ON GROUPS IN WHICH SUBNORMAL SUBGROUPS OF INFINITE RANK ARE COMMENSURABLE WITH SOME NORMAL SUBGROUP

ULDERICO DARDANO AND FAUSTO DE MARI

Abstract. We study soluble groups G in which each subnormal subgroup H with infinite rank is commensurable with a normal subgroup, i.e. there exists a normal subgroup N such that $H \cap N$ has finite index in both H and N. We show that if such a G is periodic, then all subnormal subgroups are commensurable with a normal subgroup, provided either the Hirsch-Plotkin radical of G has infinite rank or G is nilpotent-by-abelian (and has infinite rank).

2020 Mathematics Subject Classification: Primary: 20F16, Secondary: 20E07, 20E15.

Keywords: transitivity, core-finite, normal-by-finite, close to normal

1. Introduction and statement of results

A group G is said to be a T-group if normality in G is a transitive relation, i.e. if all subnormal subgroups are normal. The structure of soluble T-groups was well described in the 1960s by Gaschütz, Zacher and Robinson (see [14]). Then, taking these results as a model, several authors have studied soluble groups in which subnormal subgroups have some embedding property which “approximates” normality. In particular, Casolo [2] considered T_\ast-groups, that is groups in which any subnormal subgroup H has the property nn (nearly normal), i.e. the index $|H^G : H|$ is finite. Then Franciosi, de Giovanni and Newell [11] considered T_\ast-groups, that is groups in which any subnormal subgroup H has the property cf (core-finite, normal-by-finite), i.e. the index $|H : H_G|$ is finite. Here, as usual, H^G (resp. H_G) denotes the smallest (resp. largest) normal subgroup of G containing (resp. contained in) H.

Recently in [4], in order to put those results in a common framework, we considered $T[\ast]$-groups, that is groups in which each subnormal subgroup H is cn, i.e. commensurable with a normal subgroup of G. Recall that two subgroups H and K are called commensurable if $H \cap K$ has finite index in both H and K, hence both nn and cf imply cn. Clearly all the above results rely on corresponding previous results on groups in which all subgroups are nn, cf, cn resp. (see [13], [1], [3] resp.). A similar approach was adopted in [7] where finitely generated groups in which subnormal subgroups are inert have been considered, where the term inert refers to a different generalization of both nn, cf (namely, an inert subgroup is a subgroup which is commensurable with each of its conjugates).

In the last decade, several authors have studied the influence on a soluble group of the behavior of its subgroups of infinite rank (see for instance [5], [10] or the bibliography in [9]). Recall that a group G is said to have finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such property and infinite rank is there is no such r. For example, in [8] it was proved that if G is a periodic soluble group of infinite rank in which every subnormal subgroup of infinite rank is normal, then G is a T-group indeed. Then in
[9], authors have considered groups of infinite rank with properties T_+ (T^+, resp.), that is groups in which the condition of being nn (resp. cf) is imposed only to subnormal subgroups with infinite rank. In fact, it has been shown that a periodic soluble group of infinite rank G with property T_+ (T^+, resp.) has the full T_* (T^*, resp.) property, provided one of the following holds:

(A) the Hirsch-Plotkin radical of G has infinite rank,
(B) the commutator subgroup G' is nilpotent.

In this paper we show that a similar statement is true also for the property cn. Moreover, by a corollary, we give some further information about the property cf as well. Let us call $T^+[\ast]$-group a group in which each subnormal subgroup of infinite rank is a cn-subgroup.

Theorem A Let G be a periodic soluble $T^+[\ast]$-group whose Hirsch-Plotkin radical has infinite rank. Then G is a $T^*\ast$-group.

Corollary Let G be a periodic soluble $T^+[\ast]$-group (resp. $T_\ast\ast$-group) of infinite rank such that $\pi(G')$ is finite. Then all subgroups of G are cn (resp. cf).

Theorem B Let G be a periodic $T^+[\ast]$-group of infinite rank with nilpotent commutator subgroup. Then G is a $T^*\ast$-group.

Note that if $G = A \rtimes B$ is the holomorph group of the additive group A of the rational numbers by the multiplicative group B of positive rationals (acting by usual multiplication), then, as noticed in [8], the only subnormal non-normal subgroups of G are those contained in A (which has rank 1) so that G is $T^+[\ast]$. However all proper non-trivial subgroups of A are not cn, since if they were cn then they were cf (see [6], Proposition 1) contradicting the fact that A is minimal normal in G.

Our notation and terminology is standard and can be found in [15, 16]

2. Proofs

By a standard argument one checks easily that if H_1 and H_2 are cn- (resp. cf-) subgroups of G, then $H_1 \cap H_2$ is likewise cn (resp. cf). The same holds for H_1H_2, provided this is a set subgroup.

Lemma 1. Let G be a $T^+[\ast]$-group and let A be a subnormal subgroup of G. If A is the direct product of infinitely many non-trivial cyclic subgroups, then any subgroup of A is a cn-subgroup of G.

Proof. Let X be any subgroup of A, then X is a subnormal subgroup of G and X is likewise a direct product of cyclic groups (see [16], 4.3.16). In order to prove that X is a cn-subgroup of G we may assume that X has finite rank. Then there exist subgroups A_1, A_2, A_3 of A with infinite rank such that $X \leq A_3$ and $A = A_1 \times A_2 \times A_3$. Thus XA_1 and XA_2 are subnormal subgroups of infinite rank, so that they are both cn-subgroups of G. Therefore $X = XA_1 \cap XA_2$ is likewise cn in G. \qed

Lemma 2. Let G be a periodic $T^+[\ast]$-group. If G contains an abelian subnormal subgroup of infinite rank A, then G is a $T^*\ast$-group.

Proof. By hypothesis there exists a normal subgroup N of G which is commensurable with A. Then $A \cap N$ has finite index in AN and hence N is an abelian-by-finite group of infinite rank. In particular, N contains a characteristic subgroup N, of finite index which is an abelian group of infinite rank; hence replacing A by N, it can be supposed that A is a normal subgroup. Since G is periodic and A has infinite rank, it follows
that the socle S of A is a normal subgroup of G which is the direct product of infinitely many non-trivial cyclic subgroups. Application of Lemma 1 yields that all subgroups of S are cn-subgroups of G and hence by Lemma 2.8 of [6], there exist G-invariant subgroups $S_0 \leq S_1$ of S such that S_0 and S/S_1 are finite and all subgroups of S lying between S_0 and S_1 are normal in G.

Let X be any subnormal subgroup of finite rank of G. Then $X \cap S_1$ is finite, hence $S_2 = S_0(X \cap S_1)$ is likewise finite. Since S_2X is commensurable with X, we may assume $S_2 = \{1\}$. Clearly there exist subgroups S_3 and S_4 with infinite rank such that $S_1 = S_3 \times S_4$. Since both S_3 and S_4 are normal subgroups of G, we have that both XS_3 and XS_4 are subnormal subgroups of infinite rank of G and hence they are both cn. Thus $X = XS_3 \cap XS_4$ is likewise a cn-subgroup of G. □

Recall that any primary locally nilpotent group of finite rank is a Chernikov group (see [15] Part 2, p.38).

Lemma 3. Let G a $T[+]$-group of infinite rank. If G is a Baer p-group, then G is a nilpotent $T[*]$-group.

Proof. Let X be any subnormal subgroup of G with finite rank. Then X is a Chernikov group (see [15] Part 2, p.389) and X contains an abelian divisible normal subgroup J of finite index. Hence J is subnormal in G, and so J^G is abelian and divisible (see [15] Part 1, Lemma 4.46). If A is any abelian subnormal subgroup of G, the subgroup $J^G A$ is nilpotent and $[J, A] = \{1\}$ (see [15] Part 1, Lemma 3.13). Since G is generated by its subnormal abelian subgroups, it follows that $J \leq Z(G)$ and so X/X_G is finite. This proves that G is a $T[*]$-group, hence nilpotent (see [4], Proposition 20). □

The following lemma is probably well-known but we are not able to find it in the literature, hence we write also the proof.

Lemma 4. Let G be a periodic finite-by-abelian group of finite rank. Then $G/Z(G)$ is finite.

Proof. Clearly $C = C_G(G')$ is a normal subgroup of finite index of G which is nilpotent and has finite rank; in particular, any primary component of C is a Chernikov group. Let $\pi = \pi(G')$ be the set of all primes p such that G' contains some element of order p. Then π is finite and so the subgroup C_π is a Chernikov group; hence $C_\pi Z(G)/Z(G)$ is finite (see [15] Part 1, Lemma 4.3.1). On the other hand C_π^* is abelian, and so it follows that $C/Z(C)$ is finite. Thus G is both abelian-by-finite and finite-by-abelian and hence $G/Z(G)$ is finite. □

Proof of Theorem A. Assume, for a contradiction, that the statement is false and let X be a subnormal subgroup G which is not a cn-subgroup; in particular, X has finite rank. Among all counterexamples choose G in such a way that X has the smallest possible derived length. Then the derived subgroup $Y = X'$ of X is a cn-subgroup by the minimal choice on the derived length of X; on the other hand, Y has finite rank and so Y/Y_G is finite (see [6], Proposition 1). Then X/Y_G is a finite-by-abelian group of finite rank, and hence its centre $Z/Y_G = Z(X/Y_G)$ has finite index in X/Y_G by Lemma 4. Thus Z is a subnormal subgroup of G which has finite index in X, so that the index $[Z : Z_G]$ is infinite and hence Z cannot be a cn-subgroup of G (see [6], Proposition 1). Since Y_G has finite rank, the Hirsch-Plotkin radical of G/Y_G has infinite rank and so G/Y_G is also a counterexample; thus replacing G with G/Y_G and X with Z/Y_G it can be supposed that X is abelian. Hence X is contained in the Hirsch-Plotkin radical H of G.

Let P any primary component of H, and suppose that P has infinite rank. If F is the Fitting subgroup of P, then F is nilpotent by Lemma 3. Let A be a maximal abelian normal subgroup of F, then $A = C_P(A)$ (see [15] Part 1, Lemma 2.19.1) and so A has infinite rank (see [15] Part 1, Theorem 3.29). Hence G is a $T[\ast]$-group by Lemma 2. This contradiction proves that each primary component of H has finite rank. In particular, as H has infinite rank, there exist H_1 and H_2 subgroups of infinite rank such that $H = H_1 \times H_2$ and $\pi(H_1) \cap \pi(H_2) = \emptyset$. By the same reason, for $i \in \{1, 2\}$, two subgroups of infinite rank $H_{i,1}$ and $H_{i,2}$ can be found such that $H_i = H_{i,1} \times H_{i,2}$ and $\pi(H_{i,1}) \cap \pi(H_{i,2}) = \emptyset$. If $i, j \in \{1, 2\}$ and $i \neq j$, considered $\pi_i = \pi(H_i)$ and denoted by X_i the π_i-component of X, the subgroups $X_iH_{j,1}$ and $X_iH_{j,2}$ are subnormal subgroups of infinite rank of G, so that they are both cn-subgroups of G and hence $X_i = X_iH_{j,1} \cap X_iH_{j,2}$ is likewise a cn-subgroup of G. Therefore $X = X_1X_2$ is a cn-subgroup of G and this final contradiction concludes the proof.

Proof of Corollary. One may refine the derived series of G' to a series $G_1 = G' \supseteq \cdots \supseteq G_n = \{1\}$ whose factors $A_i = G_i/G_{i+1}$ are p-groups (for possibly different primes). Let $C_i = C_G(A_i)$ for each i. If A_i has finite rank, then A_i is a Chernikov group and the same holds for G_i/C_i as a periodic group of automorphisms of a Chernikov group (see [15] Part 1, Theorem 3.29). If A_i has infinite rank, then Lemma 2 yields that each subgroup of A_i is a cn-subgroup (resp cf-) of G. Hence, according to Proposition 14 in [3], G/C_i is finite as a periodic group of power automorphisms of p-groups (see [14], Lemma 4.1.2). Thus if C is the intersection of all C_i’s, then G/C is a Chernikov group and therefore has finite rank. It follows that C has finite rank. Om the other hand, C is nilpotent by a well-known fact (see [12]). Then by Theorem A, the group G has property $T[\ast]$ (resp T_\ast). Further, by Theorem 15 in [4], G all subgroups are cn (resp cf).

Proof of Theorem B. Assume that the statement is false. As in the first part of proof of Theorem A, there exists a counterexample G containing an abelian subnormal subgroup X that is not a cn-subgroup; in particular, X has finite rank and the index $|X : X_G|$ is infinite. Then $L = XG'$ is a nilpotent normal subgroup and hence has finite rank by Theorem A. Let $p \in \pi(X)$, then $L/L_{p'}$ is a nilpotent p-group of finite rank and hence it is a Chernikov group; thus $G/C_G(L/L_{p'})$ is finite (see [13] Part 1, Corollary p.85) and hence $C_{G/L_{p'}}(L/L_{p'})$ is a nilpotent normal subgroup of infinite rank of $G/L_{p'}$. Thus Theorem A yields that $G/L_{p'}$ is a $T[\ast]$-group. Therefore $X_{p}L_{p'}$ is a cn-subgroup of G, and hence it is even cf because it has finite rank (see [6], Proposition 1). The p-component of the core $(X_{p}L_{p'})_G$ of $X_{p}L_{p'}$ in G is G-invariant, it coincides with the subgroup $X_{p} \cap (X_{p}L_{p'})_G$ and so has finite index in X_{p}, therefore X_{p} is cf. In particular, the set π of all primes p in $\pi(X)$ such that X_{p} is not normal in G is infinite. Replacing G by $G/L_{p'}$ it can be supposed that $\pi = \pi(L)$. Then there exists an infinite subset π_0 of π such that G/L_{π_0} contains a nilpotent normal subgroup of infinite rank (see [9], Corollary 11); hence G/L_{π_0} is a $T[\ast]$-group by Theorem A. Therefore $X_{\pi_0}L_{\pi_0}$ is a cn-subgroup of G and so even a cf-subgroup (see [6], Proposition 1); hence X_{π_0} is cf and this is a contradiction because X_{p} is not normal in G for each $p \in \pi_0$.

References

[1] J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith, J. Wiegold, Groups with all subgroups normal-by-finite. J. Austral. Math. Soc. Ser. A 59 (1995), 384-398
[2] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups. Rend. Sem. Mat. Univ. Padova 81 (1989), 107-149
[3] C. Casolo, U. Dardano, S. Rinauro, Groups in which each subgroup is commensurable with a normal subgroup, *J. Algebra* **496** (2018), 48-60
[4] U. Dardano, F. De Mari, Groups in which each subnormal subgroup is commensurable with some normal subgroup, to appear on *J. Group Theory*, DOI: https://doi.org/10.1515/jgth-2020-0076
[5] U. Dardano, F. De Mari, On groups with all proper subgroups finite-by-abelian-by-finite, to appear on *Arch. Math. (Basel)*, DOI: https://doi.org/10.1007/s00013-021-01580-6
[6] U. Dardano, F. De Mari, S. Rinauro, The weak minimal condition on subgroups which fail to be close to normal subgroups, *J. Algebra* **560** (2020), 371-382
[7] U. Dardano, S. Rinauro, On soluble groups whose subnormal subgroups are inert, *Int. J. Group Theory*, 4 (2015), 17-24
[8] M. De Falco, F. de Giovanni, C. Musella, Y.P. Sysak, Groups of infinite rank in which normality is a transitive relation. *Glasg. Math. J.* **56** (2014), no. 2, 387-393
[9] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, Groups of infinite rank with finite conjugacy classes of subnormal subgroups, *J. Algebra* **431** (2015), 24-37
[10] F. De Mari, Groups with many modular or self-normalizing subgroups, to appear on *Comm. Algebra*, DOI: https://doi.org/10.1080/00927872.2020.1870999
[11] S. Franciosi, F. de Giovanni, M.L. Newell, Groups whose subnormal subgroups are normal-by-finite, *Comm. Algebra* **23** (1995), 5483-5497
[12] P. Hall, Some sufficient conditions for a group to be nilpotent, *Illinois J. Math.* **2** (1958), 787-801
[13] B. H. Neumann, Groups with finite classes of conjugate subgroups, *Math. Z.* **63** (1955), 76-96
[14] D.J.S. Robinson, Groups in which normality is a transitive relation. *Proc. Cambridge Philos. Soc.*, 60 1964 21-38
[15] D.J.S. Robinson, *Finiteness conditions and generalized soluble groups* (Springer, 1972)
[16] D.J.S. Robinson, *A Course in the Theory of Groups* (Springer, 1996)

Ulderico Dardano, Fausto De Mari
Dipartimento di Matematica e Applicazioni “R.Caccioppoli”,
Università di Napoli “Federico II”
Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy
email: dardano@unina.it , fausto.demari@unina.it