Synthesis of triarylpyridines with sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation

Morteza Torabi1, Mohammad Ali Zolfigol1,2*, Meysam Yarie1, Behrouz Notash2, Saeid Azizian3 & Mina Mirzaei Azandaryani3

Herein, novel magnetic nanoparticles with pyridinium bridges namely Fe3O4@SiO2@PCLH-TFA through a multi-step pathway were designed and synthesized. The desired catalyst and its corresponding precursors were characterized with different techniques such as Fourier transform infrared (FT-IR) spectroscopy, 1H NMR, 13C NMR, Mass spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric/derivative thermogravimetry (TG/DTG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). In addition, the catalytic application of the prepared catalyst in the synthesis of new series of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation was highlighted. The current trend revealed that the mentioned catalyst shows high recoverability in the reported synthesis.

With one glimpse at the literature, it can be found that urea and its derivatives have an extended domain of applications in agriculture, pharmaceuticals, petrochemicals, resin precursors, dyes and drugs1–4. Protein tyrosine kinases (PTKs), vascular endothelial growth factor receptor (VEGF), platelet-derived growth factor receptor (PDGFRB) and NADH oxidase are just a few of the biological applications of urea derivatives5. Substituted urea also act as versatile organo-catalyst in organic synthesis as they applied as acidic and basic catalysts, coupled with metals, polymer-based catalysts and supported catalysts6. The prevalent methods reported for the synthesis of urea derivatives are originally based on phosgene and isocyanates3,7–20. Recently, we have comprehensively reviewed the applications of biological urea-based catalysis in chemical processes6.

Pyridine as the heart of heterocycle chemistry represents many pharmaceuticals and agrochemicals applications. Indeed, pyridine systems with their unique functionalities such as inhibiting HIV protease, anti-depressant, anti-inflammatory, anti-viral, anti-hypertensive, anti-oxidant, anti-fungal, anesthetics, cholagogue, pesticides, dyes-paints, treating hypotension or hypertension are an integral part of medicinal and biological chemistry14–25. In addition to the above, pyridine derivatives perform a key role in the area of catalysis. Pyridine-based catalysts have been explored as metal complex catalysis26, chiral ligands for asymmetric catalysis29, molecular machines such as rotaxanes and catenanes30–32, organo-catalysis33, polymer-based catalysts34 and ionic liquids35.

Particularly, triarylpyridine derivatives, a notable subset of pyridine family, are emerging as an important class of heterocyclic compounds that have many biological properties that contain anti-cancer36, anti-depressant37,38 and anti-bacterial39 activities. Moreover, triarylpyridines have been applied as chemosensors39, ligands40, and important intermediates for directional synthesis of insecticides, and surfactants41. Some of the synthetic routes of triarylpyridines include cyclodensation reaction of an aldehyde, ketone and an ammonium salt as the nitrogen source42, cyclodensation of ketone oxime/oxime acetates with aldehydes43 or ketone with benzyl...
Nevertheless, we are trying to synthesis a new library of triarylpyridines bearing sulfonate and sulfonamide moieties.

In spite of extensive research work on magnetic nanoparticles (MNPs), they are still of interest to many scientists in various fields. The innovative rational design of organic ligands supported on heterogeneous substrates is highly promising. Immobilization of the catalytically active homogeneous species on proper heterogeneous support materials leads to formation of new catalytic systems which have the characteristics of both categories. To a large extent, MNPs are reported as efficient supports for immobilizing homogeneous catalysts. From an economic perspective, "catalyst activity" and "catalyst separation" are vital items in modern industrial catalytic processes. MNPs, due to high surface area compare to bulk structures, low toxicity, the capability of surface modifications and easy dispersion are dramatically very suitable for catalytic processes. Furthermore, a suitable combination of the features of MNPs and unique properties of ionic moiety can bring more benefits. Ionically tagged magnetic nanoparticles have been applied in many organic reactions.

Sulfonates are widespread in nature, and make up most of the sulfur dimension of aerobic soils. Many microorganisms can use sulfonates as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. Sulfonates have important pharmacological applications such as antioxidant, anti-inflammation and anti-apoptosis. Sometimes, it is necessary to transform drugs into their salts in order to improve physical properties such as solubility and stability. Sulfonate salts are used for this purpose. These materials are also found in many azo dyes. These compounds with different applications are reported in the literature.

Sulfonamides as the largest family of pharmaceutical compounds are frequently seen in medicinal chemistry. Sulfonamides is the first antibiotics that be used systemically and is a nice source of revolution of antibiotics in biomedicine. Many derivatives of these compounds have also been applied in agriculture. Anti-bacterial, anti-inflammatory, anti-fungal, anti-protozoal, HIV protease inhibitory, anti-Alzheimer and anti-cancer are just a small part of the medicinal applications of molecules with sulfonamide moieties. There are many reports for synthesis of sulfonamides in the literature.

Scheme 1. Selected examples of biological applications of molecules with sulfonates and sulfonamides moieties in comparison of our investigation.
In addition to the critical role of anomeric effect for the explanation of unusual observations in structure and reactivity of oxygen-containing molecules, this important stereoelectronic effect demonstrates itself as a powerful phenomenon for justifying the weird results in various heteroatom-rich compounds such as hydrazine and tetrafluorohydrazine. In the case of hydrazine, the gauche-conformer is more stable than the anti-conformer. This observation originates from the stabilizing anomeric interactions of lone pair electrons of the nitrogen atom with a vacant antibonding orbital of adjacent N–H bond (\(n_N \rightarrow \sigma^*_{N-H}\)). These interactions are not possible in anti-conformer (Scheme 2). On the other hand, in the case of tetrafluorohydrazine the anti-conformer is more stable than the gauche conformation due to homoanomeric interactions. In the anti-conformer, instead of \(n_N \rightarrow \sigma^*_{N-H}\) interactions, four \(n_F \rightarrow \sigma^*_{N-F}\) homoanomeric interactions are operative and control the stability of conformers (Scheme 3).

In the vinylogous anomeric effect, as an important subclass of anomeric effect, electron transfer interactions occurred through C–C bonds. This phenomenon has attracted the attention of many researchers. Vinylogous anomeric effect can control the chemical reactivity. For example, Ferrier rearrangement facilitated when the leaving group exists at pseudo-axial position. In this position vinylogous anomeric effect is on and the reaction promoted by \(nO-\pi\rightarrow \sigma^*_{C-O}\) interaction (Scheme 4).

Herein, we pursue our previous works for the synthesis of pyridines and reported the synthesis and catalytic performance of a novel pyridinium tagged magnetic nanoparticles namely \(\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{PCLH-TFA}\), for the synthesis of the new library of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation mechanism (Schemes 5, 6). We believe that the co-existence of pyridine moiety and sulfonate or sulfonamide segment within the structure of a single molecule has a significant impact on the biological importance of these versatile structures.

Results and discussion
Since that the pyridines with sulfonate and sulfonamide moieties have been considered as drug candidates, the synthesis of a new library of symmetrical triarylpyridines bearing sulfonate and sulfonamide moieties are our main research interest. Therefore, herein we wish to present a new catalytic system with pyridinium linkers for the synthesis of the above-mentioned compounds. According to Alabugin's theory, which has introduced stereoelectronic effects as a bridge between structure and reactivity, we have also applied the above-mentioned theory in the course of the reaction mechanism.

Divers’ techniques including FT-IR, XRD, EDX, SEM, TEM, VSM and TG/DTG were employed to validate the formation of \(\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{PCLH-TFA}\).

FT-IR spectrum of \(\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{PCLH-TFA}\) and related intermediates including \(\text{Fe}_3\text{O}_4\), \(\text{Fe}_3\text{O}_4@\text{SiO}_2\), PCL and \(\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{PCL}\) were discussed in a comparative investigation. The changes made in each of the intermediates confirm their proper synthesis, which finally confirms the successful preparation of \(\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{PCL}\). The diagnostic peak of \(\text{Fe}_3\text{O}_4\) appeared at 633 cm\(^{-1}\) is related to the stretching vibration of Fe–O. In the FT-IR spectrum of \(\text{Fe}_3\text{O}_4@\text{SiO}_2\), the diagnostic peak at 1099 cm\(^{-1}\) is belonged to the Si–O–Si absorption band. The
Scheme 4. The role of vinylogous anomeric effect in promotion of iodonium-catalyzed Ferrier rearrangement.

Scheme 5. General experimental procedure for the targeted synthesis of Fe₃O₄@SiO₂@PCLH-TFA.

Scheme 6. Synthesis of a new library of triarylpypyridines bearing sulfonate and sulfonamide moieties in the presence of Fe₃O₄@SiO₂@PCLH-TFA.
carbonyl groups related to the structure of the prepared catalyst appeared at around 1687 cm\(^{-1}\) as a broad peak. In the structure of desired catalyst, the broad peak at about 2500–3500 cm\(^{-1}\) is related to pyridinium moiety, amidic NH groups of the PCL and free hydroxyl groups of the Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA (Fig. 1). The elemental composition of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA was characterized using energy-dispersive X-ray spectroscopy (EDX). According to the outcome data, all expected elements including iron, silicon, oxygen, carbon, nitrogen and fluorine were approved (Fig. 2). Furthermore, to confirm this observation, elemental mapping analysis was investigated (Fig. 3). The elemental mapping reveals uniform distribution of the mentioned elements.

For a better description of catalyst, the surface and morphology property analysis of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA was also studied by SEM images. According to the SEM images the morphology of the catalyst is spherical (Fig. 4). But by more focusing, it can be seen that each sphere is made from the aggregate of smaller size nanoparticles. For further clarification, the TEM images were recorded (Fig. 5) and it clearly shows that the bigger particles are made from nanoparticles (4–6 nm) and with core–shell structure. The TEM results confirmed the obtained data from SEM images (Fig. 5).

TG has been generally applied to evaluate thermal degradation behaviour of magnetic nanoparticles. To determine the thermal behaviour of the Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA, TG/DTG was carried out. The obtained results are illustrated in Fig. 6 and show good thermal stability for the prepared Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA.

The VSM analysis was employed to determine magnetic properties of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA in comparison with its related precursors such as Fe\(_3\)O\(_4\) and Fe\(_3\)O\(_4@\)SiO\(_2\). Decreasing the magnetic property of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA compared to its precursors, indicates the successful addition of organic moieties onto the surface.

Figure 1. Comparative investigation of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA and its corresponding intermediates.

Figure 2. EDX analysis of Fe\(_3\)O\(_4@\)SiO\(_2@\)PCLH-TFA.
of magnetic precursor (Fig. 7). The value of magnetic saturation of Fe₃O₄@SiO₂@PCLH-TFA is about 25 emu/g which is enough for its easy separation from the reaction mixture upon completion of the catalytic reaction.

After targeted and multi-step synthesis and characterization of Fe₃O₄@SiO₂@PCLH-TFA as a novel pyridinium tagged magnetic nanoparticles, we evaluated its catalytic performance for the synthesis of a new library of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation mechanism. For this purpose, we designed a model reaction for achieving the best operational reaction conditions. In this regard, the reaction of 4-chloro benzaldehyde, 4-acetylphenyl-4-methylbenzenesulfonate and ammonium acetate was selected and the role of solvents, temperature and amount of Fe₃O₄@SiO₂@PCLH-TFA as catalyst was investigated. Based on resulted experimental data, the utilization of 10 mg of Fe₃O₄@SiO₂@PCLH-TFA at 110 °C under solvent-free conditions is the best conditions for the synthesis of target molecules 1f. from time and yield perspective (Table 1).
Also, we tested the model reaction (synthesis of molecule 1f) in the presence of related intermediates of Fe3O4@SiO2@PCL and some known catalysts to validate the importance of the existence of ionic tag (pyridinium site) within the structure of Fe3O4@SiO2@PCLH-TFA as the catalyst. As inserted in Table 2, the novel synthesized catalyst shows the best results in comparison with some other catalysts and verified the crucial role of the acidic and hydrogen-bond sites within the structure of the catalyst.

In another study with considering the above-mentioned encouraging results under optimal reaction conditions, we generalized a catalytic procedure for the synthesis of a new library of triarylpyridines bearing sulfonate and sulfonamide moieties using Fe3O4@SiO2@PCLH-TFA as a novel recoverable catalyst. In this synthetic procedure, different ketones with sulfonate and sulfonamide moieties and various aromatic aldehydes bearing electron-withdrawing and electron-releasing substituents were utilized. Also, terephthaldehyde revealed promising results. The collected data are inserted in Table 3.

Also, a plausible mechanism for the synthesis of 2c (Scheme 7) is suggested. At the first, 4-acetylphenyl-4-methylbenzenesulfonate was activated by Fe3O4@SiO2@PCLH-TFA, and converted to its corresponding enolic form. Then the mentioned enolic form was reacted with activated benzaldehyde with catalyst. This reaction leads to the formation of chalcone intermediate A. Then, intermediate A undergoes a nucleophilic attack from the enolic form of 4-acetylphenyl-4-methylbenzenesulfonate which resulted in the formation of intermediate B. In the next step, ammonia derived from the dissociation of ammonium acetate attacked to intermediate B and enamine C is produced. After this, through a sequential reaction including, a tautomerization process, intramolecular nucleophilic attack and dehydration, intermediate C converted to intermediate E. Finally, releasing of molecular H2 is facilitated based on a cooperative vinylogous anomeric-based oxidation (CVABO) in intermediate E which leads to the formation of the desired molecule after deprotonation of intermediate F.

Considering the high potential of magnetic catalysts in recovering and reusing processes, we investigated the recovering and reusing of Fe3O4@SiO2@PCLH-TFA in a model reaction for the synthesis of target molecule 1f under optimal reaction conditions (Fig. 8). After completing each run of reaction, the catalyst was separated from the mixture of reaction using an external magnet. Then, the separated catalyst was washed several times.

Figure 4. SEM images of Fe3O4@SiO2@PCLH-TFA.

Figure 5. TEM images of Fe3O4@SiO2@PCLH-TFA.
with ethanol and dried. This process was performed seven times without significant reduction in the reaction efficiency. Finally, the stability of the catalyst was confirmed by comparison of FT-IR spectra of recovered and fresh catalyst (See ESI).

In a separate study, the reaction kinetics was investigated by UV–visible spectroscopy upon the model reaction for the synthesis of molecule 1f. For this purpose, the UV–visible spectrum of reaction components was recorded as a function of time. At different time intervals, a sample of the reaction mixture was dissolved in ethanol and its spectrum was recorded with a UV–visible spectrophotometer. The obtained spectrums at different time intervals were presented in Fig. 9a. The peak centered at 250 nm doesn't show any regular variation because of the overlapping of reactants, intermediates, and products peaks. But the peak centered at about 210 nm, decreases with time, as shown by an arrow. This peak belongs to reactants since decreases with reaction time. The plot of normalized absorbance \((A/A_0)\) at \(\lambda_{\text{max}} = 210\) nm versus time is shown in Fig. 9b. This plot clearly shows non-linear decrease of absorbance versus time. The slope of this plot (rate of reaction) at \(t < 20\) min is higher than its slope at \(t > 20\) min, indicating higher rate of reaction at the first 20 min of reaction. At a longer time, the rate of reaction decreases.

![Figure 6. TG/DTG curve of Fe₃O₄@SiO₂@PCLH-TFA.](image)

![Figure 7. VSM curves of Fe₃O₄@SiO₂@PCLH-TFA in comparison with its related magnetic precursors.](image)
Table 1. Optimizing of the reaction condition for the synthesis of 1f. Reaction conditions: 4-chlorobenzaldehyde (1 mmol, 0.140 g), 4-acetylphenyl-4-methylbenzene sulfonate (2 mmol, 0.580 g), and ammonium acetate (1.5 mmol, 0.115 g). a Related to isolated yields. b Data for the model reaction under air, and inert atmosphere (nitrogen and argon) are similar.

Entry	Solvent	Temperature (°C)	Catalyst loading (mg)	Time (min.)	Yield (%)a
1	-	120	10	45	80
2	-	110	20	45	84
3b	-	110	10	45	84
4	-	110	5	60	74
5	-	110	-	45	Trace
6	-	110	-	120	40
7	-	100	10	60	72
8	-	90	10	70	55
9	-	80	10	70	40
10	-	70	10	90	Trace
11	H2O	Reflux	10	180	–
12	EtOH	Reflux	10	180	Trace
13	n-Hexane	Reflux	10	180	–
14	EtOAc	Reflux	10	180	–
15	CH2Cl2	Reflux	10	180	–

Table 2. Investigation of catalytic behavior of Fe3O4@SiO2@PCL-H-TFA and its relative intermediates and some known catalysts upon the synthesis of 1f. Reaction conditions: 4-Chlorobenzaldehyde (1 mmol, 0.140 g), 4-acetylphenyl-4-methylbenzenesulfonate (2 mmol, 0.580 g), and ammonium acetate (1.5 mmol, 0.115 g). a Related to isolated yields. b Data for the model reaction under air, and inert atmosphere (nitrogen and argon) are similar.

Entry	Catalyst	Load of catalyst	Yield (%)
1	Fe3O4	10 mg	30
2	Fe3O4@SiO2	10 mg	25
3	PCL	10 mol%	45
4	Fe3O4@SiO2@PCL	10 mg	58
5	Fe3O4@SiO2@PCL-H-TFA	10 mg	84
6	Trifluoroacetic acid	10 mol%	55
7	p-Toluenesulfonic acid	10 mol%	80
8	FeCl3	10 mol%	33
9	Trityl chloride	10 mol%	Trace
10	H2SO4	10 mol%	Trace
11	NH4SO4H	10 mol%	65
12	Fe(HSO4)3	10 mol%	52
13	Al(HSO4)3	10 mol%	36
14	Ca(HSO4)2	10 mol%	44
15	Silica sulfuric acid	10 mg	71
Also, in another investigation and similar to the synthetic protocol of PCL, we tried to use (I) directly for the preparation of a new dihydropyridine containing ligand (DHPCL) as a reductant reagent such as biological NADH2/NAD+ systems which capable to be heterogeneous. For this goal, (I) and hydrazine hydrate subjected to the reaction under refluxing EtOH. Our prediction was the production of molecule (IV). The achieved NMR

Table 3. Synthesis a new library of triarylpypyridine derivatives bearing sulfonate and sulfonamide moieties in the presence of Fe3O4@SiO2@PCLH-TFA. Reaction conditions: aldehyde (1 mmol), methyl ketone (2 mmol) and ammonium acetate (1.5 mmol, 0.115 g), Solvent-free, 110 °C, catalyst = 10 mg, reported yields are referred to isolated yields.
data (see ESI) did not match the expected structure (IV). Initial interpretations of the obtained NMR data were apparently in accordance with a molecular cage (V). So, with this hypothesis, we applied X-ray crystallography to determine the exact structure. Surprisingly, based on the results of X-ray crystallography, it is revealed that 4,4′-methylenebis(5-methyl-1H-pyrazol-3-ol) (VI) has been formed (Scheme 8 and Fig. 10)114,115. Our literature surveys showed that the molecule (VI) had been previously reported116. A suggested plausible mechanism for the synthesis of the molecule (VI) is depicted in Scheme 9.

Scheme 7. A suggested plausible mechanism for the synthesis of 2c using Fe₃O₄@SiO₂@PCLH-TFA as catalyst.

Figure 8. Recovering and reusing test of Fe₃O₄@SiO₂@PCLH-TFA upon the synthesis of 1f.
Experimental section

General. All materials and reagents were purchased from Merck and Sigma-Aldrich companies and were used without further purification. Double distilled water was used in all reactions. 1H NMR spectra were recorded on a Bruker spectrometer operating at 300 MHz, and 13C NMR spectra were recorded on a Bruker spectrometer operating at 75 MHz. TEM analysis was performed with an instrument model EM10C-100 kV from ZEISS. SEM analysis was performed with SIGMA VP instrument from ZEISS. The instrument of EDX-Mapping analysis is related to Oxford Instruments company. TGA/DTG analysis was performed under nitrogen conditions applying STA-1500 instrument from Rheometric Scientific. The magnetic properties of the catalyst were investigated with VSM analysis that was performed using LBKFB instrument from Meghnatis Daghigh Kavir Company. XRD analysis was performed with X’ Pert Pro instrument from Panalytical. A UV–visible spectrophotometer (PG-Instrument- T80) was applied for the study of reaction kinetics.

General procedure for the preparation of 2,6-dimethylpyridine-3,5-dicarbohydrazide. Initially, diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (I) was prepared according to the previously reported procedure. Then, (I) (20 mmol, 5.06 g) and sodium nitrite (40 mmol, 2.76 g) were dissolved in 70 mL of ethanol/water (5/2, V/V) and heated at 50 °C for 5 min. Then, acetic acid (42 mmol, 2.4 mL) was added dropwise to the reaction mixture and was refluxed for 2 h. After completing the reaction and removal of solvent, the precipitate was washed with water to give diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (II) as a white solid in 90% yield. MP ($^\circ$C) = 72–74. In the next step, hydrazine hydrate (40 mmol, 4.88 g) was added to (II) (10 mmol, 2.51 g) and was heated for 6 h at 80 °C. After removal of water, the remained precipitate was washed with ethanol several times to give pure 2,6-dimethylpyridine-3,5-dicarbohydrazide (III) as a white solid.

General procedure for the synthesis of PCL. PCL was synthesized by the reaction of triethoxy(3-isocyanatopropyl) silane (5 mmol, 1.237 g) and III (12 mmol, 2.68 g) under neat conditions at room temperature for 24 h.
Afterward, the obtained white precipitate was washed with the mixture of ethyl acetate/chloroform (8 × 2 ml). The remained white precipitate was dried and characterized by FT-IR, 1H NMR and 13C NMR.

General procedure for the synthesis of Fe₃O₄@SiO₂@PCLH ‑ TFA. At first, Fe₃O₄ nanoparticles were prepared by the same method as reported in previously reported procedure¹¹⁹. Then, 2 g of Fe₃O₄ and 3 ml ammonia and 4 ml TEOS was added to 200 ml of EtOH/H₂O (4/1, V/V) and stirred at room temperature for 24 h. Then, nanoparticles of Fe₃O₄@SiO₂ were separated by an external magnet and were washed several times with water and ethanol and finally air dried. In the next step, the prepared Fe₃O₄@SiO₂ (1 g) was functionalized by the reaction with ligand PCL (2 mmol, 1.38 g) under refluxing toluene at 110 °C for 12 h to give Fe₃O₄@SiO₂@PCL. At the final step, Fe₃O₄@SiO₂@PCL was treated with trifluoroacetic acid (2 mmol, 0.228 g) in toluene at room temperature for 6 h and after that, the resulted Fe₃O₄@SiO₂@PCLH ‑ TFA was washed with n ‑ hexane (3 × 30 ml) and air dried.

General procedure for the synthesis of new library of triarylpyridines bearing sulfonate and sulfonamide moieties in the presence of Fe₃O₄@SiO₂@PCLH ‑ TFA. To a mixture of aldehyde derivatives (1 mmol), methyl ketones with sulfonate and sulfonamide moieties¹²⁰,¹²¹ (2 mmol) and ammonium acetate (1.5 mmol, 0.115 g), 10 mg...
of Fe₂O₃@SiO₂@PCL-H-TFA as catalyst were added. Then, the reaction mixture was stirred under solvent-free conditions at 110 °C for requisite times (Table 3). The progress of the reaction was inspected by TLC techniques (n-hexane/ethylacetate as eluent). After completion of each reaction, the reaction mixture was dissolved in hot ethanol and the insoluble nanomagnetic catalyst was isolated from the reaction mixture by using an external magnet. Then, target molecules were purified by TLC plate with n-hexane/ethyl acetate as eluent.

Spectral data.

2,2′-(4H)Perylene-3,5-dicarboxylbis(N-((3-(triethoxysilyl)propyl)hydrazine-1-carboxamide) (PCL).

M.p. = 170–171 °C, FT-IR (KBr, v, cm⁻¹): 3304, 2974, 1701, 1650, 1567, 1083. ¹H NMR (301 MHz, DMSO) δ ppm 9.89 (s, 2H, NH), 7.94–7.91 (m, 3H, Aromatic and NH), 6.49 (s, 2H, NH), 3.77 (q, 12H, J = 6 Hz, CH₂), 3.03 (q, 4H, J = 6 Hz, CH₂), 2.58 (s, 6H, CH₃). ¹³C NMR (76 MHz, DMSO) δ 167.7, 158.5, 157.2, 135.6, 127.1, 58.2, 42.5, 23.9, 23.1, 18.7, 7.7.

4-Acetylphenyl benzenesulfonate. M.p. = 60–62 °C, FT-IR (KBr, v, cm⁻¹): 3063, 1692, 1680, 1593, 1352, 1201. ¹H NMR (301 MHz, DMSO) δ 8.00–7.97 (m, 2H), 7.93–7.90 (m, 2H), 7.85–7.82 (m, 1H), 7.72–7.69 (m, 2H), 7.22–7.19 (m, 2H), 2.56 (s, 3H).

4-Acetylphenyl-4-methylbenzenesulfonate. M.p. = 70–72 °C, FT-IR (KBr, v, cm⁻¹): 3072, 2918, 1682, 1596, 1379, 1176. ¹H NMR (301 MHz, DMSO) δ 8.00–7.95 (m, 2H), 7.79 (d, J = 9 Hz, 2H), 7.47 (d, J = 9 Hz, 2H), 7.22–7.17 (m, 2H), 2.55 (s, 3H), 2.40 (s, 3H). ¹³C NMR (76 MHz, DMSO) δ 197.1, 152.7, 146.5, 136.0, 131.7, 130.8, 130.7, 128.9, 122.7, 27.1, 21.6.

4-(4-Hydroxyphenyl)pyridine-2,6-diyldi(4,1-phenylene)bis(4-methylbenzenesulfonate) (1b). M.p. = 178–179 °C, FT-IR (KBr, v, cm⁻¹): 3471, 3058, 1603, 1502, 1372, 1176. ¹H NMR (301 MHz, DMSO) δ ppm 8.34 (d, 4H, J = 9 Hz), 8.24 (s, 2H), 8.05 (q, J = 9 Hz, 2H), 7.83–7.76 (m, 6H), 7.5–7.50 (m, 6H), 7.20–7.17 (m, 4H), 2.45 (s, 6H, CH₃). ¹³C NMR (76 MHz, DMSO) δ 155.6, 150.3, 150.2, 146.4, 134.8, 131.8, 131.7, 130.8, 130.9, 129.9, 129.1, 128.9, 127.9, 122.8, 117.5, 21.7.

4-(4-Methoxyphenyl)pyridine-2,6-diyldi(4,1-phenylene)bis(4-methylbenzenesulfonate) (1a). M.p. = 148–150 °C, FT-IR (KBr, v, cm⁻¹): 3068, 1600, 1499, 1453, 1179. ¹H NMR (301 MHz, DMSO) δ ppm 8.32 (d, J = 9 Hz, 4H), 8.15 (s, 2H), 8.02 (q, J = 9 Hz, 2H), 7.82 (d, J = 9 Hz, 4H), 7.51 (d, J = 9 Hz, 4H), 7.11 (d, J = 9 Hz, 2H), 3.86 (s, 3H, OCH₃), 2.44 (s, 4H). ¹³C NMR (76 MHz, DMSO) δ 135.6, 150.3, 150.2, 146.4, 138.0, 137.0, 132.4, 131.9, 130.8, 130.7, 129.9, 129.1, 128.9, 127.9, 122.8, 117.5, 55.8, 21.7.

4-(4-Methoxyphenyl)pyridine-2,6-diyldi(4,1-phenylene)bis(4-methylbenzenesulfonate) (1c). M.p. = 178–179 °C, FT-IR (KBr, v, cm⁻¹): 2923, 1603, 1501, 1368, 1153. ¹H NMR (301 MHz, DMSO) δ 8.32 (d, J = 9 Hz, 4H), 7.99 (s, 2H), 7.81 (d, J = 9 Hz, 4H), 7.55 (dd, J = 7.5, 1.7 Hz, 1H), 7.49 (m, 3H), 7.21–7.14 (m, 6H), 3.82 (s, 3H, OCH₃), 2.42 (s, 4H). ¹³C NMR (76 MHz, DMSO) δ 155.7, 150.4, 148.4, 138.0, 137.0, 132.4, 131.9, 130.7, 130.1, 129.0, 129.2, 128.8, 122.7, 116.7, 114.9, 55.8, 21.7.

4-(4-Chlorophenyl)pyridine-2,6-diyldi(4,1-phenylene)bis(4-methylbenzenesulfonate) (1f). M.p. = 251–253 °C, FT-IR (KBr, v, cm⁻¹): 3233, 1637, 1615, 1372, 1152. ¹H NMR (301 MHz, DMSO) δ 8.35 (d, J = 9 Hz, 4H), 8.24 (s, 2H), 8.15–8.08 (m, 2H), 7.82 (d, J = 9 Hz, 4H), 7.64 (d, J = 9 Hz, 2H), 7.52 (d, J = 9 Hz, 4H), 7.20 (d, J = 9 Hz, 4H), 2.45 (s, 6H, CH₃). ¹³C NMR (76 MHz, DMSO) δ 162.8, 155.7, 150.3, 146.4, 138.0, 136.8, 136.6, 131.9, 130.8, 129.7, 129.5, 129.2, 128.8, 122.8, 117.4, 21.7.

4-(4-Bromophenyl)pyridine-2,6-diyldi(4,1-phenylene)bis(4-methylbenzenesulfonate) (1g). M.p. = 227–229 °C, FT-IR (KBr, v, cm⁻¹): 3114, 1602, 1497, 1368, 1152. ¹H NMR (301 MHz, DMSO) δ 8.32 (d, J = 9 Hz, 4H), 8.13 (s, 2H), 7.92 (d, J = 9 Hz, 2H), 7.82 (d, J = 9 Hz, 4H), 7.51 (d, J = 6 Hz, 4H), 7.18 (d, J = 9 Hz, 4H), 6.95 (d, J = 9 Hz, 2H),
In this work, Fe3O4@SiO2@PCLH-TFA as a novel magnetic nanoparticle with pyridinium bridges was designed, synthesized and characterized with FT-IR, EDX, XRD, SEM, TEM, TG/DTG and VSM. Then, Fe3O4@SiO2@PCLH-TFA was applied in the multicomponent synthesis of a new library of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinyllogous anomerization-based oxidation. According to the obtained results, the reactions were performed under mild conditions and short reaction time, and the synthesis of...
molecules show good yields. Furthermore, Fe₂O₃@SiO₂@PCLH-TFA show elegant performance in recovering and reusing test.

Received: 27 March 2021; Accepted: 21 July 2021
Published online: 19 August 2021

References
1. Guan, A., Liu, C., Yang, X. & Dekeyser, M. Application of the intermediate derivatization approach in agrochemical discovery. Chem. Rev. 114, 7079–7107 (2014).
2. Gallou, I. Unsymmetrical ureas. Synthetic methodologies and application in drug design. Org. Prep. Proced. Int. 39, 355–383 (2007).
3. Bitt, F., Maggi, R. & Sartori, G. Selected syntheses of ureas through phosgene substitutes. Green Chem. 2, 140–148 (2000).
4. Vishnyakov, T. P., Golubeva, I. A. & Gileva, E. V. Substituted ureas. Methods of synthesis and applications. Russ. Chem. Rev. 54, 249–261 (1985).
5. Kurt, B. Z., Kandas, N. O., Dag, A., Sonmez, F. & Kucukiskiamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem. 13, 1120–1129 (2020).
6. Atashkar, B., Zolfigol, M. A. & Mallakpour, S. Applications of biological urea-based catalysts in chemical processes. Mol. Catal. 452, 192–246 (2018).
7. Babad, H. & Zeiler, A. G. Chemistry of phosgene. J. Org. Chem. 63, 4802–4807 (1998).
8. Eckert, H. & Forster, B. Triphosgene, a crystalline phosgene substitute. Angew. Chem. Int. Ed. Engl. 26, 894–895 (1987).
9. Braunstein, P. & Noble, D. Transition-metal-mediated reactions of organic isocyanates. Chem. Rev. 89, 1927–1945 (1989).
10. Majer, P. & Randal, R. S. A safe and efficient method for preparation of N₂⁻unsymmetrically disubstituted ureas utilizing triphosgene. J. Org. Chem. 59, 1937–1938 (1994).
11. Scialdone, M. A., Shuey, S. W., Soper, P., Hamuro, Y. & Burns, D. M. Phosgenated p-nitrophenyl (polystyrene) ketoxime or phoxime resin. A new resin for the solid-phase synthesis of ureas via thermolytic cleavage of oxime-carbamates. J. Org. Chem. 45, 255, 10829–10868 (2014).
12. De Henry, G. D. novo synthesis of substituted pyridines. Tetrahedron 29, 6043–6061 (2004).
13. Allass, C., Grassot, J. M., Rodriguez, J. & Constantieux, T. Metal-free multicomponent syntheses of pyridines. Chem. Rev. 114, 10829–10868 (2014).
14. Spivey, A. C. & Arseniyadis, S. Nucleophilic catalysis by 4-(dialkylamino) pyridines revisited—the search for optimal reactivity and selectivity. Angew. Chem. Int. Ed. 43, 5436–5441 (2004).
15. Afradi, M., Abbasi Pour, S., Dolat, M. & Yazdani-Elah-Abadi, A. Nanomagnetically modified vitamin B3 (Fe₃O₄@Niacin): An efficient and reusable green biocatalyst for microwave-assisted rapid synthesis of 2-amino-3-cyanopyridines in aqueous medium. Appl. Organomet. Chem. 32, e103 (2017).
16. Khalifeh, R. & Ghamari, M. A multicomponent synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by heterogeneous and recyclable copper nanoparticles on charcoal. J. Braz. Chem. Soc. 27, 759–768 (2016).
17. Khalidi, D. A reusable and metal-free carbocatalyst for the one-pot synthesis of 2-amino-3-cyanopyridine derivatives. Tetrahedron Lett. 57, 1721–1723 (2016).
18. Tamaddon, F., Ghazi, S. & Noorbala, M. R. Urease-catalyzed synthesis of aminocyanopyridines from urea under fully green conditions. J. Mol. Catal. B: Enzym. 127, 89–92 (2016).
19. Yarzadeh, A., Abbaspour-Gilandeh, E. & Aghaei-Hashjin, M. Four-component synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by Cu@iminizCZNPs as a novel, efficient and simple nanocatalyst under solvent-free conditions. Catal. Lett. 148, 1254–1262 (2018).
20. Bull, J. A., Mousseau, J. J., Pelletier, G. & Charette, A. B. Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem. Rev. 112, 2642–2713 (2012).
21. Reiers̈øn, A. C. et al. Catalytic activity of trans-bis(pyridine) gold complexes. J. Am. Chem. Soc. 142, 6439–6446 (2020).
22. Hsieh, S. Y., Yang, Y., Crotti, S., Stone, E. A. & Miller, S. J. Catalytic enantioselective pyridine N-oxidation. J. Am. Chem. Soc. 141, 18624–18629 (2019).
23. Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).
24. Erbas-Cakmak, S., Leigh, D. A., McCernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
25. Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).
26. Willard-Charnley, R., Fisher, T. J., Johnson, B. M. & Dussault, P. H. Pyridine is an organocatalyst for the reductive ozonolysis of alkenes. Org. Lett. 14, 2242–2245 (2012).
27. Moonavar-Zare, A. R. et al. Synthesis and characterization of acetic acid functionalized poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. A: Chem. 425, 217–228 (2016).
28. Tamaddon, F. & Azadi, D. Synthesis and identification of nicotinium sulfate (3-(1-methylpyrrolidin-2-yl) pyridine: H₂SO₄) from tobacco-extracted nicotine: a protic ionic liquid and biocompatible catalyst for selective acetylation of amines. J. Mol. Liq. 255, 406–412 (2018).
29. Gomha, S. M. & Dawood, K. M. Synthesis and antimicrobial activity of novel 2, 4, 6-trisubstituted pyridines having pyrazole moiety. J. Heterocycl. Chem. 54, 1943–1948 (2017).
30. Trejo-Soto, P. J., Hernández-Campos, A., Romo-Mancillas, A., Medina-Franco, J. L. & Castillo, R. In search of AKT kinase inhibitors as anticancer agents: Structure-based design, docking, and molecular dynamics studies of 2, 4, 6-trisubstituted pyridines. J. Biomol. Struct. Dyn. 36, 423–442 (2018).
38. Kulangapayar, K., Ambukulandinanath, M. & Raju, T. Nuclear versus side-chain bromination of 4-methoxy tolune by an electrochemical method. Synth. Commun. 1, 2494–2502 (2004).

39. Fang, A. G., Mello, J. V. & Finney, N. S. Structural studies of biarylpyridines fluorophores lead to the identification of promising long wavelength emitters for use in fluorescent chemosensors. Tetrahedron 60, 11075–11087 (2004).

40. Durola, F., Sauvage, J. P. & Wenger, O. S. Sterically non-hindering endocyclic ligands of the bi-isouquinoline family. Chem. Commun. 2, 171–173 (2006).

41. Gopalaiah, K., Rao, D. C., Mahiya, K. & Tiwari, A. Iron-catalyzed aerobic oxidative cleavage and construction of C-N bonds: a facile method for synthesis of 2, 4, 6-trisubstituted pyridines. Asian J. Org. Chem. 7, 1872–1881 (2018).

42. Moosavi-Zare, A. R., Zolfigol, M. A., Farahmand, S., Zare, A. & Pourali, A. R. Synthesis of 2, 4, 6-triarylpyridines using ZrOCl₂ under solvent-free conditions. Synlett 25, 193–196 (2014).

43. Ren, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. Copper-catalyzed coupling of oxime acetates with aldehydes: a new strategy for synthesis of pyridines. Org. Lett. 13, 5394–5397 (2011).

44. Adib, M., Ayashi, N. & Mirzaei, P. An efficient synthesis of 2, 4, 6-triarylpyridines by use of benzyl halides under neat conditions. Synlett 25, 417–421 (2016).

45. Ashraf, M. A., Liu, Z., Li, C. & Zhang, D. Magnetic nanocatalysts in synthesis of xanthenes. Synth. Commun. 50, 3777–3795 (2020).

46. Kazemi, M. Reusable nanomagnetic catalysts in synthesis of imidazole scaffolds. Synth. Commun. 50, 2095–2113 (2020).

47. Lin, Y. et al. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J. Mater. Chem. B 8, 5973–5991 (2020).

48. Dalpozzo, R. Magnetic nanoparticle supports for asymmetric catalysts. Green Chem. 17, 3671–3686 (2015).

49. Hudson, R., Feng, Y., Varma, R. S. & Moores, A. Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem. 16, 4493–4505 (2014).

50. Wu, L., Mendoza-Garcia, A., Li, Q. & Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016).

51. Shylesh, S., Schennemann, V. & Thiel, W. R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49, 3428–3459 (2010).

52. Maleki, A., Kari, T. & Aghaei, M. Fe₃O₄@SiO₂–OSO₃H: an efficient hierarchical nanocatalyst for the organic quinazolines synthesis. J. Porous Mater. 24, 1481–1496 (2017).

53. Maleki, A. One-pot three-component synthesis of pyridine [2′, 1′: 2, 3] imidazo [4, 5-c] isoquinolines using Fe₂O₃@SO₃⁻–OSO₃⁻H as an efficient homogeneous nanocatalyst. RSC Adv. 4, 64169–64173 (2014).

54. Ulbrich, K. et al. Targeted drug delivery with polymers and magnetic nanocatalysts: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016).

55. Maleki, A., Mansouri, F. & Mirzaei, H. M. Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem 7, 1736–1789 (2015).

56. Reddy, L. H., Arias, J. L., Nicolaus, J. & Couvreur, P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5872 (2012).

57. Gatteschi, D., Fittipaldi, M., Sangregorio, C. & Sorace, L. Exploring the no-man's land between molecular nanomagnets and magnetic nanocatalysts. Angew. Chem. Int. Ed. 51, 4792–4800 (2012).

58. Jun, Y. W., Lee, J. H. & Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122–5135 (2008).

59. Lu, A. H., Salabas, E. E. & Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007).

60. Ying, A. et al. Ionic tagged DABCO grafter on magnetic nanoparticles: a water-compatible catalyst for the aqueous aza-Michael addition of amines to α, β-unsaturated amides. Catal. Sci. Technol. 4, 2115–2125 (2014).

61. Ying, A., Qiu, F., Wu, C., Hu, H. & Yang, L. Ionic amine supported on magnetic nanoparticles: synthesis and application for versatile catalytic Knoevenagel condensation in water. RSC Adv. 4, 33175–33183 (2014).

62. Yarie, M. et al. Novel magnetic nanoparticles with ionic liquid tags as a reusable catalyst in the synthesis of polyhydroquinolines. RSC Adv. 6, 82842–82853 (2016).

63. Zolfigol, M. A. & Yarie, M. Synthesis and characterization of novel silica-coated magnetic nanoparticles with tags of ionic liquid. Application in the synthesis of polyhydroquinolines. RSC Adv. 5, 103617–103624 (2015).

64. Zhou, Z. Y., Zhao, W. R., Zhang, J., Chen, X. L. & Tang, J. Y. Sodium tanshinone IIa sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed. Pharmacother. 118, 109362–109373 (2019).

65. Haynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. S. Supramolecular synthon competition in organic sulfonates: A study of sulfinate and sulfonate azo dye, sulfamate and caffeine ligands. Inorg. Chem. Commun. 27, 2042–2050 (2019).

66. Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. Sulfa drug analogs: new classes of N-sulfonyl aminated azines and their biological activity and pharmacokinetics. Bioorg. Chem. 89, 64–71 (2020).

67. Schwarz, S., Onken, D. & Schubert, A. The steroid story of Jenapharm: From the late 1940s to the early 1970s. J. Mater. Chem. B 3, 1099–1131 (2019).

68. Li, M., Takada, K., Goldsmith, J. I. & Bernhard, S. Iridium (III) bis-pyridine-2-sulfonamide complexes as efficient and durable catalysts for homogeneous water oxidation. Inorg. Chem. 55, 518–526 (2016).
79. Pour, Z. R., Nazifi, S. M. R., Safavi, A. A., Nazifi, Z. S. & Massah, A. R. Solvent-FREE SYNTHESIS: ADME prediction, and evaluation of antibacterial activity of novel sulfonamide derivatives. Russ. J. Org. Chem. 55, 852–859 (2019).
80. Pinheiro, L. C., Maria de Lourdres, G. F., Silveira, F. F., Feitosa, L. M. & Bocchat, N. Antimalarial and anti-inflammatory activities of new chloroquine and primaquine hybrids: Targeting the blockade of malaria parasite transmission. Med. Res. Dev. 28, 115832 (2019).
81. Erhardt, J. M. & Waut, J. D. Transfer of hydrogen from orthoamides. Reduction of protons to molecular hydrogen. J. Am. Chem. Soc. 102, 6363–6364 (1980).
82. Vatsadze, S. Z., Logino, V. D., dos Passos Gomes, G. & Alabugin, I. V. Stereoelectronic conjugation effects of 3-silyl-2,4-dichlorocyclohexane and related tetrabutylammonium ion. J. Phys. Org. Chem. 23, 3225–3245 (2012).
83. Nowacki, A. & Liberek, B. Acetylated methyl 1, 2-dideoxyhex-1-enopyranuronates in density functional theory conformational studies of the hydrogen molecule elimination reactions of cis-3, 6-dihalocyclohexa-1, 4-dienes. Struct. Chem. 20, 1803–1814 (2017).
84. Alabugin, I. V. Stereoelectronic Effects: A Bridge Between Structure and Reactivity (Wiley, Hoboken, 2016).
85. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
86. Jäkel, C. & Dötz, K. H. Organotransition metal modified sugars: Part 22. Direct metalation of glycals: short and efficient routes to diversely protected stannylated glycals. J. Organomet. Chem. 624, 172–185 (2001).
87. Drew, M. D., Wall, M. C. & Kim, J. T. Stereoselective propargylation of glycals with allenyltributyltin (IV) via a Ferrier type reaction. Tetrahedron Lett. 53, 2833–2836 (2012).
88. Gomez, A. M., Lobo, F. & Lopes, J. C. Synthesis and application of melamine-based nano catalyst with phosphonic acid tags in the synthesis of new pyrimido-[4, 5-b] oximes and oxime ethers. J. Phys. Org. Chem. 23, 1–7 (2010).
89. Varshney, R., Rastogi, A., Jindal, P., Varikuti, A., Saha, S., Singh, R., et al. Synthesis of new chloroquine and primaquine hybrids: Targeting the blockade of malaria parasite transmission. Chem. Heterocycl. Compd. 5, 109865 (2020).
90. Wilcox, C. F. & Bauer, S. H. DFT calculations of thermochemical and structural parameters of tetracyanohydrazine and related FC₃ compounds. J. Phys. Org. Chem. 28, 225–228 (2015).
91. Jalili, F., Aryan, M., Zolfigol, M. A., Rostamnia, S. & Moosavi-Zare, A. R. SBA-15/PrN(CH₂PO₃H₂)₂ as a novel and efficient Lewis acidic SBA-15 catalyst in esterification reactions. Tetrahedron 65, 110666 (2020).
92. Denmark, S. E., Dappen, M. S., Sear, N. L. & Jacobs, R. T. The vinylogous anomeric effect in 3-alkyl-2-chlorocyclohexanone acetates. Carbohydr. Res. 353, 110–141 (2011).
93. Asgari, M. & Nori-Shargh, D. Exploring the impacts of the vinylogous anomeric effect on the synchronous early and late transition states of the hydrogen molecule elimination reactions of cis-3, 6-dihalocyclohexa-1, 4-dienes. Struct. Chem. 20, 1803–1814 (2017).
94. Drew, M. D., Wall, M. C. & Kim, J. T. Stereoselective propargylation of glycals with allenyltributyltin (IV) via a Ferrier type reaction. Tetrahedron Lett. 53, 2833–2836 (2012).
95. Nowacki, A. & Liberek, B. Acetylated methyl 1, 2-dideoxyhex-1-enopyranuronates in density functional theory conformational studies of the hydrogen molecule elimination reactions of cis-3, 6-dihalocyclohexa-1, 4-dienes. Struct. Chem. 20, 1803–1814 (2017).
96. Nowacki, A. & Liberek, B. Acetylated methyl 1, 2-dideoxyhex-1-enopyranuronates in density functional theory conformational studies. Carbohydr. Res. 371, 1–7 (2013).
97. Nowacki, A. & Liberek, B. Carbohydr. Res. 462, 13–27 (2018).
98. Wuest, J. D. Transfer of hydrogen from orthoamides. Reduction of protons to molecular hydrogen. J. Am. Chem. Soc. 112, 3466–3474 (1990).
99. Nowacki, A. & Liberek, B. Carbohydr. Res. 462, 13–27 (2018).
100. Gomez, A. M., Lobo, F., Uriel, C. & Lopez, J. C. Eur. J. Org. Chem. 32, 7221–7262 (2013).
101. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
102. Alabugin, I. V. Stereoelectronic Effects: A Bridge Between Structure and Reactivity (Wiley, Hoboken, 2016).
103. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
104. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
105. Karimi, F., Aryan, M. & Zolfigol, M. A. SBA-15/PrN(CH₂PO₃H₂)₂ as a novel and efficient Lewis acidic SBA-15 catalyst in esterification reactions. Tetrahedron 65, 110666 (2020).
106. Karimi, F., Aryan, M. & Zolfigol, M. A. SBA-15/PrN(CH₂PO₃H₂)₂ as a novel and efficient Lewis acidic SBA-15 catalyst in esterification reactions. Tetrahedron 65, 110666 (2020).
107. Karimi, F., Aryan, M. & Zolfigol, M. A. A convenient method for synthesis of Fe₃O₄@SiO₂@(CH₂)₃NH(CH₂)₂O₂P(OH)₂ and its catalytic mechanism in the presence of a novel quinoline-based dendrimer-like ionic liquid. Synthesis of new pyrimido-[4, 5-b] oximes and oxime ethers. J. Phys. Org. Chem. 23, 1–7 (2010).
108. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
109. Karimi, F., Aryan, M. & Zolfigol, M. A. Silica sulfuric acid/NaNO₂ as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron 57, 3309–3314 (2001).
110. Afsar, J.
111. Babaee, S., Zarei, M., Sepehrmansourie, H., Zolfigol, M. A. & Rostamnia, S. Synthesis of metal–organic frameworks MIL-101...
117. Schneider, L. M. et al. Asymmetric synthesis of carbocyclic propellanes. *Org. Lett.* **19**, 2310–2313 (2017).
118. Wang, X. et al. Convenient synthesis of 3, 5-biscarbamoyl-pyridine derivatives. *Chin. J. Chem.* **29**, 2119–2123 (2011).
119. Qu, S. et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. *J. Colloid Interf. Sci.* **215**, 190–192 (1999).
120. Lei, X., Jalla, A., Abou Shama, M. A., Stafford, J. M. & Cao, B. Chromatography-free and eco-friendly synthesis of aryl tosylates and mesylates. *Synthesis* **47**, 2578–2585 (2015).
121. Kim, E. J. et al. Chemoselective regulation of TREK2 channel: Activation by sulfonate chalcones and inhibition by sulfonamide chalcones. *Bioorg. Med. Chem. Lett.* **20**, 4237–4239 (2010).

Acknowledgements
We thank the Bu-Ali Sina University and Iran National Science Foundation [(INSF), Grant Number: 98001912) for financial support to our research group.

Author contributions
M.T.: Methodology, investigation, writing—original draft. M.A.Z.: Supervision, resources, project administration, funding acquisition, conceptualization, writing—review and editing. M.Y.: Methodology, investigation, writing—original draft. B.N: Writing—X-ray data. S.A., Kinetic design and study, Project administration, Writing—review and editing. M.M.A., Kinetic Investigation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-95830-w.

Correspondence and requests for materials should be addressed to M.A.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021