Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination
[version 1; peer review: 2 approved]

Laura Nicolas¹,Montserrat Cols¹,Jee Eun Choi²,Jayanta Chaudhuri¹,
Bao Vuong²

¹Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
²Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA

Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.

Keywords
immunoglobulin, CSR, AID, DNA repair

Open Peer Review

Approval Status ✔ ✔

version 1 ✔ ✔ ✔
13 Apr 2018

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Paolo Casali, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, USA

2. Amy Kenter, University of Illinois College of Medicine, Chicago, USA

Any comments on the article can be found at the end of the article.
Corresponding author: Bao Vuong (bvuong@ccny.cuny.edu)

Author roles: Nicolas L: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Cols M: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Choi JE: Writing – Review & Editing; Chaudhuri J: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Vuong B: Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This study was supported by the National Institutes of Health (R01 AI072194-08), National Institute on Minority Health and Health Disparities (5G12MD007603), and National Cancer Institute (2U54CA132378). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Nicolas L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Nicolas L, Cols M, Choi JE et al. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination [version 1; peer review: 2 approved] F1000Research 2018, 7(F1000 Faculty Rev):458 https://doi.org/10.12688/f1000research.13247.1

First published: 13 Apr 2018, 7(F1000 Faculty Rev):458 https://doi.org/10.12688/f1000research.13247.1
Introduction

Mammalian adaptive immune responses require B cells to produce immunoglobulins (Igs), commonly known as antibodies, that can recognize a seemingly infinite number of antigens on foreign pathogens. Composed of two heavy (IgH) and two light (IgL) chains that are linked by disulfide bonds, each Ig contains an antigen-binding domain formed from the amino-terminal variable regions of IgH and IgL. The carboxyl-terminal constant (C) region of the IgH chain determines the Ig effector function. Three distinct genomic alterations in the IgH and IgL loci enable B cells to generate the diverse repertoire of Igs: V(D)J recombination, class switch recombination (CSR), and somatic hypermutation (SHM). During V(D)J recombination, developing B cells in the fetal liver and the adult bone marrow assemble the variable coding regions of IgH from variable (V), diversity (D), and joining (J) coding segments. IgL coding regions are assembled from V and J coding segments in either the Igκ or Igλ locus. RAG1/RAG2 endonucleases are required for V(D)J recombination, which forms the primary Ig repertoire and promotes the development of mature IgM/IgD-expressing B cells1,2. Mature B cells with membrane-bound IgM or IgD (B-cell receptor [BCR]) (or both) will migrate to secondary lymphoid organs, such as the spleen, lymph nodes, and Peyer’s patches, where binding of the IgM or IgD to its cognate antigen in the presence of helper T cells will promote CSR and SHM.

CSR reorganizes the IgH gene locus to delete the default Cμ/Cδ constant coding exons for an alternative set of downstream constant coding exons (Cγ, Cε, or Cτα)1. The B cell thus will switch from expressing IgM or IgD to IgG, IgE, or IgA. Each Ig iso-type regulates different effector functions that are necessary for an effective adaptive immune response1. At the molecular level, CSR is a deletional-recombination reaction that occurs at repetitive DNA regions called switch (S) regions, which precede each constant coding exon except Cδ. The intronic region preceding Cδ is a non-canonical, S-like sequence known as σδ. The expression of Cδ, and consequently IgD, is primarily independent of CSR and results from alternative splicing of a primary transcript that includes Cμ and Cδ; however, recent work has shown that CSR to IgD is a rare event confined to mucosa-associated lymphoid tissues and depends on p53 binding protein 1 (53BP1) and myeloid differentiation primary response gene 88 (MyD88)1.

To initiate CSR, DNA double-strand breaks (DSBs) are generated in an upstream donor S region (for example, Sμ) and a downstream acceptor S region (for example, Sα) (Figure 1). The DSBs are ligated by proteins of the classical-non-homologous end-joining (C-NHEJ) and alternative-NHEJ (A-EJ) pathways, and the sequence between the recombining S regions is excised as an extrachromosomal, circular DNA, which is lost during cell division and DNA replication. Unlike CSR, SHM introduces untemplated point mutations, and occasional deletions and insertions, into the recombined V, D, and J coding exons of IgH and IgL genes at a very high rate (10^-2–10^-3 base pairs per generation)3,4. These mutations, which occur primarily in complementarity-determining regions, allow the generation of Igs with an increased affinity toward their cognate antigen.

Both CSR and SHM require activation-induced cytidine deaminase (AID), a 24-kDa protein expressed primarily in activated B cells5,6. AID, a single-stranded DNA (ssDNA) cytidine deaminase, initiates CSR and SHM by converting deoxycytidine (dC) to deoxyuridine (dU) in recombining S regions during CSR or recombined V(D)J coding exons during SHM. The AID-generated dU:dG mismatch activates DNA repair pathways, including the base excision repair (BER) and mismatch repair (MMR) pathways, which induce DSBs to drive CSR (Figure 1) or error-prone repair to promote SHM7.

This review describes the general mechanisms of CSR and highlights recent data on the localization of AID to S regions and the DNA repair pathways that resolve AID-generated dU:dG lesions. For an overview of SHM, readers are referred to other reviews8,9.

AID targeting to switch regions

Although S regions and Ig variable coding segments are physiological targets of AID during CSR and SHM, respectively, AID can generate DSBs and mutations in non-Ig genes, such as Myc and Bcl610–13. Despite the markedly lower rate of DSB formation and mutation at these non-Ig genes13,14, the resulting DNA translocations or mutations in these off-target genes contribute to the development of mature B cell lymphomas15–17. Thus, mechanisms target AID specifically to the Ig loci to promote CSR and SHM while restricting AID access to the remainder of the B cell genome to limit off-target DSBs and mutations to maintain genome integrity.

Role of germline transcription in generating AID substrates

Ig heavy chain constant (Cμ) exons are organized as independent transcriptional units composed of a cytokine-inducible promoter upstream of a non-coding “I-exon,” the intronic S region, and the corresponding Cμ exons18, T cell–dependent (for example, cytokines and CD40L) or T cell–independent (for example, lipopolysaccharide) stimuli (or both) activate transcription of recombining S regions (Figure 1), which is absolutely required for CSR. The primary germline transcript is spliced into a mature, polyadenylated transcript with no known protein product and is frequently referred to as a “sterile” germline transcript19. Genetic deletion of specific I-exons abolishes germline transcription and CSR to the corresponding isotype20,21. Germline transcription initiating from the I-exons and proceeding through the S regions to the Cμ exons creates the ssDNA substrates for AID within the transcribed S regions. Each S region varies in length (1–10 kb) and consists of tandem repetitive units that contain a G-rich non-template strand. Deleting the repetitive units within the S regions or replacing the S regions with small core S-region sequences significantly impairs CSR and demonstrates an essential role for these sequences during CSR22–25. Recent data suggest that the repetitive, G-rich non-template strand forms G-quadruplex (G4) structures that facilitate cooperative AID oligomerization at S regions26. In addition, the tandem repeats of 5’-AGCT-3’ within the core S regions recruit AID and its kinase, protein kinase A (PKA), to the S regions via the 14-3-3 adaptor proteins, which specifically recognize the 5’-AGCT-3’ repeats (Xu et al., 201027; reviewed in Xu et al., 201228).
Figure 1. Mature B lymphocytes undergo class switch recombination (CSR) to alter the expression of the immunoglobulin heavy chain constant region (C\(\alpha\)). The figure depicts CSR between S\(\mu\) and S\(\alpha\) in the immunoglobulin heavy chain (IgH) locus. Activation-induced cytidine deaminase (AID) converts cytidines into uridines in S-region DNA. The dU:dG mismatch is converted into DNA double-strand breaks by either the base excision repair (BER) or the mismatch repair (MMR) pathway. In the BER pathway, uracil DNA glycosylase (UNG) removes the uracil base from the DNA to generate an abasic site, which is recognized and cleaved by the apurinic/apyrimidinic endonuclease 1 (APE1). During MMR, the dU:dG mismatch is recognized by mutS homologue 2 and mutS homologue 6 (MSH2 and MSH6), which recruit the complex of exonuclease 1 (EXO1), mutL homologue 1 (MLH1), and post-mitotic segregation 2 (PMS2) to excise a short patch of DNA that includes the dU:dG mismatch. The DNA breaks are ligated by classical or alternative non-homologous end-joining pathways to generate a recombinated IgH locus and an excision circle. Rev1 and 14-3-3 are scaffolding proteins, which are necessary for the assembly of the protein complexes participating in CSR.
Germline transcription of S regions creates R-loops, wherein the newly transcribed RNA hybridizes to the template DNA to form a stable RNA:DNA hybrid that exposes the non-template DNA as ssDNA, which is the substrate for AID\(^6\). Invasion of the mouse Sy1 sequence, which converts the G-rich non-template strand to a G-rich template strand, impairs R-loop formation and CSR without affecting germline transcription\(^7\). These data demonstrate the inherent ability of G-rich S regions to form R-loops that likely contain G4 structures, which facilitate AID recruitment\(^8,9\).

Although R-loop formation at non-Ig loci may redirect AID activity to other regions of the B cell genome\(^10\), AID is significantly enriched at the IgH locus, suggesting that factors beyond R-loop formation also restrict AID to the IgH locus during CSR\(^11,12\). AID interacts with RNA polymerase II and its associated proteins, such as Spt5\(^13\), PAF1\(^14\), and the FACT histone chaperone complex\(^15\). In addition, RNA polymerase II, which has stalled at the repetitive G/C-rich S regions, can recruit the RNA exosome to degrade the nascent RNA transcript and facilitate AID deamination of the non-template and template DNA strands\(^16,17\).

Role for germline transcripts in targeting AID to S regions

Germline transcription is necessary but not sufficient for CSR. In mice that lack the Ily exon splice donor site, CSR to IgG1 was abolished despite active S-region transcription\(^18\). Inversion of the mouse Sy1 sequence, which converts the G-rich non-template strand to a G-rich template strand, impairs R-loop formation and CSR without affecting germline transcription\(^19\). These data demonstrate the inherent ability of G-rich S regions to form R-loops that likely contain G4 structures, which facilitate AID recruitment\(^20,21\).

Epigenetic regulation of AID localization to S regions

Epigenetic modifications of the IgH locus during CSR have been proposed to control the recruitment of AID to S regions (comprehensively reviewed in \(\text{52}\)). Changes in histones H4 and H3 methylation patterns have been associated with altered levels of CSR, although the functional significance of these modifications during CSR remains unclear. Conditional deletion of two methyltransferases (Suv4-20h1 and Suv4-20h2), which are responsible for histone H4 lysine 20 di- and tri-methylation (H4K20me2 and H4K20me3), in B cells leads to a 50% reduction in CSR\(^22\). AID interacts with SUV4-20H1 and SUV4-20H2 in 293F cells and localizes these methyltransferases to S regions to promote SUV4-20-mediated histone trimethylation in B cells undergoing CSR\(^23\), suggesting cooperative targeting of methyltransferases and AID to recombining S regions. H3K9me3 tethers AID to S regions and is required for CSR and SHM\(^24\). Knockdown of the splicing regulator PTBP2 reduces AID at S regions and impairs CSR\(^25,26\). These data demonstrate that the spliceosome plays an essential role in localizing AID to S regions.

Sxt RNA expression from a plasmid in trans enhanced CSR to IgA in the B-cell line Bcl1\(^27\), suggesting that spliced, intronic S-region RNA derived from germline transcripts have a functional role during CSR. More recently, these S-region RNAs were shown to recruit AID to S-region DNA sequences\(^28,29\). Intrinsic switch RNAs were known to be spliced from primary transcripts to form lariats that undergo hydrolytic degradation, which is catalyzed by the debranching enzyme DBR1\(^30\). Knockdown of DBR1 in CH12F3 cells reduces CSR; however, expression of switch RNAs in trans bypasses the lariat debranching step in DBR1 knockdown cells to rescue both CSR and AID recruitment to S regions in a sequence-specific manner\(^31,32\). In addition, AID bound directly and selectively to sense S-region transcripts, which were shown to form highly stable four-stranded G4 structures\(^33,34\). A putative G4 RNA binding motif in AID was identified and mutations in this domain abrogated AID interactions with G4 switch RNA and consequently the localization of AID to S regions and wild-type levels of CSR\(^33,35\). Interestingly, a mutation in the RNA binding motif of AID (G133V) has been identified in patients with Hyper-IgM Syndrome who show severe CSR defects\(^36\). From these studies, a new regulatory model for AID localization to S regions was proposed whereby the non-coding, intronic S-region RNA, which is produced following germline transcription and splicing, binds to AID to target AID to sites of DNA recombination (S regions) and promote AID-mediated DNA deamination and CSR in a sequence-specific manner. This model connects the data demonstrating the role of germline transcription and splicing in CSR with the binding of AID to S-region RNA and DNA and identifies a critical function for S-region RNA in CSR beyond germline transcription and splicing (Figure 2).

Multiple DNA repair pathways in CSR

Although AID localization to and deamination of S-region DNA is required for CSR, additional factors downstream of germline transcription and AID recruitment are necessary for wild-type levels of CSR\(^37,38,39\). The conversion of deaminated DNA into DSBs requires many proteins from DNA repair pathways that have evolved to respond to general DNA damage. The mechanism by which these factors convert deaminated DNA into recombogenic DNA repair (that is, CSR) rather than canonical DNA repair (that is, restoration of the dC:dG base pair at the site of deamination) remains unknown.
Figure 2. Proposed model for RNA-dependent targeting of AID during class switch recombination. Upon B-cell activation, germline transcription is initiated from a cytokine-inducible promoter (P) and primary germline transcripts are generated from the I-S-C_H sequences, which encode the I-exon, switch (S) region, and constant coding exons (C_H). These transcripts are spliced to form a mature non-coding germline transcript and an intronic S lariat. The latter is further processed by the debranching enzyme DBR1 to form a linear S-region transcript. Linear S transcripts fold into G-quadruplex RNA, which is bound by AID. The complex of S-RNA and AID is guided to transcribed S-region DNA as a result of the complimentary between the S-RNA and the transcribed S region. AID, activation-induced cytidine daminase; DBR1, debranching RNA lariats.
Below, we discuss our current knowledge of the DNA repair pathways that are required for CSR and highlight the role that AID phosphorylation plays in the generation of DSBs during CSR.

Converting deaminated DNA into DSBs by BER and MMR

CSR requires BER and MMR pathways to generate DNA breaks in recombining S regions. Defects in either BER or MMR alone significantly impair CSR, whereas combined BER and MMR deficiency (for example, *UNG*−/−*MSH2*−/−) completely blocks CSR in *in vitro* and *in vivo*6,63. In the BER pathway for CSR, AID-generated dU in S-region DNA is removed by uracil DNA glycosylase (UNG) to generate an abasic site, which is cleaved by the apurinic/apyrimidinic endonuclease (APE1) to create a single-strand break (SSB) in the DNA6,64–66 (Figure 1). Adjacent SSBs on complementary DNA strands constitute a DSB, which is an obligate intermediate in CSR. Human and mouse B cells with inactivating mutations in UNG exhibit impaired DSB formation at S regions and a severe block in CSR6,66–69. Impaired recruitment of UNG to recombining S regions in Rev1-deficient B cells reduces CSR in *in vitro* and *in vivo*70. Likewise, mice heterozygous for an APE1 null mutation and CH12F3 cells with a homozygous deletion of APE1 have significantly diminished CSR71–73.

The AID-generated dU:dG mismatch can also be processed into SSBs through MMR74. In this pathway, an MSH2-MSH6 heterodimer recognizes the dU:dG mismatch and recruits a complex of MLH1/PSMS2/EXO1 to repair the mismatch (Figure 1). PMS2 (PMS1 homolog 2) generates a SSB distal to the mismatch and subsequently exonuclease 1 (EXO1) converts the DNA breaks into ssDNA gaps by excising the segment of the DNA containing the dU in a 5′-to-3′ direction75. EXO1 excision of dU-containing sequences on opposite DNA strands thus would generate DSBs that are required for CSR76–78. Consistent with this proposed role for PMS2 and EXO1 in converting deaminated S regions into DSBs, humans or mice with inactivating mutations in PMS2 or EXO1 have significant impairments in CSR because of defects in DSB formation in S regions75,76, PMS2- and EXO1-mediated excision of dU:dG mismatched DNA creates a DSB with a 5′ overhang that can be resolved into a blunt (or nearly blunt) DSB by DNA polymerases (γ and θ), which subsequently is used by proteins of the C-NHEJ and A-EJ pathways to complete CSR74,77,78.

Positive feedback loop to amplify DNA breaks through AID phosphorylation

Despite the overwhelming genetic and biochemical data demonstrating the role of BER and MMR in CSR, the mechanism by which BER and MMR are subverted (or coopted) to promote recombinogenic repair of S regions rather than canonical repair remains uncharacterized. Hypothetically, AID may generate a high density of dU:dG mismatches within the S regions that cannot be repaired by canonical BER and MMR pathways. To maintain genomic integrity, BER and MMR are shunted toward recombinogenic repair and thus CSR. AID phosphorylation regulates the balance of canonical and recombinogenic repair that is mediated by BER and MMR downstream of AID-dependent deamination of S regions62.

Phosphorylation of AID at Ser38 (pS38-AID) is critical for CSR as mice harboring a homozygous S38A knock-in mutation (*AID*62/62S38A) have a significant reduction in CSR58,59. S38 lies within a consensus cAMP-dependent PKA phosphorylation site60,61. A hypomorphic PKA-RIκα knock-in mutant (*RiaδB*) substantially impairs CSR and blocks phosphorylation of AID at S regions63, indicating that PKA is required for AID phosphorylation at S38. Multiple isoforms of protein kinase C (PKC) can phosphorylate AID at S38 *in vitro*62; however, the regulation of PKC-mediated AID phosphorylation *in vivo* remains unknown. Although the mutant AID (S38A) protein retains wild-type levels of deaminase activity *in vitro* and binding to S-region DNA *in vivo*, *AID*62/62S38B B cells cannot efficiently generate DSBs at recombining S regions62. These data in conjunction with biochemical data demonstrating the indirect interaction of pS38-AID with APE1 strongly suggest that pS38-AID is required for DSB formation62. Endogenous wild-type AID in *UNG*−/−*MSH2*−/− B cells or catalytically inactive AID cannot be phosphorylated at S38 and consequently cannot bind to APE1; however, treating these cells with ionizing irradiation to induce DSBs restores both AID phosphorylation and APE1 binding, suggesting that the conversion of AID-dependent S-region DNA deamination into single-strand breaks by BER (APE1) or MMR (PMS2/EXO1) is required for AID phosphorylation. Thus, AID phosphorylation at S38 is required for, and dependent on, DNA breaks62. These findings suggest the existence of a positive feedback loop wherein a low density of DNA breaks leads to AID phosphorylation, APE1 binding, and additional DNA breaks, which in turn activate more AID phosphorylation (Figure 3). Consistent with this model, ATM, a serine/threonine protein kinase that activates DNA repair pathways in response to DSBs, is required for wild-type levels of AID phosphorylation and APE1 interaction62. This model uncovers a previously undescribed role for ATM as a molecular rheostat that couples targeted DNA double-strand break formation with non-canonical, recombinogenic DNA repair to promote Ig gene diversification (Figure 3).

Resolution of DSBs

CSR requires joining DSBs in donor and acceptor S regions that may be separated by over 100 kb; however, some DSBs within an S region may be joined to another DSB within the same S region, resulting in an internal deletion rather than productive CSR54,58,85. In addition, DSBs in S regions can be ligated to a DSB on another chromosome to generate a chromosomal translocation54. The molecular mechanisms that promote the end joining of DSBs in distal S regions rather than canonical DNA repair, internal deletions, or chromosomal translocations remain largely unknown. During CSR, the *Ig* locus is re-organized into transcriptionally active loops, wherein I-promoters and regulatory enhancers (Eμ and Eα) are positioned close to one another to promote transcription, accessibility, and synopsis of recombining S regions48,86. Productive CSR is observed in B cells that have S regions replaced by
Figure 3. A hypothetical positive feedback loop generates a high density of DNA double-strand breaks to promote wild-type CSR. AID-mediated deamination of S regions generates DNA breaks that induce PKA-dependent AID phosphorylation at serine-38 (pS38-AID) and subsequent binding of APE1 and RPA to pS38-AID. Recruitment of APE1 to S regions generates additional DNA breaks, inducing additional AID phosphorylation through an unidentified ATM-dependent mechanism of activating PKA. AID, activation-induced cytidine deaminase; APE1, apurinic/apyrimidinic endonuclease 1; ATM, ataxia telangiectasia mutated; CSR, class switch recombination; PKA, protein kinase A; RPA, replication protein A.

I-SceI restriction sites, suggesting that the general cellular DNA damage repair pathways, which function in the synapsis and long-range end-joining of S-region DSBS, are required for the resolution of DSBS in S regions and productive CSR. Following the introduction of DSBS in the S regions, ATM and its substrate 53BP1 are thought to promote S-S region synapsis and recombinogenic repair. In the absence of ATM, DSBS at IgH and chromosomal translocations involving IgH are increased and CSR is decreased. Recently, 53BP1 was shown to facilitate S-S synapsis, as Eα interactions with Eμ and the γδ promoter are reduced in 53BP1−/− B cells that are stimulated with LPS or LPS+IL4.

ATM-dependent and -independent DNA damage responses during CSR

ATM plays a role not only in the stabilization of S-region DSBS through the proposed synapsis and joining of S regions but also in the generation of DSBS through the phosphorylation of AID and the subsequent interaction of AID with APE1. Activation of ATM kinase activity requires binding of the Mre11/RAD50/Nbs1 (MRN) complex to DSBS, which induces ATM-dependent phosphorylation of proteins mediating cell cycle checkpoints (for example, p53) and DNA repair, such as H2AX, MDC1, Nbs1, and 53BP1. The DNA damage response initiated by ATM promotes the assembly of macro-molecular foci flanking DSBS and provides docking sites for DNA repair proteins to bind and stabilize DNA ends to promote recombinogenic repair during CSR. Null mutations in ATM substrates impair CSR and increase chromosomal abnormalities and translocations. 53BP1 deficiency leads to the most robust defect in CSR and increases the frequency of chromosomal aberrations involving the IgH locus as well as a high frequency of Sμ internal deletions in cells stimulated for CSR. 53BP1 promotes the synapsis and long-range joining of S regions and protects DNA ends from end resection to direct DNA repair toward NHEJ.

Consistent with these roles for 53BP1, ATM-mediated phosphorylation of 53BP1 recruits Rap-1 interacting factor (Rif1) to sites of DNA damage to protect DNA ends from resection and to promote DNA repair. Accordingly, Rif1-deficient B cells are significantly impaired in CSR (Figure 4). Additionally, 53BP1 can be recruited to S-region DSBS through ATM-independent pathways. 53BP1 interacts with H4K20me2 at sites of DNA damage. Depletion of the histone methyltransferase MMSET in the CH12F3 B cell line decreases both H4K20me2 levels and...
Figure 4. Resolution of DSBs generated by MMR or BER following AID-dependent deamination of S regions is accomplished by multiple pathways. ATM directly or indirectly phosphorylates proteins (for example, H2AX, MDC1, 53BP1, and AID) and stabilizes protein complexes that aid in the formation and resolution of DSBs during class switch recombination. A-EJ, alternative end-joining; AID, activation-induced cytidine deaminase; BER, base excision repair; cNHEJ, classical non-homologous end-joining; DSB, double-strand break; HR, homologous recombination; MMR, mismatch repair.

53BP1 accumulation at S regions, thereby impairing CSR. Furthermore, the recruitment of 53BP1 to DSBs has been shown to require the RNF8- and RNF168-dependent histone ubiquitination pathway. RNF8−/− and RNF168−/− B cells have decreased 53BP1 at S regions and a concomitant reduction in CSR. Because CSR is more dramatically reduced in 53BP1-deficient B cells as compared to ATM−/−, H2AX−/−, MDC1−/−, or RNF8-deficient B cells, 53BP1 also has a function during CSR that is independent of the ATM/H2AX/MDC1/RNF8 DNA damage response. Data showing reduced Eκ interactions with Eμ and the γδ promoter in LPS- or LPS+IL4-stimulated 53BP1−/− B cells demonstrate a role for 53BP1 in S-S synapsis during CSR.

More recently, BRCT-repeat inhibitor of hTert expression (BRIT1) has been implicated as a novel effector of the DNA repair phase of CSR. BRIT1 is a ubiquitously expressed protein that is rapidly recruited to DSBs after ionizing radiation.
through its C-terminal BRCT repeat domain, which is necessary for its interaction with phosphorylated H2AX (γH2AX)112. As predicted, successful CSR requires BRIT1 interaction with γH2AX at recombining S regions111. In addition, the BRIT1-γH2AX pathway is further modulated by the interaction of γH2AX with MDC1 in CSR. Although BRIT1 or MDC1 deficiency alone leads to a moderate reduction in CSR, loss of both BRIT1 and MDC1 together markedly impairs CSR113. Thus, BRIT1 likely serves as a scaffold to recruit factors that resolve DSBs at S regions downstream of ATM (Figure 4).

End-joining

Homologous recombination (HR) and NHEJ are the two major pathways for DSB repair in mammalian cells111. HR is restricted to the S/G2 phase of the cell cycle and requires large stretches of homology, whereas NHEJ is active throughout the cell cycle and requires little or no homology. Since CSR-associated DSBs are observed primarily during the G1 phase of the cell cycle and do not have extended stretches of homology, NHEJ is generally considered the major pathway in the joining of DSBs during CSR105,113. Consistent with this, mutations in the canonical NHEJ components Ku70/Ku80 heterodimer (Ku), XRCC4, and DNA ligase IV (Lig4) severely compromise CSR, while mutations in non-canonical NHEJ proteins such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Artemis, and XRCC4-like factor (XLF or Cernunnos) increase chromosomal translocations even though CSR is not severely impaired8.

B cells lacking core NHEJ components are capable of residual CSR, mediated by microhomology-biased A-EJ pathway (Figure 4). Although A-EJ is a poorly defined DNA repair mechanism guided by microhomology between two DSBs, factors from other DNA repair pathways, including XRCC1, Ligase III, Mre11, Parp1, and CtIP, have been shown to be necessary for A-EJ during CSR114-117. More recently, Rad52, an HR repair factor, was shown to facilitate microhomology-mediated A-EJ that favors intra-S region recombination and competes with Ku to mediate inter-S region DSB recombination118. Whether A-EJ is physiologically necessary in order to complete a productive class switch reaction is extensively discussed in 95.

While C-NHEJ and A-EJ are the primary end-joining pathways ligation DSBs within IgH during CSR, HR has been proposed to repair AID-induced off-target DSBs. Deficiency of the Rad51 paralog XRCC2, a key component of HR-mediated repair, significantly enhances AID-dependent genome-wide DNA damage119,120. Notably, AID-expressing human chronic lymphocytic leukemia cells are hypersensitive to HR inhibitors and this is possibly due to AID-dependent synthetic cytotoxicity from unrepaired DSBs at non-Ig loci121. Thus, HR is essential for repairing AID-generated DSBs and dysregulated AID activity may provide a novel therapeutic approach to treat B cell malignancies.

Concluding remarks

The discovery of AID as a master regulator of CSR and SHM revolutionized our understanding of Ig gene diversification and the mechanisms regulating genome integrity. The physiological targets of AID during CSR and SHM are almost exclusively restricted to S and V regions of the Ig loci, but AID can deaminate in vitro any transcribed substrate and damage in vivo many non-Ig genes, threatening genomic stability in B cells. However, B cells have evolved mechanisms that promote AID-dependent mutagenic and recombinogenic DNA repair within Ig loci while faithfully repairing collateral damage at non-Ig loci using canonical, conserved DNA repair pathways. Unlike V(D)J recombination, CSR has coopted the general DNA damage response to simultaneously generate and resolve DSBs within S regions, BER and MMR are essential, complementary pathways for CSR. ATM functions as a generator of DSBs in S regions, an essential signaling molecule to mobilize DNA repair proteins, and a scaffold for these proteins to resolve DSBs. As additional CSR factors, such as RNF8/168 and BRIT1, are identified, we will further understand the genetic and molecular mechanisms regulating the formation and repair of DSBs during CSR.

Competing interests

The authors declare that they have no competing interests.

Grant information

This study was supported by the National Institutes of Health (R01 AI072194-08), National Institute on Minority Health and Health Disparities (5G12MD007603), and National Cancer Institute (2U54CA132378).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Jung D, Alt FW: Unraveling V(D)J recombination; insights into gene regulation. Cell. 2004; 116(2): 299–311. [PubMed Abstract](#) [Publisher Full Text](#)
2. Schatz DG, Ji Y: Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 2011; 11(4): 251–63. [PubMed Abstract](#) [Publisher Full Text](#)
3. Methot SP, Di Noia JM: Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol. 2017; 133: 37–87. [PubMed Abstract](#) [Publisher Full Text](#)
4. Hwang JK, Alt FW, Yeap LS: Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiol Spectr. 2015; 3(1): MDNA3-0037-2014. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)
5. Choi JH, Wang KW, Zhang D, et al.: IgD class switching is initiated by...
25. Luby TM, Gearhart PJ: Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst). 2016; 38: 110–16.

26. Zhang J, Bottaro A, Li S, et al.: Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012; (12): 517–31.

27. Chaudhuri J, Tian M, Xiang C, et al.: Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003; 428(6983): 726–30.

28. Rada C, Di Noia JM, Neuberger MS: Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010; 143(1): 122–33.

29. Basu U, Meng FL, Keim C, et al.: The RNA exosome targets the AID cytokine diversification enzyme to both strands of transcribed duplex DNA substrates. Cell. 2011; 144(3): 353–63.

30. Wang X, Fan M, Kals S, et al.: A source of the single-stranded DNA substrate for activation-induced diversification during somatic hypermutation. Nat Commun. 2014; 5: 4137.

31. Hein K, Lorenz MG, Siebenotten G, et al.: Processing of switch transcripts is required for targeting of antibody class switch recombination. J Exp Med. 1998; 188(12): 2369–74.

32. Lorenz M, Jung S, Radbruch A: Switch transcripts in immunoglobulin class switching. Science. 1995; 267(5205): 1825–8.

33. Conticello SG, Ganesh K, Xue K, et al.: Interaction between antibody diversification enzyme AID and spliceosome-associated factor CTNNB1. Mol Cell. 2008; 31(5): 474–84.

34. Matthews AJ, Zheng S, DiMenna LJ, et al.: Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. 2014; 122: 1–57.

35. Niewak U, Matthews AJ, Zheng S, et al.: The splicing regulator PTBP2 interacts with the cytokine diversification AID and promotes binding of AID to class-switch DNAs. Mol Cell. 2017; 67(3): 361–373.e4.

24. Xu Z, Fulop Z, Wu G, et al.: 14-3-3 adaptor proteins recruit AID to S-AGCT-3’-rich switch regions for class switch recombination. Nat Struct Mol Biol. 2010; 17(9): 1124–35.

23. Xu Z, Zan H, Pone EJ, et al.: Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012; (12): 517–31.

22. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

21. Zhang J, Bottaro A, Li S, et al.: Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012; 12(7): 517–31.

20. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

19. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

18. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

17. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

16. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

15. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

14. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

13. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

12. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

11. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

10. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

9. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

8. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

7. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

6. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

5. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

4. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

3. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

2. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.

1. Pasqualucci L, Neumeister P, Goossens T, et al.: Promotion of targeted mutation of the Ig gamma 2b promoter and exon. DNA deamination and DNA repair. Nat Biol. 2003; 2(5): 442–51.
hypermutation by inhibiting uracil-DNA glycosylase. Nature. 2002; 419(6902): 43-8.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

68. Imai K, Slupphaug G, Lee W, et al.: Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003; 4(10): 1022-8.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

69. Schrader CE, Linehan EK, Mocgheova SN, et al.: Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med. 2005; 202(4): 661-8.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

70. Jan H, White CA, Thomas LM, et al.: Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class DNA recombination. Cell Rep. 2012; 1(2): 1200-9.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

71. Guikema JE, Stavnezer J, Schrader CE: The role of Apex2 in class-switch recombination of immunoglobulin genes. Int Immunol. 2010; 22(3): 213; author reply 213-4.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

72. Masani S, Han L, Yu K: Apurinic/apyrimidinic endonuclease 1 is the essential nuclelease during immunoglobulin class switch recombination. Mol Cell Biol. 2013; 33(7): 1468-73.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

73. Schrader CE, Guikema JE, Wu X, et al.: The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1517): 645-52.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

74. Stavnezer J, Guikema JE, Schrader CE: Mechanism and regulation of class switch recombination, Annu Rev Immunol. 2008; 26: 261-92.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

75. Kardasis PD, Woo CJ, Wei K, et al.: Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat Immunol. 2004; 5(2): 224-9.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

76. Péron S, Motin A, Gérardis P, et al.: Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008; 209(11): 2465-72.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

77. Eccleston J, Yan C, Yuan K, et al.: Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack homologous end joining. J Immunol. 2011; 186(4): 2336-43.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

78. Min IM, Schrader CE, Vardo J, et al.: The Smu tandem repeat region is critical for Ig light chain switching in the absence of Msh2. Immunity. 2003; 19(4): 515-24.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

79. Cheng HL, Vuong BQ, Basu U, et al.: Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci U S A. 2009; 106(13): 5288-93.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

80. Pasqualucci L, Kitaura Y, Gu H, et al.: CDA1 regulates class-switch recombination in exonuclease 1-mutant mice. J Immunol. 2004; 173(5): 2795-802.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

81. McBride KM, Gazumyan A, Woo EM, et al.: Regulation of class switch recombination and somatic hypermutation by AID phosphorylation. J Exp Med. 2008; 205(11): 2585-94.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

82. Busu U, Chaudhuri J, Alpert C, et al.: The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005; 438(7067): 508-11.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

83. Pasqualucci L, Kitaura Y, Gu H, et al.: P-KA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A. 2006; 103(2): 395-400.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

84.Alt FW, Rosenberg N, Casanova RJ, et al.: Immunoglobulin heavy-chain expression and class switching in a murine leukemia cell line. Nature. 1982; 296(5855): 325-31.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

85. Ju Z, Volpi SA, Hassan R, et al.: Protein AID promotes dynamic interaction between the immunoglobulin heavy chain variable region and the 3’ regulatory region. J Biol Chem. 2007; 282(48): 35619-78.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

86. Kenter AL, Feldman S, Wuerffel R, et al.: The noncoding regions of the Ig locus facilitate class switch recombination. Ann N Y Acad Sci. 2012; 1267(1): 86-94.

Pubmed Abstract | Publisher Full Text | F1000 Recommendation

87. Wuerffel R, Wang L, Grigera F, et al.: S-S synapsis during class switch
recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity. 2007; 27(3): 711–22. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

89. T Zarrin AA, Del Vecchio C, Tseng E, et al.: Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science. 2007; 315(5810): 377–81. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

90. Lumsden JM, McCarty T, Petiniot LK, et al.: Immunoglobulin class switch recombination is impaired in AID-deficient mice. J Exp Med. 2004; 200(9): 1103–10. PubMed Abstract | Publisher Full Text | Free Full Text

91. Reina-San-Martín B, Chen HT, Nussenzweig A, et al.: Lys48-linked ubiquitin ligase cascade facilitates class switch recombination. Proc Natl Acad Sci U S A. 2010; 107(2): 809–14. PubMed Abstract | Publisher Full Text | Free Full Text

92.ccb | F1000 Recommendation

93. Blackford AN, Jackson SP: Mechanisms of ATM Activation. Annu Rev Biochem. 2015; 84: 711–38. PubMed Abstract | Publisher Full Text

94. Bobola C, Alt FW, Schwer B: Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol. 2012; 116: 1–49. PubMed Abstract | Publisher Full Text

95. Manis JP, Morales JC, Xia Z, et al.: 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol. 2004; 5(5): 481–7. PubMed Abstract | Publisher Full Text

96. Ward IM, Reina-San-Martin B, Ouan A, et al.: 53BP1 is required for class switch recombination. J Cell Biol. 2004; 165(4): 459–64. PubMed Abstract | Publisher Full Text | Free Full Text

97. Adams MM, Carpenter PB: Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div. 2006; 1: 19. PubMed Abstract | Publisher Full Text | Free Full Text

98. Bothe R, Di Virgilio M, Callen E, Yamane A, et al.: RNF11 promotes deactivation of DNA breaks and promotes immunoglobulin class switching. Science. 2013; 339(6120): 711–5. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

99. Hei H, Zhang L, Luo K, et al.: MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011; 476(7359): 134–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

100. Bohgaki T, Bohgaki M, Cardoso R, et al.: Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome. PLoS Genet. 2011; 7(4): e1001381. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

101. Li L, Halaby M, Hakem A, et al.: Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med. 2010; 207(2): 283–97. PubMed Abstract | Publisher Full Text | Free Full Text

102. Ramachandran S, Chahwan R, Nepal RM, et al.: The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proc Natl Acad Sci U S A. 2013; 110(2): 809–14. PubMed Abstract | Publisher Full Text | Free Full Text

103. Santos MA, Huen MS, Jankovic M, et al.: Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J Exp Med. 2010; 207(5): 973–81. PubMed Abstract | Publisher Full Text | Free Full Text

104. Lou Z, Minter-Dykhouse K, Franco S, et al.: MD1C maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell. 2006; 21(2): 187–200. PubMed Abstract | Publisher Full Text | F1000 Recommendation

105. Reina-San-Martín B, Dillapipontario S, Hanisch L, et al.: H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med. 2003; 197(2): 1767–78. PubMed Abstract | Publisher Full Text | Free Full Text

106. Yen WF, Chaudhry A, Vaidyanathan B, et al.: BRCT-domain protein BRIT1 influences class switch recombination. Proc Natl Acad Sci U S A. 2011; 114(31): 8354–8359, pii: 201708211. PubMed Abstract | Publisher Full Text | Free Full Text

107. Jeffers LJ, Coull BJ, Stack BJ, et al.: Distinct BRCT domains in Mop1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene. 2008; 27(11): 139–44. PubMed Abstract | Publisher Full Text

108. Alt FW, Zhang Y, Meng FL, et al.: Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013; 152(3): 417–29. PubMed Abstract | Publisher Full Text | Free Full Text

109. Dinkelmann M, Spethkai E, Stoneham T, et al.: Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol. 2009; 16(8): 808–13. PubMed Abstract | Publisher Full Text | Free Full Text

110. Lee-Thielen M, Matthews AJ, Kelly D, et al.: CIPT promotes microhomology-mediated alternative end-joining during class switch recombination. Nat Struct Mol Biol. 2011; 18(1): 75–9. PubMed Abstract | Publisher Full Text | Free Full Text

111. Rober I, Dantzer F, Reina-San-Martin B, Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med. 2009; 206(5): 1047–56. PubMed Abstract | Publisher Full Text | Free Full Text

112. Xie A, Kwok A, Scully R: Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol. 2009; 16(8): 814–8. PubMed Abstract | Publisher Full Text | Free Full Text

113. Zen H, Tat C, Qiu Z, et al.: Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat Commun. 2017; 8: 14244. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

114. Hasham MG, Donghia NM, Coffey E, et al.: Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol. 2010; 11(9): 820–6. PubMed Abstract | Publisher Full Text | Free Full Text

115. Hasham MG, Snow KJ, Donghia NM, et al.: Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. J Immunol. 2012; 189(5): 2374–82. PubMed Abstract | Publisher Full Text | Free Full Text

116. Lamant KR, Hasham MG, Donghia NM, et al.: Attenuating homologous recombination stimulates an AID-induced antileukemic effect. J Exp Med. 2013; 210(5): 1021–33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. **Amy Kenter**
 Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
 Competing Interests: No competing interests were disclosed.

2. **Paolo Casali**
 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com