Genomic analyses of transport proteins in Ralstonia metallidurans

Torsten von Rozycki, Dietrich H. Nies and Milton H. Saier Jr*

1Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
2Molekulare Mikrobiologie, Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany

*Correspondence to:
Milton H. Saier Jr, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
E-mail: msaier@ucsd.edu

Received: 14 May 2004
Revised: 14 December 2004
Accepted: 15 December 2004

Keywords: bioinformatics; transport proteins; comparative genomics

Abstract

Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3:1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium. Copyright © 2005 John Wiley & Sons, Ltd.

Introduction

Ralstonia metallidurans (Rme; previously Alcaligenes eutrophus, renamed in 2004 Wautersia metallidurans and then Cupriavidus metallidurans; Goris et al., 2001; Vandamme and Coenye, 2004; Vaneechoutte et al., 2004), is a Gram-negative facultative chemolithoautotrophic β-proteobacterium. It was first identified in 1976, when it was isolated from industrial sediments, soils and wastes that were polluted with high concentrations of various heavy metals, such as cobalt, zinc, nickel and cadmium (Mergeay et al., 1985). The concentrations of these metals that can exist in the habitats of Rme greatly exceed the values that are lethal to almost any other living organisms. Rme is related to the important plant pathogen Ralstonia solanacearum (Boucher et al., 2001), which is resistant to a wide variety of drugs and toxic compounds. The complete genome sequence of the latter organism is available (Salanoubat et al., 2002).

The properties of Rme render it potentially important for purposes of bioremediation, such as for the degradation of aromatic compounds and xenobiotics, even in the presence of heavy metals as additional pollutants. Rme is also able to synthesize polyhydroxyalkalnoates (PHAs), which accumulate as carbon and energy sources and might be useful for the development of biodegradable plastics. The extraordinary heavy metal resistance of Rme and its ability to accumulate these metals on its surface make it a candidate for a variety of clean-up purposes (Legatzki et al., 2003a; Mergeay et al., 2003; Nies, 2003).

Two low copy number plasmids, pMOL30 (238 kb; Mergeay et al., 1985) and pMOL28 (180 kb; Taghavi et al., 1997), that are stably carried by Rme strain CH34, are primary determinants of the remarkable heavy metal resistance characteristic of Rme (Legatzki et al., 2003a,b). Both are self-transferable at low frequencies, potentially offering a new approach for inserting resistance genes into other organisms. Rme lacks the RecBCD
pathway for DNA degradation — a property that allows it to serve as an acceptor for foreign resistance genes. The fact that specific transport systems responsible for the uptake and export of various metabolites and heavy metals (Andres et al., 2000; Borremans et al., 2001; Goris et al., 2001; Juhnke et al., 2002; Mergeay et al., 2003; Nies, 2003; Roux et al., 2001) have been better characterized in Rme than in any other bacterium (Nies, 2003), renders Rme a model organism for basic research on metal resistance and homeostasis.

It has been suggested that the resistance of Rme to heavy metals and toxic compounds results from multiple layers of efflux pumps with overlapping substrate specificities (Juhnke et al., 2002; Nies, 2003; Silver, 2003). However, comprehensive genome analyses of the transporters in Rme are still lacking. In this paper we correct this deficiency, reporting bioinformatic studies of all recognizable transporters encoded within the genome of Rme.

Computer methods

The protein sequences of Rme were extracted from the JGI database and downloaded for all of the analyses reported here. The sequencing work done at JGI (http://genome.jgi-psf.org/draft_microbes/ralme/ralme.home.html) and the annotation project performed by the CH34 annotation consortium (http://genome.ornl.gov/microbial/rmet/) formed the basis of this work and are acknowledged at this point. Since the names of the CH34 genes have changed many times in the past, as has the name of the organism, cross-reference tables are supplied as supplementary material (http://bionomie.mikrobiologie.uni-halle.de/SupMat/SupplMat.htm). Computer-aided searches were conducted to retrieve all proteins encoded within the genome that are recognizable homologous to transport system constituents included in the Transporter Classification Database (TCDB; Busch and Saier 2002; Tran et al., 2003). Briefly, all proteins encoded within the genome were blasted in an automated manner (using BLASTP) against TCDB. Additional databases used for protein functional analysis were the non-redundant SWISSPROT and TrEMBL protein sequence databases. Several protein pattern databases (conserved domain databases at NCBI and Pfam) were also used. Charge bias analyses of membrane protein topology were performed using the TMHMM (Krogh et al., 2001) and WHAT (Zhai and Saier, 2001) programs.

Results and discussion

Topological predictions for membrane transporter homologues

The proteome of Rme was analysed for topological predictions; 59% (4072) of the 6985 proteins identified have no predicted TMSs, while 21% (1434) have only one putative TMS. While most of the former proteins are likely to be cytoplasmic, many of the latter will undoubtedly prove to be periplasmic and outer membrane proteins; 8% (580) have two or three TMSs, 5% (320) have four to six TMSs, and 3% each (196 and 223) have seven to 10 and >10 TMSs, respectively. Relative to most other prokaryotes analysed, Rme has increased proportions of integral membrane proteins of all topological types (Paulsen et al., 2000).

All putative transport protein constituents recognized in the proteome of Rme were similarly analysed for topology; 932 putative transporter proteins (13%) were recognized in the proteome of Rme. This percentage is higher than observed for most other organisms with fully sequenced genomes (Paulsen et al., 2000). About 24% (227) of these proteins may be cytoplasmic, as they exhibit no putative TMSs. All others are potential integral membrane constituents. Of these, 21% (196) are predicted to have one TMS, 9% (88) have two or three TMSs, 16% (146) have four to six TMSs, 10% (94) have seven to 10 TMSs, and 19% (179) have >11 TMSs. Many of the one-TMS proteins displayed typical leader sequences at their respective amino-termini and may be secreted via the Sec and Tat export systems (see below). They may be receptors for ABC-, TRAP-T- and TTT-type transport systems (see below). Since transporter families include proteins that are almost always concerned exclusively with transport (Saier, 2003), it is probable that nearly all of these proteins function in transmembrane transport.
Genomic analyses of transport proteins in *Ralstonia metallidurans*

According to the transporter classification (TC) system, transporters are classified into five well-defined categories (classes 1–5) and two poorly defined categories (classes 8 and 9). The well-defined categories are: (a) channels; (b) secondary carriers; (c) primary active carriers; (d) group translocators; and (e) transmembrane electron flow carriers (Busch and Saier, 2002; Saier, 2000). The less well-defined proteins include (8) auxiliary transport proteins and (9) transporters or putative transporters of unknown mechanism of action or function (Saier, 2000).

Table 1 summarizes the distribution of the 932 transporter protein constituents from Rme in each of the major TC categories and also provides a breakdown of these proteins found in the various TC subclasses; 123 channel proteins, most of them outer membrane porins, were identified. However, the majority of defined transport proteins found are secondary carriers (304) and constituents of primary active transporters (343).

Only one phosphoenolpyruvate-dependent, sugar transporting phosphotransferase system (PTS) permease, which catalyses group translocation of hexoses, was found. Further, only 10 transmembrane electron flow system constituents were identified. This latter fact may in part reflect the limited representation of transmembrane electron flow carriers in the Transporter Classification Database (TCDB).

Thirty-one auxiliary proteins of TC class 8 and 65 putative transporters of TC class 9 were identified (Table 1). The probable functional identities of the individual proteins will be discussed below.

Classes of substrates transported

Table 2 summarizes the numbers of transporter proteins concerned with the transport of various types of substrates; 300 proteins are putative transport protein homologues concerned with the uptake or efflux of inorganic ions, and nearly three-quarters of them are concerned with inorganic cation transport. This observation undoubtedly relates to the remarkable heavy metal resistance of Rme.

Forty-one systems specific for sugars and their derivatives and 110 systems specific for amino acids and their derivatives were identified. These facts suggest that amino acid metabolism may be more important to Rme than sugar metabolism for heterotrophic growth. This substrate preference of Rme has been observed before (Mergeay et al., 1985). Rme has 142 transport protein homologues putatively concerned with carboxylate transport, which also agrees with the substrate spectrum of this bacterium (Mergeay et al., 1985). This fact, together with the greater number of secondary carriers relative to primary active transporters, points to a strong metabolic dependency on respiration rather than fermentation. Ninety-one

TC class	No. of transporters (%)	TC subclass	No. of transporters (%)
1 Channels	123 (13)	1.A. α-Type channel-forming proteins and peptides	27 (3)
		1.B. Outer membrane porins (β-structure)	94 (10)
		1.C. Pore-forming toxins (proteins and peptides)	1 (0.1)
		1.E. Holins	1 (0.1)
2 Secondary carriers	304 (33)	2.A. Carrier-type facilitators	299 (32)
		2.C. Ion-gradient-driven energizers	5 (1)
3 Primary transporters	343 (37)	3.A. P-P bond hydrolysis-driven transporters	290 (31)
		3.B. Decarboxylation-driven active transporters	2 (0.2)
		3.D. Oxidoreduction-driven active transporters	51 (5)
4 Group translocators (PTS)	2 (0.2)	4.A. Phosphotransferase systems	2 (0.2)
5 Transmembrane electron carriers	10 (1)	5.A. Transmembrane electron transfer carriers	10 (1)
8 Auxiliary transport proteins	31 (3)	8.A. Auxiliary transport proteins	31 (3)
9 Poorly-defined systems	65 (7)	9.A. Transporters of unknown classification	10 (1)
		9.B. Putative uncharacterized transporters	55 (6)
Unclassified	54 (6)	Unclassified	54 (6)
Total number	932 (100)		932 (100)
Table 2. Breakdown of transport proteins according to predicted substrate types in *Ralstonia metallidurans*

Substrate class	No. of transporters (%)	Substrate subclass	No. of transporters (%)
1 Inorganic compounds	300 (32)	Cations	221 (24)
		Anions	78 (8)
		H₂O	1 (0.1)
2 Organic compounds	400 (43)	Sugars/sugar metabolites	41 (4)
		Amino acids/polyamines	110 (12)
		Mono-, di- tricarboxylates	
		Fatty acids	142 (15)
		Drugs/toxic compounds	91 (10)
		Nucleotides/nucleosides	4 (0.4)
		Aromatics	13 (1)
3 Macromolecules	102 (11)	Lipoproteins/proteins	75 (8)
		Lipopolysaccharides/polysaccharides	20 (2)
		DNA	5 (0.5)
		Lipids	1 (0.1)
4 Miscellaneous/unknown	130 (14)	Miscellaneous	15 (2)
		Unknown	115 (12)
Total	932 (100)		932 (100)

proteins are predicted to be concerned with transport of drugs and hydrophobic substances, while 130 proteins fall into the miscellaneous/unknown category.

Global analysis of transporters in Rme and their family associations

Table 3 summarizes the results of our detailed analyses of transporters found in Rme. On the left, the family TC number, the name of the family and its standard abbreviation can be found (columns 1–3). Column 4 presents the types of substrates known to be transported by members of the respective family. Column 5 gives the number of family members identified in Rme, while column 6 presents the gene designation used in the draft version (02jul03) of the Rme genome analysed here. A full version of this table that contains all of the various names of the CH34 genes is provided as supplementary material (http://bionomie.mikrobiologie.uni-halle.de/SupMat/Roz_05/Table 3.htm). Column 7 gives the protein size in number of amino acyl residues, and column 8 provides an estimate of the number of putative transmembrane spanning regions (TMSs) for each protein. The TC number of the protein in TCDB that shows greatest similarity to the Rme ORF under consideration is presented in column 9. Finally, column 10 presents the level of confidence for the functional assignment (1 = sure, 2 = probable, 3 = uncertain or unknown).

Channels

In category 1A (α-type channels), Rme possesses two members of the VIC family (1.A.1), both probably K⁺ channels. Two members of the MIP family of aqua/glycerol porins are also present. Four putative chloride channels (ClC family) were found, as well as one CytB homologue. This last system may function primarily in transmembrane electron flow, but no bacterial member of this family has been characterized (Kimball and Saier, 2002).

MscL (1.A.22), MscS (1.A.23) and MIT (1.A.35) families are all well represented with one, nine and four members, respectively. All four MIT family members are probably divalent cation transporters, while the MscL and MscS proteins are most likely non-specific channels for protection against osmotic stress (Busch and Saier, 2002; Nottebrock et al., 2003; Pivetti et al., 2003). Rme exhibits two paralogues within the hsp70 family of chaperone proteins, some of which have been shown to be capable of forming transmembrane channels (Arispe and De Maio, 2000). No other channel-type proteins of TC class 1.A could be recognized.

A tremendous number of putative outer membrane porins were identified. For example, just within the general bacterial porin (GBP) family (1.B.1), 29 paralogues were found. Most of these proteins are of 300–400 amino acids in length and probably consist largely of β-structure. A trimeric
Table 3. Putative transport proteins identified in *Ralstonia metallidurans*

Family (1)	Abbreviation (2)	Typical substrates (3)	Total # (4)	Gene (02Jul03) (5)	Length (aa) (6)	# TMSs (7)	Nearest homologue in TCDB (9)	Evidence (10)	
I.A. α-Type channel-forming proteins and peptides									
I.A.1 Voltage-gated ion channel VIC	Na\(^+\), K\(^+\), Ca\(^{2+}\), multiple cations	2	Contig372gene5732	307	5	I.A.1.2.3(1)	3		
I.A.8 Major intrinsic protein MIP	H\(_2\)O, glycerol, urea, polyols, NH\(_3\), CO\(_2\)	2	Contig375gene720	250	6	I.A.8.13.1(1)	3		
I.A.11 Chloride channel QC	Cl\(^-\), anions	2	Contig375gene3245	657	12	I.A.11.6.1(1)	3		
I.A.20 gp91phox Phagocyte NADPH oxidase-associated cytochrome b558 CytB	H\(^+\)	1	Contig363gene2857	447	6	I.A.20.6.1(1)	2		
I.A.22 Large conductance mechanosensitive ion channel MscL	Proteins, ions (slightly cation selective)	1	Contig367gene3927	144	2	I.A.22.1.3(1)	2		
I.A.23 Small conductance mechanosensitive ion channel MscS	Ions (slight anion selectivity)	1	Contig367gene3927	144	2	I.A.22.1.3(1)	2		
I.A.30 H\(^+\)- or Na\(^+\)-translocating bacterial flagellar motor ExbBD outer membrane transport energizer Mot/Esb-Mot	H\(^+\), Na\(^+\)	9	Contig361gene2514	447	5	I.A.30.1.1(2)	2		
I.A.33 Cation channel-forming heat shock protein Hsp70	Ions, polypeptides	2	Contig371gene5340	299	4	I.A.30.1.1(2)	2		
I.A.35 CorA metal ion transporter MIT	Heavy-metal ions, Mg\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Fe\(^{2+}\), Al\(^{3+}\), Mn\(^{2+}\)	2	Contig363gene2888	320	2	I.A.35.1.2(1)	2		
Family	Family (2)	Abbreviation	Typical substrates	Total # (5)	Gene (02jul03) (4)	Length (aaas) (6)	# TMSs (7)	Nearest homologue in TCDB (9)	Evidence (10)
--------	-----------	--------------	-------------------	------------	-------------------	-----------------	---------	-------------------------------	--------------
1.B.	1.8.	Outer membrane porins (β-structure)	GBP	ions, small (M_r of <1000 Da) molecules	4	Contig374gene7317 383 3	A.35.3.1(1) 3	2	
1.B.1	General bacterial porin	GBP	ions, small (M_r of <1000 Da) molecules	4	Contig365gene3224 362 3	A.35.3.1(1) 3	2		
1.B.	1.8.6	OmpA-OmpF porin	OOP	ions, small molecules	29	Contig367gene3951 393 2	A.35.3.1(1) 3	2	
1.B.	1.8.9	FadL, outer membrane protein	FadL	Fatty acid, toluene, m-xylene and benzyl alcohol	3	Contig343gene479 464 1	I.B.9.2.1(1) 2	2	
1.B.	1.8.9	FadL, outer membrane protein	FadL	Fatty acid, toluene, m-xylene and benzyl alcohol	3	Contig343gene479 464 1	I.B.9.2.1(1) 2	2	
Subunit	Protein Activity	Contig	Gene	Start	End	1st-3rd ID	4th ID		
-------------------------------	--	---------	-------	---------	-------	------------	--------		
1.B.11 Outer membrane fimbrial usher porin	FUP, Protein folding and subunit assembly	Contig358	gene1879	761	0	I.B.11.3.1(1)	2		
1.B.12 Autotransporter	AT, N-terminal protein domains	Contig365	gene3393	854	1	I.B.11.3.1(1)	2		
1.B.14 Outer membrane receptor	OMR, Iron-siderophore complexes, vitamin B_{12}, Cu^{2+}, colicin, DNA of various phages	Contig374	gene7240	761	0	I.B.11.3.1(1)	2		
1.B.17 Outer membrane factor	OMF, Heavy metal cations, drugs, oligosaccharides, proteins, etc.	Contig369	gene4334	815	1	I.B.11.3.1(1)	2		
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (#aa) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
------------	------------	------------------	-----------------------	-------------	---------------------	-----------------	-----------	-----------------------------	-------------
1.B.18					Contig353gene1181	488	1	I.B.17.3.3(1)	
					Contig372gene6314	518	1	I.B.17.3.3(1)	
					Contig373gene6658	511	3	I.B.17.3.3(1)	
					Contig375gene8564	495	0	I.B.17.3.3(1)	
					Contig378gene1815	519	0	I.B.17.3.4(1)	
					Contig373gene6386	589	0	I.B.17.3.4(1)	
					Contig372gene2648	512	0	I.B.17.3.4(1)	
					Contig375gene1190	497	1	I.B.17.3.5(1)	
					Contig375gene8587	476	0	I.B.17.3.5(1)	
					Contig375gene7766	491	2	I.B.17.3.5(1)	
					Contig375gene8672	606	0	I.B.18.1.2(1)	
1.B.19				28	Contig372gene5594	362	0	I.B.18.3.1(1)	
					Contig379gene1948	492	1	I.B.19.1.1(1)	
					Contig373gene6550	588	0	I.B.20.1.1(1)	
					Contig371gene5256	558	1	I.B.20.3.1(1)	
					Contig371gene5305	473	0	I.B.22.1.1(1)	
1.B.20				1	Contig373gene7610	783	1	I.B.22.1.2(1)	
					Contig376gene3787	710	1	I.B.22.2.1(1)	
					Contig375gene9238	734	1	I.B.22.4.1(1)	
					Contig376gene4122	600	0	I.B.22.7.1(1)	
					Contig375gene9331	286	1	I.B.39.1.1(1)	
1.B.22				6	Contig372gene5565	245	0	I.B.39.1.1(1)	
					Contig373gene7610	783	1	I.B.22.1.2(1)	
					Contig376gene3787	710	1	I.B.22.2.1(1)	
					Contig375gene9238	734	1	I.B.22.4.1(1)	
					Contig376gene4122	600	0	I.B.22.7.1(1)	
					Contig375gene9331	286	1	I.B.39.1.1(1)	
1.B.39				2	Contig372gene5565	245	0	I.B.39.1.1(1)	
					Contig373gene7610	783	1	I.B.22.1.2(1)	
					Contig376gene3787	710	1	I.B.22.2.1(1)	
					Contig375gene9238	734	1	I.B.22.4.1(1)	
					Contig376gene4122	600	0	I.B.22.7.1(1)	
					Contig375gene9331	286	1	I.B.39.1.1(1)	
1.C.				2	Contig372gene5565	245	0	I.B.39.1.1(1)	
1.C.1					Contig372gene5565	245	0	I.B.39.1.1(1)	
1.C.1					Contig372gene5565	245	0	I.B.39.1.1(1)	
1.E.				3	Contig372gene5735	128	3	I.E.14.1.1(1)	
1.E.14					Contig372gene5735	128	3	I.E.14.1.1(1)	
2.A.1				1	Contig373gene468	484	12	2.A.1.1.5(1)	
2.A.1					Contig374gene7546	418	12	2.A.1.2.4(1)	
2.A.1					Contig375gene1790	411	12	2.A.1.2.4(1)	
2.A.1					Contig372gene4856	418	12	2.A.1.2.7(1)	
2.A.1					Contig375gene9203	426	11	2.A.1.2.7(1)	
2.A.1					Contig376gene4402	634	12	2.A.1.2.9(1)	
2.A.1					Contig375gene8690	408	12	2.A.1.2.8(1)	
2.A.1					Contig371gene5419	415	12	2.A.1.2.8(1)	
Contig	Gene	Start	End	Length	Class	Description			
--------	------	-------	-----	--------	-------	-------------			
Contig373gene6337	404	426	23	2.A.1.2.10(1)	3				
Contig373gene6438	275	306	31	2.A.1.2.10(1)	3				
Contig375gene6780	408	426	19	2.A.1.2.10(1)	3				
Contig369gene4487	426	448	22	2.A.1.2.10(1)	3				
Contig373gene6352	388	404	16	2.A.1.14(1)	2				
Contig375gene9023	421	437	17	2.A.1.14(1)	2				
Contig375gene7618	400	416	17	2.A.1.14(1)	3				
Contig375gene7724	398	414	17	2.A.1.18(1)	3				
Contig375gene9023	421	437	17	2.A.1.18(1)	3				
Contig375gene9338	395	411	17	2.A.1.20(1)	3				
Contig360gene2102	537	537	1	2.A.1.3.2(1)	2				
Contig358gene1921	519	535	17	2.A.1.3.2(1)	2				
Contig366gene4327	396	412	17	2.A.1.3.5(1)	3				
Contig375gene7796	528	544	17	2.A.1.3.5(1)	2				
Contig339gene328	480	496	17	2.A.1.11(1)	2				
Contig335gene2260	548	564	17	2.A.1.12(1)	2				
Contig364gene6900	504	520	17	2.A.1.17(1)	3				
Contig374gene7112	490	506	17	2.A.1.17(1)	2				
Contig375gene8085	473	489	17	2.A.1.17(1)	2				
Contig373gene6605	513	531	19	2.A.1.17(1)	2				
Contig351gene1053	508	524	17	2.A.1.18(1)	2				
Contig375gene8189	524	540	17	2.A.1.18(1)	2				
Contig375gene8551	545	561	17	2.A.1.18(1)	2				
Contig371gene5277	525	541	17	2.A.1.18(1)	3				
Contig336gene2390	429	445	17	2.A.1.18(1)	3				
Contig374gene7196	476	492	17	2.A.1.18(1)	2				
Contig375gene1112	436	452	17	2.A.1.18(1)	2				
Contig373gene6395	434	450	17	2.A.1.18(1)	2				
Contig335gene1283	262	278	17	2.A.1.18(1)	2				
Contig372gene6669	443	459	17	2.A.1.18(1)	2				
Contig375gene6761	461	477	17	2.A.1.18(1)	2				
Contig372gene6548	437	453	17	2.A.1.6.3(1)	2				
Contig352gene1110	565	565	1	2.A.1.6.4(1)	3				
Contig358gene1834	255	271	17	2.A.1.6.5(1)	3				
Contig358gene1835	300	316	17	2.A.1.6.5(1)	3				
Contig352gene1110	565	565	1	2.A.1.6.5(1)	2				
Contig373gene6129	459	475	17	2.A.1.6.6(1)	2				
Contig375gene1777	439	455	17	2.A.1.6.6(1)	2				
Contig375gene7921	437	453	17	2.A.1.8.4(1)	2				
Contig360gene1276	427	443	17	2.A.1.8.11(1)	2				
Contig360gene1277	460	476	17	2.A.1.8.11(1)	2				
Contig364gene3127	441	457	17	2.A.1.11.l(1)	2				

Genomic analyses of transport proteins in Ralstonia metallidurans
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (aa) (7)	# TMS (8)	Nearest homologue in TCDB (9)	Evidence (10)
- SHS (12)	- ACS (14)	Organic acids		3	Contig35gene 391	1472	12	2.A.1.11.1(1)	3
		Sialate, lactate, pyruvate		1	Contig35gene 2081	397	12	2.A.1.12.1(1)	3
		- SHS (12)		4	Contig35gene 192	443	12	2.A.1.14.1(1)	3
		- ACS (14)		5	Contig35gene 9216	453	12	2.A.1.14.1(1)	2
				6	Contig35gene 5115	433	12	2.A.1.14.1(1)	2
				7	Contig35gene 3217	444	12	2.A.1.14.1(1)	2
				8	Contig35gene 3305	418	12	2.A.1.14.2(1)	3
				9	Contig34gene 689	347	12	2.A.1.14.3(1)	2
				10	Contig31gene 2423	441	12	2.A.1.14.3(1)	2
				11	Contig35gene 1940	453	12	2.A.1.14.8(1)	2
- AHS(15)	- AAHS(15)	Aromatic acids		2	Contig36gene 3071	413	12	2.A.1.15.1(1)	3
				3	Contig37gene 8062	459	12	2.A.1.15.1(1)	2
				4	Contig37gene 5360	441	12	2.A.1.15.1(1)	2
				5	Contig37gene 6741	395	12	2.A.1.15.3(1)	3
				6	Contig35gene 9515	441	12	2.A.1.15.4(1)	2
- CP (17)	- OCT (19)	Organic cations		7	Contig37gene 4875	423	12	2.A.1.17.1(1)	3
				8	Contig37gene 6048	526	12	2.A.1.19.4(1)	2
				9	Contig37gene 6742	454	12	2.A.1.20.2(1)	3
- DHA3 (12)	- DHA3 (12)	Drugs		10	Contig351gene 976	493	12	2.A.1.21.3(1)	3
spanner) (21)	spanner) (21)			11	Contig375gene 7913	514	12	2.A.1.22.1(1)	3
- VNT (22)	- VNT (22)	Neurotransmitter		12	Contig375gene 8194	436	12	2.A.1.23.1(1)	3
- BST (23)	- BST (23)	Unknown		13	Contig375gene 6932	466	12	2.A.1.25.2(1)	2
- PAT (25)	- PAT (25)	Peptides, AcCoA		14	Contig368gene 4202	413	12	2.A.1.26.1(1)	3
- UMC-terminal fragment (26)	- UMC-terminal fragment (26)			15	Contig369gene 4405	365	11	2.A.1.27.1(1)	2
- PPP (27)	- PPP (27)	Phenypropionate		16	Contig372gene 5630	468	12	2.A.1.30.1(1)	3
- ADT (30)	- ADT (30)	Abietane diterpenoid		17	Contig369gene 4238	408	12	2.A.1.31.1(1)	2
- Nre (31)	- Nre (31)	N$^2+$		18	Contig375gene 7801	409	12	2.A.1.35.1(1)	2
- Fsr (35)	- Fsr (35)	Fosmidomycin		19	Contig364gene 2968	467	14	2.A.1.37.1(1)	2
- AtoE (37)	- AtoE (37)	Short chain fatty		20	Contig375gene 9151	484	14	2.A.1.37.1(1)	2
total 83	total 83				Contig361gene 2312	493	12	2.A.3.1.2(1)	2
2.A.3 Amino acid-polyamine-organocation	2.A.3 Amino acid-polyamine-organocation	APC	Amino acids, polyamines, choline	2	Contig375gene 8013	510	12	2.A.3.1.2(1)	2
		- AAA (1)	Amino acids		Contig375gene 8010	462	12	2.A.3.1.3(1)	2
Genomic analyses of transport proteins in *Ralstonia metallidurans*									

Contig373gene6637 475 12 2.A.3.1.9(1) 2									
Contig373gene6757 474 12 2.A.3.1.9(1) 2									
Contig373gene6465 469 14 2.A.3.3.1(1) 2									
Contig375gene8618 316 5 2.A.4.1.1(1) 1									
Contig375gene9479 337 6 2.A.4.1.1(1) 3									
Contig374gene6900 436 6 2.A.4.1.1(1) 2									
Contig356gene1473 291 6 2.A.5.4.1(1) 3									
Contig373gene6081 1055 14 2.A.6.1.3(1) 2									
Contig356gene1378 384 0 2.A.6.1.4(4) 2									
Contig373gene6563 1045 12 2.A.6.1.2(1) 1									
Contig375gene8617 1063 12 2.A.6.1.2(1) 1									
Contig361gene2416 1036 12 2.A.6.1.2(1) 1									
Contig375gene8282 1023 11 2.A.6.1.2(1) 1									
Contig363gene2863 1009 7 2.A.6.1.2(1) 1									
Contig375gene8486 691 6 2.A.6.1.2(1) 1									
Contig375gene8119 365 5 2.A.6.1.2(1) 1									
Contig373gene6081 1055 14 2.A.6.1.3(1) 2									
Contig357gene1462 384 0 2.A.6.1.4(4) 3									
Contig369gene4482 521 1 2.A.6.1.4(4) 2									
Contig369gene4483 1056 14 2.A.6.1.4(1) 2									
Contig375gene7765 1050 12 2.A.6.2.2(1) 2									
Contig369gene4331 1044 12 2.A.6.2.7(1) 2									
Contig358gene1808 1063 12 2.A.6.2.9(1) 2									
Contig375gene7573 1051 12 2.A.6.2.1(1) 2									
Contig375gene7573 1100 12 2.A.6.2.1(1) 2									
Contig365gene3373 1066 0 2.A.6.2.1(1) 2									
Contig365gene3373 1066 12 2.A.6.2.1(1) 2									
Contig353gene1179 1065 12 2.A.6.2.1(1) 2									
Contig375gene7759 1069 12 2.A.6.2.1(1) 2									
Contig372gene5750 636 5 2.A.6.4.1(2) 2									
Contig373gene5751 324 6 2.A.6.4.1(2) 2									
Contig364gene3205 858 9 2.A.6.5.1(1) 3									
Table 3. Continued

Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (#aaas) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
total 30									
2.A.7	Drug/metabolite transporter	DMT	Multiple drugs and dyes (mostly cationic)	1	Contig364gene3146	786	11	2.A.6.8.1(1)	2
2.A.7		- SMR (1)	Drugs	2	Contig374gene7258	109	4	2.A.7.1(1)	3
2.A.7		- BAT (2)	Unknown	2	Contig356gene583	362	11	2.A.7.2(1)	3
2.A.7		- DME (3)	Drugs, metabolites	2	Contig375gene9035	143	5	2.A.7.1(1)	2
2.A.7		- RarD (7)	Chloramphenicol	12	Contig375gene725	297	10	2.A.7.3(1)	2
2.A.9	Cytochrome oxidase bio-genesis	Oxa1	Proteins	2	Contig356gene130	301	10	2.A.7.3(1)	3
2.A.9		KDG1	2-Keto-3-deoxyglucconate	1	Contig375gene6660	337	11	2.A.7.3(1)	3
2.A.9		CitMHS	Citrate- \(\text{Ca}^{2+}:\text{H}^+\) (CitH)	1	Contig356gene1558	327	10	2.A.7.3(1)	2
2.A.10	2-Keto-3-deoxyglucconate transporter	KDGT	2-Keto-3-deoxyglucconate	1	Contig375gene1574	327	10	2.A.7.3(1)	2
2.A.11	Citrate-\(\text{Mg}^{2+}:\text{H}^+\) (CitM)	Citrate-\(\text{Ca}^{2+}:\text{H}^+\) (CitH)	Symporter	12	Contig375gene7272	342	10	2.A.7.3(1)	2
2.A.12	ATP:ADP antiporter	AAA	ATP, ADP	1	Contig375gene893	453	10	2.A.7.3(1)	3
2.A.14	Lactate permease	LctP	Lactate	1	Contig372gene5556	566	16	2.A.7.3(1)	2
2.A.19	\(\text{Ca}^{2+}\)-cation antiporter	CaCA	\(\text{Ca}^{2+}\)	1	Contig375gene7970	360	11	2.A.7.3(1)	2
2.A.20	Inorganic phosphate transporter	PIP	Inorganic phosphate	1	Contig344gene557	336	9	2.A.7.3(1)	2
2.A.21	Solute: sodium symporter	SSS	Sugars, amino acids, vitamins, nucleosides, inositol, iodide, urea	1	Contig375gene7733	461	13	2.A.7.3(1)	2
2.A.23	Dicarboxylate/amino acid: cation (Na\(^+\) or H\(^+\)) symporter	DAACS	C4-dicarboxylates, acidic and neutral amino acids	5	Contig375gene7858	683	14	2.A.7.3(1)	2
2.A.23					Contig372gene5917	553	14	2.A.7.3(1)	2
2.A.23					Contig375gene964	478	13	2.A.7.3(1)	2
2.A.23					Contig374gene1322	967	4	2.A.7.3(1)	3
2.A.23					Contig365gene3380	435	9	2.A.7.3(1)	2
2.A.23					Contig369gene1393	430	8	2.A.7.3(1)	2
2.A.24 Citrate : cation symporter
- **CCS**
- Mono-, di-, and tricarboxylates
- Contig375gene7654 467 10 2.A.23.1.3(1)
- Contig369gene4353 452 8 2.A.23.1.3(1)
- Contig374gene7480

2.A.36 Monovalent cation : proton antiporter-1
- **CPA1**
- Na^+H^+, Na^+ or K^+/H^+
- Contig373gene6794 448 13 2.A.24.2.5(1)
- Contig373gene6805 435 12 2.A.36.6.1(1)

2.A.37 Monovalent cation : proton antiporter-2
- **CPA2**
- Na^+H^+ or K^+/H^+
- Contig358gene1749 404 12 2.A.37.1.2(2)
- Contig375gene9498 219 0 2.A.37.1.2(2)
- Contig375gene9499 604 13 2.A.37.1.2(2)
- Contig375gene8748 408 13 2.A.37.1.2(2)
- Contig375gene9414 406 12 2.A.37.1.2(2)
- Contig370gene4820 482 13 2.A.40.1.1(1)
- Contig372gene5621 453 13 2.A.40.1.1(1)

2.A.40 Nucleobase : cation symporter-2
- **NCS2**
- Nucleobases, urate
- Contig369gene4366 532 7 2.A.47.3.1(1)
- Contig365gene3403 507 15 2.A.47.3.1(1)
- Contig373gene6264 530 15 2.A.47.3.1(1)
- Contig375gene7868 400 0 2.A.49.X
- Contig374gene7490 510 13 2.A.49.1.1(1)
- Contig355gene1410 193 5 2.A.51.1.2(1)

2.A.45 Arsenite–antimonite
- **ArsB**
- Arsenite, antimonite
- Contig371gene5375 445 14 2.A.49.1(0)

2.A.46 Benzoate : H^+ symporter
- **BenE**
- Benzoate
- Contig338gene295 395 12 2.A.46.1.1(1)

2.A.47 Divalent anion : Na^+ symporter
- **DASS**
- Dicarboxylates, phosphate, sulphate
- Contig369gene4367 181 5 2.A.47.3.1(2)
- Contig365gene3403 507 15 2.A.47.3.1(2)
- Contig373gene6264 530 15 2.A.47.3.1(2)
- Contig375gene7868 400 0 2.A.49.X
- Contig374gene7490 510 13 2.A.49.1.1(1)

2.A.49 Ammonium transporter
- **Amt**
- Ammonium
- Contig355gene1410 193 5 2.A.51.1.2(1)

2.A.50 Chromate ion transporter
- **CHR**
- Chromate, sulphate (uptake or efflux)
- Contig371gene5134 390 12 2.A.51.1.1(1)
- Contig368gene4196 401 12 2.A.51.1.0(1)

2.A.52 Ni^{2+}-Co^{2+} transporter
- **NiCoT**
- Ni^{2+}, Co^{2+}
- Contig334gene209 278 7 2.A.52.1.2(1)
- Contig325gene78 603 11 2.A.53.1.4(1)
- Contig375gene5514 492 13 2.A.53.3.1(1)
- Contig365gene3367 599 11 2.A.53.4.1(1)
- Contig375gene8575 578 11 2.A.53.4.1(1)
- Contig371gene5371 586 13 2.A.53.4.1(1)

2.A.53 Sulphate permease
- **SulP**
- Sulphate
- Contig369gene4416 434 13 2.A.56.1.1(3)

2.A.55 Tripartite ATP-independent periplasmic transporter
- **TRAP-T**
- C4-dicarboxylates, acidic amino acids, sugars?
- Contig369gene4416 434 13 2.A.56.1.1(3)
- Contig361gene2330 327 1 2.A.56.1.1(3)
- Contig361gene2332 436 11 2.A.56.1.1(0)
- Contig369gene4417 343 1 2.A.56.1.1(3)
- Contig366gene3497 180 4 2.A.56.1.2(0)
- Contig366gene3498 574 13 2.A.56.1.2(0)
| Family (1) | Family (2) | Abbreviation (3) | Typical substrates (4) | Total # (5) | Gene (02jul03) (6) | Length (7) | # TMS (8) | Nearest homologue in TCDB (9) | Evidence (10) |
|------------|------------|------------------|------------------------|-------------|---------------------|-----------|----------|-----------------------------|--------------|
| 2.A.58 | Phosphate: Na\(^+\) symporter | PNaS | Inorganic phosphate | | Contig353gene1224 | 632 | 9 | 2.A.58.2.1(1) | 2 |
| 2.A.99 | Arsenical resistance-3 | ACR3 | Arsenite | | Contig359gene2078 | 354 | 10 | 2.A.59.1.1(1) | 3 |
| 2.A.61 | Twin arginine targeting | Tat | Redox proteins | | Contig367gene3817 | 77 | 1 | 2.A.64.1.1(4) | 3 |
| 2.A.66 | Multidrug/oligosaccharidyl-lipid/polysaccharide | MOP | Drugs, lipid-linked oligosaccharide precursors | | Contig362gene2523 | 449 | 12 | 2.A.66.1.1(1) | 2 |
| | | | - MATE (1) | | Contig367gene3916 | 455 | 12 | 2.A.66.1.1(1) | 3 |
| | | | - PST (2) | | Contig366gene8978 | 492 | 12 | 2.A.66.1.3(1) | 3 |
| | | | - MVF (4) | | Contig366gene3637 | 419 | 12 | 2.A.66.2.4(1) | 2 |
| 2.A.67 | Oligopeptide transporter | OPT | Peptides | | Contig372gene5640 | 668 | 17 | 2.A.67.3.1(1) | 3 |
| 2.A.69 | Auxin efflux carrier | AEC | Auxin (efflux) | | Contig356gene506 | 293 | 10 | 2.A.69.1.1(1) | 3 |
| 2.A.72 | K\(^+\) uptake permease | KUP | K\(^+\) (uptake) | | Contig349gene850 | 636 | 11 | 2.A.72.1.1(1) | 2 |
| 2.A.75 | L-Lysine exporter | LysE | Basic amino acids | | Contig371gene5136 | 216 | 6 | 2.A.75.1.1(1) | 2 |
| 2.A.76 | Resistance to homoserine/threonine | RhtB | Neutral amino acids and their derivatives | | Contig353gene462 | 205 | 5 | 2.A.76.1.1(1) | 3 |
| 2.A.78 | Branched chain amino acid exporter | LIV-E | Carboxylates, amino acids, amines (efflux) | | Contig373gene6710 | 326 | 6 | 2.A.80.1.1(3) | 3 |
| 2.A.80 | Tricarboxylate transporter | TTT | Tricarboxylate | | Contig370gene4730 | 554 | 1 | 2.A.80.1.1(3) | 3 |
| Contig | Gene | Start | End | Description |
|--------|------|-------|-----|-------------|
| 345 | 580 | 327 | 4 | 2.A.80.1.1(3) |
| 360 | 321 | 326 | 1 | 2.A.80.1.1(3) |
| 373 | 6749 | 322 | 3 | 2.A.80.1.1(3) |
| 373 | 6096 | 328 | 3 | 2.A.80.1.1(3) |
| 373 | 2191 | 327 | 1 | 2.A.80.1.1(3) |
| 357 | 1594 | 336 | 1 | 2.A.80.1.1(3) |
| 366 | 3580 | 336 | 3 | 2.A.80.1.1(3) |
| 354 | 1306 | 332 | 4 | 2.A.80.1.1(3) |
| 374 | 7144 | 327 | 0 | 2.A.80.1.1(3) |
| 374 | 7146 | 327 | 0 | 2.A.80.1.1(3) |
| 373 | 6763 | 348 | 0 | 2.A.80.1.1(3) |
| 345 | 622 | 323 | 1 | 2.A.80.1.1(3) |
| 345 | 628 | 327 | 1 | 2.A.80.1.1(3) |
| 335 | 2500 | 327 | 1 | 2.A.80.1.1(3) |
| 341 | 3834 | 336 | 1 | 2.A.80.1.1(3) |
| 353 | 176 | 322 | 4 | 2.A.80.1.1(3) |
| 374 | 7144 | 366 | 0 | 2.A.80.1.1(3) |
| 374 | 7146 | 327 | 0 | 2.A.80.1.1(3) |
| 373 | 6763 | 348 | 0 | 2.A.80.1.1(3) |
| 345 | 622 | 323 | 1 | 2.A.80.1.1(3) |
| 345 | 628 | 327 | 1 | 2.A.80.1.1(3) |
| 357 | 1594 | 336 | 3 | 2.A.80.1.1(3) |
| 366 | 3580 | 336 | 3 | 2.A.80.1.1(3) |
| 354 | 306 | 332 | 3 | 2.A.80.1.1(3) |
| 371 | 5098 | 332 | 2 | 2.A.80.1.1(3) |
| 371 | 5502 | 341 | 0 | 2.A.80.1.1(3) |
| 370 | 4704 | 500 | 0 | 2.A.80.1.1(3) |
| 370 | 4705 | 325 | 0 | 2.A.80.1.1(3) |
| 375 | 8996 | 328 | 1 | 2.A.80.1.1(3) |
| 358 | 1912 | 333 | 0 | 2.A.80.1.1(3) |
| 375 | 952 | 334 | 0 | 2.A.80.1.1(3) |
| 370 | 4597 | 333 | 0 | 2.A.80.1.1(3) |
| 375 | 980 | 500 | 12 | 2.A.80.1.1(3) |
| 375 | 8884 | 330 | 2 | 2.A.80.1.1(3) |
| 356 | 1500 | 337 | 2 | 2.A.80.1.1(3) |
| 373 | 6518 | 331 | 0 | 2.A.80.1.1(3) |
| 354 | 1258 | 345 | 2 | 2.A.80.1.1(3) |
| 375 | 8567 | 348 | 0 | 2.A.80.1.1(3) |
| 375 | 8579 | 353 | 0 | 2.A.80.1.1(3) |
| 371 | 6324 | 346 | 4 | 2.A.80.1.1(3) |
Table 3. Continued

Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (#aas) (7)	# TMSs (8)	Nearest homologue in TADB (9)	Evidence (10)
2.A.81 Aspartate: alanine exchanger	AAE	Aspartate, alanine	Contig367gene3835	323	1	2.A.80.1.1(3)	3		
Contig364gene3052	320	0	2.A.80.1.1(3)	3					
Contig364gene3101	382	2	2.A.80.1.1(3)	3					
Contig373gene6242	333	0	2.A.80.1.1(3)	3					
Contig372gene6267	322	1	2.A.80.1.1(3)	3					
Contig373gene6280	330	1	2.A.80.1.1(3)	3					
Contig373gene6586	331	4	2.A.80.1.1(3)	3					
Contig375gene7777	Contig371gene5154	322	1	2.A.80.1.1(3)	3				
Contig371gene5178	326	2	2.A.80.1.1(3)	3					
Contig371gene6421	318	3	2.A.80.1.1(3)	3					
Contig371gene6426	326	1	2.A.80.1.1(3)	3					
Contig371gene6429	320	1	2.A.80.1.1(3)	3					
Contig371gene6443	325	2	2.A.80.1.1(3)	3					
Contig373gene6160	341	1	2.A.80.1.1(3)	3					
Contig373gene6671	329	1	2.A.80.1.1(3)	3					
Contig373gene6675	320	0	2.A.80.1.1(3)	3					
Contig372gene6001	328	1	2.A.80.1.1(3)	3					
Contig375gene6977	330	3	2.A.80.1.1(3)	3					
Contig375gene69392	385	1	2.A.80.1.1(3)	3					
Contig375gene7729	322	1	2.A.80.1.1(3)	2					
Contig375gene7731	504	13	2.A.80.1.1(3)	2					
Contig375gene8159	333	1	2.A.80.1.1(3)	2					
Contig375gene8161	551	12	2.A.80.1.1(3)	2					
Contig375gene8171	329	0	2.A.80.1.1(3)	3					
Contig375gene8944	513	11	2.A.80.1.1(3)	2					
Contig375gene8947	567	11	2.A.81.1.1(1)	2					

2.C Ion-gradient-driven energizers

2.C.1 TonB-ExbB-ExbD/TolA-TolQ- TonR family of auxiliary proteins for energization of outer membrane receptor (OMR)-mediated active transport

Description	Abbreviation	Gene (02jul03) (6)	Length (#aas) (7)	# TMSs (8)	Nearest homologue in TADB (9)	Evidence (10)
H+1, drives solute uptake across outer bacterial membranes	Contig375gene6338	243	3	2.C.1.1.1(3)	3	
Contig366gene3670	227	3	2.C.1.2.1(6)	2		
Contig366gene3671	145	1	2.C.1.2.1(6)	3		
Contig366gene3673	446	1	2.C.1.2.1(6)	3		

Copyright © 2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 17–56.
3. A-P bond hydrolysis-driven transporters

3. A.1 ATP-binding cassette (ABC)

All sorts of inorganic and organic molecules of small, intermediate, and large sizes, from simple ions to macromolecules.

Contig	Gene	Length	Class	Description
Contig375gene8339	137	1	2.C.1.1.1.(3)	3.A.1.1.1.(3)
Contig360gene2245	293	6	3.A.1.1.3.(4)	2.A.1.1.3.(4)
Contig360gene2246	282	6	3.A.1.1.3.(4)	2.A.1.1.3.(4)
Contig360gene2247	367	1	3.A.1.1.3.(4)	2.A.1.1.3.(4)
Contig362gene2677	395	1	3.A.1.1.X	2.A.1.1.X
Contig362gene2678	366	0	3.A.1.1.X	2.A.1.1.X
Contig362gene2679	294	6	3.A.1.1.X	2.A.1.1.X
Contig362gene2680	276	6	3.A.1.1.X	2.A.1.1.X
Contig362gene2682	580	1	3.A.1.1.X	3.A.1.1.X
Contig375gene7943	352	1	3.A.1.1.12.(4)	2.A.1.1.12.(4)
Contig365gene3399	279	0	3.A.1.1.16.(4)	2.A.1.1.16.(4)
Contig375gene9297	464	0	3.A.1.1.X	2.A.1.1.X
Contig375gene9298	371	1	3.A.1.1.X	2.A.1.1.X
Contig375gene9299	310	6	3.A.1.1.X	2.A.1.1.X
Contig375gene9300	295	6	3.A.1.1.X	2.A.1.1.X
Contig349gene903	298	9	3.A.1.2.1.(4)	3.A.1.2.1.(4)
Contig370gene4724	537	0	3.A.1.2.X	2.A.1.2.X
Contig370gene4725	361	10	3.A.1.2.X	2.A.1.2.X
Contig370gene4726	306	9	3.A.1.X	3.A.1.X
Contig346gene661	302	1	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig346gene4394	303	0	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig346gene653	282	1	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig346gene654	231	5	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig346gene655	447	6	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig346gene656	249	0	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig377gene7235	304	0	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig338gene294	310	1	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig359gene1987	299	0	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig359gene1988	242	5	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig359gene1989	227	5	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig359gene1990	244	0	3.A.1.3.4.(4)	2.A.1.3.4.(4)
Contig371gene5478	274	0	3.A.1.3.10.(3)	2.A.1.3.10.(3)
Contig350gene948	384	9	3.A.1.4.1.(6)	2.A.1.4.1.(6)
Contig350gene949	258	0	3.A.1.4.1.(6)	2.A.1.4.1.(6)
Contig350gene950	238	0	3.A.1.4.1.(6)	2.A.1.4.1.(6)
Contig374gene7171	361	0	3.A.1.4.X	3.A.1.4.X
Contig374gene7172	285	7	3.A.1.4.X	2.A.1.4.X

- **CUT1** (1) Sugars, metabolites
- **CUT2** (2) Sugars, metabolites
- **PAAT** (3) Polar amino acids
- **HAAT** (4) Hydrophobic amino acids
| Family (1) | Family (2) | Abbreviation (3) | Typical substrates (4) | Total # (5) | Gene (02jul03) (6) | Length (#aas) (7) | # TMSs (8) | Nearest homologue in TCDB (9) | Evidence (10) |
|-----------|-----------|-----------------|-----------------------|------------|-------------------|-----------------|---------|-----------------------------|--------------|
| Contig374gene7174 | | | | 255 | 0 | 3.A.1.4.1(6) | 2 |
| Contig361gene2483 | | | | 437 | 11 | 3.A.1.4.1(6) | 3 |
| Contig361gene2484 | | | | 259 | 0 | 3.A.1.4.1(6) | 2 |
| Contig361gene2485 | | | | 237 | 0 | 3.A.1.4.1(6) | 2 |
| Contig355gene1439 | | | | 479 | 1 | 3.A.1.4.1(6) | 2 |
| Contig355gene1440 | | | | 308 | 9 | 3.A.1.4.1(6) | 2 |
| Contig370gene4963 | | | | 425 | 1 | 3.A.1.4.1(6) | 3 |
| Contig355gene1441 | | | | 424 | 11 | 3.A.1.4.1(6) | 2 |
| Contig355gene1442 | | | | 255 | 0 | 3.A.1.4.1(6) | 2 |
| Contig355gene1443 | | | | 233 | 0 | 3.A.1.4.1(6) | 2 |
| Contig340gene370 | | | | 398 | 3 | 3.A.1.4.1(6) | 3 |
| Contig375gene8086 | | | | 287 | 7 | 3.A.1.4X | 2 |
| Contig375gene8087 | | | | 342 | 10 | 3.A.1.4X | 2 |
| Contig375gene8088 | | | | 254 | 1 | 3.A.1.4.1(6) | 2 |
| Contig375gene8089 | | | | 235 | 2 | 3.A.1.4.1(6) | 2 |
| Contig375gene8090 | | | | 390 | 1 | 3.A.1.4X | 3 |
| Contig349gene849 | | | | 238 | 0 | 3.A.1.4(6) | 2 |
| Contig372gene5996 | | | | 379 | 2 | 3.A.1.4.1(6) | 3 |
| Contig374gene7472 | | | | 313 | 0 | 3.A.1.4.1(6) | 2 |
| Contig374gene7473 | | | | 304 | 8 | 3.A.1.4.1(6) | 2 |
| Contig374gene7474 | | | | 358 | 10 | 3.A.1.4X | 3 |
| Contig374gene7476 | | | | 271 | 0 | 3.A.1.4.1(6) | 2 |
| Contig375gene9380 | | | | 257 | 0 | 3.A.1.4X | 2 |
| Contig375gene9381 | | | | 241 | 0 | 3.A.1.4.1(6) | 2 |
| Contig375gene9382 | | | | 402 | 1 | 3.A.1.4X | 3 |
| Contig375gene9387 | | | | 382 | 1 | 3.A.1.4X | 3 |
| Contig375gene9388 | | | | 350 | 9 | 3.A.1.4.1(6) | 3 |
| Contig375gene9389 | | | | 617 | 10 | 3.A.1.4.1(6) | 2 |
| Contig375gene9390 | | | | 247 | 0 | 3.A.1.4X | 2 |
| Contig361gene2481 | | | | 416 | 1 | 3.A.1.4X | 3 |
| Contig361gene2482 | | | | 323 | 8 | 3.A.1.4.2(5) | 3 |
| Contig375gene9184 | | | | 288 | 7 | 3.A.1.4.2(5) | 3 |
| Contig366gene3541 | | | | 389 | 1 | 3.A.1.4.2(5) | 3 |
| Contig374gene6823 | | | | 263 | 0 | 3.A.1.4.2(5) | 2 |
| Contig350gene946 | | | | 401 | 1 | 3.A.1.4.3(4) | 2 |
| Contig375gene9383 | | | | 294 | 8 | 3.A.1.4.3(4) | 2 |
| Contig375gene9384 | | | | 344 | 9 | 3.A.1.4.3(4) | 3 |
| Contig375gene9412 | | | | 383 | 1 | 3.A.1.4.3(4) | 2 |
| Contig358gene1906 | | | | 412 | 1 | 3.A.1.4.4(5) | 3 |
| Contig370gene5000 | | | | 230 | 0 | 3.A.1.4.4(5) | 3 |
| Contig373gene6123 | | | | 348 | 0 | 3.A.1.5X | 2 |
Genomic analyses of transport proteins in Ralstonia metallidurans

- **- SulT (6)**
 Sulphate, tungstate

- **- PhoT (7)**
 Phosphate

Contig	Gene	Start	End	Description	Accession				
Contig373gene124	337	0	3.A.1.5.X	2					
Contig373gene120	527	0	3.A.1.5.X	3					
Contig373gene122	299	5	3.A.1.5.X	2					
Contig373gene262	306	0	3.A.1.5.2(S)	2					
Contig336gene263	300	6	3.A.1.5.X	2					
Contig336gene265	275	0	3.A.1.5.2(S)	2					
Contig362gene2744	661	1	3.A.1.5.2(S)	3					
Contig362gene2745	349	6	3.A.1.5.2(S)	2					
Contig362gene2746	376	6	3.A.1.5.2(S)	2					
Contig362gene2747	549	0	3.A.1.5.2(S)	2					
Contig370gene4823	344	0	3.A.1.5.2(S)	3					
Contig374gene2747	318	6	3.A.1.5.X	2					
Contig374gene2748	308	6	3.A.1.5.X	2					
Contig374gene2749	575	1	3.A.1.5.X	2					
Contig374gene2750	325	0	3.A.1.5.X	2					
Contig374gene2751	367	0	3.A.1.5.X	2					
Contig355gene1375	545	1	3.A.1.5.4(S)	2					
Contig357gene1662	259	1	3.A.1.5.3(S)	2					
Contig340gene353	535	1	3.A.1.5.X	2					
Contig340gene354	325	6	3.A.1.5.X	2					
Contig340gene355	309	5	3.A.1.5.X	2					
Contig340gene356	332	0	3.A.1.5.X	2					
Contig340gene357	354	0	3.A.1.5.X	2					
Contig358gene1735	289	1	3.A.1.5.X	3					
Contig358gene1736	347	6	3.A.1.5.X	2					
Contig358gene1737	279	6	3.A.1.5.X	2					
Contig358gene1738	547	0	3.A.1.5.X	2					
Contig361gene2374	586	0	3.A.1.5.X	2					
Contig361gene2375	316	6	3.A.1.5.X	2					
Contig361gene2376	295	5	3.A.1.5.X	2					
Contig361gene2377	359	0	3.A.1.5.X	2					
Contig361gene2378	337	0	3.A.1.5.X	2					
Contig351gene1029	335	1	3.A.1.6.1(5)	2					
Contig351gene1036	335	6	3.A.1.6.1(5)	2					
Contig351gene1037	305	6	3.A.1.6.1(5)	2					
Contig351gene1038	367	0	3.A.1.6.1(5)	2					
Contig374gene6978	279	0	3.A.1.6.1(5)	2					
Contig367gene3795	232	0	3.A.1.6.3(4)	2					
Contig362gene2718	343	1	3.A.1.7.1(4)	2					
Contig362gene2719	321	6	3.A.1.7.1(4)	2					
Contig362gene2720	300	6	3.A.1.7.1(4)	2					
Contig362gene2721	262	0	3.A.1.7.1(4)	2					
Contig372gene5607	333	1	3.A.1.7.1(4)	2					
Contig375gene8133	355	3	3.A.1.7.1(4)	2					
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (#aas) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
-----------	-----------	-----------------	------------------------	------------	-------------------	----------------	-----------	-----------------------------	----------------
- MoT (8)		Molybdate	Contig372gene5726	232	5	3.A.1.8.1(3)	3		2
			Contig375gene7940	272	6	3.A.1.8.1(3)	2		2
			Contig365gene3396	258	1	3.A.1.8.1(3)	2		2
			Contig365gene3398	238	5	3.A.1.8.1(3)	2		2
- PhnT (9)		Phosphonate	Contig374gene904	264	0	3.A.1.9.1(3)	2		2
			Contig370gene4744	326	0	3.A.1.9.1(3)	2		2
			Contig370gene4745	349	6	3.A.1.9.1(3)	2		2
			Contig372gene5787	279	0	3.A.1.9.1(3)	2		2
			Contig372gene5788	292	1	3.A.1.9.1(3)	2		3
- POPT(11)		Polyamine, opine, phosphonate	Contig372gene5789	266	5	3.A.1.9.1(3)	2		
			Contig364gene3011	364	0	3.A.1.11.1(4)	2		2
			Contig364gene3012	338	6	3.A.1.11.1(4)	2		2
			Contig364gene3013	260	6	3.A.1.11.1(4)	2		2
			Contig364gene3014	362	1	3.A.1.11.1(4)	2		4
			Contig371gene5479	259	6	3.A.1.11.1(4)	3		3
			Contig375gene7939	340	1	3.A.1.11.1(4)	3		3
			Contig375gene7942	291	6	3.A.1.11.1(4)	3		3
- QAT (12)		Quaternary amine	Contig372gene5727	229	0	3.A.1.11.1(4)	2		2
			Contig370gene4824	217	6	3.A.1.12.6(3)	3		3
			Contig357gene1649	516	6	3.A.1.12.6(3)	3		2
- VB12T(13)		Vitamin B 12	Contig370gene4872	316	1	3.A.1.12.4(4)	2		2
			Contig370gene4873	216	5	3.A.1.12.4(4)	2		2
			Contig370gene4874	398	0	3.A.1.12.4(4)	2		2
- FeCT (14)		Iron chelate	Contig366gene3515	300	0	3.A.1.13.1(3)	2		2
			Contig366gene3586	335	9	3.A.1.14.X	2		2
			Contig366gene3587	269	0	3.A.1.14.X	2		2
			Contig373gene6359	283	1	3.A.1.14.5(3)	2		2
			Contig373gene6360	333	9	3.A.1.14.5(3)	2		2
			Contig373gene6361	261	0	3.A.1.14.5(3)	2		2
- MZT (15)		Manganese, zinc, iron chelate	Contig375gene9102	264	0	3.A.1.15.1(3)	3		
			Contig374gene6840	434	3	3.A.1.16.X	2		2
- NnT (16)		Nitrate, nitrite, cyanate	Contig374gene6841	303	6	3.A.1.16.1(4)	2		
			Contig374gene6842	267	1	3.A.1.16.1(4)	2		2
			Contig360gene2192	347	2	3.A.1.16.2(3)	3		3
			Contig360gene2193	270	0	3.A.1.16.2(3)	2		2
			Contig362gene2587	341	1	3.A.1.16.2(3)	3		3
			Contig362gene2588	347	8	3.A.1.16.2(3)	2		2
			Contig362gene2589	262	0	3.A.1.16.X	2		2
			Contig350gene955	317	3	3.A.1.16.X	3		3
Name	Start	Length	Function						
------------------	-------	--------	---------------------------------						
TauT (17)			Taurine uptake						
Contig350gene956	291	6	3.A.1.16.2(3)						
Contig350gene957	259	0	3.A.1.16.2(3)						
Contig356gene3098	256	1	3.A.1.16.2(3)						
Contig375gene8294	304	0	3.A.1.16.2(3)						
Contig351gene1030	351	8	3.A.1.16.3(4)						
Contig351gene1032	345	1	3.A.1.17.1(3)						
Contig375gene8295	388	7	3.A.1.17.X						
Contig350gene1983	259	6	3.A.1.17.X						
Contig350gene9670	221	0	3.A.1.17.1(3)						
Contig350gene8293	341	0	3.A.1.17.X						
Contig351gene1035	352	1	3.A.1.17.1(3)						
Contig359gene1982	281	0	3.A.1.17.1(3)						
Contig375gene8794	207	0	3.A.1.107.1(3)						
Contig351gene1033	291	0	3.A.1.17.1(3)						
Contig355gene1354	355	8	3.A.1.102.1(2)						
Contig359gene8669	262	6	3.A.1.102.1(2)						
Contig355gene1355	285	6	3.A.1.102.1(2)						
Contig355gene2065	328	1	3.A.1.102.1(2)						
Contig359gene2066	384	6	3.A.1.105.2(2)						
Contig362gene2639	83	0	3.A.1.102.1(2)						
Contig362gene2647	372	7	3.A.1.102.1(2)						
Contig357gene9090	316	1	3.A.1.105.2(2)						
Contig357gene8974	207	0	3.A.1.107.1(3)						
Contig357gene8795	228	6	3.A.1.107.1(3)						
Contig357gene8796	245	6	3.A.1.107.1(3)						
Contig357gene1721	211	0	3.A.1.107.1(3)						
Contig357gene1722	222	6	3.A.1.107.1(3)						
Contig357gene1723	259	6	3.A.1.107.1(3)						
Contig370gene4796	767	6	3.A.1.109.2(1)						
Contig372gene5991	232	1	3.A.1.110.2(1)						
Contig342gene443	540	0	3.A.1.120.1(1)						
Contig355gene1406	659	0	3.A.1.120.1(1)						
Contig373gene6751	536	0	3.A.1.120.2(1)						

Uptake—total 181

- **BIT (20)** | Fe³⁺
- **CPSE (101)** | Capsular polysaccharides
- **LOSE (102)** | Lipo-oligosaccharide
- **DrugEl (105)** | Drugs
- **HemeE (107)** | Heme
- **Prot1E (109)** | Proteins
- **Prot2E (110)** | Proteins
- **Drug RAI (120)** | Drugs
Table 3. Continued

Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (aa) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
3.A.2		abbreviated							
		F-ATPase	H\(^+\), Na\(^+\)						
		export							
				32					
3.A.3		P-type ATPase	Na\(^+\), H\(^+\), K\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), Cd\(^{2+}\), Cu\(^{2+}\), Zn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Ag\(^+\), phospholipids (flipping)						
3.A.5		General secretory pathway	IISP Proteins	12					
3.A.6		Type III (virulence-related) secretory pathway	IISP Proteins	5					

Contig353gene1211 554 0 3.A.1.120.3(1) 3
Contig367gene3831 670 0 3.A.1.120.4(1) 2
Contig367gene3249 347 0 3.A.1.121.2(1) 2
Contig353gene1239 234 0 3.A.1.122.1(1) 2
Contig367gene2469 208 0 3.A.1.122.1(1) 2
Contig370gene5060 416 5 3.A.1.125.1(3) 2
Contig370gene5061 249 0 3.A.1.125.1(3) 2
Contig353gene1389 610 6 3.A.1.125.1(3) 2
Contig359gene1980 630 7 3.A.1.125.1(3) 2
Contig375gene9399 289 6 3.A.2.1.1(8) 2
Contig375gene9400 88 0 3.A.2.1.1(8) 3
Contig375gene9401 156 1 3.A.2.1.1(8) 3
Contig375gene9402 180 0 3.A.2.1.1(8) 2
Contig375gene9403 513 0 3.A.2.1.1(8) 2
Contig375gene9404 291 0 3.A.2.1.1(8) 2
Contig375gene9405 467 1 3.A.2.1.1(8) 2
Contig375gene9406 138 0 3.A.2.1.1(8) 2
Contig377gene6510 920 10 3.A.3.2.4(1) 2
Contig375gene9376 813 8 3.A.3.5.1(1) 2
Contig367gene4263 805 8 3.A.3.5.1(1) 2
Contig353gene7707 66 0 3.A.3.5.1(1) 3
Contig375gene8429 752 0 3.A.3.5.1(1) 3
Contig367gene2415 829 6 3.A.3.6.1(1) 2
Contig374gene7074 794 6 3.A.3.6.1(1) 2
Contig375gene8357 984 8 3.A.3.6.1(1) 2
Contig373gene6441 799 8 3.A.3.6.1(1) 2
Contig377gene7319 610 12 3.A.3.7.1(3) 2
Contig374gene7320 743 7 3.A.3.7.1(3) 2
Contig374gene7321 203 1 3.A.3.7.1(3) 2
Contig367gene2920 463 0 3.A.5.1.1(11) 2
Contig367gene2773 930 1 3.A.5.1.1(11) 2
Contig374gene6838 948 0 3.A.5.1.1(11) 2
Contig367gene3758 447 10 3.A.5.1.1(11) 2
Contig373gene5749 108 1 3.A.5.1.1(11) 3
Contig373gene6292 156 0 3.A.6.1.1(10) 3
3.A.7 Type IV (conjugal DNA-protein transfer or VirB) secretory pathway

Contig	Gene	Length	Type	Description
Contig373	gene6293	186	3.A.6.1.2(10)	IVSP Proteins, protein–DNA complexes
Contig373	gene6294	264	3.A.6.1.2(10)	
Contig373	gene6295	89	3.A.6.1.2(10)	
Contig373	gene6296	253	3.A.6.1.2(10)	
Contig373	gene6297	563	3.A.6.1.2(10)	
Contig373	gene6298	278	3.A.6.1.2(10)	
Contig373	gene6299	486	3.A.6.1.2(10)	
Contig371	gene5351	380	3.A.7.4.1(10)	
Contig371	gene5352	423	3.A.7.4.1(10)	

3.A.11 Bacterial competence-related DNA transformation transporter

Contig	Gene	Length	Type	Description
Contig342	gene418	669	3.A.7.X	DNA–protein complexes
Contig342	gene420	358	3.A.7.4.1(10)	
Contig351	gene1006	819	3.A.7.4.1(10)	
Contig351	gene1007	245	3.A.7.4.1(10)	
Contig351	gene1009	459	3.A.7.X	
Contig351	gene1010	234	3.A.7.4.1(10)	
Contig351	gene1011	330	3.A.7.4.1(10)	
Contig342	gene423	809	3.A.7.4.1(10)	
Contig342	gene424	241	3.A.7.4.1(10)	
Contig342	gene427	234	3.A.7.4.1(10)	
Contig342	gene428	333	3.A.7.4.1(10)	
Contig342	gene429	422	3.A.7.4.1(10)	
Contig368	gene4063	818	3.A.7.4.1(10)	
Contig368	gene4066	252	3.A.7.4.1(10)	
Contig368	gene4068	303	3.A.7.4.1(10)	
Contig368	gene4117	414	3.A.7.4.1(10)	
Contig371	gene5307	438	3.A.7.5.1(10)	
Contig365	gene3342	456	3.A.7.5.1(10)	
Contig368	gene4062	349	3.A.7.5.1(10)	

3.A.12 Septal DNA translocator

Contig	Gene	Length	Type	Description
Contig357	gene1647	1123	3.A.12.1(1)	Single-stranded DNA
Contig346	gene649	775	3.A.12.1(1)	DNA, DNA–protein complexes
Contig374	gene7161	358	3.A.13.1(1)	
Contig363	gene2929	573	3.A.15.2.1(10)	

3.A.13 Filamentous phage exporter

Contig	Gene	Length	Type	Description					
Contig363	gene2930	421	3.A.15.2.1(10)	Pili/fimbriin					
Contig363	gene2931	289	3.A.15.2.1(10)						
Contig346	gene667	154	3.A.15.2.1(10)						
Contig372	gene842	347	3.A.15.2.1(10)						
Contig372	gene5843	381	3.A.15.2.1(10)						
Contig375	gene9231	202	3.A.15.X						
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (aa) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
-----------	-----------	------------------	----------------------	------------	-------------------	----------------	----------	-------------------------------	--------------
3.B. Decarboxylation-driven active transporters									
3.B.1	Na⁺-transporting carboxylic acid decarboxylase	NaT-DC	Na⁺	18	Contig375gene9232	442	3	3.A.15.X	2
					Contig375gene9233	568	0	3.A.15.X	2
					Contig352gene1091	182	1	3.A.15.2.1(10)	3
					Contig352gene1092	234	1	3.A.15.2.1(10)	3
					Contig374gene7449	147	2	3.A.15.2.1(10)	3
					Contig375gene8624	167	2	3.A.15.2.1(10)	3
					Contig368gene4125	635	0	3.A.15.2.1(10)	3
					Contig375gene7605	284	1	3.A.15.1.1(14)	3
					Contig375gene7606	327	1	3.A.15.1.1(14)	3
					Contig375gene7611	513	0	3.A.15.1.1(14)	2
					Contig375gene7612	405	4	3.A.15.1.1(14)	2
3.D. Oxidoreduction-driven active transporters									
3.D.1	Proton-translocating NADH dehydrogenase	NDH	H⁺ or Na⁺ (efflux)	19	Contig358gene1826	539	4	3.B.1.1.2(5)	2
					Contig365gene3364	535	3	3.B.1.1.2(5)	2
					Contig356gene471	467	3	3.D.1.1.1(14)	2
					Contig370gene4970	119	3	3.D.1.2.1(14)	2
					Contig370gene4971	160	1	3.D.1.2.1(14)	2
					Contig370gene4972	199	0	3.D.1.2.1(14)	2
					Contig370gene4973	417	0	3.D.1.2.1(14)	2
					Contig370gene4974	168	1	3.D.1.2.1(14)	3
					Contig370gene4975	431	1	3.D.1.2.1(14)	2
					Contig370gene4976	828	8	3.D.1.2.1(14)	2
					Contig370gene4977	354	8	3.D.1.2.1(14)	2
					Contig370gene4979	163	0	3.D.1.2.1(14)	2
					Contig370gene4980	225	5	3.D.1.2.1(14)	3
					Contig370gene4981	101	3	3.D.1.2.1(14)	2
					Contig370gene4982	692	17	3.D.1.2.1(14)	2
					Contig370gene4984	491	14	3.D.1.2.1(14)	2
					Contig365gene3228	518	2	3.D.1.2.1(14)	2
					Contig365gene3229	957	0	3.D.1.2.1(14)	2
					Contig369gene4352	414	2	3.D.1.1.1(14)	2
					Contig369gene4385	402	1	3.D.1.1.1(14)	3
					Contig370gene4983	488	14	3.D.1.1.1(14)	2
3.D.2	Proton-translocating transhydrogenase	PTH	H⁺ (efflux)	19	Contig334gene207	101	3	3.D.2.2.1(3)	3
					Contig334gene208	457	10	3.D.2.2.1(3)	2
					Contig326gene94	257	1	3.D.2.2.1(3)	2
					Contig377gene5764	401	0	3.D.2.2.1(3)	2
Contig	Gene	Description	Accession	Count	Organism	Location			
--------	------	-------------	-----------	-------	----------	----------			
Contig372gene5765		Proton-translocating quinol: cytochrome c reductase	QCR	152	3	D.2.1.1(3)			
Contig372gene5766		Proton-translocating quinol: cytochrome c reductase	QCR	490	10	D.2.2.1(3)			
Contig367gene3822		Proton-translocating quinol: cytochrome c reductase	QCR	205	1	D.3.1.1(3)			
Contig367gene3823		Proton-translocating quinol: cytochrome c reductase	QCR	467	13	D.3.1.1(3)			
Contig367gene3824		Proton-translocating quinol: cytochrome c reductase	QCR	247	2	D.3.X			
Contig375gene8425		Proton-translocating quinol: cytochrome c reductase	QCR	518	13	D.4.2.1(1)			
Contig360gene2255		Proton-translocating quinol: cytochrome c reductase	QCR	482	12	D.4.3.1(1)			
Contig364gene3891		Proton-translocating quinol: cytochrome c reductase	QCR	529	13	D.4.3.1(1)			
Contig370gene4992		Proton-translocating quinol: cytochrome c reductase	QCR	322	3	D.4.5.1(5)			
Contig370gene4993		Proton-translocating quinol: cytochrome c reductase	QCR	657	14	D.4.5.1(5)			
Contig370gene4994		Proton-translocating quinol: cytochrome c reductase	QCR	214	5	D.4.5.1(5)			
Contig370gene4995		Proton-translocating quinol: cytochrome c reductase	QCR	116	3	D.4.5.1(5)			
Contig374gene7516		Proton-translocating quinol: cytochrome c reductase	QCR	308	9	D.4.5.1(5)			
Contig374gene7508		Proton-translocating quinol: cytochrome c reductase	QCR	536	12	D.4.6.1(2)			
Contig374gene7512		Proton-translocating quinol: cytochrome c reductase	QCR	286	7	D.4.X			
Contig375gene8971		Proton-translocating quinol: cytochrome c reductase	QCR	391	3	D.4.X			
Contig375gene8972		Proton-translocating quinol: cytochrome c reductase	QCR	585	12	D.4.X			
Contig375gene8973		Proton-translocating quinol: cytochrome c reductase	QCR	222	5	D.4.X			
Contig375gene8974		Proton-translocating quinol: cytochrome c reductase	QCR	234	5	D.4.X			
Contig372gene5641		Proton-translocating quinol: cytochrome c reductase	QCR	319	3	D.4.5.1(5)			
Contig372gene5642		Proton-translocating quinol: cytochrome c reductase	QCR	658	15	D.4.5.1(5)			
Contig372gene5643		Proton-translocating quinol: cytochrome c reductase	QCR	226	5	D.4.5.1(5)			
Contig372gene5644		Proton-translocating quinol: cytochrome c reductase	QCR	121	3	D.4.5.1(5)			
Contig375gene8913		Proton-translocating quinol: cytochrome c reductase	QCR	349	4	D.4.5.1(5)			
Contig375gene8914		Proton-translocating quinol: cytochrome c reductase	QCR	667	15	D.4.5.1(5)			
Contig375gene8915		Proton-translocating quinol: cytochrome c reductase	QCR	218	5	D.4.5.1(5)			
Contig375gene8916		Proton-translocating quinol: cytochrome c reductase	QCR	142	0	D.4.5.1(5)			
Contig374gene7507		Proton-translocating quinol: cytochrome c reductase	QCR	422	3	D.4.7.1(3)			
Contig362gene2525		Phosphotransferase systems	Man	316	3	A.6.1.1(3)			
Contig374gene7493		Phosphotransferase systems	Man	151	0	A.6.1.2(4)			
Contig375gene8804		Phosphotransferase systems	Man	278	4	A.1.1.1(1)			
Contig367gene3836		Phosphotransferase systems	Man	624	9	A.1.1.1(1)			
Contig336gene256		Phosphotransferase systems	Man	255	4	A.2.1.1(1)			
Contig340gene359		Phosphotransferase systems	Man	701	0	A.32.1(1)			
Contig366gene3609		Phosphotransferase systems	Man	1025	1	A.32.1(1)			
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (aaas) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
-----------	-----------	------------------	------------------------	-------------	-------------------	------------------	-----------	-------------------------------	-------------
8.A. Auxiliary transport proteins	8.A. Membrane fusion protein MFP								
8.A.1									
Contig366gene3610	226	0	5.A.3.2.1(3)	3					
Contig366gene3612	418	6	5.A.3.2.1(3)	2					
Contig360gene2128	1252	0	5.A.3.1.1(3)	2					
Contig360gene2129	517	0	5.A.3.1.1(3)	2					
Contig360gene2131	227	5	5.A.3.1.1(3)	2					
Contig358gene1816	378	1	8.A.1.1.1(1)	2					
Contig374gene7200	349	1	8.A.1.1.1(1)	2					
Contig360gene2701	413	2	8.A.1.1.1(1)	2					
Contig354gene1324	322	1	8.A.1.1.1(1)	3					
Contig375gene9176	328	1	8.A.1.1.1(1)	3					
Contig375gene8188	381	1	8.A.1.1.1(1)	2					
Contig375gene8550	380	2	8.A.1.1.1(1)	2					
Contig375gene8586	392	3	8.A.1.1.1(1)	3					
Contig364gene3066	423	2	8.A.1.1.1(1)	2					
Contig371gene5462	405	0	8.A.1.2.1(1)	3					
Contig373gene6080	505	1	8.A.1.2.1(1)	2					
Contig373gene6556	385	1	8.A.1.2.1(1)	3					
Contig373gene6562	404	1	8.A.1.2.1(1)	3					
Contig375gene8616	520	0	8.A.1.2.1(1)	1					
Contig361gene2415	523	0	8.A.1.2.1(1)	3					
Contig363gene2862	407	1	8.A.1.2.1(1)	3					
Contig369gene4235	93	1	8.A.1.2.1(1)	3					
Contig369gene4236	292	0	8.A.1.2.1(1)	1					
Contig368gene3998	395	1	8.A.1.2.1(1)	1					
Contig329gene132	387	1	8.A.1.6.1(1)	2					
Contig353gene1238	387	0	8.A.1.6.1(1)	3					
Contig358gene1807	412	0	8.A.1.6.1(1)	3					
Contig353gene1180	398	2	8.A.1.6.1(1)	2					
Contig375gene7758	407	3	8.A.1.6.1(1)	2					
Contig375gene7764	415	0	8.A.1.6.1(1)	2					
Contig366gene3603	362	0	8.A.3.2.2(2)	3					
8.A.3		Complex polysaccharides							
Contig372gene5596	748	1	8.A.3.3.1(1)	2					
Contig372gene5968	777	2	8.A.3.3.2(1)	2					
Code	Description	Protein	Accession Number	Type	Notes				
------	--	---------	------------------	------	-------				
8.A.4	Cytoplasmic membrane-periplasmic auxiliary-2	MPA2	Contig375gene8671	1					
			368	2	8.A.4.1.1(1)				
		Complex polysaccharides							
8.A.7	Phosphotransferase system enzyme I	EI	Contig374gene7495	1	8.A.7.1.1(1)				
		Sugars	585	0	8.A.7.1.1(1)				
8.A.8	Phosphotransferase system HP	HPr	Contig374gene7494	1	8.A.8.1.1(1)				
		Sugars	89	1	8.A.8.1.1(1)				
8.A.2	MerTP mercuric ion (Hg^{2+}) permease	MerTP	Contig375gene8504	1	9.A.2.1.1(1)				
		Hg^{2+} (uptake)	88	0	9.A.2.1.1(1)				
8.A.8	Ferrous iron uptake	FeoB	Contig375gene8370	1	9.A.8.1.1(1)				
		Fe^{2+} (uptake)	95	0	9.A.8.1.1(1)				
9.A.8	Ferrous iron uptake	OFeT	Contig372gene5560	1	9.A.8.1.1(1)				
		Fe^{2+} (uptake)	620	1	9.A.8.1.1(1)				
9.A.7	Phosphotransferase system	EI	Contig369gene4509	1	9.A.7.1.1(1)				
		Sugars	91	0	9.A.7.1.1(1)				
9.A.10	Oxidase-dependent Fe^{2+} transporter	OFeT	Contig375gene9242	1	9.A.10.1.1(1)				
		Fe^{2+} (uptake)	504	1	9.A.10.1.1(1)				
9.A.17	ComC DNA uptake competence	ComC	Contig375gene8629	1	9.A.17.1.1(1)				
		DNA, proteins	1102	1	9.A.17.1.1(1)				
9.B.3	Putative bacterial murein precursor exporter	MPE	Contig363gene2762	2	9.B.3.1.1(1)				
		Lipid-linked murein precursors such as NAG-NAM-pentapeptide pyrophosphoryl undecaprenol (lipid II)	413	9	9.B.3.1.1(1)				
9.B.4	Putative efflux transporter	PET	Contig374gene7332	2	9.B.4.1.1(1)				
		Unknown	380	9	9.B.4.1.1(1)				
		Contig369gene3857	790	12	9.B.4.1.1(1)				
9.B.10	6 TMS putative MarC transporter	MarC	Contig374gene1242	4	9.B.10.1.1(1)				
		Multiple antibiotic resistance	664	11	9.B.10.1.1(1)				
9.B.14	Putative heme exporter protein	HEP	Contig375gene1231	3	9.B.14.1.1(1)				
		Heme	728	12	9.B.14.1.1(1)				
		Contig375gene9174	659	11	9.B.14.1.1(1)				
9.B.17	Putative fatty acid transporter	FAT	Contig357gene1726	2	9.B.17.1.1(1)				
		Fatty acyl CoA ligases (fatty acyl CoA synthases), carnitine CoA ligases, and putative transporters	680	15	9.B.17.1.1(1)				
		Contig349gene843	549	4	9.B.17.1.1(1)				
		Contig353gene1184	549	4	9.B.17.1.1(1)				
		Contig358gene1823	617	2	9.B.17.1.1(1)				
		Contig340gene362	560	1	9.B.17.1.1(1)				
		Contig362gene2701	629	2	9.B.17.1.1(1)				
		Contig362gene2706	553	0	9.B.17.1.1(1)				
		Contig373gene6071	631	0	9.B.17.1.1(1)				
		Contig358gene1823	548	1	9.B.17.1.1(1)				
Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (aaas) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
-----------	-----------	------------------	------------------------	------------	---------------------	-----------------	----------	----------------------------	--------------
9.B.20	Putative Mg\(^{2+}\) transporter-C	MgtC Mg\(^{2+}\)	516	1	9.B.17.1.4(1)	2			
9.B.22	Putative permease	PerM Unknown	561	0	9.B.17.1.4(1)	2			
9.B.24	Testis-enhanced gene transfer	TEGT Glucose (and fructose?) uptake or metabolism, cell death	630	0	9.B.17.1.4(1)	2			
9.B.33	PC-terminal fragment 7	PC-terminal fragment 7 Unknown	566	0	9.B.17.1.4(1)	2			
9.B.37	Hly III	Hly III Unknown	570	0	9.B.17.1.4(1)	2			
9.B.38	Putative vectorial glycosyl polymerization	VGP Polysaccharides	577	0	9.B.17.1.4(1)	2			
9.B.39	HlyC/CorC	HCC Ions?	30	1	9.B.17.1.4(1)	2			
9.B.40	DotA/TraY	DotA/TraY Unknown	205	3	9.B.30.1.1(1)	2			
9.B.42	ExeAB	ExeAB Secretin	658	7	9.B.32.1.3(1)	3			
9.B.43	YedZ	YedZ Unknown	30	4	9.B.32.1.3(1)	3			
Genomic analyses of transport proteins in *Ralstonia metallidurans*

Accession	Type	Description	Contig	Gene	Length	Location	Function	Prediction
9.B.45	YnfA	Unknown	1	105	4	9.B.45.1.1	2	
9.B.53	Unknown IT-6	Unknown	1	476	12	9.B.53.1.0	3	
Unclassified	Unclassified	Unclassified	1	397	6	N/A(0)	3	

Contig: 375 gene: 8050, Location: 105, Function: 4, Prediction: 2
Contig: 375 gene: 9091, Location: 273, Function: 6, Prediction: 3
Contig: 375 gene: 7603, Location: 174, Function: 1, Prediction: 3
Contig: 375 gene: 7604, Location: 134, Function: 1, Prediction: 3

Copyright © 2005 John Wiley & Sons, Ltd.
Table 3. Continued

Family (1)	Family (2)	Abbreviation (3)	Typical substrates (4)	Total # (5)	Gene (02jul03) (6)	Length (#aas) (7)	# TMSs (8)	Nearest homologue in TCDB (9)	Evidence (10)
Contig375gene7607	509	0	N/A(0)	3					
Contig375gene7608	188	1	N/A(0)	3					
Contig375gene7609	268	1	N/A(0)	3					
Contig369gene4471	427	0	N/A(0)	3					
Contig369gene4472	132	1	N/A(0)	3					
Contig369gene4473	305	8	N/A(0)	3					
Contig369gene4474	158	0	N/A(0)	3					
Contig369gene4481	435	0	N/A(0)	3					
Contig375gene9429	402	12	N/A(0)	3					
Contig375gene8485	366	0	N/A(0)	3					
Contig375gene8120	419	1	N/A(0)	3					
Contig375gene8125	360	1	N/A(0)	3					
Contig375gene8126	128	0	N/A(0)	3					
Contig369gene4508	116	3	N/A(0)	3					
Contig368gene4000	351	10	N/A(0)	3					
Contig368gene4195	324	0	N/A(0)	3					
Contig368gene4197	197	0	N/A(0)	3					

932

55

A full version of the table containing all the various names of the CH34 genes is provided as on-line supplementary material at: http://bionomie.mikrobiologie.uni-halle.de/SupMat/Roz_05/Table 3.htm
structure is established for several members of this family. Three members of the OmpA-OmpF porin (OOP) family and a single FadL homologue, presumably concerned with transport of fatty acids across the outer membrane, were identified.

The next two families listed in Table 3, the FUP and AT families, with three members and one member, respectively, are concerned with export of proteins across the outer membrane. The three FUP ushers probably export fimbrial subunits for the assembly of 3 structurally and functionally distinct fimbriae. AT family members export their own N-terminal domains, which in this case may be a large cell surface protein. However, no surface layer could be observed for Rme (D. Neumann and D. H. Nies, unpublished data).

Seventeen OMR family members were identified. Fifteen of these are probably concerned with uptake of iron siderophore complexes (subfamilies 1 and 9). One is probably the Rme vitamin B12 porin (subfamily 3). The single member of subfamily 4 may be concerned with copper acquisition.

Outer membrane factors (OMFs; TC #1.B.17) generally mediate efflux of heavy metals, drugs and macromolecules across the outer membrane in conjunction with an active efflux pump in the inner membrane. Twenty-eight homologues were identified. Of these, one is in subfamily 1 (a general OMF able to interact with multiple efflux pumps), eight are in subfamily 2 (concerned with heavy metal ion efflux), and 19 are in subfamily 3 (concerned with export of macromolecules, drugs and metals). Two members of this last subfamily resemble oligosaccharide exporters; four most resemble protein exporters; seven may be involved in export of drugs and other hydrophobic substances; and three may function in copper ion efflux.

Two members of the OMA family (1.B.18) are presumed to function in exopolysaccharide export, one member of the OprB family (1.B.19) probably allows facilitation of small molecules across the outer membrane, and the two members of the TPS family (1.B.20) most likely export proteins. Most of the six secretins (1.B.22) also probably function in protein export. Finally, the two OmpW family members (1.B.39) may export drugs and other hydrophobic molecules.

A channel-forming colicin-like protein (1.C.1), resembling colicin A of *Citrobacter freundii*, was found. A single holin (1.E.14), presumably involved in autolysin export for the purpose of promoting cell death, is also present.

Secondary carriers

By far the largest number secondary carriers encoded within the Rme genome are members of the major facilitator superfamily (MFS). Rme has 83 recognizable MFS carriers. As shown in Table 3 and summarized in Table 4, 32 of these MFS permeases are putative drug/amphiphile/hydrophobe transporters of MFS families DHA1 (16 members), DHA2 (15 members) and DHA3 (1 member) (Busch and Saier, 2002). Some of these are likely to serve as lipid exporters, but others undoubtedly play primary roles in defence, in toxic substance export or in metabolite export.

Just one sugar transporter (SP family), one organophosphate porter (OPA family), 15 metallo-biote transporters (MHS family), three nitrate/nitrite transporters (NNP family), and three oxalate : formate antiporters (OFA) of the MFS allow uptake of essential nutrients. Additionally, one SHS porter, nine ACS porters, five AAHS porters, and one CP porter all probably function to bring organoa-nions into the cell. The OCT porter may transport organocations. Other MFS paralogues represented, with usually a single protein member in any one family, undoubtedly transport a wide range of other substances (Table 3).

Six amino acid/polyamine/organocation (APC) superfamily members were identified. Two of the subfamilies in the APC superfamily are represented. These porters are predicted to transport a range of zwitterionic and basic amino acids.

The CDF family and the ZIP family of heavy metal divalent cation transporters are represented with three and one members, respectively. All three CDF proteins have been characterized in detail (Anton et al., 2004; Munkelt et al., 2004). They belong to different clusters of the CDF protein family (Nies, 2003) and transport Cd²⁺, Co²⁺, Zn²⁺, Fe²⁺ and Ni²⁺. A single member of the NiCoT family (TC #2.A.53), probably a Ni²⁺ transporter, was also identified. A related protein is involved in nickel uptake for synthesis of the hydrogenases in the related bacterium *Ralstonia eutropha* (Degen and Eitinger, 2002; Eberz et al., 1989; Eitinger and Friedrich, 1991, 1994; Eitinger et al., 1997; Wolfram et al., 1991, 1995).
Table 4. Family associations including subfamilies within the MFS, APC, RND, DMT, MOP and ABC superfamilies of transporter constituents

Family	Abbreviation	Typical substrates	No. of members (%)
1.A.1	VIC	Na\(^+\), K\(^+\), Ca\(^{2+}\), multiple cations	2 (0.2)
1.A.8	MIP	H\(_2\)O, glycerol, urea, polyols, NH\(_3\), CO\(_2\)	2 (0.2)
1.A.11	CIC	Cl\(^-\), anions	4 (0.4)
1.A.20	CyB	H\(^+\)	1 (0.1)
1.A.22	MscL	Proteins, ions (slightly cation-selective)	1 (0.1)
1.A.23	MscS	Ions (slight anion selectivity)	9 (1)
1.A.30	Mot/Exb-Mot	H\(^+\), Na\(^+\)	2 (0.2)
1.A.33	Hsp70	Ions, polypeptides	2 (0.2)
1.A.35	MIT	Heavy-metal ions, Mg\(^{2+}\), Mn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Fe\(^{2+}\), Mn\(^{3+}\), Fe\(^{3+}\), V\(^{3+}\), Mn\(^{4+}\)	4 (0.4)
1.B.1	GBP	Ions, small (M\(_r\) < 1000 Da) molecules	29 (3.1)
1.B.6	OOP	Ions, small molecules	3 (0.3)
1.B.9	FadL	Fatty acid, toluene, m-xylene and benzyl alcohol	1 (0.1)
1.B.11	FUP	Protein folding and subunit assembly	3 (0.3)
1.B.12	AT	N-terminal protein domains	1 (0.1)
1.B.14	OMR	Iron–siderophore complexes, vitamin B\(_{12}\), Cu\(^{2+}\), colicin, DNA of various phages	17 (1.8)
1.B.17	OMF	Heavy metal cations, drugs, oligosaccharides, proteins, etc.	28 (3)
1.B.18	OMA	Exo- or capsular polysaccharide	2 (0.2)
1.B.19	OsrB	Ions, small molecules	1 (0.1)
1.B.20	TPS	Proteins	2 (0.2)
1.B.22	Secretin	Proteins	6 (0.6)
1.B.39	OmpW	Methyl viologen and benzyl viologen	2 (0.2)
1.C.1	Colicin	Ions, small molecules	1 (0.1)
1.E.14	LrgA	Holin Zn\(^{2+}\), Fe\(^{2+}\)	1 (0.1)
2.A.1	MPS	Various small molecules	Total 83 (8.9)
	-SP (1)	Sugars	1 (0.1)
	-DHA1 (12 spanner) (2) drugs	Drugs	16 (1.7)
	-DHA2 (14 spanner) (3) drugs	Drugs	15 (1.6)
	-OPA (4)	Sugars, glycerol	1 (0.1)
	-MHS (6)	Dicarboxylates, tricarboxylates	15 (1.6)
	-NNP (8)	Nitrate, nitrite	3 (0.3)
	-OFA (11)	Oxalate, formate	3 (0.3)
	-SHS (12)	Sialate, lactate, pyruvate	1 (0.1)
	-ACS (14)	Organic acids	9 (1)
	-AAH1S (15)	Aromatic acids	5 (0.5)
	-CP (17)	Cyanate	1 (0.1)
	-OCT (19)	Organic cations	1 (0.1)
	-SET (20)	Sugars	1 (0.1)
	-DHA3 (12 spanner) (21) drugs	Drugs	1 (0.1)
	-VNT (22)	Neurotransmitter	1 (0.1)
	-BST (23)	Unknown	1 (0.1)
	-PAT (25)	Peptides, AcCoA	1 (0.1)
	-UMC-terminal fragment (26)	Unknown	1 (0.1)
	-PP (27)	Phenylpropionate	1 (0.1)
	-ADT (30)	Abietate diterpenoid	1 (0.1)
	-Nre (31)	Ni\(^{2+}\)	1 (0.1)
	-Fsr (35)	Fosmidomycin	1 (0.1)
	-AtOE (37)	Short chain fatty	2 (0.2)
2.A.3	APC	Amino acids, polyamines, choline	Total 6 (0.6)
	-AAA (1)	Amino acids	5 (0.5)
	-CAT (3)	Cationic amino acids	1 (0.1)
2.A.4	CDF	Ca\(^{2+}\), Co\(^{2+}\), Zn\(^{2+}\)	3 (0.3)
2.A.5	ZIP	Zn\(^{2+}\), Fe\(^{2+}\)	1 (0.1)
Table 4. Continued

Family	Abbreviation	Typical substrates	No. of members (%)
2.A.6	RND	Heavy metal ions, multiple drugs, oligosaccharides, organic solvents, fatty acids, phospholipids, cholesterol	Total 30 (3.2)
	-HME (1)	Heavy metals	17 (1.8)
	-HAE1 (2)	Hydrophobe/amphiphiles	9 (1)
	-SecDF(4)	Sec secretory accessory proteins	2 (0.2)
	-HAE2 (5)	Hydrophobe/amphiphiles	1 (0.1)
	-ORF4 (8)	Hydrophobe/amphiphiles	1 (0.1)
2.A.7	DMT	Multiple drugs and dyes (mostly cationic)	Total 18 (1.9)
	-SMR (1)	Drugs	2 (0.2)
	-BAT (2)	Unknown	2 (0.2)
	-DME (3)	Drugs, metabolites	12 (1.3)
	-RarD(7)	Chloramphenicol	2 (0.2)
2.A.9	OxlA	Proteins	1 (0.1)
2.A.10	KDGT	2-Keto-3-deoxygluconate	1 (0.1)
2.A.11	CitMH5	Citrate	1 (0.1)
2.A.12	AAA	ATP, ADP	1 (0.1)
2.A.14	LctP	Lactate	1 (0.1)
2.A.19	CaCA	Ca^{2+}	1 (0.1)
2.A.20	Pit	Inorganic phosphate	1 (0.1)
2.A.21	SSS	Sugars, amino acids, vitamins, nucleosides, inositols, iodide, urea	5 (0.5)
2.A.22	DAACS	C_4-dicarboxylates, acidic and neutral amino acids	5 (0.5)
2.A.24	CCS	Mono-, di-, and tricarboxylates	1 (0.1)
2.A.26	CPA1	Na^{+}/H^{+}, Na^{+} or K^{+}/H^{+}	1 (0.1)
2.A.27	CPA2	Na^{+}/H^{+} or K^{+}/H^{+}	6 (0.6)
2.A.36	NCS2	Nucleobases, urate	3 (0.3)
2.A.45	ArsB	Arsenite, antimonite	1 (0.1)
2.A.46	BenE	Benzoate	1 (0.1)
2.A.47	DASS	Dicarboxylates, phosphate, sulphate	4 (0.4)
2.A.49	Amnt	Ammonium	2 (0.2)
2.A.51	CHR	Chromate, sulphate (uptake or efflux)	4 (0.4)
2.A.52	NiCoT	Ni^{2+}, Co^{2+}	1 (0.1)
2.A.53	SulP	Sulphate	5 (0.5)
2.A.56	TRAP–T	C_4-dicarboxylates, acidic amino acids, sugars?	6 (0.6)
2.A.58	PNaS	Inorganic phosphate	2 (0.2)
2.A.59	ACR3	Arsenite	1 (0.1)
2.A.64	Tat	Redox proteins	4 (0.4)
2.A.66	MOP	Drugs, lipid-linked oligosaccharide precursors	Total 5 (0.5)
	-MATE (1)	Drugs	3 (0.3)
	-PST (2)	Polysaccharides	1 (0.1)
	-MVF (4)	Unknown	1 (0.1)
2.A.67	OPT	Peptides	2 (0.2)
2.A.69	AEC	Auxin (efflux)	2 (0.2)
2.A.72	KUP	K^{+} (uptake)	1 (0.1)
2.A.75	LysE	Basic amino acids	1 (0.1)
2.A.76	RhtB	Neutral amino acids and their derivatives	11 (1.2)
2.A.78	Liv–F	Carboxylates, amino acids, amines (efflux)	1 (0.1)
2.A.80	TTT	Tricarboxylate	74 (8)
2.A.81	AAE	Aspartate, alanine	2 (0.2)
2.C.1	TonB	H^{+}, drives solute uptake across outer bacterial membranes	5 (0.5)
3.A.1	ABC	All sorts of inorganic and organic molecules of small, intermediate, and large sizes, from simple ions to macromolecules	Total 213 (23)
	-CUT1(1)	Sugars, metabolites	15 (1.6)
Family	Abbreviation	Typical substrates	No. of members (%)
--------	--------------	--------------------	--------------------
-CUT2 (2)	Sugars, metabolites	4 (0.4)	
-PAAT (3)	Polar amino acids	14 (1.5)	
-HAAT (4)	Hydrophobic amino acids	45 (4.8)	
-PepT (5)	Peptide, opine, nickel	33 (3.5)	
-SuIT (6)	Sulphate, tungstate	6 (0.6)	
-PhoT (7)	Phosphate	6 (0.6)	
-MoIT (8)	Molybdate	4 (0.4)	
-PhnT (9)	Phosphonate	6 (0.6)	
-POPT (11)	Polyamine, opine, phosphate	8 (0.9)	
-QAT (12)	Quaternary amine	5 (0.5)	
-VB12T (13)	Vitamin B₁₂	1 (0.1)	
-FeCT (14)	Iron chelate	5 (0.5)	
-MZT (15)	Manganese, zinc, iron chelate	1 (0.1)	
-NiIT (16)	Nitrate, nitrite, cyanate	14 (1.5)	
-TauT (17)	Taurine	13 (1.4)	
-BIT (20)	Fe³⁺	1 (0.1)	
-CPSE (101)	Capsular polysaccharides	2 (0.2)	
-LOSE (102)	Lipo-oligosaccharide	7 (0.8)	
-DrugE1 (105)	Drugs	2 (0.2)	
-HemeE (107)	Heme	6 (0.6)	
-Prot1E (109)	Proteins	1 (0.1)	
-Prot2E (110)	Proteins	1 (0.1)	
-Drug RA1 (120)	Drugs	5 (0.5)	
-Drug RA2 (121)	Drugs	1 (0.1)	
-MacB (122)	Macrolide	2 (0.2)	
-LPT (125)	Lipoproteins	3 (0.3)	
-HMT (210)	Heavy metals	2 (0.2)	
3.A.2	F-ATPase	H⁺, Na⁺	8 (0.9)
3.A.3	P-ATPase	Na⁺, K⁺, Ca²⁺, Mg²⁺, Cd²⁺, Zn²⁺, Cu²⁺, Fe³⁺, Co²⁺, Ni²⁺, Ag⁺, phospholipids (flipping)	12 (1.3)
3.A.5	IIISP	Proteins	5 (0.5)
3.A.6	IISP	Proteins	10 (1.1)
3.A.7	IVSP	Proteins, protein–DNA complexes	20 (2.2)
3.A.11	DNA-T	Single-stranded DNA	1 (0.1)
3.A.12	S-DNA-T	DNA, DNA–protein complexes	2 (0.2)
3.A.13	FpHe	Viruses	1 (0.1)
3.A.15	MTB	Pilin/fimbriin	18 (1.9)
3.B.1	NaT-DC	Na⁺	2 (0.2)
3.D.1	NDH	H⁺ or Na⁺ (efflux)	19 (2.2)
3.D.2	PTH	H⁺ (efflux)	6 (0.6)
3.D.3	QCR	H⁺ (efflux)	3 (0.3)
3.D.4	COX	H⁺ (efflux)	23 (2.5)
4.A.6	Man	Glucose, mannose, fructose, sorbose, etc.	2 (0.2)
5.A.1	DsbD	2 e[−]	2 (0.2)
5.A.2	DsbB	2 e[−]	2 (0.2)
5.A.3	POM	Proton translocation	7 (0.8)
8.A.1	MFP	Proteins, peptides, lipopolysaccharides, drugs, dyes, signalling molecules, heavy metal ions, etc.	25 (2.7)
8.A.3	MPA1	Complex polysaccharides	3 (0.3)
8.A.4	MPA2	Complex polysaccharides	1 (0.1)
8.A.7	El	Sugars	1 (0.1)
8.A.8	HPt	Sugars	1 (0.1)
9.A.2	MerTP	Hg²⁺ (uptake)	3 (0.3)
9.A.8	FeoB	Fe²⁺ (uptake)	1 (0.1)
9.A.9	OFeT	Fe²⁺ (uptake)	3 (0.3)
9.A.17	PbrE	Lead resistance	2 (0.2)
9.A.21	ComC	DNA, proteins	1 (0.1)
The RND superfamily of export pumps is well represented, with 30 members. Of these, over half (17) in subfamily 1 are predicted to function in heavy metal efflux. Another nine (in subfamily 2) probably export drugs and other hydrophobic and amphipathic substances. The RND proteins of Rme have been compared to those from other bacteria recently (Nies, 2003). The two SecDF system components (subfamily 4), facilitate protein secretion via the general secretory pathway (Sec; 3.A.5). Lipid (subfamily 5) and pigment (subfamily 8) exporters may also be present.

Another well-represented superfamily encoded within the genome of Rme is the drug/metabolite transporter (DMT) superfamily, with 18 members within four of the families of this superfamily. Most of these transporters (families 1, 2 and 3) probably function in drug and metabolite efflux, but one (family 7) may be a sugar uptake permease.

A single putative 2-keto-3-deoxygluconate uptake permease was identified. Additionally, one member of the CitMHS (citrate uptake) family and one member of the LctP lactate uptake family were found. One system may export Ca²⁺ (CaCA family) while another may import phosphate (PiT family). A surprise was the identification of a member of the ATP : ADP antiporter (AAA) family, because such transporters were previously predominantly identified in intracellular pathogenic organisms and rarely in other bacteria (until now in *Ralstonia eutrophora* strain JMP134, *Pseudomonas fluorescens*, *Pirella*, *Rhodopirellula baltica* and *Magnetospirillum magnetotacticum*). However, what it could be doing in a free-living organism remains to be determined.

Five members of the SSS family most resemble characterized permeases for organoanions and cations as well as a putative nitrogen sensor. All of the five members of the DAACS family are predicted to transport dicarboxylates. These may include the two dicarboxylate amino acids, aspartate and glutamate. A putative CCS family member is also predicted to take up dicarboxylates. The four DASS family members probably serve similar functions but may also take up tricarboxylate compounds.

Both the CPA1 and CPA2 monovalent cation antiporter families are represented, with one and six members, respectively. CPA1 family members are predicted to be Na⁺ : H⁺ antiporters, while CPA2 family members may be K⁺ efflux systems. Three NCS2 nucleobase/nucleoside uptake systems and
two Amt ammonia/ammonium transporters were identified.

Two putative arsenite exporters (one of the ArsB-type and one of the Acr3-type) were found. Four potential chromate resistance (CHR) pumps and five putative sulphate uptake permeases (SuLP) may be involved in chromate and sulphate metabolism, respectively. The CHR and SuLP porters may be functionally related, since chromate is a sulphate analogue.

Six constituents of the tripartite TRAP-T family (2.A.56) may comprise three distinct systems for dicarboxylate uptake. However, studies indicate that members of this family may transport substrates of diverse structure, rendering substrate identification difficult. Only two TRAP-T receptors but at least three large and one small integral membrane constituents of these systems were identified. Because of rapid sequence divergence of the small integral membrane constituents, some of these proteins may have been missed. This situation can be contrasted with the superficially similar tripartite TTT family (2.A.80), where 74 potential constituents were found. Interestingly, about five proved to resemble the large and 11 the small integral membrane constituents of these systems, while 58 proved to be homologous to TTT family receptors. The occurrence of multiple probable receptors for TTT family systems in some bacteria has been noted before (Antoine et al., 2003).

Several additional families of transporters are probably involved in nutrient uptake (BenE, OPT and AAE) and metabolite efflux (AEC, LysE, RhtB and LIV-E). All of these are concerned with transport of peptides, amino acids and their derivatives. The largest of these families is the RhtB family, with 11 members. Additionally, constituents of a TonB–ExbBD system, which probably functions primarily to energize transport across the outer membrane by a proton electrochemical gradient, were identified.

A complete twin arginine targeting (TatABC) system, as well as a single Oxal homologue, is encoded within the genome of Rme. These two independently acting systems function in the secretion of a subset of extracellular proteins and in the insertion of integral membrane proteins, including redox enzymes, respectively (Yen et al., 2002). Genome analyses of the leader sequences of potential secretory proteins should reveal which are substrates of the Tat system and which are exported via the Sec system.

Primary active transporters

The vast majority of protein constituents of primary active transporters encoded within the Rme genome are members of the ABC superfamily; 213 proteins in Rme belong to this superfamily, 181 putative uptake system proteins and 32 putative efflux system proteins. Most ABC systems consist minimally of two membrane protein (M) and two ATP hydrolysing cytoplasmic protein (C) subunits which may be fused in various combinations. Consequently, the basic unit of an ABC transporter may be encoded by a single gene or up to four distinct genes. Additionally, extracytoplasmic receptors are associated with all uptake systems, and there may be several of these per system. Therefore, it is not possible to estimate accurately the number of intact ABC transporters present. The problem is exacerbated by the fact that the constituents of ABC systems are often encoded within multiple, non-adjacent operons.

Table 4 summarizes the family associations of the various ABC transporter constituents. The ratio of sugar uptake system constituents (CUT1 + CUT2) to amino acid plus peptide uptake systems (PAAT + HAAT + PepT) is 15:52 or about 1:4. This fact, together with the corresponding analyses of secondary carriers discussed above, reveals the much greater dependency of Rme on amino acid metabolism than carbohydrate metabolism (see also Table 2). Values for numbers of sugar and amino acid transporters can be compared with the total number of organic and inorganic anion and cation uptake transporter constituents (about 20 of each). ABC-type efflux systems are concerned with the export of drugs (10), complex carbohydrates (5), heme (6), proteins (5) and heavy metals (7) (Tables 3 and 4).

Rme has a single multicomponent F-type ATPase for the interconversion of chemical and chemiosmotic energy. It also possesses a dozen paralogous cation transporting P-type ATPases. Three of them have been characterized in detail (Borreman, 2001; Legatzki et al., 2003a) and all of them have been compared to P-type ATPases from other bacteria (Nies, 2003). Recently, the ongoing annotation work (http://genome.ornl.gov/microbial/rmet/)
Genomic analyses of transport proteins in Ralstonia metallidurans

identified another P-type ATPase (ZP_00273867) that was not included here.

A complete multicomponent general protein secretory (Sec) system (TC #3.A.5) was found in Rme, and this system undoubtedly serves as the primary protein export system for transport of proteins from the cytoplasm to the periplasm (Cao and Saier, 2003). However, Rme also has types II (MTB), III and IV macromolecular export systems. The first of these functions exclusively to export proteins across the outer membrane, but the latter two transport their substrates across both membranes. Type IV systems may also function in conjugation, and, in plant pathogens, in DNA export to the host cell. Additional potential DNA transloca
tion proteins of the DNA-T, S-DNA-T and FphE families were also identified (Table 3). However, assignment of their specific functional roles must await experimental studies.

The Na\(^+\) transporting carboxylate decarboxylases (TC #3.B.1) are multicomponent systems where the \(\beta\)-subunit catalyses Na\(^+\) export in response to cytoplasm substrate decarboxylation catalysed by the \(\alpha\)-subunit. These systems minimally require the presence of \(\alpha\)-, \(\beta\)- and \(\gamma\)-subunits (Dimroth et al., 2001). One such system may be present in Rme.

Proton pumping electron carriers

Rme has a single member of each of the three proton- or sodium-translocating electron transfer complexes of the NADH dehydrogenase (NDH), quinol : cytochrome c reductase (QCR) and cytochrome oxidase (COX) families. It also has at least two multicomponent transhydrogenases (PTH family). Rme therefore has a complete electron transfer chain for oxidizing NADH, using molecular oxygen as electron acceptor. All four electron carrier complexes cited above have the potential to generate an ion motive force as a primary source of energy. These coupled systems probably function together under aerobic conditions. Other transmembrane electron flow systems that can influence cellular energetics (class 5A and 5B) were also identified.

Group translocators

The complete phosphoenolpyruvate–sugar phosphotransferase system (PTS; TC #4.A) is present in Rme. It includes, however, just one mannose (Man)-type PTS permease (Zhang et al., 2003). Only one Enzymes I and one HPr were identified. It is clear that Rme possesses a minimal PTS, in agreement with the earlier conclusion, based on secondary and primary active transporter analyses, that Rme is not strongly dependent on sugar metabolism as a source of energy.

Poorly-defined transporters

Among the poorly characterized permeases of TC class 9.A, Rme has systems that probably transport heavy metal ions: mercury, iron, lead and magnesium. Several putative permeases of TC class 9.B were also identified (Table 3), but their functions are not known.

Perspectives and conclusions

We have analysed transporters in the heavy metal-resistant organism, R. metallidurans (Rme). This organism possesses several \(\alpha\)-type channel proteins. Some are concerned specifically with monovalent or divalent inorganic cation or anion transport, but several non-specific stress response channels also appear to be present. Rme also has a huge repertoire of outer membrane \(\beta\)-barrel porins involved in transport of small molecules as well as macromolecules across the outer membrane. Many (e.g. OMRs) are probably specific for uptake, while others (e.g. OMFs) mediate efflux.

Regarding secondary carriers for sugars, Rme seems to have a very limited repertoire of such systems relative to most other sequenced Gram-negative bacteria, such as E. coli and other enteric bacteria. Thus, Rme has only one MFS carbohydrate transporter in the sugar porter family. It has no putative glycoside transporters of the GPH family (TC #2.A.2). It does have a putative 2-keto-3-deoxygluconate transporter of the KDGT family, and it has a few ABC uptake transporters specific for monosaccharides and small oligosaccharides of the CUT1 and CUT2 subfamilies, as well as a complete phosphotransferase system. Rme may only transport hexoses via the one PTS permease identified.

The capacity of Rme to transport carboxylic acids and their derivatives as sources of carbon appears to be fairly extensive. Thus, several families of secondary mono- and dicarboxylate carriers...
(MFS, DAACS, DASS and TRAP-T) were identified. It also possesses members of the tricarboxylate transporting CitMHS, CCS and TTT families (Winnen et al., 2003). ABC-type carboxylate transporters were also found. Thus, the results point to a strong respiratory-type metabolism, with greater dependency on exogenous organic acids than carbohydrates.

Our genome analyses revealed several transporters that are probably specific for amino acids, peptides and their derivatives. Thus, for the uptake of amino acids, three families of secondary carriers were represented [MFS (MHS), APC and SSS], while members of two ABC families with this specificity (PAAT and HAAT) were found. For the uptake of peptides, two potential families of secondary carriers (OPT, MPE) and one ABC family (PepT) were represented. Finally, for amino acid efflux, members of five potential families were identified (DMT, AEC, LysE, RhtB and LIV-E). It seems clear that the transport and metabolism of amino acids and their derivatives is of considerable importance to the lifestyle of Rme.

Our analyses also revealed a large number of potential drug/hydrophobe/amphiphile export systems. Many of these belong to the DHA1, -2 and -3 families of the MFS. While a few of these efflux pumps may be involved in sugar export (Table 3; Saier, 2000), it is possible that some export amino acids and their derivatives, particularly those of a hydrophobic nature. It should be noted, however, that this has not yet been established for any member of the three MFS DHA families.

Other families, including transporters that probably export hydrophobic substances, include the HAE1 family in the RND superfamily, and the DME family of the DMT superfamily. At least some of these are probably concerned with drug export. Members of the MATE family within the MOP superfamily and several putative drug exporters of the ABC superfamily may serve similar functions. All of these families are represented in Rme. The diversity of substrates exported by these systems has yet to be studied.

As noted in Table 2 and further exemplified in Tables 3 and 4, over 220 transporters in Rme are probably concerned with inorganic ion transport. The following families are represented (see Table 3): (1) for monovalent cations: VIC, CytB, MscL, MscS, CPA1, CPA2, Amt, KUP, F-ATPase, P-ATPase and four proton-translocating electron carriers (NDH, PTH, QCR and COX); (2) for divalent cations: MIT, NNP(MFS), CDF, ZIP, RND, CaCA, NiCoT, FeCT(ABC), MZT(ABC), P-ATPase and MgtC; and (3) for anions: MFS, Pit, ArsB, DASS, CHR, SulP, PNaS, ACR3, SulT(ABC), PhoT(ABC), MolT(ABC) and NitT(ABC).

Inspection of Table 3 reveals possible transporters for a variety of additional interesting metabolites, such as organic anions (benzoate, phenylacetate, cyanate, phosphonates, sulphonates). Transporters specific for osmolytes, both purine and pyrimidine bases and nucleosides, quaternary ammonium compounds and possibly nucleotides (ADP/ATP in the AAA family), were also identified.

An extensive repertoire of macromolecular exporters was found. Protein secretion and membrane protein insertion systems include the Sec, Tat, Oxa1 and types I–IV systems. Complex carbohydrates can probably be exported via MOP, ABC and VGP family transporters. Possible lipid exporters of the RND superfamily have been identified, and several MFS and ABC systems may similarly catalyse lipid ‘flip-flop’, which is equivalent to export from the inner leaflet of the cytoplasm membrane bilayer to the outer leaflet. Some of these transporters may also export lipids from the inner membrane to the outer membrane.

Finally, several of the identified transporters could not be assigned even a tentative function. It should also be kept in mind that transporters that belong to functionally uncharacterized families may not be included in the TC system and therefore may not be identified using the computer approaches used here. Although our studies have revealed a disproportionate number of transporters concerned with inorganic ion transport, particularly with heavy metal resistance, and while these studies clearly point to the dominant types of metabolic activity upon which Rme depends for energy, it is clear that we are only at the beginning of an understanding of the scope of molecular transport processes in Ralstonia metallidurans.

Acknowledgements

This work was supported by NIH Grant No. GM64368. We thank the Joint Genomic Institute (JGI) for permitting us use of the preliminary genomic sequence of R. metallidurans, without which this study would not have been
possible. We thank Mary Beth Hiller for her assistance in the preparation of this manuscript.

References

Andres Y, Thouand G, Boualam M, Mergeay M. 2000. Factors influencing the biosorption of gadolinium by microorganisms and its mobilization from sand. Appl Microbiol Biotechnol 54: 262–267.

Antoine R, Jacob-Dubuisson F, Drobecq H, et al. 2003. Overrepresentation of a gene family encoding extracytoplasmic solute receptors in Bordetella. J Bacteriol 185: 1470–1474.

Anton A, Weltrowski A, Haney JH, et al. 2004. Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans and Escherichia coli. J Bacteriol 186: 7499–7507.

Arispe N, De Maio A. 2000. ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275: 30839–30843.

Borremans B, Hobman JL, Provoost A, et al. 2002. The transporter classiﬁcation of plasmid-encoded nickel transport gene conferring metal resistance to Ralstonia metallidurans CH34. J Bacteriol 185: 4354–4361.

Bouwer W, Saier MH Jr. 2003. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609: 115–125.

Boucher C, Genin S, Arlat M. 2001. Current concepts on the pathogenicity of phytopathogenic bacteria. C R Acad Sci III 324: 915–922.

Busch W, Saier MH Jr. 2002. The transporter classification (TC) system. 2002. CRC Crit Rev Biochem Mol Biol 37: 287–337.

Cao TB, Saier MH Jr. 2003. The general protein secretion system, 2002. CRC Crit Rev Biochem Mol Biol 37: 287–337.

Chernykh S, Peitzsch N, Hubener M, et al. 2003. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 181: 4354–4361.

Legatzki A, Franke S, Lucke S, et al. 2003b. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14: 153–168.

Mergeay M, Houbrechts G, Gerits J. 1987. Extrachromosomal inheritance controlling resistance to cadmium, cobalt and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochem 86: 440–441.

Mergeay M, Monchy S, Vallaeyts T, et al. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27: 385–410.

Mergeay M, Nies D, Schlegel HG, et al. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-encoded nickel transport gene conferring heavy metal resistance to Ralstonia metallidurans. J Bacteriol 162: 328–334.

Mourouzis S, Merlin C, Springael D, Toussaint A. 1999. An MgtR-like negative regulator of the biphenyl degradation genes of the transposon Tns371. Mol Gen Genet 262: 790–799.

Munkelt D, Grass G, Nies DH. 2004. The chromosomally encoded CDF transporters DmeF and FieF are transporters of broad specificity and DmeF is necessary for cobalt detoxification through the CzcCBA efflux system. J Bacteriol 186: 8036–8043.

Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339.

Nottebock D, Meyer U, Kramer R, Morthach S. 2003. Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett 218: 305–309.

Pausen IT, Nguyen L, Slusinska MK, Rabus R, Saier MH Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301: 75–100.

Pivetti CD, Yen M-R, Miller S, et al. 2003. Two families of prokaryotic mechanosensitive channel proteins. Microbiol Mol Biol Rev 67: 66–85.

Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Cozes J. 2001. Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67: 769–773.

Saier MH Jr. 2000. A functional–phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411.

Saier MH Jr. 2003. Answering fundamental questions in biology with bioinformatics. ASM News 69: 175–181.

Salaunoubat M, Genin S, Artiguenave F, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497–502.
Silver S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. *FEMS Microbiol Rev* **27**: 341–353.

Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M. 2001. Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. *Appl Environ Microbiol* **67**: 42–50.

Taghavi S, Mergeay M, van der Lelie D. 1997. Genetic and physical maps of the *Alcaligenes eutrophus* CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. *Plasmid* **37**: 22–34.

Toussaint A, Merlin C, Monchy S, *et al*. 2003. The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. *Appl Environ Microbiol* **69**: 4837–4845.

Tran CV, Yang NM, Saier MH Jr. 2003. TC-DB: An architecture for membrane transport protein analysis. Proceedings of the 2nd International IEEE Computer Society Computational Systems Bioinformatic Conference (CSB 2003), Stanford, CA; 658.

Vandamme P, Coenye T. 2004. Taxonomy of the genus *Cupriavidus*: a tale of lost and found. *Int J Syst Evol Microbiol* **54**: 2285–2289.

Vanechoutrte M, Kämpfer P, De Baere T, *et al*. 2004. *Wautersia* gen. nov., a novel genus accommodating the phylogenetic lineage including *Ralstonia eutropha* and related species, and proposal of *Ralstonia [Pseudomonas] syzygii* (Roberts, *et al*., 1990) comb. nov. *Int J Syst Evol Microbiol* **54**: 317–327.

Winnen B, Hvorup RN, Saier MH Jr. 2003. The tripartite tricarboxylate transporter (TTT) family. *Res Microbiol* **154**: 457–465.

Wolfram L, Eitinger T, Friedrich B. 1991. Construction and properties of a triprotein containing the high-affinity nickel transporter of *Alcaligenes eutrophus*. *FEBS Lett* **283**: 109–112.

Wolfram L, Friedrich B, Eitinger T. 1995. The *Alcaligenes eutrophus* protein HoxN mediates nickel transport in *Escherichia coli*. *J Bacteriol* **177**: 1840–1843.

Yen M-R, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr. 2002. Sequence and phylogenetic analyses of the twin arginine targeting (Tat) protein export system. *Arch Microbiol* **177**: 441–450.

Zhai Y, Saier MH Jr. 2001. A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. *J Mol Microbiol Biotechnol* **3**: 501–502.

Zhang Z, Aboulwafa M, Smith M, Saier MH Jr. 2003. The ascorbate transporter of *Escherichia coli*. *J Bacteriol* **185**: 2243–2250.