Diversity and abundance of heterobranchs (Mollusca, Gastropoda) from the mesophotic and bathyal zone of the Mediterranean Sea

M. TOMA 1,*, F. BETTI 1, G. BAVESTRELLO 1,2, R. CATTANEO-VIETTI 1,2,†, S. CANESE 3, A. CAU 4, F. ANDALORO 3, S. GRECO 3, & M. BO 1,2

1 Dipartimento di Scienze della Terra dell’Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy, 2 Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy, 3 Dipartimento Infrastrutture di ricerca per le risorse biologiche Marine, Implementazione tecnologica e Robotica Marina, Stazione Zoologica Anton Dohrn, Roma, Italy, and 4 Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Italy

(Received 18 October 2021; accepted 20 January 2022)

Abstract
The occurrence, relative abundance and bathymetric distribution of the deep Mediterranean heterobranch fauna were evaluated as a result of an extensive visual census down to 1825 m depth, carried out along the western Italian coasts, covering a latitudinal range of about 600 nautical miles. Observations were conducted using Remotely Operated Vehicles (ROVs) in 551 sites, focusing on the deepest part of the continental shelf, the shelf edge and the upper bathyal zone. The analysis of over 508 hours of video footage and more than 27,000 high-resolution photographs allowed to explore about 594,000 m² of rocky outcrops and nearby soft seafloors in four main coastal areas (Ligurian Sea, north-central Tyrrhenian Sea, southern Tyrrhenian Sea, and Sicily Channel) and twelve offshore seamounts. Thirty-six species of heterobranchs, for a total of 559 records, were identified. Sixteen were only sporadically spotted (< 1% of the total observations), while three (Paraflabellina ischitana, Tritoniidae nd and Peltodoris atromaculata) contributed each for more than 10% of the records. An extension of the known Mediterranean bathymetric distribution was reported for 80% of the observed species, with many typically shallow-water taxa being also found in mesophotic environments (40–200 m). The observed marked decrease in diversity and abundance suggested that Mediterranean heterobranchs are mainly a coastal benthiic group. From the geographical point of view, the heterobranch fauna present in the Ligurian Sea appeared significantly different from that observed in the Tyrrhenian Sea and the Sicily Channel, and this latitudinal pattern was discussed. Particular attention was given to single out the bathymetric distribution of the food sources of the most frequently observed species, supporting stenophagy as a limiting factor for their colonisation of the deep sea.

Keywords: Nudibranchia, deep-sea, ROV, bathymetric distribution, stenophagy

Introduction
The Mediterranean malacofauna is considered one of the best-known in the world (Oliverio 2003). In particular, Heterobranchia (Mollusca, Gastropoda) have been significantly studied in the last 50 years, mainly thanks to the advent of scientific SCUBA diving, which has led to a profusion of studies improving our understanding of the species richness, ecology, phylogeny and geographic distribution (e.g., Vicente 1967; Schmekel & Portmann 1982; Thompson et al. 1990; Templado & Villanueva 2010; Trainito & Doneddu 2014; Furfaro & Mariottini 2016; Zenetos et al. 2016; Bettì et al. 2017). Up to date, more than 600 species of heterobranchs have been described from the Mediterranean Sea (Trainito & Doneddu 2014; Parera et al. 2020). Nevertheless, the available
information is skewed towards SCUBA diving depth range (from the surface to around 40 m), while very little is known about the composition and distribution of the heterobranch fauna living in the deepest part of the Mediterranean continental shelf, shelf edge and slope, down to the bathyal habitat.

Most of the available data on deep Mediterranean heterobranchs targets the soft-bottom fauna of the North-West Mediterranean Sea, studied mainly thanks to catches made by destructive gears, such as dredges and trawling nets. Vicente (1967) reported 21 species between 45 and 450 m inside the Gulf of Marseille (France), scattered on detritic, maerl and mud, with only the cephalaspidean Philine monterosati Monterosato, 1874 found below 120 m. In an extensive survey off the coasts of Blanes (Spain), Ros (1975) reported 34 heterobranch species from 40 to 250 m, observed on detritic, sand and mud. This faunal census was later updated to 47 species by Domènech et al. (2006), who provided qualitative information on the frequency of occurrence of species found between 50 and 300 m in the same area, indicating the cephalaspidans Gastropteron rubrum (Rafinesque, 1814) and Scaphander lignarius Linnaeus, 1758 and the nudibranch Tethys fimbria Linneus, 1767 as the most frequent deep taxa. Bouchet (1977) reported two bathyal nudibranch species (Baptodoris cinnabarina Bergh, 1884 and Doris alboranica Bouchet, 1977) from the Alboran Sea (500–910 m). Cattaneo-Vietti (1991) recorded 32 species, mostly observed sporadically, from the trawling grounds of the continental shelf and slope of the Ligurian and northern Tyrrhenian seas down to 700 m. Among the most widespread species, there were: Philine quadripartita Ascanius, 1772 and T. fimbria, mainly linked to the terrigenous mud biocoenosis, Pleurobranchus meckeli (Blainville, 1825) and Doris pseudoargus Rapp, 1827 in the coastal detritic one, while Pleurobranchus membranaceus (Montagu, 1816) and Kaloplocamus ramosus (Cantraine, 1835) frequently appeared in the shelf-edge detritic biocoenosis, characterised by the crinoid Leptometra phalangium (Müller, 1841) and by the seapen Funiculina quadrangularis (Pallas, 1766). Scaphander lignarius was also commonly collected, from coastal detritic to bathyal mud. Finally, B. cinnabarina was found in the bathyal mud biocoenosis of the slope, feeding on the sponge Thenea muricata (Bowerbank, 1858) (Bouchet 1977; Cattaneo-Vietti 1991). Lastly, a survey conducted in the Cretan Sea (eastern Mediterranean basin) reported nine species living on soft bottoms between 40 and 700 m (Koutoubas et al. 2000). These included some new findings for this habitat, such as the acteonid Crenilabium exile (Jeffreys, 1870), the cephalaspidean Roxaniella jeffreyi (Weinkauff, 1866) and the sacoglossan Ascobulla fragilis (Jeffreys, 1856).

On the other hand, information on the Mediterranean heterobranch fauna of mesophotic and bathyal rocky environments is scarce. Recently, Tritonia callogorgiae Chimienti, Furfaro and Taviani, 2020, living on the deep alcyonacean Calllogorgia verticillata (Pallas, 1766), was described on the basis of specimens photographed and collected by Remotely Operated Vehicle (ROV) at 420–430 m depth, off the Montenegro margin (Chimienti et al. 2020). Overall, deep data mainly come from reports of technical divers exploring the upper mesophotic range, but are often based on fortuitous findings, focused on restricted areas, and do not allow for a comprehensive interpretation of the ecology and biogeography of the species.

In the last fifteen years, several ROV surveys were carried out along a large part of the Italian coasts, from the Ligurian Sea to the Sicily Channel, targeting the characterisation of the megabenthic biocoenoses dominated by structuring species thriving between 30 and 1825 m on hardgrounds and nearby soft seafloors (e.g., Bo et al. 2012, 2021; Cau et al. 2015; Angiollillo et al. 2016, 2021; Altopelli et al. 2017; Enrichetti et al. 2019; Moccia et al. 2021). Such habitats constitute Vulnerable Marine Ecosystems (VMEs) (Del Mar Otero & Marin 2019), attracting a rich faunal biodiversity; however, the associated macrofauna was never specifically targeted. These ROV datasets gave a chance, for the first time, to assess the large-scale bathymetric and geographic distribution of a significant number of mesophotic and bathyal Mediterranean heterobranchs and investigate the ecological traits affecting deep-sea colonisation.

Materials and methods

In total, 551 ROV videos, each corresponding to a different dive and locality, were examined to analyse the large-scale distribution of the heterobranchs present on the rocky bottoms (and soft-bottom surroundings) of the mesophotic and bathyal zone. In total, 502 ROV footages were obtained from explorative campaigns conducted in four Mediterranean coastal areas (Ligurian Sea, north-central Tyrrhenian Sea, southern Tyrrhenian Sea and Sicily Channel), between 30 and 775 m depth (Figure 1). In addition, 12 offshore seamounts, six in the Ligurian basin (namely Penelope, Ulisse, Janua, Spinola, Occhiali and Santa Lucia), four in the central Tyrrhenian Sea (Vercelli, Cialdi, Etruschi and Barone), and two in the southern
Tyrrhenian Sea (Palinuro and Marsili) were explored thanks to 49 ROV dives between 60 and 1825 m depth (Figure 1). Overall, the ROV tracks covered about 594,000 m² of the seafloor for over 508 h of video footage. Besides, more than 27,000 photos taken by high-resolution cameras were analysed, helping identify the smallest and cryptic specimens. Surveys were conducted over several years (2007–2019).

Five depth ranges (30–50 m; 51–100 m; 101–150 m; 151–200 m; >201 m) were defined to depict the bathymetric distribution patterns of the species. Dives extending for a broad depth range (more than 50 m) were divided into parts according to the identified ranges so that the final considered number was 883 (817 for coastal regions and 66 for seamounts).

ROV footage was analysed using Apple’s Final Cut Pro X software. The analysis allowed recording heterobranchs larger than 2 cm, identified by external morphological features at the lowest possible taxonomic level, thanks to field guides and specialist scientific literature. The currently valid scientific species names were checked on the World Register of Marine Species (WORMS). The number of individuals has been counted for each species, and the exact depth at which they were found was reported. Quantitative data about specimens were normalised as the number of individuals per 100 dives for each large geographic area and depth range. Putative food sources (identified based on the literature and the position of the molluscs) were also reported together with any other ecological note (e.g., type of habitat, phenotype, mating events and presence of eggs). The putative associations were explored for four species or groups of species through linear regressions considering the frequency

![Figure 1. QGIS map of the study area with location of the ROV dives considered in this work. Dives with at least one record of heterobranchs are indicated by green dots, otherwise, they are indicated by red dots.](image-url)
of occurrence (per 100 dives) of the food sources and their consumers.

Significant differences in the percentage diversity between depth ranges were investigated with a Kruskal–Wallis test (data not normally distributed, $n = 37$ for each depth range considering 50–100 m, 101–200 m and > 201 m). In order to verify potential differences among the species according to geographic distribution and depth, the whole dataset (expressed as the number of specimens per 100 dives, $n = 5$ per each species per each depth range) was square-root transformed to underweight abundant taxa and analysed by Principal Component Analysis (PCA) (Bray–Curtis similarity). In order to test for significant differences in the patterns of relative abundance of heterobranchs (total, cladobranchs and dorids, separately) in the four considered macro-areas (LS, Ligurian Sea; NCT, north-central Tyrrhenian Sea; ST, southern Tyrrhenian Sea; SC, Sicily Channel) at the different depth ranges (30–50 m, 51–100 m, 101–150 m, 151–200 m, > 201 m), a two-way PERMANOVA (Bray–Curtis similarity) was performed on the whole dataset (expressed as the number of specimens per dives, $n = 7–114$ per depth range).

Analyses were carried out with PAST Statistics Software® (Hammer et al. 2001).

Results

Diversity and occurrence of the heterobranch fauna

The heterobranch fauna recorded in the analysed ROV footage accounted for 559 specimens identified in 28 genera and 36 species (Tables I, II, Figure 2). The fauna consisted of 21 families divided into seven orders (or lower taxa). The order Nudibranchia showed the highest species richness (78% of the total taxa), with an almost equal contribution for the two represented suborders, Cladobranchia and Doridina (Table I). Altogether, the order Nudibranchia showed also the highest specimen abundance (91% of the total observed individuals, 50.5% and 40.5% in Cladobranchia and Doridina, respectively). These suborders also included the most frequent species, namely, *Paraflabellina ischitana* (Hirano & Thompson, 1990) (17% of the total records), followed by *Peltodoris atromaculata* Bergh, 1880 and *Tritoniidae nd* (11% and 12%, respectively). The dorids *Felimare tricolor* (Cantraine, 1835), *Felimare orninii* (Vérany, 1846) and *Felimida purpurea* (Risso, 1831) and the cladobranch *Antipella cristata* (Della Chiaje, 1841) represented 5–9% of the total records. The sacoglossan *Thuridilla hopei* (Vérany, 1853) and the unbraculid *Umbraculum umbraculum* (Lightfoot, 1786) accounted for 2–3% of the total records and represented the most frequent taxa within non-nudibranchs. Overall, 16 species were observed only sporadically, meaning one to five times, corresponding to less than 1% of the total observations (Tables I and II). A maximum of five species were recorded in the same dive.

All the taxa identified at the species level were previously reported in Mediterranean waters. Following the classification proposed by Bianchi et al. (2012), the biogeographic origin of the studied fauna is as follows: 59% of the taxa are Atlantic-Mediterranean species, 25% are (sub)tropical Atlantic, 13% are Boreo-Atlantic, while one species is cosmopolitan.

Bathymetric distribution of the heterobranch fauna

Heterobranch records were made between 30 and 500 m, with the shallowest finding being *Peltodoris atromaculata* and the deepest Tritoniidae nd.

The highest diversity was observed between 30 and 100 m depth (86.5% of the recorded species). This datum significantly decreased in the depth range 101–200 m (51.4%) and dropped at greater depths (18.9%) (Kruskal–Wallis, $H = 25.13$, $H_c = 33.57$, $p < 0.001$). The species recorded below the mesophotic zone (>200 m) were *G. rubrum* and the cladobranchs *Fjordia lineata* (Lovén, 1846), *Facelina sp.*, *P. ischitana*, *Nemesignis banyulensis* (Portmann & Sandmeier, 1960), *T. fimbria* and Tritoniidae nd (Figure 3). Among these taxa, *G. rubrum* and *T. fimbria* were exclusively found in the deepest depth range, even if with a single record each. On the other hand, *P. ischitana* and *N. banyulensis* were mainly observed in the 50–100 m depth range, *F. lineata* in the 100–200 m, while *Facelina sp.* and Tritoniidae nd were consistently present below 200 m. No dorids were observed below 200 m (Figure 3).

The trend of relative abundances of all recorded specimens (n° specimens/100 dives) showed a marked decrease with depth (Figure 4(a)). This trend was particularly evident for dorids, while cladobranchs showed a mesophotic peak of abundance (Figure 4(b)).

Geographic distribution of the heterobranch fauna

Heterobranchs were reported in 25% of the total dives, with the highest percentage frequency of occurrence in the Ligurian Sea and Sicily Channel (33% of the total dives), followed by the north-
Table I. List of the heterobranch species found in this study. Number of specimens recorded per depth range and geographic area is given. LS, Ligurian Sea; NCT, north-central Tyrrhenian Sea; ST, southern Tyrrhenian Sea; SC, Sicily Channel.

Species	Depth ranges (m)	Macroareas								
	30-50	51-100	101-150	151-200	>201	LS	NCT	ST	SC	TOT
APLYSIIDAE										
Aplysiidae										
Aplysia depilans										
Gmelin, 1791										
CEPHALASPIDEA										
Gastropteridae										
Gastropteron rubrum										
(Rafinesque, 1814)										
PLEUROBRANCHIDA										
Pleurobranchaeidae										
Pleurobranchaea meckeli										
(Blainville, 1825)										
Pleurobranchidae										
Berthella/Berthellina spp.	4	1	2	3	5					
Pleurobranchus testudinarius	6	3	2	7	9					
Cantraine, 1835										
SACOGLOSSA										
Plakobranchidae										
Thuridilla hopei	13	3	12	2	1	16				
(Vérany, 1853)										
UMBRACULIDA										
Umbraculidae										
Umbraculum umbraculum	2	9	3	3	4	2	5	14		
(Lightfoot, 1786)										
NUDIBRANCHIA										
(Cladobranchia)										
Coryphellidae										
Fjordia lineata	2	2	1	3	4					
(Lovén, 1846)										
Dotidae										
Doto cf. coronata	2		2	2						
(Gmelin, 1791)										
Facelinidae										
Caloria elegans		1	5	1	5	6				
(Alder & Hancock, 1845)										
Facelina annulicornis	1		1	1		1				
(Chamisso & Eysenhardt, 1821)										
Facelina sp.	5	7	20	1	1	6	24	2	33	
Pruvotfolia pselliotes	1	5	1	5	2	7				
(Labbé, 1823)										
Flabellinidae										
Edmundsiella pedata	3		2	1	3					
(Montagu, 1816)										
Flabellina affinis	9	4	5	4	3	1	13			
(Gmelin, 1791)										
Paraflabellina tachitana	7	49	33	1	3	17	31	39	90	
(Hirano & Thompson, 1990)										
Janolidae										
Antiopella cristata	1	23	4	10	9	1	24			
(Della Chiaje, 1841)										
Myrrhinidae										
Nemesignis banyulensis	4		4	4						
(Portmann & Sandmeier, 1960)										
Samilidae										
Lusiella babai	13	2	12	2	1	15				
(Schmekel, 1872)										

(Continued)
central Tyrrenian Sea (22%), southern Tyrrhenian Sea (20%) and seamounts (15%).

The expected species diversity percentage (number of species per 100 dives) decreased according to latitude from the Ligurian basin (14 species), to the southern Tyrrhenian Sea (7 species), with a second peak in the Sicily Channel (13 species) (Figure 5). The ratio between the taxa of the two Nudibranchia suborders was balanced in the Ligurian and Tyrrhenian seas (6:6, 3:3, 3:3, for Cladobranchia and Doridina, respectively). On the other hand, the Cladobranchia were dominant in the Sicily Channel (6:3). The fauna of seamounts was composed of only six species, all cladobranchs (Table II; Figure 5).

The four coastal assemblages showed differences also in terms of relative abundance. In the PCA analysis, the first two axes explained 54% of the total variability observed in the dataset (expressed as the number of specimens per 100 dives) (C1: 36.2%, C2: 18.7%) (Figure 6). Based on this analysis, depth played a significant role in distinguishing regional groups. The Ligurian area is distinct from the north-central and southern Tyrrhenian and Sicily Channel areas. The biplot

Species	Depth ranges (m)	Macroareas								
	30-50	51-100	101-150	151-200	>201	LS	NCT	ST	SC	TOT
Tethydidae										
Tethys fimбриa										
Linnaeus, 1767										
Tritoniidae										
Duvaucellia odhneri	1	1	1	1						
Tardy, 1963										
Tritoniidae nd	3	45	12	2						
NUDIBRANCHIA (Doridina)										
Cadilinidae										
Cadlina laevis	1	1	1	1						
Cadilinidae (Linnaeus, 1767)										
Calycidorididae										
Diaphorodoris alba	6	1	4	2	1					
Portmann & Sandmeier, 1960										
Diaphorodoris papillata	3	1	2	3						
Portmann & Sandmeier, 1960										
Chromodorididae										
Felimare fontanilhau	1	1	1	1						
(Pruvot-Fol, 1951)										
Felimare orsini	22	19	41	41						
(Véran, 1846)										
Felimare picta	2	7	9	9						
(Philippi, 1836)										
Felimare tricolor	14	31	1	2	36	3	2	7	48	
(Cantraine, 1835)										
Felimare cf. villanfranca	3	10	1	1	7	4	1	3	13	
(Riso, 1818)										
Felimina binza	1	1	1	1						
(Marcus & Marcus, 1963)										
Felimina luteorosea	7	1	3	3	2	8				
(Rapp, 1827)										
Felimina purpurea	6	22	1	2	9	4	14	29		
(Riso, 1831)										
Discodorididae										
Peltodoris atromaculata	18	40	5	31	9	6	17	63		
Bergh, 1880										
Goniodorididae										
Okienia mediterranea	1	1	1	1						
(Bering, 1886)										
Phyllidiidae										
Phyllidia flava	2	2	2	2						
Aradas, 1847										
showed that a relatively large number of taxa, including most *Felimare* species, *P. ischitana* and *P. atramaculata* drove the mesophotic faunas, while Tritoniidae nd and *Facelina* sp. drove the deeper ones.

The Ligurian heterobranch fauna showed, indeed, some peculiarities. The cladorbranchs *Facelina* sp., *P. ischitana* and Tritoniidae nd, elsewhere relatively frequent, were rare in the Ligurian dataset. On the contrary, *Luisella babai* (Schmekel, 1872) and the sacoglossan *T. hopei* were commoner sightings. Regarding dorids, *F. orsinii* and *Felimare picta* (Philippi, 1836) were observed only in the Ligurian Sea, while *F. tricolor* was predominant in this area, and *P. purpurea* was more rarely reported (Table I).

Latitude and depth significantly contributed to the differences observed in the relative abundance patterns of the heterobranch fauna (Table II). In particular, a marked decrease was observed between the shallower depth ranges (30–100 m) and the deeper ones (>100 m) in the Ligurian Sea and the Sicily Channel (Figure 7(a)), explained by significantly higher abundances of dorids above 100 m (Figure 7(b), Table III). Cladorbranchs, instead, mainly contributed to the mesophotic and deep faunas of the Tyrrhenian regions and Sicily Channel (Figure 7(c), Table III).

Overall, not many records were made on the seamounts. Heterobranchs were observed in half of the sites, with a total of 17 specimens (Table II). Six species were identified: *A. cristata* was the solely reported above 100 m depth (Vercelli Seamount, 70 m depth), while other four cladorbranchs (*F. lineata*, *Facelina* sp., *P. ischitana* and *N. banyulensis*) were found between 100 and 210 m, and Tritoniidae nd was observed down to 460–500 m (Penelope and Ulisse seamounts), being the deepest records of this taxon (Table II).

Ecological remarks on mesophotic and deep-sea heterobranchs

Almost all sightings of heterobranchs were made in environments characterised by coralligenous formations (48% of the total observations) and rocky hardgrounds (46%) (these latter including large boulders and silted outcrops on the outer shelf and upper slope, and dead coral frameworks, especially on bathyal seamounts). The remaining records were made in detritic environments (4%) (including also rhodolith beds) and soft bottoms (2%) (mud and sand), both mainly found in the proximity of the hardgrounds (Figures 2, 8, Table IV). Dorids contributed to 53% of the total records in coralligenous habitats, while cladorbranchs were responsible for 67% of the records on rocky outcrops and 68% of the total occurrences
Figure 2. In situ ROV images of the 20 most represented species. (a) *Thuridilla hopei* on a bed of green algae in the coralligenous (Ponza, 75 m); (b) *Umbraculum umbraculum* on a silted rocky bank on the shelf edge (Graham Bank, 88 m); (c) *Pleurobranchus testudinarius* in a cavity of a rocky outcrop (Lampedusa, 108 m); (d) *Fjordia lineata* feeding on an hydrozoan growing on a heavily silted rocky outcrop of the shelf edge (Genova Portofino, 100 m); (e) *Caloria elegans* feeding on opportunistic hydrozoans growing on a dead gorgonian on a silted bank (Gulf of Naples, 110 m); (f) *Facelina* sp. on a silted offshore rocky outcrop (St. Eufemia, 83 m); (g) *Pruvotfolia pselliotes* crawling on mud (Bordighera Canyon, 50 m); (h) *Flabellina affinis* moving on a rich coralligenous bed (Ponza, 76 m); (i) *Paraflabellina ischitana* feeding on *Eudendrium* sp. within a red coral forest (SW Sardinia, 85 m); (j) *Antipoda cristata* feeding on the bryozoan *Reteporella* spp. (Tyrrenian Calabria, 75 m); (k) two specimens of *Lusella babai* mating on detritic mud (Patti Gulf, 82 m); (l) *Tritonia callogorgiae* feeding on the anthozoan *Callogorgia verticillata* in a bathyal environment dominated by fossil hard corals (Ulisse Seamount, 500 m); (m) *Diaphorodoris alba* moving in a coralligenous environment (SW Sardinia, 85 m); (n) two specimens of *Felimare orsinii* mating on a keratose sponge (Savona, 45 m); (o) a large specimen of *Felimare picta* moving on a sponge bed (Imperia, 65 m); (p) two specimens of *Felimare tricolor* feeding on a keratose sponge (Genova Punta Manara, 65 m); (q) *Felimare cf. villafranca* crawling on a silted rocky bed on the outer shelf (Tuscan Archipelago, 75 m); (r) *Felimida lateroseta* moving in the understory of a gorgonian forest on a silted offshore rocky outcrop (St. Eufemia, 83 m); (s) *Felimida purpurea* on an encrusting sponge of a rocky outcrop (Gulf of Naples, 80 m); (t) a large specimen of *Peltodoris atromaculata* in a deep coralligenous environment (Egadi Archipelago, 57 m).
on detritic. Other Heterobranchia, instead, contributed for 54% of the records on soft bottoms.

About 47% of the sightings were represented by the heterobranchs on exclusive or recurrent organisms, which could be identified as possible food sources (Table IV). The sacoglossan *T. hopei* was strictly linked to shallow-water photosynthetic algal communities (Figure 2(a)). *Antiopeia cristata* was observed on the bryozoans *Reteporella* spp. (Figure 2(j)), while *Duvaucelia odhneri* Tardy, 1963 was observed on the gorgonian *Leptogorgia sarmen- tosa* (Esper, 1791), and *U. umbraculum* was three times observed feeding on massive white sponges (Figure 2(b)). However, most of the associations regarded four taxa or closely related groups of species, whose relation to the presence of their putative
food sources with depth was explored (Figure 9). The strongest correlation was found between the dorids *Felimare* spp. and keratose sponges, peaking between 30 and 100 m and almost disappearing below 130 m (Figures 8(a), 9(a)). Similarly, the dorid *P. atromaculata* showed an overlap in the occurrence of its food sources, the sponges *Petrosia ficiformis* (Poiret, 1789) and *Haliclona fulva* (Topsent, 1893), both disappearing below the shelf edge (Figures 8(b), 9(b)). The occurrence of the cladobranch Tritoniidae nd was linked to the presence of deep-sea gorgonians, especially below 100 m (Figures 8 (d)-(g), 9(c)). The specimens were observed feeding on a large variety of

Figure 4. Correlation of (a) the number of heterobranch specimens (normalised on 100 dives) with depth, and (b) the number of specimens (normalised on 100 dives) of Doridina (empty circles) and Cladobranchia (filled circles) with depth.
anthozoans, including *C. verticillata* (46% of the observed associations), *Acanthogorgia hirsuta* Gray, 1857 (25%), *Bebryce mollis* Philippi, 1842 (12%), and, to a lesser extent, *Eunicella cavolini* (Koch, 1887) (7%), *Villogorgia bebrycoides* (Koch, 1887) (7%), and *Paramuricea clavata* (Risso, 1826) (3%). No strong relationship was observed between the hydrozoan-eater cladobranchs (belonging to the families Facelinidae, Flabellinidae, and, less represented, Coryphellidae, Myrrhinidae and Samlidae)

![Figure 5. Expected number of species (per 100 dives) of Cladobranchia (black), Doridina (grey) and other Heterobranchia (white) according to the considered macro-areas: LS, Ligurian Sea; NCT, north-central Tyrrhenian Sea; ST, southern Tyrrhenian Sea; SC, Sicily Channel; SM, seamounts.](image)

![Figure 6. PCA analysis of the species composition and frequency dataset (based on the number of specimens per 100 dives) of the heterobranch assemblages of the four main considered macro-areas (red, Ligurian Sea; blue, north-central Tyrrhenian Sea; grey, southern Tyrrhenian Sea; Orange, Sicily Channel) at all depth ranges (from right to left on C1 axis).](image)
and large colonial hydrozoans (such as Plumularioidea, Sertularioidea, Bougainviillidae, Eudendriidae, Haleciidae, Lafoeidae, Campanulariidae) (Figures 8(c), 9(d)). About 20% of these heterobranchs were found crawling on lost fishing gear, feeding on hydrozoans colonising nets and lines (Figure 8 (h)–(j)). The species most commonly observed in these cases were Facelina sp. and P. ischitana. This latter, as well as Flabellina affinis (Gmelin, 1791) and Caloria elegans (Alder & Hancock, 1845), were also observed on hydrozoans colonising dead gorgonians (Figure 2(e)).

Considering soft-bottom species, the scattered records regarding the cephalaspidean G. rubrum, the pleurobranchids P. meckeli and Pleurobranchus testudinarius Cantraine, 1835, and the nudibranch T. fimбриa provided no evidence of feeding activity (Figure 8 (k)–(l)).

The 883 dives covered all months except for March and December; however, observations were mainly concentrated from June to September, accounting for 79% of the total dives. The summer observations included most of the dives with sightings of heterobranchs (about 87%) (Table IV). Among the species with the highest number of records, P. atromaculata, P. ischitana and Tritoniidae nd were also observed during spring (May) and autumn (October), with one winter record (January) for the latter species (370 m). During summer, egg ribbons were observed near specimens of U. umbraculum, C. elegans, D. odhneri, Tritoniidae nd, Felimare cf. villafranca (Risso, 1818), and P. atromaculata (Figure 8 (m, n), Table IV). Finally, F. orbisini, L. babai and P. testudinarius were observed during mating between June and November (Figures 2(n, k), 8(l)).

Discussion

Deep-sea heterobranchs have received relatively poor attention compared with their coastal counterpart, particularly those taxa that do not possess a shell remaining in the sediments or that live on hardgrounds unsuitable for traditional destructive sampling gear. These latter species, however, generally present a size compatible with the modern ROV image resolution; therefore, their distribution and ecology could be investigated with targeted studies. So far, only a handful of papers specifically dealt with this group for taxonomic or ecological purposes, in the Atlantic and Pacific oceans down to 2300 m (NRDC, 2014; Valdés et al. 2018; Zhang & Zhang 2021) and in the Mediterranean Sea down to 420 m (Chimienti et al. 2020).

This study enriches the knowledge on deep hard bottom Mediterranean heterobranchs with a novel large-scale approach that includes a bathymetric range embracing the mesophasic and upper bathyal zone and a latitudinal transect of about 600 nautical miles touching all western coasts of Italy and some offshore locations.

ROV technology does not allow for a comprehensive evaluation of the diversity of the subclass Heterobranchia. It misses part of the diversity of this group, especially burrowing taxa with external shells found in sediments (e.g., Acteonoidea, Pyramidelloidea, Valvatoidea) (e.g., Monterosato 1874, 1890; Jeffreys 1882; Smriglio & Mariottini 1996; Bogi & Galil 2004, 2013). In addition, regarding epifaunal species, it is limited in the observation of very small specimens and in the detection of fine external morphological features. Finally, it is not efficient in the collection of a large number of individuals for anatomical studies. Nevertheless, numerous heterobranchs belonging to the taxa considered in this study (Sacoglossa, Umbraculida, Aplysiida, Cephalaspidea, Pleurobranchida, and Nudibranchia) display morphological and ecological traits detectable by ROV and sufficient for a
Figure 7. Bathymetric and geographical patterns of relative abundance (expressed as the number of specimens per 100 dives) of (a) total Heterobranchia, (b) Doridina, and (c) Cladobranchia.
reasonably good identification. As a result, 36 species were identified in this analysis, of which 13 adds up to the known deep fauna of the basin, previously accounting for 59 taxa found in mesophotic and bathyal environments (40–910 m) (e.g., Vicente 1967; Ros 1975; Bouchet 1977; Cattaneo-Vietti 1991; Koutsoubas et al. 2000; Domènech et al. 2006) (Table V). This result supports the use of ROV, despite its limitations, as an effective tool to characterise deep macrofauna, especially on hardgrounds that are unsuitable for other sampling devices.

Among the most abundant taxa, only two were considered challenging in terms of taxonomic identification. Facelina sp. is a 3 cm long cladobranch strongly resembling the recently re-established shallow-water taxon Facelina vicina (Bergh, 1882), for long identified as Facelina bostoniensis (Couthouy, 1838) (Carmona 2020). With respect to shallow-water specimens, it is paler, as also reported by Mastrototaro et al. (2017) from bathyal muds (473–552 m) off Ibiza (Balearic Sea). Its collection is mandatory to clarify its identification, possibly as a new species.

Tritoniiidae nd represented the second challenging case in terms of identification. Of the 69 records, five could be attributed to Marionia blainvillea (Risso, 1818) mainly due to their dark red colouration and common occurrence in coralligenous environments (65–155 m) associated with E. cavolini and P. clavata, as previously reported in the literature (McDonald & Nybakken 1999; Ponti et al. 2016). Half of the remaining records could be attributed to T. callogorgiae due to their generally lighter colouration (from white to yellow, to orange) and the fact...
that they were associated with the alcyonacean *C. verticillata* in bathyal habitats as described (Chimienti et al. 2020). However, the other records included specimens with overlapping characteristics. Overall, the impossibility of verifying the anatomical characteristics distinguishing the two taxa and the similar morphology in the ROV footage does not allow for a conclusive identification (hence Tritoniidae nd), especially in the putative overlapping depth range. If the records of *T. callogorgiae* are correct, then the known bathymetric distribution of this species should be extended (110–500 m), and its putative diet should also include five other gorgonians, both shallow and deep ones. Species identification and genus-level taxonomic assignments of Family Tritoniidae are still debated and under investigation (Korshunova & Martynov 2020; Moles et al. 2021); a revision of Mediterranean Tritoniidae, including a study of the type material of *M. blainvillea*, is necessary to disentangle the distinction between these two species.

The heterobranch fauna reported in this study is mainly constituted by Atlantic-Mediterranean species usually found in shallow-water coralligenous biocoenoses (e.g., Ballesteros 2006; Furfaro & Mariottini 2016; Trainito & Doneddu 2016). Although a bias exists due to the lack of precise depth locations of the findings in many literature sources, the observations provided here extend the known bathymetric distribution of 29 of the
recorded species (Table V). This result supports the ability of some Mediterranean species, traditionally considered of shallow waters (0–40 m), to colonise at least the upper mesophotic depth range (40–80 m), with a conspicuous number also extending in the lower mesophotic (80–200 m). Due to the progressive decrease in the availability of hardgrounds with depth, these species can be found on the scattered roches du large (sensu Pères & Picard 1964; Bo et al. 2012; Montefalcone et al. 2021) of the outer shelf and shelf break, but may also be found in offshore coarse detritic environments, including rhodolith and maërl beds (Vicente 1967). The ability of hard-bottom heterobranchs to colonise unconsolidated, coarse sediments, where they feed on small opportunistic sessile species, has also been suggested in shallow-water environments (Betti et al. 2017). As a response to the changing habitat, an impoverishment of the diversity and abundance of heterobranchs is observed according to the bathymetric gradient, although with some differences between the two main Nudibranchia suborders. The dorids are driven by a higher abundance of upper mesophotic species such as Felimare spp., while the cladobranchs are mainly represented by species with a lower mesophotic peak of occurrence, such as P. ischitana, F. lineata, Facelina sp., Fjordia lineata, Flabellina affinis, Luisella babai, Nemesignis banyulensis, Paraflabellina ischitana, and Pruvofoil pselliotes) and arborescent hydrozoans.
Table V. Literature (black) and updated (red) bathymetric distribution of the heterobranch species (referring to most taxa of the former “Opistobranchia” group) known to live in mesophotic and bathyal environments of the Mediterranean Sea (73 total species). Literature data include Vicente (1967), Bouchet (1977), Cattaneo-Vietti (1991), Koutsoubas et al. 2000, Trainito and Domenici 2014, OPK website, and present study. Only data reporting depths of living organisms were considered. Legend: H, hardgrounds; S, soft bottoms; *, species found in the present study; †, species reported here for the first time in the mesophotic/bathyal depth range. The dashed line before the first value indicates that the species is present from near the surface at an unspecified depth. Grey data refer to the wide depth ranges reported in Ros (1975) and Domenici et al. (2006).

Species	Habitat	Depth range in the Mediterranean Sea
Tylodina perversa	H	55m
Phyllidia flava**	H	40m - 70m
Bulla striata	S	60m
Dendrodoris limbata	H	60m
Thorida filix	H, S	60m
Diaphorodoris papillata**	H	40m - 70m
Okenia mediterranea**	H	40m - 70m
Facelina auriculata	H	50m - 70m
Duvaucelius plebeia	H	50m - 70m
Discodoris stelligera	H	50m - 70m
Doris verrucosa	H	50m - 70m
Doriopsilla areolata	H	50m - 70m
Thundilla hopeli*	H	45m - 75m
Felimida binza*	H	35m - 75m
Aplysia depilans**	S, H	50m - 70m
Philinopsis depicta	S	80m
Felimare orsinii**	H	60m - 85m
Felimare picta*	H	60m - 85m
Facelina annulicornis**	H	25m - 90m
Felimare villafranca*	H	45m - 90m
Edmondsella pedata*	H	45m - 93m
Ascobulla fragilis	S	100m
Scaphander punctostriatus	S	40m
Antiopella cristata*	H	50m - 100m
Felimare fontandraui*	H	100m
Luisella babai*	H	50m - 102m
Okenia elegans	H	105m
Doto coronata*	H	30m - 110m
Pruvotfolia pselliotes**	H	25m - 110m
Felimida luteorosea*	H	60m - 110m
Cadina laevis**	H	20m - 115m
Pleurobranchus testudinarius*	S, H	50m - 117m
Notarchus punctatus	H	60m - 120m
Flabelina affinis*	H	50m - 125m
Caloria elegans*	H	50m - 127m
Diaphorodoris alba*	H	50m - 128m
Berthella ocellata	H	130m
Umbraculum umbraculum*	H	80m - 130m
Felimida purpurea**	H	40m - 130m
Peiltodoris atromaculata*	H	100m - 148m
Kaloplocamus ramosus	S	60m - 148m
Marionia blainvillea	H	155m?
Felimare tricolor*	H	60m - 177m
Roxaniella jeffreysii	S	200m
Cylichna cylindracea	S	200m

(Continued)
Nonetheless, most of these species are eurybathic (Table V), with only *T. callogorgiae*, among the hard-bottom species, showing a clear specialisation for deep habitats, probably driven by a diet based on anthozoans forming forests on the mesopelagic and bathyal hardgrounds (Bo et al. 2012; Angeletti et al. 2014; Chimenti et al. 2020). As observed for numerous other deep marine animal taxa (Bianchi et al. 2012), various heterobranchs extending in the deepest ranges have a Boreo-Atlantic origin (e.g., *F. lineata*, *P. membranaceus*, *S. lignarius*, and the family Tritoniidae), hence are cold-affinity species. Interestingly, numerous species reaching high depths in the Mediterranean basin (e.g., *T. fimbria*, *P. quadripartita*, *P. meckeli*, *D. pseudoargus*, *F. lineata*) are also found in very shallow and cold waters (such as the north and the central Adriatic Sea or canyon areas subjected to upwelling currents), with a marked seasonality (Zenetos et al. 2016; Betti et al. 2017; Betti 2021).

The scenario obtained from the latitudinal analysis of the findings showed that the heterobranch fauna present along the Ligurian continental shelf is significantly different from the Tyrrhenian and Sicilian ones. This situation could be attributed to the distinctive northern distribution of some *Felimare* species and the paucity of *Facelina* sp., *P. ischitana* and Tritoniidae nd, more represented in the southern regions. Cattaneo-Vietti (1991) suggested that the narrow extension of the Ligurian continental shelf and the occurrence of a patchwork of habitats could be listed among the reasons explaining the high species richness of the deep soft-bottom heterobranch fauna in this region and the wider bathymetric ranges of the species. Overall, a marked decrease in biodiversity was observed from North to South, with a secondary high peak of species richness in the Sicily Channel. This latter is indeed an important boundary area, known for its complex geomorphologic and oceanographic

Species	Bathymetric Range
Berthella aurantiaca	60m-200m
Doris pseudoargus	45m-205m
Fjordia lineata	40m-205m
*Paralabellina ischitana***	40m-210m
*Nemesisgignis banyulensis***	
Berthella elongata	100m-250m
Tritonio hombergi	70m-250m
Jorunnia tomentosa	150m-250m
Pleurobranchus membranaceus	260m
Aglaja tricolorata	50m-300m
Gastropoteron rubrum	50m-300m
Armina maculata	20m-150m-300m
Armina neapolitana	50m-300m
Armina tigrina	50m-300m
Lomanotus marmoratus	50m-300m
Doris sticta	50m-300m
Doriopsilla pelseneeri	50m-300m
Geitodoris planata	50m-300m
Philina quadripartita	430m
Philina monterosati	120m-450m
Pleurobranchae meckeli	470m
Philina catena	500m
Tritionio callogorgiae	110m-400m-500m
Scaphander lignarius	550m
Baptodoris cinnabarina	550m
Facelina vicina	552m
Tethys fimbria	600m
Doris alboranica	910m
conditions, ultimately leading to a hotspot of biodiversity (Bianchi & Morri 2000; Evans et al. 2016; Altabelli et al. 2017).

The specific richness of the seamounts appears modest: this may be related to the relative paucity of dives carried out in the offshore locations and to the fact that surveys started at 60 m, excluding therefore the possibility to compare the 30–50 m depth range, which, in the coastal areas, hosted a distinctive heterobranch assemblage adapted to coralligenous environments with high biological coverage. Moreover, the investigated seamounts are generally dominated by soft-bottom habitats, limiting the observations of heterobranchs by ROV. The sightings are concentrated on the peaks, which, due to more turbulent conditions, are dominated by lush communities of filter-feeders (Bo et al. 2011, 2021), attracting the most commonly observed tritoniid species. Nevertheless, the low diversity and abundance can also be related to another factor. It is reasonable to think that these offshore structures, located between 23 and 70 nautical miles from the shore (Bo et al. 2021), are not significantly interested by the coastal larval flux. This process seems particularly effective for the investigated dorids, which shows a sort of costaliphil (sensu Cornelius 1992). Such pattern would be related to a low dispersal ability, which, in some cases (e.g., F. cf. villafranca, F. orsinii, C. laevis) is supported by direct development (Thompson 1967; Ortea et al. 1996; Coelho & Calado 2010). The different larval dispersal abilities showed by heterobranchs (ranging from <10 km to 10,000 km) (Todd et al. 1998), alongside local hydrodynamic patterns, may affect the species composition of the assemblages, especially in offshore locations (Todd 1981; Fritts-Penniman et al. 2020).

The observed bathymetric and geographic distribution patterns of the heterobranch assemblages are the result of numerous biological and ecological factors, including the physiology of the species and their adaptation to depth, the habitat complexity, the presence of suitable substrates, the larval dispersal ability, but also depends on the availability of food sources. The widespread stenophagy of many heterobranch taxa (e.g., Nudibranchia, Sacoglossa) (McDonald & Nybakken 1997; Megina et al. 2002; Gemballa & Schermutzi 2004), in fact, has a crucial role in influencing their evolutionary processes (e.g., Jensen 1997; Goodheart et al. 2017) and the availability of the food sources may drive the composition and distribution of the assemblages (e.g., Betti et al. 2017; Canessa et al. 2021).

The strongest trophic relationship is found between the species belonging to the genus *Felimare* and the keratose sponges they exclusively feed on (McDonald & Nybakken 1997), co-occurring down to 130 m and then completely disappearing. These species are particularly abundant in the Ligurian Sea, where keratose-dominated sponge grounds are widely documented at mesophotic depths (Enrichetti et al. 2020). A similar situation involves *P. atronaculata*, whose distribution mirrors that of its favourite food sources, the sponges *P. ficiformis* and *H. fulea* (Gemballa and Schermutzi, 2004), largely present in all the considered areas, but never below 150 m depth.

Another strong relationship occurs between *T. callogorgiae* and deep gorgonians. The species belonging to the family Tritoniidae are known to be specialised anthozoan-feeders (Schmekel & Portmann 1982; McDonald & Nybakken 1999) and have been worldwide reported as typical inhabitants of the deep sea (e.g., Valdès 2006; Valdès et al. 2017, 2018; Chimienti et al. 2020; Penney et al. 2020). The observed ability of *T. callogorgiae* to feed on different alycencans could explain its success in the hardbottom Mediterranean coral communities, which are greatly diffused (Chimienti et al. 2018). The high reproductive potential of tritoniids (Vayssière 1901) may also concur in explaining the wide distribution of this species.

On the contrary, a weak relationship was detected between the hydrozoan-feeder clado-branchs and their food source, partially due to the limited possibility of identifying hydroid species exclusively through ROV images. Interestingly, however, the most stenophagous species, *F. affinis* and *P. ischitana*, known to feed exclusively on *Eudendrium* hydroids in shallow waters (Schmekel & Portmann 1982; Hirano & Thompson 1990; Furfaro & Mariotti 2016), seem to shift their feeding preferences on other hydroids when reaching the outer shelf or offshore seamounts, where *Eudendrium* spp. seem rarer. *Paraslabellina ischitana*, for example, has been observed on a wide range of other hydroids (e.g., Plumularioidea, Bougainvilliaoidae, Haleciidae) between 150 and 200 m. On the other hand, the complete lack of sightings of a very common shallow-water *Eudendrium*-eater, *Cratena peregrina* (Gemlin, 1791) (Di Camillo et al. 2012; Lombardo & Marletta 2020), suggests that not all species are able to adjust their diets. The depth-related food-shifting ability could also be shared by nudibranchs targeting other taxa. For example, *A. cristata*, known to eat various bryozoans (e.g., Bugulidae, Celleporidae) in shallow waters (Schmekel & Portmann 1982; Urgorri &
Bestiero 1984), was observed feeding on Reteporella spp. in deep coralligenous environments (50–85 m). The dorid B. cinnabarina is known to eat the sponge T. muricata (Bouchet, 1977; Cattaneo-Vietti 1991) in deep bathyhal mists, necessarily turning to other sponge species in shallow and mesophotic waters (Ballesteros & Valdés 1999). Potentially, a similar situation could also exist for anthozoan-feeders such as tritoniids.

Both hydrozoans and bryozoans include small, fast-growing opportunistic species, which easily colonise the surface of seafloor macro-litter, such as lost fishing gear (Enrichetti et al. 2021). These objects may be locally abundant and indirectly act as poles of attraction for generalist consumers. It is the case of Facelina sp. and P. ischitana commonly observed crawling on lost nets and lines as well as skeletons of dead gorgonians. Their occurrence on the St. Lucia Seamount may reflect the high fishing impact of the site, including high densities of lost gear and mass mortalities of structuring species (Bo et al. 2014).

Ultimately, the stenophagy of many heterobranch species, representing one of the key factors of their evolutionary success in shallow waters, may represent a limit in their expansion towards the deeper ecosystems. This is also supported by the fact that most of the species known to dwell in the deepest depth ranges (> 300 m) (Table V), besides being adapted to soft-bottom habitats, are also distinctly euribathic and euryphagous (e.g., Philine spp., S. lignarius, P. meckeli, T. fimbria) (Thompson 1976; Schmekel & Portmann 1982; Cattaneo-Vietti et al. 1993).

Acknowledgements

The datasets used in this study were obtained thanks to multiple ROV campaigns conducted by the University of Genova, ISPRA, University of Cagliari and Conisima between 2007 and 2018. Financing entities included EU, Ministero dell’Università e della Ricerca, Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Calabria and Sardinia Regions. The authors would like to thank Ph.D. Francesco Enrichetti (UniGE) for the GIS map rendition and Prof. Nardo Vicente (Université Paul Cézanne) for the help in the bibliographic research.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

M. Toma @ http://orcid.org/0000-0003-4038-5673

References

Altobelli C, Perizia P, Falatauto M, Consoli P, Canese S, Romeo T, Andaloro F. 2017. Mediterranean banks in EBSA area: Hotspots of biodiversity under threat. Marine Environmental Research 131:57–68. DOI: 10.1016/j.marenres.2017.09.005.

Angeletti L, Taviani M, Canese S, Foglini F, Mastrototaro F, Argnani A, Trincardi F, Bakran-Petrićl T, Ceregato A, Chimenti G, Mačić V, Poliseno A. 2014. New deep-water cnidian sites in the southern Adriatic Sea. Mediterranean. Marine Science 15:263–273.

Angiolillo M, Gori A, Canese S, Bo M, Priori C, Bavestrello G, Salvati E, Erra F, Greenacre M, Santangelo G. 2016. Distribution and population structure of deep-dwelling red coral in the Northwest Mediterranean. Marine Ecology 37 (2):294–310. DOI: 10.1111/mec.12274.

Angiolillo M, La Mesa G, Giusti M, Salvati E, Di Lorenzo B, Rossi L, Canese S, Tunesi L. 2021. New records of scleracti-nian cold-water coral (CWC) assemblages in the southern Tyrrenhian Sea (western Mediterranean Sea): Human impacts and conservation prospects. Progress in Oceanography 197:102656. DOI: 10.1016/j.pocean.2021.102656.

Ballesteros E. 2006. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology: An Annual Review 44:123–195.

Ballesteros M, Valdés A. 1999. Redescripción de Baptodoris cinnabarina Bergh, 1884 (Opisthobranchia, Doridina, Platydorididae) y discusión taxonómica de otras especies del género Baptodoris Bergh. Iberus 17:27–35.

Betti F. 2021. Il regno dei nudibranchi. Imola (BO): Ed. La Mandragora. pp. 192.

Betti F, Bava S, Cattaneo-Vietti R. 2017. Composition and seasonality of a heterobranch assemblage in a sublittoral, unconsolidated, wave-disturbed community in the Mediterranean Sea. Journal of Molluscan Studies 83:325–332. DOI: 10.1093/mollus/eyx019.

Bianchi CN, Morri C. 2000. Marine biodiversity of the Mediterranean Sea: Situation, problems and prospects for future research. Marine Pollution Bulletin 40:367–376. DOI: 10.1016/S0025-326X(00)00278-7.

Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravincini V, Rovere A. 2012. Mediterranean Sea biodiversity between the legacy from the past and a future of change. In: Stambler N, editor. Life in the Mediterranean Sea: A look at habitat changes. New York: Nova Science Publishers. pp. 1–55.

Bo M, Bava S, Canese S, Angiolillo M, Cattaneo-Vietti R, Bavestrello G. 2014. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biological Conservation 171:167–176. DOI: 10.1016/j.bioc.2014.01.011.

Bo M, Bertolino M, Borghini M, Castellano M, Covazzi Harriague A, Di Camillo CG, Gasparini G, Misic C, Povero P, Pusceddu A, Schroeder K, Bavestrello G. 2011. Characteristics of the mesophotic megabenthic assemblages of
the Vercelli seamount (North Tyrrhenian Sea). PLoS One 6: e16357. DOI: 10.1371/journal.pone.0016357.

Bo M, Canese S, Spaggiari C, Pusceddu A, Bertolino M, Angiolillo M, Giusti M, Loreto MF, Salvati E, Greco S, Bavestrello G. 2012. Deep coral oases in the South Tyrrhenian Sea. PLoS One 7:e49870. DOI: 10.1371/journal.pone.0049870.

Bo M, Coppari M, Bettì F, Enrichetti F, Bertolino M, Massa F, Bava S, Gay G, Cattaneo-Vittiri R, Bavestrello G. 2021. The high biodiversity and vulnerability of two Mediterranean benthicyal seamounts support the need for creating offshore protected areas. Aquatic Conservation: Marine and Freshwater Ecosystems 31:543–566. DOI: 10.1002/acq.3456.

Bogi C, Galli BS. 2004. The bathybyentic and pelagic mollusc fauna off the Levantine coast, eastern Mediterranean. Bollettino Malacologico 39:79–90.

Bogi C, Galli BS. 2013. New mollusc records from the eastern Mediterranean benthal. Marine Biodiversity Records 6:e19. DOI: 10.1017/S1755672120001285.

Bouchet P. 1977. Opisthobranches de profondeur de l’Océan Atlantique: II-Notaspidea et Nudibranchiata. Journal of Molluscan Studies 43:28–66.

Canessa M, Bavestrello G, Cattaneo-Vittiri R, Farfaro G, Doneddu M, Navone A, Trainito E. 2021. Rocky substrate affects benthic heterobranch assemblages and prey/predator relationships. Estuarine, Coastal and Shelf Science 261:107568. DOI: 10.1016/j.ecss.2021.107568.

Carmona L. 2020. Investigating the amphiatlantic status of Facelinia botoniensis (Couthouy, 1838) (Nudibranchia: Aeolidida). Journal of Molluscan Studies 86:64–71. DOI: 10.1093/mollus/eyz034.

Cattaneo-Vittiri R. 1991. Bathymetric distribution of soft-bottom opisthobranchs along the Ligurian and Tuscany continental slope (Western Mediterranean). Proc. 10th Intern. Malacol. Congress, 1989, Tubingen. pp. 327–334.

Cattaneo-Vittiri R, Burlando B, Senes L. 1993. Life history and diet of Pleurobranchaea mekelli (Opisthobranchia: Notaspidea). Journal of Molluscan Studies 59:309–313. DOI: 10.1093/mollus/59.3.309.

Cau A, Follesa MG, Moccia D, Alvito A, Bo M, Angiolillo M, Canese S, Paliaga EM, Orrù PE, Sacco F, Cannas R. 2015. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Marine Biology 162:1865–1878. DOI: 10.1007/s00227-015-2718-5.

Chimenti G, Angelti L, Farfaro G, Canese S, Taviani M. 2020. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 165:103364. DOI: 10.1016/j.dsr.2020.103364.

Chimenti G, Bo M, Mastrototaro F. 2018. Know the distribution to assess the changes: Mediterranean cold-water coral bioconstructions. Rendiconti Lincei. Scienze Fisiche E Naturali 29:583–588. DOI: 10.1007/s12210-018-0718-3.

Coelho R, Calado G. 2010. Spawn and early development of NE Atlantic species of Hyspeleodoris (Gastropoda: Opisthobranchia). Iberus 28:63–72.

Cornilus PF. 1992. Medusa loss in lepolid Hydrozoa (Cnidaria), hydroid rafting, and abbreviated life-cycles among their remote-Island fauna: An interim review. ScientiaMarina 56:245–261.

Del Mar Otero M, and Marín P. 2019. 46 conservation of Cold-Water Corals in the Mediterranean: Current status and future prospects for improvement. In: Orejas C, Jiménez C, editors. Mediterranean Cold-Water Corals: Past, present and future. Vol. 9: Cham: Springer. pp. 535–545.

Di Camillo CG, Bettì F, Bo M, Martinelli M, Pucce S, Vasapollo C, Bavestrello G. 2012. Population dynamics of Eudendrium racemosum (Cnidaria, Hydrozoa) from the north Adriatic Sea. Marine Biology 159:1593–1609. DOI: 10.1007/s00227-012-1948-2.

Domènech A, Avila C, Ballesteros M. 2006. Opisthobranch molluscs from the subtidal trawling grounds off Blanes (Girona, north-east Spain). Journal of the Marine Biological Association of the United Kingdom 86:383–389. DOI: 10.1017/S0025315406013233.

Enrichetti F, Bavestrello G, Bettì F, Coppari M, Toma M, Pronzato R, Canese S, Bertolino M, Costa G, Pensini M, and Bo M. 2020. Keratose-dominated sponge grounds from temperate mesophotic ecosystems (NW Mediterranean Sea). Marine Ecology 41: e12620.

Enrichetti F, Bavestrello G, Bettì F, Rindi F, Tregrossa A, Bo M. 2021. Fate of lost fishing gears: Experimental evidence of biofouling colonisation patterns from the northwestern Mediterranean Sea. Environmental Pollution 268:115746. DOI: 10.1016/j.envpol.2020.115746.

Enrichetti F, Dominguez-Carrío C, Toma M, Bavestrello G, Bettì F, Canese S, Bo M. 2019. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS One 14:e0223949. DOI: 10.1371/journal.pone.0223949.

Evans J, Aguilar R, Alvarezb H, Borg J, Garcia S, Knittweis L, and Schembi PJ. 2016. Recent evidence that the deep sea around Malta is a biodiversity hotspot. Rapport du Congrès de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 41:463.

Fritts-Penniman AL, Gosliner TM, Maharidk GN, Barber PH. 2020. Cryptic ecological and geographic diversification in coral-associated nudibranchs. Molecular Phylogenetics and Evolution 144:106698. DOI: 10.1016/j.ympev.2019.106698.

Furfaro G, Mariottini P. 2016. Check-list of the Nudibranchs (Mollusca Gastropoda) from the biodiversity hot spot “Scoglio del Corallo” (Argentario Promontory, Tuscany). Biodiversity Journal 7:67–78.

Gębalka S, Schermutzki F. 2004. Cytotoxic habaplesierd sponges preferred: A field study on the diet of the dotted sea slug Peteloria atomaculata (Dorididea: Nudibranchia). Marine Biology 144:1213–1222. DOI: 10.1007/s00227-003-1279-1.

Goodheart JA, Bazinet AL, Valdés A, Collins AG, Cummings MP. 2017. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evolutionary Biology 17:1–14. DOI: 10.1186/s12862-017-1060-0.

Hammer Ø, Harper DA, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electonica 4:1–9.

Hirano YJ, Thompson TE. 1990. Flabellinid nudibranchs from the Bay of Naples, with a description of a new species, Flabellina ischitana. Journal of Molluscan Studies 56:345–354. DOI: 10.1093/mollus/56.3.345.

Jeffreys JG. 1882. Notes of the Mollusca procured by the Italian exploration of the Mediterranean in 1881. Annals and Magazine of Natural History 5:27–35. DOI: 10.1080/00222938209459661.

Jensen KR. 1997. Evolution of the Sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their
food plants. Evolutionary Ecology 11:301–335. DOI: 10.1023/A:1018468420368.

Korshunova T, Martynov A. 2020. Consolidated data on the phylogeny and evolution of the family Tritoniidae (Gastropoda: Nudibranchia) contribute to genera reassignment and clarify the taxonomic status of the neuroscience models Tritonia and Tochinula. PLoS One 15:e0242103. DOI: 10.1371/journal.pone.0242103.

Koutsoubas D, Tselepiades A, Eleftheriou A. 2000. Deep sea molluscan fauna of the Cretan Sea (Eastern Mediterranean): Faunal, ecological and zoogeographical remarks. Senckenbergiana Maritima 30:85–98. DOI: 10.1007/BF03042958.

Lombardo A, Marletta G. 2020. New data on the seasonality of Phidilia affinis (Omelin, 1791) and Cratena pergrina (Omelin, 1791) (Gastropoda: Nudi-branchia) in the Ionian Sea, Central Mediterranean. Biodiversity Journal 11:1045–1053. DOI: 10.31396/BiodivJour.2020.11.4.1045.1053.

Mastrotrotaro F, Chimienti G, Acosta J, Blanco J, Garcia S, Rivera J, Aguilar R. 2017. Isidella elongata (Cnidaria: Alcyonacea) facies in the western Mediterranean Sea: Visual surveys and descriptions of its ecological role. The European Zoological Journal 84:209–225. DOI: 10.1080/24750263.2017.1315745.

McDonald GR, and Nybakken JW. 1997. List of the worldwide food habits of nudibranchs. The Veliger 40. https://escholarship.org/uc/item/0g75h1q3

McDonald GR, Nybakken JW. 1999. A worldwide review of the food of nudibranch mollusks. Part II. The suborder Dendronotoeae. The Veliger 42:62–66.

Megina C, Carballo JL, Cervera JL, Garcia-Gómez JC. 2002. The diet of Platydiris asgo (Gastropoda: Nudibranchia) and the dietary specialization of sponge eating dorids. Journal of Molluscan Studies 68:173–179. DOI: 10.1093/mollus/68.2.173.

Moccia D, Cau A, Bramanti L, Carugati L, Canese S, Follesa MC, Cannas R. 2021. Spatial distribution and habitat characterisation of marine animal forest assemblages along nine submarine canyons of Eastern Sardinia (central Mediterranean Sea). Deep Sea Research Part I: Oceanographic Research Papers 167:103422. DOI: 10.1016/j.dsr.2020.103422.

Moles J, Berning MI, Hooker Y, Padula V, Wilson NG, Schrödl M. 2012. Due South: The evolutionary history of Sub-Antarctic and Antarctic Tritoniidae nudibranchs. Molecular Phylogenetics and Evolution 162:107209. DOI: 10.1016/j.ympev.2012.107209.

Montefalcone M, Tunesi L, Ouerghi A. 2021. A review of the classification systems for marine benthic habitats and the new updated Barcelona Convention classification for the Mediterranean. Marine Environmental Research 169:105387. DOI: 10.1016/j.marenvres.2021.105387.

Monterosato TA. 1874. Recherches Conchylologiques effectuées au cap Santo Vito, en Sicile. Journal de Conchyliologie 22:243–282.

Monterosato TA. 1890. Conchiglie della profondità del mare di Palermo. Il Naturalista Siciliano 9:181–191.

Natural Resources Defense Council (NRDC). 2014. The Atlantic’s deep sea treasures: Discoveries from a new frontier of ocean exploration. https://www.nrdc.org/sites/default/files/atantic-deep-sea-treasures-IB.pdf.

Oliverio M. 2003. The Mediterranean molluscs: The best-known malacofauna of the world ... so far. Biogeographia 24:195–208.

Ortea J, Valdés A, and García-Gómez JC. 1996. Revisión de las especies atlánticas de la familia Chromodorididae (Mollusca: Nudibranchia) del grupo cromático azul: Review of the atlantic species of the family Chromodorididae (Mollusca: Nudibranchia) of the blue chromatic group. Avicennia 1:1–165.

Parera A, Pontes M, Salvador X, Ballesteros MBV. 2020. Sea-slugs (Mollusca, Gastropoda, Heterobranchia): The other inhabitants of the city of Barcelona (Spain). Bulleti de la Institució Catalana d’Historia Natural 84:75–100.

Penney HD, Hamel M, And S. 2016. Map extension of two deep-sea nudibranchs, Tritonia newfoundlandica and Doridosa ingolfiana (Mollusca: Gastropoda: Heterobranchia), in eastern Canada. The Canadian Field-Naturalist 134:165–170. DOI: 10.22621/cfn.v134i1.2443.

Pérès JM, and Picard J. 1964. Nouveau manuel de bionomie benthique de la mer Méditerranée. Vol. 31. Aix-en-Provence: Recueil des travaux de la Station Marine d’Endoume. pp. 1–137.

Ponti M, Grech D, Mori M, Perlini RA, Ventrò V, Panzalis PA, Cerrano C. 2016. The role of gorgonians on the diversity of Sagit benthic fauna in Mediterranean rocky habitats. Marine Biology 163:120. DOI: 10.1007/s00227-016-2897-4.

Ros J. 1975. Opistobrancochin the litoral ibérico. Lnv. Pesq 39:269–372.

Schmekel L, and Portmann A. 1982. Opistobranchi des Mittelmeeres. Opistobranchi des Mittelmeeres, Nudibranchia und Saccoglossa. In: Fauna e flora del Golfo di Napoli, Monografia della Stazione Zoologica di Napoli. Vol. 40. Berlin, Heidelberg: Springer-Verlag. pp. 1–410.

Smriglio C, Mariottini P. 1996. Central Tyrrhenian Sea Mollusca: XI. Description of Gallostracons tyrhennicum sp. nov. (Gastropoda, Acteonidae) and remarks on the other Mediterranean species of the family Acteonidae d’Orbigny, 1835. Basteria 60:183–193.

Templado J, Villanueva R. 2010. Table S14. Checklist of the Pylum Mollusca. Supplementary material File S2. In: Coll M., Piroddi C., Steenbreek J., Kaschner K., Ben Rais Lamram F., Aguzzi J., Ballesteros E., Bianchi C. N., Corbera J., Dañianis T., Danovaro R., Estrada M., Froglia C., Galil B. S., Gasol J. M., Gertwagen R., Gil J., Guilhaumon F., Kesner-Reyes K., Kitsos M. S., Kouskouras A., Lampadariou N., Laxamana E., López-Fé De La Cuadra C. M., Lorze H. K., Martín D., Mouillet D., Oro D., Raicevich S., Rius Barile J., Saiz-Salinas J. I., San Vicente C., Somot S., Templado J., Turon X., Vafidis D., Villanueva R., Vuotlisaiod E. The biodiversity of the Mediterranean Sea: Estimates, patterns and threats. PLoS One 5:e11842. DOI: 10.1371/journal.pone.0011842.

Thompson T. 1967. Direct development in a Nudibranch, Cadina laevis, with a discussion of developmental processes in Opistobranchia. Journal of the Marine Biological Association of the United Kingdom 47:1–22. DOI: 10.1017/S0025315400033518.

Thompson TE. 1976. Biology of Opistobranch Molluscs. Vol. 1. London: The Ray Society. pp. 207.

Thompson TE, Cattaneo R, Wong YM. 1990. Eastern Mediterranean Opisthobranchia: Dotidae (Dendronotoidea), Armatinae and Madrellidae (Arminioidea). Journal of Molluscan Studies 56:393–413. DOI: 10.1093/mollus/56.3.393.

Todd CD. 1881. The ecology of nudibranch molluscs. Oceanography and Marine Biology: An Annual Review 9:141–234.
Todd CD, Lambert WJ, Thorpe JP. 1998. The genetic structure of intertidal populations of two species of nudibranch moluscs with planktotrophic and pelagic lecithotrophic larval stages: Are pelagic larvae “for” dispersal? Journal of Experimental Marine Biology and Ecology 228:1–28. DOI: 10.1016/S0022-0981(98)00005-7.

Trainito E, Doneddu M. 2014. Nudibranchi del Mediterraneo. 2a edizione, riveduta ed ampliata. Ed. Milano: Il Castello. pp. 192.

Trainito E, Doneddu M. 2016. Contribution to the knowledge of the molluscan fauna in the Marine Protected Area Tavolara-Punta Coda Cavallo: Sacoglossa, Umbraculida, Pleurobranchomorpha, Anaspidea, Cephalaspidea, Thecosomata (Gastropoda; Heterobranchia). Bollettino Malacologico 53:79–89.

Urgorri V, Besteiro C. 1984. La alimentacion de los moluscos nudibranquios de Galicia. Iberus 4:51–58.

Valdés A. 2006. Marionia tedii Ev. Marcus, 1983 (Nudibranchia, Tritoniidae) in the Gulf Of Mexico: First record of an Opisthobranch Mollusk from Hydrocarbon Cold Seeps. Gulf and Caribbean Research 18:41–46. DOI: 10.18785/gcr.1801.05.

Valdés A, Lundsten L, Wilson NG. 2018. Five new deep-sea species of nudibranchs (Gastropoda: Heterobranchia: Cladobranchia) from the Northeast Pacific. Zootaxa 4526:401–433. DOI: 10.11646/zootaxa.4526.4.1.

Valdés A, Murillo FJ, McCarthy JB, Yedinak N. 2017. New deep-water records and species of North Atlantic nudibranchs (Mollusca, Gastropoda: Heterobranchia) with the description of a new species. Journal of the Marine Biological Association of the United Kingdom 97:303–319. DOI: 10.1017/S0025315416000394.

Vayssière AJBM. 1901. Etude comparée des Opisthobranches des côtes française de l’Océan Atlantique et de la Manche avec ceux de nos côtes Méditerranéennes. Bulletin Scientifique de la France Et de la Belgique 34:281–315.

Vicente N. 1967. Contribution à l’étude des gastéropodes opisthobranches du Golfe de Marseille: I. Systématique, écologie, biologie. Recueil Des Travaux de la Station Marine d’Endoume 42:133–179.

Zenetos A, Macic V, Jaklin A, Poursanidis D, Cattaneo-Vietti R, Beqiraj S, Betti F, Poloniato D, Kashta L, Katsanevakis S, Crocetta F. 2016. Adriatic ‘opisthobranchs’ (Gastropoda, Heterobranchia): Shedding light on biodiversity issues. Marine Ecology 37:1239–1255. DOI: 10.1111/mar.12306.

Zhang S, and Zhang S. 2021. Tritonia locasica sp. nov., a new tritoniid species from a seamount in the tropical western Pacific (Heterobranchia: Nudibranchia). Journal of Oceanology and Limnology 39: 1817–1829.