STABILITY AND CONTROLLABILITY RESULTS OF EVOLUTION SYSTEM WITH IMPULSIVE CONDITION ON TIME SCALES

Vipin Kumar* and Muslim Malik

(Communicated by M. Federson)

Abstract. In this manuscript, we examine the Hyer’s-Ulam stability and exact controllability results for impulsive evolution system on time scales. This manuscript has two segments: the first segment of the work is concerned with the Hyer’s-Ulam type’s stability analysis and the other segment is to exact controllability results. We used the Banach fixed point theorem, evolution operator theory and nonlinear functional analysis to establish these results. At last, we have presented some theoretical and numerical examples to outcome the utilization of these developed analytical results.

1. Introduction

Many real-world problems can be represented by the evolutionary processes which are liable to sudden change in its state because of outer unsettling influences that act instantaneously in the form of impulses. Many evolutionary processes, for example, bursting rhythm models in biology, blood flow, heartbeats, some motions of satellites and population dynamics are impulsive in nature [1, 2]. Specifically, impulsive models are described by dynamical systems which are continuous in time, except at the finite number of points, where the system exhibits discrete time behaviour due to the sudden disturbances in the form of impulses. On the other hand, stability analysis of functional and differential equations becomes an important research area and various form of stabilities have been developed including Mittag-Leffler function, exponential and Lyapunov stability for dynamical equations. However, an interesting type of stability was introduced by Ulam and Hyers is known as Ulam-Hyer’s stability, which is highly useful in numerical analysis and optimization for dynamical equations. As we know so far, the Hyers-Ulam stability has been employed for several dynamical equations of integer and fractional order [3, 4, 5]. Andrs and Mszros [6], examined the Hyer-Ulam’s stability results for integral equations and differential equations on time scales by defining the Picard operators and it is proved the proposed results are more general than some existing works.

Mathematics subject classification (2010): 93B05, 34A37, 34N05, 37L05.

Keywords and phrases: Controllability, stability, time scales, evolution operator, impulsive systems.

The research of first author Vipin Kumar is supported by the University Grants Commission (UGC) of India under the research fellowship number 2121540900, Ref. no. 20/12/2015 (ii) EU-V.

* Corresponding author.
Further, the time scales calculus was introduced by Hilger in [7] as a unification of the usual real calculus, the theory of difference equations and the q-calculus. Since then this theory has been widely utilized in the difference and differential equations to get a superior comprehension and a unified perspective of scientific phenomena occurring there. More recently, several authors discussed the existence, uniqueness of periodic, antiperiodic solutions and stability of abstract equations on time scales [8, 9]. For more details on time scales one can refer the books [10, 11] and the papers [12, 13, 14, 15, 16, 17].

Eventhough controllability results of linear and nonlinear dynamical systems have turned into an essential territory of research since a very long while (see [18, 19, 20, 21] and references there in), controllability results of differential equations on time scales is a relatively newer field and only a few works have been reported [22, 23, 24, 25, 26, 27, 28, 29]. Particularly, the controllability and observability of the dynamical systems on time scales in the finite dimensional spaces is reported in [23]. In [22] Lupulescu et al. considered the dynamical system with impulsive conditions on time scales and established the necessary and sufficient conditions for the state observability and state controllability. According to as far as anyone is concerned, there is no manuscript which examined the exact controllability and Ulam’s type stability analysis for an impulsive evolution dynamical systems on time scales. Motivated by the above facts, in this paper we obtain the Ulam’s type stability results for the following impulse evolution system on time scales

\[
y^A(t) = A(t)y(t) + M(t, y(t)), \quad t \in I = [0, b]_T, \; t \neq t_i,
\]

\[
\Delta y(t_l) = y(t^+_l) - y(t^-_l) = J_l(t_l, y(t^-_l)), \quad l = 1, 2, \ldots, p,
\]

\[
y(0) = y_0
\]

and for the exact controllability results, we consider the following impulse evolution system on time scales

\[
y^\mathcal{A}(t) = \mathcal{A}(t)y(t) + Bu(t) + M(t, y(t)), \quad t \in I, \; t \neq t_i,
\]

\[
\Delta y(t_l) = y(t^+_l) - y(t^-_l) = J_l(t_l, y(t^-_l)), \quad l = 1, 2, \ldots, p,
\]

\[
y(0) = y_0
\]

where \(T \) is a time scale with \(0, t_1, b \in T \). \(y(t) \in Y \) be a state function. Also, \(\mathcal{A}(t) \) is a family of linear operators which generates an evolution operator \(\{ \mathcal{V}(t, s) : (t, s) \in T \times T : 0 \leq s \leq t \leq b \} \). Throughout the paper, it is assumed that the point of impulses \(t_l \) for \(l = 1, 2, \ldots, p, \) are right dense with \(0 \leq t_0 < t_1 < \ldots < t_p < t_{p+1} = b, \) \(y(t^-_l) = \lim_{h\to 0^+} y(t_l - h), \) \(y(t^+_l) = \lim_{h\to 0^+} y(t_l + h) \) represent the left and right limit of \(y(t) \) at \(t = t_l \). \(B \) is a bounded linear operator from a Banach space \(U \) to \(Y \) and \(u(\cdot) \) is control function given in \(L^2(I, U) \). \(M : I \times Y \to Y \) and \(J_l : I \times Y \to Y \) are suitably defined functions.

Note that the problems (1.1) and (1.2) considered in this manuscript are new and start the investigation of evolution system with impulsive conditions on time scales. We trust that the acquired outcomes will be a helpful and significant contribution to the existing literature on the topic. The plan of the manuscript is as follows. In Section 2,
we give some preliminaries, fundamental definitions and some useful lemmas. In the subsequent sections, main results of the paper are discussed. At last, to outcome the utilization of these obtained analytical results, an example is given.

2. Preliminaries and definitions

Below, we recall some notations, fundamental definitions, and lemmas which will be used to prove our main results. Let \((Y, ||\cdot||)\) be a Banach space and the space of all linear bounded operators from \(Y\) into \(Y\) is represented by \(\mathbb{B}(Y)\). The space \(C(I, Y)\) of all continuous functions \(\tilde{f} : I \to Y\) is a Banach space with the norm \(||\tilde{f}||_C = \sup_{t \in I} ||\tilde{f}(t)||\). The space of functions from \(I\) into \(Y\) which are Lebesgue integrable are represented by \(L^1(I, Y)\). \(PC(I, Y) = \{y : I \to Y : y \in C((t_k, t_{k+1}]_T, Y), k = 0, 1, \ldots, p\) and \(\text{there exists } y(t_i^+)\text{ and } y(t_i^-), l = 1, 2, \ldots, p\) with \(y(t_i^-) = y(t_i)\}\) denotes the space of piecewise continuous functions. One can easily find that \(PC(I, Y)\) is a Banach space induced with the norm, \(||y||_{PC} = \sup_{t \in I} ||y(t)||\).

A non-empty closed subset of real number is called time scales \(\mathbb{T}\). We set \(\mathbb{T}^k = \mathbb{T} \setminus \{\max \mathbb{T}\}\) if \(\max \mathbb{T}\) exists, otherwise \(\mathbb{T}^k = \mathbb{T}\). A time scale interval is defined as \([a, b]_\mathbb{T} = \{t \in \mathbb{T} : a \leq t \leq b\}\), similarly, we define \((a, b]_\mathbb{T}, (a, b)_\mathbb{T}\) etc.

The forward jump operator \(\sigma : \mathbb{T} \to \mathbb{T}\) is defined by \(\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}\) with the substitution \(\inf\{\emptyset\} = \inf \mathbb{T}\). The backward jump operator \(\rho : \mathbb{T} \to \mathbb{T}\) is defined by \(\rho(t) = \sup\{s \in \mathbb{T} : s < t\}\) with the substitution \(\sup\{\emptyset\} = \inf \mathbb{T}\). We say \(t\) is right-scattered or left-scattered if \(\sigma(t) > t\) or \(\rho(t) < t\). Also, \(t\) is called right dense or left dense if \(t < \sup \mathbb{T}\) and \(\sigma(t) = t\) or \(t > \inf \mathbb{T}\) and \(\rho(t) = t\), respectively. The point \(t\) is called the dense point if it is right and left dense at the same time. Finally, the graininess function \(\mu : \mathbb{T} \to [0, \infty)\) is defined by \(\mu(t) := \sigma(t) - t\).

A function \(f : \mathbb{T} \to Y\) is called regulated if its right-hand limit exists (finite) at all right-dense points in \(\mathbb{T}\) and its left-hand limit exists (finite) at all left-dense points in \(\mathbb{T}\). A function \(\psi : \mathbb{T} \to Y\) is said to be rd-continuous, if it is regulated and it is continuous at all right-dense points. We denote \(PC_{rd}(\mathbb{T}, Y)\) for the collections of all rd-continuous functions. Moreover, function \(\psi\) is piecewise rd-continuous if it is regulated and rd-continuous at all, except possibly at finitely many, right-dense points \(t \in \mathbb{T}\). The collections of all piecewise rd-continuous functions from \(\mathbb{T}\) to \(Y\) will be denoted by \(PC_{rd}(\mathbb{T}, Y)\).

Definition 1. (Delta derivative, [10]) Let \(\psi : \mathbb{T} \to Y\) be a function and \(t \in \mathbb{T}^k\). Then the delta derivative (or \(\Delta\) derivative) of \(\psi\) at the point \(t\) is defined to be the number \(\psi^\Delta(t)\) (provided it exists) with the property that for each \(\varepsilon > 0\) there is a neighborhood \(\mathcal{U}\) of \(t\) such that

\[
|\psi(\sigma(t)) - \psi(s) - \psi^\Delta(t) [\sigma(t) - s]| \leq \varepsilon |\sigma(t) - s|, \quad \forall s \in \mathcal{U}.
\]

Definition 2. (Delta integral, [10]) Let \(\Psi\) be a function, it is called the antiderivative of \(\psi : \mathbb{T} \to Y\) provided \(\Psi^\Delta(t) = \psi(t)\), for each \(t \in \mathbb{T}^k\), then the delta
integral is given by
\[\int_{t_0}^{t} \psi(s) \Delta s = \Psi(t) - \Psi(t_0). \]

Definition 3. ([10]) A function \(q : T \to \mathbb{R} \) is said to be regressive if \(\forall t \in T, 1 + \mu(t)q(t) \neq 0 \). The collections of all regressive functions is represented by \(\mathcal{R} \).

Definition 4. ([10]) For \(q \in \mathcal{R} \), the exponential function in the sense of time scales, is given by
\[e_q(t, s) = \exp \left(\int_s^t \xi_{\mu(\tau)}(q(\tau)) \Delta \tau \right), \quad t, s \in T, \]
where \(\xi_{\mu(\tau)}(q(\tau)) \) is the cylinder transformation given by
\[\xi_{\mu(\tau)}(F) = \begin{cases} \frac{1}{h} \log(1 + F h), & \text{if } h \neq 0, \\ F, & \text{if } h = 0. \end{cases} \]

Definition 5. ([10]) Let \(p, q \in \mathcal{R} \), then:
(i) \(\ominus p = \frac{-p}{1 + \mu(t)p} \);
(ii) \(p \oplus q = p + q + \mu(t)pq \);
(iii) \(p \ominus q = p \oplus (\ominus q) \).

Lemma 1. ([10]) If \(q \in \mathcal{R} \), then:
(i) \(e_q(t, t) = 1 \) and \(e_0(t, s) = 1 \);
(ii) \((e_{\ominus q}(t, s))^\Delta = \ominus q(t)e_{\ominus q}(t, s) \);
(iii) \(e_q(t, s) = e_{\ominus q}(s, t) \);
(iv) \(e_q(t, s)e_q(s, r) = e_q(t, r) \);
(v) \(e_q(\sigma(t), s) = (1 + \mu(t)q(t))e_q(t, s) \).

Lemma 2. ([10]) If \(t_0, t_1, a \in T \) and \(q \in \mathcal{R} \), then
\[\int_{t_0}^{t_1} q(s)e_q(a, \sigma(s)) \Delta s = e_q(a, t_0) - e_q(a, t_1). \]

Lemma 3. ([16, 8]) If \(\alpha > 0 \), then \(e_{\ominus \alpha}(t, s) \leq 1 \), for \(t, s \in T \) such that \(t > s \).

Definition 6. ([15]) A two parameter family \(\mathcal{V}(t, s) : T \times T \to B(Y) \) is said to be linear evolution operator if it satisfies the conditions:
(a) \((t, s) \to \mathcal{V}(t, s)y\) is continuous mapping for any fixed \(y \in Y\);

(b) \(\mathcal{V}(t, t) = I\), where \(I\) is the identity operator in \(Y\);

(c) \(\mathcal{V}(t, s)\mathcal{V}(s, r) = \mathcal{V}(t, r)\).

Definition 7. An evolution operator \(\mathcal{V}(t, s)\) is said to be exponentially stable if there exist two constants \(K_0 \geq 1\) and \(\nu > 0\) such that

\[\|\mathcal{V}(t, s)\| \leq K_0 e^{\nu(t-s)}, t \geq s.\]

Now onwards, for the notational convenience, we set:

(i) \(\bar{\mu} = \sup_{t \in I} \mu(t)\);

(ii) \(K_1 = \sup_{t \in I} \{e^{\nu(t-t_l)}, l = 1, 2, \ldots, p\}\);

(iii) \(K_2 = \max\{e^{\nu(b-t_l)}, l = 1, 2, \ldots, p\}\) and \(K = \max\{K_1, K_2\}\).

Assumptions:

(A1): Function \(\mathcal{M} : I \times Y \to Y\) is continuous and there exist positive constants \(L, \mathcal{M}\) such that:

(a) \(\|\mathcal{M}(t, y) - \mathcal{M}(t, z)\| \leq L \|y - z\|, \quad \forall y, z \in Y, t \in I;\)

(b) \(\|\mathcal{M}(t, y)\| \leq C, \forall t \in I\) and \(y \in Y\).

(A2): \(\mathcal{J}_l(t_l, y(t_l^-)) \in C(I \times Y, Y), l = 1, 2, \ldots, p\) and there exist positive constants \(L, \mathcal{J}\) such that:

(a) \(\|\mathcal{J}_l(t, y) - \mathcal{J}_l(t, z)\| \leq L \|y - z\|, \quad \forall t \in I, y, z \in Y;\)

(b) \(\|\mathcal{J}_l(t, y)\| \leq M, \forall t \in I\) and \(y \in Y\).

(A3): The family \(\{\mathcal{M}(t) : t \in \mathbb{T}\}\) of bounded linear operators in \(Y\) generates an exponentially stable evolution operator \(\{\mathcal{V}(t, s) : t \geq s\}\), i.e. there exist \(K_0 \geq 1\) and \(\nu\) such that \(\|\mathcal{V}(t, s)\| \leq K_0 e^{\nu(t-s)}\).

(A4): The linear operator \(\Pi_0^b : L^2(I, U) \to Y\) given by

\[\Pi_0^b u = \int_0^b \mathcal{V}(b, \sigma(s))\mathcal{B}u(s)\Delta s\]

has a bounded invertible operator \((\Pi_0^b)^{-1}\), which takes values in \(L^2(I, U) \setminus \ker \Pi_0^b\). Also, \(\mathcal{B}\) is continuous operator from \(U\) to \(Y\) and there exist positive constants \(M_\Pi, M_{\mathcal{B}}\) such that \(\|(\Pi_0^b)^{-1}\| \leq M_\Pi\) and \(\|\mathcal{B}\| \leq M_{\mathcal{B}}\).
For $\varepsilon > 0$, we consider the following inequality

$$\left\{ \begin{array}{l}
\|x^A(t) - \mathcal{A}(t)x(t) - \mathcal{M}(t,x(t))\| \leq \varepsilon, \quad t \in I, \ t \neq t_l, \\
\|\Delta x(t_l) - \mathcal{J}_l(t_l,x(t_l^-))\| \leq \varepsilon, \quad l = 1, 2, \ldots, p.
\end{array} \right. \quad (2.2)$$

Definition 9. Equation (1.1) is called Ulam-Hyers’ stable if there exists a constant $H_{(L,A,L_I,p,v)} > 0$ such that for $\varepsilon > 0$ and for each solution x of inequality (2.2) there exists a mild solution y of equation (1.1) satisfies the following inequality

$$\|x(t) - y(t)\| \leq H_{(L,A,L_I,p,v)} \varepsilon, \quad \forall t \in I.$$

Definition 10. Equation (1.1) is said to be generalized Ulam-Hyers’ stable if there exists $\mathcal{H}_{(L,A,L_I,p,v)} \in C(\mathbb{R}^+, \mathbb{R}^+), \mathcal{H}_{(L,A,L_I,p,v)}(0) = 0$ such that for each solution x of inequality (2.2) there exists a mild solution y of equation (1.1) satisfies the following inequality

$$\|x(t) - y(t)\| \leq H_{(L,A,L_I,p,v)}(\varepsilon), \quad \forall t \in I.$$

Remark 1. Definition 9 \iff Definition 10.

Remark 2. A function $x \in PC(I,Y)$ is a solution of inequality (2.2) iff there is a sequence G_l, for $l = 1, 2, \ldots, p$, and a $G \in PC(I,Y)$ such that:

(a) $\|G(t)\| \leq \varepsilon, \forall t \in I, \ t \neq t_l$ and $\|G_l\| \leq \varepsilon, \ \forall l = 1, 2, \ldots, p$;

(b) $x^A(t) = \mathcal{A}(t)x(t) + \mathcal{M}(t,x(t)) + G(t), \ t \in I, \ t \neq t_l$;

(c) $\Delta x(t_l) = \mathcal{J}_l(t_l,x(t_l^-)) + G_l, \ l = 1, 2, \ldots, p$.

From the above remark, we have

$$x^A(t) = \mathcal{A}(t)x(t) + \mathcal{M}(t,x(t)) + G(t), \ t \in I, \ t \neq t_l,$$

$$\Delta x(t_l) = \mathcal{J}_l(t_l,x(t_l^-)) + G_l, \ l = 1, 2, \ldots, p,$$

then by Definition 8, we find the solution $x(t)$ of the above equation with $x(0) = y_0$ is given by
\[x(t) = \mathcal{V}(t, 0)y_0 + \sum_{0 < t_i < t} \mathcal{V}(t, t_i)[\mathcal{J}_1(t_i, x(t_i^-)) + G_i] + \int_0^t \mathcal{V}(t, \sigma(s)) \mathcal{M}(s, x(s)) + G(s) \, ds. \]

Consequently, we get
\[
\left\| x(t) - \mathcal{V}(t, 0)y_0 - \sum_{0 < t_i < t} \mathcal{V}(t, t_i)[\mathcal{J}_1(t_i, x(t_i^-))] - \int_0^t \mathcal{V}(t, \sigma(s)) \mathcal{M}(s, x(s)) \, ds \right\|
\leq K_0 \varepsilon \sum_{l=1}^{p} e_{\Theta V}(t, t_l) + K_0 \varepsilon \int_0^t e_{\Theta V}(t, \sigma(s)) \, ds
\leq K_0 \varepsilon \sum_{l=1}^{p} e_{\Theta V}(t, t_l) + \frac{K_0 \varepsilon (1 - e_{\Theta V}(t, 0))(1 + \overline{\Pi V})}{\nu}.
\]

Hence, we have
\[
\left\| x(t) - \mathcal{V}(t, 0)y_0 - \sum_{0 < t_i < t} \mathcal{V}(t, t_i)[\mathcal{J}_1(t_i, x(t_i^-))] - \int_0^t \mathcal{V}(t, \sigma(s)) \mathcal{M}(s, x(s)) \, ds \right\|
\leq M e_{\Theta V}(t, 0) \varepsilon,
\]
where
\[
M = K_0 \left[\sum_{l=1}^{p} e_{\Theta V}(0, t_l) + \frac{(1 + \overline{\Pi V})(e_{V}(b, 0) - 1)}{\nu} \right].
\]

Lemma 4. ([15]) If \(v \in PC_{rd}(\mathbb{T}, \mathbb{R}^+) \) satisfies the given inequality
\[
v(t) \leq \alpha + \int_a^t p(s)v(s) \, ds + \sum_{a < t_i < t} \beta_i v(t_i), \quad \forall t \in \mathbb{T},
\]
then
\[
v(t) \leq \alpha \prod_{a < t_i < t} (1 + \beta_i) e_{p}(t, a).
\]

3. Ulam’s type stability

In this section, we give some sufficient condition for the Ulam-Hyers’s stability of the equation (1.1) in the Banach space \(Y \).

Theorem 1. If the assumptions (A1)-(A3) are satisfied, then the equation (1.1) is Ulam-Hyers’s stable.

Proof. Let \(y \) be the solution of equation (1.1) and \(x \) be solution of inequality (2.2). Then, by Definition 8, we have
\[
y(t) = \mathcal{V}(t, 0)y_0 + \sum_{0 < t_i < t} \mathcal{V}(t, t_i)[\mathcal{J}_1(t_i, y(t_i^-))] + \int_0^t \mathcal{V}(t, \sigma(s)) \mathcal{M}(s, y(s)) \, ds
\]
and we get
\[
\|x(t) - y(t)\| \\
\leq \left\| x(t) - \mathcal{V}(t,0)y_0 - \int_0^t \mathcal{V}(t,s)\mathcal{M}(s,y(s))\Delta s - \sum_{0<t_i<t} \mathcal{V}(t,t_i)\mathcal{J}_1(t_i,y(t_i^-)) \right\| \\
\leq \varepsilon Me_{\mathcal{V}}(t,0) + \left\| \int_0^t \mathcal{V}(t,s)(\mathcal{M}(s,x(s)) - \mathcal{M}(s,y(s)))\Delta s \right\| \\
+ \left\| \sum_{0<t_i<t} \mathcal{V}(t,t_i)(\mathcal{J}_1(t_i,x(t_i^-)) - \mathcal{J}_1(t_i,y(t_i^-))) \right\| \\
\leq \varepsilon Me_{\mathcal{V}}(t,0) + K_0L_{\mathcal{M}} \int_0^t e_{\mathcal{E}}(t,s)\|x(s) - y(s)\|\Delta s \\
+ K_0L_{\mathcal{J}_1} \sum_{i=1}^p e_{\mathcal{E}}(t,t_i)\|x(t_i^-) - y(t_i^-)\|.
\]

Subsequently, we get
\[
\|x(t) - y(t)\| \leq \varepsilon Me_{\mathcal{V}}(t,0) + K_0L_{\mathcal{M}} (1 + \bar{\mu} \nu) \int_0^t e_{\mathcal{E}}(t,s)\|x(s) - y(s)\|\Delta s \\
+ K_0L_{\mathcal{J}_1} \sum_{i=1}^p e_{\mathcal{E}}(t,t_i)\|x(t_i^-) - y(t_i^-)\|.
\]

Now, we set \(\|x(t) - y(t)\|e_{\mathcal{V}}(t,0) = \tilde{z}(t)\), in the above inequality, we get
\[
\tilde{z}(t) \leq \varepsilon + K_0L_{\mathcal{M}} (1 + \bar{\mu} \nu) \int_0^t \tilde{z}(s)\Delta s + K_0L_{\mathcal{J}_1} \sum_{i=1}^p \tilde{z}(t_i^-).
\]

Now, by using the Lemma 4, we get
\[
\|x(t) - y(t)\| \leq \varepsilon \prod_{i=1}^p (1 + K_0L_{\mathcal{J}_1}) e_{\gamma}(b,0) \leq H_{(L_{\mathcal{M}},L_{\mathcal{J}_1},p,v)}(\varepsilon, t \in I,
\]

where \(H_{(L_{\mathcal{M}},L_{\mathcal{J}_1},p,v)} = M \prod_{i=1}^p (1 + K_0L_{\mathcal{J}_1}) e_{\gamma}(b,0) > 0\) and \(\gamma = K_0L_{\mathcal{M}} (1 + \bar{\mu} \nu)\). Hence, the equation (1.1) is Ulam-Hyers stable. In addition, if we set \(H_{(L_{\mathcal{M}},L_{\mathcal{J}_1},p,v)}(\varepsilon) = H_{(L_{\mathcal{M}},L_{\mathcal{J}_1},p,v)}(\varepsilon, H_{(L_{\mathcal{M}},L_{\mathcal{J}_1},p,v)}(0) = 0\), then equation (1.1) is generalized Ulam-Hyers stable. \(\Box\)

4. Exact controllability

DEFINITION 11. The system (1.2) is called exactly controllable on \([0,b]_T\), if for every \(y_0,y_b \in Y\) there exists a control function \(u \in L^2([0,b]_T,U)\) such that the mild solution (2.1) satisfies \(y(b) = y_b\).

Lemma 5. If the assumptions (A1)-(A4) are satisfied, then for \(t \in [0, b]_\mathbb{T} \), the control function

\[
u(t) = (\pi_{b})^{-1} \left[y_b - \gamma'(b, 0)y_0 - \sum_{i=1}^{p} \gamma'(b, t_i) \mathcal{J}_i(t_i, y(t_i^-)) - \int_{0}^{b} \gamma(b, \sigma(s)).\mathcal{M}(s, y(s))\Delta s \right](t) \tag{4.1}
\]

steers the state function \(y(t) \) from initial state \(y_0 \) to final state \(y_b \) at time \(t = b \). Also, the estimate for the control function \(u(t) \) is \(M_u \) where

\[
M_u = M_\Pi \left[\|y_b\| + K_0e_\gamma(b, 0)\|y_0\| + \frac{K_0c_\mathcal{M}(1 + \mu\nu)(1 - e_\gamma(b, 0))}{\nu} + mK_0K_2M_{\mathcal{F}} \right].
\]

Proof. By substituting \(t = b \), in the mild solution (2.1) of the system (1.2), we get

\[
y(b) = \gamma'(b, 0)y_0 + \pi_{b} u(t) + \sum_{i=1}^{p} \gamma'(b, t_i) \mathcal{J}_i(t_i, y(t_i^-)) + \int_{0}^{b} \gamma(b, \sigma(s)).\mathcal{M}(s, y(s))\Delta s
\]

\[
= \gamma'(b, 0)y_0 + \sum_{i=1}^{p} \gamma'(b, t_i) \mathcal{J}_i(t_i, y(t_i^-)) + \left[y_b - \sum_{i=1}^{p} \gamma'(b, t_i) \mathcal{J}_i(t_i, y(t_i^-)) \right]
\]

\[
- \gamma'(b, 0)y_0 - \int_{0}^{b} \gamma(b, \sigma(s)).\mathcal{M}(s, y(s))\Delta s + \int_{0}^{b} \gamma(b, \sigma(s)).\mathcal{M}(s, y(s))\Delta s
\]

\[
= y_b.
\]

Hence, the control function (4.1) steers the state function \(y(t) \) from initial state \(y_0 \) to final state \(y_b \) at time \(t = b \). Also,

\[
\|u(t)\| \leq M_\Pi \left[\|y_b\| + K_0e_\gamma(b, 0)\|y_0\| + \frac{K_0c_\mathcal{M} \gamma(b, 0)}{\gamma} \right] + mK_0K_2M_{\mathcal{F}}
\]

\[
= M_u. \quad \square
\]

Theorem 2. If the assumptions (A1)-(A4) are satisfied along with

\[
K_0 \left(1 + \frac{K_0M_{\mathcal{F}}M_\Pi(1 + \mu\nu)}{\nu} \right) \left(mK_1 + \frac{L_{\mathcal{M}}(1 + \mu\nu)}{\nu} \right) < 1,
\]

then the control system (1.2) is exactly controllable on \(I \).

Proof. For \(\beta = K_0\|y_0\| + \frac{K_0(M_{\mathcal{F}}M_u + C_\mathcal{M})(1 + \mu\nu)}{\nu} + mK_0K_1M_{\mathcal{F}} \), consider a subset \(\Omega \subseteq PC(I, Y) \) such that

\[
\Omega = \{ y \in PC(I, Y) : \|y\|_{PC} \leq \beta \}.
\]
Now, define an operator \(\Gamma : \Omega \to \Omega \) by

\[
(\Gamma y)(t) = \mathcal{V}(t, 0)y_0 + \sum_{0 < t_i < t} \mathcal{V}(t, t_i)\mathcal{J}_i(t_i, y(t_i^{-})) + \int_0^t \mathcal{V}(t, \sigma(s))[\mathcal{B}u(s) + \mathcal{M}(s, y(s))]ds.
\]

For \(t \in I \) and \(y \in \Omega \) we have

\[
\| (\Gamma y)\| \leq K_0 e_{\mathcal{V}}(t, 0)\| y_0 \| + K_0 M \sum_{i=1}^p e_{\mathcal{V}}(t, t_i) + K_0 (M_{\mathcal{B}} M_u + C_{\mathcal{M}}) \int_0^t e_{\mathcal{V}}(t, \sigma(s))ds
\]

\[
\leq K_0 \| y_0 \| + K_0 M \sum_{i=1}^p e_{\mathcal{V}}(t, t_i) + \frac{K_0 (M_{\mathcal{B}} M_u + C_{\mathcal{M}})(1 - e_{\mathcal{V}}(t, 0))(1 + \bar{\mu}v)}{v}.
\]

Hence

\[
\| \Gamma y \| \leq K_0 \| y_0 \| + K_0 M \sum_{i=1}^p e_{\mathcal{V}}(t, t_i) + \frac{K_0 (M_{\mathcal{B}} M_u + C_{\mathcal{M}})(1 + \bar{\mu}v)}{v} \leq \beta.
\]

Therefore, \(\Gamma : \Omega \to \Omega \). Also, for \(y, z \in \Omega \) and \(t \in I \)

\[
\| (\Gamma y)(t) - (\Gamma z)(t) \|
\leq \left| \int_0^t \mathcal{V}(t, \sigma(\tau))\mathcal{B}(\Pi_0^b)^{-1} \left[\mathcal{V}(b, \sigma(s))(\mathcal{M}(s, y(s)) - \mathcal{M}(s, z(s)))ds
\right.
ight.
\]

\[
+ \sum_{i=1}^p \mathcal{V}(b, t_i)\left(\mathcal{J}_i(t_i, y(t_i^{-})) - \mathcal{J}_i(t_i, z(t_i^{-})) \right) \left| \Delta \tau \right|
\]

\[
\left. + \sum_{i=1}^p \mathcal{V}(t, t_i)(\mathcal{J}_i(t_i, y(t_i^{-})) - \mathcal{J}_i(t_i, z(t_i^{-})) \right) \left| \Delta \tau \right|
\]

\[
\left. + \left| \int_0^t \mathcal{V}(t, \sigma(s))(\mathcal{M}(s, y(s)) - \mathcal{M}(s, z(s)))ds \right| \right| \Delta \tau \right|
\]

\[
\leq K_0^2 M_{\mathcal{B}} M_{\Pi} \| y - z \|_{PC} \left(\frac{L_{\mathcal{M}}(e_{\mathcal{V}}(b, 0) - 1)}{\mathcal{V}} + L \sum_{i=1}^p e_{\mathcal{V}}(b, t_i) \right) \times \left(\frac{e_{\mathcal{V}}(t, 0) - 1}{\mathcal{V}} \right)
\]

\[
+ \frac{K_0 L_{\mathcal{M}}(e_{\mathcal{V}}(t, 0) - 1)}{\mathcal{V}} \| y - z \|_{PC} + pK_0 K_1 M \| y - z \|_{PC}.
\]

Hence

\[
\| \Gamma y - \Gamma z \|_{PC} \leq L_\alpha \| y - z \|_{PC},
\]

where

\[
L_\alpha = \left[\frac{K_0^2 M_{\mathcal{B}} M_{\Pi}(1 + \bar{\mu}v)}{v} \left(\frac{L_{\mathcal{M}}(1 + \bar{\mu}v)}{v} + mL_2 K_2 \right) + \frac{K_0 L_{\mathcal{M}}(1 + \bar{\mu}v)}{v} + mK_0 K_1 L \right].
\]

Therefore, \(\Gamma \) is a strict contraction operator. Thus, by means of Banach fixed point principle, \(\Gamma \) has a unique fixed point on \(I \). Therefore, system (1.2) has a mild solution on \(I \) and hence we conclude that the control system (1.2) is exactly controllable on \(I \). □
5. Exact controllability of integro differential system

Consider the following integro-differential equation of the form

\[y^A(t) = sA(t)y(t) + B u(t) + \int_0^t \zeta(t,s) g(s,y(s)) \Delta s + M(t,y(t)), \quad t \in I, t \neq t_1, \]

\[\Delta y(t_l) = y(t_l^+) - y(t_l^-) = J_l(t_l, y(t_l^-)), \quad l = 1, 2, \ldots, p, \]

(5.1)

\[y(0) = y_0. \]

(A5): \[\zeta_b = \int_0^b \| \zeta(t,s) \| \Delta s. \]

(A6): \[g : I \times Y \rightarrow Y \] is a continuous function and there exist positive constants \(L_g \) and \(M_g \) such that

(a) \[\| g(t,y) - g(t,z) \| \leq L_g \| y - z \|, \quad \forall y, z \in Y, \quad \text{and} \quad t \in I. \]

(b) \[\| g(t,y) \| \leq M_g, \quad \forall t \in I \quad \text{and} \quad y \in Y. \]

Definition 12. A function \(y \in \text{PC}(I,Y) \) is called a mild solution of the system (5.1) if it satisfies \(y(0) = y_0, \Delta y(t_l) = J_l(t_l, y(t_l^-)), \) \(l = 1, 2, \ldots, p \) and the following equation

\[y(t) = \mathcal{Y}(t,0)y_0 + \sum_{0 < t_l < t} \mathcal{Y}(t,t_l) J_l(t_l, y(t_l^-)) + \int_0^t \mathcal{Y}(t, \sigma(s)) [B u(s) + M(s, y(s))] \]

\[+ \int_s^t \zeta(s, \tau) g(\tau, y(\tau)) \Delta \tau \Delta s. \]

(5.2)

Lemma 6. If the assumptions (A1)-(A6) are satisfied, then for \(t \in I \), the control function

\[u(t) = \left(\Pi_0^b \right)^{-1} \left[y_b - \mathcal{Y}(b,0)y_0 - \sum_{l=1}^p \mathcal{Y}(b,t_l) J_l(t_l, y(t_l^-)) \right. \]

\[- \int_0^b \mathcal{Y}(b, \sigma(s)) \left(\int_0^s \zeta(s, \tau) g(\tau, y(\tau)) \Delta \tau \right) \Delta s \right] (t) \]

(5.3)

steers the state function \(y(t) \) from initial state \(y_0 \) to \(y_b \) at time \(b \). Also, the estimate for the control function \(u(t) \) is \(M_u' \), where

\[M_u' = M_{\Pi} \left[\| y_b \| + K_0 e_{\mathcal{Y}}(b,0) \| y_0 \| + mK_0 K_2 M_{\mathcal{Y}} + \frac{K_0 (C_{\mathcal{M}} + \zeta_b M_g)(1 + \bar{\mu} \nu)}{\nu} \right]. \]

Proof. By substituting \(t = b \) in the mild solution (5.2) of the system (5.1), we get

\[y(b) = \mathcal{Y}(b,0)y_0 + \sum_{l=1}^p \mathcal{Y}(b,t_l) J_l(t_l, y(t_l^-)) + \int_0^b \mathcal{Y}(b, \sigma(s)) M(s, y(s)) \Delta s \]
Hence, the control function (5.3) steers the state function \(y(t) \) from initial state \(y_0 \) to final state \(y_b \) at time \(t = b \). Also,

\[
\| u(t) \| \leq M_\Pi \left[\| y_b \| + K_0 e_v(b, 0) \| y_0 \| + K_0 M _\not\gamma \sum_{l=1}^{m} e_v(b, t_l) \right. \\
+ K_0 (C_{M} + \zeta_b M_g) \int_0^b e_v(b, \sigma(s)) \Delta s \\
\left. \leq M_\Pi \left[\| y_b \| + K_0 e_v(b, 0) \| y_0 \| + mK_0 M _\not\gamma + \frac{K_0 (C_{M} + \zeta_b M_g)(1 + \bar{\mu} \nu)}{\nu} \right] = M'_\mu. \quad \square \right.
\]

Theorem 3. If the assumptions (A1)-(A6) are satisfied along with

\[
K_0 \left(1 + \frac{K_0 M _\not\gamma M_\Pi (1 + \bar{\mu} \nu)}{\nu} \right) \left(mKL _\not\gamma + \frac{L_{\gamma} (1 + \bar{\mu} \nu)}{\nu} + \frac{\zeta_b L_g (1 + \bar{\mu} \nu)}{\nu} \right) < 1,
\]

then the control system (5.1) is exactly controllable on \(I \).

Proof. Consider a subset \(\Omega' \subseteq PC(I, Y) \) such that

\[
\Omega' = \{ y \in PC(I, Y) : \| y \|_{PC} \leq \beta' \},
\]

where

\[
\beta' = K_0 \| y_0 \| + \frac{K_0 (M_{\not\gamma} M'_u + C_{M} + \zeta_b M_g)(1 + \bar{\mu} \nu)}{\nu} + mK_0 K_1 M _\not\gamma.
\]

Now, define an operator \(\Gamma' : \Omega' \rightarrow \Omega' \) by

\[
(\Gamma'y)_{t} = \mathcal{Y}(t, 0)y_0 + \int_0^t \mathcal{Y}(t', \sigma(s)) \left[\mathcal{B}u(s) + \mathcal{M}(s, y(s)) + \int_0^s \zeta(s, \tau)g(\tau, y(\tau)) \Delta \tau \right] \Delta s \\
+ \sum_{0 < t_l < t} \mathcal{Y}(t, t_l) \mathcal{J}_l(t_l, y(t_l^-)).
\]

For \(t \in I \) and \(y \in \Omega' \), we have

\[
\| (\Gamma'y)_{t} \| \leq K_0 e_v(t, 0) \| y_0 \| + K_0 (M_{\not\gamma} M'_u + C_{M} + \zeta_b M_g) \int_0^t e_v(t, \sigma(s)) \Delta s.
\]
\[+ K_0 M \not\sum_{l=1}^p e_{\theta l}(t, t_l) \]
\[\leq K_0 \| y_0 \| + \frac{K_0 (M_{\theta} M_{\theta} + C_{M_{\theta}} + \zeta_b M_{\theta}) (1 + \bar{\mu} \nu)}{\nu} + K_0 M \not\sum_{l=1}^p e_{\theta l}(t, t_l) \]
\[\leq \beta'. \]

Therefore, \(\Gamma' : \Omega' \rightarrow \Omega' \). For \(y, z \in \Omega' \) and \(t \in I \)
\[\| (\Gamma' y) t - (\Gamma' z) t \| \]
\[\leq \left\| \int_0^t \not\sum_{l=1}^p \not\sum_{s=1}^p \not\sum_{r=1}^p \not\sum_{m=1}^p \not\sum_{n=1}^p \not\sum_{p=1}^p \not\sum_{q=1}^p \not\sum_{o=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^p \not\sum_{c=1}^p \not\sum_{b=1}^p \not\sum_{a=1}^p \not\sum_{n=1}^p \not\sum_{m=1}^p \not\sum_{l=1}^p \not\sum_{k=1}^p \not\sum_{j=1}^p \not\sum_{i=1}^p \not\sum_{h=1}^p \not\sum_{g=1}^p \not\sum_{f=1}^p \not\sum_{e=1}^p \not\sum_{d=1}^d
\]
\[\frac{K_0 (M_{\theta} M_{\theta} + C_{M_{\theta}} + \zeta_b M_{\theta}) (1 + \bar{\mu} \nu)}{\nu} + K_0 M \not\sum_{l=1}^p e_{\theta l}(t, t_l) \]
\[\leq \beta'. \]

Hence
\[\| \Gamma' y - \Gamma' z \|_{PC} \leq L'_{\alpha} \| y - z \|_{PC}, \]

where
\[L'_{\alpha} = \left[\frac{K_0^2 M_{\theta} M_{\theta} (1 + \bar{\mu} \nu)}{\nu} + m L_1 K_2 + \zeta_b L_8 \left(\frac{1 + \bar{\mu} \nu}{\nu} \right) \right] \]
\[+ \left[\frac{K_0 L_1 (1 + \bar{\mu} \nu)}{\nu} + m K_0 K_1 L_7 + \zeta_b L_8 \left(\frac{1 + \bar{\mu} \nu}{\nu} \right) \right]. \]

Therefore, \(\Gamma' \) is a strict contraction operator. Thus, by means of Banach fixed point principle, \(\Gamma' \) has a unique fixed point on \(I \). Therefore, the system (5.1) has a mild solution on \(I \) and hence we conclude that the system (5.1) is exactly controllable on \(I \). \(\square \)

Remark 3. Under some suitable conditions and adopting the strategies of Theorem 2, one can set up the exact controllability results for the following non-local system:
\[y^A(t) = \mathcal{A}(t) y(t) + \mathcal{B} u(t) + \mathcal{M}(t, y(t)), \quad t \in I, t \neq t_l, \]
\[\Delta y(t_l) = y(t_l^+) - y(t_l^-) = \mathcal{J}_l(t_l, y(t_l^-)), \quad l = 1, 2, \ldots, p, \quad (5.5) \]
\[y(0) = r(y) + y_0, \]

where \(r : Y \to Y \) is a continuous function.

Remark 4. Under some suitable conditions and by adopting the strategies of Theorem 3, Remark 3, one can set up the exact controllability results for the following non-local integro-differential equation:

\[
y^A(t) = \mathcal{A}(t)y(t) + Bu(t) + \int_0^t \zeta(t,s)g(s,y(s))\Delta s + \mathcal{M}(t,y(t)), \quad t \in I, t \neq t_i,
\]

\[
\Delta y(t_l) = y(t_l^+) - y(t_l^-) = \mathcal{J}_l(t_l,y(t_l^-)), \quad l = 1, 2, \ldots, p,
\]

\[y(0) = r(y) + y_0, \]

where \(r : Y \to Y \) is a continuous function.

6. Illustrative examples

Example 1. We consider the partial differential equation on time scale \(\mathbb{T} \) in the following form

\[
\frac{\partial}{\Delta_{1}}(Z(t, \eta)) = c(t, \eta)\frac{\partial^2}{\Delta_{2}}(Z(t, \eta)) + b(\eta)W(t, \eta) + G(t, Z(t, \eta)),
\]

\[t \in [0, b]_\mathbb{T}, t \neq t_i, \eta \in [0, \pi]_\mathbb{T}, \]

\[
Z(t, \pi) = Z(t, 0) = 0, \quad t \in [0, b]_\mathbb{T},
\]

\[
\Delta Z(t_l, \eta) = Z(t_l^+, \eta) - Z(t_l^-, \eta) = \mathcal{J}_l(t_l, Z(t_l^-, \eta)), \quad l = 1, 2, \ldots, p,
\]

\[
Z(0, \eta) = Z_0, \quad \eta \in [0, \pi]_\mathbb{T},
\]

where \(c(t, \eta) \) is a continuous function. Let \(Y = L^2[0, \pi]_\mathbb{T} \). Define an operator \(\mathcal{A}(t) \) by \(\mathcal{A}(t)y = c(t, \eta)\frac{\partial^2}{\Delta_{2}}y, \forall y \in D(\mathcal{A}) = \{y \in H^1_0[0, \pi]_\mathbb{T} \cap H^2[0, \pi]_\mathbb{T}\} \). Further, it is known that \(\mathcal{A}(t) \) generates an evolution operator \(\{\mathcal{V}(t, s) : t \geq s\} \) (please see [15]) which satisfies \(\mathcal{V}(t, s) \leq K_0 e^{-\lambda s} \mathcal{V}(t, s), \quad \forall (t, s) (t \geq s) \) with \(K_0 \) and \(\lambda = \frac{1}{2} \). Define \(B \in \mathbb{B}(U, Y) \) by \(Bu(t)(\eta) = b(\eta)W(t, \eta), \quad \eta \in [0, \pi]_\mathbb{T}, b(\eta) \in L^2[0, \pi]_\mathbb{T} \). With the above formulations, the equation (6.1) can be rewritten as the following abstract equation \(Y = L^2[0, \pi]_\mathbb{T} \),

\[
y^A(t) = \mathcal{A}(t)y(t) + Bu(t) + \mathcal{M}(t,y(t)), \quad t \in [0, b]_\mathbb{T},
\]

\[
\Delta y(t_l) = y(t_l^+) - y(t_l^-) = \mathcal{J}_l(t_l, y(t_l^-)), \quad l = 1, \ldots, p,
\]

\[y(0) = y_0, \]

where \(y(t) = Z(t, \cdot) \) that is \(y(t)(\eta) = Z(t, \eta) \) and \(\mathcal{M}(t, y(t))\eta = G(t, Z(t, \eta)), \eta \in [0, \pi]_\mathbb{T} \). Suppose that the functions \(\mathcal{M}(t, y) \) and \(\mathcal{J}_l(t, y) \) satisfy the conditions of Theorem 2. Therefore, based on the Theorem 2, it can be concluded that the equation (6.1) is controllable.
EXAMPLE 2. Let us consider the following non-linear system with impulsive condition when \(Y = \mathbb{R} \)

\[
y^A(t) = \mathcal{A}(t)y(t) + \mathcal{M}(t, y(t)), \quad t \in \mathbb{I} = [0, 3]_T \setminus t_1,
\]

\[\Delta y(t_1) = \mathcal{J}_1(t_1, y(t_1^-)),\]

(6.3)

\[y(0) = 1,\]

where \(A(t) = \frac{-2}{1 + 2\mu(t)} \), \(t_0 = 0 \), \(t_1 = 1/3 \), \(t_2 = b = 3 \), \(\mathcal{M}(t, y(t)) = \frac{3 + \sin(y(t))}{(t + 4)^2} \),

\[\mathcal{J}_1(t, y(t^-_1)) = \frac{3 + \sin(y(t^-_1))}{(t_1 + 3)^2}.\]

Here \(\mathcal{V}(t, s) = e \otimes 2(t, s) \). Also, \(\| \mathcal{V}(t, s) \| \leq e \otimes 2(t, s) \),

i.e. it is exponentially stable with \(K_0 = 1 \) and \(\nu = 2 \).

Now, we consider the following two cases.

Case A: When we take \(T = \mathbb{R} \), then \(\mathbb{I} = [0, 3]_R = [0, 3] \), \(e_p(t, s) = e^{p(t-s)} \) and \(\bar{\mu} = 0 \).

Now, we choose \(y(3) = 5 \). The trajectory of the system (6.3) is given in Figure 1.

![Figure 1: Trajectory of the system (6.3), when \(T = \mathbb{R} \).](image)

Clearly, we can see that the trajectory reaches to the desire point \(y(3) = 5 \). But if we add a function \(u(t) \) with \(B = 1 \) in the system (6.3), then the system (6.3) becomes

\[
y^A(t) = \mathcal{A}(t)y(t) + \mathcal{M}(t, y(t)) + u(t), \quad t \in \mathbb{I} = [0, 3]_T \setminus t_1,
\]

\[\Delta y(t_1) = \mathcal{J}_1(t_1, y(t_1^-)),\]

(6.4)

\[y(0) = 1.\]

Also, we have

\[
\Pi_3^0 = \int_0^3 e_{\otimes 2}(3, \sigma(s)) \Delta s = \frac{1}{2} (1 - e_{\otimes 2}(3, 0)) = \frac{1}{2} (1 - e^{-6}).
\]

Hence, \(\Pi_3^0 \) is invertible. Thus, (A1)-(A4) are satisfied with \(L_0 = 0.1779 \). Thus, from Theorem 2, we conclude that the system (6.3) is controllable and the controlled trajectory is shown in Figure 2.
Figure 2: Trajectory of the controlled system (6.4), when $T = \mathbb{R}, y(3) = 5$.

Case B: When we take $T = \mathbb{P}_{1,1} = \bigcup_{i=0}^{\infty}[2i,2i+1]$, then $\mathbb{I} = [0,3]_T = [0,1] \cup [2,3]$ and $e_p(t,0) = (1-p)^l e^{p(t-l)} \forall t \in [2l,2l+1], l = 0,1,\ldots$ Now, we choose $y(3) = 2$. The trajectory of the system (6.3) is shown in Figure 3. Clearly, we can see that the trajec-

Figure 3: Trajectory of the system (6.3), when $T = \mathbb{P}_{1,1}$.

tory does not reach to the desire point $y(3) = 5$. But if we add a function $u(t)$ with $B = 1$ in the system (6.3), then the system (6.3) becomes

$y^A(t) = \mathcal{A}(t)y(t) + \mathcal{M}(t,y(t)) + u(t), \quad t \in \mathbb{I} = [0,3]_T \setminus t_1,$

$\Delta y(t_1) = \mathcal{J}_1(t_1,y(t_1^-)),

y(0) = 1.$ \hspace{1cm} (6.5)
Also, we have
\[
\Pi_0^3 = \int_0^3 e_{\otimes 2}(3, \sigma(s)) \Delta s = \frac{3}{2} \left(1 - \frac{1}{3} e^{-2}\right).
\]

Hence, \(\Pi_0^3\) is invertible. Thus, (A1)-(A4) are satisfied with \(L_\alpha = 0.6657\). Thus, from Theorem 2, we can conclude that the system (6.3) is controllable and the controlled trajectory is shown in Figure 4.

![Figure 4: Trajectory of the controlled system (6.5), when \(T = P_{1,1}, y(3) = 2\).](image)

7. Conclusion

In this paper, we have studied the Hyer’s-Ulam stability and exact controllability results for the system (1.1) and (1.2), respectively. Also, we have studied the exact controllability results for the integro-differential system (5.1). We used the Banach fixed point principle, evolution operator theory and non-linear functional analysis to examine these results. At last, we have given some theoretical and numerical examples to validate the developed analytical results.

Acknowledgement. We are very thankful to the anonymous reviewers and editor for their constructive comments and suggestions which help us to improve the manuscript.

REFERENCES

[1] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of impulsive differential equations, World scientific, 1989.

[2] M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, 2006.
[3] J. R. Wang, M. Fečkan and Y. Zhou, Ulam’s type stability of impulsive ordinary differential equations, Journal of Mathematical Analysis and Applications, 395, (2012), 258–264.

[4] J. R. Wang and X. Li, A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterranean Journal of Mathematics, 13, (2016), 625–635.

[5] Y. Shen, The Ulam stability of first order linear dynamic equations on time scales, Results in Mathematics, 72, (2017), 1881–1895.

[6] S. András and A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Applied Mathematics and Computation, 219, (2013), 4853–4864.

[7] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 (in German).

[8] R. P. Agarwal, C. Wang and D. O’Regan, Recent development of time scales and related topics on dynamic equations, Memoirs on Differential Equations and Mathematical Physics, 67, (2016), 131–135.

[9] C. Wang, R. P. Agarwal and D. O’Regan, Compactness criteria and new impulsive functional dynamic equations on time scales, Advances in Difference Equations, 2016, (2016), 197.

[10] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Basel, 2001.

[11] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.

[12] R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results in Mathematics, 35, (1999), 3–22.

[13] V. Kumar and M. Malik, Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales, Journal of King Saud University - Science (2018), doi: https://doi.org/10.1016/j.jksus.2018.10.011.

[14] S. Dhama and S. Abbas, Square mean almost automorphic solution of stochastic evolution equations with impulses on time scales, Differential Equations and Applications, 10(4), (2019), 449–469.

[15] C. Wang and R. P. Agarwal, Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive nabla-dynamic equations on time scales, Advances in Difference Equations, 2014, (2014), 153.

[16] R. P. Agarwal, M. Bohner, D. O’Regan and A. Peterson, Dynamic equations on time scales: A survey, Journal of Computational and Applied Mathematics, 141, (2002), 1–26.

[17] V. Kumar and M. Malik, Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales, Nonautonomous Dynamical Systems, 6(1), (2019), 65–80.

[18] S. S. Vadivoo, R. Ramachandran, J. Cao, H. Zhang and X. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, International Journal of Control, Automation and Systems, 16, (2018), 659–669.

[19] A. Debbouche and V. Antonov, Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces, Chaos, Solitons and Fractals, 102, (2017), 140–148.

[20] M. Dieye, M. A. Diop and K. Ezzinbi, Controllability for some integrodifferential equations driven by vector measures, Mathematical Methods in the Applied Sciences, 40, (2017), 2090–2106.

[21] R. K. Goorge, D. N. Chalishajar and A. K. NANDAKUMARAN, Controllability of second order semi-linear neutral functional differential inclusions in Banach spaces, Mediterranean Journal of Mathematics, 1(4), (2004), 463–477.

[22] V. Lupulescu and A. Younus, On controllability and observability for a class of linear impulsive dynamic systems on time scales, Mathematical and Computer Modelling, 54, (2011), 1300–1310.

[23] M. J. Davis, I. A. Gravagne, B. J. Jackson, I. I. Marks and J. Robert, Controllability, observability, realizability and stability of dynamic linear systems, Electronic Journal of Differential Equations, 2009(37), (2009), 1–32.

[24] M. Bohner and N. Wintz, Controllability and observability of time-invariant linear systems, Mathematica Bohemica, 137(2), (2012), 149–163.

[25] C. Duque, J. Uzcategui and H. Leiva, Controllability of semilinear dynamic systems on time scales, Journal of Abstract Differential Equations and Applications 82, (2017), 70—80.
[26] M. Malik and V. Kumar, Controllability of neutral differential equation with impulses on time scales, Differential equations and Dynamical Equations, (2019), doi.org/10.1007/s12591-019-00454-2.

[27] M. Malik and V. Kumar, Existence, stability and controllability results of a Volterra integro-dynamic system with non-instantaneous impulses on time scales, IMA Journal of Mathematical Control and Information, (2011), dnz001, doi.org/10.1093/imamci/dnz001.

[28] V. Lupulescu and A. Younus, Controllability and observability for a class of time-varying impulsive systems on time scales, Electronic Journal of Qualitative Theory of Differential Equations 95, (2011), 1–30.

[29] V. Kumar and M. Malik, Controllability results for a Volterra integro dynamic inclusion with impulsive condition on time scales, To appear in Rocky Mountain Journal of Mathematics, Math. https://projecteuclid.org/euclid.rmjm/1563847346.

(Received March 23, 2019)

Vipin Kumar
School of Basic Science
Indian Institute of Technology Mandi
India
e-mail: math.vipinkumar219@gmail.com

Muslim Malik
School of Basic Science
Indian Institute of Technology Mandi
India
e-mail: muslim@iitmandi.ac.in