Evaluations of infinite series involving reciprocal hyperbolic functions

Ce Xu
School of Mathematical Sciences, Xiamen University
Xiamen 361005, P.R. China

Abstract This paper presents a approach of summation of infinite series of hyperbolic functions. The approach is based on simple contour integral representations and residue computations with the help of some well known results of Eisenstein series given by Ramanujan and Berndt et al. Several series involving hyperbolic functions are evaluated, which can be expressed in terms of $z = 2F_1(1/2, 1/2; 1; x)$ and $z' = dz/dx$. When a certain parameter in these series equal to π the series are summable in terms of Γ functions. Moreover, some interesting new consequences and illustrative examples are considered.

Keywords Infinite series; hyperbolic function; trigonometric function; Riemann zeta function; Jacobian elliptic function; Gamma function; residue theorem; Eisenstein series.

AMS Subject Classifications (2010): 34A25; 33B10; 11M36; 11M41; 11M99.

Contents

1 Introduction 1
2 Some Lemmas and Transformations 5
 2.1 Three Lemmas 5
 2.2 Three Transformations 8
3 Main Theorems and Proofs 10
 3.1 Some Theorems and Proofs 11
 3.2 Evaluations of $\tilde{S}_{2p,2}(y)$, $\tilde{S}'_{2p-1,2}(y)$, $\tilde{C}_{2p,2}(y)$ and $\tilde{C}'_{2p-1,2}(y)$ 13
 3.3 Evaluations of $S_{2p,2}(y)$, $S'_{2p,2}(y)$, $C_{2p,2}(y)$ and $C'_{2p,2}(y)$ 15
 3.4 Three Differential Equations 19
4 Examples and Further Results 21
 4.1 Examples 21
 4.2 Further Results 25

1 Introduction

Let \mathbb{N} be the set of natural numbers, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, \mathbb{Z} the ring of integers, \mathbb{Q} the field of rational numbers, \mathbb{R} the field of real numbers, and \mathbb{C} the field of complex numbers.

*Corresponding author. Email: xuce1242063253@163.com
We begin with some basic notation. As usual, put \((a)_n\) denotes the ascending Pochhammer symbol by
\[
(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1) \cdots (a+n-1) \quad \text{and} \quad (a)_0 := 1,
\] (1.1)
where \(a \in \mathbb{C}\) is any complex number and \(n \in \mathbb{N}_0\) is a nonnegative integer, \(\Gamma(z)\) denotes the Gamma function, when \(\Re(z) > 0\) then
\[
\Gamma(z) := \int_0^\infty e^{-t}t^{z-1}dt.
\]

The Gaussian or ordinary hypergeometric function \(2F_1(a, b; c; x)\) is defined for \(|x| < 1\) by the power series
\[
2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n \pi^n}{(c)_n n!} \quad (a, b, c \in \mathbb{C}).
\] (1.2)
The complete elliptic integral of the first kind is defined by (Whittaker and Watson [31])
\[
K := K(x) := K(k^2) := \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}} = \frac{\pi}{2} 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; k^2\right).
\] (1.3)
Here \(x = k^2\) and \(k (0 < k < 1)\) is the modulus of \(K\). The complementary modulus \(k'\) is defined by \(k' = \sqrt{1 - k^2}\). Furthermore,
\[
K' := K(k'^2) = \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - k'^2 \sin^2 \varphi}} = \frac{\pi}{2} 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - k'^2\right).
\] (1.4)
Similarly, the complete elliptic integral of the second kind is denoted by (Whittaker and Watson [31])
\[
E := E(x) := E(k^2) := \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \varphi} d\varphi = \frac{\pi}{2} 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - k^2\right).
\] (1.5)

In order to better state our main results, we shall henceforth adopt the notation of Ramanujan (see Berndt’s book [7]). Let
\[
x := k^2, \quad y := y(x) := \frac{K'}{K}, \quad q := q(x) := e^{-y}, \quad z := z(x) := \frac{2}{\pi} K, \quad z' := \frac{dz}{dx}.
\] (1.6)
Using the identity \((a)_{n+1} = a(a+1)_n\), it is easily shown that
\[
\frac{d}{dx} 2F_1(a, b; c; x) = \frac{ab}{c} 2F_1(a+1, b+1; c+1; x)
\]
and more generally,
\[
\frac{d^n}{dx^n} {}_2F_1(a, b; c; x) = \frac{(a)_n (b)_n}{(c)_n} {}_2F_1(a + n, b + n; c + n; x) \quad (n \in \mathbb{N}_0).
\] (1.7)

Then,
\[
\frac{d^n z}{dx^n} = \frac{(1/2)_n^2}{n!} {}_2F_1 \left(\frac{1}{2} + n, \frac{1}{2} + n; 1 + n; x \right). \tag{1.8}
\]

Applying the identity (see Theorem 3.5.4(i) in section 3.5 of chapter 3 of Andrews’ book [1] with Askey and Roy)
\[
{}_2F_1 \left(a, b; \frac{a + b + 1}{2}; \frac{1}{2} \right) = \frac{\Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{a + b + 1}{2} \right)}{\Gamma \left(\frac{a + 1}{2} \right) \Gamma \left(\frac{b + 1}{2} \right)}, \tag{1.9}
\]

an elementary calculation shows that
\[
\frac{d^n z}{dx^n} \bigg|_{x=1/2} = \frac{(1/2)_n^2 \sqrt{\pi}}{\Gamma^2 \left(\frac{n}{2} + \frac{3}{4} \right)}. \tag{1.10}
\]

Setting \(n = 1, 2, 3 \) in equation above yield
\[
\frac{\Gamma^2 \left(\frac{1}{4} \right)}{2\pi^{3/2}}, \quad \frac{4\sqrt{\pi}}{\Gamma^2 \left(\frac{1}{4} \right)}, \quad \frac{\Gamma^2 \left(\frac{1}{4} \right)}{2\pi^{3/2}},
\]

where we have used the two relations
\[
\Gamma(x + 1) = x\Gamma(x) \quad \text{and} \quad \Gamma(x)\Gamma(1 - x) = \frac{\pi}{\sin(\pi x)}.
\]

Definition 1.1 Let \(m \in \mathbb{N} \) be a positive integer and \(p \in \mathbb{Z} \) be an integer. Define

\[
S_{p,m}(y) := \sum_{n=1}^{\infty} \frac{n^p}{\sinh^m(ny)}, \quad \tilde{S}_{p,m}(y) := \sum_{n=1}^{\infty} \frac{n^p}{\sinh^m(ny)} (-1)^{n-1},
\]

\[
C_{p,m}(y) := \sum_{n=1}^{\infty} \frac{n^p}{\cosh^m(ny)}, \quad \tilde{C}_{p,m}(y) := \sum_{n=1}^{\infty} \frac{n^p}{\cosh^m(ny)} (-1)^{n-1},
\]

\[
S'_{p,m}(y) := \sum_{n=1}^{\infty} \frac{(2n - 1)^p}{\sinh^m((2n - 1)y/2)}, \quad \tilde{S}'_{p,m}(y) := \sum_{n=1}^{\infty} \frac{(2n - 1)^p}{\sinh^m((2n - 1)y/2)} (-1)^{n-1},
\]

\[
C'_{p,m}(y) := \sum_{n=1}^{\infty} \frac{(2n - 1)^p}{\cosh^m((2n - 1)y/2)}, \quad \tilde{C}'_{p,m}(y) := \sum_{n=1}^{\infty} \frac{(2n - 1)^p}{\cosh^m((2n - 1)y/2)} (-1)^{n-1}.
\]

By (1.6), then the eight series defined in Definition 1.1 can be rewritten as Eisenstein series

\[
S_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{n^p q^{mn}}{(1 - q^{2n})^m}, \quad \tilde{S}_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{n^p q^{mn}}{(1 - q^{2n})^m} (-1)^{n-1},
\]

3
C_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{n^p q^{mn}}{(1 + q^{2n}m)}, \quad \bar{C}_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{n^p q^{mn}}{(1 + q^{2n}m)(-1)^{n-1}},

S'_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{(2n - 1)^p q^{(n-1/2)m}}{(1 - q^{2n-1})m}, \quad S'_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{(2n - 1)^p q^{(n-1/2)m}}{(1 - q^{2n-1})m}(-1)^{n-1},

C'_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{(2n - 1)^p q^{(n-1/2)m}}{(1 + q^{2n-1})m}, \quad \bar{C}'_{p,m}(y) = 2^m \sum_{n=1}^{\infty} \frac{(2n - 1)^p q^{(n-1/2)m}}{(1 + q^{2n-1})m}(-1)^{n-1}.

Infinite series involving hyperbolic functions have attracted the attention of many authors. They have investigated various infinite sums of hyperbolic functions. Ramanujan evaluated many results of infinite series involving hyperbolic functions in his notebooks [25] and lost notebook [26]. For example, in Entry 16(x) of Chapter 17 in his second notebook [7, 25], Ramanujan asserted that

\[C'_{2,1}(\pi) = \frac{\pi^{3/2}}{2\sqrt{21\pi} \left(\frac{3}{4} \right)} \]

In fact, it is shown in Entry 15, 16 and 17 of Chapter 17 in Berndt’s book [7] that one can also evaluate in closed form the following more general sums

\[S_{2p-1,1}(y), \ C_{2p-1,1}(y), \ S'_{2p-1,1}(y), \ C'_{2p-1,1}(y), \ \bar{C}'_{2p-1,1}(y), \]

where \(p \) is a positive integer. These evaluations are in terms of \(z = {}_2F_1(1/2, 1/2; 1, k^2) \). In [21–23], Ling used Weierstrassian elliptic functions to obtain closed forms for the fifteen series

\[S_{0,2m}(y), \ S_{0,2m}(y), \ C_{0,m}(y), \ \bar{C}_{0,m}(y), \ S'_{0,2m}(y), \ \bar{S}'_{0,2m}(y), \ \bar{C}'_{0,m}(y) \]

and

\[S_{2p-1,1}(y), \ S_{2p-1,1}(y), \ C_{2p,1}(y), \ \bar{C}_{2p,1}(y), \ S'_{2p-1,1}(y), \ S'_{2p,1}(y), \ \bar{C}'_{2p,1}(y), \ \bar{C}'_{2p-1,1}(y) \]

for \(m, p \) positive integers, and summed the series in terms of Gamma functions for \(y = \pi, \sqrt{3}\pi \) and \(\pi/\sqrt{n} \). Further, Ling [24] extended the summation of the series above to \(y = \sqrt{n\pi} \) and \(\pi/\sqrt{n} \), \(n \) is a positive integer. Zucker [33] shown that the series \(C_{0,m}(y) \) and \(C'_{0,m}(y) \) can be expressed in closed forms for all integral \(m \). Moreover, Zucker stated that many other series of hyperbolic functions may be expressed in closed form e.g.

\[\sum_{n=1}^{\infty} \frac{n^p}{\sinh((2n - 1)y/2)}, \sum_{n=1}^{\infty} \frac{n^p}{\cosh((2n - 1)y/2)}, \] etc.

Further, he studied several infinite series involving exponential and hyperbolic function, which depend on a certain parameter, \(y/\pi \). When \(y/\pi \) is the square root of a rational number the sums may be expressed in terms of \(\Gamma \)-functions and other well-known transcendental numbers. For details may be found in [34]. Some other related results for infinite series involving hyperbolic functions may be seen in the works of [2–5, 8, 9, 11, 12, 20, 27, 32]. For instance, Berndt [4, 5] found a lot of identities about infinite series using a certain modular transformation formula that originally stems from the generalized Eisenstein series. There are also a lot of recent contributions on Eisenstein series involving hyperbolic functions (see [19, 28–30]) and the references therein.
However, so far, no one has solved the evaluations of series with \(m, p \geq 2 \) defined in Definition 1.1. The purpose of this paper is to present a method of the following eight series of quadratic hyperbolic functions:

\[
S_{2p,2}(y), \quad S'_{2p,2}(y), \quad C_{2p,2}(y), \quad C'_{2p,2}(y), \quad \bar{S}_{2p,2}(y), \quad \bar{S}'_{2p-1,2}(y), \quad \bar{C}_{2p,2}(y) \quad \text{and} \quad \bar{C}'_{2p-1,2}(y) \quad (p \in \mathbb{N}).
\]

In sections 3.1 and 3.2, we use residue theorem and asymptotic formulas of trigonometric and hyperbolic functions at the poles to establish four equations involving infinite series of trigonometric and hyperbolic functions (see Theorem 3.1). Then apply the four equations obtained and use several well-known results given by Ramanujan and Berndt et al. to prove that the four alternating sums \(\bar{S}_{2p,2}(y), \quad \bar{S}'_{2p-1,2}(y), \quad \bar{C}_{2p,2}(y) \quad \text{and} \quad \bar{C}'_{2p-1,2}(y) \) can be expressed in terms of \(z \) and \(z' \) (defined by (1.6)). Furthermore, in section 3.3, we use the results about Eisenstein series (3.52)-(3.59) and (3.63)-(3.66) established by Ramanujan, and apply the transformations (2.23)-(2.25) to prove that the four series \(S_{2p,2}(y), \quad S'_{2p,2}(y), \quad C_{2p,2}(y) \quad \text{and} \quad C'_{2p,2}(y) \) can be evaluated in terms of \(z \) and \(z' \). In the last fourth section, we give numerous examples of series involving hyperbolic functions. Moreover, we prove that the eight series \((p \geq k) \)

\[
S_{2p,2k}(y), \quad \bar{S}_{2p,2k}(y), \quad C_{2p,2k}(y), \quad \bar{C}_{2p,2k}(y), \quad S'_{2p,2k}(y), \quad \bar{S}'_{2p-1,2k}(y), \quad C'_{2p,2k}(y), \quad \bar{C}'_{2p-1,2k}(y)
\]

can be evaluated, and give recurrence formulas.

2 Some Lemmas and Transformations

In this section we give some lemmas and transformations, which will be useful in the development of the main results of this paper.

2.1 Three Lemmas

Lemma 2.1 (Residue Theorem, [14]) Let \(\xi(s) \) be a kernel function and let \(r(s) \) be a function which is \(O(s^{-2}) \) at infinity. Then

\[
\sum_{\alpha \in O} \text{Res}(r(s)\xi(s))_{s=\alpha} + \sum_{\beta \in S} \text{Res}(r(s)\xi(s))_{s=\beta} = 0.
\]

where \(S \) is the set of poles of \(r(s) \) and \(O \) is the set of poles of \(\xi(s) \) that are not poles \(r(s) \). Here \(\text{Res}(r(s))_{s=\alpha} \) denotes the residue of \(r(s) \) at \(s = \alpha \). The kernel function \(\xi(s) \) is meromorphic in the whole complex plane and satisfies \(\xi(s) = o(s) \) over an infinite collection of circles \(|s| = \rho_k \) with \(\rho_k \to \infty \).

Lemma 2.2 ([32]) Let \(n \) be an integer, then the following asymptotic formulas hold:

\[
\pi \cot(\pi s) \xrightarrow{s \to n} \frac{1}{s-n} - 2 \sum_{k=1}^{\infty} \zeta(2k)(s-n)^{2k-1},
\]

\[
\frac{\pi}{\sin(\pi s)} \xrightarrow{s \to n} (-1)^n \left(\frac{1}{s-n} + 2 \sum_{k=1}^{\infty} \zeta(2k)(s-n)^{2k-1} \right),
\]

\[
\pi \coth(\pi s) \xrightarrow{s \to ni} \frac{1}{s-ni} - 2 \sum_{k=1}^{\infty} (-1)^k \zeta(2k)(s-ni)^{2k-1},
\]
\[
\frac{\pi}{\sinh (\pi s)} \xrightarrow{s \to ni} (-1)^n \left(\frac{1}{s - ni} + 2 \sum_{k=1}^{\infty} (-1)^k \zeta(2k) (s - ni)^{2k-1} \right),
\]
(2.5)
\[
\pi \tan (\pi s) \xrightarrow{s \to (n-1/2)} \frac{1}{s - 2n - 1} + 2 \sum_{k=1}^{\infty} \zeta(2k) \left(s - 2n - 1 \right)^{2k-1},
\]
(2.6)
\[
\pi \tanh (\pi s) \xrightarrow{s \to (n-1/2)i} \frac{1}{s - 2n - 1 - i} - 2 \sum_{k=1}^{\infty} (-1)^k \zeta(2k) \left(s - 2n - 1 - i \right)^{2k-1},
\]
(2.7)
\[
\frac{\pi}{\cos (\pi s)} \xrightarrow{s \to n/2} (-1)^n \left\{ \frac{1}{s - 2n - 1} + 2 \sum_{k=1}^{\infty} \zeta(2k) \left(s - 2n - 1 \right)^{2k-1} \right\},
\]
(2.8)
\[
\frac{\pi}{\cosh (\pi s)} \xrightarrow{s \to (n-1/2)i} (-1)^n i \left\{ \frac{1}{s - 2n - 1 - i} + 2 \sum_{k=1}^{\infty} (-1)^k \zeta(2k) \left(s - 2n - 1 - i \right)^{2k-1} \right\},
\]
(2.9)
where \(\zeta(s)\) and \(\zeta(s)\) denote the Riemann zeta function and alternating Riemann zeta function by
\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (\Re(s) > 1) \quad \text{and} \quad \zeta(s) := \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} \quad (\Re(s) \geq 1).
\]
When \(s = 2m (m \in \mathbb{N})\) is an even, Euler proved the famous formula (\[1]\))
\[
\zeta(2m) = \frac{(-1)^m B_{2m}}{2(2m)!} (2\pi)^{2m},
\]
(2.10)
where \(B_{2m}\) is Bernoulli number.

Lemma 2.3 (\[7]\) For any \(p \in \mathbb{N}\), then the four series
\[S_{2p-1,1}(y), \, S'_{2p-1,1}(y), \, C_{2p-2,1}(y) \, \text{and} \, C'_{2p-2,1}(y) \]
can be expressed in terms of \(z\).

Proof. On the one hand, by theorems of Hermite, which may be found in Cayley's book \[13\] or see Berndt's book \[7\] and paper \[9\], for \(u = 2Kt/\pi\) and \(|u| < K'\),
\[
s\mu = u - \left(1 + k^2 \right) \frac{u^3}{3!} + \left(1 + 14k^2 + k^4 \right) \frac{u^5}{5!} - \left(1 + 135k^2 + 135k^4 + k^6 \right) \frac{u^7}{7!} + \cdots,
\]
(2.11)
\[
c\mu = -\frac{u^2}{2!} + \left(1 + 4k^2 \right) \frac{u^4}{4!} - \left(1 + 44k^2 + 16k^4 \right) \frac{u^6}{6!} + \cdots,
\]
(2.12)
\[
d\mu = -k^2 \frac{u^2}{2!} + k^2 (2 + k^2) \frac{u^4}{4!} - k^2 (16 + 44k^2 + k^4) \frac{u^6}{6!} + \cdots.
\]
6
\[+ k^2 (64 + 912k^2 + 408k^4 + k^6) u^8/8! + \cdots, \] (2.13)

where \(\text{snu} \), \(\text{cnu} \) and \(\text{dnu} \) denote the Jacobian elliptic functions (The power series expansions of the functions \(\text{snu} \), \(\text{cnu} \), \(\text{dnu} \) and related functions are easily found. They are given to quite high orders by Hancock [17]). On the other hand, by results of Jacobi, which may be found in Whittaker and Watson’s treatise [31] (or see Guo, Tu and Wang [16]), for \(u = 2Kt/\pi \) and \(|u| < K' \),

\[
\text{snu} = \frac{2\pi}{Kk} \sum_{n=0}^{\infty} q^{(2n+1)/2} \frac{\sin(2n+1)t}{1 - q^{2n+1}}
= \frac{2\pi}{Kk} \sum_{j=0}^{\infty} \frac{(-1)^j(2j+1)q^{2j+1}}{(2j+1)!} \sum_{n=0}^{\infty} \frac{(2n+1)^{2j+1}q^{(2n+1)/2}}{1 - q^{2n+1}}
= \frac{\pi}{Kk} \sum_{j=0}^{\infty} \frac{(-1)^j(\pi u/2K)\sinh(\pi u/2K)}{(2j+1)!} S_{2j+1,1}(y), \quad (2.14)
\]

\[
\text{cnu} = \frac{2\pi}{Kk} \sum_{n=0}^{\infty} q^{n+1/2} \frac{\cos(2n+1)t}{1 + q^{2n+1}}
= \frac{2\pi}{Kk} \sum_{j=0}^{\infty} \frac{(-1)^j(2j+1)q^{2j+1}}{(2j)!} \sum_{n=0}^{\infty} \frac{(2n+1)^{2j}q^{n+1/2}}{1 + q^{2n+1}}
= \frac{\pi}{Kk} \sum_{j=0}^{\infty} \frac{(-1)^j(\pi u/2K)^2\sinh(\pi u/2K)}{(2j)!} C_{2j,1}(y), \quad (2.15)
\]

\[
\text{dnu} = \frac{\pi}{2K} + \frac{2\pi}{K} \sum_{n=1}^{\infty} \frac{n^2q^n}{1 + q^{2n}}
= \frac{\pi}{2K} + \frac{2\pi}{K} \sum_{j=0}^{\infty} \frac{(-1)^j(2jt+1)q^{2j}}{(2j)!} \sum_{n=1}^{\infty} \frac{n^{2j}q^n}{1 + q^{2n}}
= \frac{\pi}{2K} + \frac{\pi}{K} \sum_{j=0}^{\infty} \frac{(-1)^j(\pi u/K)^2\sinh(\pi u/K)}{(2j)!} C_{2j,1}(y), \quad (2.16)
\]

and, from Greenhill’s treatise [15], we have

\[
\text{sn}^2 u = (1 - \frac{E}{K}) \frac{1}{k^2} - \frac{\pi^2}{K^2k^2} \sum_{n=1}^{\infty} \frac{n \cos(n\pi u/K)}{\sinh(ny)}
= (1 - \frac{E}{K}) \frac{1}{k^2} - \frac{\pi^2}{K^2k^2} \sum_{j=0}^{\infty} \frac{(-1)^j(\pi u/K)^2j}{(2j)!} S_{2j+1,1}(y), \quad (2.17)
\]

where \(K \) and \(E \) are represented by \((1.3)\) and \((1.5)\), respectively.

From \((2.14)\), a straightforward calculation yields

\[
\text{sn}^2 u = u^2 - (1 + k^2) \frac{u^4}{3} + (2 + 13k^2 + 2k^4) \frac{u^6}{45} + \cdots. \quad (2.18)
\]

Then, combining \((2.11)-(2.18)\) and applying the notation of \((1.6)\), by comparing coefficients of \(u^j \) in equations \((2.11)-(2.18)\) in the right hand side, we may deduce the desired results. Thus, the proof of the lemma is therefore complete. \(\Box \)
In Entry 15, 16 and 17 of Chapter 17 of [7], Berndt gave some explicit formulas for

\[S_{2p-1,1}(y) \quad (p = 2, 3, 4, 5), \quad S'_{2p-1,1}(y) \quad (p = 1, 2, 3, 4, 5, 6), \]
\[C_{2p-1,1}(y) \quad (p = 1, 2, 3, 4, 5), \quad C'_{2p-1,1}(y) \quad (p = 1, 2, 3, 4, 5). \]

Note that from [7], we can also obtain that

\[S_{1,1}(y) = \frac{1}{4}(xz^2 - 2x(1 - x)zz'). \]

2.2 Three Transformations

In Chapters 17 and 18 of Berndt’s book [7], he described some procedures in the theory of elliptic functions by which “new” formulas can be produced from “old” formulas. Here, we need to cite the three transformations:

Given \(\Omega(\chi, e^{-y}, z) = 0 \Rightarrow \Omega(1 - \chi, e^{-\pi y/2}, yz/\pi) = 0 \), (2.19)

Given \(\Omega(\chi, e^{-y}, z) = 0 \Rightarrow \Omega\left(\frac{x}{x - 1}, -e^{-y}, z\sqrt{1 - x}\right) = 0 \), (2.20)

Given \(\Omega(\chi, e^{-y}, z) = 0 \Rightarrow \Omega\left(\left(1 - \sqrt{1 - x}\right)^2, e^{-2y}, \frac{1}{2}z(1 - \sqrt{1 - x})\right) = 0 \). (2.21)

In fact, if add \(z' \) in the left hand side of transformations (2.19)-(2.21), namely, change \(\Omega(\chi, e^{-y}, z) \) to the form

\[\Omega(\chi, e^{-y}, z, z') = 0, \] (2.22)

after some elementary manipulation we can achieve the following three new transformations.

Theorem 2.4 Given the formula (2.22), we can deduce the formulas

\[\Omega\left(1 - \chi, e^{-\pi y/2}, yz/\pi, \frac{1}{\pi}\left(\frac{1}{x(1 - x)z} - yz'\right)\right) = 0, \] (2.23)

\[\Omega\left(\frac{x}{x - 1}, -e^{-y}, z\sqrt{1 - x}, (1 - x)^{3/2}\left(\frac{z}{2} - (1 - x)z'\right)\right) = 0, \] (2.24)

\[\Omega\left(\left(1 - \frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}}\right)^2, e^{-2y}, \frac{1}{2}z(1 + \sqrt{1 - x}), \frac{1 + \sqrt{1 - x}}{4(1 - \sqrt{1 - x})}\left(-\frac{z}{2} + (\sqrt{1 - x} + 1 - x)\right)z'\right) = 0. \] (2.25)

Proof. Suppose that \(x_1, y_1, z_1 \) and \(z'_1 \) is another set of parameters such that

\[\Omega(x_1, e^{-y_1}, z_1, z'_1) = 0. \]

According to (2.19)-(2.21), in order to prove (2.23)-(2.25) we only need to prove that

\[z'_1 = \frac{1}{\pi}\left(\frac{1}{x(1 - x)z} - yz'\right), \quad \text{if} \quad x_1 = 1 - x, \]

\[z'_1 = (1 - x)^{3/2}\left(\frac{z}{2} - (1 - x)z'\right), \quad \text{if} \quad x_1 = \frac{x}{x - 1}, \]
\[z' = \frac{(1 + \sqrt{1 - x})^3}{4(1 - \sqrt{1 - x})} \left(-\frac{z}{2} + \sqrt{1 - x + 1 - x} \right) z', \text{ if } x_1 = \left(\frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}} \right)^2. \]

By formula (1.7) and definition of \(z \), then
\[z' = \frac{1}{4^2 F_1 \left(\frac{3}{2}, \frac{3}{2}; 2; x \right)}. \tag{2.26} \]

Hence, if \(x_1 = 1 - x \),
\[z' = \frac{1}{2} F_1 \left(\frac{3}{2}, \frac{3}{2}; 2; 1 - x \right) = -\frac{d}{dx}^2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right) \]
\[= -\frac{d}{dx}(yz/\pi) = \frac{1}{\pi} \left(\frac{1}{x(1 - x)z} - yz' \right), \tag{2.27} \]

if \(x_1 = \frac{x}{x - 1} \),
\[z' = \frac{1}{2} F_1 \left(\frac{3}{2}, \frac{3}{2}; 2; \frac{x}{x - 1} \right) = -(x - 1)^2 \frac{d}{dx}^2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; \frac{x}{x - 1} \right) \]
\[= -(x - 1)^2 \frac{d}{dx}(\sqrt{1 - xz}) = (1 - x)^{3/2} \left(\frac{z}{2} - (1 - x)z' \right), \tag{2.28} \]

if \(x_1 = \left((1 - \sqrt{1 - x})/(1 + \sqrt{1 - x}) \right)^2 \),
\[z' = \frac{1}{2} F_1 \left(\frac{3}{2}, \frac{3}{2}; 2; \left(\frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}} \right)^2 \right) \]
\[= \frac{(1 + \sqrt{1 - x})^3 \sqrt{1 - x}}{2(1 - \sqrt{1 - x})} \frac{d}{dx}^2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; \left(\frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}} \right)^2 \right) \]
\[= \frac{(1 + \sqrt{1 - x})^3 \sqrt{1 - x}}{4(1 - \sqrt{1 - x})} \frac{d}{dx}(z(1 + \sqrt{1 - x})) \]
\[= \frac{(1 + \sqrt{1 - x})^3}{4(1 - \sqrt{1 - x})} \left(-\frac{z}{2} + (\sqrt{1 - x} + 1 - x) \right) z', \tag{2.29} \]

where we have used the three relations (see [6, 7])
\[\frac{dy}{dx} = -\frac{1}{x(1 - x)z^2} \quad 2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; \frac{x}{x - 1} \right) = \sqrt{1 - xz} \]

and
\[2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; \left(\frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}} \right)^2 \right) = \frac{1}{2} z(1 + \sqrt{1 - x}). \]

Thus, the proofs of (2.23)-(2.25) are completed.

It should be emphasized that the reference [7] also contains many other types of transformations.
3 Main Theorems and Proofs

In this section, we will prove our main results by using the residue theorem, transformations (2.23)-(2.25) and some well-known results of Ramanujan and Berndt et al. First, we need to give the following two definitions.

Definition 3.1 Let s be a complex number and a, b, θ be reals with $|\theta| < 2b\pi$ and $a, b \neq 0$. Define

$$F_1(s, \theta; a, b) := \frac{\pi^3 \cosh(\theta s)}{\sin(a\pi s) \sinh^2(b\pi s)},$$

$$F_2(s, \theta; a, b) := \frac{\pi^3 \sinh(\theta s)}{\cos(a\pi s) \cosh^2(b\pi s)},$$

$$F_3(s, \theta; a, b) := \frac{\pi^3 \cosh(\theta s)}{\sin(a\pi s) \cos^2(b\pi s)},$$

$$F_4(s, \theta; a, b) := \frac{\pi^3 \sinh(\theta s)}{\cos(a\pi s) \sin^2(b\pi s)}.$$

Definition 3.2 Let s be a complex number and a, b, θ be reals with $|\theta| < 2b\pi$ and $a, b \neq 0$. Define

$$H_1(s, \theta; a, b) := \frac{\pi^4 \sinh(\theta s)}{\sin^2(a\pi s) \sinh^2(b\pi s)},$$

$$H_2(s, \theta; a, b) := \frac{\pi^4 \sinh(\theta s)}{\cos^2(a\pi s) \cosh^2(b\pi s)},$$

$$H_3(s, \theta; a, b) := \frac{\pi^4 \sinh(\theta s)}{\sin^2(a\pi s) \cosh^2(b\pi s)}.$$

From Lemma 2.2, by elementary calculations, we deduce the asymptotic expansions of reciprocal quadratic trigonometric and hyperbolic functions ($n \in \mathbb{Z}$)

$$\left(\frac{\pi}{\sin(a\pi s)}\right)^2 = \frac{1}{(as - n)^2} + 2\zeta(2) + 6\zeta(4)(as - n)^2 + o((as - n)^2), \ s \to n/a, \ (3.1)$$

$$\left(\frac{\pi}{\sinh(a\pi s)}\right)^2 = \frac{1}{(as - ni)^2} - 2\zeta(2) + 6\zeta(4)(as - ni)^2 + o((as - ni)^2), \ s \to ni/a, \ (3.2)$$

$$\left(\frac{\pi}{\cos(a\pi s)}\right)^2 = \frac{1}{(as - \frac{2n - 1}{2})^2} + 2\zeta(2) + 6\zeta(4)\left(as - \frac{2n - 1}{2}\right)^2 + o\left(\left(as - \frac{2n - 1}{2}\right)^2\right), \ s \to \frac{2n - 1}{2a}, \ (3.3)$$

$$\left(\frac{\pi}{\cosh(a\pi s)}\right)^2 = -\frac{1}{(as - \frac{2n - 1}{2}i)^2} + 2\zeta(2) - 6\zeta(4)\left(as - \frac{2n - 1}{2}i\right)^2 + o\left(\left(as - \frac{2n - 1}{2}i\right)^2\right), \ s \to \frac{2n - 1}{2a}i. \ (3.4)$$
Similarly, many other asymptotic expansions can also be established. For example,

\[
\left(\frac{\pi}{\sin(a\pi s)} \right)^3 = (-1)^n \left(\frac{1}{(as-n)^3} + 3 \frac{\zeta(2)}{as-n} + \frac{51}{4} \frac{\zeta(4)(as-n) + o(as-n)}{as-n} \right), \ s \to n/a.
\]

3.1 Some Theorems and Proofs

Theorem 3.1 For reals \(a, b, \theta \) and \(|\theta| < 2b\pi, \ a, b \neq 0 \), then

\[
b^2 \pi^2 \sum_{n=1}^{\infty} \frac{\cosh(\theta n/a)}{\sinh^2(bn\pi/a)}(-1)^n + \theta \pi a \sum_{n=1}^{\infty} \frac{\sin(n\theta/b)}{\sinh(an\pi/b)} + \frac{\theta^2}{4} + \frac{\zeta(2)}{2} (a^2 - 2b^2) = 0, \tag{3.5}
\]

\[
b^2 \pi^2 \sum_{n=1}^{\infty} \frac{\sin((2n-1)\theta/2a)}{\cosh^2((2n-1)\pi b/2a)}(-1)^n - \theta \pi a \sum_{n=1}^{\infty} \frac{\cos((2n-1)\theta/2b)}{\cosh((2n-1)\pi a/2b)} + a^2 \pi^2 \sum_{n=1}^{\infty} \frac{\sin((2n-1)\theta/2b)}{\cosh((2n-1)\pi a/2b)} = 0, \tag{3.6}
\]

\[
b^2 \pi^2 \sum_{n=1}^{\infty} \frac{\cosh(n\theta/a)}{\cosh^2(n\pi b/a)}(-1)^n - a \pi \theta \sum_{n=1}^{\infty} \frac{\cos((2n-1)\theta/2b)}{\cosh((2n-1)\pi a/2b)} + b^2 \pi^2 \sum_{n=1}^{\infty} \frac{\sin((2n-1)\theta/2a)}{\sinh^2((2n-1)\pi b/2a)} = 0, \tag{3.7}
\]

\[
b^2 \pi^2 \sum_{n=1}^{\infty} \frac{\sin((2n-1)\theta/2a)}{\sinh^2((2n-1)\pi b/2a)}(-1)^n + a \pi \theta \sum_{n=1}^{\infty} \frac{\cos(n\theta/b)}{\cosh(n\pi a/b)} - a^2 \pi^2 \sum_{n=1}^{\infty} \frac{\sin(n\theta/b)}{\cosh(n\pi a/b)} = 0. \tag{3.8}
\]

Proof. Now we are ready to prove Theorem 3.1. In the context of this paper, the proof is based on the functions \(F_j(s, \theta; a, b) (j = 1, 2, 3, 4) \) and the usual residue computation. It is clear that the functions \(F_i(s, \theta; a, b) (i = 1, 2, 3, 4) \) are meromorphic in the entire complex plane with some simple poles, see Table 3.1. (Here \(n \) is positive integer).

poles	functions
\(0, \pm n/a, \pm n i/b \)	\(F_1(s, \theta; a, b) \)
\(\pm (2n-1)/2a, \pm (2n-1)i/2b \)	\(F_2(s, \theta; a, b) \)
\(0, \pm n/a \pm (2n-1)i/2b \)	\(F_3(s, \theta; a, b) \)
\(0, \pm (2n-1)/2a, \pm n i/b \)	\(F_4(s, \theta; a, b) \)

TABLE 3.1. Poles of functions \(F_i(s, \theta; a, b) \)

Since the proofs of identities (3.6)-(3.8) are similar to the proof of (3.5), so we only prove the formula (3.5) in here. First, we note that the function \(F_1(s, \theta; a, b) \) only have poles at the
Therefore, the residue of the pole of order three at 0 is found to be

\[\operatorname{Res}(F_1(s, \theta; a, b))_{s=\pm n/a} = (-1)^n \frac{\pi^2}{a} \frac{\cosh(n\theta/a)}{\sinh^2(bn\pi/a)}. \] (3.9)

From (3.2), at a imaginary number \(\pm ni/b \), the pole has order two and the residue is

\[\operatorname{Res}(F_1(s, \theta; a, b))_{s=\pm ni/b} = \frac{\pi}{b^2} \frac{d}{ds} \left(\frac{\cosh(\theta s)}{\sin(a\pi s)} \right) \bigg|_{s=\pm ni/b} \]
\[= \frac{\theta \pi}{b^2} \sum\frac{\sin(n\theta/b)}{\sinh(an\pi/b)} + \frac{a \pi^2}{b^2} \frac{\cos(n\theta/b) \cosh(an\pi/b)}{\sinh^2(an\pi/b)}. \] (3.10)

Furthermore, applying (2.3) and (2.5) we deduce the asymptotic expansion

\[F_1(s, \theta; a, b) = \cosh(\theta s) \left(\frac{1}{ab^2 s^3} + \left(\frac{a}{b^2} - \frac{2}{a} \right) \frac{\zeta(2)}{s} + o(1) \right), \quad s \to 0. \]

Therefore, the residue of the pole of order three at 0 is found to be

\[\operatorname{Res}(F_1(s, \theta; a, b))_{s=0} = \frac{1}{2} \frac{d^2}{ds^2} \left(\cosh(\theta s) \left(\frac{1}{ab^2 s^3} + \left(\frac{a}{b^2} - \frac{2}{a} \right) \frac{\zeta(2)}{s} + o(s^3) \right) \right) \bigg|_{s=0} \]
\[= \frac{\theta^2}{2ab^2} + \zeta(2) \left(\frac{a}{b^2} - \frac{2}{a} \right). \] (3.11)

By Lemma 2.1, summing the three contributions (3.9)-(3.11) yields the desired result (3.5). This completes the proof. Similarly, consider functions \(F_j(s, \theta; a, b) \) \((j = 2, 3, 4)\). Then using residue theorems and asymptotic formulas (3.1)-(3.4), by calculations similar to those above, we can deduce the evaluations (3.6)-(3.8). \(\square \)

Theorem 3.2 For reals \(a, b, \theta \) and \(|\theta| < 2b\pi, \ a, b \neq 0 \), then

\[\frac{\pi^2}{a^2} \sum_{n=1}^{\infty} \frac{\cosh(n\theta/a)}{\sinh^2(bn\theta/a)} - \frac{\pi^2}{a^2} \sum_{n=1}^{\infty} \frac{\sinh(n\theta/a) \cosh(n\pi b/a)}{\sinh^3(bn\pi/a)} - \frac{\pi^2}{b^2} \sum_{n=1}^{\infty} \frac{\cos(n\theta/b)}{\sinh^2(bn\pi/b)} \]
\[+ 2 \frac{\pi^2}{b^2} \sum_{n=1}^{\infty} \frac{\sin(n\theta/b) \cosh(n\pi a/b)}{\sinh^3(bn\pi/a)} + \theta \left(\frac{1}{b^2} - \frac{1}{a^2} \right) \zeta(2) + \frac{\theta^3}{12a^2b^2} = 0, \] (3.12)

\[\frac{\theta}{a^2} \sum_{n=1}^{\infty} \frac{\cosh((2n - 1)\theta/2a)}{\cosh^2((2n - 1)b\pi/2a)} - \frac{2b}{a^2} \sum_{n=1}^{\infty} \frac{\sinh((2n - 1)\theta/2a) \sin((2n - 1)b\pi/2a)}{\cosh^3((2n - 1)b\pi/2a)} \]
\[- \frac{\theta}{b^2} \sum_{n=1}^{\infty} \frac{\cos((2n - 1)\theta/2b)}{\cosh^2((2n - 1)a\pi/2b)} + 2 \frac{\pi}{b^2} \sum_{n=1}^{\infty} \frac{\sin((2n - 1)\theta/2b) \sin((2n - 1)a\pi/2b)}{\cosh^3((2n - 1)a\pi/2b)} = 0, \] (3.13)

\[\frac{\theta}{a^2} \sum_{n=1}^{\infty} \frac{\cosh(n\theta/a)}{\cosh^2(bn\pi/a)} - \frac{2\pi b}{a^2} \sum_{n=1}^{\infty} \frac{\sinh(n\theta/a) \sinh(bn\pi/a)}{\cosh^3(bn\pi/a)} + \frac{\theta}{a^2} \sum_{n=1}^{\infty} \frac{\cos((2n - 1)\theta/2b)}{\sinh^2((2n - 1)a\pi/2b)} \]
\[- 2 \frac{\pi a}{b^2} \sum_{n=1}^{\infty} \frac{\sin((2n - 1)\theta/2b) \cosh((2n - 1)a\pi/2b)}{\sinh^3((2n - 1)a\pi/2b)} + \frac{\theta}{2a^2} = 0. \] (3.14)
Proof. The proofs of (3.12)-(3.14) are similar to the proof of (3.5). We only prove (3.12). From definition of $H_1(s, \theta; a, b)$, it is easy to see that the function only have poles at the 0, $\pm n/a$ and $\pm ni/b$, where n is a positive integer. Applying (3.1) and (3.2), we find that at $\pm n/a$ and $\pm ni/b$, the poles have order two and the residues are

$$\text{Res}(H_1(s, \theta; a, b))_{s=\pm n/a} = \frac{\pi^2}{a^2} \left\{ \frac{\theta \cosh(n\theta/a)}{\sinh^2(\pi n/a)} - 2\pi b \frac{\sinh(n\theta/a) \cosh(\pi n/a)}{\sinh^3(\pi n/a)} \right\}, \quad (3.15)$$

$$\text{Res}(H_1(s, \theta; a, b))_{s=\pm ni/b} = \frac{\pi^2}{b^2} \left\{ \frac{\theta \cos(n\theta/b)}{\sinh^2(\pi an/b)} + 2a\pi \frac{\sin(n\theta/b) \cosh(an/b)}{\sinh^3(an/b)} \right\}. \quad (3.16)$$

Moreover, a simple calculation gives

$$H_1(s, \theta; a, b) = \frac{\theta}{a^2b^2s^3} + 2\zeta(2) \left(\frac{1}{b^2} - \frac{1}{a^2} \right) \frac{\theta s}{s} + \frac{\theta^3}{6a^2b^2s} + o(1), \quad s \to 0. \quad (3.17)$$

Hence, the residue of the pole of order three at 0 is found to be

$$\text{Res}(H_1(s, \theta; a, b))_{s=0} = 2\zeta(2)\theta \left(\frac{1}{b^2} - \frac{1}{a^2} \right) + \frac{\theta^3}{6a^2b^2}. \quad (3.18)$$

Thus, by residue theorem and using (3.15), (3.16) and (3.18), we obtain the desired result.

Similarly, consider $H_2(s, \theta; a, b)$ and $H_3(s, \theta; a, b)$, proceeding in a similar manner and using the calculations above, the evaluations (3.13) and (3.14) can be established. \qed

3.2 Evaluations of $\bar{S}_{2p,2}(y)$, $\bar{S}'_{2p-1,2}(y)$, $\bar{C}_{2p,2}(y)$ and $\bar{C}'_{2p-1,2}(y)$

In Theorem 3.1, differentiating (3.5), (3.7) $2p$ times and (3.6), (3.8) $2p-1$ times with respect to θ, respectively, then setting $\theta = 0$ and letting $b\pi/a = \alpha$ and $a\pi/b = \beta$, after elementary calculations and simplifications, we can get the following theorem.

Theorem 3.3 Let p be a positive integer and α, β be real numbers such as $\alpha\beta = \pi^2$, then

$$\alpha^{2p} \bar{S}_{2p,2}(\alpha) - 2p(-1)^{p-1}\pi^{2p-2}\beta \bar{S}_{2p-1,1}(\beta)$$

$$- (-1)^p \pi^{2p-2}\beta^2 \sum_{n=1}^{\infty} \frac{n^{2p} \cosh(n\beta)}{\sinh^2(n\beta)} = \delta_p = 0, \quad (3.19)$$

$$\alpha^{2p} \bar{C}_{2p-1,2}(\alpha) - (4p - 2)(-1)^p \pi^{2p-1}\bar{C}'_{2p-2,1}(\beta)$$

$$+ (-1)^p \pi^{2p-1}\beta \sum_{n=1}^{\infty} \frac{(2n-1)^{2p-1} \sinh((2n-1)\beta/2)}{\cosh^2((2n-1)\beta/2)} = 0, \quad (3.20)$$

$$\alpha^{2p+1} \bar{C}_{2p,2}(\alpha) - (-1)^p \pi^{2p} \frac{2\pi}{2p-2} \bar{S}'_{2p-1,1}(\beta)$$

$$+ (-1)^p \pi^{2p} \frac{2\pi}{2p} \beta \sum_{n=1}^{\infty} \frac{(2n-1)^{2p} \cosh((2n-1)\beta/2)}{\sinh^2((2n-1)\beta/2)} = 0, \quad (3.21)$$

$$\alpha^{2p} \bar{S}'_{2p-1,2}(\alpha) + 2^{2p-1}(2p - 1)(-1)^p \pi^{2p-1}\bar{C}'_{2p-2,1}(\beta)$$

$$+ 2^{2p-1}(-1)^{p-1}\pi^{2p-1}\beta \sum_{n=1}^{\infty} \frac{n^{2p-1} \sinh(n\beta)}{\cosh^2(n\beta)} - \chi_p = 0. \quad (3.22)$$

where $\delta_1 = 1/2, \chi_1 = \pi$ and $\delta_p = \chi_p = 0$ if $p \geq 2$.

13
Note that using the relation
\[
\frac{dy}{dx} = -\frac{1}{x(1-x)z^2},
\]
we can find that
\[
\sum_{n=1}^{\infty} \frac{n^{2p} \cosh(ny)}{\sinh^2(ny)} = x(1-x)z^2 \frac{d}{dx} S_{2p-1,1}(y), \tag{3.23}
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^{2p-1} \sinh((2n-1)y/2)}{\cosh^2((2n-1)y/2)} = 2x(1-x)z^2 \frac{d}{dx} C_{2p-2,1}(y), \tag{3.24}
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^{2p} \cosh((2n-1)y/2)}{\sinh^2((2n-1)y/2)} = 2x(1-x) \frac{d}{dx} S_{2p-1,1}(y), \tag{3.25}
\]
\[
\sum_{n=1}^{\infty} \frac{n^{2p-1} \sinh(ny)}{\cosh^2(ny)} = x(1-x)z^2 \frac{d}{dx} C_{2p-2,1}(y). \tag{3.26}
\]

Hence, from Lemma 2.3 with \(\beta = y \) and \(\alpha = \pi^2/y \), Theorem 3.3, formulas (3.23)-(3.26) and transformation (2.23), we arrive at the conclusion.

Theorem 3.4 For any \(p \in \mathbb{N} \), then the four series
\[
\bar{S}_{2p,2}(y), \bar{S}_{2p-1,2}(y), \bar{C}_{2p,2}(y) \text{ and } \bar{C}_{2p-1,2}(y)
\]
can be expressed in terms of \(z \) and \(z' \).

For example, setting \(p = 2 \) and \(\beta = y \) in (3.19) yields
\[
\bar{S}_{4,2}(\pi^2/y) = \sum_{n=1}^{\infty} \frac{n^4(-1)^{n-1}}{\sinh^2(n\pi^2/y)} = \frac{xy^5z^4}{8\pi^6} \left\{ 4x(1-x)yz' + (1-x)yz^2 - 4 \right\}. \tag{3.27}
\]

Then, applying the transformation (2.23) to (3.27), we obtain the result
\[
\bar{S}_{4,2}(y) = \sum_{n=1}^{\infty} \frac{n^4(-1)^{n-1}}{\sinh^2(ny)} = \frac{1}{8} x(1-x)z^5 \left[z - 4(1-x)z' \right]. \tag{3.28}
\]

In next Corollary 3.5, we have given all explicit evaluations for
\[
\bar{S}_{2p,2}(y), \bar{S}_{2p-1,2}(y), \bar{C}_{2p,2}(y) \text{ and } \bar{C}_{2p-1,2}(y)
\]
with \(p = 1, 2, 3, 4, 5 \).

Corollary 3.5 We have
\[
\bar{S}_{2,2}(y) = \frac{1}{8} x(1-x)z^2 \left[4x(1-x)(z')^2 + 4(1-x)zz' - z^2 \right], \tag{3.29}
\]
\[
\bar{S}_{4,2}(y) = \frac{1}{8} x(1-x)z^5 \left[z - 4(1-x)z' \right], \tag{3.30}
\]
\[
\bar{S}_{6,2}(y) = \frac{1}{8} x(1-x)z^7 \left[6(1-x)(2-x)z' + (2x-3)z \right], \tag{3.31}
\]
3.3 Evaluations of $S_{2p,2}(y)$, $S'_{2p,2}(y)$, $C_{2p,2}(y)$ and $C'_{2p,2}(y)$

In this subsection, we use Ramanujan’s results of Eisenstein series to evaluate the four series

$$S_{2p,2}(y), \quad S'_{2p,2}(y), \quad C_{2p,2}(y) \quad \text{and} \quad C'_{2p,2}(y),$$

and give all explicit evaluations for $1 \leq p \leq 5$. In Ramanujan’s notation, the three relevant Eisenstein series are defined for $|q| < 1$ by

$$P(q) := 1 - 24 \sum_{n=1}^{\infty} \frac{nq^n}{1 - q^n},$$
$$Q(q) := 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n},$$
\[R(q) := 1 - 504 \sum_{n=1}^{\infty} \frac{n^6 q^n}{1 - q^n}. \]

(3.51)

The functions \(P, Q \) and \(R \) were thoroughly studied in a famous paper [18] by Ramanujan. By Entry 13 in Chapter 17 of Ramanujan’s third notebook (Berndt [7]), we have

\[P(q) = (1 - 5x)z^2 + 12x(1 - x)zz', \]

(3.52)

\[P(q^2) = (1 - 2x)z^2 + 6x(1 - x)zz', \]

(3.53)

\[Q(q) = z^4(1 + 14x + x^2), \]

(3.54)

\[Q(q^2) = z^4(1 - x + x^2), \]

(3.55)

\[R(q) = z^6(1 + x)(1 - 34x + x^2), \]

(3.56)

\[R(q^2) = z^6(1 + x)(1 - x/2)(1 - 2x). \]

(3.57)

In [7], \(L(q) = P(q), M(q) = Q(q) \) and \(N(q) = R(q) \) in the present notation. Ramanujan [18] proved the general result

\[\sum_{n=1}^{\infty} \frac{n^p q^n}{(1 - q^n)^2} = \sum C_{l,m,n} P^l Q^m R^n, \]

(3.58)

and gave all explicit formulas for \(p = 2, 4, 6, 8, 10, 12, 14 \), where \(C_{l,m,n} \) is a constant and \(m, n \) are non-negative integers with \(l \leq 2 \) and \(2l + 4m + 6n = p + 2 \). Since \(q = e^{-y} \), then the left hand side of Eisenstein series (3.58) can be written as

\[\sum_{n=1}^{\infty} \frac{n^p q^n}{(1 - q^n)^2} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{n^p}{\sinh^2(ny/2)} = \frac{1}{4} S_{p,2}(y/2). \]

(3.59)

Hence, the series \(S_{2p,2}(y/2) \) \((p \in \mathbb{N})\) can be expressed in terms of \(z \) and \(z' \).

Theorem 3.6 For positive integer \(p \), then the four series

\[S_{2p,2}(y), S'_{2p,2}(y), C_{2p,2}(y) \text{ and } C'_{2p,2}(y) \]

can be expressed in terms of \(z \) and \(z' \).

Proof. Using the transformation (2.25) to (3.59), then \(S_{2p,2}(y/2) \Rightarrow S_{2p,2}(y) \), which implies that \(S_{2p,2}(y) \) can be represented by \(z \) and \(z' \). Then, according to Definition 1.1, we deduce the relations

\[S'_{p,m}(y) = S_{p,m}(y/2) - 2^p S_{p,m}(y), \]

(3.60)

\[C'_{p,m}(y) = C_{p,m}(2y) - 2^p C_{p,m}(2y). \]

(3.61)

Moreover, applying the transformation (2.24) to \(\sinh^2((2n - 1)y/2) \), then

\[\sinh^2((2n - 1)y/2) \rightarrow - \cosh^2((2n - 1)y/2). \]

Hence, the series \(S'_{2p,2}(y) \) and \(C'_{2p,2}(y) \) can be evaluated by \(z \) and \(z' \). Finally, using (3.61) and transformation (2.25), we prove that \(C_{2p,2}(2y) \) can be represented by \(z \) and \(z' \). Then employ the relation

\[C_{p,m}(y) = C'_{p,m}(2y) + 2^p C_{p,m}(2y) \]

(3.62)
to complete the proof of Theorem 3.6.

From [18], we can find that

$$
\sum_{n=1}^{\infty} \frac{n^2 q^n}{(1 - q^n)^2} = \frac{Q(q) - P^2(q)}{288}, \quad (3.63)
$$

$$
\sum_{n=1}^{\infty} \frac{n^4 q^n}{(1 - q^n)^2} = \frac{P(q)Q(q) - R(q)}{720}, \quad (3.64)
$$

$$
\sum_{n=1}^{\infty} \frac{n^6 q^n}{(1 - q^n)^2} = \frac{Q^2(q) - P(q)R(q)}{1008}, \quad (3.65)
$$

$$
\sum_{n=1}^{\infty} \frac{n^8 q^n}{(1 - q^n)^2} = \frac{P(q)Q^2(q) - Q(q)R(q)}{720}, \quad (3.66)
$$

$$
\sum_{n=1}^{\infty} \frac{n^{10} q^n}{(1 - q^n)^2} = \frac{3Q^3(q) + 2R^2(q) - 5P(q)Q(q)R(q)}{1584}. \quad (3.67)
$$

Using (3.63)-(3.67), we can get some examples of \(S_{2p,2}(y) \), \(S'_{2p,2}(y) \), \(C_{2p,2}(y) \) and \(C'_{2p,2}(y) \).

Corollary 3.7 We have

\[
S_{2,2}(y/2) = \frac{x(1-x)z^2}{3}[z^2 - (1 - 5x)zz' - 6x(1 - x)(z')^2],
\]

\[
S_{4,2}(y/2) = \frac{x(1-x)z^5}{30}[2(1 + 14x + x^2)z + (7 + x)z],
\]

\[
S_{6,2}(y/2) = \frac{x(1-x)z^7}{42}[-2(1 - 33x - 33x^2 + x^3)z + (11 + 22x - x^2)z],
\]

\[
S_{8,2}(y/2) = \frac{x(1-x)(1 + 14x + x^2)z^9}{30}[2(1 + 14x + x^2)z + (7 + x)z],
\]

\[
S_{10,2}(y/2) = \frac{x(1-x)z^{11}}{66}\left\{-10(1 + x)(1 - 20x - 474x^2 - 20x^3 + 4x^4)z' \right\} + (19 + 988x + 1482x^2 + 76x^3 - 5x^4)z,
\]

\[
S_{2,2}(y) = \frac{x(1-x)z^2}{24}[z^2 - 4(1 - 2x)zz' - 12x(1 - x)(z')^2],
\]

\[
S_{4,2}(y) = \frac{x(1-x)z^5}{120}[4(1 - x + x^2)z' + (2x - 1)z],
\]

\[
S_{6,2}(y) = \frac{x(1-x)z^7}{168}[2(2 - x)(x + 1)(2x - 1)z' - (2x^2 - 2x - 1)z],
\]

\[
S_{8,2}(y) = \frac{x(1-x)(1 - x + x^2)z^9}{120}[4(1 - x + x^2)z' + (2x - 1)z],
\]

\[
S_{10,2}(y) = \frac{x(1-x)z^{11}}{264}\left\{-10(2 - 5x + 2x^2 + 2x^3 - 5x^4 + 2x^5)z' \right\} + (5 - 4x - 6x^2 + 20x^3 - 10x^4)z,
\]

\[
S'_{2,2}(y) = \frac{x(1-x)z^3}{6}[z + 2(1 + x)z'],
\]

\[
S'_{4,2}(y) = \frac{x(1-x)z^5}{30}[-2(7 - 22x + 7x^2)z' + (11 - 7x)z],
\]

\[
S'_{6,2}(y) = \frac{x(1-x)z^7}{42}[2(31x^3 - 15x^2 - 15x + 31)z' + (31x^2 - 10x - 5)z],
\]

\[
\square
\]
\[S'_{8,2}(y) = \frac{x(1-x)z^9}{30} \left\{ -\frac{(254 - 568x + 372x^2 - 568x^3 + 254x^4)z'}{21 - 93x + 213x^2 - 127x^3} \right\}, \] (3.81)

\[S'_{10,2}(y) = \frac{x(1-x)z^{11}}{66} \left\{ \frac{10(511 - 1261x + 1006x^2 + 1006x^3 - 1261x^4 + 511x^5)z'}{(-1261 + 2012x + 3018x^2 - 5044x^3 + 2555x^4)} \right\}. \] (3.82)

Proof. These results follow from (3.52)-(3.57), (3.59), (3.60) and (3.63)-(3.67).

Corollary 3.8 We have

\[C'_{2,2}(y) = \frac{x(1-x)z^3}{3} [z - (1 - 2x)z'], \] (3.83)

\[C'_{4,2}(y) = \frac{x(1-x)z^5}{15} [(7 + 8x - 8x^2)z' + 2(1 - 2x)z], \] (3.84)

\[C'_{6,2}(y) = \frac{x(1-x)z^7}{21} [(-31 + 78x - 48x^2 + 32x^3)z' + (13 - 16x + 16x^2)z], \] (3.85)

\[C'_{8,2}(y) = \frac{x(1-x)z^9}{15} \left\{ \frac{(127 - 224x + 96x^2 + 256x^3 - 128x^4)z'}{-4(7 - 6x - 24x^2 + 16x^3)z} \right\}, \] (3.86)

\[C'_{10,2}(y) = \frac{x(1-x)z^{11}}{33} \left\{ 5(-511 + 1294x - 1072x^2 + 1568x^3 - 1280x^4 + 512x^5)z' \right\}, \] (3.87)

\[C'_{2,2}(2y) = \frac{xz^3}{48} \left[3\sqrt{1 - x} + x - 1 \right] z - 2(1 - x)(6\sqrt{1 - x} + x - 2)z', \] (3.88)

\[C'_{4,2}(2y) = \frac{xz^5}{960} \left\{ 2(1 - x) \left[-8 + 120\sqrt{1 - x} + x(8 - 60\sqrt{1 - x} + 7x) \right] z' \right\}, \] (3.89)

\[C'_{6,2}(2y) = \frac{xz^7}{5376} \left\{ 2(1 - x) \left[\frac{32(1 - 63\sqrt{1 - x})}{16(1 - 63\sqrt{1 - x})} \right] z' \right\}, \] (3.90)

\[C'_{8,2}(2y) = \frac{xz^9}{15360} \left\{ 2(1 - x) \left[\frac{128(-1 + 255\sqrt{1 - x}) + 64x(4 - 765\sqrt{1 - x}) + 127x^4}{+8x^2(2 + 345\sqrt{1 - x}) - 8x^3(28 + 15\sqrt{1 - x})} \right] z' \right\}, \] (3.91)

\[C'_{10,2}(2y) = \frac{xz^{11}}{135168} \left\{ 10(1 - x) \left[\frac{512(1 - 1023\sqrt{1 - x}) + x(-1280 + 1047552\sqrt{1 - x})}{+x^2(1294 - 66\sqrt{1 - x}) - 511x^5} \right] z' \right\}. \] (3.92)

Proof. Apply the transformation (2.24) to (3.78)-(3.82) to obtain (3.83)-(3.87), respectively. Then apply the transformation (2.25) to (3.83)-(3.87) to obtain (3.88)-(3.92), respectively. □
Corollary 3.9 We have

\[C_{2,2}(y) = \frac{x(1-x)z^3}{24} \left[2(2-x)z' - z \right], \tag{3.93} \]

\[C_{4,2}(y) = \frac{x(1-x)z^5}{480} \left[2(-8 + 8x + 7x^2)z' + (4 + 7x)z \right], \tag{3.94} \]

\[C_{6,2}(y) = \frac{x(1-x)z^7}{2688} \left[2(32 - 48x + 78x^2 - 31x^3)z' - (16 - 52x + 31x^2)z \right], \tag{3.95} \]

\[C_{8,2}(y) = \frac{x(1-x)z^9}{7680} \left\{ 2(-128 + 256x + 96x^2 - 224x^3 + 127x^4)z' \right\}, \tag{3.96} \]

\[C_{10,2}(y) = \frac{x(1-x)z^{11}}{67584} \left\{ -10(512 - 1280x + 1568x^2 - 1072x^3 + 1294x^4 - 511x^5)z' \right\}, \tag{3.97} \]

\[C_{2,2}(y) = \frac{x^3}{192} \left[(2 - x)(2 - x + 6\sqrt{1-x}) + (x - 1 - 3\sqrt{1-x})z \right], \tag{3.98} \]

\[C_{4,2}(y) = \frac{xz^5}{15360} \left\{ 2(1-x) \left[-8 - 120\sqrt{1-x} + x(8 + 60\sqrt{1-x} + 7x) \right]z' \right\}, \tag{3.99} \]

\[C_{6,2}(y) = \frac{xz^7}{344064} \left\{ 2(1-x) \left[32(1 + 63\sqrt{1-x} - 48x(1 + 42\sqrt{1-x}) \right]z' \right\}, \tag{3.100} \]

\[C_{8,2}(y) = \frac{xz^9}{3932160} \left\{ 2(1-x) \left[-128(1 + 255\sqrt{1-x}) + 64x(4 + 765\sqrt{1-x} + 127x^4 \right]z' \right\}, \tag{3.101} \]

\[C_{10,2}(y) = \frac{xz^{11}}{138412032} \left\{ -10(1-x) \left[512(1 + 1023\sqrt{1-x}) - 256x(5 + 4092\sqrt{1-x}) + 32x^2(49 + 18909\sqrt{1-x} - 16x^3(67 + 5082\sqrt{1-x} \right] \right\} \tag{3.102} \]

\[z' \]

Proof. The ten desired formulas follow without difficulty from (3.61) and (3.62) with the help of Corollaries 3.5 and 3.8. \[\square \]

3.4 Three Differential Equations

In Theorem 3.2, expanding both sides of (3.12)-(3.14) in powers of \(\theta \), then equating coefficients of \(\theta^{2p+1} \) on both sides and letting \(b\pi/a = \alpha \) and \(a\pi/b = \beta \), and noting that the elementary relations

\[
\frac{d}{dx} \left(x^{2p+1}S_{2p,2}(x) \right) = (2p + 1)x^{2p} \sum_{n=1}^{\infty} \frac{n^{2p}}{\sinh^2(nx)} - 2x^{2p+1} \sum_{n=1}^{\infty} \frac{n^{2p+1}}{\sinh^2(nx)},
\]

\[
\frac{d}{dx} \left(x^{2p+1}C_{2p,2}(x) \right) = (2p + 1)x^{2p} \sum_{n=1}^{\infty} \frac{(2n - 1)^{2p}}{\cosh^2((2n-1)x/2)},
\]

19

\[-x^{2p+1} \sum_{n=1}^{\infty} \frac{(2n-1)^{2p+1} \sinh((2n-1)x/2)}{\cosh^3((2n-1)x/2)},\]

and

\[
\frac{d}{dx} (x^{2p+1} C_{2p,2}(x)) = (2p+1)x^{2p} \sum_{n=1}^{\infty} \frac{n^{2p}}{\cosh^2(nx)} - 2x^{2p+1} \sum_{n=1}^{\infty} \frac{n^{2p+1} \sinh(nx)}{\cosh^3(nx)},
\]

\[
\frac{d}{dx} (x^{2p+1} S'_{2p,2}(x)) = (2p+1)x^{2p} \sum_{n=1}^{\infty} \frac{(2n-1)^{2p}}{\sinh^2((2n-1)x/2)} - x^{2p+1} \sum_{n=1}^{\infty} \frac{(2n-1)^{2p+1} \cosh((2n-1)x/2)}{\sinh^3((2n-1)x/2)},
\]

we can obtain the following three differential equations.

Theorem 3.10 Let \(p \) be a non-integer and \(\alpha, \beta \) be real numbers such as \(\alpha \beta = \pi^2 \), then

\[
\beta^{p-1} \frac{d}{d\alpha} (\alpha^{2p+1} S_{2p,2}(\alpha)) + (-\alpha)^{p-1} \frac{d}{d\beta} (\beta^{2p+1} S_{2p,2}(\beta)) + \delta_p = 0, \tag{3.103}
\]

\[
\beta^{p-1} \frac{d}{d\alpha} (\alpha^{2p+1} C'_{2p,2}(\alpha)) + (-\alpha)^{p-1} \frac{d}{d\beta} (\beta^{2p+1} C'_{2p,2}(\beta)) = 0, \tag{3.104}
\]

\[
2^p \beta^{p-1} \frac{d}{d\alpha} (\alpha^{2p+1} C_{2p,2}(\alpha)) - (-\alpha)^{p-1} \frac{d}{d\beta} (\beta^{2p+1} S'_{2p,2}(\beta)) + \lambda_p = 0, \tag{3.105}
\]

where \(\delta_0 = (1/\alpha - 1/\beta)/6, \ \lambda_0 = 1/2\beta, \ \delta_1 = 1/2, \ \lambda_1 = 0 \) and \(\delta_p = \lambda_p = 0 \) if \(p \geq 2 \).

Setting \(p = 0 \) in (3.103)-(3.105) and noting that the fact

\[
\frac{d\beta}{d\alpha} = -\frac{\beta}{\alpha},
\]

we can get

\[
\frac{d}{d\alpha} (\alpha S_{0,2}(\alpha) + \beta S_{0,2}(\beta) - \frac{1}{6}(\alpha + \beta)) = 0, \tag{3.106}
\]

\[
\frac{d}{d\alpha} (\alpha C'_{0,2}(\alpha) + \beta C'_{0,2}(\beta)) = 0, \tag{3.107}
\]

\[
\frac{d}{d\alpha} (\alpha C_{0,2}(\alpha) - \beta S'_{0,2}(\beta) + \alpha/2) = 0. \tag{3.108}
\]

Hence, by integrating yield the three identities

\[
\alpha S_{0,2}(\alpha) + \beta S_{0,2}(\beta) - \frac{1}{6}(\alpha + \beta) + 1 = 0, \tag{3.109}
\]

\[
\alpha C'_{0,2}(\alpha) + \beta C'_{0,2}(\beta) = 1, \tag{3.110}
\]

\[
\alpha C_{0,2}(\alpha) - \beta S'_{0,2}(\beta) + \frac{\alpha}{2} = 1, \tag{3.111}
\]

where we have used these well-known results ([6, 7, 21])

\[
S_{0,2}(\pi) = \frac{1}{6} - \frac{1}{2\pi}, \ C'_{0,2}(\pi) = \frac{1}{2\pi}, \ C_{0,2}(\pi) = -\frac{1}{2} + \frac{1}{2\pi} + \frac{\Gamma^4(1/4)}{16\pi^3}.
\]
and

\[S'_{0,2}(\pi) = \frac{1}{2\pi} + \frac{\Gamma^4(1/4)}{16\pi^3}. \]

The formula (3.109) can be found in Berndt [6] by another method.

However, when \(p \geq 1 \), we have been unable, so far, to make any progress with the three differential equations (3.103)-(3.105).

4 Examples and Further Results

4.1 Examples

By (1.6) if \(x = 1/2 \), then

\[y = \pi, \quad z(\frac{1}{2}) = \frac{\Gamma^2(1/4)}{2\pi^{3/2}}, \quad z'(\frac{1}{2}) = 4\sqrt{\frac{\pi}{\Gamma^2(1/4)}}. \]

Hence, from the preceding discussion, it is easy to see that the eight series

\[S_{2p,2}(\pi), \quad S'_{2p,2}(\pi), \quad C_{2p,2}(\pi), \quad C'_{2p,2}(\pi), \quad \bar{S}_{2p,2}(\pi), \quad \bar{S}'_{2p-1,2}(\pi), \quad \bar{C}_{2p,2}(\pi) \quad \text{and} \quad \bar{C}'_{2p-1,2}(\pi) \]

can be evaluated in terms of \(\Gamma \) functions. Moreover, we can find that \((p \in \mathbb{N}) \)

\begin{align*}
S_{4p-2,2}(\pi) &= a_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p}} + \eta_p, \\
S_{4p,2}(\pi) &= b_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p+1}}, \\
C_{4p-2,2}(\pi) &= c_p \frac{\Gamma^{8p-4}(1/4)}{\pi^{6p-2}} + d_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p}}, \\
C_{4p,2}(\pi) &= e_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p+1}} + f_p \frac{\Gamma^{8p+4}(1/4)}{\pi^{6p+3}}, \\
S'_{4p-2,2}(\pi) &= g_p \frac{\Gamma^{8p-4}(1/4)}{\pi^{6p-2}} + h_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p}}, \\
S'_{4p,2}(\pi) &= i_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p+1}} + j_p \frac{\Gamma^{8p+4}(1/4)}{\pi^{6p+3}}, \\
C'_{4p-2,2}(\pi) &= k_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p}}, \\
C'_{4p,2}(\pi) &= l_p \frac{\Gamma^{8p}(1/4)}{\pi^{6p+1}}, \\
\bar{S}_{2p} &= m_p \frac{\Gamma^{4p}(1/4)}{\pi^{3p+1}} + \eta_p \frac{\Gamma^{4p+4}(1/4)}{\pi^{3p+3}} - \eta_p, \\
\bar{C}_{2p} &= o_p \frac{\sqrt{2\pi}^{4p}(1/4)}{\pi^{3p+1}} + p_p \frac{\sqrt{2\pi}^{4p+4}(1/4)}{\pi^{3p+3}}, \\
\bar{S}'_{2p-1,2} &= q_p \frac{\Gamma^{4p-2}(1/4)}{\pi^{3p-1/2}} + r_p \frac{\Gamma^{4p+2}(1/4)}{\pi^{3p+3/2}}, \\
\bar{C}'_{2p-1,2} &= s_p \frac{\sqrt{2\pi}^{4p-2}(1/4)}{\pi^{3p-1/2}} + t_p \frac{\sqrt{2\pi}^{4p+2}(1/4)}{\pi^{3p+3/2}},
\end{align*}
where \(\eta_1 = -\frac{1}{8\pi^2} \), \(\eta_p = 0 \), \(p \geq 2 \) and the quantities

\[
 a_p, b_p, c_p, d_p, e_p, f_p, g_p, h_p, i_p, j_p, k_p, l_p, m_p, n_p, o_p, p_p, q_p, r_p, s_p, t_p \in \mathbb{Q}
\]

are rational numbers. From Corollaries 3.5, 3.7-3.9 with the help of Mathematica, we calculated a few items of these quantities above, see Table 4.1. The closed form of \(C_{2,2}(\pi) \) can be found in Corollary 3.9 of Berndt’s [10] with Bialek and Yee or Berndt’s book [2] with Andrews. Moreover, from Table 4.1, we give a conjecture.

Conjecture 4.1 For positive integer \(p \), then the following relations hold:

\[
 c_p = \frac{1}{2^{p-2}}g_p, \quad d_p = -\frac{1}{2^{p-2}}h_p = \frac{(-1)^p}{2^{p-3}}k_p, \quad e_p = -\frac{1}{2^{p-2}}i_p = \frac{(-1)^p}{2^{p-3}}l_p, \quad f_p = \frac{1}{2^{p-1}}j_p. \tag{4.13}
\]

It is possible that some similar evaluations of infinite series involving hyperbolic functions can be established by using the methods and techniques of the present paper. For example, we can get the following examples.

Example 4.1 We have

\[
 S_{2,2}\left(\frac{\pi}{2}\right) = -\frac{1}{2\pi^2} + \frac{\Gamma^4(1/4)}{16\pi^4} + \frac{\Gamma^8(1/4)}{192\pi^6},
\]

\[
 S_{4,2}\left(\frac{\pi}{2}\right) = \frac{11\Gamma^8(1/4)}{640\pi^7} + \frac{\Gamma^{12}(1/4)}{1024\pi^9},
\]

\[
 S_{6,2}\left(\frac{\pi}{2}\right) = \frac{9\Gamma^{12}(1/4)}{1024\pi^{10}} + \frac{29\Gamma^{16}(1/4)}{57344\pi^{12}},
\]

\[
 S_{8,2}\left(\frac{\pi}{2}\right) = \frac{363\Gamma^{16}(1/4)}{40960\pi^{13}} + \frac{33\Gamma^{20}(1/4)}{65536\pi^{15}},
\]

\[
 S_{10,2}\left(\frac{\pi}{2}\right) = \frac{945\Gamma^{20}(1/4)}{65536\pi^{16}} + \frac{4761\Gamma^{24}(1/4)}{5767168\pi^{18}},
\]

\[
 S_{12,2}\left(\frac{\pi}{2}\right) = \frac{1179927\Gamma^{24}(1/4)}{34078720\pi^{19}} + \frac{8289\Gamma^{28}(1/4)}{4194304\pi^{21}},
\]

\[
 C_{2,2}(2\pi) = \frac{(2\sqrt{2} + 1)\Gamma^4(1/4)}{512\pi^4} - \frac{(3\sqrt{2} + 1)\Gamma^8(1/4)}{12288\pi^6},
\]

\[
 C_{4,2}(2\pi) = -\frac{3(20\sqrt{2} + 1)\Gamma^4(1/4)}{327680\pi^7} + \frac{(5\sqrt{2} + 1)\Gamma^{12}(1/4)}{524288\pi^9},
\]

\[
 C_{6,2}(2\pi) = \frac{9(22\sqrt{2} + 1)\Gamma^{12}(1/4)}{8388608\pi^{10}} - \frac{3(217\sqrt{2} - 1)\Gamma^{16}(1/4)}{469762048\pi^{12}},
\]

\[
 C_{8,2}(2\pi) = -\frac{21(1560\sqrt{2} - 1)\Gamma^{16}(1/4)}{5368709120\pi^{13}} + \frac{3(995\sqrt{2} + 11)\Gamma^{20}(1/4)}{8589934592\pi^{15}},
\]

\[
 C_{10,2}(2\pi) = \frac{945(362\sqrt{2} + 1)\Gamma^{20}(1/4)}{137438953472\pi^{16}} + \frac{9(190971\sqrt{2} + 17)\Gamma^{24}(1/4)}{12094627905536\pi^{18}},
\]

\[
 C'_{2,2}(2\pi) = \frac{(2\sqrt{2} - 1)\Gamma^4(1/4)}{128\pi^4} + \frac{(3\sqrt{2} - 1)\Gamma^8(1/4)}{3072\pi^6},
\]

\[
 C'_{4,2}(2\pi) = \frac{3(20\sqrt{2} - 1)\Gamma^8(1/4)}{20480\pi^7} - \frac{(5\sqrt{2} - 1)\Gamma^{12}(1/4)}{32768\pi^9},
\]

\[
 C'_{6,2}(2\pi) = -\frac{9(22\sqrt{2} - 1)\Gamma^{12}(1/4)}{131072\pi^{10}} + \frac{3(217\sqrt{2} + 1)\Gamma^{16}(1/4)}{7340032\pi^{12}},
\]
\begin{table}
\centering
\begin{tabular}{cccccc}
\hline
\textit{p} & 1 & 2 & 3 & 4 & 5 \\
\hline
\textit{a}_p & $3 \cdot 2^9$ & $7 \cdot 2^{14}$ & $11 \cdot 2^{20}$ & 2^26 & $19 \cdot 2^{32}$ \\
\textit{b}_p & $5 \cdot 2^8$ & $5 \cdot 2^{14}$ & $65 \cdot 2^{20}$ & $85 \cdot 2^{26}$ & $5 \cdot 2^{32}$ \\
\textit{c}_p & 2^{20} & 2^{11} & 2^{26} & 2^{36} & 2^{46} \\
\textit{d}_p & $3 \cdot 2^9$ & $7 \cdot 2^{15}$ & $11 \cdot 2^{20}$ & 2^{39} & $19 \cdot 2^{49}$ \\
\textit{e}_p & $5 \cdot 2^{11}$ & $5 \cdot 2^{21}$ & $65 \cdot 2^{31}$ & $85 \cdot 2^{41}$ & $5 \cdot 2^{51}$ \\
\textit{f}_p & $1 \cdot 2^{14}$ & 2^{24} & 2^{34} & 2^{44} & 2^{54} \\
\textit{g}_p & 2^{24} & 2^{10} & 2^{16} & 2^{22} & 2^{28} \\
\textit{h}_p & $3 \cdot 2^7$ & $7 \cdot 2^{15}$ & $11 \cdot 2^{19}$ & 2^{25} & $19 \cdot 2^{34}$ \\
\textit{i}_p & $3 \cdot 2^7$ & $5 \cdot 2^{13}$ & $65 \cdot 2^{19}$ & $85 \cdot 2^{25}$ & $5 \cdot 2^{34}$ \\
\textit{j}_p & $1 \cdot 2^{10}$ & 2^{16} & 2^{22} & 2^{28} & 2^{34} \\
\textit{k}_p & $1 \cdot 2^9$ & $7 \cdot 2^{10}$ & $11 \cdot 2^{14}$ & 2^{18} & $19 \cdot 2^{22}$ \\
\textit{l}_p & $3 \cdot 2^6$ & $5 \cdot 2^{19}$ & $65 \cdot 2^{23}$ & $85 \cdot 2^{27}$ & $5 \cdot 2^{24}$ \\
\textit{m}_p & $1 \cdot 2^5$ & 2^7 & 2^{11} & 2^{17} & 2^{17} \\
\textit{n}_p & $1 \cdot 2^9$ & 2^{11} & 2^{12} & 2^{17} & 2^{16} \\
\textit{o}_p & $1 \cdot 2^5$ & 2^9 & 2^{15} & 2^{18} & 2^{25} \\
\textit{p}_p & $1 \cdot 2^9$ & 2^{14} & 2^{19} & 2^{24} & 2^{29} \\
\textit{q}_p & $1 \cdot 2^5$ & 2^5 & 2^8 & 2^{11} & 2^{14} \\
\textit{r}_p & $0 \cdot 2^7$ & 2^9 & 2^{13} & 2^{14} & 2^{14} \\
\textit{s}_p & $1 \cdot 2^5$ & 2^5 & 2^7 & 2^{9} & 2^{11} \\
\textit{t}_p & $1 \cdot 2^6$ & 2^8 & 2^{10} & 2^{12} & 2^{14} \\
\hline
\end{tabular}
\caption{Coefficients}
\end{table}
\[C'_{8,2}(2\pi) = \frac{21(1560\sqrt{2} + 1)\Gamma^{16}(1/4)}{20971520\pi^{13}} - \frac{3(995\sqrt{2} - 11)\Gamma^{20}(1/4)}{33554432\pi^{15}},\]
\[C'_{10,2}(2\pi) = -\frac{945(362\sqrt{2} - 1)\Gamma^{20}(1/4)}{134217728\pi^{16}} + \frac{9(190971\sqrt{2} - 17)\Gamma^{24}(1/4)}{1181160064\pi^{18}}.\]

Example 4.2 We have
\[
\sum_{n=1}^{\infty} \frac{n^2 \cosh(n\pi)}{\sinh^2(n\pi)} = -\frac{1}{8\pi^2} + \frac{\Gamma^4(1/4)}{32\pi^4} + \frac{\Gamma^8(1/4)}{512\pi^6},
\]
\[
\sum_{n=1}^{\infty} \frac{n^4 \cosh(n\pi)}{\sinh^2(n\pi)} = \frac{\Gamma^8(1/4)}{128\pi^7} + \frac{\Gamma^{12}(1/4)}{2048\pi^9},
\]
\[
\sum_{n=1}^{\infty} \frac{n^6 \cosh(n\pi)}{\sinh^2(n\pi)} = \frac{9\Gamma^{12}(1/4)}{2^{11}\pi^{10}} + \frac{\Gamma^{16}(1/4)}{2^{12}\pi^{12}},
\]
\[
\sum_{n=1}^{\infty} \frac{n^8 \cosh(n\pi)}{\sinh^2(n\pi)} = \frac{9\Gamma^{16}(1/4)}{2^{11}\pi^{13}} + \frac{33\Gamma^{16}(1/4)}{2^{17}\pi^{15}},
\]
\[
\sum_{n=1}^{\infty} \frac{n^{10} \cosh(n\pi)}{\sinh^2(n\pi)} = \frac{945\Gamma^{20}(1/4)}{2^{17}\pi^{16}} + \frac{27\Gamma^{24}(1/4)}{2^{16}\pi^{18}},
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^2 \cosh((2n-1)/2)}{\sinh^2((2n-1)/2)} = \frac{\sqrt{2}\Gamma^4(1/4)}{8\pi^4} + \frac{\sqrt{2}\Gamma^8(1/4)}{128\pi^6},
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^4 \cosh((2n-1)/2)}{\sinh^2((2n-1)/2)} = \frac{3\sqrt{2}\Gamma^8(1/4)}{32\pi^7} + \frac{5\sqrt{2}\Gamma^{12}(1/4)}{1024\pi^9},
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^6 \cosh((2n-1)/2)}{\sinh^2((2n-1)/2)} = \frac{99\sqrt{2}\Gamma^{12}(1/4)}{2^{9}\pi^{10}} + \frac{93\sqrt{2}\Gamma^{16}(1/4)}{2^{13}\pi^{12}},
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^8 \cosh((2n-1)/2)}{\sinh^2((2n-1)/2)} = \frac{819\sqrt{2}\Gamma^{16}(1/4)}{2^{10}\pi^{13}} + \frac{2985\sqrt{2}\Gamma^{20}(1/4)}{2^{16}\pi^{15}},
\]
\[
\sum_{n=1}^{\infty} \frac{(2n-1)^{10} \cosh((2n-1)/2)}{\sinh^2((2n-1)/2)} = \frac{171045\sqrt{2}\Gamma^{20}(1/4)}{2^{15}\pi^{16}} + \frac{156249\sqrt{2}\Gamma^{24}(1/4)}{2^{19}\pi^{18}}.
\]

Example 4.3 We have
\[
\sum_{n=1}^{\infty} \frac{n^3 \cosh(n\pi)}{\sinh^3(n\pi)} (-1)^{n-1} = \frac{1}{16\pi^3} + \frac{3\Gamma^4(1/4)}{128\pi^5} - \frac{3\Gamma^8(1/4)}{1024\pi^7} + \frac{\Gamma^{12}(1/4)}{8192\pi^9},
\]
\[
\sum_{n=1}^{\infty} \frac{n^5 \cosh(n\pi)}{\sinh^3(n\pi)} (-1)^{n-1} = -\frac{5\Gamma^8(1/4)}{512\pi^8} + \frac{5\Gamma^{12}(1/4)}{4096\pi^{10}} - \frac{\Gamma^{16}(1/4)}{32768\pi^{12}},
\]
\[
\sum_{n=1}^{\infty} \frac{n^7 \cosh(n\pi)}{\sinh^3(n\pi)} (-1)^{n-1} = \frac{63\Gamma^{12}(1/4)}{8192\pi^{11}} - \frac{7\Gamma^{16}(1/4)}{8192\pi^{13}} + \frac{13\Gamma^{20}(1/4)}{524288\pi^{15}},
\]
\[
\sum_{n=1}^{\infty} \frac{n^9 \cosh(n\pi)}{\sinh^3(n\pi)} (-1)^{n-1} = -\frac{81\Gamma^{16}(1/4)}{8192\pi^{14}} + \frac{297\Gamma^{20}(1/4)}{262144\pi^{16}} - \frac{17\Gamma^{24}(1/4)}{524288\pi^{18}},
\]
\[
\sum_{n=1}^{\infty} \frac{n^{11} \cosh(n\pi)}{\sinh^3(n\pi)} (-1)^{n-1} = \frac{10395\Gamma^{20}(1/4)}{524288\pi^{17}} - \frac{297\Gamma^{24}(1/4)}{131072\pi^{19}} + \frac{2169\Gamma^{28}(1/4)}{33554432\pi^{21}},
\]
\[
\begin{align*}
\sum_{n=1}^{\infty} \frac{n^3 \sinh(n\pi)}{\cosh^3(n\pi)} (-1)^{n-1} &= -\frac{3\sqrt{2} \Gamma^4(1/4)}{27\pi^5} + \frac{3\sqrt{2} \Gamma^8(1/4)}{2^{10}\pi^7} - \frac{\sqrt{2} \Gamma^{12}(1/4)}{2^{14}\pi^9}, \\
\sum_{n=1}^{\infty} \frac{n^5 \sinh(n\pi)}{\cosh^4(n\pi)} (-1)^{n-1} &= \frac{15\sqrt{2} \Gamma^8(1/4)}{211\pi^8} - \frac{25\sqrt{2} \Gamma^{12}(1/4)}{2^{15}\pi^{10}} + \frac{13\sqrt{2} \Gamma^{16}(1/4)}{2^{19}\pi^{12}}, \\
\sum_{n=1}^{\infty} \frac{n^7 \sinh(n\pi)}{\cosh^5(n\pi)} (-1)^{n-1} &= \frac{-693\sqrt{2} \Gamma^{12}(1/4)}{217\pi^{11}} + \frac{65\sqrt{2} \Gamma^{16}(1/4)}{2^{20}\pi^{13}} - \frac{293\sqrt{2} \Gamma^{20}(1/4)}{2^{24}\pi^{15}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^2 \cosh((2n-1)\pi/2)}{\sinh^4((2n-1)\pi/2)} (-1)^{n-1} &= \frac{\Gamma^2(1/4)}{4\pi^{7/2}} + \frac{\Gamma^6(1/4)}{512\pi^{15/2}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^4 \sinh((2n-1)\pi/2)}{\cosh^3((2n-1)\pi/2)} (-1)^{n-1} &= \frac{-\sqrt{2} \Gamma^2(1/4)}{23\pi^{7/2}} + \frac{\sqrt{2} \Gamma^6(1/4)}{25\pi^{11/2}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^6 \sinh((2n-1)\pi/2)}{\cosh^4((2n-1)\pi/2)} (-1)^{n-1} &= \frac{3\sqrt{2} \Gamma^6(1/4)}{2^{4}\pi^{13/2}} - \frac{\sqrt{2} \Gamma^{10}(1/4)}{2^{6}\pi^{17/2}} + \frac{\sqrt{2} \Gamma^{14}(1/4)}{2^{11}\pi^{21/2}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^8 \sinh((2n-1)\pi/2)}{\cosh^5((2n-1)\pi/2)} (-1)^{n-1} &= \frac{-45\sqrt{2} \Gamma^{10}(1/4)}{2^{7}\pi^{19/2}} + \frac{21\sqrt{2} \Gamma^{14}(1/4)}{2^{9}\pi^{23/2}} - \frac{5\sqrt{2} \Gamma^{18}(1/4)}{2^{12}\pi^{27/2}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^{10} \sinh((2n-1)\pi/2)}{\cosh^6((2n-1)\pi/2)} (-1)^{n-1} &= \frac{189\sqrt{2} \Gamma^{14}(1/4)}{2^{7}\pi^{25/2}} - \frac{87\sqrt{2} \Gamma^{18}(1/4)}{2^{9}\pi^{29/2}} + \frac{157\sqrt{2} \Gamma^{22}(1/4)}{2^{15}\pi^{33/2}}, \\
\sum_{n=1}^{\infty} \frac{(2n-1)^{12} \sinh((2n-1)\pi/2)}{\cosh^7((2n-1)\pi/2)} (-1)^{n-1} &= \frac{-19845\sqrt{2} \Gamma^{18}(1/4)}{2^{11}\pi^{31/2}} + \frac{9045\sqrt{2} \Gamma^{22}(1/4)}{2^{13}\pi^{35/2}} - \frac{1035\sqrt{2} \Gamma^{26}(1/4)}{2^{15}\pi^{39/2}}.
\end{align*}
\]

4.2 Further Results

From [21], we can find that

\[
\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} \left(\frac{1}{\sinh^2(y)} \right) = \sum_{k=1}^{s} \frac{A_{2s,2k}}{\sinh^{2k}(y)},
\]

\[
\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} \left(\frac{1}{\cosh^2(y)} \right) = \sum_{k=1}^{s} (-1)^{k+1} \frac{A_{2s,2k}}{\cosh^{2k}(y)},
\]

where the coefficients \(A_{2s,2k} \) (\(A_{2s,2s} := 1 \)) have the following recurrence relation, for \(s \geq 1 \) and \(1 \leq k \leq s \):

\[
A_{2s+2,2k} = \frac{1}{2s(2s+2)} \left((2k-1)(2k-2)A_{2s,2k-2} + 4k^2A_{2s,2k} \right).
\]

Some values of \(A_{2s,2k} \) see Table 5 of [21]. Using the notations (4.14) and (4.15), one obtains for \(s \geq 1 \) and \(p \geq 0 \),

\[
\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} S_{p,2}(y) = \sum_{k=1}^{s} A_{2s,2k} S_{p+2s-2,2k}(y),
\]

\[
\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} S_{p,2}(y) = \sum_{k=1}^{s} A_{2s,2k} S_{p+2s-2,2k}(y),
\]

25
\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} C_{p,2}(y) = \sum_{k=1}^{s} (-1)^{k+1} A_{2s,2k} C_{p+2s-2,2k}(y), \]
(4.18)

\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} \bar{C}_{p,2}(y) = \sum_{k=1}^{s} (-1)^{k+1} A_{2s,2k} \bar{C}_{p+2s-2,2k}(y), \]
(4.19)

\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} S_{p,2}'(y) = \frac{1}{2^{2s-2}} \sum_{k=1}^{s} A_{2s,2k} S_{p+2s-2,2k}(y), \]
(4.20)

\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} \bar{S}_{p,2}'(y) = \frac{1}{2^{2s-2}} \sum_{k=1}^{s} A_{2s,2k} \bar{S}_{p+2s-2,2k}(y), \]
(4.21)

\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} C_{p,2}'(y) = \frac{1}{2^{2s-2}} \sum_{k=1}^{s} (-1)^{k+1} A_{2s,2k} C_{p+2s-2,2k}(y), \]
(4.22)

\[\frac{1}{(2s-1)!} \frac{d^{2s-2}}{dy^{2s-2}} \bar{C}_{p,2}'(y) = \frac{1}{2^{2s-2}} \sum_{k=1}^{s} (-1)^{k+1} A_{2s,2k} \bar{C}_{p+2s-2,2k}(y). \]
(4.23)

From the recurrence relations (4.16)-(4.23), we obtain that

\[
\begin{align*}
S_{p+2k-2,2k}(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} S_{p,2}(y), \frac{d^{2k-4}}{dy^{2k-4}} S_{p+2,2}(y), \cdots, \frac{d^2}{dy^2} S_{p+2k-4,2}(y), S_{p+2k-2,2}(y) \right], \\
\bar{S}_{p+2k-2,2k}(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} \bar{S}_{p,2}(y), \frac{d^{2k-4}}{dy^{2k-4}} \bar{S}_{p+2,2}(y), \cdots, \frac{d^2}{dy^2} \bar{S}_{p+2k-4,2}(y), \bar{S}_{p+2k-2,2}(y) \right], \\
C_{p+2k-2,2k}(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} C_{p,2}(y), \frac{d^{2k-4}}{dy^{2k-4}} C_{p+2,2}(y), \cdots, \frac{d^2}{dy^2} C_{p+2k-4,2}(y), C_{p+2k-2,2}(y) \right], \\
\bar{C}_{p+2k-2,2k}(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} \bar{C}_{p,2}(y), \frac{d^{2k-4}}{dy^{2k-4}} \bar{C}_{p+2,2}(y), \cdots, \frac{d^2}{dy^2} \bar{C}_{p+2k-4,2}(y), \bar{C}_{p+2k-2,2}(y) \right], \\
S_{p+2k-2,2k}'(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} S_{p,2}'(y), \frac{d^{2k-4}}{dy^{2k-4}} S_{p+2,2}'(y), \cdots, \frac{d^2}{dy^2} S_{p+2k-4,2}'(y), S_{p+2k-2,2}'(y) \right], \\
S_{p+2k-2,2k}'(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} S_{p,2}'(y), \frac{d^{2k-4}}{dy^{2k-4}} S_{p+2,2}'(y), \cdots, \frac{d^2}{dy^2} S_{p+2k-4,2}'(y), S_{p+2k-2,2}'(y) \right], \\
C_{p+2k-2,2k}'(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} C_{p,2}'(y), \frac{d^{2k-4}}{dy^{2k-4}} C_{p+2,2}'(y), \cdots, \frac{d^2}{dy^2} C_{p+2k-4,2}'(y), C_{p+2k-2,2}'(y) \right], \\
C_{p+2k-2,2k}'(y) \in \mathbb{Q} \left[\frac{d^{2k-2}}{dy^{2k-2}} C_{p,2}'(y), \frac{d^{2k-4}}{dy^{2k-4}} C_{p+2,2}'(y), \cdots, \frac{d^2}{dy^2} C_{p+2k-4,2}'(y), C_{p+2k-2,2}'(y) \right].
\end{align*}
\]

Hence, all series of the forms \((p \geq k)\)

\[S_{2p,2k}(y), \bar{S}_{2p,2k}(y), C_{2p,2k}(y), \bar{C}_{2p,2k}(y), S'_{2p,2k}(y), \bar{S}'_{2p,2k}(y), S'_{2p-1,2k}(y), C'_{2p,2k}(y), \bar{C}'_{2p,2k}(y) \]

can be evaluated. So, when \(x = 1/2, y = \pi\), then these series can be evaluated by Gamma function and \(\pi\). Next, we give some specific cases by using Mathematica.

\[
S_{4,4}(\pi) = \sum_{n=1}^{\infty} \frac{n^4}{\sinh^4(n\pi)} = -\frac{1}{32\pi^4} + \frac{\Gamma^8(1/4)}{1920\pi^4} + \frac{\Gamma^8(1/4)}{1024\pi^8} + \frac{\Gamma^{16}(1/4)}{393216\pi^{12}},
\]

26
\[S_{4,4}(\pi) = \sum_{n=1}^{\infty} \frac{n^4(-1)^{n-1}}{\sinh^4(n\pi)} = \frac{1}{32\pi^4} + \frac{\Gamma^4(1/4)}{64\pi^6} + \frac{\Gamma^8(1/4)}{192\pi^7} - \frac{3\Gamma^8(1/4)}{1024\pi^8} - \frac{\Gamma^{12}(1/4)}{3072\pi^9} \]

\[C_{4,4}(\pi) = \sum_{n=1}^{\infty} \frac{n^4}{\cosh^4(n\pi)} = -\frac{\Gamma^4(1/4)}{128\pi^6} - \frac{\Gamma^8(1/4)}{5120\pi^7} + \frac{\Gamma^8(1/4)}{1024\pi^8} + \frac{\Gamma^{12}(1/4)}{24576\pi^9} - \frac{\Gamma^{12}(1/4)}{8192\pi^{10}} \]

\[\bar{S}_{4,4}(\pi) = \sum_{n=1}^{\infty} \frac{(2n-1)^4}{\sinh^4((2n-1)\pi/2)} = \frac{\Gamma^4(1/4)}{8\pi^6} - \frac{\Gamma^8(1/4)}{320\pi^7} + \frac{\Gamma^8(1/4)}{64\pi^8} - \frac{\Gamma^{12}(1/4)}{1536\pi^9} + \frac{\Gamma^{12}(1/4)}{512\pi^{10}} \]

\[\bar{C}_{4,4}(\pi) = \sum_{n=1}^{\infty} \frac{(2n-1)^4}{\cosh^4((2n-1)\pi/2)} = \frac{\Gamma^4(1/4)}{80\pi^7} - \frac{\Gamma^8(1/4)}{32\pi^8} \]

\[\bar{S}_{3,4}(\pi) = \sum_{n=1}^{\infty} \frac{(2n-1)^3(-1)^{n-1}}{\sinh^4((2n-1)\pi/2)} = \frac{\Gamma^2(1/4)}{4\pi^{9/2}} + \frac{\Gamma^6(1/4)}{16\pi^{11/2}} - \frac{\Gamma^{10}(1/4)}{192\pi^{15/2}} + \frac{3\Gamma^{10}(1/4)}{512\pi^{17/2}} \]

\[\bar{C}_{3,4}(\pi) = \sum_{n=1}^{\infty} \frac{(2n-1)^3(-1)^{n-1}}{\cosh^4((2n-1)\pi/2)} = \frac{\sqrt{2}\Gamma^2(1/4)}{8\pi^{9/2}} + \frac{\sqrt{2}\Gamma^6(1/4)}{16\pi^{11/2}} - \frac{3\sqrt{2}\Gamma^6(1/4)}{64\pi^{13/2}} - \frac{\sqrt{2}\Gamma^{10}(1/4)}{384\pi^{15/2}} \]

and

These results obtained can be checked in Mathematica or Maple. It is possible that closed form representations of some other infinite series involving hyperbolic functions can be proved using techniques of the present paper.

Acknowledgments. We thank the anonymous referee for suggestions which led to improvements in the exposition.

References

[1] G.E. Andrews, R. Askey and R. Roy. Special functions. Cambridge University Press, 2000: 481-532.
[2] G.E. Andrews and B.C. Berndt. Ramanujan’s lost notebook, Part II. Springer, New York, 2009: 223-233.
[3] G.E. Andrews and B.C. Berndt. Ramanujan’s lost notebook, Part IV. Springer, New York, 2013.
[4] B.C. Berndt. Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math., 1977, 7: 147-189.
[5] B.C. Berndt. Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math., 1978, 304: 332–365.
[6] B.C. Berndt. Ramanujan’s notebooks, part II. Springer-Verlag, New York, 1989.
[7] B.C. Berndt. Ramanujan’s notebooks, part III. Springer-Verlag, New York, 1990.
[8] B.C. Berndt. An unpublished manuscript of Ramanujan on infinite series identities. J. Ramanujan Math. Soc., 2004, 19: 57–74.
[9] B.C. Berndt. Integrals associated with Ramanujan and elliptic functions. Ramanujan J., 2016, 41: 369-389.

[10] B.C. Berndt, P.R Bialek and A.J. Yee. Formulas of Ramanujan for the power series coefficients of certain quotients of Eisenstein series. Int. Math. Res. Notices, 2002, 21: 1077-1109.

[11] B.C. Berndt and A. Straub. Ramanujan’s formula for $\zeta(2n+1)$. 2017, arXiv:1701.02964 [math.NT].

[12] A. Cauchy. Oeuvres, Série II, t. VII. Gauthier-Villars, Paris, 1889.

[13] A. Cayley. An elementary treatise on Elliptic functions, 2nd ed. Dover, New York, 1961.

[14] P. Flajolet and B. Salvy. Euler sums and contour integral representations. Exp. Math., 1998, 7(1): 15–35.

[15] A.G. Greenhill. The applications of Elliptic functions. Macmillan, London, 1892.

[16] D.R. Guo, Fu-Yu Tu and Z.X. Wang. Special functions. World Scientific Publishing Co Pte Ltd, 1989.

[17] H. Hancock. Theory of elliptic functions. Dover, New York, 1958.

[18] G.H. Hardy, P.V.Seshu Aiyar and B.M. Wilson. Collected papers of Srinivasa Ramanujan. Cambridge University Press, 1927.

[19] Y. Komori, K. Matsumoto and H. Tsumura. Infinite series involving hyperbolic functions. Lith. Math. J., 2015, 55(1): 102-118.

[20] S.G. Lim. Identities about infinite series containing hyperbolic functions and trigonometric functions. Korean J. Math. 2011, 19(4): 465-480.

[21] C.B. Ling. On summation of series of hyperbolic functions. Siam J. Math. Anal., 1974, 5(4): 551-562.

[22] C.B. Ling. On summation of series of hyperbolic functions, II. Siam J. Math. Anal., 1975, 6(1): 129-139.

[23] C.B. Ling. Generalization of certain summations due to Ramanujan. Siam J. Math. Anal., 1978, 9(1): 34-48.

[24] C.B. Ling. Extension of summation of series of hyperbolic functions. J. Math. Anal. Appl., 1988, 131: 451-464.

[25] S. Ramanujan. Notebooks (2 volumes). Tata institute of fundamental research, Bombay, 1957; seconded, 2012.

[26] S. Ramanujan. The lost notebook and other unpublished papers. Narosa, New Delhi, 1988.

[27] H.F. Sandham. Some infinite series. Proc. Lond. Math. Soc., 1954, 5: 430-436.

[28] H. Tsumura. On certain analogues of Eisenstein series and their evaluation formulas of Hurwitz type. Bull. London Math. Soc., 2008, 40: 289-297.

[29] H. Tsumura. Analogues of the Hurwitz formulas for level 2 Eisenstein series. Results. Math., 2010, 58: 365-378.

[30] H. Tsumura. Analogues of level-N Eisenstein series. Pacific J. Math., 2012, 255(2): 489-510.

[31] E.T. Whittaker and G.N. Watson. A course of modern analysis, 4th edn. Cambridge University Press, Cambridge, 1966.

[32] C. Xu. Some infinite series involving hyperbolic functions. arXiv:1707.06673.

[33] I.J. Zucker. The summation of series of hyperbolic functions. Siam J. Math. Anal., 1979, 10(1): 192-206.

[34] I.J. Zucker. Some infinite series of exponential and hyperbolic functions. Siam J. Math. Anal., 1984, 15(2): 406-413.