The Effect of Vitamin C on Parathyroid Hormone in Patients on Hemodialysis With Secondary Hyperparathyroidism: A Double Blind, Placebo-Controlled Study

Vajihe Biniaz¹, Eghlim Nemati², Ali Tayebi¹*, Mehdi Sadeghi Shermeh¹, Abbas Ebadi¹

¹Department of Medical Surgical Nursing, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
²Nephrology and Urology Department, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
*Corresponding author: Ali Tayebi, Department of Medical Surgical Nursing, Baqiyatallah University of Medical Sciences, Velayat Complex, Nobonyad Square, Tehran, Iran. Tel: +98-9180598161. Fax: +98-2126127253. E-mail: Tayebi.ali@gmail.com.

Received: May 22, 2013; Revised: June 12, 2013; Accepted: June 25, 2013

Background: Secondary hyperparathyroidism (SHPT) is a prevalent disorder in patients with chronic kidney disease. It is proffered that there is a contradictory relation between serum level of vitamin C and parathyroid hormone (PTH) in hemodialysis patients with secondary hyperparathyroidism.

Objectives: The goal of this study was to assess the effects of the supplemental vitamin C on parathyroid hormone among hemodialysis patients with secondary hyperparathyroidism.

Patients and Methods: This randomized, placebo-controlled, double-blind and parallel-group trial was conducted on 82 hemodialysis patients with serum levels of PTH more than 200 pg/ml. In intervention group, 250 mg vitamin C was injected three times a week for 8 weeks in a row immediately at the end of each dialysis session via the intravenous route. In the control group, same term of placebo saline was injected.

Results: The mean of serum PTH was 699.81 (± 318.8) and 596.03 (± 410.7) pg/ml in intervention and control groups respectively at baseline (reference range, 4 to 66 pg/mL), and at the end of study it changed to 441.4 and 424.6 in these groups. The values of serum Calcium and Phosphate did not significantly change during the study (8.4 ± 0.6 mg/dL versus 8.1 ± 0.8 mg/dL, P = 0.39; 5.89 ± 1.7 mg/dL versus 5.9 ± 1.9 mg/dL, P = 0.08, respectively).

Conclusions: This study finding does not warranted therapeutic effect of vitamin C on secondary hyperparathyroidism.

Keywords: Renal Dialysis; Parathyroid Hormone; Hyperparathyroidism, Secondary; Ascorbic Acid

1. Background

Secondary hyperparathyroidism (SHPT) is one of the most prevalent disorders in patients with chronic kidney disease (CKD) (1), which most hemodialysis patients are faced with (up to 50%) (2). Although SHPT is a result of increased parathyroid hormone (PTH) synthesis due to phosphorus accumulation and hypocalcemia (3), other factors such as impairment of vitamin D metabolism and reduced PTH renal clearance (4) may also exacerbate it (5). Hypocalcemia (Low serum levels of ionized calcium) frequently happens as a result of calcium inadequate response to parathyroid hormone (1).

High levels of PTH, considered as a uremic toxin (6), can stimulate accelerated bone absorption and reabsorption, and cause bone demineralization and renal osteodystrophy (7). The bones which become demineralized are structurally fragile, easily broken, and not resistant to any shock. In this stage, there is higher risk of fractures (8). This mineral metabolism abnormality is also one of the main risk factors for ectopic calcification and cardiovascular events in hemodialysis patients (3).

To prevent the main problems created by SHPT such as cardiovascular mortality and fractures (9), it is necessary to examine and analyze different methods to reduce parathyroid hormone in patients on hemodialysis (10). Whereas there is a potential link between the occurrence of SHPT and low vitamin C levels in conformity with some studies (3), vitamin C supplementation is probably a way to reduce parathyroid hormone with fewer side effects (1).

In low serum levels of vitamin C, calcium-sensing receptors may become resistant to PTH influence (11). Vitamin C increases the response to PTH at these receptors by increasing the cyclic adenosine monophosphate and reducing PTH through it (12).

Hemodialysis patients are at risk for low levels of serum vitamin C (13). Vitamin C is a water-soluble vitamin which can be reduced by regular hemodialysis (14). Dietary restrictions, following fear related to hyperkalemia (15), concern oxalosis, wasting several hundred mg of vitamin...
membranes (1), some of the patients were dialyzed by efficient in the removal of biointact PTH than low-flux kt/V. Although high-flux dialysis membranes are more length of hemodialysis in all patients was approximately including age, sex, weight, marital and employment status, smoking. The study (37 person in case, and 39 person in control group). Of 82 randomized patients, 6 were excluded from the study due to transmission to other dialysis centers, being infected by active infections, getting cancers, death, refusing the test procedure at any stage of it. Prior ethical approval was obtained from the institutional ethical committee at Baqiyatallah University of Medical Sciences, Tehran, Iran. A justification letter was sent to two hemodialysis units to gain permission to collect the data granted by these units. Verbal and written consents were obtained from all those who participated in the study. Written consents were obtained after informing each participant about the study purposes, the “confidentiality” of their information, and the possibility to refuse the test procedure at any stage of it.

4. Results

Demographic data of the participants showed that, among 76 respondents, 46 (60.5%) patients were male and 30 (39.5%) female. The mean age of participants was 60.6 years (SD 11.47) (maximum and minimum range was 29-81 years).

Tables 1 and 2 exhibited the demographic Characteristics of the Study Population. The mean level of serum PTH decreased to 441.42 (± 311.6), and 424.6 (± 386.4) after the intervention in study and control groups respectively. There was no significant correlation between the serum levels of PTH and vitamin C prescription. PTH level alterations in different stages of study are summarized in Table 3. Serum Calcium and Phosphate levels did not significantly change during the study (8.4 ± 0.6 mg/dL versus 8.1 ± 0.8 mg/dL, P = 0.39; 5.89 ± 1.7 mg/dL versus 5.9 ± 1.9 mg/dL, P = 0.08, respectively).
Table 1. Baseline Qualitative Characteristics of the Respondents

Variables	Intervention Group, No. (%)	Control Group, No. (%)	χ²-test
Gender	20 (26.3)	26 (34.2)	0.18
Male	17 (22.4)	13 (17.1)	
Female	3 (3.9)	4 (5.3)	0.43
Marriage	31 (40.8)	33 (43.4)	0.29
Married	2 (2.6)	0	
Single	67.9)	4 (5.3)	0.48
Education	8 (10.5)	8 (10.5)	0.81
Primary-secondary	31 (40.9)	29 (38.1)	
College/university-level	8 (10.5)	8 (10.5)	
Employment	0	0	
Jobless	17 (22.4)	12 (15.8)	
Employed	3 (3.9)	4 (5.3)	0.43
Retired	17 (22.4)	23 (30.2)	
Smoking	1 (1.3)	0	
Yes	36 (47.4)	39 (51.3)	
No	14 (18.4)	17 (22.4)	0.45
Nephropathy cause	4 (5.3)	6 (7.9)	
HTNa	9 (11.8)	9 (11.8)	
DMa	10 (13.1)	7 (9.2)	
Others	10 (13.1)	7 (9.2)	

*aAbbreviation: DM, diabetes mellitus; HTN, hypertension.

Table 2. Baseline Quantitative Characteristics of the Respondents

Variable	Intervention Group, Mean (SD)	Control Group, Mean (SD)	T-test
Age, y	60.32 (12.2)	60.97 (10.9)	0.8
Dialysis vintage, mo	63.27 (67.8)	40.4 (32.8)	0.63
Body weight, kg	68.08 (9.4)	72.1 (9.7)	0.07
Serum parameters			
Intact parathyroid hormone, pg/mL	699.8 (318.8)	596 (410.3)	0.22
Calcium, mg/dL	8.43 (0.49)	8.37 (0.71)	0.35
Phosphate, mg/dL	6.008 (1.76)	5.787 (1.66)	0.57

Table 3. Bioeintact Parathyroid Hormone (PTH) Levels

Groups	PTH, pg/mL	P-Value
Intervention	699.8 (318.8)	0.22
Control	596.01 (410.3)	0.83

5. Discussion

The results of the present study demonstrated that vitamin C supplementation cannot decrease serum level of PTH significantly. According to data, the incidence of CKD is higher in men and people older than 45 years. In this study, the mean age of patients was also 60.66 (SD 11.47) years, and
most of them (60.5%) were male and 90.8% of patients were older than 45 years. These results are supported by earlier studies.

In other studies more than 50% hemodialysis patients were jobless, but in our study only 3.9% of the patients were unemployed, and the rest (96.1%) were retired or employed. This could indicate that the government and insurance companies provide appropriate support for hemodialysis patients in Iran. Like similar studies, in this study diabetes and hypertension were the most common causes of nephropathy (diabetes and hypertension 77.7%).

In 2008, Richter proposed that there is an inverse correlation between serum level of vitamin C and biointact PTH (3). He measured serum vitamin C level, while prescribing no vitamin C analogues.

Similarly, in 2011 Sanadgol reported that vitamin C is able to reduce biointact PTH level. Although there were no placebo and control groups in his study, he confirmed that there is an inverse correlation between vitamin C and SHPT in hemodialysis patients (1).

In 2011, Sanadgol and his colleagues measured the mean level of biointact PTH after a prescription of 200 mg of vitamin C, three times a week for 3 months, and explained that the mean of serum PTH was notably reduced at the end of the first month after the prescription of vitamin C. But this influence became gradually weaker after 2 months, so that serum level of PTH increased in 3 months; however, it was still lower than the baseline level. They stated that the reason of this finding may be associated with decreased calcium-sensing sensitivity of receptors to vitamin C.

In spite of Sanadgol study, we observed no significant association between serum levels of PTH and vitamin C. It can be associated with sample size diversity (21 versus 76), usage of placebo, randomization, and control group in our study.

At the initiation of the plan, we selected patients with serum PTH levels more than 200 pg/mL, and randomly divided them into two parallel groups. We prescribed 250 mg intravenous vitamin C immediately after hemodialysis for 2 months, and then assessed the PTH level changes. None of our sampled patients recently used vitamin C supplements. Nevertheless, in our study the level of serum PTH was not measured at the end of the first month. The mean of serum PTH decreased at the end of the second month in the intervention group (699.8 versus 441.4). It can be demonstrated that vitamin C influences on the serum level of PTH. But there was a decrease in serum level of PTH in the control group too; however, it was not comparable with the reduction in the intervention group (441.4 versus 424.6). The main cause of the observed diminution in serum levels of PTH at control group is unknown, but it may be associated with what is called “placebo effect”. Also, we should have examined the serum levels of PTH at the termination of the first month after prescription.

Not measuring plasma level of vitamin C before, and after the study, and not specifying the patients who had vitamin C deficiency before study were the limitations in our study which prevented the capability to generalize the findings. Removing these limitations was not a feasible option due to the financial costs, and the limitations of the laboratories capable of providing the circumstance for this test.

Conclusions: This study finding does not warranted therapeutic effect of vitamin C on secondary hyperparathyroidism. Although serum level of PTH decreased in intervention group with supplemental vitamin C, this decrease was observed in placebo group too. Therefore in this study we did not observe any significant association between vitamin C supplementation and secondary hyperparathyroidism.

Acknowledgments

The present article is a part of a thesis for master of nursing approved by Baqiyatallah University of Medical Sciences. The protocol of this study is registered under IRCT20121221046N2 code into IRCT: Iranian registry of clinical trials. Authors gratefully acknowledge the assistance of all participants in this study and nurses of Baqiyatallah and Chamran hospitals.

Authors’ Contribution

Vajihe Biniaz developed the protocol, abstracted, analyzed, and interpreted data, wrote and prepared the manuscript, and revised the manuscript for demanded reforms. Ali Tayybi developed the original idea and contributed to the development of the protocol and is corresponding author. Abbas Ebadi contributed to the data analysis and the manuscript revision. Mehdi Sadeghi and Eghlim Nemati contributed to development of the protocol.

Financial Disclosure

There is no conflict of interest.

Funding/Support

This project was supported by a grant from Nephrology and Urology Research Center of Baqiyatallah University of Medical Sciences.

References

1. Sanadgol H, Bayani M, Mohammadi M, Bayani B, Mashhadi MA. Effect of vitamin C on parathyroid hormone in hemodialysis patients with mild to moderate secondary hyperparathyroidism. Iran J Kidney Dis. 2013;7(1):410–5.
2. Gorriz JL, Molina P, Rover J, Barril G, Martin-de Francisco AL, Caravaca F, et al. Characteristics of bone mineral metabolism in patients with stage 3 chronic kidney disease not on dialysis: results of the OSERCE study. Nefrologia. 2013;33(1):46–60.
3. Richter A, Kuhlmann MK, Seibert E, Kotanko P, Levin NW, Handel-
man GJ. Vitamin C deficiency and secondary hyperparathyroidism in chronic haemodialysis patients. *Nephrol Dial Transplant.* 2008;23(5):2058-63.
4. Brossard JH, Lepage R, Cardinal H, Roy L, Rousseau L, Dorais C, et al. Influence of glomerular filtration rate on non-(1-84) parathyroid hormone [PTH] detected by intact PTH assays. *Clin Chem.* 2000;46(5):697-703.
5. Massry SG. Is parathyroid hormone a uremic toxin? *Nephron.* 1977;19(3):325-30.
6. Polzin DJ, Osborne CA, Jacob F, Ross S. Chronic renal failure. In: Ettinger SJ, Feldman EC, editors. *Textbook of veterinary medicine.* 5th ed. Philadelphia: WB Saunders; 2000. pp. 1634-62.
7. Weiner DE, Tighiouart H, Vlagopoulos PT, Griffith JL, Salem DN, Levey AS, et al. Effects of anemia and left ventricular hypertrophy on cardiovascular disease in patients with chronic kidney disease. *J Am Soc Nephrol.* 2005;36(5):3803-10.
8. Martin KJ, Gonzalez EA. Strategies to minimize bone disease in renal failure. *Am J Kidney Dis.* 2001;38(6):1430-6.
9. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. *J Am Soc Nephrol.* 2001;32(9):2313-8.
10. Madhvaz-Mazdeh M, Zamyadi M, Norouzi S, Heidary Rouchi A. Management of calcium and phosphorus metabolism in hemodialysis patients in Tehran Province, Iran. *Iran J Kidney Dis.* 2007;1(2):125-8.
11. McCausley LK, Koh AJ, Beecher CA, Cui Y, Rosol TJ, Franceschi RE. PTH/PTHrP receptor is temporally regulated during osteoblast differentiation and is associated with collagen synthesis. *J Cell Biochem.* 1996;61(4):638-47.
12. Pearce SH, Thakker RV. The calcium-sensing receptor: insights into extracellular calcium homeostasis in health and disease. *J Endocrinol.* 1997;154(1):39-8.
13. Deicher R, Ziai F, Biegelmayer C, Schullinger M, Horl WH. Low total vitamin C plasma level is a risk factor for cardiovascular morbidity and mortality in hemodialysis patients. *J Am Soc Nephrol.* 2005;16(3):3181-8.
14. Bohm V, Tiroke K, Schneider S, Sperschneider H, Stein G, Bitsch R. Vitamin C status of patients with chronic renal failure, dialysis patients and patients after renal transplantation. *Int J Vitam Nutr Res.* 1997;67(4):262-6.
15. Durose CL, Holdsworth M, Watson V, Przygrodzka F. Knowledge of dietary restrictions and the medical consequences of noncompliance by patients on hemodialysis are not predictive of dietary compliance. *J Am Diet Assoc.* 2004;104(3):35-41.
16. Morena M, Cristol JP, Besc JY, Tetta C, Forret G, Leger CL, et al. Convective and diffusive losses of vitamin C during haemofiltration session: a contributive factor to oxidative stress in haemodialysis patients. *Nephrol Dial Transplant.* 2002;17(7):1422-7.
17. Handelman GJ. Vitamin C deficiency in dialysis patients—are we perceiving the tip of an iceberg? *Nephrol Dial Transplant.* 2007;22(2):328-31.
18. Farsi Z. [Rabeteye esteres oksidativ va bimarihaye koleye]. Faslnam-e amouzeshie daneshkade parastari-e Baghyatalah. *Educ Quar J Nurs Facult Baghyatalah Univ Med Sci.* 2007;27:22-3.
19. Weissinger EM, Nguyen-Khoa T, Fumeron C, Saltiel G, Walden M, Kaiser T, et al. Effects of oral vitamin C supplementation in hemodialysis patients: a proteomic assessment. *Proteomics.* 2006;6(3):1009-1016.
20. Aghazamani M. Renal patients increase 20% yearly. 2011. Available from: http://www.salamatiran.com/NSite/FullStory/21. *Dietary Supplement Fact Sheet: Vitamin C.* NIH Office of Dietary Supplements; [cited June 24, 2011]. Available from: http://ods.od.nih.gov/factsheets/list-all/VitaminC/.