On Edge Dimension of a Graph

Nina Zubrilina

April 12, 2017

Abstract

Given a connected graph $G(V, E)$, the edge dimension, denoted $\text{edim}(G)$, is the least size of a set $S \subseteq V$ that distinguishes every pair of edges of G, in the sense that the edges have pairwise different tuples of distances to the vertices of S. The notation was introduced by Kelenc, Tratnik, and Yero, and in their paper they asked several questions about some properties of edim. In this article we answer two of these questions: we classify the graphs on n vertices for which $\text{edim}(G) = n-1$ and show that $\frac{\text{edim}(G)}{\text{dim}(G)}$ isn't bounded from above (here $\text{dim}(G)$ is the standard metric dimension of G). We also compute $\text{edim}(G \square P_m)$ and $\text{edim}(G + K_1)$.

1 Introduction

Let $G(V, E)$ be a simple unconnected graph. We define the distance between an edge $e = xy$ and vertex v as:

$$d(e, v) = \min\{d(x, v), d(y, v)\}.$$

A vertex v distinguishes two edges e_1 and e_2 if $d(e_1, v) \neq d(e_2, v)$. A set $S \subseteq V$ is an edge metric generator of a graph $G(V, E)$ if for any two distinct edges $e_1, e_2 \in E$ there is a vertex $s \in S$ such that s distinguishes e_1 and e_2. An edge generating set with the smallest number of elements is called an edge basis of G, and the number of elements in an edge basis is the edge dimension of G (denoted $\text{edim}(G)$).

This concept was introduced by Kelenc, Tratnik and Yero in [6] in analogy with the classical metric dimension $\text{dim}(G)$ defined as follows: a vertex $v \in V$
distinguishes \(v_1, v_2 \in V \) if \(d(v, v_1) \neq d(v, v_2) \). A set \(S \subseteq V \) is a **vertex generating set** of \(G \) if for any distinct \(v_1, v_2 \in V \) there is a vertex \(s \in S \) such that \(s \) distinguishes \(v_1 \) and \(v_2 \). A vertex generating set with the smallest number of elements is a **vertex basis** of \(G \), and the number of elements in a vertex basis is its **dimension** (denoted \(\text{dim}(G) \)).

Metric dimension was introduced by Slater in 1975 in [9], in connection with the problem of uniquely recognizing the location of an intruder in a network. The same concept was introduced independently by Harary and Melter in [4]. This graph invariant is helpful in areas such as robot navigation ([7]), chemistry ([2], [3], [5]) and problems of image processing and pattern recognition involving hierarchical data structures ([8]). Metric generators in graphs are also connected to coin weighing and the Mastermind game as discussed in [1].

In [6], Kelenc, Tratnic and Yero introduce \(\text{edim} \) and calculate it for various graphs, including paths, cycles, trees and grids. They give examples of graphs for which \(\text{edim}(G) < \text{dim}(G) \) (wheel graphs), \(\text{edim}(G) = \text{dim}(G) \) (trees) and \(\text{edim}(G) > \text{dim}(G) \) (\(C_r \sqcup C_t \) for integers \(r, t \)). They give examples of graphs with \(\frac{\text{edim}(G)}{\text{dim}(G)} \approx \frac{5}{2} \) and ask if the \(\frac{\text{edim}(G)}{\text{dim}(G)} \) ratio is bounded from above. They also ask for the classification of the graphs with \(\text{edim}(G) = |V| - 1 \). In this paper we answer both questions. We also calculate \(\text{edim}(G \sqcup P_m) \) and \(\text{edim}(G + K_1) \).

We will use the following notation:
Consider some vertex \(x \) of a graph. The **distance tuple** of \(x \) on \(S \subseteq V \), \(S = \{v_1, \ldots, v_k\} \) is the tuple
\[
d_S(x) = (d(x, v_1), d(x, v_2), \ldots, d(x, v_k)).
\]
It is easy to see that \(S \) is a vertex generator if and only if the distance tuples on \(S \) are different for all vertices of \(V(G) \).
We define the distance tuple identically if \(x \) is an edge. Similarly, \(S \) is an edge generator if and only if the distance tuples on \(S \) are different for all edges of \(E(G) \).

We use the notation \(N(v) \) for vertices adjacent to \(v \) (not including \(v \)). We use \(V(G) \) and \(E(G) \) to denote the vertices and edges of a graph \(G \). We say \(\text{diam}(G) = \max\{d(u, v) | u, v \in V(G)\} \) and denote the maximal degree of the vertices of \(G \) with \(\Delta(G) \). We use notation \(G_1 + G_2 \) for the sum of graphs \(G_1, G_2 \), which is constructed by connecting all the vertices of \(G_1 \) with all the vertices of \(G_2 \). We use \(P_m \) to denote a path of length \(m \). We use \(G_1 \sqcup G_2 \)
to denote the Cartesian product of G_1 and G_2. All the graphs are simple, connected and undirected.

2 Graphs for which edim $= |V| − 1$

For a graph $G(V, E)$ it is easy to see that if $|V| = n$, then edim $\leq n − 1$ as any $n − 1$ vertices form an edge generating set. We will now describe all the graphs for which edim $= n − 1$.

Definition 2.1. We call the set $(N(v_1) \cup N(v_2)) \setminus ((N(v_1) \cap N(v_2))$ the non-mutual neighbors of v_1 and v_2.

Theorem 2.2. Let $G(V, E)$ be a graph with $|V| = n$. Then edim(G) $= n − 1$ if and only if for any distinct $v_1, v_2 \in V$ there exists $u \in V$ such that $v_1u \in E, v_2u \in E$ and u is adjacent to all non-mutual neighbors of v_1, v_2.

Proof. Suppose edim(G) $= n − 1$. Then for any distinct $v_1, v_2 \in V$, the set $V \setminus \{v_1, v_2\}$ doesn’t generate the edges of G. Fix some v_1 and v_2 and let $S = V \setminus \{v_1, v_2\}$. If S doesn’t generate the edges of G, there must exist two edges that have the same distances to all elements of S. Call them e_1, e_2.

Claim 1. Let $e_1 \neq e_2$ and $d_S(e_1) = d_S(e_2)$. Then $e_1 = v_1u$ and $e_2 = v_2u$ for some $u \in V$.

Proof of claim 1. Suppose there is a vertex $v \in S$ such that v is on exactly one of the two edges e_1 and e_2. Then v distinguishes e_1 and e_2 since it has distance 0 to one of them and distance at least 1 to the other. Thus since we assumed S doesn’t distinguish e_1, e_2, there can’t be such a vertex in S. This means all the non-mutual vertices of e_1, e_2 must not be in S (so must be in $\{v_1, v_2\}$). This is only possible if $e_1 = v_1u, e_2 = v_2u$ for some $u \in V$. This proves the claim.

Notice this property restricts G to having diam(G) ≤ 2, since we just showed for any choice of distinct $v_1, v_2 \in V$ there is a $u \in V$ such that $v_1u \in E$ and $v_2u \in E$. Thus, v_1u and v_2u have distances 1 or 2 to all vertices in $S \setminus \{u\}$.

Claim 2. Let $e_1 = v_1u, e_2 = v_2u$, and say $d_S(e_1) = d_S(e_2)$. Then u is connected to all non-mutual neighbors of e_1, e_2. 3
Proof of claim 2. Consider a vertex $w \in S \setminus \{u\}$. Suppose w is a non-mutual neighbor of v_1, v_2, so $wv_1 \in E, wv_2 \notin E$. Since $w \in S$, by assumption $d(e_2, w) = d(e_1, w)$. Thus since $d(v_1, w) = 1$ and $d(v_2, w) = 2$, we must have $d(u, w) = 1$ (so $uw \in E$). The same holds if we switch v_1 and v_2. Thus u must be a neighbor of all non-mutual neighbors of v_1 and v_2.

This proves that the stated condition is necessary. It is also sufficient:

Claim 3. Let $e_1 = v_1u, e_2 = v_2u$ and say u is connected to all non-mutual neighbors of v_1 and v_2. Then e_1 and e_2 are indistinguishable by all vertices of S.

Proof of claim 3. Consider $w \in S$. If $w = u$, $d(e_1, w) = 0 = d(e_2, w)$. Otherwise, w has distance 1 or 2 to e_1 and e_2. Say $d(w, e_1) = 1$. There are two cases:

1. $d(w, u) = 1$. Then obviously $d(w, e_2) = 1$.

2. $d(w, v_1) = 1$, $d(w, u) \neq 1$. We know u has to be adjacent to all non-mutual neighbors of e_1 and e_2. We also know u is not adjacent to w. This means w can’t be a non-mutual neighbor, so since w is adjacent to v_1, w also has to be adjacent to v_2. Thus $d(v_2, w) = 1$ and hence $d(e_2, w) = 1$.

This means that if one of the edges has distance 1 to w, then so does the other. Since we already know the distances from these edges to elements of $S \setminus \{u\}$ can only be 1 or 2, this proves that e_1 and e_2 are equidistant from all elements of S.

This proves the theorem.

Corollary 2.3. Let G be a graph on n vertices. Suppose edim$(G) = n - 1$. Then diam$(G) \leq 2$ and every edge is in a cycle of length 3.

Proof. Theorem 2.2 implies that for any $v_1 \neq v_2$ there is a $u \in V$ such that $v_1u \in E$ and $v_2u \in E$, so diam$(G) \leq 2$. Moreover, for any $xy \in E$ there exists $u \in V$ such that $xu \in E$ and $yu \in E$. This means xy is in a cycle xuy of length 3.
3 The edim(G) to dim(G) ratio

A natural question that arises in the study of the edge dimension is how it is related to the dimension of the same graph.

Question. For what triples (x, y, n) does there exist a graph G with dim$(G) = x$, edim$(G) = y$ and $|V| = n$?

Kelenc, Tratnik and Yero give examples of graphs for which dim$(G) <$ edim(G), dim$(G) =$ edim(G), and dim$(G) >$ edim(G). Moreover, they show that there exist graphs realizing all triples (x, y, n) such that

$$1 < x \leq y \leq 2x \leq n - 2.$$

One of the questions they ask is whether $\frac{\text{edim}(G)}{\text{dim}(G)}$ is bounded from above. In this section we show it’s not.

Theorem 3.1. $\frac{\text{edim}(G)}{\text{dim}(G)}$ is not bounded from above.

We prove this theorem by finding a graph F_k with edim$(F_k) = k + 2^k - 2$, and dim$(F_k) = k$. The graph F_k is defined as follows:

Definition 3.2. For a positive integer k, let F_k be the graph on vertex set $A \cup B$, where $B = \{b_1 \ldots b_k\}$ and $A = \{a_S | S \subseteq B\}$. Let b_i, b_j be adjacent for all $b_i, b_j \in B$ with $b_i \neq b_j$, and let a_S, a_T be adjacent for all $a_S, a_T \in A$ with $a_S \neq a_T$. For any $b_i \in B, a_S \in A$ let b_i, a_S be adjacent if and only if $b_i \in S$. Notice $|V(F_k)| = k + 2^k$.

![Graph F_2.](image)

Figure 1: The graph F_2.

In order to determine some properties of F_k, we will use the following results.
Lemma 3.3 ([2]). Let $G(V, E)$ be a graph with diameter D and $\dim(G) = k$. Then $|V| \leq k + D^k$.

We will prove this lemma to demonstrate the motivation for the construction of F_k.

Proof. Let $B = \{b_1, \ldots, b_k\}$ be a vertex basis for F_k and $V = \{v_1, \ldots, v_n\}$ be the vertices. Consider the distance tuples $d_B(v_i)$ for all $v_i \in V$. There are k basis vertex tuples with exactly one 0 in them (namely those of b_1, \ldots, b_k). All others tuples consist of k numbers from 1 to D. This shows there can be no more than $k + D^k$ different distance tuples. But the distance tuples have to be different for all vertices in order for B to be a vertex basis. Thus, there can be no more than $k + D^k$ vertices.

Below we prove an analogue of Lemma 3.3 for edge dimension (we won’t be using it for the proof of Theorem 3.1).

Theorem 3.4. Let $G(V, E)$ be a simple connected graph with diameter D, $|V| = n$, and $\text{edim}(G) = k$. Then:

$$|E| \leq \binom{k}{2} + kD^{k-1} + D^k.$$

Proof. Let S be an edge basis. Consider the distance tuples on S of the edges of G. There are at most $\binom{k}{2}$ distance tuples with two zeros (corresponding to the edges between pairs of vertices of S), at most kD^{k-1} tuples with one zero (k ways to choose the position of the zero, D^{k-1} options for the remaining places), and at most D^k tuples with no zeros. Thus, since the tuples have to be different for all elements of E, we have $|E| \leq \binom{k}{2} + kD^{k-1} + D^k$.

Lemma 3.5 ([6]). Let $G(V, E)$ be a graph with $|V| = n$ and $\Delta(G) = n - 1$. Then:

$$\text{edim}(G) = n - 1 \text{ or } n - 2.$$

Lemma 3.6 ([6]). Let $G(V, E)$ be a graph with $|V| = n$ and $\Delta(G) = n - 1$. Suppose there are at least two vertices with degree $n - 1$. Then:

$$\text{edim}(G) = n - 1.$$

We will now use these lemmas to calculate $\dim(F_k)$ and $\text{edim}(F_k)$.

6
Theorem 3.7. For any positive integer k,

$$\dim(F_k) = k$$ and $$\text{edim}(F_k) = k + 2^k - 2.$$

Proof. Since $a_B = a_{\{b_1, \ldots, b_k\}}$ is connected to all the other vertices of F_k, $\text{diam}(F_k) = 2$. Since $|V(F_k)| = k + 2^k$, Lemma 3.3 guarantees $\dim(F_k) \geq k$. Moreover, B is a vertex generating set since the distance tuples d_B are different for all elements of $V(F_k)$ (this follows immediately from construction of F_k). Thus,

$$\dim(F_k) = k.$$

Notice a_B is connected to every vertex of F_k by construction, so by Lemma 3.5 we know $\text{edim}(F_k)$ is either $|V(F_k)| - 1$ or $|V(F_k)| - 2$. Consider the vertices a_\emptyset and a_B. By construction of F_k we know a_\emptyset is not connected to any elements of B, and a_B is connected to all of them. This means all elements of B are non-mutual connections of a_\emptyset and a_B. Also, notice that a_B is the only vertex adjacent to all elements of B. This shows the condition of Theorem 2.2 doesn’t hold for F_k, so

$$\text{edim}(F_k) = |V(F_k)| - 2 = k + 2^k - 2.$$

Proof of Theorem 3.1. By Theorem 3.7, F_k is a counterexample to the boundedness of the $\text{edim}(G)/\dim(G)$ ratio.

Another related question we could ask is the following: Let $G(V, E)$ be a graph with $|V| = n$ and $\text{edim}(G) = n - 1$. How large can $\dim(G)$ be? Consider the following example:

Definition 3.8. For a positive integer k, define $H_k = F_k + K_1$.

We will preserve the notation for the vertices of the subgraph F_k of H_k and call the K_1 vertex t.

Theorem 3.9. For any positive integer k,

$$\dim(H_k) = k + 1$$ and $$\text{edim}(H_k) = k + 2^k = n - 1.$$
Proof. Due to Lemma 3.3, $\dim(H_k) \geq k + 1$. We claim equality holds, and $B \cup \{t\}$ is a vertex generating set. Indeed, consider any two vertices x and y in $V(H_k)$. If either of them is in $B \cup \{t\}$, it distinguishes them. Otherwise, both x and y are in A. By construction of F_k, the vertices of A have pairwise different distance tuples on B consisting of 1's and 2's. Notice that distance tuples of A on B are the same in H_k as in F_k. Indeed, for $a \in A$ and $b \in B$, any path from a to b via t will have length at least 2, so can’t be shorter than shorter than $d(a,b)$ in F_k. Hence, all pairs of vertices in A are distinguished by B. This means $B \cup \{t\}$ is a vertex generation set as claimed, so $\dim(H) = k + 1$.

Since a_B and t are connected to all the other vertices of H_k, by Lemma 3.3, $\text{edim}(H_k) = |V(H_k)| - 1 = k + 2^k$. \hfill \Box

Recall that for a graph $G(V,E)$ with diameter 2, Lemma 3.3 implies that $
 + 2^{\text{dim}(G)} \geq |V|$. In particular, in the case $|V| = k + 2^k + 1$, this means that we can’t make $\text{dim}(G)$ smaller than $k+1$. Since we showed in section 1 that graphs $G(V,E)$ with edge dimension $|V| - 1$ have to have diameter 2, this means we cannot further decrease the dimension if we want the edge dimension to be maximal.

4 edim for $G + K_1$ and $G \square P_m$

In this section we characterize how the edge dimension changes upon taking a Cartesian product with a path, or upon adding a vertex adjacent to all the original vertices.

Theorem 4.1. Let $G(V,E)$ be a graph with $|V| = n$. Suppose for any vertex $x \in V$ there is another vertex $u \in V$ such that $V \setminus N(x) \subseteq N(u)$. Then $\text{edim}(G + K_1) = n$. Otherwise, $\text{edim}(G + K_1) = n - 1$.

Proof. Denote the K_1 graph vertex t. Since t is connected to all the other vertices of $G + K_1$, by Lemma 3.5 $\text{edim}(G + K_1)$ is either n or $n - 1$. We will use Theorem 2.2 to see when each case holds. Consider $x,y \in V$. Whatever their non-mutual connections are, t is connected to all of them and to x and y, so the hypothesis of Theorem 2.2 holds for this vertex pair. Now consider a pair t and $x \in V$. Their non-mutual neighbors are precisely $V \setminus N(x)$. This means the condition stated in Theorem 2.2 holds for x,t if and only if there
exists \(u \in V \) such that \(V \setminus N(x) \subseteq N(u) \). Thus \(\text{edim}(G + K_1) = n \) if and only if this is true for any \(x \in V \), which is what we were to prove. \(\square \)

Theorem 4.2. Let \(G(V, E) \) be a graph and \(P_m \) a path of length \(m \geq 2 \). Let \(B_E \subseteq 2^V \) be the set of all the edge bases of \(G \), let \(B_V \subseteq 2^V \) be the set of all vertex bases of \(G \). Let \(k \) be the smallest possible cardinality of a union of an edge and a vertex basis, that is,

\[
k = \min \left\{ |S \cup T| \mid S \in B_V, T \in B_E \right\}.
\]

Then:

\[
k \leq \text{edim}(G \Box P_m) \leq k + 1.
\]

Proof. Let \(M = S \cup T \) with \(S \in B_V, T \in B_E \) be a set for which the minimum cardinality is achieved, that is \(|M| = k \).

The graph \(G \Box P_m \) can be constructed the following way: First, take \(m \) copies of \(G \). Denote the \(i \)th copy \(G(i) \). Denote the vertices of \(G(i) \) with \(v(i) \) for all \(v \in V \). Then, connect \(v(i) \) and \(v(i + 1) \) for all \(v \in V, i \in \{1, \ldots, m - 1\} \).

![Graph G and the described construction of the graph G \(\Box P_4 \).](image)

Figure 2: A graph \(G \) and the described construction of the graph \(G \Box P_4 \).
Lower bound: Suppose B is an edge basis of $G \Box P_m$. Let B_1 be the projection of B on $G(1)$ (where we "project" $v(i)$ to $v(1)$). Consider $e \in E(G(1))$. Notice that

$$d(e, v(i)) = d(e, v(1)) + i - 1.$$

Thus, $e_1, e_2 \in E(G(1))$ are distinguished by $v(1)$ if and only if they are distinguished by $v(i)$. Thus, if B is an edge generating set of $G \Box P_m$, then B_1 is an edge generating set of G.

Consider an edge $e = v(1)v(2)$. Notice that for $i \geq 2$ we have

$$d(e, w(i)) = d(v(2), w(2)) + (i - 2) = d(v(1), w(1)) + (i - 2),$$

and for $i = 1$,

$$d(e, w(i)) = d(v(1), w(1)).$$

These differ by a constant only dependent on i. This means that if we consider two edges $x = v(1)v(2)$ and $y = u(1)u(2)$, then:

$$w(i) \text{ distinguishes } x \text{ and } y \iff w(1) \text{ distinguishes } x \text{ and } y.$$

Moreover, $w(1)$ distinguishes x and y if and only if $w(1)$ distinguishes $v(1)$ and $u(1)$. Thus, B_1 is a vertex generating set of $G(1)$ as well. This shows that B_1 is both an edge generating set and a vertex generating set, so $|B_1| \geq |M| = k$.

Also, clearly, $|B_1| \leq |B|$. This gives us the lower bound.

Upper bound: Let $M \subseteq V$ be a set defined in the statement of the theorem with $|M| = k$, and let $t \in M$. Set

$$B = \{v(1) \mid v \in M\} \cup t(m).$$

We will prove B is an edge generating set of $G \Box P_m$. There are five cases of pairs of edges.

1. $e(i), f(i) \in E(G(i))$.
 By definition of M, some $v \in M$ distinguishes $e(1), f(1)$. Since it’s clear that
 $$d(v, z(i)) = d(v, z(1)) + i - 1$$ for any $z \in E$,
 v also distinguishes $e(i)$ and $f(i)$.
2. $x(i)x(i+1): y(i)y(i+1)$ for $x, y \in V$.
 By definition of M, some $v \in M$ distinguishes $x(1), y(1)$. Since

 $$d(v, z(i)) = d(v, z(1)) + i - 1$$
 for any $z \in V(G)$,

 v also distinguishes $x(i)$ and $y(i)$. Thus

 $$d(v, x(i)x(i+1)) = d(v, x(i)) \neq d(v, y(i)) = d(v, y(i)y(i+1)).$$

3. $x(i)x(i+1), y(j)y(j+1)$ for $x, y \in V$ and $i \neq j$.
 Notice that

 $$d(x(i)x(i+1), t(1)) = d(x(1), t(1)) + i - 1$$
 and

 $$d(x(i)x(i+1), t(m)) = d(x(m), t(m)) + m - i - 1 = d(x(1), t(1)) + m - i - 1,$$
 so

 $$d(x(i)x(i+1), t(1)) = d(x(i)x(i+1), t(m)) + m - 2i.$$

 Thus, since we assumed $i \neq j$, we conclude that if $t(1)$ doesn’t distinguish $x(i)x(i+1), y(j)y(j+1)$, then $t(m)$ does.

4. $e(i), f(j)$ for $e, f \in E, i \neq j$.
 Similarly to case 3, we can see

 $$d(e(i), t(1)) = i - 1 + d(e(1), t(1)),$$
 and

 $$d(e(i), t(m)) = m - i + d(e(m), t(m)) = m - i + d(e(1), t(1)) = d(e(i), t(1)) + m - 2i + 1.$$

 Thus, if $t(1)$ does not distinguish $e(1)$ and $f(j)$, then $t(m)$ does.

5. $e(i), y(j)y(j+1)$ for $e \in E, y \in V$.
 Suppose these two edges aren’t distinguished by $t(1)$, so

 $$d(e(i), t(1)) = d(y(j)y(j+1), t(1)) = d.$$

 As we have noted, then

 $$d(e(i), t(m)) = d + m - 2i + 1$$
 and

 $$d(y(j)y(j+1), t(m)) = d + m - 2j.$$

 These can not be equal since they have different parity.

Since $|B| = |M| + 1 = k + 1$, this concludes the proof.
5 Conclusion and Open Problems

We have shown $\frac{\text{edim}(G)}{\text{dim}(G)}$ isn’t bounded from above in section 3. More questions can be asked about the relationship between edim(G) and dim(G). For instance,

- Are there graphs G for which $\text{edim}(G) \gg 2^{\text{dim}(G)}$?

- For what triples x, y, n does there exist a graph G with $|V| = n$, $\text{dim}(G) = x$ and $\text{edim}(G) = y$?

Another approach that could be taken to understand how dim(G) and edim(G) compare to each other is deriving some more properties of edim analogues to the known properties of dim, as we did in the last sections 2 and 4. For example:

- For which graphs $G(V, E)$ is $\text{edim}(G) = |V| - 2$?

- For which graphs $G(V, E)$ is $\text{edim}(G) = 2$?

- For a graph G and a positive integer n, bound $\text{edim}(G \Box C_n)$ in terms of some function of G.

- For graphs G_1, G_2, bound $\text{edim}(G_1 \Box G_2)$ in terms of some function of G_1 and G_2.

6 Acknowledgments

The research was conducted during the Undergraduate Mathematics Research Program at University of Minnesota Duluth, and supported by grants NSF-1358659 and NSA H98230-16-1-0026. I would like to thank Joe Gallian for creating a marvelous working environment and for all his support and encouragements throughout the program. I would also like to thank Eric Riedl, Matthew Brennan and Levent Alpoge for very useful commentary and remarks.
References

[1] José Cáceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo, María L. Puertas, Carlos Seara, and David R. Wood. On the metric dimension of cartesian products of graphs. *SIAM Discrete Math.*, 21(2):423–441, 2007.

[2] Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. *Discrete Appl. Math.*, 105(1):99–113, 2000.

[3] Gary Chartrand, Christopher Poisson, and Ping Zhang. Resolvability and the upper dimension of graphs. *Comput. Math. with Appl.*, 39(12):19–28, 2000.

[4] Frank Harary and R. A. Melter. On the metric dimension of a graph. *Ars Combin.*, 2(191-195):1, 1976.

[5] Mark Johnson. Structure-activity maps for visualizing the graph variables arising in drug design. *Biopharmaceutical Stat.*, 3(2):203–236, 1993.

[6] A. Kelenc, N. Tratnik, and I. G. Yero. Uniquely identifying the edges of a graph: the edge metric dimension. *ArXiv e-prints*, jan 2016.

[7] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. *Discrete Appl. Math.*, 70(3):217–229, 1996.

[8] Robert A Melter and Ioan Tomescu. Metric bases in digital geometry. *Comput. Vision, Graphics, Image Process.*, 25(1):113–121, 1984.

[9] Peter J Slater. Leaves of trees. *Congr. Numer.*, 14(549-559):37, 1975.