Impact of Tourniquet During Total Knee Arthroplasty when Tranexamic Acid was used: A Meta-analysis of Randomized Controlled Trials

Changjiao Sun (✉ suncjdoctor@163.com)
Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University https://orcid.org/0000-0001-7487-8025

Xiaofei Zhang
Beijing Tsinghua Changgung Hospital

Qi Ma
Beijing Tsinghua Changgung Hospital

Yan Tu
Beijing Tsinghua Changgung Hospital

Xu Cai
Beijing Tsinghua Changgung Hospital

Yonggang Zhou
Chinese PLA General Hospital

Research article

Keywords: Tranexamic acid, blood loss, total knee arthroplasty, tourniquet, randomized controlled trials

Posted Date: November 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1072783/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Journal of Orthopaedic Surgery and Research on January 15th, 2022. See the published version at https://doi.org/10.1186/s13018-021-02898-1.
Abstract

Introduction: The efficacy of tourniquet use during primary total knee arthroplasty (TKA) is thought to reduce intraoperative blood loss, improve surgical exposure, and optimize cement fixation. Tranexamic acid (TXA) use can decrease postsurgical blood loss and transfusion requirements. This review aimed to appraise the effects of tourniquet use in TKA for patients with tranexamic acid use.

Methods: A meta-analysis was conducted to identify relevant randomized controlled trials involving TXA plus a tourniquet (TXA-T group) and use of TXA plus no tourniquet (TXA-NT group) in TKA. Web of Science, PubMed, Embase, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CNKI, and Wanfang database were searched from 2010 through October 2021.

Results: We identified 1720 TKAs (1690 patients) assessed in 14 randomized controlled trials. Compared with the TXA-NT group, the TXA-T group resulted in less intra-operative blood loss (P < 0.00001) and decreased duration of surgery (P < 0.00001), however more hidden blood loss (P = 0.0004) and less knee range of motion (P < 0.00001). No significant differences were found between two groups in terms of decrease in hemoglobin (P = 0.84), total blood loss (P = 0.79), transfusion rate (P = 0.18), drainage volume (P = 0.06), Visual Analogue Scale (VAS) at either the day of surgery (P = 0.2), day 1 (P = 0.25), day 2 (P = 0.39), day 3 (P = 0.21), day 5 (P = 0.21), day 7 (P = 0.06), or 1 month after surgery (P = 0.16), Hospital for Special Surgery (HSS) score at either 7 day (P = 0.10), 1 month (P = 0.08), 3 month (P = 0.22) or 6 month after the surgery (P = 0.92), Knee circumference (P = 0.28), length of hospital (P = 0.12), and complications such as intramuscular venous thrombosis (P = 0.81), deep venous thrombosis (P = 0.10), superficial infection (P = 0.45), deep wound infection (P = 0.64) and delayed wound healing (P = 0.65).

Conclusion: No big differences could be found by using or not tourniquet when use the TXA, though some benefits are related to operation time and less intra-operative blood loss by using tourniquet and TXA. Using the tourniquet was related to more hidden blood loss and less knee range of motion. More adequately powered and better-designed randomized controlled trials (RCTs) studies with long-term follow-up are required to validate this study.

1. Introduction

Tourniquet use has been considered an essential element of the total knee arthroplasty (TKA). Many surgeons apply a tourniquet during TKA to reduce blood loss and operative times, improve surgical exposure, optimize cement fixation, and increase tissue concentrations of antibiotic drugs through intraosseous regional administration (1–5). However, the once highly regarded advantages of tourniquet use have come under great scrutiny in light of its potential disadvantages. Issues which bring its use into question included reperfusion injury (6), patellar tracking issues (7), increased perioperative pain (8, 9), increased postoperative limb swelling (10, 11), decreased postoperative range of motion (ROM) (12), delayed rehabilitation (12), increased risk of thrombosis (13, 14), more frequent wound complications (15–17) and its negative effect on patients with vascular disease (18). More recently, as a new strategy for reducing blood loss, perioperative administration of tranexamic acid (TXA) has gained popularity during TKA, mitigating some of the adverse effects of tourniquet use. Several studies have confirmed that TXA significantly reduces blood loss and transfusion requirements without increasing venous thrombotic events (19–21). Although there are many systematic reviews and meta-analysis comparing tourniquet use and non-tourniquet use during TKA. There was no meta-analysis comparing the effects of TXA plus a tourniquet and the use of TXA plus no tourniquet. Therefore, we compare the impact of TXA plus a tourniquet
and use of TXA plus no tourniquet in TKA. This review aimed to appraise the effects of tourniquet use in TKA for patients with tranexamic acid use.

2. Methods

2.1. Protocol and registration

The study protocol was registered with International prospective register of systematic reviews (PROSPERO), and the registration number was CRD42020185403. This meta-analysis was performed using a predetermined protocol following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to assess the results' quality to make sure our meta-analysis's results reliable and veritable.

2.2. Search strategy

A meta-analysis was conducted to identify relevant randomized controlled trials involving TXA plus a tourniquet (TXA-T group) and use of TXA plus no tourniquet (TXA-NT group) in TKA. Web of Science, PubMed, Embase, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CNKI, and Wanfang database were searched from 2010 through October 2021. The keywords used were "total knee replacement," "total knee arthroplasty," "tourniquet," "tranexamic acid," "TXA," "randomized controlled trials" in conjunction with Boolean operators 'AND' or 'OR.' We used Review Manager Software for MAC to perform the meta-analysis.

2.3. Inclusion criteria

Studies were eligible if 1. The intervention was patients undergoing primary TKA using TXA and a tourniquet (TXA-T group); 2. The comparator was patients undergoing primary TKA using TXA and without tourniquet use (TXA-NT group); 3. The design of the study was a randomized controlled trial (RCTs); 4. The clinical outcome data were intra-operative blood loss (IBL), hidden blood loss (HBL), total blood loss (TBL), drainage volume, decrease in hemoglobin level, transfusion rate, Visual Analogue Scale (VAS) score, Hospital for Special Surgery (HSS) score, knee circumference, knee range of motion (ROM), length of stay (LOH), complications including intramuscular venous thrombosis (IMVT), deep venous thrombosis (DVT), superficial infection, deep wound infection, delayed wound healing. 5. The studies were required to contain at least one clinical outcome data; The exclusion criteria were as follows: 1. Observational studies; 2. non-RCTs; 3. studies with insufficient clinical outcome data.

2.4. Data extraction process

Two reviewers (C.J.S and Q.M.) used a standardized form to extract data. A third reviewer (X.C) was used to resolve disagreements in eligibility, data extraction, or quality assessment. Extracted data included the primary data based on the following: first author, year of publication, participants, age, gender, body mass index, diagnosis, anesthesia, prosthesis, patellar resurfacing, tourniquet pressure, tourniquet realizing time, TXA administration, drainage, thromboprophylaxis.

2.5. Assessment of studies

The studies' methodological quality was assessed following the instructions in the Cochrane Handbook for Systematic Reviews of Interventions

2.6. Statistical Analysis
RevMan software (version 5.4; The Cochrane Collaboration) was used for the analysis. The statistical heterogeneity was tested with the X^2 test and I^2 test. $I^2 < 25\%$ was considered low statistical heterogeneity, $I^2 < 50\%$ moderate statistical heterogeneity, and $I^2 < 75\%$ high statistical heterogeneity. If the P value of heterogeneity was less than 0.1, heterogeneity would exist. Then, the random-effects model was used for meta-analysis. Data were summarized as the ratio of relative risk (transfusion rate, complications including the rate of IMVT, DVT, superficial infection, deep wound infection, delayed wound healing.) or the difference between means (IBL, HBL, TBL, drainage volume, decrease in hemoglobin level, VAS score, HSS score, knee circumference, knee ROM and LOH). For studies that did not report standard deviations (SDs), it was calculated from p values, confidence intervals, or standard errors. The results were considered as a statistically significant difference when P values were less than 0.05.

3. Results

The search strategy identified 259 studies, of which 245 were excluded after screening in Fig. 1. The literature search identified 259 citations. Of these, 164 duplicates were removed. After examining the titles and abstracts of the 95 remaining articles, we excluded 77 papers according to the inclusion and exclusion criteria; the full text of 18 articles was retrieved. Because we could not acquire sufficient data in one article, and four studies were non-RCTs. Hence four studies were excluded. Fourteen articles were assessed for eligibility. In Palanne’s (22) article, there were two subgroups comparing TXA+ tourniquet group with TXA+ NT group. One is the spinal anaesthesia subgroup, The other is the general anaesthesia subgroup. So we divided the study into two groups, Palanne 2020(1) and Palanne 2020(2). Finally, we identified 1720 TKAs (1690 patients) assessed in 15 randomized controlled trials(2, 22–34). Study baseline characteristics and general intervention information are summarized in Table 1-table 4.
Author/year	Patients	Knees	Mean age(years)	Female gender(%)	BMI	Diagnosis
Alexandersson 2018	38/43	38/43	68/69.7	52.6/48.8	28.6/27.9	38OA/43OA
Concina 2019	50/50	50/50	NA	NA	NA	NA
Eraz 2014	33/31	33/31	68/68	45.5/45.2	25/25	33OA/31OA
Huang 2017	50/50	50/50	66.2/65.1	64/68	25.1/24.4	50OA/50OA
Ma 2017	31/32	31/32	66.8/67.2	61.3/65.6	24.38/24.02	31OA/32OA
Palanne 2020^1	101/99	101/99	64/63	72.3/58.6	30.7/30.8	101OA/99OA
Palanne 2020^2	99/96	99/96	63/65	62.6/61.5	30.5/29	99A/96OA
Wang 2017	30	30/30	65.9/65.9	86.7/86.7	26.6/26.6	30OA/30OA
Wang 2019	30/30	30/30	62.8/64.1	90/73.3	23.48/23.68	30OA/30OA
Xie 2017	45/45	45/45	66.2/66.1	85/75	26.1/25.9	NA
Xu 2018	30/30	30/30	68.2/69.1	60/53.3	NA	30OA/30OA
Yu 2017	40/40	40/40	60.65/62.6	NA	NA	40OA/400A
Zak 2021	161/166	161/166	66.5/67.6	57/66	30.55/30.63	161OA/166OA
Zeng 2021	50/50	50/50	68.44/68	84/86	25.34/26.13	50OA/50OA
Zhou 2017	72/68	72/68	66.8/69.1	81.9/89.7	26.1/25.7	50OA/52OA;22RA/16RA

The detailed baseline characteristics information, including the number of TKAs, age, gender, BMI, and two groups' diagnosis.

Abbreviations: OA=osteoarthritis; RA=rheumatoid arthritis; BMI=body mass index; TXA= Tranexamic acid
Author/year	Anesthesia	Prothesis	patellar resurfacing	Drainage
Alexandersson 2018	spinal/general anesthesia,	NexGen fixed bearing (Zimmer)	No	No
Concina 2019	NA	Triathlon® (Stryker) and Attune® (DePuy)	NA	No
Ejaz 2014	spinal anesthesia	NexGen fixed bearing (Zimmer)	Yes	No
Huang 2017	general anesthesia	NA	NA	Yes
Ma 2017	general anesthesia and FNB	PS, PFC (DePuy)	NA	Yes
Palanne 2020¹	spinal anesthesia	Triathlon® (Stryker)	Yes	No
Palanne 2020²	general anesthesia	Triathlon® (Stryker)	Yes	No
Wang 2017	general anesthesia	GenesisII (Smith&Nephew) or NexGen (Zimmer)	No	Yes
Wang 2019	general anesthesia	PS Haixing (Weihai)	NA	Yes
Xie 2017	general anesthesia	PS (Depuy)	No	Yes
Xu 2018	general anesthesia	NA	No	Yes
Yu 2017	spinal anesthesia	NA	Yes	Yes
Zak 2021	NA	NA	NA	No
Zeng 2021		PS, PFC (DePuy)	NA	Yes
Zhou 2017	general anesthesia	PS, PFC (DePuy)	NA	Yes

The detailed information of surgery including anesthesia, prosthesis, patellar resurfacing, and drainage of two groups

Abbreviations: FNB= femoral nerve block; PS=Posterior Cruciate-Stabilizing; CR=Cruciate Retaining.
Table 3
The detailed information of tourniquet use

Author/year	Tourniquet pressure	Tourniquet realizing Time	TXA administration
Alexandersson 2018	300mmHg	After bandage applied	Intravenously, 1g, 10 min before surgery
Concina 2019	300mmHg	Before wound closure	Intravenously, 15mg/kg, 20 minutes before surgery and after 4 hours
Ejaz 2014	250mmHg	After bandages applied	Orally, 1g, before surgery; Orally, 0.5g 3 h after surgery
Huang 2017	100 mm Hg above systolic pressure	NA	Intravenously, 20 mg/kg, 5 to 10 minutes before the skin incision; Intravenous, 10 mg/kg, 3, 6, 12, and 24 hours after operation; Topical, 1 g, intraoperatively
Ma 2017	100 mm Hg above systolic pressure	NA	Intravenously, 20mg/kg, anesthesia induction; Topical, 1g, intraoperatively; Intravenous, 10 mg/kg, 3, 6, 12, 24h after anesthesia induction.
Palanne 2020¹	250mmHg	After bandages applied	Intravenously, 1g, 5 min before surgery; Topical, 1g, intraoperatively; 1g, 3h, 6h after surgery
Palanne 2020²	250mmHg	After bandages applied	Intravenously, 1g, 5 min before surgery; Topical, 1g, intraoperatively; 1g, 3h, 6h after surgery
Wang 2017	300mmHg	After bandages applied	Intravenously, 1g, 15 min before surgery; Topical, 1g, intraoperatively
Wang 2019	NA	After bandages applied	Intravenously, 1g, 15 min before surgery; Topical, 1g, intraoperatively; Intravenously, 1g, 3h after surgery
Xie 2017	100 mm Hg above systolic pressure	After bandages applied	Intravenously, 20 mg/kg, 10 min before surgery; Topical, 60ml, intraoperatively
Xu 2018	100 mm Hg above systolic pressure	After fascia layer closed	Intravenously, 1kg, 30 min before surgery
Yu 2017	300mmHg	After bandages applied	Topical, 1g, intraoperatively
Zak2021	NA	NA	Intravenously, two dose of 1g, before surgery and during wound closure

The detailed information of Tourniquet pressure, Tourniquet inflation time, tourniquet realizing time of two groups.
Author/year	Tourniquet pressure	Tourniquet realizing Time	TXA administration
Zeng 2021	100 mmHg above systolic blood pressure	After bandages applied	Intravenously, 1kg, before surgery
Zhou 2017	NA	NA	Intravenously, 1g, at the initiation of the surgery and just before closure

The detailed information of Tourniquet pressure, Tourniquet inflation time, tourniquet realizing time of two groups.
Table 4
The detailed information of TXA and Thromboprophylaxis drugs

Author/year	TXA administration	Thromboprophylaxis drugs
Alexanderson 2018	Intravenously, 1g, 10 min before surgery	Low-molecular weight heparin
Concina 2019	Intravenously, 15mg/kg, 20 minutes before surgery and after 4 hours	Enoxaparine 4000 IU
Ejaz 2014	Orally, 1g, before surgery; Orally, 0.5g 3 h after surgery	Rivaroxaban (10 mg/day)
Huang 2017	Intravenously, 20 mg/kg, 5 to 10 minutes before the skin incision; Intravenous, 10 mg/kg, 3, 6, 12, and 24 hours after operation; Topical, 1 g, intraoperatively	Enoxaparine 4000 IU
Ma 2017	Intravenously, 20 mg/kg, anesthesia induction; Topical, 1 g, intraoperatively; Intravenous, 10 mg/kg, 3, 6, 12, 24h after anesthesia induction.	Enoxaparine 4000 IU
Palanne 2020¹	Intravenously, 1g, 5 min before surgery; Topical, 1g, intraoperatively; 1g, 3h, 6h after surgery	NA
Palanne 2020²	Intravenously, 1g, 5 min before surgery; Topical, 1g, intraoperatively; 1g, 3h, 6h after surgery	NA
Wang 2017	Intravenously, 1g, 15 min before surgery; Topical, 1 g, intraoperatively	Rivaroxaban (10 mg/day)
Wang 2019	Intravenously, 1g, 15 min before surgery; Topical, 1 g, intraoperatively; Intravenously, 1g, 3h after surgery	Enoxaparine 4000 IU
Xie 2017	Intravenously, 20 mg/kg, 10 min before surgery; Topical, 60ml, intraoperatively	Enoxaparine 4000 IU
Xu 2018	Intravenously, 1kg, 30 min before surgery	Rivaroxaban (10 mg/day)
Yu 2017	Topical, 1g, intraoperatively	Rivaroxaban (10 mg/day)
Zak 2021	Intravenously, two dose of 1g, before surgery and during wound closure	NA
Zeng 2021	Intravenously, 1kg, before surgery	Rivaroxaban (10 mg/day)
Zhou 2017	Intravenously, 1g, at the initiation of the surgery and just before closure	Rivaroxaban (10 mg/day)

The detailed information of TXA and Thromboprophylaxis drugs of two groups. Abbreviations: h=hour; min=minute; IU= international unit; kg= kilogram; g= gram; mg=milligram; ml=millilitre.

The risk of bias summary and bias graph for RCTs is shown in Figs. 2 and 3. Fourteen studies adequately described the correct randomization. Thirteen studies demonstrated sufficient allocation concealment. Four studies described the blinding of participants and personnel. No studies described the blinding of outcome assessment. All thirteen articles retained complete outcome data and avoided selective reporting. We rated as
unclear risk of other bias because we can’t ignore other potential dangers of biases. As a result, there is low or moderate risk of bias in most of the articles reviewed (Fig. 2).

3.1. Blood loss

Nine RCTs reported IBL; Three RCTs reported HBS and Seven RCTs reported total blood loss. The pooled data showed that the TXA with tourniquet group had significantly decreased IBL (MD=-109.89, 95% CI [-148.04,-71.74], P<0.0001 Fig. 4). However, the TXA without tourniquet group has significantly increased HBL (MD=117.64, 95% CI [52.4,182.88], P=0.0004 Fig. 4). Both groups experienced similar TBL (MD=7.13, 95% CI [-46.23,60.49], P=0.79 Fig. 4).

3.2. Drainage volume

Five RCTs reported drainage volume. The forest plot showed that the drainage volume was not significantly different between the two groups (MD=69.50, 95% CI [-3.91,142.9], P=0.06 Fig. 5).

3.3. Decrease in hemoglobin

Four RCTs reported a decrease in hemoglobin. The pooled data revealed that the reduction in hemoglobin was not significantly different between the two groups (MD=7.90, 95% CI [-5.44,6.68], P=0.84 Fig. 6).

3.4. Transfusion rate

Seven RCTs reported the transfusion rate. The forest plot revealed that the transfusion rate was not significantly different between the two groups (RD=0.07, 95% CI [-0.02,0.04], P=0.18 Fig. 7).

3.5. Duration of surgery

Five RCTs reported duration of surgery, TXA with tourniquet group have significantly decreased time of surgery compared with TXA-NT group (MD=-1.05, 95% CI [-1.46,-0.64], P<0.0001 Fig. 8).

3.6. VAS

Four RCTs reported VAS on the day of surgery. Ten RCTs reported VAS on the first day after surgery. Six RCTs reported VAS on the third day after surgery. Two RCTs reported VAS on the second and fifth day after surgery. Three RCTs reported VAS on the seventh day after surgery. Two RCTs reported VAS at one month after surgery. The results of random-effects meta-analysis showed no significant differences between the two groups in the postoperative VAS score at either the day of surgery (MD=1.56, 95% CI [5.0,3.62], P=0.20 Fig. 9), first day (MD=0.42, 95% CI [0.29,1.13], P=0.25 Fig. 9), second day (MD=0.16, 95% CI [0.21,0.54], P=0.39 Fig. 9), third day (MD=0.20, 95% CI [-0.12,0.53], P=0.21 Fig. 9), fifth day (MD=0.95, 95% CI [-0.52,2.42], P=0.21 Fig. 9), seventh day (MD=0.89, 95% CI [-0.04,1.83], P=0.06 Fig. 9) or 1 month after surgery (MD=0.16, 95% CI [-0.06,0.39], P=0.16 Fig. 9).

3.7. HSS

Three RCTs reported HSS 7 day, 1 month, 3 month after surgery. Two RCTs reported HSS 6 month after surgery. The pooled results showed that both groups experienced similar HSS scores at either 7 day (MD=-10.11, 95% CI [-21.98,1.76], P=0.10; Fig. 10), 1 month (MD=-2.93, 95% CI [-6.22,0.35], P=0.08; Fig. 10), 3 month (MD=-0.73, 95% CI [-1.89,0.43], P=0.22; Fig. 10) or 6 month after the surgery (MD=-0.08, 95% CI [-1.84,1.67], P=0.92; Fig. 10).

3.8. Knee circumference
Two RCTs reported Knee circumference. We detected a similar knee circumference between two groups (MD=5.86, 95% CI -4.72,16.44], P=0.28; Fig. 11).

3.9. Knee ROM

Six RCTs reported Knee ROM. TXA with tourniquet group have significantly decreased knee ROM compared with TXA-NT group (MD=-2.68, 95% CI -3.30, -2.07], P=0.00001; Fig. 12)

3.10. LOH

Nine RCTs reported LOH. No significant difference was found for LOH between both groups (MD=0.40, 95% CI -0.1, -0.9], P=0.12; Fig. 13)

3.11. Complications

Five RCTs reported intramuscular venous thrombosis. Six RCTs reported Deep venous thrombosis. Five RCTs reported superficial infection, Four RCTs reported Deep wound infection. Four RCTs reported Delayed wound healing. We detected no significantly difference in terms of intramuscular venous thrombosis(RD=0.01, 95% CI -0.04,0.05], P=0.81; Fig. 14), deep venous thrombosis(RD=0.03, 95% CI -0.00,0.05], P=0.10; Fig. 14), superficial infection(RD=0.01, 95% CI -0.02,0.05], P=0.45; Fig. 14), deep wound infection(RD=0.01, 95% CI -0.02,0.04], P=0.64; Fig. 14), delayed wound healing(RD=0.01, 95% CI -0.03,0.04], P=0.65; Fig. 14) between two groups.

4. Discussion

Our study is the first meta-analysis to identify relevant randomized controlled trials involving TXA plus a tourniquet and use of TXA plus no tourniquet during TKA. This meta-analysis of 15 RCTs that evaluated a total of 1720 TKAs shows that TXA plus tourniquet group can decrease intraoperative blood loss and surgery duration however increase hidden blood loss and decrease the knee ROM. Our findings suggested that there were no significant differences in terms of total blood loss, decrease in hemoglobin, transfusion rate, drainage volume, VAS, HSS, Knee circumference, Knee ROM, LOH, and complications between the two groups. The result showing that the use of a tourniquet plus TXA effectively reduced intraoperative blood loss was consistent with the outcome of previous meta-analysis (35–37). However, we found the TXA-T group has more hidden blood loss. An explanation for these conflicting results of IBL and HBL indicates that hidden blood loss plays a key role. Tourniquet release can result in ongoing bleeding from cut cancellous bone (38), blood extravasated into the knee joint and adjacent soft tissues(39), or blood loss from hemolysis(40) because of tourniquet-induced ischemia(41, 42). Furthermore, there are no differences in drainage volume and total blood loss between the two groups, which is inconsistent with the previous meta-analysis. At an earlier meta-analysis(13, 37, 43), they found total blood loss to be significantly lower with a tourniquet. We think the reason for the difference between our study and previous meta- analysis(13, 37, 43) is the TXA used in all RCT studies included in our meta-analysis.

Hemoglobin level and transfusion rate have been recognized as the most objective indicators of actual blood loss. The decrease in hemoglobin and transfusion rate was similar in the TXA-NT group compared with the TXA-T group in our study. Blood transfusion is associated with adverse effects, including hemolytic reactions, infections, morbidity, immunologically mediated diseases, and cost (44). The result of similar transfusion rate in both groups
is consistent with Cai’s recent meta-analysis(45). They found no significant difference between the tourniquet group and the non-tourniquet group.

A tourniquet will provide surgeons with a bloodless surgery field to facilitate the clear identification of anatomical structures with less electrocoagulation and wound irrigation during surgery, which might help shorten the operation time. Our result showed tourniquet with TXA use reduced surgery duration, which was consistent with previous studies (2, 35, 38). So a reduction of course of surgery is a potential benefit of tourniquet use with TXA in TKA.

Pain relief in the early postoperative period after TKA is crucial in facilitating early recovery. Whether the use of tourniquets will increase postoperative pain remains controversial. Theoretically, tourniquet use may increase thigh pain and swell due to lower limb blood flow occlusion and ischemia-reperfusion injury. Our study identified no difference in pain intensity at either the day of surgery, first day, second day, the third day, fifth day, the seventh day, or one month after surgery. Although tourniquet pressure, time, and time of postoperative pain evaluation were variable across studies, we found that these factors of all included RCTs were comparable between experimental and control groups, so endpoints like VAS, ROM, and LOS could still be properly assessed. We also have tried our best to evaluate VAS based on time points. Our results of VAS were inconsistent with previous studies (25, 46, 47). It may be related to the tourniquet pressure in our tourniquet group. In our study, lower or personalized tourniquet pressure was used in 5 of the 11 RCTs. Worland et al. (48) showed an essential correlation between higher tourniquet pressure and more thigh pain in the immediate postoperative period.

Knee flexion ROM is often used to evaluate short-term effectiveness. Besides, discharge from the hospital is dependent on the mobility of patients following TKA. We found significantly decreased knee ROM in TXA-T group compared with TXA-NT group, which is inconsistent with the previous systematic review of 26 RCTs (13). We think the reason is that some studies in the previous analysis didn’t use TXA, and we included studies with TXA use, which may make the advantage of hemostasis effect with tourniquet less obvious compare with non-tourniquet group, So the impact on the knee range of motion appears more obvious compared with non-tourniquet group. No significant difference was also found in terms of knee circumference between the two groups. These findings seem logical, given that we found no significant difference in terms of VAS.

The analysis of the postoperative HSS at either seven days ± one-month ± three months or six months after the surgery also did not reveal a difference. HSS might be affected by many factors such as pain, ROM, function, muscle force, and flexion deformity. Moreover, the effect of a tourniquet application plus TXA on HSS needs to be further confirmed by more high-quality studies.

As for complications, we observed no significant difference in terms of IMVT, DVT, superficial infection, deep wound infection, delayed wound healing between the two groups. Although TXA use in TKA didn’t increase thromboembolic events (49–52), perhaps one of the more significant clinical concerns regarding tourniquet use plus TXA is its association with thromboembolism. No significant difference was found between groups regarding the rate of intramuscular venous thrombosis and deep venous thrombosis in our study. Several studies have investigated the incidence of venous thrombosis with the use of the tourniquet (3, 13, 14, 36, 53). However, the evidence is mixed because of heterogeneous study groups and designs, making it difficult to compare. Nonetheless, we cannot underscore the importance of chemoprophylaxis following TKA regardless of tourniquet use. DVT was detected in 81% of patients when all the patents only received mechanical compression but no chemoprophylaxis following TKA of tourniquet use(54).
The current meta-analysis has several limitations: First, there is a high heterogeneity of blood loss caused by the different methods for measuring blood loss, separate application of a tourniquet, different operative techniques, and different perioperative management as the drain and anticoagulant therapy. The reliability of results maybe influenced by this heterogeneity. Second, the studies' comparability was complicated through the different measurement methods and follow-up examination time points; however, we have tried our best to evaluate results based on time points. Third, the tourniquet time, the time for loosening the tourniquet, and the cuff pressure used were also not uniform. Fourth, there are no worldwide uniform guidelines for performing total knee arthroplasty. Different surgical techniques (such as the selection of approach, anesthesia methods, patellar resurfacing, and type of prosthesis) were used in the individual studies.

5. Conclusion

No big differences could be found by using or not tourniquet with TXA. Some benefits are related to operation time and less intra-operative blood loss by using tourniquet and TXA, however using the tourniquet and TXA was also related to more hidden blood loss and less knee range of motion. These are obvious conclusions that are confirmed after this meta-analysis. Given our meta-analysis's relevant possible biases, we required more adequately powered and better-designed RCT studies with long-term follow-up to reach a firmer conclusion.

Abbreviations

Cis=Confidence intervals; RCTs= randomized controlled trials; RR= Risk ratio; OR= odds ratio; VMD= Weighted mean difference; TXA= Tranexamic acid; TKA= total knee arthroplasty; OA= osteoarthritis; RA= rheumatoid arthritis; BMI= body mass index; VAS= Visual Analogue Scale; HSS= Hospital for Special Surgery; ROM= range of motion; IBL= intra-operative blood loss; HBL= hidden blood loss; TBL= total blood loss; LOH= length of stay; IMVT= intramuscular venous thrombosis; DVT= deep venous thrombosis.

Declarations

Ethics approval

Ethical approval is not required, because this study is based on existed literature.

Consent for publication

Not applicable.

Availability of data and materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

None.

Author contribution

Conceptualization: Changjiao Sun and Yonggang Zhou.

Data curation: Qi Ma, Yan Tu

Formal analysis: Changjiao Sun and Qi Ma.

Investigation: Xiaofei Zhang and Changjiao Sun.

Supervision: Xu Cai and Yonggang Zhou

Validation: Changjiao Sun and Yonggang Zhou.

Visualization: Changjiao Sun and Yonggang Zhou.

Writing – original draft: Changjiao Sun.

Acknowledgements

None

References

1. Huang ZY, Pei FX, Ma J, Yang J, Zhou ZK, Kang PD, Shen B. Comparison of three different tourniquet application strategies for minimally invasive total knee arthroplasty: a prospective non-randomized clinical trial. Arch Orthop Trauma Surg. 2014 Apr;134(4):561–70. Epub 2014/02/12. doi:10.1007/s00402-014-1948-1. Cited in: Pubmed; PMID 24515866.

2. Zhou K, Ling T, Wang H, Zhou Z, Shen B, Yang J, Kang P, Pei F. Influence of tourniquet use in primary total knee arthroplasty with drainage: a prospective randomised controlled trial. J Orthop Surg Res. 2017 Nov 14;12(1):172. eng. Epub 2017/11/16. doi:10.1186/s13018-017-0683-z. Cited in: Pubmed; PMID 29137681.

3. Zhang P, Liang Y, He J, Fang Y, Chen P, Wang J. Timing of tourniquet release in total knee arthroplasty: A meta-analysis. Medicine (Baltimore). 2017 Apr;96(17):e6786. eng. Epub 2017/04/27. doi:10.1097/md.0000000000006786. Cited in: Pubmed; PMID 28445317.

4. Pfitzner T, von Roth P, Voerkelius N, Mayr H, Perka C, Hube R. Influence of the tourniquet on tibial cement mantle thickness in primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016
5. Young SW, Zhang M, Moore GA, Pitto RP, Clarke HD, Spangehl MJ. The John N. Insall Award: Higher Tissue Concentrations of Vancomycin Achieved With Intraosseous Regional Prophylaxis in Revision TKA: A Randomized Controlled Trial. Clin Orthop Relat Res. 2018 Jan;476(1):66-74. eng. Epub 2018/03/13. doi:10.1007/s00167-014-3341-6. Cited in: Pubmed; PMID 25248311.

6. Olivecrona C, Blomfeldt R, Ponzer S, Stanford BR, Nilsson BY. Tourniquet cuff pressure and nerve injury in knee arthroplasty in a bloodless field: a neurophysiological study. Acta Orthop. 2013 Apr;84(2):159–64. eng. Epub 2013/03/15. doi:10.3109/17453674.2013.782525. Cited in: Pubmed; PMID 23485070.

7. Tsubosaka M, Ishida K, Sasaki H, Shibanuma N, Kuroda R, Matsumoto T. Effects of Suture and Tourniquet on Intraoperative Kinematics in Navigated Total Knee Arthroplasty. J Arthroplasty. 2017 Jun;32(6):1824-1828. eng. Epub 2017/02/25. doi:10.1016/j.arth.2017.01.033. Cited in: Pubmed; PMID 28233604.

8. Tai TW, Chang CW, Lai KA, Lin CJ, Yang CY. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012 Dec 19;94(24):2209-15. eng. Epub 2013/01/16. doi:10.2106/jbjs.K.00813. Cited in: Pubmed; PMID 23318610.

9. Tai TW, Lin CJ, Jou IM, Chang CW, Lai KA, Yang CY. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011 Jul;19(7):1121–30. Epub 2010/12/17. doi:10.1007/s00167-010-1342-7. Cited in: Pubmed; PMID 21161177.

10. Horlocker TT, Hebl JR, Gali B, Jankowski CJ, Burkle CM, Berry DJ, Zepeda FA, Stevens SR, Schroeder DR. Anesthetic, patient, and surgical risk factors for neurologic complications after prolonged total tourniquet time during total knee arthroplasty. Anesth Analg. 2006 Mar;102(3):950–5. Epub 2006/02/24. doi:10.1213/01.ane.0000194875.05587.7e. Cited in: Pubmed; PMID 16492857.

11. Silver R, de la Garza J, Rang M, Koreska J. Limb swelling after release of a tourniquet. Clin Orthop Relat Res. 1986 May;(206):86–9. Epub 1986/05/01. Cited in: Pubmed; PMID 3708997.

12. Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE. Does Tourniquet Use in TKA Affect Recovery of Lower Extremity Strength and Function? A Randomized Trial. Clin Orthop Relat Res. 2016 Jan;474(1):69-77. eng. Epub 2015/06/24. doi:10.1007/s00167-015-4393-8. Cited in: Pubmed; PMID 26100254.

13. Jiang FZ, Zhong HM, Hong YC, Zhao GF. Use of a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Orthop Sci. 2015 Jan;20(1):110-23. eng. Epub 2014/11/07. doi:10.1007/s00776-014-0664-6. Cited in: Pubmed; PMID 25373840.

14. Mori N, Kimura S, Onodera T, Iwasaki N, Nakagawa I, Masuda T. Use of a pneumatic tourniquet in total knee arthroplasty increases the risk of distal deep vein thrombosis: A prospective, randomized study. Knee. 2016 Oct;23(5):887–9. eng. Epub 2016/07/04. doi:10.1016/j.knee.2016.02.007. Cited in: Pubmed; PMID 27372555.

15. Clarke MT, Longstaff L, Edwards D, Rushton N. Tourniquet-induced wound hypoxia after total knee replacement. J Bone Joint Surg Br. 2001 Jan;83(1):40-4. eng. Epub 2001/03/14. doi:10.1302/0301-620x.83b1.10795. Cited in: Pubmed; PMID 11245536.

16. Heller S, Chen A, Restrepo C, Albert E, Hozack WJ. Tourniquet Release Prior to Dressing Application Reduces Blistering Following Total Knee Arthroplasty. J Arthroplasty. 2015 Jul;30(7):1207–10. Epub 2015/03/17. doi:10.1016/j.arth.2015.02.035. Cited in: Pubmed; PMID 25770863.
17. Rathod P, Deshmukh A, Robinson J, Greiz M, Ranawat A, Rodriguez J. Does Tourniquet Time in Primary Total Knee Arthroplasty Influence Clinical Recovery? J Knee Surg. 2015 Aug;28(4):335-42. eng. Epub 2014/09/03. doi:10.1055/s-0034-1388654. Cited in: Pubmed; PMID 25180797.

18. Barr L, Iyer US, Sardesai A, Chitnavis J. Tourniquet failure during total knee replacement due to arterial calcification: case report and review of the literature. J Perioper Pract. 2010 Feb;20(2):55-8. eng. Epub 2010/03/03. doi:10.1177/175045891002000202. Cited in: Pubmed; PMID 20192092.

19. Xie J, Ma J, Yao H, Yue C, Pei F. Multiple Boluses of Intravenous Tranexamic Acid to Reduce Hidden Blood Loss After Primary Total Knee Arthroplasty Without Tourniquet: A Randomized Clinical Trial. J Arthroplasty. 2016 Nov;31(11):2458-2464. eng. Epub 2016/10/19. doi:10.1016/j.arth.2016.04.034. Cited in: Pubmed; PMID 27262419.

20. Huang Z, Ma J, Shen B, Pei F. Combination of intravenous and topical application of tranexamic acid in primary total knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty. 2014 Dec;29(12):2342-6. eng. Epub 2014/07/11. doi:10.1016/j.arth.2014.05.026. Cited in: Pubmed; PMID 25007725.

21. Xie J, Ma J, Kang P, Zhou Z, Shen B, Yang J, Pei F. Does tranexamic acid alter the risk of thromboembolism following primary total knee arthroplasty with sequential earlier anticoagulation? A large, single center, prospective cohort study of consecutive cases. Thromb Res. 2015 Aug;136(2):234–8. Epub 2015/06/01. doi:10.1016/j.thromres.2015.05.014. Cited in: Pubmed; PMID 26026635.

22. Palanne R, Rantasalo M, Vakkuri A, Madanat R, Olkkola KT, Lahtinen K, Reponen E, Linko R, Vahlberg T, Skants N. Effects of anaesthesia method and tourniquet use on recovery following total knee arthroplasty: a randomised controlled study. Br J Anaesth. 2020 Nov;125(5):762-772. eng. Epub 2020/07/06. doi:10.1016/j.bja.2020.03.036. Cited in: Pubmed; PMID 32620260.

23. Alexandersson M, Wang EY, Eriksson S. A small difference in recovery between total knee arthroplasty with and without tourniquet use the first 3 months after surgery: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc. 2019 Apr;27(4):1035-1042. eng. Epub 2018/10/18. doi:10.1007/s00167-018-5196-8. Cited in: Pubmed; PMID 30328495.

24. Concina C, Crucil M, Fabbro S, Gherlinzoni F. Do tourniquet and drainage influence fast track in total knee arthroplasty? Our results on 151 cases. Acta Biomed. 2019 Jan 10;90(1-s):123-129. eng. Epub 2019/02/05. doi:10.23750/abm.v90i1-S.8080. Cited in: Pubmed; PMID 30715010.

25. Ejaz A, Laursen AC, Kappel A, Laursen MB, Jakobsen T, Rasmussen S, Nielsen PT. Faster recovery without the use of a tourniquet in total knee arthroplasty. Acta Orthop. 2014 Aug;85(4):422-6. eng. Epub 2014/06/24. doi:10.3109/17453674.2014.931197. Cited in: Pubmed; PMID 24954487.

26. Huang Z, Xie X, Li L, Huang Q, Ma J, Shen B, Kraus VB, Pei F. Intravenous and Topical Tranexamic Acid Alone Are Superior to Tourniquet Use for Primary Total Knee Arthroplasty: A Prospective, Randomized Controlled Trial. J Bone Joint Surg Am. 2017 Dec 20;99(24):2053-2061. eng. Epub 2017/12/20. doi:10.2106/jbjs.16.01525. Cited in: Pubmed; PMID 29257010.

27. Ma J, Huang Z, Wang R, Xie J, Xu B, Pei F, Shen B. Comparison of efficacy and safety between with and without tourniquet under the program of expert consensus statement on anti-coagulation sequential anti-fibrinolysis during primary total knee arthroplasty. Chin J Bone Joint Surg. 2017;10(05):391-395+399. doi:10.3969/j.issn.2095-9958.2017.05-07.
28. Wang G, Rui C, Chen X, Guan J, Zhu J, Zhu Q. Effects of tourniquet use on enhanced recovery after surgery in total knee arthroplasty. Chin J Bone Joint Surg. 2017;10(01):27–32. doi:10.3969/j.issn.2095-9958.2017.01-06.

29. Wang X, Tan B, Yin J, Zhuo B. Restrictive use and non-use tourniquets during total knee arthroplasty. J Clin Rehabil Tis Eng Res. 2019;23(28):4456–4460. doi:10.3969/j.issn.2095-4344.1341.

30. Xie X, Yue C, Wang Z, Kang P, Zhou Z, Yang J, Shen B, Pei F. Total knee arthroplasty with or without tourniquet: a randomized controlled trial. Orthopedic Journal of China. 2017;25(17):1572–1576. doi:10.3977/j.issn.1005-8478.2017.17.08.

31. Xue C, Yao Y, Xing Y. Analysis of the effect and safety of tourniquet used in total knee arthroplasty. Chinese journal of Bone and joint injury. 2018;33(06):626–628. doi:10.7531/j.issn.1672-9935.2018.06.026.

32. Yu Z, Wang T, Sun H, Yan X, Li S. To observe clinical effect of limited tourniquet usage in total knee arthroplasty. Orthopaedic Biomechanics Materials and Clinical Study. 2017;14(01):24–28. doi:10.3969/j.issn.1672-5972.2017.01.006.

33. Zak SG, Yeroushalmi D, Long WJ, Meftah M, Schnaser E, Schwarzkopf R. Does the Use of a Tourniquet Influence Outcomes in Total Knee Arthroplasty: A Randomized Controlled Trial. J Arthroplasty. 2021 Jul;36(7):2492–2496. eng. Epub 2021/04/03. doi:10.1016/j.arth.2021.02.068. Cited in: Pubmed; PMID 33795174.

34. Yi Z, Yan L, Haibo S, Yuwangang W, Mingyang L, Yuan L, Bin S. Effects of tourniquet use on clinical outcomes and cement penetration in TKA when tranexamic acid administrated: a randomized controlled trial. BMC Musculoskelet Disord. 2021 Jan 31;22(1):126. eng. Epub 2021/02/02. doi:10.1186/s12891-021-03968-5. Cited in: Pubmed; PMID 33517881.

35. Zhang W, Li N, Chen S, Tan Y, Al-Aidaros M, Chen L. The effects of a tourniquet used in total knee arthroplasty: a meta-analysis. J Orthop Surg Res. 2014 Mar 6;9(1):13. eng. Epub 2014/03/08. doi:10.1186/1749-799x-9-13. Cited in: Pubmed; PMID 24602486.

36. Tie K, Hu D, Qi Y, Wang H, Chen L. Effects of Tourniquet Release on Total Knee Arthroplasty. Orthopedics. 2016 Jul 1;39(4):e642-50. eng. Epub 2016/06/11. doi:10.3928/01477447-20160606-03. Cited in: Pubmed; PMID 27286051.

37. Alcelik I, Pollock RD, Sukeik M, Bettany-Saltikov J, Armstrong PM, Fismer P. A comparison of outcomes with and without a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Arthroplasty. 2012 Mar;27(3):331–40. eng. Epub 2011/09/29. doi:10.1016/j.arth.2011.04.046. Cited in: Pubmed; PMID 21944371.

38. Zan P, Li G. Releasing of Tourniquet Before Wound Closure Or Not in Total Knee Arthroplasty: a Meta-Analysis of Randomized Controlled Trials. J Arthroplasty. 2015 Jul;30(7):1154. eng. Epub 2015/02/14. doi:10.1016/j.arth.2015.01.048. Cited in: Pubmed; PMID 25677934.

39. Erskine JG, Fraser C, Simpson R, Protheroe K, Walker ID. Blood loss with knee joint replacement. J R Coll Surg Edinb. 1981 Sep;26(5):295–7. Epub 1981/09/01. Cited in: Pubmed; PMID 7288695.

40. Pattison E, Protheroe K, Pringle RM, Kennedy AC, Dick WC. Reduction in haemoglobin after knee joint surgery. Ann Rheum Dis. 1973 Nov;32(6):582–4. Epub 1973/11/01. doi:10.1136/ard.32.6.582. Cited in: Pubmed; PMID 4760481.

41. Tetro AM, Rudan JF. The effects of a pneumatic tourniquet on blood loss in total knee arthroplasty. Can J Surg. 2001 Feb;44(1):33–8. eng. Epub 2001/02/28. Cited in: Pubmed; PMID 11220796.
42. Li B, Wen Y, Wu H, Qian Q, Lin X, Zhao H. The effect of tourniquet use on hidden blood loss in total knee arthroplasty. Int Orthop. 2009 Oct;33(5):1263–8. Epub 2008/08/30. doi:10.1007/s00264-008-0647-3. Cited in: Pubmed; PMID 18751703.

43. Li X, Yin L, Chen ZY, Zhu L, Wang HL, Chen W, Yang G, Zhang YZ. The effect of tourniquet use in total knee arthroplasty: grading the evidence through an updated meta-analysis of randomized, controlled trials. Eur J Orthop Surg Traumatol. 2014 Aug;24(6):973-86. eng. Epub 2013/07/12. doi:10.1007/s00590-013-1278-y. Cited in: Pubmed; PMID 23842662.

44. Lasocki S, Krauspe R, von Heymann C, Mezzacasa A, Chainey S, Spahn DR. PREPARE: the prevalence of perioperative anaemia and need for patient blood management in elective orthopaedic surgery: a multicentre, observational study. Eur J Anaesthesiol. 2015 Mar;32(3):160-7. eng. Epub 2015/01/08. doi:10.1097/eja.0000000000000202. Cited in: Pubmed; PMID 25564780.

45. Cai DF, Fan QH, Zhong HH, Peng S, Song H. The effects of tourniquet use on blood loss in primary total knee arthroplasty for patients with osteoarthritis: a meta-analysis. J Orthop Surg Res. 2019 Nov 8;14(1):348. eng. Epub 2019/11/11. doi:10.1186/s13018-019-1422-4. Cited in: Pubmed; PMID 31703706.

46. Parvizi J, Diaz-Ledezma C. Total knee replacement with the use of a tourniquet: more pros than cons. Bone Joint J. 2013 Nov;95-b(11 Suppl A):133-4. eng. Epub 2013/11/06. doi:10.1302/0301-620x.95b11.32903. Cited in: Pubmed; PMID 24187371.

47. Rama KR, Apsingi S, Povali S, Jetti A. Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007 Apr;89(4):699–705. eng. Epub 2007/04/04. doi:10.2106/jbjs.F.00497. Cited in: Pubmed; PMID 17403789.

48. Worland RL, Arredondo J, Angles F, Lopez-Jimenez F, Jessup DE. Thigh pain following tourniquet application in simultaneous bilateral total knee replacement arthroplasty. J Arthroplasty. 1997 Dec;12(8):848-52. eng. Epub 1998/02/11. doi:10.1016/s0883-5403(97)90153-4. Cited in: Pubmed; PMID 9458249.

49. Leite CBG, Ranzoni LV, Giglio PN, Bonadio MB, Melo LDP, Demange MK, Gobbi RG. ASSESSMENT OF THE USE OF TRANEXAMIC ACID AFTER TOTAL KNEE ARTHROPLASTY. Acta Ortop Bras. 2020 Mar-Apr;28(2):74-77. eng. Epub 2020/05/20. doi:10.1590/1413-785220202802228410. Cited in: Pubmed; PMID 32425668.

50. Drain NP, Gobao VC, Bertolini DM, Smith C, Shah NB, Rothenberger SD, Dombrowski ME, O'Malley MJ, Klatt BA, Hamlin BR, Urish KL. Administration of Tranexamic Acid Improves Long-Term Outcomes in Total Knee Arthroplasty. J Arthroplasty. 2020 Jun;35(6s):S201-s206. eng. Epub 2020/03/27. doi:10.1016/j.arth.2020.02.047. Cited in: Pubmed; PMID 32209286.

51. Morales Santias M, Mas Martinez J, Sanz-Reig J, Martinez Gimenez E, Verdu Román C, Bustamante Suarez de Puga D. Topical tranexamic acid in cemented primary total knee arthroplasty without tourniquet: a prospective randomized study. Eur J Orthop Surg Traumatol. 2020 Mar 17. eng. Epub 2020/03/19. doi:10.1007/s00167-020-02656-9. Cited in: Pubmed; PMID 32185573.

52. Hines JT, Petis SM, Amundson AW, Pagnano MW, Sierra RJ, Abdel MP. Intravenous Tranexamic Acid Safely and Effectively Reduces Transfusion Rates in Revision Total Knee Arthroplasties. J Bone Joint Surg Am. 2020 Mar 4;102(5):381-387. eng. Epub 2020/01/25. doi:10.2106/jbjs.19.00857. Cited in: Pubmed; PMID 31977819.

53. Wang K, Ni S, Li Z, Zhong Q, Li R, Li H, Ke Y, Lin J. The effects of tourniquet use in total knee arthroplasty: a randomized, controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017 Sep;25(9):2849-2857. eng. Epub 2016/01/10. doi:10.1007/s00167-015-3964-2. Cited in: Pubmed; PMID 26745962.
54. Fukuda A, Hasegawa M, Kato K, Shi D, Sudo A, Uchida A. Effect of tourniquet application on deep vein thrombosis after total knee arthroplasty. Arch Orthop Trauma Surg. 2007 Oct;127(8):671-5. eng. Epub 2006/11/15. doi:10.1007/s00402-006-0244-0. Cited in: Pubmed; PMID 17102960.

Figures

![Diagram of the search results and selection procedure]

The literature search identified 259 citations. Of these, 164 duplicates were removed. After examining the titles and abstracts of the 95 remaining articles, we excluded 77 papers.
according to the inclusion and exclusion criteria; the full text of 18 articles was retrieved. Fourteen articles were assessed for eligibility. In Palanne’s article, there were two subgroups comparing TXA+ tourniquet group with TXA+ NT group. So we divided the study into two groups. Finally, we identified 1720 TKAs (1690 patients) assessed in 15 randomized controlled trial.

Risk of bias summary: +: no bias; -: bias; ?: bias unknown. Fourteen studies adequately described the correct randomization. Thirteen studies demonstrated sufficient allocation concealment. Four studies described the blinding of participants and personnel. No studies described the blinding of outcome assessment. All thirteen articles retained complete outcome data and avoided selective reporting. We rated as unclear risk of other bias.
because we can't ignore other potential dangers of biases. As a result, there is low or moderate risk of bias in most of the articles reviewed.

Figure 3

Risk of bias graph The overall quality of the included studies was considered adequate.

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference Mean Difference IV, Random, 95% CI
1.1.1 Intra-operative (ml)			
Concina 2019	168.42	101.67	50 607.14 171.13 50 5.6% -438.72 [-493.89, -383.55]
Ejaz 2014	140	32.7	33 280 52 31 6.6% -140.00 [-161.44, -118.56]
Huang 2017	244.8	80.1	50 150.6 86 50 6.4% -5.80 [-32.38, 26.78]
Ma 2017	81.45	35.94	31 259.84 97.55 32 6.2% -178.39 [-234.48, -122.30]
Wang 2017	39.5	20.7	30 71.8 24.4 30 6.8% -32.30 [-43.75, -20.85]
Xie 2017	32.7	9.4	45 94.5 23.6 45 6.8% -61.80 [-69.22, -54.38]
Xu 2018	242.6	26.5	30 342.6 37.5 30 6.7% -100.00 [-116.43, -83.57]
Zeng 2021	70.2	36.62	50 159.8 28.32 50 6.8% -89.60 [-102.41, -76.77]
Zhou 2017	77.2	14.5	72 82 12.7 68 6.9% -6.40 [-9.31, -0.29]
Subtotal (95% CI)	391	386	58.8% -109.89 [-148.04, -71.74]

Heterogeneity: Tau² = 3327.02; Ch² = 713.88, df = 8 (P < 0.00001); I² = 99%
Test for overall effect: Z = 5.65 (P < 0.00001)

1.1.2 Hidden blood loss (ml)
Huang 2017
Ma 2017
Xu 2018
Subtotal (95% CI)

Heterogeneity: Tau² = 1497.71; Ch² = 3.60, df = 2 (P = 0.17); I² = 44%
Test for overall effect: Z = 3.53 (P = 0.0004)

1.1.3 Total blood loss (ml)			

Huang 2017	734.5	274.2	50 627.7 198.1 50 4.1% 106.80 [51.04, 200.56]
Ma 2017	837.7	366.7	31 1118.2 584.41 32 1.3% -280.30 [-520.63, -40.37]
Wang 2017	251.5	124.9	30 272.5 107.4 30 5.4% -21.00 [-79.95, 37.95]
Xie 2017	896.1	245.4	45 804.3 215.9 45 4.1% 91.80 [3.70, 187.30]
Xu 2018	1044.4	113.8	30 1005.7 102.8 30 5.6% 34.70 [20.18, 49.58]
Zeng 2021	611.02	299.22	50 693.1 333.43 50 3.2% -84.98 [108.26, 40.10]
Zhou 2017	374.5	165.3	72 389.2 178.3 68 5.5% -14.70 [-71.74, 42.34]
Subtotal (95% CI)	308	305	29.1% 7.13 [-46.23, 60.49]

Heterogeneity: Tau² = 3015.02; Ch² = 17.30, df = 6 (P = 0.008); I² = 65%
Test for overall effect: Z = 2.06 (P = 0.04)
Test for subgroup differences: Ch² = 38.22, df = 2 (P < 0.00001); I² = 94.8%

Figure 4

A forest plot diagram showing blood loss Nine RCTs reported IBL; Three RCTs reported HBS and Seven RCTs reported total blood loss. The pooled data showed that the TXA with tourniquet group had significantly decreased
IBL (MD = -109.89, 95% CI [-148.04, -71.74], P = 0.00001). However, the TXA without tourniquet group has significantly increased HBL (MD = 117.64, 95% CI [52.4, 182.88], P = 0.0004). Both groups experienced similar TBL (MD = 7.13, 95% CI [-46.23, 60.49], P = 0.79).

Figure 5
A forest plot diagram showing drainage volume. Five RCTs reported drainage volume. The forest plot showed that the drainage volume was not significantly different between the two groups (MD = 69.50, 95% CI [-3.91, 142.9], P = 0.06).

Figure 6
A forest plot diagram showing decrease in hemoglobin. Four RCTs reported a decrease in hemoglobin. The pooled data revealed that the reduction in hemoglobin was not significantly different between the two groups (MD = 7.90, 95% CI [-5.44, 6.68], P = 0.84).

Figure 7
A forest plot diagram showing transfusion rate. Seven RCTs reported the transfusion rate. The forest plot revealed that the transfusion rate was not significantly different between the two groups (RD = 0.07, 95% CI [-0.02, 0.04], P = 0.18)
Figure 8

A forest plot diagram showing time of surgery. Five RCT reported duration of surgery, TXA with tourniquet group have significantly decreased time of surgery compared with TXA-NT group (MD=-1.05, 95% CI [-1.46, -0.64], P=<i>0.00001</i>)
Table 1: Comparison of VAS between groups with and without a tourniquet

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference IV	Random, 95% CI
Ma 2017	1.79 ± 0.22	1.69 ± 0.43	0.16 (0.08, 0.34)	P = 0.01
Ma 2018	1.86 ± 0.20	1.76 ± 0.42	0.10 (0.01, 0.19)	P = 0.02
Wang 2019	2.17 ± 0.33	2.08 ± 0.54	0.09 (0.00, 0.18)	P = 0.05
Xie 2017	2.2 ± 0.36	2.12 ± 0.55	0.08 (0.00, 0.16)	P = 0.07
Subtotal (95% CI)				

Figure 9

A forest plot diagram showing VAS. Four RCTs reported VAS on the day of surgery. Ten RCTs reported VAS on the first day after surgery. Six RCTs reported VAS on the third day after surgery. Two RCTs reported VAS on the second and fifth day after surgery. Three RCTs reported VAS on the seventh day after surgery. Two RCTs reported VAS at one month after surgery. The results of random-effects meta-analysis showed no significant differences between the two groups in the postoperative VAS score at either the day of surgery (MD = 1.56, 95% CI [-5.0, 3.62], P = 0.20), first day (MD = 0.42, 95% CI [-0.29, 1.13], P = 0.25), second day (MD = 0.16, 95% CI [-0.21, 0.54], P = 0.39), third day (MD = 0.20, 95% CI [-0.12, 0.53], P = 0.21), fifth day (MD = 0.95, 95% CI [-0.52, 2.42], P = 0.21), seventh day (MD = 0.89, 95% CI [-0.04, 1.83], P = 0.06) or 1 month after surgery (MD = 0.16, 95% CI [-0.06, 0.39], P = 0.16).
Table 2

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference	Mean Difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
6.1.2 7 day									
Wang 2019	58.2	8.2	30	46.3	5.7	30	8.3%	-6.10 [-9.61, -2.59]	
Xu 2018	58.3	6.8	30	81.7	10.7	30	7.3%	-23.40 [-27.94, -18.86]	
Zhou 2017	65.4	7.4	72	66.6	8.1	68	9.3%	-1.20 [-3.72, 1.37]	
Subtotal (95% CI)	132			128			24.9%	-10.11 [-21.98, 1.76]	

Heterogeneity: Tau² = 106.55; Chi² = 69.64, df = 2 (P < 0.00001); I² = 97%
Test for overall effect: Z = 1.67 (P = 0.10)

6.1.3 1 month

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference	Mean Difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Wang 2017	78.3	4.9	30	79.1	4.7	30	9.4%	-0.80 [-3.23, 1.63]	
Wang 2019	78.5	6.8	30	80.5	6.2	30	8.6%	-2.00 [-5.29, 1.29]	
Xu 2018	77.4	6.7	30	83.7	5.9	30	8.7%	-6.36 [-9.49, -3.11]	
Subtotal (95% CI)	90			90			26.7%	-2.93 [-6.22, 0.35]	

Heterogeneity: Tau² = 6.11; Chi² = 7.39, df = 2 (P = 0.02); I² = 73%
Test for overall effect: Z = 1.75 (P = 0.08)

6.1.4 3 month

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference	Mean Difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Xu 2018	86.9	8.7	30	90.8	8.9	30	7.4%	-3.90 [-8.35, 0.55]	
Zeng 2021	83.96	3.2	50	84.16	2.92	50	10.4%	-0.20 [-1.41, 1.01]	
Zhou 2017	81.6	4.4	72	82.5	4.5	68	10.2%	-0.90 [-2.38, 0.58]	
Subtotal (95% CI)	152			148			27.0%	-0.73 [-1.80, 0.34]	

Heterogeneity: Tau² = 0.20; Chi² = 2.69, df = 2 (P = 0.26); I² = 26%
Test for overall effect: Z = 1.23 (P = 0.22)

6.1.5 6 month

Study or Subgroup	TXA with a tourniquet	TXA without a tourniquet	Mean Difference	Mean Difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Huang 2017	90.3	3.2	50	91.2	2.5	50	10.4%	-0.93 [-2.03, 0.23]	
Zhou 2017	90.7	4.5	72	89.8	4.9	68	10.1%	0.90 [0.06, 2.31]	
Subtotal (95% CI)	122			118			20.5%	-0.08 [-1.84, 1.67]	

Heterogeneity: Tau² = 1.14; Chi² = 3.36, df = 1 (P = 0.07); I² = 70%
Test for overall effect: Z = 0.99 (P = 0.32)

Heterogeneity: Tau² = 11.44; Chi² = 120.71, df = 10 (P < 0.00001); I² = 92%
Test for overall effect: Z = 3.18 (P = 0.001)

Test for subgroup differences: Chi² = 4.64, df = 3 (P = 0.20), I² = 35.4%

Figure 10

A forest plot diagram showing HSS Three RCTs reported HSS 7 day, 1 month, 3 month after surgery. Two RCTs reported HSS 6 month after surgery. The pooled results showed that both groups experienced similar HSS scores at either 7 day MD = -10.11, 95% CI [-21.98, 1.76], P = 0.10, 1 month MD = -2.93, 95% CI [-6.22, 0.35], P = 0.08, 3 month MD = -0.73, 95% CI [-1.89, 0.43], P = 0.22 or 6 month after the surgery MD = -0.08, 95% CI [-1.84, 1.67], P = 0.92.

Figure 11

A forest plot diagram showing Knee circumference Two RCTs reported Knee circumference. We detected a similar knee circumference between two groups (MD = 5.86, 95% CI [-4.72, 16.44], P = 0.28).

Figure 12

A forest plot diagram showing Knee ROM: Six RCTs reported Knee ROM. TXA with tourniquet group have significantly decreased knee ROM compared with TXA-NT group (MD = -2.68, 95% CI [-3.30, -2.07], P < 0.00001)
Figure 13

A forest plot diagram showing LOH Nine RCTs reported LOH. No significant difference was found for LOH between both groups (MD=0.40, 95% CI [-0.1, -0.9], P=0.12)
Figure 14

A forest plot diagram showing complications. Five RCTs reported intramuscular venous thrombosis. Six RCTs reported deep venous thrombosis. Five RCTs reported superficial infection. Four RCTs reported deep wound infection. Four RCTs reported delayed wound healing. We detected no significantly difference in terms of intramuscular venous thrombosis (RD=0.01, 95% CI [-0.04, 0.05], P=0.81), deep venous thrombosis (RD=0.03, 95% CI [-0.00, 0.05], P=0.10), superficial infection (RD=0.01, 95% CI [-0.02, 0.05], P=0.45), deep wound infection (RD=0.01, 95% CI [-0.02, 0.04], P=0.64), delayed wound healing (RD=0.01, 95% CI [-0.03, 0.04], P=0.65) between two groups.