1 はじめに

土壌・地下水汚染は「古くて新しい環境問題」である。古くは「足尾鉱毒事件」、近年では福島第一原子力発電所事故による放射能汚染や豊洲新市場予定地の土壌汚染等が挙げられる。土壌・地下水汚染は各種産業活動の「負の遺産」とも言え、時代や産業構造等によって変わっており、また規制のあり方に関しても、政策や文化の変遷に伴い、変化してきている。

わが国では、19 世紀後半からの重工業の発達に伴って鉱山開発と精錬等の産業が盛んになり、鉱山排水による農地の汚染が深刻な社会問題となった。1880 年代後半から渡良瀬川沿岸の農地が汚染された公害事件（通称足尾鉱毒事件）は、わが国の公害の原点となった。また、1968年富山県神通川流域で発生したイタイイタイ病をきっかけに、1970年に「農用地の土壌の汚染防止等に関する法律」が制定された。2016年12月に環境省・大気環境局が公表した報告によれば[1]、平成27年度末時点で、法律で定められた基準値以上検出された地域面積は7,592 haにのぼり、その内対策事業等完了面積は割合にして92.7%であった。このように、農地の土壌汚染問題は発覚から50年以上にわたり対策を実施しても100%でないのが現状である。「農用地の土壌の汚染防止等に関する法律」に指定された汚染物質は3種類のみであり、カドミウムは人への健康被害、銅と砒素は植物への生育障害防止という観点から規制されている。2014年12月に、日本のコメ中のカドミウムの基準値は、1.0 mg/kgからWHO基準と同じ0.4 mg/kgに改正された。基準が上がったので、今後一部の地域で問題が顕在化する懸念も残ると考えられる。

戦後、化学や製造業の発達に伴って、鉛や六価クロム等の重金属類や揮発性有機化合物（以下、VOC）による汚染等が顕在化した。2000年に土壌環境センターが公表した報告によれば[2]、平成27年度末時点で、法律で定められた基準値以上検出された地域面積は7,592 haにのぼり、その内対策事業等完了面積は割合にして92.7%であった。このように、農地の土壌汚染問題は発覚から50年以上にわたり対策を実施しても100%でないのが現状である。「農用地の土壌の汚染防止等に関する法律」に指定された汚染物質は3種類のみであり、カドミウムは人への健康被害、銅と砒素は植物への生育障害防止という観点から規制されている。2014年12月に、日本のコメ中のカドミウムの基準値は、1.0 mg/kgからWHO基準と同じ0.4 mg/kgに改正された。基準が上がったので、今後一部の地域で問題が顕在化する懸念も残ると考えられる。

キーワード: 土壌・地下水汚染、浄化技術、環境規制、持続的発展

Challenges of solving the problem of soil and groundwater contamination
—An interdisciplinary approach—

Ming ZHANG

Feasible countermeasures are needed to address soil and groundwater contamination problems, because of its impact on human health and socioeconomic activities. Soil and groundwater contamination is a complex issue that requires an interdisciplinary effort involving research into contaminants, their practical removal, and social implementation. This paper discusses several areas of research that the author has been involved in this regard.

Keywords: Soil and groundwater contamination, remediation technologies, environmental regulation, sustainable development

産業技術総合研究所 地質調査総合センター 地圏資源環境研究部門 〒 305-8567 つくば市東1-1-1 中央第7
Research Institute for Geo-Resources and Environment, GSJ, AIST
Tsukuba Central 7, 1-1-1 Higashi, Tsukuba 305-8567, Japan
E-mail: m.zhang@aist.go.jp

Original manuscript received January 6, 2019, Revisions received January 22, 2019, Accepted January 24, 2019

Synthesiology Vol.12 No.1 pp.39-47 (Feb. 2019) — 39 —
た報告書によれば、汚染の恐れのある全産業事業所数は約93万カ所で、調査費用は約2兆円、浄化費用は約11兆円が必要と推定された。わが国では、市街地の土壌汚染に係る法整備は、米国の汚染土壌浄化費用の信託基金（通称スーパーファンド法、1980年に制定）より20年以上遅く、2003年に「土壌汚染対策法」（以下、土対法）が制定された。この法律により、汚染物質は第1、第2および第3種特定有害物質に分類され、それぞれVOC、重金属類および農薬類とPCBに対応する。土対法は数回の改正を経て、現時点で、第1、第2および第3種特定有害物質はそれぞれ12.9および5物質（合計26物質）が指定されている。特定有害物質は、日本で使われている約65千種類の化学物質の極一部しかないと留意されたい。また、現状のわが国の環境規制はリスクに基づくものではなく、一律の環境基準値によるものであることにも留意されたい。

土対法の施行をきっかけに、わが国における土壌汚染の調査と対策の事例が年々増加している。環境省水・大気環境局が公表した最新の報告によれば、近年法規制に基づく調査・対策が実施された件数だけで年間約1200件、企業等の自主対策も含めると数千件にのぼる。しかし、汚染サイト数は数十万カ所も潜在するのに対して、数千件はわずか1%程度であり、土壌・地下水汚染問題を解決するためには、長い道のりが必要であることが一目瞭然である。

この論文では、土壌・地下水汚染問題の多様性と複雑性を提示し、土壌・地下水汚染問題を合理的に解決するための要素技術および社会実装を構築し、論説するとともに、著者が携わってきた数つかの研究事例を紹介する。

2 土壌・地下水汚染の多様性と複雑性

「土対法」に指定された汚染物質は3種類で、26物質のみであるが、実際に人の健康に影響を与える可能性のある汚染物質は他にも多数存在する。ヨーロッパでは、汚染物質を重金属類、芳香族炭化水素（以下、BTEX）、有機塩素化合物（以下、CHC）、多環芳香族炭化水素（以下、PAH）および鉱物油に分類されている。日本では、「汚染対策ガイドライン」が発表されているものの、法律による規制はまだ実施されていない。また、BTEXやCHCおよびPAHにはそれぞれ多数の異性体が存在するが、土対法で指定されたVOCは、BTEXそしてCHCの一部のみである。

2011年3月11日に発生した東日本大震災によって引き起こされた福島第一原子力発電所事故により、広範囲にわたる放射性物質汚染が発生した。この緊急の問題を解決するため、同年8月30日に「平成二十三年三月十日発生した東北地方太平洋沖地震に伴う原子力発電所の事故により放出された放射性物質による環境の汚染への対処に関する特別措置法」が公布され、2012年1月1日より施行された。すなわち、放射性物質による汚染は、土対法の規制の範疇外である。

2016年6月1日より改正「労働安全衛生法」が実施され、化学物質に係るリスクアセスメントの実施が義務化された。同改正では、一定の危険性・有害性が確認されている640の対象化学物質を製造、または取り扱う事業者に対して、業種や規模を問わず、リスクアセスメントを実施することが義務付けられた。また、水道法に基づく水質基準では、51ある規制項目のほか、26の水質管理目標設定項目と47の要検討項目（合計124項目）も制定されている。このように、土対法で規制されている化学物質の種類数は限られた数しかない。これは、土壌汚染問題は非常に複雑であり、調査と対策は容易ではない、現実的に厳しい規制が困難であることが伺える。現時点で、土対法に規制されていない物質が今後規制される可能性もあり、場合によっては、社会問題になる可能性もあり得る。実際には2017年4月よりクロロエチレンが土対法の規制物質とされた。加えて、汚染のない土地が法律上では、汚染された土地に変わり、売却や再開発ができなくなったケースも発生した。

汚染物質の多様性に加え、土壌の多様性やその不均質性と異方性、有機物と粘土鉱物の強い吸着性等により、土壌汚染問題は非常に複雑になる。また、汚染物質によっては、自然界の物質循環によって汚染が連鎖的に発生する場合もある（図1）。環境基本法では、土壤汚染を大気汚染、水質汚濁、騒音、振動、地盤の沈下および悪臭と並べて、「典型七公害」の一つとして位置付けられている。
これらの公害は単独で発生するではなく、原因によっては同時に発生する可能性もある。例えば、異臭のある揮発性化学物質は悪臭のほか、大気汚染、降雨による水質の汚濁および浸透による土壌・地下水の汚染を同時に引き起こす可能性もある。このような土壌・地下水汚染問題を調査対策するためには、多分野に跨る知識と技術の融合は必要不可欠である。

3 土壌・地下水汚染に係る研究の構成学的意義

土壌・地下水汚染のリスク評価技術と自主管理技術に関する構成学的意義は、駒井ら[7]によって論じられているが、多様化・複雑化する土壌・地下水汚染問題を解決するためには、リスク評価技術と自主管理技術が必要である。さらに、科学・技術研究をエンジニアリング的な工法を介して、社会への橋渡しを含めていく必要もある。実問題への適用においては、環境、経済および社会の側面も統合的に考慮する必要がある。汚染対策措置の選択に係る意思決定のプロセスにおいて、要素技術が意思決定の科学的根拠の一部として取り込まれ、柔軟に統合される。これは、持続的発展を考慮した合理的土壌・地下水汚染対策措置とされ、サステナブル・レメディエーションとも言われる[8]-[10]。

図2に持続的発展を考慮した合理的土壌・地下水汚染対策措置のシナリオをまとめる。技術の社会実装においては、産・学・官連携のみならず、地域住民を含むステークホルダー全員の参加も重要であり、日本では発展すべき課題の一つである。豊洲新市場予定地の土壌汚染問題で社会的混乱を引き起こした原因の一つに、ステークホルダーの参加が欠けたことがある。

4 土壌・地下水汚染に係る戦略的技術開発

土壌・地下水汚染の調査と対策等に係る各種技術開発は発展してきているものの、関連知見に対する誤解や実問題への適用に限界がある等の問題が存在する。現状の[土...
導法」に基づく調査と対策は強制力が強いものの、必ずしも科学的・合理的ではない。例えば、汚染の恐れのある区域に対して、平面方向で試料採取は一律10m、対策も10mの間隔の格子線で区画される100m2が基本単位となっている。実際に鉛等の重金属類で汚染された場合、土壌の吸着性により、10mより狭い範囲に存在するケースが多いので、100m2単位で対策するのは非経済的である。また、現状の土対法では一律の環境基準値で行われているため、実際に人の健康リスクが大きくなくても汚染と指定されるケースもあり、指定調査機関の分析で環境基準値以下であれば、汚染はないあるいは浄化完了となる。これは、分析の対象や方法によって精度が変わること、そして、分析者の経験によるところもあるからである[11]。このような問題を解決するために、著者および共同研究者らは、汚染物質の存在形態に着目した評価法の開発を進めている。例えば、自然由来の汚染物質としてよく存在する鉛汚染土壌に対して、沈降分級とX線回折分析を用いた鉛含有鉱物の存在状態の解明と簡易定量分析法を確立した[14]。分級した各粒径毎の試料をThermo製の携帯型蛍光X線（XRF）分析計（Niton XL 3t-900S-M）を用いて全岩化学分析を行った。各試料と標準試料（金属シリコン）の重量比が1:1の混合試料を作成し、リガク製の粉末エックス線回折装置（Smart Lab）を用いて、各鉱物相の同定およびそれらの簡易定量分析を行った。試料に含まれる鉱物相の定量分析は、標準試料の回折ピークの積分強度を50として、未知試料の相対量を算出した。サイトから採取してきた二つの試料の評価に適用したところ、一つの試料では、鉛濃度が粒子の大きさと正の相関があり、方鉛鉱の含有量と良い相関が認められた。もう一つの試料では、鉛濃度が逆に粒子の大きさと負の相関があり、明礬石の含有量と正の相関が認められた（図3）[14]。土壌汚染分野においては、分級洗浄という工法がよく利用されている浄化工法の一つである。この工法は、汚染物質が粘土物質を多く含む微粒子に附着すると仮定して行われている。しかし、実際の汚染土壌については、この仮説が必ずしも成立しない。このように、汚染物質の粒子サイズと鉱物含有量との相関性は、汚染物質の濃度だけでなく、どのような浄化あるいは対策方法が適用できるかの判断材料としても利用可能である。

4.2 浄化・対策に関する技術開発

汚染の浄化・対策の技術として、工学的アプローチと物
論説: 土壌・地下水汚染問題の解決に挑む（張）

理・化学的アプローチがあり、それぞれのアプローチにはさらに複数の工法が存在する（図2）。しかし、処理の確実性等からこれまで報告された事例のほとんどは掘削除去等のコストが高い工法を採用してきた。豊洲新市場予定地の汚染対策には860億円が投じられたが、最終的には完全浄化できなかったと報じられている。したがって、低コスト・低環境負荷での浄化・対策技術の開発は依然として優先順位の高い研究課題である。地圏環境リスク研究グループは、鉱物系材料[15]-[17]や環境微生物[18]-[20]を利活用した浄化技術の開発を精力的に推進している。前者は、重金属類の吸着と不溶化、後者はVOCの分解に利用することが可能である。加筆すべきポイントとして、吸着は単なる汚染物質の濃度変化だけでなく、使用済吸着材の環境安定性[15]や土壌の種類および土壌中に存在するケイ酸の影響[16][17]も詳細に評価できることである。ここでは、酸性で有機成分に富む黒ぼく土、弱酸性の黄褐色森林土、中性でアルファニン（火山灰帯に広く分布する結晶度の高い水素アルミナウムケイ酸塩）含む粘土、アルカリ性でシリカ成分含有率の高い川砂および鉄成分含有率の高い山砂を、主要な土壌の種類として体系的に評価した。また、微生物を利活用したVOCの分解については、単一の汚染物質ではなく、実際の汚染現場で発生する複合汚染を再現した条件下での分解実験を実施した[18][19]。さらに、複合汚染の分解において、どの微生物がどの汚染物質の分解に寄与したかを安定同位体プロービング法で明らかにした[20]。これら研究開発の全過程が実用化を見据えた上で実施している。

図4にテトラクロロエチレン（PCE）、トリクロロエチレン（TCE）、シス-1,2-ジクロロエチレン（cis-DCE）、クロロエチレン（VC）、ベンゼン、トルエンおよびDCMの7種を対象とした分解実験の結果を示す。この7種類の汚染物質を選択した理由として、国内で実在した某不法投棄サイト（廃棄物総量150万t以上、広さ27ha）の調査結果を利用できたからである。図中の(a)と(b)はそれぞれ異なった試験条件下での結果を示している。図中の(AN)/AEは嫌気分解実験後好気分解実験、(AN)/AE-〇〇/ANは嫌気分解実験後好気分解実験後さらに嫌気分解実験を行ったことを意味する。また、O2とO5はそれぞれ酸化分解実験における試験液ヘッドスペース中の初期酸素濃度を示すものであり、それぞれ体積割合が21％と5％に対応する。DOは溶存酸素の濃度である。好気的微生物による酸化分解（好気分解とも略称）と嫌気的微生物による還元分解（嫌気分解とも略称）を柔軟に適用することにより、酸化条件では、ベンゼン、トルエンおよびDCMの分解が確認され、また還元条件では、PCE、TCE、cis-DCE、VCおよびDCMの分解が確認された。VCは無害なエチレンまでに分解され、クロロエチレン類の完全分解が確認できた。また、この研究により偏性嫌気性細菌として知られているDehalococcoidesは、好気環境に一定期間曝されても生存でき、クロロエチレン類の処理が可能なことが初めて実証された。今後の複合汚染浄化の設計において非常に有用な知見を得ることができた。

4.3 リスク評価・管理に関する技術開発

リスク評価と管理技術を社会へ適用・実装するためには、リスクコミュニケーションを介して実施する必要がある。リスクの度合いを分かりやすく示す、あるいは理解を得るためには、我々の身近にある自然環境中のバックグラウンドレベルの提示が極めて有効である。重金属類の汚染に係るリスクコミュニケーションや次世代の土地利用計画等に資するため、地圏環境リスク研究グループでは表層土壌における重金属類を含む各種元素の含有量、溶出量および地域の産業構造と住民の生活スタイルを考慮したリスク評価マップを「表層土壌評価基準図」として整備して
きている。これまでに、宮城県、富山県、鳥取県、茨城県および高知県地域の評価が完了し、Webで公表している（https://unit.aist.go.jp/georesenv/georisk/japanese/home/home_map.html）。一例として、図5にGoogle Earth上に表示した高知県のクロム全含有量、塩酸溶出量、水溶出量およびヒトの健康リスク評価図のイメージを

図4 環境微生物によるVOC複合汚染の完全分解例

a) 好気性微生物による酸化分解（好気分解）

b) 嫌気性微生物による還元分解（嫌気分解）

図5 高知県「表層土壌評価基本図」におけるクロムの評価
示す。全含有量が高くても、必ずしも溶出量は高くなりないこと、溶出量が環境基準を超過した地点でも、地域の産業構造および住民の生活スタイルを考慮したヒトの健康リスクは極めて低いことが明らかである。現在、四国地域の整備と公表に向けた調査と解析を進めており、将来的には全国版への展開を目指している。

4.4 サステナブル・レメディエーション支援ツールの開発

サステナブル・レメディエーションは浄化技術そのものではなく、土壌および地下水汚染対策において、環境面だけでなく社会および経済的側面も統合的に考慮し、最適な対策措置を選定する意思決定のプロセスである[8]。サステナブル・レメディエーションは一律の環境基準に基づく浄化対策技術ではなく、米国環境保護庁（US EPA）および米国試験材料協会（ASTM）[21]が提唱したグリーン・レメディエーションを発展させたものである。近年では、国際標準化機構（ISO）よりサステナブル・レメディエーションに関する枠組みの基準も発行され[10]、著者はエキスパートの1人として制定過程におけるレビューや評価に基づくセミナーやワークショップ等で議論した。特に、サステナブル・レメディエーションに関する枠組みが示された後、社会実装に向けたツールはまだ確立されていない。そこで、著者は専門家や研究者らと連携し、階層化意思決定手法に基づくツールの開発を進めることとした（図6）[22]。

この手法は、問題の分析において、主観的判断とシステムアプローチを向上し融合した問題解決型意思決定手法の一つであり、ハイアラーキカル・デシジョン・プロセスとも称される[23]。この手法を用いることにより、ステークホルダーにおける意思決定の過程において、異なる立場にいる利害関係者らの主観的な意見を相対的な点数で入力・集約し、システムに客観的・中立的な結果を出すことが可能となる。従って、合意形成や柔軟、意思決定を円滑に行うことができる。このツールの一部公開に向けて開発を進めている。

5 今後の課題と展望

土壌汚染問題は発展途上国においてその深刻さが増大しているものの、日本を含む先進国においても、依然として直面しなければならない社会問題の一つである。しかし、汚染物質の多様性に加え、土壌の多様性や地盤の不均質性および異方性等により土壌汚染問題は非常に複雑である。このため、環境汚染問題を効率的・効果的に解決するためには、単一分野の知識や要素技術の開発だけでは不十分である。多分野融合による実用化可能な技術開発のほか、柔軟に統合・構成する必要がある。また、より効果的な規制・管理のあり方の検討も必要不可欠であると考えられる。

土壌汚染対策には莫大な費用を要するケースが多いため、経済的および社会的側面も考慮した対策・管理システムの構築が極めて重要である。また、リスク評価に基づく対策技術の適用や土壌の改善等も考慮した対策技術の選定等、持続的な開発と環境対策の確立において、環境問題を有効に構築することも可能である。このようなシステムの構築において各種要素技術の統合を図ることも可能である。

著者と時間等の制限や著者の浅学非才等により記述の不十分な部分や、場合によっては誤解もあるかもしれないが、今後さらなる議論を深め、日本における土壌汚染問題だけでなく、環境問題に係る国際協力や連携に少しでも多めに貢献できれば幸いである。
論説: 土壌・地下水汚染問題の解決に挑む(張)

用語の説明

用語1: 重金属類：比重の比較的大きい金属を指しておき、一般的に比重が4~5以上のものである。法律および土壌汚染分野では、重金属のほか、銅や鉛水銀等の重金属と同様人への健康被害をもたらすシアン化合物や二酸化セリチニウムおよびその化合物、さらにはその化合物も含む。

用語2: 指定調査機関：手続き根拠法に基づいて特定の調査等を行うに当たって、適切な調査等を行うことができる機関として法に基づき指定される。土壌汚染対策法（2002）第3条又は第4条に基づく調査を行う場合には、環境大臣の指定する者に調査をさせなければならない。この場合の環境大臣の指定する者を指定調査機関という。

参考文献

[1] 環境省水・大気環境局：平成27年度農地土壌汚染防止法の施行状況(2016).
[2] 土壌環境センタ：我が国における土壌汚染対策費用の推計(2000).
[3] 環境省水・大気環境局：平成28年度土壌汚染対策法の施行状況及び土壌汚染調査・対策事例等に関する調査結果(2018).
[4] European Environment Agency (EEA)：Main contaminants at industrial and commercial sites affecting soil in Europe as % of total, http://www.eea.europa.eu/data-and-maps/figures/main-contaminants-at-industrial-and-commercial-sites-affecting-soil-in-europe-as-of-total/2019-01-03.
[5] 中央環境審議会土壌農薬部会土壌汚染技術基準等専門委員会：油汚染対策ガイドライン－油類を含む土壌に起因する由来－環境影響評価における土地汚染者等による対応の考え方－(2006).
[6] 張 銘：土壌汚染対策と制度の今後、環境管理対策と制度の今後講演要旨集，エコケミストリー研究会，65–74(2017).
[7] 駒井武，川辺能成，原淳子：土壌汚染対策の今後講演要旨集，土壌汚染対策と制度の今後講演要旨集，エコケミストリー研究会，65–74(2017).
[8] 張 銘：サステナブル・レメディエーション，地盤工学会誌，65 (1)，55–56(2017).
[9] US Sustainable Remediation Forum: Integrating sustainable principle, practice, and metrics into remediation projects, Remediation, 19 (3)，5–114(2009).
[10] International Standard Organization: Soil quality—Sustainable remediation, ISO 18504 (2017).
[11] 張 銘：土壌汚染対策法分析－有機－，ぶんせき，519，100–101(2018).
[12] 川辺能成：土壌汚染対策法総論，ぶんせき，517 (1)，19–20(2018).
[13] 加藤雅彦：土壌汚染対策法分析－重金属等－，ぶんせき，518，58–59(2018).
[14] 星野茂子，張 銘，鈴木正哉，月村勝宏，大場昭，秋田照：自然由来汚染土壌における鉛の存在形態の解析、第19回環境水環境汚染対策に関する研究会講演要旨(2013).
[15] 杉田創，小熊輝美，張 銘，原淳子，高橋伸也：Mg系使用済ヒ素吸着材に関する環境安定性評価－土壌の影響－，土壌学会論文集(G環境)，72 (7)，III_437–III_448(2016).
[16] 杉田創，小熊輝美，張 銘，原淳子，川辺能成：Mg系使用済ヒ素吸着材の環境安定性に及ぼすケイ酸の影響，土壌学会論文集(G環境)，73 (7)，III_407–III_418(2017).
[17] 杉田創，小熊輝美，張 銘，原淳子，川辺能成：使用済Ca系使用済ヒ素吸着材の環境安定性に及ぼすケイ酸の影響，土壌学会論文集(G環境)，74 (7)，III_493–III_502(2018).
[18] M. Yoshikawa, M. Zhang and K. Toyota: Enhancement and biological characteristics related to aerobic biodegradation of toluene with coexistence of benzene, Water Air Soil Pollut., 227 (9)，340(2016).
[19] M. Yoshikawa, M. Zhang and K. Toyota: Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane, Water Air Soil Pollut., 228 (1)，25(2017).
[20] M. Yoshikawa, M. Zhang, F. Kurisu and K. Toyota: Bacterial degraders of coexisting dichloromethane, benzene, and toluene, and identified by stable-isotope probing, Water Air Soil Pollut., 228 (11)，418(2017).
[21] ASTM: Standard Guide for Greener Cleanups, E2893-13, 1–30(2013).
[22] 張 銘, 保高隆成, 川崎正範, 中島誠: ハイアラーキカル・デシジョン・モデリング法に基づくサステナブル・レメディエーション意思決定ツールの検討，第33回地下水・土壌汚染とその防止対策に関する研究会講演集，811–814(2017).
[23] V. Rajput and A. C. Shukla: Decision-making using the analytic hierarchy process (AHP), International Journal of Scientific Research, 3 (6)，135–136(2014).

執筆者略歴

張 銘（ちょう めい）
1996 年 3 月九州大学大学院（工学）博士取得。1996 年 10 月科学技術振興機構特別研究員。1999 年 7 月主任研究官として工業技術院地質調査所に入所。2001 年 4 月産総研深部地質環境センター主任研究員。2011 年 4 月同所環境資源環境研究部門地球環境リスク研究グループ長。2016 年 4 月より東北大学大学院環境科学研究科環境地球系教授を兼務。放射性廃棄物の地質処分や土壌・地下水汚染浄化技術等に係る研究開発に従事している。

査読者との議論

議論1 全体について

コメント・牧野雅彦：産業技術総合研究所

土壌・地下水汚染は人の健康や社会に深刻で大きな影響を与えるためその解決に向けた研究は重要である。著者はこの論説で研究目標、要素技術開発、要素技術間の統合について分かりやすく丁寧に記述している。また、対策の支援ツールとして「サステナブル・レメディエーション意 思決定ツールの検討」におけるシナリオ・モデル・技術の取り組みにおいて、研究者・企業・行政機関の関与が求められている。当面の課題は、この議論を踏まえ、さらなる研究開発の必要性を示しています。

査読者とはの議論

査読者とは、全体についての評価を基に、具体的な改善点やディスカッションが必要な部分についての提案を行う役割を果たします。この論文は、土壌・地下水汚染問題の解決に向けた研究の重要性を強調し、その解決に向けた戦略的なアプローチを示しています。しかし、さらに詳しいデータや実験結果の提示が求められ、さらなる研究発展に向けた方向性が示されることが望ましいです。
シンセシオロジーにふさわしい論説と考えます。

議論2 はじめにについて
質問・コメント（内藤 茂樹）
「わが国では、18世紀後半の産業革命以降」というところが、鉱山開発は戦国時代から行われていたが、重工業の発達ということであれば、明治になってからであり、19世紀後半から20世紀初頭の官営八幡製鉄設立以降とするべきではないでしょうか。

回答（張 銘）
ご指摘頂いた通り、日本における鉱山開発の歴史はさらに古く、また、重工業の発達は19世紀後半からとなります。「足尾鉱毒事件」は日本最初の公害であり、わが国の公害の原点とも称されております。誤解を避けるために、文を「19世紀後半からの重工業の発達に伴って」と修正させて頂きました。鉱山開発自身はそれ以前からも行われておりましたが、盛んではないと考えております。また、「足尾鉱毒事件」は「わが国の公害の原点」であることも追記いたしました。

議論3 土壌・地下水汚染に係る構成学的意義について
質問・コメント（内藤 茂樹）
「リスク評価に基づくリスクコミュニケーション等の技術」とはどのような技術なのでしょうか?

回答（張 銘）
リスク評価は不確実性があるものの、基本的に汚染物質の有害性と曝露量、科学的に計算・評価できるものであり、リスクコミュニケーションは社会心理学的アプローチとなります。リスクコミュニケーションにおいて、如何に科学的・客観的な知見を分かりやすく相手に伝え、リスクに関する理解あるいは受容、さらには合意形成までに持ち上げるかに係るコミュニケーション技術をこの論説では「リスク評価に基づくリスクコミュニケーション等の技術」と表現させて頂きました。

議論4 調査・評価に関する技術開発について
質問・コメント（内藤 茂樹）
「沈降分級とX線回折分析を用いた鉛含有鉱物の存在状態の解明と定量分析」について簡単に分析方法を記載された方が良いものと思われます。図4 b)「嫌気性微生物による還元分解」のグラフで、エチレンが日数の経過につれて増大しているのが気になります。この論説では分解が確認されたと記載されているので、本グラフの分かりやすい説明は可能でしょうか？また、図中でそれぞれ(a)、(b)と分かれておしきその説明もありません。

回答1（張 銘）
嫌気性微生物によるPCEの還元分解は逐次的脱塩素化反応とも称され、PCE⇒TCE⇒DCE⇒VC⇒ETH（ethylene）というルートで分解されます。ETHは毒性のあるPCEやTCE、DCEおよびVCと違って、無害であるため、ETHまでできた分解を完全分解と言います。この点をより分かりやすくするために、この論説で微修正を加えて頂きました。なお、分解微生物の種類によって、TCEがcis-DCEのほか、trans-DCEおよびLi-DCEに分解される可能性もありますが、著者らの実験結果のみならず国内外ほとんどの報告事例でも、cis-DCE経由ルートで分解されています。

議論5 浄化・対策に関する技術開発について
質問・コメント1（牧野 雅彦）
図4 a)「嫌気性微生物による還元分解」のグラフで、エチレンが日数の経過につれて増大しているのが気になります。この論説では分解が確認されたと記載されているので、本グラフの分かりやすい説明は可能でしょうか？また、図中でそれぞれ(a)、(b)と分かれておりますその説明もありません。

回答2（張 銘）
嫌気性微生物によるPCEの還元分解は逐次的脱塩素化反応とも称され、PCE⇒TCE⇒DCE⇒VC⇒ETH（ethylene）というルートで分解されます。ETHは毒性のあるPCEやTCE、DCEおよびVCと違って、無害であるため、ETHまでできた分解を完全分解と言います。この点をより分かりやすくするように、この論説で微修正を加えて頂きました。なお、分解微生物の種類によって、TCEがcis-DCEのほか、trans-DCEおよびLi-DCEに分解される可能性もありますが、著者らの実験結果のみならず国内外ほとんどの報告事例でも、cis-DCE経由ルートで分解されています。

議論5 浄化・対策に関する技術開発について
質問・コメント2（内藤 茂樹）
著者の研究部分で引用[15]-[20]の論文のまとめが記載されているが、実用化を見据えてどのような工夫をしたのか、実際に汚染現場で複合汚染を再現した条件等を説明されてはどうか？また図5が小さすぎて理解不能。掲載するのであればもう少し大きくするべきと考えます。

回答2（張 銘）
ご指摘を踏まえまして、不飽和に関しては、考慮した土壌の種類を追記いたしました。また、VOCによる複合汚染については、ぜひ、その条件に設定したかについてもその理由を追記いたしました。

質問・コメント2（内藤 茂樹）
著者の研究部分で引用[15]-[20]の論文のまとめが記載されているが、実用化を見据えてどのような工夫をしたのか、実際に汚染現場で複合汚染を再現した条件等を説明されてはどうか？また図5が小さすぎて理解不能。掲載するのであればもう少し大きくするべきと考えます。

回答（張 銘）
ご指摘を踏まえまして、不飽和に関しては、考慮した土壌の種類を追記いたしました。また、VOCによる複合汚染については、ぜひ、その条件に設定したかについてもその理由を追記いたしました。

他の査読者から頂いたご意見と合わせて、試験条件等も追記いたしました。