Integrating tabu search and VLSN search to develop enhanced algorithms: A case study using bipartite boolean quadratic programs

Fred Glover†, Tao Ye‡, Abraham P. Punnen§, and Gary Kochenberger¶

1OptTek Systems, Boulder, Colorado, USA
2Department of Mathematics, Simon Fraser University, Surrey, British Columbia, V3T 0A3, Canada
3School of Business, University of Colorado at Denver, Denver, Colorado, USA

Abstract

The bipartite boolean quadratic programming problem (BBQP) is a generalization of the well studied boolean quadratic programming problem. The model has a variety of real life applications; however, empirical studies of the model are not available in the literature, except in a few isolated instances. In this paper, we develop efficient heuristic algorithms based on tabu search, very large scale neighborhood (VLSN) search, and a hybrid algorithm that integrates the two. The computational study establishes that effective integration of simple tabu search with VLSN search results in superior outcomes, and suggests the value of such an integration in other settings. Complexity analysis and implementation details are provided along with conclusions drawn from experimental analysis. In addition, we obtain solutions better than the best previously known for almost all medium and large size benchmark instances.

Keywords: quadratic programming, boolean variables, metaheuristics, tabu search, worst-case analysis.

1 Introduction

Local search algorithms and their metaheuristic elaborations such as tabu search have become the methods of choice for solving many complex applied optimization problems. Traditional local search algorithms use exhaustive search over small neighborhoods while many recent local search algorithms use neighborhoods of exponential size that often can be searched for an improving solution in polynomial time. To distinguish between these variations, the former is called simple neighborhood search (SN search) and the latter is called very large-scale neighborhood search (VLSN search).
search). SN search based local search algorithms are generally faster in exploring neighborhoods but take a large number of iterations to reach a locally optimal solution. Many VLSN search algorithms on the other hand take longer to search a neighborhood for an improving solution but often reach a locally optimal solution quickly within a relatively small number of iterations. In this paper we consider an integration of SN search and VLSN search within a tabu search framework to develop enhanced algorithms for an important combinatorial optimization problem called the bipartite boolean quadratic programming problem (BBQP).

Let \(Q = (q_{ij}) \) be an \(m \times n \) matrix, \(c = (c_1, c_2, \ldots, c_m) \) be a row vector in \(R^m \) and \(d = (d_1, d_2, \ldots, d_n) \) be a row vector in \(R^n \). Then, the problem (BBQP) can be stated mathematically as

\[
\text{BBQP: Maximize } f(x, y) = x^T Q y + cx + dy \\
\text{subject to } x \in \{0, 1\}^m, y \in \{0, 1\}^n.
\]

An instance of BBQP is completely defined by the matrix \(Q \) and vectors \(c \) and \(d \) and hence it is represented by \(\mathcal{P}(Q, c, d) \). BBQP has been studied by many researchers in various applications including clustering and bioinformatics [17], matrix factorization [4 15], data mining [10 15], solving basic graph theoretic optimization problems [2 10 12], and computing approximations to the cut-norm of a matrix [1]. The problem can also be viewed as a generalization of the well-studied boolean quadratic programming problem (BQP) [5 6 11 19].

\[
\text{BQP: Maximize } f(x) = x^T Q' x + c' x \\
\text{subject to } x \in \{0, 1\}^n,
\]

where \(Q' \) is an \(n \times n \) matrix and \(c' \) is a row vector in \(R^n \). As pointed out in [12] and [13], by choosing

\[
Q = Q' + 2MI, \quad c = \frac{1}{2} c' - Me \quad \text{and} \quad d = \frac{1}{2} c' - Me,
\]

where \(I \) is an \(n \times n \) identity matrix, \(e \in R^n \) is an all one vector and \(M \) is a very large number, BQP can be formulated as a BBQP. Thus, systematic experimental study of algorithms for BBQP is also relevant for all the applications studied in the context of BQP.

Despite its unifying role and various practical applications, BBQP has not been investigated thoroughly from the experimental analysis point of view. The only systematic study that we are aware of is by Karapetyan and Punnen [9] who generated a class of test instances and provided experimental results with various heuristic algorithms. Some limited experimental study using a specific algorithm, called the alternating algorithm [9 10] is also available in the context of specific applications.

This paper focuses on developing efficient heuristic algorithms for solving BBQP. We present two neighborhood structures, a classic one-flip neighborhood and a new flip-float neighborhood, and based on them propose a one-flip move based tabu search algorithm, a flip-float move based coordinate method and a hybrid algorithm that combines the two. While the specific optimization problem addressed in this paper is BBQP, our approach for integrating tabu search (TS) and VLSN search is applicable to other settings to obtain hybrid algorithms that inherit individual properties of these algorithmic paradigms. Computational experiments on a set of 85 benchmark instances [9] disclose that the hybrid TS/VLSN method shows better performance in terms of both solution quality and robustness than either of its component methods in isolation. The hybrid method is able to improve almost all the previous best-known solutions on the medium and large size instances.
We also compared our algorithms with a ready-made heuristic that solves an integer programming formulation of BBQP using CPLEX [8] with appropriate parameter settings guiding the solver to emphasize on producing a heuristic solution within a prescribed time limit. This approach produced solutions comparable to that of our algorithms (but at the cost of additional time) for small size instances. For medium and large size instances, this approach proved to be impractical, reinforcing the need for special purpose algorithms to solve BBQP.

We also provide landscape analysis of the benchmark instances to identify the inherent difficulty of these instances for local search algorithms. Such a study is not available in literature so far and this provides additional insights into the structure of the benchmark instances.

The rest of the paper is organized as follows. Section 2 presents two neighborhood structures and describes in detail three heuristic algorithms. Section 3 reports and discusses computational statistics of the proposed algorithms on the standard benchmark instances. We also discuss landscape analysis of the benchmark instances in this section. Finally, concluding remarks are provided in Section 4.

2 Neighborhoods and heuristics algorithms

This section proposes three heuristic algorithms for solving BBQP. The first algorithm adopts a classic one-flip neighborhood structure and a tabu search strategy. The second algorithm employs a new flip-float neighborhood structure and a coordinate ascent strategy. The third integrates the first and second algorithms to produce a hybrid method.

2.1 One-flip neighborhood

The classic one-flip move performed on a binary vector consists of changing the value of a component of the vector to its complementary value (i.e., flipping a component of the vector). Thus, by flipping the i-th component of vector $x = (x_1, x_2, \ldots, x_m)$, we get a new vector $x' = (x_1, \ldots, x_{i-1}, 1 - x_i, x_{i+1}, \ldots, x_m)$. This flip process can be denoted as:

$$x' \leftarrow x \oplus \text{Flip}(i).$$

For a solution (x, y) of BBQP, we can perform one-flip moves on both x and y and hence the number of all possible one-flip moves is $m + n$.

In local search algorithms, we usually need to rapidly determine the effect of a one-flip move on the objective function. To achieve this, we adapt a fast incremental evaluation technique, widely used for the BQP problem [5 6 7 11 15 19], to the BBQP problem. Specifically, we use two arrays to store the contribution of each possible move, and employs a streamlined calculation for updating the arrays after each move.

Let Δx_i ($i = 1, 2, \ldots, m$) denote the change in the objective function value caused by flipping the i-th component of x and let $x' = x \oplus \text{Flip}(i)$, then

$$\Delta x_i = f(x', y) - f(x, y) = (x'_i - x_i)(c_i + \sum_{j=1}^{n} y_j q_{ij}).$$

Similarly, let Δy_j ($j = 1, 2, \ldots, n$) denote the change in the objective function value caused by
flipping the \(j \)-th component of \(y \) and let \(y' = y \oplus \text{Flip}(j) \). Then

\[
\Delta y_j = f(x, y') - f(x, y) = (y'_j - y_j)(d_j + \sum_{i=1}^{m} x_i q_{ij}). \tag{4}
\]

In our implementation, we use two arrays to store all the \(\Delta x_i \) and \(\Delta y_j \) values. These arrays can be initialized using equations (3) and (4) with time complexity \(O(mn) \). After a move is performed, the \(\Delta x_i \) and \(\Delta y_j \) arrays are updated efficiently. Note that we just need to update the elements affected by the move and the new values can be determined incrementally. A detailed description of the algorithm for updating the \(\Delta x_i \) and \(\Delta y_j \) values with time complexity \(O(m + n) \) is given in Algorithm 1.

2.2 One-flip move based tabu search algorithm

Based on the one-flip neighborhood, we can formulate a simple tabu search algorithm as described in Algorithm 2. When a component of \(x \) or \(y \) is flipped in the current step, it is declared tabu for the next TabuTenure steps, i.e., one-flip moves (either from 0 to 1 or from 1 to 0) involving this component are forbidden for the next TabuTenure iterations. Using a simple default setting, the TabuTenure for \(x_i \) (\(i = 1, 2, \ldots, m \)) is set to \(m/20 + \text{rand}(0, 10) \), where \(\text{rand}(0, 10) \) denotes a random integer between 0 and 10. For \(y_j \) (\(j = 1, 2, \ldots, n \)), the TabuTenure is set to \(n/20 + \text{rand}(0, 10) \).

We also used a simple aspiration criterion, allowing a tabu move to be performed if it leads to a solution better than the best-found one. Our rudimentary tabu search algorithm starts from a randomly generated initial solution. In each iteration, it executes the best admissible one-flip move and repeats until the incumbent (best-found) solution has not been improved in the last TabuDepth steps.

In the resulting algorithm, depicted as Algorithm 2 below, the time complexity of steps 1 and 2 is respectively \(O(m + n) \) and \(O(mn) \). Step 4 is realized by scanning the \(\Delta x_i \) and \(\Delta y_j \) arrays and looking up the TabuList with time complexity \(O(m + n) \). Steps 5 and 6 can be done in \(O(1) \) time. The complexity of Step 7 is \(O(m + n) \), as indicated in the previous section. Therefore, for the one-flip move based tabu search algorithm, the complexity of each search step is \(O(m + n) \).

2.3 Flip-float neighborhood

For a fixed \(x = (x_1, x_2, \ldots, x_m) \), we choose the best \(y = y^*(x) \) which makes \(f(x, y) \) maximal by the following equation [9]:

\[
y^*(x)_j = \begin{cases}
1 & \text{if } d_j + \sum_{i=1}^{m} x_i q_{ij} > 0; \\
0 & \text{otherwise.}
\end{cases} \tag{5}
\]

Similarly, we can choose the best \(x = x^*(y) \) for a specific \(y = (y_1, y_2, \ldots, y_n) \) by the equation:

\[
x^*(y)_i = \begin{cases}
1 & \text{if } c_i + \sum_{j=1}^{n} y_j q_{ij} > 0; \\
0 & \text{otherwise.}
\end{cases} \tag{6}
\]

The Flip-x-Float-y move consists of flipping one component of \(x \) and then choosing the best (floating) \(y \) with respect to the flipped \(x \). Similarly, the Flip-y-Float-x move is defined as flipping one component of \(y \) and then choosing the best (floating) \(x \) with respect to the flipped \(y \). The number of all possible Flip-x-Float-y and Flip-y-Float-x moves is, respectively, \(m \) and \(n \).
Algorithm 1: The Δx_i and Δy_j arrays updating algorithm

1 if the move is $x_i : 1 \rightarrow 0$ then
 2 $\Delta x_i \leftarrow -\Delta x_i$;
 3 for $j \leftarrow 1$ to n do
 4 if $y_j = 1$ then
 5 $\Delta y_j \leftarrow \Delta y_j + q_{ij}$;
 6 else
 7 $\Delta y_j \leftarrow \Delta y_j - q_{ij}$;
 8 end
 9 end
 10 end

11 if the move is $x_i : 0 \rightarrow 1$ then
 12 $\Delta x_i \leftarrow -\Delta x_i$;
 13 for $j \leftarrow 1$ to n do
 14 if $y_j = 1$ then
 15 $\Delta y_j \leftarrow \Delta y_j - q_{ij}$;
 16 else
 17 $\Delta y_j \leftarrow \Delta y_j + q_{ij}$;
 18 end
 19 end
 20 end

21 if the move is $y_j : 1 \rightarrow 0$ then
 22 $\Delta y_j \leftarrow -\Delta y_j$;
 23 for $i \leftarrow 1$ to m do
 24 if $x_i = 1$ then
 25 $\Delta x_i \leftarrow \Delta x_i + q_{ij}$;
 26 else
 27 $\Delta x_i \leftarrow \Delta x_i - q_{ij}$;
 28 end
 29 end
 30 end

31 if the move is $y_j : 0 \rightarrow 1$ then
 32 $\Delta y_j \leftarrow -\Delta y_j$;
 33 for $i \leftarrow 1$ to m do
 34 if $x_i = 1$ then
 35 $\Delta x_i \leftarrow \Delta x_i - q_{ij}$;
 36 else
 37 $\Delta x_i \leftarrow \Delta x_i + q_{ij}$;
 38 end
 39 end
 40 end
Algorithm 2: The one-flip move based simple tabu search algorithm

Input: An initial solution \((x, y)\)

Output: The best solution found so far

1. Initialize TabuList;
2. Initialize the \(\Delta x_i\) and \(\Delta y_j\) arrays using Eq.3 and Eq.4;
3. repeat
 4. Determine the best admissible move \(mv\) by scanning the \(\Delta x_i\) and \(\Delta y_j\) arrays and looking up the TabuList;
 5. Perform \(mv\);
 6. Update TabuList;
 7. Update \(\Delta x_i\) and \(\Delta y_j\) arrays using Algorithm 1;
4. until the best-found solution has not been improved in the last \(\text{TabuDepth}\) iterations;
5. return The best solution found so far

Let \(F_y^*(x) = f(x, y^*(x))\), \(F_x^*(y) = f(x^*(y), y)\). Then the change of objective function value caused by flipping the \(i\)-th component of \(x\) and floating \(y\) is given by:

\[
\Delta \text{Flip-x-Float-y}(i) = F_y^*(x \oplus \text{Flip}(i)) - F_y^*(x).
\]

(7)

Similarly, the change in the objective function value caused by flipping the \(j\)th component of \(y\) and floating \(x\) is given by

\[
\Delta \text{Flip-y-Float-x}(j) = F_x^*(y \oplus \text{Flip}(j)) - F_x^*(y).
\]

(8)

In the local search, we need to find a fast way to identify the value of \(\Delta \text{Flip-x-Float-y}(i)\) and \(\Delta \text{Flip-y-Float-x}(j)\). In the following, we only describe how to determine \(\Delta \text{Flip-x-Float-y}(i)\). Computation of \(\Delta \text{Flip-y-Float-x}(j)\) can be done in an analogous way by simply exchanging the symbols (1) \(x\) and \(y\), (2) \(i\) and \(j\), (3) \(c_i\) and \(d_j\), and (4) \(m\) and \(n\).

Let

\[
\text{Sum}(x, j) = d_j + \sum_{i=1}^{m} x_i q_{ij}.
\]

(9)

Then we have

\[
F_y^*(x) = \sum_{i=1}^{m} c_i x_i + \sum_{j=1}^{n} \max(0, \text{Sum}(x, j))
\]

(10)

Let \(x' = x \oplus \text{Flip}(i)\) \((i = 1, 2, \ldots, m)\). Then

\[
F_y^*(x') - F_y^*(x) = \sum_{k=1}^{m} c_k x'_k + \sum_{j=1}^{n} \max(0, \text{Sum}(x', j))
\]

\[
- \sum_{k=1}^{m} c_i x_k - \sum_{j=1}^{n} \max(0, \text{Sum}(x, j))
\]

\[
= c_i (x'_i - x_i) + \sum_{j=1}^{n} (\max(0, \text{Sum}(x', j)) - \max(0, \text{Sum}(x, j))).
\]

(11)
From Eq. 11, we observe that computing the value of \(\Delta \text{Flip-x-Float-y}(i) \) requires knowledge of the \(\text{Sum}(x, j) \) values. Thus, in our calculations we use an array of size \(n \) to store \(\text{Sum}(x, j) \) \((j = 1, 2, \ldots, n) \). From Eq. 9, the \(\text{Sum}(x, j) \) array can be initialized with \(O(mn) \) time complexity. In each search step, we use the following algorithm (Algorithm 3) of complexity \(O(n) \) to compute \(\Delta \text{Flip-x-Float-y}(i) \). After performing move \(\text{Flip-x-Float-y}(i) \), the \(\text{Sum}(x, j) \) array can be updated by adding \((x'_i - x_i) \times q_{ij} \) to each element. It’s clear that each updating requires \(O(n) \) time complexity. Note that before applying \(\text{Flip-x-Float-y}(i) \), we make sure that \(y_i = y_i \times \ast(x) \). Likewise, before applying \(\text{Flip-y-Float-x}(j) \), we make sure \(x = x^*(y) \).

Algorithm 3: Algorithm to compute \(\Delta \text{Flip-x-Float-y}(i) \)

Input: \(i, x, \text{Sum}(x, j) (j = 1, 2, \ldots, n) \)

Output: \(\Delta \text{Flip-x-Float-y}(i) \)

1. \(\Delta F \leftarrow (x'_i - x_i) \times c_i ; \)
2. for \(j \leftarrow 1 \) to \(n \) do
3. \hspace{1em} \(\Delta \text{Sum} \leftarrow (x'_i - x_i) \times q_{ij} ; \)
4. \hspace{1em} newSum \leftarrow \text{Sum}(x, j) + \Delta \text{Sum} ;
5. \hspace{1em} if \(\Delta \text{Sum} > 0 \) and \(\text{newSum} > 0 \) then
6. \hspace{2em} \(\Delta F \leftarrow \Delta F + \min(\Delta \text{Sum}, \text{newSum}) ; \)
7. \hspace{1em} else
8. \hspace{2em} if \(\Delta \text{Sum} < 0 \) and \(\text{Sum}(x, j) > 0 \) then
9. \hspace{3em} \(\Delta F \leftarrow \Delta F - \min(-\Delta \text{Sum}, \text{Sum}(x, j)) ; \)
10. end
11. end
12. end
13. return \(\Delta F ; \)

2.4 Flip-float move based coordinate method

Based on the Flip-float neighborhood, we get a coordinate method as described in Algorithm 4 which alternatively uses \(\text{Flip-x-Float-y} \) and \(\text{Flip-y-Float-x} \) moves to improve a solution. Starting from a given initial solution, the algorithm first chooses the optimal \(y \) for the given \(x \). Then it progressively uses the \(\text{Flip-x-float-y} \) moves to improve the incumbent solution. At each search step, the algorithm scans all possible \(\text{Flip-x-Float-y} \) moves. Once it encounters an improving move with \(\Delta \text{Flip-x-Float-y}(i) > 0 \), it performs that move. If all \(\text{Flip-x-Float-y} \) moves can not improve the incumbent solution, the algorithm tries to improve the incumbent solution using the \(\text{Flip-y-Float-x} \) move in a similar manner as described above. If the solution has been improved by \(\text{Flip-y-Float-x} \) move, it will go back to the beginning and tries to improve it using the \(\text{Flip-x-Float-y} \) moves again. The algorithm terminates when the solution can not be improved by both \(\text{Flip-x-Float-y} \) and \(\text{Flip-y-Float-x} \) moves.

2.5 Hybrid method

The one-flip move based tabu search algorithm and the flip-float move based coordinate method represent two kinds of algorithmic paradigms. For the one-flip move based tabu search algorithm,
Algorithm 4: The flip-float move based coordinate method

Input: An initial solution \((x, y)\)

Output: A locally optimal solution w.r.t. flip-float move

1. repeat
2.
3. Initialize \(\text{Sum}(x, j)\) array according to Eq.9;
4.
5. \(y \leftarrow y^*(x)\);
6.
7. for \(i \leftarrow 1\) to \(m\) do
8.
9. Determine \(\Delta \text{Flip-x-Float-y}(i)\) using Algorithm 3;
10. if \(\Delta \text{Flip-x-Float-y}(i) > 0\) then
11.
12. \(x_i \leftarrow 1 - x_i\);
13.
14. Update \(\text{Sum}(x, j)\) array;
15.
16. \(y \leftarrow y^*(x)\);
17.
18. goto Step 4;
19.
20. end
21.
22. end
23.
24. Initialize \(\text{Sum}(y, i)\) array according to Eq.10;
25.
26. \(x \leftarrow x^*(y)\);
27.
28. for \(j \leftarrow 1\) to \(n\) do
29.
30. Determine \(\Delta \text{Flip-y-Float-x}(j)\) similar to Algorithm 3;
31. if \(\Delta \text{Flip-y-Float-x}(j) > 0\) then
32.
33. \(y_j \leftarrow 1 - y_j\);
34.
35. Update \(\text{Sum}(y, i)\) array;
36.
37. \(x \leftarrow x^*(y)\);
38.
39. goto Step 15;
40.
41. end
42.
43. end
44.
45. until the solution can not be improved by both \(\text{Flip-x-Float-y}\) and \(\text{Flip-y-Float-x}\) moves;
46.
47. return \((x, y)\)
each move is simple and fast, but the tabu search strategy is very powerful, making it possible to escape from small local minimum traps and iterate for large number of steps. In the flip-float move based coordinate method, each move examines a large number of candidate solutions and therefore is more powerful and more expensive, but the coordinate ascent strategy is simple and allows only a few number of iterations in each local search.

The hybrid method integrates the one-flip tabu search algorithm and the flip-float coordinate method to yield the schema given in Algorithm 5. The integrating strategy is simple. It alternatively uses the one-flip tabu search algorithm and the flip-float coordinate method to improve the incumbent solution, until no improvement can be achieved using both methods.

Algorithm 5: The hybrid algorithm

Input: An initial solution \((x, y)\)

Output: A best-found solution

1. \(\lambda \leftarrow 1\);
2. while \(\lambda = 1\) do
3. \(\lambda \leftarrow 0\);
4. \((x, y) \leftarrow\) Improve the solution \((x, y)\) using the one-flip move based tabu search algorithm;
5. \((x, y) \leftarrow\) Improve the solution \((x, y)\) using the flip-float move based coordinate method;
6. if the solution was improved by the flip-float move based coordinate method then
7. \(\lambda \leftarrow 1\);
8. end
9. end
10. return \((x, y)\)

3 Experimental analysis

This section provides experimental results of the described algorithms on a set of 85 benchmark instances. We analyze their computational statistics in the aim of assessing their performance and disclosing their individual properties.

3.1 Test instances and experimental protocol

We adopt the standard testbed generated by Karapetyan and Punnen [9] in our experiments. This testbed consists of 85 test instances which can be classified into five categories according to their application background: Random instances, Max Clique instances, Max Induced Subgraph instances, Max Cut instances and Matrix Factorization instances. Each category contains three kinds of instances: small instances of size from 20 \(\times\) 50 to 50 \(\times\) 50, medium instances of size from 200 \(\times\) 1000 to 1000 \(\times\) 1000, and large instances of size from 1000 \(\times\) 5000 to 5000 \(\times\) 5000. A detailed description of the problem generator can be found in [9]. All these instances are available in public from the website http://www.sfu.ca/~dkarapet/.
The algorithms are coded in C++ and complied using GNU GCC. All the computational experiments are carried out on a PC with two 3.1GHZ Intel Xeon E5-2687W CPUs and 128G Memory. The computer can run 32 computing threads at the same time, so we use multiple threads to compute multiple instances. No parallel computing techniques are used.

The algorithms are run in a multi-start fashion with randomly generated initial solutions to allow diversification. A time limit is set for each small, medium and large instance respectively at 100, 1000 and 10000 seconds. The experiments are carried out without special tuning of the parameters, i.e., all the parameters used in the algorithms are fixed for all instances considered. To capture the performance of each algorithm on each instance, we record the following values: the best-found solution, the number of initial solutions tried, the number of times the best-found solution is repeatedly hit, and the average elapsed time for detecting the best-known solution (calculated as dividing the number of hit times into the elapsed time the best-found solution is last detected).

3.2 Computational results and discussion

Tables 1, 2 and 3 respectively present the computational statistics of the three algorithms on the small, medium and large instances. In each table, columns 1 and 2 give the instance name and the previous best-known solution obtained by Karapetyan and Punnen [9]. Columns 3-14 report the computational statistics of the three algorithms: the deviation between our best-found solution and the previous best-known solution is listed in column 2 (Deviation), the number of initial solutions tried (#Init), the number of times our best-found solution is repeatedly detected (#Hit), and the average time needed to reach the best-found solution (Time).

Table 1 reports the computational statistics on the 35 small instances. For all the instances, each algorithm can reach the best-known solutions efficiently and consistently. For each small instance, the needed computing time is usually less than 1 millisecond. We also conjecture that for all these 35 small instances the current best-known solutions are already optimal. (Each of them usually is repeatedly hit more than 100,000 times.)

Table 1 also reveals some individual properties of each algorithm. For the 7 Biclique instances, the performance of the hybrid method and the flip-float coordinate ascent method is roughly the same. They have significantly higher success rate (#Hit/#Init) than the one-flip tabu search algorithm. For the other 28 instances, the performance of the hybrid method and the one-flip tabu search algorithm are at the same level and are better than the flip-float coordinate method in terms of success rate (approximately 100% v.s. 50%). These observations show that the hybrid method inherits good properties from both the one-flip tabu search algorithm and the flip-float coordinate method.

Table 2 gives the computational statistics of the three algorithm on the 25 medium sized instances. The hybrid method and the one-flip tabu search algorithm successfully improve the previous best-known solutions on 11 instances and 10 instances respectively. The flip-float coordinate method fails to reach the previous best-known solutions on most instances within the given time limit. However, on the 5 Biclique instances where the one-flip tabu search performance is relatively poor, the flip-float coordinate method can improve the previous best-known solutions on 4 instances, demonstrating that it has some complementary property with respect to the one-flip tabu search algorithm. Compared with the one-flip tabu search method, the hybrid method usually find better solutions on the 10 Biclique and BMaxCut instances. For the other 15 instances, the best-found solutions are the same on each instance. However, the hybrid method is generally more
Instance Name	Best-known	Hybrid Method	One-flip Tabu Search	Flip-float coordinate method		
	Deviation	#Init #Hit	Time (ms)	Deviation #Init #Hit Time (ms)		
Biclique20x50	17841	178594 178531	0	384509 1623 61	0	6110034 289406 0
Biclique25x50	24937	152478 145875	0	380436 1838 54	0	6120837 782547 0
Biclique30x50	27887	150193 18399	5	348283 1464 68	0	685472 156750 0
Biclique35x50	32515	117354 103561	0	298058 4914 20	0	414726 118298 0
Biclique40x50	33027	94380 52725	1	237547 3041 32	0	420982 216525 0
Biclique45x50	37774	79341 78924	1	226604 1950 51	0	288844 288844 0
Biclique50x50	30124	84527 30712	3	213764 1240 80	0	377832 337431 0
BMaxCut20x50	9008	181658 105868	0	281593 121145 0	0	906202 322188 0
BMaxCut25x50	10180	176712 104961	0	251272 118318 0	0	647870 296262 0
BMaxCut30x50	13592	149703 114291	0	190134 145242 0	0	490369 119412 0
BMaxCut35x50	14024	138000 552490	1	172827 65710 1	0	377840 336594 2
BMaxCut40x50	15252	106119 37982	2	127375 4431 2	0	249277 30127 3
BMaxCut45x50	19580	95127 35282	3	118656 40511 2	0	287873 32482 2
MatrixFactor20x50	114	221042 221042	0	286354 286354 0	0	679062 583384 0
MatrixFactor25x50	127	197375 197375	0	253512 253512 0	0	467549 438994 0
MatrixFactor30x50	148	158794 158794	0	204559 204559 0	0	366402 23789 4
MatrixFactor35x50	139	146580 146580	0	190794 190794 0	0	285900 166926 0
MatrixFactor40x50	210	135328 135328	0	175257 175257 0	0	220070 41121 2
MatrixFactor45x50	191	119706 119706	0	155124 155124 0	0	194567 74298 1
MatrixFactor50x50	217	106830 108330	0	144053 144053 0	0	158088 20158 4
MaxInduced20x50	6983	246453 208710	0	314245 263979 0	0	758679 485862 2
MaxInduced25x50	8275	186863 118483	0	245227 152419 0	0	540122 116068 0
MaxInduced30x50	10227	155943 150971	0	198837 192187 0	0	379282 106475 0
MaxInduced35x50	11897	156777 156777	0	209334 209334 0	0	343184 285165 0
MaxInduced40x50	14459	145671 145671	0	185726 185726 0	0	238934 229789 0
MaxInduced45x50	13247	108385 107353	0	138255 136921 0	0	200974 52996 1
MaxInduced50x50	15900	105508 105292	0	131345 131239 0	0	153775 102837 0
Rand20x50	3247	240731 240731	0	317590 317590 0	0	657434 382499 0
Rand25x50	3207	170476 107664	0	214322 135163 0	0	485003 112420 0
Rand30x50	15854	180159 180159	0	230848 230848 0	0	334042 269018 0
Rand35x50	14136	147259 145766	0	184884 183014 0	0	276747 64591 1
Rand40x50	18778	136871 136871	0	170684 170684 0	0	214272 116800 0
Rand45x50	22057	123368 123366	0	160725 160725 0	0	169020 25816 3
Rand50x50	23801	117483 117483	0	149707 149707 0	0	147063 123409 0
robust because it usually has a smaller #Init value but a larger #Hit value.

As shown in Table 3, the hybrid method and the one-flip tabu search algorithm can improve most of the previous best-known solutions within the given time limit on the 25 large instances. The flip-float coordinate method performs best on the 5 Biclique instances; improving 4 previous best-known solutions. However, it fails to improve 19 out of the other 20 instances. Compared with the one-flip tabu search algorithm, the hybrid method usually has a smaller #Init value on each instance but is able to find better solutions on 20 out of all 25 instances. In addition, we conjecture that for the 25 large instances, most of the current best-found solutions are not optimal, because the #Hit value is usually 1. If we set the time limit to larger values, we may find better solutions.

In summary, our experimental results reveal that the one-flip tabu search algorithm performs well on most of the instances except for the Biclique instances (as opposed to our hybrid method incorporating the TS approach, which does well on all problems). The flip-float coordinate method is generally inferior to one-flip tabu search algorithm but performs significantly better on the Biclique instances. The hybrid method which integrates the one-flip tabu search algorithm and the flip-float coordinate ascent method shows better performance than both of them in the following three aspects: (1) It has good performance regardless of the problem instance; (2) it is more robust; (3) its solution quality is generally better.

Since BBQP can be formulated as a mixed integer program (MIP), one can use any MIP solver as a heuristic by restricting its running time. To compare the performance of our heuristics to this ready-made heuristic algorithm we used the general purpose MIP solver CPLEX [8]. The results are summarized in Tables 4 and 5. The tables clearly establish that our metaheuristic algorithms possess significant advantages over this ready-made general purpose heuristic in terms of efficiency as well as solution quality. In our experiments, we set the time limit of CPLEX the same as the time limit given to the three metaheuristic algorithms. We also tested CPLEX as a heuristic by doubling this time limit. It may be noted that based on the experiments reported by Karapetyan and Punnen [9] the CPLEX solver failed to find optimal solutions on most instances of size larger than 40×50 in 5 hours. In our experiments, we set the CPLEX parameter MIPEmphasis to 1, so that CPLEX put more emphasis on finding good feasible solutions and less emphasis on proof of optimality.

For small instances, CPLEX obtained optimal solutions within the allowed time (with proof of optimality) for 14 out of 35 problems and obtained the best known solutions for 27 out of 35 instances. For this class of instances, all our heuristics obtained the best known solutions for all problems (including guaranteed optimal ones) and hit the first such solution in almost negligible time. By doubling the allowed running time, CPLEX matched the best known solutions for two additional instances.

For medium size instances, CPLEX obtained only the trivial solutions $x = 0, y = 0$ in 18 out of 25 cases and by doubling the allowed running time, it obtained non-trivial solutions for two additional instances. The quality of all these solutions is significantly lower than the quality obtained by our heuristics. For large scale instances, CPLEX reached allowed memory limit very quickly and hence we discontinued experiments with large instances.

3.3 Landscape analysis of problem instances

The computational experiments demonstrate that the one-flip tabu search algorithm’s performance is significantly worse on the Biclique and BMaxCut instances than on the other instances. In order to obtain some insight into this phenomena, we employ a fitness distance analysis on some
Instance Name	Best-known Deviation	Hybrid Method		One-flip Tabu Search		Flip-float coordinate method							
		#Init	#Hit	Time (s)	#Init	#Hit	Time (s)	#Init	#Hit	Time (s)			
Biclique200x1000	2150201	-3360	3653	3653	0	-1933566	12904	8	86	0	6821	1	917
Biclique400x1000	4051884	-171828	1342	1342	1	-3748430	6676	1	129	-5669	844	1	370
Biclique600x1000	5465191	-43542	657	5	179	-4782633	3605	1	788	-11303	453	43	23
Biclique800x1000	6651165	-23568	443	443	2	-6066520	2352	1	66	36602	291	126	8
Biclique1000x1000	8605552	64393	329	158	6	-3453555	2562	1	170	47798	255	255	4
BMxCut200x1000	616810	-2634	3521	1	144	-10724	7637	1	695	-2534	5818	1	745
BMxCut400x1000	940944	8858	1729	1	879	9396	2334	1	515	-2028	1182	1	790
BMxCut600x1000	1520214	-282972	1089	1	241	-281540	1371	1	982	-309568	456	473	
BMxCut800x1000	1215160	329390	756	1	667	327402	1020	1	574	288664	216	1	393
BMxCut1000x1000	1771726	41174	599	1	818	48076	807	1	265	-11084	134	1	650
MatrixFactor200x1000	6283	0	7340	130	8	0	9902	142	7	-2	7524	1	947
MatrixFactor400x1000	9862	0	2862	899	1	0	3869	558	2	-21	1546	1	146
MatrixFactor600x1000	12898	4	1950	355	3	4	2556	266	4	-20	601	1	830
MatrixFactor800x1000	15437	29	1247	138	7	29	1602	95	10	-42	289	1	4
MatrixFactor1000x1000	18792	21	1122	47	21	21	1510	25	40	-9	158	1	270
MaxInduced200x1000	513081	0	5041	252	4	0	8605	241	4	0	4310	29	34
MaxInduced400x1000	777028	0	2401	91	11	0	3559	92	11	-74	861	1	423
MaxInduced600x1000	973711	0	1265	456	2	0	1953	93	11	-1676	354	1	450
MaxInduced800x1000	1204754	788	1034	9	107	788	1530	15	64	-1009	169	1	846
MaxInduced1000x1000	1414743	879	828	77	13	879	1288	60	17	-1376	110	1	118
Rand200x1000	612947	0	4908	84	12	0	8828	50	20	0	3511	18	55
Rand400x1000	951950	0	2256	565	2	0	3761	277	4	0	762	1	257
Rand600x1000	1345690	58	1555	84	12	58	2418	30	33	-375	299	1	627
Rand800x1000	1604746	179	1192	51	19	179	1713	31	32	-878	161	1	577
Rand1000x1000	1828902	1334	963	121	8	1334	1413	66	15	-4348	92	1	23
Table 3: Computational statistics of the three algorithms on the 25 large instances

Instance Name	Best-known	Hybrid Method	One-flip Tabu Search	Flip-float coordinate method					
	Deviation	#Init #Hit	Time (s)	Deviation	#Init #Hit	Time (s)	Deviation	#Init #Hit	Time (s)
Biclique1000x5000	38489329	-130572 545 545 18	-37445214 3690 1 6931	-227214 192 3 1258					
Biclique2000x5000	64124897	409442 166 111 90	-62615159 1799 1 7941	551466 77 5 935					
Biclique3000x5000	96735826	-285670 83 83 121	-94271142 1209 2 2017	832798 48 48 209					
Biclique4000x5000	152690337	2241269 49 42 239	-123684458 783 1 833	2543335 31 31 331					
Biclique5000x5000	161974406	1541091 33 18 562	-156946737 858 1 932	1541091 23 23 447					
BMaxCut1000x5000	6531128	-34322 585 1 6509	-1578600 1417 1 9788	-47464 331 1 1988					
BMaxCut2000x5000	10085616	128586 385 1 1724	101198 619 1 7888	-107548 59 1 3174					
BMaxCut3000x5000	13505722	396512 283 1 9315	406968 440 1 537	-71262 21 1 2515					
BMaxCut4000x5000	16358716	623990 192 1 9248	617426 325 1 4832	23588 11 1 2082					
BMaxCut5000x5000	19348266	739490 154 1 8464	746954 279 1 7697	-76772 7 1 5211					
MatrixFactor1000x5000	71470	0 1745 1 2313	-8 2480 1 790	-560 672 2 1793					
MatrixFactor2000x5000	107939	94 1011 1 1569	66 1495 1 4880	-461 127 1 2823					
MatrixFactor3000x5000	143886	333 667 1 7435	319 1097 1 2910	-327 44 1 9231					
MatrixFactor4000x5000	178967	481 497 1 3325	502 782 1 657	-346 19 1 6077					
MatrixFactor5000x5000	210390	629 386 1 6368	644 657 1 8202	-293 10 1 9774					
MaxInduced1000x5000	5463868	446 1274 2 4997	-323 2533 1 9941	-2588 228 1 3293					
MaxInduced2000x5000	8526468	8736 743 1 2839	7890 1517 1 4506	-5374 45 1 8704					
MaxInduced3000x5000	11070646	18920 481 1 4083	18672 1060 1 4256	-13790 18 1 2867					
MaxInduced4000x5000	13447665	47209 330 1 3117	45511 773 1 1302	-5592 9 1 5955					
MaxInduced5000x5000	15975303	44639 257 1 1721	44659 659 1 7019	1085 6 1 10896					
Rand1000x5000	7182386	471 1334 1 7018	-356 2588 1 4076	-4323 219 1 1426					
Rand2000x5000	11087619	8499 778 1 4404	6480 1635 1 6321	-16577 46 1 2942					
Rand3000x5000	14403998	29890 509 1 9829	28443 1173 1 8026	-3511 18 1 8361					
Rand4000x5000	18034574	33346 399 1 1004	29090 935 1 3159	-12670 9 1 7399					
Rand5000x5000	20946066	46635 336 1 1897	42930 721 1 2946	-30659 5 1 2067					
Instance Name	Time Limit = 100 s	Time Limit = 200 s							
---------------	-------------------	-------------------							
	Value	Time (ms)	Optimality	Value	Time (ms)	Optimality			
Biclique20x50	18341	225	optimal	18341	250	optimal			
Biclique25x50	24937	490	optimal	24937	520	optimal			
Biclique30x50	27887	1310	optimal	27887	1170	optimal			
Biclique35x50	32515	1205	optimal	32515	1146	optimal			
Biclique40x50	33027	3631	optimal	33027	3391	optimal			
Biclique45x50	37774	10136	optimal	37774	10086	optimal			
Biclique50x50	30124	44155	optimal	30124	42505	optimal			
BMMaxCut20x50	9008	4385	optimal	9008	4243	optimal			
BMMaxCut25x50	10180	47590	optimal	10180	49015	optimal			
BMMaxCut30x50	13592	100026	feasible	13592	20009	feasible			
BMMaxCut35x50	13084	100021	feasible	14024	200007	feasible			
BMMaxCut40x50	10916	100026	feasible	17392	200039	feasible			
BMMaxCut45x50	14422	100036	feasible	14662	200025	feasible			
BMMaxCut50x50	18766	100026	feasible	18788	200041	feasible			
MatrixFactor20x50	114	30405	optimal	114	28345	optimal			
MatrixFactor25x50	127	100030	feasible	127	200023	feasible			
MatrixFactor30x50	148	100027	feasible	148	200039	feasible			
MatrixFactor35x50	139	100027	feasible	139	200039	feasible			
MatrixFactor40x50	210	100012	feasible	210	200039	feasible			
MatrixFactor45x50	188	100012	feasible	191	200023	feasible			
MatrixFactor50x50	213	100027	feasible	212	200039	feasible			
MaxInduced20x50	6083	967	optimal	6083	936	optimal			
MaxInduced25x50	8275	4197	optimal	8275	4212	optimal			
MaxInduced30x50	10227	65254	optimal	10227	62322	optimal			
MaxInduced35x50	11897	57142	optimal	11897	56659	optimal			
MaxInduced40x50	14459	100027	feasible	14459	99075	optimal			
MaxInduced45x50	13229	100027	feasible	13229	200023	feasible			
MaxInduced50x50	15900	100027	feasible	15900	200023	feasible			
Rand20x50	13555	1701	optimal	13555	1731	optimal			
Rand25x50	13207	88546	optimal	13207	87656	optimal			
Rand30x50	15854	100011	feasible	15854	200023	feasible			
Rand35x50	14039	100011	feasible	14039	200023	feasible			
Rand40x50	18778	100027	feasible	18778	200039	feasible			
Rand45x50	22057	100011	feasible	22044	200039	feasible			
Rand50x50	23801	100043	feasible	23720	200039	feasible			

The results are obtained by CPLEX with the following parameter settings: Threads = 1, MIPEmphasis = 1, MIPDisplay = 0, TreLim = 1000.
representative instances to show their different landscape properties.

This analysis is performed on 5 medium instances: Biclique1000x1000, BMaxCut1000x1000, MatrixFactor1000x1000, MaxInduced1000x1000, Rand1000x1000. For each instance, we run the one-flip tabu search 1000 times from randomly generated starting points and obtain 1000 local minima. We get a sample point from each solution by calculating the gap between its objective value and the corresponding best-known value, and also the Hamming distance from the best-known solution. For each instance, we then plot the 1000 sampled points in a figure to estimate the distribution of local optima.

Fig. 1 gives the fitness distance scatter plots for the five representative instances. Fig. 1 shows that, for the Biclique and BMaxCut instances, all the sampled local minima are far away from the corresponding best-known solutions. This phenomenon suggests that the best-known solutions may be located in a very narrow valley and therefore hard to detect. Especially for the Biclique instances, it seems that all the sampled points fall within two distinct regions. For the other three instances, the best-known solution is usually surrounded by many local optima whose objective value deteriorate with the increase of distance from the optimum. This kind of property makes the best-known solution relatively easier to detect, because the one-flip tabu search algorithm is able to escape from small local optimum traps and this property enables the algorithm to reach the best-known solution through a sequence of local minima with ascending objective value.

Instance Name	Time Limit = 1000 s	Time Limit = 2000 s				
	Value	Time (s)	Optimality	Value	Time (s)	Optimality
Biclique200x1000	0	1002	feasible	0	2002	feasible
Biclique400x1000	0	1003	feasible	0	2003	feasible
Biclique600x1000	0	1005	feasible	0	2005	feasible
Biclique800x1000	0	1006	feasible	0	2006	feasible
Biclique1000x1000	0	1009	feasible	0	2009	feasible
BMaxCut200x1000	0	1002	feasible	0	2002	feasible
BMaxCut400x1000	0	1003	feasible	0	2004	feasible
BMaxCut600x1000	0	1005	feasible	0	2005	feasible
BMaxCut800x1000	0	1006	feasible	0	2007	feasible
BMaxCut1000x1000	0	1008	feasible	0	2008	feasible
MatrixFactor200x1000	0	1001	feasible	392	2001	feasible
MatrixFactor400x1000	292	1004	feasible	292	2003	feasible
MatrixFactor600x1000	0	1005	feasible	0	2004	feasible
MatrixFactor800x1000	0	1006	feasible	0	2006	feasible
MatrixFactor1000x1000	0	1008	feasible	0	2008	feasible
MaxInduced200x1000	61130	1002	feasible	61130	2002	feasible
MaxInduced400x1000	25642	1003	feasible	25642	2004	feasible
MaxInduced600x1000	4963	1005	feasible	4963	2005	feasible
MaxInduced800x1000	8940	1007	feasible	8940	2006	feasible
MaxInduced1000x1000	31662	1007	feasible	31662	2009	feasible
Rand200x1000	0	1002	feasible	40315	2001	feasible
Rand400x1000	0	1003	feasible	0	2004	feasible
Rand600x1000	120682	1005	feasible	120682	2005	feasible
Rand800x1000	0	1006	feasible	0	2006	feasible
Rand1000x1000	0	1008	feasible	0	2008	feasible

* The results are obtained by CPLEX with the following parameter settings: Threads = 1, MIPEmphasis = 1, MIPDisplay = 0, TreLim = 1000.
Figure 1: Fitness distance scatter plots on five representative instances.

(a) Biclique 1000x1000

(b) BMaxCut 1000x1000

(c) MatrixFactor 1000x1000

(d) MaxInduced 1000x1000

(e) Rand 1000x1000
4 Conclusion

In this work, we developed three heuristic algorithms for BBQP. The first algorithm employs a classic one-flip neighborhood and a simple tabu search strategy. The second one is based on a new powerful flip-float neighborhood and a simple coordinate ascent method. The third algorithm integrates the first and second algorithms to create a hybrid method with the aim of inheriting good properties from each.

To assess the performance characteristics of the proposed algorithms, we have conducted systematic computational experiments on a set of 85 test instances. Our findings demonstrate that the hybrid method outperforms both the one-flip tabu search algorithm and the flip-float coordinate method: It generally finds better solutions than either component method on a wide range of test instances, and overall is more robust. In addition, the hybrid method is able to improve most of the previous best-known solutions on instances of medium and large size. We also compared our algorithms with CPLEX running in heuristic mode and all our algorithms generated superior outcomes in terms solution quality and running time compared to this ready-made heuristic approach. In addition to the development and comparison of heuristics, we also performed a landscape analysis to compare the relative difficulty levels of the benchmark instances. This study revealed interesting properties of the structure of these problems.

Our findings suggest the potential value of algorithmic enhancements for future research: (1) introducing 2-flip moves in the procedures currently studied; (2) combining the resulting methods to produce new hybrids; (3) using more advanced forms of tabu search for the direct 1-flip and 2-flip methods; (4) likewise using tabu search to exploit the flip-float neighborhood (in both 1-flip and 2-flip versions).

References

[1] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, SIAM Journal of Computing 35 (2006) 787-803.

[2] C. Ambühl, M. Mastrolilli, and O. Svensson, Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut, SIAM Journal of Computing 40 (2011) 567-596.

[3] R. K. Ahuja, et al. A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123.1 (2002): 75-102.

[4] N. Gillis and F. Glineur. Low-rank matrix approximation with weights or missing data is NP-hard. SIAM Journal of Matrix Analysis and Applications 32 (2011) 1149–1165.

[5] F. Glover, G. A. Kochenberger and B. Alidaee. Adaptive memory tabu search for binary quadratic programs. Management Science, 44(1998), 336–345.

[6] F. Glover and J. K. Hao. Efficient evaluations for solving large 0-1 unconstrained quadratic optimisation problems. International Journal of Metaheuristics, 1(2010), 3-10.

[7] F. Glover, Z. Lü and J. K. Hao. Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR, 8(2010), 239-253.
[8] IBM. ILOG CPLEX 12.2 Users Manual. IBM, 2010.

[9] D. Karapetyan and A.P. Punnen, Heuristic algorithms for the bipartite unconstrained 0-1 quadratic programming problem, (2012) http://arxiv.org/abs/1210.3684

[10] H. Lu, J. Vaidya, V. Atluri, H. Shin, and L. Jiang, Weighted rank-one binary matrix factorization

[11] Z. Lü, F. Glover, and J. K. Hao. A hybrid metaheuristic approach to solving the UBQP problem. European Journal of Operational Research, 207(2010), 1254-1262.

[12] A.P. Punnen, P. Sripratak, and D. Karapetyan. The bipartite unconstrained 0-1 quadratic programming problem: polynomially solvable cases. (2012) http://arxiv.org/abs/1212.3736

[13] A.P. Punnen, P. Sripratak, and D. Karapetyan. Average value of solutions for the bipartite boolean quadratic programs and rounding algorithms. (2012) http://arxiv.org/abs/1303.0160

[14] P. Raghavendra and D. Steurer, Towards computing the Grothendieck constant. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 525-534, 2009.

[15] B.-H. Shen, S. Ji, and J. Ye. Mining discrete patterns via binary matrix factorization. In Proc. of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining 757–766, ACM, 2009.

[16] J. Tan. Inapproximability of maximum weighted edge biclique and its applications. In Proceedings of the 5th international conference on Theory and applications of models of computation (TAMC’08), Manindra Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li (Eds.). Springer-Verlag, Berlin, Heidelberg, 282-293, 2008.

[17] A. Tanay, R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene expression data, Bioinformatics 18 (2002) Suppl. 1, S136–S144.

[18] Y. Wang, Z. Lü, F. Glover and J. K. Hao. Backbone guided Tabu Search for solving the UBQP problem. Journal of Heuristics , (2011) 1-17.

[19] Y. Wang, Z. Lü, F. Glover and J. K. Hao. Path relinking for unconstrained binary quadratic programming. European Journal of Operational Research, 223 (2012) 595–604.