A physics-guided modular deep-learning based automated framework for tumor segmentation in PET

Kevin H Leung1, Wael Marashdeh2, Rick Wray3, Saeed Ashrafinia2,5, Martin G Pomper1,2, Arman Rahmim2,6 and Abhinav K Jha7

1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
2 The Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America
3 Department of Radiology and Nuclear Medicine, Jordan University of Science and Technology, Ar Ramtha, Jordan
4 Memorial Sloan Kettering Cancer Center, Greater New York City Area, NY, United States of America
5 Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
6 Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
7 Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, United States of America

E-mail: a.jha@wustl.edu

Keywords: PET, automated segmentation, deep learning, oncology, partial volume effects

Abstract
An important need exists for reliable positron emission tomography (PET) tumor-segmentation methods for tasks such as PET-based radiation-therapy planning and reliable quantification of volumetric and radiomic features. To address this need, we propose an automated physics-guided deep-learning-based three-module framework to segment PET images on a per-slice basis. The framework is designed to help address the challenges of limited spatial resolution and lack of clinical training data with known ground-truth tumor boundaries in PET. The first module generates PET images containing highly realistic tumors with known ground-truth using a new stochastic and physics-based approach, addressing lack of training data. The second module trains a modified U-net using these images, helping it learn the tumor-segmentation task. The third module fine-tunes this network using a small-sized clinical dataset with radiologist-defined delineations as surrogate ground-truth, helping the framework learn features potentially missed in simulated tumors. The framework was evaluated in the context of segmenting primary tumors in 18F-fluorodeoxyglucose (FDG)-PET images of patients with lung cancer. The framework’s accuracy, generalizability to different scanners, sensitivity to partial volume effects (PVEs) and efficacy in reducing the number of training images were quantitatively evaluated using Dice similarity coefficient (DSC) and several other metrics. The framework yielded reliable performance in both simulated (DSC: 0.87 (95% confidence interval (CI): 0.86, 0.88)) and patient images (DSC: 0.73 (95% CI: 0.71, 0.76)), outperformed several widely used semi-automated approaches, accurately segmented relatively small tumors (smallest segmented cross-section was 1.83 cm²), generalized across five PET scanners (DSC: 0.74 (95% CI: 0.71, 0.76)), was relatively unaffected by PVEs, and required low training data (training with data from even 30 patients yielded DSC of 0.70 (95% CI: 0.68, 0.71)). In conclusion, the proposed automated physics-guided deep-learning-based PET-segmentation framework yielded reliable performance in delineating tumors in FDG-PET images of patients with lung cancer.

1. Introduction

Accurate tumor delineation in positron emission tomography (PET) is important for many clinical tasks, such as PET-based radiation-therapy planning and reliable quantification of volumetric and radiomic features (Foster et al 2014, Jha et al 2017, Mena et al 2017a). However, tumor delineation in PET is challenging due to the relatively poor spatial resolution and high noise in PET (Foster et al 2014). Typically,
tumors in PET are segmented manually. This is tedious, time-consuming, expensive (Bagci et al 2013, Foster et al 2014), and suffers from substantial inter- and intra-reader variability (Giraud et al 2002, Shah et al 2012). Further, accurate tumor boundaries are hard to obtain manually due to partial volume effects (PVEs) arising from low resolution in PET. To address these issues, several computer-aided segmentation methods for PET have been developed (Foster et al 2014). Common methods include approaches based on thresholding (Shah et al 2012, Foster et al 2014, Sridhar et al 2016, Mena et al 2017a, 2017b), gradient-detection (Werner-Wasik et al 2012), and using image-data statistics or assuming prior knowledge about the tumor (Aristophanous et al 2007, Hatt et al 2009, Jha et al 2010, Belhassen and Zaidi 2010, Foster et al 2014, Layer et al 2015, Soufi et al 2016). Those methods have demonstrated promise but suffer from limitations, such as requiring manual input (e.g. tumor seed pixel or region of interest (ROI) around the tumor) (Aristophanous et al 2007, Hatt et al 2009, Werner-Wasik et al 2012, Foster et al 2014, Sridhar et al 2014, Mena et al 2017b), sensitivity to PVEs (Brambilla et al 2008, Foster et al 2014), limitations when assumptions are not satisfied (Belhassen and Zaidi 2010), and need for recalibration with different scanners (Zaidi et al 2012). Given these limitations, there is an important need to develop more accurate, generalizable, robust, and automated PET segmentation methods.

Our objective in this paper was to develop a method that, when given a PET image slice with a tumor, automatically localizes and accurately delineates the tumor. In this context, deep-learning (DL)-based methods, in particular those based on convolutional neural networks, such as U-net, have shown substantial promise in medical-image segmentation—especially in anatomical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) (Ronneberger et al 2015, Pereira et al 2016, Litjens et al 2017). While some recent studies explored DL-based methods for PET segmentation (Blanc-Durand et al 2018, Zhao et al 2018), several challenges remain to be addressed (Foster et al 2014, Litjens et al 2017). PET has low spatial resolution and high image noise compared to anatomical imaging modalities, which makes segmentation challenging (Foster et al 2014) and complicates the task of determining ground-truth for training DL-based approaches. DL-based segmentation methods typically use manual delineation as surrogate ground truth which, in the context of PET, has several issues as mentioned above. These include the important issues of limited accuracy and high variability, which limit the use of manual segmentations as ground truth (Giraud et al 2002, Shah et al 2012, Foster et al 2014). Further, for effective training, DL-based methods typically require large training sets (order of thousands), which are not readily available since PET is a relatively low-volume modality (Shen et al 2017).

To address these challenges, instead of training a conventional DL-segmentation approach only on limited clinical manually delineated training images, we propose a physics-guided three-module DL framework (figure 1). The framework was developed and comprehensively evaluated in the context of segmenting primary tumors in 18F-fluorodeoxyglucose (FDG)-PET images of patients with lung cancer. The framework yielded accurate segmentation with a small clinical training set, generalized across different scanners, and was relatively insensitive to PVEs.

2. Materials and methods

This was an IRB approved, HIPAA-compliant, retrospective study, with a waiver for obtaining informed consent. Data from 160 patients (91 Male, 69 Female, mean age 63.2 ± 11.7 (standard deviation) years; range 27–90 years) with biopsy-proven lung cancer and a measurable pulmonary tumor on staging 18F-FDG PET/CT was used. Patients with a second primary malignancy were excluded. Detailed patient characteristics are given in the appendix (table A1). Standard imaging protocol involved FDG administration of 0.22 mCi kg−1 and image acquisition 60 min post injection. The data was acquired across five different scanners: Discovery LS (N = 104), Discovery RX (N = 40), Discovery HR (N = 7), Discovery ST (N = 7), and Discovery STE (N = 2). Details on scanner and reconstruction parameters are in table 1.

2.1. The modular U-net based DL framework

A modular DL-based framework was developed in the context of segmenting 3D PET images on a per-slice basis. The framework, when input a PET slice containing a tumor, localized and segmented the tumor (figure 1). At its core, the framework had a modified U-net (mU-net) (U-net wit modifications detailed in section 2.1.2) (figure 2). Training DL approaches require large datasets with accurate ground truth (Shen et al 2017). Typically, only a small number of PET clinical images with only surrogate ground-truths (manual delineations) are available. In the DL literature, the use of simulated data to train DL methods has demonstrated promise (Creswell et al 2018, Gong et al 2018) and motivated our approach to use realistic simulations that model the PET physics to address training-data scarcity. However, simulated tumors may not be fully representative of tumors from the patient population and may not incorporate all tumor features. To address these issues, we developed a three-module framework (figure 1). The first module
Figure 1. Illustration of the generation of simulated 18F-FDG-PET images (a), workflow for the five-fold cross-validation process used to optimize and train the mU-net with simulated data (b), fine-tuning the mU-net with patient data (c), overview of the proposed modular framework (d), and evaluation of the proposed framework (e).

simulates a large number of image slices containing realistic 2D tumors with known ground-truth addressing the issue of lack of training data. In this module, a new stochastic kernel-density estimation (KDE)-based approach is used to generate tumors using tumor descriptors obtained from clinical data. This captures the observed variability in actual populations. Further, while simulating images, the physics of PET is incorporated with the intent of accounting for PVEs. The second module trains and optimizes the mU-net using these simulated images such that the mU-net learns the tumor-segmentation task for low-resolution images. The third module fine-tunes the mU-net with patient data to learn tumor features missed in simulated tumors. The modules are further described below.

2.1.1. Module 1—Stochastic and physics-based generation of PET images with realistic tumors

A novel KDE and physics-based approach was developed to simulate FDG-PET image slices with realistic tumors (figure 1(a)). Since segmentation performance is especially influenced by the descriptors of tumor shape and size, count statistics, and tumor-to-background ratio, it was important to accurately account for these tumor descriptors such that they matched those observed in patient populations. For this purpose, we first obtained the distributions of these descriptors from clinical data. The descriptors included first- and second-order statistics for the intensity, size, shape, intra-tumor heterogeneity, and tumor-to-background intensity ratio. The background intensities were obtained from non-tumor pixels present within a circular ROI around the tumor. Tumor shape was quantified using five harmonic elliptical Fourier shape descriptors (Kuhl and Giardina 1982). Tumor size was quantified using diameter and volume. Each metric was modeled with a kernel distribution.
Table 1. Technical acquisition and reconstruction parameters of PET/CT systems.

Parameter	Discovery LS	Discovery RX	Discovery HR	Discovery ST	Discovery STE
PET transaxial FOV (mm)	550	700	700	700	700
PET axial FOV (mm)	153	153	157	157	153
Reconstruction method	OSEM	OSEM	OSEM	OSEM	OSEM
Subsets	28	21	21	21	20
Iterations	2	2	2	2	2
Randoms correction method	RTSUB	SING	DLYD	DLYD	DLYD
Attenuation correction method	CT	CT	CT	CT	CT
Reconstruction method	Convolution subtraction	Convolution subtraction	None	Convolution subtraction	Convolution subtraction
Energy window (keV)	300–650	425–650	425–650	375–650	375–650
Voxel size (mm3)	$3.91 \times 3.91 \times 4.25$	$4.69 \times 4.69 \times 3.27$	$4.69 \times 4.69 \times 3.27$	$5.47 \times 5.47 \times 3.27$	$5.47 \times 5.47 \times 3.27$
Gaussian post-filtering FWHM	5.45	3.00	6.14	6.14	N/A
Corrections applied to image	DECY, ATTN, SCAT, DTIM, RAN, RADL, DCAL, SLSENS, NORM	DECY, ATTN, SCAT, DTIM, RAN, RADL, DCAL, SLSENS, NORM	DECY, ATTN, DTIM, RAN, RADL, DCAL, SLSENS, NORM	DECY, ATTN, SCAT, DTIM, RAN, DCAL, SLSENS, NORM	DECY, ATTN, SCAT, DTIM, RAN, DCAL, SLSENS, NORM

ATTN: attenuation corrected, DCAL: sensitivity calibrated using dose calibrator, DECY: decay corrected, DLYD: delayed event subtraction method, DTIM: dead time corrected, FOV: field of view, FWHM: full-width-at-half-maximum, N/A: not available, NORM: detector normalization, OSEM: ordered subset expectation-maximization, RADL: non-uniform radial sampling corrected, RAN: randomness corrected, RTSUB: real-time delayed event subtraction method, SLSENS: slice sensitivity; SCAT: scatter corrected, SING: singles-based correction.

The kernel distributions of each tumor descriptor were sampled to generate simulated tumors. Intra-tumor heterogeneity was simulated by incorporating unimodal variability in intensity values within the tumor and, for some tumors, by modeling the intensity distribution as a mixture model. For example, tumor cores assigned a lower intensity than the corresponding rim modeled a necrotic tumor. Examples of simulated tumors are shown in figures 3(a)–(f).

For simulated tumors, the ground-truth tumor boundaries were known. Since the ground-truth for the image background need not be known, we used multiple existing patient images from the training set as

![Figure 2](image-url)
templates to provide a realistic tumor background and account for inter-patient variability. For each simulated tumor slice, an FDG-PET patient image slice containing lung but not tumor was selected as background. The tumor locations placed in the patient background image slices were first manually selected such that the simulated tumors would appear at visually realistic locations within the lung. The simulated tumors were generated and randomly placed at the manually selected seed locations within the lung region.
of the patient background slices. The tumor orientation was determined by applying a random rigid rotation to the tumor. Similar to Ma et al (2017), projection data corresponding to the patient image and simulated tumor slices were generated by simulating a PET system modeling the major image-degrading processes in PET such as detector blurring with a 5 mm full-width-at-half-maximum (FWHM) Gaussian blur and noise at clinical count levels. These data were added in projection space to incorporate the impact of image reconstruction on the tumor appearance and noise texture. The projection data were reconstructed using the 2D ordered subset expectation-maximization algorithm (Hudson and Larkin 1994) with 16 subsets and 3 iterations to yield a large number of simulated images for different phantoms. These reconstruction parameters yielded the most visually realistic images. Another reason for this choice of reconstruction parameters was that 16 subsets with 3 iterations is roughly equivalent to 48 maximum likelihood expectation-maximization iterations, which was approximately equivalent to the number of iterations used to generate the patient images (table 1). Realism of the generated images was evaluated visually by a board-certified radiologist. The realism of images generated by such an approach has also been evaluated in previous studies (Ma et al 2017).

2.1.2. Module 2—Training mU-net with simulated data
The core of the proposed framework was a mU-net with an encoder-decoder architecture (figure 2). The encoder network learns spatially local features from the input data through a series of convolutional layers (Goodfellow et al 2016). Each convolutional layer learns feature maps from the previous layer by performing convolution of the input with a filter bank. After each convolutional layer in the network, a leaky rectified linear unit (ReLU) activation function was applied (Maas et al 2013). The leaky ReLU has been shown to help alleviate the vanishing-gradient problem (Maas et al 2013). Max-pooling layers were applied following the convolutional layers in the encoder network to condense meaningful features (Goodfellow et al 2016). The decoder network up-sampled the output of the encoder network via transposed convolutional layers. The transposed convolutional layers performed a learned up-sampling of feature maps by reconstructing the spatial resolution of previous layers prior to the pooling layers. The output of the decoder network was then mapped to a tumor mask in the decoder network. The decoder output was fed into a softmax layer, which performed a pixel-wise tumor classification. The mU-net was trained by minimizing a pixel-wise class-weighted cross-entropy loss function quantifying the error between the predicted and true tumor mask via the Adam optimization algorithm (Kingma and Ba 2014, Pereira et al 2016). A detailed description of the network architecture is given in the appendix (table A3).

There were some differences between the implementation of our mU-net from the original U-net (Ronneberger et al 2015). The original U-net implementation does not include the use of dropout whereas the mU-net included dropout after each convolutional layer. Dropout is a well-established regularization technique to prevent overfitting in deep neural networks where neurons and their connections are randomly dropped during training (Srivastava et al 2014). Using dropout during training resulted in a stable decrease in the training loss to prevent overfitting and higher segmentation accuracy compared to training the network without dropout. The original U-net has four blocks of expanding and contracting layers whereas our model had three blocks of expanding and contracting layers. Our mU-net architecture used a relatively small number of feature maps per layer (table A3) compared to the original U-net, since we found that increasing the number of feature maps did not result in substantial gains in segmentation accuracy. The lowest resolution in the original U-net is 32 × 32 pixels whereas the lowest resolution in our model was 16 × 16 pixels. The mU-net automatically extracted important local contextual and global localization features in the encoder and decoder paths, respectively. These features were combined through skip connections similar to the U-net architecture. These skip connections allow features learned at the beginning of the network to feed into the later layers and allow the network to learn more complex features. However, instead of feature map concatenation in the skip connections as in the original U-net, our mU-net used element-wise addition between the output of layers in the encoder network to downstream layers in the decoder network. The use of skip connections with element-wise addition in the mU-net stabilized training and helped improve performance. Finally, the original U-net was developed for segmentation in biomedical microscopy images whereas the mU-net was optimized and fine-tuned for PET images.

The mU-net architecture and hyperparameters were optimized via five-fold cross-validation on the simulated images (figure 1(b)). A grid search was used for the hyperparameter optimization where the general range for each hyperparameter sweep spanned several orders of magnitude. Hyperparameters included the value for the α parameter used for the leaky ReLU activation function, the dropout probability, the initialization value of the bias term for all weights in the network, and the class-weighting on the cross-entropy loss function. It was found during the cross-validation process that initializing the network weights by the Glorot initialization procedure helped to address the problem of vanishing or exploding backpropagated gradients (Glorot and Bengio 2010). Additionally, since there were relatively few tumor
pixels compared to background pixels, class balancing on the cross-entropy loss function was used by weighting the loss more heavily for tumor pixels (Pereira et al 2016). The detailed list of hyperparameters are shown in the appendix (table A4). After the hyperparameter selection, the final mU-net architecture, which had been trained only on subsets of the training data via the 5-fold cross-validation, was then trained with the entire training set from scratch. The hyperparameters that performed best on the training set during the five-fold cross-validation were used to train the network during this step.

2.1.3. Module 3—Fine-tuning with a small amount of clinical data
The objective of this module was to fine-tune the mU-net with patient data to learn tumor features that may have been missed in simulated tumors. The pre-trained network was fine-tuned using a small-sized clinical dataset (figure 1(c)) where the weights of the pre-trained network were used to initialize training of the fine-tuned network on patient data. The approach was similar to the fine-tuning process used in certain transfer learning-based approaches (Van Opbroek et al 2014). Primary tumors in the dataset were segmented by a board-certified radiologist with 4 and 11 years of experience in nuclear-medicine and diagnostic radiology, respectively. Manual segmentation was performed on a per-slice basis on 2D transaxial image slices. These manual segmentations were considered as ground-truth tumor boundaries. An overview of the proposed framework is shown in figure 1(d).

2.2. Evaluating the proposed framework
The framework was comprehensively evaluated via multiple experiments with independent training and test sets (figure 1(e)). The framework’s accuracy on quantifying tumor segmentation and localization in image slices was quantified using Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), true positive fraction, true negative fraction, Hausdorff distance (HD) (Foster et al 2014, Soufi et al 2016), and tumor localization (TL) accuracy. DSC and JSC measure the spatial overlap between the delineated and true tumor masks. Higher values indicate more accurate segmentation (Foster et al 2014). DSC values of 0.7 indicate high segmentation accuracy as mentioned in Zijdenbos et al (1994). True positive fraction and true negative fraction denote the fraction of correctly identified tumor pixels and background pixels, respectively. TL accuracy quantifies the fraction of times there was any overlap between the predicted and ground-truth segmentations. The HD quantifies shape similarity between the delineated and true tumor boundaries (Foster et al 2014, Soufi et al 2016), with lower values indicating higher shape similarity. HD was computed only for correct TL to quantify shape similarity without the effect of localization errors. All other metrics were computed generally irrespective of correct TL, quantifying performance on the joint tumor localization-segmentation task. DSC values were computed both generally and for correct TL. All values are reported as mean (95% confidence intervals (CIs)). Statistical significance was determined using a paired sample t-test where a p-value < 0.01 was used to infer a statistically significant difference.

2.2.1. Evaluating accuracy and comparing to other methods using patient and simulated data
The framework was quantitatively compared to semi-automated segmentation methods, including commonly used thresholding-based approaches (Shah et al 2012, Foster et al 2014, Sridhar et al 2014, Mena et al 2017a, 2017b), the active contour-based snakes method (Kass et al 1988), and the Markov random fields-Gaussian mixture model(MRF-GMM)-based clustering technique (Jha et al 2010, Layer et al 2015). Three thresholding approaches using fixed intensity thresholds of 30%, 40%, and 50% of the maximum standardized uptake value (SUV_{max}) were considered (Sridhar et al 2014). The MRF-GMM method was optimized with simulated data to yield the best overlap with ground truth on the basis of DSC. The semi-automated techniques were provided the tumor location as user input through a seed pixel or ROI. In contrast, the proposed automated framework had to both localize and segment the tumor, a more challenging task.

For the thresholding-based approaches, a procedure similar to Sridhar et al (2014) was followed. A circular ROI around the tumor was provided to all thresholding-based approaches. The tumor was segmented by applying a threshold of 30%, 40%, and 50% SUV_{max} within the circular ROI using region growing (Day et al 2009) starting from the pixel with the maximum SUV. For the active contour-based method, a circular ROI around the tumor was provided, and the tumor contour was generated by performing the active contour segmentation procedure to the ROI. For the MRF-GMM-based clustering method, manual inputs were provided using a procedure similar to that described in Jha et al (2010).

Evaluation was done with simulated and patient data (figure 1(e)). Evaluation with simulated data assessed the framework’s performance with known ground truth. 10 000 image slices were simulated based on data from 113 randomly selected patient images (Module 1 of framework). For each patient image, 4 to 30 tumor seed locations were defined in the image slices containing no tumor in the lung region. On average, 17 tumor seed locations were selected per patient image. The network was trained on this simulated data as
in figure 1(b) (Module 2). Next, 2000 completely independent slices were generated and used to test the network performance on simulated data.

Evaluation with patient data assessed the performance on clinical tumor images with manual segmentations as surrogate ground-truth. The framework pre-trained with simulated data was fine-tuned with the 113 patient images used to generate the simulated data (Module 3) and evaluated with the remaining 47 patient images.

2.2.2. Evaluating generalizability of the proposed framework
The generalizability of DL-based approaches to data acquired from different scanners is highly important. This is because if not, the DL approach would have to be retrained using data acquired from every scanner, making the approach impractical (Chang et al 2018).

To evaluate our framework’s generalizability to different scanners, we used the fact that patient images in our clinical dataset were acquired using five different scanners. Two experiments were performed. In the first experiment, the 104 patient images acquired from the Discovery LS scanner were used for simulations, pre-training and fine-tuning. The framework’s performance was tested on the 56 patient images from all other scanners. This experiment evaluated the framework’s generalizability when trained on images from one scanner and tested on images from other multiple scanners.

In the second experiment, 56 patient images from the Discovery RX, HR, ST, and STE scanners were used for simulations, pre-training, and fine-tuning. Testing was conducted with 104 patient images from the Discovery LS scanner, thus evaluating the framework’s generalizability when trained on images from multiple scanners and tested on images from another scanner.

2.2.3. Evaluating the efficacy of the framework in reducing number of clinical training images
For this purpose, the framework’s performance was compared to that of a mU-net trained only on clinical data in two experiments.

In the first experiment, the framework was pre-trained with simulated images based on 104 patient images acquired by the Discovery LS scanner. The size of the clinical training set, which consisted of patient images from the Discovery LS scanner, was varied to 1, 5, 25, 50, 75, and 104 patients. Both the framework and the mU-net trained only on clinical data were evaluated on a test set of 56 patient images from all other scanners.

In the second experiment, the framework was pre-trained with simulated images based on the 56 patient images from all other scanners. The size of the clinical training set, which consisted of patient images from all other scanners, was varied to 1, 5, 20, 30, 40, and 56 patients. The testing was with the 104 patient images from the Discovery LS scanner. The performance was quantitatively compared on the tasks of segmentation and tumor localization in both experiments.

2.2.4. Evaluating sensitivity of the framework to PVEs
For this purpose, experiments were performed with the test set of 2000 simulated image slices as defined in section 2.2.1. Simulated images were used since the ground-truth tumor masks for these images were known. These ground-truth masks were blurred by applying a rectangular filter that incorporated the resolution degradation due to the imaging system and reconstruction, yielding a tumor boundary now affected by PVEs. Note that this blurring is usually modeled by a Gaussian filter, but the larger range of this filter can significantly overestimate the PVE-affected boundaries in our experimental setup. Thus, a rectangular filter was instead used.

These PVE-affected tumor boundaries and the tumor boundaries estimated by the proposed framework were compared to the ground-truth on the basis of DSC and the ratio between the measured and the true tumor areas in the slices (referred to as %area) (De Bernardi et al 2009). A %area of 100% indicates perfect tumor-area prediction, while greater or lesser than 100% indicates overestimation and underestimation of the tumor area, respectively. Only cases where the network correctly localized the tumor were considered in order to specifically study sensitivity of the framework to PVEs.

2.3. Implementation details
The network architecture and training were implemented in Python 3.4.5, TensorFlow 1.6.0, and Keras 2.1.5. Experiments were run on an NVIDIA Tesla K40 GPU and a Linux CentOS 5.10 operating system. A list of the hardware and software details are given in appendix (table A5).
3. Results

3.1. Evaluating accuracy and comparing to other methods using patient and simulated data

The proposed framework quantitatively outperformed all other semi-automated methods on the basis of DSC, JSC, and HD (p-values < 0.001) for both simulated and patient images (figures 4(a) and (b) and table A6). The framework yielded a mean DSC of 0.87 and 0.73 on simulated and patient images, respectively, indicating reliable segmentation performance (Zijdenbos et al 1994). Further, the framework yielded a mean DSC of 0.91 and 0.84 for simulated and patient images, respectively, when TL was correct.

Qualitatively, in both the simulated and patient images, agreement was observed between segmentations obtained with the proposed framework and the ground truth (figure 3). The framework segmented tumors that had substantial intra-tumor heterogeneity (figures 3(c), (f) and (g)), were surrounded by regions with high uptake (figures 3(b), (d) and (h)), were relatively small (figures 3(a) and (i)), had convex shapes (figure 3(j)), and were near the heart region (figures 3(e), (f), (k), (l)). The smallest segmented tumor axial cross-section was 1.83 cm2 in area.
3.2. Evaluating generalizability of the proposed framework

The proposed framework provided reliable segmentation and yielded a mean DSC of 0.74 and 0.71 in the first and second generalization experiments described in section 2.2.2, respectively (figures 4(c) and (d) and table A7). The framework statistically outperformed other semi-automated techniques on the basis of DSC, JSC, and HD (p-value < 0.001). When TL was correct, the framework yielded a mean DSC of 0.85 and 0.82 in the first and second generalization experiments described in section 2.2.2, respectively. This provided evidence that the framework generalized across different PET scanners.

3.3. Evaluating efficacy of the framework in reducing number of clinical training images

The proposed framework statistically outperformed the mU-net trained only on clinical data on the basis of DSC and localization accuracy (figures 5(a)–(d)) for all training sizes (p-values < 0.001). Representative examples in figures 5(e) and (f) demonstrate this further. When trained on patient images acquired by the Discovery LS scanner, the proposed framework yielded a mean DSC of 0.68 (95% CI: 0.66, 0.71) even when trained on 25 patient images (figure 5(a)) and a mean localization accuracy of 74% (95% CI: 71%, 77%) when trained with just one patient image (figure 5(b)). When TL was correct, the proposed framework yielded a mean DSC of 0.79 (95% CI: 0.77, 0.80) when trained on 25 patient images (figure 5(a)). Similarly, when trained on patient images from all other scanners, the proposed framework yielded a mean DSC of 0.70 (95% CI: 0.68, 0.71) when trained on 30 patient images (figure 5(c)) and a mean localization accuracy of 72% (95% CI: 69%, 75%) when trained with just one patient image (figure 5(d)).

3.4. Evaluating sensitivity of the framework to PVEs

The network correctly localized the tumor in 1916 of the 2000 images (95.8%) from the test set of simulated images. Only the correctly localized cases were considered to study sensitivity to PVEs. Representative examples comparing the predicted tumor boundaries by the proposed framework to the PVE-affected tumor boundaries are shown in figures 6(a)–(d). The proposed framework yielded a mean DSC of 0.91 (95% CI: 0.91, 0.92) while the PVE-affected tumor boundaries yielded a mean DSC of 0.75 (95% CI: 0.74, 0.75) for simulated images. The proposed framework outperformed (p-value < 0.001) the PVE-affected tumor boundaries on the basis of DSC and %area (figures 6(e)–(f)) and yielded reliable segmentation and accurate tumor-area prediction for all tumor sizes (figure 6).

4. Discussion

We proposed a modular automated DL-based framework for tumor segmentation in PET images. The framework accurately localized and delineated primary tumors on FDG-PET images of patients with lung cancer using a small-sized clinical training dataset. Further, the proposed framework outperformed other semi-automated methods for both simulated and patient images. The framework generalized across several PET scanners, indicating that the features learned by the framework were invariant to differences in the scanners that were considered. Those attributes provide evidence that the framework is robust and motivate evaluation with data from various institutions and centers with different PET scanners. Visually, the proposed framework successfully localized the primary lung tumor even in cases where multiple high-uptake regions were present within the same image (e.g. heart, mediastinum, lymph nodes, or secondary metastatic deposits) (figures 3 and 5(e)). Concurrently, there were few cases where the DL approach could not localize the tumor correctly (figure 5(g)). However, the mU-net trained only on clinical images also failed in those cases (figure 5(h)). The localization accuracy of the proposed framework was generally higher than 80%, and up to 91% when data from 104 patients were used for training (figure 5(b)). To address cases of inaccuracy, one solution would be to display the segmented-tumor output to a radiologist for approval or refinement and integrate this feedback with a reinforcement-learning approach, similar to that in Wang et al (2018).

Experiments with simulated data demonstrated that the proposed framework was relatively insensitive to PVEs (figure 6). The proposed framework successfully segmented relatively small tumors in patient images, despite the presence of PVEs. These results demonstrate the applicability of the proposed framework in modalities with limited resolution and lack of ground-truth, such as SPECT and optical imaging modalities. The proposed framework used a new stochastic-KDE and physics-based approach to generate realistic simulated images with the goal of addressing limited availability of clinical training data. This approach allowed the generated data to account for patient-population variability and simultaneously account for the imaging physics. Other data-augmentation strategies include transforming the tumor (e.g. translation,
Figure 5. Comparing the proposed framework to the mU-net trained only on clinical images in terms of DSC and tumor localization accuracy for the various training set sizes with 95% confidence intervals (a)–(d) using the procedure in section 2.2.3. Representative examples of segmented tumors by the proposed framework (e) and the mU-net that was trained on clinical images only (f). Each example in (e) and (f) refers to the same image slices. Cases where the proposed framework (g) and the mU-net that was trained on only clinical images (h) failed to localize the tumor are also shown. Similarly, each example in (g) and (h) refers to the same image slices.

rotation, scaling) or changing tumor intensity in the patient images (Pereira et al 2016, Litjens et al 2017, Shen et al 2017). Even for such augmented data, the ground-truth tumor boundary would be the manual segmentations, which suffer from several issues already described. Our attempts at training the mU-net with these strategies were ineffective. Another strategy would be the use of generative adversarial networks (GANs) (Gong et al 2018) trained with clinical data. However, GANs can suffer from stability issues (Creswell et al 2018) and do not exploit the known physics of PET unlike the proposed framework.

The framework was developed for cases where only the PET image data is available, as is the case with data acquired using PET-only systems or scans. However, with PET/CT and PET/MRI scanners, multimodality imaging can assist with segmentation. Notably, the study done in Zhao et al (2018) developed
Figure 6. Representative examples comparing the predicted tumor boundaries by the proposed framework to the tumor boundaries affected by PVEs in simulated images (a)–(d). Evaluating the ability of the proposed framework to compensate for PVEs on the basis of DSC (e), and %area (f) using the procedure in section 2.2.4. A sample size of 1916 simulated images from the test set where the tumor was correctly localized were used (e). The %area was plotted as a function of true tumor area (cm2) to demonstrate the effect of PVEs for different tumor sizes where the tumor sizes were binned with a bin width of 5 cm2 tumor area. The sample sizes for each bin in order of increasing tumor area were 405, 457, 284, 203, 111, 74, 45, 16, 33, 18, 11, 11, 13, 10, 15, and 7, respectively. Error bars represent 95% confidence intervals.

a multi-modal CNN-based method for tumor co-segmentation in PET/CT images. Our framework was also not developed for PET scanners that implement time-of-flight (TOF). Recent work on tumor segmentation using TOF PET has demonstrated promise (Blanc-Durand et al. 2018). Integrating the proposed modular structure with these approaches could improve accuracy and reduce the need for large training data.

Our study has some limitations. The proposed framework performs 2D tumor delineation on PET transaxial image slices rather than on the entire 3D volume and thus assumes that the input image slices have a tumor. This was due to several reasons. Firstly, this was in line with our objective in this manuscript, which was developing a method that, when given a PET slice with a tumor, localizes the tumor and yields accurate tumor boundaries that are relatively insensitive to the PVEs in PET images. In other words, we focused on the tumor localization and delineation task, and not on a 3D segmentation approach that would also require tumor-detection such as in Zhao et al. (2018). Next, using all tumor-containing 2D slices as training examples increased the amount of training data. Further, 2D tumor delineation is less computationally expensive. Finally, from a usage perspective, the framework can segment 3D images on a per-slice basis when it is provided transaxial image slices where the primary tumor is present, as in this study. However, fully 3D segmentation could allow the network to learn 3D information to segment contiguous tumor volumes. Extending the proposed framework to direct 3D segmentation is an important research area. Another
limitation of our study is in the simulation approach. The approach generated realistic simulated images where synthetic tumors are generated and randomly placed at manually selected locations in the lung region of a patient background slice containing no tumor. While this approach yields visually realistic simulated PET images with lung tumors, this does not capture the biological and clinical information about the tumor location in the clinical dataset. Incorporating this information may improve the performance of the method on the tumor localization task and help address the inaccuracies as exemplified in figure 5. Further, the process of manually determining tumor locations may impact performance if the tumor-simulation approach is used to generate images for other clinical tasks within a DL framework. For example, the tumor stage may be correlated with tumor location. Modeling this correlation may be required if the proposed simulation approach is used for tumor-stage classification. Extending the proposed simulation approach to incorporate the tumor-location information more clinically realistically is an important area of research. Also, the proposed framework only locates and segments a single tumor per image slice. The latter limitation is an outcome of the patient-selection criteria, where patients with a second primary malignancy were excluded. Extending this method to find multiple tumors per patient image is another important research area.

5. Conclusion

A physics-guided modular DL-framework for automated tumor segmentation was developed and provided accurate delineation of primary lung tumors in FDG-PET images with a small-sized clinical training dataset, generalized across different scanners, and demonstrated ability to segment small tumors. Open-source code for the proposed framework and supplementary data is available here: https://github.com/khleung-ai/modular-DL-PET-segmentation.git.

Acknowledgments

Financial support for this project was provided, in part, by the National Institutes of Health under Grant Nos. P41-EB024495 and R21-EB024647. The researchers thank Dr Martin Lodge, Dr Richard Laforest, Dr Scott Wollenweber, and Martin Stumpf for helpful discussions.

Appendix

The data used in this study is a subset of previously reported data (Sheikhbahaei et al 2016), although the purpose of our study is very different. Details about the patient characteristics are given in table A1.

The tumor descriptors extracted from the patient images and used to inform the generation of simulated images are summarized in table A2. We have also provided those tumor descriptors in an Excel spreadsheet as supplementary data.

Details about the mU-net architecture, the hyperparameters, and software and hardware configuration to implement the mU-net are provided in tables A3, A4, and A5, respectively.

Results quantifying the performance of the proposed method are presented in tables A6 and A7.
Table A1. Patient characteristics.

Characteristic	Percent
<40	1% (2/160)
40–60	43% (69/160)
>60	56% (89/160)
Male	57% (91/160)
Female	43% (69/160)
White	68% (109/160)
Black	21% (34/160)
Other	11% (17/160)
Non-small cell lung cancer	82% (131/160)
Small cell lung cancer	16% (26/160)
Mesothelioma	1% (1/160)
Unknown	1% (2/160)
Positive	79% (126/160)
Negative	14% (22/160)
Unknown	8% (12/160)
I	11% (18/160)
II	9% (15/160)
III	34% (54/160)
IV	38% (61/160)
Unknown	8% (12/160)
Surgery	3% (4/160)
Chemotherapy	26% (41/160)
Radiation therapy	6% (9/160)
Surgery and chemoradiation	10% (16/160)
Chemoradiation	48% (77/160)
Surgery and chemotherapy	8% (13/160)
1–8 weeks	65% (104/160)
8–12 weeks	11% (17/160)
12–24 weeks	22% (35/160)
24–40 weeks	3% (4/160)
Alive	33% (52/160)

Table A2. Tumor descriptors used to inform simulations.

Characteristic	Value
Tumor-to-background ratio	3.6 (95% CI: 3.5, 3.7)
Tumor activity (SUV)	4.1 (95% CI: 3.9, 4.2)
Tumor diameter (cm)	6.3 (95% CI: 6.1, 6.5)
Tumor volume (cc)	8.4 (95% CI: 8.0, 8.9)

Note—Data in parentheses are 95% confidence intervals. A normal kernel was used for KDE in all cases. SUV: standardized uptake value, cm: centimeters, cc: cubic centimeters.
Table A3. Architecture of the mU-net.

Layer	Type	Filter Size	Stride	# of filters	Input Size	Output Size
Layer 1	Conv.	3×3	1×1	16	$128 \times 128 \times 1$	$128 \times 128 \times 16$
Layer 2	Conv.	3×3	1×1	16	$128 \times 128 \times 16$	$128 \times 128 \times 16$
Layer 3	Max-pool	2×2	2×2	–	$128 \times 128 \times 16$	$64 \times 64 \times 16$
Layer 4	Conv.	3×3	1×1	32	$64 \times 64 \times 16$	$64 \times 64 \times 32$
Layer 5	Conv.	3×3	1×1	32	$64 \times 64 \times 32$	$64 \times 64 \times 32$
Layer 6	Max-pool	2×2	2×2	–	$64 \times 64 \times 32$	$32 \times 32 \times 32$
Layer 7	Conv.	3×3	1×1	64	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 8	Conv.	3×3	1×1	64	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 9	Max-pool	2×2	2×2	–	$32 \times 32 \times 64$	$16 \times 16 \times 64$
Layer 10	Transposed Conv.	2×2	2×2	64	$16 \times 16 \times 64$	$32 \times 32 \times 64$
Layer 11 (a)	Skip Connection (add output of Layer 9)	–	–	–	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 12	Conv.	3×3	1×1	64	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 13	Conv.	3×3	1×1	64	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 14	Conv.	3×3	1×1	64	$32 \times 32 \times 64$	$32 \times 32 \times 64$
Layer 15	Transposed Conv.	2×2	2×2	32	$32 \times 32 \times 64$	$64 \times 64 \times 32$
Layer 15 (a)	Skip Connection (add output of Layer 5)	–	–	–	$64 \times 64 \times 32$	$64 \times 64 \times 32$
Layer 16	Conv.	3×3	1×1	32	$64 \times 64 \times 32$	$64 \times 64 \times 32$
Layer 17	Conv.	3×3	1×1	32	$64 \times 64 \times 32$	$64 \times 64 \times 32$
Layer 18	Transposed Conv.	2×2	2×2	16	$64 \times 64 \times 32$	$128 \times 128 \times 16$
Layer 18 (a)	Skip Connection (add output of Layer 2)	–	–	–	$128 \times 128 \times 16$	$128 \times 128 \times 16$
Layer 19	Conv.	3×3	1×1	16	$128 \times 128 \times 16$	$128 \times 128 \times 16$
Layer 20	Conv.	3×3	1×1	2	$128 \times 128 \times 16$	$128 \times 128 \times 2$
Layer 21	Softmax	–	–	–	$128 \times 128 \times 2$	$128 \times 128 \times 2$
Output	Argmax	–	–	–	$128 \times 128 \times 2$	$128 \times 128 \times 1$

Table A4. Hyperparameters of the mU-Net.

Hyperparameter	Value
Initialization	
weights	Xavier
bias	0.03
Leaky ReLU	α
α	0.01
Dropout	dropout probability
dropout probability	0.1
Loss function	class weighting
class weighting	2:1
Training	epochs
epochs	200
batch size	25
Fine-tuning	epochs
epochs	200
batch size	10

Table A5. Hardware and software platform.

Graphics Processing Unit (GPU)	Model	NVIDIA Tesla K40
Operating System	Linux	CentOS 5.10
DL Platform	Programming Language	TensorFlow 1.6.0, Keras 2.1.5
Table A6. Comparing the proposed framework and other methods on simulated images and patient images using the procedure in section 2.2.1.

Segm. Methods	mU-net	MRF-GMM	Snakes	30% SUV_{max}	40% SUV_{max}	50% SUV_{max}
Simulated Images						
DSC	0.87 (0.86, 0.88)	0.61 (0.60, 0.63)	0.58 (0.57, 0.60)	0.58 (0.56, 0.59)	0.63 (0.61, 0.64)	0.57 (0.56, 0.59)
DSC with correct TL	0.91 (0.91, 0.92)	0.61 (0.60, 0.63)	0.58 (0.57, 0.60)	0.58 (0.56, 0.59)	0.63 (0.61, 0.64)	0.57 (0.56, 0.59)
JSC	0.81 (0.80, 0.82)	0.50 (0.48, 0.51)	0.47 (0.45, 0.48)	0.48 (0.47, 0.50)	0.55 (0.54, 0.57)	0.49 (0.47, 0.50)
TPF	0.90 (0.89, 0.91)	0.86 (0.86, 0.87)	0.88 (0.88, 0.89)	0.80 (0.79, 0.82)	0.68 (0.66, 0.70)	0.53 (0.51, 0.55)
TNF	1.00 (1.00, 1.00)	0.99 (0.98, 0.99)	0.99 (0.99, 0.99)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)
HD	1.45 (1.39, 1.51)	6.05 (5.75, 6.34)	11.61 (11.29, 11.93)	7.76 (7.44, 8.07)	6.52 (6.17, 6.86)	6.78 (6.43, 7.14)
Patient Images						
DSC	0.73 (0.71, 0.76)	0.68 (0.66, 0.70)	0.67 (0.65, 0.68)	0.66 (0.64, 0.68)	0.60 (0.58, 0.62)	0.50 (0.48, 0.52)
DSC with correct TL	0.84 (0.83, 0.85)	0.68 (0.66, 0.70)	0.67 (0.65, 0.68)	0.66 (0.64, 0.68)	0.60 (0.58, 0.62)	0.50 (0.48, 0.52)
JSC	0.65 (0.63, 0.68)	0.55 (0.53, 0.57)	0.52 (0.51, 0.53)	0.53 (0.51, 0.55)	0.46 (0.44, 0.47)	0.36 (0.35, 0.38)
TPF	0.76 (0.73, 0.79)	0.86 (0.84, 0.88)	0.68 (0.67, 0.70)	0.63 (0.61, 0.65)	0.50 (0.48, 0.52)	0.38 (0.36, 0.39)
TNF	1.00 (1.00, 1.00)	0.99 (0.98, 0.99)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)
HD	3.25 (2.92, 3.58)	5.40 (4.88, 5.92)	7.14 (6.62, 7.67)	5.50 (4.99, 6.01)	5.63 (5.12, 6.14)	6.11 (5.60, 6.63)

Note—Data in parentheses are 95% confidence intervals. TNF: true negative fraction, TPF: true positive fraction. Sample sizes were 1916 and 486 for DSC with correct TL and HD of mU-net for simulated and patient images, respectively. Sample sizes were 2000 and 557 for all other metrics and segmentation methods for simulated and patient images, respectively.
Table A7. Comparing the proposed framework and other methods on patient images using the procedure in section 2.2.2.

Generalizability Experiment #1	Segm. Methods	mU-net	MRF-GMM	Snakes	30% SUV_{max}	40% SUV_{max}	50% SUV_{max}
DSC	0.74 (0.71, 0.76)	0.68 (0.67, 0.70)	0.67 (0.66, 0.68)	0.67 (0.65, 0.69)	0.62 (0.61, 0.64)	0.54 (0.52, 0.55)	
DSC with correct TL	0.77 (0.74, 0.80)	0.66 (0.65, 0.68)	0.65 (0.64, 0.66)	0.63 (0.61, 0.64)	0.56 (0.55, 0.58)	0.47 (0.46, 0.48)	
JSC	0.66 (0.64, 0.68)	0.55 (0.53, 0.57)	0.53 (0.51, 0.54)	0.55 (0.53, 0.57)	0.48 (0.47, 0.50)	0.39 (0.38, 0.40)	
TPF	0.76 (0.74, 0.79)	0.83 (0.81, 0.84)	0.71 (0.70, 0.72)	0.71 (0.69, 0.73)	0.56 (0.55, 0.58)	0.42 (0.41, 0.44)	
TNF	1.00 (1.00, 1.00)	1.00 (0.99, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	
HD	2.50 (2.50, 2.71)	4.17 (4.00, 4.44)	5.85 (5.45, 6.25)	4.71 (4.32, 5.10)	4.64 (4.26, 5.02)	5.04 (4.67, 5.42)	

Generalizability Experiment #2	Segm. Methods	mU-net	MRF-GMM	Snakes	30% SUV_{max}	40% SUV_{max}	50% SUV_{max}
DSC	0.71 (0.69, 0.73)	0.66 (0.65, 0.67)	0.65 (0.64, 0.66)	0.63 (0.61, 0.64)	0.56 (0.55, 0.58)	0.47 (0.46, 0.48)	
DSC with correct TL	0.78 (0.75, 0.81)	0.72 (0.70, 0.74)	0.83 (0.82, 0.85)	0.69 (0.68, 0.70)	0.61 (0.60, 0.63)	0.48 (0.46, 0.49)	
JSC	0.63 (0.61, 0.65)	0.53 (0.52, 0.55)	0.51 (0.50, 0.52)	0.50 (0.48, 0.51)	0.42 (0.41, 0.43)	0.34 (0.32, 0.35)	
TPF	0.72 (0.70, 0.74)	0.83 (0.82, 0.85)	0.69 (0.68, 0.70)	0.61 (0.60, 0.63)	0.48 (0.46, 0.49)	0.36 (0.34, 0.37)	
TNF	1.00 (1.00, 1.00)	0.99 (0.98, 0.99)	0.99 (0.99, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	
HD	3.38 (3.11, 3.66)	5.79 (5.40, 6.19)	7.44 (7.03, 7.85)	5.93 (5.56, 6.30)	6.04 (5.69, 6.39)	6.56 (6.20, 6.91)	

Note—Data in parentheses are 95% confidence intervals. Sample sizes were 574 and 867 for DSC with correct TL and HD of mU-net for experiments #1 and #2, respectively. Sample sizes were 662 and 1001 for all other metrics and segmentation methods for experiments #1 and #2, respectively.

ORCID iDs

Kevin H Leung 🌐 https://orcid.org/0000-0002-8969-8737
Arman Rahmim 🌐 https://orcid.org/0000-0002-9980-2403
Abhinav K Jha 🌐 https://orcid.org/0000-0002-4795-4878

References

Aristophanous M, Penney B C, Martel M K and Pelizzari C A 2007 A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography Med. Phys. 34 4223–35
Bagci U, Foster B, Miller-Jaster K, Luna B, Dey B, Bishai W R, Jonsson C B, Jain S and Mollura D J 2013 A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging EJNMMI Res. 3 55
Belhasen S and Zaidi H 2010 A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET Med. Biol. 37 1309–24
Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E and Prior J O 2018 Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study PLoS ONE 13 e0195798
Brambilla M, Matheoud R, Secco C, Loi G, Krenghi M and Inglese E 2008 Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size Med. Phys. 35 1207–13
Chan K, Balachandar N, Lamm C, Yi D, Brown J, Beers A, Rosen B, Rubin D L and Kalpathy-Cramer J 2018 Distributed deep learning networks among institutions for medical imaging J. Am. Med. Informatics Assoc. 25 945–54
Cresswell A, White T, Dumoulin V, Arulkumar K, Sengupta B and Bharath A A 2018 Generative adversarial networks: an overview IEEE Signal Process. Mag. 35 53–65
Day E, Betler J, Parda D, Reitz B, Kirichenko A, Mohammadi S and Miften M 2009 A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients Med. Phys. 36 1349–58
De Bernardi E, Faggiano E, Zito F, Gerundini P and Baselli G 2009 Lesion quantification in oncological positron emission tomography: A maximum likelihood partial volume correction strategy Med. Phys. 36 3040–9
Foster B, Bagci U, Mansoor A, Xu Z and Mollura D J 2014 A review on segmentation of positron emission tomography images Comput. Biol. Med. 50 76–96
Giraud P, Elles S, Hofre S, De Rycke Y, Servois V, Cairet M-E, Alzieu C, Bondiau P-Y, Dubray B and Touboul E 2002 Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists Radiother. Oncol. 62 27–36
Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. of the Thirteenth Int. Conf. on Artificial Intelligence and Statistics ed Y W Teh and M Titterington (Proceedings of Machine Learning Research (PMLR)) pp 249–56
Gong K, Guan J, Liu -C.C and Qi J 2018 PET image denoising using a deep neural network through fine tuning IEEE Trans. Radiat. Plasma Med. Sci. 3 153–61
Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge, MA: MIT press)
Hatt M, Le Best C C, Turzo A, Roux C and Visvikis D 2009 A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET IEEE Trans. Med. Imaging 28 881–93
Hudson H M and Larkin R S 1994 Accelerated image reconstruction using ordered subsets of projection data IEEE Trans. Med. Imaging

Jha A K, Mena E, Caffo B S, Ashrafinia S, Rahimim A, Frey E C and Subramaniam R M 2017 Practical no-track-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography J. Med. Imaging 4 11011

Jha A K, Rodriguez J J, Stephen R M and Stopeck A T 2010 A clustering algorithm for liver lesion segmentation of diffusion-weighted MR images 2010 IEEE Southwest Symp. on Image Analysis & Interpretation (SSIAI) (Piscataway, NJ: IEEE) pp 93–96

Kass M, Witkin A and Terzopoulos D 1988 Snakes: active contour models Int. J. Comput. Vis. 1 321–31

Kiguna D and Ba J 2014 Adam: A method for stochastic optimization (arXiv:1412.6980)

Kuhl F P and Giardina C R 1982 Elliptic Fourier features of a closed contour Comput. Graph. Image Process. 18 236–58

Layer T, Bläckner M, Knäuel B, Georg D, Neuwirth J, Baum R P, Schuchardt C, Wiessalla S and Matz G 2015 PET image segmentation using a Gaussian mixture model and Markov random fields EJNMMI Phys. 2 9

Lütjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F, Ghafoorian M, Van Der Laak J A, Van Ginneken B and Sánchez C I 2017 A survey on deep learning in medical image analysis Med. Image Anal. 42 60–88

Ma C, Chen B, Yu L, Koo C W, Leng S, Takahashi E A, Fletcher J G, Levin D L, Kuzo R S and Viers I D 2017 Evaluation of a projection-domain lung nodule insertion technique in thoracic computed tomography J. Med. Imaging 4 13510

Maas A L, Hannun A Y and Ng A Y 2013 Rectifier nonlinearities improve neural network acoustic models Proc. 30th Int. Conf. on Machine Learning

Mena E, Sheikhbahaeei S, Taghipour M, Jha A K, Vicente E, Xiao J and Subramaniam R M 2017a 18F-FDG PET/CT metabolic tumor volume and intra-tumoral heterogeneity in pancreatic adenocarcinoma: impact of dual-time-point and segmentation methods Clin. Nucl. Med. 42 e16

Mena E, Taghipour M, Sheikhbahaeei S, Jha A K, Rahimim A, Solnes L and Subramaniam R M 2017b Value of intratumoral metabolic heterogeneity and quantitative 18F-FDG PET/CT parameters to predict prognosis in patients with HPV-positive primary oropharyngeal squamous cell carcinoma Clin. Nucl. Med. 42 e227–34

Pereira S, Pinto A, Alves V and Silva C A 2016 Brain tumor segmentation using convolutional neural networks in MRI images IEEE Trans. Med. Imaging 35 1240–51

Ronneberger O, Fischer P and Brox T 2015 U-net: convolutional networks for biomedical image segmentation

Shah B, Srivastava N, Hirsch A E, Mercier G and Subramaniam R M 2012 Intra-reader reliability of FDG PET volumetric tumor parameters: effects of primary tumor size and segmentation methods Ann. Nucl. Med. 26 707–14

Sheikhbahaeei S, Mena E, Marcus C, Wray R, Taghipour M and Subramaniam R M 2016 18F-FDG PET/CT: therapy response assessment interpretation (Hopkins criteria) and survival outcomes in lung cancer patients J. Nucl. Med. 57 635–60

Shen D, Wu G and Suk H-I 2017 Deep learning in medical image analysis Annu. Rev. Biomed. Eng. 19 221–48

Soufi M, Kamali-Asl A, Geramifar P, Abdoli M and Rahmim A 2016 Combined fuzzy logic and random walker algorithm for PET image tumor delineation Nucl. Med. Commun. 37 171–81

Sridhar P, Mercier G, Tan J, Truong M T, Daly B and Subramaniam R M 2014 18F-FDG PET/CT metabolic tumor volume segmentation and pathologic volume of primary human solid tumors Ann. J. Roentgenol. 202 1114–19

Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Dropout: a simple way to prevent neural networks from overfitting J. Mach. Learn. Res. 15 1929–58

Van Opbroek A, Ikrak M A, Vernooij M W and De Bruijne M 2014 Transfer learning improves supervised image segmentation across imaging protocols IEEE Trans. Med. Imaging 34 1018–30

Wang G, Zhuang M A, Li W, Pratt R, Patel P A, Aertsens M, Doel T, David A L, Deprest J and Ourselin S 2018 DeepIGeoS: a deep interactive geodesic framework for medical image segmentation IEEE Trans. Pattern Anal. Mach. Intell. 41 1559–72

Werner-Wasik M, Nelson A D, Choi W, Arai Y, Faulhaber P F, Kang P, Almeida F D, Xiao Y, Ohri N and Brockway K D 2012 What is the best way to contour lung tumors on PET scans? Multiserver validation of a gradient-based method using a NSCLC digital PET phantom Int. J. Radiat. Oncol. Biol. Phys. 82 1164–71

Zaidi H, Abdoli M, Fuentes C L and El Naqa I M 2012 Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma Eur. J. Nucl. Med. Mol. Imaging 39 881–91

Zhao X, Li L, Lu W and Tan S 2018 Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network Phys. Med. Biol. 64 15011

Zijdenbos A P, Dawant B M, Margolin R A and Palmer A C 1994 Morphometric analysis of white matter lesions in MR images: method and validation IEEE Trans. Med. Imaging 13 716–24