Occult Hepatitis B Virus Infection and Associated Genotypes among HBsAg-negative Subjects in Burkina Faso

Birama Diarra1,2*, Albert Théophane Yonli1,2*, Pegdwendé Abel Sorgho1,2, Tegwindé Rebeca Compaore1,2, Abdoul Karim Ouattara1,2, Wendpagnandé Arsène Zongo1,2, Issoufou Tao1,2, Lassina Traore1,2, Serge Théophile Soubeiga1,2, Florence Wendkuuni Djigma1,2, Dorcas Obiri-Yeboah3, Bolni-Marius Nagalo1,2, Virginio Pietra1, Rokia Sanogo4 and Jacques Simpore1,2.

1 Biomolecular Research Center Pietro Annigoni (CERBA), BP 364 Ouagadougou 01, Burkina Faso.
2 Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Burkina Faso; BP 7021 Ouagadougou 03.
3 Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Ghana.
4 Faculty of Pharmacy, University of Sciences of Techniques and Technologies of Bamako (USTTB), Mali.

*These authors contributed equally to this work.

Competing interests: The authors have declared that no competing interests exist.

Abstract. Background: The presence of HBV DNA in the liver (with detectable or undetectable HBV DNA in the serum) of individuals tested HBsAg negative by currently available assays is defined occult B Infection (OBI). It remains a potential transmission threat and risk to HBV chronic infection. The purpose of this study was to determine the OBI prevalence among HBsAg negative subjects and to characterize associated genotypes.

Methods: Blood samples of 219 HBsAg-negative subjects tested by ELISA were collected. HBV DNA was investigated in all samples. Viral loads were determined using quantitative real-time PCR. All samples were screened for HBV markers (anti-HBc, anti-HBe, HBsAg). The Pre-S/S region of the HBV genome was sequenced. The database was analyzed using the SPSS and Epi info software. Phylogenetic analysis was performed using the BioEdit and MEGA software.

Results: Of the 219 samples, 20.1% were anti-HBc positive, 1.8% HBeAg and 22.8% were anti-HBe positive. Fifty-six (56) (25.6%) of the samples had a detectable HBV DNA and viral loads ranging from 4 IU/mL to 13.6 10^6 IU/mL. Sixteen of them (16/56) had a viral load < 200 IU/mL, resulting in an OBI prevalence of 7.3% (16/219) in our study. The remaining 40 subjects had viral loads > 200 IU/mL, resulting in a “false OBI” prevalence of 18.3% (40/219). HBV genotype E was predominant followed by the quasi-sub-genotype A3. A single "false OBI" strain had the characteristic mutation G145R. Other mutations were observed and all located in the major hydrophilic region (MHR) of the S gene.

Conclusion: The study reported a prevalence of 7.3% of occult hepatitis B infection. It confirms the predominance of genotype E and the existence of a subgroup of quasi-sub-genotype A3 of HBV in Burkina Faso. It further provides information on the presence of "false OBI." This study has found mutations in the major hydrophilic region (MHR) of the pre-S/S gene of HBV.

Keywords: HBV, OBI, Genotypes, Real-time PCR, Sequencing.

Citation: Diarra B., Yonli A.T., Sorgho P.A., Compaore T.R., Ouattara A., Zongo W. A., Tao I., Traore L., Soubeiga S.T., Djigma F.W., Obiri-Yeboah D., Nagalo B.M., Pietra V., Sanogo R., Simpore J. Occult hepatitis B virus infection and associated genotypes among HBsAg-negative subjects in Burkina Faso. Mediterr J Hematol Infect Dis 2018, 10(1): e2018007, DOI: http://dx.doi.org/10.4084/MJHID.2018.007

Published: January 1, 2018 Received: September 7, 2017 Accepted: December 15, 2017

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction. Hepatitis B virus (HBV) infection remains a major public health problem worldwide. Approximately more than 360 million people are chronic carriers of HBV, and more than 700,000 die each year from cirrhosis or hepatocellular carcinoma.\(^1\) HBV infection is highly endemic (prevalence \(\geq 8\%\)) in the general population in sub-Saharan Africa.\(^2\)

Burkina Faso (BF) is a highly endemic country with prevalence \(\geq 10\% - 15\%\) in the general population.\(^3,4\) Some prevalences of 14.3\%, 17\%, and 12.9\% have been reported among the blood donors in Nouna, Ouagadougou and the National Blood Transfusion Center of Burkina Faso, respectively.\(^5,6\) Moreover, prevalences of 9.3\% and 9.8\% have been reported among pregnant women in Burkina Faso.\(^7,8\)

The serological diagnosis of the hepatitis B virus (HBV) infection is mainly based on tests for the detection of hepatitis B surface antigen (HBsAg), and its absence is believed to exclude the occurrence of an infection. The presence of HBV DNA in the liver (with detectable or undetectable HBV DNA in the serum) of individuals tested HBsAg negative by currently available assays is defined occult B infection (OBI).\(^9\) When detectable, the amount of HBV DNA in the serum is usually very low (< 2.00 IU/ml).\(^9\)

The detection of OBI has been reported among subjects with clinical manifestations, such as chronic liver disease and hepatocellular carcinoma.\(^10\) Although most OBI carriers are asymptomatic, it has been detected in patients with chronic liver disease “cryptogenic”\(^11,12\) and may be associated with progression towards liver fibrosis and cirrhosis development.\(^10\)

Currently, a maximum of ten genotypes (A-J) and several sub-genotypes of HBV with a distinct geographical distribution have been characterized.\(^13,14\) Several studies have shown that the clinical picture, treatment response, long-term prognosis and seroconversion profile are influenced by HBV genotypes.\(^15,16\)

In Burkina Faso, very few studies have focused on occult HBV infection and associated genotypes. However, a recent study reported a prevalence of 32.8 \%(25/76)\) of OBI among blood donors of Ouagadougou.\(^17\) Thus, this study aimed to determine the prevalence of OBI among HBsAg negative subjects and characterize the associated genotypes.

Methods

Ethical consideration. Approval for the study was obtained from the National Health Ethics Committee of Burkina Faso (reference number 2015-6-080 of June, 10\(^{th}\) 2015). Informed consent was obtained from all participants before blood collection in accordance with the Helsinki Declarations.

Study population. The study was conducted between October 2014 and January 2017 in Ouagadougou, at the Pietro Annigoni Biomolecular Research Center (CERBA / LABIOGENE) of Burkina Faso. The study population consisted of 219 HBsAg-negative subjects and non-vaccinated against hepatitis B, regardless of age or social category. Participants were recruited following an awareness campaign on hepatitis and sociodemographic characteristics registered.

Sample collection, HBsAg serology, and HBV markers. The sampling was preceded by an awareness campaign on the transmission modes, risk groups, the symptoms, complications, the importance of screening and the means of prevention against hepatitis B. Blood samples collected from 219 subjects were centrifuged, and plasmas were stored at -20°C until use. HBsAg was tested using the ELISA method on the Cobas e 411 Analyzer (Roche Diagnostics GmbH Mannheim Germany) with a lower detection limit of 0.05 UI/mL. HBV markers (anti-HBc, anti-HBc, HBeAg) were determined among all participants using the same device.

DNA extraction. Viral DNA was extracted from 200\(\mu\)L of serum samples using QIAamp DNA Blood Mini kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions and was stored at -20°C until use.

Quantification of HBV DNA. The quantification of the HBV-DNA was performed using the 7 500 Real-Time PCR System (Applied Biosystems, USA). The target gene was a highly conserved region of surface gene provides for the accurate
Amplification and sequencing of HBV DNA. The pre-S/S region of the HBV genome of 21 samples was amplified using nested PCR and directly sequenced according to the method of Chen et al., 2007.\(^\text{18}\) The detection limit of the HBV DNA was 20 IU/mL. Molecular cloning and sequencing were performed only when pre-S deletions were found by direct sequencing. The HBV pre-S/S gene PCR products were cloned into the TOPO\(^{\text{®}}\)TA cloning kit (Invitrogen Ltd, Paisley, UK) according to the manufacturer’s instructions. Plasmid DNA from clones was purified with the GFX PCR purification kit (Healthcare, Buckinghamshire, UK) and sequenced. Sequencing was performed using the BigDye Terminator cycle sequencing kit (Applied Biosystems, CA, USA) and analyzed on the ABI PRISM Genetic Analyzer 3130XL (Applied Biosystems, CA, USA) according to manufacturer’s instructions.

Statistical and phylogenetic analysis. The data were analyzed using the SPSS 21.0 and Epi Info version 7.0 software. The chi-square test was used for the comparisons, and the difference was considered statistically significant for \(p \leq 0.05\). Sequencing results were analyzed using BioEdit 7.2.6 software. Multiple sequence alignment was performed with Clustal W software on HBV sequences of genotypes A–H available in GenBank (http://www.ncbi.nlm.nih.gov/genbank/index.htm). Phylogenetic analysis was performed using the Kimura two-parameter model and tree were constructed with neighbor-joining and maximum likelihood methods using the MEGA software version 5.1.

Results

Demographic and serologic characteristics of the study population. A total of 219 individuals, aged between 14 and 77 years (mean age of 38.4 ± 13.5 years), including 102 (46.6%) women and 117 (53.4%) men participated in this study. The most represented age group was 31 to 40 years, with the majority of OBI carriers were anti-HBc positive (14/16) and mainly constituted of men (9/16) in the age group 31-50 (Table 1). Anti-HBc, anti-HBc, and anti-HBe respectively. These prevalences were mostly higher in samples with a viral load > 200 IU/mL (Table 2).

Sequencing and determination of HBV genotypes. The 21 pre-S/S HBV sequences of the present study were analyzed together with 208 sequences of genotype E and A3 African strains available in the GenBank database. Both neighbor-joining and maximum likelihood phylogenetic reconstructions showed that our sequences and the previously

Characteristics	Number	Percentage (%)
Sex		
Men	117	53.4
Female	102	46.6
Age (years)		
< 30	68	31.1
31-50	114	52.1
> 50	37	16.9
Anti-HBc		
Positive	44	20.1
Negative	175	79.9
DNA		
Positive	56	25.6
Negative	163	74.4
HBeAg		
Positive	3	1.4
Negative	216	98.6
Anti-HBe		
Positive	50	22.8
Negative	169	77.2

Note: mean age of 38.4 ± 13.5 years.
Table 2. Characteristics of the samples with regards to HBV viral loads (n = 56).

Variables	Viral load in UI/mL (%)		
	< 200	200	
N	16	40	
Sex			
Female	7 (43.8)	25	62.5
Men	9 (56.2)	15	37.5
Age (years)			
< 30	4 (25.0)	12	30.0
31-50	10 (62.5)	22	55.2
> 50	2 (12.5)	6	15.5
Anti-HBs			
Positive	2 (12.5)	5	12.5
Négative	14 (87.5)	35	87.5
Anti-HBe			
Positive	14 (87.5)	30	75.0
Négative	2 (12.5)	10	25.0
AgHBe			
Positive	0 (0.0)	3	7.5
Négative	16 (100.0)	37	92.5
Anti-HBe			
Positive	2 (12.5)	9	22.5
Négative	14 (87.5)	31	77.5

Note: mean age of 37.2 ± 13.1 years; Geometric mean of viral load: 749.3 [683.1 ± 3508.2].

characterized African HBV genotypes E and A3 sequences were dispersed within clade E irrespective of their geographical origins (Figure 1). Also, the HBV genotypes E, and A3 sequences of the present study were clustered precisely within the same clade E and A3 respectively among the Burkinabe sequences previously deposited in GenBank (Figure 1).

The HBV genome pre-S/S region of 16 OBI and 5 “false OBI” (21) samples were sequenced. All sequences were considered for phylogenetic analysis and genotyping (Figure 2). Four sequences were clustered with HBV genotype A, and 17 sequences with genotype E supported by 75% and 67% bootstrapping for 1,000 replicates, respectively. The HBV genotype E pre-S/S sequences (n = 17) were analyzed together with 67 sequences of Burkinabe strains and 44 references sequences including 9 of genotype E, all available in GenBank. Both neighbor-joining and maximum likelihood phylogenetic reconstructions showed

Figure 1. Phylogenetic tree of 21 HBV genotype E pre-S/S sequences identified in this study (marked ♦). Phylogenetic tree incorporates 208 HBV/E/A3 African strains whose complete genome sequences were available in GenBank and source country of strains is indicated. Phylogenetic analysis was performed with the neighbor-joining algorithm based on the Kimura two-parameter distance estimation method. The reference sequences originating from Burkina Faso available in GenBank are indicated ♦.
Figure 2. Phylogenetic tree of 17 HBV genotype E pre-S/S sequences identified in this study. Phylogenetic analysis was performed with the neighbor-joining algorithm based on the Kimura two-parameter distance estimation method. Only bootstrap values of > 50% are shown (1,000 replicates). Reference HBV sequences recovered from GenBank are denoted with their accession numbers and genotypes/subgenotypes are indicated. The sequences identified in this study are marked ♦ (Red). The reference sequences of Burkina Faso recovered from GenBank are indicated ♦ (Black).

Figure 3. Phylogenetic tree of 4 HBV genotype A3 pre-S/S sequences identified in this study. Phylogenetic analysis was performed with the neighbor-joining algorithm based on the Kimura two-parameter distance estimation method. Only bootstrap values of > 50% are shown (1,000 replicates). Reference HBV sequences recovered from GenBank are denoted with their accession numbers and genotypes/subgenotypes are indicated. The sequences identified in this study are marked ♦ (Red). The reference sequences of Burkina Faso recovered from GenBank are marked ♦ (Black).
that the 17 sequences were clustered within the same clade E of the Burkinabé HBV genotype E sequences previously characterized (Figure 2).

Also, the HBV genotype A pre-S/S sequence (n=4) were analyzed together with 22 A3 sub-genotype sequences of Burkinabé strains and 44 references sequences including 8 of A3 sub-genotype, all available in GenBank. Phylogenetic analysis also showed that the 4 sequences were HBV subtype A3 and clustered in same clade A3 (Figure 2).

Mutations in the S gene according to genotypes and cases of hepatitis B virus infection. Of the 21 pre-S/S regions sequenced, 16 (76.2 %) were OBI cases and 5 (23.8 %) "false OBI" cases. The A3 genotype strains showed no specific mutations. A single strain of “false OBI “carried the G145R mutation (Table 3). All other amino acid substitutions were observed in both cases (Table 3). In general, all observed mutations are located in the most hydrophilic region (MHR) of the S gene (Table 3).

Table 3. Mutations in the S gene according to genotypes and cases of hepatitis B.

Amino acid substitutions	Genotype	Hepatitis B		
		False	Occult	
	A3	E	1	2
L115I	0	3	1	2
L115E	0	1	0	1
H133F	0	1	0	1
H133A	0	4	3	1
G145R	0	1	1	0
R149A	0	2	1	1
R149D	0	1	1	0

Discussion. In this study, the anti-HBc prevalence was 20.1% (44/219) among HBsAg-negative subjects. This prevalence is lower than 44.0% reported in HBsAg-negative blood donors in Burkina Faso. However, it is higher than 7.8% and 16.6% reported in HBsAg-negative blood donors in Egypt. These differences could be explained by the size and type of study population but also by endemicity for HBV. It should also be mentioned that voluntary participation in a screening program includes self-selection bias.

Until now, most studies of occult hepatitis B virus infection were conducted among blood donors, poly-transfused patients or patients with proven or co-infected with liver disease. Data on the prevalence of OBI is limited in sub-Saharan Africa, in particular among alleged healthy individuals. The prevalence of occult HBV infection was 7.3% in our study. The latter is lower than that reported among HIV-positive patients from Ivory Coast in 2010 and from Sudan in 2014, and among blood donors from Burkina Faso in 2016; 10%, 15%, and 32.8% respectively. Nevertheless, our prevalence was similar to that of 6.25% reported among Egyptian blood donors in 2010. However, it was higher than 0.5% reported among regular blood donors in Southeast Nigeria. These variations could be explained by the difference of population studied, the sensitivity of the diagnostic tests used and the prevalence of HBV. Indeed, several studies have shown that OBI is significantly associated with the endemicity of HBV infection but not restricted to countries which are highly endemic to the virus. Thus, assays that use polyclonal antibodies show higher sensitivity and specificity for the detection of various types of HBsAg mutants than those using monoclonal antibodies. It is also worth noting that the nature of the specimen tested (i.e., a blood sample or liver tissue), the amount of specimen, as well as contamination risks, can also affect the detection of OBI.

A low level of HBV viral load (< 200 IU/mL) was observed among OBI cases in this study. Indeed, several studies have shown that almost all OBI cases are infected with replication-competent HBV, revealing a strong suppression of replication activity and gene expression, therefore resulting in a reduced viral load. Other studies have also shown that a limited number of OBI cases are due to infection with HBV mutants with defective replication activity or S protein synthesis. It was also reported that HBV DNA could integrate into the OBI host genome.

In this study, more than two-thirds of subjects with HBV DNA (40/56) had a viral load > 200 IU/mL (200 to 13.6 10⁶ IU/mL). This could be attributed to escape mutations that can lead to a change in the immunologic epitope thus inhibiting HBsAg secretion. This hypothesis is based on a small number of sequenced HBV-DNA and needs further confirmation. A study reported a viral load between undetectable and 3,670 IU/mL in "OBI" cases among blood donors in Southeast Asia. In 2008, the statements from the Taormina expert meeting on occult hepatitis B virus infection had
clarified the definition of OBI in establishing a threshold value of serum HBV DNA < 200 IU/mL.\(^9\) Furthermore, it also clarified the confusion between a cleared infection of HBV and a "false OBI". Thus, cases with serum HBV DNA levels comparable to those usually detected in the different phases of serologically evident (overt) HBV infection have to be considered as "false OBI" and are usually due to infection by HBV variants.\(^9\) These become in fact chronic hepatitis B cases. We believe that not taking these definitions into account may contribute to an overestimation of the prevalence of OBI.

HBV Genotype E was most prevalent in OBI cases in this study. The HBV genotype E sequences of this study were similar to those previously characterized in Burkina Faso.\(^13\) These results confirm the endemicy and low genetic diversity of HBV genotype E in West Africa.\(^36\) In addition, HBV sub-genotype A3, previously reported in Burkina Faso,\(^13\) was also observed in this study. This result confirms those of previous studies which have shown that HBV sub-genotype A3 and recombination between HBV genotypes A and E are frequently observed in West Africa.\(^33,37,38\)

In this study, the L115I/A; H133F/A, and R149A/D mutations were found in OBI cases. However, the results of previous studies have reported that the Pre-S/S gene has a relatively high mutation rate.\(^28\) These point mutations that occur in the Pre-S/S gene may affect antigenicity, immunogenicity, secretion, and/or expression of HBsAg, leading to detection failure of HBsAg.\(^26,39\) They may also reduce or even abolish the replication and/or secretion of the virion, exerting an adverse effect on HBsAg.\(^40,41\) It was also reported that amino acid (aa) substitutions of HBsAg are frequently clustered in the "α" determinant, which is located at the position aa124-147 of the S protein.\(^28\) This determinant "α" is a relatively conserved region within the major hydrophilic region (MHR) between aa100 to aa169, which serves as the most important antigenic determinant in all HBV strains and is essential to the detection of HBsAg and development of HBV vaccines.\(^42,43\) Amino acids within the region aa120 to 123 were shown to be crucial for the antigenicity of HBsAg.\(^44\) Therefore, single or multiple point mutations occurring within or adjacent to the "α" determinant may change the antigenicity and conformation of HBsAg, failing to detect HBsAg.\(^28\) The results of a recent study suggest that HBsAg variants may not play a major role in OBI pathogenesis.\(^45\) All mutations characterized in this study were located in the major hydrophilic region (MHR) of the S gene and could explain the nature of occult HBV infection in our study. In addition, the same mutations were observed in the "false OBI" cases.

The presence of same mutations in addition to that of G145R in "false OBI" cases of this study confirms the conclusion of the statements from the Taormina expert meeting on occult hepatitis B virus infection.\(^9\) Indeed, in "false OBI" the viral load is similar to that of chronic hepatitis B. In addition, the role of the G145R mutation has been clearly established by several studies in vaccine escape.\(^41\) This study not found more than one type of escape mutation in the same sample. Further studies are needed to confirm the mutations found in this study.

Conclusions. In conclusion, this study reported a prevalence of occult HBV infection of 7.3% among HBsAg seronegative patients in Burkina Faso. It confirms the predominance and low HBV genotype E genetic diversity in West Africa. It also established the existence a clade HBV sub-genotype A3 in Burkina Faso. Our study also provided information on the presence a "false OBI". The mutations observed in the MHR region of pre-S/S gene may explain the occult nature of HBV infection in our study.

Acknowledgments. The authors wish to thank the Laboratory of Molecular Biology and Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Burkina Faso and the Biomolecular Research Center Pietro Annigoni of Ouagadougou (CERBA).

References:

1. Organization. WH. Global hepatitis report, 2017. www.who.int/hepatitis/publications/global-hepatitis-report2017/en/. Accessed 24 April 2017.

2. Birama. D, Karim. OA, Wendkoumi. DF, Rebeca. CT, OBRI-YEOBAH. D, Lassina. T, Théophile. SS, Prosper. B, Justine. Y, Virginio. P, Paul, O, Alain. B, . SR. Jacques. S, World Hepatitis Day 2016 in Burkina Faso: Awareness, Screening, Identification of Hepatitis B Markers, HBV/HCV co-infection and vaccination. Hepat Mon. 2017, 17(6):e13789. doi: 10.5812/hepatmon.13789.

3. Burnett RJ, Francois G, Kew MC, Leroux-Roels G, Meheus A, www.mjhid.org Mediterr J Hematol Infect Dis 2018; 10; e2018007
Benson M. Ed. 2010, 20(6):409

G Egyptian blood donors. Chif F, Mano S, Maeshiro 14.

7.

8.

9: of interferon treatment in chronic hepatitis B patients. Virol J. 2012, Lu JJ, Chen EQ, Yang JH, Zhou TY, Liu L. A mutation in genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol. 2009, 83(2 8278(00)00100

https://doi.org/10.1002/jmv.24589

https://doi.org/10.1002/jmv.20610

B virus surface antigen gene. J Med Virol. 2006, 78 Suppl 1:S59

https://doi.org/10.1016/S0168

www.mjhid.org

https://doi.org/10.1179/2047773214Y.0000000144

https://doi.org/10.1002/jmv.20784

https://doi.org/10.3748/wjg.v17.i12.1538

https://doi.org/10.3748/wjg.v17.i15.1927

PMid:21528070 PMCID:PMC3082745

Castillo I, Rodriguez-Inigo E, Lopez-Alcorocho JM, Bartolome J, Pardo M, Carreno V. Comparative study on the clinical and virological characteristics among patients with single occult hepatitis B virus infection. J Med Virol. 2007, 79(3):236-241.

https://doi.org/10.1002/jmv.20374

https://doi.org/10.1093/hig/2472117 PMCID:PMC3070122

Yuen MF, Lee CK, Wong DK, Fung J, Hung I, Hsu A, But DY, Cheung TK, Chan P, Yuen JC, Fung FK, Seto WK, Lin CK. Occult hepatitis B virus infection in a highly endemic area for chronic hepatitis B: a study of a large blood donor population. Gut. 2010, 59(10):1389-1393. https://doi.org/10.1176/gut.2010.209148

PMid:20675695

Ireland JH, O'Donnell B, Basuni AA, Kean JD, Wallace LA, Lau GK. Carman WF. Reactivity of 13 in vitro expressed hepatitis B surface antigen variants in 7 commercial diagnostic assays. Hepatology. 2000, 31(5):1176-1182. https://doi.org/10.1002/00117281

PMid:10796895

Weber B. Diagnostic impact of the genetic variability of the hepatitis B virus surface antigen gene. J Med Virol. 2006, 78 Suppl 1:S59-65. https://doi.org/10.1002/jmv.20616

Zhu HL, Li X, Li J, Zhang ZH. Genetic variation of occult hepatitis B virus infection. World J Gastroenterol. 2016, 22(13):3531-3546. https://doi.org/10.3748/wjg.v17.i15.1927

PMid:21528070 PMCID:PMC3082745

Chenin I, Zoulim F, Merle P, Arkhis A, Chevallier M, Kay A, Cova I, Chevallier P, Mandrand B, Trepo C. High incidence of hepatitis B infections among chronic hepatitis C cases of unknown aetiology. J Hepatol. 2001, 34(3):447-454. https://doi.org/10.1016/S0168-0272(00)00090-4

PMid:999999

https://doi.org/10.1021/ak800009h

PMid:10835487

Tatematsu K, Tanaka Y, Kurbanoz F, Sugachwory R, Manzo S, Maeshiro Y. Hepatitis B viral DNA in blood donors from Burkina Faso: Prevalence of quasi-subgenotype A3, genotype e, and mixed infections. J Med Virol. 2016, 88(12):2145-2156. https://doi.org/10.1002/jmv.2753483

Kida K. Hepatitis B surface antigen: clinically significant or purely “occult”? Hepatology. 2001, 34(1):194-203. https://doi.org/10.1002/hep.20317

PMid:11431751

Vivekanandan P, Kannangai R, Ray SC, Thomas DL, Torbetson M. Comprehensive genetic and epigenetic analysis of occult hepatitis B virus from liver tissue samples. Clin Infect Dis. 2008, 46(8):1227-1236. https://doi.org/10.1086/529437

PMid:18444860 PMCID:PMC3140175

Blum HE, Galun E, Liang TJ, von Weizsacker F, Wands JR. Naturally occurring mutations in the polymerase gene generating hepatitis B virus replication. J Virol. 1991, 65(4):1836-1842. https://doi.org/10.1021/ak800009h

PMid:2002544 PMCID:PMC239993

Chaudhuri V, Rayal R, Niyak B, Acharya SK, Pandit S. Hepatitis B virus infection in chronic liver disease: full-length genome and analysis of mutant surface promoter. Gastroenterology. 2004, 127(5):1356-1371. https://doi.org/10.1053/j.gastro.2004.08.003

PMid:15520015

Brecht C. Pathogenesis of hepatitis B virus-related hepatocellular
carcinoma: old and new paradigms. Gastroenterology. 2004, 127(5 Suppl 1):S56-61. https://doi.org/10.1053/j.gastro.2004.09.016 PMid:1558104

34. Bremer CM, Saniewski M, Wend UC, Torres P, Lelie N, Gerlich WH, Glebe D. Transient occult hepatitis B virus infection in a blood donor with high viremia. Transfusion. 2009, 49(8):1621-1629. https://doi.org/10.1111/j.1537-2995.2009.02188.x PMid:19413737

35. Candotti D, Lim CK, Belkhiri D, Sukul diamon gpanich T, Biswas S, Lin S, Teo D, Ayob Y, Allain JP. Occult hepatitis B infection in blood donors from South East Asia: molecular characterisation and potential mechanisms of occurrence. Gut. 2012, 61(12):1744-1753. https://doi.org/10.1136/gutjnl-2011-301281 PMid:22267593

36. Mulders MN, Venard V, Njayou M, Edorh AP, Bola Oyefolu AO, Kehinde MO, Muyembe Tamfum JJ, Nebie YK, Maiga I, Ammerlaan W, Fack F, Omi labu SA, Le Faou A, Muller CP. Low genetic diversity despite hyperendemicity of hepatitis B virus genotype E throughout West Africa. J Infect Dis. 2004, 190(2):400-408. https://doi.org/10.1086/421502 PMid:15216479

37. Kurbanov F, Tanaka Y, Fujimura K, Sugauchi F, Mhanya D, Zekeng L, Ndemb N, Ngansop C, Kapteu L, Miura T, Ido E, Hayami M, Ichimura H, Mizokami M. A new subtype (subgenotype) Ac (A3) of hepatitis B virus and recombination between genotypes A and E in Cameroun. J Gen Virol. 2005, 86(Pt 7):2047-2056. https://doi.org/10.1099/vir.0.80922-0 PMid:15956684

38. Makuwa M, Souquiere S, Telfer P, Apetrei C, Vray M, Bedjabaga I, Mouinga-Ondeme A, Onanga R, Marx PA, Kazanji M, Roques P, Simon F. Identification of hepatitis B virus subgenotype A3 in rural Gabon. J Med Virol. 2006, 78(9):1175-1184. https://doi.org/10.1002/jmv.20678 PMid:16847965

39. Hsu CW, Yeh CT. Emergence of hepatitis B virus S gene mutants in patients experiencing hepatitis B surface antigen seroconversion after peginterferon therapy. Hepatology. 2011, 54(1):101-108. https://doi.org/10.1002/hep.24363 PMid:21503942

40. Huang CH, Yuan Q, Chen PJ, Zhang YL, Chen CR, Zheng QB, Yeh SH, Yu H, Xue Y, Chen YX, Liu PG, Ge SX, Zhang J, Xia NS. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J Hepatol. 2012, 57(4):720-729. https://doi.org/10.1016/j.jhep.2012.05.009 PMid:22634131

41. Kalinin T, Iwanski A, Will H, Sterneck M. Deficiency in virion secretion and decreased stability of the hepatitis B virus immune escape mutant G145R. Hepatology. 2003, 38(5):1274-1281. https://doi.org/10.1053/heap.2003.50484 PMid:14578867

42. Norder H, Courouce AM, Magnus LO. Molecular basis of hepatitis B virus serotype variations within the four major subtypes. J Gen Virol. 1992, 73 (Pt 12):3141-3145. https://doi.org/10.1099/0022-1317-73-12-3141 PMid:1469353

43. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000, 64(1):51-68. https://doi.org/10.1128/MMBR.64.1.51-68.2000 PMid:10704474

44. Tian Y, Xu Y, Zhang Z, Meng Z, Qin L, Lu M, Yang D. The amino Acid residues at positions 120 to 123 are crucial for the antigenicity of hepatitis B surface antigen. J Clin Microbiol. 2007, 45(9):2971-2978. https://doi.org/10.1128/JCM.05050-07 PMid:17609325 PMcid:PMC2045265

45. Zhang Z, Zhang L, Dai Y, Zhang Y, Li J, Li X. Occult hepatitis B virus infection: influence of S protein variants. Virol J. 2016, 13:10. https://doi.org/10.1186/s12985-016-0464-z PMid:26786229 PMcid:PMC4717550