A modular effector with a DNase domain and a marker for T6SS substrates

Biswanath Jana¹,3, Chaya M. Fridman¹,3, Eran Bosis² & Dor Salomon¹

Bacteria deliver toxic effectors via type VI secretion systems (T6SSs) to dominate competitors, but the identity and function of many effectors remain unknown. Here we identify a Vibrio antibacterial T6SS effector that contains a previously undescribed, widespread DNase toxin domain that we call PoNe (Polymorphic Nuclease effector). PoNe belongs to a diverse superfamily of PD-(D/E)xK phosphodiesterases, and is associated with several toxin delivery systems including type V, type VI, and type VII. PoNe toxicity is antagonized by cognate immunity proteins (PoNi) containing DUF1911 and DUF1910 domains. In addition to PoNe, the effector contains a domain of unknown function (FIX domain) that is also found N-terminal to known toxin domains and is genetically and functionally linked to T6SS. FIX sequences can be used to identify T6SS effector candidates with potentially novel toxin domains. Our findings underline the modular nature of bacterial effectors harboring delivery or marker domains, specific to a secretion system, fused to interchangeable toxins.
Bacteria are social organisms that constantly interact with neighboring cells. To ensure sufficient nutrients and space, bacteria must be able to outcompete their nonkin neighbors. The type VI secretion system (T6SS) is a widespread mechanism used by Gram-negative bacteria to antagonize competitors. The T6SS is a multi-protein machine that is often encoded by large gene clusters. It delivers toxins, called effectors, across the bacterial cell envelope and into neighboring cells. The T6SS is composed of three sub-complexes: the membrane complex, the baseplate, and the tail. The membrane complex recruits the baseplate to the cell membrane. Consequently, the baseplate serves as a platform for assembling the tail tube. This secreted tube is composed of stacked hexameric rings of a protein called Hcp; these rings are capped by a spike composed of a VgrG trimer and a PAAR repeat-containing protein that sharpens the tip. Effectors that mediate T6SS activity decorate the secreted tube. Contraction of an outer sheath propels the inner tube, with the effectors, out of the cell.

Although the T6SS was originally identified as a virulence mechanism, it is now commonly acknowledged that T6SSs mainly play a role in interbacterial competition. Indeed, most T6SS effectors that have been identified mediate antibacterial activities. Such antibacterial effectors are paired, as bi-cistronic competitors. The T6SS is a multi-protein machine that is often encoded by large gene clusters. It delivers toxins, called effectors, across the bacterial cell envelope and into neighboring cells. The T6SS is composed of three sub-complexes: the membrane complex, the baseplate, and the tail. The membrane complex recruits the baseplate to the cell membrane. Consequently, the baseplate serves as a platform for assembling the tail tube. This secreted tube is composed of stacked hexameric rings of a protein called Hcp; these rings are capped by a spike composed of a VgrG trimer and a PAAR repeat-containing protein that sharpens the tip. Effectors that mediate T6SS activity decorate the secreted tube. Contraction of an outer sheath propels the inner tube, with the effectors, out of the cell.

Although the T6SS was originally identified as a virulence mechanism, it is now commonly acknowledged that T6SSs mainly play a role in interbacterial competition. Indeed, most T6SS effectors that have been identified mediate antibacterial activities. Such antibacterial effectors are paired, as bi-cistronic competitors, with cognate immunity proteins that inhibit the activity of the effectors and thus protect the bacterium from self- or kin intoxication. To date, various antibacterial effector families have been described. Some effectors were shown to target vital bacterial components such as nucleic acids, cell walls, cell membranes, and the essential dinucleotides NAD(+) and NADP (+), whereas others target conserved proteins such as FtsZ, which is involved in bacterial cell division. Noteworthy, various T6SS effectors targeting eukaryotic cell processes and components have also been described.

T6SS effectors have been identified mainly by examining genes within or adjacent to T6SS gene clusters, their homology to known effectors, or by the presence of an N-terminal delivery domain. N-terminal domains associated with T6SS effectors can be either T6SS-secreted tail components (e.g., VgrG5, Hcp26, or PAAR10) or specialized domains such as Rhs7 and MIX24; the latter can serve as a marker for T6SS substrates. Notably, many toxins that have been identified as T6SS effectors do not contain a recognizable delivery domain or signal, suggesting that additional delivery domains remain to be discovered.

Vibrio parahaemolyticus, an emerging pathogen found in marine environments, harbors two T6SS2s29,30. T6SS1 mediates antibacterial activity and is predominantly associated with pathogenic isolates, whereas T6SS2 is found in all V. parahaemolyticus isolates. We previously characterized T6SS1 in the clinical isolate RIMD 2210633 and identified three antibacterial effectors24. Two effectors, VP1388 and VP1415, are encoded within the T6SS1 gene cluster and are common to T6SS1 clusters in V. parahaemolyticus. VP1388 contains a MIX domain, whereas VP1415 contains a PAAR domain. The third effector, VPA1263, is a MIX-effector present only in a subset of V. parahaemolyticus isolates. Several reports revealed that members of the same bacterial species often harbor different T6SS effector arsenals. We recently showed that MIX effectors can account for some of the effector diversity in members of the Vibrionaceae family. However, we found that many T6SS-encoding Vibrionaceae strains, including V. parahaemolyticus isolates, do not contain multiple MIX effectors. Thus, other mechanisms of effector diversification probably exist in vibrios.

Here, we set out to identify non-MIX effectors that diversify T6SS1 repertoires in V. parahaemolyticus. To this end, we focus on V. parahaemolyticus 12-297/B, an isolate from Vietnam that causes acute hepatopancreatic necrosis disease in shrimp.

Vibrio parahaemolyticus 12-297/B does not encode MIX effectors, aside from a VP1388-homolog that is encoded within the T6SS1 gene cluster. Therefore, we hypothesize that it harbors non-MIX effectors that diversify its T6SS1 effector arsenal. Indeed, we find an auxiliary T6SS module that contains a VgrG-encoding gene, which we name vgrG1b. The newly identified effector VgrG1b appears to be the first in a three-gene operon flanked by a tRNA gene and predicted transposases, suggesting that this module is mobile. We found the VgrG1b module in the genomes of other V. parahaemolyticus strains isolated around the world (Fig. 1b and Supplementary Table 1).

Results

T6SS1 auxiliary module in V. parahaemolyticus 12-297/B. Effectors found outside of the main T6SS gene clusters in vibrios often belong to auxiliary T6SS modules that encode at least one of the tail tube components: VgrG, Hcp, or PAAR. Searching for such auxiliary T6SS modules, we performed TBLASTN analysis for genes encoding VgrG, Hcp, or PAAR proteins in the genome of V. parahaemolyticus 12-297/B. Our search revealed a gene encoding an orphan VgrG, B5C30_RS14470. This gene was annotated as a pseudogene, yet examination of the open reading frame revealed an intact gene (located between positions 22692 and 20311 in reference sequence NZ_MYFG01000470.1). This sequence is predicted to encode a VgrG protein homologous to VgrG1 of V. parahaemolyticus, with an additional C-terminal extension of 101 amino acids (Supplementary Fig. 1). This gene is also annotated as a virulence effector further reveals an N-terminal domain, which we name FIX (found in type sIX effector). We show that FIX is genetically and functionally linked to T6SS, and that it is found in many known and predicted T6SS effectors. We propose that FIX can serve as a marker for T6SS substrates.

New T6SS1 antibacterial effector/immunity pair. Since VgrG1b is very similar to VgrG1, we predicted that the VgrG1b module plays a role in T6SS1 activity. Before testing this, we first confirmed, using secretion and competition assays, that like the previously characterized V. parahaemolyticus POR1 (a RIMD 2210633 derivative) T6SS124,30, V. parahaemolyticus 12-297/B T6SS1 is functional and mediates antibacterial activity under warm marine-like conditions in the presence of surface-sensing activation (Supplementary Fig. 2).

Often, vgrG-containing modules encode downstream effectors. Therefore, we hypothesized that the two genes found downstream of vgrG1b, namely, B5C30_RS14465 (encoding WP_029857615.1) and B5C30_RS14460 (encoding WP_024703575.1) (hereafter named v12_14465 and v12_14460, respectively), encode an effector/immunity (E/I) pair of T6SS1 (Fig. 1a). Consistent with this premise, deletion of the genes encoding the putative E/I pair resulted in the loss of immunity against T6SS1-mediated self-intoxication. However, immunity was restored upon exogenous expression of V12_14460, thus confirming its role as an immunity protein (Fig. 1c). Self-intoxication, but not overall T6SS1-mediated antibacterial activity against Escherichia coli prey, was dependent on v12_14465, confirming that it is a bona
Notably, deletions of *E. coli* T6SS1 effectors were still delivered in its absence (Fig. 1f). Indeed, deletion of *vgrG1b* did not affect the overall T6SS1-mediated antibacterial activity against *E. coli* prey, indicating that other T6SS1 effectors were still delivered in its absence (Fig. 1f). Notably, deletions of *hcp1*, *v12_14465*, or *vgrG1b* did not affect *V. parahaemolyticus* 12-297/B growth (Supplementary Fig. 3). We further hypothesized that the 101 residues C-terminal to the T6SS1 antibacterial effector (Fig. 1d, f). Notably, exogenous delivery of the downstream effector, as fusing this extension to the T6SS1 module in *V. parahaemolyticus* 12-297/B (Supplementary Fig. 1). Therefore, we tested whether additional information required for effector delivery is found in this region of VgrG1b. As shown in Fig. 1e, swapping residues 520–692 of VgrG1 with residues 520–793 of VgrG1 (VgrG1ΔC101) did not complement the ΔvgrG1b_N strain. We noted that considerable differences are also found in the sequences corresponding to residues 520–692 of VgrG1, hampered V12_14465-mediated self-intoxication, which was comparable to inactivation of T6SS1 by *hcp1* deletion (Fig. 1e). However, the deletion of *vgrG1b* did not affect the overall T6SS1-mediated antibacterial activity against *E. coli* prey, indicating that other T6SS1 effectors were still delivered in its absence (Fig. 1f). Notably, deletions of *hcp1*, *v12_14465*, or *vgrG1b* did not affect *V. parahaemolyticus* 12-297/B growth (Supplementary Fig. 3).

We further hypothesized that the 101 residues C-terminal extension, found in VgrG1b but absent in VgrG1 (Supplementary Fig. 1), plays a role in the delivery of the downstream effector. Indeed, this C-terminal extension was required for effector delivery since ectopic expression of VgrG1b in which we removed the 101 C-terminal residues (VgrG1bΔC101) was unable to complement the loss of bacterial killing in the ΔvgrG1b_N strain (Fig. 1e). Yet, this C-terminal extension was not sufficient to allow delivery of the effector, as fusing this extension to the T6SS1 cluster-encoded VgrG1 (VgrG1Δ1b,ΔC101) did not complement the ΔvgrG1b_N strain. We noted that considerable differences are also found in the sequences corresponding to residues 520–692 of the two VgrG homologs (Supplementary Fig. 1). Therefore, we tested whether additional information required for effector delivery is found in this region of VgrG1. As shown in Fig. 1e, swapping residues 520–692 of VgrG1 with residues 520–793 of VgrG1b (VgrG1ΔC101) resulted in partial complementation of the ΔvgrG1b_N strain. Taken together, our results indicate that v12_14465-0 encodes a T6SS1 antibacterial E/I pair.

Fig. 1 An auxiliary T6SS1 module in *V. parahaemolyticus* 12-297/B. a T6SS1 VgrG1b auxiliary module. Genes are represented by arrows indicating the direction of translation. Locus tags (BSC30_RSxxxx) are shown above. b Locations in which the *V. parahaemolyticus* isolates containing the VgrG1 module have been isolated are denoted by red circles. Viability counts of *V. parahaemolyticus* 12-297/B growth (Supplementary Fig. 3).
whose delivery is dependent on VgrG1b. Since all tested VgrG forms were stably expressed in V. parahaemolyticus (Supplementary Fig. 4), we also conclude that the C-terminal end of VgrG1b contains information required and sufficient for delivery of its downstream effector.

V12_14465 belongs to a widespread family of new DNase toxins. Analysis of V12_14465 revealed no sequence homology to known toxin domains. Therefore, we set out to decipher the antibacterial mechanism of action and target of this effector. Exogenous expression of V12_14465 in E. coli was detrimental (Fig. 2a and Supplementary Fig. 5). Truncation analysis indicated that the V12_14465 C-terminal end, encompassing residues 283–449, was necessary and sufficient for the observed toxicity in E. coli (Fig. 2a and Supplementary Fig. 5). We named this toxic domain PoNe (as explained below). Using position-specific iterated BLAST (PSI-BLAST), we identified 1546 proteins containing a PoNe domain (Supplementary Data 1); these

Fig. 2 Effector V12_14465 contains a new DNase domain. a Schematic representation of full-length and truncated V12_14465 forms tested for toxicity upon expression in E. coli. The region necessary and sufficient for toxicity is denoted by dashed vertical blue lines (based on the results shown in Supplementary Fig. 5). The region of the toxic C-terminal domain (PoNe) in which a conserved motif was identified (residues 294–354) is illustrated using WebLogo 3. Secondary-structure prediction (Jpred) and the conserved motif are provided. Alpha helix is denoted as blue cylinder, and beta strands as orange arrows. A cyan oval above the WebLogo denotes the catalytic aspartic acid at position 335. b Domain architectures of PoNe-containing proteins. SP, signal peptide. c In vitro DNase activity assay. Purified E. coli genomic DNA (gDNA) was co-incubated with buffer or with the indicated purified proteins in the presence (+) or absence (−) of MgCl2 or EDTA at 37 °C for 30 min. The integrity of gDNA was visualized on 1% agarose gel. d Quantification of V. parahaemolyticus 12-297/B Δv12_14465-0 prey cells, constitutively expressing GFP from a plasmid (pGFP), that present DNA morphologies: DNA across entire cell area (T6SS), fragmented DNA (T7SS), or no DNA (T5SS). gDNA was detected using Hoechst dye fluorescence signal after 3 h of co-incubating prey with the indicated attacker strains. Results shown are average ± S.D. of three independent biological replicates. In each experiment, 100 prey cells were evaluated per treatment. e Sample images of prey cells described in d after 3 h of co-incubation with WT attackers. Dashed yellow shapes in DNA channel encircle prey cells detected in the GFP channel. Colored arrows denote prey cells presenting each of the three DNA morphologies described in d. Bar = 2 μm. WT wild-type. Source data are provided as a source data file.
proteins were widely distributed in the genomes of both Gram-negative and Gram-positive bacteria (Supplementary Fig. 6). Many PoNe domains were fused to N-terminal polymorphic toxin delivery domains of T6SS (e.g., PAAR10 and DUF428043), type VII secretion system (T7SS; e.g., LGX37 and WXG100343), and type V secretion system (T5SS) contact-dependent inhibition (e.g., DUF637 and Fil_haemagg235,40); they were even found fused to predicted Sec pathway (T2SS) signal peptide (Fig. 2b and Supplementary Data 1). These results suggest that V12_14465 belongs to a widespread family of antibacterial effectors associated with various protein secretion systems.

When we analyzed the multiple sequence alignment of the identified PoNe family members, we discovered a conserved motif: Kx3GExnGIDx2YxnYx3ExK (Fig. 2a). We noted that the PoNe conserved motif and its position within the predicted secondary structure resembled the conserved motif of members of the diverse PD-(D/E)xK phosphodiesterase superfamily, many of which target DNA41-43. Therefore, we hypothesized that PoNe constitutes a new family of phosphodiesterases with this superfamily, and that V12_14465 is a nuclease that targets DNA. Indeed, purified V12_14465 or its PoNe domain (V12_14465238-449) exhibited magnesium-dependent Dnase activity in vitro (Fig. 2c). We reasoned that if V12_14465 acts as a Dnase inside bacterial cells, then its activity should activate the SOS response, a mechanism used by bacteria to cope with DNA damage. As predicted, expression of V12_14465, or its PoNe domain, induced the expression of a fluorescent SOS response reporter in E. coli (Supplementary Fig. 7), consistent with PoNe inducing DNA damage. Elevated SOS signals were also detected under repressing conditions, possibly due to leaky expression which was also evident by visible toxicity (Supplementary Fig. 5a). Moreover, substitution of the conserved V12_14465 aspartic acid 335 for alanine (D335A), which is expected to play a role in the catalytic activity of the PD-(D/E)xK phosphodiesterase superfamily41, abolished bacterial toxicity (Fig. 2a and Supplementary Fig. 5), in vitro Dnase activity (Fig. 2c), and SOS response activation (Supplementary Fig. 7). Noteworthy, when we extracted total RNA from E. coli cells expressing V12_14465 we did not observe differences compared with control cells, suggesting that PoNe targets DNA rather than RNA (Supplementary Fig. 8).

To further test the hypothesis that PoNe-containing V12_14465 functions as a Dnase during bacterial competition, we used fluorescence microscopy. We visualized the DNA in prey cells lacking the v12_14465-0 E1/E pair (Δv12_14465-0) when competed against WT V. parahaemolyticus 12-297/B attacker or against a mutant in which the v12_14465 effector was deleted (Δv12_14465). As shown in Fig. 2d, e, prey cells in which DNA was no longer visible were detected after 3 h incubation with the WT attacker, but not when prey were competed against an attacker lacking the effector v12_14465. Taken together, these results demonstrate that V12_14465 is a bona fide antibacterial Dnase toxin.

Next, we aimed to determine whether other members of the PoNe family also possess Dnase activity. To this end, we expressed in E. coli the Bacillus cereus ATCC 14579 protein BC3021 (NP_832766.1). This protein harbors a C-terminal PoNe domain fused to an N-terminal region containing a T7SS LXG delivery domain. As we observed for V12_14465, the PoNe-containing B. cereus BC3021 was detrimental to E. coli, activated the SOS response, and induced DNA degradation in vivo (Supplementary Fig. 9). Taking the above results together, we conclude that PoNe constitutes a new family of Dnases that is widespread in antibacterial toxins associated with various secretion systems.

The N-terminus of V12_14465 contains a new T6SS marker. Next, we set out to characterize the N-terminal portion of effector V12_14465. Since PoNe is often fused to N-terminal effector delivery domains (Fig. 2b), we reasoned that the N-terminal part of V12_14465 contains a yet-unknown domain that is required for its T6SS-mediated delivery into recipient cells. Consistent with this premise, V12_14465 N-terminal truncations were unable to complement a deletion in v12_14465 during self-competition against a Δv12_14465-0 prey (Fig. 4a), even though these truncations were still functional toxins as evident by their toxicity upon expression in E. coli (Supplementary Fig. 5). This indicated that the N-terminal part of V12_14465 is required for its T6SS-mediated delivery. Using PSI-BLAST, we identified 2881 proteins containing a region homologous to the V12_14465 N-terminus. Interestingly, the identified proteins are almost exclusively encoded by Gram-negative bacteria (Supplementary data 2). Multiple sequence alignment of the homologous sequences revealed a possible domain of ~80 amino acids, corresponding to positions 43–121 in V12_14465, containing a conserved motif (Fig. 4b). Since this domain was first identified in T6SS effector V12_14465, we named it FIX (Found in type sIX effector).

Analysis of FIX-containing proteins showed that FIX is often fused to various C-terminal nuclease toxin domains, including PoNe, or to C-terminal extensions of unknown function (Fig. 4c and Supplementary Data 2). Interestingly, FIX is also present in various established T6SS-secreted effectors that have an...
N-terminal VgrG or PAAR domain (e.g., *V. parahaemolyticus* T6SS1 AHH nuclease domain-containing effector VP1415) (Fig. 4c and Supplementary Data 2). The presence of T6SS-related domains such as PAAR and VgrG in FIX-containing proteins, but not of domains associated with other effector secretion systems, suggested that FIX may be specifically linked to T6SS. Indeed, FIX-containing proteins are encoded almost exclusively (>96%) in bacterial genomes that harbor T6SS (Fig. 4d and Supplementary Data 2). Nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control.

Based on these results, we propose that FIX plays a role in T6SS effector delivery, and that it can serve as a new marker for T6SS-delivered proteins to enable the identification of novel T6SS substrates.

Discussion

In this work, we identified a VgrG module containing a new T6SS antibacterial effector/immunity pair in *V. parahaemolyticus*. We revealed a new bacterial DNase toxin family, which we named PoNe, that belongs to the PD-(D/E)xK superfamily of phosphodiesterases. PoNe is widespread and found in various Gram-negative and Gram-positive bacterial species. Because of the extreme divergence in sequence and structure of PD-(D/E)xK superfamily members, it was impossible to simply identify PoNe by homology searches. Like previously reported toxins belonging to the Tox-REase class, PoNe possesses the quintessential catalytic D-(D/E)xK residues in secondary-structure positions that are typical of members of this superfamily. However, the broad conserved motif that we identified in PoNe, which surrounds these core residues, is different from motifs found in Tox-REase toxins, indicating that PoNe represents a new and distinct toxin family. This conclusion is further supported by the

Fig. 3 V12_14460 provides immunity against PoNe domain. **a** Toxicity of V12_14465 variants expressed in *E. coli* BL21(DE3) from arabinose-inducible expression plasmid with or without V12_14460 (PoNiVP). OpaR, the *V. parahaemolyticus* high cell density quorum sensing master regulator, was used as a nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control. **b** Ni-Sepharose resin pull-down of myc/His-tagged V12_14465 forms with PoNiVP,Flag after co-expression in *E. coli* BL21(DE3). **c** Bacterial two-hybrid assay. The indicated proteins were expressed in *E. coli* BTH101 reporter strain fused to the T18 or T25 domain of the *Bordetella* adenylate cyclase. Bacteria were spotted on plates supplemented with the chromogenic substrate X-Gal. A dark-colored colony indicates protein-protein interaction. The *V. cholerae* T6SS effector VasX was used as a negative control. PoNiVP, V12_14460; V12_14465PoNe, V12_14465(283–449); V12_14465PoNe/D335A; V12_14465(283–449/D335A); pEmpty, empty expression vector. Source data are provided as a source data file.

Fig. 4 Antibacterial properties of the T6SS effector V12_14465 (V12_14465PoNe). **a** Toxicity of V12_14465 variants expressed in *E. coli* BL21(DE3) from arabinose-inducible expression plasmid with or without V12_14460 (PoNiVP). OpaR, the *V. parahaemolyticus* high cell density quorum sensing master regulator, was used as a nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control. **b** Ni-Sepharose resin pull-down of myc/His-tagged V12_14465 forms with PoNiVP,Flag after co-expression in *E. coli* BL21(DE3). **c** Bacterial two-hybrid assay. The indicated proteins were expressed in *E. coli* BTH101 reporter strain fused to the T18 or T25 domain of the *Bordetella* adenylate cyclase. Bacteria were spotted on plates supplemented with the chromogenic substrate X-Gal. A dark-colored colony indicates protein-protein interaction. The *V. cholerae* T6SS effector VasX was used as a negative control. PoNiVP, V12_14460; V12_14465PoNe, V12_14465(283–449); V12_14465PoNe/D335A; V12_14465(283–449/D335A); pEmpty, empty expression vector. Source data are provided as a source data file.

Fig. 5 Toxicity of V12_14465 variants expressed in *E. coli* BL21(DE3) from arabinose-inducible expression plasmid with or without V12_14460 (PoNiVP). OpaR, the *V. parahaemolyticus* high cell density quorum sensing master regulator, was used as a nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control. **b** Ni-Sepharose resin pull-down of myc/His-tagged V12_14465 forms with PoNiVP,Flag after co-expression in *E. coli* BL21(DE3). **c** Bacterial two-hybrid assay. The indicated proteins were expressed in *E. coli* BTH101 reporter strain fused to the T18 or T25 domain of the *Bordetella* adenylate cyclase. Bacteria were spotted on plates supplemented with the chromogenic substrate X-Gal. A dark-colored colony indicates protein-protein interaction. The *V. cholerae* T6SS effector VasX was used as a negative control. PoNiVP, V12_14460; V12_14465PoNe, V12_14465(283–449); V12_14465PoNe/D335A; V12_14465(283–449/D335A); pEmpty, empty expression vector. Source data are provided as a source data file.

Fig. 6 Antibacterial properties of the T6SS effector V12_14465 (V12_14465PoNe). **a** Toxicity of V12_14465 variants expressed in *E. coli* BL21(DE3) from arabinose-inducible expression plasmid with or without V12_14460 (PoNiVP). OpaR, the *V. parahaemolyticus* high cell density quorum sensing master regulator, was used as a nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control. **b** Ni-Sepharose resin pull-down of myc/His-tagged V12_14465 forms with PoNiVP,Flag after co-expression in *E. coli* BL21(DE3). **c** Bacterial two-hybrid assay. The indicated proteins were expressed in *E. coli* BTH101 reporter strain fused to the T18 or T25 domain of the *Bordetella* adenylate cyclase. Bacteria were spotted on plates supplemented with the chromogenic substrate X-Gal. A dark-colored colony indicates protein-protein interaction. The *V. cholerae* T6SS effector VasX was used as a negative control. PoNiVP, V12_14460; V12_14465PoNe, V12_14465(283–449); V12_14465PoNe/D335A; V12_14465(283–449/D335A); pEmpty, empty expression vector. Source data are provided as a source data file.

Fig. 7 Toxicity of V12_14465 variants expressed in *E. coli* BL21(DE3) from arabinose-inducible expression plasmid with or without V12_14460 (PoNiVP). OpaR, the *V. parahaemolyticus* high cell density quorum sensing master regulator, was used as a nontoxic control. VPA1263, a T6SS1 effector with a predicted colicin DNase domain, was used as a non-PoNe toxic control. **b** Ni-Sepharose resin pull-down of myc/His-tagged V12_14465 forms with PoNiVP,Flag after co-expression in *E. coli* BL21(DE3). **c** Bacterial two-hybrid assay. The indicated proteins were expressed in *E. coli* BTH101 reporter strain fused to the T18 or T25 domain of the *Bordetella* adenylate cyclase. Bacteria were spotted on plates supplemented with the chromogenic substrate X-Gal. A dark-colored colony indicates protein-protein interaction. The *V. cholerae* T6SS effector VasX was used as a negative control. PoNiVP, V12_14460; V12_14465PoNe, V12_14465(283–449); V12_14465PoNe/D335A; V12_14465(283–449/D335A); pEmpty, empty expression vector. Source data are provided as a source data file.
wide distribution of PoNe domains in bacterial species, and by its association with various effector secretion systems, such as T5SS, T6SS, and T7SS. Importantly, to the best of our knowledge, PoNe is the first toxin family of PD-(D/E)xK phosphodiesterases that has been experimentally demonstrated to have DNase activity.

We further showed that proteins containing DUF1911 and DUF1910, which we named PoNi, function as specific immunity proteins that bind and antagonize PoNe. Notably, DUF1911 and DUF1910 can be found downstream of proteins in which the PoNe domain was not detected. This can be explained, at least in part, by the presence of PoNe-like toxin domains (which did not pass our conservative threshold for PoNe family members; see the Methods section) that employ PoNi-like immunity proteins. In other instances, PoNi may be an orphan immunity gene, as was previously demonstrated for various T6SS immunity genes.

Fig. 4 V12_14465 contains a marker for T6SS substrates. a Viability counts of *V. parahaemolyticus* 12-297/B prey before (0 h) and after (4 h) co-incubation with the indicated *V. parahaemolyticus* 12-297/B attackers at 30 °C on media containing 3% NaCl. b Conservation pattern found in FIX homologs. The region shown corresponds to positions 40–125 in V12_14465. The image was produced using WebLogo 3. c Representative domain architectures of FIX-containing proteins. d Pie chart of FIX-containing bacterial genomes that encode a T6SS (encoding at least 9 T6SS core components). e Pie chart of domains encoded by genes found immediately upstream of FIX. The number of occurrences for each domain is listed next to its name. f Viability counts of *V. parahaemolyticus* 12-297/B prey before (0 h) and after (4 h) co-incubation with the indicated *V. parahaemolyticus* 12-297/B attackers at 30 °C on media containing 3% NaCl. Asterisks denote the statistical significance between samples at the 4 h timepoint by unpaired, two-tailed Student’s t test (*P* < 0.05); WT wild-type. Source data are provided as a source data file.
The modular nature of PoNe-containing toxins employing delivery domains of diverse secretion systems prompted us to investigate the N-terminal end of effector V12_14465. This led us to identify a region of ~80 residues that we named FIX. Like the previously reported T6SS marker MIX, FIX is genetically linked to T6SS. FIX is encoded almost exclusively by bacteria that harbor T6SS (>96% of genomes encoding FIX also harbor T6SS, whereas only ~25% of Gram-negative bacterial genomes are expected to encode T6SS). FIX-encoded genes are often neighbors of T6SS component-encoding genes such as VgrG or TssL, and FIX is found fused to known T6SS delivery domains such as PAAR or VgrG. Moreover, FIX is found N-terminal to diverse known toxin domains. Interestingly, most of these toxin domains, like PoNe, are predicted to target nucleic acids. These findings led us to propose that FIX can be used as a new marker for T6SS substrates. Therefore, it is likely that many, if not all, FIX-containing proteins are T6SS effectors. Importantly, aside from MIX, FIX is the only currently available marker for T6SS-secreted proteins that is not a T6SS structural component (i.e., Hcp, VgrG, and PAAR). Future studies of FIX proteins containing C-terminal domains of unknown function may lead to the discovery of novel toxin domains.

We noted that the T6SS markers, MIX and FIX, appear to be mutually exclusive because we did not find proteins containing both of them. This observation implies different or competing mechanisms of T6SS association or roles in the delivery process for these two markers. Future work will determine whether FIX plays either a structural or functional role in T6SS-mediated delivery, such as binding to T6SS-secreted structural components. Although we showed that FIX is required for delivery of a T6SS effector, we have not been able to determine whether FIX is also a bona fide T6SS secretion domain sufficient for T6SS-mediated delivery, or whether it can mediate binding directly to a T6SS tail component. Thus, elucidating FIX’s exact function will be addressed in future studies.

In conclusion, we identified a new DNase toxin family and its cognate immunity domains, and we also revealed a new marker for T6SS substrates. Our findings illustrate the modular nature of secreted bacterial effectors, and demonstrate the potential to use such modular domains for discovering new toxins.

Methods

Strains and media.

Vibrio parahaemolyticus isolates 12-297/B (gift from Donald Lightner at the University of Arizona), RIMD 2210633 (gift from Kim Orth at the University of Arizona), RIMD 2210633 ΔnpB (AS derivative), and their derivatives were routinely grown in Marine Lysogeny broth (MLB; LB media supplemented with NaCl to a final concentration of 3% wt/vol) or on marine minimal media (MMM) agar plates (2% wt/vol NaCl, 0.4% wt/vol galactose, 5 mM MgSO4, 5 mM K2SO4, 77 mM KH2PO4, 35 mM KH2PO4, 20 mM NH4Cl, 1.5% wt/vol agar) at 30 °C.

Escherichia coli strain DH5α (λ pir) (gift from Eric V. Stabb at the University of Georgia) was used for plasmid maintenance and amplification. *E. coli* strain DH5α was used as prey in bacterial competition assays. *E. coli* strain BL21(DE3) was used for protein expression and for toxicity assays. *E. coli* strain BTH101 (from BACTH system kit) was used for BACTH experiments. *E. coli* strains were routinely grown in 2xYT media (1.6% wt/vol tryptone, 1% wt/vol yeast extract, 0.5% wt/vol NaCl), or on LB (1% wt/vol NaCl) agar plates at 37 °C. When necessary, media were supplemented with 10 μg/mL chloramphenicol, 30 μg/mL (for *E. coli*) or 250 μg/mL (for *V. parahaemolyticus*) kanamycin, 100 μg/mL ampicillin, or 100 μg/mL spectinomycin.

To induce the expression of genes from a plasmid, 0.1, 0.05, or 0.01% (wt/vol) L-arabinose (when required to induce expression from plasmids) was used as prey in bacterial competition assays.

Construction of deletion strains.

For in-frame, genomic deletions of *hcp1* (B5C30_RS15290), *vgrG1* (B5C30_RS14460), or *v12-14465* (B5C30_RS14465 - B5C30_RS14466) in *V. parahaemolyticus* 12-297/B, 1 kb sequences upstream and downstream of each specified gene were cloned into *V. cholerae* strain VPA12-297/B via tri-parental mating using *E. coli* DH5α (λ pir) and a conjugation helper. Trans-conjugants were selected on MMM agar plates containing chloramphenicol (10 μg/mL). The resulting trans-conjugants were grown on M63 plates with sucrose (15% wt/vol) for counter-selection and loss of the SaCl-containing plasmid. In-frame, genomic deletion of *v12-14465* was performed as described previously30,31. Construction of in-frame, genomic deletion of *POR1* *hcp1* was reported previously30.

Bacterial competition assay.

Attackers and prey strains. Attacker and prey strains were grown overnight in appropriate broth (MLB for *V. parahaemolyticus* and 2xYT for *E. coli*) with the addition of antibiotics when maintenance of plasmids was required. Competition assays were performed as previously described30,31. Briefly, cultures were normalized to OD600 = 0.5 and were mixed at a 4:1 ratio (attacker:prey). Mixtures of triplicates were incubated for 4 h at 30 °C on MLB agar plates or in MLB plates containing 0.1 or 0.01% (wt/vol) L-arabinose (when required to induce expression from plasmids). CFU of prey were calculated after they were grown on selective plates at 0 and 4 h. Assays were repeated at least three times with similar results, and the results from representative experiments are shown.

Protein secretion assay.

Expression and secretion of *V. parahaemolyticus* VgrG1. Expression of a truncated version of the *V. parahaemolyticus* (VgrG1) coding sequence was amplified by PCR from genomic DNA of RIMD 2210633 and inserted in-frame into the MCS of pBAD/Myc−His vector (Invitrogen) harboring a kanamycin-resistance cassette, with a C-terminal Flag tag.

For bacterial expression of *V. parahaemolyticus* T6SS effector, its coding sequence was amplified from *V. parahaemolyticus* RIMD 2210633 genomic DNA and inserted into pPro25 in-frame with a N-terminal PpeB signal peptide and a C-terminal Myc−6xHis tag. The Gibson assembly method31 was employed to generate the above plasmids.

For bacterial expression of *VPA1263*, a T6SS1 effector with predicted colicin-like DNase domain30, its coding sequence was amplified from *V. parahaemolyticus* RIMD 2210633 genomic DNA and inserted into the SacI and KpnI sites in the MCS of pBAD230 in-frame with a C-terminal Myc−6xHis tag. Construction of the plasmid for expression of OpaR was previously reported30.

To generate *v12-14465*ΔD335A mutant, site-directed mutagenesis was performed using the above-mentioned pBAD/Myc−His plasmids harboring *v12-14465* as a template to generate pV12-14465ΔD335A. This construct served as a template for amplification and the subsequent generation of the D335A variant into subsequently described plasmids.

Plasmids used for the BACTH assay were constructed using the Gateway cloning method. The designated *v12-14465* forms were amplified from *V. cholerae* strain vgrG1 effector (335D335A, whereas the *V. cholerae* strain vgrG1 effector (NP_252211.1) was amplified from *V. cholerae* strain vgrG1b genomic DNA. The genes were introduced into the entry plasmid pENTER-D-TOPO using the pENTER-D-TOPO cloning kit (Invitrogen) following the manufacturer’s instructions, followed by transfer to the BACTH destination plasmids pST25_DEST or pUT18c_DEST (Invitrogen) using the Gateway LR clone II enzyme mix kit (Invitrogen), according to the manufacturer’s instructions.

All constructs were confirmed by DNA sequencing.
V12_14460 (the immunity protein; see above) can be released from V12_14465. Cells were disrupted by using a high pressure cell disruptor (Constant system One Shot cell disruptor, model CD-10). Cell debris was removed by centrifugation for 20 min at 13,300 x g at 4 °C. Supernatant fractions of lysed cells containing the denatured His-tagged V12_14465 variants were mixed with 100 µL Ni-Sepharose resin (50% slurry; GE healthcare) and incubated for 1 h at 4 °C with constant shaking. The suspensions (lysate with Ni-Sepharose resin) were loaded onto a column. Immobilized resin was washed with 10 ml wash buffer A (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol, 40 mM imidazole, and 6 M urea). Bound proteins were eluted from the column using 1 ml of elution buffer A (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol, 50 mM imidazole, and 6 M urea). Buffers were kept at 4 °C. The presence and purity of the eluted proteins were confirmed by SDS-PAGE.

To refold the denatured, purified proteins before in vitro DNase activity assays, a step-wise refolding procedure was applied. First, the eluted proteins were diluted twofold in ice-cold refolding buffer (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol) and incubated for 10 min on ice. This step was repeated, and then the final suspension was concentrated to 300 µl using a Spin-X UF filter (BiaBasic column) (Corning; 30 kDa or 5 kDa columns were used for full-length or truncated versions of V12_14465, respectively). The concentrated protein suspension was diluted in 3 ml of ice-cold DNase assay buffer (10 mM Tris-Cl pH 7.5, and 30 mM NaCl). The concentration and dilution in DNase assay buffer steps were repeated twice, resulting in 300 µmol of concentrated protein for each reference DNase assay. The purified proteins were quantified by the Bradford method using 5X Bradford reagent (Bio-rad).

In vitro DNase assay. Escherichia coli BL21(DE3) containing the indicated pBAD/Myc–His plasmids for expression of BC3021 variants were grown overnight in 2xYT media supplemented with kanamycin and 0.2% (wt/vol) glucose. In each experiment the cultures were washed with 2xYT and normalized to an OD600 of 1.0 in 3 ml of fresh 2xYT supplemented with kanamycin and 0.1% (wt/vol) l-arginine (to induce protein expression). Cultures were grown for 2 more hours with agitation (215 rpm) at 37 °C before 1.0 OD600 units were pelleted. Genomic DNA was isolated (as described above for the in vivo DNase assay, except that the growth media were supplemented with 0.4% (wt/vol) glucose, and that arabinose induction time was 1 h. Total RNA was purified from 0.5 OD600 units of cells using the Zymo E.Z.N.A. bacterial RNA kit (BIOmega) following the manufacturer's instructions. RNA was eluted with 100 µl DEPC-treated water, and 50 µl was loaded from each sample onto a 2% agarose gel and stained with ethidium bromide. Two sets of PCR primers were analyzed by 1% (wt/vol) agarose gel electrophoresis. The experiment was repeated three times with similar results. Results from a representative experiment are shown.

In vivo RNAse assay. E. coli BL21(DE3) containing the indicated pBAD/Myc–His plasmids for expression of BC3021 and V12_14465 variants were grown and induced as described above for the in vivo DNase assay, except that the growth media were supplemented with 0.4% (wt/vol) glucose, and that arabinose induction time was 1 h. Total RNA was purified from 0.5 OD600 units of cells using the Zymo E.Z.N.A. bacterial RNA kit (BIOmega) following the manufacturer's instructions. RNA was eluted with 100 µl DEPC-treated water, and 50 µl was loaded from each sample onto a 2% agarose gel and stained with ethidium bromide. Two sets of PCR primers were analyzed by 1% (wt/vol) agarose gel electrophoresis. The experiment was repeated three times with similar results. Results from a representative experiment are shown.

Fluorescence detection of DNase activity during competition. For assessment of prey DNA morphology during bacterial competition, the indicated V. parahaemolyticus 12-297/B strains were grown overnight and mixed as described above for the in vivo bacterial competition assay. The ΔV12_14465 pEP prey harbored a pEPG plasmid (a high copy number plasmid for constitutive expression of GFP) to allow for their distinction from attacker cells. Attacker:prey mixtures were spotted onto MB agar plates and incubated at 30 °C for 3 h. Bacteria were then scraped from the plates, washed with M9 media, and incubated at room temperature for 10 min in 10 µl of water containing the Hoechst 33342 (Invitrogen) DNA dye at a final concentration of 1 µg/ml. The cells were then washed and resuspended in 10 µl of M9 media. One microliter of bacteria suspensions was spotted onto M9 agar (1.5% wt/vol) pads and allowed to dry for 2 min before the pads were placed face-down in sterile 35 mm glass bottom Cellview cell culture dishes. Bacteria were imaged in a Nikon Inverted IX-81 microscope (Nikon), and GFP fluorescence of prey DNA was imaged using an Epiplan apochromat DM 100X oil lambda PH-3 (NA, 1.45) objective lens, Lumenera SOLA SE II 395 light source, and ET-DAPI (#49028, used to visualize Hoechst signal) and ET-EFPG (#49002, used to visualize GFP signal) filter sets. Images were acquired using a DS-Q2i Mono cooled digital microscope camera (16 MP), and were processed using Fiji ImageJ software. Cells imaged in each prey DNA morphology were manually counted (100 GFP-expressing prey cells per treatment in each experiment). The experiment was repeated three times.
Pull-down assay. Overnight cultures of E. coli BL21(DE3) containing plasmids for arabinose-induced expression of the indicated Myc-6His-tagged V12_14465 variants and a FliC-tagged V12_14460 (the immunity protein required to allow accumulation of the toxic V12_14465 variants inside the cells) were diluted 100-fold into 100 mL 2xYT media supplemented with kanamycin and chloramphenicol and incubated at 37 °C with agitation (215 rpm). Protein expression was induced by adding 0.1% (wt/vol) L-arabinose when cultures reached an OD600 of ~1.0, followed by incubation at 4 °C for 4 h with agitation (215 rpm). Cells were harvested by centrifugation and then resuspended in 5 mL lysis buffer B (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol, 10 mM imidazole, and 1 mM PMSF). Cells were disrupted using a high-pressure cell disruptor (Constant system One Shot cell disruptor, model code: MC2AA). Cell debris was removed by centrifugation for 20 min at 13,300 × g at 4 °C. Next, 50 µL of supernatant fractions of lysed cells was taken and mixed with 50 µL of 2× protein sample buffer, boiled at 95 °C for 5 min, and kept for subsequent input protein analysis. Then 200 µL of supernatant fractions of lysed cells (400 µL was used for V12_14465–282 due to its lower expression level compared with other V12_14465 variants) was mixed with 30 µL Ni-Sepharose resin (50% slurry; GE healthcare) and incubated for 1 h at 4 °C with constant shaking. Resin was collected by centrifugation at 2000 × g at 4 °C, and washed with 2.5 mL wash buffer B (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol, and 40 mM imidazole). Bound proteins were eluted from the resin using 200 µL of elution buffer B (20 mM Tris-Cl pH 7.5, 500 mM NaCl, 5% vol/vol glycerol, and 500 mM imidazole). Buffers were kept at 4 °C.

The eluted fractions (output) were mixed with 200 µL 2× protein sample buffer and boiled at 95 °C for 5 min. Samples were resolved on TGX stain-free gels (Bio-Rad) and transferred onto PVDF membranes. For V12_14465–282, we loaded twice the volume of input and output samples to equalize the levels of V12_14465–282 variants. The presence of V12_14465 variants was detected using c-Myc (9E10) antibodies (sc-40, Santa Cruz Biotechnology), and the presence of V12_14460 was detected using Flag antibodies (DYKDDDDK Tag (DE653B) Rabbit mAb #14793; Cell Signaling Technology). Protein signals were visualized by ECL. The experiment was repeated at least three times with similar results, and the results from a representative experiment are shown.

BACTH assay. The adenylate cyclase-based BACTH Gateway system was used. Gateway-compatible plasmids producing the indicated proteins fused to either the T18 or T25 catalytic domains of Bordetella adenylate cyclase were transformed into the E. coli BTH101 reporter strain. Three independent colonies of each transformant were grown overnight in 2xYT media supplemented with appropriate antibiotics and IPTG (0.5 mM). Plates were incubated for 24 h at 30 °C. The experiment was repeated three times with similar results. Results from a representative experiment are shown.

TBLASTN search for auxiliary T6SS modules. TBLASTN was performed against the nucleotide sequence of V. paraahemolyticus 12-297/B using the protein sequences of V. paraahemolyticus RIMD 2210633-secreted components as queries: NP_797772.1 (Hcp1), NP_800537.1 (Hcp2), NP_797773.1 (VgrG1), NP_800536.1 (VgrG2), NP_797794.1 (amino acids 37-143, PAAR1) and NP_800535.1 (PAAR2). The expect value threshold was set to 10−10. With PoNe, the protein length had to be at least 50% of the longer protein, and the sequences were clustered to the most similar cluster that met the threshold. FIX-containing proteins were clustered according to their C-terminal sequences (i.e., sequences located downstream of FIX), and PoNe-containing proteins were clustered according to their N-terminal sequences (i.e., sequences located upstream of PoNe).

The proteins located upstream of the FIX- and PoNe-containing proteins on the same strand were defined as upstream proteins, whereas proteins located downstream on the same strand were defined as downstream proteins. Protein sequences were analyzed using the NCBI Batch Conserved Domains-Search Tool. The protein topology and signal peptides were predicted using the Phobius server. Signal peptide cleavage sites were predicted using the SignalP 4.1 server.

Proteins were considered as containing a signal peptide only if they were designated as such by both Phobius and SignalP 4.1 predictions.

Construction of the phylogenetic tree. The DNA sequences of rpoB coding for DNA-directed RNA polymerase subunit beta were downloaded from NCBI on December 8, 2018 for bacterial strains encoding PoNe. Partial sequences were removed. The sequences were aligned using MAFFT v7.408 FFT-NS-2445. The evolutionary history was inferred using the neighbor-joining method with the Jukes–Cantor substitution model (JC69). The analysis involved 1303 nucleotide sequences and 2355 conserved sites. Evolutionary analyses were conducted using the MAFFT server (https://mafft.cbrc.jp/alignment/server/), and the tree was visualized using MEGA 7.7.2.

Illustration of conserved residues using WebLogo 3. FIX- and PoNe-sequences were aligned using MUSCLE66, and aligned columns not represented in WP_029857615.1 were removed. Conserved residues were illustrated using the Weblogo 3 server (http://weblogo.threebump.com)67. Amino acid numbering based on the sequence of WP_029857615.1.

Identification of FIX-containing genes encoding T6SS. RPS-BLAST59 was employed to identify the T6SS core components in the FIX-containing bacterial genomes. The proteins were aligned against 11 COGs (COG3516, COG3517, COG3515, COG3521, COG3522, COG4355, COG5323, COG3518, COG3519, COG3530, and COG3513) which was correlated with T6SS-associated organisms. Bacterial genomes encoding at least nine out of the eleven T6SS core components were regarded as harboring T6SS.

VgrG sequence alignment. To perform the VgrG sequence alignment, protein sequences of V. paraahemolyticus 12-297/B VgrG1 (BC30_R51259) and VgrG2 (BC30_R51250) were translated from the nucleotide sequence found between positions 22692 and 23911 in report sequence NZ_MYFG0000470.1 were aligned using Clustal Omega70, and the alignment was visualized using JalView71.

Secondary-structure prediction. Secondary structure prediction of the PoNe conserved region of V12_14465 was performed using the JPred 4 server72.

Statistical analysis. Data were statistically analyzed with GraphPad Prism 6, using the unpaired, two-tailed Student t test. Differences were considered significant at P < 0.05; n.s. denotes not significant.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The experimental and computational data that support the findings of this research are available in this article and its Supplementary Information files, or upon request from the corresponding authors. The source data underlying Figs. 1c–f, 2c–d, 3b, 4a, f, and Supplementary Figs. 2a, 3, 4, 5b, 7, and 9c are provided as a Source data file.

Received: 15 January 2019 Accepted: 16 July 2019 Published online: 09 August 2019

References
1. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dicytostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).
2. Mougois, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).
3. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources? BMC Genom. 10, 104 (2009).
4. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 457, 239–243 (2009).
5. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. USA 104, 15508–15513 (2007).
6. Nguyen, V. S. et al. Towards a complete structural deciphering of Type VI secretion system. Curr. Opin. Struct. Biol. 49, 77–84 (2018).
7. Zasloff, M. et al. Structure-function analysis of the Tssl cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. J. Mol. Biol. 428, 4413–4423 (2016).
8. Wang, J. et al. Cryo-EM structure of the extended type VI secretion system baseplate and sheath distal end. EMBO J. e201797103. https://doi.org/10.15252/embj.201797103 (2017).
9. Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).
10. Nazarov, S. et al. Crystallographic characterisation of the Type VI secretion system of Vibrio cholerae O1. EMBO J. 34, 111–123 (2015).
11. Steen, B. et al. Structure-based design of a new type VI secretion system for Pseudomonas aeruginosa. Nat. Microbiol. 4, 1794 (2019).
12. Lillehaug, M. et al. Cryo-EM structure of the type VI secretion system of Vibrio cholerae. EMBO J. 34, 2198–2210 (2015).
13. Ying, J. Y. et al. Structural and functional annotation of T6SS effector families. Cell Host Microbe 20, 1–13 (2016).
14. Wang, J. et al. Type VI secretion: a beginner’s guide. Curr. Opin. Microbiol. 29, 343–350 (2016).
15. Kirchberger, P. C., Unterweger, D., Provenzano, D., Pukatzki, S. & Boucher, Y. Type VI secretion phospholipase D effector targets both membrane complexes and with versatile effector repertoires. PLoS ONE 9, e89313 (2014).
16. Aoki, S. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).
17. Whitney, J. C. et al. Diverse effector modules for invasion of the host by the Pseudomonas aeruginosa T6SS. Curr. Opin. Microbiol. 20, 343–350 (2017).
18. Campestrini, F., Ambrosini, E., Tedeschi, P., Hajdu, T. & Poli, M. A diverse family of nuclease degrading toxins and its recruitment in various eukaryotic and viral DNA viral systems. J. Proteome Res. 7, 4532–4552 (2011).
19. Dillmann, C. et al. Evolution of diverse immunity gene arrays in Vibrio cholerae. Cell Host Microbe 7, 1–12 (2010).
20. Ono, T., Inoue, M. & Uchiyama, T. Identification of new family of putative PD-(D/E)XXK nucleases with unusual phylogenetic distribution and a new type of the active site. BMC Genom. 6, 21 (2005).
21. Guo, X. et al. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl. Acad. Sci. USA 112, 9106–9111 (2015).
22. Hoogendoorn, K. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, 1–20 (2015).
23. Speer, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl. Acad. Sci. USA 115, E8528–E8537 (2018).
24. Lillehaug, M. et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecies competition. Nat. Commun. 5, 3549 (2014).
25. Verster, A. J. et al. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22, 411–419.e4 (2017).
26. Rigard, M. et al. Francisella tularensis IgG belongs to a novel family of PAAR-like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLoS Pathog. 12, 1–33 (2016).
27. Wigand, J. et al. Diversity of cryoprotective protein delivery systems in bacteria. Nature 468, 439–442 (2010).
28. Hayes, C. S., Koskineni, S., Ruhe, Z. C., Poole, S. J. & Low, D. A. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med. 4, a010025 (2014).
29. Bingle, L. E., Bailey, C. M. & Pallen, M. J. Type VI secretion: a beginner’s guide. Curr. Opin. Microbiol. 29, 343–350 (2016).
30. Whiting, J. C. et al. Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem. 293, 1504–1514 (2018).
31. Whitney, J. C. et al. A novel interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163, 607–619 (2015).
32. Lindley, E. et al. Bifunctional immunity proteins protect bacteria against Fis–Znt targetting ADP–ribosinating toxins. Cell. https://doi.org/10.1016/j.cell.2018.09.037 (2018).
33. Ackermann, K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).
34. Ono, T., Inoue, M. & Uchiyama, T. Identification of new family of putative PD-(D/E)XXK nucleases with unusual phylogenetic distribution and a new type of the active site. BMC Genom. 6, 21 (2005).
35. Guo, X. et al. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl. Acad. Sci. USA 112, 9106–9111 (2015).
36. Lillehaug, M. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, 1–20 (2015).
37. Speer, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl. Acad. Sci. USA 115, E8528–E8537 (2018).
38. Lillehaug, M. et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecies competition. Nat. Commun. 5, 3549 (2014).
39. Verster, A. J. et al. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22, 411–419.e4 (2017).
40. Rigard, M. et al. Francisella tularensis IgG belongs to a novel family of PAAR-like T6SS proteins and harbors a unique N-terminal extension required for virulence. PLoS Pathog. 12, 1–33 (2016).
41. Whitney, J. C. et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 6, e26938 (2017).
42. Roux, S., Cottyn, M., Van Aerde, P., Mertens, R. & Pauwels, E. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).
43. Russell, A. B. et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11, 538–549 (2012).
44. Liu, C. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, 1–20 (2015).
45. Speer, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl. Acad. Sci. USA 115, E8528–E8537 (2018).
46. Lillehaug, M. et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11, 1–20 (2015).
Acknowledgements

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement no. 714224) (DS). DS is an Alon Fellow. We thank Hanna Engelberg-Kulka and Scott Ouellette for their generous gift of plasmids, Avigdor Eldar for providing bacterial strains, Kinga Keppel and Chen Yacobsohn for excellent technical assistance, and Udi Qimron for his critical reading of the paper. We also thank members of the Salomon lab for fruitful discussions.

Author contributions

B.J., E.B. and D.S. designed the study. B.J., C.M.F and D.S. performed the experiments. E.B. performed the computational analyses. B.J., C.M.F, E.B. and D.S. analyzed the data. D.S. wrote the paper, and the other authors contributed to the writing. All authors read and approved the final version of the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-11546-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks John Whitney and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.