Analytic geometry

Quot schemes and Ricci semipositivity

Schéma quot et semi-positivité de Ricci

Indranil Biswasa, Harish Seshadrib

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
b Indian Institute of Science, Department of Mathematics, Bangalore 560003, India

\section*{A R T I C L E I N F O}

\textbf{Article history:}
Received 19 October 2016
Accepted after revision 22 March 2017
Available online 29 March 2017
Presented by Jean-Pierre Demailly

\section*{A B S T R A C T}

Let X be a compact connected Riemann surface of genus at least two, and let $\mathcal{Q}_X(r,d)$ be the quot scheme that parameterizes all the torsion coherent quotients of $\mathcal{O}_X^{\text{tr}}$ of degree d. This $\mathcal{Q}_X(r,d)$ is also a moduli space of vortices on X. Its geometric properties have been extensively studied. Here we prove that the anticanonical line bundle of $\mathcal{Q}_X(r,d)$ is not nef. Equivalently, $\mathcal{Q}_X(r,d)$ does not admit any Kähler metric whose Ricci curvature is semi-positive.

\section*{R É S U M É}

Soit X une surface de Riemann compacte et connexe de genre au moins deux, et soit $\mathcal{Q}_X(r,d)$ le schéma quot qui paramètre tous les quotients torsion cohérents de $\mathcal{O}_X^{\text{tr}}$ de degré d. L’espace $\mathcal{Q}_X(r,d)$ est aussi un espace de modules de vortex sur X. Nous démontrons que le fibré anticanonique de X n’a pas la propriété nef. De façon équivalente, $\mathcal{Q}_X(r,d)$ n’admet aucune métrique kählerienne dont la courbure de Ricci soit semi-positive.

\section*{1. Introduction}

Take a compact connected Riemann surface X. The genus of X, which will be denoted by g, is assumed to be at least two. We will not distinguish between the holomorphic vector bundles on X and the torsion-free coherent analytic sheaves on X. For a positive integer r, let $\mathcal{O}_X^{\text{tr}}$ be the trivial holomorphic vector bundle on X of rank r. Fixing a positive integer d, let

$$\mathcal{Q} := \mathcal{Q}_X(r,d)$$

be the quot scheme that parameterizes all (torsion) coherent quotients of $\mathcal{O}_X^{\text{tr}}$ of rank zero and degree d [17]. Equivalently, \mathcal{Q} parametrizes all coherent subsheaves of $\mathcal{O}_X^{\text{tr}}$ of rank r and degree $-d$, because these are precisely the kernels of coherent...
quotients of O_X^{efr} of rank zero and degree d. This Q is a connected smooth complex projective variety of dimension rd. See [6,5,4] for the properties of Q. It should be mentioned that Q is also a moduli space of vortices on X, and it has been extensively studied from this point of view of mathematical physics; see [3,9,12] and references therein.

Bökstedt and Romão proved some interesting differential geometric properties of Q (see [12]). In [10] and [11], we proved that Q does not admit Kähler metrics with semipositive or seminegative holomorphic bisectional curvature. In this note, we continue to study the question of the existence of metrics on Q whose curvature has a sign. Our aim here is to prove the following.

Theorem 1.1. The quot scheme Q in (1.1) does not admit any Kähler metric such that the anticanonical line bundle K_Q^{-1} is Hermitian semipositive.

Since semipositive holomorphic bisectional curvature implies semipositive Ricci curvature for a Kähler metric, Theorem 1.1 generalizes the main result of [11].

Recall that a holomorphic line bundle L on a compact complex manifold M is said to be Hermitian semipositive if L admits a smooth Hermitian structure such that the corresponding Hermitian connection has the property that its curvature form is semipositive. The anticanonical line bundle on M will be denoted by K_M^{-1}. Note that if M admits a Kähler metric such that the corresponding Ricci curvature is semipositive, then K_M^{-1} is Hermitian semipositive. Indeed, in that case, the Hermitian connection on K_M^{-1} for the Hermitian structure induced by such a Kähler metric has semipositive curvature. The converse statement, that the Hermitian semipositivity of K_M^{-1} implies the existence of Kähler metrics with semipositive Ricci curvature, is also true by Yau's solution to the Calabi conjecture [1,2,19].

The proof of Theorem 1.1 is based on a recent work of Demailly, Campana, and Peternell on the classification of compact Kähler manifolds M with semipositive K_M^{-1} [15,14]. This classification implies that if K_M^{-1} is semipositive, then there is a nontrivial Abelian ideal in the Lie algebra of holomorphic vector fields on M, provided $b_1(M) > 0$. On the other hand, for $M = Q$, this Lie algebra is isomorphic to $sl(r, \mathbb{C})$, which does not have any nontrivial Abelian ideal.

2. **Proof of Theorem 1.1**

2.1. **Semipositive Ricci curvature**

Let $J^d(X) = \text{Pic}^d(X)$ be the connected component of the Picard group of X that parameterizes the isomorphism classes of holomorphic line bundles on X of degree d. Let $S^d(X)$ denote the space of all effective divisors on X of degree d, so $S^d(X) = X^d/P_d$ is the symmetric product, with P_d being the group of permutations of $\{1, \cdots, d\}$. Let

$$p : S^d(X) \longrightarrow \text{Pic}^d(X)$$

be the natural morphism that sends a divisor on X to the holomorphic line bundle on X defined by it.

Take any coherent subsheaf $F \subset O_X^{\text{efr}}$ of rank r and degree $-d$. Let

$$s_F : O_X^{\text{efr}} \longrightarrow F^*$$

be the dual of the inclusion of F in O_X^{efr}. Its exterior product

$$\bigwedge^r s_F : O_X = \bigwedge^r O_X^{\text{efr}} \longrightarrow \bigwedge^r F^*$$

is a holomorphic section of the holomorphic line bundle $\bigwedge^r F^*$ of degree d. Therefore, the divisor $\text{div}(\bigwedge^r s_F)$ is an element of $S^d(X)$. Consequently, we have a morphism

$$\varphi : Q \longrightarrow S^d(X), \quad F \longmapsto \text{div}(\bigwedge^r s_F),$$

where Q is defined in (1.1). We note that when $r = 1$, then φ is an isomorphism.

Assume that Q admits a Kähler metric ω such that K_Q^{-1} is Hermitian semipositive. Then there is a connected finite étale Galois covering

$$f : \widetilde{Q} \longrightarrow Q$$

such that $(\widetilde{Q}, f^*\omega)$ is holomorphically isometric to a product

$$\gamma : \widetilde{Q} \longrightarrow A \times C \times H \times F,$$

where

- A is an Abelian variety,
- C is a simply connected Calabi–Yau manifold (holonomy is SU(c), where $c = \dim C$),

578 I. Biswas, H. Seshadri / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 577–581
• H is a simply connected hyper-Kähler manifold (holonomy is $\text{Sp}(h)/2$, where $h = \dim H$), and
• F is a rationally connected smooth projective variety such that K_F^{-1} is Hermitian semipositive.

(See [15, Theorem 3.1].) Henceforth, we will identify \tilde{Q} with $A \times C \times H \times F$ using γ in (2.4). We note that F is simply connected because it is rationally connected [13, p. 545, Theorem 3.5], [18, p. 362, Proposition 2.3].

2.2. A lower bound of d

We know that $b_1(Q) = 2g$, and the induced homomorphism

$$(p \circ \varphi)_* : H_1(Q, \mathbb{Q}) \longrightarrow H_1(\text{Pic}^d(X), \mathbb{Q}),$$

where p and φ are constructed in (2.1) and (2.2), respectively, is an isomorphism [5], [6, p. 649, Remark]. Since f in (2.3) is a finite étale covering, the induced homomorphism

$$f_* : H_1(\tilde{Q}, \mathbb{Q}) \longrightarrow H_1(Q, \mathbb{Q})$$

is surjective. Therefore, the homomorphism

$$(p \circ \varphi \circ f)_* : H_1(\tilde{Q}, \mathbb{Q}) \longrightarrow H_1(\text{Pic}^d(X), \mathbb{Q})$$

(2.5)

is surjective.

There is no nonconstant holomorphic map from a compact simply connected Kähler manifold to an Abelian variety. In particular, there are no nonconstant holomorphic maps from C, H and F in (2.4) to $\text{Pic}^d(X)$. Hence, the map $p \circ \varphi \circ f$ factors through a map

$$\beta : A \longrightarrow \text{Pic}^d(X).$$

In other words, there is a commutative diagram

$$\begin{array}{ccc}
\tilde{Q} = A \times C \times H \times F & \xrightarrow{(p \circ \varphi \circ f)} & \text{Pic}^d(X) \\
q \downarrow & & \| \downarrow \text{Id} \\
A & \xrightarrow{\beta} & \text{Pic}^d(X)
\end{array}$$

(2.6)

where q is the projection of $A \times C \times H \times F$ to the first factor. Since $H_1(A \times C \times H \times F, \mathbb{Z}) = H_1(A, \mathbb{Z})$ (as C, H and F are simply connected), and $(p \circ \varphi \circ f)_*$ in (2.5) is surjective, it follows that the homomorphism

$$\beta_* : H_1(A, \mathbb{Q}) \longrightarrow H_1(\text{Pic}^d(X), \mathbb{Q})$$

induced by β is surjective. This immediately implies that the map β is surjective. Since β is surjective, from the commutativity of (2.6) we know that the map p is surjective. This implies that

$$d = \dim \text{Pic}^d(X) \geq \dim \text{Pic}^d(X) = g \geq 2.$$

(2.7)

2.3. Albanese for \tilde{Q}

The homomorphism of fundamental groups

$$\varphi_* : \pi_1(Q) \longrightarrow \pi_1(\text{Pic}^d(X))$$

induced by φ in (2.2) is an isomorphism [8, Proposition 4.1]. Since $d \geq 2$ (see (2.7)), the homomorphism of fundamental groups

$$p_* : \pi_1(\text{Pic}^d(X)) \longrightarrow \pi_1(\text{Pic}^d(X))$$

induced by p in (2.1) is an isomorphism. Indeed, $\pi_1(\text{Pic}^d(X))$ is the Abelianization

$$\pi_1(X)/[\pi_1(X), \pi_1(X)] = H_1(X, \mathbb{Z})$$

of $\pi_1(X)$ [16]. Combining these we conclude that the homomorphism of fundamental groups

$$(p \circ \varphi)_* : \pi_1(Q) \longrightarrow \pi_1(\text{Pic}^d(X))$$

(2.8)

induced by $p \circ \varphi$ is an isomorphism.

Since the homomorphism in (2.8) is an isomorphism, the covering f in (2.3) is induced by a covering of $\text{Pic}^d(X)$. In other words, there is a finite étale Galois covering
\[\mu : J \longrightarrow \text{Pic}^d(X) \]
(2.9)
and a morphism \(\lambda : \widetilde{Q} \longrightarrow J \) such that the following diagram is commutative:

\[
\begin{array}{ccc}
\widetilde{Q} & \xrightarrow{f} & Q \\
\downarrow{\lambda} & & \downarrow{p \circ \varphi} \\
J & \xrightarrow{\mu} & \text{Pic}^d(X)
\end{array}
\]
(2.10)

where \(f \) is the covering map in (2.3). The projection \(q \) in (2.6) is clearly the Albanese morphism for \(\widetilde{Q} \), because \(C, H \) and \(F \) are all simply connected. On the other hand, \(p \circ \varphi \) is the Albanese morphism for \(Q \) [11, Corollary 2.2]. Therefore, its pullback, namely, \(\lambda \), is the Albanese morphism for \(\widetilde{Q} \). Consequently, we have \(A = J \) with \(\lambda \) coinciding with the projection \(q \) in (2.6). Henceforth, we will identify \(A \) and \(q \) with \(J \) and \(\lambda \) respectively.

2.4. Vector fields

The differential \(df \) of \(f \) identifies \(T\widetilde{Q} \) with \(f^*TQ \), because \(f \) is étale. Using the trace homomorphism \(t : f_*\mathcal{O}_{\widetilde{Q}} \longrightarrow \mathcal{O}_Q \), we have

\[f_*T\widetilde{Q} = f_*f^*TQ \xrightarrow{p_j} (f_*\mathcal{O}_{\widetilde{Q}}) \otimes TQ \xrightarrow{t} \mathcal{O}_Q \otimes TQ = TQ, \]

where \(p_j \) is given by the projection formula. This produces a homomorphism

\[\Phi : H^0(\widetilde{Q}, T\widetilde{Q}) = H^0(Q, f_*T\widetilde{Q}) \longrightarrow H^0(Q, TQ) \]
(2.11)

(see (2.12)) is an ideal in this Lie algebra. Since \(A = J \) is a covering of \(\text{Pic}^d(X) \), we have

\[\dim H^0(A, TA) = \dim \text{Pic}^d(X) = g > 1. \]
(2.13)

Since \(H^0(A, TA) \) is an ideal in \(H^0(\widetilde{Q}, T\widetilde{Q}) \), it follows immediately that

\[\Phi(H^0(A, TA)) \subset \Phi(H^0(\widetilde{Q}, T\widetilde{Q})) = H^0(Q, TQ) \]

is an ideal, where \(\Phi \) is constructed in (2.11). Note that \(H^0(A, TA) \) is an Abelian Lie algebra, so the Lie algebra \(\Phi(H^0(A, TA)) \) is also Abelian.

Since \(\mu : J \longrightarrow \text{Pic}^d(X) \) in (2.9) is a covering map between Abelian varieties, the trace map \(H^0(A, TA) \longrightarrow H^0(\text{Pic}^d(X), T\text{Pic}^d(X)) \) is an isomorphism. In view of this, from the commutativity of the diagram in (2.10), it follows that the restriction

\[\Phi|_{H^0(A, TA)} : H^0(A, TA) \longrightarrow H^0(Q, TQ) \]

is injective (see (2.12) and (2.11)). But \(H^0(Q, TQ) = \mathfrak{sl}(r, \mathbb{C}) \) [7, p. 1446, Theorem 1.1]. Hence the Lie algebra \(H^0(Q, TQ) \) does not contain any nonzero Abelian ideal. This is in contradiction with the earlier result that \(\Phi(H^0(A, TA)) \) is a nonzero Abelian ideal in \(H^0(Q, TQ) \) of dimension \(g \) (see (2.13)). This completes the proof of Theorem 1.1.

References

[1] T. Aubin, Équations du type Monge–Ampère sur les variétés kähleriennes compacts, C. R. Acad. Sci. Paris, Ser. I 283 (1976) 119–121.
[2] T. Aubin, Équations du type Monge–Ampère sur les variétés kähleriennes compactes, Bull. Math. Soc. 102 (1978) 63–95.
[3] J.M. Baptista, On the \(L^2 \)-metric of vortex moduli spaces, Nucl. Phys. B 844 (2011) 308–333.
[4] A. Bertram, C. Daskalopoulos, R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996) 529–571.
[5] E. Bifet, Sur les points fixes schéma \(\text{Quot}_{\mathcal{O}^d/X} \) sous l’action du tore \(\mathbb{G}_m^d \), C. R. Acad. Sci. Paris, Ser. I 309 (1989) 609–612.
[6] E. Bifet, E. Ghione, M. Letizia, On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641–672.
[7] I. Biswas, A. Dhillon, J. Hurtubise, Automorphisms of the Quot schemes associated to compact Riemann surfaces, Int. Math. Res. Not. 2015 (2015) 1445–1460.
[8] I. Biswas, A. Dhillon, J. Hurtubise, R.A. Wentworth, A generalized Quot scheme and meromorphic vortices, Adv. Theor. Math. Phys. 19 (2015) 905–921.
[9] I. Biswas, N.M. Romão, Moduli of vortices and Grassmann manifolds, Commun. Math. Phys. 320 (2013) 1–20.
[10] I. Biswas, H. Seshadri, On the Kähler structures over Quot schemes, Ill. J. Math. 57 (2013) 1019–1024.
[11] I. Biswas, H. Seshadri, On the Kähler structures over Quot schemes II, Ill. J. Math. 58 (2014) 689–695.
[12] M. Bökstedt, N.M. Romão, On the curvature of vortex moduli spaces, Math. Z. 277 (2014) 549–573.
[13] F. Campana, On twistor spaces of the class C, J. Differ. Geom. 33 (1991) 541–549.
[14] F. Campana, J.-P. Demailly, T. Peternell, Rationally connected manifolds and semipositivity of the Ricci curvature, in: C.D. Hacon, M. Mustaţǎ, M. Popa (Eds.), Recent Advances in Algebraic Geometry, A Volume in Honor of Rob Lazarsfeld’s 60th Birthday, Papers from the Conference Held at the University of Michigan, Ann Arbor, MI, May 16–19, 2013, in: Lond. Math. Soc. Lect. Note Ser., vol. 417, Cambridge University Press, Cambridge, UK, 2015, pp. 71–91.
[15] J.-P. Demailly, Structure theorems for compact Kähler manifolds with nef anticanonical bundles, in: Complex Analysis and Geometry, in: Springer Proceedings in Mathematics & Statistics, vol. 144, Springer, Tokyo, 2015, pp. 119–133.
[16] A. Dold, R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958) 239–281.
[17] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV. Les schémas de Hilbert, Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249–276, Exp. No. 221.
[18] J. Kollár, Fundamental groups of rationally connected varieties, Mich. Math. J. 48 (2000) 359–368.
[19] S.-T. Yau, On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampère equation I, Commun. Pure Appl. Math. 31 (1978) 339–411.