Leptogenesis in \(SO(10) \) models with a left-right symmetric seesaw mechanism

A. Abada\(^1\), P. Hosteins\(^2\), F.-X. Josse-Michaux\(^1\) and S. Lavignac\(^3\) \(^a\)

\(^1\) Laboratoire de Physique Théorique, Université de Paris-Sud, Bâtiment 210, F-91405 Orsay Cedex, France
\(^2\) Department of Physics, University of Patras, GR-26500 Patras, Greece
\(^3\) Service de Physique Théorique, Orme des Merisiers, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France

Abstract. We study leptogenesis in supersymmetric \(SO(10) \) models with a left-right symmetric seesaw mechanism, including flavour effects and the contribution of the next-to-lightest right-handed neutrino. Assuming \(M_D = M_a \) and hierarchical light neutrino masses, we find that successful leptogenesis is possible for 4 out of the 8 right-handed neutrino mass spectra that are compatible with the observed neutrino data. An accurate description of charged fermion masses appears to be an important ingredient in the analysis.

PACS. 12.10.Dm Unified theories and models of strong and electroweak interactions – 14.60.St Non-standard-model neutrinos, right-handed neutrinos, etc.

1 Introduction

Testing the seesaw mechanism \(^1\) is almost certainly an hopeless goal, except for specific low-energy realizations. The main reasons we have to believe in it are its elegance and the fact that it fits so nicely into \(SO(10) \) unification. This motivates us to investigate its observable implications, such as leptogenesis \(^2\) and, in supersymmetric theories, lepton flavour violation.

So far most studies of leptogenesis have been done in the framework of the type I (heavy right-handed neutrino exchange) seesaw mechanism, or assumed dominance of either the type I or the type II (heavy scalar \(SU(2)_L \) triplet exchange) seesaw mechanism. It is interesting, though, to investigate whether the generic situation where both contributions are comparable in size can lead to qualitatively different results. A further motivation to do so comes from the well-known fact that successful leptogenesis is difficult to achieve in \(SO(10) \) models with a type I seesaw mechanism, which generally present a very hierarchical right-handed neutrino mass spectrum, with \(M_1 \) lying below the Davidson-Ibarra bound \(^3\).

In this talk, we present results on leptogenesis in \(SO(10) \) models with a left-right symmetric seesaw mechanism. Details can be found in Refs. \(^4\)\(^5\) (for related work, see Refs. \(^6\)\(^7\)).

\(^a\) Email: Stephane.Lavignac@cea.fr

1 This might not be the case in models where the relation \(M_D = M_a \) receives large corrections from Yukawa couplings involving a \(126 \) or \(120 \) Higgs representation, or from non-renormalizable interactions.

2 Right-handed neutrino spectra in the left-right symmetric seesaw mechanism

2.1 The left-right symmetric seesaw mechanism

In left-right symmetric extensions of the Standard Model, the light neutrino mass matrix is often given by the following formula \(^8\):

\[
M_\nu = f v_L - \frac{v^2}{v_R} Y_\nu^T f^{-1} Y_\nu .
\] (1)

In Eq. (1), \(v_R \) is the scale of \(B - L \) breaking, \(v \) is the electroweak scale, and \(v_L \sim v^2 v_R / M_3^2 \) is the vev of the heavy \(SU(2)_L \) triplet. A discrete left-right symmetry ensures that a single symmetric matrix \(f \) determines both the couplings of the \(SU(2)_L \) triplet to lepton doublets, to which the type II contribution (first term) is proportional, and the right-handed neutrino mass matrix \(M_R = f v_R \), which enters the type I contribution (second term). The discrete symmetry also constrains the Dirac coupling matrix \(Y_\nu \) to be symmetric.

In order to study leptogenesis, the knowledge of the masses and couplings of the right-handed neutrinos and of the \(SU(2)_L \) triplet is needed. Therefore, in a theory which predicts the Dirac matrix \(Y_\nu \), one must solve Eq. (1) for the \(f_{ij} \) couplings, assuming a given pattern for the light neutrino masses and mixings. In Ref. \(^9\), it was shown that this “reconstruction” problem has exactly \(2^n \) solutions for \(n \) families, and explicit expressions for the \(f_{ij} \)'s were provided up to \(n = 3 \). Here we use the alternative reconstruction procedure proposed in Ref. \(^1\).
\[
Z = \alpha X - \beta X^{-1},
\]
(2)

with \(\alpha \equiv v_L^2/v_R\) and

\[
Z \equiv N_\nu^{-1} M_\nu (N_\nu^{-1})^T, \quad X \equiv N_\nu^{-1} f (N_\nu^{-1})^T,
\]
(3)

where \(N_\nu\) is a matrix such that \(Y_\nu = N_\nu N_\nu^T\), and \(Y_\nu\) is assumed to be invertible. Being complex and symmetric, \(Z\) can be diagonalized by a complex orthogonal matrix if its eigenvalues (i.e. the roots of the characteristic polynomial det\((Z - z1) = 0\)) are all distinct:

\[
Z = O_Z \text{Diag} (z_1, z_2, z_3) O_Z^T, \quad O_Z O_Z^T = 1.
\]
(4)

Then, upon an \(O_Z\) transformation, Eq. (2) reduces to 3 independent quadratic equations for the eigenvalues of \(X\):

\[
z_i = \alpha x_i - \beta x_i^{-1}
\]

For a given choice of \((x_1, x_2, x_3)\), the solution of Eq. (1) is given by:

\[
f = N_\nu O_Z \text{Diag} (x_1, x_2, x_3) O_Z^T N_\nu^T.
\]
(5)

The right-handed neutrino masses \(M_i = f_i v_R\) are obtained by diagonalizing \(f\) with a unitary matrix \(U_f\), and the couplings of the right-handed neutrino mass eigenstates are given by \(Y \equiv U_f Y_\nu\).

Since each equation \(z_i = \alpha x_i - \beta x_i^{-1}\) has two solutions \(x_i^+\) and \(x_i^-\), there are 8 different solutions for the matrix \(f\), which we label in the following way: \((+, +, +)\) refers to the solution \((x_1^+, x_2^+, x_3^+)\), \((+, +, -)\) to the solution \((x_1^+, x_2^-, x_3^-)\), and so on. It is convenient to define \(x_i^+\) and \(x_i^-\) such that, in the \(4\alpha \beta \ll |z_1|^2\) limit:

\[
x_i^- \simeq -\frac{\beta}{z_i}, \quad x_i^+ \simeq \frac{z_i}{\alpha}.
\]
(6)

With this definition, the large \(v_R\) limit \((4\alpha \beta \ll |z_1|^2)\) of solutions \((-,-,-)\) and \((+,+,+)\) corresponds to the “pure” type I and type II cases, respectively:

\[
f(-,-,-) \sim \frac{4\alpha \beta |z_1|^2}{v_R^2} - \frac{v^2}{v_R} Y_\nu M_\nu^{-1} Y_\nu,
\]
(7)

\[
f(+,+,) \sim \frac{4\alpha \beta |z_1|^2}{v_R^2} \frac{M_\nu}{v_L}.
\]
(8)

The remaining 6 solutions correspond to mixed cases where the light neutrino mass matrix receives significant contributions from both types of seesaw mechanisms. In the opposite, small \(v_R\) limit \((|z_3|^2 \ll 4\alpha \beta)\), one has \(x_3^+ \simeq \pm \text{sign}(\text{Re}(z_3)) \sqrt{\beta/\alpha}\), which indicates a partial cancellation between the type I and type II contributions to light neutrino masses.

2.3 Application to \(SO(10)\) models

Let us now apply the reconstruction procedure to supersymmetric \(SO(10)\) models with two \(10s\), a \(54\) and a \(126\) representations in the Higgs sector. The two \(10s\) generate the charged fermion masses, leading to the well-known relations:

\[
M_u = M_D \quad (\equiv Y_\nu v_u), \quad M_d = M_e.
\]
(9)

The \(54\) and the \(126\) contain the \(SU(2)_L \times SU(2)_R \times U(1)_{B-L}\) representations needed for the left-right symmetric seesaw mechanism. In particular, the SU(2)_L triplet as well as the SU(2)_R triplet whose vev \(v_R\) breaks \(B - L\) are components of the \(126\). The equality \(f_L = f_R\) and the symmetry of \(Y_\nu\) are ensured by \(SO(10)\) gauge symmetry.

Then, for a given choice of the light neutrino mass parameters and of the high energy phases contained in \(M_u\), the matrix \(Z\) is known \(^2\) and \(f\) can be reconstructed as a function of the \(B - L\) breaking scale \(v_R\) and of \(\beta/\alpha\). Perturbativity of the \(f_{ij}\) couplings constrains \(\beta/\alpha \leq O(1)\) and restricts the range of \(v_R\) from above. In Fig. 1, we show the right-handed neutrino mass spectrum of three representative solutions as a function of \(v_R\) for a hierarchical light neutrino mass spectrum. The 4 solutions with \(x_3 = x_3^-\) are characterized by a constant value of the lightest right-handed neutrino mass, \(M_1 \approx 6 \times 10^6\) GeV; the 2 solutions with \(x_3 = x_3^+\) and \(x_2 = x_2^+\) by \(M_1 \approx 2 \times 10^9\) GeV; and the 2 solutions with \(x_3 = x_3^+\) and \(x_2 = x_2^-\) by a rising \(M_1\).

\(^2\) The implicit additional inputs are \(\tan \beta\) (we choose \(\tan \beta = 10\)) and the values of the up quark masses and of the CKM matrix at the seesaw scale.
3 Implications for leptogenesis

Since $M_{\Delta L} \sim (\beta/\alpha) v_R$ and $M_1 \ll v_R$ in all solutions, one can safely assume that the $SU(2)_L$ triplet is heavier than the lightest right-handed neutrino. Then the dominant contribution to leptogenesis comes from out-of-equilibrium decays of N_1 (in some cases to be discussed below), the next-to-lightest neutrino N_2 will also be relevant). The CP asymmetry in N_1 decays, $\epsilon_{N_1} \equiv \left[\Gamma(N_1 \rightarrow lH) - \Gamma(N_1 \rightarrow lH^*) \right] / \left[\Gamma(N_1 \rightarrow lH) + \Gamma(N_1 \rightarrow lH^*) \right]$, receives two contributions: the standard type I contribution $\epsilon_{N_1}^I \equiv \epsilon_{N_1}^{I,\text{I}}$, and an additional contribution $\epsilon_{N_1}^{II}$ from a vertex diagram containing a virtual triplet $\sim 10^{-14}$.

$$\epsilon_{N_1}^I = \frac{1}{8\pi} \sum_k \text{Im} \left[\frac{(YY^\dagger)_{1k}}{(YY^\dagger)_{11}} \right]^2 f(x_k), \quad (10)$$

$$\epsilon_{N_1}^{II} = \frac{3}{8\pi} \sum_{k,l} \text{Im} \left[Y_{1k} Y_{11} f_{11}^{*} \right] \frac{M_1}{v_u} g(x_{\Delta}), \quad (11)$$

where $f(x) = -\sqrt{x} \left(2/(x-1) + \text{ln}(1+1/x) \right)$, $g(x) = x \text{ln}(1+1/x)$, $x_k \equiv M_{\Delta L}^2/M_{10}^2$, $x_{\Delta} = M_2^2/M_1^2$, and $Y \equiv U_1^T Y_c$. The final baryon asymmetry is given by:

$$Y_B \equiv \frac{n_B}{s} = -1.48 \times 10^{-3} \eta \epsilon_{N_1}, \quad (12)$$

where η is an efficiency factor to be determined by integrating the Boltzmann equations. For leptogenesis to be successful, Eq. (12) should reproduce the observed baryon-to-entropy ratio $Y_{B,\text{obs}} = (8.7 \pm 0.3) \times 10^{-11}$ [4].

The behaviour of the different solutions can be anticipated from the observation of the mass spectra in Fig. 1 [4]. Indeed, successful leptogenesis requires $|\epsilon_{N_1}| \gtrsim O(10^{-7})$, while for $M_1 \ll M_2, M_{\Delta L}$ Eqs. (10) and (11) yield the upper bound [12]:

$$|\epsilon_{N_1}| \leq 2 \times 10^{-7} \left(\frac{M_1}{10^9 \text{GeV}} \right) \left(\frac{M_{\max}}{0.05 \text{eV}} \right). \quad (13)$$

Thus, the 4 solutions with $x_3 = x_3^+$ will fail to generate the observed baryon asymmetry from N_1 decays, a conclusion that generalizes a well-known fact in the type I case. However, N_2 decays can do the job if they generate a large asymmetry in a lepton flavour that is only mildly washed out by N_1 decays and inverse decays [14]. The 2 solutions with $x_3 = x_3^+$ and $x_2 = x_2^+$ have a rising M_1 and should be able to reproduce the observed asymmetry, as in the pure type II case. Finally, the situation is less conclusive for the 2 solutions with $x_3 = x_3^+$ and $x_2 = x_2^+$, for which flavour effects and the contribution of N_2 could be decisive.

It is clear from the above discussion that a careful study of leptogenesis requires the inclusion of the next-to-lightest right-handed neutrino and of flavour effects [15]. As is well known in the type I case, flavour effects can significantly affect the final baryon asymmetry if there is a hierarchy between the washout parameters for different lepton flavours [16]. We performed such an analysis in Ref. [5], and present our results here. Fig. 2 shows the final baryon asymmetry Y_B as a function of v_R for solutions $(+, +, +)$, $(+, +, -)$ and $(-, -, -)$. Not surprisingly, the $(+, +, +)$ solution leads to successful leptogenesis; however there is a tension with the upper bound on the reheating temperature from gravitino overproduction [17] above $v_R \approx 3 \times 10^{13}$ GeV, where $M_1 > 10^{10}$ GeV. By contrast, the solutions $(+, +, -)$ and $(-, -, -)$ fail to reproduce the observed baryon asymmetry [17]. In the $(-, -, -)$ case, flavour effects prevent an exponential washout of the $B - L$ asymmetry generated in N_2 decays (N_1 decays alone would give $Y_B \sim (10^{-17} - 10^{-15})$), but this is not sufficient for “N_2 leptogenesis” to work.

However, this is not the whole story, since the above results were obtained assuming the $SO(10)$ mass relation $M_A = M_c$, which is in gross conflict with experimental data. Corrections to this formula, e.g. from non-renormalizable operators of the form $16,16,10,45$, will modify the reconstructed f_{ij}’s by introducing a mismatch U_m between the bases of charged lepton and down quark mass eigenstates. Fig. 3 shows how the final baryon asymmetry is modified when the effect of U_m is taken into account. We can see that several choices for U_m (the measured charged lepton and down quark masses do not fix all parameters in U_m) lead to successful leptogenesis in the $(+, +, -)$ case, but not in the $(-, -, -)$ case. There is some tension between successful leptogenesis and gravitino overpro-
duction in the ($+,−,+)$ solution but, exactly as in the
($+,-,+) solution, the observed asymmetry is generated
over a significant portion of the parameter space
with $M_1 < 10^{10}$ GeV.

4 Conclusions

We have studied leptogenesis in supersymmetric $SO(10)$
models with a left-right symmetric seesaw mechanism,
including flavour effects and the contribution of the
next-to-lightest right-handed neutrino. Assuming the
relation $M_D = M_u$ and a hierarchical light neutrino
mass spectrum, we found that the “type I-like” solutions
($+,−,+)$ and ($−,+,−$), as well as the solutions
($+,−,+)$ and ($−,+,−$), can lead to successful leptogene-
sis. An accurate description of charged fermion
masses was a crucial ingredient in the analysis. By
contrast, the solution ($−,−,−$) fails to generate the
observed baryon asymmetry from N_2 decays, and a
similar conclusion holds for the 3 other solutions with
$x_3 = x_5$ if one requires $M_1 < 10^{10}$ GeV.

Some comments about the generality of our results
are in order: (i) Although the above results were ob-
tained for $M_D = M_u$, the same qualitative behaviour
of the 8 solutions is expected for a more generic hier-
archical Dirac matrix. Of course, whether leptogenesis
is successful or not in a given solution can only be
decided on a model-by-model basis; (ii) At the quan-
titative level, different input parameters (other than
the various phases and $U_{m_{ij}}$) can significantly affect
the results presented in Figs. 4 to 6. This is most notably
the case of the light neutrino mass parameters: θ_{13},
m_1 and the type of the mass hierarchy (see Ref. 5 for
details). Also, corrections to the relation $M_D = M_u$
could have a significant impact, since e.g. both M_1 in
the ($+,−,+)$ solution and M_2 in the ($−,−,−$) solution
are proportional to $y_2^2 v_u^2 / m_3$.

Acknowledgements

This work has been supported in part by the RTN Eu-
ropean Program MRTN-CT-2004-053369, the Marie
Curie Excellence Grant MEXT-CT-2004-014297, and the
French Program “Jeunes Chercheurs” of the Agence
Nationale de la Recherche (ANR-05-JCJC-0023). PH
and SL would like to thank Carlos Savoy for a pleasant
and fruitful collaboration on Ref. 4.

References

1. P. Minkowski, Phys. Lett. B 67, (1977) 421; M. Gell-
mann, P. Ramond, and R. Slansky, in Supergravity,
(North Holland, Amsterdam, 1980) 315; T. Yanagida,
in Proc. of the Workshop on Unified Theories and
Baryon Number in the Universe, Tsukuba, Japan,
Feb. 13-14, 1979, p. 95.
2. M. Fukugita and T. Yanagida, Phys. Lett. B 174,
(1986) 45.
3. S. Davidson and A. Ibarra, Phys. Lett. B 535, (2002)
25.
4. P. Hosteins, S. Lavignac and C. A. Savoy, Nucl. Phys.
B 755, (2006) 137.
5. A. Abada, P. Hosteins, F.-X. Josse-Michaux and
S. Lavignac, to appear.
6. E. K. Akhmedov, M. Blennow, T. Hallgren, T. Kon-
standin and T. Ohlsson, JHEP 0704, (2007) 022.
7. T. Hallgren, these proceedings.
8. M. Magg and C. Wetterich, Phys. Lett. B 94, (1980)
61; G. Lazarides, Q. Shafi and C. Wetterich, Nucl.
Phys. B 181, (1981) 287; R. N. Mohapatra and
G. Senjanovic, Phys. Rev. D 23, (1981) 165.
9. E. K. Akhmedov and M. Frigerio, Phys. Rev. Lett.
96, (2006) 061802.
10. M. Flanz, E. A. Paschos and U. Sarkar, Phys. Lett.
B 345, (1995) 248 [Erratum-ibid. B 382, (1996) 447];
L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384,
(1996) 169; W. Buchmuller and M. Plumacher, Phys.
Lett. B 431, (1998) 354.
11. P. J. O’Donnell and U. Sarkar, Phys. Rev. D 49,
(1994) 2118; G. Lazarides and Q. Shafi, Phys. Rev. D
58, (1998) 071702.
12. T. Hambye and G. Senjanovic, Phys. Lett. B 582,
(2004) 73; S. Antusch and S. F. King, Phys. Lett. B
597, (2004) 199.
13. D. N. Spergel et al. [WMAP Collaboration], Astro-
phys. J. Suppl. 170, (2007) 377.
14. O. Vives, Phys. Rev. D 73, (2006) 073006.
15. R. Barbieri, P. Creminelli, A. Strumia and N.
Tetradis, Nucl. Phys. B 575, (2000) 61.
16. A. Abada, S. Davidson, F. X. Josse-Michaux,
M. Losada and A. Riotto, JCAP 0604, (2006) 004;
E. Nardi, Y. Nir, E. Roulet and J. Racker, JHEP
0601, (2006) 164; A. Abada, S. Davidson, A. Ibarra,
F. X. Josse-Michaux, M. Losada and A. Riotto, JHEP
0609, (2006) 010.
17. M. Y. Khlopov and A. D. Linde, Phys. Lett. B 138,
(1984) 265; J. R. Ellis, J. E. Kim and D. V. Nanopoulos,
Phys. Lett. B 145, (1984) 181. For a recent computa-
tion of thermal production of gravitinos, see
V. S. Rychkov and A. Strumia, Phys. Rev. D 75,
(2007) 075011.

Fig. 3. Same as Fig. 2 but with corrections to the relation $M_D = M_u$ from the non-renormalizable operators
$16,16,10^4,45$, keeping the relation $M_D = M_u$. Four different choices of the matrix $U_{m_{ij}}$ and of the CP-violating phases.