Magnetoresistance Anomalies in Antiferromagnetic YBa$_2$Cu$_3$O$_{6+x}$: Fingerprints of Charged Stripes

Yoichi Ando, A. N. Lavrov, and Kouji Segawa
Central Research Institute of Electric Power Industry, 2-11-1 Iwato-kin, Komae, Tokyo 201-8511, Japan

We report novel features in the in-plane magnetoresistance (MR) of heavily underdoped YBa$_2$Cu$_3$O$_{6+x}$, which unveil a developed "charged stripe" structure in this system. One of the striking features is an anisotropy of the MR with a "d-wave" like symmetry upon rotating the magnetic field H within the ab plane, which is caused by the rotation of the stripes with the external field. With decreasing temperature, a hysteresis shows up below \sim20 K in the MR curve as a function of H and finally below 10 K the magnetic-field application produces a persistent change in the resistivity. This "memory effect" is caused by the freezing of the directionally-ordered stripes.

74.25.Fy, 74.20.Mn, 74.72.Bk

High-T_c cuprates can be viewed as doped antiferromagnetic (AF) insulators with the charge carriers transferred into perfect CuO$_2$ planes from the charge reservoir layers. In general, there is a tendency for AF insulators to expel doped holes and to show a phase separation into regions with and without the doped holes. When the ions are not mobil and the Coulomb interaction between doped holes is effective, an intriguing microscopic state with holes gathered within an array of quasi-1D "stripes" may be realized. An ordered striped structure has actually been observed by the neutron diffraction in a doped antiferromagnet, La$_2$NiO$_4$ [125]. Inelastic neutron scattering studies of superconducting (SC) cuprates found incommensurate magnetic fluctuations, which can be considered as dynamical stripe correlations [1]; it has been discussed that such dynamical stripes are pinned in La$_{1.6-x}$Nd$_{0.4}$Sr$_2$CuO$_4$, which shows a static striped structure similar to that of the nickelate except for the direction of the stripes.

Whether the microscopic charge inhomogeneities in the form of dynamic or static stripes, if present at all, are relevant to the unusual normal-state and SC properties in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. For SC compositions, the fast dynamics of the stripe correlations [3] make it implausible to study them by methods other than spectroscopy. In fact, very little is known about the electron dynamics of the stripe correlations [5]. The existence of the static stripes in cuprates remains unclear. The most intriguing observation is the possibility to induce a persistent in-plane anisotropy just by exposing a crystal to the magnetic field, upon which the higher conductivity axis is adjusted to the field direction. This phenomenon can be understood to originate from a field-induced topological ordering of the stripes, whose direction remains unchanged after removing the magnetic field at low temperatures.

The high-quality YBa$_2$Cu$_3$O$_{6+x}$ single crystals were grown by the flux method in Y$_2$O$_3$ crucibles, and a high-temperature annealing was used to reduce their oxygen content. The exact oxygen content was determined by iodometry. The magnetoresistance was measured using a standard ac four-probe technique by sweeping the magnetic field at fixed temperatures stabilized by a capacitance sensor with an accuracy of about 1 mK. The angular dependence of the MR was determined by rotating the sample within a 100° range under constant magnetic fields up to 16 T (Cernox sensor was used for the temperature control during the rotation).
Figure 1 shows the in-plane resistivity ρ_{ab} of the heavily underdoped YBa$_2$Cu$_3$O$_{6.32}$ crystals studied in this work. One can see here that the evolution of the in-plane transport upon reducing the carrier concentration is much more gradual than is often considered; in Fig. 1, apart from the low-T region below \sim50 K, ρ_{ab} retains a metal-like behavior even in these samples with x=0.30 or 0.32, which are located deep in the AF region of the phase diagram (see inset to Fig. 1). The growth of ρ_{ab} at low temperatures is notably slower than $A \exp(B/T)^k$ with $k = 1/4 - 1$, which also implies that the system we are dealing with is not a simple band-gap insulator nor an Anderson insulator.

These crystals demonstrate an unusual behavior of the in-plane MR, $\Delta \rho_{ab}/\rho_{ab}$, when the magnetic field H is applied along the CuO$_2$ planes. Figure 2 shows the in-plane MR measured in the longitudinal geometry [H/L/a(b)]. At low fields, this longitudinal in-plane MR is negative and follows roughly a T-independent parabolic curve γH^2, but abruptly saturates above some threshold field. The threshold field H_{th} and the magnitude of the saturated MR gradually increase with decreasing temperature. Above H_{th}, the MR can be fitted with the usual γH^2 dependence; namely, we can write the H dependence of the MR above H_{th} as $\Delta \rho_{ab}/\rho_{ab} = (\Delta \rho_{ab}/\rho_{ab})_0 + \gamma H^2$. Therefore, the behavior of the MR in Fig. 2 can be viewed as a superposition of the low-field feature [whose size can be measured by $(\Delta \rho_{ab}/\rho_{ab})_0$] onto a weak background MR of γH^2. Note that γ is positive at high T and changes its sign to negative at about 50 K, where $\rho_{ab}(T)$ acquires the localizing behavior (see Fig. 1).

To our surprise, when the magnetic field is turned in the plane and becomes perpendicular to the current [H/$a(b)$; H_{\perp}], we find that the low-field MR term just switches its sign, retaining its magnitude and the threshold-field value [Fig. 3(a)]. We thus performed a detailed MR measurements upon rotating H within the ab plane, which revealed a striking anisotropy with a “d-wave” like symmetry [Fig. 3(b)]; namely, $\Delta \rho_{ab}/\rho_{ab}$ changes from negative at $\alpha=0^\circ$ (α is the angle between H and I) to positive at $\alpha=90^\circ$, passing through zero at about 45°. Note that the MR diagram in Fig. 3(b) is fairly symmetric. Some T-dependent difference between the longitudinal and transverse segments is mainly caused by the background MR; at 68 K, for example, the positive γH^2 term extends the “$+$” arm at $\alpha = 90^\circ$ and reduces the “$-$” arm at $\alpha = 0^\circ$.

It is worth noting that this low-field MR feature is not observed at all when the magnetic field is applied along the c-axis; the in-plane MR for H/c is weak and approximately similar to the γH^2 term in the longitudinal MR.
For comparison, total magnitude of the MR at 10 T is shown for \(H \parallel c \), where there is no low-field anomaly. Inset: \(H \) dependences of the longitudinal MR at high \(T \) (see also Ref. [8]). This means that the orbital part of the MR and interference effects are irrelevant to the anomalous low-field behavior observed here.

Since the samples being studied here are antiferromagnets, it is natural to look for a connection between the long-range AF order and the observed behavior. The Néel temperature \(T_N \) for these two samples with \(x=0.30 \) and 0.32 has been evaluated to be about 230 and 200 K, respectively, from the measurements of \(c \)-axis resistivity \(\rho_c \) (the slope of \(\rho_c(T) \) shows a distinct anomaly at \(T_N \) (Fig. 3)). The sharpness of the anomaly in \(\rho_c \) tells us a very high homogeneity of the oxygen in our samples [8]. The magnitude of the low-field MR term, \((\Delta \rho_{ab}/\rho_{ab})_0 \), plotted in Fig. 4 as a function of temperature, actually becomes noticeable near \(T_N \) and gradually grows with decreasing temperature. However, it is not clear whether the long-range Néel order itself plays a dominant role in the low-field MR anomalies, because \((\Delta \rho_{ab}/\rho_{ab})_0 \) does not show an abrupt increase at \(T_N \) (which at least tells us that the feature is not related to the spin-flop transition). It is more likely that the anomaly is governed by the AF correlation within the CuO\(_2\) planes, rather than the long-range order. It is worth noting that even at high \(T \) (near 200 K) the low-field MR feature remains sharp with a well-defined threshold field (inset to Fig. 4). This suggests that the anomaly is a cooperative phenomenon: if the anomaly is just an integration of the behaviors of independent spins, the feature would be smeared by the thermal fluctuations at such high temperatures. We also note that, since Y has no magnetic moment, the anomaly observed here cannot be associated with magnetic ordering of the rare-earth sublattice.

The most intriguing peculiarity of the weak-field MR becomes evident at low temperatures. As the temperature decreases below 20 - 25 K, the \(H \)-dependence of \(\rho_{ab} \) becomes irreversible. Initially this irreversibility appears as a small hysteresis on the MR curve [Figs. 5(a) and 5(b)]. However, as can be seen in Fig. 5(c), the irreversibility becomes much more pronounced upon cooling to 10 K. In Fig. 5(c), \(\rho_{ab}(H) \) curve similar to that at higher temperatures can be observed only in the first sweep which starts from \(\Delta \rho_{ab}/\rho_{ab}=0 \); the data from the subsequent field sweeps significantly differ from the first one, with a strongly reduced low-field feature [the peak height is suppressed and the position of the peak is further...
shifted compared to the peaks in Fig. 5(b)]. The important point here is that the resistivity does not return to its initial value after removing the magnetic field; namely, the system acquires a memory. The application of the magnetic field at low temperatures therefore results in a persistent change in the resistivity; it can be easily seen that the sign and the size of this persistent change depends on the field direction (with respect to the current) according to the diagram in Fig. 3(b). This indicates that the magnetic field induces a persistent anisotropy of the in-plane resistivity, which has the “d-wave” like symmetry of Fig. 3(b).

It is very difficult to understand the novel MR features found here, especially the memory effect, without considering an inhomogeneous state or a superstructure in the CuO$_2$ planes instead of a uniform AF state. The observed hysteresis tells us that the structure is frozen in below \sim20 K, while it is mobile at high and moderate temperatures. There are only two candidates which can produce a non-uniform structure: the ion rearrangement and the hole segregation. Since one can hardly imagine some rearrangement of ions to occur at such low temperatures and to be driven by the magnetic field, the holes can be the only possible factor responsible for the inhomogeneous structure.

The picture of charge inhomogeneities in the CuO$_2$ planes with holes being confined to the “stripes” actually allows to account for all the observed MR peculiarities. Since the AF interactions are essential for the formation of the stripes, it is expected that the development of the stripes is closely tied to the growth of AF domains in the CuO$_2$ planes. Indeed, for the heavily underdoped region with the long-range AF order, the measurements of the staggered magnetization and the Néel temperature have provided a substantial support for the presence of the striped phase. It is naturally expected that a strong local anisotropy is introduced by the stripes with confined carriers moving along; however, such an anisotropy will not be observed at long length scales if the orientational order of the stripes is not established or the stripe direction alters from one CuO$_2$ plane to another. Within this picture, one can imagine that the magnetic field would give rise to a topological ordering of the stripes, aligning them along the field direction and changing the array of the current paths. The existence of the threshold field for the low-field feature is presumably coming from the establishment of the directional order of the stripes. Also, the “d-wave” like anisotropy of the in-plane MR can be understood as a consequence of the rotation of the stripe direction with respect to the current direction.

The observation that the stripes can be directed with external magnetic field implies that the stripes should have local ferromagnetic moment. (Otherwise the stripes cannot couple to the magnetic field.) This is possible if the stripes are “in-phase boundaries”, at which the spin directions across the boundary are the same. We note that the MR behavior observed here surprisingly resembles that of a ferromagnetic metal with a mesoscopic domain structure.

As the temperature is lowered, it is expected that the stripe dynamics slows down and the magnetic domain structure in the CuO$_2$ planes is frozen, forming a cluster spin glass. The spin-glass transition temperature has been reported for heavily-underdoped YBa$_2$Cu$_3$O$_{6+x}$ to be about 20 - 25 K for the AF compositions, which is in good agreement with the temperature where the hysteretic MR behavior is found to show up in our experiment.

In summary, the in-plane magnetoresistance (MR) in heavily underdoped YBa$_2$Cu$_3$O$_{6+x}$ is found to demonstrate a variety of unusual features, including a striking “d-wave” shaped angular dependence, anomalous low-field MR and its saturation above a well-defined threshold field, and a hysteretic behavior at low temperatures. The overall features can be consistently explained by assuming a developed array of charged stripes and the field-induced topological ordering of the stripes. At temperatures below \sim10 K, the external magnetic field of the order of a few T can produce a persistent directional ordering of the stripes, giving rise to a “memory effect” in the resistivity. These findings give a strong evidence that the charge inhomogeneities in the CuO$_2$ planes in the form of stripes exist and actually have a considerable impact on the electron transport. Also, our data show that the magnetic field can be used as a tool to manipulate the striped structure.

A.N.L. gratefully acknowledges support from JISTEC.

[1] V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56, 6120 (1997), and refs. therein.
[2] F. Borsa et al., Phys. Rev. B 52, 7334 (1995).
[3] A. H. Castro Neto and D. Hone, Phys. Rev. Lett. 76, 2165 (1996).
[4] J. M. Tranquada et al., Phys. Rev. B 52, 3581 (1995).
[5] S-W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991); G. Aeppli et al., Science 278, 1432 (1997); K. Yamada et al., Phys. Rev. B 57, 6165 (1998).
[6] J. M. Tranquada et al, Phys. Rev. B 54, 7489 (1996).
[7] K. Segawa and Y. Ando, Phys. Rev. B 59, R3948 (1999).
[8] A. N. Lavrov, Y. Ando, K. Segawa and J. Takeya Phys. Rev. Lett. 83, 1419 (1999).
[9] A. N. Lavrov, M. Yu. Kameneva, and L. P. Kozeeva, Phys. Rev. Lett. 81, 5636 (1998).
[10] U. Rüdiger et al., cond-mat/9901243.
[11] Ch. Niedermayer et al., Phys. Rev. Lett. 80, 3843 (1998).