Supplemental references

[1] Seidegård J, Pero RW, Miller DG, et al. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis 1986;7:751–3.

[2] Seidegård J, Pero RW, Markowitz MM, et al. Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis 1990;11:33–6.

[3] Zhong S, Howie AF, Ketterer B, et al. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 1991;12:1533–7.

[4] Heckbert SR, Weiss NS, Hornung SK, et al. Glutathione S-transferase and epoxide hydrolase activity in human leukocytes in relation to risk of lung cancer and other smoking-related cancers. J Natl Cancer Inst 1992;84:414–22.

[5] Hayashi S, Watanabe J, Kawajiri K. High susceptibility to lung cancer analyzed in terms of combined genotypes of P450IA1 and Mu-class glutathione S-transferase genes. Jpn J Cancer Res 1992;83:866–70.

[6] Hirvonen A, Hugafvel-Pursiainen K, Anttila S, et al. The frequency of glutathione-S-transferase M1 null genotype in relation to gender, age and smoking status. Cancer Epidemiol Control 1997;6:544–554.

[7] Brockmoller J, Kerb R, Draulans N, et al. Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res 1993;53:1004–11.

[8] Nakachi K, Imai K, Hayashi S, et al. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 1993;53:2994–9.

[9] Nazar-Stewart V, Motulsky AG, Eaton DL, et al. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res 1993;53:2313–8.

[10] Katoh T. [The frequency of glutathione-S-transferase M1 (GSTM1) gene deletion in patients with lung and oral cancer]. Sangyo Igaku 1994;36:435–9.

[11] Alexandre AK, Sundberg M, Seidegård J, et al. Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis 1994;15:1785–90.

[12] Kihara M, Kihara M, Noda K. Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis 1994;15:415–8.

[13] London SJ, Daly AK, Cooper J, et al. Polymorphism of glutathione S-transferase M1 and lung cancer risk among African-Americans and Caucasians in Los Angeles County, California. J Natl Cancer Inst 1995;87:1246–53.

[14] Nakajima T, Elowara E, Anttila S, et al. Expression and polymorphism of glutathione S-transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis 1995;16:707–11.

[15] Kihara M, Noda K, Kihara M. Distribution of GSTM1 null genotype in relation to gender, age and smoking status in Japanese lung cancer patients. Pharmacogenetics 1995;5:S74–9.

[16] Kihara M, Kihara M, Noda K. Risk of smoking for squamous and small cell carcinomas of the lung modulated by combinations of CYP1A1 and GSTM1 gene polymorphisms in a Japanese population. Carcinogenesis 1995;16:2331–6.

[17] Katoh T. [Application of molecular biology to occupational health field—the frequency of gene polymorphism of cytochrome P450 1A1 and glutathione S-transferase M1 in patients with lung, oral and uterine cancer]. J UOEH 1995;17:271–8.

[18] To-Figueras J, Gene M, Gomez-Catalan J, et al. Glutathione-S-Transferase M1 and codon 72 p53 polymorphisms in a northwestern Mediterranean population and their relation to lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1996;5:337–42.

[19] Moreira A, Martins G, Monteiro MJ, et al. Glutathione S-transferase mu polymorphism and susceptibility to lung cancer in the Portuguese population. Teratog Carcinog Mutagen 1996;16:707–11.

[20] Ge H, Lam WK, Lee J, et al. Analysis of L-myc and GSTM1 genotypes in Chinese non-small cell lung carcinoma patients. Lung Cancer 1996;15:355–66.

[21] Deakin M, Elder J, Hendrickse C, et al. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis 1996;17:881–84.

[22] el-Zein R, Zwischenberger JB, Wood TG, et al. Combined genetic polymorphism and risk for development of lung cancer. Mutat Res 1997;381:189–200.

[23] Jourenkova N, Reinikainen M, Bouchardy C, et al. Effects of glutathione S-transferases GSTM1 and GSTT1 genotypes on lung cancer risk in smokers. Pharmacogenetics 1997;7:515–8.

[24] To-Figueras J, Gomez C, Gomez-Catalan J, et al. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms and lung cancer risk among Northwestern Mediterraneans. Carcinogenesis 1997;18:1529–33.

[25] Harrison DJ, Cantlay AM, Rae F, et al. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol 1997;16:356–60.

[26] Kelsey KT, Spitz MR, Zuo ZF, et al. Polymorphisms in the glutathione S-transferase class mu and theta genes interact and increase susceptibility to lung cancer in minority populations (Texas, United States). Cancer Causes Control 1997;8:554–9.

[27] Garcia-Closas M, Kelsey KT, Wienczek JK, et al. A case-control study of cytochrome P450 1A1, glutathione S-transferase M1, cigarette smoking and lung cancer susceptibility (Massachusetts, United States). Cancer Causes Control 1997;8:544–53.

[28] Ryberg D, Skaug V, Hewart A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 1997;18:1285–9.

[29] Li WY, Lai BT, Zhang XP. The relationship between genetic polymorphism of metabolizing enzymes and the genetic susceptibility to lung cancer. Chin J Epidemiol 2004;25:1042–5.
Sun GF, Shimojo N, Pi JB, et al. Gene deficiency of glutathione S-transferase mu isoform associated with susceptibility to lung cancer in a Chinese population. Cancer Lett 1997;113:169–72.

Salagovic J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 1998;45:312–7.

Hong YS, Chang JH, Kwon OJ, et al. Polymorphism of the CYP1A1 and glutathione-S-transferase gene in Korean lung cancer patients. Exp Mol Med 1998;30:192–8.

Benhamou S, Reinikainen M, Bouchardy C, et al. Association between lung cancer and microsomal epoxide hydrolase genotypes. Cancer Res 1998;58:5291–5.

Le Marchand L, Sivaraman L, Pierce L, et al. Associations of CYP1A1, GSTM1, and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res 1998;58:4858–63.

Nyberg F, Hou SM, Hemminki K, et al. Glutathione S-transferase mu1 and N-acetyltransferase 2 genetic polymorphisms and exposure to tobacco smoke in nonsmoking and smoking lung cancer patients and population controls. Cancer Epidemiol Biomarkers Prev 1998;7:875–83.

Saarikoski ST, Voho A, Reinikainen M, et al. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer. Int J Cancer 1998;77:516–21.

Jourenkova-Mironova N, Wikman H, Bouchardy C, et al. Role of glutathione S-transferase P1 polymorphism in modulating susceptibility to smoking-related lung cancer. Pharmacogenetics 1998;8:495–502.

Stücker I, de Waziers I, Cencé S, et al. GSTM1, smoking and lung cancer: a case-control study. Int J Epidemiol 1999;28:829–35.

Gao Y, Zhang Q. Polymorphisms of the GSTM1 and CYP2D6 genes associated with susceptibility to lung cancer in Chinese. Mutat Res 1999;444:441–9.

To-Figueras J, Gené M, Gómez-Catalón J, et al. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk. Cancer Causes Control 1999;10:65–70.

Persson I, Johansson I, Lou YC, et al. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients. Int J Cancer 1999;81:325–9.

Katoh T, Kaneko S, Takasawa S, et al. Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer: oral, lung, gastric, colorectal and uterine cancer. Pharmacogenetics 1999;9:165–9.

Kihara M, Kihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers. Cancer Lett 1999;137:53–60.

Kiyohara C, Yamamura KI, Nakashiy Y, et al. Polymorphism in GSTM1, GSTT1, and GSTP1 and Susceptibility to Lung Cancer in a Japanese Population. Asian Pac J Cancer Prev 2000;1:293–8.

Dresler CM, Fratelli C, Babb J, et al. Gender differences in genetic susceptibility for lung cancer. Lung Cancer 2000;30:153–60.

London SJ, Yuan JM, Chung FL, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet 2000;356:724–9.

Ford JG, Li Y, O’Sullivan MM, et al. Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis 2000;21:1971–5.

Stücker I, Jacquet M, de Waziers I, et al. Relation between inducibility of CYP1A1, GSTM1 and lung cancer in a French population. Pharmacogenetics 2000;10:617–27.

Malats N, Camus-Radon AM, Nyberg F, et al. Lung cancer risk in nonsmokers and GSTM1 and GSTT1 genetic polymorphism. Cancer Epidemiol Biomarkers Prev 2000;9:827–33.

Wang N, Wu YJ, Zhou XL, et al. Association between genetic polymorphism of metabolizing enzymes and DNA repairing enzymes and the susceptibility of lung cancer in Hanen population. JOURNAL OF HYGIENE RESEARCH 2012;41:251–6.

Hou SM, Ryberg D, Fält S, et al. GSTM1 and NAT2 polymorphisms in operable and non-operable lung cancer patients. Carcinogenesis 2000;21:49–54.

Spitz MR, Duhorner CM, Detry MA, et al. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Biomarkers Prev 2000;9:1017–20.

Cheng YW, Chen CY, Lin P, et al. DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Eur J Cancer 2000;36:1381–8.

Belogubova EV, Togo AV, Kondratiyeva TV, et al. GSTM1 genotypes in elderly tumour-free smokers and non-smokers. Lung Cancer 2000;29:189–95.

Lan Q, He X, Costa DJ, et al. Indoor coal combustion emissions, GSTM1 and GSTT1 genotypes, and lung cancer risk: a case-control study in Xuan Wei, China. Cancer Epidemiol Biomarkers Prev 2000;9:605–8.

Liu G, Miller DP, Zhou W, et al. Differential association of the codon 72 p53 and GSTM1 polymorphisms on histological subtype of non-small cell lung carcinoma. Cancer Res 2001;61:8718–22.

Risch A, Wikman H, Thiel S, et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics 2001;11:757–64.

Quíones L, Lucas D, Godoy J, et al. CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms. The effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett 2001;174:35–44.

Zhao B, Seow A, Lee EJ, et al. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev 2001;10:1063–7.

Chen SQ, Xue KX, Xu L, et al. Polymorphisms of the CYP1A1 and GSTM1 genes in relation to individual susceptibility to lung carcinoma in Chinese population. Mutat Res 2001;458:41–7.

Hou SM, Fält S, Yang K, et al. Differential interactions between GSTM1 and NAT2 genotypes on aromatic DNA
and HPRT mutant frequency in lung cancer patients and population controls. Cancer Epidemiol Biomarkers Prev 2001;10:133–40.

[62] Benhamou S, Vohov A, Bouchardy C, et al. Role of NAD(P)H:quinone oxidoreductase polymorphism at codon 187 in susceptibility to lung, laryngeal and oral/pharyngeal cancers. Biomarkers 2001;6:440–47.

[63] Gsur A, Haidinger G, Hollaus P, et al. Genetic polymorphisms of CYP1A1 and GSTM1 and lung cancer risk. Anticancer Res 2001;21:2237–42.

[64] Hou SM, Fält S, Nyberg F. Glutathione S-transferase T1-null genotype interacts synergistically with heavy smoking on lung cancer risk. Environ Mol Mutagen 2001;38:83–6.

[65] Qian BY, Han HW, Gu F, et al. Case-Control Study Genetic Polymorphism in CYP1A1 and GSTM1 and Smoking and Susceptibility to Lung Cancer. Chin J Clin Oncol 2006;33:500–2.

[66] Liu Q, Liu J, Song B, et al. Relationship between susceptibility to lung cancer and genetic polymorphism in CYP1A1 and GSTM1. Shandong Medical Journal 2008;48:32–4.

[67] Perera FP, Mooney LA, Stampler M, et al. Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study. Carcinogenesis 2002;23:1641–6.

[68] Stüberk I, Hirvonen A, DeWaziers I, et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis 2002;23:1475–81.

[69] Lewis SJ, Cherry NM, Niven RM, et al. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk. Cancer Lett 2002;180:165–71.

[70] Sunaga N, Kohno T, Yanagatani N, et al. Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11:730–8.

[71] Miller DP, Liu G, De Vivo I, et al. Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11:730–8.

[72] Lu W, Xing D, Qi J, et al. Genetic polymorphism in myeloperoxidase but not GSTM1 is associated with risk of lung squamous cell carcinoma in a Chinese population. Int J Cancer 2002;102:275–9.

[73] Reszka E, Wawowicz W, Rydzynski K, et al. Glutathione S-transferase M1 and P1 metabolic polymorphism and lung cancer predisposition. Neoplasma 2003;50:357–62.

[74] Cajus-Salazar N, Sierra-Torres CH, Salama SA, et al. Combined effect of MPO, GSTM1 and GSTT1 polymorphisms on chromosome aberrations and lung cancer risk. Int J Hyg Environ Health 2003;206:473–83.

[75] Wang J, Deng Y, Chong J, et al. GST genetic polymorphisms and lung adenocarcinoma susceptibility in a Chinese population. Cancer Lett 2002;180:185–93.

[76] Pinarbası H, Silig Y, Cetinkaya O, et al. Strong association between the GSTM1-null genotype and lung cancer in a Turkish population. Cancer Genet Cyogenet 2003;146:125–9.

[77] Dalyla NA, Miyakis S, Georgatou N, et al. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol Rep 2003;10:1829–35.

[78] Tsai YY, McGlynn KA, Hu Y, et al. Genetic susceptibility and dietary patterns in lung cancer. Lung Cancer 2003;41:269–81.

[79] Kiyohara C, Wakai K, Mikami H, et al. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of environmental tobacco smoke and lung cancer: a case-control study in Japanese nonsmoking women. Int J Cancer 2003;107:139–44.

[80] Wang J, Deng Y, Li L, et al. Association of GSTM1, CYP1A1 and CYP2E1 genetic polymorphisms with susceptibility to lung adenocarcinoma: a case-control study in Chinese population. Cancer Sci 2003;94:448–52.

[81] Nazarczewski V, Vaughan TL, Stapleton P, et al. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer 2003;40:247–58.

[82] Hung RJ, Boiffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis 2003;24:875–82.

[83] Taioli E, Gaspari L, Benhamou S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and GSTP1 genes and lung cancer below the age of 45 years. Int J Epidemiol 2003;32:60–3.

[84] Lin P, Hsu, YM, Ko JL, et al. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer 2003;40:123–9.

[85] Wang Y, Spititz MR, Schabath MB, et al. Association between glutathione S-transferase p1 polymorphisms and lung cancer risk in Caucasians: a case-control study. Lung Cancer 2003;40:25–32.

[86] Miller DP, De Vivo I, Neuberg D, et al. Association between self-reported environmental tobacco smoke exposure and lung cancer: modification by GSTP1 polymorphism. Int J Cancer 2003;104:758–63.

[87] Oztürk O, Isbir T, Yuylim I, et al. GST M1 and CYP1A1 gene polymorphism and daily fruit consumption in Turkish patients with non-small cell lung carcinomas. In Vivo 2003;17:625–32.

[88] Ruano-Ravina A, Figueras A, Loidi L, et al. GSTM1 and GSTT1 polymorphisms, tobacco and risk of lung cancer: a case-control study from Galicia, Spain. Anticancer Res 2003;23:4333–7.

[89] Miller DP, Neuberg D, de Vivo I, et al. Smoking and the risk of lung cancer: susceptibility with GSTP1 polymorphisms. Epidemiology 2003;14:545–51.

[90] Wang JJ, Giovannucci EL, Hunter D, et al. Dietary intake of Cruciferous vegetables, Glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 2004;15:977–985.

[91] Vincis P, Veglia F, Antilla S, et al. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers 2004;9:298–305.

[92] Sotiriou C, Sharma S, Joshi A, et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north indian population. Mol Cell Biochem 2004;266:1–9.

[93] Habalouv V, Sallow J, Kalina I, et al. Combined analysis of polymorphisms in glutathione S-transferase M1 and microsomal epoxide hydroxylase in lung cancer patients. Neoplasma 2004;51:352–7.
genetic polymorphisms of GSTs in Slovak population. Neoplasma 2012;59:160–7.

[157] Ada AO, Kunak SC, Hancer F, et al. Association between GSTM1, GSTT1, and GSTP1 polymorphisms and lung cancer risk in a Turkish population. Mol Biol Rep 2012;39(5):5985–93.

[158] Li W, Yue W, Zhang L, et al. Polymorphisms in GSTM1, CYP1A1, CYP2E1, and CYP2D6 are associated with susceptibility and chemotherapy response in non-small-cell lung cancer patients. Lung 2012;190:91–8.

[159] López-Cima MF, Alvarez-Avellón SM, Pascual T, et al. Genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and GSTT1 metabolic genes and risk of lung cancer in Asturias. BMC Cancer 2012;12:433.

[160] Liu D, Wang F, Wang Q, et al. Association of glutathione S-transferase M1 polymorphisms and lung cancer risk in a Chinese population. Clin Chim Acta 2012;414:188–90.

[161] Vural B, Yakar F, Derin D, et al. Evaluation of glutathione S-transferase P1 polymorphisms (Ile105Val and Ala114Val) in patients with small cell lung cancer. Genet Test Mol Biomarkers 2012;16:701–6.

[162] Pliarchopoulou K, Voutsinas G, Papaoxinis G, et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett 2012;3:1301–6.

[163] Shukla RK, Tilak AR, Kumar C, et al. Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev 2013;14:3345–9.

[164] Shukla RK, Kant S, Mittal B, et al. Comparative study of GST polymorphism in relation to age in COPD and lung cancer. Tuberk Toraks 2013;61:275–282.

[165] Pan C, Zhu G, Yan Z, et al. Glutathione-S-transferase (GSTM1, GSTT1) null phenotypes and risk of lung cancer in a Korean population. Asian Pac J Cancer Prev 2013;14:7165–9.

[166] Ihsan R, Chauhan PS, Mishra AK, et al. Copy number polymorphism of glutathione-S-transferase genes (GSTM1 & GSTT1) in susceptibility to lung cancer in a high-risk population from north-east India. Indian J Med Res 2014;139:720–9.

[167] Zhang H, Wu X, Xiao Y, et al. Genetic polymorphisms of glutathione S-transferase M1 and T1, and evaluation of oxidative stress in patients with non-small cell lung cancer. Eur J Med Res 2014;19:67.

[168] Bag A, Bag N, Jeena LM, et al. Glutathione S-transferase T1 and myeloperoxidase -463 G>A genotypes in lung cancer patients of karunakar region. J Nat Sci Biol Med 2014;5:293–6.

[169] Pan C, Zhu G, Yan Z, et al. Glutathione S-transferase T1 and M1 polymorphisms are associated with lung cancer risk in a gender-specific manner. Oncol Res Treat 2014;37:164–9.

[170] Jiang XY, Chang FH, Bai TY, et al. Susceptibility of Lung Cancer with Polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 Genotypes in the Population of Inner Mongolia Region. Asian Pac J Cancer Prev 2014;15:5207–14.

[171] Sharma N, Singh A, Singh N, et al. Genetic polymorphisms in GSTM1, GSTT1 and GSTP1 genes and risk of lung cancer in a North Indian population. Cancer Epidemiol 2015;39:947–55.

[172] Mota P, Silva HC, Soares MJ, et al. Genetic polymorphisms of phase I and phase II metabolic enzymes as modulators of lung cancer susceptibility. J Cancer Res Clin Oncol 2015;141:851–60.

[173] Wang Y, Ren BU, Zhang L, et al. Correlation between metabolic enzyme GSTP1 polymorphisms and susceptibility to lung cancer. Exp Ther Med 2015;10:1521–7.

[174] Peddreddy V, Badabagni SP, Gundimeda SD, et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res 2016;21:17.

[175] Masood N, Taseer B, Yasmin A, et al. Association of GSTM1 and GSTT1 deletion with lung cancer development in Pakistani population. J Cancer Res Ther 2016;12:731–4.

[176] Girdhar Y, Singh N, Behera D, et al. Combinations of the Variant Genotypes of CYP1A1, GSTM1 and GSTT1 are Associated with an Increased Lung Cancer Risk in North Indian Population: a Case-Control Study. Pathol Oncol Res 2016;22:647–52.

[177] Ada AO, Bilgen S, Karacaoaglan V, et al. Association between the TP53 and CYP2E1*5B gene polymorphisms and non-small cell lung cancer. Arh Hig Rada Toksikol 2016;67:311–6.

[178] Liu HX, Li J, Ye BG. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res 2016;15.

[179] Wang Z, Feng F, Zhou X, et al. Development of diagnostic model of lung cancer based on multiple tumor markers and data mining. Oncotarget 2017;8:94793–804.

[180] Chen H, Yu ZC, Jin YT, et al. Influence of genetic polymorphism of CYP1A1 gene and GSTM1 gene on lung cancer. J shandong Med 2008;48:20–2.

[181] Minina VI, Soboleva OA, Glushkov AN, et al. Polymorphisms of GSTM1, GSTT1, GSTP1 genes and chromosomal aberrations in lung cancer patients. J Cancer Res Clin Oncol 2017;143:2235–43.

[182] He Q, Wang L, Zhang J, et al. CYP2E1 and GSTM1 gene polymorphisms, environmental factors, and the susceptibility to lung cancer. J Clin Lab Anal 2018;32:22403.

[183] Lv XL, Chang FH, Yin Q, et al. Associations of genetic polymorphisms of GSTP1 and CYP1A1 with susceptibility to lung cancer. Chin J public Health 2013;29:169–72.

[184] Wang OM, Lu QF, Zhen HN, et al. Relationship between CYP2C9 and GSTM1 genetic polymorphism and lung cancer susceptibility. Canc Res Prev Treat 2006;33:8–10.

[185] Gao JR, Ren CL, Zhang Q. CYP2D6 and GSTM1 genetic polymorphism and lung cancer susceptibility. Chinese Journal of Oncology 1998;20:185–6.

[186] Shi Y, Zhou XW, Zhou YK, et al. Analysis of CYP2E1, GSTM1 genetic polymorphisms in relation to human lung cancer and esophageal carcinoma. J Huazhong Univ Sci Tech [Health Sci] 2002;1:14–7.

[187] Ma DY, Du GB, Tan BX, et al. Study on genetic polymorphism of GSTM1 and GSTT1 related with susceptibility to lung cancer in the population of northern Sichuan of China. Journal of Cancer Control and Treatment 2013;26:136–9.
Wang N, Wu YM, Wu YJ, et al. Study on GSTM1 and GSTT1 gene deletion with lung cancer genetic susceptibility. Journal of Hygiene Research 2004;33:586–8.

Yao W, Wang N, Wu YJ, et al. Relationship between deletion of GSTM1, GSTT1 genes and susceptibility to lung cancer. Chin J Public Health 2006;22:1070–2.

Gao JR, Zhang Q. Study on the relationship between GSTM1 polymorphism and lung cancer susceptibility. Carcinogenesis Teratogenesis and Mutagenesis 1998;10:149–51.

Liu AS, Guo LH, Wen Y, et al. Study the correlation of GSTM1 and CYP2E1 gene polymorphism and genetic susceptibility to non-small cell lung cancer in Shenzhen area. J Clin Transfus Lab Med 2017;19:260–4.

Li DR, Zhou QH, Yuan TZ, et al. Study on the association between genetic polymorphism of CYP2E1, GSTM1 and susceptibility of lung cancer. Chin J lung cancer 2005;8:14–9.

Zhang JK, Hu YL, Hu CF, et al. Study on genetic polymorphisms of GSTM1 and GSTT1 related with inherent susceptibility to lung cancer in women. China Public Health 2002;18:273–5.

Ye WY, Chen Q, Chen SD. Study on relationship between GSTM1 polymorphism, diet factors and lung cancer. Chin J Public Health 2004;20:1120–1.

Du GB, Ma DY, Tan BX, et al. Relationship between genetic polymorphism of GSTM1 gene and susceptibility to lung cancer in the population of northern Sichuan of China. Chinese Clinical Oncology 2011;16:602–5.

Lu QF, Chen Y, Bai M. Association between susceptibility of lung cancer and genetic polymorphism of GSTM1. Journal of Clinical Pulmonary Medicine 2008;13:1444–5.

Lu QG. Association between GSTM1 polymorphism and susceptibility of lung cancer. Capital Medicine 2013;6:25–7.

Lei FM, Li SF, Zhou WD, et al. A case-control study of the impact of glutathione S-transferase M1 polymorphism on the risk of lung cancer. Modern Preventive Medicine 2007;34:724–6.

Han RL, Bai TY, Chang FH, et al. GSTM1 gene polymorphism and lung cancer susceptibility in Man population. Central South Pharmacy 2012;10:1–3.

Yao ZG, Er Y, Wang HY. The impacted effects between Glutathione S-Transferase gene polymorphism and smoking in lung cancer. Chin J Med Guide 2012;14:185–8.

Qiao GB, Sun CS, Li LS, et al. A case-control study on relationship between absence of GSTM1 gene, smoking and susceptibility to non-small cell lung cancer. J Fourth Milmed Univ 2005;26:1008–10.

Chen M, Chen SD, Wang BG. A case-control study of GSTT1 polymorphism and susceptibility of lung cancer. Journal of Zhengzhou University (Medical Sciences) 2006;41:1061–3.

Cao YF, Chen HC. A case-control study of GSTP1 polymorphism and lung cancer susceptibility. Journal of Changzh Medical College 2005;19:86–9.

Tao J, Han ZQ, Ma L, et al. Relationship between GSTP1 genetic polymorphism and susceptibility of lung cancer in Xinjiang Uygurs and Hans. Journal of Practical Oncology 2014;29:542–6.

Yuan TZ, Zhou QH, Zhu W, et al. Relationship between genetic polymorphism of GSTT1 gene and inherent susceptibility to lung cancer in Han population in Sichuan, China. Chin J Lung Cancers 2005;8:107–11.

Liu JN, Zhou CZ, Po HM, et al. Relationship between GSTT1 genetic polymorphism and smoking and lung cancer susceptibility. Basic & Clinical Medicine 2012;32:1194–7.

Bai TY, Chang FH, Wang MJ, et al. Relationship between CYP1A1 and GSTT1 polymorphisms and lung cancer susceptibility. Chin J Public Health 2011;27:723–5.

Wang YS, Jin YT, Xue SL, et al. Study on the methylation of P16 gene and genetic polymorphism of GSTM1 gene related with susceptibility to non-small cell lung cancer. Modern Preventive Medicine 2007;34:1207–9.

Wang J, Li SB. Relationship between XRCC1 and GSTM1 polymorphisms and lung cancer susceptibility. Chinese Journal of Gerontology 2016;36:6163–4.

Gu YF, Zhang SC, Lai BT, et al. Relationship between genetic polymorphism of metabolizing enzymes and lung cancer susceptibility. Chin J Lung Cancers 2004;7:112–7.

Qu YH, Shi YB, Zhong LJ, et al. The genotypes of cytochrome P450 1A1 and GSTM1 in non-smoking female lung cancer. Tumor 1998;18:80–2.

Li Y, Chen J, He X, et al. CYP1A1 and GSTM1 polymorphisms and susceptibility to lung cancer. Journal of Zhengzhou University (Medical Sciences) 2006;41:1061–4.

Luo CL, Chen Q, Cao WF, et al. Combined analysis of polymorphisms of GSTM1 and mutations of p53 gene in the patients with lung cancer. Chin J Clin Oncol 2004;31:1218–20, 24.

He DX, Chan Y. The relationship of GSTT1 polymorphism and Chromosome 15 Aberration in lung cancer patients. China Journal of Cancer Prevention and Treatment 2006;33:308–10.

Zhang TY, Wu YJ, Wang ZL, et al. Analysis of glutathione-s-transferase P1 polymorphism in patients with lung cancer. Journal of Zhengzhou University (Med Sci) 2006;41:448–51.

Luo CL, Chen Q, Cao WF. Analysis on genetic polymorphisms of GSTM1 in lung cancer patients and their first-degree relatives. Chin J Public Health 2005;21:786–7.

Zeng M, Chen SD, Xie CM, et al. Case-control study on relationship between lung cancer and its susceptibility marker. Chin J Public Health. 2005;21:771–4.

Wang N, Zhou F, Wu YJ, et al. The relationship between genetic polymorphism of four metabolizing enzymes and susceptibility to lung cancer. Modern Preventive Medicine 2012;39:4545–7.

Qi XS, Lv HM, Xia Y, et al. A primary case-control study on the relationship between genetic polymorphism of GSTM1 and lung cancer susceptibility to the people living in high radon-exposed area. Radiation Protection 2009;29:90–5.

Qi XS, Lv HM, Xia Y, et al. A primary case-control study on the relationship between genetic polymorphism of GSTT1 and lung cancer susceptibility to the people living in high radon-exposed area. Chin Occuo Med 2008;35:361–3, 7.
[221] Zhang HY, Wu XW, Xiao Y, et al. Genetic polymorphisms of Glutathione S-transferase M1 and T1 and evaluation of oxidative stress in patients with non-small cell lung cancer. Journal of China Medical University 2014;43:432–6.

[222] Zhang JK, Hu YL, Hu CF, et al. Study on genetic polymorphisms of GSTM1 and GSTT1 related with inherent susceptibility to lung cancer. Chinese Journal of Pathophysiology 2002;18:352–5.

[223] Li Y, Tang XY, Ma XT, et al. Glutathione S-transferase M1 polymorphisms and susceptibility to lung cancer. Journal of Medical Forum 2005;26:10–2.

[224] Xian XZ, Chen SD, Wang BG. The relationship between polymorphism of GSTM1 and susceptibility to lung cancer. Practical Preventive Medicine 2003;10:635–6.

[225] Lan Q, He XZ, Debra C, et al. Glutathione S-transferase GSTM1 and GSTT1 genotypes and susceptibility to lung cancer. Journal of Hygiene Research 1999:28:9–11.

[226] Zhang JQ, Long XY, Xiong GS, et al. The relationship between Glutathione S-transferase M1 and susceptibility to Xuanwei’s lung cancer. Journal of Kunming Medical University 2011;6:56–8.

[227] Huang XH, Chen SD, Wang BG, et al. Study on the impact of GSTM1 polymorphism on the risk of histologic types of lung cancer: a case-control study. J of Pub Health and Prev Med 2004;15:24–6.

[228] Fan J, Gan LG, Liang XM. Relationship of GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in GuangXi Zhuang population. Journal of Oncology 2010;16:922–5.

[229] Wang DQ, Chen SD, Wang BC, et al. A case-control study on relationship between lung cancer and genetic polymorphisms of CYP1A1, CYP2E1, and GSTM1 in Han nationality, in Guangzhou area. China Cancer 2006;15:579–82.

[230] Wang MJ, Chang FH, Yin Q, et al. Relationship of GSTM1 polymorphism and lung cancer susceptibility in Mongolian population. Chin J Public Health 2009;25:1447–9.

[231] Ai C. The effect of GSTM1 gene polymorphism on lung cancer risk. Contemporary Medicine. 2011;17:50.

[232] Chen LJ, Sun HL, Xu YQ. Study on the allele frequency of GSTM1 gene in normal Han population in Wannan area and the relationship between GSTM1 genotype and the risk of lung cancer. Acta Academiae Medicinae Wannan 2003;22:13–6.

[233] Li Y, Chen J, Gao YX. Influence of smoking and the polymorphisms of CYP1A1 and GSTM1 on the susceptibility of lung cancer. Journal of Chinese Practical Diagnosis and Therapy 2011;25:140–3.

[234] Song B, Liu J, Huang HY, et al. Effects of metabolic enzyme CYP1A1 and GSTM1 gene polymorphisms and smoking factors on the occurrence of male lung squamous cell carcinoma. Basic & Clinical Medicine 2010;30:1193–6.

[235] Chen SD, Zhen M, Li ZB, et al. A case-control study on the impact of CYP2E1 and GSTM1 polymorphisms on the risk of lung cancer. Tumor 2004;24:99–103.

[236] Chen SD, Liang XM. Genetic polymorphisms of CYP1A1 2D6 and GSTM1 related with susceptibility to lung cancer. Tumor 1998;18:269–71.

[237] Ye WY, Chen SD, Chen Q. Interaction between serum selenium level and polymorphism of GSTM1 in lung cancer. Acta Nutrimenta Sinica 2005;27:17–20.

[238] Zheng DJ, Feng H, Mei CR, et al. Association between GSTM1 genetic polymorphism and lung cancer risk by SYBR green I real-time PCR assay. Chin J Lung Cancer 2010;13:506–10.

[239] Chen SQ, Xu L, Ma GJ, et al. Identification of genetic polymorphism of CYP1A1 and GSTM1 in lung cancer patients by using allele-specific PCR and multiplex differential PCR. Carcinogenesis Teratogenesis and Mutagenesis 1999;11:119–21.

[240] Chen Y, Wang X, Wang XY, et al. A study of genetic polymorphism of GSTM1 gene in normal population and lung cancer population in Yunnan. Journal of Yunnan Normal University 2002;22:52–4.

[241] Xue KK, Xu L, Chen SQ, et al. Polymorphisms of the CYP1A1 and GSTM1 genes and their combined effects on individual susceptibility to lung cancer in a Chinese population. Chin J Med Genet 2001;18:125–7.

[242] Liang YG, Guo L, Liu Q, et al. Correlational research of the relationship between the genetic polymorphism of GSTM1 and GSTT1 in the Zhuang population and lung cancer. Acta Medicine Sinica 2012;25:813–7.

[243] Liang KY, Yu LP, Yin LH. Studies of the genes related to lung cancer susceptibility in Nanjing Han population, China. Yi Chuan 2004;26:584–8.

[244] Chen CM, et al. Effects of CYP1A1 and GSTM1 gene polymorphisms and BPDE-DNA adducts on lung cancer. Chin J of Med Genet 2012;29:23–7.

[245] Jia HS. Relationship between the genetic polymorphism of GSTT1 gene, smoking and different histological lung cancer susceptibility [D]. Yanbian University 2010;p1–30.

[246] Xia Y, et al. Polymorphisms of the cytochrome P450 and glutathiones-transferase genes associated with lung cancer susceptibility for the residents in high radon-exposed area. Chinese Journal of Pathophysiology 2009;34:63–6.

[247] Harris MJ, Coggan M, Langton L et al. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics 1998;8:27–31.

[248] Nie LH, Wang SY, Hu YL. Genetic polymorphism of glutathione S-transferase PI gene and susceptibility to lung cancer. Chinese Public Health 2002;18:791–2.

[249] Yue Z, Xu Q, Xu Y et al. GSTP1 gene polymorphism and susceptibility as well as chemotherapy sensitivity to non-small cell lung cancer. Chin J Cancer Prev Treat 2009;16:1441–4.

[250] Zhu XX, Hu CP, Gu QH. CYP1A1 polymorphisms, lack of glutathione S-transferase M1 (GSTM1), cooking oil fumes and lung cancer risk in non-smoking women. Zhonghua Jie He Hu Xi Za Zhi 2010;33:817–22.

[251] Cao YF, Chen HC, Liu XF, et al. Study on the relationship between the genetic polymorphisms of GSTM1 and GSTT1 genes and lung cancer susceptibility in the population of Hunan province of China. Life Sci Res
Zhang JK. Genetic polymorphisms of Glutathione S-transferase M1 and T1 gene related with the susceptibility to lung cancer [D]. Jinan University 2002;p1–79.

Zheng DJ. A case-control study on the relationship between CYP1A1、NAT2、GSTM1 polymorphisms and lung cancer susceptibility [D]. Tianjin Med Univ 2010;p1–44.

Chen CM. Metabolic enzymes gene polymorphisms and BPDE-DNA adducts with lung tumorigenesis [D]. Zhejiang University 2012;p1–49.

Bai TY. The study on the polymorphisms of GSTM1, GSTM3, GSTT1, GSTP1 genes and susceptibility to lung cancer in Mongolian population. Inner Mongolia Medical College 2011;p1–44.

Du GB. A study of relationship between genetic polymorphism of GSTM1 and GSTT1 gene and susceptibility to lung cancer in the population of northern Sichuan of China [D]. North Sichuan Medical College 2011;p1–53.

Zhu XX. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in non-smoking women [D]. Central South University 2010;p1–48.
Supplemental Table 1 General characteristics of studies included in pooling gene effects

First author/Year	Country	Race	Sample size	SC	Source of control	Type of control	Matching	Material	
Seidegard[20] 1986	USA	Mixed	66/78	HB	HB	Cancer-free patients	ND	Periph	
Seidegard[20] 1990	USA	Mixed	125/114	HB	HB	Cancer-free patients	ND	Periph	
Zhong[2] 1991	UK	Mixed	228/225	ND	HB and volunteers	Cancer-free patients	ND	Periph	
Heckbert[23] 1992	USA	Caucasian	66/120	CR	PB	Healthy populations	Age and sex	Blood	
Hirvonen[24] 1993	Finland	Mixed	138/178	HB	BD or volunteers	Cancer-free controls	ND	Periph	
Brockmoller[25] 1993	Germany	Caucasian	117/355	HB	HB	Cancer-free patients	ND	Blood	
Nakach[26] 1993	Japan	Asian	85/170	HB	PB	Cancer-free patients	Age and sex	Periph	
Nazar-Stewart[27] 1993	USA	Mixed	35/43	HB	HB	Cancer-free patients	ND	Lung c	
Katoh[28] 1994	Japan	Asian	53/91	HB	Volunteers	Healthy controls	ND	Periph	
London[29] 1995	USA	Caucasian	184/465	PB	PB	Cancer-free controls	Age	Periph	
London[30] 1995	USA	African	158/251	PB	PB	Cancer-free controls	Age	Periph	
Nakajima[31] 1995	Finland	Caucasian	27/11	HB	HB	Cancer-free patients	ND	Blood	
Khara[32] 1995	Japan	Asian	447/469	PB	PB	Healthy controls	Age and sex	Periph	
Katoh[33] 1995	Japan	Asian	33/88	HB	Volunteers	Healthy controls	ND	Periph	
Kawajiri[34] 1995	Japan	Asian	327/358	PB	PB	Healthy populations	Age and sex	Periph	
Cheng TF[35] 1995	USA	Mixed	78/78	HB	HB	ND	ND	Periph	
Moreira[36] 1996	Portugal	Caucasian	94/84	BD	BD	Healthy controls	ND	Periph	
Ge[37] 1996	China	Asian	89/53	HB	HB	Cancer-free controls	ND	Norma	
Deakin[38] 1996	UK	Caucasian	106/705	HB	HB	Cancer-free patients	ND	Periph	
el-Zein[39] 1997	USA	Mixed	54/50	PB	Volunteers	Healthy controls	Age and sex	Periph	
Harrison[40] 1997	UK	Caucasian	168/384	ND	BD	Healthy controls	ND	Norma	
Kelsey[41] 1997	USA	Mixed	60/146	HB	Volunteers	Healthy controls	Age	Periph	
Kelsey[42] 1997	USA	African	108/132	HB	Volunteers	Healthy controls	Age	Periph	
Garcia-Closas[43] 1997	USA	Mixed	416/446	HB	HB	ND	ND	Blood	
Ryberg[44] 1997	Norway	Caucasian	135/342	HB	Volunteers	Healthy controls	Sex	Norma	
Sun[45] 1997	China	Asian	207/364	HB	HB	Out-patients	ND	Blood	
Salagovic[46] 1998	Slovakia	Caucasian	117/248	PB	PB	Healthy controls	ND	Blood	
Hong[47] 1998	Korea	Asian	85/63	HB	HB	ND	ND	Blood	
Le Marchand[48] 1998	USA	Mixed	341/456	PB	PB	Cancer-free controls	Age and sex	Periph	
Nyberg[49] 1998	Sweden	Caucasian	185/164	HB	HB	Cancer-free controls	Age and sex	Blood	
Saarikoski[50] 1998	Finland	Caucasian	208/294	BD	BD	Healthy populations	ND	Periph	
Jourenkova-Mironova[51] 1998	France	Caucasian	150/172	HB	HB	Cancer-free patients	ND	Periph	
Gao JB[52] 1998	China	Asian	46/70	HB	HB	ND	ND	Periph	
Qe YH[53] 1998	China	Asian	182/179	ND	ND	ND	Age and sex	Periph	
Hu YL[54] 1998	China	Asian	59/59	HB	HB	Cancer-free patients	ND	Periph	
Harris MF[55] 1998	Australia	Mixed	184/199	HB	HB	ND	ND	Blood	
Tang DL[56] 1998	China	Asian	136/115	HB	HB	Cancer-free patients	ND	Periph	
Gao Y[57] 1999	China	Asian	59/132	HB	HB	Cancer-free controls	Age and sex	Periph	
To-Figuera[58] 1999	Spain	Caucasian	164/332	HB	Volunteers	Healthy controls	ND	Periph	
Persson[59] 1999	China	Asian	76/122	ND	ND	Healthy controls	ND	Blood	
Katoh[60] 1999	Japan	Asian	47/122	HB	Volunteers	Healthy controls	ND	Periph	
Khara[61] 1999	Japan	Asian	382/257	HB	HB	Healthy controls	Sex	Periph	
Butkiewicz[62] 1999	Poland	Caucasian	165/325	PB	Volunteers	Healthy controls	ND	Lung n	
Woodson[63] 1999	Finland	Caucasian	319/333	PB	PB	ND	Age and sex	Periph	
Kiyohara[64] 2000	Japan	Asian	86/88	HB	Volunteers	Healthy controls	Sex	Periph	
Dreseler[65] 2000	USA	Mixed	180/163	HB	HB and Community	Healthy controls	ND	The w1	
London[66] 2000	China	Asian	232/114	PB	PB	Cancer-free controls	Age and sex	Periph	
Foed[67] 2000	USA	African	117/120	HB	CR	Cancer-free patients	ND	Periph	
Malats[68] 2000	Multiple	Caucasian	122/121	HB	HB	Healthy controls	ND	The w1	
Hou[69] 2000	Norway	Caucasian	282/375	HB	Volunteers	Healthy controls	Sex	Norma	
Spitz[70] 2000	USA	Caucasian	503/465	HB	HB	ND	Age and sex	Blood	
Cheng YW[71] 2000	China	Asian	73/33	HB	HB	Cancer-free controls	ND	Norma	
Lan[72] 2000	China	Asian	122/122	HB	PB	ND	Age and sex	Buccal	
Liu[73] 2001	USA	Mixed	1,168/1,256	HB	HB	ND	ND	Periph	
Risch[74] 2001	Germany	Caucasian	389/353	HB	HB	Cancer-free patients	ND	Venous	
Quiñones[75] 2001	Chile	Mixed	61/122	HB	ND	Healthy controls	ND	Periph	
Zhao[76] 2001	Singapore	Asian	233/187	HB	HB	Cancer-free patients	Age	Periph	
Chen SQ[77] 2001	China	Asian	106/106	HB	PB	Healthy controls	Age and sex	Whole	
Hou[78] 2001	Sweden	Caucasian	185/164	HB	PB	Healthy controls	Age and sex	Blood	
Gujar[79] 2001	Austria	Caucasian	134/134	HB	HB	Cancer-free patients	Age	Blood	
Study	Country	Ethnicity	Sex	Age	Tissues	Controls	Additional Details		
-------	---------	-----------	-----	-----	---------	----------	-------------------		
Hor et al. [58] 2001	Sweden	Caucasian	184/162	HB	PB	Healthy controls	Age and sex Blood		
Perera et al. [57] 2002	USA	Caucasian	89/173	PB	PB	Cancer-free controls	Age and sex Blood		
Stucke et al. [56] 2002	France	Caucasian	251/268	HB	HB	Cancer-free controls	Age and sex Blood		
Lewis [55] 2002	UK	Caucasian	94/165	HB	HB	Cancer-free patients	ND Blood		
Sunagawa [50] 2002	Japan	Asian	198/152	HB	HB	Cancer-free patients	ND Whole		
Miller et al. [51] 2002	USA	Caucasian	767/927	HB	HB	Cancer-free controls	ND Blood		
Liu [52] 2002	China	Asian	314/320	HB	PB	Healthy controls	Age and sex Periph		
Zhang L et al. [123] 2002	China	Asian	65/60	HB	HB	Cancer-free patients	ND Periph		
Shi Y [106] 2002	China	Asian	120/120	HB	HB	Cancer-free patients	ND Whole		
Chan Y [284] 2002	China	Asian	56/99	HB	Volunteers	Healthy controls	ND Periph		
Nie LH [285] 2002	China	Asian	158/168	HB	HB	Healthy controls	Age and sex Periph		
Sgambato [264] 2002	Italy	Caucasian	13/100	HB	HB	Healthy controls	ND Periph		
Zhang JK [286] 2002	China	Asian	161/165	HB	Volunteers	Healthy controls	Age and sex Periph		
Cajas-Salazar [4] 2003	USA	Caucasian	110/119	HB	HB	Cancer-free patients	Age and sex Periph		
Wang [47] 2003	China	Asian	112/119	HB	HB	Cancer-free controls	Age and sex Periph		
Pinarbas [287] 2003	Turkey	Caucasian	101/206	HB	HB	Healthy controls	ND Blood		
Dialynas [277] 2003	Greece	Caucasian	122/178	HB	HB	Healthy controls	ND Whole		
Tsai [79] 2003	USA	Mixed	235/94	HB	HB	Healthy controls	ND Whole		
Kiyohara [80] 2003	Japan	Asian	158/259	HB	HB	Cancer-free patients	Age and Sex Whole		
Wang [46] 2003	China	Asian	164/181	HB	HB	Cancer-free controls	Age and sex Periph		
Nazar-Stewart [81] 2003	USA	Mixed	274/500	PB	PB	ND	Age and sex Whole		
Hung [82] 2003	Multiple	Caucasian	284/1,433	HB + PB	HB + PB	Cancer-free controls	ND Blood		
Taioli [83] 2003	Multiple	Caucasian	261/1,452	HB + PB	HB + PB	Cancer-free controls	ND Blood		
Lin [44] 2003	China	Asian	198/332	HB	HB	Cancer-free controls	ND Blood		
Wang Y [83] 2003	USA	Caucasian	362/419	HB	HB	Healthy controls	Age and Sex Whole		
Oztürk [84] 2003	Turkey	Caucasian	55/60	HB	HB	Healthy controls	Age Blood		
Ruano-Ravina [85] 2003	Spain	Caucasian	132/187	HB	HB	Cancer-free patients	ND Blood		
Chen L [53] 2003	China	Asian	38/99	HB	ND	Healthy controls	ND Periph		
Wang S [288] 2003	China	Asian	97/71	HB	HB	Cancer-free patients	ND Blood		
Wang L [2] 2004	USA	Caucasian	716/939	HB	HB	ND	ND Periph		
Vines [91] 2004	Multiple	Caucasian	1,967/2,719	HB + PB	HB + PB	Cancer-free controls	ND Blood		
Sobol [289] 2004	India	Indian	100/76	HB	PB	Healthy controls	ND Periph		
Habalova [290] 2004	Slovak	Caucasian	121/150	HB	HB	Healthy controls	ND Periph		
Yang XR [291] 2004	China	Asian	186/139	PB	PB	ND	Age and sex Whole		
Chan-Young [40] 2004	China	Asian	229/197	HB	PB	Healthy controls	ND Venous		
Yang P [97] 2004	USA	Mixed	237/234	HB	PB	Cancer-free controls	ND Blood		
Alexandri [289] 2004	Sweden	Caucasian	524/530	HB	HB and volunteers	Cancer-free controls	ND Blood		
Belogoubova [90] 2004	Russia	Caucasian	167/663	ND	HB	Cancer-free controls	ND Periph		
Schneider [100] 2004	Germany	Caucasian	446/622	HB	HB	Cancer-free controls	ND Whole		
Gallegos [92] 2003-2004	Mexico	Mixed	52/178	HB	ND	Healthy controls	ND Periph		
Dong CT [109] 2004	China	Asian	82/91	HB	HB	Cancer-free patients	ND Periph		
Wang N [108] 2004	China	Asian	77/107	HB	HB	Healthy controls	ND Periph		
Ye WY [104] 2004	China	Asian	58/62	HB	HB	Cancer-free patients	ND Venous		
Gu YF [105] 2004	China	Asian	180/224	HB	HB and volunteers	Cancer-free controls	ND Periph		
Liao CL [213] 2004	China	Asian	63/47	HB	HB	Cancer-free patients	ND Norma		
Huang XH [273] 2004	China	Asian	91/138	HB	HB	Cancer-free patients	Age and sex Venous		
Cao Y [202] 2004	China	Asian	104/205	HB	HB	ND	Age and sex Venous		
Li WY [29] 2004	China	Asian	217/200	HB	HB	Cancer-free patients	ND Venous		
Li Y [282] 2004	China	Asian	103/138	HB	Volunteers	Healthy controls	Age and sex Periph		
Sreeja [104] 2005	India	Indian	146/146	HB	HB	Healthy controls	ND Whole		
Chan EC [200] 2005	China	Asian	75/162	ND	HB	Cancer-free controls	Age and sex Norma		
Adonis [100] 2005	Chile	Mixed	57/103	HB	HB	Healthy controls	ND ND		
Raimondi [107] 2005	Multiple	Caucasian	531/1,981	HB + PB	HB + PB	Cancer-free controls	ND Blood		
Raimondi [107] 2005	Multiple	Asian	93/210	HB + PB	HB + PB	Cancer-free controls	ND Blood		
Skuladottir [105] 2005	Denmark	Caucasian	320/618	HB + PB	HB + PB	Healthy controls	Age and sex Periph		
Wenzlaff [205] 2005	USA	Caucasian	135/151	PB	PB	ND	Age and sex Blood,		
Wenzlaff [205] 2005	USA	African	31/30	PB	PB	ND	Age and sex Blood,		
Cote [109] 2005	USA	Caucasian	230/287	PB	PB	ND	Age and sex Blood,		
Cote [109] 2005	USA	African	90/119	PB	PB	ND	Age and sex Blood,		
Brennan [206] 2005	Multiple	Caucasian	2,141/2,168	HB + PB	HB + PB	ND	Age and sex Blood,		
Li DR [72] 2005	China	Asian	99/66	HB	HB	Cancer-free patients	ND Venous		
Qiao GB [200] 2005	China	Asian	213/199	HB	HB	Healthy controls	ND Periph		
Author	Year	Country	Ethnicity	Case Number	Control Number	Control Type	Disease Status	Age and Sex	Blood Type
------------	------	---------	-----------	-------------	----------------	--------------	----------------	-------------	------------
Hua F	2010	China	Asian	266/307	HB	Healthy controls	Age and sex	Periph	
Zheng DJ	2010	China	Asian	266/307	HB	Healthy controls	Age and sex	Periph	
Zhu XX	2010	China	Asian	160/166	HB	Cancer-free controls	Sex	Periph	
Tamaki	2011	Japan	Asian	192/203	HB	Cancer-free controls	Age and sex	Periph	
Kohno	2011	Japan	Asian	377/325	HB	Cancer-free controls	ND	Whole	
Young	2011	New Zealand	Caucasian	454/1,157	HB	Cancer-free controls	ND	Whole	
Singh	2011	India	Indian	200/200	HB	Healthy controls	Age and sex	Whole	
Zheng	2011	China	Asian	266/307	HB	Healthy controls	Age and sex	Periph	
Zhu	2011	China	Asian	160/166	HB	Cancer-free controls	Age and sex	Periph	
Tamaki	2011	Japan	Asian	192/203	HB	Cancer-free controls	Age and sex	Periph	
Kohno	2011	Japan	Asian	377/325	HB	Cancer-free controls	ND	Whole	
Young	2011	New Zealand	Caucasian	454/1,157	HB	Cancer-free controls	ND	Whole	
Singh	2011	India	Indian	200/200	HB	Healthy controls	Age and sex	Whole	
Zhikai	2012	Turkey	Caucasian	218/238	HB	Healthy controls	ND	Periph	
Dzian	2012	Slovak	Caucasian	230/290	HB + Volunteers	Cancer-free controls	ND	Periph	
Adi	2012	Turkey	Caucasian	213/231	HB	Cancer-free controls	ND	Whole	
Lopez-Cima	2012	Austria	Caucasian	789/789	HB	Cancer-free patients	Age and sex	Periph	
Liu D	2012	China	Asian	360/360	HB	Healthy controls	Age and sex	Whole	
Vural	2012	Turkey	Caucasian	89/108	HB	Cancer-free patients	ND	Whole	
Pliarchopoulou	2012	Greece	Caucasian	100/125	HB	Healthy controls	ND	Blood	
Wang N	2012	China	Asian	209/256	HB	Healthy controls	Age and sex	Venous	
Yao Z	2012	China	Asian	150/150	HB	Healthy controls	ND	Venous	
Liang K	2012	China	Asian	68/70	HB	Cancer-free patients	ND	Periph	
Chen CM	2012	China	Asian	200/200	HB	Cancer-free controls	ND	Periph	
Shukla	2013	India	Indian	218/238	HB	Healthy controls	ND	Periph	
Shukla	2013	India	Indian	218/204	HB	COPD	ND	Periph	
Piao	2013	Korea	Asian	3,933/1,699	HB	PB	ND	Periph	
Lu Q	2013	China	Asian	91/138	HB	ND	ND	Periph	
Zhang H	2014	China	Asian	110/100	HB	Volunteers	Healthy controls	ND	Blood
Bai	2014	India	Indian	26/33	HB	Volunteers	Healthy controls	ND	Periph
Pan	2014	China	Asian	623/623	HB	PB	Healthy controls	Age and sex	Periph
Jiang XY	2014	China	Asian	322/456	HB	PB	Healthy controls	Age and sex	Whole
Tao J	2014	China	Asian	160/160	HB	ND	ND	Periph	
Sharma	2015	India	Indian	270/270	HB	Cancer-free controls	Age and sex	Periph	
Mota	2015	Portugal	Caucasian	200/247	HB	Cancer-free controls	ND	Periph	
Peddireddy	2016	India	Indian	246/250	HB	Healthy controls	Age and sex	Whole	
Masood	2016	Pakistan	Indian	252/270	ND	Cancer-free controls	Age and sex	ND	
Girdhar	2016	India	Indian	320/320	HB	Cancer-free controls	Age and sex	Periph	
Liu J	2016	China	Asian	308/253	HB	Volunteers	Healthy controls	ND	Blood
Wang F	2016	China	Asian	150/150	HB	ND	ND	Venous	
Wang J	2017	China	Asian	200/200	HB	Healthy controls	ND	Periph	
Minina	2017	Russia	Caucasian	353/300	HB	Healthy controls	ND	Periph	
Liu AS	2017	China	Asian	71/71	HB	Cancer-free controls	ND	Venous	
He E	2018	China	Asian	313/330	PB	Healthy controls	Age and sex	Blood	

HB = hospital-based, PB = population-based, CR = cancer registry, ND = not described, BD = Blood donors
First author/Year	Source of case	Source of control	Ascertainment of cancer	Ascertainment of control	Matching examination	Genotyping examination	Specimens used for determining genotypes	
Seidegård [1] 1986	2	1	2	1	0	0	1	
Seidegård [2] 1990	2	1	2	1	0	0	1	
Zhong [3] 1991	0	1.5	0	0	0	0	1	
Heckbert [4] 1992	3	3	0	1	2	1	1	
Hirvonen [5] 1993	2	2	2	0	0	0	1	
Brokkmólle [7] 1993	2	1	2	2	0	1	1	
Nakachi [8] 1993	3	3	2	1	2	0	1	
Nazar-Stewart [9] 1993	2	1	2	0	0	0	1	
Katoh [10] 1994	2	2	2	2	0	0	1	
Alexandrie [11] 1994	2	2	2	1	0	0	1	
London [11] 1995	3	3	1	1	1	1	1	
London [11] 1995	3	3	1	1	0	0	1	
Nakajima [12] 1995	2	2	2	1	1	0	1	
Brockmöller [7] 1993	2	1	2	2	0	1	1	
Percal [13] 1995	2	3	2	1	2	0	1	
Nagai [14] 1995	2	3	2	1	2	0	1	
London [13] 1995	2	3	2	1	1	2	1	
London [13] 1995	2	3	1	1	2	0	1	
Nakajima [14] 1995	2	2	2	1	2	0	1	
Brockmöller [7] 1993	2	2	2	1	2	0	1	
Perka [21] 1995	2	1	2	1	2	0	1	
Moreira [22] 1996	2	1	2	1	0	0	1	
Ge [23] 1996	2	1	2	1	0	0	1	
Deakins [24] 1996	2	1	0	1	0	0	1	
el-Zein [25] 1997	2	2	1	1	1	0	1	
Harrison [26] 1997	0	0	1	1	0	0	1	
Kelsey [27] 1997	2	2	2	1	1	2	1	
Kelsey [27] 1997	2	2	2	1	1	2	1	
Garcia-Closas [28] 1997	2	1	2	1	0	0	1	
Ryberg [29] 1997	2	2	2	1	1	0	0	
Sun [30] 1997	2	1	2	2	1	0	1	
Salagovic [31] 1998	2	3	0	1	0	0	1	
Hong [32] 1998	2	1	2	1	0	0	1	
Le Marchand [33] 1998	3	3	2	2	1	1	1	
Nyberg [34] 1998	2	1	2	1	2	0	1	
Saarikoski [35] 1998	2	2	2	2	0	0	1	
Jourenkova-Mironova [36] 1998	2	1	2	1	0	0	1	
Gao JR [37] 1998	2	1	2	0	0	0	1	
Qu YH [38] 1998	0	0	0	1	2	0	1	
Hu YL [39] 1998	2	1	2	1	0	0	1	
Tang DL [40] 1998	2	1	2	1	0	0	1	
Gao [41] 1999	2	1	2	1	0	0	1	
To-Figueras [42] 1999	2	2	2	1	0	0	1	
Persson [43] 1999	0	0	1	1	0	0	1	
Kihara [44] 1999	2	1	2	2	1	0	1	
Butkiewicz [25] 1999	2	1	2	1	0	1	1	
Woodson [45] 1999	3	3	2	0	2	1	1	
Kiyohara [46] 2000	2	2	2	1	1	1	1	
Dresler [47] 2000	2	1	2	1	0	0	1	
London [48] 2000	3	3	2	1	1	0	1	
Ford [49] 2000	2	1	2	1	0	1	1	
Malat [50] 2000	2	1	2	1	0	1	1	
Hou [51] 2000	2	2	2	1	0	1	0	
Spitz [52] 2000	2	1	2	1	0	1	0	
Cheng [53] 2000	2	1	2	1	0	0	1	
Lan [54] 2000	2	3	1	0	2	1	1	
Liu [55] 2001	2	1	2	0	1	1	1	
Risch [56] 2001	2	1	2	1	0	0	1	
Quinones [57] 2001	2	0	2	1	0	0	1	
Zhao [58] 2001	2	1	2	1	1	1	1	
Chen [59] 2001	2	0	2	1	2	0	1	
Hou [60] 2001	2	3	0	1	2	0	1	
Gsur [61] 2001	2	1	2	1	0	1	1	
Hou [62] 2001	2	3	0	1	2	0	1	
Perera [63] 2002	3	3	2	1	2	1	1	
Sticker [64] 2002	2	1	2	1	0	1	1	
Lewis [65] 2002	2	1	2	1	0	0	1	
Sunaga [66] 2002	2	1	2	1	0	0	1	
Name	Year	2	1	2	1	0	1	1
--------------	------	----	----	----	-----	----	----	----
Miller	2002	2	1	2	1	0	1	1
Lu	2002	2	3	2	1	2	2	1
Zhang LZ	2002	2	1	2	1	0	0	1
Shi Y	2002	2	1	2	1	0	0	1
Chan Y	2002	2	2	0	1	0	0	1
Sgambato	2002	2	1	0	1	0	0	1
Zhang JK	2002	2	2	2	2	2	0	1
Cajas-Salazar	2003	2	1	2	1	2	1	1
Wang Z	2003	2	1	2	1	0	0	1
Pinarbash	2003	2	1	2	1	0	0	1
Dialyna	2003	2	1	2	1	0	0	1
Tsai	2003	2	1	1	1	0	0	1
Kiyohara	2003	2	1	2	1	2	0	1
Wang	2003	2	1	2	1	2	0	1
Nazar-Stewart	2003	3	3	2	1	2	1	1
Hung	2003	2	2	2	1	0	0	1
Taioli	2003	2	2	2	1	0	0	1
Oztürk	2003	2	1	2	1	1	1	1
Ruano-Ravina	2003	2	1	1	1	0	0	1
Chen LJ	2003	2	0	2	1	0	0	1
Wang S	2003	2	1	2	1	0	0	1
Wang	2004	2	1	2	0	0	0	1
Vines	2004	2	2	2	1	0	0	1
Sobti	2004	2	3	0	1	0	0	1
Habalová	2004	2	1	2	1	0	1	1
Yang	2004	3	3	2	3	2	0	1
Chan-Yeung	2004	2	3	2	1	0	0	1
Yang	2004	2	3	2	1	0	0	1
Alexandre	2004	2	2	2	1	0	0	1
Belogubova	2004	2	1	2	0	0	1	1
Schneider	2004	2	1	2	2	2	0	1
Gallegos-Arreola	2003-2004	2	0	2	1	0	0	1
Dong C	2004	2	1	2	1	0	0	1
Wang N	2004	2	1	2	1	0	0	1
Ye W	2004	2	1	2	1	0	0	1
Gu Y	2004	2	1	2	1	0	0	1
Luo CL	2004	2	1	2	1	0	0	1
Huang XH	2004	2	1	2	1	2	0	1
Cao Y	2004	2	1	2	1	2	0	1
Li W	2004	2	1	1	1	0	0	1
Li Y	2004	2	2	2	1	2	2	1
Sreeja	2005	2	1	2	1	0	1	1
Chan	2005	0	1	0	1	2	0	1
Adamson	2005	2	1	2	1	0	0	1
Raimondi	2005	2	2	2	1	0	0	1
Raimondi	2005	2	2	2	1	0	0	1
Skuladottir	2005	2	2	2	1	2	0	1
Wenzlaff	2005	3	3	2	2	0	2	1
Wenzlaff	2005	3	3	2	0	2	1	0
Cote	2005	3	3	2	0	2	1	0
Cote	2005	3	3	2	0	2	1	0
Brennan	2005	2	2	0	0	2	0	1
Li DR	2005	2	1	2	1	0	0	1
Qiao GB	2005	2	1	2	1	0	0	1
Yuan T	2005	2	1	2	1	0	0	1
Luo CL	2005	2	1	2	1	0	0	1
Barnholtz-Sloan	2005	3	3	1	0	2	0	1
Barnholtz-Sloan	2005	3	3	1	0	2	0	1
Chou YC	2005	3	3	2	2	0	0	1
Li DR	2005	2	1	2	1	0	0	1
Liang GY	2005	2	1	2	1	2	1	1
Lee	2006	2	1	2	2	1	1	1
Chen	2006	2	1	2	2	2	1	1
Pisan	2006	2	2	2	2	2	0	1
Larsen	2006	2	1	2	2	0	0	1
Qian	2006	2	0	2	1	1	0	0
Chang FH	2006	2	1	2	1	0	0	1
Wang QM	2006	2	1	2	1	0	0	1
Author(s)	Year	Issue1	Issue2	Issue3	Issue4	Issue5	Issue6	Issue7
-------------------	------	--------	--------	--------	--------	--------	--------	--------
He DX[174]	2006	2	2	0	1	0	0	1
Wang DQ[229]	2006	2	1	2	1	2	0	1
Reszka[119]	2007	2	1	2	1	2	1	1
Osawa[120]	2007	2	1	2	1	0	0	1
Yang[121]	2007	2	1	2	1	0	0	1
Sørensen[122]	2007	3	3	2	1	2	1	1
Li SF[230]	2007	2	1	0	1	2	0	1
Hu XG[234]	2007	2	1	2	2	2	0	1
Shah[125]	2008	2	0	2	1	0	1	1
Zienolddiny[130]	2008	2	3	2	1	2	0	1
Sreeja[131]	2008	2	1	2	2	0	0	1
Carpenter[132]	2009	2	3	2	1	2	0	1
Zupa[133]	2009	2	1	2	1	0	0	1
Lam[134]	2009	3	3	2	1	2	0	1
Cote[135]	2009	3	3	2	1	2	1	1
Kumar[136]	2009	2	0	0	1	0	0	1
Qi XS[230]	2009	2	1	2	1	0	0	1
Wang MJ[231]	2009	2	1	2	1	0	0	1
Chen H[232]	2009	2	1	2	1	0	0	1
Liu JN[233]	2009	2	1	2	1	0	0	1
Yadav[137]	2010	2	1	2	1	2	1	1
Jin[138]	2010	2	1	2	2	2	0	1
Gervasini[145]	2010	2	1	2	2	2	0	1
Timofeeva[146]	2010	2	3	0	2	2	1	1
Cabral[144]	2010	2	2	2	1	0	0	1
Cabral[144]	2010	2	2	2	1	0	0	1
Altinisik[145]	2010	0	0	2	1	0	0	1
Sreelekhrai[146]	2010	2	0	0	1	2	0	1
Song B[130]	2010	2	1	2	2	0	0	1
Zheng DX[237]	2010	2	1	2	1	2	1	1
Zhu X[238]	2010	2	1	2	1	1	1	1
Tamaki[148]	2011	2	1	2	1	2	0	1
Kohno[149]	2011	2	1	2	2	2	0	1
Young[150]	2011	2	1	2	2	2	0	1
Singh[151]	2010-2011	2	0	2	1	2	1	1
Ihsan[152]	2011	2	2	2	1	2	1	1
Atinkaya[153]	2012	2	1	2	2	0	0	1
Fowke[154]	2012	3	3	2	2	1	1	1
Bai TY[239]	2011	2	1	2	1	2	0	1
Zhang JQ[240]	2011	2	0	2	1	2	0	1
Ai[81]	2011	2	1	2	0	0	0	1
Zhou XL[271]	2011	2	1	2	1	0	2	1
Bai TY[289]	2011	2	1	2	1	0	0	1
Du GB[250]	2011	2	1	2	1	0	0	1
Kiyohara[155]	2012	2	1	2	2	0	2	1
Dziam[156]	2012	2	1	2	2	0	0	1
Ada[157]	2012	2	1	2	2	0	2	1
López-Cima[158]	2012	2	1	2	2	2	1	1
Liu[160]	2012	2	3	2	2	2	1	1
Pliarchopoulou[162]	2012	2	1	2	2	0	0	1
Wang[165]	2012	2	1	2	2	0	0	1
Yao ZG[200]	2012	2	1	2	1	0	0	1
Liang KC[242]	2012	2	1	2	1	0	0	1
Chen CM[243]	2012	2	1	2	1	0	0	1
Shukla[161]	2013	2	1	2	1	0	0	1
Shukla[164]	2013	2	1	2	1	0	0	1
Piao[165]	2013	2	3	2	1	0	0	1
Name	Year	Citation Count	CPT	NMT	VQA	ADE	CCQ	
-------------	------	----------------	-----	-----	-----	-----	-----	
Lu QG	2013	2	1	2	0	0	0	
Zhang	2014	2	2	2	1	0	0	
Bai	2014	2	2	0	1	0	1	
Pan	2014	2	3	2	2	0	1	
Jiang	2014	2	3	1	1	2	0	
Sharma	2015	2	1	1	2	2	2	
Mota	2015	2	1	2	2	0	1	
Peddireddy	2016	2	1	2	2	0	1	
Masood	2016	2	1	2	1	0	1	
Girdhar	2016	2	0	2	1	0	0	
Wang J	2017	2	2	0	1	0	0	
Wang J	2017	2	1	2	1	0	0	
Minima	2017	2	2	1	0	0	1	
Liu AS	2017	2	1	2	1	0	0	
He	2018	2	3	2	2	0	1	
Supplemental Table 3 Quality assessment by included studies of meta-analysis of GSTP1 Ile105Val polymorphism

First author/Year	Source of case	Source of control	Ascertainment of cancer	Ascertainment of control	Matching	Genotyping examination	Specimens used for determining geno	
Ryberg [28] 1997	2	2	2	1	1	0	0	
Saarikoski [36] 1998	2	2	2	1	0	0	1	
Jourenkova-Mironova [37] 1998	2	1	2	1	0	0	1	
Harris MJ [24] 1998	2	1	2	0	0	0	1	
To-Figuera [40] 1999	2	2	2	2	0	0	1	
Kato [42] 1999	2	1	2	1	1	0	1	
Kiikara [43] 1999	2	1	2	1	0	0	1	
Butkiewicz [259] 1999	2	1	2	1	0	0	1	
Kiyohara [44] 2000	2	2	2	1	0	0	1	
Risch [57] 2001	2	1	2	1	0	0	1	
Perera [67] 2002	3	3	2	1	2	1	1	
Sticker [68] 2002	2	1	2	1	2	0	1	
Lewis [69] 2002	2	1	2	1	0	0	1	
Nie LH [78] 2002	2	1	2	1	2	0	1	
Wang [73] 2003	2	1	2	1	0	0	1	
Tsai [81] 2003	2	1	1	1	0	0	1	
Nazar-Stewart [41] 2003	3	3	2	1	2	1	1	
Lin [84] 2003	2	1	2	1	0	0	1	
Wang [85] 2003	2	1	2	1	2	0	1	
Chan-Yeung [95] 2004	2	3	2	1	0	0	1	
Yang [97] 2004	2	3	2	1	0	0	1	
Schneider [100] 2004	2	1	2	2	0	0	1	
Chan [102] 2005	0	1	1	1	0	0	1	
Skudladdi [108] 2005	2	2	2	1	2	0	1	
Wenzlaff [109] 2005	3	3	2	0	2	1	0	
Wenzlaff [109] 2005	3	3	2	0	2	1	0	
Cote [106] 2005	3	3	2	0	2	1	0	
Cote [106] 2005	3	3	2	0	2	1	0	
Cao YF [205] 2005	2	1	2	1	2	0	1	
Guo ZL [278] 2005	2	1	2	1	0	0	1	
Liang Y [127] 2005	2	1	2	1	2	0	1	
Chen [114] 2006	2	1	2	1	2	1	1	
Larsen [117] 2006	2	1	2	2	0	0	1	
Miller [119] 2006	2	1	2	1	0	1	1	
Zhang TV [125] 2006	2	1	2	1	2	0	1	
Reszka [129] 2007	2	1	2	1	2	0	1	
Yang [129] 2007	2	1	2	1	0	0	1	
Sörensen [132] 2007	3	3	2	1	0	0	1	
Loft [124] 2007	3	3	2	1	2	1	1	
Sobri [127] 2008	2	1	2	2	0	0	1	
Homma [128] 2008	2	2	2	1	0	0	1	
Zienolddiny [130] 2008	2	3	2	1	2	0	1	
Yoon [131] 2008	2	1	2	1	2	0	1	
Sreeja [132] 2008	2	1	2	1	0	0	1	
Mataková [133] 2009	2	2	2	1	2	2	1	
Cote [138] 2009	3	3	2	1	2	1	1	
Cote [138] 2009	3	3	2	1	2	1	1	
Kumar [139] 2009	2	0	0	1	0	0	1	
Yue Z [250] 2009	2	1	2	0	2	0	1	
Yin Q [247] 2009	2	1	2	1	0	0	1	
Yadav [140] 2010	2	1	2	1	2	1	1	
Gervasi [142] 2010	2	1	2	2	2	0	1	
Timofeeva [143] 2010	2	3	0	2	2	1	1	
Lam [147] 2010	2	2	3	1	2	1	1	
Hua F [276] 2010	2	1	2	2	2	1	1	
Ihsan [152] 2011	2	2	2	1	2	1	1	
Bai TY [129] 2011	2	1	2	1	0	0	1	
Kiyohara [155] 2012	2	1	2	2	0	2	1	
Dziar [156] 2012	2	1	2	1	0	0	1	
Ada [137] 2012	2	1	2	2	0	2	1	
López-Cim [139] 2012	2	1	2	2	2	2	1	
Vural [143] 2012	2	1	2	2	0	0	1	
Pliarchopoulou [162] 2012	2	1	2	2	0	0	1	
Jiang [170] 2014	2	3	1	1	2	0	1	
Tao J [204] 2014	2	1	2	1	0	0	1	
Name	Year	Value1	Value2	Value3	Value4	Value5	Value6	Value7
----------	------	--------	--------	--------	--------	--------	--------	--------
Sharma	2015	2	1	2	2	2	2	1
Mota	2015	2	1	2	2	0	1	1
Liu	2016	2	2	2	1	0	0	1
Minina	2017	2	1	2	1	0	0	1
Supplemental Table 4 Genotype frequencies of the *GSTM1*, *GSTT1*, and *GSTP1* IIe105Val polymorphisms between lung cancer and control groups

First author/Year	Ethnicity	*GSTM1* genotype distribution	*GSTT1* genotype distribution	*GSTP1* IIe105Val genotype distribution																																																																																																		
		Case present	Control null	Case present	Control null	Case present	IIe	IIe																																																																																														
Seidegård[1] 1986	Mixed	23	43	46	32	NA	NA	NA																																																																																														
Seidegård[2] 1990	Mixed	47	78	66	48	NA	NA	NA																																																																																														
Zhong[3] 1991	Mixed	130	98	131	94	NA	NA	NA																																																																																														
Heckbert[4] 1992	Caucasian	24	42	50	70	NA	NA	NA																																																																																														
Hirvonen[6] 1993	Mixed	65	73	100	78	NA	NA	NA																																																																																														
Brockmölle[7] 1993	Caucasian	55	62	174	181	NA	NA	NA																																																																																														
Nakachi[8] 1993	Asian	33	52	86	84	NA	NA	NA																																																																																														
Nazar-Stewart[9] 1993	Mixed	9	26	23	20	NA	NA	NA																																																																																														
Katoh[10] 1994	Asian	26	27	53	38	NA	NA	NA																																																																																														
London[13] 1995	Caucasian	90	94	221	244	NA	NA	NA																																																																																														
London[13] 1995	African	114	44	183	68	NA	NA	NA																																																																																														
Nakajima[14] 1995	Caucasian	16	11	6	5	NA	NA	NA																																																																																														
Kiharal[15] 1995	Asian	197	250	241	228	NA	NA	NA																																																																																														
Katoh[17] 1995	Asian	18	15	53	35	NA	NA	NA																																																																																														
Kawajir[256] 1995	Asian	144	183	191	167	NA	NA	NA																																																																																														
Cheng TJ[257] 1995	Mixed	32	46	34	44	NA	NA	NA																																																																																														
Moreira[19] 1996	Caucasian	55	43	40	44	NA	NA	NA																																																																																														
Ge[20] 1996	Asian	30	59	18	35	NA	NA	NA																																																																																														
Deakin[21] 1996	Caucasian	56	50	319	386	91	17	526																																																																																														
el-Zein[22] 1997	Mixed	31	23	27	23	42	12	43																																																																																														
Harrison[25] 1997	Caucasian	67	101	179	205	NA	NA	NA																																																																																														
Kelsey[20] 1997	Mixed	27	33	87	59	50	10	129																																																																																														
Kelsey[29] 1997	African	84	24	102	81	27	103	29																																																																																														
Garcia-Closas[27] 1997	Mixed	190	226	214	232	NA	NA	NA																																																																																														
Ryberg[28] 1997	Caucasian	61	74	179	163	NA	NA	NA																																																																																														
Sun[30] 1997	Asian	60	147	178	186	NA	NA	NA																																																																																														
Salagovic[31] 1998	Caucasian	48	69	125	123	101	16	206																																																																																														
Hong[32] 1998	Asian	38	47	30	33	NA	NA	NA																																																																																														
Le Marchand[34] 1998	Mixed	100	135	182	268	NA	NA	NA																																																																																														
Nyberg[35] 1998	Caucasian	100	84	80	81	NA	NA	NA																																																																																														
Saarikoski[36] 1998	Caucasian	108	100	157	137	26	255	39																																																																																														
Jureenkova-Mironova[37] 1998	Caucasian	69	81	82	90	123	27	145																																																																																														
Gao JR[40] 1998	Asian	19	27	45	25	NA	NA	NA																																																																																														
Qu YF[41] 1998	Asian	80	102	85	94	NA	NA	NA																																																																																														
Hu YL[39] 1998	Asian	25	34	30	29	NA	NA	NA																																																																																														
Harris MJ[26] 1998	Mixed	NA	NA	NA	NA	NA	NA	79																																																																																														
Tang DL[288] 1998	Mixed	45	60	45	36	NA	NA	NA																																																																																														
Gao[39] 1999	Asian	25	34	65	67	NA	NA	NA																																																																																														
To-Figueras[40] 1999	Caucasian	68	96	167	165	123	41	261																																																																																														
Persson[41] 1999	Asian	27	48	40	79	NA	NA	NA																																																																																														
Katoh[42] 1999	Asian	NA	NA	NA	NA	NA	NA	34																																																																																														
Kihara[43] 1999	Asian	152	206	126	131	NA	NA	263																																																																																														
Butkiewicz[259] 1999	Caucasian	79	86	174	151	NA	NA	77																																																																																														
Woodson[26] 1999	Caucasian	159	160	171	162	NA	NA	NA																																																																																														
Kiyohara[44] 2000	Asian	33	53	39	49	39	47	39																																																																																														
Dresler[45] 2000	Mixed	66	103	66	98	NA	NA	NA																																																																																														
London[46] 2000	Asian	110	122	283	427	98	134	284																																																																																														
Ford[47] 2000	African	80	37	96	24	NA	NA	NA																																																																																														
Malats[48] 2000	Caucasian	56	66	68	53	90	32	77																																																																																														
Hou[51] 2000	Caucasian	132	150	194	181	NA	NA	NA																																																																																														
Last Name	Year	Ethnicity	Total RNA	cyRNA	CD4	cyCD4	CD8	cyCD8	CD4/CD8																																																																																													
----------	------	-----------	-----------	-------	------	-------	------	-------	---------																																																																																													
Spitz	2000	Caucasian	257	246	226	239	371	132	361																																																																																													
Cheng	2000	Asian	39	34	16	17	NA	NA	NA																																																																																													
Lan	2000	Asian	40	82	62	60	49	73	58																																																																																													
Liu	2001	Mixed	409	517	475	561	819	205	918																																																																																													
Risch	2001	Caucasian	183	200	161	185	334	49	281																																																																																													
Quíñones	2001	Mixed	33	25	133	41	NA	NA	NA																																																																																													
Zhao	2001	Asian	87	146	68	119	101	132	85																																																																																													
Chen	2001	Asian	48	58	67	39	NA	NA	NA																																																																																													
Hou	2001	Caucasian	93	77	70	74	NA	NA	NA																																																																																													
Gsur	2001	Caucasian	70	64	68	66	NA	NA	NA																																																																																													
Hou	2001	Caucasian	NA	NA	NA	NA	167	17	143																																																																																													
Perera	2002	Caucasian	39	47	91	69	NA	NA	NA																																																																																													
Stücker	2002	Caucasian	118	129	136	118	213	38	216																																																																																													
Lewis	2002	Caucasian	56	31	68	75	68	19	115																																																																																													
Sunaga	2002	Asian	105	93	96	56	99	93	59																																																																																													
Miller	2002	Caucasian	344	423	423	504	NA	NA	NA																																																																																													
Lu	2002	Asian	159	155	159	161	NA	NA	NA																																																																																													
Zhang	2002	Asian	24	41	33	27	NA	NA	NA																																																																																													
Shi Y	2002	Asian	46	74	67	53	NA	NA	NA																																																																																													
Chan Y	2002	Asian	13	43	34	65	NA	NA	NA																																																																																													
Nie LH	2002	Asian	NA	NA	NA	NA	NA	NA	89																																																																																													
Sgambato	2002	Caucasian	8	5	47	53	NA	NA	NA																																																																																													
Zhang JK	2002	Asian	67	94	73	92	87	74	93																																																																																													
Cajas-Salazar	2003	Caucasian	62	48	80	39	79	31	95																																																																																													
Wang	2003	Asian	NA	NA	NA	NA	NA	59	53																																																																																													
Pinarbas	2003	Caucasian	53	48	169	37	NA	NA	NA																																																																																													
Dialyana	2003	Caucasian	59	63	82	96	101	11	158																																																																																													
Tsai	2003	Mixed	98	137	46	48	196	36	74																																																																																													
Kiyohara	2003	Asian	64	4	124	135	NA	NA	NA																																																																																													
Wang	2003	Asian	67	97	91	90	NA	NA	NA																																																																																													
Nazar-Stewart	2003	Mixed	131	143	255	246	222	52	410																																																																																													
Hung	2003	Caucasian	132	152	706	727	NA	NA	NA																																																																																													
Taioli	2003	Caucasian	111	125	643	639	107	37	698																																																																																													
Liu	2003	Asian	NA	NA	NA	NA	NA	124	74																																																																																													
Wang	2003	Caucasian	NA	NA	NA	NA	NA	149	74																																																																																													
Oztürk	2003	Caucasian	29	26	33	32	NA	NA	NA																																																																																													
Ruano-Ravina	2003	Caucasian	60	72	100	87	105	27	141																																																																																													
Chen	2003	Asian	14	24	42	57	NA	NA	NA																																																																																													
Wang S	2003	Asian	35	61	38	33	NA	NA	NA																																																																																													
Wang	2004	Caucasian	312	404	423	516	573	138	750																																																																																													
Vinei	2004	Caucasian	915	1,052	1,304	1,415	1,602	365	2,177																																																																																													
Sobi	2004	Indian	62	38	52	24	82	18	65																																																																																													
Habalova	2004	Caucasian	53	68	69	81	NA	NA	NA																																																																																													
Yang	2004	Asian	78	108	64	75	NA	NA	NA																																																																																													
Yang	2004	Asian	99	130	80	117	86	143	95																																																																																													
Alexandre	2004	Caucasian	237	287	240	290	456	68	456																																																																																													
Belogubova	2004	Caucasian	76	91	333	330	137	30	538																																																																																													
Schneider	2004	Caucasian	212	234	328	294	371	75	507																																																																																													
Gallegos-Arreola	2003-2004	Mixed	NA	NA	NA	41	11	169	9																																																																																													
Dong	2004	Asian	34	48	55	36	NA	NA	NA																																																																																													
Wang	2004	Asian	32	45	62	45	33	44	53																																																																																													
Ye Y	2004	Asian	23	35	37	25	NA	NA	NA																																																																																													
Gu Y	2004	Asian	79	101	122	102	NA	NA	NA																																																																																													
Luo CL	2004	Asian	18	45	23	24	NA	NA	NA																																																																																													
Huang	2004	Asian	35	56	65	73	NA	NA	NA																																																																																													
Name	Year	Ethnicity	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14	Age 15	Age 16	Age 17	Age 18	Age 19	Age 20	Age 21	Age 22	Age 23	Age 24	Age 25	Age 26	Age 27	Age 28	Age 29	Age 30	Age 31	Age 32	Age 33	Age 34	Age 35	Age 36	Age 37	Age 38	Age 39	Age 40	Age 41	Age 42	Age 43	Age 44	Age 45	Age 46	Age 47	Age 48	Age 49	Age 50	Age 51	Age 52	Age 53	Age 54	Age 55	Age 56	Age 57	Age 58	Age 59	Age 60	Age 61	Age 62	Age 63	Age 64	Age 65	Age 66	Age 67	Age 68	Age 69	Age 70	Age 71	Age 72	Age 73	Age 74	Age 75	Age 76	Age 77	Age 78	Age 79	Age 80	Age 81	Age 82	Age 83	Age 84	Age 85	Age 86	Age 87	Age 88	Age 89	Age 90	Age 91	Age 92	Age 93	Age 94	Age 95	Age 96	Age 97	Age 98	Age 99	Age 100
Title	Year	Ethnicity	Sample Size	2009	2010	2011	2012	2013	2014																																																																																													
-------	------	-----------	-------------	------	------	------	------	------	------																																																																																													
Carpenter	2009	Mixed	184	127	346	276	NA	NA	NA	NA	Ns																																																																																											
Zupa’	2009	Caucasian	33	42	53	68	NA	NA	NA	NA	Ns																																																																																											
Lam	2009	Mixed	62	75	219	222	106	29	335	87	NA	Ns																																																																																										
Cote	2009	Caucasian	178	210	206	197	311	77	324	82	171	17																																																																																										
Cote	2009	African	78	36	93	28	87	28	95	26	28	61																																																																																										
Kumar	2009	Indian	49	44	154	99	69	24	197	56	55	35																																																																																										
Qi XS	2009	Asian	19	34	31	41	NA	NA	NA	NA	NA	Ns																																																																																										
Wang MJ	2009	Asian	161	143	383	258	NA	NA	NA	NA	Ns																																																																																											
Yue Z	2009	Asian	NA	64	36																																																																																																	
Chen H	2009	Asian	59	99	208	247	NA	NA	NA	NA	Ns																																																																																											
Liu JS	2009	Asian	NA	NA	NA	NA	NA	43	57	79	56	Ns																																																																																										
Yin Q	2009	Asian	NA	62	51																																																																																																	
Yadav	2010	Indian	82	19	152	69	68	33	118	103	54	47																																																																																										
Jin	2010	Asian	55	95	71	79	NA	NA	NA	NA	NA	Ns																																																																																										
Gervasini	2010	Caucasian	56	47	127	120	87	16	206	41	53	50																																																																																										
Timofeeva	2010	Caucasian	279	334	607	644	511	101	1035	214	279	26																																																																																										
Cabral	2010	Caucasian	16	26	42	33	21	21	39	36	NA	Ns																																																																																										
Cabral	2010	African	8	14	5	7	17	5	7	5	NA	Ns																																																																																										
Altimisik	2010	Caucasian	47	28	40	15	58	17	46	9	NA	Ns																																																																																										
Sreeleka	2010	Indian	63	23	50	10	52	34	56	4	NA	Ns																																																																																										
Lam	2010	Caucasian	NA	853	73																																																																																																	
Song B	2010	Asian	51	74	70	55	NA	NA	NA	NA	NA	Ns																																																																																										
Hua F	2010	Asian	NA	171	88																																																																																																	
Zheng DJ	2010	Asian	115	150	132	175	NA	NA	NA	NA	NA	Ns																																																																																										
Zhu XX	2010	Asian	67	93	88	72	NA	NA	NA	NA	NA	Ns																																																																																										
Tamaki	2011	Asian	106	86	101	102	95	97	99	104	NA	Ns																																																																																										
Kohno	2011	Asian	174	200	159	158	NA	NA	NA	NA	NA	Ns																																																																																										
Young	2011	Caucasian	173	274	465	680	NA	NA	NA	NA	NA	Ns																																																																																										
Singh	2011	Indian	129	71	147	53	NA	NA	NA	NA	NA	Ns																																																																																										
Ihasan	2011	Indian	122	66	177	113	155	33	217	73	102	77																																																																																										
Atinkaya	2012	Caucasian	72	53	59	56	102	25	100	22	NA	Ns																																																																																										
Fowke	2011	Asian	98	110	329	456	100	108	403	381	NA	Ns																																																																																										
Bai TV	2011	Asian	NA	NA	NA	NA	56	50	139	111	NA	Ns																																																																																										
Zhang JQ	2011	Asian	33	17	43	7	NA	NA	NA	NA	NA	Ns																																																																																										
Ai	2011	Asian	14	36	27	23	NA	NA	NA	NA	NA	Ns																																																																																										
Zhou XL	2011	Asian	87	122	119	89	NA	NA	NA	NA	Ns																																																																																											
Bai TV	2011	Asian	49	79	125	89	72	56	118	96	70	48																																																																																										
Du GS	2011	Asian	52	73	54	71	68	57	69	56	NA	Ns																																																																																										
Kiyohara	2012	Asian	194	268	194	185	245	217	215	164	323	12																																																																																										
Dziarn	2012	Caucasian	100	130	130	160	171	59	242	48	115	91																																																																																										
Ada	2012	Caucasian	90	123	107	124	162	51	188	43	133	80																																																																																										
López-Cima	2012	Caucasian	375	401	358	418	618	158	611	165	352	33																																																																																										
Liu	2012	Asian	215	145	253	107	NA	NA	NA	NA	NA	Ns																																																																																										
Vural	2012	Caucasian	NA	52	32																																																																																																	
Pliarchopoulou	2012	Caucasian	45	55	79	46	NA	NA	NA	NA	NA	Ns																																																																																										
Wang N	2012	Asian	87	122	143	113	119	90	156	100	NA	Ns																																																																																										
Yao ZG	2012	Asian	54	96	82	68	NA	NA	NA	NA	NA	Ns																																																																																										
Liang KC	2012	Asian	21	47	31	39	23	45	36	34	NA	Ns																																																																																										
Chen CM	2012	Asian	77	123	89	110	NA	NA	NA	NA	NA	Ns																																																																																										
Shukla	2013	Indian	134	84	148	90	136	82	180	58	NA	Ns																																																																																										
Shukla	2013	Indian	134	84	80	124	136	82	168	36	NA	Ns																																																																																										
Piao	2013	Asian	1,696	2,237	776	923	1,863	2,070	841	858	NA	Ns																																																																																										
Lu QC	2013	Asian	30	61	68	70	NA	NA	NA	NA	NA	Ns																																																																																										
Zhang	2014	Asian	44	66	58	42	34	76	47	53	NA	Ns																																																																																										
Bag	2014	Indian	NA	NA	NA	NA	20	6	28	5	NA	Ns																																																																																										
Pan	2014	Asian	218	305	299	224	253	270	311	212	NA	Ns																																																																																										
Study	Year	Region	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12	GA13	GA14	GA15																																																																																					
--------------	------	----------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------																																																																																					
Jiang	2014	Asian	132	190	268	188	175	147	253	203	174																																																																																											
Tao J	2014	Asian	NA	70																																																																																																		
Sharma	2015	Indian	136	134	167	103	220	50	233	37	225																																																																																											
Mota	2015	Caucasian	108	75	127	101	122	61	174	54	71	94																																																																																										
Peddireddy	2016	Indian	182	64	187	63	200	46	224	26	NA																																																																																											
Masood	2015	Indian	197	53	212	58	230	20	246	24	NA																																																																																											
Girdhar	2016	Indian	160	160	198	122	258	62	263	57	NA																																																																																											
Liu	2016	Asian	NA	215	80																																																																																																	
Wang J	2016	Asian	48	102	78	72	NA	NA	NA	NA	NA																																																																																											
Wang	2017	Asian	82	118	112	88	114	86	122	78	NA																																																																																											
Minina	2017	Caucasian	210	143	172	128	267	86	233	67	135	18																																																																																										
Liu AS	2017	Asian	27	44	45	26	NA	NA	NA	NA	NA																																																																																											
He	2018	Asian	179	134	217	113	NA	NA	NA	NA	NA																																																																																											

1 NA = not available, HWE = Hardy-Weinberg equilibrium, * = Ile/Val + Val/Val
Supplemental Table 5 Genotype frequencies of the GSTM1, GSTT1, and GSTP1 IIe105Val polymorphisms between lung cancer and control groups by histological type

First author/Year	Ethnicity	Logistic regression odds ratio (95% CI)	p-value	Reference	Notes
Seidegård[1] 1986	Mixed	1.00 (0.50-2.00)	0.98		
Seidegård[2] 1990	Mixed	1.00 (0.50-2.00)	0.98		
Brockmöller[7] 1993	Caucasian	1.00 (0.50-2.00)	0.98		
Katoh[10] 1994	Asian	1.00 (0.50-2.00)	0.98		
London[13] 1995	Mixed	1.00 (0.50-2.00)	0.98		
Kihara[15] 1995	Asian	1.00 (0.50-2.00)	0.98		
Moreira[19] 1996	Caucasian	1.00 (0.50-2.00)	0.98		
To-Figueras[24] 1997	Caucasian	1.00 (0.50-2.00)	0.98		
Sun[30] 1997	Asian	1.00 (0.50-2.00)	0.98		
Hong[32] 1998	Asian	1.00 (0.50-2.00)	0.98		
Jourenkova-Mironova[37] 1998	Caucasian	1.00 (0.50-2.00)	0.98		
To-Figueras[60] 1999	Caucasian	1.00 (0.50-2.00)	0.98		
Kihara[15] 1999	Asian	1.00 (0.50-2.00)	0.98		
Woodson[261] 1999	Caucasian	1.00 (0.50-2.00)	0.98		
Ford[27] 2000	African	1.00 (0.50-2.00)	0.98		
Hou[51] 2000	Caucasian	1.00 (0.50-2.00)	0.98		
Stücker[59] 2002	Caucasian	1.00 (0.50-2.00)	0.98		
Lewis[69] 2002	Caucasian	1.00 (0.50-2.00)	0.98		
Reszka[73] 2003	Caucasian	1.00 (0.50-2.00)	0.98		
Pinarbas[76] 2003	Caucasian	1.00 (0.50-2.00)	0.98		
Nazar-Stewart[81] 2004	Mixed	1.00 (0.50-2.00)	0.98		
Sobti[92] 2004	Indian	1.00 (0.50-2.00)	0.98		
Alexandre[98] 2004	Caucasian	1.00 (0.50-2.00)	0.98		
Schneider[100] 2004	Caucasian	1.00 (0.50-2.00)	0.98		
Sørensen[101] 2004	Caucasian	1.00 (0.50-2.00)	0.98		
Li Y[282] 2004	Asian	1.00 (0.50-2.00)	0.98		
Lee[113] 2006	Asian	1.00 (0.50-2.00)	0.98		
Miller[118] 2006	Caucasian	1.00 (0.50-2.00)	0.98		
Sobti[127] 2008	Indian	1.00 (0.50-2.00)	0.98		
Homma[128] 2008	Mixed	1.00 (0.50-2.00)	0.98		
Liu JN[276] 2009	Asian	1.00 (0.50-2.00)	0.98		
Gervasini[142] 2010	Caucasian	1.00 (0.50-2.00)	0.98		
Cabral[144] 2010	Mixed	1.00 (0.50-2.00)	0.98		
Altimisik[147] 2010	Caucasian	1.00 (0.50-2.00)	0.98		
Zheng Di[267] 2010	Asian	1.00 (0.50-2.00)	0.98		
Young[150] 2011	Caucasian	1.00 (0.50-2.00)	0.98		
Du G[290] 2011	Asian	1.00 (0.50-2.00)	0.98		
Ada[157] 2012	Caucasian	1.00 (0.50-2.00)	0.98		
Lópe-Cima[159] 2012	Caucasian	1.00 (0.50-2.00)	0.98		
Liu[160] 2012	Asian	1.00 (0.50-2.00)	0.98		
Vural[161] 2012	Caucasian	1.00 (0.50-2.00)	0.98		
Tao J[204] 2014	Asian	1.00 (0.50-2.00)	0.98		
Sharma[171] 2015	Indian	1.00 (0.50-2.00)	0.98		
Girdhar[176] 2016	Indian	1.00 (0.50-2.00)	0.98		
Wang J[209] 2016	Asian	1.00 (0.50-2.00)	0.98		

Large cell carcinoma

First author/Year	Ethnicity	Logistic regression odds ratio (95% CI)	p-value	Reference	Notes														
Seidegård[1] 1986	Mixed	1.00 (0.50-2.00)	0.98																
Seidegård[2] 1990	Mixed	1.00 (0.50-2.00)	0.98																
Brockmöller[7] 1993	Caucasian	1.00 (0.50-2.00)	0.98																
Kihara[15] 1995	Asian	1.00 (0.50-2.00)	0.98																
Study	Year	Ethnicity	Age Median	Age Range	Sex Male	Sex Female	ER Status	PR Status	HER2 Status										
-------	------	-----------	------------	-----------	----------	------------	------------	-----------	-------------										
To-Figueras [24]	1997	Caucasian	9	3	248	6	10	2	157	155									
To-Figueras [40]	1999	Caucasian	NA	NA	NA	NA	NA	NA	6	6									
Pinarbas [27]	2003	Caucasian	5	6	169	37	NA	NA	NA	NA									
Schneider [100]	2004	Caucasian	9	7	328	294	13	3	507	115	5	8							
Miller [130]	2006	Caucasian	NA	NA	NA	NA	NA	NA	69	62									
Gervasini [142]	2010	Caucasian	9	14	127	120	22	1	206	41	11	12							
Squamous carcinoma																			
Seidegaard [1]	1986	Mixed	11	16	46	32	NA	NA	NA	NA									
Seidegaard [2]	1990	Mixed	16	19	66	48	NA	NA	NA	NA									
Zhong [3]	1991	Mixed	52	48	131	94	NA	NA	NA	NA									
Hirvonen [6]	1993	Mixed	27	44	80	62	NA	NA	NA	NA									
Hirvonen [6]	1993	Mixed	27	44	20	16	NA	NA	NA	NA									
Brockmüller [7]	1993	Caucasian	17	24	174	181	NA	NA	NA	NA									
Nakachi [8]	1993	Asian	33	52	86	84	NA	NA	NA	NA									
Kato [10]	1994	Asian	11	12	28	20	NA	NA	NA	NA									
London [13]	1995	Mixed	44	38	404	312	NA	NA	NA	NA									
Kihara [15]	1995	Asian	60	80	241	228	NA	NA	NA	NA									
Kawajiri [25]	1995	Asian	11	12	28	20	NA	NA	NA	NA									
Nagata [30]	1995	Asian	25	61	178	186	NA	NA	NA	NA									
Sun [30]	1997	Asian	25	61	178	186	NA	NA	NA	NA									
Hong [32]	1998	Asian	12	15	30	33	NA	NA	NA	NA									
Le Marchand [34]	1998	Caucasian	27	47	182	268	NA	NA	NA	NA									
Saarikoski [35]	1998	Caucasian	44	50	157	137	76	15	255	39	NA								
Jourenkova-Mironova [37]	1998	Caucasian	42	56	82	90	83	15	145	27	46	41							
Gao [39]	1999	Asian	13	10	29	30	NA	NA	NA	NA									
Gao [39]	1999	Asian	13	10	36	37	NA	NA	NA	NA									
To-Figueras [40]	1999	Caucasian	NA	NA	NA	NA	NA	NA	29	20									
Kihara [43]	1999	Asian	56	69	126	131	NA	NA	NA	NA									
Woodson [261]	1999	Caucasian	78	69	171	162	NA	NA	NA	NA									
Butkiewicz [259]	1999	Caucasian	56	54	174	151	NA	NA	NA	50									
Ford [37]	2000	African	30	15	96	24	NA	NA	NA	NA									
Malats [48]	2000	Caucasian	9	16	68	53	18	7	68	53	NA								
Hou [41]	2000	Caucasian	53	76	194	181	NA	NA	NA	NA									
Liu [56]	2001	Mixed	92	144	475	561	205	5	918	258	NA								
Risch [57]	2001	Caucasian	70	97	161	185	149	18	281	65	76	77							
Gsur [63]	2001	Caucasian	33	25	68	66	NA	NA	NA	NA									
Stücker [69]	2002	Caucasian	63	50	136	118	97	18	216	52	54	46							
Lewis [69]	2002	Caucasian	21	8	68	75	23	6	115	28	14	17							
Lu [72]	2002	Asian	89	88	159	161	NA	NA	NA	NA									
Zhang [123]	2002	Asian	11	21	33	27	NA	NA	NA	NA									
Qiao [254]	2002	Asian	42	64	104	95	NA	NA	NA	NA									
Zhang JK [295]	2002	Asian	25	29	73	92	29	25	72	93	NA								
Nie LH [249]	2002	Asian	NA	NA	NA	NA	NA	NA	35	22									
Reszk [73]	2003	Caucasian	40	21	101	64	NA	NA	NA	33									
Pinarbas [76]	2003	Caucasian	19	24	169	37	NA	NA	NA	NA									
Nazar-Stewart [81]	2003	Mixed	37	44	255	246	67	14	410	90	35								
Lin [84]	2003	Asian	37	44	255	246	67	14	410	90	35								
Wang [281]	2003	Asian	13	23	38	33	NA	NA	NA	NA									
Sobu [92]	2004	Asian	42	29	52	24	56	15	65	11	NA								
Chan-Yeung [95]	2004	Asian	14	24	80	117	15	23	95	102	29	9							
Alexandri [98]	2004	Caucasian	85	81	240	290	142	24	456	74	NA								
Belogubova [99]	2004	Caucasian	37	51	178	146	71	17	261	63	NA								
Author(s)	Year	Geographic Region	Race	Tumor Type	N1	N2	N3	D1	D2	D3	D4	D5	D6						
----------	------	-------------------	------	------------	----	----	----	----	----	----	----	----	----						
el-Zein	2004	Caucasian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Kihara	2004	Caucasian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
London	1995	Mixed	Asian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Brockmöller	1993	Caucasian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Hirvonen	1993	Caucasian	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Brockenmüller	1993	Caucasian	NA																
Katoh	1994	Asian	7	2	28	20	NA												
London	1995	Mixed	71	49	404	312	NA												
Kihara	1995	Asian	98	113	241	228	NA												
Kawajiri	1995	Asian	73	78	191	167	NA												
Moreira	1996	Portuguese	12	14	40	44	NA												
el-Zein	1997	Mixed	17	10	27	23	22	5	43	7	NA	NA	NA						
Year	Race	Y	C	N	M	NA	N	N	N	N									
-------	----------	---	---	---	---	----	---	---	---	---									
1997	Caucasian	17	25	155	37	33	9	97	95	NA	N								
1997	Caucasian	17	25	93	27	33	9	60	60	NA	N								
1997	Caucasian	20	21	179	163	NA	NA	NA	NA	17	20								
1997	Asian	22	46	178	186	NA	NA	NA	NA	NA	N								
1998	Asian	12	16	30	33	NA	NA	NA	NA	NA	N								
1998	Mixed	73	88	182	268	NA	NA	NA	NA	NA	N								
1998	Caucasian	48	34	157	137	72	9	255	39	NA	N								
1999	Asian	6	20	29	30	NA	NA	NA	NA	NA	N								
1999	Asian	6	20	36	37	NA	NA	NA	NA	NA	N								
1999	Caucasian	NA	NA	NA	NA	NA	NA	NA	21	15	N								
1999	Asian	67	93	126	131	NA	NA	NA	NA	121	32								
1999	Caucasian	29	24	171	162	NA	NA	NA	NA	NA	N								
1999	Caucasian	20	25	174	151	NA	NA	NA	NA	22	16								
2000	African	31	12	96	24	NA	NA	NA	NA	NA	N								
2000	Caucasian	34	31	68	53	51	14	77	44	NA	N								
2000	Caucasian	29	25	194	181	NA	NA	NA	NA	NA	N								
2001	Mixed	215	257	475	561	412	100	918	258	NA	N								
2001	Caucasian	73	77	161	185	128	22	281	65	76	77								
2001	Caucasian	37	39	68	88	NA	NA	NA	NA	NA	N								
2002	Caucasian	21	36	136	118	52	8	216	52	32	23								
2002	Caucasian	1	9	68	75	2	8	115	28	4	5								
2002	Asian	105	93	96	56	99	99	93	59	NA	N								
2002	Asian	67	70	159	161	NA	NA	NA	NA	44	N								
2002	Asian	23	48	73	92	36	35	72	93	NA	N								
2002	Asian	NA	NA	NA	NA	NA	NA	NA	41	28	N								
2003	Caucasian	7	5	101	64	NA	NA	NA	6	6*	N								
2003	Asian	43	69	59	60	59	53	65	54	67	44								
2003	Caucasian	7	4	169	37	NA	NA	NA	NA	NA	N								
2003	Asian	67	97	91	90	NA	NA	NA	NA	NA	N								
2003	Mixed	40	56	255	246	77	19	410	90	41	41								
2003	Caucasian	70	68	590	600	NA	NA	NA	NA	NA	N								
2003	Asian	NA	NA	NA	NA	NA	NA	NA	69	36	N								
2003	Asian	14	24	38	33	NA	NA	NA	NA	NA	N								
2004	Asian	58	69	80	117	45	82	95	102	84	43								
2004	Caucasian	62	82	240	290	128	16	456	74	NA	N								
2004	Caucasian	21	18	333	330	31	8	333	330	NA	N								
2004	Caucasian	59	53	328	294	97	15	507	115	48	43								
2004	Caucasian	NA	NA	NA	NA	70	13	233	16	NA	N								
2004	Asian	12	12	62	45	13	11	53	54	NA	N								
2004	Asian	11	20	65	73	NA	NA	NA	NA	NA	N								
2004	Asian	5	8	77	61	NA	NA	NA	NA	NA	N								
2005	Caucasian	119	117	781	818	130	30	642	154	NA	N								
2005	Asian	NA	NA	NA	NA	31	30	94	58	NA	N								
2005	Asian	29	32	91	61	NA	NA	NA	NA	NA	N								
2005	Asian	55	78	103	124	69	64	140	87	77	51								
2005	Asian	NA	NA	NA	NA	NA	NA	NA	34	27	N								
2005	Asian	22	26	91	105	26	22	89	107	NA	N								
2005	Caucasian	231	267	258	367	377	117	510	114	225	22								
2005	Caucasian	NA	NA	NA	NA	NA	NA	NA	NA	402	34								
2005	Asian	NA	NA	NA	NA	NA	NA	NA	25	19	N								
2007	Asian	34	34	59	62	NA	NA	NA	NA	NA	N								
2007	Indian	5	6	98	53	9	2	131	20	4	7*								
2008	Asian	NA	NA	NA	NA	NA	NA	NA	110	54	N								
2008	Indian	42	19	147	64	45	16	183	28	35	20								
2009	Asian	12	24	208	247	NA	NA	NA	NA	NA	N								
2009	Asian	NA	NA	NA	NA	17	23	79	56	NA	N								
Last name	Year	Ethnicity	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17
-------------	------	-----------	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----
Gervasini	2010	Caucasian	10	6	127	120	14	2	206	41	10	6a	10						
Altinisik	2010	Caucasian	13	8	40	15	15	6	46	9	NA	NA	NA	NA	NA				
Zheng DJ	2010	Asian	51	48	132	175	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Hua F	2010	Asian	NA	65	31														
Young	2010	Caucasian	70	118	465	680	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Zhou XL	2010	Asian	32	37	119	89	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Fan J	2011	Asian	8	27	31	39	11	24	36	34	NA	NA	NA	NA	NA				
Du GB	2009	Asian	14	17	54	71	17	14	69	56	NA	NA	NA	NA	NA				
Dzian	2012	Caucasian	54	64	130	160	83	35	242	48	59	46							
López-Cima	2012	Caucasian	28	31	107	124	41	18	188	43	40	19							
Liu	2012	Asian	89	51	253	107	NA	NA	NA	NA	NA	NA							
Lu QC	2013	Asian	18	31	68	70	NA	NA	NA	NA	NA	NA							
Pan	2014	Asian	102	141	299	224	118	125	311	212	NA	NA							
Tao J	2014	Asian	NA	37	47														
Wang	2015	Asian	NA																
Sharma	2015	Indian	39	47	167	103	62	24	233	37	74	11							
Peddireddy	2016	Indian	80	29	187	63	88	21	224	26	NA	NA							
Girdhar	2016	Indian	51	55	198	122	78	28	263	57	NA	NA							
Wang J	2016	Asian	6	16	78	72	NA	NA	NA	NA	NA	NA							

NA = not available, * = Ile/Val + Val/Val
First author/Year	Ethnicity	GSTM1 genotype distribution	GSTT1 genotype distribution	GSTP1 Ile105Val polymorphisms between smoking status							
Smoking		Case	Control	Case	Control	Case	Control	Case	Control		
Seidegård[1] 1986	Mixed	23	43	46	32	NA	NA	NA	NA	N	
Seidegård[2] 1990	Mixed	47	78	66	48	NA	NA	NA	NA	N	
Hirvonen[3] 1993	Mixed	59	69	13	11	NA	NA	NA	NA	N	
Brockmöller[4] 1993	Caucasian	51	60	61	74	NA	NA	NA	NA	N	
Nazar-Stewart[5] 1993	Mixed	9	26	23	20	NA	NA	NA	NA	N	
Katoh[6] 1994	Asian	23	20	28	20	NA	NA	NA	NA	N	
London[7] 1995	Mixed	194	131	270	198	NA	NA	NA	NA	N	
Kihara[8] 1995	Asian	141	197	120	112	NA	NA	NA	NA	N	
Deakin[9] 1996	Caucasian	56	50	58	70	91	17	111	18	NA	N
el-Zein[10] 1997	Mixed	31	23	27	23	42	12	43	7	NA	N
Jourenkova[11] 1997	Caucasian	69	81	82	90	123	27	145	27	NA	N
Kelsey[12] 1997	Mixed	108	52	107	54	125	35	134	27	NA	N
Sun[13] 1997	Asian	42	98	84	89	NA	NA	NA	NA	N	
Nyberg[14] 1998	Caucasian	53	43	44	38	NA	NA	NA	NA	N	
Cheng TJ[15] 1995	Mixed	30	37	21	34	NA	NA	NA	NA	N	
Gao[16] 1999	Asian	18	20	28	19	NA	NA	NA	NA	N	
Katoh[17] 1999	Asian	152	206	95	89	NA	NA	NA	NA	N	
Kihara[18] 1999	Asian	159	160	171	162	NA	NA	NA	NA	N	
Woodson[19] 1999	Caucasian	73	33	69	22	NA	NA	NA	NA	N	
Ford[20] 2000	African	86	93	93	73	NA	NA	NA	NA	N	
Steicke[21] 2000	Caucasian	227	214	219	204	313	115	322	97	NA	N
Zhao[22] 2001	Asian	35	61	8	10	39	57	10	8	NA	N
Chen SQ[23] 2001	Asian	38	42	51	29	NA	NA	NA	NA	N	
Hou[24] 2001	Caucasian	38	24	24	27	NA	NA	NA	NA	N	
Hou[25] 2001	Caucasian	NA	NA	NA	NA	83	13	77	6	NA	N
Perera[26] 2002	Caucasian	31	40	75	62	NA	NA	NA	27	4	N
Sunaga[27] 2002	Asian	69	51	57	40	60	60	60	37	NA	N
Zhang[28] 2002	Asian	18	33	19	13	NA	NA	NA	NA	N	
Zhang JK[29] 2002	Asian	49	55	25	40	57	47	37	28	NA	N
Nie LH[30] 2002	Asian	NA	59	3	N						
Wang[31] 2003	Asian	NA	NA	NA	NA	25	23	21	27	30	1
Wang[32] 2003	Asian	26	44	38	38	NA	NA	NA	NA	NA	N
Nazar-Stewart[33] 2003	Mixed	127	136	190	171	212	51	296	65	101	1
Taioli[34] 2003	Caucasian	92	104	301	297	86	32	291	69	NA	N
Lin[35] 2003	Asian	NA	72	4	N						
Wang[36] 2003	Caucasian	NA	N								
Ruan-Ravina[37] 2003	Caucasian	52	63	58	52	91	24	85	25	NA	N
Xian XZ[38] 2003	Asian	24	31	28	34	NA	NA	NA	NA	N	
Chen LJ[39] 2003	Asian	9	16	15	21	NA	NA	NA	NA	N	
Wang S[40] 2003	Asian	21	46	9	25	NA	NA	NA	NA	N	
Wang[41] 2004	Caucasian	293	381	271	336	540	129	470	133	NA	N
Habalova[42] 2004	Caucasian	47	46	40	48	NA	NA	NA	NA	N	
Alexandre[43] 2004	Caucasian	102	94	130	142	172	24	231	41	NA	N
Belogubova[44] 2004	Caucasian	69	79	187	186	125	23	306	67	NA	N
Schneider[45] 2004	Caucasian	7	11	74	77	15	3	125	26	178	2
Gallegos-Arceola[46] 2003-2004	Mixed	NA	NA	NA	NA	39	9	70	4	NA	N
Li W[47] 2004	Asian	49	72	40	25	NA	NA	NA	NA	N	
Gu Y[48] 2004	Asian	42	54	32	27	NA	NA	NA	NA	N	
Huang XH[49] 2004	Asian	24	31	28	34	NA	NA	NA	NA	N	
Li Y[50] 2004	Asian	33	43	41	33	NA	NA	NA	NA	N	
Sreeja[51] 2005	Indian	83	36	61	24	90	29	75	10	NA	N
Adorne[52] 2005	Mixed	21	13	34	16	NA	NA	NA	NA	N	
Cote[53] 2005	Caucasian	103	103	80	73	152	43	124	25	71	1
Brennan[54] 2005	Caucasian	962	947	709	666	1,636	316	1,181	230	NA	N
Li DR[55] 2005	Asian	28	35	6	10	NA	NA	NA	NA	N	
Qiao GB[56] 2005	Asian	67	108	63	55	NA	NA	NA	NA	N	
Yuan TZ[57] 2005	Asian	NA	NA	NA	NA	28	70	33	19	NA	N
Luo CL[58] 2005	Asian	14	28	12	22	NA	NA	NA	NA	N	
Li DR[59] 2005	Asian	46	52	25	27	NA	NA	NA	NA	N	
Liang GT[60] 2005	Asian	NA	69	5							
Gao ZL[61] 2005	Asian	NA	49	4							

Table: Supplemental Table 6 Genotype frequencies of the GSTM1, GSTT1, and GSTP1 Ile105Val polymorphisms between smoking status and lung cancer control groups.
Year	Study Type	Country	Age					
1993	No-smoking	Caucasian	4					
1993	No-smoking	Mixed	6					
1997	No-smoking	Asian	3					
1997	No-smoking	Mixed	5					
1997	No-smoking	Asian	5					
1997	No-smoking	Mixed	3					
1997	No-smoking	Asian	18					
1998	No-smoking	Caucasian	47					
1998	No-smoking	Mixed	2					
1999	No-smoking	Asian	7					
1999	No-smoking	Asian	12					
2000	No-smoking	African	4					
2000	No-smoking	Caucasian	56					
2001	No-smoking	Asian	10					
2001	No-smoking	Caucasian	55					
2001	No-smoking	Caucasian	35					
2001	No-smoking	Caucasian	22					
2002	No-smoking	Caucasian	7					
Last Name	Year	Region	Gender	Age	Length	Height	Weight	Other Notes
-----------	------	--------	--------	-----	--------	--------	--------	-------------
Sunaga	2002	Asian	Male	35	40	36	13	NA
Zhang	2002	Asian	Male	6	8	14	14	NA
Zhang	2002	Asian	Male	18	39	48	52	30
Nie	2002	Asian	Male	NA	NA	NA	NA	30
Wang	2003	Asian	Female	NA	NA	NA	NA	30
Kiyohara	2003	Asian	Female	64	4	124	135	NA
Wang	2003	Asian	Male	41	53	53	52	NA
Nazar-Stewart	2003	Mixed	Male	4	7	65	74	10
Taioli	2003	Caucasian	Male	14	18	288	285	16
Liu	2003	Asian	Male	NA	NA	NA	NA	35
Wang	2003	Asian	Male	64	4	124	135	NA
Ruano-Ravina	2003	Caucasian	Male	1	9	42	35	7
Xian	2004	Asian	Male	11	25	37	39	NA
Chen	2004	Asian	Male	14	15	29	8	NA
Wang	2004	Caucasian	Male	19	23	152	180	33
Habalova	2004	Caucasian	Female	6	5	29	33	NA
Alexandrie	2004	Caucasian	Female	13	18	99	133	26
Belogubova	2004	Caucasian	Female	7	12	146	144	12
Schneider	2004	Caucasian	Female	191	207	253	216	330
Gallegos-Arceola	2003-2004	Mixed	Male	NA	NA	NA	NA	2
Li	2004	Asian	Male	41	55	65	70	NA
Gu Y	2004	Asian	Male	28	35	60	48	NA
Huang X	2004	Asian	Male	11	25	37	39	NA
Li Y	2004	Asian	Female	7	20	36	28	NA
Sreeraj	2005	Indian	Male	17	10	46	15	24
Adoni	2005	Indian	Male	9	12	33	20	NA
Wenzlaff	2005	Caucasian	Male	62	69	70	77	100
Wenzlaff	2005	African	Male	20	9	22	8	25
Brennan	2005	Caucasian	Female	81	75	388	320	139
Li DR	2005	Asian	Male	14	22	33	17	NA
Qiao GB	2005	Asian	Male	17	21	41	40	NA
Yuan T	2005	Asian	Male	8	14	29	28	NA
Luo CL	2005	Asian	Female	4	17	18	40	NA
Li DR	2005	Asian	Male	29	23	62	38	NA
Liang G	2005	Asian	Female	43	36	76	55	NA
Guo ZL	2005	Asian	Male	20	9	22	24	NA
Miller	2006	Caucasian	Female	85	1	25	22	NA
Qian	2006	Asian	Male	18	4	22	24	NA
Chang F	2006	Asian	Male	18	44	34	62	NA
Wang QM	2006	Asian	Male	9	10	12	7	NA
Zhang T	2006	Asian	Female	17	15	26	29	NA
Osawa S	2007	Asian	Female	17	15	26	29	NA
Hu X	2007	Asian	Female	8	34	20	28	NA
Wang Y	2007	Asian	Male	8	13	17	23	NA
Yoon	2007	Asian	Female	13	17	12	26	NA
Chen H	2008	Asian	Male	13	26	120	126	NA
Qi XS	2008	Asian	Female	13	26	120	126	NA
Hou Y	2008	Asian	Female	7	8	12	17	NA
Lam M	2009	African	Female	6	6	25	23	NA
Kumar	2009	Indian	Male	7	5	89	63	7
Qi XS	2009	Asian	Female	1	4	5	8	NA
Yin Q	2009	Asian	Female	13	26	120	126	NA
Chen H	2009	Asian	Male	13	26	120	126	NA
Liu J	2009	Asian	Female	13	26	120	126	NA
Jin J	2010	Asian	Male	12	25	35	28	NA
Cabral	2010	Mixed	Female	4	5	34	44	4
Altiminski	2010	Caucasian	Female	6	1	29	7	6
Song B	2010	Asian	Female	16	22	34	26	NA
Zheng D	2010	Asian	Female	49	36	68	96	NA
Zhu X	2010	Asian	Female	67	93	88	72	NA
Jia S	2010	Asian	Female	43	36	76	55	NA
Ihsan	2011	Indian	Male	31	25	91	60	49
Fowke	2011	Asian	Male	98	110	329	456	100
Bai T	2011	Asian	Male	9	15	13	9	NA
Zhang J	2011	Asian	Male	43	36	76	55	NA
Zhou X	2011	Asian	Male	10	25	20	21	14
Fan J	2011	Asian	Female	10	25	20	21	14

Notes:
- NA: Not available
- Mixed: Mixed race
- Asian: Asian ethnicity
- Caucasian: Caucasian ethnicity
- African: African ethnicity
- Male: Male gender
- Female: Female gender
| Last Name | Year | Population | CI1 | CI2 | CI3 | CI4 | CI5 | CI6 | CI7 | CI8 | CI9 | CI10 | CI11 | CI12 | CI13 |
|-----------|------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Bai TY | 2011 | Asian | 19 | 26 | 61 | 54 | 25 | 20 | 63 | 52 | 28 | 1 | 2 | | |
| Du GB | 2011 | Asian | 17 | 32 | 36 | 46 | 22 | 27 | 45 | 37 | NA | N | | | |
| López-Cima| 2012 | Caucasian | 26 | 25 | 102 | 119 | 40 | 11 | 185 | 36 | 22 | 2 | 2 | | |
| Liu | 2012 | Asian | 63 | 42 | 123 | 52 | NA | NA | NA | NA | NA | N | | | |
| Han RL | 2012 | Asian | 26 | 19 | 61 | 54 | NA | NA | NA | NA | NA | N | | | |
| Yao ZG | 2012 | Asian | 16 | 29 | 40 | 38 | NA | NA | NA | NA | NA | N | | | |
| Chen CM | 2012 | Asian | 20 | 34 | 29 | 47 | NA | NA | NA | NA | NA | N | | | |
| Shukla | 2012 | Indian | 32 | 37 | 106 | 64 | 51 | 18 | 127 | 43 | NA | N | | | |
| Lv XL | 2013 | Asian | NA | 24 | 1 | | |
| Lu QG | 2013 | Asian | 8 | 28 | 38 | 38 | NA | NA | NA | NA | NA | N | | | |
| Pan | 2014 | Asian | 114 | 170 | 162 | 122 | 136 | 148 | 171 | 113 | NA | N | | | |
| Jiang | 2014 | Asian | 130 | 136 | 48 | 58 | 120 | 111 | 73 | 50 | 51 | 11 | | | |
| Wang | 2015 | Asian | NA | 25 | 2 | | |
| Peddireddy | 2016 | Indian | 76 | 22 | 133 | 42 | 89 | 9 | 158 | 17 | NA | N | | | |
| Liu AS | 2017 | Asian | 7 | 15 | 32 | 8 | NA | NA | NA | NA | NA | N | | | |
| He | 2018 | Asian | 113 | 86 | 167 | 85 | NA | NA | NA | NA | NA | N | | | |

NA = not available, * = Ile/Val + Val/Val
Supplemental Table 7: Genotype frequencies of the *GSTM1, GSTT1, and GSTP1* Ile105Val polymorphisms between lung cancer and control groups by gender

First author/Year	Ethnicity	Case	Control	Case	Control	Case	Control						
GSTM1 genotype distribution	**GSTT1 genotype distribution**	**GSTP1 Ile105Val genotypes**											
Gender													
Male													
Seidegård[2] 1990	Mixed	25	45	27	27	NA	NA	NA	NA				
Brockmöller[7] 1993	Caucasian	43	46	108	105	NA	NA	NA	NA				
London[13] 1995	Mixed	111	89	270	205	NA	NA	NA	NA				
Kihara[19] 1995	Asian	150	185	150	153	NA	NA	NA	NA				
Kelsey[20] 1997	Mixed	80	46	127	65	57	6	24	164	28	NA	NA	NA
Ryberg[24] 1997	Caucasian	61	74	179	163	NA	NA	NA	53	63			
Sun[26] 1997	Asian	38	101	129	139	NA	NA	NA	NA	NA			
Kihara[3] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Woodson[20] 1999	Caucasian	159	160	171	162	NA	NA	NA	NA	NA			
Kiyohara[43] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Woodson[20] 1999	Caucasian	159	160	171	162	NA	NA	NA	NA	NA			
Kiyohara[43] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Female													
Seidegård[2] 1990	Mixed	22	33	39	21	NA	NA	NA	NA				
Brockmöller[7] 1993	Caucasian	43	46	108	105	NA	NA	NA	NA				
London[13] 1995	Mixed	111	89	270	205	NA	NA	NA	NA				
Kihara[19] 1995	Asian	150	185	150	153	NA	NA	NA	NA				
Kelsey[20] 1997	Mixed	80	46	127	65	57	6	24	164	28	NA	NA	NA
Ryberg[24] 1997	Caucasian	61	74	179	163	NA	NA	NA	53	63			
Sun[26] 1997	Asian	38	101	129	139	NA	NA	NA	NA	NA			
Kihara[3] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Woodson[20] 1999	Caucasian	159	160	171	162	NA	NA	NA	NA	NA			
Kiyohara[43] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Woodson[20] 1999	Caucasian	159	160	171	162	NA	NA	NA	NA	NA			
Kiyohara[43] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			
Woodson[20] 1999	Caucasian	159	160	171	162	NA	NA	NA	NA	NA			
Kiyohara[43] 1999	Asian	152	206	126	131	NA	NA	NA	263	78			

a Only data for Asian populations was available in this study.

Note: NA = Not available.
Name	Year	Ethnicity	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10
Chan	2005	Asian	6	7	12	11	NA	NA	NA	NA	NA	NA
Liang	2005	Asian	NA	37								
Larsen	2006	Caucasian	137	171	80	120	245	61	164	36	46	124
Miller	2006	Caucasian	NA	437	389							
Sørensen	2007	Caucasian	96	105	168	172	31	288	52	84	87	
Yoon	2008	Asian	NA	137	65							
Zupa	2009	Caucasian	9	3	31	34	NA	NA	NA	NA	NA	
Lam	2009	Mixed	34	42	113	130	52	24	185	58	NA	
Cote	2009	Caucasian	178	210	206	197	311	77	324	82	171	177
Cote	2009	African	78	36	93	28	87	28	95	26	28	61
Liu JN	2009	Asian	NA	NA	NA	NA	20	23	36	25	NA	
Timofeeva	2010	Caucasian	94	126	210	262	184	35	388	85	92	106
Cabral	2010	Mixed	6	13	18	22	15	4	24	16	NA	
Zhu XX	2010	Asian	67	93	88	72	NA	NA	NA	NA	NA	
Young	2011	Caucasian	85	129	83	150	NA	NA	NA	NA	NA	
Fowke	2011	Asian	98	110	329	456	100	108	403	381	NA	
Du GB	2011	Asian	12	20	13	23	14	18	20	16	NA	
Piao	2013	Asian	365	445	407	472	394	416	429	450	NA	
Pan	2014	Asian	96	162	155	103	160	98	144	114	NA	
Mota	2015	Caucasian	29	17	49	35	31	15	61	23	12	25
He	2018	Asian	45	41	76	29	NA	NA	NA	NA	NA	

NA = not available, * = He/Val + Val/Val
Supplemental Table 8 Genotype frequencies of the combined effects of GSTM1 present/null and GSTT1 present/null between lung cancer and control groups

First author/Year	Country	Ethnicity	SC	Genotype	A (Controls)	B (Cases)	C (Controls)	D (Cases)	Cc	
-------------------	---------	-----------	----	----------	-------------	-----------	-------------	-----------	----	
Sharma[171] 2015	India	Indian	HB	GSTM1	27 22	23 15	111 88	109 14		
Zhang[221] 2014	China	Asian	HB	GSTM1	24 35	51 28	15 24	20 23		
Pan[188] 2014	China	Asian	PB	GSTM1	113 121	157 91	148 133	105 17		
Piao[165] 2013	Korea	Asian	PB	GSTM1	873 391	1197 467	1040 456	823 38		
Dzian[156] 2012	Slovak	Caucasian	HB	GSTM1	31 26	28 22	102 138	69 10		
Ada[187] 2012	Turkey	Caucasian	HB	GSTM1	NA NA	34 22	NA NA	73 86		
López-Cima[159] 2012	Australia	Caucasian	HB	GSTM1	71 82	87 83	327 363	304 27		
Liang KC[242] 2012	China	Asian	HB	GSTM1	NA NA	34 19	NA NA	NA N.		
Cabral[144] 2010	Brazil	Mixed		GSTM1	6 14	20 27	19 23	19 23		
Fan J[272] 2011	China	Asian	HB	GSTM1	18 14	34 19	15 16	11 17		
Du GB[169] 2011	China	Asian	HB	GSTM1	NA NA	36 30	NA NA	31 28		
Matakova[133] 2009	Slovak	Caucasian	HB	GSTM1	21 20	20 26	74 79	45 95		
Sreeja[127] 2008	India	Indian	HB	GSTM1	NA NA	29 10	NA NA	102 12		
Sobu[127] 2008	India	Indian	HB	GSTM1	15 13	12 7	51 46	73 85		
Qi X[220] 2008	China	Asian	HB	GSTM1	7 10	10 17	24 24	12 21		
Honmi[128] 2008	Brazil	Mixed	HB	GSTM1	NA NA	12 13	NA NA	94 11		
Li SF[268] 2007	China	Asian	HB	GSTM1	7 18	10 30	14 27	11 28		
Chen[114] 2006	China	Asian	HB	GSTM1	23 41	36 44	24 45	14 67		
Yao W[165] 2006	China	Asian	HB	GSTM1	18 29	26 25	19 20	14 33		
Cote[100] 2005	USA	Caucasian	PB	GSTM1	NA NA	87 124	NA NA	19 29		
Cote[110] 2005	USA	African	PB	GSTM1	NA NA	53 67	NA NA	8 6		
Wenzlaff[105] 2005	USA	Caucasian	PB	GSTM1	NA NA	48 56	NA NA	12 17		
Wenzlaff[105] 2005	USA	African	PB	GSTM1	NA NA	16 14	NA NA	1 0		
Brennan[111] 2005	Poland	Caucasian	PB	GSTM1	NA NA	175 171	NA NA	861 92		
Sorensen[101] 2004	Denmark	Caucasian	PB	GSTM1	17 9	20 7	120 154	97 95		
Cao Y[252] 2004	China	Asian	HB	GSTM1	26 41	43 46	22 49	13 69		
Wang[198] 2004	USA	Caucasian	HB	GSTM1	NA NA	77 112	NA NA	NA N.		
Vines[144] 2004	Multiple	Caucasian	ND	GSTM1	169 266	196 276	856 1139	746 10		
Wang J[233] 2003	China	Asian	HB	GSTM1	17 25	36 29	33 31	26 34		
Cajas-Salazar[184] 2003	USA	Caucasian	HB	GSTM1	NA NA	16 9	NA NA	47 65		
Ruano-Ravina[184] 2003	Spain	Caucasian	HB	GSTM1	12 18	15 28	57 59	41 82		
Dialyna[77] 2003	Greece	Caucasian	HB	GSTM1	12 7	9 13	54 83	47 75		
Stücker[188] 2002	France	Caucasian	HB	GSTM1	NA NA	111 98	NA NA	25 19		
Zhang JK[193] 2002	China	Asian	HB	GSTM1	7 11	12 10	15 20	7 14		
Zhao[59] 2001	China	Asian	HB	GSTM1	NA NA	82 66	NA NA	NA N.		
London[266] 2000	China	Asian	PB	GSTM1	NA NA	85 275	NA NA	NA N.		
Malats[260] 2000	Multiple	Caucasian	PB	GSTM1	15 24	17 20	49 33	41 44		
Spitz[252] 2000	USA	Caucasian	HB	GSTM1	NA NA	54 42	NA NA	NA N.		
Salagovic[110] 1998	Slovak	Caucasian	PB	GSTM1	NA NA	10 17	NA NA	NA N.		
Saarikoski[130] 1998	Finland	Caucasian	PB	GSTM1	23 10	16 15	82 122	96 13		
To-Figueras[24] 1997	Spain	Caucasian	HB+PB	GSTM1 present/GSTT1 null	16 32	23 32	70 123	51 12		
El-Zein[22] 1997	USA	Mixed	HB	GSTM1	NA NA	6 2	NA NA	NA N.		
Jourenkova[23] 1997	France	Caucasian	HB	GSTM1	NA NA	15 12	NA NA	NA N.		
Kelsey[150] 1997	USA	African	HB	GSTM1	NA NA	9 8	NA NA	NA N.		
Kelsey[150] 1997	USA	Mixed	PB	GSTM1	NA NA	5 5	NA NA	NA N.		

NA = not available, a = Ile/Val + Val/Val, A = M1 GSTM1 present/GSTT1 null, B = GSTM1 null/GSTT1 null, C = GSTM1 null/GSTT1 present, D = GSTM1 present/GSTT1 present, E = GSTM1 present/GSTT1 null + GSTM1 null/GSTT1 present, F = GSTM1 present/GSTT1 present + GSTM1 present/GSTT1 null + GSTM1 null/GSTT1 present
First author/Year	Ethnicity	Case GSTM1 present/GSTM1 null	Case GSTP1 Ile/Ile	Control GSTM1 present/GSTM1 null	Control GSTP1 Val	Total one risk genotype Case	Control	Case	Control
Sharma[171] 2015	Indian	109	148	116	27	19	143	104	
López-Cima[139] 2012	Caucasian	161	146	184	175	212	209	396	
Dziar[156] 2012	Caucasian	51	69	64	84	49	61	113	
Ad[179] 2012	Caucasian	61	63	NA	NA	NA	NA	114	
Matakoval[15] 2009	Caucasian	35	66	46	60	31	49	77	
Honma[128] 2008	Mixed	47	50	35	55	62	87	97	
Sreeja[132] 2008	Indian	73	86	45	49	66	61	111	
Sobti[127] 2008	Indian	50	40	28	22	38	58	66	
Chen[114] 2006	Asian	26	74	40	69	11	34	51	
Wenzlaff[109] 2005	Caucasian	16	30	NA	NA	NA	NA	55	
Wenzlaff[109] 2005	African	5	5	NA	NA	NA	NA	14	
Cote[109] 2005	Caucasian	40	54	NA	NA	NA	NA	118	
Cote[110] 2005	African	10	29	NA	NA	NA	NA	58	
Reszka[129] 2003	Caucasian	48	47	NA	NA	NA	62	90	
Wang[73] 2003	Asian	27	45	40	39	16	14	56	
Perera[67] 2002	Caucasian	13	43	21	39	26	48	47	
Stäcker[68] 2002	Caucasian	99	124	NA	NA	NA	NA	133	
Miller[71] 2002	Caucasian	158	185	195	221	186	238	381	
To-Figueras[69] 1999	Caucasian	37	73	46	81	31	94	77	
Jourenkova-Mironova[37] 1998	Caucasian	31	36	35	48	35	45	70	
Ryberg[28] 1997	Caucasian	25	81	24	72	35	76	59	

Val¹ = Ile/Val + Val/Val, Total one risk genotype = GSTM1 null/ GSTP1 Ile/Ile + GSTM1 present/GSTP1 Val¹, All risk genotypes = GSTM1 null/ GSTP1 Ile/Ile + GSTM1 present/GSTP1 Val¹ + GSTM1 null/ GSTP1 Val¹, NA = not available
Supplemental Table 10 Genotype frequencies of the combined effects of \textit{GSTT1} present/null and \textit{GSTP1} Ile105Val between lung cancer and control groups

First author/Year	Ethnicity	\textit{GSTT1} present/ null Case	\textit{GSTP1} Ile105Val Case	Total one risk genotype Case	First author/Year	Ethnicity	\textit{GSTT1} present/ null Case	\textit{GSTP1} Ile105Val Case	Total one risk genotype Case
Sharma[171] 2015	Indian	184	201	39	32	36	32	75	64
Dzian[136] 2012	Caucasian	85	123	30	30	86	119	116	149
López-Cima[139] 2012	Caucasian	276	256	69	65	341	352	410	417
Ada[177] 2012	Caucasian	105	106	NA	NA	85	109		
Matakoval[137] 2009	Caucasian	60	104	21	22	59	70	80	92
Sreeja[132] 2008	Indian	86	117	32	17	59	66	91	83
Honma[128] 2008	Mixed	71	93	11	12	102	137	113	149
Sobti[127] 2008	Indian	66	57	12	5	58	74	70	79
Chen[114] 2006	Asian	31	79	35	64	7	33	42	97
Wenzlaff[109] 2005	Caucasian	26	46	NA	NA	NA	NA	63	80
Wenzlaff[109] 2005	African	7	5	NA	NA	NA	NA	15	19
Cote[107] 2005	Caucasian	58	82	NA	NA	NA	NA	124	171
Cote[107] 2005	African	12	28	NA	NA	NA	NA	61	72
Sørensen[100] 2004	Caucasian	107	107	10	8	110	142	120	150
Wang[89] 2003	Asian	32	45	35	39	27	20	62	59
Stücker[68] 2002	Caucasian	188	197	NA	NA	NA	NA	58	62
To-Figueras[40] 1999	Caucasian	63	117	20	37	60	144	80	181

NA = not available, Val1 = Ile/Val + Val/Val, Total one risk genotype = \textit{GSTT1} null/ \textit{GSTP1} Ile/Ile + \textit{GSTT1} present/ \textit{GSTP1} Val1, All risk genotypes = \textit{GSTT1} null/ \textit{GSTP1} Ile/Ile + \textit{GSTT1} present/ \textit{GSTP1} Val1 + \textit{GSTT1} null/ \textit{GSTP1} Val1
Supplemental Table 11 Genotype frequencies of the combined effects of *GSTM1*, *GSTT1* and *GSTP1* Ile105Val polymorphisms between lung cancer and control groups

First author/Year	A	B	C	D	E	F	G	H
Sharma[171] 2015	87	128	NA	NA	NA	NA	NA	NA
Dzian[156] 2012	33	50	52	73	18	19	36	54
Ada[157] 2012	51	50	NA	NA	NA	NA	NA	NA
Sørensen[122] 2007	139	277	NA	NA	NA	NA	218	382
Chen[114] 2006	13	44	NA	NA	NA	NA	32	88
Cote[110] 2005	28	42	NA	NA	NA	NA	97	134
Cote[110] 2005	9	20	NA	NA	NA	NA	47	62

NA = not available, A = *M1* Present/*T1* Present/*Ile*/Ile, B = *M1* Null/*T1* Present/*Ile*/Ile, C = *M1* Present/*T1* Null/*Ile*/Ile, D = *M1* Present/*T1* Present/*Ile*/Ile, E = *M1* Null/*T1* Present/*Ile*/Ile + *M1* Present/*T1* Null/*Ile*/Ile + *M1* Present/*T1* Present/*Ile*/Ile Val¹, F = *M1* Null/*T1* Null/*Ile*/Ile, G = *M1* Null/*T1* Present/*Ile*/Ile Val¹, H = *M1* Present/*T1* Null/*Ile*/Ile Val¹, I = *M1* Null/*T1* Null/*Ile*/Ile + *M1* Null/*T1* Present/*Ile*/Ile Val¹ + *M1* Present/*T1* Null/*Ile*/Ile Val¹, J = *M1* Null/*T1* Null/*Ile*/Ile Val¹, Val¹: Ile/Val + Val/Val.
Supplemental Table 12 Scale for quality assessment of molecular association studies of lung cancer

Criterion	Score
Source of case	
Selected from population or cancer registry	3
Selected from hospital	2
Selected from pathology archives, but without description	1
Not described	0
Source of control	
Population-based	3
Blood donors or volunteers	2
Hospital-based	1
Not described	0
Ascertainment of cancer	
Histological or pathological confirmation	2
Diagnosis of lung cancer by patient medical record	1
Not described	0
Ascertainment of control	
Controls were tested to screen out lung cancer	2
Controls were subjects who did not report lung cancer, no objective testing	1
Not described	0
Matching	
Controls matched with cases by age and sex	2
Controls matched with cases only by age or sex	1
Not matched or not described	0
Genotyping examination	
Genotyping done blindly and quality control	2
Only genotyping done blindly or quality control	1
Unblinded and without quality control	0
Specimens used for determining genotypes	
Blood cells or normal tissues	1
Tumor tissues or exfoliated cells of tissue	0
HWE	
HWE in the control group	1
Hardy-Weinberg disequilibrium in the control group	0
Association assessment	
Assess association between genotypes and lung cancer with appropriate statistics and adjustment for confounders	2
Assess association between genotypes and lung cancer with appropriate statistics without adjustment for confounders	1
Inappropriate statistics used	0
Total sample size	
>1000	3
500-1000	2
Range	Count
-------	-------
200-500	1
<200	0

HWE: Hardy-Weinberg equilibrium
Supplemental Table 13 Meta-analysis of the association of \textit{GSTM1} polymorphism with risk of lung cancer

Variable	n	Cases/Controls	Test of association	Test of heterogeneity	Model		
			OR (95% CI)	\(P_h\)	\(I^2\) (%)		
Test of association							
Overall	205	45,726/58,788	\(1.24 (1.19–1.30)\)	<0.001	58.5	Random-effect	
Ethnicity							
African	8	698/916	\(1.20 (0.96–1.50)\)	0.739	0.0	Fixed-effect	
Indian	16	2,998/3,360	\(1.17 (0.93–1.46)\)	<0.001	76.6	Random-effect	
Asian	95	18,240/19,218	\(1.43 (1.33–1.53)\)	<0.001	54.8	Random-effect	
Caucasian	66	19,961/30,395	\(1.07 (1.01–1.13)\)	0.001	39.4	Random-effect	
Country							
China	74	10,271/13,195	\(1.52 (1.40–1.65)\)	<0.001	53.3	Random-effect	
Japan	13	2,886/2,952	\(1.30 (1.17–1.44)\)	0.617	0.0	Fixed-effect	
Korea	4	4,504/2,304	\(1.09 (0.99–1.21)\)	0.712	0.0	Fixed-effect	
North India	11	2,059/2,423	\(1.15 (0.84–1.58)\)	<0.001	83.8	Random-effect	
South India	4	689/667	\(1.20 (0.95–1.53)\)	0.686	0.0	Fixed-effect	
Source of control							
HB	116	21,670/25,884	\(1.30 (1.21–1.39)\)	<0.001	64.0	Random-effect	
PB	41	12,988/15,069	\(1.14 (1.05–1.24)\)	<0.001	55.6	Random-effect	
Matching							
Yes	90	19,316/25,042	\(1.18 (1.10–1.25)\)	<0.001	55.1	Random-effect	
No	115	26,410/33,746	\(1.30 (1.23–1.39)\)	<0.001	60.8	Random-effect	
Quality score							
> 12	64	22,879/29,881	\(1.14 (1.07–1.21)\)	<0.001	57.8	Random-effect	
\(\leq 12\)	141	22,847/28,907	\(1.31 (1.24–1.39)\)	<0.001	56.9	Random-effect	
Sample size							
> 200	154	42,466/54,925	\(1.21 (1.16–1.27)\)	<0.001	63.2	Random-effect	
\(\leq 200\)	51	3,260/3,863	\(1.42 (1.29–1.57)\)	0.127	18.8	Fixed-effect	
Histological type							
SCLC	39	1,511/11,179	\(1.38 (1.16–1.63)\)	<0.001	50.2	Random-effect	
SCLC/Asian	11	364/2,477	\(1.43 (1.04–1.97)\)	0.062	43.3	Random-effect	
SCLC/Caucasian	17	790/6005	\(1.33 (1.01–1.76)\)	<0.001	65.7	Random-effect	
SCLC/Indian	4	193/817	\(1.66 (1.21–2.28)\)	0.852	0.0	Fixed-effect	
LCLC	8	108/2,403	\(1.23 (0.83–1.81)\)	0.145	35.5	Fixed-effect	
SC	75	7,008/21,733	\(1.33 (1.22–1.45)\)	<0.001	55.2	Random-effect	
SC/Asian	32	2,571/6,485	\(1.52 (1.38–1.66)\)	0.292	10.9	Fixed-effect	
SC/Caucasian	27	2,952/10,513	\(1.16 (0.97–1.38)\)	<0.001	72.6	Random-effect	
SC/Indian	6	711/1,267	\(1.37 (1.13–1.67)\)	0.956	0.0	Fixed-effect	
AC	71	6,542/22,646	\(1.24 (1.13–1.36)\)	<0.001	52.0	Random-effect	
AC/Asian	29	2,490/6,192	\(1.35 (1.22–1.48)\)	0.107	25.5	Fixed-effect	
AC/Indian	27	2,560/11,784	\(1.07 (0.94–1.22)\)	0.009	43.5	Random-effect	
AC/Indian	3	373/1,202	\(1.49 (1.17–1.90)\)	0.292	19.2	Fixed-effect	
Smoking	90	14,118/13,575	1.27 (1.17–1.39)	<0.001	61.7	Random-effect	
-----------	--------	---------------	------------------	--------	------	---------------	
No	82	4,885/10,612	1.36 (1.21–1.53)	<0.001	50.4	Random-effect	
Gender	Male	39	10,409/10,390	1.16 (1.06–1.26)	0.001	47.1	Random-effect
	Female	32	4,303/6,371	1.16 (0.98–1.39)	<0.001	72.3	Random-effect

HB = hospital-based studies, PB = population-based studies, SCLC = small-cell lung cancer, LCLC = large cell lung carcinoma, SC = squamous carcinoma, AC = adenocarcinoma
Supplemental Table 14

Meta-analysis of the association of *GSTT1* polymorphism with risk of lung cancer

Variable	n	Cases/Controls	Test of association	Test of heterogeneity	Model	
			OR (95% CI)	\(P_h\)		
			\(I^2\) (%)			
Overall	103	29,476/35,305	1.16 (1.08–1.24)	<0.001	59.2 Random-effect	
Ethnicity						
African	5	362/413	0.98 (0.70–1.37)	0.564	0.0 Fixed-effect	
Indian	15	2,624/2,993	1.54 (1.13–2.11)	<0.001	78.5 Random-effect	
Asian	33	9,442/8,865	1.23 (1.12–1.36)	0.001	49.1 Random-effect	
Caucasian	41	14,782/19,972	1.05 (0.97–1.14)	0.005	40.1 Random-effect	
Country						
China	24	3,766/5,535	1.31 (1.16–1.49)	0.004	48.9 Random-effect	
Japan	4	938/822	1.22 (1.01–1.47)	0.352	8.2 Fixed-effect	
Korea	3	4,418/2,240	1.08 (0.97–1.19)	0.156	46.2 Fixed-effect	
North India	4	689/667	2.99 (1.88–4.78)	0.101	51.8 Random-effect	
South India	10	1,685/2,056	1.25 (0.90–1.75)	<0.001	75.0 Random-effect	
Source of control						
HB	53	12,703/14,711	1.17 (1.06–1.29)	<0.001	63.1 Random-effect	
PB	23	9,110/9,751	1.11 (0.99–1.24)	0.008	46.3 Random-effect	
Matching						
Yes	47	11,595/15,282	1.12 (1.02–1.24)	<0.001	56.3 Random-effect	
No	56	17,881/20,023	1.19 (1.08–1.30)	<0.001	61.9 Random-effect	
Quality score						
> 12	42	16,562/19,771	1.11 (1.02–1.21)	<0.001	54.8 Random-effect	
\(\leq 12\)	61	12,914/15,534	1.20 (1.08–1.33)	<0.001	62.0 Random-effect	
Sample size						
> 200	88	28,568/34,347	1.15 (1.08–1.23)	<0.001	60.7 Random-effect	
\(\leq 200\)	15	908/958	1.20 (0.89–1.63)	0.013	50.6 Random-effect	
Histological type						
SCLC	21	975/5,719	0.96 (0.80–1.14)	0.103	29.2 Fixed-effect	
LCLC	3	51/1,181	0.39 (0.17–0.94)	0.208	36.3 Fixed-effect	
SC	37	3,832/11,426	1.13 (0.98–1.31)	<0.001	54.4 Random-effect	
SC/Asian	11	790/1,969	1.38 (1.02–1.87)	0.002	63.5 Random-effect	
SC/Caucasian	18	2,170/6,664	1.02 (0.85–1.23)	0.024	44.0 Random-effect	
SC/Indian	5	511/1,067	1.13 (0.72–1.78)	0.064	54.1 Random-effect	
AC	37	4,020/11,663	1.18 (0.99–1.39)	<0.001	68.6 Random-effect	
AC/Asian	12	1,123/2,168	1.36 (1.17–1.58)	0.150	30.2 Fixed-effect	
AC/Caucasian	17	1,889/6,576	0.96 (0.70–1.31)	<0.001	77.1 Random-effect	
AC/Indian	5	373/1,202	2.02 (1.51–2.70)	0.865	0.0 Fixed-effect	
Smoking						
Yes	43	8,464/8,513	1.23 (1.08–1.40)	<0.001	56.1 Random-effect	
No	38	2,799/6,570	1.09 (0.94–1.25)	0.055	28.4 Random-effect	
Gender	N	Cases	Adjusted OR (95% CI)	p-value	HR	Method
--------	---	-------	---------------------	---------	----	---------
Male	21	7,234/6,243	1.10 (0.93–1.29)	<0.001	67.2	Random-effect
Female	18	2,919/4,553	1.04 (0.93–1.16)	0.458	0.0	Fixed-effect

HB = hospital-based studies, PB = population-based studies, SCLC = small-cell lung cancer, LCLC = large cell lung carcinoma, SC = squamous carcinoma, AC = adenocarcinoma
Supp Table 15 Meta-analysis of the association of *GSTP1* polymorphism with risk of lung cancer

Variable	n (Cases/Controls)	Val/Val vs. Ile/Ile	Ile/Val vs. Ile/Ile	Val/Val vs. Ile/Ile + Ile/Val	Val/Val
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Overall	69 (18,852/21,941)	1.06 (0.98–1.14)	0.116/18.3	1.05 (0.99–1.11)	0.037/26.1
		1.05 (0.98–1.13)	0.208/12.6		1.06 (1)
Ethnicity					
African	3 (232/268)	1.22 (0.71–2.10)	0.763/0.0	1.42 (0.93–2.17)	0.210/35.9
Asian	23 (4,359/5,032)	**1.45 (1.16–1.80)**	0.361/7.6	**1.13 (1.02–1.24)**	0.305/12.0
Caucasian	32 (12,148/13,968)	1.00 (0.91–1.09)	0.151/21.8	0.99 (0.94–1.05)	0.161/21.0
Indian	5 (913/1,175)	1.17 (0.76–1.80)	0.197/33.6	1.05 (0.78–1.42)	0.060/55.7
					1.14 (0.74–1.75)
					0.309/16.5
					1.14 (1)
Source of control					
HB	41 (11,475/11,549)	**1.11 (1.01–1.25)**	0.279/11.5	1.07 (0.99–1.16)	0.020/36.2
PB	16 (5,459/7,173)	0.93 (0.83–1.06)	0.278/15.7	1.00 (0.92–1.08)	0.368/7.6
				0.93 (0.83–1.04)	0.317/12.2
					0.98 (0)
Matching					
Yes	36 (9,330/11,950)	1.06 (0.93–1.21)	0.202/17.1	1.04 (0.97–1.12)	0.156/20.6
No	33 (9,522/9,991)	1.09 (0.98–1.22)	0.157/21.0	1.06 (0.98–1.16)	0.043/33.3
					0.174/19.7
Quality score					1.07 (0)
> 12	37 (13,546/15,202)	1.00 (0.92–1.09)	0.215/16.4	0.98 (0.93–1.04)	0.263/13.1
≤ 12	32 (5,306/6,739)	**1.23 (1.06–1.42)**	0.314/9.8	**1.13 (1.05–1.23)**	0.113/24.6
Sample size					1.16 (1.01–1.34)
> 200	65 (18,601/21,594)	1.09 (0.99–1.20)	0.088/21.0	1.06 (0.99–1.12)	0.021/29.9
≤ 200	4 (251/347)	0.88 (0.40–1.94)	0.492/0.0	1.07 (0.74–1.55)	0.721/0.0
				0.93 (0.44–1.96)	0.370/4.6
HWE					1.03 (0)
Yes	63 (17,634/20,618)	**1.08 (1.00–1.17)**	0.137/17.6	1.03 (0.98–1.08)	0.146/17.0
No	6 (1,218/1,323)	**0.73 (0.54–0.99)**	0.865/0.0	1.11 (0.80–1.53)	0.007/68.6
Histological type					**0.71 (0.53–0.95)**
SCLC	17 (1,113/6,012)	**1.34 (1.01–1.77)**	0.661/0.0	1.07 (0.82–1.38)	0.060/45.0
SCLC/Caucasian	11 (756/4,423)	**1.42 (1.05–1.92)**	0.718/0.0	1.00 (0.82–1.23)	0.123/40.2
LCLC	4 (193/2,544)	0.74 (0.41–1.32)	0.204/37.0	0.92 (0.66–1.27)	0.393/0.0
SC	27 (3,309/9,035)	1.10 (0.86–1.40)	0.060/37.6	0.98 (0.88–1.09)	0.624/0.0
SC/Asian	9 (692/1,921)	1.02 (0.58–1.78)	0.127/47.3	0.96 (0.75–1.24)	0.899/0.0
SC/Caucasian	15 (2,333/6,206)	1.13 (0.85–1.50)	0.037/48.2	1.00 (0.89–1.12)	0.323/12.7
AC	30 (3,745/9,598)	1.07 (0.91–1.25)	0.472/0.0	0.95 (0.86–1.04)	0.641/0.0
Smoking					1.03 (0.88–1.22)
Yes	23 (5,858/5,287)	**1.33 (1.08–1.64)**	0.688/0.0	1.03 (0.91–1.17)	0.330/13.2
No	23 (1,543/3,027)	1.06 (0.72–1.56)	0.676/0.0	1.12 (0.91–1.39)	0.673/0.0
Gender					1.04 (0.72–1.50)
Male	17 (4,863/5,175)	1.09 (0.94–1.27)	0.203/23.2	1.01 (0.92–1.10)	0.300/14.0
Female	13 (2,812/3,101)	1.01 (0.76–1.34)	0.049/47.0	0.92 (0.82–1.04)	0.499/0.0

HB = hospital-based studies, PB = population-based studies, SCLC = small-cell lung cancer, LCLC = large cell lung carcinoma, SC = squamous carcinoma, AC = adenocarcinoma
Supplemental Table 16 Meta-analysis of the combined effects of *GSTM1* present/null and *GSTT1* present/null on lung cancer risk

Variable	N (Case/Control)	OR (95% CI)	Model 1	OR (95% CI)	Model 2	OR (95% CI)	Model 3	OR (95% CI)	Model 4	OR (95% CI)	N	P^h	I^2
Overall	20 (15,560/19,914)	1.34 (1.11–1.61)	1.27 <0.001/2.7	1.53 <0.001/2.7	1.20 <0.001/2.7	1	51.5						
Ethnicity													
Caucasian	20 (8,618/10,118)	1.36 <0.001/2.7	1.12 0.005/2.7	1.14 0.220/2.7	1.12 0.020/2.7	1	46.9						
Asian	15 (5,813/4,339)	1.40 (1.06–1.84)	1.52 (1.17–1.98)	1.99 <0.001/2.7	1.40 0.008/2.7	1	3.341/4.069						
Indian	3 (632/632)	1.52 (0.93–2.48)	1.53 (1.13–2.07)	2.53 0.473/2.7	1.49 0.674/2.7	1							
African	3 (219/278)	—	—	0.56 (0.20–1.62)	0.38 0.636/2.7	0							
Source of control													
HB	31 (5,581/6,341)	1.30 (1.01–1.68)	1.36 (1.12–1.66)	1.57 (1.27–1.94)	1.24 (1.06–1.45)	1							
PB	12 (7,852/6,542)	1.73 (1.13–2.65)	1.21 (0.87–1.70)	1.54 <0.001/76.1	1.17 0.009/59.0	1							
Matching													
Yes	17 (3,341/4,069)	1.34 (0.78–2.31)	1.54 <0.001/82.	1.43 0.023/51.7	1.30 <0.001/68.	1							
No	28 (12,319/11,845)	1.34 (0.87–2.31)	1.21 (0.96–2.46)	1.57 <0.001/66.0	1.16 0.028/38.9	1							
Quality score													
> 12	20 (10,000/9,217)	1.26 (0.99–1.61)	1.24 <0.001/78.	1.50 <0.001/71.8	1.19 <0.001/69.	1							
≤ 12	25 (5,660/6,697)	1.39 (1.06–1.64)	1.28 (1.01–1.55)	1.56 <0.001/66.0	1.17 0.333/10.0	1							
Sample size													
> 200	36 (5,173/5,284)	1.37 (1.11–1.69)	1.25 (1.08–1.46)	1.53 (1.29–1.83)	1.19 (1.07–1.33)	1							
≤ 200	9 (487/630)	1.19 (0.77–1.84)	0.646/0.0	1.49 (0.72/0.64)	0.873/0.0	1							

Model 1 = M1 present/T1 null vs. M1 present/T1 present, Model 2 = M1 null/T1 present vs. M1 present/T1 present, Model 3 = M1 null/T1 null vs. M1 present/T1 present, Model 4 = All one risk genotypes vs. M1 present/T1 present, Model 5 = All risk genotypes vs. M1 present/T1 present, Model 6 = M1 null/T1 null vs. M1 present/T1 present + M1 present/T1 null + M1 null/T1 present, HB = hospital-based studies, PB = population-based studies
Supplemental Table 17 Meta-analysis of the combined effects of GSTM1 null/Null and GSTP1 Ile105Val on lung cancer risk

Variable	Sample size	Model 1	Model 2	Model 3	Model 4	Mos
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR
Overall	21	1.15 (0.90–1.48)	1.04 (0.89–1.22)	1.02 (0.96–1.08)	1.01 (0.95–1.07)	1.11 (0.96–1.28)
	(4,538/5,604)	1.02 (0.96–1.09)	0.98 (0.92–1.10)	0.98 (0.92–1.06)	0.97 (0.91–1.04)	1.01 (0.92–1.11)
Ethnicity						
Caucasian	13	1.06 (0.90–1.24)	1.04 (0.84–1.15)	1.04 (0.93–1.17)	1.06 (0.99–1.14)	1.17 (0.99–1.37)
	(3,384/4,246)	1.02 (0.84–1.23)	0.98 (0.84–1.15)	0.98 (0.89–1.10)	1.01 (0.94–1.09)	0.92 (0.75–1.12)
Asian	2 (209/316)	1.68 (0.72–2.06)	0.937 (0.54–2.61)	1.29 (0.66–2.05)	1.56 (0.597–0.0)	1.74 (0.695–0.0)
		(1.08–2.63)	(0.72–2.31)	(0.66–2.05)	(1.03–2.35)	(1.50–4.33)
Indian	3 (632/632)	1.44 (1.00–2.00)	1.08 (1.00–2.00)	0.008 (0.00–2.00)	1.17 (0.005–1.00)	1.21 (0.212–3.56)
		(1.09–1.90)	(0.72–2.31)	(0.000–0.0)	(1.03–2.35)	(1.50–4.33)
African	2 (113/146)	– – – –	– – – –	– – – –	– – – –	– – – –
Source of control						
HB	12	1.14 (0.92–1.42)	0.98 (0.79–1.22)	1.06 (0.88–1.29)	1.17 (0.94–1.46)	1.17 (0.94–1.46)
	(3,323/3,720)	1.02 (0.79–1.22)	0.98 (0.80–1.18)	1.06 (0.88–1.29)	1.17 (0.94–1.46)	1.17 (0.94–1.46)
PB	5 (528/745)	1.78 (0.79–4.03)	1.79 (0.82–3.92)	1.43 (0.73–2.79)	1.64 (0.82–3.29)	1.60 (0.80–3.29)
		(0.74–4.03)	(0.82–4.03)	(0.73–2.79)	(1.05–1.94)	(1.04–2.05)
Matching						
Yes	13	1.34 (1.12–1.61)	1.18 (0.96–1.45)	1.21 (0.99–1.49)	1.15 (0.97–1.37)	1.11 (0.98–1.27)
	(2,456/3,029)	1.03 (0.80–1.35)	0.88 (0.66–1.14)	0.93 (0.71–1.21)	1.05 (0.83–1.31)	0.92 (0.70–1.21)
No	8 (2,082/2,575)	0.99 (0.80–1.00)	1.00 (0.83–1.18)	0.88 (0.70–1.10)	0.96 (0.80–1.15)	0.92 (0.78–1.08)
		(0.83–1.18)	(0.74–1.05)	(0.80–1.07)	(0.89–1.24)	(0.89–1.24)
Quality score						
> 12	12	1.32 (1.01–1.71)	1.03 (0.86–1.23)	1.26 (1.05–1.52)	1.31 (1.02–1.68)	1.21 (1.01–1.47)
	(3,053/3,606)	1.00 (0.87–1.22)	1.00 (0.87–1.22)	1.26 (1.05–1.52)	1.31 (1.02–1.68)	1.21 (1.01–1.47)
≤ 12	9 (1,485/1,998)	0.96 (0.84–1.27)	0.96 (0.73–1.27)	0.96 (0.81–1.13)	1.30 (0.98–1.61)	1.00 (0.75–1.36)
		(0.68–0.00)	(0.73–1.27)	(0.81–1.13)	(1.07–1.58)	(0.80–1.24)
HWE						
Yes	19	1.08 (0.94–1.24)	1.00 (0.87–1.15)	1.08 (0.97–1.20)	1.34 (1.10–1.62)	1.15 (0.93–1.40)
	(4,117/5,183)	1.00 (0.87–1.15)	1.00 (0.87–1.15)	1.08 (0.97–1.20)	1.34 (1.10–1.62)	1.15 (0.93–1.40)
No	2 (421/421)	1.48 (0.84–2.61)	1.00 (0.84–2.61)	1.13 (0.84–2.61)	1.09 (0.84–2.61)	1.15 (0.84–2.61)
		(0.84–2.61)	(0.84–2.61)	(0.84–2.61)	(0.84–2.61)	(0.84–2.61)

Model 1 = MI null/PI Ile/Ile vs. MI present/PI Ile/Ile, Model 2 = MI present/PI Val* vs. MI present/PI Ile/Ile, Model 3 = (MI null/PI Ile/Ile + MI present/PI Val*) vs. MI present/PI Ile/Ile; Model 4 = MI null/PI Val* vs. MI present/ PI Ile/Ile, Model 5 = All risk genotypes vs. MI present/PI Ile/Ile, Model 6 = MI null/PI Val* vs. (MI present/PI Ile/Ile + MI null/PI Ile/Ile + MI Present/PI Val*), HB = hospital-based studies, PB = population-based studies.
Supplemental Table 18 Meta-analysis of the combined effects of GSTT1 present/null and GSTP1 Ile105Val on lung cancer risk

Variable	Sample size	Model 1	Model 2	Model 3	Model 4	δ				
		OR (95% CI)	P/δ²	C						
Overall	17	1.32	0.600/0.0	0.96	0.149/31.3	1.03	0.162/25.4	1.55	0.005/53.7	1
	(3,507/4,151)	(1.10–1.58)	(0.85–1.08)	(0.93–1.14)	(1.18–2.02)	(1.03–1.95)	(0.86–1.09)	(1.03–1.95)	1	
Ethnicity										
Caucasian	9 (2,356/2,794)	1.16	0.632/0.0	0.93	0.228/29.1	0.97	0.321/13.6	1.42	0.042/50.2	1
	(0.90–1.49)	(0.80–1.05)	(0.86–1.09)	(1.03–1.95)	(0.86–1.09)	(1.03–1.95)	(0.86–1.09)	(1.03–1.95)	1	
Asian	2 (209/316)	1.33	0.823/0.0	1.04	0.036/77.3	1.27	0.473/0.0	2.29	0.327/0.0	1
	(0.86–2.05)	(0.31–3.58)	(0.85–1.89)	(1.33–3.93)	(0.85–1.89)	(1.33–3.93)	(0.85–1.89)	(1.33–3.93)	1	
Indian	3 (632/632)	1.75	0.284/20.5	1.01	0.154/46.5	1.18	0.101/56.4	2.06	0.016/75.8	1
	(1.21–2.55)	(0.77–1.34)	(0.93–1.51)	(0.75–5.64)	(0.93–1.51)	(0.75–5.64)	(0.93–1.51)	(0.75–5.64)	1	
African	2 (110/145)	–	–	–	1.20	0.109/61.1	1.28	0.303/5.9	1	
					(0.36–3.99)	(0.53–3.06)	(0.53–3.06)	(0.53–3.06)	1	
Source of control										
HB	9 (2,278/2,476)	1.32	0.319/14.5	0.96	0.172/33.5	1.01	0.236/23.3	1.54	0.002/67.9	1
	(1.06–1.64)	(0.82–1.12)	(0.89–1.15)	(1.01–1.37)	(0.89–1.15)	(1.01–1.37)	(0.89–1.15)	(1.01–1.37)	1	
PB	5 (675/833)	1.25	–	0.78	–	1.02	0.162/38.9	1.70	0.244/26.7	1
	(0.48–3.29)	(0.54–1.12)	(0.81–1.28)	(1.16–2.49)	(0.81–1.28)	(1.16–2.49)	(0.81–1.28)	(1.16–2.49)	1	
Matching										
Yes	10	1.22	0.676/0.0	1.12	0.074/53.2	1.10	0.294/16.2	1.41	0.088/40.5	1
	(2,084/2,407)	(0.97–1.54)	(0.81–1.36)	(0.96–3.27)	(0.96–3.27)	(1.02–1.95)	(0.96–3.27)	(1.02–1.95)	1	
No	7 (1,423/1,744)	1.50	0.426/0.0	0.90	0.434/0.0	0.95	0.195/30.5	1.71	0.012/63.4	1
	(1.11–2.01)	(0.76–1.06)	(0.82–1.10)	(1.09–2.67)	(0.82–1.10)	(1.09–2.67)	(0.82–1.10)	(1.09–2.67)	1	
Quality score										
> 12	11	1.21	0.677/0.0	0.94	0.133/43.2	1.01	0.186/27.1	1.52	0.029/50.1	1
	(2,439/2,784)	(0.95–1.55)	(0.80–1.11)	(0.90–1.14)	(0.90–1.14)	(1.09–2.12)	(0.90–1.14)	(1.09–2.12)	1	
≤12	6 (1,068/1,367)	1.47	0.413/0.5	0.98	0.191/32.7	1.06	0.186/33.4	1.59	0.020/62.6	1
	(1.11–1.94)	(0.81–1.18)	(0.89–1.26)	(0.98–2.56)	(0.89–1.26)	(0.98–2.56)	(0.89–1.26)	(0.98–2.56)	1	
HWE										
Yes	15	1.29	0.473/0.0	0.96	0.162/32.0	1.03	0.175/25.3	1.58	0.004/56.5	1
	(3,086/3,730)	(1.06–1.58)	(0.85–1.10)	(0.93–1.14)	(0.93–1.14)	(1.18–2.10)	(0.93–1.14)	(1.18–2.10)	1	
No	2 (421/421)	1.45	0.474/0.0	0.90	0.102/62.6	1.01	0.102/62.6	1.35	0.134/55.5	1
	(0.91–2.29)	(0.63–1.28)	(0.61–1.67)	(0.50–3.65)	(0.61–1.67)	(0.50–3.65)	(0.61–1.67)	(0.50–3.65)	1	

Model 1 = TT null/P1 Ile/Ile vs. T1 present/P1 Ile/Ile, Model 2 = T1 present/P1 Ile/Ile vs. T1 present/P1 Ile/Ile, Model 3 = (TT null/P1 Ile/Ile + T1 present/P1 Ile/Ile) vs. T1 present/P1 Ile/Ile, Model 4 = T1 null/P1 Val* vs. T1 present/P1 Ile/Ile, Model 5 = All risk genotypes vs. T1 present/P1 Ile/Ile, Model 6 = T1 null/P1 Val* vs. (T1 present/P1 Ile/Ile + T1 null/P1 Ile/Ile + T1 Present/P1 Val*), HB = hospital-based studies, PB = population-based studies
Supplemental Table 19

Meta-analysis of the combined effects of *GSTM1* present/null, *GSTT1* present/null and *GSTP1* present/null on lung cancer risk

Variable	Sample	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	
	size	OR (95% CI)							
Overall	7	1.08 (0.61–1.90)	1.44 (0.66–3.13)	1.01 (0.55–1.86)	1.16 (0.95–1.41)	0.9320 (0.65–1.34)	1.65 (0.65–4.18)	1.65 (0.65–4.18)	2.81 (1.82–7.79)
HWE	Yes	–	–	–	–	–	–	–	
	(436/672)	(0.66–3.13)	(0.55–1.86)	(0.95–1.41)	(0.65–4.18)	(0.65–4.18)	–	–	
	6	–	–	–	–	–	–	–	
	(345/541)	–	–	–	–	–	–	–	

Model 1 = M1 null/T1 present/P1 Ile/Ile vs. M1 present/T1 present/P1 Ile/Ile, Model 2 = M1 present/T1 null/P1 Ile/Ile vs. M1 present/T1 present/P1 Ile/Ile, Model 3 = M1 present/T1 present/P1 Val 1 vs. M1 present/T1 present/P1 Ile/Ile, Model 4 = all one high-risk genotype vs. M1 present/T1 present/P1 Ile/Ile, Model 5 = M1 null/T1 null/P1 Ile/Ile vs. M1 present/T1 present/P1 Ile/Ile, Model 6 = M1 null/T1 present/P1 Val 1 vs. M1 present/T1 present/P1 Ile/Ile, Model 7 = M1 present/T1 null/P1 Val 1 vs. M1 present/T1 present/P1 Ile/Ile, Model 8 = all two high-risk genotype vs. M1 present/T1 present/P1 Ile/Ile, Model 9 = M1 null/T1 null/P1 Val 1 vs. M1 present/T1 present/P1 Ile/Ile, Model 10 = M1 null/T1 null/P1 Val 1 vs. M1 present/T1 present/P1 Ile/Ile + all one high-risk genotype + all two high-risk genotypes.