C₀-GAP BETWEEN ENTROPY-ZERO HAMILTONIANS AND AUTONOMOUS DIFFEOMORPHISMS OF SURFACES

BY

MICHAEL BRANDENBURSKY

Department of Mathematics, Ben Gurion University of the Negev
Beer Sheva 8410501, Israel
e-mail: brandens@bgu.ac.il

AND

MICHAEL KHANEVSKY

Faculty of Mathematics, Technion—Israel Institute of Technology
Haifa 3200003, Israel
e-mail: khanev@technion.ac.il

ABSTRACT

Let Σ be a surface equipped with an area form. There is a long-standing open question by Katok, which, in particular, asks whether every entropy-zero Hamiltonian diffeomorphism of a surface lies in the C₀-closure of the set of integrable diffeomorphisms. A slightly weaker version of this question asks: “Does every entropy-zero Hamiltonian diffeomorphism of a surface lie in the C₀-closure of the set of autonomous diffeomorphisms?”

In this paper we answer in the negative the latter question. In particular, we show that on a surface Σ the set of autonomous Hamiltonian diffeomorphisms is not C₀-dense in the set of entropy-zero Hamiltonians. We explicitly construct examples of such Hamiltonians which cannot be approximated by autonomous diffeomorphisms.

Received July 5, 2021 and in revised form January 10, 2022
1. Introduction

There is the following long-standing open question of Katok from the seventies: In low dimensions is every volume-preserving dynamical system with zero topological entropy a limit of integrable systems? This is stated as Problem 1 in [Kat1], but relates also to the much older paper [AK]. Low dimensions means maps on surfaces or flows on 3-dimensional manifolds.

Let \(\Sigma \) be a surface with an area form \(\omega \) and denote by \(\text{Ham}(\Sigma) \) the group of Hamiltonian diffeomorphisms of \((\Sigma, \omega) \) that are compactly supported in the interior of \(\Sigma \). For every smooth function \(H: \Sigma \to \mathbb{R} \) compactly supported in the interior, there exists a unique vector field \(X_H \) which satisfies

\[
 dH(\cdot) = \omega(X_H, \cdot).
\]

It is easy to see that \(X_H \) is tangent to the level sets of \(H \). Let \(h \) be the time-one map of the flow \(h_t \) generated by \(X_H \). The diffeomorphism \(h \) is area-preserving, it belongs to \(\text{Ham}(\Sigma) \) and every Hamiltonian diffeomorphism arising this way is called autonomous. Such a diffeomorphism is easy to understand in terms of its generating Hamiltonian function. More generally, autonomous maps \(h \in \text{Diff}(\Sigma) \) appear as time-\(t \) maps of time-independent flows and also have relatively simple dynamics.

We consider the following version of Katok’s question:

Question: Does every entropy-zero Hamiltonian of \(\Sigma \) lie in the \(C^0 \)-closure of the set of autonomous diffeomorphisms?

There was very little progress on both questions till the appearance of a beautiful paper of Bramham [Bra], where he partially solved them in the case of the disk. More precisely, he showed that every irrational pseudo-rotation of the disc lies in the \(C^0 \)-closure of the set of integrable autonomous diffeomorphisms (which are not necessarily area-preserving).

In this paper we answer in the negative the above question for every surface \(\Sigma \). Our main result is the following

Theorem 1: There exists an entropy-zero \(g \in \text{Ham}(\Sigma) \) which cannot be presented as a \(C^0 \)-limit of autonomous diffeomorphisms.

The diffeomorphism \(g \) is constructed as a composition of two autonomous Hamiltonian diffeomorphisms supported in an annulus, which is symplectically
embedded in the surface Σ. In the case when Σ is an annulus \(S^1 \times [0, 1] \), we present an additional argument which is based on the second author’s result from [Kha2].

Theorem 2: There exists an entropy-zero \(g \in \text{Ham}(S^1 \times [0, 1]) \) which cannot be presented as a \(C^0 \)-limit of autonomous Hamiltonians from \(\text{Ham}_{\text{Aut}}(S^1 \times [0, 1]) \). Moreover, given \(R > 0 \), one may ensure that the Hofer distance

\[
d_H(g, \text{Ham}_{\text{Aut}}) > R.
\]

The proof uses the theory of Calabi quasimorphisms due to Entov–Polterovich [EP]. At the same time the more general case of Theorem 1 does not require techniques from symplectic geometry.

We conclude the introduction by noting that the diffeomorphisms \(g \) constructed in the proofs of both theorems are integrable, hence the original question of Katok remains open. On the other side, our construction shows that the gap appears already between autonomous and integrable systems, which is a slightly stronger result than the motivating question.

Acknowledgments. We thank the referee for suggestions regarding the organization of the text. M. B. was partially supported by a Humboldt research fellowship.

2. Integrability, laminations and entropy

A diffeomorphism \(g \in \text{Diff}(\Sigma) \) is **integrable** if it admits a smooth invariant function \(H : \Sigma \to \mathbb{R} \) (a **first integral**) such that \(H \) is not constant on any open set. Such a function \(H \) induces a lamination on \(\Sigma \) by its level sets. This lamination is regular away from the critical points of \(H \) and is invariant under \(g \).

If \(g \) is an autonomous Hamiltonian generated by \(H : \Sigma \to \mathbb{R} \), the function \(H \) serves as an integral for \(g \). If \(H \) is constant in certain open sets (for example, outside its support) one may perturb \(H \) there. Such a perturbed function is still invariant under \(g \) since the perturbation occurs in the set of fixed points of \(g \). Not all integrable Hamiltonians are autonomous; an example is the diffeomorphism \(g \) constructed in the proof of Theorem 1. Note that a non-area-preserving autonomous diffeomorphism \(g \in \text{Diff}(\Sigma) \) might be non-integrable (e.g., a flow with an attracting point), yet it admits an invariant lamination by flow lines.
Integrable maps on surfaces have zero entropy: indeed, according to [Kat2], positive entropy implies existence of transverse homoclinic points which cannot show up in the integrable setting. Zero-entropy does not imply integrability; a counterexample is provided by pseudo-rotations with a dense orbit on a disc (see [AK]).

3. Proof of Theorem 2

3.1. Quasimorphisms. Let G be a group. A function $r : G \to \mathbb{R}$ is called a quasimorphism if there exists a constant Δ (called the defect of r) such that $|r(fg) - r(f) - r(g)| < \Delta$ for all $f, g \in G$. The quasimorphism r is called homogeneous if it satisfies $r(g^m) = mr(g)$ for all $g \in G$ and $m \in \mathbb{Z}$. Any homogeneous quasimorphism satisfies $r(fg) = r(f) + r(g)$ for commuting elements f, g. Every quasimorphism is equivalent (up to a bounded deformation) to a unique homogeneous one [Cal].

3.2. Calabi invariant and Calabi quasimorphisms. Let $F_t : \Sigma \to \mathbb{R}$, $t \in [0,1]$ be a time-dependent smooth function with compact support in the interior of Σ. We define

$$\tilde{\text{Cal}}(F_t) = \int_0^1 \left(\int_{\Sigma} F_t \omega \right) dt.$$

If the symplectic form ω is exact (this is the case for an annulus or a disk), $\tilde{\text{Cal}}$ descends to a homomorphism $\text{Cal}_\Sigma : \text{Ham}(\Sigma) \to \mathbb{R}$ which is called the Calabi homomorphism.

The proposed proof of Theorem 2 uses the Calabi quasimorphism by Entov–Polterovich [EP]. We start with a brief recollection of the relevant facts from that paper.

Let $A = S^1 \times [0,1]$ be an annulus (we assume $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ and pick a symplectic form $\omega = \frac{1}{2\pi} d\theta \wedge ds$ so that $\text{Area}(A) = 1$). Given a compactly supported smooth function $F : \Sigma \to \mathbb{R}$, the Reeb graph T_F is defined as the set of connected components of level sets of F (for a more detailed description we refer the reader to [EP]). For a surface Σ of genus zero and a generic Morse function F (saying ‘Morse’, we mean that the restriction of F to the interior of its support is a Morse function), this set, equipped with topology induced by the projection $\pi_F : \Sigma \to T_F$, is homeomorphic to a tri-valent tree. We endow T_F
with a positive measure given by
\[
\mu(X) = \int_{\pi_F^{-1}(X)} \omega
\]
for all \(X \subseteq T_F\) with measurable \(\pi_F^{-1}(X)\). In the case of the annulus \(\mathcal{A} = S^1 \times [0, 1]\), \(\pi_F(S^1 \times \{0\})\) will be referred to as the \textbf{bottom root} of \(T_F\) and \(\pi_F(S^1 \times \{1\})\) as the \textbf{top root}. The shortest path connecting the roots of \(T_F\) will be called a \textbf{stem}.

A point \(x_m \in T_F\) is a \textbf{median} of \(T_F\) if all connected components of \(T_F \setminus \{x_m\}\) have measure at most \(\frac{\text{Area}(\Sigma)}{2}\). For compact surfaces \(\Sigma\) of genus zero a median always exists and is unique (see [EP] for the case \(\Sigma = S^2\), the same argument applies to other surfaces of genus zero by gluing each boundary component to a point). The set \(\pi_F^{-1}(x_m)\) will be called the \textbf{median} with respect to \(F\). Suppose \(\Sigma = \mathcal{A}\); we define \textbf{percentile} sets in analogy to the median. Let \(h \in [0, 1]\); \(x_h \in T_F\) is an \(h\)-\textbf{percentile} of \(T_F\) if the top and the bottom roots belong to different connected components of \(T_F \setminus \{x_h\}\) and the connected component of the bottom root has measure \(h \cdot \text{Area}(\mathcal{A}) = h\). The set \(\pi_F^{-1}(x_h)\) is an \(h\)-percentile with respect to \(F\).

Clearly, percentiles correspond to points \(x\) in the stem of \(T_F\) and the percentile value increases monotonically along the stem. Unlike the median, if \(T_F\) is not homeomorphic to an interval (that is, has ‘branches’ besides the stem), \(h\)-percentiles do not exist for certain \(h \in [0, 1]\). Each branch corresponds to a ‘gap’ (missing interval) in the set of percentile values. The length of the gap is given by the measure of the branch. If an \(h\)-percentile exists, it is unique. The \(\frac{1}{2}\)-percentile (if it exists) coincides with the median. For a generic \(F\) this corresponds to the case when the median set of \(F\) is a non-contractible circle. Using a standard Morse-theoretic argument, we conclude with the following observation: percentile sets are not contractible in \(\mathcal{A}\). The set \(A_F\) of points that are not percentiles of \(T_F\) is the union of branches that grow out of the stem of \(T_F\). The set \(\pi^{-1}(A_F)\) is the union of topological disks corresponding to these branches.

In [EP] the authors describe the construction of a homogeneous quasimorphism
\[
\text{Cal}^{qm}_{S^2}: \text{Ham}(S^2) \to \mathbb{R}.
\]
It has the following properties: \(\text{Cal}^{qm}_{S^2}\) is Hofer–Lipschitz
\[
|\text{Cal}^{qm}_{S^2}(\phi)| \leq \text{Area}(S^2) \cdot \|\phi\|_H.
\]
In the case when $\phi \in \text{Ham}(S^2)$ is supported in a disk D which is displaceable in S^2,
\[
\text{Cal}_{S^2}^q(\phi) = \text{Cal}_D(\phi|_D).
\]
Moreover, for a $\phi \in \text{Ham}(S^2)$ generated by an autonomous function $F : S^2 \to \mathbb{R}$, $\text{Cal}_{S^2}^q(\phi)$ can be computed in the following way. Let x be the median of T_F and $X = \pi_F^{-1}(x)$ be the corresponding subset of S^2. Then
\[
\text{Cal}_{S^2}^q(\phi) = \int_{S^2} F\omega - \text{Area}(S^2) \cdot F(X).
\]
We embed A into a sphere $S^2_{a,b}$ of area $1 + a + b$ by gluing a disk of area a to $S^1 \times \{0\}$ and a disk of area b to $S^1 \times \{1\}$. Denote this embedding by $i_{a,b} : A \to S^2_{a,b}$. Let $r_{a,b} = \frac{1}{1 + a + b} \cdot (\text{Cal}_A - i_{a,b}^* \text{Cal}_{S^2_{a,b}}^q)$ be the normalized difference between the Calabi homomorphism on A and the pullback of the Calabi quasimorphism of $S^2_{a,b}$. Note that $r_{a,b}$ vanishes on Hamiltonians g supported in a disk $D \subset A$ of area $\frac{1+a+b}{2}$. Indeed, $i_{a,b}(D)$ is displaceable in $S^2_{a,b}$ thus
\[
\text{Cal}_{S^2_{a,b}}^q(i_{a,b} \ast g) = \text{Cal}_D(g|_D) = \text{Cal}_A(g).
\]
This implies that $r_{a,b}$ is continuous in the C^0-topology (see Theorem 3 in [EPP]).

Let $F : \mathbb{A} \to \mathbb{R}$ be a Hamiltonian function, f its time-1 map and suppose that $-1 \leq b - a \leq 1$ or, equivalently, $h := \frac{1+b-a}{2} \in [0,1]$. If F admits the h-percentile set X_h, it is mapped by $i_{a,b}$ to the median set of $i_{a,b} \ast F : S^2_{a,b} \to \mathbb{R}$, therefore $r_{a,b}(f) = F(X_h)$. This makes the quasimorphisms $r_{a,b}$ a useful tool to extract information about the Reeb graph of a Hamiltonian function.

3.3. CONSTRUCTION OF THE HAMILTONIAN g. Let $F : S^1 \times [0,1] \to \mathbb{R}$ be a Hamiltonian function given by $K(\theta, s) = s$ when $s \in [0.01, 0.99]$ and extended to a function compactly supported in the interior of \mathbb{A} in an arbitrary way. The time-t map ϕ^t of K rotates the annulus $A = S^1 \times [0.01, 0.99]$ by t in the S^1 coordinate. Let $D \subset A$ be a disk of area 0.8 and $\Psi : \Sigma \to \mathbb{R}$ be a smooth function which equals 1 in D and is supported in a disk of area 0.9 inside A. (That is, Ψ is a smooth approximation of the indicator function of D.) The time-t map ψ^t fixes D pointwise but the flow induces a fast rotation outside ∂D. Pick large independent parameters $T, \tau \in \mathbb{N}$ and consider $g_{T,\tau} := \phi^T \circ \psi^\tau$ (see Figure 1). Assuming T is an integer, ϕ^T translates the subannulus A precisely T times
around S^1, hence fixes A pointwise. ψ^τ is supported in A, hence ϕ^T and ψ^τ commute.

3.4. **Proof of Theorem 2.** We claim that $g_{T,\tau}$ is not autonomous. Assume by contradiction that it is generated as the time-1 map of a Hamiltonian function $H : \mathbb{A} \to \mathbb{R}$. Suppose first that H is generic, that is, H admits a Reeb tree T_H.

We compute the values of H at its percentile sets in two different ways: first, pick $h \in [0.01, 0.99]$. Let $a = 1$ and $b = 2h$ which satisfy $h = \frac{1 + b - a}{2}$:

$$r_{a,b}(g_{T,\tau}) = r_{a,b}(\phi^T) + r_{a,b}(\psi^\tau) = hT.$$

The first equality holds because ϕ^T and ψ^τ commute; $r_{a,b}(\phi^T) = hT$ since $Y_h = S^1 \times \{h\}$ is the h-percentile for K and $K(Y_h) = h$; $r_{a,b}(\psi^\tau) = 0$ as the support of Ψ becomes displaceable in $S^2_{a,b}$. Therefore, if the h-percentile X_h exists for H, $H(X_h) = hT$.

We perform another computation: fix $h' \in [0.2, 0.8]$. Let $a' = 0.8 - h'$ and $b' = h' - 0.2$. Once again, $h' = \frac{1 + b' - a'}{2}$ and

$$r_{a',b'}(g_{T,\tau}) = r_{a',b'}(\phi^T) + r_{a',b'}(\psi^\tau) = h'T + \tau;$$

$r_{a',b'}(\phi^T) = h'T$ as before but $r_{a',b'}(\psi^\tau) = \tau$ since $i_{a',b'}$ embeds \mathbb{A} into a sphere of area $1 + a' + b' = 1.6$. So the image of the disk D becomes the median set for $i_{a',b'} \ast \Psi$, thus $r_{a',b'}(\psi^\tau)$ can be computed explicitly. The calculation shows that if the h'-percentile $X_{h'}$ exists for H, $H(X_{h'}) = h'T + \tau$.

Figure 1. The map $g_{T,\tau}$.
This contradicts the previous result, hence \(h \)-percentiles do not exist for \(h \) in the interval \([0.2, 0.8]\). That is, \(T_H \) has one or several branches with total measure at least 0.6. In fact, there must be a single branch of measure at least 0.6: if there are several branches growing out of different points of the stem, there will be intermediate \(h \)-percentiles which correspond to stem points between the branches. In our situation it is not the case. If there are two branches or more growing from the same stem point (which is possible in a non-generic situation), we may perturb \(H \) in the \(C^\infty \)-topology and separate the branches. Intermediate percentiles will appear after such perturbation. However, our quasimorphisms \(r_{a,b} \) are \(C^0 \)-continuous, so a small perturbation will not resolve the discrepancy \(\tau \) between the results of two computations.

As a corollary, there must be a branch \(B \subset T_H \) with measure at least 0.6; \(D_B = H^{-1}(B) \) is a topological disk in \(\Sigma \) of area at least 0.6 which is an invariant set for the flow of \(H \). Intuitively, points in \(D_B \) have rotation number 0 with respect to the \(S^1 \) coordinate (all points with non-zero rotation number are mapped to the stem). However, most points in \(\mathcal{A} \) (up to a subset of area 0.02) have rotation number \(T \) under \(g_{T,\tau} \), which gives a contradiction. That is, \(g_{T,\tau} \) is not autonomous. In fact, one may also deduce from here that \(g_{T,\tau} \) is not \(C^0 \)-close to an autonomous Hamiltonian.

We reproduce this contradiction using more powerful tools which will show that it is stable in both \(C^0 \) and Hofer metric. In [Kha1], Theorem 2, the author constructs a quasimorphism \(\rho_{0.6} : \text{Ham}(\mathcal{A}) \to \mathbb{R} \) which is \(C^0 \)-continuous and has the following property. Suppose \(g \in \text{Ham}(\mathcal{A}) \) has an invariant disk of area 0.6 or more, then \(\rho_{0.6}(g) \) computes the rotation number (along the \(S^1 \) coordinate) of points in this disk. (\(\rho_{0.6} \) is constructed as a certain combination of Calabi quasimorphisms pulled back from \(S^2 \) similarly to the construction of \(r_{a,b} \).) Therefore,

\[
\rho_{0.6}(g_{T,\tau}) = \rho_{0.6}(\phi^T) + \rho_{0.6}(\psi^\tau) = T.
\]

So \(\rho_{0.6}(\phi^T) = T \) since \(\phi^T \) rotates the annulus \(A \) exactly \(T \) times around; the same is true for any disk of area 0.6 in \(A \); \(\rho_{0.6}(\psi^\tau) = 0 \) since \(D \) is a stationary disk of area 0.8.

This shows that large invariant disks of \(g_{T,\tau} \) (if they exist) have rotation number \(T \). On the other hand, invariant disks of an autonomous flow must have rotation number zero. Therefore no such disks exist, so the Hamiltonian function \(H \) cannot have a large branch. This is a contradiction to the first part
of the argument where we established existence of a branch \(B \). Hence \(g_{T,\tau} \) is not autonomous.

If \(H \), which is supposed to generate \(g_{T,\tau} \), is extremely non-generic and its Reeb graph does not exist, we may perturb it and argue as before, since the quasimorphisms \(r_{a,b} \) and \(\rho_{0.6} \) used as tools to arrive at a contradiction are \(C^0 \)-continuous.

Remark 3: \(g_{T,\tau} \) is not autonomous in \(\text{Ham}(A) \) but is a composition of two autonomous maps.

However, if one allows Hamiltonian flows and diffeomorphisms in \(A \) whose support is not restricted to the interior, \(g_{T,\tau} \) becomes autonomous in this extended group and, in particular, is integrable and has entropy zero. To see this, note that for an integer \(T \), the map \(\phi^T \) which rotates the inner subannulus \(A \) around the \(S^1 \) coordinate can be generated by another autonomous flow \(\tilde{\phi}^t \). Namely, the one that fixes \(A \) pointwise and rotates a tubular neighborhood of \(\partial A \) in the opposite direction. This flow is generated by

\[
\tilde{K}(\theta, s) = K(\theta, s) - s.
\]

Since \(\psi^t \) is supported inside \(A \), \(\tilde{\phi}^t \) and \(\psi^t \) have disjoint supports, commute and can be combined into a single autonomous flow which generates \(g_{T,\tau} = \phi^T \circ \psi^\tau \).

The obstruction for \(g_{T,\tau} \) to be autonomous consists of two ingredients:

- \(\forall h \in [0.2, 0.8] \):
 \[
 r_{a',b'}(g_{T,\tau}) - r_{a,b}(g_{T,\tau}) = \tau \neq 0,
 \]
 hence no percentiles exist in the interval \([0.2, 0.8] \). Therefore there must be a branch of area at least 0.6.

- \(\rho_{0.6}(g_{T,\tau}) = T \neq 0 \). Therefore \(g_{T,\tau} \) cannot have a large invariant disk with rotation number zero, hence no large branches for the generating Hamiltonian function of \(g_{T,\tau} \).

The quasimorphisms \(\rho \) and \(r \) used in the argument are \(C^0 \)-continuous and Hofer–Lipschitz, hence this obstruction persists under deformations of \(g_{T,\tau} \) that are either \(C^0 \)-small or whose Hofer norm is less than \(\min(T, \tau) \) divided by appropriate Lipschitz constants. This provides a lower bound for the Hofer distance between \(g_{T,\tau} \) and the set of autonomous Hamiltonians. In particular, \(g_{T,\tau} \) arrives arbitrarily far away from autonomous diffeomorphisms if we let \(T, \tau \to \infty \).
4. Proof of Theorem 1

4.1. Construction of the Hamiltonian g. We consider the following diffeomorphism which is slightly different from the construction in Section 3 but follows the same lines. Denote $A = S^1 \times (-2, 2)$. Let (θ, s) be the coordinates on A (in our notation $S^1 = \mathbb{R}/2\pi \mathbb{Z}$) and equip A with the area form $d\theta \wedge ds$ so that A has symplectic area 8π. Denote by $D = \{\theta^2 + s^2 < 1\}$ a unit disk in A.

Denote by $K : A \to \mathbb{R}$ the Hamiltonian function $K(\theta, s) = s$. Its Hamiltonian vector field $X_K = \partial/\partial \theta$, so the Hamiltonian flow ϕ^t_K translates each point in A by t in the S^1 coordinate: $\phi^t_K(\theta, s) = (\theta + t, s)$. Let $\varphi = \phi^\pi_K$—half rotation of the annulus. Note that $\varphi(D) \cap D = \emptyset$ while $\varphi^2 = 1_A$. In particular, φ^2 fixes D pointwise.

Let $\psi : D \to D$ be an autonomous diffeomorphism which rotates circles $\{\theta^2 + s^2 = r^2\}$ counterclockwise by an angle $\alpha(r)$. We ask that $\alpha(r) > 0.2$ in the inner disk $\{r < 0.7\}$, equals zero for $r \geq 0.9$ and decreases monotonously with r. Clearly, ψ is area-preserving. As it is compactly supported in D, ψ extends to the annulus A by identity.

Without loss of generality, we suppose that the area of Σ is greater than 8π so that A admits a symplectic embedding $i : A \to \Sigma$ (it is not important whether $i(A)$ is contractible in Σ or not). In what follows we identify A with its image in Σ. We extend K to the rest of Σ in an arbitrary way (for example, by constants, if Σ is closed and $\Sigma \setminus A$ is disconnected, or by cutting K off near ∂A). This induces an autonomous extension of the Hamiltonian vector field X_K and its flow ϕ^t_K to Σ. Now $\varphi = \phi^\pi_K : \Sigma \to \Sigma$ is an autonomous extension of $\varphi : A \to A$ which was discussed earlier; ψ extends outside A by the identity map. Let $g = \varphi \circ \psi$ (see Figure 2).

![Figure 2. The map g.](image)
4.2. Proof of Theorem 1.

Lemma 4: g is integrable. In particular, it has entropy zero.

Proof. Figure 3 provides a lamination which is preserved both by φ and ψ, hence also by $g = \varphi \circ \psi$. This lamination extends outside the annulus A to the rest of Σ by level sets of the autonomous Hamiltonian K which generates φ. Clearly, this extended lamination is also invariant under $\varphi \circ \psi$. It is not difficult to construct a function which generates this lamination by level sets. ■

![Figure 3. Invariant lamination.](image)

In our argument that g cannot be approximated by autonomous diffeomorphisms we will focus on the annulus A; the dynamics outside A is not important for the proof. Very roughly, if g had been generated by an autonomous flow, this flow would have eventually displaced D (since $g(D) \cap D = \emptyset$). This flow brings D back later on applying a rotation ψ in D (indeed $g^2(D) = D$ as a set and $g^2|_D = \psi$). The argument below shows that a given autonomous flow can either displace D at a certain time t_0 or rotate it at a time t_1—but not both, and this property persists under C^0 perturbations.

Since the angle $\alpha(r)$ of rotation by ψ increases from zero near ∂D and becomes greater than 0.2 near the center of D, there is a radius $r_{0.2}$ which corresponds to points which are rotated precisely by $\alpha(r_{0.2}) = 0.2$.
Since all Riemannian metrics of M are comparable on D and define there the same notion of convergence, in further computations we will assume without loss of generality that the Riemannian metric of M restricts to $ds^2 + d\theta^2$ on D. Assume by contradiction that there exists an autonomous diffeomorphism h which is C^0-close to g. Note that
\[d_{C^0}(h^2, g^2) \to 0 \quad \text{as} \quad d_{C^0}(h, g) \to 0, \]
so we may assume that $d_{C^0}(h, g) < 0.1$ and $d_{C^0}(h^2, g^2) < 0.1$. Let χ be an autonomous flow which generates h. We note that, similar to g, h displaces D. Hence h has no fixed points inside the disk, which means no equilibrium points for χ in D (zeroes of the underlying vector field).

Lemma 5: h^2 has a fixed point in D.

Proof. We construct a vector field $X \in \text{Vect}(D)$ by
\[X(p) = h^2(p) - p. \]
Note that the vector field $g^2(p) - p$ points counterclockwise on the circle \(\{s^2 + \theta^2 = r_{0.2}^2\} \). Since h^2 is close to g^2, X also points counterclockwise on this circle. By the Poincaré–Hopf theorem this implies that X has at least one zero in the disk \(\{s^2 + \theta^2 \leq r_{0.2}^2\} \). This zero is a fixed point for h^2.

The easiest way to see existence of the zero is to note that the rotated vector field $e^{-i\frac{\pi}{2}}X$ points outwards the disk (a standard example of a repelling field) hence has a zero there. It follows that X has a zero as well.

Note that fixed points p of an autonomous diffeomorphism f on a surface can be of two types. Either p is an equilibrium point for the flow or the flow line c to which p belongs is a simple loop. Moreover, if the time-t map of the flow traverses c exactly n times, the same is true for any other point in c. In particular, the curve c is fixed by f pointwise.

Pick a fixed point p of h^2 in $D' = \{s^2 + \theta^2 \leq r_{0.2}^2\}$ as in the lemma. In our case h has no fixed points in D, hence p is not an equilibrium point. Therefore p belongs to a loop c in Σ which consists of fixed points of h^2. Note that $\partial D' = \{s^2 + \theta^2 = r_{0.2}^2\}$ is rotated by g^2 by the angle 0.2. Since all $x \in \partial D'$ are displaced by g^2 by distance greater than 0.1, $\partial D'$ cannot contain fixed points of h^2. Therefore $c \cap \partial D' = \emptyset$, which implies $c \subset D'$. But in this case the disk encircled by c is invariant under the flow χ which generates both h^2 and h, hence h cannot displace D. This is a contradiction and the proof follows.
5. Final remarks

There are several interesting bi-invariant norms on the group Ham(Σ): Hofer norm [Hof], autonomous norm, entropy-zero norm and integrable norm [BM]. While it is easy to see that the last three norms are not equivalent to the Hofer norm, it is not known whether these norms are inequivalent.

Let us recall the definition of these norms. It is known that every Hamiltonian diffeomorphism of Σ can be written as a composition of autonomous diffeomorphisms and hence of entropy-zero and integrable diffeomorphisms as well. Let Aut_Σ, Int_Σ and Ent_Σ denote the sets of the autonomous, integrable and entropy-zero diffeomorphisms respectively. Since these sets are conjugation invariant, the word norms: the autonomous norm ∥·∥_Aut, the integrable norm ∥·∥_Int and the entropy-zero norm ∥·∥_Ent (whose generating sets are Aut_Σ, Int_Σ and Ent_Σ, respectively) on Ham(Σ) are bi-invariant. Note that

\[\text{Aut}_Σ \subset \text{Int}_Σ \subset \text{Ent}_Σ, \]

hence for every \(f \in \text{Ham}(Σ) \) we have

\[\| f \|_\text{Ent} \leq \| f \|_\text{Int} \leq \| f \|_\text{Aut}. \]

Question: Are the autonomous, integrable and entropy-zero norms equivalent?

Remark 6: The usual strategy used to try to attack the above question is to construct a quasimorphism which vanishes on one of the generating sets, but does not vanish on the other. In particular, an existence of a homogeneous quasimorphism which vanishes on the set Int_Σ, but does not vanish on the set Ent_Σ, implies that the entropy-zero and integrable norms are not equivalent. If, in addition, such a quasimorphism is C^0-continuous, then this would imply a negative answer to the original question of Katok.

We finish the paper with a question that concerns the Hofer norm. In [Kha2] the second author showed that in the case that Σ is an annulus, the diffeomorphism constructed in Section 3 cannot be presented as a Hofer limit of autonomous Hamiltonians.

Question: Let Σ be a general surface. Is it true that a diffeomorphism \(g \) of Σ, constructed in the general proof of Theorem 1, cannot be presented as a Hofer limit of autonomous Hamiltonian diffeomorphisms?
References

[AK] D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskovskogo Matematicheskogo Obshchestva 23 (1970), 3–36.

[BM] M. Brandenbursky and M. Marcinkowski, Entropy and quasimorphisms, Journal of Modern Dynamics 15 (2019), 143–163.

[Bra] B. Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves, Annals of Mathematics 181 (2015), 1033–1086.

[Cal] D. Calegari, scl, Mathematical Society of Japan Memoirs, Vol. 20, Mathematical Society of Japan, Tokyo, 2009.

[EP] M. Entov and L. Polterovich Calabi quasimorphism and quantum homology, International Mathematics Research Notices 2003 (2003), 1635–1676.

[EPP] M. Entov, L. Polterovich and P. Py, On continuity of quasimorphisms for symplectic maps, in Perspectives in Analysis, Geometry, and Topology, Progress in Mathematics, Vol. 296, Birkhäuser/Springer, New York, 2012, pp. 169–197.

[Hof] H. Hofer, On the topological properties of symplectic maps, Proceedings of the Royal Society of Edinburgh Section A. Mathematics 115 (1990), 25–38.

[Kat1] A. Katok, Open problems in elliptic dynamics, 2009, http://akatok.s3-webiste-us-east-1.amazonaws.com/elliptic.pdf.

[Kat2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Institut des Hautes Études Scientifiques. Publications Mathématiques 51 (1980), 137–173.

[Kha1] M. Khanevsky, Hofer’s length spectrum of symplectic surfaces, Journal of of Modern Dynamics 9 (2015), 219–235.

[Kha2] M. Khanevsky, Non-autonomous curves on surfaces, Journal of of Modern Dynamics 17 (2021), 305–317.