Modeling Infant Word Segmentation

Constantine Lignos
Department of Computer and Information Science
University of Pennsylvania
lignos@cis.upenn.edu

Abstract

While many computational models have been created to explore how children might learn to segment words, the focus has largely been on achieving higher levels of performance and exploring cues suggested by artificial learning experiments. We propose a broader focus that includes designing models that display properties of infants’ performance as they begin to segment words. We develop an efficient bootstrapping online learner with this focus in mind, and evaluate it on child-directed speech. In addition to attaining a high level of performance, this model predicts the error patterns seen in infants learning to segment words.

1 Introduction

The last fifteen years have seen an increased interest in the problem of how infants learn to segment a continuous stream of speech into words. Much of this work has been inspired by experiments with infants focusing on what capabilities infants have and which cues they attend to. While experimental work provides insight into the types of cues infants may be using, computational modeling of the task provides a unique opportunity to test proposed cues on representative data and validate potential approaches to using them.

While there are many potential approaches to the problem, a desirable solution to the problem should demonstrate acceptable performance in a simulation of the task, rely on cues in the input that an infant learner is able to detect at the relevant age, and exhibit learning patterns similar to those of infant learners. Most work in computational modeling of language acquisition has primarily focused on achieving acceptable performance using a single cue, transitional probabilities, but little effort has been made in that work to try to connect these learning solutions to the actual learning patterns observed in children outside of performance on short artificial language learning experiments.

In this work we present a simple, easily extended algorithm for unsupervised word segmentation that, in addition to achieving a high level of performance in the task, correlates with the developmental patterns observed in infants. We discuss the connections between the design and behavior of our algorithm and the cognitive capabilities of infants at the age at which they appear to begin segmenting words. We also discuss how our technique can easily be extended to accept additional cues to word segmentation beyond those implemented in our learner.

2 Related Work

As this paper examines the intersection of infants’ capabilities and computational modeling, we discuss work in both domains, beginning with experimental approaches to understanding how infants may perform the task of word segmentation.

2.1 Infant Word Segmentation

A potential account of how infants learn to identify words in fluent speech is that they learn words in isolation and then use those words to segment longer utterances (Peters, 1983; Pinker et al., 1984). It is not clear, however, that infant-directed speech provides enough detectable words in isolation for
such a strategy (Aslin et al., 1996). Whatever iso-
lated words children do hear, they appear to attend to
them; whether a word is heard in isolation is a better
predictor of whether a child has learned a word than
the word’s frequency (Brent and Siskind, 2001).

A more plausible alternative account to assume
children attend to patterns in the input, using them to
identify likely word units. Much experimental work
has followed from the finding that in artificial learn-
ing tasks, infants and adults appear to prefer word-
like units that match statistical patterns in the input
(Saffran et al., 1996b; Saffran et al., 1996a). Saffran
et al. and the authors of following studies (Aslin et
al., 1998; Saffran, 2001, among many others) sug-
gest that participants used transitional probabilities
to succeed in these experiments, but the actual strat-
egy used is unclear and may even be an artifact of
the perceptual system (Perruchet and Vinter, 1998;
Hewlett and Cohen, 2009).

More recent work using real language data has
not shown transitional probabilities to be as useful
a cue as originally suggested. Lew-Williams et al.
(2011) found that 9-month-old English-learning in-
fants were not able to learn high-transitional prob-
ability words in fluent Italian speech unless those
words were also presented in isolation. Given this
finding and the extensive existing modeling work
focusing on the used of transitional probabilities, we
believe it is crucial to additionally explore segmen-
tation strategies that rely on other cues in the input.

2.2 Modeling Word Segmentation

While experimental work has posited simple algo-
rithms that infants might use to accomplish the task
of word segmentation, when applied to real language
data these techniques have yielded very poor results
(Yang, 2004). This problem has created a chal-
lenge for researchers modeling language acquisition
to suggest more sophisticated strategies that infants
might use. These approaches have fallen into two
primary categories: optimization-based and boot-
strapping algorithm strategies.

Optimization-based strategies have focused on
techniques that a learner might use to arrive at an
optimal segmentation, either through a dynamic pro-
gramming approach (Brent, 1999), online learning
(Venkataraman, 2001), or nonparametric Bayesian
inference (Goldwater et al., 2009; Johnson and
Goldwater, 2009). These approaches fit within stan-
dard statistical approaches to natural language pro-
cessing, defining statistical objectives and inference
strategies, with the learners trying to optimize some
combination of the quality of its lexicon and represen-
tations of the corpus.

In contrast, bootstrapping approaches (Gambell
and Yang, 2004; Lignos and Yang, 2010) to word
segmentation have focused on simple heuristics for
populating a lexicon and strategies for using the con-
tsents of the lexicon to segment utterances. These
approaches have focused on a procedure for segmen-
tation rather than defining an optimal segmentation
explicitly, and do not define a formal objective that
is to be optimized.

While bootstrapping approaches have generally
made stronger attempts to align with infants abili-
ties to process the speech signal (Gambell and Yang,
2004) than other approaches, little effort has been
made to connect the details of an implemented seg-
mentation strategy with children’s learning patterns
since the earliest computational models of the task
(Olivier, 1968). It is important to draw a con-
trast here between attempts to match patterns of hu-
man development with regard to word segmentation
with attempts to model performance in artificial lan-
guage learning experiments whose goal is to probe
word segmentation abilities in humans (Frank et al.,
2010). In this paper we are focused on matching the
progression of development and performance in nat-
uralistic experiments to characteristics of a segmen-
tation strategy, an approach similar to that employed
in English past tense learning (Rumelhart and Mc-
Clelland, 1986; Pinker, 2000; Yang, 2002).

We will now discuss the patterns of development
for children learning to segment English words,
which form the motivation for the design of our seg-
menter.

3 Infant Performance in Word
Segmentation

While the developmental patterns of English-
learning infants have been broadly studied, it has
been difficult to identify errors that must be caused
by failures to correctly segment words and not other
cognitive limitations, issues of morphological pro-
ductivity, or syntactic competency issues.
Brown (1973) offers one of the most comprehensive examinations of the types of errors that young infants make regarding word segmentation. He notes that Adam’s common errors included treating it’s-a, that-a, get-a, put-a, want-to, and at-that as single words, as judged by various misproductions that involved these items. A possible analysis of these errors is that in addition to the high level of frequency with which those syllables co-occur, elements such as a and to do not carry any identifiable amount of stress in natural speech.

In addition to the undersegmentations that Brown identifies, Peters (1983) identifies the pattern of oversegmenting function words begin other words, including this famous dialog between a parent and child, where in the child’s response have is pronounced in the same way as the second syllable of behave: Parent: Behave! Child: I am have!

The response by the child indicates that they have analyzed behave as be have. There are two major factors that could contribute to such an analysis: the high frequency of be leading to it being treated as a separate word (Saffran et al., 1996b), and the lack of stress on be but stress on have which forms a word contrary to the dominant pattern of stress in English (Cutler and Butterfield, 1992).

Infants appear to use the ends of utterances to aid segmentation, and as early at 7.5 months old they are able to recognize novel words in fluent speech if the novel words are presented at the ends of an utterance and not utterance medially (Seidl and Johnson, 2006). Thus the reliable boundaries presented by the edge of an utterance should be treated as informative for a learner.

Most crucially, the syllable seems to be the unit children use to form words. Experiments that have been performed to gauge adult and infant competency in word segmentation have been designed with the assumption that the only possible segmentation points are at syllable boundaries. That infants should be able to operate on syllables is unsurprising; infants as young as 4-days-old are able to discriminate words based on syllable length (Bijeljac-Babic et al., 1993) and phonotactic cues to syllable boundaries seem to be rapidly acquired by infants (Onishi et al., 2002). The use of the syllable in experimental work on word segmentation stands in contrast to many computational models that have operated at the phoneme level (Brent, 1999; Venkataraman, 2001; Goldwater et al., 2009). An exception to the focus on phoneme-based segmentation is the joint learning model proposed by Johnson (2008) that learns syllabification and other levels of representation jointly with word segmentation, but that model poses problems as a developmentally relevant approach in that it predicts unattested joint syllabification/segmentation errors by infants and problems as a linguistically relevant errors due to its non-phonotactic approach to learning syllabification.

From this survey, we see some relevant phenomena that a good model of infant word segmentation should replicate. (1) The learner should operate on syllables. (2) At some stage of learning, undersegmentation function word collocations (e.g., that-a should occur. (3) At some stage of learning, oversegmentation of function words that may begin other words (e.g., be-have) should occur. (4) The learner should attend to the ends of utterances as use them to help identify novel words.

4 An Algorithm for Segmentation

The algorithm we propose is similar in style to previous online bootstrapping segmenters (Gambell and Yang, 2004; Lignos and Yang, 2010) but varies in a few crucial aspects. First, it inserts word boundaries in a left-to-right fashion as it processes each utterance (i.e., in temporal order), unlike previous models which have worked from the outside in. Second, it can handle cases where the segmentation is ambiguous given the current lexicon and score multiple possible segmentations. Finally, the use of word-level stress information is an optional part of the model, and not an essential part of the segmentation process. This allows us to examine the additional power that stress provides on top of a subtractive segmentation system and allows the model to generalize to languages where word-level stress is not present in the same fashion as English (e.g., French). We first discuss the individual operations the algorithm uses to segment an utterance, and then discuss how they are combined in the segmenter.

4.1 The Lexicon

The learner we propose will primarily use items in its lexicon to help identify new possible words. The
structure of the lexicon is as follows:

Lexicon. The lexicon contains the phonological material of each word that the learner has previously hypothesized. The lexicon stores a score along with each word, which the segmenter may increment or decrement.

The score assigned to each entry in the lexicon represents the relative confidence that it is a true word of the language. Each increment simply adds to the score of an individual word and each decrement subtracts from it.

4.2 Subtractive Segmentation

Subtractive segmentation is the process of using known words to segment the speech signal, which infants appear to be able to do as young as at six months of age (Bortfeld et al., 2005).

Subtractive Segmentation. When possible, remove a known word in the lexicon from the front of the utterance being segmented.

One way to apply subtractive segmentation is a greedy score-based heuristic for subtractive segmentation (Lignos and Yang, 2010), such that whenever multiple words in the lexicon could be subtracted from an utterance, the entry with the highest score will deterministically be used. This greedy approach results in a “rich get richer” effect of the sort seen in Dirichlet processes (Goldwater et al., 2009). We will first discuss this approach and then later extend this greedy search to a beam search.

Figure 1 gives the implementation of subtractive segmentation in our algorithm. This algorithm results in the following properties:

- **Initially, utterances are treated as words in isolation.** When the lexicon is empty, no word boundaries will be inserted and the full contents of each utterance will be added to the lexicon as a word.
- **High-frequency words are preferred.** When presented with a choice of multiple words to subtract, the highest scored word will be subtracted, which will prefer higher frequency words over lower frequency words in segmentation.
- **Syllables between words are not necessarily considered words.** Syllables that occur between subtractions are not added as words in the lexicon. For example, if *play* and *please* are in the lexicon but *checkers* is not, the utterance *play checkers please* will be correctly segmented, but *checkers* will not be added to the lexicon. Much like infants appear to do, the learner does not place as much weight on less reliable boundaries hypothesized in the middle of an utterance (Seidl and Johnson, 2006).

4.3 Incorporating Stress Information

A particularly useful constraint for defining a word, introduced to the problem of word segmentation by Yang (2004) but previously discussed by Halle and Vergnaud (1987), is as follows:

Unique Stress Constraint (USC): A word can bear at most one primary stress.

Yang (2004) evaluated the effectiveness of the USC in conjunction with a simple approach to using transitional probabilities, showing significant performance improvements. The availability of such stress cues is not, however, an uncontroversial assumption; there are no language-universal cues to stress and even within a single language automatic detection of word-level stress is still unreliable (Van Kuijk and Boves, 1999), making automatic capture of such data for simulation purposes difficult.

Before taking advantage of word-level stress information, the infant learner would need to identify the acoustic correlates to word-level stress in her language, and we will not address the specific mechanisms that an infant learner may use to accomplish the task of identifying word-level stress in this paper. Based on strong experimental evidence that infants discriminate between weakly and strongly stressed syllables and use it to group syllables into word-like units (Jusczyk et al., 1999), we assume that an infant may attend to this cue and we evaluate our model with and without it.

We adopt the USC for segmentation in the following fashion:

Unique Stress Segmentation (USS). Insert word boundaries such that no word contains two strong stresses. Do so in a lazy fashion, inserting boundaries as a last resort just before adding another syllable to the current word would cause it to contain two strong stresses.
This strategy is expressed in an algorithmic form in Figure 2. The learner uses USS as a last resort to prevent creating a segmentation with an impossible amount of stress in a single word. For example consider an unsegmented English utterance with the stressed syllables underlined: *Give*methe*ball*. Applying USS would create the following segmentation: *Give*methe*ball*.

A USS-based algorithm would note the stress on the first syllable, then keep scanning until another stress is located on the fourth syllable, inserting a break between the two. *Give*methe and *ball* would be added to the lexicon. While this is not a perfect segmentation, it can be used to aid subtractive segmentation by seeding the lexicon, even if not all entries added to the lexicon are not correct.

4.4 Combining Subtraction and Stress Information

Given our bootstrapping methodology, it is highly desirable to be able to integrate USS along with subtractive segmentation. An algorithm that combines both is shown in Figure 3.

4.5 Extending to Beam Search

The greedy segmentation proposed is limited in its ability to find a good segmentation by its reliance on local decisions. A frequent undersegmentation error of the greedy segmenter is of this type: *partoF an apple*. Because *partoF* has a higher score than *part* at the point in learning where this utterance is encountered, the greedy segmenter will always choose *partoF*.

An alternative approach is to let the segmenter
explore multiple hypotheses at once, using a simple beam search. New hypotheses are added to support multiple possible subtractive segmentations. For example, using the utterance above, at the beginning of segmentation either part or partof could be subtracted from the utterance, and both possible segmentations can be evaluated. The learner scores these hypotheses in a fashion similar to the greedy segmentation, but using a function based on the score of all words used in the utterance. The geometric mean has been used in compound splitting (Koehn and Knight, 2003), a task in many ways similar to word segmentation, so we adopt it as the criterion for selecting the best hypothesis. For a hypothesized segmentation H comprised of words $w_1 \ldots w_n$, a hypothesis is chosen as follows:

$$\arg\max_H \left(\prod_{w_i \in H} \text{score}(w_i) \right)^{\frac{1}{n}}$$

For any w not found in the lexicon we must assign a score; we assign it a score of one as that would be its value assuming it had just been added to the lexicon, an approach similar to Laplace smoothing.

Returning to the previous example, while the score of partof is greater than that of part, the score of of is much higher than either, so if both partof an apple and part of an apple are considered, the high score of of causes the latter to be chosen. When beam search is employed, only words used in the winning hypothesis are rewarded, similar to the greedy case where there are no other hypotheses.

In addition to preferring segmentations that use words of higher score, it is useful to reduce the score of words that led to the consideration of a losing hypothesis. In the previous example we may want to penalize partof so that we are less likely to choose a future segmentation that includes it. Setting the beam size to be two, forcing each hypothesis to develop greedily after an ambiguous subtraction causes two hypotheses to form, we are guaranteed a unique word to penalize. In the previous example partof causes the split between the two hypotheses in the beam, and thus the learner penalizes it to discourage using it in the future.

5 Results

5.1 Evaluation

To evaluate the performance of our model, we measured performance on child-directed speech, using the same corpus used in a number of previous studies that used syllabified input (Yang, 2004; Gambell and Yang, 2004; Lignos and Yang, 2010). The eval-

Algorithm	Word Boundaries		
	Precision	Recall	F-Score
No Stress Information			
Syllable Baseline	81.68	100.0	89.91
Subtractive Seg.	91.66	89.13	90.37
Subtractive Seg. + Beam 2	92.74	88.69	90.67
Word-level Stress			
USS Only	91.53	18.82	31.21
USS + Subtractive Seg.	93.76	92.02	92.88
USS + Subtractive Seg. + Beam 2	94.20	91.87	93.02

Table 1: Learner and baseline performance

Figure 3: An algorithm combining USS and Subtractive Segmentation

u ← the syllables of the utterance, initially with no word boundaries

i ← 0

while $i < \text{len}(u)$ do

 if USS requires a word boundary then
 Insert a word boundary and advance i, updating the lexicon as needed
 else if Subtractive Segmentation can be performed then
 Subtract the highest scoring word and advance i, updating the lexicon as needed
 else
 Advance i by one syllable
 end if

end while

w ← the syllables between the last boundary inserted (or the beginning of the utterance if no boundaries were inserted) and the end of the utterance

Increment w’s score in the lexicon, adding it to the lexicon if needed
A separate set of previous studies have used a corpus selected by Brent (1999) for evaluation. Due to length limitations and the fact that the results presented here cannot be meaningfully compared to those studies, we only present results on the Brown (1973) data here.

As larger beam sizes did not lead to any benefits, partly because they do not straightforwardly allow for penalization, we do not report results for larger beam sizes.
Function word collocations. For example, the third highest-scored non-word in the lexicon is *that’s a*, congruent with observations of function word collocations seen in children (Brown, 1973).

Oversegmentation of function words. The greedy approach used for segmenting the words of highest score results in function words being aggressively segmented off the front of words, for example *a nother*. The highest scored non-word in the lexicon is *nother* as a result.

Adding beam search reduces the number of function word collocations in the segmenter’s output; the learner’s most commonly penalized lexicon entry is *is that*. However, beam search also penalizes a lot of words, such as *another*. Thus the strategy used in beam search predicts an early use of function word collocations, followed by later oversegmentation.

6 Discussion

In the discussion of related work, we identified two major paradigms in modeling word segmentation: optimization and bootstrapping approaches. The algorithm presented here combines elements of both. Its behavior over time and across utterances is that of a bootstrapping learner, but when processing each utterance it selects a segmentation based on a simple, cognitively plausible beam search.

By using a beam search of the kind suggested, it is easy to see how a variety of other cues could be integrated into the learning process. We have given a simple function for selecting the best hypothesis that only relies on lexicon scores, but more sophisticated functions could take multiple cues into account. For example it has been observed that 7-month-olds attend more to distributional cues while 9-month-olds attend more to stress cues (Thiessen and Saffran, 2003). A learner in which the weight placed on stress cues increases as the learner receives more data would match this pattern. Other research has suggested a more complex hierarchy of cues (Matys et al., 2005), but how the weighting of the various cues can be adjusted with more input remains an open question.

A crucial frontier in word segmentation is the expansion of evaluation to include other languages. As with many other tasks, creating solutions that perform well in a broad variety of languages is important but has not yet been pursued. Future work should attempt to match developmental patterns in other languages, which will require adding morphological complexity to the system; the techniques developed for English are unlikely to succeed unchanged in other languages.

Comparing with other algorithms’ published results is difficult because of varying choices of data sets and metrics. For example, other syllable-based algorithms have evaluated their performance using word-level, as opposed to boundary-level, precision and recall (Gambell and Yang, 2004; Lignos and Yang, 2010). We have adopted the more popular boundary-based metric here, but there is no way to directly compare with work that does not use syllabified input. The variety of possible evaluation metrics obviates the need for a longer-form exploration of how existing approaches perform when evaluated against varying metrics. Additionally, a more standard set of evaluation data in many languages would greatly improve the ability to compare different approaches to this task.

7 Conclusion

The work presented here represents a step toward bringing together developmental knowledge regarding word segmentation and computational modeling. Rather than focusing on cues in artificial learning experiments which may or may not generalize to the natural development of word segmentation in children, we have shown how a simple algorithm for segmentation mimics many of the patterns seen in infants’ developing competence. We believe this work opens the door to a promising line of research that will make a stronger effort to see simulations of language acquisition as not just an unsupervised learning task but rather a modeling task that must take into account a broad variety of phenomena.

8 Acknowledgments

I would like to thank Charles Yang and Mitch Marcus for many enlightening discussions regarding this work. The author was supported by an NSF IGERT grant to the University of Pennsylvania Institute for Research in Cognitive Science.
References

R.N. Aslin, J.Z. Woodward, N.P. LaMendola, and T.G. Bever. 1996. Models of word segmentation in fluent maternal speech to infants. *Signal to syntax: Bootstrapping from speech to grammar in early acquisition*, pages 117–134.

R.N. Aslin, J.R. Saffran, and E.L. Newport. 1998. Computation of conditional probability statistics by 8-month-old infants. *Psychological Science*, 9(4):321.

R. Bijeljac-Babic, J. Bertoncini, and J. Mehler. 1993. How do 4-day-old infants categorize multisyllabic utterances? *Developmental Psychology*, 29:711–711.

M.R. Brent and J.M. Siskind. 2001. The role of exposure to isolated words in early vocabulary development. *Cognition*, 81(2):B33–B44.

M.R. Brent. 1999. An efficient, probabilistically sound algorithm for segmentation and word discovery. *Machine Learning*, 34(1):71–105.

R. Brown. 1973. *A First Language: The Early Stages*. Harvard Univ. Press, Cambridge, Massachusetts 02138.

A. Cutler and S. Butterfield. 1992. Rhythmic cues to speech segmentation: Evidence from juncture misperception. *Journal of Memory and Language*, 31(2):218–236.

M.C. Frank, S. Goldwater, T.L. Griffiths, and J.B. Tenenbaum. 2010. Modeling human performance in statistical word segmentation. *Cognition*.

T. Gambell and C. Yang. 2004. Statistics learning and universal grammar: Modeling word segmentation. In *First Workshop on Psycho-computational Models of Human Language Acquisition*, page 49.

S. Goldwater, T.L. Griffiths, and M. Johnson. 2009. A Bayesian framework for word segmentation: Exploring the effects of context. *Cognition*.

M. Halle and J.R. Vergnaud. 1987. *An essay on stress*. MIT Press.

D. Hewlett and P. Cohen. 2009. Word segmentation as general chunking. In *Psychocomputational Models of Language Acquisition Workshop (PsychoCompLA)*, July 29, 2009.

M. Johnson and S. Goldwater. 2009. Improving nonparametric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars. In *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, pages 317–325. Association for Computational Linguistics.

M. Johnson. 2008. Using adaptor grammars to identify synergies in the unsupervised acquisition of linguistic structure. In *46th Annual Meeting of the ACL*, pages 398–406. Citeseer.

P.W. Jusczyk, D.M. Houston, and M. Newcombe. 1999. The Beginnings of Word Segmentation in English-Learning Infants. *Cognitive Psychology*, 39(3-4):159–207.

P. Koehn and K. Knight. 2003. Empirical methods for compound splitting. In *Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics-Volume 1*, pages 187–193. Association for Computational Linguistics.

C. Lew-Williams, B. Pelucchi, and J. Saffran. 2011. Isolated words enhance statistical learning by 9-month-old infants. In *Budapest CEU Conference on Cognitive Development 2011*.

C. Lignos and C. Yang. 2010. Recession Segmentation: Simpler Online Word Segmentation Using Limited Resources. In *Proceedings of CoNLL-2010*, pages 88–97.

B. MacWhinney. 2000. *The CHILDES Project: Tools for Analyzing Talk*. Lawrence Erlbaum Associates.

S.L. Mattys, L. White, and J.F. Melhorn. 2005. Integration of multiple speech segmentation cues: A hierarchical framework. *Journal of Experimental Psychology-General*, 134(4):477–500.

D.C. Olivier. 1968. *Stochastic grammars and language acquisition mechanisms: a thesis*. Ph.D. thesis, Harvard University.

K.H. Onishi, K.E. Chambers, and C. Fisher. 2002. Learning phonotactic constraints from brief auditory experience. *Cognition*, 83(1):B13–B23.

P. Perruchet and A. Vinter. 1998. PARSER: A model for word segmentation. *Journal of Memory and Language*, 39:246–263.

A.M. Peters. 1983. *The units of language acquisition*. CUP Archive.

S. Pinker, Harvard University. The President, and Fellows of Harvard College. 1984. *Language learnability and language development*. Harvard University Press Cambridge, MA.

S. Pinker. 2000. *Words and rules: The ingredients of language*. Harper Perennial.

D.E. Rumelhart and J.L. McClelland. 1986. *Parallel distributed processing: Explorations in the microstructure of cognition*. MIT Press, Cambridge, MA.

J.R. Saffran, R.N. Aslin, and E.L. Newport. 1996a. Statistical Learning by 8-month-old Infants. *Science*, 274(5294):1926.

J.R. Saffran, E.L. Newport, and R.N. Aslin. 1996b. Word Segmentation: The Role of Distributional Cues. *Journal of Memory and Language*, 35(4):606–621.
J.R. Saffran. 2001. Words in a sea of sounds: The output of infant statistical learning. *Cognition*, 81(2):149–169.

A. Seidl and E.K. Johnson. 2006. Infant word segmentation revisited: edge alignment facilitates target extraction. *Developmental Science*, 9(6):565–573.

E.D. Thiessen and J.R. Saffran. 2003. When cues collide: Use of stress and statistical cues to word boundaries by 7-to 9-month-old infants. *Developmental Psychology*, 39(4):706–716.

D. Van Kuijk and L. Boves. 1999. Acoustic characteristics of lexical stress in continuous telephone speech. *Speech Communication*, 27(2):95–111.

A. Venkataraman. 2001. A statistical model for word discovery in transcribed speech. *Computational Linguistics*, 27(3):351–372.

R.L. Weide. 1998. The Carnegie Mellon Pronouncing Dictionary [cmudict.0.6].

C.D. Yang. 2002. *Knowledge and learning in natural language*. Oxford University Press, USA.

C.D. Yang. 2004. Universal Grammar, statistics or both? *Trends in Cognitive Sciences*, 8(10):451–456.