Research Article

Sharp Large Deviation for the Energy of α-Brownian Bridge

Shoujiang Zhao, 1 Qiaojing Liu, 1 Fuxiang Liu, 1 and Hong Yin 2

1 School of Science, China Three Gorges University, Yichang 443002, China
2 School of Information, Renmin University of China, Beijing 100872, China

Correspondence should be addressed to Qiaojing Liu; qjliu2002@163.com

Received 26 April 2013; Accepted 23 October 2013

1. Introduction

We consider the following α-Brownian bridge:

$$dX_t = -\alpha T-t X_t \, dt + dW_t, \quad X_0 = 0,$$

where W is a standard Brownian motion, $t \in [0, T)$, $T \in (0, \infty)$, and the constant $\alpha > 1/2$. Let P_α denote the probability distribution of the solution $\{X_t, t \in [0, T)\}$ of (1). The α-Brownian bridge is first used to study the arbitrage profit associated with a given future contract in the absence of transaction costs by Brennan and Schwartz [1].

α-Brownian bridge is a time inhomogeneous diffusion process which has been studied by Barczy and Pap [2, 3], Jiang and Zhao [4], and Zhao and Liu [5]. They studied the central limit theorem and the large deviations for parameter estimators and hypothesis testing problem of α-Brownian bridge. While the large deviation is not so helpful in some statistics problems since it only gives a logarithmic equivalent for the deviation probability, Bahadur and Ranga Rao [6] overcame this difficulty by the sharp large deviation principle for the empirical mean. Recently, the sharp large deviation principle is widely used in the study of Gaussian quadratic forms, Ornstein-Uhlenbeck model, and fractional Ornstein-Uhlenbeck (cf. Bercu and Rouault [7], Bercu et al. [8], and Bercu et al. [9, 10]).

In this paper we consider the sharp large deviation principle (SLDP) of energy S_t, where

$$S_t = \int_0^t X_s^2 \frac{(s-T)^2}{(s-T)^2} \, ds.$$

Our main results are the following.

Theorem 1. Let $\{X_t, t \in [0, T]\}$ be the process given by the stochastic differential equation (1). Then $\{S_t/\lambda_t, t \in [0, T]\}$ satisfies the large deviation principle with speed λ_t, and good rate function $I(\cdot)$ defined by the following:

$$I(x) = \begin{cases} 1 & \text{if } x > 0; \\ +\infty & \text{if } x \leq 0, \end{cases}$$

where $\lambda_t = \log(T/(T-t))$.

Theorem 2. $\{S_t/\lambda_t, t \in [0, T]\}$ satisfies SLDP; that is, for any $c > 1/(2\alpha - 1)$, there exists a sequence $b_{c,k}$, such that, for any $p > 0$, when t approaches T enough,

$$P(S_t \geq c\lambda_t) = \exp \left(-I(c) \lambda_t + H(a_c) \right) \sqrt{2\pi a_c} \beta_t \times \left(1 + \sum_{k=1}^\infty \frac{b_{c,k}}{\lambda_t} + O \left(\frac{1}{\lambda_t^p} \right) \right).$$

(4)
where
\[\sigma^2_c = 4c^2, \quad \beta_c = \sigma_c \sqrt{\lambda_t}, \quad a_c = \frac{(1 - 2\alpha)c^2 - 1}{8c^2}, \quad H(a_c) = -\frac{1}{2} \log \left(\frac{1 - (1 - 2\alpha)c^2}{2} \right).\]

The coefficients \(b_{\alpha,c}\) may be explicitly computed as functions of the derivatives of \(L\) and \(H\) (defined in Lemma 3) at point \(a_c\). For example, \(b_{\alpha,c}\) is given by
\[b_{\alpha,c} = \frac{1}{\sigma_c^2} \left(-\frac{h_2}{2} - \frac{h_1^2}{2} + \frac{l_4}{8\sigma_c^2} + \frac{l_1h_1}{2a_c} \right), \quad \text{with} \quad \lambda_k = L^{(k)}(a_c), \quad \text{and} \quad h_k = H^{(k)}(a_c).\]

2. Large Deviation for Energy

Given \(\alpha > 1/2\), we first consider the following logarithmic moment generating function of \(\lambda_t\); that is,
\[L_t(u) := \log E_u \exp \left\{ u \int_0^t \frac{X_s^2}{(s - T)^2} ds \right\}, \quad \forall \lambda \in \mathbb{R}. \quad (7)\]

And let
\[\mathcal{D}_{L_t} := \{ u \in \mathbb{R}, \ L_t(u) < +\infty \} \quad (8)\]

be the effective domain of \(L_t\). By the same method as in Zhao and Liu [5], we have the following lemma.

Lemma 3. Let \(\mathcal{D}_{L_t}\) be the effective domain of the limit \(L_t\); then for all \(u \in \mathcal{D}_{L_t}\), one has
\[\frac{L_t(u)}{\lambda_t} = L(u) + \frac{H(u)}{\lambda_t} + \frac{R(u)}{\lambda_t}, \quad (9)\]

with
\[L(u) = -\frac{1 - 2\alpha - \varphi(u)}{4}, \quad H(\lambda) = -\frac{1}{2} \log \left\{ \frac{1}{2} \left(1 + h(u) \right) \right\}, \quad R(u) = -\frac{1}{2} \log \left\{ 1 + \frac{1 - h(u)}{1 + h(u)} \exp \left\{ 2\varphi(u) \lambda_t \right\} \right\}, \quad (10)\]

where \(\varphi(u) = -\sqrt{(1 - 2\alpha)^2 - 8u}\) and \(h(u) = (1 - 2\alpha)/\varphi(u)\). Furthermore, the remainder \(R(u)\) satisfies
\[R(u) = O_{1-T} \left(\exp \left\{ 2\varphi(u) \lambda_t \right\} \right). \quad (11)\]

Proof. By Itô’s formula and Girsanov’s formula (see Jacob and Shiryaev [11]), for all \(u \in \mathcal{D}_{L_t}\) and \(t \in [0, T)\),
\[\log \frac{dP_u}{dP_\beta(u)} \bigg|_{\omega_t} = (\alpha - \beta) \int_0^t \frac{X_s^2}{s - T} dX_s - \frac{\alpha^2 - \beta^2}{2} \int_0^t \frac{X_s^2}{(s - T)^2} ds, \quad (12)\]

Therefore,
\[L_t(u) = \log E_u \left[\exp \left\{ u \int_0^t \frac{X_s^2}{(s - T)^2} ds \right\} \right] \frac{dP_u}{dP_\beta(u)} \bigg|_{\omega_t} = \log E_u \left[\frac{\alpha - \beta}{2} X_t^2 \frac{2}{(t - T)} + \frac{1}{2} \left(\beta^2 - \alpha^2 + \alpha - \beta + 2u \right) \int_0^t \frac{X_s^2}{(s - T)^2} ds \right]. \quad (13)\]

If \(4u \leq (1 - 2\alpha)^2\), we can choose \(\beta\) such that \((\beta - 1/2)^2 - (\alpha - 1/2)^2 + 2u = 0\). Then
\[L_t(u) = -\frac{1 - 2\alpha - \varphi(u)}{4} \left(\frac{1}{2} + h(u) \right) + \frac{1}{2} \log \left\{ \frac{1}{2} \left(1 + h(u) \right) \right\} \left(1 - \frac{t}{T} \right), \quad (14)\]

Therefore,
\[L_t(u) = -\frac{1 - 2\alpha - \varphi(u)}{4} \left(1 - \frac{t}{T} \right) + \frac{1}{2} \log \left\{ \frac{1}{2} \left(1 + h(u) \right) \right\} \left(1 - \frac{t}{T} \right), \quad (15)\]

Proof of Theorem 1. From Lemma 3, we have
\[L(u) = \lim_{t \to T} \frac{L_t(u)}{\lambda_t} = -\frac{1 - 2\alpha - \varphi(u)}{4}. \quad (16)\]
and $L(\cdot)$ is steep; by the Gärtner-Ellis theorem (Dembo and Zeitouni [12]), S_t/λ_t satisfies the large deviation principle with speed λ_t and good rate function $I(\cdot)$ defined by the following:

$$I(x) = \begin{cases} \frac{1}{8x}(2\alpha - 1)x - 1)^2, & \text{if } x > 0; \\ +\infty, & \text{if } x \leq 0. \end{cases}$$ (17)

Remark 4. Theorem 1 can also be obtained by using Theorem 1 in Zhao and Liu [5].

3. Sharp Large Deviation for Energy

For $c > 1/(2\alpha - 1)$, let

$$a_c = \frac{1}{2}(2\alpha - 1)x^2 - 1, \quad \sigma_c^2 = L''(a_c) = 4c^3,$$

$$H(a_c) = -\frac{1}{2} \log(1 - (1 - 2\alpha)c).$$ (18)

Then

$$P(S_t \geq c\lambda_t)$$

$$= \int_{S_t \geq c\lambda_t} \exp \{L(a_c) - ca_c\lambda_t + ca_c\lambda_t - a_cS_t\} dQ_t$$

$$= \exp \{L(a_c) - ca_c\lambda_t\} \mathbb{E}_Q \exp \{-a_c\beta_t U_t |U_t|_{\{U_t \geq 0\}}\} = A_t B_t,$$ (19)

where \mathbb{E}_Q is the expectation after the change of measure

$$\frac{dQ_t}{dP} = \exp \{a_cS_t - L_t(a_c)\},$$

$$U_t = S_t - c\lambda_t, \quad \beta_t = \sigma_c \sqrt{\lambda_t}.$$ (20)

By Lemma 3, we have the following expression of A_t.

Lemma 5. For all $c > 1/(2\alpha - 1)$, when t approaches T enough,

$$A_t = \exp \{-I(c)\lambda_t + H(a_c)\} (1 + O((T - t)^\delta)).$$ (21)

For B_t, one gets the following.

Lemma 6. For all $c > 1/(2\alpha - 1)$, the distribution of U_t under Q_t converges to $N(0,1)$ distribution. Furthermore, there exists a sequence ψ_k such that, for any $p > 0$ when t approaches T enough,

$$B_t = \frac{1}{\sigma_c \sqrt{2\pi} \lambda_t} \left(1 + \sum_{k=1}^{p} \frac{\psi_k}{\lambda_t} + O\left(\lambda_t^{-p+1}\right)\right).$$ (22)

Proof of Theorem 2. The theorem follows from Lemma 5 and Lemma 6.

It only remains to prove Lemma 6. Let $\Phi_j(\cdot)$ be the characteristic function of U_t under Q_t; then we have the following.

Lemma 7. When t approaches T, $\Phi_j(\cdot)$ belongs to $L^2(\mathbb{R})$ and, for all $u \in \mathbb{R}$,

$$\Phi_j(u) = \exp \left\{ \frac{-iu \sqrt{\lambda_c}}{\sigma_c} \right\}$$

$$\times \exp \left\{ L_t \left(a_c + \frac{iu}{\beta_t}\right) - L_t(a_c) \right\}.$$ (23)

Moreover,

$$B_t = \mathbb{E}_Q \exp \{-a_c\beta_t U_t |U_t|_{\{U_t \geq 0\}}\} = C_t + D_t,$$ (24)

with

$$C_t = \frac{1}{2\pi a_c \beta_t} \int_{|u| \leq s_t} \left(1 + \frac{iu}{a_c \beta_t}\right)^{-1} \Phi_j(u) du,$$

$$D_t = \frac{1}{2\pi a_c \beta_t} \int_{|u| > s_t} \left(1 + \frac{iu}{a_c \beta_t}\right)^{-1} \Phi_j(u) du,$$ (25)

$$|D_t| = O\left(\exp\left\{-D\lambda_t^{1/3}\right\}\right),$$

where $s_t = s\left(\log\left(\frac{T}{T - t}\right)\right)^{1/6}$,

for some positive constant s, and D is some positive constant.

Proof. For any $u \in \mathbb{R}$,

$$\Phi_j(u) = \mathbb{E}\left(\exp\{iuU_t\} \exp\{a_cS_t - L_t(a_c)\}\right)$$

$$= \exp \left\{ \frac{-iu \sqrt{\lambda_c}}{\sigma_c} \right\}$$

$$\times \exp \left\{ L_t \left(a_c + \frac{iu}{\beta_t}\right) - L_t(a_c) \right\}.$$ (27)

By the same method as in the proof of Lemma 2.2 in [7] by Bercu and Rouault, there exist two positive constants r and κ such that

$$|\Phi_j(u)|^2 \leq 1 + \frac{r u^2}{\lambda_t^{(\kappa)/2}}.$$ (28)

therefore, $\Phi_j(\cdot)$ belongs to $L^2(\mathbb{R})$, and by Parseval’s formula, for some positive constant s, let

$$s_t = s\left(\log\left(\frac{T}{T - t}\right)\right)^{1/6};$$ (29)

we get

$$B_t = \frac{1}{2\pi a_c \beta_t} \int_{|u| \leq s_t} \left(1 + \frac{iu}{a_c \beta_t}\right)^{-1} \Phi_j(u) du + \frac{1}{2\pi a_c \beta_t}$$

$$\times \int_{|u| > s_t} \left(1 + \frac{iu}{a_c \beta_t}\right)^{-1} \Phi_j(u) du$$

$$=: C_t + D_t,$$ (30)

$$|D_t| = O\left(\exp\left\{-D\lambda_t^{1/3}\right\}\right),$$ (32)

where D is some positive constant. □
Proof of Lemma 6. By Lemma 3, we have
\[
\frac{L_t^{(k)}}{\lambda_t} (a_c) = L_t^{(k)} (a_c) + \frac{H_t^{(k)}}{\lambda_t} (a_c) + O \left(\frac{(T-t)^{2c}}{\lambda_t} \right). \tag{33}
\]
Noting that \(L'(a_c) = 0 \), \(L''(a_c) = \sigma_c^2 \) and
\[
\frac{L''(a_c) (iu)^2}{2} \frac{\lambda_t}{\beta_t} = -\frac{u^2}{2}, \tag{34}
\]
for any \(p > 0 \), by Taylor expansion, we obtain
\[
\log \Phi_t(u) = \frac{-u^2}{2} + \lambda_t \sum_{k=0}^{2p+3} \left(\frac{iu}{\beta_t} \right)^k \frac{L_t^{(k)} (a_c)}{k!}
+ \sum_{k=1}^{2p+1} \left(\frac{iu}{\beta_t} \right)^k \frac{H_t^{(k)} (a_c)}{k!}
+ O \left(\max \left(1, \frac{|u|^{2p+4}}{\lambda_t^{p+1}} \right) \right); \tag{35}
\]
therefore, there exist integers \(q(p) \), \(r(p) \) and a sequence \(\varphi_{k,l} \) independent of \(p \); when \(t \) approaches \(T \), we get
\[
\Phi_t(u) = \exp \left\{ -\frac{u^2}{2} \right\} \left(1 + \frac{1}{\sqrt{\lambda_t}} \sum_{k=0}^{2p} \sum_{l=k+1}^{q(p)} \varphi_{k,l} u^l \right)^{\frac{p}{2}}
+ O \left(\max \left(1, \frac{|u|^{2p+4}}{\lambda_t^{p+1}} \right) \right), \tag{36}
\]
where \(O \) is uniform as soon as \(|u| \leq s \).

Finally, we get the proof of Lemma 6 by Lemma 7 together with standard calculations on the \(N(0,1) \) distribution.

Acknowledgment

This research was supported by the National Natural Science of Tianyuan Foundation under Grant 11226202.

References

[1] M. J. Brennan and E. S. Schwartz, “Arbitrage in stock index futures,” The Journal of Business, vol. 63, pp. 7–31, 1990.
[2] M. Barczy and G. Pap, “Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes,” Journal of Statistical Planning and Inference, vol. 140, no. 6, pp. 1576–1593, 2010.
[3] M. Barczy and G. Pap, “Explicit formulas for Laplace transforms of certain functionals of some time inhomogeneous diffusions,” Journal of Mathematical Analysis and Applications, vol. 380, no. 2, pp. 405–424, 2011.
[4] H. Jiang and S. Zhao, “Large and moderate deviations in testing time inhomogeneous diffusions,” Journal of Statistical Planning and Inference, vol. 141, no. 9, pp. 3160–3169, 2011.
[5] S. Zhao and Q. Liu, “Large deviations for parameter estimators of \(\alpha \)-Brownian bridge,” Journal of Statistical Planning and Inference, vol. 142, no. 3, pp. 695–707, 2012.
[6] R. R. Bahadur and R. Ranga Rao, “On deviations of the sample mean,” Annals of Mathematical Statistics, vol. 31, pp. 1015–1027, 1960.
[7] B. Berca and A. Rouault, “ Sharp large deviations for the Ornstein-Uhlenbeck process,” Rossiiskaya Akademiya Nauk. Teoriya Veroyatnostei i ee Primeneniya, vol. 46, no. 1, pp. 74–93, 2001.
[8] B. Berca, F. Gamboa, and M. Lavielle, “Sharp large deviations for Gaussian quadratic forms with applications,” European Series in Applied and Industrial Mathematics. Probability and Statistics, vol. 4, pp. 1–24, 2000.
[9] B. Berca, L. Coutin, and N. Savy, “Sharp large deviations for the fractional Ornstein-Uhlenbeck process,” SIAM Theory of Probability and Its Applications, vol. 55, pp. 575–610, 2011.
[10] B. Berca, L. Coutin, and N. Savy, “Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process,” Stochastic Processes and their Applications, vol. 122, no. 10, pp. 3393–3424, 2012.
[11] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer Press, Berlin, Germany, 1987.
[12] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, vol. 38, Springe, Berlin, Germany, 2nd edition, 1998.
Submit your manuscripts at
http://www.hindawi.com