THE NEXT GENERATION VIRGO CLUSTER SURVEY. V. MODELING THE DYNAMICS OF M87 WITH THE MADE-TO-MEASURE METHOD

Ling Zhu1,2,3, R. J. Long1,4, Shude Mao1,4, Eric W. Peng5,6, Chengze Liu7,8, Nelson Caldwell9, Biao Li1, John P. Blakeslee10, Patrick Côte10, Jean-Charles Cuillandre11, Patrick Durrell12, Eric Emsellem13,14, Laura Ferrarese10, Stephen Gwyn10, Andrés Jordán15, Ariane Lancón16, Simona Mei17,18, Roberto Muñoz15, and Thomas Puza15

1 National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Rd, Chaoyang District, Beijing 100012, China
2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany; lbzhu@mpia-hd.mpg.de
3 Department of Physics and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing 100084, China
4 Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester M13 9PL, UK
5 Department of Astronomy, Peking University, Beijing 100871, China
6 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
7 Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
8 INPAC, Department of Physics and Astronomy and Shanghai Key Lab for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
9 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
10 National Research Council of Canada, Victoria, BC V9E 2E7, Canada
11 Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743, USA
12 Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
13 Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval; CNRS, UMR 5574; ENS de Lyon, France
14 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany
15 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenn 4860, 7820436 Macul, Santiago, Chile
16 Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg, France
17 GEPI, Observatoire de Paris, 77 av. Denfert Rochereau, F-75014 Paris, France
18 Université Paris Denis Diderot, F-75205 Paris Cedex 13, France

Received 2014 January 6; accepted 2014 July 7; published 2014 August 14

ABSTRACT

We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalog of 922 globular cluster line-of-sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. There are 263 globular clusters, mainly located beyond 40 kpc, newly observed by the Next Generation Virgo Survey. For the M2M modeling, the gravitational potential is taken as a combination of a luminous potential with a constant stellar mass-to-light ratio and a dark matter potential modeled as a logarithmic profile. Our best-fit dynamical model returns a stellar mass-to-light ratio in the inner 2.4 kpc of M/LI ≈ 20 L⊙/M⊙ with a dark matter potential scale velocity of 591 ± 50 km s−1 and scale radius of 42 ± 10 kpc. We determine the total mass of M87 within 180 kpc to be (1.5 ± 0.2) × 1013 M⊙. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond ~45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derive is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy β parameter for the globular clusters in M87 is small, varying from −0.2 at the center to 0.2 at ~40 kpc, and gradually decreasing to zero at ~120 kpc.

Key words: galaxies: individual (M87) – Galaxy: kinematics and dynamics – globular clusters: general – methods: numerical – surveys

Online-only material: color figures

1. INTRODUCTION

Elliptical galaxies lack the dynamical simplicity of cold stellar disks in spiral galaxies, posing well-known challenges in determining their intrinsic properties (mass distribution, shape, orbit structure). Their dark matter distributions are even harder to determine since they only start to dominate at several effective radii where the galaxies become too faint for efficient measurement of their stellar dynamics in integrated light. Line-of-sight (LOS) velocities of discrete globular clusters (GCs) and planetary nebulae (PNs) can be measured in more extended regions of galaxies, even to the edge of their dark matter halos, and provide excellent tracers of the outer dark matter distributions.

M87, the second brightest giant elliptical galaxy in Virgo, is located at the dynamical center of the cluster. The formation history of such galaxies is of keen interest in structure formation studies. Their formation through dry mergers in a cluster environment has been extensively discussed (e.g., De Lucia & Blaizot 2007; Bernardi et al. 2007; Liu et al. 2009, 2012). A related question is whether the dark matter distribution at the center of Virgo follows an equilibrium smooth profile or exhibits substructure. The early type Virgo galaxies’ velocity dispersion profiles indicate that the dark matter inside 2 Mpc is smooth
and dynamically relaxed (McLaughlin 1999). However, the PN LOS velocity dispersion decreases to 78 ± 25 km s$^{-1}$ at 144 kpc, indicating that the stellar halo of M87 may be truncated at this radius (Doherty et al. 2009). This result, however, is based on only 12 PN LOS velocities, and thus may be influenced by incomplete PN sampling effects. In this work, as a first step, we treat M87 as a relaxed, equilibrium system.

M87 has the richest GC system in the local supercluster with a total of 15,000 GCs (McLaughlin et al. 1994; Peng et al. 2008). The database of M87 GCs with LOS velocities has been growing rapidly in recent years (Durrell et al. 2014; see Section 5 for more complete references and discussions). Their kinematics, together with central stellar kinematics, have been used to derive M87’s dark matter distribution, mostly using the Schwarzschild (1979) technique (e.g., Murphy et al. 2011, hereafter M2011; Gebhardt & Thomas 2009, hereafter G2009). The dark matter halo and stellar parameters so determined are often different. This is largely a reflection of the fact that the models are degenerate in their mass determination, lacking separate constraints on the dark and luminous matter components. In Section 5, we compare these earlier results with ours in greater detail.\footnote{Notice that different values of the distance to M87 are used in the literature. In the preceding paragraphs, we have converted all the radii from “a” to kiloparsecs with the distance we have adopted, \(d = 16.5\) Mpc.}

M87 also has diffuse X-ray emission from hot gas. There are X-ray observations of the galaxy extending to large radii. Although the hot gas may not be in complete hydrostatic equilibrium, the ROSAT X-ray observations of M87 has been used to derive the mass profile of M87 out to a radius of \(\sim 270\) kpc (Nulsen & Bohringer 1995), while Chandra and XMM-Newton X-ray observations have been used to derive the mass profile of M87 out to a radius of \(\sim 120\) kpc (Churazov et al. 2010; Das et al. 2010). The mass derived using X-ray observations is less than that from GCs.

The GCs previously used to derive M87’s mass are extended to a maximum radius of 45 kpc, with a rising LOS velocity dispersion. These GCs show medium rotation along the minor axis with some possible kinematical substructures around 40 kpc where the stellar dynamics data are not accessible. GC dynamics thus provide a crucial input in this region. Furthermore, GCs extending to the extreme outer regions of M87 are crucial for studying the dark matter halo of M87 out to the approximate edge of its gravitational potential boundary. For example, Strader et al. (2011) obtained new, precise radial velocities for 451 M87 GCs with projected radii from \(\sim 5\) to 185 kpc. They found much lower values than earlier papers for the velocity dispersion and rotation of the GCs within the region the previous data covers (see Section 5), and also differed from previous works in seeing no evidence for a transition from the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo in the outer region.

In this paper, we construct made-to-measure (M2M) models (Hunt & Kawata 2013; Long & Mao 2010; de Lorenzi et al. 2007; Syer & Tremaine 1996) to investigate the dynamics of the elliptical galaxy M87 using kinematic measurements of its GCs. In so doing, we take an early intercept of data from the Next Generation Virgo Survey (NGVS) program. Other papers in the NGVS series, related to the topics considered here, include those on the distribution of globular clusters in Virgo (Durrell et al. 2014), the properties of star clusters, ultra-compact dwarfs (UCDs) and galaxies in the cluster core, interactions within possible in-falling galaxies (Paudel et al. 2013), and optical-IR source classification (Muñoz et al. 2014).

The paper is arranged as follows. In Section 2, we first describe the observational data for M87 which will be used to constrain the M2M models, including discrete GC LOS velocities out to 180 kpc and SAURON IFU data within 2.4 kpc. In Section 3, we introduce our construction of M2M models for elliptical galaxies, particularly when using discrete data as model constraints. In Section 4, we focus on M87 describing the modeling steps taken and our results for M87. We discuss our results in Section 5, and draw conclusions in Section 6 outlining some areas for improvement in future investigations.

2. OBSERVATIONAL DATA

In this section, we describe the M87 observational data that we will use for modeling. We adopt a distance to M87 of 16.5 Mpc (Blakeslee et al. 2009; Mei et al. 2007), and an I-band magnitude \(M_{I} = 7.23\) (Cappellari et al. 2006). At the distance of M87, 1 arc corresponds to a physical scale of 80 pc.

2.1. Photometric and Number Density Data

We assume a spherical spatial distribution of the M87 GCs. The surface number density profile can be well fitted by a Sersic function:

\[
\log I \sim -b_n \left[\left(\frac{R}{R_0} \right)^{\frac{1}{n}} - 1.0 \right] + \text{constant},
\]

where \(R\) is the projected radius, \(I\) is the surface brightness, \(R_0\) is the scale radius and \(n\) is the Sersic index. The current best fit to the GC surface number density profile is \(b_n = 2.21\), \(R_0 = 510''24 \pm 45.31\), \(n = 2.71 \pm 0.17\) (Peng et al. 2008), which was derived based on all the photometrically detected GCs (\(\sim 15,000\) in total) from the ACS Virgo Cluster Survey (Côté et al. 2004; Ferrarese et al. 2006), and not just those GCs with kinematic measurements. The black line in Figure 1 shows the GC surface number density profile along the projected radius.

The stellar surface density profile is different from that of the GCs in M87, with the stars being more concentrated in the central 10 kpc than the GCs. We assume an axisymmetric spatial distribution of the stars, and use a two-dimensional (2D) multi-Gaussian expansion fit to the photometric image of M87. The red line in Figure 1 is the surface brightness along the major axis constructed from the MGE fit performed in Cappellari et al. (2006), based on the Hubble Space Telescope (HST)/WFPC2 and ground-based MDM photometry in the I band. The MDM observations have a field of view of \(17.1 \times 17.1\) arcmin2, which covers the region \(R < 40\) kpc for M87. It is well known that the isophotes of M87 become progressively flattened at large radii (e.g., Carter & Dixon 1978; Caon et al. 1990; Mihos et al. 2005; Kormendy et al. 2009; Janowiecki et al. 2010). The MGE of the surface brightness we are using is consistent with this flattening.

NGVS imaging covers a much wider field of view (the entire Virgo Cluster), and allows improvements in both the GC surface number density and stellar surface brightness profile. However, because the NGVS profile of M87 (L. Ferrarese et al., in preparation) was unavailable when this work was started, we chose to use the Cappellari et al. (2006) surface brightness profile and the spherical GC surface number density profile (Peng et al. 2008) in our models. The new profiles based on NGVS are shown in Figure 1.
and minor axis constructed from the M87 MGE in Cappellari et al. (2006), the red solid and dashed lines are the stellar surface brightness profile along major and minor axis from NGVS (L. Ferrarese et al., in preparation). The total luminosity/number for each profile within 80 kpc have been normalized to be unity. Bottom: the minor to major axis ratio q of the GC surface number density, Cappellari et al. (2006) and NGVS stellar surface brightness, respectively.

There is evidence that the GC number density is not really spherical (Strader et al. 2011; Forte et al. 2012; McLaughlin et al. 1994; Durrell et al. 2014). NGVS imaging detected more GCs than before so a 2D number density profile become possible. The black line in the bottom panel of Figure 1 shows the flattening of the GC distribution derived from NGVS imaging.

The potential impact on our models of the new surface brightness and number density profiles and the ellipticity of the GC number density are discussed later in Section 5. In future investigations, we plan to revisit the dynamics of M87 using both NGVS optical-IR surface photometry and an expanded sample of globular cluster velocities.

The fact that the M87 GCs and stars follow different surface density profiles indicates that they also follow different distribution functions. Even though their dynamics follow the same potential, we construct two individual sets of models to model the GCs and stellar dynamics separately, as in previous investigations (e.g., Murphy et al. 2011). The GC surface number density profile from Peng et al. (2008; as in Figure 1) is used as an observational constraint for the M2M GC models. The MGE surface brightness from Cappellari et al. (2006) is used as an observational constraint for the M2M stellar models. The stellar models do not extend to large radii because they are limited by SAURON kinematics which only extend to $R \sim 2.4$ kpc.

2.2 Kinematical Data

2.2.1 GC Kinematics

Strader et al. (2011) merged previous observations of M87 GCs with their own observations to produce a catalog of 737 GCs with LOS velocity measurements. To this we have added 263 new GCs with velocity measurements (299 in total less 36 duplicates already in the catalog), most of which are at large galactocentric radii (beyond 40 kpc). The new GCs were selected from imaging in the NGVS (Ferrarese et al. 2012), which is a large program on the Canada–France–Hawaii Telescope (CFHT) to produce deep optical, multiband photometry of the entire Virgo Cluster of galaxies out to the virial radius. The contiguous coverage of NGVS makes it ideally suited to finding and studying GCs in the outer halos of galaxies and intracluster regions.

Using NGVS imaging, we used color and morphological criteria to select candidate GCs around M87 with $g < 22.5$ mag, and obtained spectroscopy for them using Hectospec (Fabricant et al. 2005), the multifibre spectrograph on the MMT on Mt. Hopkins. We reduced the spectra using the standard SAO pipeline, and obtained radial velocities by cross-correlating the spectra with stellar and GC templates. The details of the observations will be presented in a future paper. We combined these data with those in the literature to produce a sample of 966 GCs inside 320 kpc (922 GCs within 180 kpc). Although the final sample of GCs is from heterogeneous sources, cross-checks of overlapping sources indicate that they are consistent within the error bars. Duplicate observations were combined as appropriate to produce a velocity estimate for each object. NGVS has contributed significantly to the number of GCs at larger radii. For example, the number of GCs with kinematic measurements outside of 40 kpc is now in excess of 440, an increase of about 50% due to NGVS.

Figure 2 shows the velocity distribution of the GCs along the projected radius R with M87’s systemic velocity of 1274 km s$^{-1}$ (Emsellem et al. 2004) having been subtracted. Each data point represents a GC, the solid blue line is the mean velocity profile, the solid red line is the velocity dispersion. The mean velocity and velocity dispersion profiles are calculated using equal count binning and are not smoothed. The GCs inside 180 kpc have a mean velocity fluctuating around zero (see Figure 2), and the spatial distribution of the GCs is nearly uniform in radius and azimuth (see Figure 3). Outside 180 kpc, the mean velocity deviates slightly from zero and the velocity dispersion becomes

![Figure 1](image1.jpg)

Figure 1. Top: the normalized surface density profiles. The black line is the GC surface number density profile along projected radius from Peng et al. (2008), the red solid and dashed lines are the stellar surface brightness profile along major and minor axis constructed from the M87 MGE in Cappellari et al. (2006), the purple solid and dashed lines are the g band surface brightness profile along major and minor axis from NGVS (L. Ferrarese et al., in preparation). The total luminosity/number for each profile within 80 kpc have been normalized to be unity. Bottom: the minor to major axis ratio q of the GC surface number density, Cappellari et al. (2006) and NGVS stellar surface brightness, respectively.

(A color version of this figure is available in the online journal.)

![Figure 2](image2.jpg)

Figure 2. GC LOS velocity distribution along the projected radius R. The blue solid line indicates the mean GC velocity profile, the red solid line shows the velocity dispersion, and the red dashed lines indicate the 3σ boundary of the velocity distribution. The blue dashed line represents $v = 0$. The vertical dashed line at $R = 180$ kpc indicates the radial limit of the data used in the M2M models.

(A color version of this figure is available in the online journal.)
larger. This perhaps indicates that GCs outside 180 kpc may not be gravitationally bound by the potential of M87, i.e., they may be affected by the potential of nearby galaxies. However, for the whole sample, deviations of the mean GC velocity from zero are not significant statistically. This situation is similar to that seen in the PN velocity distribution (Doherty et al. 2009). We chose therefore to use only the GCs inside 180 kpc to trace the potential of M87. For the 922 GCs inside 180 kpc, we perform 3σ velocity clipping to tidy the data before using them in the M2M models. As a result, 6 GCs with velocities outside of 3σ from the mean velocity distribution are excluded (see Figure 2).

Figure 3 shows the positions of the GCs colored according to their LOS velocity values. There is a large velocity dispersion and an obvious rotation around the minor axis (indicated by the red line in Figure 3) at $R \approx 40$ kpc in agreement with previous results (Strader et al. 2011; Côté et al. 2001; Cohen 2000). Some of the highest velocities in this region have been identified as measurement errors (Strader et al. 2011), and have been excluded from our sample. The large observed velocity dispersion, however, is not due only to this effect, as we discuss below.

The extended stellar envelope of M87 may have been built up by continual mergers, and as a result, the GCs may not have reached virial equilibrium (Romanowsky et al. 2012). Around the region $R \approx 40$ kpc, the GCs show strong fluctuations in kinematics and relatively large rotation about the minor axis. From the velocity coloring in Figure 3, there are more substructures around this region than any other region and this may be part of the reason for the high velocity dispersion. Some of the substructures are quite obvious, for example the region marked by the red rectangle in Figure 3, within which all 20 GCs have positive velocities. In this case, we choose to exclude these 20 GCs from our modeling. After exclusion, the large velocity dispersion around 40 kpc still exists.

As shown in Figure 4, there are a number of Virgo Cluster Catalog (VCC) galaxies in the GC region, but we cannot match the offending GCs with any of the nearby (in projection) VCC galaxies. The velocity differences between the VCC galaxies and the GCs in that region are off by many hundreds of km s$^{-1}$, if not more. It is not clear however that the kinematic fluctuations represent a real phenomenon. A companion paper will include a comprehensive examination of possible substructures and/or kinematic features in our sample. We proceed by reducing the impact of these data on our modeling by increasing the individual velocity errors of the 275 GCs in the region $20.4 < R < 57$ kpc by a factor of 5.0.

After the above reduction, we obtain 896 GCs inside 180 kpc. For the axisymmetric models we are going to build, we symmetrize the data. The minor axis of M87 is indicated as the red line in Figure 3. We put the data in a coordinate system such that the Y axis is along the minor axis while the X axis is along the major axis. Every GC with position coordinates (X, Y) on the sky and LOS velocity V is reflected with respect to the center of the galaxy to generate a new GC with $(-X, -Y, -V)$ and reflected with respect to the Y axis to generate a new GC with $(-X, Y, -V)$. This reflection will help to reduce further any GC subpopulation biases which might still be present. Symmetrization is a common procedure used with many different modeling methods (e.g., Cappellari et al. 2006; de Lorenzi et al. 2008). After the above reductions and symmetrization, there are 3584 GC measurement points inside 180 kpc which will be used in the M2M models as discrete kinematical constraints.

2.2.2. Stellar Kinematics

We take kinematic data for M87 from the SAURON data release (Emsellem et al. 2004). The data available are the LOS mean velocity μ, velocity dispersion σ and the h_3 and h_4 Gauss–Hermite coefficients, all taken from a truncated Gauss–Hermite expansion of the LOS distribution (van der Marel & Franx 1993). Long & Mao (2012) modeled the SAURON data of M87 with the M2M method. We refer to Long & Mao (2012) for the appropriate detail. We follow their data.
and modeling process but also include a dark matter potential as will be described in Section 3.3.3.

The SAURON observations were adaptively binned and processed in a centroidal Voronoi tessellation (Cappellari & Copin 2003). M87 has 2112 such Voronoi bins. Voronoi bins are not used for surface brightness. Instead we employ a 16 × 16 polar grid with pseudo-logarithmic radial bins as described in Long & Mao (2010).

3. MODEL CONSTRUCTION

3.1. The Made-to-measure Method

The made-to-measure (M2M) method (Syer & Tremaine 1996) is particle based, rather than orbit based as in Schwarzschild’s method (Schwarzschild 1979, 1993). It is in other respects not dissimilar to the widely used Schwarzschild’s method for dynamical modeling. For our purposes, the gravitational potential comes from a combination of luminous matter and dark matter and contains the parameters we want to determine. Weighted test particles are orbited within this potential and by modifying the particle weights at the same time, we are able to reproduce the measured observables of a real galaxy. By varying the parameters we are interested in and running multiple models, we are able to determine, in a maximum likelihood sense, the best fitting parameters.

In recent years, the M2M method has been developed to model discrete data directly, without any binning prior to modeling (Long & Mao 2010; de Lorenzi et al. 2007, 2008; Das et al. 2011; Hunt & Kawata 2013). We use the M2M code developed initially in Long & Mao (2010), which is able to model both the IFU data and discrete data.

The key equation that leads to weight evolution over model time is

\[F = -\frac{1}{2} \lambda^2_{LM} + \frac{1}{\epsilon} \frac{d}{dt} S + \mu S - \frac{\lambda_{\text{sum}}}{2} \sum_i w_i = 1 \right)^2, \]

where \(\epsilon \), \(\mu \) and \(\lambda_{\text{sum}} \) are positive parameters, \(S = -\sum_i w_i \ln(w_i/m_i) \) is the entropy of the system, the \(m_i \) are the prior weights and the \(w_i \) are the particle weights and are considered to vary with time. The \(\lambda^2_{LM} \) term compares the observed data with equivalent values calculated from the weighted particles and is thus a function of the weights.

By maximizing \(F \) with respect to the particle weights (\(\partial F / \partial w_i = 0 \), \(\forall i \)), we obtain the weight evolution equations in the form

\[\frac{d}{dt} w_i = -\epsilon w_i Q(w). \]

The overall speed of weight convergence is controlled by \(\epsilon \), and \(Q(w) \) is related to the observational constraints. We do not describe the details here (see Long & Mao 2010).

With several observational constraints in a model, we need to balance the effect of each constraint within the weight evolution equations. For \(K \) multiple observables, we take \(\lambda^2_{LM} \) in the form

\[\lambda^2_{LM} = \sum_k \lambda_k \chi^2_k, \]

where \(\lambda_k \) are positive parameters whose role is to perform the balancing, and \(\chi^2_k \) is the usual model \(\chi^2 \) for an individual constraint. The role of the \(\lambda_k \) is described in more detail in Long & Mao (2012), as is the process for the determination of their values.

The second term of Equation (2) imposes a constraint that \(dS/dt \) should be zero. After differentiation it provides the weight derivative term in the weight evolution equations. The third term is the global regularization which we will discuss later in Section 4.2 for our M87 data. As the particle weights are taken as fractional luminosity, the last term of Equation (2) (involving \(\lambda_{\text{sum}} \)) ensures that the total luminosity of the model does not vary. The manually tunable parameters (\(\epsilon, \mu, \lambda_{\text{sum}}, \) and potentially \(\lambda_k \)) are used to modify the behavior of the model as appropriate to the real system and data being modeled.

In order to determine whether or not the particle weights have converged, we use the same mechanism as Long & Mao (2010). Reproduction or otherwise of the observed data is handled via \(\chi^2_{LM} \).

3.2. Discrete Data

Discrete observables (e.g., GC data) are directly involved in the model as constraints. The probability, \(p_{D,j} = p_{D,j}(x_{ij}, v_{ij}) \) of the model reproducing a discrete LOS measurement \((x_i, y_i, v_{ij}) \) is found by convolving the LOS velocity distribution (LOSVD) with a Gaussian incorporating the observational errors \(\sigma_j \). The LOSVD is usually not analytic. For modeling purpose, we divide the model “sky” into many bins in polar coordinates as illustrated in Figure 3. Each discrete data point is located in one bin and, correspondingly, at any one time, there will be many particles \((x_i, y_i, v_{ij}) \) currently located in the bin.

The probability \(p_{D,j} \) is calculated from the particle data as

\[p_{D,j} = \frac{1}{\sqrt{2\pi\sigma_j}} \sum_i \delta_{ij} w_i \exp \left[-\frac{(v_{ij} - v_{ij})^2}{2\sigma^2_j} \right], \]

where the selection function \(\delta_{ij} \) takes the value 1 if particle \(i \) is located in the bin corresponding to observation \(j \) and is 0 otherwise, and \(N \) is the total number of test particles. For modeling the M87 GCs, we use 16 × 16 bins to reduce the size of the bins so that the model calculations are more representative of the measurements. The contribution to the weight evolution is found by constructing the log likelihood function \(\mathcal{L} \)

\[\mathcal{L} = \sum_j \ln p_{D,j}, \]

where \(M \) is the number of discrete data points. Equation (2) then becomes

\[F = -\frac{1}{2} \lambda^2_{LM} + \lambda_D \mathcal{L} + \frac{1}{\epsilon} \frac{d}{dt} S + \mu S - \frac{\lambda_{\text{sum}}}{2} \left(\sum_i w_i = 1 \right)^2, \]

where \(\lambda_D \) is another constant we need to adjust. By evolving the particle weights, we obtain the model which has the maximum likelihood of reproducing the discrete data sets and the \(\chi^2 \) modeled observables.

3.3. Gravitational Potential

M87’s GCs and stars are both tracers of the same gravitational potential, where the potential is a combination of a luminous matter potential, a dark matter potential and a central black hole.
The luminous matter mass is dominated by M87 stars. By comparison the mass of the GCs is negligible. As indicated in Section 2.1, we assume an axisymmetric spatial distribution for the stars. An axisymmetric luminous matter potential is constructed by deprojecting the 2D stellar surface brightness profile. The stellar distribution of M87 is very round; the MGE fit shows that the short-to-long axis ratio is between 0.7–0.99 at different radii.

The flattening of dark matter and luminous matter are correlated, with dark matter usually being systematically rounder than luminous matter (Wu et al. 2014). We assume a spherical dark matter potential in our models.

3.3.1. Luminous Matter Potential

An observed 2D surface brightness is the projection of a 3D luminosity density distribution. An edge-on inclination is assumed and so the deprojection is unique (Gerhard & Binney 1996). Assuming axisymmetry, the stellar gravitational potential of a galaxy can be calculated by assuming (or knowing) the galaxy’s inclination to the line of sight and deprojecting the multi-Gaussian expansion (MGE) of its surface brightness to give a 3D density. With an assumed constant mass-to-light ratio, Poisson’s equation may then be solved to obtain the gravitational potential. The MGE technique is described in Emsellem et al. (1994) and applied in Cappellari et al. (2006), and we do not repeat the detail here. For M87, we use the MGE in Cappellari et al. (2006) based on the HST/WFPC2 and ground-based MDM photometry in the I band.

The technique for constructing the potential from multi-Gaussians in M2M models was implemented in Long & Mao (2012). For M87, the surface brightness measurements extend to $R = 40$ kpc where the MDM observations end. For modeling purposes, we extrapolate the potential out to $R = 80$ kpc using the MGE fit.

3.3.2. Central Supermassive Black Hole

It is widely believed that a supermassive black hole resides at the center of M87 (e.g., Young et al. 1978; Ford et al. 1994). This component can be modeled by adding a point mass in the center of the model. However, the radius of influence of the black hole is usually small. Taking M87 as an example, the mass of the black hole is $(6.6 \pm 0.4) \times 10^6 M_\odot$ (Gebhardt et al. 2011). At a distance of $d = 16.5$ Mpc, this corresponds to an influence radius of $\sim 3''$.

For M87, there are only a few SAURON data points and no GC data point within $3''$, and thus the black hole is not important given the data available. We aim to constrain the mass and dynamics at large radii and therefore ignore the black hole for the models which follow.

3.3.3. Dark Matter Potential

A previous study revealed that GC data cannot distinguish significantly between a cored dark matter halo and an NFW halo, but may favor slightly a cored dark matter halo (Murphy et al. 2011). We do not have substantially more data in the inner GC region, so we do not expect a change to the results in this respect. We utilize spherical logarithmic dark matter potentials in our M2M models. The logarithmic model was inspired by the flat rotation curves of spiral galaxies (e.g., Persic et al. 1996) but is frequently used in the modeling of elliptical galaxies (e.g., Murphy et al. 2011). The gravitational potential is given by

$$\Phi(r) = \frac{V_s^2}{2} \ln \left(\frac{r_s^2 + r^2}{r_s^2} \right),$$

(8)

where V_s is the scale velocity and R_s is the scale radius. The corresponding density profile is

$$\rho(r) = \frac{V_s^2 (3R_s^2 + r^2)}{4\pi G (R_s^2 + r^2)^2},$$

(9)

and the mass profile is

$$M(<r) = \frac{1}{G} \frac{V_s^2 r^3}{R_s^2 + r^2}.$$

(10)

Unlike the density cusp at the center of the NFW model (Navarro et al. 1996), there is a core at the center of the logarithmic model where the density approaches a constant. When $r \gg R_s$, the density decreases as r^{-2}. The logarithmic model maximizes the stellar contribution to the mass in the central regions, and thus can be used to create a “minimal” dark matter halo scenario.

3.4. Parameter Estimation

In our M87 M2M models using a luminous matter potential and a logarithmic dark matter halo, there are three free parameters to be estimated, the stellar mass-to-light ratio M/L and the dark matter scale velocity V_s and scale radius R_s. In this section we explain how these parameters, which we will refer to as p, will be estimated.

We base our approach on Morganti et al. (2013) who argue that it is not appropriate to apply “normal” χ^2 analyses to M2M models. In the standard χ^2 procedure, one uses certain $\Delta\chi^2$ values for given degrees of freedom to determine the confidence levels of parameters. Morganti et al. (2013) show that the assumptions underlying such an approach are not met in M2M models (see their Section 4). To assist us in finding the best fitting parameter values, we define a new function $G(p)$:

$$G(p) \equiv -\frac{1}{2} \chi^2_{LM} + \lambda_D \mathcal{L}.$$

(11)

For a given model, G is only calculated once, at the end of the modeling run. From Equation (2), it can be seen that $G(p)$ is in fact the first two terms of F and is negative. Our $G(p)$ differs from that in Morganti et al. (2013) in two respects. Firstly it is the negative of Morganti et al.’s, and secondly our χ^2_{LM} is defined as in Equation (4) and contains the λ_k parameters. Morganti et al. (2013) omit their equivalent of the λ_k parameters. The first change is minor and reflects our personal preference. The second change, which we regard as essential in maintaining the mathematical consistency of our overall M2M method, introduces a more general matter with M2M methods.

A key issue that all users of M2M methods based on Syer & Tremaine (1996) have to resolve is how to balance numerically the weight evolution equation (Section 3.1) such that no single observable dominates the determination of the particle weights. de Lorenzi et al., Long & Mao, Hunt & Kawata, Morganti et al. all have different approaches. A second related issue is whether or not whatever mechanism is used to achieve the numerical balance should also be part of the “merit function” used to compare models. As is clear, our preference is for mathematical consistency of approach and this continues the approach taken.
in the earlier Long & Mao papers. Other researchers have adopted alternative strategies.

For a set of modeling runs spanning some region in \(\mathbf{p} \), we use \(\Delta G \) defined as
\[
\Delta G = G_{\text{max}} - G,
\]
where \(G_{\text{max}} \) is the maximum value of the end of run \(G \)s within the set.

Morganti et al. (2013) set parameter confidence limits for their NGC 4494 models using \(\Delta G \) values determined from the probability distribution function produced from Monte Carlo simulations of models with mock data. They find, as well as other results, that the confidence limits obtained from the simulations are consistent with the fluctuations of \(\Delta G \) near its minimum (see their Section 6.1). We assume that this result is not specific to their modeling and the data being modeled but is generally true, and may be applied to our M87 M2M models to perform the parameter estimation we require (see Section 4.5 for the detailed calculations). As a consequence, we do not perform any Monte Carlo simulations with mock data. Our best fitting model parameters are determined from only the models in the region of the minimum in \(\Delta G \).

For the avoidance of doubt, it is not the full method and results from Morganti et al. (2013) that we use but a subset. We base our approach on theirs but, as the earlier text in this section shows, we do not follow it exactly and there are clear implementation differences, risks and assumptions.

4. MODELING M87

In this section, we construct and run the M2M models for M87. We use only a logarithmic dark matter halo plus a luminous matter gravitational potential constructed by deprojecting the 2D surface brightness using a MGE. A central black hole is not included in the modeling. From the potentials, we have three free parameters: the stellar mass-to-light ratio \(M/L \), and the dark matter scale radius \(R_s \) and scale velocity \(V_s \).

Ideally, the free parameters should be modeled simultaneously, and we would use the combined \(\chi^2 \) for the SAURON data and \(L \) from modeling GCs to determine the best fitting model parameters. However, for M87, the GCs and the SAURON data will be modeled separately for the reasons noted in Section 2.1. The two sets of models will utilize the same parameter grid.

The GCs provide good constraints on the dark matter distribution, but weak constraints on the stellar \(M/L \). Conversely, the SAURON data provide good constraints on the stellar \(M/L \), but nearly no constraints on the dark matter distribution. Consequently we only apply a subsection of the parameter grid to the SAURON data. The modeling steps are as follows.

1. GCs are modeled first with a parameter grid of \(14 \times 13 \times 6 \) on \(V_s \times R_s \times M/L \) with
 \[
 V_s = (3.5, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.2, 6.4) \times 124.5 \text{ km s}^{-1},
 \]
 \[
 R_s = (0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7) \times 40.8 \text{ kpc},
 \]
 \[
 M/L = (4.9, 5.39, 5.88, 6.37, 6.86, 7.35) M_{\odot} L_{\odot}^{-1}.
 \]
 We find that \(V_s \) and \(R_s \) are constrained well by the kinematics of the GCs. The best fitting parameters we obtain are \(V_s \sim 600 \text{ km s}^{-1} \) and \(R_s \sim 40 \text{ kpc} \).

2. We then model the SAURON data on a subsection of the GC parameter grid with
 \[
 V_s = (4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4) \times 124.5 \text{ km s}^{-1},
 \]
 \[
 M/L = (4.9, 5.39, 5.88, 6.37, 6.86, 7.35) M_{\odot} L_{\odot}^{-1}.
 \]

3. Finally, the model parameters and their uncertainties are determined from the combination of these two sets of models using the approach in Section 3.4. Because the constraints are different in the GC and SAURON models, \(G \) and in particular \(\Delta G \) also differ. We refer to the \(\Delta Gs \) as \(\Delta G_{\text{GC}} \) and \(\Delta G_{\text{SN}} \), respectively.

We monitor convergence of the particle weights (see Section 3.1) over the last 20 half mass dynamical time units of the modeling runs using a convergence tolerance of 5%. All our models have more than 95\% of the particle weights converged so we consider particle weight convergence to be a non-issue for our work.

Before applying the M2M method to M87 and its GCs, we test our procedure for modeling discrete data using NGC 4374 planetary nebulae data (see Appendix). We find our procedure behaves satisfactorily.

4.1. Particle Initial Conditions

We set up our initial M87 models with \(N = 50,000 \) particles extending to \(\sim 800 \text{ kpc} \), which is larger than the region for which we have data constraints in order to ensure we have an appropriate number of higher velocity particles. All particles are given the same initial weight and prior equal to \(1/N \).

The distribution functions of the GCs and the stars are different and thus we create separate M2M models for the GCs and stars. For the M87 stellar models using SAURON data, the particle initial conditions are as described in Long & Mao (2012). For the GC models, the initial spatial distribution of particles matches the GC number density profile. Velocities are first set using the velocity dispersion function obtained from the isotropic Jeans equation using the GC number density and the potential to be modeled. The potential includes contributions from both dark matter and luminous matter. A small rotation is added for specified fractions of particles at particular radii to assist the M2M modeling in matching the observed GC dynamics (as discussed in Section 2.2.1). Adding rotation modifies the particles’ velocities causing the velocity distribution to become anisotropic. Thus, neither the stellar models nor the GC models have isotropic velocity dispersions before M2M modeling commences.

Since we are running M2M models with free parameters in the potential, we create a particle system for each potential as required. This ensures that the particles’ velocities match the potential initially, and we only need to match the observables by adapting the weights during the modeling.

4.2. Regularization

The M2M approach to dynamical modeling is an ill-posed problem in that there are many more weights to be determined than there are observational constraints. Long et al. (2013) identify some of the points to be considered in deciding whether or not to use regularization with the M2M method. In our case, the M87 GC data show kinetic fluctuations at certain radii, and some of the data points are of uncertain quality. We do not want to over-fit the data and so we choose to use entropy regularization.

The amount of regularization is controlled by the parameter \(\mu \) which is used to achieve a desired balance between fitting the observed data and delivering a smooth solution. Entropy
based regularization prevents a particle weight w_i moving too far away from its “prior” weight $m_i (m_1/e$ to be precise). Too much regularization may bias the model fit to the observational data.

To examine how regularization actually affects the determination of our model parameters, we run a series of controlled tests. We deliberately choose a parameter region where a minimum is known to exist to help us assess the impact of regularization. As anticipated, the smoothing effect of regularization in this case does make the minimum more apparent.

Different values of μ are used in a test M2M model (utilizing our M87 GC data) in which we fix two of our three free parameters (mass-to-light ratio $M/L_1 = 5.88 \ M_\odot L_\odot^{-1}$, dark matter scale velocity $V_s = 625 \ \text{km s}^{-1}$) and then vary the third, the dark matter scale radius R_s. Figure 5 shows how ΔG_{GC} varies as R_s is varied. The red, blue, black, and green lines represent the models with $\mu = 0, 1, 2, 3$, respectively.

We use the minimum ΔG_{GC} of each set of models to indicate the best fit. For the $\mu = 0$ set of models (no regularization), ΔG_{GC} (red line) shows fluctuations, and it is hard to determine the best fitting value of R_s. The other three sets of models reach their minimum ΔG_{GC} value at the same value of $R_s = 40 \ \text{kpc}$. The $\mu = 1$ set of models (blue line) still has some fluctuations around its minimum. The GC kinematic data is noisy so one needs to avoid overfitting to the noise level. However, when μ is large, it prevents fitting to the data, so the difference between models becomes smaller, e.g., the green line ($\mu = 3$) is flatter than the black line ($\mu = 2$) around the minimum. We need sufficient difference to distinguish different models, so $\mu = 2$ appears to be a reasonable choice for the GC model of M87 and that is what we use.

For consistency with Long & Mao (2012), we use no regularization ($\mu = 0$) when modeling the SAURON data.

4.3. Modeling GC Kinematics

The surface number density profile (with an assumed relative measurement error of 10%) and the discrete GC LOS velocities are used as M2M model constraints. For the GC models, $G(p)$ (see Equation (11)) may be simplified to

$$
G(p) = -\frac{1}{2} \lambda_{sd} \chi_{sd}^2 + \lambda_D \mathcal{L}.
$$

4.4. Modeling SAURON Data

For modeling with SAURON data, we use surface brightness and the Gauss–Hermit coefficients h_1 to h_4 of the LOS velocity distribution as observable constraints. The coefficients h_1 and h_5 (see Long & Mao 2012) are not used. The function $G(p)$ has the form (see Equation (11))

$$
G(p) = -\frac{1}{2} \left(\lambda_{SB} \chi_{SB}^2 + \sum_{i=1}^{4} \lambda_{hi} \chi_{hi}^2 \right).
$$

There is no discrete data log likelihood term since we are not using discrete data as a constraint. For the λ values, we...
use the same values as used in the best-fitting M87 M2M model from Long & Mao (2012). That is $\lambda_{SB} = 4.0 \times 10^{-3}$, $\lambda_{hi} = 2.08 \times 10^{-5}$, $\lambda_{h2} = 3.94 \times 10^{-5}$, $\lambda_{h3} = 2.04 \times 10^{-5}$, and $\lambda_{h4} = 4.12 \times 10^{-5}$.

The parameter space for p is as in Section 4 point 2 (the same subset of the parameter space described in Section 4.3) and we run a M2M model for each point in the space. From the models we construct ΔG_{SN} to assist in the parameter estimation. In addition, we also run a set of models with no dark matter to repeat the investigation of Long & Mao (2012) and obtain good agreement with their result.

Analysis of ΔG_{SN} is covered in Section 4.5.

4.5. Parameter Estimation of M87

An analysis based on the ΔG values is performed to estimate both the best-fitting modeling parameters and their uncertainties. Figure 7 shows the ΔG values plotted against the three modeling parameters. The red dots represent ΔG_{GC}, and black stars represent ΔG_{SN}. We note three things from Figure 7.

1. The ΔG_{SN} and ΔG_{GC} values differ by approximately an order of magnitude. This is because we are using different observable constraints in the two sets of models.

2. As shown in the top panel, ΔG_{SN} values are sensitive to changing the M/L_{I} values. We choose to determine M/L_{I} from only ΔG_{SN}.

3. There is a minimum region of ΔG_{GC} when projected along the R_{s} and V_{s} axes. The variation in ΔG_{SN} appears to be random (i.e., the SAURON data provides nearly no constraint on the dark matter halo). We choose therefore to use only ΔG_{GC} to determine V_{s} and R_{s}.

As indicated in Section 3.4, we estimate the confidence regions for the parameters from the ΔG fluctuations near the minimum. Since the total mass within a given radius is influenced by all three parameters, we use it to determine our confidence limit ΔG values. In the inner part, the mass is dominated by the stellar mass-to-light ratio, and in the outer part by the dark matter halo parameters V_{s} and R_{s}. For the halo parameters, we first calculate the enclosed mass at $r = 82$ kpc for each GC model (see Figure 8). The minimum ΔG_{GC} value appears to be at $M \sim 6.0 \times 10^{12} M_{\odot}$. It is less clear however just how wide (in mass) the minimum region is for the purposes of selecting ΔG fluctuations near the minimum. To clarify the width, we select a set of mass points, with a regular interval, from the overall mass range, and determine the mean and dispersion (σ) of ΔG from the nearest 30 (mass, ΔG) points. For each mass point, we plot the mean value plus 1σ in Figure 8 (the red diamonds). From the curve formed by the red diamonds, it is now considerably clearer where the minimum region is and what value of ΔG should be taken as a confidence limit (represented by the horizontal dashed line in Figure 8). We take as that limit $\Delta G_{GC} = 0.073$ to represent a confidence level of 70%. We have applied our approach to the data in Morganti et al. (2013) Figure 11 and arrive at the same value of ΔG as they obtained via their cumulative distribution function, that is $\Delta G = 26$.

Similarly, we calculate the enclosed total mass at $r = 2.04$ kpc for each SAURON model, and find the minimum region in ΔG_{SN} at $M \sim 9.2 \times 10^{10} M_{\odot}$, and then calculate the mean and dispersion (σ) of ΔG_{SN} for this group of models. We take the mean value plus 1σ as the ΔG_{SN} fluctuation near the minimum, giving $\Delta G_{SN} = 0.0054$ as the 70% confidence level.

Based on the discussion above, we estimate the model parameters and their uncertainties (summarized in Table 1) as follows.

1. For M/L_{I}, we choose the SAURON models with $\Delta G_{SN} < 0.0054$. Note that the V_{s} and R_{s} values of these models are within the 1σ confidence of the GC model. For the models, we calculate the mean value and dispersion of the M/L_{I} parameter. We take these values as the parameter estimate and its error. We obtain $M/L_{I} = 6.0 \pm 0.3 M_{\odot}/L_{\odot}$.
The set of models with no dark matter halo yields $M/L_I = 6.4 \pm 0.3 \, M_\odot \, L_\odot^{-1}$, in agreement with Long & Mao (2012).

2. For V_s and R_s, we first select the GC models with $\Delta G_{GC} < 0.073$, and choose only those with $M/L_I = (5.39, 5.88, 6.37) \, M_\odot \, L_\odot^{-1}$. This is because the other values of $M/L_I = (4.9, 6.86, 7.35) \, M_\odot / L_\odot$ are excluded by the 1σ confidence level on M/L_I. For these models, we calculate the mean and dispersion of the dark matter parameters, giving $V_s = 591 \pm 50 \, \text{km s}^{-1}$ and $R_s = 42 \pm 10 \, \text{kpc}$.

It must be remembered that we are not using parameter probability distributions with their associated confidence levels (constructed from Monte Carlo simulations and marginalized). As a consequence, we do not wish to use unwarranted precision in stating error values and choose to quote them to one significant figure only.

4.6. GC Data Reproduction

To evaluate how well the GC kinematic data has been reproduced by our models, we pick the M2M model closest to the parameter values determined in Section 4.5 and perform the following evaluation.

We divide the symmetrized observed data and the model’s end of run weighted particle data into 6×8 spatial bins on the projection $R \times \phi$ plane, and then compare the velocity distribution of the data and the model in each bin. The velocity distribution of the data in each bin is not a pure Gaussian profile. Our model however does match the non-Gaussian features well. For quantitative comparison purposes, we only extract the mean velocity and velocity dispersion.

The resulting LOS mean velocity and velocity dispersion in each bin are shown in Figure 9. The left hand panels are the mean LOS velocity profile along R, with each panel corresponding to one ϕ. The right hand panels are the equivalent for LOS velocity dispersion. The data values and errors shown are calculated by a bootstrap process. For each individual GC measured velocity with value v_j and error σ_j, we construct a Gaussian velocity distribution with mean v_j and dispersion σ_j. A new data set is produced where the velocity for each point is chosen randomly from its Gaussian distribution, and a mean velocity and velocity dispersion can then be obtained for each bin position. This process is repeated 1000 times. We calculate the average and dispersion of the 1000 mean bin velocities as the true value of the mean velocity and its error, and similarly for velocity dispersion.

The model mean LOS velocities match the binned GC data well with a mean χ^2 value of 0.5. For the velocity dispersion profiles (with a mean χ^2 value of 0.9), the model matches the basic trend within the GC data with the model dispersion decreasing with increasing radius. The azimuthal differences in velocity dispersion are not significant: the velocity dispersion profiles at different directions are consistent within the error bar.

For the observed data at $R \sim 40 \, \text{kpc}$, there is a relatively large rotation along the minor axis (with a rotation velocity of 140 km s$^{-1}$), which is less well fitted by the model, and, as anticipated, the model does not fit the large velocity dispersion around this region. This dispersion cannot readily be reproduced by the potential, and we deliberately employed regularization to prevent the model from attempting to match this fluctuation. We also reduced the impact of the data around 40 kpc on the model (see Section 2.2.1) by increasing the errors in this part of data. Having done this, the 1σ lower limit of the velocity dispersion at $R \sim 40 \, \text{kpc}$ can marginally match our model if the dispersion gradually decreases from the center to the outer part. The dark matter parameters are constrained primarily by GCs at radii $\sim 40 \, \text{kpc}$, thus giving confidence in the parameters derived from our modeling.

For completeness, Figure 10 shows how well the surface number density has been reproduced (mean χ^2 value of 0.05).

5. DISCUSSION

5.1. Mass Distribution

We calculate the total mass as the sum of the luminous matter and dark matter contributions. The dark matter mass within radius is determined with Equation (10). For luminous matter, the mass is determined as the stellar mass-to-light ratio.
multiplied by the integral of the MGE luminosity density (see Emsellem et al. 1994).

We find that the total mass of M87 within 180 kpc is $(1.5 \pm 0.2) \times 10^{13} M_\odot$. Furthermore, the dark matter distribution is consistent with a smooth halo within 180 kpc.

As one of the most studied galaxies, the mass of M87 has been derived many times and the literature shows a broad variation in its value. Below we compare our results with earlier studies using mass estimates based mainly on GC kinematics and X-ray studies extending to large radii. We display our comparison in Figure 11.

Previous mass estimates obtained using GCs kinematics are marginally consistent with our result but, with one exception, systematically larger. It must be pointed out that none of the existing studies included measurements beyond 50 kpc. Extending to 180 kpc, our data is therefore far better suited to constrain the dark matter distribution.

Of the existing measurements, the mass measured by Deason et al. (2012) within 42 kpc is consistent with our result. However, their study assumed a constant velocity dispersion anisotropy (see Equation (16)) and they found $\beta = -1.1$, which is inconsistent with our result (see Section 5.3). The masses derived in earlier studies by Wu & Tremaine (2006) and Cohen (2000), based on the same data as Deason et al. (2012), are also consistent with our mass. An even earlier study by Merritt & Tremblay (1993) used only 43 GC velocity measurements and their result (with its large error bar) agrees with ours to within 1.5 σ. These previous results employ various assumptions and confusingly relate the GC and star surface number densities which may affect the mass estimation. We focus our comparison therefore on two recent Schwarzchild models (G2009 and M2011).

The M2011 study used not only GCs extending to 45 kpc but also VIRUS-p data out to ~ 19 kpc, while the G2009 work was constructed using SAURON data and the same GCs as in M2011, but also used high spatial resolution long-slit observations of stellar light (van der Marel 1994). Both M2011 and G2009 obtained larger masses than our study. For $r < 40$ kpc, their mass is $\sim 60\%$ larger than our value. Their GC data only extended to 45 kpc and around this radius the GCs show a large velocity dispersion which may be due to GC kinematical substructures (see Figure 3). The large dispersion around 40 kpc is not consistent with the gradually decreasing velocity dispersion at larger radii ($R > 60$ kpc). We choose not to fit the large dispersion in the M2M models as indicated in Figure 9. Due to the lack of data outside of 45 kpc, the M2011 and G2009 masses are likely overestimated. Also, other previous studies may have been affected by the large dispersion around 40 kpc as well.

In general, the mass derived in M2011 is closer to our results. The M2011 value is a balance between the VIRUS-p data and the GCs’ larger velocity dispersion. In fact, M2011 showed that the mass derived with the VIRUS-p data alone is even smaller. Thus it appears that the VIRUS-p data extending to $238''$ (~ 19 kpc) do have some ability to constrain the dark matter component of the total mass distribution.

Strader et al. (2011) derived the M87 mass by Jeans analysis using a GC catalog they had constructed including 737 GCs extending to radii of ~ 150 kpc. They break the data set down into three radial bins and obtained the enclosed mass for each position. Then Agnello et al. (2014) used the same data as Strader et al. (2011), but separated the GCs into red, intermediate, and blue populations via a Bayesian analysis, and the three populations provide us with enclosed masses at three different pitch radii. Based on this, they obtained a mass profile

Figure 10. Reproduction of the GC surface number density per kpc2 for $R < 180$ kpc. 24 radial bins have been used. Normalization of the observed surface number density profile has been adapted to match the number of particles in the model.

(A color version of this figure is available in the online journal.)

Figure 11. Mass profile of M87. The red solid and dashed lines indicate our total mass and its uncertainties. Our luminous mass profile is plotted with the red dotted line, while the width represents its uncertainty. The black dash-dotted line is the mass profile from M2011 and was constrained from VIRUS-p data extending to ~ 19 kpc and GCs extending to 45 kpc. The black dotted line is the mass profile from G2009 and was constructed using SAURON data and the same GCs as M2011. The vertical thin dash-dotted line over the G2009 and M2011 profile indicates the position $r = 45$ kpc, and both the M2011 and G2009 mass profiles outside of this position are extrapolated from their models. The magenta ‘o’s indicate the mass obtained by Strader et al. (2011) by Jeans analysis using their new GCs combining the old GCs in literatures. The magenta solid (dashed) line is the mass (uncertainties) obtained by Agnello et al. (2014) with the same data as Strader et al. (2011). The blue solid region is the mass profile and corresponding uncertainties derived from X-ray gas kinematics based on Chandra and XMM-Newton observations (Das et al. 2010), while the very light blue region is the mass and corresponding uncertainties from the early ROSAT observation (Nulsen & Bohringer 1995). The black circle, diamond, square, and star with error bars are the masses derived with different GC samples or different methods by Deason et al. (2012), Wu & Tremaine (2006), Cohen (2000), and Merritt & Tremblay (1993), respectively.

(A color version of this figure is available in the online journal.)
extending to 150 kpc, which is consistent with the mass obtained by Strader et al. (2011). Compared with our results, their masses are 25% smaller for \(r \sim 85 \) kpc, and are in agreement with ours to within \(\pm 1.5 \sigma \).

M87 also has diffuse X-ray emission. The galaxy mass has been derived from ROSAT, Chandra, and XMM-Newton observations under the assumption that the hot gas is in hydrostatic equilibrium (Das et al. 2010; Churazov et al. 2008; Nulsen & Bohringer 1995). The early result based on ROSAT observations has a relative large uncertainty, while the Das et al. (2010) mass profile is based on data from Chandra and XMM, and uses a Bayesian approach, which is more accurate, to find the most likely mass profile. The mass derived from X-ray observations is smaller than previous dynamical mass estimates. The mass estimated from ROSAT observation is in good agreement with our mass out to 180 kpc. The Chandra and XMM-Newton mass is slightly larger than ours, but their estimates are generally consistent with our estimates, to within 10% (1σ) at \(r < 30 \) kpc, and about 20% (2σ) larger within 120 kpc. There is evidence that the hot gas in M87 is disturbed, suggesting that the hydrostatic equilibrium assumption is not valid and this may affect the mass determination from X-ray emissions (Churazov et al. 2008). On the other hand, perhaps our dynamical studies may still be affected by the kinematic substructures as well. Overall, we consider the agreement between these two different probes (X-ray and our GC kinematics) to be satisfactory.

5.2. Stellar Mass to Light Ratio

We estimate the M87 stellar mass-to-light ratio to be \(M/L_1 = 6.0 \pm 0.3 \ M_\odot \ L_\odot^{-1} \). The stellar mass to light ratio of M87 has been assessed many times in the \(V \) band. For comparison purposes, we transfer the previous estimates to \(I \) band with distance (\(d = 16.5 \) Mpc) using

\[
M/L_1 = (M/L_2) \times \frac{L_2}{L_1} \times \frac{d_2}{d_1},
\]

where \(d_2 \) and \(d_1 \) refer to the distances used for the evaluation of \(M/L_1 \) and \(M/L_2 \) respectively.

Long & Mao (2012) estimated \(M/L_1 = 7.05 \ M_\odot \ L_\odot^{-1} \) at a distance \(d = 15.6 \) Mpc and with no dark matter included. This corresponds to \(M/L_1 = 6.7 \ M_\odot \ L_\odot^{-1} \) at \(d = 16.5 \) Mpc, and we confirmed this result in Section 4.5.

Taking the \(V \)-band magnitude as \(M_v = 8.23 \), M2011 obtained \(M/L_V = 9.1 \pm 0.2 \ M_\odot \ L_\odot^{-1} \) at a distance \(d = 17.2 \) Mpc which corresponds to \(M/L_1 = 7.5 \pm 0.2 \ M_\odot \ L_\odot^{-1} \). G2009 gave \(M/L_V = 6.3 \pm 0.8 \ M_\odot \ L_\odot^{-1} \) with \(d = 17.2 \) Mpc which implies \(M/L_1 = 5.2 \pm 0.7 \ M_\odot \ L_\odot^{-1} \).

The M2011 \(M/L_1 \) is larger because the velocity dispersion from the VIRUS-p data is systematically larger than that of the SAURON data (Murphy et al. 2011). The small \(M/L_1 \) in G2009 may be caused by a model degeneracy. They obtained a more concentrated dark matter distribution \((V_c = 715 \pm 15 \) km \ s\(^{-1}\), \(R_c = 14 \pm 2 \) kpc) which could act to reduce the stellar mass-to-light ratio.

5.3. The Velocity Dispersion Anisotropy

To characterize the velocity dispersion anisotropy of our M2M models, we take the \(\beta(r) \) parameter defined, in spherical coordinates \((r, \theta, \phi) \), as

\[
\beta(r) = 1 - \frac{\sigma_\theta^2(r) + \sigma_\phi^2(r)}{2 \sigma_r^2(r)},
\]

where the \(\sigma \) functions are the velocity dispersions in the indicated directions. More detail on \(\beta(r) \) may be found in Binney & Tremaine (2008).

M2M models can reproduce the velocity dispersion anisotropy in the discrete data. The blue solid and dashed lines in Figure 12 indicate the \(\beta \) profile in the GC M2M model and its uncertainty. The uncertainty is derived from the M2M models within the confidence level same as the models used to derive mass profile uncertainty. The uncertainty is larger at high radii due to the limited number of particles available to calculate \(\beta \).

The velocity dispersion anisotropy in the M87 GC system was first studied by Romanowski & Kochanek (2001) and then Côté et al. (2001), and they found the GC orbit structure to be largely isotropic. Consistently, the \(\beta \) parameter of our GC model is generally small, agreeing with the fact the M87 is located at the center of Virgo cluster and may have evolved from multiple mergers resulting in generally isotropic orbital motions. \(\beta \) is negative in the inner \(~15 \) kpc, and increases to become positive reaching a maximum at \(R \sim 40 \) kpc. It then drops to become negative again for \(R > 120 \) kpc. By examining each velocity dispersion component, we find that \(\sigma_\theta^2 \) is smaller in the inner \(~20 \) kpc compared to the velocity dispersion profile obtained from an isotropic Jeans analysis, and is mainly responsible for the negative \(\beta \) in the center. For the region \(R > 20 \) kpc, \(\sigma_\theta^2 \) is similar to isotropic values, with the deviation of \(\beta \) from zero (isotropic) being mainly caused by the decrease of \(\sigma_\phi^2 \) from isotropic values. These two dispersions are highest in the center and decrease at \(R > 20 \) kpc due to the partial regular rotation, with \(\beta \) largest at \(R \sim 40 \) kpc where the rotation is at its greatest (see Figure 3). The variation of velocity anisotropy in the inner region may be related to GC destruction processes which are supposed to have a dynamical selection effect on the survival of GCs (Murali & Weinberg 1997; McLaughlin 1995).

We overplot in Figure 12 the \(\beta \) profile converted from Figure 12 of M2011. The anisotropy of the GC model in M2011...
is generally consistent with our model. They obtain a maximum value of β near 30 kpc where the rotation is largest in their data set. The anisotropy of both M2011’s models and our GC models are consistent with that of the stellar model out to \sim20 kpc. The anisotropy of our GC model at $R < 5$ kpc is uncertain due to few GCs being observed in the brightest part of the galaxy. M2011 find a stellar β increasing to a positive value again near the center of the galaxy. This is consistent with $\beta \sim 0.15$ in our M2M model constrained with the SAURON data.

Figure 12 also shows that β becomes negative again at $R > 120$ kpc. There is however a large uncertainty in the β value at large radii. This uncertainty may be a numerical artifact due to the finite number of particles we are using and the finite model size.

The mean effective (half mass) radius r_h of GCs is related to the 2D (projected) galactocentric distance R_{gc} observationally with $r_h \propto R_{gc}^\alpha$ (e.g., Jordán et al. 2005; Spitler et al. 2006; Gómez & Woodley 2007). In an earlier simulation (Webb et al. 2013), the distributions of M87 GC orbits are used to explain the observed index $\alpha = 0.14$. In this case, they found that, assuming the GCs are tidally filled under an isothermal potential, a very high velocity anisotropy ($\beta \sim 0.99$) is needed to explain the α value for M87's GCs. This is in conflict with what we have found dynamically. The velocity anisotropy β profile from our dynamical modeling should put strong constraints on such simulations. Based on our M2M modeling, a high velocity anisotropy such as $\beta = 0.99$ would not be a preferred value for the M87 GC system.

5.4. Model Degeneracy

This is the first time that kinematic data out to the approximate edge of a galaxy’s gravitational boundary has been used to constrain its dark matter distribution. There are only about 20 elliptical galaxies with discrete data extending to 3–10 R_e in the literature (Coccato et al. 2009), including our test galaxy NGC 4374 as in Appendix. Based on the M2M modeling of M87, we discuss what kind of data can help remove degeneracies in dynamical models of galaxies.

Dynamical models mainly suffer from three levels of degeneracy: (1) mass-anisotropy degeneracy, (2) dark matter-luminous matter degeneracy, and (3) degeneracy of parameters in the dark matter distribution even when the total mass is known.

IFU data is helpful to remove the mass-anisotropy degeneracy. However, such data usually only extends to $R < 2 R_e$. Having a large sample of discrete GC velocities at large radii, as in the current paper, helps significantly as it provides information on the line-of-sight velocity distribution and hence the orbit distribution at these radii. Even in a galaxy with a relatively large velocity dispersion anisotropy, discrete data works well to remove the mass-anisotropy degeneracy in a M2M model (Morganti et al. 2013) using local regularization (Morganti & Gerhard 2012). The global regularization we are using may prevent us from creating a strongly anisotropic model from isotropic initial conditions. Our models are however showing M87 to be a low anisotropy system with $\beta(r)$ values not inconsistent with Murphy et al. (2011). The total mass of the galaxy is well constrained by our GC kinematic observations, and so we do not believe the mass-anisotropy degeneracy for M87 to be significant.

The luminous and dark matter degeneracy is hard to remove except when we can derive the stellar mass-to-light ratio from stellar population studies. What is usually assumed is a constant stellar mass-to-light ratio, and an analytic dark matter distribution. In this case, we can either try to constrain the stellar mass-to-light ratio from the central IFU data where dark matter contributes little, or constrain the dark matter distribution with discrete data extending to large radii. For the galaxies with discrete data extending to a few effective radii, the dark matter distribution is still relatively unconstrained, and therefore similarly the stellar mass-to-light ratio. For M87, the dark matter distribution has been constrained well out to large radii, in the region where the stellar mass-to-light ratio has little influence.

Parameters of the dark matter distribution are degenerate even when the dark matter mass within a few effective radii is constrained (de Lorenzi et al. 2008; Napolitano et al. 2011). When modeling M87 with GCs, we have GC kinematic data extending to $\sim 25 R_e$. As we can see in Figure 13, the scale radius and velocity are degenerate for a logarithmic dark matter halo. The typical range for M87 solutions (with a 1.0 σ confidence boundary) is shown with $R_S = 28.6$ kpc, $R_L = 53$ kpc, $V_S = 550$ km s$^{-1}$, $V_L = 650$ km s$^{-1}$, where the subscript S and L indicate smaller and larger values of the scale radius and velocity. In the inner part of a galaxy, the mass is more sensitive to the scale radius with R_S leading to a larger mass, while at large radii the mass is more sensitive to the scale velocity with V_L leading to a larger mass.

Our GC data covers a large region of M87 and so we have obtained a robust solution for the free parameters. However, we still have some degeneracy diagonally. The two halos with R_S, V_S and R_L, V_L have similar mass distributions. The former has a larger mass at $R \sim 40$ kpc and a smaller mass at higher radii, and conversely so for the latter. The ill-understood large velocity dispersion at $R \sim 40$ kpc may be part of the reason for this degeneracy.

We can see that the models with parameters diagonally distributed have even smaller difference on the mass distribution in the inner part. Data only extending to $R < 50$ kpc, as in previous investigations, have a very weak ability to distinguish these kinds of models, and that may be part of the reason...
that M2011 and G2009 obtained very different dark matter distributions even when they used the same GC data.

In our M87 investigation, we have focused on a logarithmic potential for the dark matter distribution. It must be noted however that the widely used NFW profile suffers similar degeneracy issues, as discussed in the Appendix. Dark matter potentials are usually assumed to be spherical. If we allow a variation of the dark matter halo shape, the shape will also be degenerate radially.

Much effort has been devoted to constraining the dark matter distribution of elliptical galaxies. IFU data extending to \(\sim 2 R_e \) like VIRUS-p is helpful to remove mass-anisotropy degeneracy near the center, but has limited constraining power on the dark matter distribution. As shown in Figure 11, the discrepancy between M2011 mass and our mass is less than 20% at \(r < 15 \text{kpc} \), but increases to be 60% at \(r = 40 \text{kpc} \). If we extrapolate the M2011 mass out to \(r = 180 \text{kpc} \), the discrepancy increases to be 100%. As we have illustrated above, model parameters in the mass distribution are degenerate and extrapolation of the mass profile to larger radii is not reliable. Discrete data extending to much larger radii than IFU data normally extend (e.g., SAURON; Bacon et al. 2001; CALIFA Sánchez et al. 2012) are critical to constraining the dark matter distributions for most galaxies.

5.5. Uncertainties in Our Model Parameters

Uncertainties in our model parameters arise from three main sources: (1) the stellar surface brightness profile used is not as extended spatially as the new NGVS profile, (2) the GC surface density profile is assumed to be spherical when it actually appears to be elliptical, (3) a spherical dark matter halo is assumed. We discuss these three sources in turn.

The recent NGVS surface brightness profile differs by 5%–20% from the Cappellari et al. (2006) profile we used at \(40 \text{kpc} < R < 80 \text{kpc} \), where the luminous matter fraction is 30%–15%. Using the NGVS surface brightness would have caused a difference of \(\sim 3\% \) in the total mass at \(40 \text{kpc} < R < 80 \text{kpc} \), with even smaller differences in other regions. The effect on the mass-to-light ratio would be very small.

The recent NGVS result (Durrell et al. 2014) shows that the GC distribution is not spherical, as shown in Figure 1, but is round in the center, becoming more elliptical at large radii. The GC number density does not affect the potential, as the mass of the GCs is negligible compared to that of the stars in the main galaxy. The initial spatial distribution of the M2M test particles in the GC models will be affected, as will the number of particles used to construct model observables. We expect that were the analysis to be performed using M2M modeling the results would not be dissimilar. A more rigorous treatment will be the subject of a future investigation.

Recent cosmological simulations show that the shape of a dark matter halo may be correlated with the shape of the luminous matter distribution it contains, with the dark halo usually being rounder than the luminous matter (Wu et al. 2014). The stellar distribution and GC distribution in Figure 1 show that M87 is quite round in the center, with the axial ratio \(q_{\text{dm}} \) becoming smaller at large radii. The flattening of the logarithmic dark matter potential may be very roughly estimated as \(2/3 + q_{\text{dm}}/3 \) (Binney & Tremaine 2008, p. 77), where \(q_{\text{dm}} \) is the axial ratio of the dark matter halo. As a consequence we do not expect the flattening of the potential to be that severe.

In order to assess quantitatively the effects of points (2) and (3), we run isotropic axisymmetric Jeans models utilizing the discrete GC data, following the approach in Watkins et al. (2013). To be consistent with the M2M models, the potential is a combination of a luminous matter distribution and a dark matter halo. The luminous matter distribution is constructed from the (deprojected) surface brightness profile multiplied by a constant mass-to-light ratio. We take the ratio as \(M/L_I = 6.0 \) as obtained from the M87 M2M models. The dark matter halo is a logarithmic halo with two parameters, the scale velocity \(V_s \) and the scale radius \(R_s \) as before, and a third optional free parameter, the axial ratio \(q_{\text{dm}} \). The GC number density profile is required for the calculation of the velocity moments. We create four sets of Jeans models with the following conditions:

1. a spherical GC number density and a spherical dark matter potential,
2. an elliptical GC number density with known flattening and a spherical dark matter potential,
3. a spherical GC number density and an axisymmetric dark matter potential with the flattening \(q_{\text{dm}} \) as a free parameter, and
4. an elliptical GC number density and an axisymmetric dark matter potential with \(q_{\text{dm}} \) again free.

The mass profile of the best models are shown in Figure 14, these four sets of Jeans models only have minor differences in the total mass of the system. In particular, the models with an elliptical GC surface number density have a smaller mass with up to a 10% difference. The models favor a round dark matter halo with \(q_{\text{dm}} \) approaching unity. The flattening of a dark matter halo is correlated with scale velocity, but its effect on the total mass is small. We expect that were the analysis to be performed using M2M modeling the results would not be dissimilar. A more rigorous treatment will be the subject of a future investigation.

6. CONCLUSION

We have created M2M models to study the dynamics of the giant elliptical galaxy M87. We model with discrete GC data and SAURON IFU data in separate sets of models. As part of the modeling we have used a smooth logarithmic dark matter halo, while the M87 luminous matter distribution (excluding GCs) is...
constructed from a multi-Gaussian Expansion fit, assuming a constant stellar mass-to-light ratio. The surface number density of GCs (fitted by a Sersic profile) and the stellar surface brightness are used as tracer densities of the GC and SAURON models respectively. GC velocities are used directly in the model as discrete data and are not binned prior to modeling. With the 263 new GC velocities from NGVS surveys, we have modeled with 896 GC discrete LOS velocity measurements extending to \(R \sim 180 \) kpc. For the M87 GC models, we use regularization to reduce fluctuations in the model log likelihood functions.

The mass of M87 is found to be \(1.5 \pm 0.2 \times 10^{13} \, M_\odot \) within 180 kpc. Degeneracies within the dynamical models have been partly removed since we have GC constraints at large radii. Our three key parameters are well determined with the dark matter scale velocity \(V_s \approx 591 \pm 50 \, \text{km s}^{-1} \), the dark matter scale radius \(R_s \approx 42 \pm 10 \, \text{kpc} \), and the stellar mass-to-light ratio \(M/L_\odot = 6.0 \pm 0.3 \, M_\odot \, L_\odot^{-1} \).

Previous results derived from M87 GCs (mostly with \(R < 50 \) kpc; e.g., Murphy et al. 2011; Gebhardt & Thomas 2009) give estimates for M87’s mass generally larger than our value. These earlier, larger mass values may be the result of the large dispersion at \(R \sim 40 \) kpc in the GC data. This large dispersion may be caused by kinematic substructures. On the other hand, the only previous results obtained by GCs at large radius (extending to 150 kpc but with less data point than our sample), the mass obtained by Strader et al. (2011) by Jeans analysis is smaller than our mass at \(R \sim 85 \) kpc.

The mass we derive is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller.

The velocity dispersion anisotropy of the best-fitting GC model is small and is consistent with the M87 stellar anisotropy in the regions of overlap. This suggests that M87 may have been formed by multiple mergers which made the motions isotropic. Our result places strong constraints on the orbital distribution of GCs.

Different kinds of data play different roles within the kinematic models. The stellar mass-to-light ratio is mainly constrained by the SAURON IFU data, while the GC velocities at large radii are critical to constrain the dark matter distribution. In previous models, the lack of GC data at \(R > 50 \) kpc affected the results in two ways. First, the large velocity dispersion at \(R \sim 40 \) kpc probably causes an overestimate of the total mass. Second, the degeneracy between the dark matter parameters \((V_s, R_s) \) is difficult to remove, which is part of the reason why M2011 and G2009 obtained very different dark matter distributions (see Figure 11). With GCs extending to \(R \approx 180 \) kpc, we can better overcome these problems and remove the degeneracy between parameters in the dark matter distribution, and thus partly remove the degeneracy between the dark matter distribution and stellar mass-to-light ratio.

The current investigation can be improved in several respects. First, since the work was completed, more M87 GC velocities have become available due to the ongoing NGVS program. Second, GCs in M87 can be divided into blue and red groups (Côté et al. 2001) that behave somewhat differently in their kinematics (Strader et al. 2011). It would be interesting to investigate their dynamics separately with the M2M method. Third, the stellar surface brightness distribution of M87 is more extensively sampled by recent ACS+NGVS data (L. Ferrarese et al., in preparation) and would improve modeling of the stellar component. Fourth, the flattening of the GC distribution and the dark matter halo can be accommodated in our modeling. Last, the effect of the central black hole can be taken into account in a straightforward manner. While preliminary studies indicate that none of these will change our results significantly, we will address these matters in a future investigation to provide even more precise constraints on the dynamical structure of M87.

The authors thank Ortwin Gerhard and Glenn van de Ven for useful discussions. Computer runs were mainly performed on the Laohu high performance computer cluster and BH cluster of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC). We thank Professors Rainer Spurzem and Youjun Lu for enabling access to these clusters. S.M. and R.J.L. acknowledge the financial support of the Chinese Academy of Sciences and NAOC. This work has also been supported by the Strategic Priority Research Program “The Emergence of Cosmological Structures” of the Chinese Academy of Sciences grant No. XDB09010500 (E.W.P. and S.M.), and by the National Natural Science Foundation of China (NSFC) under grant numbers 11333003 (S.M. and S.R.I.L.), 11173003 (E.W.P. and B.L.), and 11203017 (C.L.). R.P.M. and A.L. acknowledge support from the Scientific Council of Strasbourg University. R.P.M. also acknowledges support from Fondecyt Postdoctoral Fellowship Project No. 3130750.

The NGVS team thanks the directors and the staff of the Canada–France–Hawaii Telescope: their commitment and ingenuity have helped the survey become a reality. This work has been supported in part by the French Agence Nationale de la Recherche (ANR) Grant Programme Blanc VIRAGE (ANR10-BLANC-0506-01), and by the Canadian Advanced Network for Astronomical Research (CANARIE) through funding from CANARIE under the Network-Enabled Platforms program. This research has made use of the facilities at the Canadian Astronomy Data Center, which are operated by the National Research Council of Canada with support from the Canadian Space Agency.

APPENDIX

TESTING THE M2M MODELING PROCEDURE WITH NGC 4374

As well as GCs, PN discrete data are a good tracer of the gravitational potential of elliptical galaxies. Within the galaxies with publicly available PN velocity data, NGC 4374 has the most (~450) PNs with good velocity measurements (Coccatto et al. 2009). There is a Jeans analysis for these data which implies a standard NFW halo for the galaxy (Napolitano et al. 2011). We consider the NGC 4374 PN data to be a good data set to test our procedure for modeling discrete data, and aim to provide a cross check on the results from Napolitano et al. (2011).

A.1. The Spherical Approach

Most elliptical galaxies have a surface brightness profile which can be well fitted by a Sersic profile (Sersic 1968; Capaccioli 1989; Caon et al. 1993; Graham et al. 2003; Ferrarese et al. 2006; Côté et al. 2007). We use the Sersic profile (see Equation (1)) as a starting point for creating a spherical potential from the inverse Abell transform of the 1D surface brightness profile (Binney & Tremaine 2008).
The luminosity density \(j(r) \) is derived from the inverse Abell transform:

\[
j(r) = -\frac{1}{\pi} \int_0^{\infty} \frac{dI}{dR} \frac{dR}{\sqrt{R^2 - r^2}},
\]

where \(I \) is the fitted Sersic surface brightness profile. The mass

\[
M(r) = 4\pi (M/L) \int_0^r j(s)s^2 ds,
\]

and potential

\[
\Phi(r) = -4\pi G (M/L) \left[\frac{1}{r} \int_0^r j(s)s^2 ds + \int_r^{\infty} j(s)s ds \right],
\]

A.3. M2M Modeling

We create spherical M2M models for NGC 4374 to test how the discrete data constraint works in a M2M model. The surface brightness profile in the V-band to 6.7 \(R_e \), the long slit velocity dispersion profile within 1 \(R_e \), and 450 PNs out to 6 \(R_e \) are used as model constraints. We use \(R_e = 6.02 \) kpc and \(L_V = 7.64 \times 10^{10} L_{V, \odot} \) following Napolitano et al. (2011). The normalized PNs number density profile is consistent with the stellar surface brightness. The velocity dispersion of the PNs is about 20\% smaller than the stellar velocity dispersion in the overlap region. This may be due to the limited number of PN velocities at this region. We assume that the PNs and stars follow the same distribution function and model them together.

The data are generally the same as Napolitano et al. (2011) used for their Jeans analysis for the galaxy. The only difference is that we include all the PNs in our model as constraints, while Napolitano et al. (2011) has binned the data and simply excluded the PN data within the overlap regions.

The initial M2M models are set up with \(N = 500,000 \) particles extending to 20 \(R_e \), with particle initial conditions set following Section 4.1.

The gravitational potential is an NFW dark matter halo plus the luminous matter potential. As for M87, we ignore the effects of any central black hole. The luminous matter potential is constructed from the fitted Sersic surface brightness profile \((R_0 = 113.5', n = 6.11, b_0 = 5.16) \) following Section 3.3.1.

The M2M model has three, free parameters: the stellar mass-to-light ratio \(M/L \), the virial mass \(M_v \), and the concentration parameter \(C \). We run a series of models with a parameter grid of \(12 \times 5 \times 6 \) on \(M_v \times C \times M/L_v \).

Given the constraints are surface brightness, the long slit velocity dispersion and the PN discrete velocity data, we take \(G(p) \) (see Equation (11)) as

\[
G(p) = -\frac{1}{2} \left(\lambda_{SB} \chi^2_{SB} + \lambda_{VD} \chi^2_{VD} \right) + \lambda_D \mathcal{L},
\]

where the SB and VD terms are self-explanatory and \(\mathcal{L} \) is the log likelihood function for the PN discrete velocity data. The values of the \(\lambda \) parameters are \(\lambda_{SB} = 10^{-5} \), \(\lambda_{VD} = 2 \times 10^{-3} \) and \(\lambda_D = 4 \times 10^{-7} \).

Using our M2M models, we constrain the mass of NGC 4374 to within a ~25\% uncertainty at \(r < 6 R_e \). However, we cannot obtain tight constraints on the model parameters \(C, M_v, \) and \(M/L_v \). The dark matter and luminous matter are degenerate, and, for the dark matter, the mass distribution of an NFW halo is more sensitive to \(C \) in the region with dynamical data and the influence of \(M_v \) is weak. If we want to obtain better constraints on the model parameters for NGC 4374, the dynamical data must extend to larger radii where the mass distribution is more sensitive to \(M_v \), then we can partly remove the degeneracy.

Figure 15 shows the 1\(\sigma \) error of the mass distribution.

We have constrained the total mass of NGC 4374 to be \(1.89^{+0.27}_{-0.08} \times 10^{12} M_{\odot} \) with 6 \(R_e \). The 1\(\sigma \) error bar is derived from models within the confidence level \(\Delta G = 0.006 \), where the criterion 0.006 is the \(\Delta G \) fluctuation round the minimum \(\Delta G \) (see Section 3.4). These models within 1\(\sigma \) error roughly have the concentration parameter \(C \) in the range 7–16, virial mass \(M_v \) in the range (100–350) \times 7.6 \times 10^{10} M_{\odot} \), and stellar mass to light ratio \(M/L_v \) in the range 4–8. The mass at \(R < 6 R_e \) is generally consistent with that obtained from the Jeans analysis of Napolitano et al. (2011). The stellar mass-to-light ratio we obtain is slightly smaller, and may be affected by the PNs inside.
Figure 15. Total mass-to-light ratio (in units of M_\odot/L_\odot) profile of NGC 4374. The dark blue solid and dashed lines are the total mass-to-light ratio profile of the minimum ΔG model and its uncertainty. The orange solid and dashed lines are the stellar M/L_V and uncertainty. The filled square with 1σ error bars is the anisotropy value derived from direct kurtosis inferences (Napolitano et al. 2011). (A color version of this figure is available in the online journal.)

Figure 16. $\beta(r)$ profile. The dark blue solid and dashed lines are the β profile and uncertainties of the minimum ΔG model. The heuristic $\beta(r)$ of NGC 4374 from a Jeans analysis is shown in black solid line (Napolitano et al. 2011), and the gray dashes are the modeled β profile from Kronawitter et al. (2000). The filled square with 1σ error bars is the anisotropy value derived from direct kurtosis inferences (Napolitano et al. 2011). (A color version of this figure is available in the online journal.)

The Astrophysical Journal, 792:59 (18pp), 2014 September 1

REFERENCES

Agnello, A., Evans, N. W., Romanowsky, A. J., & Brodie, J. P. 2014, MNRAS, 442, 3299
Bacon, R., Copin, Y., Monnet, G., et al. 2001, MNRAS, 326, 23
Bernardi, M., Hyde, J. B., Sheth, R. K., & Richstone, D. 2007, AJ, 133, 1741
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton, NJ: Princeton Univ. Press)
Blakeslee, J. P., Jordán, A., Mei, S., et al. 2009, ApJ, 694, 556
Caon, N., Capaccioli, M., & D’Onofrio, M. 1993, MNRAS, 265, 1013
Caon, N., Capaccioli, M., & Rampazzo, R. 1990, A&AS, 86, 429
Capaccioli, M. 1989, in World of Galaxies (Le Monde des Galaxies), ed. H. G. Corwin, Jr. & L. Bottinelli (Berlin: Springer-Verlag), 203
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126
Cappellari, M., & Copin, Y. 2003, MNRAS, 342, 345
Carter, D., & Dixon, K. L. 1978, AJ, 83, 574
Churazov, E., Forman, W., Vikhlinin, A., et al. 2005, MNRAS, 388, 1062
Churazov, E., Tremaine, S., Forman, W., et al. 2010, MNRAS, 404, 1165
Coccato, L., Gerhard, O., Arnaboldi, M., et al. 2009, MNRAS, 394, 1249
Cohen, J. G. 2000, AJ, 119, 162
Côté, P., Blakeslee, J. P., Ferrarese, L., et al. 2004, ApJS, 153, 223
Côté, P., Ferrarese, L., Jordán, A., et al. 2007, ApJ, 671, 1456
Côté, P., McLaughlin, D. E., Hanes, D. A., et al. 2001, ApJ, 559, 828
Das, P., Gerhard, O., Churazov, E., & Zhuravleva, I. 2010, MNRAS, 409, 1362
Das, P., Gerhard, O., Menzel, R. H., Teodorescu, A. M., & de Lorenzo, F. 2011, MNRAS, 415, 1244
Deason, A. J., Belokurov, V., Evans, N. W., & McCarthy, I. G. 2012, ApJ, 748, 2
de Lorenzo, F., Debattista, V. P., Gerhard, O., & Sambhus, N. 2007, MNRAS, 376, 71
de Lorenzo, F., Gerhard, O., Saglia, R. P., et al. 2008, MNRAS, 385, 1729
De Lacy, G., & Blaizot, J. 2007, MNRAS, 375, 2
Doherty, M., Arnaboldi, M., Das, P., et al. 2009, A&A, 502, 771
Durrell, P., Côté, P., Peng, E. W., et al. 2014, BAAS, 223, 442.39
Emsellem, E., Cappellari, M., Peletier, R. F., et al. 2004, MNRAS, 352, 721
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723
Fabricant, D., Fata, R., Roll, J., et al. 2005, PASP, 117, 1411
Ferrarese, L., Côté, P., Ferrarese, L., et al. 2012, ApJS, 200, 4
Ferrarese, L., Côté, P., Jordán, A., et al. 2006, ApJS, 164, 334
Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. 1994, ApJL, 435, L27
Gebhardt, K., Adams, J., Richstone, D., et al. 2011, ApJ, 729, 119 (G2009)
Gebhardt, K., & Thomas, J. 2009, ApJ, 700, 1577
Gebhardt, K., Harms, R. J., & Tsvetanov, Z. I. 1994, ApJL, 435, L27
Gebhardt, K., & Thomas, J. 2009, ApJ, 700, 1690
Gerhard, O. E., & Binney, J. J. 1996, MNRAS, 279, 993
Gómez, M., & Woodley, K. A. 2007, ApJL, 670, L105
Graham, A. W., Erwin, P., Trujillo, I., & Asensio Ramos, A. 2003, AJ, 125, 2951
Hunt, J. A. S., & Kawata, D. 2013, MNRAS, 430, 1928
Janowiecki, S., Minh, J. C., Harding, P., et al. 2010, ApJ, 715, 972
Jordán, A., Côté, P., Blakeslee, J. P., et al. 2005, ApJ, 614, 1002
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216
Kronawitter, A., Saglia, R. P., Gerhard, O., & Bender, R. 2000, A&A, 444, 53
Liu, F. S., Mao, S., Deng, Z. G., Xia, X. Y., & Wen, Z. L. 2009, MNRAS, 396, 2003
Liu, F. S., Mao, S., & Meng, X. M. 2012, MNRAS, 423, 422
Lokas, E. L., & Hanson, G. 2001, MNRAS, 321, 155
Long, R. J., & Mao, S. 2010, MNRAS, 405, 301
Long, R. J., & Mao, S. 2012, MNRAS, 421, 2580
Long, R. J., Mao, S., Shen, J., & Wang, Y. 2013, MNRAS, 428, 3478
Maccio, A. V., Dutton, A. A., & van den Bosch, F. C. 2008, MNRAS, 391, 1940
McLaughlin, D. E. 1995, AJ, 109, 2034
McLaughlin, D. E., Harris, W. E., & Hanes, D. A. 1994, ApJ, 422, 486
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144

...
