Oblique-Basis Calculations for 44Ti *

V. G. Gueorguiev, J. P. Draayer, W. E. Ormand† and C. W. Johnson‡

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803

Abstract

The spectrum and wave functions of 44Ti are studied in oblique-basis calculations using spherical and SU(3) shell-model states. Although the results for 44Ti are not as good as those previously reported for 24Mg, due primarily to the strong spin-orbit interaction that generates significant splitting of the single-particle energies that breaks the SU(3) symmetry, a more careful quantitative analysis shows that the oblique-basis concept is still effective. In particular, a model space that includes a few SU(3) irreducible representations, namely, the leading irrep $(1,2,0)$ and next to the leading irrep $(10,1)$ including its spin $S=0$ and 1 states, plus spherical shell-model configurations (SSMC) that have at least two valence nucleons confined to the $f_{7/2}$ orbit – the SM(2) states, provide results that are compatible with SSMC with at least one valence nucleon confined to the $f_{7/2}$ orbit – the SM(3) states.

Introduction. In a previous study we demonstrated the feasibility of the oblique-basis calculations. The successful description of 24Mg followed from the comparable importance of single-particle excitations, described by spherical shell-model configurations (SSMC), and collective excitations, described by the SU(3) shell model. An important element of the success is that SU(3) is a good symmetry in sd-shell nuclei. For the lower pf-shell nuclei, there is strong breaking of the SU(3) symmetry induced by the spin-orbit interaction. Therefore, it is anticipated that adding the leading and next to the leading SU(3) irreps may not be sufficient in lower pf-shell.

Here we discuss oblique-basis type calculations for 44Ti using the KB3 interaction. We confirm that the spherical shell model (SSM) provides a significant part of the low-energy wave functions within a relatively small number of SSMC while a pure SU(3) shell-model with only few SU(3) irreps is unsatisfactory. This is the opposite of the situation in the lower sd-shell. Since the SSM yields relatively good results for SM(2), combining the two basis sets yields even better

*This work was supported in part by U.S. National Science Foundation under grants (9970769 and 0140300) as well as a Cooperative Agreement (9720652) with matching from the Louisiana Board of Regents Support Fund.

†Present address: Lawrence Livermore National Laboratory, Livermore, CA 94551

‡Present address: San Diego State University, San Diego, CA 92182
Table 1: Labels and $M_J=0$ dimensions for various 44Ti calculations. The leading SU(3) irrep is $(12,0)$; $(10,1)$ implies that the $(10,1)$ irreps are included along with the leading irrep. SM(n) is a spherical shell-model basis with n valence particles anywhere within the full pf-shell; the remaining particles being confined to the $f_{7/2}$.

Model space	(12,0)	$(10,1)$	SM(0)	SM(1)	SM(2)	SM(3)	FULL
dimension	7	84	72	580	1908	3360	4000
dimension %	0.18	2.1	1.8	14.5	47.7	84	100

results with only a very small increase in the overall size of the model space. In particular, results in a SM(2)+SU(3) model space (47.7% + 2.1% of the full pf-shell space) are comparable with SM(3) results (84%). Therefore, as for the sd-shell, combining a few SU(3) irreps with SM(2) configurations yields excellent results, such as correct spectral structure, lower ground-state energy, and improved structure of the wave functions. However, in the lower sd-shell SU(3) is dominant and SSM is recessive (but important) and in the lower pf-shell one finds the opposite, that is, SSM is dominant and SU(3) is recessive (but important).

Model Space. 44Ti consists of 2 valence protons and 2 valence neutrons in the pf-shell. The SU(3) basis includes the leading irrep $(12,0)$ with dimensionality 7, and the next to the leading irrep $(10,1)$. The $(10,1)$ occurs three times, once with $S=0$ (dimensionality 11) and twice with $S=1$ (dimensionality $2 \times 33 = 66$). All three $(10,1)$ irreps have a total dimensionality of 77. The $(12,0)\&(10,1)$ case has a total dimensionality of 84 and is denoted by $(12,0)\&(10,1)$. In Table 1 we summarize the dimensionalities. As in the case of 24Mg, there are linearly dependent vectors within the oblique bases sets. For example, there is one redundant vector in the SM(2)+(12,0) space, two in SM(3)+(12,0) and SM(1)+(12,0)\&(10,1) spaces, twelve in SM(2)+(12,0)\&(10,1) space, and thirty-three in the SM(3)+(12,0)\&(10,1) space. Each linearly dependent vector is handled as in the previous case.

Ground-state Energy. The oblique-basis calculation of the ground-state energy for 44Ti does not look as impressive as for 24Mg. The calculated ground-state energy for the SM(1)+(12,0)\&(10,1) space is 0.85 MeV below the calculated energy for the SM(1) space. Adding the two SU(3) irreps to the SM(1) basis increases the size of the space from 14.5% to 16.6% of the full space. This is a 2.1% increase, while going from the SM(1) to SM(2) involves an increase of 33.2%. For SM(2), the ground-state energy is 2.2 MeV lower than the SM(1) result. However, adding the SU(3) irreps to the SM(2) basis gives ground-state energy of -13.76 MeV which is compatible to the pure SM(3) result of -13.74 MeV. Therefore, adding the SU(3) to the SM(2) increases the model space from 47.7% to 49.8% and gives results that are slightly better than the SM(3) which is 84% of the full space.

Low-lying Energy Spectrum. In 24Mg the position of the K=2 band head is correct for the SU(3)-type calculations but not for the low-dimensional SM(n)
calculations. In 44Ti it is the opposite, that is, the SM(n)-type calculations reproduce the position of the K=2 band head while SU(3)-type calculations cannot. Furthermore, the low-energy levels for the SU(3) case are higher than for the SM(n) case. Nonetheless, the spectral structure in the oblique-basis calculation is good and the SM(2)+(12,0)&(10,1) spectrum (\approx50% of the full space) is comparable with the SM(3) result (84%).

Overlaps with Exact States. The overlap of SU(3)-type calculated eigenstates with the exact (full shell-model) results are not as large as in the sd-shell, often less than 40%, but the SM(n) results are considerably better with SM(2)-type calculations yielding an 80% overlap with the exact states while the results for SM(3) show overlaps greater than 97%, which is consistent with the fact that SM(3) covers 84% of the full space. On the other hand, SM(2)+(12,0)&(10,1)-type calculations yield results that are as good as those for SM(3) in only about 50% of the full-space and SM(1)+(12,0)&(10,1) overlaps are often bigger than the SM(2) overlaps.

Conclusion. For 44Ti, combining a few SU(3) irreps with SM(2) configurations increases the model space only by a small (\approx2.3%) amount but results in better overall results: a lower ground-state energy, the correct spectral structure (particularly the position of K=2$^+$ band head), and wave functions with a larger overlap with the exact results. The oblique-bases SM(2)+(12,0)&(10,1) results for 44Ti (\approx50%) yields results that are comparable with the SM(3) results (\approx84%). In short, the oblique-basis scheme works well for 44Ti, only in this case, in contrast with the previous results for 24Mg where SU(3) was found to be dominant and SSM recessive, in the lower pf-shell SSM is dominant and SU(3) recessive.

References

[1] V. G. Gueorguiev, W. E. Ormand, C. W. Johnson, and J. P. Draayer, *Phys. Rev.* **C65**, 024314 (2002).

[2] J. P. Elliott and H. Harvey, *Proc. Roy. Soc. London* **A272**, 557 (1963).

[3] V. G. Gueorguiev, J. P. Draayer, and C. W. Johnson, *Phys.Rev.* **C63**, 014318 (2001).

[4] T. Kuo and G. E. Brown, *Nucl. Phys.* **A114**, 241 (1968); A. Poves and A. P. Zuker, *Phys. Rep.* **70**, 235 (1981).