Spanning trees of a claw-free graph whose reducible stems have few leaves

Pham Hoang Ha
Department of Mathematics
Hanoi National University of Education
136 XuanThuy Street, Hanoi, Vietnam
E-mail: ha.ph@hnue.edu.vn

Abstract

Let T be a tree, a vertex of degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. For two distinct vertices u, v of T, let $P_T[u, v]$ denote the unique path in T connecting u and v. For a leaf x of T, let y_x denote the nearest branch vertex to x. For every leaf x of T, we remove the path $P_T[x, y_x]$ from T, where $P_T[x, y_x]$ denotes the path connecting x to y_x in T but not containing y_x. The resulting subtree of T is called the reducible stem of T. In this paper, we first use a new technique of Gould and Shull to state a new short proof for a result of Kano et al. on the spanning tree with a bounded number of leaves in a claw-free graph. After that, we use that proof to give a sharp sufficient condition for a claw-free graph having a spanning tree whose reducible stem has few leaves.

Keywords: spanning tree, leaf, claw-free graph, reducible stem

AMS Subject Classification: Primary 05C05, 05C70. Secondary 05C07, 05C69

1 Introduction

In this paper, we only consider finite graphs without loops or multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, we use $N_G(v)$ and $\deg_G(v)$ (or $N(v)$ and $\deg(v)$ if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by $|X|$ the cardinality of X. Sometime, we denote by $|G|$ instead of $|V(G)|$.

1
We define \(N_G(X) = \bigcup_{x \in X} N_G(x) \) and \(\deg_G(X) = \sum_{x \in X} \deg_G(x) \). The subgraph of \(G \) induced by \(X \) is denoted by \(G[X] \). We define \(G - uv \) to be the graph obtained from \(G \) by deleting the edge \(uv \in E(G) \), and \(G + uv \) to be the graph obtained from \(G \) by adding a new edge \(uv \) joining two non-adjacent vertices \(u \) and \(v \) of \(G \). For two vertices \(u \) and \(v \) of \(G \), the distance between \(u \) and \(v \) in \(G \) is denoted by \(d_G(u, v) \). We use \(K_n \) to denote the complete graph on \(n \) vertices. Win [20] obtained the following theorem, which confirms a conjecture of Las Vergnas [16]. Beside that, recently, the author [6] also gave an improvement of Win by giving an independence number condition, which confirms a conjecture of Las Vergnas [16].

For two distinct vertices \(u, v \) of \(T \), let \(P_T[u, v] \) denote the unique path in \(T \) connecting \(u \) and \(v \). For a leaf \(x \) of \(T \), let \(y_x \) denote the nearest branch vertex to \(x \). For every leaf \(x \) of \(T \), we remove the path \(P_T[x, y_x] \) from \(T \), where \(P_T[x, y_x] \) denotes the path connecting \(x \) to \(y_x \) in \(T \) but not containing \(y_x \). Moreover, the path \(P_T[x, y_x] \) is called the leaf-branch path of \(T \) incident to \(x \) and \(y_x \) and denoted by \(B_x \). The resulting subtree of \(T \) is called the reducible stem of \(T \) and denoted by \(R\text{Stem}(T) \).

There are several sufficient conditions (such as the independence number conditions and the degree sum conditions) for a graph \(G \) to have a spanning tree with a bounded number of leaves or branch vertices. Win [20] obtained the following theorem, which confirms a conjecture of Las Vergnas [16]. Beside that, recently, the author [6] also gave an improvement of Win by giving an independence number condition for a graph having a spanning tree which covers a certain subset of \(V(G) \) and has at most \(l \) leaves.

Theorem 1.1 (Win [20]) Let \(m \geq 1 \) and \(l \geq 2 \) be integers and let \(G \) be a \(m \)-connected graph. If \(\alpha(G) \leq m + l - 1 \), then \(G \) has a spanning tree with at most \(l \) leaves.
Later, Broersma and Tuinstra gave the following degree sum condition for a graph to have a spanning tree with at most \(l \) leaves.

Theorem 1.2 (Broersma and Tuinstra [1]) Let \(G \) be a connected graph and let \(l \geq 2 \) be an integer. If \(\sigma_2(G) \geq |G| - l + 1 \), then \(G \) has a spanning tree with at most \(l \) leaves.

Motivating by Theorem 1.1, a natural question is whether we can find sharp sufficient conditions of \(\sigma_{l+1}(G) \) for a connected graph \(G \) has a few leaves. This question is still open. But, in certain graph classes, the answers have been determined.

For a positive integer \(t \geq 3 \), a graph \(G \) is said to be \(K_{1,t} \)-free if it contains no \(K_{1,t} \) as an induced subgraph. If \(t = 3 \), the \(K_{1,3} \)-free graph is also called the claw-free graph. About this graph class, Kano, Kyaw, Matsuda, Ozeki, Saito and Yamashita proved the following theorem.

Theorem 1.3 (Kano et al. [11]) Let \(G \) be a connected claw-free graph and let \(l \geq 2 \) be an integer. If \(\sigma_{l+1}(G) \geq |G| - l \), then \(G \) has a spanning tree with at most \(l \) leaves.

For other graph classes, we refer the readers to see [2], [3], [5], [14], [15] and [17] for examples.

The first main purpose of this paper is to give a new short proof for Theorem 1.3 base on the new technique of Gould and Shull in [5].

Moreover, many researchers studied spanning trees in connected graphs whose stems have a bounded number of leaves or branch vertices (see [7], [12], [13], [18] and [19] for more details). We introduce here some results on spanning trees whose stems have a few leaves or branch vertices.

Theorem 1.4 (Tsugaki and Zhang [18]) Let \(G \) be a connected graph and let \(k \geq 2 \) be an integer. If \(\sigma_3(G) \geq |G| - 2k + 1 \), then \(G \) have a spanning tree whose stem has at most \(k \) leaves.

Theorem 1.5 (Kano and Yan [12]) Let \(G \) be a connected graph and let \(k \geq 2 \) be an integer. If either \(\alpha_4(G) \leq k \) or \(\sigma_{k+1}(G) \geq |G| - k - 1 \), then \(G \) has a spanning tree whose stem has at most \(k \) leaves.

Theorem 1.6 (Yan [19]) Let \(G \) be a connected graph and \(k \geq 0 \) be an integer. If one of the following conditions holds, then \(G \) have a spanning tree whose stem has at most \(k \) branch vertices.

(a) \(\alpha_4(G) \leq k + 2 \),

3
Recently, Ha, Hanh and Loan gave a sufficient condition for a graph to have a spanning tree whose reducible stem has few leaves. In particular, they proved the following theorem.

Theorem 1.7 (Ha et al. [8]) Let G be a connected graph and let $k \geq 2$ be an integer. If one of the following conditions holds, then G has a spanning tree whose reducible stem has at most k leaves.

(i) $\alpha(G) \leq 2k + 2$,

(ii) $\sigma_{k+1}(G) \geq \left\lfloor \frac{|G|-k}{2} \right\rfloor$.

Here, the notation $\lfloor r \rfloor$ stands for the biggest integer not exceed the real number r.

After that, Ha, Hanh, Loan and Pham also gave a sufficient condition for a graph to have a spanning tree whose reducible stem has few branch vertices.

Theorem 1.8 (Ha et al. [9]) Let G be a connected graph and let $k \geq 2$ be an integer. If the following conditions holds, then G has a spanning tree T whose reducible stem has at most k branch vertices.

$$\sigma_{k+3}(G) \geq \left\lfloor \frac{|G|-2k-2}{2} \right\rfloor.$$

Very recently, Hanh stated the following theorem.

Theorem 1.9 (Hanh [10]) Let G be a connected claw-free graph and let $k \geq 2$ be an integer. If one of the following conditions holds, then G has a spanning tree whose reducible stem has at most k leaves.

(i) $\alpha(G) \leq 3k + 2$,

(ii) $\sigma_{k+1}(G) \geq \left\lfloor \frac{|G|-4k-2}{2} \right\rfloor$.

The open question is whether we may give a sharp condition of $\sigma_{3k+3}(G)$ to show that G has a spanning tree whose reducible stem has at most k leaves.

For the last purpose of this paper, we will give an affirmative answer to this question. In particular, we prove the following theorem.

Theorem 1.10 Let G be a connected claw-free graph and let k be an integer ($k \geq 2$). If $\sigma_{3k+3}(G) \geq |G| - k$, then G has a spanning tree whose reducible stem has at most k leaves.
To show that our result is sharp, we will give the following example. Let $k \geq 2$ and $m \geq 1$ be integers, and let $R_0, R_1, ..., R_k$ and $H_0, H_1, ..., H_k$ be $2k+2$ disjoint copies of the complete graph K_m of order m. Let D be a complete graph with $V(D) = \{w_i\}_{i=0}^k$.

Let $\{x_i, x_{iy}, x_{iz}\}_{i=0}^k$ be $3k+3$ vertices not contained in $\bigcup_{i=0}^k \left(V(R_i) \cup V(H_i) \cup \{w_i\}\right)$.

Join x_{iy} to all the vertices of $V(R_i)$ and x_{iz} to all the vertices of $V(H_i)$ for every $0 \leq i \leq k$. Adding $3k+3$ edges $x_i x_{iy}, x_i x_{iz}, x_{iy} x_{iz}$ and joining x_i to w_i for every $0 \leq i \leq k$. Let G denote the resulting graph (see Figure 1). Then, we have $|G| = (k+1)(2m+4)$. Moreover, take a vertex $u_i \in V(R_i)$ and a vertex $v_i \in V(H_i)$ for for every $0 \leq i \leq k$. We obtain

$$\sigma_{3k+3}(G) = \sum_{i=0}^k \left(\deg_G(u_i) + \deg_G(v_i) + \deg_G(x_i) \right)$$

$$= (k+1)m + (k+1)m + 3(k+1) = (k+1)(2m+3)$$

$$= |G| - k - 1.$$

But G has no spanning tree whose reducible stem has k leaves. Hence the condition of Theorem 1.10 is sharp.
2 A new proof of Theorem 1.3

Before beginning to prove Theorem 1.3 we recall some definitions in [5].

Definition 2.1 ([5]) Let T be a tree. For each $e \in E(T)$ and $u, v \in V(T)$, we denote $\{u,v\} = V(P_T[u,v]) \cap N_T(u)$ and e_v as the vertex incident to e which is the nearest vertex of v in T.

Definition 2.2 ([5]) Let T be a spanning tree of a graph G and let $v \in V(G)$ and $e \in E(T)$. Denote $g(e,v)$ as the vertex incident to e farthest away from v in T. We say v is an oblique neighbor of e with respect to T if $vg(e,v) \in E(G)$.

Definition 2.3 ([5]) Let T be a spanning tree of a graph G. Two vertices are pseudoadjacent with respect to T if there is some $e \in E(T)$ which has them both as oblique neighbors. Similarly, a vertex set is pseudoindependent with respect to T if no two vertices in the set are pseudoadjacent with respect to T.

We note here that pseudoadjacency (with respect to any tree) is a weaker condition than adjacency, while pseudoindependence is a stronger condition than independence.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that G has no spanning tree with at most l leaves. Choose some spanning tree T of G such that:

(T1) $|L(T)|$ is as small as possible.

By the assumption, T must have at least $l + 1$ leaves.

We have the following claims.

Claim 2.4 $L(T)$ is pseudoindependent with respect to T. In particular, $L(T)$ is independent.

Proof. Suppose two leaves s and t are pseudoadjacent with respect to T. Then there is some edge $e \in E(T)$ such that $sg(e,s), tg(e,t) \in E(G)$. Let b and u be the nearest branch vertices of s and t, respectively. Consider the following two cases.

Case 1: Suppose $g(e,s) \neq g(e,t)$. Then $e_s = g(e,t)$ and $e_t = g(e,s)$, so $se_t, te_s \in E(G)$. We consider the spanning tree

$$T' := \begin{cases} T - e + se_t, & \text{if } e = uu_t, \\ T - \{e, uu_t\} + \{se_t, te_s\}, & \text{if } e \neq uu_t. \end{cases}$$

Hence, $|L(T')| < |L(T)|$. This violates (T1). So case 1 does not happen.

6
Case 2: Suppose \(g(e, s) = g(e, t) \). Define \(a := g(e, s) = g(e, t) \). Then \(e_s = e_t \notin \{s, t\} \) and denoted by vertex \(z \). Since \(G[a, z, s, t] \) is not \(K_{1,3} \)-free, so we have either \(st \in E(G) \) or \(zt \in E(G) \) or \(zs \in E(G) \). Consider the tree

\[
T' := \begin{cases}
T - uu_t + st, & \text{if } st \in E(G), \\
T - \{e, uu_t\} + \{zt, sa\}, & \text{if } zt \in E(G), \\
T - \{e, bb_s\} + \{zs, ta\}, & \text{if } zs \in E(G).
\end{cases}
\]

Hence, \(|L(T')| < |L(T)|\). This violates the condition (T1). So case 2 does not happen.
Therefore, the claim 2.4 is proved.

Claim 2.5 For each branch vertex \(b \in B(T) \), there are at least \(\deg_T(b) - 1 \) edges of \(T \) incident with \(b \) such that they have no oblique neighbor in \(L(T) \).

Proof. Set \(N_T(b) = \{s_1, s_2, ..., s_q\} \), \(q \geq 3 \).
Assume that there exist two vertices \(s_i, s_j \in N_T(b) \) such that \(s_is_i \notin E(G) \) for all \(t \in \{1, ..., q\} \setminus \{i\} \) and \(s_js_j \notin E(G) \) for all \(t \in \{1, ..., q\} \setminus \{j\} \). Then \(G[b, s_i, s_j, s_t] \) is \(K_{1,3} \)-free for every \(t \in \{1, ..., q\} \setminus \{i, j\} \). This is a contradiction. Therefore we conclude that there exists at most one vertex \(s \in N_T(b) \) such that \(ss \notin E(G) \) for all \(s_t \neq s \).

Let \(s_t \in N_T(b) \setminus \{s\} \). Then there exists some vertex \(s_i \in N_T(b) \setminus \{s_t, s\} \) such that \(s_ts_i \in E(G) \). Set \(e := bs_t \). To complete Claim 2.5 we will need only to prove that \(x \) is not an oblique neighbor of \(e \) with respect to \(T \) for every \(x \in L(T) \). Indeed, to the contrary, assume that there exists some vertex \(x \in L(T) \) such that \(x \) is an oblique neighbor of \(e \) with respect to \(T \). Consider the tree

\[
T' := \begin{cases}
T - \{e, bs_t\} + \{bx, s_ts_i\}, & \text{if } g(e, x) = b, x \neq s_t, \\
T - bs_t + s_ts_i, & \text{if } g(e, x) = b, x = s_t, \\
T - e + xs_t, & \text{if } g(e, x) = s_t.
\end{cases}
\]

Hence, \(|L(T')| < |L(T)|\). This violates with (T1).
Claim 2.5 holds.

Claim 2.6 There are at least \(l \) distinct edges of \(T \) such that they have no oblique neighbor in \(L(T) \).

Proof. By Claim 2.4, we obtain that for each \(e \in E(T) \), \(e \) has at most an oblique neighbor in \(L(T) \). Moreover, if an edge \(e \) is incident with two branch vertices of \(T \)
then e has to be an edge of the subgraph $T[\{b\}_{b \in B(T)}]$ of T. Then, there are at most $|B(T)| - 1$ edges which are adjacent with two branch vertices of T. Hence, combining with Claim 2.5 there exist at least
\[
\sum_{b \in B(T)} (\deg_T(b) - 1) - |B(T)| + 1 = \sum_{b \in B(T)} (\deg_T(b) - 2) + 1
\]
distinct edges in $E(T)$ which have no oblique neighbor in $L(T)$. On the other hand, we have
\[
|L(T)| = 2 + \sum_{b \in B(T)} (\deg_T(b) - 2)
\Rightarrow \sum_{b \in B(T)} (\deg_T(b) - 2) + 1 = |L(T)| - l \geq l.
\]
Therefore, the claim is proved. □

For any $v, x \in V(T)$, we now have $vx \in E(G)$ if and only if v is an oblique neighbor of xx_v with respect T. Therefore, the number of edges of T with v as an oblique neighbor equals the degree of v in G. Combining with Claims 2.4 and 2.6 we obtain that
\[
\sigma_{l+1}(G) \leq |E(T)| - l = |V(T)| - 1 - l = |G| - 1 - l,
\]
which contradicts the assumption of Theorem 1.3. The proof of Theorem 1.3 is completed.

3 Proof of theorem 1.10

For two distinct vertices u, v of T, let $P_T[u, v]$ denote the unique path in T connecting u and v. We define the orientation of $P_T[u, v]$ is from u to v. For each vertex $x \in V(P_T[u, v])$, we denote by x^+ and x^- the successor and predecessor of x in $P_T[u, v]$, respectively, if they exist. For any $X \subseteq V(G)$, set $(N(X) \cap P_T[u, v])^- = \{x^- | x \in V(P_T[u, v]) \setminus \{u\} \text{ and } x \in N(X)\}$ and $(N(X) \cap P_T[u, v])^+ = \{x^+ | x \in V(P_T[u, v]) \setminus \{v\} \text{ and } x \in N(X)\}$.

Proof of Theorem 1.10. Suppose to the contrary that there does not exist a spanning tree T of G such that $|L(R_{\text{Stem}}(T))| \leq k$. Then every spanning tree T of G satisfies $|L(R_{\text{Stem}}(T))| \geq k + 1$.

Choose T to be a spanning tree of G such that
\[
(C0) \ |L(R_{\text{Stem}}(T))| \text{ is as small as possible,}
\]
Claim 3.1 For every $i \in \{1, 2, \ldots, l\}$, there exist at least two leaf-branch paths of T which are incident to x_i.

Claim 3.2 For each $i \in \{1, 2, \ldots, l\}$, there exist $y_i, z_i \in L(T)$ such that B_{y_i}, B_{z_i} are incident to x_i, and $N_G(y_i) \cap (V(R_{\text{Stem}}(T)) \setminus \{x_i\}) = \emptyset$ and $N_G(z_i) \cap (V(R_{\text{Stem}}(T)) \setminus \{x_i\}) = \emptyset$.

Proof. Let $\{a_{ij}\}_{j=1}^m$ be the subset of $L(T)$ such that $B_{a_{ij}}$ is adjacent to x_i. By Claim 3.1 we obtain $m \geq 2$. Suppose that there are more than $m - 2$ vertices $\{a_{ij}\}_{j=1}^m$ satisfying

$$N_G(a_{ij}) \cap (V(R_{\text{Stem}}(T)) \setminus \{x_i\}) \neq \emptyset.$$

Without loss of generality, we may assume that $N_G(a_{ij}) \cap (V(R_{\text{Stem}}(T)) \setminus \{x_i\}) \neq \emptyset$ for all $j = 2, \ldots, m$. Set $b_{ij} \in N_G(a_{ij}) \cap (V(R_{\text{Stem}}(T)) \setminus \{x_i\})$ and $v_{ij} \in N_T(x_i) \cap V(P_T[a_{ij}, x_i])$ for all $j \in \{2, \ldots, m\}$. Consider the spanning tree $T' := T + \{a_{ij}b_{ij}\}_{j=2}^m - \{x_iv_{ij}\}_{j=2}^m$.

Then T' satisfies $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$ and $|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)|$, where x_i is not in $V(R_{\text{Stem}}(T'))$. This contradicts either the condition (C0) or the condition (C1). Therefore, Claim 3.2 holds.

Claim 3.3 For every $i, j \in \{1, 2, \ldots, k + 1\}$, $i \neq j$, if $u \in V(P_T[y_i, x_i])$ and $v \in V(P_T[y_j, x_j])$, $w \in V(P_T[z_i, x_i])$, then $uv \notin E(G)$ and $uw \notin E(G)$. In particular, we have $N_G(y_i) \cap V(B_{y_j}) = \emptyset$ and $N_G(y_i) \cap V(B_{z_j}) = \emptyset$.

Proof. By the same role of y_j and z_j, we only need to prove $uv \notin E(G)$. Suppose the assertion of the claim is false. Set $T' := T + uv$. Then T' is a subgraph of G including a unique cycle C, which contains both x_i and x_j. Since $k \geq 2$, then $|L(R_{\text{Stem}}(T))| \geq 3$. Hence, we obtain $|B(R_{\text{Stem}}(T))| \geq 1$. Then there exists a branch vertex of $R_{\text{Stem}}(T)$ contained in C. Let e be an edge incident to such a vertex in C and $R_{\text{Stem}}(T)$. By removing the edge e from T' we obtain a spanning
tree T'' (see Figure 2). Hence T'' satisfies $|L(R_{\text{Stem}}(T''))| < |L(R_{\text{Stem}}(T))|$, the reason is that either $R_{\text{Stem}}(T'')$ has only one new leaf and x_i, x_j are not leaves of $R_{\text{Stem}}(T'')$ or x_i (or x_j) is still a leaf of $R_{\text{Stem}}(T'')$ but $R_{\text{Stem}}(T'')$ has no new leaf and x_j (or x_i respectively) is not a leaf of $R_{\text{Stem}}(T'')$. This is a contradiction with the condition (C0). So Claim 3.3 is proved.

We obtain the following claim as a corollary of Claim 3.3.

Claim 3.4 $L(R_{\text{Stem}}(T))$ is an independent set in G.

Set $U_1 = \{y_i, z_i\}_{i=1}^l$. For each $i \in \{1, ..., l\}$ we also set $x_{iy} \in N_T(x_i) \cap V(B_{y_i})$ and $x_{iz} \in N_T(x_i) \cap V(B_{z_i})$.

Claim 3.5 U_1 is an independent set in G.

Proof. Suppose that there exist two vertices $u, v \in U_1$ such that $uv \in E(G)$. Without lost of generality, we may assume that $v = y_i$ for some $i \in \{1, 2, ..., l\}$. Consider the spanning tree $T' := T + uy_i - x_{iy}x_i$. Then $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$. If $\deg_T(x_i) = 3$ then x_i is not a branch vertex of T'. Hence $|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)|$, this contradicts either the conditions (C0) or (C1). Otherwise, we have $|L(R_{\text{Stem}}(T'))| = |L(R_{\text{Stem}}(T))|$, $|R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)|$ and $|L(T')| < |L(T)|$, where either T' has only one new leaf and y_i, u are not leaves of T' or y_i is still a leaf of T' but T' has no any new leaf and u is not a leaf of T'. This contradicts the condition (C2). The proof of Claim 3.5 is completed.

Now, we choose T to be a spanning tree of G satisfying

(C3) $\sum_{i=1}^l \deg_T(x_i)$ is as small as possible, subject to (C0)-(C2),
(C4) \[\sum_{i=1}^{l} (|B_{y_i}| + |B_{z_i}|) \] is as large as possible, subject to (C0)-(C3).

Set \(U = U_1 \cup L(R_{\text{Stem}}(T)) \).

\textbf{Claim 3.6} \(U \) is an independent set in \(G \).

\textbf{Proof.} Suppose that there exist two vertices \(u, v \in U \) such that \(uv \in E(G) \). By Claims 3.4 and 3.5 without lost of generality, we may assume that \(u \in L(R_{\text{Stem}}(T)) \) and \(v = y_i \in U_1 \) for some \(i \in \{1, 2, ..., l\} \). Moreover, by Claim 3.3, we now only need to consider the case \(u = x_i \).

Set \(t \in N_T(x_i) \cap V(R_{\text{Stem}}(T)) \).

If \(y_i x_{iz} \in E(G) \). Consider the spanning tree \(T' := T + y_i x_{iz} - x_{iz}x_i \). Then \(|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))| \). If \(\deg_T(x_i) = 3 \) then \(x_i \) is not a branch vertex of \(T' \). Hence \(|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)| \), this contradicts either the conditions (C0) or (C1). Otherwise, we have \(|L(R_{\text{Stem}}(T'))| = |L(R_{\text{Stem}}(T))| \), \(|R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)| \) and \(|L(T')| < |L(T)| \), this contradicts the condition (C2). Now, since \(G[x_i, t, x_{iz}, y_i] \) is not \(K_{1,3}\)-free, we obtain that \(tx_{iz} \in E(G) \) or \(ty_i \in E(G) \). We consider the spanning tree

\[T' := \begin{cases} T + tx_{iz} - x_{iz}x_i, & \text{if } tx_{iz} \in E(G), \\ T + ty_i - x_{iz}x_i, & \text{if } ty_i \in E(G). \end{cases} \]

If \(\deg_T(x_i) = 3 \) then we obtain \(|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))| \) and \(|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)| \), a contradiction with (C0) or (C1). Otherwise, we have \(L(R_{\text{Stem}}(T')) = L(R_{\text{Stem}}(T)) = \{x_i\}_{i=1}^{k+1}, |R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)|, |L(T')| = |L(T)| \) and \(\sum_{i=1}^{l} \deg_T(x_i) < \sum_{i=1}^{l} \deg_T(x_i) \). This also violates the condition (C3).

Therefore, the proof of Claim 3.6 is completed. \(\square \)

By Claim 3.6 we conclude that \(\alpha(G) \geq 3l \geq 3k + 3 \).

\textbf{Claim 3.7} For every \(p \in L(T) \setminus U_1 \), then \(\sum_{u \in U} |N_G(u) \cap V(B_p)| \leq |B_p| \).

\textbf{Proof.} Set \(v_p \in B(T) \) such that \((V(P_T[p, v_p]) \setminus \{v_p\}) \cap B(T) = \emptyset \). Let \(V(B_p) \cap N_T(v_p) = \{v_p^{-}\} \). Then we consider \(B_p = P_T[p, v_p^-] \).

Assume that there exists a vertex \(x \in V(B_p) \) such that \(xu \in E(G) \) for some \(u \in U_1 \). Consider the spanning tree

\[T'' := \begin{cases} T + xu - v_p^- v_p, & \text{if } x \in \{v_p^-, p\}, \\ T + xu - xx+, & \text{if } x \notin \{v_p^-, p\}. \end{cases} \]
This contradicts either the condition (C2) if \(x \in \{v_p^-, p\} \) or the condition (C4) for otherwise. Therefore, we conclude that \(\sum_{u \in U_1} |N_G(u) \cap V(B_p)| = 0 \).

Assume that there exist \(x_i, x_j \in L(R_{\text{Stem}}(T)) \) for some \(i \neq j \) and \(x \in V(B_p) \) such that \(xx_i, xx_j \in E(G) \). Set

\[
G' := \begin{cases}
T + xx_j, & \text{if } x_i = v_p, \\
T + \{xx_i, xx_j\} - \{v_p^-\}, & \text{if } x_i \neq v_p.
\end{cases}
\]

Then \(G' \) is a subgraph of \(G \) including a unique cycle \(C \), which contains both \(x_i \) and \(x_j \). Since \(k \geq 2 \), then \(|L(R_{\text{Stem}}(T))| \geq 3 \). Hence, we obtain \(|B(R_{\text{Stem}}(T))| \geq 1 \). Then there exists a branch vertex of \(R_{\text{Stem}}(T) \) contained in \(C \). Let \(e \) be an edge incident to such a vertex in \(C \). By removing the edge \(e \) from \(G' \) we obtain a spanning tree \(T' \) of \(G \) satisfying \(|L(R_{\text{Stem}}(T'))| < |L(R_{\text{Stem}}(T))| \), the reason is that either \(R_{\text{Stem}}(T') \) has only one new leaf and \(x_i, x_j \) are not leaves of \(R_{\text{Stem}}(T') \) or \(x_i \) (or \(x_j \)) is still a leaf of \(R_{\text{Stem}}(T') \) but \(R_{\text{Stem}}(T') \) has no new leaf and \(x_j \) (or \(x_i \), respectively) is not a leaf of \(R_{\text{Stem}}(T') \) (see Figure 3 for an example). This is a contradiction with the condition (C0). Therefore, we concludes that \(\sum_{u \in L(R_{\text{Stem}}(T))} |N_G(u) \cap \{x\}| \leq 1 \) for every \(x \in V(B_p) \).

Now we obtain the following

\[
\sum_{u \in U} |N_G(u) \cap V(B_p)| = \sum_{u \in U_1} |N_G(u) \cap V(B_p)| + \sum_{u \in L(R_{\text{Stem}}(T))} |N_G(u) \cap V(B_p)| \leq |B_p|.
\]

Claim 3.7 is proved.

Claim 3.8 For every \(1 \leq i \leq k+1 \), then \(\sum_{u \in U} |N_G(u) \cap V(B_{y_i})| \leq |B_{y_i}| \) and \(\sum_{u \in U} |N_G(u) \cap V(B_{z_i})| \leq |B_{z_i}| \).
Proof. By the same role of y_i and z_i, we only need to prove
\[\sum_{u \in U} |N_G(u) \cap V(B_{y_i})| \leq |B_{y_i}|. \]

We consider $B_{y_i} = P_T[y_i, x_{iy}]$.

By Claim 3.3, we obtain the following.

Subclaim 3.8.1. $N_G(U_i) \cap V(B_{y_i}) = N_G\{y_i, z_i\} \cap V(B_{y_i})$.

Subclaim 3.8.2. We have $x_{iy} x_{iz} \in E(G)$.

Indeed, if $x_{iy} x_{iz} \notin E(G)$ we set $t \in N_T(x_i) \cap V(R_{\text{Stem}}(T))$. Then since $G[x_i, t, x_{iy}, x_{iz}]$ is not $K_{1, 3}$-free we obtain either $x_{iy} t \in E(G)$ or $x_{iz} t \in E(G)$. Without loss of generality, we may assume that $x_{iy} t \in E(G)$. Consider the spanning tree $T' = T - x_i x_{iy} + x_{iy} t$. If $\deg_T(x_i) = 3$ then we obtain $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$ and $|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)|$, a contradiction with (C0) or (C1). Otherwise, we have $L(R_{\text{Stem}}(T')) = L(R_{\text{Stem}}(T))$, $|R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)|$, $|L(T')| = |L(T)|$ and $\sum_{i=1}^{l} \deg_{T}(x_i) < \sum_{i=1}^{t} \deg_{T}(x_i)$. This violates the conditions (C3). Subclaim 3.8.2 is proved.

Subclaim 3.8.3. If $x \in N_G(y_i) \cap V(B_{y_i})$ then $x^- \notin N_G(z_i) \cap V(B_{y_i})$.

Suppose that there exists $x \in N_G(y_i) \cap B_{y_i}$ such that $x^- \in N_G(z_i) \cap B_{y_i}$. Consider the spanning tree $T' := T + \{x_{iy}, z_i x^-\} - \{x x^-, x_{iy} x_i\}$. Then $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$. If $\deg_T(x_i) = 3$ then x_i is not a branch vertex of T'. Hence $|R_{\text{Stem}}(T')| < |R_{\text{Stem}}(T)|$, this contradicts the condition (C1). Otherwise, we have $|L(R_{\text{Stem}}(T'))| = |L(R_{\text{Stem}}(T))|$, $|R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)|$ and $|L(T')| < |L(T)|$. This is a contradiction with the condition (C2). Therefore, Subclaim 3.8.3 holds.

Subclaim 3.8.4. If $x \in N_G(y_i) \cap V(B_{y_i})$ then $x^- \notin N_G(x_i) \cap V(B_{y_i})$.

Suppose that there exists $x \in N_G(y_i) \cap B_{y_i}$ such that $x^- \in N_G(x_i) \cap V(B_{y_i})$ for some $w \in L(R_{\text{Stem}}(T))$. By Subclaim 3.8.2, consider the spanning tree $T' := T + \{x_{iy}, x x^-, x_{iy} x_i\} - \{x x^-, x_{iy} x_i, x_{iz}\}$. Then $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$ and $|R_{\text{Stem}}(T')| \leq |R_{\text{Stem}}(T)|$, this contradicts the conditions either (C0) or (C1). Otherwise, we have $|L(R_{\text{Stem}}(T'))| = |L(R_{\text{Stem}}(T))|$, $|R_{\text{Stem}}(T')| = |R_{\text{Stem}}(T)|$ and $|L(T')| < |L(T)|$. This contradicts with the condition (C2). Therefore, Subclaim 3.8.4 holds.

Subclaim 3.8.5. We have $x_{iy} \notin N_G(z_i)$.

Indeed, suppose to the contrary that $x_{iy} z_i \in E(G)$. We consider the spanning tree $T' := T + x_{iy} z_i - x_i x_{iy}$. Hence, T' is a spanning tree of G satisfying $|L(R_{\text{Stem}}(T'))| \leq |L(R_{\text{Stem}}(T))|$, $|R_{\text{Stem}}(T')| \leq |R_{\text{Stem}}(T)|$ and $|L(T')| < |L(T)|$, where z_i is not a leaf of T'. This contradicts the conditions (C0), (C1) or (C2). Subclaim 3.8.5 is
Then we have $\sum_{3.8.1, 3.8.6-3.8.7}$, we obtain this completes the proof of Claim 3.8.

Indeed, assume that $x_i x \in E(G)$. By Subclaim 3.8.5 and Claim 3.6 we obtain $x_i x \notin E(G)$ and there exists x^+. Combining with $G[x, x_i, x^+, z_i]$ is not $K_{1,3}$-free we get $x^+ x_i \in E(G)$ or $x^+ z_i \in E(G)$.

If $x^+ x_i \in E(G)$. Combining with Subclaim 3.8.2, we consider the spanning tree

$$T' := \begin{cases} \{T + \{x_i x_{iz}, z_i x\} - \{xx^+, x_i x_{iz}\} \} & \text{if } x^+ = x_i y, \\ T + \{x^+ x_i, x_i x_{iz}, z_i x\} - \{xx^+, x_i x_{iy}, x_i x_{iz}\} & \text{if } x^+ \neq x_i y. \end{cases}$$

Hence $|L(R_{Stem}(T'))| \leq |L(R_{Stem}(T'))|$. If $deg_T(x_i) = 3$ then x_i is not a branch vertex of T'. Hence $|R_{Stem}(T')| < |R_{Stem}(T)|$, this contradicts the condition (C1). Otherwise, we have $|L(R_{Stem}(T'))| = |L(R_{Stem}(T))|, |R_{Stem}(T')| = |R_{Stem}(T)|$ and $|L(T')| < |L(T)|$, this contradicts the condition (C2).

Otherwise, we have $x^+ z_i \in E(G)$. We set $t \in N_T(x_i) \cap V(R_{Stem}(T))$. Since $G[x_i, t, x_{iz}, x]$ is not $K_{1,3}$-free we obtain either $xt \in E(G)$ or $x_{iz} t \in E(G)$ or $xx_{iz} \in E(G)$. Consider the spanning tree

$$T' := \begin{cases} T + \{xt, x^+ z_i\} - \{xx^+, x_i x_{iz}\}, & \text{if } xt \in E(G), \\ T + x_{iz} t - x_i z_i, & \text{if } x_{iz} t \in E(G), \\ T + \{xx_{iz}, x^+ z_i\} - \{xx^+, x_i x_{iz}\}, & \text{if } xx_{iz} \in E(G). \end{cases}$$

Then we have $|L(R_{Stem}(T'))| \leq |L(R_{Stem}(T))|, |R_{Stem}(T')| \leq |R_{Stem}(T)|, |L(T')| \leq |L(T)|$ and $\sum_{i=1}^l \deg_T(x_i) < \sum_{i=1}^l \deg_T(x_i)$. This violates the conditions (C0), (C1), (C2) or (C3).

Subclaim 3.8.6 holds.

On the other hand, it follows from Claim 3.3 that.

Subclaim 3.8.7. We have $N_G(w) \cap V(B_{y_i}) = \emptyset$ for all $w \in L(R_{Stem}(T)) \setminus \{x_i\}$.

By Subclauses 3.8.3-3.8.4 we conclude that $\{y_i\}, N_G(y_i) \cap V(P_T[y_i, x_i])$ and $(N_G(\{z_i, x_i\}) \cap (P_T[y_i, x_i])^+), \{y_i\}$ are pairwise disjoint subsets in $P_T[y_i, x_i]$. Combining with Claim 3.6 and Subclaims 3.8.1, 3.8.6-3.8.7, we obtain

$$\sum_{u \in U} |N_G(u) \cap V(B_{y_i})| = |N_G(y_i) \cap V(B_{y_i})| + |N_G(z_i) \cap V(B_{y_i})| + |N_G(x_i) \cap V(B_{y_i})|$$

$$= |N_G(y_i) \cap V(B_{y_i})| + |N_G(\{z_i, x_i\}) \cap V(B_{y_i})|$$

$$= |N_G(y_i) \cap V(P_T[y_i, x_i])| + |(N_G(\{z_i, x_i\}) \cap P[y_i, x_i])^+|$$

$$\leq |P_T[y_i, x_i]| - 1 = |B_{y_i}||.$$

This completes the proof of Claim 3.8. □
Now, repeating the proof of Theorem 1.3 for the subtree $R_{Stem}(T)$ we obtain the following claim.

Claim 3.9 $|N_G(L(R_{Stem}(T))) \cap V(R_{Stem}(T))| \leq |R_{Stem}(T)| - |L(R_{Stem}(T))|$.

By Claim 3.2 and Claims 3.7-3.9 we obtain that

$$\deg_G(U) = \sum_{i=1}^{l} \left(\sum_{u \in U} |N_G(u) \cap V(B_{y_i})| + \sum_{u \in U} |N_G(u) \cap V(B_{z_i})| \right) +$$

$$+ \sum_{p \in L(T) \setminus U_1} \sum_{u \in U} |N_G(u) \cap V(B_p)| + |N_G(L(R_{Stem}(T))) \cap V(R_{Stem}(T))|$$

$$\leq \sum_{i=1}^{l} |B_{y_i}| + \sum_{i=1}^{l} |B_{z_i}| + \sum_{p \in L(T) \setminus U_1} |B_p| + |R_{Stem}(T)| - |L(R_{Stem}(T))|$$

$$= |G| - |L(R_{Stem}(T))|$$

$$= |G| - l.$$

Hence

$$\sigma_{3k+3}(G) \leq \sigma_3(G) \leq \deg_G(U)$$

$$\leq |G| - l \leq |G| - k - 1.$$

This contradicts the assumption of Theorem 1.10. Therefore, the proof of Theorem 1.10 is completed.

References

[1] Broersma, H., Tuinstra, H.: Independence trees and Hamilton cycles, *J. Graph Theory* 29 (1998), 227–237.

[2] Chen, Y., Chen, G., Hu, Z.: Spanning 3-ended trees in k-connected $K_{1,4}$-free graphs, *Sci. China Math.* 57 (2014), 1579–1586.

[3] Chen, Y., Ha, P. H., Hanh, D. D.: Spanning trees with at most 4 leaves in $K_{1,5}$-free graphs, *Discrete Math.* 342 (2019), 2342-2349.

[4] Diestel, R.: Graph Theory, 3rd Edition, Springer, Berlin, 2005.

[5] R. Gould and W. Shull: On spanning trees with few branch vertices, *Discrete Math.* 343, Issue 1 (2020), 111581.

[6] Ha, P. H., A note on the independence number, connectivity and k-ended tree, *Discrete Applied Mathematics* 305 (2021), 142-144.

[7] Ha, P. H., Hanh, D. D.: Spanning trees of connected $K_{1,t}$-free graphs whose stems have a few leaves, *Bull. Malays. Math. Sci. Soc.* 43 (2020), 2373-2383.
[8] Ha, P. H., Hanh, D. D., Loan, N. T.: Spanning trees with few peripheral branch vertices, *Taiwanese J. Math.*, Vol. 25, No. 3 (2021), pp. 435-447.

[9] Ha, P. H., Hanh, D. D., Loan, N. T., Pham, N. D.: Spanning trees whose reducible stems have a few branch vertices, *Czech Math J.* 71 (146) (2021), 697-708.

[10] Hanh, D. D.: Spanning trees with few peripheral branch vertices in a connected claw-free graph, *preprint*.

[11] Kano M., Kyaw, A., Matsuda, H., Ozeki, K., Saito, A., Yamashita, T.: Spanning trees with a bounded number of leaves in a claw-free graph, *Ars Combin.* 103 (2012), 137–154.

[12] Kano, M., Yan, Z.: Spanning trees whose stems have at most k leaves, *Ars Combin.* CXIV (2014), 417-424.

[13] Kano, M., Yan, Z.: Spanning trees whose stems are spiders, *Graphs Combin.* 31 (2015), 1883-1887.

[14] Kyaw, A.: Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs, *Discrete Math.* 309 (2009), 6146–6148.

[15] Kyaw, A.: Spanning trees with at most k leaves in $K_{1,4}$-free graphs, *Discrete Math.* 311 (2011), 2135–2142.

[16] Las Vergnas, M.: Sur une propriété des arbres maximaux dans un graphe, *C. R. Acad. Sci. Paris Ser. A* 272 (1971), 1297–1300.

[17] Maezawa, S., Matsubara, R., Matsuda, H.: Degree conditions for graphs to have spanning trees with few branch vertices and leaves, *Graphs Combin.* 35 (2019), 231–238.

[18] Tsugaki, M., Zhang, Y: Spanning trees whose stems have a few leaves, *Ars Combin.* CXIV (2014), 245-256.

[19] Yan, Z.: Spanning trees whose stems have a bounded number of branch vertices. *Discuss. Math. Graph Theory* 36 (2016), 773-778.

[20] Win, S.: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. *Resultate Math.* 2 (1979), 215–224.