Overview

- Using trajectory inference to study cellular dynamics
- Benchmarking trajectory inference methods
- Benchmarking single-cell omics tools in general
- dyno: inferring and interpreting single-cell trajectories
- dyno and anndata
- Customising dyno plots
Characterise dynamic processes by inferring trajectories

Single-cell omics

Genes

Cells

Trajectory inference

Milestones

Cellular states

Cells positioned along transitions between cell states

Differential Expression

Label

Comp 2

Comp 1

MEF

Induced

Myocyte

Neuron

Hmga2

Cdkn1c

Tnnc2

Syp
Trajectory inference in 2014

Wanderlust

- **A**: Early/Young vs. Late/Mature.
- **B**: Short Circuit vs. Graph Walk.
- **C**: Wanderlust Analysis.
 - n-dimensional plot.
 - Average each cell's position across all k INN graphs.
 - For every cell, plot distance relative to start and waypoints.
 - Repeat and refine until convergence.

Monocle (v1)

- **a**: Cells represented as points in expression space.
 - Reduce dimensionality.
 - Build MST on cells.
- **b**: Dendrogram of cells.
- **c**: Relative expression of genes.
- **d**: Violin plots of gene expression over pseudo-time.
- **e**: Heatmap and expression plots.
- **f**: Violin plots of gene expression over pseudo-time.

References

- *Bendall et al.* Cell 2014. doi: [10.1016/j.cell.2014.04.005](https://doi.org/10.1016/j.cell.2014.04.005).
- *Trapnell et al.* Nat Biotech 2014. doi: [10.1038/nbt.2859](https://doi.org/10.1038/nbt.2859).
TI methods are very diverse
2014-2020: >70 TI methods developed

However, only ±40% of authors benchmark their own tool
Overview

- Using trajectory inference to study cellular dynamics
- Benchmarking trajectory inference methods
- Benchmarking single-cell omics tools in general
- dyno: inferring and interpreting single-cell trajectories
- dyno and anndata
- Customising dyno plots
A large-scale benchmarking study of TI methods

110 real & 229 synthetic datasets + 45 trajectory inference methods + 4 metrics

Accuracy + Scalability + Stability + Usability

User guidelines + New possibilities for developers

Method wrappers
Guidelines app
Benchmarking pipeline

methods.dynverse.org
guidelines.dynverse.org
benchmark.dynverse.org

Saelens*, Cannoodt*, Todorov, Saeys.
Nat Biotechnol 2019. doi:10.1038/s41587-019-0071-9
Assessing the accuracy of a trajectory
a) Method

Graph methods

Method	Priors required	Wrapper type	Platform	Topology inference	Cycle	Linear	Bilirucation	Multifurcation	Connected	Disconnected	Overall	Accuracy	Scalability	Stability	Usability
PAGA	×	Direct	Python	Free											
RaceID / StemID	Proj	R	Free												
SLICER	×	Cell	R	Free											

Tree methods

Method	Priors required	Wrapper type	Platform	Topology inference	Cycle	Linear	Bilirucation	Multifurcation	Connected	Disconnected	Overall	Accuracy	Scalability	Stability	Usability
Slingshot	×	Direct	R	Free											
PAGA Tree	×	Direct	Python	Free											
MST	Proj	R	Free												
pCreode	Proj	Python	Free												
SCUBA	×	Cluster	Python	Free											
Monocle DDRTree	Cell	R	Free												
Monocle ICA	×	Cell	R	Param											
cellTree mappx	Cell	R	Free												
SLICE	Direct	R	Free												
cellTree VEM	Cell	R	Free												
EPiGraph	Direct	R	Free												
Sincell	Cell	R	Free												
URD	×	Direct	R	Free											
CellTraits	×	Cell	R	Free											
Mpath	×	Cluster	R	Free											
CellRouter	×	Cell	R	Free											

Multifurcation methods

Method	Priors required	Wrapper type	Platform	Topology inference	Cycle	Linear	Bilirucation	Multifurcation	Connected	Disconnected	Overall	Accuracy	Scalability	Stability	Usability
STEMNET	×	Prob	R	Param											
FateID	×	Prob	R	Param											

b) Summary

Aggregated scores per experiment
Method	Accuracy	Scalability	Stability	Usability																																
	Topology	Branch	Cell positions	Per metric	Per dataset source	Per trajectory type	Predicted time	Similarity between runs	Quality of software and paper																											
PAGA	Topology	Branch	Cell positions	Gold	Silver	Dyogen	Dyogen	PROGSTT	Splatter	Cycle	Linear	Bifurcation	Convergence	Multifurcation	Tree	Acryc	Conic	1m	100	1k	10k	100k	1m	100k	1k	10k	100k	Pred vs. real	Topology	Branch	Assignment	Per metric	Per dataset source	Per trajectory type		
RaceID / StemID																		1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s	0.77						
SLICER																		1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s	0.99						
	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
Slingshot	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
PAGA Tree	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
MST	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
pCreode	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
SCUBA	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
Monocle DDRTree	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
Monocle ICA	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
cellTree mappix	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
SLICE	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
cellTree VEM	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
EIPiGraph	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
Sincell	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
URD	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
CellTraals	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
Mpath	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							
CellRouter	Topology	Branch	Cell positions															1h	7d	1h	1h	1h	4h	1h	7d	2h	1h	31s	<1s							

Multifurcation methods

- Topology:
 - Gold: Gold Standard
 - Silver: Silver Standard
 - Dyogen: Dyogen Standard
 - PROGSTT: PROGSTT Standard

- Branch:
 - Linear: Linear Branch
 - Bifurcation: Bifurcation Branch

- Cell positions:
 - Connected: Connected Cell Positions
 - Disconnected: Disconnected Cell Positions

- Convergence:
 - Tree: Tree Convergence
 - Acryc: Acryc Convergence

- Predict vs. real:
 - Pred: Predicted Time
 - vs. real: Real Time

- Availability:
 - Code assurance: Code Assurance

- Quality of paper:
 - Quality: Paper Quality
Large variability in scores
Guidelines for trajectory inference

- **Disconnected**
 - Start cell(s)
 - Accuracy: +
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Graph**
 - Start cell(s)
 - Accuracy: +
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Tree**
 - Start cell(s)
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Multifurcation**
 - Start cell(s)
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Bifurcation**
 - Start cell(s)
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Linear**
 - Start cell(s)
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Cycle**
 - Start cell(s)
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

Confirm expectations using a method with free topology
Confirm results using at least 2 methods
Check out the interactive guidelines at guidelines.dynverse.org

- **Yes**
 - Do you expect multiple disconnected trajectories?
 - Yes / I don't know

- **No**
 - Do you expect cycles in the topology?
 - No / I don't know

- **Yes**
 - Do you expect a tree with two or more bifurcations?
 - Yes

- **Fixed topology**

- **No**
 - Do you expect a particular topology?
 - Yes

- **Free topology**

End cell(s), Cell Clustering
Cell clustering, Start & end cells
End cell(s), Cell Clustering

- **STEMNET**
 - Accuracy: +
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Slingshot**
 - Accuracy: +
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **FateID**
 - Accuracy: +
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **GrandPrix**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **STEMNET**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **SCORPIUS**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Embeddr**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **TSCAN**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Slingshot**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors

- **Angle**
 - Accuracy: ±
 - Usability: ±
 - Estimated running time (100k = 100k) = 7m 55s 19s
 - Required priors
Want to learn about computational tools for single-cell omics data? Read benchmarking papers!

Clustering
- A systematic performance evaluation of clustering methods for single-cell RNA-seq data. doi.org/gfgp3k
- Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data. doi.org/gd9grv

Normalization
- scRNA-seq mixology: towards better benchmarking of single cell RNA-seq protocols and analysis methods. doi.org/10.1101/433102

Differential expression
- Bias, robustness and scalability in single-cell differential expression analysis. doi.org/10.1038/nmeth.4612

Trajectory inference
- A comparison of single-cell trajectory inference methods. doi.org/10.1038/s41587-019-0071-9

Network inference
- Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. doi.org/10.1038/s41592-019-0690-6
Overview

- Using trajectory inference to study cellular dynamics
- Benchmarking trajectory inference methods
- **Benchmarking single-cell omics tools in general**
- dyno: inferring and interpreting single-cell trajectories
- dyno and anndata
- Customising dyno plots
dyngen: a multi-modal simulator for spearheading single-cell omics analyses

Output of dyngen

Applications of dyngen

G

Trajectory inference

H

Trajectory alignment

Cannoodt*, Saelens*, Deconinck, Saeys
bioRxiv 2020. doi:10.1101/2020.02.06.936971.
dyngen: a multi-modal simulator for spearheading single-cell omics analyses

Cannoodt*, Saelens*, Deconinck, Saeys
bioRxiv 2020. doi:10.1101/2020.02.06.936971.
Synthetic benchmarking with dyngen

Trajectory alignment

RNA velocity

Case-wise GRN inference

Cannoodt*, Saelens*, Deconinck, Saeys
bioRxiv 2020. doi:10.1101/2020.02.06.936971.
Overview

- Using trajectory inference to study cellular dynamics
- Benchmarking trajectory inference methods
- Benchmarking single-cell omics tools in general
- dyno: inferring and interpreting single-cell trajectories
- dyno and anndata
- Customising dyno plots
A common interface for 55 TI methods

Required input
- Raw counts
- Normalised expression
- Start cell(s)
- End cell(s)
- Grouping / clustering
- Dimensionality reduction

Optional prior input

Trajectory inference method

Required output
- Topology
- Cell ordering
- Feature importances

Optional output

- Python containers
dockerhub: python
- R containers
dockerhub: rocker/tidyverse
- R and Python containers
dockerhub: dataintuitive/randpy
dyno: Inferring and interpreting single-cell trajectories

1. Selecting the most optimal method(s)

 guidelines.dynverse.org

2. Inferring trajectories

- A common input and output interface for 55 methods

Input	Method	Output
Raw counts	Topology	Cell positions
Normalised	Start cell(s)	
End cell(s)		
Cell groups		

- One line and run any method:

  ```python
  infer_trajectory(dataset, "paga")
  infer_trajectory(dataset, "slingshot")
  infer_trajectory(dataset, "my_favorite_ti_method")
  ```

- Easy to include a new method

 methods.dynverse.org
dyno: Inferring and interpreting single-cell trajectories

3. Annotating the trajectory

- Labelling milestones
- Rooting the trajectory
- Determining the directionality

4. Detecting differential expression

- Overall
- Branch
- Branch point

5. Visualizing the trajectory

- Visualize a model in multiple ways
- Compare models on a common embedding
Frequently asked questions

● How to run dyno with my 'dataset.h5ad' file?
→ add support for importing h5ad files into dyno
● How can I customise my plot?
→ dynplot2: provide ggplot2-like interface
● Can I use RNA velocity to determine the directionality?
→ add support for visualising RNA velocity & reorienting trajectory
● What about new TI method Monocle 3 / STREAM / Palantir?
→ add new and update existing TI methods
Overview

- Using trajectory inference to study cellular dynamics
- Benchmarking trajectory inference methods
- Benchmarking single-cell omics tools in general
- dyno: inferring and interpreting single-cell trajectories
- dyno and anndata
- Customising dyno plots
How to run dyno with my 'dataset.h5ad' file?
How to use h5ad files in R?

- **Directly interface with h5file**
 - `hdf5r::h5file(filename = "dataset.h5ad", mode = 'r')`
 - a lot of manual work (e.g. converting sparse and dense matrices)
 - modified h5 files sometimes cannot be read back into anndata
 (due to incompatibilities between hdf5 API in R and Python)
 - a lot of copy pasted code

- **Use reticulate to access anndata/scanpy**
 - `ad <- reticulate::import("anndata"); ad$read_h5ad("dataset.h5ad")`
 - still a lot of manual work (e.g. converting custom anndata classes)
 - a lot of copy pasted code

- **Convert to Seurat, or to SingleCellExperiment with zellkonverter**
 - best approach
 - if you want an h5ad as output, you need to convert h5ad → SCE/Seurat → h5ad
How to use h5ad files in R?

- Use anndata for R!
 - Uses reticulate to provide anndata interface but supporting common R constructs
 - On GitHub at rcannood/annndata
 - Also on CRAN (But wait until release > 0.7.5.1)
 - Experimental: working through porting the python unit tests to R to detect discrepancies
How to run dyno with my 'dataset.h5ad' file?

```r
library(dyno)
library(tidyverse)
set.seed(1)

ad <- anndata::read_h5ad("ginhoux.h5ad") # read h5ad
dataset <- dynio::from_h5ad(ad) # import to dyno

traj <- infer_trajectory(dataset, ti_slingshot(ndim = 2)) # run slingshot

plot_dimred(traj, label_milestones = TRUE) # plot dimred
plot_heatmap(traj, expression_source = dataset, features_oi = 100) # plot heatmap

dynio::to_h5ad(traj, ad) # add to ad obj
ad$write_h5ad("output.h5ad") # write to file
```
Overview

● Using trajectory inference to study cellular dynamics
● Benchmarking trajectory inference methods
● Benchmarking single-cell omics tools in general
● dyno: inferring and interpreting single-cell trajectories
● dyno and anndata
● Customising dyno plots
How can I customise my plot?

library(dynplot2)
... other imports, load dataset, perform trajectory inferen
dynplot_dimred(dataset, traj) +

geom_cell_point(aes(colour = select_feature_expression("Cd
scale_colour_distiller(palette = "RdBu") +
labs(colour = "Log Cd34") +

new_scale_colour() +
geom_trajectory_segments(aes(colour = edge_id), size = 3)
scale_colour_brewer(palette = "Dark2") +
labs(colour = "Edge")

- Familiar ggplot2 interface
- Feature parity with dynplot and dynplot2 is a lot of work
