In Silico Studies, Biological Activities, and Anti-human Pancreatic Cancer Potential of 6-Hydroxy-4-methylcoumarin and 2,5-Dihydroxyacetophenone as Flavonoid Compounds

Wei Sun¹, Yong Zhang², Xiaolu Ren³, Lingzhi Cui¹, Jianguo Wang¹, and Xiaohong Ni⁴*

¹ Cadre Health Care Department/Tumor Molecular Targeted Therapy Ward, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, CHINA
² Department of Ultrasound, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, CHINA
³ Department of radiation oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, CHINA
⁴ Department of Neurology, Huanggang Central Hospital, Huanggang, 438000, CHINA

Abstract: Coronavirus is one of the RNA viruses with the largest genome; It is a group of viruses known to infect humans very little until the end of the 20th century, generally causing infection in animals (bird, cat, pig, mouse, horse, bat). It is the causative agent of 15-30% of seasonal lower and upper respiratory tract infections, and may rarely cause gastrointestinal and nervous system infections. We have obtained results for the collagenase and elastase enzymes were at the micromolar level. We obtained IC₅₀ results for the collagenase enzyme for 6-hydroxy-4-methylcoumarin 257.22 ± 34.07 µM and for 2,5-dihydroxyacetophenone 74.46 ± 8.61 µM. 6-Hydroxy-4-methylcoumarin and 2,5-dihydroxyacetophenone were considered good inhibitors for elastase enzyme. Additionally, these compounds significantly decreased human pancreatic cancer cell viability from low doses. In addition, 100 µM dose of all compounds caused significant reductions in human pancreatic cancer cell viability. IC₅₀ results (IC₅₀: 10-50 µM) were better than control. In the otherwords, the docking results suggest that both compounds tend to have lower efficacy on the main protease targets of SARS-CoV-2 than standard compounds, (NL-1 and NL-2). The reason for this is that the standard compounds interact strongly and more frequently with the target proteins, and the surface areas they cover on the active surface are much larger than the small ligand molecules studied.

Key words: 6-hydroxy-4-methylcoumarin, 2,5-dihydroxyacetophenone, anti-pancreatic, moelculer docking, enzyme inhibition

1 Introduction

Flavonoid compounds are the most popular class of polyphenolic molecules in the human diet including vegetables, fruits, nuts, tea, plant-derived beverages, and wine. These molecules have been recorded to possess an extensive range of bio-activities¹, ². Structural variations of these flavonoids are associated with many different biological and pharmacological activities including antioxidant, anticancer, anti-inflammatory, antihyperglycemic, antiadibiotic, antibacterial, antifungal, and antiviral activities. Antioxidant enzymes as well as non-enzymatic antioxidants are the first line of defense against oxidative stress. This oxidative stress is the underline mechanism for diabetic compli-
Hydrolases provide hydrolysis reactions, that is, the destruction of molecules, with the help of H⁺ and OH⁻ ions of water. The enzyme, named after its substrate, is also known as matrix metalloprotease-1 or metallopeptidase-1. The weights of collagenases vary between 50-60 kDa, their cofactor is Zn metal. One group of proteases, which are extracellular proteolytic enzymes, need Zn²⁺ or Ca²⁺ ions in the bound state for their activation, while the other group is serine proteases containing reactive serine in their active sites¹⁰. Degradation of matrix proteins such as lanin, collagen and fibronectin by metalloproteases and serine proteases facilitate cell migration. Collagenase is one of these enzymes. These enzymes play a key role in physiological conditions such as normal structuring of tissues and systems, wound healing, tissue remodeling and normal development processes, and in pathological processes such as tumor cells spreading to surrounding tissues and disrupting their functions¹⁰⁻¹¹. Elastases, an important enzyme belonging to the chymotrypsin family of serine proteases, are responsible for the fragmentation of extracellular matrix proteins such as elastin and collagen, which are responsible for skin elasticity and strength. The increase of elastase enzyme leads to deterioration of extracellular matrix components, changes in the structure of elastic fibers and consequently it leads to reduction of elastic properties of the skin and formation of wrinkles. In addition, the irregular and excessive release of elastase enzymes cause abnormal distortions in healthy tissues and this causes chronic wounds and inflammatory diseases. The development of elastase enzyme inhibitors due to these different effects is regarded as beneficial for protecting skin elasticity and controlling elastase-associated diseases¹²⁻¹⁴.

Pancreatic ductal adenocarcinoma is the fifth leading cause of cancer death in the Western world, with an overall 5-year survival rate of less than 1% and a median survival of 4 months after diagnosis. Histologically, cancer cells exhibit poorly differentiated ductal-like structures, often surrounded by an extensive desmoplastic reaction and infiltration by inflammatory cells¹³⁻¹⁴. The adjacent pancreatic parenchyma harbors sites of acinar cell degeneration and ductal cell proliferation. A high percentage of these cancers overexpress a number of growth factors and their receptors, including EGF, transforming growth factor (TGF)-α, CRIPTO, TGF-β1, epidermal growth factor receptor, acidic FGF, basic fibroblast growth factor, and FGF5. Overexpression of these mitogenic growth factors may contribute to the bioaggression of pancreatic cancers and the abundant stroma formation that is characteristic of this malignancy¹⁶⁻¹⁸.

The aim of this study is to examine the potentials of anti-collagenase, anti-elastase, anti-pancreatic cancer, and anti-Coronavirus disease (COVID-19) by using two important compounds and to detect them by molecular modeling.

2 Experimental

2.1 Enzymes

0.05 mL was taken from the prepared sample solutions. On top of it, 0.05 mL of elastase enzyme (0.16 U/mL) was added. Then, 0.9 mL of tris hydrochloride (Tris-HCl) buffer solution of 0.2 M (pH = 7.8) was added to the sample solutions. It was prepared by adding 0.2 M (pH = 7.8)/0.9 mL Tris-HCl buffer solution to 0.1 mL of elastase enzyme solution as a control solution. The blank solution was prepared by adding 0.2 M (pH = 7.8)/0.9 mL Tris-HCl buffer solution to 0.1 mL distilled water. Blank, control and sample solutions were incubated at 37°C for 15 minutes. After incubation, 5 mM 0.05 mL N-Succinyl-Ala-Ala-Ala-p-nitroanilide (STANA) substrate was added to the blank, control and sample solutions and incubated at 37°C for 30 minutes¹⁷⁻¹⁸. The absorbance values of the sample and control solutions against the blank were read at 410 nm. In the study, the anti-elastase inhibition activity values of the samples prepared at different concentrations were calculated. Experiments were repeated 3 times and averaged. The % inhibition values on elastase enzyme of eperezolide-like compounds synthesized for the first time were calculated. The IC₅₀ value (the concentration required to inhibit 50% of the activity) was calculated from the regression equation obtained from the linear segment of the curve drawn by applying the concentration to absorbance, % elastase enzyme inhibition data to the ordinate¹⁹⁻²⁰.

Modified inhibitory effect on collagenase enzyme Thring et al. (2009)²¹ was determined spectrophotometrically using the method. 50 µL of the solution containing 0.8 U/mL collagenase was taken, 50 µL of plant extracts and chemical substance solutions at different concentrations prepared on it were added. This method was performed according to previous studies. The absorbance values of the sample solutions and control solution were read at 340 nm in the UV spectrophotometer against the blank. Experiments were repeated 2 times. The IC₅₀ value, which is the amount of substance required for the collagenase enzyme to have a 50% inhibition effect, was calculated with the regression equation obtained from the linear section of the curve drawn by applying the concentration to the absorbance in the graph and the % enzyme inhibition data to the ordi-

Fig.1 Chemical structure of studied compounds.
2.2 Molecular docking of different targets (Collagenase, Elastase, and Major protease (mpro) of SARS-CoV-2) with the studied two molecules

The docking of 6-hydroxy-4-methylcoumarin (1) and 2,5-dihydroxyacetophenone (2) as ligands with Collagenase, Elastase, and Major protease (mpro) of SARS-CoV-2 was analyzed using AutoDock Vina. The ligands were drawn and optimized at DFT/B3LYP/6-311G* basis set using Gaussian 09 (G09). The crystal structures of targets, Collagenase (pdb: 4AR1), Elastase (pdb: 1MCV) and the main protease (Mpro, pdbs: 6LU7 and 2GTB) structures were downloaded from the protein data bank (http://www.rcsb.org) were used for docking processes. Moreover, these target proteins were prepared and minimized until the root mean square deviation (RMSD) reaches the lower value of 0.05 kcal/mol Å² using Discovery Studio (DS) 3.5. Define and edit binding site tool of DS was exerted to detect binding site of aforementioned targets against 1 and 2 ligands. AutoDock Vina was employed to predict the conformations and binding interactions for the ligands. The molecular docking of all of the ligands with Collagenase, Elastase, and Major protease (mpro) of SARS-CoV-2 were analyzed, where the respective targets were constant and the ligands were flexible. The best orientation for each complex was selected based on RMSD and the predicted binding energy of the ligands. Further, cluster analysis, based on RMSD values, was used and the most populated cluster with the lowest energy conformation was noted as an authenticated answer.

3 Results

3.1 Enzymes

Inhibition of elastase and collagenase enzymes have been one of the main targets in cosmetic industry for researches to find new antiwrinkle and skin-lightening compounds or extracts particularly with rich polyphenol contents as well as to prove their effectiveness.

We have obtained results for the collagenase and elastase enzymes were at the micromolar level. We obtained IC₅₀ results for the collagenase enzyme for 6-hydroxy-4-methylcoumarin 257.22 ± 34.07 µM and for 2,5-dihydroxyacetophenone 74.46 ± 8.61 µM. 6-Hydroxy-4-methylcoumarin and 2,5-dihydroxyacetophenone were considered good inhibitors for elastase enzyme, and their IC₅₀ results were 63.18 ± 2.35 and 28.66 ± 4.41 µM, respectively. Additionally, We obtained IC₅₀ result for the collagenase as control compound with 101.37 µM and for elastase 30.55 µM. 2,5-Dihydroxyacetophenone was recorded good inhibitor for both enzymes when compared to control, and their IC₅₀ results of collagenase and elastase enzymes were 74.46 and 28.66 µM, respectively (Table 1).

3.2 Molecular docking results

The compound 1 and 2 in this research exhibited affinity to Collagenase, Elastase, and Major protease (mpro) of SARS-CoV-2, with a minimum energy requirement. Among the 200 different conformers of each ligand tested for the inhibition of the related target, compound 2 displayed the potential for a high inhibition property based on the minimum energy of the ligand (< 7.35 kcal/mol, and < 7.10 kcal/mol in Table 2 and Fig. 2), to comply into the binding site of Collagenase and Elastase models. In vitro assay in this research has shown that administration of 6-hydroxy-4-methylcoumarin (1) and 2,5-dihydroxyacetophenone (2), inhibited Collagenase and Elastase activities based on the standards, Phosphoramidon and N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone, respectively.

Besides these, compound 2 forms three hydrogen bonds for the analysis of viability levels in cells after compound administration. After the application, 50 µL of MTT solution was added to each well and incubated in a CO₂ incubator for 3 hours. After incubation, the solution in the wells was withdrawn and 100 µL of DMSO was added to them. The optical density of the cells in the wells was read in an ELISA plate reader (Thermo MultiskanGo, USA) at a wavelength of 570 nm. The absorbance values obtained from the control wells were averaged and this value was evaluated as 100% cell viability. The absorbance values obtained from the compound treated wells were proportioned to the control absorbance value and the percent viability values were calculated.
with Glu430, Tyr428 and Gln462 in the binding site of collagenase; and also three hydrophobic interactions with His459 and Trp471 amino acids of aforementioned target. In the meantime, the same compound has four H-bonds with Cys191, Gly193, and Gly192 and one hydrophobic interaction with Val216 residue of elastase. These interactions of compound 2 against each target were represented in Fig. 4. Another one, compound 1 has three hydrogen bonds (Gly463, Glu462 and Gly486), six hydrophobic interactions (Trp471, His459 and Trp471) with collagenase. (Fig. 3). For elastase protein, compound 1 occurs two H-bonds with Asp194, Ser195; one π-lone pair bond with Ser195; and two hydrophobic interactions with His57 and Val216 residues of the target, as given in Fig. 4.

On the other side, the ligand molecule, 6-hydroxy-4-methylcoumarin (1) was found to interact with the

Table 1 Enzymes results of both compounds.

NO	Compounds	Collagenase IC₅₀ (µM)	Elastase IC₅₀ (µM)
1	6-Hydroxy-4-methylcoumarin	257.22 ± 34.07	63.18 ± 2.35
2	2,5-Dihydroxyacetophenone	74.46 ± 8.61	28.66 ± 4.41
	Phosphoramidon*	101.37 ± 14.76	-
	N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone*	-	30.55 ± 3.25

*They are standards

Table 2 The free binding energy value of the compounds, (1-2) with the target enzymes, respectively.

Collagenase	Free Energy of Binding (kcal/mol)
1	6.78
2	7.35

*Phosphoramidon - 6.74

Elastase	Free Energy of Binding (kcal/mol)
1	5.44
2	7.1

*N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone - 6.19

Main protease (MP-1)	Free Energy of Binding (kcal/mol)
1	5.83
2	5.20

*NL-1 - 8.65

Main protease (MP-2)	Free Energy of Binding (kcal/mol)
1	6.32
2	5.76

*NL-2 - 8.41

* Phosphoramidon (as standard for Collagenase), N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone (as standard for Elastase) and NL-1 ((phenylmethyl) (4-[(S)]-4-[[2-[(S)]-4-methyl-2-[[2-[(S)]-3-methyl-2-[(2-[(S)]-2-[[5-methyl-1,2-oxazol-3-yl]carbonylamino]propanoyl]amino]butanoyl]amino]pentanoyl]amino]-5-((3-[(S)]-2-oxidanylenepyrrolidin-3-yl) pent-2-enoate) for the main protease (Mpro, pdb id: 6LU7) and NL-2 (ethyl(2S)-4-[(3-amino-3-oxo-propyl)-[[2S]-2-[[2S]-4-methyl-2-phenylmethoxycarbonylamino-pentanoyl] amino]-3phenyl-propanoyl] amino]amino]-2-hydroxy-4-oxo-butanate) for the main protease (Mpro, pdb id: 2GTB).
In Silico Studies, Biological Activities, and Anti-human Pancreatic Cancer Potential of Flavonoids

J. Oleo Sci. 71, (6) 853-861 (2022)

binding site in the main protease (Mpro, pdbs: 6LU7 and 2GTB) models, requiring minimum energy of −5.83 kcal/mol and −6.32 kcal/mol, respectively (Table 2). The compound 1 exhibits the better activity than compound 2 against both main proteases. However, these small compounds have lower binding affinity than NL-1 and NL-2 as the standard compounds (−8.65 kcal/mol and −8.41 kcal/mol in Table 2).

In the other words, the docking results suggest that both compounds 1 and 2 tend to have lower efficacy on the main protease targets of SARS-CoV-2 than standard compounds, (NL-1 and NL-2). The reason for this is that the standard compounds interact strongly and more frequently with the target proteins, and the surface areas they cover on the active surface are much larger than the small ligand molecules studied. This situation is indicated visually in Figs. 5A and 5B, and numerically in Table 2.

3.3 Cancer results

The cytotoxic effect of test compounds on human pancreatic cancer cell lines is shown in Fig. 6. Compounds 6-hydroxy-4-methylcoumarin and 2,5-dihydroxyacetophe-
none significantly decreased human pancreatic cancer cell viability from low doses (Fig. 6). In addition, 100 µM dose of all compounds caused significant reductions in human pancreatic cancer cell viability (Fig. 6). In general, we can say that of the four tested compounds, 6-hydroxy-4-methylcoumarin and 2,5-dihydroxyacetophenone have cytotoxic effects in all cell types, and this effect is particularly strong in human pancreatic cancer cells.

4 Discussion
In this study, N-([methoxysuccinyl]-Ala-Ala-Pro-Val-chloromethyl ketone was used as a standard for elastase. For 2,5-dihydroxyacetophenone compound, a good result was determined compared to the standard, but a poor result was calculated for 6-hydroxy-4-methylcoumarin compound compared to the standard. Inhibiting the activity of extracellular matrix-degrading (ECM) proteins such as elastases and collagenases may be a useful approach to prevent UV-induced skin changes and premature skin...
In Silico Studies, Biological Activities, and Anti-human Pancreatic Cancer Potential of Flavonoids

859

Fig. 6 Investigation of the effects of these compounds on cancer tissue at different concentrations and their percentages in graphic form.

This type of cancer is known to be aggressive and migrate to different sections of the body quickly. If metastasis of pancreatic cancer could be stopped it would be possible to manage the tumor without searching for additional tumor spread and if this treatment could be combined with drug resistance decrease it could be used as a good treatment option for pancreas cancer.

5 Conclusion

In this study, inhibition effects on both compounds, collagenase and elastase enzymes were determined, the results were obtained at micromolar level and micromolar acceptable, then the interactions between enzymes and compounds were examined with molecular docking and the results are similar and suitable to in vitro results, then Anti-COVID19 study was done with molecular docking program, for Anti-COVID the results are not as we wanted but not bad. We have studied the latest anticancer effects and obtained good results, so we can say that we can use these compounds in drug design in the future. The increase in elastase enzyme activity reveals the structural and functional changes of collagen and elastic fibers. This situation leads to the deterioration of the flexible structures of the skin, the formation of a rough texture and aging. Elastase inhibitors show anti-wrinkle activity that maintains skin elasticity. In addition, the imbalance between elastase and its natural inhibitors causes tissue damage and may cause lung and connective tissue diseases such as cystic fibrosis, asthma, pulmonary emphysema, respiratory distress syndrome. Therefore, it is thought that with the development of elastase-specific inhibitors, it will be possible to control elastase-related diseases.

Data Availability Statement

Data that support study findings are available with the corresponding author upon reasonable request.

Authors’ Contributions

All authors have had a same role in preparing, designing, doing experiments, analyzing, writing, and submitting the recent manuscript.

Conflict of Interest

There isn’t any conflict of Interest.
Supporting Information

This material is available free of charge via the Internet at doi: 10.5650/jos.ess22021

References

1) Wang, L.; Yang, B.; Du, X.; Yi, C. Optimisation of supercritical extraction of flavonoids from Pueraria lobata. Food Chem. 108, 737-741 (2008).

2) Lin, M.C.; Tsai, M.J.; Wen, K.C. Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatogr. A 830, 387-395 (1999).

3) Heim, K.; Tagliaferro, A.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572-584 (2002).

4) Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Finencio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 36, 1199-1208 (2002).

5) Chang, H.F.; Yang, L.L. Radical-scavenging and rat liver mitochondrial lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs. J. Med. Plants Res. 6, 997-1006 (2012).

6) Zhushen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559 (1999).

7) Sumantran, V.N.; Kulkarni, A.A.; Harsulkar, A.; Wele, A.; Koppikar, S.J. et al. Hyaluronidase and collagenase inhibitory activities of the herbal formulation Triphala guggulu. J. Biosci. 32, 755-761 (2007).

8) van Wart, H.E.; Steinbrink, D.R. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 113, 356-365 (1981).

9) Madhan, B.; Krishnamoorthi, G.; Rao JR, Nair, B.U. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int. J. Biol. Macromol. 41, 16-22 (2007).

10) Saunders, W.B.; Bayless, K.J.; Davis, G.E. MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrixes. J. Cell Sci. 118, 2325-2340 (2005).

11) Brenneisen, P.; Wenk, J.; Klotz, L.O.; Wlaschek, M.; Briviba, K. et al. Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase(s) matrix-degrading metalloprotease (MMP)-1)and stromelysin-1 (MMP-3)mRNA levels in cultured human dermal fibroblasts. J. Biol. Chem. 273, 541 5279-5287 (1998).

12) Schultr-Hautd, S.D.; Scherp, H.W. Lysis of collagen by human gingival bacteria. Proc. Soc. Exp. Biol. Med. 89, 697-700 (1955).

13) Raut, C.P.; Evans, D.B.; Crane, C.H. Pisters, P.W.; Wolff, R.A. Neoadjuvant therapy for resectable pancreatic cancer. Surg. Oncol. Clin. N. Am. 13, 639-661 (2004).

14) Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960-1966 (2007).

15) Gidekel Friedlander, S.Y.; Chu, G.C.; Snyder, E.L.; Girnus, N.; Dibelius, G. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379-389 (2009).

16) Fu, B.; Luo, M.; Lakkur, S.; Lucito, R.; Iacobuzio-Donahue, C.A. Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biol. Ther. 7, 1593-1601 (2008).

17) Kessenbrock, K.; Frohlich, L.; Sixt, M.; Lämmermann, T.; Pfister, H. et al. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating anti-inflammatory progranulin. J. Clin. Invest. 118, 2438-2447 (2008).

18) Chua, F.; Dunsmore, S.E.; Clingen, P.H.; Mutsaers, S.E.; Shapiro, S.D. et al. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 170, 65-74 (2007).

19) Yamanouchi, H.; Fujita, J.; Hojo, S.; Yoshinouchi, T.; Kamei, T. et al. Neutrophil elastase: a-1-proteinase inhibitor complex in serum and bronchoalveolar lavage fluid in patients with pulmonary fibrosis. Eur. Respir. J. 11, 120-125 (1998).

20) Suzuki, T.; Moraes, T.J.; Vachon, E.; Ginzberg, H.H.; Huang, T.T. et al. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 33, 231-247 (2005).

21) Pauline, H.D. P Naughton Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants Tamayn SA Thring. BMC Complement Altern. Med. 9, 6882-9-27. (2009).

22) Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol. 54, 1865-1872 (2016).

23) Barrantes, E.; Guinea, M. Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sci. 72, 843-850 (2003).

24) Trott, A.J.; Olson, A.V. Improving the speed and accuracy of docking with a new scoring function, efficient
In Silico Studies, Biological Activities, and Anti-human Pancreatic Cancer Potential of Flavonoids

J. Oleo Sci. 71, (6) 853-861 (2022)

861

optimization and multithreading. J. Comput. Chem. 31, 455-461 (2010).

25 Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A. et al. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT (2009).

26 Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, H. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289-293 (2020).

27 Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X. Nel-finavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv 1201, 0–2 (2020). doi: https://doi.org/10.1101/2020.01.27.921627.

28 Accelrys Software Inc. Discovery Studio Modeling Environment, Release 3.5 Accelrys Software Inc, San Diego (2013).

29 Duconseil, P.; Gilabert, M.; Gayet, O.; Loncle, C.; Moutardier, V. et al. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma. Am. J. Pathol. 185, 1022-1032 (2015).

30 Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 388, 73-85 (2016).

31 Neira, J.L.; Bintz, J.; Arruebo, M.; Rizzutai, B.; Bonacci, T. et al. Identification of a drug targeting an intrinsi-

cally disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 7, 39732 (2017).

32 Van Wart, H.E.; Steinbrink, D.R. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 113, 356-365 (1981).

33 Kanashiro, A.; Souza, J.G.; Kabeya, L.M.; Azzolini, A.E.C.S.; Lucisano-Valim, Y.M. Elastase release by stimulated neutrophils inhibited by flavonoids: Importance of the catechol group. Z. Naturforsch. C 62, 357-361 (2007).

34 Hrenn, A.; Steinbrecher, T.; Labahn, A.; Schwager, J.; Schempp, C.M.; Merfort, I. Plant phenolics inhibit neutrophil elastase. Planta Med. 72, 1127-1131 (2006).

35 Kleeff, J.; Koc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2, 16022 (2016).

36 Caparello, C.; Meijer, L.L.; Garajova, I.; Falcone, A.; Le Large, T.Y. et al. FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic cancer. World J. Gastroenterol. 22, 6987-7005 (2016).