Robust and real-time multi-lane and single lane detection in Indian highway scenarios

A. Sai Hanuman¹,* and G. Prasanna Kumar²

¹Professor, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
²Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.

Abstract: In the Advanced Driver Assistance System (ADAS), lane detection plays a vital role to avoid road accidents of an Autonomous vehicle. Also, autonomous vehicles should be able to navigate by themselves, in order to do, it needs to understand its surrounding conditions like a human. So that vehicle can determine its path in streets and highways it can maintain lane manoeuvre. Also, It has become the most fundamental aspect to consider in current ADAS research. One of the major hurdles in self-driving vehicle research is identifying the curved lanes, multiple lanes with challenging light, and weather conditions, especially in Indian highway scenarios. As it is a vision-based lane detection approach we are using OpenCV library which consists of multiple algorithms like the optimization of canny edge detection to find out the edges, features of the lane and Hough Transform for lane line generation and apply on the particular region of interest.

1 Introduction

Traffic crashes are predominantly brought about by human missteps, for example, carelessness, misconduct, and interruption. The development of Advanced Driving Assistance Systems (ADAS) has the potential to drastically reduce car accidents and increase driving safety [1]. An enormous number of organizations and establishments have proposed strategies and procedures for the improvement of driving wellbeing and decrease of car crashes. Among these strategies, street discernment and path checking location assume an essential part in assisting drivers with evading botches. The path discovery is the establishment of many Advanced driver Assistance systems (ADASs), for example, the Lane Departure Warning Framework (LDWF) and the Lane Keeping Assistance framework (LKAF). Some fruitful ADAS or auto ventures, for example, Mobil eye, Tesla, and BMW, and so forth have built up their own path identification and path keeping Assistance systems and have acquired critical accomplishments in both exploration and certifiable applications. Both of the auto undertakings or the individual clients have acknowledged the Mobil eye Series ADAS items and Tesla Autopilot for self-driving. Practically the entirety of the current development path helps use vision-based procedures since the path markings are painted out and about for human visual discernment. The use of vision-based procedures recognizes paths from the camera gadgets and keeps the driver from making unintended path changes. One of the most common Intersection crash modes are the left turn across path with a vehicle approaching from the opposite direction [2]. Accordingly, precision and heartiness are the two most significant properties for path location frameworks. Path recognition frameworks ought to have the ability to know about absurd identifications and change the location and following calculation likewise [3], [4]. At the point when a false caution happens, the ADAS should make the driver aware of the focus on the driving assignment. Then again, vehicles with elevated levels of computerization constantly screen their surroundings and ought to have the option to manage low-exactness discovery issues without help from anyone else. Thus, assessment of path identification frameworks turns out to be much more basic with the expanding automation of vehicles.

Because of rising traffic levels and increasingly congested streets around the world, the demand for self-driving vehicles has increased dramatically in recent years. As a result, an advanced driver aid framework for road safety should be developed, which either alerts the driver in dangerous situations or makes a driving manoeuvre. In the coming years, such frameworks will get increasingly complex in order to provide the vehicle...
complete autonomy. Path and snag detection (i.e., things such as autos, motorcycles, walkers, and so on) detection are two key components in the expansion of such self-governing frameworks.

Mostly vision-based lane detection frameworks are normally planned dependent on image processing procedures inside comparative structures. Many academics are currently working on intelligent vehicles in order to prevent road accidents and assure safe driving [8]. Path finding challenges can be solved more effectively using a start to finish identification technique, thanks to the advancement of quick registering devices and advanced AI hypotheses, such as profound learning. In any case, the basic test looked by path recognition frameworks is the interest for high unwavering quality and assorted working conditions. One proficient approach to build vigorous and exact progressed path identification frameworks is to meld multi-modular sensors and incorporate path location frameworks with other item discovery frameworks, for example, recognition by encompassing vehicles and street zone acknowledgment. It has been demonstrated that path recognition execution can be improved with these staggered incorporation strategies [3]. Notwithstanding, the profoundly precise sensors, for example, the light/laser detection and ranging (LIDAR/LADAR) are costly and not accessible in public transport.

There are two sorts of vision-based techniques for path finding and following: highlight-based and model-based procedures. We used element-based strategies for the path finding investigation in this study. Reduced permeability owing to inclement weather, line disconnection, lack of clarity in path markings, shadows, brightening, and light reflection, and complex street-based rules are all substantial obstacles to path discovery and calculation [9]. Various component-based approaches for path recognition and stamping have been offered to various academics [10-14]. In light of the focus point of extension to detect path markers, Otsuka developed multi-type path marker acknowledgement (MLR). Essentially, an insect province advancement (ACO) was established on shrewd for edge recognition and then further prepared by Hough change for Daigavane [11]. Other element-based approaches for path finding and following yield the shading data in the images [15-17]. Despite the fact that the computations described previously yielded fascinating findings, there are still issues about commotion, and these methodologies may not work well in testing climatic or light circumstances due to the clamour issue. As a result, many studies employed crossover motions that contained both a noise reduction channel and a path recognition calculation. To improve path recognition accuracy, several researchers have used a variety of image pre-processing techniques. These procedures include histogram adjustment [24], Canny edge finder [25], polyline extraction [26], bunching [27], smoothing, and splitting of a picture [28], and using a Gaussian low-pass channel to reduce turbulence [29]. A few fluffy channels have just been developed to reduce turbulence in the succession of images [18-23]. To manage the intricate Gaussian clamour in the image, Nachtegael has been given a fluffy channel for commotion reduction [19]. Schulte has developed a revolutionary fluffy-based wavelet shrinkage picture denoising computation for removing additional material Gaussian commotion from computerized greyscale images [20]. Kwan completed a research of four fluffy channels with standard middle and moving normal channels for various forms of commotions.

This work is divided into five pieces, the first of which is the introduction. The system architecture is introduced in Section II. The Hough Transform is used to generate a road lane model in Section III. The installation of the system is addressed in Section IV. The experimental results are discussed in Section V, while the conclusions and future work are discussed in Section VI.

2 Related work

As a result of the fast growing intelligent automobile sector, researchers have taken a keen interest in advanced driver assistance systems (ADAS). One of the most difficult challenges for future driverless automobiles is detecting curving roadways, several lanes, and lanes with a lot of discontinuity and noise. The purpose of this research is to see how image processing techniques may be used in a computer vision application that focuses on lane recognition to improve traffic safety and comfort. Two different sub-algorithms make up the suggested algorithm. The Fuzzy Noise Reduction Filter (FNRF) is the first sub-algorithm, which reduces noise and smooth’s the sequences of images acquired by the camera. The second sub-algorithm combines the Hough Transform (HT) technique with a competent zone of interest to recognize lanes in both normal and difficult situations. It is well recognized as a powerful tool for visual element extraction from images due to its broad vision and durability in noisy or degraded situations. Presents the details in a clean and unobtrusive manner without any unpleasant or unacceptable highlights.

They suggested a CNN-based regression technique for identifying multiple lanes based on their position in previous articles. CNN semantic segmentation networks, which focus on precisely identifying each pixel and require post-processing operations to infer lane information, are deep learning algorithms for lane recognition. We discovered that our segmentation
method fails to distinguish between thin and extended lane boundaries, which occupy few pixels in the image and are frequently obscured by vehicles.

Because ADAS share vehicle control authority with the human driver, smart vehicles and advanced driver assistance systems (ADAS) must be aware of the traffic situation as well as the driver state [3]. We only utilize two cameras, one at the front and one at the back of the car, when using cameras. After demonstrating that our approach gives more useful and less noisy information on lane markers [4], we’ll move on to the next step. LDWS (lane departure warning system) is a system that alerts the motorist if the road markers are about to be surpassed, preventing accidents caused by unintended departure of the lane or leaving the highway [5], [6]. By this Real-time, region of interest “Relevant measuring range” is an approximate translation. The word refers to the section of a measurement curve that is relevant. This area can then be analyzed statistically if desired [7].

In recent years, several computer vision studies have been proposed in relation to lane detecting. For a long time, many institutions have been striving to develop an effective lane detection system [8]. Grey scaling reduces a three-channel (Red, Green, Blue) image to a single-channel (monochromatic shades from black to white) image, with each pixel containing only the RGB image’s intensity information [9]. To detect the left and right lane markings on the road, a powerful road lane marker identification method is needed. Compared the performance of canny edge detection with Sobel edge detection and found that canny’s performance is superior to Sobel’s [10]. Stereo vision is the depth information is collected from the discrepancies between two (or more) cameras (images). The matching v-disparity representation is calculated by adding all the points on a given image line that have the same disparity value. The related disparity representation is produced by aggregating the points with the same disparity value that occur on a given picture line, whereas disparity values correspond to the discrepancies between the right and left images [11].

Non-lane information refers to images acquired from the road that contain a lot of worthless information such as the sky, trees, autos, buildings, and so on. To reduce the impact of non-lane information, the road is segmented using a normal map inferred from the stereo picture pair, based on the assumption that all pixels in the same plane have the same normal vector [13]. A method is described for finding a vanishing point in structured pictures. The method is based on the detection of line segments from an edge map using the long axis of extremely eccentric ellipses to represent clusters of edge points. The intersections of the extracted lines yield a collection of candidate vanishing points, which are given weights proportional to the lengths of the line segments they belong to. Then, using an accumulator array formed by gridding the image frame, a voting system is used. The -sigmoid kernel weights each grid cell's votes, allowing cells to contribute to their neighbors [14].

When single-frame picture data is processed, the output is a single-frame image with less information and more interference in the real-world road scene, such as shadows, stains, wear, and so on, which could lead to lane detection errors. A series of multi-frame photographs taken using a camera is used to record the lane feature information. The multi-frame lane information is matched and fused based on the unmanned vehicle's INS speed and angular speed information, maintaining the historical information of the road image obtained while travelling [15].

3 Proposed work

Pre-processing, post-processing, and lane recognition are the three main components of this architecture. These components imitate human abilities to recognize street lanes by perceiving with the eyes, analyzing with the mind, and then providing an analyzed result. For various types of origination yield, such as impact evasion and lane departure, the “human-focused” canny vehicles will rely on technical resolution and costs.

Fig. 1. General flowchart for Lane Detection on Images.

As shown in Figures 5 and 6, a region of interest, a fuzzy noise reduction filter, segmentation, and the Hough transform are all part of the proposed technique. It is planned to apply the fuzzy noise reduction filter (FNRF) for image pre-processing. The first stage involves arranging the image and downsizing it to a low resolution of 255x255 pixels. The fuzzy noise reduction filter handles the information hued path picture layout in the next stage.
A grayscale picture sequence is formed after filtering the information hued path image layout. Grayscale values are standardized to the range [0, 1], with ones (1) representing edges (white pixels) and zeros (0) representing non-edges (dark pixels). The Hough change method is used to recognize and follow the path once the picture grouping has been thoroughly pre-processed. The FNRF is used to reduce noise in the input image sequence and increase the difference level, especially in the ROI.

Fig. 1. Raw Image.

Fig. 2. Gray Scale Image.

3.1. Fuzzy Noise Reduction Filter (FNRF)

The purpose of this filter is to average the pixel values using the local pixel. Simultaneously, the picture sequence’s borders and shadow segment distances are maintained to ensure that the picture sequences’ basic design is not pulverised. The fundamental goal of the proposed filter is to discriminate between differences in the design of picture sequences, such as clamour-induced edges. This filter differs from other conventional filters in that it uses participation capacity to determine the weights. The noisy information shading picture sequence is $M(x, y, z)$, where $z = 1, 2, 3$ for each pixel position of the red, green, and blue segments separately. Three components are utilized to characterize the tone at each pixel position in this fashion.

Fig. 3. Noisy Image (Blur Image)

Fig. 4. Flowchart of proposed algorithm

The two semantic variables, little and vast, are designed to characterize the weights for the red, green, and blue components of the colour picture. A membership function usually referred to a set of ambiguous rules. Thus, triangular membership functions are utilized for the first three fuzzy principles, while Gaussian membership is employed for the remaining three fuzzy principles. The weight will be enormous if the distance between the two couples is little, and vice versa. To reduce noise in colour segment contrasts, these fuzzily defined rules are applied. By calculating the local fluctuations in the red, green, and blue climates independently, the targeted pixels nearest estimation can be established.

3.2 Region of Interest (RoI)
In the computational uncertainty of lane recognition and tracking, the choice of an area of interest (ROI) is critical. As illustrated in Figure 2, a rectangular ROI is picked from the image sequence and preserved for future lane recognition use on the left and right traffic lanes. The foundation part of the image (undesirable region of the image), which includes the region over the evaporating point, is removed using a disappearing point (VP) in the rectangular ROI (VP). The rectangular ROI contributes in the computing waste reduction of the proposed lane detecting and tracking algorithm. The lane detection technique is utilized in the designated region of interest to determine the lane limit in each case (ROI).

Fig. 1. Rectangular Region of Interest (RoI).

3.3 Region of Interest Segmentation

The rectangular ROI is separated into two sub-regions, one on the right and one on the left, as illustrated in Figure 6. To improve execution in the next stage, we need to get a double picture with distinct edges out of this stage. The digits 1 and 0 denote the double image's edges (white pixels), whereas zeroes (0) signify non-edges (dark pixels). Because the top section of the image is often erased from the VP, using a grayscale image and evaporating point (VP) saves time and improves execution, all things considered out of ROI. The lane detection is then carried out independently in each sub-region using the Hough change algorithm (HT). The computational heap of the lane detecting algorithm is reduced by autonomously preparing the fragmented sub-regions. Similarly, the ROI division measure allows for more accurate lane detection with a base time for each edge.

3.4 Canny Edge Detection

To define the image's margins, a strong contrast between the road surface and painted lines could be used. The position of lane boundaries can be determined using an edge detector. Canny edge detection algorithms are used to extract the edges from the basic grayscale pictures. The edges that are shorter than the specified threshold value are removed, and the remaining edges are gathered to form line segments. Figure 7 displays the final image, which has discernible edges and a little amount of noise. As demonstrated in the graph below, the Canny edge detector CED produced the most accurate results with the least amount of noise. It also produced output images with the fewest white pixels, which resulted in better performance.

3.5 Hough Transform Lane Detection

To recognize the highlights of a certain shape inside a grayscale photo arrangement, the Hough change algorithm is used. The Hough change algorithm has a significant amount of leeway because it is unaffected by visual noise or uneven lighting. The Hough change method is applied to a set of lane pixels in each sub-area to identify the lanes. The algorithm divides the applicants into groups that are used to determine the lane's borders. Hough change, which may be expressed as $C (\rho, \theta)$ creates the gatherer cell. As an example, the row “ρ” can be written as follows:

$$\rho = x\cos\theta + y\sin\theta$$

Fig. 2. Edge Detection on image.

Fig. 3. Hough transform lines on edges.

Where ρ = Distance between filtered line and origin line θ = The co-ordinates of the image pixels are x and y, the angle of the vector from origin to the closest point. The temperature is kept between 0 and 90 degrees Fahrenheit. The value associated with the accumulator
cell array is acquired when \(p = x \cos \theta + y \sin \theta \) is computed, and the results are added by 1. A local maximum in each accumulator array is searched to extract these intersection locations, map them back to Cartesian space, and overlay this picture on the original image to recover the determined lane borders.

4 Implementation

4.1 Pre-process the initial Image

In order to pre-process the image a traffic raw image data set created using the video log and try to convert the raw image dataset into Gray scale images as shown in the figure 3. Later the Gray scaled images having noise which will be reduced using the Fuzzy noise reduction algorithm (FNRA) as it is not efficient enough Gaussian blur algorithm (GBA) is used to reduce the image noise with a specified kernel size. When the kernel size is larger it averages or soothing of shades is over a large area.

4.2 Get the edges from pre-processed image

After applying filters to make the images smoothening the images are processed through the canny transform algorithm to detect the strong edges or strong gradients above a canny HI which means canny high threshold, and reject the pixels below the canny low which means canny low threshold. The pixels in the blurred image between the low and high will be included as long as they are at a strong edge. The Pixel esteem are between 0 and 255, the esteem difference between two pixels will be in this range, so this is the reasonable range of the thresholds. The recommended low to high ratio of the thresholds is 1:2, to 1:3

4.3 Region of Interest

In the image or video feed the algorithm should found only the place to get to predict the lanes in order to do that the region of interest is selected by just considering the pixels where they expect the lane lines to be. To get the region of interest (Roi), the algorithm needs to determine the corners (vertices) of a four-sided polygon (bottom left, top left, top right, bottom right), rather than indicating pixels. In this experiment utilized divisions of the picture's measurements so the eyeball it and compute is from that point. After the measurements of square or veil out any remaining edges that isn't important for our area of interest is left out.

4.4 Lines of Edges

As referenced earlier (2.5) Hough transform algorithm is utilized to get lines from the edges distinguished on the picture where the Region of interest is drawn where Rho(\(\rho \)) and theta coefficient(\(\theta \)) are the distance of pixels in a picture and point where degrees are changed over into radians at the goal of the framework in Hough space, beginning from one the value can scale up to be more adaptable in what comprises a line. The Minimum vote co-efficient is the number of intersections in a given grid cell a a candidate line to have to make it into the output and the minimum length of the line in pixels that can be accepted as an output finally the maximum line gap which is the distance in pixels between the segmented lines to allow and connect as a single line.

4.5 Extrapolation of the lines

Extrapolate means to insert points either before the first known point, or, after the last known point. Using the extrapolation formula to mast the centre lanes and overlaps the extrapolated lines on the raw image.

\[
y = \text{slope} \times x + \text{intercept}
\]

The hough transform gives little lines, to extrapolate these little lines to make a left and right lane. To locate the min and max y directions to get the focuses at the base and most extreme y facilitates from the purposes of the little lines. First to separate the little lines into two gatherings. One with a positive slant (the left line), and one with a negative slant (the correct line), Later the lines incline towards one another. to group the x, y and slope for the left and right lane. To take the average x coordinate, y coordinate, slope and intercept for each gathering and determined the upper and lower x coordinates for every lane dependent on the figured qualities and the condition of the line later draw a line to a meaningful boundary on a clear picture and return the picture.

5 Tested dataset images

In order to experiment with road lane detection on Indian highway scenarios, well-paved roads and well-paved traffic lanes are needed. Instead of downloading the data from the Kitti vision data, we planned to build our own dataset. In order to create my own dataset searched many Indian highway road scenarios for well-paved roads and traffic lanes. So, we downloaded the video from internet and captured a few frames of the video, and created our own dataset.
6 Results

The proposed algorithm's outcomes on real-life Indian highway settings are shown in this section. The program determines how to locate and extract lane markings on the left and right. The suggested technique has been tested on video pictures captured with an on-board vision sensor. On the first video image in Figure 9-13, which shows a part of the trial outcomes for lane marker identifications, the lane markers are visible. These images depict a real interstate situation (on Indian Highway) with both functional and broken lane signs. Figures 9 to 13 show a sequence of excellent-condition road pictures with a combination of solid and broken lane markers on the left and right. The computer is taught to precisely recognise the left and right lane markings. Figures 9-13 depict a scenario with a moving car and a mix of strong and broken lane signs in the foreground. The computer is taught to precisely recognise the left and right lane markings. In video sequences filmed on curving road types and under highly tough lighting and weather situations, the result attained by our proposed method is good. With a 98% accuracy rate, it offers promising outcomes, reduces noise, and enhances detection rates.
Fig. 10. Hough Transform on Masked Image.

Fig. 11. Extrapolated lines.

Fig. 12. Overlapped lane marking images.

Fig. 13. Final output of Lane detection.
Fig. 10. Demonstrates detection on a road with a variety of road markings. On the road image, 9 depict a yellow lane with an arrow. The algorithm is successful in detecting the road lane.

7 Conclusion

In this study, a simple robust ongoing road lane identifying system was put to the test for better precision and robustness configuration. To make obtaining the valuable data easier, the program goes through a series of low-level picture processing procedures. The Canny edge detection technique concentrates on road features at that particular location. To find lines that can be utilized to define the left and right lane borders, the Hough Transform is used. Finally, as seen in the first image, the gathered left and right lane borders met in the middle to form the ideal aftereffect of left and right boundaries. To lower the high processing cost, the image is downsized to a smaller area of interest. Lower threshold esteem is used with worried recognition in more perplexing scenarios. In future projects, lane detection will be combined with location tracking to reduce computational load even more. Real-world placement in the image can be used to calculate distance and time to departure. Using the combined parameters, a new lane departure warning system will be introduced.

7.1 Potential Shortcomings of pipeline

1. It would not work if the camera angle was different and the region of interest would be different
2. It would not work if there were animals or people crossing the street and are in between the two lanes, because this would be considered as edges by the canny transform so we would have to filter that out
3. It would not work if there was something like a car directly in the lane as this would mess up the extrapolation of the lane since there would be spurious lines
4. It would not work if the difference between the color of the lanes were too minimal, it would not be detected by the canny transform parameters.

8 Future scope

1. Parameters can be modified to improve performance even further.
2. If there was an abrupt change between two frames, we can reject the result of the second frame because it does not make sense.
3. Considering the following two consecutive frames, this does not make sense because of the abrupt change so we should disregard the second frame and consider it as an error/anomaly/miscalculation.

References

1. Sztyber, Lukasz. (2020). Lane Finding for Autonomous Driving: Progress in Automation, Robotics and Measurement Techniques. (Springer, Warsaw, 2019)
2. Scanlon, J. Sherony, R., Gabler, H. Preliminary Effectiveness Estimates for Intersection Driver Assistance Systems in LTAP/OD Crashes (2017).
3. Xing, Yang, Lv, C., Wang, H., Wang, H., Ai, Y., Cao, Dongpu, V., Efstatios. IEEE Transactions on Vehicular Technology. 1(2019).
4. Ieng, S., Vrignon, J., Gruyer, Dominique, A. D. A new multi-lanes detection using multi-camera for robust vehicle location.700. (2005)
5. Hsiao, P.-Y., Yeh, C.W., Huang, S.S, Fu, L.C., IEEE Transactions on. 58, 2089 (2009).
6. Wang, Wenshuo, Zhao, Ting, Xi, Junqiang, Han, Wei. IEEE Transactions on Vehicular Technology, 67, 9145 (2018)
7. Lee, C., Moon, J.-H., IEEE Transactions on Intelligent Transportation Systems. 1. (2018).
8. Haque, M., Islam, M., Alam, K., Iqbal, H., Shaik, M., International Journal of Image, Graphics and Signal Processing. 11, 27 (2019)
9. Sultana, S., Ahmed, B., Robust Nighttime Road Lane Line Detection using Bilateral Filter and SAGC under Challenging Conditions. IEEE 13th International Conference on Computer Research and Development (ICCRD) (2021).
10. Lin, Q., Han, Y., Hahn, H., Real-Time Lane Departure Detection Based on Extended Edge-Linking Algorithm. 2nd International Conference on Computer Research and Development, ICCRD (2010)
11. Ozgunalp, U., Fan, R., Ai, X., Dahnoun, N., IEEE Transactions on Intelligent Transportation Systems. 18, 1. (2016).
12. Panichpapiboon, S., Leakkaw, P., Lane Change Detection With Smartphones: A Steering Wheel-Based Approach. IEEE Access. 1. (2020)
13. Yuan, C., Chen, H., Liu, J., Zhu, D., Xu, Y., Robust Lane Detection for Complicated Road Environment Based on Normal Map, IEEE Access, 1, (2018)
14. H. Kong, J. Audibert, J. Ponce, IEEE Transactions on Image Processing, 19, 2211 (2010)
15. Wang, J., Lane Detection Algorithm Based on Temporal-Spatial Information Matching and Fusion, CAAI Transactions on Intelligence Technology, 2, (2019)