Almost-bipartite distance-regular graphs with the Q-polynomial property \(^*\)

Michael S. Lang and Paul M. Terwilliger

31 August 2004

Abstract

Let Γ denote a Q-polynomial distance-regular graph with diameter $D \geq 4$. Assume that the intersection numbers of Γ satisfy $a_i = 0$ for $0 \leq i \leq D - 1$ and $a_D \neq 0$. We show that Γ is a polygon, a folded cube, or an Odd graph.

1 Introduction

In this article we prove the following theorem.

Theorem 1.1 Let Γ denote a distance-regular graph with diameter $D \geq 3$. Assume that the intersection numbers of Γ satisfy $a_i = 0$ for $0 \leq i \leq D - 1$ and $a_D \neq 0$. Then Γ is Q-polynomial if and only if at least one of (i)–(iv) holds below.

(i) Γ is the $(2D + 1)$-gon.

(ii) Γ is the folded $(2D + 1)$-cube.

(iii) Γ is the Odd graph on a set of cardinality $2D + 1$.

(iv) $D = 3$ and there exist complex scalars β and μ such that the intersection numbers of Γ satisfy

\[
egin{align*}
k &= 1 + (\beta^2 - 1)(\beta(\beta + 2) - (\beta + 1)\mu), \\
c_2 &= \mu, \\
c_3 &= -(\beta + 1)(\beta^2 + \beta - 1 - (\beta + 1)\mu).
\end{align*}
\]

The following remarks refer to Theorem 1.1

\(^*\)Keywords: Distance-regular graph, association scheme, subconstituent algebra.

2000 Mathematics Subject Classification: Primary 05E30; Secondary 05E35, 05C50.
Remark 1.2 Suppose that (iv) holds. Then \(\theta_0, \theta_1, \theta_2, \theta_3 \) is a \(Q \)-polynomial ordering of the eigenvalues of \(\Gamma \), where

\[
\theta_0 = 1 + (\beta^2 - 1)\left(\beta(\beta + 2) - (\beta + 1)\mu\right),
\]

\[
\theta_1 = (\beta + 1)(\beta^2 + \beta - 1 - \beta\mu),
\]

\[
\theta_2 = \beta^2 - \beta - 1 - (\beta + 1)\mu,
\]

\[
\theta_3 = 1 - \beta - \beta^2.
\]

Remark 1.3 \(\Gamma \) is the 7-gon if and only if (iv) holds with \(\mu = 1 \) and \(\beta \in \{\omega + \omega^{-1}, \omega^2 + \omega^{-2}, \omega^3 + \omega^{-3}\} \), where \(\omega \) is a primitive 7th root of unity. \(\Gamma \) is the folded 7-cube if and only if (iv) holds with \(\mu = 2 \) and \(\beta \in \{-2, 2\} \). \(\Gamma \) is the Odd graph on a set of cardinality 7 if and only if (iv) holds with \(\mu = 1 \) and \(\beta = -2 \).

Remark 1.4 Suppose that (iv) holds but none of (i)–(iii) do. Then \(\beta \) is unique, integral and less than \(-2\). We know of no graph for which this occurs.

2 Preliminaries

Let \(\Gamma = (X, R) \) denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set \(X \), edge set \(R \), path-length distance function \(\partial \), and diameter \(D := \max\{\partial(x, y) : x, y \in X\} \). Let \(k \) denote a nonnegative integer. We say \(\Gamma \) is regular with valency \(k \) whenever for all \(x \in X \), \(|\{z \in X : \partial(x, z) = 1\}| = k \). We say \(\Gamma \) is distance-regular whenever for all integers \(h, i, j \) \((0 \leq h, i, j \leq D) \) and all \(x, y \in X \) with \(\partial(x, y) = h \), the scalar \(p_{ij}^h := |\{z \in X : \partial(x, z) = i, \partial(y, z) = j\}| \) is independent of \(x \) and \(y \). For notational convenience, set \(c_i := p_{ii}^1 \) \((1 \leq i \leq D) \), \(a_i := p_{ii}^0 \) \((0 \leq i \leq D) \), \(b_i := p_{ii}^{i+1} \) \((0 \leq i \leq D - 1) \), \(c_0 := 0 \) and \(b_D := 0 \). For the rest of this section, suppose that \(\Gamma \) is distance-regular. We observe that \(\Gamma \) is regular with valency \(k = b_0 \). Further, we observe \(c_i + a_i + b_i = k \) for \(0 \leq i \leq D \).

We recall the Bose-Mesner algebra. Let \(\mathbb{R} \) denote the field of real numbers. By \(\text{Mat}_X(\mathbb{R}) \) we mean the \(\mathbb{R} \)-algebra consisting of all matrices whose entries are in \(\mathbb{R} \) and whose rows and columns are indexed by \(X \). For each integer \(i \) \((0 \leq i \leq D) \), let \(A_i \) denote the matrix in \(\text{Mat}_X(\mathbb{R}) \) with \(x, y \) entry

\[
(A_i)_{xy} = \begin{cases}
1 & \text{if } \partial(x, y) = i, \\
0 & \text{otherwise}
\end{cases} \quad (x, y \in X).
\]

Note that \(A_0 = I \), the identity matrix. Abbreviate \(A := A_1 \). We call \(A \) the adjacency matrix of \(\Gamma \). Let \(M \) denote the subalgebra of \(\text{Mat}_X(\mathbb{R}) \) generated by \(A \). By [2, Theorem 20.7], \(A_0, A_1, \ldots, A_D \) is a basis for \(M \). We call \(M \) the Bose-Mesner algebra of \(\Gamma \).

By [3, Theorem 2.6.1], \(M \) has a second basis \(E_0, E_1, \ldots, E_D \) such that \(E_iE_j = \delta_{ij}E_i \) \((0 \leq i, j \leq D) \). We call \(E_0, E_1, \ldots, E_D \) the primitive idempotents of \(\Gamma \). Observe that there exists a sequence of scalars \(\theta_0, \theta_1, \ldots, \theta_D \) taken from \(\mathbb{R} \) such that \(A = \sum_{i=0}^{D} \theta_iE_i \). We call \(\theta_i \) the eigenvalue of \(\Gamma \) associated with \(E_i \) \((0 \leq i \leq D) \). Note that \(\theta_0, \theta_1, \ldots, \theta_D \) are distinct since \(A \) generates \(M \).
We recall the Q-polynomial property. Let $\theta_0, \theta_1, ..., \theta_D$ denote an ordering of the eigenvalues of Γ. We say this ordering is Q-polynomial whenever there exists a sequence of real scalars $\sigma_0, \sigma_1, ..., \sigma_D$ and a sequence of polynomials $q_0, q_1, ..., q_D$ with real coefficients such that q_j has degree j and $E_j = \sum_{i=0}^{D} q_j(\sigma_i)A_i$ for $0 \leq j \leq D$. In this case, $\theta_0 = k$ [3, Theorem 8.1.1]; we call θ_1 a Q-polynomial eigenvalue of Γ. We say that Γ is Q-polynomial whenever there exists a Q-polynomial ordering of its eigenvalues.

We recall what it means for Γ to be bipartite or almost-bipartite. We say Γ is bipartite whenever $a_i = 0$ for $0 \leq i \leq D$. We say Γ is almost-bipartite whenever $a_i = 0$ for $0 \leq i \leq D - 1$ but $a_D \neq 0$. (In the literature, such a Γ is also called a generalized Odd graph or a regular thin near $(2D+1)$-gon.) For the rest of this section, assume that Γ is almost-bipartite.

We recall the bipartite double 2Γ. This graph has vertex set $\{x^+: x \in X\} \cup \{y^-: y \in X\}$. For $x, y \in X$ and $\gamma, \delta \in \{+, -\}$, vertices x^γ and y^δ are adjacent in 2Γ whenever x and y are adjacent in Γ and $\gamma \neq \delta$. The graph 2Γ is bipartite and distance-regular with diameter $2D+1$. Moreover, 2Γ is an antipodal 2-cover of Γ [3, Theorem 1.11.1(i),(vi)]. The intersection numbers k and c_2 are the same in 2Γ as in Γ [3, Proposition 4.2.2(ii)]. The set of eigenvalues for 2Γ consists of the eigenvalues of Γ together with their opposites [3, Theorem 1.11.1(v)]. The concept of an AO eigenvalue was introduced in [6]. A scalar θ is an AO eigenvalue of 2Γ if and only if θ is a Q-polynomial eigenvalue of Γ [6, Theorem 10.4].

3 Setup

Our strategy for proving Theorem 1.1 is to assume that (i)–(iii) do not hold and then prove that (iv) must.

Lemma 3.1 Let Γ denote an almost-bipartite distance-regular graph with diameter $D \geq 3$. Suppose that Γ is Q-polynomial but not as in Theorem 1.1(i)–(iii). Then Γ has a unique Q-polynomial eigenvalue.

Proof: Since Γ is not a polygon, it has valency $k \geq 3$. Observe that 2Γ has diameter at least 7. Suppose that Γ has at least two Q-polynomial eigenvalues. Then 2Γ has at least two AO eigenvalues. Applying [6, Theorem 16.2], we find that 2Γ is the $(2D+1)$-cube. Thus Γ is the folded $(2D+1)$-cube, contradicting the assumption that Theorem 1.1(iii) does not hold. □

For the rest of this article, we use the following notation.

Notation 3.2 Let $\Gamma = (X, R)$ denote an almost-bipartite distance-regular graph with diameter $D \geq 3$. Assume that Γ is Q-polynomial but not as in Theorem 1.1(i)–(iii). Let $\theta_0, \theta_1, ..., \theta_D$ denote the eigenvalues of Γ in their Q-polynomial order. Set

$$\beta := \frac{\theta_0 - \theta_3}{\theta_1 - \theta_2} - 1.$$ (8)

4 Parameters

In this section, we recall some formulae for the intersection numbers and eigenvalues of Γ. 3
Lemma 4.1 [4, Lemma 15.2, Corollaries 15.4, 15.7, 15.8, Theorem 15.5] With reference to Notation 3.2, there exist complex scalars \(q \) and \(s \) such that the intersection numbers and eigenvalues of \(\Gamma \) satisfy

\[
\begin{align*}
 k &= h(1 + sq), \\
 c_i &= \frac{h(1 - q^i)(1 + sq^{2D+2-i})}{q^i(q^{2D-2i+1} - 1)} \quad (1 \leq i \leq D), \\
 \theta_i &= hq^{-i}(1 + sq^{2i+1}) \quad (0 \leq i \leq D),
\end{align*}
\]

where

\[
h = \frac{q - q^{2D}}{(q - 1)(1 + sq^{2D+1})}.
\]

Moreover,

\[
\begin{align*}
 q &\neq 0, \\
 q^i &\neq 1 \quad (1 \leq i \leq 2D), \\
 sq^i &\neq 1 \quad (2 \leq i \leq 2D), \\
 sq^i &\neq -1 \quad (1 \leq i \leq 2D + 1).
\end{align*}
\]

Corollary 4.2 With reference to Lemma 4.1, we have

\[
\beta = q + q^{-1}
\]

and

\[
\theta_D = \frac{q^{1-D} - q^D}{q - 1}.
\]

5 Restrictions

Throughout this section we refer to Notation 3.2 and Lemma 4.1. We obtain restrictions on the parameters \(q \) and \(s \). Let \(\mathbb{Z} \) denote the ring of integers; let \(\mathbb{Q} \) denote the field of rational numbers.

Lemma 5.1 We have \(\theta_i \in \mathbb{Z} \) for \(0 \leq i \leq D \).

Proof: Suppose that there exists an integer \(i \) \((0 \leq i \leq D)\) such that \(\theta_i \not\in \mathbb{Z} \). Then \(\Gamma \) has a second \(\mathbb{Q} \)-polynomial eigenvalue by [1, p. 360]. This contradicts Lemma 3.1. \(\square \)

Lemma 5.2 We have \(q^i + q^{-i} \in \mathbb{Z} \) for each positive integer \(i \). In particular, \(\beta \in \mathbb{Z} \).

Proof: Define polynomials \(T_0, T_1, \ldots \) in a variable \(x \) by \(T_0 = 2, T_1 = x, T_{i+1} = xT_i - T_{i-1} \) \((i \geq 1)\). We routinely find that for \(i \geq 1 \),

\[
T_i \in \mathbb{Z}[x], \quad T_i \text{ is monic, and } q^i + q^{-i} \in \mathbb{Z} \quad \text{and} \quad q^i + q^{-i} = T_i(\beta).
\]
To finish the proof it suffices to show \(\beta \in \mathbb{Z} \). To do this we show \(\beta \in \mathbb{Q} \) and \(\beta \) is an algebraic integer.

By (8) and Lemma 5.1 we find \(\beta \in \mathbb{Q} \).

We now show that \(\beta \) is an algebraic integer. The right-hand side of (18) is equal to

\[
\sum_{i=1}^{D-1} q^i.
\]

By this and (19), we find that \(\beta \) is a root of a monic polynomial with coefficients in \(\mathbb{Z} \). It follows that \(\beta \) is an algebraic integer.

We have now shown \(\beta \in \mathbb{Q} \) and \(\beta \) is an algebraic integer, so \(\beta \in \mathbb{Z} \). The result follows. □

Lemma 5.3 We have \(|\beta| > 2 \). Moreover, \(q \in \mathbb{R} \).

Proof: Suppose \(|\beta| \leq 2 \). Since \(\beta \in \mathbb{Z} \) by Lemma 5.2 we find that \(|\beta| \) is 0, 1 or 2. We now use (17). If \(|\beta| = 0 \) then \(q^4 = 1 \). If \(|\beta| = 1 \) then \(q^6 = 1 \). If \(|\beta| = 2 \) then \(q^2 = 1 \). Each of these contradicts (14), so the result follows. □

Lemma 5.4 We may assume \(q^2 > 1 \).

Proof: By (13), we have \(q^2 \neq 0 \). By (14), we have \(q^2 \neq 1 \). We now consider two cases.

First suppose \(s = 0 \). If \(-1 < q < 0 \) then using (19) we find \(c_2 < 0 \). If \(0 < q < 1 \) then using (2) we find \(k < 0 \). Each of these is a contradiction, so \(q^2 > 1 \) as desired.

Now suppose \(s \neq 0 \). If \(q^2 < 1 \), replace \(q \) by \(q^{-1} \) and \(s \) by \(s^{-1} \). In light of (12), these substitutions leave (9)–(11) unchanged. Moreover, \(q^2 > 1 \) as desired. □

Consider the quantity

\[
\eta := -\frac{(q^2 + 1)(q^{2D} - q^3)}{q^{2D} - q^5}.
\]

We show \(\eta \) to be an integer. To do this, we use the fact \(s^2 q^{2D+3} \neq 1 \). We obtain this fact using the following two lemmas.

Lemma 5.5 For \(1 \leq i \leq D \) we have \((c_2 - 1)\theta_i^2 \neq (k - c_2)(k - 2) \).

Proof: Suppose that there exists an integer \(i \) (\(1 \leq i \leq D \)) such that \((c_2 - 1)\theta_i^2 = (k - c_2)(k - 2) \). We mentioned earlier that \(\theta_i \) is an eigenvalue of \(2\Gamma \) and that the intersection numbers \(k \) and \(c_2 \) are the same in \(2\Gamma \) as in \(\Gamma \). Now by [5, Theorem 25], we find that \(2\Gamma \) is 2-homogeneous in the sense of Nomura [7]. By assumption, \(2\Gamma \) is not a cube. Now by [3, Theorem 1.2], the diameter of \(2\Gamma \) is at most 5. Since this diameter is \(2D + 1 \), we find \(D \leq 2 \), which is a contradiction. □

Lemma 5.6 We have

\[
(c_2 - 1)\theta_D^2 - (k - c_2)(k - 2) = \frac{(q^{2D} - 1)(q^{2D} - q^2)(q^{2D} - q)^2(s^2 q^{2D+3} - 1)}{q^{2D}(q - 1)^2(q^{2D} - q^3)(1 + sq^{2D+1})^2}.
\]

Proof: Use Lemma 4.1 □
Corollary 5.7 We have $s^2q^{2D+3} \neq 1$.

Proof: Combine Lemmas 5.9 and 5.10

Before proceeding, we recall the local graph Γ_2^2.

Definition 5.8 Fix a vertex $x \in X$. The corresponding local graph Γ_2^2 is the graph with vertex set $\{y \in X : \partial(x, y) = 2\}$, where vertices y and z are adjacent in Γ_2^2 whenever $\partial(y, z) = 2$ in Γ.

Lemma 5.9 Fix a vertex $x \in X$ and let Γ_2^2 denote the corresponding local graph from Definition 5.8. Then the scalar η from (20) is an eigenvalue of Γ_2^2. Moreover, η is an algebraic integer.

Proof: Our argument uses the subconstituent algebra of Γ. This object is introduced in [9]. We refer the reader to that paper and its continuations [10] and [11] for background and definitions.

Let $T = T(x)$ denote the subconstituent algebra of Γ with respect to x. By [4, Theorem 14.1] we find that, up to isomorphism, there exists at most one irreducible T-module with endpoint 2, dual endpoint 2 and diameter $D-2$. By [4, Example 16.9(iv)] the multiplicity with which this module appears in the standard module is

$$
\frac{(q^{2D} - 1)(q^{2D} - q^2)(1 + sq)(1 + sq^4)(s^2q^{2D+3} - 1)}{q(q+1)(q-1)^2(s^2q^{2D+4} - 1)(1 + sq^{2D})(1 + sq^{2D+1})}.
$$

This number is nonzero by [13], [14], [15] and Corollary 5.7. Therefore, this module exists.

Let W denote an irreducible T-module with endpoint 2, dual endpoint 2 and diameter $D-2$. The dimension of E_2^*W is 1 for $2 \leq i \leq D$ [4, (18), Lemma 10.3]. By construction, E_2^*W is an eigenspace for $E_2^*A_2E_2^*$. By [4, Definition 8.2] and using $A_2 = (A^2 - kI)/c_2$, we find that the corresponding eigenvalue is

$$
c_1(W)b_0(W) - k
$$

where $c_1(W)$ and $b_0(W)$ are intersection numbers of W. Evaluating (21) using [4, Theorem 15.5], we find that it is equal to η. We conclude that η is an eigenvalue of Γ_2^2.

We show $\eta \in \mathbb{Z}$. To do this we use the following result.

Lemma 5.10 We have

$$
\eta + \beta^2 - 1 = \frac{q^{2D} - q^9}{q^{2D+2} - q^4}.
$$

Proof: Use (17) and (20).
Lemma 5.11 We have $\eta \in \mathbb{Z}$.

Proof: First assume $D = 3$. Then $\eta = -\beta(\beta + 1)$ by (17) and (20). Thus $\eta \in \mathbb{Z}$ by Lemma 5.2. Now assume $D \geq 4$. Observe by Lemma 5.9 that η is an algebraic integer. We show $\eta \in \mathbb{Q}$. Observe that the right-hand side of (22) is equal to $-(\beta + 1)^{-1}$ for $D = 4$ and

$$\frac{\sum_{i=5-D}^{D-5} q^i}{\sum_{i=3-D}^{D-3} q^i}$$

for $D \geq 5$. By this and Lemma 5.2 we find that the right-hand side of (22) is in \mathbb{Q}. By this and since $\beta \in \mathbb{Z}$ we find $\eta \in \mathbb{Q}$. Now $\eta \in \mathbb{Q}$ and η is an algebraic integer so $\eta \in \mathbb{Z}$. □

6 Proof

In this section we prove Theorem 1.1 and the associated remarks.

Proof of Theorem 1.1: Assume that Γ is \mathbb{Q}-polynomial but none of (i)–(iii) hold. We show that Γ satisfies (iv).

We first show $D = 3$. On the contrary, suppose $D \geq 4$. For notational convenience, abbreviate $\xi := \eta + \beta^2 - 1$. Recall $\beta \in \mathbb{Z}$ by Lemma 5.2 and $\eta \in \mathbb{Z}$ by Lemma 5.11, so $\xi \in \mathbb{Z}$. By (13), (14) and (22) we find $\xi \neq 0$. Thus $|\xi| \geq 1$. Evaluating $\xi^2 - 1$ using (22) and simplifying, we find $(q^4 - 1)(q^{14} - q^{4D}) \geq 0$. But since $q^2 > 1$ by Lemma 5.4, we find $(q^4 - 1)(q^{14} - q^{4D}) < 0$, for a contradiction. We have now shown $D = 3$.

Evaluating (9)–(12) using $D = 3$ and $\beta = q + q^{-1}$, we routinely obtain (1)–(3) and (4)–(7).

We have proved the theorem in one direction. We now show the converse. First assume that Γ satisfies one of (i)–(iii). That Γ is \mathbb{Q}-polynomial is well known [3, Corollary 8.5.3]. Now assume that Γ satisfies (iv). We routinely find that the eigenvalues of Γ, in a \mathbb{Q}-polynomial order, are given by (4)–(7).

Remarks 1.2 and 1.3 are verified routinely.

Proof of Remark 1.4: The \mathbb{Q}-polynomial ordering of the eigenvalues is unique by Lemma 3.1 so β is unique by (8). It is an integer by Lemma 5.2.

We show $\beta < -2$. Recall that θ_1 is a \mathbb{Q}-polynomial eigenvalue of Γ and thus is an AO eigenvalue of the bipartite double $2.\Gamma$. Observe that $2.\Gamma$ has diameter 7. Since $2.\Gamma$ is bipartite, we see by [3, p. 82] that half of the eigenvalues of $2.\Gamma$ are positive and half are negative. By [3, Lemma 13.5], we find that θ_1 is the fifth- or seventh-largest of the eight eigenvalues of $2.\Gamma$. Thus $\theta_1 < 0$.

Recall $|\beta| > 2$ by Lemma 5.3, thus $\beta^2 + \beta - 1 > 0$. Observe $b_2 = (\beta^2 + \beta - 1)(\beta^2 + \beta - 1 - \beta\mu)$ by (11). By this and since $b_2 > 0$, we find $\beta^2 + \beta - 1 - \beta\mu > 0$. Combining this with (13), we find $\beta + 1 < 0$. In particular, $\beta < 0$. Now $\beta < -2$ in view of Lemma 5.3. □

Acknowledgment. The first author was partially supported by a Bradley University Research Excellence Committee award.
References

[1] Eiichi Bannai and Tatsuro Ito. *Algebraic combinatorics. I*. The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984. Association schemes.

[2] Norman Biggs. *Algebraic graph theory*. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 1993.

[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-regular graphs*, volume 18 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1989.

[4] John S. Caughman, Mark S. MacLean, and Paul M. Terwilliger. The Terwilliger algebra of an almost-bipartite P- and Q-polynomial scheme. Preprint.

[5] Brian Curtin. 2-homogeneous bipartite distance-regular graphs. *Discrete Math.*, 187(1-3):39–70, 1998.

[6] Michael S. Lang. A new inequality for bipartite distance-regular graphs. *J. Combin. Theory Ser. B*, 90(1):55–91, 2004.

[7] K. Nomura. Homogeneous graphs and regular near polygons. *J. Combin. Theory Ser. B*, 60(1):63–71, 1994.

[8] K. Nomura. Spin models on bipartite distance-regular graphs. *J. Combin. Theory Ser. B*, 64(2):300–313, 1995.

[9] Paul Terwilliger. The subconstituent algebra of an association scheme. I. *J. Algebraic Combin.*, 1(4):363–388, 1992.

[10] Paul Terwilliger. The subconstituent algebra of an association scheme. II. *J. Algebraic Combin.*, 2(1):73–103, 1993.

[11] Paul Terwilliger. The subconstituent algebra of an association scheme. III. *J. Algebraic Combin.*, 2(2):177–210, 1993.