THE STABILIZATION THEOREM FOR PROPER GROUPOIDS

ALAN L. T. PATERSON

ABSTRACT. The stabilization theorem for \(A \)-Hilbert modules was established by G. G. Kasparov. The equivariant version, in which a locally compact group \(H \) acts properly on a locally compact space \(Y \), was proved by N. C. Phillips. This equivariant theorem involves the Hilbert \((H, C_0(Y))\)-module \(C_0(Y, L^2(H)\infty) \). It can naturally be interpreted in terms of a stabilization theorem for proper groupoids, and the paper establishes this theorem within the general proper groupoid context. The theorem has applications in equivariant KK-theory and groupoid index theory.

1. Introduction

The Kasparov stabilization theorem ([11]) asserts that for a C*-algebra \(A \), the standard Hilbert module \(A^\infty \) "absorbs" every other (countably generated) Hilbert \(A \)-module \(P \) in the sense that
\[
P \oplus A^\infty \cong A^\infty.
\]
The theorem is of central importance for the development of KK-theory, and can be regarded as an extension of Swan’s theorem for vector bundles. Accounts of the theorem are given in the books by Blackadar and Wegge-Olsen ([3, 27]). In [13, Part 1, §2, Theorem 1], Kasparov obtained a stabilization theorem involving a group action: if \(H \) is a locally compact group acting on \(A \) and \(P \) is a Hilbert \((H - A)\)-module that is countably generated as a Hilbert \(A \)-module, then
\[
P \oplus L^2(H, A)^\infty \cong L^2(H, A)^\infty
\]
in the sense that there exists an \(H \)-continuous isomorphism from \(P \oplus L^2(H, A)^\infty \) onto \(L^2(H, A)^\infty \). The isomorphism, however, need not be equivariant. An elegant, self-contained account of all of this is contained in the paper [19] of J. A. Mingo and W. J. Phillips.

For an equivariant stabilization theorem, one needs a properness condition, and N. C. Phillips has obtained such a theorem in the case of group actions ([24, Theorem 2.9]). Here, a locally compact group \(H \) is assumed to act properly on a locally compact Hausdorff space \(Y \). This action gives in the
obvious way an action of H on the C^*-algebra $C_0(Y)$. A Hilbert $(H, C_0(Y))$-module is defined to be a Hilbert $C_0(Y)$-module with a compatible action of H which is strong operator continuous - for the precise definition, see, for example, [11, Definition 1] or [19, Definition 2.1]. The theorem then asserts that for any Hilbert $(H, C_0(Y))$-module P, there is an equivariant isomorphism of Hilbert $(H, C_0(Y))$-modules:

$$P \oplus (C_0(Y) \otimes L^2(H)) \cong C_0(Y) \otimes L^2(H).$$

Phillips uses this stabilization theorem in his proof of the generalized Green-Rosenberg theorem (that equivariant K-theory (in terms of H-Hilbert bundles over Y) is the same as the K-theory of the transformation groupoid C^*-algebra). The starting point for the present paper is the observation (below) that Phillips’s stabilization theorem (and the generalized Green-Rosenberg theorem) can be expressed very naturally in terms of locally compact proper groupoids. (Accounts of the theory of locally compact groupoids are given in [25, 20].) Groupoid versions of these theorems are, of course, required for the development of groupoid equivariant KK-theory, as well as for index theory in noncommutative geometry ([6]), in particular, to orbifold theory. (In connection with the latter, the properness condition is automatically satisfied since the structure of an orbifold with underlying space X is completely described by the Morita equivalence class of a proper, effective, étale Lie groupoid with orbit space homeomorphic to X ([11, pp.19-23]).) The groupoid stabilization theorem is also necessary for extending Higson’s K-theory proof of the index theorem ([10]) to the equivariant case.

In this paper, we will prove the stabilization theorem for proper groupoids; the generalized Green-Rosenberg theorem will be discussed elsewhere. The proof of this stabilization theorem follows similar lines to that of Phillips’s stabilization theorem, but also requires groupoid versions of results of [19]. The main additional technical issues to be dealt with arise from the fact that, unlike the Hilbert bundles of [24], the Hilbert bundles involved in this paper are not usually locally trivial. Indeed, the G-Hilbert module P_G for a proper groupoid G, whose Hilbert module P_G^∞ of infinite sequences stabilizes (as we will see) all the other G-Hilbert modules, is associated with a G-Hilbert bundle that is not usually locally trivial.

We now translate the Phillips stabilization theorem into groupoid terms. We are given a locally compact group H acting properly on the left on Y. One forms the transformation groupoid $G = H \times Y$: so multiplication is given by composition - $(h',hy)(h,y) = (h'fh, y)$ - and inversion by $(h,y)^{-1} = (h^{-1},hy)$. The unit space of $H \times Y$ can be identified with Y, and the properness condition translates into the requirement that the groupoid be proper: the map $g \rightarrow (r(g), s(g))$ (i.e. $(h,y) \rightarrow (hy, y)$) is proper (inverse image of compact is compact). The next objective is to interpret in groupoid terms the $C_0(Y) \otimes L^2(H)$ occurring in the Phillips stabilization theorem. A dense pre-Hilbert $(G, C_0(Y))$-module of $C_0(Y) \otimes L^2(H) = C_0(Y, L^2(H))$ is $C_c(H \times Y) = C_c(G)$ - so for a general proper groupoid G, we should replace
$C_0(Y) \otimes L^2(H)$ by the completion P_G of the pre-Hilbert module $C_c(G)$. The stabilization theorem for proper groupoids is then:

$$P \oplus P_G^\infty \cong P_G^\infty$$

where P is (in the appropriate sense) a G-Hilbert module.

All groupoids in the paper are assumed to be locally compact, Hausdorff, proper and second countable, and all Hilbert spaces and Hilbert modules second countable.

For lack of a convenient reference, we state the following elementary partition of unity result which is proved as in, for example, [9, Theorem 1.3]. Let X be a second countable locally compact Hausdorff space, C a compact subset of X and $\{V_1, \ldots, V_n\}$ a cover of C by relatively compact, open subsets of X. Then there exist $f_i \in C_c(V_i) \subset C_c(X)$ with $0 \leq f_i \leq 1$, $\sum_{i=1}^n f_i(y) \leq 1$ for all $y \in Y$, $\sum_{i=1}^n f_i(y) = 1$ for all $y \in C$.

2. Groupoid Hilbert bundles

We start by discussing the class of Hilbert bundles that we will need for G-actions. The correspondence between Hilbert bundles over Y and Hilbert $C_0(Y)$-modules seems to be well known, but for lack of a reference we sketch the details that we will need. (Note that a Hilbert $C_0(Y)$-module P can be regarded as a left $C_0(Y)$-module - fp is the same as pf for $p \in P, f \in C_0(Y)$.) In the transformation groupoid case developed by Phillips, one uses locally trivial bundles with fiber L and structure group $U(L)$ with the strong operator topology. However, as noted above, the bundle associated with $C_c(G)$, required for the groupoid stabilization theorem, is not always locally trivial (though in the transformation groupoid case, it is trivial ($= Y \times L^2(H)$)), and we extend the class of bundles to be considered as follows. Our approach, based on the work of Fell and Hoffman, is modelled on the account of the Dauns-Hoffman theorem in [8] with bundles of Banach spaces and C^*-algebras replaced by Hilbert bundles over Y and Hilbert $C_0(Y)$-modules. For the results of [8, Chapter 2], the Banach modules are modules over $C_0(X)$ where X is completely regular. In our case, we wish to obtain similar results for Hilbert modules over $C_0(Y)$. (The corresponding modifications needed for $C_0(Y)$-algebras are given in [23]. See also [28, C.2].) Since the Hilbert bundles that we will need are usually not locally trivial, it is natural to define such a bundle in terms of a space of sections deemed to be continuous and vanishing at infinity (cf. [7, Ch. 10]). This can be done. However, for our purposes, it is more convenient to use a topological approach which is in some respects akin to the classical definition of vector bundles. In the following definition of Hilbert bundle, we are given a topology on the total space and the set of continuous sections that vanish at infinity has to satisfy certain properties.

Definition 2.1. Let $\{H_y\}_{y \in Y}$ be a family of Hilbert spaces, E a second countable, topological space which is the disjoint union of the H_y's, and
\(\pi : E \to Y \) be the projection map. Let \(C_0(Y, E) \) be the set of continuous sections \(F \) of \(E \) such \(\lim_{y \to \infty} \| F(y) \| = 0 \). Then \(E \) is called a Hilbert bundle over \(Y \) if the following properties hold:

(i) the addition map \(E \oplus_Y E \to E \) and the scalar multiplication map \((Y \times C) \oplus_Y E \to E \) are continuous;

(ii) For each \(F \in C_0(Y, E) \), the map \(y \to \| F(y) \| \) is continuous;

(iii) for each \(y \), \(\{ F(y) : F \in C_0(Y, E) \} = H_y \).

(iv) The topology on \(E \) is determined by \(C_0(Y, E) \) in the sense that a base for it is given by the sets of the form \(U_{F, \epsilon} \), where \(U \) is an open subset of \(Y \) and

\[
U_{F, \epsilon} = \{ h_y : y \in U, h_y \in H_y, \| h_y - F(y) \| < \epsilon \}.
\]

Here are some comments on the preceding definition. From (i) and (iii), \(C_0(Y, E) \) is a vector space. It follows from (iv) and (iii) that \(\pi \) is open and continuous, and each \(H_y \) has its Hilbert space norm topology in the relative topology of \(E \). Using (ii), (iii) and (iv), the norm function \(\| \cdot \| : E \to \mathbb{R} \) is continuous. By a simple triangular inequality argument - use the continuity of \(y \to \| F(y) - F'(y) \| \) for \(F, F' \in C_0(Y, E) \) - if \(\xi \in H_{y_0} \) and \(F \in C_0(Y, E) \) is fixed such that \(F(y_0) = \xi \), then the family of sets \(U(F, \epsilon) \) with \(y_0 \in U, \epsilon > 0 \), is a base of neighborhoods for \(\xi \) in \(E \). By [15, p.57], there is a countable base for the topology of \(E \) consisting of sets of the form \(U(F, \epsilon) \). We note that \(E \) is Hausdorff though we will not use this fact. We also note that in (iv), we get the same topology if the functions \(F \) are restricted to lie in a subspace of \(C_0(Y, E) \) which is dense in the uniform norm topology (below).

Proposition 1. Let \(E \) be a Hilbert bundle over \(Y \). Then \(C_0(Y, E) \) is a separable \(C_0(Y) \)-Hilbert module in the uniform norm topology: \(\| F \| = \sup_{y \in Y} \| F(y) \| \).

Proof. To show that \(C_0(Y, E) \) is a Banach space, one modifies the proof for the corresponding elementary result on uniform convergence of functions. Let \(\{ F_n \} \) be a Cauchy sequence in \(C_0(Y, E) \). Then \(F_n \to F \) pointwise for some section \(F \) of \(E \). We now show that \(F \in C_0(Y, E) \). It is obvious that \(\| F(y) \| \to 0 \) as \(y \to \infty \). It remains to show that \(F \) is continuous. Let \(y_k \to y_0 \) in \(Y \). We have to show that \(F(y_k) \to F(y_0) \). Let \(F' \in C_0(Y, E) \) be such that \(F'(y_0) = F(y_0) \). Let \(U \) be an open neighborhood of \(y_0 \) and \(\epsilon > 0 \). One shows that eventually, \(F(y_k) \in U(F', \epsilon) \) and the continuity of \(F \) follows by the preceding comments on the definition. For \(F_1, F_2 \in C_0(Y, E) \), define \(\langle F_1, F_2 \rangle : Y \to \mathbb{C} \) in the obvious way: \(\langle F_1, F_2 \rangle(y) = \langle F_1(y), F_2(y) \rangle \). By the polarization identity and (ii) of the definition, \(\langle F_1, F_2 \rangle \in C_0(Y) \). It is easy to check that \(C_0(Y, E) \) is a Hilbert \(C_0(Y) \)-module with inner product \(\langle \cdot, \cdot \rangle \) and module action given by: \(F f(y) = f(y) F(y) \).

We now prove that \(C_0(Y, E) \) is separable. Let \(A \) be a countable base for \(E \) whose elements are of the form \(U(F, \eta) \). It suffices to show that for a compact subset \(C \) of \(Y \), the space of sections \(A \subset C_0(Y, E) \) with support in \(C \) is separable. Let \(F' \in A \) and \(\epsilon > 0 \). For each \(y \in C \), let \(U_y \) be a
relatively compact, open neighborhood of \(y \) in \(Y \). Then \(F'(y) \in U_y(F', \epsilon) \), and there exists a \(V_y(F_y, \epsilon_y) \in \mathcal{A} \) such that \(F'(y) \in V_y(F_y, \epsilon_y) \subset U_y(F', \epsilon) \).

In particular, \(y \in V_y \subset U_y \) and \(\|F'(y') - F_y(y')\| < \epsilon \) for all \(y' \in V_y \). Since \(C \) is compact, there exists a finite cover \(\{V_{y_1}, \ldots V_{y_n}\} \) of \(C \). Let \(\{f_i\} \) \((1 \leq i \leq n)\) be a partition of unity for \(C \) subordinate to the \(\{V_{y_i}\} \), and let \(F'' = \sum_{i=1}^n f_i F_{y_i} \). Then \(\|F'(y) - F''(y)\| < \epsilon \) for all \(y \in Y \). The span of such functions \(F'' \) in \(C_0(Y, E) \) is separable, and the separability of \(C_0(Y, E) \) then follows.

As a simple example of a Hilbert bundle, let \(Y = (0, 2) \), \(F \) be the trivial Hilbert bundle \(Y \times C^2 \) and \(\{e_1, e_2\} \) the standard orthonormal basis for \(C^2 \). Then \(C_0(Y, F) = C_0((0, 2)) \times C_0((0, 2)) \) in the obvious way. Let \(E \) be the subbundle \([0, 1] \times C e_1 \cup (1, 2) \times C^2 \) of \(F \) with the relative topology. Then \(E \) is a Hilbert subbundle of \(F \) though it is neither locally constant nor locally compact. (Note that \(C_0(Y, E) \) can be identified with \(C_0((0, 2)) \times \{f \in C_0((0, 2)) : f(y) = 0 \text{ for } 0 < y \leq 1\} \).

A morphism between two Hilbert bundles \(E, F \) over \(Y \) is (cf. \[24\] Definition 1.5]) a continuous bundle map \(\Phi : E \to F \) whose restriction \(\Phi_y : E_y \to F_y \) for each \(y \in Y \) is a bounded linear map and \(\sup_{y \in Y} \|\Phi_y\| = \|\Phi\| < \infty \), and such that the adjoint map \(\Phi^* : F \to E \), where \(\Phi^*(\xi_y) = (\Phi_y)^{-1}(\xi_y) \) for \(\xi_y \in F_y \) is also continuous. It is obvious that any such morphism \(\Phi \) determines an adjointable Hilbert module map \(\hat{\Phi} : C_0(Y, E) \to C_0(Y, F) \) by setting \(\hat{\Phi}(F)(y) = \Phi_y(F(y)) \). It is also obvious that with these morphisms, the class of Hilbert bundles over \(Y \) is a category.

We have seen that every \(C_0(Y, E) \) is a second countable \(C_0(Y) \)-Hilbert module. We will show that every second countable \(C_0(Y) \)-Hilbert module \(P \) is of this form. We recall first that a morphism between two Hilbert \(C_0(Y) \)-modules \(P, Q \) is an adjointable map \(T : P \to Q \). This gives the category of Hilbert \(C_0(Y) \)-modules. Two Hilbert \(C_0(Y) \)-modules \(P, Q \) are said to be equivalent - written \(P \cong Q \) - if there exists a unitary morphism \(U : P \to Q \). Next, a result of Kasparov (\[11\] Theorem 1, \[27\] Lemma 15.2.9]) gives that in any Hilbert \(A \)-module \(P \) and for any \(p \in P \),

\[
(2) \quad p = \lim_{\epsilon \to 0^+} p(p, p)[\langle p, p \rangle + \epsilon]^{-1}.
\]

It follows by Cohen’s factorization theorem and \(\langle 2 \rangle\) that \(P = \{fp : f \in C_0(Y), p \in P\} \). In the stabilization theorem of Kasparov, the Hilbert \(A \)-modules are assumed to be countably generated. It is obvious that in our situation (\(P \) second countable) \(P \) is automatically countably generated.

Let \(P \) be a \(C_0(Y) \)-Hilbert module. We construct an associated Hilbert bundle \(E \) in the familiar way (e.g. \[8\]). For \(y \in Y \), let \(I_y = \{f \in C_0(Y) : f(y) = 0\} \), a closed ideal in \(C_0(Y) \). By Cohen’s factorization theorem, \(I_y P \) is closed in \(P \). Let \(P/(I_y P) = P_y \). We claim that the norm on \(P_y \) is a Hilbert space norm, with inner product given by \(\langle p + I_y P, q + I_y P \rangle = \langle p, q \rangle(y) \). This inner product is well-defined. To see that it is non-degenerate, suppose that \(\langle p, p \rangle(y) = 0 \). Then \(\langle p, p \rangle \in I_y \) and by \(\langle 2 \rangle\), \(p \in (I_y P) = I_y P \), and
non-degeneracy follows. Let $E = \cup_{y \in Y} P_y$. If we wish to emphasize the
connection of E with P, we write E_P in place of E. (If Q is just a pre-
Hilbert $C_0(Y)$-submodule, we define E_Q to be $E_\overline{Q}$.) For each $p \in P$, let
$\hat{p}(y) = p + I_y P \in H_y$. We sometimes write p_y in place of $\hat{p}(y)$. For each
open subset U of Y and each $\epsilon > 0$, define $U_{p,\epsilon} = U_{\hat{p},\epsilon}$, the latter being
defined as in [1].

We now show that the functor $E \to C_0(Y, E)$ is an equivalence for the
categories of Hilbert bundles over Y and of Hilbert $C_0(Y)$-modules.

Proposition 2. Let P be a Hilbert $C_0(Y)$-module. Then the family of $U_{p,\epsilon}$'s
$(p \in P)$ is a base for a second countable topology T_P on E which makes E
into a Hilbert bundle over Y. Further, the map $p \to \hat{p}$ is a Hilbert $C_0(Y)$-
module unitary from P onto $C_0(Y, E)$, and the map $P \to E$ is an equivalence
between the category of Hilbert $C_0(Y)$-modules P and the category of Hilbert
bundles E over Y.

Proof. Give each \hat{p} the uniform norm as a section of E. The proposition
is an easier version of corresponding results for Banach A-modules in [8].
It is easier because, as earlier, by the polarization identity, the maps $y \to
\|\hat{p}(y)\| = \sqrt{\langle p, p \rangle}(y)$ are continuous (instead of just upper semicontinuous)
and vanish at infinity. Then $\|\hat{p}\|^2 = \|\langle p, p \rangle\| = \|p\|^2$, giving $p \to \hat{p}$ an
isometry. We now check the conditions of Definition 2.1 to show that E is a
Hilbert bundle over Y. One easily checks that the family of $U_{p,\epsilon}$'s $(p \in P)$
is a base for a topology T_P on E, each \hat{p} is continuous and the addition and
scalar multiplication maps for E are continuous. The topology T_P on E is
second countable since P is. This gives (i) of Definition 2.1 while (iii) of
that definition is trivial. The remaining requirements, (ii) and (iv) will follow
once we have shown that $\hat{P} = C_0(Y, E)$. As in the proof of Proposition 1
(cf. [8] Proposition 2.3]) \hat{P} is dense in $C_0(Y, E)$. Further, $\langle \hat{p}, \hat{q} \rangle = \langle p, q \rangle$
giving the map $p \to \hat{p}$ unitary. Then $\hat{P} = C_0(Y, E)$ since the map $p \to \hat{p}$
is isometric and P is complete. A morphism $T : P \to Q$ of Hilbert $C_0(Y)$-
modules determines a Hilbert bundle morphism $\Phi = \Phi_T : E_P \to E_Q$ in
the natural way: set $\Phi = \{T_y\}$ where T_y is defined: $T_y p_y = (T_p)_y$. Then
$\Phi : E_P \to E_Q$ is a continuous bundle map, and $\|\Phi\| = \|T\|$. □

For a Hilbert bundle E over Y, let $G \ast E = \{(g, \xi) : s(g) = \pi(\xi)\}$ with
the relative topology inherited from $G \times E$. Then E is called a G-Hilbert bundle if
there is a continuous map $(g, \xi) \to g\xi$ from $G \ast E \to E$ which is algebraically
a left groupoid action (by unitaries). (The unitary condition means that
for each fixed $g \in G$, the map $\xi \to g\xi$ is unitary from $H_s(g)$ onto $H_t(g)$.)
One can also define this notion in terms of pull-back bundles as in [17], [18],
but the approach adopted here is more elementary, and closer in spirit to
the usual definition of a group Hilbert bundle. A Hilbert $C_0(Y)$-module P
is called a G-Hilbert module if E_P is a G-Hilbert bundle. The corollary to
the following proposition shows that when G is a transformation groupoid
$H \times Y$, a G-Hilbert module is the same as a Hilbert $(H, C_0(Y))$-module in
the notation of [24]. (In [24, Proposition 1.3], it is shown that if \(E \) is an \(H \)-Hilbert bundle over \(Y \), then \(C_0(Y,E) \) is a Hilbert \((H,C_0(Y))\)-module. The corollary shows that the opposite direction holds as well as long as we use the wider category of Hilbert bundles of the present paper.)

Proposition 3. A left groupoid action of \(G \) on \(E \) is continuous if and only if, for each \(F \in C_0(Y,E) \), the map \(g \to gF_{s(g)} \) is continuous from \(G \to E \).

Proof. If the action is continuous, then trivially, the maps \(g \to gF_{s(g)} \) are continuous. The converse is very similar to [23, Corollary 1], and so we give only a brief sketch of the proof. Suppose then that for each \(F \in C_0(Y,E) \), the map \(g \to gF_{s(g)} \) is continuous from \(G \to E \). Let \(\{g_n\} \) be a sequence in \(G \) and \(\{\xi_n\} \) a sequence in \(E \) with \(\xi_n \in E_{s(g_n)} \) such that \(g_n \to g \) in \(G \) and \(\xi_n \to \xi \) in \(E \). We have to show that \(g_n\xi_n \to g\xi \) in \(E \). By Definition 2.1(iii), there exist \(F \in C_0(Y,E) \) such that \(g\xi = F_{r(g)} \) and \(F' \in C_0(Y,E) \) such that \(\xi = F'_{s(g)} \). Then \(\|g_n\xi_n - g\xi\| \to 0 \), so that \(\|g_n\xi_n - g_nF'_{s(g_n)}\| \to 0 \) as well. Next, by assumption, \(g_nF'_{s(g_n)} \to gF'_{s(g)} = g\xi = F_{r(g)} \) and so by the continuity of \(F \), \(\|g_nF'_{s(g_n)} - F_{r(g_n)}\| \to 0 \). So \(g_n\xi_n \to g\xi \). \(\square

Corollary 2.2. Let \(G \) be a transformation groupoid \(H \times Y \). Then the map \(E \to C_0(Y,E) \) is an equivalence between the category of \(H \)-Hilbert bundles over \(Y \) and the category of Hilbert \((H,C_0(Y))\)-modules.

Proof. We recall [11, 19] that a Hilbert \(C_0(Y) \)-module \(S \) is an \((H,C_0(Y))\)-module if it is a left \(H \)-module such that \(h(Ff) = (hf)(hf) \), the map \(h \to hF \) is continuous, and \(\langle hF,hF' \rangle = h\langle F,F' \rangle \) for all \(h \in H, F,F' \in S \) and \(f \in C_0(Y) \). (Of course, \((hf)(y) = f(h^{-1}y) \).) An \(H \)-Hilbert bundle over \(Y \) (cf. [24, Definition 1.2]) is a Hilbert bundle over \(Y \) (in the sense of this paper) with a continuous action \((h,\xi) \to h\xi \) from \(H \times E \) into \(E \) such that for each \(y \), the action of \(h \) on \(E_y \) is a unitary onto \(E_{hy} \). (Recalling that \((H \times Y)_0 = H \) for all \(y \), it is obvious that \(H \)-Hilbert bundles over \(Y \) are just the same as the groupoid \((H \times Y)\)-Hilbert bundles.) Suppose, first that \(E \) is an \(H \)-Hilbert bundle. Then (as in [24, Proposition 1.3]) the Hilbert \(C_0(Y) \)-module \(C_0(Y,E) \) is a Hilbert \((H,C_0(Y))\)-module, where \((FF)(y) = f(y)F(y) \) and \((hF)(y) = h[F(h^{-1}y)] \) \((F \in C_0(Y,E)) \). For the converse, let \(P \) be a Hilbert \((H,C_0(Y))\)-module, \(E = E_P \). By Proposition 2 we can canonically identify \(P \) with \(C_0(Y,E) \). It is obvious that \(hI_y = I_{hy} \). We define a groupoid action of \(H \times Y \) on \(E \) by setting \((h,y)(p+I_yP) = hp+I_{hy}P \), i.e. \((h,y)p_y = (hp)_{hy} \). We now check that this is indeed a groupoid action (in the sense of this paper). The algebraic properties are obvious using the formulas for multiplication and inversion in \(H \times Y \) given in the introduction. To prove that \(H \times Y \) acts on \(E \) by unitaries,

\[
(h,y)p_y, (h,y)q_y = (hp,hq)(hy) = (p,q)(h^{-1}hy) = (p_y,q_y).
\]

Last, to prove the continuity of the groupoid action on \(E \), we have, by Proposition 3 to show, identifying \(\hat{P} \) with \(C_0(Y,E) \), that for each \(p \in P \), the map \((h,y) \to (h,y)p_y \) is continuous from \(H \times Y \) into \(E \), i.e. that the map
If \(P, Q \) are \(G \)-Hilbert modules, then a Hilbert \(C_0(Y) \)-module morphism \(T : P \to Q \) is called \(G \)-equivariant if for all \(g \in G \), \(T_r(g)g = gT_s(g) \) on \((E_P)_s\). Using the fact that the groupoid action is unitary, \(T^* \) is also \(G \)-equivariant. Of course, \(P \) and \(Q \) are said to be equivalent \((P \cong Q)\) if there exists \(G \)-equivariant unitary between them.

A pre-Hilbert \(C_0(Y) \)-module \(Q \) is called a \(pre-G \) Hilbert module if \(\overline{Q} \) is a \(G \)-Hilbert module, and the action of \(G \) on \(E = \overline{Q} \) leaves invariant the \(Q_y \)'s, where \(Q_y \) is the image of \(Q \) in \(E_y \). As we will see below, an important example of a pre-\(G \)-Hilbert module is the case \(Q = C_c(G) \). The \(C_0(Y) \)-module action on \(C_c(G) \) is given by: \((F, f) \to F(f \circ r)\) and the \(C_0(Y) \)-valued inner product on \(C_c(G) \) by: \((F_1, F_2)_y = \langle (F_1)_y, (F_2)_y \rangle \) \((F_y = F|_{G^y})\). One uses the axioms for a locally compact groupoid to check the required properties. For example, the continuity of \(y \to \langle (F_1)_y, (F_2)_y \rangle \) follows from the axiom that for \(\phi \in C_c(G) \), the function \(y \to \int_{G^y} \phi(g) d\lambda^y(g) \) is continuous. Let \(P_G \) be the Hilbert \(C_0(Y) \)-module completion of \(C_c(G) \), and \(L^2(G) = E_{P_G} \), the Hilbert bundle determined by \(P_G \) as in Proposition 2. It is easy to check that for each \(y \), the image of \(C_c(G) \) in \(H_y \) is naturally identified as a pre-Hilbert space with \(C_c(G^y) \) with the \(L^2(G^y) \) inner product. So the Hilbert space \((E_{P_G})_y = L^2(G^y)\), which justifies writing \(E_{P_G} \) as \(L^2(G) \). The isomorphism \(F \to \hat{F} \) from \(C_c(G) \) into \(C_c(Y, L^2(G)) \) takes \(F \) to the section \(y \to \hat{F}_y = \hat{F}(y) \), and the family of sets \(U(F, \epsilon) \) forms a base for the topology of \(L^2(G) \). The \(G \)-action on \(L^2(G) \) is the natural one: \(g\xi_{s(g)}(h) = \xi_{s(g)}(g^{-1}h) \) \((h \in \mathbb{G}^r(g))\) for \(\xi_{s(g)} \in L^2(G^s(g)) \). We now show that this action is continuous for the topology of \(L^2(G) \).

Proposition 4. The \(G \)-action is continuous on \(L^2(G) \) (so that \(L^2(G) \) is a \(G \)-Hilbert bundle and \(P_G \) a \(G \)-Hilbert module).

Proof. From Proposition 3 it suffices to show that if \(\psi \in C_0(Y, L^2(G)) \) and \(g_n \to g \) in \(G \), then \(g_n\psi_{s(g_n)} \to g\psi_{s(g)} \). Since \(\hat{C}(G) \) is uniformly dense in \(C_0(Y, L^2(G)) = \hat{P}_G \) (Proposition 2), we can suppose that \(\psi = \hat{F} \) where \(F \in C_c(G) \). By Tietze’s extension theorem, there exists \(F' \in C_c(G) \) such that \(F'_r(g) = gF_s(g) \). It is sufficient, then, to show that \(\|F'_{r(g_n)} - g_nF_{s(g_n)}\|_2 \to 0 \) since the \(U(F', \epsilon)'s \) \((r(g) \in U)\) form a base of neighborhoods for \(F_{r(g)} \) in \(L^2(G) \). Arguing by contradiction, suppose that the sequence \(\{\|F'_{r(g_n)} - g_nF_{s(g_n)}\|_2\} \) does not converge to 0. We can then suppose that for some \(k > 0 \), \(\|F'_{r(g_n)} - g_nF_{s(g_n)}\|_2 \geq k \) for all \(n \). Let \(D \) be a compact subset of \(G \) containing the sequence \(\{g_n\} \) and let \(C = Dsupp(F) \cup supp(F') \subset G \). Since \(C \) is compact, \(M = \sup_{u \in Y} \lambda^u(C^u) < \infty \). Then

\[[\sup\{ | F'(h) - F(g_n^{-1}h) | ; h \in C^r(g_n) \cap C \}]^2 M \geq \| F'_{r(g_n)} - g_nF_{s(g_n)} \|_2 \geq k^2. \]
So we can find $h_n \in G^r(g_n) \cap C$ such that $|F'(h_n) - F(g_n^{-1}h_n)| > \sqrt{k^2/(2M)}$. By the compactness of C, we can suppose that $h_n \to h \in G^r(g)$, and thus obtain $|F'(h) - gF_s(g)(h)| > 0$, contradicting $F'_r = gF_s(g)$. \square

$C_0(Y)$ itself is naturally a G-Hilbert module. To see this, $C_0(Y)$ is, like every C^*-algebra, a Hilbert module over itself. The Hilbert bundle determined by $C_0(Y)$ is, of course, just $Y \times C$. It is left to the reader to check that the topology determined on $E = Y \times C$ is just the product topology. The G-action on Y is given by $(g, s(g), a) \to (r(g), a)$ (trivially continuous).

Let $E(i) = \{E(i)_y\}$ ($1 \leq i \leq n$) be Hilbert bundles over Y and $P(i)$ the Hilbert $C_0(Y)$-module $C_0(Y, E(i))$. Let $E = \oplus_{i=1}^n E(i)$. It is easy to check that $E = \oplus_{i=1}^n E(i)$ with the relative topology inherited from $E(1) \times \ldots \times E(n)$. (Note also that the elements of $C_0(Y, E)$ are of the form $F = (F_1, \ldots, F_n)$ where $F_i \in C_0(Y, E(i))$.)

Similarly if $1 \leq i < \infty$, then $E = \oplus_{i=1}^\infty E(i)$ is defined to be $E(\oplus_{i=1}^\infty P(i))$. (Here (e.g. [17, 2.2.1]) $\oplus_{i=1}^\infty P_i$ consists of all sequences $\{p_i\}$, $p_i \in P_i$, such that $\sum_{i=1}^\infty (p_i, p_i)$ is convergent in $C_0(Y)$. The argument of, for example, [27], pp.237-238, shows that $\oplus_{i=1}^\infty P_i$ is a Hilbert $C_0(Y)$-module with $C_0(Y)$-valued inner product given by $\langle \{p_i\}, \{q_i\}\rangle = \sum_{i=1}^\infty (p_i, q_i)$. Then for each y, E_y is the Hilbert space direct sum $\oplus_{i=1}^\infty E(i)_y$. Using Proposition 2, the topology on E can be conveniently described in terms of convergent sequences: $\xi_n \to \xi$ ($\xi_n \in \{\xi_i\}$, $\xi \in \{\xi_i\}$) if and only if $\xi_n \to \xi_i$ in $E(i)$ for all i and $\sum_{i=N}^\infty \|\xi_i^n\|^2 \to 0$ as $N, n \to \infty$. When $E(i) = E(1)$ for all i, then we write $E = E(1)^\infty$, corresponding to the module $P = P(1)^\infty$. Using the preceding criterion for convergent sequences, it is straightforward to show that the Hilbert bundles $\oplus_{i=1}^n E(i), \oplus_{i=1}^\infty E(i)$ are G-Hilbert bundles in the natural way if the $E(i)$’s are G-Hilbert bundles. Of course, $\oplus_{i=1}^n P(i), \oplus_{i=1}^\infty P(i)$ are then G-Hilbert modules.

We also require that for any G-Hilbert module P,

$$P^{\infty}\otimes G \cong P^{\infty}.$$

To prove this, using the Cantor diagonal process, one “rearranges” a sequence $\{\xi_i\} \in (P^{\infty})^\infty$, $\xi_i = \{\xi_{ij}\}$, $\xi_{ij} \in P$, as a sequence in P^{∞}, and checks that the $C_0(Y)$-Hilbert module structure and the G-action are preserved.

A number of natural G-Hilbert $C_0(Y)$-modules arise from other such modules as tensor products over $C_0(Y)$ (cf. [4, 5], see [17, 3.2.2] for a pull-back approach to the construction of tensor product G-Hilbert modules. Let P, Q be pre-Hilbert $C_0(Y)$-modules and form the algebraic balanced tensor product $P \otimes_{alg,C_0(Y)} Q$. This is a pre-Hilbert $C_0(Y)$-module in the natural way, i.e. with $(p \otimes q)f = p \otimes qf = p \otimes fQ = pf \otimes q$ and inner product given by $\langle p_1 \otimes q_1, p_2 \otimes q_2\rangle = \langle p_1, p_2\rangle \langle q_1, q_2\rangle$. The completion of $P \otimes_{alg,C_0(Y)} Q$, quotiented out by the null space of the norm induced by the inner product, is a Hilbert $C_0(Y)$-module $P \otimes_{C_0(Y)} Q$. (When P, Q are Hilbert modules, the construction is a special case of the inner tensor product $P \otimes_{\phi} Q$ ([3, 13.5]) with $\phi : C_0(Y) \to B(Q)$ where $\phi(f)q =fq$ - see [16] and [28, I.1] for details of the construction of the inner tensor product.) Note that $P \otimes_{alg,C_0(Y)} Q$ is
a dense Hilbert submodule of $\overline{P \otimes_{C_0(Y)} Q}$, so that $\overline{P \otimes_{C_0(Y)} Q} = P \otimes_{C_0(Y)} Q$. Canonicly, $(P \otimes_{C_0(Y)} Q)_y$ is the Hilbert space tensor product $P_y \otimes Q_y$ and for $p \in P, q \in Q$, $p \otimes q(y) = \hat{p}(y) \otimes \hat{q}(y)$. We write $E_{P \otimes_{C_0(Y)} Q} = E_P \otimes E_Q$. (We note that this construction of the tensor product of two Hilbert bundles over Y cannot be defined, as for vector bundles, using charts in the usual way (as, for example, in [23 1.2]).)

Proposition 5. If P, Q are G-pre-Hilbert $C_0(Y)$-modules, then $P \otimes_{C_0(Y)} Q$ is a G-Hilbert module, the G-action being the diagonal one.

Proof. By definition of $P \otimes_{C_0(Y)} Q$, we can assume that P, Q are G-Hilbert modules. It is obvious that G acts isometrically on $E_{P \otimes_{C_0(Y)} Q} = \bigcup_{y \in Y} P_y \otimes Q_y$. For G-continuity, we only need to check Proposition 3 when $F = \tilde{v}$ where $v = \sum_{i=1}^n p_i \otimes q_i \in P \otimes_{alg,C_0(Y)} Q$. Suppose then that $y_r \to y$ in Y, $g_r \to g$ in G with $s(g_r) = y_r$. Since F is continuous, $F(y_r) \to \sum_{i=1}^n \hat{p}_i(y) \otimes \hat{q}_i(y)$. Since P, Q are G-Hilbert modules, for each i, $g_r \hat{p}_i(y) \to g \hat{p}_i(y), g \hat{q}_i(y) \to g \hat{q}_i(y)$ in E_P, E_Q respectively. Let $p'_i \in P, q'_i \in Q$ be such that $p'_i((r(g)) = \hat{g}\hat{p}_i(y), q'_i((r(g)) = \hat{g}\hat{q}_i(y)$, and set $w = \sum_{i=1}^n p'_i \otimes q'_i \in P \otimes_{alg,C_0(Y)} Q$. Let $z_r = r(g_r)$. Then $\|\bar{w}(z_r) - \sum_{i=1}^n g_r \hat{p}_i(y) \otimes g_r \hat{q}_i(y)\| \leq \sum_{i=1}^n \|p'_i(z_r) - g_r \hat{p}_i(y)\| \|g_r \hat{q}_i(y)\| + \|q'_i(z_r)\| \|g_r \hat{q}_i(y)\| \to 0$. Since $w(z_r) \to \overline{w(r(g))} = gF(y), g, F(y) = \sum_{i=1}^n g_r \hat{p}_i(y) \otimes g_r \hat{q}_i(y) \to gF(y)$. So $P \otimes_{C_0(Y)} Q$ is a G-Hilbert module.

Next, we require the result that for any G-Hilbert modules P, Q, we have that as G-Hilbert modules,

$$(P^\infty \otimes_{C_0(Y)} Q) \cong (P \otimes_{C_0(Y)} Q^\infty) \cong (P \otimes_{C_0(Y)} Q)\infty.$$

Let us prove that $(P^\infty \otimes_{C_0(Y)} Q) \cong (P \otimes_{C_0(Y)} Q^\infty)$, the other equality being proved similarly. Let R be the dense subspace of P^∞ whose elements are the finite sequences $r = (p_1, \ldots, p_n, 0, 0, \ldots)$ with $p_i \in P$. Define a $C_0(Y)$-module map $\alpha : R \otimes_{alg,C_0(Y)} Q \to (P \otimes_{C_0(Y)} Q)^\infty$ by setting $\alpha(r \otimes q) = (p_1 \otimes q, \ldots, p_n \otimes q, 0, 0, \ldots)$. It is easily checked that α is well-defined, and preserves the $C_0(Y)$-inner product: $\langle \alpha(r \otimes q), \alpha(r' \otimes q') \rangle = \langle r, r' \rangle \langle q, q' \rangle$. The range of α is onto a dense subspace of $(P \otimes_{C_0(Y)} Q)^\infty$ and preserves the G-action, so the result follows.

Of particular importance is the case of the G-Hilbert module $P \otimes_{C_0(Y)} PG$. We write $E_{P \otimes_{C_0(Y)} PG} = L^2(G) \otimes E$ (or $E \otimes L^2(G)$) where $E = E_P$. Here $L^2(G) \otimes E$ is the Hilbert bundle over Y with $(L^2(G) \otimes E)_y = L^2(G^y, E_y)$ and a dense subspace of $C_0(Y, L^2(G) \otimes E)$, determining its topology as earlier, is given by the span of sections of the form $\hat{h} \otimes \hat{p} (h \in C_c(G))$ where $(\hat{h} \otimes \hat{p})(y) = h|_{G^y} \otimes \hat{p}(y)$. A section k of $L^2(G) \otimes E$ is invariant if for all $g \in G$, $g k_{s(g)}(g^{-1} h) = k_r(h) (h \in G^r(g))$ as maps in $L^2(G^r(g), E_{r(g)})$. We now identify a certain dense linear subspace $C_c(G, r^* E)$ of $C_0(Y, L^2(G) \otimes E)$ (cf. [26]). Here, $C_c(G, r^* E)$ is the set of continuous, compactly supported functions ϕ from G into E such that for all $g \in G$, $\phi(g) \in E_{r(g)}$. For
each \(y \in Y \) and \(\phi \in C_c(G, r^*E) \), let \(\hat{\phi}(y) = \phi_y \), the restriction of \(\phi \) to \(G^y \). Then \(\hat{\phi}(y) \in C_c(G^y, E_y) \subset L^2(G^y, E_y) = (L^2(G) \otimes E)_y \) so that \(\hat{\phi} \) is a section of \(L^2(G) \otimes E \). The section norm on \(C_c(G, r^*E) \) is then given by:
\[
\|\phi\| = \sup_{y \in Y} \|\phi_y\|.
\]

Proposition 6. Let \(P \) be a \(G \)-Hilbert module and \(E = E_P \). Then \(C_c(G, r^*E) \) is a dense subspace of \(C_0(Y, L^2(G) \otimes E) \), and contains all functions of the form \(\hat{h} \otimes \hat{p} \) above.

Proof. Clearly, \(\hat{h} \otimes \hat{p} \in C_c(G, r^*E) \) since the map \(g \to h(g)\hat{p}(r(g)) \) is continuous. For the rest of the proposition, the span of such functions \(\hat{h} \otimes \hat{p} \) is uniformly dense in \(C_0(Y, L^2(G) \otimes E) \), so it is enough to show that every \(\hat{\phi} \) \((\phi \in C_c(G, r^*E)) \) is in the uniform closure of this span.

To this end, let \(H = \text{supp}(\phi) \). Let \(y_0 \in Y \). Let \(W \) be a compact subset of \(G \) such that \(H \subset W^0 \). Let \(\epsilon > 0 \). For each \(g \in H \), let \(p_g \in P \) be such that \(\hat{p}_g(r(g)) = \phi(g) \). Let \(h_g \in C_c(G) \) be such that \(h_g(g) = 1 \). By continuity, there exists an open neighborhood \(U_g \) of \(g \) in \(G \) such that \(U_g \subset W \) and such that for all \(g' \in U_g \),
\[
\|\phi(g') - h_g(g')\hat{p}_g(r(g'))\| < \eta = \epsilon/\sup_{y \in Y} \lambda^u(W)^{1/2} + 1.
\]

Since \(H \) is compact, it is covered by a finite number of the \(U_g \)'s, say \(U_{g_1}, \ldots, U_{g_n} \). Taking a partition of unity, there exist functions \(f_i \in C_c(U_{g_i}) \), \(f_i \geq 0 \), \(\sum_{i=1}^n f_i = 1 \) on \(H \) and \(\sum_{i=1}^n f_i \leq 1 \) on \(G \). Then for \(g' \in W \),
\[
\|\phi(g') - \sum_{i=1}^n f_i(g')h_{g_i}(g')\hat{p}_{g_i}(r(g'))\| < \eta. \text{ It follows that for } y \in Y,
\]
\[
\|\phi_y - \sum_{i=1}^n (f_i h_{g_i} \otimes p_{g_i})y\|_2 < \epsilon.
\]

So \(\phi \in C_0(Y, L^2(G) \otimes E) \). \(\square \)

We now note two simple results on the tensor products of two \(G \)-Hilbert modules. First, if \(P \) is a \(G \)-Hilbert module then
\[
C_0(Y) \otimes C_0(Y) \overset{\cong}{\to} P.
\]

The natural isomorphism is given by the equivariant Hilbert module map determined by: \(f \otimes P \to fp \) \((f \in C_0(Y), p \in P)\). Next, it is left to the reader to check that if \(P, Q, R \) are \(G \)-Hilbert modules, then the Hilbert module direct sum \(P \oplus Q \) is a \(G \)-Hilbert module in the obvious way, and
\[
(P \oplus Q) \otimes C_0(Y) \overset{\cong}{\to} (P \otimes C_0(Y) \oplus Q \otimes C_0(Y)) \overset{\cong}{\to} R).
\]

The final proposition of this section is a groupoid version of [19 Lemma 2.3] (which applies to the group case).

Proposition 7. Let \(P, Q \) be \(G \)-Hilbert modules with \(P \cong Q \) as Hilbert \(C_0(Y) \)-modules. Then \(P \otimes C_0(Y) \overset{\cong}{\to} Q \otimes C_0(Y) \overset{\cong}{\to} P \) as \(G \)-Hilbert modules.

Proof. Let \(E = E_P, F = E_Q \). By assumption, there exists a Hilbert module unitary \(U : P \to Q \). For \(\phi \in C_c(G, r^*E) \), define \(V\phi : G \to r^*F \) by:
\[
V\phi(g) = gU_{s(g)}(g^{-1}\phi(g)).
\]
Using the continuity of $\Phi_U = \{U_y\}$ and of the G-actions of E, F, we see that V belongs to $C_c(G, r^*F)$. Regard, as earlier, $C_c(G, r^*E), C_c(G, r^*F)$ fibered over Y (with $\phi \to \{\phi_y\}$). Then V is a fiber preserving isomorphism onto $C_c(G, r^*F)$ with $V^{-1}(\chi(g)) = gU_{s(g)}(g^{-1}\chi(g))$. Further,

$$\langle (V\phi)_y, (V\psi)_y \rangle = \int \langle gU_{s(g)}(g^{-1}\phi_y(g)), gU_{s(g)}(g^{-1}\psi_y(g)) \rangle \, d\lambda^y(g) = \langle \phi_y, \psi_y \rangle$$

so that V preserves inner products. So V extends to a Hilbert module unitary from $C_0(Y, L^2(G) \otimes E) \to C_0(Y, L^2(G) \otimes F)$, using Proposition 5 and Proposition 2. It remains to show that V is G-equivariant. We note first that by (7), V_y is given by: $V_y\xi(g) = gU_{s(g)}(g^{-1}\xi(g))$ for $\xi \in L^2(G^g, E_y), g \in G^g$. Then for $g, h \in G^y$, $[g[V_y\xi_s(g)]]}(h) = g[V_y\xi_s(g)](g^{-1}h) = g(g^{-1}h)[U_s(h)(g^{-1}\xi_s(g))g^{-1}h])] = h[U_s(h)(h^{-1}[g\xi_s(g)](h))] = V_{r(g)}(g\xi_s(g))(h)$, so that $gV_y = V_{r(g)}g$ and V is equivariant.

3. Stabilization

In this section we establish the proper groupoid stabilization theorem. Throughout, G is a proper groupoid and P a G-Hilbert module. We require two preliminary propositions. The first of these is the general groupoid version of [24 Lemma 2.8].

Proposition 8. There exists a continuous, invariant section ϕ of the Hilbert bundle $L^2(G)\infty$ such that $\|\phi(y)\|_2 = 1$ for all y. Locally, $\phi(y)$ is of the form

$$((\psi_1)|_{G^y}, \ldots, (\psi_n)|_{G^y}, 0, \ldots)$$

where $\psi_i \in C_c(G)$.

Proof. For $y_0 \in Y$, let $a_{y_0} \in C_c(G)$ be such that $a_{y_0} \geq 0, a_{y_0}(y_0) > 0$. Let $\eta_{y_0} : G \to R^+$ be given by:

$$\eta_{y_0}(g) = \int_{G^{r(g)}} a_{y_0}(h^{-1}g) \, d\lambda^r(g)(h).$$

We want to regard $k = \eta_{y_0}$ as a continuous, invariant section $y \to k_y$ of $L^2(G)$. To prove this, the invariance of k (i.e. that $g_0k_{s(g_0)} = k_{r(g_0)}$, or equivalently, that $k(g_0^{-1}g) = k(g)$ for all $g_0, g \in G, r(g_0) = r(g)$) follows from an axiom for left Haar systems. For the continuity of the section $y \to k_y$ of $L^2(G)$, we will show that for any compact subset A of Y, $k_{|r^{-1}A} \in C_c(r^{-1}A)$. The continuity of k as a section of $L^2(G)$ then follows, since for every relatively compact open subset U of Y, there will then exist an $F \in C_c(G)$ such that $F = k$ on $r^{-1}U$ (so that $F_y = k_y$ for all $y \in U$). Since F is continuous as a section $y \to F_y$ of $L^2(G)$, so also is k. (Of course, $y \to k_y$ need not vanish at infinity.)

To show that $k_{|r^{-1}A} \in C_c(r^{-1}A)$, let C be the (compact) support of a_{y_0} and let $g \in r^{-1}A$. If $a_{y_0}(h^{-1}g) > 0$, then $r(h) = r(g) \in A$, and $s(h) \in r(C)$. By the properness of G, h belongs to the compact set $D = \{g' \in G : (r(g'), s(g')) \in A \times r(C)\}$. Let $F \in C_c(G)$ be such that $F = 1$ on D. Then
on \(r^{-1}(A) \), \(k \) coincides with the convolution \(F \ast a_{y_0} \) of two \(C_c(G) \)-functions, and so is the restriction of a \(C_c(G) \)-function as required.

By the continuity and positivity assumptions on \(a_{y_0} \), the function \(\eta_{y_0}(y_0) > 0 \). So \((\eta_{y_0})_{y_0} \neq 0 \). By the continuity of \(y \mapsto \|(\eta_{y_0})_y\|_2 \), the set \(U_{y_0} = \{ y \in Y : (\eta_{y_0})_y \neq 0 \} \) is an open neighborhood of \(y_0 \) in \(Y \). Since \(\eta_{y_0} \) is invariant, it follows that \(U_{y_0} \) is an invariant subset of \(Y \), i.e. is such that for \(g \in G \), \(s(g) \in U_{y_0} \) if and only if \(r(g) \in U_{y_0} \). Further, the \(U_{y_0} \)'s cover \(Y \). Since the action of \(G \) on \(Y \) is proper, there is a \(G \)-partition of unity \(\{ f_\gamma : \gamma \in S \} \), where \(S \) can be taken to be infinitely countable (and so identified with \(\{1, 2, 3, \ldots \} \)), subordinate to the \(U_\gamma \)'s ([21, 22 Proposition 4]). This means that for each \(\gamma, f_\gamma \in C_c(Y), \ 0 \leq f_\gamma \), there exists a \(y(\gamma) \in Y \) such that \(\text{supp}(f_\gamma) \subset U_{y(\gamma)} \), and with \(m_\gamma : Y \to \mathbb{R} \) given by \(m_\gamma(y) = \int_{G^y} f_\gamma(s(g)) \, d\lambda^y(g) \), we have

\[
\sum_\gamma m_\gamma(y) = 1,
\]

the sum being locally finite.

Using the properness of \(G \) and the continuity of the maps \(y \mapsto \int_{G^y} F(g) \, d\lambda^y(g) \) for \(F \in C_c(G) \), \(m_\gamma \) is invariant (i.e. \(m_\gamma(s(g)) = m_\gamma(r(g)) \) for all \(g \in G \) and continuous. Define a section \(\phi = \{ \phi_\gamma \} \) of \(L^2(G)^\infty \) by setting

\[
\phi_\gamma(y) = m_\gamma(y)^{1/2}(\|(\eta_{y(\gamma)})_{G^y}\|_2)^{-1}(\eta_{y(\gamma)})_{G^y}.
\]

We take \(\phi_\gamma(y) \) to be 0 whenever \((\eta_{y(\gamma)})_{G^y} = 0 \). For continuity reasons, we need to know that if \((\eta_{y(\gamma)})_{G^y} = 0 \) then \(m_\gamma(y) = 0 \). To prove this, suppose then that \((\eta_{y(\gamma)})_{G^y} = 0 \). Then \(y \in Y \setminus U_{y(\gamma)} \), which is invariant since \(U_{y(\gamma)} \) is. So if \(g \in G^y \), then \(s(g) \in Y \setminus U_{y(\gamma)} \), and in that case, \(f_\gamma(s(g)) = 0 \) (since the support of \(f_\gamma \) lies inside \(U_{y(\gamma)} \)), so that \(m_\gamma(y) = 0 \) from the definition of \(m_\gamma \).

We now claim that \(\phi = \{ \phi_\gamma \} \) is continuous and \(G \)-invariant. For the continuity of \(\phi \), we note that \(\|\phi_\gamma(y)\|_2^2 = m_\gamma(y) \), and use the preceding paragraph, the local finiteness of the sum in (S), and the continuity of the maps \(y \mapsto (\eta_{y(\gamma)})_{G^y}, y \mapsto \|(\eta_{y(\gamma)})_{G^y}\|_2 \) to obtain that locally \(\phi \) takes values in some \(L^2(G)^n \) with \(n \) finite and components the restrictions of \(C_c(G) \)-functions. Since the \(\eta_{y(\gamma)} \), \(m_\gamma \) are \(G \)-invariant so also is \(\phi \).

Last, from (S), \(\|\phi(y)\|_2 = \left[\sum_{\gamma \in S} \|\phi_\gamma(y)\|_2^2 \right]^{1/2} = 1. \)

Proposition 9.

\[
P \oplus (P \otimes_{C_0(Y)} P_{G}^\infty) \cong P \otimes_{C_0(Y)} P_{G}^\infty.
\]

Proof. Let \(\phi \) be the continuous, invariant section of \(L^2(G)^\infty \) given by Proposition(S). For each \(p \in P \), define a section \(\hat{W}p \) of \(E \otimes L^2(G)^\infty \) by: \(\hat{W}p = \hat{p} \otimes \phi \). We claim that \(\hat{W}p \in C_0(Y, E \otimes L^2(G)^\infty) \). To prove that \(\|\hat{W}p(y)\| \to 0 \) as \(y \to \infty \), by Proposition(S) \(\|\hat{p} \otimes \phi(y)\|_2 = \|\hat{p}(y)\|_2 \|\phi(y)\|_2 = \|\hat{p}(y)\|_2 \to 0 \) as \(y \to \infty \). The continuity of \(\hat{W}p \) follows from the fact that locally, it is the restriction of an element of \((P \otimes_{\text{alg}, C_0(Y)} C_c(G)^n) \) (which is a subspace of the space of continuous sections of \(E \otimes L^2(G)^\infty \)). It is easy to check that
$W : C_0(Y, E) \to C_0(Y, E \otimes L^2(G)^\infty)$ is a linear, $C_0(Y)$-module map, and that $(W\hat{p}, W\hat{p}') = \langle \hat{p}, \hat{p}' \rangle$. Further, using the invariance of ϕ,

$W_{r(g)}(g\hat{p}_s(g)) = g\hat{p}_s(g) \otimes \phi_{r(g)} = g\hat{p}_s(g) \otimes gW(\hat{p}_s(g)) = gW_s(g)(\hat{p}_s(g))$

so that W is G-invariant. By Proposition [2], there exists a map $V : P \to P \otimes C_0(Y) P_G^\infty$ such that $Vp = W\hat{p}$. Note that $Vyr_y = (W\hat{p})y$.

From the corresponding properties for W, $(V(p), V(p')) = (p, p')$ and V is a G-equivariant $C_0(Y)$-module map. We claim that V is adjoinable with adjoint V^* determined by: $V^*(p \otimes \psi) = p(\phi, \hat{\psi})$ for $\psi \in \cup_{n=1}^\infty C_c(G)^n$, a dense subspace of P_G^∞. Note that by definition, $(\phi, \hat{\psi})(y) = (\phi_y, \psi_y)$ (the inner product evaluated in $L^2(G)^\infty$), and using Proposition [5] $\langle \phi, \hat{\psi} \rangle \in C_0(Y)$ and $|\langle \phi, \hat{\psi} \rangle(y)| \leq ||\psi_y||$. Now

$$\langle p \otimes \psi, Vp' \rangle = \langle \hat{p} \otimes \hat{\psi}, \hat{V}p' \rangle = \langle \hat{p} \otimes \hat{\psi}, (p, \hat{p}') \rangle = \langle p(\phi, \hat{\psi}), p' \rangle.$$

It is easy to check that the bilinear map $p \otimes \psi \to p(\phi, \hat{\psi})$ extends to a linear map V^* from $P \otimes_{alg, C_0(Y)} P_G^\infty \to P$, and so $(t, Vp') = \langle V^*t, p' \rangle$ for all $t \in P \otimes_{alg, C_0(Y)} P_G^\infty$, $p' \in P$. Since $||\langle V^*(\sum_{i=1}^n p_i \otimes \psi_i), p' \rangle|| = ||\langle \sum_{i=1}^n p_i \otimes \psi_i, Vp' \rangle|| \leq ||\sum_{i=1}^n p_i \otimes \psi_i|| ||p'||$, V^* is continuous on $P \otimes_{alg, C_0(Y)} P_G^\infty$ and so extends by continuity to $P \otimes C_0(Y) P_G^\infty$. This extension is the adjoint of V as claimed.

Using the approach of Mingo and Phillips [19], define $U : P \oplus (P \otimes C_0(Y) P_G^\infty) \to (P \otimes C_0(Y) P_G^\infty)$ by:

$$U(p_0, \xi_1, \xi_2, \ldots) = (Vp_0 + (1 - VV^*)\xi_1, VV^*\xi_1 + (1 - VV^*)\xi_2, \ldots).$$

One checks that for each $w = (p_0, \xi)$, $U(w) = (b_1, b_2, \ldots)$ belongs to $(P \otimes C_0(Y) P_G^\infty)^\infty$, i.e. that $\sum_{i=1}^\infty (b_i, b_i)$ converges in $C_0(Y)$. By [3] and [4], $(P \otimes_{alg} C_0(Y) P_G^\infty)^\infty = P \otimes_{alg} C_0(Y) P_G^\infty$. Further, U preserves the $C_0(Y)$-valued inner product. Direct calculation shows that U has an adjoint given by:

$$U^*(\eta_1, \eta_2, \ldots) = (V^*\eta_1, VV^*\eta_2 + (1 - VV^*)\eta_1, VV^*\eta_3 + (1 - VV^*)\eta_2, \ldots),$$

that U is unitary and, using the invariance of V, that U preserves the groupoid action. □

Theorem 3.1. (Groupoid stabilization theorem) If P is a G-Hilbert module, then

$$P \oplus P_G^\infty \cong P_G^\infty.$$

Proof. We claim first that

$$P_G^\infty \cong (P \otimes C_0(Y) P_G^\infty) \oplus P_G^\infty.$$

For using [5], [8], [9], the non-equivariant stabilization theorem, Proposition [7] and [10],

$$P_G^\infty \cong (C_0(Y) \otimes C_0(Y) P_G^\infty) \cong C_0(Y)^\infty \otimes C_0(Y) P_G^\infty \cong (P \oplus C_0(Y)^\infty \otimes C_0(Y)) P_G^\infty$$

$$\cong (P \otimes C_0(Y) P_G^\infty) \oplus (C_0(Y)^\infty \otimes C_0(Y) P_G^\infty) \cong (P \otimes C_0(Y) P_G^\infty) \oplus P_G^\infty.$$
Using (10) and (9),

\[P \oplus P_G^\infty \cong P \oplus (P \otimes C_0(Y) P_G^\infty) \oplus P_G^\infty = [P \oplus (P \otimes C_0(Y) P_G^\infty)] \oplus P_G^\infty \cong (P \otimes C_0(Y) P_G^\infty) \oplus P_G^\infty \cong P_G^\infty. \]

\[\square \]

References

[1] A. Adem, J. Leida and Y. Ruan, Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007.

[2] M. F. Atiyah, K-Theory, Benjamin Press, New York, 1967.

[3] B. Blackadar, K-theory for operator algebras, 2nd edition, MSRI Publications, Vol. 5, Cambridge University Press, Cambridge, 1998.

[4] É. Blanchard, Tensor products of C(X)-algebras over C(X), Recent advances in operator algebras (Orléans, 1992), Astérisque No. 232 (1995), 81-92.

[5] É. Blanchard, Déformations de C*-algèbres de Hopf, Bull. Soc. Math. France 124(1996), 141-215.

[6] A. Connes, Noncommutative Geometry, Academic Press, Inc., New York, 1994.

[7] J. Dixmier, C*-algebras, trans. F. Jellett, North-Holland Publishing Co., Amsterdam, 1977.

[8] M. J. Dupré and R. M. Gillette, Banach bundles, Banach modules and automorphisms of C*-algebras, Pitman Publishing Inc., Marshfield, Massachusetts, 1983.

[9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.

[10] N. Higson, On the K-Theory Proof of the Index Theorem, Contemp. Math. 148(1993), 67-86.

[11] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4(1980), 133-150.

[12] G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Math. USSR-Izv. 16(1981), 513-572.

[13] G. G. Kasparov, K-theory, group C*-algebras, and higher signatures (Conspectus), Parts 1 and 2, Preprint, 1981.

[14] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91(1988), 147-201.

[15] J. L. Kelley, General Topology, D. Van Nostrand, New York, 1955.

[16] E. C. Lance, Hilbert C*-modules: A toolkit for operator algebraists, London Math. Soc. Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1994.

[17] P.-Y. Le Gall, Théorie de Kasparov équivariante et groupoïdes, Doctoral Thesis, University of Paris VII, 1994.

[18] P.-Y. Le Gall, Théorie de Kasparov équivariante et groupoïdes I, K-Theory 16(1999), 361-390.

[19] J. A. Mingo and W. J. Phillips, Equivariant triviality theorems for Hilbert C*-modules, Proc. Amer. Math. Soc. 91(1984), 225-230.

[20] Paterson, A. L. T., Groupoids, inverse semigroups and their operator algebras, Progress in Mathematics, Vol. 170, Birkhäuser, Boston, 1999.

[21] A. L. T. Paterson, The analytic index for proper, Lie groupoid actions, Contemp. Math. 282(2001), 115-135.

[22] A. L. T. Paterson, The equivariant analytic index for proper groupoid actions, K-Theory 32(2004), 193-230.

[23] A. L. T. Paterson, The E-theoretic descent functor for groupoids, J. Functional Analysis 255(2008), 1458-1479.
[24] N. C. Phillips, *Equivariant K-theory for proper actions*, Pitman Research Notes in Mathematics, Vol. 178, John Wiley, New York, 1988.

[25] J. N. Renault, *A groupoid approach to C*-algebras*, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980.

[26] J. N. Renault, *Répresentation des produits croisés d’algèbres de groupoïdes*, J. Operator Theory, 18(1987), 67-97.

[27] N. E. Wegge-Olsen, *K-Theory and C*-algebras*, Oxford University Press, Oxford, 1993.

[28] D. P. Williams, *Crossed Products of C*-algebras*, Mathematical Surveys and Monographs, Vol. 134, American Mathematical Society, Providence, R. I., 2007.

University of Colorado, Department of Mathematics, Boulder, Colorado 80309-0395

E-mail address: apatierson@gmail.com