The explanation of matter-antimatter asymmetry of the universe requires new origins of CP-violation beyond the Standard Model (BSM). One of the interesting CP-violating operators that can be induced in the QCD Lagrangian due to BSM physics is the Weinberg operator.\(^1\) In this report I point out a novel relation between the hadronic matrix element of the Weinberg operator and a certain twist-four correction in polarized Deep Inelastic Scattering (DIS). Such a relation suggests an exciting possibility that polarized DIS experiments can provide useful information to the physics of the nucleon electric dipole moment (EDM), or more generally, BSM-origins of hadronic CP violations.

The Weinberg operator is a dimension-six purely gluonic operator

\[
O_W = g f_{abc} E^a_{\mu \nu} F^b_{\mu \sigma} F^c_{\nu \sigma}.
\]

This operator violates CP and can be induced in the QCD Lagrangian by physics beyond the Standard Model. It is considered as one of the candidate operators to generate a large EDM of the nucleons and nuclei.

The key observation is the following exact operator identity

\[
O_W = - \partial^\mu (\tilde{F}_{\mu \nu} D^\nu - \frac{1}{2} \tilde{F}_{\mu \nu} D^2 F^{\mu \nu}) = O_4 + O_D,
\]

Eq. (2) shows that one can choose \(O_W\) and \(O_4\) as the independent basis of operators and study their mixing. Due to the equation of motion, one can write

\[
O_4 \approx \partial^\mu (\bar{\psi} g \tilde{F}_{\mu \nu} \gamma^\nu \psi),
\]

to linear order in partial derivative \(\partial^\mu\). Such mixing is usually neglected in the literature because \(O_4\) is a total derivative and hence does not contribute to the CP-violating effective action \(\int d^4 x O_4 = 0\). However, when it comes to hadronic matrix elements, mixing becomes crucial because only the nonforward matrix element is nonvanishing. Specifically, their RG equation takes the form

\[
\frac{d}{d \ln \mu^2} \left(\frac{O_W}{O_4} \right) = - \frac{\alpha_s}{4\pi} \left(\begin{array}{cc} \gamma_W & 0 \\ 0 & \gamma_{12} \end{array} \right) \langle O_W \rangle \quad \langle O_4 \rangle
\]

where

\[
\gamma_W = \frac{7}{3} N_c + \frac{2}{3} n_f
\]

is the anomalous dimension of the Weinberg operator.\(^2\) The anomalous dimension of \(O_4\) is the same as that of the undifferentiated, twist-four operator \(\bar{\psi} g \tilde{F}_{\mu \nu} \gamma_\mu \psi\) and is known to be\(^3\)

\[
\gamma_4 = \frac{7}{3} \alpha_s + \frac{2}{3} n_f.
\]

To determine the off-diagonal component \(\gamma_{12}\), I evaluate the following three-point Green’s function

\[
\langle 0 | T \{ \bar{\psi} (-k) A_\mu^a (q) \bar{\psi} (p) O_W \} | 0 \rangle
\]

with off-shell momenta and nonzero momentum transfer \(k = p - q \neq 0\). The result is

\[
\gamma_{12} = -3 N_c.
\]

It immediately follows that the following linear combination is the eigenstate of the RG evolution

\[
O_W + \frac{\gamma_{12}}{\gamma_W - \gamma_4} O_4 = O_W - \frac{9 N_c^2}{3 N_c^2 + 4} O_4.
\]

Since this operator has a rather large anomalous dimension \(\gamma_W \sim 10\), in particular larger than \(\gamma_4\) by a factor of about 2, at high enough renormalization scales \(\mu^2\) one has

\[
\langle O_W \rangle \approx \frac{9 N_c^2}{3 N_c^2 + 4} \langle O_4 \rangle \approx 2.61 \langle O_4 \rangle.
\]

In terms of the nucleon matrix elements

\[
\langle P | \bar{\psi} g \tilde{F}_{\mu \nu} \gamma_\mu \psi | P^\prime \rangle = -2 f_0 M^2 S^a
\]

\[
\frac{1}{M^2} \langle P^\prime | g f_{abc} E^a_{\mu \nu} F^b_{\mu \sigma} F^c_{\nu \sigma} | P \rangle = 4 E \bar{u} i \gamma_5 u.
\]

I get

\[
E \approx \frac{9 N_c^2}{2(3 N_c^2 + 4)} f_0 \approx 1.3 f_0.
\]

Therefore, one can evaluate the matrix element \(E\) of the Weinberg operator through the measurement of the \(f_0\) parameter relevant to the twist-four corrections in polarized DIS.\(^4,5\) \(f_0\) can be extracted from the \(g_1(x)\) structure function measured at the future Electron-Ion Collider (EIC) in the U.S. This is a new connection between the EIC and physics beyond the Standard Model. It will demonstrate the EIC’s unique capability to address low-energy nucleon observables in a high energy collider.

References
1) S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989).
2) A. Y. Morozov, Sov. J. Nucl. Phys. 40, 505 (1984).
3) E. V. Shuryak, A. I. Vainshtein, Nucl. Phys. B 199, 451 (1982).
4) E. V. Shuryak, A. I. Vainshtein, Nucl. Phys. B 201, 141 (1982).
5) X. D. Ji, P. Unrau, Phys. Lett. B 333, 228 (1994).