Challenging patient phenotypes in the management of anaemia of chronic kidney disease

Sheena Pramod | David S. Goldfarb

Abstract

Background: Chronic kidney disease (CKD) is often complicated by anaemia, which is associated with disease progression and increased hospital visits, decreased quality of life, and increased mortality.

Methods: A comprehensive literature search of English language peer-reviewed articles in PubMed/MedLine published between 1998 and 2020 related to the treatment of anaemia of CKD was conducted. The United States Renal Database System and Dialysis Outcomes and Practice Patterns Study (DOPPS) data reports, the Centers for Disease Control and Prevention and the US Food and Drug Administration websites, and published congress abstracts in 2020 were surveyed for relevant information.

Results: Subgroups of patients with anaemia of CKD present a clinical challenge throughout the disease spectrum, including those with end-stage kidney disease, advanced age or resistance to or eligibility for current standards of care (ie, oral or intravenous iron supplementation, erythropoietin-stimulating agents and red blood cell transfusions). In addition, those with an increased risk of adverse events because of comorbid conditions, such as cardiovascular diseases or diabetes, comprise special populations of patients with an unmet need for interventions to improve clinical outcomes. These comorbidities must be managed in parallel and may have a synergistic effect on overall disease severity.

Conclusions: Several therapies provide promising opportunities to address gaps with a standard of care, including hypoxia-inducible factor prolyl hydroxylase inhibitors, which stimulate haematopoiesis through promoting modest increases in serum erythropoietin and improved iron homeostasis. The critical issues in the management of anaemia of CKD in these challenging phenotypes and the clinical utility of new therapeutic agents in development for the treatment of anaemia of CKD should be assessed and the information should be made available to healthcare providers.

1 | INTRODUCTION

Anaemia affects ~15.4% of patients with chronic kidney disease (CKD) in the US, an estimated 5.7 million people.1,2 Anaemia prevalence increases with CKD stage, ranging from 8% at stage 1 to 53% at stage 5,1 and with age, with 28% in patients aged 18-63 years and 50% in patients aged 66-85 years.3 Race/ethnicity and sex also impact the prevalence of anaemia of CKD with increased risk in Black, Hispanic and female patients.4
1.1 | Pathophysiology of anaemia of chronic kidney disease

Anaemia of CKD is primarily a function of reduced erythropoietin (EPO) levels and impaired iron homeostasis leading to decreased erythropoiesis (Figure 1). Insufficient EPO production following kidney damage occurs from functional deficiency in renal EPO-producing cells and desensitisation of hypoxia-sensing mechanisms. Iron is necessary for haemoglobin (Hb) synthesis, and iron availability is important for adequate tissue oxygenation. Iron deficiency in anaemia of CKD can stem from absolute iron deficiency, impaired dietary absorption or functional iron deficiency, in which systemic inflammation leads to insufficient iron release from internal stores resulting in iron-deficient erythropoiesis. The iron homeostasis regulator hepcidin is elevated in CKD because of inflammation and decreased renal excretion and is associated with decreased intestinal iron transport and increased iron sequestration. Understanding the aetiology of anaemia of CKD and critical issues in the management of challenging patient phenotypes provide insights into treatment strategies for optimal patient care.

2 | METHODS

Information presented in this review was derived from a comprehensive literature search of English language peer-reviewed articles in PubMed/Medline database published between January 1998 and 2020 related to the treatment of anaemia of CKD. Key search terms included anaemia, anaemia in/of chronic kidney disease, chronic kidney disease, CKD, dialysis, end-stage kidney/renal disease, ESKD, ESRD, erythropoiesis, erythropoiesis-stimulating agent, erythropoietin-stimulating agent, ESA, functional iron deficiency, hepcidin, HIF-PH, hyporesponse, hypoxia, hypoxia-inducible factor.
ESA dose-sparing practices. Concerns over IV iron include the potential for excessive accumulation, possible exacerbation of underlying systemic infection, and although uncommon, especially with high molecular weight iron dextran formulations, anaphylaxis. For example, iron overload after IV iron therapy could lead to the generation of reactive oxygen species and further inflammation. Additionally, observational studies have suggested an association between IV iron treatment and increased hospitalisation and mortality; a prospective cohort study in >30 000 haemodialysis (HD) patients found significantly higher mortality and hospitalisation risk in patients receiving ≥300 mg/month of IV iron for 4 months, and a similar study in 58 000 HD patients showed a comparable trend. Conversely, a large, randomised clinical trial showed significantly better outcomes in patients administered a high-dose IV iron regimen proactively vs a low-dose regimen reactively. In patients on HD, the risk of nonfatal CV events, any-cause deaths, ESA doses and need for blood transfusions were lower in those patients proactively prescribed 400 mg/month (median monthly dose of 264 mg) when ferritin concentration was <700 μg/L and transferrin saturation (TSAT) <40% compared with patients treated reactively with 0-400 mg/month of IV iron (median monthly dose of 145 mg) when ferritin concentration was <200 μg/L and TSAT < 20%.

Erythropoietin-stimulating agents have similar biological action as native EPO, and both short-acting (eg, epoetin alfa) and long-acting (eg, darbepoetin alfa) drugs are used for the treatment of anaemia in DD and NDD patients. A few clinical trials have suggested there are risks associated with the use of higher ESA doses to target higher Hb levels. In the Correction of Hemoglobin and Outcomes in Renal Insufficiency (CHOIR) trial, a 34% increased risk of the composite endpoint (death, myocardial infarction [MI], hospitalisation for congestive heart failure [CHF] and stroke) was seen with epoetin alfa in patients randomised to the higher target Hb (135 g/L) compared with lower (113 g/L) level, with no incremental improvement in QOL. Secondary analyses showed that high doses of epoetin alfa and associated hyporesponse were significantly associated with an increased risk of the composite endpoint, independent of Hb achieved. Increased toxicity with high-dose epoetin alfa was suggested as a contributing factor to these observations. These trials along with observational data and meta-analyses indicated that using higher ESA doses to achieve higher Hb targets may be detrimental and has led to recommendations by the US Food and Drug Administration and Kidney Disease: Improving Global Outcomes (KDIGO) against the use of ESAs to target Hb levels >110 g/L and Hb > 115 g/L, respectively.

Blood transfusions may be necessary in patients with ESKD, ESA hyporesponders, and those precluded from ESA therapy because of, in some patients, recent stroke, pure red cell aplasia, allergic reactions or active cancer. However, associated risks, although uncommon, include infection and severe hypersensitivity. Additionally, alloimmunisation in patients receiving multiple blood transfusions and in multiparous women can result in...
haemolytic reactions and may diminish chances for successful kidney transplantation.

2.2 | Patients with challenging phenotypes

The treatment of anaemia of CKD in patients who are hyporesponsive to ESAs and in those with concurrent malignancies is particularly challenging with current standard of care; in addition, patients with coexisting CVD, secondary hyperparathyroidism (SHPT) and those who are older or undergoing dialysis will require special treatment considerations.

2.2.1 | ESA hyporesponders

In ~5-10% of patients with CKD, a suboptimal response or resistance to ESAs develops, where desired Hb concentrations cannot be reached despite increasingly higher doses of ESA. The prevalence of ESA resistance may range from 10% to 20% in DD patients and may in part be related to underlying disease severity. Absolute or functional iron deficiency is the most common cause of ESA resistance and can arise in the presence or absence of anaemia.

Patients with absolute iron deficiency have hallmark low ferritin levels (indicator of low iron storage) while patients with functional iron deficiency have adequate internal iron stores but decreased capacity to release and utilise stored iron, as indicated by normal or high serum ferritin levels but low serum TSAT (ie, low circulating iron). However, ferritin is not a specific marker for iron storage, as it is an acute phase reactant affected by inflammation, infection and malignancy; thus high levels in CKD are not always indicative of adequate iron stores. Functional iron deficiency is mediated through inflammatory elevation of hepcidin levels.

Renin-angiotensin-aldosterone system inhibitors (RAASi), angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers have been suggested to contribute to ESA hyporesponsiveness; discontinuation of these antihypertensives may be considered in some patients to regain ESA sensitivity, but treatment interruption is not ideal since RAASI therapy provides cardiorenal benefits and is associated with improved survival.

There is no consensus on the exact parameters defining ESA hyporesponsiveness. Per KDIGO guidelines, ESA hyporesponsiveness at the start of treatment is characterised by no increase from baseline in Hb levels by treatment with epoetin alfa >300 IU/kg/week subcutaneous or >450 IU/kg/week IV or darbepoetin alfa >1.5 microgram/kg/week has been considered inadequate ESA responsiveness. Acute ESA hyporesponsiveness has been defined as a transient refractoriness (typically after an infectious episode) in Hb improvements with ESA dose escalation followed by response recovery within 4 months of treatment. In chronic cases, ESA hyporesponsiveness can persist after 4 months of high-dose treatment with a decreased likelihood of recovery with higher transfusion and mortality rates than acute cases. ESA-resistant patients have higher rates of death, MI, CHF and stroke than responders.

Inflammation plays a key role in ESA resistance and is prevalent in patients with CKD. Inflammation is associated with inhibition of erythropoiesis and increased levels of hepcidin and ferritin. In HD patients, serum hepcidin levels were positively correlated with ESA resistance and inflammatory markers (ie, interleukin-6 [IL-6] and high-sensitivity C-reactive protein [CRP]) and negatively with Hb levels. A higher risk of progression to ESKD and mortality has been shown for patients with higher CRP levels. Inflammation was an independent risk factor for heart failure in patients with CKD. As inflammation influences serum ferritin and transferrin, other diagnostic tests may be needed to ascertain iron status in ESA hyporesponders such as content of reticulocyte haemoglobin, CRP, percentage of hypochromic erythrocytes and soluble transferrin receptor.

Addressing underlying inflammation, for example by improving general health and hygiene, optimising tunnelled catheter care to prevent infection, or by initiating the potentially less inflammatory modality of peritoneal dialysis vs HD, is key to effective treatment of anaemia of CKD and may curb the development of ESA resistance. Nevertheless, inflammation is increased with catheter use even in the absence of infection, as evidenced by significantly decreased CRP levels in patients switched from a catheter to arteriovenous fistulas. A systematic review found that patients with catheters had a higher risk of infection, CV events, hospitalisation and all-cause mortality compared with those using fistulas or grafts for HD.

2.2.2 | Patients with concurrent malignancy

In patients with cancer, CKD can be a risk factor for malignancy, likely because of heightened inflammation and oxidative stress, or may arise consequently from cancer cell toxins or myelosuppressive and nephrotoxic anticancer therapies. Chronic kidney disease in cancer patients can be exacerbated by anaemia stemming from chemotherapy, radiation therapy, inflammation, and repeated blood sampling. Anaemia is common in cancer patients and is associated with lower treatment response rates and increased mortality. As the standard of care for cancer therapy-related anaemia, ESAs may reduce the need for blood transfusions. However, anaemia correction with ESAs to higher Hb targets in cancer patients receiving chemotherapy has been linked to the progression of malignancy and adverse CV events such as thrombosis, hypertension, and stroke, although the risk is not uniform across cancer types. While no conclusive association has been shown between low-dose ESA use and cancer risk, current guidelines recommend their use with caution and only with Hb levels <100 g/L in patients with NDD- or DD-CKD with an active or history of malignancy. However, except for some patients with myelodysplastic syndromes, ESAs are not recommended in cancer patients with non-chemotherapy-associated anaemia. For these patients, RBC transfusion may be the only
Patients with cardiovascular disease

Chronic kidney disease and CVD are linked pathophysiological states that can exacerbate each other. Patients with comorbidities have a mortality rate at least twice as high as patients with CKD alone, and most of these deaths are caused by CV complications, especially among patients on dialysis. Either CKD or CVD can lead to the development of anaemia, which further triggers reciprocal disease progression and is more common in patients with more severe CKD and CVD. Anaemia in CKD is associated with left ventricular hypertrophy and peripheral vasodilation and subsequent compensatory increases in cardiac output that place a high work burden on the heart and may result in resistance to CHF therapy and poorer clinical outcomes and survival. This complex triad of anaemia, CKD, and CVD, referred to as the cardiorenal anaemia syndrome (CRAS), is particularly challenging clinically because of increased morbidity and mortality, heightened systemic inflammation and iron imbalance and the need for multidisciplinary treatment approaches. Mortality risk was significantly higher in CRAS patients compared with heart failure (HF) patients with either comorbid renal anaemia or CKD, and risks of CV complications and progression to renal replacement therapy (RRT) were higher in hospitalised HF patients with CRAS compared with HF patients with CKD without anaemia. Pro-inflammatory markers are elevated in anaemic HF patients and may cause progression of kidney damage and cardiac remodelling. As discussed, CKD alone is an inflammatory state that when combined with inflammation of CVD and anaemia further contributes to ESA hyporesponsiveness. Although IV iron therapy is beneficial, ESA use is not recommended in patients with anaemia and HF because of the lack of therapeutic benefit on CV outcomes. A systematic review and meta-analysis of nine randomised clinical trials found ESA administration after acute MI and percutaneous coronary intervention to be relatively “safe,” and to improve short-term (≤6 months) cardiac function, but no reduction in incidence of major adverse cardiovascular events (MACE), including recurrent MI and stroke, was shown long term with epoetin beta treatment. In the Trial to Reduce Cardiovascular Events With Aranesp® Therapy (TREAT), patients with anaemia of NDD-CKD and comorbid diabetes treated with darbepoetin alfa did not achieve reduction in the composite outcome of either death or a cardiovascular event but required fewer cardiac revascularisation procedures compared with placebo. Clinical guidelines with an integrated treatment approach to address these obstacles are needed to improve outcomes in patients with CRAS.

Patients on dialysis

In 2017 in the US, 746,557 individuals needed RRT to survive, of whom 70% received dialysis and 30% received a transplant. Of 124,500 patients with incident ESKD in 2017, ~97% were initiated on dialysis and 3% started with a transplant. Anaemia in patients undergoing dialysis, up to 89% in the US, is prevalent in patients undergoing dialysis, up to 89% in the US. Chronic inflammation is common in dialysis patients and, along with lack of adequate dietary iron and functional iron deficiency, can lead to declining erythropoiesis over time and worsening anaemia. Retention of blood in the dialyzer adds to blood loss. Although blood loss varies by dialyzer used, estimates indicate >508 mg of total iron may be lost annually from HD. Anaemia in DD-CKD patients is associated with increased hospitalisation rates, greater mortality, and higher economic burden. Poor QOL is a concern in DD-ESKD patients and is associated with worse survival. Treatment with epoetin alfa and darbepoetin alfa in DD-CKD patients without CVD resulted in maintenance of target Hb levels, a reduced need for blood transfusions, and improvements in energy and fatigue; however, similar to NDD-CKD patients with anaemia,
ESA doses to target normal Hb levels are associated with dose-dependent adverse effects, including higher mortality rates. In the US, ~80% of HD patients were given ESA therapy in 2016, and ~10-20% of patients on dialysis are estimated to be hyporesponsive to ESAs. Parenteral IV iron therapy can overcome functional iron deficiency in patients on dialysis with limited treatment-related adverse events and is convenient to administer by infusion during dialysis sessions. However, the optimal IV iron dose to use with various ESA doses is difficult to ascertain and complicated by poor diagnostically measures of iron status. Care must be taken to minimise potential risk of iron overload, especially in patients who are iron-resistant because of underlying inflammation and elevated levels of hepcidin.

2.2.5 | Patients with secondary hyperparathyroidism

Secondary hyperparathyroidism, a common complication of CKD, is marked by excessive secretion of parathyroid hormone (PTH), an important regulator of serum calcium levels, in response to hyperphosphatemia from decreased kidney function and hypocalcaemia from impaired bone and mineral metabolism. Parathyroid hormone is implicated in the development of renal anaemia and ESA resistance. It impedes erythropoiesis by inhibiting EPO synthesis and shortens the survival of RBCs. Lower levels of PTH appear to improve the responsiveness to ESA treatment, as patients with relative hypoparathyroidism appeared to respond better to ESA treatment than those with stable PTH. Accordingly, patients who received parathyroidectomy had reduced requirement for exogenous EPO.

Treatment of SHPT may improve anaemia and associated morbidity and mortality through coordinated intervention with a low-phosphorus diet and medication with phosphate binders, vitamin D analogs, and calcimimetics. However, cooperative therapy is difficult to manage in patients with a constellation of CKD, SHPT, and anaemia, and lack of conclusive efficacy or potential risks may offset possible benefits. Although vitamin D derivatives have been shown to suppress PTH secretion, their effect on controlling bone pain and reducing mortality are contradictory. A recent randomised clinical trial in anaemic CKD patients on HD confirmed that vitamin D is dispensable for anaemia management since its administration did not improve EPO levels, despite some studies suggesting that vitamin D may enhance erythropoiesis outside of its effect on PTH.

The most recent KDIGO guidelines do not recommend vitamin D supplementation in most adult patients with NDD CKD in stages 3a–5, but reserve it for patients in stages 4-5 CKD with severe and progressive hyperparathyroidism. Treatment of SHPT with calcimimetics has resulted in higher levels of Hb, lower doses of ESAs, and decreased CV hospitalisation, but its use has been limited by high rates of gastrointestinal effects, hypocalcaemia, over-suppression of PTH and non-adherence to oral calcimimetics. Multifactorial treatment considerations and risk-benefit assessments are necessary for optimal management of comorbidities in patients with CKD, SHPT and anaemia.

2.2.6 | Elderly patients

The prevalence of anaemia of CKD in older patients (≥66 years) is ~50% compared with 28% in younger patients (18-63 years) and increases with age and CKD stage. Older patients often have malnutrition and/or inflammatory conditions with reduced erythropoiesis and increased hepcidin compared with younger patients, which contributes to insufficient Hb. Although Hb levels decrease with age and optimal Hb targets in older patients may be lower than those in younger patients, higher Hb targets in older patients with more rigorous treatment of anaemia may not improve outcomes. In patients prescribed ESAs or iron, a significant association of high Hb levels and improved QOL was seen in patients <65 years but not in those ≥65 years, although QOL parameters are different in younger vs older patients. Dose escalation with ESAs and IV iron in elderly patients is more closely associated with adverse outcomes such as CV effects, hospitalisation and mortality; increased age is associated with ESA resistance, and a significantly higher weekly ESA dose per kilogram body weight is required to achieve the same target Hb levels in patients ≥65 years compared with those <65 years.

Stage 3-5 NDD-CKD patients aged 66-85 years with anaemia were shown to have an increased prevalence of CV conditions compared with corresponding age-matched, non-anaemic patients: systemic arterial hypertension, arteriosclerotic heart disease, CHF, dysrhythmia, and dyslipidaemia. Stage 3-5 NDD-CKD patients aged 66-85 years with anaemia were more likely to have ≥1 CV conditions than those without anaemia. Stage 3-5 NDD-CKD patients aged 66-85 years with anaemia were shown to have an increased prevalence of CV conditions compared with corresponding age-matched, non-anaemic patients (arteriosclerotic heart disease [52.2% vs 36.4%], CHF [40.5% vs 20.1%] and dysrhythmia [43.8% vs 28.0%]) and compared with younger (18-63 years) counterparts (arteriosclerotic heart disease [52.2% vs 23.6%], CHF [40.5% vs 21.4%], and dysrhythmia [43.8% vs 19.5%]). Similarly, there may be an increased risk of mortality in elderly HD patients with low Hb levels. Comorbidities in elderly patients with CKD can lead to reduced daily activity, which is associated with increased mortality risk. Following hospital discharge, anaemia and CKD are significantly associated with 1-year mortality rates in older patients, representing post-treatment vulnerability in this population without proper follow-up. Given the frequency of anaemia of CKD and associated comorbidities in the elderly, screening such patients for these disorders and mobility limitations may decrease healthcare utilisation and improve survival, particularly if accompanied by effective treatment intervention.

2.2.7 | Novel challenges from coronavirus disease 2019

The recent coronavirus disease 2019 (COVID-19) pandemic has shown a disproportionally higher disease burden and severity and poorer outcomes for patients with CKD and ESKD with or without other comorbidities. Health records and epidemiological studies have shown stage 4-5 CKD, ESKD with dialysis, and kidney transplants to be high-risk for severe complications and hospitalisations; the prevalence of kidney disease among hospitalised patients with COVID-19 was found to be as high as 13%-30% in some cohorts. Patients with ESKD had a 37% higher risk of in-hospital death compared with non-ESKD counterparts with similar
In addition to its prevalence in patients with CKD, anaemia with dysregulated iron metabolism has been observed in patients with COVID-19 and is associated with systemic inflammation and is often severe.106 During COVID-19 infection, an immune response driven by a cytokine storm may induce a hyperinflammatory state.101,106 Among 11 265 hospitalised patients with COVID-19, haemoglobin levels decreased and ferritin levels increased with rising inflammation, suggesting that inflammation-induced, hepcidin-mediated iron restriction in erythropoiesis may be responsible for the occurrence and exacerbation of anaemia in these patients.106 Although ESAs have been used to treat anaemia of CKD with or without COVID-19,107 their use in patients with CKD and COVID-19 may have reduced efficacy due to inflammation-induced resistance.106 Furthermore, it has been suggested that ESA use may be dangerous in these patients because severe COVID-19 is characterised by venous and arterial blood clots, and ESAs tend to induce a prothrombotic state.106 In patients on dialysis and maintenance ESA therapy, some nephrologists have recommended continuing outpatient ESA regimens in the inpatient setting but targeting lower Hb levels of 8-9 g/dL, with no dose escalation in order to mitigate the risk of thrombosis.106 Although several putative benefits of recombinant erythropoietin have been proposed,108 in patients with COVID-19 and anaemia with or without kidney disease, avoidance of ESA use has been suggested since the risks outweigh the benefits, even if blood transfusions may be necessary.106,107

2.3 | New therapeutic options in development

2.3.1 | Hypoxia-inducible factor prolyl hydroxylase inhibition

Recognition of tissue hypoxia occurs by the hypoxia-inducible factor (HIF) system. In normoxia, the oxygen-sensing subunit of HIF (HIF-\(\alpha\)) rapidly undergoes proteasomal degradation after hydroxylation by prolyl hydroxylases (PH), but under hypoxic conditions, HIF-\(\alpha\) is stabilised, resulting in transcription of a number of genes that support erythropoiesis, including EPO, EPO receptors and genes involved in iron metabolism.109 A new class of orally administered drugs aimed at transiently stabilising HIF/HIF-\(\alpha\) levels represents a possible treatment strategy for anaemia of CKD. These agents inhibit the activity of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), leading to stabilisation of intact HIF-\(\alpha\). Inhibitors of HIF-PH induce EPO synthesis at significantly lower levels than the supraphysiologic levels observed with ESA therapy.110 Although no HIF-PH inhibitors have been approved in the US at the time of publication of this review, roxadustat, the first-in-class orally administered HIF-PH inhibitor, is in late-stage development.
for the treatment of anaemia of CKD and is currently approved for the treatment of anaemia in patients with NDD- and DD-CKD in China and Japan, and the HIF-PH inhibitors vadadustat and daprodustat are approved for marketing in patients with DD- and NDD-CKD in Japan (Table 2). Roxadustat was noninferior to epoetin alfa in patients with DD-CKD and superior to placebo in those with NDD-CKD in raising Hb levels with similar frequency of adverse events, except hyperkalaemia, which was reported more often in the roxadustat treatment groups. Phase 3 studies in Japan suggested that roxadustat was noninferior to ESA therapy and effective at maintaining Hb levels within a target range in ESA-naïve patients undergoing HD or peritoneal dialysis.

In DD-CKD patients with anaemia, preliminary data from several recent global phase 3 trials, including the US-based SIERRAS, the European PYRENEES, and the worldwide HIMALAYAS trials, have shown the noninferiority of roxadustat to epoetin alfa in increasing Hb levels. Significant improvements from baseline Hb levels and reduction in IV iron use were seen in patients with DD-CKD with roxadustat vs epoetin alfa in the worldwide ROCKIES144 trial. In addition, roxadustat was associated with a reduction in hepcidin levels from baseline compared with little change after epoetin alfa in DD-CKD and vs placebo in NDD-CKD patients. Apparent inflammation based on high CRP levels did not affect the Hb response with roxadustat; in a sub-analysis of patients with elevated CRP levels, roxadustat treatment led to greater increases in Hb compared with epoetin alfa, indicating that roxadustat may benefit patients with inflammation and anaemia of CKD. In NDD-CKD patients with anaemia, significant increases from baseline in Hb levels were observed with roxadustat treatment vs placebo in preliminary data from several phase 3 trials, including the ALPS, ANDES, and OLYMPUS trials.

An additional effect of roxadustat is the improvement in lipids; a decrease in total and low-density lipoprotein (LDL) cholesterol and triglycerides, and improvement in LDL to high-density lipoprotein ratio has been shown. In an open-label, randomised, non-comparative clinical trial in ESA-naïve Japanese patients with DD-CKD, daprodustat treatment provided an increase in mean Hb from baseline after 4 weeks and attainment of target mean Hb after 8 weeks, which was maintained for 24 weeks. No treatment-related serious adverse events were reported. In Japanese patients with NDD-CKD, preliminary results showed noninferiority of daprodustat to ESA in achieving target Hb levels and no clinical differences in adverse events of special interest, including ocular, cardiovascular, and cancer-related adverse events. Similar efficacy results were reported in phase 3, randomised, active-controlled studies with vadadustat in Japanese patients with DD and NDD-CKD; however, in preliminary safety results from patients with NDD-CKD, vadadustat did not meet the primary safety endpoint of noninferiority vs darbepoetin alfa with time to first occurrence of MACE.

Phase 2b trials of molidustat, enarodustat, and desidustat have reported similar results. Notably, all HIF-PH inhibitors have hepcidin-lowering effects, which may reduce IV iron requirements and increase dietary iron absorption and iron release from internal stores.

Associated with the stimulation of numerous genes related to the cellular response to hypoxia, HIF-PH inhibitors may also have non-haematologic effects such as angiogenesis, tumour growth, and fibrosis. Although such responses have not been observed in clinical trials, ongoing studies will further evaluate the long-term safety and efficacy of these agents.

2.3.2 | Hepcidin antagonism

Early clinical studies investigating the ability of hepcidin antagonists (ie, PRS 080, L-oligonucleotide Lexaptepid Pegol [NOX-H94] and the humanised monoclonal antibody [mAb] LY2787106) to improve functional iron deficiency in patients with anaemia of CKD by increasing iron availability through binding and inhibition of hepcidin have shown promising preliminary results. The development of these particular agents has been discontinued, and the clinical utility of anti-hepcidin-based approaches remains to be evaluated.

Other strategies to modify hepcidin levels currently in preclinical development include decreasing hepcidin production via ligand sequestration or small molecule inhibition of the signalling pathway involved in hepcidin transcription (ie, bone morphogenic pathway); downregulation of the inflammatory pathway by neutralising IL-6 with mAbs or small interfering RNA-mediated targeting of hepcidin or hepcidin regulator mRNA; neutralisation of hepcidin with specific mAbs; interference of hepcidin-ferroportin interaction without blocking iron export using either small molecule inhibitors or anti-ferroportin antibodies; and inhibition of ferroportin receptor endocytosis or increased production of ferroportin receptor.

3 | CONCLUSIONS

For a substantial subset of patients with CKD, anaemia management remains suboptimal and challenging. In particular, for patients who are hyporesponsive to ESAs or have other common comorbid conditions such as diabetes, CVD, functional iron deficiency, and heightened inflammatory status, current standard of care may be inadequate. Newer treatment options, such as HIF-PH inhibitors, that lower hepcidin levels and provide more physiologic levels of EPO and maintain higher Hb levels without major adverse outcomes may be beneficial.

ACKNOWLEDGEMENTS

Rohan Keshwara, PhD, and Meri D. Pozo, PhD, CMPP, of InScience Communications, Springer Healthcare (Philadelphia, PA), provided medical writing support. Funding for editorial support for this manuscript was provided by AstraZeneca.
Drug name	Study design	NDD-CKD	Dosing frequency in clinical trials	Outcomes from clinical trials	Status
Daprodustat (GSK-1278863)	Phase 2 RCTs	NCT0197757320	QD121-122	↑ Hb, ↓ Hepcidin, ↓ Ferritin, ↑ TIBC	Approved in patients with anaemia of DD-CKD and NDD-CKD in Japan124
	NCT01587898116				
	NCT0205463117				
	NCT01977482118				
	NCT01047397119				
	Phase 3 RCTs	NCT0287683524	3x/week126	↑ Hb, ↓ Hepcidin, ↑ TIBC	Phase 3 clinical trials are ongoing127
	NCT02969555125				
	NCT03029208124				
	NCT02879305124				
	NCT03400033124				
	NCT02791763124				
Desidustat (ZYAN1)	Phase 2 RCTs	CTRI/2017/05/008534126	QD128,129	↑ Hb, ↓ Hepcidin, ↑ TIBC, ↓ TSAT	NDA filed in Japan in November 2019 in patients with anaemia of DD-CKD and NDD-CKD130
	JapicCTI-1528922				
	JapicCTI-173700130				
	JapicCTI-173701130				
	JapicCTI-173702130				
	JapicCTI-183870130				
Enarodustat (JTZ-951)	Phase 2 RCTs	JapicCTI-1528821	QD131	↑ Hb, ↓ Hepcidin, ↓ Ferritin, ↑ or stable TIBC, ↓ or stable TSAT	Phase 3 clinical trials are ongoing133
	JapicCTI-173699130				
	JapicCTI-183870130				
Molidustat (BAY-853934)	Phase 2 RCTs	NCT01975818131	QD123	↑ Hb, ↓ Hepcidin, ↓ Ferritin, ↑ or stable TIBC, ↓ or stable TSAT	Phase 3 clinical trials are ongoing133
	NCT02021370131				
	NCT02021409131				
	NCT02055482 (OLE)132				
	Phase 3 RCTs	NCT03350321133	3x/week126	↑ Hb, ↓ Hepcidin, ↓ Ferritin, ↑ TIBC	Phase 3 clinical trials are ongoing133
	NCT03350347133				
	NCT03543657133				
Drug name	Study design	Dosing frequency in clinical trials	Outcomes from clinical trials	Statusa	
----------------------	--------------	-------------------------------------	------------------------------	---------	
Roxadustat (FG-4592)	Phase 2 RCTs NCT01596855, NCT01147666, NCT01414075	3x/week	↑Hb ↓Hepcidin ↓Ferritin (variable in ESKD patients) ↑Transferrin ↑TIBC ↓or stable TSAT	Approved in patients with anaemia of DD-CKD and NDD-CKD in China and Japan.	
NDA filed in December 2019 in Canada, Mexico, Taiwan, Philippines, and Singapore in patients with anaemia of DD-CKD and NDD-CKD.
NDA Filed in US in Feb 2020 in patients with anaemia of DD-CKD and NDD-CKD. |

| **Vadadustat** (AKB-6548) | Phase 2 RCTs NCT02260193 | QD | ↑Hb ↓Hepcidin ↓Ferritin ↑TIBC | Approved in patients with anaemia of DD-CKD and NDD-CKD in Japan. |

Abbreviations: DD-CKD, dialysis-dependent chronic kidney disease; ESKD, end-stage kidney disease; Hb, haemoglobin; NDA, new drug application; NDD-CKD, non-dialysis-dependent chronic kidney disease; OLE, open-label extension; QD, once daily; RCT, randomised clinical trial; TIBC, total iron-binding capacity; TSAT, transferrin saturation.

aStatus at the time of manuscript publication; none of these agents has been approved in the US.
DISCLOSURES
David S. Goldfarb, MD: Consultant, Alnylam, AstraZeneca, Retrophin, Synlogic; Research, Akebia, Dicerna; Owner, Dr Arnie's, Inc. Sheena Pramod, MD: has nothing to disclose. The authors have not received any funding or honoraria for their work.

AUTHOR CONTRIBUTIONS
All named authors meet the International Committee of Medical Journal Editors criteria for authorship for this manuscript and take responsibility for the integrity of the work as a whole. All authors and medical writers from inScience Communications wrote the first draft of the manuscript. All authors participated in subsequent drafts, approved the submission of the manuscript, and are fully accountable for all aspects of the work.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analysed in this study. All presented data are from published studies.

REFERENCES
1. Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One. 2014;9(1):e84943.
2. Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019. https://www.cdc.gov/kidneydisease/publications-resources/2019-national-facts.html. Accessed May 7, 2020
3. St Peter WL, Guo H, Kabadi S, et al. Prevalence, treatment patterns, and healthcare resource utilization in Medicare and commercially insured non-dialysis-dependent chronic kidney disease patients with and without anemia in the United States. BMC Nephrol. 2018;19(1):67.
4. McClellan W, Aronoff SL, Bolton WK, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin. 2004;20(9):1501-1510.
5. Portoles J, Gorriz JL, Rubio E, et al. The development of anemia is associated with poor prognosis in NKF/KDOQI stage 3 chronic kidney disease. BMC Nephrol. 2013;14:2.
6. Chang JM, Chen SC, Huang JC, Su HM, Chen HC. Anemia and left ventricular hypertrophy with renal function decline and cardiovascular events in chronic kidney disease. Am J Med Sci. 2014;347(3):183-189.
7. He J, Shlipak M, Anderson A, et al. Risk factors for heart failure in patients with chronic kidney disease: the CRIC (Chronic Renal Insufficiency Cohort) study. J Am Heart Assoc. 2017;6(5):5336.
8. Nohara N, Io H, Matsumoto M, et al. Predictive factors associated with increased progression to dialysis in early chronic kidney disease (stage 1–3) patients. Clin Exp Nephrol. 2016;20(5):740-747.
9. Sato Y, Fujimoto S, Konta T, et al. Anemia as a risk factor for all-cause mortality: obscure synergic effect of chronic kidney disease. Clin Exp Nephrol. 2018;22(2):388-394.
10. O'Mara NB. Anemia in patients with chronic kidney disease. Diabetics Spectrum. 2008;21(1):12-19.
11. Fishbane S, Spinowitz B. Update on anemia in ESRD and earlier stages of CKD: core curriculum 2018. Am J Kidney Dis. 2018;71(3):423-435.
12. Vlagopoulos PT, Tighiouart H, Weiner DE, et al. Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol. 2005;16(11):3403-3410.
13. Covic A, Jackson J, Hadfield A, Pike J, Siriopol D. Real-world impact of cardiovascular disease and anemia on quality of life and productivity in patients with non-dialysis-dependent chronic kidney disease. Adv Ther. 2017;34(7):1662-1672.
14. Wish J, Schulman K, Law A, Nassar G. Healthcare expenditure and resource utilization in patients with anaemia and chronic kidney disease: a retrospective claims database analysis. Kidney Blood Press Res. 2009;32(2):110-118.
15. Pergola PE, Pecoits-Filho R, Winkelmayer WC, et al. Economic burden and health-related quality of life associated with current treatments for anaemia in patients with CKD not on dialysis: a systematic review. Pharmacoecon Open. 2019;3(4):463-478.
16. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631-1634.
17. Souma T, Suzuki N, Yamamoto M. Renal erythropoietin-producing cells in health and disease. Front Physiol. 2015;6:167.
18. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest. 2011;91(11):1564-1571.
19. Ganz T, Nemeth E. Iron balance and the role of hepcidin in chronic kidney disease. Semin Nephrol. 2016;36(2):87-93.
20. Kidney Disease Improving Global Outcomes. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2(4):279-335.
21. Mikhai A, Brown C, Williams JA, et al. Renal association clinical practice guideline on Anaemia of Chronic Kidney Disease. BMC Nephrol. 2017;18(1):345.
22. Kidney Disease Improving Global Outcomes. Chapter 2: use of iron to treat anemia in CKD. Kidney Int Suppl. 2012;2(4):292-298.
23. Gardiner R, Roshan D, Brennan A, Connolly D, Murray S, Reddan D. Trends in the treatment of chronic kidney disease-associated anemia in a cohort of haemodialysis patients: the Irish experience. Ir J Med Sci. 2019;188(1):223-230.
24. Vaziri ND. Safety issues in iron treatment in CKD. Semin Nephrol. 2016;36(2):112-118.
25. Del Vecchio L, Longhi S, Locatelli F. Safety concerns about intravenous iron therapy in patients with chronic kidney disease. Clin Kidney J. 2016;9(2):260-267.
26. Bailie GR, Larkina M, Goodkin DA, et al. Data from the dialysis outcomes and practice patterns study validate an association between high intravenous iron doses and mortality. Kidney Int. 2015;87(1):162-168.
27. Kalantar-Zadeh K, Regidor DL, McAllister CJ, Michael B, Warnock DG. Time-dependent associations between iron and mortality in hemodialysis patients. J Am Soc Nephrol. 2005;16(10):3070-3080.
28. Macdougall IC, White C, Anker SD, et al. Intravenous Iron in Patients Undergoing Maintenance Hemodialysis. N Engl J Med. 2019;380(5):447-458.
29. National Clinical Guideline Center. Anaemia management in chronic kidney disease: clinical guideline. NICE Guideline, 2015: 8. https://www.ncbi.nlm.nih.gov/books/NBK299242/pdf/Books_Bookshelf/NBK299242.pdf. Accessed March 18, 2020.
30. Van Wyck DB, Roppolo M, Martinez CO, Mazey RM, McMurray S; United States Iron Sucrose Clinical Trials G. A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int. 2005;68(6):2846-2856.
31. Macdougall IC, Bock AH, Carrera F, et al. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia. Nephrol Dialysis Transplant. 2014;29(11):2075-2084.
32. Agarwal R, Kusek JW, Pappas MK. A randomized trial of intravenous and oral iron in chronic kidney disease. Kidney Int. 2015;88(4):905-914.
111. Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019;381(1):1011-1022.

112. Chen N, Hao C, Peng X, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 2019;381(1):1001-1010.

113. Akizawa T, Ueno M, Shiga T, Reusch M. Oral roxadustat three times weekly in ESA-naive and ESA-converted patients with anemia of chronic kidney disease on hemodialysis: results from two phase 3 studies. Ther Apher Dial. 2020;24(2):115-125.

114. Akizawa T, Otsuka T, Reusch M, Ueno M. Intermittent oral dosing of roxadustat in peritoneal dialysis chronic kidney disease patients with anemia: a randomized, phase 3, multicenter, open-label study. Ther Apher Dial. 2020;24(2):115-125.

115. Akizawa T, Tsubakihara Y, Nangaku M, et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127-135.

116. Holdstock L, Meadowcroft AM, Maier R, et al. Four-week study of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127-135.

117. Tsubakihara Y, Akizawa T, Nangaku M, et al. Randomized phase 3 study of daprodustat in ESA-naive and ESA-converted patients with anemia of chronic kidney disease: results from a phase 3 extension study. Ther Apher Dial. 2020;24(2):115-125.

118. Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019;381(1):1011-1022.

119. Brigandi RA, Johnson B, Oei C, et al. A novel hypoxia-inducible factor-prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127-135.

120. Akizawa T, Tsubakihara Y, Nangaku M, et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127-135.

121. Tsubakihara Y, Akizawa T, Nangaku M, et al. A 24-week, open-label, randomized controlled trial in participants on hemodialysis. Clin Kidney J. 2019;12(1):139-148.

122. Kimura T, Nangaku M, Hamano T, et al. Efficacy and safety of daprodustat compared with epoetin beta pegol in Japanese non-dialysis patients with anemia of chronic kidney disease: a phase 2, randomized, placebo-controlled, phase 3 trial. Nephrol Dial Transplant. 2017;32(8):2336-2344.

123. Holdstock L, Meadowcroft AM, Maier R, et al. Four-week study of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, phase 2a randomized trial. Am J Kidney Dis. 2016;67(6):861-871.

124. Akizawa T, Tsubakihara Y, Nangaku M, et al. Effects of daprodustat, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor on anemia management in Japanese hemodialysis subjects. Am J Nephrol. 2017;45(2):127-135.

125. Akizawa T, Tsubakihara Y, Nangaku M, et al. Effects of daprodustat compared with darbepoetin alfa in Japanese hemodialysis patients with anemia: a randomized, double-blind, phase 3 trial [abstract Sa0036]. Nephrol Dial Transplant. 2019;34:i350.

126. Besarab A, Provenzano R, Hertel J, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665-1673.

127. Akizawa T, Nangaku M, Yonekawa T, et al. Roxadustat treatment in people with anemia and chronic kidney disease: a phase 2 study. Am J Nephrol. 2019;49(6):470-478.

128. Akizawa T, Tsubakihara Y, Nangaku M, et al. Daprodustat for treatment of anemia in hemodialysis patients: a randomized, placebo-controlled phase 2b trial followed by long-term trial. Nephron. 2019;143(2):77-85.

129. Akizawa T, Nangaku M, Yamaguchi T, et al. A placebo-controlled, randomized trial of roxadustat in patients with chronic kidney disease followed by long-term trial. Am J Nephrol. 2019;49(2):165-174.

130. Enarodustat – Japan Tobacco AdisInsight drugs [Internet document; Updated December 30, 2019]. https://adisinsight.springer.com/drugs/800035317. Accessed August 10, 2020.

131. Macdougall IC, Akizawa T, Berns JS, Bernhardt T, Krueger T. Effects of molidustat in the treatment of anemia in CKD. Clin J Am Soc Nephrol. 2019;14(1):28-39.

132. Akizawa T, Macdougall IC, Berns JS, et al. Long-term efficacy and safety of molidustat for anemia in chronic kidney disease: DIALOGUE extension studies. Am J Nephrol. 2019;49(4):271-280.

133. Molidustat – Bayer HealthCare Pharmaceuticals. AdisInsight drugs [Internet document; Updated April 11, 2020]. https://adisinsight.springer.com/drugs/800033038. Accessed August 10, 2020.

134. Chen N, Qian J, Chen J, et al. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol Dial Transplant. 2017;32(8):1373-1386.

135. Provenzano R, Besarab A, Wright S, et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am J Kidney Dis. 2016;67(6):912-924.

136. Besarab A, Chernyavskaya E, Motylev I, et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2016;27(4):1225-1233.

137. Provenzano R, Besarab A, Sun CH, et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol. 2016;11(6):982-991.

138. Besarab A, Provenzano R, Hertel J, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665-1673.

139. Akizawa T, et al. Phase 3, randomized, double-blind, active-comparator (Darbepoetin Alfa) conversion study of oral roxadustat in CKD patients with anemia on hemodialysis in Japan. Paper presented at: American Society of Nephrology Kidney Week. 2018.

140. Akizawa T, et al. Phase 3, multicenter, randomized, open-label, non-comparative study of intermittent oral roxadustat in ESA-naive CKD patients not on dialysis in Japan. Paper presented at: American Society of Nephrology (ASN) Kidney Week. 2019.

141. Roxadustat – FibroGen. AdisInsight drugs [Internet document; Updated August 06, 2020]. https://adisinsight.springer.com/drugs/800023523. Accessed August 10, 2020.

142. Astellas-Fibrogen. Astellas receives approval of EVRENZO® (roxadustat) in Japan for the treatment of anemia of chronic kidney disease in adult patients not on dialysis. 2020. https://www.astellas.com/system/files/news/2020-11/20201127_en_1.pdf. Accessed December 7, 2020.

143. Charytan C, Manillo-Karim R, Martin E, Steer D, Bernardo M, Dua S. SIERRAS: a phase 3, open-label, randomized, active-controlled study of the efficacy and safety of roxadustat in the maintenance treatment of anemia in subjects with ESRD on stable dialysis [SA-P0227]. J Am Soc Nephrol. 2019;30:822.

144. Fishbane S, Pollack C, El-Shawahawy M, Escudero E, Rastogi A. ROCKIES: an international, phase 3, randomized, open-label, active-controlled study of roxadustat for anemia in dialysis-dependent CKD patients [TH-OR022]. J Am Soc Nephrol. 2019;30:6.
145. Esposito C, Czicky B, Tataradze A, Reusch M, Han C, Sulowicz W. Two phase 3, multicenter, randomized studies of intermittent oral roxadustat in anemic CKD patients on (PYRENEES) and not on (ALPS) dialysis [SA-P0225]. J Am Soc Nephrol. 2019;30:822.

146. Provenzano R, Evgeny S, Liubov E, Kordeyeva S. HIMALAYAS: a phase 3, randomized, open-label, active-controlled study of the efficacy and safety of roxadustat in the treatment of anemia in incident-dialysis patients [TH-OR021]. J Am Soc Nephrol. 2019;30:5.

147. Coyne D, Rodger S, Shin S, Kim S. ANDES: a phase 3, randomized, double-blind, placebo controlled study of the efficacy and safety of roxadustat for the treatment of anemia in CKD patients not on dialysis [SA-P0228]. J Am Soc Nephrol. 2019;30:822.

148. Fishbane S, El-Shawahawy M, Pecoits-Filho R, van Bui P. OLYMPUS: a phase 3, randomized, double-blind, placebo-controlled, international study of roxadustat efficacy in patients with non-dialysis-dependent (NDD) CKD and anemia [TH-OR023]. J Am Soc Nephrol. 2019;30:5.

149. Haase VH, Chertow GM, Block GA, et al. Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol Dial Transplant. 2019;34(1):90-99.

150. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016;90(5):1115-1122.

151. Martin ER, Smith MT, Maroni BJ, Zuraw QC, deGoma EM. Clinical trial of vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease. Am J Nephrol. 2017;45(5):380-388.

152. Nangaku N, Kondo K, Ueta K, et al. Randomized, double-blinded, active-controlled (darbepoetin alfa), phase 3 study of vadadustat in CKD patients with anemia on hemodialysis in Japan [abstract TH-OR024]. J Am Soc Nephrol. 2019;30:6.

153. Nangaku N, Kondo K, Kokado Y, et al. Randomized, open-label, active-controlled (darbepoetin alfa), phase 3 study of vadadustat for treating anemia in non-dialysis-dependent CKD patients in Japan [abstract SA-P0229]. J Am Soc Nephrol. 2019;30:823.

154. Vadadustat - Akebia Therapeutics. AdisInsight drugs [Internet document; Updated July 16, 2020]. https://adisinight.springer.com/drugs/800031427. Accessed August 10, 2020.

155. Akebia Therapeutics. Akebia Therapeutics Announces Top-Line Results from its PRO2TECT Global Phase 3 Program of Vadadustat for Treatment of Anemia Due to Chronic Kidney Disease in Adult Patients Not on Dialysis. 2020. https://ir.akebia.com/node/11301/pdf. Accessed September 29, 2020.

156. Akizawa T, Macdougall IC, Berns JS, et al. Iron regulation by molidustat, a daily oral hypoxia-inducible factor prolyl hydroxylase inhibitor, in patients with chronic kidney disease. Nephron. 2019;143(4):243-254.

157. Poli M, Asperti M, Ruzzententi P, Regoni M, Arosio P. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol. 2014;5:86.

158. Renders L, Budde K, Rosenberger C, et al. First-in-human Phase I studies of PRS-080, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLoS One. 2019;14(3):e0212023.

159. Fung E, Nemeth E. Manipulation of the hepcidin pathway for therapeutic purposes. Haematologica. 2013;98(11):1667-1676.

160. Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44(3):492-504.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.