Kinetic Machine Learning Unravels Ligand-Directed Conformational Change of μ Opioid Receptor

Evan N. Feinbergπω | Amir B. Farimaniπω | Carlos X. HernandezΩ | Vijay S. PandéΨω

π ω Denotes equal contribution
Ψ ω Corresponding author: pande@stanford.edu
Ω ω Affiliation of all authors: Stanford University

ABSTRACT: The μ Opioid Receptor (μOR) is a G-Protein Coupled Receptor (GPCR) that mediates pain and is a key target for clinically administered analgesics. The current generation of prescribed opiates – drugs that bind to μOR – engender dangerous side effects such as respiratory depression and addiction in part by stabilizing off-target conformations of the receptor. To determine both the key conformations of μOR to atomic resolution as well as the transitions between them, long timescale molecular dynamics (MD) simulations were conducted and analyzed. These simulations predict new and potentially druggable metastable states that have not been observed by crystallography. We applied cutting edge algorithms (e.g., tICA and Transfer Entropy) to guide our analysis and distill the key events and conformations from simulation, presenting a transferrable and systematic analysis scheme. Our approach provides a complete, predictive model of the dynamics, structure of states, and structure–ligand relationships of μOR with broad applicability to GPCR biophysics and medicinal chemistry.

Introduction

Over the past decade, an epidemic of opioid abuse has increasingly plagued the United States1. This health crisis is catalyzed in part by the elevated administration of opioid therapeutics to treat acute and chronic pain. Since the solution of the first structure, crystallography of GPCRs has both illuminated the structural biology and empowered medicinal chemistry of this class of receptors2,3. Recently, crystal structures of μOR itself were solved in its “inactive” and “active” conformations4,5. However, other biophysical and pharmacological experiments have definitively demonstrated that μOR traverses multiple functionally important conformational states6–8.

In this paper, we endeavor to (1) discover states of μOR that have thus far been refractory to crystallography and (2) juxtapose how opiates of different scaffold classes tune the receptor toward distinct conformational energy landscapes. To achieve these aims, we conducted unbiased, atomistic molecular dynamics (MD) simulation of μOR for 250 μs in each of three conditions: unliganded, BU729-bound, and Sufentanil10-bound. The former ligand is a higher affinity derivative of Buprenorphine, a drug administered to treat opioid addiction and acute pain, while the latter is a higher affinity derivative of Fentanyl, a drug administered as a component of operative anesthesia.

Both building on and departing from preceding GPCR simulation works11,12, we undertake a systematic statistical approach to analyze this vast simulation dataset. In particular, we discover the slowest conformational degrees of freedom accessible to μOR with the time-independent
component analysis (tICA) algorithm \(^{13-15}\), construct Markov State Models \(^{16,17}\) (MSM) based on these tICA degrees of freedom to compare \(\mu\)OR’s conformational dynamics between conditions, and finally postulate causal linkages between events using transfer entropy \(^{18,19}\) analysis. The tICA and Transfer Entropy approaches define two related measures of importance for each amino acid residue in \(\mu\)OR. By measuring slowness, tICA identifies groups of amino acid residues whose transitions constitute the highest kinetic barriers to conformational change in the system of interest. On the other hand, computing the PageRank \(^{20}\) of each inter-residue contact in the mutual transfer entropy network measures the causal centrality of each such contact in triggering conformational change in the receptor. We apply both tICA and transfer entropy in this manner to determine two complementary measures of “importance” for each inter-residue contact (cf. Methods for further details).

We note that this systematic approach should be transferrable to other conformationally plastic proteins which experience allosteric modulation, such as other GPCRs, ion channels, and nuclear receptors. Specific to \(\mu\)OR, stark thermodynamic differences are observed between the behavior of BU72 and of Sufentanil. The statistical models reveal allosteric modulation pathways that connect perturbations in the ligand binding pocket with global conformational changes of the receptor.

Results

I. Rearrangement of D147\(^{3.32}\), F289\(^{6.44}\), W293\(^{6.48}\), and Y326\(^{7.43}\) gates activation.

The experimental and computational literature of GPCR conformational dynamics, which include paired inactive and active state crystal structures (e.g., refs \(^4,21-23\)); NMR, EPR, and DEER studies (e.g., refs \(^8,24,25\)), mutagenesis, and MD simulation (e.g., refs \(^11,12\)), have indicated common features of GPCR activation, including an outward movement of transmembrane helix 6 (TM6) upon activation \(^{21,26}\), the importance of a salt bridge (the “ionic lock”) between charged residues on TM3 and TM6, and the rearrangement of the conserved NPxxY domain (residues 7.48-7.53) \(^{26}\). In contrast to B2AR, Rhodopsin, and many other GPCRs, \(\mu\)OR features a hydrogen bond between R165\(^{3.50}\) and T279\(^{6.34}\) which plays a role in mediating activation according to mutagenesis and molecular dynamics studies. \(^{21,27}\) Previous long-timescale MD simulations of B2AR \(^{11,12}\) and of \(\mu\)OR \(^3\) have suggested that the conserved residues I\(^3.40\), P\(^5.50\), F\(^6.44\) and W\(^6.48\) play key roles in allosteric coupling between the binding pocket and intracellular conformational changes.

By analyzing both the kinetic slowness of inter-residue contacts with tICA as well as their PageRank in the transfer entropy network of \(\mu\)OR (cf. methods for more details), we determined the critical signaling motifs of the receptor. Both metrics identify a quartet of residues – D147\(^{3.32}\), F289\(^{6.44}\), W293\(^{6.48}\), and Y326\(^{7.43}\), which we term DFWY – as a critical gate of activation (Figure 1, E.D. Table 5, E.D. Figure 9). The significance of this DFWY motif is reflected both in its slow kinetics as well as its centrality within the causality graph (as described in Methods section). In addition, receptor deactivation, in which \(\mu\)OR transitions from its active crystal-like structure toward either an inactive crystal-like or other terminally inactive state, is triggered by reconfigurations of these residues. First, D147\(^{3.32}\) and Y326\(^{7.43}\) in the binding pocket move apart by 3 Å from each other and therefore also from the center of the binding pocket).
This loss of hydrogen bond between the negative carboxylic acid of D147 and the phenolic hydroxyl of Y326 represents a larger transition between “pinched” active-like and “relaxed” inactive-like binding pocket configurations (Figure 1).

The computed tICA and transfer entropy models underscore the significance of transitions of Y326 and W293. These two residues trigger signaling cascades that propagate from the binding pocket toward the cytosol. Once the D147-Y326 hydrogen bond is broken, the sidechain of W293 can trigger two distinct modes of deactivation. In one pathway -- which we term “canonical” due to its parallels with B2AR and W293 on transmembrane helix 5 (TM5) and toward both G325 and Y326 on TM6. Conversely, W293 can instead rotate away from Y326 and toward the carbonyl oxygen of A240 (Fig. 1 and Fig. 4).

In turn, these two possible W293 transitions enable two distinct modes of relaxation of F289 away from P244 (Fig. 1). Along the “canonical” pathway, F289 rotates toward TM3 and the receptor core (as measured by the N150-F289 distance, cf. Fig. 1 and E.D. Fig. 1). In contrast, in the alternate pathway, F289 rotates away from the receptor and toward the membrane (Fig. 1b and 1d; E.D. Fig. 1). The coupling between F289 and W293 likely stems in large part from the stable π-π stacking between the aromatic sidechains of the two residues. The loss of a hydrophobic contact between F289 and P244 in turn allows TM5 to transition from its bulged, active-like configuration and toward its relaxed, inactive-like configuration.1

Ultimately, the signal stemming from the DFWY rearrangement is transduced to the signaling termini – the G Protein coupling domains -- of the receptor. Triggered by the rotation of Y326 toward TM2 and, in the canonical pathway, stabilized by the combined rotation of W293 and F289 toward Y326, N328 translates up to 3 Angstroms away from TM6 and from I155 on TM3. The shift of N328 is correlated (Fig. 1) with the highly sequence conserved Y336 motif in the NPxxY (residues 7.49–7.53) motif, which undergoes a critical transition from its bulged, TM6–oriented position toward its relaxed, TM2–oriented rotamer. Therefore, this overlapping quartet of –I155, P244, F289, and N328 – is a key mediator of activation whose rearrangement influences both the overall packing of TM5 against TM6 as well as the NPxxY relaxed vs. bulged configuration.

Intriguingly, while apo (i.e., unliganded) and BU72-bound simulations traverse both pathways to deactivation, Sufentanil-bound simulations overall less frequently and are biased toward the alternate, W293–Y326 far / W293–A240 close pathway (E.D. Fig. 1, rows 3 and 4). Specifically, the unliganded µOR samples the inactive state in 2.9% of all frames (cf. Methods for definition of inactive), BU72-bound µOR in 3.7% of all frames, and Sufentanil-bound µOR in 0.6% of all frames, a several fold difference. Among inactive conformations sampled by MD, the unliganded µOR features a W293–Y326 far / W293–A240 close configuration in 9.0% of all frames, the BU72-bound µOR in 6.0% of all frames, and the Sufentanil-bound µOR in 65.2% of all frames, an order of magnitude difference.

1 Notably, the PageRank algorithm finds that the L256-L275 distance, a proxy for TM6-TM5 packing (cf. E.D. Table 2, 5), are among the most central nodes in the inter-residue causality (transfer entropy) network of µOR.
While previous studies11,12,21,27 have underscored the TM3-TM6 distance in general and the polar contact between the DRY motif on TM3 and residues on TM6 as a critical gate for the rearrangement of these helices, the simulation dataset presented here suggests the R1653.50–T2796.34 hydrogen bond as only one of several key components of \(\mu \) OR dynamics. The Sparse tICA algorithm (E.D. Figure 10) identifies R165–T279 as a component of the eighth-slowest degree of freedom of the receptor. Meanwhile, the rearrangement of D147, W293, and Y326 near the binding pocket as well as F289, P244, N328, and I1553.40 in the interceding region between the binding pocket and cytosol (discussed in ref5) are components of the second-, fourth- and fifth slowest degrees of freedom, indicating that the rearrangements discussed in this section are a necessary, slower step that enables the ultimate TM3-TM6 activation necessary for G Protein coupling.

II. Ligands induce novel transitions in both the binding pocket and G Protein coupling domains that define functionally diverse conformational states.

The residues described in Section (I) can be depicted as key molecular switches, the toggling of which defines a series of intermediate macrostates that the receptor traverses between its inactive and active crystal-like conformations. However, these residues (as well as others to be described) also define global receptor conformations that are orthogonal to reaction coordinates that connect the two crystal-like states. These new conformers are available to the reader as PDB files in the supplementary information section.

The tICA algorithm identifies the slowest collective degrees of freedom of a biomolecular system, and these slow motions correspond to the biologically important dynamics of the system. The slowest tICA reaction coordinate, which we denote \(\omega_1 \), involves rearrangements of the binding pocket and extracellular regions of TM5, TM6, and TM7 that define receptor states distinct from either crystal structure. Specifically, K2335.39, K3036.58, and W3187.35 adopt multiple configurations. The importance of these residues is concordant with several experimental studies, which have identified, for example, the role of K2335.39 and W3187.35 in conferring ligand agonism and of K3036.58 in conformational change4,24,29,30.

While some \(\omega_1 \) states are accessible to \(\mu \) OR regardless of simulation condition (BU72, Sufentanil, or apo), it is clear that the Sufentanil induces the \(\mu \) OR to sample ligand-dependent metastable states (Fig. 2). One such state entails (a) a 4.0 Å shift of W3187.35, and much of the extracellular half of TM7, toward TM2; (b) a partial unfolding of the extracellular helix of TM6, enabling K3036.58 to rotate toward E229; (c) a rotamer shift of Y3367.53 toward F2896.48, forming a contact between the phenolic hydroxyl of the former and backbone amide of the latter. Since TM6 adopts its outward position and Y3367.53 shifts up to 1.0 Å closer to F2896.48 than it does in the active crystal, we define this Sufentanil-induced state as active-like, and denote it \(R^\text{*SUF} \).

In summary, \(\omega_1 \) defines a reaction coordinate that distinguishes Sufentanil-bound \(\mu \) OR from BU72-bound and unliganded \(\mu \) OR in conformational space. Analogously, \(\omega_4 \) and \(\omega_5 \), the fourth and fifth slowest tICA coordinates, define BU72-induced states that are distinct from either crystal structure and sampled substantially less frequently by Sufentanil-bound or unliganded \(\mu \) OR (cf. E.D. Table 11 for relative tICA timescales). One such macrostate entails a novel
rotamer of Y3367,53 oriented toward the cytosol, where it is stabilized by hydrogen bonding with D340H8 (Fig. 2c).

Furthermore, our modeling predicts that two neighboring salt bridges – R2776,32-D340H8 and R2806,35-E341H8 – may play key roles in gating activation (Fig. 3, Movie 1, E.D. Figure 14). Particularly, formation of the R280-E341 interaction breaks the salt bridge that E341H8 forms with K344H8 in both crystal structures. Notably, a transition centered on K344H8 is implicated as a key initial component in receptor activation in recent experimental studies24. Complementarily, mutations in E341H8 have been shown to significantly modulate the constitutive activity of µOR31,32. It is therefore reasonable to hypothesize that this ω\textsubscript{4} high state (Fig. 2c, Fig. 3) precedes the inactive crystal structure on the overall activation pathway. Specifically, we propose that the R280-E341 salt bridge complements the more sequence conserved DRY motif33 R165-T279 hydrogen bond in polar mechanisms of gating activation.

In the BU72-induced, ω\textsubscript{4}-high state, Y3267,43 adopts a third position oriented toward C791,43, effectively pushing neighboring helical turns of TM7 by at least 2.0 Å toward TM6. In turn, an interaction of N3287,45 induces a bend near hinge residue F2896,44, stabilizing TM6 in an alternate active-like conformation (Fig. 2d). The proximity of Y3367,53 and of the intracellular portion of TM6 to the putative G Protein and Arrestin binding domain suggest the potential biological significance of these states.

III. BU72 transitions either to a beta–FNA-like deactivating pose or to a series of non-crystallographic positions buried in the receptor core.

In nearly 250 µs of MD simulation, BU72 samples several metastable poses that are in turn coupled to conformational states of the receptor as a whole. Transfer entropy analysis of a network of µOR–BU72 contacts and µOR tICA components (cf. Methods for details) indicates that binding pocket residues W2935,48, H2976,52, Q1242,60, W133ECL1, Y3267,43, and M1513,36 are particularly important in modulating the receptor’s state (E.D. Figure 6 and E.D. Tables 1, 3, and 4).

In the canonical deactivation pathway, the morphinan scaffold of BU72 transitions from its active, crystal-like pose toward a pose that is analogous to beta-Funtalrexamine’s inactive crystal pose (Fig. 4c, E.D. Fig. 2, E.D. Movie 1). The high PageRank of Q1242,60 in the transfer entropy network of µOR underscore its centrality in a polar network that rearranges upon receptor deactivation (Figure 4; E.D. Figure 6, Row 2, Column 1; E.D. Tables 1 & 2). Note how, in the active crystal, the non-morphinan phenyl ring of BU72 contacts W133ECL1 and Q1242,60, while Q1242,60 hydrogen bonds with Y3267,43 (Fig. 4c). The rotation and translation of BU72 toward TM5 as it transitions from its canonical active to inactive pose initiates a cascade of events in simulation: (1) Y3267,43 retreats toward TM2; (2) Q1242,60 rotates extracellularly to engage with the W133ECL1 indole; (3) TM2 as a whole, including Y1282,64, relaxes away from the binding pocket and toward the membrane; and (4) H3197,36 loses its interaction with Y1282,64, freeing it to rotate with its aromatic partner W3187,35 and the rest of TM7 as a nearly rigid body toward TM6.
In addition to transitions between the crystallographic opiate poses, in MD simulation BU72 also populates several orientations that either induce or stabilize \(\mu \)OR to occupy similarly non-crystallographic conformational states. Several such poses sample regions of phase space that would be forbidden by most, if not all, docking techniques. The slowest transition of BU72 as measured by tICA entails an at least 6.0 Å and up to 12.0 Å translation and rotation in the cytosolic direction, probing into the core of the receptor (Fig. 4d, 4f, Movie 2). This cytosolic transition is defined by a rotation of the BU72 ether toward the hydrophobic region comprised of Ile296, Cys321, Ile322; a novel polar interaction forming between the BU72 phenol hydroxyl, a functional group conserved across many opiates, and H297; and \(140^\circ \chi_2 \) rotamer shift of W293\(^{6.48}\) (akin to that observed in ref\(^5\)), leading to a fully connected aromatic network involving W293\(^{6.48}\), H297\(^{6.52}\), and the BU72 phenol. In another pose, in which the morphinan phenol rotates 6.0 Å to pack against A240\(^{5.46}\) and the non-morphinan phenyl stabilizes Q124\(^{2.60}\) in an inward position, BU72 stabilizes the high \(\omega_4 \) active state described in the previous section (E.D. Figure 1 row 5 column 2; E.D. Figure 10b). A third distinct pose entails (a) a 2.0 Å closer contact between the BU72 phenyl ring and the indole of W133\(^{ECL1}\), and (b) a closer packing of the aliphatic bridge region of BU72 with Y326\(^{7.43}\) (E.D. Figure 1a, row 3, column 1; E.D. Figure 7a). Since all three poses are distinct from the crystal structures and sampled in the presence of and/or stabilize cytosolically active conformations of \(\mu \)OR, it raises the possibility that the distinctly high affinity and agonism of BU72 is in part conferred by its configurational entropy.

IV. Sufentanil is highly stable in its modeled active pose and drives state transitions by exchanging its contacts with Q124\(^{2.60}\), W133\(^{ECL1}\), W293\(^{6.48}\), and Y326\(^{7.43}\).

Fentanyl and its analogs are high affinity agonists often used in anesthesia and pain control, but existing \(\mu \)OR crystal structures contain only morphinan derivatives. In lieu of crystallography, we predicted the binding pose of Sufentanil by using docking to obtain potential starting points and then deploying MD to identify and optimize the correct pose (Fig. 5; Methods; S.I. PDB file). Intriguingly, as aforementioned, the Sufentanil-bound \(\mu \)OR deactivated less frequently than in the unliganded or in the BU72 bound simulations (E.D. Figure 1).

Simulation suggests that the protonated tertiary amine nitrogen comprises a critical structural motif that not only confers Sufentanil’s affinity for \(\mu \)OR but also contributes to its agonistic character as well. Specifically, the positively charged nitrogen attracts not only D147 – a common motif among the vast majority of known small molecule opiates – but also the carbonyl oxygen of Q124\(^{2.60}\), further stabilizing Y326\(^{7.43}\)’s active position via hydrogen bonding (E.D. Figure 11). In contrast to morphinan and buprenorphine derivatives, like beta-Funaltrexamine and BU72, Sufentanil interacts with Q124\(^{2.60}\) directly with the protonated amine present in nearly all non-endogenous opiates, since this latter motif is predicted to rest in the binding pocket 3.7 Å closer to the extracellular region than it does in BU72.

The rotamer of key switch residue W293\(^{6.48}\) is controlled by both Sufentanil’s amide and phenyl substituents. In the predicted active pose, the Sufentanil phenyl \(\pi \)-stacks both with Y326\(^{7.43}\) and W293\(^{6.48}\), stabilizing these two DFWY residues in their active configuration. Conversely, when Q124\(^{2.60}\) rotates extracellularly and exchanges its contact with the Sufentanil tertiary nitrogen for the Sufentanil thienyl ring, the ligand adopts one of two poses that can trigger deactivation (Fig.
5). In addition, Sufentanil can undergo a rotation in which the Sufentanil phenyl contacts TM2 and TM3, in turn stabilizing the ω_1–high state discussed in the previous section (Fig. 2a, E.D. Figure 4c).

Discussion

This paper outlines the key conformational changes accessible to μOR in the absence of ligand and in the presence of morphinan and fentanyl derivatives. The combined application of tICA and Markov State Models to our MD simulation dataset indicate that the bound ligands – BU72 and Sufentanil – have a marked impact on the conformational energy landscape of the receptor. These two high affinity agonists modulate the configuration of a common set of residues in distinct ways to achieve their unique downstream effects on μOR. Furthermore, μOR deactivated relatively infrequently in the presence of Sufentanil compared to both unliganded and BU72-bound conditions; the added stability conferred to active states of the receptor corroborates the predicted pose of Sufentanil.

This statistical framework also leads to several experimentally testable hypotheses for biophysicists and molecular biologists. For example, mutation of binding pocket residues Q124$^{2.60}$, W133ECL1, H297$^{6.6.52}$, Y326$^{7.43}$, W293$^{6.48}$, should all significantly impact the agonism of both BU72 and of Sufentanil. Conversely, mutating D340H8 could destabilize one of two deactivating rotamers of Y336$^{7.53}$, thereby stabilizing the active state of the receptor. Similarly, introducing a disulfide bridge between the extracellular domains of TM1 and TM7 could prevent the rigid body rotation of TM7 toward TM6 as well as the rotation of TM1 to the membrane, thereby potentially serving as an activating mutation.

With the great power afforded by MD simulation inevitably comes the high dimensionality and sheer number of data points that renders it so difficult to analyze in a practicable manner. By judiciously applying the tICA algorithm, Markov State Models, and transfer entropy, it is our goal to have produced a replicable framework that might enable other labs to gain actionable knowledge about their protein systems of interest through the “computational microscope”34 that is MD simulation. While this paper focuses on biophysics insights derived from unsupervised machine learning analysis of large-scale MD simulations, we have recently shown that the alternative conformations derived from these techniques can also motivate a successful rational drug discovery campaign for μOR that identified a fundamentally novel active chemotype for the receptor.35 To facilitate further biophysical and pharmacological analysis, we publish our simulations – both raw and featurized trajectories – as an open source, downloadable resource, useful to both the opioid field in particular as well as the wider structural biology and medicinal chemistry communities.

Figures

[See end of manuscript]
Methods

The GPCR-specific Ballesteros-Weinstein scheme36 was utilized to denote amino acid residues in the superscript.

To setup simulations, the RCSB PDB37 versions of PDB IDs 5C1M and 4DKL – the crystal structures of µOR – were downloaded. Subsequently, after deleting atoms from residues Gly52-Ser64 from 5C1M, and deleting the nanobody as well, the missing residues Arg348-Ile352 were modeled into 5C1M based on the positions of the same residues in 4DKL. To complete side chains and ascertain protonation states at physiological pH, Schrödinger Maestro Protein Prep Wizard was applied. A custom TCL code was then applied to embed the active crystal structure in a POPC bilayer, align it to the orientation described in Orientations of Proteins in Membranes Database, solvate the entire system with TIP3 waters and 0.15 mM of NaCl, and generate a CHARMM36 compatible PSF file by calling the PSFGen program. The Chamber function in ParmEd was then used to convert the resultant PDB and PSF file into AMBER compatible prmtop and inpcrd files, and to assign CHARMM36 force field parameters38,39. Finally, simulations were initiated with 2.5 fs in Amber14 on the XStream GPU cluster using the CUDA-enabled variant of PMEMD. The sequence of heating and equilibration was modeled on that described in ref21. A total of 1,778 trajectories were generated with combined simulation time of 755.979 µs, summarized in Extended Data Table 11.

The Conformation software package40 was written for and applied to the featurization of this large GPCR MD dataset. To summarize, all residue-residue pairs within 6.6 Angstroms measured by closest heavy atom distance in either crystal structure were selected. Then, for each of these approximately 2,200 residue-residue pairs, both the closest heavy atom distance and Calpha distance was computed for each trajectory frame, leading to 4,400 “features” for each trajectory frame. Next, the Sparse tICA algorithm was applied to determine the reaction coordinates, or slowest collective degrees of freedom (up to the ten slowest in this case), of the protein. Penultimately, a K-Means model was trained with K=1,000 clusters. Of vital importance for the reader and practitioner to note, this featurization, tICA, and K-Means model was applied equally to all three simulation conditions. Therefore, the unliganded, BU72-bound, and Sufentanil-bound conditions could be equitably compared since they are examined in the same continuous (tICA) and discrete (K-Means) spaces. Finally, a Markov State Model (MSM) was constructed with lag time 25 ns and prior counts 1×10^5. The equilibrium state probabilities from the MSMS were used individually in each condition to generate the free energy surfaces projected onto the features and tICA coordinates displayed in this manuscript.

To assess the ability of ligand configuration to influence the conformational state of the receptor, for simulations with Sufentanil and with BU72, two separate featurizations were computed by finding all pairwise ligand atom – receptor residue distances that fall within 10.0 Å of the initial, active pose. This amounted to ~700 (ligand atom$_i$, receptor residue$_j$) pairs for each ligand.

Features were assessed for “importance” by three main metrics – kinetic slowness (measured by tICA timescale), centrality in a transfer entropy (causality) graph, and predictive ability in cross-
validated classifiers. The transfer entropy18 was calculated using the MDEntropy package19 between all pairs of protein-protein contacts and ligand-protein contacts. To reduce the computational complexity, we included only those protein-protein contacts that were components of the first ten Sparse ICA reaction coordinates, and therefore known to be slowly decorrelating and “important” by this kinetic metric. In total, Transfer Entropy was calculated for approximately 500,000 pairs of features for BU72 and for Sufentanil simulations. A graph was then computed in NetworkX41 for each condition, with each node a feature and each directed edge weighted by the Transfer Entropy between them. The PageRank20 algorithm was then applied using the NetworkX package as well. In addition, we estimated the contribution of a given feature (residue-residue or ligand-residue contact) on deactivation by computing with Dijkstra’s algorithm in NetworkX the shortest 1,000 paths connecting the ligand to the TM6-in feature, and incrementing for each feature the flux (product of edge weights) through that path:

This graph is available in the open GraphML format in the Supplementary Information section.

\[\text{contribution to deactivation for } feature_i = \sum_{\text{paths containing } feature_i} \left(\prod_{\text{edge } j \in \text{path}} \text{weight}(edge_j) \right) \]

The program Forcefield Toolkit (FFTK) was applied for parameterizing the ligands BU72 and Sufentanil. For parameterization in general and for optimization, charge calculation, and torsion scan in particular, the MP2: 6-31 G* level of theory and basis set were used in the Gaussian software package, which is a Quantum Mechanics code. To parameterize in a reasonable amount of time, the ligands were fragmented into three sections; torsion scans were performed individually on each fragment as well as on the boundaries between the fragments to yield accurate, whole ligand force fields.

Due to the lack of crystal structures of fentanyl derivatives co-crystallized with µOR, an active-like pose of Sufentanil was derived computationally. First, after removing BU72, Sufentanil was docked into the orthosteric pocket of the active crystal structure with Glide (Schrodinger Inc., New York, NY) with a 25 Angstrom bounding box in the SP setting after first using LigPrep and grid generation tools also included with Schrodinger software packages. Subsequently, the distinct docked poses, which demonstrated significant differences in orientation, were then simulated in NAMD42 on the BlueWaters supercomputer. The pose with the lowest average RMSD in simulation was then selected for use in further MD simulation. It is our intention that this approach be replicated for simulating other key ligands of biological systems for which there is no known crystallographic pose.

To more efficiently sample the conformational energy landscape of µOR, two rounds of simulation were conducted. In the initial round, simulations were initiated from the active crystal structure for the unliganded and BU72-bound cases and from the docking- and MD-derivated active-like pose for the Sufentanil-bound case. Then, after approximately 120 µs of simulation for each condition, these “Generation 1” simulations were reseeded with the following procedure. After fitting separate sparse tICA and K-Means models for each condition, those K-Means clusters with the lowest populations were used as the basis for a second round of simulation with randomly reinitiated velocities, termed the “Generation 2” simulations. This strategy is summarized in Extended Data Table 11. MD conformations were deemed inactive/deactivated if they featured a Calpha distance between M161 and V282 of less than 9.0 Angstroms and a closest heavy-atom distance between C159 and Y326 of greater than 10.0 Angstroms.
Visualization was conducted with the MacPyMOL package (Schrödinger, Inc., New York, New York), VMD43, and UCSF Chimera44.

Acknowledgements

The authors express their appreciation to Brooke E. Husic, Mohammad M. Sultan, Susruta Majumdar, Bharath Ramsundar, Nathaniel Stanley, Ariana Peck, Danielle J. Marshak, and Samuel Hertig for their insightful input while crafting this manuscript. Outside of Stanford, we thank Robert Abel and colleagues at Schrödinger, Inc. and John Chodera and lab at Sloan-Kettering Institute for insightful input on this work. We thank Samuel Hertig for his assistance in the visual presentation of figures and movies. We also would like to thank Killian Cavalotti, Jimmy Wu, and Stephane Thiell for their indispensable computing support. We thank NIH training grant T32 GM08294 and NIH grant 1171245-309-PADPO for funding, as well as acknowledge the use of Blue Waters at the National Center for Supercomputing Applications and the University of Illinois.

Author Contributions

E.N.F. and A.B.F. contributed equally to this work. E.N.F. and V.S.P. conceived, and V.S.P. supervised, this project. A.B.F. and E.N.F. set up simulation systems. A.B.F. parameterized BU72 and Sufentanil in Gaussian for the CHARMM force field. E.N.F. generated the prospective docking poses of, and A.B.F. conducted (with NAMD) and analyzed the preliminary simulations of Sufentanil in various poses. E.N.F. conducted all other simulation (listed in E.D. Table 11) in AMBER on XStream. E.N.F. wrote the Python-based code used in analysis of these simulations. C.X.H. and E.N.F. conducted transfer entropy analysis.

Competing Financial Interests

V.S.P is a consultant and S.A.B member of Schrodinger, LLC and Globavir, sits on the Board of Directors of Omada Health, and is a General Partner at Andreessen Horowitz.

Citations

1. Nelson, L. S. & Perrone, J. Curbing the opioid epidemic in the United States: the risk evaluation and mitigation strategy (REMS). \textit{Jama} \textbf{308}, 457–458 (2012).
2. Weiss, D. R. \textit{et al.} Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor. \textit{ACS Chem. Biol.} \textbf{8}, 1018–1026 (2013).
3. Rasmussen, S. G. F. \textit{et al.} Structure of a nanobody-stabilized active state of the [bgr] 2 adrenoceptor. \textit{Nature} \textbf{469}, 175–180 (2011).
4. Manglik, A. \textit{et al.} Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. \textit{Nature} \textbf{485}, 321–326 (2012).
5. Huang, W. \textit{et al.} Structural insights into µ-opioid receptor activation. \textit{Nature} \textbf{524}, 315–21 (2015).
6. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. *Nature* 1–6 (2016).
7. Váradi, A. et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism which do not recruit β-arrestin-2. *J. Med. Chem.* 2016.
8. Okude, J. et al. Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the µ-Opioid Receptor. *Angew. Chemie* 127, 15997–16002 (2015).
9. Neilan, C. L. et al. Characterization of the complex morphinan derivative BU72 as a high efficacy, long-lasting mu-opioid receptor agonist. *Eur. J. Pharmacol.* 499, 107–116 (2004).
10. Niemegeers, C. J., Schellekens, K. H., Van Bever, W. F. & Janssen, P. A. Sufentanil, a very potent and extremely safe intravenous morphine-like compound in mice, rats and dogs. *Arzneimittelforschung.* 26, 1551–1556 (1975).
11. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. *Proc. Natl. Acad. Sci.* 108, 18684–18689 (2011).
12. Kohlhoff, K. J. et al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. *Nat. Chem.* 6, 15–21 (2014).
13. Schwantes, C. R. & Pande, V. S. Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. *J. Chem. Theory Comput.* 9, 2000–2009 (2013).
14. Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. *J. Chem. Phys.* 139, 15102 (2013).
15. McGibbon, R. T., Husic, B. E. & Pande, V. S. Identification of simple reaction coordinates from complex dynamics. *J. Chem. Phys.* 146, 44109 (2017).
16. Beauchamp, K. A. et al. MSMBuilder2: Modeling conformational dynamics on the picosecond to millisecond scale. *J. Chem. Theory Comput.* 7, 3412–3419 (2011).
17. Prinz, J.-H. et al. Markov models of molecular kinetics: Generation and validation. *J. Chem. Phys.* 134, 174105 (2011).
18. Schreiber, T. Measuring information transfer. *Phys. Rev. Lett.* 85, 461 (2000).
19. Hernández, C. mdentropy: v0.2. doi:10.5281/zenodo.18859
20. Page, L., Brin, S., Motwani, R. & Winograd, T. The PageRank citation ranking: bringing order to the web. (1999).
21. Huang, W. et al. Structural insights into mu-opioid receptor activation. *Nature* 524, 315–21 (2015).
22. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. *Science (80-.).* 318, 1258–1265 (2007).
23. Rasmussen, S. G. F. et al. Crystal structure of the [bgr] 2 adrenergic receptor-Gs protein complex. *Nature* 477, 549–555 (2011).
24. Sounier, R. et al. Propagation of conformational changes during [mgr]-opioid receptor activation. *Nature* 524, 375–378 (2015).
25. Manglik, A. et al. Structural insights into the dynamic process of β 2-adrenergic receptor signaling. *Cell* 161, 1101–1111 (2015).
26. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR Dynamics: Structures in Motion. *Chem. Rev.* (2016).
27. Huang, P. et al. Functional role of a conserved motif in TM6 of the rat \(\mu \) opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6. 34 (279) with Lys and Asp. Biochemistry 40, 13501–13509 (2001).

28. PROBST, W. C., SNYDER, L. A., SCHUSTER, D. I., BROSIUS, J. & SEALFON, S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11, 1–20 (1992).

29. Ulens, C., Van Boven, M., Daenens, P. & Tytgat, J. Interaction of p-fluorofentanyl on cloned human opioid receptors and exploration of the role of Trp-318 and His-319 in \(\mu \)-opioid receptor selectivity. J. Pharmacol. Exp. Ther. 294, 1024–1033 (2000).

30. Xu, H. et al. Opioid Peptide Receptor Studies, 11: Involvement of Tyr148, Trp318, and His319 of the Rat \(\mu \)-opioid Receptor in Binding of \(-\)Selective Ligands. SYNAPSE-NEW YORK- 32, 23–28 (1999).

31. Fowler, C. B., Pogozheva, I. D., Lomize, A. L., LeVine, H. & Mosberg, H. I. Complex of an active \(\mu \)-opioid receptor with a cyclic peptide agonist modeled from experimental constraints. Biochemistry 43, 15796–15810 (2004).

32. Décaillot, F. M. et al. Opioid receptor random mutagenesis reveals a mechanism for G protein–coupled receptor activation. Nat. Struct. Mol. Biol. 10, 629–636 (2003).

33. Rovati, G. E., Capra, V. & Neubig, R. R. The highly conserved DRY motif of class AG protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).

34. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

35. Feinberg, E. N. et al. Machine Learning Harnesses Molecular Dynamics to Discover New \(\mu \) Opioid Chemotypes. Submitted (2017).

36. Ballesteros, J. A. & Weinstein, H. [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

37. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

38. Lee, S. et al. CHARMM36 united atom chain model for lipids and surfactants. J. Phys. Chem. B 118, 547–556 (2014).

39. Huang, J. & MacKerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

40. Feinberg, E. N., McKiernan, K. & Pande, V. S. evanfeinberg/conformation: v0.1 Alpha Release. doi:10.5281/zenodo.153996

41. Schult, D. A. & Swart, P. Exploring network structure, dynamics, and function using NetworkX. in Proceedings of the 7th Python in Science Conferences (SciPy 2008) 2008, 11–16 (2008).

42. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

43. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

44. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

45. Kleinberg, J. M. Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999).
Figure 1: µOR samples at least two deactivating pathways that are gated by two distinct configurations of the DFWY motif. (a), (b) and (c): “Canonical” pathway (orange trace) entails (1) D1473.32 relaxation away from Y3267.43, (2) W2936.48 rotation toward Y3267.43, (3) F2896.44 rotation toward binding pocket to maintain π-stacking with W2936.48, (4) I1553.40 switches to take space previously occupied by F2896.44, (5) P2445.50 relaxes away from I1553.40 toward inactive position, triggering deactivation of TM6–TM5 packing and ultimately the relaxation of TM6 toward its inactive pose occluding the G Protein coupling domain. (b) and (d): In the alternative pathway, W2936.48 instead rotates toward TM5 and F2896.44 rotates outward toward the membrane. In (c) and (d), green \rightarrow active crystal structure (PDB: 5C1M), cyan inactive crystal (PDB: 4DKL), and purple a snapshot from MD simulation (different frames for (c) and (d)).
Figure 2: Non-canonical states of μOR. (a)-(d): Active crystal in green, inactive crystal in cyan, MD snapshot in purple. (a) and (b) Sufentanil-induced, high ω_1, active-like macrostate of μOR. (c) BU72-induced, low ω_4, inactive-like macrostate of μOR. (d) BU72-induced, high ω_4, active-like macrostate of μOR. (e) Markov State Model reweighted free energy plots (kcal/mol) of μOR projected onto tICA coordinates ω_1 and ω_4 in three different conditions: from left to right, Apo, BU72, and Sufentanil.
Figure 3: Inactive-like structure captured from MD simulation shows non-crystallographic salt bridge forming concomitantly between both R280$^{6.35}$ and R277$^{6.32}$ with E341$^{8.48}$. Purple: MD snapshot; Cyan: Inactive crystal (PDB: 2RH1); Green: Active Crystal (PDB: 3P0G). This MD snapshot is the same as that displayed in main text Figure 3c, with a different orientation and different residues highlighted. In both inactive and active crystal structures, E341$^{8.48}$ instead forms a salt bridge with K344$^{8.51}$ yet interacts neither with R280$^{6.35}$ nor R277$^{6.32}$. Note, as displayed in main text Fig 3c, that this structure also involves a polar interaction between D340$^{8.47}$ and Y336$^{7.53}$. Due to the stability of this state (cf. E.D. Figure 1, Row 6), and the proximity of this rearrangement to the G Protein binding domain, this state may be biologically important. In addition, it is notable that recent experimental work has revealed the significance of early changes in H8 (measured by K344$^{8.51}$ probe in particular) in propagating initial steps of µOR conformational change1. Therefore, we propose that this state represents the initial inactive structure along the activation pathway.
Figure 4: BU72 samples distinct deactivating poses which trigger distinct deactivation pathways of μOR. (a) and (b): Network views of Markov State Model (MSM) of BU72-bound μOR. Each node is an MSM state, each edge is a possible transition. Nodes are colored by TM6–TM3 distance in (a) and by A240-W293 distance in (b). Nodes are sized proportional to MSM equilibrium populations. In c-f, active crystal displayed in grey, MD snapshot displayed in orange for canonical pathway (c, e) and purple for alternate pathway (d, f). C and E) Canonical deactivation in presence of BU72 in binding pocket. Particularly noteworthy changes in the binding pocket include the rotamer shift of Q124 away from Y326, the rotation of Y326 toward TM2, the rotation of W293 toward Y326, and H297's rotation toward TM5. D and F) Alternate deactivation where BU72 plunges several angstroms into receptor core, inducing non-crystallographic rotamers of W293 and, therefore, F289. Notably, the rotation of Q124 away from Y326 and of Y326 toward TM2 is common to both pathways.
Figure 5: Sufentanil samples several deactivating poses, all of which are predicated on transitions of its aromatic rings with respect to Q124$^{2.60}$ and W293$^{6.48}$

a) Markov State Model representative timeseries in which µOR undergoes distinct deactivation events. (a) and (b) At ~190 µs mark, a several angstrom movement of Sufentanil phenyl with respect to W293$^{6.48}$ is a key factor in the canonical pathway of relaxation of TM6. Concurrently, Sufentanil methoxy oxygen shifts to contact the W293$^{6.48}$ indole, and Q124$^{2.60}$ exchanges its position with the Sufentanil thienyl ring. (a) and (c) At ~160 µs mark, loss of contact between the protonated tertiary amine nitrogen of SUF and the amide sidechain of Q124$^{6.20}$ leads to deactivation as well. Along this non-canonical deactivation path, Sufentanil shifts 1-2 Angstroms into the receptor core, inducing W293 to rotate toward A240. This is also mediated by a Q124 rotamer shift toward the extracellular region. In (b) and (c), green corresponds to docked and MD-optimized pose of Sufentanil in the active crystal structure, while purple corresponds to a different MD snapshot for (b) and for (c).