Quadratic algebra structure in the 5D Kepler system with non-central potentials and Yang-Coulomb monopole interaction

Md Fazlul Hoque a, Ian Marquette a and Yao-Zhong Zhang a,b

a School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

b CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

m.hoque@uq.edu.au, i.marquette@uq.edu.au, yzz@maths.uq.edu.au

Abstract

We construct the integrals of motion for the 5D deformed Kepler system with non-central potentials in $su(2)$ Yang-Coulomb monopole field. We show that these integrals form a higher rank quadratic algebra $Q(3; L^{so(4)}, T^{su(2)}) \oplus so(4)$, with structure constants involving the Casimir operators of $so(4)$ and $su(2)$ Lie algebras. We realize the quadratic algebra in terms of the deformed oscillator and construct its finite-dimensional unitary representations. This enable us to derive the energy spectrum of the system algebraically. Furthermore we show that the model is multiseparable and allows separation of variables in the hyperspherical and parabolic coordinates. We also show the separability of its 8D dual system (i.e. the 8D singular harmonic oscillator) in the Euler and cylindrical coordinates.

1 Introduction

Quantum mechanical systems in Dirac monopole [1] or Yang’s non-abelian $su(2)$ monopole [2] fields have remained a subject of international research
interest. In [3] the structural similarity between $su(2)$ gauge system and the 5D Kepler problem was discussed in the scheme of algebraic constraint quantization. Various 5D Kepler systems with $su(2)$ monopole (or Yang-Coulomb monopole) interactions have been investigated by many authors [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Superintegrability of certain monopole systems has been shown in [17, 18, 19, 20, 21, 22, 23].

There exists established connection between 2, 3, 5 and 9-dimensional hydrogen-like atoms and 2, 4, 8 and 16-dimensional harmonic oscillators, respectively [24, 25, 26, 27, 28, 29]. In [30] one of the present authors proved the superintegrability of the 5D Kepler system deformed with non-central terms in Yang-Coulomb monopole (YCM) field. This was achieved by relating this system to an 8D singular harmonic oscillator via the Hurwitz transformation [31]. An algebraic calculation of the spectrum of the 8D dual system was performed, which enabled the author to deduce the spectrum of the 5D deformed Kepler YCM system via duality between the two models.

However, algebraic structure of the 5D deformed Kepler YCM system and a direct derivation of its spectrum via the symmetry algebra have remained an open problem. Such algebraic approach is expected to provide deeper understanding to the degeneracies of the energy spectrum and the connection of the wavefunctions with special functions and orthogonal polynomials.

Symmetry algebras generated by integrals of motion of superintegrable systems are in general polynomial algebras with structure constants involving Casimir operators of certain Lie algebras [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. The purpose of this paper is to obtain the algebraic structure in the 5D deformed Kepler YCM system and apply it to give a direct algebraic derivation of the energy spectrum of the model. We construct the integrals of motion and show that they form a higher rank quadratic algebra $Q(3; L^{so(4)}, T^{su(2)}) \oplus so(4)$ with structure constants involving the Casimir operators of $so(4)$ and $su(2)$ Lie algebras. This quadratic algebra structure enable us to give an algebraic derivation of the energy spectrum of the model. Furthermore, we show that the model is separable in the hyperspherical and parabolic coordinates. We also show the separability of its 8D dual system...
2 Kepler system in Yang-Coulomb monopole field

The 5D Kepler-Coulomb system with Yang-Coulomb monopole interaction is defined by the Hamiltonian \[H = \frac{1}{2} \left(-i \hbar \frac{\partial}{\partial x_j} - \hbar A_j^a T_a \right)^2 + \frac{\hbar^2}{2r^2} \hat{T}^2 - \frac{c_0}{r}, \] (2.1)

where \(j = 0, 1, 2, 3, 4 \) and \(\{ T_a, a = 1, 2, 3 \} \) are the \(su(2) \) gauge group generators which satisfy the commutation relations \[[T_a, T_b] = i \epsilon_{abc} T_c \] (2.2)

\(\hat{T}^2 = T^a T^a \) is the Casimir operator of \(su(2) \) and \(A_j^a \) are the components of the monopole potential \(A^a \), which can be written as

\[A_j^a = \frac{2i}{r(r+x_0)} \tau_j^a x_k. \] (2.3)

Here \(\tau^a \) are the \(5 \times 5 \) matrices

\[\tau^1 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \sigma^1 \\ 0 & i \sigma^1 & 0 \end{pmatrix}, \quad \tau^2 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \sigma^3 \\ 0 & -i \sigma^3 & 0 \end{pmatrix}, \quad \tau^3 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix}, \] (2.4)

which satisfy \([\tau^a, \tau^b] = i \epsilon_{abc} \tau^c\) and \(\sigma^i \) are the Pauli matrices

\[\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \] (2.5)

The vector potentials \(A^a \) are orthogonal to each other,

\[A^a \cdot A^b = \frac{1}{r^2} \frac{r-x_0}{r+x_0} \delta_{ab}. \] (2.6)

and to the vector $x = (x_0, x_1, x_2, x_3, x_4)$.

The Kepler-Coulomb model Hamiltonian has the following integrals of motion \[2\]

$$L_{jk} = (x_j \pi_k - x_k \pi_j) - i^2 \hbar F_{jk}^a T_a,$$
$$M_k = \frac{1}{2} (\pi_j L_{jk} + L_{jk} \pi_j) + c_0 \frac{x_k}{r}, \quad (2.7)$$

which satisfy $[H, L_{jk}] = 0 = [H, M_k]$. Here

$$F_{jk}^a = \partial_j A_k^a - \partial_k A_j^a + \epsilon_{abc} A_j^b A_k^c. \quad (2.8)$$

is the Yang-Mills field tensor and $\pi_j = -i\hbar \frac{\partial}{\partial x_j} - \hbar A_j^a T_a$ which obey the commutation relations

$$[\pi_j, x_k] = -i\hbar \delta_{jk}, \quad [\pi_j, \pi_k] = i\hbar^2 F_{jk}^a T_a. \quad (2.9)$$

The integrals L_{jk} and M_k close to the so(6) algebra \[43\]

$$[L_{ij}, L_{mn}] = i\hbar \delta_{im} L_{jn} - i\hbar \delta_{jm} L_{in} - i\hbar \delta_{in} L_{jm} + i\hbar \delta_{jn} L_{im},$$
$$[L_{ij}, M_k] = i\hbar \delta_{ik} M_j - i\hbar \delta_{jk} M_i, \quad [M_i, M_k] = -2i\hbar H L_{ik}. \quad (2.10)$$

The so(6) symmetry algebra is very useful in deriving the energy spectrum of the system algebraically.

The Casimir operators of so(6) are given by \[44\ \[45\]

$$\hat{K}_1 = \frac{1}{2} D_{\mu\nu} D_{\mu\nu}, \quad \hat{K}_2 = \epsilon_{\mu\rho\sigma\tau\lambda} D_{\mu\nu} D_{\rho\sigma} D_{\tau\lambda},$$
$$\hat{K}_3 = \frac{1}{2} D_{\mu\nu} D_{\mu\rho} D_{\nu\sigma} D_{\tau\mu}, \quad (2.11)$$

where $\mu, \nu = 0, 1, 2, 3, 4$ and

$$D = \begin{pmatrix} L_{jk} & -(2H)^{1/2} M_k \\ (-2H)^{1/2} M_k & 0 \end{pmatrix}. \quad (2.12)$$

The eigenvalues of the operators \hat{K}_1, \hat{K}_2 and \hat{K}_3 are \[46\]

$$K_1 = \mu_1 (\mu_1 + 4) + \mu_2 (\mu_2 + 2) + \mu_3^2,$$
$$K_2 = 4(\mu_1 + 2)(\mu_2 + 1)\mu_3,$$
$$K_3 = \mu_1^2 (\mu_1 + 4)^2 + 6\mu_1 (\mu_1 + 4) + \mu_2^2 (\mu_2 + 2)^2 + \mu_3^4 - 2\mu_3^2, \quad (2.13)$$
respectively, where μ_1, μ_2 and μ_3 are positive integers or half-integers and $\mu_1 \geq \mu_2 \geq \mu_3$. One can represent the operators $\hat{K}_1, \hat{K}_2, \hat{K}_3$ in the form

$$\hat{K}_1 = -\frac{c_0}{2\hbar^2 H} + 2\hat{T}^2 - 4, \quad \hat{K}_2 = 48 \left(-\frac{\mu_0}{2\hbar^2 H}\right)^{1/2} \hat{T}^2,$$

$$\hat{K}_3 = K_1^2 + 6K_1 - 4K_1\hat{T}^2 - 12\hat{T}^2 + 6\hat{T}^4.$$ (2.14)

Denote by T the eigenvalue of \hat{T}^2. Then,

$$K_1 - 2T(T + 1) = \mu_1(\mu_1 + 4),$$

$$\mu_2^2(\mu_2 + 2)^2 + \mu_3^4 - 2\mu_3^2 = 2T^2(T + 1)^2.$$ (2.15)

The energy levels of the Yang-Coulomb monopole system are given by

$$\epsilon_n^T = -\frac{c_0}{2\hbar^2 \left(\frac{n}{2} + 2\right)^2},$$ (2.16)

where use has been made of $\mu_1 = \frac{n}{2}$ with n being nonnegative integer.

3 Kepler system with non-central potentials and Yang-Coulomb monopole interaction

Let us now consider the 5D Kepler system deformed with non-central potentials in Yang-Coulomb monopole field. The Hamiltonian is given by

$$H = \frac{1}{2} \left(-i\hbar \frac{\partial}{\partial x_j} - \hbar A_j^a T_a\right)^2 + \frac{\hbar^2}{2r^2} \hat{T}^2 - \frac{c_0}{r} + \frac{c_1}{r(r + x_0)} + \frac{c_2}{r(r - x_0)},$$ (3.1)

where c_1 and c_2 are positive real constants. We can construct the integrals of motion of (3.1) by deforming the integrals (2.7) of (2.1),

$$A = \hat{L}^2 + \frac{2rc_1}{r + x_0} + \frac{2rc_2}{r - x_0},$$

$$B = M_k + \frac{c_1(r - x_0)}{\hbar^2 r(r + x_0)} + \frac{c_2(r + x_0)}{\hbar^2 r(r - x_0)},$$ (3.2)
where

\[\hat{L}^2 = \sum_{i<j} L^2_{ij}, \quad L_{ij} = x_ip_j - x_jp_i, \quad i, j = 1, 2, 3, 4. \tag{3.3} \]

It can be checked that these integrals satisfy the commutation relations

\[[H, A] = 0 = [H, B], \quad [A, \hat{L}^2] = 0 = [B, \hat{L}^2], \quad [H, \hat{L}^2] = 0 = [H, L_{jk}]. \tag{3.4} \]

So the 5D deformed Kepler YCM system (3.1) is minimally superintegrable as it has 6 algebraically independent integrals of motion including \(H \).

The integrals \(A, B \) (3.2) have the following differential operator realization:

\[
A = \hbar^2 \left[-r^2 \frac{\partial^2}{\partial x_j^2} + x_jx_k \frac{\partial^2}{\partial x_j \partial x_k} + 4x_j \frac{\partial}{\partial x_j} \frac{2r}{r + x_0} \hat{T}^2 \right. \\
+ 2ir^2 A_j T_a \frac{\partial}{\partial x_j} + \left(\frac{2rc_1}{r + x_0} + \frac{2rc_2}{r - x_0} \right) \\
- \left. \frac{2r}{r + x_0} \right] ,
\]

\[
B = \hbar^2 \left[x_0 \frac{\partial^2}{\partial x_j^2} - x_j \frac{\partial^2}{\partial x_0 \partial x_j} + \frac{r - x_0}{r + x_0} \hat{T}^2 + \frac{c_0 x_0}{\hbar^2 r} \right] + \frac{c_1(r - x_0)}{\hbar^2 r} + \frac{c_2(r + x_0)}{\hbar^2 r} . \tag{3.5} \]

These differential expressions are associated with the multiseparability of the Hamiltonian, as will be seen later. However, let us point out that in general systems with monopole interactions are not separable \[47\].

4 Algebra structure, unirreps and energy spectrum

By direct computation, we can show that the integrals \(A, B \) (3.2) and the central elements \(H, \hat{L}^2, \hat{T}^2 \) close to form the following quadratic algebra...
The Casimir operator is a cubic combination of the generators, given explicitly by

\[
\hat{K} = C^2 - 2\{A, B^2\} - 4B^2 - 2\{4c_0(c_2 - c_1) - 4c_0\hat{T}^2\}B + 8HA^2
+ 2\{(16 - 8c_1 - 8c_2)H - 4\hat{L}^2H + 2c_0^2\}A.
\] (4.4)

Using the differential realization (3.5) of the integrals \(A\) and \(B\), we can show that the Casimir operator (4.4) takes the form,

\[
\hat{K} = -8H(\hat{T}^2)^2 + 16\hat{L}^2H - 8(c_1 - c_2)\hat{T}^2H - 2\{(c_1 - c_2)^2
+ 8(2 - c_1 - c_2)\}H + 4c_0^2\hat{L}^2 + 4c_0^2(c_1 + c_2 - 1).
\] (4.5)

Notice that the first order integrals of motion \(\{L_{ij}, i,j = 1, 2, 3, 4\}\) generate the \(so(4)\) algebra

\[
[L_{ij}, L_{mn}] = ih(\delta_{im}L_{jn} - \delta_{jm}L_{in} - \delta_{in}L_{jm} + \delta_{jn}L_{im}).
\] (4.6)

So the full dynamical symmetry algebra of the Hamiltonian (3.1) is a direct sum \(Q(3; L^{so(4)}, T^{su(2)}) \oplus so(4)\) of the quadratic algebra \(Q(3; L^{so(4)}, T^{su(2)})\) and the \(so(4)\) Lie algebra, with structure constants involving the Casimir operators \(\hat{L}^2, \hat{T}^2\) of \(so(4), su(2)\).

In order to obtain the energy spectrum of the system, we now construct a realization of the quadratic algebra \(Q(3; L^{so(4)}, T^{su(2)})\) in terms of the deformed oscillator algebra of the form [33, 48],

\[
[\mathcal{N}, b^\dagger] = b^\dagger, \quad [\mathcal{N}, b] = -b, \quad bb^\dagger = \Phi(\mathcal{N} + 1), \quad b^\dagger b = \Phi(\mathcal{N}).
\] (4.7)

Here \(\mathcal{N}\) is the number operator and \(\Phi(x)\) is well behaved real function satisfying

\[
\Phi(0) = 0, \quad \Phi(x) > 0, \quad \forall x > 0.
\] (4.8)
It is non-trivial to obtain such a realization and to find the structure function \(\Phi(x) \). After long computations, we get

\[
A = (\mathfrak{N} + u)^2 - \frac{9}{4},
\]
\[
B = b(\mathfrak{N}) + b^\dagger \rho(\mathfrak{N}) + \rho(\mathfrak{N})b,
\]
(4.9)

where

\[
b(\mathfrak{N}) = \frac{c_0(c_1 - c_2) + c_0 \hat{T}^2}{(\mathfrak{N} + u)^2 - \frac{1}{4}},
\]
\[
\rho(\mathfrak{N}) = \frac{1}{3.2^{20}(\mathfrak{N} + u)(1 + \mathfrak{N} + u)\{1 + 2(\mathfrak{N} + u)^2\}},
\]
(4.10)

and \(u \) is a constant to be determined from the constraints on the structure function \(\Phi \). Using (4.1-4.3) and (4.4), we find

\[
\Phi(x; u, H) = 98304\left[2c_0^2 + H\{1 - 2(x + u)\}^2\right]\left[4c_1^2 + 4c_2^2 + \{1 - 2(x + u)\}^2\right]
\]
\[
\times\left\{4(x + u)(x + u - 1) - 4\hat{L}^2 - 3\right\} - 4c_1\left[2c_2 + \{1 - 2(x + u)\}^2\right]
\]
\[
-4\hat{T}^2\right\} + 16(\hat{T}^2)^2 - 4c_2\left\{1 - 2(x + u)\right\}^2 + 4\hat{T}^2].
\]
(4.11)

A set of appropriate quantum numbers can be defined in same way as in [3, 49]. We can use the subalgebra chains \(so(4) \supset so(3) \supset so(2) \) and \(so(3) \supset so(2) \) for \(\hat{L}^2 \) and \(\hat{T}^2 \) respectively. The Casimir operators \(\hat{J}^2_{(\alpha)} \) of the related chains can be written as [49]

\[
\hat{J}^2_{(\alpha)} = \sum_{i<j}^\alpha \hat{J}_{ij}^2, \quad \alpha = 2, 3, 4.
\]
(4.12)

We need to use an appropriate Fock space in order to obtain finite-dimensional unitary irreducible representations (unirreps) of \(Q(3; L^{so(4)}, T^{su(2)}) \). Let \(|n, E >\equiv |n, E, l_4, l_3, l_2 > \) denote the Fock basis states, where \(l_4, l_3, l_2 \) are quantum numbers of \(\hat{J}^2_{(\alpha)} \), \(\alpha = 4, 3, 2 \), respectively. Then the eigenvalues of the Casimir operators \(\hat{L}^2 \) and \(\hat{T}^2 \) are \(\hbar^2 l_4(l_4 + 2) \) and \(\hbar^2 T(T + 1), \) respectively. By acting the structure function on the Fock states \(|n, E > \) with \(\mathfrak{N}|n, E > = n|n, E > \) and
using the eigenvalues of H, \hat{L}^2 and \hat{T}^2, we get

$$
\Phi(x; u, E) = [x + u - \left(\frac{1}{2} - \frac{c_0}{\sqrt{-2E}}\right)] [x + u - \left(\frac{1}{2} + \frac{c_0}{\sqrt{-2E}}\right)] \\
\times [x + u - \frac{1}{2}(1 + m_1 + m_2)] [x + u - \frac{1}{2}(1 + m_1 - m_2)] \\
\times [x + u - \frac{1}{2}(1 - m_1 + m_2)] [x + u - \frac{1}{2}(1 - m_1 - m_2)],
$$

(4.13)

where $m_1^2 = 1 + 2c_1 + \hbar^2 l_4(l_4 + 2) + 2\hbar^2 T(T + 1)$, $m_2^2 = 1 + 2c_2 + \hbar^2 l_4(l_4 + 2) - 2\hbar^2 T(T + 1)$. For the unirreps to be finite dimensional, we impose the following constraints on the structure function (4.13),

$$
\Phi(p + 1; u, E) = 0, \quad \Phi(0; u, E) = 0, \quad \Phi(x) > 0, \quad \forall x > 0, \quad \forall x > 0, \quad (4.14)
$$

where p is a positive integer. These constraints give $(p + 1)$-dimensional unirreps and their solution gives the energy E and constant u. The energy spectrum is

$$
E = -\frac{c_0^2}{2(p + 1 + \frac{m_1 + m_2}{2})^2},
$$

(4.15)

The total number of degeneracies depends on $p + 1$ only when the other quantum numbers would be fixed. These quantum numbers do not increase the total number of degeneracies.

5 Separation of variables

In this section we show that the Hamiltonian (3.1) is multiseparatable and allows separation of variables in the hyperspherical and parabolic coordinates. We also show that the dual system of (3.1) is separable in the Euler and cylindrical coordinates.
5.1 Hyperspherical coordinates

We define the hyperspherical coordinates \(r \in [0, \infty), \theta \in [0, \pi], \alpha \in [0, 2\pi), \beta \in [0, \pi] \) and \(\gamma \in [0, 4\pi) \) in the space \(\mathbb{R}^5 \) by

\[
\begin{align*}
 x_0 &= r \cos \theta, \\
 x_1 + ix_2 &= r \sin \theta \cos \frac{\beta}{2} e^{i(\alpha + \gamma)/2}, \\
 x_3 + ix_4 &= r \sin \theta \sin \frac{\beta}{2} e^{i(\alpha - \gamma)/2}.
\end{align*}
\] (5.1)

In this coordinate system the differential elements of length, volume and the Laplace operator can be expressed \[13\] as

\[
\begin{align*}
 dl^2 &= dr^2 + r^2 d\theta^2 + \frac{r^2}{4} \sin^2 \theta (d\alpha^2 + d\beta^2 + d\gamma^2 + 2 \cos \theta d\alpha d\gamma), \\
 dV &= \frac{r^4}{8} \sin^3 \theta \sin \beta dr d\theta d\alpha d\beta d\gamma, \\
 \Delta &= \frac{1}{r^4} \frac{\partial}{\partial r} (r^4 \frac{\partial}{\partial r}) + \frac{1}{r^2 \sin^3 \theta} \frac{\partial}{\partial \theta} (\sin^3 \theta \frac{\partial}{\partial \theta}) - \frac{4 \hat{L}^2}{r^2 \sin^2 \theta},
\end{align*}
\] (5.2)

with \(\hat{L}^2 = L_1^2 + L_2^2 + L_3^2 \) and

\[
\begin{align*}
 L_1 &= i \left(\cos \alpha \cot \beta \frac{\partial}{\partial \alpha} + \sin \alpha \frac{\partial}{\partial \beta} - \frac{\cos \alpha}{\sin \beta} \frac{\partial}{\partial \gamma} \right), \\
 L_2 &= -i \left(\sin \alpha \cot \beta \frac{\partial}{\partial \alpha} - \cos \alpha \frac{\partial}{\partial \beta} - \frac{\sin \alpha}{\sin \beta} \frac{\partial}{\partial \gamma} \right), \\
 L_3 &= i \frac{\partial}{\partial \alpha}.
\end{align*}
\] (5.3)

With the help of the identity \[5\]

\[
\begin{align*}
 iA_j^a \frac{\partial}{\partial x_j} &= \frac{2}{r(r + x_0)} L_a,
\end{align*}
\] (5.4)

with

\[
\begin{align*}
 L_1 &= \frac{i}{2} (D_{41} + D_{32}), \\
 L_2 &= \frac{i}{2} (D_{13} + D_{42}), \\
 L_3 &= \frac{i}{2} (D_{12} + D_{34}), \\
 D_{jk} &= -x_j \frac{\partial}{\partial x_k} + x_k \frac{\partial}{\partial x_j}.
\end{align*}
\] (5.5)
the Schrödinger equation $H\psi = E\psi$ of (3.1) can be written as

$$\left[\Delta_{r\theta} \right. - \frac{\hat{L}^2 + c_2}{\hbar^2 r^2 \sin^2 \frac{\theta}{2}} - \left. \frac{\hat{J}^2 + c_1}{\hbar^2 r^2 \cos^2 \frac{\theta}{2}} \right] \psi + \frac{2}{\hbar^2} \left(E + \frac{c_0}{r} \right) \psi = 0, \quad (5.6)$$

where

$$\Delta_{r\theta} = \frac{1}{r^4} \frac{\partial}{\partial r} \left(r^4 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^3 \theta \frac{\partial}{\partial \theta} \right), \quad (5.7)$$

$\hat{J}^2 = J_a J_a$ with $J_a = L_a + T_a$, $a = 1, 2, 3$. The operators L_a and J_a satisfy the commutation relations

$$[L_a, L_b] = i \epsilon_{abc} L_c, \quad [J_a, J_b] = i \epsilon_{abc} J_c. \quad (5.8)$$

Equation (5.6) is separable in the hyperspherical coordinates using the eigenfunctions of \hat{L}^2, \hat{T}^2 and \hat{J}^2 with the eigenvalues $\hbar^2 L(L + 1), \hbar^2 T(T + 1)$ and $\hbar^2 J(J + 1)$, respectively. This is seen as follows. We make the separation ansatz [5]

$$\psi = \Phi(r, \theta) D^L_{JM;TT;mm'}(\alpha, \beta, \gamma, \alpha_T, \beta_T, \gamma_T), \quad (5.9)$$

where

$$D^L_{JM;TT;mm'}(\alpha, \beta, \gamma, \alpha_T, \beta_T, \gamma_T) = \sqrt{\frac{(2L + 1)(2T + 1)}{4\pi^4}} \sum_{M=m+t} C^L_{JM;TT;mm'} \times D^L_{MM'}(\alpha, \beta, \gamma) D^T_{TT'}(\alpha_T, \beta_T, \gamma_T). \quad (5.10)$$

and $C^L_{JM;TT;mm'}$ are the Clebsch-Gordon coefficients that arise in angular momentum coupling and appear as the expansion coefficients of total angular momentum eigenstates in uncoupled tensor product basis [5]; $D^{j}_{mm'}$ are the $su(2)$ Wigner D-functions of dimension $2j + 1$ with $j = 0, 1/2, 1, 3/2, 2, \ldots$ and $m = -j, -j + 1, \ldots, j$ [51]. Substituting the ansatz into (5.6) leads to the differential equation for the function $\Phi(r, \theta)$

$$\left[\Delta_{r\theta} - \frac{L(L + 1) + \frac{c_2}{2}}{r^2 \sin^2 \frac{\theta}{2}} - \frac{J(J + 1) + \frac{c_1}{2}}{r^2 \cos^2 \frac{\theta}{2}} + \frac{2}{\hbar^2} \left(E + \frac{c_0}{r} \right) \right] \Phi(r, \theta) = 0. \quad (5.11)$$
Setting the function \(\Phi(r, \theta) = R(r) F(\theta) \), (5.11) is separated into the ordinary differential equations

\[
\begin{bmatrix}
\frac{d^2}{d\theta^2} + 3 \cot \theta \frac{d}{d\theta} - \frac{2\{L(L + 1) + \frac{\delta_1}{2}\}}{1 - \cos \theta} - \frac{2\{J(J + 1) + \frac{\delta_2}{2}\}}{1 + \cos \theta} + \Lambda
\end{bmatrix} F(\theta) = 0,
\]

(5.12)

\[
\begin{bmatrix}
\frac{d^2}{dr^2} + \frac{4}{r} \frac{d}{dr} + \frac{2}{\hbar^2} (E + \frac{c_0}{r}) - \frac{\Lambda}{r^2}
\end{bmatrix} R(r) = 0,
\]

(5.13)

where \(\Lambda \) is the separation constant. Solutions of (5.12) and (5.13) in terms of the Jacobi and confluent hypergeometric polynomials [52] are as follows

\[
F(\theta) = F_{\lambda J L}(\theta; \delta_1, \delta_2)(1 + \cos \theta)^{(\delta_1 + J)/2}(1 - \cos \theta)^{(\delta_2 + L)/2} \times P_{\lambda - J - L}^{(\delta_2 + L, \delta_1 + J)}(\cos \theta),
\]

\[
R(r) = R_{n\lambda}(r : \delta_1, \delta_2)e^{-\frac{\kappa r}{2}} (\kappa r)^{\lambda, \frac{\delta_1 + \delta_2}{2}}_1 F_{1}(-n, 4 + 2\lambda + \delta_1 + \delta_2; \kappa r),
\]

(5.14)

where

\[
\begin{align*}
\Lambda &= (\lambda + \frac{\delta_1 + \delta_2}{2})(\lambda + \frac{\delta_1 + \delta_2}{2} + 3), \quad \lambda \in \mathbb{N}, \\
\delta_1 &= -1 + \sqrt{\frac{4c_1}{\hbar^2} + (2J + 1)^2 - J}, \\
\delta_2 &= -1 + \sqrt{\frac{4c_2}{\hbar^2} + (2L + 1)^2 - L}, \\
n &= -\frac{2c_0}{\hbar^2 \kappa} + \frac{\delta_1 + \delta_2}{2} + \lambda + 2, \quad E = -\frac{\kappa^2 \hbar^2}{8}.
\end{align*}
\]

(5.15)

Hence the energy spectrum

\[
E = -\frac{c_0^2}{2\hbar^2(n + \lambda + 2 + \frac{\delta_1 + \delta_2}{2})^2}.
\]

(5.16)

This physical spectrum coincides with (4.15) obtained from algebraic derivation by the identification \(p = n + \lambda + 1, \delta_1 = m_1, \delta_2 = m_2 \) and \(\hbar = 1 \).
5.2 Parabolic coordinates

The parabolic coordinates are defined by

\[x_0 = \frac{1}{2}(\mu - \nu), \]
\[x_1 + ix_2 = \sqrt{\mu\nu} \cos \frac{\beta}{2} e^{i(\alpha+\gamma)/2}, \]
\[x_3 + ix_4 = \sqrt{\mu\nu} \sin \frac{\beta}{2} e^{i(\alpha-\gamma)/2}, \]

(5.17)

with \(\mu, \nu \in [0, \infty) \). The differential elements of length, volume and Laplace operator in this coordinates can be expressed as

\[dl^2 = \frac{\mu + \nu}{4} \left(\frac{d\mu^2}{\mu} + \frac{d\nu^2}{\nu} \right) + \frac{\mu\nu}{4} \left(d\alpha^2 + d\beta^2 + d\gamma^2 + 2 \cos \theta d\alpha d\gamma \right), \]
\[dV = \frac{\mu\nu}{32} (\mu + \nu) \sin \beta d\mu d\nu d\alpha d\beta d\gamma, \]
\[\Delta = \frac{4}{\mu + \nu} \left[\frac{1}{\mu} \frac{\partial}{\partial \mu} \left(\mu^2 \frac{\partial}{\partial \mu} \right) + \frac{1}{\nu} \frac{\partial}{\partial \nu} \left(\nu^2 \frac{\partial}{\partial \nu} \right) \right] - \frac{4}{\mu\nu} \hat{L}^2. \]

(5.18)

The Schrödinger equation \(H\psi = E\psi \) of the Hamiltonian (3.1) in this coordinates becomes

\[\left[\Delta_{\mu\nu} - \frac{4(J^2 + c_1)}{\hbar^2 \mu(\mu + \nu)} - \frac{4(L^2 + c_2)}{\hbar^2 \nu(\nu + \mu)} + \frac{2}{\hbar^2} (E + \frac{c_0}{\mu + \nu}) \right] \psi = 0, \]

(5.19)

where

\[\Delta_{\mu\nu} = \frac{4}{\mu + \nu} \left[\frac{1}{\mu} \frac{\partial}{\partial \mu} \left(\mu^2 \frac{\partial}{\partial \mu} \right) + \frac{1}{\nu} \frac{\partial}{\partial \nu} \left(\nu^2 \frac{\partial}{\partial \nu} \right) \right]. \]

(5.20)

Making the ansatz of the form \([9] \)

\[\psi = f_1(\mu) f_2(\nu) D_{LM}^{\mu\nu}(\alpha, \beta, \gamma, \alpha_T, \beta_T, \gamma_T), \]

(5.21)

in (5.19), the wave functions are separated and lead to the following ordinary differential equations

\[\frac{1}{\mu} \frac{d}{d\mu} \left(\mu^2 \frac{df_1}{d\mu} \right) + \left[\frac{E}{2\hbar^2\mu} - \frac{J(J + 1)}{\mu} + \frac{c_0}{2\hbar^2} + \frac{\hbar}{2} \Lambda \right] f_1 = 0, \]
\[\frac{1}{\nu} \frac{d}{d\nu} \left(\nu^2 \frac{df_2}{d\nu} \right) + \left[\frac{E}{2\hbar^2\nu} - \frac{L(L + 1)}{\nu} + \frac{c_0}{2\hbar^2} - \frac{\hbar}{2} \Lambda \right] f_2 = 0, \]

(5.22) (5.23)
where $\tilde{\Lambda}$ is the separation constant. Solutions of (5.22) and (5.23) are given by the confluent hypergeometric polynomials [52],

$$f_1 = e^{-\frac{\kappa\mu}{2}}(\kappa\mu)^{\delta_1 + J} F(-n_1, \delta_1 + J + 2, \kappa\mu),$$

$$f_2 = e^{-\frac{\kappa\nu}{2}}(\kappa\nu)^{\delta_2 + L} F(-n_2, \delta_2 + L + 2, \kappa\nu),$$

(5.24)

where

$$\delta_1 = -1 + \sqrt{\frac{4c_1}{\hbar^2} + (2J + 1)^2 - J},$$

$$\delta_2 = -1 + \sqrt{\frac{4c_2}{\hbar^2} + (2L + 1)^2 - L},$$

$$-n_1 = \frac{1}{2} (\delta_1 + J) + 1 - \frac{\hbar}{2\kappa} \tilde{\Lambda} - \frac{c_0}{2\kappa\hbar^2},$$

$$-n_2 = \frac{1}{2} (\delta_2 + L) + 1 + \frac{\hbar}{2\kappa} \tilde{\Lambda} - \frac{c_0}{2\kappa\hbar^2}, \quad E = \frac{-\hbar^2\kappa^2}{2}. \quad (5.25)$$

Set

$$n_1 + n_2 = \frac{c_0}{\kappa\hbar^2} - \frac{1}{2} (\delta_1 + \delta_2 + J + L) - 2. \quad (5.26)$$

The energy spectrum

$$E = -\frac{c_0^2}{2\hbar^2 \{n_1 + n_2 + \frac{1}{2}(\delta_1 + \delta_2 + J + L) + 2 \}^2}. \quad (5.27)$$

Making the identification $p = n_1 + n_2 + \frac{J + L}{2} + 1$, $\delta_1 = m_1$, $\delta_2 = m_2$ and $\hbar = 1$, the energy spectrum becomes (4.15).

5.3 Euler spherical coordinates

The 5D Kepler system with non-central terms and Yang-Coulomb monopole is dual to the 8D singular oscillator via Hurwitz transformation [30]. The symmetry algebra structure and energy spectrum of the 8D singular oscillator has been studied in [30]. In this and next subsections we show the separability this dual system in the Euler spherical and cylindrical coordinates, and compare our results for the spectrum with those obtained in [30].
The Hamiltonian of the 8D singular oscillator reads

\[H = -\frac{\hbar^2}{2} \sum_{i=0}^{7} \frac{\partial^2}{\partial u_i^2} + \frac{\omega^2}{2} \sum_{i=0}^{7} u_i^2 + \frac{\lambda_1}{u_0^2 + u_1^2 + u_2^2 + u_3^2} + \frac{\lambda_2}{u_4^2 + u_5^2 + u_6^2 + u_7^2}. \]

(5.28)

In the Euler 8D spherical coordinates \[14\]

\[u_0 + i u_1 = u \cos \frac{\theta}{2} \sin \frac{\beta_T}{2} e^{-i(\alpha_T + \gamma_T)}, \]

\[u_2 + i u_3 = u \cos \frac{\theta}{2} \cos \frac{\beta_T}{2} e^{i(\alpha_T + \gamma_T)}, \]

\[u_4 + i u_5 = u \sin \frac{\theta}{2} \sin \frac{\beta_K}{2} e^{i(\alpha_K - \gamma_K)}, \]

\[u_6 + i u_7 = u \sin \frac{\theta}{2} \cos \frac{\beta_K}{2} e^{-i(\alpha_K + \gamma_K)}, \]

(5.29)

where \(0 \leq u < \infty, 0 \leq \theta \leq \pi\), we have

\[\sum_{i=0}^{7} \frac{\partial^2}{\partial u_i^2} = \frac{1}{u^7} \frac{\partial}{\partial u} (u^7 \frac{\partial}{\partial u}) + \frac{4}{u^2 \sin^3 \theta} \frac{\partial}{\partial \theta} (\sin^3 \theta \frac{\partial}{\partial \theta}) - \frac{4}{u^2 \cos^2 \theta} \frac{\hat{T}^2}{2} - \frac{4}{u^2 \sin^2 \theta} \frac{\hat{K}^2}{2}, \]

(5.30)

with

\[
\hat{T}^2 = - \left[\frac{\partial^2}{\partial \beta_T^2} + \cot \beta_T \frac{\partial}{\partial \beta_T} + \frac{1}{\sin^2 \beta_T} \left(\frac{\partial}{\partial \alpha_T^2} - 2 \cos \beta_T \frac{\partial^2}{\partial \alpha_T \partial \gamma_T} + \frac{\partial^2}{\partial \gamma_T^2} \right) \right],
\]

(5.31)

\[
\hat{K}^2 = - \left[\frac{\partial^2}{\partial \beta_K^2} + \cot \beta_K \frac{\partial}{\partial \beta_K} + \frac{1}{\sin^2 \beta_K} \left(\frac{\partial}{\partial \alpha_K^2} - 2 \cos \beta_K \frac{\partial^2}{\partial \alpha_K \partial \gamma_K} + \frac{\partial^2}{\partial \gamma_K^2} \right) \right],
\]

(5.32)

For the separation of the wavefunctions in the form

\[\psi = R(u) F(\theta) D_{T^T}^{T^T}(\alpha_T, \beta_T, \gamma_T) D_{K^T}^{K^T}(\alpha_K, \beta_K, \gamma_K), \]

(5.33)

with

\[\hat{T}^2 D_{T^T}^{T^T} = T(T+1) D_{T^T}^{T^T}, \quad \hat{K}^2 D_{K^T}^{K^T} = K(K+1) D_{K^T}^{K^T}, \]

(5.34)
the Schrödinger equation \(H \Psi = \epsilon \Psi \) leads to the ordinary differential equations
\[
\left[\frac{d^2}{du^2} + \frac{7}{u} \frac{d}{du} - \frac{\Gamma}{u^2} + \frac{2\epsilon}{\hbar^2} - \frac{\omega^2}{\hbar^2} u^2 \right] R(u) = 0, \\
\left[\frac{1}{\sin^3 \theta} \frac{d}{d\theta} (\sin^3 \theta \frac{d}{d\theta}) - \frac{\lambda_1}{2\hbar^2} \frac{u}{\cos^2 \frac{\theta}{2}} - \frac{K(K+1)}{\sin^2 \frac{\theta}{2}} + \frac{\Gamma}{4} \right] F(\theta) = 0,
\]
(5.35)
(5.36)
where \(\Gamma \) is the separation of constant. The solution of (5.36) in terms of Jacobi polynomials \([52]\) as follows
\[
F(\theta) = F_{\lambda T K}(\theta; \delta_1, \delta_2)(1 + \cos \theta)^{(\delta_1 + T)/2}(1 - \cos \theta)^{(\delta_2 + K)/2}
\times F_{\lambda - T - K}(\cos \theta),
\]
(5.37)
where
\[
\Gamma = 4(\lambda + \frac{\delta_1 + \delta_2}{2})(\lambda + \frac{\delta_1 + \delta_2}{2} + 3), \quad \lambda \in \mathbb{N},
\delta_1 = -1 + \sqrt{\frac{2\lambda_1}{\hbar^2} + (2T + 1)^2 - T},
\delta_2 = -1 + \sqrt{\frac{2\lambda_2}{\hbar^2} + (2K + 1)^2 - K}.
\]
(5.38)
The solution of (5.35) in terms of the confluent hypergeometric functions \([52]\)
\[
R(u) = R_{n\lambda}(u; \delta_1, \delta_2)e^{-\frac{\omega^2}{4\hbar^2}}(\kappa u^2)^{\lambda + \frac{\delta_1 + \delta_2}{2}}_1F_1(-n, 4 + 2\lambda + \delta_1 + \delta_2; \kappa u^2),
\]
(5.39)
where
\[
-n = \frac{\delta_1 + \delta_2}{2} + \lambda + 2 - \frac{\epsilon}{2\kappa\hbar^2}, \quad \omega^2 = \kappa^2 \hbar^2.
\]
(5.40)
Hence
\[
\epsilon = 2\hbar^2 \kappa(n + \frac{\delta_1 + \delta_2}{2} + \lambda + 2).
\]
(5.41)
Using the relations between the parameters of the generalized Yang-Coulomb monopole and the 8D singular oscillator,
\[
c_0 = \frac{\epsilon}{4}, \quad E = -\frac{\omega^2}{8}, \quad 2c_i = \lambda_i, \quad i = 1, 2,
\]
(5.42)
we obtain
\[
E = -\frac{c_0^2}{2\hbar^2} \left(n + \lambda + 2 + \frac{\delta_1 + \delta_2}{2} \right)^2 ,
\] (5.43)
which coincides with (5.16).

5.4 Cylindrical coordinates

Consider the 8D cylindrical coordinates
\[
\begin{align*}
u_0 + iu_1 &= \rho_1 \sin \frac{\beta}{2} e^{-i\left(\alpha_T + \gamma_T\right) / 2} , \\
u_2 + iu_3 &= \rho_1 \cos \frac{\beta}{2} e^{-i\left(\alpha_T + \gamma_T\right) / 2} , \\
u_4 + iu_5 &= \rho_2 \sin \frac{\beta}{2} e^{-i\left(\alpha_K + \gamma_K\right) / 2} , \\
u_6 + iu_7 &= \rho_2 \cos \frac{\beta}{2} e^{-i\left(\alpha_K + \gamma_K\right) / 2} ,
\end{align*}
\] (5.44)
where \(0 \leq \rho_1, \rho_2 < \infty\). Then we have in this coordinate system,
\[
\sum_{i=0}^{7} \frac{\partial^2}{\partial u_i^2} = \frac{1}{\rho_1^2} \frac{\partial}{\partial \rho_1} (\rho_1^2 \frac{\partial}{\partial \rho_1}) + \frac{1}{\rho_2^2} \frac{\partial}{\partial \rho_2} (\rho_2^2 \frac{\partial}{\partial \rho_2}) - 4\frac{\partial^2}{\partial \rho_1^2} - 4\frac{\partial^2}{\partial \rho_2^2} \hat{T}^2 - 4\hat{K}^2 ,
\] (5.45)
\[
\hat{T}^2 = -\left[\frac{\partial^2}{\partial \beta_T^2} + \cot \beta_T \frac{1}{\sin^2 \beta_T} \left(\frac{\partial}{\partial \alpha_T} - 2 \cos \beta_T \frac{\partial}{\partial \alpha_T \partial \gamma_T} + \frac{\partial^2}{\partial \gamma_T^2} \right) \right] ,
\] (5.46)
\[
\hat{K}^2 = -\left[\frac{\partial^2}{\partial \beta_K^2} + \cot \beta_K \frac{1}{\sin^2 \beta_K} \left(\frac{\partial}{\partial \alpha_K} - 2 \cos \beta_K \frac{\partial}{\partial \alpha_K \partial \gamma_K} + \frac{\partial^2}{\partial \gamma_K^2} \right) \right] .
\] (5.47)
Making the ansatz
\[
\psi = f_1 f_2 D^T_{\alpha_T} (\alpha_T, \beta_T, \gamma_T) D^K_{\alpha_K} (\alpha_K, \beta_K, \gamma_K)
\] (5.48)
and change of variables \(x_i = a^2 \rho_i^2, a = \sqrt{\frac{\hbar}{\omega}} \), the Schrödinger equation \(H \psi = \epsilon \psi \) is converted to

\[
\begin{align*}
 x_1 \frac{d^2 f_1}{dx_1^2} + 2 \frac{df_1}{dx_1} - \left[\frac{1}{2} \frac{x_1}{x_1} + \frac{1}{4} - \frac{\epsilon_1}{2 \hbar \omega} \right] f_1 &= 0, \quad (5.49) \\
 x_2 \frac{d^2 f_2}{dx_2^2} + 2 \frac{df_2}{dx_2} - \left[\frac{1}{2} \frac{x_2}{x_2} + \frac{1}{4} - \frac{\epsilon_2}{2 \hbar \omega} \right] f_2 &= 0. \quad (5.50)
\end{align*}
\]

where \(\epsilon_1 + \epsilon_2 = \epsilon \). Setting \(f_i = e^{-\frac{1}{2} \frac{\delta_i + z_i}{2}} W(x_i), i = 1, 2, \) then \((5.49)\) and \((5.50)\) become

\[
\begin{align*}
 x_i \frac{d^2 W(x_i)}{dx_i^2} + (\gamma_i - x_i) \frac{dW(x_i)}{dx_i} - \alpha_i W(x_i) &= 0, \quad (5.51)
\end{align*}
\]

where \(\alpha_i = \frac{\gamma_i}{2} - \frac{\epsilon_i}{2 \hbar \omega}, \gamma_i = \delta_i + z_i + 2, z_1 = T, z_2 = K \) and

\[
\delta_i = -1 + \sqrt{\frac{2 \lambda_i}{\hbar^2} + (2z_i + 1)^2 - z_i}, \quad i = 1, 2. \quad (5.52)
\]

Solutions of \((5.51)\) in terms of confluent hypergeometric polynomials \([52]\) are given by

\[
f_{n_i, \gamma_i} = (a \rho_i)^{\gamma_i - 2} e^{-\frac{a^2 \rho_i^2}{2}} \frac{\Gamma(-n_i, \gamma_i, a^2 \rho_i^2)}{\Gamma(-n_i, \gamma_i, a^2 \rho_i^2)}, \quad (5.53)
\]

where

\[
n_i = \frac{\epsilon_i}{2 \hbar \omega} - \frac{1}{2} (\delta_i + z_i + 2), \quad i = 1, 2. \quad (5.54)
\]

We thus found the energy spectrum of the 8D singular oscillator

\[
\epsilon = 2 \hbar \omega \left(n_1 + n_2 + \frac{\delta_1 + \delta_2}{2} + \frac{T + K}{2} + 2 \right). \quad (5.55)
\]

Using the relations \((5.52)\) between the parameters of the generalized Yang-Coulomb monopole and the 8D singular oscillator, we obtain

\[
E = -\frac{\epsilon_0^2}{2 \hbar^2 (n_1 + n_2 + \frac{\delta_1 + \delta_2}{2} + \frac{T + K}{2} + 2)^2}, \quad (5.56)
\]

which coincides with \((4.15)\) by making the identification \(p = n_1 + n_2 + \frac{T + K}{2} + 1, \delta_1 = m_1, \delta_2 = m_2 \) and \(h = 1. \)
6 Conclusion

One of the results of this paper is the determination of the higher rank quadratic algebra structure $Q(3; L^{so(4)}, T^{su(2)}) \oplus so(4)$ in the 5D deformed Kepler system with non-central terms and Yang-Coulomb monopole interaction. The structure constants of the quadratic algebra $Q(3; L^{so(4)}, T^{su(2)})$ contain Casimir operators of the $so(4)$ and $su(2)$ Lie algebras. The realization of this algebra in terms of deformed oscillator enable us to provide the finite dimensional unitary representations and the degeneracy of the energy spectrum of the model. We also connected these results with method of separation of variables, solution in terms of orthogonal polynomials and the dual under Hurwitz transformation which is a 8D singular oscillator.

It would be interesting to extend these results to systems in curved spaces, in particular to the 8D pseudospherical (Higgs) oscillator and its dual system involving monopole [16]. Moreover, higher dimensional superintegrable models with monopole interactions are still relatively unexplored area. One of the open problems is to construct the non-central deformations of the known higher-dimensional models [53, 54] and their symmetry algebras.

Acknowledgements: The research of FH was supported by International Postgraduate Research Scholarship and Australian Postgraduate Award. IM was supported by the Australian Research Council through a Discovery Early Career Researcher Award DE 130101067. YZZ was partially supported by the Australian Research Council, Discovery Project DP 140101492. He would like to thank the Institute of Theoretical Physics, Chinese Academy of Sciences, for hospitality and support.

References

[1] Dirac P M 1931 Quantised Singularities in the Electromagnetic Field Proc. Roy. Soc. (London) A 133, 60.
[2] Yang C N 1978 Generalization of Dirac’s monopole to $su(2)$ gauge fields
$J. \text{Math. Phys.} \, 19, \, 320$.

[3] Trunk M 1996 The five-dimensional Kepler problem as an $su(2)$ gauge
system: algebraic constraint quantization $Int. \text{J. Mod. Phys. A} \, 11, \, 2329$.

[4] Mardoyan L G, Sissakian A N and Ter-Antonyan V M 1996 Oscillator as
a hidden non-Abelian monopole $JINR, \, \text{Dubna, Preprint E2} \, 96, \, 24$.

[5] Mardoyan L G, Sissakian A N and Ter-Antonyan V M 1998 8-D oscillator
as a hidden $su(2)$-monopole $Phys. \, \text{Atom. Nucl.} \, 61, \, 1746$.

[6] Mardoyan L G, Sissakian A N and Ter-Antonyan V M 1999 Hidden sym-
metry of the Yang-Coulomb system $Mod. \, \text{Phys. Lett. A} \, 14, \, 1303$.

[7] Pletyukhov M V and Tolkaichev E A 1999 Hurwitz transformation and
oscillator representation of a 5D isospin particle $Rep. \, \text{Math. Phys.} \, 43, \, 303$.

[8] Pletyukhov M V and Tolkaichev E A 1999 $so(6,2)$ dynamical symmetry
of the $su(2)$ MIC-Kepler problem $J. \, \text{Phys. A} \, 32, \, L249$.

[9] Mardoyan L G, Sissakian A N and Ter-Antonyan V M 2000 Bases and
interbasis transformations for the $su(2)$ monopole $Theor. \, \text{Math. Phys.} \, 123, \, 451$.

[10] Pletyukhov M V and Tolkaichev E A 2000 Green’s function for the five-
dimensional $su(2)$ MIC-Kepler problem $J. \, \text{Math. Phys.} \, 41, \, 187$.

[11] Kalnins E G, Miller W Jr and Pogosyan G S 2000 Coulomb-oscillator
duality in spaces of constant curvature $J. \, \text{Math. Phys.} \, 41, \, 2629$.

[12] Nersessian A and Pogosyan G 2001 Relation of the oscillator and
Coulomb systems on spheres and pseudospheres $Phys. \, \text{Rev. A} \, 63, \, 020103$.

[13] Mardoyan L G 2002 Five-dimensional $su(2)$-monopole: continuous spec-
trum $Phys. \, \text{Atomic Nuclei.} \, 65, \, 1063$.

20
[14] Karayan Kh H, Mardoyan L G and Ter-Antonyan V M 2002 The Euler bound states: 8D quantum oscillator *Phys. Part. Nucl.* **33**, 202.

[15] Bellucci S and Yeranyan A 2005 Noncommutative Coulombic monopole *Phys. Rev. D* **72**, 085010.

[16] Bellucci S, Toppan J and Yeghikyan V 2010 The second Hopf map and Yang-Coulomb system on a 5D (pseudo)sphere *J. Phys. A* **43**, 045205.

[17] Mardoyan L G 2003 The generalized MIC-Kepler system *J. Math. Phys.* **44**, 4981.

[18] Mardoyan L G and Petrosyan M G 2007 Four-dimensional singular oscillator and generalized MIC-Kepler system *Phys. At. Nucl.* **70**, 572.

[19] Ranjan Giri P 2008 Supersymmetric quantum mechanical generalized MIC-Kepler system *Mod. Phys. Lett. A* **23**, 895.

[20] Salazar-Ramirez M, Martinez D, Granados V D and Mota R D 2010 The $su(1, 1)$ dynamical algebra for the generalized MICZ-Kepler problem from the Schrödinger factorization *Int. J. Theor. Phys.* **49**, 967.

[21] Marquette I 2010 Generalized MICZ-Kepler system, duality, polynomial and deformed oscillator algebras *J. Math. Phys.* **51**, 102105.

[22] Hoque M F, Marquette I and Zhang Y-Z 2016 Quadratic algebra for superintegrable monopole system in a Taub-NUT space *arXiv* 1604.05560.

[23] Hoque M F, Marquette I and Zhang Y-Z 2016 Recurrence approach and higher order polynomial algebras for superintegrable monopole systems *arXiv* 1605.06213.

[24] Levi-Civita T 1956 Opere matematiche, Memorie e note (Nicola Zanichelli Editore, Bologna), 2 1901.

[25] Davtyan L S, Mardoyan L G, Pogosyan G S, Sissakian A N and Ter-Antonyan V M 1987 Generalized KS transformation: from five-dimensional hydrogen atom to eight-dimensional isotropic oscillator *J. Phys. A* **20**, 6121.
[26] Kleinert H 1993 *Found. Phys.* **23**, 769; in: Lectures in Theor. Phys. Brezin W E and Barut A O, XB, 427 (Gordon and Brack, NY, 1968).

[27] Le V H and Komarov L I 1993 Theory of the generalized Kustaanheimo-Stiefel transformation *Phys. Lett. A* **177**, 121.

[28] Van-Hoage Le, Nguyen T S and Phan N H 2009 A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator *J. Phys. A*: *Math. Theor.* **42**, 175204.

[29] Van-Hoage Le and Nguyen T S 2011 A non-Abelian so(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space *J. Math. Phys.* **52**, 032105.

[30] Marquette I 2012 Generalized five-dimensional Kepler system, Yang-Coulomb monopole, and Hurwitz transformation *J. Math. Phys.* **53**, 022103.

[31] Hurwitz A 1993 Mathematische Werke (Band II Birkhauser, Basel) P. 641.

[32] Granovsky Ya A, Zhedanov A S and Lutzenko I M 1991 Quadratic algebra as a hidden symmetry of the Hartmann potential *J. Phys. A*: *Math. Gen.* **4**, 3887.

[33] Daskaloyannis C 2001 Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems *J. Math. Phys.* **42**, 1100.

[34] Kalnins E G, Kress J M and Miller W Jr 2006 Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems *J. Math. Phys.* **47**, 093501.

[35] Kalnins E G, Miller W Jr and Post S 2008 Models for Quadratic Algebras Associated with Second Order Superintegrable Systems in 2D *SIGMA*, **4**, 008.
[36] Tanoudis Y and Daskaloyannis C 2011 Algebraic calculation of the energy eigenvalues for the nondegenerate three-dimensional Kepler-Coulomb potential SIGMA 7, 054.

[37] Miller W Jr, Post S and Winternitz P 2013 Classical and quantum superintegrability with applications J. Phys. A: Math. Theor. 46, 423001.

[38] Genest V X, Vinet L and Zhedanov A 2014 The Racah algebra and superintegrable models J. Phys.: Conf. Ser. 512, 012011.

[39] Isaac P S and Marquette I 2014 On realizations of polynomial algebras with three generators via deformed oscillator algebras J. Phys. A: Math. Theor. 47, 205203.

[40] Hoque M F, Marquette I and Zhang Y-Z 2015 Quadratic algebra structure and spectrum of a new superintegrable system in N-dimension J. Phys. A: Math. Theor. 48, 185201.

[41] Hoque M F, Marquette I and Zhang Y-Z 2015 A new family of N dimensional superintegrable double singular oscillators and quadratic algebra $Q(3) \oplus so(n) \oplus so(N - n)$ J. Phys. A: Math. Theor. 48, 445207.

[42] Hoque M F, Marquette I and Zhang Y-Z 2016 Recurrence approach and higher rank cubic algebras for the N-dimensional superintegrable systems J. Phys. A: Math. Theor. 49, 125201.

[43] Landau L D and Lifshitz E M 1977 Quantum Mechanics Pergamon Press.

[44] Barut A O and Raczka R 1977 Theory of Group Representations and Applications PWN-Polish Scientific Publishers.

[45] Mardoyan L 2003 Dyon-oscillator duality. Hidden symmetry of the Yang-Coulomb monopole arXiv:quant-ph/0302162

[46] Perlov A M and Popov V S 1965 Casimir operators for the orthogonal and symplectic groups JETP Lett. 2, 34.
[47] Bérubé J and Winternitz P 2004 Integrable and superintegrable quantum systems in a magnetic field *J. Math. Phys.* **45**, 1959.

[48] Daskaloyannis C 1991 Generalized deformed oscillator and nonlinear algebras *J. Phys. A: Math. Gen.* **24**, L789.

[49] Rasmussen W O and Salano S 1979 An algebraic approach to Coulomb scattering in N dimensions *J. Math. Phys.* **20**, 1064.

[50] Condon E U and Shortley G H 1970 The Theory of Atomic Spectra, Cambridge University Press *ISBN 0-521-09209-4*.

[51] Wigner E P 1932 On the quantum correction for thermodynamic equilibrium *Phys. Rev.* **40**, 749.

[52] Andrews G E, Askey T and Roy T 1999 Special Functions (Encyclopedia of Mathematics and its applications Vol 71), Cambridge University Press.

[53] Meng G 2007 MICZ-Kepler problems in all dimensions *J. Math. Phys.* **48**, 032105.

[54] Krivonos S, Nersessian A and Ohanyan V 2007 Multicenter McIntosh-Cisneros-Zwanziger-Kepler system, supersymmetry and integrability *Phys. Rev. D* **75**, 085002.