Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery

Robert W. Pipal1, Kenneth T. Stout1, Patricia Z. Musacchio1, Sumei Ren2, Thomas J. A. Graham3, Stefan Verhoog1, Liza Gantert1, Talakad G. Lohith4, Alexander Schmitz3, Hsiaoju S. Lee3, David Hesk2,5, Eric D. Hostetler4, Ian W. Davies1 & David W. C. MacMillan1✉

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.

The incorporation of radioactive nuclides into bioactive molecules has revolutionized the field of pharmaceutical research and development. Among known radiolabelling applications, PET is an invaluable clinical tool that enables minimally invasive visualization of PET radioligands, in vivo. These isotope-enriched ligands serve as informative biomarkers for oncology and neurological disorders, as well as critical tools for studying brain target occupancy relationships for central nervous system drug development. At present, small-molecule PET imaging primarily relies on the use of fluorine-18 \((^{18}\text{F}, \tau_{1/2} = 110 \text{ min})\) and carbon-11 \((^{11}\text{C}, \tau_{1/2} = 20 \text{ min})\). However, the systematic incorporation of carbon-11 radionuclides into organic architectures remains a long-standing synthetic problem owing to a series of chemical and operational challenges. For example, the translation of non-radioactive \(^{11}\text{C}\) chemistry to \(^{11}\text{C}\) radiolabelling is broadly hampered by: (i) the short 20-min half-life of carbon-11, rendering most similar protocols outside the realm of operational utility with respect to experimental timeframes, (ii) the availability of \(^{11}\text{C}\)-precursor starting materials, (iii) carbon-11 generation in low nanomole quantities while non-radioactive reaction components are used in vast super-stoichiometric excess, necessitating clean reaction profiles and experimental miniaturization, and (iv) the requirement for operationally simple and robust protocols that are insensitive to air and moisture. Indeed, although many methods for \(^{11}\text{C}\)-installation have been invented throughout the history of organic chemistry, most are unfortunately unsuited to the challenges of radioisotopic \(^{11}\text{C}\) labelling.

Although the incorporation of carbon-11 is a necessity for in vivo PET imaging studies, the development of these PET radioligands generally requires additional in vitro characterization, such as tissue-based radioligand binding assays and in vitro autoradiography (Fig. 1a). These characterization methods are the touchstone for optimizing affinity and selectivity for a target, respectively. In this context, it has long been established that tritium \((^{3}\text{H}\) or \(^{T}\)) is the most attractive radioisotope for such in vitro studies, given its long half-life \((\tau_{1/2} = 12 \text{ years})\). However, a major challenge of tritium labelling in these applications is the need to incorporate 2–4 tritium atoms per molecule (molar activities of 50–100 Ci mmol\(^{-1}\)), a requirement that has been met with limited success using modern hydrogen isotope exchange strategies and instead is often achieved with tritidehalogenation or alkene reduction via substrate resynthesis. Indeed, although both tritium and carbon-11 isotopologues of any pharmaceutical are critical for the discovery of PET radioligands, the radiosynthesis of such ligands remains a fundamental challenge, limiting drug discovery. As such, a radiolabelling
strategy that allows the incorporation of both tritium and carbon-11 would dramatically affect radioligand design in the context of the therapeutic targets of neurological disorders as well as enabling biomarker discovery for cancer and neurodegenerative diseases.

A valuable yet versatile architectural element within organic radiolabelling, the $-$CH$_3$ or methyl group allows both hydrogen and carbon isotopes to be readily installed into drug molecules. For example, the installation of -CT$_3$ enables three tritium atoms to be simultaneously incorporated, allowing rapid access to radioligands with high molar activities. At present, however, the state-of-the-art technology for radioisotopic labelling remains the classical S$_2$2 mechanism between phenols or related N-nucleophiles with methyl electrophiles (that is, 11C- or 3H-methyl halides)\cite{15,16}. This simple alkylation protocol has long been exploited for radioligand development, but it has traditionally suffered from the issue of selectivity in drug molecule functionalization. For example, drugs that bear multiple nitrogen sites can often participate in serial methylation or quaternization, a chemoselectivity problem that must be suppressed via lengthy protecting-group strategies (which further diminish the likelihood of success in radioisotopic labelling).

As of 2018, more than 65% of top-selling small-molecule therapeutics possess one or more $-$CH$_3$ groups bound to another carbon position\cite{17} (Fig. 1b). Moreover, as methyl groups are among the most prevalent structural elements found in bioactive molecules, it is surprising that no general technology exists that allows methyl radiolabelling. Although palladium-mediated methods have been developed for aryl and alkyl 11C-methylation with [11C]iodomethane, the challenging synthesis of organometallic precursors (for example, aryl stannanes, boronic acids and alkyl-BBNs), and the high reaction temperatures and strategic protecting-group manipulations required hamper adaptation of these technologies\cite{18}. More critically, these protocols are not broadly translatable to tritiation owing to the volatility and facile radioisolation of [CT$_3$]iodomethane\cite{19,20}. To bridge this gap, we recognized that the late-stage, functional-group-tolerant radioisotopic aryl and alkyl methylation of a stable and easily accessible precursor would be particularly attractive. This methodology would enable the rapid radiosynthesis and discovery of PET radioligands for central nervous system therapeutic development. Furthermore, the development of an alkyl 11C-methylation strategy would enable the study of previously inaccessible radioligands.

Metallaphotoredox catalysis has emerged as a powerful platform for facilitating difficult C–C bond-forming reactions\cite{21}. Recently, we reported a metallaphotoredox cross-electrophile coupling strategy mediated by silyl radical activation of alkyl halides\cite{22,23}. This transformation is enabled by the merger of nickel catalysis, photoredox catalysis and a photocatalytically generated supersilyl radical intermediate. As this transformation is performed under exceptionally mild conditions and allows the use of a broad range of substrates, we sought to develop a general approach to tritium and carbon-11 labelling via a metallaphotoredox-catalysed cross-electrophile methylation of aryl and alkyl bromides (Fig. 1c).

We first aimed to develop a tritium-labelling methodology using the model substrate Celebrex-Br (2), which upon methylation would furnish the tritiated pharmaceutical, [3H]Celebrex ([3H]3) (Fig. 2). To support sub-nanomolar ligand-binding studies and in vitro autoradiography for PET radioligand development programmes (requiring molar activities greater than 50 Ci mmol$^{-1}$), we sought to obtain a radiochemical yield (RCY) greater than 10% (ref. 2). The tritritium source was selected as the limiting reagent owing to safety and cost considerations. We identified the commercially available methylation reagent [CT$_3$]methyl 1-naphthalenesulfonate (CT$_3$ONp, 1) as a suitable methylation reagent, which, owing to its stability and non-volatility compared to [CT$_3$]iodomethane or tritium gas, allows for broader use in research laboratories\cite{24}. A lithium bromide additive was employed to generate CT$_3$Br in situ via a Finkelstein-like reaction from CT$_3$ONp as well as to promote silyl radical formation (Supplementary Fig. 1) and
Fig. 2 | Scope of high-molar-activity tritiation. a, Tritium labelling of pharmaceuticals. b, Tritiation of PET radiotracers. c, Tritiation of aliphatic pharmaceuticals and radiotracers. All experiments reflect isolated RCY values with n = 1. Reaction conditions: CT3ONp (100 mCi, 1.25 μmol, 78.6–80.0 Ci mmol⁻¹), lithium bromide (2–20 equiv.), integrated photoreactor (450 nm, 50% intensity), 4–12 h. See the Supplementary Information for experimental details.

aWith acetone (0.01 M), lithium iodide (5 equiv.), NiBr2•dtbbpy (40 mol%), [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (8 mol%), supersilane (6 equiv.), 2,6-lutidine (10 equiv.), DMA (5 mM). Me, methyl; Et, ethyl; CT3–ONp, [CT3]-methyl 1-naphthalenesulfonate; dF(CF3)ppy, 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine; dtbbpy, 4,4'-di-tert-butyl-2,2'-bipyridine; TMS, trimethylsilyl; OTs, 4-toluenesulfonate; MGMT, O6-methylguanine DNA methyltransferase; mGluR5, metabotropic glutamate receptor type 5; DMA, dimethylacetamide.
a polar solvent system, dimethylacetamide (DMA)/toluene, was chosen in order to solubilize complex pharmaceuticals (Supplementary Fig. 2). Because the reaction needs to be performed on a micromole scale, our protocol was developed to work under dilute conditions (0.01 M) such that an appreciable volume of solvent (125 μl) could be used for ease of handling. After 12 h of blue light irradiation in the integrated photoreactor (450 nm, 100% intensity). See the supplementary materials for experimental details. aWith 2.25 μmol aryl bromide. bWith DMA as solvent (300 μl), no TBAI additive. cWith 9 μmol alkyl bromide TFA salt, NiBr2×dtbbpy (1.5 μmol), [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (0.15 μmol). b. Scale-up of [11C]UCB-J through remote-controlled radiosynthesis for preclinical PET imaging. Synthesis time starts at [11C]MeI production and ends at product isolation. c. Fully automated radiosynthesis of [11C]Celebrex using a Synthra Melplus module combined with the integrated photoreactor. TBAI, tetrabutylammonium iodide.

With the optimized conditions established, we sought to evaluate the generality of the silyl radical-mediated CT3-labelling protocol by synthesizing a variety of tritiated pharmaceuticals from their aryl bromide precursors (Fig. 2). A broad range of electronically differentiated aryl bromides coupled efficiently in this protocol ([3H]4, [3H]5, [3H]6 and [3H]7, 50%–68% yield). Protic functionality such as amides ([3H]4, [3H]11, [3H]13 and [3H]14), sulfonyle ureas ([3H]7, [3H]8), phenols ([3H]9) and free benzoic acids ([3H]13), as well as ortho substituents ([3H]4, [3H]11, [3H]13 and [3H]14), are well tolerated. Perhaps most notably, substrates possessing tertiary amines ([3H]9, [3H]10, [3H]12), which are traditionally challenging functional groups for photoredox catalysis given their low oxidation potential (E°+ = +0.78 V versus saturated calomel electrode (SCE) in CH3CN), delivered the tritiated products in good yields (33%–49% yield). In these cases, additional

Fig. 3 | Scope of carbon-11 radiolabelling. a. Scope of high-activity carbon-11 labelling of pharmaceuticals and PET radioligands. All RCY values are isolated via semi-preparative HPLC, decay-corrected to starting activity from the end of [11C]MeI production, and include standard deviation averaged over 3 experiments unless otherwise noted. All reactions were conducted using the integrated photoreactor (450 nm, 100% intensity). See the supplementary materials for experimental details. aWith 2.25 μmol aryl bromide. bWith DMA as solvent (300 μl), no TBAI additive. cWith 9 μmol alkyl bromide TFA salt, NiBr2×dtbbpy (1.5 μmol), [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (0.15 μmol). b. Scale-up of [11C]UCB-J through remote-controlled radiosynthesis for preclinical PET imaging. Synthesis time starts at [11C]MeI production and ends at product isolation. c. Fully automated radiosynthesis of [11C]Celebrex using a Synthra Melplus module combined with the integrated photoreactor. TBAI, tetrabutylammonium iodide.
lithium bromide was necessary to reduce the formation of oxidized byproducts, potentially through the preferential oxidation of bromide over amines. Heteroaryl bromides such as bromopyrazines ([11C]14) and 2- or 3-bromopyridines ([11C]12, [11C]13 and [11C]15) coupled in synthetically useful yields (28–68% yield). For more activated aryl bromide substrates where rapid consumption of the halocarone was observed ([11C]11, [11C]14 and [11C]15), using acetone as solvent and lithium iodide in lieu of lithium bromide was beneficial through generation of the more reactive CT,1 and consequent matching of the consumption rates of the two coupling partners. Gratifyingly, we found that tritiated analogues of reported PET radioligands could be synthesized in high molar activity using this coupling manifold ([11C]16, [11C]17 and [11C]18, in 42%–62% yield).

Given the recently demonstrated silyl radical-mediated C\textsubscript{sp}3–C\textsubscript{sp}3 coupling of alkyl bromides33, we questioned whether –CT, groups could be introduced at aliphatic positions of functionalized amines. Excitingly, we found primary ([11C]20) and secondary alkyl bromides ([11C]19 and [11C]21) to be competent coupling partners under these reaction conditions (8%–28% yield), demonstrating, to the best of our knowledge, the first example of tritium labelling via an alkyl–alkyl cross-coupling strategy.

From the outset, we recognized the different challenges associated with carbon-11 labelling compared to tritium chemistry. Namely, the short half-life of carbon-11 (20 min) necessitates a rapid reaction with a simple purification procedure for a synthesis time under 60 min. Furthermore, the limited pool of radiolabelled starting materials required the use of simple reagents such as [11C]MeI or [11C]MeOTf. With the same Celebrex-Br precursor (2), we evaluated the feasibility of carbon-11 labelling with [11C]iodomethane ([11C]22) (Fig. 3a). Through optimization, we found that introducing tetrabutylammonium iodide increased the reaction efficiency potentially by suppressing formation of the less reactive [11C]bromomethane mediated by bromide anion generated during the course of the reaction (Supplementary Figs. 5, 6). The labelling was performed by bubbling [11C]iodomethane in a stream of helium gas through the reaction mixture containing all other reaction components. Conducting the reaction with 130–165 mCi (4.81–6.11 GBq) of [11C]iodomethane for 5 min under blue light irradiation followed by high-performance liquid chromatography (HPLC) purification afforded [11C]Celebrex ([11C]3) after 22.7 min in 48 ± 4% (n = 3) decay-corrected yield (dc) (22% non-decay-corrected, ndc) (see Supplementary Information for experimental details). We attribute this shorter reaction time to the super-stoichiometric excess of reagents relative to the nanomolar quantities of [11C]MeI resulting in pseudo-first-order reaction kinetics.

Next, we examined the generality of the silyl radical-mediated carbon-11 labelling using selected examples from tritiation (Fig. 3a). Substrates for which the corresponding organostannanes would be unstable or challenging to synthesize, such as the complex molecule [14C]I11 and the 2-methylpyridine-containing [11C]15, are methylated with [11C]iodomethane in sufficient yields to support in vivo PET imaging or biodistribution studies (yields of 26% and 44%, respectively). The previous synthesis of [11C]16 relies on methylation of the corresponding bis-protected arylstannane in 19% yield (dc); however, no product was observed with the unprotected purine ringt27. Under our protocol, however, methylation directly from the unprotected aryl bromide affords [11C]16 in 21% yield, avoiding time-consuming protecting group strategies. Additionally, [11C]17 and [11C]UCB-J ([11C]18) are generated in excellent yields (44% and 58%, respectively)t29.

Carbon-11 methylation at alkyl positions through cross-coupling has been a particularly underdeveloped field, only having been demonstrated with primary 9-BBN reagentst30. By using DMA as solvent and without added tetrabutylammonium iodide, a variety of alkyl bromides were coupled efficiently ([11C]19, [11C]20 and [11C]21, 13%–36% yield). Notably, free phenols were tolerated in our transformation by virtue of the mild reaction conditions ([11C]20 and [11C]21). To highlight the utility of this approach, we aimed to develop an improved synthesis of [11C]PHNO ([11C]20), a well studied PET tracer previously prepared in three radioactive steps employing protecting-group manipulations and pyrophoric reagentst31. In one step from a stable alkyl bromide precursor, [11C]PHNO was conveniently prepared in sufficient yields for in vivo imaging studies (13 ± 2% yield). Lastly, SB-269970, a specific 5-HT\textsubscript{3} antagonist that previously required derivatization to introduce a handle for fluorine-18 labellingt32, was successfully carbon-11-labelled ([11C]21).

To demonstrate the utility of this carbon-11 labelling protocol for in vivo PET imaging applications, a non-human primate PET study was conducted with [11C]UCB-J ([11C]18), an investigational PET radioligand for measuring synaptic density in neurodegenerative disorders (Fig. 3b, Supplementary Figs. 12, 13). To ensure reproducibility of this method, our carbon-11 labelling protocol was independently performed by Siemens Molecular Imaging Biomarker Research in North Wales, Pennsylvania, with a robotic, remote-controlled radiosynthetic setup for the preparation of [11C]UCB-J. The procedure was validated, yielding 72 ± 10% RCY (dc) and 19 ± 2% RCY (ndc) (n = 4) of the radioligand. Remarkably, up to 140 mCi (5.18 GBq) of isolated [11C]18 could be synthesized using this operationally simple reaction protocol with molar activities in the range 1.03–3.00 Ci mmol−1 (Fig. 3b), activities well above the threshold required to perform human PET studies (10 mCi, 1 Ci mmol−1)t13. Consistent with preclinical data in rhesus monkeyst34, baseline PET scans with 11.8 mCi (437 MBq) of [11C]UCB-J showed rapid uptake into the brain, peaking after 10–30 min and with moderate washout of the tracer by the end of the 90-min scan (Supplementary Figs. 12, 13). Importantly, these results demonstrate the robustness of the radiolabelling procedure in the hands of multiple practitioners and its utility in pre-clinical PET imaging.

Routine clinical production of carbon-11 PET-imaging agents is carried out on automated radiosynthesis modules within a CGMP (current good manufacturing practice) environment. To demonstrate
the feasibility of applying this method within a relevant context, we adapted a Synthra Melplus module with the integrated photoreactor and conducted a fully automated production of [11C]Celebrex ([11C]3). Under identical reaction conditions, the fully automated radiosynthesis of [11C]Celebrex ([11C]3) from Celebrex-Br was complete in 29 min in 35% RCY (dc, n = 1), yielding 43.2 mCi of [11C]3 with high molar activity (2.237 Ci μmol⁻¹) (Fig. 3c). Furthermore, inductively coupled plasma mass spectrometry (ICP-MS) analysis of the isolated radioligand [11C]3 indicated a nickel and iridium content of 33 parts per billion (ppb) and 1 ppb respectively, in line with international recommendations of elemental impurities for samples injected into humans. Taken together, this data strongly supports the feasibility of using this labelling methodology for clinical imaging in humans.

To further emphasize the utility and generality of this cross-coupling manifold, we endeavoured to incorporate all medicinally relevant carbon and hydrogen isotopes into a given pharmaceutical agent (Fig. 4). Each of these isotopologues serves a unique purpose in the drug development process. Carbon-14-labelled compounds are valuable for tracking the fate of a chemical compound through absorption–distribution–metabolism–excretion (ADME) studies, benzyl deuteriation allows for slowed metabolism of pharmaceutical agents, and incorporation of [13C] groups generates [M+4] mass compounds that are particularly useful as mass spectrometry standards. As demonstrated with the anti-diabetic medication Glipizide, these isotopologues, including the tritiated and carbon-11 analogues, are accessed in excellent yields using the same general coupling strategy ([13H]23, [13C]H23, [13C]3, [13C]23) and [13C]23).

In summary, we have developed a broadly useful radioisotopic methodology for clinical imaging in humans. This platform will enable a more rapid discovery of PET radiotracers for addressing unmet clinical needs.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-3015-0.
Methods
See the Supplementary Information for further methods.

Ethical approval
All rhesus monkey PET imaging studies were approved by the West Point Institutional Animal Care and Use Committee at Merck Research Laboratories and conducted under the principles established by the American Physiological Society and the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
The data supporting the findings of this study are available within the paper and its Supplementary Information.

Acknowledgements
Research reported in this publication was supported by the NIH (under award number R35GM134897-01) and the Princeton Catalysis Initiative. We thank L. Wilson (Lotus Separations) and H. Wang for compound purification, I. Mergelsberg, M. Reibarkh and Y. N. J. Chen for discussions, A. Chaudhary and Z. Zhu (Siemens) for high-activity [11C]UCB-J radiotracer synthesis, and C. Liu for assistance in preparing this manuscript.

Author contributions
P.Z.M., S.R., T.J.A.G., D.H., E.D.H., I.W.D. and D.W.C.M. conceived the work. R.W.P., P.Z.M. and S.R. conducted initial optimization. R.W.P., K.T.S. and S.R. synthesized organobromide precursors. R.W.P. and K.T.S. performed and isolated labelling experiments. R.W.P., K.T.S., S.R. and D.H. developed purification conditions. T.J.A.G., S.V. and E.D.H. provided insight into experimental design. L.G. conducted the non-human primate PET imaging study and T.G.L. performed data analysis. A.S. configured and performed the fully automated radiosynthesis and H.S.L. performed data analysis. R.W.P., K.T.S., T.J.A.G. and D.W.C.M. prepared the manuscript with input from all co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-020-3015-0.

Correspondence and requests for materials should be addressed to D.W.C.M.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection: Pet Syngo 6.7.3 was used for the non-human primate PET imaging study. SynthraView Version 5.07.037 was used for the automated synthesis module.

Data analysis: PMOD 4.004 ATL C was used for the non-human primate PET imaging study.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

This study was performed to demonstrate the utility of the developed carbon-11 labeling protocol for in-vivo imaging studies and replicate imaging data from previously published data. A single animal study was deemed sufficient.

Data exclusions

No data were excluded from the study.

Replication

Brain time activity curves were compared to previously published data and were found to be consistent. No further replication was deemed necessary.

Randomization

Randomization was not relevant as this study was used to validate the radiosynthesis of the established [11C]UCB-J ligand for comparison to the many previous [11C]UCB-J studies in the scientific literature.

Blinding

Blinding was not relevant to this study as the PET study was solely performed for comparison to the many previous [11C]UCB-J studies in the scientific literature.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a Involved in the study

- Antibodies
- Eukaryotic cell lines
- Palaeontology and archaeology
- Animals and other organisms
- Human research participants
- Clinical data
- Dual use research of concern

Methods

n/a Involved in the study

- ChIP-seq
- Flow cytometry
- MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals. ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Rhesus Macaque, male, 3 yrs old

Wild animals

Study did not involve wild animals

Field-collected samples

Study did not involve field collected samples

Ethics oversight

All monkey PET imaging studies were conducted under the guiding principles of the American Physiological Society and the Guide for the Care and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH publication no. 85-23, revised 2010) and were reviewed and approved by the IACUC and the Research Laboratories of Merck & Co., Inc. (West Point, PA, USA).

Note that full information on the approval of the study protocol must also be provided in the manuscript.