Uniformly resolvable decompositions of K_v
into P_3 and K_3 graphs

Salvatore Milici ∗
Dipartimento di Matematica e Informatica
Università di Catania
Catania
Italia
milici@dmi.unict.it

Zsolt Tuza †‡
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest
Hungary
tuza@dcs.uni-pannon.hu

Latest update on 22nd November, 2013

Abstract

In this paper we consider the uniformly resolvable decompositions of the complete graph K_v, or the complete graph minus a 1-factor as appropriate, into subgraphs such that each resolution class contains only blocks isomorphic to the same graph. We completely determine the spectrum for the case in which all the resolution classes are either P_3 or K_3.

AMS classification: 05B05.
Keywords: Resolvable graph decomposition; uniform resolution; 3-path; 3-cycle.

∗Supported by MIUR and by C. N. R. (G. N. S. A. G. A.), Italy
†also affiliated with the Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary.
‡Supported in part by the Hungarian Scientific Research Fund, OTKA grant T-81493, and by the Hungarian State and the European Union under the grant TAMOP-4.2.2.A-11/1/KONV-2012-0072.
1 Introduction and Definitions

Given a collection \mathcal{H} of graphs, an \mathcal{H}-decomposition of a graph G is a decomposition of the edge set of G into subgraphs isomorphic to the members of \mathcal{H}. The copies of $H \in \mathcal{H}$ in the decomposition are called blocks. Such a decomposition is called resolvable if it is possible to partition the blocks into classes \mathcal{P}_i (often referred to as parallel classes) such that every vertex of G appears in exactly one block of each \mathcal{P}_i.

A resolvable \mathcal{H}-decomposition of G is sometimes also referred to as an \mathcal{H}-factorization of G, and a class can be called an \mathcal{H}-factor of G. The case where $\mathcal{H} = K_2$ (a single edge) is known as a 1-factorization; for $G = K_v$, it is well known to exist if and only if v is even. A single class of a 1-factorization, that is a pairing of all vertices, is also known as a 1-factor or perfect matching.

In many cases we wish to place further constraints on the classes. For example, a class is called uniform if every block of the class is isomorphic to the same graph from \mathcal{H}. Of particular note is the result of Rees [12] which finds necessary and sufficient conditions for the existence of uniform $\{K_2, K_3\}$-decompositions of K_v. Uniformly resolvable decompositions of K_v have also been studied in [4], [5], [8], [10], [11], [14] and [15].

In this paper we study the existence of uniformly resolvable decompositions into paths P_3 and cycles $K_3 \cong C_3$ (both having three vertices) for the complete graph K_v and for the complete graph minus a 1-factor, which we denote by $K_v - I$. The existence of resolvable decompositions for each of P_3 and K_3 was studied separately already long ago:

- There exists a resolvable K_3-decomposition of K_v (called Kirkman Triple System, denoted as KTS(v)) if and only if $v \equiv 3$ (mod 6).
- There exists a resolvable K_3-decomposition of $K_v - I$ (called Nearly Kirkman Triple System, denoted as NKTS(v)) if and only if $v \equiv 0$ (mod 6) and $v > 12$ [13].
- There exists a resolvable P_3-decomposition of K_v if and only if $v \equiv 9$ (mod 12) [9].
- There exists a resolvable P_3-decomposition of $K_v - I$ if and only if $v \equiv 6$ (mod 12). (This follows from the case $v = 6$ and from the spectrum of KTS(v) systems.)
Further results on resolvable path decompositions are given in [7]. Let now

- $G = K_v$ for v odd,
- $G = K_v - I$ for v even,

and let

$$URD(v; P, K) := \{(r, s) : \text{there exists a uniformly resolvable decomposition of } G \text{ into } r \text{ classes containing only copies of } P \text{ and } s \text{ classes containing only copies of } K\}.$$

For $v \geq 3$, divisible by 3, define $I(v)$ according to the following table, where the first two lines are meant for $v \geq 18$ only:

v	$I(v)$
$0 \pmod{12}$	$\{ (3x, \frac{v-2}{2} - 2x), x = 0, 1, \ldots, \frac{v-5}{4} \}$
$6 \pmod{12}$	$\{ (3x, \frac{v-2}{2} - 2x), x = 0, 1, \ldots, \frac{v-1}{4} \}$
$3 \pmod{12}$	$\{ (3x, \frac{v-1}{2} - 2x), x = 0, 1, \ldots, \frac{v-3}{4} \}$
$9 \pmod{12}$	$\{ (3x, \frac{v-1}{2} - 2x), x = 0, 1, \ldots, \frac{v-1}{4} \}$
6	$\{ (3, 0) \}$
12	$\{ (3, 3), (6, 1) \}$

Table 1: The set $I(v)$.

In this paper we completely solve the spectrum problem for such systems; i.e., characterize the existence of uniformly resolvable decompositions of K_v and $K_v - I$ into r classes of 3-paths and s classes of 3-cycles, by proving the following result:

Main Theorem. For every integer $v \geq 3$, divisible by 3, the set $URD(v; P, K)$ is identical to the set $I(v)$ given in Table 1.

Notation. In the constructive parts of the proof we shall use the following notation, where a_1, a_2, a_3 may mean any three distinct vertices:

- (a_1, a_2, a_3) denotes the 3-cycle K_3 having vertex set $\{a_1, a_2, a_3\}$ and edge set $\{\{a_1, a_2\}, \{a_2, a_3\}, \{a_3, a_1\}\}$;
- $(a_1; a_2, a_3)$ denotes the path P_3 having vertex set $\{a_1, a_2, a_3\}$ and edge set $\{\{a_1, a_2\}, \{a_1, a_3\}\}$.
2 Preliminaries and necessary conditions

In this section we introduce some useful definitions and give necessary conditions for
the existence of a uniformly resolvable decomposition of K_v into P_3 and K_3 graphs.
For missing terms or results that are not explicitly explained in the paper, the
reader is referred to [2] and its online updates. Evidently, for a uniformly resolvable
decomposition of K_v into P_3 and K_3 graphs to exist, v must be a multiple of 3. A
(resolvable) H-decomposition of the complete multipartite graph with u parts each
of size g is known as a (resolvable) group divisible design H-(R)GDD; the parts of
size g are called the groups of the design. When $H = K_n$, we call it an
n-(R)GDD.

A 3-RGDD of type g^u exists if and only if $g(u - 1)$ is even and $gu \equiv 0 \pmod{3}$,
except when $(g, u) \in \{(2, 6), (2, 3), (6, 3)\}$ [13]. One can see, in particular, that a
3-RGDD of type 2^u is a Nearly Kirkman Triple System (NKTS(2^u)); we mentioned
its spectrum in the Introduction.

Lemma 2.1. Let $v \equiv 3 \pmod{6}$. If $(r, s) \in URD(v; P_3, K_3)$ then $(r, s) \in I(v)$.

Proof. For v odd, we have $G = K_v$. Let D be a decomposition of K_v into r classes
of P_3 and s classes of K_3 graphs. Counting the edges of K_v that appear in D we obtain

$$\frac{v}{3} \cdot (2r + 3s) = \frac{v(v - 1)}{2},$$

and hence that

$$2r + 3s = \frac{3}{2} (v - 1).$$

This equation implies that $2r \equiv \frac{3}{2} (v - 1) \pmod{3}$ and $3s \equiv \frac{3}{2} (v - 1) \pmod{2}$.

Then we obtain

- $r \equiv 0 \pmod{3}$ and $s \equiv 1 \pmod{2}$ for $v \equiv 3 \pmod{12}$,
- $r \equiv 0 \pmod{3}$ and $s \equiv 0 \pmod{2}$ for $v \equiv 9 \pmod{12}$.

In either case, introducing the notation $x = r/3$, the equation (1) determines that
$s = \frac{v - 3x}{2} - 2x$ must hold. Since r and s cannot be negative, and x is an integer, the
value of x has to be in the range as given in the definition of $I(v)$.

Lemma 2.2. Let $v \equiv 0 \pmod{6}$. If $(r, s) \in URD(v; P_3, K_3)$ then $(r, s) \in I(v)$.
Proof. For \(v \) even, we have \(G = K_v - I \). The argument is similar to the one for \(v \) odd. Let \(D \) be a decomposition of \(K_v - I \) into \(r \) classes of \(P_3 \) and \(s \) classes of 3-cycles. Counting the edges of \(K_v \) that appear in \(D \) we obtain

\[
\frac{v}{3} \cdot (2r + 3s) = \frac{v(v - 2)}{2},
\]

and hence that

\[
2r + 3s = \frac{3}{2} (v - 2). \tag{2}
\]

This equation implies that \(2r \equiv \frac{3}{2} (v - 2) \pmod{3} \) and \(3s \equiv \frac{3}{2} (v - 2) \pmod{2} \).

Then we obtain

- \(r \equiv 0 \pmod{3} \) and \(s \equiv 1 \pmod{2} \) for \(v \equiv 0 \pmod{12} \),
- \(r \equiv 0 \pmod{3} \) and \(s \equiv 0 \pmod{2} \) for \(v \equiv 6 \pmod{12} \).

In either case, denoting \(x = r/3 \), the equation (2) yields \(s = \frac{v-1}{2} - 2x \). Since \(r \) and \(s \) cannot be negative, and \(x \) is an integer, the value of \(x \) has to be in the range as given in the definition of \(I(v) \).

3 Small cases

Here we handle the two exceptional cases, namely \(v = 6 \) and \(v = 12 \), for which the set \(I(v) \) is slightly more restricted than for larger \(v \).

Lemma 3.1. \(URD(6; P_3, K_3) = \{(3,0)\} \).

Proof. The case \(r = 0 \) would correspond to an NKTS(6), which does not exist [13]. On the other hand, for \(r = 3 \) and \(s = 0 \) we can take the groups to be \{0,1\}, \{2,3\}, \{4,5\} and the three classes \{(0;2,4), (1;3,5)\}, \{(2;4,1), (3;5,0)\}, (4;1,3), \{(5;2,0)\}.

Lemma 3.2. \(URD(12; P_3, K_3) = \{(3,3), (6,1)\} \).

Proof. The case \(r = 0 \) would correspond to an NKTS(12), which does not exist [13]. For the other two cases, the following systems prove the assertion:
Moreover, the edges of B of G each vertex appears in precisely one block of Q. Q represent the intersection structure of classes of Q.

Proof. Let $q \equiv 0 \pmod{3}, v \geq 9$. The union of any two edge-disjoint parallel classes of 3-cycles of K_v can be decomposed into three parallel classes of P_3.

Lemma 4.1. Let $v \equiv 0 \pmod{3}, v \geq 9$. The union of any two edge-disjoint parallel classes of 3-cycles of K_v can be decomposed into three parallel classes of P_3.

Proof. Let $Q' = \{q'_1, \ldots, q'_{v/3}\}$ and $Q'' = \{q''_1, \ldots, q''_{v/3}\}$ be two edge-disjoint parallel classes of K_3, whose union composes the edge set of graph G on v vertices. We represent the intersection structure of Q' and Q'' with a bipartite graph B with vertex bipartition $X' \cup X''$, where $|X'| = |X''| = v/3$ and each vertex $x'_i \in X'$ and $x''_j \in X''$ for $1 \leq i, j \leq v/3$ corresponds to a block $q'_i \in Q'$ and $q''_j \in Q''$, respectively. Vertex x'_i is connected to vertex x''_j by an edge of B if their corresponding blocks q'_i and q''_j have a vertex in common.

Every block of Q' (Q'') meets exactly three distinct blocks of Q'' (Q') because each vertex appears in precisely one block of Q' and also of Q'', and no vertex pair of G is contained in blocks of both classes. Thus, B is a 3-regular bipartite graph. Moreover, the edges of B are in one-to-one correspondence with the vertices of G, and G is the line graph of B. We are going to define three edge decompositions of B, each of them being the union of $v/3$ mutually edge-disjoint copies of P_3 starting

4 Constructions for general v

The key tool in this section is the following important lemma. At the end of the paper we give some related information in the “Historical remarks and acknowledgements”.

\[(3, 3) \in URD(12; P_3, K_3): \]
\[
\{(1; 6, a), (8; 0, 2), (3; 4, 9), (7; 5, b)\}, \{(4; 7, 1), (5; 2, b), (6; 8, 3), (9; 0, a)\}, \\
\{(0; 4, 5), (a; 6, 8), (b; 1, 3), (2; 7, 9)\}; \{(1; 2, 3), (4; 5, 6), (7; 8, 9), (0; a, b)\}, \\
\{(1; 5, 9), (4; 8, b), (3; 7, a), (2; 6, 0)\}; \{(1; 7, 0), (2; 4, a), (3; 5, 8), (6; 9, b)\}; \\
I = \{(1; 8), (2; b), (3; 0), (4; 9), (5; a), (6; 7)\}. \]

\[(6, 1) \in URD(12; P_3, K_3): \]
\[
\{(1; 4, 7), (5; 8, 0), (9; 2, b), (a; 3, 6)\}, \{(2; 6, 8), (4; 9, a), (7; 3, 0), (b; 1, 5)\}, \\
\{(0; 4, 2), (3; 5, 9), (6; 7, b), (8; 1, a)\}, \{(1; 5, 6), (4; 8, 7), (9; 0, a), (b; 3, 2)\}, \\
\{(2; 4, 5), (6; 9, 8), (7; a, b), (0; 1, 3)\}; \{(3; 4, 6), (5; 7, 9), (8; 0, b), (a; 1, 2)\}; \\
I = \{(1; 9), (2; 7), (3; 8), (4; b), (5; a), (6; 0)\}. \]

\[\Box \]

4 Constructions for general v

The key tool in this section is the following important lemma. At the end of the paper we give some related information in the “Historical remarks and acknowledgements”.

Lemma 4.1. Let $v \equiv 0 \pmod{3}, v \geq 9$. The union of any two edge-disjoint parallel classes of 3-cycles of K_v can be decomposed into three parallel classes of P_3.

Proof. Let $Q' = \{q'_1, \ldots, q'_{v/3}\}$ and $Q'' = \{q''_1, \ldots, q''_{v/3}\}$ be two edge-disjoint parallel classes of K_3, whose union composes the edge set of graph G on v vertices. We represent the intersection structure of Q' and Q'' with a bipartite graph B with vertex bipartition $X' \cup X''$, where $|X'| = |X''| = v/3$ and each vertex $x'_i \in X'$ and $x''_j \in X''$ for $1 \leq i, j \leq v/3$ corresponds to a block $q'_i \in Q'$ and $q''_j \in Q''$, respectively. Vertex x'_i is connected to vertex x''_j by an edge of B if their corresponding blocks q'_i and q''_j have a vertex in common.

Every block of Q' (Q'') meets exactly three distinct blocks of Q'' (Q') because each vertex appears in precisely one block of Q' and also of Q'', and no vertex pair of G is contained in blocks of both classes. Thus, B is a 3-regular bipartite graph. Moreover, the edges of B are in one-to-one correspondence with the vertices of G, and G is the line graph of B. We are going to define three edge decompositions of B, each of them being the union of $v/3$ mutually edge-disjoint copies of P_3 starting

\[1^{\text{In fact, } B \text{ is the hypergraph-theoretic dual of the 2-regular 3-uniform hypergraph whose hyperedges are the triples in } Q' \cup Q''}. \]

6
in X' and ending in X'', in such a way that each intersecting edge-pair of B occurs together in precisely one of those $3 \times v/3$ copies of P_4. Since G is the line graph of B, this will yield the three parallel classes of P_3 as required.

It follows from the König-Hall theorem \cite{1} that the edge set of B can be decomposed into three edge-disjoint perfect matchings; we view this as a proper 3-edge-coloring with three colors, say colors a, b, and c. We define

- $\mathcal{P}_{abc} = \{\text{paths } P_4 \text{ in } B, \text{ starting in } X', \text{ whose color sequence is } (a, b, c) \text{ in this order}\}$.

This \mathcal{P}_{abc} is well-defined and yields an edge decomposition of B indeed, because each color class is a perfect matching. We define \mathcal{P}_{bca} and \mathcal{P}_{cab} analogously, replacing the sequence (a, b, c) with (b, c, a) and (c, a, b), respectively.

It is easy to verify that the three edge decompositions \mathcal{P}_{abc}, \mathcal{P}_{bca}, \mathcal{P}_{cab} of B satisfy the requirements. For example, if an edge e_a of color a meets an edge e_c of color c in B, then they are consecutive in one P_4 of \mathcal{P}_{bca} if $e_a \cap e_c \in X'$ or in one P_4 of \mathcal{P}_{cab} if $e_a \cap e_c \in X''$ (and they are not consecutive in any other P_4 of $\mathcal{P}_{abc} \cup \mathcal{P}_{bca} \cup \mathcal{P}_{cab}$).

Lemma 4.2. For every $v \equiv 3 \pmod{6}$, $I(v) \subseteq URD(v; P_3, K_3)$.

Proof. Let $R_1, R_2, \ldots, R_{v-1}$ be the parallel classes of a resolvable KTS(v). Define

$$S_i = R_{2i+1} \cup R_{2i+2}, \quad i = 0, 1, \ldots, \frac{v-7}{4}$$

for $v \equiv 3 \pmod{12}$, and

$$T_i = R_{2i+1} \cup R_{2i+2}, \quad i = 0, 1, \ldots, \frac{v-5}{4}$$

for $v \equiv 9 \pmod{12}$.

By Lemma 4.1 we know that each S_i and each T_i can be decomposed into three parallel classes of P_3. Thus, in order to generate a member $(r, s) = (3x, \frac{v+1}{2} - 2x)$ of $I(v)$, we apply the lemma to $(S_0, S_1, \ldots, S_{x-1})$ or to $(T_0, T_1, \ldots, T_{x-1})$, depending on the residue of v modulo 12. The range given above for i covers the entire range of x in $I(v)$.

Lemma 4.3. For every $v \equiv 0 \pmod{6} \geq 18$, $I(v) \subseteq URD(v; P_3, K_3)$.

Proof. Start with a A 3-RGDD of type $2^{v/3}$ \cite{13}. This gives that $K_v - I$ can be decomposed into $\frac{v}{3} - 1$ parallel classes of triples. Now the result can be easily obtained by using an argument similar to the proof of Lemma 4.2. \qed
5 Conclusion

We are now in a position to prove the main result of the paper.

Theorem 5.1. For every $v \equiv 0 \pmod{3}$, we have \(URD(v; P_3, K_3) = I(v) \).

Proof. Necessity follows from Lemmas 2.1 and 2.2. Sufficiency follows from Lemmas 3.1, 3.2, 4.2 and 4.3. This completes the proof. \(\Box \)

Historical remarks and acknowledgements. This research was done in the summer of 2012, when the second author visited the University of Catania. After the presentation of our results at the Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (Košice, July 2013), we learned from Alex Rosa that Lemma 4.1 was first proved by Rick Wilson. Later, Wilson informed us that he never published the lemma, but it was mentioned with full credit to him in a paper by John van Rees [16]. We thank professors Rosa and Wilson for these pieces of information.

References

[1] C. Berge, *Graphs and Hypergraphs*, Elsevier, 1973.

[2] C. J. Colbourn and J. H. Dinitz (eds.), *Handbook of Combinatorial Designs*, Second Edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.

[3] P. Danziger and E. Mendelsohn, *Uniformly Resolvable Designs*, J. Combin. Math. Combin. Comput. 21 (1996), 65–83.

[4] P. Danziger, G. Quattrocchi and B. Stevens, 2004. *The Hamilton-Waterloo Problem for Cycle Sizes 3 and 4*, J. Comb. Des. 12, 221–232.

[5] J. H. Dinitz, A. C. H. Ling and P. Danziger, *Maximum Uniformly resolvable designs with block sizes 2 and 4*, Discrete Math. 309 (2009), 4716–4721.

[6] M. Gionfriddo, S. Milici, *On the existence of uniformly resolvable decompositions of K_v and $K_v - I$ into paths and kites*, Discrete Math. 313 (2013), 2830–2834.

[7] P. Hell and A. Rosa, *Graph decompositions, handcuffed prisoners and balanced P-designs*, Discrete Math. 2 (1972) 229–252.
[8] P. Horak, R. Nedela and A. Rosa, The Hamilton-Waterloo problem: the case of Hamilton factors and triangle-factors, Discrete Math. 284 (2004) 181–188.

[9] J. D. Horton, Resolvable path designs, J. Comb. Th. Ser. A 39 (1985) 117-131.

[10] S. Kucukcifci, S. Milici and Zs. Tuza, Maximum uniformly resolvable decompositions of K_v into 3-stars and 3-cycles, manuscript (2012).

[11] S. Milici, A note on uniformly resolvable decompositions of K_v and K_v-I into 2-stars and 4-cycles, Austalas. J. Combin.,56 (2013), 195–200.

[12] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Comb. Th. Series A 45 (1987) 207-225.

[13] R. Rees, D. R. Stinson. On resolvable group divisible designs with block size 3, Ars Combin. 23 (1987), 107-120.

[14] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four – with three or five parallel classes of block size four, Discrete Math. 309 (2009), 2452–2465.

[15] E. Schuster, Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five, Discrete Math. 309 (2009), 4435–4442.

[16] R. M. Wilson, e-mail communication, November 2013.