Probable Ankylosaur Ossicles from the Middle Cenomanian Dunvegan Formation of Northwestern Alberta, Canada

Michael E. Burns1*, Matthew J. Vavrek2
1 Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Pipestone Creek Dinosaur Initiative, Clairmont, Alberta, Canada

Abstract

A sample of six probable fragmentary ankylosaur ossicles, collected from Cenomanian deposits of the Dunvegan Formation along the Peace River, represent one of the first dinosaurian skeletal fossils reported from pre-Santonian deposits in Alberta. Specimens were identified as ankylosaur by means of a palaeohistological analysis. The primary tissue is composed of zonal interwoven structural fibre bundles with irregularly-shaped lacunae, unlike the elongate lacunae of the secondary lamellar bone. The locality represents the most northerly Cenomanian occurrence of ankylosaur skeletal remains. Further fieldwork in under-examined areas of the province carries potential for additional finds.

Introduction

Although Alberta is one of the most intensely studied areas in the world in regards to dinosaur palaeontology [1–2], skeletal fossils of dinosaurs from pre-Santonian rocks are virtually unknown [3]. Other than a recently recovered ankylosaur from marine sediments of the Albian Clearwater Formation of northeastern Alberta [4], and an isolated Ichthyornis sp. humerus from the Turonian Kaskapau Formation [5], no other dinosaur skeletal remains have been described from Alberta in rocks older than Santonian, although there does exist a non-descriptive reference to Dunvegan Formation dinosaurs in an encyclopedia article [6]. During the course of research for this paper, the authors were informed of some undescribed, indeterminate bones (possibly ornithischian) from the Blairmore Formation of southwestern Alberta (D. Brinkman, pers. comm.), however this material is highly fragmentary.

Even outside of Alberta, there are virtually no skeletal remains of pre-Santonian dinosaurs from north of the 49th Parallel. There are records of two possible ornithischian vertebrae and several birds from the the Belle Fourche Member of the Ashville Formation in eastern Saskatchewan [7–8], undescribed dinosaur bones from the Turonian Kaskapau Formation of British Columbia [9], an indeterminate hadrosaur from the Turonian Matanuska Formation of Alaska [10–11], and a possible bone fragment from the Late Jurassic of Alaska [12]. Despite the lack of a recognized fossil record, there are relatively large exposures of lower Cretaceous rocks in Alberta, primarily concentrated along large river channels in the northern portion of the province.

During a survey of the Cenomanian-aged Dunvegan Formation along the Peace River, a handful of vertebrate remains were recovered, including six probable fragmentary ankylosaur ossicles. Although the fossils, in terms of preservational quality and completeness, are limited relative to some other dinosaur finds in western Canada, they represent an important stratigraphic and biogeographic data point because they come from an age that is poorly known in Canada, and from a location at least a thousand kilometres away from the next nearest contemporaneous skeletal record of dinosaurs.

Geological and Climatic Setting

The Dunvegan Formation represents a middle Cenomanian-aged delta complex that occurs primarily in northeastern British Columbia and northwestern Alberta, with small extensions into the Northwest Territories. The formation consists of a repeated succession of alluvial and shallow marine sandstones, siltstones and shales, and ranges between 90 and 270 m in thickness [14–15]. During deposition, the delta complex prograded a maximum of 400 km into the Western Interior Seaway [14–15]; in general, the formation becomes more terrestrial moving towards the west. The Dunvegan Formation is overlain by the marine shales of the Shaftesbury Formation, and is overlain by the marine sandstones and shales of the Kaskapau Formation [13–14].

Locally, the fossils were found weathered out of a silstone to fine sandstone bed near the top of the Peace River valley, approximately 4 km upstream of the Dunvegan Bridge (Fig. 1). The exact source of the fossils could not be determined. However, because the fossils were found near the top of an exposure, they were likely close to their original level. They were found in association with numerous ironstone pebbles that had likely weathered out from either the same beds or beds that were in close proximity.
During the Cenomanian, the Dunvegan delta was located near the Arctic Circle, at about 65° N [14–17]. Land temperatures during this time were, however, much warmer on average than the present day [18] with higher latitude regions in particular experiencing a greater amount of warming compared to more equatorial areas, leading to a reduced equator to pole thermal gradient [19]. A study of a terrestrial ecosystem from the younger Kaskapau Formation from about the same latitude as the Dunvegan Formation suggests mean annual temperatures were around 14°C, with a cold month mean likely warmer than 5.5°C [9]. These temperatures may be high as global temperatures were on a warming trend through the Cenomanian into the Turonian [20–21], although the difference was likely not considerable.

Materials and Methods

All ankylosaur skeletal specimens in this study were collected under permits obtained from Alberta Culture (Alberta Palaeontological Permit No. 12-029) and are catalogued as TMP (Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada) 2012.054.0002. Photographs of ossicles were taken on a Zeiss SteREO Discovery.V8 with a Plan Apo S 0.63× objective and an attached Nikon DXM 1200C camera using NIS-Elements F 2.20 SP3 (Build 244) imaging software. To confirm its identification, one ossicle was selected for paleohistological analysis. It was stabilized via resin impregnation using Buehler EpoThin Low Viscosity Resin and Hardener. A thin section was prepared petrographically to a thickness of 100 μm and polished to a high gloss using CeO₂ powder. The section was examined and photographed on a Nikon Eclipse E600POL trinocular polarizing microscope with an attached Nikon DXM 1200F digital camera. A composite image was constructed in Adobe Photoshop CS6 v. 13.0.1 x64.

Descriptive terminology for ossicles follows [14–18]. Palaeohistological terminology for osteoderms follows [22–24]. The definition for “ossicles” adopted here is modified [25]: small (<70 mm), amorphous mineralized dermal elements often found interstitial to major osteodermal elements. The term interwoven structural fiber bundles (ISFB; sensu [23–26]) is used to refer to mineralized metaplastic tissue dominated by large, structural collagen fibers.

Results

The ossicles (Fig. 2) are all irregular in shape and some are fragmentary, so it is unknown exactly how many ossicles are represented (some may be fragments of larger osteoderms). Although their exact in vivo orientation is difficult to discern, the external and basal surfaces are distinguishable. The external surfaces are irregularly rugose and pitted. The basal surfaces are flat and have a distinctive pattern representing the ISFB making up the primary tissue of the ossicles.

The primary tissue of the sectioned ossicle from TMP 2012.054.0002 (Fig. 3) is composed entirely of ISFB. Near the margins, zonation is overprints the pattern of structural fibers (Fig. 4). The lines of zonation, however, are not as distinct enough to be confidently called lines of arrested growth because they do...
not show a discreet hypermineralized line indicating a cessation of element growth. The ISFB are not as highly organized in terms of arrangement as those reported for the osteoderms of derived nodosaurids or the ossicles of sauropods [22–23], [27–28]. This is similar, however, to the condition reported for the ossicles of *Edmontonia* and *Euplocephalus* [22] and unlike the radial pattern described for the ossicles of the basal ankylosaur *Ankylosaurus* [29]. Secondary tissue comprises almost 50% of the cross sectional area of the ossicle and consists of trabecular bone. Osteocyte lacunae in the primary tissue, unlike the elongate lenticular lacunae of the secondary lamellar bone, are irregularly shaped (Fig. 5). Lacunae in both the primary and secondary tissue have canaliculi.

Discussion

Other dinosaurian groups known to have had ossicles (namely stegosaurs and sauropods) are unknown in Late Cretaceous Canadian sediments. To date, secondary remodeling is not known to occur in sauropod ossicles and their orthogonal pattern of ISFB is stronger than in ankylosaurs [22–27]. Although stegosaurs cannot be ruled out on the basis of macro/microstructure, because their ossicle/gular osteoderm histology is unknown at present, the occurrence of the Dunvegan ossicles in the Upper Cretaceous makes them less parsimonious candidates than ankylosaurs.

The best possible alternative candidate for the taxonomic identification of the Dunvegan is crocodilian. Crocodilian osteoderms are common as fossils from Upper Cretaceous sediments in western Canada. Like some ankylosaur osteoderms/ossicles, the basal surface has a fine cross-hatch pattern corresponding to the connective tissue fascia that separates the element from epaxial musculature. The external surface, however, is characterized by distinctive sculpturing composed of numerous round pits and grooves that radiate from a midline keel [22]. This is a noticeable difference between crocodilian and ankylosaur osteoderms. In addition, crocodilian osteoderms largely develop in the loose, superficial dermis, leading to less dense structural fibers in the primary mineralized tissue [30–34]. Ankylosaur osteoderms/ossicles show dense ISFB networks, suggesting a greater contribution from the dense dermis [22]. Therefore, the external morphology and histology of the Dunvegan ossicles indicate that they are from an ankylosaur.

Unlike larger osteoderms, ossicles show no consistent differences among taxa, at least among derived nodosaurids and ankylosaurids [22]. Therefore, the ossicles sampled here cannot be identified to any particular ankylosaur group. Zonation in the form of annuli in modern crocodilians has been strongly correlated with age [35]; however, this association has not been tested for ankylosaur osteoderms or ossicles. Ankylosaurs likely had a delayed onset of osteoderm mineralization, more so than modern crocodilians, and similar to the heterochronic condition reported for stegosaur osteoderm mineralization [22],[28],[36]. The zonation observed in TMP 2012.054.0002 may be annual, but the growth marks are not continuous around the entire circumference of the ossicle and, in places, have been reabsorbed by secondary remodeling. The utility of growth marks in ankylosaur ossicles will need to be tested against another form of age determination (i.e., postcranial long bone histology).

Although the Dunvegan Formation has been previously known to contain abundant shark teeth from other localities near the Dunvegan Bridge on the Peace River [37], as well as an articulated, well-preserved fish from a fortuitous subsurface encounter [15], this is the first published record of dinosaur skeletal remains from the formation. Further west in Alberta and into British Columbia, dinosaur ichnites have previously been recorded from the Dunvegan Formation, including trackways of ankylosaurs [14],[38]. This discovery of skeletal fossils opens the possibility that further finds may be able to link some of these trackways with their potential trackmakers more closely.

Finally, the spatial location of the fossils is interesting from a biogeographic perspective. This locality represents the most northerly occurrence of ankylosaur skeletal remains during the Cenomanian, and further solidifies this group, and dinosaurs in general, as persistent residents of high latitude regions [39–41]. The region experienced large fluctuations in solar radiation through the year due to its high latitude, likely leading to seasonal growth patterns in vegetation, however these dinosaurs likely persisted in the area as they would have been physically unable to...
migrate long distances [13],[41–42]. Although temperatures would have been warmer and more equable at the time [19], they would have nevertheless experienced at least somewhat colder winter temperatures.

Conclusions

Although the ankylosaur remains from the Dunvegan Formation are generically indeterminate, their unique geographic and temporal position makes them an important data point for dinosaur biogeography. As well, the presence of dinosaurian remains from pre-Santonian deposits in Alberta suggests that, with further effort in many of these under-examined areas, there is the potential for additional finds in the region. High latitude dinosaur-bearing deposits are more poorly known in general than mid-latitude regions, although this is not due to the animals not being present, but more likely a function of search intensity.

Acknowledgments

P Currie read over an early version of this manuscript, M Caldwell (University of Alberta) provided access to the petrographic microscope and A Murray (University of Alberta) provided access to the Zeiss stereo microscope. We also thank Richard McCrea and an anonymous reviewer for suggestions that greatly improved the quality of this manuscript.

Author Contributions

Conceived and designed the experiments: MEB MJV. Performed the experiments: MEB MJV. Analyzed the data: MEB MJV. Contributed reagents/materials/analysis tools: MEB MJV. Wrote the paper: MEB MJV.

References

1. Ryan MJ, Russell AP (2001) Dinosaurs of Alberta (exclusive of Aves). In: Tanke DH, Carpenter, K, editors. Mesozoic vertebrate life: New research inspired by the paleontology of Philip J Currie. Bloomington: Indiana University Press. pp. 257–297.
2. Currie PJ (2005) History of research. In: Currie PJ, Koppelhus EB, editors. Dinosaur Provincial Park: A spectacular ancient ecosystem revealed. Bloomington: Indiana University Press, pp. 3–33.
3. McCrea RT, Buckley LG, Plint AG, Currie PJ, Haggar JW, et al. (2014) A review of vertebrate track-bearing formations from the Mesozoic and earliest Cenozoic of western Canada with a description of a new theropod ichnospecies and reassessment of an avian ichnogenus. New Mexico Museum of Natural History and Sciences Bulletin 52: 5–93.
4. Henderson D (2012) Adrift at sea in the Early Cretaceous: The Fort McMurray armoured dinosaur. Alberta Palaeontological Society Bulletin 27: 7–17.
5. Fox RC (1984) Elphinstone (Aves) from the early Turonian (Late Cretaceous) of Alberta. Can J Earth Sci 21: 258–260.
6. Coy C (1997) Canadian Dinosaurs. In Currie PJ, Padian K, editors. Encyclopedia of Dinosaurs. Academic Press. pp. 90–96.
7. Tokaryk TT, Cumbaa SL, Steyer JE (1997) Early Late Cretaceous birds from Saskatchewan, Canada: the oldest diverse avifauna known from North America. Journal of Vertebrate Paleontology 17:172–176.
8. Cumbaa SL, Tokaryk TT (1999) Recent discoveries of Cretaceous marine vertebrates on the eastern margins of the Western Interior Seaway. Summery of investigations 1: 94–99.
9. Rylaarsdam JR, Varban BL, Plint AG, Buckley LG, McCrea RT (2006) Middle Turonian dinosaur paleoenvironments in the Upper Cretaceous Kaskapau Formation, northeast British Columbia. Can J Earth Sci 43: 631–652.
10. Pasch AD, May KC (1997) First occurrence of a hadrosaur (Dinosauria) from the Matanuska Formation (Turonian) in the Tuleeena Mountains of south-central Alaska. In Clough JG, Larson F, editors. Alaska Department of Natural Resources, Professional Report 118. Short notes on Alaska geology. Py 99–109.
11. Pasch AD, May KC (2001) Taphonomy and paleoenvironment of a hadrosaur (Dinosauria) from the Matanuska Formation (Turonian) in south-central Alaska. In Tanke DH, Carpenter K, editors. Mesozoic vertebrate life: New research inspired by the paleontology of Philip J Currie. Bloomington: Indiana University Press. pp. 219–236.
12. Fornillo AR (2006). Review of the dinosaur record of Alaska with comments for suggestions that greatly improved the quality of this manuscript. The Paleontological Society of Korea 22: 15.
13. Stott DF (1982) Lower Cretaceous Fort St. John Group and Upper Cretaceous Dunvegan Formation of the foothills and plains of Alberta, British Columbia, District of Mackenzie and Yukon Territory. Geological Survey of Canada Bulletin 528: 1–124.
14. Plint AG (2000) Sequence stratigraphy and palaeoenvironment of the Cenomanian Dunvegan Formation, northeast British Columbia. Can J Earth Sci 37: 1–12.
15. Hay MJ, Cumbaa SL, Murray AM, Plint AG (2007) A new parachaepid fish (Clupeomorpha, Eliminichthyiformes) from a muddy marine pro-delta environment: middle Cenomanian Dunvegan Formation, Alberta, Canada. Can J Earth Sci 44: 775–790.
16. McCarthy PJ, Faccini UF, Plint AG (1999) Evolution of an ancient coastal plain: palaeosols, interfluvies and alluvial architecture in a sequence stratigraphic framework, Cenomanian Dunvegan Formation, NE British Columbia, Canada. Sedimentology 46: 861–891.
17. Irving E, Wynne PJ, Globerman BR (1993) Cretaceous palaeolatitudes and overprints of North American craton. In Caldwell WGE, Kauffman EG, editors. Evolution of the Western Interior Basin. Geological Association of Canada, Special Paper 39. pp. 243–261.
18. Wolfe JA, Upchurch GR (1997) North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeogr, Palaeoclimatol, Palaeoecol 61: 33–77.
19. Huber BT, Nores RD, MacLeod KG (2002) Deep-sea palaeotemperature record of extreme warmth during the Cretaceous. Geology 30: 123–126.
20. Wolfe JA, Upchurch GR (1997) North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeogr, Palaeoclimatol, Palaeoecol 61: 33–77.
21. Huber BT, Nores RD, MacLeod KG (2002) Deep-sea palaeotemperature record of extreme warmth during the Cretaceous. Geology 30: 123–126.
22. Burns ME, Currie PJ External and internal structure of ankylosaur (Dinosauria; Ornithischia) osteoderms and their systematic relevance. J Vertebr Paleontol 34. In Press.
23. Scheyer TM, Wintersteen MEB, Murphy SJ (2006) Histology of ankylosaur osteoderms: Implications for systematics and function. J Vertebr Paleontol 26: 475–492.
24. Marill DM, Batten DJ, Lovell DK, (2000) A new specimen of the theropod dinosaur cf. Sinraptor with soft tissue preservation. Palaeontol 43: 549–559.
25. Marill DM, Batten DJ, Lovell DK, (2000) A new specimen of the theropod dinosaur cf. Sinraptor with soft tissue preservation. Palaeontol 43: 549–559.
26. Salisbury SW, Frey E (2000) A biomechanical transformation model for the evolution of semi-spherical articulations between adjoining vertebral bodies in crocodilians. In Grigg GCF, Seebacher F, Franklin CE, editors. Crocodilian Biology and Evolution. Chipping Norton, NSW: Surrey Beatty & Sons. pp. 85–134.
27. Vickaryous MK, Hall BK (2008) Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. Journal of Morphology 269: 388–422.
28. Vickaryous MK, Sut JY (2005) The embryological development of the crocodile skeleton in Alligator mississippiensis. Journal of Morphology 261: 441–464.
29. Burns ME, Vickaryous MK, Currie PJ (2013) Histological variability in fossil and recent crocodylian osteoderms: systematic and functional implications. Journal of Morphology 274: 676–686.
30. Olik H (1997) Validation of skeletalchronology to determine age of freshwater crocodiles (Crocodylus johnstoni). Mar Freshwater Res 48: 343–351.
31. Hayashi S, Carpenter K, Suzuki D (2009) Different growth patterns between the dermal osteoderms of Stupendemys geographicus (Dinosauria) from the Matanuska Formation (Turonian) in south-central Alaska. In Grigg GCF, Seebacher F, Franklin CE, editors. Crocodilian Biology and Evolution. Chipping Norton, NSW: Surrey Beatty & Sons. pp. 85–134.
39. Chinsamy A, Thomas DB, Tumarkin-Deratzian AR, Fiorillo AR (2012). Hadrosaurs Were Perennial Polar Residents. The Anatomical Record 295: 610–614.
40. Fiorillo AR, Gangloff RA (2001) The Caribou Migration Model for Arctic Hadrosaurs (Dinosauria: Ornithischia): A Reassessment. Historical Biology 15: 323–334.
41. Vavrek MJ, Hills LV, Currie PJ. A hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada and its ecological and geographical implications. Arctic. In press.
42. Bell PR, Snively E (2008) Polar dinosaurs on parade: a review of dinosaur migration. Alcheringa 32: 271–284.