A NONSPECTRAL DENSE BANACH SUBALGEBRA OF THE IRRATIONAL ROTATION ALGEBRA

LARRY B. SCHWEITZER

(Communicated by Palle E. T. Jorgensen)

Abstract. We give an example of a dense, simple, unital Banach subalgebra A of the irrational rotation C^*-algebra B, such that A is not a spectral subalgebra of B. This answers a question posed by T. W. Palmer (Spectral algebras, Rocky Mountain J. Math. 22 (1992), 293–328).

If A is a subalgebra of an algebra B (both algebras over the complex numbers), we say that A is a spectral subalgebra of B if the quasi-invertible elements of A are precisely the quasi-invertible elements of B which lie in A. In the language of [3], this is equivalent to saying that A is a spectral invariant subalgebra of B.

There are many known examples of dense unital Banach subalgebras of C^*-algebras which are not spectral. For example, see Example 3.1 of [3]. The example we give here is of interest because the Banach algebra is simple and, thus, answers Question 5.12 of [1] in the negative.

Recall that the irrational rotation algebra associated with an irrational real number θ is the C^*-crossed product of the integers \mathbb{Z} with the commutative C^*-algebra of continuous functions on the circle $C(\mathbb{T})$, where $n \in \mathbb{Z}$ acts via $\alpha_n(\varphi)(z) = \varphi(z - n\theta)$, for $\varphi \in C(\mathbb{T})$ and $z \in \mathbb{T}$. Let $B = \mathbb{Z} \times C(\mathbb{T})$ denote this crossed product.

Let A be the set of functions F from \mathbb{Z} to $C(\mathbb{T})$ which satisfy the integrability condition
$$\|F\|_A = \sum_{n \in \mathbb{Z}} e^{\|n\|} \|F(n)\|_{C(\mathbb{T})} < \infty,$$
where $\| \|_{\infty}$ denotes the sup norm on $C(\mathbb{T})$. Then A is complete for the norm $\| \|_A$ and is a Banach algebra. The algebra A is contained in $L^1(\mathbb{Z}, C(\mathbb{T}))$ with dense and continuous inclusion and, hence, is contained in B with dense and continuous inclusion. Recall that the multiplication (in both A and B) is given by
$$F \ast G(n, z) = \sum_{m \in \mathbb{Z}} F(n, z)G(n - m, z - m\theta), \quad F, G \in A, n \in \mathbb{Z}, z \in \mathbb{T}.$$
Let \(u_n = \delta_n \otimes 1 \in A \) denote the delta function at \(n \in \mathbb{Z} \) tensored with the identity in \(C(T) \). Then \(u_0 \) is the unit in both \(A \) and \(B \).

Theorem 1. The Banach algebra \(A \) is simple.

Proof. We imitate the argument of [2]. Define a continuous linear map \(P: A \to C(T) \subseteq A \) by \(P(F) = F(0) \). Note that \(\|P(F)\|_A \leq \|F\|_A \) for \(F \in A \). Let \(J \) be a closed two-sided ideal in \(A \), which is not equal to \(A \). Since \(\mathbb{Z} \) acts ergodically on \(T \), we know that \(C(T) \) has no nontrivial closed \(\mathbb{Z} \)-invariant ideals. Hence, \(J \cap C(T) = 0 \).

We show that \(P(J) = 0 \). It suffices to show that \(P(J) \subseteq J \). Let \(\epsilon > 0 \) and \(F \in A \). Let \(N \) be a sufficiently large integer for which

\[
\sum_{|n| > N} e^{|n|} \|F(n)\|_\infty < \epsilon.
\]

Define \(F_1 \in A \) by \(F_1(n) = 0 \) if \(|n| > N \), and \(F_1(n) = F(n) \) if \(|n| \leq N \). By the proof of Lemma 6 of [2], there exists unimodular functions \(\theta_1, \ldots, \theta_M \in C(T) \) such that

\[
P(F_1) = \frac{1}{M} \sum_{n=1}^{M} \theta_n^* F_1 \theta_n.
\]

(Here unimodular means that \(|\theta_i(z)| = 1 \) for each \(z \in T \) and \(i = 1, \ldots, M \).) Hence,

\[
(*) \quad \left\| P(F) - \frac{1}{M} \sum_{n=1}^{M} \theta_n^* F \theta_n \right\|_A \leq \|P(F - F_1)\|_A + \|F - F_1\|_A < 2\epsilon.
\]

Now if \(F \in J \), \((*) \) shows that \(P(F) \) can be approximated arbitrarily closely by elements of \(J \). Since \(J \) is closed, this shows that \(P(F) \in J \). Hence, \(P(J) \subseteq J \) and \(P(J) = 0 \).

If \(P(F u_n) = 0 \) for all \(n \), then \(F(n) = 0 \) for all \(n \) and so \(F = 0 \). Since \(J \) is a two-sided ideal and \(P(J) = 0 \), we have \(P(J u_n) = 0 \) for all \(n \). Hence, \(J = 0 \) and \(A \) is simple. \(\square \)

Theorem 2. The Banach algebra \(A \) is not a spectral subalgebra of \(B \).

Proof. We construct an algebraically irreducible \(A \)-module which is not contained in any \(* \)-representation of \(B \) on a Hilbert space. By Corollary 1.5 of [3], it will follow that \(A \) is not a spectral subalgebra of \(B \).

Let \(E \) be the Banach \(A \)-module \(C(T) \) with sup norm and with (continuous) action of \(A \) given by

\[
(F \varphi)(z) = \sum_{n} F(n, z)e^n \varphi(z - n\theta), \quad \varphi \in E, F \in A, z \in T.
\]

We show that \(E \) is in fact algebraically irreducible. Let \(\varphi \in E \) be not identically equal to zero. Since the complex conjugate of \(\varphi \) is in \(A \), the algebraic span \(A\varphi \) contains \(|\varphi|^2 \), which we denote by \(\psi \). Note \(u_n \psi(z) = e^n \psi(z - n\theta) \). Since \(\theta \) is irrational and \(T \) is compact, there exists finitely many \(n_1, \ldots, n_k \in \mathbb{Z} \) such that the sum of \(u_n \psi \) from \(i = 1 \) to \(k \) never vanishes on \(T \). If \(\chi \) is this sum, then \(1/\chi \) is in \(C(T) \subseteq A \), so \(1 \in A\varphi \) and, hence, \(E = A\varphi \). This proves that \(E \) is algebraically irreducible.
It remains to show that no \(\ast \)-representation of \(B \) on a Hilbert space contains \(E \). But the action of \(Z \) on \(l \in E \) is given by \(u_n l = e^n l \). Clearly the Hilbert space could not have a unitary, or even isometric, action of \(Z \). □

REFERENCES

1. T. W. Palmer, *Spectral algebras*, Rocky Mountain. J. Math. 22 (1992), 293–328. MR 93d:46079
2. S. C. Power, *Simplicity of \(C^\ast \)-algebras of minimal dynamical systems*, J. London Math. Soc. (2) 18 (1978), 534–538. MR 81e:46057
3. L. B. Schweitzer, *A short proof that \(M_n(A) \) is local if \(A \) is local and Fréchet*, Internat. J. Math. 3 (1992), 581–589. MR 93i:46082

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, ALBERTA, CANADA T2N 1N4

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

E-mail address: lschweitz@alpha.math.uvic.ca