Review

Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework

Lauren Pringels 1, 2, Jill L Cook, 3 Erik Witvrouw, 2 Arne Burssens, 4 Luc Vanden Bossche 1, 2, Evi Wezenbeek 2

ABSTRACT

Despite the high prevalence of tendon pathology in athletes, the underlying pathogenesis is still poorly understood. Various aetiological theories have been presented and rejected in the past, but the tendon cell response model still holds true. This model describes how the tendon cell is the key regulator of the extracellular matrix and how pathology is induced by a failed adaptation to a disturbance of tissue homeostasis. Such failure has been attributed to various kinds of stressors (eg, mechanical, thermal and ischaemic), but crucial elements seem to be missing to fully understand the pathogenesis. Importantly, a disturbance of tissue pressure homeostasis has not yet been considered a possible factor, despite it being associated with numerous pathologies. Therefore, we conducted an extensive narrative literature review on the possible role of intratendinous pressure in the pathogenesis of tendon pathology. This review explores the current understanding of pressure dynamics and the role of tissue pressure in the pathogenesis of other disorders with structural similarities to tendons. By bridging these insights with known structural changes that occur in tendon pathology, a conceptual model was constituted. This model provides an overview of the possible mechanism of how an increase in intratendinous pressure might be involved in the development and progression of tendon pathology and contribute to tendon pain. In addition, some therapies that could reduce intratendinous pressure and accelerate tendon healing are proposed. Further experimental research is encouraged to investigate our hypotheses and to initiate debate on the relevance of intratendinous pressure in tendon pathology.

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC

⇒ Tendinopathy remains a major problem for athletes, accounting for 30% of all overuse injuries.
⇒ Despite advances in tendon research, the pathogenesis of tendon pathology is still poorly understood.
⇒ A disturbance of intratendinous pressure homeostasis has not yet been considered a possible factor.

WHAT THIS STUDY ADDS

⇒ Remodelling of tendon tissue into fibrocartilage-like tissue can result in an increase in intratendinous resting and dynamic pressure, mainly due to an excess of water-binding glycosaminoglycans and proteoglycans.
⇒ An increase in intratendinous resting pressure might explain the hypoxic state and the formation of leaky (neo)vessels in tendon pathology.
⇒ An increase in intratendinous dynamic pressure might make tendon pathology progressive and induce load-related tendon pain.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ Treatments aimed at inhibiting maladaptive remodelling (eg, modified physiotherapy) or reducing intratendinous pressure (eg, human recombinant hyaluronidase) might be promising therapies that should be investigated.

INTRODUCTION

Tendinopathy, the clinical syndrome of tendon pain and dysfunction, remains a challenge of major concern for athletes and accounts for approximately 30% of all overuse injuries. 1-4 Despite strong advances in tendon research over recent decades, there is still a limited understanding of the underlying mechanisms involved in the development of tendon pathology that underpins tendinopathy. Consequently, management of this debilitating condition remains challenging, presumably because current treatment modalities do not directly address all aspects of the natural history of the disease. For example, 60% of patients still experience symptoms after completing an exercise-based rehabilitation programme. 5 These unsatisfactory treatment results, which might even lead to the premature end of a sporting career, continue to frustrate clinicians and athletes. The list of alternative treatment options, such as shockwave therapy, injections (platelet-rich plasma, prolotherapy, corticosteroids, high volume, sclerotherapy), nitric oxide patches, surgical debridement, etc is long and illustrates that despite meritorious attempts, a ‘magic bullet’ for tendinopathy will remain elusive when there are still significant gaps in knowledge of the pathogenesis of tendon pathology. 6-7 Should we simply acknowledge the difficult nature of tendinopathies or further invest in fundamental tendon research to create new hypotheses and insights? We propose the latter and therefore aimed to explore the potential role of intratendinous pressure in the development and progression of tendon pathology in both upper and lower limbs. This conceptual paper was developed on the basis that pressure dynamics in tendons have received little to no attention to date, yet may provide a coherent pathophysiological
This overload was purely tensile. However, evidence has emerged for tendinopathy. Traditionally, it was thought that the nature of excessive load or training volume is considered the main trigger to the body of knowledge on this topic were included for review. Relevant articles. Only papers that made a significant contribution to the articles obtained from this search were also examined for additional (see online supplemental appendix). In addition, reference lists of database inception to January 2022 using domain-specific terms in the lower limbs are the Achilles tendon and the gluteus medius, where compression occurs at the posterosuperior border of the calcaneus and the greater trochanter, respectively. Some examples in the upper limbs include the long head of the proximal biceps tendon (at the level of the humeral head and bicipital groove), the distal biceps tendon (at the level of the radial tuberosity), the extensor carpi radialis brevis tendon (at the level of the lateral epicondyle and the capitellum), and the supraspinatus tendon (at the level of the humeral head and greater tuberosity). Internal compression, on the other hand, can also occur in the midsubstance because of the Poisson effect or torsion during tensile loading. It should be noted that for both types of compression, the amount of compressive load will be higher when more tensile load is applied, demonstrating the close relationship between tensile and compressive loads in tendons.

(Mal)adaptive tendon matrix remodelling
Mechanotransduction describes the ability of a cell to detect and convert mechanical stimuli into biochemical signals, resulting in intracellular changes and remodelling of the extracellular matrix (ECM) to adapt to the external loading environment. In mechanically active tissues, such as tendons, this mechanotransduction process plays a crucial role in tissue protection. It has been shown that the tendon micro-architecture continuously adapts to the applied or removed loads, and that this adaptive process is driven by the tenocyte. Fibrocartilage metaplasia, which is characterised by an increase in (1) glycosaminoglycans (GAGs), ie, hyaluronan (HA), chondroitin (CS) and dermatan sulfate (DS), (2) large proteoglycans (PGs), ie, aggrecan and versican, (3) rounded and enlarged tenocytes and (4) collagen type II, can therefore be considered a physiological adaptation to compressive loads, as it increases the resistance of tendon tissue to compressive loads. A typical example is the fibrocartilage at entheses, which are characterised by a four-zone gradient, transitioning from tendon to bone (figure 2). In this deep tendon area, compressive loads are extremely high and tensile loads are rather limited. However, when compressive loads are

![Figure 1](image)

Figure 1 Conceptual framework describing the role of intratendinous pressure in the pathogenesis of tendon pathology. CS, chondroitin sulfate; DS, dermatan sulfate; HA, hyaluronan.
suddenly increased in magnitude, metaplasia from a tensile to a fibrocartilaginous morphology can become excessive and occur beyond the ‘classical’ zone.9,21,35 This change in phenotype can have a number of negative consequences for tendons, especially for areas that are also exposed to a significant amount of tensile loads. First, it may gradually reduce the tendon’s tensile stiffness, which explains why the combination of tensile and compressive overloads is most damaging to tendons.26,33,39–41 Second, due to the strong water-binding properties of negatively charged GAGs and PGs, it also induces fluid accumulation, increasing susceptibility of tendon tissue to compressive overload.42 Third, it may also disrupt intratendinous pressure dynamics, which will be clarified in the following sections.9,44 These arguments indicate that excessive remodelling of tendon tissue into fibrocartilage-like tissue due to compressive overload may result in failure to achieve optimal tendon matrix homeostasis and is therefore considered potentially maladaptive in our model.43–46 In addition, if overload persists, the change of tissue phenotype may alter the tendon cell response and result in loss of the organised structure of the fibrocartilage matrix, and thus also be the first stage of tendon pathology.

Volume expansion induces an increase in intratendinous resting pressure

Although somewhat ignored in tendons, every structure in our body (e.g., nerves, muscles, joints, brain) has a total tissue pressure (TTP), which is the sum of the interstitial fluid pressure (IFP) and the solid stress (SS).47 While IFP correlates only with the amount of free fluid, SS is the pressure exerted by the cells, collagen and GAGs or PGs, including their bound fluid.48 The TTP can vary slightly but usually remains below 10 mm Hg in normal conditions.49 However, in various pathologies, such as muscular compartment syndromes, compression induced neuropathies, osteoarthritis and tumours, TTP may increase significantly.48,50–54 In these disorders, the TTP increase is attributed to either a solitary increase in IFP or SS or the combination, with the associated volume expansion being resisted by an enclosed sheath. For example, intraneural pressure increases fourfold in compressive neuropathies due to fluid accumulation beneath the impermeable perineurium.54 In tendon pathology, this phenomenon also seems plausible, as the cellular proliferation and upregulation of several components of the ECM, especially GAGs and PGs with its bounded fluid, may induce a strong swelling pressure (figure 3).55–58 It is unclear which sheath would primarily resist the volume expansion, but both the endotenon (interfascicular matrix (IFM)) and epitenon seem possible as they have a fairly low permeability and closely surround the fascicles and the whole tendon, respectively.59,60 The increase of TTP in these confined spaces, namely intrafascicular or interfascicular, respectively, can therefore lead to a ‘miniature compartment syndrome’ in tendons, whereby continuous pressure is exerted on the associated tenocytes and ECM.58 This term was coined by Lundborg et al, who described that the swollen nerve fascicles in neuropathies exhibit a behaviour similar to that of a muscle compartment in chronic compartment syndrome.54 For convenience, TTP is further discussed as intratendinous pressure.

Increased intratendinous resting pressure impairs vascularisation

Although controversial, biopsy and in vivo model studies suggest that hypoperfusion and subsequent hypoxia are features of tendon failure.62 Indeed, histopathological changes in chronic tendinopathies consist of necrotic tenocytes and an excess of blood vessels with narrowed lumen.63–68 In addition, microdialysis studies have shown high levels of lactate within tendinosis, even in tendons at rest, suggesting that hypoxia may persist.69 However, the exact mechanism of how hypoxia develops and can persist in tendinopathy has not yet been defined. We speculate that an increased intratendinous resting pressure (IRP) might be a crucial contributor, as it impairs vascularisation in two ways (figure 4). First, the elevated pressure is transmitted to the post-capillary venules, increasing venous pressure and decreasing the arteriovenous pressure gradient.70 Indeed, an increase in venous pressure, indicating venous congestion, has already been found in midportion tendinopathy.71,72 Second, further increase of the IRP could also cause the capillaries to deform or collapse, reducing their radius and decreasing capillary blood inflow. A similar phenomenon has already been described in oedematous neuropathies53,54,73–75 and it may explain why narrowed vascular lumens are also found in degenerative tendinopathies. The IRP thresholds that can impede blood flow are based on the mean capillary and venous intravascular pressures, ie, 30 mm Hg and 15 mm Hg, respectively.76 For example, pressure thresholds for chronic exertional compartment syndrome are intramuscular resting pressure >15 mm Hg, a one-minute postexercise pressure of >30 mm Hg or a 5 min postexercise pressure >20 mm Hg.77 It should be mentioned that there is also a reciprocal relationship between tissue pressure and hypoxia. First, hypoxia can lead to arteriolar vasodilation and an increase in vascular permeability, allowing more fluid to enter the affected compartment.78 Second, it has already been shown in retinopathies and tumours that neovessels, which are formed during prolonged hypoxia, typically have a chaotic, leaky architecture.78 Järvinen recently noted that leakage can also occur in the neovessels typically found in chronic tendinopathies.83 As described in muscles, nerves and tumours, blood vessel leakage increases IFP, creating a vicious cycle, which theoretically could also occur in tendinopathies.70,73,77,79

Reduced permeability induces an increase in intratendinous dynamic pressure

Approximately 70% of the weight of tendons consists of water, which is either free or bound to the ECM.80–82 However, the
amount of water may vary due to fluid movement inwards and outwards of the tendon. Tendons undergo lateral contraction during tensile loading (Poisson’s ratio >0.5), which generates a positive fluid pressure and leads to radial fluid exudation and consequently volume shrinkage (figure 5A).83 This phenomenon, in part, explains the acute reduction in tendon thickness in response to exercise, equating to a cumulative transverse strain of approximately 6%.84–87 Moreover, fluid and SS pressurisation is also thought to be responsible for the observed decrease in microvascular blood flow during passive stretching in tendons, muscles and nerves, and the poststretch hyperaemia reaction that follows when tension is released.88–92 For convenience, we will further use the term intratendinous dynamic pressure (IDP) to refer to the amount of internal pressure generated during tensile loading in tendons. Although a direct analysis of IDP has not yet been carried out, a positive correlation between fluid pressure and passive strain has already been demonstrated in nerves and muscles.93–96 For example, intraneural pressure in the sciatic nerve increases from 8 mm Hg to 56 mm Hg during a straight leg raise.95 Theoretical and experimental studies have also shown that fluid pressure increases strongly when hydraulic permeability of the ECM decreases, as this is associated with a higher resistance to fluid flow.31 60 80 85 97–103 Such a decrease in transverse permeability typically occurs in tendon pathology due to the increase of water-retaining GAGs and PGs. Fluid can therefore be trapped inside the tendon matrix during tensile loading, resulting in significantly higher IDP (figure 5B). In addition, since free fluid volume is also increased in tendon pathology, allowing more fluid to be trapped, the pressurisation effect can be even more pronounced.31 102 These assumptions are consistent with clinical findings that tendon thickness decreases less after exercise in patients with tendinopathy.103 104 Moreover, it also implies that for the same amount of tensile load, tendon cells will experience more IDP in tendon pathology than in healthy tendons, which again creates a vicious cycle, and represent a plausible mechanism for the progression of tendon pathology.

How does this model fit into the continuum model?

The continuum model by Cook et al classifies tendinopathy based on the changes and distribution of disorganisation within the tendon. Three different phases were distinguished, namely reactive tendinopathy, tendon disrepair and degenerative tendinopathy.105 106 Each of these phases might also be related to changes in intratendinous pressure. Reactive tendinopathy, due to (compressive) overload, is essentially accompanied by an accumulation of hydrophilic GAGs, PGs and associated fluid.107 These GAGs (eg, HA) and PGs (eg, aggrecan and versican) can be produced rapidly, within a few hours to days, and are responsible...
for the rapid tendon swelling. As already described in detail for tumours, it is precisely these GAGs that increase the SS and consequently cause the IRP to rise sharply. Moreover, the increase in GAGs is also responsible for the reduced matrix permeability, which further leads to an increase in IDP. Fortunately, GAGs and PGs have a fast turnover rate, which means they can also be degraded just as quickly. Therefore, by removing the compressive stimulus on the tenocyte, GAGs, PGs and associated fluids might decrease, and a normalisation of the IRP and IDP could occur. This explains why rest is so successful in the reactive phase. However, if the athlete continues to train with a swollen, less permeable tendon, the tenocyte will gradually experience more pressure for the same amount of load, further stimulating the production of GAGs, PGs and associated fluid, resulting in persistently high IRP and IDP. As a result, the tendon matrix may enter the disrepair phase, on the one hand, due to hypoxia and, on the other hand, due to physical disruption because of high IRP and IDP, respectively. It has recently been highlighted that degradation of the IFM precedes damage to the intrafascicular matrix and is therefore an important feature of the progression of tendon pathology. Our theory may also fit these findings. Since the IFM cell population is more metabolically active than the fascicular tenocytes, it is also more oxygen-dependent. Ischaemia will, therefore,
have a greater detrimental effect on IFM cells, which will more quickly alter phenotype or succumb to apoptosis. Furthermore, we believe that mechanical disruption will also start in the IFM due to high IDP, as pressurisation begins within the packed microstructure of tendon fascicles (figure 6). Eventually, if the patient continues their activities during this phase of disrepair, prolonged oedema and hypoxia will also lead to cell apoptosis and irreversible matrix breakdown products within the fascicles. This theory is already accepted to explain tissue changes that occur in chronic compressive neuropathies due to increased intraneural pressure. In turn, the damaged collagen network may also further fail to oppose the swelling due to increased intraneural pressure. Eventually, if the patient continues their activities during this phase of disrepair, prolonged oedema and hypoxia will also lead to cell apoptosis and irreversible matrix breakdown products within the fascicles. This theory is already accepted to explain tissue changes that occur in chronic compressive neuropathies due to increased intraneural pressure. In turn, the damaged collagen network may also further fail to oppose the swelling due to increased intraneural pressure.

How does this model relate to (para)clinical features of tendinopathy?

Pain
In general, the term ‘tendinopathy’ refers to a pathological condition of a tendon with a complaint of pain and decreased function. At present, there are still many questions about the identity of the nociceptive driver in tendinopathy as the relation between tendon pain and tissue disruption is not straightforward. We speculate that a disturbance of the intratendinous pressure homeostasis might be involved in pain perception. First, an increase in intratendinous pressure can activate the mechanonociceptors located in the peritendinous connective tissue (both endo- and epitenon), subsequently firing the fast, myelinated Aδ fibres and the slow, non-myelinated C fibres. These fibres are responsible for the first, sharp pain and the later, dull pain, respectively. Both nociceptors have a noxious pressure threshold around 100 mm Hg tissue pressure, but their firing frequency, and thus the sensation of pain, increases significantly as pressure rises. We suggest that such high pressures in tendons can only be achieved during loading (IDP) and if the matrix permeability is sufficiently reduced. This is consistent with the observation that tendon pain correlates well with load intensity and GAG or PG content. Moreover, since IDP also correlates with strain rate, this elucidates why fast loading exercises (eg, plyometrics) are more provocative than slow exercises (eg, isometrics).

Swelling
Another clinical feature of tendon pathology is swelling, usually fusiform in shape, which is mainly attributed to the strong increase in highly negatively charged GAGs and PGs that induce water absorption. For example, in patellar tendinopathy, the GAG content increases fivefold, accompanied by a fluid increase of more than 16%. Yet, the amount of free fluid also appears to increase in tendinopathy. Within our conceptual model, tendon swelling also occupies a central position, as it is necessary to obtain swelling stress and consequently an increase in IRP. However, there are two important factors to consider. First, based on tumour studies, an increase in GAG-bound fluid (SS) will have a significantly greater impact on IRP than an increase in free fluid (IFP). Second, the amount of swelling pressure will be highly dependent on the location of the fluid accumulation within the tendon matrix (figure 7). Indeed, the intrinsic compartment, the fascicle, has a much smaller diffusion space than the large extrinsic compartment of the IFM. By analogy, it has already been described in nerves that a small fascicular fluid increase is associated with an intense pressure increase (up to 750 mm Hg), whereas the same fluid increase in the IFM resulted in a significantly lower pressure (up to 60 mm Hg). Although PGs and GAGs occur both inter- and intrafascicularly, fluid accumulation appears to occur primarily interfascicularly and, consequently, extremely high resting pressures (> 100 mm Hg) are unlikely to occur in tendon pathology.

Structural findings
Tendon pathology is rarely homogeneous in terms of severity of tendon damage—some fascicles are more affected than others. Recently, it was described that the degree of permeability of the fascicles differs and that this might play a role in the development of tendon pathology. These observations fit perfectly in our conceptual model. We believe that the IRP and IDP will also be heterogeneous, as it is related to the amount of fluid in the fascicles and the permeability of the IFM in the affected tendon region. Consequently, disrepair of the IFM is expected to occur mainly in the regions where the intratendinous pressures are highest.

Therapeutic implications
The quest for novel therapies in sports medicine must be based on discoveries through basic science. This conceptual model proposes a central role of increased intratendinous pressure in the pathogenesis of tendon pathology. Therefore, strategies that can restore intratendinous pressure might be relevant to consider as an (additional) treatment strategy. We speculate that...
this can be achieved in two ways. On the one hand, maladaptive mechanotransduction must be addressed. This can be done by reducing the amount of compressive load, but still exerting sufficient tensile forces on the tenocyte during rehabilitation to restore its normal phenotype and promote proper ECM synthesis. For example, in insertional Achilles tendinopathy, this can be relatively easily achieved by reducing the amount of dorsiflexion.10,145,146 In addition, heavy-slow resistance exercises would also give better results than high-speed exercises, as these are associated with a lower IDP.132 On the other hand, drug treatment that directly targets the elevated GAG content might also be a very powerful tool. A potential treatment that has been mentioned recently for tendinopathies is human recombinant hyaluronidase, as it degrades HA, CS and DS from the ECM to preinjury levels.147,148 The removal of these excess GAGs can liberate the bound fluid and significantly reduce the fluid content, resulting in a lower IRP, thus enabling vascular re-expansion.149 This novel agent is already used for tumours as it successfully reduces interstitial pressure to enhance the delivery of cytotoxic agents.150 Furthermore, since enzymatic degradation of GAGs also increases matrix permeability, allowing the fluid to exude more easily during loading, this will also result in a lower IDP.40 The use of human recombinant hyaluronidase may therefore be particularly useful in the reactive or early disrepair phase, before irreparable structural damage has occurred. Fortunately, previous experimental studies have shown that depletion of GAGs from tendon fascicles does not decrease tensile stiffness.40,147,151,152 We, therefore, speculate that this treatment, which has been used in different medical applications for over 60 years, could be safe for tendons as well.153–155

Future research

Further research into the relationship between intratendinous pressure dysregulation and tendon pathology is a promising domain. A better understanding of intratendinous pressure dynamics could provide invaluable information about the aetiology and progression of tendon pathology. This would allow researchers and clinicians to translate this information into the identification of potential risk factors and effective treatment strategies, leading to better outcomes for all tendinopathy patients. More specifically, we propose to first focus on identifying the suspected elevated IRP and IDP in tendon pathology, using minimal or non-invasive techniques. In addition, the effects of the mentioned treatment strategies that could reduce these intratendinous pressures should also be investigated.

REFERENCES

1. Carragher P, Rankin A, Edouard P. A One-Season prospective study of illnesses, acute, and overuse injuries in elite youth and junior track and field athletes. *Front Sport Sci Act* 2019;1:13.
2. Roos KG, Marshall SW, Zen YZ, et al. Epidemiology of overuse injuries in collegiate and high school athletes in the United States. *Am J Sports Med* 2015;43:1790–7.
3. Viljoen C, Janse van Rensburg DCC, van Mechelen W, et al. Trail running injury risk factors: a systematic review. *Br J Sports Med* 2022;56:577–87.
4. Macedo CSG, Tadiello FF, Medeiros LT, et al. Physical therapy service delivered in the Polyclinic during the Rio 2016 Paralympic Games. *Phys Ther Sport* 2019;36:62–7.
5. van der Plas A, de Jonge S, de Vos RJ, et al. A 5-year follow-up study of Alfredson’s heel-drop exercise programme in chronic midportion Achilles tendinopathy. *Br J Sports Med* 2012;46:214–8.
6. van der Vlist AC, Winters M, Veit A, et al. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. *Br J Sports Med* 2021;55:249–56.
7. Iby A, Gutierrez J, Chamberlin C, et al. Clinical management of tendinopathy: a systematic review of the literature evaluating the effectiveness of tendinopathy treatments. *Scand J Med Sci Sports* 2020;30:1810–26.
8. Abat F, Alfredson H, Cucchiaini M, et al. Current trends in tendinopathy: consensus of the ESSKA basic science Committee. Part I: biology, biomechanics, anatomy and an exercise-based approach. *J Exp Orthop* 2017;4:18.
9. Docking S, Samirc T, Scase E, et al. Relationship between compressive loading and ECM changes in tendons. *Muscles Ligaments Tendons J* 2013;3:7–11.
10. Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? *Br J Sports Med* 2012;46:163–8.
11. Almekinders LC, Weinhold PS, Maffulli N. Compression etiology in tendinopathy. *Clin Sports Med* 2003;22:703–10.
12. Chimienti RL, Flemister AS, Ketz J, et al. Ultrasound strain mapping of Achilles tendon compressive strain patterns during dorsiflexion. *J Biomech* 2016;49:39–44.
13. Martui T, Kumai T, Kamijo S, et al. Effect of ankle motion and tensile stress at the Achilles tendon on the contact pressure between the Achilles tendon and the calcaneus. *J Foot Ankle Surg* 2021;60:753–6.
14. Rausch V, Kahnmann SL, Bauchschun C, et al. Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study. *J Hand Surg Am* 2020;45:776.e1–776.e9.
15. Bimbam K, Siebert CH, Pandorf T, et al. Anatomical and biomechanical investigations of the iliotibial tract. *Radiol Anat* 2004;26:433–46.
16. Grimaldi A, Fearon A. Gluteal tendinopathy: integrating pathomechanics and clinical features in its management. *J Orthop Sports Phys Ther* 2015;45:910–22.
Review

17. Grimaldi A, Mellor R, Hodges P, et al. Gluteal tendinopathy: a review of mechanisms, assessment and management. *Sports Med* 2015;45:1107–19.

18. Bottega CM, Farinelli L, Aquila A, et al. Fibrocartilaginous metaplasia identified in the long head of the biceps brachii. *J Shoulder Elbow Surg* 2018;27:1221–5.

19. Streit JJ, Shihani Y, Rodgers M, et al. Tendinopathy of the long head of the biceps tendon: histopathologic analysis of the extracellular biceps tendon and tenosynovium. *Open Access J Sports Med* 2015;6:63.

20. Kolz CW, Suter T, Henninger HB. Regional mechanical properties of the long head of the biceps tendon. *Clin Biomech* 2015;30:940–5.

21. Berenson MC, Bleivis FT, Paas AH, et al. Proteoglycans of human rotator cuff tendons. *J Orthop Res* 1996;14:518–25.

22. Caelkebeke F, Schenkels E, Bell SN, et al. Distal biceps tendon protraction. *J Hand Surg* 2021;46:701–7.

23. Hilgersom NJ, Nagel M, Janssen SJ, et al. Greater radial tuberosity size is associated with distal biceps tendon rupture: a qualitative 3-D CT case–control study. *Knee Surg Sports Traumatol Arthrosc* 2021;29:4075–81.

24. Bunata RE, Brown DS, Capelo R. Anatomical factors related to the cause of tennis elbow. *J Bone Joint Surg Am* 2007;89:1955–63.

25. Stegink-Jansen CW, Byrum JG, Lambropoulos AB, et al. Lateral epicondylitis: a literature review to link pathology and tendon function to tissue-level treatment and ergonomic interventions. *J Hand Ther* 2021;34:263–97.

26. Gigante A, Marinelli M, Chiliemi C, et al. Fibrous cartilage in the rotator cuff: a pathogenetic mechanism of tendon tear? *J Shoulder Elbow Surg* 2004;13:328–32.

27. Lee SB, Nakajima T, Luo ZP, et al. The bursal and articular sides of the supraspinatus tendon have a different compressive stiffness. *Clin Biomech* 2000;15:241–7.

28. Fallon J, Bleivis FT, Vogel K, et al. Functional morphology of the supraspinatus tendon. *J Orthop Res* 2002;20:920–6.

29. Wakabayashi I, Itoui E, Sano H, et al. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. *J Shoulder Elbow Surg* 2003;12:612–21.

30. Lavagnino M, Arnozcyk SP, Elvin N, et al. Patellar tendon strain is increased at the site of the jumper’s knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model. *Am J Sports Med* 2008;36:2110–8.

31. Sedweb AM, Reese SP, Maas SA, et al. Continuum description of the Poisson's ratio of ligament and tendon under finite deformation. *J Biomech* 2014;47:3201–9.

32. Mos M, Koeveld W, Van Schoor HTM, et al. In vitro model to study chondrogenic differentiation in tendinopathy. *Am J Sports Med* 2009;37:1214–22.

33. Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments—an adaptation to compressive load. *J Anat* 1998;193 Pt 4:481–94.

34. Samiric T, Parkinson J, Ilcz MZ, et al. Changes in the composition of the extracellular matrix in patellar tendinopathy. *Matrix Biol* 2009;28:230–6.

35. Shaw HM, Vazquez OT, McGonagle D, et al. Development of the human Achilles tendon enthesis organ. *J Anat* 2008;213:178–21.

36. Lyman J, Weinhold PS, Almekinders LC. Strain behavior of the distal Achilles tendon for the pathogenesis of degenerative tendons disease. *Scand J Med Sci Sports* 2017;47:1059–69.

37. Yaman J, Weinhold PS, Almekinders LC. Strain behavior of the distal Achilles tendon: a critical role of aging during repetitive loading and biphasic mixture finite element modeling. *J Biomech* 2020;109:109892.

38. Scott IE. Proteoglycan-collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues. *J Anat* 1990;169:23–35.

39. Miller NL, Reilly JH, Kerr SC, et al. Hypoax: a critical regulator of early human tendinopathy. *Ann Rheum Dis* 2012;71:302–10.

40. Järvinen TA. Neovascularisation in tendinopathy: from eradication to stabilisation? *Br J Sports Med* 2020;54:1–3.

41. Benson RT, McDonald SM, Knowles HJ, et al. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. *J Bone Joint Surg Br* 2010:92:488–97.

42. Snedeker JJ, Foolen J. Tendon injury and repair—A perspective on the basic mechanisms of tendon disease and future clinical therapy. *Acta Biomater* 2017;62:19–36.

43. Lundgreen K, Khan OB, Engebretsen L, et al. Tenocyte apoptosis in the torn rotator cuff: a primary or secondary pathological event? *Br J Sports Med* 2011;45:1035–9.

44. Miller NL, Murrell GAC, McInnes IB. Alarmins in tendinopathy: unravelling new mechanisms in a common disease. *Rheumatology* 2013;52:769–79.

45. Pulte T, Petersen WJ, Menteerin R, et al. The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. *Scand J Med Sci Sports* 2020;30:1199–202.

46. Alfredson H, Bjur D, Thorsen K, et al. High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. *J Orthop Res* 2002;20:934–8.

47. Elliott KGB, Johnstone AJ. Diagnosing acute compartment syndrome. *J Bone Joint Surg Br* 2003;85:625–32.

48. Knobloch K, Krameri R, Lichtenberg A, et al. Achilles tendon and paratendon microcirculation in midportion and insertional tendinopathy in athletes. *Am J Sports Med* 2006;34:92–7.

49. Knobloch K. The role of tendon microcirculation in Achilles and patellar tendinopathy. *J Orthop Surg Phys Ther* 2019;49:CP61–85.

50. Gao Y, Weng C, Wang X. Changes in nerve microcirculation following peripheral nerve compression. *Neural Regen Res* 2013;8:1041–7.

51. Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. *Crit Care* 2016;20:319.

52. Hutchinson M. Chronic exertional compartment syndrome. *Br J Sports Med* 2011;45:952–3.

53. McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. *EMBO Mol Med* 2015;7:368–79.

54. Lawrence M, Jansen CWS, et al. Hand pain and sensory deficits: carpal tunnel syndrome. *J Orthop Sports Phys Ther* 2019;49:CP61–85.

55. Gao Y, Weng C, Wang X. Changes in nerve microcirculation following peripheral nerve compression. *Neural Regen Res* 2013;8:1041–7.

56. Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. *Crit Care* 2016;20:319.

57. Hutchinson M. Chronic exertional compartment syndrome. *Br J Sports Med* 2011;45:952–3.

58. McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. *EMBO Mol Med* 2015;7:368–79.

59. Lawendy a, Target for induced essentiality. *Br J Sports Med* 2011;45:952–3.

60. Connizzo BK, Grodzinsky AJ. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. *J Biomech* 2017;54:11–18.
81 Loegering IF, Denning SC, Johnson KM, et al. Ultrashort echo time (UTE) imaging reveals a shift in bound water that is sensitive to sub-clinical tendinopathy in older adults. *Skeletal Radiol* 2021;50:107–13.

82 O’Brien M. Anatomy of tendons. In: *Tendon injuries: basic science and clinical medicine.* Tendonin 2005; 5:3–13.

83 Ahmadzadehdeh N, Friedman BR, Connucco BK, et al. Micromechanical porelial finite element and shear-lag models of tendons predict large strain dependent Poisson’s ratios and fluid expulsion under tensile loading. *Acta Biomater* 2015;2:83–91.

84 Fahlström M, Alfredson H. Ultrasound and Doppler findings in the Achilles tendon among middle-aged recreational floor-ball players in direct relation to a match. *Br J Sports Med* 2010;44:1–7.

85 Grigg NL, Wearing SC, Smeathers JE. Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise. *Br J Sports Med* 2009;43:280–3.

86 Wearing SC, Hooper SL, Purdam C, et al. The acute transverse strain response of the patellar tendon to quadriceps exercise. *Med Sci Sports Exerc* 2013;45:77–72.

87 Wearing SC, Smeathers JE, Hooper SL, et al. The time course of in vivo recovery of transverse strain in high-stress tendons following exercise. *Br J Sports Med* 2014;48:383–7.

88 Kruse NT, Scheuermann BW. Effect of self-administered stretching on NIRS-measured oxygen dynamics. *Clin Physiol Funct Imaging* 2016;36:126–33.

89 Kruse NT, Slette CR, Scheuermann BW. Influence of passive stretch on muscle blood flow, oxygenation and central cardiovascular responses in healthy young males. *Am J Physiol Heart Circ Physiol* 2000;278:H1210–21.

90 Aström M, Westlin N. Blood flow in the human Achilles tendon assessed by laser Doppler flowmetry. *J Orthop Res* 1994;12:246–52.

91 Driscoll PJ, Glasby MA, Lawson GM. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. *J Orthop Res* 2002;20:370–5.

92 Kubo K. Blood supply. *Adv Exp Med Biol* 2016;920:27–38.

93 Davis I. Kaufman KR, Lieber RL. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. *J Biomech* 2003;36:505–12.

94 Gerbelman RH, Yamaguchi K, Hollistien SB, et al. Changes in interstitial pressure and cross-sectional area of the cubital tunnel and of the ulnar nerve with flexion of the elbow. An experimental study in human cadaver. *J Bone Joint Surg Am* 1998;80:492–501.

95 Borrelli J, Kantor J, Ungacta F, et al. Intraneural nociceptive nerves pressure relative to the position of the hip and knee: a human cadaveric study. *J Orthop Trauma* 2000;14:255–8.

96 Wheatley BB, Ogledge GM, Kaufman KR, et al. Modeling skeletal muscle stress and intramuscular pressure: a whole muscle Active–Passive approach. *J Biomech Eng* 2018;140:081006.

97 Atkinson TS, Haut RC, Alitiero NJ. A poroelastic model that predicts some phenomenological responses of ligaments and tendons. *J Biomech Eng* 1997;119:400–5.

98 Wren TA, Beaupre GS, Carter DR. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. *J Rehabil Res Dev* 2000;37:135–43.

99 Butler SL, Kohles SS, Thielke RJ, et al. Interstitial fluid flow in tendons or ligaments: a porus medium finite element simulation. *Med Biol Eng Comput* 1997;35:742–6.

100 Wang M, Liu S, Xu Z, et al. Characterizing poroelasticity of biological tissues by spherical indentation: an improved theory for large flexure. *J Mech Phys Solids* 2010;13803 May 2020.

101 Yao H, Justic M-A, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. *Ann Biomed Eng* 2020;30:1234–41.

102 Malmgaard-Clausen NM, Tran P, Svensson RB, et al. Magnetic Resonance T2 *. * Is Increased in Patients With Early-Stage Achilles and Patellar Tendinopathy. *J Magn Reson Imaging* 2021;54:832–9.

103 Grigg NL, Wearing SC, Smeathers JE. Achilles tendinopathy has an aberrant strain response to eccentric exercise. *Med Sci Sports Exerc* 2012;44:12–17.

104 Wearing SC, Locke S, Smeathers JE, et al. Tendinopathy alters cumulative transverse strain in the patellar tendon after exercise. *Med Sci Sports Exerc* 2015;47:264–71.

105 Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. *Br J Sports Med* 2009;43:609–15.

106 Cook JL, Rio E, Purdam CR, et al. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? *Br J Sports Med* 2016;50:1187–91.

107 Cook JL, Screen HRC. Tendon pathology: have we missed the first step in the development of pathology. *J Appl Physiol* 2018;125:1349–50.

108 Li X, Shepard HM, Cowell JA, et al. Parallel accumulation of tumor hyaluronan, collagen, and other drivers of tumor progression. *Cancer Res* 2018;78:24798–807.

109 Voutsouris C, Stylianopoulos T. Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness. *Proc Natl Acad Sci USA* 2018;13:e18193801.
Chauhan VP, Boucher Y, Ferrone CR, et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. *Cancer Cell* 2014;26:14–15.

Selander D, Sjöstrand J. Longitudinal spread of intraneurally injected local anesthetics. An experimental study of the initial neural distribution following intraneural injections. *Acta Anaesthesiol Scand* 1978;22:623–34.

Docking S, Rosengarten S, Daffy J, et al. Treat the donut, not the hole: the pathological Achilles and patellar tendon has sufficient amounts normal tendon structure. *J Sci Med Sport* 2014;18:e2.

Counsel P, Comin J, Davengport M, et al. Pattern of fascicular involvement in Midportion Achilles tendinopathy at ultrasound. *Sports Health* 2015;7:424–8.

Mlyniec A, Dabrowska S, Heljak M, et al. The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids. *Mater Sci Eng C Mater Biol Appl* 2021;130:112435.

Honda T, Kaneiwa T, Mizumoto S, et al. Hyaluronidases have strong hydrolytic activity toward chondroitin 4-sulfate comparable to that for hyaluronan. *Biomolecules* 2012;2:549–63.

DuFort CC, DelGiorno KE, Carlson MA, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. *Biophys J* 2016;110:2106–19.

Wong KM, Horton KJ, Coveler AL, et al. Targeting the tumor stroma: the biology and clinical development of PEGylated recombinant human hyaluronidase (PEGPH20). *Curr Oncol Rep* 2017;19:47.
Topic	Search strategy
1	("Tendon Patholog*" or "Tendon Injur*" or "Tendinopath*" or ("Tendon*" and "Mechanotransduction")) and ("Compression" or "Compressive Load*" or "Compressive Strain" or "Transversal Strain")
2	("Intratendinous Pressure" or "Interstitial Pressure" or "Tissue Pressure" or "Solid Stress" or "Interstitial Fluid Pressure" or "Interstitial Fluid Flow" or "Hydrostatic Pressure" or "Porocelast*") and ("Tendon*")
3	("Intratendinous Pressure" or "Interstitial Pressure" or "Tissue Pressure" or "Solid Stress" or "Interstitial Fluid Pressure" or "Interstitial Fluid Flow" or "Hydrostatic Pressure" or "Porocelast*") and ("Glycosaminoglycan*" or "Proteoglycan*" or "Cellular Proliferation" or "Collagen*" or "Fluid Accumulation")
4	("Interstitial Pressure" or "Tissue Pressure") and ("Syndrome*" or "Patholog*" or "Disorder*")

Table 1 Domain-specific search strategy in PubMed