Precise determination of proton magnetic radius from electron scattering data

J.M. Alarcón (U. de Alcalá), D.W. Higinbotham, C. Weiss* (JLab), APS DNP Meeting 30-Oct-20

Radius extraction using theory-based method: Dispersively improved chiral EFT

Combines dispersion theory (analyticity, sum rules) and χEFT (dynamics, controled accuracy)
Correlates values of radii with FF behavior at larger $Q^2 \lesssim 1 \text{ GeV}^2$
Enables reliable determination of magnetic radius

Method: J. M. Alarcon, C. Weiss, PLB 784 (2018) 373; PRC 97, 055203 (2018);
J. M. Alarcon, A. N. Hiller Blin, M. Vicente Vacas, C. Weiss, NPA 964, 18 (2017)

Radius extraction: J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) 035203
See also: J. M. Alarcon, D. Higinbotham, C. Weiss, Z. Ye, PRC 99 (2019) 044303
Motivation: Analyticity in radius extraction

- Challenges in proton radius extraction
 - Derivative at $Q^2 = 0$ from data at finite $Q^2 > 0$
 - Extrapolation $Q^2 \to 0$: Stability, functional bias?
 - Barcus, Higinbotham, this session
 - Magnetic radius: Contribution of G^p_M to cross section $\propto \tau/\epsilon$, vanishes for $Q^2 \to 0$

- Analyticity
 - FFs analytic functions of $t = -Q^2$
 - Singularities at $t > 0$: Hadronic exchanges
 - Correlates functional behavior of FF at $Q^2 > 0$ with derivative at $Q^2 = 0$
 - Predicts size of higher derivatives
 - Global properties: Sum rules
 - Use in radius extraction!
DIχEFT: Dispersively improved chiral EFT

- **Dispersive representation**

\[
F_i(t) = \int_{t_{\text{thr}}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} F_i(t')}{t' - t - i0}
\]

Expresses analytic structure

\(\text{Im} F_i\) spectral function, constructed theoretically

- **Spectral function in \(\pi\pi\) region**

Elastic unitarity relation
Frazer, Fulco 1960; Höhler et al 1975+

Factorize \(\pi\pi\) rescattering using N/D method

\[
\Gamma_i/F_\pi: \pi\pi-N\bar{N} \text{ coupling, calculated in } \chi\text{EFT}
\]

Good convergence

\[
|F_\pi|^2: \pi\pi \text{ rescattering, taken from } e^+e^- \text{ data}
\]

Presently implemented LO + NLO + partial N2LO
Alarcon, Weiss, PLB 784 (2018) 373; PRC 97 (2018) 055203
DIχEFT: Sum rules and parameters

- Spectral function in high-mass region

 Parameterized by effective pole

 Sufficient for low-Q^2 form factors, uncertainty quantified
 Alarcon, Weiss PLB 784 (2018) 373

- Sum rules and parameters

 Sum rules for $F(0), F'(0) =$ charges, radii

 Express χEFT LEC in terms of radii

 Radii appear directly as parameters of spectral functions, control behavior
D\chi EFT: Spectral functions

- **Spectral functions in $\pi\pi$ region**

 Band shows variation with radii (PDG range)

 Good agreement with Roy-Steiner results

 Hoferichter et al 2017

Alarcon, Weiss, PLB 784 (2018) 373

Bands: Variation with nucleon radii (PDG range)
DIχEFT: Form factors

- Form factors from dispersion integral
 \[G_{E,M}(t) = \int_0^\infty \frac{dt'}{4M^2} \frac{\text{Im} G_{E,M}(t')}{t' - t - i0} \]

- Family of FFs depending on radii
 Each member respects analyticity, sum rules
 Each has intrinsic theoretical uncertainty

- Radius correlated with finite-\(Q^2\) behavior
 Provided by analyticity
 \textit{Use for radius extraction!}

Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303
Empirical FF: Global fit Ye et al 2017

\(G_M\) similar, dependence on \(r_M\)
Magnetic radius extraction: Procedure

- Use DIχEFT \(G_{E,M}^p(Q^2) \) with params \(r_E^p; r_M^p \)

- Fit Mainz A1 cross section data
 \[E = 0.18 - 0.855 \text{ GeV}, \; Q^2 = 0.003 - 1.0 \text{ GeV}^2 \]
 Fit original cross secns with floating normalizations
 Alt: Fit reanalyzed cross secns of Lee Arrington Hill 2015 with recalc uncertainties: Same radii, lower \(\chi^2 \)

- Impact on magnetic radius
 Sensitivity of cross section to \(G_M^p \)
 Dependence of DIχEFT \(G_M^p \) on \(r_M^p \)
 Theoretical uncertainty from high-mass pole
 Use data up to \(Q^2 \approx 0.5 \text{ GeV}^2 \)

\[
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \frac{\epsilon [G_E^p]^2 + \tau [G_M^p]^2}{\epsilon (1 + \tau)}
\]

Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203
Magnetic radius extraction: Results

- Extracted radii

\[r_E^{p} = 0.842 \pm 0.002 \text{ (fit 1}\sigma\text{) } \pm 0.005 - 0.002 \text{ (theory full-range) fm} \]

\[r_M^{p} = 0.850 \pm 0.001 \text{ (fit 1}\sigma\text{) } \pm 0.009 - 0.004 \text{ (theory full-range) fm} \]

Magnetic radius has smaller fit uncertainty, larger theory uncorr.

Magnetic radius needs theory-based extraction method.

Consistent with results of empirical dispersive fits

Lorenz, Hammer, Meissner 2012

Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203
Summary

- **DIχEFT** describes nucleon FFs combining dispersion theory and χEFT

 Includes ππ rescattering and ρ resonance through unitarity

 Enables predictive calculations, controlled theoretical accuracy

 Excellent agreement with empirical FFs up to $Q^2 \sim 1 \text{ GeV}^2$ and beyond

- **DIχEFT** enables theory-based radius extraction

 Correlates $Q^2 = 0$ derivatives with finite-Q^2 behavior through analyticity + sum rules

 Employs radii directly as parameters ↔ LECs

 Enables reliable determination of magnetic radius from finite-Q^2 data

- **Other DIχEFT applications**

 Nucleon transverse charge/magnetization densities
 Alarcon, Weiss, in progress. APS DNP presentation KC.2 (Saturday 8:30 CDT)

 Nucleon scalar FF
 Alarcon, Weiss, PRC 96, 055206 (2017)
DIχEFT form factors

Evaluating using dispersion integral with spectral functions

Band shows variation with radii (PDG range).

Also quantified uncertainty from high-mass states

Excellent agreement with data. Not fit, but prediction based on dynamics