IDEMPOTENCE AND DIVISORIALTY IN PRÜFER-LIKE DOMAINS

MARCO FONTANA, EVAN HOUSTON, AND MI HEE PARK

Abstract. Let \(D \) be a Prüfer \(\ast \)-multiplication domain, where \(\ast \) is a semistar operation on \(D \). We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of \(D \) to show that the natural counterparts of these properties also hold in \(D \).

1. Introduction and preliminaries

Throughout this work, \(D \) will denote an integral domain, and \(K \) will denote its quotient field. Recall that Arnold [1] proved that \(D \) is a Prüfer domain if and only if its associated Nagata ring \(D[X_N] \), where \(N \) is the set of polynomials in \(D[X] \) whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized to Prüfer \(v \)-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and to Prüfer \(\ast \)-multiplication domains (P\(\ast \)MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold in Prüfer domains transfer in a natural way to P\(\ast \)MDs. For example, we show that an ideal \(I \) of a Prüfer domain is idempotent if and only if it is a radical ideal each of whose minimal primes is idempotent (Theorem 2.9), and we use a Nagata ring transfer “machine” to transfer a natural counterpart of this characterization to P\(\ast \)MDs. For another example, in Theorem 3.5 we show that an ideal in a Prüfer domain of finite character is idempotent if and only it is a product of idempotent prime ideals and, perhaps more interestingly, we characterize ideals that are simultaneously idempotent and divisorial as (unique) products of incomparable divisorial idempotent primes; and we then extend this to P\(\ast \)MDs.

Let us review terminology and notation. Denote by \(F(D) \) the set of all nonzero \(D \)-submodules of \(K \), and by \(F(D) \) the set of all nonzero fractional ideals of \(D \), i.e., \(E \in F(D) \) if \(E \in F(D) \) and there exists a nonzero \(d \in D \) with \(dE \subseteq D \). Let \(f(D) \) be the set of all nonzero finitely generated \(D \)-submodules of \(K \). Then, obviously, \(f(D) \subseteq F(D) \subseteq F(D) \).

Date: November 26, 2018.

The first-named author was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

The second-named author was supported by a grant from the Simons Foundation (#354565).

The third-named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A2A01056124).
Following Okabe-Matsuda [13], a semistar operation on \(D \) is a map \(\ast : \text{F}(D) \to \text{F}(D) \), \(E \mapsto E^\ast \), such that, for all \(x \in K, x \neq 0 \), and for all \(E, F \in \text{F}(D) \), the following properties hold:

\[(\ast_1) \ (x E)^\ast = x E^\ast; \]

\[(\ast_2) \ E \subseteq F \text{ implies } E^\ast \subseteq F^\ast; \]

\[(\ast_3) \ E \subseteq E^\ast \text{ and } E^{**} = (E^\ast)^\ast = E^\ast. \]

Of course, semistar operations are natural generalizations of star operations–see the discussion following Corollary 2.5 below.

The semistar operation \(\ast \) is said to have finite type if \(E^\ast = \bigcup \{ F^\ast \mid F \in f(D), F \subseteq E \} \) for each \(E \in \text{F}(D) \). To any semistar operation \(\ast \) we can associate a finite-type semistar operation \(\tilde{\ast} \), given by

\[E^\tilde{\ast} = \bigcap \{ ED_Q \mid Q \in \text{QMax}^\ast(D) \}. \]

Then \(\tilde{\ast} \) is also a finite-type semistar operation, and we have \(I^\tilde{\ast} \subseteq I^\ast \subseteq I^\ast \) for all \(I \in \text{F}(D) \).

Let \(\ast \) be a semistar operation on \(D \). Set \(N(*) = \{ g \in D[X] \mid c(g)^\ast = D^\ast \} \), where \(c(g) \) is the content of the polynomial \(g \), i.e., the ideal of \(D \) generated by the coefficients of \(g \). Then \(N(*) \) is a saturated multiplicatively closed subset of \(D[X] \), and we call the ring \(\text{Na}(D, \ast) := D[X]\vert_{N(*)} \) the semistar Nagata ring of \(D \) with respect to \(\ast \). The domain \(D \) is called a Prüfer \(\ast \)-multiplication domain (\(\text{P} \ast \text{MD} \)) if \((FF^{-1})^\ast = D^\ast \) (i.e., each such \(F \) is \(\ast \)-invertible).

In the following two lemmas, we assemble the facts we need about Nagata rings and \(\text{P} \ast \text{MDs} \). Most of the proofs can be found in [9, 11, or 5].

Lemma 1.1. Let \(\ast \) be a semistar operation on \(D \). Then:

1. \(D^\ast = D^\ast \).
2. \(\text{QMax}^\ast(D) = \text{QMax}^\tilde{\ast}(D) \).
3. The map \(\text{QMax}^\tilde{\ast}(D) \to \text{Max}(\text{Na}(D, \ast)), P \mapsto \text{PNa}(D, \ast) \), is a bijection with inverse map \(M \mapsto \text{M} \cap D \).
4. \(P \mapsto \text{PNa}(D, \ast) \) defines an injective map \(\text{QSpec}^\tilde{\ast}(D) \to \text{Spec}(\text{Na}(D, \ast)) \).
5. \(N(*) = N(*_j) = N(\tilde{\ast}) \) and (hence) \(\text{Na}(D, \ast) = \text{Na}(D, *_j) = \text{Na}(D, \tilde{\ast}) \).
6. For each \(E \in \text{F}(D) \), \(E^\tilde{\ast} = \text{ENa}(D, \ast) \cap K \), and \(E^\ast \text{Na}(D, \ast) = \text{E} \text{Na}(D, \ast) \).
7. A nonzero ideal \(I \) of \(D \) is a quasi-\(\ast \)-ideal if and only if \(I = I \text{Na}(D, \ast) \cap D \).

Lemma 1.2. Let \(\ast \) be a semistar operation on \(D \).
The following statements are equivalent.
(a) D is a $P\star$MD.
(b) $Na(D,\star)$ is a Prüfer domain.
(c) The ideals of $Na(D,\star)$ are extended from ideals of D.
(d) D_P is a valuation domain for each $P \in Q\text{Max}^{\star}(D)$.

Assume that D is a $P\star$MD. Then:
(a) $\sim = \ast$, and (hence) $D^* = D^\sim$.
(b) The map $\text{QSpec}^{\ast}(D) \rightarrow \text{Spec}(Na(D,\star))$, $P \mapsto PNa(D,\star)$, is a bijection with inverse map $Q \mapsto Q \cap D$.
(c) Finitely generated ideals of $Na(D,\star)$ are extended from finitely generated ideals of D.

2. Idempotence

We begin with our basic definition.

Definition 2.1. Let \star be a semistar operation on D. An element $E \in \mathbf{F}(D)$ is said to be \star-idempotent if $E^* = (E^2)^\star$.

Our primary interest will be in (nonzero) \star-idempotent ideals of D. Let \ast be a semistar operation on D, and let I be a nonzero ideal of D. It is well known that $I^* \cap D$ is a quasi-\ast-ideal of D. (This is easy to see: we have

$$(I^* \cap D)^* \subseteq I^{**} = I^* = (I \cap D)^* \subseteq (I^* \cap D)^*,$$

and hence $I^* = (I^* \cap D)^*$; it follows that $I^* \cap D = (I^* \cap D)^* \cap D$.) It therefore seems natural to call $I^* \cap D$ the quasi-\ast-closure of I. If we also call I \ast-proper when $I^* \subseteq D^\ast$, then it is easy to see that I is \ast-proper if and only if its quasi-\ast-closure is a proper quasi-\ast-ideal. Now suppose that I is \ast-idempotent. Then

$$(I^* \cap D)^* = I^* = (I^2)^\ast = ((I^*)^2)^\ast = (((I^* \cap D)^*)^2)^\ast = (((I^* \cap D)^2)^\ast)^\ast,$$

whence $I^* \cap D$ is a \ast-idempotent quasi-\ast-ideal of D. A similar argument gives the converse. Thus a (\ast-proper) nonzero ideal is \ast-idempotent if and only if its quasi-\ast-closure is a (proper) \ast-idempotent quasi-\ast-ideal.

Our study of idempotence in Prüfer domains and $P\star$MDs involves the notions of sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal $P \in \text{Spec}(D)$, set

$$\nabla(P) := \{M \in \text{Max}(D) \mid M \nsubseteq P\}$$
and
$$\Theta(P) := \bigcap\{D_M \mid M \in \nabla(P)\}.$$

We say that P is sharp if $\Theta(P) \nsubseteq D_P$ (see [11] Lemma 1 and [3] Section 1 and Proposition 2.2). The domain D itself is sharp (doublesharp) if every maximal (prime) ideal of D is sharp. (Note that a Prüfer domain D is doublesharp if and only if each overring of D is sharp [3] Theorem 4.1.7.) Now let \ast be a semistar operation on D. Given a prime ideal $P \in Q\text{Spec}^{\ast}(D)$, set

$$\nabla^{\ast}(P) := \{M \in Q\text{Max}^{\ast}(D) \mid M \nsubseteq P\}$$
and
$$\Theta^{\ast}(P) := \bigcap\{D_M \mid M \in \nabla^{\ast}(P)\}.$$
Call $P \star_{\sim}$-sharp if $\Theta^\sim(P) \nsubseteq D_P$. For example, if $\star = d$ is the identity, then the \star_{\sim}-sharp property coincides with the sharp property. We then say that D is \star_{\sim}-(double) sharp if each quasi-\star_{\sim}-maximal (quasi-\star_{\sim}-prime) ideal of D is \star_{\sim}-sharp. (For more on sharpness, see [10], [11], [13], [7, page 62], [3], [4, Chapter 2, Section 3], and [5].)

Recall that a prime ideal P of a ring is said to be branched if there is a P-primary ideal distinct from P. Also, recall that the domain D has finite character if each nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties between (on which a semistar operation \star has been defined) and its associated Nagata ring.

Lemma 2.2. Let \star be a semistar operation on D.

(1) Let $E \in \mathcal{F}(D)$. Then E is \sim_{\star}-idempotent if and only if $E\text{Na}(D,\star)$ is idempotent. In particular, if D is a $P\star M D$, then E is \star_{\sim}-idempotent if and only if $E\text{Na}(D,\star)$ is idempotent.

(2) Let P be a quasi-\sim_{\star}-prime of D and I a nonzero ideal of D. Then:

(a) P is P-primary in D if and only if I is a quasi-\sim_{\star}-ideal of D and $INa(D,\star)$ is $P\text{Na}(D,\star)$-primary in $\text{Na}(D,\star)$.

(b) P is branched in D if and only if $P\text{Na}(D,\star)$ is branched in $\text{Na}(D,\star)$.

(3) D has \star_{\sim}-finite character (i.e., each nonzero element of D belongs to only finitely many (possibly zero) $M \in \text{QMax}^\sim(D)$) if and only if $\text{Na}(D,\star)$ has finite character.

(4) Let I be a quasi-\sim_{\star}-ideal of D. Then I is a radical ideal if and only if $I\text{Na}(D,\star)$ is a radical ideal of $\text{Na}(D,\star)$.

(5) Assume that D is a $P\star M D$. Then:

(a) If $P \in \text{QSpec}^\sim(D)$, then P is \star_{\sim}-sharp if and only if $P\text{Na}(D,\star)$ is sharp in $\text{Na}(D,\star)$.

(b) D is \star_{\sim}-(double) sharp if and only if $\text{Na}(D,\star)$ is (double) sharp.

Proof. (1) We use Lemma [1.1(6)]. If $E\text{Na}(D,\star)$ is idempotent, then $E^2 = E\text{Na}(D,\star) \cap K = E^2\text{Na}(D,\star) \cap K = (E^2)^\sim$. Conversely, if E is \sim_{\star}-idempotent, then $(E\text{Na}(D,\star))^2 = E^2\text{Na}(D,\star) = (E^2)^\sim\text{Na}(D,\star) = E^2\text{Na}(D,\star) = E\text{Na}(D,\star)$. The “in particular” statement follows because $\star_{\sim} = \sim$ in a $P\star M D$ (Lemma [1.2(2a)]).

(2) (a) Suppose that I is P-primary. Then $ID[X]$ is $P D[X]$-primary. Since P is a quasi-\sim_{\star}-prime of D, $P\text{Na}(D,\star)$ is a prime ideal of $\text{Na}(D,\star)$ (Lemma [1.1(4)]), and then, since $\text{Na}(D,\star)$ is a quotient ring of $D[X]$, $INa(D,\star)$ is $P\text{Na}(D,\star)$-primary in $\text{Na}(D,\star)$. Also, again using the fact that $ID[X]$ is $P D[X]$-primary (along with Lemma [1.1(6)]), we have

$$I^\sim \cap D = I\text{Na}(D,\star) \cap D \subseteq ID[X]_{P D[X]} \cap D[X] \cap D = ID[X] \cap D = I,$$

whence I is a quasi-\sim_{\star}-ideal of D. Conversely, assume that I is a quasi-\sim_{\star}-ideal of D and that $I\text{Na}(D,\star)$ is $P\text{Na}(D,\star)$-primary. Then for $a \in P$, there is a positive integer n for which $a^n \in I\text{Na}(D,\star) \cap D = I^\sim \cap D = I$. Hence $P = \text{rad}(I)$. It now follows easily that I is P-primary.
(b) Suppose that P is branched in D. Then there is a P-primary ideal I of D distinct from P, and $I N a(D, \ast)$ is $P N a(D, \ast)$-primary by (a). Also by (a), I is a quasi-\ast-ideal, from which it follows that $I N a(D, \ast) \neq P N a(D, \ast)$. Now suppose that $P N a(D, \ast)$ is branched and that J is a $P N a(D, \ast)$-primary ideal of $N a(D, \ast)$ distinct from $P N a(D, \ast)$. Then it is straightforward to show that $J \cap D$ is distinct from P and is P-primary.

(3) Let ψ be a nonzero element of $N a(D, \ast)$, and let N be a maximal ideal with $\psi \in N$. Then $\psi N a(D, \ast) = f N a(D, \ast)$ for some $f \in D[X]$, and writing $N = M N a(D, \ast)$ for some $M \in Q M a^\ast(D)$ (Lemma I.1(3)), we must have $f \in M D[X]$ and hence $c(f) \subseteq M$. Therefore, if D has finite \ast-character, then $N a(D, \ast)$ has finite character. The converse is even more straightforward.

(4) Suppose that I is a radical ideal of D, and let $\psi^n \in I N a(D, \ast)$ for some $\psi \in N a(D, \ast)$ and positive integer n. Then there is an element $g \in N(\ast)$ with $(g \psi^n) \in I D[X]$. Since $I D[X]$ is a radical ideal of $D[X]$, $g \psi \in I D[X]$ and we must have $\psi \in I N a(D, \ast)$. Therefore, $I N a(D, \ast) \ast$ is a radical ideal of $N a(D, \ast)$. The converse follows easily from the fact that $I N a(D, \ast) \cap D = I^2 \cap D = I$ (Lemma I.1(7)).

(5) (a) This is part of [5 Proposition 3.5], but we give here a proof more in the spirit of this paper. Let $P \in Q S e c^\ast(D)$. If P is \ast-sharp, then by [5 Proposition 3.1] P contains a finitely generated ideal I with $I \nsubseteq M$ for all $M \in \nabla^\ast(P)$, and, using the description of $M a x(N a(D, \ast))$ given in Lemma I.1(3), $I N a(D, \ast)$ is a finitely generated ideal of $N a(D, \ast)$ contained in $P N a(D, \ast)$ but in no element of $\nabla(P N a(D, \ast))$. Therefore, $P N a(D, \ast)$ is sharp in the Prüfer domain $N a(D, \ast)$. For the converse, assume that $P N a(D, \ast)$ is sharp in $N a(D, \ast)$. Then $P N a(D, \ast)$ contains a finitely generated ideal J with $J \subseteq P N a(D, \ast)$ but $J \nsubseteq N$ for $N \in \nabla(P N a(D, \ast))$ (Corollary 2). Then $J = I N a(D, \ast)$ for some finitely generated ideal I of D (necessarily) contained in P by Lemma I.2(2c), and it is easy to see that $I \nsubseteq M$ for $M \in \nabla^\ast(D)$. Then by [5 Proposition 3.1], P is \ast-sharp. Statement (b) follows easily from (a) (using Lemma I.2). □

Let D be an almost Dedekind domain with a non-finitely generated maximal ideal M. Then $M^{-1} = D$, but M is not idempotent (since $M D_M$ is not idempotent in the Noetherian valuation domain D_M). Our next result shows that this cannot happen in a sharp Prüfer domain.

Theorem 2.3. Let D be a Prüfer domain. If D is $(d\text{-})$-sharp and I is a nonzero ideal of D with $I^{-1} = D$, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, $I D_M$ is not idempotent in D_M. Since D is a sharp domain, we may choose a finitely generated ideal J of D with $J \subseteq M$ but $J \nsubseteq N$ for all maximal ideals $N \neq M$. Since $I D_M$ is a non-idempotent ideal in the valuation domain D_M, there is an element $a \in I$ for which $I^2 D_M \subseteq a D_M$. Let $B := J + Da$. Then $I^2 D_M \subseteq B D_M$ and, for $N \in M a x(D) \setminus \{M\}$, $I^2 D_N \subseteq D_N = B D_N$. Hence $I^2 \subseteq B$. Since B is a proper finitely generated ideal, we then have $(I^2)^{-1} \supseteq B^{-1} \supseteq D$. Hence $(I^2)^{-1} \neq D$, from which it follows that $I^{-1} \neq D$, as desired. □
Lemma 2.4. Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always have $I^{-1} \text{Na}(D, v) = (\text{Na}(D, v)) : I$. This cannot be extended to general semistar Nagata rings; for example, if D is an almost Dedekind domain with non-invertible maximal ideal M and we define a semistar operation \ast by $E^\ast = ED_M$ for $E \in \overline{F}(D)$, then $(D : M) = D$ and hence $(D : M)\text{Na}(D, \ast) = \text{Na}(D, \ast) = D[X]_{M[X]} = D_M(X) \subseteq (D_M : M)D_M(X) = (\text{Na}(D, \ast) : M\text{Na}(D, \ast))$ (where the proper inclusion holds because MD_M is principal in D_M). At any rate, what we really require is the equality $(D^\ast : E)\text{Na}(D, \ast) = (\text{Na}(D, \ast) : E)$ for $E \in \overline{F}(D)$. In the next lemma, we show that this holds in a $P\ast MD$ but not in general. The proof of part (1) of the next lemma is a relatively straightforward translation of the proof of [14, Proposition 2.2] to the semistar setting. In carrying this out, however, we discovered a minor flaw in the proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8], but this result requires that the domain D be integrally closed. To ensure complete transparency, we give the proof in full detail.

Lemma 2.4. Let \ast be a semistar operation on D. Then:

1. $(D^\ast : E)\text{Na}(D, \ast) \supseteq (\text{Na}(D, \ast) : E)$ for each $E \in \overline{F}(D)$.
2. The following statements are equivalent:
 a. $(D^\ast : E)\text{Na}(D, \ast) = (\text{Na}(D, \ast) : E)$ for each $E \in \overline{F}(D)$.
 b. $D^\ast = D^\ast$.
 c. $D^\ast \subseteq \text{Na}(D, \ast)$.
3. $(D^\ast : E)\text{Na}(D, \ast) = (\text{Na}(D, \ast) : E)$ for each $E \in \overline{F}(D)$.
4. If D is a $P\ast MD$, then the equivalent conditions in (2) hold.

Proof. (1) Let $E \in \overline{F}(D)$, and let $\psi \in (\text{Na}(D, \ast) : E)$. For $a \in E$, $a \neq 0$, we may find $g \in N(\ast)$ such that $\psi a g \in D[X]$. This yields $\psi a g \in a^{-1}D[X] \subseteq K[X]$, and hence $\psi = f/g$ for some $f \in K[X]$. We claim that $c(f) \subseteq (D^\ast : E)$. Granting this, we have $f \in (D^\ast : E)D[X]$, from which it follows that $\psi = f/g \in (D^\ast : E)\text{Na}(D, \ast)$, as desired. To prove the claim, take $b \in E$, and note that $fb \in \text{Na}(D, \ast)$. Hence $fbb \in D[X]$ for some $h \in N(\ast)$, and so $c(fh)b \subseteq D$. By the content formula [12, Theorem 28.1], there is an integer m for which $c(f)c(h)^{m+1} = c(fh)c(h)^m$. Using the fact that $c(h)^* = D^\ast$, we obtain $c(f)^* = c(fh)^*$ and hence that $c(b) \subseteq c(fh)^*b \subseteq D^\ast$. Therefore, $c(f) \subseteq (D^\ast : E)$, as claimed.

2. Under the assumption in (c), $D^\ast \subseteq \text{Na}(D, \ast) \cap K = D^\ast$ (Lemma [14, 6]). Hence (c) \Rightarrow (b). Now assume that $D^\ast = D^\ast$. Then for $E \in \overline{F}(D)$, we have $(D^\ast : E)\text{Na}(D, \ast) \subseteq D^\ast \subseteq \text{Na}(D, \ast)$; using (1), the implication (b) \Rightarrow (a) follows. That (a) \Rightarrow (c) follows upon taking $E = D$ in (a).

3. This follows easily from (2), because $\text{Na}(D, \ast) = \text{Na}(D, \ast)$ by Lemma [14, 5].

4. This follows from (2), since if D is a $P\ast MD$, then $D^\ast = D^\ast$ by Lemma [12, 2a).

The conditions in Lemma [24, 2] need not hold: Let $F \subseteq k$ be fields, $V = k[[x]]$ the power series ring over V in one variable, and $D = F + M$, where $M = xk[[x]]$. Define a (finite-type) semistar operation \ast on D by $A^\ast = AV$ for $A \in \overline{F}(D)$. Then $D^\ast = V \supseteq D = D_M = D^\ast$.

We can now extend Theorem 2.3 to $P\ast MD$s.
Corollary 2.5. Let \ast be a semistar operation on D such that D is a \ast_f-sharp $P\ast MD$, and let I be a nonzero ideal of D with $(D^\ast : I) = D^\ast$. Then I is \ast_f-idempotent.

Proof. By Lemma 2.4(3), we have

$$(\text{Na}(D, \ast) : I\text{Na}(D, \ast)) = (D^\ast : I)\text{Na}(D, \ast) = D^\ast\text{Na}(D, \ast) = \text{Na}(D, \ast).$$

Hence $I\text{Na}(D, \ast)$ is idempotent in the Prüfer domain $\text{Na}(D, \ast)$ by Theorem 2.3 Lemma 2.2(1) then yields that I is \ast_f-idempotent.

Many semistar counterparts of ideal-theoretic properties in domains result in equations that are “external” to D, since for a semistar operation \ast on D and a nonzero ideal I of D, it is possible that $I^\ast \not\subseteq D$. Of course, \ast-idempotence is one such property. Often, one can obtain a “cleaner” counterpart by specializing from $P\ast MDs$ to “ordinary” $PMDs$. We recall some terminology. Semistar operations are generalizations of star operations, first considered by Krull and repopularized by Gilmer [12, Sections 32, 34]. Roughly, a star operation is a semistar operation restricted to the set $F(D)$ of nonzero fractional ideals of D with the added requirement that one has $D^\ast = D$. The most important star operation (aside from the d-, or trivial, star operation) is the v-operation: For $E \in F(D)$, put $E^{-1} = \{x \in K \mid xE \subseteq D\}$ and $E^v = (E^{-1})^{-1}$. Then v_f (restricted to $F(D)$) is the t-operation and \tilde{v} is the w-operation. Thus a PMD is a domain in which each nonzero finitely generated ideal is t-invertible. Corollary 2.5 then has the following restricted interpretation (which has the advantage of being internal to D).

Corollary 2.6. If D is a t-sharp PMD and I is a nonzero ideal of D for which $I^{-1} = D$, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$. Then, every branched maximal ideal of D is sharp.

Proof. Let M be a branched maximal ideal of D. Then $MD_M = \text{rad}(aD_M)$ for some nonzero element $a \in M$ [12, Theorem 17.3]. Let $I := aD_M \cap D$. Then I is M-primary, and since $ID_M = aD_M$, $(ID_M$ and hence I is not idempotent. By hypothesis, we may choose $u \in I^{-1} \setminus D$. Since $Iu \subseteq D$ and $ID_N = D_N$ for $N \in \text{Max}(D) \setminus \{M\}$, then $u \in \bigcap\{D_N \mid N \in \text{Max}(D), N \neq M\}$. On the other hand, since $u \notin D$, $u \notin D_M$. It follows that M is sharp.

Now we extend Proposition 2.7 to $PMDs$.

Corollary 2.8. Let \ast be a semistar operation on D, and assume that D is a $P\ast MD$ such that I is \ast_f-idempotent whenever I is a nonzero ideal of D with $(D^\ast : I) = D^\ast$. Then, each branched quasi-\ast_f-maximal ideal of D is \ast_f-sharp. (In particular if D is a PMD in which I is t-idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$, then each branched maximal t-ideal of D is t-sharp.)
Proof. Let \(J \) be a nonzero ideal of the Prüfer domain \(\text{Na}(D, \ast) \) with \(\text{Na}(D, \ast) : J = \text{Na}(D, \ast) \). By Lemma 1.2(1c), \(J = I \text{Na}(D, \ast) \) for some ideal \(I \) of \(D \). Applying Lemma 2.4(3) and Lemma 1.1(6), we obtain \((D^\ast : I) = D^\ast \). Hence, by hypothesis, \(I \) is \(\ast \)-idempotent, and this yields that \(J = I \text{Na}(D, \ast) \) is idempotent in the Prüfer domain \(\text{Na}(D, \ast) \) (Lemma 2.2(1)). Now, let \(M \) be a branched quasi-\(\ast \)-maximal ideal of \(D \). Then, by Lemma 2.2(2), \(M \text{Na}(D, \ast) \) is a branched maximal ideal of \(\text{Na}(D, \ast) \). We may now apply Proposition 2.7 to conclude that \(M \text{Na}(D, \ast) \) is sharp. Therefore, \(M \) is \(\ast \)-sharp in \(D \) by Lemma 2.2(5). \(\square\)

If \(P \) is a prime ideal of a Prüfer domain \(D \), then powers of \(P \) are \(P \)-primary by [12, Theorem 23.3(b)]; it follows that \(P \) is idempotent if and only if \(PD_P \) is idempotent. We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper idempotent ideal in a Prüfer domain must be a radical ideal. We (re-)prove and extend this fact and add a converse:

Theorem 2.9. Let \(D \) be a Prüfer domain, and let \(I \) be an ideal of \(D \). Then \(I \) is idempotent if and only if \(I \) is a radical ideal each of whose minimal primes is idempotent.

Proof. The result is trivial for \(I = (0) \) and vacuously true for \(I = D \). Suppose that \(I \) is a proper nonzero idempotent ideal of \(D \), and let \(P \) be a prime minimal over \(I \). Then \(IP_P \) is idempotent, and we must have \(IP_P = PD_P \) [12, Theorem 17.1(3)]. Hence \(PD_P \) is idempotent, and therefore, by the comment above, so is \(P \). Now let \(M \) be a maximal ideal containing \(I \). Then \(IM_M \) is idempotent, hence prime (hence radical). It follows (checking locally) that \(I \) is a radical ideal.

Conversely, let \(I \) be a radical ideal each of whose minimal primes is idempotent. If \(M \) is a maximal ideal containing \(I \) and \(P \) is a minimal prime of \(I \) contained in \(M \), then \(IP_M = PD_M \). Since \(P \) is idempotent, this yields \(IM_M = P^2M_M \). It follows that \(I \) is idempotent. \(\square\)

We next extend Theorem 2.9 to \(P \)-MDs.

Corollary 2.10. Let \(D \) be a \(P \)-MD, where \(\ast \) is a semistar operation on \(D \), and let \(I \) be a quasi-\(\ast \)-ideal of \(D \). Then \(I \) is \(\ast \)-idempotent if and only if \(I \) is a radical ideal each of whose minimal primes is \(\ast \)-idempotent. (In particular, if \(D \) is a \(P \)-MD and \(I \) is a \(t \)-ideal of \(D \), then \(I \) is \(t \)-idempotent if and only if \(I \) is a radical ideal each of whose minimal primes is \(t \)-idempotent.)

Proof. Suppose that \(I \) is \(\ast \)-idempotent. Then \(I \text{Na}(D, \ast) \) is an idempotent ideal in \(\text{Na}(D, \ast) \) by Lemma 2.2(1). By Theorem 2.9, \(I \text{Na}(D, \ast) \) is a radical ideal of \(\text{Na}(D, \ast) \), and hence, by Lemma 2.2(4), \(I \) is a radical ideal of \(D \). Now let \(P \) be a minimal prime of \(I \) in \(D \). Then \(P \) is a quasi-\(\ast \)-prime of \(D \). By Lemma 1.2(2b) \(P \text{Na}(D, \ast) \) is minimal over \(I \text{Na}(D, \ast) \), whence \(P \text{Na}(D, \ast) \) is idempotent, again by Theorem 2.9. The \(\ast \)-idempotence of \(P \) now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and Lemma 2.2. \(\square\)
Recall that a Prüfer domain is said to be strongly discrete (discrete) if it has no nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly discrete if and only if it is discrete and has no unbranched prime ideals. We have the following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

1. If D is discrete, then an ideal I of D is idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
2. If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P⋆MD *f*-strongly discrete (*f*-discrete) if it has no (branched) *f*-idempotent quasi-*f*-prime ideals. From Lemma 2.2(1,2), we have the usual connection between a property of a P⋆MD and the corresponding property of its *-Nagata ring:

Proposition 2.12. Let * be a semistar operation on D. Then D is *f*-discrete if and only if $Na(D,*)$ is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1,2), we have the following extension of Corollary 2.11.

Corollary 2.13. Let D be a domain.

1. Assume that D is a P⋆MD for some semistar operation * on D.
 a. If D is *f*-discrete, then a nonzero quasi-*f*-ideal I of D is *f*-idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 b. If D is *f*-strongly discrete, then D has no *f*-proper *f*-idempotent ideals.
2. Assume that D is a P⋆MD.
 a. If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 b. If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3. Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Prüfer domain and P is a nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises: If D is a *f*-doublesharp P⋆MD and $P \in QSpec^\gamma(D) \setminus QMax^\gamma(D)$, is P necessarily divisorial? Since * is an arbitrary semistar operation and divisoriality specifically involves the γ-operation, one might expect the answer to be negative. Indeed, we give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a general result, a corollary of which does yield divisoriality in the “ordinary” P⋆MD case. First, we need a lemma, the first part of which may be regarded as an extension of [14, Proposition 2.2(2)].

Lemma 3.1. Let * be a semistar operation on D. Then

1. $(D^*: (D^*: E))Na(D,*) = (Na(D,*) : (Na(D,*) : E))$ for each $E \in \mathcal{F}(D)$, and
If I is a nonzero ideal of D, then \tilde{I}^\ast is a divisorial ideal of D^\ast if and only if $\text{INa}(D, \ast)$ is a divisorial ideal of $\text{Na}(D, \ast)$.

In particular, if D is a $P\ast MD$, then $(D^\ast : (D^\ast : E))\text{Na}(D, \ast) = (\text{Na}(D, \ast) : (\text{Na}(D, \ast) : E))$ for each $E \in \mathbb{F}(D)$; and, for a nonzero ideal I of D, I^\ast is divisorial in D^\ast if and only if $\text{INa}(D, \ast)$ is divisorial in $\text{Na}(D, \ast)$.

Proof. Set $N = \text{Na}(D, \ast)$. For (1), applying Lemma 2.4 we have

$$(D^\ast : (D^\ast : E))N = (N : (D^\ast : E)) = (N : (N : E)).$$

(2) Assume that I is a nonzero ideal of D. If \tilde{I}^\ast is divisorial in D^\ast, then (using (1))

$$N : (N : I)\cap K = \tilde{I}^\ast.$$

Now suppose that IN is divisorial. Then

$$(D^\ast : (D^\ast : I))N = (N : (N : I)) = IN,$$

whence

$$(D^\ast : (D^\ast : I)) \subseteq IN \cap K = \tilde{I}^\ast.$$

The “in particular” statement follows from standard considerations. \hfill \Box

Theorem 3.2. Let \ast be a semistar operation on D such that D is a \ast_f-doublesharp $P\ast MD$, and let $P \in \text{QSpec}^\ast(D) \setminus \text{QMax}^\ast(D)$. Then P^\ast is a divisorial ideal of D^\ast.

Proof. Since $\text{Na}(D, \ast)$ is a doublesharp Prüfer domain (Lemma 2.2(5)), $P\text{Na}(D, \ast)$ is divisorial by [2, Corollary 4.1.14]. Hence P^\ast is divisorial in D^\ast by Lemma 3.1. \hfill \Box

Corollary 3.3. If D is a t-doublesharp $PvMD$, and P is a non-t-maximal t-prime of D, then P is divisorial.

Proof. Take $\ast = v$ in Theorem 3.2. (More precisely, take \ast to be any extension of the star operation v on D to a semistar operation on D, so that \ast_f (restricted to D) is the t-operation on D.) Then $P = P^\ast = P^t$ is divisorial by Theorem 3.2. \hfill \Box

Example 3.4. Let p be a prime integer and let $D := \text{Int}(\mathbb{Z}(p))$. Then D is a 2-dimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained in M. Then $P = qQ[X] \cap D$ for some irreducible polynomial $q \in Q[X]$ [2, Proposition V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of D. Set $E^\ast = ED_M$ for $E \in \mathbb{F}(D)$. Then, \ast is a finite-type semistar operation on D. Clearly, M is the only quasi-\ast-maximal ideal of D, and, since D_M is a valuation domain, D is a $P\ast MD$ by Lemma 1.3. Moreover, $\text{Na}(D, \ast) = D_M(X)$ is also a valuation domain and hence a doublesharp Prüfer domain, which yields that D is a \ast_f-doublesharp $P\ast MD$ (Lemma 2.2). Finally, since $P = PD_M \cap D = P^\ast \cap D$, P is a non-\ast_f-maximal quasi-\ast_f-prime of D. \hfill \Box

In the remainder of the paper, we impose on Prüfer domains ($P\ast MD$s) the finite character (finite \ast_f-character) condition. As we shall see, this allows improved versions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization for (quasi-\ast_f-)ideals that are simultaneously (\ast_f-)idempotent and (\ast_f-)divisorial.
Theorem 3.5. Let D be a Prüfer domain with finite character, and let I be a nonzero ideal of D. Then:

1. I is idempotent if and only if I is a product of idempotent prime ideals.
2. The following statements are equivalent.
 (a) I is idempotent and divisorial.
 (b) I is a product of non-maximal idempotent prime ideals.
 (c) I is a product of divisorial idempotent prime ideals.
 (d) I has a unique representation as the product of incomparable divisorial idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of its minimal primes, each of which is idempotent. Since D has finite character, I is contained in only finitely many maximal ideals, and, since no two distinct minimal primes of I can be contained in a single maximal ideal, I has only finitely many minimal primes and they are comaximal. Hence I is the product of its minimal primes (and each is idempotent). The converse is trivial.

(2) (a) \Rightarrow (b): Assume that I is idempotent and divisorial. By (1) and its proof, $I = P_1 \cdots P_n = P_1 \cap \cdots \cap P_n$, where the P_i are the minimal primes of I. We claim that each P_i is divisorial. To see this, observe that $(P_1) \cap \cdots \cap P_n = I = I \subseteq P_1$. Since the P_i are incomparable, this gives $(P_i) \subseteq P_1$, that is, P_1 is divisorial. By symmetry each P_i is divisorial. It is well known that in a Prüfer domain, a maximal ideal cannot be both idempotent and divisorial. Hence the P_i are non-maximal.

(b) \Rightarrow (c): Since D has finite character, it is a (d)-doublesharp Prüfer domain [13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7, Corollary 4.1.14].

(c) \Rightarrow (a): Write $I = Q_1 \cdots Q_m$, where each Q_j is a divisorial idempotent prime. Since I is idempotent (by (1)), we may also write $I = P_1 \cdots P_n$, where the P_i are the minimal primes of I. For each i, we have $Q_1 \cdots Q_m = I \subseteq P_i$, from which it follows that $Q_j \subseteq P_i$ for some j. By minimality, we must then have $Q_j = P_i$. Thus each P_i is divisorial, whence $I = P_1 \cap \cdots \cap P_n$ is divisorial.

Finally, we show that (d) follows from the other statements. We use the notation in the proof of (c) \Rightarrow (a). In the expression $I = P_1 \cdots P_n$, the P_i are (divisorial, idempotent, and) incomparable, and it is clear that no P_i can be omitted. To see that this is the only such expression, consider a representation $I = Q_1 \cdots Q_m$, where the Q_i are divisorial, idempotent, and incomparable. Fix a Q_k. Then $P_1 \cdots P_n = I \subseteq Q_k$, and we have $P_i \subseteq Q_k$ for some i. However, as above, $Q_j \subseteq P_i$ for some j, whence, by incomparability, $Q_k = P_i$. The conclusion now follows easily. □

We note that incomparability is necessary for uniqueness above—for example, if D is a valuation domain and $P \subseteq Q$ are non-maximal (necessarily divisorial) primes, then $P = PQ$.

We close by extending Theorem 3.5 to P*MDs and then to “ordinary” PrMDs. We omit the (by now) straightforward proofs.
Corollary 3.6. Let \star be a semistar operation on D such that D is a P-\starMD with finite \star_f-character, and let I be a quasi-\star_f-ideal of D. Then:

1. I is quasi-\star_f-idempotent if and only if I^{\star_f} is a quasi-\star_f-product of quasi-\star_f-idempotent quasi-\star_f-prime ideals in D, that is, $I^{\star_f} = (P_1 \cdot \ldots \cdot P_n)^{\star_f}$, where the P_i are quasi-\star_f-idempotent quasi-\star_f-primes of D.

2. The following statements are equivalent.
 (a) I is quasi-\star_f-idempotent and divisorial (I^{\star_f} is divisorial in D^{\star_f}).
 (b) I is a quasi-\star_f-product of non-quasi-\star_f-maximal idempotent quasi-\star_f-prime ideals.
 (c) I is a quasi-\star_f-product of quasi-\star_f-divisorial quasi-\star_f-idempotent prime ideals.
 (d) I has a unique representation as a quasi-\star_f-product of incomparable quasi-\star_f-idempotent primes.

Corollary 3.7. Let D be a P-vMD with finite t-character, and let I be a nonzero t-ideal of D. Then:

1. I is t-idempotent if and only if I is a t-product of t-idempotent t-prime ideals in D.

2. The following statements are equivalent.
 (a) I is t-idempotent and divisorial.
 (b) I is a t-product of non-t-maximal t-idempotent t-primes.
 (c) I is a t-product of divisorial t-idempotent t-primes.
 (d) I has a unique representation as a t-product of incomparable divisorial t-idempotent t-primes.

References

[1] J. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(X)$, Canad. J. Math. 21 (1969), 558-563.
[2] P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Amer. Math. Soc. Surv. Monogr., Providence 48 (1997).
[3] M. Fontana, E. Houston, and T. Lucas, Toward a classification of prime ideals in Prüfer domains, Forum Math. 22 (2010), 741–766.
[4] M. Fontana, E. Houston, and T. Lucas, Factoring ideals in integral domains, Lectures Notes of U.M.I, Springer, Berlin and Heidelberg, 2013.
[5] M. Fontana, E. Houston, and M.H. Park, Sharpness and semistar operations in Prüfer-like domains, Comm. Algebra, to appear.
[6] M. Fontana and J.A. Huckaba, Localizing systems and semistar operations, in “Non-Noetherian Commutative Ring Theory” (S. T. Chapman and S. Glaz, eds.), Kluwer Academic Publishers, 2000, pp. 169–196.
[7] M. Fontana, J.A. Huckaba, and I.J. Papick, Prüfer domains, Marcel Dekker Inc., New York, 1997.
[8] M. Fontana, P. Jara, and E. Santos, Prüfer \star-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50.
[9] M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4805.
[10] R. Gilmer, Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813–818.
[11] R. Gilmer, Overrings of Prüfer domains, J. Algebra 4 (1966), 331–340
[12] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[13] R. Gilmer and W. Heinzer, Overrings of Prüfer domains, II, J. Algebra 7 (1967), 281–302.
[14] B.G. Kang, *Prüfer v-multiplication domains and the ring $R[X]_{N_v}$*, J. Algebra **123** (1989), 151–170.

[15] A. Okabe and R. Matsuda, *Semistar operations on integral domains*, Math. J. Toyama Univ. **17** (1994), 1–21.

[16] M. Zafrullah, *Some polynomial characterizations of Prüfer v-multiplication domains*, J. Pure Appl. Algebra **32** (1984), 231-237.

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy
E-mail address: fontana@mat.uniroma3.it

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 U.S.A.
E-mail address: eghousto@uncc.edu

Department of Mathematics, Chung-Ang University, Seoul 06974, Korea
E-mail address: mhpark@cau.ac.kr