This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Dörner, Maik; Rautiainen, Mikko; Rust, Jörg; Lehmann, Christian W.; Mohr, Fabian

Title: Acylchalcogenourea Complexes of Silver(I)

Year: 2017

Version: Accepted version (Final draft)

Copyright: © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Rights: In Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:
Dörner, M., Rautiainen, M., Rust, J., Lehmann, C. W., & Mohr, F. (2017). Acylchalcogenourea Complexes of Silver(I). European Journal of Inorganic Chemistry, 2017 (4), 789-797. doi:10.1002/ejic.201601074
Acylchalcogenourea complexes of silver(I)

Maik Dörner,[a] Mikko Rautiainen,[b] Jörg Rust,[c] Christian W. Lehmann,[c] and Fabian Mohr*[a]

Abstract: Acylthio- or acylselenoureas react with silver oxide to form tetranuclear silver(I) complexes containing the deprotonated acylchalcogenourea ligands bound to the silver atoms via the chalcogen and oxygen atoms. These tetrasilver(I) species react with either four or eight equivalents of a phosphine giving either dinuclear silver(I) phosphate complexes or tetrahedral silver diphosphine complexes. In these compounds too, the acylchalcogenourea ligands form six-membered rings coordinating to the metal through the chalcogen and oxygen atoms. In one case we observed a very rare example of an acetylthiourea ligand coordinating through the nitrogen and sulfur atoms, resulting in a four-membered ring. A silver(I) complex containing a deprotonated acylselenourea and an N-heterocyclic carbene ligands is also reported. This was prepared from the corresponding acetate derivative and the acylselenourea; the acetate in this case acts as the base. All compounds reported were characterised by spectroscopic techniques and many also by X-ray diffraction.

Introduction

Deprotonated acylthio- or selenoureas of the type \([\text{ArC(O)NC(S)NEt}_2]\) (\(E = S, Se\)) are monoanionic \(OS^2\)-or \(OSe^2\)-chelating ligands, which readily form complexes with many transition metals and also main-group-metals. Deprotonation of an acylthio/selenourea can either be accomplished using an external base or a basic metal precursor. In some cases, simply heating the acylthio/selenourea with a metal chloride forms the metal chelate complex accompanied by elimination of HCl. A recent review summarizes the structures, chemistry and biological properties of acetylthiourea derivatives. [i] Silver(I) complexes of acetylthioureas have to date not been studied systematically. A report from 1995 describes the isolation of colorless crystals from a black tar formed in the reaction of \(\text{PhC(O)NHCSN}_{\text{Et}}\) with \(\text{AgNO}_3\) and sodium acetate in aqueous ethanol.[ii] The crystals were found to consist of a silver(I)hydrosulfide complex containing three, neutral S-coordinated acetylthioureas bound to the metal. Using slightly different reaction conditions (\(\text{AgNO}_3\) in EtOH without base), another group later obtained the same silver(I)hydrosulfide species with \(\text{PhC(O)NHCSN}_{\text{Bu}}\).[ii] The source of the hydrosulfide ligand in these complexes was never explained, however, it probably originates from decomposition of the sulfur ligands during the reaction. Richter was the first to report a silver complex containing a deprotonated acetylthiourea ligand, formed by the reaction of \(\text{PhC(O)NHCSN}_{\text{Et}}\) with \(\text{AgNO}_3\) and KOH.[iii] In this case, the isolated compound was the tetranuclear silver(I) cluster \([\text{Ag}_4(\text{PhC(O)NHCSN}_{\text{Et}})_4]^{-}\), in which the deprotonated acetylthiourea forms \(OS^2\)-chelates with the silver atoms. It was later shown, that an analogous \(\text{Ag}_4\)-cluster can also be formed when sodium acetate is used as base.[iv] Yet another structural motif that has been observed in acetylthiourea silver(I) chemistry is the dinuclear silver(I) species \([\text{Ag}_2(\text{RC(O)NC(S)NEt})_2][\text{RC(O)NHCSN}_{\text{Et}}]^{-}\) (\(R = \text{camphanyl}\) containing one deprotonated, chelating acetylthioureaato ligand and one neutral S-coordinating acetylthiourea ligand.[v]

Although the coordination chemistry of acylselenourea ligands has also been studied with a number of transition- and main-group-metals, there are no reports of any silver compounds containing such selenium ligands. Given our interest in the chemistry and applications of metal complexes with acylthio/selenourea ligands,[vi] we report here results of a systematic study of acylselenoureas and their sulfur counterparts with silver(I) ions as well as their reactivity with various phosphines.

Results and Discussion

Given that silver(I)oxide has proven to be such a convenient starting material for the preparation of N-heterocyclic carbene complexes of silver,[vii] we thought that Ag₂O could also be a suitable single-component (base and silver-source in one) precursor for silver complexes of acylthio- and selenoureas. Indeed, Ag₂O rapidly dissolves in solutions of the acylthio- and selenoureas \(\text{R-C}_{\text{O}}(\text{C})\text{H}_{\text{C}}(\text{O})\text{HNC}(\text{E})\text{NEt}_2\) (\(R = \text{Me, NO}_2; \text{E} = \text{S, Se}\) leading to pale yellow (S) or brownish (Se) products 1 and 2, which can be isolated in good yields (Scheme 1).

[a] M. Dörner, F. Mohr
Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie
Bergische Universität Wuppertal, Gaußstr. 20, 42115 Wuppertal, Germany
E-mail: fmohr@uni-wuppertal.de
[b] J. M. Rautiainen
Department of Chemistry and Nanoscience Center
University of Jyväskylä, P.O. Box 35, FI-40014, Finland
[c] J. Rust, C. W. Lehmann
Chemische Kristallographie
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

Scheme 1.
The proton NMR spectra of 1 and 2 confirm the absence of the signal due to the NH-proton but provide no further insight into the exact molecular structure of the compounds. Fortunately, we obtained single crystals, which allowed us to determine the solid-state structure of both complexes (Figures 1 and 2). The compounds consist of four deprotonated acyclialchalcogenourea ligands bound to four silver atoms through the sulfur/selenium and oxygen atoms. In addition, the sulfur/selenium atoms bridge two neighboring silver atoms. The metal cluster core thus consists of four silver atoms arranged in a butterfly-shape with Ag–Ag distances of 2.9956(3) Å and 3.0499(5) Å (complex 1) and 2.9342(5) Å in complex 2. These silver-silver distances are considerably shorter than the 3.44 Å van der Waals radius of Ag and can therefore be considered argentophilic contacts.

The overall geometry including bond distances and angles in complex 1 are very similar to those previously reported by Richter and Habtu for \([\text{Ag}_4\{(\text{PhC(O)}\text{NC(S)N})\text{SEt}_3\}]_4\) and \([\text{Ag}_4\{(\text{PhC(O)}\text{NC(S)N})\text{NBu}_3\}]_4\).\(^{[4-5]}\) The Ag-Se bond lengths of 2.5171(5) Å and 2.5341(6) Å in 2 are somewhat shorter than those observed in related tetranuclear silver clusters containing selenium ligands. In the cation \([\text{Ag}_4\{(\text{Ph},\text{P} \text{Se} \text{NP} \text{Se} \text{Ph})_2\}]^+\) containing an anionic Se,Se-chelating ligand, the average Ag-Se distance is about 2.6 Å\(^{[6]}\) and, similarly, the same 2.6 Å Ag-Se distance is observed in the silver cluster containing isopropyl selenolato ligands \([\text{Ag}_4\{(\text{dppe})\text{(SePr)}_3\}]^{[6]}\)

These results thus confirmed our initial idea, that Ag₂O could indeed be used as a precursor for defined silver compounds of acyl-chalcogenoureas. The reaction is fast and clean with water being the only side-product. Our subsequent investigation focused on the reactivity of these tetranuclear silver compounds.

We first examined reactivity of the tetrasilver complexes with phosphines. Addition of one equivalent (per silver atom) of Ph₃P or 1,3,5-triaza-7-phosphadadamantane (PTA) to the in situ formed tetranuclear compounds afforded colorless or yellow solids (3-10) after work-up (Scheme 1), which were characterized spectroscopically and, in some cases, by X-ray diffraction. The same products can also be obtained from the reaction of the isolated tetranuclear complexes 1 or 2 with four equivalents of the respective phosphine. Apart from the disappearance of the NH-proton resonance, the 'H NMR spectra of the compounds are of little diagnostic value, since the chemical shifts and multiplicity of the observed resonances remain virtually unchanged. However, the ³¹P NMR spectra confirm that the phosphines are indeed coordinated to the metal center, since the chemical shifts of the singlet resonances are considerably shifted compared to those of the phosphines themselves. The resonances for the Ph₃P complexes are observed at around 10-15 ppm, whilst those of the PTA derivatives appear at around ~86 ppm. Unfortunately, we were unable to observe any P-Ag coupling in the ³¹P-NMR spectra. Nevertheless, single crystal X-ray diffraction allowed us to determine the solid-state structures of complexes 3, 4 and 7; their molecular structures are shown in Figures 3, 4, and 5, respectively.

![Figure 1. Molecular structure of 1.](image1.png)

![Figure 2. Molecular structure of 2.](image2.png)
Figure 3. Molecular structure of 3. Hydrogen atoms have been omitted for clarity. Ellipsoids are drawn at 50% probability levels. Only the ipso-carbon atoms of the Ph₃P ligands are shown. Selected bond distances (Å) and angles (°): Ag(1)-Ag(1)* 3.1257(4), Ag(1)-S(1) 2.6893(6), Ag(1)-O(1) 2.4311(17), Ag(1)-P(1) 2.4022(6), S(1)-C(1) 1.742(2), O(1)-C(2) 1.253(3). O(1)-Ag(1)-S(1) 84.55(4), Ag(1)-S(1)-Ag(1)* 73.039(16), P(1)-Ag(1)-O(1) 124.94(5), P(1)-Ag(1)-S(1) 115.050(19).

Because the structural features of these compounds are quite similar, they will be discussed here together. In each case, the molecule consists of a deprotonated acylchalcogenourea chelating a silver(I) center through both oxygen and sulfur or selenium atoms. In addition, the sulfur or selenium atoms bridge two silver atoms forming a planar, four-membered Ag₂S₂ or Ag₂Se₂ rings. The two silver atoms are held together by argentophilic contacts ranging from 3.06 to 3.15 Å. The coordination geometry about each silver atom is completed by the respective phosphine ligand. A similar Ag₂S₂ structural motif is found in a few other dinuclear silver compounds containing sulfur ligands. These include [Ag₂(Ph₃P)(ArC=CS(O)OH)] (Ar = Ph[7] or thiienyl[8]), [Ag₂(Ph₃P)₂(S₂C₂H₂NO₃)] [9] and [Ag₂(Ph₃P)(tu)(NO₃)] (tu = thiourea).[10] In these complexes the Ag-Ag distances range from ca. 2.9 to 3.2 Å. The only known selenium derivatives containing an Ag₂Se₂ core are [Ag₂(Ph₃P)₂SeC(O)Ph₃] [11] and [Ag₂(Ph₃P)₂SePh₂].[12] In these two complexes the Ag-Ag distances range from 2.9 to 3.0 Å. In the molecular structures of complexes 3, 4 and 7, the two chalcogen-silver distances are not identical: In each case, one can observe one longer and one shorter Ag-S/Se bond. The difference between these Ag-S/Se distances varies from as little as 0.07 to 0.29 Å.

Figure 4. Molecular structure of 4. Hydrogen atoms have been omitted for clarity. Ellipsoids are drawn at 50% probability levels. Selected bond distances (Å) and angles (°): Ag(1)-Ag(1)* 3.1099(5), Ag(1)-Se(2) 2.7373(4), Ag(1)-O(1) 2.462(2), Ag(1)-P(1) 2.4205(8), S(1)-C(1) 1.752(2), O(1)-Ag(1)-Se(2) 1.909(3), O(1)-Ag(1)-Se(2) 85.85(5), Ag(1)-S(1)-Ag(1)* 73.039(16), P(1)-Ag(1)-O(1) 124.94(5), P(1)-Ag(1)-S(1) 115.050(19).

The reactions of 4-RC₆H₄C(O)NC(E)NEt₂ (R= Me, NO₂; E = S, Se) with Ag₂O and two equivalents of phosphine per silver atom afford the monomeric silver(I) complexes [Ag₂{4-RC₆H₄C(O)NC(E)NEt₂}]-[Ph₃P]₂ [R = Me, E = S (11); R = NO₂, E = S (12); R = Me, E = Se (13)] in high yields (Scheme 2).
Whilst the singlet resonances for the dinuclear complexes in the 3P NMR spectra are observed at around 10-15 ppm, those of the monomeric complexes 11-13 appear in the range $\delta = 5-8$ ppm. The 1H NMR spectra of these compounds confirm the deprotonation of the NH-group and also indicate 2:1 phosphine/acylthiourea ratios. The X-ray crystal structure of complex 12 (Figure 6) shows the typical O,S-chelating mode of a deprotonated acylthiourea forming a six-membered ring. The tetrahedral coordination environment about the silver center is completed by the two phosphine ligands.

However, in the case of the p-toly derivative $[\text{Ag} \{4$-$\text{MeC}_{6}H_{4}C(O)\text{NC(S)NEt}_{2}\}(\text{PPh}_{3})_{2}]$ (11), the coordination mode of the deprotonated acylthiourea ligand is very different (Figure 7). Here, the sulfur- and the nitrogen atoms of the deprotonated acylthiourea are bound to the silver atom forming a four-membered chelate ring. The four-coordinate geometry about the silver is completed by the two phosphine ligands. This N,S$^-$ coordination mode is extremely rare for acylthiourea derivatives. The Rhodium(I) complex [Rh(CO)\{PhC(O)NC(S)NEt\}_2] reported by Warsink is the only other example of a metal complex with this coordination mode.\(^{[8]}\)

![Figure 6. Molecular structure of 12. Hydrogen atoms have been omitted for clarity. Ellipsoids are drawn at 50% probability levels. Selected bond distances (Å) and angles (°): Ag(1)-S(1) 2.559(5), Ag(1)-O(1) 2.3962(13), Ag(1)-P(1) 2.4631(4), Ag(1)-P(2) 2.4380(5), C(1)-S(1) 1.7356(19), O(1)-Ag(1)-S(1) 87.41(3), P(1)-Ag(1)-S(1) 113.764(17), P(2)-Ag(1)-O(1) 90.73(3).](image)

To try and explain why this unusual coordination mode is observed, we carried out some computational studies. Energy differences between the four- and six-membered ring silver complexes for both the nitro- and methyl-substituted ligands were calculated. The results indicate that the energy differences (ΔG_{300}) between the six- and four-membered ring isomers are +7.6 kJ/mol for the nitro-derivative and +6.8 kJ/mol for the methyl congener. Given the similarity of the stabilities of the six- and four-membered ring isomers, we conclude that the observed crystallization of the four-membered ring complex is most probably due to solubility and not a consequence of any systematic energy difference.

Silver(I) complexes containing NHCs as C-donor ligands are nowadays common synths for transmetallation reactions in organometallic chemistry. In addition, they have been shown to be biologically active molecules and also useful in homogeneous catalysis.\(^{[9]}\) Most known silver NHC-complexes are either halide derivatives $[\text{AgX(NHC)}]$ or bis(carbene) salts $[\text{Ag(NHC)}]^+$. There are very few examples where the halide ligand has been exchanged for a different monoanionic ligand. Given the similarity between phosphines and carbenes as donor ligands, we wished to prepare silver NHC complexes containing a deprotonated acyselenourea ligand. The reaction of 4-$\text{O}_{3}NC_{6}H_{4}C(O)\text{NC(Se)NEt}_{2}$ with $[\text{Ag(OAc)}(\text{IPr})]$ \(\text{IPr} = \text{1,3-bis(2,6-disopropylphenyl)imidazolyliden}) afforded the desired product (14) as yellow solid in good yield (Scheme 3).

![Figure 7. Molecular structure of 11. Hydrogen atoms have been omitted for clarity. Ellipsoids are drawn at 50% probability levels. Selected bond distances (Å) and angles (°): Ag(1)-S(1) 2.5861(6), Ag(1)-N(1) 2.5689(18), Ag(1)-P(1) 2.4685(6), Ag(1)-P(2) 2.4380(5), C(1)-N(1) 1.368(3), C(1)-S(1) 1.736(2), S(1)-Ag(1)-N(1) 64.50(4), N(1)-C(1)-S(1) 116.86(16), P(1)-Ag(1)-S(1) 108.73(2), P(2)-Ag(1)-N(1) 119.00(4).](image)
The compound was spectroscopically and also structurally characterized. The 1H NMR data is consistent with a 1:1 ratio of IPr and deprotonated acylselenourea. Due to poor solubility of the compound and inherent low intensity of the signal, we were unable to directly observe the 13C resonance of the Ag-carbene carbon atom. However, through a 2D HMBC experiment, we could identify this resonance at ca. 188 ppm, a typical value for a silver-bound carbene carbon atom. We were able to obtain X-ray quality crystals, which allowed us to unambiguously determine the solid-state structure of the compound (Figure 8). The molecule consists of a tricoordinate silver atom bound to the IPr ligand via the carbon atom and the deprotonated acylselenourea ligand via the O and Se atoms. The coordination geometry at the silver center is distorted trigonal planar, with an O–Ag–Se angle of ca. 88°, the other two angles (C–Ag–O and C–Ag–Se) being 177° and 155°, respectively. Such a distorted trigonal planar coordination at a silver center is found in a few other mononuclear compounds. Examples include the diketonato-derivatives $[\text{Ag(L)\{RC(O)CHC(O)R\}}]$ (L = Ph$_3$P, Me$_2$P, MeNC; R = CF$_3$, tBu) and silver carbene complexes containing O,O-chelating acetate ligands $[\text{Ag(OAc)(NHC)}]$.[23] In the diketonato-compounds the O–Ag–O angles are considerably smaller (80–82.5°) than the corresponding O–Ag–Se angle in (14). The other bond distances and angles in (14) are as expected for this class of compounds. Whilst the Ag–O bond lengths in (14) are very similar to those in the dimeric complex (7), the Ag-Se bond length in (14) (ca. 2.49 Å) is significantly shorter than that in (7). Uniquely, the six-membered ring formed by the coordinating acylselenourea is significantly distorted from planarity. In the phosphine complexes described above, the ring is virtually planar, whereas in (14) it adopts a saddle-shaped conformation. The silver, oxygen, selenium and nitrogen atoms lie in a plane whilst the two carbon atoms are found above and below this plane, respectively.

Conclusions

Overall, we have shown that silver(I) oxide is suitable starting material for silver complexes of thio- and selenourea ligands. The initially formed tetrameric compounds react with phosphines resulting in different products depending on the stoichiometry. For a 1:1 ratio of silver/phosphine, sulfur- or selenium-bridged dinuclear species form in which the acylchalcogenourea ligands act as monoanionic O,S- or O,Se-chelates. With two equivalents of phosphine per silver atom, mononuclear compounds result in which the acylchalcogenourea ligands adopt either the rare monoanionic N,S- or the monoanionic O,S- coordination mode. With the carbene precursor $[\text{Ag(OAc)(IPr)}]$, a tricoordinate silver carbene complex was obtained containing a monoanionic O,Se-coordinated acylselenourea ligand. Further studies with this class of compounds and their applications are currently ongoing in our group.

Experimental Section

General

Reactions were carried out under ambient conditions in reaction vessels shielded from light. Solvents (HPLC quality) and reagents were sourced commercially and were used as received. The acylthio/selenoureas,[23] $[\text{Ag(OAc)(IPr)}]$ as well as PTA[24] were prepared following literature procedures. NMR spectra were recorded on Bruker Avance 400 or Bruker Avance III 600 instruments. Elemental analyses were carried out in-house using anElementar Vario EL instrument. Samples for elemental analysis were dried in vacuum at 60 °C overnight.

Preparation of the silver(I) tetrans

To a solution of the acylthio- or selenourea (0.36 mmol) in CH$_2$Cl$_2$ (10 mL) was added solid AgO (0.55 equivalents, 0.19 mmol). After 30–40 minutes most of the silver oxide had dissolved. The mixture was filtered and left to stand in the dark. Within a few days X-ray quality crystals deposited, which were isolated by filtration and dried. To isolate the bulk material, the filtrate was evaporated to dryness in vacuum and the resulting solid was washed with Et$_2$O and dried in air.
Compound (1) was isolated as pale yellow solid in 75% yield. H-NMR (CDCl₃) δ = 1.10 (t, J = 7.1 Hz, 12 H, NCH₂CH₃), 1.20 (t, J = 7.1 Hz, 12 H, NCH₂CH₃), 3.48 (q, J = 7.1 Hz, 8 H, NCH₂CH₃), 3.59 (q, J = 7.1 Hz, 8 H, NCH₂CH₃), 8.24 (d, J = 8.8 Hz, 8 H, CH₃), 8.48 (d, J = 8.8 Hz, 8 H, CH₃), 101.70 (C=O)(NC(Se)NEt), 129.28 (C₆H₅), 129.36 (d, J=10 Hz, C₆H₅), 130.66 (d, J=10 Hz, C₆H₅), 130.78 (d, J=10 Hz, C₆H₅), 130.90 (d, J=10 Hz, C₆H₅), 166.66 (CO), 170.26 (C≡N), C₆H₅NO₃P₂Se₆Ag₃. (1394.76) calculated: C 51.67, H 4.10, N 6.03; found C 52.03, H 4.11, N 6.25 %.

Compound (6) was isolated as an orange solid in 48% yield. H-NMR (CDCl₃) δ = -88.6 (s), H-NMR (CDCl₃) δ = 1.21 (t, J = 7.1 Hz, 6 H, H,CH₃), 1.36 (t, J = 7.1 Hz, 6 H, NCH₂CH₃), 3.69 (q, J = 7.3 Hz, 4 H, CH₃), 4.05 (q, J = 7.3 Hz, 4 H, CH₃), 7.95 (s, J = 7.3 Hz, 4 H, CH₃), 8.41 (s, 6 H, PTA), 4.52 (m, 6 H, PTA), 8.17-8.25 (m, 8 H, CH₃), 34.87 (s, 72.90 (C₆H₅), 129.36 (d, J=10 Hz, C₆H₅), 130.66 (d, J=10 Hz, C₆H₅), 130.78 (d, J=10 Hz, C₆H₅), 166.66 (CO), 167.06 (C≡N), C₆H₅NO₃P₂Se₆Ag₃. (1844.49) calculated: C 36.59, H 4.43, N 14.19; found C 36.57, H 4.52, N 14.39 %.

Compound (7) was isolated as a brownish solid in 60% yield. H-NMR (CDCl₃) δ = 15.42 (s), H-NMR (CDCl₃) δ = 1.28 (m, 12 H, NCH₂CH₃), 2.36 (s, 6 H, Me), 3.75 (m, 4 H, NCH₂CH₃), 3.95 (m, 4 H, NCH₂CH₃), 7.08 (d, J = 7.9 Hz, 4 H, CH₃), 7.35-7.57 (m, 30 H, PhP), 7.93 (d, J = 7.9 Hz, 4 H, CH₃), 100.37 (C₆H₅), 112.19 (C₆H₅), 122.19 (C₆H₅), 129.71 (PTA), 131.48 (d, J = 29 Hz, ipso-PhP), 133.37 (d, J = 17 Hz, 0-PhP), 135.36 (C₆H₅), 138.95 (C₆H₅), 166.28 (CO), 170.08 (C≡N), C₆H₅NO₃P₂Se₆Ag₃. (1328.82) calculated: C 55.87, H 4.84, N 4.20; found C 55.01, H 5.00, N 4.34 %.

Compound (8) was isolated as a colourless solid in 65% yield. H-NMR (CDCl₃) δ = 15.66 (s), H-NMR (CDCl₃) δ = 1.27 (m, 6 H, NCH₂CH₃), 1.34 (m, 6 H, NCH₂CH₃), 2.38 (s, 6 H, Me), 3.76 (m, 4 H, NCH₂CH₃), 3.98 (m, 4 H, NCH₂CH₃), 7.12 (m, J = 7.8 Hz, 4 H, CH₃), 7.39-7.62 (m, 30 H, PhP), 8.04 (d, J = 8.1 Hz, 4 H, CH₃), 3-NMR (CDCl₃) δ = 13.26 (NCH₂CH₃), 21.45 (Me), 45.22 (NCH₂CH₃), 128.23 (C₆H₅), 128.96 (d, J = 10 Hz, m-PhP), 129.13 (C₆H₅), 130.63 (d, J = 2 Hz, p-PhP), 131.30 (d, J = 35 Hz, ipso-PhP), 134.13 (d, J = 17 Hz, 0-PhP), 136.82 (C₆H₅), 140.13 (C₆H₅), 166.73 (CO), 170.39 (C≡N), C₆H₅NO₃P₂Se₆Ag₃ (1299.82) calculated: C 60.10, H 5.21, N 4.52; found C 60.29, H 5.55, N 4.48 %.

Compound (9) was isolated as a colourless solid in 66% yield. H-NMR (CDCl₃) δ = -85.69 (s), H-NMR (CDCl₃) δ = 1.24 (m, 12 H, NCH₂CH₃), 2.38 (s, 6 H, Me), 3.75 (m, 8 H, NCH₂CH₃), 4.01 (s, 6 H, PTA), 4.40 (AB quart, J = 13.7 Hz, 6 H, PTA), 7.17 (d, J = 7.8 Hz, 4 H, CH₃), 8.00 (d, J = 8.1 Hz, 4 H, CH₃), C₆H₅NO₃P₂Se₆Ag₃. (1297.25) calculated: C 54.37, H 5.68, N 13.62; found C 54.49, H 5.73, N 13.97 %.

Compound (10) was isolated as a dark yellow solid in 92% yield. H-NMR (CDCl₃) δ = -87.95 (s), H-NMR (CDCl₃) δ = 1.21 (t, J = 7.1 Hz, 6 H, NCH₂CH₃), 1.32 (t, J = 7.1 Hz, 6 H, NCH₂CH₃), 3.69 (q, J = 7.3 Hz, 4 H, CH₃), 8.49 (q, J = 7.3 Hz, 4 H, CH₃), 7.39-7.57 (m, 30 H, PhP), 7.93 (d, J = 7.9 Hz, 4 H, CH₃), C₆H₅NO₃P₂Se₆Ag₃. (3087.25) calculated: C 34.47, H 5.68, N 13.62; found C 34.49, H 5.73, N 13.97 %.

Preparation of the dinuclear silver(I) phosphine complexes

To a solution of the acetyl- or selenourea (0.36 mmol) in a mixture of MeOH and CH₂Cl₂ (5 mL each) was added solid AgO (0.55 equivalents, 0.19 mmol). After 30-40 minutes the mixture was filtered and subsequently one equivalent (0.36 mmol) of the appropriate phosphine was added to the filtrate. After a further 30 minutes at room temperature, the product was isolated by evaporation of the solvent and washing the residue with EtO. X-ray quality crystals were obtained by slow evaporation of CH₂Cl₂ solutions of the compounds.
Preparation of the monoclinic silver(I) phosphate complexes

These were prepared as described above except that after filtration two equivalents (0.72 mmol) of the appropriate phosphate were added to the filtrate. After 30 minutes at room temperature, the products were subsequently isolated by evaporation of the solvent and washing the residue with Et₂O. X-ray quality crystals were obtained by slow evaporation of CH₂Cl₂ solutions of the compounds.

Compound (11) was isolated as yellowish solid in 60% yield. ^31P-[H]-NMR (CDCl₃) δ = 6.4 (s). ^31P-NMR (CDCl₃) δ = 1.28 (m, 6 H NCH₂CH₂), 2.37 (s, 3 H Me), 2.71 (m, 4 H, NCH₂CH₂), 3.85 (m, 4 H, NCH₂CH₂), 7.09 (d, J = 8.0 Hz, 2 H, CH₂), 7.31–7.49 (m, 30 H, PhH), 7.98 (d, J = 8.0 Hz, 2 H, CH₂), ^31C-NMR (CDCl₃) δ = 13.23 (NCH₂CH₂), 21.42 (Me), 45.32 (NCH₂CH₂), 128.25 (C₆H₅), 128.69 (d, J = 10 Hz, m-PhP), 129.09 (C₆H₅), 129.74 (p-PhP), 133.69 (d, J = 30 Hz, ipso-PhP), 133.97 (d, J = 17 Hz, o-PhP), 136.88 (C₆H₅), 139.90 (C₆H₅), 169.95 (CO), 177.13 (CS). C₆H₅N₂OPAg (888.80): calcld. C 66.74, H 5.37, N 3.18; found C 66.23, H 5.12, N 3.34 %.

[Ag(4-MeC₆H₄C(O)NC(S)EtJ(PPh)₃)] (14)

To a solution of 4-O-NC₆H₄C(O)NC(S)Et (0.050 g, 0.152 mmol) in CH₂Cl₂ (5 mL) was added [Ag(OAc)(IPr)] (0.084 g, 0.152 mmol). After stirring for ca. 2 h, the mixture was concentrated in vacuum to ca. 2 mL. Addition of hexanes precipitated a solid, which was isolated by filtration and dried in air. 0.097 g (78%) of a yellow product was obtained. ^31P-[H]-NMR (CDCl₃) δ = 1.12 (br. m, 6 H, NCH₂CH₂), 1.22 (d, J = 6.9 Hz, 12 H, Me-PrP), 1.26 (d, J = 6.9 Hz, 12 H, Me-PrP), 2.64 (sept., J = 6.9 Hz, 4 H, CH-IPr), 3.66 (br. m, 4 H, NCH₂CH₂), 7.20 (d, J = 8.8 Hz, 2 H, CH₂), 7.49 (t, J = 7.8 Hz, 4 H, IP), 7.86 (d, J = 8.3 Hz, 2 H, CH₂), ^31C-NMR (CDCl₃) δ = 13.21 (NCH₂CH₂), 24.09 (Me-IPr), 24.46 (Me-IPr), 28.66 (CH-IPr), 122.43 (CH₂), 123.22 (imidazole C), 123.28 (imidazole C), 124.00 (C₆H₅), 129.82 (IPr), 130.19 (IPr), 135.22 (CH₂), 145.77 (IPr), 148.47 (CH₂), 169.86 (CO). The Cse and Csg signals could not be detected. C₆H₅AgN₂OPAg (823.69): calcld. C 56.87, H 6.12, N 8.90; found C 57.01, H 6.10, N 8.72 %.

X-ray crystallography

Data were collected at 150 K on a Rigaku Oxford Diffraction Gemini Ultra diffractometer or at 100 K on a Bruker AXS Apex II with an Incoatec I₀S micro focus source (Mo-K_α, radiation λ = 0.7073 Å). Calculations were carried out using Olex2 incorporating the SHEXL programs. Important crystallographic and refinement details are collected in Table 1. In the structure of complex (a) the NEt₃ group is disordered over two positions. In addition, the asymmetric unit

| Table 1. Crystallographic and refinement details of complexes 1–4, 7, 11, 12 and 14. |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 1 | 4 | 7 | 11 | 12 | 14 |
| Empirical formula | C₆H₅Ag₂N₂O | C₆H₅Ag₂N₂O | C₆H₅Ag₂N₂O | C₆H₅Ag₂N₂O | C₆H₅Ag₂N₂O |
| Formula weight | 665.85 | 3377.94 | 1300.92 | 1090.70 | 1332.77 |
| Crystal system | Monoclinic | Tetragonal | Triclinic | Orthorhombic | Triclinic |
| Space group | C2/c | P-42c | P-1 | Pbca | P-1 |
| a/Å | 30.9086(16) | 15.1806(4) | 11.4445(5) | 11.46875(8) | 11.2549(6) |
| b/Å | 10.7720(3) | 11.712(4) | 18.7320(3) | 11.9939(5) | 13.329(1) |
| c/Å | 24.5364(13) | 13.1866(6) | 12.1239(8) | 20.3773(5) | 12.2256(6) |
| α° | 90 | 90 | 96.9062(6) | 90 | 97.090(4) |
| β° | 130.586(9) | 90 | 97.826(3) | 90 | 99.471(4) |
| γ° | 90 | 90 | 113.812(9) | 90 | 114.243(5) |
| Volume/Å³ | 6206.65 | 3938.91 | 1400.29(9) | 4354.81(11) | 1446.63(12) |
| Z | 4 | 4 | 1 | 4 | 1 |
| M_W mg/mm³ | 1.731 | 1.847 | 1.543 | 1.660 | 1.530 |
| μ/mm⁻¹ | 1.449 | 3.760 | 0.889 | 1.125 | 2.036 |
| F(000) | 326.80 | 1660.00 | 664.00 | 2224.00 | 672.00 |
| Crystal size/mm³ | 0.040×0.060×0.08 | 0.035×0.08×0.09 | 0.050×0.06×0.08 | 0.040×0.06×0.013 | 0.021×0.07×0.021 |

7
contains one quarter each of methanol and dichloromethane. The oxygen atom of the MeOH and the carbon atom of CH₃Cl have identical coordinates. In the structure model of complex (14) there density, the data was therefore treated using the Squeeze procedure implemented in Platon.\(^[6]\) CCDC 153650 (for i), 153651 (for ii), 153652 (for iii), 153653 (for iv), 153654 (for v), 153655 (for vi), and 153656 (for vii) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Computational details

Structures were optimized with a revPBE GGA\(^{[11]}\) functional and def2-TZVP\(^{[12]}\) basis sets as implemented in the ORCA\(^{[13]}\) program; resolution of identity (RI) approximation\(^{[14]}\) was employed to speed the calculations and Grimme’s empirical corrections\(^{[15]}\) to treat the dispersion forces. The fundamental frequencies were calculated to assess the nature of stationary points and to estimate the zero-point energy (ZPE) corrections and Gibbs energies.

Acknowledgements

We thank Retorte GmbH for a generous gift of selenium metall.

Keywords: Silver • Selenium • Sulfur • Cluster compounds • X-ray structure
1997, 78, 1396; c) Y. Zhang, W. Yang, Phys. Rev. Lett. 1998, 80, 890; d) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1998, 80, 891.

[28] a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; c) D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123-141; d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.

[29] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78.

[30] F. Neese, J. Comput. Chem. 2003, 24, 1740-1747.

[31] a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.