The determination of the dynamic loading of the bearing structures of the main types of freight wagons with the actual dimensions under the main operating conditions is carried out. The inertial coefficients of the bearing structures of the wagons are determined by constructing their spatial models in the SolidWorks software package. Two cases of loading of the bearing structures of the wagons — in the vertical and longitudinal planes — have been taken into account. The studies were carried out in a flat coordinate system. When modeling the vertical loading of the bearing structures of wagons, it was taken into account that they move in the empty state with butt unevenness of the elastic- viscous track. The bearing structures of the wagons are supported by bogies of models 18-100. The solution of differential equations of motion was carried out by the Runge-Kutta method in the MathCad software package. When determining the longitudinal loading of the bearing structures of wagons, the calculation was made for the case of a shunting collision of wagons or a “jerk” (tank wagon). The accelerations acting on the bearing structures of the wagons are determined.

The research results will help to determine the possibility of extending the operation of the bearing structures of freight wagons that have exhausted their standard service life.

It has been established that the indicators of the dynamics of the load-carrying structures of freight wagons with the actual dimensions of the structural elements are within the permissible limits. So, for a gondola wagon, the vertical acceleration of the bearing structure is 4.87 m/s², for a covered wagon — 5.5 m/s², for a flat wagon — 5.8 m/s², for a tank wagon — 4.25 m/s², for a hopper wagon — 4.5 m/s². The longitudinal acceleration acting on the bearing structure of a gondola wagon is 38.25 m/s², for a covered wagon — 38.6 m/s², for a flat wagon — 38.9 m/s², for a tank wagon — 27.4 m/s², for a hopper wagon — 38.5 m/s². This makes it possible to develop a conceptual framework for restoring the effective functioning of outdated freight wagons.

The conducted research will be useful developments for clarifying the existing methods for extending the service life of the bearing structures of freight wagons that have exhausted their standard resource.

Keywords: freight wagon, bearing structure, dynamic loading, modeling of loading, dynamic indicators, service life, railway transport, transport mechanics.

References

1. Afanas’ev, A. E. (2008). Razrabotka metodiki raschetno eksperimental’noy obosnovaniya preslenniya sroka sluzhby poluvagonov. Izvestiya Peterburgskogo universiteta putey soobscheniya, 2, 125–135. Available at: https://cyberleninka.ru/article/n/razrabotka-metodiki-raschetno-experimental’noy-obosnovaniya-preslenniya-sroka-sluzhby-poluvagonov/viewer
2. Shushmarkchenko, V. O., Fedorov, V. V., Stryznha, A. M., Fedosov-Nikonorov, D. V. (2020). On the issue of technical diagnostics of tank wagons for transportation of dangerous goods. Railroad rolling stock, 20, 89–95. Available at: https://ukradrivcom.ua/wp-content/uploads/2020/06/89-95.pdf
3. Anofriev, V. H., Reidenemeier, O. H., Kalashnyk, V. A., Kulieshov, V. P. (2016). To the issue of extending the service life of cars for transportation of pellets. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 3 (63), 148–160. doi: https://doi.org/10.15802/sgt2016/74749
4. Okorokov, A., Fomin, O., Lovska, A., Vernigora, R., Zhuravel, I., Fomin, V. (2018). Research into a possibility to prolong the time of operation of universal open top wagon bodies that have exhausted their standard resource. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 20–26. doi: https://doi.org/10.15587/1729-4061.2018.131309
5. Myamin, S., Lingaitis, L. P., Daulylka, S., Vaicenius, G., Bogdevicis, M., Bureika, G. (2015). Determination of the dynamic characteristics of freight wagons with various bogies: TRANSPORT, 30 (1), 88–92. doi: https://doi.org/10.3846/16484142.2015.1020365
6. Krasov, W., Niegoda, T. (2014). FE numerical tests of railway wagon for intermodal transport according to PN-EU standards. Bulletin of the Polish Academy of Sciences Technical Sciences, 62 (4), 843–851. doi: https://doi.org/10.2478/bpts-2014-0093
7. Fomin, O., Lovska, A., Pístek, V., Kucera, P. (2020). Research of stability of containers in the combined trains during transportation by railroad ferry. MM Science Journal, 2020 (1), 3728–3733. doi: https://doi.org/10.17973/mmsj.2020_03_2019043
8. Fomin, O., Lovska, A., Pštěk, V., Kuzera, P. (2019). Dynamic load effect on the transportation safety of tank containers as part of combined trains on railway ferries. Vibroengineering PROCEEDIA, 29, 124–129. doi: https://doi.org/10.21595/vp.2019.21138
9. Kondratiev, A. V., Gaidachuk, V. E., Kharchenko, M. E. (2019). Relationships Between the Ultimate Strengths of Polymer Composites in Static Bending, Compression, and Tension. Mechanics of Composite Materials, 55 (2), 259–266. doi: https://doi.org/10.1007/s11029-019-09808-x
10. D ’žo, J., Stešíunas, S., Blatnický, M. (2016). Simulation Analysis of the Effects of a Rail Vehicle Running with Wheel Flat. Manufacturing Technology, 16 (5), 889–896. doi: https://doi.org/10.21062/ujep/x.2016/a/1212-2489/mt/16/5/889
11. Džo, J., Harušiūnas, J., Blatnický, M. (2015). Multibody System of a Rail Vehicle Bogie with a Flexible Body. Manufacturing Technology, 15 (5), 781–788. doi: https://doi.org/10.21062/ujep/x.2015/a/1210-2489/mt/15/5/781
12. Domin, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiki vahoniv. Kyiv: KIETT, 269.
13. Batulia, G. L., Lobiat, O. V., Deryzemlia, S. V., Verevicheva, M. A., Orel, Y. F. (2019). Rationalization of cross-sections of the composite reinforced concrete span structure of bridges with a monolithic reinforced concrete roadway slab. IOP Conference Series: Materials Science and Engineering, 684, 012014. doi: https://doi.org/10.1088/1757-899x/684/1/012014
14. Batulia, G., Komagorova, S., Pavlukenchov, M. (2018). Optimization of the truss beam. Verification of the calculation results. MATEC Web of Conferences, 230, 02037. doi: https://doi.org/10.1051/matecconf/201823002037
This research aims to simulate structural steel 400 (SS400) material as an alternative material for the electric bus's chassis structure. The kind of the material is low carbon steel. The SS400 material is produced from one of the largest steel mills in Indonesia, considered a local material. The local material used to increase the total domestic content in electric cars in Indonesia could be improved. Generally, the reverse engineering method of the R260 ladder frame type chassis is used to increase the local content in electric vehicles. However, this research used a ladder frame of type SS400 from local material to fulfill the local content of vehicle (EV)-bus chassis with the reverse engineering method. After the model was successfully created using the finite element software, statics analysis was carried out using the von Mises stress and the simulation results’ deflection. The meshing process of the chassis structure is carried out in such a way as to assume global contact. Loading was evenly carried out over the two main beam ladder frames totaling 14,200 kg. The elasticity modulus and tensile strength values used for the material are 190 GPa and 480 MPa. Furthermore, the support was placed in the mounting position of the front and rear wheel leaf springs at a front, rear overlay, and wheelbase distance of 2,380 mm, 3,290 mm, and 6,000 mm. The resulting approach was carried out using a beam model with a two-overhang beam model. The simulation results showed that type SS400 from the local material obtained a maximum von Mises stress value of 73.8 MPa, deflection of 2,568 mm, and the lowest safety factor of 3.2. Meanwhile, through theoretical calculations, the obtained stress occurred in 72.33 MPa and deflection of 2.594. There is no significant difference between simulation results and theoretical results.

Keywords: chassis, ladder frame, von Mises stress, low carbon steel, electric vehicle.

References

1. Thomas, J. (2014). Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results. SAE International Journal of Passenger Cars - Mechanical Systems, 7 (4), 1374–1384. doi: https://doi.org/10.4271/2014-01-2562

2. Lohse-Busch, H., Duoba, M., Rask, E., Stutenberg, K., Gowri, V., Slezak, L., Anderson, D. (2013). Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle. SAE Technical Paper Series. doi: https://doi.org/10.4271/2013-01-1462

3. Rhodes, K., Kok, D., Sohoni, P., Perry, E., Kraska, M., Wallace, M. (2017). Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy. SAE Technical Paper Series. doi: https://doi.org/10.4271/2017-01-1155

4. Carlson, R. B., Wishart, J., Stutenberg, K. (2016). On-Road and Dynamometer Evaluation of Vehicle Auxiliary Loads. SAE International Journal of Fuels and Lubricants, 9 (1), 260–268. doi: https://doi.org/10.4271/2016-01-0901

5. Ayu, W. (2016). UJ Perkenalkan Mobil Listrik di Dies Natalis ke-52 FTU. Universitas Indonesia, Kota Depok, Jawa Barat, Indonesia

6. Milliken, W. F., Milliken, D. L. (2002). Chassis Design. SAE International, 676. doi: https://doi.org/10.4271/r-206

7. Crof, D. A. (Ed.) (2009). Automotive engineering powetrain, chassis system and vehicle body. Butterworth-Heinemann, 827.

8. Mahmoodi-k, M., Davoodalbadi, I., Vääränen, V., Alkar, A. (2014). Stress and dynamic analysis of optimized trailer chassis. Tehniki jvensik: znanstveno-stručni časopis tehničkih fakulteta Sveučilišta u Osijeku, 21 (3), 599–608.
Abstract and References. Applied mechanics

9. Rajappan, R., Vivekananthan, M. (2013). Static and modal analysis of chassis by using FEA. The International Journal Of Engineering And Science, 2 (2), 63–73.
10. Renuke, P. A. (2012). Dynamic analysis of a car chassis. International Journal of Engineering Research and Applications, 2 (6), 955–959.
11. Patel, V. V., Patel, R. I. (2012). Structural analysis of a ladder chassis frame. World Journal of Science and Technology, 2 (4), 5–8.
12. Singh, A., Soni, V., Singh, A. (2014). Structural analysis of ladder chassis for higher strength. International Journal of Emerging Technology and Advanced Engineering, 4 (2), 231–239.
13. Francis, V., Rai, R. K., Singh, A. K., Singh, P. K., Yadav, H. (2014). Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys. International Journal Of Modern Engineering Research (IJMER), 4 (4), 41–47.
14. Patil, H. B., Kachave, S. D., Deore, E. R. (2013). Stress Analysis of Automotive Chassis with Various Thicknesses. IOSR Journal of Mechanical and Civil Engineering, 6 (1), 44–49. doi: https://doi.org/10.9790/1684-0614449
15. Chandra, M. R., Sreenivasulu, S., Hussain, S. A. (2012). Modeling and Structural analysis of heavy vehicle chassis made of polymeric composite material by three different cross sections. International Journal of Modern Engineering Research (IJMER), 2 (4), 2394–2600.
16. Siregar, R., Aditya, M., Sumarsono, D. A., Nazaruddin, Heryana, G., Zainuri, F. (2020). Study the brake performance of a passenger car based on the temperature that occurs in each brake unit. RECENT PROGRESS ON MECHANICAL INFRASTRUCTURE AND INDUSTRIAL ENGINEERING: Proceedings of International Symposium on Advances in Mechanical Engineering (ISAME): Quality in Research 2019. doi: https://doi.org/10.1063/5.0003747
17. Aditya, M., Siregar, R., Sumarsono, D. A., Nazaruddin, N., Heryana, G., Prasetyo, S., Zainuri, F. (2020). Experimental analysis in the test rig to detect temperature at the surface disc brake rotor using rubber thermocouple. Eastern-European Journal of Enterprise Technologies, 2 (5 (104)), 6–11. doi: https://doi.org/10.15587/1729-4061.2020.191949
18. Nazaruddin, N., Syehan, A., Heryana, G., Aditya, M., Sumarsono, D. A. (2019). Mode Shape Analysis of EV-Bus Chassis with Reverse Engineering Method. IOP Conference Series: Materials Science and Engineering, 694, 012002. doi: https://doi.org/10.1088/1757-899x/694/1/012002
19. Solghar, A. A., Arsalanloo, Z. (2015). The Stress Analysis of Minibus Chassis Using Finite Element Method. Caspian Journal of Applied Sciences Research, 2 (5), 20–25.
20. Rajasekar, K., Saravanan, R. (2014). Literature Review on Chassis Design of On-Road Heavy Vehicles. International Journal of Innovative Science, Engineering & Technology, 1 (7), 428–433.

DOI: 10.15587/1729-4061.2021.228960
A COMPREHENSIVE PROCEDURE FOR ESTIMATING THE STRESSED-STRAINED STATE OF A REINFORCED CONCRETE BRIDGE UNDER THE ACTION OF VARIABLE ENVIRONMENTAL TEMPERATURES (p. 23–30)

Vitalii Kovachuk
National Transport University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-4330-1756

Artur Onyschchenko
National Transport University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1040-4530

Alexander Fedorenko
Kyivavtodor Municipal Corporation, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3464-597X

Mykola Habel
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-2514-9165

Bogdan Parneta
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-2696-2449

Oleh Voznyak
Lviv Branch of the Dnipro National University of Railway Transport named after academician V. Lazaryan, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-7163-9026

Ruslan Markul
Dnipro National University of Railway Transport named after Academician V. Lazaryan, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-7630-8963

Mariana Parneta
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0001-9459-3676

Roman Rybak
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-0745-6620

This paper reports the full-scale experimental measurements of temperature distribution over the surfaces of bridges’ steel-concrete beams under the influence of positive and negative ambient temperatures. It has been established that the temperature is distributed unevenly along the vertical direction of a bridge’s steel-concrete beam.

It was found that the metal beam accepted higher temperature values. The maximum registered temperature difference between a metal beam and a reinforced concrete slab at positive ambient temperatures was +9.0 °C, and the minimum temperature difference was −2.1 °C.

The mathematical models for calculating a temperature field and a thermally strained state of bridges’ steel-concrete beams under the influence of variable climatic temperature changes in the environment have been improved, taking into consideration the uneven temperature distribution across a bridge’s reinforced concrete beam. The possibility has been established to consider a one-dimensional problem or to apply the three-dimensional estimated problem schemes as the estimation schemes for determining the thermo-elastic state of reinforced concrete bridges.

The temperature field and the stressed state of bridges’ reinforced concrete beams were determined. It was found that the maximum stress values are at the place where a metal beam meets a reinforced concrete slab. These stresses amount to 73.4 MPa at positive ambient temperatures, and 69.3 MPa at negative ambient temperatures.

The amount of stresses is up to 35 % of the permissible stress values. The overall stressed-strained state of a bridge’s reinforced concrete beams should be assessed at the joint action of temperature-induced climatic influences and loads from moving vehicles.

Keywords: road bridge, reinforced concrete beam, temperature fields, temperature stresses, ambient temperature.

References
1. Balabuh, Ya. (2010). Efficiency of steel-reinforced road bridges. Dorogi i mosti, 12, 16–23. Available at: http://dorogimosti.org.ua/ua/efektivnisty-statezalzabitomnh-avtodorognhh-mostiv
2. Kovalchuk, V. V. (2012). Stan ta problemy zabezpechennia dovhochnosti prohonomovky budов mostiv. Zbirnyk naukovykh prats DonZIT, 32, 226–235.

3. Koval, P. M., Balabukh, Ya. A. (2012). Problemy zabezpechennia dovhochnosti stalebetonnykh mostiv. Mekhanika i fizyka ruinuvannia budivelykh materialiv ta konstruktsiy, 9, 426–443.

4. Kovalchuk, V., Markul, R., Bal, O., Mylnych, A., Pentak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549

5. Kovalchuk, V. (2014). Study of temperature field and stress state of metal convoluted pipes. Resursoekonomi materialy, konstruktsiy, budivli ta sporudy, 29, 186–192. Available at: http://nbuv.gov.ua/ UJRN/rmbks_2014_29_29

6. Beben, D. (2017). Experimental Testing of Soil-Steel Railway Bridge Under Normal Train Loads. Experimental Vibration Analysis for Civil Structures, 803–815. doi: https://doi.org/10.1007/978-3-319-67443-8_71

7. Li, D., Maes, M. A., Dilger, W. H. (2004). Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge. Canadian Journal of Civil Engineering, 31 (5), 813–825. doi: https://doi.org/10.1139/l04-041

8. Pisani, M. A. (2004). Non-linear strain distributions due to temperature effects in compact cross-sections. Engineering Structures, 26 (10), 1349–1363. doi: https://doi.org/10.1016/j.engstruct.2004.04.004

9. Barr, P. J., Stanton, J. F., Eberhard, M. O. (2005). Effects of Temperature Variations on Precast, Prestressed Concrete Bridge Girders. Journal of Bridge Engineering, 10 (2), 186–194. doi: https://doi.org/10.1061/(ASCE)1084-0700(2005)10:2(186)

10. AASHTO LRFD bridge design specifications (2008). Washington, DC: American Association of State Highway and Transportation Officials. Available at: https://www.westlaw.com/title/aashto-lrdf-bridge-design-specifications/oic/317485511

11. Lee, J. H. (2010). Experimental and analytical investigations of the thermal behavior of prestressed concrete bridge girders including imperfections. Georgia Institute of Technology Atlanta, GA, 302. Available at: https://smartech.gatech.edu/handle/1853/34675

12. DBN V.1.2-15:2009. Sporudy transportu. Mosty ta truby. Na- vantuazhennia i vplyvi k: Minbud Ukrainy, 84. Available at: http://kbu.org.ua/assets/app/documents/dbn2/48.1.%20D%094%D%91%D%9D%20%D%92.1.2–15.2009.%20%D%A1%D%BF%D%BE%D%80%D%83%D%0B%4 %D%82%D%1%82%D%80%D%0B%D%BD%D%1 %81%D%BF%D%BE%D%1%80%D%1%82%D%1%83%20% D%0%9C%D%BE%D%1%81%D%1%82%D%80%20% D%1%82%D%0%D%1%82%D%80.pdf

13. Luchko, Y. Y., Sulym, H. T., Kyrian, V. I. (2004). Mekhanika ruinuvannia mostovykh konstruktsiy ta metody prohnozuvannia ykhi zalyshkovoi dovhovichnosti. Lviv: Kameniar, 885. Available at: http://94.158.152.98/opac/index.php?url= notices/index/index/IdNotice:85921/Source:default.

14. De Backer, H., Outtier, A., Van Bogaert, P. (2009). Numerical and experimental assessment of thermal stresses in steel box girders. Conference: Nordic Steel Construction Conference, 11th, Proceedings, 65–72. Available at: https://www.researchgate.net/publication/259004379_Numerical_and_experimental_assessment_of_thermal_stresses_in_steel_box_girders

15. Balms, E., Corus, M., Siegert, D. (2006). Modeling thermal effects on bridge dynamic responses. Available at: https://www.researchgate.net/publication/228738138

16. Zahabizadeh, B., Edalat-Behbahani, A., Granja, J., Gomes, J. G., Faria, R., Azenha, M. (2019). A new test setup for measuring early age coefficient of thermal expansion of concrete. Cement and Concrete Composites, 98, 14–28. doi: https://doi.org/10.1016/j.cemconcomp.2019.01.014

17. Dilger, W. H., Ghali, A., Chan, M., Cheung, M. S., Maes, M. A. (1983). Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering, 109 (6), 1460–1478. doi: https://doi.org/10.1061/(ASCE)0733-9445(1983)109:6(1460)

18. Luchko, J., Hutavit, Yu., Kovalchuk, V. (2013). Temperature field and stressed state of composite bridge span investigation. Visnyk Ternopil'skoho natsionalnoho tekhnichnoho universytetu, 2, 29–38. Available at: http://cadnitr.dit.edu.ua/jspu/handle/123456789/9759.

19. Gera, B., Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 26–35. doi: https://doi.org/10.15587/1729-4061.2019.168260

20. Kovalchuk, V., Hutavit, Y., Luchko, J., Sysyn, M. (2020). Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure. Roads and Bridges - Drogi i Mosty, 19 (1), 65–78. doi: https://doi.org/10.7409/radm.020.004

21. Luchko, Y. Y., Kovalchuk, V. V. (2012). Vymarnuvannia napruzeno-deformovanoho stanu konstruktsiy mostiv pry zmnykh temperaturakh i navantuazhenniam. Lviv: Kameniar, 235.

22. Rudakov, K. M. (2009). Vstup u UGS Femap 9.3 (for Windows NT). Heatmichne ta skinchennoelementne modeluvannia konstruktsiy. Kyiv: NTUU «KPI», 282. Available at: http://mmi.dmm.kpi.ua/images/pdf/personnel/RUDAKOV/publicacii/Femap93_PDF/Femap93.htm

DOI: 10.15587/1729-4061.2021.229213

DEVELOPMENT OF A TECHNIQUE FOR COMPUTER SIMULATION OF THE STRESS STATE OF THE DRIVE DRUM SHELL OF A BELT CONVEYOR TO OPTIMIZE ITS DESIGN PARAMETERS (p. 31–39)

Ozilhas Jassinbekov
Sathayev University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-9369-4153

Madina Isametova
PhD, Associate Professor
Sathayev University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4630-271X

Gabit Kaldan
Sathayev University, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-2627-2464

The paper considers the method of computer simulation of the stress-strain state of the drive drum shell in the NASTRAN integrated environment. Due to the complexity of determining stresses and deformations in the drum sections by the analytical method, it is proposed to solve this important problem using the numerical finite-element method. At the preliminary stage of computer modeling, a mechanical design scheme was developed, including a variable pressure that changes depending on the angle of rotation of the drum, the deterministic relations describing the variable force factors are based on the Euler ratio. It is also proposed to take into account the pressure from the variable friction force, which depends on the changing coefficient of adhesion of the belt to the drum. As a result of the computer calculation, the equivalent Mises stresses of 65 MPa were determined, the safety factor was 4.2 and the components of the tangential stresses were determined using the...
stress tensor marker, the shear stress reached the level $\tau=16$ MPa for fabric tape and $\tau=5.14$ MPa for rubber tape. According to the results of the calculation, the dependence of the tangential stresses on the angle of rotation of the drum was constructed. A diagram of the change in the component of tangential stresses along the forming shell of the drum was constructed.

Analysis of stress-strain state allowed us to determine the factor of safety of the drum shell. Based on the analysis of equivalent stresses, it is proposed to further calculate the durability of the drum using the method of long-term fatigue. The computer calculation of shear stresses in the component allows choosing the rational parameters of the lining, based on such indicators as peel strength and break, as well as determining the angle 61° of the slab lining required to improve the reliability and traction ability of the pipeline.

Keywords: conveyor belt, durability, drive drum, stresses, deformation, finite-element method, lining.

References

1. Miha, A., Bouras, E., Athanasopoulos, E. (2015). FEM analysis of a belt conveyor driving drum. 6th BETA CAE International Conference. Available at: https://www.researchgate.net/publication/283500471
2. Solovykh, D. Ya. (2014). Modelirovanie na EVM napryazhennogo sostoyaniya privodnogo barabanana lenotchного konveyera dlya obenchayki privodnogo barabana lentochnogo konveyera pri peremennoj gornoj promishlennosti. Moscow, 125. Available at: https://www.misis.ru/zhurnal/9582/Solovyh_dis.pdf
3. Ananth, K. N. S., Rakesh, V. (2013). Design and Selecting the Proper Conveyor-Belt. International Journal of Advanced Engineering Technology, 4 (2). Available at: https://www.technicaljournalsonline.com/iject/VOL%201/IAE%20Vol%201/Issue%202/It%20APRIL%202013/Vol%201/2014%20Issue%202/Art%202014.pdf
4. Dmitriev, V. G., Asaenko, V. V. (2011). Harakter nagruzheniya obecuyxii privodnogo barabanana lenotchного konveyera pri peremennom koeffitsiente steplenija lenty s ego poverhnost'yu. Gornoe obeenki prikladnaya geologiya i-Gornoe delo. Moscow, 7. Available at: https://globalf5.com/Knigi/Nauka-Obrazovanie/Inzhenerno-tehnicheskie-nauki/prikladnaya-geologiya-i-Gornoe-delo/Matematicheskaya-model-formirovaniya_176123
5. Fedorko, G., Belusko, M., Hegediš, M. (2015). FEA Utilization for Study of the Conveyor Belts Properties in the Context of Internal Logistics Systems. Czech Republic. Available at: http://konsys2.tanger.cz/files/proceedings/24/papers/4619.pdf
6. Michalik, P., Zajar, J. (2012). Using of computer integrated system for static tests of pipe conveyor belts. Proceedings of the 13th International Carpathian Control Conference (ICCC). doi: https://doi.org/10.1109/carpathian.2012.6228691
7. Reshetov, D. Ya. (2014). Matematicheskaya model’ formirovaniya impact test conducting. Vestnik nauchnogo tsentra po bezopasnosti obuchenija lentochnymi konveyerami. Moscow, 7. Available at: https://www.studmed.ru/zenkov-rl-ivashkov-ii-kolobov-ln-mashniki.ru/article/n/metodika-provedeniya-laboratornyh-ispytаний-uzbrojennyh-rezinevoy-futrovoj-privodnogo-barabanana-lentochnogo-konveyera
8. Solovit, C., Piskoty, G., Koller, R., Zgraggen, M., Rütti, T. F. (2007). Fatigue in the shell of a conveyor drum. Engineering Failure Analysis, 14 (6), 1038–1052. doi: https://doi.org/10.1016/j.engfailanal.2006.11.071
9. Zhilkin, V. A. (2013). Azbuka inженерных расчетов v MSC Patran-Nastran-Marc. Sankt-Peterburg: Propekt Nauki, 576. Available at: http://www.ipbookshop.ru/35886.html
10. Fedorko, G., Belusko, M., Hegediš, M. (2015). FEA Utilization for Study of the Conveyor Belts Properties in the Context of Internal Logistics Systems. Czech Republic. Available at: http://konsys2.tanger.cz/files/proceedings/24/papers/4619.pdf
11. Solovit, D. Y. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: https://doi.org/10.25018/0236-1493-2018-5-184-192
12. Fatemi, A. (2004). Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels. International Journal of Fatigue, 26 (6), 663–672. doi: https://doi.org/10.1016/j.ijfatigue.2003.10.005
13. Affolter, C., Piskoty, G., Koller, R., Zgraggen, M., Rütti, T. F. (2007). Fatigue in the shell of a conveyor drum. Engineering Failure Analysis, 14 (6), 1038–1052. doi: https://doi.org/10.1016/j.engfailanal.2006.11.071
14. Solovit, D. Y. (2014). Matematicheskaya model’ formirovaniya davnjenyi na privodnom barabanen lenotchного konveyera s uchetom izmenyayuschegosya koeffitsienta steplenija. Moscow, 7. Available at: https://www.researchgate.net/publication/262850047
15. Solovykh, D. Ya. (2014). Modelirovanie na EVM napryazhennogo sostoyaniya privodnogo barabanana lenotchного konveyera dlya obenchayki prodolnogo-barabana-lentochnogo-konveyera-dlya-gornogo-barabanana-primenyayushchego-svyaz-25825151/10.1109/carpathiancc.2012.6228691
16. Kim, J. K., Shim, H. J., Kim, C. S. (2006). Durability Analysis of the Pulley in the Power Steering System Considering the Variation of the Fatigue Strength. Key Engineering Materials, 306-308, 429–434. doi: https://doi.org/10.4028/www.scientific.net/KEM.306-308.429
17. Povetkin, V. M., Isametova, M. E., Isayeva, I., Bukayeva, A. Z. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: https://doi.org/10.25018/0236-1493-2018-5-184-192
18. Fatemi, A. (2004). Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels. International Journal of Fatigue, 26 (6), 663–672. doi: https://doi.org/10.1016/j.ijfatigue.2003.10.005
19. Ragan, P., Manuel, L. (2007). Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods. Wind Engineering, 31 (2), 83–99. doi: https://doi.org/10.1269/039034207781494494
20. Solovit, D. Ya. (2014). Matematicheskaya model’ formirovaniya davnjenyi na privodnom barabanen lenotchного konveyera s uchetom izmenyayuschegosya koeffitsienta steplenija. Moscow, 7. Available at: https://globalf5.com/Knigi/Nauka-Obrazovanie/Inzhenerno-tehnicheskie-nauki/prikladnaya-geologiya-i-Gornoe-delo/Matematicheskaya-model-formirovaniya_176123
21. Zenkov, R. L., Ivashkov, I. I., Kolobov, I. N. (1987). Mashini nepreirivnovo transporta. Moscow: Mashinostroenie, 432. Available at: https://www.studmed.ru/zenkov-rl-ivashkov-ii-kolobov-ln-mashniki.ru/article/n/metodika-provedeniya-laboratornyh-ispytаний-uzbrojennyh-rezinevoy-futrovoj-privodnogo-barabanana_2if26e75477.html
22. Ushakov, V. N., Kostrykin, A. P., Shaidulin, K. V., Merzlikov, P. Ye. (2011). Methods of belt conveyor drive drum rubber lining laboratory tests conducting. Vestnik naukovogo tsentra po bezopasnosti rabot v ugol’noy promyshlennosti. Available at: https://cyberleninka.ru/article/n/metodika-provedeniya-laboratornyh-ispytаний-rezinevoy-futrovoj-privodnogo-barabanana-lentochnogo-konveyera
23. Affolter, C., Piskoty, G., Koller, R., Zgraggen, M., Rütti, T. F. (2007). Fatigue in the shell of a conveyor drum. Engineering Failure Analysis, 14 (6), 1038–1052. doi: https://doi.org/10.1016/j.engfailanal.2006.11.071

DOI: 10.15587/1729-4061.2021.228862

IMPROVING THE ALGORITHM OF CHOOSING SPACING AND NUMBER OF STIFF SUPPORTS AGAINST A CONCENTRATED FORCE IN STEEL-CONCRETE BEAMS (p. 40–47)

Anatoliy Petrov
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine

ORCID: https://orcid.org/0000-0001-6644-223X
A steel-concrete beam was taken as the study object. The algorithm of selecting the number of stiff supports for the steel-concrete beam loaded with a concentrated lateral force in the middle of the span has been refined. Stiff supports served to join the steel strip with concrete to ensure their joint performance. The algorithm was refined based on the condition of equality of the longitudinal force in the steel strip from the action of the calculated load and the maximum longitudinal force obtained after setting the supports. In this case, the longitudinal forces in all stiff supports, as well as the spacing of the stiff supports should be the same.

A disadvantage of the known algorithm consists in the complexity of determining the coefficient ϕ_2 taking into account the effect of long-term concrete creep on the element deformation without cracks. This coefficient fluctuates widely and depends on many factors. Besides, it is also insufficiently studied.

Calculations for determining the number and spacing of stiff supports in a steel-concrete beam were conducted according to the proposed algorithm and in the Lira software package. The forces acting on the supports and spacing of the supports were the same. The force acting in the support was 8941.5 N. When selecting characteristics of the steel-concrete beam, maximum longitudinal force in the steel strip was obtained. The longitudinal force amounted to 35726 N. The same longitudinal force was obtained from the diagram of longitudinal forces obtained after setting the supports.

This study was aimed at improving the design of steel-concrete beams. A rational number and placement of stiff supports ensure savings: the required amount of building materials is reduced and their cost is reduced due to cutting labor costs for their manufacture and operation.

Keywords: steel-concrete beam, stiff support, spacing of supports, force in a support, reduced stiffness, graphic-analytical method.

References

1. Xing, Y., Han, Q., Xu, J., Guo, Q., Wang, Y. (2016). Experimental and numerical study on static behavior of elastic concrete-steel composite beams. Journal of Constructional Steel Research, 123, 79–92. doi: https://doi.org/10.1016/j.jcsr.2016.04.023
2. Patil, S. P., Sangle, K. K. (2016). Tests of steel fibre reinforced concrete beams under predominant torsion. Journal of Building Engineering, 6, 157–162. doi: https://doi.org/10.1016/j.jobe.2016.02.004
3. Vandolovskyi, S. S., Kostyuk, T. O., Rachkovskiy, O. V., Plakhonkova, I. A. (2018). Technology of creation of steelfibrobeton with high strength to stiffness. Scientific Works of Kharkiv National Air Force University, 2 (56), 126–131. doi: https://doi.org/10.30748/zhup.2018.56.18
4. Vandolovskyi, A., Yonnis, B. N., Riyed, A. Y. (2017). Effect vibr-vacuumizing on bonding strength of basalt fibers to cementitious matrix. International Journal of Engineering Science and Innovative Technology (IJESIT), 6 (1), 1–6.
5. Shkromada, O., Palyi, A., Nechyporenko, O., Naumenko, O., Nechyporenko, V., Burlaka, O. et. al. (2019). Improvement of functional performance of concrete in livestock buildings through the use of complex admixtures. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 14–23. doi: https://doi.org/10.15587/1729-4061.2019.179177
6. Hsiao, P.-C., Lehman, D. E., Roeder, C. W. (2012). Improved analytical model for special concentrically braced frames. Journal of Constructional Steel Research, 73, 80–94. doi: https://doi.org/10.1016/j.jcsr.2012.01.010
7. Mahmoud, A. M. (2016). Finite element modeling of steel concrete beam considering double composite action. Ain Shams Engineering Journal, 7 (1), 73–88. doi: https://doi.org/10.1016/j.asej.2015.03.012
8. Luan, N. K., Bakshi, H., Ronagh, H. R., Barkhordari, M. A., Amiri, G. G. (2011). Analytical solutions for the in-plane behavior of composite steel/concrete beams with partial shear interaction. Asian Journal of Civil Engineering, 12 (6), 751–771.
9. Medvedev, V. N., Semeniu, S. D. (2016). Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering, 3, 3–15. doi: https://doi.org/10.5862/mcej.63.1
10. Zamaliev, F. S. (2018). Numerical and full-scale experiments of prestressed hybrid reinforced-concrete steel beams. Vestnik MGU, 13 (3 (114)), 309–321. doi: https://doi.org/10.22227/1997-0935.2018.3.309-321
11. Rahmonov, A. D., Solov’ev, N. P., Pozdeev, V. M. (2014). Computer modeling for investigating the stress-strainstate of beams with hybrid reinforcement. Vestnik MGU, 1, 187–195. doi: https://doi.org/10.22227/1997-0935.2014.1.187-195
12. Utkin, V. A. (2010). Regulirovanie polozheniya neytral’noy osi s trebuet revenue osi pri proektirovanii secheniy stalezhelezobetonykh balok. Vestnik SibAD., 4 (18), 55–60.
13. Bošušić, T. V., Blikharskiy, Z. Ya., Ilnytskyy, B. M., Kramarchuk, A. P. (2011). Osoblyvosti roboty stalezhelezobetonykh balok armovanykh sterezhivnoiu vysokomitsnoiu armatureyu riznykh klassiv. Visnyk NU «Lvivska politekhnika», 697, 42–48.
14. Storozhenko, L. I., Krupchenko, O. A. (2010). Stal’zal’ezbetonnii baloky iz zal’zobetonym vekhimm poiasom. Visnyk NU «Lvivska politekhnika», 662, 354–360.
15. Vahrenko, P. F., Hilobok, V. G., Andreyko, N. T., Yavorsky, M. L. (1987). Raschet i konstruivovanie chastey zhilyh i obshchestvennyh zdaniy. Kyiv: Bud’vel’nik, 423.

16. Ying, H., Huawe, P., Xueyou, Q., Jun, P., Khanenc, L., Qiyun, P., Bao, L. (2017). Performance of Reinforced Concrete Beams Retrifited by a Direct-Shear Anchorage Retrofitting System. Procedia Engineering, 210, 132–140. doi: https://doi.org/10.1016/j.proeng.2017.11.058

17. John, A. T., Nwankwo, E., Orumuz, S. T., Ojusi, S. O. (2019). Structural Performance of Externally Strengthened Rectangular Reinforced Concrete Beams by Glued Steel Plate. European Journal of Engineering Research and Science, 4 (9), 101–106. doi: https://doi.org/10.24018/ejers.2019.4.9.1480

18. Stororzenko, L. I., Lapenko, O. I., Horb, O. H. (2010). Konstruktsiyi zhidkobetonykh pereknutykh po profiliomu nustyu iz zabezpecheniam sumisnoi roboty betonu i stali za dopomohu sleiuvannia. Visnyk NU «Lvivska politehnika», 662, 360–365.

19. Mel’mam, V. A., Torkatyuk, V. I., Zolotova, N. M. (2003). Ispol’zovanie akrylichkh kleev dlya soedineniya betonnyh i zhelezobetonnyh konstruktsiy. Municipal economy of cities, 51, 61–68.

20. Mofidi, A., Chaallal, O., Shao, Y. (2014). Analytical Design Model for Reinforced-Concrete Beams Strengthened in Shear Using L-Shaped CFRP Plates. Journal of Composites for Construction, 18 (1), 04013024. doi: https://doi.org/10.1061/(asce)cc.1943-5614.0000433

21. Ferhat, F. (2019). Design Optimization of Reinforced Ordinary and High-Strength Concrete Beams with Eurocode2 (EC-2). Optimum Composite Structures. doi: https://10.5772/intechopen.78734

22. Wongmatar, P., Hansapinyo, C., Vimoonsatit, V., Chen, W. (2018). Recommendations for Designing Reinforced Concrete Beams Against Low Velocity Impact Loads. International Journal of Structural Stability and Dynamics, 18 (09), 1850104. doi: https://doi.org/10.1142/s0219455418501043

23. Shuraaim, A. B. (2014). A novel approach for evaluating the concrete shear strength in reinforced concrete beams. Latin American Journal of Solids and Structures, 11 (1), 93–112. doi: https://doi.org/10.1590/1679-78252014000100006

24. Ito, H., Iwanami, M., Yukota, H., Kato, E. (2014). Analytical Study on Shear Capacity Evaluation of RC Beams with PVA Short Fiber. Journal of Advanced Concrete Technology, 12 (6), 187–199. doi: https://https://doi.org/10.3151/jact.12.187

25. Petrov, A., Pavliuchenkov, M., Nanka, A., Paliy, A. (2019). Construction of an algorithm for the selection of rigid stops in steel concrete beams. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 41–49. doi: https://doi.org/10.15587/1729-4061.2019.155469

26. Petrov, A., Paliy, A., Pavliuchenkov, M., Tsyanhenoko, H., Khobot, N., Vysochin, I. et. al. (2020). Construction of an algorithm for the selection of rigid stops in steelconcrete beams under the action of a distributed load. Eastern-European Journal of Enterprise Technologies, 3 (7 (105)), 27–35. doi: https://doi.org/10.15587/1729-4061.2020.204251

27. DBN V.2.6-160:2010. Stalezhizobetonym konstruktsiyi (2011). Kyiv: Minrehionbud Ukrainy, 93.

28. Petrov, A. (2019). Destruction of concrete along an inclined crack in steelconcrete beams. Visnyk KhNTUSH im. Petra Vasylenka, 205, 289–295.

29. TKP EN 1994-1-1-2009 (02250). Evrokovod 4: Proektirovanie stalezhizobetonnyh konstruktsiy. Ch. 1-1. Obschie pravila i pravila dlya zdanii (2010). Minsk: Minskstroyarhitektury, 95.

30. DSTU B V.2.6-216:2016. Rozzakhonok i konstruivaniya zhidkobetonykh konstruktsiy (2016). Kyiv: Ministerstvo rehionalnogo rozyvku, budunyvstva ta zhytlovo-komunalnogo hospodarstva Ukrainy, 40.

31. Petrov, A. N., Kozzeva, E. N., Krasynuk, A. G. (2015). Vybor optimal’nyh po stoimosti parametrov stalebetonnych balok. Materialy III mizhnarodnoi naukovo-praktichnoi konferentsiyi. Kharkiv-Krasnyi Lyman, 330–336.

DOI: 10.15587/1729-4061.2021.229428

SOLVING A ONE MIXED PROBLEM IN ELASTICITY THEORY FOR HALF-SPACE WITH A CYLINDRICAL CAVITY BY THE GENERALIZED FOURIER METHOD (p. 48–57)

Nataliiia Ukrayiînets
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-7406-5809

Olena Marahovska
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-6170-5173

Olha Prokhorova
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-9109-4908

Designing and constructing underground structures for various purposes, such as tunnels, mines, mine workings, necessitate the development of procedures for calculating their strength and reliability. The physical model of such objects worth considering is a homogeneous isotropic half-space that contains an infinitely long hollow cylinder, located parallel to its border. One can explore problems related to the mechanics of deformable solids for such a multiply connected body.

This paper reports the proofs of addition theorems of the basis solutions to the Lamé equation for the half-space and cylinder written, respectively, in the Cartesian and cylindrical coordinate systems. This result is important from a theoretical point of view in order to substantiate a numerical-analytical method – the generalized Fourier method. This method makes it possible to solve spatial boundary problems from the theory of elasticity and thermo-elasticity for isotropic and transversal-isotropic multiply connected bodies. Similar to the classical Fourier method, the general solutions to equilibrium equations have been used here but in several coordinate systems rather than one.

From a practical point of view, this method has made it possible to investigate the mixed problem of elasticity theory for the multiply-connected body described above. The analysis of the stress-strain state of this elastic body has made it possible to draw conclusions on determining those regions that are most vulnerable to destruction. The highest values are accepted by normal stresses in the region between the boundaries of the half-space and the cylinder. Changing the σ₁ component along the Ox axis corresponds to the displacements assigned on the half-space. The τₓᵧ component contributes less to the distribution of stresses than σ₁ and σᵧ. The applied aspect of using the reported results is the possibility to apply them when designing underground structures.

Keywords: addition theorems, Lamé equation, generalized Fourier method, half-space, cylindrical cavity.
References

1. Tsuchida, E., Nakahara, I. (1970). Three-Dimensional Stress Concentration around a Spherical Cavity in a Semi-Infinite Elastic Body. Bulletin of JSME, 13 (58), 499–508. doi: https://doi.org/10.1299/jsme1958.13.499

2. Lukiev, D., Prokic, A., Anagnosti, P. (2009). Stress-strain field around elliptic cavities in elastic continuum. European Journal of Mechanics - A/Solids, 28 (1), 86–93. doi: https://doi.org/10.1016/j.euromechsol.2008.04.005

3. Mi, C., Kouris, D. (2013). Stress concentration around a nonvoid near the surface of an elastic half-space. International Journal of Solids and Structures, 50 (18), 2737–2748. doi: https://doi.org/10.1016/j.ijsolstr.2013.04.029

4. Erzhhanov, Zh. S., Kalybaev, A. A., Madaliev, T. B. (1988). Upругое полупространство с полюсту. Alma-Ata. Nauka Kaz SSR, 244.

5. Malits, P. Y. (1991). An axially symmetric contact problem for a half-space with an elastically reinforced cylindrical cavity. Journal of Soviet Mathematics, 57 (5), 3417–3420. doi: https://doi.org/10.1007/bf01180209

6. Karinski, Y. S., Yankelevsky, D. Z., Antes, M. Y. (2009). Stresses around an underground opening with sharp corners due to non-symmetrical surface load. Structural Engineering and Mechanics, 31 (6), 679–696. doi: https://doi.org/10.12989/sem.2009.31.6.679

7. Kalentev, E. A. (2018). Stress-strain state of an elastic half-space with a cavity of arbitrary shape. International Journal of Mechanical and Materials Engineering, 13 (1). doi: https://doi.org/10.1186/s40712-018-0094-x

8. Gospodarikov, A. P., Zatsepin, M. A. (2014). Mathematical modelling of applied problems of rock mechanics and rockmassif. Zapiski gornogo instituta, 207, 217–221.

9. Berdenanov, N., Dodonov, P., Zadumov, A., Fedonyuk, N. (2020). Spherical inclusions, their arrangements and effect upon material stresses. Transactions of the Krylov State Research Centre, 1 (S-I), 101–107. doi: https://doi.org/10.24307/2542-2324-2020-1-s-1-101-107

10. Erofeenko, V. T. (2018). Exact Solution of a Non-stationary Problem for the Elastic Layer with Rigid Cylindrical Inclusion. Journal of Mathematical Sciences, 249 (3), 478–495. doi: https://doi.org/10.1007/s10958-020-04954-3

11. Nikolaev, A. G., Protsenko, V. S. (2011). Obobshchenny metod Fur’e v prostranstvennykh zadachakh teorii uprugosti. Kharkiv, 344.

12. Protsenko, V. S., Nikolaev, A. G. (1986). Reshenie prostranstvennykh zadach teorii uprugosti s pomocju formul pererazlozheniya. Prikladnaya mehanika, 22 (7), 83–89.

13. Nikolaev, A. G., Kurennov, S. S. (2004). The Nonaxisymmetric Contact Thermoelastic Problem for a Half-Space with a Motion-less Rigid Spherical Inclusion. Journal of Engineering Physics and Thermophysics, 77 (1), 209–215. doi: https://doi.org/10.1023/b:jsep.0000020741.03468.6e

14. Nikolaev, A. G., Shcherbakova, Y. A. (2010). Apparatus and applications of a generalized Fourier method for transversally isotropic bodies bounded by a plane and a paraboloid of rotation. Journal of Mathematical Sciences, 171 (5), 620–631. doi: https://doi.org/10.1007/s10958-010-0162-0

15. Nikolaev, A. G., Tanchik, E. A. (2016). Stresses in an elastic cylinder with cylindrical cavities forming a hexagonal structure. Journal of Applied Mechanics and Technical Physics, 57 (6), 1141–1149. doi: https://doi.org/10.1134/s0021894416060237

16. Protsenko, V. S., Popova, N. A. (2004). Vtoraya osnovnaya kraevaya zadacha teorii uprugosti dlya poluprostранства с круговую talinodricheskoy polostь. Dopovidi NAN Ukrainy, 12, 52–58.

17. Protsenko, V. S., Ukrainets, N. A. (2015). Application of the generalized fourier method to solve the first basic problem of elasticity theory for the semispace with the cylindrical cavity. Visnyk Zaporizhzhia nationalnoho universytetu. Fizyko-matematychni nauky, 2, 193–202.

18. Protsenko, V. S., Ukrainets, N. A. (2016). Justification of the Generalized Fourier method for the mixed problem of elasticity theory in the half-space with the cylindrical cavity. Visnyk Zaporizhzhia nationalnoho universytetu. Fizyko-matematychni nauky, 2, 213–221.

19. Protsenko, V., Miroshnikov, V. (2018). Investigating a problem from the theory of elasticity for a half-space with cylindrical cavities for which boundary conditions of contact type are assigned. Eastern-European Journal of Enterprise Technologies, 4 (7 (94)), 43–50. doi: https://doi.org/10.15587/1729-4061.2018.139567

20. Miroshnikov, V. Y. (2020). Stress State of an Elastic Layer with a Cylindrical Cavity on a Rigid Foundation. International Applied Mechanics, 56 (3), 372–381. doi: https://doi.org/10.1007/s10778-020-01021-x

21. Erofeenko, V. T. (1989). Teoremy slozheniya. Minsk: Nauka i tehnika, 235.

22. Gradsteyn, I. S., Ryzhik, I. M.; Zwillinger, D., Moll, V. (Eds.) (2014). Table of Integrals, Series, and Products. Academic Press. doi: https://doi.org/10.1016/978-0-12-815786-5

23. Hetnarski, R. B., Ignaczak, J. (2011). The Mathematical Theory of Elasticity. CRC Press, 837. doi: https://doi.org/10.1201/9781439828892

24. Nikolaev, A. G. (1998). Obosnovanie metoda Fur’e v osnovnyh zadachakh teorii uprugosti dlya nekоторых prostranstvennykh kanonicheskikh oblastei. Dopovidi NAN Ukrainy, 2, 78–83.

25. Muncat, J. (2014). Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebra. Springer, 420. doi: https://doi.org/10.1007/978-3-519-06728-5

DOI: 10.15587/1729-4061.2021.226697

DESIGNING A SHOCK TEST SYSTEM PROTOTYPE BASED ON A HYDROELASTIC DRIVE (p. 58–65)

Oleksii Sheremet
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0003-1298-3617

Tetiana Kirienko
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0001-5076-3119

Andrii Besh
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0002-8456-7228

Kateryna Sheremet
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0003-3783-5274

Laboratory shock tests involve the reproduction of simple one-time and repeated pulses of a certain waveform. In practice, such mechanical impacts on an object are implemented at specialized testing equipment – shock systems.

A promising direction in the development of shock machines includes the structures that operate on the energy of elastic deformation of the compressed liquid and the shell of the vessel that contains it. Such systems make it possible to improve the versatility, manageability, and accuracy of impact tests.

Underlying this study is the use of a hydroelastic drive to design a prototype of the automated electro-hydraulic system for a shock test system.

The proposed shock test system prototype makes it possible to expand the functionality of the installations to perform impact tests with a series of pulses, as well as improve manageability and increase the level of automation. The main feature of the proposed structural scheme is that the reconfiguration for a new impact pulse occurs very
quickly. Owing to the presence of a driven rotary drum with braking devices, the bench makes it possible to generate a shock pulse repetition frequency of 1–2 Hz.

The constructed mathematical model of the shock machine takes into consideration the inertia of moving masses, the rigidity of the liquid or “one-way” spring of the charging chamber, as well as the influence of dampers on which the test platform rests. The variables in the mathematical model are linked by differential equations describing two periods within a shock system work cycle: charging and pulse generation. The model’s practical value is to determine the dynamic characteristics of the test installation, as well as to calculate the required structural and technological parameters.

The differential equations describing the movements at the shock machine have been solved in a numerical way. The study results have established the optimal value (in terms of minimizing the overload on an article on the return stroke of the rod) for the damping factor of the braking device, which is 13,000 kg/s. In this setting, the ratio of the amplitude of acceleration on the reverse stroke to the amplitude of effective acceleration during tests is reduced to a minimum of 0.195.

Keywords: shock test system, hydroelastic drive, damping factor, impact acceleration.

References

1. Sixmore, C., Babuska, V. (2020). The Science and Engineering of Mechanical Shock. Switzerland: Springer Nature Switzerland AG; 362. doi: https://doi.org/10.1007/978-3-030-12103-7
2. Engel, C., Herald, S., Davis, S., Dean, S. (2006). Mechanical Impact Testing: Data Review and Analysis. Journal of ASTM International, 3 (8), 13538. doi: https://doi.org/10.1520/jai13538
3. Ilskovich-Lototsky, R. D., Obertinkh, R. R., Sevostianov, I. V. (2006). Protsesy ta mashyny vibratsiynykh i vibrozashchitnykh tekhnolohiy. Vinnytsya: UNIVERSUM-Vinnytsya, 291.
4. Wang, J., Zhang, J. (2019). Research on High-Power and High-Speed Hydraulic Impact Testing Machine for Mine Anti-Impact Support Equipment. Shock and Vibration, 2019, 1–12. doi: https://doi.org/10.1155/2019/6545980
5. Echevarria, I., Lasu, J., Casado, P., Dominguez, A., Eguizabal, I., Lizana, M. et al. (2015). Test bench for helicopter electro mechanical actuation system validation: Design and validation of dedicated test bench for aeronautical electromechanical actuators. 2015 IEEE International Conference on Industrial Technology (ICIT). doi: https://doi.org/10.1109/ict.2015.7125151
6. Zhao, W., Song, Q., Liu, W., Ahmad, M., Li, Y. (2019). Distributed Electric Powertrain Test Bench With Dynamic Load Controlled by Neuromorphic Speed-Tracking Method. IEEE Transactions on Transportation Electrification, 5 (2), 433–443. doi: https://doi.org/10.1109/tte.2019.2904652
7. Syrigos, S. P., Karatzafis, I. C., Tatakis, E. C. (2013). Four-quadrant fully controlled mechanical load simulator. 2013 15th European Conference on Power Electronics and Applications (EPE). doi: https://doi.org/10.1109/epe.2013.6634640
8. Song, Q., Liu, W., Zhao, W., Li, Y., Ahmad, M., Zhao, L. (2019). Road Load Simulation Algorithms Evaluation Using A Motor-in-the-loop Test Bench. 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). doi: https://doi.org/10.1109/itec-ap.2019.8903852
9. Achour, T., Pietrzak-David, M. (2012). An experimental test bench for a distributed railway traction mechanical load emulator: IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. doi: https://doi.org/10.1109/iecon.2012.6308725
10. Ruan, J. J., Lockhart, R. A., Jianhuang, P., Quintero, A. V., Bland, D., de Rooij, N. (2013). An Automatic Test Bench for Complete Characterization of Vibration-Energy Harvesters. IEEE Transactions on Instrumentation and Measurement, 62 (11). 2966–2973. doi: https://doi.org/10.1109/tim.2013.2265452
11. Shuai, Z., Zhaokun, X., Haisong, J. (2011). The Development of a Test Bench for the Dynamic Strength and Durability of Auto Front Axle Rocker. 2011 Third International Conference on Measuring Technology and Mechatronics Automation. doi: https://doi.org/10.1109/icntma.2011.765
12. Yan, T. (2012). Construction of cylinder head vibration bolts test bench and stress analysis of the bolts. 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). doi: https://doi.org/10.1109/cnecn.2012.6201582
13. Chivu, C. (2014). Pneumatic Driving in Material Handling Systems. Recent, 15 (3 (43)), 155–159.
14. Roganov, L. L. (2011). Soveshchestvovanie tehnologiy i mashin dlya raznykh otrasley mashinostroeniya na osnove razvitiya gidropurphug i klinozamennych mehanizmov. Obrabotka materialov davleniem, 2 (27), 163–168.
15. Rohanov, L. L., Rohanov, M. L., Hramovsky, A. Ye. (2013). Udarni stendy na bazi hidropurzhnogo priyodu. Kramatorsk: DDMA, 161.

DOI: 10.15587/1729-4061.2021.227583

ANALYTICAL STUDY OF AUTO-BALANCING WITHIN THE FRAMEWORK OF THE FLAT MODEL OF A ROTOR AND AN AUTO-BALANCER WITH A SINGLE CARGO (p. 66–73)

Filimonikhin Gennady
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-2819-0569

Lubov Olijnichenko
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0001-9531-6265

Guntis Strautmanis
Riga Technical University, Riga, Latvia
ORCID: https://orcid.org/0000-0001-8405-939X

Antonina Haieva
Mykolayiv National Agrarian University, Mykolayiv, Ukraine
ORCID: https://orcid.org/0000-0002-8017-3133

Vasyl Hruban
Mykolayiv National Agrarian University, Mykolayiv, Ukraine
ORCID: https://orcid.org/0000-0003-6753-565X

Olexandr Lysenko
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0002-3385-1771

Mareks Mezitis
Transport Academy, Ermes, Latvia
ORCID: https://orcid.org/0000-0003-0269-7297

Ivan Valiavskyi
Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
ORCID: https://orcid.org/0000-0003-4890-6313

This paper reports the analytically established conditions for the onset of auto-balancing for the case of a flat rotor model on isotropic elastic-viscous supports and an auto-balancer with a...
single load. The rotor is statically unbalanced, the rotation axis is vertical. The auto-balancer has a single cargo – a pendulum, a ball, or a roller. The balancing capacity of the cargo is equal to the rotor imbalance.

The physical-mathematical model of the system is described. The differential equations of motion are recorded in dimensionless form relative to the coordinate system that rotates synchronously with the rotor. The so-called main movement has been found; in it, the cargo synchronously rotates with the rotor and balances it. The differential equations of motion are linearized in the neighborhood of the main movement. A characteristic equation has been constructed. It helped investigate the stability of the main movement (an auto-balancing mode) for the cases of the absence and presence of resistance forces in the system.

It was established that in the absence of resistance forces in the system:

- the rotor has three characteristic rotational speeds, and the first always coincides with the resonance frequency;
- auto-balancing occurs when the rotor rotates at speeds between the first and second ones, and above the third characteristic speed;
- the value of the second and third characteristic speeds is significantly influenced by the ratio of weight to the mass of the system;
- the second and third characteristic speeds monotonously increase with an increase in the ratio of cargo weight to the mass of the system.

Resistance forces significantly affect both the values of the second and third characteristic speeds and the conditions of their existence. Small resistance forces do not change the quality behavior of the system. With high resistance forces, the number of characteristic speeds decreases to one.

The paper reports the results applicable to an auto-balancer with many cargoes when it balances the imbalance that equals the balancing capacity of the auto-balancer.

Keywords: passive auto-balancer, rotor, automatic balancing, static balancing, motion stability, static imbalance.

References

1. Thearle, E. L. (1950). Automatic dynamic balancers (Part 2 – Ring, pendulum, ball balancers). Machine Design, 22 (10), 103–106.
2. Muzychk, A., P. N. (1959). Nekotorye voprosy teorii avtomaticheskoy dinamicheskoy balansirovki. Voprosy dinamiki i prochnosti, 6, 123–145.
3. Blehman, I., I. B. (1981). Sinhronizatsiya v prirode i tehnike. Moscow: Nauka, 352.
4. Detinko, F. M. (1956). Ob ustoychivosti roubtov avtobalansira dlya dinamicheskoy balansirovki. Izv. AN SSSR. OTN. Mehanika i mashinostroenie, 4, 38–45.
5. Artyunin, A. I. (1993). Islesdovanie dvizheniya rotora s avtoplashhroj. Izv. AN SSSR. OTN. Mehanika i mashinostroenie, 1, 15–19.
6. Sommerfeld, A. (1904). Beitrage zum dynamischen Ausbau der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure, 48 (18), 634–638.
7. Filimonikhin, G. (1996). K ustoychivosti osnovnogo dvizheniya dvuhkhatnikovogo avtobalansira. Dopovidi Nacionalnoi akademii nauk Ukrainy, 8, 74–78. Available at: http://dspace.kntu.kr.ua/jspui/handle/123456789/6796
8. Green, K., Champneys, A. R., Lieven, N. J. (2006). Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors. Journal of Sound and Vibration, 291 (3-5), 861–881. doi: https://doi.org/10.1016/j.jsv.2005.06.042
9. Bogdevičius, M., Jamščinienė, J. (2010). Influence of Dynamic Viscosity on Automatic Dynamic Balance. Solid State Phenomena, 164, 127–132. doi: https://doi.org/10.4028/www.scientific.net/ssp.164.127
10. Artyunin, A. I., Eliseev, S. V. (2013). Effect of “Crawling” and Peculiarities of Motion of a Rotor with Pendular Self-Balancers. Applied Mechanics and Materials, 373-375, 38–42. doi: https://doi.org/10.4028/www.scientific.net/amm.373-375.38
11. Lu, C.-J., Tien, M.-H. (2012). Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and Signal Processing, 32, 251–268. doi: https://doi.org/10.1016/j.ymssp.2012.06.001
12. Gorbenko, A. N. (2003). On the Stability of Self-Balancing of a Rotor with the Help of Balls. Strength of Materials, 35, 305–312. doi: http://doi.org/10.1023/a:1024621023821
13. Filimonikhin, G. (2004). Zrivnovazhennia i vibrozakhyst rotoriv avtobalansyramy z tverdymy koryhuvalnymy vantazhmy. Kirovohrad: KNTU, 332.
14. Artyunin, A. I., Barsukov, S. V., Sumenkov, O. Y. (2019). Peculiarities of Motion of Pendulum on Mechanical System Engine Rotating Shaft. Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), 649–657. doi: https://doi.org/10.1007/978-3-303-22041-9_70
15. Filimonikhin, G., Yatsun, V., Filimonikhina, I., Ienina, I., Munitukov, I. (2019). Studying the load jam modes within the framework of a flat model of the rotor with an auto-balancer. Eastern-European Journal of Enterprise Technologies, 5 (7 (101)), 51–61. doi: https://doi.org/10.15587/1729-4061.2019.177416
16. Strauch, D. (2009). Classical Mechanics: An Introduction. Springer-Verlag Berlin Heidelberg, 405. doi: https://doi.org/10.1007/978-3-540-73616-5
17. Rueille, D. (1989). Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press. doi: https://doi.org/10.1016/c03-14126-2
18. Nayfeh, A. H. (1993). Introduction to Perturbation Techniques. John Wiley & Sons, Inc., 533.

DOI: 10.15587/1729-4061.2021.229032

THEORETICAL STUDY OF THE GRATE-SAW-TYPE LARGE-LITTER CLEANER OF THE MOUNTED TYPE

Karimov Husnu Kadir

University of Technology of Azerbaijan (UTECA), Ganja, Azerbaijan

ORCID: https://orcid.org/0000-0002-1468-9154

Mustafayeva Esmira

Azerbaijan State Economic University (UNEC), Baku, Azerbaijan

ORCID: https://orcid.org/0000-0002-4700-3933

Jafarov Elman

Azerbaijan State Economic University (UNEC), Baku, Azerbaijan

ORCID: https://orcid.org/0000-0003-1067-8061

Safarov Terane

Azerbaijan State Economic University (UNEC), Baku, Azerbaijan

ORCID: https://orcid.org/0000-0002-9059-1479

Veliev Fazil

Azerbaijan State Economic University (UNEC), Baku, Azerbaijan

ORCID: https://orcid.org/0000-0002-2607-2091

This paper reports a theoretical study into the saw-type-grate section of a large litter cleaner in mounted cleaners that operate on a cotton harvester, as well as the theoretical and experimental justifications for its parameters. The effect exerted by a mounted cleaner on the process of cleaning raw cotton when processing in a cotton gin has been studied.
A theoretical model of the impact of grates on weeds in cleaning processes has been developed. A condition for repelling the litter by grates and removing it from a cotton technological flow has been studied. The use of grates with a flat-shaped front edge allows for a steady reduction in the amount of damage in the raw cotton fiber, which improves the fiber quality and leads to a decrease in the number of defects and debris.

The experimental and theoretical studies have produced evidence that enables the efficient operation of mounted-type cleaning machines in the cotton-cleaning industry.

The movements of raw cotton as a viscoelastic body at the free impact of litter with the teeth of the saw against a stationary surface of the grate were investigated; the force schemes between the grates and saws were considered. The effect of a saw-type drum on the technological properties of raw cotton was investigated, namely on seed damage and the formation of the free fiber.

A model of interaction between weed particles and grates was considered; the trajectories of the litter flight were shown in the function of the slope of the grate and the recovery factor.

The issues of the relationship between the physical-mechanical properties of raw cotton, the elastic characteristics of raw cotton, and the impact force of cotton flies against the grate with a flat working face. Solving these issues could make it possible to determine the optimal structure of the raw cotton cleaning mechanisms, which would improve the effectiveness of cleaning raw cotton from weeds.

Based on the identified functional links, it has become possible to construct new or improve existing structures of the saw-type grate section of mounted cleaners. Practical experience shows that the use of the designed structure in large litter cleaners of the mounted type produces a significant increase in the cleaning effect of the machine.

Keywords: mounted cleaner, large litter, grate, seed damage, free fiber, cleaning effect.

References

1. Tyutin, P. N., Lugachev, L. E. (1997). O vydelenii sornych primesey cherez yachevki setshachy poverhnostny. Sbornik trudov TITLP “Mechanicheskaya tehnologiya voloknistyh materialov”, 19, 51–58.
2. Matusiak, M., Walaw ska, A. (2010). Important Aspects of Cotton Colour Measurement. FIBRES & TEXTILES IN EASTERN EUROPE, 18 (3 (80)), 17–23.
3. Boldinskij, G. I., Samandarov, S. A., Benenson, A. L. (1974). Vybor formy kolka v ochistitelah melkogo sora. Hlopkovaya promyshlennost’, 1, 16–17.
4. Baker, R. V., Stedronsry, V. L. (1998). Seed cotton and cotonseed handling wish air yet conveys. U. S. Department of agriculture, 18.
5. Korabel’nikov, R. V., Ibrugins, H. I. (2008). Kompleksnyy poka zatel’ vozdeystviya ochistitel’ya hlöpka na hlopk-syrets v protsesse ochistki. Tekhnologiya tekstil’noy promyshlennostyi, 3, 35–38.
6. Mirochnichenko, G. I., Korabelnikov, R. V., Jakubov, D., Tyutin, P. N. Patent No. 1.475.448. Great Britain and Northern Ireland.
7. Shaw, G. S., Franks, S. N. (1994). Hand book for cotton Gunners. Washington, 28–32.
8. Hafizov, I. K., Rasulov, A. (2009). Issledovanie razryshitel’nogo efekta razdelitelya deleyo tonkovoloknistrogo hlöpka-syrtsa na letuchiki. Hlopkovaya promyshlennost’, 3, 9–21.
9. Sapon, A. L., Samandarov, S. A., Lisbestr, S. L. (2007). Potochnaya liniya pervichnoy pererabotki hlopk-syrtsa PLPH. Hlopkovaya promyshlennost’, 3, 1–3.
10. Ibrugins, H. I., Korabel’nikov, R. V. (2009). Osobennosti vzaimodeystviya kol’kov rabochego barabanah ochistitel’ya s chastitsam hlöpka-syrtsa, imeyushchimi voloknistroe svyazi, pri nertsentral’nom udare. Tekhnologiya tekstil’noy promyshlennostyi, 2, 16–19. Available at: https://tp.ivgpu.com/wp-content/uploads/2015/11/314_6.pdf
11. Lebedev, D. A., Petrov, A. A. (2013). Model impacts on weed ad-mixture in the process of cleaning fiber. Tekhnologiya tekstil’noy promyshlennostyi, 3, 115–119.
12. Khakimov, Sh. Sh. (2015). Theoretical studies of the motion of raw cotton the gaps between the grate fixing and serated drum. European applied sciences, 11, 63–66.
13. Lin, H., Akankwasa, N. T., Wang, J., Zhang, C. (2019). Simulation of the Effect of Geometric Parameters of the Fibre Transport Channel in Open-End Rotor Spinning. Fibres and Textiles in Eastern Europe, 27 (2 (134)), 52–57. doi: https://doi.org/10.5604/01.3001.0012.9987
14. Wang, L., Parnell, C. B., Shaw, B. W. (2002). Performance Characteristics of Cyclones in Cotton-Gin Dust Removal. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, IV. Available at: https://ecommons.cornell.edu/bitstream/handle/1813/10260/BC%2002%20001.pdf?sequence=1&isAllowed=y

DOI: 10.15587/1729-4061.2021.229447

DESIGN OF IMPACT DAMPERS FOR TRANSPORTING CARGOES BY TWO-LINK VEHICLES (p. 85–94)

Ihor Vikovyvch
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-0281-158X

Ljubomyr Krainyk
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-6524-9126

Roman Zinko
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-3275-8188

Vitalij Popovych
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-3097-5111

Orest Horbai
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-9915-5637

This paper considers the influence of the transitional modes of movement (acceleration, braking) of a multi-link vehicle on the vibration protection of transported non-fixed or partially fixed cargoes. The impact phenomenon, in this case, can be strengthened by the existence of coupling mechanisms between the links of a multi-link vehicle. To reduce such horizontal impact loads, it is advisable to use elements with viscoelastic damping in the coupling devices of a multi-link vehicle. To study the actual impact phenomena during the transportation of non-fixed or partially fixed cargoes under the extreme modes of movement of two-link vehicles, it is proposed to use a flat two- and three-mass dynamic model with viscoelastic damping. At the same time, the theory of elastic impact has been applied while the elastic-damping characteristics of vehicles’ suspensions were not taken into consideration.

It has been shown that the reported research results make it possible to estimate the approximate values of the mechanical parameters for restrictive devices that protect non-fixed or partially fixed cargoes from impact, during the transition modes of transportation, depending on the conditions of motion.

This practically makes it possible to select the rational design parameters for the elements of viscoelastic restrictive devices, in particular elastic elements and dampers, in order to reduce impact loads...
on non-fixed heavy cargoes during transportation under extreme modes of movement.

Based on this study, a procedure of vibration protection of non-fixed or partially fixed cargoes in the body of a two-link vehicle during its uneven movement has been proposed, which implies determining the maximum dynamic loads on these cargoes as well as the possibility of choosing the rational design parameters for restrictive devices in order to prevent or reduce the impact of these cargoes hitting the restrictive devices.

Keywords: transportation, cargo, multi-link vehicle, estimation scheme, extreme mode, impact, vibration protection, differential equations.

References
1. Vikovich, I. A. (1981). Ob odnom sluchae uprugogo udara. Ukr. NIINTI No. 2667. Kyiv, 11.
2. Clark, R. A., Dean, P. A., Elkins, J. A., Newton, S. G. (1982). An Investigation into the Dynamic Effects of Railway Vehicles Running on Corrugated Rails. Journal of Mechanical Engineering Science, 24 (2), 65–76. doi: https://doi.org/10.1243/jmes_jour_1982_024_015_02
3. Kutsenko, L., Vainin, V., Shoman, O., Yablonskyi, P., Zapolskiy, L., Hrytsyna, N. et. al. (2019). Modeling the resonance of a swinging spring based on the synthesis of a motion trajectory of its load. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 53–64. doi: https://doi.org/10.15587/1729-4061.2019.1609869
4. Cherevko, Yu. M., Vikovich, I. A., Lozovyi, I. S. (2007). Pruzhny ustroystvo na ego rame. Publ. v B.I. No. 38. A.S. No. 1047761 SSSR. Ustroystvo dlya krepleniya kuzova transpotskogo sredstva na ego rame. Publ. v B.I. No. 38.
5. Shuklinov, S., Leontiev, D., Makarov, V., Verbitskiy, V., Hubin, A. (2021). Theoretical Studies of the Rectilinear Motion of the Axis of the Locked Wheel After Braking the Vehicle on the Uphill. Advances in Intelligent Systems and Computing, 69–81. doi: https://doi.org/10.1007/978-3-030-48124-1_7
6. Ibrahim, R. A. (1994). Friction-Induced Vibration, Chatter, Squeal, and Chaos – Part II: Dynamics and Modeling. Applied Mechanics Reviews, 47 (7), 227–253. doi: https://doi.org/10.1115/1.3111080
7. Savel’ev, Yu. F. (2003). Metod effektivnoy vibroizolacii podvizhnogo sostava i ekipazha na osnove dopolnitel’nyh mehanicheskikh ustroystv so znakoperemennoy uprugost’yu. Omsk: Omskij gos. un-t putey soobscheniya, 107.
8. Al’gin, V. B., Dzyun’, V. A., Pavlovskiy, V. Ya., Tisitovich, I. S. (1983). A.S. No. 1047761 SSSR. Ustroystvo dlya krepleniya kuzova transportnogo sredstva na ego rame. Publ. v B.I. No. 38.
9. Zinko, R. V., Kraynik, L. V., Gorbaj, O. Z. (2019). Basics of constructive synthesis and dynamics of special cars and technological machines. Lviv: Lviv Polytechnic Publishing House, 344.
10. Awrejcewicz, J. (2012). Classical Mechanics: Kinematics and Statics. Springer, 440. doi: https://doi.org/10.1007/978-1-4614-3791-8
11. Lam, K. S. (2014). Fundamental Principles Of Classical Mechanics: A Geometrical Perspective. World Scientific Publishing Co Pte Ltd, 592. doi: https://doi.org/10.1142/8947
12. Kaewunruen, S., Remennikov, A. M. (2009). Progressive failure of prestressed concrete sleepers under multiple high-intensity impact loads. Engineering Structures, 31 (10), 2460–2473. doi: https://doi.org/10.1016/j.engstruct.2009.06.002
13. Zarembski, A., Bell, J. G. (2002). Limiting the Effects of High-speed Dynamic Forces on Track Structure. TR News, 25–26.
14. Limebeer, D. J. N., Massaro, M. (2018). Dynamics and Optimal Control of Road Vehicles. Oxford University Press. doi: https://doi.org/10.1093/oso/9780198825715.001.0001
15. Cossalter, V., Doria, A., Pegoraro, R., Trombetta, L. (2010). On the non-linear behaviour of motorcycle shock absorbers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224 (1), 15–27. doi: https://doi.org/10.1243/09544070auto1273
16. Veyts, V. L., Vasi’ko, D. V. et. al. (2003). Dinamika privodov tehnolohicheskih mashin s samotormozyaschimyia mehanizmami. Sankt-Peterburg: Izd-vo SPb IMASH, 162.
17. Veyts, V. L., Snieerson, E. Z. (2000). Ob odnom obobscennykh modeli udarnogo vzaimodeystviya v samotormozyascheyshyx sistemxe. Problemy mashinostroeniya i nadezhnosti mashin, 16–22.
18. Foutch, D. A., Kim, T.-W., Octer, D. E., Doe, B. E. (2006). Investigation of Longitudinal Forces in a Concrete Railroad Trestle. Journal of Bridge Engineering, 11 (5), 618–625. doi: https://doi.org/10.1061/(asce)1084-0700(2006)11:5(618)
19. Kaewunruen, S., Remennikov, A. M. (2010). Dynamic properties of railway track and its components: recent findings and future research direction. Insight - Non-Destructive Testing and Condition Monitoring, 52 (1), 20–22. doi: https://doi.org/10.1784/insi.2010.52.1.20
20. Snieerson, E. Z. (2015). O stesnennyh udarnykh vzaimodeystviyax v suschestvenno nelineynyh dinamicheskih sistemah. Tr. XVIII Mezhd. simpoz. «Dinamika vibroudarnyh (sil’no nelineynyh) sistem». Moscow: IMASH RAN, 311–315.
21. Ling, X., Yao, T., Li, B., Qin, C., Liu, C. (2019). A Multi-Physics Modeling-Based Vibration Prediction Method for Switched Reluctance Motors. Applied Sciences, 9 (21), 4544. doi: https://doi.org/10.3390/app9214544
22. Huang, J., Zhang, A., Sun, H., Shi, S., Li, H., Wen, B. (2018). Bifurcation and Stability Analyses on Stick-Slip Vibrations of Deep Hole Drilling with State-Dependent Delay. Applied Sciences, 8 (5), 738. doi: https://doi.org/10.3390/app8050758
Визначення динамічної навантаженості несучих конструкцій вантажних вагонів з фактичними розмірами (с. 6–14)

О. В. Фомін, А. О. Ловська

Проведено визначення динамічної навантаженості несучих конструкцій основних типів вантажних вагонів з фактичними розмірами при основних експлуатаційних режимах. Інерційні коефіцієнти несучих конструкцій вагонів визначені шляхом побудови їх просторових моделей в програмному комплексі SolidWorks. До уваги прийнято два випадки навантаженості несучих конструкцій вагонів – у вертикальній та повздовжній площинах. Дослідження проведені в плоскій системі координат. При моделюванні вертикальної навантаженості несучих конструкцій вагонів враховано, що вони рухаються у порожньому стани стискою верністю пружно-вязкою колією. Несучі конструкції вагонів обираються на візки моделей 18-100. Розв'язок диференціальних рівнянь здійснений за методом Рунге-Кутта в програмному комплексі MathCad. При визначенні повздовжньої навантаженості несучих конструкцій вагонів розрахунок проведений для випадку маневрового співударяння вагонів або “ривка” (вагон-цистерна). Визначені прискорення, які діють на несучі конструкції вагонів. Результати досліджень сприятимуть визначенню можливості подовження експлуатації несучих конструкцій вантажних вагонів, які вичерпали свій нормативний строк служби.

Ключові слова: вантажний вагон, несуча конструкція, динамічна навантаженість, моделювання навантаженості, динамічні показники, ресурс експлуатації, залізничний транспорт, транспортна механіка.
У статті розглядається метод комп'ютерного моделювання напружено-деформованого стану обичайки приводного барабана в інтегрованому середовищі NASTRAN. У зв'язку зі складністю визначення напружень і деформацій в секціях барабана аналітичним методом пропонується вирішити що важливу задачу чисельним методом скинчених елементів. На попередньому етапі комп'ютерного моделювання була розроблена механічна розрахункова схема, що включає змінний тиск, що змінюється залежно від кута повороту барабана, детерміновані співвідношення, що описують змінні коефіцієнти зусиль, засновани на залежності Ейлера. Також пропонується враховувати зміни залежно від змінної сили терті, яка залежить від змінного коефіцієнта залежності стрічки барабана.

В результаті комп'ютерного розрахунку були визначені еквівалентні напружения по Мізесу 65 МПа, коефіцієнт запасу міцності 4,2 і компоненти дотичних напружень з використанням маркаера тензора напружень, напружения змінюються від 16 МПа для тканиної стрічки і та 3,14 МПа для гумової стрічки. За результатами розрахунку побудована залежність дотичних напружень від кута повороту барабана. Побудована діаграма зміни складової дотичних напружень по формуючій обичайці барабана.

Аналіз напружень проведений на основі аналогічних напружень на основі обчислених напруженнях пропонується швидко розрахувати приводні барабани методом триалої витoku. Ком'ютерний розрахунок змінних напруження в компоненті дозволяє вибрати раціональні параметри футеровки виходячи з таких показників, як міцність на відновлюваність, як також визначення надійність і кількості зусильля при протитрібному транспортуванні.

| Ключові слова: | комп'ютерна стрічка, довговічність, приводний барабан, напруження, деформація, метод кінцевих елементів, футеровка. |

DOI: 10.15587/1729-4061.2021.2298822

В дослідженні розглянуто метод комп'ютерного моделювання напружено-деформованого стану сталебетонних балок. Розглядалися уточнення і примітки до вдосконалення комп'ютерного моделювання напружено-деформованого стану сталебетонних балок.

- Установлено, що випадки згідно з температурним полям для сталебетонних балок.
- Визначення температурного поля в сталебетонних балках встановлено.
- Математичні моделі застосування сталебетонних балок.
- Установлено, що випадки згідно з температурним полям для сталебетонних балок.
- Встановлено, що випадки згідно з температурним полям для сталебетонних балок.

DOI: 10.15587/1729-4061.2021.229862

[Спрощена версія]
При проектуванні і будівництві підземних споруд різного призначення, таких як тунелі, шахти, гірничі вироби, виникає необхідність в створенні методик розрахунку їх міцності і надійності. Фізичною моделлю таких об'єктів можна вважати однорідний ізотропний напівпростір, що містить нескінченно довгий порожній циліндр, розташований паралельно до його границі. Для такого багатозв'язного тіла можна досліджувати здатні механіки деформівного твердого тіла.

Наведено доказ теорем додавання базисних розв'язків рівняння Ламе для півпростору і циліндра, записаних відповідно в декартовій і циліндричній системах координат. Цей результат є важливим з теоретичної точки зору для обґрунтування численно-аналітичного методу – узагальненого методу Фур'є. Цей метод дозволяє розв'язувати просторові крайові задачі теорії пружності та термо-пружності для ізотропних та трансверсально-ізотропних багатозв'язних тіл. Як і в класичному методі Фур'є, тут використовуються загальні розв'язки рівняння, риновани, але не в один, а в декількох системах координат.

В результаті цих робіт встановлено, що основна задача теорії пружності в описаному вище багатозв'язному тілі. Про-ведення аналізу напівпростору в однокомпонентному прикладі дає змогу розробити висновки про визначення областей, які є найбільш узагальненими для розрахунку. Знайомство з цим полегшують визначення зазначених вище напруження багатозв'язного тіла. Зміна компоненти σ_t по осі t відповідає заданій на півпросторі переміщення. Компоненти σ_r, σ_θ, $\tau_{\theta r}$ вносять менший внесок в розподіл напружень,

Наведено доказ теорем додавання базисних розв'язків рівняння Ламе для півпростору і циліндра, записаних відповідно в декартовій і циліндричній системах координат. Цей результат є важливим з теоретичної точки зору для обґрунтування численно-аналітичного методу – узагальненого методу Фур'є. Цей метод дозволяє розв'язувати просторові крайові задачі теорії пружності та термо-пружності для ізотропних та трансверсально-ізотропних багатозв'язних тіл. Як і в класичному методі Фур'є, тут використовуються загальні розв'язки рівняння, риновани, але не в один, а в декількох системах координат.

Розроблено аналітичну модель ударного випробувального стенду. Переналаштування відбувається дуже оперативно. Завдяки наявності демпфування у підземних споруд.

Ключові слова: теореми додавання, рівняння Ламе, узагальнений метод Фур'є, напівпростір, циліндрична порожнина.
– у роторі існують три характеристики швидкостей обертання, причому перша завжди співпадає з резонансною частотою;
– автобалансування настає при обертанні ротора з швидкостями, що знаходяться між першою і другою, та над третьою характеристиками швидкостей;
– на величинах другої і третьої характеристик швидкостей істотно впливає співвідношення маси вантажу до маси системи;
– друга і третя характеристики швидкості монотонно зростають із зростанням відносної маси вантажу до маси системи.
Сили опору істотно впливають на якість другої і третьої характеристики швидкостей, так і на умови їх існування. Малі сили опору не змінюють якоїсь поведінки системи. При великих силах опору кількість характеристичних швидкостей зменшується до однієї.
Одержані результати застосовують для автобалансира з багатьма вантажами, коли вони балансирують незрівноважені вантажі.

Ключові слова: пасивний автобалансир, ротор, автоматичне балансування, статичне балансування, стійкість руху, статична незрівноваженість.

DOI: 10.15587/1729-4061.2021.229032

ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ КОЛОСНИКОВО-ПІЛЬЧАТОГО ОЧИЩУВАЧА ВЕЛИКОГО СМІТТЯ НАВІСНОГО ТИПУ (c. 74–84)

Husnu Karimov, Esmira Mustafayeva, Elman Jafarov, Terane Safarova, Fazil Veliev

Проведено теоретичні дослідження пильчато-колосникової секції очищувача габаритного сміття в навісних очисниках, що функціонує на багатоланковій машині, теоретичні та експериментальні обґрунтування його параметрів. Вивчено вплив навісного очищувача на технологічний процес очищення землі при переробці на звітно-полів. Розроблено теоретичні моделі впливу колосників на сміття з інших процесів. Внутрішню умову відображено в очищувачі колосниками, що змінюють кількість пошкоджень у власному засобі очищування, яка призводить до зниження сили відносної маси і засміченості у транспортних засобах.

Досліджено вплив перехідних режимів руху (розгон, гальмування) багатоланкового транспортного засобу на віброзахист транспортованих вантажів. Розглянуто вплив віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера. Розглянуто вплив перехідних режимів руху (розгон, гальмування) багатоланкового транспортного засобу на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера. Розглянуто вплив перехідних режимів руху (розгон, гальмування) багатоланкового транспортного засобу на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера.

Досліджено вплив перехідних режимів руху (розгон, гальмування) багатоланкового транспортного засобу на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера, а також вплив величини швидкостей обертання ротора на віброзвоз закону, величини резонансної частоти автобалансера.