Oxidative Stress and Response in Relation to Coronary Artery Disease in Type 1 Diabetes

TINA COSTACOU, PHD
ROBERT W. EVANS, PHD
GERALD L. SCHAFFER, MS
TREVOR J. ORCHARD, MBCHB, MMEDSCI

OBJECTIVE—Although oxidative stress (OxS) is thought to contribute to atherosclerosis and coronary artery disease (CAD), little is known about the variability in an individual’s ability to respond to OxS. Therefore, we assessed potential indices of response to OxS and evaluated whether they modify the association between OxS and CAD.

RESEARCH DESIGN AND METHODS—We evaluated plasma α- and γ-tocopherol per unit cholesterol (potential response markers); urinary 15-isoprostane F2t, per milligram creatinine (isoprostane [IsoP], a potential stress marker); and the α-tocopherol-to-IsoP ratio (as a measure of response to stress), measured three times during 20 years of follow-up, in relation to CAD incidence in a cohort with childhood-onset type 1 diabetes (n = 658; mean age at baseline, 28 years; duration of diabetes, 19 years). Participants with three samples (blood and either 24-h or overnight urine) available before the onset of CAD or the end of follow-up (n = 356) were selected for study.

RESULTS—In multivariable mixed models, α-tocopherol over time was inversely associated with CAD (β = −0.27; P = 0.02), whereas a direct association was observed for IsoP (β = 0.0008; P = 0.06). Moreover, the α-tocopherol-to-IsoP ratio was strongly and inversely related to CAD incidence (β = −0.72; P = 0.003), whereas in a separate model including α-tocopherol and IsoP, both biomarkers maintained statistical significance. No association was observed for γ-tocopherol (β = −0.22; P = 0.54).

CONCLUSIONS—These data suggest that a greater potential capability (α-tocopherol) to respond to OxS (urinary IsoP) relates to CAD incidence.
Oxidative stress and response vs. CAD in T1D

incident cases) or the end of follow-up were selected for study (n = 356). Given availability, samples were chosen to reflect an early, midpoint, and late assessment during a participant's follow-up. Thus, biologic determinations were approximately 6 years apart for noncases, whereas, given the shorter available follow-up for those developing CAD, biomarker measurements were approximately 4 years apart for incident cases.

Demographic, health care, diabetes self-care, and medical history information were ascertained via self-administered questionnaires before each clinic visit. Blood pressure was measured with a random zero sphygmomanometer after a 5-min rest (7), and hypertension was defined as blood pressure $\geq 140/90$ mmHg or use of antihypertensive medications. Although the definition of hypertension has been altered in recent years, given that the majority of the follow-up within the EDC study, which was initiated in 1986, falls within the time period during which hypertension was still defined as $140/90$ mmHg, we felt that it would not be appropriate to reclassify the cohort retrospectively. Nevertheless, statistical analyses were repeated using $130/80$ mmHg as the cutoff points for the statistical analyses were repeated using that it would not be appropriate to reclassify still defined as $140/90$ mmHg, we felt that it would not be appropriate to reclassify the cohort retrospectively. Nevertheless, statistical analyses were repeated using $130/80$ mmHg as the cutoff points for the definition of hypertension. Stable glycosylated hemoglobin (HbA1c) was measured by ion exchange chromatography (Isolab, Akron, OH) for the first 18 months and by automated high-performance liquid chromatography (DiaMat, BioRad, Hercules, CA) for the subsequent 10 years; the two assays were highly correlated ($r=0.95$). For follow-up beyond 10 years, HbA1c was measured with the DCA 2000 analyzer (Bayer, Tarrytown, NY). The DCA 2000 and DiaMat assays also were highly correlated ($r=0.95$). Original HbA1c values (1986–1998) and later HbA1c values (1998–2004) were converted to standard HbA1c values aligned with the Diabetes Control and Complications Trial (DCCT) using regression formulae derived from duplicate assays [DCCT HbA1c = (0.83 $\times$ DiaMat HbA1c) + 0.14 and DCCT HbA1c = (DCA HbA1c – 1.13)/0.81]. HDL cholesterol was determined enzymatically after precipitation with heparin and manganese chloride, using a modified version of the Lipid Research Clinics method (8). Cholesterol and triglycerides were measured enzymatically (9,10). Non-HDL cholesterol was calculated as total cholesterol minus HDL cholesterol. White blood cell count was obtained using a counter S-plus intravenous line. Urinary albumin was measured by immunonephelometry (11), and creatinine was assayed using an Ectachem 400 Analyzer (Eastman Kodak Co., Rochester, NY). Glomerular filtration rate was estimated using the equation used in the Chronic Kidney Disease Epidemiology Collaboration study (12).

CAD was defined as myocardial infarction confirmed by Q-waves on electrocardiogram (Minnesota code 1.1, 1.2) or hospital records, angiographic stenosis $\geq 50\%$, revascularization, or death due to CAD.

Plasma levels of $\alpha$- and $\gamma$-tocopherol as well as urinary 15-isoprostane $F_2\alpha$, (IsoP) were measured from samples collected at the clinical visit at three time points during the 20-year follow-up of the EDC study and stored at $-70^\circ$C until the present analyses. The concentrations of $\alpha$- and $\gamma$-tocopherol in plasma samples anticoagulated with EDTA were measured under subdued lighting, as previously reported (13,14). The coefficient of variation between runs is 6.0 and 2.8% for $\alpha$-tocopherol and $\gamma$-tocopherol, respectively. The effect of prolonged storage on serum antioxidant samples was addressed within the Multiple Risk Factor Intervention Trial (MRFIT); no appreciable degradation was seen in samples stored at $-50$ to $-70^\circ$C (15). Urine samples were obtained in 24-h (15%–58%) or overnight (42%) collections. The same type of timed sample was used at all time points for a given individual. Levels of IsoP were measured using a competitive ELISA procedure developed by Oxford Biomedical Research (Oxford, MI), which has a correlation ($r^2$) of $>0.8$ with gas chromatography–mass spectrometry procedures. Because there are no published data on the potential effects of prolonged storage on the measurement of IsoP, we simultaneously performed the assay on stored (20- and 10-year) samples and fresh samples from 6 controls and 11 individuals with type 1 diabetes without renal failure. IsoP levels were similar and within the normal range at all time points (controls: 0.96, 1.6, and 1.01 ng/mg creatinine, respectively; individuals with type 1 diabetes: 1.3, 1.2, and 0.98 ng/mg creatinine, respectively), suggesting stability of the assay.

Statistical analyses

All statistical analyses were conducted using SAS version 9.3 (SAS Institute, Cary, NC). Given the dependence of plasma tocopherol concentration on lipid levels, $\alpha$- and $\gamma$-tocopherol were reported per unit cholesterol (16). Urinary IsoP (in nanograms per milliliter) were normalized for urinary creatinine concentration and expressed as nanograms per milligram of creatinine. Univariate associations between measurements at the first time point (baseline) and subsequent CAD status were determined using the Student $t$ test for normally distributed continuous variables or the Wilcoxon two-sample rank sum test for nonnormally distributed continuous variables. The $\chi^2$ or Fisher exact test were used as appropriate for univariate analysis of categorical variables. Since $\alpha$-tocopherol has been shown to act as a pro-oxidant under conditions of low reactive oxidant fluxes (17), Spearman rank correlations were used at each time point for the entire cohort, and separately for incident cases and noncases, to investigate the association between $\alpha$-tocopherol and urinary IsoP according to high versus low/normal HbA1c. Mixed models were used to graph trajectories of the main independent variables over time by subsequent CAD status. Trajectories were plotted as a function of time: time before CAD incidence in cases and time before the end of follow-up in noncases; cubic splines with continuous second derivatives were used to smooth lines (18). The GENMOD procedure in SAS was used to assess the association between the repeated measurements of the main independent variables and CAD incidence after adjustment for duration of diabetes and significant univariate risk factors. Nonnormally distributed variables were logarithmically transformed to more closely satisfy the assumption of normality for entry into multivariable models (as noted in Tables 1–3 and Fig. 1).

RESULTS—The concentrations of measured biomarkers of interest (i.e., urinary IsoP and $\alpha$- and $\gamma$-tocopherol) over time in the entire study group are given in Supplementary Table 1. The concentration of $\alpha$-tocopherol increased over time, paralleling the increase in the use of vitamin supplements in the entire EDC population (data not shown). No statistically significant changes, however, were observed overall in urinary IsoP or $\gamma$-tocopherol. Among individuals free of CAD at study entry and with stored samples available at three times during the 20-year follow-up (n = 356), 88 (24.7%) developed a CAD event. Participant characteristics at the first of three time points (baseline) by subsequent CAD status are shown in Table 1. As expected, individuals who subsequently developed CAD were more likely to be older, with a longer duration of diabetes and higher blood pressure, lipid levels, albumin excretion rate, and white blood cell count compared with those who did not develop an event. Incident cases were also more
likely to have smoked, have micro- or macroalbuminuria, and lower estimated glomerular filtration rate. Although no significant differences in urinary IsoP, \( \alpha \)-tocopherol per unit cholesterol, or the ratio of \( \alpha \)-tocopherol to urinary IsoP were observed between subsequent cases and noncases, it is surprising that \( \alpha \)-tocopherol (not adjusting for cholesterol) was elevated among subsequent cases, whereas \( \gamma \)-tocopherol levels per unit cholesterol were elevated in individuals without CAD compared with subsequent cases.

In investigating the strength and direction of a potential association between urinary IsoP and \( \alpha \)-tocopherol concentrations, generally inverse associations were observed regardless of the level of glycemic control (<7.5 or >7.5%) or subsequent CAD status, although the strength of the correlation differed by time point (data not shown).

Separate mixed models were constructed for each main independent variable (i.e., urinary IsoPs (per milligram of urinary creatinine), plasma \( \alpha \)- and \( \gamma \)-tocopherol (per unit cholesterol), and the \( \alpha \)-tocopherol-to-IsoP ratio) to assess the independent association between repeated measurements of each variable and the subsequent development of CAD (Table 2). In multivariable mixed models, a borderline significant direct association was observed between urinary IsoP concentrations and CAD \((P = 0.06)\), whereas a significant inverse association was observed between plasma \( \alpha \)-tocopherol concentration and CAD \((P = 0.02)\). Repeated measurements of \( \gamma \)-tocopherol concentration did not seem to independently relate to subsequent CAD status \((P = 0.54)\). Interestingly, the \( \alpha \)-tocopherol-to-urinary IsoP ratio was strongly inversely associated with CAD \((P = 0.003)\). Similar results of an inverse association between the \( \alpha \)-tocopherol-to-urinary IsoP ratio and CAD incidence \((P = 0.04)\) were observed when including in the data from analyses of an additional 93 individuals with IsoP measured only in morning 4-hour clinic urine samples.

Figure 1 presents the trajectories of the \( \alpha \)-tocopherol, urinary IsoP (Fig. 1A), and their ratio (Fig. 1B) from the fully adjusted models (Table 2) before the occurrence of a CAD event or the end of follow-up (Table 3 gives the number of cases and noncases at each point during the follow-up period). Although differences did not appear to be of a great magnitude throughout the follow-up period, \( \alpha \)-tocopherol and the \( \alpha \)-tocopherol-to-urinary IsoP ratio were higher, especially during the 7 years before a CAD event or the end of follow-up, whereas urinary IsoP concentrations were lower among individuals who remained free of a CAD event.

### CONCLUSIONS

These data suggest that among individuals with type 1 diabetes, the profile of OxS (i.e., urinary isoprostanes) and its potential antioxidant defense (i.e., plasma \( \alpha \)-tocopherol) differ over time in those who develop incident CAD compared with those who do not. This difference is particularly apparent in the 7 years before the incident event and is well characterized by the ratio of \( \alpha \)-tocopherol to urinary IsoP. No association was observed between repeated measures of plasma \( \gamma \)-tocopherol and subsequent development of CAD. Thus, a direct association of urinary IsoP concentrations after adjustment for other covariates was observed, whereas plasma \( \alpha \)-tocopherol and the \( \alpha \)-tocopherol-to-urinary IsoP ratio were inversely related to subsequent CAD status.

Clinical trials of the effect of the use of antioxidant vitamin supplements in both the general population as well as individuals with diabetes have generally suggested no benefit of supplementation for the primary prevention of cardiovascular disease.

### Table 1—Participant characteristics at the first time point (baseline) by subsequent CAD status

| Participant characteristics | No CAD (n = 268) | CAD (n = 88) | P value |
|----------------------------|-----------------|-------------|---------|
| Years to CAD/censorship    | 18.8 (15.9–20.3)| 13.0 (6.7–17.2)| <0.0001 |
| Race/ethnicity, % (n)      |                 |             |         |
| Non-Hispanic white         | 96.6 (259)      | 98.9 (87)  |         |
| Black                      | 3.4 (9)         | 1.1 (1)    | 0.46    |
| Age (years)                | 27.1 (8.0)      | 33.1 (7.0) | <0.0001 |
| Duration (years)           | 18.8 (7.5)      | 24.7 (7.4) | <0.0001 |
| Female sex, % (n)          | 51.9 (139)      | 53.4 (47)  | 0.80    |
| BMI (kg/m²)                | 23.7 (3.3)      | 24.2 (3.1) | 0.17    |
| Ever smoked, % (n)         | 29.6 (79)       | 50.0 (44)  | 0.0005  |
| HbA1c, % (n)               | 8.7 (1.4)       | 8.9 (1.5)  | 0.21    |
| Systolic blood pressure (mmHg) | 112.3 (13.9) | 118.9 (15.6) | 0.0002 |
| Diastolic blood pressure (mmHg) | 71.4 (9.7) | 76.1 (11.1) | 0.0002 |
| Hypertension, % (n)        | 10.4 (28)       | 32.9 (29)  | <0.0001 |
| Cholesterol (mg/dL)        | 181.2 (36.4)    | 211.3 (46.1)| <0.0001 |
| Triglycerides (mg/dL)      | 71.5 (56.0–102.5)| 96.0 (72.0–131.0)| 0.0003 |
| Microalbuminuria, % (n)    | 40.7 (109)      | 63.6 (56)  | 0.0002  |
| Macroalbuminuria, % (n)    | 19.8 (53)       | 43.2 (38)  | <0.0001 |
| Albumin excretion rate (µg/min) | 10.9 (5.9–58.4)| 47.3 (10.5–475.4) | <0.0001 |
| eGFR (mL/min/1.73 m²)      | 114 (90–127)    | 104 (70–119)| 0.0003 |
| White blood cell count × 10⁹/µL² | 6.3 (1.8) | 7.1 (1.8) | 0.0005 |
| Urinary 15-isoprostane F2₁ (mg/mg creatinine) | 8.0 (5.8–11.2) | 8.7 (6.7–11.7) | 0.11 |
| \( \alpha \)-Tocopherol (mg/L) | 8.0 (6.6–9.6) | 8.8 (6.8–11.1) | 0.02 |
| \( \alpha \)-Tocopherol per unit cholesterol | 0.0046 (0.0038–0.0052) | 0.0044 (0.0037–0.0053) | 0.30 |
| \( \gamma \)-Tocopherol (mg/L) | 2.1 (1.6–2.7) | 2.1 (1.6–2.7) | 0.63 |
| \( \gamma \)-Tocopherol per unit cholesterol | 0.0012 (0.0009–0.0015) | 0.0011 (0.0007–0.0013) | 0.04 |
| Ratio of \( \alpha \)-tocopherol per unit cholesterol to urinary 15-isoprostane F2₁ per milligram creatinine | 0.0006 (0.0004–0.0008) | 0.0005 (0.0003–0.0007) | 0.09 |

Data are mean (SD) or median (interquartile range) unless otherwise indicated. eGFR, estimated glomerular filtration rate (per the Chronic Kidney Disease Epidemiology Collaboration).
**Oxidative stress and response vs. CAD in T1D**

**Table 2—Multivariable mixed models for the subsequent development of CAD**

| Main independent variables | Estimate | SE  | 95% CI    | P value |
|----------------------------|----------|-----|-----------|---------|
| Model 1: Urinary isoprostanes per mg creatinine |           |     |           |         |
| IsoP* | 0.0008 | 0.0005 | -0.0000, 0.0017 | 0.0631 |
| QIC | 1,068.6899 | | | |
| Model 2: α-Tocopherol per unit cholesterol | | | | |
| α-Tocopherol* | -0.2097 | 0.1126 | -0.4094, -0.0490 | 0.0166 |
| QIC | 1,059.6421 | | | |
| Model 3: γ-Tocopherol per unit cholesterol | | | | |
| γ-Tocopherol* | -0.2207 | 0.3599 | -0.9262, 0.4848 | 0.5398 |
| QIC | 1,062.5363 | | | |
| Model 4: α-Tocopherol per unit cholesterol and urinary isoprostanes per mg creatinine | | | | |
| α-Tocopherol* | -0.2857 | 0.1154 | -0.5120, -0.0595 | 0.0133 |
| IsoP* | 0.0008 | 0.0005 | -0.0001, 0.0017 | 0.0730 |
| QIC | 1,052.6160 | | | |
| Model 5: α-Tocopherol per unit cholesterol to urinary isoprostanes per mg creatinine ratio | | | | |
| α-Tocopherol/IsoP* | -0.7244 | 0.2444 | -1.2045, -0.2444 | 0.0031 |
| QIC | 1,052.6151 | | | |

*Logarithmically transformed; estimates are per 10-unit increase. Models also were adjusted for duration of diabetes, sex, race/ethnicity, BMI, ever smoked, HbA1c, hypertension, HDL and non-HDL cholesterol, albumin excretion rate (log), glomerular filtration rate as estimated using the Chronic Kidney Disease Epidemiology Collaboration study equation, white blood cell count, type of urine sample used, and years until CAD or censorship. QIC, quasi-likelihood under the independence model information criterion (an index of a model’s goodness of fit; the lower the value, the better the fit).

We also have previously raised the premise that an adequate response (e.g., antioxidant intake) to a specific insult (e.g., OxS) may reduce or delay the development of pathologic conditions associated with the insult (27). Thus, despite difficulties in recognizing markers representing protection or resistance in response to a specific stress, the concurrent evaluation of markers representing insult against those representing protection from or resistance to insults has great implications. In the current study, we aimed to assess whether an adequate antioxidative response to OxS could delay or prevent the development of CAD in a cohort of individuals with long-standing type 1 diabetes. Given that the majority of clinical trials of antioxidant supplementation in relation to cardiovascular disease focused on vitamin E, we measured the plasma concentration of α- and γ-tocopherol. The former has been reported to have greater biologic activity and to be the only form maintained in human plasma (28), whereas the latter is the form most commonly found in the American diet (4).

We further assessed levels of urinary IsoPs, prostaglandin-like compounds derived primarily from nonenzymatic, free radical-induced peroxidation of arachidonic acid (29). Contrary to reactions catalyzed by enzymes, it is reasonable to assume that the attack by reactive oxygen species on arachidonic acid yields equimolar levels of all F-series isoprostanes. F2-isoprostanes, the first isoprostane class discovered, are detectable in their esterified form in all normal biological tissues and in their free form in all normal biological fluids, including plasma and urine (3,30). Importantly, their concentration in urine is stable and not affected by arachidonic acid auto-oxidation or daily variation (29,31), contributing to their establishment as the gold standard biomarker of oxidant stress.

The Framingham Heart Study reported that urinary isoprostane concentrations were significantly associated with smoking, diabetes, and BMI, suggesting a role for systemic OxS in cardiovascular disease (32). A small case-control study from Germany also noted that urinary isoprostane excretion increased with an increasing number of traditional coronary heart disease risk factors (33). Indeed, several case-control studies of humans suggested the presence of elevated isoprostane concentrations in either plasma or urine among individuals with cardiovascular disease (33–37). Thus, plasma isoprostane levels were shown to be higher in individuals with atherosclerosis of the carotid or iliofemoral arteries (34), as well as among those with angiographic evidence of CAD (35), compared with controls. Urinary isoprostane levels also were reported to be increased with both subclinical atherosclerosis (36) and manifest CAD (33,36,37).

An important question that remained unanswered, however, was, Is OxS the initiator of processes leading to the development of CAD? Similarly to previous reports in the general population, we also observed a direct association between urinary concentrations of isoprostane and subsequent CAD in individuals with type 1 diabetes, although the association was not very strong, perhaps suggesting that the level of OxS per se is not the sole critical factor in disease pathogenesis, at least in this population. However, simultaneous evaluation of urinary IsoP and plasma α-tocopherol resulted in significant effects for both biomarkers. The α-tocopherol-to-urinary IsoP ratio over time was even more significant for subsequent CAD, consistent with the hypothesis that an adequate response to an insult may reduce risk associated with that insult. Thus, although the EDC study is not a clinical trial, our findings point to the value of concurrent evaluation of
insult and response to that insult to identify risk and potentially lead to novel approaches to preventing the progression of insults to full disease (e.g., by selective administration of antioxidant therapy to those with a low α-tocopherol-to-IsoP ratio), an approach that may merit further evaluation. Nonetheless, whether findings from the current study in type 1 diabetes could be directly applied to the general population is unclear. Indeed, it has been shown that urinary isoprostane levels are

Figure 1—α-Tocopherol and urinary IsoP trajectories (A) and α-tocopherol-to-urinary IsoP ratio trajectories (B) (adjusted for duration of diabetes, race, sex, BMI, having ever smoked, Hba1c, hypertension, HDL and non-HDL cholesterol, albumin excretion rate (log), estimated glomerular filtration rate, and white blood cell count) before a CAD event or the end of follow-up.
Oxidative stress and response vs. CAD in T1D

Table 3—Number of cases and noncases at each time point

| Years before CAD or censorship | -21 | -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 |
|-------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|
| Cases (n)                     | 8   | 11  | 18  | 27  | 27  | 24  | 21 | 27 | 31 | 22 | 24 |
| Noncases (n)                  | 94  | 109 | 62  | 96  | 87  | 113 | 49 | 24 | 38 | 17 | 5  |

increased when type 1 diabetes is diagnosed, and although they were shown to decline after 16 weeks of insulin treatment, isoprostane concentrations seem to remain elevated in persons with type 1 diabetes compared with controls (38). It is, then, possible that a relationship with CAD may be more difficult to observe in this compared with the general population if increased levels of OxS are present in type 1 diabetes before the initiation of atherosclerosis.

Pro-oxidant properties of α-tocopherol have previously been described, especially at low oxidant fluxes and in the absence of co-antioxidants (17). Thus, a direct association between IsoP and α-tocopherol may have been expected at lower levels of glycemic control (HbA1c <7.5%), contrary to our observations in this study. These findings, however, may suggest that the distribution of HbA1c, even at lower levels, did not achieve the level of radical flux, leading to tocopherol-mediated peroxidation.

Strengths of the current study comprise the large cohort of individuals with type 1 diabetes, the long (20-year) prospective follow-up, and the biennial assessment of both risk factors and the outcome. In addition, the measurement of plasma levels of the antioxidants α- and γ-tocopherol at three time points is also a strength because, contrary to dietary intake or supplement use data, plasma concentrations reflect biologically relevant levels of the vitamins. Finally, the measurement of urinary IsoP concentration, currently considered the “gold standard” biomarker of OxS, at three time points during the follow-up period is a further asset of this study.

As with any research study, conclusions based on this investigation are limited by several weaknesses, imposed by our choice of study design and the assumptions we made. Thus, although measuring biomarkers and assessing risk factors at multiple time points would have improved the precision of measurements, individuals with fewer than three stored samples had to be excluded from these analyses. This practice would have affected study participants with inadequate stored samples (whether due to failure to collect samples, inadequate sample collection, or use of samples for previous analyses), especially those exhibiting cardiovascular and/or fatal events earlier during the follow-up period. Moreover, despite improved precision, biomarker assessment at three time points over a 20-year follow-up may not be an adequate representation of an individual’s OxS status. We further restricted the assessment of OxS and antioxidative response to measurements of urinary IsoP and plasma tocopherol concentrations, respectively, among an array of currently known oxidative/antioxidative biomarkers. Whether other combinations of markers of stress and response or whether the total antioxidative potential/reserve of an individual may be more relevant to the subsequent risk for CAD cannot be derived from these data. Nevertheless, previous published reports of an association between total antioxidant status and cardiovascular outcomes have produced conflicting results (6,39–42). Finally, we cannot exclude the presence of subclinical CAD at study entry, a common limitation of both observational studies and clinical trials.

In conclusion, lower α-tocopherol and the α-tocopherol-to-urinary IsoP ratio were inversely related to CAD; to a lesser extent, higher urinary IsoP concentrations were directly related to CAD. These data thus provide some support for the hypothesis that a greater capability (α-tocopherol) to respond to OxS (isoprostanes) relates to CAD incidence.

Acknowledgments—This research has been supported by National Institutes of Health grants DK-34818 (to T.J.O.) and DK-082900 (to T.C.). No potential conflicts of interest relevant to this article were reported.

T.C. researched and analyzed data and wrote the manuscript. R.W.E. performed and analyzed assays. G.L.S. analyzed assays. T.J.O. researched data, contributed to the discussion, and reviewed and edited the manuscript. T.C. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Preliminary data from this study were presented as a poster at the 72nd Scientific Sessions of the American Diabetes Association, Philadelphia, Pennsylvania, 8–12 June 2012. The authors thank Beth Haut and Rona de la Vega (Department of Epidemiology, University of Pittsburgh) for expert laboratory analyses. The authors are forever indebted to the participants of the Pittsburgh Epidemiology of Diabetes Complications (EDC) study, who have tirelessly volunteered their time for more than 20 years.

References
1. McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic Biol Med 1999;26:1034–1053
2. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48:1–9
3. Roberts LJ, Morrow JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000;28:505–513
4. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC, National Academy Press, 2000
5. Willcox BJ, Curb JD, Rodriguez BL. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am J Cardiol 2008;101(10A):75D–86D
6. Costacou T, Zgibor JC, Evans RW, Tyurina YY, Kagan VE, Orchard TJ. Antioxidants and coronary artery disease among individuals with type 1 diabetes: Findings from the Pittsburgh Epidemiology of Diabetes Complications Study. J Diabetes Complications 2006;20:387–394
7. The hypertension detection and follow-up program: hypertension detection and follow-up program cooperative group. Prev Med 1976;5:207–215
8. Warnick GR, Albers JJ. Heparin–Mn2+ quantitation of high-density-lipoprotein cholesterol: an ultrafiltration procedure for lipemic samples. Clin Chem 1978;24:900–904
9. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470–475
10. Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 1973;19:476–482
11. Ellis D, Buffleton GJ. New approach to evaluation of proteinuric states. Clin Chem 1977;23:666–670
12. Levey AS, Stevens LA, Schmid CH, et al.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–612
13. Driskell WJ, Neese JW, Bryant CC, Bashor MM. Measurement of vitamin A and vitamin E in human serum by high-performance liquid chromatography. J Chromatogr A 1982;231:439–444

14. Miller KW, Lorr NA, Yang CS. Simultaneous determination of plasma retinol, alphatocopherol, lycopene, alpha-carotene, and beta-carotene by high-performance liquid chromatography. Anal Biochem 1984;138:340–345

15. Evans RW, Shaten BJ, Day BW, Kuller LH. Pizer SM. Numerical Computing and Mathematical Analysis. Pizer SM, Ed. Chicago, IL, Science Research Associates, Inc., 1975

16. Jordan P, Brubacher D, Moser U, Stähelin HB, Gey KF. Vitamin E and vitamin A concentrations in plasma adjusted for cholesterol and triglycerides by multiple regression. Clin Chem 1995;41:924–927

17. Thomas SR, Stocker R. Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis. Free Radic Biol Med 2000;28:1795–1805

18. Pizer SM. Numerical Computing and Mathematical Analysis. Pizer SM, Ed. Chicago, IL, Science Research Associates, Inc., 1975

19. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Ueland PM, Gey KF. Vitamin E and vitamin A concentrations in plasma adjusted for cholesterol and triglycerides by multiple regression. Clin Chem 1995;41:924–927

20. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–786

21. Boaz M, Smetsana S, Weinstein T, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebocontrolled trial. Lancet 2000;356:1213–1218

22. Rapola JM, Virtamo J, Ripatti S, et al. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 1997;349:1715–1720

23. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 1999;354:447–455

24. Levy AP, Gerstein HC, Miller-Lotan R, et al. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different hemoglobin phe

25. Milman U, Blum S, Shapira C, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the hemoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol 2008;28:341–347

26. Blum S, Vardi M, Levy NS, Miller-Lotan R, Levy AP. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different hemoglobin phenotypes. Atherosclerosis 2010;211:25–27

27. Costacou T, Orchard TJ. Adiponectin: good, bad, or just plain ugly? Kidney Int 2008;74:549–551

28. Traber MG, Arau H. Molecular mechanisms of vitamin E transport. Annu Rev Nutr 1999;19:343–355

29. Cracowski JL, Durand T, Bessard G. Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 2002;23:360–366

30. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a n

31. Helmersson J, Basu S. F(2)-isoprostane and prostaglandin F(2) alpha metabolite excretion rate and day to day variation in healthy humans. Prostaglandins Leukot Essent Fatty Acids 2001;65:90–102

32. Keaney JF Jr, Larson MG, Vasan RS, et al.; Framingham Study. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study.