Cryo-EM structure of the respiratory syncytial virus RNA polymerase

Dongdong Cao1, Yunrong Gao1, Claire Roesler1, Samantha Rice1, Paul D’Cunha1, Lisa Zhuang1, Julia Slack1, Mason Domke1, Anna Antonova1, Sarah Romanelli1, Shayon Keating1, Gabriela Forero1, Puneet Juneja2 & Bo Liang1*

The respiratory syncytial virus (RSV) RNA polymerase, constituted of a 250 kDa large (L) protein and tetrameric phosphoprotein (P), catalyzes three distinct enzymatic activities — nucleotide polymerization, cap addition, and cap methylation. How RSV L and P coordinate these activities is poorly understood. Here, we present a 3.67 Å cryo-EM structure of the RSV polymerase (L:P) complex. The structure reveals that the RNA dependent RNA polymerase (RdRp) and capping (Cap) domains of L interact with the oligomerization domain (POD) and C-terminal domain (PCTD) of a tetramer of P. The density of the methyltransferase (MT) domain of L and the N-terminal domain of P (PNTD) is missing. Further analysis and comparison with other RNA polymerases at different stages suggest the structure we obtained is likely to be at an elongation-compatible stage. Together, these data provide enriched insights into the interrelationship, the inhibitors, and the evolutionary implications of the RSV polymerase.
Nons Segmented Negative-Sense (NNS) RNA Viruses Are a Class of Pathogenic Viruses that Include Rhabdoviruses, Filoviruses, and Respiratory Syncytial Virus (RSV). RSV Infection is the Leading Cause of Severe Lower Respiratory Tract Diseases in Young Children, Older Adults, and Immunocompromised Patients Worldwide. RSV Initiates Viral Infection by Delivering the Host Cell a Viral-Specific RNA Synthesis Machine Required for Both Genome Replication and Gene Transcription. This Machine Comprises the Nucleoprotein (N) coat Genomic RNA (N:RNA) and the RNA Polymerase (P). The Catalytic Core is a 250 kDa Large (L) Protein that Catalyzes the RNA Polymerization in Both Replication and Transcription, the Cap Addition, and Cap Methylation of Nascent Viral mRNAs. A Tetrameric Phosphoprotein (P) is Essential to Modulate and Constitute an Active RNA Polymerase with L4.3.5

RSV RNA Synthesis is Believed to Follow the "Start-Stop Model" of Sequential and Polar Transcription. Like All NNS RNA Viruses, the RSV RNA Template is N:RNA, Not RNA Alone. The Leader (Le) or Trailer Complementary (Trc) Sequences from the Terminal of the RNA Genome or Antigenome Serve as the Promoters for the RSV RNA Synthesis. To Copy the N:RNA Template, L Requires the Tetrameric P to Displace N. Interestingly, the RSV Polymerase Not Only Synthesizes mRNAs but Also Co-Transcriptionally Adds a Cap and a Poly-A Tail to Each Transcript. The mRNAs are Synthesized Using Unconventional Chemical Reactions: (a) the Cap is Formed by a Polyrribonucleotide Transferase But Not a Guanylyltransferase through Generating a Covalent L:RNA Intermediate, Distinct from Eukaryotes and All Other Virus Families; and (b) the Cap is Methylated at the 2'-O Position First, Followed by the N-7 Position, the Opposite Order of Mammalian mRNAs. To Date, the In Vivo RNA Polymerization Assays of RSV and Several Other NNS RNA Viruses have Been Established. The RSV Cap Addition and Cap Methylation Assays have Not Been Described Yet and are Speculated to Share Similar Mechanisms with Vesicular Stomatitis Virus (VSV), of Which the Assays were Reported.

There are Six Conserved Regions and Three Functional Domains Shared Within L of NNS RNA Viruses. The Domain Boundaries and the Active Sites of the Three Functional Domains, RNA-Dependent RNA Polymerase (RdRp), Capping (Cap), and Cap Methyltransferase (MT), are Highlighted as GDN, HR, and Cap Hierarchies and the Active Sites of the Three Functional Domains. RNA Polymerization in Both Replication and Transcription, the Cap Addition, and Cap Methylation of Nascent Viral mRNAs. A Tetrameric Phosphoprotein (P) is Essential to Modulate and Constitute an Active RNA Polymerase with L4.3.5

Cryo-EM Analysis was Conducted Using a 200 kV Talos Arctica Microscope with a BioQuantum/K2 Direct Electron Detector. An Initial Dataset of 1349 Movies Resulted in 4.3 Å Reconstruction, and One Additional Dataset of 1251 Movies was Collected. A Total of 2600 Movies Gave Rise to the Final 3.67 Å Map, Refined with 253,372 Particles Selected from Multiple Rounds of 2D and 3D Classifications (Fig. 1d). We Performed an Atomic Model Building on the Final 3.67 Å Map with COOT, Assisted by the Structure of the VSV L Protein. We Reconstructed the RSV L and P Polypeptide Models with PHENIX. The Cryo-EM Model Revealed the Characteristic Ring-Like Core, RdRp Domain, and an Unconventional Cap Domain of the L Protein that Only Exists in NNS RNA Viruses. The Map also Showed the Typical Helix Bundles of the Oligomerization Domain of P (Fig. 1f). Further Data Analysis Suggested Intrinsic Flexibility and Structural Rearrangements Could Be Attributed to the Missing Densities of L and P Domains and will be Discussed in Later Sections.

The Overall Structure of the RSV Polymerase Complex. The Final Atomic Model Contains the RdRp Domain (Blue) and the Cap Domain (Green) of the RSV L Protein, and the Oligomerization Domain (Podo, Red) and C-Terminal Domain (Pctd, Orange) of Tetrameric P Proteins (Fig. 2a). The Model Coordinates with PHENIX. The Cryo-EM Model Revealed the Characteristic Ring-Like Core, RdRp Domain, and an Unconventional Cap Domain of the L Protein that Only Exists in NNS RNA Viruses. The Map also Showed the Typical Helix Bundles of the Oligomerization Domain of P (Fig. 1f). Further Data Analysis Suggested Intrinsic Flexibility and Structural Rearrangements Could be Attributed to the Missing Densities of L and P Domains and will be Discussed in Later Sections.

The overall structure of the RSV polymerase complex. The final atomic model contains the RdR domain (blue) and the Cap domain (green). The RSV L protein, and the oligomerization domain (Podo, red) and C-terminal domain (Pctd, orange) of tetrameric P proteins. The atomic model contains the RdR domain (blue) and the Cap domain (green), the P domain and the C-terminal domain (CTD) of the L domain. The RSV L shares similar architectures with vesicular stomatitis virus (VSV), of which the assays were reported.

Sequence Alignments and Secondary Structure Predictions suggest that the RSV L shares five well-organized domains (two domains visible and modeled in this study) among NNS RNA Viruses, while the P protein is flexible and contains many disordered regions. The RSV L and P Polypeptide Models with PHENIX. The Cryo-EM Model Revealed the Characteristic Ring-Like Core, RdRp Domain, and an Unconventional Cap Domain of the L Protein that Only Exists in NNS RNA Viruses. The Map also Showed the Typical Helix Bundles of the Oligomerization Domain of P (Fig. 1f). Further Data Analysis Suggested Intrinsic Flexibility and Structural Rearrangements Could be Attributed to the Missing Densities of L and P Domains and will be Discussed in Later Sections.

Results

Cryo-electron microscopy structure determination. We co-expressed and co-purified the recombinant RSV polymerase (L:P) from Sf21 insect cells. Gel filtration and SDS-PAGE indicated pure and full-length wild-type (wt) L:P and mutant L(D811A):P complexes (Fig. 1b, c). Using an established RdRp assay, we demonstrated the characteristic RNA products of both de novo initiation (<25 nt) and back primer (>25 nt) activities by the wt polymerase L:P (lane 6), but not the catalytically inactive polymerase L(D811A):P (lane 3) using a short trailing complementary 25 (Tr25) RNA template. The Le or TrC sequences of the genome serve as the promoters for the RSV polymerase. The trailer 25 (Tr25) sequence, which is the transcription product at Tr25, is not a natural template and was included as a negative control. As expected, we did not observe RNA products when using Tr25 as a template (lane 5) (Fig. 1d). Therefore, the prepared wt RSV polymerase is stable and catalytically active.

The overall structure of the RSV polymerase complex. The final atomic model contains the RdRp domain (blue) and the Cap domain (green) of the RSV L protein, and the oligomerization domain of P (Podo, red) and C-terminal domain of P (Pctd, orange). The RSV L polymerase is stable and catalytically active. The P domain is fully assembled into a four-helix bundle as expected. Most Pctd is flexible, and only the regions that interact with L can be visualized and modeled (Fig. 2a).

Cryo-electron microscopy. The cryo-electron microscopy (cryo-EM) studies reveal that the RdRp and Cap domains of the RSV L shares similar architectures of that of the VSV L, uncover a previously unknown basis of how P interacts with L, and provide molecular insights into RNA synthesis by the RSV polymerase.

Structural insights into RSV L and P interactions. The RSV L primarily uses the “fingers” motif to interact with Podo and Pctd. The interactions between L and a tetrameric P can be divided into three parts: (1) two of four-helix bundles of Podo and the RdRp; (2) two flexible Pctd chains wrap around the surface of RdRp and stabilize the base of the tetrameric Podo; (3) one flexible Pctd chain extends to the positively charged “palm” motif of RdRp and the edge of the putative NTP entrance channel (Fig. 2b–d). These interactions bury surface area of about 1101.1 Å², 1542.9 Å², and 884.6 Å², respectively. P is negatively charged overall, and the calculated isoelectric points of Podo and Pctd are 4.82 and 4.34.
respectively. Indeed, the interaction between L and P is dictated partly by electrostatic complementarity (Supplementary Fig. 6).

Our structure of the RSV L:P agrees with previous biochemical studies that PCTD is critical to interact with L and also identifies the previously unknown role of POD in interacting with L32,43 (Fig. 2). On the POD, residues that interact with L include K141, E144, H150, and V154 (Fig. 2b). Interestingly, four chains of PCTD adopt four different conformations and interact broadly with the RdRp domain of L (Fig. 2b–d and Supplementary Fig. 6).

There are extensive interactions between L and two of the PCTD chains near the POD, including residues G158, R167, D168, R174, E176, and N189 (Fig. 2c). There is a composite surface on the L protein that accommodates one chain of PCTD, and these residues serve as a strong base to stabilize the POD four-helix bundles. One PCTD chain extends and uses residues D209, T210, D212, L216, T219, and L223 to interact with L (Fig. 2d). The observations of such extensive interactions are consistent with the conserved regions by the sequence alignments of L and P, respectively (Supplementary Fig. 4).

Structural comparison of the L and P proteins. When the structure of the RSV L:P overlays with that of the VSV L40 (PDB: 5A22), the CD, MT, and CTD domains (gray) extends from the top part of the complex (Fig. 3a, b). The RSV RdRp domain is comparable to many other RNA polymerases40–51 (Fig. 3c and Supplementary Fig. 7). The RSV Cap domain exhibits a similar overall fold to that of VSV L40 (Fig. 3e and Supplementary Fig. 8). However, there are notable differences: (1) There are additional motifs at the N-terminal regions of the RSV RdRp; (2) The RSV PdRp has a missing connecting helix (residues 660–691).
(equivalent to VSV residues 571–597) adjacent to the active site (Fig. 3d and Supplementary Fig. 8); (3) The RSV priming-loop-like element (residues 1265–1282, magenta) of the Cap domain shows a significant shift of 146° and 37.2 Å compared to its equivalent motif of VSV L (residues 1155–1174, orange), and the pivot points for the shift are the residues 1264 and 1283 (refs. 40,50,52) (Fig. 3f and Supplementary Fig. 8).

We also compared the structures of the RSV P with P from other NNS RNA viruses. P is the most variable protein and shares the lowest sequence identities among NNS RNA viruses. Strikingly, despite the low sequence conservation, all P (or VP35 in Filoviridae) share a common feature and exist as an oligomer (dimer, trimer, or tetramer) in solution53–60 (Fig. 3g and Supplementary Fig. 9). Although the precise role of the oligomerization of P remains unclear, the comparison suggests the oligomerization of P plays critical roles in enhancing the interactions with L and bridging multiple sets of co-factors (i.e., N and M2-1) during RNA synthesis.

Conformational transitions of L:P. The significant flexibility of P leads to a weaker density for many regions of P (visualized at a lower σ). Further 3D classification revealed an almost equal number (63,912 vs. 82,400) of the particles that show less P density and yielded a cryo-EM map at 4.86 Å resolution. Compared with a 4.54 Å map, the RdRp and Cap domains of L are virtually identical, but the density for P is almost depleted.
Focused re-refinement of P regions does not yield a higher resolution map, confirming the intrinsic flexibility and mobility of P.

The substantial conformational variability of CD, MT, and CTD of L leads to a missing density throughout the initial image processing. A larger size 3D class produced a 7.2 Å resolution map of reconstruction. Additional density blobs appear on the top part of the polymerase, agree with the potential location of the missing domains. However, no well-defined density for these domains was observed in the cryo-EM map (Supplementary Fig. 10).

Discussion

This work provides structural insights into the polymerase (L:P) of RSV, a significant NNS RNA virus pathogen, and offers a framework for understanding the coordination of the enzymatic activities of L within structurally distinct but functionally coordinated domains. Further investigations are required to discover whether the RSV L alone exhibits the same way as VSV L. Interestingly, all RNA polymerases of NNS RNA viruses require P (or VP35 in Filoviridae), but P exists as diverse oligomeric protein (Supplementary Fig. 9) and shares low sequence identity53–60.

(Supplementary Fig. 10). Focused refinement of P regions does not yield a higher resolution map, confirming the intrinsic flexibility and mobility of P.

The substantial conformational variability of CD, MT, and CTD of L leads to a missing density throughout the initial image processing. A larger size 3D class produced a 7.2 Å resolution map of reconstruction. Additional density blobs appear on the top part of the polymerase, agree with the potential location of the missing domains. However, no well-defined density for these domains was observed in the cryo-EM map (Supplementary Fig. 10).

Discussion

This work provides structural insights into the polymerase (L:P) of RSV, a significant NNS RNA virus pathogen, and offers a framework for understanding the coordination of the enzymatic activities of L within structurally distinct but functionally coordinated domains. Further investigations are required to discover whether the RSV L alone exhibits the same way as VSV L. Interestingly, all RNA polymerases of NNS RNA viruses require P (or VP35 in Filoviridae), but P exists as diverse oligomeric protein (Supplementary Fig. 9) and shares low sequence identity53–60. In most cases, the protomers, the basic building blocks of oligomeric
proteins, assemble into a higher-order oligomer following a defined repeating or symmetry rule. However, the nonsymmetric structures of P\textsubscript{CTD} suggest that P likely plays a nonsymmetric structural role more than previously appreciated. Except for the P\textsubscript{OD}, every chain of the P tetramer appears to either interact with different sites of L, such as the “palm” motif of the RdRp domain, which may be important for regulating the polymerase activities or remain flexible waiting for interacting with other binding partners. These pronounced structural differences attest to a high degree of versatility in L upon binding of P.

Indeed, it was suggested that L bears much movement during RNA synthesis. We compared the priming-loop-like element of the RSV L to that of the VSV L (Supplementary Fig. 8). The priming-loop-like element of the VSV Cap domain has been demonstrated to play critical roles in transcription initiation and capping\cite{61}, and it was thought to be at the initiation stage because the overlay of the structure of the initiation complex of other RdRPs (such as reovirus polymerase) revealed that this priming-loop-like element of the VSV L occupied the same location as the priming loop in the reovirus polymerase\cite{40,50}. In addition, the comparisons of the VSV L and the initiation/elongation complex of the reovirus polymerase suggest that if the RNA product extends, there will be not enough space to accommodate additional newly synthesized RNA products, and this priming-loop-like element is likely to move away from this initiation stage\cite{40,50} (Supplementary Fig. 11c–d). We also superposed the elongation complexes of other RdRPs (such as FluB, polio, or rotavirus polymerase) with the RSV L:P, and the position of the priming-loop-like element does not “conflict” with the locations of either RNA template or RNA product\cite{52,62,63} (Supplementary Fig. 11). Together, the missing connecting helix (residues 660–691) of the RSV RdRp domain and the significant shift of the priming-loop-like element of the VSV Cap domain suggest that the structure we obtained is likely to be at an elongation-compatible stage. Based on the structures of the VSV L (preinitiation stage, PDB: 5A22) and influenza polymerase (elongation stage, PDB: 6OCV), we modeled the RNA template and the transcript into our RSV polymerase structure\cite{40,50,62,63} (Fig. 4a, b and Supplementary Fig. 11).

Besides, our study has implications for understanding current RSV polymerase inhibitors. Previous studies showed that resistance to the nucleoside analog inhibitor ALS-8112 is conferred by QUAD resistance mutations (M628L, A789V, L795I, and I796V) in the RdRp domain of L, while a nonnucleoside inhibitor AZ-27 that inhibited the RdRp activity could be escaped by a Y1631H resistance mutation\cite{65}. In our structure, the QUAD mutation sites (yellow) of ALS-8112 are in approximate close location to the active site (D811, magenta), and the QUAD mutations can potentially alter the microenvironment of RNA synthesis and the conformation of the RdRp active sites (Supplementary Fig. 12). However, Y1631 is not visible in the structure, and the inhibition mechanism of AZ-27 remains unclear.

Further, our study has evolutionary implications: How did three distinct enzymatic activities (RNA polymerization, RNA capping, and RNA cap methylation) for RNA synthesis integrate within a single polypeptide (L)? How are those functional domains evolved/related to multiple much complex counterparts in the eukaryotic cell and many other viruses? Further studies will reveal whether this “compact” mechanism illustrates the evolutionary pressure applied for the RNA synthesis machinery in general.

During the review process of our manuscript, another structure of the RSV polymerase (L:P) complex in an apo state was published\cite{65}. We superposed the published structure (PDB: 6PZK) with our structure (PDB: 6UEN) described here, and they share similar overall fold with high similarities (RMSD = 1.450 Å). Interestingly, the superpositions of the individual RdRp domain, Cap domain, and the P tetramers yield lower RMSD values of 1.240, 1.021, and 0.991 Å, respectively. The structural comparisons suggest that the individual domains are mostly the same, but the inter-domain arrangements of the two structures have slight differences. In the closer dissection of both structures, we identified minor shifts between the interface of the LP complex, in particular, the P tetramers and the two helixes of L that interact with P (dock A and dock B) if fixed the position of the RdRp domain. It appears that the P tetramers slide closer to L, and the docks A and B shift towards the RdRp domain and adopt more compact packing to accommodate closer interactions with P.

Fig. 4 The proposed model of RSV RNA synthesis. a, b The RSV polymerase with modeled RNA template and transcript (PDB: 6OCV). The same color scheme for RSV proteins as Fig. 2a. The modeled RNA template and RNA transcript are shown in yellow and pink, respectively. (Supplementary Fig. 11 for additional comparisons). The 3′ RNA template enters the RdRp from the bottom, and 5′ RNA transcript exits from the top. The upstream 3′ RNA template is drawn in black line.
cryo-EM sample preparation and data acquisition. A total of 3.0 μl of the purified RSV polymerase (LP) complex at a concentration of 0.35 ng/μl were applied to a glow-discharged Quantifoil holey carbon grid (R1/2/13, Cu, 400 mesh) (SPI). Grids were blotted for 3 s at ~90% humidity at RT and plunge-frozen in liquid ethane using a Cryoloop 3 System (Gatan). Cryo-EM data were recorded on a Talos Arctica 200 kV (TEM) with BioQuantum/K2 direct electron detector (Thermo Fisher) at Emory University. All cryo-EM movies were recorded in counting mode using EPU (Thermo Fisher). The nominal magnification of \(\times130,000 \) corresponds to a calibrated pixel size of 1.04 Å on the specimen. The dose rate was set to 1.365 e/Å²/frame. The total exposure time of each movie was 10 s, leading to a total accumulated dose of 55 e/Å², fractionated into 40 frames (250 ms per frame). All movies were recorded in a defocus range between ~1.25 and ~2.5 μm. A total of 2680 micrographs were collected from two separate data collection sessions.

Image processing and 3D reconstruction. Drift correction, beam-induced motion, and dose-weighting were performed for dose-fractionated movies by the program MotionCor246 with a 5 × 5 pixel patch, resulting in corrected movies and summed images. All 40 frames in each movie were summed with the dose-weighted scheme. The summed images were used in all image processing steps. The contrast transfer function (CTF) was estimated using the program CTFFIND47. To generate RSV polymerase complex templates for automatic picking and the initial model, around 30,000 particles were manually picked and classified. The data were initially processed in two datasets, one for each data collection session (1349 and 1251 micrographs) and then merged into a total of 2600 micrographs. A total of 792,070 particles were picked, and the box size of 200 pixels was used to extract the particles. Particle picking and screening, 2D classification, as well as the initial 3D model building, 3D classification, 3D refinement, CTF refinement, and polishing were performed using RELION 3.078. The final refinement was validated using cis-TEMP69, using the best class as the initial model. The global search was performed once without the mask followed by another global search using a soft mask (six-pixel soft edge) that was generated in RELION. All reported resolutions were based on gold-standard refinement procedures and the Fourier shell correlation (FSC) = 0.143 criterion. Local resolution was estimated using ResMap80.

Model building and refinement. The 3.67 Å resolution map was used for model building and refinement. To obtain better side-chain densities for model building, B-factor was used for map sharpening. The coordinates of the VSV L protein (PDB: 5A22) and the homology models of the RSV L protein by Phyre227 and I-TASSER28 were positioned into the map as the initial guides using UCSF Chimera23 and COOT24. The structure model was manually built by COOT. Structure factors were calculated by PHENIX75,76, and the full structure was subjected to multiple cycles of global real-space refinement with rotamer, Ramachandran plot restraints enabled in PHENIX. FSCs were calculated between the two half maps, the model against the working map and the other (free) half map and full (sum) map. The confidence maps and locally sharpened maps were calculated to facilitate the model building.27,28, MolProbity39 was used to validate the geometries of the model.

Figure preparation. All the figures representing model and electron density maps were generated using COOT24, UCSF Chimera23, and PyMOL80. Multiple sequence alignments were performed using Multalin81 and ESPript82.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request. The 3D cryo-EM density maps and atomic coordinates generated and analyzed during the current study are available on the Electron Microscopy Data Bank (Accession code: EMD-20754) and Protein Data Bank (Accession code: 6UEN), respectively.

Received: 30 September 2019; Accepted: 18 December 2019;
Published online: 17 January 2020

References
1. Knipe, D. M. & Howley, P. M. Fields Virology 6th edn (Lippincott Williams & Wilkins, 2013).
2. Collins, P. L., Fears, R. & Graham, B. S. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr. Top. Microbiol. Immunol. 372, 3–38 (2013).
3. Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young
children in 2015: a systematic review and modelling study. *Lancet* 390, 946–958 (2017).

4. Whelan, S. P., Barr, J. N. & Wertz, G. W. Transcription and replication of nonsegmented negative-strand RNA viruses. *Curr. Top. Microbiol. Immunol.* 283, 61–119 (2004).

5. Conzelmann, K. K. Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. *Annu. Rev. Genet.* 32, 123–162 (1998).

6. Viña, H. et al. Ribosome recruitment by an essential flavivirus replicase by viral trans-splicing. *Cell* 21, 267–275 (1980).

7. Fursch, R., Peeples, M. E. & Collins, P. L. Mapping the transcription and replication promoters of respiratory syncytial virus. *J. Virol.* 76, 1663–1672 (2002).

8. Testa, D., Chanda, P. K. & Banerjee, A. K. Unique mode of transcription synthesis of full-length mRNA. *J. Virol.* 69, 5677–5686 (1995).

9. Ball, L. A. & White, C. N. Order of transcription of genes of vesicular stomatitis virus. *Proc. Natl. Acad. Sci. USA* 73, 442–446 (1976).

10. Furuichi, Y. & Shatkin, A. J. Viral and cellular mRNA capping: past and prospects. *Adv. Virus Res.* 55, 135–184 (2000).

11. Ferron, F., Longhi, S., Henrissat, B. & Canard, B. Viral RNA polymerases: a predicted 2′-O-methyltransferase domain shared by all Mononegavirales. *Trends Biochem. Sci.* 27, 222–224 (2002).

12. Albertini, A. A., Schoehn, G., Weissenhorn, W. & Ruigrok, R. W. Structural analysis of the large subunit of the influenza RNA polymerase. *Nat. Struct. Biol.* 10, 849–856 (2003).

13. Testa, D., Chanda, P. K. & Banerjee, A. K. Unique mode of transcription synthesis of full-length mRNA. *Cell* 21, 267–275 (1980).

14. Fursch, R., Peeples, M. E. & Collins, P. L. Mapping the transcription and replication promoters of respiratory syncytial virus. *J. Virol.* 76, 1663–1672 (2002).

15. Noton, S. L. & Fursch, R. Initiation and regulation of paramyxovirus transcription and replication. *Virology* 479–480, 545–554 (2015).

16. Zhao, Y. et al. RNA polymerase of vesicular stomatitis virus. *Cell* 21, 267–275 (1980).

17. Noton, S. L., Deflebe, L. R., Treamlig, C. Z. & Fursch, R. Respiratory syncytial virus polymerase can initiate transcription from position 3 of the leader promoter. *J. Virol.* 84, 3316–3327 (2010).

18. Noton, S. L., Deflebe, L. R., Treamlig, C. Z. & Fursch, R. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. *PLoS Pathog.* 8, e1002980 (2012).

19. Albertini, A. A., Schoehn, G., Weissenhorn, W. & Ruigrok, R. W. Structural aspects of rabies virus replication. *Cell Mol. Life Sci.* 65, 282–294 (2008).

20. Ogino, T. et al. Conventional ribonucleotide capping in picornavirus infection. *J. Virol.* 82, 10701–10709 (2008).

21. Paesen, G. C. et al. X-ray structure and activities of an essential non-structural domain of respiratory syncytial virus polymerase. *PLoS Pathog.* 7, e1002980 (2011).

22. Poch, O., Blumberg, B. M., Bougueleret, L. & Tordo, N. Sequence comparison of recombinant vesicular stomatitis virus RNA polymerases. *Cell* 21, 267–275 (1980).

23. Sleat, D. E. & Banerjee, A. K. Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins. *Virus Res.* 211, 117–125 (2016).

24. Cowton, V. M., McGivern, D. R. & Fursch, R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. *J. Gen. Virol.* 87, 1805–1821 (2006).

25. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).

26. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).

27. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).

28. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).

29. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).

30. Li, J., Rahmeh, A., Morelli, M. & Whelan, S. P. A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA synthesis. *J. Virol.* 82, 7743–7752 (2008).
59. Ding, H., Green, T. J., Lu, S. & Luo, M. Crystal structure of the oligomerization domain of the phosphoprotein of vesicular stomatitis virus. J. Virol. 80, 2808–2814 (2006).
60. Tarbouiech, N., Curran, J., Ruigrok, R. W. & Burmeister, W. P. Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat. Struct. Biol. 7, 777–781 (2000).
61. Ogino, M., Gupta, N., Green, T. J. & Ogino, T. A dual-functional priming-capping loop of the adoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation. Nucleic Acids Res. 47, 299–309 (2019).
62. Gong, P. & Peersen, O. B. Structural basis for active site closure by the coiled coil domain of the phosphoprotein of vesicular stomatitis virus. Acta Crystallogr. D Biol. Crystallogr. 74, 531–544 (2018).
63. Beckers, M., Jakobi, A. J. & Sachse, C. Thresholding of cryo-EM density maps by false discovery rate control. IUCrF 6, 18–33 (2019).
64. Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).
65. Davies, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
66. Rigby, R. E. & Parker, A. B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 44, 433–437 (2016).
67. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10883–10890 (1988).
68. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDiscript server. Nucleic Acids Res. 42, W320–W324 (2014).

Acknowledgements
This study was supported by the US National Institute of General Medical Sciences (NIGMS), National Institutes of Health (NIH) under award number R01GM130950, and the Research Start-Up Fund at Emory University School of Medicine. We thank Dr Martin Moore for providing the helper plasmids of RSV L and P. We thank the assistance and services provided at the Robert P. Aakjarian Integrated Electron Microscopy Core (IEMC) at Emory University. We also thank Dr Pritha Bagchi at Emory Integrated Proteomics Core (EIPC) at Emory University. The mass spectrometry work was supported in part by the Emory Integrated Proteomics Core and Parker H. Petit Institute for Bioengineering and Biosciences at Georgia Tech. We thank Ryan Youngs, Amaal Abdi, Erica Lee, Masthan Shaik, Ziheng Ma, Sarah Franklin, and Jasmine Berry for the help of manual particle picking. We also thank the members of the Liang lab for critical discussions and helpful support.

Author contributions
D.C., Y.G. and B.L. conceived the project. D.C., C.R., S.R., P.D., L.Z., J.S., M.D., A.A., S.R., S.K. and G.F. contributed to the cell culture. D.C., C.R., S.R., P.D., L.Z. and J.S. and B.L. carried out the protein purification. D.C., Y.G. and B.L. prepared cryo-EM grids. D.C., P.J. and B.L. collected cryo-EM data. B.L. carried out cryo-EM image processing. D.C. and B.L. built and refined atomic models. D.C., Y.G. and B.L. analyzed data. B.L. wrote the manuscript. D.C. and B.L. revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14246-3.

Correspondence and requests for materials should be addressed to B.L.

Peer review information Nature Communications thanks Aartjan te Velthuis, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020