Angular momentum and topological dependence of Kepler’s Third Law in the Broucke-Hadjidemetriou-Hénon family of periodic three-body orbits

Marija R. Janković
Faculty of Physics, Belgrade University,
Studentski Trg 12, 11000 Belgrade, Serbia

V. Dmitrašinović
Institute of Physics, Belgrade University,
Prepervica 118, Zemun,
P.O.Box 57, 11080 Belgrade, Serbia
(Dated: April 29, 2016)

We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon’s periodic orbits with values of the topological exponent k ranging from $k = 3$ to $k = 58$ to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy $E = -\frac{1}{2}$. Upon plotting $L(T/k)$ we find that all our solutions fall on a curve that is virtually indiscernible by naked eye from the $L(T)$ curve for non-satellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is $\sigma = 0.13$. This regularity supports Hénon’s 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kolmogorov-Arnold-Moser stable.

PACS numbers: 45.50.Jf, 05.45.-a, 95.10.Ce
Keywords: celestial mechanics; three-body systems in Newtonian gravity; nonlinear dynamics

Introduction

Numerical studies of periodic three-body orbits have increased their output over the past few years - more than 40 new orbits, and their “satellites” have been discovered, Refs. [1–4]. Unlike periodic two-body orbits, which are all ellipses, and thus are all topologically equivalent, the non-colliding three-body periodic orbits have one of infinitely many different topologies. Montgomery, Ref. [5], had devised an algebraic method to associate a free-group element (“word”) w with a three-body orbit’s topology, and thus to label and classify such periodic orbits; for an elementary introduction to this method, see Ref. [6]. That classification method has recently acquired practical importance in the identification of new three-body orbits, Refs. [1–4].

A number of newly discovered orbits, Refs. [1–4], were of the so-called topological satellite type. Such satellite orbits, are also known as “bifurcation” in the older literature, Refs. [2–7], where they were only loosely defined in terms of their presumed origin. It was only in Ref. [8] that a precise definition of a topological satellite was given. When this definition was applied to the figure-8 satellites [25], reported in Ref. [8], it led to the discovery of a remarkable “topological Kepler’s third law”-like regularity for arbitrary orbits with vanishing angular momenta, Ref. [8]. The immediate question is whether this regularity persists when the angular momentum does not vanish?

The present Letter is an attempt to answer that question, albeit in a single, specific family of three-body orbits, viz. in the Broucke-Hadjidemetriou-Hénon (BHH) family [6–11], that has the simplest non-trivial topology (free group element $w=a$). The main reason for selecting only this family of orbits is that it is the most thoroughly studied family thus far: it is the only family of orbits with a previously determined dependence of the period T on the angular momentum L of (non-satellite, or progenitor) periodic orbits, Refs. [9–15]. No such, or comparable, study of any of the remaining known families exists to our knowledge at this moment. Moreover, the BHH family is one of only two families [26] of periodic three-body orbits that have been observed in astronomy: all known “hierarchical” triple star systems belong to BHH orbits. Moreover, the Sun-Earth-Moon system may be viewed as a BHH solution, albeit with highly asymmetrical mass ratios.

The first step towards this goal, the one of finding as many different BHH satellite orbits as possible, has already been accomplished in Ref. [16]. Previously, Davoust and Broucke, Ref. [7], had found one (the first $k=3$) satellite of one retrograde BHH orbit. Ref. [16] extended the search for retrograde BHH satellite orbits systematically up to values $k \leq 19$ of the topological exponent k, and more haphazardly up to $k = 58$; thus several different types of BHH satellites with identical values of k were discovered. [27], as were a few prograde BHH satellites, see the Supplemental Material [17] and the Web site [18]. Prograde BHH satellites have not been studied systematically, as yet, mostly due to their paucity at the values of the angular momentum covered in the searches in Ref. [16]. Presently it is not known how many satellites ought to exist, and under which conditions. It is interesting, however, that the observed satellites correspond only to linearly stable BHH progenitor orbits. This is in line with Hénon’s 1976 conjecture [14, 15] about Kolmogorov-Arnold-Moser (KAM) stability of linearly stable BHH orbits.
Then, motivated by the findings reported in Ref. [8], we checked for similar regularities of satellite BHH orbits with non-zero angular momentum. Firstly, we formulated the topological dependence of Kepler’s third law for three-body orbits with non-zero angular momenta, and secondly we tested it on the presently known satellites of the retrograde BHH family. Secondly we found a striking result: all of our retrograde BHH satellites fall on a single (continuous) curve \(L(T/k) \), Fig. 1 that is practically indiscernible from naked eye from the \(L(T) \) curve, Fig. 2 for non-satellite (progenitor) retrograde BHH solutions, whereas the “topologically uncorrected” curve \(L(T) \) looks very differently, see Fig. 2. A quantitative measure of this (dis)agreement is shown in terms of corresponding standard deviations.

Preliminaries

Broucke [7, 8, 10], Hadjidemetriou [11, 13] and Hénon [14, 17] (BHH) explored a set of periodic planar three-body orbits with equal mass bodies. These orbits form two continuous curves in the L-T plane whose lower (retrograde) terminus (“end”) is the collinear collision (Schubart) orbit, and both the retrograde and the direct \(L(T) \) curves approach the same high-L limit at their upper termini, Fig. 1

Although BHH write of two families of orbits - direct, or prograde, and retrograde - all of these orbits belong to a single topological family: during one period the orbit completes a single loop around one of the poles on the shape sphere. This loop can be described by the conjugacy class of the fundamental group/free group element \(a_k \), according to the topological classification used in Refs. [1, 3]. It turns out, however, that there are numerous relative periodic orbits with topology \(a_k \), with \(k = 2, 3, \ldots \). Such orbits are sometimes called satellites [2, 3], whereas other authors call them “bifurcation orbits” [7].

Scaling laws for three bodies

It is well known that Kepler’s third law (for two bodies) follows from the spatio-temporal scaling laws, which, in turn, follow from the homogeneity of the Newtonian gravity’s static potential, Ref. [10]. These scaling laws read \(r \to \lambda r, \ t \to \lambda^{3/2}t \), and consequently \(v \to v/\sqrt{\lambda} \). The (total) energy scales as \(E \to \lambda^{-1}E \), the period \(T \to \lambda^{3/2}T \) and angular momentum as \(L \to \lambda^{1/2}L \), i.e., differently than either the period \(T \), or “size” \(R \), which is the reason why only the vanishing angular momentum \(L = 0 \) is a “fixed point” under scaling. For this reason, we use scale-invariant angular momentum \(L_r = L|E|^{1/2} \), scale-invariant period \(T_r = T|E|^{3/2} \) and, for simplicity’s sake, equal masses. Thus, we may replace the “mean size” \(R \) of the three-body system in Kepler’s third law \(T \propto R^{3/2} \) with the inverse absolute value of energy \(|E|^{-1} \), i.e., \(T \propto |E|^{-3/2} \), or equivalently \(T|E|^{3/2} = T_r = \text{const.} \).

The “constant” on the right-hand-side of this equation is not a universal one in the three-body case, as it is in the two-body case (where it depends only on the masses and the Newtonian coupling \(G \)): it may depend both on the family \(w \) of the three-body orbit, described by the free-group word \(w \), and on the scale-invariant angular momentum \(L_r = L|E|^{1/2} \) of the orbit, see Refs. [14, 15], as follows

\[
T_r(w)|E|^{3/2} = T_r(w) = f(L_r(w)|E|^{1/2}) = f(L_r(w)),
\]

or as an inverse function:

\[
L_r(w) = L_r(w)|E|^{1/2} = f^{-1}(T_r(w)|E|^{3/2}) = f^{-1}(T_r(w)).
\]

Thus, the curve \(L_r(w)(T_r(w)) = L_r(w)|E|^{1/2}(T_r(w)|E|^{3/2}) \) as a function of \(T_r(w) = T(r(w)|E|^{3/2} \) is a fundamental property of any family \(w \) of periodic orbits. For the BHH family the \(L(T) \) curve, for fixed energy \(E = −0.5 \) orbits, based on the data from Refs. [9–15] is shown in Fig. 1

We wish to see if the zero-angular-momentum relation \(T_r(w) = kT_r(w) \), Ref. [8], or some similar statement holds also at non-zero angular momentum? The analogon of this relation for orbits with non-zero angular momenta would be a simple relation between \(L(T) \) curves for the progenitor orbit \(L_r(T_r) \) and its \(k \)-th satellite \(L_r(w)(T_r(w)) \):

\[
L_r(w)(T_r(w)) = L_r(w)(T_r(w)/k).
\]

We shall test this relation in the BHH family of solutions, and in order to do so, we use the BHH satellite orbits from Ref. [10].

L(T) curves for BHH satellites

The L-T plot of different-\(k \) satellite orbits are scattered over a large region and do not intersect the BHH progenitor family of orbits’ L(T) curve when plotted as

Figure 1: \(L(T) \) curves for direct, or prograde (green, upper set of points) and retrograde (blue, lower set of points) BHH orbits, all at fixed energy \(E = −0.5 \).
a function of the (un-divided) period T, see Fig. 2. Note
the large span of periods T in the data, Table I and in
Fig. 2 as well as two large “gaps” in the data. These
gaps are due to the exigencies of the search reported in
Ref. [16], which was not conducted with the intention of
testing the hypothetical topological Kepler’s third law.

Table I: Properties of satellite orbits in the retrograde branch
of the BHH family. Here k is the topological power of the
orbit, T is its period, and L its angular momentum. All orbits
have the same energy $E = -\frac{1}{2}$. For the raw data and a
discussion of numerical errors, see the Supplemental Materi-
al [17].

T	L	k	T	L	k
27.80080	1.28815	3	71.53838	2.46095	11
27.41157	1.50552	3	77.07474	2.25918	12
32.99245	1.61682	4	77.06060	2.37881	12
33.47935	1.55701	4	76.73111	2.51718	12
55.67884	1.31000	4	82.21327	2.31968	13
39.51102	1.65331	5	82.19918	2.45231	13
45.13827	1.77568	6	81.88258	2.57068	13
44.58632	1.90240	6	87.31760	2.37687	14
50.64660	1.87900	7	87.30360	2.32098	14
50.63890	1.91139	7	92.38479	2.50486	15
50.14113	1.97457	7	92.37378	2.59166	15
50.14128	1.97537	7	92.08210	2.67070	15
56.06083	1.96171	8	97.43210	2.55979	16
55.60411	2.12189	8	102.45058	2.67331	17
77.81366	1.20544	8	107.44694	2.75861	18
56.05269	2.01054	8	112.42918	2.83883	19
56.04953	1.90240	8	209.48795	3.69220	39
56.06030	1.96171	8	214.25815	3.72785	40
55.60411	2.12189	8	214.25815	3.72785	40
61.39090	2.05128	9	219.02302	3.76283	41
60.96889	2.18581	9	223.78278	3.79719	42
61.39086	2.09909	9	228.53763	3.83094	43
61.38676	2.12907	9	233.28775	3.86412	44
60.98679	2.18532	9	238.03322	3.89675	45
60.99996	2.33882	9	242.77450	3.92885	46
61.39697	2.06300	10	247.51146	3.96044	47
66.66644	2.17917	10	252.24433	3.99155	48
66.66689	2.17608	10	308.85330	4.61404	58
66.29761	2.40015	10			
78.61058	1.59325	10			
71.89715	2.19481	11			

in which we have found all but one of our satellites. We
have interpolated Hénon’s, [14], 18 stable retrograde data
points with a piecewise polynomial fit in this part of the
$L(T)$ curve. The standard deviations from this inter-
polated curve were calculated for: 1) Broucke’s 10 pro-
genitor retrograde orbits, [9, 10], and 2) the 56 out of
57 new satellite orbits from Table I (excluding one orbit
that lies near the “shoulder” at $T=14$ in Fig. 3), with
the following results. 1) $\sigma = 0.0034$ for Broucke’s orbits;
and 2) $\sigma = 0.1269$ for satellite orbits. This difference
of two orders of magnitude between these two numbers
clearly indicates that the rescaled satellites’ periods do
not coincide exactly with the progenitor ones, but only
approximately.

Moreover, when one assembles Hénon’s and Broucke’s,
[9, 10], retrograde orbits in one set and fits the aggregate
data by a polynomial of the sixth degree, Fig. 3 the
standard deviation of the fit is $\sigma = 0.0313$, whereas the
standard deviation of all satellite orbits from this poly-
nomial curve is $\sigma = 0.1315$, roughly four times bigger.
It is (statistically) clear that the satellites do not follow
exactly the same $L(T)$ curve as the progenitors, but the
deviation is not large. This constitutes the evidence for

Next, in Fig. 3 we look more closely at the section
of the $L(T)$ curve of progenitor BHH retrograde orbits
for the aggregate set of retrograde BHH orbits (blue dots)
and their satellites (red dots) with various values of k, all
at fixed energy $E = -0.5$. The data are from Table
I. The values in Table I have been rounded off to five sig-
nificant decimal places. So, the numerical error is less
than one part in 10,000. Such an error would be invisible
in the Figs. 2, 3 meaning that the “size of the points”
in these figures is larger than the expected error. After
dividing the period T (at fixed energy) by the topological
exponent k, $T' = T/k$, we can see in Fig. 3 that the satel-
lite orbits’ $L(T'/k)$ curve (the angular momentum L as
a function of topologically-rescaled period T/k) approxi-
mately coincides with the $L(T)$ curve of BHH retrograde
orbits. It seems that such an appearance of order out of
apparent disorder cannot be an accident.
the analogon of the topological dependence of Kepler’s third law for the $L \neq 0$ case, Ref. [8].

Finally, we note that all of our newly found satellite orbits fall into a region of the progenitor $L(T)$ curve that corresponds to stable progenitor BHH orbits, with one possible exception (the red point near the “shoulder” at $T=14$ in Fig. 3), that “sits” on the border point between stable and unstable regions. We have not found any other satellites in this, the second stable region of BHH retrograde orbits. In Fig. 4 we show the fine structure in the satellites’ $L(T/k)$ curve, that remains to be studied in finer detail and be better understood.

We have not studied the direct/prograde (sub)family of BHH orbits, as Ref. [10] did not search for their satellites, but found four almost inadvertently. Certainly, that task ought to be completed in the future.

Summary, Conclusions and Outlook

We have used 57 new satellite orbits from Ref. [16] in the family of Bronccke-Hadjidemetriou-Hénon, Refs. [9–13], relative periodic solutions to the planar three body problem. Thence followed a striking relation between their kinematic and topological properties.

BHH orbits constitute a family with a simple topology, described by the free group element a according to the classification on the shape sphere, and their satellites are orbits of the topology a^k. The BHH orbits’ angular momenta L and periods T form a continuous curve $L(T)$, at fixed energy. Our satellite orbits form a scattered set of points on the same $L(T)$ plot, but all of them exhibit the property that after their period T is divided by their topological order k, they approximately fall on the $L(T)$ curve of the original ($k=1$) BHH orbits.

This study was motivated by the discovery, Ref. [8], of a relation between the topology and periods among the satellites of the figure-eight orbit, Ref. [3], and one other type (“moth I” - “yarn” in Ref. [1]), of three-body orbits at vanishing angular momentum. This Letter shows that Kepler’s third law’s topological dependence also holds for orbits with $L \neq 0$, albeit only approximately. It remains to be seen just precisely what this discrepancy depends on.

These results are even more striking if one remembers that among our results there are several distinct types of satellite orbits of the same topological power k, some with quite different values of L and T, which all display this property. A closer look at the $L(T/k)$ curve revealed a fine structure, which should be investigated in higher detail in the future. An extension of the search conducted in Ref. [16], into hitherto unexplored regions of the $L-T$ plane ought to provide (new) data that will further test our result.

Our results indirectly confirm Hénon’s 1976 conjecture, see page 282 in Ref. [14], reproduced in the Supplemental Material [17], that the linearly stable BHH orbits are also nonlinearly, or perpetually, or KAM stable. Such KAM stability implies the existence of quasiperiodic orbits with periods that conform to the quasiperiodicity condition (i.e. with periods that are “almost commensurate” with the BHH progenitor’s period), as predicted by the KAM theorem, Refs. [22–24].

Our study opens several new questions: 1) The most commonly observed hierarchical triple star systems belong to the BHH family. Are there BHH topological satellites among astronomically observed three-body systems? It is important to extend the present study to the realistic case of three different masses: some early work has already been done in this direction by Bronccke and Boggs, Ref. [9], and by Hadjidemetriou and Christides, Ref. [12]. 2) In recent years there have been formal “proofs of existence” given for at least some BHH orbits, Refs. [20,21]. This begs the question: can one “prove existence” of their satellite orbits, and, if yes, of how many satellites, and under which conditions?

Acknowledgments

M. R. J. was a recipient of the “Prof Dr Djordje Živanović” scholarship awarded jointly by the Faculty of Physics and the Institute of Physics, Belgrade University, and was also supported by a City of Belgrade studentship (Gradska stipendija grada Beograda). The work of V. D. was supported by the Serbian Ministry of Science and Technological Development under grant numbers OI 171037 and III 41011. The computing cluster Zefram (zefram.ipb.ac.rs) at the Institute of Physics Belgrade has been extensively used for numerical calculations.
[1] M. Šuvakov, and V. Dmitrašinović, “Three classes of Newtonian three-body planar periodic orbits”, Phys. Rev. Lett. 110, 114301 (2013).

[2] C. Simó, “Dynamical properties of the figure eight solution of the three-body problem”, p.209 in “Celestial Mechanics”, Edited by Alain Chenciner, Richard Cushman, Clark Robinson, and Zhihong Jeff Xia. Contemporary Mathematics, Vol 292, AMS, Providence, R.I., (2002).

[3] Milovan Šuvakov, “Numerical search for periodic solutions in the vicinity of the figure-eight orbit: Slaloming around singularities on the shape sphere,” Celest. Mech. Dyn. Astron. 119, 369–377 (2014).

[4] Milovan Šuvakov and Mitsuru Shibayama, “Three topologically nontrivial choreographic motions of three bodies”, to appear in Celest. Mech. Dyn. Astron., (2015) DOI 10.1007/s10569-015-9657-9.

[5] R. Montgomery, “The N-body problem, the braid group, and action-minimizing periodic solutions” Nonlinearity 11, 363–376 (1998).

[6] M. Šuvakov, and V. Dmitrašinović, “A guide to hunting periodic three-body orbits”, Am. J. Phys. 82, 609–619 (2014).

[7] E. Davoust, and R. Broucke, “A Manifold of Periodic Orbits in The Planar General Three-Body Problem with Equal Masses”, Astron. Astrophys. 112, 305–320 (1982).

[8] V. Dmitrašinović and M. Šuvakov, “Topological Dependence of Kepler’s Third Law for Planar Periodic Three-Body Orbits with Vanishing Angular Momentum” Phys. Lett. A 379, 1939–1945 (2015).

[9] R. Broucke and D. Boggs, “Periodic orbits in the Planar General Three-Body Problem”, Celest. Mech. 11, 13 (1975).

[10] R. Broucke, “On relative periodic solutions of the planar general three-body problem”, Celest. Mech. 12, 439 (1975).

[11] J.D. Hadjidemetriou, “The continuation of periodic orbits from the restricted to the general three-body problem”, Celest. Mech. 12, 155 (1975).

[12] J.D. Hadjidemetriou and Th. Christides, “Families of periodic orbits in the planar three-body problem”, Celest. Mech. 12, 175 (1975).

[13] J.D. Hadjidemetriou, “The stability of periodic orbits in the three-body problem”, Celest. Mech. 12, 255 (1975).

[14] M. Hénon, “A family of periodic solutions of the planar three-body problem, and their stability”, Celest. Mech. 13, 267 (1976).

[15] M. Hénon, “Stability of interplay motions”, Celest. Mech. 15, 243 (1977).

[16] M. R. Janković and M. Šuvakov, “Extension of the Broucke-Hadjidemetriou-Hénon family of periodic orbits in the Newtonian planar three-body problem”, in preparation (2015).

[17] See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.000.00000 for [The search method is described, tables with the data regarding the new BHH satellites, together with numerical uncertainties, are shown. We briefly discuss Hénon’s conjecture about KAM stability of BHH orbits.]

[18] http://three-body.ipb.ac.rs/bh.php

[19] L.D. Landau and E. M. Lifshitz, Mechanics, (3rd ed.) Butterworth-Heinemann, Oxford (1976).

[20] Kuo-Chang Chen, “Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses” Annals of Mathematics, 167, 325–348 (2008).

[21] Kuo-Chang Chen, Yu-Chu Lin “On Action-Minimizing Retrograde and Prograde Orbits of the Three-Body Problem” Commun. Math. Phys. 291, 403–441 (2009).

[22] A. N. Kolmogorov, “Preservation of conditionally periodic movements with small change in the Hamilton function,” Dokl. Akad. Nauk. SSSR, 98, pp. 527-530, (1954). (in Russian)

[23] V. I. Arnold, “Proof of A. N. Kolmogorov’s theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian,” Russ. Math. Surv. 18, 9-36 (1963).

[24] J. Moser, “On invariant curves of area-preserving mappings on an annulus,” Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. IIa, (1), 1-20 (1962).

[25] Satellite orbits of the figure-eight were first observed in Ref. [2] and further investigated in Refs. [3, 4].

[26] The other one being the Lagrange family of orbits.

[27] The presence of multiple satellites with the same topology is not the first known instance of its kind: there are (many) different satellites of the figure-eight orbit with identical values of k, see Ref. [3, 4], albeit with zero angular momentum.