On the spectral radius of graphs without a star forest

Ming-Zhu Chen, A-Ming Liu,†
School of Science, Hainan University, Haikou 570228, P. R. China,

Xiao-Dong Zhang‡§
School of Mathematical Sciences, MOE-LSC, SHL-MAC
Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

In this paper, we determine the maximum spectral radius and all extremal graphs for (bi-
partite) graphs of order n without a star forest, extending Theorem 1.4 (iii) and Theorem 1.5
for large n. As a corollary, we determine the minimum least eigenvalue of $A(G)$ and all extremal
graphs for graphs of order n without a star forest, extending Corollary 1.6 for large n.

AMS Classification: 05C50, 05C35, 05C83

Key words: Spectral radius; extremal graphs; star forests; grpahs; bipartite graphs

1 Introduction

Let G be an undirected simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G)$,
where n is called the order of G. The adjacency matrix $A(G)$ of G is the $n \times n$ matrix (a_{ij}), where
$a_{ij} = 1$ if v_i is adjacent to v_j, and 0 otherwise. The spectral radius of G is the largest eigenvalue
of $A(G)$, denoted by $\rho(G)$. The least eigenvalue of $A(G)$ is denoted by $\rho_n(G)$. For $v \in V(G)$, the
neighborhood $N_G(v)$ of v is $\{u : uv \in E(G)\}$ and the degree $d_G(v)$ of v is $|N_G(v)|$. We write $N(v)$
and $d(v)$ for $N_G(v)$ and $d_G(v)$ respectively if there is no ambiguity. Denote by $\Delta(G)$ the maximum
degree of G. Let S_{n-1} be a star of order n. The center of a star is the vertex of maximum degree in
the star. The centers of a star forest are the centers of the stars in the star forest. A graph G is
H-free if it does not contain H as a subgraph. For two vertex disjoint graphs G and H, we denote
by $G \cup H$ and $G \nabla H$ the union of G and H, and the join of G and H which is obtained by joining
every vertex of G to every vertex of H, respectively. Denote by kG the the union of k disjoint copies
of G. For graph notation and terminology undefined here, readers are referred to [2].

∗This work is supported by the National Natural Science Foundation of China (Nos. 11971311, 11531001), the
Montenegrin-Chinese Science and Technology Cooperation Project (No.3-12)
†E-mail: mzchen@hainanu.edu.cn
‡E-mail: amliu@hainanu.edu.cn
§Corresponding Author E-mail: xiaodong@sjtu.edu.cn
Recall that the problem of maximizing the number of edges over all graphs without fixed subgraphs is one of the cornerstones of graph theory.

Problem 1.1 Given a graph H, what is the maximum number of edges of a graph G of order n without H?

Many instances of Problems 1.1 have been solved. For example, Lidický, Liu, and Palmer determined the maximum number of edges of graphs without a forest if the order of a graph is sufficiently large.

Theorem 1.2 [3] Let $F = \bigcup_{i=1}^{k} S_{d_i}$ be a star forest with $k \geq 2$ and $d_1 \geq \cdots \geq d_k \geq 2$. If G is an F-free graph of sufficiently large order n, then

$$e(G) \leq \max_{1 \leq i \leq k} \left\{ (i-1)(n-i+1) + \left(\frac{i-1}{2}\right) + \left\lfloor \frac{(d_i-1)(n-i+1)}{2} \right\rfloor \right\}. $$

In spectral extremal graph theory, a similar central problem is of the following type:

Problem 1.3 Given a graph H, what is the maximum $\rho(G)$ of a graph G of order n without H?

Many instances of Problem 1.3 have been solved, for example, see [4, 6, 8, 12, 13, 14, 16]. In addition, if H is a linear forest, Problem 1.3 was solved in [3]. For $H = kP_3$, the bipartite version of Problem 1.3 was also proved in [3]. In order to state these results, we need some symbols for given graphs.

Let $S_{n,h} = K_h \nabla K_{n-h}$. Furthermore, $S_{n,h}^+ = K_h \nabla (K_2 \cup K_{n-h-2})$. Let $F_{n,k} = K_{k-1} \nabla ((pK_2) \cup K_s)$, where $n = (k-1) = 2p + s$ and $0 \leq s < 2$. In addition, for $k \geq 2$ and $d_1 \geq \cdots \geq d_k \geq 1$, define

$$f(k,d_1,\ldots,d_k) = \frac{k^2(\sum_{i=1}^{k} d_i + k - 2)^2(\sum_{i=1}^{k} 2d_i + 5k - 4)^{k-2} + 2(k-2)(\sum_{i=1}^{k} d_i)}{k-2}. $$

Theorem 1.4 [3] Let $F = \bigcup_{i=1}^{k} P_{a_i}$ be a linear forest with $k \geq 2$ and $a_1 \geq \cdots \geq a_k \geq 2$. Denote $h = \sum_{i=1}^{k} \left\lfloor \frac{a_i}{2} \right\rfloor - 1$ and suppose that G is an F-free graph of sufficiently large order n.

(i) If there exists an even a_i, then $\rho(G) \leq \rho(S_{n,h})$ with equality if and only if $G = S_{n,h}$;

(ii) If all a_i are odd and there exists at least one $a_i > 3$, then $\rho(G) \leq \rho(S_{n,h}^+)$ with equality if and only if $G = S_{n,h}^+$.

(iii) If all a_i are 3, i.e., $F = kP_3$, then $\rho(G) \leq \rho(F_{n,k})$ with equality if and only if $G = F_{n,k}$.

Theorem 1.5 [3] Let G be a kP_3-free bipartite graph of order $n \geq 11k - 4$ with $k \geq 2$. Then

$$\rho(G) \leq \sqrt{(k-1)(n-k+1)}$$

with equality if and only if $G = K_{k-1,n-k+1}$.

Corollary 1.6 [3] Let G be a kP_3-free graph of order $n \geq 11k - 4$ with $k \geq 2$. Then

$$\rho_n(G) \geq -\sqrt{(k-1)(n-k+1)}$$

with equality if and only if $G = K_{k-1,n-k+1}$.
In Theorem 1.4, the extremal graph for \(kP_3 \) varies from other linear forests. Note that \(kP_3 \) is also a star forest \(kS_2 \). Motivated by Problem 1.3, Theorems 1.2, 1.4 and 1.5, we determine the maximum spectral radius and all extremal graphs for all (bipartite) graphs of order \(n \) without a star forest. As a corollary, we determine the minimum least eigenvalue of \(A(G) \) and all extremal graphs for graphs of order \(n \) without a star forest, extending Corollary 1.6 for large \(n \). The main results of this paper are stated as follows.

Theorem 1.7 Let \(F = \bigcup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) be an \(F \)-free graph of order \(n \geq \frac{(\sum_{i=1}^{k} 2d_i + 5k - 8)^2 + (\sum_{i=1}^{k} d_i + k - 2)^2}{4k - 8} \), then

\[
\rho(G) \leq \frac{k + d_k - 3 + \sqrt{(k - d_k - 1)^2 + 4(k - 1)(n - k + 1)}}{2}
\]

with equality if and only if \(G = K_{k-1} \bigtriangleup H \), where \(H \) is a \((d_k - 1)\)-regular graph of order \(n - k + 1 \). In particular, if \(d_k = 2 \), then

\[
\rho(G) \leq \rho(F_{n,k})
\]

with equality if and only if \(G = F_{n,k} \).

Remark 1. The extremal graph in Theorem 1.7 only depends on the number of the components of \(F \) and the minimum order of the stars in \(F \).

Theorem 1.8 Let \(F = \bigcup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) is an \(F \)-free bipartite graph of order \(n \geq \frac{f^2(k,d_1,\ldots,d_k)}{4k - 8} \), then

\[
\rho(G) \leq \sqrt{(k - 1)(n - k + 1)}
\]

with equality if and only if \(G = K_{k-1,n-k+1} \).

Corollary 1.9 Let \(F = \bigcup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) is an \(F \)-free graph of order \(n \geq \frac{f^2(k,d_1,\ldots,d_k)}{4k - 8} \), then

\[
\rho_n(G) \geq -\sqrt{(k - 1)(n - k + 1)}
\]

with equality if and only if \(G = K_{k-1,n-k+1} \).

Remark 2. For sufficiently large \(n \), the extremal graphs in Theorem 1.8 and Corollary 1.9 only depend on the number of the components of \(F \).

2 Preliminary

We first give a very rough estimation on the number of edges for a graph of order \(n \geq \sum_{i=1}^{k} d_i + k \) without a star forest.

Lemma 2.1 Let \(F = \bigcup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) is an \(F \)-free graph of order \(n \geq \sum_{i=1}^{k} d_i + k \), then

\[
e(G) \leq \left(\sum_{i=1}^{k} d_i + 2k - 3 \right) n - (k - 1) \left(\sum_{i=1}^{k} d_i + k - 1 \right).
\]
Proof. Let $C = \{ v \in V(G) : d(v) \geq \sum_{i=1}^{k} d_i + k - 1 \}$. Since G is F-free, $|C| \leq k - 1$, otherwise we can embed an F in G by the definition of C. Hence

$$e(G) = \sum_{v \in C} d(v) + \sum_{v \in V(G) \setminus C} d(v)$$

$$\leq (n - 1)|C| + (n - |C|) \left(\sum_{i=1}^{k} d_i + k - 2 \right)$$

$$= \left(n - \sum_{i=1}^{k} d_i - k + 1 \right)|C| + \left(\sum_{i=1}^{k} d_i + k - 2 \right)n$$

$$\leq (k - 1) \left(n - \sum_{i=1}^{k} d_i - k + 1 \right) + \left(\sum_{i=1}^{k} d_i + k - 2 \right)n$$

$$= \left(\sum_{i=1}^{k} d_i + 2k - 3 \right)n - (k - 1) \left(\sum_{i=1}^{k} d_i + k - 1 \right)$$

\[\square \]

Lemma 2.2 Let $F = \bigcup_{i=1}^{k} S_{d_i}$ be a star forest with $k \geq 2$ and $d_1 \geq \cdots \geq d_k \geq 1$. Let G be an F-free connected bipartite graph of order $n \geq \frac{d_1^2}{2} + k - 1$ with the maximum spectral radius $\rho(G)$ and $x = (x_u)_{u \in V(G)}$ be a positive eigenvector of $\rho(G)$ such that $\max \{ x_u : u \in V(G) \} = 1$. Then $x_u \geq \frac{1}{\rho(G)}$ for all $u \in V(G)$.

Proof. Set for short $\rho = \rho(G)$. Choose a vertex $w \in V(G)$ such that $x_w = 1$. Since $K_{k-1, n-k+1}$ is F-free, we have

$$\rho \geq \rho(K_{k-1, n-k+1}) = \sqrt{(k-1)(n-k+1)}.$$

If $u = w$, then $x_u = 1 \geq \frac{1}{\rho}$. So we next suppose that $u \neq w$. We consider the following two cases.

Case 1. u is adjacent to w. By eigenequation of $A(G)$ on u,

$$\rho x_u = \sum_{u \in E(G)} x_v \geq x_w = 1,$$

which implies that

$$x_u \geq \frac{1}{\rho}.$$

Case 2. u is not adjacent to w. Let G_1 be a graph obtained from G by deleting all edges incident with u and adding an edge uw. Note that uw is a pendant edge in G_1.

Claim. G_1 is also F-free.

Suppose that G_1 contains an F as a subgraph. Since G is F-free and G_1 contains an F as a subgraph, we have $uw \in E(F)$. Since uw is a pendant edge in G_1, w is a center of F with $d_F(w) = d_j$, where $1 \leq j \leq k$. Let G_2 be the subgraph of G_1 by deleting w and all its neighbors in F. Note that G_2 is also a subgraph of G. Since G_1 contains an F as a subgraph, G_2 contains $\bigcup_{i \neq j} S_{d_i}$ as a subgraph. By eigenequation of G on w,

$$d(w) \geq \sum_{v \in E(G)} x_v = \rho x_w = \rho \geq \sqrt{(k-1)(n-k+1)} \geq d_1 \geq d_j.$$

4
This implies that G contains an F as a subgraph, a contradiction.

By Claim, G_1 is F-free. Then

$$0 \geq \rho(G_1) - \rho \geq \frac{x^T A(G_1)x}{x^T x} - \frac{x^T A(G)x}{x^T x}$$

$$= \frac{2}{x^T x} \left(x_u x_w - x_u \sum_{uv \in E(G)} x_v \right)$$

$$= \frac{2x_u}{x^T x} \left(1 - \rho x_u \right),$$

which implies that

$$x_u \geq \frac{1}{\rho}.$$

This completes the proof. □

Lemma 2.3 Let $d \geq 1$, $k \geq 1$, $n \geq \frac{(d-1)^2+(k-1)^2}{k-1}$, and H be a graph of order $n - k + 1$. If $G = K_{k-1} \nabla H$ and $\Delta(H) \leq d - 1$, then

$$\rho(G) \leq \frac{k + d - 3 + \sqrt{(k-d-1)^2 + 4(k-1)(n-k+1)}}{2}$$

with equality if and only if H is a $(d - 1)$-regular graph.

Proof. If $d = 1$, then $G = K_{k-1} \nabla K_{n-k+1}$. It is easy to calculate that

$$\rho(K_{k-1} \nabla K_{n-k+1}) = \frac{k - 2 + \sqrt{(k-2)^2 + 4(k-1)(n-k+1)}}{2}.$$

Next suppose that $d \geq 2$. Let $u_1, u_2, \ldots, u_{k-1}$ be the vertex of G corresponding to K_{k-1} in the representation $G := K_{k-1} \nabla H$. Set for short $\rho = \rho(G)$ and let $x = (x_v)_{v \in E(G)}$ be a positive eigenvector of ρ. By symmetry, $x_{u_1} = \cdots = x_{u_{k-1}}$. Choose a vertex $v \in V(H)$ such that

$$x_v = \max_{w \in V(H)} x_w.$$

By eigenequation of $A(G)$ on u_1 and v, we have

$$\rho x_{u_1} = (k-2)x_{u_1} + \sum_{uv \in E(H)} x_u \leq (k-2)x_{u_1} + (n-k+1)x_v$$

$$\rho x_v \leq (k-1)x_{u_1} + \sum_{uv \in E(H)} x_u \leq (k-1)x_{u_1} + (d-1)x_v,$$

which implies that

$$(\rho - k + 2)x_{u_1} \leq (n- k + 1)x_v$$

$$(\rho - d + 1)x_v \leq (k-1)x_{u_1}.$$

Since

$$\rho > \rho(K_{k-1}) = k - 2,$$

and

$$\rho > \rho(K_{k-1,n-k+1}) = \sqrt{(k-1)(n-k+1)} \geq d - 1,$$
we have
\[\rho^2 - (k + d - 3)\rho + (k - 2)(d - 1) - (k - 1)(n - k + 1) \leq 0. \]

Hence
\[\rho \leq \frac{k + d - 3 + \sqrt{(k - d - 1)^2 + 4(k - 1)(n - k + 1)}}{2}. \]

If equality holds, then all equalities in (1) and (2) hold. So \(d(v) = k + d - 2 \) and \(x_u = x_v \) for any vertex \(u \in V(H) \). Since for any \(u \in V(H) \),
\[\rho x_u = (k - 1)x_{u_1} + \sum_{u \in E(H)} x_2 \leq (k - 1)x_{u_1} + (d - 1)x_v = \rho x_v, \]
we have \(d(u) = d(v) = d + k - 2 \). So \(H \) is \((d - 1)\)-regular. \(\square \)

3 Proof of Theorem 1.7

Before proving Theorem 1.7, we first prove the following important result for connected graphs without a star forest.

Theorem 3.1 Let \(F = \bigcup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) is an \(F \)-free connected graph of order \(n \geq (\sum_{i=1}^{k} 2d_i + 5k - 7)^2(\sum_{i=1}^{k} d_i + k - 2)^2 \), then
\[\rho(G) \leq \frac{k + d_k - 3 + \sqrt{(k - d_k - 1)^2 + 4(k - 1)(n - k + 1)}}{2} \]
with equality if and only if \(G = K_{k-1} \backslash H \), where \(H \) is a \((d_k - 1)\)-regular graph of order \(n - k + 1 \). In particular, if \(d_k = 2 \), then
\[\rho(G) \leq \rho(F_{n,k}) \]
with equality if and only if \(G = F_{n,k} \).

Proof. Let \(G \) be an \(F \)-free connected graph of order \(n \) with the maximum spectral radius. Set for short \(V = V(G) \), \(E = E(G) \), \(A = A(G) \), and \(\rho = \rho(G) \). Let \(x = (x_v)_{v \in V(G)} \) be a positive eigenvector of \(\rho \) such that
\[x_v = \max \{ x_u : u \in V(G) \} = 1. \]

Since \(K_{k-1,n-k+1} \) is \(F \)-free, we have
\[\rho \geq \rho(K_{k-1,n-k+1}) = \sqrt{(k - 1)(n - k + 1)}. \]

Let \(L = \{ v \in V : x_v > \epsilon \} \) and \(S = \{ v \in V : x_v \leq \epsilon \} \), where \(\epsilon = \frac{1}{\sum_{i=1}^{k} 2d_i + 5k - 7} \).

Claim. \(|L| = k - 1 \).

If \(|L| \neq k - 1 \), then \(|L| \geq k \) or \(|L| \leq k - 2 \).

First suppose that \(|L| \geq k \). By eigenequation of \(A \) on any vertex \(u \in L \), we have
\[\sum_{i=1}^{k} d_i + k - 2 \leq \frac{\sqrt{(k - 1)(n - k + 1)}}{\sum_{i=1}^{k} 2d_i + 5k - 7} = \sqrt{(k - 1)(n - k + 1)} \epsilon < \rho x_u = \sum_{uv \in E} x_v \leq d(u), \]
where the first inequality holds because \(n \geq (\sum_{i=1}^{k} 2d_i + 5k - 7)^2(\sum_{i=1}^{k} d_i + k - 2)^2 \). Hence

\[
d(u) \geq \sum_{i=1}^{k} d_i + k - 1.
\]

Then we can embed an \(F \) with all centers in \(L \) in \(G \), a contradiction.

Next suppose that \(|L| \leq k - 2 \). Then

\[
e(L) \leq \left(\frac{|L|}{2} \right) \leq \frac{1}{2}(k - 2)(k - 3)
\]

and

\[
e(L, S) \leq (k - 2)(n - k + 2).
\]

In addition, by Lemma 2.1,

\[
e(S) \leq e(G) \leq \left(\sum_{i=1}^{k} d_i + 2k - 3 \right)n.
\]

By eigenequation of \(A^2 \) on \(w \), we have

\[
(k - 1)(n - k + 1) \leq \rho^2 = \rho^2x_w = \sum_{uv \in E} \sum_{uv \in E} x_u \leq \sum_{uv \in E} (x_u + x_v)
\]

\[
= \sum_{uv \in E(L,S)} (x_u + x_v) + \sum_{uv \in E(S)} (x_u + x_v) + \sum_{uv \in E(L)} (x_u + x_v)
\]

\[
\leq \sum_{uv \in E(L,S)} (x_u + x_v) + 2e(S) + 2e(L)
\]

\[
\leq \sum_{uv \in E(L,S)} (x_u + x_v) + 2e\left(\sum_{i=1}^{k} d_i + 2k - 3 \right)n + (k - 2)(k - 3)
\]

Hence

\[
\sum_{uv \in E(L,S)} (x_u + x_v) \geq (k - 1)(n - k + 1) - 2e\left(\sum_{i=1}^{k} d_i + 2k - 3 \right)n - (k - 2)(k - 3).
\]

On the other hand, by the definition of \(L \) and \(S \), we have

\[
\sum_{uv \in E(L,S)} (x_u + x_v) \leq (1 + \epsilon)e(L, S) \leq (1 + \epsilon)(k - 2)(n - k + 2).
\]

Thus

\[
(1 + \epsilon)(k - 2)(n - k + 2) \geq (k - 1)(n - k + 1) - 2e\left(\sum_{i=1}^{k} d_i + 2k - 3 \right)n - (k - 2)(k - 3),
\]

which implies that

\[
\left(\left(\sum_{i=1}^{k} 2d_i + 5k - 8 \right) \epsilon - 1 \right)n \geq \epsilon(k - 2)^2 - (k^2 - 3k + 3).
\]
Since \(\epsilon = \frac{1}{\sum_{i=1}^{k} 2d_i + 5k - 7} \), we have

\[
n \leq (k^2 - 3k + 3) \left(\sum_{i=1}^{k} 2d_i + 5k - 8 \right) \left(\sum_{i=1}^{k} 2d_i + 5k - 7 \right) -
\]

\[
(k - 2)^2 \left(\sum_{i=1}^{k} 2d_i + 5k - 8 \right)
\]

\[
\leq \left(\sum_{i=1}^{k} 2d_i + 5k - 7 \right) \left(\sum_{i=1}^{k} d_i + k - 2 \right)^2,
\]

a contradiction. This proves the Claim.

By Claim, \(|L| = k - 1\) and thus \(|S| = n - k + 1\). Then the subgraph \(H\) induced by \(S\) in \(G\) is \(S_{d_k}\)-free. Otherwise, we can embed \(F\) in \(G\) with \(k - 1\) centers in \(L\) and a center in \(S\) as \(d(u) \geq \sum_{i=1}^{k} d_i + k - 1\) for any \(u \in L\), a contradiction. Now \(\Delta(H) \leq d_k - 1\). Note that the resulting graph obtained from \(G\) by adding all edges in \(L\) and all edges with one end in \(L\) and the other in \(S\) is also \(F\)-free and its spectral radius increases strictly. By the extremality of \(G\), we have \(G = K_{k-1} \nabla H\). By Lemma 2.3 and the extremality of \(G\), it follows that \(H\) is a \((d_k - 1)\)-regular graph and

\[
\rho = \frac{k + d_k - 3 + \sqrt{(k - d_k - 1)^2 + 4(k - 1)(n - k + 1)}}{2}.
\]

In particular, if \(d_k = 2\) then \(\Delta(H) \leq 1\), i.e., \(H = pK_2 \cup qK_1\), where \(2p + q = n - k + 1\). By the extremality of \(G\), \(G = F_{n,k}\). This completes the proof. \(\square\)

Proof of Theorems 1.7. Let \(G\) be an \(F\)-free graph of order \(n\) with the maximum spectral radius.

If \(G\) is connected, then the result follows directly from Theorem 3.1. Next we suppose that \(G\) is not connected. Since \(K_{k-1,n-k+1}\) is \(F\)-free, we have

\[
\rho(G) \geq \sqrt{(k - 1)(n - k + 1)}.
\]

Let \(G_1\) be a component of \(G\) such that \(\rho(G_1) = \rho(G)\) and \(n_1 = |V(G_1)|\). Then

\[
n_1 - 1 \geq \rho(G_1) = \rho(G) \geq \sqrt{(k - 1)(n - k + 1)} \geq (k - 2)n
\]

\[
\geq \left(\sum_{i=1}^{k} 2d_i + 5k - 8 \right) \left(\sum_{i=1}^{k} d_i + k - 2 \right)^2,
\]

which implies that

\[
n_1 \geq \left(\sum_{i=1}^{k} 2d_i + 5k - 8 \right) \left(\sum_{i=1}^{k} d_i + k - 2 \right)^2 + 1.
\]

By Theorem 3.1 again,

\[
\rho(G) = \rho(G_1) \leq \frac{k + d_k - 3 + \sqrt{(k - d_k - 1)^2 + 4(k - 1)(n_1 - k + 1)}}{2}
\]

\[
< \frac{k + d_k - 3 + \sqrt{(k - d_k - 1)^2 + 4(k - 1)(n - k + 1)}}{2}.
\]

8
In particular, if \(d_k = 2 \) then it follows from By Theorem 3.1 again,

\[
\rho(G) = \rho(G_1) = \rho(F_{n_1,k}) < \rho(F_{n,k}).
\]

Hence the result follows. \(\square \)

Note that extremal graph in Theorem 1.4 (iii) also holds for signless Laplacian special radius \(q(G) \) \([5]\). We conjecture the extremal graph in Theorem 1.7 also holds for signless Laplacian spectral radius \(q(G) \).

Conjecture 3.2 Let \(F = \cup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) be an \(F \)-free graph of large order \(n \), then

\[
q(G) \leq \frac{n + 2k + 2d_k - 6 + \sqrt{(n + 2k - 2d_k - 2)^2 - 8(k - 1)(k - d_k - 1)}}{2}
\]

with equality if and only if \(G = K_{k-1} \Delta H \), where \(H \) is a \((d_k - 1)\)-regular graph of order \(n - k + 1 \).

In particular, if \(d_k = 2 \), then

\[
q(G) \leq q(F_{n,k})
\]

with equality if and only if \(G = F_{n,k} \).

4 Proofs of Theorem 1.8 and Corollary 1.9

Before proving Theorem 1.8 and Corollary 1.9 we first prove the following important result for bipartite connected graphs without a star forest.

Theorem 4.1 Let \(F = \cup_{i=1}^{k} S_{d_i} \) be a star forest with \(k \geq 2 \) and \(d_1 \geq \cdots \geq d_k \geq 1 \). If \(G \) is an \(F \)-free connected bipartite graph of order \(n \), then

\[
\rho(G) \leq \sqrt{(k - 1)(n - k + 1)}
\]

with equality if and only if \(G = K_{k-1,n-k+1} \).

Proof. Let \(G \) be an \(F \)-free connected bipartite graph of order \(n \) with the maximum spectral radius. Set for short \(V = V(G) \), \(E = E(G) \), \(A = A(G) \), and \(\rho = \rho(G) \). Let \(x = (x_v)_{v \in V(G)} \) be a positive eigenvector of \(\rho \) such that

\[
x_w = \max \{ x_u : u \in V(G) \} = 1.
\]

Since \(K_{k-1,n-k+1} \) is \(F \)-free, we have

\[
\rho \geq \rho(K_{k-1,n-k+1}) = \sqrt{(k - 1)(n - k + 1)}.
\]

Let \(L = \{ v \in V : x_v > \epsilon \} \) and \(S = \{ v \in V : x_v \leq \epsilon \} \), where

\[
\frac{1}{\sqrt{(k - 1)(n - k + 1)}} \leq \epsilon \leq \frac{1}{k \sum_{i=1}^{k} (2d_i + 5k - 4)^{2k-1}} \left(1 - \frac{\sum_{i=1}^{k} d_i}{n} \right)^{k-1}.
\]

Claim 1. \(|L| \leq k - 1 \).

9
Suppose that $|L| \geq k$. By eigenequation of A on any vertex $u \in L$, we have
\[
\sum_{i=1}^{k} d_i + k - 2 \leq \sqrt{(k-1)(n-k+1)}\epsilon < \rho x_u = \sum_{uv \in E} x_v \leq d(u).
\]
Hence
\[
d(u) \geq \sum_{i=1}^{k} d_i + k - 1.
\]
Then we can embed an F in G with all centers in L, a contradiction. This proves Claim 1.

Since $|L| \leq k - 1$, we have
\[
\epsilon(L) \leq \binom{|L|}{2} \leq \frac{1}{2}(k-1)(k-2)
\]
and
\[
\epsilon(L, S) \leq (k-1)(n-k+1).
\]

In addition, by Lemma 2.1
\[
\epsilon(S) \leq \epsilon(G) \leq \left(\sum_{i=1}^{k} d_i + 2k - 3 \right) n.
\]

We next show that for any vertex in L has large degree.

Claim 2. Let $u \in L$ and $x_u = 1 - \delta$. Then
\[
d(u) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5 \right) (\delta + \epsilon) \right) n.
\]

Let $B_u = \{ v \in V : uv \notin E \}$. We first sum of eigenvector over all vertices of G.
\[
\rho \sum_{v \in V} x_v = \sum_{v \in V} \rho x_v = \sum_{v \in V} \sum_{vz \in E} x_z = \sum_{v \in V} d(v)x_v \leq \sum_{v \in L} d(v)x_v + \sum_{v \in S} d(v)x_v
\]
\[
\leq \sum_{v \in L} d(v) + \epsilon \sum_{v \in S} d(v) = 2\epsilon(L) + \epsilon(L, S) + \epsilon(2\epsilon(S) + \epsilon(L, S))
\]
\[
= 2\epsilon(L) + 2\epsilon(S) + (1 + \epsilon)\epsilon(L, S),
\]
which implies that
\[
\sum_{v \in V} x_v \leq \frac{2\epsilon(L) + 2\epsilon(S) + (1 + \epsilon)\epsilon(L, S)}{\rho}.
\]

Next we sum of eigenvector over all vertices in B_u by E.q. (4) and Lemma 2.2. Since
\[
\frac{1}{\rho} |B_u| \leq \sum_{v \in B_u} x_v \leq \sum_{v \in V(G)} x_v - \sum_{uv \in E(G)} x_v = \sum_{v \in V(G)} x_v - \rho x_u
\]
\[
\leq \frac{2\epsilon(L) + 2\epsilon(S) + (1 + \epsilon)\epsilon(L, S)}{\rho} - \rho x_u,
\]
we have
\[
|B_u| \leq 2\epsilon(L) + 2\epsilon(S) + (1 + \epsilon)\epsilon(L, S) - \rho^2 x_u
\]
\[
\begin{align*}
\leq & \ 2\epsilon(L) + 2\epsilon e(S) + (1 + \epsilon) e(L, S) - (k - 1)(n - k + 1)(1 - \delta) \\
\leq & \ (k - 1)(k - 2) + 2\epsilon\left(\sum_{i=1}^{k} d_i + 2k - 3\right)n + (1 + \epsilon)(k - 1)(n - k + 1) - \\
& (k - 1)(n - k + 1)(1 - \delta) \\
= & \ \left(2\epsilon\left(\sum_{i=1}^{k} d_i + 2k - 3\right) + (\delta + \epsilon)(k - 1)\right)n + (k - 1)(k - 2) - (\delta + \epsilon)(k - 1)^2 \\
\leq & \ \left(\sum_{i=1}^{k} 2d_i + 4k - 6 + (k - 1) + 1\right)(\delta + \epsilon)n \\
= & \ \left(\sum_{i=1}^{k} 2d_i + 5k - 6\right)(\delta + \epsilon)n,
\end{align*}
\]

where the last second inequality holds since \((k - 1)(k - 2) \leq \epsilon n < (\delta + \epsilon)n\) by the definition of \(\epsilon\) and \(n\). Hence

\[
d(u) \geq n - 1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 6\right)(\delta + \epsilon)n \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5\right)(\delta + \epsilon)\right)n.
\]

This completes Claim 2.

Claim 3. Let \(1 \leq s < k - 1\). Suppose that there is a set \(X\) of \(s\) vertices such that \(X = \{v \in V : x_v \geq 1 - \eta\) and \(d(v) \geq (1 - \eta)n\}. Then there exists a vertex \(u \in L \setminus X\) such that

\[x_u \geq 1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5\right)^2(\eta + \epsilon)\]

and

\[d(u) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5\right)^2(\eta + \epsilon)\right)n.\]

By eigenequation of \(A^2\) on \(w\), we have

\[
\rho^2 = \rho^2 x_w = \sum_{uv \in E} \sum_{uv \in E} x_u \leq \sum_{uv \in E} (x_u + x_v)
\]

\[
= \sum_{uv \in E(S)} (x_u + x_v) + \sum_{uv \in E(L)} (x_u + x_v) \sum_{uv \in E(L, S)} (x_u + x_v)
\]

\[
\leq 2\epsilon e(S) + 2\epsilon e(L) + \sum_{uv \in E(L, S)} (x_u + x_v)
\]

\[
\leq 2\epsilon e(S) + 2\epsilon e(L) + \epsilon e(L, S) + \sum_{uv \in E(L \setminus X, S)} x_u + \sum_{uv \in E(L \cap X)} x_u,
\]

which implies that

\[
\sum_{uv \in E(L \setminus X, S) \atop u \in L \setminus X} x_u
\]

11
\[\geq \rho^2 - 2\epsilon e(S) - 2\epsilon (L) - \epsilon e(L, S) - \sum_{u \in E(L \setminus X, S)} x_u \]
\[\geq (k - 1)(n - k + 1) - 2\epsilon \left(\sum_{i=1}^{k} d_i + 2k - 3 \right) n - (k - 1)(k - 2) - \epsilon(k - 1)(n - k + 1) - sn \]
\[= \left(k - 1 - s - \epsilon \left(\sum_{i=1}^{k} 2d_i + 5k - 7 \right) \right) n - (k - 1)(2k - 3) + \epsilon(k - 1)^2 \]
\[\geq \left(k - 1 - s - \epsilon \left(\sum_{i=1}^{k} 2d_i + 5k - 7 \right) \right) n - \epsilon n \]
\[= \left(k - 1 - s - \epsilon \left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right) \right) n, \]

where the last third inequality holds since \((k - 1)(2k - 3) \leq \epsilon n\) by the definition of \(\epsilon\) and \(n\). In addition,

\[e(L \setminus X, S) = e(L, S) - e(L \cap X, S) \]
\[\leq (k - 1)(n - k + 1) - s(1 - \eta)n + \left(\frac{s}{2} \right) \]
\[\leq (k - 1 - s(1 - \eta))n - \left((k - 1)^2 - \left(\frac{k - 2}{2} \right) \right) \]
\[\leq (k - 1 - s(1 - \eta))n. \]

Let

\[g(s) = \frac{k - 1 - s - \epsilon \left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right)}{k - 1 - s(1 - \eta)}. \]

It is easy to see that \(g(s)\) is decreasing with respect to \(1 \leq s \leq k - 2\). Then

\[\frac{\sum_{u \in \{E(L \setminus X, S)\}} x_u}{e(L \setminus X, S)} \geq g(s) \geq g(k - 2) = \frac{1 - \epsilon \left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right)}{1 + (k - 2)\eta} \]
\[\geq 1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right)(\eta + \epsilon). \]

Hence there exists a vertex \(u \in L \setminus X\) such that

\[x_u \geq 1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right)(\eta + \epsilon). \]

By Claim 2,

\[d(u) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5 \right) \left(\left(\sum_{i=1}^{k} 2d_i + 5k - 6 \right)(\eta + \epsilon) + \epsilon \right) \right) n \]
\[\geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5 \right)^2 (\eta + \epsilon) \right) n \]

12
This completes Claim 3.

Claim 4. $|L| = k - 1$. Furthermore, for all $u \in L$,

$$x_u \geq 1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right) \epsilon$$

and

$$d(u) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right) \epsilon \right) n.$$

Note that $w \in L$ and $x_w = 1$. By Claim 2,

$$d(w) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 5 \right) \epsilon \right) n.$$

Applying Claim 5 iteratively for $k - 2$ times, we can find a set $X \subseteq L \setminus \{w\}$ of $k - 2$ vertices such that for any $u \in X$,

$$x_u \geq 1 - \left(\sum_{j=1}^{k-2} \left(\sum_{i=1}^{k} 2d_i + 5k - 5 \right)^{2j} \right) \epsilon$$

and

$$d(u) \geq \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right) \epsilon \right) n.$$

Noting $|L| \leq k - 1$, we have $L = X \cup \{w\}$. Hence $|L| = k - 1$. This proves Claim 4.

Let T be the common neighborhood of L and $R = S \setminus T$. By Claim 4,

$$|L| = k - 1$$

and

$$|T| \geq \left(1 - k \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right) \epsilon \right) n \geq \sum_{i=1}^{k} d_i.$$

Since G is bipartite, L and T are both independent sets of G.

Claim 5. R is empty.

Suppose that R is not empty, i.e., there is a vertex $v \in R$. Then v has at most $d_k - 1$ neighbors in S, otherwise we can embed an F in G. Let H be a graph obtained from G by removing all edges incident with v and then connecting v to each vertex in L. Clearly, H is still F-free. By the definition of R, v can be adjacent to at most $k - 2$ vertices in L. Let $u \in L$ be the vertex not adjacent to v. Then By Claims 4 and 5, we have

$$\rho(H) - \rho \geq \frac{x^T A(H)x}{x^T x} - \frac{x^T A x}{x^T x}.$$

13
\[
\begin{align*}
&\geq \frac{2x_v}{x^T x} \left(x_u - \sum_{z \in S} x_z \right) \\
&\geq \frac{2x_v}{x^T x} \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right)^{2k-1} \epsilon - (d_k - 1)\epsilon \right) \\
&= \frac{2x_v}{x^T x} \left(1 - \left(\sum_{i=1}^{k} 2d_i + 5k - 4 \right)^{2k-1} + d_k - 1 \right) \epsilon \\
&> 0,
\end{align*}
\]

Hence \(\rho(H) > \rho\), a contradiction. This proves Claim 5.

By Claim 5, \(S = T\). By the definition of \(T\), we have \(G = K_{k-1, n-k+1}\). This completes the proof.

\[\square\]

Proof of Theorem 1.8. Let \(G\) be an \(F\)-free bipartite graph of order \(n\) with the maximum spectral radius.

If \(G\) is connected, then the result follows directly from Theorem 4.1. Next we suppose that \(G\) is not connected. Since \(K_{k-1, n-k+1}\) is \(F\)-free,

\[\rho(G) \geq \sqrt{(k-1)(n-k+1)}.\]

Let \(G_1\) be a component of \(G\) such that \(\rho(G_1) = \rho(G)\) and \(n_1 = |V(G_1)|\). Note that \(G\) is triangle-free. By Wilf theorem [15, Theorem 2], we have

\[\frac{n_1^2}{4} \geq \rho^2(G_1) = \rho(G)^2 \geq (k-1)(n-k+1) \geq (k-2)n \geq \frac{f^2(k, d_1, \ldots, d_k)}{4},\]

which implies that

\[n_1 \geq f(k, d_1, \ldots, d_k).\]

By Theorem 4.1 again,

\[\rho(G_1) \leq \sqrt{(k-1)(n_1-k+1)} < \sqrt{(k-1)(n-k+1)},\]

a contradiction. This completes the proof. \[\square\]

Proof of Corollary 1.9. By a result of Favaron et al. [7], \(\rho_n(G) \geq \rho_n(H)\) for some spanning bipartite subgraph \(H\). Moreover, the equality holds if and only if \(G = H\), which can be deduced by its original proof. By Theorem 1.8

\[\rho(H) \leq \sqrt{(k-1)(n-k+1)}\]

with equality if and only if \(H = K_{k-1, n-k+1}\). Since the spectrum of a bipartite graph is symmetric [10],

\[\rho_n(H) \geq -\sqrt{(k-1)(n-k+1)}\]

with equality if and only if \(H = K_{k-1, n-k+1}\). Thus we have

\[\rho_n(G) \geq -\sqrt{(k-1)(n-k+1)}\]

with equality if and only if \(G = K_{k-1, n-k+1}\). \[\square\]
References

[1] A. Bhattacharya, S. Friedland, U.N. Peled, On the first eigenvalue of bipartite graphs, Electron. J. Combin. 15 (2008), Article R144.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York (2007).

[3] M.-Z. Chen, A-M. Liu, X.-D. Zhang, Spectral extremal results with forbidding linear forests, Graphs Combin. 35 (2019) 335–351.

[4] M.-Z. Chen, X.-D. Zhang, On the signless Laplacian spectral radius of $K_{s,t}$-minor free graphs, Linear and Multilinear Algebra https://doi.org/10.1080/03081087.2019.1650880.

[5] M.-Z. Chen, A-M. Liu, X.-D. Zhang, The signless Laplacian spectral radius of graphs with forbidding linear forests. Linear Algebra Appl. 591 (2020) 25–43.

[6] S. Cioabă, L.H. Feng, M. Tait, X.-D. Zhang, The spectral radius of graphs with no intersecting triangles, arXiv:1911.13082v1.

[7] O. Favaron, M. Mahéo, J.-F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti-II), Discrete Math. 111 (1993) 197–220.

[8] J. Gao, X. Hou, The spectral radius of graphs without long cycles, Linear Algebra Appl. 566 (2019) 17–33.

[9] B. Lidický, H. Liu, C. Palmer, On the Turán number of forests, Electron. J. Combin. 20 (2013) Paper 62 13pp.

[10] L. Lovász, J. Pelikán, On the eigenvalues of trees, Period. Math. Hung. 3 (1973) 175–182.

[11] V. Nikiforov, Bounds on graph eigenvalues II, Linear Algebra Appl. 427 (2007) 183–189.

[12] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (2010) 2243–2256.

[13] M. Tait, The Colin de Verdière parameter, excluded minors, and the spectral radius, J. Combin. Theory Ser. A 166 (2019) 42–58.

[14] M. Tait, J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin. Theory Ser. B 126 (2017) 137–161.

[15] H.S. Wilf, Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory Ser. B 40 (1986) 113–117.

[16] M.Q. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C_4-free graphs, Linear Algebra Appl. 437(2012) 1641–1647.