Photon propagation in Einstein and
Higher Derivative Gravity

Subhendra Mohanty and A.R. Prasanna
Physical Research Laboratory
Ahmedabad 380 009, India

Abstract

We derive the wave equation obeyed by electromagnetic fields in curved spacetime. We find that there are Riemann and Ricci curvature coupling terms to the photon polarisation which result in a polarisation dependent deviation of the photon trajectories from null geodesics. Photons are found to have an effective mass in an external gravitational field and their velocity in an inertial frame is in general less than c. A physically relevant consequence of the analysis is that the curvature corrections to the propagation of electromagnetic radiation (in a homogenous and isotropic spacetime) keep the velocities subluminal provided the strong energy condition is satisfied. We further show that the claims of superluminal velocities in higher derivative gravity theories are erroneous and arise due to the neglect of Riemann and Ricci coupling terms in the wave equation, of Einstein gravity.
A standard result of Einstein’s gravity is that the trajectories of all massless particles are null geodesics. A question worth examining is whether there is a deviation from the null geodesics if the particles have a spin i.e. due to the interaction of spin with the Riemann and Ricci curvatures of the gravitational fields. In this paper we have studied this question for the case of photon propagation in a curved background. Starting with the action $\sqrt{-g} F_{\mu \nu} F^{\mu \nu}$ for electromagnetic fields in a gravitational field, we derive the wave equation for electromagnetic field tensor $F_{\mu \nu}$, which turns out to be of the form (Eddington [1], Noonan [2])

$$\nabla^\mu \nabla_\mu F_{\nu \lambda} + R_{\rho \mu \nu \lambda} F^{\rho \mu} - R^\rho_\lambda F_{\nu \rho} + R^\rho_\nu F_{\lambda \rho} = 0$$

(1)

We see that the photon propagation depends upon the coupling between the Riemann and Ricci curvatures and the photon polarisation. This leads to a deviation of the photon trajectories from the null geodesic by amounts proportional to the Riemann and Ricci curvatures. The photon trajectories in the geometrical optics limit are described by the following generalisation of the geodesic equation

$$\frac{d^2 X^a}{ds^2} + \Gamma^a_{\beta \gamma} \frac{dX^\beta}{ds} \frac{dX^\gamma}{ds} = \frac{1}{2} \nabla^a [R^{\rho \mu}_{\nu \lambda} f_{\rho \mu} + R^\rho_\lambda f_{\nu \rho} - R^\rho_\nu f_{\lambda \rho}] \times \left| \frac{f^{\nu \lambda}}{f^2} \right|$$

(2)

The nonzero right hand side of the modified geodesic equation (2) implies that there is a polarisation dependence in the gravitational red shift, bending, and Shapiro time delay of light even in classical Einsteins gravity.

A curious phenomena discovered by Drummond and Hathrell [4] is that in higher derivative gravity which arises by QED radiative corrections, the photon velocity in local inertial frame can exceed the velocity of light in the Minkowski space. Due to the coupling of the electromagnetic fields with the Riemann and Ricci tensors in the Lagrangian, it was claimed that the photon velocity in the Schwarzschild, Robertson- Walker, gravitational wave and deSitter backgrounds is larger than the
flat space velocity c. This result was extended by Daniels and Shore to charged [5] and rotating blackholes [6] with the same conclusions. Latorre et al [7] have shown a universal relation between the velocity shift of photons to the energy density which generates the background metric, and Shore [8] has related the velocity shift to the coefficients of conformal anomaly. Lafrance and Myers [9] interpret these results as the breakdown of the Equivalence principle in higher derivative gravity and Dolgov and Khriptovich [10,11] derive this result from field theoretic dispersion relations. Finally Mende [12] has proposed this effect as a test for string theories of quantum gravity.

In this paper we show that claims of superluminal photon velocity are due to the neglect of the Riemann coupling terms in the wave equation which arises from the minimal $F_{\mu\nu}F^{\mu\nu}$ Lagrangian. We find that in Einstein’s gravity the photon velocity in a Schwarzschild blackhole metric and in the Friedman-Robertson-Walker metric is less than c. In other words the photon trajectories are always inside the null cone. We find that for the photon trajectories not to go out of the null cone the background matter should satisfy the strong energy condition $\rho \geq 3p$. This provides us with an answer to the question raised by Zeldovich and Novikov [13] - What law of physics would be violated if the strong energy condition is not satisfied? Our answer is that special relativity in the free fall inertial-frame demands that the strong energy condition be satisfied.

We also derive the wave in higher derivative gravity and show that Riemann coupling terms in the lagrangian of the higher derivative gravity are always smaller in magnitude than the Riemann term that already exists in Einstein’s gravity. This analysis shows that the photon velocity does not exceed c, even by the inclusion of the radiative correction higher derivative terms in the Lagrangian contrary to the claims [4-12]. The absence of superluminal propagation is not dependent on the eikonal
ansatz but is a consequence of the fact that the wave-equation in for the electromagnetic fields in Einstein and higher derivative gravity is hyperbolic. Consequently the field solution at a given point can only depend upon sources inside the past null-cone. In references [4-12] the vector potential solution is assumed to be of the eikonal form, and it is shown that the vector potential propagates outside the null-cone. The eikonal approximation for the vector potential does not always correctly describe the propagation of electromagnetic waves since the vector potential is not gauge invariant and it can be non-zero even in the acausal regions where the electromagnetic field is zero.

The interaction of electromagnetic fields with gravity is given by the action

$$S = \int d^4x \sqrt{-g} F_{\mu\nu} F^{\mu\nu}$$

(We use the convention $c = 1$, signature -2 and Greek letters denote spacetime indices $0-3$). From (3) we obtain the equations of motion

$$\nabla^\mu F_{\mu\nu} = 0$$

Equation (4) with the Bianchi identity

$$\nabla_\mu F_{\nu\lambda} + \nabla_\nu F_{\lambda\mu} + \nabla_\lambda F_{\mu\nu} = 0$$

gives the Maxwell’s equation in curved background. Operating on equation (4) by the ∇_λ and using the Bianchi identity (5) the wave equation may be obtained as

$$\nabla^\mu \nabla_\mu F_{\nu\lambda} + \nabla_\lambda (\nabla^\mu F_{\nu\mu}) + [\nabla^\mu, \nabla_\nu] F_{\lambda\mu} - [\nabla_\lambda, \nabla^\mu] F_{\mu\nu} = 0$$

The second term vanishes owing to (4). Using the identity for the commutator of covariant derivatives:

$$[\nabla^\mu, \nabla_\nu] F_{\alpha\mu} = R_{\rho\alpha\nu\mu} F^{\rho\mu} + R_{\rho\lambda\mu} F^\rho_{\nu}$$
and the circular identity

\[R_{\rho\lambda\nu\mu} + R_{\rho\nu\mu\lambda} + R_{\rho\mu\lambda\nu} = 0 \]

(8)

the wave equation (6) reduces to the form

\[\nabla^{\mu} \nabla_{\mu} F_{\nu\lambda} + R_{\rho\mu\lambda\nu} F_{\rho\mu} + R_{\rho\lambda} F_{\nu\rho} - R_{\rho\nu} F_{\lambda\rho} = 0 \]

(9)

The Riemann and Ricci curvature coupling terms to the photon polarisation (or spin) give rise to the polarisation dependent deviation of photon orbits from null geodesics.

Photon trajectories are described by the eikonal solutions of the wave equation (9) of the form

\[F_{\mu\nu} = e^{iS(x)} f_{\mu\nu} \]

(10)

where the phase \(S \) varies more rapidly in spacetime than the amplitude \(f_{\mu\nu} \). The wavenumber of the photon trajectories is given by the gradient of the phase

\[K_{\mu} = \nabla_{\mu} S \]

(11)

In the geometrical optics approximation where

\[\nabla_{\mu} F_{\alpha\beta} = iK_{\mu} F_{\alpha\beta} \]

(12)

the wave equation (9) can be written in the form

\[- K^{\mu} K_{\mu} f_{\nu\lambda} + R^{\rho\mu}_{\nu\lambda} f_{\rho\mu} - R^{\rho\lambda}_{\nu} f_{\nu\rho} + R^{\rho}_{\nu} f_{\lambda\rho} = 0 \]

(13)

The dispersion relation may be written as

\[K^{2} = \left(R^{\rho\mu}_{\nu\lambda} f_{\rho\mu} - R^{\rho}_{\lambda} f_{\nu\rho} + R^{\rho}_{\nu} f_{\lambda\rho} \right) \frac{f^{\nu\lambda}}{f_{\alpha\beta} f^{\alpha\beta}} \]

(14)

Operating on (14) by \(\nabla^{\alpha} \), the L.H.S. is

\[\nabla^{\alpha} K^{2} = 2K^{\mu} \nabla_{\mu} K^{\alpha} \]

(15)
where we have used the identity $\nabla^\alpha K_\mu = \nabla_\mu K^\alpha$ which follows from the definition of K_μ as a gradient. Light rays are defined as the integral curves of the wave vector K_{μ} i.e. the curves $x_\mu(s)$ for which $\frac{dx_\mu}{ds} = K_\mu$. Substituting $K_\mu = \frac{dX_\mu}{ds}$ in (15) we have for the L.H.S.

$$\nabla^\alpha K^2 = 2 \frac{dX^\mu}{ds} \nabla_\mu \left(\frac{dX^\alpha}{ds} \right) = 2 \left(\frac{d^2 X^\alpha}{ds^2} + \Gamma^\alpha_{\mu\nu} \frac{dX^\nu}{ds} \frac{dX^\mu}{ds} \right) \quad (16)$$

Using (14), (15) and (16) we obtain the modified geodesic equation for photon trajectories

$$\frac{d^2 X^\alpha}{ds^2} + \Gamma^\alpha_{\beta\gamma} \frac{dX^\beta}{ds} \frac{dX^\gamma}{ds} = \frac{1}{2} \nabla^\alpha \left(R^{\rho\nu\alpha}_{\beta\gamma} f_{\rho\mu} - R^\rho_{\lambda\nu} f_{\nu\rho} + R^\rho_{\nu\lambda} f_{\lambda\rho} \right) \times \frac{f^{\nu\lambda}}{f^{\alpha\beta} f_{\alpha\beta}} \quad (17)$$

To obtain the photon velocity in the curved space, we can use the dispersion relation (13) directly. Of the six components of $F_{\mu\nu}$ in equation (13), only three are independent owing to the Bianchi identity (5). Choosing the components of the electric field vector $E_i = f_{oi}$ as the independent components we have from the Bianchi identity (5)

$$K_o f_{ij} + K_i f_{jo} + K_j f_{oi} = 0 \quad (18)$$

Using (18) to substitute for f_{ij} in terms of the electric field components f_{jo} and f_{oi} in the wave equation (13) we obtain

$$\left[\left(+ K^\mu K_\mu + R^o_{\rho} + R^t_{\rho o} \frac{K_t}{K_o} \right) \delta^i_j \right. + \left. \left(- 2 R^{o j}_{\rho i} + 4 R^{i j}_{\rho o} \frac{K_t}{K_o} + R^{i j}_{\rho i} \right) - \frac{1}{K_o} R^j_\rho k_i \right] f_{oj} = 0 \quad (19)$$

which is the wave equation obeyed by the three components of the electric field vector (in (19) Latin indices are over three spacelike components and repeated indices are summed over). To simplify the notation we write (15) as

$$\left(K^2 \delta^i_j + e^i_j \right) f_{oj} = 0 \quad (20)$$
where
\[\epsilon_i^j \equiv \left(R_o^o + R_o^i K_o \frac{K_i}{K_o} \right) \delta_i^j + \left(-2 R_o^{oj} - 4 K_o \frac{K_i}{K_o} - R_i^j \right) + \frac{1}{K_o} R_o^o K_i \] (21)

Of the three components of the electric field vector in the electromagnetic waves, only the transverse waves are observable in an asymptotically flat space. To obtain the equation for the transverse fields we first diagonalise the matrix \(\epsilon_i^j \) to give the equation for the three normal modes:
\[\left(K^2 + \epsilon_i \right) f_{oi} = 0 \quad (i = 1, 2, 3) \] (22)
where \(\epsilon_i \) are the eigenvalues of the \(\epsilon_i^j \) matrix. The three equations (22) can be separated into the equation for the transverse fields
\[f_{oj}^{(T)} \equiv \left(\delta_i^j - n_i n_j \right) f_{oi} \] (23)
and the longitudinal fields
\[f_{oj}^{(L)} \equiv n_i n_j f_{oi} \] (24)
where \(n_i \equiv \frac{K_i}{|K|} \) are the components of the unit vector along the direction of propagation. The wave equation for the transverse photon is
\[\left[K^2 \left(\delta_i^j - n_i n_j \right) + \epsilon_i \left(\delta_i^j - n_i n_j \right) \right] f_{oj} = 0 \] (25)
and for the longitudinal photon the wave equation is
\[\left(K^2 + \epsilon_i \right) (n_i n_j) f_{oj} = 0 \] (26)

Expanding Universe (Friedmann-Robertson-Walker Metric):

For wave propagation in a general homogeneous, isotropic universe described by the line element \(ds^2 = +dt^2 - R^2(t) \left(dr^2 + r^2 d\theta^2 + \sin^2 \theta d\phi^2 \right) \), the non-zero components of the \(\epsilon_i^j \) matrix (21) are
\[\epsilon_1^1 = \epsilon_2^2 = \epsilon_3^3 = -2 \left(\frac{\ddot{R}}{R} + \frac{\dot{R}^2}{R^2} \right) = -8 \pi G \frac{3}{3} \left(\rho - 3p \right) \] (27)

7
where R is the scale factor, and p and ρ are the pressure and energy density respectively.

The dispersion relation for the transverse photons is

$$\omega^2 - k_i^2 = \frac{8\pi G}{3} (\rho - 3p)$$

(28)

and the photon velocity is given by

$$v_i^{(T)} = \frac{\partial \omega}{\partial k_i} = \frac{1}{\left(1 + \frac{8\pi G}{3k_i^2} (\rho - 3p)\right)^{1/2}}.$$

(29)

Therefore we find that the photons are not superluminal as long as the strong energy condition $\rho \geq 3p$ is satisfied. In the radiation dominated era when $\rho = 3p$ the photon velocity is 1. One may turn this argument around and use the axiom from special relativity that photons of any polarisation cannot exceed the flat space velocity c when measured in an inertial frame, to show that the strong energy condition $\rho - 3p \geq 0$ must be obeyed for any form of matter. Consider a space time region filled with some matter with equation of state $\rho = qp$. The ϵ^i_j matrix in that region of spacetime is given by $\epsilon^i_j = -\delta^i_j (8\pi G \rho / 3) (1 - (3/q))$ (assuming the matter distribution to be homogenous and isotropic though time dependent). The velocity of photons through that medium is given by $v = c (1 + (8\pi G \rho / 3k_i^2) (1 - q/3))^{-1/2}$. Therefore if we assume that the photon velocity in an inertial frame does not exceed that flat space velocity c, then the equation of state of any form of matter $\rho = qp$ must obey the strong energy condition $q \geq 3$.

Non-Rotating Black Hole Spacetimes (Schwarzschild Metric):

In the gravitational field of non-rotating blackhole, the non-zero components of the ϵ^i_j matrix (21) are

$$\epsilon^1_1 = 4\frac{GM}{r^3}, \quad \epsilon^2_2 = \epsilon^3_3 = -2\frac{GM}{r^3}$$

(30)
Considering radial trajectories with \(\vec{n} = (\hat{r}, \hat{\theta}, \hat{\phi}) = (1, 0, 0) \), equation (25) yields the wave equations for the transverse fields \(E_2, E_3 \):

\[
\left(\begin{array}{cc} K^2 - 2GM/r^3 & 0 \\ 0 & K^2 - 2GM/r^3 \end{array} \right) \left(\begin{array}{c} E_2 \\ E_3 \end{array} \right) = 0
\]
(31)

The dispersion relation yields

\[
\omega^2 - k_1^2 = \frac{2GM}{r^3}
\]
(32)

The velocity of propagation of the transverse photon is

\[
v_1^{(t)} = \frac{\partial \omega}{\partial k_1} = \frac{1}{\left(1 + \frac{1}{k_1^2} \left(\frac{2GM}{r^3}\right)\right)^{1/2}} < 1
\]
(33)

The photon velocity is subluminal and the transverse photons have an effective mass

\[
m_\gamma = \left(\frac{2GM}{r^3}\right)^{1/2}
\]
(34)

For tangential trajectories, \(\vec{n} = (0, 1, 0) \) and the equations for the transverse fields \(E_1 \) and \(E_3 \) yield:

\[
\left(\begin{array}{cc} K^2 + 4GM/r^3 & 0 \\ 0 & K^2 - 2GM/r^3 \end{array} \right) \left(\begin{array}{c} E_1 \\ E_3 \end{array} \right) = 0
\]
(35)

The dispersion relation is \((K^2 + \frac{4GM}{r^3})(K^2 - \frac{2GM}{r^3}) = 0 \) and the root corresponding to the propagating mode is

\[
K^2 = \omega^2 - k_2^2 = \frac{2GM}{r^3}
\]
(36)

and the velocity of wave propagation is given by

\[
v^{(T)} = \frac{\partial \omega}{\partial k_2} = \frac{1}{\left(1 + \frac{1}{k_2^2} \left(\frac{2GM}{r^3}\right)\right)^{1/2}} < 1
\]
(37)

In the coordinate frame the dispersion relation obeyed by \(K_\mu = (\omega, k_r, k_\theta, k_\rho) \) obtained from the wave equation (25), for a radial trajectory is given by

\[
\left(1 - \frac{2GM}{r}\right)^{-1} \omega^2 - \left(1 - \frac{2GM}{r}\right) k_r^2 = \frac{2GM}{r^3}
\]
(38)
Since ω is a constant of motion (the metric being stationary), the wavenumber k_r changes with r. The redshift of the wavelength $\lambda = (g_{rr})^{1/2}/k_r$ is given by the expression

$$\frac{\lambda(r_2)}{\lambda(r_1)} = \left(\frac{1 - 2GM/r_2}{1 - 2GM/r_1}\right)^{1/2} \left\{ \frac{1 - 2GM}{\omega^2 r_1^2} \left(1 - \frac{2GM}{r_1}\right) \right\}^{1/2} \left\{ \frac{1 - 2GM}{\omega^2 r_2^2} \left(1 - \frac{2GM}{r_2}\right) \right\}$$

(39)

The extra factor in the curly brackets is the correction to the standard redshift formula due to the coupling of the Riemann curvature to the wave vector. The correction is significant when the photon wavelength is comparable to the Riemann curvature.

Higher Derivative Gravity:

Drummond and Hathrell [3] obtained the higher derivative couplings which arise from the QED loop corrections to the graviton-photon vertex. The effective Lagrangian valid in the frequency range $\omega^2 < \alpha/m_e^2$ is given by

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} + a R F_{\mu\nu} F^{\mu\nu} + b R_{\mu\rho\sigma} F^{\mu\rho} F^{\sigma\nu}$$

$$+ c R_{\mu\rho\sigma\tau} F^{\mu\rho} F^{\sigma\tau}$$

(40)

with the coefficients $a = -\frac{5}{720} \frac{\alpha}{\pi m_e^2}, b = \frac{26}{620} \frac{\alpha}{\pi m_e^2}, c = -\frac{2}{720} \frac{\alpha}{\pi m_e^2}$ (where α is the fine structure constant and m_e the electron mass). The equations of motion from (40) are given by

$$\nabla_{\mu} F^{\mu\nu} + X^{\nu} = 0$$

(41)

where

$$X^{\nu} = a (F^{\mu\nu} \nabla_{\mu} R + R \nabla_{\mu} F^{\mu\nu})$$

$$+ 2b (F^{\sigma\nu} \nabla_{\mu} R^{\mu}_{\sigma} - F^{\sigma\mu} \nabla_{\mu} R^{\nu}_{\sigma} - R^{\nu}_{\sigma} \nabla_{\mu} F^{\sigma\mu})$$

$$+ 4c (F^{\sigma\tau} \nabla_{\mu} R^{\mu\nu}_{\sigma\tau} + R^{\mu\nu}_{\sigma\tau} \nabla_{\mu} F^{\sigma\tau}) = 0$$

(42)

Operating on equation (46) by ∇^λ and using the Bianchi identity (5) the commutator identity (7) and the circular identity (7), we obtain the wave equation in higher
derivative gravity:

\[\nabla^\mu \nabla_\mu F_{\nu\lambda} + \left\{ R_{\rho\mu\nu\lambda} F^{\rho\mu} + R_{\mu}^{\rho \lambda} F_{\nu\rho} - R_{\lambda \nu}^{\rho} F_{\mu \rho} \right\} + \left[\nabla_\nu X_\lambda - \nabla_\lambda X_\nu \right] = 0 \] \hspace{1cm} (43)

In the derivations of [4-12] the terms in the curly bracket do not appear. This is because in the derivations, the eikonal approximation is made in the Maxwell’s equation and therefore the Riemann and Ricci terms which arise on commuting the covariant derivatives do not appear. In (43) however we see that in the range of validity of the effective action (40), \(\omega^2 < \alpha/m_c^2 \), the Riemann and Ricci terms in the curly brackets of (48) which are present in Einstein’s gravity are larger than the terms in the square brackets of (48) which arise from the loop corrections. The photon velocities are therefore given by the expression (26) for blackholes, and (39) for Friedmann-Robertson-Walker metric, and is subluminal even in the presence of higher derivative coupling terms.

Acknowledgements: We thank the anonymous referee for his useful suggestions.
References:

1. A.S. Eddington, *The Mathematical Theory of Relativity*, Cambridge University Press, (1957), p 176.

2. T.W. Noonan, *Ap. J.* **341** (1989) 786.

3. S.W. Hawking, *Nature* **248** (1974), 30.

4. I.T. Drummond and S.J. Hathrell, *Phy. Rev.* **D22** (1980) 343.

5. R.D. Daniels and G.M. Shore, *Nucl. Phys.* **B425** (1994) 634.

6. R.D. Daniels and G.M. Shore, *Phys. Lett.* **B367** (1996) 75.

7. J.L. Latorre, P. Pascaul and R. Tarrach, *Nucl. Phys.* **B460** (1996) 379.

8. G.M. Shore, *Nucl. Phys.* **B460** (1996) 379.

9. R. Lafrance and R.C. Myers, *Phys. Rev.* **D51** (1995) 2584.

10. I.B. Khriplovich, *Phys. Lett.* **B346** (1995) 251.

11. A.D. Dolgov and I.B. Khriplovich, *Sov. Phy. JETP* **58** (1983) 671.

12. P.F. Mende, in *String Quantum Gravity and Physics at the Planck Scale*, Proceedings of Erice Workshop, 1992, Ed. N. Sanchez (World Scientific, Singapore, 1993).

13. Ya. B Zeldovich and I.D. Novikov, *Stars and Relativity*, Vol 1, pg 197, Chicago University Press, Chicago, (1971).