RESEARCH ARTICLE

Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.)

Rutwik Barmukh1,2☯, Khela Ram Soren3☯, Praveen Madugula1☯, Priyanka Gangwar3, P. S. Shanmugavadivel3, Chellapilla Bharadwaj4, Aravind K. Konda2, Sushil K. Chaturvedi3,5, Aditi Bhandari1, Kritika Rajain1, Narendra Pratap Singh3*, Manish Roorkiwal1,2*, Rajeev K. Varshney1,2*

1 Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India, 2 Department of Genetics, Osmania University, Hyderabad, India, 3 ICAR-Indian Institute of Pulses Research, Kanpur, UP, India, 4 Division of Genetics, Indian Agricultural Research Institute, Delhi, India, 5 Rani Lakshmi Bai Central Agricultural University, Jhansi, India

☯ These authors contributed equally to this work.

* r.k.varshney@cgiar.org (RKV); m.roorkiwal@cgiar.org (MR); npsingh.iipr@gmail.com (NPS)

Abstract

Unravelling the genetic architecture underlying yield components and agronomic traits is important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population, developed from ICC 4958 and DCP 92–3 cross, was used for constructing linkage map and QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®-CicerSNP array, which enabled the development of a high-density genetic map consisting of 3,818 SNP markers and spanning a distance of 1064.14 cM. Analysis of phenotyping data for yield, yield components and agronomic traits measured across three years together with genetic mapping data led to the identification of 10 major-effect QTLs and six minor-effect QTLs explaining up to 59.70% phenotypic variance. The major-effect QTLs identified for 100-seed weight, and plant height possessed key genes, such as C3HC4 RING finger protein, pentatricopeptide repeat (PPR) protein, sugar transporter, leucine zipper protein and NADH dehydrogenase, amongst others. The gene ontology studies highlighted the role of these genes in regulating seed weight and plant height in crop plants. The identified genomic regions for yield, yield components, and agronomic traits, and the closely linked markers will help advance genetics research and breeding programs in chickpea.

Introduction

Chickpea (Cicer arietinum L.) is a major dietary grain legume cultivated widely in South Asia and the Middle East, with a genome size of ~740 Mb [1]. Globally, about 14.25 million metric tonnes of chickpea is produced annually on an area of 13.72 million hectares, and India with approximately 70% of the global production is the largest chickpea producer [2]. Chickpea is
Highly valued for its intrinsic potential for symbiotic nitrogen fixation and its dietary proteins, vitamins and essential minerals [3]. Despite its capability to produce 3.5–4.0 tonnes per hectare under optimum growing conditions, the global average chickpea productivity is approximately 1 tonne per hectare [4].

To ensure global food security and fulfil nutrient deficiency for 2 billion people worldwide in the coming decades [5], it is essential to increase chickpea production by developing high yielding varieties with consumer preferred traits. Genetic enhancement in yield components of chickpea is required to address the issues of low productivity. To develop improved high yielding chickpea varieties, it is crucial to understand the genetic basis of yield, yield components and associated agronomic traits [6]. Several attempts have been made to understand the genetic mechanisms associated with yield and its component traits in chickpea, and multiple QTLs have been identified for these traits. For instance, QTLs associated with plant height [7], flowering time [8], seed size/100-seed weight [9, 10], double poddedness [11], Fusarium wilt [12–14], Ascochyta blight [15, 16], Helicoverpa armigera resistance component traits [17], plant vigour [18], drought tolerance [4, 19], salinity tolerance [20–22] and heat tolerance [23] have been mapped in chickpea. Even though a large number of QTLs have been identified for multiple traits, very few have been deployed for marker-assisted selection (MAS) because QTLs for complex traits tend to have small effects and strong environmental influence. Further, they also need to be validated before being incorporated into MAS programs for chickpea genetic improvement.

Recent breakthroughs in genome sequencing technologies have reduced the cost of sequencing by several folds during the last decade [5]. This reduction in sequencing/genotyping cost has enabled the development of cost-effective low- to high-density genotyping platforms, resulting in the advancement of genomic resources for chickpea [24]. For instance, a high-throughput genotyping platform, ‘Axiom® CicerSNP array’, has facilitated high resolution genetic mapping by constructing high-density genetic maps to support genetics and breeding programs in chickpea [4, 20]. Such high-throughput genotyping platforms are very useful for trait mapping through genome-wide association mapping as well as for fine mapping of QTLs/trait in several crop species [25, 26].

The present study focused on constructing a high-density genetic map and identifying QTLs for yield, yield components and agronomic traits using a recombinant inbred line (RIL) population derived from ICC 4958 and DCP 92–3 cross. A dense genetic map developed in this study will help in the genetic dissection of other traits that differ between the two parental genotypes. Furthermore, potential genes underlying the marker intervals of the QTLs identified for 100-seed weight and plant height were retrieved. The QTLs and candidate genes detected in this study hold enormous potential to advance genetics research and breeding applications in chickpea.

Results

Phenotypic variation in the ICC 4958 × DCP 92–3 RIL population

The parental lines and RILs were analysed for their phenotypic performance across three years. Descriptive statistics, along with analysis of variance for six traits evaluated in the RIL population (ICC 4958 × DCP 92–3) across three years, have been provided in S1 Table. The mean squares and genetic parameters of the RILs showed highly significant (p<0.01 or p<0.001) variation for all the studied traits across three years (S1 Table). The highest coefficient of variation (%CV) was recorded for the number of primary branches (PB), followed by the number of secondary branches (SB) and the least for plant height (PLHT) (S1 Table). The magnitude of phenotypic coefficient of variation (PCV) was found to be higher than their
corresponding environmental coefficient of variation (ECV) for yield per plant (YPP), 100-seed weight (100SW), pods per plant (PPP), and PLHT. The frequency distribution of the phenotypic data for the traits under study across three years indicated a marked variability and quantitative nature of the traits (S1–S3 Figs). Furthermore, the phenotypic trait value of many RILs surpassed their parental trait value in both directions for all the traits, except 100-seed weight, indicating the presence of transgressive segregation in this mapping population (S1 Table, S1–S3 Figs).

Correlation among traits

To scrutinize the relationships between yield, yield components and agronomic traits evaluated across three years, a principal component analysis (PCA) was performed. For the experiment conducted during the Rabi season of 2015–16, the first two components explained ~59% of the total variability (S4 Fig). Here, YPP was closely related to PPP and PLHT. Similarly, 100SW and PB were found to be closely associated with PLHT and SB, respectively. For 2016–17 and 2017–18, the first two components explained about 60% and 71% of the total variation, respectively (S4 Fig). For both years, plant height favoured an increase in 100SW, while SB was closely related to YPP. Variation in the number of PB was tightly correlated with PPP. Furthermore, Pearson correlation analysis was performed to identify trait correlations within and between experimental trials (Table 1, S5 Fig). Here, 100SW displayed a significant and positive correlation with PLHT across all three years, viz. 2015–16 (r = 0.41, p < 0.001), 2016–17 (r = 0.55, p < 0.001) and 2017–18 (r = 0.47, p < 0.001). A significant negative relationship was observed between 100SW and PPP for 2015–16 (r = -0.25, p < 0.01) and 2017–18 (r = -0.19, p < 0.05). A combined correlation analysis for all traits across three years was also undertaken to detect trait correlations (Table 1). The results indicated that, except for 100SW, all other traits displayed a moderate to low degree of correlation (ranging from r = ± 0.01 to r = ± 0.41) between years.

High-density genetic map

Out of the 50,590 SNPs available on the Axiom® CicerSNP array, a total of 17,173 SNPs were found polymorphic between two parents and displayed segregation within the mapping population. A genetic map was constructed using 3,818 SNPs that covered a distance of 1064.14 cM (Table 2), with a cumulative average distance of 0.30 cM between adjacent markers. The number of SNP markers mapped across eight linkage groups ranged from 126 (CaLG08) to 995 (CaLG04), spanning from 20.4 cM (CaLG08) to 230.4 cM (CaLG04) with a cumulative mean of 133.02 cM (Table 2). A large variation in marker density was observed across the linkage groups. The highest marker density of 6.16 SNPs/cM was observed on CaLG08, while CaLG03 displayed the lowest marker density of 1.80 SNPs/cM (Table 2).

QTL mapping for yield, yield components and agronomic traits

A total of 16 QTLs were identified for all studied traits, except for SB. These include 9 QTLs for yield and yield component traits (2 QTLs for YPP, 6 QTLs for 100SW, and 1 QTL for PPP) and 7 QTLs for agronomic traits (5 QTLs for PLHT, and 2 QTLs for PB) across three years. QTLs that contributed phenotypic variation explained (PVE) ≥ 10% were considered as major-effect QTLs, while QTLs with <10% PVE were considered as minor-effect QTLs. Based on these premises, a total of 10 major-effect QTLs were identified for five traits, viz., 2 QTLs for YPP, 3 QTLs for 100SW, 1 QTL for PPP, 3 QTLs for PLHT, and 1 QTL for PB (Fig 1). In addition, three minor-effect QTLs were identified for 100SW and three QTLs for agronomic traits (2 QTLs for PLHT, and 1 QTL for PB) across three years (Table 3).
Table 1. Pearson correlation analysis for yield, yield components and agronomic traits evaluated across three years 2015–16, 2016–17 and 2017–18.

	PLHT_2015	PB_2015	SB_2015	PPP_2015	YPP_2015	100SW_2015	PLHT_2016	PB_2016	SB_2016	PPP_2016	YPP_2016	100SW_2016	PLHT_2017	PB_2017	SB_2017	PPP_2017	YPP_2017	100SW_2017
PLHT_2015	1.00																	
PB_2015	-0.07ns	1.00																
SB_2015	-0.16	0.46	-0.16ns	0.67	0.46	-0.16	1.00						0.14					
PPP_2015	0.08ns	0.23**	0.27**	1.00														
YPP_2015	0.23**	0.12ns	0.25**	0.57**	1.00													
100SW_2015	0.41***	0.12ns	-0.06ns	-0.25ns	0.14ns	1.00												
PLHT_2016	0.41***	0.06ns	-0.06ns	-0.09ns	0.14ns	0.55**	1.00											
PB_2016	0.00ns	0.09ns	0.00ns	-0.27**	0.16	0.06ns	0.12ns	1.00										
SB_2016	0.20**	0.00ns	0.01ns	0.02ns	0.07ns	0.08ns	0.21**	0.57**	1.00									
PPP_2016	0.17**	0.05ns	0.08ns	0.13ns	-0.02ns	-0.03ns	0.18	0.27**	0.48**	1.00								
YPP_2016	0.12ns	0.09ns	0.03ns	0.06ns	-0.02ns	0.15ns	0.17	0.34**	0.22**	0.38**	1.00							
100SW_2016	0.42***	0.12ns	-0.07ns	0.22**	0.17**	0.99**	0.59**	0.06ns	0.07ns	-0.02ns	0.14ns	1.00						
PLHT_2017	0.16**	0.09ns	0.07ns	0.31**	-0.06ns	0.31**	0.26**	0.04ns	0.05ns	0.07ns	0.30**	1.00						
PB_2017	0.04ns	0.10ns	0.04ns	0.03ns	-0.08ns	-0.13ns	-0.13ns	-0.04ns	0.03ns	0.08ns	-0.13ns	0.15ns	1.00					
SB_2017	0.13ns	0.03ns	-0.12ns	0.04ns	-0.03ns	0.04ns	0.07ns	-0.09ns	0.13ns	0.06ns	0.17**	0.03ns	0.30**	1.00				
PPP_2017	0.07ns	0.05ns	-0.11ns	0.04ns	-0.11ns	0.07ns	0.06ns	0.07ns	0.12ns	-0.13ns	0.12ns	0.48**	0.55**	1.00				
YPP_2017	0.10ns	0.02ns	-0.13ns	0.09ns	-0.11ns	0.12ns	0.04ns	0.14ns	0.08ns	0.01ns	0.07ns	0.12ns	0.34**	0.37**	0.58**	0.79**	1.00	
100SW_2017	0.27**	0.12ns	-0.08ns	0.17**	-0.03ns	0.61**	0.37**	0.06ns	0.00ns	-0.02ns	0.10ns	0.60**	0.47**	0.09ns	0.10ns	-0.19**	0.18**	1.00

***, ** and * indicate significant differences at p<0.001, p<0.01 and p<0.05, respectively; ns, non-significant.

https://doi.org/10.1371/journal.pone.0251669.t001
Furthermore, if a QTL for a particular trait was identified for more than one year, it was considered a consistent QTL, as described previously [19]. Accordingly, one consistent QTL for PLHT (q_{PLHT4}) was identified on CaLG04 (Table 3). When a particular marker was found to flank more than one QTL, that particular region was considered a single genomic region. The sequences and physical positions of the markers flanking the identified QTLs are provided in the S2 Table.

QTLs for yield and yield component traits

Yield per plant (YPP)
Two major QTLs, one each on CaLG04 ($q_{YPP4.1}$) and CaLG01 ($q_{YPP1.1}$), explaining 10.1% PVE (2015–16) and 36.2% (2016–17), respectively, were identified (Table 3).

100-seed weight (100SW)
A total of 6 QTLs were identified for 100SW across three years. In 2015–16, one major QTL on CaLG06 ($q_{100SW6.1}$) explaining 13% PVE, and one minor QTL on CaLG07 ($q_{100SW7.1}$; 8.1% PVE), were identified. In 2016–17, one major QTL on CaLG06 ($q_{100SW6.2}$) that explained 11.3% PVE, and two minor QTLs, one each on CaLG03 ($q_{100SW3.1}$; 6.5% PVE) and CaLG07 ($q_{100SW7.2}$; 7.8% PVE), were identified. In 2017–18, only one major QTL was identified on CaLG04 ($q_{100SW4.1}$), which explained 16.6% PVE. Interestingly, this QTL was also found to overlap with a consistent QTL identified for plant height ($q_{PLHT4.1}$) (Table 3).

Pods per plant (PPP)
Analysis of PPP data led to the identification of only one major-effect QTL on CaLG06 ($q_{PPP6.1}$), explaining 15.2% PVE for 2015–16 (Table 3).

QTLs for agronomic traits

Plant height (PLHT)
One consistent major-effect QTL was identified on CaLG04 ($q_{PLHT4.1}$), explaining 18.5% and 13.3% PVE in 2015–16 and 2016–17, respectively. In addition, one major-effect QTL on CaLG01 ($q_{PLHT1.1}$) explaining 14.2% PVE was identified for 2016–17. Furthermore, two minor-effect QTLs, one each on CaLG05 ($q_{PLHT5.1}$; 8.7% PVE) and on CaLG08 ($q_{PLHT8.1}$; 8.1% PVE), were also identified for 2016–17 (Table 3).

Number of primary branches (PB)
Two QTLs for PB trait were detected for 2015–16. These include one major-effect QTL on CaLG03 ($q_{PB3.1}$), explaining 59.7% PVE, and one minor-effect QTL on CaLG02 ($q_{PB2.1}$), explaining 8.7% PVE (Table 3).

Analysis of epistatic interactions
The combinations of two- and three-loci interactions were scrutinized for all the studied traits across three years. Epistatic QTLs (E-QTLs) were identified only for 100SW evaluated during...
the years 2015–16 (S3 Table), and 2016–17 (S4 Table). Using the two-loci interaction model, a total of 95 E-QTLs were identified each for 2015–16 and 2016–17. The majority of these interactions were observed between CaLG04 and CaLG06. For instance, two-loci interactions between AX-123632830(AA) and AX-123624139(AA) explained 62.48% PVE during 2015–16, and 64.16% PVE during 2016–17. In addition, a total of 356 E-QTLs were detected for 2016–17, using the three-loci interaction model. These E-QTLs were also mainly detected between CaLG04 and CaLG06 and explained about 64.15–65.55% PVE observed for this mapping population. For instance, three-loci interactions between the alleles AX-123632830(AA), AX-123640164(AA) and AX-123624139(AA) explained about 65.55% PVE.

Candidate genes underlying the QTLs detected for 100-seed weight and plant height

The genes underlying the marker intervals of 6 QTLs for 100SW and 4 unique QTLs for PLHT were retrieved, and a total of 1,476 genes were detected (S5 and S6 Tables). The 6 QTLs detected for 100SW were found to harbour 417 genes (S5 Table). Based on the gene ontology (GO) annotation, out of 417 genes, 11 key genes were prioritized based on their role in controlling seed parameters in chickpea and other crops. These include one gene on CaLG03 [pentatricopeptide repeat-containing protein At2g03880 (Ca_06269)], 5 genes on CaLG04 [tubby-like F-box protein 8 (Ca_04384), pentatricopeptide repeat-containing protein At5g52850 (Ca_04422), pentatricopeptide repeat-containing protein At1g55630-like (Ca_04472), homoserine kinase (Ca_04479), transcription factor bHLH118 (Ca_04526)], and 5 genes on CaLG06 [ethylene-responsive transcription factor ERF043-like (Ca_15786), bidirectional sugar transporter SWEET2-like (Ca_23961), zinc finger, C3HC4 type (RING finger) protein (Ca_19553), cytochrome P450 83B1-like (Ca_15917), cytochrome P450 72A15-like (Ca_19813)].
A total of 1059 genes were found underlying the four QTL regions detected for PLHT. Out of these 1059 genes, 13 putative genes (two on CaLG01, five on CaLG04 and six on CaLG05) were prioritized based on their role in regulating plant height in crop plants (S6 Table). These included type-II homeodomain-leucine zipper protein (Ca_21404), and basic-leucine zipper transcription factor I (Ca_19454) on CaLG01; ethylene-responsive transcription factor I (Ca_04370), protein IQ-DOMAIN 14-like (Ca_09493), ethylene responsive transcription factor ERF027-like (Ca_04534), and C2H2-like zinc finger protein (Ca_04451) on CaLG04; probable basic-leucine transcription factor I (Ca_18221), NADH ubiquinone oxidoreductase (Ca_20087), NADH dehydrogenase [ubiquinone] 1-alpha subcomplex assembly factor 2 (Ca_20086), cytochrome c biogenesis C (Ca_20073), cytochrome c biogenesis C (Ca_20070), and NAD(P)H-quinone oxidoreductase subunit N (Ca_08896) on CaLG05.

Table 3. List of QTLs identified for yield, yield components and agronomic traits in ICC 4958 × DCP 92–3 RIL population.

Trait Name	QTL name	Year	Linkage group	Left marker	Right marker	Left marker position (cM)	Right marker position (cM)	LOD	PVE (R²%)	Additive effect
Yield per plant (YPP, g)	qYPP4.1	2015–16	CaLG04	AX-123642038	AX-123630146	86.44	87.52	3.50	10.10	-9.5
	qYPP1.1	2016–17	CaLG01	AX-123644170	AX-123645113	15.00	46.80	5.00	36.20	4.3
100-seed weight (100SW, g)	q100SW6.1	2015–16	CaLG04	AX-123642585	AX-123663334	43.66	43.70	5.70	13.00	4.0
	q100SW7.1	2015–16	CaLG05	AX-123637282	AX-123637281	47.61	47.77	3.60	8.10	1.7
Pods per plant (PPP)	qPPP6.1	2015–16	CaLG06	AX-123633331	AX-123633450	0.75	1.27	6.80	15.20	2.9
Plant height (PLHT, cm)	qPLHT4.1	2015–16	CaLG04	AX-123615349	AX-123623881	216.23	223.07	8.10	18.50	3.0
	qPLHT1.1	2016–17	CaLG01	AX-123617652	AX-12364833	12.70	13.40	6.20	14.20	3.2
	qPLHT4.1	2016–17	CaLG04	AX-123615349	AX-123623881	216.23	223.07	6.60	13.30	3.6
	qPLHT5.1	2016–17	CaLG05	AX-123653052	AX-123631649	1.07	7.62	3.50	8.70	2.4
	qPLHT8.1	2016–17	CaLG08	AX-123638424	AX-123657820	13.74	14.30	3.60	8.10	2.2
Number of primary branches (PB)	qPB.2.1	2015–16	CaLG02	AX-123621195	AX-123621154	11.10	11.40	3.40	8.70	-0.1
	qPB.3.1	2015–16	CaLG03	AX-123622729	AX-123622639	14.30	14.40	6.50	59.70	-0.3

LOD, logarithm of odds; PVE, phenotypic variance explained; cM, centimorgan.
https://doi.org/10.1371/journal.pone.0251669.t003
Discussion

Breeding for yield, yield components and agronomic traits could enhance crop productivity. Recent developments in plant genomics have led to new and improved breeding methodologies, which have vastly accelerated the breeding process [27–29]. These advances have facilitated detecting genomic regions/QTLs linked with desirable traits and, thereby, identification of genes controlling both simple and complex traits [20, 24, 30, 31]. Trait linked markers have facilitated marker-assisted breeding [13, 19, 32] and positional cloning for different traits in crop plants [4, 26, 33, 34]. Detection of polymorphism in chickpea has been a major constraint due to the limited genetic diversity [15, 35]. Such low levels of genetic diversity in the cultivated gene pool entailed the need for targeting the inter-specific polymorphisms between wild and cultivated chickpea accessions [36, 37]. Recent advances in genome-based capabilities have enabled the development of high-throughput approaches for genotyping, allowing the detection of desirable alleles and multiple QTLs having the potential to affect desired responses. Therefore, the current study aimed to utilize the high-density genetic map of ICC 4958 × DCP 92–3 RIL population for detecting main-effect QTLs for yield, yield components, and agronomic traits; and aimed to identify potential candidate genes for 100SW and PLHT.

Detailed analysis of phenotyping data revealed a substantial genotypic variation among the RILs for all studied traits across three years. In the present study, the extent of genotypic variances was more than their corresponding environmental variances for PLHT, PPP, 100SW and YPP, indicating a greater contribution of the genotypic component to the total variation in these traits [19, 38–40]. All traits, except 100SW, displayed transgressive segregation in both directions, suggesting that both parental lines contributed favorable alleles for these traits. For 100SW, transgressive segregation, mostly in a negative direction, was observed for multiple RILs across all three years, which might be because of unwanted linkages between desirable and undesirable alleles contributed by parental lines. Combined correlation analysis results displayed a high degree of correlation for 100SW between years, which is predicted to be due to the high heritability of this trait observed in chickpea [19]. Furthermore, PLHT displayed a moderate correlation between 2015–16 and 2016–17, and between 2016–17 and 2017–18. However, all remaining traits displayed a low degree of correlation between years, which may be due to the significant influence of the genotypes’ environment. Significant genotypic and environmental differences and a low correlation observed for traits between years might be the reasons for the absence of any consistent QTL detected for the evaluated traits.

In the present study, the genotyping of RILs using a high-throughput Axiom®CicerSNP array facilitated the construction of a dense genetic map. The genetic map comprising of 3,818 SNPs, with an average inter-marker distance of 0.30 cM and an average density of 3.91 SNPs/cM, is one of the most saturated maps developed for chickpea, which is superior to some of the previously reported inter-specific maps [9, 36, 41, 42]. Furthermore, a total of 16 QTLs were mapped for five traits, with PVE ranging from 6.5% to 59.70%. Here, two major-effect QTLs (qYPP4.1 and qYPP1.1) for yield per plant were identified for 2015–16 and 2016–17, with PVE ranging from 10.10 to 36.20%. In contrast to earlier studies [19, 43, 44], the major-effect QTL qYPP1.1 explained the highest phenotypic variance of 36.20% and may hold potential for deployment in chickpea breeding efforts by marker-assisted breeding approach. Despite high PVE values obtained for yield per plant and the number of primary branches QTLs, only a marginal additive effect was observed for these traits across different years. This suggested the absence of any significant difference in trait values between parents. The high phenotypic variation explained by QTLs for YPP and PB may be due to the sample size of the mapping population (N = 161), density of markers used in the linkage map, and QTL mapping software. Recent QTL mapping studies suggest epistasis to be a crucial genetic component underlying
complex quantitative traits such as 100-seed weight, plant height, yield and components [19]. Importantly, the use of epistatic effects in marker-assisted selection holds the potential to achieve a higher genetic gain in breeding programs. In the present study, two-loci and three-loci epistatic QTL interactions were identified for 100-seed weight across two years. Inclusion of these epistatic effects in sophisticated biological models will provide an opportunity to optimize long-term selection response and a comprehensive understanding of the genetic base underlying improvement of 100-seed weight. Moreover, deployment of the identified epistatic QTLs will enable marker-assisted selection to bear a longer persistence response and may lead to a considerable increase in genetic gain.

Yield trait is complex and governed by several components such as pod weight, haulm weight, harvest index, seed weight, pod to flower ratio, etc., and QTLs associated with these traits are favourable targets for selection. Furthermore, plant height represents a crucial factor for machine harvest because the losses incurred during machine harvest is more for semi-erect genotypes (about 20%) and less in tall and erect genotypes (2.6–5.0%) [45]. Given the shortage in the workforce and to address drudgery among farmers, there is a huge demand for tall and erect varieties suitable for machine harvesting. A total of 6 QTLs for 100SW were identified across three years, including two QTLs each on CaLG06 and CaLG07, and one QTL each on CaLG03 and CaLG04, explaining phenotypic variation ranging from 6.50% to 16.60%. Many studies have reported QTLs for 100SW in different genetic backgrounds of chickpea in the last few years [10, 46–48]. For example, the QTLs for 100SW were identified on CaLG01 and CaLG04 and accounted for 37% of the phenotypic variance across two environments [10]. QTLs for seed weight have also been reported on CaLG02 and CaLG05 in different genetic backgrounds [9, 43, 48–52]. Many QTLs identified in the present study were found in close proximity or overlapped earlier reported QTLs. For instance, \(q_{100SW4.1} \) on CaLG04 was detected in close proximity of two QTLs consistent across years and locations reported earlier [19, 53], but in a different mapping population. However, higher PVE and LOD scores of the QTLs identified in the same region for previous studies compared to the present study could be due to the difference in the RIL population used and genotype \(\times \) environmental interaction effects. The other two major-effect QTLs, including \(q_{100SW6.1} \) and \(q_{100SW6.2} \) on CaLG06, reported in this study are novel QTLs. Similarly, for plant height, three major-effect and two minor-effect QTLs with PVE ranging from 8.1% to 18.5% were identified. When flanking markers of the QTLs identified for plant height in the present study were compared with the markers for plant height QTLs identified in previous studies [7, 19, 40, 54, 55], it was observed that all the QTLs identified in the present study were novel and did not exhibit any similarity with previously reported QTLs. Hence, novelty and population-specific characteristics of the identified QTLs governing plant height was observed in the present study.

Identifying candidate genes for a particular trait is the first important step to understand the molecular mechanisms underlying the trait of interest. Integration of genomics-based knowledge with conventional breeding efforts can decipher molecular mechanisms underlying traits of interest. With the availability of the chickpea genome sequence [1], it is now possible to identify genes governing traits like seed weight and plant height [26]. Genomic regions harboring QTLs for 100SW and PLHT were selected to identify putative candidate genes controlling these traits. Based on these premises, a total of 417 genes were found underlying 6 QTLs detected for the 100SW, and several genes within this set were shown to play a significant role in seed development in previous studies. For instance, a gene encoding C3HC4-type RING finger protein (\(Ca_{19553} \)) was shown to control plant growth and fruit development in *Nicotiana benthamiana* [56]. Genes including serine kinase (\(Ca_{04479} \)) and pentatricopeptide repeat containing proteins (PPR) (\(Ca_{06269}, Ca_{04422}, Ca_{04472} \)) have been shown to play a major role in seed development in different crops [57–59]. A sugar transporter protein
encoding gene (Ca_23961) was also displayed to play a key role in the accumulation of seed reserve and transport in wheat [60], *Arabidopsis* [61], and fava bean [62]. Furthermore, tubby-like F-box protein 8 (Ca_04384), transcription factor bHLH-118 (Ca_04526), RING-H2 finger protein (Ca_19553), and ethylene-responsive factor ERF (Ca_04503) displayed high expression in seed tissue, thereby predicting their role in regulating seed development in *Arabidopsis* [63] and chickpea [46].

We also predicted the possible candidate genes underlying four unique QTLs for PLHT. The potential gene underlying the qPLHT1.1 genomic region includes a leucine zipper protein (Ca_21404). Moreover, the most promising genes underlying qPLHT5.1 genomic region on CaLG05, include NADH dehydrogenase (Ca_20086), and cytochrome-c biogenesis (Ca_20070, Ca_20073). Integrated genomic approaches elucidated the role of these genes in regulating plant height. These genes are known to play a key role in the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) for regulating respiration and mitochondrial organization in crop plants [64–67]. Another gene family underlying the qPLHT5.1 genomic region on CaLG05 includes the bZIP transcription factor genes, which regulate plant morphology using gibberellins (GAs) and GA homeostasis. It was shown that down-regulation of genes involved in GA biosynthesis inhibits cell elongation and growth of stem internodes and results in dwarf phenotype in monocot and dicot crop plants [68]. GA response modulators such as dwarf 8 (d8), semi-dwarf (Sd1), reduced height (Rht) and gibberellin insensitive (GAI) that regulate plant height have been identified and validated in several crops, including wheat, maize, rice and tobacco [68–71]. The interaction and similar expression characteristics of these genes in a regulatory pathway underlying both mitochondrial respiration and GA biosynthesis are necessary for maintaining the growth and development of organs, including plant height [72, 73].

Materials and methods

Development of RIL population

A RIL population was developed by crossing ICC 4958 (large seeded and drought tolerant donor parent) with DCP 92–3 (small seeded and drought susceptible) chickpea genotype at ICAR-IIPR. The segregants displayed variations in traits such as yield, 100-seed weight and plant height. This mapping population containing 166 RILs (F\textsubscript{8}) was developed at ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India. The population was advanced by the single seed descent (SSD) method to develop recombinant inbred lines.

Phenotypic evaluation of yield, yield components and agronomic traits

A total of 166 RILs were evaluated during the Rabi season for three years (2015–16, 2016–17 and 2017–18) at ICAR-IIPR, Kanpur (26° 20' 22.884” N80° 17’ 34.584” E), India. The RIL population was sown in a plot size of 1.2 m2 (4 m × 3 m), and seed to seed distance of 10 cm was maintained in a row. The field was prepared for sowing by applying diammonium phosphate (18% N and 46% P\textsubscript{2}O\textsubscript{5}). During the crop season, rainfall ranged from 196 to 230 mm, and surface irrigation was applied during the vegetative stage as and when required. The experiment was conducted in augmented design. The traits that were evaluated during the experiment include yield per plant (YPP), 100-seed weight (100SW), pods per plant (PPP), plant height (PLHT), number of primary branches (PB), and number of secondary branches (SB). Three plants were randomly selected from each plot, and the phenotypic data for the traits mentioned above was recorded. The mean value of the data recorded on three plants was computed and used for further analysis.
Genotyping of RILs
Genomic DNA was extracted from parents and RILs using a modified CTAB method as described previously [74]. In brief, young leaves of 20–25 days old plants were used for DNA isolation, and DNA quality was tested and quantified using NanoDrop 8000 spectrophotometer (Thermo Scientific, USA). DNA concentration was normalized to a minimum of 40 ng/μL. Based on the presence of high-quality total genomic DNA, 161 RILs were genotyped using the Axiom® CicerSNP array containing 50,590 SNPs distributed across eight linkage groups of chickpea as described earlier [4].

Genetic map construction and QTL analysis
The genotyping data obtained from the Axiom® CicerSNP array was utilised for the construction of a genetic map. SNPs indicating the presence of contrasting alleles between two parents were targeted. For the 17,173 polymorphic SNPs thus obtained, a chi-square test was carried out with a null hypothesis that two alleles at a given locus segregate in a 1:1 ratio for a RIL population. SNP markers that showed substantial deviation from the 1:1 ratio, and high missing data were not used for further analyses. A high-density genetic map for ICC 4958 × DCP 92–3 RIL population was constructed using JoinMap v4.1 [75]. The logarithm of odds (LOD) score for the test of linkages between marker pairs was set to 3.0, and the markers that were attributed to a linkage group at a LOD grouping threshold of 3.0 were utilized. The maximum-likelihood mapping algorithm and Kosambi mapping function were used for constructing the genetic map. In order to map QTLs associated with yield, yield components and agronomic traits, the field phenotyping data for 161 RILs collected across three years was used. QTL mapping was performed using Windows QTL Cartographer software version 2.5. Here, composite interval mapping using a genome-wide LOD threshold of 3.0 was performed at \(p < 0.05 \) significance, as described previously [47, 76, 77]. This led to the mapping of main-effect and minor-effect QTLs associated with the traits evaluated in this mapping population.

Mining of candidate genes
To retrieve candidate genes underlying the QTL intervals of 100-seed weight and plant height, the QTL flanking markers were selected and used for similarity search against chickpea reference genome assembly (CaGAv1.0) [1] using blastn (with the parameter “-task blastn-short”). The flanking markers were then used to identify genes (between left and right markers) using bedtools (v2.17.0) against the corresponding chickpea genome, and 1,476 genes in the QTL regions were retrieved. Furthermore, the identified genes were functionally annotated using blastx (E-value cutoff 1E-05) against the NCBI nr database, followed by GO annotation using Blast2GO (v5.2).

Statistical analyses
Phenotyping data measured across three years were analysed individually to estimate the best linear unbiased predictors (BLUPs) for each trait using the REML option in the PROC MIXED procedure of SAS v9.0 (SAS Institute Inc., NC, USA). The performance of a genotype for augmented randomized complete block design was modelled as:

\[
Y_{ij} = \mu + \beta_i + c_j + \alpha_i + \epsilon_{ij}
\]

where \(Y_{ij} \) is the phenotype of the \(i^{th} \) genotype in the \(j^{th} \) block, \(\mu \) is the overall mean, \(\beta_i \) is the block effect which was considered as random, \(c_j \) is the effect of the check in \(j^{th} \) block which was considered as fixed, \(\alpha_i \) is the random effect of the \(i^{th} \) genotype, and \(\epsilon_{ij} \) is the residual considered...
as a random effect. The phenotyping data collected across three years were subjected to ANOVA for RCBD using the ‘augmentedRCBD’ package in R [78]. The phenotypic variation observed for each of the six traits was evaluated using the formulae described previously [79, 80]:

\[
\text{Coefficient of variation (CV)} = \frac{\sqrt{\text{MS}_g}}{\bar{X}} \times 100
\]

\[
\text{Phenotypic coefficient of variation (PCV)} = \frac{\sqrt{\text{\sigma}_p^2}}{\bar{X}} \times 100
\]

\[
\text{Environmental coefficient of variation (ECV)} = \frac{\sqrt{\text{\sigma}_e^2}}{\bar{X}} \times 100
\]

where \(\bar{X}\) indicates the grand mean for each trait.

A Pearson correlation analysis and principal component analysis was computed using a custom R script. The frequency distribution of the yield, yield components, and agronomic traits within the RIL mapping population was analysed and plotted with the 'UsingR' package in R. The analysis of epistatic interactions between the interacting QTLs was conducted using Genotype Matrix Mapping (GMM) software (version 2.1; http://www.kazusa.or.jp/GMM) [81]. For estimating the combinations of two-loci and three-loci interactions using the GMM algorithm, the maximum length of locus combinations was set to 2 and 3, respectively. Moreover, the minimum number of corresponding samples was set to 1, and the default option of ‘automatic’ was used for defining the search range (d). Here, the syntax ‘AA’ refers to ICC 4958 alleles, while the syntax ‘BB’ refers to DCP 92–3 alleles.

Conclusion

In the present study, analysis of the genotyping data generated on ICC 4958 × DCP 92–3 RIL mapping population using Axiom CicerSNP genotyping array facilitated the construction of a high-density genetic linkage map. Analysis of the phenotyping data for six traits evaluated across three years along with the genotyping data led to the identification of 16 major- and minor-effect QTLs for five traits, explaining up to 59.7% PVE. Genes underlying the identified QTL regions for 100SW and PLHT were reported to play a key role in regulating seed attributes, plant height, and plant growth and development. However, further fine-mapping and experimental validation of these genes is needed to precisely determine the candidate gene(s) underlying the QTLs identified. Nonetheless, the high-density linkage map, major-effect QTLs and genomic regions identified in this study hold huge potential to be deployed in chickpea improvement programs by the marker-assisted breeding approach to develop high yielding chickpea varieties.

Supporting information

S1 Table. Descriptive statistics and analysis of variance for six traits evaluated across three years in ICC 4958 × DCP 92–3 RIL population. (XLSX)

S2 Table. Name, physical position and sequence information for markers flanking the identified QTLs. (XLSX)
S3 Table. List of epistatic QTLs (E-QTLs) identified for 100-seed weight measured during 2015–16. (XLSX)

S4 Table. List of epistatic QTLs (E-QTLs) identified for 100-seed weight measured during 2016–17. (XLSX)

S5 Table. List of genes underlying the major-effect QTL regions identified for 100-seed weight. (XLSX)

S6 Table. List of genes underlying the major-effect QTL regions identified for plant height. (XLSX)

S1 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated during 2015–16. Frequency distribution for (a) yield per plant (YPP_2015–16), (b) 100-seed weight (100SW_2015–16), (c) pods per plant (PPP_2015–16), (d) plant height (PLHT_2015–16), (e) number of primary branches (PB_2015–16) and (f) number of secondary branches (SB_2015–16). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the trait value for DCP 92–3. (TIF)

S2 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated during 2016–17. Frequency distribution for (a) yield per plant (YPP_2016–17), (b) 100-seed weight (100SW_2016–17), (c) pods per plant (PPP_2016–17), (d) plant height (PLHT_2016–17), (e) number of primary branches (PB_2016–17) and (f) number of secondary branches (SB_2016–17). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the trait value for DCP 92–3. (TIF)

S3 Fig. Frequency distribution of yield, yield components and agronomic traits evaluated during 2017–18. Frequency distribution for (a) yield per plant (YPP_2017–18), (b) 100-seed weight (100SW_2017–18), (c) pods per plant (PPP_2017–18), (d) plant height (PLHT_2017–18), (e) number of primary branches (PB_2017–18) and (f) number of secondary branches (SB_2017–18). Red arrow indicates the trait value for ICC 4958 and blue arrow indicates the trait value for DCP 92–3. (TIF)

S4 Fig. Principal component analysis for yield, yield components and agronomic traits evaluated across three years. Principal component analysis for the years (a) 2015–16, (b) 2016–17 and (c) 2017–18 in the ICC 4958 × DCP 92–3 RIL population. In the PCA biplot, colored dots represent diverse RILs and their position on the plot is relative to specific trait loadings corresponding to PC1 and PC2. Also, positively correlated variables are clustered together, while variables that are negatively related are placed on the opposite side of the origin. YPP, yield per plant; 100SW, 100-seed weight; PPP, pods per plant; PLHT, plant height; PB, number of primary branches; SB, number of secondary branches. (TIF)

S5 Fig. Correlation heat-maps for yield, yield components and agronomic traits. Pearson correlation analysis heat-maps for six traits evaluated across three years (a) 2015–16, (b) 2016–17 and (c) 2017–18 in the ICC 4958 × DCP 92–3 RIL population. YPP, yield per plant; 100SW, 100-seed weight; PPP, pods per plant; PLHT, plant height; PB, number of primary branches;
SB, number of secondary branches.

Author Contributions
Conceptualization: Narendra Pratap Singh, Manish Roorkiwal, Rajeev K. Varshney.
Data curation: Rutwik Barmukh, Khela Ram Soren, Praveen Madugula, Priyanka Gangwar, Aditi Bhandari.
Formal analysis: Rutwik Barmukh, Khela Ram Soren, Praveen Madugula, Aditi Bhandari, Kritika Rajain, Manish Roorkiwal.
Funding acquisition: Rajeev K. Varshney.
Investigation: Priyanka Gangwar, Chellapilla Bharadwaj, Aravind K. Konda, Sushil K. Chaturvedi.
Methodology: Chellapilla Bharadwaj, Sushil K. Chaturvedi.
Project administration: Narendra Pratap Singh, Manish Roorkiwal.
Resources: Rajeev K. Varshney.
Supervision: Narendra Pratap Singh, Manish Roorkiwal.
Writing – original draft: Rutwik Barmukh, Praveen Madugula.
Writing – review & editing: Khela Ram Soren, Manish Roorkiwal, Rajeev K. Varshney.

References
1. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013; 31: 240–246. https://doi.org/10.1038/nbt.2491 PMID: 23354103
2. FAOSTAT 2019. Available online: http://www.fao.org/faostat/en/#data (accessed on March 11, 2021).
3. Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012; 108: S11–S26. https://doi.org/10.1017/S0007114512000797 PMID: 22916806
4. Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, et al. Development and evaluation of high-density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol. J. 2018; 16: 890–901. https://doi.org/10.1111/pbi.12836 PMID: 28913885
5. Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 2019; 51: 857–864. https://doi.org/10.1038/s41588-019-0401-3 PMID: 31036963
6. Singh R, Sharma P, Varshney RK, Sharma S, Singh N. Chickpea improvement: Role of wild species and genetic markers. Biotechnol. Genet. Eng. Rev. 2008; 25: 267–314. https://doi.org/10.5661/bger-25-267 PMID: 21412359
7. Kujur A, Upadhyaya HD, Bajaj D, Gowda CLL, Sharma S, Tyagi AK, et al. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci. Rep. 2016; 6: 1–9. https://doi.org/10.1038/s41598-016-0001-8 PMID: 28442746
8. Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor. Appl. Genet. 2006; 113: 1357–1369. https://doi.org/10.1007/s00122-006-0390-3 PMID: 17016689
9. Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci. Rep. 2015; 5: 17512. https://doi.org/10.1038/srep17512 PMID: 26631961
10. Hossain S, Ford R, Mcneil D, Pittcock C, Panozzo J. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aus. J. Crop Sci. 2010; 4: 150–167.

11. Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ. Mapping genes for double podding and other morphological traits in chickpea. Euphytica 2002; 128: 285–292.

12. Mannur DM, Babbar A, Thudi M, Sabavavarapu MM, Roorkiwal M, Yeni SB, et al. Super Annigeri 1 and Improved JG 74: Two Fusarium wilt resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol. Breed. 2019; 39: 2. https://doi.org/10.1007/s11032-018-0908-9 PMID: 30631246

13. Prapat A, Chaturvedi SK, Tomar R, Rajan N, Malviya N, Thudi M, et al. Marker assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol. Genet. Genom. 2017; 293: 1237–1245. https://doi.org/10.1007/s00438-017-1343-z PMID: 28668975

14. Sabavavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, et al. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013; 193: 121–133.

15. Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Mateme M, et al. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus mapping in chickpea (Cicer arietinum L.). Mol. Breed. 2013; 33: 297–313.

16. Rakshit S, Winter P, Tekeoglu M, Juarez Muñoz J, Pfaff T, Benko-Isepnon AM, et al. DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 2003; 126: 171–180.

17. Barmukh R, Roorkiwal M, Jaba J, Chitikineni A, Mishra SP, Sagurthi SR, et al. Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea (Cicer arietinum L.). Plant Genome 2020; 14: e20007. https://doi.org/10.1002/tpg2.20071

18. Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, et al. Plant vigour QTLs co-map with an earlier reported QTL-hotspot for drought tolerance while saving QTLs map in other regions of the chickpea genome. BMC Plant Biol. 2018; 18: 29. https://doi.org/10.1186/s12870-018-1245-1 PMID: 29409451

19. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, et al. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2014; 127: 445–462. https://doi.org/10.1007/s00122-013-2230-6 PMID: 24326458

20. Soren KR, Madugula P, Kumar N, Barmukh R, Senger M, Bharadwaj C, et al. Genetic dissection and identification of candidate genes for salinity tolerance using Axiom® CicerSNP array in chickpea. Int. J. Mol. Sci. 2020; 21: 5058. https://doi.org/10.3390/ijms21145058 PMID: 32709160

21. Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KHM, et al. Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol. 2015; 15: 124. https://doi.org/10.1186/s12870-015-0491-8 PMID: 25994494

22. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, et al. Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol. Breed. 2012; 30: 9–21.

23. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, et al. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 2014; 9: e96758. https://doi.org/10.1371/journal.pone.0096758 PMID: 24801366

24. Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, et al. Integrating genomics for chickpea improvement; achievements and opportunities. Theor. Appl. Genet. 2020; 133: 1703–1720. https://doi.org/10.1007/s00122-020-03584-2 PMID: 32253478

25. Varshney RK, Paulo MJ, Grando S, Van Eeuwijk FA, Keizer LCP, Guo P, et al. Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res. 2012; 126: 171–180.

26. Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor. Appl. Genet. 2020; 133: 1791–1810. https://doi.org/10.1007/s00122-020-03560-w PMID: 32040676

27. Varshney RK, Thudi M, Pandey MK, Tardieu F, Oijewo C, Vadez V, et al. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J. Exp. Bot. 2018; 69: 3293–3312. https://doi.org/10.1093/jxb/ery088 PMID: 29514298
1. Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL. 5Gs for crop genetic improvement. Curr. Opin. Plant Biol. 2020; 56: 190–196. https://doi.org/10.1016/j.pbi.2019.12.004 PMID: 32005553

2. Bohra A, Jha UC, Godwin ID, Varshney RK. Genomic interventions for sustainable agriculture. Plant Biotechnol. J. 2020. https://doi.org/10.1111/pbi.13472 https://doi.org/10.1111/pbi.13472 PMID: 32875704

3. Bellemou D, Millán T, Gil J, Abdelguerfi A, Laouar M. Genetic diversity and population structure of Algerian chickpea (Cicer arietinum) genotypes: use of agro-morphological traits and molecular markers linked or not linked to the gene or QTL of interest. Crop Pasture Sci. 2020; 71: 155–170.

4. Varshney RK. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci. 2016; 242: 98–107. https://doi.org/10.1016/j.plantsci.2015.09.009 PMID: 26566828

5. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, et al. A comprehensive resource of drought and salinity responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 2009; 10: 523. https://doi.org/10.1186/1471-2164-10-523 PMID: 19912666

6. Choudhary S, Gaur R, Gupta S, Bhatia S. EST-derived genomic markers: development and utilization for generating an advanced transcript map of chickpea. Theor. Appl. Genet. 2012; 124: 1449–1462. https://doi.org/10.1007/s00122-012-1800-3 PMID: 22301907

7. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, et al. High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res. 2012; 19: 357–373. https://doi.org/10.1093/dnares/dss018 PMID: 22864163

8. Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020; 18: 1354–1360. https://doi.org/10.1111/pbi.13361 PMID: 32065714

9. Varshney RK, Hiremath PJ, Lekha P, Kashwagi J, Balaji J, Deokar AA, et al. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol. J. 2012; 10: 716–732. https://doi.org/10.1111/j.1467-7652.2012.00710.x PMID: 22703242

10. Jin, G., Chen, P., Zhang, F., Zhao, H., Liu, Q., Li, X. et al. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight...
regulating candidate gene in chickpea. Sci. Rep. 2015; 5: 9264. https://doi.org/10.1038/srep09264 PMID: 25786576

47. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, et al. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res. 2014; 21: 695–710. https://doi.org/10.1038/dnares.1298 PMID: 25335477

48. Radhika P, Gowda S, Kadoo N, Mhase L, Jamadagni B, Sainani M, et al. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor. Appl. Genet. 2007; 115: 210–217. https://doi.org/10.1007/s00122-007-0556-7 PMID: 17503013

49. Hamwieh A, Imtiaz M, Malhotra RS. Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2013; 126: 1025–1038. https://doi.org/10.1007/s00122-012-2034-0 PMID: 23283512

50. Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem. Genet. 2013; 51: 387–397. https://doi.org/10.1007/s10528-013-9571-3 PMID: 23344290

51. Cobos MJ, Rubio J, Fernández-Romero MD, Garza R, Moreno MT, Millán T, et al. Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli × Desi cross. Ann. Appl. Biol. 2007; 151: 33–42.

52. Cobos MJ, Winter P, Kharrat M, Cubero JI, Gild J, Millán T. Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res. 2009; 111: 130–136.

53. Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, et al. QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol. J. 2016; 14: 2110–2119. https://doi.org/10.1111/pbi.12567 PMID: 27107184

54. Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, et al. Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol. Genet. Genom. 2015; 290: 559–571. https://doi.org/10.1007/s00438-014-0932-3 PMID: 23344290

55. Karami E, Talebi R, Kharkesh M, Saidi A. A linkage map of chickpea (Cicer arietinum L.) based on population from ILC 3279 × ILC 588 crosses: location of genes for time to flowering, seed size and plant height. Genetika 2015; 47: 253–263.

56. Wu W, Cheng Z, Liu M, Yang X, Qiu D. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS ONE 2014; 9: e99352. https://doi.org/10.1371/journal.pone.0099352

57. Li XJ, Zhang YF, Hou M, Sun F, Shen Y, Xiu ZH, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J. 2014; 79: 797–809. https://doi.org/10.1111/tpj.12584 PMID: 24923534

58. Liu YJ, Xi ZH, Meeley R, Tan BC. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 2013; 25: 868–883. https://doi.org/10.1105/tpc.112.106781 PMID: 23463776

59. Parthibane V, Iyappan R, Vijayakumar A, Venkateshwar V, Rajasekharan R. Serine/Threonine/Tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. Plant Physiol. 2012; 159: 95–104. https://doi.org/10.1104/pp.112.197194 PMID: 22434039

60. Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci. 2000; 5: 283–290. https://doi.org/10.1016/s1360-1385(00)01681-2 PMID: 10871900

61. Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, et al. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol. 2011; 157: 1664–1676. https://doi.org/10.1104/pp.111.186825 PMID: 21984725

62. Weber H, Borisjuk L, Heim U, Sauer N, Wobus U. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 1997; 9: 986–998. https://doi.org/10.1105/tpc.9.6.986 PMID: 9212465

63. Xu R, Quinn Li Q. A RING-H2 zinc-finger protein gene RlE1 is essential for seed development in Arabidopsis. Plant Mol. Biol. 2003; 53: 37–50. https://doi.org/10.1023/b:plnt.000009256.01620.a6 PMID: 14756305

64. Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J. The evolutionarily conserved iron-sulfur protein INDH1 is required for complex I assembly and mitochondrial translation in Arabidopsis. Plant Cell 2013; 25: 4014–4027. https://doi.org/10.1105/tpc.113.117283 PMID: 24179128
65. Welch E, Gonzalez DH. Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2, Evidence for the involvement of TCP-domain protein-binding elements in anther- and meristem-specific expression of the Cytc-1 gene. Plant Physiol. 2005; 139: 88–100. https://doi.org/10.1104/pp.105.065920 PMID: 16113211

66. Welch E, Hildebrandt TM, Lewejohann D, Gonzalez DH, Braun HP. Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III. Biochem. Biophys. Acta 2012; 1817: 990–1001. https://doi.org/10.1016/j.bbabio.2012.04.008 PMID: 22551905

67. Tronconi MA, Fahanestich H, Gerrard Weehleer MC, Andreos CS, Flügge UI, Drincovich MF, et al. Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol. 2008; 146: 1540–1552. https://doi.org/10.1104/pp.107.114975 PMID: 18223148

68. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 2000; 12: 901–915. https://doi.org/10.1105/tpc.12.6.901 PMID: 10852936

69. Ishida S, Fukazawa J, Yuasa T, Takahashi Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator Repression of shoot growth by gibberellins. Plant Cell 2004; 16: 2641–2651. https://doi.org/10.1105/tpc.14.26.2641 PMID: 15377759

70. Spielmeyer W, Ellis MH, Chandler PM. Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 2002; 99: 9043–9048. https://doi.org/10.1073/pnas.122886399 PMID: 120286399

71. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. Green revolution genes encode mutant gibberellin response modulators. Nature 1999; 400: 256–261. https://doi.org/10.1038/22307 PMID: 10421366

72. Welch E, Viola IL, Kim HJ, Prendes LP, Comelli RN, Hong JC, Gonzalez DH. A segment containing a G-box and an ACGT motif confers differential expression characteristics and responses to the Arabidopsis Cytc-2 gene, encoding an isoform of cytochrome c. J. Exp. Bot. 2009; 60: 829–845. https://doi.org/10.1093/jxb/ern331 PMID: 19098132

73. Bai S, Chaney W. Gibberellin synthesis inhibitors affect electron transport in plant mitochondria. Plant Growth Regul. 2001; 35: 257–262.

74. Jain A, Roorikwai M, Kale S, Garg V, Yadala R, Varshney RK. InDel markers: An extended marker resource for molecular breeding in chickpea. PLoS ONE 2019; 14: 3. https://doi.org/10.1371/journal.pone.0213999 PMID: 30883592

75. Van Ooijen JW. JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV: Wageningen, The Netherlands, 2006.

76. Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5.; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012.

77. Bajaj D, Upadhayya HD, Khan Y, Das S, Badoni S, Shree T, et al. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci. Rep. 2015; 5: 9264. https://doi.org/10.1038/srep09264 PMID: 25786576

78. Aravind J, Mukesh Sankar S, Wankhede DP, Kaur V. augmentedRCBD: Analysis of Augmented Randomised Complete Block Designs. 2020. R package version 0.1.3.9000, https://aravind-j.github.io/augmentedRCBD/ https://cran.r-project.org/package=augmentedRCBD.

79. Burton GW. Qualitative inheritance in grasses. Vol. 1. p. 277–283. Proceedings of the 6th International Grassland Congress, Pennsylvania State College. 17–23 August. 1952; Pennsylvania State College, Pennsylvania, USA.

80. Sharma JR. Statistical and biometrical techniques in plant breeding. 432 p. 1988; New Age International Limited Publishers, New Delhi, India.

81. Isobe S, Nakaya A, Tabata S. Genotype matrix mapping: searching for quantitative trait loci interactions in genetic variation in complex traits. DNA Res. 2007; 14: 217–225. https://doi.org/10.1093/dnares/dsm020 PMID: 18000014