Helicobacter pylori infection and gastric cancer: evidence from a retrospective cohort study and nested case-control study in China

Run-Tian Wang, Tao Wang, Kun Chen, Ji-Yao Wang, Jie-Ping Zhang, San-Ren Lin, Yi-Min Zhu, Wen-Ming Zhang, Yu-Xin Cao, Chou-Wen Zhu, Hai Yu, Yu-Jun Cong, Shu Zheng, Bing-Quan Wu

AIM: To explore the association between Helicobacter pylori (Hp) infection and risk of gastric cancer in China.

METHODS: Utilizing gastroendoscopic biopsy tissue banks accumulated from 1980 to 1988 in Shandong, Zhejiang, and Jiangsu, where stomach cancer incidence was high, during stomach cancer screening conducted by Health Science Center of Peking University, School of Medicine of Zhejiang University, and Zhongshan Hospital, Fundan University, Shanghai. 200,000. China. The First People's Hospital of Changzhou, Jiangsu, 213003, China. Yu-Xin Cao, The First People's Hospital of Muping, Shandong, 264100, China. Yu-Jun Cong, The Third People's Hospital of Muping, Shandong, 264107, China. Correspondence to: Run-Tian Wang, Prof., Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing, 100083, China. twang@bjmu.edu.cn. Telephone: +86-10-62015583 Fax: +86-10-62015583 Received 2002-04-29 Accepted 2002-06-12

Abstract

INTRODUCTION

Large volume of literature on the association of H. pylori infection and gastric cancer has been published since Warren and Marshall first isolated Helicobacter pylori from human gastric mucosa in 1983[1]. The first compelling evidence linking H. pylori infection to gastric cancer was obtained from seroepidemiologic studies using nested case-control study design in the United States and Britain[2-4]. Although there were discrepancy among epidemiological studies[5-7], some meta-analyses indicated the magnitude of the association H. pylori infection and risk of gastric cancer was ORs=2-6[6,7]. Most of the studies based on serological data; the status of whether the H. pylori harbored in gastric mucosa at the time of sample collection was uncertain and it only indicated past infection of H. pylori. Using the H. pylori detected by microscopy from biopsy had some limitations because only several specimens were taken during endoscopy underwent, which might lead to underestimation. However, the bacilli found under microscope might reveal actual status of H. pylori harbored in the gastric mucosa. Under the support of foundation of Chinese Medical Board of New York Inc., Health Science Center of Peking University, Medical School of Zhejiang University and Zhongshan Hospital of Fudan University cooperated in the study of the association of H. pylori infection and gastric cancer. The subjects of H. pylori infection was positive when there were bacilli found under the microscope, the outcome of the study was gastric cancer death. A nested case-control study design was carried out using gastric cancer death from Muping, Shandong province and Zhourshan, Zhejiang province where most of the subjects resided in the rural areas.
MATERIALS AND METHODS

Field of investigation
The field of Health Science Center of Peking University is Gaoling town in Muping County of Yantai City of Shandong province (short for Muping below), the mortality rate of gastric cancer was averaging 40/100 000 population during the last two decades. Screening and early diagnosis program were undertaken for those over 35 years old in 1987 and 1988. 2200 subjects' biopsies were taken and underwent histopathological diagnosis. The field of School of Medicine of Zhejiang University is Daishan county in Zhoushan archipelago of Zhejiang Province (short for Zhoushan below), the mortality rate of gastric cancer was about 50/100 000 population, gastric cancer screening had been conducted and gastroendoscopy and histological diagnosis had been done on about 1800 subjects from 1980 to 1983. The field of Zhongshan Hospital of Fudan University is Changzhou city in Jiangsu province (short for Changzhou below), the mortality rate of gastric cancer was about 40/100 000 population, gastroendoscopy had been carried out in 1500 subjects.

Pathological and laboratory examination criteria
The histologic sections stained by H&E was according to the National Gastric Cancer Prevention Study Pathological Diagnostic Criteria, and gastric cancer was confirmed by pathological diagnosis. The H. pylori infection was determined by histologic assessment. Warthin Starry silver staining was applied to the histologic section of endoscopic biopsies and to determine the status of H. pylori infection of the subjects. The diagnostic criteria followed the Criteria for diagnosis on histologic sections on the first meeting of experts when an agreement was reached in April 1999[28].

Subjects of retrospective cohort study
Biopsies were available for histologic sections and Warthin Starry silver staining from Muping, Zhoushan and Changzhou comprised the cohort. There were 1055, 875 and 793 subjects’ biopsies available, respectively. The pathologic diagnosis was retrieved according to the record of diagnosis, and gastric cancer patients were excluded either for those diagnosed at the time of screening or diagnosed within one year after screening program. The histologic assessment of H. pylori infection was conducted by pathologists well trained on diagnosing H. pylori infection with Warthin Starry silver staining slides. The exposure cohort was H. pylori infection positive after the histologic section assessment, and the non-exposure cohort was negative.

Subjects of nested case-control study
The cases were those who died from gastric cancer during the following period after the screening program and met the criteria set forth above in Muping and Zhoushan. For each case of gastric cancer death, we matched 4 controls on the basis of age (not ±5 years), sex, date of biopsy specimen sampling and residential place, who were gastric cancer-free at the end of 1999.

Questionnaire survey
All subjects whose biopsies for histologic assessment were given a questionnaire interview, which included demographic data, family history of gastric cancer, life style such as smoking habit etc., and diagnosis and treatment of H. pylori infection in the past. The interviewers were village doctors trained on the interviewing skills. The interviews started from 1998 to the end of 1999. The subjects died and those who could not answer the questions while interviewing, was helped by their relatives familiar with them.

Statistical analysis
A database was established by the EPI info package, was put in according to standard procedure after the questionnaires evaluation and met the requirements. The SPSS package was used to conduct logistic regression analysis of the cohort and the Egret package (A Commercial System for Advanced Epidemiologic Statistics 1999) was applied to conduct Cox regression analysis of the survival data of the cohort, conditional logistic regression was used to compute the asymptotic ORs for the nested case control data.

RESULTS

General information of the cohort
The total subjects of the cohort were 2 719. There were 1 055 subjects from Muping, 875 subjects from Zhoushan and 793 subjects form Changzhou.

Fields	n	Average follow-up duration(yrs)	Standard deviation
Muping	1055	11.1496	2.8798
Zhoushan	871	14.1883	2.5603
Changzhou	793	6.5596	2.1343
Total	2719	10.8805	4.0358

There were 2 719 subjects’ biopsies available for histologic assessment of H. pylori infection in the three fields where the prevalence rate of gastric cancer was high in China and were followed up to observe the outcome. The average follow-up duration was 10.88 years.
Number of gastric cancer deaths observed in cohort
The number of gastric cancer deaths observed in each field in H. pylori positive and H. pylori negative cohorts was listed in Table 3.

Table 3 The distribution of gastric cancer deaths observed in the follow-up period of the cohorts

Field	H. pylori positive cohort	H. pylori negative cohort	Total			
	n	No. of gastric cancer death	n	No. of gastric cancer death	n	No. of gastric cancer death
Muping	675	9	380	3	1055	12
Zhoushan	501	10	370	6	871	16
Changzhou	495	14	296	2	793	16
Total	1671	33	1048	11	2719	44

There were 1,671 subjects in the exposure cohort and 1,048 subjects in the non-exposure cohort, 33 and 11 cases respectively died from gastric cancer during the follow-up period.

The results of cohort study
The average age of gastric cancer death cases of the H. pylori positive and H. pylori negative cohorts was 60.41 and 69.18, respectively. The t test showed that there was significant difference between the two cohorts (t=2.494, P=0.017). The results of logistic regression analysis of association of H. pylori infection and gastric cancer death of different age groups were shown in Table 4. The results of Cox regression analysis was shown in Table 5.

Table 4 Result of logistic regression analysis of different age groups

Variables	OR	95% CI
<50 years old	4.601	1.865, 11.229
50-60 years old	1.916	0.961, 3.822
≥60 years old	Do not convergence	

Table 5 The results of Cox regression analysis with adjustment of age and sex

Variable	β	S.E	Wald	df	P	RR	95% CI (lower)	95% CI (upper)
H. pylori	0.6856	0.3485	3.8705	1	0.0491	1.9850	1.0026	3.9301
Age	0.9062	0.5005	3.2773	1	0.0702	2.4748	0.9278	6.6010
Sex	-0.3237	0.3203	1.0215	1	0.3122	0.7234	0.3861	1.3554

The RR=1.9850, P=0.0491, 95% CI is 1.0026 to 3.9301 for exposure of H. pylori infection cohort to non-exposure cohort with adjustment of age and sex.

The cumulative hazard function for positive and negative H. pylori infection and gastric cancer death adjusted age and sex was shown in Figure 1: a higher hazard for subjects with positive H. pylori infection, the difference was statistically different.

![Figure 1](image-url)

Discussion
The aim of this study was to explore the association between H. pylori infection and gastric cancer risk. The average follow-up duration was 10.8 years. The results of retrospective analysis showed that the risk of death from gastric cancer in the H. pylori positive cohort was significantly higher than in the negative cohort (RR=1.9850, 95% CI 1.0026 to 3.9301).
positive cohort was 1.985 times to H. pylori negative cohort (95% CI (1.0026, 3.9301)); the results of the nested case-control showed the association between H. pylori infection and gastric cancer risk increased after adjustment of some potential confounding factor, the OR was 4.467, 95% CI was 1.161 to 17.190. The result suggested that the H. pylori infection was associated with cancer gastric death. The results were in accordance with those retrospective and nested case control studies[2-4,10,12,14,19,21,22] and meta-analyses of H. pylori infection and gastric cancer risk published recently[23-27]. It was also similar to the magnitude of association between H. pylori infection and non-cardia gastric cancer 2.29[26] in Linxian of China reported by Limburg et al in a nested case control study and the results of Hansen et al[34]. The average age of gastric death in the H. pylori infection cohort was younger than that of negative cohort, the difference was statistically significant, the ORs of different age groups were in favor of that H. pylori infection was risk factor for the young[10,30,31]. Because the carcinogenesis of gastric cancer was of multiple stages and multiple factors involvement, H. pylori infection is not an independent risk factors on the carcinogenesis of gastric cancer. The prevalence of H. pylori infection is high in developing counties, only a small proportion of people infected with the bacteria develop gastric cancer. The biological mechanism of gastric carcinogenesis remains unclear. Our results suggested that H. pylori infection played different role at different ages of life.

The gastric cancer death in this study was those histologically confirmed cases and excluding those followed after gastroendoscopic screening within one year in each field and cardia gastric cancer, all these limitations might strengthen the virtual epidemiological evidence generated by this study. There are several methods to determine the H. pylori infection of the stomach; the sensitivity and specificity are approximate[22,24]. The application of these methods would render different results' false negative results in different population[13,33,34], and the use of multiple tests may help to provide a more accurate diagnosis of H. pylori infection[35]. Although the seroconversion rate was a bit lower[36,37]. The loss of H. pylori infection may occur earlier in those using serological assessment of H. pylori infection than using histological assessment of H. pylori infection, because sera H. pylori IgG can be detected after the eradication of H. pylori. Histologic assessment of biopsies was more reliable and with less information bias. The data of this study was a combined analysis in high gastric cancer prevalence areas in China. The recent mortality rate of gastric cancer was about 40-50/100 000 persons by screening and early diagnostic program carried out in the three regions and the biopsies reserved made such a study feasible. Although the subjects screened could not represent the natural population and some biopsies used by other studies, there might be selection bias, which could result some bias in the estimation the association between H. pylori infection and gastric cancer risk. Since strict quality control and the confounding factors controlled during the analysis were conducted, the chance of misclassification of diagnosis and exposure was minimized, and the overall result was reliable.

Although we had provided evidence for positive association between H. pylori infection and gastric cancer risk based on histologic assessment of H. pylori infection by limited cohort subjects, it needs to expand the study in a natural population to minimize the selection bias. The association between H. pylori Cag A positive strain, which is considered more virulent than others, and gastric cancer should be further investigated. More convincing evidence of H. pylori infection and gastric cancer risk would be gained by H. pylori eradication interventional study.

REFERENCES

1. Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983; 1: 1273-1275
2. Forman D, Newell DG, Fullerton F, Yarnell JWG, Stacey AR, Wald N, Sirks A. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. British Med J 1991; 302: 1302-1305
3. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1993; 325: 1127-1131
4. Nomura A, Stemerman GM, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 1991; 325: 1132-1136
5. Muszynski J, Dzierzanoswka D, Seminska J, Bogdanska M, Vogt E, Ehrmann A. Is Helicobacter pylori infection a real risk factor for gastric carcinoma? Scand J Gastroenterol 1995; 30: 647-651
6. Rudi J, Muller M, von Herbay A, Zuna I, Raedsch R, Stremmel W, Rath U. Lack of association of Helicobacter pylori seroprevalence and gastric cancer in a population with low gastric cancer incidence. Scand J Gastroenterol 1995: 30: 955-963
7. Webb PM, Yu MC, Forman D, Henderson BE, Newell DG, Yuan JM, Gao YT, Ross RK. An apparent lack of association between Helicobacter pylori infection and risk of gastric cancer in China. Int J Cancer 1996; 67: 603-607
8. Kim HY, Cho BD, Chang WK, Kim DJ, Kim YB, Park CK, Shin HS, Yoo JA. Helicobacter pylori infection and the risk of gastric cancer among the Korean population. J Gastroenterol Hepatol 1997; 12: 100-103
9. Watanabe Y, Kurata J, Mizuno S, Mukai M, Inokuchi H, Miki K, Ozaa K, Kawai K. Helicobacter pylori infection and gastric cancer. A nested case-control study in a rural area of Japan. Dig Dis Sci 1997: 42: 1383-1387
10. Whiting JL, Hallissey MT, Fielding JWL, Dunn J. Screening for gastric cancer by Helicobacter pylori serology: a retrospective study. British Surg 1996; 85: 408-411
11. Wu MS, Shun CT, Lee WC, Chen CJ, Wang HP, Lee WJ, Sheu JC, Lin JT. Gastric cancer risk in relation to Helicobacter pylori infection and subtypes of intestinal metaplasia. Brit J Cancer 1998; 78: 125-128
12. Azuma T, Ito S, Sato F, Yamazaki Y, Miyaji H, Ito Y, Suto H, Kuriyama M, Kato T, Kohi Y. The role of HLA-DQA1 gene in resistance to atrophic gastritis and gastric adenocarcinoma induced by Helicobacter pylori infection. Cancer 1998; 82: 1013-1018
13. Yuan JM, Yu MC, Xu WW, Cockburn M, Gao YT, Ross RK. Helicobacter pylori infection and risk of gastric cancer in Shanghai, China: updated results based upon a locally developed and validated assay and further follow-up of the cohort. Cancer Epidemiology, Biomarkers & Prevention 1999: 8: 621-624
14. Hansen S, Melby KK, Aase S, Jellum E, Vollset SE. Helicobacter pylori infection and risk of cardio cancer and non-cardia gastric cancer. A nested case-control study. Scand J Gastroenterol 1999; 34: 353-360
15. Inoue M, Tajima K, Matsuura A, Suzuki T, Nakamura T, Ohashi K, Nakamura S, Tominaga S. Severity of chronic atrophic gastritis and subsequent gastric cancer occurrence a 10-year prospective cohort study in Japan. Cancer Let 2000; 161: 105-112
16. Enroth H, Kraaaw W, Engstrand L, Nyrken O, Rohan T. Helicobacter pylori strain types and risk of gastric cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 2000; 9: 981-985
17. Plummer M, Vivas J, Fauchere JL, Del Giudice G, Pena AS, Ponzetto A, Lopez G, Miki K, Oliver W, Munoz N. Helicobacter pylori strain type and stomach cancer: a case-control study in Venezuela. Cancer Epidemiol Biomarkers Prev 2000; 9: 961-965
18. Yamagata H, Kiyohara Y, Aoyagi K, Kato I, Iwamoto H, Nakayama K, Shimizu H, Tanizaki Y, Arima H, Shihohara N, Konno H, Matsumoto T, Fujishima M. Impact of Helicobacter pylori infection on gastric cancer incidence in a general Japanese population: the Hisayama study. Arch Intern Med 2000; 160:1962-1968
19. Wang T, Chen K, Wang, RT, Zhu YM, Cong YJ, Zhou YN, Zhang JP, Yu H, Cao YY, Zheng S. Nested case-control study on the
relationship of Hp infection and gastric cancer risk. Zhongguo
Yufang Yixue Zazhi 2001; 2: 27-29
20 Jiaw YW, Wang RT, Wang T, Zhang JP, Lei DN. Multi-groups
controlled study on the association of Helicobacter pylori infec-
tion with gastric cancer and stomach diseases. Beijing Daxue
Xuebao(Yixue Ban) 2001; 33: 160-163
21 Wang RT, Chen K, Wang JY, Wang T, Zhu YM, Zhang WM, Cao
YX, Zhang JP, Zhu CW, Yu H, Zheng S, Wu BQ. Retrospective
study on Helicobacter pylori infection and gastric cancer risk.
Zhonghua Yixue Zazhi 2001; 81: 1458-1459
22 Uemura N, Okamoto S, Yamamoto S, Matsunuma N, Yamaguchi
S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter
pylori infection and the development of gastric cancer. N Engl J
Med 2001; 345: 784-789
23 Huang JQ, Srirachar S, Chen Y, Hunt RH. Meta-analysis of the
relationship between Helicobacter pylori seropositivity and gas-
tic cancer. Gastroenterology 1998; 114: 1169-1179
24 Danesh J. Helicobacter pylori infection and gastric cancer: system-
atic review of the epidemiological studies. Aliment Pharmacol Ther
1999; 13: 851-866
25 Eslick GD, Lim LL, Byles JE, Xia HH, Talley NJ. Association of Helicobacter pylori infection with gastric carcinoma: a meta-
analyses. Ann Gastroenterol 1999; 94: 2373-2379
26 Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control
studies nested within prospective cohorts, Gut. 2001; 49: 347-353
27 Xue FB, Xu YY, Wan Y, Pan BR, Ren J, Fan DM. Association of H.
pylori infection with gastric carcinoma: a meta-analyses. World J
Gastroenterol 2001; 7: 801-804
28 National H. pylori Research Group. Agreement and comments
on some H. pylori issues. Chinese Medical Journal 2000; 80: 394-395
29 Limburg P, Qiao YL, Mark SD, Wang GQ, Perez-Perez GI, Blaser
MJ, Wu YP, Zou XN, Dong ZW, Taylor PR, Dawsey SM. Helicobacter pylori Seropositivity and subsite-specific gastric can-
cer risks in Linxian, China. J Natl Cancer Inst 2001; 93: 226-233
30 Haruma K, Komoto K, Kamada T, Ito M, Kitadai Y, Yoshihara
M, Sumiki K, Kajiyama G. Helicobacter pylori infection is a major
risk factor for gastric carcinoma in young patients. Scand J
Gastroenterol 2000; 35: 255-259
31 Imrie C, Rowland M, Bourke B, Drumm B. Is Helicobacter pylori
infection in childhood a risk factor for gastric cancer? Pediatrics
2001; 107: 373-380
32 Logan RPH, Walker MM. ABC of the upper gastrointestinal tract:
Epidemiology and diagnosis of Helicobacter pylori infection. BMJ
2001; 323: 920-922
33 Miwa H, Kikuchi S, Ohtaka K, Kobayashi O, Ogihara A, Hojo
M, Nagahara A, Sato N. Insufficient diagnostic accuracy of im-
ported serological kits for Helicobacter pylori infection in Japa-
nese population. Diag Microbiol Infect Dis 2000; 36: 95-99
34 Ohara S, Kato M, Asaka M, Toyota T. Studies of 13C-urea breath
test for diagnosis of Helicobacter pylori infection in Japan. J
Gastroenterol 1998; 33: 6-13
35 Tabata H, Fuchigami T, Kobayashi H, Sakai Y, Nakanishi M, Tomioka K, Nakamura S, Fujishima M. Helicobacter pylori and mucosal atrophy in patients with gastric cancer: a special study regarding the methods for detecting Helicobacter pylori. Dig Dis Sci 1999; 44: 2027-2034
36 Rosenstock S, Jorgensen T, Andersen L, Bonnevie O. Serocrversion and seroreversion in IgG antibodies to Helicobacter
pylori: a serology based prospective cohort study. J Epidemiol Com-
munity Health 2000; 54: 444-450
37 Kumagai T, Malaty HM, Graham DY, Hosogaya S, Misawa K, Furuihata K, Ota H, Sei C, Tanaka E, A kamatsu T, Shimizu T, Kiyosawa K, Katsuyama T. Acquisition versus loss of Helicobacter pylori infection in Japan: results from an 8-year birth cohort study. J Infect Dis 1998; 178: 717-721
38 Sung JJJ, Lin SR, Cheng JY, Zhou LY, To KF, Wang RT, Leung WK,
Ng EKW, Lau JYW, Lee YT, Yeung CK, Chao W, Chung SCS. Atro-
phy and intestinal metaplasia one year after cure of H. pylori infection: a prospective, randomized study. Gastroenterology 2000; 119: 7-14

Edited by Wu XN