COVID-19 – the role of mass gatherings

Shahul H. Ebrahim, University of Sciences, Technique and Technology, Bamako, Mali
Ziad Memish, Emory University

Journal Title: Travel Medicine and Infectious Disease
Volume: Volume 34
Publisher: Elsevier ScienceDirect | 2020-03-01, Pages 101617-101617
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.tmaid.2020.101617
Permanent URL: https://pid.emory.edu/ark:/25593/vn060

Final published version: http://dx.doi.org/10.1016/j.tmaid.2020.101617

Copyright information:
© 2020 Elsevier Ltd. All rights reserved.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed October 14, 2023 8:48 PM EDT
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 – the role of mass gatherings

Shahul H. Ebrahim¹, Ziad A. Memish²,³

¹ University of Sciences, Technique and Technology, Bamako, Mali
² Research & Innovation Center, King Saud Medical City, Ministry of Health and; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA

A R T I C L E I N F O

Keywords:
COVID-19
Novel coronavirus 2019
Mass gatherings
Hajj
Umrah

A B S T R A C T

Mass gathering (MG) medicine emerged against the backdrop of the 2009 pandemic H1N1 Public Health Emergency of International Concern (PHEIC) when the Kingdom of Saudi Arabia (KSA) hosted the largest annual mass gathering of over 3 million pilgrims from 180 plus countries [1]. Recognizing the contribution of mass gatherings to the development of travel and International Health Regulations (IHR) guidelines on polio and meningitis and highlighting the potential bidirectional synergy between MG and emerging diseases (Box 1), a Lancet conference on the theme in 2010 formulated the scope of the newly named discipline [2]. The establishment of a WHO collaborating center on mass gatherings institutionalized the various ad-hoc research activities with expert recommendations on the utility and scope of MGs to inform emerging disease and transmission dynamics and response strategies. MGs may be planned such as the Hajj and Olympics or may occur spontaneously such as mass evacuation during a natural disaster (Table 1). The 2013 MERS outbreak originating in the middle east, notably KSA, that coincided with the 2012 Hajj, cemented the interest in mass gatherings [3]. However, MGs did not show a significant impact on the continued transmission of 2009 pdm H1N1 or MERS-CoV nor did they lead to outbreaks among Hajj pilgrims. Thus, while scientific output on MGs have grown significantly, their impact on emerging diseases has not been fully acknowledged.

However, the events in the context of the latest threat to global health, the PHEIC COVID-19, may be sufficient to highlight the role of mass gatherings, mass migration, and other forms of dense gatherings of people in congested spaces such as cruise ships on the emergence, sustainability and transmission of novel pathogens [4]. In early December 2019, the first pneumonia cases of unknown origin were identified in Wuhan, city with a population of 11 million. By the time the causative agent was recognized (now named SARS-CoV-2), and the epidemiology was being studied, the spring festival in China, the largest mass migration of people in the world had already began [5]. By February 2020, the now named SARS-COV-2 had reached all populated areas of China. Mathematical models had revealed that as early as January 23, 2020, most Chinese cities had already received considerable number of infected cases: before travel bans were enforced [6]. Our knowledge of recorded history of pandemics is limited. No epidemic or pandemics have a predictable course, and all possible routes of exponential spread should be anticipated.

Sporadic outbreaks of SARS-COV-2 occurred in multiple countries outside China since the beginning of the outbreak in Wuhan. But none reached the magnitude seen in Iran, now considered the second
Box 1
MG-Related Factors that Contribute to Pandemics

- Infectious diseases are the most common health problems encountered at MG
- Many MGs have disproportionately high percentage of developing country participants that are endemic to treatable infectious diseases, and emerging pathogens
- Resource poor countries with high MG participant volume may have high prevalence of self and prescription use of antibiotics
- Per-capita contact with farmed and wild animals is highest among developing countries that harbor resistant infectious agents
- Demographics of MG participants may precipitate disease transmission, as they may be elderly and with underlying chronic conditions, or younger populations emerging from countries without herd immunity from exposure to diseases.
- Suboptimal surveillance system in MG participating countries
- Suboptimal preparedness for pandemics

Table 1
Characteristics of select MG events of relevance to COVID-19.

MG Event	Number of persons (Millions)	Interval of occurrence	Geographic scope	Type of event
Arbaeen, Iraq	9-60	Annual	Regional	Religious
Carnival, Brazil	5	Annual	Regional	Cultural
Olympics	10	4 years	International	Sports
Haji, Saudi Arabia	3-5	Annual	International	Religious
Namugongo Martyrs’ Day, Uganda	5-7	Annual	Regional	Religious
Expo Dubai 2020	25	Adhoc	International	Economic
Qom Shia pilgrimage, Iran	20	continuous	Regional	Religious

The epicenter of COVID-19 [5]. The Iran outbreak was unanticipated and global efforts were focused on containing the spread along the most common transport routes from China. Iran reports of COVID-19 first emerged on February 19, 2020 sending fear of a pandemic across the globe. The epidemic in Iran began in Qom, a city of 1.2 million residents, but one that attracts 20 million annual pilgrims from neighboring countries with Shiite Muslim populations mostly from the middle eastern region including Afghanistan, Iraq, Lebanon, Syria, and Pakistan. The outbreak did not slow down as was seen in any of the countries earlier, and by the time national authorities were aware, the virus has taken foothold nationwide mostly spread via returning pilgrims and fellow travelers, and to neighboring countries. It was too late for containment efforts and mitigation would remain the only hope. As of March 1, case count in Iran was 593 cases and 43 deaths (https://experience.arcgis.com/experience/685d0ace52164818a5beee1e9b125cd).

Scenario in huge cruise ships also fit the description of mass gatherings as the density of people occupying the limited space exceeds what is normally observed in other living areas in the land. Large cruise ships, including the Diamond Princess, that was quarantined in Japan due to COVID-19 outbreak, carry 2000 to 4000 persons, circumstances where social distancing is almost unachievable. Confining passengers inside the ship, a misjudged containment strategy, lead to 17% of the 3700 passengers and crew being infected with SARS-CoV-2 virus. The cruise ship condition enabled a highly transmissible disease to sustain an outbreak through secondary attacks [3,7].

The significance of mass gatherings to disease transmission is directly linked to the efficiency of transmission expressed in epidemiologic terms as the basic reproduction number or R_0. The most recent analysis of 425 cases at the epicenter of COVID-19 crisis in Wuhan indicate an R_0 of 2.2. This indirectly means that the number affected will double within the incubation period. Subsumed in the calculation of R_0 are both the incubation period of the illness and the viral shedding that enables excretion of the virus from the infected to non-infected. Such high rates of transmission are made possible by high titers of virus in the oropharynx early in the course of the disease at a time of minimal symptoms [8]. As with other coronoviruses, asymptomatic infected persons may also transmit the infection [9,10].

The first report of COVID-19 from Latin America coincided with the Carnival, the annual mass gathering that attracts millions of Brazilians but international visitors as well. The Carnival was held during the last week of February 2020 and the first reported case had its origins in Italy. It is premature to speculate if the first case in Brazil had sufficient contact with persons who attended the carnival or other carriers of SARS-COV-2 were present in Brazil [11,12].

The COVID-19 spread illustrates the role of MGs in exacerbation of the scope of pandemics. Anecdotal reports from the 1957 influenza pandemic suggested that influenza first emerged in Indochina and Malaysian pilgrims travelled with it to Mecca and transmitted to fellow pilgrims from the rest of the world. Respiratory diseases are the most common infections transmitted during MGs. [13] During the early phase of MG medicine, the most extensively reported epidemiological data on infectious diseases at MG emerged from the Haji. The conges- tion of people during the Haji promotes increased carrier rates of N meningitidis and transmission of respiratory viruses. Over the past decade, a significant number of publications from different countries based on both syndromic surveillance and PCR-based investigation of respiratory pathogen carriage at the Haji and other MG were made available. Invasive meningococcal disease has been a Haji-related public health concern with its last outbreaks (serogroup W-135) in the 2000s. However, since the introduction of mandatory vaccination, no case of meningococcal disease has been reported in Mecca since 2006. In November 2004, a Sudanese child was diagnosed with polio one day after arrival in Saudi Arabia. This case coincided with the diagnosis of another 104 cases in Sudan. In response, the Saudi ministry of health now stipulates requires proof of vaccination to obtain visas for entry to Saudi Arabia and supplementary vaccination is offered to pilgrims originating from (WHO determined) polio risk and endemic countries (Fig. 1).

Cancellation or suspension of MGs would be critical to pandemic mitigation. It is unlikely that medical countermeasures are available during the early phase of pandemics. Therefore, mitigation of its im- pact, rather than containment and control becomes a priority during pandemics. For the first time, the U.S. Department of Homeland Security in 2007 prepared the first concept of carefully administered, layered, nonpharmaceutical interventions as a reasonable strategy for pandemic mitigation. However, as there were no pandemic related studies on interventions other than ecologic comparisons of events during the 1918 and 1957 influenza outbreaks, these recommenda- tions were mostly based on assumptions and projections. This concept was revised in 2017 to accommodate evidence from the 2009 pdm H1N1 response. The strategies include a combination of social
distancing, reversal of societal functions such as home-schooling, teleworking, and cancellation of public events including religious services. Pandemic mitigation is unachievable if MGs are permitted.

COVID-19 PHEIC provides an opportunity to further expand the knowledge base on implementation of nonpharmaceutical interventions and to quantify their utility in pandemic mitigation. As the most systematically studied MG-related respiratory disease data come from KSA, the cancellation of Umrah by the KSA authorities, prior to emergence of cases, provide the best opportunity to develop mathematical models to quantify event cancellations related to mitigation of COVID-19 transmission in KSA and to the home countries of pilgrims. Mathematical models in China showed that travel ban after the onset of outbreak only delayed dispersal of SARS-COV-2 from Wuhan to other cities by 2.91 days (Tian et al.). Comparative studies of outbreak in Qom, Iran (ongoing outbreak) with that of Mecca and Medina (no outbreaks at the time of writing) would also be informative. Some heterogeneous international MGs provide also opportunity to study demographically diverse populations with diverse underlying risk factors under the same ecological and weather conditions and in a shorter time frame than conducting studies in multiple countries. Viral multiplication and host adaptation occur at a faster rate during an MG. Outbreaks during MGs (as in Qom, Iran), provide a one-stop opportunity to rapidly assess the natural history of disease without mitigation efforts, phylogenetic studies including the timing and role of multiple reproductions on viral mutations.

In summary, MGs, both those are clearly defined and spontaneously occurring, are key determinants of epidemiologic expansion of disease outbreaks. Institutions with the mandates for outbreak monitoring and response should keep an of inventory of mass gatherings and provide advance warnings and recommendations about outbreaks to the organizers including information on event cancellation, crowd size limitations, or alternatives. Not all MG organizers may have such a knowledge base or capacity. Such recommendations would be more receptive if they are based on adequate scientific data. COVID-19 has already provided examples of both clearly planned event cancellations such as the Umrah suspension in KSA, and where outbreaks and events were continued. Proactive utilization of current computing, epidemiological, laboratory capacities to fully understand the role of MGs, and that of their mitigation potential can usefully inform the future course of COVID-19.

References

[1] Rashid H, Haworth E, Shafi S, Memish ZA, Booy R. Pandemic influenza: mass gatherings and mass infection. Lancet Infect Dis 2008 Sep;8(9):526–7.
[2] Memish ZA, Stephens GM, Steffen R, Ahmed QA. Emergence of medicine for mass gatherings: lessons from the Hajj. Lancet Infect Dis 2012 Jan;12(1):56–65.
[3] Rocklov J, Sjödin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. pii: taaa030 J Trav Med2020 Feb 29. https://doi.org/10.1091/jtm/taaa030. [Epub ahead of print] PMID: 32109273.
[4] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020 Feb 20;382(8):727–33.
[5] WHO. Novel coronavirus (2019-nCoV) situation report 40 March 1st 2020https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/; 2020 Accessed March1st 2020.
[6] Zhao Shi, Zhuang Zian, Ran Jinjun, Lin Jiaer, ... He Daibai. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: a data-driven correlational report. Trav Med Infect Dis 2020. https://doi.org/10.1016/j.tmaid.2020.101568. Jan-Feb;33:101568.
[7] Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of Novel Coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: a data-driven analysis. pii: S1201-9712 Int J Infect Dis2020 Feb 22(20):30091–6. https://doi.org/10.1016/j.ijid.2020.02.033. [Epub ahead of print] PMID: 32097725.
[8] Holhöhe ML, DeRotti C, Lindquist S, Lofy KH, Wiesman J, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020 Jan 31. https://doi.org/10.1056/NEJMoa2001191. [Epub ahead of print] PMID: 32004427.
[9] Al-Tawfiq JA, Gaueter P. Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: extent and implications for infection control: a systematic review. Trav Med Infect Dis 2019 Jan - Feb;27:27–32. https://doi.org/10.1016/j.tmaid.2018.12.003.
[10] Jaffar A, Al-Tawfiq Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Trav Med Infect Dis 2020 Feb 27:101608. https://doi.org/10.1016/j.tmaid.2020.101608.
[11] Rodriguez-Morales Alfonso J, ... Cimmerman Sergio. COVID-19 in Latin America: the implications of the first confirmed case in Brazil. Trav Med Infect Dis 2020 Feb 29:101613. https://doi.org/10.1016/j.tmaid.2020.101613.
[12] Franco-Paredes C, Villamil-Gómez WE, Schultz J, Henao-Martínez AF, Parra-Henao G, Rassi Jr. A. A deadly feast: elucidating the burden of orally acquired acute Chagas disease in Latin America - public health and travel medicine importance. Trav Med Infect Dis 2020 Jan 29:101565https://doi.org/10.1016/j.tmaid.2020.101565. [Epub ahead of print] Review PMID: 32004732.
[13] Benkouiten S, Al-Tawfiq JA, Memish ZA, Albarrak A, Gautret P. Clinical respiratory infections and pneumonias during the Hajj pilgrimage: a systematic review. Trav Med Infect Dis 2019 Mar - Apr;28:15–26. https://doi.org/10.1016/j.tmaid.2018.