo.in

¹,² Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India
³ Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
⁴ Department of Zoology, Centre for Advanced Studies, University of Rajasthan Jaipur, Rajasthan, India

Abstract - Present work portray the synthesis of a new series of Cu(II), Zn(II), Cd(II), La(III), and Sn(IV) complexes from a potential bidentate 3-Carboxymethylthio-5-phenyl-1,2,4-triazine (ligand, CMTPT), with metal salts/oxide in an alcoholic medium. Complexes were characterized quantitatively as well as qualitatively, and credible structure of the synthesized compounds was investigated using different physicochemical techniques namely elemental analysis, Fourier transform infrared spectroscopy (FT-IR), mass spectra (LC-MS) and ¹H NMR spectroscopy. The spectral studies reveal that the complexes possess monomeric composition and the metal centre moiety is six-coordinated with octahedral geometry in lanthanum (III) and dibutyltin(IV) complexes whereas Zn(II) and Cd(II) complexes were found to possess a tetra-coordinated make-up with the ligand coordinated as a uninegatively charged bidentate chelating agent via the oxygen atoms of acetic acid of the ligand. Thereafter, FT-IR and LC-MS spectral data validated the coordinated water molecule in the outer sphere of Cu(II) complex. The ligand (CMTPT) and its metal complexes were screened for in vitro antimicrobial activity against the Gram positive bacteria, Bacillus subtilis (MTCC-121) as well Gram negative bacteria, Escherichia coli (MTCC-40) and it was observed that metal complexes show enhanced biological activity as compared to pure ligand. In the present study, dibutyltin(IV) complex showed antibacterial activity with 40 mm diameter of highest spectrum zone of inhibition.

Keywords: 1, 2, 4-triazine, lanthanum, dibutyltin, transition metal, Antimicrobial activity, inhibition zone.

1. INTRODUCTION

Presently one of the most extensive persuasive areas of research interests includes the development of 1,2,4-Triazines and their condensed derivatives, play an essential task and occupy a pivotal attitude in modern medicinal chemistry due to their high potential pharmacological activities; the most biological activities are antimicrobial,[13] anti-inflammatory,[14-15] antihypertensive, diuretic,[16] acaricidal,[17] antifungal,[18] antitumor,[19] antiproliferative,[20] anticonvulsant,[21] anticancer,[22] antioxidant,[23] antithelmintic,[24] anti-AIDS,[25] antidepressant,[26] analgesic,[27] antimalarial,[28] hypnotic,[29] and antiviral[30] activities. In addition, the prominent heterocyclic 1,2,4-Triazine motif, coupled with polyfunctional donors (N, O and S) also gained enormous attention resulting from the interest of structural diversities as well as the biological activities and it is not surprising that numerous 1,2,4-triazinyl compounds have been prepared and characterized in recent years.[31-33]

The preparation and the structural study of metal complexes of oxygen donor (contained 1,2,4-triazinyl) moiety have received considerable attention due to the physiological importance of oxygen donor and the biological synergistic effect of certain metal ions.[34-37] Moreover, organotin carboxylates particularly continues to grow because of their considerable biological activity and its being introduced there compounds as potential anti-neoplastic and anti-tuberculosis agents, PVC stabilizers and anti-tumour drugs as well a polymer catalysts.[38-39] In the present study the Cu(II), Zn(II), Cd(II), La(III), and dibutyltin(IV), complexes with 3-Carboxymethylthio-5-phenyl-1,2,4-triazine (ligand, CMTPT) are synthesized and their components and properties are characterized by elemental analysis, ¹H NMR, LC-MS and FT-IR spectra. In addition, we have reported that, complexes of the title ligand (CMTPT) acting as potentially bidentate giving monomeric complexes with said organotin and transition metal ions. It will help in understanding the chelated behavior of oxygen donor of the 1,2,4-triazinyl containing system with metal ions and enlighten more on the biological application of chelated complexes, and it has been observed that the overall value of nitrogen, oxygen and sulfur containing organic fragment is improved when they are binding with metal ion. These compounds were carried out to evaluate the antibacterial activities against Gram (+) and Gram (-) bacteria, they exhibited high degree of inhibition zone towards both tested Human pathogenic microorganisms, and the results are described herein.
Fig. 1.1 The Proposed structures of metal complexes ((Fig 1.1(A): M= Sn, Cu, Zn, Cd; when only M=Sn, R=CH₂CH₂CH₂CH₃; and X=H₂O for Cu(II))

2. EXPERIMENTAL SECTION

2.1 Materials and Methods

Thiosemicarbazide (98%) was purchased commercially from Sigma- Aldrich. The starting material phenylglyoxal hydrate was prepared as standard method[30]. Solvents were dried before using according to standard procedure[31]. The metal salts were used in their hydrated form as received and double distilled water was used throughout the study. The melting points were recorded in (°C) on melting point apparatus/device using air atmosphere. Infrared Spectra of ligands and their metal complexes were taken in dry KBr pellets using in the range 400–4000 cm⁻¹ with a SHIMADZU model 8400 FT-IR spectrophotometer.¹H (300MHz, 400 MHz) NMR spectra were collected on a spectrometer in DMSO-d₆ and chloroform-d (for dibutyltin complex) solution using Tetramethylsilane as an internal reference. Mass spectra of all the compounds were recorded with a Waters Q-TOF micro mass (LC–MS). Standard Gravimetric methods were used to determine the metal contents[31]. All the synthesized compounds (1-6) have been screened against pathogenic bacterial strains of Bacillus subtilis (MTCC-121) and Escherichia coli (MTCC-40) by using disc diffusion assay method.

2.2 Syntheses

2.2.1 3-Carboxymethylthio-5-phenyl-1,2,4-triazine (ligand; CMTPT):-

The ligand (CMTPT) was synthesized by reported method (M. Tisler et al., 1960) with some modifications[32]. A mixture of 5-Phenyl-1,2,4-triazine-3(2H)-thione (0.5 g) and 10 ml of 20% aqueous monochloroacetic acid (CIC₂H₂O₂) was refluxed at 30-35°C temperature for 2 h. The completion of the reaction was monitored through TLC using ethyl acetate and petroleum ether (1:2 v/v) as the eluent, and colourless crystals were filtered, washed with ethanol, and then left to dried. N:CPh.CH:N:N:CSCH₂COOH; M.P. 192-194°C. Yield: 0.57 g. (88%); C₁₁H₉O₂N₃S, m/z= 247.27. FT-IR (KBr, cm⁻¹): 1590 (C=N), 1544 (N=N), 753 (C-S). ¹H NMR δ (ppm): 9.7 (1H, N=CH), 7.4 –8.2 (5H, Ph) 4.1 (2H, CH₂), 10.6 (-OH).

DOI Number: https://doi.org/10.30780/IJTRS.V05.I05.005
2.2.2 Synthesis of 1:2 metal Complexes

The complexes were prepared by treating the ethanolic solution of chlorides of Cu(II) (CuCl₂·2H₂O (0.13 g; 0.75 mmol)), Zn(II) (ZnCl₂ (0.1 g; 0.75 mmol)), and Cd(II) (CdCl₂·2H₂O (0.15 g; 0.75 mmol)) with ethanolic solution of ligand (CMTPT; 0.37 g, 1.5 mmol), stirred under reflux for 4 hr at 35-40°C temperature. The resulting products were filtered, washed with distilled water several times and finally recrystallized from ethanol. The purity of the said synthesized complexes was ensured by TLC.

Cu(CMTPT)₂·H₂O: Brown solid; M.P. 177-179 ºC; Yield 58%; m/z= 573; C₂₂H₁₈CuN₆O₅S₂; Calcd. C, 46.03% (found 46.09%); H, 3.16% (found 3.13%); N, 14.64% (found 14.71%); O, 13.93% (found 13.95%); S, 11.17% (found 11.14%); Cu, 11.07% (found 11.05%). FT-IR (KBr, cm⁻¹): 1575 (C≡N), 1542 (N≡N), 752 (C=S), 480 (Cu-O). m/z (LC-MS, %relative abundance): 573 (79%), 411 (48%) (29%), 314 (8%) 298 (32%), 276 (35%), 247 (49%), 245 (100%), 217 (17%).

Zn(CMTPT)₂: Pale yellow; M.P. 211-213 ºC; Yield 51%; m/z= 557; C₂₂H₁₆ZnN₆O₅S₂; Calcd. C, 47.36% (found 47.42%); H, 2.89% (found 2.83%); N, 15.06% (found 15.11%); O, 11.49% (found 11.50%); S, 11.49% (found 11.47%); Zn, 11.72% (found 11.69%). FT-IR (KBr, cm⁻¹): 1570 (C≡N), 1542 (N≡N), 751 (C=S), 499 (Zn-O). ¹H NMR (ppm): 9.2 (1H, N=CH), 7.2-8.2 (5H, Ph) 3.9 (2H, CH₂). m/z (LC-MS, %relative abundance): 557 (27%), 485 (86%), 305 (19%), 261 (87%), 217 (100%), 185 (24%).

Cd(CMTPT)₂: Pale yellow; M.P. 170-172 ºC; Yield 49%; m/z=605; C₂₂H₁₆CdN₆O₅S₂; Calcd. C, 43.68% (found 43.61%); H, 2.67% (found 2.65%); N, 13.89% (found 13.92%); O, 10.58% (found 10.63%); S, 10.60% (found 10.57%); Cd, 18.58% (found 18.51%). FT-IR (KBr, cm⁻¹): 1582 (C≡N), 1541 (N≡N), 750 (C=S), 502 (Cd-O). ¹H NMR (ppm): 9.3 (1H, N=CH), 7.3-8.2 (5H, Ph) 3.8 (2H, CH₂). m/z (LC-MS, %relative abundance): 605 (8%), 528 (11%) 359 (17%), 248 (5%), 174 (100%), 172 (87%).

Bu₃Sn(CMTPT): The dibutyltin (IV) complex was prepared by treating the ethanolic solution of dibutyltinoxide (Bu₃SnO (0.186g; 0.75 mmol)), with ethanolic solution of ligand (CMTPT; 0.37 g, 1.5 mmol), stirred under reflux for 3-4 hr at 35-40°C temperature. The white crystalline product was filtered, washed with distilled water several times and finally recrystallized from ethanol, and further purity of the said synthesized complex was ensured by TLC. M.P. 180-182 ºC; Yield 73%; m/z= 726; C₃₀H₃₈SnN₆O₅S₂, Calcd. C, 49.67% (found 49.76%); H, 4.72% (found 4.76%); N, 11.58% (found 11.52%); O, 8.82% (found 8.80%); S, 8.84% (found 8.85%); Sn, 16.36% (found 16.34%). FT-IR (KBr, cm⁻¹): 1577 (C≡N), 1540 (N≡N), 483 (Sn-O), 573 (Sn-C). ¹H NMR (ppm): 9.37 (1H, N=CH), 7.2-8.2 (5H, Ph) 3.9 (2H, CH₂). m/z (LC-MS, %relative abundance): 726 (13%), 480 (100%), 478 (65%), 436 (13%), 378 (9%), 322 (6%), 151 (57%).

2.2.3 Synthesis of 1:3 Metal Complex

An ethanolic solution of LaCl₃·6H₂O (0.166g; 0.47 mmol), was added to an ethanolic solution of 3-Carboxymethylthio-5-phenyl-1,2,4-triazine (CMTPT; 0.35g, 1.40 mmol) in 1:3 (metal : ligand) molar ratio. Then the mixture was stirred under reflux for 4 hr at 35-40°C temperature and a pale-yellow precipitate was obtained. The precipitate was filtered out, washed with distilled water several times and finally recrystallized from ethanol. Yield 53%; mp 209-211 ºC, m/z=877; La(C₁₁H₈N₅O₅S₂).

La(CMTPT)₃: C₃₁H₂₂LaN₆O₅S₂, Calcd. C, 45.16% (found 45.25%); H, 2.76% (found 2.73%); N, 14.36% (found 14.41%); O, 10.94% (found 10.97%); S, 10.96% (found 10.91%); La, 15.83% (found 15.81%). FT-IR (KBr, cm⁻¹): 1578 (C≡N), 1538 (N≡N), 751 (C=S), 501 (La-O). ¹H NMR (ppm): 9.2 (1H, N=CH), 7.2-8.1 (5H, Ph) 4.0 (2H, CH₂). m/z (LC-MS, %relative abundance: 877 (9%), 787 (7%), 709 (100%), 670 (41%), 631 (55%), 508 (7%), 480 (7%), 329 (22%), 270 (64%), 172 (7%).

3. PHARMACOLOGY

3.1 In Vitro Antibacterial Assay

The synthesized metal complexes and thin acetic acid ligand (CMTPT) were screened for their in vitro antibacterial activities against human bacteria’s namely the Gram (+) and Gram (-) bacteria i.e. Bacillus subtilis (MTCC-121) and Escherichia coli (MTCC-40) respectively, using the nutrient agar medium (constituents-0.5% peptone, 0.3% yeast extract, 1.5% agar, 0.5% NaCl, 1 litre distilled water) with pH adjusted to the nearly neutral (6.8) at 25°C and sub cultured in nutrient broth. Overnight suspension culture of each microbial strain mentioned above was spread over the surface of separate nutrient agar plate with a sterile glass spreader. Filter paper discs (6 mm in diameter) were dipped in DMSO solution containing 3-triazinyl thio acetic acid ligand and its complexes of varying concentration and placed on the agar plates. Each plate had discs of two different concentrations which are used for screening; the concentrations used for the study were 1mg/ml and 2mg/ml. The plates were incubated at 37°C (for E. coli) and 30°C (for B. subtilis) for 24-48 hours. Three types of control plates were incubated for the same run time along with the experimental plates. First one with inoculated microbial culture without the disc; second one with microbial culture with the disc dipped in DMSO and the negative control plate without inoculum and the disc respectively, at the same time. All the testing were carried out in triplicates to minimize inaccuracy and measured values are presented. Similar experiments were administered with series of neat ligand (CMTPT) individually and its Cu(II), Zn(II), Cd(II), La(III), and Sn(IV) complexes in different combinations as disclosed in the present study.

DOI Number: https://doi.org/10.30780/IJTRS.V05.I05.005 pg. 28

www.ijtrs.com

Paper Id: IJTRS-V5-I5-003 Volume V Issue V, May 2020

©2017, IJTRS All Right Reserved
4. RESULTS AND DISCUSSION

Analytical data of ligand and its metal complexes are in a good agreement with the proposed stoichiometry of the compounds are summarized in experimental section, which indicate the formation of 1:2 metal complexes of ligand CMTPT with Cu(II), Zn(II), Cd(II), Bu(IV); and 1:3 metal complexes of ligand CMTPT with La(III) metal ion. The mass spectrum of these newly synthesized derivatives indicates the monomeric structure for all the complexes. During the complexation of the ligand CMTPT an O-H bond is disappeared and formation of new coordination between the ‘Metal-Oxygen’ is takes place which is deduced by the FT-IR and 1H-NMR spectral data. The ligand (CMTPT) was soluble in ethanol. All the solid metal complexes are stable in air, infusible at higher temperature, and were purified with several time wash.

4.1 FT-IR Spectra

FT-IR spectral data of free ligand (CMTPT) and its metal complexes reveal the involvement of coordination sites in chelation are reported in Table 4.1. In free ligand, the infrared spectrum showed some characteristic stretching bands at 3460, 1647, 1320, and 1590, cm⁻¹ assigned to ν(OH), ν(COO)ₐs, ν(COO)ₐc and ν(C=N) of the triazine ring, respectively. The ν(O-H) band of the ligand appeared at 3460 cm⁻¹ was absent in the infrared spectra of complexes 2 to 6, indicating the deprotonation and coordination of the carboxylate anions to the central metal atom moiety. The infrared spectra of complexes 2 to 6 revealed that the ν(COO)ₐs was shifted to a lower wave length number compared to the ligand signifying that the coordination took place via the oxygen atoms of the carboxylate anion. The COO stretching vibrations play an important role to predict the bonding mode of the ligand. The value of Δν [Δν = ν(COO)ₐs-ν(COO)ₐc] is used to ascertain the bonding properties of carboxylate anion to the metal atom and could be divided into 3 groups; (a) when Δν > 350 cm⁻¹, the carboxylate anion binds in a bidentate fashion, however, other very weak intra- and intermolecular interactions cannot be excluded; (b) When Δν < 200 cm⁻¹ the carboxylate anion binds in a bidentate fashion, and (c) when 350 cm⁻¹ > Δν > 200 cm⁻¹ an intermediate state between monodentate and bidentate (anisobidentate) takes place.

Based on the FT-infrared data in Table 4.1, all the complexes showed that the Δν fall in the range of 350 cm⁻¹ > Δν > 200 cm⁻¹ which thus indicated that the carboxylate anions bonded to metal atom moiety in anisobidentate manner resulting in the metal centre exhibiting six coordination in La(III) and Sn(IV) complexes whereas tetra coordinated in Cu(II), Zn(II) and Cd(II) complexes respectively. This is further confirmed by the appearance of new ν(M-O) stretching at 470-510 cm⁻¹. The band corresponding to the COO⁻ moiety has shifted to lower frequencies due to decreasing of the bond order (and increasing of bond length) of carbon–oxygen bond result from chelation of the ‘O’ to central metal ions. A broad band observed in Cu(II) complex in the region 3650–3742 cm⁻¹ assigned for ν(OH/H₂O) evidenced the presence of coordinated water molecule.

Compound	IR Frequency (cm⁻¹)	ν(COO)ₐs	ν(COO)ₐc	Δν=[ν(COO)ₐs-ν(COO)ₐc]
CMTPT	1647	1320	327	
Cu(C₁₁H₂₄N₄O₆S₂)₂.H₂O	1590	1302	288	
Zn(C₁₁H₂₄N₄O₆S₂)₂	1600	1305	295	
Cd(C₁₁H₂₄N₄O₆S₂)₂	1590	1305	285	
La(C₁₁H₂₄N₄O₆S₃)₃	1600	1305	295	
Bu₂Sn(C₁₁H₂₄N₄O₆S₂)₂	1588	1306	282	

4.2 ¹H-NMR Spectra

To elucidate the structure of ligand (CMTPT) and its Sn(IV), La(III), Zn(II), Cd(II) complexes, ¹H-NMR spectra were recorded in DMSO-d₆ and chloroform-D (for dibutyltin complex). The parent compound showed peaks at 9.7, 4.1, and 7.4-8.2 ppm which were attributed to N=CH, S-CH(2H), and phenyllic protons (5H). In free ligand, signal that appeared at δ 10.6 ppm due to -OH proton was not observed in the spectra of Sn(IV), La(III), Zn(II) and Cd(II) complexes, further supporting the complexation through O atom of the carboxylate group of the ligand leading to formation of new M–O bond. Thus, binding modes discussed in FT-IR spectra are further supported in ¹H-NMR spectra. In dibutyltin(IV) complex the butyl protons appears as a multiple in the range of 1.562-0.746 ppm due to –CH₂CH₂CH₂CH₃ group.
4.3 Mass Spectra

The mass spectrum of the synthesized metal complexes was recorded; the results are in good agreement with the proposed structures, some relevant mass spectral peaks along with their relative abundance and m/z ratio are depicted in the fig. 4.1. In the mass spectrum of this pure ligand a molecular ion peak [M]+ at m/z=247.07 (calculated M. Wt=247.27) with an intensity of 34% which is equal to its molecular weight. In addition, in the mass spectrum of other complexes molecular ion peak observed at m/z = 573, 557, 605, 877, and 726 are attributed to Cu(CMTPT)2, Zn(CMTPT)2, Cd(CMTPT)2, La(CMTPT)3, and Bu3Sn(CMTPT)2 respectively, which are coincident with the formula weights and affirm the identity of structures as disclosed in the figure 1.1. The mass spectrum of Cu(II) complex displays the parental ion peak [M]+ at m/z = 573.18 (79%) and weak peaks at m/z =575.18, 576.18 due to 13C and/or 15N isotopes. The mass spectrum of Cu(II) complex exhibits a peak corresponding to the fragment at 573.18 with 79% abundance pointing out the chelation between one copper, two deprotonated ligands and one aqua molecule as [Cu(CMTPT)2,H2O]+, while in this particular case a base peak appears at m/z = 245.00 (100%). Moreover, the other positive ions give the peaks at 411 (28%), 409 (57%), 314 (8%), 298 (32%), 276 (35%), 247 (49%), 217 (17%) mass numbers are attributed to fragments of copper complex give the idea of the stabilities of fragments (figure 2.1).

Mass spectra of Zn, Cd and dibutyltin complexes show a peak corresponding to the fragment [Zn(CMTPT)2]+, [Cd(CMTPT)2]+ and [Bu3Sn(CMTPT)2]+ respectively, which indicates the presence of a species containing one metal ion and two deprotonated ligands, whereas in the case of Lanthanum complex shows a peak corresponding to the fragment [La(CMTPT)3]+ indicates the species which contain one metal ion and three deprotonated ligands. Experimental isotopic distributions show the same patterns as the theoretical ones for all prepared compounds as described in the present article.

![Fig. 4.1 LC-MS Spectrum of Cu(C11H8N2O2S)2H2O](https://doi.org/10.30780/IJTRS.V05.I15.005)

4.4 Biological Evaluation

In vitro antimicrobial activity of ligand (3-Carboxymethylthio-5-phenyl-1,2,4-triazine; CMTPT) and its metal chelates has been examined against gram-positive bacteria (B. subtilis) and gram-negative bacteria (E. coli); and zone of inhibition tests were measured by using disc diffusion method (Table 2.1). Inhibition zone for gram-positive bacteria was found in the range of 07-14 mm and for gram-negative bacteria 16-40 mm. It has been observed that all the complexes i.e. La(CMTPT)3, Cu(CMTPT)2, Zn(CMTPT)2, Cd(CMTPT)2 and Bu3Sn(CMTPT)2 were very effective against E. coli with zone of inhibition of 25 mm, 23 mm, 30 mm, 34 mm and 40 mm; and B. subtilis with zone of inhibition of 12 mm, 12 mm, 13 mm, 14 mm and 09 mm respectively. Thus, we found that, compounds 1-6, with both the stock concentration (1 mg/ml & 2 mg/ml), were active towards both the pathogenic bacterial strains. Among all the synthesized compounds, the highest antibacterial activity was performed by Bu3Sn(CMTPT)2 against Gram-negative microorganism (2mg/ml) (E. coli) with zone of inhibition of 40 mm, followed by Bu3Sn(CMTPT)2 itself (1mg/ml), and Cd(CMTPT)2 compound with the zone inhibition of 34 mm against E. coli. Thus, disc diffusion assay demonstrated that, La(III), Cu(II), Zn(II), Cd(II) and Sn(IV) complexes of CMTPT (ligand) showed more zone of inhibition as compared to the free ligand, therefore, it indicates that these complexes possess enhanced antibacterial activity against pathogenic strains of Gram-negative bacteria such as E.coli. We therefore, speculate that, this advancement in the antimicrobial activity may be due to an efficient diffusion of the metal complexes in to the bacterial cell and/or interaction with the bacterial cells and this can be better explained by the Overtone’s concept of cell
permeability and Tweedy’s chelation theory\(^3\). According to Overtone’s concept of cell permeability, that entry of any molecule into a cell is governed by its lipid solubility (liposolubility), therefore, liposolubility is an important factor that controls the antimicrobial activity. On chelation, polarity of the metal ion is reduced to a greater extent due to the overlapping of the ligand orbital and partial sharing of the positive charge of the metal ion with donor groups. The chelation increases the delocalization of p-electrons over the whole chelate ring and enhances the lipophilicity of the complexes which in turn, increases the penetration of the complexes into lipid membranes, and results in blockage of metal sites in the enzymes of the microorganisms. Furthermore, complexes obstruct the respiration process of the bacterial cell and, block the synthesis of proteins and prevent further growth of the microorganism. Eventually, it has been observed that the results also showed dose-dependent effect for both types of bacterial strains: at lower concentration growth is lightened while at higher concentration more enzymes become inhibited. Hence, the zone of inhibition for $\text{Bu}_2\text{Sn(CMTPT)}_2$ suggested that this compound had much stronger antibacterial activity compared to other synthesized compounds and, therefore, it could potentially be used for new therapeutic targets (Table-2.1, fig.4.2-fig.3.3).

Table-2.1 Inhibition Zone (mm) of Ligand and its Metal Complexes against Pathogenic Bacteria’s through Disc Diffusion Method

S. No.	Compound	Concentration of compound (mg/ml)	Diameter growth of inhibition zone (mm)	Antibacterial activity	DMSO (control)		
			E. coli	B. subtilis	Disc diameter (in mm)		
1	CMTPT	1	16	13	6	+++	No activity found
		2	22	14	6	+++	
2	La($\text{C}_1\text{1H}_3\text{N}_3\text{O}_8\text{S}$)$_3$	1	23	10	6	+++	
		2	25	12	6	+++	
3	Cu($\text{C}_1\text{1H}_3\text{N}_3\text{O}_8\text{S}$)$_2$.H$_2$O	1	20	10	6	+++	
		2	23	12	6	+++	
4	Zn($\text{C}_1\text{1H}_3\text{N}_3\text{O}_8\text{S}$)$_2$	1	20	13	6	+++	
		2	30	13	6	+++	
5	Cd($\text{C}_1\text{1H}_3\text{N}_3\text{O}_8\text{S}$)$_2$	1	30	12	6	+++	
		2	34	14	6	+++	
6	$\text{Bu}_2\text{Sn(C}_1\text{1H}_3\text{N}_3\text{O}_8\text{S})_2$	1	35	07	6	+++	
		2	40	09	6	+++	

(-)=no inhibition; (+)=zone size 6-9 mm; (++)=zone size 10-13 mm; (+++)=zone size 14-20 mm; (++++)=zone size >20 mm

Fig. 4.2(A): Zone of inhibition for metal complexes for Gram-negative bacterium (E. coli)
Fig. 4.3(B): Zone of inhibition for metal complexes for Gram-positive bacterium (B. subtilis)
CONCLUSIONS

The 3-Carboxymethylthio-5-phenyl-1,2,4-triazine (ligand, CMTPT) and its Sn(IV), La(III), Cu(II), Zn(II), Cd(II) complexes were successfully synthesized and physico-chemically investigated using elemental analysis, 1H NMR, FT-IR and LC-MS spectral studies. The results indicate that, ligand (CMTPT) acts as a monofunctional bidentate and it coordinates via carboxylate to the metal ion to afford the corresponding complexes 2 to 6 giving stable chelate ring. With the help of aforementioned techniques, octahedral geometry around the Sn(IV), and Ln(III) monomeric complexes and square planar geometry around the Zn(II) and Cd(II) monomeric complexes have been proposed. In vitro antibacterial activity towards two bacterial strains, namely Bacillus subtilis (MTCC-121) and Escherichia coli (MTCC-40) were screened, and the results revealed significantly more activity for these newly synthesized derivatives as compared to free ligand. For instance, Bu3Sn(CMTPT)2 and Cd(CMTPT)2 complexes exhibit greatest activity against E. coli, as compared to free ligand. The synthesized compounds 1-6 were prepared in DMSO which had no antibacterial activity towards both the pathogens. Therefore, it may suggested that coordination of said ligand (CMTPT) with different metal ions makes them stronger bacteriostatic agents, thus inhibiting the growth of bacteria more than the parent ligand. The present study will provide more insightful information related to the nature of transition metal complexes and organotin(IV) complex along with sulphur, nitrogen and oxygen containing bioactive heterocyclic ligands.

ACKNOWLEDGMENT

The authors would like to thank the Head, Department of Chemistry, for providing the necessary research facilities to carry out this research work. This research was financially supported by grant from University Grant Commission, New Delhi, India is gratefully acknowledged. We are grateful to USIC (University Science Instrumentation Centre), MNIT Jaipur and Therachem lab Jaipur for providing spectral and analytical data.

REFERENCES

[1] Maher AE, Sameh AR, Amira AE, “Regioselective Green Synthesis and Antimicrobial properties of full fused non mixed Heterocyclic Systems”, J A C., 13, 6130-6143 (2017).
[2] Temitope EO, Adeniyi SO, Gareth MW, “SN-Donor Methylthioanilines and Copper(II) Complexes: Synthesis, Spectral Properties, and In Vitro Antimicrobial Activity”, Heterothem Chem, 1-7 (2019).
[3] Kiran S, Ritu T, Vikas K., “Co(II), Ni(II), Cu(II), and Zn(II) complexes derived from 4-[[3-(4-bromophenyl)-1-phenyl-1H-pyrazol-4-ylmethylene]-amino]-3-mercapto-6-methyl-5-oxo-1,2,4-triazine”, Beni-Suef Univ J Basic Appl Sci. 5, 21-30 (2016).
[4] Remon MZ, Adel MK, Shaban MR, Ahmed FS., “A Convenient Synthesis, Reactions and Biological Activity of Some New 6H-Pyrazolo[4′,3′:4,5][thieno[3,2-d]]1,2,3-triazine Compounds as Antibacterial, Anti-Fungal and Anti-Inflammatory Agents”, J Braz Chem Soc., 29, 2482-2495 (2018).
[5] Sakineh D, Tuba TK, Oya UT, Keriman O, Hamid I, Saeed E., “Design, Synthesis and In Vitro Study of 5,6-Diaryl-1,2,4-triazine-3-thioacetate Derivatives as COX-2 and b-Amyloid Aggregation Inhibitors”, Arch Pharm Chem Life Sci., 348, 179-187 (2015).
[6] Amira SA, Ammar AL, Hanan AM, Fatma AB, Khaled HH, Maher AE, Saad RA, Wafaa HA, Souad AMO, “Synthesis of Ag(I), Cu(II), La(III) Complexes of Some Newmannich Bases Incorporating 1,2,4-Triazine Moiety and Studying Their Antihypertensive and Diuretic Activities”, J Appl Sci Res, 9, 469-481 (2013).

DOI Number: https://doi.org/10.30780/IJTRS.V05.I05.005

www.ijtrs.com
www.ijtrs.org
International Journal of Technical Research & Science

[7] Wafaa SH, Ghada GE, Mohamed EM, Hanafi HZ, “Synthesis and Acaricidal Activity of Some New 1,2,4-Triazine Derivatives”, J Heterocyclic Chem., 56, 239-250 (2019).

[8] Mashaly MM, El-Shafiy HF, El-Maraghy SB, Habib HA, “Synthesis, properties and thermal studies of oxorhenium(V) complexes with 3-hydrazone-5,6-diphenyl-1,2,4-triazine, benzimidazolcarbodihyderole and 2-hydrazinobenzimidazole Mixed ligand complexes, pyrrolylaldehyde products and biological activity”, Spectrochim Acta A, 61, 1853-1869 (2005).

[9] Needam PP, Hitesh DP, “Novel thiosemicarbazone derivatives and their metal complexes: Recent development”, Synth Commun., 49, 2767-2804 (2019).

[10] Mojzych M, Tarasiuk P, Karczmarzyk Z, Juszczak M, Rzeski W, Fruzinski A, Wozny A, “Synthesis, Structure and Antiproliferative Activity of New pyrazolo[4,3-e]triazolo[4,5-b][1,2,4]triazine Derivatives”, Monatsh Chem., 149, 1409-1420 (2018).

[11] Priya A, Nadeem S, “Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: A Synthetic approach”, Eur J Med Chem., 80, 509-522 (2014).

[12] Branowska D, Lawecka J, Sobieczewski M, Karczmarzyk Z, Wysocki W, Wolińska E, Olender E, Mirosław B, Perzyna A, Bielawski A, Bielawski K, “Synthesis of unsymmetrical disulfanes bearing 1,2,4-triazine scaffold and their in vitro screening towards anti-breast cancer activity”, Monatsh Chem., 149, 1409-1420 (2018).

[13] Mehdi K, Omolbanin S, Mahsima K, Alireza F, Omidreza F, Najmeh E, Hamid N, Alireza M, Abbas S, Omolbanin S, Mahsima K, Alireza F, Omidreza F, Najmeh E, Hamid N, Alireza M, Abbas S, “Structure-based Design, Synthesis, Molecular Docking Study and Biological Evaluation of 1,2,4-triazine Derivatives Acting as COX/15-LOX Inhibitors With Anti-Oxidant Activities”, J Enzyme Inhib Med Chem., 31, 1602-1611 (2016).

[14] Mohammed STM, Reda MAR, Ola AAA, “Synthesis of New Fluorinated 1,2,4-Triazino[3,4-b][1,3,4]thiadiazolones as Antiviral Probes-Part II-Reactivities of Fluorinated 3-Aminophenyl-1,2,4-triazinethiadiazolone”, Int J Org Chem., 5, 153-165 (2015).

[15] Mohammed SIM, Reda MAR, Khalid AK, “Fluorine Substituted 1,2,4-Triazinones as Potential Anti-HIV-1 and CDK2 Inhibitors” J Chem. (2014).

[16] Gamal AE, Ayman RB, Mervat M, Hanaa YH, “Synthesis and Antidepressant Evaluation of Five Novel Heterocyclic Tryptophan Hybrid Derivatives”, Arch Pharm Chem Life Sci., 343, 261-267 (2010).

[17] Anupami GB, Nirupam D, Sushant AS, Radhey SS, Sushant KS, “Synthesis, Characterization, Evaluation and Molecular Dynamics Studies of 5, 6-diphenyl-1,2,4-triazin-3(2H)-one Derivatives Bearing 5-substituted 1,3,4-oxidiazole as Potential Anti-Inflammatory and Analgesic Agents”, Eur J Med Chem., 101, 81-95 (2015).

[18] Kung B, Sandra D, Yelena K, Vicky MA, Andrew H, Oliver M, Kasiram K, Eileen R, Jonathan BB, “3-alkylthio-1,2,4-triazine Dimers With Potent Antimalarial Activity”, Bioorg Med Chem Lett., 20, 6024-6029 (2010).

[19] Deweshri RK, Pramod BK, “Indole Derivatives acting on Central Nervous System – Review”, J Pharm Sci Bioscience Res., 6, 144-156 (2016).

[20] Inna K, Sergey D, Oleg K, Valerey C, Vladimir R, Eugeney U, Ella D, Dmitry Y, Alexander I, Olga S, Sergey K, Oleg C, Marina K, “Antiviral Properties, Metabolism, and Pharmacokinetics of a Novel azolo-1,2,4-triazine-derived Inhibitor of Influenza A and B Virus Replication. Antimicrob Agents”, Chemother., 54, 2017-2022 (2010).

[21] Mariusz M, Zofia B, Zbigniew K, Joanna M, Andrzej F., “Synthesis, Structural Characterization, and Biological Activity of New Pyrazolo[4,3-e][1,2,4]triazine Acyclonucleosides”, Molecules, 25, 1-17 (2020).

[22] Tuba TK, Kamaledin SY, Beyza A, Mohammad AR, Farshad HM, Alireza M, Saeed E, Mohsen A, Hamid I., “Synthesis and neurprotective activity of novel 1,2,4-triazine derivatives with ethyl acetate moiety against H2O2 and Aβ-induced neurotoxicity”, Med Chem Res., 26, 3057-3071 (2017).

[23] Rajeev K, Sirohi TS, Hariram S, Ramji Y, Roy RK, Chaudhary A, Pandeya SN, “1,2,4-Triazine Analogs as Novel Class of Therapeutic Agents”, Mini Rev Med Chem., 14, 168-207 (2014).

[24] Win YF, Heng MH, Yousif E, Shalan N, “Lanthanide complexes of [(5-phenyl-1,3,4-oxadiazol-2-yl)thio]acetic acid: Synthesis, characterization and preliminary in vitro antibacterial screening activity”, Int J Phys Sci., 7, 43-47 (2012).

[25] Monica B, Marisa BF, Franco B, Silvia C, Giorgio P, Pieralberto T., “Zinc complexes with cyclic derivatives of a-ketoglutaric acid thiosemicarbazone: Synthesis, X-ray structures and DNA interactions”, J Inorg Biochem., 99, 1504-1513 (2005).

[26] Win YF, Yousif E, Majeed A, Ha ST, “Synthesis, Characterization and in vitro Antimicrobial Activity of Co(II), Cu(II), Zn(II), Cd(II) and Sn(II) Ions with [(5-(4-Bromophenyl)-1,3,4-oxadiazol-2-yl)thio]acetic Acid”, Asian J Chem., 23, 5009-5012 (2011).

[27] Yousif E, Rentschler E., “Synthesis and Characterization of Some Metal Ions with [(5-(4-Chlorophenyl)-1,3,4-Oxadiazol-2-yl)thio]Acetic Acid”, J Al-Nahrain Univ., 13, 86-92 (2010).

[28] Yousif E., “Structure and Fungicidal Activity of Some Diorganotin(IV) with 2-Thioacetic-5-Phenyl-1,3,4-Oxadiazole and Benzamidophenylalanine”, Iran J Chem Chem Eng., 30, 67-72 (2011).
[29] Mokal VB, Jain VK., “Steric effects on the formation of isolable products in the reactions of dibutyltin oxides with carboxylic acids”, J Organomet Chem., 441, 215-226 (1992).

[30] Riley HA, Gray AR, “Phenylglyoxal”, Org Synth., 15, 67 (1935).

[31] Vogel AI. Text book of quantitative chemical analysis. London:Longmans, Addison Wesley, 1999.

[32] Tisler M., “Syntheses and Structure of Some 5-Substituted 2,3-Dihydro-1,2,4-triazine-3-thiones”, Croat Chem Acta., 32, 123-132 (1960).

[33] Tweedy BG. Phytopatology. 55, 910, 1964.