METOCLOPRAMIDE IN TARDIVE DYSKINESIA

T. J. HEMNANI, M.D. (Pharmacology), D.R.M.
P. G. DASHPUTRA*, M.D. (Pharmacology)
R. N. SARDAR, M.D. (Psychiatry), D.P.M.

SUMMARY

The effect of single intravenous doses of metoclopramide (10 mg, 20 mg and 40 mg) have been compared with placebo (saline) in a double blind randomised study in 10 patients with tardive dyskinesia following long term neuroleptic therapy. Tardive dyskinesia rating scores were decreased significantly (P<0.01) 6 hours after administration of metoclopramide 20 mg and 40 mg when compared with placebo. Reduction of tardive dyskinesia by metoclopramide—a D2 receptor blocking agent suggest that D2 receptors may be involved in the mediation of this syndrome.

Tardive dyskinesia is an abnormal movement disorder involving predominantly buccolingual grimacing muscles in patients receiving neuroleptic therapy on a long term basis. The movements are diminished if the dose of neuroleptic drug is increased (Kobayashi, 1977), and the disorder may be due to increased dopaminergic activity within the central nervous system, occurring as a result of chronic dopamine receptor blockade (Klawans, 1973).

Drugs of varying groups have been tried in the treatment of tardive dyskinesia (Mackay and Sheppard, 1979) hypothesising various etiological factors (Gardos et al., 1977). There is some evidence from animal studies that D2 receptors may mediate peri-oral dyskinesias in guinea pigs (Costall and Naylor, 1978). Therefore now a days interest is being focused on the use of drugs which specifically block D2 receptor sites e.g. pimozide and the substituted benzamides like oxipermoide, tiapride and metoclopramide (Kebabian and Calne, 1979). Of these drugs only pimozide has been studied in tardive dyskinesia (Claveria et al., 1975). However, in the treatment of L-dopa induced dyskinesia both oxipermoide (Bedard et al., 1978) and tiapride (Lees et al., 1979) have been reported to be of value but metoclopramide (Tarsy et al., 1975) seemed to be ineffective. We have therefore tried to investigate the potential of metoclopramide in the treatment of tardive dyskinesia following long term neuroleptic therapy.

MATERIAL AND METHOD

An informed consent of the patients and next of kin was obtained. Ten patients (seven women and three men) diagnosed as tardive dyskinesia by two psychiatrists independently were taken up for study. All medications were stopped for 1 month prior to study. The patients selected were between the age range of 35 and 50 years.

The study was double blind and the order of drug administration was randomized for each patient. Patients were given, in random order, single intravenous injections of either placebo (saline) or metoclopramide (10 mg, 20 mg or 40 mg) between 9.30 and 10.00 A.M. on the study days. Every patients received all four treatments at an interval of 7 days between treatments. Patients were assessed for dyskinetic movements, using
TABLE 1. *The NIM dyskinesia score: Each feature is scored from 0 (normal) to 4 (Maximal abnormality).*

1. Facial and Oral Movements	Score
Muscles of facial expression	0-4
Lips and peri-oral area	0-4
Jaw	0-4
Tongue	0-4

2. Extremity Movements	Score
Upper Limbs	0-4
Lower Limbs	0-4

3. Trunk Movements	Score
Neck, shoulder and hips	0-4

4. Restlessness	Score
	0-4

The first seven items on the NIMH scale (NIMH Psychopharmacology Research Branch, 1975) (Table-1). Abnormal movements were scored on the scale immediately before the injections and at 1, 3 and 6 hours afterwards by two psychiatrists.

The individual scores for the various dyskinetic movements were summed ("sum dyskinesia score") and the results were analysed to find out mean and standard error of mean for each group—and the statistical significance was found out using two tailed student's 't' test.

RESULTS

There was a significant (p<0.01) reduction in the sum dyskinesia score at 1, 3 and 6 hours with all treatments except metoclopramide (10 mg) and placebo (Table 2)

TABLE 2. *Sum dyskinesia score before and after treatment with metoclopramide.*

DRUGS	Before treatment	After treatment@		
	Score (mean±S.E.M.)	1 h	3 h	6 h
Saline (placebo)	19.6±1.1	18.3±0.9	17.3±1.0	17.2±0.9
Metoclopramide 10 mg	19.5±1.1	18.5±1.1	17.7±1.1	17.5±1.0
Metoclopramide 20 mg	19.1±1.0	15.1±0.9*	11.9±0.6*	11.2±0.7*
Metoclopramide 40 mg	19.4±0.9	13.4±0.7*	10.6±0.6*	8.7±0.5*

@ value was compared with score before treatment
* p < 0.01
DISCUSSION

Effective treatment of tardive dyskinesia has not yet been achieved. So far only treatment of tardive dyskinesia has been the omission of neuroleptic drug, though increase in the dose of neuroleptic drug results in temporary cessation of dyskinetic movements (Inoue, 1979).

The present study was designed to assess the potential of metoclopramide in the control of tardive dyskinesia. We have seen that metoclopramide decreases dyskinetic movements after single intravenous injection (20 and 40 mg). Oxipermide and tiapride—the other representatives of substituted benzamide compounds have been found to be effective in L-dopa induced dyskinesia (Bedard et al., 1978; Lees et al., 1979) and it has been suggested that this antidysskinetic action is mediated through D2 receptor blockade. We therefore suggest that the antidysskinetic action of metoclopramide is also mediated through blockade of D2 receptors since it bears structural resemblance to oxipermide and tiapride.

The maximum clinical antidysskinetic action was observed at 6 hours interval after administration of the drug though C. N. S. effects of metoclopramide occur within 15 minutes of intravenous administration (Batesman et al., 1978). We have no explanation for this delayed antidysskinetic action of metoclopramide which needs further research.

Metoclopramide itself has been reported to produce tardive dyskinesia (Lavy et al., 1978). In this respect it resembles neuroleptic compounds though metoclopramide does not possess neuroleptic action in human beings (Nakra et al., 1975). However, in animals metoclopramide has been shown to have an antipsychotic action when used in combination with tolazoline, propranolol, phenobarbitone, phenytoin or mepyramine (Hemnani and Dashputra, 1982).

Our studies suggest that stimulation of D2 receptors is, at least in part, responsible for tardive dyskinesia as it is alleviated by metoclopramide which is a selective D2 receptor blocking agent. The effect of long term metoclopramide therapy on tardive dyskinesia has been undertaken by us to explore whether the danger of breakthrough supersensitivity exist with metoclopramide as well as with neuroleptic drugs.

REFERENCES

Bateiman, D. N., Mashiter, K. and Davies, D. S. (1978). Pharmacokinetics and concentration-effect studies with intravenous metoclopramide. Br. J. Clin. Pharmacol., 6, 401.

Bedard, P., Parkes, J. and Marsden, C. (1978). Effect of new dopamine-blocking agent (Oxipermide) on drug-induced dyskinesias in Parkinson's disease and spontaneous dyskinesias. Br. Med. J., i, 954.

Claveria, L., Trychenee, P., Calme, D., Haskayne, L., Petrie, A., P来访, C. and Lodges, P. (1973). Tardive dyskinesia treated with pimozide, J. Neurol. Sci., 24, 393.

Costall, S. and Naylor, R. J. (1978). Experimental studies of dopamine function in movement disorders. In Neurotransmitter Systems and Their Clinical Disorders. (Ed.) N. J. Legg. London : Academic Press, 129.

Gardos, G., Cole, J. and Lambe, R. (1977). The assessment of tardive dyskinesia. Arch. Gen. Psychiat., 34, 1266.

Hemnani, T. J. and Dashputra, P. G. (1982). Behavioural interactions of metoclopramide. Ind. J. Pharmacol., 14.

Inoue, F. (1979). Adverse reactions of antipsychotic drugs. Drug Intelligence and Clinical Pharmacy, 13, 198.

Kerabian, J. W. and Calme, D. B. (1979). Multiple receptors for dopamine. Nature, 277, 93.

Klawans, H. L. (1973). The pharmacology of tardive dyskinesia. Amer. J. Psychiat., 130, 82.

Kobayashi, R. M. (1977). Drug therapy of tardive dyskinesias. Nat. Eng. J. Med., 298, 257.

Lavy, S., Melamed, E. and Perchas, S. (1978). Tardive dyskinesia associated with metoclopramide. Br. Med. J., i, 77.

Lees, A., Lander, C. and Stern, G. (1979). Tiapride in Levodopa-induced involuntary movements. J. Neurol. Neurosurg. Psychiat., 4, 380.
Mackay, A. V. P. and Sheppard, G. P. (1979) Pharmacotherapeutic Trials in Tardive Dyskinesia. Bri. J. Psychiat., 135, 489.

Nakra, B. R. S., Bond, A. J. and Lader, M. H. (1975). Comparative psychotropic effects of metoclopramide and prochlorperazine in normal subjects. J. Clin. Pharmacol., 15, 449.

N. I. M. H. Psychopharmacology Research Branch (1975). Development of a dyskinetic movement scale. Early Clinic Drug Education Unit Intercom. 4, 3.

Tarsy, D., Parke, J. and Marsden, C. (1975). Metoclopramide and pimozide in Parkinson's disease and levodopa induced dyskinesia. J. Neurol. Neurosurg. Psychiat., 38, 331.