Categories \mathcal{O} for Root-Reductive Lie Algebras: II.
Translation Functors and Tilting Modules

Thanasin Nampaisarn

Abstract

This is the second paper of a series of papers on a version of categories \mathcal{O} for root-reductive Lie algebras. Let \mathfrak{g} be a root-reductive Lie algebra over an algebraically closed field \mathbb{K} of characteristic 0 with a splitting Borel subalgebra \mathfrak{b} containing a splitting maximal toral subalgebra \mathfrak{h}. For some pairs of blocks $\mathcal{O}[\lambda]$ and $\mathcal{O}[\mu]$, the subcategories whose objects have finite length are equivalence via functors obtained by the direct limits of translation functors. Tilting objects can also be defined in \mathcal{O}. There are also universal tilting objects $D(\lambda)$ in parallel to the finite-dimensional cases.

Key words: root-reductive Lie algebras, finitary Lie algebras, highest-weight modules, BGG categories \mathcal{O}, equivalences of categories, translation functors, tilting modules

MSC 2010: 17B10; 17B20; 17B22

Introduction

The purpose of this paper is to further study a version of Bernstein-Gel’fand-Gel’fand (BGG) categories \mathcal{O} for root-reductive Lie algebras with respect to Dynkin Borel subalgebras as defined in [9]. For a reductive Lie algebra \mathfrak{g} over an algebraically closed field of characteristic 0 whose derived algebra $[\mathfrak{g}, \mathfrak{g}]$ is finite-dimensional, if $\mathcal{O}_b^\mathfrak{g}[\lambda]$ denotes the BGG category \mathcal{O} of \mathfrak{g} with respect to a certain Borel subalgebra \mathfrak{b} of \mathfrak{g} as defined in [6, Chapter 1.1], then we know that some blocks of $\mathcal{O}_b^\mathfrak{g}[\lambda]$ are equivalent via translation functors (see [6, Chapter 1.13] and [6, Chapter 7]).

We denote by $\mathcal{O}_b^\mathfrak{g}[\lambda]$ for the block of \mathcal{O} containing the simple object $\mathcal{L}(\lambda)$ with highest weight $\lambda \in \mathfrak{h}^*$, where \mathfrak{h} is the Cartan subalgebra of \mathfrak{g} contained in \mathfrak{b}. Also, $W_{\mathfrak{g}, \mathfrak{b}}[\lambda]$ is the integral Weyl group for the weight λ (see [6, Chapter 3.4], wherein the notation $W[\lambda]$ is used). The Borel subalgebra \mathfrak{b} induces the set of simple reflections $S_{\mathfrak{g}, \mathfrak{b}}[\lambda]$, so that $(W_{\mathfrak{g}, \mathfrak{b}}[\lambda], S_{\mathfrak{g}, \mathfrak{b}}[\lambda])$ is a Coxeter system.

In fact, [10, Theorem 11] provides a stronger statement, as it a description of the categorical structure of $\mathcal{O}_b^\mathfrak{g}$ using the Weyl group of \mathfrak{g}. In other words, suppose that \mathfrak{g} and \mathfrak{g}' are two reductive Lie algebras with Borel subalgebras \mathfrak{b} and \mathfrak{b}'; for $\lambda \in \mathfrak{h}'^*$ and $\lambda' \in (\mathfrak{h}')^*$, if the Coxeter systems $(W_{\mathfrak{g}, \mathfrak{b}}[\lambda], S_{\mathfrak{g}, \mathfrak{b}}[\lambda])$ and $(W_{\mathfrak{g}', \mathfrak{b}'}[\lambda'], S_{\mathfrak{g}', \mathfrak{b}'}[\lambda'])$ are isomorphic, then the blocks $\mathcal{O}_{b'}^{\mathfrak{g}'}[\lambda']$ and $\mathcal{O}_{b'}^{\mathfrak{g}'}[\lambda']$ are equivalent as categories.

The paper [4] studies Kac-Moody algebras and obtains a similar result to [10, Theorem 11]. If \mathfrak{g} and \mathfrak{g}' are complex symmetrizable Kac-Moody algebras with Borel subalgebras \mathfrak{b} and \mathfrak{b}' and Cartan subalgebras \mathfrak{h} and \mathfrak{h}', where $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ and $\mathfrak{h}' \subseteq \mathfrak{b}' \subseteq \mathfrak{g}'$. We denote by $\mathcal{O}_b^\mathfrak{g}$ and $\mathcal{O}_b^{\mathfrak{g}'}$ for the corresponding BGG categories \mathcal{O} for the pairs $(\mathfrak{g}, \mathfrak{b})$ and $(\mathfrak{g}', \mathfrak{b}')$, respectively. Let $\Lambda \subseteq \mathfrak{h}^*$ be the set of highest weights of simple objects in a block of $\mathcal{O}_b^\mathfrak{g}$, and write \mathcal{O}_Λ for the said block. The notations $\Lambda' \subseteq (\mathfrak{h}')^*$ and $\mathcal{O}_{\Lambda'}$ are defined similarly for $\mathcal{O}_b^{\mathfrak{g}'}$. For specific pairs Λ and Λ', [4, Theorem 4.1] establishes an equivalence between the categories \mathcal{O}_Λ and $\mathcal{O}_{\Lambda'}$. One of the necessary conditions for the existence of an equivalence in [4, Theorem 4.1] is that there exists an isomorphism between relevant Coxeter systems.

In the present paper, we shall look at the subcategory $\mathcal{O}_b^\mathfrak{g}[\lambda]$ consisting of objects of finite length from the block $\mathcal{O}_b^\mathfrak{g}[\lambda]$, where \mathcal{O} is an extended BGG category \mathcal{O} for a root-reductive Lie algebra \mathfrak{g}.
with respect to a Dynkin Borel subalgebras \(\mathfrak{b} \), and \(\lambda \in \mathfrak{h}^\ast \). Here, \(\mathfrak{h} \) is the unique splitting maximal toral subalgebra of \(\mathfrak{g} \) contained in \(\mathfrak{b} \). We obtain a similar result to [10, Theorem 11] and [4, Theorem 4.1], with [10, Theorem 11] being the crucial ingredient for our proof.

Another main topic of this paper is tilting theory. In the case where \(\mathfrak{g} \) is a reductive Lie algebra with \([\mathfrak{g}, \mathfrak{g}] \) being finite-dimensional, tilting modules in \(\mathcal{O}^\mathfrak{g} \) are objects with both standard and costandard filtrations (see [6, Chapter 11.1]). For a root-reductive Lie algebra \(\mathfrak{g} \), indecomposable objects in \(\mathcal{O}^\mathfrak{g} \) can potentially have infinite length, in which case the notion of filtrations may not apply to \(\mathcal{O} \). However, if we generalize the definition of filtrations, then it is possible to define tilting modules in \(\mathcal{O}^\mathfrak{g} \) in a similar manner.

This paper consists of three sections. The first section provides necessary foundations for other sections such as a brief recapitulation of the results from [9] and some relevant definitions such as generalized filtrations. This section also provides a characterization of integrable modules in our version of BGG categories \(\mathcal{O} \) for root-reductive Lie algebras, which are usually denoted by \(\bar{\mathcal{O}} \). The second section provides a visualization of the subcategory of each block of \(\bar{\mathcal{O}} \) consisting of modules of finite length, proving that each subcategory is a direct limit of subcategories of some categories \(\mathcal{O} \) for reductive Lie algebras with finite-dimensional derived algebras. The final section deals with the construction and the properties of tilting modules in \(\bar{\mathcal{O}} \).

Acknowledgement

The author has been supported by ISF Grant 711/18. The author would also like to thank Dr. Inna Entova from Ben-Gurion University of the Negev and Professor Maria Gorelik from Weizmann Institute of Science for the help towards the completion of this paper.

1 Preliminaries

All vector spaces and Lie algebras are defined over an algebraically closed field \(\mathbb{K} \) of characteristic 0. For a vector space \(V \), \(\dim V \) is the \(\mathbb{K} \)-dimension of \(V \) and \(V^\ast \) denotes its algebraic dual \(\text{Hom}_{\mathbb{K}}(V, \mathbb{K}) \). Unless otherwise specified, the tensor product \(\otimes \) is defined over \(\mathbb{K} \). For a Lie algebra \(\mathfrak{g} \), \(\mathfrak{u}(\mathfrak{g}) \) is its universal enveloping algebra.

1.1 Root-Reducive Lie Algebras and Categories \(\bar{\mathcal{O}} \)

Let \(\mathfrak{g} \) be a root-reductive Lie algebra in the sense of [9, Definition 1.1]. Suppose that \(\mathfrak{h} \) is a splitting maximal toral subalgebra of \(\mathfrak{g} \) in the sense of [9, Definition 1.2], and \(\mathfrak{b} \) is a Dynkin Borel subalgebra of \(\mathfrak{g} \) (see [9, Definition 1.5]) that contains \(\mathfrak{h} \). Let \(\mathfrak{n} := [\mathfrak{b}, \mathfrak{b}] \) (we sometimes write \(\mathfrak{b}^\pm \) and \(\mathfrak{n}^\pm \) for \(\mathfrak{b} \) and \(\mathfrak{n} \), respectively). If \(\mathfrak{b}^- \) is the unique Borel subalgebra of \(\mathfrak{g} \) such that \(\mathfrak{b}^+ \cap \mathfrak{b}^- = \mathfrak{h} \), then we have the following decompositions of vector spaces: \(\mathfrak{b}^\pm = \mathfrak{h} \oplus \mathfrak{n}^\pm \) and \(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+ \).

For each \(\mathfrak{b} \)-root \(\alpha \) of \(\mathfrak{g} \), the \(\mathfrak{h} \)-root space of \(\mathfrak{g} \) associated to \(\alpha \) is given by \(\mathfrak{g}^\alpha \). With respect to \(\mathfrak{b} \), the set \(\Phi_{\mathfrak{g}, \mathfrak{h}} \) of \(\mathfrak{h} \)-roots of \(\mathfrak{g} \) can be partitioned into two disjoint subsets \(\Phi_{\mathfrak{g}, \mathfrak{b}}^+ \), consisting of positive \(\mathfrak{b} \)-roots and \(\Phi_{\mathfrak{g}, \mathfrak{b}}^- \) consisting of negative \(\mathfrak{b} \)-roots. Write \(W_{\mathfrak{g}, \mathfrak{h}} \) for the Weyl group of \(\Phi_{\mathfrak{g}, \mathfrak{b}} \). Also, \(\Lambda_{\mathfrak{g}, \mathfrak{b}} := \text{span}_\mathbb{Z} \Phi_{\mathfrak{g}, \mathfrak{b}} \). When there is no risk of confusion, we shall write \(\Phi, \Phi^+, \Phi^- \), \(W \), and \(\Lambda \) for \(\Phi_{\mathfrak{g}, \mathfrak{b}}, \Phi_{\mathfrak{g}, \mathfrak{b}}^+, \Phi_{\mathfrak{g}, \mathfrak{b}}^-, W_{\mathfrak{g}, \mathfrak{b}} \), and \(\Lambda_{\mathfrak{g}, \mathfrak{b}} \), respectively.

The set of (positive) \(\mathfrak{b} \)-simple roots is denoted by \(\Sigma_{\mathfrak{g}, \mathfrak{b}} \), or \(\Sigma_{\mathfrak{g}, \mathfrak{b}}^+ \). The set of negative \(\mathfrak{b} \)-simple roots is given by \(\Sigma_{\mathfrak{g}, \mathfrak{b}}^- \). For convenience, we also write \(\Sigma, \Sigma^+, \) and \(\Sigma^- \) for \(\Sigma_{\mathfrak{g}, \mathfrak{b}}, \Sigma_{\mathfrak{g}, \mathfrak{b}}^+, \) and \(\Sigma_{\mathfrak{g}, \mathfrak{b}}^- \). For each \(\alpha \in \Phi \), let \(x_\alpha \in \mathfrak{g}^+\alpha, x_\alpha \in \mathfrak{g}^-\alpha, \) and \(h_\alpha \in \lbrack \mathfrak{g}^\alpha, \mathfrak{g}^-\alpha \rbrack \) be such that \(h_\alpha = \lbrack x_\alpha, x_\alpha \rbrack \) and \(\alpha (h_\alpha) = 2 \) (that is, \(h_\alpha \) is the coroot of \(\alpha \)). Thus, \(\{ x_\alpha \mid \alpha \in \Phi \} \cup \{ h_\alpha \mid \alpha \in \Sigma \} \) is a Chevalley basis of \([\mathfrak{g}, \mathfrak{g}] \). For convenience, we fix a filtration \(\mathfrak{g}_1 \subseteq \mathfrak{g}_2 \subseteq \cdots \subseteq \mathfrak{g}_f \) of \(\mathfrak{g} \) such that each \(\mathfrak{g}_n \) is a finite-dimensional reductive Lie algebra with \(\mathfrak{b}_n := \mathfrak{b} \cap \mathfrak{g}_n \) and \(\mathfrak{n}_n := \mathfrak{h} \cap \mathfrak{g}_n \) as a Borel subalgebra and a Cartan subalgebra, respectively. We also define \(\mathfrak{g}_n := \mathfrak{g}_n + \mathfrak{h} \) and \(\mathfrak{b}_n := \mathfrak{b}_n + \mathfrak{h} \). The notations \(\mathfrak{b}_n^\pm, \mathfrak{n}_n^\pm, \) and \(\mathfrak{n}_n \) carry similar meanings.
Note that there exists $\rho \in \mathfrak{h}^*$ such that $\rho|_{\mathfrak{h}_n}$ is the half sum of \mathfrak{h}_n-positive roots of each \mathfrak{g}_n. Then, we define the dot action of W on \mathfrak{h}^* by $w \cdot \lambda = w(\lambda + \rho) - \rho$ for each $\lambda \in \mathfrak{h}^*$. While the map ρ may not be unique, the dot action is independent of the choice of ρ. For a fixed $\lambda \in \mathfrak{h}^*$, the subgroup $W^{\rho}_{\mathfrak{h},b}[\lambda]$ (also denoted by $W[\lambda]$) of $W_{\mathfrak{g},b}$ consists of $w \in W_{\mathfrak{g},b}$ such that $w \cdot \lambda - \lambda \in \Lambda_{\mathfrak{g},b}$.

Write \bar{O}^ρ_{b} for the extended category \bar{O} for the pair (\mathfrak{g}, b) (see [9, Definition 2.1]). For simplicity, we also write \bar{O} for \bar{O}^ρ_{b}. For each $M \in \bar{O}$ and $\lambda \in \mathfrak{h}^*$, M^λ denotes the \mathfrak{h}-weight space with respect to the weight λ. Let $(_)^\vee : \bar{O}^\rho_{b} \rightarrow \bar{O}^\rho_{b}$ be the duality functor as defined in [9, Definition 2.2.]. Then, $\Delta^\rho_{b}(\lambda)$, or simply $\Delta(\lambda)$, is defined to be the Verma module with highest weight $\lambda \in \mathfrak{h}^*$ (see [9, Definition 1.9]). We also write $\nabla^\rho_{b}(\lambda)$, or simply $\nabla(\lambda)$, for the co-Vera module with highest weight $\lambda \in \mathfrak{h}^*$, namely, $\nabla(\lambda) = (\Delta(\lambda))^\vee$. We denote $\mathfrak{g}_b^\rho(\lambda)$, or simply $\mathfrak{g}(\lambda)$, for the simple quotient of $\Delta(\lambda)$.

For each $\lambda \in \mathfrak{h}^*$, we shall denote by $[\lambda]$ the set of all weights $\mu \in W \cdot \lambda$ such that $\lambda - \mu \in \Lambda$. The definition of abstract blocks is given by [2, Definition 4.13]. A block in our consideration is the full subcategory of \bar{O} consisting of all objects belonging in the same abstract block. Due to [9, Theorem 3.4], we can write each block of \bar{O} as $\bar{O}[\lambda]$, where $\bar{O}[\lambda]$ is the unique block of \bar{O} that contains $\Delta(\lambda)$. If Ω^ρ_{b}, or simply Ω, is the set of all $[\lambda]$, where $\lambda \in \mathfrak{h}^*$, then

$$\bar{O} = \bigoplus_{[\lambda] \in \Omega} \bar{O}[\lambda].$$

(1.1)

Note that, if \mathfrak{g} is finite-dimensional, then $\bar{O}[\lambda] = \bar{O}[\lambda]$.

For a given $\lambda \in \mathfrak{h}^*$, let $\text{pr}_{\mathfrak{g}^\lambda, b} : \bar{O} \rightarrow \bar{O}[\lambda]$ denote the projection onto the $[\lambda]$-block. We also write $\text{inj}_{\mathfrak{g}^\lambda, b} : \bar{O}[\lambda] \rightarrow \bar{O}$ for the injection from the $[\lambda]$-block. When the context is clear, pr^λ and inj^λ are used instead. Note that both functors are exact, and are adjoint to one another.

For each $M \in \bar{O}$, $\Pi(M) \overset{\text{def}}{=} \{ \lambda \in \mathfrak{h}^* \mid M^\lambda \neq 0 \}$ and $\text{ch}_{b}(M) \overset{\text{def}}{=} \sum_{\lambda \in \mathfrak{h}^*} \text{dim}(M^\lambda) e^\lambda$ is the formal character of M (with the standard multiplication rule given by $e^\lambda e^\mu \overset{\text{def}}{=} e^{\lambda+\mu}$ for all $\lambda, \mu \in \mathfrak{h}^*$). When the context is clear, $\text{ch}(M)$ denotes $\text{ch}_{b}(M)$. We note that $\text{ch}(M) = \sum_{\lambda \in \mathfrak{h}^*} [M : \mathfrak{g}(\lambda)] \text{ ch}(\mathfrak{g}(\lambda))$, where $[M : L]$ denotes the multiplicity of a simple object L in M (see [9, Corollary 2.10]). If L is a simple object such that $[M : L] > 0$, then L is called a composition factor of M.

1.2 Generalized Filtrations

Let \mathcal{C} be an abelian category. Fix a family $\mathcal{F} \subseteq \mathcal{C}$.

Definition 1.1 A generalized \mathcal{F}-filtration of $M \in \mathcal{C}$ is a collection $(M_j)_{j \in J}$ of subobjects M_j of M, where (J, \preceq) is a totally ordered set, such that

1. $M_j \subsetneq M_k$ for all $j, k \in J$ such that $j < k$,
2. $\bigcap_{j \in J} M_j = 0$,
3. $\bigcup_{j \in J} M_j = M$, and
4. for each $j \in J$, $M_j/\left(\bigcup_{k < j} M_k \right)$ is an object in \mathcal{F}.

Definition 1.2 Two generalized \mathcal{F}-filtrations $(M_j)_{j \in J}$ and $(M'_j)_{j' \in J'}$ of $M \in \mathcal{C}$ (where \preceq and \preceq' are the respective total orders on J and J') are said to be \mathcal{F}-equivalent if there exists a bijection $f : J \rightarrow J'$ such that $M_j/\left(\bigcup_{k < j} M_k \right) \cong M'_{f(j)}/\left(\bigcup_{k' < f(j)} M'_{k'} \right)$ for every $j \in J$ that is not the least element of J.

\[\diamondsuit \]
Definition 1.3 We say that F is a complete filter if, for any $M ∈ C$, M has a generalized F-filtration. We say that F is a good filter if any two filtrations $(M_j)_{j ∈ J}$ and $(M'_j)_{j' ∈ J'}$ of a single object $M ∈ C$ are F-equivalent.

Definition 1.4 We define $F(C)$ to be the full subcategory of C whose objects are those with generalized F-filtrations.

Consider $C := O$. We have the following theorem.

Theorem 1.5 Define $Δ := \{Δ(λ) \mid λ ∈ h^+\}$, $∇ := \{∇(λ) \mid λ ∈ h^+\}$, and $L := \{L(λ) \mid λ ∈ h^+\}$ as subcollections of the category O.

(a) The collection $Δ$ is a good filter of O. (A generalized $Δ$-filtration is also called a generalized standard filtration.)

(b) The collection $∇$ is a good filter of O. (A generalized $∇$-filtration is also called a generalized standard filtration.)

(c) The collection L is a good and complete filter of O. (A generalized L-filtration is also known as a generalized composition series.)

Proof Part (c) follows from [9, Corollary 2.10]. By employing duality, Part (b) is a trivial consequence of Part (a). We shall now prove Part (a).

Suppose that $M ∈ O$ has two generalized standard filtrations $(M_j)_{j ∈ J}$ and $(M'_j)_{j' ∈ J'}$ of $M ∈ C$ (where $≤$ and $≤'$ are the respective total orders on J and J'). Without loss of generality, we may assume that M lies a single block $O[λ]$ of O.

Let p denote the formal character of $Δ(0)$. For $j ∈ J$ and $j' ∈ J'$ that are not the least elements of J and J', respectively, suppose that $μ(j)$ and $μ'(j')$ denote the highest weights of $M_j/\bigcup_{k < j} M_k$ and $M'_j/\bigcup_{k' < j'} M'_{k'}$, respectively. Write a and a' for the sum of all $e^μ(j)$ and the sum of all $e^{μ'(j')}$, respectively. It follows that $ch(M) = ap$ and $ch(M) = a'p$.

We now let q to be the infinite product of $e^0 - e^{-α}$, where $α$ runs over all b-positive roots. Since b is a Dynkin Borel subalgebra, q is well defined. We can easily show that $pq = e^0$. Therefore,

$$a = ae^0 = a(pq) = (ap)q = ch(M)q = (a'p)q = a'(pq) = a'e^0 = a'. \quad (1.2)$$

The claim follows immediately.

Corollary 1.6 For each object $M ∈ Δ(O)$ and a given generalized standard filtration $(M_j)_{j ∈ J}$ of M, the number of times $Δ(λ)$ occurs as a quotient $M_j/\bigcup_{k < j} M_k$ is a finite nonnegative integer, which is independent of the choice of the generalized standard filtration $(M_j)_{j ∈ J}$. This number is denoted by $\{M : Δ(λ)\}$.

For each $M ∈ ∇(O)$ and a given generalized co-standard filtration $(M_j)_{j ∈ J}$ of M, the number of times $∇(λ)$ occurs as a quotient $M_j/\bigcup_{k < j} M_k$ is a finite nonnegative integer which is independent of the choice of the generalized co-standard filtration. This number is denoted by $\{M : ∇(λ)\}$.

Example 1.7 For fixed $λ, μ ∈ h^+$ such that $μ ≤ λ$, the truncated projective cover $P^{≤ λ}(μ)$ of $L(λ)$ lies in $Δ(O)$, whilst the truncated injective hull $I^{≤ λ}(μ)$ of $L(λ)$ lies in $∇(O)$. See [9, Section 4].

Proposition 1.8 Suppose that $M ∈ Δ(O)$. \

\[\]
(a) If λ is a maximal weight of M, then M has a submodule N isomorphic to $\Delta(\lambda)$, and the factor module M/N is in $\Delta(\hat{O})$.

(b) If N is a direct summand of M, then $N \in \Delta(\hat{O})$.

(c) The module M is a free $\mathfrak{U}(\mathfrak{n}^-)$-module.

Proof For Part (a), let u be a maximal vector of M with weight λ. There exists an index $j \in J$ such that $u \in M_j$ but $u \notin M_{<j} := \bigcup_{k<j} M_k$. Thus, the map $\psi : \Delta(\lambda) \to M_j/M_{<j}$ sending $g \cdot u' \mapsto g \cdot u + M_{<j}$ for each $g \in \mathfrak{U}(\mathfrak{g})$, where u' is a maximal vector of $\Delta(\lambda)$, is a nonzero homomorphism of Verma modules (recalling that $M_j/M_{<j}$ is a Verma module). By [9, Theorem 1.1], ψ must be injective. Therefore, $\text{im}(\psi)$ is a Verma submodule with highest weight λ of the Verma module $M_j/M_{<j}$. Because λ is a maximal weight of M, we conclude that $\text{im}(\psi) = M_j/M_{<j}$ and ψ is an isomorphism of \mathfrak{g}-modules. Hence, the \mathfrak{g}-submodule N of M generated by u is a Verma module isomorphic to $\Delta(\lambda)$. We now note that M/M_j and $M_{<j}$ are both in $\Delta(\hat{O})$. Furthermore, because $N \cap M_{<j} \cong \ker(\psi) = 0$, we obtain a short exact sequence $0 \to M_{<j} \to M/N \to M/M_j \to 0$. Hence, M/N has a generalized standard filtration given by patching the generalized standard filtration of $M_{<j}$ with the generalized standard filtration of M/M_j.

For Part (b), we may assume without loss of generality that N is inductively decomposable direct summand of M. Now, define $N[0] := N$ and $\lambda[0] := \lambda$. We finish the proof using transfinite induction. For an ordinal t with a predecessor s, suppose a module $N[s]$ and a weight $\lambda[s] \in \mathfrak{h}^*$ are given such that $\Delta(\lambda[s]) \subseteq N[s]$. Then, define $N[t] := N[s]/\Delta(\lambda[s])$. If $N[t] = 0$, then we are done. If $N[t] \neq 0$, then by taking $\lambda[t]$ to be a maximal weight of $N[t]$, using the same idea as the paragraph above, we conclude that $\Delta(\lambda[t]) \subseteq N[t]$. On the other hand, if t is a limit ordinal, then we have a directed system of modules $(N[s])_{s \leq t}$. Define $N[t]$ to be the direct limit of the modules $N[s]$ for $s < t$. As before, if $N[t] = 0$, then we are done. If not, we then take $\lambda[t]$ to be a maximal weight of $N[t]$. Then, again, $\Delta(\lambda[t]) \subseteq N[t]$. Since the multiset of composition factors of N is a countable multiset, this procedure must stop at some countable ordinal τ, where $N[\tau] = 0$. Then we obtain a generalized standard filtration of N.

For Part (c), let $(M_j)_{j \in J}$ be a generalized standard filtration of M. For an element $j \in J$ that is not the minimum element of J, take $m_j \in M_j \setminus \bigcup_{k<j} M_k$ such that m_j is a weight vector whose weight is the highest weight of $M_j/\bigcup_{k<j} M_k$. Then, M is a free $\mathfrak{U}(\mathfrak{n}^-)$-module with basis $\{m_j \mid j \in J\}$. ■

Corollary 1.9 Suppose that $M \in \nabla(\hat{O})$.

(a) If λ is a maximal weight of M, then M has a submodule N such that M/N is isomorphic to $\nabla(\lambda)$, and the submodule N is in $\nabla(\hat{O})$.

(b) If N is a direct summand of M, then $N \in \nabla(\hat{O})$.

(c) The module M is a free $\mathfrak{U}(\mathfrak{n}^-)$-module.

Definition 1.10 Let $\mathcal{D}^\mathfrak{g}_\mathfrak{o}$ (or simply, \mathcal{D}) denote the subcategory $\Delta(\hat{O}^g) \cap \nabla(\hat{O}^g)$. The objects in \mathcal{D} are called tilting modules.

1.3 Integrable Modules

Definition 1.11 Let \mathfrak{a} be an arbitrary Lie algebra. An \mathfrak{a}-module M is said to be integrable (or \mathfrak{a}-integrable) if, for any $m \in M$ and $a \in \mathfrak{a}$, the elements $m, a \cdot m, a^2 \cdot m, \ldots$ span a finite-dimensional subspace of M. ♦
Definition 1.12 Let $\lambda \in \mathfrak{h}^*$.

(a) We say that $\lambda \in \mathfrak{h}^*$ is integral (with respect to \mathfrak{g} and \mathfrak{h}) if $h_\alpha(\lambda)$ is an integer for all $\alpha \in \Phi$.

(b) If $h_\alpha(\lambda) \in \mathbb{Z}_{\geq 0}$ for every $\alpha \in \Phi^+$, then λ is said to be dominant-integral (with respect to \mathfrak{g} and \mathfrak{b}).

(c) If $h_\alpha(\lambda) \notin \mathbb{Z}$ for all $\alpha \in \Phi$, then λ is said to be nonintegral (with respect to \mathfrak{g} and \mathfrak{h}).

(d) If $h_\alpha(\lambda) \notin \mathbb{Z}$ for all but finitely many $\alpha \in \Phi$, then λ is said to be almost nonintegral (with respect to \mathfrak{g} and \mathfrak{h}).

Theorem 1.13 A module $M \in \bar{O}$ is integrable if and only if it is a direct sum of simple integrable modules in \bar{O}. All simple integrable modules in \bar{O} are of the form $\mathcal{L}(\lambda)$, where $\lambda \in \mathfrak{h}^*$ is dominant-integral. Nonisomorphic simple integrable modules belong in different blocks of \bar{O}.

Proof For the first statement, we may assume that M is an indecomposable module (by means of [9, Corollary 2.6]). We shall prove that M is simple. Let u be a highest-weight vector of M associated to the weight λ. We claim that λ is dominant-integral and $M \cong \mathcal{L}(\lambda)$.

First, by considering M as a \mathfrak{g}_n-module, we easily see that M is a direct sum of simple finite-dimensional \mathfrak{g}_n-modules. In particular, the \mathfrak{g}_n-submodule M_n generated by u is a simple direct summand of M. Note that $M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots$. If M' is the union of $\bigcup_{n \in \mathbb{Z}_{>0}} M_n$ where each M_n is a simple \mathfrak{g}_n-module, then M' is a simple \mathfrak{g}-module isomorphic to $\mathcal{L}(\lambda)$. Clearly, λ must be a dominant-integral weight with respect to the Lie algebra \mathfrak{g}_n with the Borel subalgebra \mathfrak{b}_n. Therefore, λ is dominant-integral with respect to \mathfrak{g} and \mathfrak{b}.

If $M \neq M'$, then M/M' has a highest-weight vector of the form $u' + M'$, where $v \in M$. Using the same argument, the submodule M'' of M/M' generated by $u' + M'$ is isomorphic to $\mathcal{L}(\mu)$ for some dominant-integral weight $\mu \in \mathfrak{h}^*$ with respect to \mathfrak{g} and \mathfrak{b}. Since M is indecomposable, by [9, Proposition 3.2], we conclude that $\mu \in [\lambda]$. However, the only dominant-integral weight in $[\lambda]$ is λ itself. Consequently, $\mu = \lambda$. This shows that the only possible composition factor of M is $\mathcal{L}(\lambda)$. However, there are no nontrivial extensions of $\mathcal{L}(\lambda)$ by itself (see [9, Proposition 3.8(d)]).

Finally, we shall prove that every simple module of the form $\mathcal{L}(\lambda)$ is integrable if $\lambda \in \mathfrak{h}^*$ is dominant-integral. Let v be a highest-weight vector of $L := \mathcal{L}(\lambda)$. Define $L_n := \mathcal{U}(\mathfrak{g}_n) \cdot v$ for every $n \in \mathbb{Z}_{>0}$. Clearly, each $L_n \cong \mathcal{L}_n^{\mathfrak{g}_n}(\lambda)$ is finite-dimensional with $L_1 \subseteq L_2 \subseteq L_3 \subseteq \ldots$, and $L = \bigcup_{n \in \mathbb{Z}_{>0}} L_n$.

Fix $k \in \mathbb{Z}_{>0}$. Now, for $n \geq k$, observe that each L_n is a direct sum of simple finite-dimensional \mathfrak{g}_k-modules. Consequently, for each $n \geq k$, $L_{n+1} = L_n \oplus F^k_n$ with F^k_n being a direct sum of simple finite-dimensional \mathfrak{g}_k-modules. That is, $L = L_k \oplus \bigoplus_{n \geq k} F^k_n$ is a direct sum of simple finite-dimensional \mathfrak{g}_k-modules. It follows immediately that L is an integrable \mathfrak{g}-module.

Corollary 1.14 Let $\bar{O}_{\text{integrable}}$ denote the full subcategory of \bar{O} consisting of integrable modules. Then, $\bar{O}_{\text{integrable}}$ is semisimple.

The theorem below gives another way to verify whether a module $M \in \bar{O}$ is \mathfrak{g}-integrable. Recall that $\Pi(M)$ is the set of \mathfrak{h}-weights of M.

Theorem 1.15 Let $M \in \bar{O}$. The following consitions on M are equivalent:

(i) M is \mathfrak{g}-integrable;

(ii) M is \mathfrak{n}^--integrable;

(iii) for all $w \in W$ and $\lambda \in \mathfrak{h}^*$, $\dim(M^w) = \dim(M^w)$.

The set $\Pi(M)$ is stable under the natural action of W.

Proof The direction (i)\implies(ii) is obvious. For (ii)\implies(iii), we note that $w \in W_n$ for any sufficiently large positive integer n. Let $M_n^{(\lambda)}$ be the \mathfrak{g}_n-submodule of M given by

$$M_n^{(\lambda)} := \mathfrak{u}(\mathfrak{g}_n) \cdot M^{\lambda}.$$

Because M is \mathfrak{n}^--integrable, M^{λ} is finite-dimensional, $\mathfrak{u}(\mathfrak{g}_n) = \mathfrak{u}(\mathfrak{n}^-) \cdot \mathfrak{u}(\mathfrak{h}) \cdot \mathfrak{u}(\mathfrak{n}^+)$, and M is locally $\mathfrak{u}(\mathfrak{n}^+)$-finite, we see that M is locally $\mathfrak{u}(\mathfrak{n}^-)$-finite, whence $M_n^{(\lambda)}$ is a finite-dimensional \mathfrak{g}_n-submodule of M. For all sufficiently large n, we have $(M_n^{(\lambda)})^{\pi^\lambda} = M^{\pi^\lambda}$. Since the support of a finite-dimensional module is invariant under the action of the Weyl group, the claim follows.

The statement (iii)\implies(iv) is trivial. We now prove (iv)\implies(i). Let $M_n^{(\lambda)}$ be the module \((1.3)\). Because M is locally $\mathfrak{u}(\mathfrak{n}^+)$-finite, $\Pi(M)$ is invariant under $W_{\mathfrak{g}_n, \mathfrak{h}_n}$, and M has finite-dimensional \mathfrak{h}-weight spaces, we conclude that the weights $M_n^{(\lambda)}$ must lie in the orbit of λ under $W_{\mathfrak{g}_n, \mathfrak{h}_n}$, making $M_n^{(\lambda)}$ a finite-dimensional \mathfrak{g}_n-module. Hence, $M = \bigcup_{n \in \mathbb{Z}_{>0}} \bigcup_{\lambda \in \Pi(M)} M_n^{(\lambda)}$ is an integrable \(\mathfrak{g}\)-module.\]

\section{Translation Functors}

\subsection{Some Functors between Extended Categories \mathcal{O}}

Fix a positive integer n. Let $M_n \in \widehat{\mathcal{O}}_{\mathfrak{b}_n}$. Define \mathfrak{p}_{n+1} to be the parabolic subalgebra $\mathfrak{g}_n + \mathfrak{b}_{n+1}$ of \mathfrak{g}_{n+1}. It can be easily seen that M_n is a \mathfrak{p}_{n+1}-module, where \mathfrak{b}_{n+1} acts on M_n via $x_m \cdot m = 0$ for all $m \in M_n$ and $\alpha \in \Phi_{\mathfrak{g}_{n+1, \mathfrak{b}_{n+1}}} \setminus \Phi_{\mathfrak{g}_n, \mathfrak{b}_n}$.

Definition 2.1 Define $I_{n+1} : \widehat{\mathcal{O}}_{\mathfrak{b}_n} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}$ to be the parabolic induction functor

$$I_{n+1} M_n := \mathfrak{u}(\mathfrak{g}_{n+1}) \otimes_{\mathfrak{u}(\mathfrak{p}_{n+1})} M_n$$ \hspace{1cm} (2.1)

for all $M_n \in \widehat{\mathcal{O}}_{\mathfrak{b}_n}$.

Proposition 2.2 The functor $I_{n+1} : \widehat{\mathcal{O}}_{\mathfrak{b}_n} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}$ is exact.

Proof The $\mathfrak{u}(\mathfrak{p}_{n+1})$-module $\mathfrak{u}(\mathfrak{g}_{n+1})$ is a free module due to the Poincaré-Birkhoff-Witt (PBW) Theorem. Thus, $\mathfrak{u}(\mathfrak{g}_{n+1})$ is a flat $\mathfrak{u}(\mathfrak{p}_{n+1})$-module.

Remark 2.3 Observe that the functor $I_{n+1} : \widehat{\mathcal{O}}_{\mathfrak{b}_n} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}$ is right-adjoint to the forgetful functor $F_n : \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_n}$, and left-adjoint to $G_n := \text{Hom}_{\mathfrak{u}(\mathfrak{p}_{n+1})}(\mathfrak{u}(\mathfrak{g}_{n+1}, _)) : \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_n}$. That is,

$$\text{Hom}_{\widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}}(M_{n+1}, I_{n+1} M_n) \cong \text{Hom}_{\widehat{\mathcal{O}}_{\mathfrak{b}_n}}(F_n M_{n+1}, M_n)$$ \hspace{1cm} (2.2)

and

$$\text{Hom}_{\widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}}(I_{n+1} M_n, M_{n+1}) \cong \text{Hom}_{\widehat{\mathcal{O}}_{\mathfrak{b}_n}}(M_n, G_n M_{n+1}),$$ \hspace{1cm} (2.3)

for all $M_n \in \widehat{\mathcal{O}}_{\mathfrak{b}_n}$ and $M_{n+1} \in \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}$.

Definition 2.4 Fix $\lambda \in \mathfrak{h}^*$. Define $\mathcal{R}_{n+1} : \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}} \rightarrow \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}[\lambda]$ to be the truncation functor, where for each $M_{n+1} \in \widehat{\mathcal{O}}_{\mathfrak{b}_{n+1}}$, $\mathcal{R}_{n+1} M_{n+1}$ is the sum of all submodules N_{n+1} of M_{n+1} such that all composition factors of N_{n+1} are not of the form $\mathfrak{g}_{\mathfrak{b}_{n+1}}^{(\mu)}$, with $\mu \in W_{\mathfrak{g}_n, \mathfrak{h}} \cdot \lambda$.

We have the following proposition. The proof is trivial.
Proposition 2.5 Fix $\lambda \in h^*$ and $n \in \mathbb{Z}_{>0}$.

(a) The functor $R^\lambda_{n+1} : \mathcal{O}_b^{n+1} \to \mathcal{O}_b^{n+1}[\lambda]$ is left-exact.

(b) The functor $R^\lambda_{n+1}I_{n+1} \inj_{b_n,b_n} : \mathcal{O}_b^n[\lambda] \to \mathcal{O}_b^{n+1}[\lambda]$ is left-exact.

(c) The functor $R^\lambda_{n+1}I_{n+1} : \mathcal{O}_b^n \to \mathcal{O}_b^{n+1}[\lambda]$ is left-exact.

Definition 2.6 Let $Q^\lambda_{n+1} : \mathcal{O}_b^n[\lambda] \to \mathcal{O}_b^{n+1}[\lambda]$ be given by

$$Q^\lambda_{n+1}M_n := I_{n+1} \inj_{b_n,b_n} M_n/R^\lambda_{n+1}I_{n+1} \inj_{b_n,b_n} M_n$$

for all $M_n \in \mathcal{O}_b^n[\lambda]$.

Theorem 2.7 The functor $Q^\lambda_{n+1} : \mathcal{O}_b^n[\lambda] \to \mathcal{O}_b^{n+1}[\lambda]$ is an exact functor.

Proof Fix an exact sequence $0 \to N_n \to M_n \to K_n \to 0$ of objects in $\mathcal{O}_b^n[\lambda]$. Because $W_{b_n, b} \cdot \lambda$ is finite, the length k of the g_n-module K_n is finite. We shall prove by induction on k.

For $k = 0$, there is nothing to prove. For $k = 1$, we see that K_n is a simple g_n-module. Therefore, $K_n \cong \mathcal{O}_b^n(\mu)$ for some $\mu \in W_{b_n, b} \cdot \lambda$. It can be easily seen that $Q^\lambda_{n+1} \mathcal{O}_b^n = \mathcal{O}_b^{n+1}(\mu)$. Consider two exact sequences of g_{n+1}-modules:

$$0 \to I_{n+1}N_n \to I_{n+1}M_n \to I_{n+1}K_n \to 0$$

and

$$0 \to R^\lambda_{n+1}I_{n+1} \inj_{b_n,b_n} N_n \to R^\lambda_{n+1}I_{n+1} \inj_{b_n,b_n} M_n \to R^\lambda_{n+1}I_{n+1} \inj_{b_n,b_n} K_n.$$

By definition of Q^λ_{n+1}, we obtain the following exact sequence

$$0 \to Q^\lambda_{n+1}N_n \to Q^\lambda_{n+1}M_n \to Q^\lambda_{n+1}K_n.$$

Because $Q^\lambda_{n+1}K_n$ is simple, either $Q^\lambda_{n+1}N_n \cong Q^\lambda_{n+1}M_n$ or the sequence

$$0 \to Q^\lambda_{n+1}N_n \to Q^\lambda_{n+1}M_n \to Q^\lambda_{n+1}K_n \to 0$$

must be exact.

Write $L_n := \mathcal{O}_b^n(\mu)$ and $L_{n+1} := \mathcal{O}_b^{n+1}(\mu)$. Let d denote the largest possible nonnegative integer such that there exists a quotient of N_n isomorphic to $L_n^{\oplus d}$. Then, $d + 1$ is the largest possible nonnegative integer such that there exists a quotient of M_n isomorphic to $L_n^{\oplus(d+1)}$. Then, there exists a g_{n}-submodule Y_n of N_n such that $N_n/Y_n \cong L_n^{\oplus t}$. We claim that $Q^\lambda_{n+1}N_n/Q^\lambda_{n+1}Y_n \cong L_n^{\oplus t}$.

As before, we have an exact sequence $0 \to Q^\lambda_{n+1}N_n \to Q^\lambda_{n+1}M_n \to Q^\lambda_{n+1}N_n \to L_n^{\oplus t}$, which implies that $Q^\lambda_{n+1}N_n/Q^\lambda_{n+1}Y_n \cong L_n^{\oplus t}$ for some integer t such that $0 \leq t \leq d$. If $t < d$, then $Q^\lambda_{n+1}Y_n$ has length $d + 1$ as a quotient. Hence, $I_{n+1}Y_n$ has length $d + 1$. This contradicts the definition of d.

By a similar argument, if X_n is a g_{n}-submodule of M_n such that $M_n/X_n \cong L_n^{\oplus(d+1)}$, then $Q^\lambda_{n+1}M_n/Q^\lambda_{n+1}X_n \cong L_n^{\oplus(d+1)}$. Thus, $Q^\lambda_{n+1}N_n \cong Q^\lambda_{n+1}M_n$ cannot hold. Therefore, we must have an exact sequence (2.8).

Suppose now that $k > 1$. Consider two exact sequences of g_{n}-modules: $0 \to N_n \to M_n \to K_n \to 0$ and $0 \to Z_n \to K_n \to L_n \to 0$ for some simple object $L_n \in \mathcal{O}_b^n[\lambda]$ and for some g_{n}-submodule X_n of K_n. Ergo, we can find exact sequences $0 \to U_n \to M_n \to L_n \to 0$, $0 \to N_n \to U_n \to Z_n \to 0$, where U_n is a g_{n}-submodule of M_n. By induction hypothesis,

$$0 \to Q^\lambda_{n+1}Z_n \to Q^\lambda_{n+1}K_n \to Q^\lambda_{n+1}L_n \to 0.$$

0 \to Q_{n+1}^\lambda U_n \to Q_{n+1}^\lambda M_n \to Q_{n+1}^\lambda L_n \to 0, \quad (2.10)
and

0 \to Q_{n+1}^\lambda N_n \to Q_{n+1}^\lambda U_n \to Q_{n+1}^\lambda Z_n \to 0 \quad (2.11)
are exact sequences. Therefore,

\begin{align*}
\text{ch} \left(Q_{n+1}^\lambda M_n \right) &= \text{ch} \left(Q_{n+1}^\lambda U_n \right) + \text{ch} \left(Q_{n+1}^\lambda L_n \right) \\
&= \left(\text{ch} \left(Q_{n+1}^\lambda N_n \right) + \text{ch} \left(Q_{n+1}^\lambda Z_n \right) \right) + \text{ch} \left(Q_{n+1}^\lambda L_n \right) \\
&= \text{ch} \left(Q_{n+1}^\lambda N_n \right) + \left(\text{ch} \left(Q_{n+1}^\lambda Z_n \right) + \text{ch} \left(Q_{n+1}^\lambda L_n \right) \right) \\
&= \text{ch} \left(Q_{n+1}^\lambda N_n \right) + \text{ch} \left(Q_{n+1}^\lambda K_n \right). \quad (2.12)
\end{align*}

By (2.7), we conclude that $0 \to Q_{n+1}^\lambda N_n \to Q_{n+1}^\lambda M_n \to Q_{n+1}^\lambda K_n \to 0$ must be an exact sequence. The proof is now complete. \blacksquare

Corollary 2.8 The functor Q_{n+1}^λ is an equivalence between $\mathcal{O}_{b_n}^{b_n}[\lambda]$ and the image $Q_{n+1}^\lambda \mathcal{O}_{b_n}^{b_n}[\lambda]$. More specifically, for any $\mu \in [\lambda]$ and $M_n \in \mathcal{O}_{b_n}^{b_n}[\lambda]$, we have

$$[M_n : \mathfrak{g}_{b_n}(\mu)] = [Q_{n+1}^\lambda M_n : \mathfrak{g}_{b_{n+1}}(\mu)]. \quad (2.13)$$

Furthermore, Q_{n+1}^λ preserves the length of every object.

Proposition 2.9 For every $M_n \in \mathcal{O}_{b_n}^{b_n}[\lambda]$, there exists an injective \mathfrak{g}_n-module homomorphism $\iota_{M_n} : M_n \to Q_{n+1}^\lambda M_n$ such that, for all objects $M_n, N_n \in \mathcal{O}_{b_n}^{b_n}[\lambda]$ along with a \mathfrak{g}_n-module homomorphism $f_n : M_n \to N_n$, the following diagram is commutative:

$$
\begin{array}{ccc}
M_n & \xrightarrow{f_n} & N_n \\
\downarrow \iota_{M_n} & & \downarrow \iota_{N_n} \\
Q_{n+1}^\lambda M_n & \xrightarrow{Q_{n+1}^\lambda f_n} & Q_{n+1}^\lambda N_n.
\end{array}
\quad (2.14)
$$

Proof For each $v \in M_n$, we define $\iota_{M_n}(v) := \left(1_{\mathfrak{u}(g_{n+1})} \otimes v \right) + R_{n+1}^\lambda L_{n+1} \text{inj}_{\mathfrak{g}_{n+1}}^\lambda M_n \in Q_{n+1}^\lambda M_n$.

It is easy to see that ι_{M_n} satisfies the requirement. \blacksquare

Proposition 2.10 Let $M_n \in \mathcal{O}_{b_n}^{b_n}[\lambda]$ and $N_{n+1} \in \mathcal{O}_{b_{n+1}}^{b_{n+1}}[\lambda]$. Suppose that all composition factors of N_{n+1} take the form $\mathfrak{g}_{b_{n+1}}^{b_{n+1}}(\mu)$ with $\mu \in W_{n+1} \cdot \lambda$. If $f : M_n \to N_{n+1}$ is a \mathfrak{g}_n-module homomorphism, then there exists a unique \mathfrak{g}_{n+1}-module homomorphism $\tilde{f} : Q_{n+1}^\lambda M_n \to N_{n+1}$ such that the following diagram is commutative:

$$
\begin{array}{ccc}
M_n & \xrightarrow{f} & N_{n+1} \\
\downarrow \iota_{M_n} & & \downarrow \tilde{f} \\
Q_{n+1}^\lambda M_n.
\end{array}
\quad (2.15)
$$
Proof For each $u \in \mathcal{U}(g_{n+1})$ and $v \in M_n$, let the map \tilde{f} send \((u \otimes v) + K_{n+1} \in Q_{n+1}^\lambda M_n, \)

\[K_{n+1} := R_{n+1}^\lambda \lambda_n(\cdot)_{b_n,b_n} M_n, \text{ to } u \cdot f(v) \in N_{n+1}. \] Then, extend \tilde{f} by linearity.

We claim that \tilde{f} is a well defined homomorphism of g_{n+1}-modules. Suppose that u_1, u_2, \ldots, u_k are elements of $\mathcal{U}(g_{n+1})$ and v_1, v_2, \ldots, v_k are vectors in M_n such that \[\sum_{j=1}^k (u_j \otimes v_j) \in K_{n+1}. \]

We want to prove that \[\sum_{j=1}^k u_j \cdot f(v_j) = 0. \] Write $z := \sum_{j=1}^k u_j \cdot f(v_j)$.

The g_{n+1}-submodule Z_{n+1} of N_{n+1} generated by z cannot have a composition factor of the form $g_{b_n+1}(\xi)$ with $\xi \in W_{b_n+1} \cdot \lambda$. However, since all composition factors N_{n+1} are of the form $\Phi_{b_n+1}(\mu)$ with $\mu \in W_{b_n+1} \cdot \lambda$, we conclude that $Z_{n+1} = 0$. Thus, $z = 0$.

Proposition 2.11 Let $M_n, N_n \in \mathcal{O}_{b_n}^\lambda [\lambda]$ and $f_{n+1} : Q_{n+1}^\lambda M_n \rightarrow Q_{n+1}^\lambda N_n$ be given. Then, there exists a g_n-module homomorphism $\tilde{Q}_n^\lambda f_{n+1} : M_n \rightarrow N_n$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
M_n & \xrightarrow{\tilde{Q}_n^\lambda f_{n+1}} & N_n \\
\downarrow{\iota_{M_n}} & & \downarrow{\iota_{N_n}} \\
Q_{n+1}^\lambda M_n & \xrightarrow{f_{n+1}} & Q_{n+1}^\lambda N_n.
\end{array}
\]

(2.16)

For $M_{n+1} \in \text{im} (Q_{n+1}^\lambda)$, suppose that $M_{n+1} = Q_{n+1}^\lambda M_n$ for some $M_n \in \mathcal{O}_{b_n}^\lambda [\lambda]$. Define the g_n-module $\tilde{Q}_n^\lambda M_{n+1} \in \mathcal{O}_{b_n}^\lambda [\lambda]$ to be M_n itself. Then, $\tilde{Q}_n^\lambda : \text{im} (Q_{n+1}^\lambda) \leadsto \mathcal{O}_{b_n}^\lambda [\lambda]$ is the inverse equivalence of $Q_{n+1}^\lambda : \mathcal{O}_{b_n}^\lambda [\lambda] \leadsto \text{im} (Q_{n+1}^\lambda)$.

Proof Let $K_{n+1} := R_{n+1}^\lambda \lambda_n(\cdot)_{b_n,b_n} N_n$. For each $v \in M_n$, suppose that u_1, u_2, \ldots, u_k are elements of $U(g_{n+1})$ and v_1, v_2, \ldots, v_k are vectors in N_n such that $f_{n+1}(\iota_{M_n}(v)) = \sum_{j=1}^k (u_j \otimes v_j) + K_{n+1}$. Denote by u_j' the projection of u_j onto $U(g_n)$ (in the PBW basis of $U(g_n)$). Set $f_n(v) := \sum_{j=1}^k u_j' \cdot v_j$. Then, $\tilde{Q}_n^\lambda f_{n+1} := f_n$ satisfies the required condition.

Corollary 2.12 Let $M_n, N_n \in \mathcal{O}_{b_n}^\lambda [\lambda]$. Then,

\[\text{Hom}_{\mathcal{O}_{b_n}^\lambda [\lambda]} (M_n, N_n) \cong \text{Hom}_{\mathcal{O}_{b_{n+1}}^\lambda [\lambda]} (Q_{n+1}^\lambda M_n, Q_{n+1}^\lambda N_n). \]

(2.17)

Therefore, the image $Q_{n+1}^\lambda \mathcal{O}_{b_n}^\lambda [\lambda]$ is the full subcategory of $\mathcal{O}_{b_{n+1}}^\lambda$ whose objects have composition factors of the form $\Phi_{b_{n+1}}(\mu)$ with $\mu \in W_{b_{n+1}} \cdot \lambda$.

For each $n \in \mathbb{Z}_{\geq 0}$, fix a set \mathcal{I}_n of representatives of $[\lambda] \in \Omega_{b_n}^\oplus$. We can further assume that $\mathcal{I}_n \supseteq \mathcal{I}_{n+1}$ for every positive integer n. Then, $\mathcal{I} := \bigcap_{n \in \mathbb{Z}_{\geq 0}} \mathcal{I}_n$ is a set of representatives of $[\lambda] \in \Omega_{b}^\oplus$.

Proposition 2.13 For each $\lambda \in \mathcal{I}$, the direct limit of \(\left(Q_{n+1}^\lambda : \mathcal{O}_{b_n}^\lambda [\lambda] \leadsto \mathcal{O}_{b_{n+1}}^\lambda [\lambda] \right)_{n \in \mathbb{Z}_{\geq 0}} \) is the full subcategory $\mathcal{O}_{b}^\oplus[\lambda]$ of $\mathcal{O}_{b_n}^\lambda[\lambda]$ consisting of g-modules of finite length.

Proof For convenience, write $\mathcal{O}[\lambda]$ for $\mathcal{O}_{b}^\oplus[\lambda]$. Fix $n \in \mathbb{Z}_{\geq 0}$. First, we define $q_{n+1}^\lambda : \mathcal{O}_{b_n}^\lambda [\lambda] \leadsto \mathcal{O}[\lambda]$ as follows. For a given $M_n \in \mathcal{O}_{b_n}^\lambda [\lambda]$ and $k \in \mathbb{Z}_{\geq 0}$, write M_{n+k} for $Q_{n+1}^\lambda Q_{n+1+k}^\lambda \cdots Q_{n+k}^\lambda M_n \in \mathcal{O}_{b_{n+k}}^\lambda [\lambda]$. Using Proposition 2.9 above and noting that $\mathcal{O}_{b_n}^\lambda [\lambda] = \mathcal{O}_{b_n}^\lambda [\lambda]$ (whose objects are finitely generated),
we see that \((t_{M_{n+k}} : M_{n+k} \to M_{n+k+1})_{k \in \mathbb{Z}_{\geq 0}}\) is a directed system whose direct limit \(M\) is clearly in \(\mathcal{O}[\lambda]\). We set \(q_{n}^{\lambda}M_{n}\) to be the direct limit \(M\). It is easy to see that \(q_{n+1}^{\lambda}Q_{n+1}^{\lambda} = q_{n}^{\lambda}\).

Let \(p_{n}^{\lambda} : \mathcal{O}[\lambda] \twoheadrightarrow \mathcal{O}_{b_{n}}^{\alpha}[\lambda]\) be the functor defined as follows: \(p_{n}^{\lambda}M := \bigoplus_{\xi \in W_{b_{n}}^{\alpha}} u(g_{\xi}) \cdot M^{\xi}\) for every \(M \in \mathcal{O}[\lambda]\). We can easily show that \(p_{n}^{\lambda}q_{n}^{\lambda} = \text{Id}_{\mathcal{O}_{b_{n}}^{\alpha}[\lambda]}\) and \(p_{n+k}^{\lambda}q_{n}^{\lambda} = Q_{n+k}^{\lambda} \mathcal{O}_{b_{n+k-1}}^{\alpha}[\lambda] \cdots Q_{n+1}^{\lambda}\).

Suppose that there exists a category \(\tilde{\mathcal{O}}[\lambda]\) along with functors \(\tilde{q}_{n}^{\lambda} : \mathcal{O}_{b_{n}}^{\alpha}[\lambda] \twoheadrightarrow \tilde{\mathcal{O}}[\lambda]\) such that \(\tilde{q}_{n+1}^{\lambda}Q_{n+1}^{\lambda} = \tilde{q}_{n}^{\lambda}\) for all \(n = 1, 2, 3, \ldots\). Define \(t_{n}^{\lambda} : \mathcal{O}[\lambda] \twoheadrightarrow \tilde{\mathcal{O}}[\lambda]\) via \(t_{n}^{\lambda}M = \tilde{q}_{n}^{\lambda}p_{n}^{\lambda}M\) for all \(M \in \mathcal{O}[\lambda]\). Since \(M\) is a \(g\)-module of finite length, \(t_{n}^{\lambda}M = t_{n+1}^{\lambda}M = \cdots \) for some positive integer \(n_{0}(M)\). Let \(t^{\lambda} : \mathcal{O}[\lambda] \twoheadrightarrow \tilde{\mathcal{O}}[\lambda]\) be given by \(t^{\lambda}M = t_{n_{0}(M)}^{\lambda}M\) for every \(M \in \mathcal{O}[\lambda]\). We can easily see that \(t^{\lambda}q_{n}^{\lambda} = \tilde{q}_{n}^{\lambda}\) for every positive integer \(n\). Note that the functor \(t^{\lambda} : \mathcal{O}[\lambda] \twoheadrightarrow \tilde{\mathcal{O}}[\lambda]\) above is unique with the property that \(t^{\lambda}q_{n}^{\lambda} = \tilde{q}_{n}^{\lambda}\) for every positive integer \(n\). Therefore, \(\mathcal{O}[\lambda]\) is the required direct limit.

Corollary 2.14 Let \(q_{n}^{\lambda} : \mathcal{O}_{b_{n}}^{\alpha}[\lambda] \twoheadrightarrow \mathcal{O}_{b_{n}}^{\alpha}[\lambda]\) be as given in the proof of the previous proposition. Then, \(q_{n}^{\lambda}\) is an exact functor.

Corollary 2.15 Let \(Q_{n+1}^{\lambda} : \mathcal{O}_{b_{n}}^{\alpha} \twoheadrightarrow \mathcal{O}_{b_{n+1}}^{\alpha}\) be the functor defined by

\[
Q_{n+1}^{\lambda}M_{n} = \bigoplus_{\lambda \in \mathcal{X}} \text{inj}_{\lambda}^{\alpha}q_{n+1}^{\lambda}Q_{n+1}^{\lambda} \text{pr}_{\lambda}^{\alpha}M_{n}
\]

for all \(M_{n} \in \mathcal{O}_{b_{n}}^{\alpha}\). Then, the direct limit of \(\left(Q_{n+1}^{\lambda} : \mathcal{O}_{b_{n}}^{\alpha} \twoheadrightarrow \mathcal{O}_{b_{n+1}}^{\alpha}\right)_{n \in \mathbb{Z}_{\geq 0}}\) is the full subcategory \(\mathcal{O}_{b}^{\alpha}\) (or simply, \(\mathcal{O}\)) of \(\mathcal{O}_{b}^{\alpha}\) along with a family of exact functors \(\left(q_{n}^{\lambda} : \mathcal{O}_{b_{n}}^{\alpha} \twoheadrightarrow \mathcal{O}_{b}^{\alpha}\right)_{n \in \mathbb{Z}_{\geq 0}}\) where \(\mathcal{O}_{b}^{\alpha}\) is given by \(\mathcal{O}_{b}^{\alpha} = \bigoplus_{\lambda \in \mathcal{X}} \mathcal{O}_{b}^{\alpha}[\lambda]\).

2.2 Some Category Equivalences

Take \(\lambda \in \mathfrak{h}^{*}\). We define the following notations:

- \(\Phi_{\mathfrak{g}, \mathfrak{h}}[\lambda] := \left\{ \alpha \in \mathfrak{h} \mid \langle h_{\alpha} \rangle \in \mathbb{Z} \right\}\) (also denoted by \(\Phi[\lambda]\)),
- \(\Phi_{\pm}[\lambda] := \Phi_{\mathfrak{g}, \mathfrak{h}}[\lambda] \cap \Phi^{\pm}\) (also denoted by \(\Phi^{\pm}[\lambda]\)),
- \(\Sigma_{\mathfrak{g}, \mathfrak{h}}[\lambda]\) or \(\Sigma_{\mathfrak{g}, \mathfrak{h}}^{\pm}[\lambda]\) is the set of simple roots with respect to the set of positive roots \(\Phi_{\mathfrak{g}, \mathfrak{h}}^{\pm}[\lambda]\) of the root system \(\Phi_{\mathfrak{g}, \mathfrak{h}}[\lambda]\) (also denoted by \(\Sigma[\lambda]\) or \(\Sigma^{\pm}[\lambda]\)),
- \(\Sigma_{\mathfrak{g}, \mathfrak{h}}^{-}[\lambda] := -\Sigma_{\mathfrak{g}, \mathfrak{h}}^{+}[\lambda]\) (also denoted by \(\Sigma^{-}[\lambda]\)),
- \(\Lambda_{\mathfrak{g}, \mathfrak{h}}[\lambda] := \text{span}_{\mathbb{Z}} \Phi_{\mathfrak{g}, \mathfrak{h}}[\lambda]\) (also denoted by \(\Lambda[\lambda]\)),
- \(\mathfrak{h}[\lambda] := \text{span}_{\mathbb{R}} \left\{ h \in \mathfrak{h} \mid \langle h, h \rangle \in \mathbb{Z} \right\}\),
- \(\mathfrak{g}[\lambda] := \mathfrak{h}[\lambda] \oplus \bigoplus_{\alpha \in \Phi[\lambda]} \mathfrak{g}^{\alpha}\),
- \(\mathfrak{b}[\lambda] := \mathfrak{b}[\lambda] \oplus \bigoplus_{\alpha \in \Phi^{\pm}[\lambda]} \mathfrak{g}^{\alpha}\) (also denoted by \(\mathfrak{b}^{\pm}[\lambda]\)),
- \(\mathfrak{n}[\lambda] := \bigoplus_{\alpha \in \Phi^{\pm}[\lambda]} \mathfrak{g}^{\alpha}\) (also denoted by \(\mathfrak{n}^{\pm}[\lambda]\)),
- \(\mathfrak{n}^{-}[\lambda] := \bigoplus_{\alpha \in \Phi^{-}[\lambda]} \mathfrak{g}^{\alpha}\),
\[\lambda^3 := \lambda|_{b[\lambda]} \in (b[\lambda])^*, \] and

\[\overset{\phi}{W_{\mu,b}[\lambda]} \] (also denoted by \(W[\lambda] \)) is the subgroup of \(W_{\mu,b} \) consisting of elements \(w \) such that \(w \cdot \lambda = \lambda \).

Proposition 2.16 Let \(n \) be a positive integer and \(\lambda \in b^* \). Then, there exists a categorical equivalence \(\mathcal{E}_n^\lambda : \mathcal{O}_{b,\mu}^n[\lambda] \rightarrow \mathcal{O}_{b,\mu}^n[\lambda]^2 \) which sends \(\mathcal{L}_{b,\mu}^n(\mu) \) to \(\mathcal{L}_{b,\mu}^n[\lambda](\mu^2) \) for all \(\mu \in [\lambda] \cap (W_{\mu,b} : \lambda) \).

Proof This proposition is a direct consequence of [10, Theorem 11].

Corollary 2.17 For each \(\lambda \in b^* \), there exists a categorical equivalence \(\mathcal{E}_n^\lambda : \mathcal{O}_{b}^n[\lambda] \rightarrow \mathcal{O}_{b}^n[\lambda]^2 \) which sends \(\mathcal{L}_{b}^n(\mu) \) to \(\mathcal{L}_{b}^n[\lambda](\mu^2) \) for all \(\mu \in [\lambda] \).

Proof This corollary follows from the previous proposition, Corollary 2.8, Proposition 2.13, and Corollary 2.12.

However, as a result of [10, Theorem 11], and Corollary 2.17, we have the following theorem.

Theorem 2.18 Let \(\mathfrak{g} \) and \(\mathfrak{g}' \) be root-reductive Lie algebras with Dynkin Borel subalgebras \(b \) and \(b' \), respectively. Suppose that \(S_{\mathfrak{g},b}[\lambda] \) is the set of simple reflections with respect to elements of \(\Sigma_{\mathfrak{g},b}[\lambda] \), and \(S_{\mathfrak{g}',b'}[\lambda'] \) is the set of simple reflections with respect to elements of \(\Sigma_{\mathfrak{g}',b'}[\lambda'] \). Suppose that there exists an isomorphism \(\varphi : W_{\mathfrak{g},b}[\lambda] \rightarrow W_{\mathfrak{g}',b'}[\lambda'] \) of Coxeter systems \((W_{\mathfrak{g},b}[\lambda], S_{\mathfrak{g},b}[\lambda]) \) and \((W_{\mathfrak{g}',b'}[\lambda], S_{\mathfrak{g}',b'}[\lambda]) \) such that

\[\varphi(W_{\mathfrak{g},b}[\lambda]) = W_{\mathfrak{g}',b'}[\lambda']. \] (2.19)

Then, there exists an equivalence of categories \(\mathcal{O}_{b}^\lambda[\lambda] \cong \mathcal{O}_{b'}^\lambda[\lambda] \).

Proof By Corollary 2.17, we have \(\mathcal{O}_{b}^\lambda[\lambda] \cong \mathcal{O}_{b,b}^\lambda[\lambda]^2 \) and \(\mathcal{O}_{b'}^\lambda[\lambda] \cong \mathcal{O}_{b',b'}^\lambda[\lambda]^2 \). Therefore, it suffices to assume that \(\lambda \) and \(\lambda' \) are both integral weights; that is, \(\lambda = \lambda^2 \), \(\lambda' = (\lambda')^2 \), \(\mathfrak{g}[\lambda] = \mathfrak{g} \), \(b[\lambda] = b \), \(b'[\lambda'] = b' \), and \(b'[\lambda'] = b' \).

Let \(n \) be a positive integer. Define \(S_{\mathfrak{g},b,n} \) to be the set of simple reflections with respect to the elements of \(\Sigma_{\mathfrak{g},b,n} \). The notation \(S_{\mathfrak{g},b,n} \) is defined similarly. Set \(\Sigma_{\mathfrak{g},b,n} = \Sigma_{\mathfrak{g},b} \cup \{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \), and for \(n > 1 \), let \(\Sigma_{\mathfrak{g},b,n} = \Sigma_{\mathfrak{g},b,n-1} \cup \{ \alpha_n \} \). Assume that \(\varphi \) sends the simple reflection with respect to \(\alpha_n \) to the simple reflection with respect to \(\alpha'_n \) for every positive integer \(n \).

Define \(g'_n \) to be the subalgebra of \(\mathfrak{g}' \) generated by \(b' \) and the root spaces corresponding to the roots \(\pm \alpha'_1, \pm \alpha'_2, \ldots, \pm \alpha'_n \). Take \(b'_n := g'_n \cap b' \). We note that the direct limits \(\mathfrak{g}' \) and \(b'' \) of the directed systems \((g'_n)_{n \in \mathbb{Z}_{>0}} \) and \((b''_n)_{n \in \mathbb{Z}_{>0}} \) are precisely \(g' \) and \(b' \), respectively. Hence, \(\mathcal{O}_{b'}^\lambda[\lambda] = \mathcal{O}_{b'}^\lambda[\lambda] \).

The existence of \(\varphi \) implies that, for each \(n \in \mathbb{Z}_{>0} \), the Coxeter systems \((W_{\mathfrak{g},b,n}, S_{\mathfrak{g},b,n}) \) and \((W_{\mathfrak{g}',b',n}, S_{\mathfrak{g}',b',n}) \) are isomorphic. Therefore, by [10, Theorem 11], there exists an equivalence of categories \(\varepsilon_n : \mathcal{O}_{b,n}^\lambda[\lambda] \rightarrow \mathcal{O}_{b',n}^\lambda[\lambda] \). Applying direct limit, we obtain an equivalence \(\varepsilon : \mathcal{O}_{b}^\lambda[\lambda] \rightarrow \mathcal{O}_{b'}^\lambda[\lambda] \).

Open Question 2.19 Is the converse of Theorem 2.18 true? In other words, if \(\mathcal{O}_{b}^\lambda[\lambda] \cong \mathcal{O}_{b'}^\lambda[\lambda] \), then does there exist an isomorphism \(\varphi : W_{\mathfrak{g},b}[\lambda] \rightarrow W_{\mathfrak{g}',b'}[\lambda'] \) of Coxeter systems \((W_{\mathfrak{g},b}[\lambda], S_{\mathfrak{g},b}[\lambda]) \) and \((W_{\mathfrak{g}',b'}[\lambda'], S_{\mathfrak{g}',b'}[\lambda']) \) such that (2.19) is true?

2.3 Construction of Translation Functors

Definition 2.20 For \(\lambda \in b^* \), we say that \(\lambda \) is restricted if \(\lambda(h_\alpha) = 0 \) for all but finitely many \(\alpha \in \Sigma_{\mathfrak{g},b}^+ \). For \(\lambda, \mu \in b^* \), we say that \(\lambda \) and \(\mu \) are compatible if \(\lambda - \mu \in \Lambda \) and \(\lambda - \mu \) is a restricted weight. The notation \(\lambda \parallel \mu \) means that \(\lambda \) and \(\mu \) are compatible.
Denote by \(h_Q \) the \(\mathbb{Q} \)-span of the coroots \(h_\alpha \in h \) with \(\alpha \in \Phi = \Phi_{g,h} \). Take \(h_R \) to be \(\mathbb{R} \otimes h_Q \). Let \(E := E^\theta_\mathbb{Q} \) denote the real vector space \(\text{Hom}_\mathbb{R}(h_R, \mathbb{R}) \). A root \(\alpha \in \Phi \) can be identified with the unique element (which we also denote by \(\alpha \)) of \(E \) which sends \(1 \otimes \beta \in h_R \) to \(\alpha(\beta) \in \mathbb{Z} \) for all \(\beta \in \Phi \).

Similarly, if \(\lambda \in h^* \) satisfies \(\lambda(\beta) \in \mathbb{Q} \) for all \(\beta \in \Phi \), then we identify it with the unique element of \(E \) that sends \(\beta \mapsto \lambda(\beta) \) for all \(\beta \in \Phi \).

We decompose \(E \) into facets, where a facet \(F \) of \(E \) is a nonempty subset of \(E \) determined by the partition of \(\Phi \) into disjoint subsets \(\Phi^+(F) \), \(\Phi^0(F) \), and \(\Phi^-(F) \), where \(\lambda \in F \) if and only if all three conditions below are satisfied:

- \((\lambda + \rho)(h_\alpha) > 0 \) when \(\alpha \in \Phi^+(F) \),
- \((\lambda + \rho)(h_\alpha) = 0 \) when \(\alpha \in \Phi^0(F) \), and
- \((\lambda + \rho)(h_\alpha) < 0 \) when \(\alpha \in \Phi^-(F) \).

The closure \(\bar{F} \) of a facet \(F \) is defined to be the set of all \(\lambda \in h^* \) such that

- \((\lambda + \rho)(h_\alpha) \geq 0 \) when \(\alpha \in \Phi^+(F) \),
- \((\lambda + \rho)(h_\alpha) = 0 \) when \(\alpha \in \Phi^0(F) \), and
- \((\lambda + \rho)(h_\alpha) \leq 0 \) when \(\alpha \in \Phi^-(F) \).

Recall that \(\mathcal{S} \) is a (fixed) set of representatives of \([\lambda] \in \Omega_\theta^\mathbb{Q} \) (on which the definitions of \(Q_{n+1} \) and \(q_n \) depend). Now, for \(\lambda, \mu \in \mathcal{S} \) such that \(\lambda \parallel \mu \), there exists a unique dominant-integral weight \(\nu \in W_{g,h}(\lambda - \mu) \). Define for all sufficiently large \(n \) (i.e., for all positive integers \(n \) such that \(\nu \in W_{g,n,h}(\lambda - \mu) \)) the translation functor \((\theta^\mu_{b,n})_\lambda : \mathcal{O}^\mu_{b,n}[\lambda] \rightarrow \mathcal{O}^\mu_{b,n}[\mu] \). That is,

\[
(\theta^\mu_{b,n})_\lambda M_n \overset{\text{def}}{=} \text{pr}^\mu_{g_n,b_n}(\mathcal{O}^{\mu}_{b,n}(\nu) \otimes M_n)
\] (2.20)

for every \(M_n \in \mathcal{O}^\mu_{b,n}[\lambda] \). Recall that \((\theta^\mu_{b,n})_\lambda \) is an exact functor and it commutes with duality (see, for example, [6, Proposition 7.1]).

Theorem 2.21 Let \(\lambda, \mu \in h^* \) be such that \(\lambda \parallel \mu \). If \(\lambda^\xi \) and \(\mu^\xi \) are in the same facet for the action of the integral Weyl group \(W_{g,h}[\lambda] = W_{g,h}[\mu] \) on \(E_\mathbb{Q}^\theta[\lambda] = E_\mathbb{Q}^\theta[\mu] \), then there exists an equivalence of categories \((\Theta^\mu_{\lambda})_\xi : \mathcal{O}_{b,n}[\lambda] \rightarrow \mathcal{O}_{b,n}[\mu] \).

Proof For convenience, write \(\mathcal{O} \) for \(\mathcal{O}^\mu_{b,n} \). For \(\zeta, \xi \in h^* \), we also denote by \((\theta_{n})_{\zeta}^\xi \) the functor \((\theta^\mu_{b,n})_\lambda \) in \(\mathcal{O}_{b,n}[\lambda] \). We also write \(W \) and \(W_n \) for \(W_{g,h} \) and \(W_{g,n,b_n} \), respectively.

Let \(n_0 \) be the smallest integer such that \(\nu \in W_{n_0}(\lambda - \mu) \). For each integer \(n \geq n_0 \), let \(\xi_n \in W_n[\lambda] \cdot \lambda \) be the antidominant weight that is linked to \(\lambda \), and let \(\zeta_n \in W_n[\mu] \cdot \mu \) be the antidominant weight that is linked to \(\mu \).

Since \(\lambda^\xi \) and \(\mu^\xi \) are in the same facet for the action of \(W_{g,n}[\lambda] = W_{g,n}[\mu] \) on \(E_\mathbb{Q}^\theta[\lambda] = E_\mathbb{Q}^\theta[\mu] \), there exists \(w_n \in W_{n}[\lambda] = W_{n}[\mu] \) such that \(w_n \cdot \lambda = \xi_n \) and \(w_n \cdot \mu = \zeta_n \). From [6, Theorem 7.8], we conclude that

\[
\Theta_n := (\theta_{n})_{\xi_n}^\zeta : \mathcal{O}_n[\lambda] \rightarrow \mathcal{O}_n[\mu]
\] (2.21)

is an equivalence of categories whose equivalence is

\[
\Theta'_n := (\theta_{n})_{\xi_n}^\zeta : \mathcal{O}_n[\mu] \rightarrow \mathcal{O}_n[\lambda].
\] (2.22)

Recall the functors \(\hat{Q}_{n+1}^\lambda : \text{im}(Q_{n+1}^\lambda) \rightarrow \mathcal{O}_n^\lambda \) and \(\hat{Q}'_{n+1}^\lambda : \text{im}(Q_{n+1}^\lambda) \rightarrow \mathcal{O}_n^\lambda \) from Proposition 2.11. Furthermore, due to [6, Proposition 7.8] any object in \(\text{im}(\Theta_{n+1}Q_{n+1}^\lambda) \) must
have composition factors of the form $\mathcal{L}_{b_{n+1}}(w \cdot \zeta_n)$, where $w \in W_n[\mu] \cdot \mu$. Therefore, $\im (\Theta_{n+1} Q_{n+1}^\lambda)$ is a subcategory of $\im (Q_{n+1}^\mu)$. Let

$$\mathcal{E}_n := \Theta_n^\lambda Q_{n+1}^\lambda : \tilde{O}_n[\lambda] \rightarrow \tilde{O}_n[\lambda].$$

Clearly, \mathcal{E}_n is an auto-equivalence of $\tilde{O}_n[\lambda]$ (since Q_{n+1}^λ is an equivalence on to its image, Θ_{n+1} and Θ_n are both equivalences, and Q_n^μ is an equivalence). Consequently,

$$\Theta_{n+1} Q_{n+1}^\lambda = Q_{n+1}^\mu \Theta_n \mathcal{E}_n \cong Q_{n+1}^\mu \Theta_n.$$ \hfill (2.24)

Write \mathcal{O} for \mathcal{O}_{Θ}. We can now let $\Theta : \mathcal{O}[\lambda] \rightarrow \mathcal{O}[\mu]$ be the direct limit of the directed system of functors $(\Theta_n : \tilde{O}_n[\lambda] \rightarrow \tilde{O}_n[\mu])_{n \in \mathbb{Z}_{>0}}$. Similarly, $\Theta' : \mathcal{O}[\mu] \rightarrow \mathcal{O}[\lambda]$ is the direct limit of the directed system of functors $(\Theta'_n : \tilde{O}_n[\mu] \rightarrow \tilde{O}_n[\lambda])_{n \in \mathbb{Z}_{>0}}$. As each Θ_n is an equivalence of categories with inverse Θ'_n, we deduce that Θ is also an equivalence of categories with inverse Θ'. We set $(\Theta_{\Theta}^\mu)^\lambda_\mathcal{O}$ to be the functor Θ.

From the previous theorem, we have defined a "translation functor" $(\Theta_{\Theta}^\mu)^\lambda$ when μ and λ are compatible and lie in the same facet for the action of $W_{b-b}[\lambda] = W_{b-b}[\mu]$. For arbitrary $\lambda, \mu \in \mathfrak{h}^*$ such that $\lambda \parallel \mu$, it is not clear whether the same construction yields a functor $(\Theta_{\Theta}^\mu)^\lambda : \mathcal{O}_{\Theta}[\lambda] \rightarrow \mathcal{O}_{\Theta}[\mu]$.

3 Tilting Modules

3.1 Extensions of Modules with Generalized Standard and Costandard Filtrations

In this subsection, we shall write Hom and Ext for $\text{Hom}_{\mathcal{O}}$ and $\text{Ext}_{\mathcal{O}}$. We shall first prove that any extension of a module with generalized costandard filtration by a module with generalized standard filtration is trivial.

Theorem 3.1 Let $M \in \Delta(\mathcal{O})$ and $N \in \nabla(\mathcal{O})$. Then, $\text{Ext}^1(M, N) = 0$.

Proof If M has a direct sum decomposition $M = \bigoplus_{\alpha \in A} M_\alpha$, then $\text{Ext}^1(M, N) \cong \prod_{\alpha \in A} \text{Ext}^1(M_\alpha, N)$. Thus, we may assume without loss of generality that M is indecomposable.

We first prove the theorem when $N = \nabla(\mu)$ for some $\mu \in \mathfrak{h}^*$. Let $\Pi_{\mu}(M)$ denote the set of weights of M that are greater than μ. Note that M is in the block $\mathcal{O}_{\lambda}[\lambda]$ for some $\lambda \in \mathfrak{h}^*$. If $\Pi_{\mu}(M)$ has infinitely many maximal elements, then we enumerate the maximal elements of $\Pi_{\mu}(M)$ by $\lambda_1, \lambda_2, \lambda_3, \ldots$. Note that $\lambda_i \in W[\lambda] \cdot \lambda$ for all $i = 1, 2, 3, \ldots$. This implies that $\lambda - \mu$ is not a finite integer combination of the simple roots. Therefore, λ and μ are not in the same Weyl orbit. Thus, $\text{Ext}^1(M, N) = \text{Ext}^1(M, \nabla(\mu)) = 0$. From now on, we assume that $\Pi_{\mu}(M)$ has finitely many maximal elements.

We perform induction on the sum $m := \sum_{\xi \cdot \mu} \dim M^\xi$, which is finite due to the assumption in the previous paragraph. If $m = 0$, then by [9, Proposition 3.8(a)] and [9, Proposition 3.9(a)], we get $\text{Ext}^1(M, \nabla(\mu)) \cong \text{Ext}^1(\Delta(\mu), M^\xi) = 0$.

Let now m be a positive integer. Fix a maximal weight $\xi \in \Pi_{\nu}(M)$. By Proposition 1.8(a), there exists a short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$, where M' is isomorphic to $\Delta(\xi)$, and M'' has a generalized standard filtration. From the long exact sequence of Ext^\bullet, we get the following exact sequence

$$\text{Ext}^1(M'', \nabla(\mu)) \rightarrow \text{Ext}^1(M, \nabla(\mu)) \rightarrow \text{Ext}^1(M', \nabla(\mu)).$$ \hfill (3.1)

However, due to [9, Proposition 3.9(c)], we get $\text{Ext}^1(M', \nabla(\mu)) \cong \text{Ext}^1(\Delta(\xi), \nabla(\mu)) = 0$. By induction hypothesis, $\text{Ext}^1(M'', \nabla(\mu)) = 0$. Therefore, $\text{Ext}^1(M, \nabla(\mu)) = 0$ as well.
For each ordinal number γ, we shall define a submodule $X_\gamma \in \Delta(\mathcal{O})$ of N^\vee such that N^\vee/X_γ is also in $\Delta(\mathcal{O})$. First, we set $X_0 := 0$. If γ is an ordinal with predecessor γ', then we have by Proposition 1.8(a) that $N^\vee/X_{\gamma'}$ has a submodule Y_γ such that $Y_\gamma \cong \Delta(\mu_\gamma)$ for some $\mu_\gamma \in \mathfrak{h}^*$ that is a maximal weight of $N^\vee/X_{\gamma'}$. Take X_γ to be the preimage of Y_γ under the canonical projection $N^\vee \twoheadrightarrow (N^\vee/X_{\gamma'})$. If γ is a limit ordinal, then we set X_γ to be $\bigcup_{\gamma' < \gamma} X_{\gamma'}$.

From the above construction, there exists the smallest ordinal κ such that $N^\vee = X_\kappa$, and N^\vee is in fact the direct limit of $(X_\gamma)_{\gamma < \kappa}$. Thus, N is the inverse limit of $(N_\gamma)_{\gamma < \kappa}$, where $N_\gamma := (X_\gamma)^\vee$. We claim that $\text{Ext}^1(M, N_\gamma) = 0$ for all ordinals $\gamma \leq \kappa$.

If γ has a predecessor γ', then there exists a short exact sequence $0 \to \nabla(\mu_\gamma) \to N_\gamma \to N_{\gamma'} \to 0$. From the long exact sequence of Ext^\bullet, we have the following exact sequence

$$\text{Ext}^1(M, \nabla(\mu_\gamma)) \to \text{Ext}^1(M, N_\gamma) \to \text{Ext}^1(M, N_{\gamma'}).$$

(3.2)

By the induction hypothesis, $\text{Ext}^1(M, N_\gamma) = 0$. Since we have proven that $\text{Ext}^1(M, \nabla(\mu_\gamma)) = 0$, we can then conclude that $\text{Ext}^1(M, N_{\gamma'}) = 0$. If γ is a limit ordinal, then $X_\gamma = \lim_{\gamma' < \gamma} X_{\gamma'}$; ergo,

$$\text{Ext}^1(M, N_{\gamma'}) \cong \text{Ext}^1((N_\gamma)^\vee, M^\vee) = \text{Ext}^1(X_\gamma, M^\vee).$$

(3.3)

Now, let E be a \mathfrak{g}-module such that there exists an exact sequence $0 \to M^\vee \overset{i}{\to} E \overset{p}{\to} X_\gamma \to 0$. For each $\gamma' < \gamma$, we know that $\text{Ext}^1(X_{\gamma'}, M^\vee) \cong \text{Ext}^1(M, N_{\gamma'}) = 0$ by induction hypothesis, whence $p^{-1}(X_{\gamma'}) = i(M^\vee) \oplus \tilde{X}_{\gamma'}$, where $M_{\gamma'}$ and $\tilde{X}_{\gamma'}$ are submodules of $p^{-1}(X_{\gamma'})$ such that $M_{\gamma'} \cong M^\vee$ and $\tilde{X}_{\gamma'} \cong X_{\gamma'}$. We shall now define $v_{\gamma'} \in \mathcal{E}_{\gamma'}$ whenever γ' has a predecessor γ''.

If $\gamma' = 1$, then $X_1 \cong \Delta(\mu_1)$ for some $\mu_1 \in \mathfrak{h}^*$. For each ordinal δ such that $\gamma' \leq \delta < \gamma$, define $\mathcal{E}_{\gamma'}^\delta$ to be the span of all possible $v_{\delta'} \in p^{-1}(X_{\delta'})$ such that $v_{\delta'}$ is a weight vector of weight $\mu_{\delta'}$ that lies in some submodule $\tilde{X}_{\delta} \cong X_{\delta}$ of $p^{-1}(X_{\delta})$ such that $p^{-1}(X_{\delta}) = i(M^\vee) \oplus \tilde{X}_{\delta}$ and that $v_{\delta'}$ generates $\tilde{X}_{\delta} \cong \Delta(\mu_{\delta'})$. Note that $\mathcal{E}_{\gamma'}^\delta$ is a finite-dimensional vector space with positive dimension, and $\mathcal{E}_{\gamma'}^{\delta'} \supseteq \mathcal{E}_{\gamma'}^{\delta}$ if $\gamma' < \delta' < \delta < \gamma$. Therefore, $\mathcal{E}_{\gamma'} := \bigcap_{\delta \in [\gamma', \gamma]} \mathcal{E}_{\gamma'}^{\delta} \neq 0$. We can choose $v_{\gamma'} \in \mathcal{E}_{\gamma'} \setminus \{0\}$ arbitrarily.

Let now γ' be an ordinal such that $1 < \gamma' < \gamma$ and γ' has a predecessor γ''. Suppose v_{τ} are all known for each $\tau < \gamma'$ such that τ has a predecessor. Set $Z_{\gamma'}$ to be the \mathfrak{g}-module generated by all such v_{τ}. The choices of our vectors v_{τ} are to ensure that $Z_{\gamma'} \cong X_{\gamma'}$ is such that $p^{-1}(X_{\gamma'}) = i(M^\vee) \oplus Z_{\gamma'}$. Assume that $X_{\gamma'}/Z_{\gamma'} \cong \Delta(\mu_{\gamma'})$ for some $\mu_{\gamma'} \in \mathfrak{h}^*$. For each ordinal δ such that $\gamma' \leq \delta < \gamma$, define $\mathcal{E}_{\gamma'}^\delta$ to be the span of all possible $v_{\delta'} \in p^{-1}(X_{\delta'})$ such that $v_{\delta'}$ is a weight vector of weight $\mu_{\delta'}$ that lies in some submodule $\tilde{X}_{\delta} \cong X_{\delta}$ of $p^{-1}(X_{\delta})$ such that $\delta'(X_{\delta}) = i(M^\vee) \oplus \tilde{X}_{\delta}$ and that $v_{\delta'} + Z_{\gamma'}$ generates $\tilde{X}_{\delta}/Z_{\gamma'} \cong \Delta(\mu_{\delta'})$. We employ the same strategy as the previous paragraph by choosing $v_{\gamma'} \in \mathcal{E}_{\gamma'} \setminus Z_{\gamma'}$, where $\mathcal{E}_{\gamma'} := \bigcap_{\delta \in [\gamma', \gamma]} \mathcal{E}_{\gamma'}^\delta$.

Now, we let \bar{X}_{γ} be the submodule of E generated by $v_{\gamma'}$ for all ordinals $\gamma' < \gamma$ with predecessors. It follows immediately that $\bar{X}_{\gamma} \cong X_{\gamma}, i(M^\vee) \cap \bar{X}_{\gamma} = 0$, and $i(M^\vee) + \bar{X}_{\gamma} = E$. Thus, $\bar{E} = i(M^\vee) \oplus \bar{X}_{\gamma}$. Then, the projection $\varpi : E \to i(M^\vee)$ gives a retraction map $E \twoheadrightarrow M^\vee$. Therefore, the short exact sequence $0 \to M^\vee \to E \to \bar{X}_{\gamma} \to 0$ splits. That is, $\text{Ext}^1(X_{\gamma}, M^\vee) = 0$. Then, (3.3) implies that $\text{Ext}^1(M, N_\gamma) = 0$ as well. By transfinite induction, $\text{Ext}^1(M, N) = \text{Ext}^1(M, N_\kappa) = 0$.

Conjecture 3.2 Let $M \in \Delta(\mathcal{O})$ and $N \in \nabla(\mathcal{O})$. Then, $\text{Ext}^k(M, N) = 0$ for every integer $k > 1$.

Proposition 3.3 Let $M \in \mathcal{O}$ be a tilting module.

(a) The dual M^\vee is also a tilting module.

(b) If $N \in \mathcal{O}$ is a tilting module, then $M \oplus N$ is also a tilting module.
(c) Any direct summand of M is a tilting module.

Proof Parts (a) and (b) are trivial. Part (c) follows from Proposition 1.8(b) and Corollary 1.9. □

Proposition 3.4 Let M and N be tilting modules in \mathcal{O}. Then, $\text{Ext}_0^1(M,N) = 0$. If Conjecture 3.2 is true, then we also have that $\text{Ext}_k^1(M,N) = 0$ for all integers $k > 1$.

3.2 Construction of the Tilting Modules $D(\lambda)$

Proposition 3.5 Let $\lambda, \mu \in \mathfrak{h}^*$. Then, $\Delta(\lambda) \otimes \nabla(\mu)$ is a tilting module in \mathcal{O}.

Proof Let $M := \Delta(\lambda) \otimes \nabla(\mu)$. First, observe that, for all $\nu \leq \lambda + \mu$, we have

$$\dim(M^\nu) = \sum_{\xi \leq 0} \dim\left(\left(\Delta(\lambda)\right)^{\nu - \mu + \xi}\right) \cdot \dim\left(\left(\Delta(\mu)\right)^{\nu - \xi}\right)$$

(3.4)

Because there are only finitely many weights of $\Delta(\lambda)$ that is greater than or equal to $\nu - \mu$, we see that $\dim(M^\nu) < \infty$. Therefore, $M \in \mathcal{O}$.

Since $(\Delta(\lambda) \otimes \nabla(\mu))^\vee \cong (\Delta(\lambda))^\vee \otimes (\nabla(\mu))^\vee \cong \nabla(\lambda) \otimes \Delta(\mu) \cong \Delta(\mu) \otimes \nabla(\lambda)$, it suffices to show that $M := \Delta(\lambda) \otimes \nabla(\mu)$ has a generalized standard filtration.

Let u be a maximal vector of $\Delta(\lambda)$. Pick a basis v_1, v_2, v_3, \ldots of $\nabla(\mu)$ consisting of weight vectors. Then, define $w_i := u \otimes v_i$ for $i = 1, 2, 3, \ldots$. We first prove that w_1, w_2, w_3, \ldots generate M as a $\mathfrak{u}(\mathfrak{n}^-)$-module. Let M' be the $\mathfrak{u}(\mathfrak{n}^-)$-submodule of M generated by w_1, w_2, w_3, \ldots.

Fix a Chevalley basis of \mathfrak{g} consisting of $x_{\pm \alpha}$ for positive roots α, and h_α for simple positive roots α. We then fix a PBW basis B of $\mathfrak{u}(\mathfrak{n}^-)$. For each $t \in B$, the degree of t, denoted by $\deg(t)$, is defined to be k if there exists positive roots $\alpha_1, \alpha_2, \ldots, \alpha_k$ such that $t = x_{-\alpha_1} x_{-\alpha_2} \cdots x_{-\alpha_k}$.

We shall prove that $(t \cdot u) \otimes v_i \in M'$. If $\deg(t) = 0$, then there is nothing to prove. Suppose now that $\deg(t) > 0$. Then, we can write

$$t = x_{-\alpha_1} x_{-\alpha_2} \cdots x_{-\alpha_k}$$

(3.5)

for some integer $k > 0$. By induction hypothesis, we know that $m := (x_{-\alpha_2} \cdots x_{-\alpha_k} \cdot u) \otimes v_i$ lies in M'. Using

$$x_{-\alpha_1} \cdot m = (t \cdot u) \otimes v_i + (x_{-\alpha_2} \cdots x_{-\alpha_k} \cdot u) \otimes (x_{-\alpha_1} \cdot v_i),$$

(3.6)

we conclude that $(t \cdot u) \otimes v_i$ is in M', as both $x_{-\alpha_1} \cdot m$ and $(x_{-\alpha_2} \cdots x_{-\alpha_k} \cdot u) \otimes (x_{-\alpha_1} \cdot v_i)$ are in M'.

From the paragraph above, $M = M'$. We now need to show that M is a free module over $\mathfrak{u}(\mathfrak{n}^-)$ generated by w_1, w_2, w_3, \ldots. Let now M_k denote the $\mathfrak{u}(\mathfrak{n}^-)$-submodule of M generated by w_1, w_2, \ldots, w_k, and N_k the $\mathfrak{u}(\mathfrak{n}^-)$ submodule of N generated by w_k alone. Then, we can easily see that $M_k \cap N_{k+1} = 0$ for each $k = 1, 2, 3, \ldots$. Thus, $M_k = N_1 \oplus N_2 \oplus \ldots \oplus N_k$, making

$$M = N_1 \oplus N_2 \oplus N_3 \oplus \ldots$$

(3.7)

as a $\mathfrak{u}(\mathfrak{n}^-)$-module. Consequently, M has a generalized standard filtration. □

Theorem 3.6 Let $\lambda \in \mathfrak{h}^*$. There exists a unique, up to isomorphism, an indecomposable tilting module $D(\lambda) \in \mathcal{O}$, also denoted by $D(\lambda)$, such that $\dim\left(\left(D(\lambda)^\Lambda\right)^\lambda\right) = 1$ and all weights μ of $D(\lambda)$ satisfies $\mu \preceq \lambda$.

Proof Consider the \mathfrak{g}-module $M := \Delta(\lambda) \otimes \nabla(0)$. Define $D(\lambda)$ to be the indecomposable summand of M that contains M^λ. By Proposition 3.3(c), we know that $D(\lambda)$ is a tilting module.

Suppose T is another indecomposable tilting module such that $\dim(T^\lambda) = 1$ and every weight μ of T satisfies $\mu \preceq \lambda$. Since T has a generalized standard filtration and λ is a maximal weight of T, by
Proposition 1.8(a), we know that $\Delta(\lambda)$ is a submodule of T and $T/\Delta(\lambda)$ has a generalized standard filtration. From Proposition 3.4, we know that $\text{Ext}^1_\mathcal{O}(T/\Delta(\lambda), D(\lambda)) = 0$.

Now from the short exact sequence $0 \to \Delta(\lambda) \to T \to T/\Delta(\lambda) \to 0$ and from the long exact sequence of Ext-groups, we have the following exact sequence
\[
\text{Hom}_\mathcal{O}(T/\Delta(\lambda), D(\lambda)) \to \text{Hom}_\mathcal{O}(T, D(\lambda)) \to \text{Hom}_\mathcal{O}(\Delta(\lambda), D(\lambda)) \to \text{Ext}^1_\mathcal{O}(T/\Delta(\lambda), D(\lambda)) \cdot (3.8)
\]
Since $\text{Ext}^1_\mathcal{O}(T/\Delta(\lambda), D(\lambda)) = 0$, the map $\text{Hom}_\mathcal{O}(T, D(\lambda)) \to \text{Hom}_\mathcal{O}(\Delta(\lambda), D(\lambda))$ is surjective. Ergo, the embedding $\Delta(\lambda) \hookrightarrow D(\lambda)$ lifts to a homomorphism $\varphi : T \to D(\lambda)$.

Similarly, we also have a homomorphism $\psi : D(\lambda) \to T$ such that ψ is an isomorphism on the copies of $\Delta(\lambda)$ in $D(\lambda)$ and T. Thus, the endomorphism $\varphi \circ \psi : D(\lambda) \to D(\lambda)$ is an isomorphism on $\Delta(\lambda) \subseteq D(\lambda)$. As $D(\lambda)$ is indecomposable, we know from [9, Theorem 2.5] that every endomorphism of $D(\lambda)$ is either an isomorphism or a locally nilpotent map. Since $\varphi \circ \psi$ preserves the weight space $(D(\lambda))^\lambda$, the map $\varphi \circ \psi$ is not locally nilpotent. Hence, $\varphi \circ \psi$ is an isomorphism. Consequently, both φ and ψ must be isomorphism, whence $T \cong D(\lambda)$. ■

Corollary 3.7 If $T \in \mathcal{O}$ is an indecomposable tilting module, then $T \cong D(\lambda)$ for some $\lambda \in \mathfrak{h}^*$. In particular, all tilting modules are self-dual.

Proof Let λ be a maximal weight of T. Using the same argument as the theorem above, we can easily see that $T \cong D(\lambda)$.

For the second part of the corollary, we let T be an arbitrary tilting module. We can then see from the paragraph above and [9, Corollary 2.6] that $T = \bigoplus \nolimits_\alpha D(\lambda_\alpha)$, where $\lambda_\alpha \in \mathfrak{h}^*$ for all $\alpha \in A$.

Since duality commutes with direct sum, it suffices to show that $D(\lambda)$ is self-dull for a fixed $\lambda \in \mathfrak{h}^*$. As $D(\lambda)$ is an indecomposable tilting module, $(D(\lambda))^\vee$ is also an indecomposable tilting module. By the theorem above, we conclude that $(D(\lambda))^\vee \cong D(\lambda)$. ■

3.3 Multiplicities of Verma Factors in a Tilting Module

In this subsection, we shall again write Hom and Ext for $\text{Hom}_\mathcal{O}$ and $\text{Ext}_\mathcal{O}$. We first need the following theorem.

Theorem 3.8 Suppose that $M \in \Delta(\mathcal{O})$. For every $\lambda \in \mathfrak{h}^*$, we have
\[
\{M, \Delta(\lambda)\} = \dim \text{Hom}_\mathcal{O}(M, \nabla(\lambda)) . (3.9)
\]

Proof Without loss of generality, assume that M is indecomposable. We consider the set $\Pi_{\geq \lambda}(M)$ of weights of M that is greater than or equal to λ. If this set is infinite, we can easily see that M is not in the same block as $\Delta(\lambda)$. Therefore, $\{M, \Delta(\lambda)\} = 0$ and $\dim \text{Hom}_\mathcal{O}(M, \nabla(\lambda)) = 0$. Therefore, the assertion is true. From now on, we assume that $\Pi_{\geq \lambda}(M)$ is finite.

Define $m := \sum \nolimits_{\xi \geq \lambda} \dim M^\xi$. Then, m is a nonnegative integer. We can then perform induction on m, the base case $m = 0$ being obvious. Let now $m > 0$. Suppose that $\mu \succeq \lambda$ is a maximal weight of M. By Proposition 1.8(a), M has a submodule $\Delta(\mu)$ such that $M/\Delta(\mu)$ has a generalized standard filtration. From the short exact sequence $0 \to \Delta(\mu) \to M \to M/\Delta(\mu) \to 0$ and the long exact sequence of Ext-groups, we get the following exact sequence
\[
0 \to \text{Hom}(M/\Delta(\mu), \nabla(\lambda)) \to \text{Hom}(M, \nabla(\lambda)) \to \text{Hom}(\Delta(\mu), \nabla(\lambda)) \to \text{Ext}^1(M/\Delta(\mu), \nabla(\lambda)) \cdot (3.10)
\]
Because \(M/\Delta(\mu) \) has a generalized standard filtration and \(\nabla(\lambda) \) obviously has a generalized co-standard filtration, Thorem 3.1 ensures that \(\text{Ext}^1(M/\Delta(\mu), \nabla(\lambda)) = 0 \). Furthermore, because \(\dim \text{Hom}(\Delta(\mu), \nabla(\lambda)) = \delta_{\mu,\lambda} \), where \(\delta \) is the Kronecker delta, we conclude that

\[
\dim \text{Hom}(M, \nabla(\lambda)) = \dim \text{Hom}(M/\Delta(\mu), \nabla(\lambda)) + \delta_{\mu,\lambda}.
\]

(3.11)

On the other hand,

\[
\{M, \Delta(\lambda)\} = \{M/\Delta(\mu), \Delta(\lambda)\} + \{\Delta(\mu) : \Delta(\lambda)\} = \{M/\Delta(\mu), \Delta(\lambda)\} + \delta_{\mu,\lambda}.
\]

(3.12)

By induction hypothesis, \(\{M/\Delta(\mu), \Delta(\lambda)\} = \dim \text{Hom}(M/\Delta(\mu), \nabla(\lambda)) \), so \(\dim \text{Hom}(M, \nabla(\lambda)) \) and \(\{M, \Delta(\lambda)\} \) are equal.

Corollary 3.9 Suppose that \(M \in \nabla(\mathcal{O}) \). For every \(\lambda \in \mathfrak{h}^* \), we have

\[
\{M, \nabla(\lambda)\} = \dim \text{Hom}_{\mathcal{O}}(M^\prime, \nabla(\lambda)).
\]

(3.13)

Fix \(\lambda \in \mathfrak{h}^* \). For each positive integer \(n \), we consider the restriction \(\tilde{D}_n(\lambda) := \text{Res}_{g_n}^\theta D(\lambda) \). Because

\[
\text{Res}_{g_n}^\theta \Delta^\theta_n(\lambda) \cong \bigoplus_{\nu \leq \lambda} \Delta^\theta_n(\nu),
\]

we can easily see that \(\tilde{D}_n(\lambda) \) is a \(g_n \)-module with generalized standard filtration. As the duality functor commutes with the restriction functor, we conclude that \(\tilde{D}_n(\lambda) \) is a tilting \(g_n \)-module.

Suppose that \(\mu \in \mathfrak{h}^* \) satisfies \(\mu \preceq \lambda \) and \(\mu \in W_{\mathfrak{g}_b}[\lambda] \cdot \lambda \). Let \(n_0(\mu, \lambda) \) be the smallest positive integer \(n \) such that \(\lambda - \mu \in \Lambda_{g_{n_0}, b_n} \). Due to Theorem 1.5(a), Equation (3.14) implies that

\[
\{D^\theta_n(\lambda) : \Delta^\theta_n(\mu)\} = \{\tilde{D}_{n_0(\mu, \lambda)}(\lambda) : \Delta^\theta_{n_0(\mu, \lambda)}(\mu)\}.
\]

(3.15)

Since \(D^\theta_{n_0(\mu, \lambda)}(\lambda) \) is the only indecomposable direct summand of \(\tilde{D}_{n_0(\mu, \lambda)}(\lambda) \) that can contribute to the multiplicity of \(\Delta^\theta_{n_0(\mu, \lambda)}(\mu) \) in \(\tilde{D}_{n_0(\mu, \lambda)}(\lambda) \), we get

\[
\{D^\theta_n(\lambda) : \Delta^\theta_n(\mu)\} = \{D^\theta_{n_0(\mu, \lambda)}(\lambda) : \Delta^\theta_{n_0(\mu, \lambda)}(\mu)\}.
\]

(3.16)

Recall from [6, Theorem 3.8] that, for each \(\lambda \in \mathfrak{h}^* \) and for each positive integer \(n \), \(\mathcal{O}^\theta_{b_n} \) has enough projectives. We let \(\mathcal{P}^\theta_{b_n}(\lambda) \) denote the projective cover of the module \(\mathcal{U}^\theta_{b_n}(\lambda) \) in \(\mathcal{O}^\theta_{b_n} \).

Theorem 3.10 Let \(\lambda, \mu \in \mathfrak{h}^* \) with \(\mu \preceq \lambda \) and \(\mu \in W_{\mathfrak{g}_b}[\lambda] \cdot \lambda \). Write \(n := n_0(\mu, \lambda) \). Fix \(\xi \in \mathfrak{h}^* \) such that \(\xi \) is a \(\mathfrak{b}_n \)-antidominant weight in \(W_{\mathfrak{g}_{n}, b_n}[\lambda] \cdot \lambda \). If \(w^\theta_n \) is the longest element of \(W_{\mathfrak{g}_n, b_n} \), then

\[
\{D^\theta_n(\lambda) : \nabla^\theta_n(\mu)\} = \{D^\theta_n(\lambda) : \Delta^\theta_n(\mu)\} = \{\mathcal{P}^\theta_{b_n}(w^0_n \cdot \lambda), \Delta^\theta_{b_n}(w^0_n \cdot \mu)\}
\]

(3.17)

Proof Due to [1, Theorem 6.10], we have \(\{D^\theta_n(\lambda), \Delta^\theta_{b_n}(\mu)\} = \{\mathcal{P}^\theta_{b_n}(w^0_n \cdot \lambda), \Delta^\theta_{b_n}(w^0_n \cdot \mu)\} \). The theorem follows immediately from (3.16).

Write \(P^W_{x,y}(q) \in \mathbb{Z}[q] \) for the Kazhdan-Lusztig polynomial for elements \(x, y \) in a Coxeter group \(W \). Due to (3.16), we may assume without loss of generality that \(\lambda \) and \(\mu \) are integral weights of \(g_{n_0(\mu, \lambda)} \). We then have the following theorem.

Theorem 3.11 Let \(\lambda, \mu \in \mathfrak{h}^* \) with \(\mu \preceq \lambda \) and \(\mu \in W_{\mathfrak{g}_b}[\lambda] \cdot \lambda \). Suppose that \(\lambda \) is a regular integral weight with respect to \(g_{n_0(\mu, \lambda)} \). Fix \(\xi \in \mathfrak{h}^* \) such that \(\xi \) is a \(g_{n_0(\mu, \lambda)} \)-antidominant weight in \(W_{g_{n_0(\mu, \lambda)}, b_{n_0(\mu, \lambda)}}[\lambda] \cdot \lambda \). If \(\lambda = x \cdot \xi \) and \(\mu = y \cdot \xi \) for some \(x, y \in W_{g_{n_0(\mu, \lambda)}, b_{n_0(\mu, \lambda)}} \), then

\[
\{D^\theta_n(\lambda) : \nabla^\theta_n(\mu)\} = \{D^\theta_n(\lambda) : \Delta^\theta_n(\mu)\} = P^W_{x,y}(1).
\]

(3.18)

Proof For simplicity, write \(n := n_0(\mu, \lambda) \). From [11, Theorem 4.4], we have

\[
\dim \text{Hom}_{\mathcal{O}^\theta_{b_n}}(\Delta^\theta_{b_n}(\mu), D^\theta_n(\lambda)) = \dim \text{Hom}_{\mathcal{O}^\theta_{b_n}}(\Delta^\theta_{b_n}(y \cdot \xi), D^\theta_n(x \cdot \xi)) = P^W_{x,y}(1).
\]

(3.19)

From Theorem 3.8, we have \(\dim \text{Hom}_{\mathcal{O}^\theta_{b_n}}(\Delta^\theta_{b_n}(\mu), D^\theta_n(\lambda)) = \{D^\theta_n(\lambda), \Delta^\theta_{b_n}(\mu)\} \). By (3.16), the claim follows immediately.
References

[1] A. Beilinson and V. Ginzburg, *Wall-Crossing Functors and D-Modules*, Representation Theory, 3 (1999), 1–31.

[2] A. Chirvasitu and I. Penkov, *Representation Categories of Mackey Lie Algebras as Universal Monoidal Categories*, Pure and Applied Mathematics Quarterly, 13 (2017), No. 1, 77–121.

[3] P. Fiebig, *Centers and Translation Functors for the Category O over Kac-Moody Algebras*, Mathematische Zeitschrift, 243 (2003), 689-717.

[4] P. Fiebig, *The Combinatorics of Category O over Symmetrizable Kac-Moody Algebras*, Transformation Groups, 11 (2006), 29–49.

[5] J. E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge University Press, New York, (1992).

[6] J. E. Humphreys, *Representations of Semisimple Lie Algebras in the BGG Category O*, American Mathematical Society, Providence, (2000).

[7] D. Kazhdan and G. Lusztig, *Representations of Coxeter Groups and Hecke Algebras*, Inventiones Mathematicae, 53 (1979), 165–184.

[8] I. Penkov and V. Serganova, *Categories of Integrable sl(∞)-, o(∞)-, sp(∞)-modules*, Contemporary Mathematics, 557 (2011), 335–357.

[9] T. Nampaisarn, *Categories O for Root-Reductive Lie Algebras: I. Definition and Basic Properties*, preprint 2020.

[10] W. Soergel, *Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe*, Journal of the American Mathematical Society, 3 (1990), No. 2, 421–445.

[11] W. Soergel, *Andersen Filtration und Hard Lefschetz*, Geometric And Functional Analysis, 17 (2008) 2066–2089.

[12] C. A. Weibel, *An Introduction to Homological Algebra*, Cambridge Studies in Advanced Mathematics, 38 (1994).

Ben-Gurion University of the Negev, Department of Mathematics
E-mail address: namphais@post.bgu.ac.il