A STUDY ON PARTIAL REPLACEMENT OF SAND WITH SANDSTONE POWDER AND COMPARATIVE ANALYSIS OF MECHANICAL PROPERTIES OF CONCRETE FOR M30 GRADE

Mr. Prateek Agarwal¹ Er. Mahendra Saini² Mr. Rohan Bhomia³

¹Scholar, M.Tech Structural Engineering, K.I.T.E. Jaipur
²,³Assistant Professor, Department of Civil Engineering, K.I.T.E. Jaipur

Abstract:- In this study, For M30 grade concrete, sand was replaced by sandstone powder from 5% to 30% at the interval of 5%. The factors which control mix design and unified mixes were tested and related were workability, flexural strength, compressive strength, split tensile strength, density and water absorption. For concrete cubes, beams and cylinders in hardened state, compressive strength, flexural strength, split tensile strength, water absorption and density tests were performed whereas workability test was done for concrete in fresh state. The effective utilization of the sandstone powder in concrete could help in reducing substantial amount of landfill problem, it could facilitate in easing off the burden of excessive mining of natural river sand from the rivers and also offer an important resource of accompanying fine aggregate castoff in the manufacture of cement concrete causative to the general sustainability.

I. INTRODUCTION

Concrete is durable, easily prepared and is widely castoff in almost all kinds of structural schemes. The global challengeable today in front of the civil engineers is to appreciate projects in concord with the thought of sustainable growth and it contains the usage of great performance supplementary materials such as ground granulated blast furnace slag, silica fumes, fly ash, etc. which are industrial wastes available at sensible cost having the lowest probability of environmental impact.

1.1 Sandstone Powder

The type of sedimentary rock which is poised of quartz, feldspar and further minerals is called the Sandstone. Quartz and feldspar are the greatest shared minerals in the Earth’s crust and they are originate in most of the sandstones regardless of the area. Through sedimentation from air or wind shadowed by the compacting pressure of superimposing deposits and cementation by precipitation of minerals, Sandstones are formed. Depending on their composition and the resultant concrete produced from it may possess diversity of mechanical possessions, the geological properties of sandstone may differ.

II. LITERATURE REVIEWS

Kumar Sanjeev et. al. (2018) studied the conceivable use of sandstones in cement concrete. The compressive strength pattern for quartz sandstone was studied for a period of 28 days for water-cement proportion of 0.35, 0.40 and 0.45. The concrete specimens showcased a reduction in weight at 80% and 100% substituted of sandstone aggregates. The all-out weight loss of 8.42% was noted at 100% replacement for water-cement ratio 0.45 when concrete samples were exposed to sulphuric acid.

Shrivastava Sandeep et. al. (2017) in M30 grade concrete, utilized quartz-dominated sandstone wastes. Thermogravimetric outcomes presented a diminution in the percentage of weight damage as the
Kumar Sanjeev et. al. (2016) made M30 grade of concrete with water-cement proportion of 0.4 and studied the in effect use of sandstone trays in concrete. Control mix design of 0% quartz sandstone and replacement by coarse aggregates was done for 0–100%, in the many times of 20% was prepared. The compressive strength decreased with increase in quartz sandstone as coarse aggregate. The results pattern showcased a main diminution in flexural strength at 60%, 80% and 100% replacements. The depth of abrasion is increased irrespective of the water-cement ratios with the upsurge in the percentage of quartz sandstone aggregate.

Gupta Ramesh Chandra et. al. (2016) micro-structural evaluation was completetovisualize the textural evidence of aggregates. This evaluation discovered the occurrence of elongation effect and sharp cleavages which affected the rheology of concrete while casting and by adding superplasticizers this phenomenon was overcome. From morphological study, it can be observed that sandstones whose framework is dominated by quartz and are moderately sorted with grains of various sizes occurring together, whose particles are normally rounded to sub-rounded. Compressive strength results presented cumulative trend till 55:45 (20 mm: 10 mm) for natural aggregate and the same thing was noticed in quartz sandstone aggregate till 60:40 (25 mm: 10 mm). The diminution in compressive strength results after attaining a precise gradation was noticed due to separation and upsurge in void universes because of the usage of superior shaped and sized aggregates.

III. MATERIALS PROPERTIES AND SAMPLE PREPARATION

3.1 Description of Materials
Cement used in the experimental procedure was a Portland Cement 43-Grade as per IS 8112:2013. Coarse aggregates of size 10 mm and 20 mm were used in this study. The coarse aggregates used were obtained from Hathipura, Jaipur. The specific gravity, Fineness Modulus, Water Absorption and Bulk Density of 20 mm aggregates were 2.64, 7.08, 0.45% and 1475 kg/m3 respectively. The specific gravity, Fineness Modulus, Water Absorption and Bulk Density of 10 mm aggregates were 2.63, 5.83, 0.52% and 1500 kg/m3 respectively. The sieve analysis of coarse aggregates were done as per guidelines of IS: 2386 (Part I) – 2016. The fine aggregates were obtained from Banas river, Tonk, Rajasthan. The specific gravity, Water Absorption, Bulk Density and Fineness Modulus of fine aggregates were 2.68, 1.41%, 1650 kg/m3 and 2.67 respectively. Grading zone of fine aggregate was determined as per specifications of IS-383:2016. The sandstone powder used in this work is taken from Vishwas Exports Enterprises, Vishwakarma Industrial Area, and Jaipur. The Bulk density, Fineness modulus, Water absorption and Specific Gravity of sandstone powder was 1639 Kg/m3, 2.8, 10.12% and 2.51 respectively. Superplasticizers used in this study has been taken from Shalimar Chemicals Private Limited, Jaipur confirming to IS 9103:1999.

3.2 Preparation of samples
In this study, for M30 grade concrete, sand was replaced by sandstone powder from 5% to 30% at the interval of 5%. The blended mixes prepared were designated as SP5, SP10, SP15, SP20, SP25 and SP30 in which sand was replaced by sandstone powder in different proportions of 5%, 10%, 15%, 20%, 25% and 30% respectively. For M30 grade of concrete Control Mix was also prepared in which there is no partial replacement of sandstone powder.

3.3 Mix proportions of fresh concrete
The mix proportions of Control mix and other mixes with partial replacement of sand with sandstone powder i.e. SP5, SP10, SP15, SP20, SP25 and SP30 are given in the table below.
Table 1. Mix Proportions of fresh concrete

Mix	Cement (kg/m³)	Coarse Aggregate 20mm (kg/m³)	Coarse Aggregate 10mm (kg/m³)	Fine Aggregate (kg/m³)	Sandstone Powder (kg/m³)	Water	Admixture	w/c ratio
Control Mix	356	695	483	722	-	169	3.57	0.47
SP5	356	695	483	686	36	169	3.57	0.47
SP10	356	695	483	650	72	169	3.57	0.47
SP15	356	695	483	614	108	169	3.57	0.47
SP20	356	695	483	578	144	169	3.57	0.47
SP25	356	695	483	541	181	169	3.57	0.47
SP30	356	695	483	505	217	169	3.57	0.47

IV. LABORATORY TESTS AND DESCRIPTION

4.1 Slump test
As per the guidelines of IS: 1199-1959. The slump cone of 100mm×200mm×300mm mould is filled in four layers by scoop, each layer of approximately one-quarter of the height (300mm) of the mould. Each layer is tampered 25 times by tamping rod and care is taken to distribute strokes evenly over the entire cross-section of slump cone.

4.2 Compressive strength test
The compressive strength of hardened concrete is determined with the help of this test. IS 516:1959 is used for determining compressive strength of concrete. The size of specimen used was 150mm × 150mm × 150mm. After 7 days and 28 days of deep curing, the specimens were tested.

4.3 Flexural strength test
IS 516:1959 is used for testing flexural strength of concrete. The dimensions of beam are 700mm × 150mm × 150mm. After deep curing for 28 days, the specimens were tested. For testing, the central point loading method was used.

4.4 Split tensile test
IS 5816:1999 is used to determine splitting tensile strength of concrete. Cylinder having dimensions of are 300mm (length) × 150mm (diameter) is used to conduct the test. The specimens were tested after curing for 28 days.

4.5 Density test
Three cube specimens having dimensions of 150mm × 150mm × 150 mm of concrete were cured for 28 days. After 28 days of curing these concrete specimens were kept in an oven for 24 hours and weighed after cooling.

4.6 Water Absorption test
The quality of concrete can also be determined by the water absorbed. As per guidelines prescribed by IS 15658:2006, the test for water absorption was conducted.

V. RESULTS AND DISCUSSIONS

5.1 Slump test
To determine workability of concrete in fresh state, this test was done. For M30, after conducting slump test, the results obtained for blend mix i.e. SP5, SP10, SP15, SP20, SP25 and SP30 mixes for
M30 grade were 101mm, 91mm, 84mm, 72mm, 61mm and 54mm respectively. For M30, the control mix had a slump of 117mm.

5.2 Compressive strength test
For M30 grade, the compressive strength after 7 days for blended mix i.e. SP5, SP10, SP15, SP20, SP25 and SP30 was 24.95, 22.52, 20.87, 17.65, 13.79 and 10.78 MPa respectively. The compressive strength after 28 days for blended mix i.e. SP5, SP10, SP15, SP20, SP25 and SP30 was 39.89, 38.43, 35.27, 33.13, 30.47 and 26.29 MPa respectively. For M30, the compressive strength of control mix after 7 and 28 days was 26.43 and 41.35 MPa respectively. Initially the sandstone powder resulted in achievement of target strength till 10% of partial replacement of sand with sandstone powder i.e. SP10. But beyond 10%, as the quantity of partial replacement of sand with sandstone powder increased, the rate of water absorption increased and with time water evaporated, leaving behind the pores which are responsible for decline in compressive strength.

5.3 Flexural strength test
By using centre point loading method, the flexural strength of the concrete was obtained. For M30 grade, the flexural strength for blended mix SP5, SP10, SP15, SP20, SP25 and SP30 was 4.31, 3.90, 3.05, 2.76, 2.37 and 1.83 MPa respectively. After 28 days of curing the flexural strength of Control Mix was 4.97 MPa for M30. Due to the fact that sandstone powder has high rate of water absorption and as the rate of sandstone powder increased in concrete, it led to more absorption of water and with time water absorbed was evaporated leaving behind the pores. These pores contributed to the decline in strength.
5.4 Split tensile test

The split tensile strength for blend mixes prepared with sandstone powder i.e. SP5, SP10, SP15, SP20, SP25 and SP30 was 3.19, 2.87, 2.16, 1.74, 1.29 and 1.03 MPa respectively. Due to its fineness and angularity, with increase in percentage of sandstone powder in concrete the rate of water absorption became high and which ultimately led to development of pores after evaporation of the water. So, as the percentage of sandstone powder in concrete increased, the split tensile strength reduced steadily.

5.5 Density test

The density of M30 obtained for blended mix SP5, SP10, SP15, SP20, SP25 and SP30 was 2473, 2454, 2439, 2410, 2395 and 2383 kg/m3 respectively. For control mix the density was 2487 kg/m3 for M30 grade concrete. After 28 days of curing and oven drying for 24 hours, this test was done. The specific gravity of sandstone powder is less than the specific gravity of sand that’s why with increase in percentage of sandstone powder the density reduced at a steady rate.
5.6 Water Absorption Test
Water absorption test is done to determine the percentage of moisture absorbed by the concrete in 24 hours. For M30 grade concrete, the water absorbed for blended mix i.e. SP5, SP10, SP15, SP20, SP25 and SP30 after curing and oven drying for 24 hours was 11.56, 12.13, 12.86, 13.92, 14.87 and 16.18% for respectively. The water absorbed by control mix was 11.27% for M30 grade.

VI. CONCLUSION
1) As the sandstone powder is more fine than natural river sand and is also angular in shape. So, it absorbs more amount of water and with constant water-cement ratio and admixture dosage, the slump of Control Mix was found to be 117mm and it decreased successively with increase in percentage of sandstone powder till 54mm.
2) For M30, the blend mix SP10 showcased the highest 28 days compressive strength i.e. 38.43 MPa. Initially the sandstone powder resulted in achievement of target strength till 10% of partial replacement of sand with sandstone powder i.e. SP10. But beyond 10%, as the quantity of partial replacement of sand with sandstone powder increased, the rate of water absorption increased and with time water evaporated, leaving behind the pores which are responsible for decline in compressive strength. So from blend mix SP15 onwards, with increase in percentage of sandstone powder the target strength of 38.25 MPa could not be achieved and the compressive strength declined at a steady rate.
3) For M30, the flexural and split tensile strength for Control Mix were 4.97 and 3.73MPa respectively and declined steadily due to increase in percentage of partial replacement of sand.
with sandstone powder. The mix SP30 with highest percentage of partial replacement of sandstone powder had flexural and split tensile strength of 1.83 and 1.03 MPa respectively.

4) The resourceful utilization of the sandstone wastes in concrete can reduce substantial amount of landfill problem also could also provide an important resource of supplementary aggregate which could be used in the production of concrete thereby facilitating in overall sustainability.

5) The specific gravity of sandstone powder is less than the specific gravity of sand that’s why with increase in percentage of sandstone powder the density reduced at a steady rate. The density of Control mix and mix SP30 was 2487 and 2383 kg/m3 respectively.

6) Water absorption of sandstone powder is more than the natural fine aggregate as they very fine and angular in shape, so with the increase in percentage of sandstone powder, the water demand kept on increasing and so water absorption increased. The Water absorption of mix SP5 and SP30 were found to be 11.56 and 16.18 respectively.

REFERENCES

I. IS: 8112-1989 “Specification 43 grade ordinary Portland cement”, Bureau of Indian Standards, New Delhi, India

II. IS: 383-2016 “Coarse and Fine Aggregates For Concrete – Specification”, Bureau of Indian Standards, New Delhi, India

III. Sanjeev Kumar, Ramesh Chandra Gupta, Sandeep Shrivastava, Lazlo Csetenyi, Blessen Skariah Thomas “Preliminary study on the use of quartz sandstone as a partial replacement of coarse aggregate in concrete based on clay content, morphology and compressive strength of combined gradation” Construction and Building Materials Vol. 107, pp.103–108, 2016

IV. Sanjeev Kumar, Ramesh Chandra Gupta, Blessen Skariah Thomas and Priyansha Mehra “Aggregate Replacement and Its Usefulness in Cement Concrete for Sustainable Development—A Study on Rubber, Jarosite and Sandstone Aggregates”, Advances in Human Factors and Sustainable Infrastructure, Advances in Intelligent Systems and Computing 493, pp.13-25, 2016

V. Sanjeev Kumar, Ramesh Chandra Gupta, Sandeep Srivastava “Effective utilization of quartz sandstone mining wastes: A technical note on its thermal resistance”, Journal of Cleaner Production, Vol.140, pp.1129-1135, 2017

VI. Sanjeev Kumar, Ramesh Chandra Gupta, Sandeep Srivastava “Long term studies on the utilization of quartz sandstone wastes in cement concrete”, Journal of Cleaner Production, Vol.143, pp.634-642, 2017

VII. Sanjeev Kumar, Ramesh Chandra Gupta, Sandeep Shrivastava “Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates”, Construction and Building Materials, Vol.125, pp.884-891, 2016

VIII. Sanjeev Kumar, Blessen Skariah Thomas, Vinayak Gupta, Prarthita Basu, Sandeep Srivastava “Sandstone wastes as aggregate and its usefulness in cement concrete – A comprehensive review”, Renewable and Sustainable Energy Reviews, Vol.81, pp.1147-1153, 2018

IX. IS: 10262-2010 “Indian Standard Recommended Guidelines for Concrete Mix Design”, Bureau of Indian Standards, New Delhi, India.

X. IS: 456-2000 “Indian Standard Plain and Reinforced Concrete-Code of Practice”, Bureau of Indian Standards, New Delhi, India.

XI. IS: 516-1959 “Indian Standard Methods of Tests for Strength of concrete”, Bureau of Indian Standards, New Delhi, India.

XII. IS: 2386 (Part-1)-2016 “Methods of Test For Aggregates For Concrete”, Bureau of Indian Standards, New Delhi, India.

XIII. IS: 2386 (Part-III)-2016 “Methods of Test For Aggregates For Concrete: Specific Gravity, Density, Voids, Absorption and Bulking”, Bureau of Indian Standards, New Delhi, India.

XIV. IS 9103-1999 “Specification for Concrete Admixtures”, Bureau of Indian Standards, New Delhi, India.

XV. M.S. Shetty “Concrete Technology”, S. Chand and Company Ltd., India (2004).

XVI. IS: 1199-1959 “Indian Standards Methods for Sampling and Analysis of Concrete”, Bureau of Indian Standards, New Delhi, India.