Genome-wide identification and expression profile analysis of the Hsp20 gene family in Barley (Hordeum vulgare L.)

Jie Li 1, Xinhao Liu Corresp. 2

1 College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
2 Kaifeng Agriculture and Forestry Science Institute, Kaifeng, Henan Province, China

Corresponding Author: Xinhao Liu
Email address: lxhxhlj12@126.com

In plants, heat shock proteins (Hsps) play important roles in response to diverse stresses. Hsp20 is the major family of heat shock proteins, but their role remains poorly understood in barley (Hordeum vulgare L.). To reveal the mechanisms of barley Hsp20s response to stress conditions, we performed a comprehensive genome-wide analysis of the barley Hsp20 gene family using bioinformatics-based methods. In total, 38 putative barley Hsp20 genes (HvHsp20s) were identified in barley and grouped into four subfamilies (C, CP, PX, and MT) based on predicted subcellular localization and their phylogenetic relationships. A sequence analysis indicated that most Hv Hsp20 genes have no intron or one with a relatively short length. In addition, the same group of HvHsp20 proteins in the phylogenetic tree shared similar gene structure and motifs, indicating that they were highly conserved and might have similar function. Based on RNA-seq data analysis, we showed that the transcript levels of HvHsp20 genes could be induced largely by abiotic and biotic stresses such as heat, salt, and powdery mildew. Three HvHsp20 genes, HORVU7Hr1G036540, HORVU7Hr1G036470, and HORVU3Hr1G007500, were up-regulated under biotic and abiotic stresses, suggesting their potential roles in mediating the response of barley plants to environment stresses. These results provide valuable information for further understanding the complex mechanisms of HvHsp20 gene family in barley.
Genome-wide identification and expression profile analysis of the Hsp20 gene family in Barley (Hordeum vulgare L.)

Jie Li¹, Xinhao Liu²*

Author affiliation:

¹ College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan 464001, China

² Kaifeng Agriculture and Forestry Science Institute, Kaifeng, Henan 475004, China

*Correspondence: lxhlxhlj12@126.com.
ABSTRACT

In plants, heat shock proteins (Hsps) play important roles in response to diverse stresses. Hsp20 is the major family of heat shock proteins, but their role remains poorly understood in barley (Hordeum vulgare L.). To reveal the mechanisms of barley Hsp20s response to stress conditions, we performed a comprehensive genome-wide analysis of the barley Hsp20 gene family using bioinformatics-based methods. In total, 38 putative barley Hsp20 genes (HvHsp20s) were identified in barley and grouped into four subfamilies (C, CP, PX, and MT) based on predicted subcellular localization and their phylogenetic relationships. A sequence analysis indicated that most HvHsp20 genes have no intron or one with a relatively short length. In addition, the same group of HvHsp20 proteins in the phylogenetic tree shared similar gene structure and motifs, indicating that they were highly conserved and might have similar function. Based on RNA-seq data analysis, we showed that the transcript levels of HvHsp20 genes could be induced largely by abiotic and biotic stresses such as heat, salt, and powdery mildew. Three HvHsp20 genes, HORVU7Hr1G036540, HORVU7Hr1G036470, and HORVU3Hr1G007500, were up-regulated under biotic and abiotic stresses, suggesting their potential roles in mediating the response of barley plants to environment stresses. These results provide valuable information for further understanding the complex mechanisms of HvHsp20 gene family in barley.
INTRODUCTION

Plants are exposed to a variety of biotic and abiotic stresses which cause disruption of protein homeostasis (Yuko and Shunji 2013). Maintenance in functional native conformations of proteins is important for cell survival under stress. Heat shock proteins (Hsps) exist widely in prokaryotic and eukaryotic cells, are induced by many stresses (such as hot temperatures, drought, cold and various pathogen attacks, etc.), are essential components contributing to cellular homeostasis under stress conditions (Shoseyov 2004; Park and Seo 2015).

Many Hsps are located in the cytoplasm and nucleus, and others are located in plastids, mitochondria, chloroplasts, endoplasmic reticulum or peroxisomes, suggesting they play different roles in protein homeostasis (Scharf et al. 2001). Based on protein molecular weight and sequence homology, the plant Hsps are classified into five major families: Hsp100, Hsp90, Hsp70, Hsp60 and small Hsps (sHsps) with molecular sizes ranging from 15 to 42 kDa (Shoseyov 2004). Because most of sHsps molecular weights range from 15-22 kDa, which are also called Hsp20 family.

Hsp20s function as molecular chaperones by binding to partially folded or denatured proteins to prevent proteins from irreversible aggregation and keep them stable (Eyles and Gierasch 2010, Sun et al. 2002). Hsp20s possess a conserved sequence of 80-100 amino acid residues called α-crystallin domain (ACD) in the C-terminal region (Scharf et al. 2001). The highly conserved ACD is flanked by a variable N-terminal domain and a short C-terminal extension. The three different regions have different functions. The N-terminal region
participates in substrate binding, the ACD is involved in substrate interactions, while the C-terminus extension is responsible for homo-oligomerization (Giese and Vierling 2004; Jaya et al. 2009). This ACD domain is comprised by two compact hydrophobic β-strand structures that are separated by α-helical region of variable length (Bondino et al. 2012). However, not all Hsp20s that contain an ACD domain, and so named ACD proteins, belonged to Hsp20s because certain ACD proteins are known to have different functions (Bondino et al. 2012). In plants, Hsp20s are encoded by nuclear genes. Based on the subcellular localization, sequence homology and function, Hsp20s are divided into various subfamilies (CI-CVI, MTI, MTII, ER, CP and PX). CI-CVI subfamilies localize to the cytoplasm/nucleus, MTI and MTII subfamilies localize to mitochondria, ER, CP, and PX localize to the endoplasmic reticulum, chloroplast, and peroxisome, respectively (Waters 2013). To date, the Hsp20 gene families have been reported in many plants, such as 13 Hsp20 genes were identified in Arabidopsis (Scharf et al. 2001a), 23 Hsp20 genes in rice (Sarkar et al. 2009), and 163 Hsp20 candidates in wheat (Muthusamy et al. 2017). Furthermore, the biologic function of Hsp20s in protecting plants under various stress conditions is well documented in several plants including soybean (Lopescaitar et al. 2013), tomato (Yu et al. 2016a), and pepper (Guo et al. 2015).

The genomic analysis of barley Hsp20 family has been conducted by Reddy et al. (2014) and identified 20 sHsp genes (Reddy et al. 2014). Last year, a high-quality reference genome assembly for barley was presented, which provides a convenience for further understanding the barley Hsp20 gene family (Mascher et al. 2017). In the present study, 38 HvHsp20 genes were identified using the new barley genome by bioinformatics methods. Then the analysis of identified HvHsp20 genes in the sequence features, chromosomal locations, phylogenetic relationships, and dynamic expression patterns in response to biotic and abiotic stress conditions
were conducted, which provided valuable information for further investigations of the barley
Hsp20 gene family.

MATERIALS AND METHODS

Genome-wide identification of Hsp20 proteins and chromosomal location

The barley genome sequences were downloaded from Ensembl database (http://plants.ensembl.org). The Hsp20 candidates were identified as the methods of Lozano et al. (2015). The HMMER software (http://hmmer.janelia.org) was used to build the predicted barley protein data. The Hidden Markov Model (HMM) profile of Hsp20 (PF00011) was downloaded from the Pfam protein family database (http://pfam.xfam.org/) (Finn et al. 2011) for the identification of Hsp20 proteins. The obtained high-quality protein set (E-value < 1 × 10^{-10}) was aligned and used to construct a barley specific Hsp20 HMM using hmmbuild from the HMMER v3 suite. The new barley-specific HMM was used to select all proteins that were downloaded from the barley genome (Hordeum_vulgare.IBSC_v2) with an E-value < 0.01. The selected barley Hsp20 sequences were matched to Hsp20 conserved domains (PF00011) using ClustalW (Larkin et al. 2007), then removed the incomplete sequences. The remaining Hsp20 protein sequences were submitted to Pfam (http://pfam.xfam.org/) and the Simple Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de/) to confirm the conserved Hsp20 domain.

The chromosomal positions of the HvHsp20 genes were acquired from Ensembl database (Hordeum_vulgare.Hv_IBSC_PGSB_v2.39). Each of these genes was mapped on chromosomes using the Map Gene2chromosome (MG2C, version 2.0) tool (http://mg2c.iask.in/).

Conserved motifs and transcript structures analysis
The conserved motifs among subgroups of Hsp20 proteins were analyzed by the program of Multiple Expectation for Motif Elicitation (MEME; version 4.10.0) with the following parameters: maximum of 10 motifs, any number of repetitions, and an optimum motif width of 6-50 amino acid residues. Exon–intron structures of barley Hsp20 genes were identified on the Gene Structure Display Server (GSDS, http://gsds.cbi-pku.edu.cn/) (Hu et al. 2014).

Phylogenetic analysis

To illuminate evolutionary relationship of Hsp20s, the genomic sequence information of Arabidopsis, rice, and sorghum was downloaded from the Ensembl Plants database (http://plants.ensembl.org/index.html). All of the acquired sequences were aligned using ClustalW (version 2.1) program with the default parameters (Larkin et al. 2007). The phylogenetic tree was constructed by MEGA X with bootstrap test of 1000 times, which was visualized in Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

Cis-acting regulatory element prediction in promoter regions

The upstream sequences (1.5 kb) of HvHsp20 sequences were submitted to PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to computationally predict various regulatory elements based on positional matrices, consensus sequences, and individual sites on particular promoter sequences (Magali et al. 2002), such as abscisic acid (ABA)-responsive elements, heat stress elements (HSEs), low-temp and salt stresses, TC-rich repeats, and W boxes, etc.

Expression analysis of HSP20 genes under biotic and abiotic stresses

The Illumina RNA-seq data (GSE117068, GSE101304, and GSE82134) were downloaded from NCBI Sequence Read Archive (SRA) database to study the expression patterns of HvHsp20 genes under biotic and abiotic stress conditions. Digital gene expression analysis of the identified
HvHsp20 genes was investigated using Hisat2, Htseq, and DESeq2 (Wen 2017). Expression ratios of treated samples relative to control met the threshold criteria of $|\log FC| > 2.0$ with a $P < 0.05$ was considered as differently expressed.

RESULTS

Identification of Hsp20 family members in barley

To identify all the Hsp20 candidate members in the barley, we searched for sequences that contained the ACD domain using the HMMER with barley-specific HMM model of PF00011, and a total of 143 Hsp20s were identified. After removing the repetitive and/or incomplete sequences, the rest of Hsp20s were submitted to Pfam (http://pfam.xfam.org/) and the Simple Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de/) to confirm the ACD domain. Finally, 96 candidate Hsp20 protein sequences were confirmed in barley, were coded by 38 Hsp20 gene sequences. The protein and gene sequences of barley Hsp20s were shown in Table S1.

Phylogenetic analysis of HvHsp20 gene family

To analyze the phylogenetic relationships of Hsp20 genes in barley, rice, sorghum, and Arabidopsis, a phylogenetic tree was constructed using full-length Hsp20 proteins (Fig. 1). All these Hsp20s were grouped into 7 distinct subfamilies based on their predicted subcellular localizations and the number of ACD domain, including C (cytosol), MT (mitochondria), CP (chloroplast), ER (endoplasmic reticulum), PX (peroxisome), and ACD subfamilies followed with 13 Hsp20s could not be classified into any subfamilies. In addition, the C subfamily was subdivided into 4 subgroups (CI-CIV) and MT subfamily was subdivided into 2 subgroups (MTI and MTII). In barley, C subfamily has a maximum of 32 HvHsp20s followed by CP subfamily...
consisting of 25 HvHsp20s. Most of Hsp20s were classified into C subfamily, suggesting that cytosol might be a main functional area for plant Hsp20s. We found an interesting result that CP and MT subfamily members had a close relationship (Fig. 1), which is consistent with the opinion that MT subfamily evolved later from the CP subfamily (Waters 2013).

Gene structures and motifs of HvHsp20s

The Gene Structure Display Server (GSDS) website was used to analyze the structural characteristics of the Hsp20 genes in barley. The structural characteristic of 86 HvHsp20 genes that have normal intron length was showed in Fig. 2A. For another 10 HvHsp20 genes, the length of intron is much longer than that of exon, was shown in Fig. 2B. The number of introns in the HvHsp20 genes varies from 0 to 10, with 35 HvHsp20 genes (36%) were intronless. About 45% (43) of HvHsp20 genes contain one intron, and 18 (19%) had two or more introns. One HvHsp20 gene contains 10 introns and 2 contain 6 introns (Fig. 2A and B). According to the number of introns, these HvHsp20 genes were divided into three patterns: the first pattern has no intron, the second pattern has one intron, and the third pattern has more than one intron (Ouyang et al. 2009). Most of HvHsp20 genes (81%, 78) belonged to the first and the second pattern, which was similar to the results reported on Hsp20 proteins in tomato (Yu et al. 2016).

Using the MEME tool, 10 types of consensus motifs in HvHsp20 proteins were identified (Fig. 3). The lengths of these conserved motifs varied from 15 to 50 amino acids (Motif logos shown in Fig. S1). The majority of the HvHsp20 proteins (50) contained Motif 1 while Motif 9 was found in only 5 HvHsp20 proteins. The multiple sequence alignment analysis and sequence logo revealed that the ACD domain was formed by two conserved regions, conserved region I and conserved region II (Fig. 4), moreover, most of motif 1 and 6 located in consensus region I, and consensus region II contained motif 5, 7 and 8. Motif 3 and 9 located in the N-terminal of
Hsp20, motif 10 located in C-terminal, while motif 4 and 2 located between consensus region I and consensus region II of ACD domain (Table S2). Furthermore, HvHsp20 proteins in the same subgroup present similar patterns of motif distribution, suggesting that these genes might have relatively high conservation.

Chromosomal location of HvHsp20 genes

Among 38 predicted HvHsp20 genes, 37 are randomly distributed across the 7 barley chromosomes, except for the HORVU0Hr1G020420 which could not be located at anyone chromosome (Fig. 5). The distribution of the HvHsp20 genes on each chromosome is uneven. Some HvHsp20 genes are clustered on chromosomes 3 and 7, some are scattered on chromosomes 2 and 6, and most of these HvHsp20 genes were located at the distal ends of the chromosomes. The number of HvHsp20 genes on each chromosome is different. Chromosome 3 has the most number of HvHsp20 genes (10 genes), followed by chromosomes 4 (9 genes). Chromosomes 6 and 7 have the same number of HvHsp20 genes (4 genes). Chromosome 1 has 5 HvHsp20 genes, chromosome 5 has 3 genes, while only 2 genes on chromosome 2.

Stress-related cis-elements in the HvHsp20 promoters

To further explore the regulatory mechanisms of HvHsp20 genes in response to stress conditions, the cis-elements in the promoter region (the 1.5 kb upstream sequences from the translation start sites) of the HvHsp20 genes were further analyzed. Nine stress response elements were analyzed and displayed in Fig. 6, including ABRE, DRE_core, G-Box, LTR, TC-rich repeats, W-box, MBS, CCAAT-box, and MYB. Among these 38 genes, except for 2 HvHsp20 genes (HORVU6Hr1G015130 and HORVU7Hr1G036470), the other possessed at least 1 type of stress-response-related cis-element; and HORVU1Hr1G035950, had 8 categories cis-elements, indicating that the expressions of HvHsp20 genes were related to various stress
responses. In total, one or more G-Box existed in 29 \(HvHsp20s \) (76%), followed by ABRE which was found in 28 \(HvHsp20s \) (74%). In addition, one or two TC-rich repeats existed in 12 \(HvHsp20s \), while DRE_core, W-box, LTR, MBS, CCAAT-box, and MYB were presented in 20, 16, 14, 18, 11, and 5 \(HvHsp20s \), respectively (Table S3). The analysis of these cis-elements suggested that \(HvHsp20 \) genes could response to different stress conditions.

Expression profiles of \(HvHsp20 \) genes under biotic and abiotic stresses

To explore the responses of \(HvHsp20 \) genes to various stresses, expression patterns of \(HvHsp20 \) genes in response to abiotic stresses (arsenate treatment and heat) and biotic stress (powdery mildew infection) were investigated using RNA-seq data. Overall, the 37 out of the identified 38 \(HvHsp20 \) genes showed differential expression patterns under these conditions (Fig. 7). Arsenate stress induced relatively more fluctuations in the transcript abundance of \(HvHsp20 \) than that of the heat stress and powdery mildew infection. A total of 7 \(HvHsp20 \) genes were induced in response to arsenate stress in arsenate sensitive barley genotype (ZDB475), and 19 genes increased in arsenate and phosphate stress (Fig. 7B). In arsenate tolerant barley genotype (ZDB160), 19 \(HvHsp20 \) genes showed up-regulated expression under both arsenate stress and arsenate and phosphate stress (Fig. 7A). Some of increased expression in \(HvHsp20 \) genes induced by arsenate stress displayed a slight declined expression trends in arsenate and phosphate stress. In addition, more up-regulated \(HvHsp20 \) genes in ZDB160 than in ZDB475 implied \(Hsp20s \) played critical roles in response to arsenate stress. Over 60% of \(HvHsp20 \) genes were up-regulated under abiotic stresses, which up to 90% in heat stress (Fig. 7C and D), while for powdery mildew stress, more than 80% of \(HvHsp20 \) genes were down-regulated (Fig. 7E). In addition, three \(HvHsp20 \) genes, HORVU7Hr1G036540, HORVU7Hr1G036470, and HORVU3Hr1G007500, were up-regulated under biotic and abiotic stresses (Fig. 7), suggesting
they have major functions in response to various stress conditions. In total 10 HvHsp20 genes showed differential expression trends in all of the stress conditions, three HvHsp20 genes (HORVU3Hr1G006930, HORVU4Hr1G072700, and HORVU6Hr1G070230) showed specific-expression under biotic stress (Fig. S2).

DISCUSSION

Hsp20 proteins play vital roles in plant growth and development processes as well as biotic and abiotic stress responses. With the availability of the whole genome sequence, the Hsp20 family genes have been identified in many plants, such as Arabidopsis and rice (Scharf et al. 2001; Sarka et al. 2009). Preliminary analysis of the barley Hsp20 gene family has been performed by Reddy et al. (2014). Benefiting from the high-quality reference genome information of barley (Mascher et al. 2017), by constructing barley-specific HMM, we identified 38 HvHsp20 genes coding 96 HvHsp20 proteins. The number of identified HvHsp20 genes was more than Reddy et al. (2014) reported, which might be because we took different identification methods and (or) more Hsp20 genes were annotated recently. Then we analyzed their structure, chromosomal location, phylogeny, and expression pattern diversity with respect to biotic and abiotic stresses, which provides useful information for understanding the HvHsp20 gene family and will establish a basis for future analyzing functional divergence of the Hsp20 genes in barley.

The number of identified Hsp20 genes in graminaceous plants, such as rice and wheat, was 39 and 163, respectively (Ouyang et al., 2009, Muthusamy et al., 2017). The number of members in barley was 38, which close to in rice, but was fewer than in wheat, suggesting the possibility of a gene gain event from diploid to hexaploid during the evolutionary process. Previously, plants Hsp20 family members were classified into 5 subfamilies according to their subcellular
localization including C, CP, MT, ER, and PX subfamilies, and ACD subfamily (Scharf et al., 2001; Siddique et al., 2008). In our study, to reveal phylogenetic relationship of Hsp20 family members, Hsp20s from Arabidopsis, rice, sorghum, and barley, were used to construct a phylogenetic tree (Fig. 1). The results showed that these Hsp20s existed in 7 subfamilies including some Hsp20s could not be grouped. Interestingly, we found that 25 barley Hsp20s belonged to CP subfamily, which was much more than the number of Hsp20s in rice and wheat (Ouyang et al., 2009; Muthusamy et al., 2017), suggesting barley Hsp20s might had undergone duplication and/or recombination events during evolution.

The exon/intron structure plays a vital role in organismal evolution (Guixia et al. 2012). Here we found the positions, sizes, and sequences of the introns were quite different between the identified $HvHsp20$ genes (Fig. 2). About 36% $HvHsp20$ genes do not have introns, which is slightly lower than in rice genes predicted to be intronless (48.72%) (Ouyang et al. 2009), most of these $HvHsp20$ genes belonged to CI and CII subfamilies. Many members of the CP and MTI subfamilies had only one intron, and the length of introns is relatively short. This is consistent with the report that plants tend to retain the genes with no intron or a short intron (Mattick and Gagen 2001). To response to environmental challenges, fewer introns in genes are benefit to be rapidly activated (Jeffares et al. 2008). $Hsp20$ genes are one of the rapidly expressed genes under a variety of stresses (Sarkar et al. 2009; Yu et al. 2016). The absence of introns or their presence with smaller size may in accordance with the needs of the rapid induction of $Hsp20$ genes. In this study, we found that most of the $HvHsp20$ genes with one or no intron were induced under several stresses, but genes with many introns, such as HORVU6Hr1G070230, were induced during only powdery mildew infection. Furthermore, the majority members in the same phylogenetic subfamily had similar motif compositions (Fig. 3). This correlation between intron
numbers and motif arrangement supported the previous classification of the \textit{HvHsp20} genes. These results may provide facilitation to identify the functions of \textit{HvHsp20} genes and further to discover their function in responses to environmental stresses.

From the expression analysis, it has been demonstrated that \textit{Hsp20} genes play important roles in the control of plants in response to diverse environmental challenges (Waters 2013). In this study, we investigated the expression profiles of the \textit{HvHsp20} genes in barley after biotic and abiotic stress treatments (Fig. 7). The data demonstrated that numerous \textit{HvHsp20} genes were significantly induced to a larger extent under abiotic stresses including arsenic and heat stress, and 21 \textit{Hsp20} genes showed differential expression patterns under two stress treatments, which belonged to CI and CII subfamilies, confirming the protective role of \textit{HvHsp20} family members in barley. For heat stress, among differential expressed \textit{HvHsp20} genes, the vast majority of them grouped in CI, CII, and CP subfamilies were up-regulated both in barley shoots and roots. Previous research showed that the CI and CII subfamilies both have chaperone activity, and the CI proteins are lower efficiency than CII members in preventing irreversible aggregation (Eman et al. 2010). However, by knockdown the CI and CII genes, other studies suggested that the CI sHSPs have thermoprotective roles but the CII sHSPs do not (Markus et al. 2004; Tripp 2010). The biochemical and biological differences between the subfamilies may be consistent with the patterns of N-terminal sequence conservation within subfamilies (Waters 2013). Continued studies of the relationship between sequence differences and functional changes of \textit{Hsp20} genes will be crucial to further understanding the function of sHSPs. Furthermore, we found that the arsenic stress inducibility of \textit{HvHsp20} genes in tolerant plants was stronger than that in susceptible plants, suggesting that \textit{HvHsp20} genes play vital roles in response to heavy metal stress.
Several Hsp20 proteins also participate in the interaction of plants and pathogens, such as virus, bacteria and fungus (Park and Seo 2015). In the present study, five *HvHsp20* genes showed an increased expression during the first few hours of powdery mildew infection, then the expression dropped rapidly following the infection. The results are consistent with the report that biotic stress can induce the gene expression of some but not all sHSPs (Siddique et al. 2008), suggesting that *HvHsp20* genes may confer biotic stress tolerance in barley. Among these 5 *HvHsp20* genes, three genes (HORVU7Hr1G036540, HORVU7Hr1G036470, and HORVU3Hr1G007500) were also significantly induced under abiotic stresses including arsenic and heat stress, suggesting these 3 *HvHsp20* genes might play important roles in mediating the response of barley plants to various stresses. However, further analysis is needed to investigate how the 3 *HvHsp20* genes influence plant defense response.

CONCLUSIONS

In the current study, a genome-wide analysis of barley *HvHsp20* genes family was performed, and 38 putative *HvHsp20* genes were identified. A comprehensive analyse of *HvHsp20* genes on gene structures, chromosomal location, phylogenetic relationship stress-related cis-elements, and expression patterns under biotic and abiotic stresses, were conducted by using bioinformatics and RNA-seq data. Most of *HvHsp20* genes belonged to CI, CII, and CP subfamilies showed differential expression under stress conditions, indicating that *HvHsp20* genes play important roles in response to stress. This study provided comprehensive information on the *HvHsp20* gene family in barley and will aid in investigating the function of *HvHsp20* genes.
REFERENCES

Bondino HG, Valle EM, Have AT. 2012. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. *Planta* **235**(6):1299-1313 DOI 10.1007/s00425-011-1575-9.

Eman B, Christopher J, Vicki W, Elizabeth V. 2010. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. *Journal of Biological Chemistry* **285**(15):11489-11497 DOI 10.1074/jbc.M109.074088.

Eyles SJ, Gierasch LM. 2010. Nature's molecular sponges: small heat shock proteins grow into their chaperone roles. *Proceedings of the National Academy of Sciences of the United States of America* **107**(7):2727-2728 DOI 10.1073/pnas.0915160107.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. *Nucleic Acids Research* (Web Server issue) **39**:29-37 DOI 10.1093/nar/gkr367.

Giese KC, Vierling E. 2004. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. *Journal of Biological Chemistry* **279**(31):32674-32683 DOI 10.1074/jbc.M404455200.

Guixia X, Chunce G, Hongyan S, Hongzhi K. 2012. Divergence of duplicate genes in exon-intron structure. *Proceedings of the National Academy of Sciences of the United States of America* **109**(4):1187-1192 DOI 10.1073/pnas.1109047109.

Guo M, Liu JH, Lu JP, Zhai YF, Wang H, Gong ZH, Wang SB, Liu MH. 2015. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. *Frontiers in Plant Science* **6**:806 DOI 10.3389/fpls.2015.00806.

Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. 2014. GSDS 2.0: an upgraded gene feature
visualization server. *Bioinformatics* **31**(8):1296-1297 DOI 10.1093/bioinformatics/btu817.

Jaya N, García V, Vierling E. 2009. Substrate binding site flexibility of the small heat shock protein molecular chaperones. *Proceedings of the National Academy of Sciences of the United States of America* **106**(37):15604-15609 DOI 10.1073/pnas.0902177106.

Jeffares DC, Penkett CJ, Bähler J. 2008. Rapidly regulated genes are intron poor. *Trends in genetics* **24**(8):375-378 DOI 10.1016/j.tig.2008.05.006. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* **23**(21):2947-2948 DOI 10.1093/bioinformatics/btm404.

Lopescaitar VS, Carvalho MCD, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelinoguimarães FC. 2013. Genome-wide analysis of the *Hsp20* gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. *BMC Genomics* **14**(1):577 DOI 10.1186/1471-2164-14-577.

Lozano R, Hamblin MT, Prochnik S, Jannink JL. 2015. Identification and distribution of the NBS-LRR gene family in the Cassava genome. *BMC Genomics* **16**(1):360 DOI 10.1186/s12864-015-1554-9.

Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves VDP, Pierre R, Stephane R. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* **30**(1):325-327 DOI 10.1093/nar/30.1.325.

Markus P, Joanna T, Dirk Z, Christian W, Dirk H, Sybille W, Daniela B, Klaus-Dieter S.
2004. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. *Plant Physiology* **135**(3):1457-1470 DOI 10.2307/4356505.

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J. 2017. A chromosome conformation capture ordered sequence of the barley genome. *Nature* **544**(7651):427-433 DOI 10.1038/nature22043.

Mattick JS, Gagen MJ. 2001. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. *Molecular Biology & Evolution* **18**(9):1611-1630 DOI:10.1093/oxfordjournals.molbev.a003951.

Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC. 2017. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. *Journal of Plant Physiology* **211**:100-113 DOI 10.1016/j.jplph.2017.01.004.

Ouyang Y, Chen J, Xie W, Wang L, Zhang Q. 2009. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. *Plant Molecular Biology* **70**(3):341-357 DOI 10.1007/s11103-009-9477-y.

Park CJ, Seo YS. 2015. Heat shock proteins: A review of the molecular chaperones for plant immunity. *Plant Pathology Journal* **31**(4):323-333 DOI 10.5423/ppj.rw.08.2015.0150.

Reddy PS, Kishor PB, Christiane S, Markus K, Lennart EL, Justin L, Reddy MK, Nese S. 2014. Unraveling regulation of the small heat shock proteins by the heat shock factor *HvHsfB2c* in barley: its implications in drought stress response and seed development. *PLOS One* **9**(3):e89125 DOI 10.1371/journal.pone.0089125.
Sarkar NK, Kim YK, Grover A. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. *BMC Genomics* 10(1):393 DOI 10.1186/1471-2164-10-393.

Scharf KD, Siddique M, Vierling E. 2001. The expanding family of *Arabidopsis thaliana* small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). *Cell Stress Chaperones* 6(3):225-237 DOI 10.1379/1466-1268(2001)0062.0.CO;2.

Shoseyov O. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends in Plant Science* 9(5):244-252 DOI 10.1016/j.tplants.2004.03.006.

Siddique M, Gernhard S, Koskull-Döring PV, Vierling E, Scharf KD. 2008. The plant sHSP superfamily: five new members in *Arabidopsis thaliana* with unexpected properties. *Cell Stress Chaperones* 13(2):183-197 DOI 10.1007/s12192-008-0032-6.

Sun W, Montagu MV, Verbruggen N. 2002. Small heat shock proteins and stress tolerance in plants. *Biochimica et Biophysica Acta- Gene Structure and Expression* 1577:1-9 DOI 10.1016/S0167-4781(02)00417-7.

Tripp J. 2010. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. *Plant Cell Environment* 32(2):123-133 DOI 10.1111/j.1365-3040.2008.01902.x.

Waters ER. 2013. The evolution, function, structure, and expression of the plant sHSPs. *Journal of Experimental Botany* 64(2):391-403 DOI 10.1093/jxb/ers355.

Wen G. 2017. A simple process of RNA-Sequence analyses by Hisat2, Htseq and DESeq2. *International Conference* Pp:11-15 DOI: 10.1145/3143344.3143354.

Yu J, Cheng Y, Feng K, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Yang Y, 2016.
Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. *Frontiers in Plant Science* 7:806 DOI 10.3389/fpls.2016.01215.

Yuko N, Shunji S. 2013. Environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner. *International Journal of Molecular Sciences* 14(4):7771-7783 DOI 10.3390/ijms14047771.
Figure 1 (on next page)

Figure 1 Phylogenetic relationship of Hsp20s from Arabidopsis, rice, sorghum, and barley.

The phylogenetic tree was constructed using MEGA X with 1000 bootstrap replications.
Figure 2

Figure 2 Exon/intron structures of barley *HvHsp20* genes.

(A) The gene structures of 86 *HvHsp20* that have normal intron length. (B) The structural characteristic of 10 *HvHsp20* genes that possess too longer introns. Boxes filled with blue represent exons, solid black lines represent introns. Scale at bottom is in kb.
Manuscript to be reviewed
Figure 3 Phylogenetic relationships and motif compositions of HvHsp20 proteins.

(A) Multiple alignment of Hsp20 domain was executed using ClustalW and the phylogenetic tree was constructed with MEGA X using full-length amino acid sequences of identified Hsp20 proteins in barley. (B) Distributions of conserved motifs in HvHsp20 proteins. Each colored box represents a motif in the protein.
Figure 4 Multiple sequence alignment of ACDs of HvHsp20s.

Names of all members are listed on the left side of the figure. Conserved amino acid residues are indicated by gray background. Two conserved regions (conserved region I and conserved region II) are underlined at the bottom.
Figure 5 Chromosome localizations of barley HvHsp20 genes.

Chromosome numbers are shown on top of each bar. Scale on left is in Mb.
Figure 6 Predicted cis-elements in HvHsp20 promoter region.

Promoter sequences (-1.5kb) are analyzed by PlantCARE.
Figure 7

Figure 7 Expression profiles of *HvHsp20* genes under various biotic and abiotic stresses.

Green blocks represent decreased and red blocks represent increased transcript levels relative to the respective control. (A) Expression profiles of indentified *HvHsp20* genes under arsenic stress in tolerant barley genotype (ZDB160). (B) Expression profiles of *HvHsp20* genes in arsenate sensitive barley genotype (ZDB475) under arsenic stress. (C) Expression profiles of *HvHsp20* genes in barley shoots under heat stress. (D) Expression profiles of *HvHsp20* genes in barley roots under heat stress. (E) Expression profiles of *HvHsp20* genes in barley leaves during powdery mildew infection.
