Study on Impact of Embodied Energy and CO₂ Emissions for Prolongation of Building Life Time: Case Study in Japan

Keizo Yokoyama¹, Makoto Yamamoto², Noriyoshi Yokoo³, Tatsuo Oka³ and Takao Sawachi⁴
1. Department of Urban Design and Planning, School of Architecture, Kogakuin University, Tokyo 163-8677, Japan
2. Research and Development Center, Shinryo Corporation, Ibaraki 300-4247, Japan
3. Department of Design and Engineering for Global Environment, Utsunomiya University, Tochigi 321-8585, Japan
4. National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure, Transport and Tourism, Tsukuba 305-0802, Japan

Abstract: In this study, we looked at a method quantifying EEC (embodied energy and CO₂) and the effect when we prolonged the building life time particularly through the durable improvement of the structure. Increasing the covering thickness of concrete for reinforcing bars and the earthquake-resistant strength are methods to increase the durability of the structure. The calculation method to obtain the quantity of concrete and reinforcing bars is provided. The EEC increase is evaluated from the 2005 input-output table in Japan. These results show that EE (embodied energy) in the construction phase is increased by 11% to 20% and EC (embodied CO₂) 17% to 32%. However, annual EE is reduced 66% to 72% and EC 70% to 79%.

Key words: Covering thickness of concrete, earthquake-resistant strength, I-O (input-output) table, embodied energy/CO₂.

1. Introduction

Recently, social demand to reduce the global environmental load has been increased. Of particular note was the 5th assessment report of Working Group I from the IPCC (Intergovernmental Panel on Climate Change) that was announced in 2013, stating that “human influence of climate system is clear” [1]. Emissions of construction-related greenhouse gas accounts for approximately 40% of greenhouse gas emissions in Japan. Therefore, the ZEB (zero-energy building) and ZEH (zero-energy house) have been announced to achieve zero energy consumption and zero CO₂ emissions in buildings or houses during operation. According to the Basic Energy Plan [2] in Japan, a target has been established with standard new houses being ZEH by 2020 and the average for all new constructions being ZEB by 2030. Such a movement is being promoted in all the countries throughout the world as well as in Japan. In the UK, it is planned to make all new houses ZEH in 2016 and all new non-residential buildings ZEB by 2019 [3]. In addition, in the United States, it is planned to make all new houses ZEH by 2020 [4] and new non-residential buildings ZEB by 2030 [5]. When buildings are changed to ZEB/ZEH, the environmental loads related to construction account for a large part of the whole life cycle load. In ordinary buildings, the energy for production is 10% to 15%. However, there are some research papers reporting that it accounts for 40% to 60% in low-energy buildings [6]. Therefore, the reduction of EEC (embodied energy and CO₂) becomes important. When we consider the reduction of EEC, it is effective in prolonging building life time, because the amount of annual EEC in the construction phase becomes small.
In the past, there were not so many studies in conjunction with EEC about prolonging of building life time, but Urushizaki et al. [7] examined the influence on LCCO₂ (lifecycle CO₂) when techniques for prolonging of building life time such as changed covering thickness, concrete standard strength and floor height emerged.

Therefore, in this study, we looked at a method for the quantification of EEC and the effect when we prolonged the life of the buildings, particularly through improvement of the durability of the structure.

2. Building Life Time and Prolonging Method

Prior to this study, the life time of buildings was easy to regulate. The life time of buildings is in regard to the state in which it cannot be used because all or part of the building is in a state of degradation. There are three kinds of degradation, as shown in Table 1, and there are techniques to prolong the life time as shown in the list.

In Japan, the average life time of residential buildings is estimated at approximately 30 years [8]. Further, there is a study report indicating that the life time of concrete buildings is 68 years for residential buildings and 56 years for commercial buildings [9]. Accordingly, the government has been implementing policies to promote long-term quality housing as in “Ultra Long-Term Housing Promotion Project” [10].

3. Calculation Method of EEC to Prolongation of Building Life Time by Increasing Durability of Structure

In this study, we adopted increasing the durability of structures as one of the methods to prolong the building life time. It is necessary to calculate an increment in the quantity of reinforcing bars, steel frames and concrete when increasing the durability of structures to evaluate the effect of prolongation of life time. In this study, to increase building life time from 60 years to 100 years, the covering thickness of concrete for reinforcing bars is increased and there is an increase in earthquake-resistant strength. The calculation method is determined when an increase in such materials is found at the design phase, when the material is subject to change. In addition, in this study, we intend to apply the method for steel reinforced concrete construction.

3.1 Increasing Durability of the Covering Thickness of Concrete for Reinforcing Bars

When looking at the service life of a structure with reinforced concrete construction, degradation caused by the rusting of reinforcing bars for the concrete is a big factor. The cause of rusting of reinforcing bars is caused by neutralization of the concrete having advanced to the depth of the reinforcing bars.

The definition of the service life is: “a point in time when the steel reinforced concrete construction skeleton is in a condition where many reinforcing bars of the skeleton might generate rust and when the performance of the structure cannot recover even if normal repair or some changes are made is called service life” [11].

Additionally, the progress of the term to neutralize concrete to a certain depth is a relationship almost proportional to the square of the depth [11]. Therefore, if the service time of the structure is standard when the covering thickness is 40 mm, the service time becomes 0.56 times when the thickness is 30 mm and 1.56 times when it is 50 mm. Table 2 shows the covering thickness of standard buildings and buildings with a long service life. When a standard column size is 800 × 800 mm, beam size is 750 × 400 mm, floor slab thickness is 180 mm and wall thickness is 180 mm, the increase in concrete is as follows:

- column: +5.1% (covering thickness is +10 mm);
- beam: +7.8% (covering thickness is +10 mm);
- floor: +11.1% (covering thickness is +10 mm);
- wall: +11.1% (covering thickness is +10 mm).
Study on Impact of Embodied Energy and CO\textsubscript{2} Emissions for Prolongation of Building Life Time: Case Study in Japan

Table 1 Type of degradation and methods to prolong life time.

Type of degradation	Description	Methods to prolong life time
Physical degradation	Neutralization of concrete and metal corrosion advancing through aging, and not function	Increasing durability of structure, outer material, equipment and pipes, etc.
Functional degradation	Equipment that is highly efficient is developed through innovation, and installed equipment becomes obsolete	Equipment setting and space in which it is easy to retrofit
Social degradation	The state in which a building and the equipment become inferior due to change of usage, or profitability as the real estate turns worse, or did not adapt to standards through changes in laws and policies	Skeleton-infill or additional space such as machine room and floor height for future installation

Table 2 Covering thickness of standard buildings and buildings with a long service life.

Element type	Standard*1	Building with long life time		
	Internal side	External side	Internal side	External side
Structural element				
Column/beam	30 mm	30 mm	40 mm	40 mm
Floor slab (roof)	20 mm	20 mm	30 mm	30 mm
Non-structural element	20 mm	20 mm	30 mm	30 mm
Foundation	70 mm	70 mm		

*1Article 79, Enforcement Ordinance of Building Standard Act.

Table 3 Increasing the rate of the material for each part through increase in earthquake-resistant strength.

Element	Earthquake-resistant strength +50%	Earthquake-resistant strength +25%		
	Concrete	Reinforcing bars	Concrete	Reinforcing bars
Column	+50%	+50%	+25%	+25%
Beam	+50%	+50%	+25%	+25%
Floor	No change	No change	No change	No change
Wall	No change	No change	No change	No change
Foundation (equivalent to a pillar and a beam)	+50%	+50%	+25%	+25%

3.2 Prolongation of Life Time through Increase of Earthquake-Resistant Strength

In the earthquake-resistant plans for the government offices building in Japan, even if a major earthquake occurs, the structure is recommended to have its earthquake-resistant strength increased by 50% over standard values to continue use without damage [12]. In addition, the structure is recommended to have its earthquake-resistant strength increased by 25% of standard values for the building to be used without undertaking major repairs to the structure. An additional material increase is calculated based on these recommendations.

It is assumed that if a column is shear-fractured and a beam is flexure fractured, then the shear strength is proportional to the quantity of structural materials used and the flexure strength is proportional to the second section moment. The results of increasing the rate of the material for each part are shown in Table 3.

3.3 Rate of Increase of Synthetic Materials

It is assumed that the average distribution of the quantity of concrete is 9% of the column, 22% of the beam, 27% of the floor, 19% of the wall, 23% of the base [13] and the increase of the total weight of building is 7.3% from the increase of covering thickness. The increase in the weight by having strengthened earthquake resistance is not included in this value. The total increase rate of material is shown in Table 4.

4. Case Study

4.1 Outline of Building

The case study was conducted for a library that has a steel reinforced concrete construction. The outline of a sample building is shown in Table 5, and some drawings are shown in Figs. 1-4 [14].
Table 4 Increasing material grade for each part by comprehensively prolongation of life time.

Element	Earthquake-resistant strength +50%	Earthquake-resistant strength +25%		
	Concrete	Reinforcing bars	Concrete	Reinforcing bars
Column	+54%	+54%	+26.8%	+26.8%
Beam	+54%	+54%	+26.8%	+26.8%
Floor	+11%	+11%	+11%	+11%
Wall	+11%	+11%	+11%	+11%
Foundation (equivalent to a pillar and a beam)	+54%	+54%	+26.8%	+26.8%

Table 5 Outline of a sample building [14].

Item	Detail
Intended use	Library
Location	Japan
Structure	Reinforced-concrete
Number of floors	3 stories
Site area	849.37 m²
Gross floor area	2,412.99 m²
Electrical equipment	Receiving high voltage electricity: 125 kVA, lighting and consent, broadcast and telephone equipment, disaster prevention system
Air-conditioning equipment	Air cooled chiller, gas heat-pump-unit, fan coil unit on each floor
Water supply and drainage sanitation	System for direct connection to water supply, sanitary facilities, city gas equipment
Elevator facilities	750 kg × 1 unit

Fig. 1 1st floor plan (units in mm) [14].

Fig. 2 3rd floor plan (units in mm) [14].
4.2 Weight of Major Materials

The capacity and weight of the building structure are obtained from cost data [14] as shown in Table 6. The weight of building structure is 1,664 kg/m².

4.3 Material Increase by Prolongation of Life Time

Table 7 shows the material increase by prolongation of life time, which is calculated in Table 4 in Section 3. The standard building life time is 60 years and the prolonged life time is 100 years. The results show that the concrete increase is 39% and reinforcing bars is 42% in the case of earthquake-resistant strength +50%, and the concrete increase is 21% and reinforcing bars is 22% in case of earthquake-resistant strength +25%.

4.4 Calculation Method of EEC

4.4.1 Intensity of EEC

The intensities of energy consumption and CO₂ emissions, which are calculated from the 2005 input-output table in Japan, are used for EEC calculation. Major construction materials are shown in Table 8.

![Fig. 3 Section (units in mm) [14]](image1)

![Fig. 4 East side view [14]](image2)

Table 6 Capacity and weight of building structure.

	Concrete*	Reinforcing bars		
	m³	Ratio	kg	kg/m³
Column	208	12%	41,007	197
Beam	402	23%	69,656	173
Floor	379	22%	24,957	66
Wall	235	14%	25,279	108
Foundation	505	29%	50,800	101
Total	1,729	100%	211,700	122

Weight of building structure 4,016 t and 1,664 kg/m²

*Specific weight of concrete is 2,200 kg/m³.

Table 7 Material increase by prolongation of life time.

	Earthquake-resistant strength +50%	Earthquake-resistant strength +25%					
	Concrete	Reinforcing bars	Concrete	Reinforcing bars			
	Increasing rate (%) m³	Increasing rate (%) kg	Increasing rate (%) m³	Increasing rate (%) kg			
Column	54	112	22,144	27	56	27	11,072
Beam	54	217	37,614	27	109	27	18,807
Floor	11	42	2,745	11	42	11	2,745
Wall	11	26	0	11	26	0	0
Foundation	54	273	27,432	27	136	27	13,716
Total	670	89,935	369	46,340			
(increasing rate)	(39%)	(42%)	(21%)	(22%)			
Increasing weight	1,563 t	857 t					
Study on Impact of Embodied Energy and CO₂ Emissions for Prolongation of Building Life Time: Case Study in Japan

Table 8 Intensities of energy consumption and CO₂ emissions of major materials (listing only major industrial sectors from all the 401 industry sectors).

Industrial No.	Industrial sector	Per consumer price of millions of Yen	Energy (MJ)	CO₂ (kg-CO₂)	Quantity of material
30	Gravel and quarrying	52,153	3,626	287.5 t	
31	Crushed stones	52,030	3,640	593.1 t	
87	Timber	13,621	952	22.68 m³	
88	Plywood	22,697	1,599	7.0 m³	
120	Thermo-setting resins	94,869	6,570	1.884 t	
121	Thermoplastic resins	267,594	18,347	6.002 t	
146	Sheet glass and safety glass	36,902	2,636	-	
147	Glass fiber and glass fiber products	71,691	4,842	-	
149	Cement	315,036	80,992	124.4 t	
150	Ready mixed concrete	81,093	16,745	62.60 m³	
151	Cement products	43,193	5,994	-	
152	Ceramic	54,376	3,500	-	
162	Hot rolled steel	189,779	18,271	13.47 t	
163	Steel pipes and tubes	119,963	11,182	6.158 t	
175	Electric wires and cables	22,562	1,611	0.645 Conductor-t	
182	Metal products for construction	63,388	5,577	-	
183	Metal products for architecture	35,353	2,878	-	
189	Boilers	22,980	1,832	-	
193	Refrigerators and air conditioning apparatus	23,502	1,808	-	
194	Pumps and compressors	27,127	2,238	-	
215	Electric transformers	21,509	1,727	-	
216	Relay switches and switch boards	22,878	1,780	-	
223	Electric lighting fixtures and apparatus	24,345	1,770	284.3 p	
226	Air conditioning equipment for consumer use	21,210	1,577	11.13 p	
276	Residential construction (wooden)	19,921	1,707	6.318 m²	
277	Residential construction (non-wooden)	29,055	2,704	5.527 m²	
278	Non residential construction (wooden)	21,103	1,835	7.749 m²	
279	Non residential construction (non-wooden)	29,644	2,704	6.844 m²	
280	Repair of constructions	27,466	2,436	-	
375	Building maintenance services	7,753	548	-	
377	Civil engineering and construction services	11,234	801	-	

Table 9 Intensity of concrete, reinforcing bars and non-residential construction.

Industrial No.	Industrial sector	Per unit	Unit
150	Ready mixed concrete	1,295	267 m³
162	Hot rolled steel	14.1	1.36 kg
279	Non residential construction (non-wooden)	4,331	395 m³

4.4.2 EEC Increase through Prolongation of Life Time

The intensities of concrete and reinforcing bars per unit are shown in Table 9 based on Table 8. Table 10 shows the results of EEC increase.

4.4.3 Effectiveness of Prolongation of Life Time

EEC of the building with long life time is compared with standard buildings and the effect is quantified. Since EEC of structures does not affect the operating phase, the evaluation is conducted by the value of EEC in the construction phase. In addition, the EEC of a standard building is calculated from the intensity of “non-residential construction (non-wooden)” sector as
shown in Table 9 multiplied by total building area. EEC of prolongation of building life time is obtained by adding EEC of the standard building and EEC of the increase in structure in prolongation of life time. The annual EEC is shown in Table 11 and Fig. 5. These results show that EE (embodied energy) in construction phase is increased by 20% and EC (embodied CO₂) is 32% in case of earthquake-resistant strength +50%. However, annual EE is reduced to 72% and EC to 79%. On the other hand, in case of earthquake-resistant strength +25%, EE in construction phase is increased by 11% and EC 17%. However, annual EE is reduced to 66% and EC to 70%.

4.4.4 Effectiveness of Cost
In order to determine the additional cost of prolongation of life time, increasing material quantity and cost of concrete and reinforcing bars and formwork are estimated for a sample building [14]. The result shows that 3% to 9% is added to the original

Table 10 EEC increase by prolongation of life time.
Earthquake-resistant strength +50%
Quantity

Concrete
Reinforcing bars
Total
Earthquake-resistant strength +25%
Quantity

Concrete
Reinforcing bars
Total

Table 11 EEC per year per total floor area.
Type of building
Building life time
Year
Reference building
60
Building with long life time
earthquake-resistant strength +50%
100
Building with long life time
earthquake-resistant strength +25%
100

Table 12 Cost increase by prolongation of life time.
Item
Temporary work
Structure
Finishing
Equipment
Total

*It is assumed that cost of formwork is proportional to the quantity of concrete.
cost of the building as shown in Table 12.

5. Conclusions

We can draw conclusions from the results above:

(1) In this research, the technique to improve the durability of the building structure is provided as a method through the prolongation of building life time. Increasing the covering thickness of concrete for reinforcing bars and the earthquake-resistant strength is used to increase the durability of the structure. The calculation method to obtain the quantity of concrete and reinforcing bars is provided;

(2) Two cases are assumed for an increase of earthquake-resistant strength. One is to increase the strength by 50% to continue use without damage if a major earthquake occurs. The other is to increase strength by 25% to use a building without undertaking major repairs to the structure;

(3) The material increase of a sample building is evaluated applying the calculation method. The results show that the concrete increase is 36% and reinforcing bars is 39% in the case of an earthquake-resistant strength ±50%, and the concrete increase is 21% and reinforcing bars is 22% in the case of an earthquake-resistant strength ±25%;

(4) The EEC increase is evaluated from the 2005 input-output table in Japan. These results show that EE in the construction phase is increased from 11% to 20% and EC from 17% to 32%. However, annual EE is reduced from 66% to 72% and EC from 70% to 79%;

(5) On the other hand, the additional cost is 3% to 9% of the original cost of the building;

(6) In this study, to prevent the neutralization of concrete, the covering thickness of concrete for reinforcing bars is considered. However, it is said that certain elements such as the adjustment of the water cement ratio, the kind of cement, surface finishing materials and maintenance affect the progress of neutralization.

Numerous buildings are being constructed in individual countries. Construction demand is particularly high in developing countries. When constructing buildings, it is important to construct them from the viewpoint of longer life time in order to achieve reduced CO₂ emissions in the future, even if the costs increase to a certain extent. For individual governments, it would be effective for policy-making to facilitate quantitative discussions provided in this article on effects of EEC reduction achieved through longer life time.

Acknowledgments

The present study was supported in part by the IBEC (Institute for Building Environment and Energy Conservation).

References

[1] IPCC (Intergovernmental Panel on Climate Change). 2013. Summary for Policymakers. Fifth assessment report.
[2] Ministry of Economy, Trade and Industry. 2010. Basic Energy Plan. Japan: Ministry of Economy, Trade and Industry.
[3] Green Building Council. 2014. Building Zero Carbon. UK: Green Building Council.
[4] Vohra, A. 2007. “Integrated Heat Pump System Technology Development for Net Zero Energy Home (Zeh) Applications.” Presented at IEA (International Energy Agency) HPP (Heat Pump Program), 4th Experts Meeting and Workshop, Kyoto, Japan.
[5] US Government. 2007. Energy Independence and Security Act of 2007, PUBLIC LAW 110-140. US Government.
[6] Thormark, C. 2002. “A Low Energy Building in Life Cycle—Its Embodied Energy, Energy Need for Operation and Recycling Potential.” Building and Environment 37.
Study on Impact of Embodied Energy and CO₂ Emissions for Prolongation of Building Life Time: Case Study in Japan

429-35.

[7] Urushizaki, N., Mizuno, M., Shimoda, Y., and Sakai, K. 2002. “The Influence on Life Cycle Material Usage and CO₂ Emission from Countermeasure of Long Life Building.” Journal of Architectural Planning Environmental Engineering 561: 85-92. (in Japanese)

[8] Ministry of Land, Infrastructure, Transport and Tourism. 2008. White Paper on Land, Infrastructure, Transport and Tourism in Japan. Japan: Ministry of Land, Infrastructure, Transport and Tourism.

[9] Real Estate Industry Division, Land Economy and Construction and Engineering Industry Bureau. 2013. Derivation of the Expected Service Life and Improvement in Value through Upgrading Interior/Exterior Decoration and Equipment. Japan: Ministry of Land, Infrastructure, Transport and Tourism.

[10] Building Research Institute. 2010. “Long-Term Quality Housing Initiative.” Building Research Institute. Accessed July 23, 2014. http://www.kenken.go.jp/chouki/index.html.

[11] Architectural Institute of Japan. 1988. Principal Guide for Service Life Planning of Building. Japan: Architectural Institute of Japan.

[12] Ministry of Land, Infrastructure and Transport. 2013. General Earthquake Proofing, Anti-tsunami Plan Standard of Government Office Facilities. Japan: Ministry of Land, Infrastructure and Transport.

[13] Department of Public Works, Ehime Prefecture. 2013. “Common Specification of Site Inspection: Reference Data.” Ehime Prefecture. Accessed February 19, 2014. http://www.pref.ehime.jp/h40300/5739/gijyutu/document/s/0606_1.pdf.

[14] Construction Research Institute. 2004. Building Cost Information. Japan: Construction Research Institute.