Genome-wide association studies have identified numerous loci linked with complex diseases, for which the molecular mechanisms remain largely unclear. Comprehensive molecular profiling of circulating metabolites captures highly heritable traits, which can help to uncover metabolic pathophysiology underlying established disease variants. We conduct an extended genome-wide association study of genetic influences on 123 circulating metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925 individuals and identify eight novel loci for amino acids, pyruvate and fatty acids. The LPA locus link with cardiovascular risk exemplifies how detailed metabolic profiling may inform underlying aetiology via extensive associations with very-low-density lipoprotein and triglyceride metabolism. Genetic fine mapping and Mendelian randomization uncover wide-spread causal effects of lipoprotein(a) on overall lipoprotein metabolism and we assess potential pleiotropic consequences of genetically elevated lipoprotein(a) on diverse morbidities via electronic health-care records. Our findings strengthen the argument for safe LPA-targeted intervention to reduce cardiovascular risk.
A n understanding of the genetic factors involved in systemic metabolism and their associations with chronic disease is a key objective, as large disease consortia have now uncovered numerous variants associated with metabolic diseases. Metabolic phenotypes serve as good intermediate traits for a genome-wide association study (GWAS) and blood metabolites can be potentially used to discover genetic determinants of circulating metabolites, and particularly to understand the metabolic context of disease-associated genetic variants. Advances in nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry have enabled analytical techniques that can provide hundreds of quantitative metabolic measures from large biological sample collections. GWAS meta-analysis of metabolic measures from these methodologies have been performed, however, the sample sizes have only reached several thousand, which is still modest compared with disease consortia studies. The size of previous GWASs utilizing several thousand, which is still modest compared with disease consortia studies. The size of previous GWASs utilizing several thousand, which is still modest compared with disease consortia studies. The size of previous GWASs utilizing several thousand, which is still modest compared with disease consortia studies. The size of previous GWASs utilizing several thousand, which is still modest compared with disease consortia studies.

To overcome the challenge of small sample size, we perform an expanded GWAS from our previous study by combining up to 24,925 individuals in a meta-analysis of 123 metabolic measures. We discover eight new loci for circulating metabolites. We focus on a new metabolite association with variants in LPA, a known coronary heart disease (CHD) risk locus. We follow up the novel association by constructing a strong genetic risk score for LPA and use the risk score for the molecular characterization of the metabolic effects of Lp(a) synthesis and assessment of causality for the metabolic associations. Finally, we perform reverse genetics using electronic health records together with the genetic risk score to test if LPA targeting treatment for reducing CHD risk would be associated with potential strong comorbidities. To conclude, we demonstrate how intermediate phenotypes can provide new biological information for known disease loci and how large multi-omics biobank data could be used to inform drug discovery already at an early stage.

Results

Genome-wide association study. Using the additive genetic model, we tested for univariate associations between genome-wide single-nucleotide polymorphism (SNP) panels imputed to 39 million genetic markers and 123 human blood lipid and metabolite concentrations quantified by high-throughput NMR spectroscopy metabolomics (Supplementary Table 1 for trait information, Methods for analysis details) in 14 genotyped data sets derived from ten European studies (Fig. 1) for up to 24,925 individuals (Table 1 for study characteristics, Supplementary Table 2 for study details and Supplementary Notes 1 for study descriptions). Cohorts were analysed individually and summary statistics were combined in a meta-analysis (Methods). Up to 12,133,295 SNPs, small insertions and deletions were included in the meta-analysis after applying quality control filters. All meta-analysis results are available through URL: http://www.computationalmedicine.fi/data/NMR_GWAS/. To correct for multiple testing, genome- and metabolome-wide statistical significance was set to $P < 2.3 \times 10^{-9}$, where the standard genome-wide significance level (5×10^{-8}) is divided by the number of principal components (22) that explain over 95% of variation in the metabolomics data. Overall, 62 loci were significantly associated with at least one metabolic measure. Supplementary Fig. 1 presents the associations in 2 Mb windows around the strongest individual variant for the 62 loci. The forest plots for all 62 lead variant associations are shown in Supplementary Fig. 2. We tested if the identified 62 loci harboured additional independent

Figure 1 | A genome-wide association study for circulating metabolites. Study was conducted to elucidate the genetic variation of systemic metabolism and to discover new metabolic associations in established loci. We also revealed an intriguing novel relation between Lp(a) and systemic triglyceride and VLDL metabolism. Thereby, we highlighted the LPA locus and generated the best possible Lp(a) genetic risk score (GRS_{Lp(a)}) that enabled us to clarify causal associations between Lp(a) and systemic triglyceride and lipoprotein metabolism. Further, with the aid of extensive electronic health-care records, we were able to use the GRS_{Lp(a)} to show that Lp(a) is associated with ischaemic heart disease but not strongly with other morbidities. Put together, these findings suggest safe molecular intervention on LPA mRNA to reduce cardiovascular risk.

Hypothesis-free discovery	New biology for known loci
GWAS for metabolic measures	LPA SNP vs metabolic measures
Up to 24,925 individuals from 14 European cohorts	Strong associations with VLDL and triglyceride metabolism*
8 Novel loci*	Can we make a good genetic instrument for Lp(a)?
54 associations with known loci	Genetic risk score GRS_{Lp(a)}
GRS_{Lp(a)} explains 45% of variation of circulating Lp(a)*	Is the genetic risk score associated with other morbidities?
How does Lp(a) affect metabolism?	Electronic health records
Lp(a) vs metabolic measures	GRS_{Lp(a)} associates strongly only with CHD*
Mendelian randomization	Safe molecular intervention on LPA mRNA to reduce cardiovascular risk*

*NNew finding

Variants	Locus	Phenotype	Association
Invariants	54 associations	Known loci	8 Novel loci
New biology	62 loci	Significance	45% variation

In 9 out of the 62 loci (PCSK9, LPL, PPM1K, HAL, CETP, CIPL, PLTP, APOB and LIPC), we found a secondary statistically independent association, in 2 of these loci (APOB and LIPC), we found a third independent variant and LIPC additionally harboured a fourth independent variant (Supplementary Table 3 and Methods). The formal conditional testing was first performed in a subset of cohorts and after conditioning with significant variants, the resulting lead variant was then tested using the genomic correlation structure information and summary statistics (Methods). Our correlation structure was obtained from the Finnish population that has longer linkage disequilibrium structure than more outbred populations and as a result our discovered number of independent variants may be an underestimate. The strength of our approach was to first optimize the variance explained by the next best variant. However, our approach may result in an underestimate of the number of independent variants in a locus, as the variant that explains largest proportion of variance in a trait may be tagging two or more functional variants. In contrast, if the independent variant detection relied only on correlation structure and summary statistics, it may result in a gross overestimate on the number of independent variants in a locus if data are imputed with 1,000
Genomes reference panel. This is because an algorithm based on r-squared between markers does not perform well with rare or low-frequency variants. Overall, this resulted in a total of 74 variants that were independently associated with one or more of the 123 metabolic traits. We estimated the proportion of variance explained by these 74 variants on the metabolic traits (Supplementary Table 4). The eight loci that have not previously been associated with the same or similar metabolic measures in population samples are listed in Table 2. Six of the eight novel loci were associated with the blood concentration of amino acids, one with pyruvate and one with polyunsaturated fatty acids. The glycine decarboxylase (GLDC) on chromosome 9q24.1 (rs140348140, \(P = 3.7 \times 10^{-40}\)) and glycine cleavage system protein H (GCSH) on chromosome 16q23.2 (rs10083777, \(P = 3.0 \times 10^{-13}\)) gene regions showed association with glycine concentrations. In addition, rs10083777 was associated with the expression of GCSH in the tibial nerve in the GTEx data (Supplementary Table 5). As a potential limitation, because of GTEx still being in pilot phase, we cannot assess if the variant is also associated with the population level.

Table 2 | Novel significant loci identified in the GWAS.

Trait	Variant identifier Chr Position	ea/nea	Eaf Beta s.e.	P-value	Q P-value	\(N\) samples	Candidate gene eQTL Function					
Glycine	chr1:259005336-D	3	125905336	A/ACCT	0.40 0.07 0.01	1.1 \times 10^{-9}	0.03	17,541	SLC4A13	—	TFBS	
Glycine	rs140348140	9	5877295	TA/T	0.05 0.33 0.03	3.7 \times 10^{-40}	4.7 \times 10^{-6}	17,535	GLDC	—	—	
ofPUFA	rs186183604	11	67128733	A/G	0.04 0.24 0.04	3.2 \times 10^{-11}	0.71	13,545	CCL3	—	Intron:LOC100130997	
Alanine	rs5454979	12	47201814	G/A	0.64 0.07 0.01	6.1 \times 10^{-10}	0.76	24,792	SLC3A44	—	Intron	
Histidine	rs79954638	12	96314795	A/C	0.48 0.08 0.01	7.3 \times 10^{-15}	0.53	19,249	HAL	AMIDH	Intron:CCDC38	
Histidine	rs1998848	12	21492229	A/G	0.05 0.15 0.02	4.9 \times 10^{-10}	0.06	19,239	NDRG2	—	TFBS/5'UTR	
Pyruvate	rs74249299	16	69979271	T/C	0.05 0.15 0.02	2.1 \times 10^{-11}	0.17	23,561	PDKR	—	—	
Glycine	rs10083777	16	81065282	T/C	0.17 0.11 0.01	3.0 \times 10^{-13}	0.92	18,732	GCSH	GCSH, ATMIN, LOC102724235	—	TFBS

Beta, effect estimate; ea, effect allele; Eaf, effect allele frequency; eQTL, expression quantitative trait locus from GTEx; GWAS, genome-wide association study; nea, non-effect allele; ofPUFA, polyunsaturated fatty acids (other than 18:2); Q, heterogeneity statistics; TFBS, transcription factor-binding site.

If the SNP is located in an intron of a different gene than the candidate, then the gene is presented in the Function column after semicolon.

Beta refers to one copy addition of the effect allele in s.d. units.
Known loci and LPA association. In addition to the new loci discovered, we found significant SNPs spread in 54 loci that have already been associated with the same or related metabolic measures as presented in the catalogue of published GWASs\(^1\) or recently discovered\(^5\) (Supplementary Table 4). We then went through the loci that had been associated with similar metabolic traits compared with the prior published findings to pinpoint potential novel biological functions for the already known loci. Here, we noted that the Lp(a)-raising allele rs10455872-G located in the intron of \(LPA\) was associated with a smaller diameter of very-low-density lipoprotein (VLDL) particles \((P = 1.3 \times 10^{-12})\). This allele was also associated with lower concentrations of extra-large, large and medium VLDL particles (Fig. 2). This metabolic link found between circulating Lp(a) with VLDL metabolism is novel. Lp(a) is thought to be comprised of an low-density lipoprotein (LDL) particle and a covalently bound protein product of the \(LPA\) gene, apo(a). Although the same variant in the \(LPA\) locus has been associated with LDL and total cholesterol in over 100,000 individuals\(^10\), our association in this study had nearly twice the effect estimate for the VLDL associations using stepwise incremental conditioning (Supplementary Methods). Both studies had standardized values and compared effect estimates were in standard deviation units. The \(LPA\) locus is known for its association with CHD risk\(^11,12\) and the genetic variants associated with higher CHD risk are also associated with higher Lp(a) concentrations\(^13\) making it a potentially important drug target for CHD. Furthermore, the Lp(a) increasing allele rs10455872-G has also been shown to reduce statin response, which implies that LPA targeting treatment could also potentially improve statin efficacy\(^14,15\).

Genetic risk score for LPA and metabolite associations. We have discovered new and stronger metabolic associations for a known important CHD risk locus than identified previously\(^10\). This intriguing finding directed us to fine map the genetic architecture of Lp(a) in order to generate the best possible Lp(a) genetic risk score \((GRS_{Lp(a)})\) that would enable us to clarify associations with the intricate aspects of lipoprotein metabolism. The gene score was generated by performing GWAS on circulating Lp(a) levels in FINRISK\(^97\) \((N = 4,935)\) using stepwise incremental conditioning (Supplementary Methods). The resulting gene score consisted of 18 independent genetic variants located near the \(LPA\) gene and associated with Lp(a) at genome-wide significance \((P < 5 \times 10^{-8})\). All 18 SNPs were further replicated for circulating Lp(a) in The Cardiovascular Risk in Young Finns Study (YFS; \(N = 2,022\), Supplementary Table 6).
The effect estimate weighted gene score explained 54% of Lp(a) variation in the discovery and 45% in the replication cohort. Notably, the effect estimates for the 18 variants were generally larger in the replication cohort, which might be reflective of the different assay methods used (Supplementary Table 5). We then assessed whether the metabolic associations were strengthened by the better instrument for genetically elevated Lp(a) by meta-analysing risk score associations with the metabolic measures in FINRISK97 and YFS (Fig. 3). The strongest association for the GRS_{Lp(a)} was again with the diameter of VLDL particles (P = 8.6 × 10^{-47}, N = 7,365, Supplementary Data 1 for all associations in both individuals cohorts). We used Mendelian randomization16 to evaluate causality of Lp(a) for metabolic disturbances (Supplementary Methods and Fig. 3); the detailed lipoprotein measures and circulating Lp(a) levels were available in the FINRISK97 and YFS cohort for 4,889 and 1,991 individuals, respectively. The similar association pattern between observational associations and causal effect estimates strongly support that Lp(a) synthesis is causally altering lipoprotein concentrations (observational associations and instrumental variable estimates for the metabolites are presented in Fig. 3, and Supplementary Data 1). These findings suggest, maybe somewhat surprisingly, that Lp(a) synthesis widely affects overall lipoprotein metabolism, and in particular, the synthesis of large VLDL particles in the liver and thereby the triglyceride metabolism in general. Based on these results, we propose that the apoB-containing lipoprotein particle used to form Lp(a) by the covalent attachment of apo(a), may actually also be a poorly lipidated VLDL-type of particle. This suggests that circulating Lp(a) particles are likely to be a more heterogeneous group than simply an apo(a) component added to LDL particles27.

LPA genetic risk score with electronic health records. Although several pharmaceutical agents are known to cause a modest decrease of circulating Lp(a), no drugs exist yet to effectively lower Lp(a)18. Statins do not lower the risk due to Lp(a) as statin use was not associated with a change in Lp(a) levels in a study by Cobbaert et al.19 and the JUPITER trial showed that Lp(a) was a significant predictor of residual risk in participants treated with potent statin therapy20. However, an antisense oligonucleotide targeting LPA mRNA was shown to effectively lower circulating Lp(a) in a phase 1 trial21 and is now in phase 2 trial (ClinicalTrials.gov Identifier: NCT02160899). The pharmacological use still depends on whether the LPA expression modifying treatment would be associated with unintended side effects. Since we were able to derive an exceptionally strong genetic risk score with electronic health records (Supplementary Methods and Fig. 3): the detailed lipoprotein measures and circulating Lp(a) levels were available in the FINRISK97 and YFS cohort for 4,889 and 1,991 individuals, respectively. The similar association pattern between observational associations and causal effect estimates strongly support that Lp(a) synthesis is causally altering lipoprotein concentrations (observational associations and instrumental variable estimates for the metabolites are presented in Fig. 3, and Supplementary Data 1). These findings suggest, maybe somewhat surprisingly, that Lp(a) synthesis widely affects overall lipoprotein metabolism, and in particular, the synthesis of large VLDL particles in the liver and thereby the triglyceride metabolism in general. Based on these results, we propose that the apoB-containing lipoprotein particle used to form Lp(a) by the covalent attachment of apo(a), may actually also be a poorly lipidated VLDL-type of particle. This suggests that circulating Lp(a) particles are likely to be a more heterogeneous group than simply an apo(a) component added to LDL particles27.

Figure 3 | Evaluation of the causative role of the Lp(a) on the circulating metabolic measures via Mendelian randomization.

Yellow linear regression estimates are observational associations, blue are GRS_{Lp(a)} estimates and red are the causal effect estimates. Those metabolic traits are listed for which the associations in the meta-analysis were significant with genome-wide threshold (P < 2.3 × 10^{-5}). Metabolite abbreviations are given in Supplementary Table 1.

Discussion

In this study, detailed molecular profiles of circulating metabolites were analysed for almost 25,000 individuals to increase thereby strengthening the evidence that no strong common disease co-morbidities are caused by Lp(a). However, these reverse genetic analyses prevent conclusions for rare disease events or weak association for common diseases. In addition, the Hospital Discharge Register Diagnoses are non-validated outcomes and this may reduce our power to detect associations. However, the general validity of the Finnish Hospital Discharge Register Diagnoses has been examined in numerous studies and found to be good23. Nevertheless, these novel findings support the notion that lowering circulating Lp(a) levels would be a suitable therapeutic target to reduce residual CHD risk, and that LPA targeting therapy could be a beneficial addition to statin treatment.
knowledge on genetic regulation of systemic metabolism. Our main findings were twofold. First, a discovery of eight new genetic loci for circulating metabolites and fatty acids. The new associated loci contained either transporters or enzymes closely involved in the metabolism or trafficking of the associated metabolite as shown in Table 2. These new data are now available to be used to study the potential causality of a plethora of biomarkers and to better understand the intricate metabolic effects of known risk factors. Second, in the search for new metabolic pathways in relation to known disease-associated variants, we found that a known CHD-associated variant near LPA was linked with circulating triglycerides and VLDL metabolism. Because of these new metabolic findings for this particular variant, we focused on this region and fine mapped the genetic architecture of Lp(a). In fact, we were able to generate a gene score that explained over 45% of the variation in Lp(a) in the replication cohort. The metabolic associations were strengthened with the stronger genetic instrument. Subsequently, we used the genetic risk score in Mendelian randomization to show that the discovered novel effects of Lp(a) on triglyceride and triglyceride metabolism were causal. Furthermore, we now had a strong genetic risk score for Lp(a), which could be used for reverse genetics in combination with electronic health records. Intriguingly, according to extensive electronic health record data, the genetic variation in LPA appears to be associated with ischaemic heart disease but not with other common adverse disease events. Thus, our results provide the first evidence of the potential consequences to lipoprotein metabolism when people are treated with emerging drugs (a phase 2 trial for LPA mRNA antisense oligonucleotides is currently active (ClinicalTrials.gov Identifier: NCT02160899)). Our findings also provide support that the treatment may well be suitable for CHD risk reduction and is likely to be free of other strong morbidities. This study also serves as a proof of concept in terms of how large multitissue biobank data could be efficiently used to inform drug discovery at an early stage.

Methods

Metabolite quantification. This work is an extension of our previous GWA-metabolomics study, in which the quantitative high-throughput NMR metabolomics method, used to quantify human blood metabolites, was applied. In this study, we have utilized the same platform to quantify 123 metabolite measures that represent a broad molecular signature of systemic metabolism. The metabolite set covers multiple metabolic pathways, including lipoprotein lipids and subclasses, fatty acids as well as amino acids and glycolysis precursors. Most of the NMR-based metabolomics analyses were performed with the comprehensive quantitative serum/plasma platform described originally by Soininen et al.24 and reviewed recently25. This same platform was used here to analyse samples in Estonian Genome Center of University of Tartu (EGCUT), Finnish Twin Cohort, a subsample of FINRISK 1997 (FR97), Genetic Predisposition of Coronary Heart Disease in Patients with Coronary Angiogram (COROGENE), Genetics of METabolic Syndrome, Helsinki Birth Cohort Study (HBCS), Cooperative Health Research in the Region of Augsburg (KORA), Northern Finland Birth Cohort 1966 (NFBC 1966), FINRISK subsample of incident cardiovascular cases and controls (PredictCVD), EGCUT sub-cohort (PROTE) and YFS. Metabolite-specific untransformed distributions and descriptive summary statistics from the largest cohort, NFBC 1966, are presented in Supplementary Fig. 3. Chemical shifts and the coefficients of variation for inter-assay variability are presented in Supplementary Data 3 for each metabolite. Here, the study was extended with Erasmus Rucphen Family Study (ERF), Leiden Longevity Study (LLS) and Netherlands Twin Register (NTR) cohorts for which the small-molecule information was available from another NMR-based method (Supplementary Table 2 for details). Metabolite-specific untransformed distributions and descriptive summary statistics for these measures from the ERF cohort are given in Supplementary Fig. 4. Chemical shifts and the coefficients of variation for inter-assay variability are presented in Supplementary Table 7. The sample material was mostly serum, except for EGCUT, PROTE, NTR and LLS in which the sample material was EDTA-plasma. The ERF cohort had additional lipoprotein measures available through the method developed by Bruker Ltd. (https://www.bruker.com/fileadmin/user_upload/Red-Letter-Deadline/MagneticResonance/Lipometrix/lipo-analysis_apps.pdf). The terminology of this method utilized for lipoprotein analyses in ERF was matched based on the lipoprotein particle size with the comprehensive quantitative serum/plasma platform to enable meta-analyses. The vast majority of blood samples were fasting, however, if a study did not have overnight fasting samples, we included the fasting time as a covariate in the analysis and fitted a smoothed spline to adjust for fasting. All metabolites were first adjusted for age, sex, time from last meal, if applicable, and ten first principal components from genomic data and the resulting residuals were transformed to normal distribution by inverse rank-based normal transformation.

Genome-wide association study. We performed a GWAS for metabolites from 14 cohorts from Europe, totaling up to 24,925 individuals (cohorts are described in Table 1, Supplementary Table 2 and Supplementary Notes 1) to include as many samples with NMR metabolite data and genome-wide SNP array data as possible. Written informed consent was obtained from all participants. Studies were approved by the following ethical committees: Ethical Committee of Oulu University Faculty of Medicine for NFBC 1966; Ethics Committee of the National and University Health Institute in Hungary; the Helsinki University Hospital Coordinating Ethical Committee for FINRISK and Twins; The KORA studies have been approved by the ethics committee of the Bavarian Medical Association; NTR, Central Ethics Committee on Research Involving Human Subjects of the VU University Medical Center, Amsterdam; EGCUT, Ethics Review Committee on Human Research of the University of Tartu; ERF, medical ethics board of the Erasmus MC Rotterdam, the Netherlands; LLS, Medical Ethical Committee of the Leiden University Medical Centre; and Ethics Committee of the Hospital District of Southwest Finland for YFS. Individuals under lipid-lowering medication or pregnant were excluded from the analyses. FINRISK cohorts included genotype batches over the following studies: COROGENE, DILGOM, FINRISK, KORSAK, KORA YFS, PROTE and YFS genotype batches included in this study: EGCUT and PROTE. Genotype batches were analysed separately. We used an additive model implemented in analysis software (Supplementary Table 2) for each cohort. All studies were approved by local ethics committees. SNPs were imputed using in silico imputation a 1000 Genomes Project March 2012 release as described in Supplementary Table 2 (ref. 27). The genomic positions used throughout this study are human genome build 39. Each cohort was analysed separately and SNPs with accurate imputation (proper info >0.4) and minor allele count > 3 were combined in fixed-effects meta-analysis using double genomic control correction, that is, both individual level and meta-analysis results were corrected for the genomic inflation factor as implemented in GWAMA28. Variants, after filtering and meta-analysis, present in more than seven studies were considered for the final results. A genome-wide significance level was set to 2.27 × 10^-8 correcting for 22 independent tests as the metabolite data are correlated (standard genome-wide significance threshold of 5 × 10^-8/22, the number of principal components explaining over 95% of the variance in the metabolomics data). The number of independent tests was derived from the number of principal components that explain over 95% of variation in the metabolite data. All traits gave genomic inflation factors in the meta-analysis less than 1.034 showing that there was little evidence of systematic bias in the test statistics. Quantile plots for measurements listed in Supplementary Table 1 are presented in Supplementary Fig. 5.

Conditional analyses and proportion of variance explained. We conducted an initial formal conditional analysis for each of the 62 significant loci. We performed an association test for all SNP—trait pairs in a 2- or 4-Mb window around the lead SNP. The 4-Mb window was used for seven loci where the association peak was so wide that it spanned over the 2-Mb window, as in the case of CPS1 loci. The associations in each window were first screened in the seven Finnish cohorts only. The lead SNP—trait pair was then analysed using the meta-analysis summary statistics and correlation structure from the FINRISK—cohort to adjust for the correlation between the lead SNP and possible secondary variant using the method proposed by Yang et al.29. Further association was similarly adjusted for correlation between preceding variants. The proportion of variance explained was calculated based on the summary statistics for each trait accounting for all independent SNPs from the primary meta analysis and conditional analyses that were significant at the pre-specified threshold (P = 2.27 × 10^-8) for that trait.

GTEx eQTL analyses. We investigated whether the lead SNPs of our associated loci were also linked with the expression levels of nearby genes by querying the multi-tissue gene expression resource from The GTEx project30. The project, data collection and analysis method recently described in detail, was based on the pilot data set of the GTEx Project (dbGaP accession number phs000422.v3.p1) provides expression data for multiple tissues from up to 156 densely genotyped individuals per tissue. The eQTL analysis was focused on nine tissues having greater than 80 samples (Adipose—Subcutaneous, Artery—Tibial, Heart—Left Ventricle, Lung, Muscle—Skeletal, Nerve—Tibial, Skin—Sun Exposed Lower leg, Thyroid and Whole Blood) and genes expressed at least 0.1 reads per kilobase per million mapped reads (RPKM) in two or more individuals in a given tissue. For this paper, cis-eQTLs were calculated for those 57 independent SNPs from the association analysis that had minor allele frequency (MAF) > 5% in the GTEx data using a cisdetect tool (http://www.broadinstitute.org/annotation/gsa/analysis/mapping/mbachip/cis-eQTL.html) from the Bioconductor. Briefly, the pilot data set of the GTEx Project (dbGaP accession number phs000422.v3.p1) provides expression data for multiple tissues from up to 156 densely genotyped individuals per tissue. The eQTL analysis was focused on nine tissues having greater than 80 samples (Adipose—Subcutaneous, Artery—Tibial, Heart—Left Ventricle, Lung, Muscle—Skeletal, Nerve—Tibial, Skin—Sun Exposed Lower leg, Thyroid and Whole Blood) and genes expressed at least 0.1 reads per kilobase per million mapped reads (RPKM) in two or more individuals in a given tissue. For this paper, cis-eQTLs were calculated for those 57 independent SNPs from the association analysis that had minor allele frequency (MAF) > 5% in the GTEx data using a cisdetect tool (http://www.broadinstitute.org/annotation/gsa/analysis/mapping/mbachip/cis-eQTL.html) from the Bioconductor. Briefly, in each population, the number of independent samples that were present for the lead SNP was determined and the eQTL analysis was performed for each tissue in each population in order to find associated loci. The selection of tissues was based on the number of samples (at least 80) and the number of genes with expression values (at least 0.1 reads per kilobase per million mapped reads (RPKM)) in the GTEx data. The tissues included in the analysis were Adipose—Subcutaneous, Artery—Tibial, Heart—Left Ventricle, Lung, Muscle—Skeletal, Nerve—Tibial, Skin—Sun Exposed Lower leg, Thyroid and Whole Blood. The expression values were log2 transformed. The association analysis was performed using the Matrix-eQTL R package31 in linear regression mode correcting for sex, the first 15 probabilistic estimation of
expression residual factors, and the first three principal components from the genome-wide significance were iteratively added to the GWAS for natural logarithm transformed Lp(a) in FINRISK97 using sex, age and minor allele frequency > 0.5% were considered. All 18 independent variants identified in FINRISK97 were replicated in the independent YFS cohort (Supplementary Data 1).

We used weighted effect estimates from FINRISK97 to generate a gene score for Lp(a) and tested the proportion of variance explained in the FINRISK97 discovery and YFS replication cohorts. We also tested the association between the Lp(a) gene score and metabolites using linear regression adjusted for the same covariates as for the GWAS.

Causality estimates for Lp(a) on lipoprotein metabolism. We used natural logarithm to transform the Lp(a) distribution and performed linear regression to test for association between Lp(a) and metabolites using linear regression adjusted for the same covariates as for the GWAS. As the effect estimates in the circulating Lp(a) were larger than in YFS, we tested if differences in fasting time could account for the differences—participants in FINRISK97 were only instructed to fast 4 h before the blood samples in contrast to overnight fasting in YFS. We observed no differences in the effect estimates between fasting over 8 h (N = 4,269) or fasting less than 8 h (N = 620) subgroups (β = 0.40 for both groups) in FINRISK97.

Causal estimates of Lp(a) on metabolite measures were assessed by two-stage least-squares regression with the Lp(a) gene score as instrument. To enable comparison between the observational and causal effect estimates from these Mendelian randomization analyses, Lp(a) and metabolites had been corrected and transformed as in the GWAS. Observational associations, genetic risk score associations and instrumental variable estimates from FINRISK97 and YFS were combined with inverse variance weighted meta-analysis.

Reverse genetics for LPA with nationwide electron health records. The gene score for Lp(a) was tested in the FINRISK field studies conducted in 1992, 1997, 2002 and 2007 for association with any disease event leading to hospitalization or death in Finland during January 1987 to December 2010. PredictCVD, COROGENE, FR97 and additional illumina core-genome genotyped sample of 9,906 FINRISK individuals were combined after imputation to form as complete and an unrelated data set as possible from FINRISK-samples. Genetic principal components were generated from the combined genotyped SNPs to account for population stratification and also to exclude related individuals. Mappings (ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD10CM/2011/), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.

Testing of the Lp(a) gene score against disease events was conducted by logistic regression, using the gene score as a predictor and ever-occurrence of a disease from 1987 onwards as a binary outcome, with adjustment for sex, age at end-of-follow-up, study-collection-year and the first four principal components from the circulatory system (I00-I99), including combination codes. All diagnosis conversions were further verified according to the mapping scheme provided by the New Zealand Ministry of Health, National Data Policy Group (http://www.health.govt.nz/system/files/documents/pages/masterf4.xls). Manual curation of the conversion was conducted for diagnoses with mismatch in the cros-reference to the degree of three digits.
Johannes Kettunen1,2,3,4, Ayşe Demirkan5,6,†, Peter Würt1, Harmen H.M. Draisma7,8,9, Toomas Haller10, Rajesh Rawal11,12, Anika Vaarhorst13, Antti J. Kangas1, Leo-Pekka Lyytikäinen14, Matti Pirinen15, René Poq7,8, Antti-Pekka Sarin2,15, Pasi Soininen1,3, Taru Tukiaimen16,17,18, Qin Wang13, Mika Tiainen13, Tuulia Tynkkynen13, Najaf Amin6, Tanja Zeller19,20, Marian Beckman13, Joris Deelen13, Ko Willems van Dijk5,21,22, Rene Pool7,8, Markku J. Savolainen4,26, Aswin Verhoeven27, Jorma Viikari28, Gonneke Willemsen7,8, Dorret I. Boomsma7,8, Cornelia M. van Duijijn24, Johan Eriksson2,22,29,30, Antti Jula2, Marijo-Riitta Järvelin4,31,32,33, Jaakko Kari5,25,26,27,28,39,40,*, Andres Metspalu10, Olli Raitakari35,36, Veikko Salomaa2, P. Eline Slagboom13, Melanie Waldenberger11,12, Samuli Ripatti2,15,22,23,27,*, & Mika Ala-Korpela1,3,4,38,39,40,*.

Author contributions

J.K., A.D., P.W.C., S.R. and M.A.K.-A. wrote the manuscript. J.K., A.D., P.W., H.H.M.D., T.H.H., R.R., Ta.T., A.P.S. and A.V. performed the statistical analyses. A.J.K., L.P.L., M.P.J., R.P., P.S., Q.W., M.T., Ta.T., N.A., T.Z., M.B., J.D., K.W. van D., T.E., J.-H.J., E.M. van L., T.L., E.M., R.J.R., A.J.M. de C., A.V.e., J.V., G.W., D.I.B., C.M. van D., J.E., A.J., M.-R.J., J.K.a., A.M., O.R., V.S., P.E.S., M.W., C.G., M.K., M.P.e., S.B. and M.S. gave critical comments regarding the manuscript. J.K., S.R. and M.A.K. supervised the research. A.J.K., L.P.L., M.P.J., R.P., P.S., Q.W., M.T., Ta.T., N.A., T.Z., M.B., J.D., K.W. van D., T.E., J.-H.J., E.M. van L., T.L., E.M., R.J.R., A.J.M. de C., A.V.e., J.V., G.W., D.I.B., C.M. van D., J.E., A.J., M.-R.J., J.K.a., A.M., O.R., V.S., P.E.S., M.W., C.G., M.K., M.P.e., S.B. and M.S. gave critical comments regarding the manuscript. J.K., S.R. and M.A.K. supervised the research. Antti J. Kangas1, Leo-Pekka Lyytikäinen14, Matti Pirinen15, René Poq7,8, Antti-Pekka Sarin2,15, Pasi Soininen1,3, Taru Tukiaimen16,17,18, Qin Wang13, Mika Tiainen13, Tuulia Tynkkynen13, Najaf Amin6, Tanja Zeller19,20, Marian Beckman13, Joris Deelen13, Ko Willems van Dijk5,21,22, Rene Pool7,8, Markku J. Savolainen4,26, Aswin Verhoeven27, Jorma Viikari28, Gonneke Willemsen7,8, Dorret I. Boomsma7,8, Cornelia M. van Duijijn24, Johan Eriksson2,22,29,30, Antti Jula2, Marijo-Riitta Järvelin4,31,32,33, Jaakko Kari5,25,26,27,28,39,40,*, Andres Metspalu10, Olli Raitakari35,36, Veikko Salomaa2, P. Eline Slagboom13, Melanie Waldenberger11,12, Samuli Ripatti2,15,22,23,27,*, & Mika Ala-Korpela1,3,4,38,39,40,*.
Turku University Hospital, PB 52, 20521 Turku, Finland. 29 Department of General Practice and Primary Health Care, University of Helsinki, PL 20, Tukholmankatu 8B, Helsinki 00029, Finland. 30 Folkhälsan Research Centre, Helsingfors Universitet, PB 63, Helsinki 00014, Finland. 31 Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK. 32 Center for Life Course and Systems Epidemiology, Faculty of Medicine, University of Oulu, PL 5000, 90014 Oulu, Finland. 33 Unit of Primary Care, Oulu University Hospital, P.O. Box 20, OYS, Oulu 90029, Finland. 34 Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, PO Box 30 (Mannerheimintie 166), Helsinki 00300, Finland. 35 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinanmyllynkatu 4-8, Turku 20521, Finland. 36 Department of Clinical Physiology, Turku University Hospital, Kiinanmyllynkatu 4-8, Turku 20521, Finland. 37 Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. 38 Oulu University Hospital, Kajaanintie 50, Oulu 90220, Finland. 39 Computational Medicine, School of Social and Community Medicine, University of Bristol, Senate House, Tyndall Avenue, Bristol, Bristol BS8 1TH, UK. 40 Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, Bristol BS8 1TH, UK. * These authors contributed equally to this work. † Present address: LUMC, Building 2, Einthovenweg 20, 2333 ZC Leiden (A.D.); (K.W.v.D).