ROBUST A POSTERIORI ERROR ESTIMATES FOR
STABILIZED FINITE ELEMENT METHODS

L. TOBISKA AND R. VERFÜRTH

Abstract. There is a wide range of stabilized finite element methods for
stationary and non-stationary convection-diffusion equations such as stream-
line diffusion methods, local projection schemes, subgrid-scale techniques, and
continuous interior penalty methods to name only a few. We show that all
these schemes give rise to the same robust a posteriori error estimates, i.e.
the multiplicative constants in the upper and lower bounds for the error are
independent of the size of the convection or reaction relative to the diffusion.
Thus, the same error indicator can be used modulo higher order terms caused
by data approximation.

1. Introduction

There is a wide range of stabilized finite element methods for stationary and
non-stationary convection-diffusion problems such as streamline diffusion methods
(cf. eg. [22, 23, 29, 36, 37]), local projection schemes (cf. eg. [7, 9, 10, 11, 28, 32
33, 34, 35, 38]), subgrid-scale techniques (cf. eg. [1, 2, 20, 24, 25, 26, 27, 41]), and
continuous interior penalty methods (cf. eg. [6, 12, 13, 14, 15, 16, 18, 21, 40]) to
name only a few. In this article we show that all these schemes give rise to the
same robust a posteriori error estimates. Here, as usual, robustness means that
the upper and lower bounds for the error are uniform with respect to the size of
convection or reaction terms relative to the diffusion. Our analysis is based on the
general approach of [39] which gives the generic robust equivalence of error and
residual and provides robust global upper and local lower bounds for the residual
up to a consistency error in the upper bound. The latter depends on the particular
stabilization method. Consequently, our main task consists in deriving explicit and
computable upper bounds for the consistency errors of the various schemes. This is
the subject of Lemmas 2.3 – 2.6 below, where the result for the streamline diffusion
method, Lemma 2.3, is a reformulation of known results (cf. [39 §4.4, 6.2] and the
references given there). The main results of this article are Theorems 2.8 and 3.6
below which provide robust residual a posteriori error estimates for stationary and
non-stationary convection-diffusion equations, respectively.

There are also other proposals in the literature for estimating the error with
respect to an a-priori given mesh dependent norm (cf. eg. [4, 30]) or even control
certain functionals of the solution like in the dual weighted residual approach (cf. eg.
[8]). Note, however, that these methods often use assumptions which are difficult
to establish in practice. For a posteriori error control for other classes of problems
we finally refer to [5, 17, 69].
2. Stationary Convection-Diffusion Equations

2.1. Variational Problem. In this section, we consider the stationary convection-diffusion equation

\[-\varepsilon \Delta u + a \cdot \nabla u + bu = f \quad \text{in } \Omega \]

\[u = 0 \quad \text{on } \Gamma_D \]

\[\varepsilon \frac{\partial u}{\partial n} = g \quad \text{on } \Gamma_N \]

in a polygonal domain \( \Omega \) in \( \mathbb{R}^d, d \geq 2 \), with Lipschitz boundary \( \Gamma \) consisting of two disjoint components \( \Gamma_D \) and \( \Gamma_N \). We assume that the data satisfy the following conditions:

(S1) \( 0 < \varepsilon \ll 1 \),

(S2) \( a \in W^{1,\infty}(\Omega)^d, b \in L^\infty(\Omega) \),

(S3) there are two constants \( \beta \geq 0 \) and \( c_0 \geq 0 \), which do not depend on \( \varepsilon \), such that

\[-\frac{1}{2} \text{div} a + b \geq \beta \text{ and } \|b\|_\infty \leq c_0 \beta,\]

(S4) the Dirichlet boundary \( \Gamma_D \) has positive \((d-1)\)-dimensional Hausdorff measure and includes the inflow boundary, i.e. \( \{x \in \Gamma : a(x) \cdot n(x) < 0\} \subset \Gamma_D \).

Assumption (S3) allows us to handle simultaneously the case of a non-vanishing reaction term and the one of absent reaction. If \( b = 0 \) we set \( \beta = c_b = 0 \). Assumption (S1) of course means that we are interested in the convection-dominated regime.

For the variational formulation of problem (2.1) we denote by \( H^1_D(\Omega) \) the standard Sobolev space of all functions in \( L^2(\Omega) \) whose weak first order derivatives in \( L^2(\Omega) \) and vanishing on \( \Gamma_D \) in the sense of traces and define a bilinear form \( B \) on \( H^1_D(\Omega) \times H^1_D(\Omega) \) and a linear functional \( \ell \) on \( H^1_D(\Omega) \) by

\[B(u, v) = \int_{\Omega} \{\varepsilon \nabla u \cdot \nabla v + a \cdot \nabla uv + buv\}, \quad \langle \ell, v \rangle = \int_{\Omega} fv + \int_{\Gamma_N} gv.\]

The variational problem then consists in finding \( u \in H^1_D(\Omega) \) such that

\[B(u, v) = \langle \ell, v \rangle \quad (2.3)\]

holds for all \( v \in H^1_D(\Omega) \).

The well-posedness of problem (2.3) and the robustness of the a posteriori error estimates hinges on a proper choice of norms. More specifically, we denote by

\[\|v\| = \left\{ \varepsilon \|\nabla v\|^2 + \beta |v|^2 \right\}^{\frac{1}{2}}\]

the energy norm associated with symmetric part of \( B \) and by

\[\|\varphi\|_* = \sup_{v \in H^1_D(\Omega) \setminus \{0\}} \frac{\langle \varphi, v \rangle}{\|v\|},\]

the corresponding dual norm on \( H^{-1}(\Omega) = (H^1_D(\Omega))^* \). Here, \( \|\cdot\|_\omega \) is the standard \( L^2 \)-norm on any measurable subset \( \omega \) of \( \Omega \) and \( \|\cdot\| = \|\cdot\|_\Omega \). With this choice of norms we have for all \( v, w \in H^1_D(\Omega) \) [39, Prop. 4.17]

\[B(v, v) \geq \|v\|^2,\]

\[B(v, w) \leq \max \{c_v, 1\} \left\{ \|v\| + \|a \cdot \nabla v\|_* \right\} \|w\|\]

and

\[\inf_{v \in H^1_D(\Omega) \setminus \{0\}} \sup_{w \in H^1_D(\Omega) \setminus \{0\}} \frac{B(v, w)}{\left\{ \|v\| + \|a \cdot \nabla v\|_* \right\} \|w\|} \geq \frac{1}{2 + \max \{c_v, 1\}}.\]

This in particular implies that problem (2.3) admits for every right-hand side \( \ell \in H^{-1}(\Omega) \) a unique solution \( u \in H^1_D(\Omega) \) and that

\[c_v \|\ell\|_* \leq \|u\| + \|a \cdot \nabla u\|_* \leq c_v \|\ell\|_* \quad (2.4)\]
with constants $c_ε$ and $ε^2$ only depending on $c_β$ and independent of $ε$ and $β$.

2.2. Discretization. For the discretization of problem (2.1), we denote by $T$ a partition of $Ω$ which satisfies the following conditions.

- The closure of $Ω$ is the union of all elements in $T$.
- The Dirichlet boundary $Γ_D$ is the union of $(d - 1)$-dimensional faces of elements in $T$.
- Every element has at least one vertex in $Ω ∪ Γ_N$.
- Every element in $T$ is either a simplex or a parallelepiped, i.e. it is the image of the $d$-dimensional reference simplex $ˆK_d = \{ x ∈ R^d : x_1 ≥ 0, \ldots, x_d ≥ 0, x_1 + \ldots + x_d ≤ 1 \}$ or of the $d$-dimensional reference cube $ˆK_d = [0, 1]^d$ under an affine mapping (affine-equivalence).
- Any two elements in $T$ are either disjoint or share a complete lower dimensional face of their boundaries (admissibility).
- For any element $K$, the ratio of its diameter $h_K$ to the diameter $ρ_K$ of the largest ball inscribed into $K$ is bounded independently of $K$ (shape-regularity).

As a measure for the shape-regularity we set as usual

$$C_T = \max_{K ∈ T} \frac{h_K}{ρ_K} \quad (2.5)$$

The set of all $(d - 1)$-dimensional faces of elements in $T$ is denoted by $E$. An additional subscript $Ω, Γ_N, or K$ to $E$ indicates that only those faces are considered that are contained in the corresponding set. The union of all faces is called the skeleton of $T$ and denoted by $Σ$.

As usual, we associate with every face $E ∈ E$ a unit vector $n_E$ which is orthogonal to $E$ and which points to the outside of $Ω$ if $E$ is a face on the boundary $Γ$. Finally, $J_E(·)$ denotes the jump across $E$ in direction $n_E$. Note, that $J_E(·)$ depends on the orientation of $n_E$ but that expressions of the form $J_E(n_E·∇v)$ are independent thereof.

For every multi-index $α ∈ N^d$, we set for abbreviation

$$|α|_1 = α_1 + \ldots + α_d, \quad |α|_∞ = \max \{ α_i : 1 ≤ i ≤ d \}, \quad x^α = x_1^{α_1} · \ldots · x_d^{α_d}.$$

With every integer $k$ we then associate the standard spaces $P_k(ˆK_d)$ and $Q_k(ˆK_d)$ of polynomials by

$$P_k(ˆK_d) = \text{span} \{ x^α : |α|_1 ≤ k \} \quad \text{for the reference simplex},$$

$$Q_k(ˆK_d) = \text{span} \{ x^α : |α|_∞ ≤ k \} \quad \text{for the reference cube}$$

and set for every element $K$ in $T$ and for $S ∈ \{ P, Q \}$

$$S_k(K) = \{ ϕ ∘ F_K^{-1} : ϕ ∈ S_k(ˆK_d) \},$$

where $F_K$ is an affine diffeomorphism from $ˆK_d$ onto $K$. Using this notation, we define finite element spaces by

$$S^{k,-1}(T) = \{ ϕ : Ω → R : ϕ|_K ∈ S_k(K) \quad \text{for all } K ∈ T \},$$

$$S^{k,0}(T) = S^{k,-1}(T) ∩ C(Ω),$$

$$S_D^{k,0}(T) = S^{k,0}(T) ∩ H^1_D(Ω) = \{ ϕ ∈ S^{k,0}(T) : ϕ = 0 \quad \text{on } Γ_D \}.$$

The number $k$ may be 0 for the first space, but must be at least 1 for the other spaces. Notice in particular that $P^{k,-1}(T)$ and $P^{k,0}(T)$ consist of piecewise polynomials of total degree at most $k$, that $Q^{k,-1}(T)$ and $Q^{k,0}(T)$ consist of piecewise polynomials of maximal degree at most $k$, and that $P^{k,-1}(T) ⊂ Q^{k,-1}(T)$ and $P^{k,0}(T) ⊂ Q^{k,0}(T)$. 

STABILIZED FINITE ELEMENT METHODS 3
Beside finite element spaces on the partition $T$ we consider spaces $S^{k,-1}(M)$, $S \in \{P,Q\}$ associated with a macro-partition $M$ subordinate to $T$. Note that for mapped reference cubes $M \in \mathcal{M}$ we also consider discontinuous spaces $P^{k,-1}(M)$. Moreover, we in addition assume that the partition $M$ either equals $T$ or is a coarsening of $T$ such that the elements of $T$ and $M$ are of comparable size, i.e. $\max_{M \in \mathcal{M}} \max_{K \in T, K \subset M} \frac{h_M}{h_K}$ is of moderate size independently of $\varepsilon$ and $\beta$.

Our discrete solution space is $V(T)$ with $S^{1,0}_D(T) \subset V(T) \subset S^{1,0}_D(T)$, $l \geq k$. The discretization of problem (2.1) then consists in finding $u_T \in V(T)$ such that

$$B(u_T, v_T) + S_T(u_T, v_T) = \langle f, v_T \rangle$$

holds for all $v_T \in V(T)$. Here, the term $S_T$ specifies the particular stabilization. It is supposed to be linear in its second argument and affine in its first argument. Note that $S_T$ may contain contributions of the data $f$ and $g$. Of course, the choice $S_T = 0$ is also possible and corresponds to a standard finite element method without stabilization. In the following subsections we consider in some more detail the stabilized schemes that are at the focus of this article. We always assume that the discrete problem (2.6) admits a unique solution $u_T$. For the schemes below this is proved in the references given below by establishing the coercivity of the bilinear form $v,w \mapsto B(v,w) + S_T(v,w) - S_T(0,w)$ with respect to a suitable mesh-dependent norm.

2.2.1. Streamline diffusion method. This residual based stabilization method was introduced in [29] and analyzed starting with [30] under different aspects in a large number of articles, for an overview see eg. [37]. Only one partition $\mathcal{M} = T$ of $\Omega$ is considered. The stabilizing term has the form

$$S_T(u_T, v_T) = \sum_{K \in T} \vartheta_K \int_K \{ -\varepsilon \Delta u_T + a \cdot \nabla u_T + bu_T - f \} a \cdot \nabla v_T$$

with

$$\vartheta_K \|a\|_{\infty,K} \leq c_S h_K \quad \text{for all } K \in T.$$ (2.7)

2.2.2. Local projection scheme. This stabilization method has been first introduced for equal order interpolations of the Stokes problem in [31], extended to the transport problem in [10], and analyzed for the Oseen problem in [11][34][35]. There are different versions on the market [7][28][32][33][38], here we consider the one-level approach ($T = M$) and the two-level approach ($T$ a subdivision of $M$) with two types of stabilizing terms, controlling the fluctuations of the derivatives in streamline direction

$$S_T(u_T, v_T) = \sum_{M \in \mathcal{M}} \vartheta_M \int_M \kappa_M (\bar{a}_M \cdot \nabla u_T) \kappa_M (\bar{a}_M \cdot \nabla v_T)$$

with

$$\vartheta_M \|a\|_{\infty,M} \leq c_S h_M \quad \text{for all } M \in \mathcal{M}$$ (2.8)

or the fluctuations of the full gradient

$$S_T(u_T, v_T) = \sum_{M \in \mathcal{M}} \vartheta_M \int_M \kappa_M (\nabla u_T) \kappa_M (\nabla v_T)$$

with

$$\vartheta_M \leq c_S \|a\|_{\infty,M} h_M \quad \text{for all } M \in \mathcal{M}.$$ (2.9)

Here, we used the notation $I - \kappa_M$ for the $L^2$-projection onto an appropriate discontinuous projection space $D(M)$ living on the partition $M$ and $\bar{a}_M$ for a piecewise constant approximation of $a$ on $M$. The formulas for the upper bounds of $\vartheta_M$ have been discussed in detail in [31]. In [31] it was shown that a local inf-sup
condition between ansatz and projection space plays an essential role in the error analysis. In the following we give some examples, for which this inf-sup condition is satisfied.

We start with the two-level approach for which the partition $\mathcal{T}$ into $d$-simplices is generated from the partition $\mathcal{M}$ into $d$-simplices by connecting the barycenter of each $M \in \mathcal{M}$ with its vertices. Then, the pairs $V(\mathcal{T}) = P_{D}^{r,0}(\mathcal{T})$, $D(\mathcal{M}) = P_{r}^{-1,-1}(\mathcal{M})$ satisfy the inf-sup condition needed [34, Lemma 3.1]. Now let the partition $\mathcal{T}$ into parallelepipeds be generated from the partition $\mathcal{M}$ into parallelepipeds by subdividing the corresponding reference cube into $2^d$ congruent subcubes. Then, the pairs $V(\mathcal{T}) = Q_{D}^{r,0}(\mathcal{T})$, $D(\mathcal{M}) = Q_{r}^{-1,-1}(\mathcal{M})$ satisfy the inf-sup condition [34, Lemma 3.2]. Consequently, we could also use the pairs $V(\mathcal{T}) = Q_{D}^{r,0}(\mathcal{T})$, $D(\mathcal{M}) = P_{r}^{-1,-1}(\mathcal{M})$ with a smaller projection space.

Next, for the one-level approach in which $\mathcal{M} = \mathcal{T}$ we introduce scaled bubble functions $b_{K} \in P_{d+1}(K) \cap H_{0}^{1}(K)$ for a partition $\mathcal{T}$ into $d$-simplices $K \in \mathcal{T}$ and $b_{K} \in Q_{2}(K) \cap H_{0}^{1}(K)$ for a partition $\mathcal{T}$ into parallelepipeds $K \in \mathcal{T}$. For $S \in \{P,Q\}$ we define the spaces

$$S_{B}^{r}(\mathcal{T}) = \{\varphi : \Omega \to \mathbb{R} : \varphi|_{K} = b_{K}\varphi, \varphi \in S_{k}(K) \text{ for all } K \in \mathcal{T}\}.$$

Then, the pairs $V(\mathcal{T}) = P_{D}^{r,0}(\mathcal{T}) + P_{B}^{r,-1}(\mathcal{T})$, $D(\mathcal{M}) = P_{r}^{-1,-1}(\mathcal{T})$ on simplicial partitions $\mathcal{T}$ and $V(\mathcal{T}) = Q_{D}^{r,0}(\mathcal{T}) + Q_{B}^{r,-1}(\mathcal{T})$, $D(\mathcal{M}) = Q_{r}^{-1,-1}(\mathcal{T})$ on parallelepipedal partitions $\mathcal{T}$, respectively, satisfy the inf-sup condition [34, Lemma 4.1 and 4.6]. Note that on parallelepipedal partitions also the pairs $V(\mathcal{T}) = Q_{D}^{r,0}(\mathcal{T}) + P_{B}^{r,-1}(\mathcal{T})$, $D(\mathcal{M}) = P_{r}^{-1,-1}(\mathcal{T})$ with the less enriched ansatz space satisfy the inf-sup condition [34, Lemma 4.2] needed for the local projection stabilization.

2.2.3. Subgrid scale approach. This approach, also called subgrid viscosity method, has been introduced in [25, 26], for an overview see eg. [20, 37]. It is based on a scale separation of the solution space $V(\mathcal{T})$ into a space of resolvable scales $X(\mathcal{T})$ and a space of unresolvable scales $Y(\mathcal{T})$ with $V(\mathcal{T}) = X(\mathcal{T}) \oplus Y(\mathcal{T})$. Associated with the scale separation is a projection operator $\Pi_{\mathcal{T}} : V(\mathcal{T}) \to Y(\mathcal{T})$ with $X(\mathcal{T}) = \ker(\Pi_{\mathcal{T}})$. As in the local projection scheme there are two types of stabilizing terms

$$S_{\mathcal{T}}(u_{\mathcal{T}}, v_{\mathcal{T}}) = \sum_{K \in \mathcal{T}} \psi_{K} \int_{K} (\bar{a}_{\mathcal{T}} \cdot \nabla \Pi_{\mathcal{T}}(u_{\mathcal{T}})) \cdot (\bar{a}_{\mathcal{T}} \cdot \nabla \Pi_{\mathcal{T}}(v_{\mathcal{T}})),$$

$$S_{\mathcal{T}}(u_{\mathcal{T}}, v_{\mathcal{T}}) = \sum_{K \in \mathcal{T}} \psi_{K} \int_{K} \nabla \Pi_{\mathcal{T}}(u_{\mathcal{T}}) \cdot \nabla \Pi_{\mathcal{T}}(v_{\mathcal{T}})$$

with the corresponding conditions (2.8) and (2.9), resp. for the stabilization parameters.

A typical example for spaces of resolvable and unresolvable scales on triangular partitions are $X(\mathcal{T}) = P_{D}^{r,0}(\mathcal{T})$ and $Y(\mathcal{T}) = P_{B}^{r,-1}(\mathcal{T})$, $r = 1, 2$. One can design also subgrid scale schemes in a two-level context by setting $X(\mathcal{M}) = P_{D}^{r,0}(\mathcal{M})$ and $V(\mathcal{T}) = X(\mathcal{M}) \oplus Y(\mathcal{T}) = P_{D}^{r,0}(\mathcal{T})$, $r = 1, 2$, cf. [20, Section 5.5].

2.2.4. Continuous interior penalty method. The idea of using a penalizing term of the form

$$S_{\mathcal{T}}(u_{\mathcal{T}}, v_{\mathcal{T}}) = \sum_{E \in \mathcal{E}_{\Omega}} \psi_{E} \int_{E} \| \mathbf{a} \cdot \nabla u_{\mathcal{T}} \|_{E} \mathbf{a} \cdot \nabla v_{\mathcal{T}}$$

with

$$\psi_{E} \leq c_{S} h_{E}^{2}$$

for all $E \in \mathcal{E}_{\Omega}$ (2.10)

goes back to [19] and has been extended to different type of problems in [6, 12, 13, 14, 15, 16, 18, 21, 40].
2.3. A Posteriori Error Estimates. Denote by $u \in H^1_D(\Omega)$ and $u_\ell \in V(\mathcal{T})$ the unique solutions of problems (2.3) and (2.6), respectively. Then the error $u - u_\ell$ solves the variational problem (2.3) with $\ell$ replaced by the residual $R$ which, for every $v \in H^1_D(\Omega)$, is defined by

$$\langle R, v \rangle = \langle \ell, v \rangle - B(u_\ell, v).$$

Hence, thanks to (2.4), we have the following equivalence of error and residual.

**Lemma 2.1** (Equivalence of error and residual). The primal norm of the error and the dual norm of the residual are equivalent, i.e.,

$$c_1 \|R\|_* \leq \|u - u_\ell\| + \|[a \cdot \nabla (u - u_\ell)]\|_* \leq c^2 \|R\|_*$$

uniformly with respect to $\varepsilon$ and $\beta$.

Integration by parts element-wise shows that the residual admits the $L^2$-representation

$$\langle R, v \rangle = \int_\Omega rv + \int_\mathcal{E} jv$$

with

$$r|_K = f + \varepsilon \Delta u_\ell - a \cdot \nabla u_\ell - bu_\ell \quad \text{for all } K \in \mathcal{T},$$

$$j|_E = \begin{cases} -\langle \mathcal{E}_E \mathbf{n}_E \cdot \nabla u_\ell \rangle & \text{if } E \text{ is an interior face}, \\ g - \varepsilon \mathbf{n}_E \cdot \nabla u_\ell & \text{if } E \text{ is a face on } \Gamma_N, \\ 0 & \text{if } E \text{ is a face on } \Gamma_D. \end{cases}$$

Due to the stabilization term in the discrete problem (2.6), the residual $R$ does not satisfy the Galerkin orthogonality $S^1_D(\mathcal{T}) \subset \text{ker } R$ unless $S_T = 0$. Instead, we have for all $v_\ell \in S^1_D(\mathcal{T})$

$$\langle R, v_\ell \rangle = S_T(u_\ell, v_\ell).$$

To control this consistency error, denote by $I_M : H^1_D(\Omega) \to S^1_D(\mathcal{M})$ any quasi-interpolation operator (cf. eg. [39 (3.22)]) which satisfies, for all elements $M \in \mathcal{M}$ and all faces $F$ thereof, the local error estimates (cf. eg. [39 Prop. 3.33])

$$\|v - I_M v\|_M \leq c_1 \|
abla v\|_{\tilde{\omega}_M} \quad \|v - I_M v\|_M \leq c_2 h_M \|
abla v\|_{\tilde{\omega}_M},$$

$$\|\nabla (v - I_M v)\|_M \leq c_3 \|
abla v\|_{\tilde{\omega}_M} \quad \|v - I_M v\|_F \leq c_4 h_F \|
abla v\|_{\tilde{\omega}_E}$$

(2.11)

where $\tilde{\omega}_M$ and $\tilde{\omega}_E$ denote the union of all elements in $\mathcal{M}$ sharing at least a point with $M$ and $F$, respectively. The adjoint operator of $I_M$ is denoted by $I_M^*$ and is, for all $\varphi \in H^{-1}(\Omega)$ and all $v \in H^1_D(\Omega)$, defined by

$$\langle I_M^* \varphi, v \rangle = \langle \varphi, I_M v \rangle.$$

With this notation, the above properties and [39 Thm. 3.57, 3.59 and §3.8.4] yield the following upper and lower bounds for the dual norm of the residual.

**Lemma 2.2** (Bounds for the residual). Define for every element $K \in \mathcal{T}$ the residual a posteriori error indicator $\eta_K$ by

$$\eta_K = \begin{cases} h_K^2 \|f_T + \varepsilon \Delta u_\ell - a_T \cdot \nabla u_\ell - b_T u_\ell\|^2_K \\
+ \frac{1}{2} \sum_{E \in \mathcal{E}_{K,N}} \varepsilon^{-\frac{1}{2}} h_E \|\mathcal{E}_E (\mathbf{n}_E \cdot \nabla u_\ell)\|_E^2 \\
+ \sum_{E \in \mathcal{E}_{K,N}} \varepsilon^{-\frac{1}{2}} h_E \|g_E - \varepsilon \mathbf{n}_E \cdot \nabla u_\ell\|_E^2 \end{cases}$$

(2.12)
and the data error indicator $\theta_K$ by

$$
\theta_K = \left\{ \begin{array}{l}
\frac{2}{h_K^2} \| f - f_T + (a_T - a) \cdot \nabla u_T + (b_T - b)u_T \|_K^2 \\
+ \sum_{E \in \mathcal{E}_{K,T}} h_E \| g - g_E \|_E^2 \end{array} \right\}^{\frac{1}{2}},
$$

(2.13)

where

$$
h_\omega = \left\{ \begin{array}{l}
\min \left\{ \varepsilon^{-\frac{1}{2}} \text{diam}(\omega), \beta^{-\frac{1}{2}} \right\} & \text{if } \beta > 0, \\
\varepsilon^{-\frac{1}{2}} \text{diam}(\omega) & \text{if } \beta = 0
\end{array} \right\}
$$

and where $f_T \in S^{k,-1}(\mathcal{T})$, $a_T \in S^{k,-1}(\mathcal{T})^d$, $b_T \in S^{k,-1}(\mathcal{T})$, and $g_E \in S^{k,-1}(\mathcal{E})$ are approximations of the data $f$, $a$, $b$, and $g$, respectively. Then the dual norm of the residual can be bounded from above by

$$
\| R \|_* \leq c^* \left( \sum_{K \in \mathcal{T}} \left[ \eta_K^2 + \theta_K^2 \right] \right)^{\frac{1}{2}} + c^* \| I_*^\mathcal{M} R \|_*.
$$

and from below by

$$
\left\{ \sum_{K \in \mathcal{T}} \eta_K^2 \right\}^{\frac{1}{2}} \leq c_* \left[ \| R \|_* + \left\{ \sum_{K \in \mathcal{T}} \theta_K^2 \right\}^{\frac{1}{2}} \right].
$$

All constants are independent of $\varepsilon$ and $\beta$; the constant $c^*$ only depends on the quantity $c_0$, the constants $c^*$ and $c_*$ depend on the shape-parameter $C_T$ (2.20) of $\mathcal{T}$, the constant $c_*$ in addition depends on the polynomial degrees $k$ and $l$.

The above estimates are not yet practical since they still contain the consistency error

$$
\| I_*^\mathcal{M} R \|_* = \sup_{v \in H_0^1(\Omega) \setminus \{0\}} \frac{\langle R, I_*^\mathcal{M} v \rangle}{\| v \|} = \sup_{v \in H_0^1(\Omega) \setminus \{0\}} \frac{\langle S_T(u_T, I_*^\mathcal{M} v) \rangle}{\| v \|}.
$$

In the next lemmas we will bound this quantity in terms of the error indicator and data errors for the stabilization schemes of the previous section.

**Lemma 2.3** (Consistency error of the streamline diffusion method). The consistency error of the streamline diffusion method is bounded by

$$
\| I_*^\mathcal{T} R \|_* \leq c \left\{ \sum_{K \in \mathcal{T}} \left[ \eta_K^2 + \theta_K^2 \right] \right\}^{\frac{1}{2}}.
$$

The constant $c$ only depends on the constants $c_S$ and $c_1, \ldots, c_4$ of equations (2.7) and (2.11) with $\mathcal{M} = \mathcal{T}$, the constant $c_I$ of equation (2.14) below, and on the shape-parameter $C_T$ (2.20) of $\mathcal{T}$.

**Proof.** For every $v \in H_0^1(\Omega)$ and every $K \in \mathcal{T}$, the inverse estimate

$$
\| \nabla w_T \|_K \leq c_I h_K^{-1} \| w_T \|_{\omega_K} \quad \forall w_T \in S_0^1(T)
$$

(2.14)

and the interpolation error estimates (2.11) imply

$$
\| a \cdot \nabla (I_*^\mathcal{T} v) \|_K \leq \| a \|_{\infty;K} \min \left\{ (1 + c_3)\varepsilon^{-\frac{1}{2}}, c_I (1 + c_1) h_K^{-1} \beta^{-\frac{1}{2}} \right\} \| v \|_{\omega_K}
$$

$$
\leq \max \{1 + c_3, c_I (1 + c_1)\} h_K \| a \|_{\infty,K} \| v \|_{\omega_K}.
$$

(2.15)

This estimate, assumption (2.7), and the Cauchy-Schwarz inequality for integrals and sums prove the lemma. □
Lemma 2.4 (Consistency error of the local projection scheme). Consider one of the variants of the local projection stabilization described in Subsection 2.2.2. In case of a partition $\mathcal{M}$ of $\Omega$ into parallelepipeds, we assume that the order $r$ of the ansatz space satisfies $r \geq d$. Then the consistency error of the local projection scheme vanishes
\[
\|I_\mathcal{M}^* R\|_* = 0.
\]

Proof. First we consider partitions $\mathcal{M}$ into $d$-simplices (one- and two-level approach). Since $I_{\mathcal{M}}^* v \in P^{d,0}_D(\mathcal{M})$, we have $\nabla(I_{\mathcal{M}}^* v) \in P^{d-1,1}_D(\mathcal{M})$. Yet, $P^{d-1,1}_D(\mathcal{M})$ is a subspace of the projection space $P^{r-1,1}_D(\mathcal{M})$ which entails
\[
\kappa_{\mathcal{M}}(\nabla(I_{\mathcal{M}}^* v)) = 0,
\]
\[
\kappa_{\mathcal{M}}(a_{\mathcal{M}} \cdot \nabla(I_{\mathcal{M}}^* v)) = a_{\mathcal{M}} \cdot \kappa_{\mathcal{M}}(\nabla(I_{\mathcal{M}}^* v)) = 0.
\]
(2.16)

For partitions $\mathcal{M}$ into parallelepipeds, we have $I_{\mathcal{M}}^* v \in Q^{d,0}_D(\mathcal{M})$ and $\nabla(I_{\mathcal{M}}^* v) \in P^{d-1,0}_D(\mathcal{M})$. Since $P^{d-1,0}_D(\mathcal{M}) \subset P^{r-1,1}_D(\mathcal{M}) \subset Q^{r-1,0}_D(\mathcal{M})$ holds true for $r \geq d$, $\nabla(I_{\mathcal{M}}^* v)$ belongs to the kernel of $\kappa_{\mathcal{M}}$ and we again obtain (2.16).

\[
\square
\]

Lemma 2.5 (Consistency error of the subgrid scale approach). Assume that in the subgrid scale approaches described in Subsection 2.2.3 the space of resolvable scales satisfies $P^{1,0}_D(T) \subset X(T)$ or $Q^{1,0}_D(T) \subset X(T)$ in the one-level version and $P^{1,0}_D(\mathcal{M}) \subset X(\mathcal{M})$ or $Q^{1,0}_D(\mathcal{M}) \subset X(\mathcal{M})$ in the two-level version, respectively. Then the consistency error vanishes
\[
\|I_\mathcal{M}^* R\|_* = 0.
\]

Proof. Under these assumptions we have $I_{\mathcal{M}}^* v \in \ker \Pi_{\mathcal{M}}$.

\[
\square
\]

Lemma 2.6 (Consistency error of the continuous interior penalty method). Assume that $k = 1$, $V(T) = P^{1,0}_D$, and that the approximations $b_T$ and $f_T$ are contained in $V(T)$. For every element $K$ in $T$ set
\[
\Theta_{\text{cip},K} = h_K \|a - a_T\|_K + h_K h_K \|\nabla a\|_{\infty,K} \|\nabla u_T\|_K.
\]
(2.17)

Then the consistency error of the continuous interior penalty method is bounded by
\[
\|I_T^* R\|_* \leq c \left\{ \sum_{K \in T} \left[ h_K^2 + \Theta_{\text{cip},K}^2 \right] \right\}^{\frac{1}{2}}.
\]

The constant $c$ only depends on the constants $c_S$, $c_1$, $c_2$, $c_3$, $c_4$, $c_5$, and $c_{\text{tr}}$ of equations (2.10), (2.11), (2.14), (2.15), and (2.19), respectively and on the shape parameter $C_T$ (2.3) of $T$.

Proof. Since $k = 1$, we have $\Delta u_T = 0$ element-wise. Since $b_T$ and $f_T$ are supposed to be continuous, this implies for every interior face $E$ in $\mathcal{E}_\Omega$
\[
\|\eta_{\text{int}} E \hat{a} \cdot \nabla u_T\|_E = \|\eta_{\text{int}} E (-\varepsilon \Delta u_T + a_T \cdot \nabla u_T + b_T u_T - f_T) + \hat{a} \cdot (a - a_T) \cdot \nabla u_T\|_E.
\]

As usual, denote by $\omega_E = K_1 \cup K_2$ the union of the two elements sharing an interior face $E$. Then, the above identity and the inverse estimate
\[
\|w_T\|_E \leq c h_E^{-\frac{1}{2}} \|w_T\|_{\omega_E} \quad \forall w_T \in S^{k-1,1}(T), E \in \mathcal{E}_\Omega
\]
(2.18)
yield for every interior face $E \in \mathcal{E}_\Omega$
\[
\|J_E(a \cdot \nabla (I_T v))\|_E \leq \|a\|_{\infty,\omega_E} \|J_E(\nabla (I_T v))\|_E \leq c h_E^{-\frac{1}{2}} \|a\|_{\infty,\omega_E} \|\nabla (I_T v)\|_{\omega_E}
\]
\[
\leq c h_E^{-\frac{1}{2}} \|a\|_{\infty,\omega_E} \|v\|_{\omega_E}
\]
and
\[ \| J_E(a \cdot \nabla u_T) \|_E \leq \| J_E(-\varepsilon \Delta u_T + a_T \cdot \nabla u_T + bt u_T - f_T) \|_E \]
\[ + \| J_E((a - a_T) \cdot \nabla u_T) \|_E \]
\[ \leq \hat{c}_I h_E^{-\frac{1}{2}} \| -\varepsilon \Delta u_T + a_T \cdot \nabla u_T + bt u_T - f_T \|_{\omega_E} \]
\[ + \| J_E((a - a_T) \cdot \nabla u_T) \|_E. \]

To bound the second term on the right-hand side of the last inequality, we observe that [35], Prop. 3.5, Rem. 3.6 yields the trace inequality
\[ \| |^{\hat{\mathcal{E}}_E} \|_E \leq c_{\mathcal{T}} \left( h_E^{-\frac{1}{2}} \| \varphi \|_{\omega_E} + h_E^{-\frac{1}{2}} \| \nabla \varphi \|_{\omega_E} \right) \] (2.19)
for every function \( \varphi \in L^2(\omega_E) \) with \( \varphi|_{K_i} \in H^1(K_i), \ i = 1, 2 \). Taking again into account that \( k = 1 \) this implies
\[ \| J_E((a - a_T) \cdot \nabla u_T) \|_E \leq h_E^{-\frac{1}{2}} \| (a - a_T) \cdot \nabla u_T \|_{\omega_E} + h_E^{-\frac{1}{2}} \| \nabla a \|_{\infty, \omega_E} \| \nabla u_T \|_{\omega_E}. \]

Combined with the definition of the stabilization term \( S_T \) and of the data error \( \Theta_{cip,K} \), assumption (2.10), and the Cauchy-Schwarz inequality for integrals and sums, this proves the bound for \( \| I_T^2 - R \|_* \).

**Remark 2.7.** Replacing the stabilizing term by
\[ S_T(u_T, v_T) = \sum_{E \in \mathcal{E}_0} \partial_E \int_E J_E(a_T \cdot \nabla u_T) J_E(a_T \cdot \nabla v_T) \]
the data error \( \Theta_{cip,K} \) in Lemma 2.6 can be omitted.

Lemmas 2.1–2.0 prove the following a posteriori error estimates.

**Theorem 2.8 (Robust a posteriori error estimates).** The error between the solutions \( u \) and \( u_T \) of problems (2.3) and (2.6) can be bounded from above by
\[ \| u - u_T \| + \| a \cdot \nabla (u - u_T) \| \leq c_{\mathcal{T}} \left\{ \sum_{K \in \mathcal{T}} \left[ \eta_K^2 + \theta_K^2 + c_{cip} \Theta_{cip,K}^2 \right] \right\}^{\frac{1}{2}} \]
and from below by
\[ \left\{ \sum_{K \in \mathcal{T}} \eta_K^2 \right\}^{\frac{1}{2}} \leq c_{\mathcal{T}} \left( \| u - u_T \| + \| a \cdot \nabla (u - u_T) \|_* + \sum_{K \in \mathcal{T}} \theta_K^2 \right)^{\frac{1}{2}}. \]

Here, the assumptions for each scheme are the same as for the corresponding Lemmas 2.3–2.6, the error indicator \( \eta_K \) and the data errors \( \theta_K \) and \( \Theta_{cip,K} \) are defined in equations (2.12–2.17), respectively; the parameter \( c_{cip} \) equals 1 for the continuous interior penalty scheme and vanishes for the other discretizations. The a priori error estimates are robust in the sense that the constants \( c_{\mathcal{T}} \) and \( c_{\mathcal{T}} \) are independent of the parameters \( \varepsilon \) and \( \beta \).

**3. Non-Stationary Convection-Diffusion Equations**

3.1. **Variational Problem.** In this section, we extend the results of the previous section to the non-stationary convection-diffusion equation
\[ \partial_t u - \varepsilon \Delta u + a \cdot \nabla u + bu = f \quad \text{in } \Omega \times (0, T] \]
\[ u = 0 \quad \text{on } \Gamma_D \times (0, T] \]
\[ \varepsilon \frac{\partial u}{\partial n} = g \quad \text{on } \Gamma_N \times (0, T] \]
\[ u(\cdot, 0) = u_0 \quad \text{in } \Omega \] (3.1)
in a bounded space-time cylinder with a polygonal cross-section \( \Omega \subset \mathbb{R}^d \), \( d \geq 2 \), having a Lipschitz boundary \( \Gamma \) consisting of two disjoint parts \( \Gamma_D \) and \( \Gamma_N \). The final time \( T \) is arbitrary, but kept fixed in what follows. We assume that the data satisfy the following conditions similar to assumptions (S1)–(S4):

(T1) \( 0 < \varepsilon \ll 1 \),
(T2) \( f \in C(0, T; L^2(\Omega)) \), \( g \in C(0, T; L^2(\Gamma_N)) \), \( a \in C(0, T; W^{1, \infty}(\Omega)^d) \), \( b \in C(0, T; L^\infty(\Omega)) \), \( u_0 \in L^2(\Omega) \),
(T3) there are two constants \( \beta \geq 0 \) and \( c_\varepsilon \geq 0 \), which do not depend on \( \varepsilon \), such that \(-\frac{1}{2} \text{div} a + b \geq \beta \) in \( \Omega \times (0, T] \) and \( \|b\|_\infty \leq c_\varepsilon \beta \) in \( (0, T] \),
(T4) the Dirichlet boundary \( \Gamma_D \) has positive \((d - 1)\)-dimensional Hausdorff measure and includes the inflow boundary \( \bigcup_{0 < t < T} \{ x \in \Gamma : a(x, t) \cdot n(x) < 0 \} \).

The first assumption of course means that we are interested in the convection-dominated regime. At the expense of more technical arguments and additional data oscillations, the second assumption can be replaced by slightly weaker conditions concerning the temporal regularity. The third assumption allows us to simultaneously handle the case of a non-vanishing reaction term and the one of absent reaction. If \( b = 0 \) we again set \( \beta = c_\varepsilon = 0 \).

For the variational formulation of problem (3.1), we denote, for every pair \( a < b \) of real numbers, by \( W(a, b) \) the space of all functions \( v \in L^2(a, b; H^1_0(\Omega)) \) having their weak temporal derivative \( \partial_t v \) in \( L^2(a, b; H^{-1}(\Omega)) \) and introduce the norms

\[
\|v\|_{L^\infty(a, b; L^2)} = \text{ess.sup}_{a < t < b} \|v(\cdot, t)\|,
\]

\[
\|v\|_{L^2(a, b; H^1)} = \left\{ \int_a^b \|v(\cdot, t)\|^2 \, dt \right\}^{\frac{1}{2}},
\]

\[
\|v\|_{L^2(a, b; H^{-1})} = \left\{ \int_a^b \|v(\cdot, t)\|^2 \, dt \right\}^{\frac{1}{2}}.
\]

As in [39] §6.2, the variational formulation of problem (3.1) then consists in finding \( u \in W(0, T) \) such that \( u(\cdot, 0) = u_0 \) in \( L^2(\Omega) \) and such that, for almost every \( t \in (0, T) \) and all \( v \in H^1_0(\Omega) \),

\[
\langle \partial_t u, v \rangle + B(u, v) = \langle \ell, v \rangle.
\]

Here the bilinear form \( B \) and the linear functional \( \ell \) are as in (2.2).

3.2. Discretization. For the space-time discretization of problem (3.1), we consider partitions \( \mathcal{I} = \{ [t_{n-1}, t_n] : 1 \leq n \leq N_T \} \) of the time-interval \([0, T]\) into sub-intervals satisfying \( 0 = t_0 < \ldots < t_{N_T} = T \). For every \( n \) with \( 1 \leq n \leq N_T \), we denote by \( I_n = [t_{n-1}, t_n] \) the \( n \)-th sub-interval and by \( \tau_n = t_n - t_{n-1} \) its length. With every intermediate time \( t_n, 0 \leq n \leq N_T \), we associate an admissible, affine-equivalent, shape-regular partition \( T_n \) of \( \Omega \) and a corresponding finite element space \( V(T_n) \). In addition to the conditions of Section 2 the partitions \( \mathcal{I} \) and \( \mathcal{T}_n \) and the spaces \( V(T_n) \) must satisfy the following assumptions.

- For every \( n \) with \( 1 \leq n \leq N_T \) there is an affine-equivalent, admissible, and shape-regular partition \( T_n \) such that it is a refinement of both \( T_0 \) and \( T_{n-1} \) and such that

\[
C_{T_n, T_0} = \max_{1 \leq n \leq N_T} \max_{K \in T_n} \max_{K' \in T_n, K \subset K'} \frac{h_{K'}}{h_K}
\]

is of moderate size independently of \( \varepsilon \) and \( \beta \) (transition condition).

- Each \( V(T_n) \) consists of continuous functions which are piecewise polynomials, the degrees being at least one and being bounded uniformly with respect to all partitions \( T_n \) and \( \mathcal{I} \) (degree condition).
The transition condition is due to the simultaneous presence of finite element functions defined on different grids. Usually the partition $\mathcal{T}_n$ is obtained from $\mathcal{T}_{n-1}$ by a combination of refinement and of coarsening. In this case the transition condition only restricts the coarsening: it should not be too abrupt nor too strong.

The lower bound on the polynomial degrees is needed for the construction of suitable quasi-interpolation operators. The upper bound ensures that the constants in inverse estimates are uniformly bounded.

Notice that we do not impose any shape-condition of the form $\max \tau_n \leq c \min \tau_n$.

We fix a parameter $\theta \in [0,1]$ and set

$$f^{\theta \alpha} = \theta f(\cdot,t_n) + (1-\theta)f(\cdot,t_{n-1}),$$
$$g^{\theta \alpha} = \theta g(\cdot,t_n) + (1-\theta)g(\cdot,t_{n-1}),$$
$$a^{\theta \alpha} = \theta a(\cdot,t_n) + (1-\theta)a(\cdot,t_{n-1}),$$
$$b^{\theta \alpha} = \theta b(\cdot,t_n) + (1-\theta)b(\cdot,t_{n-1})$$

and

$$B^{\theta \alpha}(u,v) = \int_\Omega \{\varepsilon \nabla u \cdot \nabla v + a^{\theta \alpha} \cdot \nabla uv + b^{\theta \alpha} uv\},$$
$$\langle f^{\theta \alpha}, v \rangle = \int f^{\theta \alpha} v + \int_{\Omega} g^{\theta \alpha} v.$$
Lemma 3.1 (Equivalence of error and residual). The error between the solutions \( u \) and \( u_T \) of problems (5.2) and (5.3) can be bounded from below by

\[
\|R(u_T)\|_{L^2(0,T;H^{-1})} \leq \epsilon^* \left\{ \|u - u_T\|^{2}_{L^2(0,T;L^2)} + \|u - u_T\|^{2}_{L^2(0,T;H^1)} \right. \\
\left. + \|\partial_t(u - u_T) + a \cdot \nabla(u - u_T)\|^{2}_{L^2(0,T;H^{-1})} \right\}^{\frac{1}{2}}
\]

and, for every \( n \in \{1, \ldots, N_T\} \), from above by

\[
\left\{ \|u - u_T\|^{2}_{L^\infty(0,t_n;L^2)} + \|u - u_T\|^{2}_{L^2(0,t_n;H^1)} \right. \\
\left. + \|\partial_t(u - u_T) + a \cdot \nabla(u - u_T)\|^{2}_{L^2(0,t_n;H^{-1})} \right\}^{\frac{1}{2}} \\
\leq c_* \left\{ \|u_0 - \pi_0 u_0\|^2 + \|R(u_T)\|^{2}_{L^2(0,t_n;H^{-1})} \right\}^{\frac{1}{2}}.
\]

The constants \( \epsilon^* \) and \( c_* \) only depend on \( c_0 \) and are independent of \( \epsilon \) and \( \beta \).

Next, we rewrite the residual in the form

\[
R(u_T) = R_T(u_T) + R_h(u_T) + R_D(u_T).
\]

Here, the temporal residual \( R_T(u_T) \in L^2(0,T;H^{-1}) \), the spatial residual \( R_h(u_T) \in L^2(0,T;H^{-1}) \), and the temporal data residual \( R_D(u_T) \in L^2(0,T;H^{-1}) \) are defined on \( \{t_{n-1}, t_n\} \) for all \( n \in \{1, \ldots, N_T\} \) and all \( v \in H^1_D(\Omega) \) by

\[
\langle R_T(u_T), v \rangle = B^n\theta(T^n\theta - u_T, v), \\
\langle R_h(u_T), v \rangle = \langle \ell^n\theta, v \rangle - \langle \partial_t u_T, v \rangle - B^n\theta(U^n\theta, v), \\
\langle R_D(u_T), v \rangle = \langle \ell, v \rangle - \langle \ell^n\theta, v \rangle - B(u_T, v) + B^n\theta(u_T, v).
\]

Since \( R_D(u_T) \) describes temporal oscillations of the known data, the task of deriving upper and lower bounds for the \( L^2(t_{n-1}, t_n;H^{-1}) \)-norms of \( R(u_T) \) reduces to the estimation of the corresponding norms of \( R_T(u_T) + R_h(u_T) \). The following lemma shows that this can be achieved by estimating the contributions of \( R_T(u_T) \) and \( R_h(u_T) \) separately [39, Lemma 6.15].

Lemma 3.2 (Decomposition of the residual). For every \( n \in \{1, \ldots, N_T\} \) we have

\[
\sqrt{\frac{5}{14}} \left( 1 - \frac{\sqrt{3}}{2} \right) \left\{ \|R_T(u_T)\|^2_{L^2(t_{n-1}, t_n;H^{-1})} + \|R_h(u_T)\|^2_{L^2(t_{n-1}, t_n;H^{-1})} \right\}^{\frac{1}{2}} \\
\leq \|R_T(u_T) + R_h(u_T)\|_{L^2(t_{n-1}, t_n;H^{-1})} \\
\leq \|R_T(u_T)\|_{L^2(t_{n-1}, t_n;H^{-1})} + \|R_h(u_T)\|_{L^2(t_{n-1}, t_n;H^{-1})}.
\]

Irrespective of the particular stabilization scheme, the temporal residual \( R_T(u_T) \) equals \( (\theta - \frac{t_{n-1} - t_{n-2}}{\tau_n}) \) on the \( n \)-th subinterval \( [t_{n-1}, t_n] \), where \( r_n \in H^{-1}(\Omega) \) is for all \( v \in H^1_D(\Omega) \) defined by

\[
\langle r_n, v \rangle = B^n\theta(u^n\tau - u^{n-1}_{\tau_n}, v).
\]

An elementary calculation [39, Lemma 6.17] therefore yields the following upper and lower bounds.

Lemma 3.3 (Estimates for the temporal residual). For every \( n \in \{1, \ldots, N_T\} \), the temporal residual can be bounded from above and from below by

\[
c_2 \sqrt{\tau_n} \left\{ \|\theta^n\tau - \theta^{n-1}_{\tau_n}\|^2 + \|\nabla(\theta^n\tau - \theta^{n-1}_{\tau_n})\|^2 \right\} \\
\leq \|R_T(u_T)\|_{L^2(t_{n-1}, t_n;H^{-1})} \\
\leq c^2 \sqrt{\tau_n} \left\{ \|\theta^n\tau - \theta^{n-1}_{\tau_n}\|^2 + \|\nabla(\theta^n\tau - \theta^{n-1}_{\tau_n})\|^2 \right\}.
\]
The constants \( c_t \) and \( c^s \) only depend on \( c_0 \) and are independent of \( \varepsilon \) and \( \beta \).

In contrast to \( \left\| u^n_{\tau_n} - u^{n-1}_{\tau_n} \right\| \) the term \( \left\| \mathbf{a}^{\alpha^0} \cdot \nabla (u^n_{\tau_n} - u^{n-1}_{\tau_n}) \right\| \) is not suited as an error indicator since it involves a dual norm. Standard approaches bound this term by inverse estimates, if need be, combined with integration by parts. This, however, leads to estimates which incorporate a factor \( \varepsilon^{-\frac{1}{2}} \) and which are not robust. The idea which leads to computable robust indicators is as follows [39, Lemma 6.18]:

Due to the definition of the dual norm, the quantities \( \left\| \mathbf{a}^{\alpha^0} \cdot \nabla (u^n_{\tau_n} - u^{n-1}_{\tau_n}) \right\| \) equal the energy-norm of the weak solutions of suitable stationary reaction-diffusion equations. These solutions are approximated by suitable finite element functions. The error of the approximations is estimated by robust error indicators for reaction-diffusion equations.

**Lemma 3.4** (Estimates for the convective derivative). For every \( n \in \{1, \ldots, N_T\} \) denote by \( \tilde{u}^n_{\tau_n} \in S_D(\hat{T}_n) \) the unique solution of the discrete reaction-diffusion problem

\[
\varepsilon \int_{\Omega} \nabla \tilde{u}^n_{\tau_n} \cdot \nabla \nu_{\tau_n} + \beta \int_{\Omega} \tilde{u}^n_{\tau_n} \nu_{\tau_n} = \int_{\Omega} \mathbf{a}^{\alpha^0} \cdot \nabla (u^n_{\tau_n} - u^{n-1}_{\tau_n}) \nu_{\tau_n}
\]

for all \( \nu_{\tau_n} \in S_D^{1,0}(\hat{T}_n) \). Define the error indicator \( \tilde{\eta}^n_{\tau_n} \) by

\[
\tilde{\eta}^n_{\tau_n} = \left\{ \sum_{K \in \hat{T}_n} h_K^2 \left\| \mathbf{a}^{\alpha^0} \cdot \nabla (u^n_{\tau_n} - u^{n-1}_{\tau_n}) + \varepsilon \Delta \tilde{u}^n_{\tau_n} - \beta \tilde{u}^n_{\tau_n} \right\|^2_K + \sum_{E \in \partial_{n \omega} \hat{E}_n \cap \hat{N}_n} \varepsilon^{-\frac{1}{2}} h_E \left\| J_E (\mathbf{u}^{\mathbf{a}^{\alpha^0}} \cdot \nabla \tilde{u}^n_{\tau_n}) \right\|^2_F \right\}^{\frac{1}{2}}.
\]

Then there are two constants \( c_t \) and \( c^s \) which only depend on the shape-parameter \( C_{\hat{T}_n} \) of \( \hat{T}_n \) such that the following estimates are valid

\[
c_t \left\{ \left\| \tilde{u}^n_{\tau_n} \right\| + \tilde{\eta}^n_{\tau_n} \right\} \leq \left\| \mathbf{a}^{\alpha^0} \cdot \nabla (u^n_{\tau_n} - u^{n-1}_{\tau_n}) \right\| \leq c^s \left\{ \left\| \tilde{u}^n_{\tau_n} \right\| + \tilde{\eta}^n_{\tau_n} \right\} .
\]

A comparison of equations (3.3) and (3.5) reveals that, on each interval \( (t_{n-1}, t_n] \) separately, the spatial residual \( R_h(u^n) \) is the residual of a stationary problem (2.2) with suitably modified functions \( a, b, f, \) and \( g \). Hence, the results of Section 2 yield the following upper and lower bounds for the dual norm of the spatial residual.

**Lemma 3.5** (Estimates for the spatial residual). For every \( n \in \{1, \ldots, N_T\} \) define a spatial error indicator by

\[
\eta^n_{\tau_n} = \left\{ \sum_{K \in \hat{T}_n} h_K^2 \left\| f^n_{\tau_n} - \frac{u^n_{\tau_n} - u^{n-1}_{\tau_n}}{\tau_n} + \varepsilon \Delta U^{\alpha^0} - \mathbf{a}^{\alpha^0} \cdot \nabla U^{\alpha^0} - b^{\alpha^0}_n U^{\alpha^0} \right\|^2_K + \frac{1}{2} \sum_{E \in \partial_{n \omega} \hat{E}_n \cap \hat{N}_n} \varepsilon^{-\frac{1}{2}} h_E \left\| J_E (\varepsilon \mathbf{n} \cdot \nabla U^{\alpha^0}) \right\|^2_F \right\}^{\frac{1}{2}} + \sum_{E \in \partial_{n \omega} \hat{E}_n \cap \hat{N}_n} \varepsilon^{-\frac{1}{2}} h_E \left\| g^n_{\tau_n} - \varepsilon \mathbf{n} \cdot \nabla U^{\alpha^0} \right\|^2_F \right\}^{\frac{1}{2}}.
\]
and spatial data errors by

\[ \Theta_{c_{ip}, T_n}^n = \left\{ \sum_{K \in T_n} h_K^2 \left\| (a^n - a^n_{T_n}) \cdot \nabla U^n + (b^n_{T_n} - b^n) U^n \right\|_{K}^2 + h_K^2 h_K^2 \left\| \nabla a^n \right\|_{\infty; K} \left\| \nabla U^n \right\|_{K}^2 \right\}^{\frac{1}{2}}, \]

Here, the assumptions for each stabilized scheme are the same as for the corresponding Lemmas, and spatial data errors by

\[ \Theta_{c_{ip}, T_n}^n = \left\{ \sum_{K \in T_n} h_K^2 \left\| (a^n - a^n_{T_n}) \cdot \nabla U^n + (b^n_{T_n} - b^n) U^n \right\|_{K}^2 + h_K^2 h_K^2 \left\| \nabla a^n \right\|_{\infty; K} \left\| \nabla U^n \right\|_{K}^2 \right\}^{\frac{1}{2}}. \]

Here, \( U^n = \theta u_{T_n}^n + (1 - \theta) u_{T_n}^{n-1} \) is as in (3.1), \( f^n, g^n, a^n, \) and \( b^n \) are as in (3.3), and \( f_{T_n}^n, a_{T_n}^n, b_{T_n}^n, \) and \( g_{T_n}^n \) are approximations of \( f^n, a^n, b^n, \) and \( g^n \) on \( T_n \) and \( E_n, \) respectively. Then, on every interval \( (t_{n-1}, t_n], \) the dual norm of the spatial residual can be bounded from above by

\[ \left\| R_h(u_T) \right\|_* \leq c^* \left\{ \left( \eta_{T_n}^n \right)^2 + \left( \theta_{T_n}^n \right)^2 + \sigma_{c_{ip}} \left( \Theta_{c_{ip}, T_n}^n \right)^2 \right\}^{\frac{1}{2}}, \]

and from below by

\[ \eta_{T_n}^n \leq c_0 \left[ \left\| R_h(u_T) \right\|_* + \theta_{T_n}^n \right]. \]

Here, the assumptions for each stabilized scheme are the same as for the corresponding Lemmas, and the parameter \( \sigma_{c_{ip}} \) equals 1 for the continuous interior penalty scheme and vanishes for the other discretizations. The above error estimates are robust in the sense that the constants \( c^* \) and \( c_0 \) are independent of the parameters \( \varepsilon \) and \( R. \)

Lemmas 3.1–3.5 yield the following a posteriori error estimates for the non-stationary problem.

**Theorem 3.6 (Robust a posteriori error estimates).** The error between the solution \( u \) of problem (3.2) and the solution \( u_T \) of problem (3.3) is bounded from above by

\[ \left\{ \left\| u - u_T \right\|_{L^\infty(0,T;L^2)}^2 + \left\| u - u_T \right\|_{L^2(0,T;H^1)}^2 \right\}^{\frac{1}{2}} \]

\[ + \left\| \partial_t (u - u_T) + \mathbf{a} \cdot \nabla (u - u_T) \right\|_{L^2(0,T;H^{-1})}^{\frac{1}{2}} \]

\[ \leq c^* \left( \left\| u_0 - \pi_0 u_0 \right\|_2^2 \right) \]

\[ + \sum_{n=1}^{N_2} \tau_n \left[ \left( \eta_{T_n}^n \right)^2 + \left\| u_{T_n}^n - u_{T_n}^{n-1} \right\|_2^2 + \left( \theta_{T_n}^n \right)^2 + \left\| \theta_{T_n}^n \right\|_2^2 \right] \]

\[ + \sum_{n=1}^{N_2} \tau_n \left[ \left( \theta_{T_n}^n \right)^2 + \sigma_{c_{ip}} \left( \Theta_{c_{ip}, T_n}^n \right)^2 \right] \]

\[ + \left\| f - f^n + (a - a^n) \cdot \nabla u_T - (b - b^n) u_T \right\|_{L^2(0,T;H^{-1})} \]

\[ + \sum_{n=1}^{N_2} \left\| g - g_{T_n}^n \right\|_{L^2(t_{n-1}, t_n; H^{-\frac{1}{2}}(T_N))}^{\frac{1}{2}} \]

\[ \left\| f \right\|_{L^2(0,T;H^{-1})} + \left\| g \right\|_{L^2(0,T;H^{-\frac{1}{2}}(T_N))} \]
and on each interval \((t_{n-1}, t_n]\), \(1 \leq n \leq N_T\), from below by

\[
\begin{align*}
\tau_n^\frac{1}{2} \left\{ (\eta_T^n)^2 + \left\| u_T^n - u_T^{n-1} \right\|^2 + (\tilde{\eta}_T^n)^2 + \left\| \tilde{u}_T^n \right\|^2 \right\}^\frac{1}{2} \\
\leq c_* \left\{ \| u - u_T \|_{L^\infty(t_{n-1}, t_n; L^2)}^2 + \| u - u_T \|_{L^2(t_{n-1}, t_n; H^1)}^2 \\
+ \| \partial_t (u - u_T) + a \cdot \nabla (u - u_T) \|_{L^2(t_{n-1}, t_n; H^{-1})}^2 \\
+ \tau_n (\theta_T^n)^2 \\
+ \| f - f^n - (b - b^n - a^n \cdot \nabla u_T) \cdot \nabla u_T - (b - b^n) u_T \|_{L^2(t_{n-1}, t_n; H^{-1})}^2 \\
+ \| g - g_T^n \|_{L^2(t_{n-1}, t_n; H^{-\frac{1}{2}}(\Gamma_N))} \right\}^\frac{1}{2}.
\end{align*}
\]

Here, the assumptions for each scheme are the same as for the corresponding Lemmas 2.3, 2.4, the functions \(u_T^n\) and the indicators \(\eta_T^n\) are defined in Lemma 3.4, and the quantities \(\eta_T^n, \theta_T^n\) and \(\Theta_T^n, \beta_T^n, \pi, \gamma\) are as in Lemma 3.5. The parameter \(\sigma_{\text{ip}}\) equals 1 for the continuous interior penalty scheme and vanishes for the other discretizations. The above error estimates are robust in the sense that the constants \(c^*\) and \(c_*\) are independent of the final time \(T\), the viscosity \(\varepsilon\) and the parameter \(\beta\).

\begin{thebibliography}{9}

\bibitem{Ach09} B. Achchab, A. Benjouad, M. El Fatini, A. Souissi, and G. Warnecke, Robust a posteriori error estimates for subgrid stabilization of non-stationary convection dominated diffusive transport, Appl. Math. Comput. \textbf{218} (2012), no. 9, 5276–5291.

\bibitem{Ach10} B. Achchab, M. El Fatini, and A. Souissi, A posteriori error analysis for multiscale stabilization of convection-diffusion-reaction problems: unsteady state, Int. J. Math. Stat. \textbf{4} (2009), no. S09, 3–11.

\bibitem{Ahn13} N. Ahmed, G. Matthies, and L. Tobiska, Stabilized finite element discretization applied to an operator-splitting method of population balance equations, Appl. Numer. Math. \textbf{70} (2013), 58–79.

\bibitem{Ain13} M. Ainsworth, A. Allendes, G.R. Barrenechea, and R. Rankin, Fully computable a posteriori error bounds for stabilised fem approximations of convection-reaction-diffusion problems in three dimensions, Int. J. Numer. Meth. Fluids \textbf{73} (2013), no. 9, 765–790.

\bibitem{Ain14} M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, John Wiley & Sons, New York, 2000.

\bibitem{Ala07} L. El Alaoui, A. Ern, and E. Burman, A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection-diffusion equations, IMA J. Numer. Anal. \textbf{27} (2007), no. 1, 151–171.

\bibitem{Arn13} R. Araya, H. Poza, and F. Valentín, An adaptive residual local projection finite element method for the Navier-Stokes equations, report, Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, February 2013.

\bibitem{Ban03} W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003.

\bibitem{BeC01} R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo \textbf{38} (2001), no. 4, 173–199.

\bibitem{BeC04} , A two-level stabilization scheme for the Navier-Stokes equations, Numerical mathematics and advanced applications (Berlin) (M. Feistauer, V. Dolejší, P. Knobloch, and K. Najzar, eds.), Springer-Verlag, 2004, pp. 125–130.

\bibitem{Bra06} M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. \textbf{43} (2006), no. 6, 2544–2566.

\bibitem{Bra07} M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. \textbf{196} (2007), no. 4-6, 853–866.

\bibitem{Bur05} E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. \textbf{43} (2005), no. 5, 2012–2033.

\bibitem{Bur07} , Interior penalty variational multiscale method for the incompressible navier-stokes equations: monitoring artificial dissipation, Comput. Methods Appl. Mech. Engrg. \textbf{196} (2007), 4045–4058.

\end{thebibliography}
[15] E. Burman and A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comp. 76 (2007), no. 259, 1119–1140.

[16] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1437–1453.

[17] C. Carstensen, M. Eigel, R. H. W. Hoppe, and C. Löbbard, A review of unified a posteriori finite element error control, Numer. Math. Theor. Meth. Appl. 5 (2012), no. 4, 509–558.

[18] J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975), Springer, Berlin, 1976, pp. 207–216. Lecture Notes in Phys., Vol. 58.

[19] A. Ern and J. L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004.

[20] A. Ern, Weighting the edge stabilization, SIAM J. Numer. Anal. 51 (2013), no. 3, 1655–1677.

[21] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods I: Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg. 95 (1992), 253–271.

[22] L. P. Franca, V. John, G. Matthies, and L. Tobiska, An inf-sup stable and residual-free bubble element for the Oseen equations, SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407.

[23] K. J. Galvin, New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 1-4, 242–250.

[24] J. L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293–1316.

[25] J. L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators,IMA J. Numer. Anal. 21 (2001), no. 1, 165–197.

[26] J. L. Guermond, A. Marra, and L. Quartapelle, Subgrid stabilized projection method for 3d unsteady flows at high Reynolds number, Comput. Methods Appl. Mech. Engrg. 195 (2006), 58–5876.

[27] L. He and L. Tobiska, The two-level local projection stabilization as an enriched one-level approach, Adv. Comput. Math. 36 (2012), no. 4, 503–523.

[28] T. J. R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), AMD, vol. 34, Amer. Soc. Mech. Engrs. (ASME), New York, 1979, pp. 19–35.

[29] V. John and J. Novo, A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations, Comput. Methods Appl. Mech. Engrg. 255 (2013), 289–305.

[30] P. Knobloch, On the application of local projection methods to convection-diffusion-reaction problems, BAIL 2008—boundary and interior layers, Lect. Notes Comput. Sci. Eng., vol. 69, Springer, Berlin, 2009, pp. 183–194.

[31] P. Knobloch and L. Tobiska, On the stability of finite element discretizations of convection diffusion reaction equations, IMA J. Numer. Anal. 31 (2011), 147–164.

[32] P. Knobloch, Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem., Numer. Methods in Partial Differential Equations 29 (2013), 206–225.

[33] G. Matthies, P. Skrzypacz, and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742.

[34] G. Matthies and L. Tobiska, Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem,IMA J. Numer. Anal. (2014), doi:10.1093/imanum/drt064.

[35] U. Nävert, A finite element method for convection-diffusion problems, Ph.D. thesis, Chalmers University of Technology, Göteborg, 1982.

[36] H.-G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, second ed., Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 2008, Convection-diffusion-reaction and flow problems.

[37] L. Tobiska and C. Winkel, The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study, Int. J. Numer. Model. 7 (2010), no. 3, 520–534.

[38] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, Oxford, 2013.

[39] N. Yan and Z. Zhou, A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation, J. Comput. Appl. Math. 223 (2009), no. 1, 198–217.
[41] Y. Zhang and Y. He, Assessment of subgrid-scale models for the incompressible Navier-Stokes equations, J. Comput. Appl. Math. 234 (2010), no. 2, 593–604.

Otto von Guericke Universität Magdeburg, Fakultät für Mathematik, Institut für Analysis und Numerik, Universitätsplatz 2, D-39106 Magdeburg, Germany

Ruhr-Universität Bochum, Fakultät für Mathematik, D-44780 Bochum, Germany

E-mail address: tobiska@ovgu.de
E-mail address: ruediger.verfuerth@rub.de