ABSTRACT

Cancer patients have a pro-thrombotic state attributed to the ability of cancer cells to activate the coagulation system and interact with hemostatic cells, thus tilting the balance between pro- and anticoagulants. Mechanisms underlying the coagulation system activation involve tumor cells, endothelial cells, platelets, and white blood cells. Anti-cancer therapies, including anti-angiogenic drugs, significantly increase the risk of thrombosis during treatment. Along with the role of coagulation proteins in the hemostatic system, these proteins also serve as growth factors to the tumor. Heparanase is a pro-angiogenic and pro-metastatic protein. Our previous studies have demonstrated that it enhances tissue factor (TF) activity and is present at high levels in tumor cells and patients’ blood. Strategies to attenuate heparanase effects by heparin mimetics or peptides interrupting the TF–heparanase interaction are good candidates to attenuate tumor growth and thrombotic manifestations.

KEY WORDS: Cancer, coagulation, heparanase, heparins, TFPI-2 peptides

INTRODUCTION

Activation of the coagulation system in cancer patients is very common. Activated coagulation proteins not only contribute to clinical thrombotic manifestations but also serve as growth factors to tumor and endothelial cells. In addition, proteins released by the tumor, such as cytokines, can activate the coagulation system, imposing a positive feedback between cancer and coagulation. Knowledge is
accumulating on the mechanisms and the effects of the hemostatic system on tumor development, and attempts to attenuate these effects are ongoing.

EPIDEMIOLOGY OF CANCER AND THROMBOSIS

Thrombotic manifestations are a common cause of morbidity and mortality in cancer. Patients with various types of malignancies frequently demonstrate aberrations in all the elements of Virchow’s triad, including endothelial damage, blood stasis, and changes in the blood coagulation factors and cells, which may result in a prothrombotic or hypercoagulable condition. Clinical presentations range from localized venous or arterial occlusion to systemic syndromes, such as disseminated intravascular coagulation (DIC) and thrombotic thrombocytopenic purpura (TTP). Pulmonary embolism is known to be a major cause of death in cancer patients.

It is well established that about one-quarter of venous thromboembolism (VTE) patients suffer from cancer. Among 1,200 patients with cancer-associated VTE diagnosed at the Rambam Medical Center between 2006 and 2017, two-thirds were ambulatory. The risk of VTE depends on the cancer type, site, and stage, with the highest incidence observed in patients with pancreatic, gastric, brain, and ovary tumors; in patients with lymphomas; and in those with metastatic disease. According to the Danish National Registry, the diagnosis of cancer-associated VTE is a predictor of poor prognosis. Patient-related factors, such as co-morbidities and therapy-related factors (surgery and chemohormonal, radio-hormonal, and anti-angiogenic therapies), contribute to the increased thrombotic risk.

Several studies demonstrated an increased risk of subsequent arterial ischemic events in patients with VTE. Notably, recent studies reported an increased risk of arterial ischemic events in cancer patients. Vascular complications in patients with VTE and active cancer also include arterial ischemic events. The probability of vascular events is likely to increase with longevity associated with the introduction of novel treatment modalities and improved patient survival rates. One should bear in mind bleeding complications, which are more common in cancer patients receiving anticoagulant therapies.

MECHANISMS INVOLVED IN CANCER AND THROMBOSIS

Various factors contribute to the activation of the hemostatic system. Circulating tumor cells over-expressing tissue factor (TF) may activate the hemostatic system on entering the blood circulation as whole cells or as microparticles exposing TF on their surface. Microparticles may originate from tumor cells, platelets, white blood cells (WBCs), and endothelial cells. Microparticles may be a source of tissue factor. Mucins are large oligosaccharides that are usually secreted by epithelial cells of organs with a lumen, such as the gastrointestinal tract. Microparticles associated with cancer patients further contribute to the coagulation system activation.

Recently, the involvement of neutrophil extracellular traps (NETs) in cancer thrombosis was described. These NETs, composed of chromatin fibers, were shown to form a scaffold to platelets and red blood cells, facilitating the thrombus formation. The pathologic microcirculation in the tumor, depicted by abnormal morphology and flow, further contributes to the hemostatic system activation. The vessels in the tumor were demonstrated to be dilated with excess branching, resulting in blood stasis. Due to the low flow, growth factors, and cytokines released from the tumor cells, endothelial cells form a lumen, such as the gastrointestinal tract. Their receptors are usually secreted by epithelial cells of organs with a lumen, such as the gastrointestinal tract. Microparticles associated with cancer patients further contribute to the coagulation system activation.

A summary of these mechanisms is presented in Figure 1.
HEPARANASE PROTEIN INHIBITION AND HEPARINS AS ANTI-CANCER TREATMENTS

Heparins as an Anti-tumor Therapy

The commonly used heparins include the unfractionated heparin (UFH) sourced from animal tissues, and biochemically derived low-molecular-weight heparins (LMWHs). The primary effect of heparins on the coagulation system is related to the inhibition of thrombin and factor Xa action. The mechanisms of heparin-mediated anti-tumor effects are more complex and involve growth factor release from the endothelial cell surface, obstruction of P- and L-selectin-associated cell adhesion, heparanase protein inhibition, and reduction in the coagulation system activity. The main potential shortcoming of heparins is their non-specific interactions with proteins, such as growth factors and selectins. For instance, tissue factor pathway inhibitor (TFPI), which is both an anti-angiogenic and anti-metastatic protein, is also released by heparins from the endothelial cell surface. The absence of selectivity could restrict the utility of heparins as anti-cancer drugs. An additional major disadvantage of heparins is associated with their ability to induce bleeding, which limits the dosage to be prescribed for patients with malignancies.

Lately, a Cochrane analysis was published, evaluating the effectiveness and safety of heparins in ambulatory cancer patients. The study included 7,622 participants from 15 randomized controlled trials (RCTs) where either UFH or LMWH was employed. The meta-analysis showed an insignificant effect of the drugs on 12-month and 24-month mortality, with a decrease in VTE and an increase in minor bleeding. The authors concluded that the effect of heparins on the survival of cancer patients should be further assessed in relation to a specific type and stage of malignancy. Given the paucity of such data, at present, the judgment regarding the utility of heparin in a specific patient with cancer has to rely on an individual risk assessment, taking into account the patient’s quality of life.\(^\text{18}\)

Figure 1. Mechanisms of Thrombosis in Cancer.

Various components released from tumor cells induce coagulation system activation either directly through TF or indirectly through the effect on endothelial cells, platelets, and neutrophils.
Heparanase Procoagulant Activity Inhibition

Heparanase is an endoglycosidase able to cleave heparan sulfate (HS) side chains in restricted sites, causing liberation of HS fragments of approximately 5–7 kDa, which can still enhance anti-thrombin activity. Heparanase has been shown to augment tumor cell metastasis through HS cleavage and alteration of the extracellular matrix (ECM), increasing cell dissemination.

Additionally, heparanase, released from activated cells of the immune system and promoting migration of vascular endothelial cells, appears to affect neovascularization, inflammation, and autoimmunity. Furthermore, high levels of heparanase expression have been documented in most human tumors, wound healing, and diabetic nephropathy.

In contrast to multiple proteases that can degrade peptides in the ECM, heparanase is currently found to be the only human protein capable of degrading HS chains. Heparanase protein is mainly expressed in the placenta, platelets, granulocytes, and monocytes, with low or no expression in connective tissues and normal epithelia.

We have previously demonstrated that heparanase regulates the expression of TF and releases TFPI from the endothelial cell surface membrane and tumor cells by direct interaction, intensifying cell surface coagulant activity. Additionally, we have shown that through a direct interaction with TF, heparanase actually serves as a cofactor in TF functioning, leading to elevated factor Xa production with ensuing coagulation system activation. Data supporting the procoagulant effect of heparanase have been published by Baker et al., who have demonstrated in arterial injury and stent occlusion models that mice over-expressing heparanase produce a larger thrombus within a shorter time period compared to control animals.

While an elevated heparanase level in the plasma and biopsies of patients with cancer had been previously reported, we have recently explored the heparanase procoagulant activity in the plasma samples drawn at presentation from 65 patients with non-small cell lung cancer and compared the findings with those of 20 controls. Remarkably, not only was the heparanase antigen level higher in the patient group compared to controls (P=0.05), but also the heparanase procoagulant activity appears to be significantly increased in the patient cohort (P<0.0001). Furthermore, high heparanase procoagulant activity has been shown to correlate with a short survival (P=0.001). Therefore, high heparanase procoagulant activity could be a new mechanism of coagulation system activation in cancer, which might be further evaluated as a biomarker of patient survival.

The association of the coagulation system with cancer progression and inflammation has been further confirmed in our recent study where newly described peptides derived from TF pathway inhibitor 2 (TFPI-2) first Kunitz domain have demonstrated their ability to hinder the heparanase procoagulant activity by obstructing the interaction of TF with heparanase. Notably, in vivo, these peptides appear to significantly diminish activation of the coagulation system and sepsis severity induced by lipopolysaccharides, without putting the patient at risk of substantial bleeding. In another study, these peptides have significantly attenuated tumor growth and vascularization. Additionally, increased survival rate and a delay in tumor relapse have been demonstrated in mice treated with the peptides in question compared to control animals. Remarkably, neither in these two studies nor in an inferior vena cava ligation model was the side effect of bleeding detected. These results reinforce the evidence of existing interaction between cancer, inflammation, and the hemostatic system. Recently, Bochenek et al. have shown in a model of endothelial senescence that inhibition of heparanase activity using the TFPI-2 peptides prevents the enhanced venous thrombus formation in aged mice and restores it to the thrombotic phenotype of control adult mice. Thus, inhibition of heparanase may also potentially affect the process of aging.

CONCLUSIONS

Optimizing the prevention of vascular events remains a challenge that could be tackled by better risk stratification and broader application of precision medicine. The primary focus of the present research is on the creation of heparin mimetics. Their limited effect on the coagulation system allows circumventing bleeding complications, while considerably obstructing the procoagulant activity of heparanase. Inhibition of heparanase may also be achieved with the above described peptides derived from TFPI-2. Their ability to attenuate sepsis, tumor growth, and endothelial cell aging makes them potential candidates for future translational and clinical research.
REFERENCES

1. Martín-Martos F, Trujillo-Santos J, Barrón M, et al. Gender differences in cancer patients with acute venous thromboembolism. Thromb Res 2015;134(Suppl 1):S12–15. CrossRef

2. Timp JF, Braeckkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013;122:1712–23. CrossRef

3. Sörensen HT, Mellekjaer L, Olsen JH, Baron JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000;343:1846–50. CrossRef

4. Prandoni P. Links between arterial and venous disease. J Intern Med 2007;262:341–50. CrossRef

5. Bova C, Marchiori A, Noto A, et al. Incidence of arterial cardiovascular events in patients with idiopathic venous thromboembolism. A retrospective cohort study. Thromb Haemost 2006;96:132–6.

6. McGale P, Darby SC, Hall P, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 2011;100:167–75. CrossRef

7. Chu CN, Chen SW, Bai LY, Mou CH, Hsu CY, Sung FC. Increase in stroke risk in patients with head and neck cancer: a retrospective cohort study. Br J Cancer 2011;105:1419–23. CrossRef

8. Navi BB, Reiner AS, Kamel H, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol 2017;70:926–38. CrossRef

9. Aronson D, Brenner B. Arterial thrombosis and cancer. Thromb Res 2018;164:S23–8. CrossRef

10. Trujillo-Santos J, Nieto JA, Ruiz-Gamietoa A, et al. Bleeding complications associated with anticoagulant therapy in patients with cancer. Thromb Res 2010;125(Suppl 2):S58–61. CrossRef

11. Varki A. Trouseau’s syndrome: multiple definitions and multiple mechanisms. Blood 2007;110:1723–9. CrossRef

12. Nadir Y, Katz T, Sarig G, et al. Hemostatic balance on the surface of leukemic cells: the role of tissue factor and urokinase plasminogen activator receptor. Haematologica 2005;90:1549–56.

13. Sarig G, Michaeli Y, Lanir N, Brenner B, Haim N. Mechanisms for acquired activated protein C resistance in cancer patients. J Thromb Haemost 2005;3:589–90. CrossRef

14. Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol 2016;7:236. CrossRef

15. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost 2018;16:508–18. CrossRef

16. Aird WC. Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 2006;98:159–62. CrossRef

17. Nadir Y, Hoffman R, Brenner B. Drug-related thrombosis in hematologic malignancies. Rev Clin Exp Hematol 2004;8:E4.

18. Akl EA, Kahale LA, Ballout RA, et al. Parenteral anticoagulation in ambulatory patients with cancer. Cochrane Database Syst Rev 2014;(12):CD006652. CrossRef

19. Freeman C, Parish CR. Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 1998;330:1341–50. CrossRef

20. Pikas DS, Li JP, Vlodavsky I, Lindahl U. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 1998;273:18770–7. CrossRef

21. Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001;1471:M99–108. CrossRef

22. Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 2001;108:341–7. CrossRef

23. Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci 2000;25:349–51. CrossRef

24. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999;5:803–9. CrossRef

25. Kussie PH, Hulmes JD, Ludwig DL, et al. Cloning and functional expression of a human heparanase gene. Biochim Biophys Res Commun 1999;261:183–7. CrossRef

26. Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 1999;274:24153–60. CrossRef

27. Vlodavsky I, Friedmann Y, Elkin M, et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 1999;5:793–802. CrossRef

28. Nadir Y, Brenner B, Zetser A, et al. Heparanase induces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost 2006;4:2443–51. CrossRef

29. Nadir Y, Brenner B, Gingis-Velitski S, et al. Heparanase induces tissue factor pathway inhibitor
expression and extracellular accumulation in endothelial and tumor cells. Thromb Haemost 2008;99:133–41.

30. Nadir Y, Brenner B, Fux I, Shafat I, Attias J, Vlodavsky I. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica 2010;95:1927–34. [Crossref]

31. Baker AB, Gibson WJ, Kolachalama VB, et al. Heparanase regulates thrombosis in vascular injury and stent-induced flow disturbance. J Am Coll Cardiol 2012;59:1551–60. [Crossref]

32. Nadir Y, Sarig G, Axelman E, et al. Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thromb Res 2014;134:63–42. [Crossref]

33. Axelman E, Henig I, Crispel Y, et al. Novel peptides that inhibit heparanase activation of the coagulation system. Thromb Haemost 2014;112:466–77. [Crossref]

34. Crispel Y, Axelman E, Tatour M, et al. Peptides inhibiting heparanase procoagulant activity significantly reduce tumour growth and vascularisation in a mouse model. Thromb Haemost 2016;116:669–78. [Crossref]

35. Bochenek ML, Bauer T, Gogiraju R, et al. The endothelial tumor suppressor p53 is essential for venous thrombus formation in aged mice. Blood Adv 2018;2:1300–14. [Crossref]