Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound

Abstract

Betulin a pentacyclic triterpenoid member of lupane family occurs widely in numerous plants. Betulin, unlike most other constituents is easily isolated that it can be utilized for various pharmacological actions. It is interesting to know that betulin can be easily extracted from bark, stem, leaves, flower, roots etc. of plant. This review summarizes plethora of reliable pharmacological activities like anti-inflammatory, anti–ulcer, anti–diabetic, anti–bacterial, anti–microbial, anti–malarial, anti–viral, anti hyperlipidaemic, anti–cancer and anti HIV exhibited by betulin and its derivatives. For this it can be utilized in herbal as well as synthetic pharmaceutical industries because of its promising efficacy and low levels of toxicity. Although betulin possess a wide range of pharmacological activities, there is still lack of awareness of its proper utilization in the field of medicine. So, need of the hour is to refocus on naturally occurring betulin and its derivatives to avoid side effects caused by synthetic compounds utilized in treating various ailments. Therefore, the aim of the present review is to re-explore the potential of betulin, as an alternative to the compounds possessing higher side effects.

Keywords: betulin, pentacyclic triterpenoid, betulinic acid, lupine, pharmacological activities

Introduction

Mother earth, a bionetwork enriched with plethora of remarkable plants holding numerous beneficial chemical compounds, which play an integral role in maintaining the lives stealth and safe. Betulin a pentacyclic triterpenoid alcohol with a lupane skeleton is one of such chemical compounds contributing towards platelets adenosine. It is obtained from outer bark of Birch trees. As described in Figure 1: Betulin has a pentacyclic ring structure and hydroxyl groups in positions C24, C25. Betulin is present in a compound undergoing rearrangement to form allobetulin. It is acknowledged that plants with lupine series are helpful in curing various diseases for this one relies on betulin and its derivatives which on conversion to betulinic acid, the alcohol group replaced by a carboxylic acid group has more biological activity. The alcohol group cannot join with stationary phase because two groups are located on opposite sides of compound. Betulinic acid, the more bioactive compound exhibits choleric, antihelminthic, powerful prophylactic, anti–HIV, antimutagenic, antiviral, anti–fungal, anti–leukemia, anti–leishmanial, anti–inflammatory, immunomodulator. Adding on it acts as anti–parasitic against Plasmodium falciparum and Trypanosomabrucei rhodesiense, anti–microbial, anti–obesity by improving the lipid profile, also stabilizes atherosclerotic plaques. Betulin is used as plaster for sterilization of wounds, acts as liver protectant in chronic hepatitis therapy, anticharic, antitypanosomonal also supports apoptosis i.e. self-destruction of tumor cells. As betulin is found in various other plants so people of vernacular regions take numerous benefits depending on the necessity. Infusion of red alder is used in lymphatic disorders and tuberculosis. Native Americans use it to mediate insect bites, poison oak, digestive tract infections and skin inflammation. Rather than possessing pharmacological activities, due to elegant bark of Birch trees they are considered choice of trees for landscape too. The substantial Birch trees grows well in all soils due to which they are used as screen or window break. Moreover, due to hard bark they are also used in carpentry and aquatic industry. It is also used in cosmetic products. The birch bark extract may be used in hair conditioners and shampoos.

Physical properties of betulin

Standard betulin has weak water solubility, thus it requires modification for better cellular uptake and desired activity however its derivatives like betulin diacetate (BDA) and betulin dipropionate (BDP) possess greater water solubility as compared to betulin. Therefore, betulin still remains relevant in synthesizing compounds with higher solubility pattern that are considered more biologically active (Table 1) (Figure 1).
Betulin a pentacyclic tri-terpenoid: an hour to rethink the compound

Table 1: Represents the physical properties of betulin.13,31

No.	Property	Value
1	Chemical formula	\(C_{30}H_{50}O_{2}\)
2	Synonyms	Betulin, Betulinol, lup-20(29)-en-3 alpha, 28,30-triol, lup-20(29)-ene3alpha,28-diol
3	Appearance	White, crystalline powder
4	Molar mass	442.7 g/mol
5	Melting point	256–257°C (lit.)
6	Solubility	Alcohol, chloroform, benzene
7	Heat capacity	80–350K

Occurrence of betulin in nature

Betulin has long been explored by research scientist because of the fact that it has anticancer properties35,36 and its derivative Betulinic acid is favored due to its anti–HIV activity.12,6,37 As mentioned in Figure 1: betulin has three most prominent positions where chemical modifications can be easily accomplished, namely primary hydroxyl group at position C–28, secondary hydroxyl group at position C–3, and alkene moiety at position C–20. The bio–chemical modifications at positions C–28 of the parent structure of betulin produces betulinic acid.12,27,38–41

The chief source of Betulin is bark of Birch trees, belonging to family Betulaceae the family of flowering plants. Mostly placed in order Fagales, it can also be placed in order Betulales. The sub–families include Betuloideae genera \textit{Betula} (birch), \textit{Alnus} (alder) and Coryloideae genera \textit{Carpinus} (hornbeam), \textit{Corylus} (hazel), \textit{Ostrya} and \textit{Ostryopsis}.42–44 Betulin, a pentacyclic triterpenoid is derived from linear hydrocarbon squalene.11 Triterpenes have three main classes oleane, ursane and lupane triterpenes. Lupane family comprises betulin, betulinic acid, lupeol.6,45 Triterpenes are used as traditional herbal medicine and the esters of betulin and fatty acids are used in the production of cosmetics and as plasticizers for PVC (Table 2).31,46

Table 2: List of plants possessing betulin

S. no	Name of plant	Family of plant	Part of plant	Reference
1	Betula pumila	Betulaceae	Bark	47
2	Betula pendula(silver birch)	Betulaceae	Bark	35,47–51
3	Betula jacquemontii	Betulaceae	Bark	47
4	Betula pubescens	Betulaceae	Bark	29,47
5	Betula platyphylla	Betulaceae	Bark	29,47
6	Betula papyrifera(paper birch)	Betulaceae	Bark	12,30,47,52
7	Betula nana	Betulaceae	Bark	47,53
8	Betula nigra	Betulaceae	Bark	47
9	Betula lente	Betulaceae	Bark	47,54
10	Betula alba	Betulaceae	Bark	29,49
11	Betula occidentalis	Betulaceae	Bark	55
12	Platanus acerifolia	Platanaceae	Bark	56
13	Sambucus nigra	Adoxaceae	Bark	57
14	Olea europeae	Oleaceae	Bark	58
15	Alnus subcordata	Betulaceae	Bark	59,60
16	Ziziphus jujube	Rhamnaceae	Bark	59,61
17	Atractyliscordus	Asteraceae	Aerial parts of plant	59,62
18	Platanus hybrida	Platanaceae	Bark	59,63,64
19	Platanus hysteronica	Platanaceae	Bark	48
20	Nerium oleander	Apocynaceae	Leaves	8
21	Dillenia indica	Dilleniaceae	Stem bark	3,12
22	Tectona grandis	Verbenaceae	Stem bark	2
23	Alangium salviolium	Cornaceae	Seeds	65–67
24	Alstonia scholaris	Apocynaceae	Stem bark	68
25	Cornus macrophylla	Cornaceae	Stem bark	66–69
26	Plumeria obtusa	Apocynaceae	Leaves	70–72

Citation: Boparai A, Niazi J, Bajwa N, et al. Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access J Trans Med Res. 2017;1(2):53–59. DOI: 10.15406/oajtmr.2017.01.00012
Pharmacological studies

Betulin, as we all known till now possess vast pharmacological properties including choleretic, antihelmintic, powerful prophylactic, anti–HIV, antimitragene agent, antiviral, anti–fungal, anti–leukemia, anti–leishmanial, anti–inflammatory, immunomodulator activities. The latest research suggests some of the major pharmacological properties as discussed below.

Anti–inflammatory and Anti–ulcer activity

Inflammation is a physiological process which involves pain as a secondary process and its hallmarks include swelling, redness, pain and fever.10 Bernard et al.11 determined that Betulin and betulinic acid were found to inhibit phospholipaseA2 activity at 5M concentrations by 30% and 40% respectively.12 It has also been demonstrated to exhibit inhibitory effects on nitricoxide (NO) and prostaglandin E2 production in mouse macrophages.13 According to the latest research done by Singh et al.14 stem bark extract of Dillenia indica f. elongata (Miq.) Miq. showed significant (P<0.01) anti–inflammatory activity in formalin and carrageen an induced inflammation models.15 Moreover, Betulonic acid exhibited antilulcer action exceeding that of Venter preparation for the models if affection of mucous coat of stomach in rats caused by indomethacin and aspirin with the dose of 50mg/kg.16

Anti–diabetic

Diabetes is a metabolic disorder associated with abnormalities in insulin production or secretion along with modifications in carbohydrate, fat and protein metabolism.17,18 In accordance to, Riya et al.,19 determined the presence of betulin, alpha amyrin and beta sitosterol in flower, leaf and roots of Aerva lanata.20 However, there are reports that betulin is useful in treatment of diabetes.99,101 As 70% ethanolic extract (ALE) for 21 days in STZ–induced diabetic rats demonstrated that ALE was successful in refining postprandial hyperglycemia in sucrose–loaded normal and STZ diabetic rats, through its promising alpha glucosidase inhibitory potential.101,102 Agarwal et al.103 reported that the alkaloid–enriched fraction of root of Aervalanata possesses anti–hyperglycemic potential in streptozotocin–nicotinamide–induced type II diabetic rats.104

Anti–bacterial and anti–microbial activity

Bacterial infections alone are the cause of around two million deaths globally and it is found that bacterial pathogens probably infect more than one–third of the population around the world.105 In accordance to Valterová et al.,106 the antibacterial activity of C–3 substituted derivatives of betulin with respect to a number of bacteria (Staphylococcus aureus, Staphylococcus faecalis and Staphylococcus beta haemolyticus) was depicted.107 Furthermore, Hess et al.,108 concluded that Betulinic acid has been found to be inactive against Staphylococcus aureus, Escherichia coli, Bacillussubtilis and Micrococcus luteus.109

Antimicrobial activity of betulin and its derivatives have been reported against Streptococcus pyogenes with a minimum inhibitory concentration (MIC) of 85µg/mL, and considerable activity has also been observed against other bacteria, i.e. Escherichia coli, Staphylococcus aureus and Enterococcus faecalis.108,109

Anti–malarial activity

Betulin, betulinicacid, ursolic acid and oleandric acid have also been tested for monitoring antimalarial activity against chloroquine sensitive (T9–96 strain) and resistant (K1 strain) Plasmodium falciparum. It was concluded that betulin was inactive, whereas the others showed moderate activity, betulinicacid being most active in vitro against both strains of P. falciparum at IC50 values 19.6g/mL (K1) and 25.9g/mL (T9–96) respectively.110 But, in vivo experiments with the NK65 (P. Berghei) model of malaria revealed that betulic acid turned out to be inactive and even toxic at the dose of 250mg/ kg per day.111

Anti–viral activity

According to Karachurina et al.,109 Betulinbisheimiphthalate and betulin dinicotinate stimulate the production of antibody–forming cells in mouse spleen 1.3 and 1.8 times more actively in comparison with the reference.112 Adding on, the indicated compounds prevent death of animals from acute radiation sickness. However, Kanamoto et al.113 and Baltina et al.114 studied anti–viral activity of betulin, betulinic acid

Table Continued....

S. no	Name of plant	Family of plant	Part of plant	Reference
25	Asteranta longifolia	Acanthaceae	Aerial parts of plant	73
26	Aerva lanata	Amaranthaceae	Flower, leaf	74
27	Quercus suber	Fagaceae	Bark	75,76
28	Acacia mellifera	Fabaceae	Bark	77
29	Celtis philippinensis	Cannabaceae	Twigs	78,79
30	Coccoloba acrostichoides	Polygonaceae	Aerial parts	80-81
31	Anemone raddeana	Ranunculaceae	Roots	82,83
32	Diospyros leucomelas	Ebenaceae	Leaves	84,85
33	Ziziphus vulgaris	Rhamnaceae	Seeds	86,84
34	Trochodendron aralioides	Trochodendraceae	Bark	87,88
35	Torenia concolor	Scrophulariaceae	Flower	85-87
36	Belamcandron chinensis	Iridaceae	Root	88
37	Chaenomeles sinensis	Rosaceae	Fruit	89,90
38	Cyrtomium fortunei	Dryopteridaceae	Rhizomes	91
and its derivatives against influenza A, herpes simplex type 1 (HSV–1), influenza FPV/Rostock and ECHO–6 enterovirus. Betulin and betulinic acid were inactive against influenza FPV/Rostock virus on the other hand betulonic acid 3 showed a weak antiviral activity.12,13

Anti–hyperlipidaemic activity

Tang et al.14 identified a small–molecule inhibitor of SREBP, betulin, by compound screening. Where SREBP is a major transcription factor that controls the biosynthesis of cholesterol, fatty acid, and triglyceride.14 Betulin inhibits SREBP by binding SCAP and making the interaction between SCAP and Insig easier, which leads to the ER–retention of SREBP. Betulin down regulates the genes in cholesterol and fatty acid biosynthesis and decreases the content of cellular lipids, enhances insulin sensitivity, and reduces the development of atherosclerotic plaques.16

Anti–cancer activities

According to the latest research done by Bębenek et al.14 Betulin and its semisynthetic derivatives possesses cytotoxic activity toward various cancer cell lines. Experimentation for the antiproliferative activity in vitro against T47D breast cancer, CCRF/CEM leukemia, HL–60 promyelocytic leukemia, SW707 colorectal, murine P388 leukemia, as well as BALB3T3 normal fibroblasts cell lines was done by using betulin and its derivatives. It was discovered that the derivative of betulin with a propynoyl group at C–28 position, has strong cytotoxic effects against human leukemia (CCRF/CEM) and murine leukemia (P388) cancer cells.15

Anti–HIV activities

Hashimoto et al.15 researched that betulin and 3, 28–diacetylbetulin are inactive as anti–HIV agents which confirm the importance of the presence of carboxylic group at C–28.16 However, betulonic acid and its derivatives have been discovered as a new class of compounds that seem to act as immunomodulator and protect the cells *in vitro* from attack by the HIV virus.17 Furthermore, synthetic betulinic acid derivatives, especially 3–alkylamido–3–deoxy–betulinic acid derivatives, inhibit the life cycle of the virus in the infected cells in its early phase hence; defend the surrounding cells from HIV proliferation.18 Also, one must take into consideration that anti–HIV activity increases in amides and peptides of betulin and betulonic acids.19,20

Conclusion

It is commendable that betulin is found in 200 different types of plants indefinitely distributed across the plantae kingdom and owes to diverse pharmacological activities. But despite of its easy and free availability in nature, betulin and its derivatives are still not empathized in pharmaceutical industries. The good side of picture is that the isolation of betulin is not a tough job and need not require complex analytical techniques. The tool of biotechnology can further be applied to gain maximum pharmaceutical advantages of betulin. Due to the fact that it is a compound obtained from plant source and possess vast significant pharmacological properties it can be utilized in herbal pharmaceutical industries with a new concept of nano–medicine. Having minimal side effects gives betulin an edge over other compounds and plant extracts containing betulin are also of equal importance for possessing signified efficacy resulting in decreased level of toxicity. At last, it seems that betulin requires our re–attention so that with the help of growing analytical techniques we can produce its new derivatives which could be a boon to society for treating various ailments.

Acknowledgements

The authors are very thankful to the Dr. Charanjit Singh for sparing his valuable time for this article.

Conflict of interest

The author declares no conflict of interest.

References

1. Leseller E, Destandau E, Grigoras C, et al. Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector. *J Chromatogr A*. 2012;1268:157–165.

2. Singh AP, Aeri V. Physico–chemical parameters and HPTLC fingerprinting profile *Dilleniantica* MIQ. F. Elongata (MIQ) and *Tectonagrandis* LINN. With reference to betulin. *Int J Pharm Bio Sci*. 2016;7(1):217–221.

3. Szakiel A, Pączkowski C, Pensel F, et al. Fruit cuticular waxes as a source of biologically active triterpenoids. *Phytochem Rev*. 2012;11(2–3):263–284.

4. Mullauer FB, Kessler JH, Medema JP. Betulonic acid, a natural Compound with potent anticancer effects. *Anticancer Drugs*. 2010;21(3):215–227.

5. Laszczyk M, Jäger S, Simon–Haarhaus B, et al. Physical, chemical and pharmacological characterization of a new oel–forming triterpene extract from the outer bark of birch (betulae cortex). *Planta Med*. 2006;72(15):1389–1395.

6. Chiczewicz RH, Kouzi SA. Chemistry, biological activity and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. *Med Res Rev*. 2004;24(1):90–114.

7. Alakurtti S, Mäkelä T, Koskimies S, et al. Pharmacological properties of the ubiquitous natural product betulin. *Eur J Pharm Sci*. 2006;29(1):1–13.

8. Tolstikov GA, Flekhter OB, Shultz EE, et al. Betulin and its derivatives. Chemistry and biological activity. *Chemistry for Sustainable Development*. 2005;13:1–29.

9. Hayek EWH, Moche W, Sauter F. A bincetinal of betulain. *Phytochemistry*. 1989;28(15):2229–2242.

10. Sarek J, Klinot J, Brazinova S, et al. New Lupane Derived Compounds with Pro–Apoptotic Activity in Cancer Cells: Synthesis and Structure–Activity Relationships. *J Med Chem*. 2003;46(25):5402–5415.

11. Kim DSHL, Che Z, Nguyen T, et al. A Concise Semi–Synthetic Approach to Betulonic Acid from Betulin. *Synthetic Communications*. 1997;27(9):1607–1612.

12. SinghAP, Brindavanam NB. A validated HPLC method for the determination of betulin in the stem bark of *Tectona grandis* Linn. *LIPS*. 2016;7(2):719–723.

13. Chaturvedi PK, Bhui K, Shukla Y. Lupeol: connotations for chemoprevention. *Cancer Lett*. 2008;263(1):1–13.

14. Fulda S. Betulonic acid for cancer treatment and prevention. *Int J Mol Sci*. 2008;9(6):1096–1107.

15. Jäger S, Laszczyk MN, Scheffler A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex). *Molecules*. 2008;13(12):3224–3235.
Betulin a pentacyclic tri-terpenoid: an hour to rethink the compound

16. Tang JJ, Li JG, Qi W, et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 2011;13(1):44–56.

17. Gachet MS, Kunert O, Kaiser M, et al. Antiparasitic compounds from Cupania cinerea with activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense. J Nat Prod. 2011;74(4):559–566.

18. Reyes CP, Niñez MJ, Jiménez IA, et al. Activity of lupine triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg Med Chem. 2006;14(5):1573–1579.

19. Liwei Fu, Zhang S, Li N, et al. Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. J Nat Prod. 2005;68(2):198–206.

20. Kashiwada Y, Chiyo J, Ikeshiro Y, et al. 3,28-Di-O-(dimethylsuccinyl)–betulin isomers as anti–HIV agents. J Bioorganic & Medicinal Chemistry Letters. 2001;11(2):183–185.

21. Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti–Human Immunodeficiency Virus Activity of YK–FH312 (a Betulinic Acid Derivative), a Novel Compound Blocking Viral Mating. Antimicrobial Agents Chemistry Therapy. 2001;45(4):1225–1230.

22. Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine. 1995;1:1046–1051.

23. Gao Y, Xu H, Lu Z, et al. Quantitative determination of steroids in the fruiting bodies and submerged–cultured mycelia of Inonotus obliquus. Se Pu. 2009;27(6):745–749.

24. Tilford Gregory L. Edible and Medicinal Plants of the West. USA: Mountain Press; 1997. 256 p.

25. Yogeesswari P, Sriram D. Betulinic acid and its derivatives: a review on biological activity of the isolated compounds. J Nat Prod. 2002;65(3):278–282.

26. Quintal NL, Rocha LW, Silva GF, et al. Contribution of oleanolic acid. Biochemical Systematics and Ecology. 1999;27(3):243–254.

27. English Names for Korean Native Plants. Pocheon: Korea National Arboretum; 2015. 373 p.

28. Maurya SK, Devi S, Pandey VB. Fitother. 1989;60:468.

29. Patocka J. Biologically active pentacyclic triterpenes and their current medicine signification. Journal of Applied Biomedicine. 2003;1(1):7–12.

30. Yash VF, Kokurina N Yu, VN Larina, et al. Physicochemical Properties of Betulin and CO2 Extract from Birch Bark. Russian Journal of Physical Chemistry B. 2014;8(8):1100–1109.

31. Akhiia T, Takamine Y, Yoshizumi K, et al. Microbial transformations of two lupane-type triterpenes and anti–tumor–promoting effects of the transformation products. J Nat Prod. 2002;65(3):278–282.

32. Shakhtshneider TP, Kuznetsova SA, Zamyat AS, et al. New composites of betulin esters with arabinogalactan as highly potent anti–cancer agents. Nat Prod Res. 2015;30(12):1382–1387.

33. Drag–Zalesinska, Kulbacka J, Szaeczko J, et al. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg Med Chem Lett. 2009;19(16):4814–4817.

34. Drag M, Surowiak P, Drag–Zalesinska M, et al. Comparison of the Cytotoxic Effects of Birch Bark Extract, Betulin and Betulinic Acid towards Human Gastric Carcinoma and Pancreatic Carcinoma Drug–sensitive and Drug–Resistant Cell Lines. Molecules. 2009;14(4):1639–1651.

35. Pettit GR. Progress in the Discovery of Biosynthetic Anticancer Drugs. J Nat Prod. 1996;59(8):812–821.

36. Pospisil M, Kovář P, Vácha R, et al. Study of the betulin molecule in water environment; ab initio and molecular simulation calculations. J Mol Model. 2012;18(1):367–376.

37. Hata K, Hori K, Ogasawara H, et al. Anti–leukemia activities of lap–28–al–20(29)–en–3one, a lupine triterpene. Toxicol Lett. 2003;143(1):1–7.

38. Csuk R, Schmuck M, Schafer R. A practical synthesis of betulinic acid. Tetrahedron Letters. 2006;47(49):8769–8770.

39. Csuk R. Betulinic acid and its derivatives: a patent review (2008–2013). Expert Opin Ther Pat. 2014;24(8):913–923.

40. Bache M, Bernhardt S, Passin S, et al. Betulinic acid derivatives NVX–207 and B10 for treatment of glioblastoma–an in vitro study of cytotoxicity and radiosensitization. Int J Mol Sci. 2014;15(11):19777–19790.

41. Baratco LT, Porsani MV, Pimentel IC, et al. Preparation of betulinic acid derivatives by chemical and biotransformation methods and determination of cytotoxicity against selected cancer cell lines. Eur J Med Chem. 2013;68:121–131.

42. Nick A, Wright AD, Rali T, et al. Antibacterial triterpenoids from Dillenia papuanus and their structure–activity relationships. Phytochemistry. 1995;40(6):1691–1695.

43. Aponte JC, Vaisberg AJ, Rojas R, et al. Isolation of Cytotoxic Metabolites from Targeted Peruvian Amazonian Medicinal Plants. J Nat Prod. 2008;71(1):102–105.

44. Zuo GY, Wang GC, Zhao YB, et al. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin–resistant Staphylococcus aureus (MRSA). Journal of Ethnopharmacology. 2008;120(2):287–290.

45. Flekhter OB, Medvedeva NI, Karachurina LT, et al. Synthesis and pharmacological activity of betulin, betulinic acid and allobetulin esters. Pharmaceutical Chemistry Journal. 2005;39(8):401–404.

46. Xi J, Chang Q, Chan CK, et al. Formulation development and bioavailability evaluation of a self–nanoemulsified drug delivery system of oleamic acid. AAPS PharmSciTech. 2009;10(1):172–182.

47. Keinänen M, R Julkunen–Tittio, M Rousi, et al. Taxonomic implications of phenolic variation in leaves of birch (BetulaL.) species. Biochemical Systematics and Ecology. 1999;27(3):243–254.

48. Fujioka T, Kashiwada Y, Kilkskise RE, et al. Anti–AIDS Agents, 11. Betulinic Acid and Platonic Acid as Anti–HIV Principles from Syzygium claviflorum, and the Anti–HIV Activity of Structurally Related Triterpenoids. J Nat Prod. 1994;57(2):243–247.

49. Hybelbaurowska S, Sejbal J, Dracinsky M, et al. Chemical Constituents of Stereum subimmentosum and Two Other birch–associated basidiomycetes:an interspecies comparative study. Chem Biodivers. 1999;5(5):743–750.

50. Galgon T, Hoke D, Dräker B. Identification and Quantification of Betulinic Acid. Phytochemical Analysis. 1999;10(4):187–190.

51. Zhao G, Yan W, Cao D. Simultaneous determination of betulin and betulonic acid in Chinese herbal medicine signification. Open Access J Trans Med Res. 2017;1(2):53–59.

DOI: 10.15406/oajtme.2017.01.00012
Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound.

54. Hunn Eugene S. Nch’i–Wana, The Big River: Mid–Columbia Indians and Their Land. 1990. 352 p.

55. Thai QD, Tchoumontchou J, Makropoulou M, et al. Phytochemical study and biological evaluation of chemical constituents of Platanus orientalis and Platanus × acerifolia buds. Phytochemistry. 2016;130:170–181.

56. Lawrie W, McLean J, Paton AC. Triterpenoids in the bark of elder (Sambucus nigra). Phytochemistry. 1964;3(2):267–268.

57. Hashmi MA, Khan A, Muhammad Hanif, et al. Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive). Evidence–Based Complementary and Alternative Medicine. 2015;2015:29.

58. Matyukhina LG, Shumkuler VS, Ryabinin AA. Obshch Khim Zh. 1965;35:579.

59. Maurya SK, Devi S, Pandey VB, et al. Fitoterapia. 1989;60:468.

60. Kundu B, Barik BR, Mondal DN. Phytochemistry. 1989;28:735.

61. Melek FR, Ranwan AS, Ahmed AA, et al. Chemical constituents of two Centaurea species. Farmazie. 1989;44:735.

62. Recio CM, Giner RM, S Manez, et al. Investigations on the steroidal anti–inflammatory activity of triterpenoids from Diospyros leucomelas. Planta Med. 1995;61(1):9–12.

63. Okamoto Y Takeya, Kagawa Y, Kotani E. Iron (III) Picolinate–Induced Oxygenation and Subsequent Rearrangement of Triterpenoid Derivatives with Hydrogen Peroxide. Chemical and Pharmaceutical Bulletin. 2000;48(1):120–125.

64. Siddiqui S, Hafeez F, Begum S, et al. Nat Prod. 1986;49:1086.

65. Mukherjee. Bull. Bot. Surv. India; 1969. 10:330.

66. Bennet Fl. Grewia salvifolia Lf. 1979;409:1781.

67. Clarke in Hook. f., Fl. Brit. India; 1879. 2:741.

68. Mem Wern. Nat Hist Soc. 1810:1–76.

69. Prain. Bengal Pl. 1903;2:672.

70. Siddiqui S, Siddiqui BS, Naeed A, et al. Three pentacyclic triterpenoids from the leaves of Plumeria obtusa. J Nat Prod. 1990;53:1332–1336.

71. Siddiqui S, Siddiqui BS, Naeed A, et al. Pentacyclic triterpenoid from the leaves of Plumeria obtusa. Photochemistry. 1992;31(12):4279–4283.

72. Siddiqui BS, Naeed A, Begum S, et al. Minor iridoids from the leaves of Plumeria obtusa. Photochemistry. 1994;37(3):769–771.

73. Quasin C, Dutta NL. Reported the presence of stigmasterol in the root of Asteracantha longifolia Nees. J Indian Chem Soc. 1967;44:82.

74. Ridley MP, Antu KA, Pal S, et al. Antidiabetic property of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J Diabetes. 2013;7(4):548–561.

75. Vidhya R, Udayakumar R. Phytochemical screening and evaluation of in vitro Haemolytic Thrombolytic and anti–inflammatory activities of Aerva (L.). Indo American Journal of Pharmaceutical Research. 2016;6(7):5965–5973.

76. Vidhya R, Udayakumar R. Antibacterial potential of different parts of Aerva lanata (L.) against some selected clinical isolates from urinary tract infections. Br Microbiol Res J. 2015;7(1):35–47.

77. Sadiq MB, Hangpithakpong W. Screening of phytochemical and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Industrial Crops and Products. 2015;77:873–882.

78. Likhitwitayawud K, Angerhofer CK, Cordell GA, et al. Cytotoxic and antimalarial bisbenzylisoquinolinealka–loids from Stephanieraecta. J Nat Prod. 1993;56(1):30–38.

79. See EK, Kim NC, Mi Q, et al. Macharistol, a new cytotoxic cinnamolphenol from the stem of Machaerium aristulatum. J Nat Prod. 2001;64:1483–1485.

80. Wagner H, Bladt S, Zgainski EM. Plant drug analysis. 1st ed. Turkey: Springer Verlag; 1984.

81. Wu FE, Zu QZ. Studies on the chemical constituents of the Chinese medicinal herb Anemone raddeana regel. Acta Chimica Sinica. 1984;42:253–259.

82. Wu FE, Koike K, Ohnomo T, et al. Saponins from Chinese folk medicine ‘zhujiesiangfu.’ Anemone raddeana regel. Chem Pharm Bull. 1989;37(9):2445–2447.

83. Zhang JM, Li BG, Wang MK, et al. Oleanolic acid basedbiglycosides from Anemoneraddeana regel. Photochemistry. 1997;45:1031.

84. Kröl SK, KieBbuis M. Comprehensive Review on Betulin as a Potent Anticancer Agent. BioMed Research International. 2014;2015:11.

85. Ma XH, Zhao YC, Yin L, et al. Studies on the preventive and therapeutic effects of ursolic acid on acute hepatic injury in rats. Yao Xue Xue Bao. 1986;21(5):332–335.

86. Tokuda H, Ohigashi H, Koshimizu K, et al. Inhibitory effects ofursolic acid and oleanolic acid on skin tumor promotion by 12–O–tetradecanoylphorbol–13–acetate. Cancer Lett. 1986;33(3):279–285.

87. Pisha EH, Chai, Lee JS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995;1(10):1046–1051.

88. Liu M, Yong S, Jin L, et al. Chemical constituents of the ethyl acetate extract of belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules. 2012;17:6156–6169.

89. Lianna S, Yongfu H, Guo Xuemin, et al. Studies on the chemical constituents of Chaenomeles sinensis (Thoun.) Koehne. Academic Journal of Second Military Medical University. 1999;20(10):752–754.

90. LIU Ji–yan, Liuxue–qing, Huheng–bin. (School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China). Study on Extraction Technology of Polysaccharide from Cyrtomium fortumei (J.) Smith rhizomes. China). Study on Extraction Technology of Polysaccharide from Cyrtomium fortumei (J.) Smith rhizomes. Chemistry & Bioengineering. 2008–11.

91. Yang S, Liu M. Discovery and antitumor activities of constituents from Cyrtomium fortumei (J.) Smith rhizomes. Chemistry Central Journal. 2013–7–24.

92. Alam MB, Chowdary NS, Mazumder MEH. Antimicrobial and toxicity study of different Fractions of Dillenia indica (L.) Bark Extract. JIPSR. 2011;2(4):860–866.

93. Bernard P, Scior T, Didier B, et al. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Photochemistry. 2001;58(6):865–874.

94. Fleikhter OB, Nigmatullin LR, Baltina LA Khim. Farm. Zh. 2002;36:19.

95. Das SK, Elbein SC. The Genetic Basis of Type 2 Diabetes. Cell science. 2006;2(4):100–131.

96. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053.

97. Ridley MP, Antu KA, Pal S, et al. Nutritional value of Aerva lanata (L.) Juss. ex Schult. is mediated by inhibition of alpha glucosidase, protein glycation and stimulation of adipogenesis. J Diabetes. 2013;7(4):548–561.

98. Sadiq MB, Hangpithakpong W. Screening of phytochemical and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Industrial Crops and Products. 2015;77:873–882.

99. Likhitwitayawud K, Angerhofer CK, Cordell GA, et al. Cytotoxic and antimalarial bisbenzylisoquinolinealka–loids from Stephanieraecta. J Nat Prod. 1993;56(1):30–38.

100. Wu FE, Zu QZ. Studies on the chemical constituents of the Chinese medicinal herb Anemone raddeana regel. Acta Chimica Sinica. 1984;42:253–259.

101. Wu FE, Koike K, Ohnomo T, et al. Saponins from Chinese folk medicine ‘zhujiesiangfu.’ Anemone raddeana regel. Chem Pharm Bull. 1989;37(9):2445–2447.

102. Zhang JM, Li BG, Wang MK, et al. Oleanolic acid basedbiglycosides from Anemoneraddeana regel. Photochemistry. 1997;45:1031.

Citation: Boparai A, Niazj Bajwa N, et al. Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access j Trans Med Res. 2017;1(2):53–59. DOI: 10.15406/oajembr.2017.01.00012
Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound

Citation: Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access J Trans Med Res. 2017;1(2):53–59.
DOI: 10.15406/oajtmr.2017.01.00012