Title
Effect of the Energy of Consciousness (The Trivedi Effect®) on the Structural Properties and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy

Permalink
https://escholarship.org/uc/item/2d24f96v

Journal
Advances in Biochemistry, 5(1)

ISSN
2329-0862

Authors
Trivedi, Mahendra Kumar
Branton, Alice
Trivedi, Dahryn
et al.

Publication Date
2017-03-09

DOI
10.11648/j.ab.20170501.12

Peer reviewed
Effect of the Energy of Consciousness (The Trivedi Effect®) on the Structural Properties and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy

Mahendra Kumar Trivedi¹, Alice Branton¹, Dahryn Trivedi¹, Gopal Nayak¹, Barry Dean Wellborn¹, Deborah Lea Smith¹, Dezi Ann Koster¹, Elizabeth Patric¹, Jagdish Singh¹, Kathleen Starr Vagt¹, Krista Joanne Callas¹, Parthasarathi Panda², Kalyan Kumar Sethi², Snehasis Jana².*

¹Trivedi Global, Inc., Henderson, Nevada, USA
²Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

Email address: publication@trivedieffect.com (S. Jana)
*Corresponding author

To cite this article:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Barry Dean Wellborn, Deborah Lea Smith, Dezi Ann Koster, Elizabeth Patric, Jagdish Singh, Kathleen Starr Vagt, Krista Joanne Callas, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana. Effect of the Energy of Consciousness (The Trivedi Effect®) on the Structural Properties and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy. Advances in Biochemistry. Vol. 5, No. 1, 2017, pp. 7-15. doi: 10.11648/j.ab.20170501.12

Received: February 6, 2017; Accepted: February 18, 2017; Published: March 9, 2017

Abstract: Magnesium gluconate has the wide application for the prevention and treatment of hypomagnesemia. The objective of the current study was to investigate the effect of The Trivedi Effect® - Energy of Conscious Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio \(\frac{P_{M+1}}{P_M} \) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Biofield Energy Healing Treatment remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of both the control and treated samples revealed the presence of the mass of the protonated magnesium gluconate at \(m/z \) 415 at the retention time of 1.53 minutes with almost similar fragmentation pattern. The relative peak intensities of the fragment ions for the treated sample were significantly altered compared with the control sample. The proton and carbon signals for CH, CH₂ and CO groups in the proton and carbon NMR spectra were observed almost similar for the control and the treated samples. The isotopic abundance ratio analysis revealed that the percentage of the isotopic abundance ratio of \(P_{M+1} \) to \(P_M \) \(\left(\frac{1\text{H}}{1\text{H}} \text{ or } \frac{13\text{C}}{12\text{C}} \text{ or } \frac{18\text{O}}{16\text{O}} \text{ or } \frac{25\text{Mg}}{24\text{Mg}} \right) \) was significantly increased in treated sample by 80.38%, compared with the control sample. Briefly, \(\frac{1\text{C}}{1\text{C}}, \frac{2\text{H}}{2\text{H}}, \frac{17\text{O}}{16\text{O}} \text{ and } \frac{25\text{Mg}}{24\text{Mg}} \) contributions from \((C_{12}H_{23}MgO_{14})^+ \) to \(m/z \) 416; \(18\text{O} \) and \(26\text{Mg} \) contributions from \((C_{12}H_{23}MgO_{13})^+ \) to \(m/z \) 417 in the treated sample were significantly increased compared with the control sample. Thus, the treated magnesium gluconate could be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections. The Trivedi Effect® treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects.

Keywords: Magnesium Gluconate, The Trivedi Effect®, Biofield Energy Healing Treatment, Consciousness Energy Healing Treatment, Biofield Energy Healers, LC-MS, NMR, Isotopic Abundance Ratio, Isotope Effects
1. Introduction

Magnesium is a second most abundant mineral in the human body. It is an essential mineral for more than 300 enzymes, DNA and RNA synthesis, reproduction and protein synthesis as well as a vital coherent controller of glycolysis and the Krebs cycle [1-3]. Low level of magnesium i.e. hypomagnesemia may cause several diseases and disorders such as diabetes mellitus, allergies, septic shock, inflammatory diseases, immunological disorders, asthma, arrhythmias, acute myocardial infarction, gestational hypertension, preeclampsia, eclampsia, Alzheimer’s disease, cancer, etc. [4-6]. Magnesium gluconate (C₁₆H₂₂MgO₁₄δ) is the organometallic salt of magnesium with gluconic acid produced from glucose catalyzed by glucose oxidase [7]. Magnesium gluconate is found to be the most powerful antioxidant than other magnesium salts [8]. Magnesium gluconate exhibits the highest level of bioavailability of magnesium and is more physiologically acceptable salt among the commercially available magnesium salts such as chloride, sulfate, citrate, lactate, aspartate, etc. [9, 10]. Thus, magnesium gluconate has the important application for the prevention and treatment of hypomagnesemia and also oxidative stress induced ischemia/reperfusion injury [8, 9, 11]. It can be used as neuroprotective [12], an oral tocolytic agent [13], and also in a skin-tightening cosmetic composition [14]. Subsequently, magnesium gluconate was considered as one of the components in a novel proprietary herbomineral formulation, which is designed as nutraceutical for the source of magnesium ion.

Since ancient times, many different cultures, religions and systems of belief have recognized a living force that preserves and inhabits every living organism. This force is the source of ‘life’ and has been called various names, such as prana by the Hindus, qi or chi by the Chinese, and ki by the Japanese. This is believed to co-relate with the soul, spirit and mind. This hypothetical vital force has been scientifically evaluated and is now considered the Bioenergetics Field. The Biofield Energy is a dynamic electromagnetic field surrounding the human body, resulting from the continuous emission of low-level light, heat, and acoustical energy from the body. Biofield Energy is infinite, para-dimensional and can freely flow between the human and environment [15]. F. Sances et al. reported that Biofield Energy can be transmitted into any living organism(s) or nonliving object(s) around the globe with scientifically measurable effect through the Biofield Energy Healing Treatment (The Trivedi Effect®) might be an alternate method for increasing or decreasing the natural isotopic abundance ratio of the substances [36-39]. The stable isotope ratio analysis has the wide applications in several scientific fields for understanding the isotope effects resulting from the variation of the isotopic composition of the molecule [40, 41]. Conventional mass spectrometry (MS) techniques such as liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) are widely used for isotope ratio analysis with sufficient precision [42]. Hence, LC-MS and NMR (Nuclear Magnetic Resonance) methods were applied in this study to characterize the structural properties of the Biofield Energy Treated and untreated magnesium gluconate qualitatively for the purpose of the pharmaceutical and nutraceutical industrial applications. Consequently, LC-MS based isotopic abundance ratio (P_{M+1}/P_M) analysis in both the Biofield Energy Treated and untreated samples was designed to explore the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment on the isotopic abundance ratio in magnesium gluconate.

2. Materials and Methods

2.1. Chemicals and Reagents

Magnesium gluconate hydrate was purchased from Tokyo Chemical Industry Co., Ltd. (TCI), Japan. All other chemicals used in the experiment were of analytical grade available in India.

2.2. Energy of Consciousness Healing Treatment Strategies

Magnesium gluconate was one of the components of the new proprietary herbomineral formulation, which was developed by our research team and was used per se as the test compound for the current study. The test compound was
divided into two parts, one part of the test compound did not receive any sort of treatment and was defined as the untreated or control magnesium gluconate sample. The second part of the test compound was denoted as The Trivedi Effect®- Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) treated sample. The treated magnesium gluconate was subjected to The Trivedi Effect® by the group of seven renowned Biofield Energy Healers remotely. All seven Biofield Energy Healers were remotely located in the U. S. A., while the test compound was located in the research laboratory of GVK Biosciences Pvt. Ltd., Hyderabad, India. The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) was provided for 5 minutes through the Healer’s Unique Energy Transmission process remotely to the test compound, which was kept under laboratory conditions. None of the Biofield Energy Healers in this study visited the laboratory in person, nor had any contact with the compounds. Similarly, the control compound was subjected to “sham” healer for 5 minutes, under the same laboratory conditions. The sham healer did not have any knowledge about The Trivedi Effect®- Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment). After that, treated and untreated samples were kept in similar sealed conditions and characterized thoroughly by LC-MS and NMR spectroscopy.

2.3. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis

Liquid chromatography was performed using The Waters® ACQUITY UPLC, Milford, MA, USA equipped with a binary pump (The Waters® BSM HPLC pump), autosampler, column heater and a photo-diode array (PDA) detector. The column used for the study was a reversed phase Acquity BEH shield RP C18 (150 X 3.0 mm, 2.5 µm). The column temperature was kept constant at 40°C. The mobile phase was 2mM ammonium acetate in water as mobile phase A and acetonitrile as mobile phase B. Chromatographic separation was achieved with following gradient program: 0 min – 5%;B: 1 min – 5%;B: 15 min - 97%;B: 20 min – 97%;B: 21 min – 5%;B; 25 min – 5%. The flow rate was at a constant flow rate of 0.4 mL/min. The control and treated samples were dissolved in a mixture of water and methanol (60:40 v/v) to prepare a 1 mg/mL stock solution. An aliquot of 2 µL of the stock solution was used for analysis by LC-ESI-MS and the total run time was 25 minutes. Mass spectrometric analysis was accompanied on a Triple Quadrupole (Waters Quattro Premier XE, USA) mass spectrometer equipped with an electrospray ionization (ESI) source with the following parameters: electrospray capillary voltage 3.5 kV; source temperature 100°C; desolvation temperature 350°C; cone voltage 30 V; desolvation gas flow 1000 L/h and cone gas flow 60 L/h. Nitrogen was used in the electrospray ionization source. The multiplier voltage was set at 650 V. LC-MS was taken in positive ionization mode and with the full scan (m/z 50-1400). The total ion chromatogram, % peak area and mass spectrum of the individual peak (appeared in LC) were recorded.

2.4. Isotopic Abundance Ratio Analysis

The relative intensity of the peak in the mass spectra is directly proportional to the relative isotopic abundance of the molecule and the isotopic abundance ratio analysis was followed the scientific literature reported [36-39] method described as below:

\[P_{M+1} = \frac{P_{M+1 \text{ treated}}}{P_{M+1 \text{ control}}} \]

where, \(P_{M+1} \) represents the relative peak intensity of the isotopic molecular ion \([M+1]^+\) expressed in percentage

\[\text{Isotopic abundance ratio} = \frac{P_{M+1 \text{ treated}}}{P_{M+1 \text{ control}}} \times 100 \]

Table 1. The isotopic composition (i.e. the natural isotopic abundance) of the elements.

Element	Symbol	Mass	% Natural Abundance	A+1 Factor	A+2 Factor
Hydrogen	\(^1\text{H}\)	1	99.9885	0.0115	0.015\text{m}\text{H}
	\(^2\text{H}\)	2	0.0115		
Carbon	\(^12\text{C}\)	12	98.892		
	\(^13\text{C}\)	13	1.108		
Oxygen	\(^1\text{O}\)	16	99.762	0.038	0.04 \text{O}
	\(^17\text{O}\)	17	0.200	0.40 \text{O}	0.20 \text{O}
	\(^18\text{O}\)	18	0.04 n		
Magnesium	\(^24\text{Mg}\)	24	78.99		
	\(^25\text{Mg}\)	25	10.00	12.66 \text{Mg}	
	\(^26\text{Mg}\)	26	11.01	13.94 \text{Mg}	

A represents element, n represents the number of the element (i.e. C, H, O, Mg, etc.)

The value of the natural isotopic abundance of the elements used here for the theoretical calculation are achieved from the scientific literature and presented in the Table 1 [43, 44].

Isotopic abundance ratio for \(A + 1 \) elements = \(\frac{P_{M+1}}{P_M} \)

\[
\text{Percentage (%)} = \left(\frac{\text{Isotopic abundance ratio}}{1} \right) \times 100
\]

\[
\text{Percentage (%)} = \left(\frac{\text{Isotopic abundance ratio}_\text{treated} - \text{Isotopic abundance ratio}_\text{control}}{\text{Isotopic abundance ratio}_\text{control}} \right) \times 100
\]

Isotopic abundance ratio in the treated sample and \(\text{Isotopic abundance ratio}_\text{control} \) in the control sample.

2.5. Nuclear Magnetic Resonance (NMR) Analysis

\(^1\text{H}\) NMR spectra were recorded in a 400 MHZ VARIAN FT-NMR spectrometer at room temperature. Data refer to solutions in D\(_2\)O with the residual solvent protons as internal references.\(^1\text{H}\) NMR multiplicities were designated as singlet (s), doublet (d), triplet (t), multiplet (m), and
broad (br). 13C NMR spectra were measured at 100 MHz on a VARIAN FT-NMR spectrometer at room temperature. Chemical shifts (δ) were in parts per million (ppm) relative to the solvent’s residual proton chemical shift (D$_2$O, δ = 4.65 ppm) and solvent’s residual carbon chemical shift (D$_2$O, δ = 0 ppm).

3. Results and Discussion

3.1. Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis

The liquid chromatograms of both the control and The Trivedi Effect$^\text{®}$ Treated (Biofield Energy Treated) magnesium gluconate as shown in Figure 1 showed a sharp and narrow peak at the retention time (R$_t$) of 1.53 minutes.

![Figure 1. Liquid chromatograms of the control and Biofield Energy Treated magnesium gluconate.](image)

This finding indicated that the polarity/affinity of the treated sample remained same compared with the control sample. The ESI-MS spectra of both the control and treated magnesium gluconate at R$_t$ of 1.53 minutes (Figure 2) exhibited the presence of the mass of magnesium gluconate at m/z 415 [M + H]$^+$ (calcd for C$_{12}$H$_{23}$MgO$_{14}$, 415).

![Figure 2. The ESI-MS spectra of the control and Biofield Energy Treated magnesium gluconate.](image)

The typical fragment ion peaks in the lower m/z region of the protonated magnesium gluconate ion [M]$^+$ (m/z 415) were observed in both the control and treated samples at m/z 402 [M – H$_2$O + 6H]$^+$ (calcd for C$_{12}$H$_{26}$MgO$_{13}$, 402), 379 [M – 2H$_2$O + H]$^+$ (calcd for C$_{12}$H$_{19}$MgO$_{13}$, 379), and 361 [M – 3H$_2$O + H]$^+$ (calcd for C$_{12}$H$_{17}$MgO$_{11}$, 361). By this way removing water along with other groups like alkyl, magnesium gluconate produces different fragment ion peaks at m/z 320, 307, 279, 254, 225, 206, 183, 165, 142, 135, 114, and 100, which were observed in the ESI-MS spectra of the control and Biofield Energy Treated samples (Figure 2) correspond to the following molecular formula C$_{10}$H$_{16}$MgO$_{13}$, C$_{9}$H$_{15}$MgO$_{12}$, C$_{9}$H$_{17}$MgO$_{11}$, C$_{8}$H$_{19}$MgO$_{10}$, C$_{7}$H$_{21}$MgO$_{9}$, C$_{6}$H$_{23}$MgO$_{8}$, C$_{5}$H$_{25}$MgO$_{7}$, C$_{5}$H$_{17}$O$_{6}$, C$_{5}$H$_{19}$O$_{5}$, C$_{5}$H$_{11}$O$_{4}$, C$_{5}$H$_{13}$O$_{3}$, and C$_{5}$H$_{15}$O$_{2}$, respectively (Figure 3).
Figure 3. Proposed fragmentation pathway of magnesium gluconate.

The fragment ion peak at m/z 124 corresponding to the molecular formula C_4H_12O_4^+ was only found in the control sample. Consequently, the fragment ion peaks at m/z 343, 179, and 123 corresponding to the molecular formula C_{12}H_{22}MgO_{10}^+, C_6H_{11}O_6^+, and C_4H_{11}O_4^+, were observed in the ESI-MS spectrum of the Biofield Energy Treated sample.

The ESI-MS spectra of the control and treated samples (Figure 2) displayed almost similar type fragmentation pattern. The fragment ion peak at m/z 114 corresponding to C_5H_6O_3^2+ exhibited 100% relative peak intensity in both ESI-MS spectra of the control and treated sample (Figure 2). The relative peak intensities of the other ion peaks in The Trivedi Effect® treated sample were significantly changed compared with the control sample.

3.2. Isotopic Abundance Ratio Analysis

The molecular formula of magnesium gluconate is C_{12}H_{22}MgO_{14}. The ESI-MS spectra of the control and The Trivedi Effect® Treated showed the mass of a protonated molecular ion at m/z 415 (C_{12}H_{23}MgO_{14}^+) showing 12.26% and 9.25% relative intensities, respectively. The theoretical calculation of P_{M+1} for the protonated magnesium gluconate was presented as below:

\[P(^{13}\text{C}) = \frac{(12 \times 1.1\%) \times 12.26\%}{100\%} = 1.62\% \]
\[P(\text{^2H}) = \frac{(23 \times 0.015\%) \times 12.26\%}{100\%} = 0.04\% \]
\[P(\text{^25Mg}) = \frac{(1 \times 12.66\%) \times 12.26\%}{100\%} = 1.55\% \]
\[P(\text{^{17O}}) = \frac{(14 \times 0.04\%) \times 12.26\%}{100\%} = 0.07\% \]

\[P_{M+1} = \text{^{13}C, ^2H, ^17O, and ^25Mg contributions from (C_{12}H_{23}MgO_{14}) to m/z 416 = 3.28\%} \]

The calculated isotopic abundance of P_{M+1} value was near to the observed value (Table 2). Thus, the probability of A + 1 elements having an isotope having one mass unit heavier than the most abundant isotope (e.g., C, H, O, and Mg) contributions to the mass of the isotopic molecular ion [M+1]. Deuterium did not contribute much any isotopic m/z ratios because of less natural abundance relative to the natural abundances of carbon, oxygen and magnesium isotopes [43, 44]. The calculation indicated that C and Mg have the major contributions from magnesium gluconate to the isotopic peak at m/z 416.

The LC-MS spectra of the control and treated samples indicated the presence of the mass for the protonated magnesium gluconate (m/z 415). Hence, P_M and P_{M+1} for magnesium gluconate at m/z 415 and 416 of the control and treated samples were obtained from the observed relative peak intensities of [M] and [(M+1)] peaks, respectively in the respective ESI-MS spectra are presented in Table 2.
The alteration in the isotopic abundance ratios of \(^{13}\text{C}/^{12}\text{C}\) for C-O; \(^{2}\text{H}/^{1}\text{H}\) for C-H and O-H bonds; \(^{17}\text{O}/^{16}\text{O}\) for C-O bond; \(^{25}\text{Mg}/^{24}\text{Mg}\) and \(^{17}\text{O}/^{16}\text{O}\) for Mg-O bond have the significant impact on the ground state vibrational energy of the molecule due to the higher reduced mass (\(\mu\)) as shown in the Table 3 that leads to the isotope effects of the molecule.

Mass spectroscopic analysis of the several organic compounds revealed that the isotopic abundance of \([M+1]^+\) and \([M+2]^+\) ions were increased or decreased, thereby suggesting the change in number of neutrons in the molecule. It was then postulated to the alterations in atomic mass and atomic charge through possible mediation of neutrino oscillation [37-39, 46]. Thus, it is assumed that The Trivedi Effect\(^b\)- Energy of Consciousness Healing Treatment might offer the required energy for the neutrino oscillations. The changes of neutrinos inside the molecule in turn modified the particle size, chemical reactivity, density, thermal behavior, selectivity, binding energy, etc. [46]. Kinetic isotope effect that is resultant from the variation in the isotopic abundance ratio of one of the atoms in the reactants in a chemical reaction is very useful to study the reaction mechanism as well as for understanding the enzymatic transition state and all aspects of enzyme mechanism that is supportive for designing enormously effective and specific inhibitors [42, 45, 47]. As magnesium is an essential cofactor for various enzymatic reactions, The Trivedi Effect\(^b\)-Treated magnesium gluconate that had altered isotopic abundance ratio might be advantageous for the study of enzyme mechanism as well as support in the designing of novel potent enzyme inhibitors.

3.3. Nuclear Magnetic Resonance (NMR) Analysis

The \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectra of the control and treated magnesium gluconate are presented in the Figures 4 and 5, respectively. NMR assignments of the control and treated magnesium gluconate are presented in the Table 4. Although magnesium gluconate contains a large number of hydroxyl (OH) groups, the proton spectra of both the control and treated samples did not show any signal for the hydroxyl protons due to the replacement of the hydroxyl protons by deuterium from deuterated water, which was used as solvent for spectra recording.

The signals for the protons coupling of CH group and adjacent CH protons (2-5) in the gluconic acid portion were observed in the control and treated samples in the range of \(\delta\) 3.48 to 4.02 ppm (Table 4), which was almost in accordance with the proton spectrum of sodium gluconate [48].

Table 3. Possible isotopic bond and their effect in the vibrational energy in magnesium gluconate molecule.

SL No.	Probable isotopic bond	Isotope type	Reduced mass (\(\mu\))	Zero point vibrational energy (\(E_o\))
1	\(^{12}\text{C}/^{13}\text{C}\)	Lighter	6.00	Higher
2	\(^{11}\text{C}/^{13}\text{C}\)	Heavier	6.26	Smaller
3	\(^{13}\text{C}/^{2}\text{H}\)	Lighter	0.92	Higher
4	\(^{16}\text{O}/^{17}\text{O}\)	Heavier	1.04	Smaller
5	\(^{13}\text{C}/^{16}\text{O}\)	Lighter	6.86	Higher
6	\(^{15}\text{C}/^{16}\text{O}\)	Lighter	7.17	Smaller
7	\(^{13}\text{C}/^{17}\text{O}\)	Heavier	7.03	Smaller
8	\(^{16}\text{O}/^{17}\text{O}\)	Lighter	0.94	Higher
9	\(^{16}\text{O}/^{2}\text{H}\)	Lighter	1.78	Smaller
10	\(^{25}\text{Mg}/^{24}\text{O}\)	Lighter	9.60	Higher
11	\(^{25}\text{Mg}/^{24}\text{O}\)	Heavier	9.76	Smaller
12	\(^{25}\text{Mg}/^{24}\text{O}\)	Heavier	9.95	Smaller

The signals for the protons coupling of CH group and adjacent CH protons (2-5) in the gluconic acid portion were observed in the control and treated samples in the range of \(\delta\) 3.48 to 4.02 ppm (Table 4), which was almost in accordance with the proton spectrum of sodium gluconate [48].

Scientific literature [37-39, 45] reported that the vibrational energy is closely related with the reduced mass (\(\mu\)) of the compound and the alteration of the vibrational energy can affect the several properties like physicochemical, thermal properties of the molecule. The relation between the vibrational energy and the reduced mass (\(\mu\)) for a diatomic molecule is expressed as below [42, 45]:

\[
E_o = \frac{h}{4\pi} \sqrt{\frac{f}{\mu}}
\]

Where, \(E_o\) = the vibrational energy of a harmonic oscillator at absolute zero or zero point energy

\(f\) = force constant

\[
\mu = \text{reduced mass} = \frac{m_a m_b}{m_a + m_b}
\]

Where, \(m_a\) and \(m_b\) are the masses of the constituent atoms.

Table 2. Isotopic abundance analysis results of the magnesium gluconate ion in the control and Biofield Energy Treated sample.

Parameter	Control sample	The Trivedi Effect\(^b\) Treated sample
\(P_M\) at m/z 415 (%)	12.26	9.25
\(P_{M+1}\) at m/z 416 (%)	5.43	7.39
\(P_{M+1}/P_M\)	0.4429	0.7989
% Change of isotopic abundance ratio (\(P_{M+1}/P_M\)) with respect to the control sample	80.38	

\(P_M\) = the relative peak intensity of the parent molecular ion \([M^+]\); \(P_{M+1}\) = the relative peak intensity of the isotopic molecular ion \([(M+1)^+]\), and \(M\) = mass of the parent molecule.

The isotopic abundance ratio of \(P_{M+1}/P_M\) in the treated sample was significantly increased by 80.38% compared with the control sample (Table 2). \(^{12}\text{C}/^{13}\text{C}, ^{2}\text{H}/^{1}\text{H}, ^{17}\text{O}, \) and \(^{25}\text{Mg}\) contributions from \((\text{C}_{12}\text{H}_{24}\text{MgO}_{14}\text{)}\) to m/z 416 in the treated sample was significantly increased compared with the control sample.
groups in the 13C NMR spectrum of the treated sample were almost similar compared with the control sample (Table 4).

So, the structure of the magnesium gluconate in the treated samples remained same with the control sample.

Figure 4. The 1H NMR spectra of the control and Biofield Energy Treated magnesium gluconate.

Figure 5. The 13C NMR spectra of the control and Biofield Energy Treated magnesium gluconate.

Table 4. 1H NMR and 13C NMR spectroscopic data of both the control and The Trivedi Effect®-Biofield Energy Treated of magnesium gluconate.

Position	1H NMR δ (ppm)	13C NMR δ (ppm)			
	Number	Control	Treated	Control	Treated
1, 1'	4H	3.66 (d, $J = 4$ Hz), 3.48 (dd, $J = 12, 4$ Hz)	3.66 (d, $J = 4$ Hz), 3.48 (dd, $J = 12, 4$ Hz)	62.42	62.44
2, 2'	2H	3.59 (br s)	3.59 (br s)	70.65	70.67
3, 3'	2H	3.62 (d, $J = 4$ Hz)	3.62 (br s)	70.94	70.97
4, 4'	2H	3.88 (br s)	3.89 (d, $J = 4$ Hz)	72.20	72.24
5, 5'	2H	4.02 (d, $J = 4$ Hz)	4.01 (d, $J = 4$ Hz)	73.87	73.90
6, 6'	--	--	--	178.36	178.37

4. Conclusions

The current research work envisaged the structural characterization of magnesium gluconate using LC-MS and NMR techniques and a significant influence of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on the isotopic abundance ratio of P_{M+1}/P_M. The LC-MS analysis of the both control and treated samples revealed the presence of the mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.53 minutes with the nearly same type of fragmentation. The relative peak intensities of the fragment ions of The Trivedi Effect® Treated sample were significantly changed compared with the control sample. The isotopic abundance ratio of P_{M+1}/P_M (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly increased in the treated sample by 80.38% compared with the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C$_{6}$H$_{12}$MgO$_{2}$)$_{3}$ to m/z 416 in the treated sample was significantly increased compared to the control sample. The Trivedi Effect® treated sample might exhibit isotope effects such as altered physicochemical and thermal properties, rate of the reaction, selectivity and binding energy due to its reduced isotopic abundance ratios of P_{M+1}/P_M and P_{M+2}/P_M compared with the control sample. The Trivedi Effect® treated magnesium gluconate might be helpful to understand the enzymatic reactions as well as design the novel potent enzyme.
inhibitors by using its kinetic isotope effects. Besides, The Trivedi Effect®- Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) could be a useful approach in the design of better nutraceutical and/or pharmaceutical formulations that can offer significant therapeutic responses against various diseases such as diabetes mellitus, allergies and septic shock, stress-related disorders like sleep disorder, insomnia, anxiety, depression, Attention Deficit Disorder (ADD), Attention Deficit Hyperactive Disorder (ADHD), mental restlessness (mind chattering), brain fog, low libido, impotency, lack of motivation, mood swings, fear of the future, confusion, migraines, headaches, forgetfulness, overwhelm, loneliness, worthlessness, indecisiveness, frustration, irritability, chronic fatigue, obsessive/compulsive behavior and panic attacks, inflammatory diseases and immunological disorders like Lupus, Systemic Lupus Erythematosus, Hashimoto Thyroiditis, Type 1 Diabetes, Asthma, Chronic peptic ulcers, Tuberculosis, Hepatitis, Chronic active hepatitis, Celiac Disease (gluten-sensitive enteropathy), Addison Disease, Crohn's disease, Graves' Disease, Pernicious and Aplastic Anemia, Sjogren Syndrome, Irritable Bowel Syndrome (IBS), Multiple Sclerosis, Rheumatoid arthritis, Chronic periodontitis, Ulcerative colitis, Chronic sinusitis, Myasthenia Gravis, Atherosclerosis, Vasculitis, Dermatitis, Diverticulitis, Rheumatoid Arthritis, Reactive Arthritis, Alopecia Areata, Psoriasis, Scleroderma, Fibromyalgia, Chronic Fatigue Syndrome and Vitiligo, aging-related diseases like cardiovascular disease, arthritis, cancer, Alzheimer’s disease, dementia, catacares, osteoporosis, diabetes, hypertension, glaucoma, hearing loss, Parkinson’s Disease, Huntington’s Disease, Prion Disease, Motor Neurone Disease, Spinocerebellar Ataxia, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Friedreich’s Ataxia and Lewy Body Disease; chronic infections and many more.

Abbreviations

A: Element; LC-MS: Liquid chromatography–mass spectrometry; M: Mass of the parent molecule; m/z: Mass-to-charge ratio; n: Number of the element; NMR: Nuclear magnetic resonance spectroscopy; P0: The relative peak intensity of the parent molecular ion [M+]; P(M+1): The relative peak intensity of isotopic molecular ion [(M+1)]; R: Retention time.

Acknowledgements

The authors are grateful to GVK Biosciences Pvt. Ltd., Trivedi Science, Trivedi Global, Inc. and Trivedi Master Wellness for their assistance and support during this work.

References

[1] Heaton FW (1990) Role of magnesium in enzyme systems in metal ions in biological systems, In: Sigel H, Sigel A (Eds.), Volume 26: Compendium on magnesium and its role in biology, nutrition and physiology, Marcel Dekker Inc., New York.
[2] Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4: 60-72.
[3] Deepti R, Nalini G (2014) Magnesium plays a salient role in the cells. J Clin Biomed Sci 4: 341-345.
[4] Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7: 8199-8226.
[5] William JH, Danziger J (2016) Magnesium deficiency and proton-pump inhibitor use: A clinical review. J Clin Pharmacol 56: 660-668.
[6] Guerrera MP, Volpe SL, Mao JJ (2009) Therapeutic uses of magnesium. Am Fam Physician 80: 157-162.
[7] Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: Properties, applications and microbial production. Food Technol Biotechnol 44: 185-195.
[8] Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of diabetes mellitus. United States Patent 5871769, 1-10.
[9] Fleming TE, Mansmann Jr HC (1999) Methods and compositions for the prevention and treatment of immunological disorders, inflammatory diseases and infections. United States Patent 5939394, 1-11.
[10] Coudray C, Rambeau M, Feilleur-Coudray C, Gueux E, Tressol JC, Mazur A, Rayssiguier Y (2005) Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach. Magnes Res 18: 215-223.
[11] Weglicki WB (2000) Intravenous magnesium gluconate for treatment of conditions caused by excessive oxidative stress due to free radical distribution. United States Patent 6100297, 1-6.
[12] Turner RJ, Dasilva KW, O’Connor C, van den Heuvel C, Vink R (2004) Magnesium gluconate offers no more protection than magnesium sulphate following diffuse trau-matic brain injury in rats. J Am Coll Nutr 23: 541S-544S.
[13] Martin RW, Martin JN Jr, Pryor JA, Gaddy DK, Wiser WL, Morrison JC (1988) Comparison of oral ritodrine and magnesium gluconate for ambulatory tocolysis. J Obstet Gynecol 158: 1440-1445.
[14] Lee KH, Chung SH, Song JH, Yoon JS, Lee J, Jung MJ, Kim JH (2013) Cosmetic compositions for skin-tightening and method of skin-tightening using the same. United States Patent 8580741 B2.
[15] Stenger VJ (1999) Bioenergetic fields. Sci Rev Alternative Med 3.
[16] Sanches F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita 35: 22-29.
[17] Hammerschlag R, Jain S, Baldwin AL, Gronowicz G, Lutgendor SK, Oshman JL, Yount GL (2012) Biofield research: A roundtable discussion of scientific and methodological issues. J Altern Complement Med 18: 1081-1086.
[18] Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.
[19] Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[20] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Effect of biofield treated energized water on the growth and health status in chicken (Gallus gallus domesticus). Poult Fish Wildl Sci 3: 140.

[21] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141.

[22] Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, Gangwar M, Jana S (2015) Antibiogram of multidrug-resistant isolates of Pseudomonas aeruginosa after biofield treatment. J Infect Dis Ther 3: 244.

[23] Trivedi MK, Branton A, Trivedi D, Shettigar H, Nayak G, Mondal SC, Jana S (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3: 212-220.

[24] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Evaluation of vegetative growth parameters in biofield treated bottle gourd (Lagenaria siceraria) and Okra (Abelmoschus esculentus). International Journal of Nutrition and Food Sciences 4: 688-694.

[25] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Morphological and molecular analysis using RAPD in biofield treated sponge and bitter gourd. American Journal of Agriculture and Forestry 3: 264-270.

[26] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Physical, thermal, and spectroscopic characterization of biofield energy treated murashige and skoog plant cell culture media. Cell Biology 3: 50-57.

[27] Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Comparative physicochemical evaluation of biofield treated phosphate buffer saline and hanks balanced salt medium. American Journal of BioScience 3: 267-277.

[28] Trivedi MK, Patil S, Nayak G, Jana S, Latiyal O (2015) Influence of biofield treatment on physical, structural and spectral properties of boron nitride. J Material Sci Eng 4: 181.

[29] Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, Jana S (2015) Characterization of physical and structural properties of brass powder after biofield treatment. J Powder Metall Min 4: 134.

[30] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J 6: 98.

[31] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S, Bairwa K (2015) Spectroscopic characterization of chloramphenicol and tetracycline: An impact of biofield. Pharm Anal Acta 6: 395.

[32] Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Potential impact of biofield treatment on atomic and physical characteristics of magnesium. Vitam Miner 3: 129.

[33] Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Physical, atomic and thermal properties of biofield treated lithium powder. J Adv Chem Eng 5: 136.

[34] Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S (2015) Physical, thermal, and spectroscopic characterization of biofield energy treated methyl-2-naphthyl ether. J Environ Anal Chem 2: 162.

[35] Trivedi MK, Patil S, Mishra RK, Jana S (2015) Characterization of thermal and physical properties of biofield treated acrylamide and 2-chloroacetaldehyde. Organic Chem Curr Res 4: 143.

[36] Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2015) Isotopic abundance analysis of biofield treated benzene, toluene and p-xylene using gas chromatography-mass spectrometry (GC-MS). Mass Spectrom Open Access 1: 102.

[37] Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2015) Quantitative determination of isotopic abundance ratio of 13C, 2H, and 18O in biofield energy treated ortho and meta toluc acid isomers. American Journal of Applied Chemistry 3: 217-223.

[38] Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Determination of isotopic abundance of 11C/12C or 3H/2H and 18O/16O in biofield energy treated 1-chloro-3-nitrobenzene (3-CNB) using gas chromatography-mass spectrometry. Science Journal of Analytical Chemistry 4: 42-51.

[39] Trivedi MK, Branton A, Trivedi D, Nayak G, Sethi KK, Jana S (2016) Gas chromatography-mass spectrometry based isotopic abundance ratio analysis of biofield energy treated methyl-2-naphthylether (Nerolin). American Journal of Physical Chemistry 5: 80-86.

[40] Schelklekens RC, Stellaard F, Woerdenbag HJ, Frijlink HW, Kosterink JG (2011) Applications of stable isotopes in clinical pharmacology. Br J Clin Pharmacol 72: 879-897.

[41] Muccio Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134: 213-222.

[42] Vanhaecke F, Kysel K (2012) Isotopic composition of the elements In Isotopic Analysis: Fundamentals and applications using ICP-MS (1stedn), Edited by Vanhaecke F, Degryse P. Wiley-VCH GmbH & Co. KgAa, Weinheim.

[43] Smith RM (2004) Understanding Mass Spectra: A Basic Approach, Second Edition, John Wiley & Sons, Inc, ISBN 0-471-42949-X.

[44] Meija J, Coplen TB, Berglund M, Brand WA, De Bievre P, Groning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical Report). Pure Appl Chem 88: 293-306.

[45] Asperger S (2003) Chemical Kinetics and Inorganic Reaction Mechanisms Springer science + Business media, New York.

[46] Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.

[47] Cleland WW (2003) The use of isotope effects to determine enzyme mechanisms. J Biol Chem 278: 51975-51984.

[48] Nikolic VD, Illic DP, Nikolic LB, Stanojevic LP, Cakic MD, Tadic AD, Ilic-Stepanovic SS (2014) The synthesis and characterization of iron (II) gluconate. Advanced technologies 3: 16-24.