Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly

Received for publication, February 26, 2018, and in revised form, September 10, 2018. Published, Papers in Press, September 19, 2018, DOI 10.1074/jbc.RA118.002579

Elizabeth C. Hinchy‡, Anja V. Gruszczyk‡§, Robin Willows‡, Naveenan Navaratnam‡, Andrew R. Hall‡, Georgina Bates‡, Thomas P. Bright‡, Thomas Krieg‡, David Carling‡, and Michael P. Murphy‡

From the ‡MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, the §University of Cambridge, Department of Chemical Pathology, Cambridge CB2 0QO, and the ¶Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

Edited by Ursula Jakob

Mitochondrial reactive oxygen species (ROS) production is a tightly regulated redox signal that transmits information from the organelle to the cell. Other mitochondrial signals, such as ATP, are sensed by enzymes, including the key metabolic sensor and regulator, AMP-activated protein kinase (AMPK). AMPK responds to the cellular ATP/AMP and ATP/ADP ratios by matching mitochondrial ATP production to demand. Previous reports proposed that AMPK activity also responds to ROS, by ROS acting on redox-sensitive cysteine residues on the AMPK α subunit. This suggests an appealing model in which mitochondria fine-tune AMPK activity by both adenine nucleotide-dependent mechanisms and by redox signals. Here we assessed whether physiological levels of ROS directly alter AMPK activity. To this end we added exogenous hydrogen peroxide (H₂O₂) to cells and utilized the mitochondria-targeted redox cycler MitoParaquat to generate ROS within mitochondria without disrupting oxidative phosphorylation. Mitochondrial and cytosolic thiol oxidation was assessed by measuring peroxiredoxin dimerization and by redox-sensitive fluorescent proteins. Replacing the putative redox-active cysteine residues on AMPK α1 with alanines did not alter the response of AMPK to H₂O₂. In parallel with measurements of AMPK activity, we measured the cell ATP/ADP ratio. This allowed us to separate the effects on AMPK activity due to ROS production from those caused by changes in this ratio. We conclude that AMPK activity in response to redox changes is not due to direct action on AMPK itself, but is a secondary consequence of redox effects on other processes, such as mitochondrial ATP production.

AMP-activated protein kinase (AMPK) is a key sensor and regulator of cellular energy metabolism, which helps match mitochondrial ATP production to the energy demands of the cell (1–5). A decrease in ATP production, or an increase in its demand, elevates AMP and ADP levels relative to ATP. This results in increased binding of AMP (and ADP) to the AMPK γ subunit, which enhances AMPK activity (hereafter AMP-dependent regulation) and thus phosphorylation of a range of downstream target proteins (1–5).

AMPK can also be activated by atypical mechanisms, independently of changes in the cell’s ATP/ADP or ATP/AMP ratio (hereafter AMP-independent regulation) (6–11). The small molecule AMPK activators A-769662, 991, and salicylate (a metabolite of aspirin), bind at the interface of the phosphorylated β subunit carbohydrate-binding module and the N-lobe of the α subunit kinase domain, known as the Allosteric Drug and Metabolite (ADaM)-binding site (6–9). Binding of compounds at this site increases AMPK activity independently of adenine nucleotide-binding to the γ subunit by inducing a conformational change that puts AMPK into the active conformation. More recent is the finding that AMPK can also be activated in an AMP-independent manner by glucose deprivation, specifically due to a decrease in the intracellular level of fructose 1,6-bisphosphate, which promotes formation of a multienzyme complex necessary for AMPK activation (10).

It has also been proposed that reactive oxygen species (ROS) can directly regulate AMPK activity independently of changes in adenine nucleotides (12–18). Redox regulation typically occurs by the reversible oxidation of cysteine thiols, thereby altering the activity, cellular localization, or binding interactions of a protein (19–22). Mitochondria are an important site of ROS production. ROS generation by complex I through reverse electron transport (RET) is particularly attractive as a potential mitochondrial redox signal because its magnitude responds sensitively to redox status and occurs under physiological conditions (23–26). Thus, a scenario in which mitochondrial functional status and ROS production can alter AMPK activity by two parallel but independent pathways: through changes in adenine nucleotides and by redox signaling.

© 2018 Hinchy et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.
from mitochondria, has considerable appeal (Fig. 1B). In support of AMPK redox regulation, its activity was reported to be increased by exogenous hydrogen peroxide (H_2O_2), independently of changes in adenine nucleotides and this alteration required redox changes to key cysteine residues, Cys-299 and Cys-304, in the AMPK α_1 catalytic subunit (13). However, other reports have challenged whether the AMPK activation by H_2O_2 in cells is independent of changes in the ATP/ADP or ATP/AMP ratio (17, 18) and furthermore, another laboratory has shown that exogenous H_2O_2 can inhibit AMPK (12). These discrepancies could arise from methodological or biological differences, such as alternative ways of measuring adenine nucleotides or different levels of ROS scavenging systems in the cell types used (12, 18). In addition, as AMPK is localized to the cytosol, it is important to assess whether changes in AMPK activity in response to ROS are associated with reversible cytosolic protein thiol oxidation, e.g. peroxiredoxin (Prx) dimerization (27), which would be consistent with direct ROS signaling and/or redox relay signaling (28, 29). Furthermore, mitochondrial redox signaling could also affect AMPK activity independently of either direct effects on the enzyme, or on the ATP/ADP ratio (Fig. 1B).

We set out to determine the possibility of AMP-independent regulation of AMPK activity in response to physiological levels of ROS generated from mitochondria in cells. To do this we altered ROS levels by addition of hydrogen peroxide. In addition, we utilized the mitochondria-targeted redox cycler MitoParaquat (MitoPQ), which can generate physiological ROS levels within mitochondria at complex I without disrupting oxidative phosphorylation (30). MitoPQ also mimics production of mitochondrial ROS at complex I by RET, a physiologically plausible mechanism of mitochondrial redox signaling (24–26, 31). To determine where protein thiol redox changes were occurring, we analyzed redox-dependent protein thiol oxidation in the mitochondria and cytosol. We further investigated the regulatory effects on AMPK activity by replacing the key redox-sensitive residues Cys-299 and Cys-304 in the AMPK α subunit (13). In parallel, we measured the cell ATP/ADP ratio to determine whether the effects on AMPK activity could be accounted for by secondary changes. These methods allowed us to separate the effects of mitochondrial ROS production on AMPK activity from those of a changing ATP/ADP ratio. We found that the effects of mitochondrial and cytosolic redox changes on AMPK activity were indirect and could be largely, but not entirely, accounted for by the effect of ROS on the ATP/ADP ratio. We conclude that ROS affect AMPK activity indirectly.

Figure 1. Overview of AMPK regulation and experimental rationale. A, established and hypothesized regulators of AMPK activity. B, summary of hypothesis showing that ROS could affect AMPK activity directly, or indirectly by altering adenine nucleotide ratios or other pathways.
Results

Characterizing AMPK activity in C2C12 mouse myotubes

To characterize the putative regulation of AMPK activity by redox signals we used differentiated C2C12 mouse myotubes, a model of skeletal muscle fibers in which AMPK is a key regulator of mitochondrial and cellular function (11, 32, 33) (Fig. S1A). We first established how AMPK activity responded to the ATP/ADP ratio, which determines cellular AMP and thus accounts for AMPK regulation by adenine nucleotides (3, 4). AMPK activity was assessed by the phosphorylation of Thr-172 of AMPK’s catalytic α subunit; by phosphorylation of Ser-79 on the AMPK target acetyl-CoA carboxylase (ACC); and by determining AMPK-specific activity using the SAMS kinase assay. Decreasing mitochondrial ATP production with the complex I inhibitors rotenone or phenformin or with the F0F1-ATP synthase inhibitor oligomycin all increased AMPK activity (Fig. 2, A and B). The ATP/ADP ratio in control myotubes (16.1 ± 2.1) (Fig. S1B) decreased on inhibition of oxidative phosphorylation to between 7.4 ± 1.1 (rotenone) and 8.3 ± 2.1 (phenformin), ~46% and ~52% of control cells, respectively (Fig. 2C). Thus, the cell ATP/ADP ratio correlates inversely with AMPK activity.

If redox signals activate AMPK independently of adenine nucleotides they will mimic pharmacological AMPK activators such as 991, A-769662, and salicylate, which bind directly to the regulatory ADaM binding site (6–8). Treatment with 991 increased AMPK activity dose-dependently (Fig. 2, D and E) without decreasing the ATP/ADP ratio (Fig. 2F).

Combining the data where AMPK was activated indirectly (Fig. 2, A–C) or with the selective activator 991 (Fig. 2, D–F) showed a clear divergence in the relationship between the ATP/ADP ratio and AMPK activity for all three measurements of activity individually (Fig. S1, B–G). In Fig. S1, H and I changes in AMPK activation by alterations in the ATP/ADP ratio (AMP-dependent activation) are shown upon the red background, whereas AMP-independent activation (green background) induces AMPK activation without decreasing ATP/ADP ratios. In fact AMP-independent activation occurred with a slight increase in the ATP/ADP ratio. Combining all these data shows clearly the different trajectories of dependence of AMPK activity on ATP/ADP ratio for these two modes of regulation (Fig. 3). Next, we set out to use this approach to assess the mechanism by which redox signals affect AMPK activity.

Exogenous H2O2 leads to dose-dependent, reversible protein thiol oxidation in the cytosol and mitochondrial matrix of myotubes

We first assessed the effects of exogenous H2O2 on thiol redox status in C2C12 myotubes. Myotubes were treated with a range of H2O2 concentrations administered as single boluses. Cytosolic Prx 2 dimerization, measured 10 min after treatment, peaked upon treatment with the 75 μM H2O2 bolus (Fig. 4A). Extended oxidation induces thiol modifications (sulfinic acid (~SO2H) and sulfonic acid (~SO3H)), which block the formation of Prx dimers (36), hence the decrease in Prx 2 dimeriza-
tion and increase in Prx-SO2/3 formation (Fig. 4A) observed in response to higher levels of H2O2. Exogenous H2O2 (>75 μM) also oxidized the mitochondrial matrix Prx 3 pool (Fig. S2A). Dimers of Prx 3 were visible as double bands, likely due to the different electrophoretic mobility of dimers linked by one or two disulfide bridges (37−39).

We conclude that within the range of H2O2 concentrations tested, a period of reversible thiol oxidation occurred in both the cytosol and mitochondrial matrix, which is an environment conducive to thiol redox signaling (28, 29). The rapidly changing Prx redox states in response to single additions of H2O2 indicated rapid H2O2 metabolism. At higher H2O2 concentrations, thiol hyperoxidation occurred (Prx-SO2/3 formation), which is evidence of oxidative stress. We thus used this Prx redox mapping to assess the response of AMPK to protein thiol redox changes by H2O2.

Exogenous H2O2 activates AMPK indirectly in myotubes by decreasing the ATP/ADP ratio

Addition of exogenous H2O2 that led to protein thiol oxidation in the cytosol (Fig. 4A) induced a dose-dependent increase in AMPK activity measured 10 min after addition of H2O2 (Fig. 4, B−E). H2O2 also had a dose-dependent effect on cellular ATP/ADP ratios at 10 min (Fig. 4F).

The dose-dependent increases in AMPK-specific activity at 10 min did not correlate with reversible Prx 2 dimerization (Fig. S2B), but did correlate with formation of the thiol hyperoxidation marker Prx-SO2/3 (Fig. 4G), implicating oxidative damage rather than redox signaling in the mechanism of AMPK activation. Furthermore, decreased ATP/ADP ratios at 10 min also correlated with increasing Prx-SO2/3 formation (Fig. 4H). Although H2O2 boluses lower than 750 μM were sufficient to oxidize the cytosol without affecting the cell ATP/ADP ratio, AMPK activity did not change significantly under these conditions, indicating that AMPK activity only responds to the ATP/ADP ratio and not directly to H2O2.

Of further interest, we note that 30 min after H2O2 treatment, cell ATP/ADP ratios approached recovery (Fig. 4F) and accordingly AMPK-specific activity decreased from that measured at 10 min (Fig. 4E). However, AMPK and ACC phosphorylation was sustained at 30 min (Fig. 4, B−D) as was Prx-SO2/3 formation (Fig. S2C).

All ways of measuring the changes in AMPK activity showed that addition of exogenous H2O2 increased AMPK activity (Fig. 4, B−E). Graphing these data confirmed that increased AMPK activity occurred only when ATP/ADP ratios were decreased (Fig. S2, D−F). Most significantly, the effect of exogenous H2O2 on AMPK activity was described by the same relationship as when the ATP/ADP ratio was decreased by the use of mitochondrial inhibitors (Fig. 5). We conclude that AMPK activation in C2C12 myotubes by added H2O2 occurs indirectly as a consequence of altering the cell’s ATP/ADP ratio.

Selective generation of ROS within mitochondria does not induce AMPK activation

The effect of exogenous H2O2 on AMPK activity in C2C12 myotubes occurred indirectly, via changes in the ATP/ADP ratio (Fig. 5). To further analyze any effects of mitochondrial redox signals on AMPK activity, which will come from mitochondria within the cell rather than from outside the cell, we next assessed the effect of mitochondria-generated ROS on AMPK activity. Mitochondrial ROS signaling is likely to arise from enhanced superoxide generation and subsequent H2O2 production within the organelle that leads to the propagation of a signal from the mitochondria to the rest of the cell (24−26, 31). To mimic this scenario, we assessed the effects on AMPK activity of the mitochondria-targeted redox cycler, MitoPQ. MitoPQ generates superoxide selectively and continuously within mitochondria at complex I, which is then rapidly dismutated to H2O2 (30) (Fig. 6A). To confirm that MitoPQ generated ROS in the mitochondrial matrix and to assess potential flux of H2O2 to the cytosol, we measured the extent of redox-dependent dimerization of Prx 3 (matrix isoform) and Prx 2 (cytosolic isoform) in response to MitoPQ (Fig. 6B and Fig. S3, A and B). MitoPQ led to a dose- and time-dependent increase in Prx 3 dimerization from 6 to 24 h, but had no effect on Prx 2 dimerization (Fig. 6B), consistent with persistent ROS production in the matrix. These data indicated that MitoPQ generated ROS locally in the mitochondria, but that these ROS did not diffuse to the cytosol. Redox compartmentalization was confirmed using cytosol-specific (CytoORP) and mitochondria-specific (MitoORP) fluorescent protein probes for H2O2 (34, 35) (Fig. 6, C and D). This analysis showed enhanced H2O2-dependent fluorescence in the mitochondria in response to MitoPQ (Fig. 6C), but not in the cytosol (Fig. 6D).

There was negligible alteration to AMPK activity in response to short-term incubation with MitoPQ (Fig. S3, C−E). However, there were suggestions of an increase in AMPK activity upon sustained incubation with MitoPQ (Fig. S3, C−E). This most likely reflects the decrease in the ATP/ADP ratio upon long-term incubation with MitoPQ (Fig. 6E). However, the effects of MitoPQ on AMPK activity were negligible compared with either direct or indirect AMPK activators (Fig. 6F). That MitoPQ could significantly alter the mitochondrial thiol redox state without considerably affecting AMPK activity suggests that mitochondrial redox signaling is unlikely to regulate AMPK, either directly or indirectly.

Figure 3. Reference plot showing AMP-dependent (red background) and AMP-independent (green background) AMPK activation in C2C12 myotubes. Data points are measures of AMPKα-phospho-Thr-172 (Fig. S1H), ACC-phospho-Ser-79 (Fig. S1I), and AMPK-specific activity (Fig. S1J) plotted against corresponding cell ATP/ADP ratios. Values are % untreated control and presented as mean ± S.E. of ≥3 biological replicates.
 ROS activate AMPK indirectly

Figure 4. Effects of H$_2$O$_2$ boluses on subcellular redox state, AMPK activity, and ATP/ADP ratios in C2C12 myotubes. A–H, C2C12 myotubes were treated with serially diluted boluses of H$_2$O$_2$ (7.5, 75, 375, or 750 μM) in serum-free media for 10 or 30 min. A, Prx2 dimerization and Prx-SO$_2$/SO$_3$ formation were assessed by Western blotting. B–D, Western blots and quantification of AMPKα-phospho-Thr-172 and ACC-phospho-Ser-79 levels in H$_2$O$_2$-treated cells. Graphed values are mean ± S.D. of 3 biological replicates. Results at each time point were assessed by one-way ANOVA with Dunn's multiple comparison post-test comparing all H$_2$O$_2$ treatments to untreated controls; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. E, AMPK-specific activity was measured as % untreated control. Statistical analysis was performed as described above. F, ATP/ADP ratios were measured as previously described. Graphed data are mean ± S.D. of 4 biological replicates, expressed as % untreated control. Statistical analysis was performed as described above. G and H, graphed data shows the relationship between Prx-SO$_2$/SO$_3$ formation (Fig. 4A) and (E) AMPK-specific activity or (F) ATP/ADP ratios in response to H$_2$O$_2$ in cells. Values are mean ± S.E. of ≥3 or mean ± range of 2 biological replicates, expressed as % untreated control.

Mutation of the putative redox active cysteines in AMPK does not affect its activation by ROS

Previous studies proposed direct redox regulation of the key cysteine residues Cys-299 and Cys-304 in the α catalytic subunit of AMPK (13). To assess whether these residues could facilitate a direct effect of ROS on AMPK activation we expanded our study to an AMPK KO HEK 293T cell line and compared WT AMPK α1/β1/γ1 versus mutant AMPK α1(C299A/C304A)/β1/γ1 (Fig. 7A and Fig. S4A). In WT HEK 293T cells addition of exogenous H$_2$O$_2$ increased AMPK activity (Fig. 7, B–D, and Fig. S4, B and C). Importantly, the H$_2$O$_2$ led to identical activation of mutant AMPK α1(C299A/C304A)/β1/γ1 (Fig. 7, B–D, and Fig. S4, B and C). Therefore, AMPK activation by H$_2$O$_2$ is independent of any redox changes on the putative regulatory cysteine residues on the AMPK α subunit. The lowest concentration of H$_2$O$_2$ used had no effect on the ATP/ADP ratio in the HEK 293T cells (Fig. 7E), even though this concentration of H$_2$O$_2$ lead to activation of AMPK
observed that AMPK activity in C2C12 myotubes was increased at 10 min after addition of \(\text{H}_2\text{O}_2 \), which correlated with a decreased cell ATP/ADP ratio. The specific activity of AMPK later decreased at 30 min as ATP/ADP ratios recovered. As \(\text{Prx-SO}_2/3 \) formation was increased at 30 min compared with 10 min, one possibility is that the increased \(\text{Prx} \) hyperoxidation served as a protection mechanism. A previous study has shown that under conditions of oxidative stress dimerized \(\text{Prx} \)s can compete with other cellular proteins for cysteine thiol reduction catalyzed by thioredoxins (40). Thus, \(\text{Prx} \) hyperoxidation may promote cell survival, and allow ATP/ADP ratio recovery, under conditions of oxidative stress. In agreement with a previous study (18), our data suggest that \(\text{H}_2\text{O}_2 \) may inhibit AMPK and ACC dephosphorylation, as AMPK and ACC phosphorylation were maintained and increased at 30 min after \(\text{H}_2\text{O}_2 \) addition, even as cell ATP/ADP ratios recovered.

Our work also provides insights into the redox regulation of cellular processes. Monitoring the redox states of cytosolic and mitochondrial \(\text{Prx} \) isoforms enabled us to assess the effects of redox signals on different cell compartments simultaneously and also monitor ROS flux between cell compartments. Extra-cellular \(\text{H}_2\text{O}_2 \) was capable of oxidizing mitochondrial matrix \(\text{Prx} \) 3, but only at high concentrations (\(\geq 75 \mu \text{M} \)). \text{MitoPQ} generated superoxide within the mitochondrial matrix, inducing significant \(\text{Prx} \) 3 dimerization, but there was no increase in cytosolic \(\text{Prx} \) 2 dimerization. Together these data suggest that whereas \(\text{H}_2\text{O}_2 \) can cross the mitochondrial inner membrane, it will more usually be degraded in the matrix by the action of \(\text{Prx} \) 3.

In conclusion, we found that the effects of redox changes on AMPK activity were indirect and could be largely, but not entirely, accounted for by the effect of ROS on the ATP/ADP ratio. We conclude that ROS affect AMPK activity indirectly.

Experimental procedures

Antibodies

All commercial antibodies were purchased from Cell Signaling Technology, unless otherwise stated. Primary antibodies were rabbit ACC1/2-phospho-Ser79 (number 3661); rabbit ACC1/2 (number 3662); rabbit AMPK\(\alpha_1/2 \)-phospho-Thr-172 mAb 40H9 (number 2535); rabbit AMPK\(\alpha_1/2 \) (number 2532); rabbit-AMPK\(\beta_1/2 \) mAb 57C12 (number 4150); mouse \(\alpha \)-tubulin clone B-5–1-2 (Sigma: number T5168); mouse-AMPK\(\alpha_1/2 \)-phospho-Thr-172 (ProteinTech: number 2532); rabbit-AMPK\(\beta_1/2 \) (number 2532); rabbit-AMPK\(\beta_1/2 \)-phospho-Thr-172 (Cambridge Research Biochemicals: number crb2005004e); rabbit myogenin (Abcam, number ab124800); and rabbit anti-pan-AMPK antibody (42).

Secondary antibodies were IRDye® 800 goat anti-rabbit IgG F(c) (Rockland Antibodies and Assays: number 611-132-003) and IRDye® 680RD goat anti-mouse IgG (H+L) (LI-COR Biosciences: number 926–68070).

Plasmids

cDNA encoding WT human AMPK\(\alpha_1 \), or harboring mutation of cysteine residues 299 and 304 to alanine, were cloned into pLPC, and engineered to encode an N-terminal FLAG epitope tag. cDNAs encoding rat AMPK\(\beta_1 \) and rat AMPK\(\gamma_1 \)

![Figure 5. Reference plot showing AMP-dependent and AMP-independent AMPK activation in C2C12 myotubes.](http://www.jbc.org/)
ROS activate AMPK indirectly

A MitoPQ mechanism of action. B, C2C12 myotubes were treated with 5 μM MitoPQ or vehicle (EtOH) for 0.5, 6, or 24 h. Prx 2 and 3 dimerization was measured from Western blotting target bands (Fig. S3, A and B). Graphed data show mean ± S.D. of 3 biological replicates. Results at each time point were analyzed by unpaired, one-tailed t tests compared with EtOH controls; **, p < 0.01. C and D, C2C12 myoblast cells were transfected with redox-sensitive roGFP coupled to ORP1, targeted to the mitochondria (MitoORP) or cytosol (CytoORP) and treated with MitoPQ (1 or 5 μM), MitoPQ control (5 μM), or H2O2 (50 μM). roGFP-ORP1 alters excitation from 488 to 405 when oxidized by H2O2 (shown here as increasing levels of blue). C, treatment with MitoPQ induced dose-dependent oxidation of MitoORP, peaking at 5 μM. Treatment with the MitoPQ control did not oxidize MitoORP (baseline value of 1). Graphed data are mean ± S.D. of 5 biological replicates. Statistical analysis was performed by one-way ANOVA with Dunnett’s multiple comparison post-test comparing all treatments to MitoPQ control; *** , p < 0.001. D, MitoPQ specifically oxidized MitoORP, with no changes observed in CytoORP. CytoORP was oxidized by addition of a single H2O2 bolus to cell media. Graphed data are mean ± S.D. of 3 biological replicates. Results at each time point were analyzed by unpaired, one-tailed t tests compared with EtOH controls; *, p < 0.05, F, reference plot showing AMP-dependent and -independent AMPK activation in C2C12 myotubes. MitoPQ data points are measures of AMPKα-Thr-172 phosphorylation (Fig. S3D) and ACC-Ser-79 phosphorylation (Fig. S3E) (at 6 and 24 h) plotted against corresponding cell ATP/ADP ratios. Values are % untreated control or % EtOH control (MitoPQ) and presented as mean ± S.E. of 3 biological replicates.

(harboring an N-terminal Myc epitope tag) were cloned into pCDNA3. All constructs were confirmed by DNA sequencing.

Cell culture

HEK 293T AMPK knockout (KO) cells were generated by using CRISPR/Cas9 to remove expression of both AMPKβ1 and -β2, as previously described (41). Transient transfections were performed using Lipofectamine® 2000 (according to the manufacturer’s instructions), 24 h prior to cell treatments. C2C12 mouse myoblast cells and HEK 293T cells were cultured in standard Dulbecco’s modified Eagle’s medium/GlutaMAX medium (glucose (4.5 g/liter), sodium pyruvate (100 mg/ml)) supplemented with 10% (v/v) fetal bovine serum (FBS), penicillin (100 units/ml), and streptomycin (100 μg/ml). Cells were incubated in a humidified atmosphere (5% CO2, 95% air) at 37 °C. C2C12s were differentiated to myotubes by serum depletion to 1% (v/v) FBS for 7 days, with media changes every 2 days. Treatments were performed on day 7 or 8 of serum depletion. H2O2 treatments were performed in serum-free medium. After treatments, cells were rapidly washed in ice-cold PBS before
rapid lysis on an ice-cold aluminum block. For AMPK assays, cells were lysed in 250 μl of ice-cold Hapes lysis buffer: Hapes (50 mM, pH 7.4), EDTA (1 mM), glycerol (10% (v/v)), sodium chloride (150 mM), Triton X-100 (0.5% (v/v)). This was supplemented just before use with dithiothreitol (DTT) (1 mM) and protease inhibitors: soybean trypsin inhibitor (4 μg/ml), phenylmethanesulfonyl fluoride (0.1 mM), and 1 mM benzamidine (1 mM). Cells for ATP/ADP oxidation assays were lysed in 250 μl of RIPA buffer: Tris (50 mM, pH 8.0), sodium chloride (150 mM), Triton X-100 (1.0% (v/v)), sodium deoxycholate (0.5% (w/v)) and SDS (0.1% (v/v)). This was supplemented just before use with protease inhibitors and methyl methanesulfonate (80 mM). Prior to lysis, cells were incubated with methyl methanesulfonate (80 mM) for 5 min at room temperature. Cells for ATP/ADP assays were lysed in 500 μl of ice-cold perchloric acid extractant: HClO4 (3% (v/v)), Na2EDTA (2 mM), and Triton X-100 (0.5% (v/v)). Lysed cell supernatants were stored on ice for immediate use or aliquoted, snap-frozen on dry ice, and stored at −20 or −80 °C (long-term).

SDS-PAGE

Cell lysate was heated in Laemmli sample buffer with freshly added DTT (25 mM) for 5 min at 95 °C (DTT was excluded for Prx Western blots). Samples (~25 μg of protein) were loaded on Mini-PROTEAN® TGX™ Precast 4–20% gradient gels (Bio-Rad). Proteins were electrophoresed at 100 volts in the presence of Tris (25 mM, pH 8.3)), glycine (192 mM), and SDS (0.1% (v/v)).

Western blotting

Electrophoresed proteins were transferred to Immobilon®-FL PVDF membranes by wet transfer performed at 100 volts for 1 h at 4 °C in the presence of Tris (25 mM), glycine (192 mM), and methanol (20% (v/v), pH 8.4) at 4 °C. Where appropriate, membranes were sectioned according to molecular weight before incubation with primary antibodies, overnight at 4 °C. Signal intensities of target bands were measured as fluorescence emission at 800 or 680 nm with the Odyssey CLx IR Imaging System and quantified with LI-COR Biosciences Image Studio Lite software. In C2C12 lysates, phospho-AMPKα1/2(Thr-172) and phospho-ACC1/2(Ser-79) signal intensities (SI) were normalized to AMPKα2. In HEK 293T cells, overexpressed phospho-AMPKα1/2(Thr-172) and endogenous phospho-ACC1/2(Ser-79) SIs were normalized to overexpressed AMPKα1-FLAG. Prx dimerization was calculated as % dimer (SI dimer/(SI dimer + SI monomer) × 100). Prx-SO2/3 formation was normalized to α-tubulin.

AMPK SAMS kinase assay

The specific kinase activity of AMPK was determined by the radiometric SAMS peptide assay (43). Kinase assays were performed on AMPK immunoprecipitated from 100 to 200 μg of whole cell lysate using a rabbit-pan β antibody conjugated to protein-A (from Staphylococcus aureus)-Sepharose beads. Kinase assays were performed in duplicate and normalized to SAMS-blank controls.

ATP/ADP assays

ATP and ADP levels were measured by luciferase/luciferin bioluminescence using an AutoLumat LB-953-Plus multi-tube luminometer (Berthold), fitted with an autoinjector, and quantified against standard curves of purified ATP and ADP. For ATP measurements, 100 μl of lysate was added to 400 μl of Tris acetate buffer (Tris (100 mM), Na2EDTA (2 mM), MgCl2 (50 mM), pH 7.75) with glacial acetic acid in luminometer tubes.
ROS activate AMPK indirectly

Luciferase/luciferin solution (DTT (7.5 mM), BSA (0.4 mg/ml), firefly luciferase (1.92 μg of protein/ml), and D-luciferin (120 μM) was made just before use and 100 μl was delivered to each sample tube via autoinjection. Reactions were performed at 30 °C and light emission (relative light units) was recorded 30 s post-injection. ADP was measured by first degrading endogenous ATP with 2× ATP sulfurylase solution followed by incubation at 30 °C for 30 min with agitation (500 rpm) and then heat inactivation. 200 μl of each ATP sulfurylase-treated sample was added to 400 μl of Tris acetate buffer in luminometer tubes (in duplicate). To convert endogenous ADP to ATP, 10 μl of pyruvate kinase/phospho(enol)pyruvate solution (type II protein kinase from rabbit muscle (5 units), phosphoenolpyruvate (100 mM)) was added to one of the duplicate tubes (and to all ADP standards) and incubated at 30 °C for 30 min prior to ATP measurement. The protein kinase/phosphoenolpyruvate-blank tubes served as blanks for quantification. Quantification was performed with Excel or GraphPad Prism 7.0. ATP and ADP values were expressed as ATP/ADP ratios.

Microscopy

C2C12 mouse myoblast cells were seeded at a density of 20,000 cells on pre-coated glass coverslips in 6-well plates (Nuncelon Delta Surface, Thermo Scientific). 24 h after plating, cells were transfected with Lipofectamine™ 2000 and 1 μg of a plasmid encoding either the cytoplasmic targeted roGFP2 ORP1, or the mitochondria-targeted roGFP2 ORP1 (34) (Addgene numbers 64993 and 64992). 48 h after transfection, C2C12 cells were imaged using a Zeiss LSM microscope every 30 s for 1 h in Dulbecco’s modified Eagle’s medium + 10% FBS. Compounds were added immediately prior to imaging and remained present throughout. The roGFP was sequentially excited at 405 and 488 nm with emission collected at 500–550 nm for both excitation wavelengths. Images were analyzed in ImageJ where the channels were split dependent upon excitation, regions of interest were drawn around the cells, and fluorescence intensity was measured across the full hour. A ratio of 405/488 fluorescence was calculated before the initial intensity was normalized to 1, and subsequent time points were calculated as a derivative. Data are mean ± S.D.

Statistical analysis

Data analysis was performed with GraphPad Prism 7.0 (unless otherwise stated). Data (n = 2) were expressed as mean ± range. Data (n ≥ 3) were analyzed by unpaired, one-tailed t tests (2 groups) or one-way analysis of variance (ANOVA) (>2 groups) unless otherwise stated. Data were expressed as mean ± S.D. (bar graphs) or mean ± S.E. (xy graphs). p values < 0.05 were considered statistically significant.

Author contributions—E. C. H. and M. P. M. conceptualization; E. C. H. data curation; E. C. H. formal analysis; E. C. H. and M. P. M. supervision; E. C. H., A. V. G., N. N., A. R. H., G. B., T. P. B., and T. K. investigation; E. C. H., A. V. G., R. W., N. N., A. R. H., G. B., T. P. B., T. K., and D. C. methodology; E. C. H. writing-original draft; E. C. H., and M. P. M. project administration; E. C. H., D. C., and M. P. M. writing-review and editing; R. W., N. N., and D. C. resources; M. P. M. funding acquisition.
ROS activate AMPK indirectly

D. G. (2010) Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. *Cell Metab.* 11, 554–565 CrossRef Medline

18. Auciello, F. R., Ross, F. A., Ikematsu, N., and Hardie, D. G. (2014) Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. *FEBS Lett.* 588, 3361–3366 CrossRef Medline

19. van Leeuwen, L. A. G., Hinchy, E. C., Murphy, M. P., Robb, E. L., and Cocheme, H. M. (2017) Click-PEGylation: a mobility shift approach to assess the redox state of cysteines in candidate proteins. *Free Radic. Biol. Med.* 108, 374–382 CrossRef Medline

20. Vissers, M. C. M., Hampton, M., and Kettle, A. J. (2018) Hydrogen peroxide metabolism in health and disease, Taylor & Francis/CRC Press, Boca Raton, FL

21. Holmström, K. M., and Finkel, T. (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. *Nat. Rev. Mol. Cell Biol.* 15, 411–421 CrossRef Medline

22. Collins, Y., Chouchani, E. T., James, A. M., Menger, K. E., Cochemé, H. M., and Murphy, M. P. (2012) Mitochondrial redox signalling at a glance. *J. Cell Sci.* 125, 801–806 CrossRef Medline

23. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Oré, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., et al. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. *Nature* 515, 431–435 CrossRef Medline

24. Chouchani, E. T., Pell, V. R., James, A. M., Work, L. M., Saeb-Parsy, K., Frezza, C., Krieg, T., and Murphy, M. P. (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. *Cell Metab.* 23, 254–263 CrossRef Medline

25. Mills, E. L., Kelly, B., Logan, A., Costa, A. S., Varma, M., Bryant, C. E., Tourlomousis, P., Débritz, J. H., Gottlieb, E., Latore, I., Corr, S. C., McManus, G., Ryan, D., Jacobs, H. T., Szibor, M., et al. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. *Cell* 167, 457–470.e413 CrossRef Medline

26. Scialo, F., Sriram, A., Fernández-Ayala, D., Gubina, N., Lõhmus, M., Nelson, G., Logan, A., Cooper, H. M., Navas, P., Enriquez, J. A., Murphy, M. P., and Sanz, A. (2016) Mitochondrial ROS produced via reverse electron transport extend animal lifespan. *Cell Metab.* 23, 725–734 CrossRef Medline

27. Sobotta, M. C., Barata, A. G., Costamagna, G., Beri, J., and Dick, T. P. (2013) Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments. *Free Radic. Biol. Med.* 60, 325–335 CrossRef Medline

28. Murphy, M. P. (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. *Antioxid. Redox Signal.* 16, 476–495 CrossRef Medline

29. Sobotta, M. C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A. N., and Dick, T. P. (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. *Nat. Chem. Biol.* 11, 64–70 CrossRef Medline

30. Robb, E. L., Gawel, J. M., Aksentijevic, D., Cochemé, H. M., Stewart, T. S., Shepechnova, M. M., Qiang, H., Prime, T. A., Bright, T. P., James, A. M., Shattock, M. J., Senn, H. M., Hartley, R. C., and Murphy, M. P. (2015) Selective superoxide generation within mitochondria by the targeted re-
