Computational studies on Emodin (C$_{15}$H$_{10}$O$_5$) from Methanol extract of Pteridium aquilinum leaves

M. E. Khana, E. E. Etimb, V. J. Anyamc, A. Abeld, I. G. Osigbemhee, C. T Agberf

aDepartment of Chemistry, Federal University Lokoja, Kogi State, Nigeria
bDepartment of Chemical Science, Federal University Wukari Taraba State Nigeria
cDepartment of Chemistry University of Agriculture Makurdi, Benue State Nigeria
dDepartment of Pure and Applied Chemistry, Adamawa State University, Mubi, Adamawa State Nigeria
eDepartment of Industrial Chemistry, Federal University Lokoja, Kogi State, Nigeria
fDepartment of Chemistry, Benue State University, Makurdi, Benue State, Nigeria

Abstract

This research isolated, characterized, and studied the computational and frequency calculations of emodin, extracted from the leaf extract of Pteridium aquilinum using methanol. Vacuum liquid and tin layer Chromatographic techniques were used for the purification of the molecule. The (VLC purified), fraction was analyzed by Nuclear magnetic resonance (NMR) and the chemical structure of the compound isolated (anthraquinone), was confirmed by 1H & 13C-NMR analyses as emodin (C$_{15}$H$_{10}$O$_5$).

Computational and frequency studies were done on the isolated molecule. Optimized geometry, IR frequencies, Bond distances (R) and angles (A), Dipole moments and other parameters have been computationally determined for the isolated molecule from quantum chemical calculations using the GAUSSIAN 09 retinue programs. Experimentally determined and computationally measured IR frequencies agreed perfectly with each other. Computational studies have been used to predict unobserved chemical phenomena like design of new drugs and materials such as the positions of constituent atoms in relationship to their relative and absolute energies, electronic charge densities, dipoles, higher multiple moments, vibrational frequencies, relativity or other spectroscopic quantities and cross sections for collision with other molecules. This is the first time this anthraquinone, [emodin], with most of the parameters examined is reported from P. aquilinum.

DOI:10.46481/jnsps.2021.301

Keywords: Pteridium aquilinum, Isolated & characterized, Chromatography, Emodin, Optimized geometry, Computational and frequency studies.

Article History:
Received: 14 July 2021
Received in revised form: 14 October 2021
Accepted for publication: 01 November 2021
Published: 29 November 2021

©2021 Journal of the Nigerian Society of Physical Sciences. All rights reserved.
Communicated by: B. J. Falaye
1. Introduction

The phenomenon of screening plants for the presence of phyto-molecules of medicinal importance is common place. Natural products have pharmaceutical / pharmacological activity that are useful in treating diseases and are the starting points for drugs discovery from which synthetic drug analogues can be prepared with improved efficacy, potency, safety and purity [1], when isolated, synthetic strategies and tactics are used by organic Chemists providing challenging mechanisms that permit the biologically active product to the target site. A review reported that 577 plant species have been used traditionally due to the secondary metabolites in them, [2 & 3]. Africa is blessed with its natural pharmacy of variety of plants. Chemists take the pain to analyse these plants’ secondary metabolites for the benefit of mankind as they are precursors for modern drugs, [4].

Based on this concept and theory, the optimal geometry of the eagle fern was calculated. Pteridium aquilinum, brake or common bracken, also known as “eagle fern,” is a species of fern occurring in temperate and subtropical regions in both hemispheres. The extreme lightness of its spores has led to its global distribution, [5]. The large, roughly triangular fronts of the fern are herb-like rhizomes produced singly, arising upwards from an underground, and grow to 1 – 3 m (3 –10 ft) tall; the main stem, or stipe is up to 1 cm (0.4 in) diameter at the base. It is an adaptable plant, which readily colonies disturbed areas. It is a vascular plant that reproduces via spores and has neither seeds nor flowers. It differs from moss by being vascular and it’s of the class Polypodiopsidae. They are the best house purifying plants with their evergreen leaves that help rid the home of harmful toxins and improve humanity by helping to restore moisture to air naturally and also combat winter dryness by raising indoor humidity. They are used as cooked vegetable in Baffousam (Cameroon) and consume with Vernonia amygdalina, Delile and triumfetta rhomboideae. When soaked in wood ash for 24 – 36 hours, free tannic acids are removed and the crosiers consumed and sold as “warabi” or “zenmai in Japan. Rhizomes are consumed in France, Madagascar, and the Canary Island and also used as starch and confections. Leaves are used as straw and bedding for cattle, also to filter oil and palm wine. In Cote d’Ivoire, powdered crosiers are applied to wounds and also as enema to overcome sterility in women. The rhizomes are mixed with Zingiber officinal in juice form and taken as aphrodisiac and with others to calm mental disability. In China, water soaked leaves are used as pesticides. The ash used in Europe for glass and soap production, [6].

Studies carried on Pteridium aquilinum included, potential and historical uses for braken (L) Kuhn, in organic agriculture where the braken were considered a serious weed species, due to toxic constituents and negativity on agriculture and conservation, [7]. The resistance of P. aquilinum (L)Kuhn, to insect attack by Trichoplusia ni (Hubn) where dried braken leaf meals and extracts of the leaf was incorporated into an artificial diet for trichoplusia ni larvae and studied, [8]. Isolation and characterization of the bio assay active molecule(s) from the extract of the leaves of Pteridium aquilinum using the aqueous and methanolic leaf extracts was carefully examined and the extracts used in boosting some female rats hormones, [2]. The plant has many chemical compounds such as emodin, quercetin, shikimic acid, prunasin, ptaquiloside and a ‘bleeding factor’ of other known and unknown structures [9].

Almost every health challenge in the world has a solution in natural products. Thus, the discovery of pharmaceutical drugs remains one of the preeminent tasks in biomedical and related research areas. Advances in science and technology coupled with the development of quantum chemistry, new computational models and software including user-friendly interfaces have reduced the barriers to the application of computational tools in the discovery and structure elucidation of natural products. Consequently, the use of computational chemistry software as a tool to discover and determine the structure of natural products has become more common in recent years. There are several reports of recent studies where computational chemistry is applied to facilitate the discovery and structure elucidation of various natural products with the view to giving insights about the isolated compounds, [10, 11, 12, 13 & 14].

Computational studies are based on quantum mechanics and basic physical constants, with involvement of approximations, but tractable; thus, help find entirely new chemical objects. They are used to find a starting point for a laboratory synthesis or to assist in understanding experimental data such as position and source of spectroscopic peaks and to predict the possibility of entirely unknown molecules or to explore reaction mechanisms not readily studied via experiments. This work is thus, designed to carry out the characterization and identification of bioactive compounds from P. aquilinum leaf extracts and the quantum chemical calculations are employed to further scrutinised and give a better insight about the isolated molecule for the enhancement of human life.

2. Materials and Methods

2.1. Sample Collection and Authentication

Leaves of P. aquilinum that were still green but matured, were collected in and around Michika L. G. A, Adamawa State on 28th July 2014. Authentication of the plant species was by [15], in the State Ministry of Forestry, Mubi North LGA, Adamawa State and a specimen of the plant was kept in their Herbarium. The Forestry Herbarium Index number (FHI) is 1030.

2.2. Preparation of the plant Sample

Leaves of the plant were properly washed with running tap water to avoid dust and other unwanted materials that most have accumulated on the leaves from their natural habitat. Then, dust free leaves were kept to dry under shade in the Chemistry laboratory of Adamawa State University Mubi. These dried leaves were pulverized by using mortar and pestle. Finally, fine powder was obtained from the pulverized leaves by sieving through the kitchen strainer and used for extraction.

Email address: emmaetim@gmail.com (E. E. Etim)
2.3. Successive Extractions using Microwave Assisted Extraction (MAE)

250g of the powdered sample was poured into a glass (2.5 L) and 500cm³ of normal-hexane was added to it. The bottle was then put into the microwave set at defrost every 3 minutes and removed and cooled. This was repeated 10 times. After filtration, the residues were further extracted similarly using ethyl acetate followed by methanol, [16], and the yields thus: N-hexane, 10g, ethyl acetate, 15g and methanol, 28g respectively.

2.4. Vacuum Liquid Chromatography (VLC)

15g of the methanol extract was dissolved and mixed with celite and left to dry. The dried mixture was then loaded on the VLC that had already been packed with silica gel. It was then rinsed 20 times with 20 cm³ each of n-hexane and ethyl acetate. Ethyl acetate - methanol gradient was used to elute the column and 60 fractions collected.

2.5. Thin Layer Chromatography

TLC was carried out on all the fractions using a solvent gradient system of 9:1 v/v chloroform in methanol. Fractions 12-19 were combined and allowed to dry. The dried sample was then dissolved in methanol but yellow crystals were left undissolved. This was carefully washed. A yellow component was thus purified, spotted on the TLC plate and was labelled (F1), [17]

2.6. Sephadex column

Dissolved components of fractions 12-19, were put on a column loaded with Sephadex and eluted with solvent gradient system of 1:3 v/v methanol, chloroform and ethyl acetate. Seven (7) fractions of 2 cm³ each were collected and spotted on the TLC plate labelled (a) and (b)

2.7. Analysis with Nuclear Magnetic Resonance (NMR) Machine

Fraction (a), RF: 0.65, of the VLC, (with a yellow colour) that was purified with the Sephadex column was sent for NMR analyses. The NMR spectra were run at SIPBS, University, Strathclyde, Glasgow, United Kingdom on JEOL-LA-400 MHz FT-NMR spectrophotometer. [2]

2.8. Quantum Chemical Calculations

Current advances in theoretical and computational thermodynamics have made it easier to study systems, molecular interactions, reactions and predict parameters which would have been experimentally impossible or very difficult to study. The GAUSSIAN 09 retinue of programs was used for all the quantum chemical calculations reported here. The molecule was optimized at the M06-2X level of theory with the 6-31g (d,p) 6-31+G* basis set. The M06-2X functional is a high-non-local functionality with double amount of nonlocal exchange (2X). The optimized structure was stable with real frequencies as shown from the frequency calculations [18, 19, 20, 22-26].

3. Results and Discussion

Detailed computational and frequency studies of the molecule were done and all thermodynamic parameters investigated. This could help to properly identify and justly place the molecule in its chemical context and use it adequately in bioactivity studies and for some bioassays in researches. These investigations and detail analyses were carried out with the aid of Chromatography (VLC, TLC and Sephadex) and other available spectroscopic techniques like Nuclear magnetic resonance (NMR) (1H & 13C-NMR). The computational and frequency studies were carried out using GAUSSIAN 09 retinue programs thus; Levels of theory set: HF/6-311G, Charge = 0, Multiplicity = 1, Stoichiometry C15H10O5, Framework group C1[X(C15H10O5)], Deg. of freedom: 84, Full point group : C1, Largest Abelian subgroup : C1. Largest concise Abelian subgroup: C1, Van-Der-Waals spheres, IR & Raman spectra, Bond distances (R) and angles (A), Dipole moments; field –independent basis (Debye), Rotational constants, HOMO-LUMO structures, Molecular Orbital levels and the Band gaps of: 0.33925 were investigated to bring the structural definition of the molecule, as ‘emodin’

Qualitative TLC, results of P. aquilinum leaf extract (Table 1), performed on the methanol crude extracts are presented and discussed. The two spots detected on the TLC plate of the sephadex column fraction; yellow colour, implied that there are two different components in the extract. Retention factor (Rf) = distance travelled by the solution/ distance travelled by the solvent front; Rf (Fa) = 2.2/3.7 = 0.59 and Rf (Fb) = 2.5/3.7 = 0.68.

Extract	No. of spots	Rf	Quantity
leaf	1	2.2/3.7=0.59	0.5mg
leaf	1	2.5/3.7=0.68	(small)

3.1. Optimized Geometry

Figure 1, portrays the optimized geometry of P. aquilinum isolated from the methanol extract.

Optimized geometry of P. aquilinum, (Figure 1), obtained at the M062x/6-31g (d,p) level of theory and the Van-Der-Waals sphere (Figure 2), are representations of emodin illustrating where a surface might reside for the molecule based on the hard cutoffs of Van-Der-Waals radii for the individual atoms making up the molecule. [12]

3.2. FTIR Spectra Data for Isolated Emodin

The FTIR spectrum displayed C-OH stretching hydroxyl groups at 3500cm⁻¹, C-H asymmetric stretching in -CH3 at 2925 cm⁻¹, -CH2- stretching frequency at 2900 cm⁻¹, -C=O asymmetric stretching in Carbonyl at 1750, and C-H bending in CH3 at 1400 cm⁻¹. FTIR analysis of isolated emodin is presented in Table 2 and it also attested to the IR spectrum of the computationally obtained levels at the M062x/6-31g (d, p) of the molecule.
Table 2. The FTIR Spectral Data and Interpretation of Isolated methanol extract

Frequency range cm⁻¹	Vibrational mode	Remarks
3500	C–OH stretching	Hydroxyl
2925	C-H-Asymmetric stretching	-CH3
2900	C-H Stretching frequencies	-CH2-
1750	C=O Stretching	Carbonyl
1400	C-H Bending	

All the major peaks obtained experimentally are in consonance with those obtained computationally at the M062x/6-31g (d, p) level. This further validates both the experimental and computational results. The frequency from 8cm⁻¹ to 3902cm⁻¹ and the corresponding intensity for the IR spectrum obtained at the M062x/6-31g (d, p) level are supporting information. Regarding microwave (or rotational) spectroscopy, this molecule is active with a total dipole moment of 3.7801 Debye obtained at the M062x/6-31g (d, p) level, Table 7. Also, its microwave spectrum has been measured. As an asymmetric top molecule with three different moments of inertia corresponding to the three principal axes, this molecule is expected and it has three different rotational constants. At the M062x/6-31g (d,p) level, the rotational constants obtained for the molecule are 0.7462698, 0.2467690 and 0.1856618 GHz corresponding to the A, B and C rotational constants respectively, Table 8.

Figure 3 portrays the IR spectrum of emodin obtained at the M062x/6-31g (d, p) level of theory. ¹H NMR and ¹³C NMR Spectra interpretation for methanol extract.

¹H NMR of the sample (Table 3) contains; 4 sets of aromatic peaks (7.53, 7.23, 7.12 and 6.62), two sets of phenolic peaks (12.12 and 12.06) and one set of methyl groups (2.38, attached to aromatic ring) protons.

¹³C NMR chemical shift values (Table 4) revealed the presence of; 12 aromatic peaks (166.2, 164.9, 161.8, 148.7, 135.7, 133.4, 124.6, 121.0, 113.9, 109.5, 108.5 and 108.4), 2 carboxyls.
(190.7 and 182.2) and methyl (22.0, benzylic) carbons. This inferred that there were two aromatic nuclei that were joined through two carbonyl carbons. Thus, an anthraquinone. It can be suggested again that one of the aromatic nuclei of this anthraquinone contains a methyl and a hydroxyl substituent and the other contains two, hydroxyl substituents, one at position 8 and the other at 6.

Using 2D NMR spectra Correlation (COSY), Heteronuclear Single Quantum Correlation (HSQC) and Heteronuclear Multiple Bonds Correlation (HMBC), emodin was identified as (1, 6, 8-trihydroxy-3-methylemodin), which is an anthraquinone. Both 1D and 2D NMR spectra and also a comparison of the structure of the isolated molecule with literature values of same compound isolated from other plants like *Rumex japonica*, further confirmation was alluded to [21, 12 &13].

Table 3. 1H NMR (400 MHz, DMSO solvent)

Position	Chemical shift (δ) ppm (J in Hz)	Multiplicity
1	-	-
2	7.20	1H, m
3	-	-
4	7.53 (1.57)	1H, d
5	6.62 (2.40)	1H, d
6	-	-
7	7.14 (2.39)	1H, d
8	-	-
9	-	-
10	-	-
11	-	-
12	-	-
13	-	-
14	-	-
3-CH$_3$	2.43	3H, s
1-OH	2.06	1H, s
8-OH	12.12	1H, s
6-OH	11.30	1H, s

Table 4. 13C NMR Result (DMSO)

Position	Chemical shift (δ)	Type of C
1	161.8	C
2	124.6	CH
3	148.7	C
4	121.0	CH
5	108.4	CH
6	166.2	C
7	109.5	CH
8	164.9	C
9	190.7	C
10	182.2	C
11	113.9	C
12	133.4	C
13	108.5	C
14	135.7	C
3-CH$_3$	22.0	CH$_3$

1H and 13C (NMR) of the spectra were recorded on NMR machine: JEOL-LA-400 MHz FT-NMR spectrophotometer, at SIPBS, University, Strathclyde, Glasgow, United Kingdom, using deuterated solvents as indicated by Tables 3 and 4.

3.3. Bond Distances and Bond Angles

Figure 4 is the optimized geometry of Emadin showing the atomic numbers. These numbers help in determining the
distance between two atoms (say atoms 3 and 5) and the angles between atoms. **Table 6** of the supporting information contains the complete bonds distances (in Angstrom) and bond angles (in degrees), of Emodin isolated from the methanol extract.

3.4. Homo- Lumo Diagram

Here electron flow, shows whether there is constructive overlap / bonding interaction, or not, between the orbital of the HOMO and those of the LUMO. It also indicates that the orbitals are either occupied or unoccupied, **Table 9** and **Figure 5**. When the overlap is favourable, electron movement is symmetry allowed. The computational calculations have validated the theory of this interaction.

3.5. Raman Spectra

This provided good information about the structure of emodin. In this write up, the phase and the polymorphy, crystalline and molecular interactions of the atoms were computed and they tallied with the theory. (See **Figure 6** and **Table 10**).

Table 5: IR Values (Frequencies: \(\text{cm}^{-1}\) and their intensities)

Frequency, \(\text{cm}^{-1}\)	IR Intensity
40.5889	1.7505
58.1541	0.1401
72.4885	0.1147
123.9918	3.1669
152.1424	2.1859
180.5744	0.4699
185.0588	1.6663
255.505	3.307
256.5763	0.0736
277.7802	4.6633
294.7906	0.2492
297.6356	2.5751
351.015	0.4827
366.8926	1.6488
382.5217	190.7134
400.1286	9.5094
420.2978	0.9179
464.6792	34.443
477.8178	16.8814
505.9458	1.3444
520.2946	9.4524
557.7997	4.895
605.0876	14.3639
606.812	13.8679
613.2264	0.8377
652.8296	4.129
665.3268	23.4006
686.8013	28.6752
701.3117	10.2161
717.2705	0.6281
737.3912	2.1851
744.8034	9.2651
772.1549	283.7709
786.5867	5.1204
806.2587	84.9909
844.6811	86.8029
845.4904	24.5256
949.8981	67.5742

Continued on next page
Table 5 – Continued from previous page

Frequency, cm$^{-1}$	IR Intensity
980.7929	33.8411
991.5636	66.5423
1008.3375	5.9754
1019.5568	2.2067
1063.7093	1.3686
1087.4272	13.171
1110.4729	52.0946
1138.1731	32.1339
1196.3708	5.8936
1205.8194	206.5051
1230.0187	7.0492
1253.0616	123.2033
1291.437	224.8896
1294.8107	424.9948
1311.5505	92.2745
1348.5262	102.8252
1393.5713	71.2756
1400.046	119.8228
1440.4723	349.6365
1449.158	118.6796
1486.7681	127.3453
1504.6975	67.6164
1515.7165	664.1199
1563.6894	1.0644
1577.6142	7.1853
1599.795	7.4221
1627.5681	97.4458
1640.3534	10.8432
1642.8372	63.6547
1660.0202	41.9661
1725.1233	26.9024
1743.1457	155.4465
1779.4404	42.6281
1800.8258	161.4526
1805.9447	688.232
1858.3537	0.0332
3168.3115	25.498
3223.758	22.4323
3253.8947	25.0516
3375.7378	3.6376
3377.4741	1.6247
3378.858	5.0178
3411.1628	0.2215
3907.6476	236.8743
3914.4907	145.2159
4084.1357	117.2641

Structural illustrations of Bond Distance and Bond Angles

Table 6: Numerical values of bond distances and Angles

R(1-2)	1.405

Continued on next page
R(1-8)	1.387
R(1-9)	1.349
R(2-3)	1.457
R(2-4)	1.405
R(3-7)	1.460
R(3-20)	1.251
R(4-5)	1.487
R(4-9)	1.373
R(5-6)	1.482
R(5-10)	1.221
R(6-7)	1.410
R(6-11)	1.370
R(7-12)	1.395
R(8-18)	1.374
R(8-21)	1.066
R(9-18)	1.395
R(9-22)	1.069
R(10-14)	1.405
R(10-15)	1.069
R(12-13)	1.396
R(12-16)	1.352
R(13-14)	1.375
R(13-17)	1.069
R(14-27)	1.505
R(16-25)	0.954
R(18-23)	1.364
R(19-24)	0.954
R(23-26)	0.946
R(27-28)	1.082
R(27-29)	1.082
R(27-30)	1.079
R(20-24)	1.828
R(20-25)	1.834
A(2-1-8)	120.5
A(2-1-19)	123.3
A(1-2-3)	121.1
A(1-2-4)	118.2
A(7-19-1)	119.5
A(1-8-21)	119.5
A(1-19-24)	113.6
A(3-2-4)	120.7
A(2-3-7)	119.6
A(2-3-20)	120.2
A(2-4-5)	120.3
A(2-4-9)	121.4
A(7-3-20)	120.1
A(3-7-6)	120.8
A(3-7-12)	121.1
A(3-20-24)	105.4
A(3-20-25)	105.5
A(5-4-9)	118.3
A(4-5-6)	118.4

Table 6 – Continued from previous page
Table 6 – Continued from previous page

A(4-5-10)	120.4
A(4-9-18)	119.1
A(4-9-22)	119.4
A(6-5-10)	121.2
A(5-6-7)	120.1
A(5-6-11)	118.8
A(7-6-11)	121.1
A(6-7-12)	118.1
A(6-11-14)	120.5
A(6-11-15)	118.9
A(7-12-13)	120.2
A(7-12-16)	123.9
A(18-8-21)	120.7
A(8-18-9)	121.1
A(8-18-23)	117.2
A(18-9-22)	121.5
A(9-18-23)	121.7
A(14-11-15)	120.6
A(11-14-13)	118.7
A(11-14-27)	119.9
A(13-12-16)	115.9
A(12-13-14)	121.3
A(12-13-17)	117.1
A(12-16-25)	113.5
A(14-13-17)	121.6
A(13-14-27)	121.4
A(14-27-28)	110.8
A(14-27-29)	110.8
A(14-27-30)	111.4
A(16-25-20)	135.9
A(18-23-26)	115.2
A(19-24-20)	136.3
A(28-27-29)	107.5
A(28-27-30)	108.1
A(29-27-30)	108.1
A(24-20-25)	149.1
W1(A)	40.6
W2(A)	58.2
W3(A)	72.5
W4(A)	124.0
W5(A)	152.1
W6(A)	180.6
W7(A)	185.1
W8(A)	255.5
W9(A)	256.6
W10(A)	277.8
W11(A)	294.8
W12(A)	297.6
W13(A)	351.0
W14(A)	366.9
W15(A)	382.5
W16(A)	400.1
W17(A)	420.3

Continued on next page
W18(A)	464.7
W19(A)	477.8
W20(A)	505.9
W21(A)	520.3
W22(A)	557.8
W23(A)	605.1
W24(A)	606.8
W25(A)	613.2
W26(A)	652.8
W27(A)	665.3
W28(A)	686.8
W29(A)	701.3
W30(A)	717.3
W31(A)	737.4
W32(A)	744.8
W33(A)	772.2
W34(A)	786.6
W35(A)	806.3
W36(A)	844.7
W37(A)	845.5
W38(A)	949.9
W39(A)	980.8
W40(A)	991.6
W41(A)	1008.3
W42(A)	1019.6
W43(A)	1063.7
W44(A)	1087.4
W45(A)	1110.5
W46(A)	1138.2
W47(A)	1196.4
W48(A)	1205.8
W49(A)	1230.0
W50(A)	1253.1
W51(A)	1291.4
W52(A)	1294.8
W53(A)	1311.6
W54(A)	1348.5
W55(A)	1393.6
W56(A)	1400.0
W57(A)	1440.5
W58(A)	1449.2
W59(A)	1486.8
W60(A)	1504.7
W61(A)	1515.7
W62(A)	1563.7
W63(A)	1577.6
W64(A)	1599.8
W65(A)	1627.6
W66(A)	1640.4
W67(A)	1642.8
W68(A)	1660.0
W69(A)	1725.1
W70(A)	1743.1
Table 6 – Continued from previous page

W71(A)	1779.4
W72(A)	1800.8
W73(A)	1805.9
W74(A)	1858.4
W75(A)	3168.3
W76(A)	3223.8
W77(A)	3253.9
W78(A)	3375.7
W79(A)	3377.5
W80(A)	3378.9
W81(A)	3411.2
W82(A)	3907.6
W83(A)	3914.5
W84(A)	4084.1

Table 7. Dipole moment (Field–independent Basis, Debye)

X	1.9607
Y	-3.2319
Z	-0.0025
Total	3.7801

Table 8. Rot. Constants for Emodin

Rotational Constants	GHZ
A	0.7462698
B	0.2467690
C	0.1856618

Table 9: Numerical indicators of occupied and unoccupied molecular orbitals

1 Occupied	-20.6106
2 Occupied	-20.59061
3 Occupied	-20.58999
4 Occupied	-20.58463
5 Occupied	-20.58063
6 Occupied	-11.39494
7 Occupied	-11.38389
8 Occuped	-11.35976
9 Occuped	-11.3571
10 Occuped	-11.35506

Continued on next page
Occupied	Value		
11	-11.30275 A		
12	-11.29346 A		
13	-11.29192 A		
14	-11.28269 A		
15	-11.28221 A		
16	-11.26999 A		
17	-11.2639 A		
18	-11.26076 A		
19	-11.25788 A		
20	-11.24752 A		
21	-1.45133 A		
22	-1.443 A		
23	-1.43897 A		
24	-1.43163 A		
25	-1.4124 A		
26	-1.21648 A		
27	-1.19863 A		
28	-1.12143 A		
29	-1.07739 A		
30	-1.06499 A		
31	-1.05973 A		
32	-0.9952 A		
33	-0.9526 A		
34	-0.92195 A		
35	-0.89005 A		
36	-0.86663 A		
37	-0.83926 A		
Occupied	38	-0.79888	A
Occupied	39	-0.77404	A
Occupied	40	-0.76007	A
Occupied	41	-0.73987	A
Occupied	42	-0.72586	A
Occupied	43	-0.69958	A
Occupied	44	-0.69417	A
Occupied	45	-0.67067	A
Occupied	46	-0.66231	A
Occupied	47	-0.65235	A
Occupied	48	-0.64739	A
Occupied	49	-0.63103	A
Occupied	50	-0.62251	A
Occupied	51	-0.61638	A
Occupied	52	-0.60289	A
Occupied	53	-0.60155	A
Occupied	54	-0.59301	A
Occupied	55	-0.58622	A
Occupied	56	-0.58475	A
Occupied	57	-0.56457	A
Occupied	58	-0.56087	A
Occupied	59	-0.55885	A
Occupied	60	-0.54681	A
Occupied	61	-0.54236	A
Occupied	62	-0.53297	A
Occupied	63	-0.49741	A
Occupied	64	-0.48094	A

Continued on next page
Table 9 – Continued from previous page

65	Occupied	-0.46984
66	Occupied	-0.44326
67	Occupied	-0.37943
68	Occupied	-0.36226
69	Occupied	-0.35055
70	Occupied	-0.33995
71	Unoccupied	-0.0007
72	Unoccupied	0.06955
73	Unoccupied	0.10587
74	Unoccupied	0.13378
75	Unoccupied	0.13583
76	Unoccupied	0.14836
77	Unoccupied	0.18701
78	Unoccupied	0.2009
79	Unoccupied	0.2011
80	Unoccupied	0.2037
81	Unoccupied	0.21134
82	Unoccupied	0.22203
83	Unoccupied	0.22495
84	Unoccupied	0.23454
85	Unoccupied	0.23529
86	Unoccupied	0.25213
87	Unoccupied	0.32229
88	Unoccupied	0.34319
89	Unoccupied	0.34611
90	Unoccupied	0.35786
91	Unoccupied	0.37219

Continued on next page
92	Unoccupied	0.3831
93	Unoccupied	0.4018
94	Unoccupied	0.40497
95	Unoccupied	0.41765
96	Unoccupied	0.43383
97	Unoccupied	0.44363
98	Unoccupied	0.44626
99	Unoccupied	0.45481
100	Unoccupied	0.46011
101	Unoccupied	0.48707
102	Unoccupied	0.49981
103	Unoccupied	0.50292
104	Unoccupied	0.50877
105	Unoccupied	0.51194
106	Unoccupied	0.52321
107	Unoccupied	0.52819
108	Unoccupied	0.53979
109	Unoccupied	0.54525
110	Unoccupied	0.55944
111	Unoccupied	0.56865
112	Unoccupied	0.57009
113	Unoccupied	0.58434
114	Unoccupied	0.58662
115	Unoccupied	0.59683
116	Unoccupied	0.60621
117	Unoccupied	0.60814
118	Unoccupied	0.61375
Table 9 – Continued from previous page

	Unoccupied	
119	0.61988	A
120	0.62327	A
121	0.62597	A
122	0.62776	A
123	0.63742	A
124	0.65303	A
125	0.65887	A
126	0.66405	A
127	0.67701	A
128	0.68162	A
129	0.68987	A
130	0.69117	A
131	0.69598	A
132	0.7286	A
133	0.73459	A
134	0.75046	A
135	0.75306	A
136	0.76128	A
137	0.77724	A
138	0.77807	A
139	0.77996	A
140	0.80091	A
141	0.80389	A
142	0.81138	A
143	0.81625	A
144	0.82077	A
145	0.83575	A

Continued on next page
146	Unoccupied	0.84813
147	Unoccupied	0.86274
148	Unoccupied	0.88017
149	Unoccupied	0.88642
150	Unoccupied	0.88885
151	Unoccupied	0.89606
152	Unoccupied	0.92417
153	Unoccupied	0.93098
154	Unoccupied	0.9795
155	Unoccupied	0.98929
156	Unoccupied	1.01128
157	Unoccupied	1.01814
158	Unoccupied	1.02265
159	Unoccupied	1.02918
160	Unoccupied	1.05372
161	Unoccupied	1.06017
162	Unoccupied	1.06199
163	Unoccupied	1.06346
164	Unoccupied	1.07991
165	Unoccupied	1.08652
166	Unoccupied	1.09138
167	Unoccupied	1.10578
168	Unoccupied	1.11793
169	Unoccupied	1.1187
170	Unoccupied	1.13433
171	Unoccupied	1.14179
172	Unoccupied	1.14713

Continued on next page
Table 9 – Continued from previous page

173	Unoccupied	1.16523 A
174	Unoccupied	1.17615 A
175	Unoccupied	1.1908 A
176	Unoccupied	1.19371 A
177	Unoccupied	1.20229 A
178	Unoccupied	1.21612 A
179	Unoccupied	1.25361 A
180	Unoccupied	1.26206 A
181	Unoccupied	1.27792 A
182	Unoccupied	1.29634 A
183	Unoccupied	1.34272 A
184	Unoccupied	1.36669 A
185	Unoccupied	1.37455 A
186	Unoccupied	1.38165 A
187	Unoccupied	1.39717 A
188	Unoccupied	1.45107 A
189	Unoccupied	1.48546 A
190	Unoccupied	1.49397 A
191	Unoccupied	1.50947 A
192	Unoccupied	1.51616 A
193	Unoccupied	1.54722 A
194	Unoccupied	1.55972 A
195	Unoccupied	1.62076 A
196	Unoccupied	1.92958 A
197	Unoccupied	1.9693 A
198	Unoccupied	1.99045 A
199	Unoccupied	2.01527 A

Continued on next page
No.	Occupancy	Value
200	Unoccupied	2.04241 A
201	Unoccupied	2.47872 A
202	Unoccupied	2.55557 A
203	Unoccupied	2.57245 A
204	Unoccupied	2.58411 A
205	Unoccupied	2.61213 A
206	Unoccupied	2.66724 A
207	Unoccupied	2.67833 A
208	Unoccupied	2.7261 A
209	Unoccupied	2.75184 A
210	Unoccupied	2.76667 A
211	Unoccupied	2.83591 A
212	Unoccupied	2.87279 A
213	Unoccupied	2.87898 A
214	Unoccupied	2.89883 A
215	Unoccupied	2.92545 A
216	Unoccupied	2.94814 A
217	Unoccupied	2.96326 A
218	Unoccupied	2.98075 A
219	Unoccupied	3.03619 A
220	Unoccupied	3.05634 A
221	Unoccupied	3.09158 A
222	Unoccupied	3.09641 A
223	Unoccupied	3.10212 A
224	Unoccupied	3.10332 A
225	Unoccupied	3.10964 A
226	Unoccupied	3.17293 A

Continued on next page
227	3.23325
Unoccupied	A
228	3.248
Unoccupied	A
229	3.29189
Unoccupied	A
230	3.30673
Unoccupied	A
231	3.32245
Unoccupied	A
232	3.34172
Unoccupied	A
233	3.35642
Unoccupied	A
234	3.35848
Unoccupied	A
235	3.37538
Unoccupied	A
236	3.37812
Unoccupied	A
237	3.38723
Unoccupied	A
238	3.41087
Unoccupied	A
239	3.46033
Unoccupied	A
240	3.48637
Unoccupied	A
241	3.502
Unoccupied	A
242	3.53895
Unoccupied	A
243	3.56422
Unoccupied	A
244	3.57188
Unoccupied	A
245	3.59923
Unoccupied	A
246	3.61431
Unoccupied	A
247	3.62728
Unoccupied	A
248	3.65106
Unoccupied	A
249	3.67652
Unoccupied	A
250	3.70142
Unoccupied	A
251	3.71733
Unoccupied	A
252	3.74714
Unoccupied	A
253	3.76852
Unoccupied	A

Continued on next page
254	3.89765	Unoccupied
255	3.98257	Unoccupied
256	5.32337	Unoccupied
257	5.35191	Unoccupied
258	5.35493	Unoccupied
259	5.38283	Unoccupied
260	5.40342	Unoccupied
261	5.44518	Unoccupied
262	5.49454	Unoccupied
263	5.50494	Unoccupied
264	5.54169	Unoccupied
265	5.5829	Unoccupied
266	5.60217	Unoccupied
267	5.66417	Unoccupied
268	5.70088	Unoccupied
269	5.73321	Unoccupied
270	5.76144	Unoccupied
271	24.19134	Unoccupied
272	24.27042	Unoccupied
273	24.41848	Unoccupied
274	24.49212	Unoccupied
275	24.49889	Unoccupied
276	24.51616	Unoccupied
277	24.5837	Unoccupied
278	24.63317	Unoccupied
279	24.7082	Unoccupied
280	24.80808	Unoccupied
Table 9 – Continued from previous page

	Frequency (cm$^{-1}$)	Raman Activity
281	24.81693	A
282	24.83965	A
283	24.88602	A
284	25.00561	A
285	25.02082	A
286	51.55558	A
287	51.58631	A
288	51.59188	A
289	51.59641	A
290	51.60474	A

Band gap: 0.33925 A.U

Table 10: Frequencies cm$^{-1}$ and Raman activities

Frequency, cm$^{-1}$	Raman Activity
40.5889	0.0308
58.1541	0.3493
72.4885	0.0255
123.9918	0.0304
152.1424	0.1427
180.5744	1.7709
185.0588	0.3809
255.505	1.9977
256.5763	1.6381
277.7802	0.0179
294.7906	0.6864
297.6356	0.4601
351.015	6.5213
366.8926	1.5406
382.5217	3.5322
400.1286	2.3964
420.2978	1.913
464.6792	0.0432
477.8178	3.0011
505.9458	35.2839
520.2946	2.4177
557.7997	3.7289
605.0876	23.6777
606.812	1.0858
613.2264	1.5184
652.8296	0.7743
665.3268	0.1479
686.8013	1.8993

Continued on next page
Frequency, cm\(^{-1}\)	Raman Activity
701.3117	0.4288
717.2705	0.0411
737.3912	0.1857
744.8034	0.5408
772.1549	0.8902
786.5867	6.7614
806.2587	0.5934
844.6811	0.2227
845.4904	1.5859
949.8981	0.3197
980.7929	0.8345
991.5636	4.1317
1008.3375	1.311
1019.5568	54.1302
1063.7093	0.7049
1087.4272	6.8712
1110.4729	1.8682
1138.1731	3.5729
1196.3708	0.5286
1205.8194	11.7034
1230.0187	26.9241
1253.0616	11.4807
1291.437	9.0978
1294.8107	18.6095
1311.5505	10.9375
1348.5262	55.9278
1393.5713	7.765
1400.046	11.0092
1440.4723	195.2705
1449.158	77.3445
1486.7681	104.1229
1504.6975	44.8716
1515.7165	31.9762
1563.6894	54.3211
1577.6142	15.8238
1599.795	32.9398
1627.5681	30.8732
1640.3534	21.3528
1642.8372	13.7481
1660.0202	9.3907
1725.1233	85.1739
1743.1457	150.3192
1779.4404	106.9382
1800.8258	151.5551
1805.9447	13.6314
1858.3537	221.7421
3168.3115	226.1542
3223.758	93.6794
3253.8947	74.8114
3375.7378	45.7586
3377.4741	59.3447
3378.858	113.9246

Continued on next page
4. Conclusion

This article is the first to have done complete computational and frequency studies on the isolated anthraquinone, “emodin” from *P. aquilinum*. Optimized geometry, IR frequencies, Bond distances (R) and angles (A), Dipole moments and other parameters have been computationally determined for the isolated molecule from quantum chemical calculations using the GAUSSIAN 09 retinue programs. Experimentally determined and computationally measured IR frequencies agreed perfectly with each other. This can be used to predict unobserved chemical phenomena like design of new drugs and materials such as the positions of constituent atoms, in relationship to their relative and absolute energies, electronic charge densities, dipoles, higher multiple moments, vibrational frequencies, relativity or other spectroscopic quantities and cross sections for collision with other molecules.

Acknowledgments

Our gratitude to Prof J. O. Igoli and SIPBS, University of Strathclyde, Glasgow, UK for their help in the analyses and the Indian Institute of Science, Bangalore for facilitating the computational calculations.

References

[1] S. Samala, & S. Veeresham “Enhanced Bioavailability of Glimipirida in the presence of Boswellic acids in streptozotocin - induced Diabetic Rat model”, Natural Products Chemistry and Research 1 (2013) 166.

[2] M. E. Khan, E. T. Williams, A. Abel & I. Toma “Effects of the aqueous and methanolic leaf extracts of *Pteridium aquilinum* (linnaeus) on some female rats hormones”, Direct Research Journal of Public Health and Environmental Technology 2 (2019). 2016 8.

[3] D. Kumar, A. Kumar & O. J. Prakash “Foliculogenesis and quickening of maturation of the follicle in the pre-ovulatory phase”, Ethnopharmacol 140 (2012) 1.

[4] R. R. Da Silva, P. C. Dorrestein & R. A. Quinn “Illuminating the dark matter in metabolomics”, Proceedings od the National Academy of Sciences of the United States of America 112 (2015) 12549.

[5] J. O. Igoli & S. Neumann “In silico fragmentation for computer assisted identification of metabolite mass spectra”, BMC Bioinformatics 11 (2010) 148.

[6] M. Admu Traditional herbalist verse with medicinal plants of the Mubi and Michika regions of Adamawa State (2016).

[7] J. N. Anyam, T. A. Tor anyiin & J. O. Igoli “Studies on Dacyrodes edullis II: Phytochemical and medicinal principles of boiled seed”, International Journal of Current Research in Chemistry and Pharmaceutical Science 2 (2016) 32.

[8] B. J. Owolabi, O. Iyekoba, G. E. Okpara & H. C. Ndibe “Synthesis, tentative characterization and antimicrobial activities of 1-ethyl 2-methyl-4-nitroimidazole-5-thiol and its derivatives”, Journal of Chemical Society of Nigeria 44 (2019) 355.

[9] E. E. Etim & E. Arunan “Rotational Spectroscopy and Interstellar Molecules, Planex”, News letter 5 (2015) 16.

[10] E. E. Etim, P. Gorai, A. Das, S. Charabati & E. Arunan “Systematic Theoretical Study on the Interstellar Carbon Chain Molecules”, The Astrophysical Journal 832 (2016) 144.

[11] E. E. Etim, P. Gorai, A. Das & E. Runan “C5H9N Isomers: Pointers to Possible Branched Chain Inte rstellar Molecules”, European Physical Journal D 71 (2017) 86.

[12] G. Shuying, B. Feng, Z. Ruoman, M. Jiankang & W. Wei “Preparative isolation of three Anthraquinones from Rumex japonicus by high speed counter-current Chromatography”, Molecules 16 (2011) 1201.
[22] O. A. Ushie, E. E. Etim, H. M. Adamu, I. Y. Chindo, C. Andrew & G. P. Khanal “Quantum Chemical Studies on Decyl Heptadecanoate (C_{27}H_{54}O_{2}) Detected In Ethyl Acetate Leaf Extract of *Chrysophyllum albidium*”, Elixir Applied Chemistry 111 (2017) 48828.

[23] A. I. Onen, J. Joseph, E. E. Etim & N. O. Eddy “Quantum Chemical Studies on the Inhibition Mechanism of Ficus carica, FC and Vitellaria paradoxa, VP Leaf Extracts”, Journal of Advanced Chemical Sciences 3 (2017) 496.

[24] O. A. Ushie, E. E. Etim, A. I. Onen, C. Andrew, U. Lawal & G. P. Khanal “Computational Studies of β-amyrin acetate (C_{32}H_{52}O_{2}) Detected in Methanol Leaf Extract of *Chrysophyllum albidium*”, Journal of Chemical Society of Nigeria 44 (2019) 561.

[25] E. E. Etim, O. E. Godwin, S. A. Olagboye & M. E. Khan “Protonation in Benzyl Alcohol: Different Proton Affinities, Same Neutral Molecule”, Asian Journal of Emergency Research 3 (2021) 19.

[26] E. Etim, O. E. Godwin & S. A. Olagboye “Protonation in Heteronuclear Diatomic Molecules: Same Molecule, Different Proton Affinities”, Communication in Physical Sciences 6 (2020) 835.