Material behavior of resin composites with and without fibers after extended water storage

Abdulrahman ALSHABIB1,2, Hamad ALGAMAIAH1,2, Nikolaos SILIKAS1 and David C. WATTS1,3

1 Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
2 Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
3 Photon Science Institute, University of Manchester, Manchester, UK
Corresponding author, Abdulrahman ALSHABIB; E-mail: abdalshabib@ksu.edu.sa

The objective of this study was to determine the long-term water sorption, solubility and hygroscopic expansion of resin composites with and without incorporated short fibers. Three resin composites incorporating fibers were examined: everX Posterior (EVX), NovoPro Universal (NPU) and NovoPro Flow (NPF). Four Particulate filled composites were used as controls: Filtek bulk Fill (FBF), Filtek one bulkfill (FBO), Filtek Supreme XTE (XTE), and Filtek Supreme Flow (XTEF). For sorption and solubility measurements, specimens were immersed in water for 140 days, weighed at intervals, then dried for a further 42 days at 37±1°C. Laser micrometer measured diametral expansion. XTEF exhibited the highest sorption. The solubility range was between 1.4 to 4.1 μg/mm; XTEF had the highest solubility, with EVX demonstrating negative solubility. Hygroscopic expansion ranged between 1.4% for hydroxyapatite fiber reinforced composite (NPU) and 2.2% for E-glass fiber reinforced composite (EVX). A nano-fiber containing composite (NPU) had the most favorable outcomes compared to a range of composites.

Keywords: Resin composites, EverX Posterior, Sorption, Solubility, Bisphenol A-glycidyl methacrylate

INTRODUCTION

The majority of resin composites are known to be chemically stable; however, chemicals present in the oral environment can be absorbed by composite polymer networks, and some of the components from the resin matrix and filler could be released into the surrounding area2). These occurrences are known as sorption and solubility, and these processes into and out of the network structures can result in undesirable physical and biological effects2). Resin composites are significantly affected by sorption and solubility in terms of longevity, as these processes affect the material's physical and mechanical properties such, color and dimensional stability, strength, and hardness3–5).

A wide range of chemicals are found in the oral environment, including alcohol, acids and bases. The effects that these chemicals have on resin composites depend on a number of factors such as the nature of the chemicals and the length of time the material is exposed to them2). While the oral environment does play a significant role, the nature of the resin composite is also a factor; the filler system's nature, the porosity, crosslink density and hydrophilicity of the network, and the quality of the filler interface all have a considerable effect6).

Long-term clinical success of a resin composite depends significantly on its dimensional changes, both during and after curing7). Unreacted monomer can be gradually released from these materials, water can also be absorbed and take up all of the free volume of the network structure which may lead to swelling through the separation of chains in the polymer network8). The elastic modulus of the polymer is known to be affected by the uptake of water, which coupled with hygroscopic expansion could potentially relax the internal stresses created by constrained shrinkage9). It is not as straightforward as this, however, because the expansion caused by water uptake is not controlled and can result in alternative deleterious stresses. Moreover, each of these phenomena follow very different timescales. For instance, shrinkage takes place within seconds — days at a maximum10); on the other hand, water absorption occurs many days, and saturation typically takes weeks1,3). Prior research found that material expansion is not controlled and can lead to potential stresses on the cavity walls, which may subsequently cause micro-cracks in the restored tooth12). These findings demonstrate the importance and complexity of dimensional changes in resin composite, highlight their unpredictability and that these changes depend on both the material and solvent involved2,5,7).

A promising type of resin composite includes fibers as reinforcement13). These fibers enhance composite properties by acting mainly as crack stoppers12,13). They can offer enhanced mechanical properties that can be very close to those of the natural tissues14). This approach was first reported for reinforcement of polymethyl methacrylate (PMMA), which was later utilized in a different aspect of clinical dentistry13). Furthermore, reinforcing the resin matrix with fibers improves the capacity of distributing the stress more efficiently when the loads are concentrated on the restoration2). Having said this, several factors play an important role in
ensuring the efficiency of fiber reinforcement, such as fiber type and aspect ratio15.

Several fiber materials have been used as reinforcement; carbon/graphite, for example, has been utilized in post and core systems. Unfortunately, the dark color of the fibers restricts their clinical use as a tooth-colored restorative material16. However, inorganic glasses may have favorable esthetic, mechanical and chemical properties. Thus, glass fibers have been used as reinforcement for direct restorations13,17. Electrical/E-glass is the most commonly used glass fiber due to its low cost19. Due to the biocompatibility of hydroxyapatite18, it has been used in resin composites to improve their mechanical properties. This material could be deployed in various forms, such as particulate fillers19 or fibers20.

According to Callister and Rethwisch, short fibers with a subcritical length are not effective and significantly lower the reinforcement effect of any resin containing such21. This length may be defined as the minimum fiber length required for optimal stress transfer within the resin matrix22. It is the minimum length at which a fiber will fail, midway along its length in an fiber reinforced composite (FRC), rather than as an interfacial fracture between the matrix and the fiber23. For example the diameter of glass fibers currently used in dental FRCs is 15–18 μm and the critical fiber length should be, between 0.75–0.9 μm24.

The critical fiber length should be 50 times greater than the diameter of the fiber to allow homogenous stress transfer within the resin matrix25. The present objective was to determine time-dependent water sorption and related properties of seven resin composites with and without incorporated short fibers. The null hypotheses were as follows:

1. No difference in either water sorption or solubility between the evaluated resin composites after 140 days water exposure.
2. No difference in hygroscopic expansion between the evaluated resin composites after 140 days water storage.

MATERIALS AND METHODS

The resin composite investigated are presented in Table 1. Three fiber containing composites and four composites reinforced exclusively with particulate fillers. They were chosen to represent composites used for different clinical applications with varying percentages of resin matrix and filler.

Measurement of filler content

To measure each resin composite’s mass percentage of inorganic filler, the ISO 1172:1996 standard ash method was followed26. For each composite (Table 1) two specimens were made (n=2). Polytetrafluoroethylene (PTFE) molds were used to prepare the specimens (2 mm thickness, 4 mm diameter) and they were placed between two sections of clear Mylar strip with glass slides on each side (1 mm in thickness) and then squeezed together. An LED light curing unit with an output irradiance of 1.2 W/cm2 was used to irradiate the specimens for 20 s on one side (Elipar S10, 3M Espe, Seefeld, Germany). The irradiance was measured every time the light cure unit was utilized, using a calibrated radiometer (MARCTM Resin Calibrator, Bluelight Analytics, Halifax, Canada). The specimens were then stored for 24 h at 37°C. An electric furnace (Programat EP 5010, Ivoclar Vivadent, Schaan, Liechtenstein) was used to keep a silica crucible at 630°C for 30 min. Once the crucible had been cooled to ambient temperature in a desiccator containing silica gel at 37±1°C, a precision digital balance (BM-252, A&D, Tokyo, Japan) was used to determine its weight. Each of the composite specimens was placed in the crucible and the balance was used again to weigh the specimen, including the crucible. To burn out the organic matrix, the specimen-containing crucible was placed in the electric furnace for 30 min at 630°C. Once cooled to ambient temperature in a desiccator, the crucible and residue were reweighed. The following equation was used to determine the inorganic filler content:

\[
\text{Filler content (\%)} = \frac{a_3 - a_1}{a_2 - a_3} \times 100
\]

\text{Equation 1: Filler content formula}

Where \(a_1\) is the mass of the crucible, \(a_2\) is the mass of the crucible plus the specimen; \(a_3\) is the final mass of the crucible plus the residue after heat treatment.

Sorption and solubility

1. **Specimen preparation**

Using brass molds, five disc-shaped specimens were produced for each material. The molds, with dimensions of 15×2 mm, were placed between two sections of clear Mylar strip with glass slides on each side (1 mm in thickness) and then squeezed together. The thickness of the specimen was modified from 1 mm to 2 mm. This increased thickness, corresponding more closely to clinical setup, allowing water sorption studies over a longer period. An LED curing unit with measured average tip irradiance of 1.2 W/cm2 (as mentioned above) was used to irradiate five sections of each side for 20 s. The irradiance was measured every time the light cure unit was utilized, using a calibrated radiometer (as mentioned above). The specimens were taken out of their molds with care, and 1000 grit silicon carbide paper was used to smooth out any rough edges. Following this, the specimens were placed in a desiccator containing silica gel at 37±1°C. After a period of 24 h a precision-calibrated balance was used to weigh each specimen, accurate to ±0.01 mg (BM-252, A&D). The cycle was duplicated repeatedly until a constant mass was acquired (\(m_i\)) —in other words, until the mass loss of the specimens was no more than 0.2 mg over 24 h.

For the thickness measurement, a digital caliper was used (Absolute Digimatic, Mitutoyo, Kanagawa, Japan) to obtain two measurements of the height. After taking the dimensions of the specimen, the volume (\(V\)) was calculated in mm3 through the following formula:
Table 1 Composition of materials investigated according to manufacturers’ information

Material Code	Name	Manufacturer	Lot number	Type and shade	Filler load vol%	Filler load wt%	Filler type	Resin matrix
Fiber and particulate reinforced composite								
NPU	NovaPro Universal	Nanova, MO, USA	30001	Nano-fiber reinforced, nano-hybrid Conventional A2 shade	—	77	Barium Borosilicate Glass, Hydrophobic Amorphous Silica, Hydroxyapatite fibers.	Bis-EMA, TEGDMA, UDMA
NPF	NovaPro Flow	Nanova, 2001	Nano-fiber reinforced, nano-hybrid Flowable A2 shade	—	60	Barium Borosilicate Glass, Amorphous Silica, Hydroxyapatite fibers.	Bis-EMA, TEGDMA, UDMA	
EVX	ever X Posterior	GC, Tokyo, Japan	1701101	Fiber reinforced BulkFill Universal shade fiber length 0.3–2.0 mm, diameter 16–17 μm	53.6	74.2	E-Glass short fibers, Barium Borosilicate Glass,	Bis-GMA, TEGDMA, PMMA
Particulate reinforced composite								
XTE	Filtek Supreme XTE	3M Oral Care, St.Paul, MN, USA	N836906	Nano-hybrid Conventional A2 shade	63.3	78.5	Zirconia filler Silica fillers/ Zirconia and silica clusters.	Bis-GMA, Bis-EMA, UDMA, UDMA, PEGDMA
XTEF	Filtek Supreme Flowable	3M Oral Care	N522058	Nano-hybrid Flowable A2 shade	46	65	Zirconia filler Silica fillers/ Zirconia and silica clusters	Bis-GMA, Bis-EMA, TEGDMA
FBF	Filtek Bulk fill	3M Oral Care	N838840	Nano-hybrid Bulk fill A2 shade	58.4	76.5	ytterbium tytterbium trioxide and zircon silica	DDDMA, UDMA, AUDMA
FBO	Filtek One Bulk fill	3M Oral Care	N859232	Nano-hybrid Bulk fill A2 shade	58.4	76.5	ytterbium tytterbium trioxide and zircon silica	DDDMA, UDMA, AUDMA

Bis-GMA: bisphenol-A-diglycidyl methacrylate; Bis-EMA: bisphenol-A-polyethylene-glycol-diether dimethacrylate; TEGDMA: triethyleneglycol dimethacrylate; PMMA: polymethyl methacrylate; UDMA: urethane dimethacrylate, DDDMA (1,12-Dodecanediol dimethacrylate), AUDMA: Aromatic urethane dimethacrylate.

\[V = \pi r^2 t \]

Equation 2: Volume calculation formula

Where \(\pi = 3.14 \), \(r \) is the radius of cross section; \(t \) is the thickness of specimen.

2. Sorption measurement

All five specimens were submerged in 10 mL of distilled water within separate glass bottles, which were sealed with polyethylene caps. The bottles were kept at 37°C for 1 h, 3 h, and 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 56, 84, 559
112, and 140 days. After each time period, a tweezer was used to take each specimen from the bottles. They were dried using filter paper before being weighed 1 min after removal from the water. The recorded mass is denoted as \(m_2(t) \). All five specimens were then returned to aqueous storage. This was replenished every week, with the total volume of water maintained at 10 mL.

3. Solubility measuring
After the sorption cycle was complete, specimens were dried using a desiccator and weighed at time points of 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35 and 42 days. Once the mass loss of the specimens was no more than 0.2 mg within any 24 h period, the constant final mass was then obtained (\(m_3 \)).

Weight increase \(W_i(\%) \) and water sorption \(WSo \) were calculated through the following formulae:

\[
W_i(\%) = 100\left(\frac{m_3 - m_1}{m_1}\right)
\]

Equation 3: Weight increase calculation formula

\[
WSo = \left(\frac{m_2 - m_3}{V}\right)
\]

Equation 4: Water sorption calculation formula

\[m_1 \] is the conditioned mass prior to immersion in water; \(m_2 \) is the mass after to immersion in water for 140 days.

\[
WSoC(\%) = \left(\frac{m_3 - m_2}{m_1}\right)\times 100
\]

Equation 5: Water sorption % calculation formula

\[m_1 \] is the conditioned mass prior to immersion in water; \(m_2 \) is the mass after to immersion in water for 140 days, \(m_3 \) is specimens’ mass after desorption, and \(V \) is the volume of the specimen.

The percentage amount of water absorbed by a composite at the end of the storage period was calculated by the following formula:

\[
WSoM(\%) = \left(\frac{mSoC(\%)}{a}\right)\times 100
\]

Equation 6: Water sorption % in the resin matrix calculation formula

In this formula \(a \) represents the proportional weight of the polymer matrix in the composite.

The following equation was used to calculate the solubility (\(Sol \)) values:

\[
Sol = \left(\frac{m_1 - m_3}{V}\right)
\]

Equation 7: Solubility calculation formula

\[m_1 \] is the conditioned mass prior to immersion in water; \(m_3 \) is specimens’ mass after desorption, and \(V \) is the volume of the specimen.

Hygroscopic expansion
Hygroscopic dimensional changes were measured in parallel with the water sorption measurements. A custom built noncontact laser micrometer was utilized to measure the dimensional changes of the specimens\(^5\). The initial mean diameter \(d_1 \) of each specimen was measured. After each time period had elapsed, specimens were dried using filter paper then measured 1 min after removal from the water. Mean diameter \((d_{420}) \) was recorded at each time interval, and then returned to aqueous storage. An average of 600 diametral values was recorded for each specimen at each time point.

The percentage diametral change was calculated:

\[
d(%) = \frac{d_{420} - d_1}{d_1} \times 100
\]

Equation 8: Diametral change calculation formula

In this formula \(d_1 \) represent the mean diameter before water storage, while \(d_{420} \) represents the mean diameter which was recorded at each time interval. The following equation was used to calculate volumetric change, assuming isotropic expansion behavior\(^2\):

\[
V(%) = \left(\frac{1 + d(\%)}{100}\right)^3 - 1 \times 100
\]

Equation 9: Volumetric change calculation formula

Statistical analysis
SPSS v.23 (IBM, Armonk, NY, USA) was used to analyze the data. The mean and standard deviations were calculated for the water solubility, water sorption, hygroscopic expansion and mass change. One-way ANOVA was carried out at 140 days followed by Tukey post-hoc tests (at \(\alpha = 0.05 \)) for the hygroscopic expansion, water sorption, and mass change. For the solubility, the same statistical test was applied to evaluate differences in weight after 42 days of desorption cycle. Pearson correlation coefficients were calculated to express the correlation between hygroscopic expansion and mass change for each material during 140 days water immersion.

RESULTS

Filler content
Table 2 shows the mean and standard deviations of the filler wt\%, using the ashing technique, and the manufacturers reported values.

Sorption and solubility
As can be seen from Fig. 1, each of the resin composites
Table 2 Filler by weight percentage

Materials	Filler (wt %) after ashing in air	Manufacturer reported filler (wt%)
NPU	69.6 (2.3)	77
NPF	59.6 (1.3)	66
EVX	72.8 (1.2)	74.2
XTE	74.1 (1.3)	78.5
XTEF	63.1 (1.1)	65
FBF	74.6 (1.4)	76.5
FBO	73.2 (1.0)	76.5

Table 3 Water sorption (WSo) and solubility (Sol), water sorption in composite (WSoC%), water sorption in polymer matrix (WSoM%), of resin composites after 140 days storage in distilled water at 37°C

Materials	WSo (μg/mm³)	WSoC%	WSoM%	Sol (μg/mm³)
NPU	19.96 (3.32)	1.04 (0.18)	3.43 (0.59)	2.63 (0.13)
NPF	28.88 (0.11)	1.62 (0.13)	3.94 (0.32)	3.59 (0.44)
EVX	30.00 (0.28)	1.29 (0.05)	4.75 (0.20)	−1.49 (0.41)
XTE	21.11 (1.62)	1.17 (0.11)	3.95 (0.37)	3.19 (0.19)
XTF	30.11 (0.28)	1.60 (0.11)	4.44 (0.33)	4.18 (0.47)
FBF	22.24 (3.63)	1.20 (0.16)	4.55 (0.63)	3.43 (1.09)
FBO	24.70 (3.25)	1.17 (0.13)	4.37 (0.51)	3.32 (0.57)

The same superscript lower case letters indicate a homogeneous subset (columns) (p>0.05)

Fig. 1 Mass change percentage with water sorption and desorption cycles.

Exhibited a percentage mass change throughout the water sorption/desorption cycle. All of the composites demonstrated an increase in mass of various degrees by their water uptake, up to the point of equilibrium which occurred after 140 days. All of the examined composites showed a higher initial mass (m₁) than their reconditioned mass (m₃), with the exception of EVX whose initial mass was lower than its reconditioned mass.

At 140 days, water sorption ranged between 19.96 and 30.11 μg/mm (Table 3). The highest sorption was observed in XTEF followed by EVX and NPF which exhibited similar results. Conversely, XTE, NPU, FBO and FBF exhibited lower water sorption levels, with no significant differences between each other (p≥0.05).

The solubility for the resin composites was found to fall between −1.49 to 4.18 μg/mm, as shown in Table 3. The most soluble materials were NPF and XTF; they had higher levels of solubility when compared with their packable counterpart. A negative solubility value was observed for EVX (−1.49 μg/mm).

Hygroscopic expansion

One-way ANOVA conducted after 140 days of immersion in water showed that EVX had a significantly higher hygroscopic expansion when compared to the rest of the materials. Table 4 provides the mean and standard deviation for all materials for their volumetric hygroscopic expansion, taken after 140 days at 37°C. The percentage hygroscopic expansion for each material is shown in Fig. 2.
The final hygroscopic expansions ranged between 1.40 and 2.21% at 140 days. According to the method of application of the resin composite, the composites can be categorized into one of three bands: conventional composites (NPU and XTE), with expansions of 1.40% and 1.54%; bulk fill composites (EVX, FBO and FBF), with the greatest expansion being 2.21% for EVX; and lastly, flowable composites (NPF and XTEF), with expansions of 1.70% and 1.72%, respectively.

Figure 3 shows the relationship between the mass and the changes in volume over the period of 140 days revealing that the relationship was almost linear.

DISCUSSION

This study evaluated water sorption, solubility and hygroscopic expansion of a number of resin composites immersed in water over 140 days including fiber reinforced materials. Considerable differences were identified between the materials, leading to a rejection of the first and second null hypotheses. ISO Standard 4049 permits a sorption limit of 40 μg/mm and solubility of less than 7 μg/mm after a period of 7 days storage. Each of the composite materials satisfied this standard, despite being exposed to an extended period of water sorption. Thus the aqueous challenge was more stringent than the 7-day ISO process.

Hydrophilicity and crosslinking of the network structure are the two main factors affecting the solubility and water sorption of resin composites. Moreover, the amount of solvent taken up by the composite during the exposure period depends on both the porosity of the material itself and the nature of the filler matrix.27,28

Two different types of fiber were incorporated in the tested materials: short E glass fibers (EVX) and Nano-hydroxyapatite fibers (NPU and NPF), which vary in their composition, configuration and amount; thus, could show different behavior. Therefore, the focus of this study was on the main factors in overall degradation resistance: the polymeric matrix and filler amount.

The results in the present study regarding sorption values correlated negatively with the amount of filler

Materials	% Mass Change	% Volumetric Change	Pearson correlation coefficient
NPU	0.93 (0.18)	1.40 (0.17)	0.83
NPF	1.34 (0.11)	1.70 (0.19)	0.90
EVX	1.35 (0.08)	2.21 (0.26)	0.97
XTE	1.00 (0.10)	1.54 (0.05)	0.87
XTF	1.32 (0.14)	1.72 (0.11)	0.91
FBF	1.01 (0.12)	1.49 (0.19)	0.93
FBO	1.00 (0.12)	1.51 (0.15)	0.94

The same superscript lower case l letters indicate a homogeneous subset (columns) (p 0.05)
The effects of fillers, chemistries, and monomers on the sorption properties and water diffusivity of fiber-reinforced resin composites (FRCs) have been studied in previous research. These studies have considered the impact of different fillers, monomers, and polymerization processes on the water sorption and volumetric expansion of FRCs. The current study focused on the sorption properties of FRCs and the influence of resin matrix and glass fiber properties on water uptake. The study found that the fillers and monomers used in the resin matrix have a significant effect on water sorption and volumetric expansion. The results indicated that the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA, could cause capillaries between the resin matrix and the glass fibers. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.

The properties of FRCs deteriorate in water, similarly to particulate filled composites. Water diffuses via the resin matrix and leaches from the fiber surface. Areas with poorly impregnated fibers will be more prone to water uptake. Water sorption is influenced by the hydrophilicity of the resin matrix, and the mount of the inorganic phase (fibers and the particulates) and the quality of silanization. Additionally, water uptake may be accentuated by capillary action of the fibers, resulting in mass increases. When water, come into contact with glass fiber by exposing the glass fibers during finishing and polishing procedures, water sorption along the interface is much greater than the diffusion through the polymer matrix. This is due to the capillary effect of the glass fiber, which may be seen in E-glass fiber reinforced composites. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.

EVX was shown to have the highest polymer sorption value (WSoM) and NPU exhibited the lowest value. The wt% of the polymeric matrix decreases as the weight percentage of fiber increases, and so the water sorption also decreases as this phenomenon is known to occur within the polymeric phase. Although glass fillers (particulates or fibers) are known to not contribute to the sorption process, it is still possible that water is adsorbed onto their surface —this depends on the integrity of the interface between the resin matrix and the glass fillers.

In the case of NPF and XTEF, the high sorption can be attributed to their filler content; however, when the influence of fillers was removed through the calculation of the percentage of water absorbed by the polymer matrix alone (WSoM) rather than by the composite (WSoC), no significant differences were found between these materials when compared with their packable counterpart (NPU, XTE).

The properties of FRCs deteriorate in water, similarly to particulate filled composites. Water diffuses via the resin matrix and leaches from the fiber surface. Areas with poorly impregnated fibers will be more prone to water uptake. Water sorption is influenced by the hydrophilicity of the resin matrix, and the mount of the inorganic phase (fibers and the particulates) and the quality of silanization. Additionally, water uptake may be accentuated by capillary action of the fibers, resulting in mass increases. When water, come into contact with glass fiber by exposing the glass fibers during finishing and polishing procedures, water sorption along the interface is much greater than the diffusion through the polymer matrix. This is due to the capillary effect of the glass fiber, which may be seen in E-glass fiber reinforced composites. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.

EVX was shown to have the highest polymer sorption value (WSoM) and NPU exhibited the lowest value. The wt% of the polymeric matrix decreases as the weight percentage of fiber increases, and so the water sorption also decreases as this phenomenon is known to occur within the polymeric phase. Although glass fillers (particulates or fibers) are known to not contribute to the sorption process, it is still possible that water is adsorbed onto their surface —this depends on the integrity of the interface between the resin matrix and the glass fillers.

In the case of NPF and XTEF, the high sorption can be attributed to their filler content; however, when the influence of fillers was removed through the calculation of the percentage of water absorbed by the polymer matrix alone (WSoM) rather than by the composite (WSoC), no significant differences were found between these materials when compared with their packable counterpart (NPU, XTE).

The properties of FRCs deteriorate in water, similarly to particulate filled composites. Water diffuses via the resin matrix and leaches from the fiber surface. Areas with poorly impregnated fibers will be more prone to water uptake. Water sorption is influenced by the hydrophilicity of the resin matrix, and the mount of the inorganic phase (fibers and the particulates) and the quality of silanization. Additionally, water uptake may be accentuated by capillary action of the fibers, resulting in mass increases. When water, come into contact with glass fiber by exposing the glass fibers during finishing and polishing procedures, water sorption along the interface is much greater than the diffusion through the polymer matrix. This is due to the capillary effect of the glass fiber, which may be seen in E-glass fiber reinforced composites. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.

EVX was shown to have the highest polymer sorption value (WSoM) and NPU exhibited the lowest value. The wt% of the polymeric matrix decreases as the weight percentage of fiber increases, and so the water sorption also decreases as this phenomenon is known to occur within the polymeric phase. Although glass fillers (particulates or fibers) are known to not contribute to the sorption process, it is still possible that water is adsorbed onto their surface —this depends on the integrity of the interface between the resin matrix and the glass fillers.

In the case of NPF and XTEF, the high sorption can be attributed to their filler content; however, when the influence of fillers was removed through the calculation of the percentage of water absorbed by the polymer matrix alone (WSoM) rather than by the composite (WSoC), no significant differences were found between these materials when compared with their packable counterpart (NPU, XTE).

The properties of FRCs deteriorate in water, similarly to particulate filled composites. Water diffuses via the resin matrix and leaches from the fiber surface. Areas with poorly impregnated fibers will be more prone to water uptake. Water sorption is influenced by the hydrophilicity of the resin matrix, and the mount of the inorganic phase (fibers and the particulates) and the quality of silanization. Additionally, water uptake may be accentuated by capillary action of the fibers, resulting in mass increases. When water, come into contact with glass fiber by exposing the glass fibers during finishing and polishing procedures, water sorption along the interface is much greater than the diffusion through the polymer matrix. This is due to the capillary effect of the glass fiber, which may be seen in E-glass fiber reinforced composites. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.

EVX was shown to have the highest polymer sorption value (WSoM) and NPU exhibited the lowest value. The wt% of the polymeric matrix decreases as the weight percentage of fiber increases, and so the water sorption also decreases as this phenomenon is known to occur within the polymeric phase. Although glass fillers (particulates or fibers) are known to not contribute to the sorption process, it is still possible that water is adsorbed onto their surface —this depends on the integrity of the interface between the resin matrix and the glass fillers.

In the case of NPF and XTEF, the high sorption can be attributed to their filler content; however, when the influence of fillers was removed through the calculation of the percentage of water absorbed by the polymer matrix alone (WSoM) rather than by the composite (WSoC), no significant differences were found between these materials when compared with their packable counterpart (NPU, XTE).

The properties of FRCs deteriorate in water, similarly to particulate filled composites. Water diffuses via the resin matrix and leaches from the fiber surface. Areas with poorly impregnated fibers will be more prone to water uptake. Water sorption is influenced by the hydrophilicity of the resin matrix, and the mount of the inorganic phase (fibers and the particulates) and the quality of silanization. Additionally, water uptake may be accentuated by capillary action of the fibers, resulting in mass increases. When water, come into contact with glass fiber by exposing the glass fibers during finishing and polishing procedures, water sorption along the interface is much greater than the diffusion through the polymer matrix. This is due to the capillary effect of the glass fiber, which may be seen in E-glass fiber reinforced composites. Moreover, polymerization shrinkage could cause capillaries between the resin matrix and the glass fibers, especially with resin systems of high polymerization shrinkage, such as monomers of TEGDMA and MMA.
conclude as follows:

1. There were some variations in the water sorption/desorption cycles of all the resin–matrix composites investigated. Nonetheless, they all complied with the requirements set out by ISO 4049 for water solubility and sorption, despite the sorption period.

2. The greatest changes in volume and water sorption were seen in the millimetre scale glass-fiber reinforced composite (EVX), whereas the greatest stability in an aqueous environment was seen in the nano-fiber hydroxyapatite reinforced composite (NPU).

ACKNOWLEDGMENTS

GC, Tokyo, Japan for supplying everX Posterior.

REFERENCES

1) Alshahri RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J Dent 2015; 43: 1511-1518.

2) Al Sunbul H, Silikas N, Watts DC. Surface and bulk properties of dental resin-composites after solvent storage. Dent Mater 2016; 32: 987-997.

3) Jianping F, Tsui C, Tang C, Chow C. 3D finite element analysis of the damage effects on the dental composite subject to water sorption. Act Mech Solid Sinic 2006; 19: 212-222.

4) Alshahib A, Silikas N, Watts DC. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent Mater 2019; 35: 1194-1203.

5) Alrahlah A, Silikas N, Watts DC. Hygroscopic expansion kinetics of dental resin-composites. Dent Mater 2014; 30: 143-148.

6) Marghali H. Resin-based dental composite materials. In: Antoniac I, editor. Handbook of bioceramics and biocomposites. 1st ed: Springer; 2016. p. 357-405.

7) Ferracane JL, Hilton TJ, Stanbury JW, Watts DC, Silikas N, Ilie N, et al. Academy of Dental Materials guidance-Resin composites: Part II-Technique sensitivity (handling, polymerization, dimensional changes). Dent Mater 2017; 33: 1171-1191.

8) Drummond JL, Andronova K, Al-Turki LI, Slaughter LD. Leaching and mechanical properties characterization of dental composites. J Biomed Mater Res B Appl Biomater 2004; 71: 172-180.

9) Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 2016; 32: 998-1006.

10) Naoum SJ, Ellakwa A, Morgan L, White K, Martin FE, Lee IB. Polymerization profile analysis of resin composite dental restorative materials in real time. J Dent 2012; 40: 64-70.

11) Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, et al. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur J Oral Sci 2016; 124: 480-489.

12) Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 2008; 87: 710-719.

13) Khan AS, Azam MT, Khan M, Mian SA, Ur Rehman I. An update on glass fiber dental restorative composites: a systematic review. Mater Sci Eng C Mater Biol Appl 2015; 47: 26-39.

14) Garoushi S, Gargoum A, Vallittu PK, Lassila L. Short fiber-reinforced composite restorations: A review of the current literature. J Investig Clin Dent 2018; 9: e12330.

15) Bae JM, Kim KN, Hattori M, Hasegawa K, Yoshinari M, Kawada E, et al. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix. Int J Prosthodont 2001; 14: 33-39.

16) Bateman G, Ricketts DN, Saunders WP. Fibre-based posts systems: a review. Br Dent J 2003; 195: 43-48; discussion 37.

17) Tsujimoto A, Barkmeier W, Takamizawa T, Watanabe H, Johnson W, Latta MA, et al. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur J Oral Sci 2016; 124: 480-489.

18) Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, et al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 2012; 33: 4818-4827.

19) Arcis RW, Lopez-Macipe A, Toledano M, Osorio E, Rodriguez-Clemente R, Murtra J, et al. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater 2002; 18: 49-57.

20) Chen L, Yu Q, Wang Y, Li H. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dent Mater 2011; 27: 1187-1195.

21) Callister WD, Rethwisch DG. Materials science and engineering. 5 ed: John Wiley & Sons NY; 2011.

22) Lee SM. Handbook of composite reinforcements: John Wiley & Sons; 1992. 155-160 p.

23) Vallittu PK. High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater 2015; 31: 1-7.

24) ISO E. 1172. Textile-glass-reinforced plastics-Prepregs, moulding compounds and laminates-Determination of the textile-glass and mineral-filler content-Calcination methods (ISO 1172: 1996) 1996.

25) Sideridou ID, Karabela MM, Vouvoudi E. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent Mater 2011; 27: 598-607.

26) Martin N, Jedynekiewicz N. Measurement of water sorption in dental composites. Biomaterials 1998; 19: 77-83.

27) Marghali H, Watts DC. Viscoelastic stability of resin-composites aged in food-simulating solvents. Dent Mater 2013; 29: 963-970.

28) Sideridou ID, Karabela MM, Vouvoudi EC, Papanastasiou GE. Sorption and desorption parameters of water or ethanol in light-cured dental dimethacrylate resins. J Appl Polym Sci 2008; 107: 483-475.

29) Mortier E, Gerolami D, Jacquot B, Panighi M. Importance of water sorption and solubility studies for couple bonding agent—resin-based filling material. Oper Dent 2004; 29: 669-676.

30) Braden M, Davy KWM. Water-absorption characteristics of some unfilled resins. Biomaterials 1986; 7: 474-475.

31) Sideridou I. Polymeric Materials in Dentistry. 1st ed. NY: Nova Science Publishers; 2010.

32) Van Noort R, Barbour M. Introduction to Dental Materials. 4th ed: Elsevier Health Sciences; 2013.

33) Vallittu PK, Ruyster IE, Ekstrand K. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 1998; 11: 340-350.

34) Vallittu P. The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite. J Oral Rehabil 1995; 22: 257-261.

35) Al Sunbul H, Silikas N, Watts DC. Resin-based composites show similar kinetic profiles for dimensional change and recovery with solvent storage. Dent Mater 2015; 31: e201-e217.

36) Sideridou ID, Achilias DS, Karabela MM. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J Biomed Mater Res B Appl Biomater 2007; 81: 207-218.
37) Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev 1971, 71: 525-616.
38) Dickens SH, Flaim GM, Floyd CJ. Effects of adhesive, base and diluent monomers on water sorption and conversion of experimental resins. Dent Mater 2010; 26: 675-681.
39) Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Qualitative and quantitative characterization of monomers of uncured bulk-fill and conventional resin-composites using liquid chromatography/mass spectrometry. Dent Mater 2015; 31: 711-720.
40) Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil 2001; 28: 1106-1115.
41) Sideridou ID, Karabela MM, Vouvoudi E. Volumetric dimensional changes of dental light-cured dimethacrylate resins after sorption of water or ethanol. Dent Mater 2008; 24: 1131-1136.
42) Rütermann S, Krüger S, Raab W, Janda R. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials—a comparative study. J Dent 2007; 35: 806-813.
43) Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006; 22: 211-222.
44) Hirasawa T, Hirano S, Hirabayashi S, Harashima I, Aizawa M. Materials science: Initial dimensional change of composites in dry and wet conditions. J Dent Res 1983; 62: 28-31.
45) Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 2013; 29: 835-841.
46) Garoushi S, Vallittu PK, Lassila LV. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent Mater 2007; 23: 1356-1362.
47) Miettinen VM, Vallittu PK, Docent DT. Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. J Prosthet Dent 1997; 77: 531-534.
48) Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997; 105: 97-116.
49) Creugers NHJ, Kreulen CM, Fokkinga WA, Mentink AGM. A 5-year prospective clinical study on core restorations without covering crowns. Int J Prosthodont 2005; 18: 40-41.
50) Garoushi S, Vallittu PK, Lassila L. Mechanical properties and wear of five commercial fibre-reinforced filling materials. Chin J Dent Res 2015; 20: 137-143.
51) Marghalani HY. Resin-based dental composite materials. Handbook of bioceramics and biocomposites: Springer; 2016. p. 357-405.