Voltage/Frequency Regulation With Optimal Load Dispatch in Microgrids using SMC based Distributed Cooperative Control

SHAFAAAT ULLAH1,2, LAIQ KHAN3, IRFAN SAMI4, and JONG-SUK RO4,5

1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan (S.U.: engr.shafaat@uetpeshawar.edu.pk)
2Department of Electrical Engineering, University of Engineering and Technology Peshawar, Bannu Campus, Bannu 28100, KP, Pakistan
3Department Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan (L.K.: laiqkhan@comsats.edu.pk)
4School of Electrical and Electronics Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea (I.S.: irfansamimwt@gmail.com)

Corresponding author: Jong-Suk Ro (e-mail: jongsukro@gmail.com)

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B01008058). This research was funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by the Korea Institute for Advancement of Technology (KIAT) (No. P0002397, HRD program for Industrial Convergence of Wearable Smart Devices).

ABSTRACT

Majority of the contemporary hierarchical control strategies for microgrids are either centralized or distributed, relying on leader-follower (or master-slave) consensus for secondary frequency and/or voltage regulation. Thus, in either case, these strategies are susceptible to single-point-failure (SPF). This potential research gap motivated the authors to propose a distributed three-layered hierarchical control strategy applicable to droop-controlled islanded AC microgrids. The proposed strategy can simultaneously ensure (i) frequency and voltage regulation of DGs within the prescribed frequency and voltage deviation limits as per IEC 60034-1 standard (i.e., ±2% and ±5%, respectively) without relying on leader-follower consensus at the secondary level, (ii) distributed economic dispatch of active power with minimum error, and (iii) distributed reactive power dispatch with plausible error. The proposed technique is fully distributed and shares the computation and communication burden among the neighboring nodes using a sparse communication network, thus, it is insusceptible to SPF. The feasibility of the proposed technique is guaranteed through various time-domain based numerical simulations executed in Matlab/Simulink under different loading conditions and microgrid expansion.

INDEX TERMS Distributed; Dispatch; Hierarchical Control; Leaderless; Sliding Mode Control

I. INTRODUCTION

THE US Department of Energy considers microgrid as the basic building block of a smart grid [1] that incorporates distributed generators (DGs), energy storage systems (ESSs), different loads, and sophisticated control systems [2], [3]. The microgrid can interact with the utility grid in the grid-connected mode, where it behaves as a single controllable unit. However, it can also be operated in the islanded mode, where it behaves as a self-sufficient autonomous power system. A proper control is required for microgrid operation in each mode [4], which refers to a set of decision-making software and/or hardware [5]. Generally, a microgrid control consists of a three-layered hierarchical structure, where the three layers (i.e., primary, secondary, and tertiary) are identified by different communication bandwidths, response times, and execution times [4], [6]–[13]. In the grid-connected mode, both the frequency and voltage are imposed by the utility grid due to its large rotating inertia (rendered by the synchronous generators), thus restricting the microgrid role to perform only the ancillary services [10], [11], [13]–[16]. Conversely, the microgrid control in the autonomous mode is essential for frequency and voltage stability, proper load sharing and reliable power delivery [16].
TABLE 1: Main contributions, features and limitations of the contemporary hierarchical control schemes and the proposed solution.

Ref.No.	Year	Frequency Regulation	Voltage Regulation	Optimal Dispatch	Limitations/Features
[21]	2016	✓	×	×	GMCC is required for dynamic stability, which is prone to SPF. Moreover, voltage regulation and optimal dispatch are neglected.
[22]	2017	✓	✓	×	A centralized MPC based supervisory control scheme is required, which is prone to SPF².
[23]	2018	✓	✓	✓	Leader-follower consensus is required for the distributed secondary frequency and voltage control, which is prone to SPF.
[24]	2018	✓	✓	×	Leader-follower consensus is required for the distributed secondary frequency and voltage control, which is prone to SPF. Also, optimal dispatch is neglected.
[25]	2019	✓	×	✓	It does not consider secondary voltage regulation for AC microgrid subsystem. Moreover, only active loads and, hence, active power flow have been considered. Hence, there is no reactive power flow in the AC microgrid subsystem. The tertiary controller in the upper control layer is centralized and, hence, prone to SPF.
[26]	2019	✓	×	✓	Only active power is dispatched. Voltage regulation and reactive power dispatch are neglected. Generation cost parameters have not been considered. Moreover, the power lines are assumed to be lossless (purely inductive).
[27]	2020	✓	✓	✓	MGCC is required for optimal dispatch, voltage and synchronization control, which is prone to SPF.
[28]	2020	×	✓	✓	Only reactive power is dispatched. Frequency regulation and active power dispatch are neglected.
[29]	2020	✓	×	✓	Only active power is dispatched. Voltage regulation and reactive power dispatch are neglected.
[30]	2020	✓	×	✓	Only active power is dispatched. Voltage regulation and reactive power dispatch are neglected. Generation cost parameters have not been considered. Moreover, the power lines are assumed to be lossless (purely inductive).
[31]	2021	✓	×	✓	Only active power is dispatched. Voltage regulation and reactive power dispatch are neglected. Generation cost parameters have not been considered. Moreover, the power lines are assumed to be lossless (purely inductive).
[32]	2021	✓	×	✓	Only active power is dispatched. Voltage regulation and reactive power dispatch are neglected. Generation cost parameters have not been considered. Moreover, the power lines are assumed to be lossless (purely inductive).
[33]	2021	✓	✓	✓	Leader-follower consensus is required for the distributed secondary frequency and voltage control, which is prone to SPF. Moreover, the optimal dispatch is focused on the minimization of overall network power losses only, and generation cost minimization has been neglected.
[34]	2021	✓	×	✓	It does not consider secondary voltage regulation for AC microgrid subsystem. Moreover, only active loads and, hence, active power flow have been considered. Hence, there is no reactive power flow in the AC microgrid subsystem. The tertiary controller in the upper control layer is centralized and, hence, prone to SPF. Moreover, only active loads and, hence, active power flow have been considered.
[35]	2021	×	✓	✓	It does not consider frequency regulation and economic active power dispatch.
[36]	2022	✓	✓	✓	Leader-follower consensus is not required for the distributed secondary frequency and voltage control, hence, it is susceptible to SPF. Moreover, both active and reactive powers are dispatched.

¹ MGCC = Microgrid Central Controller
² SPF = Single-Point-Failure

The primary control is generally enforced as a decentralized (or local) droop controller at each DG. The droop controller is responsible for active and reactive power sharing at the cost of pre-specified frequency and voltage deviations, respectively. The secondary layer is responsible for mitigating the frequency and voltage deviations introduced by the primary layer. The tertiary layer is responsible for power flow optimization and cost-effective (i.e., economic) operation of the microgrid [10], [11], [13], [14], [17], [18]. The secondary layer can be implemented as a (i) traditional centralized controller, or (ii) decentralized controller, and (iii) distributed controller. The centralized secondary controller requires a central computation unit and a complex communication network for accessing entire network information. Thus, it bears higher cost and heavy computation burden. It is highly sensitive to failures; thus, it is unreliable and may ultimately lead to the single-point-failure (SPF) [11], [19]. The decentralized secondary controller also bears higher cost as well as higher reliability [19]. The distributed secondary controller requires a sparse communication network for communication among (local controllers of) neighboring DGs. Thus, it is more reliable, bears lower cost, less sensitive to failures and obviates the requirement of a central computation and communication unit [11], [19]. For a more detailed comparison of various secondary control strategies, the readers are referred to [12], [13]. Traditionally, the tertiary layer can also be implemented as a centralized controller [15] and is susceptible to the same issues stated with reference to the centralized secondary controller.

The main obligation of the hierarchical control of a microgrid is to render control over the generation of power from various DGs [13]. After carrying out an extensive literature review, it has been learned that most of the distributed hierarchical control schemes (despite providing better alternatives to...
centralized hierarchical control schemes), require a leader (or master) node (or agent) at the secondary level for frequency and/or voltage restoration. This leader agent has to organize and command the operation of its follower (or slave) nodes. Hence, such distributed hierarchical control schemes are again susceptible to the SPF in case of leader outage [20].

Table 1 summarizes the main contributions, features and limitations of the contemporary hierarchical control schemes and the proposed solution.

A. MOTIVATION AND MAJOR CONTRIBUTIONS

The potential research gaps identified in the contemporary hierarchical control schemes for microgrids reported in [21]–[36], and listed in Table 1, motivated the authors to propose a fully distributed hierarchical control strategy applicable to droop-controlled islanded AC microgrids.

The major accomplishments of this article are described below:

1) Distributed secondary frequency and voltage regulation, without requiring any leader-follower (or master-slave) consensus, thus making it a more viable option than the centralized as well as those distributed hierarchical control schemes that are dependent on leader-follower consensus for frequency and/or voltage regulation.

2) Distributed economic dispatch of active power with minimum error.

3) Distributed reactive power dispatch with plausible error.

The performance and effectiveness of the proposed scheme is analyzed and evaluated through time-domain based numerical simulations executed in Matlab/Simulink under different loading conditions and microgrid expansion. It is observed that the proposed scheme successfully fulfills its assigned tasks.

Remark 1. This work is the extension of the authors’ previous work reported in [37] focused on three-layered distributed hierarchical control paradigm for frequency restoration and economic dispatch of active power, applicable to droop-controlled islanded AC microgrids. Note that the voltage and reactive power controls had been disregarded in the previous work.

Hence, to further the previous work, the authors have integrated it with the distributed secondary voltage and reactive power control. Moreover, scalability test is performed to demonstrate that the proposed strategy is also applicable to a large AC microgrid system.

The rest of the paper is structured as follows: the communication between energy nodes of the microgrid is explained in Section II using graph theory. The configuration of the microgrid testbench is described in Section III. The detailed closed-loop enforcement of the proposed control strategy is explained in Section IV. Section V gives the performance analysis and effectiveness of the proposed scheme using time-domain based numerical simulations executed in Matlab/Simulink. Finally, Section VI presents concluding remarks to this paper.

II. GRAPH THEORY

In distributed control of microgrids, an energy node (or DG) is considered as an agent. Hence, their mutual interaction can be mathematically and graphically described using the multi-agent system theory. Such that, the communication network interconnecting various agents is represented by a weighted graph, \(G \), which is an ordered pair, \((V(G), E(G))\), comprising a set of vertices, \(V(G) \), and a set of edges (or arrows or arcs), \(E(G) \), disjoint from the set \(V(G) \). The vertices of the graph indicate the agents, whereas the edges indicate the communication lines (one-way or two-way), which implies that the graph can be directed (one-way) or undirected (two-way).

The elements of set \(E(G) \) are indicated as \((V_i(G), V_j(G))\), implying an edge (or allowed flow of information) from \(i \)th to \(j \)th agent. Associated with each edge, \((V_i(G), V_j(G))\) in \(E(G) \), there is a weight, \(a_{ij} \geq 0 \), such that \(a_{ij} > 0 \), for all \((V_i(G), V_j(G))\) in \(E(G) \), or if there exists an arrow from \(j \)th to \(i \)th agent; otherwise \(a_{ij} = 0 \), for all \(i \neq j \), and \(i, j = \{1, 2, \ldots, N\} \).

Now, suppose \(G = (V(G), E(G)) \), represents a weighted undirected (two-way) graph, with the set of vertices \(V(G) = \{V_1(G), V_2(G), \ldots, V_N(G)\} \), and the set of edges \(E(G) \subseteq V \times V \). Then, the graph structure and properties can be described by inspecting the properties of few associated matrices, that is, the weighted adjacency matrix, \(A = [a_{ij}] \in \mathbb{R}^{N \times N} \), the weighted in-degree matrix, \(D^{in} = \text{diag}\{d_{in}^{i}\} \in \mathbb{R}^{N \times N} \), where \(d_{in}^{i} = \sum_{j \in \mathcal{N}_i} a_{ij} \), and the weighted Laplacian matrix, \(\mathcal{L} = D^{in} - A \in \mathbb{R}^{N \times N} \), where \(\mathcal{N}_i \) indicates the number of agents. Let \(\mathcal{N}_i \) and \(| \mathcal{N}_i | \), respectively, indicate the neighboring agents set of \(i \)th agent, and the number of (in-) neighbors of \(i \)th agent, then \(\mathcal{N}_i = \{V_j : (V_i, V_j) \in \mathcal{E}\} \), and \(| \mathcal{N}_i | = d_{in}^{i} \), that is, the in-degree of \(i \)th agent [38], [39].

III. TESTBENCH CONFIGURATION

The correctness and soundness of the proposed idea is validated in Matlab/Simulink using a three-phase microgrid simulation testbench, which is shown in Fig. 1. This testbench consists of three DGs, four buses, various (resistive and reactive/inductive) loads, and interconnecting lines. Note that two out of three DGs are low-inertia type (i.e., inverter-interfaced), while the third DG is high-inertia type (i.e., rotating type synchronous-generator based diesel genset). The inverter-interfaced DGs (i.e., DG1 and DG2) are connected to bus 1 and 3, while the diesel genset (i.e., DG3) is connected to bus 4 through three-phase \(\Delta Y \)-transformers. The line impedances between the four buses (i.e., \(Z_{12}, Z_{13}, Z_{23}, \) and \(Z_{14} \)) represent RLC-branches. Moreover, two out of three remaining impedances between DGs and transformers, that is, \(Z_1 \) and \(Z_2 \), indicate coupling inductances, while \(Z_3 \) indicates a coupling capacitor. Tables 2–5, given in Appendix A, describe various parameters of the simulation testbench, shown in Fig. 1.
IV. PROPOSED THREE-LAYERED DISTRIBUTED HIERARCHICAL CONTROL SCHEME

Figure 2 demonstrates the closed-loop enforcement of the formulated three-layered distributed hierarchical control scheme. The primary layer is based on the droop control, the secondary level is enforced as the distributed secondary active power/frequency and voltage/reactive power control without requiring any leader-follower consensus, and the tertiary layer is based on the distributed economic dispatch of active power.

A. PRIMARY CONTROL

The primary control is provided at each DG using the conventional droop technique. It consists of $P \omega$- and QV-droop controls that are, respectively, expressed in (1) below [40, 41):

$$\omega_i = \omega_{ref} + \Delta \omega_{adj} + \kappa_{i,P} (P_{i,set} - P_i)$$

$$V_i, pk = V_{i,set} + I_{i,RMS} Z_{vir} - V_i - \kappa_{i,Q} Q_i$$

where the subscript $i = \{1, 2, \ldots, N = 3\}$ denotes the DGs index set, ω_i is the ith DG frequency, ω_{ref} is the microgrid reference frequency (i.e., 60 Hz), $\Delta \omega_{adj}$ is the ith DG frequency adjustment factor provided by the overload control strategy, as reported in [42], $\kappa_{i,P} > 0$ represents the ith DG $P \omega$-droop control gain, $P_{i,set}$ is the ith DG active power set-point, and P_i is the ith DG active power output.

Note that the active power set-point, $P_{i,set}$, is provided by the distributed secondary active power controller, expressed in (4), to the primary (i.e., $P \omega$-droop) controller. Furthermore, V_i is the ith DG output voltage, $V_{i,set}$ is the ith DG voltage set-point, $I_{i,RMS} Z_{vir}$ is the voltage drop due to the (inductive) virtual impedance, $\kappa_{i,Q} > 0$ is the ith DG QV-droop control (adjustable) gain, and Q_i represents the ith DG output reactive power. In case of inverter-based DGs, V_i, pk indicates the peak voltage at the inverter terminals, whereas for genset

$V_i, pk = V_{cmd}$ represents the input voltage command to the field-excitation control block of the synchronous generator for generating field excitation, V_f. Note that the voltage set-point, $V_{i,set}$, is provided by the distributed secondary voltage control algorithm, expressed in (7), to the primary (or QV-droop) controller, given in (1).

The two inverter-interfaced DGs (i.e., DG1 and DG2) are mimicked as three-phase controlled AC voltage sources, where the instantaneous voltages for each phase (i.e., v_a, v_b and v_c), as depicted in Fig. 3, are given in (2) below [37]:

$$v_a = V_{i, pk} \sin (\omega_i t + \theta)$$

$$v_b = V_{i, pk} \sin (\omega_i t - 120^\circ)$$

$$v_c = V_{i, pk} \sin (\omega_i t + 120^\circ)$$

where $V_{i, pk}$ equals the product of the modulation index, M_D, and the inverter DC input voltage, V_{DC} (i.e., $V_{i, pk} = M_D V_{DC}$).

For inverter-interfaced DGs and genset, the primary controls are shown in Figs. 3 and 4, respectively. The corresponding simulation parameters for each are, respectively, specified in Tables 4 and 5, given in Appendix A. Let $F_{cmd}, T_{cmd}, T_F, P_F, \omega_r, \omega_r$, and P_F, respectively, indicate the fuel command, torque command, fuel tooke, fuel power, rotational speed of synchronous generator, and friction power losses for genset, as shown in Fig. 4, then

$$F_{cmd} = K_{tf} T_{cmd}$$

$$T_F = \eta_{th} K_{fw}, K_{ev} F_{cmd}$$

$$F_F = T_F \omega_r$$

$$P_F = K_m \omega_r^2$$

where $(K_{tf}, \eta_{th}, K_{fw}, K_{ev}$ and $K_m) > 0$ are constants, specified in Table 5, in Appendix A.

B. SECONDARY CONTROL

The secondary control is provided at each DG using the distributed technique that concurrently ensures:

1) Active power control and frequency restoration of DGs in a finite-time, without requiring any devoted supplementary frequency control, and compensates for frequency deviation under load perturbation, and

2) Voltage and reactive power control of DGs in a finite-time.

1) Active Power and Frequency Control

Inspired by [43, 44], the above-stated objective (1) (i.e., active power and frequency control) is achieved by formulating the following higher-order twisting sliding mode based distributed secondary active power tracking control algorithm:

if $\sigma_i(t) = - \sum_{j \in N_i} a_{ij} (P_i(t) - P_j(t))$

then $\dot{z}_{pi}(t) = u_{pi}^P(t) = -\kappa_1 \text{sgn}(\sigma_i(t)) - \kappa_2 \text{sgn}(\dot{\sigma_i}(t))$

and $P_{i,set}(t) = P_i = z_{pi}(t) + r_{pi}(t) = z_{pi}(t) + P_{i,opt}(t)$

(4)
so that

\[
\begin{align*}
&\|P_i(t) - P_{i,\text{opt}}(t)\| \to 0, \\
&\sum_{i=1}^{N} P_i(t) - P_D(t) \to 0, \\
&\|\omega_i(t) - \omega_{\text{ref}}\| \to 0
\end{align*}
\]

as \(t \to \infty \),

where \(\sigma_i \) is the active power error between the neighboring agents, \(a_{ij} \geq 0 \) is the \(ij \)th elements of the adjacency matrix, \(A \), \(z_{pi} \in \mathbb{R}^N \) is an auxiliary (or intermediate) state variable for active power control, \(u_i^P \) is the twisting-based sliding mode control law for active power, \(\kappa_1, \kappa_2 > 0 \) are the adjustable design parameters (where \(\kappa_1 > \kappa_2 \)), \(\text{sgn} \) is the multivalued signum function, \(r_{pi}(t) = P_{i,\text{opt}} \in \mathbb{R}^N \) is a time-varying signal indicating the optimal active power dispatch reference (with a bounded derivative), which is generated and provided by the distributed tertiary controller, expressed in (17), to the distributed secondary active power controller, described in (4), while \(P_D \) represents the combined active power demand.

The auxiliary state variable, \(z_{pi} \), in (4), is initialized such
that:

\[
\begin{align*}
&z_{pi}(0) = 0 \\
&\sum_{i=1}^{N} z_{pi}(0) = 0
\end{align*}
\]

Taking time-derivative of \(P_{i,\text{set}} \) in (4), the following closed-loop system is obtained:

\[
\dot{P}_{i,\text{set}}(t) = \dot{P}_{i}(t) = \dot{z}_{pi}(t) + \dot{P}_{i,\text{opt}}(t) = P_{i,\text{opt}}(t) - \kappa_1 \text{sgn}(\sigma_i(t)) - \kappa_2 \text{sgn}(\dot{\sigma}_i(t))
\]

where the initial conditions are:

\[
\begin{align*}
&\sum_{i=1}^{N} P_i(0) = \sum_{i=1}^{N} P_{i,\text{opt}}(0).
\end{align*}
\]

In (6), \(P_{i,\text{set}} \) indicates the active power reference signal generated by the distributed secondary active power controller and provided to the \(P_\omega \)-droop primary controller, expressed in (1). The enforcement of the distributed secondary active power controller is shown in Fig. 2.

The principal roles of the distributed secondary active power tracking control algorithm, given in (4), are as follows:

1) To force each agent (i.e., DG of the microgrid to track its corresponding time-varying reference signal (i.e., the optimal active power dispatch reference, \(P_{i,\text{opt}} \)) provided by the distributed tertiary controller with a negligible active power mismatch (i.e., \(\Delta P = \sum_{i=1}^{N} P_i - P_D \| \leq 0 \))

2) To concurrently ensure the frequency restoration of each agent to the reference frequency, \(\omega_{\text{ref}} \), without requiring any dedicated auxiliary frequency control

\[
\begin{align*}
&\| V_i(t) - V_j(t) \| \rightarrow 0 \\
&\| V_i(t) - V_{\text{ref}} \| \rightarrow 0 \\
&\| \sum_{i=1}^{N} Q_i(t) - Q_D(t) \| \rightarrow 0,
\end{align*}
\]

as \(t \rightarrow \infty \)

where \(\psi_i \) is the voltage error between the neighboring agents, \(z_{vi} \in \mathbb{R}^N \) is an auxiliary state variable for secondary voltage control, \(u_i^V \) is the twisting-based sliding mode control law for voltage, \(\kappa_3, \kappa_4 > 0 \) are tunable design parameters.
FIGURE 4: Droop-based primary control enforcement for DG3 (i.e., ICE-interfaced diesel genset).

parameters (where $\kappa_3 > \kappa_4$), $r_{vi}(t) = V_{ref} \in \mathbb{R}^N$ is the local input reference voltage signal (with a bounded derivative), and Q_D is the total reactive power demand.

The auxiliary state variable, z_{vi}, in (7), is initialized such that:

$$z_{vi}(0) = 0 \quad N_i = 1 \quad z_{vi}(0) = 0 \quad \sum_{i=1}^{N} z_{vi}(0) = 0$$

(8)

Taking time-derivative of V_i in (7), the following closed-loop system is obtained:

$$\dot{V}_{i, set}(t) = \dot{V}_i(t) = \dot{z}_{vi}(t) + V_{ref}$$

(9)

In (9), $V_{i, set}$ indicates the reference voltage signal commanded by the distributed secondary voltage tracking control algorithm to the QV-droop primary controller, expressed in (1). The enforcement of the distributed secondary voltage tracking control algorithm is shown Fig. 2.

The principal roles of the distributed secondary voltage tracking control algorithm, given in (7), are as follows:

1) To force each agent (i.e., DG) of the microgrid to track the local input reference voltage, V_{ref}, and

2) Concurrently, fulfill the reactive power demand, Q_D, with a plausible mismatch (i.e., $\Delta Q = \| \sum_{i=1}^{N} Q_i - Q_D \| \simeq 0$).

3) Convergence Analysis

This section provides the convergence analysis of the distributed secondary active power tracking control algorithm, expressed in (4). Furthermore, it will also serve as a basis for the convergence analysis of the distributed secondary voltage...
tracking control algorithm, expressed in (7), because it also has the same form.

The discontinuous signum function, appearing in the control algorithm (4), introduces discontinuity in it. Therefore, the solution of the stated control algorithm can be interpreted in the Filippov sense [45].

Lemma 1. Suppose the communication graph, \(G \), is connected and \(\|P_i(t) - P_j(t)\| = 0 \), for all \(i, j = \{1, 2, \ldots, N\} \), then \(\|P_i(t) - P_{i,opt}(t)\| = 0 \), for all \(i = \{1, 2, \ldots, N\} \).

Proof. It follows from (4) that:

\[
\sum_{i=1}^{N} P_i(t) = \sum_{i=1}^{N} z_{pi}(t) + \sum_{i=1}^{N} P_{i,opt}(t) \tag{10}
\]

Because, the graph, \(G \), shown in Fig. 1, is undirected, it follows that:

\[
\sum_{i=1}^{N} z_{pi}(t) = \sum_{i=1}^{N} -\kappa_1 \text{sgn}(\sigma_i(t)) - \kappa_2 \text{sgn}(\dot{\sigma}_i(t)) = 0 \tag{11}
\]

Since \(\sum_{i=1}^{N} z_{pi}(0) = 0 \) (see (5)), therefore, it follows that \(\sum_{i=1}^{N} z_{pi}(t) = 0 \) for all \(t \geq 0 \), which yields,

\[
\sum_{i=1}^{N} P_i(t) = \sum_{i=1}^{N} P_{i,opt}(t) \quad \text{for all} \quad t \geq 0 \tag{12}
\]

Provided that \(\|P_i(t) - P_j(t)\| = 0 \), for all \(i, j = \{1, 2, \ldots, N\} \), it follows from (12) that \(\|P_i(t) - P_{i,opt}(t)\| = 0 \), for all \(i = \{1, 2, \ldots, N\} \). To rephrase it, the distributed secondary active power tracking control algorithm, given in (4), warrants that each \(P_i(t) \) tracks its corresponding \(P_{i,opt}(t) \), in a finite-time. This completes the proof. \(\square \)

C. TERTIARY CONTROL

The total generation cost of a system of \(N \) generators can be minimized by scheduling each generator’s active power output, subject to the system constraints. This task is performed by the tertiary controller, which prescribes the optimal active power dispatch reference, \(P_{i,opt} \), for each \(i \)-th DG, and renders it to the distributed secondary active power tracking control algorithm, stated in (4) and depicted in Fig. 2.

Now, the above-mentioned active power scheduling or the economic load dispatch (ELD) issue may be figured out either in a: (i) centralized, or (ii) distributed mode.

1) Centralized Tertiary Control

The ELD problem is conventionally solved by employing a centralized tertiary controller. The objective function is to minimize the total generation cost, subject to the generation-demand equality (or power balance) and inequality (or power generation capacity) constraints, and can be described as follows [46], [47]:

Objective function:

\[
\min_{i=1}^{N} \sum_{i=1}^{N} C_i(P_i) = \min_{i=1}^{N} \left(\gamma_i P_i^2 + \beta_i P_i + \alpha_i \right) \tag{13}
\]

s.t.

\[
\sum_{i=1}^{N} P_i = P_D \quad \text{(equality constraint)}
\]

\[
P_{i,min} \leq P_i \leq P_{i,max} \quad \text{(inequality constraint)}
\]

where \(C_i(P_i) \) indicates the generation cost of \(i \)-th DG approximated by a quadratic type function. \(\sum_{i=1}^{N} C_i \) is the total generation cost, \(\alpha_i, \beta_i, \) and \(\gamma_i > 0 \) are the generation cost coefficients, \(P_i \) is the active power output of \(i \)-th DG with its lower and upper limits, respectively, indicated by \(P_{i,min} \) and \(P_{i,max} \), and \(P_D \) represents the total active power demand.

Among several typical approaches for centralized solution of ELD problem, one is the Lagrange multiplier technique. In this stated method, the system constraints are integrated into the objective function. The Lagrangian function, \(L \), for working out the ELD problem can be written as under:

\[
L(P_i, \lambda) = \sum_{i=1}^{N} C_i(P_i) + \lambda \left(P_D - \sum_{i=1}^{N} P_i \right) \tag{14}
\]

where \(\lambda \) indicates the Lagrange multiplier associated with the power balance constraint, stated in (13).

Then, the first-order Karush-Kuhn-Tucker optimization conditions are applied as under:

Condition 1 yields:

\[
\frac{\partial L}{\partial P_i} = \frac{\partial \sum_{i=1}^{N} C_i(P_i)}{\partial P_i} - \lambda = 0
\]

\[
\Rightarrow \lambda_{opt} = \frac{dC_i(P_i)}{dP_i} = \beta_i + 2\gamma_i P_{i,opt}
\]

\[
\Rightarrow P_{i,opt} = \frac{\lambda_{opt} - \beta_i}{2\gamma_i} \geq 0
\]

Condition 2 yields:

\[
\frac{\partial L}{\partial \lambda} = P_D - \sum_{i=1}^{N} P_i = 0
\]

\[
\Rightarrow \sum_{i=1}^{N} P_{i,opt} = P_D
\]

\[
\Rightarrow \lambda_{opt} = \frac{P_D + \sum_{i=1}^{N} \frac{\beta_i}{2\gamma_i}}{\sum_{i=1}^{N} \frac{1}{2\gamma_i}}
\]

Note that (15) identifies the necessary conditions for the ELD problem (i.e., the minimum generation cost). It implies...
that the ELD problem corresponds to the active power dispatch for which the incremental cost of each generator (i.e., \(dC_i(P_i)/dP_i \)) equals the Lagrangian multiplier, \(\lambda \). For this reason, the stated strategy is called the equal incremental cost criterion. However, (15) considers the equality constraints only, and neglects the inequality constraints (i.e., \(P_{i,\min} = 0 \) and \(P_{i,\max} = \infty \)).

So, considering the inequality constraint too (i.e., \(P_{i,\min} \leq P_i \leq P_{i,\max} \)), the optimal power dispatch conditions, given in (15), can be revised as follows:

\[
2\gamma_i P_{i,\text{opt}} + \beta_i = \lambda_{\text{opt}}, \quad \text{for } P_{i,\min} < P_i < P_{i,\max} \\
2\gamma_i P_{i,\text{opt}} + \beta_i \leq \lambda_{\text{opt}}, \quad \text{for } P_i = P_{i,\max} \\
2\gamma_i P_{i,\text{opt}} + \beta_i \geq \lambda_{\text{opt}}, \quad \text{for } P_i = P_{i,\min}
\]

(16)

Note that \(\lambda_{\text{opt}} \) (i.e., the optimal incremental cost) is calculated using the last expression in (15), and then substituted into (16) to find the \(P_{i,\text{opt}} \) (i.e., the optimal active power dispatch reference) for each DG. Finally, from the centralized tertiary controller, these stated dispatch references are provided to the distributed secondary active power tracking control algorithm, given in (4).

2) Distributed Tertiary Control

The contemporary approach for solving the ELD problem is to employ a distributed tertiary controller, which can also establish the equal incremental cost criterion by employing consensus control algorithms.

Motivated by [48], the following finite-time incremental cost consensus control algorithm is proposed to find a distributed solution to the ELD problem:

\[
\dot{\lambda}_i(t) = u_i^\lambda(t) = -\kappa_5 \sum_{j \in N_i} a_{ij} \text{sgn}\left(\lambda_i(t) - \lambda_j(t) \right)^c \quad \text{for } t \geq 0
\]

s.t.

\[
\lambda_i(0) = \beta_i + 2\gamma_i P_i(0) \\
\sum_{i=1}^{N} P_i(0) = P_D
\]

(17)

where \(u_i^\lambda \) denotes the distributed tertiary control law for the incremental cost consensus, \(\kappa_5 > 0 \), and \(0 < c < 1 \) are the adjustable design parameters, and \(\text{sgn}(\cdot)^c = \text{sgn}(\cdot)|\cdot|^c \).

3) Convergence Analysis

This section provides the convergence analysis of the distributed tertiary controller, described in (17). For this purpose, some Lemmas are needed, as given below:

Lemma 2. Let \(b_1, b_2, \ldots, b_n \geq 0 \) and \((0 < r < p) \), then [49]

\[
\left(\sum_{i=1}^{N} b_i^p \right)^{1/p} \leq \left(\sum_{i=1}^{N} b_i^r \right)^{1/r}
\]

Lemma 3. Let \(\Im_2(L) \) denote the second smallest positive eigenvalue of the Laplacian matrix, \(L \), \(1^T x = 0 \), and the communication graph, \(G \), be undirected, the matrix \(L \) possesses the following properties [50]:

1) \(x^T L x \geq \Im_2(L)x^T x \)

2) \(x^T L x = \frac{1}{2} \sum_{i,j=1}^{N} a_{ij} (x_i - x_j)^2 \). Moreover, the matrix \(L \) is positive semi-definite.

Lemma 4. Suppose \(V(x) : \mathbb{R}^N \to \mathbb{R} \) be a \(C \)-regular function. Furthermore, \(x(t) : [0, +\infty) \to \mathbb{R}^N \) be an absolutely continuous function on any compact time-interval of \([0, +\infty)\), and the following inequality is satisfied:

\[
\frac{dV(t)}{dt} \leq -KV^m(t)
\]

where \(K > 0 \) and \((0 < m < 1) \). Then \(V(t) = 0 \) for all \(t \geq t_s \), and the settling time, \(t_s \), can be estimated by [51]:

\[
t_s = \frac{V^{1-m}(0)}{K(1-m)}
\]

Proof. Having Lemmas 2 through 4, it is now easy to understand the convergence of the distributed tertiary control law.

Suppose \(\delta_i(t) = \{\delta_1(t), \delta_2(t), \ldots, \delta_N(t)\} \) be the incremental cost consensus error of \(i \)-th DG, described as under:

\[
\delta_i(t) = \lambda_i(t) - \frac{1}{N} \sum_{i=1}^{N} \lambda_i(t)
\]

(18)

Since, \(\frac{1}{N} \sum_{i=1}^{N} \lambda_i(t) \) is time-invariant (i.e., a constant average value), therefore, \(\frac{1}{N} \sum_{i=1}^{N} \lambda_i(t) = 0 \) for a connected and undirected communication graph, \(G \).

Now, using \(\text{sgn}(\cdot)^c = \text{sgn}(\cdot)|\cdot|^c \), the differential error for (18), \(\delta(t) \), can be expressed as follows:

\[
\dot{\delta}_i(t) = \dot{\lambda}_i(t) - \frac{1}{N} \sum_{i=1}^{N} \dot{\lambda}_i(t) = \kappa_5 \sum_{j \in N_i} a_{ij} \text{sgn}\left(\lambda_j(t) - \lambda_i(t) \right) |\lambda_j(t) - \lambda_i(t)|^c
\]

(19)

Let, \(V_\lambda \) be the Lyapunov function candidate, such that

\[
V_\lambda = 2\Im_2 \delta^T(t) \delta(t) = 2\Im_2 \sum_{i=1}^{N} \delta_i^2(t)
\]

(20)

Let an undirected graph, \(G_\lambda \), has an associated adjacency matrix, \(A_\lambda = [a_{ij}]_{N \times N} = \frac{1}{2} [\kappa_5 a_{ij}]_{N \times N} \), a Laplacian matrix, \(L_\lambda \), and \(\Im_{2\lambda} \) as the second smallest positive eigen-
Moreover, in terms of the initial errors, the convergence time, cost consensus is established in a finite-time, \(T_\lambda \), as per (17), with \((0 < c < 1) \). Furthermore, in terms of the initial errors, the convergence time, \(T_\lambda \), can be upper bounded as follows:

\[
T_\lambda = \frac{V_\lambda^{1-c}}{232 (1 - c)} = \frac{232 \| \delta(0) \|^2}{32 (1 - c)} \frac{1}{1+c}
\]

Finally, applying Lemma 4, it follows that the incremental cost consensus is established in a finite-time, \(T_\lambda \), using the control protocol, given in (17), with \((0 < c < 1) \). Furthermore, in terms of the initial errors, the convergence time, \(T_\lambda \), can be upper bounded as follows:

\[
T_\lambda = \frac{V_\lambda^{1-c}}{232 (1 - c)} = \frac{232 \| \delta(0) \|^2}{32 (1 - c)} \frac{1}{1+c}
\]

Moreover,

\[
\lim_{t \to T_\lambda} \lambda_i(t) = \lambda_j(t) \quad \text{or} \quad \lambda_i(t) = \lambda_j(t), \quad \text{for all} \quad t \geq T_\lambda
\]

This completes the proof.

V. SIMULATION RESULTS AND DISCUSSION

A single-line diagram of the microgrid simulation testbench is shown in Fig. 1 that is operated in the islanded mode to validate the effectiveness of the proposed distributed hierarchical control technique. The information exchange between DGs is represented by a communication graph, \(G \), in the same schematic. Various parameters of the testbench are specified in Appendix A, in Tables 2–5. The reference microgrid frequency and voltage are chosen to be 60 Hz and 120.23 V (phase-to-neutral), respectively. Moreover, the standard frequency and voltage tolerances have been chosen, respectively, \(\pm 2\% \) and \(\pm 5\% \), as per IEC 60034-1.

For performance assessment, four different tests are conducted:

Test 1: Performance validation of the proposed control strategy for distributed economic load dispatch
Test 2: Performance comparison with the conventional centralized economic load dispatch
Test 3: Scalability assessment of the proposed control strategy
Test 4: Robustness to disturbances

Note that in Tests 1–4, the primary control is enforced through the conventional droop technique, and the secondary control is provided using the distributed strategy. Moreover, in Tests 1, 3 and 4, the tertiary control is provided using the distributed strategy, while in Test 2 it is provided using the centralized strategy. In each case, the system is tested under load variations.

HOW DOES THE OVERALL CLOSED-LOOP SYSTEM OPERATE?

The operation of the proposed closed-loop distributed hierarchical control strategy, shown in Fig. 2, is as follows:

- The distributed tertiary controller commands the distributed secondary controller. That is, it generates and dictates the optimal active power dispatch references (i.e., \(P_{\text{opt}} \)) to the distributed secondary active power tracking controller.
- Then, the distributed secondary active power tracking controller commands the primary droop controller. That is, it generates and dictates new references (i.e., \(P_{\text{req}} \)) to the primary controller of each DG.
- In other words, each higher level controller commands and dictates its lower level controller. Consequently, the active power is dispatched economically, the active power demand is completely fulfilled, and the frequencies and output voltages of DGs are regulated to the reference values in a finite-time, despite load variation.

TEST 1: PERFORMANCE VALIDATION OF THE PROPOSED CONTROL STRATEGY FOR DISTRIBUTED ECONOMIC LOAD DISPATCH

In Test 1, the total simulation time is kept 14 s. The combined active and reactive power demands are, respectively, as follows: \(P_D = 28 \text{ kW} \) and \(Q_D = 12 \text{ kVAR} \) during the time
interval \(t \in [0,6] \) s, that are increased to \(P_D = 32 \) kW and \(Q_D = 16 \) kVAR during the time interval \(t \in [6,10] \) s, that are again decreased to \(P_D = 20 \) kW and \(Q_D = 8 \) kVAR during the time interval \(t \in [10,14] \) s. Table 6, in Appendix A, indicates various generation cost parameters for each DG. For the distributed secondary controller, the adjustable design parameters, expressed in (4) and (7), are \(\kappa_1, \kappa_3 = 0.005 \) and \(\kappa_2, \kappa_4 = 0.001 \). Similarly, for the distributed tertiary controller, the adjustable design parameters, expressed in (17), are \(\kappa_5 = 0.5 \), and \(c = 0.5 \).

![FIGURE 5: Optimal active power dispatch reference signals for DGs.](image)

![FIGURE 6: Active power outputs of DGs.](image)

![FIGURE 7: Reactive power outputs of DGs.](image)

Figure 5 indicates the optimal active power dispatch references generated by the distributed tertiary controller, while Figs. 6 and 7, respectively, indicate the corresponding active and reactive power outputs of DGs. Since, both the active and reactive power mismatches, as shown in Figs. 8 and 9, respectively, are almost zero (i.e., \(P_{mis} = P_D - \sum_{i=1}^{N} P_i = P_D - P_T \approx 0 \) and \(Q_{mis} = Q_D - \sum_{i=1}^{N} Q_i = Q_D - Q_T \approx 0 \)), it indicates that the distributed tertiary controller is precisely fulfilling its task. In addition, since the frequencies and output voltages of DGs are converging to the reference values (i.e., 60 Hz and 120.23 V phase-to-neutral, respectively), as

![FIGURE 8: Active power mismatch of DGs.](image)

![FIGURE 9: Reactive power mismatch of DGs.](image)

![FIGURE 10: Frequencies of DGs.](image)

![FIGURE 11: Output voltages of DGs.](image)

![FIGURE 12: Incremental costs of DGs.](image)
shown in Figs. 10 and 11, respectively, it indicates that the distributed secondary controller is also precisely fulfilling its frequency and voltage regulation tasks, despite load variation. Figures 12 and 13, respectively, indicate the incremental costs, λ_{opt}, and the corresponding total generation cost, $\sum_{i=1}^{N} C_i$, of DGs. It is evident that both the incremental costs and the total generation cost of DGs increase under the load increase event due to increased active power dispatch, and vice versa.

TEST 2: PERFORMANCE COMPARISON WITH THE CONVENTIONAL CENTRALIZED ECONOMIC LOAD DISPATCH

In Test 2, the total simulation time, the active and reactive power demands and their variations are kept the same as described in Test 1. Having these conditions, the performance of the proposed tertiary controller (i.e., the distributed economic load dispatch scheme) is compared with the centralised tertiary controller (i.e., the centralized economic dispatch strategy), described in Section IV.C.1., and reported in reputed power system analysis and control related textbooks [46], [47].

Figure 14 represents the optimal active power dispatch reference signals generated by the centralized tertiary controller, whereas Figs. 15 and 16, respectively, illustrate the corresponding active and reactive power outputs of DGs. It is evident that the optimal active power dispatch references generated by the centralized tertiary controller have a slower convergence than the references generated by the proposed distributed tertiary controller, as shown in Fig. 5. The active and reactive power mismatches in case of the centralized tertiary controller are, respectively, shown in Figs. 17 and 18, which are almost the same as they are in case of the distributed tertiary controller, and shown in Figs. 8 and 9. Similarly, the frequencies of DGs, output voltages of DGs, the incremental costs of DGs, and the total generation cost in case of the centralized tertiary controller are, respectively, shown in Figs. 19, 20, 21 and 22, which are nearly the same as they are under the distributed tertiary controller, and shown in Figs. 10, 11, 12 and 13.

After a detailed comparison, one can easily conclude that the proposed distributed tertiary controller provides a comparable performance with the centralized tertiary controller, although having a much lower cost of the communication network. It means that the proposed distributed tertiary controller provides a better solution than the centralized version of the same controller.
The overall active and reactive power demands are, respectively, as follows: $P_D = 80 \text{ kW}$ and $Q_D = 80 \text{kVAR}$ during the time interval $t \in [0, 7]s$, that are increased to $P_D = 96 \text{ kW}$ and $Q_D = 96 \text{kVAR}$ during the time interval $t \in [7, 11]s$, that are again decreased to $P_D = 72 \text{ kW}$ and $Q_D = 72 \text{kVAR}$ during the time interval $t \in [11, 15]s$. Table 7, in Appendix A, indicates various generation cost parameters for each DG shown in Fig. 23. Figure 24 depicts the optimal active power dispatch references generated by the distributed tertiary controller, while Fig. 25 indicates the corresponding active power outputs of DGs. Since, both the active and reactive power mismatches, as shown in Figs. 26 and 27, respectively, are converging to near zero, it means that both the active and reactive power demands are reasonably fulfilled with tolerable mismatches. In addition, since the frequencies and output voltages of DGs are converging to the reference values, as depicted in Figs. 28 and 29, respectively, it indicates that the distributed secondary controller is also precisely fulfilling its frequency and voltage regulation tasks, despite load variation. Figures 30 and 31, respectively, indicate the incremental costs, λ_{opt}, and the corresponding total generation cost of DGs. It is evident that both the incremental costs and the total generation cost of DGs increase under the load increase event due to increased active power dispatch, and vice versa.
To verify the robustness of the proposed scheme to disturbances, a sinusoidal disturbance is injected into the quantity $P_{1,\text{opt}}$ during the time interval $t \in [6, 8]$s, such that $P_{1,\text{New}} = P_{1,\text{opt}} + \sin 10t \forall (6 \leq t \leq 8)$s. This disturbance can easily be seen with a naked eye in the optimal active power dispatch reference signals, the active power outputs of DGs, the reactive power outputs of DGs and the frequencies of DGs, respectively, shown in Figs. 32, 33, 34, and 35. Although it is not recognizable with a naked eye in the output voltages and the incremental costs of DGs, respectively, shown in Figs. 36 and 37. It is evident that once the disturbance is removed, the proposed strategy quickly restores both the frequencies and voltages of DGs to their reference values in a finite-time, and concurrently ensures the economic load dispatch. This is a clear indication of the robustness of the proposed scheme to disturbances.
VI. CONCLUSIONS

This article presents a fully distributed three-layered hierarchical control scheme applicable to islanded AC microgrids. Due to the fully distributed design, the computation and communication burden is shared between the neighboring DGs using a sparse communication network. Consequently, the proposed paradigm is not susceptible to the single-point-failure issue, like the contemporary conventional centralized or distributed leader-follower based hierarchical control techniques. The proposed strategy fulfills multiple control objectives simultaneously, including: (i) frequency and voltage regulation of DGs within the prescribed frequency and voltage deviation limits as per IEC 60034-1 standard (i.e., ±2% and ±5%, respectively) without requiring any leader-follower consensus at the secondary level, (ii) distributed economic dispatch of active power with a negligible error, and (iii) reactive power dispatch with a plausible error. The stated control objectives have been successfully achieved by evaluating the performance of the proposed scheme in Matlab/Simulink through various time-domain based numerical simulations under different loading conditions and microgrid expansion. Based on its excellent dynamic performance and accomplishment of the control objectives, the proposed strategy testifies itself to be an effective hierarchical control strategy for islanded AC microgrids.

APPENDIX A ENTIRE SYSTEM PARAMETERS
TABLE 2: Microgrid testbench transformers specifications.

TAG	Rating (kVA)	Frequency (Hz)	Primary Winding Specifications	Secondary Winding Specifications				
			V_{ph-ph} (V)	R (Ω)	X_L (Ω)	V_{ph-ph} (V)	R (Ω)	X_L (Ω)
T₁	45	60	208	0.02688	0.1075	208	0.005047	0.0201
T₂	45	60	208	0.02688	0.1075	208	0.005047	0.0201
T₃	45	60	208	0.02688	0.1075	208	0.005047	0.0201

TABLE 3: Microgrid testbench impedances specifications.

Line Impedances	R (Ω)	X_L (Ω)	X_C (Ω)
Z₁	0	1.884	0
Z₂	0	1.884	0
Z₃	0	26.53	0
Z₁₂	0.027352	0.0066	288.60
Z₁₃	0.0137	0.0033	577.20
Z₂₄	0.01688	0.00407	336.70
Z₃₄	0.0026	0.00064	2020.10

TABLE 4: Inverter-based DGs specifications.

DG1 and DG2 Specifications	Value
S_{base}	15 kVA
V_{base}	208 V
V_{DC}	750 V
f_{ref}	60 Hz
Δf	0.50 Hz
ω_{ref}	377 rad s⁻¹
Δω	π rad s⁻¹
P_{max}	15 kW or 1 pu
P_{min}	0 kW
V_{ref}	208 V or 1 pu
K_{P,p}	3
K_{P,i}	50
K_{V,p}	0.01
K_{V,i}	5
κ_P	π
κ_Q	0.05
τ_τ	0.01 s
Z_{vir}	11.856 mH

TABLE 5: ICE-based diesel genset (i.e., DG3) specifications.

DG3 Specifications	Value
S_{base}	12.50 kVA
V_{base}	208 V
f_{ref}	60 Hz
ω_{ref}	377 rad s⁻¹
Δω	π rad s⁻¹
P_{max}	12.50 kW or 1 pu
P_{min}	0 kW
V_{ref}	208 V or 1 pu
K_{P,p}	3
K_{P,i}	30
K_{V,p}	1000
K_{V,i}	10
κ_P	π
κ_Q	0.05
τ_τ	0.01 s
X_d	1.204
X_d	0.288
Z_{vir}	11.856 mH

TABLE 6: Generation cost parameters of DGs illustrated in Fig. 1.

DG Indicator (i)	α_i	β_i	γ_i	P_{min} (kW)	P_{max} (kW)
1	180	6.21	0.0081	0	15
2	200	6.23	0.0083	0	15
3	190	6.22	0.0082	0	12.50

TABLE 7: Generation cost parameters of DGs illustrated in Fig. 23.

DG Indicator (i)	α_i	β_i	γ_i	P_{min} (kW)	P_{max} (kW)
1	180	6.21	0.0081	0	15
2	200	6.23	0.0083	0	15
3	190	6.22	0.0082	0	12.50
4	210	6.24	0.0084	0	15
5	230	6.26	0.0086	0	15
6	220	6.25	0.0085	0	15
7	240	6.27	0.0087	0	15
8	260	6.29	0.0089	0	15
9	250	6.28	0.0088	0	15
10	270	6.30	0.0090	0	15
11	290	6.32	0.0092	0	15
12	280	6.31	0.0091	0	15
REFERENCES

[1] D. T. Ton and M. A. Smith, “The US department of energy’s microgrid initiative,” The Electricity Journal, vol. 25, no. 8, pp. 84–94, 2012.

[2] N. Hatzigiayrious, Microgrids: Architectures and Control. Hoboken, NJ: Wiley, 2014.

[3] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.

[4] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963–1976, 2012.

[5] “IEEE Standard for the Specification of Microgrid Controllers,” IEEE Std 2030.7-2017, pp.1-43, 23 April 2018, doi: 10.1109/IEEESTD.2018.8340204.

[6] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Veciua, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, 2010.

[7] J. C. Vasquez, J. M. Guerrero, J. Miret, M. Castilla, and L. G. De Veciua, “Hierarchical control of intelligent microgrids,” IEEE Ind. Electron. Mag., vol. 4, no. 4, pp. 23–29, 2010.

[8] E. Planas, A. Gil-de-Muro, J. Andreu, I. Kortabarria, and I. M. de Alegría, “General aspects, hierarchical controls and droop methods in microgrids: A review,” Renewable Sustainable Energy Rev., vol. 17, pp. 147–159, 2013.

[9] M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, et al., “Microgrid stability definitions, analysis, and examples,” IEEE Trans. Power System, vol. 35, no. 1, pp. 13–29, 2019.

[10] M. Vasilakis, I. Zafeiratou, D. T. Lagos, and N. D. Hatziargyriou, “The evolution of research in microgrid control,” IEEE Open Access J. Power Energy, vol. 7, pp. 331–343, 2020.

[11] N. M. Dhekordi, N. Sadati, and M. Hamzeh, “Distributed robust finite-time secondary voltage and frequency control of islanded microgrids,” IEEE Trans. Power System, vol. 32, no. 3, pp. 3648–3659, 2016.

[12] Y. Khayat, Q. Shaﬁee, R. Heydari, M. Naderi, T. Dragičević, J. W. Simpson-Porco, et al., “On the secondary control architecture of AC microgrids: An overview,” IEEE Transactions on Power Electronics, vol. 36, no. 6, pp. 6482–6500, 2019.

[13] O. Palizban and K. Kauhaniemi, “Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode,” Renewable Sustainable Energy Rev., vol. 44, pp. 797–813, 2015.

[14] A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. Power System, vol. 28, no. 3, pp. 3462–3470, 2013.

[15] A. Bidram, F. L. Lewis, and A. Davoudi, “Distributed control systems for small-scale power networks: Using multiaagent cooperative control theory,” IEEE Control Syst. Mag., vol. 34, no. 6, pp. 56–77, 2014.

[16] A. Pilloni, A. Pisano, and E. Usai, “Robust finite-time frequency and voltage restoration of inverter-based microgrids via sliding-mode cooperative control,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 907–917, 2017.

[17] S. D’silva, M. B. Shadmand, and H. Abu-Rub, “Microgrid Control Strategies for Seamless Transition Between Grid-Connected and Islanded Modes,” in 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6-7 Feb. 2020, pp. 1–6.

[18] J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced Microgrid Control to Improve Economic Operation of Hybrid AC/DC Microgrids,” IEEE Trans. Power Syst., vol. 8, pp. 89534–89545, 2020.

[19] Z. Zhang, Y. Mishra, D. Yue, C. Dou, B. Zhang, and Y. -C. Tian, “Delay-Tolerant Predictive Power Compensation Control for Photovoltaic Voltage Regulation,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 4545–4554, July 2021.

[20] Z. Zhang, D. Dou, D. Yue and B. Zhang, “Predictive Voltage Hierarchical Controller Design for Islanded Microgrids Under Limited Communications,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 2, pp. 933–945, Feb. 2022.

[21] S. Ullah, L. Khan, I. Sami, G. Hafeez, and F. R. Albogamy, “A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids,” Energies, vol. 14, no. 24, p. 9998, 2021.

[22] A. Bidram, V. Nasirian, A. Davoudi, and F. L. Lewis, Cooperative Synchronization in Distributed Microgrid Control, Cham, Switzerland: Springer International Publishing AG, 2017.

[23] J. A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.

[24] M. J. Erickson and R. H. Lasserter, “Integration of battery energy storage element in a CERTS microgrid,” in 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010, pp. 2570–2577.

[25] R. H. Lasserter and P. Piagi, “Control and Design of Microgrid Components,” Power Syst. Eng. Res. Center (PSERC), Univ. Wisconsin-Madison, Madison, USA, Tech. Rep. 06-03, 2006. [Online] Available:
LAIQ KHAN received the B.Sc. degree (Hons.) in electrical engineering from the University of Engineering and Technology Peshawar, Peshawar, Pakistan, in 1996, and the M.S.-leading-to-Ph.D. degree in power system dynamics and control from the University of Strathclyde, Glasgow, U.K., in 2003.

Before Ph.D. degree, he served for Siemens Pakistan as a Field Engineer, for two years. He served as an Assistant Professor for the Faculty of Electronic Engineering, Ghulam Iskham Khan Institute of Engineering Sciences and Technology, Swabi, Pakistan, till 2008. Then, he joined the Faculty of Electrical Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan, and served as an Associate Professor. He also served as a Professor for Islamic University Madinah, Saudi Arabia, for three years. He is currently a Professor of power system dynamics and control with COMSATS University Islamabad, Abbottabad Campus. He has published more than hundred articles in highly reputable international conferences and peer-reviewed impact factor journals. His research interests include power system stability and control using PSSs, FACTS controllers and HVDC, robust control theory, intelligent control systems, nonlinear adaptive intelligent control and adaptive predictive intelligent control, fault tolerant control, power system planning and advanced optimization techniques, nonlinear control of wecs, photovoltaic systems, micro-grids, and smart-grids.

IRFAN SAMI received the B.Sc. degree in electrical engineering from the University of Engineering and Technology Peshawar, Bannu Campus, Pakistan, in 2016, and the M.Sc. degree in electrical engineering from COMSATS University Islamabad, Abbottabad Campus, Pakistan, in 2019. He is currently pursuing the Ph.D. degree in electrical engineering with Chung-Ang University, Seoul, South Korea. His research interests include electric drives, renewable energies, and electrical machines design.

JONG-SUK RO received the B.S. degree in mechanical engineering from Hanyang University, Seoul, South Korea, in 2001, and the Ph.D. degree in electrical engineering from Seoul National University (SNU), Seoul, in 2008. From 2008 to 2012, he conducted research at the Research and Development Center, Samsung Electronics, as a Senior Engineer. From 2012 to 2013, he was with the Brain Korea 21 Information Technology, SNU, as a Postdoctoral Fellow. He conducted research at the Electrical Energy Conversion System Research Division, Korea Electrical Engineering and Science Research Institute, as a Researcher, in 2013. From 2013 to 2016, he worked with the Brain Korea 21 Plus, SNU, as a BK Assistant Professor. In 2014, he was with the University of BATH, Bath, U.K. He is currently an Associate Professor with the School of Electrical and Electronics Engineering, Chung-Ang University, Seoul. His research interests include the analysis and optimal design of next-generation electrical machines using smart materials, such as electromagnetic, piezoelectric, magnetic shape memory alloy, and so on.

SHAFAAF ULLAH was born in Laki Marwat, Pakistan. He received the B.Sc. and M.Sc. degrees in Electrical Engineering from the University of Engineering and Technology Peshawar, Pakistan, in 2007 and 2013, respectively. He is currently pursuing the Ph.D. degree in Electrical Engineering with COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.

He has served as an Assistant Director for the Pakistan Council of Renewable Energy Technologies (PCRET), and as an Assistant Manager (Operation)/Junior Engineer (Electrical) for Lahore Electric Supply Company (LESCO), Pakistan. He is also serving as an Assistant Professor (on Ph.D. Study Leave) with the Department of Electrical Engineering, University of Engineering and Technology Peshawar. His research interests include photovoltaics, wind energy conversion systems, and distributed control of multi-agent systems-based smart grids.