Cis-AB, the Blood Group of Many Faces, Is a Conundrum to the Novice Eye

Sejong Chun, M.D.1,*, Sooin Choi, M.D.2,*, HongBi Yu, B.S.3, and Duck Cho, M.D.3,4

1Department of Laboratory Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea; 2Department of Laboratory Medicine, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, Korea; 3Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea; 4Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Cis-AB, a rare ABO variant, is caused by a gene mutation that results in a single glycosyltransferase enzyme with dual A and B glycosyltransferase activities. It is the most frequent ABO subgroup in Korea, and it occurs more frequently in the East Asian region than in the rest of the world. The typical phenotype of cis-AB is A\textsubscript{1}B\textsubscript{1}, but it can express various phenotypes when paired with an A or B allele, which can lead to misclassification in the ABO grouping and consequently to adverse hemolytic transfusion reactions. While cis-AB was first discovered as having an unusual inheritance pattern, it was later found that both A and B antigens are expressed from the same allele inherited from a single parent; hence, the name cis-AB. Earlier studies relied on serological and familial investigation of cis-AB subjects, but its detection has become much easier with the introduction of molecular methods. This review will summarize the serological variety, genetic basis and inheritance pattern, laboratory methods of investigation, clinical significance, and the blood type of choice for transfusion for the cis-AB blood group.

Key Words: ABO, cis-AB, Genotyping, Serology

INTRODUCTION

Numerous examples of weak ABO subgroup phenotypes, such as A\textsubscript{x}, A\textsubscript{y}, A\textsubscript{m}, A\textsubscript{x}, A\textsubscript{y}, A\textsubscript{m}, B\textsubscript{x}, B\textsubscript{m}, B\textsubscript{y}, B\textsubscript{x}, B\textsubscript{y}, B\textsubscript{m}, B(A), and cis-AB, have been reported to date [1-4]. Among them, the cis-AB blood group is rare globally, yet it is relatively common in the Korean, Japanese, and Chinese populations [3, 5, 6]. Cho et al. [5] reported that the overall frequency of the cis-AB blood group in Koreans is 0.0354% (60/169,605), while in Japanese and Chinese blood donors, frequencies of 0.0012% [6] and 0.00066%, respectively, have been reported [7]. Interestingly, 26.4% (60/227) of ABO weak subgroups in Korea arise from the cis-AB01 allele [5]. Although new alleles are continuously being reported, cis-AB01 is the most prevalent allele in Korea [5].

The cis-AB blood group has attracted attention in transfusion medicine because of the interesting phenomenon that a single allele encodes both A and B antigens, as opposed to the regular trans-AB genotype [6, 8]. Therefore, it can be difficult to correctly match ABO group for transfusion for the cis-AB subgroup, and paternity disputes can arise because of the unusual inheritance pattern, which can result in, for example, the birth of an O child from an AB mother.

The cis-AB subgroup still stands as a challenge to the novice eye in the clinical blood bank. This review provides an overview
Table 1. Classification, cis-AB alleles, nucleotide and amino acid changes, and phenotypes of cis-AB blood groups reported in the literature

Backbone	Allele	Nucleotide* changes	Amino acid* changes	Phenotypes	GenBank accession No. (when available)	Reference
A backbone	cis-AB01	467C>T; 803G>C	P156L; G268A	A_B2	AF134427-4428	Cho et al. [5]; Cho et al. [12]
	cis-AB01var	803G>C; 1,009A>G	G268A, R337G	A_Bx	JQ824867	Cai et al. [3]
	cis-AB04	467C>T; 796C>A	P156L; L266M	A_B	Not submitted	Yoon et al. [37]
	cis-AB08	467C>T; 724G>T; 803G>C	P156L; E242K; G268A	NA	JF304777	Liu et al. [38]
	cis-AB new	467C>T; 803G>C; 930G>A; 1,096G>A	P156L; G268A	A_B2	KR870035	Not published
B backbone	cis-AB02	297A>G; 526C>G; 657C>T; 703G>A; 803G>C	R176G; G235S; G268A	A_B, A1B1	AF062487	Mitsud et al. [39]
	cis-AB03	297A>G; 526C>G; 657C>T; 700C>T; 703G>A; 796C>A; 803G>C; 930G>A	R176G; P234S; G235S; L266M; G268A	A_B	AF408431	Roubinet et al. [40]
	cis-AB05	297A>G; 526C>G; 657C>T; 703G>A; 796C>A; 930G>A	R176G; G235S; L266M	A_B	Not submitted	Deng et al. [41]
	cis-AB06	297A>G; 657C>T; 703G>A; 796C>A; 803G>C; 930G>A	G235S; L266M; G268A	A_B	FJ851690	Zhu et al. [42]
	cis-AB07	297A>G; 526C>G; 657C>T; 703G>A; 796C>A; 797T>C; 803G>C; 930G>A	R176G; G235S; L266M; G268A	A_B	JX473237	Mitsud et al. [39]
	cis-AB09	297A>G; 526C>G; 657C>T; 703G>A; 796C>A; 803G>C; 930G>A	T99T; R176G; H219H; G235S; L266V; L310L	A_B with 1+ agglutination with A1 cells	KJ766004	Lee et al. [20]

*Changes in nucleotides and amino acids in the cis-AB01 allele are described according to the A101 allele; †The cis-AB09 allele arises from a de novo nucleotide substitution c.796A>G (p.M266V) in the B glycosyltransferase gene; ‡The c.796C>G on the A101 allele background is the same as c.796A>G on the B101 allele background.

Abbreviation: NA, not applicable.

of the serological characteristics, genetic basis and inheritance, laboratory investigation, and clinical importance of the cis-AB blood group.

SEROLOGICAL CHARACTERISTICS OF THE CIS-AB BLOOD GROUP

There exist various phenotypes of the cis-AB blood group globally, and these phenotypes are associated with various cis-AB alleles (Table 1). Among them, cis-AB01 is the most common allele. Yoshida et al. [9-11] first characterized a transferase enzyme with bifunctional activity (both A and B transferase activities) in the sera of individuals with the cis-AB01 allele. The cis-AB01 allele causes the A1B2 phenotype when co-inherited with the O allele, and more than seven different phenotypes when paired with A or B alleles have been reported [5].

Yamaguchi [6] reported three phenotypes of the cis-AB blood group in the Japanese population: A_B2, A1_B2, and A11_B3, which are derived from the cis-AB01/O, cis-AB01/B, and cis-AB01/A genotypes, respectively. In large-scale blood donor studies, Cho et al. [5, 12] reported that most Korean cis-AB donors exhibit not only the above three typical phenotypes but also a variety of other phenotypes ranging from A1_B2, A11_B2, A111_B3, and A1B to typical A. These different phenotypes from a single cis-AB01 allele are presumably due to allele competition (i.e., cis-AB01/A); the cis-AB mutant enzyme might not be able to produce its usual number of antigens due to competition for H-antigen with the co-inherited normal A transferase enzyme [5, 13, 14]. Four Korean cases with typical A phenotype without detectable B antigen expression on red blood cells (RBCs) in individuals with cis-AB01/A have been reported [12, 15-17]. Without careful family studies, these cases would have been typed as typical A. These different phenotypes from a single cis-AB01 allele are presumably due to allele competition (i.e., cis-AB01/A); the cis-AB mutant enzyme might not be able to produce its usual number of antigens due to competition for H-antigen with the co-inherited normal A transferase enzyme [5, 13, 14]. Four Korean cases with typical A phenotype without detectable B antigen expression on red blood cells (RBCs) in individuals with cis-AB01/A have been reported [12, 15-17]. Without careful family studies, these cases would have been typed as typical A. Phenotypes, frequencies, serological characteristics, and genotypes of cis-AB blood groups reported in Korea are summarized in Table 2.

GENETIC BASIS AND INHERITANCE OF THE CIS-AB BLOOD GROUP

Among reported cis-AB alleles, some cis-AB alleles (cis-AB01, cis-AB01var, and cis-AB02 to cis-AB09) are registered in the
Blood Group Antigen Gene Mutation Database [1, 18]. *cis*-AB01, 04, and 08 have an A allele background, whereas *cis*-AB02, *cis*-AB03, *cis*-AB05 to *cis*-AB07, and *cis*-AB09 have a B allele background. Yamamoto et al. [19] first identified structural changes in the *cis*-AB01 allele, using the A102 allele as a reference. The coding sequence of the *cis*-AB01 allele is identical to that of the A102 allele except for Gly268Ala (c.803G>C) in exon 7, whereas the *cis*-AB02 allele sequence is identical to that of the B102 allele except for Leu266Met (c.796A>G) (GenBank accession No. AF062487). The most recently discovered *cis*-AB09 arises from a *de novo* c.796A>G nucleotide substitution in the ABO* B101 allele [20]. The classification of *cis*-AB alleles according to the allele backbone, along with nucleotide and amino acid changes and reported phenotypes, is presented in Table 1.

The inheritance pattern of the *cis*-AB blood group appears to violate the typical Mendelian inheritance pattern. The *cis*-AB phenotype raises questions about an apparently paradoxical inheritance of the ABO blood group, such as cases of birth of an O or AB child from an AB father and O mother [21, 22]. However, in such cases, the AB type in the family is not a typical AB type, but rather the cis-A:B1 blood group in which the A and B characteristics are inherited from one parent. Therefore, the inheritance pattern looks paradoxical, whereas in fact, it exactly follows the general Mendelian inheritance of ABO blood groups. Based on analysis of some unexplained *cis*-AB cases, Yamaguchi et al. [6, 23] observed inheritance to follow a cis-regulated pattern, in contrast to regular trans-AB, and first coined the term *cis*-AB blood group. Representative Korean family trees illustrating the inheritance pattern are shown in Fig. 1. Among the several *cis*-AB alleles, *cis*-AB09 is of particular interest, as it was reported as a *de novo* mutation (c.796A>G) in a Korean family,
in which both the father and mother had blood group B [20].

It is of sociological interest that, in contrast to Western culture, individuals in Korea and Japan generally know their ABO blood type. In Korea, it is possible to know one’s ABO/RhD blood types from routine testing during regular health check-ups at school age (or for men, during military service). In this context, the cis-AB type can potentially lead to paternity issues (e.g., when an individual has O or AB [actually cis-AB] blood type and the father and mother are known to be O and AB [actually cis-AB], respectively). Further, this implies that cases of cis-AB can be detected in routine ABO typing of a newborn cord blood samples.

LABORATORY INVESTIGATION OF THE CIS-AB BLOOD GROUP

Owing to its serological characteristic, the cis-AB01 blood group is often encountered in pre-transfusion or donor screening. Samples from cis-AB01 subjects present forward or reverse ABO blood typing as ABO discrepancy; it may be commonly suspected when there is weak agglutination of RBCs with anti-B reagent in cell typing and weak agglutination with B cells in serum typing. Weak agglutination with B cells can be enhanced when the reaction is incubated at room temperature for 15 minutes. In contrast to cis-A1B3, the trans-A1B3 blood group originated from heterozygosity of A1 and B3 shows no agglutination with B cells in serum typing, despite prolonged incubation. In addition, a measurable amount of H antigen is suggestive of the cis-AB01 blood group [22]. The representative A1B3 phenotype can be detected by skilled laboratory personnel through several serological methods, such as plate and tube methods. Not all medical technologists can be expected to reach this level of expertise, and one study reported serious consequences after cis-AB was identified as typical A [24]. After the introduction of automated ABO grouping devices, one research group encountered multiple cases of misidentification of cis-AB samples as typical AB when using a device that applies the microplate method [25]. In addition to the confirmation of typical A1B3 phenotypes as cis-AB, other phenotypes of cis-AB blood are often missed during routine serological testing, and ABO genotyping is the sole method for confirmation. For example, a case of A1B1 phenotype with anti-A antibodies could not be initially suspected of cis-AB type, but was confirmed by ABO genotyping [26].

After the introduction of ABO genotyping in clinical blood banks, it has become a valuable tool complementary to serology for correctly determining the ABO blood groups of both patients and donors [2, 27]. Before the broad use of ABO gene testing, the cis-AB blood group was confirmed by serological investigations together with family study. However, family study is often impossible, and the introduction of ABO genotyping has thus resolved many issues in this regard [22].

Various genotyping methods can be employed to confirm cis-AB in cases of ABO discrepancy. Allele-specific (AS-)PCR, PCR-restriction fragment length polymorphism (RFLP), and/or direct sequencing of exons 6 and 7 of the ABO gene have been used for clinical purposes [27-29]. However, sequencing of the full

Table 3. Serological and molecular tests for detection of the cis-AB blood group

Method	Remark	Reference
Serology (cis-A1B3)	- Weak or delayed red cell reactivity to anti-B reagent	Chun et al. [25]; Kim et al. [34]
Plate (tile)	- Weak red cell reactivity to anti-B reagent (mixed field agglutination)	Chun et al. [25]
Tube	- Weak serum reactivity to B cells can be enhanced by incubation at room temperature for 15 minutes	Unpublished data
Microcolumn	- Medium-sized clumps of agglutinated cells in the upper half of the gel column, can be observed in cell typing (to anti-B)	Chun et al. [25]
Automated microplate	- Misidentification of cis-A1B3 samples as typical AB can be possible	Unpublished data
Molecular	- Can be only used for known cis-AB alleles	Fukumori et al. [29]
AS-PCR/PCR-RFLP	- For clinical purpose, sequencing of ABO gene exons (6, 7) are commonly used	Won et al. [28]; Won et al. [30]
Sequencing	- For research purpose, sequencing of the all of ABO gene coding region (exons 1–7) and regulatory regions is used	Unpublished data
Cloning/allele-separation and sequencing	- Required for novel cis-AB allele study	Lee et al. [20]
Next-generation sequencing	- Required for novel cis-AB allele study	Moller et al. [31]

Abbreviations: AS-PCR, allele specific-PCR; PCR-RFLP, PCR-restriction fragment length polymorphism.
coding region (exons 1–7), including regulatory regions of the gene, and cloning/allele-separation are necessary for research purposes (i.e., discovery of a novel cis-AB allele) [20, 30]. Next-generation sequencing has been applied to blood group genes, and it will also be useful for ABO subgroup genes, including cis-AB alleles [31]. The cis-AB blood group can be detected by several methods (Table 3).

CLINICAL IMPORTANCE OF THE CIS-AB BLOOD GROUP IN TRANSFUSION PRACTICE

Various approaches for transfusion for cis-AB patients are available. One is autologous blood transfusion, including preoperative autologous deposit [32], intraoperative salvage, and postoperative salvage [33, 34]. However, preoperative autologous deposit can be applied in few cases, such as when intraoperative bleeding is predicted and the patient’s preoperative condition is good [32]. In another approach, blood from a family member having the same blood type can be used for transfusion after irradiation to prevent transfusion-associated graft-versus-host disease. Oh et al. [34] reported safe transfusion of type O RBCs to cis-AB without adverse transfusion reaction. According to the Blood Transfusion Guideline 4th edition, in Korea, O RBCs (or A RBCs when anti-A is not detectable in the serum) and type AB plasma or platelets are recommended for patients with the cis-AB blood group [35].

Although most cis-AB subgroups can be accurately typed in the hospital blood bank, some cases may be misinterpreted as AB or A type [25, 26]. In a case of cis-A₂B₂, interpreted as typical A₁, transfusion of four units of type A RBCs and four units of type A fresh frozen plasma (FFP) caused delayed transfusion adverse effects, because the results of pre-transfusion cross-match had not been properly interpreted [24]. Although reaction between the B antigen of the cis-AB patient and anti-B antibodies from the A type FFP is theoretically possible, the authors could not draw a definitive conclusion on the cause of hemolysis [24].

Another group reported a case of transfusion of type A RBCs, FFP, and platelets to a 14-year-old boy with cis-A₂B₂ blood type. Reverse typing showed that his serum contained anti-B but no anti-A antibodies. The patient did not show adverse reactions, which can be explained by the weak B antigen on his RBCs without anti-A antibodies against the transfused A RBCs. The same patient had been transfused with typical AB blood at the age of 13 months without any adverse reaction, which can also be explained by the fact that he may have had no or low anti-A and anti-B antibodies in his serum against the transfused AB blood during this first transfusion [36].

Cis-AB is difficult to determine, as it presents as more than one phenotype. The various phenotypes make quick blood group determination difficult. Therefore, universal blood (O-type RBCs and AB-type FFP/platelets) is recommended, as it can be safely used for patients with the cis-AB blood group.

Authors’ Disclosures of Potential Conflicts of Interest

The authors have no conflicts of interest to declare.

REFERENCES

1. Blumenfeld OO and Patnaik SK. Allelic genes of blood group antigens: a source of human mutations and cSNPs documented in the Blood Group Antigen Gene Mutation Database. Hum Mutat 2004;23:8-16.
2. Olsson ML, Irshaid NM, Hosseini-Maal B, Hellberg A, Moulds MK, Sareneva H, et al. Genomic analysis of clinical samples with serologic ABO blood grouping discrepancies: identification of 15 novel A and B subgroup alleles. Blood 2001;98:1585-93.
3. Cai X, Jin S, Liu X, Fan L, Lu Q, Wang J, et al. Molecular genetic analysis of ABO blood group variations reveals 29 novel ABO subgroup alleles. Transfusion 2013;53:2910-6.
4. Ogasawara K, Yabe R, Uchikawa M, Saitou N, Bannai M, Nakata K, et al. Molecular genetic analysis of variant phenotypes of the ABO blood group system. Blood 1996;88:2732-7.
5. Cho D, Kim SH, Jeon MJ, Choi KL, Kee SJ, Shin MG, et al. The serological and genetic basis of the cis-AB blood group in Korea. Vox Sang 2004;87:41-3.
6. Yamaguchi H. A review of cis-AB blood. Jirui Idengaku Zasshi 1973;18:1-9.
7. Jin S, Cai X, Liu X, Wang J, Lu Q, Shen W, et al. Study on cis-AB and B (A) subgroups in Shanghai blood donors, China. Chin J Blood Transfus 2013;26:1198-201.
8. Yazer MH, Olsson ML, Palcic MM. The cis-AB blood group phenotype: fundamental lessons in glycobiology. Transfus Med Rev 2006;20:207-17.
9. Yoshida A. Genetic mechanism of blood group (ABO)-expression. Acta Biol Med Ger 1981;40:927-41.
10. Yoshida A, Yamaguchi H, Okubo Y. Genetic mechanism of cis-AB inheritance. II. Cases associated with structural mutation of blood group glycosyltransferase. Am J Hum Genet 1980;32:645-50.
11. Yoshida A, Yamaguchi H, Okubo Y. Genetic mechanism of cis-AB inheritance. I. A case associated with unequal chromosome crossing over. Am J Hum Genet 1980;32:332-8.
12. Cho D, Kee SJ, Shin JH, Suh SP, Ryang DW. Unusual phenotype of cis-AB. Vox Sang 2003;84:336-7.
13. Cho D, Kim SH, Ki CS, Choi KL, Cho YG, Song JW, et al. A novel B₄α allele (547 G>A) demonstrates differential expression depending on the co-inherited ABO allele. Vox Sang 2004:87:187-9.
14. Kim DW, Cho D, Yazer MH, Lee HJ, Kim KH, Shin MG, et al. A novel A subtype allele that demonstrates allelic competition. Ann Clin Lab Sci 2011;41:282-4.
15. Whang DH, Shin BM, Lee HS, Hur M, Han BY, Han KS. Unusual phe-
notype expression in a cis-AB trait: cis-AB child from a group A father and a group O mother. Korean J Blood Transfus 2000;11:169-75.
16. Kang SH, Lee YK, Park MJ, Shin DH, Cho HC, Lee KM, et al. A case of cis-AB without B antigen expression. Korean J Blood Transfus 2001;12:245-51.
17. Song EY, Jeon DS, Seo DH, Han KS. A case of cis-AB child from a group A father and a group O mother. J Clin Pathol Qual Control 2001;23:325-9.
18. Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT database of allelic variants of genes encoding human blood group antigens. Transfus Med Hemother 2014;41:346-51.
19. Yamamoto F, McNeill PD, Kominato Y, Yamamoto M, Hakomori S, Ishimoto S, et al. Molecular genetic analysis of the ABO blood group system: 2. cis-AB alleles. Vox Sang 1993;64:120-3.
20. Lee SY, Phan MT, Shin DJ, Shin MG, Park JT, Shin JW, et al. A novel cis-AB variant allele arising from a de novo nucleotide substitution c.796A>G (p.M266V) in the B glycosyltransferase gene. Transfus Med 2015;25:333-6.
21. Pacuszka T, Koscielak J, Seyfried H, Walewska I. Biochemical, serological and family studies in individuals with cis AB phenotypes. Vox Sang 1975;29:292-300.
22. Cho D, Yang SJ, Park MR, Suh SP, Jeon MJ, Seo DH, et al. Phenotype and genotype of cis-AB family Chonnam area. Korean J Blood Transfus 2002;13:127-34.
23. Yamaguchi H, Okubo Y, Tanaka M. "Cis-AB" bloods found in Japanese families. Jirui Idenzaku Zasshi 1970;15:198-215.
24. Woo CM, Lee HJ, Kwak H, Shin SW, Kwon JY, Kim HK, et al. Mismatched transfusion reaction in cis-AB: a case report. Korean J Anesthesiol 2006;51:632-7.
25. Chun S, Ryu MR, Cha SY, Seo JY, Cho D. ABO mistyping of cis-AB blood group by the automated microplate technique. Transfus Med Hemother 2018;45:5-10.
26. Park MS, Chun S, Lee CH, Cho D. Diverse phenotypes of cis-AB blood group and transfusion strategy. Korean J Blood Transfus 2016;27:304-6.
27. Cho D, Lee JS, Park JY, Jeon MJ, Song JW, Kim SH, et al. Resolution of ABO discrepancies by ABO genotyping. Korean J Lab Med 2006;26:107-13.
28. Won EJ, Cho D, Heo MS, Park HR, Shin MG, Ryu DW. Six years’ experience performing ABO genotyping by PCR-direct sequencing. Korean J Blood Transfus 2012;23:236-47.