Polarized Fourier-Raman spectra of K, Rb and Tl hydrogen phthalates are studied in the 220–3300 cm$^{-1}$ region at the 1.064 µm excitation. The frequencies of internal vibrations in hydrogen phthalates are assigned to vibrations of orthophenylene and carboxyl groups. A substitution of K for Rb and Tl gave rise to a small low-frequency shift of vibrations. It is observed the multiband structure of the stretching OH-vibrations due to the fermi-resonance interactions. A number of additional bands are found in the spectra of deuterium potassium acid phthalate. It is suggested that only the partial substitution of hydrogen atoms for deuterium takes place in both orthophenylene and carboxyl groups.

1. INTRODUCTION

Alkali metal hydrogen phthalate (MAP) crystals, M(C$_6$H$_4$COOH\cdot COO), are widely known for their application in the long-wave X-ray spectrometers [1]. Their optical, piezoelectric and elastic properties are investigated in detail [2–4]. Recently, MAP crystals were used as substrates for a deposition of thin films of organic nonlinear materials [5].

MAP crystals are crystallized as noncentrosymmetric or centrosymmetric rhombic structures depending on the cation. In particular, MAP crystal with M = K, Rb, and Tl are noncentrosymmetric crystals. These molecular crystals are characterized by a presence of various bonds: covalent (inside anions [C$_6$H$_4$COOH-COO$]$), ionic (cation–anion), Van-der-Waals (between chains of anions), and intermolecular hydrogen bonds O-H--O (H-bonds between anions in chains). In these crystals H-bonds are very short (~2.5 Å) and, hence, they may be attributed to strong H-bonds for which are possible the fermi-resonance interactions of stretching vibrations ν(O-H) with sum combinations of bending in-plane (β (O-H)) and out-of-plane (γ(O-H)) vibrations owing to intraanionic anharmonicities [6].

In the present paper we report results of the fourier-Raman study of MAP crystals (M = K, Rb, and Tl) in different scattering geometries. Earlier the
Raman spectra at 0.5145 µm excitation [7], IR spectra [7, 8] and neutron scattering [9] of potassium hydrogen phthalate (KAP) and deuterium KAP (DKAP) were obtained.

2. EXPERIMENTAL

The potassium, rubidium (RbAP) and thallium (TlAP) hydrogen phthalate crystals are water-soluble. They were grown from water solution by a technique of lowering temperature from 46 to 30°C at an intense mixing in darken conditions [2, 3]. DKAP was grown in similar way, but starting KAP was dissolved in D₂O.

KAP, RbAP, and TlAP are the isostructural crystals [10–12]. Structural model of KAP crystals and the unit cell [10] is shown in Fig. 1. In the parallel planes (010) the corrugated layers of the M⁺ cations are situated. The anions consist of the phenylene and carboxyl groups and they are located by double layers between the cation layers. The groups -COO⁻ form H-bonds with the carboxyl group –COOH of the nearest anion along the c axis [10]. H-bonds are marked by the dash line in Fig. 1.

The structure of KAP is classified as the orthorhombic system with the space group Pca₂₁ (C₅ᵥ, Z = 4). The crystallographic axes were found by etching of the cleavage plane (010) with water. The corners of the etched figures pointed to the face of the rapid-growing pyramid that corresponded to the negative coming out of the c axis [10]. The direction [001] is the native crystalline edge, the direction [100] lies in the cleavage plane perpendicularly to the direction [001], and the cleavage plane (010) is the native plane of pinacoid. The oriented crystals were cut with the water saw and polished on the wet silk.

The X-ray diffraction was studied with the diffractometer Shimadzu XRD-600 (Cu Kα radiation, Ni filter). The diffractograms were obtained with the 0.01° steps and the 1 s exposition. The cell parameters with the (0.5–1) × 10⁻³ Å accuracy were found after the full-profile analysis of diffractograms with the GSAS program package. The measured and literary parameters of the MAP unit cells are given in Table 1.

The Raman spectra in the –500 ÷ 3300 cm⁻¹ region were obtained by the Fourier-Raman

Table 1. The unit cell parameters of the MAP crystals (in Å)

Axis	KAP	DKAP	KAP [8]	RbAP* [9]	TlAP* [10]
a	9.624(6)	9.630(7)	9.614(4)	10.064(2)	10.047(2)
b	13.333(1)	13.340(1)	13.330(1)	13.068(2)	12.878(2)
c	6.483(0)	6.485(1)	6.479(4)	6.561(1)	6.615(2)

* In brackets the axes are given according to references.
spectrometer RFS-100/S [13] at the 1.064 μm laser excitation with power 100 mW and the 4 cm⁻¹ resolution at room temperature. The study was carried out in the backscattering geometry with the polarization analysis of the scattered light.

3. THE DISCUSSION OF DATA

According to X-ray data [10–12], all atoms of the MAP formula unit (hereafter ‘molecule’) are located in the general position. Therefore all $3N - 6$ internal vibrations, where N is the number of atoms in molecule ($N = 18$), should be active in the Raman spectra. Besides, since the MAP unit cell contains four molecules, each vibration is split into four Davydov’s components of the symmetry A_1, A_2, B_1 and B_2, which are also Raman active.

It is expedient to divide the vibrational representation of MAP into the vibrations of the orthophenylene (OPh) and carboxyl groups. The frequencies and forms of 30 internal vibrations of OPh-group are known [14]: 15 stretching (C–H, C=C, C–C’, skeletal), 6 bending in-plane (C–H, C–C’), and 9 bending out-of-plane (C–H, C–C’, skeletal) vibrations, where C’ is the carbon atom substituting the hydrogen atom in the benzene ring. In view of a weak (ionic) bond of the metal atoms with anions, it is

![Fig. 2. The polarized Raman spectra of the KAP crystal.](image-url)
difficult to expect an appearance of vibrations of the metal atoms in the Raman spectra. However, it is possible an influence of these atoms on the spectra of OPh and carboxyl groups.

The polarized Raman spectra of KAP are shown in Fig. 2, and the Raman frequencies of KAP, RbAP, TlAP, and DKAP are collected in Tables 2 and 3. The frequencies below 220 cm\(^{-1}\) are likely corresponded to external vibrations of molecules and they will be

Table 2. The Raman frequencies of the A\(_1\) and A\(_2\) symmetry in the KAP, RbAP and TlAP crystals

x(zz), \(A_1(\text{TO})\)	\(z(xx)z, A_1(\text{LO})\)	\(z(xy)z, A_2\)	Assignment							
K	Rb	Tl	K	Rb	Tl	K	Rb	Tl	Assignment	
1	271	276	268	271			273	277	274	
2	283	282	280	279	274					
3	340	342	341	340	340	338	339	340	338	
4	370	372	369	371	371	369	370	371	368	
5	406	406	408	409	409	408	408	408	409	
6	421	420	420	421	420	420	441	440		
7	556	557	553	555	558	558				
8	583	582	583							
9	649	649	648	650	649	648	651	650	651	\(\gamma(\text{C}=\text{O})\)
10	695	696	691	696	696	691				
11	721	721	718	725	722	719	725	722	718	
12	763	761	760	768	765	762	767	761		\(\gamma(\text{O}=\text{D})\)
13	788	790	788	789	792	788	788	791	788	\(\beta(\text{C}=\text{O})\)
14	812	812	809	812	812	807	812	812	807	
15	855	855	851	856	856	852	856	856	852	
16	897	889	890			887	889	888		
17										
18	994	997	997							
19	1039	1039	1040	1039	1038	1039	1039	1039	1039	
20	1079	1079	1078							\(\beta(\text{O}=\text{D})\)
21	1087	1087								\(\gamma(\text{O}=\text{H})\)
22	1153	1152	1153	1152	1147	1153	1151	1148		
23	1162	1162	1161	1164	1162	1163	1163	1161	1162	
24	1198									
25		1246								
26	1268	1269	1269	1282	1272	1274	1274	1269	1270	\(\nu(\text{C}=\text{OH})\)
27	1302	1323	1287	1285	1329	1315	1315	1301		
28	1382	1386	1386	1393	1395	1395	1392	1393	1391	
29	1444	1445	1445	1444	1443	1444	1444	1443	1444	\(\beta(\text{O}=\text{H})\)
30										
31	1494	1493	1491	1493	1493	1491	1493	1492	1490	
32	1517									
33	1542	1545	1552	1545			1548	1541		
34	1574	1574	1575	1574	1577	1576	1575	1575		
35	1601	1599	1598	1601	1599	1600	1601	1599	1598	
36	1679	1622	1670	1679	1676	1677	1670	1671	1664	\(\nu(\text{C}=\text{O})\)
37										
38										
Table 3. The Raman frequencies of the B₁ and B₂ symmetry in the KAP, RbAP and TIAP crystals and the A₁, B₁ and B₂ symmetry in the DKAP

Assignment	K	Rb	Tl	K	Rb	Tl	A₁(TO)	B₁(TO)	B₂(TO)
γ(C=O)	1	271		2	267		267	267	268
	2	285	279	3	340	343	344	344	339
	3	368	364	370	364	363	370	368	368
	4	506		407	407	406	407	404	401
	5	420	424	421	418	420	419	420	420
	6	549	551	551	554	554	552	548	553
	7	588	586	583	588	582	586		
	8	653	654	652	650	650	651	641	643
	9	680	679	677	697	697	692	678	679
	10	720	722	720	722	717	721	721	721
	11	771	770	766	752	769	766	754	754
	12	791	792	789	788	791	788	775	778
	13	812	812	809	812	812	808	807	808
	14	855	855	852	854	855	852	854	853
	15	892	895	895			888	891	888
	16	963	965	965	955	958	949	961	961
	17	993	995	994	992	992	999	994	994
	18	1038	1039	1039	1040	1039	1039	1038	1038
	19						1058	1058	
	20	1082	1082	1083	1080	1080	1078	1079	1082
	21						1087		
	22	1155	1154	1154	1155	1155	1152	1151	1157
	23	1162	1162	1162	1160	1160	1160	1169	1163
	24	1191		1200	1194	1196			
	25						1237	1246	1235
	26	1269	1268	1267	1271	1270	1269	1270	1270
	27						1293	1291	
	28	1382	1385	1385	1382	1386	1386	1378	1379
	29	1448	1444	1444	1444	1444	1444	1444	1440
	30						1474	1475	1470
	31	1491	1492	1492	1495	1491	1489	1490	1490
	32						1517	1518	
	33	1554	1545	1550	1546		1541	1548	
	34	1576	1574	1576	1577	1576	1574	1574	1575
	35	1600	1600	1598	1600	1599	1599	1600	1601
	36	1663	1663	1659	1669	1663	1670	1669	1664
	37						1688	1688	1692
	38								

ν(C=O)
It is known, that in case of the strong H-bands the stretching vibrations ν(O-H) are shift in the region below 3000 cm$^{-1}$, as, for example, in the spectra of the KDP crystals [15]. In the Raman spectra of KAP it is seen a weak diffusive scattering in the 1800–3000 cm$^{-1}$ region with the broad bands near 2000 and 2450 cm$^{-1}$, and the less significant shoulder near 2700 cm$^{-1}$, as well as the narrow band near 2590 cm$^{-1}$ (Figs. 2, 3). Earlier [7] the 2590 cm$^{-1}$ band was assigned to the sum combinations of the skeletal vibrations, and the broad bands to vibrations of H-bonds. The emergence of the multiband structure for ν(O-H) may be explained by the fermi-resonance interactions [6].

The stretching vibrations ν(O-H) were most intense in the $y(xx)y$ scattering geometry when polarizations of the exciting and scattered radiation were aligned along the preferential direction of H-bonds (Fig. 3).

Earlier [9] the bending vibrations β(O-H) and γ(O-H) in KAP were found (near 177 and 138 meV, respectively). We have assigned the Raman bands at 1445 and 1087 cm$^{-1}$ to them that it was in agreement with a suggestion in [7]. Note, that a minimum in diffusive scattering of ν(O-H) near 2200 cm$^{-1}$ (Fig. 3) is close to the 2γ(O-H) overtone that does not contradict to the assumption of the fermi-resonance of this overtone with the ν(O-H) diffusive band. Earlier

\[\text{Fig. 3. The Raman spectra of the KAP and DKAP crystals in the region of the O-H(D) and C-H(D) vibrations.}\]
it is argued that the most strong fermi-resonance interaction takes place with the overtones of the bending out-of-plane bands γ(O-H).

The narrow Raman bands in the 2800–3200 cm$^{-1}$ region (Figs. 2, 3) should be assigned to the ν(C-H) stretching vibrations of the OPh-group [14].

The ν(C=O) stretching vibrations are specified unambiguously. They form the broad band near 1670 cm$^{-1}$. This band split into two components in the A_1(TO) spectra of KAP, RbAP and TIAP that may be due to the presence of the different bondlengths C=O in the MAP crystals. The frequencies of the bending vibrations β(C=C) and γ(C=C) may be identified less precisely, although their possible positions for the COOX substitutions in benzene are known [14]: 700–825 and 525–695 cm$^{-1}$, respectively.

In the spectra of orthophthalic acid with two group-substituents COOH in benzene the 1282 cm$^{-1}$ band is assigned to the stretching vibration ν(C-OH). Its analogue in the MAP spectra is also present in this region and it is most intense in the z(xx)z due to the preferential direction of the C-OH bond along the a axis.

The other bands of the intraanionic vibrations in the region below 1600 cm$^{-1}$ may be assigned to the internal vibrations of OPh-group. Their frequencies weakly depend on substituents and to assign bands one can follow to the known data for OPh-groups [14]. Then, five high-frequency bands (1494, 1517, 1542, 1574, and 1601 cm$^{-1}$ in the KAP spectra) may be assigned to the stretching vibrations ν(C-C). However, the assignment of other bands is less reliable because of their proximity and a possible small deviation from proposed order in [14].

If deuterium enters in the carboxyl group of MAP, then one can expect a change of the distance between oxygen atoms forming H-bond and, as consequence, a change of the cell parameters. We have found that the cell parameters in DKAP increased by 0.6, 0.5, and 0.3 % for the a, b and c axis, respectively, in comparison with KAP. These changes may evidence that deuterium substitutes hydrogen in the carboxyl groups.

The frequencies of DKAP were slightly changed in comparison with those in KAP. All frequency shifts were with lowering frequencies in DKAP. Note, that the band ν(C=O) in DKAP was split not only in the A_1(TO) spectra, but also in the B_1 and B_2 spectra.

In the DKAP spectra new bands were appeared in the region of the stretching vibrations ν(O-H) and ν(C-H). Assuming that the bands near 3000-3070 cm$^{-1}$ are related to the ν(C-H) vibrations, one can anticipate the ν(C-D) in the 2120–2170 cm$^{-1}$ region. Really, the narrow band at 2121 cm–1 is seen in the DKAP spectra (Fig. 3) that evidence a substitution of H for D in the OPh-group.

It is of interest the emergence of the broad band at 1930 cm$^{-1}$ in the DKAP spectra (Fig. 3). It may be assigned to the ν(O-D) stretching vibrations that is an analogue of the 2000 cm$^{-1}$ band in KAP. Earlier [15] in this region the ν(O-H) and ν(O-D) bands were observed in spectra of the KDP and DKDP crystals. The presence of the stretching vibrations ν(O-H(D)) and ν(C-H(D)) in the DKAP spectra is the evidence of the partial deuteration of KAP at the given technique of the DKAP growth.

4. CONCLUSIONS

We have studied the polarized Raman spectra of the potassium, rubidium and thallium hydrogen phthalates as well as the potassium deuterium phthalate. The spectra in the different scattering geometries are allowed to obtain the vibrations of the A_1, A_2, B_1, and B_2 symmetry. It is shown that the observed bands can be assigned to vibrations of the different structural groups: the orthophenylene group
and the bonds C=O, C-H, C-OH and O-H. The ν(O-H) stretching vibrations forms the diffusive band from 1800 to 3000 cm$^{-1}$ that split into a few components due to the fermi-resonance interactions with the overtone and sum combinations of bending vibrations of H-bonds. The change potassium for rubidium or thallium gives rise to a small low-frequency shift of bands. We have found a number of the additional bands in the spectra of potassium deuterium phthalate that give evidence a partial substitution of hydrogen for deuterium occurs in both the orthophenylene and carboxyl groups.

This study was supported partially by the Russian Foundation for Basic research, grant no. 03-02-17021. Authors are also grateful to B. A. Kolesov, V. V. Kravchenko, and A. V. Okotrub for for the help in the beginning of work.

REFERENCES
1. M. L. Barsukova, G. S. Belikova, L. M. Belyaev, V. A. Boyko, A. B. Gil’varg, S. A. Pikuz, A. Ya. Fayenov, and A. Yu. Chugunov, Instr. Exp. Techniq. 23, No. 4, part 2, 1028 (1980); V. D. Yumatov, A. V. Okotrub, L. N. Mazalov, G. S. Belikova, and T. M. Okhrimenko, J. Stuct. Chem. 26, No. 4, 59 (1985); N. Kejalakshmy, K. Srinivasan, J. Phys. D 36, 1778 (2003).
2. L. M. Belyaev, G. S. Belikova, A. B. Gil’varg, and I. M. Sil’vestrova, Sov. Phys. Crystallogr. 14, No. 4, 544 (1969).
3. G. S. Belikova, L. M. Belyaev, M. P. Golovei, Yu. V. Pisarevskii, I. M. Sil’vestrova, and T. N. Turskaya, Sov. Phys. Crystallogr. 19, No. 3, 351 (1974).
4. L. M. Belyaev, G. S. Belikova, A. B. Gil’varg, I. N. Kalinkina, and G. I. Kosourov, Optika i spektroskopiya (Russ.) 29, 985 (1970); G. S. Belikova, Yu. V. Pisarevskii, and I. M. Sil’vestrova, Sov. Phys. Crystallogr. 19, No. 4, 545 (1975).
5. M. Nisoli, V. Pruneri, V. Mangi, S. DeSilvestri, G. Dellepiane, D. Comoretto, C. Cuniberti, and J. LeMoigne, Appl. Phys. Lett. 65, 590 (1994); S. Timparano, A. Sassella, A. Borghesi, W Porzio, P. Fontaine, and M. Goldmann, Adv. Mater. 13, 127 (2001).
6. L. A. Dementieva, A. V. Iogansen, G. A. Kurkchi. Optika i spektroskopiya (Russ.), 29, 868 (1970).
7. B. Orel, D. Hadzi, and F. Cabassi Spectrochimica Acta 31A, 169 (1975).
8. R. Mohan Kumar, D. Rajan Babu, P. Murugakoohan, R. Jayavel, J. of Crystal Growth 245, 297 (2002).
9. http://www.fi.infn.it/conferenze/galassie/Poste r/zoppi_Tosca.ppt.
10. T. A. Eremina, N. G. Furmanova, L. F. Malakhova, T. M. Okhrimenko, and V. A. Kuznetsov, Kristallografiya (Russ.) 38, No. 4, 236 (1993) [Sov. Phys. Crystallogr. 38, No. 4, 554 (1993)]
11. R. A. Smith, Acta Cryst. B 31, 2347–2348 (1975).
12. R. D. Fulton, R. R. Ryan, and J. H. Hall, Acta Cryst. C 46, 1621 (1990).
13. E. A. Vinogradov, B. N. Mavrin, and L. K. Vodopianov. J. Exp. Theor. Phys. 99, No. 4, 749 (2004)].
14. G. Varsanyi, Assignments for vibrational spectra of 700 benzene derivatives. Academiai Kiado, Budapest. 1973. Vol.1. P.232.
15. E. Wiener (Avnear), S. Levin, and I. Pelah, J. Chem. Phys. 52, 2881 (1970); B. N. Mavrin, Kh. E. Sterin, A. V. Bobrov, L. N. Rashkovich, and A. V. Michenko. Solid State Physics (Russ.) 15, 1682 (1973).