Emerging symmetric strain response and weakening nematic fluctuations in strongly hole-doped iron-based superconductors

P. Wiecki, M. Frachet, A.-A. Haghighirad, T. Wolf, C. Meingast, R. Heid & A. E. Böhmer

Electronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic-ordered state in the AFe$_2$As$_2$ (A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.
nematicity, the breaking of rotational symmetry by electronic interactions, has by now been observed in a variety of unconventional superconductors. In addition to iron-based superconductors with almost ubiquitous nematicity15,16, nematicity is discussed in the context of cuprate high-\(T_c\) superconductors3–12, heavy-fermion superconductors13,14, intercalated Bi\(_2\)Se\(_3\) topological superconductors15–18, and even twisted bilayer graphene19. Furthermore, it has been theoretically suggested that nematic fluctuations may enhance pairing and therefore be an important ingredient for high-\(T_c\) superconductivity20–23. In iron-based superconductors, nematicity has been intensively studied in the vicinity of the parent compound BaFe\(_2\)As\(_2\) because the stripe-type antiferromagnetic ground state inherently breaks the \(C_4\) rotational symmetry of the high-temperature tetragonal phase1,2,24–25, corresponding to a nematic degree of freedom. The accompanying structural distortion is in the \(B_{2g}\) channel of the tetragonal \(D_4h\) point group. In electron-doped BaFe\(_2\)As\(_2\), the structural distortion occurs at a higher temperature than the antiferromagnetic state, creating a long-range, nematic-ordered phase. Nematic fluctuations of \(B_{2g}\) symmetry are observed near optimal doping in both hole- and electron-doped BaFe\(_2\)As\(_2\).26,27 Such fluctuations have frequently been studied using elastoresistance, the strain dependence of electrical resistivity28,29. The parent compound BaFe\(_2\)As\(_2\) nominally has a 3\(d^5\) Fe configuration. With hole doping the Fe electron configuration begins to approach the half-filled 3\(d^5\), where a Mott insulating state is expected theoretically30–32. Indeed, signatures of strong electronic correlations and orbital-selective Mott behavior have been observed in the isoelectronic 3\(d^5\) series AFe\(_2\)As\(_2\) (A = K, Rb, Cs), including an enhanced Sommerfeld coefficient and signs of a coherence–incoherence crossover33–35. On the basis of the strong increase of electronic correlations with increasing alkali ion size in AFe\(_2\)As\(_2\) (A = K, Rb, Cs), it has further been proposed that these compounds lie near a quantum critical point (QCP) associated with the suppression of a (thus far unobserved) ordered phase, possibly related to the 3\(d^5\) Mott insulator36,37. Furthermore, the electronic correlations in AFe\(_2\)As\(_2\) have been found to be highly sensitive to in-plane strain34,36. The fate of nematicity in the strongly hole-doped iron-based superconductors remains controversial. In the Ba\(_{1−x}\)K\(_x\)Fe\(_2\)As\(_2\) series, the elastic softening associated with the \(B_{2g}\) nematic fluctuations decreases with hole doping and is no longer observed for \(x \geq 0.82\).27 Several recent studies have suggested a change to nematic fluctuations of \(B_{1g}\) symmetry in the 3\(d^5\) compounds, in contrast to the pervasive \(B_{2g}\) nematic fluctuations observed at optimal doping38–44. Furthermore, an ordered \(B_{1g}\) nematic phase has been proposed in RbFe\(_2\)As\(_2\) based on a maximum in the elastoresistance39 and an anomaly in the zero-field nuclear spin lattice relaxation rate at a similar temperature44. In addition, asymmetries were observed in STM at low temperature40. However, the study of nematic fluctuations in these compounds is complicated by the emergence of the strong electronic correlations, which are sensitive to in-plane symmetric \(A_{1g}\) strain45. In such a case, it is essential to properly decompose the contributions in different symmetry channels45–47. This symmetry decomposition was not performed in previous elastoresistance measurements on the strongly hole-doped iron-based superconductors39. In addition, the extreme thermal expansion of these samples (Fig. 1b) poses an experimental challenge for controlled measurements under elastic strain45. In this work, we present comprehensive elastoresistance measurements on the hole-doped iron-based superconductors Ba\(_{0.4}\)K\(_{0.6}\)Fe\(_2\)As\(_2\) and AFe\(_2\)As\(_2\) (A = K, Rb, Cs) carried out in a piezoelectric-based strain cell capable of full control over the strain state of the sample. We find a monotonic increase of the \(A_{1g}\) response with hole doping and increasing alkali ion size. In contrast, the \(B_{2g}\) elastoresistance, a measure of the \(B_{2g}\) nematic susceptibility, weakens with hole doping. The \(B_{2g}\) elastoresistance shows no sign of divergence, and there is no indication of the emergence of a \(B_{1g}\)-type nematic instability with increasing hole doping. Furthermore, we find a clear correspondence between the low-temperature elastoresistance and the electronic Grüneisen parameter if the elastoresistance coefficient is defined based only on the temperature-dependent part of the resistance.

Results

Elastoresistance measurements. The freestanding electrical resistance of our samples is displayed in Fig. 1a. For elastoresistance measurements, the sample is mounted in a strain cell composed of titanium (Fig. 1d). Figure 1b displays the length of the samples as a function of temperature, along with titanium for comparison. We see that the hole-doped samples shrink much more than the titanium apparatus on cooling. Thus, the samples can be maintained near neutral strain on cooling by adjusting the distance between the sample mounting plates in the strain cell based on the thermal expansion difference between the sample and titanium (see “Methods”). We place eight electrical contacts on the sample so that both longitudinal and transverse elastoresistance can be measured in the same experimental run (Fig. 1d). Raw elastoresistance data on RbFe\(_2\)As\(_2\) obtained in this way are shown in Fig. 1e and f as an example. In Fig. 2a–h, we present the longitudinal and transverse elastoresistance for all samples. Here, the elastoresistance is defined, for the moment, simply as \(m_{\alpha,\beta} = \langle 1/R_{\alpha}\rangle dR_{\alpha}/d\varepsilon_{\beta,\alpha}\), where \(\alpha = \text{longitudinal}\) and \(\beta = \text{transverse}\) correspond to the transverse elastoresistance. The strain is applied along \(x\)(100) (Fig. 2a–d) or \(x||[110]\) (Fig. 2e–h). In one configuration, we have reproduced our result by the usual method36 of gluing the sample directly onto a piezoelectric stack (Fig. 2c, inset). These results are in conflict with previous measurements39. When strain is applied along [100], the transverse elastoresistance is larger than the longitudinal over most of the temperature range for all samples. In contrast, for strain applied along [110], we observe that the longitudinal and transverse elastoresistance are equal at high temperature, while the longitudinal becomes larger at low temperature, for all samples. In the case of Ba\(_{0.4}\)K\(_{0.6}\)Fe\(_2\)As\(_2\) with strain along [110] (Fig. 2e), the longitudinal and transverse elastoresistance have opposite sign. This is the expected behavior for dominant \(B_{2g}\) nematic fluctuations46. In contrast, in the 3\(d^5\) superconductors AFe\(_2\)As\(_2\) (A = K, Rb, Cs), both the longitudinal and transverse elastoresistance are positive at all temperatures. We note significant drops in the elastoresistance on decreasing temperature below \~15 K for both transverse and longitudinal, most notably in KFe\(_2\)As\(_2\) and RbFe\(_2\)As\(_2\) (Fig. 2b, c, f, g). We do not associate these anomalies with a phase transition, since no hint of a phase transition is seen in either \(R(T)\) or the thermal expansion \(L(T)\) (Fig. 1), nor indeed in the respective temperature-derivatives \(dR(T)/dT\) and \(dL(T)/dT\) (Supplementary Fig. 3). Rather, as explained below, the drop in elastoresistance results from the sample’s resistance becoming comparable to its residual resistance. Note, however, that the broad peak in CsFe\(_2\)As\(_2\) at \~35 K is a pronounced manifestation of the coherence–incoherence crossover in this material.

Physical mechanism for strain dependence of resistance. To obtain a better physical understanding of elastoresistance, it is useful to take a complementary view and study the resistance as a function of temperature at a fixed strain. This is shown in Fig. 3a, taking KFe\(_2\)As\(_2\) as an example. At low temperatures, the data can be fit to the standard Fermi liquid form \(R = R_0 + AT^2\). The
Fig. 1 Basic material properties and experimental setup. a Normalized electrical resistance as a function of temperature. Inset: zoom of superconducting transitions. b In-plane sample length changes as a function of temperature \(^\text{34}\). Titanium and BaFe\(_2\)As\(_2\)\(^\text{51}\) are shown for comparison. c Sketch of the deformations in the Fe plane corresponding to the indicated irreducible representations. d Photograph of a RbFe\(_2\)As\(_2\) sample mounted between titanium plates in the strain cell. The uniaxial stress axis is defined to be \(x\). In this example, strain is applied along \([110]\) and the sample experiences \(A_{1g} + B_{2g}\) strain. \(\nu\) is the in-plane Poisson ratio of the sample. e, f Longitudinal and transverse elastoresistance curves at indicated temperatures. Lines are linear fits.

Fig. 2 Elastoresistance of strongly hole-doped iron-based superconductors. Longitudinal and transverse elastoresistance with the strain direction \(\varepsilon_{xx} \parallel [100]\) (a–d) and \(\varepsilon_{xx} \parallel [110]\) (e–h) for indicated samples arranged by column. Error bars indicate one standard deviation of a linear fit. The inset of c shows a comparison of strain-cell-based and piezoelectric stack-based longitudinal elastoresistivity measurements for RbFe\(_2\)As\(_2\) with \(\varepsilon_{xx} \parallel [100]\). The strain-cell data have been scaled to account for strain relaxation in the epoxy (see “Methods” and Supplementary Fig. 1).
Dashed line represents the residual resistance at selected temperatures. The solid line is a function of temperature and displays a divergent increase on cooling.

In RbFe$_2$As$_2$ and CsFe$_2$As$_2$, we find that the resistance at low temperature can be fit to $R = R_0 + A T^n$, but with an exponent $n < 2$ (Fig. 4a). This is consistent with the non-Fermi liquid behavior seen at low temperature in these samples by NMR\cite{37}. In Fig. 4b, we show the derivative $dR/d\varepsilon$ as a function of temperature for the case of RbFe$_2$As$_2$ with strain $\epsilon[[110]]$ as a representative example. Taking R_0 to be independent of strain, $dR/d\varepsilon = (dA/d\varepsilon)T^n$. Consistently, we find that $dR/d\varepsilon$ can be fit to $B + CT^n$ with the same exponent n as the resistance and an intercept B consistent with zero. In this case, if the elastoresistance is simply defined as $m = (1/R)\partial R/\partial\varepsilon$ as is commonly done (see Fig. 2), we obtain $m = (dA/d\varepsilon)T^n/(R_0 + A T^n)$. Clearly, $m \rightarrow 0$ as $T \rightarrow 0$, as shown in Fig. 4c. As a consequence, the elastoresistance starts to drop on cooling when the residual resistance becomes a significant fraction of the total resistance below 15 K, as noted earlier (Fig. 2). If instead the elastoresistance is redefined based on only the temperature-dependent contribution to the resistance as $m = (1/(R_0 - R))\partial R/\partial\varepsilon$, we obtain $m \rightarrow (dA/d\varepsilon)/A$ at low temperature (Fig. 4c). Note that these arguments are valid for any n. A similar approach has been applied in the analysis of elastoresistance data in YbRu$_2$Ge$_5$\cite{50}.

The redefined elastoresistance m produces more physically meaningful results at low temperature. For example, in the special case of $n = 2$ where $A \propto \gamma^2$, $m(T \rightarrow 0)$ is given by $(dA/d\varepsilon)/A = (dy^2/d\varepsilon)/\gamma^2 = 2(dy/d\varepsilon)/\gamma$ for the Sommerfeld coefficient γ. Γ is a measure of the strain dependence of an energy scale. Its divergence is a central characteristic of a strain-tuned QCP\cite{51-53}, as previously discussed in these materials\cite{36}.

Having understood the longitudinal and transverse elastoresistance data, we now calculate the symmetry-decomposed elastoresistance coefficients $m_{\alpha\beta}$, which represents the irreducible representation of the tetragonal D_{4h} point group. These coefficients determine the resistance changes associated with the pure symmetric strains illustrated schematically in Fig. 1c. In terms of the experimental data, $m_{\alpha\beta}$ is proportional to the sum of the longitudinal and transverse elastoresistance, while $m_{B_{\alpha\beta}}$ ($m_{B_{\alpha\beta}}$) is proportional to the difference when $\epsilon[[110]]$ ($\epsilon[[110]]$) (see "Methods"). The resulting symmetry-decomposed elastoresistance coefficients are shown in Fig. 5. The in-plane symmetric coefficient $m_{A_{\alpha\beta}}$ (Fig. 5a) strongly increases in magnitude with hole doping from Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$ to KFe$_2$As$_2$ and further with chemical substitution from KFe$_2$As$_2$ to CsFe$_2$As$_2$. Furthermore, $m_{A_{\alpha\beta}}$ of CsFe$_2$As$_2$ has strong temperature dependence, with an increase on cooling and a broad peak near 30 K. This temperature dependence is reminiscent of the coherence–incoherence crossover observed in the thermal expansion coefficient material\cite{34,45}. The coefficients $m_{B_{\alpha\beta}}$ (Fig. 5b) and $m_{B_{\alpha\beta}}$ (Fig. 5c) are significantly smaller in magnitude than $m_{A_{\alpha\beta}}$, except for the case of $m_{B_{\alpha\beta}}$ in Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$. For all samples, $m_{B_{\alpha\beta}}$ is near zero at high temperature and displays a divergent increase on cooling. The positive sign of $m_{B_{\alpha\beta}}$ is opposite to that of BaFe$_2$As$_2$, consistent with the observed sign change of resistivity anisotropy upon K substitution in Ba$_{1-x}$K$_x$Fe$_2$As$_2$. We also note that both $m_{B_{\alpha\beta}}$ and $m_{B_{\alpha\beta}}$ of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ are similar in magnitude and sign to CaKFe$_4$As$_4$, which is isoelectronic to Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$.\cite{55,56}.
Fig. 5 Symmetry-decomposed elastroresistance coefficients. Calculated with the redefined m_d (see text). a m_d calculated from $\epsilon_\text{fl}[110]$ data. b m_{SDW}. c m_{SC}. The strain symmetry channels are illustrated in the upper right of each panel. The insets in panels b and c show a zoomed view. The error bars take into account the uncertainty in R_0. Due to large uncertainties in R_0 for the high-T_c sample Ba$_{0.4}$K$_{0.6}$, we have plotted m_a instead of m_d for this sample (points with thick edges).

The coefficient $m_{\text{B}_2\text{g}}$ is nonzero at high temperature and decreases roughly linearly on cooling in RbFe$_2$As$_2$ and KFe$_2$As$_2$. In CsFe$_2$As$_2$ and Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$, we observe an upturn at low temperature. The temperature dependence is roughly linear on cooling in RbFe$_2$As$_2$ and KFe$_2$As$_2$. In CsFe$_2$As$_2$ and Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$, we observe an upturn at low temperature. The temperature dependence is roughly linear on cooling in RbFe$_2$As$_2$ and KFe$_2$As$_2$. In CsFe$_2$As$_2$ and Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$, we observe an upturn at low temperature. The temperature dependence is roughly linear on cooling in RbFe$_2$As$_2$ and KFe$_2$As$_2$. In CsFe$_2$As$_2$ and Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$, we observe an upturn at low temperature. The temperature dependence is roughly linear on cooling in RbFe$_2$As$_2$ and KFe$_2$As$_2$. In CsFe$_2$As$_2$ and Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$, we observe an upturn at low temperature.

Discussion

We discuss first the in-plane symmetric coefficient $m_{\text{A}_1\text{g}}$ (Fig. 5a). Since the resistance reflects the electronic entropy and correlations in these materials, the increase of $m_{\text{A}_1\text{g}}$ from KFe$_2$As$_2$ to CsFe$_2$As$_2$ indicates that the strain sensitivity of the electronic correlations increases as a result of this chemical substitution. This is consistent with the increase in the strain derivative of the Sommerfeld coefficient $\gamma_\text{SDW}/\epsilon_\text{SDW}$ observed in thermodynamic measurements. Therefore, the origin of the large A_{1g} elastroresistance is the high-strain sensitivity of the electron correlations associated with the orbital-selective Mott behavior. As a consequence, the temperature and substitution dependence of the A_{1g} coefficient show a strong similarity to that of the thermal expansion coefficient $\epsilon_\text{TH}/\epsilon_\text{SDW}$ (Supplementary Note 3). We note that the heavy-fermion superconductor URu$_2$Si$_2$ has also recently been shown to have a large symmetric elastroresistance.

We turn now to the coefficients $m_{\text{B}_2\text{g}}$ (Fig. 5b) and $m_{\text{B}_1\text{g}}$ (Fig. 5c) corresponding to symmetry-breaking strain. They are proportional to the nematic susceptibility in the respective symmetry channels, though the proportionality constant may become temperature and material dependent. Note that the underdoped BaFe$_2$As$_2$ compounds are characterized by a diverging $m_{\text{B}_2\text{g}}$. For all samples, $m_{\text{B}_1\text{g}}$ is near zero at high temperature and displays a divergent increase on cooling. In AFe$_2$As$_2$ ($A = K$, Rb, Cs), $m_{\text{B}_1\text{g}}$ is smaller than in Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$ but has a similar temperature dependence, strongly suggesting that we are observing the remnants of the B_{2g} nematic fluctuations found in lightly doped BaFe$_2$As$_2$. The temperature dependence of the coefficient $m_{\text{B}_1\text{g}}$ does not show a divergence with decreasing temperature, an indication that the AFe$_2$As$_2$ ($A = K$, Rb, Cs) compounds are not near a B_{1g} nematic instability.
fluctuations in hole-doped iron-based superconductors, in contrast to previous studies. Further, nematic fluctuations of XY, as opposed to Ising, character have been proposed in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ series in the 0.6 < x < 0.8 doping range. Whereas we do find that m_{B1g} and m_{B2g} have similar magnitude in this doping range (in Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$ in our case), their distinct temperature dependence is inconsistent with XY nematic fluctuations.

A phase transition to a long-range ordered B_{1g} nematic-ordered phase below 40 K has been proposed in RbFe$_2$As$_2$ based on a maximum in the longitudinal elastoresistance measured along [100]39. The symmetry decomposition of the elastoresistance reveals that such a maximum occurs in the A_{1g} channel, which we associate with the coherence/incoherence crossover and not a phase transition. Consistently, the resistance and thermal expansion data show no sign of a phase transition in RbFe$_2$As$_2$ (Fig. 1a and Supplementary Fig. 3).

Our results are summarized in Fig. 6. In this phase diagram, we plot the values of the elastoresistance coefficients at 40 K as a function of substitution, with both the hole-doped series Ba$_{1-x}$K$_x$Fe$_2$As$_2$ and the isoelectronic 3d$_{5/2}$ series AFe$_2$As$_2$ (A = K, Rb, Cs) on the same horizontal axis. In all, 40 K is chosen so that the high-T$_c$ sample can be included. The hashed region 0.6 < x < 0.8 denotes the doping range where a significant change of behavior has been observed, including a Lifshitz transition and proposed broken time-reversal symmetry in the superconducting state, as well as the proposed XY nematic state in the Rb-doped series (Ba$_{1-x}$Rb$_x$Fe$_2$As$_2$). Our results suggest that this doping range coincides with the emergence of an enhanced A_{1g} elastoresistance. Recalling that m_{A1g} is expected to reflect the in-plane Grüneisen parameter Γ_α at low temperature, we plot Γ_α alongside m_{A1g} (40 K) in Fig. 6. The agreement confirms that the m_{A1g} component of the elastoresistance is associated with the strong electronic correlations observed in thermodynamic measurements.

We stress that we observe, nevertheless, the remnant of the B_{2g} nematic fluctuations of the optimally doped regime even in fully substituted samples with 3d$_{5/2}$ electronic configuration. We also observe signatures of possible weak nematic fluctuations in the B_{2g} channel, but we do not observe a change from B_{2g}-dominant to B_{1g}-dominant nematic fluctuations with doping and we find no evidence for a bulk nematic state in any of our samples. These results revise the current understanding of nematicity in hole-doped iron-based superconductors and raise some new points.

First, neither B_{1g} nor B_{2g} nematic fluctuations depend strongly on the alkali ion size in AFe$_2$As$_2$ (A = K, Rb, Cs). In contrast, the strong correlations related to the orbital-selective Mott behavior seen in the A_{1g} channel increase dramatically with increasing alkali ion size. The contrasting behavior indicates that the orbital-selective Mott physics does not cause the nematic fluctuations. Second, we find that the B_{2g} nematic fluctuations are surprisingly robust, persisting at high hole doping even beyond the Lifshitz transition where the electron pocket of the Fermi surface and the corresponding nesting properties are lost, and magnetic fluctuations become incommensurate.

To conclude, we reflect on the different physical mechanisms responsible for the observed strain-induced resistance changes. In Ba$_{0.4}$K$_{0.6}$Fe$_2$As$_2$ with a sizeable nematic susceptibility, anisotropic strains change the measured resistance by favoring the resistance of one in-plane direction over the other, as nematic order causes a resistance anisotropy. In CsFe$_2$As$_2$, by contrast, symmetric strains directly modulate the strength of electron correlations and effective mass causing changes in average in-plane resistance. Suitable methods to study electronic correlations and their evolution with local symmetry can provide a direct test of our approach.

Elastoresistance measurements. Elastoresistance measurements were performed in a commercial strain cell (Razorbill Instruments CS-120). The samples were cut with edges along the tetragonal in-plane directions [100] or [110], with typical dimensions of 3.0 × 1.0 × 0.06 mm. The samples were fixed in the strain cell using DevCon 5 Minute Epoxy with an effective strained sample length of 2.0 mm. The epoxy thickness was controlled to be 50 μm above the sample and ~30 μm above the sample. Cigarette paper was used to ensure the electrical insulation of the sample from the titanium mounting plates. The sample strain was measured via a built-in capacitive displacement sensor and readout on an Andeen Hagerling 2550A capacitance bridge. Resistance was measured using a four-point method on a Lake Shore 372 resistance bridge. Hans Wolbring Leitbilder 200N was used to make the electrical contacts, as contacts made with DuPont 4929N silver paint were found to be mechanically unstable on strain application.

We note that the true strain experienced by a sample in the strain cell is less than the nominal strain read by the capacitance sensor. From comparison with established elastoresistance data on BaFe$_2$As$_2$, we estimate that the true strain is ~60% of the nominal strain in our setup, as shown in Supplementary Fig. 1. All measurements are performed with very similar sample dimensions and sample mounting in the same cell, conversion of the elastoresistance from nominal to true strain can be performed by scaling them up by a factor of (1/0.6). Nevertheless, we report primarily nominal strain, the only exception being the inset of Fig. 2c where the scaling factor has been applied in order to compare with piezoelectric stack-based measurements.

Due to the large thermal expansion mismatch between our samples and the titanium body of the strain cell, the samples will experience tension on cooling. Therefore, we progressively reduce the distance between the sample mounting plates by an amount calculated based on the known thermal expansion difference between the sample and titanium, and the measurement of a titanium calibration sample.

To express the elastoresistance in terms of the irreducible representations of the A_{1g} point group, we note that the symmetric strains ϵ_{A1g} are given in terms of $\epsilon_{A1g} = (1/\sqrt{3}) (\epsilon_{x1} + \epsilon_{y1} + \epsilon_{z1})$ and $\epsilon_{1A1g} = (1/\sqrt{3}) (\epsilon_{x1} - \epsilon_{y1})$, where we use the simplified notation ϵ_{i1} for ϵ_{i1}. Similar expressions apply relating R_i with ϵ_{A1g}. The symmetry-decomposed elastoresistance coefficients are then defined as $m_i = (1/\pi R_i dR_i/d\epsilon_i)$. In terms of the experimental data, these coefficients are given by

\[
m_{A1g} = \frac{1}{1 - \epsilon_{110}^2} \left(\frac{dR_{110}}{d\epsilon_{110}} + \frac{dR_{100}}{d\epsilon_{100}} \right) \quad (a)
\]

\[
m_{A1g} = \frac{1}{1 - \epsilon_{110}^2} \left(\frac{dR_{220}}{d\epsilon_{220}} + \frac{dR_{110}}{d\epsilon_{110}} \right) \quad (b)
\]
applied displacement according to provided with our strain cells by Razorbill Instruments, due to the deformation of conducted with a Razorbill CS-100 cell, which has a smaller maximum between real and nominal strain in the two studies. Our previous work was the top of the apparatus. The remaining parameters are properties of the strain cell strain cells. In addition, the sample spring constants transmitted strain closer to the nominal value determined from the capacitance ~2 N/.

We note that the reported elastoresistance coefficients in the usual Voigt notation as

\[m_{yy} = m_{11} - m_{12} \]

\[m_{zz} = 2m_{66} \]

\[m_{zz} = (m_{11} + m_{12}) - \frac{2\nu}{1-\nu} m_{13} \]

\[m_{zz} = \frac{2\nu}{1-\nu} - m_{13} \]

In the \(A_{1g} \) channel, \(m_{13} = m_{pz} \) contributes and cannot be disentangled from \(m_{11} + m_{12} = m_{pp} \). Our measured elastoresistance coefficient \(m_{yy} \) therefore includes the effect of \(c \)-axis compression (tension) which accompanies the symmetric in-plane biaxial tension (compression) because of the Poisson effect.

We note that the reported elastoresistance coefficients for CsFe2As2 are larger in this paper than in our previous work\(^\text{[45]}\). This results from a difference in the ratio between real and nominal strain in the two studies. Our previous work was conducted with a Razorbill CS-100 cell, which has a smaller maximum displacement than the CS-120 cell used here. According to the documentation provided with our strain cells by Razorbill Instruments, due to the deformation of the strain device itself by a stiff sample, the capacitance sensor will overread the applied displacement according to

\[\frac{\Delta L_{\text{meas}}}{\Delta L_{\text{real}}} = 1 + \frac{k}{L_0} (h_0 + h) \]

where \(k \) is the sample spring constant, and \(h_0 \) is the sample mounting height above the top of the apparatus. The remaining parameters are properties of the strain cell itself: \(k \) is the torsional spring constant, \(h_0 \) is the height of the top surface above the moving block rotation center, and \(h \) is the height of the top surface above the center of the capacitor. The parameters \(k, h_0 \) and \(h \) are different between the two strain cells. In addition, the sample spring constants \(k \) in this work were typically ~2 N/\(\mu \)m, compared with ~4 N/\(\mu \)m in our previous work. The smaller \(k \) allows for a transmitted strain closer to the nominal value determined from the capacitance sensor, producing a greater measured elastoresistance in our current work. Due to these issues, we chose to re-measure CsFe2As2 in the CS-120 cell to make sure the results were comparable in all presented samples.

Calculation of Poisson ratios. The sample Poisson ratios \(\nu_s = -\epsilon_{yy}/\epsilon_{xx} \) and \(\nu_s' = -\epsilon_{yy}'/\epsilon_{xx}' \) in terms of the elastic constants \(c_i \) are given by

\[\nu_{s100} = \frac{c_{11} - c_{12}}{c_{11} + c_{12}} \]

\[\nu_{s100}' = \frac{c_{11} - c_{12}}{c_{11} + c_{12}} \]

\[\nu_{t110} = \frac{c_{33}l_{11} + c_{13} - 2c_{66}a_{0} - 2c_{13}a_{0} - 2c_{66}}{c_{33}l_{11} + c_{13} - 2c_{66}a_{0} - 2c_{13}a_{0} - 2c_{66}} \]

\[\nu_{t110}' = \frac{4c_{13}c_{66}l_{11}}{c_{33}(c_{11} + c_{13} + 2c_{66}) - 2c_{66}} \]

To obtain rough estimates of the elastic constants, we performed ab initio calculations in the framework of the generalized gradient approximation using a mixed-basis pseudopotential method\(^\text{[36]}\). The phonon dispersions and corresponding interatomic force constants were calculated via density functional perturbation theory and the elastic constants were then extracted via the method of long waves. For Ba\(_{0.4}K\(_{0.6}\)Fe\(_2\)As\(_2\), we used values calculated for Ba\(_{0.5}K\(_{0.5}\)Fe\(_2\)As\(_2\) in a virtual-crystal approximation. The numerical values of elastic constants and Poisson ratios calculated therefrom are given in Table 1. For the purposes of calculating the elastoresistance coefficients, the Poisson ratios were taken to be temperature independent.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

2. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

3. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

4. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{6.5}\). Science 319, 597–600 (2008).

5. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-\(T_c \) superconductor. Nature 463, 519–522 (2010).

6. Murayama, H. et al. Diagonal nematicity in the pseudogap phase of HgBa\(_2\)CuO\(_{4.5}\)\(_{0.5}\). Nat. Commun. 10, 1–7 (2019).

7. Sato, Y. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa\(_2\)Cu\(_3\)O\(_{6.5}\). Nat. Phys. 13, 1074–1078 (2017).

8. Ackar, A. J. et al. Nematicity in stripe-ordered cuprates probed via resonant X-ray scattering. Science 351, 576–578 (2016).

9. Cyr-Choinière, O. et al. Two types of nematicity in the phase diagram of the cuprate superconductor YBa\(_2\)CuO\(_{4}\). Phys. Rev. B 92, 224502 (2015).

10. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-\(T_c \) copper-oxide pseudogap states. Nature 466, 347–351 (2010).

11. Voyta, M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

12. Auveray, N. et al. Nematic fluctuations in the cuprate superconductor Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta}\). Nat. Commun. 10, 1–7 (2019).

13. Ronning, F. et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn\(_5\). Nature 548, 313–317 (2017).

14. Helm, T. et al. Non-montononic pressure dependence of high-field nematicity and magnetism in CeRhIn\(_5\). Nat. Commun. 11, 1–10 (2020).

15. Yonezawa, S. et al. Thermodynamic evidence for nematic superconductivity in Cu\(_3\)Bi\(_2\)Se\(_3\). Nat. Commun. 13, 123–126 (2016).

16. Shen, J. et al. Nematic topological superconducting phase in Nb-doped Bi\(_2\)Se\(_3\), npj Quant. Mater. 2, https://doi.org/10.1038/s41535-017-0064-1 (2017).

17. Hecker, M. & Schmalian, J. Vestigial nematic order and superconductivity in the doped topological insulator Cu\(_3\)Bi\(_2\)Se\(_3\), npj Quant. Mater. 3, https://doi.org/10.1038/s41535-018-0098-z (2018).

18. Woo Cho, C. et al. Z\(_{2}\)-vestigial nematic order due to superconducting fluctuations in the doped topological insulators Nb\(_{1-x}\)Bi\(_{2}\)Se\(_3\) and Cu\(_3\)Bi\(_2\)Se\(_3\). Nat. Commun. 11, https://doi.org/10.1038/s41467-020-16871-9 (2020).

19. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 268–271 (2020).

20. Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2019).
21. Malinowski, P. et al. Suppression of superconductivity by anisotropic strain near a nematic quantum critical point. Nat. Phys. 16, 1189–1193 (2020).
22. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).
23. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).
24. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting BaF_{2}(Fe_{0.975}Co_{0.025})_{2}As_{2} single crystals. Phys. Rev. Lett. 104, 057006 (2010).
25. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).
26. Gallais, Y. et al. Observation of incipient charge nematicity in BaFe_{2}(Co_{0.5}Ni_{0.5})_{2}As_{2}. Phys. Rev. Lett. 111, 267001 (2013).
27. Böhm, A. et al. Nematic susceptibility of hole-doped and electron-doped BaF_{2}Fe_{2}As_{2} iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).
28. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).
29. Ikeda, M. S. et al. Elastocaloric signature of nematic superconductors. Preprint at https://arxiv.org/abs/2101.00080 (2020).
30. de’ Medici, L., Giovannetti, G. & Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).
31. Misawa, T., Nakamura, K. & Imada, M. Ab initio evidence for strong correlation associated with Mott proximity in iron-based superconductors. Phys. Rev. Lett. 108, 177007 (2012).
32. de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron-pnictide superconductivity. Phys. Rev. Lett. 112, 177001 (2014).
33. Hardy, F. et al. Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe_{2}As_{2}. Phys. Rev. Lett. 111, 027002 (2013).
34. Hardy, F. et al. Strong correlations, strong coupling, and a wave superconductivity in hole-doped BaFe_{2}As_{2} single crystals. Phys. Rev. B 94, 205113 (2016).
35. Wu, Y. et al. Emergent Kondo lattice behavior in iron-based superconductors AFe_{2}As_{2} (A = K, Rb, Cs). Phys. Rev. Lett. 116, 147001 (2016).
36. Efetov, E. et al. Strain-driven approach to quantum criticality in AFe_{2}As_{2} with A = K, Rb, and Cs. Phys. Rev. Lett. 116, 237003 (2016).
37. Zhang, Z. T. & Liu, Q. Increasing stripe-type fluctuations in AFe_{2}As_{2} (A = K, Rb, Cs) superconductors probed by 77As NMR spectroscopy. Phys. Rev. B 97, 115110 (2018).
38. Li, J. et al. Reemergent electronic nematicity in heavily hole-doped Fe-based superconductors. Preprint at https://arxiv.org/abs/1611.04694 (2016).
39. Ishida, K. et al. Novel electronic nematicity in heavily hole-doped iron pnictide superconductors. Proc. Natl Acad. Sci. USA 114, 8424–8429 (2017).
40. Liu, X. et al. Evidence of nodal and nodal superconducting gap along [110] direction in RbFe_{2}As_{2}. Nat. Commun. 10, https://doi.org/10.1038/s41467-019-08962-z (2019).
41. Onari, S. & Kontani, H. Origin of diverse nematic orders in Fe-based superconductors: 45° rotated nematicity in AFe_{2}As_{2} (A = Cs, Rb, Pb). Phys. Rev. B 100, 020507 (2019).
42. Wang, Y., Hu, W., Yu, R. & Si, Q. Broken mirror symmetry, incommensurate spin correlations, and B_{2g} nematic order in iron pnictides. Phys. Rev. B 100, 100502 (2019).
43. Borisov, V., Fernandes, R. M. & Valenti, R. Evolution from B_{2g} nematics to B_{2g} nematics in heavily hole-doped iron-based superconductors. Phys. Rev. Lett. 123, 146402 (2019).
44. Moroni, M. et al. Charge and nematic orders in AFe_{2}As_{2} (A = Rb, Cs) superconductors. Phys. Rev. B 99, 235147 (2019).
45. Wiecki, P. et al. Dominant in-plane symmetric elastoresistance in CsFe_{2}As_{2}. Phys. Rev. Lett. 125, 187001 (2020).
46. Kuo, H.-H., Shapiro, M. C., Riggs, S. C. & Fisher, I. R. Measurement of the elastoresistivity coefficients of the underdoped iron arsenide Ba(Fe_{0.95}Co_{0.05})_{2}As_{2}. Phys. Rev. B 88, 085113 (2013).
47. Palstrom, J. C., Hristov, A. T., Kivelson, S. A., Chu, J.-H. & Fisher, I. R. Critical divergence of the symmetry (A_{4}) nonlinear elastoresistance near the nematic transition in an iron-based superconductor. Phys. Rev. B 96, 205133 (2017).
48. Backes, S., Jeschke, H. O. & Valenti, R. Microscopic nature of correlations in multiorbital AFe_{2}As_{2} (A = K, Rb, Cs): Hund’s coupling versus coulomb repulsion. Phys. Rev. B 92, 195128 (2015).
49. Tafouf, V. et al. Upper critical field of KFe_{2}As_{2} under pressure: a test for the change in the superconducting gap structure. Phys. Rev. B 89, 220509 (2014).
50. Rosenberg, E. W., Chu, J.-H., Ruff, J. P. C., Hristov, A. T., Valenti, R. & Fisher, I. R. Divergence of the quadrupole-strain susceptibility of the electronic nematic system YbRu_{2}Ge_{2}. Proc. Natl Acad. Sci. USA 116, 7232–7237 (2019).
51. Meingast, C. et al. Thermal expansion and Grüniesen parameters of Ba(Fe_{0.95}Co_{0.05})_{2}As_{2}: a thermodynamic quest for quantum criticality. Phys. Rev. Lett. 108, 177004 (2012).
52. Küchler, R. et al. Grüneisen ratio divergence at the quantum critical point in CeCu_{2}Ag_{5}. Phys. Rev. Lett. 93, 096402 (2004).
53. Garst, M. & Rosch, A. Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points. Phys. Rev. B 72, 205129 (2005).
