S1 Appendix
Further properties of Mix2

Andreas Tuerk, Gregor Wiktorin, Serhat Güler

Lexogen GmbH
Campus Vienna Biocenter 5, 1030 Vienna, Austria

November 29, 2016
1 Parameter estimation for the Mix2 model

1.1 Derivation of the EM update formulas

The Expectation Maximization (EM) algorithm \[1\] increases the likelihood $L(R|\theta)$ of a data set R under a model $p(R|\theta)$ by maximizing, or more generally increasing, the auxiliary function

$$Q(\theta'|\theta) = E_{Z|R,\theta}(\log p(R, z|\theta'))$$

(1)

Here, θ is the current parameter set of the model $p(R|\theta)$ and θ' is the new parameter set that needs to be optimized. In addition, $Z = (z_r)_{r \in R}$ is a sequence of random hidden variables z_r and, hence, the expression on the right hand side of (1) is the expected value of $\log p(R, z|\theta')$, where z is one realization of Z, with respect to the random variable Z given R and θ. The hidden variables in the Mix2 model are the transcript variable, $t = i$, and the mixture variable, $b = j$.

A necessary condition for the maximization of $Q(\theta'|\theta)$ is that the gradient of $Q(\theta'|\theta)$ equals zero, i.e.

$$\frac{\partial}{\partial \theta'} Q(\theta'|\theta) = 0$$

(2)

For the Mix2 model this means that

$$\frac{\partial}{\partial \alpha_i} Q(\theta'|\theta) = 0$$

(3)

and

$$\frac{\partial}{\partial \beta_{kj}} Q(\theta'|\theta) = 0$$

(4)

where i is the index of transcript $t = i$ and k is the index of group $g = k$. As usual, the update formula of the relative abundances α_i is given by

$$\alpha_i^{(n+1)} = \frac{1}{|R|} \sum_r p^{(n)}(t = i|r)$$

(5)

where $\alpha_i^{(n+1)}$ and $p^{(n)}(t = i|r)$ are the relative abundance and posterior probability after the $n+1$-th and n-th iteration of the EM algorithm. In addition to (4), the β_{kj} have to satisfy the constraint

$$\sum_{j=1}^M \beta_{kj} = 1$$

(6)

where M is the number of mixture components. This constraint can be enforced with the Lagrange method. Taking the derivative with respect to β_{kj} leads to

$$\sum_{r \in R} p(g = k, b = j|r) + \beta_{kj}\lambda = 0$$

(7)

which after some rearrangement results in

$$\beta_{kj}^{(n+1)} = \frac{\sum_r p^{(n)}(g = k, b = j|r)}{\sum_r p^{(n)}(g = k|r)}$$

(8)

where, as previously, $\beta_{kj}^{(n+1)}$ and $p^{(n)}(\cdot)$ are the mixture components and posterior probabilities after the $n+1$-th and after the n-th iteration, respectively. The posterior probabilities in (8) are given by

$$p^{(n)}(g = k, b = j|r) = \sum_{i \in k} p^{(n)}(t = i, b = j|r)$$

(9)

and

$$p^{(n)}(g = k|r) = \sum_{i \in k} p^{(n)}(t = i|r)$$

(10)

where the sums in (9) and (10) extend over all transcripts $t = i$ in group $g = k$ and the posteriors on the right-hand side of these equations can be derived according to Bayes formula as follows

$$p^{(n)}(t = i, b = j|r) = \frac{\alpha_i^{(n)} \beta_{kj}^{(n)} p(r|t = i, b = j)}{\sum_{ij} \alpha_i^{(n)} \beta_{kj}^{(n)} p(r|t = i, b = j)}$$

(11)
and
\[p^{(n)}(t = i|\alpha) = \frac{\sum_{ij} \alpha_i^{(n)} \beta_{ij}^{(n)} p(r = i, b = j)}{\sum_{ij} \alpha_i^{(n)} \beta_{ij}^{(n)} p(r = i, b = j)} \]
\tag{12}

The posterior probability \(p(r = i, b = j) \) in (11) and (12) is independent of the iteration. In the main paper the \(p(r = i, b = j) \) where chosen to be Gaussians which are equidistantly distributed across the transcript \(t = i \).

Without any tying, the group \(g = k \) consists of a single transcript \(t = i \) and (8) therefore becomes
\[\beta_{ij}^{(n+1)} = \frac{\sum_{r} p^{(n)}(t = i, b = j|r)}{\sum_{r} p^{(n)}(t = i|r)} \]
\tag{13}

For global tying, on the other hand, the group consists of all the transcripts within the locus and therefore
\[p(g = k|r) = 1 \]
\tag{14}

As a result, the update formula (8) becomes
\[\beta_{j}^{(n+1)} = \frac{1}{|R|} \sum_{r} p^{(n)}(b = j|r) \]
\tag{15}

It is interesting to note, that (15) is similar to the update formula for the relative abundances \(\alpha_i \), equation (5). This is the case, because for global tying the following holds
\[p(r) = \sum_{j} \beta_j p(r|b = j) \]
\tag{16}

which is similar to the superposition
\[p(r) = \sum_{i} \alpha_i p(r|t = i) \]
\tag{17}

Multi-mapping reads and sequence specific bias

The previous discussion assumes that a fragment \(r \) maps uniquely to the genomic reference. If, on the other hand, fragment \(r \) has multiple hits \(H(r) \) on the reference, then
\[p(h|r) = \frac{p(h)}{\sum_{h \in H(r)} p(h)} \]
\tag{18}

needs to be taken into account when estimating the parameters of the Mix² model. Rather than calculating (18) during parameter estimation \(p(h|r) \) is often set to \(1/\#H(r) \) \cite{2}. Equation (18) can be extended to cover the situation of a sequence specific bias. In this case, the probability that a sequence \(seq(r) \) within or surrounding fragment \(r \) is generated can be smaller than 1 and the right-hand side of equation (18) needs to be multiplied by this sequence specific probability, \(p(generate|seq(r)) \). The probability \(p(generate|seq(r)) \) can, for instance, be estimated as in \cite{4} by calculating the ratio of the probability of the sequence \(seq(r) \) under the biased model to the uniform model. Most commonly, \(seq(r) \) is a sequence directly preceding or following \(r \) and \(p(generate|seq(r)) \) therefore reflects the probability that a primer with start sequence \(seq(r) \) anneals to the sample. Details on how equation (18) and its generalization to a sequence specific bias fits into the parameter estimation of the Mix² model are given in Section ”Parameter estimation”. It should be noted that in our current implementation of the Mix² model we do not take sequence specific bias into consideration, nor do we use (18) to calculate the posterior probability of a hit.

If fragment \(r \) has multiple hits \(H(r) \) and a sequence specific bias then
\[p(t = i, b = j|h) = \sum_{h \in H(r)} p(t = i, b = j|h)p(h|r) \]
\tag{19}

and the update formula for \(\beta_{kj} \), equation (8), becomes
\[\beta_{kj}^{(n+1)} = \frac{\sum_{r \in R} \sum_{h \in H(r)} p^{(n)}(g = k, b = j|h)p(h|r)}{\sum_{r \in R} \sum_{h \in H(r)} p^{(n)}(g = k|h)p(h|r)}. \]
\tag{20}

Here \(p(h|r) \) is given by equation (18) or the right-hand side of equation (18) multiplied by \(p(generate|seq(r)) \) the probability of generating the sequence \(seq(r) \), which is either part of or surrounding fragment \(r \).
1.2 Identifiability and uniqueness of maximum likelihood solution

The Mix² model is identifiable on the set of fragments R if the mapping $\theta \rightarrow p_\theta(R)$ is injective, where, as in the previous section, θ is the vector of pairs of parameters

$$\theta = ((a_i, b_{i,j}))_{i=1,\ldots,N \land j=1,\ldots,M}$$

(21)

The mapping $\theta \rightarrow p_\theta(R)$ is given by the product of two mappings

$$p_\theta(R) = A \cdot M \cdot \theta$$

(22)

where A is the linear map given by

$$A = (a_{r,(i,j)})_{r \in R \land (i,j) \in (1,\ldots,N) \times (1,\ldots,M)}$$

(23)

with

$$a_{r,(i,j)} = p(r|t = i, b = j)$$

(24)

which is the value of the j-th Gaussian of transcript i for fragment r. Hence r is an index for the rows and the pair (i, j) is an index for the columns of A. The second mapping in (22) is componentwise multiplication of θ given by

$$M(\theta) = ((a_i b_{i,j}))_{i=1,\ldots,N \land j=1,\ldots,M}$$

(25)

The mapping M is invertible on the parameters θ since

$$\sum_j \alpha_i \beta_{ij} = \alpha_i$$

(26)

and thus equation (22) is injective iff A is injective on the set $M\theta$, which is the $NM - 1$ simplex $\Delta^{NM - 1}$. This condition can be checked by first checking the stronger condition of injectivity of A on the full linear space $\mathbb{R}^{N \times M}$. If A is injective on $\mathbb{R}^{N \times M}$ then, clearly, A is injective on $\Delta^{NM - 1}$. If, on the other hand, A is not injective on $\mathbb{R}^{N \times M}$ then it is necessary to check whether differences of elements in $\Delta^{NM - 1}$ other than 0 lie in the kernel of A on $\mathbb{R}^{N \times M}$. The latter will be the case if the dimension of the kernel of A is greater than 1, since then

$$\dim (\ker(A)) + \dim (\Delta^{NM - 1}) > \dim (\mathbb{R}^{N \times M})$$

(27)

The dimension of the kernel of A is, for instance, greater than 1 if two transcripts $t = i$ and $t = i'$ share the same Gaussian $b = j$ and $b = j'$, which happens only if the transcripts have the same length and their exons are properly aligned. This situation can be avoided by shifting the Gaussians $p(r|t = i, b = j)$, $p(r|t = i', b = j')$ away from each other, which ensures that

$$p(r|t = i, b = j) \neq p(r|t = i', b = j')$$

(28)

and removes therefore identical columns in A. Shifting the Gaussians means that some of them are not equidistantly distributed along a transcript but has otherwise a minor effect on the properties of the Mix² model. Summarizing, we state the following

Proposition 1. A sufficient condition for the identifiability of the Mix² model is the injectivity on $\mathbb{R}^{N \times M}$ of the matrix A in equations (23) and (24). If the Mix² model fails to be identifiable because two transcripts $t = i$ and $t = i'$ share one Gaussian for two of their mixture components $b = j$ and $b = j'$, then the Mix² model can be made identifiable by shifting the Gaussians $p(r|t = i, b = j)$, $p(r|t = i', b = j')$ away from each other.

Equation (26) shows further that the Mix² model is equivalent to a mixture model of the distributions $p(r|t = i, b = j)$ with mixture weights c_{ij} if no Gaussian is shared between two transcripts. In this case, the maximum likelihood solution for the c_{ij} is unique, since the log likelihood surface of mixture models is concave [3], and the c_{ij} and the parameters of the Mix² model stand in a one-to-one relationship. This can be summarized as follows.

Proposition 2. The Mix² model is equivalent to a mixture of the distributions $p(r|t = i, b = j)$ with respective mixture weights c_{ij} if no two transcripts share the same Gaussian. Since the log likelihood function for a mixture
is concave there exists a unique maximum likelihood solution for the c_{ij} to which the EM algorithm converges. The α_i and β_{ij} of the Mix² model can be derived, in this case, from the c_{ij} as follows.

\begin{align*}
\alpha_i &= \sum_{j=1}^{M} c_{ij} \\
\beta_{ij} &= \frac{c_{ij}}{\alpha_i}
\end{align*}

(29) (30)
2 Fragment start distributions in Cufflinks

The Mix² model in the main paper factorizes the transcript specific fragment distribution \(p(r|t = i) \) as follows

\[
p(r|t = i) = p(s(r)|t = i)p(l(r)|s(r), t = i)
\]

where \(s(r) \) and \(l(r) \) are the start and length of fragment \(r \). Cufflinks [5], on the other hand, reverses the order of \(s(r) \) and \(l(r) \) in (31) and factorizes \(p(r|t = i) \) according to

\[
p(r|t = i) = p(l(r)|t = i)p(s(r)|l(r), t = i)
\]

The fragment length distribution \(p(l(r)|t = i) \) in (32) is derived from the cumulative distribution of fragment lengths \(p(l(r)) \) for the complete data set. For this purpose, \(p(l(r)) \) is truncated to the possible fragment lengths for transcript \(t = i \) and subsequently renormalized such that

\[
\sum_{l(t = i)} p(l|t = i) = 1
\]

where \(l(t = i) \) is the length of transcript \(t = i \). The fragment start distribution \(p(s(r)|l(r), t = i) \), on the other hand, is assumed to be uniform over the possible fragment starts \(s(r) \) for transcript \(t = i \) and fragment length \(l(r) \), i.e.

\[
p(s(r)|l(r), t = i) = \frac{1}{l(t = i) - l(r) + 1}
\]

The fragment start distribution \(p(s(r)|t = i) \) for \(t = i \) according to the Cufflinks model can be derived by summing \(l(r) \) out of (32). In the absence of fragment length information, e.g. for single-end RNA-Seq data, Cufflinks assumes by default a Gaussian with mean 200 and standard deviation 80 for the cumulative fragment length distribution \(p(l(r)) \). For this default setting the fragment start distribution \(p(s(r)|t = i) \) is given in Figure 2 (a) of the main article for transcripts with length between 400 bps and 3000 bps. It can be seen that for long transcripts the Gaussian distribution \(p(l(r)) \) produces a short and steep tail at the end of \(p(s(r)|t = i) \), whereas this tail shifts increasingly to the 5' end of the transcript for shorter transcripts. The assumption of a Gaussian with mean 200 and standard deviation 80 corresponds to a size selection of the fragments prior to sequencing. Thus, Figure 2 (a) in the main text shows that even for a uniform fragment distribution, size selection generates a transcript length specific bias.
References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*, 39(1):1–38, 1977.

[2] Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods*, 5(7):621–628, Jul 2008.

[3] Pachter and Sturmfels, editors. *Algebraic Statistics for Computational Biology*. Cambridge University Press, 2005.

[4] Adam Roberts, Cole Trapnell, Julie Donaghey, John L Rinn, and Lior Pachter. Improving RNA-Seq expression estimates by correcting for fragment bias. *Genome Biology*, 12(3):R22, Mar 2011.

[5] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology*, 28(5):511–515, May 2010.