A Novel Glycerophosphodiester Phosphodiesterase, GDE5, Controls Skeletal Muscle Development via a Non-enzymatic Mechanism*§

Received for publication, January 21, 2010, and in revised form, June 8, 2010. Published, JBC Papers in Press, June 24, 2010, DOI 10.1074/jbc.M110.106708

Yuri Okazaki†1, Noriyasu Ohshima§1, Ikumi Yoshizawa†1, Yasutomi Kamei†, Stefania Mariggiò‡‡, Keiko Okamoto‡, Masahiro Maeda†, Yoshihiro Nogusa†, Yuichiro Fujikoa†, Takashi Izumi†, Yoshihiro Ogawa†, Yoshitsugu Shirō‡‡, Masanobu Wada§5, Norihisa Kato†, Daniela Corda§‡, and Noriyuki Yanaka†2

From the †Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan, the ‡Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan, the §Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, the ¶Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy, the **Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy, the ‡‡RIKEN SPring-8 Center, Harima Institute, Hongo 679-5148, Japan, and the §§Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5ΔC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5ΔC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism.

The mass and composition of skeletal muscle are closely associated with its physiological functions, such as exercise, energy expenditure, and glucose metabolism (1, 2). Progressive muscle loss, frequently caused by diabetes, obesity, and decreased physical activity (sarcopenia), is a major health problem in our aging society (3). In the search for clues as to the regulation of skeletal muscle mass and composition during physical exercise and muscular atrophy caused by disease and disuse, a number of metabolites have been investigated in adult skeletal muscles. In human and mouse skeletal muscle tissues, deacetylated glycerophospholipids, the glycerophosphodiesterases (GPs), were analyzed as phosphate-containing compounds, and interestingly, the amounts of skeletal muscle GPs are reportedly altered in response to physical activity, the environment, and pathological conditions (4–6). However, the biological functions of skeletal muscle GPs and the physiological regulation of their levels have not been studied to date.

The GPs (primarily glycerophosphoinositol and glycerophosphocholine) are cellular products of phospholipase activities on membrane phospholipids. GP intracellular concentrations vary with oncogenic transformation, cell differentiation, and environmental stimuli, and they are thought to be tightly controlled for the balance between synthesis and degradation (7–9). For GP hydrolysis, two bacterial enzymes have been isolated and studied in depth at the molecular level. Glycerophosphodiester phosphodiesterases (GP-PDEs), GlpQ and UgpQ, were identified as periplasmic and cytosolic proteins that have essential roles in the hydrolysis of GPs to glycerol 3-phosphate and alcohol, which are used as major sources of carbon and phosphate (10, 11). In contrast, three mammalian GP-PDEs, GDE1, GDE2, and GDE3, were previously identified and presumed to have distinct physiological functions (12–15). In initial studies, GDE1 (also known as MIR16) was isolated as a unique membrane protein that interacted with RGS16, a regulator of G-protein signaling (12), and it has been shown to preferentially hydrolyze glycerophosphoinositol (GroPIns) in response to β-adrenergic stimulation (16). Studies on GDE2 show that retinoic acid-induced expression of GDE2 has critical roles in neuronal differentiation and neurite outgrowth of motor neurons (15, 17). Furthermore, it is reported that GDE3 is regulated during osteoblast development and induces osteo-

* This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This work was also supported by Telethon Italia.

§ The on-line version of this article (available at http://www.jbc.org) contains supplemental “Methods,” Figs. S1–S4, and Table S1.

† These authors contributed equally to this work.

‡ To whom correspondence should be addressed. Tel.: 81-82-4247979; Fax: 81-82-4247916; E-mail: yanaka@hiroshima-u.ac.jp.
blast differentiation and morphological changes in cultured mammalian cells (13). In addition, our recent study demonstrates that GDE3 is a GroPIns phosphodiesterase that hydrolyzes GroPIns to glycerol and inositol 1-phosphate, unlike the bacterial GP-PDEs and GDE1 (18). In mammalian cells, GroPIns is being increasingly recognized as an important intracellular messenger that is involved in various cellular signaling pathways such as cell proliferation, transformation, and differentiation (9, 18, 19). Although these observations strongly suggest a central role of mammalian GP-PDEs in regulating intracellular GP concentrations, previous reports on the existence of proteins that interact with mammalian GP-PDEs, such as RGS16, PRAF2 (also known as JM4), and Prdx1 (12, 20, 21), have prompted us to consider that GP-PDEs might also act via a non-enzymatic mechanism. Thus, mammalian GP-PDEs are most likely involved in a variety of cellular events (22). However, at the molecular level, their potential roles remain unclear, including the control of intracellular GP levels and other possible unknown effects.

As the characterization of these unidentified GP-PDEs will be highly informative for understanding their molecular basis, we explored novel mammalian GP-PDE cDNAs using sections of the GP-PDE sequence to locate expressed sequence tags (ESTs). For this study, we focused on a cDNA termed GDE5, showing that GDE5 is a novel glycerophosphocholine (GroPCho) phosphodiesterase and also that GDE5 has an inhibitory role in skeletal muscle differentiation that is carried out independently of its GroPCho enzymatic activity.

EXPERIMENTAL PROCEDURES

Materials—Restriction endonucleases and DNA-modifying enzymes were purchased from TaKaRa Bio (Kyoto, Japan). HEK293T cells, mouse C2C12 myoblasts, and rat L6 skeletal cells were obtained from the Health Science Research Resources Bank (Sennan, Japan). Dulbecco’s modiﬁed Eagle’s medium (DMEM) and fetal calf serum (FCS) were purchased from Invitrogen. Glycerophosphocholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, β-nicotinamide adenine dinucleotide (NAD), and sn-glycerol-3-phosphate dehydrogenase were from Sigma. PCR primers were purchased from Operon Biotechnologies (Tokyo).

Isolation of GDE5—An amino acid sequence (residues 500–875) containing a putative GP-PDE domain of human GDE3 was used as a query to search a database of ESTs with BLAST (basic local alignment search tool). Many EST sequences showing homology to the query sequence were obtained, and we examined whether these might encode a known or a novel GP-PDE by searching the GenBank™ database with BLAST.

Expression and Purification of Recombinant Mouse GDE5 in Insect Cells—The cDNA encoding mouse GDE5 was obtained from FANTOM2 clones (clone ID: 54304O1018) (23) and subcloned into pENTER™ D-TOPO (Invitrogen). The cDNA was inserted into BaculoDirect™ C-Term linear DNA, which added the V5 peptide and a His6 tag at the C terminus of GDE5. Sf9 cells (Invitrogen) were transfected with the DNA using Cellfectin (Invitrogen) to produce the baculovirus. Sf9 cells were cultured in SF-9001 SFM (Invitrogen) containing 10% Grace’s insect medium (Invitrogen), 1% FCS, 1 μg/ml gentamicin (Invitrogen), 0.25 μg/ml amphotericin B, and 0.2% pluronic (Sigma). For large-scale production of GDE5, Sf9 cells were transfected with the baculovirus at a minimum multiplicity of infection of 2. The cells were collected by centrifugation 48 h after transfection. The cells were disrupted by sonication in 20 mM Tris-HCl, pH 8.0, 500 mM NaCl. The cell debris was removed by centrifugation at 800 × g for 10 min at 4 °C. The supernatant was further centrifuged at 100,000 × g for 60 min at 4 °C. The supernatant was subjected to a Ni2+-bound HiTrap chelating column (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 8.0, containing 500 mM NaCl and 50 mM imidazole. The protein was eluted with the same buffer without the 500 mM imidazole. The eluate was desalted and then subjected to a Resource Q column (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 8.0. GDE5 was eluted with a linear gradient of NaCl. The GDE5-containing fractions were then applied to a HiLoad 16/60 Superdex 200 column (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 8.0, 200 mM NaCl.

GDE Assay—Cd2+-free GroPCho was prepared as described previously (24). The other glycerophosphodiesterases were prepared from their phospholipid precursors (25). GDE activity was examined using an enzyme-coupled spectrophotometric assay, measuring the amount of glycerol 3-phosphate (G3P) generated by the enzyme reaction. The reaction mixture contained the following: 50 mM HEPES-NaOH, pH 7.4, 10 mM MgCl2, 0.5 mM Tris-HCl, pH 8.0. GDE5 was eluted with a linear gradient of NaCl. The GDE5-containing fractions were then applied to a HiLoad 16/60 Superdex 200 column (GE Healthcare) equilibrated with 20 mM Tris-HCl, pH 8.0, 200 mM NaCl.

Cell Cultures and Transfection—HEK293T, C2C12, and L6 cells were cultured in DMEM supplemented with 10% FCS, 100 units/ml penicillin, and 100 μg/ml streptomycin under a humidified atmosphere of 5% CO2 in air at 37 °C. For studies examining the sequence of myoblast differentiation, the cells were seeded at 5000 cells/cm2 in 24-well plates. After these cells reached confluence (day 0), the medium was replaced with myogenic medium, consisting of DMEM supplemented with 2% horse serum. The medium was replaced every 2 days. A cDNA encoding full-length mouse GDE5 was subcloned into the Sall (made blunt with T4 DNA polymerase) and NotI sites of the mammalian expression vector pEF/myc/cyt0 (Invitrogen), generating pEF-GDE5. To obtain a deletion mutant of GDE5 (amino acids 1–470, GDE5ΔC471), the cDNA was amplified using a PCR primer set (5’-GGGGATCCTATCCATCCCTGTGTTGGCAAA-3’ and 5’-GCGCGGCCCGGACCGGCAGAAATCC-3’) designed according to the nucleotide sequences of mouse GDE5 and subcloned into pEF/myc/cyt0, which generated pEF-GDE5ΔC471. DNA transfections were performed...
Involvement of GDE5 in Skeletal Muscle Development

using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Stealth siRNA duplex oligoribonucleotides against mouse GDE5 were synthesized by Invitrogen. The sequences were as follows: sense, 5’-CAGUGUGUUUGUG-GAAAGCAGUGAUU-3’; antisense, 5’-AUACACUGCUUCCACAAACACUGC-3’. C2C12 cells were transfected with these siRNAs to a final concentration of 20 nM using Lipofectamine RNAiMax (Invitrogen). For retroviral expression, cDNAs encoding mouse GDE5 and GDE5ΔC471 were subcloned into the pLXSN retrovirus vector (Clontech, Palo Alto, CA). High titer retroviruses harboring GDE5 were produced in Phoenix 293 cells and used to infect L6 cells as reported previously (Yanaka et al. (17)). After infection into L6 cells, these cells were treated with 500 μg/ml G418 for 7 days and used to evaluate myogenesis. For stable transfection of C2C12 cells, the cells were transfected with Lipofectamine 2000 using pEF-GDE5, pEF-GDE5ΔC471, or vector pEF/myc/cyto (control). After replating, these cells were treated with 500 μg/ml G418 for 14 days. G418-resistant colonies were identified and reseeded at 5000 cells/cm². After 2 days, the medium was replaced with myogenic medium (day 0). At day 6, the morphology of each cell line was observed under light microscopy, and the C2C12 cells were fixed and subjected to immunofluorescent staining using mouse anti-myosin (fast) antibody (Sigma), which was visualized with fluorescein isothiocyanate-labeled antimouse IgG (Sigma). The filters were blocked for 18 h at 4 °C by soaking in 4% bovine serum albumin in Tris-buffered saline (TBS). The corresponding primary antibodies were added, and the blots were incubated for 18 h at 4 °C with the anti-GDE5 antibody. HRP-conjugated secondary antibodies were added, and the membranes were washed with 0.1× SSC and 0.5% SDS at 65 °C for 1 h and exposed to imaging plates (Fuji Film, Tokyo).

Animals—C57BL/6 mice (Charles River Japan) were housed in a room with controlled temperature (24 °C) and a 12-h light/dark cycle (lights on, 8:00 a.m. to 8:00 p.m.). The animals were given free access to diet and deionized water. The mice were maintained according to the Guide for the Care and Use of Laboratory Animals established by Hiroshima University. The right hind limbs of the male mice were immobilized in plaster casts, and the left hind limbs were left freely moving for the control samples. After 3 weeks of immobilization in plaster casts, total RNA was isolated from the skeletal muscle (gastrocnemius) of the right and left hind limbs. Denervation of one gastrocnemius was carried out by removing a 1-cm section of sciatic nerve just beneath the biceps femoris muscle of the male mice at 9 weeks of age. After 3 days, the total RNA from the gastrocnemius was subjected to Northern blotting.

The human skeletal muscle α-actin promoter was provided by Drs. E. D. Hardeman and K. Guven (Children’s Medical Research Institute, Westmead, Australia). The transgene construct contained from −2000 to +200 base pairs of the human α-skeletal actin promoter, 2.0 kb of complete mouse GDE5 cDNA, and a polyadenylation signal encoded by bovine growth hormone. The transgene was excised from agarose gel, purified, and used for microinjection into BDF1 mouse eggs at Japan SLC Inc. (Hamamatsu, Japan). Among 81 mouse pups, two lines, Tg7 and Tg31, were studied. The male chimeras harboring the GDE5 transgene were mated with C57BL/6J female mice to obtain F1 offspring. The heterozygous F1 male offspring from this breeding were then backcrossed with purebred C57BL/6J females to obtain F2 offspring; this process was continued until the F3 generation of mice was obtained. The male heterozygous GDE5 transgenic mice and their littermate wild-type mice were sacrificed at 10–14 weeks of age.

Blood Analysis—Food was withdrawn 6 h before decapitation. Blood was collected, and the plasma was immediately separated by centrifugation (10 min at 900 × g) and stored at −20 °C. Glucose, free fatty acids, and triglycerides were measured by Test Wako (Wako Biochemicals, Osaka, Japan) according to the manufacturer’s instructions.

Histological Analysis—Samples of the skeletal muscle (gastrocnemius) of wild-type (WT) and GDE5ΔC471 mice at 14 weeks of age were frozen in liquid nitrogen-cooled isopentane (Sigma), and transverse serial sections were stained with hematoxylin and eosin (H&E).

DNA Microarray—Total RNA derived from the skeletal muscle (gastrocnemius) of WT and GDE5ΔC471 mice at 12 weeks of age was isolated using an RNeasy kit and RNase-Free DNase set (Qiagen) and subjected to cRNA synthesis for a DNA
microarray analysis according to the manufacturer’s instructions (whole mouse genome 60-mer oligo microarray, Agilent Technologies, Palo Alto, CA). All of the procedures of fluorescence labeling, hybridization, and slide and image processing were carried out according to the manufacturer’s instructions. Briefly, aliquots of cRNA samples were fragmented and hybridized on the whole mouse genome oligo microarray slides at 65 °C for 17 h. The slides were then sequentially washed, dried, and scanned using an Agilent DNA microarray scanner with SureScan technology (Agilent Technologies). In this study, the DyeSwap method was used to eliminate the bias between dyes. Gene expression data were obtained with Agilent Feature Extraction software, using defaults for all parameters except ratio terms, which were changed according to the Agilent protocol to fit the direct labeling approach, the nucleotide sequence corresponding to the GP-PDE domain of mouse GDE3 was used to search the EST database. The homologous sequences contained the GP-PDE motif (pfam03009), which was found in human and mouse cDNA libraries (human, NM_019593; mouse, NM_028802). The mouse cDNA, termed GDE5(16), was shown to encode a protein of 675 amino acids with a predicted molecular mass of 76,578 Da. On the basis of the amino acid sequence of GDE5, we predicted that the protein contains a putative catalytic domain that shares a common motif (amino acids 320–385, Fig. 1A) with other GP-PDEs. Interestingly, GDE5 does not have a transmembrane region, as seen for other mammalian GP-PDEs; instead, it has an N-terminal carbohydrate binding domain (Fig. 1B) that is often found in glycosylhydrolases, such as amylases. We observed that the GDE5 protein was localized in the cytoplasm, indicating that unlike other mammalian GP-PDEs, GDE5 can function as a cytosolic protein (Fig. 1C). As mentioned previously, recent reports have shown the remarkable characteristics of GroPLns as a water-soluble and bioactive intracellular derivative of phosphatidylinositol that is involved in a variety of cellular signaling pathways (9, 19). GDE1 and GDE3 can hydrolyze GroPLns (16, 18); however, the catalytic domain of these proteins is localized extracellularly and is enzymatically active in the extracellular space (13, 16). These observations raise the possibility that GDE5 is a candidate for the direct regulation of the intracellular GroPLn levels. However, enzymatic assays using postnuclear preparations of HEK293T cells transfected with pET-GDE5 or pET empty vector (supplemental Fig. S1A) indicated that GDE5 cannot hydrolyze GroPLns or GroPLns4P (data not shown). In addition, CHO cells

Isolation of a Novel Glycerophosphocholine Phosphodiesterase, GDE5—Using a bioinformatics approach, the nucleotide sequence corresponding to the GP-PDE domain of mouse GDE3 was used to search the EST database. The homologous sequences contained the GP-PDE motif (pfam03009), which was found in human and mouse cDNA libraries (human, NM_019593; mouse, NM_028802). The mouse cDNA, termed GDE5(16), was shown to encode a protein of 675 amino acids with a predicted molecular mass of 76,578 Da. On the basis of the amino acid sequence of GDE5, we predicted that the protein contains a putative catalytic domain that shares a common motif (amino acids 320–385, Fig. 1A) with other GP-PDEs. Interestingly, GDE5 does not have a transmembrane region, as seen for other mammalian GP-PDEs; instead, it has an N-terminal carbohydrate binding domain (Fig. 1B) that is often found in glycosylhydrolases, such as amylases. We observed that the GDE5 protein was localized in the cytoplasm, indicating that unlike other mammalian GP-PDEs, GDE5 can function as a cytosolic protein (Fig. 1C). As mentioned previously, recent reports have shown the remarkable characteristics of GroPLns as a water-soluble and bioactive intracellular derivative of phosphatidylinositol that is involved in a variety of cellular signaling pathways (9, 19). GDE1 and GDE3 can hydrolyze GroPLns (16, 18); however, the catalytic domain of these proteins is localized extracellularly and is enzymatically active in the extracellular space (13, 16). These observations raise the possibility that GDE5 is a candidate for the direct regulation of the intracellular GroPLn levels. However, enzymatic assays using postnuclear preparations of HEK293T cells transfected with pET-GDE5 or pET empty vector (supplemental Fig. S1A) indicated that GDE5 cannot hydrolyze GroPLns or GroPLns4P (data not shown). In addition, CHO cells

RESULTS

Isolation of a Novel Glycerophosphocholine Phosphodiesterase, GDE5—Using a bioinformatics approach, the nucleotide sequence corresponding to the GP-PDE domain of mouse GDE3 was used to search the EST database. The homologous sequences contained the GP-PDE motif (pfam03009), which was found in human and mouse cDNA libraries (human, NM_019593; mouse, NM_028802). The mouse cDNA, termed GDE5(16), was shown to encode a protein of 675 amino acids with a predicted molecular mass of 76,578 Da. On the basis of the amino acid sequence of GDE5, we predicted that the protein contains a putative catalytic domain that shares a common motif (amino acids 320–385, Fig. 1A) with other GP-PDEs. Interestingly, GDE5 does not have a transmembrane region, as seen for other mammalian GP-PDEs; instead, it has an N-terminal carbohydrate binding domain (Fig. 1B) that is often found in glycosylhydrolases, such as amylases. We observed that the GDE5 protein was localized in the cytoplasm, indicating that unlike other mammalian GP-PDEs, GDE5 can function as a cytosolic protein (Fig. 1C). As mentioned previously, recent reports have shown the remarkable characteristics of GroPLns as a water-soluble and bioactive intracellular derivative of phosphatidylinositol that is involved in a variety of cellular signaling pathways (9, 19). GDE1 and GDE3 can hydrolyze GroPLns (16, 18); however, the catalytic domain of these proteins is localized extracellularly and is enzymatically active in the extracellular space (13, 16). These observations raise the possibility that GDE5 is a candidate for the direct regulation of the intracellular GroPLn levels. However, enzymatic assays using postnuclear preparations of HEK293T cells transfected with pET-GDE5 or pET empty vector (supplemental Fig. S1A) indicated that GDE5 cannot hydrolyze GroPLns or GroPLns4P (data not shown). In addition, CHO cells

Involvement of GDE5 in Skeletal Muscle Development

GDE5 is a novel cytosolic glycerophosphodiester phosphodiesterase. A, deduced amino acid sequences of the catalytic regions of mouse GP-PDEs. Black boxes, identical amino acids; gray boxes, similar amino acids. B, schematic diagram illustrating the domains of the three mouse GP-PDEs. Putative transmembrane domains are numbered from the N terminus. GDE1 represents the putative GP-PDE domain. C, expression of GDE3 and GDE5 in HEK293T cells. HEK293T cells were transiently transfected with GFP-GDE3 (GDE3) or GFP-GDE5 (GDE5). GFP-GDE3 accumulated at the cell periphery, whereas GFP-GDE5 was localized in the cytoplasm.
transfected with pET-GDE5 and pET empty vector showed either the same basal (1392.2 ± 173.6 and 1392.7 ± 13 cpm, respectively) and ATP-stimulated (about 1.3-fold basal) intracellular GroPIns levels (supplemental Fig. S1, A and B). These data strongly suggest that GroPIns is not a GDE5 substrate. To characterize the substrate specificity for GDE5, we overexpressed a His-tagged GDE5 in insect Sf9 cells. Mouse recombinant GDE5 was purified to near homogeneity from baculovirus-infected Sf9 cells, as determined by SDS-PAGE. A single protein band was observed at 81 kDa (Fig. 2A), which corresponded to the calculated molecular mass of His-tagged mouse GDE5. Several types of GPs were tested as substrates for the purified GDE5 in the presence of Mg²⁺. The specific activities of purified GDE5 toward GroPCho and glycerophosphoethanolamine (GroPeth), glycerophosphoglycerol (GroPGly), glycerophosphoserine (GroPSer), and GroPIns. The data are from a single experiment carried out in triplicate (mean ± S.D.) and are representative of two independent experiments.

GP-PDEs were previously shown to be affected by bivalent metal ions (24), we tested the effects of Ca²⁺ on GDE5 activity, which is most effective for bacterial GlpQ. We could not detect any phosphodiesterase activity of GDE5 in the presence of 1 mM CaCl₂ (data not shown). Furthermore, to examine the involvement of GDE5 in the hydrolysis of GroPCho in mammalian cells, we used a siRNA-mediated GDE5 knockdown in NIH3T3 cells (supplemental Fig. S3A). GDE5 RNAi gene silencing resulted in an increase in intracellular GroPCho levels (supplemental Fig. S3B). Taken together, these observations indicated that GDE5 is an UgpQ-type GDE and that GroPCho is a GDE5 substrate.

GDE5 mRNA Expression Is Altered during Skeletal Muscle Atrophy—To evaluate the physiological roles of GDE5, we first characterized the tissue-specific expression of GDE5 mRNA and showed that the transcript is highly expressed in mouse muscle tissues (Fig. 3A), which corresponds to the calculated molecular mass of His-tagged mouse GDE5. Several types of GPs were tested as substrates for the purified GDE5 in the presence of Mg²⁺. The specific activities of purified GDE5 toward GroPCho and glycerophosphoethanolamine were 2.0 ± 0.09 and 0.34 ± 0.03 μmol/mg/min, respectively (Fig. 2B and supplemental Fig. S2). There was no significant reaction when glycerophosphoglycerol, GroPIns, and glycerophosphoserine were used as substrates (Fig. 2B), showing that GDE5 has a marked substrate preference for GroPCho. Because

FIGURE 2. GDE5 is a glycerophosphocholine phosphodiesterase. A, His-tagged mouse GDE5 protein was overexpressed in baculovirus-infected Sf9 insect cells. Mouse recombinant GDE5 was purified as determined by SDS-PAGE. A single protein band was detected at 81 kDa, which corresponded to the calculated molecular mass of His-tagged mouse GDE5. B, substrate specificity of mouse GDE5. GDE activity was examined by an enzyme-coupled spectrophotometric assay. The substrates used were GroPCho, glycerophosphoethanolamine (GroPeth), glycerophosphoglycerol (GroPGly), glycerophosphoserine (GroPSer), and GroPIns. The data are from a single experiment carried out in triplicate (mean ± S.D.) and are representative of two independent experiments.

FIGURE 3. GDE5 mRNA expression in skeletal muscle. A, GDE5 mRNA was highly expressed in mouse muscle tissues. A mouse multiple tissue Northern blot with 20 μg of total RNAs was probed with GDE5 cDNA. B, 20 μg of total RNA from the gastrocnemius of male mice at 5 months (young) and 27 months (old) of age was subjected to Northern blotting. C, denervation (de-nerve.) of one gastrocnemius was carried out by removing the sciatic nerve of male mice at 9 weeks of age. After 3 days, total RNA (15 μg/lane) from the gastrocnemius of sham-operated (sham) and denervation mice was subjected to Northern blotting. D, after immobilization in plaster casts, Northern blotting was performed on total RNA (20 μg/lane) isolated from the gastrocnemius of the right and left hind limbs. E, 10 μg of total RNA from the gastrocnemius of male C57BL and KK-Ay mice was subjected to Northern blotting.
decreased physical activity. We then investigated whether GDE5 mRNA expression was altered in skeletal muscle under physiological or pathological conditions. GDE5 mRNA expression in skeletal muscle was down-regulated in several types of skeletal muscle atrophies such as aging, denervation, and use of a plaster cast (Fig. 3, B–D). Moreover, in diabetic KK-Ay mice, GDE5 mRNA expression appeared to be decreased in skeletal muscle (Fig. 3E).

GDE5 Suppresses Myogenic Differentiation—To explore the biological significance of a decrease in GDE5 expression in skeletal muscle, we used siRNA-mediated GDE5 knockdown in C2C12 mouse myoblasts. The amount of reduced RNA and protein expression was assessed by quantitative RT-PCR (Fig. 4, A and B) and Western blotting (Fig. 4C). The extent of differentiation was determined by the fusion index (number of myotubes/total number of nuclei) (Fig. 4, D and E). GDE5 RNAi gene silencing resulted in strongly enhanced myotube formation during skeletal muscle differentiation, which was accompanied by enhanced expression of myogenin mRNA (Fig. 4, A and B) and protein (Fig. 4F). To examine the inhibitory function of GDE5 during skeletal muscle development, we next investigated whether increased expression of GDE5 would modulate myogenic differentiation. Here, to explore the possibility that GDE5 exerts its biological activity via a non-enzymatic mechanism, we additionally prepared a truncated version (GDE5ΔC471) of mouse GDE5 (Fig. 5A). The sequence lacked a C-terminal domain (amino acids 471–675) but retained the GDE sequence identified as a cluster of strictly conserved residues (His-326, Arg-327, Glu-343, Asn-471). The sequence lacked a C-terminal domain (amino acids 471–675) but retained the GDE sequence identified as a cluster of strictly conserved residues (His-326, Arg-327, Glu-343, Asn-471). An enzymatic assay using HEK293T cells overexpressing WT GDE5 (GDE5wt) or GDE5ΔC471 showed that GroPCho can be hydrolyzed by GDE5wt but not by GDE5ΔC471, with no difference in protein stability between the two forms (Fig. 5, B and C, and supplemental Fig. S4). These data indicated that the GP-PDE conserved cluster sequence was not sufficient for GroPCho phosphodiesterase activity and that GDE5ΔC471 is a useful tool for studying the non-enzymatic function of GDE5 because of the presence of the intact GP-PDE sequence.

To further confirm the negative regulation of myogenic differentiation by GDE5wt and GDE5ΔC471, we infected L6 rat skeletal myoblasts with retroviruses harboring GFP, GDE5wt, or GDE5ΔC471 (Fig. 6A). At 7 days, WT L6 cells had elongated and begun to align with one another (Fig. 6B). In contrast, L6 cells expressing GDE5wt or GDE5ΔC471 were well spread, with no polarization or significant changes in morphology (Fig. 6B). We quantified the extent of myogenic differentiation by scoring the appearance of elongated cells (Fig. 6C) and muscle-specific mRNA expression such as myogenin and creatine kinase (Fig. 6, D–F). Viewed together, these observations indicated that GDE5 can inhibit myogenic differentiation and that this action of GDE5 in skeletal muscle is modulated by its non-enzymatic function.
Transgenic Mice Specifically Overexpressing GDE5ΔC471 in Skeletal Muscle Have Less Type II Fiber-rich Skeletal Muscle Mass—To gain further insight into the potential role of GDE5 in skeletal muscle in vivo, focusing on skeletal muscle mass and muscle fiber differentiation via a non-enzymatic mechanism, we established transgenic mice specifically overexpressing GDE5ΔC471 in their skeletal muscle. Here, the human skeletal muscle α-actin promoter was used to control expression of the mouse GDE5ΔC471 transgene in mice (Fig. 7A). During embryonic development, cardiac muscle α-actin is the predominant isoform of sarcomeric α-actin in mice, and the switch to skeletal muscle α-actin occurs postpartum (26). Thus, by using the skeletal muscle α-actin promoter, the possibility that embryonic expression of GDE5ΔC471 might interfere with development was minimized. We obtained two independent lines of transgenic mice (T7 and T31). The GDE5ΔC471 transgene was evaluated by Northern blotting with RNA isolated from the tissues of GDE5ΔC471 mice and age-matched control mice at 10 weeks of age. Transgene expression was observed not only in the gastrocnemius and quadriceps, but also in other areas of skeletal muscle, including the soleus (Fig. 7B), indicating that the use of the skeletal muscle α-actin promoter resulted in high expression levels of the transgene in skeletal muscle tissues. Additionally, we prepared an antibody that recognized the mouse GDE5 protein and confirmed the presence of the GDE5ΔC471 protein in muscle protein lysates obtained from the gastrocnemius (Fig. 7C). Body weight and blood metabolite levels (free fatty acids and glucose) were not significantly different between the GDE5ΔC471 mice (both lines) and the control mice (Table 1). However, in GDE5ΔC471 mice (both lines), the skeletal muscle, especially type II fiber-rich muscle, was smaller in size than that of control mice (Fig. 7D and Table 2). Moreover, in the skeletal muscle of GDE5ΔC471 mice there were decreases in the expression levels of genes related to structural proteins of type II fibers (fast twitch muscle) such as fast muscle isoforms of troponins (Fig. 7E). To better visualize the morphology of the muscle fibers, transverse sections of skeletal muscle (quadriceps) of transgenic and control mice were stained with hematoxylin and eosin, which revealed reduced skeletal muscle mass and smaller fibers in GDE5ΔC471 mice as compared with the controls (Fig. 7F). In particular, the mean fiber cross-sectional areas of the GDE5ΔC471 mice were reduced by 55% compared with the controls.
mice. Interestingly, the expression of several genes linked to neuromuscular junctions was up-regulated in the skeletal muscle of the GDE5ΔC471 mice (Table 3). Reverse transcription-polymerase chain reaction assays also showed that mRNA transcripts for nicotinic acetylcholine receptors (α1, γ, and e subunits) and nestin were more abundant in GDE5ΔC471 than in control muscles (Fig. 8). These observations suggested that the compensatory expression of components localized at the neuromuscular junctions in the GDE5ΔC471 skeletal muscle have preventative effects on skeletal muscle dysfunction. As noted also, mRNA expressions of a variety of α-defensins within the antimicrobial peptide family were significantly up-regulated in the skeletal muscle of GDE5ΔC471. α-Defensins are reported to be effectors of mammalian innate immunity; they are found in phagocytic leukocytes of myeloid origin and in the small intestine following secretion by epithelial Paneth cells. Paneth cells have also been shown to secrete α-defensins and additional antimicrobial peptides at high levels in response to cholinergic stimulation (27). Considering that no lymphocytic infiltrate or any other inflammatory signs were present in the skeletal muscle of GDE5ΔC471 (data not shown), up-regulated expression of α-defensins in the muscles may be dependent on activation of the acetylcholine receptor pathway due to the increased levels of neuromuscular junction components.

DISCUSSION

In this study, we have shown that a novel cytosolic GP-PDE, GDE5, selectively hydrolyzes GroPCho. To date, GP-PDEs have been found widely in bacteria, yeast, plants, and mammals. However, different physiological roles among the GP-PDEs have been discussed (10, 22, 28–33). Bacterial GlpQs are well studied and have been shown to have important functions in the hydrolysis of deacylated glycerophospholipids to glycerol phosphate, which is a major source of carbon and phosphate (10, 28). Previous studies have examined several types of glycerophosphodiesterases (derived from glycerophospholipids) as substrates for bacteria GP-PDEs and demonstrated that the bacterial enzymes show broad substrate specificities toward glycerophosphodiesterases (10, 24, 28), providing an advantage for the acquisition of glycerol 3-phosphate to be metabolized in bacteria. In contrast, an intriguing feature of mammalian GP-PDEs is that these enzymes show restricted substrate specificities, strongly suggesting the physiological roles of mammalian GP-PDEs as a determinant for GroPIns or GroPCho levels in mammalian cells. GroPIns has been shown to be involved in the control of cell proliferation, cell chemotaxis, and cell morphology, affecting in the last case actin cytoskeletal rearrangements through the activation of small GTPases of the Rho family (9, 34, 35), whereas GroPCho is reportedly an osmoprotective sugar (8, 36, 37). A recent study suggests that GDE2 contributes to osmotic regulation as a GroPCho phosphodiesterase (38). This study shows that GDE5 can hydrolyze GroPCho preferentially, suggesting that this novel cytosolic GP-PDE has a role in maintaining the intracellular osmotic balance by regulating intracellular GroPCho.
In the present study, we have demonstrated that GDE5 inhibits skeletal muscle differentiation. It is puzzling that GDE5 mRNA expression in skeletal muscle was downregulated in several types of skeletal muscle atrophies. As previous studies have suggested functional adaptations of skeletal muscle during denervation, disuse, and aging (39), the decreased GDE5 expression might represent an adaptation response to counteract the pathology. Further, we have shown that the GDE5 inhibitory role is not due to its GroPCho phosphodiesterase activity. Previous studies using yeast two-hybrid systems have shown that mammalian GP-PDEs have the potential to interact with intracellular proteins (12, 20). Yan et al. (21) recently described a remarkable characteristic of a mammalian GP-PDE, namely, that GDE2 interacts with the antioxidant scavenger peroxiredoxin1 (Prdx1) and cooperates with Prdx1 to drive neuronal differentiation. These observations suggested that mammalian GP-PDEs coordinate intracellular proteins in the control of cellular events. Further studies, which should include the isolation of molecules that interact with GDE5/H9004C471, will be necessary to determine the mechanism of action (and other potential functions) of GDE5.

We created transgenic mice specifically expressing GDE5/H9004C471 in skeletal muscle and showed that GDE5ΔC471 mice have less type II fiber-rich muscle mass. Previous animal studies have defined the pattern of transcriptional changes in skeletal muscle in pathological and physiological states. Increased mRNA expression of several genes involved in neuromuscular interactions in GDE5ΔC471 skeletal muscle is similar to the multiple types of skeletal muscle atrophy characterized by structural alterations of the neuromuscular junctions (40, 41). Moreover, as shown in Table 3, it is worth noting that the mRNA expression of genes encoding the polyamine biosynthetic enzymes spermine oxi-
Involvement of GDE5 in Skeletal Muscle Development

Differentially expressed genes grouped into functional categories are listed. A DNA microarray analysis was repeated with the Cy3 and Cy5 dyes reversed (dye swap). The -fold change (-Fold) represents the average mRNA expression level in GDE5/C471 mice (T7 line) relative to control mice.

TABLE 3

GDE5/C471 affects the expression of multiple genes in skeletal muscles (quadriiceps) and other tissues.

Gene ID	Gene symbol	Gene description	p Value	-Fold
Structural proteins	Klf5c	Kinesin-related protein KIFC5C	0.00000	10.85
AF221104	Tchh	Trichohyalin	0.00000	9.89
XM.000100857	Krt8	Keratin 8	0.00018	2.20
NM.031170	Krt18	Keratin 18	0.00000	4.80
NM.010033177	Krt76	Keratin 76	0.000220	4.66
NM.008508	Loricrin	0.00000	7.32	
NM.008181	Gsta2	Glutathione S-transferase, alpha-class	0.00000	4.31
NM.008182	Amd1	Adenosylmethionine decarboxylase 1	0.00000	3.67
NM.008183	ChRNA1	Nicotinic acetylcholine receptor, alpha-subunit 1	0.00000	3.50
NM.008184	ChRNA2	Nicotinic acetylcholine receptor, beta-subunit	0.00000	3.12
NM.009604	ChrNG	Nicotinic acetylcholine receptor, gamma-subunit	0.00000	2.82
NM.009603	ChrNE	Nicotinic acetylcholine receptor, epsilon-subunit	0.00000	2.72
NM.009043	Reg2	Regenerating islet-derived 2	0.00000	20.56
NM.017399	Fabp1	Fatty acid-binding protein 1, liver	0.00000	24.62
NM.011036	Pan	Pancreatitis-associated protein	0.00000	10.03
NM.026925	Pnlp	Pancreatic lipase	0.00000	15.23
NM.025467	Gkn2	Gastrokine 2	0.00000	23.87
NM.170727	Scgb3a1	Secretoglobin, family 3A, member 1	0.00000	9.42
NM.009599	Ache	Acetylcholinesterase	0.00000	3.96
NM.007389	ChRNA1	Nicotinic acetylcholine receptor, alpha-subunit 1	0.00000	6.30
NM.009604	ChRNA2	Nicotinic acetylcholine receptor, beta-subunit	0.00000	5.23
NM.009603	ChrNE	Nicotinic acetylcholine receptor, epsilon-subunit	0.00000	3.67
NM.016701	Nes	Nestic	0.00000	4.21
NM.010875	Ncam1	Neural cell adhesion molecule 1 (NCAM1)	0.00000	4.06
NM.017474	Cleca3	Chloride channel calcium-activated 3	0.00000	7.11
NM.021487	Kcne1	Potassium voltage-gated channel, Shaker-related subfamily, beta1	0.00000	7.45
NM.010597	CaMKII	Calcium/calmodulin-dependent protein kinase II	0.00000	3.82
NM.00012307	Defcr23	Defensin-related cryptdin 23	0.00000	21.93
NM.010031	Defa1	Defensin, alpha-1	0.00000	21.88
NM.008098	TPR	Tryptophan 5-monooxygenase	0.00000	21.93
NM.009665	Amd1	Adenosylmethionine decarboxylase 1	0.00000	5.02
NM.007444	Amd2	Adenosylmethionine decarboxylase 2	0.00000	3.61
NM.009414	Tph1	Tryptophan hydroxylase 1	0.00000	4.10
NM.145333	Smox	Spermine oxidase	0.00000	3.29
up-regulated in GDE5ΔC471 muscle. Recent studies have demonstrated novel biological roles of α-defensins in fibroblast proliferation and collagen synthesis, via the β-catenin signaling pathway, and in the suppression of hepatic glucose production, through a mechanism distinct from the classical insulin signaling pathway (49, 50). As noted also, we have shown that white adipose tissue weights of 1-year-old GDE5ΔC471 mice were increased as compared with age-matched controls C471 mice/H9004 (supplemental Table S1), suggesting that the secreted proteins in skeletal muscle of the GDE5ΔC471 mice can modulate white adipose tissue functions and mass with aging. Furthermore, Livesey et al. (51) showed that Reg2 (regenerating islet-derived 2) is a potent Schwann cell mitogen involved in motor neuron regeneration and development. Thus, GDE5ΔC471 mice not only will contribute to an understanding of the in vivo functions of GDE5 via a non-enzymatic mechanism, but they will also be available as a novel animal model of type II fiber-rich skeletal muscle diseases that can be used to screen for new myokines in skeletal muscles.

In summary, this study provides a new insight into the role of mammalian GP-PDEs, independent of their enzymatic activity. It also has prompted us to further consider the evolutionary differences between and biological significance of prokaryotic and mammalian GP-PDEs at the molecular level.

Acknowledgment—We thank Cristiano Iurisci for technical assistance.

REFERENCES

1. Zurlo, F., Larson, K., Bogardus, C., and Ravussin, E. (1990) J. Clin. Investig. 86, 1423–1427
2. Berchmaid, M. W., Brinkmeier, H., and Müntener, M. (2000) Physiol. Rev. 80, 1215–1265
3. Proctor D. N, Balagopal P, and Nair K. S (1998) J. Nutr 128, 1215–1265
4. Brennan, K. J., and Hardeman, E. C. (1993)
5. Younkin, D. P., Berman, P., Sladky, J., Chee, C., Bank, W., and Chance, B. (1987) Neurology 37, 165–169
6. Sprott, H., Rzanny, R., Reichenbach, J. R., Kaiser, W. A., Hein, G., and Stein, G. (2000) Rheumatology 39, 1121–1125
7. Baburina, I., and Jackowski, S. (1999) J. Biol. Chem. 274, 9400–9408
8. Gallazzini, M., and Burg, M. B. (2009) Physiology 24, 245–249
9. Corda, D., Zizza, P., Varone, A., Filippi, B. M., and Mariggio, S. (2009) Cell. Mol. Life Sci. 66, 3449–3467
10. Larson, T. J., Ehrmann, M., and Boos, W. (1983) J. Biol. Chem. 258, 5428–5432
11. Tommassen, J., Eglmeier, K., Cole, S. T., Overduin, P., Larson, T. J., and Boos, W. (1991) Mol Gen Genet. 226, 321–327
12. Zheng, B., Chen, D., and Farquhar, M. G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 3999–4004
13. Yanaka, N., Imai, Y., Kawai, E., Akatsuka, H., Wakimoto, K., Nogusa, Y., Kato, N., Chiba, H., Kotani, E., Omori, K., and Sakurai, N. (2003) J. Biol. Chem. 278, 43595–43602
14. Nogusa, Y., Fujioka, Y., Komatsu, R., Kato, N., and Yanaka, N. (2004) Gene 337, 173–179
15. Rao, M., and Sockanathan, S. (2005) Science 309, 2212–2215
16. Zheng, B., Berrie, C. P., Corda, D., and Farquhar, M. G. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1745–1750
17. Yanaka, Y., Nogusa, N., Fujioka, Y., Yamashita, Y., and Kato, N. (2007) FEBS Lett. 581, 712–718
18. Corda, D., Kudo, T., Zizza, P., Iurisci, C., Kawai, E., Kato, N., Yanaka, N., and Mariggio, S. (2009) J. Biol. Chem. 284, 24848–24856
19. Corda, D., Iurisci, C., and Berrie, C. P. (2002) Biochim. Biophys. Acta. 1582, 52–69
20. Bachmann, A. S., Duennebier, F. B., and Mocz, G. (2006) Gene 371, 144–153
21. Yan, Y., Sabharwal, P., Rao, M., and Sockanathan, S. (2009) Cell 138, 1209–1221
22. Yanaka, N. (2007) Biosci. Biotechnol. Biochem. 71, 1811–1818
23. Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaio, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Ikyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schönbach, C., Gojobori, T., Baldarelli, R., Hill, D. P., Bult, C., Hume, D. A., Quackenbush, J., Schriml, L. M., Kanapin, A., Matsuda, H., Batalov, S., Beisel, K. W., Blake, J. A., Bradt, D., Brusic, V., Chothia, C., Corbani, E., Lous, D., A. Dragani, T. A., Fletcher, C. F., Forrest, A., Frazer, K. S., Gaasterland, T., Gariboldi, M., Gissi, C., Godzik, A., Gough, J., Grimmond, S., Gustineich, S., Hirokawa, N., Jackson, J. I., Jarvis, E. D., Kanai, A., Kawai, H., Kawa-sawa, Y., Kedzierski, R. M., King, B. L., Konagaya, A., Kurochkin, I. V., Lee, Y., Lenhard, B., Lyons, P. A., Maglott, D. R., Malaisse, L., Marchionni, L., McKenzie, L., Miki, H., Nagashima, T., Numata, K., Okido, T., Pavan, W. J., Pertea, G., Pesole, G., Petrovsky, N., Pillai, R., Pontius, J. U., Qi, D., Ramachandran, S., Ravasi, T., Reed, J. C., Reed, D. J., Reid, J., Ring, B. Z., Ringwald, M., Sandelin, A., Schneider, C., Semple, C. A., Setou, M., Shimada, K., Sultana, R., Takenaka, Y., Taylor, M. S., Teasdall, R. D., Tomita, M., Verardo, R., Wagner, L., Wahlestedt, C., Wang, Y., Watanabe, Y., Wells, C., Wilming, L. G., Wynshaw-Boris, A., Yanagisawa, M., Yang, L., Yang, L., Yuan, Z., Zavolan, M., Zhu, Y., Zimmer, A., Carinci, P., Hayatsu, N., Hirozane-Kishikawa, T., Konno, H., Nakamura, M., Sakazume, N., Sato, K., Shiraki, T., Waki, K., Kawai, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Miyazaki, A., Sakai, K., Sasaki, D., Shibata, K., Shinagawa, A., Yasunishi, A., Yoshino, M., Waterston, R., Lander, E. S., Rogers, J., Birney, E., and Hayashizaki, Y. (2002) Nature 420, 563–573
24. Ohshima, N., Yamashita, S., Takahashi, N., Kuroishi, C., Shiro, Y., and Tatara, K. (2008) J. Biol. Chem. 283, 1219–1223
25. Kates, M. (1972) in Laboratory Techniques in Biochemistry and Molecular Biology (Work, T. S., and Work, E., eds) Vol. 3. pp. 347–392, Elsevier Science Publishers B.V., Amsterdam.
26. Brennan, K. J., and Hardeman, E. C. (1993) J. Biol. Chem. 268, 719–725
27. Ayabe, T., Satchell, D. P., Wilson, C. L., Parks, W. C., Selsted, M. E., and Mariggio, S. (2002) Mol. Life Sci. 284, 24848–24856
28. Larson, T. J., and van Loo-Bhattacharya, A. T. (1988) Arch. Biochem. Biophys. 260, 577–584
29. Fan, X., Goldfine, H., Lysenko, E., and Weiser, J. N. (2001) Mol. Microbiol. 41, 1029–1036
30. van der Rest, B., Boisson, A. M., Gout, E., Bilgny, R., and Douce, R. (2002) Plant Physiol. 130, 244–255
31. van der Rest, B., Rolland, N., Boisson, A. M., Ferro, M., Bilgny, R., and Douce, R. (2004) Biochim. Biophys. Acta. 1582, 52–69

FIGURE 8. GDE5ΔC471 affects the expression of multiple genes in skeletal muscle (quadriceps). Semiquantitative RT-PCR was performed to determine the mRNA levels of selected genes from Table 3.
32. Fisher, E., Almaguer, C., Holick, R., Griac, P., and Patton-Vogt, J. (2005) *J. Biol. Chem.* **280**, 36110–36117
33. Fernández-Murray, J. P., and McMaster, C. R. (2005) *J. Biol. Chem.* **280**, 38290–38296
34. Mancini, R., Piccolo, E., Mariggio, S., Filippi, B. M., Iurisci, C., Pertile, P., Berrie, C. P., and Corda, D. (2003) *Mol. Biol. Cell.* **14**, 503–515
35. Filippi, B. M., Mariggio, S., Pulvirenti, T., and Corda, D. (2008) *Biochim. Biophys. Acta* **1783**, 2311–2322
36. Burg, M. B. (1995) *Am. J. Physiol. Renal Physiol.* **268**, F983–F996
37. Gallazzini, M., Ferraris, J. D., Kunin, M., Morris, R. G., and Burg, M. B. (2006) *Proc. Natl. Acad. Sci. U.S.A.* **103**, 15260–15265
38. Gallazzini, M., Ferraris, J. D., and Burg, M. B. (2008) *Proc. Natl. Acad. Sci. U.S.A.* **105**, 11026–11031
39. Evans, W. J. (2010) *Am J. Clin. Nutr.* **91**, 1123S–1127S
40. Kang, H., Tian, L., Son, Y. J., Zao, Y., Procaccino, D., Love, F., Hayworth, C., Trachtenberg, J., Mikeshe, M., Sutton, L., Ponomareva, O., Mignone, J., Enikolopov, G., Rimer, M., and Thompson, W. (2007) *J. Neurosci.* **27**, 5948–5957
41. Ghedini, P. C., Viel, T. A., Honda, L., Avellar, M. C., Godinho, R. O., Lima-Landman, M. T., Lapa, A. J., and Souccar, C. (2008) *Muscle Nerve* **38**, 1585–1594
42. Turchanowa, L., Rogozkin, V. A., Milovic, V., Feldkoren, B. I., Caspary, W. F., and Stein, J. (2000) *Eur. J. Clin. Invest.* **30**, 72–78
43. MacLean, H. E., Chiu, W. S., Notini, A. J., Axell, A. M., Davey, R. A., McManus, J. F., Ma, C., Plant, D. R., Lynch, G. S., and Zajac, J. D. (2008) *FASEB J.* **22**, 2676–2689
44. Glass, D. J. (2003) *Trends Mol. Med.* **9**, 344–350
45. Jackman, R. W., and Kandarian, S. C. (2004) *Am. J. Physiol. Cell Physiol.* **287**, C834–C843
46. Lecker, S. H., Jagoe, R. T., Gilbert, A., Gomes, M., Baracos, V., Bailey, I., Price, S. R., Mitch, W. E., and Goldberg, A. L. (2004) *FASEB J.* **18**, 39–51
47. Nikawa, T., Ishidoh, K., Hiraksa, K., Ishihara, I., Ikemoto, M., Kano, M., Kominami, E., Nonaka, I., Ogawa, T., Adams, G. R., Baldwin, K. M., Yasui, N., Kishi, K., and Takeda, S. (2004) *FASEB J.* **18**, 522–524
48. Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, I., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., Nishino, I., and Ezaki, O. (2004) *J. Biol. Chem.* **279**, 41114–41123
49. Liu, H. Y., Collins, Q. F., Moukdar, F., Zhuo, D., Han, J., Hong, T., Collins, S., and Cao, W. (2008) *J. Biol. Chem.* **283**, 12056–12063
50. Han, W., Wang, W., Mohammed, K. A., and Su, Y. (2009) *FEBS J.* **276**, 6603–6614
51. Livesey, F. J., O’Brien, J. A., Li, M., Smith, A. G., Murphy, L. J., and Hunt, S. P. (1997) *Nature* **390**, 614–618