The CopenHeartSF trial—comprehensive sexual rehabilitation programme for male patients with implantable cardioverter defibrillator or ischaemic heart disease and impaired sexual function: protocol of a randomised clinical trial

Pernille Palm Johansen, Ann-Dorthe Zwisler, Jesper Hastrup-Svendsen, Marianne Frederiksen, Jane Lindschou, Per Winkel, Christian Gluud, Annamaria Giraldi, Elaine Steinke, Tiny Jaarsma, Selina Kikkenborg Berg

ABSTRACT

Introduction: Sexuality is an important part of people’s physical and mental health. Patients with heart disease often suffer from sexual dysfunction. Sexual dysfunction has a negative impact on quality of life and well-being in persons with heart disease, and sexual dysfunction is associated with anxiety and depression. Treatment and care possibilities seem to be lacking. Studies indicate that non-pharmacological interventions such as exercise training and psychoeducation possess the potential of reducing sexual dysfunction in patients with heart disease. The CopenHeartSF trial will investigate the effect of a comprehensive sexual rehabilitation programme versus usual care.

Methods and analysis: CopenHeartSF is an investigator-initiated randomised clinical superiority trial with blinded outcome assessment, with 1:1 central randomisation to sexual rehabilitation plus usual care versus usual care alone. Based on sample size calculations, 154 male patients with impaired sexual function due to implantable cardioverter defibrillator or ischaemic heart disease will be included from two university hospitals in Denmark. All patients receive usual care and patients allocated to the experimental intervention group follow a 12-week sexual rehabilitation programme consisting of an individualised exercise programme and psychoeducative consultation with a specially trained nurse. The primary outcome is sexual function measured by the International Index of Erectile Function. Accordingly, we will interpret data conservatively.

Strengths and limitations of this study

- The study has been designed to meet the criteria for high quality in non-pharmacological randomised clinical trial with central randomisation, multicentre participation and blinded assessment and analysis.
- We are aware of the subjective nature of the self-reported primary outcome (International Index of Erectile Function). Accordingly, we will interpret data conservatively.
- This trial is the first to test the effect of a comprehensive approach on sexual dysfunction in patients with ischaemic heart disease or implantable defibrillators.

Registration: Clinicaltrials.gov identifier: NCT01796353.

BACKGROUND

Sexuality is an important part of people’s physical and mental health. Patients with cardiovascular disease have an increased prevalence of sexual dysfunction. The causes of sexual dysfunction can be related to physical changes due to the disease, mental changes or adverse reactions to drugs and other interventions. Male sexual dysfunction is divided into sexual interest/desire disorders, ejaculatory and orgasmic dysfunctions and erectile dysfunction. The most common disorder is erectile dysfunction, defined as the persistent inability to obtain or maintain an erection which enables satisfying sexual activity. Erectile dysfunction is associated with age, but can also be triggered by organic as well as psychogenic conditions.
Cardiovascular risk factors were associated with a significant increase in myocardial infarction or cardiac death beyond the usual cardiac rehabilitation.40 However, due to the limited power of the sample in this randomised trial, it did not allow the detection of significant effects. The role of pelvic floor exercises as a treatment for erectile dysfunction is not tested on patients with heart disease, but in the general population 40–47% had regained normal erectile function after 3–4 months of training the pelvic floor muscles.41 42 As the condition of sexual dysfunction often includes both physical and psychological components, it is plausible to believe that patients with heart disease and sexual dysfunction benefit from a comprehensive rehabilitation intervention43 44 consisting of a psychoeducational component and an exercise training component including pelvic floor exercises.

TRIAL OBJECTIVES

The objective of the CopenHeartSF is to investigate the effect of a physical intervention in patients with cardiovascular disease taking PDE-5 inhibitors.35 36 The secondary hypothesis is that sexual function, measured by the sexual domain in the Psychosocial Adjustment to Illness Scale (self-reported version; PAIS-SR) questionnaire47 improves by two points in the experimental group compared with the control group after completing the programme. The estimated increase in secondary outcome is based on a study that examines the effect of physical exercise on sexual dysfunction.37–39 Overall, 591 patients with heart disease were included and the effect was significant in three of the five trials.37–39 However, the trials are characterised as being of small sample sizes, using non-validated tools and mainly focusing on the time before patients return to sexual activity and not on the ability and quality of the sexual performance. Randomised trials that address the psychological aspects of sexual dysfunction are limited in patients with heart disease. However, one randomised trial testing the effect of sexual therapy showed some promising trends when it comes to improving the frequency and quality of sexual activity in male patients post-cardiac event beyond the usual cardiac rehabilitation.17 However, due to the limited power of the sample in this trial, it did not allow the detection of significant effects.

Non-pharmacological treatment potentials

Non-pharmacological interventions possess potential in reducing sexual dysfunction. Lifestyle factors such as cigarette smoking, hyperlipidaemia and a sedentary lifestyle all predict erectile dysfunction4 5 and are the same risk factors that predict coronary artery disease. A recent meta-analysis of six randomised trials with 740 patients with no known heart disease, showed that lifestyle modifications such as physical exercise and pharmacotherapy for cardiovascular risk factors were associated with a significant improvement in erectile function.50 Furthermore, a randomised trial investigating the effect of exercise training 3 h/week or more in patients with no heart disease showed a significant result in improving the person’s erectile function compared with controls with no exercise training.34 We hypothesise that these lifestyle modifications can also improve sexual dysfunction in patients with already established heart disease. A systematic literature search showed five randomised clinical trials which examine the effect of physical exercise on sexual dysfunction.35–39

Standard treatment

Despite the fact that several international guidelines recommend that health professionals address the topic of sexuality in patients with heart disease,27 28 this is rarely practiced.29 30 The consensus or practice on how or where patients with heart disease and sexual dysfunction should be treated is lacking, however, some guidelines about the prescription of phosphodiesterase-5 (PDE-5) inhibitors exist.6 The PDE-5 inhibitors have an overall success rate of 50–80% of those treated among patients with cardiovascular disease.6 31 32 PDE-5 inhibitors are generally safe. Linking PDE-5 inhibitors to cardiac events, large randomised trials and a meta-analysis suggest that they are not associated with an increase in myocardial infarction or cardiac events.6 32 In patients with heart disease and no effect of PDE-5 inhibitors, or where PDE-5 inhibitors are contraindicated because of treatment with nitrates, there seems to be no consensus on what treatment should be offered for sexual dysfunction.

Non-pharmacological treatment potentials

Non-pharmacological interventions possess potential in reducing sexual dysfunction. Lifestyle factors such as diabetes, hypertension and heart disease.10 Studies including 33,451 males estimate that erectile dysfunction in varying degrees exists in 52% of all men, and that age is the most common variable associated with erectile dysfunction.11–13 The probability of complete erectile dysfunction in cardiovascular patients is 39% compared to 10% in the total population when adjusting for age.13 14 Physical activity is positively associated with a lower incidence of erectile dysfunction.15 The prevalence of sexual dysfunction in patients with heart disease ranges from 15% up to 89%.16 17 Patients with ischaemic heart disease and patients with implantable cardioverter defibrillator, which are two large and growing patient populations, are especially affected.17–23 Sexual dysfunction has a negative impact on quality of life and well-being in men with cardiovascular disease and sexual dysfunction is associated with an increase in anxiety and depression.21–24 The relationship is perceived to be bidirectional, with one element forcing the other.25 26

Open Access
activity, physical capacity measured by peak oxygen uptake (peak VO₂), pelvic floor muscle strength and endurance and female assessment of male partner’s erectile dysfunction.

METHODS

CopenHeartSF is an investigator-initiated randomised clinical superiority trial with blinded outcome assessment, with 1:1 central randomisation to a comprehensive sexual rehabilitation programme plus usual care or usual care alone. Based on sample-size calculations, 154 patients will be recruited from two university hospitals in Denmark. The CopenHeartSF trial is a part of the overall CopenHeart project, consisting of several randomised clinical trials (http://www.CopenHeart.org), designed to develop evidence-based knowledge of rehabilitation among patients with complex cardiac conditions. Major parts of the CopenHeartSF methods section and trial design in this article are similar to other randomised clinical trials, CopenHeartIE, CopenHeartRFA and CopenHeartVR.

Study population and eligibility criteria

Male patients above 18 years with sexual dysfunction associated with implantable cardioverter defibrillator or with ischaemic heart disease verified by coronary angiography, who have a partner, speak and understand Danish, and provide a written informed consent, are considered eligible for participation. Exclusion criteria are patients at intermediate or high risk in relation to their cardiovascular status according to recommendations from the Princeton consensus group, those with diseases in the urinary tract; those who perform intense exercise more than 3 h a week; patients with neurological or orthopaedic deficits which prevent training; patients with cognitive deficits which prevents consultations and patients who are included in ongoing research prohibiting additional research participation. A diagram showing the flow of participants through each stage of the randomised trial will be made (figure 1).

Experimental intervention

The experimental intervention is a comprehensive sexual rehabilitation programme. Sexual rehabilitation in this trial is defined as: a time-bound planned process with clear goals and means. Sexual rehabilitation is a process where several actors, including the patient, are working towards regaining improved sexual functioning and coping ability according to their sexual function. The comprehensive sexual rehabilitation programme contains a physical exercise component, including training of the pelvic floor and a psychoeducational component.

The physical components

Physical exercise

The goal of physical exercise is to achieve an improvement in the patient’s physical work capacity, and to eliminate the fear and uncertainty the patient may feel in relation to sexual activity as a form of physical activity. The physical exercise intervention is based on The European Society of Cardiology recommendations for physical activity for cardiovascular patients. The European Society of Cardiology recommends that all adults promote and maintain their fitness, muscle strength, flexibility and bone health several hours a week. Training must be of high intensity and of 30 min duration. Furthermore, the intervention is supported by European recommendations for physical training in cardiac patients, and has been tested in two large rehabilitation trials, COPE-ICD and DANREHAB. A professional physiotherapist with specific knowledge of cardiac rehabilitation initiates the physical exercise programme. Together with the patient, the physiotherapist plans and prepares a physical exercise protocol, taking into account the patient’s clinical condition and physical abilities. Sixty minutes is allocated for the initial consultation and preparation of individual training protocol, including pelvic floor exercise instructions.

Physical exercise is initiated at a physiotherapist-supervised setting at the Heart Centre, Rigshospitalet. Using wireless electrodes integrated into t-shirts (Corus-Fit, CardioCardio and Corus Exercise Assistant, V.2.0.16, Finland) potential cardiac arrhythmias, ECG abnormalities such as ST segment changes, T wave alterations, atrial or ventricular arrhythmias and training intensity levels are monitored. The training is initiated with two to three mandatory exercise sessions at Rigshospitalet. Subsequently, the patients can choose to continue the intensive physical exercise regimen either at Rigshospitalet, or at a local CopenHeart-certified facility, supervised by physiotherapists, or as supervised home-based training. Supervised home-based physical training has previously shown similar results to hospital-based training. This finding has been confirmed in a Danish setting.

One session is structured with 10 min warm-up bicycling, 20 min bicycling with increased intensity (cardiovascular training), 20 min strength exercises and 10 min stretching and cool-down period. The warm-up session is performed at the intensity of 11–12 on the Borg scale. The 20 min cardiovascular training is performed as interval training. Each session is divided into three sections. Each section contains an intensity of 13–17 on the Borg scale and time limit (2–15 min) varying between each section; the second section with longest and highest intensity. A cool-down period of 5 min is included after 20 min of cardiovascular training. The strength and strength-related exercises primarily target lower body muscles, and comprise the following four exercises: (1) heel rise performed by repetitions of maximal flexion from standing position; (2) step-up by using a step bench of 27 cm; (3) leg press standardised, starting with 90° flexion, hyperextension not accepted; (4) 90° pull-down performed in a cable machine to target abdominal muscles. For step-ups and heel-rises, weight load is calculated as a percentage of body weight (5–20%) and increased throughout the 12 weeks. Load for leg press is estimated from repetition maximum (RM) testing and increases from 60% to 70% of 1 RM during 12 weeks of...
training. All exercises are initiated by 2×12 repetitions and increased through the programme according to standard guidelines for strength training.61

To achieve cardiovascular adjustment the training begins with a warming-up period and ends with a cool-down period. This cardiovascular adjustment has been shown to reduce the risk of ischaemia and arrhythmia in connection to physical exercise.44 62 Participants must mainly exercise in an upright position to decrease left ventricular filling pressure and risk of ischaemia or heart-failure-triggered ventricular arrhythmias.62

Pelvic floor exercise

The bulbocavernosus muscle and the ischiocavernosus muscle, two superficial pelvic floor muscles, are active during erection and enhance rigidity. The bulbocavernosus muscle encircles 33–50\% of the base of the penis.41 The pelvic floor training regimen is inspired by Dorey \textit{et al},63 who have developed a training regimen for male patients for use in randomised clinical trials. The regimen is developed and tested in a different patient population, and we have therefore modified it to fit cardiovascular patients. Patients are instructed in pelvic floor exercises by a skilled physiotherapist. Patients are instructed to perform their pelvic floor exercises twice daily. Studies showed that a few strong or maximum contractions are more effective when it comes to gaining muscle hypertrophy than several less strong contractions.63 Patients are instructed to tighten their pelvic floor muscles as strongly as possible (as if to prevent flatus from escaping) three times when lying, three times when sitting and three times when standing. The duration of the contraction is up to 10 s each, and patients are informed to have a 10 s break between each contraction. The physiotherapist instructs the patients on how to contract the bulbocavernosus and ischiocavernosus muscles. In order to ensure that the right muscles are involved, attention is placed on the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Flow chart.}
\end{figure}
ability to lift the scrotum and retract the penis. To obtain some degree of pelvic floor muscle endurance, the patients are encouraged to tighten the pelvic floor muscles when walking.

To encourage adherence and monitor compliance pulse watches (Polar watch) with extended memory and exercise training logs are handed out. A training log contains information about physical exercise as well as pelvic floor exercise. At the end of the intervention the training log and the pulse watch are returned and compliance and intensity level are coded independently.

The psychoeducational components

The goal of the psychoeducative intervention is that the patient learns to interpret and react to relevant physical and psychological symptoms, learns to cope with anxiety and fear, including strategies to manage depressive symptoms and the ability to be sexually active without fear.

A specially trained nurse is responsible for the psychoeducative intervention. The intervention takes a theoretical basis of the patient-centred approach where the emphasis is on support and education. The conversations are based on a holistic view of the patient and focus on the handling of life and managing sexual dysfunction. The intervention is targeted at the modifiable parameters that are reported to affect sexual dysfunction. The psychoeducative intervention is inspired by RR Parse’s ‘Human Becoming Practice Methodologies’ three dimensions which can be described as (1) discuss and give meaning to the past, present and future; (2) explore and discuss events and opportunities and (3) pursue imagined possibilities. According to this theory, there are three ways to alter its perceived health: creative ideas, see, hear and feel how a situation could be if it was lived in a different way; recognising personal patterns and value priorities and shed light on the paradoxes by looking at incongruence in a situation and change the view of reality. The nurse is ‘truly present’ in the process through discussion, quiet contemplation and reflection. The psychoeducative intervention plus physical exercise was tested in the COPE-ICD trial, with positive effects on psychological well-being (mental health) and the general health subscale of the Short Form-36.

The nurse is trained in the psychoeducative intervention. The intervention takes a theoretical basis of the patient-centred approach where the emphasis is on support and education. The conversations are based on a holistic view of the patient and focus on the handling of life and managing sexual dysfunction. The intervention is targeted at the modifiable parameters that are reported to affect sexual dysfunction. The psychoeducative intervention is inspired by RR Parse’s ‘Human Becoming Practice Methodologies’ three dimensions which can be described as (1) discuss and give meaning to the past, present and future; (2) explore and discuss events and opportunities and (3) pursue imagined possibilities. According to this theory, there are three ways to alter its perceived health: creative ideas, see, hear and feel how a situation could be if it was lived in a different way; recognising personal patterns and value priorities and shed light on the paradoxes by looking at incongruence in a situation and change the view of reality. The nurse is ‘truly present’ in the process through discussion, quiet contemplation and reflection. The psychoeducative intervention plus physical exercise was tested in the COPE-ICD trial, with positive effects on psychological well-being (mental health) and the general health subscale of the Short Form-36.

The nurses are encouraged to ask questions that encourage reflection, let the patient find answers and solutions and contribute with knowledge, provide advice and guidance when requested and relevant. The training of the nurse takes place prior to the intervention. In practice the intervention will be handled by one nurse with several years of experience working with cardiac patients and trained in sexology. The sexology experience is gained in a 2-week intensive course on basic and clinical sexology including training in sexual therapy. Supervision from a sexologist is available during the intervention. The nurse will conduct consultations with patients individually, and patients are informed that they are welcome to bring spouses/relatives. The consultation will take place in a quiet room in an outpatient setting and last for 45 min. An inspirational guide will form the basis for the consultations. The guide consists of several elements and issues (medical, psychosocial, educational and sexual) that work as inspiration (see box 1).

Usual care

Participants in the experimental group and in the control group will receive the usual care according to current guidelines. Usual care, for patients for whom it is not contraindicated, treatment with PDE-5 inhibitors. Patients who are candidates for PDE-5 inhibitors are encouraged to contact their general practitioner in order to establish the treatment. Use of PDE-5 inhibitors will be monitored in both intervention groups. To assess outcome measures, patients in the control group will be asked to complete questionnaires on equal terms with participants in the experimental group. In addition, they will be tested in the form of cardiopulmonary testing (peak VO2) and pelvic floor muscle strength and endurance at baseline and at the end of the trial.

Outcomes and data collection

In order to evaluate the effect of the comprehensive sexual rehabilitation programme numerous data will be collected.

Primary outcome

Sexual function will be measured by the IIEF questionnaire after 16 weeks and 6 months. IIEF was developed in conjunction with the clinical trial programme for sildenafil, and has since been adopted as the ‘gold standard’ measure for efficacy assessment in clinical trials of
erectile dysfunction. It has been linguistically validated in 32 languages including Danish and used as a primary outcome in more than 50 clinical trials. It consists of 15 items including five domains of sexual function: erectile function, orgasmic function, sexual desire, intercourse satisfaction and overall satisfaction. The IIEF meets psychometric criteria for test reliability and validity, and has a high degree of sensitivity and specificity. The IIEF is self-assessed, which in sexological research is widely used and well acclaimed.

Secondary outcome
Sexual function is measured by the PAIS-SR sexual relationship domain. The overall PAIS-SR measure psychological adjustment to illness in terms of seven primary domains of adjustment: Health Care Orientation, Vocational Environment, Domestic Environment, Sexual Relationships, Extended Family Relationships, Social Environment and Psychological Distress. Each PAIS/PAIS-SR item is rated on a 4-point (0 through 3) scale of adjustment, with higher ratings indicating poorer adjustment status. The sexual relationship domain evaluates shifts in the quality of sexual relations due to the current illness or treatment. It consists of six items and the total score ranges from 0 to 18. Low scores indicate good adjustment, and high scores indicate poor adjustment.

Exploratory outcomes
A more extensive evaluation of physical, psychological and demographic status over time will be performed. Physical examination will include pelvic floor strength and endurance assessed according to the Modified Oxford grading scheme which is a manual digital examination of the pelvic floor. It is tested and validated and used in several trials. Furthermore, physical capacity will be measured by peak VO\textsubscript{2} using cardiopulmonary exercise testing (Ergo-Spiro CS-200, Schiller, Switzerland) with measurement of oxygen uptake (VO\textsubscript{2}), heart rate (HR, bpm), ventilation rate (l/min), ventilation frequency (number/min), respiratory expiration ratio (CO\textsubscript{2}/O\textsubscript{2} in %), blood pressure, physical activity level (METs) and gas exchange (VO\textsubscript{2} and VCO\textsubscript{2}) during progressive loading and in the following recovery period. The test is conducted before the training programme initiates. Intensity performed as a ramp protocol (load gradually increases) with the initial work load of 25 W and increased by 12.5 W every minute until exhaustion, usually but not always, is where the patient’s oxygen uptake reaches a steady state despite additional load. The test follows current standards for cardiopulmonary exercise testing. The full test procedure is described by Rasmussen et al. Additionally a series of questionnaires, regarding health-related quality of life, anxiety and depression and sexual dysfunction are administered (see Table 1).

Quantity	Type of measurement	Type of quantity	
Demographic	Age, height, weight	Baseline	Continuous
	Marital, educational, occupational status	Baseline	Continuous
	Smoking	Baseline	Categorical
Clinical	Nutritional status (BMI)	Baseline	Continuous
	NYHA classification	Baseline	Continuous
	Type of heart disease	Baseline	Categorical
	Type of sexual dysfunction	Baseline	Categorical
	Diabetes mellitus	Baseline	Binary (Y/N)
	Level of physical activity	Baseline	Categorical
	Level of rehabilitation offered	Baseline	Categorical
	PDE-5 inhibitor intake	Baseline, W12, W16, M6	Categorical
	Level of activity within the last 4 weeks, level of sexual activity	Baseline	Categorical
Para clinical	Cholesterol level	Baseline	Continuous
	Functional capacity	Baseline	Continuous
	Peak VO\textsubscript{2}	Baseline, W12	Continuous
	Pelvic floor strength and endurance	Baseline, W12, W16, M6	Continuous
Serious adverse events			
	Questionnaires		
	SF-36 68 HADS 69	Baseline, W16, M6	Continuous
	EQ-5D-5L 70 FAME 71	Baseline, W12, W16, M6	Continuous
	after ICD questionnaire 16	Baseline, W16, M6	Continuous

Blinding
It is not possible to blind the allocated intervention group for the staff and the participants. All physical testing, data collection and administration will be conducted by blinded staff, however. Statistical analyses and drawing of conclusions from these will also be conducted blinded to the intervention group.

Sample size and power calculations
We are planning a trial of the continuous response variable IIEF from independent control and experimental participants with one control per experimental participant. In a previous trial the IIEF within each participant group was normally distributed with a SD of 6 points. If the true difference in the experimental and control means is 3.5 points, we will need to include 77 experimental participants and 77 control participants (total 154 participants) to obtain a power of 95%.
(β=5%) and a type 1 error probability of 5%. Using this sample size, an SD of 4 points and an alternative hypothesis of a mean difference of 2 points for the secondary outcome and a type 1 error probability of 5% the corresponding power for the secondary outcome is found to be 87%.

Study procedure and randomisation

To achieve our estimated sample size of 154 participants, patients will be identified from the hospital databases. Patients will be selected consecutively. Patients with an implantable cardioverter defibrillator are required to have the device implanted more than 1 year prior to inclusion and patients with ischaemic heart disease 1 year from event and backward. The 1 year limit has been set so that patients are past their rehabilitation if any is provided. Patients will receive the IIEF questionnaire by mail including a stamped return envelope. Patients with a score ≤25, the accepted cut-off score on the initial screening, are invited to attend a preliminary interview with the offer to participate in a randomised clinical trial targeting sexual problems. The participant information is sent to the patient along with the invitation. This gives the patient an opportunity to read the material in advance and to prepare possible questions. At the initial interview/meeting it is determined whether the patient meets the criteria for participating in the trial. If patients are suited and want to participate they will be randomised to a comprehensive sexual rehabilitation programme plus usual care versus usual care alone. Stratification will be according to patient group (patients with ischaemic heart disease or implantable cardioverter defibrillator) and age (≤59 or ≥60 years) and randomised 1:1 to the experimental group or the control group. Randomisation will be performed centrally by the trial coordination centre, Copenhagen Trial Unit, according to a computer-generated allocation sequence with a variable block size concealed from the investigators. Allocation to the intervention groups is carried out when the investigator calls the Copenhagen Trial Unit. Relevant information (personal identification number, strata, etc) is typed into a computer system, and then the participant will be allocated to an intervention group and awarded a four-digit randomisation number. The investigator then informs the patient of the result and on how to proceed by letter. Thus, neither investigators nor patients or relatives can influence to which group the patients are allocated. For both groups, follow-up assessment will take place after 12 weeks (only physical evaluation), 16 weeks and 6 months. Questionnaires will be completed electronically in the questionnaire system Enalyzer with ‘single user’, which meets the data legislation for logging. At inclusion, the trial participant will receive an email with a link to a website through which questionnaires can be completed. The email contains a login and password for the trial participant’s personal access. The participant has the opportunity to go through the website http://www.copenheart.org and enter with the login and password. If patients do not complete the questionnaire electronically, the material can be sent in paper form and an independent trial personnel then enters the responses into the database. Thus data management is handled independently from the researchers who interpret the data. All data are stored electronically in a coded database, and in an independent spread sheet, only accessible for the CopenHeart group. The recruitment process will continue until the number of 154 has been reached.

Statistical analysis

Analysis of primary and secondary outcomes

The analysis will be performed according to the intention-to-treat analysis with two-sided significance tests at the 0.05 level. Both outcomes (and outcomes subjected to exploratory analyses) will be analysed using the same procedure. First, we will test if there is an immediate effect of the intervention on the outcome and/or a difference in the response to the intervention between the two patient groups (patients with ischaemic heart disease and patients with implantable cardioverter defibrillator) using model 1 below. Then the follow-up data will be included in the analysis and the long-term effect will be studied using model 2.

Models and analytical techniques

Model 1 The equation (equation 1) showing the dependent variable Y (the outcome) as a function of covariates used in the analysis of the immediate effect of the intervention on the primary outcome is

\[
Y = \text{intercept} + aY_{baseline} + bI + cG + dI:G
\]

(1)

Y _{baseline} is the baseline value of the outcome, I the indicator of intervention, G the indicator of patient group, and a through d are coefficients to be estimated. The term dI:G stands for interaction between the two covariates I and G. If the term bI is significant (the coefficient b differs significantly from 0) there is an effect of the intervention common for the two patient groups (ischaemic patients and patients with implantable cardioverter defibrillator). If the term dI:G is significant there is an additional effect of the intervention in one of the two patient groups; thus a subgroup analysis is warranted. In the analysis of the data the univariate general linear model is used. The analysis of the primary outcome is the primary analysis. The subgroup analysis and the analysis of the secondary and of other outcomes should be considered exploratory.

Model 2 In the analysis of follow-up data the time T (Y is measured 16 weeks and 6 months following randomisation) is included and the mixed model for repeated measures is used. The equation (equation 2) for the fixed effect in this model showing Y as a function of the covariates is

\[
Y = \text{intercept} + aY_{baseline} + bI + cG + dI:G + eT + fI:T + gI:T:G
\]

(2)

Johansen PP, Zwisler A-D, Hastrup-Svendsen J, et al. BMJ Open 2013;3:e003967. doi:10.1136/bmjopen-2013-003967

May 12, 2022 by guest. Protected by copyright.
where a through g are coefficients to be estimated. If the term eT is significant there is a linear trend over time common for both patient groups. If fI:T is significant, this trend is supplemented by an additional trend caused by the intervention and therefore specific for the intervention group. If in addition gE:T:G is significant this added trend differs between the two patient groups (patients with ischaemic heart disease and patients with implantable cardioverter defibrillator). In the mixed model analysis an unstructured covariance matrix will be assumed. If convergence is not attained simpler covariance structure models will be assessed guided by Akaike’s criterion or the maximum likelihood test as appropriate.

ETHICS AND DISSEMINATION

The trial complies with the latest Declaration of Helsinki and is registered at ClinicalTrials.gov (NCT01796353). Patients are informed about the trial in writing as well as verbally and only included if a written informed consent is obtained. Patients are assessed in accordance to whether it is safe for them to perform sexual activity. This is carried out according to recommendations from the Princeton consensus group.32 53 If patients are suited and want to participate they will be enrolled in the trial. Trial participants are free to withdraw their informed consent at any time and be treated according to the departments’ standard treatment procedures. A patient will be withdrawn from the trial if the trial participant withdraws his consent and will, in connection therewith, be informed that termination of the trial will have no implications for his future treatment. Patients who leave the trial will be politely asked for permission to continue to collect data and to use already collected data. If the patient gives permission, he will be included in the final analysis. Only if the patient refuses use of already collected data, will all data relating to him be destroyed. All patient data will be handled and stored in accordance with Danish Data Protection Agency rules and patients are ensured anonymity. The trial will be conducted according to the Act No. 593 of 14 June 2011 on Act on Research Ethics Review of Health Research Projects. The investigator will immediately notify the regional ethics committee if, within the interventions period, there occur serious adverse events, serious adverse reactions or suspected unexpected serious adverse reactions. The report will be accompanied by comments on possible implications for the trial, and notification will be made within 7 days after the investigator has knowledge of the event. The trial has no data monitoring committee however an internal monitor will perform random checks to see if the trial staff work according to the protocol. No risks are anticipated to occur during the sexual rehabilitation programme. As far as we know, there is no previous risk associated with nursing consultations. If the nurse, during the consultation, identifies a need for further consultations with professionals, she will encourage the participant to seek help from the general practitioner, psychologist or in their usual outpatient setting. Risks associated with exercise training and testing are sudden cardiac death associated with ventricular arrhythmias, acute myocardial infarction, and in patients with chronic heart failure, pulmonary oedema and deterioration in left ventricular function.73 The last is only found in one study from 198874 and has not subsequently been demonstrated in larger studies.75 76 In a recent French study of more than 25 000 patients with ischaemic heart disease, one-third with chronic heart failure found the risk of cardiac complications at 1:8500 exercise testing and 1:50 000 patient exercise hours.77 Increasing exercise intensity and age are risk indicators. Therefore, the training intensity will be conducted as moderate high intensity (less than 80% of VO₂ max). To achieve cardiovascular adjustment exercise training as well as testing begins with a warming-up period and ends with a cool-down period, with a gradual downward adjustment of exercise intensity and HR, rather than an abrupt end. This cardiovascular adjustment has been shown to reduce the risk of ischaemia and arrhythmia in connection with physical exercise.44 62 Participants must mainly exercise in an upright position to decrease left ventricular filling pressure and risk of ischaemia or heart failure triggered ventricular arrhythmias. When these precautions are respected, exercise training as well as exercise testing are considered to possess a low risk for the participants. There is, as far as we know, no previously known risk associated with pelvic floor exercise. Testing or examination of the pelvic floor may be associated with discomfort for the participants but is not considered to be associated with any risk. Staff members will be trained according to guidelines to handle any emergencies.

Dissemination plan

Positive, neutral and negative results of the trial will be submitted to international peer reviewed journals of nursing, cardiology or sexology. Furthermore, results will be presented at national and international conferences relevant to subject fields. Authorship will be allocated using the guidelines for authorship defined by the International Committee of Medical Journal Editors and depends on the personal involvement. All the articles,
abstracts as well as the results will be posted on the website http://www.copenheart.org. The website will be continuously updated and will be highlighted through the scientific articles. CopenHeart staff will have access to data. Ethic committees and competent authorities will be able to obtain direct access to data and documentation.

DISCUSSION
This randomised clinical trial testing the effect of a comprehensive sexual rehabilitation intervention on a population of patients with implantable cardioverter defibrillator or patients with ischaemic heart disease seems to be the first one in its field. The trial is expected to contribute with results that can improve patients’ problems related to heart disease and sexual function. Additionally, it is believed that the trial can provide a systematic approach that may 1 day inform national consensus on how to treat sexual dysfunction in heart patients. Furthermore, the results of the trial are expected to contribute to the international debate on sexual rehabilitation of patients with heart disease.

The trial is designed with central stratified randomisation which secures against selection bias. The primary outcome is assessed blinded to intervention and so are all statistical analysis, which should reduce detection and interpretation bias.

Trajectory
Inclusion was initiated on February 2013 and is expected to continue until June 2014.

Author affiliations
Department of Cardiology, Copenhagen University Hospital, Bispebjerg Hospital, Copenhagen, Denmark
The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
National Institute of Public Health, University of Southern Denmark, Denmark
Faculty of Health Science, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
Sexological Clinic, Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Wichita State University, Wichita, Kansas, USA
Department of Social and Welfare Studies, Linköping University, Linköping, Sweden

Acknowledgements
The test and rehabilitation team responsible for the trial is Karina Jensen, Lars Tang, Helena Tjalk Sørensen, Signe Gils and Katrine Tingholm Erhardsen.

Contributors
PW specifically designed the statistical analysis plan. PRJ, SKB and A-DZ drafted the manuscript. All authors designed the study and developed the protocol, revised the manuscript critically and have given their final approval of the version to be published.

Funding
The CopenHeartSF trial has received funding from: The Danish Heart Foundation; the Danish Clinical Research Foundation; The Danish National Research Foundation; The Danish Medical Research Council; The Danish Heart Centre Foundation; The Danish Society for Heart Failure; The Swedish Heart and Lung Foundation; The Swedish Research Council; The Swedish Heart and Lung Association; The Swedish Foundation for Research in Medical Sciences (no. K2007-04X-12714-04-3); Swedish Heart and Lung Research Foundation; The Swedish Research Council for Health, Working Life and Welfare; The Swedish Research Council for Social Sciences; The Swedish Research Council for Working Life and Social Research; The Swedish Research Council; The Swedish Research Council, Strategic Environmental Research Programme (no. EVO); National Board of Health; The Swedish National Board of Health and Welfare; The Swedish Research Council, Environmental and Work Science Research Programme (no. EVO); The Swedish Research Foundation (no. 13-04-R95-A4669-2274); The Health Foundation (no. 2013B208); Danish Council for Strategic Research (no. 10-092790) and The Danish Nursing Council.

Competing interests
None.

Ethics approval
Trial protocol has been approved by the Regional Ethics Committee (no H-4-2012-168) and the Danish Data Protection Agency (no 2007-58-0015).

Provenance and peer review
Not commissioned; peer reviewed for ethical and funding approval prior to submission.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES
1. Hoekstra T, Jaarsma T, Sanderman R, et al. Perceived sexual difficulties and associated factors in patients with heart failure. Am Heart J 2012;163:246–51.
2. Laumann EO, Paik A, Rosen RC. Sexual dysfunction in the United States: prevalence and predictors. JAMA 1999;281:537–44.
3. Feldman HA, Goldstein I, Hatzichristou DG, et al. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 1994;151:54–61.
4. Feldman HA, Johannes CB, Derby CA, et al. Erectile dysfunction and coronary risk factors: prospective results from the Massachusetts male aging study. Prev Med 2003;30:328–38.
5. Bacon CG, Mittleman MA, Kawachi I, et al. Sexual function in men older than 50 years of age: results from the health professionals follow-up study. Ann Intern Med 2003;139:161–8.
6. Levine GN, Steinke EE, Bakaeeen FG, et al. Sexual activity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2012;125:1058–72.
7. Steinke EE. Sexual dysfunction in women with cardiovascular disease: what do we know? J Cardiovasc Nurs 2010;25:151–8.
8. Lewis RW, Fugl-Meyer KS, Corona G, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med 2010;7(4 Pt 2):1598–607.
9. [No authors listed]. NIH Consensus Conference. Impotence. NIH Consensus Development Panel on Impotence. JAMA 1993;270:83–90.
10. Rastogi S, Rodriguez JJ, Kapur V, et al. Why do patients with heart failure suffer from erectile dysfunction? A critical review and suggestions on how to approach this problem. Int J Impot Res 2005;17(Suppl 1):S25–36.
11. Berg SK, Elleman-Jensen L, Zwilser AD, et al. Sexual concerns and practices after ICD implantation: findings of the COPE-ICD rehabilitation trial. Eur J Cardiovasc Nurs 2013;12:468–74.
12. Bortolotti A, Parazzini F, Collin E, et al. The epidemiology of erectile dysfunction and its risk factors. Int J Androl 1997;20:323–34.
13. Herbert K, Lopez B, Castellano J, et al. The prevalence of erectile dysfunction in heart failure patients by race and ethnicity. Int J Impot Res 2008;20:507–11.
14. Kloster RA, Mullin SH, Shoek T, et al. Erectile dysfunction in the cardiac patient: how common and should we treat it? J Urol 2003;170 (2 Pt 2):S46–50; discussion S50.
15. Montorsi F, Briganti A, Salonia A, et al. Erectile dysfunction prevalence, time of onset and association with risk factors in 300 consecutive patients with acute chest pain and angiographically documented coronary artery disease. Eur Urol 2003;44:360–4; discussion 364–5.
16. Steinke EE. Sexual concerns of patients and partners after an implantable cardioverter defibrillator. Dimens Crit Care Nurs 2003;22:89–96.
17. Dabrowski R, Smolis-Bak E, Kowalik I, et al. Quality of life and depression in patients with different patterns of atrial fibrillation. Kardiol Pol 2010;68:1133–9.
18. Drory Y, Kravetz S, Weingarten M. Comparison of sexual activity of women and men after a first acute myocardial infarction. Am J Cardiol 2000;85:1283–7.
19. Forouzan SR, Rajabi M. Erectile dysfunction in men with angiographically documented coronary artery disease. Urol J 2003;1:328–32.
20. Justo D, Arbel Y, Mulat B, et al. Sexual activity and erectile dysfunction in elderly men with angiographically documented coronary artery disease. Int J Impot Res 2010;22:40–4.
21. Dunn KM, Croft PR, Hackett GI. Association of sexual problems with social, psychological, and physical problems in men and women: a cross sectional population survey. J Epidemiol Community Health 1999;53:144–8.
22. Friedman S. Cardiac disease, anxiety, and sexual functioning. *Am J Cardiol* 2000;86:46F–50F.

23. Kriston L, Gunzer C, Aygymang A, et al. Effect of sexual function on health-related quality of life mediated by depressive symptoms in cardiac rehabilitation. findings of the SPARK project in 493 patients. *J Sex Med* 2010;7:2044–55.

24. Mulat B, Arbel Y, Mashav N, et al. Depressive symptoms and erectile dysfunction in men with coronary artery disease. *Urology* 2010;75:104–7.

25. Makhlof A, Kpaarker A, Niederberger CS. Depression and erectile dysfunction. *Urol Clin North Am* 2007;34:565–74, vii.

26. Roose SP. Depression: links with ischemic heart disease and erectile dysfunction. *J Clin Psychiatry* 2004;65(Suppl. 25):26–30.

27. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). *Eur J Heart J* 2008;29:2388–442.

28. Heart Failure Society of America. HFSa 2006 Comprehensive Heart Failure Practice Guidelines. *J Card Fail* 2006;12:61–2.

29. Bedell SE, Duperval M, Goldberg R. Cardiologists’ discussions about sexuality with patients with chronic coronary artery disease. *Am J Heart* 2002;144:239–42.

30. Jaarsma T, Stromberg A, Fridlund B, et al. Sexual counselling of cardiac patients: its perception, responsibility, and confidence. *Eur J Cardiovasc Nurs* 2010;9:24–9.

31. Jackson G, Boon N, Eardley I, et al. Erectile dysfunction and coronary artery disease prediction: evidence-based guidance and consensus. *Int J Clin Pract* 2010;64:848–57.

32. Jackson G, Roberts C, Kloner RA, et al. The second Princeton consensus on sexual dysfunction and cardiac risk: new guidelines for sexual medicine. *J Sex Med* 2006;3:28–36; discussion 36.

33. Gupta BP, Murad MH, Clifton MM, et al. The effect of lifestyle modification and cardiovascular risk factor reduction on erectile dysfunction: a systematic review and meta-analysis. *Arch Intern Med* 2011;171:1797–803.

34. Maio G, Saraës S, Marchiori A. Physical activity and PDE5 inhibitors in the treatment of erectile dysfunction: results of a randomized controlled study. *J Sex Med* 2010;7:2201–8.

35. Roviaro R, Holloé D, Holmen L. Influence of a cardiac rehabilitation program on the cardiovascular, psychological, and social functioning of cardiac patients. *J Behav Med* 1984;7:61.

36. Froelicher ES, Kee LL, Newton KM, et al. Return to work, sexual activity, and other activities after acute myocardial infarction. *Heart Lung* 1994;23:423–35.

37. Belardinelli R, Lacalaprice F, Facenda E, et al. Effects of short-term moderate exercise training on sexual function in male patients with chronic stable heart failure. *Int J Cardiol* 2005;101:83–90.

38. Bertie J, King RC, Sports Exerc. 1982;14:377–81.

39. Borja IA, Mena ME, et al. Benefits and weaknesses of a home versus center based physical activity programs in older adults. *Cochrane Database Syst Rev* 2005;(1):CD004017.

40. Oerkild B, Frederiksen M, Hansen JF, et al. Sexual counselling of advanced heart failure and their spouses or partners. *Eur J Cardiovasc Nurs* 2010;9:205–12.

41. Dorey G, Speakman MJ, Feneley RC, et al. Erectile dysfunction and comprehensive cardiac rehabilitation versus usual care for patients treated for erectile inadequacies—the CopenHeartIE trial protocol. *BMJ Open* 2012;2:10.

42. Derogatis LR. The psychosocial adjustment to illness scale (PAIS). *J Psychosom Res* 1986;30:77–91.

43. Westlake C, Dracup K, Walden JA, et al. Sexuality and patients with advanced heart failure and their spouses or partners. *J Heart Lung Transplant* 1998;18:1133–8.

44. Jaarsma T. Sexual problem in heart failure patients. *Eur J Cardiovasc Nurs* 2002;1:61–7.

45. Rasmussen TB, Zwisler AD, Sibillitz KL, et al. A randomised clinical trial of comprehensive cardiac rehabilitation versus usual care for patients treated for erectile inadequacies—the CopenHeartFAA protocol. *BMJ Open* 2013;10.

46. Risom SS, Zwisler AD, Rasmussen TB, et al. The effect of integrated cardiac rehabilitation versus treatment as usual for atrial fibrillation patients treated with ablation: the randomised CopenHeartFAA randomisation trial. *BMJ Open* 2012;1:61–9.

47. Rosen RC, Cappelleri JC, Gendrano N III. The International Index of Erectile Function (IIEF): a state-of-the-science review. *Int J Impot Res* 2002;14:226–44.

48. Derogatis LR. The psychosocial adjustment to illness scale (PAIS). *J Psychosom Res* 1986;30:77–91.

49. Jaarsma T. Sexual problem in heart failure patients. *Eur J Cardiovasc Nurs* 2002;1:61–7.

50. Zwisler AD, Soja AM, Rasmussen S, et al. Hospital-based comprehensive cardiac rehabilitation versus usual care among patients with congestive heart failure, ischemic heart disease, or high risk of ischemic heart disease. 12-month results of a randomized controlled trial. *Int J Behav Med* 2012;19:403–88.

51. Nieh A, Jackson G, Miner M, et al. The Princeton III Consensus recommendations for the management of erectile dysfunction and cardiovascular disease. *Mayo Clin Proc* 2012;87:766–78.

52. Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012): the fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). *Int J Behav Med* 2012;19:403–88.

53. Piepoli MF, Corra U, Benzer W, et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2010;17:1–17.

54. Berg SK. Comprehensive rehabilitation for patients with ICD [PhD dissertation]. [Aarhus]. Faculty of Health Sciences. Aarhus University, 2011.

55. Zwisler AD, Soja AM, Rasmussen S, et al. Hospital-based comprehensive cardiac rehabilitation versus usual care among patients with congestive heart failure, ischemic heart disease, or high risk of ischemic heart disease: 12-month results of a randomized controlled trial. *Int J Behav Med* 2008;15:116–13.

56. Ashworth NL, Chad KE, Harrison EL, et al. Home versus center based physical activity programs in older adults. *Cochrane Database Syst Rev* 2005;(1):CD004017.

57. Oerkild B, Frederiksen M, Hansen JF, et al. Home-based cardiac rehabilitation is as effective as centre-based cardiac rehabilitation among elderly with coronary heart disease: results from a randomised clinical trial. *Age Ageing* 2011;40:78–85.

58. Borge PA, Psychosocial bases of perceived exertion. *Med Sci Sports Exerc* 1997;27:199–202.

59. Williams MA, Haskell WL, Ades PA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. *Circulation* 2007;116:782–84.

60. Lampman RM, Knight BP. Prescribing exercise training for patients with defibrillators. *Am J Phys Med Rehabil* 2000;79:292–7.

61. Dorey G, Glazener C, Buckley B, et al. Developing a pelvic floor muscle training regimen for use in a trial intervention. *Physiotherapy* 2009;95:199–202.

62. Parse RR. The human becoming school of thought: a perspective for nurses and other health professionals. *Thousand Oaks, CA: Sage*. 1998.

63. Lipton RB, Pogach L, Greenfield S, et al. A randomized controlled trial of inpatient versus outpatient care among elderly with coronary heart disease. *J Gen Intern Med* 1991;6:439–47.

64. Schüssler B. Pelvic floor re-education: principles and practice. London: Springer, 1994.

65. Meirowski P, Rosen RC, Wilma Maria Cacho-Acoca, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. *Eur J Cardiovasc Prev Rehabil* 2009;16:249–67.

66. Ware JE, Kosinski M, Gandek B. *SF-36 Health Survey. Manual and interpretation guide 2005*. Boston, MA: The Health Institute, New England Medical Center, 2005.
70. Drummond MF. *Methods for the economic evaluation of health care programmes*. 3rd edn. Oxford: Oxford University Press, 2005.

71. Rubio-Aurioles E, Sand M, Temesi-Roccatti N, et al. Female Assessment of Male Erectile dysfunction detection scale (FAME): development and validation. *J Sex Med* 2009;6:2255–70.

72. Boutron I, Moher D, Altman DG, et al. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. *Ann Intern Med* 2008;148:295–309.

73. Fletcher GF, Balady GJ, Amsterdam EA, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. *Circulation* 2001;104:1694–740.

74. Jugdutt BI, Michorowski BL, Kappagoda CT. Exercise training after anterior Q wave myocardial infarction: importance of regional left ventricular function and topography. *J Am Coll Cardiol* 1988;12:362–72.

75. Giannuzzi P, Tavazzi L, Temporelli PL, et al. Long-term physical training and left ventricular remodeling after anterior myocardial infarction: results of the Exercise in Anterior Myocardial Infarction (EAMI) trial. EAMI Study Group. *J Am Coll Cardiol* 1993;22:1821–9.

76. Otsuka Y, Takaki H, Okano Y, et al. Exercise training without ventricular remodeling in patients with moderate to severe left ventricular dysfunction early after acute myocardial infarction. *Int J Cardiol* 2003;87:237–44.

77. Pavy B, Illou MC, Meurin P, et al. Safety of exercise training for cardiac patients: results of the French registry of complications during cardiac rehabilitation. *Arch Intern Med* 2006;166:2329–34.

78. Savovic J, Jones HE, Altman DG, et al. Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials. *Ann Intern Med* 2012;157:429–38.

79. Wood L, Egger M, Gliud LL, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. *BMJ* 2008;336:801–5.
Correction

Johansen PP, Zwisler A-D, HastrupSvendsen J, et al. The CopenHeartSF trial—comprehensive sexual rehabilitation programme for male patients with implantable cardioverter defibrillator or ischaemic heart disease and impaired sexual function: protocol of a randomised clinical trial. BMJ Open 2013;3:e003967.

There has been an update to the Statistical Analyses Plan. The new Statistical Analysis section should read:

Statistical analysis

The analysis will follow the intention-to-treat principle with two-sided significance test at the 5% level. Continuous outcomes will follow the same procedure as described in the following for the primary outcome. The primary outcome is the International Index of Erectile Function overall score. The five domains of the questionnaire are all exploratory outcome, but particular attention is given the Erectile Function domain. The secondary outcome is PAIS-SR sexual relationship domain.

The explorative physical outcomes are pelvic floor strength and endurance (one categorical and two continuous variables), peak VO2, heart rate (beats per minute), blood pressure, Watt Max, Anaerobic Threshold, and VE/VCO2 slope. The questionnaire-based exploratory outcomes are SF-36 (the two component scores: physical (SF36-PCS) and mental (SF36-MCS)), Hospital Anxiety and Depression Scale (HADS) anxiety and depression (binary variable: score of 8+) and EQ-5D-5L converted to index score. Sex after ICD-questionnaires (reported as categorical variables) are evaluated for ICD patients.

The primary model for assessing the effect of intervention is the univariate general linear model. This model assesses (1) whether there is an effect of the intervention 16 weeks after randomization, between the intervention group and the control group. If there is a statistically significant effect we will perform subgroup analysis and test (2) whether there is a difference between the two patient groups regarding the size of the effect.

Model 2 includes the follow-up data (month six) using a mixed model because of repeated outcome measures. In this model the baseline value of the outcome, intervention indicator (I), patients indicator (G), the interaction between I and G and stratification variable (aged above and below 60 years) are included.

Subgroup analysis of the primary outcome and all analyses of the secondary and exploratory outcomes are considered hypothesis generating if the effects are statistically significant (P<0.05).

If missing values of the primary outcome is above 15% or the P-value of Little’s test is below 0.05 multiple imputation techniques will be used. If the intervention effect of the primary analysis in the univariate general linear model is significant, the analysis is supplemented with a worst/best case analysis. The results of the multiple imputed dataset are considered the primary analysis.

Open Access: This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

BMJ Open 2017;7:e003967corr1. doi:10.1136/bmjopen-2013-003967corr1