A Survey of Location Prediction on Twitter

Xin Zheng¹,², Jialong Han², and Aixin Sun²

¹SAP Research & Innovation, Singapore
²School of Computer Science and Engineering, Nanyang Technological University, Singapore
xin.zheng@sap.com, jialonghan@gmail.com, axsun@ntu.edu.sg

Abstract

Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people’s daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.

1 Introduction

The last decade has witnessed an unprecedented proliferation of online social networks. Those include general-purpose platforms like Twitter and Facebook, location-based ones like Foursquare and Gowalla, photo-sharing sites like Flickr and Pinterest, as well as domain-specific platforms such as Yelp and LinkedIn. On these platforms, users may establish online friendship with others sharing similar interests. Users may also share with online friends their daily lives in forms of texts, photos, videos, or check-ins.

Among all online social networks, Twitter is characterized by its unique way of following friends and sending posts. On the one hand, Twitter friendships are not necessarily mutual. For example, users may “follow” celebrities without requiring them to follow back. On the other hand, textual posts on Twitter, a.k.a. tweets or microblogs, are limited to 140 characters. Users are encouraged to post frequently but casually about anything, such as moods, activities, opinions, local news, etc.

Users, online friendships, and tweets make Twitter a virtual online world. This virtual world intersects with the real world, where locations acting as intermediate connections. Twitter users have long-term residential addresses. Their home locations cause them to notice, get interested, and tweet about news or events around their daily activity regions. With increasing popularity of GPS-enabled devices such as smartphones and tablets, users may casually attach real-time locations when sending out tweets. Users may also mention locations in their tweets, e.g., cities they previously lived in, or restaurants they want to try. In this survey, we concentrate on the above three types of Twitter-related locations, namely user home location, tweet location, and mentioned location. Knowing physical locations involved in Twitter helps us to understand what is happening in real life, to bridge the online and offline worlds, and to develop applications to support real-life demands. For example, we can monitor public health of residents [15], recommend local events [130] or attractive places [95] to tourists, summarize regional topics [100].
and identify locations of emergency \[5\] or even disasters [77].

Although Twitter users may casually reveal locations either manually or with the help of GPS, location information on Twitter are far from complete and accurate. Cheng et al. [16] find that only 21% of users in a U.S. Twitter dataset provide residential cities in their profiles, while 5% give coordinates of their home addresses. Despite the low availability, Hecht et al. [49] report that self-declared home information in many user profiles are inaccurate or even invalid. Hecht et al. [49] and Ryoo et al. [109] observe that only 0.77% and 0.4% of tweets have location information attached in their datasets, respectively. Similar percentages are also reported by Bartosz et al. [48] and Priedhorsky et al. [97]. Therefore, completing Twitter-related locations acts as the prerequisite for many other studies and applications, and is worth careful investigation.

The problem of predicting locations associated with objects has been termed geolocation or geocoding, and studied for Wikipedia [107, 122, 123], web pages [2, 137], and general documents [124]. The recognition and disambiguation of mentioned entities in formal documents, or entity recognition and linking, are also extensively investigated for decades. Various text processing techniques have been proposed to address these problems. Intuitively, recognition and disambiguation of Twitter-related locations should also depend heavily on tweet texts. Users living in certain cities may discuss local landmarks, buildings and events, possibly with dialects or slang. Tweets sent out from certain locations may explicitly mention them in the text, or implicitly include some relevant words. However, the characteristics of Twitter pose emerging challenges for these existing research problems in new problem settings. On the one hand, users often write tweets in a very casual manner. Acronyms, misspellings, and special tokens make tweets noisy, and techniques developed for formal documents are error-prone on tweets. The limit of 140-character make tweets short, which may not be easily understood by readers who are unaware of tweets’ context. On the other hand, compared with formal documents from independent authors, Twitter users contribute their online friendships and profiles explicitly. They also intentionally or unintentionally attach geo-tags to tweets. The richness of contextual information on Twitter enables new opportunities to relieve aforementioned challenges.

\[1\] A named entity is a real-world object; examples are persons, organizations, or locations.

Given the above significance, necessity, challenges, and opportunities, Twitter-related location prediction problems have received much attention in the literature. To the best of our knowledge, no previous survey focuses extensively on exactly the same scope. Imran et al. [54] have done a comprehensive study on tracking and analyzing mass emergency with social media data. Their focus is multifaceted, which not only involves locations but also has temporal and event aspects. Melo et al. [91] review various techniques for geolocating ordinary documents, but the unique challenges and opportunities of Twitter are not touched. Ajao et al. [1] conduct a smaller survey which addresses the most similar scope as we are aware of. However, they only clarify possible input and output of location prediction problems on Twitter. Detailed techniques are discussed with minimal efforts. Nadeau et al. [94] and Shen et al. [113] concentrate on named entity recognition and linking, respectively. They are related to one of the three problems in this survey, i.e., mentioned location prediction. Besides, their focuses are on general entities and documents, while we specially target the intersection of the location domain and Twitter platform.

In this survey, we aim at completing an overall picture of location prediction problems on Twitter. In Section 2, we briefly the input, output, and evaluation metrics of Twitter-based location prediction. In Sections 3, 4 and 5 we detail previous efforts on each problem. By highlighting the role of each input, we systematically summarize essentials of previous works on each prediction problem. In Section 6, we brief two additional location-related problems. Though attracting less attention or not as relevant, these two problems complement the three major problems and the scope of this survey. Finally, we conclude the survey, and discuss future research directions.

2 Problem Overview

This survey focuses on location-related problems on Twitter. In this section, first, we give an overview of the Twitter platform. By introducing Twitter usage from an ordinary user’s point of view, we summarize a Twitter dataset as three types of available information. Next, we discuss three geolocation problems of general interest. Those prediction problems rely on the above information as major input. Finally, we briefly review evaluation metrics for the aforementioned prediction problems.
2.1 An Overview of Twitter

As one of the most popular online social network, Twitter is constantly accumulating large volumes of heterogeneous data at a high velocity. Those include 1) short and noisy tweets posted by users, 2) a massive Twitter network established among users, and 3) rich types of contextual information for both users and tweets. Such information serves as input and enables the study of a few geolocation problems. In this section, we briefly describe the three types of information.

2.1.1 Tweet Content

A tweet is a piece of user-generated text with its length up to 140 characters. It may describe anything a user wants to post, e.g., her mood or events happening around her. Besides original posts, a user may also retweet others’ tweets she reads. Tweets and retweets from a user will be pushed to her followers’ Twitter interface for them to read. When composing tweet contents, a user may include hashtags, which are words or unspaced phrases starting with “#”. Finally, one can also mention another user’s name by a preceding “@” in tweet content. A mentioned user will be notified, and may start a conversation with the mentioning user through subsequent mentions.

2.1.2 Twitter Network

Besides posting tweets, a user may subscribe other’s tweets by following them. If user u_i follows u_j, we call u_i the follower, and u_j the followee. Note that following relationships are unidirectional, i.e., u_i following u_j does not necessarily mean u_j following u_i. When the direction of a following relationship is not the major concern, we regard u_i and u_j as friends. If it happens that u_i and u_j follow each other, we say u_i and u_j are mutual friends. We refer to all ‘following’ relationships as Twitter friendship, or friendship when the context is clear.

Note that Twitter friendship does not imply friendship in real life. It is often the fact that celebrities do not follow back their ordinary followers. Moreover, even two distant strangers may become mutual friends by chance. However, it is observed that friends in real life tend to mention each other frequently online [19, 58, 87, 88]. When introducing the studies on clues that imply real-life friendship, we consider both following and mentioning actions between Twitter users in a uniform manner, and refer to the resulted network as Twitter network.

2.1.3 Tweet Context

A tweet is more than a piece of short text. When a tweet is sent out, it is attached with its posting timestamp. Moreover, with the prevalence of GPS-enabled devices like smartphones and tablets, users may optionally pub-
lish their current locations as geo-tags on tweets. Finally, users may complete their profiles to include information like home cities, timezones, and personal websites. We note that all above information provide context helping us better understand tweets. A user’s daily-life tweets can be interpreted more precisely, if all such information are available. Because timestamps, geo-tags, and user profiles serve as contextual information for tweets, we refer to them as tweet context.

2.2 Location Prediction Problems on Twitter

In this survey, we focus on predicting three types of Twitter-related locations, namely home location, tweet location, and mentioned location. For each location type, we give its definition and show how it is represented. We also briefly discuss how to set up ground truth for each location prediction task.

2.2.1 Home Location Prediction

Home locations refer to Twitter users’ long-term residential addresses. The prediction of home locations may enable various applications, e.g., local content recommendation, location-based advertisement, public health monitoring, and public opinion polling estimation. According to specific requirements of applications, home locations may be represented at different levels of granularity. Generally, there are three categories of home location granularity:

- **Administrative regions**, i.e., home locations are represented by countries, states, or cities where they are located.

- **Geographical grids**, i.e., the earth is partitioned into cells of equal or varying size and home locations are represented by the cells they fall in.

- **Geographical coordinates**, i.e., homes are represented by their latitudes and longitudes. Coordinates may be self-reported or converted from administrative regions or cells by taking their centers.

Ground truth home locations may be collected from users’ self-declared profiles. For example, in Figure 1, the user reports that she lives in NY (New York). Due to possible privacy concerns, empty and noisy information also appear in user profiles. Some studies also aggregate geo-tags attached with users’ tweets as their ground truth home locations. Possible aggregating approaches include:

- Choose the most frequent city involved in the geo-tags.
- Choose the first valid geotag, and convert it to an administrative region, a cell, or coordinates.
- Choose the geometric median of the geo-tags.

For the sake of evaluation, a uniform level of granularity should be decided and fixed for an application. However, to achieve maximum coverage of ground truths, user profiles and geo-tag aggregations could be utilized in combination.

2.2.2 Tweet Location Prediction

Tweet location means the place where a tweet is posted. By inferring tweet locations, we may understand her situations better, and draw a more complete picture of a user’s mobility. Different from home locations, which are collected from both user profiles and geo-tags, tweet locations are generally based on geo-tags of tweets. Due to the original views of tweet locations, point-of-interests (POIs in short) or coordinates are broadly adopted as representations of tweet locations, instead of administrative regions or grids.

2.2.3 Mentioned Location Prediction

When writing tweets, users may mention the names of some locations in the tweet contents. Mentioned location prediction may facilitate better understanding of tweet contents, and benefit applications like location recommendation and disaster & disease management. In this survey, we involve two sub-tasks of mentioned location prediction:

- **Mentioned location recognition**, i.e., extract text fragments in a tweet that refer to location names.

2Geo-tags may be in the form of point-of-interests (e.g., a hotel or a shopping mall) or simply geographical coordinates (latitudes and longitudes).

3Equal-sized cells are achieved by uniformly binning latitudes and longitudes [123]. The major drawback is that rural areas are over-represented at the expense of urban areas. Therefore, quadtree [126] or k-dimensional tree (k-d tree) [14,107,122] are adopted to achieve varying-sized cells with better resolutions on populated areas.

4The geometric median of a point set S is the point in S which has minimal average distance to the other points.
• Mentioned location disambiguation, i.e., identify what locations those fragments refer to by resolving them to entries in a location database.

Due to the inherent noise and ambiguity of tweet language, ground truths of mentioned locations largely rely on human annotations. To represent location mentions in tweets, BIO or BILOU labeling schemes are widely adopted. For both sub-tasks, the granularity of locations involved both administrative regions and POIs. When a pre-defined location database is employed, the granularity generally respects that of the database.

2.3 Evaluation Metrics

In this section, we review common evaluation metrics adopted in the literature. Depending on the representations of predicted and ground-truth locations that are fed to the evaluation stage, common metrics could be categorized as coordinate-based or token-based. In the coordinate-based point of view, locations are represented by their geographical coordinates. Token-based metrics, on the other hand, treat locations as discrete symbols, e.g., country, city, grid, POI. Next, we formulate both of them and demonstrate their usage scenarios.

2.3.1 Coordinate-based Metrics

In home location or tweet location prediction, we aim at making predictions for each user or tweet. For unified notations, let \(s \) be a user or tweet, and \(S \) be the set of all users or tweets for prediction. A system is expected to predict a location \(l(s) \) for each \(s \). The prediction \(l(s) \) is expected to coincide with or be close to the ground truth location \(l^*(s) \). Whatever granularity we adopt, all ground-truth locations and predicted locations could be converted to coordinates. Error Distance (or ED, for short) is then defined as the euclidean distance between a pair of ground-truth and prediction coordinates:

\[
ED(s) = \text{dist}(l(s), l^*(s)).
\]

Since evaluations are conducted on a collection of users or tweets, we may take the mean or median of all error distances to end up with corpus-level metrics. This results in i.e., Mean Error Distance and Median Error Distance:

\[
\text{MeanED} = \frac{1}{|S|} \sum_{s \in S} \text{dist}(l(s), l^*(s)),
\]

\[
\text{MedianED} = \text{median}_{s \in S} \{ \text{dist}(l(s), l^*(s)) \}.
\]

When wildly inaccurate predictions occur, Median Error Distance is usually less sensitive than Mean Error Distance. Therefore, Mean Error Distance is preferred by some studies. Instead of Mean Error Distance, some studies [112], though very few, employ Mean Squared Error as below:

\[
\text{MSE} = \frac{1}{|S|} \sum_{s \in S} \text{dist}^2(l(s), l^*(s)).
\]

The only difference between Mean Squared Error and Mean Error Distance is that the former is based on the square of Error Distance.

Besides Mean and Median Error Distance, there is another widely-adopted corpus-level metric called Distance-based Accuracy, or Acc@d for short. Given a predefined threshold \(d \) of error distance, any prediction whose error distance does not exceed \(d \) is regarded as “tolerably correct”. The Acc@d metric over the corpus is then defined as the proportion of tolerably correct predictions:

\[
\text{Acc@d} = \frac{|\{s \in S : \text{ED}(s) \leq d\}|}{|S|}.
\]

The commonly adopted distance threshold \(d \) is 100 miles, or 161 km [45, 73].

2.3.2 Token-based Metrics

Due to the geographical nature of locations, coordinate-based metrics are specially designed for location prediction problems. Token-based metrics, however, treat locations as discrete symbols, e.g., country, city, grid, POI. Though geographical information is not taken into consideration, token-based metrics allow for more general usage scenarios.

For home location and tweet location predictions, the simplest token-based metric is Accuracy. For mentioned location disambiguation, Accuracy is also applicable. Let \(l(s) \) and \(l^*(s) \) be the predicted and ground-truth locations for a user, a tweet, or a recognized location mention \(s \). Note that their administrative-region or POI representations are kept. A prediction is deemed correct if

- Mentioned location disambiguation, i.e., identify what locations those fragments refer to by resolving them to entries in a location database.

- BIO stands for the Beginning, Inside, and Outside of a location mention in a sentence. BILOU additionally annotates the Last word of a multi-word mention, as well as all Unit-length mentions.
only if it coincides with the ground-truth. **Accuracy** is then defined as the ratio of correct predictions within S:

$$\text{Acc} = \frac{|\{s \in S : l(s) = l^*(s)\}|}{|S|}.$$

In some cases, a system may give a ranking list $L(s)$ of predicted locations instead of one. A straightforward approach is to treat the top location as the only prediction and resort to Accuracy. However, this approach ignores other predictions in the list, which may also be useful when fed to downstream applications or users. In light of this, **Ranking-based Accuracy**, or $\text{Acc} @ k$ is designed. A ranking list is considered “correct” if the ground-truth location lies within the top-k results $L_k(s)$. $\text{Acc} @ k$ is then defined as the proportion of “correct” lists:

$$\text{Acc} @ k = \frac{|\{s \in S : l^*(s) \in L_k(s)\}|}{|S|}.$$

Finally, we note that the geolocation systems may not be able to make predictions in some cases. For example, in home and tweet location predictions, some systems cannot assign locations if insufficient information is given [19, 31, 112]. In mentioned location disambiguation, systems may not find appropriate entry for a given location mention. In such cases, Precision, Recall and F_1 are adopted as metrics. Given a user, a tweet, or a recognized location mention s, let $l(s) = \text{null}$ if the system cannot make any prediction. The **Precision** over the evaluation corpus S is defined as the ratio of correct predictions among all predictions:

$$\text{Precision} = \frac{|\{s \in S : l(s) = l^*(s)\}|}{|\{s \in S : l(s) \neq \text{null}\}|}.$$

Meanwhile, **Recall** is defined similarly as Accuracy, i.e.,

$$\text{Recall} = \frac{|\{s \in S : l(s) = l^*(s)\}|}{|S|}.$$

After Precision and Recall are defined, F_1 is the harmonic mean of Precision and Recall:

$$F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.$$

Finally, we note that Precision, Recall and F_1 are applicable and actually widely adopted for mentioned location recognition. When evaluating location recognition results, mentioned fragments should be regarded as “tokens”. A predicted fragment is deemed correct if its left and right boundaries coincide with those of a ground-truth fragment, respectively. Precision is then defined as the ratio of correctly predicted fragments over all predicted fragments. Recall is the proportion of correctly predicted fragments among all ground-truth fragments. Their harmonic mean is defined as F_1.

3 Home Location Prediction

Knowing home locations of Twitter users may enable various applications, such as local content recommendation, location-based advertisement, public health monitoring, and public opinion polling. However, because it is optional for Twitter users to complete their profiles, Twitter users’ home locations are largely absent or noisy. Therefore, many research efforts have been spent on predicting users’ home locations. For most works, home locations are predicted at city-level, and sometimes at state or country level. In this section, we detail them according to different inputs they are based on, namely tweet contents, Twitter network, and tweet contexts. Note that many works simultaneously involve multiple inputs, especially the first two. In this case, they will be discussed multiple times, where assumptions and techniques regarding different inputs are discussed in corresponding subsections.

3.1 Inference Based on Tweet Content

Through sending tweets, users’ home locations may be casually revealed by certain words in the content. For example, people in Houston would talk about Houston Rockets more than others in New York. Residents from Texas often use the dialect “howdy” and those from Philadelphia often call themselves “phillies”. Therefore, the underlying challenge for content-based home location prediction is to precisely link users to locations via those indicative words. Previous studies on content-based home location prediction could be divided into two categories: word-centric and location-centric. Word-centric method is mainly to estimate the probability of a location l given words w in text $p(l|w)$, while location-centric method focuses on the probability of generating a tweet document d at a given location $p(d|l)$. We will introduce the two lines of studies in Section 3.1.1 and Section 3.1.2 respectively.

3.1.1 Word-Centric Methods

In the beginning of Section 3.1, we mentioned two examples about location-indicative words in users’ tweets.
Word-centric methods are essentially aimed at identifying and exploiting such words to predict users’ home locations. On the one hand, not all words are location-indicative. For example, words like “downtown” and “OMG” are used everywhere on Twitter. Therefore, only local words, i.e., words that show strong locality, should be involved. On the other hand, the location information implied by local words, or their spatial word usage, should be learnt from the data before making predictions. Next, we demonstrate how both tasks are achieved in the literature.

Identifying Local Words

In information retrieval literatures, a commonly received practice is to eliminate stop words like “a”, “the”, etc. from documents before indexing them for retrieval. As for tweets, it is often the case that location-irrelevant words like “downtown” and “OMG” take up far more space than “howdy” and “phillies”. They will lead home location prediction results to random if indiscriminately taken into consideration. Unlike eliminating stop words, we usually resort to the contrary of eliminating location-irrelevant words, i.e., identifying and keeping local words. Since local words are not enumerable like stop-words, a large amount of research efforts are spent on local word identification methods, either unsupervised or supervised.

Unsupervised local word identification methods aim at proposing statistical measures that are directly computable on the data and indicative of a word’s locality. Laere et al. [65] propose two types of local words selection methods. One leverages Kernel Density Estimation [116] which could spatially smooth term occurrences, and the other is based on Ripley’s K statistic [104] which measures terms geographical deviation. Inspired by Inverse Document Frequency (IDF) in information retrieval, Ren et al. [102] and Han et al. [44] propose Inverse Location Frequency (ILF) and Inverse City Frequency (ICF), respectively, to measure the locality of words. Their assumption is that local words should be distributed in fewer locations and have large ILF and ICF values. Besides IR-based measures, some studies also resort to measures that has information theoretic interpretations, e.g., information gain ratio and maximum entropy in [44], and K-L divergence in [126]. Their assumption is that the distributions of local words should be more biased than ordinary ones. Noted that Yamaguchi et al. [126] deal with streaming tweets which could update users’ home location according to newly posted tweets. In [49], Hecht et al. propose a CALGARI score for words, which is similar to information theory based measures. Mahmud et al. [84] apply a series of heuristic rules to select local words. Han et al. [46] compares statistical-based, information theory-based and heuristic-based methods on local words selection.

On the other hand, supervised methods are also considered by a number of studies. In [15], Cheng et al. view the local word identification problem as a classification problem. First, they fit the geographical distribution of each word with Backstrom et al. [6]’s spatial variation model. Specifically, the spatial variation model assumes that each word has a geographical center, a center frequency C, and a dispersion ratio α. The probability of seeing the word at a location with distance d to the center is proportional to $Cd^{-\alpha}$. In fact, this model specifies a one-peak distribution at the center with exponential decay. After the model is fit, the parameters are used as word features. Second, they manually labeled 19,178 words in a dictionary as either local or non-local. Finally, they train a classification model and apply it to all other words in the tweet dataset. Ryoo and Moon [109] apply the above method [6] to a Korean tweet dataset, and achieve satisfactory results.

Modeling Spatial Word Usage

After local words are identified, a subsequent problem is how to use them to predict users’ home location. Most studies model the prediction problem in a probabilistic manner. They propose probabilistic models to characterize the conditional distribution of users’ home locations w.r.t. their tweet contents, then decompose and concretize the model to make predictions.

A representative probabilistic model is introduced by Cheng et al. [15]. They decompose the distribution of user u’s home location l given her tweet contents $S(u)$ as

$$P(l|u) \propto \sum_{w \in S(u)} P(l|w)P(w).$$

Here only local words w are considered, and $P(w)$ denotes the probability of w over the entire corpus. After the decomposition, major efforts are spent on estimating the location distribution $P(l|w)$ of word w, or spatial word usage. After trying a baseline which estimates $P(l|w)$ directly from the data, they find the baseline inferior. They observe that some w may be unobserved in less populated locations, which does not mean that the location is irrelevant to w. To relieve the sparsity
problem, smoothing techniques need to be involved. A special type of spatial words is location name appeared in tweets. Li et al. \cite{72} observe that the probability of tweeting venue names is location-based at some time, while it is also random at other time. Thus they make it a two level estimation. A Bernoulli distribution is adopted to estimate whether a location name is posted randomly or based on location, following which a multinomial distribution is used to estimate the probability of tweeting the venue name from each location.

In the same work, Cheng et al. propose some explicit smoothing methods. The first method, laplace smoothing (or add-one smoothing), increase word \(w \)'s count in all locations by one before normalizing them to produce a distribution. This method ensures that all locations get positive probabilities. However, it does not involve the geographical information in \(l \). They further propose another two smoothing methods, namely, state-level smoothing and grid-based neighborhood smoothing. In those methods, a fixed portion of per-state or per-cell word counts is evenly distributed to only locations in the same state or cell, instead of all locations on the map. In \cite{102}, Ren et al. also consider an explicit smoothing technique called circular-based neighborhood smoothing. On the other hand, some parameterized spatial word usage models, once fitted, have implicit smoothing effects. In the same study \cite{15}, Cheng et al. treat the fitted spatial variation model in \cite{6} as the smoothed distribution. In an extension work \cite{16}, Cheng et al. generalize the one-peak model \cite{6} to wave-like smoothing to allow for multi-peaks in real word usage distributions. In the influence-based social closeness models \cite{73} introduced in the end of Section 3.2.2 Li et al. treat friends followed and location names mentioned by users uniformly, and use Gaussian models to fit their geographical usage. Instead, Chang et al. \cite{121} use Gaussian mixture models to fit the spatial word usage. Their model also allows for multi-peaks and is implicitly smoothed.

3.1.2 Location-Centric Methods

Word-centric methods are characterized by identifying local word and modeling spatial word usage. However, some researches adopt different approaches that give locations more centric roles.

A few studies adopt classification-based approaches to home location prediction. They treat users’ statistics about local words as features, and all candidate locations as classification labels. Hecht et al. \cite{49} select top 10,000 words with highest CALGARI scores as local words. Users are then represented as 10,000-dimensional term frequency vectors, and fed into a multinomial Naive Bayes classifier for training and home location prediction. Similarly, Rahimi et al.'s \cite{99} apply logistic regression on users' TF-IDF vectors. Instead of selecting local word as features, they subject to a sparse \(l_1 \) regularization penalty \cite{117}. Similarly, Cha et al. \cite{11} use sparse coding and dictionary learning techniques for word feature selection. In \cite{84}, Mahmud et al. adopt a hierarchical ensemble algorithm to train two-level classifier ensembles on timezone-city or state-city granularities. In their extension work \cite{85}, they also propose identifying and removing travelling people from training data to improve the performance of home location classifiers. A person is considered travelling if any two of her tweets were sent from locations with distance above 100 miles. Wing and Baldridge \cite{122} also resort to hierarchical classification \cite{115}. Instead of adopting administrative partitions directly, they use k-d tree to achieve adaptive grids in their hierarchy. This leads to better granularity for populated regions, and avoids unnecessarily over-representing less populated areas.

There are also studies that adopt information-retrieval-based approaches to home location prediction. They treat locations as pseudo-documents that consists of all tweets whose users live here. Given the pseudo-document of a user whose home location is to be predicted, locations with the most similar pseudo-documents are retrieved as prediction results. Specifically, Wing et al. \cite{123} adopt a grid representation of locations. They estimate a language model \cite{96} for each grid with its pseudo-document. Good-Turing smoothing \cite{40} is applied to smooth the probability of unseen words. Kullback-Leibler divergence is adopted as the similarity measure between location documents and user documents. In their subsequent work \cite{107}, they resort to adaptive grids as did in \cite{122}. When geo-coordinates need to be reported instead of grids, they find that reporting the centroid of user locations in the grid yields better precision than reporting mid-points of the grid.
home location distances. Moreover, it is also argued in other studies that social-closeness, which is based on friendship, interactions, and other implicit signals, are more reliable for estimating home distances than sole friendship. These studies are reviewed in Section 3.2.2

Finally, when multiple users’ home locations are unknown and to be predicted, their home locations are not independent because they are directly or indirectly interlinked by the Twitter network. This dependency cannot be captured by local inference methods that predict one home location at a time. In Section 3.2.3 we demonstrate how global inference methods are applied in some studies.

3.2.1 Friendship-Based Methods

In social science, the assumption of homophily [89] suggests that similar people make contacts at a higher rate than dissimilar ones. Given the task of predicting home locations based on Twitter network, a quick intuition may be that one’s home location is very likely to coincide with her friends’ home locations. In the preliminary model of [102], Ren et al. assume that the higher proportion of a user’s friends live at a location, the higher probability for the user to stay at the same location. Davis et al. [22] employ a similar approach to that of [102], except that they only consider mutual friendship. Rodrigues et al. [106] model home location prediction with the Potts model [74], which aims to maximize global home co-location between mutual friends. One drawback of the above three approaches is that they do not use the coordinates of home locations of a user’s friends. Locations are treated as a discrete set of objects, while the distance between them is ignored.

One of the earliest attempts to model friendship and home location distance is made by Backstrom et al. [7]. Although this study is conducted on Facebook, we include it in this survey because of its impacts on later Twitter-based studies. This paper analyzes a large number of Facebook users with known home locations and their friendships. They try to fit the probability of two users being friends w.r.t. their home distance with the following curve

\[
P(u_i \text{ and } u_j \text{ are friends } | \text{dist}(u_i, u_j) = x) = a(b+x)^{-c},
\]

and find that \(c = 1 \) produces a good fit. In other words, the probability of friendship is inversely proportional to home distance (with intercept \(b \)). Based on this model, given friends of a user and their home locations, the most probable home location for the user could be found by maximizing the probability of generating all seen friendship links but not generating any unseen one.

The above three methods all depend user home proximity solely on direct friendship. In other words, they implicitly assume that friendship observed on an online social network implies real off-line friendship, and thus close home distance. This may be far from true. In [61], Kong et al. find that a pair of friends has 83% of chance to live within 10 kilometers if their common friends account for more than half of their friends, respectively. The chance decreases to 2.4% if the common friend ratio is limited to 10%. This implies that rich indirect friendships on Twitter may indicate off-line friendship better than two users, and thus their home location proximity. As is also observed by Kossinets et al. [62], if two users \(a \) and \(b \) have relationship with many third users \(c \), \(a \) and \(b \) may possibly have a relationship. Inspired by this, Kong et al. improve the model in [7] by considering cosine similarity between two users’ friend collections in Eq. 2 Rout et al. [108] also relate the probability a user lives in a city to the distribution of indirect friendships between the user and her friends at the location.

3.2.2 Social-Closeness-Based Methods

In the previous subsection, we discussed several friendship-only methods, which only involve friendships available in the Twitter network. In fact, the investigations in [61] and [108] already indicate that social closeness, or how familiar two users are to each other in real life, is a better indicator of home proximity but not easy to estimate. On the contrary, it may harm home prediction if we depend home distance purely on direct friendship on Twitter. Many researches find that the inverse proportion model [7] in Eq. 2 on Facebook does not hold for Twitter. For example, McGee et al. [88] observe that friendship probability w.r.t home distance on Twitter roughly satisfy a bimodal distribution. One peak is around 10 miles, and the other is far away. Similar observations are also made by Scellato et al. [111] and Volkovich et al. [119] on other social networks. Therefore, many subsequent works are dedicated to going beyond online friendship and estimating social closeness instead.

In the Twitter network, one may recall that mentions are other forms of user interactions than establishing friendship. When users mention each other or have conversation with each other, then the two users should have closer relationship or share similar interest in real life as well. Such kind of friends are more valuable when we
predict users' home location. McGee et al. [88] make an analysis on 104,214 Twitter users with home located inside US. They find that besides mutual friendship, two users’ actions of mentioning and actively chatting with each other also indicate their home proximity. In a subsequent work [57], McGee et al. confirmed similar observations by examining a larger dataset. They also demonstrate some other new observations: 1) if the followed user account is a protected account (typically an ordinary person), the two users are geographically close; and 2) local newspaper accounts are close to their followers. By treating geographical proximity as ground truth social closeness, McGee et al. trained a decision tree to assign the social closeness between different users to ten quantiles with the above cues as features. They further use home distance in each social closeness quantile to fit Eq. 2 one model for each quantile. Finally, by replacing the friendship probability model in [7] with the ten models, they improve the 57.4% performance of Backstrom’s model to 63.9% in terms of accuracy at 25 miles.

Besides McGee’s works [87, 88], Compton et al. [19] also exploit mentions between two users. They build a user mention graph and optimize unknown home locations such that users mentioning each other are located as close as possible. Results show that their method achieves 89% coverage at a median error of 6.33 km. Jurgens [58] also considers bidirectional mention relationships instead of friendships. Rahimi et al. [99] find that bidirectional mention are too rare to be useful. They adopt unidirectional mentions as undirected edge.

Mentions and conversations are indicators for social closeness. Meanwhile, another group of studies also suggest influence to be another, but negative, factor of social closeness. For example, a user in Chicago may follow Lady Gaga in New York and President Obama in Washington. The establishment of such following relationship is not a result of social closeness between the user and the celebrities, but caused by the celebrities’ social influence. The intuition in this example has been supported by some research works. By analyzing a large Twitter dataset, Kwak et al. [64] find that users with fewer than 2,000 mutual friends (thus unlikely to have large influence) are more likely to be geographically close to most of them. In McGee’s work [87] described earlier in this subsection, they also discover that a user u's friend who has many friends and followers tend to be further away from u.

In [73], Li et al. construct a user influence model to capture the above intuition. Specifically, they model a user’s influence as a bivariate Gaussian distribution centered at her location, with the variance of the distribution interpreted as her influence scope. The probability of user u_i following u_j is measured by the probability density of u_j’s influence distribution at u_i’s home location. Finally, all unknown home locations and influence scopes are treated as parameters and learnt from the data by Maximum Likelihood Estimation (MLE). Similarly, Yamaguchi et al. [125] propose a landmark-based home location prediction technique. A landmark is a user with a lot of friends living in a small region. They argue that landmark friends are reliable cues to infer a user’s home location. In this sense, landmarks are actually non-celebrities with small influence. In an extension [72] of their earlier work [73], Li et al. extend home location prediction to multiple location profiling. The motivation is that many people may have home cities, as well as working and college cities that may not coincide with their homes. They may not only follow friends living nearby and celebrities far away, but also co-workers and college classmates in her working and college cities, respectively. This work also falls into the scope of social closeness modeling.

3.2.3 Local vs. Global Inference

Given that users are connected by the Twitter network, predicting their home locations is technically different from ordinary tasks where objects to be classified/scored are independent. For most studies mentioned above, we only describe how to conduct local inference, i.e., predict a user’s home location based only on one- or two-hop friendship or mentioning. Even if friendship-based and social-closeness-based features are carefully designed, one may still come across some detailed problems when implementing a home location predictor. What if all friends of the current user have unknown home locations? Whether and how should an inferred home location be updated when the user’s friends’ home locations are updated via inference? In this subsection, we review some studies on how they deal with the above problems and how global inference is carried out.

The easiest global inference approach would be to apply local inference iteratively on users with unknown home locations (i.e., label propagation [136]). In each iteration, a user’s home is temporally guessed through their friends with known or inferred locations. Studies adopting this approach include [7, 58, 98, 99]. However,
it is also reported in [108] that simple iterations consistently reduces prediction accuracy. They find that making their prediction iterative causes the population distribution to be flatter, which contradicts with the common sense that most people live in densely populated areas. Therefore, they stick to local inference. Moreover, in [61], Kong et al. conduct a variation of iterative inference called confidence-based iteration. The idea is to estimate a confidence for each home location guess, and only pass those with high confidence to the next iteration. Finally, it is worth noting that some studies define an explicit global objective function (or joint distribution) to optimize. Their inference methods are thus naturally global. Rahimi et al. [98] also find that the label propagation would be biased by highly-connected nodes (i.e., celebrities with large amount of followers), and the nodes does not connected to any labeled nodes could not be inferred. Therefore, they remove celebrities by identifying the number of mentions because they construct the graph by mention relationship. For nodes with no labeled neighbors, they estimate the label by the content-based method proposed in [99]. In [73], Li et al. derive from their global likelihood a two-stage iterative maximization method. Both unknown locations and influence scopes (recall in Section 3.2.2) are updated in each iteration. Compton et al. [19] directly optimize their objective function by parallel coordinate descent [103]. On the other hand, Rodrigues et al. [106] and Li et al. [72] resort to Gibbs sampling [3] to infer parameters in their joint distributions.

3.3 Inference based on Tweet Context

In Section 2.1.3, we categorize miscellaneous information associated with tweets as tweet contexts. Among them, tweet posting time and self-declared user profiles like locations and time zones have been employed to help home location prediction.

Mahmud et al. [84, 85] takes tweet posting time into consideration. In their dataset, all posting times are recorded in GMT. After binning a GMT day into time slots of equal length, users are viewed as distributions of tweet posting times. Since users in different time zones exhibit time shifts in their distribution, a time-zone classifier is trained with the distribution as features. Such classifications reveal the time zones of users and could provide a broad range of users’ locations. In the work of Han et al. [45, 46], they observe that self-declared locations and time zones, as free texts, are not always accurate. Informal abbreviations like “mel” (for Melbourne) may occur. Therefore, besides tweet contents, they also include all four-grams of self-declared locations and time zones as features to train a home location classifier. Efstatiiades et al. [26] simply utilize a probabilistic model based on the temporal distribution of geo-tags associated with tweets to estimate users’ home location and work place. The method is based on their observation that tweeting activity during rest time (i.e., late in the night) is more likely to be generated from “home” location, while during working time posting activity is mostly likely to be generated from “work” location.

3.4 Summaries and Discussions

In this section, we review literatures on user home prediction. We summarize all involved studies in Table [1]. Techniques for user home location prediction rely equally on tweet content and Twitter network. For tweet content, word-centric approaches are characterized by two components, i.e., local word identification and spatial word usage modeling. Location-centric approaches, on the other hand, cast the problem to classification or document ranking problems. For Twitter network, dependencies between users’ home locations are explained by their friendship and interactions. Global inference approaches are involved to solve the collective inference problem. Finally, tweet contexts like posting time and self-declared profiles are also involved in some studies.

For the home location prediction task, one aspect worth clarification is the collection of ground truths. Previous studies generally base their ground truths on two information sources, i.e., self-declared location profiles and geo-tags of tweets. Since self-declared home locations may be noisy, gazetteer-based normalization may be required. Because users may have many tweets, aggregation is needed for multiple geo-tags to convert geo-tags to a single home location. Conventional aggregations include geometric median of all geo-tagged coordinates, the most frequent city among all geo-tags, or simply the earliest valid geo-tag. When possible, those two approaches could be combined to achieve maximum size of labeled data.

Finally, we note that a systematic experimental comparison is conducted by Jurgens et al. [59]. The competing methods include Backstrom et al. [7], Kong et al. [61], Li et al. [72, 73], Mcgee et al. [87], Rout et al. [108], Davis et al. [22], Jurgens [58] and Compton et al. [19]. Their dataset consists of 1.3 billion tweets, 15 million users, and 26 million following relationships. Both types of ground truths are adopted, and contribute
Work	Input	Method	Dataset	Ground Truth	Granularity	Metrics
102	Content, network	Hybrid	Data from [15, 64]	Most frequent geo-tagged city, location profile	City, town	MeanED, Acc, Acc@k
44	Content	Word-centric	Data from [102]	Most frequent geo-tagged city	City	MedianED, Acc, Acc@k, MeanED
45	Content, context	Hybrid	Data from [44, geo-tagged tweets]	Most frequent geo-tagged city	City	Acc, Acc@k, MeanED
125	Content	Word-centric	Tweets	Location profile	Grid	Precision, Recall, MedianED
49	Content	Word-centric	Tweets	Location profile	Country, state	Acc
84	Content, context	Word-centric	Tweets	The earliest geo-tagged city	City, state, timezone	Recall, Acc@d
15	Content, context	Classification	Data from [28, 44, 60, 84]	The earliest geo-tagged city, most frequent geo-tagged city	Country, city	Acc, Acc@d, MedianED
16	Content	Word-centric	Geo-tagged tweets	Most frequent geo-tagged city	City	MeanED, Acc, Acc@k
109	Content	Word-centric	Tweets	Median geo-tagged coordinates	Coordinates	MeanED
72	Content, network	Hybrid	Tweets	Location profile	City	Acc@k
121	Content, network	Hybrid	Tweets	Location profile	City	Acc, MeanED
99	Content, network	Hybrid	Data from [15]	Most frequent geo-tagged city	City	Acc, MeanED
11	Content	Location-centric	CMU GeoText data	The earliest geo-tagged city	Coordinates	Acc@d, MeanED, MedianED
85	Content, context	Location-centric	Geo-tagged tweets	The earliest geo-tagged city	Coordinates	MeanED, MedianED
125	Content	Location-centric	Data from [44, 102]	Coordinates of the earliest tweet, coordinates of the most frequent geo-tagged city	Grid	MeanED, Acc@d, MedianED
123	Content	Location-centric	Wikipedia, data from [28]	Geo-tag	Grid	MeanED, MedianED
107	Content	Location-centric	Data from [28, geo-tagged tweets]	The earliest geo-tagged coordinates	Grid	Acc@d, MeanED, MedianED
106	Content, network	Friendship-only	Tweets	Most frequent geo-tagged city, location profile	City	Precision, Recall
61	Network	Friendship-only	Tweets, Gowalla check-in	Most frequent check-in, location profile	Coordinates	Acc, MeanED
108	Network	Friendship-only	Tweets	Location profile	City	Acc@d, MeanED
87	Network	Social-closeness based	Geo-tagged tweets	Median geo-tagged coordinates	Coordinates	Acc@d, MeanED
19	Network	Social-closeness based	Geo-tagged tweets	Location profile, median geo-tagged coordinates	Coordinates	Recall, MeanED, MedianED
58	Network	Social-closeness based	Geo-tagged tweets, Foursquare data	Location profile, median geo-tagged coordinates	Coordinates	MedianED
125	Network	Social-closeness based	Data from [73]	Location profile	Coordinates	Acc@d, Recall, F1, MeanED, MedianED
98	Content, network	Hybrid	Data from [28, 44, 107]	The earliest geo-tagged coordinates, coordinates of the most frequent geo-tagged city	Coordinates	Acc@d, MeanED, MedianED
28	Content	Geo-topic	Geo-tagged tweets	The earliest geo-tagged city	State	MeanED, MedianED
27	Content	Geo-topic	Data from [28]	The earliest geo-tagged city	Coordinates	MeanED, MedianED
26	Context	Probabilistic	Data from [28]	Location profile, work place on LinkedIn	POI	MeanED, Acc@d, Acc
to 3.4% and 2.6% of labeled users, respectively. Readers can refer to this paper for detailed results.

4 Tweet Location Prediction

According to an analysis by Java et al. [55], users’ primary aims of sending out tweets are to share or seek for information. For example, one may tweet about a restaurant where she is currently enjoying delicious food. Such information will help promote the restaurant, if its name is clearly associated with the tweet as a tag. One may also send tweets saying she is looking for a restaurant but lost somewhere in the city. In this case, a tag on where the tweet is sent out may enable her friends to give her precise directions. Unfortunately, it is reported that less than 1% of tweets has explicit geo-tags [41]. Therefore, predicting geo-tags, or the location where a tweet is sent out, has received considerable attention in the literature.

In the first sight, the task of tweet location prediction looks very similar to home location prediction. The “only” difference seems to be their inputs: for home location prediction we have all tweets from a user, while for tweet location prediction we are given only one tweet. In this section, we review research efforts on tweet location prediction. We will also spend special efforts to highlight different properties of the two problems, as well as different emphasis resulted on specific techniques.

4.1 Inference based on Tweet Content

Due to similar problem definitions, tweet location and home location predictions share many common techniques on handling tweet contents. For example, word-centric and location-centric methods, which we introduced for home location prediction, are also observed in tweet location prediction literatures. We will detail those works in Section 4.1.1. Moreover, we will also review some topic-model-based approaches in Section 4.1.2 which are (most of the time) specially designed for tweet location prediction.

4.1.1 Word- or Location-Centric Methods

As summarized in Section 3.1, word-centric methods for home location prediction [2, 73, 121] are characterized by modeling spatial word usages. To alleviate the data sparsity issue, Gaussian or Gaussian mixture models are used to achieve smoothed word usage distributions [72, 73, 121]. Similarly, in [97], Friedhorsky et al. also employ Gaussian mixture models for tweet location prediction. However, they concentrate on modeling the spatial usages of not only words, but also n-grams. The reason lies in that, for tweet location prediction, we have only one tweet as input. This information is more limited than that for home location prediction, where a users’ tweets are all provided. Therefore, it is worthwhile to exploit the input with reasonable redundancy. In experiments, they find that their models are improved by including rare n-grams, even those occurring just three times. Flatow et al. [31] also resort to modeling spatial n-gram usages with Gaussian models. Similar to the idea of local words, they prefer geo-specific n-grams, i.e., those whose tweets are mostly located in a small eclipse on the map.

As for location-centric methods, previous studies also involve information-retrieval-based solutions. Kinsella et al. [60] treat both tweets and locations as Dirichlet-smoothed [131] unigram language models. The probability of a location language model generating a tweet, or the KL-divergence between language models of a tweet and a location, are adopted as location ranking functions. Li et al. [75] also employ an information-retrieval-based approach with KL-divergence as the retrieval function. For locations with few tweets, they augment their language models with web pages retrieved with their names. Similarly, Lee et al. [67] resort to user tips posted on the Foursquare pages of locations to construct language models for those locations. Besides Laplace smoothing (or add-one smoothing), they also try absolute discounting and Jelinek-Mercer smoothing [12] to deal with unseen words, but no performance gain is observed.

Finally, we note that a few tweet location prediction studies involve classification-based approaches. Hulden et al. [53] classify tweet text into discretized cell grids with words as features. A data sparsity issue appears with grid size becomes smaller, which is to improve the classification accuracy. To deal with the problem, they apply a Gaussian kernel to estimate the prior probability of each cell and the conditional probability of each word given a cell. Besides unigrams, Dredze et al. [25] also extract bigrams from tweet content, together with features from Twitter context, and feed them in a classifier. Cao et al. [10] employ both tweet content and social relationship features to classify tweet text to locations at fine-grained POI level. Another one [43] we are aware of aims at predicting location types, e.g., railway station, cinema or supermarket, rather than exact locations for
tweets. The underlying reason may be again due to the large amount of fine-grained tweet locations. For user home prediction, the number of classes, i.e., cities, are manageable under the multi-class classification framework. Some works even alleviate the class number issue by hierarchical classification [84][85][122]. However, the class number is simply unaffordable for tweet location prediction, given that there may be hundreds of thousands of POIs in a city.

4.1.2 Geo-Topic-Model-Based Methods

As effective approaches to unsupervised text mining, topic models have been extended to account for texts with geographical information like blogs [90][120]. Such models are also expanded to tweets and used for geolocation on tweets due to their generative nature. Topic models could integrate different aspects related to locations as latent variables into a unified model, which could make information interact with each other, as we call them geo-topic-model-based method.

Eisenstein et al. [28] extend traditional topic models by “corrupting” conventional topics and produce location-varied topics. For example, “NBA” and “Kobe” may be representative words in the “basketball” topic produced by conventional models. By sampling from a Gaussian distribution centered at the “basketball” topic vector, the corrupted “basketball” topic for Boston may also include “Celtics” (a Boston-based team) while slightly changing other word frequencies. In their subsequent work, Eisenstein et al. [27] propose a Sparse Additive GENerative model (SAGE). The model is capable of supporting the location-based topic corruption idea in [28]. It also enables sparsity and simplicity in model inference. An issue of [27,28] lies in the special way they pre-process tweets. They concatenate each user’s tweets into a long tweet, and use the first valid geographical coordinates as the location of the long tweet. We note that the two works are actually for home location prediction, and introduced here for the sake of a complete review of topic-model-based methods.

By leveraging the SAGE model [27], Hong et al. [51] construct a model that takes region, topic and users’ interests into consideration. Different from [27][28], they respect the original view of tweets and model locations in a per-tweet manner. The location of a tweet depends on the user’s geographical interest distribution. The topic of a tweet is then dependent on the user’s topical interest, as well as local topics. Words in the tweet are finally generated by the chosen topic as well as a “local words” distribution. Instead of modeling users’ geographical interest as a multinomial distribution, Chen et al. [13] introduce user interest as a latent variable and construct a location function, e.g., eating, shopping, or health, both of which are as bridges to link user and location. Each user has a interest distribution over location functions, which affect the generation of tweet locations. Different from location functions, Yuan et al. [130] propose a intermediate variable called regions between users and tweet locations. For example, a user may have a “work” and a “home” region, which are Gaussian distributions centered at her work place and home address, respectively. Suppose the user is at her work region and wants to eat, i.e., choosing “eating” from her topical interests. She will pick a restaurant near her work place and write a tweet about eating and the work region, tagged with the name of the restaurant.

4.2 Inference based on Twitter Network

Due to the fact that both of users’ friendship and home location have a long-term and stable nature, the task of home location prediction relies remarkably on twitter network, as demonstrated in Section 3.2. However, compared with home locations, tweet locations are usually described at a finer granularity, i.e., POI-level rather than city-level, and are highly dynamic. This implies that without involving other sources of dynamic information, tweet locations may not be effectively predicted by employing twitter network only.

In Sadilek’s work [110], the dynamic input comes from real-time locations of a user’s friends, and her own historical locations. To study the correlation between the trajectories of friends and the auto-correlation within one’s trajectory, they accumulate over ten thousands of users, each with more than one hundred geotagged tweets. A Dynamic Bayesian Network (DBN) is trained on the location sequence of each user, with her friends’ locations, the time of the day, and the day of the week as features. One interesting aspect of their model is that it can not only model the attractive force between friends’ locations but also capture other non-linear patterns. For example, two co-workers in the same store may have a day shift and a night shift, respectively. In this case, given enough historical data, their model can predict that one is at home given that the other is working in the store.
Table 2: Comparison of Models Predicting Tweet Location

Dataset	Word-centric	Location-centric	Geo-topic	Dynamic Bayesian network	Stacking
Geo-tag tweets	Geo-tag tweets, Foursquare data	Geo-tag tweets, Geo-topic	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data
Geo-tag tweets	Geo-tag tweets, Foursquare data	Geo-tag tweets, Geo-topic	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data
Geo-tag tweets	Geo-tag tweets, Foursquare data	Geo-tag tweets, Geo-topic	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data
Geo-tag tweets	Geo-tag tweets, Foursquare data	Geo-tag tweets, Geo-topic	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data	Geo-tag tweets, Foursquare data

Input Feature
- Word: Content, context, network
- Location: Coordinates, city, state, zip-code
- Geo-topic: Coordinates, POI

Work
- Content, context, network
- Geo-tag tweets, Foursquare data
- Geo-tag tweets, Geo-topic
- Geo-tag tweets, Foursquare data
- Geo-tag tweets, Foursquare data

Metrics
- MeanED, MedianED, MSE
- Recall, Precision, Acc
- Acc@d, Acc@k

Granularity
- Coordinates, city, state, zip-code
- POI

Ground Truth
- The earliest geo-tagged coordinate
- Human label
- Human label

Model
- Word-centric
- Location-centric
- Classification
- Geo-topic
- Dynamic Bayesian network
- Stacking

Inference based on Tweet Context

Tweet posting times are indicative of users’ home locations, where a user is characterized by a distribution of posting times [84][85]. Unlike home locations, for tweet location prediction we only access a tweet’s posting time rather than a distribution. However, a time stamp may also be informative if enough history data for locations is provided. For example, tweet posting histories may suggest that a club tends to be tweet-active at night, while a park tends to receive more tweets on weekends. Inspired by this, Li et al. [75] keep tweet time distributions for locations at three different scales of periods, i.e., day, week, and month. Given a tweet with a timestamp, probabilities of the three distributions generating the timestamp are linearly combined to give preferences between locations. In the geographic topic model of [130], Yuan et al. adopt two scales of time periods, namely day (weekday/weekend) and time of the day. Given a user, the generative model first decides whether on weekdays or weekends to send the tweet according to her preference. Then the daytime is drawn from her preference distribution, which is also conditioned on the day variable. Finally, the user decides which region to go to and send a tweet about. Dredze et al. [25] take both time zone and tweet posting time as features for a classifier. They find the cyclical temporal patterns do have effects on prediction results.

Schulz et al. [112], on the other hand, accumulate tweet location indicators from user profiles. Possible indicators may be users’ self-declared home locations, websites, and timezones, as well as location names mentioned in the tweet. By querying multiple databases[7], those indicators are resolved to polygon-shaped administrative regions, with resolution confidences being heights of the polygons. Those polygons are finally stacked up [124] to produce a spatial distribution of possible tweet locations. In experiments, they find that such a multi-indicator approach is more robust than single-indicator ones, which is error-prone due to ambiguity.

4.4 Summaries and Discussions

In this section, we review literatures on tweet location prediction listed in Table 2. As mentioned in the beginning of this section, techniques for both tweet loca-

7Those include GADM database of Global Administrative Areas [http://www.gadm.org], Thematic Mapping [http://thematicmapping.org/downloads/worldborders.php], and IANA Time Zone Database [http://eefele.net/maps/tz/world/].
tion and home location predictions emphasize much on employing tweet content. We also mention several differences between user home location and tweet location predictions. We list them below for a clear summarization:

- Except studies with coordinate-based evaluations, user homes are predicted at coarse granularities like city-level, while tweet locations at a finer POI-level.
- Home location prediction relies equally on Twitter network and tweet content; but few studies utilize Twitter network to predict tweet locations.
- Classification-based approaches are common for home location prediction, which is not the case for tweet location prediction.
- When employing posting time information, users are viewed as time distributions, while tweets are essentially time stamps. This may lead to different location ranking functions.

Despite the above differences, we note that the two problems are sometimes not clearly separated. Studies like [11, 27, 28, 107, 122] concatenate a user’s tweets into one document, and use the first available geo-tag as the ground-truth location. We argue that a geo-tag chosen this way may not necessarily be the user’s home location. Since users are not explicitly modeled, their techniques could be used for both kinds of predictions. On the other hand, [13, 51, 130] explicitly model users’ interests over locations, location functions, and regions. Those models may only be used for tweet location prediction, but better exploitation for the specific problem and data could be expected from them.

5 Mentioned Location Prediction

In daily lives, users may occasionally send tweets to comment on a restaurant, a shopping mall, or a cinema. When parades or disasters take place, numerous tweets may be sent out by users to inform others about the events. Besides attaching geo-tags to those tweets, users may also reveal the related locations by mentioning their names in the tweets. Preprocesses on those location names are crucial steps to accumulating information for, and performing subsequent analysis on, those users and events [54, 83]. There are two types of mentioned location preprocesses: 1) recognition: to label text chunks which are potential location mentions, and 2) disambiguation: to map recognized location mentions to right entries in a location database.

For well-formatted documents (e.g., news) and entities (e.g., persons and organizations), the recognition [94] and disambiguation [113] problems have been well investigated for decades. It is well received that the variability and ambiguity of entity mentions are two major difficulties for entity recognition and linking. Here variability means an entity may have various mentions, and ambiguity means one mention may refer to multiple entities. Unfortunately, the two difficulties are actually rendered more challenging by the noisy and short nature of tweets. In this section, we review recognition and disambiguation efforts for location mentions in tweets. We will highlight how the two problems are made worse in the tweet scenario, and how they are dealt with by previous studies. Sometimes we may not limit the discussion on studies solely in the location entity domain. Recognition and disambiguation efforts for general entities in tweets will also be included, as long as they are inspiring to, and experimentally involve, mentioned location prediction.

5.1 Inference based on Tweet Content

Like in ordinary documents, recognizing and disambiguating mentioned locations in tweets are generally based on tweet contents, and carried out in a pipelined manner. On the one hand, words like “Street” and “at” may suggest inner and outer boundaries of location mentions. On the other hand, other words in the mention context may provide clues for disambiguating the mentions. We will introduce previous works on both tasks in Sections 5.1.1 and 5.1.2, respectively. We also note that some studies propose joint approaches to couple the two tasks. They will be reviewed in the end of Section 5.1.2.

5.1.1 Mentioned Location Recognition

For Named entity recognition (NER) formal documents, state-of-the-art machine learning algorithms like conditional random fields [66] have been designed. Equipped with comprehensive linguistic features like Part-of-Speech (POS) tags and capitalizations, they could achieve satisfactory performance [101]. Based on those algorithms and features, off-the-shelf NER tools like StanfordNER and OpenNLP are also developed.
and released.

When faced with noisy and short tweets, traditional NER features and tools are both at risk of deteriorated performance. For example, consider a typical tweet saying “shopping @ orchard st”. Because of the informal writing, common clues indicating “Orchard Street” as a location mention in formal documents, like “at” (“@”), “street” (“st”), and capitalizations (“Orchard” instead of “orchard”), are all absent. Ritter et al. [105] rebuild the entire NER pipeline for tweets. They use Brown clustering [9] to identify word variations clusters (e.g., “at” and “@”). A dedicated classifier is also trained to recognize whether each capitalization in a tweet is informative. Similarly, Liu et al. [81,82] train a tweet normalization model to correct informal words (e.g., “gooooood”) before performing NER. Noticing that words like “orchard” may be hard to label within the given short tweet, they train a k-nearest-neighbor word classifier to inform the NER classifier with global information, i.e., how the word is labeled in other tweets. Li et al. [70] investigate a novel streaming setting for tweet NER. They exploit the gregarious property of entity mentions to differentiate valid mentions from non-entity segments. Their approach also inherently addresses the short tweet problem.

Besides the above tweet NER attempts for general entities, there are also a few studies specially on location entities. Those studies are characterized by the use of certain location gazetteers, e.g., Geonames [10,86,132] and Foursquare [68,69]. Malmasi et al. [86] do not involve CRF in their location mention recognizer. They simply use an off-the-shelf dependency parser to extract all noun phrases, and conduct fuzzy matching with Geonames. Their matching criteria take patterns of addresses and POIs into consideration. Zhang et al. [132] rely on a location mention recognizer they build in [39]. A gazetteer-based location parser, a CRF-based recognizer, and a rule-based street/building parser are used in conjunction to achieve best recall. A similar combination is also adopted by Gelernter et al. [37]. Li et al. [68,69] observe that Twitter users often mention locations by abbreviations [76]. They opt to augment their Foursquare-based gazetteer with frequent-substring-based partial names.

5.1.2 Mentioned Location Disambiguation

Given location mentions recognized in a document, location disambiguation (a.k.a. linking) [113] refers to resolving those mentions to right entries in a location database. The challenge of this task lies in that different locations may have the same names. For example, at the coarse city-level granularity, “Washington” may refer to a state in the west of the U.S., as well as a city in the east. “Olympia” may refer to the capital city of Washington state, as well as an ancient Greek city. At a finer POI-level, chained restaurants, e.g., McDonald, may have many branches even in a single city.

For general entities in formal documents, traditional approaches [24,92,93] disambiguate one mention at a time. To exploit dependencies between mentions, collective disambiguation approaches [20,50,63] are proposed. Those approaches assume that the disambiguation decisions for multiple mentions in the same document should be coherent. For example, if “Washington” and “Olympia” co-occur in the same tweet, they are more likely to refer to the U.S. state and its capital. As for mentioned locations in tweets, Zhang et al. [132] employ similar ideas in their study. They take the hierarchy structure of locations into consideration. Not only parent-child location pairs (e.g., “Washington” and “Olympia”), but also siblings in the location hierarchy (e.g., cities in the same state), are regarded as coherent. Ji et al. [57] investigate collectively disambiguating POI mentions in tweets. Their coherence measure is based on the average distance among chosen POIs for the recognized mentions. Different from [57,132], Li et al. [71] advocate disambiguation coherence at user-level rather than tweet-level. They assume that mentioned locations in a user’s tweets are generally inside her living city. They first identify the living city by aggregating candidate locations for the mentions, and then refine those candidates with the living city. Shen et al. [114] also conduct collective disambiguation at user-level by modeling user interests. However, their method is aimed for general entities.

In conventional studies, mentioned location disambiguation is based on the output of recognition in a pipeline manner. If fed with wrong outputs, e.g., mentions with inaccurate boundaries, the disambiguation component may fail due to inability of finding candidates in the database. Motivated by this, some recent studies [42,57] suggest enabling information to flow in both directions between the two components. If the disambiguation component suffers from no candidates or low confidence, it may give feedbacks to the recognition component to correct the input mentions. In [42], Guo et al. leverage structural SVMs [118] to jointly optimize mention recognition and disambiguation. Both recog-
nition features (e.g., capitalization) and disambiguation features (e.g., entity popularity) are integrated to train the structural SVM. Similarly, Ji et al. [57] jointly consider both types of features in a structural prediction framework. They resort to beam search [133] to look for the best combination of recognition and disambiguation decisions.

5.2 Inference Based on Twitter Network

The most significant characteristic that differentiates Twitter and other user-generated-content platforms like blogs is its network. Like home and tweet location predictions, user friendships could also be exploited for mention disambiguation.

In [52], Hua et al. assume that the more a user is influence by others mentioning an entity, the more likely she will mention the same entity. Specifically, they adopt an incremental disambiguation approach. In the off-line stage, they preprocess a large number of tweets with [114] as a base system. Such preprocess enables them to estimate friendship-based user interest for entities in the on-line stage. When a candidate entity e is considered for a mention in user u’s tweet, they look for other users who once mentioned e. An entity e is preferred if its users have good reachability to u in the friendship network. Efforts were also made on achieving efficient reachability queries.

5.3 Inference based on Tweet Context

Given the short length of tweets, scarce information from the textual content could be exploited for mention disambiguation. Luckily, such scarcity could be made up by contextual information of tweets, including time stamps and geo-tags.

Besides friendship network, Hua et al. [52] also exploit time stamps of tweets. Due to their incremental disambiguation framework, they could estimate entity recency when a new tweet comes. Given a time stamp, the recency for an entity e is defined by the number of tweets mentioning e in the last time window of predefined length. They further use personalized PageRank [56] to propagate entity recency on the Wikipedia network to account for related entities. Finally, recently hot entities are rewarded when disambiguating mentions. Fang et al. [29] consider both geo-tags and time stamps of tweets in mention disambiguation. An entity prior w.r.t. time and location is estimated and used to replace the coarse-grained global entity popularity. Note that [29, 52] aim for general entities. When only locations are considered, the interaction between locations and timezones may enable interesting approaches. In Zhang et al.’s work [132], they attempt to disambiguate location mentions with time stamps. They observe that tweet traffic is fairly low between 2am-5am on weekdays. When there are several candidate locations (e.g., “Olympia”), they carefully choose one to avoid timezones that place the time stamp in the low traffic window.

5.4 Summaries and Discussions

In this section, we review literatures on mentioned location prediction, which are summarized in Table 4. Like tweet locations, mentioned locations also depend heavily on tweet content, and slightly on Twitter network and tweet context. However, we note that mentioned locations does not necessarily imply tweet locations (e.g., “going to tokyo tomorrow”). In [4], Antoine et al. use a large volume of tweets to analyze the differences between mentioned locations and tweet locations. Moreover, due to the definitions, their ground truths are collected differently. Ground truths for tweet location prediction are obtained by referring to geo-tags of tweets. Mentioned locations, however, are identified though human annotation [30].

Like the tasks of predicting home and tweet locations, mentioned location prediction also suffers from the noisy and short nature of tweets. When adopting recognition and disambiguation approaches for formal documents, it is common to involve tweet- and location-specific techniques/information. We highlight them below for a clear summarization:

- Techniques for informal tweet language: i.e., Brown Clustering [68, 69, 105] and tweet normalization [81, 82].
- Gazetteers for location mention recognition: i.e., Geonames [39, 86, 132], Foursquare [68, 69], and others [37].
- Geographical coherence measures for collective disambiguation: i.e., geographical-hierarchy-based method [71, 132] and distance-based method [57].
- Modeling Twitter-specific information: i.e., friendship network [52] and spatio-temporal signals [29, 52, 132].

Finally, there are a few experimental analysis literatures on tweet NER that are worth noting. Gelernter
Table 3: Comparison of Named Entity Recognition. The ground truth of presented works are all annotated by human.

Work	Features	Method	Data	NER type	Metric
[105]	POS tagging, shallow parsing, capitalization	CRF	Tweets, Freebase	Location, person, company, product, facility, TV-show, movie, sports team, band, other	Precision, Recall, F_1
[81, 82]	Contextual, dictionary, orthographic, lexical	KNN, CRF	Tweets	Location, person, organization, product	Precision, Recall, F_1
[70]	Dictionary, statistical	Dynamic programming	Tweets, Microsoft Web N-Gram	Any type, e.g., location, person, etc.	Precision, Recall, F_1
[86]	POS tagging	Rule-based matching	Tweets	Location	Precision, Recall, F_1
[39]	Lemma form, POS tagging, capitalization, dictionary, contextual, orthographic	Named location recognizer, street and building parser, NER	Tweets, GeoNames	Location	Precision, Recall, F_1
[37]	Orthographic	Lexico-semantic pattern recognition, NER, gazetteer matching	Tweets, NGA gazetteer	Location	Precision, Recall, F_1
[68, 69]	Lexical, contextual, grammatical, BILOU schema, geographical	CRF	Tweets, Foursquare	Location	Precision, Recall, F_1

Table 4: Comparison of Location Mention Linking Models. Presented works are all of POI granularity location.

Work	Input Feature	Model	Dataset	Ground Truth	Metrics
[132]	Content	Classification	Geo-tagged tweets	Human label	Precision, Recall
[57]	Content	Structured perceptron with multi-view learning	Tweets	Human label	Precision, Recall, F_1
[71]	Content	Ranking	Foursquare data, Geo-tagged tweets	Geo-tag	Precision, Recall, F_1
[114]	Content	Graph-based	Tweets	Human label	Acc
[42]	Content	Structural SVM	Tweets, some data from [105]	Human label	Precision, Recall, F_1
[52]	Network, context	Ranking	Tweets	NER identified by [70]	Acc
[29]	Content, context	Probabilistic	Geo-tagged tweets	Human label	Precision, Recall, F_1
et al. [38] perform an error analysis on StanfordNER for recognizing locations in tweets. They do not re-train StanfordNER with labeled tweets, but use it as is. Lingad et al. [77] compare a few NER tools on disaster related Twitter data, e.g., StanfordNER, OpenNLP[11], Yahoo! PlaceMaker[12] and TwitterNLP [105]. They find that retrained StanfordNER outperforms other competitors. Liu et al. [80] also make a similar comparison between LER proposed by themselves and other tools. Besides StanfordNER and TwitterNLP, they also include GeoLocator[37], and UnlockText[13]. Derczynski et al. [23] compare tweet NER performances of several systems, but they do not restrict to location entities.

6 Other Related Problems

In this section, we review another two problems related to location prediction on Twitter, namely semantic location prediction and point-of-interest recommendation. We will also try to highlight their difference in terms of definitions, ground truths, and solutions.

6.1 Semantic Location Prediction

In Section 4, we demonstrate that literatures depend tweet locations heavily on tweet contents. The underlying assumption is that, if a tweet semantically talks about a location, it is likely to be sent out at the location. In practice, semantic locations and tweet locations may not always coincide. Users may talk about current locations but tag their tweets with other nearby locations because of inaccurate GPS devices. Tweets may even have geo-tags but no semantic location (e.g., a tweet saying “feeling sleepy” tagged with the user’s home address). Therefore, some papers concentrate on predicting semantic locations instead of tweet locations.

Dalvi et al. [21] investigate matching users’ tweets to restaurants in Yahoo! Local[14]. Those tweets may talk about dishes, service, or ambience of certain restaurants. They assume that each user has a latent location, and that they are likely to talk about nearby restaurants. When talking about restaurants, users follow a restaurant-specific bigram language model. To evaluate their model, they manually annotate hundreds of tweets, where candidate restaurants are suggested by a base system in their previous work. Zhao et al. [134] study matching tweets to general POIs on Foursquare. Different from [21] and all tweet location prediction studies, they assume that geo-tags of tweets are known and given as input. Nearby locations with compatible keywords are preferred in matching. By introducing dummy locations, their model is capable of identifying the “no semantic location” case. Evaluations are conducted with thousands of manually annotated tweets.

To sum up, this line of work is characterized by the need for manually annotated ground truths. The need for annotations is caused by the subjective definition of semantic location. We note that manual annotations take much more efforts to obtain than geo-tags. Dalvi et al. [21] and Zhao et al. [134] only involve hundreds or thousands of annotated tweets for evaluation, respectively. This may explain why this problem attracts less attention than the three major tasks introduced above.

6.2 Point-of-Interest Recommendation

Due to its content-centric nature, Twitter is regarded by users as an ideal platform to share events, emotions, and opinions by tweets. Meanwhile, location-based social networks (LBSNs) like Foursquare, Gowalla, Brightkite, and Yelp concentrate more on POI-centric information. Besides establishing online friendships, they encourage users to check in at, rate, and comment on POIs, as well as keep their information up to date. The popularity of LBSNs has given rise to abundant studies on POI recommendation.

Due to its popularity [17], Foursquare is adopted by many studies [14, 34, 35, 36, 78, 79, 95, 127, 128] as data source. However, Foursquare APIs do not allow access to users’ check-in history. Luckily, when checking in on Foursquare, users may optionally allow Foursquare to send check-in tweets saying “I’m at [POI] [Foursquare URL of POI].” By monitoring tweet streams for check-in tweets, researchers manage to accumulate sufficient check-in data for POI recommendation. This might be the most significant connection between this line of study and Twitter. In the remainder of this section, we clarify the differences between POI recommendation and other tasks in this survey.

Judging from the names, POI recommendation only operates at the fine-grained POI level. Moreover, it aims at suggesting POIs that users have never been to, instead of locations that they have existing connections with [33]. A user does not need to write a tweet to get suggested places to visit. Recommendations are made based on the user’s and others’ historical data, including

[11]https://opennlp.apache.org
[12]http://developer.yahoo.com/geo/placemaker/
[13]http://edin.ac.uk/unlock/texts/
[14]http://local.yahoo.com
Table 5: Comparison of Other Geolocation Problem. Presented works are all of POI granularity location.

Problem	Work Description	Input Feature	Model	Dataset	Ground Truth	Metrics
Semantic Location	Webpage content probabilistic tweets, human label	Content	Supervised Bayesian model	Foursquare, Gowalla, Brightkite, Check-ins	Majority	Human label, Majority, Precision, Recall, F1
POI Recommendation	Geo-social recommendation via matrix factorization	Content, context	Probabilistic matrix factorization	Foursquare check-ins on Twitter, Gowalla data	PR, APR, Acc@k	Precision@k, Recall@k, MAE, NDCG@k, MAE, RMSLE@k
POI Recommendation	Geo-social recommendation via matrix factorization	Content, context	Probabilistic matrix factorization	Foursquare check-ins on Twitter, Gowalla data	PR, APR, Acc@k	Precision@k, Recall@k, MAE, NDCG@k, MAE, RMSLE@k
POI Recommendation	Geo-social recommendation via matrix factorization	Content, context	Probabilistic matrix factorization	Foursquare check-ins on Twitter, Gowalla data	PR, APR, Acc@k	Precision@k, Recall@k, MAE, NDCG@k, MAE, RMSLE@k
POI Recommendation	Geo-social recommendation via matrix factorization	Content, context	Probabilistic matrix factorization	Foursquare check-ins on Twitter, Gowalla data	PR, APR, Acc@k	Precision@k, Recall@k, MAE, NDCG@k, MAE, RMSLE@k
POI Recommendation	Geo-social recommendation via matrix factorization	Content, context	Probabilistic matrix factorization	Foursquare check-ins on Twitter, Gowalla data	PR, APR, Acc@k	Precision@k, Recall@k, MAE, NDCG@k, MAE, RMSLE@k

In terms of solutions, POI recommendations are generally based on the collaborative filtering framework. Although user friendships, contents, and contexts are also exploited, they mostly come from those LBSNs rather than Twitter. For friendships, Ye et al. and Gao et al. [35, 36, 128] employ Foursquare friendship network, while Ying et al. and Cho et al. [18, 129] rely on Gowalla and Brightkite networks. Yang et al. [127] claim that Foursquare friendships are not public and turn to the Twitter network. As for contents, check-in tweets do not provide as much textual information as ordinary tweets. However, several Foursquare-based studies manage to exploit user comments and POI tags/descriptions in recommendation. Hasan et al. [47] find that the time of visiting different places depends on activity categories. Such spatio-temporal contexts are also involved in investigations like. Such information is directly available in the check-in tweets.

Finally, we note that this section is only aimed at clarifying connections and differences between LBSN-based POI recommendation and Twitter-based location prediction. Due to the scope of this survey, we only involve a small portion of studies along this line of research. Readers may refer to [8, 33, 135] for extensive surveys.

7 Conclusion and Future Directions

As one of the most popular online social networks, Twitter provides a virtual worlds for users to make friends and share their daily lives. Locations in the real world have been involved in every corner of the Twitter world. If in ready forms, they may facilitate various applications and benefit users in real life. Due to the incompleteness and inaccuracy of locations on Twitter, extensive research efforts have been spent on geolocation problem on Twitter.

In this survey, we review and summarize techniques

15By the time we finish this survey, authorizations from Foursquare users are needed to access their friendships via API. However, one can view any user’s friend list via a browser.

16Normalized Discounted Cumulative Gain

17Root Mean Square Error

18Percentile Rank

19Average Percentile Rank
for predicting three types of Twitter-related locations: home location, tweet location, and mentioned location. Compared with similar problems for formal documents, i.e., document geolocation and named entity recognition & disambiguation, geolocation problems on Twitter face unique challenges and opportunities. The challenges generally arise from the noisy and short nature of tweet content. The opportunities, on the other hand, are enabled by the massive Twitter network and rich tweet context. We clearly demonstrate how techniques for each problem are specially designed or adapted for the three types of Twitter information.

Intuitively, all three prediction problems rely heavily on tweet content. For home location and tweet location predictions, techniques are generally categorized to the following two classes:

- **Word-centric methods.** They are characterized by identifying local words and modeling spatial word usage. Indicators inspired from statistical, information theory and heuristic rules are designed to select local words without supervision. Some researchers also consider supervised local word identification based on manual features and annotations. When modeling spatial word usage, direct estimations from data may suffer from the sparsity problem. Therefore, multiple explicit and implicit smoothing techniques are proposed.

- **Location-centric methods.** They are characterized by constructing pseudo-documents or classifiers for locations. Pseudo-documents construction are essential for information-retrieval-inspired approaches. Similar to spatial word usage, language models for pseudo-documents also require smoothing. However, geographical smoothing techniques, e.g., Gaussian model and grid-based smoothing, are not applicable. For tweet location prediction, classification methods are rarely adopted because it is usually at fine-grained POI level which is of large amount.

As for mentioned locations, efforts on recognition address the noisy-content challenge by sophisticated features and comprehensive gazetteers. Collective disambiguation is employed to relieve the information scarcity brought by short tweet length. Jointly optimizing both recognition and disambiguation components is also advocated in some studies.

As a significant feature of the platform, Twitter network plays a key role in home location prediction. Various hypotheses have been made on the connections between friendship and home proximity. On Facebook friendship network, Backstrom et al. [7] validated that the two are inversely correlated. However, this correlation fails when generalized from the bidirectional Facebook friendships to unidirectional Twitter friendships. A direct counter-example is that ordinary people may follow celebrities though they stay in distant cities. To fix this issue, social-closeness-based methods are proposed to differentiate such noisy friendship relationship. Explicit factors like only friends with interactions are employed as useful information to predict home proximity. Implicit factors like influence scope are also captured by sophisticated models. Finally, we note that Twitter network causes the predictions for different users to depend on each other. Therefore, it is necessary to involve global inference approaches.

Though short in length, tweets are accompanied with rich forms of contexts. Those include timestamps and geo-tags associated with tweets, as well as multiple attributes in user profiles. Note that geo-tags should not be involved as input for home and tweet location predictions. Among them, temporal information like tweet timestamps and user-declared timezones are effective in implying tweet and home locations at coarse-grained granularity. Geo-tags and timestamps are also proven informative for disambiguating mentioned locations or general entities. Finally, we review semantic location prediction for tweets and LBSN-based POI recommendation. We note that spatio-temporal factors are more sophisticatedly modeled in LBSN-based POI recommendation researches. However, they are not detailed due to the scope of this survey.

In the end of this survey, we would like to acknowledge some directions for future work:

- **Tweet timestamps include both date and time.** In home location prediction, only time information is exploited to infer users’ timezones. We note that tweeting behavior over dates may also contribute to this task. Consider that a local resident would post tweets about her home city now and then in a long-term manner, while a tourist just tweets a lot when she visits the city. Date information from their tweet timestamps may easily reveal their different patterns.

- **When tweets about her current location, user may include indicative words like “eating”, “watching”, and “excited”.** Li et al. [69] consider similar words patterns when extracting temporal awareness of
mentioned locations. It is interesting to leverage those temporal word indicators to improve tweet location prediction.

- Though both well investigated, home location and tweet location are largely predicted in isolation. Intuitively, a user’s tweet locations should be mostly around her home location. Exceptions may occur when, for example, the user is traveling. It is promising to unify both tasks in a joint solution framework.

- For mentioned location disambiguation in short tweets, rich contexts like spatio-temporal information and user interest are found useful. When LBSN users write comments for locations on their pages, they also mention other locations for comparison or reference. Mentioned location disambiguation for short user comments deserves comparable studies like for tweets.

- In Foursquare-based POI recommendation, users’ check-in histories are generally harvested from check-in tweets. However, users’ non-check-in tweets are simply discarded. When integrating content information in POI recommendation, locations are textually enriched by their comments or descriptions. It remains blank whether tweets could benefit this task as additional information from users’ perspective.

References

[1] O. Ajao, J. Hong, and W. Liu. A survey of location inference techniques on twitter. *J. Information Science*, 41(6):855–864, 2015.

[2] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where: geotagging web content. In *Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval*, pages 273–280. ACM, 2004.

[3] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine learning. *Machine Learning*, 50(1-2):5–43, 2003.

[4] É. Antoine, A. Jatowt, S. Wakamiya, Y. Kawai, and T. Akiyama. Portraying collective spatial attention in twitter. In *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 39–48. ACM, 2015.

[5] J. Ao, P. Zhang, and Y. Cao. Estimating the locations of emergency events from twitter streams. In *Proc. 2nd International Conference on Information Technology and Quantitative Management (ITQM)*, pages 731–739, 2014.

[6] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak. Spatial variation in search engine queries. In *Proc. 17th International Conference on World Wide Web (WWW).* ACM, 2008.

[7] L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving geographical prediction with social and spatial proximity. In *Proc. 19th International Conference on World Wide Web (WWW).* ACM, 2010.

[8] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel. Recommendations in location-based social networks: a survey. *GeoInformatica*, 19(3):525–565, 2015.

[9] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. Class-based n-gram models of natural language. *Computational linguistics*, 18(4):467–479, 1992.

[10] B. Cao, F. Chen, D. Joshi, and P. S. Yu. Inferring crowd-sourced venues for tweets. In *2015 IEEE International Conference on Big Data*, pages 639–648, 2015.

[11] M. Cha, Y. Gwon, and H. T. Kung. Twitter geolocation and regional classification via sparse coding. In *Proceedings of the Ninth International Conference on Web and Social Media, ICWSM 2015*, pages 582–585, 2015.

[12] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling. In *34th Annual Meeting of the Association for Computational Linguistics*, pages 310–318, 1996.

[13] Y. Chen, J. Zhao, X. Hu, X. Zhang, Z. Li, and T.-S. Chua. From interest to function: Location estimation in social media. In *Proc. 27th AAAI Conference on Artificial Intelligence (AAAI)*, 2013.

[14] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you like to go next: Successive point-of-interest recommendation. In *IJCAI*, volume 13, pages 2605–2611, 2013.
[15] Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-based approach to geo-locating twitter users. In *Proc. 19th ACM Conference on Information and Knowledge Management (CIKM)*, pages 759–768, 2010.

[16] Z. Cheng, J. Caverlee, and K. Lee. A content-driven framework for geolocating microblog users. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 4(1):2, 2013.

[17] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui. Exploring millions of footprints in location sharing services. In *Proc. 5th International Conference on Weblogs and Social Media (ICWSM)*, 2011.

[18] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1082–1090. ACM, 2011.

[19] R. Compton, D. Jurgens, and D. Allen. Geotagging one hundred million twitter accounts with total variation minimization. In *Proc. IEEE International Conference on Big Data*, pages 393–401, 2014.

[20] S. Cucerzan. Large-scale named entity disambiguation based on wikipedia data. In *Proc. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 708–716, 2007.

[21] N. N. Dalvi, R. Kumar, and B. Pang. Object matching in tweets with spatial models. In *Proceedings of the Fifth International Conference on Web Search and Web Data Mining, WSDM*, pages 43–52, 2012.

[22] C. A. Davis Jr, G. L. Pappa, D. R. R. de Oliveira, and F. de L Arcanjo. Inferring the location of twitter messages based on user relationships. *Transactions in GIS*, 15(6):735–751, 2011.

[23] L. Derczynski, D. Maynard, G. Rizzo, M. van Erp, G. Gorrell, R. Troncy, J. Petrak, and K. Bontcheva. Analysis of named entity recognition and linking for tweets. *Information Processing & Management*, 51(2):32–49, 2015.

[24] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins, J. A. Tomlin, et al. Semtag and seeker: Bootstrapping the semantic web via automated semantic annotation. In *Proceedings of the 12th international conference on World Wide Web*, pages 178–186. ACM, 2003.

[25] M. Dredze, M. Osborne, and P. Kambadur. Geolocation for twitter: Timing matters. In *NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 1064–1069, 2016.

[26] H. Efstathiades, D. Antoniades, G. Pallis, and M. D. Dikaiakos. Identification of key locations based on online social network activity. In *Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM*, pages 218–225, 2015.

[27] J. Eisenstein, A. Ahmed, and E. P. Xing. Sparse additive generative models of text. In *Proc. 28th International Conference on Machine Learning (ICML)*, pages 1041–1048, 2011.

[28] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P. Xing. A latent variable model for geographic lexical variation. In *Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1277–1287, 2010.

[29] Y. Fang and M. Chang. Entity linking on microblogs with spatial and temporal signals. *TACL*, 2:259–272, 2014.

[30] T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and M. Dredze. Annotating named entities in twitter data with crowdsourcing. In *Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk*, pages 80–88. Association for Computational Linguistics, 2010.

[31] D. Flatow, M. Naaman, K. E. Xie, Y. Volkovich, and Y. Kanza. On the accuracy of hyper-local geotagging of social media content. In *Proc. 8th ACM International Conference on Web Search and Data Mining (WSDM)*, pages 127–136, 2015.
[32] A. Galal and A. El-Korany. Enabling semantic user context to enhance twitter location prediction. In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART), Volume 1, pages 223–230, 2016.

[33] H. Gao. Personalized POI Recommendation on Location-Based Social Networks. PhD thesis, ARIZONA STATE UNIVERSITY, 2014.

[34] H. Gao, J. Tang, X. Hu, and H. Liu. Content-aware point of interest recommendation on location-based social networks. In AAAI, pages 1721–1727, 2015.

[35] H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on location-based social networks. In Icwsm, 2012.

[36] H. Gao, J. Tang, and H. Liu. gsccor: modeling geo-social correlations for new check-ins on location-based social networks. In Proceedings of the 21st ACM international conference on Information and knowledge management, pages 1582–1586. ACM, 2012.

[37] J. Gelernter and S. Balaji. An algorithm for local geoparsing of microtext. GeoInformatica, 17(4):635–667, 2013.

[38] J. Gelernter and N. Mushegan. Geo-parsing messages from microtext. Transactions in GIS, 15(6):753–773, 2011.

[39] J. Gelernter and W. Zhang. Cross-lingual geoparsing for non-structured data. In Proceedings of the 7th Workshop on Geographic Information Retrieval, pages 64–71. ACM, 2013.

[40] I. J. Good. The population frequencies of species and the estimation of population parameters. Biometrika, 40(3-4):237–264, 1953.

[41] M. Graham, S. A. Hale, and D. Gaffney. Where in the world are you? geolocation and language identification in twitter. The Professional Geographer, 66(4):568–578, 2014.

[42] S. Guo, M. Chang, and E. Kiciman. To link or not to link? A study on end-to-end tweet entity linking. In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, pages 1020–1030, 2013.

[43] S. Hahmann, R. S. Purves, and D. Burghardt. Twitter location (sometimes) matters: Exploring the relationship between georeferenced tweet content and nearby feature classes. Journal of Spatial Information Science, 2014(9):1–36, 2014.

[44] B. Han, P. Cook, and T. Baldwin. Geolocation prediction in social media data by finding location indicative words. In COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, pages 1045–1062, 2012.

[45] B. Han, P. Cook, and T. Baldwin. A stacking-based approach to twitter user geolocation prediction. In Proc. 51st Annual Meeting of the Association for Computational Linguistics (ACL) System Demonstrations, pages 7–12, 2013.

[46] B. Han, P. Cook, and T. Baldwin. Text-based twitter user geolocation prediction. J. Artif. Intell. Res. (JAIR), 49:451–500, 2014.

[47] S. Hasan, X. Zhan, and S. V. Ukkusuri. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, UrbComp@KDD, pages 6:1–6:8, 2013.

[48] B. Hawelka, I. Sitko, E. Beinat, S. Sobolevsky, P. Kazakopoulos, and C. Ratti. Geo-located twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3):260–271, 2014.

[49] B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets from justin bieber’s heart: the dynamics of the location field in user profiles. In Proc. International Conference on Human Factors in Computing Systems (CHI), pages 237–246, 2011.

[50] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstennau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and G. Weikum. Robust disambiguation of named entities in text. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 782–792. Association for Computational Linguistics, 2011.

[51] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiuliklis. Discovering geographical topics in the twitter stream. In Proc. 21st
World Wide Web Conference (WWW), pages 769–778, 2012.

[52] W. Hua, K. Zheng, and X. Zhou. Microblog entity linking with social temporal context. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pages 1761–1775, 2015.

[53] M. Hulden, M. Silfverberg, and J. Francom. Kernel density estimation for text-based geolocation. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 145–150, 2015.

[54] M. Imran, C. Castillo, F. Diaz, and S. Vieweg. Processing social media messages in mass emergency: A survey. ACM Computing Surveys (CSUR), 47(4):67, 2015.

[55] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: An analysis of a microblogging community. In Proc. 9th International Workshop on Knowledge Discovery on the Web (WebKDD) and 1st International Workshop on Social Networks Analysis (SNA-KDD), pages 118–138, 2007.

[56] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th international conference on World Wide Web, pages 271–279. ACM, 2003.

[57] Z. Ji, A. Sun, G. Cong, and J. Han. Joint recognition and linking of fine-grained locations from tweets. In Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pages 1271–1281, 2016.

[58] D. Jurgens. That’s what friends are for: Inferring location in online social media platforms based on social relationships. In Proc. 7th International Conference on Weblogs and Social Media (ICWSM), 2013.

[59] D. Jurgens, T. Finethy, J. McCorriston, Y. T. Xu, and D. Ruths. Geolocation prediction in twitter using social networks: A critical analysis and review of current practice. In Proc. 9th International Conference on Web and Social Media (ICWSM), pages 188–197, 2015.

[60] S. Kinsella, V. Murdock, and N. O’Hare. I’m eating a sandwich in glasgow: modeling locations with tweets. In Proc 3rd International CIKM Workshop on Search and Mining User-Generated Contents (SMUC), pages 61–68, 2011.

[61] L. Kong, Z. Liu, and Y. Huang. Spot: Locating social media users based on social network context. Proceedings of the VLDB Endowment, 7(13):1681–1684, 2014.

[62] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757):88–90, 2006.

[63] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective annotation of wikipedia entities in web text. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 457–466. ACM, 2009.

[64] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In Proc. 19th International Conference on World Wide Web (WWW), pages 591–600, 2010.

[65] O. V. Laere, J. A. Quinn, S. Schockaert, and B. Dhoedt. Spatially aware term selection for geotagging. IEEE Trans. Knowl. Data Eng., 26(1):221–234, 2014.

[66] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conference on Machine Learning (ICML), pages 282–289, 2001.

[67] K. Lee, R. K. Ganti, M. Srivatsa, and L. Liu. When twitter meets foursquare: tweet location prediction using foursquare. In 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MOBIQUITOUS 2014, pages 198–207, 2014.

[68] C. Li and A. Sun. Extracting fine-grained location with temporal awareness in tweets: A two-stage approach. Journal of the Association for Information Science and Technology. In press.

[69] C. Li and A. Sun. Fine-grained location extraction from tweets with temporal awareness. In Proc. 37th International ACM Conference on Research and Development in Information Retrieval (SIGIR), pages 43–52, 2014.
[70] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S. Lee. Twiner: named entity recognition in targeted twitter stream. In Proc. 35th International ACM conference on research and development in Information Retrieval (SIGIR), pages 721–730, 2012.

[71] G. Li, J. Hu, J. Feng, and K.-l. Tan. Effective location identification from microblogs. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 880–891. IEEE, 2014.

[72] R. Li, S. Wang, and K. C.-C. Chang. Multiple location profiling for users and relationships from social network and content. Proceedings of the VLDB Endowment, 5(11):1603–1614, 2012.

[73] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang. Towards social user profiling: unified and discriminative influence model for inferring home locations. In Proc. 18th ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 1023–1031, 2012.

[74] S. Z. Li. Markov Random Field Modeling in Image Analysis. Advances in Pattern Recognition. Springer, 2009.

[75] W. Li, P. Serdyukov, A. P. de Vries, C. Eickhoff, and M. Larson. The where in the tweet. In Proc. 20th ACM Conference on Information and Knowledge Management (CIKM), pages 2473–2476, 2011.

[76] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with local lexicons to build indexes for textually-specified spatial data. In Proc. 26th International Conference on Data Engineering (ICDE), pages 201–212, 2010.

[77] J. Lingad, S. Karimi, and J. Yin. Location extraction from disaster-related microblogs. In Proc. 22nd International World Wide Web Conference (WWW) Companion Volume, pages 1017–1020, 2013.

[78] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for point-of-interest recommendation. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1043–1051. ACM, 2013.

[79] B. Liu and H. Xiong. Point-of-interest recommendation in location based social networks with topic and location awareness. In Proceedings of the 2013 SIAM International Conference on Data Mining, pages 396–404. SIAM, 2013.

[80] F. Liu, M. Vasardani, and T. Baldwin. Automatic identification of locative expressions from social media text: A comparative analysis. In Proc. 4th International Workshop on Location and the Web (LocWeb), pages 9–16, 2014.

[81] X. Liu, F. Wei, S. Zhang, and M. Zhou. Named entity recognition for tweets. ACM Transactions on Intelligent Systems and Technology (TIST), 4(1):3, 2013.

[82] X. Liu, S. Zhang, F. Wei, and M. Zhou. Recognizing named entities in tweets. In Proc. 49th Annual Meeting of the Association for Computational Linguistics (ACL), pages 359–367, 2011.

[83] A. M. MacEachren, A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Saveliev, P. Mitra, X. Zhang, and J. Blanford. Senseplace2: Geotwitter analytics support for situational awareness. In Proc. IEEE Conference on Visual Analytics Science and Technology (VAST), pages 181–190, 2011.

[84] J. Mahmud, J. Nichols, and C. Drews. Where is this tweet from? inferring home locations of twitter users. In Proc. 6th International Conference on Weblogs and Social Media (ICWSM), 2012.

[85] J. Mahmud, J. Nichols, and C. Drews. Home location identification of twitter users. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3):47:1–47:21, 2014.

[86] S. Malmasi and M. Dras. Location mention detection in tweets and microblogs. In International Conference of the Pacific Association for Computational Linguistics, pages 123–134. Springer, 2015.

[87] J. McGee, J. Caverlee, and Z. Cheng. Location prediction in social media based on tie strength. In Proc. 22nd ACM International Conference on Information and Knowledge Management (CIKM), pages 459–468, 2013.

[88] J. McGee, J. A. Caverlee, and Z. Cheng. A geographic study of tie strength in social media. In
[89] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. *Annual review of sociology*, 27(1):415–444, 2001.

[90] Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In *Proceedings of the 15th international conference on World Wide Web*, pages 533–542. ACM, 2006.

[91] F. Melo and B. Martins. Automated geocoding of textual documents: A survey of current approaches. *Transactions in GIS*, 2016.

[92] R. Mihalcea and A. Csomai. Wikify!: linking documents to encyclopedic knowledge. In *Proc. 16th ACM Conference on Information and Knowledge Management (CIKM)*, pages 233–242, 2007.

[93] D. Milne and I. H. Witten. Learning to link with wikipedia. In *Proc. 17th ACM Conference on Information and Knowledge Management (CIKM)*, pages 509–518, 2008.

[94] D. Nadeau and S. Sekine. A survey of named entity recognition and classification. *Lingvisticae Investigationes*, 30(1):3–26, 2007.

[95] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. Mining user mobility features for next place prediction in location-based services. In *Proc. 12th IEEE International Conference on Data Mining (ICDM)*, pages 1038–1043, 2012.

[96] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In *Proc. 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 275–281, 1998.

[97] R. Priedhorsky, A. Culotta, and S. Y. Del Valle. Inferring the origin locations of tweets with quantitative confidence. In *Proc. 17th ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW)*, pages 1523–1536, 2014.

[98] A. Rahimi, T. Cohn, and T. Baldwin. Twitter user geolocation using a unified text and network prediction model. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL*, pages 630–636, 2015.

[99] A. Rahimi, D. Vu, T. Cohn, and T. Baldwin. Exploiting text and network context for geolocation of social media users. In *NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 1362–1367, 2015.

[100] V. Rakesh, C. K. Reddy, D. Singh, and M. Ramachandran. Location-specific tweet detection and topic summarization in twitter. In *Proc. Advances in Social Networks Analysis and Mining (ASONAM)*, pages 1441–1444, 2013.

[101] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition. In *Proceedings of the Thirteenth Conference on Computational Natural Language Learning*, pages 147–155. Association for Computational Linguistics, 2009.

[102] K. Ren, S. Zhang, and H. Lin. Where are you settling down: Geo-locating twitter users based on tweets and social networks. In *Information Retrieval Technology, 8th Asia Information Retrieval Societies Conference, AIRS*, pages 150–161, 2012.

[103] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. *Mathematical Programming*, 156(1-2):433–484, 2016.

[104] B. D. Ripley. *Spatial statistics*, volume 575. John Wiley & Sons, 2005.

[105] A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recognition in tweets: An experimental study. In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP, A meeting of SIGDAT, a Special Interest Group of the ACL*, pages 1524–1534, 2011.
[106] E. C. Rodrigues, R. Assunção, G. L. Pappa, D. R. R. Oliveira, and W. M. Jr. Exploring multiple evidence to infer users’ location in twitter. *Neurocomputing*, 171:30–38, 2016.

[107] S. Roller, M. Speriosu, S. Rallapalli, B. Wing, and J. Baldridge. Supervised text-based geolocation using language models on an adaptive grid. In *Proc. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 1500–1510, 2012.

[108] D. Rout, K. Bontcheva, D. Preotüic-Pietro, and T. Cohn. Where’s @wally?: a classification approach to geolocating users based on their social ties. In *Proc. 24th ACM Conference on Hypertext and Social Media (HT)*, pages 11–20, 2013.

[109] K. Ryoo and S. Moon. Inferring twitter user locations with 10 km accuracy. In *Proc. 23rd International World Wide Web Conference (WWW) Companion Volume*, pages 643–648, 2014.

[110] A. Sadilek, H. Kautz, and J. P. Bigham. Finding your friends and following them to where you are. In *Proc. 5th International Conference on Web Search and Web Data Mining (WSDM)*, pages 723–732, 2012.

[111] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties of online location-based social networks. In *Proc. 5th International Conference on Weblogs and Social Media (ICWSM)*, 2011.

[112] A. Schulz, A. Hadjakos, H. Paulheim, J. Nachtwey, and M. Mühlhäuser. A multi-indicator approach for geolocalization of tweets. In *Proc. 7th International Conference on Weblogs and Social Media (ICWSM)*, 2013.

[113] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques, and solutions. *IEEE Trans. Knowl. Data Eng.*, 27(2):443–460, 2015.

[114] W. Shen, J. Wang, P. Luo, and M. Wang. Linking named entities in tweets with knowledge base via user interest modeling. In *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD*, pages 68–76, 2013.

[115] C. N. Silla Jr and A. A. Freitas. A survey of hierarchical classification across different application domains. *Data Mining and Knowledge Discovery*, 22(1-2):31–72, 2011.

[116] B. W. Silverman. *Density estimation for statistics and data analysis*, volume 26. CRC press, 1986.

[117] R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288, 1996.

[118] I. Tschantzaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. *Journal of machine learning research*, 6(Sep):1453–1484, 2005.

[119] Y. Volkovich, S. Scellato, D. Laniado, C. Mascolo, and A. Kaltenbrunner. The length of bridge ties: Structural and geographic properties of online social interactions. In *Proc. 6th International Conference on Weblogs and Social Media (ICWSM)*, 2012.

[120] C. Wang, J. Wang, X. Xie, and W.-Y. Ma. Mining geographic knowledge using location aware topic model. In *Proc. 4th ACM Workshop On Geographic Information Retrieval (GIR)*, pages 65–70, 2007.

[121] H. wen Chang, D. Lee, M. Eltaher, and J. Lee. @ phillies tweeting from philly? predicting twitter user locations with spatial word usage. In *Proc. International Conference on Advances in Social Networks Analysis and Mining (ASONAM)*, pages 111–118, 2012.

[122] B. Wing and J. Baldridge. Hierarchical discriminative classification for text-based geolocation. In *Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 336–348, 2014.

[123] B. P. Wing and J. Baldridge. Simple supervised document geolocation with geodesic grids. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1*, HLT ’11, pages 955–964, 2011.
[124] A. Woodruff and C. Plaunt. Gipsy: Automated geographic indexing of text documents. *Journal of the American Society for Information Science (JASIS)*, 45(9):645–655, 1994.

[125] Y. Yamaguchi, T. Amagasa, and H. Kitagawa. Landmark-based user location inference in social media. In *Proc. Conference on Online Social Networks (COSN)*, pages 223–234, 2013.

[126] Y. Yamaguchi, T. Amagasa, H. Kitagawa, and Y. Ikawa. Online user location inference exploiting spatiotemporal correlations in social streams. In *Proc. 23rd ACM International Conference on Information and Knowledge Management (CIKM)*, pages 1139–1148, 2014.

[127] D. Yang, D. Zhang, Z. Yu, and Z. Wang. A sentiment-enhanced personalized location recommendation system. In *Proceedings of the 24th ACM Conference on Hypertext and Social Media*, pages 119–128. ACM, 2013.

[128] M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social networks. In *Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems*, pages 458–461. ACM, 2010.

[129] J. J.-C. Ying, E. H.-C. Lu, W.-N. Kuo, and V. S. Tseng. Urban point-of-interest recommendation by mining user check-in behaviors. In *Proceedings of the ACM SIGKDD International Workshop on Urban Computing*, pages 63–70. ACM, 2012.

[130] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when and what: discover spatio-temporal topics for twitter users. In *Proc. 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 605–613, 2013.

[131] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc information retrieval. In *Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 334–342, 2001.

[132] W. Zhang and J. Gelrnter. Geocoding location expressions in twitter messages: A preference learning method. *Journal of Spatial Information Science*, 9(1):37–70, 2014.

[133] Y. Zhang and S. Clark. Joint word segmentation and POS tagging using a single perceptron. In *ACL 2008, Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics, June 15-20, 2008, Columbus, Ohio, USA*, pages 888–896, 2008.

[134] K. Zhao, G. Cong, and A. Sun. Annotating points of interest with geo-tagged tweets. In *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management*, pages 417–426. ACM, 2016.

[135] S. Zhao, I. King, and M. R. Lyu. A survey of point-of-interest recommendation in location-based social networks. *arXiv preprint arXiv:1607.00647*, 2016.

[136] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical report, Citeseer, 2002.

[137] W. Zong, D. Wu, A. Sun, E.-P. Lim, and D. H.-L. Goh. On assigning place names to geography related web pages. In *Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL)*, pages 354–362, 2005.