Nasal Skin Thickness Measurements Using Computed Tomography in an Adult Saudi Population

Jamal Jomah, FRCSC, FRCSEd, ABHRS, FACS*
Rawan Adel Elsafi, MBBS†
Khaled Salah Abdel Elaleem Ali, FEBR‡
Reem Abdullah, MBBS§
Adnan Ghazi Gelidan, FRCSC, FACS||

Background: Rhinoplasty is one of the most challenging operations in plastic surgery, and nasal skin thickness is a significant factor in determining rhinoplasty success. Only a few studies have measured nasal skin thickness before rhinoplasty. The present study was designed to measure nasal skin thickness to shed light on its importance to successful rhinoplasty.

Methods: Altogether, 60 patients underwent measurements of nasal skin thickness at 4 aesthetic points: nasion, rhinion, nasal tip, columella. The thickness was measured using computed tomography (CT), an objective, reliable tool for this purpose. Universally adopted Hounsfield unit measurement using in house software (Consultant Radiology Center, Riyadh, Saudi Arabia) was performed using CT scan.

Results: The study group included 32 women and 28 men. Age range was 18–68 years, but most of the patients (53.3%) were within the 20–30-year age range. CT results showed that the mean nasal skin thickness was 3.96 ± 1.08 mm at the nasion, 1.86 ± 0.62 mm at the rhinion, 3.32 ± 0.78 mm at the nasal tip, and 3.32 ± 0.73 mm at the columella. When the nasal skin thicknesses were compared between men and women, a significant difference was observed only at the columella (P = 0.016).

Conclusions: The nasal skin is thickest at the nasion, thinnest at the rhinion, and again thicker at the nasal tip and columella. Our data could be useful for plastic surgeons who could take the patient’s own nasal area thickness into consideration when planning his or her rhinoplasty. (Plast Reconstr Surg Glob Open 2019;7:e2450; doi: 10.1097/GOX.0000000000002450; Published online 30 September 2019.)

Rhinoplasty is a challenging operation even with the advances that have been made in this area of plastic surgery. Despite its complexity, it remains one of the most common aesthetic operations performed by plastic surgeons globally, particularly in the United States.1 Nasal skin thickness is considered a significant risk factor in determining its success.2 Several factors have been suggested to contribute to the variations in nasal skin thickness, including the patient’s sex, race, genetics, and ethnicity. The exact etiology is yet to be confirmed. People with extremely thick nasal skin generally have a more porous overall skin quality, which could affect the nasal appearance after surgery, whereas those with thinner nasal skin more clearly show the shape of the underlying cartilage and the structure of the nose. Thus, slight irregularities of the reconstructed nasal skeleton could cause visible, undesirable changes.3,4 Nasal anatomy and point of its location is important in rhinoplasty. Nasion is the junction of the nasal and frontal bones at the most posterior point on the curvature of the bridge of the nose. The rhinion is the top of the nose where nasal bones meet with the cartilage part of the nose. Columella is the midline prominence of the nose, extending from the nasal root to the tip.

The Caucasian nose has thick skin over the nasofrontal angle that becomes thinner over the rhinion, thinnest again at the tip, and becomes thinner over the columella.5 Another study of Caucasian noses reported thicker nasal skin over the nasofrontal angle, becoming thinner over...
the rhinion, again thicker in the nasal tip, and then thinner over the dome. In contrast, the Korean nose has a thick-skinned bulbous shape.

The most popular tools used to measure nasal skin thickness include plain radiography, the micrometer screw gauge, Harpenden calipers, ultrasonography, and computed tomography (CT), among others. The skinfold caliper is the most widely used site-specific technique for measuring skin thickness because of its accessibility, high feasibility, and low cost, although its accuracy has been challenged. Ultrasonography has also been explored for this purpose but is not a substantial improvement over skinfold calipers. Among these techniques, CT is the most sensitive because it can measure slight attenuation, and it depicts soft tissues with more clarity. It is thus a useful tool for measuring nasal skin thickness.

Only a few studies have examined the impact of nasal skin thickness on the aesthetic results of rhinoplasty. We therefore planned the present study to measure the thickness of Saudi nasal skin at 4 aesthetic points (nasion, rhinion, nasal tip, columella) using CT. We hypothesized that the data could be useful for the plastic surgeon to recognize the nasal thickness before planning and performing the rhinoplasty procedure, thereby contributing to the success of the surgery.

METHODS

Altogether, 285 patients underwent rhinoplasty at Ajmal Specialized Plastic Surgery Center, Riyadh, Saudi Arabia from August 2017 to January 2019. Among them, 60 (28 men, 32 women; ages 18–68 years) were evaluated using preoperative CT and underwent tip surgery were enrolled in this study. The distribution of participants with respect to age showed that 53.3% of patients were in the 20–30-year age group.

During recruitment for the study, the inclusion and exclusion criteria were followed strictly. Patients with a history of skin disease (eg, skin tumors, other chronic skin disease) were excluded from the study. Patients of Saudi nationality and similar ethnicity were recruited to avoid genetic risk factors.

The standard CT protocol for evaluating the paranasal sinuses was performed with axial, sagittal, and coronal reconstruction. Individual thin cuts (recon slice thickness 1 mm) of soft tissue were obtained, and sagittal reconstruction was performed in the soft tissue window for measurements of skin thickness at the midline. Universally adopted and reliable Hounsfield unit (HU) measurements using in house software (Consultant Radiology Center, Riyadh, Saudi Arabia) were performed using CT scan (Toshiba 16 multislice CT scanner). HU is widely used dimensionless unit in CT scan to express CT numbers in a standardized and convenient manner. Skin thickness was then measured at the midline in the nasion, rhinion, nasal tip, and columella; after rhinoplasty, the patients returned for follow-up at 1 week and 1, 3, 6, and 12 months.

Statistical Analysis

All statistical analyses were performed with SSPS for Windows, version 16.0 (IBM, Armonk, NY, Chicago, IL). The data were presented as means ± SD. Unpaired Student’s t-test was applied to compare quantitative data. One-way analysis of variance was applied to study the hypothesis that there are significant differences in nasal skin thickness. A value of P < 0.05 was considered to indicate statistical significance.

RESULTS

There were more women (53.3%) enrolled than men (Table 1). The data were analyzed to determine the distribution pattern of the patients based on age. It showed that the maximum number (53.3%) of patients were in the 20–30-year age group (Table 2). Nasal skin thickness was measured using CT at 4 aesthetic points: nasion, rhinion, nasal tip, columella, as shown in Figure 1. The thickness was measured in millimeters (mm). The mean nasal thickness was 3.96 ± 1.08 mm at the nasion, 1.86 ± 0.62 mm at the rhinion, 3.32 ± 0.78 mm at the nasal tip, and 3.32 ± 0.79 mm at the columella (Fig. 2). A comparison of the nasal skin thickness between men and women revealed a significant difference at the columella (P = 0.016). The mean thicknesses at the other 3 points measured (nasion, rhinion, nasal tip) were greater in men, but none of the differences reached a level of significance (Fig. 3). There were also no significant differences in the mean nasal skin thickness among the various age groups (Table 3). One-way analysis of variance was applied to determine if there were significant differences between or within the age and sex groups. The results showed no significant differences (Table 4).

DISCUSSION

Describing the nasal skin thickness as thick, thin, or medium by plastic surgeons lacks reliability and validity because it varies according to the observer’s sense and judgment. The anatomy of the nose plays an important role in the physical appearance of the nose. Therefore, it is essential that the nose’s anatomy be accurately assessed, to develop a realistic and rational surgical plan. It needs skill and experience. In this study, we obtained CT measurements of nasal skin thickness that are more scientific, accurate, and reliable.

Table 1. Distribution of Participants with Respect to Sex

Sex	Frequency (N = 60)	Percentage (%)
Male	28	46.7
Female	32	53.3

N = number of participants.

Table 2. Distribution of Participants with Respect to Age of the Patients

Age (years)	Frequency (N = 60)	Percentage (%)
<25 years	9	15
25–30 years	30	50
31–35 years	7	11.7
>35 years	14	23.3

N = number of participants.
We showed that the nasal skin in Saudis undergoing rhinoplasty was thickest over the nasion, followed by the columella, nasal tip, and rhinion (Fig. 2). Our findings are similar to those in previous reports where the Caucasian nose skin was thickest at the nasion, thin over the rhinion, and again thick at the nasal tip. We observed that the thickness at the nasion (3.96 ± 1.08 mm) and nasal tip (3.32 ± 0.78 mm) was thicker than that of the Korean nose (3.33 and 2.90 mm, respectively). At the rhinion, however, the nasal skin thickness in our study was 1.86 ± 0.62 mm, which was less than that of the Korean rhinion (2.4 mm). We therefore concluded that the differences in nasal skin thickness with respect to age and sex are likely due to chance and are relatively the same for various ages and between the sexes. Most patients in our study were 20–30 years of age, ie, Saudis at a young age are more inclined to rhinoplasty than those in older age groups.

In a study conducted in cadavers (N = 60), the authors reported a mean nasal thickness of 1.25 mm. Later on, when they measured nasal skin thickness in three cadavers, the mean thicknesses were 1.22 mm at the nasal tip and 0.73 mm at the nasal dorsum. These cadaver values are quite low (indicating thin skin) compared with values derived from live nasal skin thickness. Thus, comparing nasal skin thickness of cadaver skin with that of living skin cannot be justified scientifically because of the difference in physiology of living and nonliving skin.

Furthermore, when a comparison of nasal skin thickness was made between men and women at 4 aesthetic points, the mean values at the nasion, rhinion, nasal tip, and columella were higher in the men than in the women (Fig. 5). The difference was significant, however, only at the columella (Table 5). Cho et al. reported similar results in Koreans. They found that the skin at the nasion, rhinion, and nasal tip was significantly thicker in men than in women.

Many studies have reported that thick skin creates a challenge for plastic surgeons during rhinoplasty. It has also been reported that thick skin and subcutaneous tissue can mask tip projection. Whitaker and Johnson spoke clearly about the role of the quality of the overlying skin and subcutaneous tissue during preoperative planning.
CT for measuring facial soft tissue thickness is considered a reliable method for establishing average values.\(^{(8,14)}\) One report, however, described the limitations of CT for measuring the width of thin structures. Further studies with a more significant number of patients from various ethnicities are needed to measure nasal skin thickness using CT.

CONCLUSIONS

The present findings indicate that the nasal skin thickness pattern in a Saudi population is similar to that of Caucasians but different from that of Koreans. Our findings could be helpful in the understanding of the relations between patients’ anatomy and surgical outcomes for rhinoplasty in this case, in Saudis. The regional skin thickness may be an important prognostic factor for rhinoplasty success.

ACKNOWLEDGMENTS

We thank Nancy Schatken, BS, MT(ASCP), from Edanz Group (www.edanzediting.com/ac), for editing a draft of this manuscript.

REFERENCES

1. Keyes GR. Commentary on: incidence and preoperative risk factors for major complications in aesthetic rhinoplasty: analysis of 4978 patients. *Aesthet Surg J*. 2017;37:768–770.
2. Hafezi F, Naghibzadeh B, Nouhi A. Management of the thick-skinned nose: a more effective approach. *Ann Otol Rhinol Laryngol*. 2006;115:444–449.
3. Park SS. Fundamental principles in aesthetic rhinoplasty. *Clin Exp Otorhinolaryngol*. 2011;4:55–66.
4. Whitaker EG, Johnson CM Jr. Skin and subcutaneous tissue in rhinoplasty. *Aesthetic Plast Surg*. 2002;26(suppl 1):S19.
5. Lai A, Cheney ML. External nasal anatomy and its application to rhinoplasty. *Aesthetic Plast Surg*. 2002;26(suppl 1):S9.
6. Cho GS, Kim JH, Yeo NK, et al. Nasal skin thickness measured using computed tomography and its effect on tip surgery outcomes. *Otolaryngol Head Neck Surg*. 2011;144:522–527.
7. O’Leary SA, Doyle BJ, McGloughlin TM. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. *J Biomech*. 2013;46:1955–1960.
8. Phillips VM, Smuts NA. Facial reconstruction: utilization of computerized tomography to measure facial tissue thickness in a mixed racial population. *Ann Otol Rhinol Laryngol*. 2006;115:444–449.
9. Kim JK, Ahn HJ, Kim KR, et al. Renal lymphangioma manifested as a solid mass on ultrasonography and computed tomography. *J Ultrasound Med*. 2002;21:203–206.
10. Limanond P, Raman SS, Lassman C, et al. Macrovesicular hepatic steatosis in living related liver donors: correlation between CT and histologic findings. *Radiology*. 2004;230:276–280.
11. Lessard ML, Daniel RK. Surgical anatomy of septorhinoplasty. *Arch Otolaryngol*. 1985;111:23–29.