Weight Change in the First 2 Months of a Lifestyle Intervention Predicts Weight Changes 8 Years Later

Jessica L. Unick1, Rebecca H. Neiberg2, Patricia E. Hogan2, Lawrence J. Cheskin3, Gareth R. Dutton4, Robert Jeffery5, Julie A. Nelson6, Xavier Pi-Sunyer7, Delia Smith West8, and Rena R. Wing1; the Look AHEAD Research Group*

Objective: Examine the relationship between 1- and 2-month weight loss (WL) and 8-year WL among participants enrolled in a lifestyle intervention.

Methods: 2,290 Look AHEAD participants (BMI: 35.65 ± 5.93 kg/m²) with type 2 diabetes received an intensive behavioral WL intervention.

Results: 1- and 2-month WL were associated with yearly WL through Year 8 (P’s < 0.0001). At Month 1, participants losing 2-4% and >4% had 1.62 (95% CI: 1.32, 1.98) and 2.79 (95% CI: 2.21, 3.52) times higher odds of achieving ≥5% WL at Year 4 and 1.28 (95% CI: 1.05,1.58) and 1.77 (95% CI: 1.40, 2.24) times higher odds of achieving ≥5% WL at Year 8, compared to those losing <2% initially. At Month 2, 3-6% WL resulted in greater odds of achieving ≥5% WL at Year 4 (OR = 1.85; CI: 1.48, 2.32), and >6% WL resulted in the greatest odds of achieving ≥5% WL at Year 4 (OR = 3.85; CI: 3.05, 4.88) and Year 8 (OR = 2.28; CI: 1.81, 2.89), compared to those losing <3%. Differences in adherence between WL categories were observed as early as Month 2.

Conclusions: 1- and 2-month WL was associated with 8-year WL. Future studies should examine whether alternative treatment strategies can be employed to improve treatment outcomes among those with low initial WL.

Obesity (2015) 23, 1353–1356. doi:10.1002/oby.21112

1 Weight Control and Diabetes Research Center, Miriam Hospital and Brown Medical School, Providence, Rhode Island, USA. Correspondence: Jessica Unick (junick@lifespan.org) 2 Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA 3 Department of Health, Behavior & Society, Johns Hopkins Bloomberg School of Public Health, and the Global Obesity Prevention Center at Johns Hopkins, Baltimore, Maryland, USA 4 University of Alabama at Birmingham, Birmingham, Alabama, USA 5 University of Minnesota, Minneapolis, Minnesota, USA 6 Southwest American Indian Center, Phoenix, Arizona, USA 7 Columbia University Medical Center, New York, New York, USA 8 Arnold School of Public Health at the University of South Carolina, Columbia, South Carolina, USA.

Funding agencies: This study is supported by the Department of Health and Human Services through the following cooperative agreements from the National Institutes of Health (NIH): DK57136, DK57149, DK56990, DK57177, DK57171, DK57151, DK57182, DK57131, DK57002, DK57078, DK57154, DK57178, DK57219, DK57008, DK57135, and DK56982. The following federal agencies have contributed support: National Institute of Diabetes and Digestive and Kidney Diseases; National Heart, Lung, and Blood Institute; National Institute of Nursing Research; National Center on Minority Health and Health Disparities; NIH Office of Research on Women’s Health; and the Centers for Disease Control and Prevention. This research was supported in part by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. The Indian Health Service (I.H.S.) provided personnel, medical oversight, and use of facilities. The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the I.H.S. or other funding sources. Additional support was received from The Johns Hopkins Medical Institutions Bayview General Clinical Research Center (MO1RR02719); the Massachusetts General Hospital Mallinckrodt General Clinical Research Center (MO1RR01066); the University of Colorado Health Sciences Center General Clinical Research Center (MO1RR00051) and Clinical Nutrition Research Unit (P50 DK48520); the University of Tennessee at Memphis General Clinical Research Center (MO1RR021192); the University of Pittsburgh General Clinical Research Center (MO1RR000581 44) and NIH grant (DK 048204); the VA Puget Sound Health Care System Medical Research Service, Department of Veterans Affairs; and the Frederic C. Bartter General Clinical Research Center (MO1RR01348). The following organizations have committed to make major contributions to Look AHEAD: Federal Express; Health Management Resources; Johnson & Johnson, LifeScan Inc.; Optifast-Novartis Nutrition; Roche Pharmaceuticals; Ross Product Division of Abbott Laboratories; Slim-Fast Foods Company; and Unilever. The National Institute of Diabetes and Digestive and Kidney Diseases participated in the design and conduct of the study but did not participate in the collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. The decision to publish was made by the Look AHEAD Steering Committee, with no restrictions imposed by the sponsor.

Disclosure: Dr. Cheskin is the Chair of the Scientific Advisory Board for Medifast, Inc. The remaining authors have no conflicts of interest to disclose.

Author contributions: RN and PH had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. RJ, XP, DSW, RW, and LC contributed to the study design. JN collected the data and assisted with the intervention, PH and RN performed the data analyses, and JU wrote the manuscript. All authors contributed to the discussion and interpretation of the data and reviewed and edited the manuscript.

*See online Supporting Information for full list of trial personnel.

Additional Supporting Information may be found in the online version of this article.

Received: 9 December 2014; Accepted: 13 March 2015; Published online 25 June 2015. doi:10.1002/oby.21112
Introduction

There is great variability in both short-term and long-term weight loss (WL) in response to lifestyle interventions (1-3). For example, among individuals randomized to the lifestyle intervention of the Look AHEAD trial, 68% achieved ≥5% WL (a common threshold for clinically meaningful WL) at Year 1 (2) and 50% at Year 8 (4). Thus, although many have success with lifestyle interventions, others do not achieve a clinically meaningful WL. Early identification of non-responders to lifestyle treatment may help improve long-term outcomes. WL achieved during the first 2 months of treatment is associated with 12- and 18-month WL (5-7). For example, Look AHEAD participants with WL ≥2% at Month 1 or ≥3% at Month 2 had 4.8 and 8.4 times higher odds of achieving ≥5% WL at Year 1, compared to those losing <2% or <3%, respectively (5). However, whether initial weight change also predicts weight change beyond 18 months is currently unknown. If early WL predicts long-term WL, this could lead to more effective long-term WL programs.

This article expands upon our previous 1-year findings (5) and examines whether initial WL is also associated with 8-year WL among participants enrolled in a lifestyle intervention. Specifically, we examine the odds of achieving a clinically meaningful (≥5%) WL at Years 4 and 8 based on initial WL at Months 1 and 2. Further, we examine whether adherence differs between those with the greatest and least amount of WL at Month 2.

Methods

Participants

Individuals randomized to the intensive lifestyle intervention (ILI; n = 2,570) of the Look AHEAD trial were considered in these analyses. Participants had type 2 diabetes, were 45-76 years old, and had a BMI ≥ 25 kg/m² (or ≥ 27 kg/m² if taking insulin). Further inclusion/exclusion criteria have been previously reported (8). Study procedures were approved by each study site’s institutional review board, and participants provided written informed consent.

Intervention

The lifestyle intervention has been extensively described elsewhere (4). In short, ILI participants attended weekly treatment meetings during Months 1-6 and three meetings per month during Months 7-12. During Years 2-8, the intensity of the intervention was significantly reduced. Participants in ILI were prescribed a calorie goal of 1,200-1,800 kcal/day and were instructed to consume <30% of total calories from dietary fat. Meal replacements were provided and participants were instructed to replace two meals and one snack/day with a meal replacement product for Months 1-6, one meal and one snack per day during Months 7-12, and one meal or snack/day in Years 2-8. A home-based physical activity regimen was designed to gradually increase structured activity to ≥175 min/week by Month 6. The intervention had a strong behavioral emphasis.

Outcome measures

Weight was measured weekly at intervention visits and annually at assessment visits. Percent weight change at Months 1 and 2 was calculated using Session 5 and Session 9 weights, respectively. Procedures for dealing with missing weight measurements have been reported previously (5).

Program adherence was measured by: 1) number of intervention meetings attended during weeks 1-9; 2) number of self-reported meal replacements consumed during weeks 2-9; and 3) average self-reported minutes/week of moderate-intensity exercise during weeks 2-9.

Statistical analyses

Participants without Month 1 or 2 weights or at least one follow-up weight and who underwent bariatric surgery were excluded from all analyses (Supporting Information Figure S1). Logistic regression modeling assessed the relationship between early WL and long-term WL (e.g., Years 4 and 8), defining long-term success as achievement of ≥5% WL. Bivariate tests of association between 2-month weight category and demographic, diabetes-related, and adherence measures were assessed with two-way ANOVA F-tests for continuous and chi-square for categorical measures (Supporting Information Table S1). Pair-wise differences in adherence measures were examined using the differences of LSMEANS from the aforementioned unadjusted two-way ANOVA. Adjusted logistic regression covariates included clinical site, gender, race, age, and baseline BMI (Table 1). All analyses were conducted using SAS v9.4 (SAS Institute, Cary, NC).

Results

Baseline characteristics of the entire Look AHEAD cohort have been previously reported (8). Participants included in the analyses

1 month	Achieve ≥5% WL at Year 4	Achieve ≥5% WL at Year 8
<2% WL	1.0 (ref)	1.0 (ref)
<2% WL	Unadjusted 1.62 (1.32, 1.98)	1.28 (1.05, 1.58)
<2% WL	Adjusted 1.68 (1.36, 2.08)	1.29 (1.04, 1.60)
2-4% WL	<4% WL	
Unadjusted 2.79 (2.21, 3.52)	1.77 (1.40, 2.24)	
Adjusted 2.99 (3.34, 3.83)	1.99 (1.54, 2.55)	
>4% WL	1.0 (ref)	
2 months	<3% WL	
Unadjusted 1.85 (1.48, 2.32)	1.16 (0.93, 1.45)	
Adjusted 1.96 (1.55, 2.47)	1.23 (0.97, 1.55)	
>3% WL	3-6% WL	
Unadjusted 3.85 (3.05, 4.88)	2.28 (1.81, 2.89)	
Adjusted 4.33 (3.36, 5.58)	2.78 (2.15, 3.57)	

Odds (95% CI). Adjusted models include age, race/ethnicity, gender, clinic site, and baseline BMI. Note: Secondary analyses testing for differential effects of covariates on longer-term weight loss revealed no significant interactions between gender, race, age, or baseline BMI and early weight loss category (data not shown).
(n = 2,290) had a mean ± SD baseline BMI of 35.65 ± 5.93 kg/m², 59.17% were female, 63.13% were Caucasian, and the mean age was 58.69 ± 6.82 years. Participants were grouped into one of three categories designed to be roughly equivalent in size based on 1-month weight change: WL <2% (mean WL = -0.32 ± 2.75%; n = 758); 2-4% (-2.96 ± 0.56%; n = 961); or >4% (-5.36 ± 1.80%; n = 562), and 2-month weight change: WL <3% (mean WL: -0.93 ± 2.61; n = 634); 3-6% (-4.51 ± 0.84; n = 916); and >6% (-8.02 ± 1.79; n = 714).

The trajectory of weight change over the 8-year period using the initial WL groupings is shown in Figure 1. As illustrated, a greater WL at Month 1 or 2 was associated with greater WL at any given year over the 8-year period (P’s < 0.001).

The odds of achieving ≥5% WL at Years 4 and 8 were significantly greater among individuals losing the most weight at Month 1 or 2 compared to those losing the least (Table 1). For example, compared to individuals losing <3% at Month 2, those achieving the greatest WL at Month 2 (>6%) had 3.85 (95% CI: 3.05, 4.88) and 2.28 (95% CI: 1.81, 2.89) higher odds of achieving ≥5% WL at Years 4 and 8, respectively. Further, individuals losing 3-6% at Month 2 also had higher odds (OR = 1.85; 95% CI: 1.48, 2.32) of achieving ≥5% WL at Year 4 but not Year 8 (OR = 1.16; 95% CI: 0.93, 1.45). Of those who achieved the goal of ≥5% WL at Year 8, 23% had WL <3% at Month 2, whereas 36.7% and 40.3% of participants had WL of 3-6% or >6% at 2 months, respectively.

Program adherence was good in all groups, but those losing <3% at Month 2 attended fewer meetings and consumed fewer meal replacements compared to the two groups with higher initial WL (all...
Early Weight Loss is discontinued, alternative treatment approaches could be considered continue a specific treatment may thus be a rational approach in control efforts. Using initial WL as a criterion for deciding whether to working may lead to frustration and decreased interest in future weight macotherapy, continued participation in a lifestyle program that is not initial WL, as is recommended with newer pharmacotherapy regimens. While there are fewer safety concernswith lifestyle treatment than phar-

Achievement of ≥2% WL at Month 1 or ≥6% WL at Month 2 increased the likelihood of achieving a clinically significant WL at Year 8, compared to those losing <2% at Month 1 and <3% at Month 2, respectively. Given that the goal of obesity treatment programs is long-term WL maintenance, the current findings demonstrate the importance participants getting off to a good start in a lifestyle intervention.

Although in general, adherence was excellent during the initial weeks of this study, individuals with poorer WL at Month 2 were already demonstrating poorer adherence at this time compared to those with larger initial WL. While previous reports clearly demonstrate that adherence is strongly associated with WL success (9-11), the current findings suggest that even at Month 2, lower levels of program adherence could be of concern. Lower levels of adherence and initial WL (i.e., <2% at Month 1 or <3% at Month 2) should be considered red flags for clinicians treating patients with obesity. Future studies should investigate whether providing additional support to these individuals early within a program can improve long-term WL.

With a recent emphasis on cost-effective interventions, an alternative approach would be to discontinue lifestyle treatment in those with low initial WL, as is recommended with newer pharmacotherapy regimens. While there are fewer safety concerns with lifestyle treatment than phar-

This study is the first to demonstrate that WL within the first 2 months of a lifestyle intervention is predictive of long-term WL success (i.e., 8 years later), offering new insight into the potential importance of the initial stages of a lifestyle intervention. Future studies should consider identifying individuals with low initial WL (i.e., <2% at Month 1, or <3% at Month 2) and examine whether it would be beneficial or cost effective to modify (e.g., offer additional support to or recommend alternative treatment options) or discontinue treatment for these individuals.

References
1. Wadden TA, Neiberg RH, Wing RR, et al. Four-year weight losses in the look AHEAD study: factors associated with Long-term success. Obesity (Silver Spring) 2011;19:1987-1998.
2. Wadden TA, West DS, Neiberg RH, et al. One-year weight losses in the look AHEAD study: factors associated with success. Obesity (Silver Spring) 2009;17: 713-722.
3. Jakicic JM, Marcus BH, Lang W, Janney C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch Intern Med 2008;168:1550-1559.
4. Four-year weight losses in the look AHEAD study: factors associated with Long-term success. Obesity (Silver Spring) 2011;19:1987-1998.
5. Unick JL, Hogan PE, Neiberg RH, et al. Evaluation of early weight loss thresholds for identifying nonresponders to an intensive lifestyle intervention. Obesity (Silver Spring) 2014;22:1608-1616.
6. Elfhag K, Rosser S. Initial weight loss is the best predictor for success in obesity treatment and sociodemographic liabilities increase risk for drop-out. Patient Educ Couns 2010;79:361-366.
7. Unick JL, Ross KM, Perri MG. The association between rate of initial weight loss and long-term success in obesity treatment: does slow and steady win the race? Int J Behav Med 2010;17:161-167.
8. Pi-Sunyer X, Blackburn G, Brancati FL, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care 2007;30:1374-1383.
9. Elfhag K, Rosser S, Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev 2005;6:67-85.
10. Wing RR, Hamman RF, Bray GA, et al.Achieving weight and activity goals among diabetes prevention program lifestyle participants. Obes Res 2004;12:1426- 1434.
11. Unick JL, Jakicic JM, Marcus BH. Contribution of behavior intervention components to 24-month weight loss. Med Sci Sports Exerc 2010;42:745-753.