Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite

Lihong Li, Zhongyuan Xiang, Meng Gao, ..., Fengyu Li, Xianran Xing, Yanlin Song
ylsong@ccas.ac.cn

HIGHLIGHTS
A kind of Multi-element Topochemical-Molten Salt method was proposed
Large-scale 1D perovskites with multi-doping of A-sites and B-sites was realized
The formation and structure of the 1D multi-perovskite niobate were clearly deduced
The output voltage of the prepared device was 600% of that of the control sample
Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite

Lihong Li,1 Zhongyuan Xiang,1 Meng Gao,1 Cheng Bian,2 Meng Su,2 Fengyu Li,1 Xianran Xing,2 and Yanlin Song1,3,*

SUMMARY
One-dimensional perovskites are an interesting material for energy and optoelectronic applications. However, exploring the full wealth of architectures these materials could allow, through multi-element doping of A-sites and B-sites, is still a challenge. Here, we report a high-yield synthetic strategy for 1D perovskites via a two-step method based on a multi-element topochemical-molten salt method. Typically, a high yield of 1D multicomponent perovskite niobates (Li$_{0.06}$Na$_{0.47}$K$_{0.47}$)(Nb$_{0.94}$Sb$_{0.06}$)O$_3$ (LNKNS2) is rapidly achieved from as-synthesized 1D K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ with multi-element B-sites. In this process, 1D K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ has been first achieved, and the proportion of the ions in A-sites is affected by the radius and molar ratio of ions. The z axis direction of K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ rod is transformed into the x axis direction of LNKNS2 rod. Furthermore, the output voltage of the 1D niobates-based flexible piezoelectric device (FPD) was nearly 600% compared with that of the isotropic niobates-based FPD. This work also allows convenient fabrication of other 1D multicomponent perovskites.

INTRODUCTION
One-dimensional (1D) micro-nanomaterials have fascinated wide interest owing to their 2D confinement structure and exotic mechanical, electrical, and optical properties (You et al., 2017; Ning et al., 2018; Duan et al., 2003; Li et al., 2016; Lee et al., 2017; Niu et al., 2017; Arallano et al., 2018; Lu et al., 2018; Yang et al., 2012a, 2012b, 2012c; Yang et al., 2011). For flexible electronic devices (Deutz et al., 2017; Wang, 2018; Wang et al., 2019; Yang et al., 2012a, 2012b, 2012c), which exhibit great significance for viable economic growth and the enhancement of human quality of life, the 1D materials are highly desirable, and a wide range of 1D materials-based flexible devices such as field-effect transistors (Qing et al., 2014), flexible display devices (Wang et al., 2017), flexible photodetectors (Zhou et al., 2018), flexible sensors (Deutz et al., 2017; Rim et al., 2016), and flexible energy storage devices (Gao et al., 2016; Park et al., 2017; Deng et al., 2018; Guo et al., 2012) have been demonstrated to show superior performance than their counterparts with arbitrary shapes.

Perovskite materials, owing to their applications in piezoelectric, ferroelectric, solar cells, and other fields, arouse a research boom (Burschka et al., 2013; Abdi-Jalebi et al., 2018; Becker et al., 2018; Christians et al., 2018; Domanski et al., 2018; Zhang et al., 2018a, 2018b; Yang et al., 2019; Wu et al., 2012a, 2012b). The structure of perovskite materials is mainly ABO$_3$-type of cubic or pseudo cubic phase. Generally, the shape of crystalline particles depends on their intrinsic structure, which means that materials with cubic phase usually form isotropic particles (Pribosic et al., 2005). Meanwhile, owing to the demand for various properties, A-sites and B-sites of perovskites are doped with multi-elements mainly via solid-state method (Zheng et al., 2018; Wu et al., 2016; Qin et al., 2016; Li et al., 2018; Liu et al., 2018). 1D perovskite materials, because of their unique electronic, nonlinear optical probe and mechanical properties, have potential in various fields (Ren et al., 2010; Nakayama et al., 2007; Gao et al., 2018; Yang et al., 2012a, 2012b, 2012c; Wu et al., 2012a, 2012b). To further improve performance, it is critical to achieve 1D multi-perovskite materials, which can incorporate 1D structural design into perovskites (Zhai et al., 2018; Sun et al., 2016; Meng et al., 2017; Li et al., 2009; Cheng et al., 2013); however, the preparation of 1D perovskites with multi-doping of A-sites and B-sites at large scale is still a great challenge. At present, only a few synthesis methods of 1D ABO$_3$ perovskites are reported, which mainly focus on the preparation of A-sites or B-sites as a single element, such as solvothermal method (Zhai et al., 2018), hydrothermal method (Nakayama et al., 2007), reprecipitation method (Sun et al., 2016), sol-gel method (Meng et al., 2017),
and molten salt method (Li et al., 2009; Cheng et al., 2013), whereas it is difficult to control the multi-component composition of perovskites at A-sites and B-sites with these methods.

Perovskite niobate is considered as one of the most competitive lead-free materials to replace lead-bearing perovskite because of its excellent piezoelectric and ferroelectric properties and suitable Curie temperature (Saito et al., 2004; Zhang et al., 2018a, 2018b; Xu et al., 2016). Herein, we proposed a simple two-step method to synthesize 1D perovskite-type niobate based on a kind of Multi-element Topochemical-Molten Salt (MTMS) method. The key to this approach was that, using 1D anisotropic non-perovskite-type niobate with multi-“B-sites” element as template, large quantities of 1D morphology of perovskite materials at the boundary of quasi-isomorphic phase with controlling multi-doping A-sites and B-sites could be achieved. Accordingly, for the first time, we synthesized the rod-like K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ powder with large scale after one time synthesis of first step (see also Figure S1). Moreover, flexible piezoelectric device (FPD) with planar orientation of rod-like product was prepared. At the same degree of bending, the output voltage was nearly 600% compared with that of the granular material of similar component. This strategy could be extended to the synthesis of large-scale other 1D multi-perovskite materials, which were expected to be widely used in flexible electronics, sensor devices, and energy storage.

RESULTS AND DISCUSSION

The two-step strategy was processed to synthesize 1D multi-perovskite as shown in Figure 1A. Salts were common ionic crystals that could ionize in the molten state. First, salts mixed with a certain proportion of transition metal oxides and 1D anisotropic non-perovskite-type oxides with multi-“B-sites” element was rapidly synthesized via its intrinsic crystal growth in molten salts, and large scale of anisotropic non-perovskite-type oxides was obtained (Figure 1B). Then 1D and multi-dimensional ABO$_3$ perovskite oxides could
be synthesized in large quantities (Figure 1C) by using the anisotropic non-perovskite-type oxides as template, mixed with other reactants and salts, via the MTMS method. The MTMS method is a kind of the multielement, environmentally friendly, and mild way to prepare pure and morphologically controllable samples at a moderate temperature in a short soaking time, and it is developed from the molten salt method. The morphology of the products can inherit that of the major solid-state raw materials via the MTMS method, that is, the shape and size of the as-synthesized compounds can be controlled by an appropriate choice of raw materials, salts, sintering temperature, and reaction time. The MTMS method has the advantage of combining the molten salt method and the topochemical method, associated with the use of localized solid-state compound transformations via the exchange, deletion, or insertion of different individual ions. In the typical experiment, the non-perovskite-type niobate K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ rods with multi-"B-sites" was prepared by calculations of corresponding mole ratio of Nb$_2$O$_5$ and Sb$_2$O$_3$ in equal weight molten KCl salts at 1,000°C for 3 h. The composition could be confirmed by the energy dispersive spectrometry (EDX) pattern (Figure S1), and the reaction could be as follows.

$$3.76\text{Nb}_2\text{O}_5 + 0.24\text{Sb}_2\text{O}_3 + 2\text{KCl} + 0.74\text{O}_2 \xrightarrow{\text{KCl}} \text{K}_2(\text{Nb}_{0.94}\text{Sb}_{0.06})_8\text{O}_{21} + \text{Cl}_2 \uparrow$$ \hspace{1cm} (Equation 1)

Then, the multi-niobate (Li$_{0.06}$Na$_{0.47}$K$_{0.47}$)(Nεb$_{0.94}$Sb$_{0.06}$)O$_3$, marked as LNKNSm, was synthesized from an MTMS reaction by mixing the 0.25 mol K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ rods and 0.06 mol Li$_2$CO$_3$ with different amounts of Na$_2$CO$_3$ (m mol = 0.5, 1, 1.5, 2, and 2.5 mol) soaked in KCl melts at 800°C for 100 min. The resulting powders were washed several times with distilled water and then dried at 80°C. x is the amount of Na" ions in LNKNSm. The reaction involving the LNKNSm formation was proposed as follows.

$$0.25\text{K}_2(\text{Nb}_{0.94}\text{Sb}_{0.06})_8\text{O}_{21} + x\text{Na}_2\text{CO}_3 + 0.06\text{Li}_2\text{CO}_3 + (1.38 - 2x)\text{KCl} + (0.94 - x)\text{O}_2 \xrightarrow{\text{KCl}} 2(\text{Li}_{0.06}\text{Na}_{0.47}\text{K}_{0.47})\text{(N}_{0.94}\text{Sb}_{0.06})_8\text{O}_3 + (0.69 - x)\text{Cl}_2 \uparrow$$ \hspace{1cm} (Equation 2)

In Equation 2, KCl salt took part in the reaction and the K" ions (radius: 1.33 Å) mainly competed with Na" ions (radius: 1.20 Å) to occupy the A-sites of LNKNSm but had almost no effect on Li" ion (radius: 0.76 Å). This phenomenon might be caused by their different radii and could be confirmed by the X-ray diffraction (XRD) patterns, EDX patterns, and inductively coupled plasma (ICP) measurements of LNKNSm with different value of m (Figures 2A and S2, and Table S1). XRD patterns of LNKNSm indicated the phase evolution with the change of m. Figure S2 listed the crystal structure and the lattice parameters of LNKNSm indexed from the XRD patterns. LNKNS0.5, LNKNS1, and LNKNS1.5 were indexed in an orthorhombic symmetry (space group Ammn2), LNKNS2 (Li$_{0.06}$Na$_{0.47}$K$_{0.47}$)(Nεb$_{0.94}$Sb$_{0.06}$)O$_3$ was indexed in double phases with different orthorhombic symmetries (space groups Ammn2 and Pmmm), and LNKNS2.5 was indexed in an orthorhombic symmetry (space group Pmmm). From the lattice parameter changes of the orthorhombic, it could be found that the substitution of some of the Na" for K" results in decreasing lattice constants, since the ionic radius of K" is much larger than that of Na". A phase transition of LNKNSm occurs from an orthorhombic phase (Ammn2) to another orthorhombic phase (Pmmm) with an increase in the Na content. It was likely that there was a morphotropic phase boundary (MPB), at which the property of the material could be enhanced largely (Saito et al., 2004), near m = 2 for LNKNSm.

For further analysis of the detailed structural evolution, the atomic structures of K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ and LNKNS2 were calculated and discussed. Figure 2B showed the XRD pattern of the as-synthesized non-perovskite K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$, indicating pure phase of the product. The XRD Rietveld method with FULLPROF Suite software package was used to refine the structure, and the phase of K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ was orthorhombic (Pbam) with lattice parameters of a = 37.498 Å, b = 12.509 Å, and c = 3.963 Å, which had similar structure of K$_2$Nb$_8$O$_{21}$ phase (JCPDS 76–977). The detailed structure and atomic parameters of the K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ crystal were shown in Tables S3 and S4 and Data S1 file in Supplemental Information, and the CIF and HKL documents of the K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$ crystal was deposited with the deposition number CSD 1914187.

Meanwhile, for further clarification, the Rietveld refinement was done for LNKNS2 with a single (space group Ammn2) (Figure S3) and double phase (space groups Amnn2 and Pmmm) (Figure 2C). From the better fit of the double phase, compared with that of single phase, it revealed that LNKNS2 was in double phases with different orthorhombic symmetries (Amnn2 and Pmmm), and it was confirmed that LNKNS2 was near the MPB. The detailed crystal cell data, atomic parameters, and crystal plane parameters of LNKNS2 with double phase were shown in Tables S5–S7, respectively, the Data S2 file of the LNKNS2 structure was shown.
in Supplemental Information, and the CIF and HKL documents of the (Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3 crystal was deposited with the deposition number CSD 1915240.

The structures of K2(Nb0.94Sb0.06)8O21 and LNKNS2 are shown in Figures 2E and 2F, respectively. Both the rods of K2(Nb0.94Sb0.06)8O21 and LNKNS2 had a similar structure of NbO6 octahedron, which shared corners in the z axis direction for K2(Nb0.94Sb0.06)8O21 and in the x axis direction for (Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3 shown in the oblong loop. For the template of K2(Nb0.94Sb0.06)8O21, the NbO7 decahedron and NbO6 octahedron shared with edges and NbO6 octahedron shared with corners in the xy plane. It only required part
of Nb-O bonds breaking and recombination via the entrance of A-sites ions to form the perovskite structure of LNKNS2 with only corner-sharing NbO₆ octahedron in the yz plane. The similar structure of NbO₆ octahedron share with corners was also found in the oblong loop in the xy plane of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ and the yz plane of LNKNS2. From the above-mentioned analysis, it could be speculated that the z axis direction and xy plane of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ were transformed into the x axis direction and yz plane of LNKNS2, respectively. The structural evolution was further confirmed by the Raman patterns of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ and LNKNS2 (Figure 2D). The bands observed in the 700–1,000 cm⁻¹ region correspond to the longitudinal optical modes of the Nb-O stretching associated with NbO₆ octahedra. The corresponding transverse optical modes were observed around the 650 cm⁻¹ regions. The weak bands observed in the 350–560 cm⁻¹ region were attributed to be the T₂g mode. The strong peaks observed in the range 200–300 cm⁻¹ were assigned to the T₂u modes. The major band at 700 cm⁻¹ of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ was the characteristic band for the structure consisting of NbO₆ and NbO₇ octahedra-sharing corners (Blasse and Vandenhe, 1972). All of these results were in agreement with the earlier analysis and calculation of the structure K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ and LNKNS2.

The morphology of the as-synthesized template of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ rods was examined by scanning electron microscopy (SEM) image, as shown in Figure 3A. A large quantity of rods with diameters of several hundred nanometers and length of several tens of micrometers were observed. The selected area electron diffraction (SAED) patterns taken from the rod of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ (Figures 3B and 3C) indicated that they were single-crystalline in nature. It was further proved by HRTEM image of the same rod (Figure 3D), and the growth direction of the rods was determined to be along [001]. Meanwhile, the 1D structure of LNKNS2 could be maintained from K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ rods via the MTMS method shown in the SEM and transmission electron microscopy (TEM) (Figures 3E and 3F). The SAED pattern (Figure 3G) taken from the LNKNS2 rod depicted the single-crystalline nature of the obtained perovskite niobate via the MTMS method, which was also proved by HRTEM image of the same rod (Figure 3H). The growth direction of LNKNS2 rods was determined to be along [100], which was also consistent with the earlier speculation of the structural transformation, that is, z axis direction of K₂(Nb₀.₉₄Sb₀.₀₆)₈O₂₁ was transformed into the x axis direction of LNKNS2. The two-step MTMS strategy could be a general method to synthesize a wide range of 1D multi-perovskites, including other multi-perovskite niobate materials with high electric properties (Table 1), which used to be isotropy shape synthesized by the solid-state method (Wu et al., 2016; Hao
et al., 2019). The XRD patterns, SEM images, and EDX data of these multi-perovskite niobate rods have been supplied in Figures S4 and S5.

To further reveal the property of the as-synthesis perovskite niobate rods, the LNKNS2 rods-based FPD (LNKNS2-FPD) was prepared. The schematic fabrication process of LNKNS2-FPD is shown in Figure S6 (detailed information is given in the Transparent Methods supplemental file). Figure 4A demonstrated the cross-sectional SEM image of the film of LNKNS2 rods with the poly(dimethylsiloxane) (PDMS) matrix via spin-coating, and a magnified cross-sectional SEM image (Figure 4B) showed that the LNKNS2 rods adopt preferential orientations in PDMS. The output of the FPD during the periodic bending/unbending tests was carried out, employing a bending stage executed at a horizontal displacement of 2 cm with a moving speed of one-side movable fixture of 30 mm/s (see Video S1). Figure 4C showed that the output of open-circuit voltage of the LNKNS2-FPD was 600% compared with that of FPD with the isotropic niobates (I-LNKNS-FPD), which had a similar composition [(Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3] obtained via the solid-state method, for the same bending angle. The XRD pattern, SEM images, and EDX image of the isotropic niobates are shown in Figures S7–S9, respectively. It was interesting that the output voltage of the FPD was remarkably enhanced. The voltage generated by the FPD, V_{out}, could be calculated from the Equation 3 (Xu et al., 2013; Hwang et al., 2014).

$$V_{out} = \int g_{33} \cdot \epsilon(l) \cdot Ydl$$

(Equation 3)

where l is the perpendicular distance between the adjacent electrodes, $\epsilon(l)$ is the function of the strain along the direction of l, Y is the Young’s modulus, and g_{33} is the piezoelectric voltage coefficient. Accordingly, the first merit of LNKNS2 rods-based FPD for piezoelectric applications was their high piezoelectric constant ($d_{33} = 340$ pC/N), which increases near 25% of that obtained from isotropic niobates prepared in this work ($d_{33} = 270$ pC/N) and that of regular particles with similar composition synthesized via the solid-state method reported in previous study ($d_{33} = 267$ pC/N) (Zang et al., 2006). So, the piezoelectric constant corresponding to a high g_{33} following $g_{33} = d_{33}/\varepsilon_0 \cdot K$, where ε_0 was the permittivity of free space and K was the relative dielectric constant of the FPD. Meanwhile, the high anisotropic LNKNS2 rods along [100] made the FPD a little textured (Figure 4B), and the identity of the nanowires’ longitudinal direction led to an enlargement of the nanowires’ deformation (Deutz et al., 2017; Chen et al., 2017), thus resulting in exaggerated dipole displacement and piezoelectric property. For further clarification, a corresponding simulation was carried out via a finite element method, and the numerical modeling result was approximately in agreement with the experimental result. The calculated output of open-circuit voltage of the LNKNS2-FPD and I-LNKNS-FPD was presented in Figure 4D, where piezopotential was depicted by color code. Furthermore, to investigate the effect of the ratio of length to width of the perovskite-type niobates, the niobates (S-LNKNS2) rods with short length were achieved by reducing the amount of salt in first step via the MTMS method (see Figures S10–S12, and Transparent Methods), and the statistical data on the ratio between length and width of the LNKNS2, S-LNKNS, and I-LNKNS were about 1:1, 1:6, and 1:12, respectively. The output of the FPD with S-LNKNS was obtained under the same test condition of LNKNS2-FPD and I-LNKNS-FPD (see Figure S13). It was found that, with the increasing ratio between length and width, the open circuit voltage of the FPD increases. The simulation of piezoelectric voltage output of FPD with particles of different ratios of length to width (1:1, 1:6, and 1:12) was also provided (see Figure S14), which was consistent with the experimental result. Meanwhile, Figure S15 exhibited the clear increase of the

Morphology of the Compositions	This Worka	Previous Work
0.96[0.93(K0.5Na0.5)NbO3-0.07LiNbO3]-0.04CaZrO3	1D rodsa	Isotropic particles (Zhang et al., 2015)
0.9625(K0.48Na0.52)NbO3-0.04Sb2O5-0.0375Bi2O3-0.15Na0.48K0.5ZrO3	1D rodsa	Isotropic particles (Qin et al., 2016)
0.96(K0.48Na0.52)NbO3-0.04Sb2O5-0.0375Bi2O3-0.15Na0.48K0.5ZrO3	1D rodsa	Isotropic particles (Zheng et al., 2015)
0.9625(K0.48Na0.52)NbO3-0.04Sb2O5-0.0375Bi2O3-0.15Na0.48K0.5ZrO3	1D rodsa	Isotropic particles (Tao and Wu, 2016)
0.964(K0.4Na0.6)(Nb0.95Sb0.05)O3-0.0068BiFeO3-0.03Bi0.5Na0.5ZrO3	1D rodsa	Isotropic particles (Wu et al., 2016)

Table 1. Morphology and Structure of Some Multi-Perovskite Niobate Materials
More details in Figures S4 and S5.

aThe XRD patterns, SEM images, and EDX data of the compositions have been supplied in Figures S4 and S5.
output voltage of the LNKNS2-FPD with increasing bending angle. This property is of benefit in the wearable area and other fields.

In summary, we proposed a strategy based on MTMS method to achieve large-scale 1D perovskite materials with controlling multi-doping A-sites and B-sites. The formation, structural evolution, quality, and scalability of the 1D multi-perovskite niobate LNKNS2 were clearly highlighted. The z axis direction and xy plane of $K_2(Nb_{0.94}Sb_{0.06})_{8}O_{21}$ were transformed into the x axis direction and yz plane of LNKNS2, respectively. The piezoelectric constant (d_{33}) of LNKNS2 increases near 25% of that obtained from the isotropic particles. The output of open-circuit voltage of the LNKNS2-FPD is 600% of that of the I-LNKNS-FPD. Furthermore, the two-step MTMS strategy can be applied generally to a wide range of 1D multi-perovskites, including multi-perovskite niobate materials with high electric properties, to establish a library of 1D multi-perovskites with diverse functionalities. Our study thus provides a robust pathway to the scalable production of 1D multi-perovskites for electronics, piezoelectrics, self-generating, and energy-related fields.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY
The Accession Numbers for the crystallographic entries deposited in the CCDC database: CSD 1914187 for $K_2(Nb_{0.94}Sb_{0.06})_{8}O_{21}$ crystal and CSD 1915240 for $(Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.94}Sb_{0.06})O_{3}$.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.06.012.

ACKNOWLEDGMENTS

The authors thank the financial support of the National Natural Science Foundation of China (Grant Nos. 21875260, 21671193, 51773206, 21590793, 21731001, 51803217), the Tianjin Nature Science Foundation (Grant Nos. 18JCQNJC76800), the National Key R&D Program of China (Grant Nos. 2018YFA0208501, 2016YFC1100502, 2016YF0401603, and 2016YF0401100), the External Cooperation Program of BIC, Chinese Academy of Sciences, Grant No. GJHZ201948, the “Research Plan Program” of Tianjin Municipal Education Commission (Grant No. 2018KJ095), and the Chinese Academy of Sciences and K. C. Wong Education Foundation.

AUTHOR CONTRIBUTIONS

L.L., Z.X., and C.B. performed the synthesis, measurements, and characterizations. L.L., M.G., and M.S. performed the calculation. L.L., Y.S., F.L., and X.X. analyzed the data. L.L. wrote the original draft. L.L., Y.S., and X.X. revised the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., Stavrakas, C., Philippe, B., Richter, J.M., Alsoni, M., Booker, E.P., Hutter, E.M., Pearson, A.J., et al. (2018). Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501.

Arellano, D.L.G., Burnett, E.K., Uzun, S.D., Zakashansky, J.A., Champagne, V.K., III, George, J.M., Alsari, M., Booker, E.P., Hutter, E.M., Cacovich, S., Stavrakas, C., Philippe, B., Richter, M.A., Vaxenburg, R., Nedelcu, G., Sercel, P.C., Shabaev, A., Mehl, M.J., Michopoulos, J.G., Lambroukos, S.G., Bernstein, N., Lyons, J.L., et al. (2018). Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193.

Blass, G., and Vanderhe, G.P. (1972). Vibrational and electronic-spectra and crystal-structure of cubic Na3NbO4. Mater. Res. Bull. 7, 1041–1043.

Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazareuddin, M.K., and Graetzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319.

Chen, Z., Wang, Z., Li, X., Lin, Y., Luo, N., Long, M., Zhao, N., and Xu, J.-B. (2017). Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11, 4507–4513.

Cheng, L.-Q., Wang, K., and Li, J.-F. (2013). Synthesis of highly piezoelectric lead-free (K, Na) NbO3 one-dimensional perovskite nanostructures. Chem. Commun. (Camb.) 49, 4003–4005.

Christians, J.A., Schulz, P., Tinkham, J.S., Schloemer, T.H., Harvey, S.P., de Villers, B.J.T., Sellinger, A., Berry, J.J., and Luther, J.M. (2018). Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 3, 68–74.

Deng, B.H., Lei, T.Y., Zhu, W.H., Xiao, L., and Liu, J.P. (2018). In-Plane Assembled orthorhombic NbO3 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28, 1704330.

Deutz, D.B., Mascarenhas, N.T., Schelen, J.B.J., de Leeuw, D.M., van der Zwaag, S., and Groen, P. (2017). Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS. Adv. Funct. Mater. 27, 170728.

Domanski, K., Alkharbi, E.A., Hagfeldt, A., Gratzel, M., and Tress, W. (2018). Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67.

Duan, X.F., Huang, Y., Agarwal, R., and Lieber, C.M. (2003). Single-nanowire electrically driven lasers. Nature 421, 241–245.

Gao, M., Li, L., Li, W., Zhou, H., and Song, Y. (2016). Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Adv. Sci. 3, 1600120.

Gao, Y., Zhao, L., Shang, Q., Zhong, Y., Liu, Z., Chen, J., Zhang, Z., Shi, J., Du, W., Zhang, Y., et al. (2018). Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv. Mater. 30, 1801805.

Guo, W., Xu, C., Wang, X., Wang, S., Pan, C., Lin, C., and Wang, Z. L. (2012). Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 4437–4441.

Hao, J., Li, W., Zhai, J., and Chen, H. (2019). Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 135, 1–57.

Huang, G.-T., Park, H., Lee, J.-H., Oh, S., Park, K.-I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., et al. (2014). Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880–4887.

Lee, J., Jin, D.H., Moon, B., Shin, J., Kim, H.G., Kim, M., and Cho, K. (2017). Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10, 247–257.

Li, L., Deng, J., Chen, J., Sun, X., Yu, R., Liu, G., and Xing, X. (2009). Wire structure and morphology transformation of niobium oxide and niobates by molten salt synthesis. Chem. Mater. 21, 1207–1213.

Li, M., Zhao, Z., Cheng, T., Fortunelli, A., Chen, C.-Y., Yu, R., Zhang, Q., Gu, L., Merinov, B.V., Lin, Z., et al. (2016). Ultrathin jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419.

Received: March 4, 2019
Revised: May 15, 2019
Accepted: June 6, 2019
Published: July 26, 2019
Li, P., Zhai, J., Shen, B., Zhang, S., Li, X., Zhu, F., and Zhang, X. (2018). Ultrahigh piezoelectric properties in textured (KxNa1-x)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171.

Liu, Q., Zhang, Y., Gao, J., Zhou, Z., Wang, H., Wang, K., Zhang, X., Li, L., and Li, J.-F. (2018). High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ. Sci. 11, 3531–3539.

Lu, J., Xu, C., Li, F., Yang, Z., Peng, Y., Li, X., Que, M., Pan, C., and Wang, Z.L. (2018). Piezoelectric effect tuning on ZnO microwire whispering-gallery mode lasing. ACS Nano 12, 11899–11906.

Meng, X.H., Wang, W., Ke, H., Rao, J.C., Jia, D.C., and Banerjee, S. (2017). Synthesis, piezoelectric property and domain behaviour of the vertically aligned KxNa1-xNbO3 nanowire with a morphotrophic phase boundary. J. Mater. Chem. C 5, 747–753.

Nakayama, Y., Pauzauskie, P.J., Radenovic, A., Onorato, R.M., Saykally, R.J., Liphardt, J., and Nakamura, M. (2004). Lead-free piezoceramics. Nature 432, 84–87.

Sun, S.B., Yuan, D., Xu, Y., Wang, A.F., and Deng, Z.T. (2016). Ligand-Mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657.

Tao, H., and Wu, J. (2016). Giant piezoelectric effect and high strain response in (1-x)(KxNa0.5Bi0.5)O3-(x/2)Bi2O3, x=0.45. J. Eur. Ceram. Soc. 36, 1605–1612.

Wang, Z.L. (2018). Nanogenerators, self-powered systems, blue energy, piezotronics and piezophototronics - a recall on the original thoughts for coining these fields. Nano Energy 44, 1098.

Yang, Y., Lee, J.T., Liyanage, T., and Sardar, R. (2019). Flexible polymer-assisted mesoscale self-assembly of colloidial CdPbBr3 perovskite nanocrystals into higher order superstructures with strong inter-nanocrystal electronic coupling. J. Am. Chem. Soc. 141, 1526–1536.

You, Y.-M., Liao, W.-Q., Zhao, D., Ye, H.-Y., Zhang, Y., Zhou, Q., Niu, X., Wang, J., Li, P.-F., Fu, D.-W., et al. (2017). An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309.

Zhang, G.Z., Wang, J.F., Chen, H.C., Su, W.B., Wang, C.M., Qi, P., Ming, B.Q., Du, J., Zheng, L.M., Zhang, S., et al. (2006). Perovskite (Na0.5K0.5)NiO3-based lead-free piezoceramics. Appl. Phys. Lett. 88, 212908.

Zhai, W., Lin, J., Li, C., Hu, S., Huang, Y., Yu, C., Wen, Z., Liu, Z., Fang, Y., and Tang, C. (2018). Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors. Nanoscale 10, 21461–21468.
Supplemental Information

Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite

Lihong Li, Zhongyuan Xiang, Meng Gao, Cheng Bian, Meng Su, Fengyu Li, Xianran Xing, and Yanlin Song
Figure S1. EDX pattern of non-perovskite-type niobate $\text{K}_2(\text{Nb}_{0.94}\text{Sb}_{0.06})_8\text{O}_{21}$ rods with multi-“B-sites”, Related to Figure 1
Figure S2. EDX pattern of perovskite-type niobate LNKNS\textit{m} with different value of \textit{m} (\textit{m}= 0.5, 1, 1.5, 2, and 2.5), Related to Figures 1, 2
Figure S3. Rietveld refinement profiles for the 2nd-step synthesized perovskite niobites (Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.94}Sb_{0.06})O_3 (LNKNS2). Data were refined in single space group *Amm2*, Related to Figure 2
Figure S4. The XRD patterns of 0.96[(0.93(K0.5Na0.5)NbO3-0.07LiNbO3]-0.04CaZrO3, 0.9625(K0.48Na0.52)(Nb0.94Sb0.06)O3-0.0375Bi0.5(Na0.82K0.18)0.5ZrO3, 0.96(K0.48Na0.52)(Nb0.94Sb0.06)O3-0.04Bi0.5Na0.5ZrO3, 0.9625(K0.48Na0.52)(Nb0.94Sb0.06)O3-0.0375Bi0.5Na0.5Zr0.85Hf0.15O3 and 0.964(K0.4Na0.6)(Nb0.955Sb0.045)O3-0.006BiFeO3-0.03Bi0.5Na0.5ZrO3, Related to Table 1
Figure S5. The SEM and EDX images of the multi-perovskite niobate materials, Related to Table 1

(A) The SEM and (B) EDX images of 0.96[(0.93(K0.5Na0.5)NbO3)-0.07LiNbO3]-0.04CaZrO3; (C) The SEM and (D) EDX images of 0.9625(K0.48Na0.52)(Nb0.94Sb0.06)O3-0.0375Bi0.5(Na0.82K0.18)0.5ZrO3; (E) The SEM and (F) EDX images of 0.96(K0.48Na0.52)(Nb0.94Sb0.06)O3-0.04Bi0.5Na0.5ZrO3; (G) The SEM and (H) EDX images of 0.9625(K0.45Na0.55)(Nb0.96Sb0.04)O3-0.0375Bi0.5Na0.5Zr0.85Hf0.15O3; and (I) The SEM and (J) EDX images of 0.964(K0.4Na0.6)(Nb0.955Sb0.045)O3-0.006BiFeO3-0.03Bi0.5Na0.5ZrO3.
Figure S6. Schematic illustration of the FPD based on LNKNS2 rods. Briefly, The LNKNS2 rods/PDMS ink was spin-coated onto the bottom electrode. Then, a top electrode was attached to it. In order to orient the electric dipoles in the same direction, an FPD poling was required thereafter, Related to Figure 4
Figure S7. The XRD pattern of (Li0.06Na0.47K0.47)(Nb0.94Sb0.06)O3 with morphology of isotropic particles obtained via solid-state method, Related to Figure 4
Figure S8. The SEM images of (Li$_{0.06}$Na$_{0.47}$K$_{0.47}$)(Nb$_{0.94}$Sb$_{0.06}$)O$_3$ (I-LNKNS) isotropic particles obtained via solid-state method. Scale bar: 10 µm and 1 µm, Related to Figure 4
Figure S9. The EDX pattern of (Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.94}Sb_{0.06})O_3 with morphology of isotropic particles obtained via solid-state method, Related to Figure 4
Figure S10. The XRD pattern of (Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.94}Sb_{0.06})O_{3} (S-LNKNS) short rods obtained via MTSS method with small amount of salts, Related to Figure 4
Figure S11. The SEM images of (Li\textsubscript{0.06}Na\textsubscript{0.47}K\textsubscript{0.47})(Nb\textsubscript{0.94}Sb\textsubscript{0.06})O\textsubscript{3} (S-LNKNS) short rods obtained via MTSS method with small amount of salts, Related to Figure 4
Figure S12. The EDX pattern of (Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.94}Sb_{0.06})O_3 with morphology of isotropic particles obtained via solid-state method, Related to Figure 4
Figure S13. The open-circuit voltage of S-LNKNS2-FPD measured under the same test condition of LNKNS2-FPD and I-LNKNS-FPD with its bending angle of 120°, Related to Figure 4
Figure S14. The simulation of piezoelectric voltage output of the flexible devices with rods of different ratios of length to width (1:1, 1:6, and 1:12), Related to Figure 4
Figure S15. Optical images of the electricity generation of a LNKNS2-FPD in its different bending states of 60°, 90°, 120°, and 180°, and the measured open-circuit voltage of a LNKNS2-FPD in its different bending states of 60°, 90°, 120°, and 180°, Related to Figure 4
Table S1. K/Na/Li/Nb/Sb ratio and the possible formula of LNKNS_m synthesized by the MTMS method at 850 °C for 100 min with different values of m (amounts of Na₂CO₃)^a, Related to Figure 2

LNKNS_m	K⁺ [atom-%]	Na⁺ [atom-%]	Li⁺ [atom-%]	Nb⁵⁺ [atom-%]	Sb⁵⁺ [atom-%]	Formula
LNKNS0.5	34.2±0.4	12.8±0.1	3.0±0.1	47.1±0.3	2.9±0.2	(K_{0.60}Na_{0.26}Li_{0.10}) Nb_{0.94}Sb_{0.06}O₃
LNKNS1	29.4±0.4	17.3±0.1	2.9±0.1	47.1±0.3	2.9±0.2	(K_{0.60}Na_{0.34}Li_{0.10}) Nb_{0.94}Sb_{0.06}O₃
LNKNS1.5	26.0±0.3	21.1±0.1	2.9±0.1	47.2±0.3	2.8±0.2	(K_{0.52}Na_{0.42}Li_{0.06}) Nb_{0.94}Sb_{0.06}O₃
LNKNS2	23.6±0.3	23.5±0.1	2.9±0.1	47.1±0.3	2.9±0.2	(K_{0.47}Na_{0.47}Li_{0.06}) Nb_{0.94}Sb_{0.06}O₃
LNKNS2.5	22.4±0.3	24.8±0.1	2.8±0.1	47.0±0.3	3.0±0.2	(K_{0.43}Na_{0.50}Li_{0.06}) Nb_{0.94}Sb_{0.06}O₃

^a Measured by ICP.
Table S2. Crystal cell parameters for XRD data of LNKNS\textit{m} with different \textit{m}, Related to Figure 2

LNKNS\textit{m}	Symmetry	a (Å)	b (Å)	c (Å)	%Cont *
LNKNS0.5	\textit{Amm}2	3.956	5.653	5.653	100
LNKNS1	\textit{Amm}2	3.949	5.643	5.645	100
LNKNS1.5	\textit{Amm}2	3.939	5.630	5.626	100
LNKNS2	\textit{Amm}2	3.936	5.626	5.605	80.07
	+ \textit{Pmmm}	3.965	3.965	3.965	19.93
LNKNS2.5	\textit{Pmmm}	3.950	3.950	3.950	100

* %Cont: percentage of the total integrated intensity
Table S3. Crystal cell parameters calculated from refinement XRD data of K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$, Related to Figure 2

K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$	Orthorhombic, $Pbam$	$a = 90^\circ$
	$a = 37.4979$ Å	
	$b = 12.5091$ Å	$\beta = 90^\circ$
	$c = 3.9630$ Å	$\gamma = 90^\circ$
	$V = 1858.91$ Å3	
Table S4. Atom parameters calculated from refinement XRD data of K$_2$(Nb$_{0.94}$Sb$_{0.06}$)$_8$O$_{21}$, Related to Figure 2

Atom	x	y	z
K1	0.16576	0.0017	0.5
K2	0.45421	0.36243	0.5
K3	0.05685	0.16928	0.5
K4	0.22124	0.32513	0.5
Nb1/ Sb1	0.9298	0.57263	0
Nb2/ Sb2	0.89094	0.32906	0
Nb3/ Sb3	0.97687	0.29705	0
Nb4/ Sb4	0.90266	0.06989	0
Nb5/ Sb5	0	0	0
Nb6/ Sb6	0.85708	0.79252	0
Nb7/ Sb7	0.23487	0.0719	0
Nb8/ Sb8	0.16954	0.49478	0
Nb9/ Sb9	0.19217	0.78869	0
O1	0.09993	0.3001	0
O2	0.9817	0.60921	0
O3	0.04869	0.57337	0
O4	0.87682	0.49407	0
O5	0.06967	0.78097	0
O6	0.8732	0.91956	0
O7	0	0.16	0
O8	0.9553	0.98875	0
O9	0.19183	0.1355	0
O10	0.20817	0.92974	0
O11	0.13915	0.84897	0
O12	0.16785	0.64003	0
O13	0.17396	0.34925	0
O14	0.21562	0.49897	0
O15	0.2667	0.19893	0
O16	0.85518	0.78064	0.5
O17	0.92689	0.57086	0.5
O18	0.89129	0.32415	0.5
O19	0.98076	0.31584	0.5
O20	0.89719	0.0574	0.5
O21	0	0	0.5
O22	0.23824	0.06696	0.5
O23	0.17015	0.48724	0.5
O24	0.19023	0.7807	0.5
Table S5. Crystal cell parameters calculated from refinement XRD data of LNKNS2, Related to Figure 2

(K_{0.47}Na_{0.47}Li_{0.06})(Nb_{0.94}Sb_{0.06})O_3 (LNKNS2)	Phase No. 1	Phase No. 2
Space group	Amm2	Pmmm
Bragg R-factor	8.07	5.03
R-factor	5.44	2.30
V (Å³)	124.093	62.315
a (Å)	3.9356	3.9646
b (Å)	5.6258	3.9646
c (Å)	5.6047	3.9511
α	α = 90 °	α = 90 °
β	β = 90 °	β = 90 °
γ	γ = 90 °	γ = 90 °
ATZ	1428	1428
Brindley	1.0000	1.0000
Fract(%)	80.07	19.93
Table S6. Atom parameters calculated from refinement XRD data of LNKNS2, Related to Figure 2

Phase No. 1	Amm2		
Atom	X	Y	Z
Li	0	0	0.27377
Na	0	0	0.27377
K	0	0	0.27377
Nb	0.5	0	0.70324
Sb	0.5	0	0.70324
O1	0	0	0.69843
O2	0.5	0	0.28114

Phase No. 2	Pmmm		
Atom	X	Y	Z
Li	0	0	0
Na	0	0	0
K	0	0	0
Nb	0.5	0.5	0.5
Sb	0.5	0.5	0.5
O1	0.5	0	0.5
O2	0.5	0.5	0
O3	0	0.5	0.5
Table S7. Crystal plane parameters calculated from refinement XRD data of LNKNS2, Related to Figure 2

Phase	No. 1	Amm2				
	H	K	L	d-hkl	2theta/TOF	Icalc
0	1	1	1	3.970564	22.372	1344.6
1	0	0	0	3.935634	22.574	192.5
0	2	0	0	2.812917	31.785	508.3
0	0	2	2	2.802339	31.909	490
1	1	1	1	2.795181	31.992	1359.6
1	2	0	0	2.288483	39.338	0.8
1	0	2	2	2.282777	39.441	19.7
0	2	2	2	1.985282	45.66	1214.5
2	0	0	0	1.967817	46.088	271.6
0	3	1	1	1.778372	51.334	154.2
0	1	3	3	1.773021	51.5	300.4
1	2	2	2	1.772533	51.515	376.1
2	1	1	1	1.76316	51.809	152
1	3	1	1	1.620603	56.758	535.2
1	1	3	3	1.61655	56.914	361
2	2	0	0	1.612428	57.072	173.3
2	0	2	2	1.610428	57.15	161.2
0	4	0	0	1.406458	66.415	170.4
0	0	4	4	1.40117	66.698	76.1
2	2	2	2	1.397591	66.892	452
1	4	0	0	1.324427	71.126	38.9
0	3	3	3	1.323521	71.182	169.1
1	0	4	4	1.320008	71.4	133.4
2	3	1	1	1.319405	71.438	99
2	1	3	3	1.317215	71.575	189
3	0	0	0	1.311878	71.911	14.7
0	4	2	2	1.257024	75.582	197.3
1	3	3	3	1.254485	75.762	191
0	2	4	4	1.254186	75.783	141.3
3	1	1	1	1.245648	76.395	157.7

Phase	No. 2	Pmmm				
	H	K	L	d-hkl	2theta/TOF	Icalc
0	0	0	1	3.94811	22.501	502.1
0	1	0	0	3.94811	22.501	19.5
1	0	0	0	3.94811	22.501	19.5
0	1	1	1	2.791735	32.033	117.8
1	0	1	1	2.791735	32.033	117.8
1	1	0	0	2.791735	32.033	49
1	1	1	1	2.279443	39.501	0.1
0	0	2	1.974055	45.934	518	
---	---	---	----------	-------	----	
0	2	0	1.974055	45.934	20.2	
2	0	0	1.974055	45.934	20.2	
0	1	2	1.765649	51.731	24.5	
0	2	1	1.765649	51.731	5.2	
1	0	2	1.765649	51.731	24.5	
1	2	0	1.765649	51.731	3.9	
2	0	1	1.765649	51.731	5.2	
2	1	0	1.765649	51.731	3.9	
1	1	2	1.611809	57.096	63.3	
1	2	1	1.611809	57.096	21.1	
2	1	1	1.611809	57.096	21.1	
0	2	2	1.395868	66.985	23.1	
2	0	2	1.395868	66.985	23.1	
2	2	0	1.395868	66.985	9.6	
0	0	3	1.316037	71.649	15.6	
0	3	0	1.316037	71.649	0.6	
1	2	2	1.316037	71.649	5.1	
2	1	2	1.316037	71.649	5.1	
2	2	1	1.316037	71.649	2.8	
3	0	0	1.316037	71.649	0.6	
0	1	3	1.248502	76.189	33.2	
0	3	1	1.248502	76.189	3.5	
1	0	3	1.248502	76.189	33.2	
1	3	0	1.248502	76.189	3	
3	0	1	1.248502	76.189	3.5	
3	1	0	1.248502	76.189	3	
Transparent Methods

Chemicals

Niobium pentoxide, antimony trioxide, bismuth trioxide, and ferric oxide were purchased from Sigma-Aldrich. Hafnium oxide was purchased from Innochem. Potassium carbonate, sodium carbonate, lithium carbonate, strontium carbonate, calcium carbonate, potassium chloride and ethanol were purchased from Beijing Chemical Agent Ltd., China. All the materials were used as received without further purification.

Preparation of 1D rodlike alkaline niobates

Firstly, K$_2$(Nb$_{0.094}$Sb$_{0.04}$)O$_{21}$ was prepared by molten salt method. Nb$_2$O$_5$, Sb$_2$O$_3$ and KCl were mixed in ethanol according to a molar ratio of 0.94:0.04:20. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 1000 °C for 3 h. The product was washed several times with hot deionized water to remove KCl salt. Second, rodlike multi-alkaline niobates (Li,Na,K)(Nb$_{0.094}$Sb$_{0.06}$)O$_3$, were synthesized from the previously prepared precursors of rodlike K$_2$(Nb$_{0.094}$Sb$_{0.06}$)O$_{21}$ by the MTMS method. Multi-alkaline niobates of (Li$_{0.06}$Na$_x$K$_{0.94-x}$)(Nb$_{0.94}$Sb$_{0.06}$)O$_3$ was also prepared with the rodlike reactants K$_2$(Nb$_{0.094}$Sb$_{0.06}$)O$_{21}$, Li$_2$CO$_3$, and Na$_2$CO$_3$ in an equal weight of molten salt KCl carried out at 850 °C for 10 min. The molar ratio of the reactants was 0.25:m:0.06 (m mol= 0.5, 1, 1.5, 2, and 2.5 mol). The remnant molten salts were removed from the products by washing with hot deionized water several times. The as-synthesized powders were finally dried at 120 °C. This two steps multi-element topo-molten salt method was also applied to achieve other multi-perovskite niobate materials based on the above process.

For the preparation of 0.96[(0.93(K$_{0.5}$Na$_{0.5}$)NbO$_3$-0.07LiNbO$_3$)-0.04CaZrO$_3$, the raw materials of Nb$_2$O$_5$, ZrO$_2$, and KCl were firstly mixed in ethanol according to a molar ratio of 0.96:0.04:20. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 1000 °C for 3 h to obtain K$_2$(Nb$_{0.96}$Zr$_{0.04}$)O$_{21}$. Secondly, the rodlike K$_2$(Nb$_{0.094}$Zr$_{0.04}$)O$_{21}$, Li$_2$CO$_3$, Na$_2$CO$_3$ and Ca$_2$CO$_3$ were mixed with an equal weight of molten salt KCl carried out at 850 °C for 60 min, and the molar ratio of the reactants was 0.25:0.0672:2:0.04. The remnant molten salts were removed from the product by washing with hot deionized water for several times. The as-synthesized powder was finally dried at 120 °C.

For the preparation of 0.9625(K$_{0.48}$Na$_{0.52}$)(Nb$_{0.94}$Sb$_{0.06}$)O$_3$-0.0375Bi$_0.5$(Na$_{0.82}$K$_{0.18}$)ZrO$_3$, the raw materials of Nb$_2$O$_5$, Sb$_2$O$_3$, ZrO$_2$, and KCl were firstly mixed in ethanol according to a molar ratio of 0.9048:0.0578:0.0375:20. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 1000 °C for 3 h to obtain K$_2$((Nb$_{0.94}$Sb$_{0.06}$)Zr$_{0.0375}$)O$_{21}$. Secondly, the rodlike K$_2$((Nb$_{0.94}$Sb$_{0.06}$)Zr$_{0.0375}$)O$_{21}$, Na$_2$CO$_3$, K$_2$CO$_3$ and Bi$_2$O$_3$ were mixed with an equal weight of molten salt KCl and reacted at 850 °C for 60 min, and the molar ratio of the reactants was 0.25:2.5:0.034:0.01875. The remnant molten salts were removed from the product by washing with hot deionized water for several times. The as-synthesized powder was finally dried at 120 °C.

For the preparation of 0.96(K$_{0.48}$Na$_{0.52}$)(Nb$_{0.95}$Sb$_{0.05}$)O$_3$-0.04Bi$_0.5$Na$_{0.5}$ZrO$_3$, the raw materials of Nb$_2$O$_5$, Sb$_2$O$_3$, ZrO$_2$, and KCl were firstly mixed in ethanol according to a molar ratio of 0.912:0.048:0.04:20. After the mixture was dried at 80 °C, it was heated at 1000 °C for 3 h to
obtain $K_2(Nb_{0.0912}Sb_{0.048}Zr_{0.04})_8O_{21}$. Secondly, the rodlike $K_2(Nb_{0.0912}Sb_{0.048}Zr_{0.04})_8O_{21}$, Na_2CO_3 and Bi_2O_3 were mixed with an equal weight of molten salt KCl and reacted at 850 °C for 60 min, and the molar ratio of the reactants was 0.25:2.5:0.02. After washing and drying, the as-synthesized powder was obtained.

For the preparation of $0.9625(K_{0.45}Na_{0.55})(Nb_{0.96}Sb_{0.04})O_3-0.0375Bi_{2}O_3$, the raw materials of Nb_2O_5, Sb_2O_3, ZrO_2, HfO_2 and KCl were firstly mixed in ethanol according to a molar ratio of 0.924:0.037:0.0319:0.00563:20. After the mixture was dried at 80 °C, it was heated at 1000 °C for 3 h to obtain $K_2((Nb_{0.96}Sb_{0.04})_{0.9625}(Zr_{0.85}Hf_{0.15})_{0.0375})_8O_{21}$. Secondly, the rodlike $K_2((Nb_{0.96}Sb_{0.04})_{0.9625}(Zr_{0.85}Hf_{0.15})_{0.0375})_8O_{21}$, Na_2CO_3 and Bi_2O_3 were mixed with an equal weight of molten salt KCl and reacted at 850 °C for 60 min, and the molar ratio of the reactants was 0.25:3:0.01875. After washing and drying, the as-synthesized powders were obtained.

For the preparation of $0.964(K_{0.4}Na_{0.6})(Nb_{0.955}Sb_{0.045})O_3-0.006BiFeO_3-0.03Bi_{2}O_3$, the raw materials of Nb_2O_5, Sb_2O_3, Fe_2O_3, ZrO_2, and KCl were firstly mixed in ethanol according to a molar ratio of 0.96:0.04:20. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 1000 °C for 3 h to obtain $K_2(Nb_{0.96}Zr_{0.04})_8O_{21}$. Secondly, the rodlike $K_2(Nb_{0.96}Zr_{0.04})_8O_{21}$, Li_2CO_3, Na_2CO_3 and Ca_2CO_3 were mixed with an equal weight of molten salt KCl carried out at 850 °C for 10 min, and the molar ratio of the reactants was 0.25:0.0672:3.5:0.04. After washing and drying, the as-synthesized powder was obtained.

For the preparation of S-LNKNS, the raw materials of Nb_2O_5, Sb_2O_3, and KCl were firstly mixed in ethanol according to a molar ratio of 0.96:0.04:5. After the mixture was dried at 80 °C, it was transferred to a crucible, loaded into an alumina furnace, and then heated at 1000 °C for 3 h to obtain $K_2(Nb_{0.96}Zr_{0.04})_8O_{21}$. Secondly, the rodlike $K_2(Nb_{0.96}Zr_{0.04})_8O_{21}$, Li_2CO_3, Na_2CO_3 and K_2CO_3 were mixed with an equal weight of molten salt KCl carried out at 850 °C for 10 min, and the molar ratio of the reactants was 0.25:0.06:2. The remnant molten salts were removed from the product by washing with hot deionized water several times. The as-synthesized powder was finally dried at 120 °C.

Preparation of cubic alkaline niobates

For comparison, $(Li_{0.06}Na_{0.47}K_{0.47})(Nb_{0.955}Sb_{0.045})O_3$ cubes were prepared by solid-state method. Nb_2O_5, Sb_2O_3, Li_2CO_3, Na_2CO_3 and K_2CO_3 was mixed in the ratio of 0.94: 0.06: 0.06: 0.47:0.47 in the ethanol, and then heated a furnace at 1080 °C for 10 h after dried at 120 °C.

FPD fabrication and text

Preparation of the piezoelectric composite based ink. Piezoelectric nanocomposite-based inks for direct writing and spin coating were prepared by dispersing 40 wt% LNKNS2 rods (or I-LNKNS particles) in PDMS precursor which was the mixture of PDMS base and curing agent in the proportion of 10:1 by weight. The inks were mechanically stirred at 800 rpm for 0.5 h in an icing bath for homogenization.

Spin coating of the piezoelectric layer. The substrate used for spin coating was the bottom electrode, namely an Au/Cr-coated PET film (150 μm in thickness) whose conducting layer was deposited by a high vacuum thermal evaporation system (PATOR, ATT010). The LNKNS2/PDMS (or I-LNKNS /PDMS) ink was spin-coated onto the bottom electrode at the rate of 2000 rpm for 30 s and cured at 120 °C for 1 h.
FPD fabrication. An Au/Cr-coated polyimide film (50 μm in thickness) used as top electrode was attached to the surface of the piezoelectric layer with PDMS precursor served as an adhesive agent. The PDMS adhesive agent was spin-coated onto the top electrode at the rate of 3000 rpm for 30 s and procured at 80 °C for 5 min. After fully hardened at 80 °C for 2 h, the packaged device was poled at 150 °C by applying an electric field for 12 h. The FPDs were poled at 0.8 kV.

The FPD during the periodic bending/unbending test. Employing a bending stage executed at a horizontal displacement of 2 cm with a moving speed of one-side movable fixture of 30 mm/s. This process consisted of cycles of bending and relaxing states. The corresponding power generation mechanism was as follow: in the bending state, the current flow was generated due to dipoles movement from equilibrium position and charges accumulation at two opposite side surfaces of the FPD. In the release state, the accumulated charges returned to their original state, which resulted in output signals in the opposite direction.

Characterization

The structure of samples was characterized by X-ray powder diffraction (XRD) patterns, which were obtained on a 21 kW extra power X-ray diffractometer (Rigaku D/ MAX 2500) using Cu Kα radiation. The Rietveld refinement of the XRD data with the scanning speed of 20° angle was 2° min⁻¹ was calculated via the FULLPROF Suite software. The microstructure of the samples was observed using scanning electron microscopy (SEM, JEOL, JSM-7500, Japan). The composition of powders was determined by energy dispersive X-ray (EDX) analysis with the field-emission scanning electron microscope. The composition of powders was determined by inductively coupled plasma (ICP, INC profile) spectrometry. Transmission electron microscopy (TEM) observation and the corresponding selected area electron diffraction (SAED) patterns were determined with a JEM-1011 TEM, and the samples were prepared by placing a drop of dilute alcohol dispersion of crystals on the surface of a copper grid. The high area transmission electron microscopy (HRTEM) image was taken with a JEM-2100F HRTEM operating at 200 kV accelerating voltage.

Measuring the piezoelectric property

Without any special treatment, the as-prepared rod-like LNKNS2 and cubic LNKNS powders were pressed into pellets and then were sintered at 1100 °C for 3 h. The ceramic pellets were polished and coated with silver paste on both sides. Polarization was carried out in a silicon oil bath at 100 °C under applied fields of \(E_p = 3.5 \text{kV/mm} \) for 20 min. The specimens were cooled to room temperature in the silicon oil bath and then aged for 24 h in air. Then, the piezoelectric coefficient \(d_{33} \) of the samples was measured using a quasi-static \(d_{33} \) meter (model ZJ-3, Institute of Acoustics, Beijing, China). A bending stage was utilized to apply a periodic deformation to the PNG at a desired displacement and speed. The electrical signal of the PNG device was obtained using a KEITHLEY Model 2450 Interactive SourceMeter Instrument with a HIOKI MR8875-30. The simulation investigation was conducted by using COMSOL multiphysics software.