Role of Baroreflex Sensitivity in Predicting Tilt Training Response in Patients with Neurally Mediated Syncope

Kangwon National University Hospital
Kwang Jin Chun
Background

• Neurally mediated syncope (NMS)
 – The most common type of syncope
 – Pathophysiological mechanism remain uncertain
 – Head-up tilt test (HUT) is often used to confirm NMS in patients with a suspicious history of NMS
 – Autonomic nervous system
 – Arterial baroreflex control of heart rate (baroreflex sensitivity, BRS) and vascular tone also play a role
Background

• The role of arterial baroreflex function in the pathophysiology of NMS is controversial.

• Most studies have failed to any clear evidence of alteration in arterial baroreflex control of heart rate

• A few have reported a reduction, or an increase in baroreflex activity
P < 0.0003
	NTG−, n = 39	HUT+, n = 21	NTG+, n = 37	P ANOVA
Gender (M/F)	26/13	12/9	19/18	0.39
Age (years)	35 ± 13	32 ± 14	36 ± 12	0.55
Body mass index (kg/m²)	25 ± 4	24 ± 3	23 ± 4†	0.027
Baroreflex sensitivity assessment				
SAP ramps (n/100 heart beats)	2.4 ± 2.2	2.0 ± 1.3	2.2 ± 1.7	0.75
BEI (%)	28 ± 19	44 ± 24†	48 ± 27†	<0.001
BRS (ms/mmHg)	12.8 ± 5.8	15.5 ± 7.4	16.8 ± 7.4†	0.048

![Graph showing changes in BRS (ms/mmHg) over time](image)

C

- **HUT+**: ▲
- **NTG+**: □
- **NTG−**: ●

Legend: *P = 0.004**
Subjects with tilt-induced VVS showed greater resting BRS

The enhanced reflex tachycardiac response to arterial baroreceptor deactivation at rest may represent a characteristic feature of subjects prone to tilt-induced VVS
Cumulative proportion free events

- < 8.5 ms/mmHg
- 8.5-12.4 ms/mmHg
- 12.5-17.6 ms/mmHg
- > 17.6 ms/mmHg

Log-Rank test

\[p < 0.001 \]

Tilt test (minutes)

- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 45
Reduced BRS during HUT has independent role in predicting the recurrence of syncope

Cox’s multivariate analysis of VVS recurrence during follow-up

Model	Hazard ratio (95% CI)	P-value
Model 1		
Female gender	3.19 (1.40–7.28)	0.006
≥ 3 syncope events before HUT	2.95 (1.26–6.87)	0.012
RR interval²	0.98 (0.71–1.34)	0.88
Baseline BRS	0.94 (0.88–1.00)	0.058
Model 2		
Female gender	3.01 (1.37–6.63)	0.006
≥ 3 syncope events before HUT	3.60 (1.46–8.83)	0.005
5 min HUT BRS	0.91 (0.84–0.99)	0.030
Model 3		
Female gender	2.86 (1.07–7.61)	0.036
≥ 3 syncope events before HUT	5.49 (1.58–19.08)	0.007
5 min NTG BRS	0.73 (0.57–0.94)	0.016
5 min NTG BEI³	1.02 (0.74–1.40)	0.92

Europace 2010;12:1149-1155
Schematic practical decision pathway for the first-line management of reflex syncope

Reflex syncope

Education, life-style measures (Class I)

Severe/recurrent form

Low BP phenotype

Prodromes

Hypotensive drugs

Dominant cardioinhibition

No or very short

Yes

Younger

• Fludrocortisone
• Midodrine (Class IIb)

Counter-pressure manoeuvre (Class IIa)

Tilt training (Class IIb)

ILR-guided management in selected cases (Class I); See section 4.2.4

Stop/reduce hypotensive drugs (Class IIa)

Cardiac pacing (Class IIa/IIb) SeeFigure 10

Older
Tilt Training

• Tilt training by head-up tilt table in hospital
• Home self training
 – Standing against a wall (20cm from the wall for 30 minutes)
The Effect of Orthostatic Training in the Prevention of Vasovagal Syncope and Its Influencing Factors

Hui ZENG,¹ MD, Kanyi GE,¹ Weilun ZHANG,¹ Guang WANG,¹ MD, and Lijun GUO,¹ MD

Home orthostatic self-training is an effective therapy for the prevention of VVS

Int Heart J 2008;49:707-712
Is Home Orthostatic Self-Training Effective in Preventing Neurally Mediated Syncope?

YOUNG KEUN ON, M.D., Ph.D.,* JUNGWAE PARK, R.N.,* JUNE HUH, M.D., Ph.D.,† and JUNE SOO KIM, M.D., Ph.D.*

From the *Division of Cardiology, Department of Medicine, and †Department of Pediatrics Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

| Follow up Head-up Tilt Test Between Tilt Training Group and Controls |
|---|---|---|
| | Tilt Training (n = 16) | Controls (n = 17) | P |
| Tilt-duration (min) | 39 (10–45) | 39 (10–45) | 0.913 |
| FU response of head-up tilt test | 9/16 (56%) | 9/17 (53%) | 0.849 |

Home orthostatic self-training was ineffective in reducing the positive response rate of HUT
Home orthostatic self-training was unable to influence the spontaneous syncope recurrence except for vasodepressor type
Repeated tilt testing in patients with
tilt-positive neurally mediated syncope

Hugo Ectora,*, Rik Willemsa, Hein Heidbüchela, Tony Reybrouckb,c

a Department of Cardiology, University Hospital Gasthuisberg, Leuven, Belgium
b Department of Cardiovascular Rehabilitation, University Hospital Gasthuisberg, Leuven, Belgium
c Department of Rehabilitation Sciences, University of Leuven, Leuven, Belgium

- In-hospital tilt training by tilt table
- The HUT was repeated day after day (one session per day)
- All 222 patients obtained a negative tilt test (mean 2.9 tilt session)
Tilt training increases the vasoconstrictor reserve in patients with neurally mediated syncope evoked by head-up tilt testing

Bart Verheyden\(^1\), Hugo Ector\(^2\), Andre E. Aubert\(^1\), and Tony Reybrouck\(^3\)

\(^1\)Division of Experimental Cardiology, University Hospital Gasthuisberg, O/N 1, bus 704, Herestraat 49, 3000 Leuven, Belgium; \(^2\)Division of Cardiology, University Hospital Gasthuisberg, Leuven, Belgium; \(^3\)Research Centre for Cardiovascular and Respiratory Rehabilitation, University Hospital Gasthuisberg, Leuven, Belgium

Received 8 August 2007; revised 18 January 2008; accepted 5 March 2008; online publish-ahead-of-print 27 March 2008

This paper was guest edited by Dr Denise Hachul, Heart Institute, Sao Paulo University, Sao Paulo, Brazil

- The patients with 2 consecutive positive tilt test was enrolled
- In-hospital daily repeated tilt training
- The target was to obtain 2 consecutive negative tilt tests
- Follow-up tilt test was performed at 6 weeks later
Tilt testing appears to restore orthostatic tolerance by increasing the amount of vasoconstriction.
Background

• In-hospital tilt training vs home orthostatic self-training

• Limitation
 – Hospital admission
 – Medical costs
 – Non-response to tilt training
Purpose

• This study aimed to assess the role of BRS in predicting response to tilt training in patients with NMS
Methods

• **Inclusion criteria**
 – Tilt training registry from Mar. 2006 to Mar. 2014
 – HUT positive patients with suggestive clinical history
 – The patients with **two consecutive positive responses** to HUT were enrolled
 • A positive response to the initial diagnostic HUT and a positive response to the first session of tilt training

• **Exclusion criteria**
 – Any other cause of syncope
 – Structural heart disease

• **Retrospectively reviewed**
Methods

• **Tilt test protocol**
 - Supine position (10 min)
 - Passive head-up tilt 70° (30min)
 - Isoproterenol 1ug/min ~ 5ug/min (each 3 min)

• **Tilt training**
 - Tilt tests were repeated day after day
 • two sessions per day

• **Data acquisition**
 - During sequential head-up tilt test, beat to beat arterial blood pressure was continuously measured non-invasively by Finometer® PRO
Methods

• Arterial baroreflex sensitivity
 – Cross-correlation baroreflex sensitivity (xBRS) method

• Data analysis
 – Before passive HUT (5 min)
 – After passive HUT (5 min)
 – Before syncope or study end (5 min)

• Tilt training response
 – Three consecutive negative tilt test
Methods

- Diagnostic tilt test
- Tilt training at hospital (N=111)
 - Session 1
 - Session 1 negative (N=41)
 - Data loss (N=13)
 - Study population (N=57)
 - Responder (N=52)
 - Non-responder (N=5)
Results

- **Baseline clinical characteristics**

	Patients (N = 57)
Age (years)	33.9 ± 13.5
Male gender	26 (45.6)
Height (cm)	167.9 ± 9.2
Weight (kg)	63.1 ± 11.1
BMI (kg/m²)	22.4 ± 3.4
Frequency of syncope before diagnosis	5.2 ± 5.5
Type of VVS	
Mixed	14 (24.6)
Cardioinhibitory	3 (5.3)
Vasodepressive	40 (70.2)
Phase of positive diagnostic HUT	
Passive	22 (38.6)
Isoproterenol	35 (61.4)
Duration of initial diagnostic HUT (min)	30.1 ±12.4

VVS, vasovagal syncope; HUT, head-up tilt test
Baseline clinical characteristics of the study groups

	Responder group (N = 52)	Non-responder group (N = 5)	P value
Age (years)	32.9 ± 13.3	44.4 ± 13.2	0.071
Male gender	25 (48.1)	1 (20.0)	0.62
Height (cm)	168.6 ± 8.9	160.7 ± 10.0	0.067
Weight (kg)	63.4 ± 10.9	60.6 ± 14.2	0.604
BMI (kg/m²)	22.3 ± 3.4	23.2 ± 3.0	0.466
Frequency of syncope before diagnosis	5.2 ± 5.7	5.0 ± 3.0	0.439
Type of VVS			
Mixed	13 (25.0)	1 (20.0)	0.323
Cardioinhibitory	2 (3.8)	1 (20.0)	
Vasodepressive	37 (71.2)	3 (60.0)	
Phase of positive diagnostic HUT			
Passive	19 (36.5)	3 (60.0)	0.364
Isoproterenol	33 (63.5)	2 (40.0)	
Duration of initial diagnostic HUT (min)	30.3 ± 12.7	28.6 ± 9.9	0.597
Total number of tilt training session	5.5 (4.0 – 6.8)	6.0 (5.0 – 8.0)	0.265
Total time of tilt training (min)	214.0 (175.8 – 263.5)	237.0 (144.5 – 301.5)	0.854
Mean time of tilt training (min)	39.7 ± 6.0	34.5 ± 5.6	0.071
BRS and hemodynamic data during the first session of the tilt training (1)

	Tilt training responder group (N = 52)	Tilt training non-responder group (N = 5)	P value
Supine position			
BRS (ms/mmHg)	18.17 ± 10.09	7.99 ± 5.84	0.008
SBP (mmHg)	108.2 ± 13.5	133.3 ± 35.2	0.094
DBP (mmHg)	57.1 ± 10.0	64.7 ± 21.6	0.555
MBP (mmHg)	77.6 ± 10.1	92.6 ± 26.1	0.186
HR (bpm)	63.5 ± 8.9	64.8 ± 15.0	0.732
SVR (dyn·s/cm²)	1148.8 ± 257.5	1138.1 ± 536.6	0.250
After upright posture			
BRS (ms/mmHg)	6.78 ± 4.02	4.74 ± 1.88	0.120
SBP (mmHg)*	103.2 ± 13.5	119.6 ± 20.0	0.024
DBP (mmHg)*	61.5 ± 9.4	71.4 ± 6.4	0.010
MBP (mmHg)*	77.6 ± 10.3	90.9 ± 11.8	0.016
HR (bpm)*	81.1 ± 12.0	76.1 ± 13.6	0.339
SVR (dyn·s/cm²)*	1269.1 ± 237.3	1648.2 ± 449.1	0.091
- BRS and hemodynamic data during the first session of the tilt training (2)

	Tilt training responder group (N = 52)	Tilt training non-responder group (N = 5)	\(P \) value
Before syncope develop			
BRS (ms/mmHg)	5.89 ± 4.17	5.03 ± 3.07	0.540
SBP (mmHg)	94.1 ± 13.0	108.2 ± 20.5	0.079
DBP (mmHg)	57.2 ± 8.8	64.8 ± 6.9	0.036
MBP (mmHg)	70.4 ± 9.3	81.4 ± 12.0	0.042
HR (bpm)	98.8 ± 20.5	85.6 ± 8.5	0.164
SVR (dyn⋅s/cm\(^5\))	1210.7 ± 277.2	1548.3 ± 409.7	0.065

BRS value ≥ 8.945 in supine position – n(%)

	45 (86.5)	1 (20.0)	0.004

HUT, head-up tilt test; BRS, baroreflex sensitivity; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate; SVR, systemic vascular resistance
- Changes of BRS and SVR before and after tilt training

	Tilt training responder group (N = 52)	Tilt training non-responder group (N = 5)	P value
Supine position			
BRS (ms/mmHg)*	1.11 ± 11.93	2.79 ± 4.55	0.489
SVR (dyn·s/cm^5)	-29.3 ± 363.7	-34.9 ± 605.4	0.880
After tilt table up			
BRS (ms/mmHg)†	0.71 ± 3.56	0.76 ± 1.94	0.772
SVR (dyn·s/cm^5)‡	-47.7 ± 299.3	-303.1 ± 588.4	0.390
Before syncope develop			
BRS (ms/mmHg)§	-2.37 ± 4.35	-1.25 ± 3.21	0.656
SVR (dyn·s/cm^5)‡	-88.3 ± 396.7	-171.3 ± 580.3	0.670

BRS, baroreflex sensitivity; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate; SVR, systemic vascular resistance
Multivariate analysis of tilt training Non-response

	Hazard ratio (95% CI)	\(p \) value
Model 1		
BRS < 8.945 in the supine position	23.10 (1.2 – 443.59)	0.037
MBP after upright posture	1.07 (0.96 – 1.18)	0.227
Frequency of syncope before initial HUT	1.12 (0.87 – 1.43)	0.377
Total number of tilt training session	1.04 (0.50 – 2.17)	0.907
Model 2		
BRS < 8.945 in the supine position	29.62 (1.64 – 534.14)	0.022
MBP before syncope	1.07 (0.94 – 1.22)	0.312
Frequency of syncope before initial HUT	1.08 (0.85 – 1.38)	0.544
Total number of tilt training session	0.95 (0.42 – 2.15)	0.895
Model 3		
BRS < 8.945 in the supine position	46.55 (1.66 – 1308.64)	0.024
Female gender	0.59 (0.03 – 12.86)	0.739
Frequency of syncope before initial HUT	1.11 (0.88 – 1.40)	0.388
Total number of tilt training session	1.13 (0.54 – 2.39)	0.742
Summary

- Female gender, frequency of syncope before tilt training, type of VVS, phase of positive diagnostic HUT, total number of tilt training session were not different between the two groups.

- Changes of BRS and SVR before and after tilt training between two groups were not different.

- Low BRS value (especially <8.945 ms/mmHg) in supine position was associated with tilt training non-response.
Conclusion

• BRS in supine position before head-up tilt could be a predictor for determining the response to tilt training in patients with NMS who are being considered for in-hospital tilt training
THANK YOU
FOR YOUR ATTENTION