Abstract: Enzymatic core components from trans-acyltransferase polyketide synthases (trans-AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans-AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N-acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)-tethered intermediates, we show that the enzyme inserts oxygen into β-ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non-hydrolyzed oocydin congener with retained ester moieties, we propose a unified biosynthetic pathway of oocydins, heteronamides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.

Complex polyketides are natural products that exhibit remarkable structural diversity and play important roles in microbial interactions and as a source of drug candidates.[1] In bacteria, they are usually biosynthesized by multimodular polyketide synthases (PKSs), giant proteins that assemble polyketides by stepwise incorporation and modification of short acyl building blocks.[2] In textbook PKSs, each elongation step is catalyzed by an enzymatic module that typically generates either a β-keto, β-hydroxy, α,β-unsaturated, or completely reduced moiety, depending on the catalytic domains present in the module. The resulting product is a contiguous carbon chain with a succession of moieties that is collinear with the order of modules. This model[3] generally applies well to cis-acyltransferase (cis-AT) PKSs, that is, enzymes, in which each module contains an AT domain responsible for building block selection.[4] Besides these well-studied systems, trans-AT PKSs are a second large family of modular PKSs that diverge from the canonical biosynthetic model.[5] Trans-AT PKS systems can feature a broad array of module architectures, including split modules distributed on two proteins, unusual domains within modules, and various trans-acting accessory components that operate during elongation, such as the eponymous ATs. This enzymatic diversity enables trans-AT PKSs to introduce a wide range of unusual features into polyketide structures.[6]

One of the first trans-AT PKSs with an assigned natural product is the pederin PKS, identified in an as-yet uncultivated bacterial symbiont of Paederus fuscipes beetles.[7,8] Pederin (Fig. 1), a highly toxic defensive feature among other structural peculiarities an O-methyl instead of the conventional ester or carboxylic acid polyketide terminus. Closely related but elongated congeners, such as onnamide A (2),[7] are known from another symbiotic producer, present in the marine sponge Theonella swinhoei.[9] In spite of the distinct polyketide termini, the PKSs for 1 and 2 exhibit strikingly similar module architectures, suggesting that a cleavage event accounts for the shortened, noncanonical, methoxy-group-bearing terminus of pederin. Intriguingly, the pederin PKS cluster contains as a unique feature the gene pedG (positioned between pedF and pedH), which

![Figure 1. Oxygen insertion during polyketide biosynthesis. Moieties putatively derived from oxygen insertion are highlighted in orange. A) Polyketide structures and corresponding PKS architecture for onnamide A and pederin. Small filled circles denote ACP domains. Numbers below KS domains refer to their positions in the assembly lines. B) The trans-AT PKS derived compounds diaphorin (3), oocydin A (4), and toblerol A (5). Shared colors indicate orthologous modules in the compared PKS architectures.](image)
encodes a predicted flavin-dependent oxygenase. The location of pedG might be the result of an integration event that interrupted the PKS assembly line, leading PedG to release a stalled intermediate that cannot be elongated further. Degradation of the downstream gene pedH would support this mechanism, but this was not evident. In another scenario, the location of pedG is coincidental, and cleavage occurs at the post-PKS stage after biosynthesis of an onnamide-like, fully elongated polyketide. A third option is that collinearity at the genetic and metabolic level reflects the sequence of biosynthetic steps (Figure 1A), suggesting that a masked terminus is introduced during polyketide elongation by PedG acting in trans.

Interestingly, PedG-like proteins appear in other PKS systems, but the polyketides do not necessarily feature hydroxy termini like in 1. To investigate the prevalence of oxygenation in these systems and their corresponding products, we phylogenetically analyzed sequences of PedG-like proteins and related homologues of flavin-dependent monoxygenases (Figure 2). In this analysis, PedG forms a distinct clade with 29 oxygenases, including those from trans-AT PKSs for the pederin-like compound diaphorin (3) from a psyllid symbiont, for oocydin A (4) from S. plynthica 4Rx13, and for the methylobacterial toblerol A (5). Another member of the clade is the myxobacterial AmbI from the cis-ATP KS ambruticin (6) pathway, an enzyme suggested to be involved in a decarboxylative hydroxylation. In addition, the clade contains at least five homologues from as-yet uncharacterized and unrelated trans-AT PKS pathways from diverse bacteria (Figure 2).

If oxygenation occurs during chain extension for pederin, a likely candidate for accepting the resulting intermediate would be the downstream ped KS10. Since trans-AT PKS ketosynthases (KSs) tend to clade according to the polyketide moiety close to the thioester in the accepted intermediate, ped KS10 would likely be phylogenetically distinct. To test this scenario, a phylogenetic analysis was conducted for ped KS10, using an alignment containing 580 KSs from all known trans-AT PKSs (status Jan. 2017, Figure S1 in the Supporting Information). This analysis grouped ped KS10 exclusively with functionally unassigned KSs from various pathways, including 3 and 4. Interestingly, 4 lacks a hydroxylated terminus, but rather harbors carboxylated moieties at both ends. We therefore hypothesized that these related KS domains accept an ester function as a common progenitor moiety, introduced by oxygen insertion into the polyketide chain. One carboxylate terminus of oocydin A (4) would therefore result from hydrolytic cleavage of an extended precursor.

We selected the oocydin pathway in S. plynthica 4Rx13 as a culturable representative containing both a PedG-like protein (OocK) and the downstream ooc KS3 that clades with the ped KS10 (Figure S1). For knock-out studies, we introduced a kanamycin resistance cassette through homologous recombination to disrupt oocK, yielding the mutant S. plynthica 4Rx13ΔoocK. Analysis of culture extracts by ultra-high-performance liquid chromatography/high-resolution data-dependent mass spectrometry (UHPLC-HRMS) and molecular networking revealed no detectable oocydin-related metabolites. Oocydin production was restored when we introduced a plasmid harboring the gene oocK into...
4Rx13ΔoocK (Figure S2–S4), this suggesting that OocK is essential for polyketide core assembly.

For biochemical studies, we cloned oocK, tobD, and pedG into a pET28a plasmid for *E. coli* expression as N-terminally His-tagged proteins (Table S1 and Figure S5). Only OocK was obtained as a soluble yellow protein. Analysis of ethyl acetate extracts of the denatured enzyme by UHPLC-HRMS was consistent with FAD as the cofactor (Figure S6). In both the ped and ooc pathways, the genes preceding pedG/oocK encode modules that contain a KS, a pseudo-dehydratase lacking the catalytic histidine residue within the active-site motif (HX3GX4P),[15] and an acyl carrier protein (ACP) domain, thus suggesting that the substrate for oxygenation is a β-keto thioester. To test this hypothesis, we synthesized β-keto thioesters 7–10 (Table 1) using various routes. These compounds harbor an N-acetylcysteamine (SNAC) unit as simplified surrogates of the ACP-bound 4′-phosphopantetheinyl intermediates.[16] Assay mixtures with test substrate, OocK, and NADPH were incubated for 90 min at room temperature and then extracted with ethyl acetate. For substrates 7 and 8 with medium or long aliphatic chains, UHPLC-HRMS (Figure 3A and Figures S7,S8) analysis showed the formation of a new product with a mass difference of +16 Da (Figure 3 and Figure S7), which is consistent with substrate oxygenation. No such product was detected for assays with the boiled enzyme or with test compounds 9–17.

To pinpoint the location of oxygen in the converted products, a scaled-up assay with 7 afforded sufficient amounts of product for NMR characterization. HMBC and HSQC experiments were consistent with structure 18 (Figure 3B, Table S2 and Figure S9–S13). This result demonstrates that OocK accepts thioesters bearing β-keto groups and acts as a Baeyer–Villiger monooxygenase (BVMO) to generate malonyl esters. The data also suggest that for oocydin A (4), the terminal carboxylate at C19 is not derived from a malonyl starter unit as previously proposed,[17] but from an oxygen insertion and ester hydrolysis event involving an extended precursor.

Oocydin-type polyketides, which include haterumalides and biselides (Table 2), are known from diverse biological sources.

Table 1: Substrates used in the assay with OocK.

Compound	Structure	Product detected
7	![Structure 7](image)	Yes
8	![Structure 8](image)	Yes
9	![Structure 9](image)	No
10	![Structure 10](image)	No
11	![Structure 11](image)	No
12	![Structure 12](image)	No
13	![Structure 13](image)	No
14	![Structure 14](image)	No
15	![Structure 15](image)	No
16	![Structure 16](image)	No
17	![Structure 17](image)	No

Table 2: Selected oocydin, haterumalide, and biselide congeners and their biological sources.

Names (source)	R₁	R₂
haterumalide NA/oocydin A/FR177391 (4) (bacterium, sponge)	OH	H
haterumalide B (19) (tunicate, sponge)		
haterumalide NB (20) (sponge)	O-nBu	H
biselide B (21) (tunicate)	OAc	
biselide D/taurohaterumalide NA (22) (tunicate)		

Figure 3. Enzymatic assay with OocK and 7. A) Representative UHPLC-HRMS data showing the extracted ion chromatograms (EIC) of the assay of 7 with OocK, including the boiled-enzyme negative control (upper) and test reaction using all components (lower). EIC for 7 and 7 + [15O] (calculated for [M+H]⁺ as 246.1158 and 262.1108, respectively). Mass spectra of the corresponding compounds are shown in Figures S7,S8. B) Schematic representation of the enzymatic assay, including COSY and HMBC key correlations for the product 18.
sources comprising various marine ascidians,[18] sponges,[19] and bacteria.[11,17,20] Several of the invertebrate-derived hetero-
uralides (4, 19, 20)[16c,19,21] and biselides (21–22)[16c,1b,21] feature ester or amide moieties instead of the proposed
OocK-derived carboxylate unit at C19 of oocydin A (4). In
light of our results, we speculated that some of these
congeners might be uncleaved precursors. To predict the
precursor of 4, we analyzed the domain architecture of OocJ,
which has no counterpart in the polyketide structure
(Figure 4).[17] The first two modules, OocJ1–2, have the

![Figure 4. Proposed early steps of oocydin biosynthesis in which the
third ooc module is a split module involving OocJ, OocK, and OocL.
The hypothetical ester 23 was predicted based on the PKS domain
architecture. Differences to the isolated congener 24 might result from
additional enzymatic activities in the oocydin producer.](image)

identical domain set to that found in the phormidolide
PKS.[22] OocJ1 exhibits an architecture that is, with variations,
found in PKSs incorporating 1,3-bisphosphoglycerate-derived
starter units.[23] In phormidolide biosynthesis, this first module
generates an unusual 2-methoxyacryl ester, which is
putatively elongated by a second module that introduces a
methylene β-branch. The next module, distributed among
OocJ, OocK, and OocL (OocJKL), is the proposed oxygen-
insertion module. This module is absent in the phormidolide
PKS.[22] Combination of these individual module actions
suggests compound 23 (Figure 4) as an oocydin precursor.
Based on this analysis, we suspected that haterumalide B (19)
and biselide B (21) are uncleaved PKS products with a non-
hydrolyzed methoxyvinyl moiety. Since uncleaved congers
have not been reported from the oocydin A producer S.
plymuthica 4Rx13, we reexamined the metabolites produced
by this strain. HPLC-based purification from culture extracts
allowed structure elucidation by NMR of a new congener (24;
Figure 4, Table S3 and Figures S14–S19). A related compo-

dent, haterumalide B (19), was reported in the patent
literature from another S. plymuthica strain (A 153), for which
the genome is not available.[24] Linking the uncleaved compo-
dent 24 to the ooc gene cluster suggests the occurrence of
highly similar PKS assembly lines in tunicates, sponges, and
free-living bacteria, and supports the existence of an oxygen
insertion module that includes OocK. It is therefore likely
that the structurally related haterumalides and biselides from
marine invertebrates are generated by highly similar routes,
likely from bacterial symbionts.

To our knowledge, OocK is the first characterized
modular PKS component that inserts atoms other than
carbon into growing backbones (except for thioester alcohol-
ysis).[25] Some distantly related oxygenases may have similar
oxygen-insertion functions. An oxygenase from FR901464
biosynthesis was suggested to catalyze oxygen insertion
during elongation, but at the thioester rather than the β-
keto moiety, resulting in a thio carbonate intermediate.[26]
However, later work concluded that this oxygenase is not a
BVMO, but rather an epoxidase.[27] Another putative
BVMO, CalD from the calycin pathway, was proposed to
accept an α-ketothioester intermediate and account for a net
one-carbon elongation following decarboxylation.[28] Further-
more, recent work suggests that the putative monoxygenase
domain in the protein MndA is responsible for Baeyer–
Villiger oxidative cleavage, giving rise to mandelalides.[29] This
biosynthetic model provides an ω-alkoxacyclet, rather than a
malonate derivative. MndA and CalD, which do not fall into the
PedG/OocK clade, remain to be functionally character-
ized (Figure 2).

The presence of genes encoding close OocK and PedG
homologs in other PKS clusters suggests that oxygen
insertion is a recurring PKS feature to install a terminal
hydroxycarboxylate pseudostarter and internal ester moie-
ties. Oxygenases of the OocK/PedG clade were identified in
five additional, as yet chemically unassigned trans-AT PKS
systems, which could possibly give rise to even higher
polyketide diversity.

In this work, we provide insights into the timing and
mechanism of polyketide cleavage using biochemical exper-
iments and bioinformatic analyses. The data suggest that for
oocydin, oxygen is inserted during polyketide elongation
through a Baeyer–Villiger-type reaction catalyzed by an
integral component of trans-AT PKSs, which occurs in various
unrelated polyketide pathways. Oxygen insertion accounts for
a moiety previously assumed to be carboxylated starter unit in
oocydin, suggesting common biosynthetic features among
oocydin-like polyketides isolated from bacteria, sponges, and
tunicates. Oxygen incorporation into polyketide backbones
expands the basic functional repertoire of PKSs and offers
attractive opportunities for biosynthetic diversification.

Acknowledgements

We thank F. Hemmerling, P. Moosmann and A. L. Vagstad for
discussions on experiments and A. F. Canovas Martinez and
F. Severi for technical assistance. We are grateful for funding
from the EU (ERC Advanced Project SynPlex to J.P.).

Conflict of interest

The authors declare no conflict of interest.

Keywords: Baeyer–Villiger oxidation · biosynthesis ·
natural products · polyketides · polyketide synthases

How to cite: Angew. Chem. Int. Ed. 2018, 57, 11644–11648
Angew. Chem. 2018, 130, 11818–11822
[1] a) C. Hertweck, Angew. Chem. Int. Ed. 2009, 48, 4688 –4716; Angew. Chem. 2009, 121, 4782 –4811; b) J. Piel, Proc. Natl. Acad. Sci. USA 2002, 99, 14002 –14007.

[2] A. T. Keatinge-Clay, Rev. Chem. 2017, 117, 5334 –5366.

[3] a) E. J. N. Helfrich, J. Piel, Nat. Prod. Rep. 2016, 33, 231 –316; b) J. Piel, Nat. Prod. Rep. 2010, 27, 996 –1047.

[4] a) C. T. Calderone, D. F. Iwig, P. C. Dorrstein, N. L. Kelleher, C. T. Walsh, Chem. Biol. 2007, 14, 835 –846; b) M. Jenner, S. Kosol, D. Griffith, S. Prasongpholchali, L. Manzi, A. S. Barrow, J. E. Moses, N. J. Oldham, J. R. Lewandowski, G. W. Chaffis, Nat. Chem. Biol. 2018, 14, 270; c) J. Moldenheuer, X. H. Chen, R. Borris, J. Piel, Angew. Chem. Int. Ed. 2007, 46, 8195 –8197; Angew. Chem. 2007, 119, 8343 –8345; d) J. Moldenheuer, D. C. G. Gotz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Süssmuth, M. Engeser, H. Gross, G. Bringmann, J. Piel, Angew. Chem. Int. Ed. 2010, 49, 1465 –1467; Angew. Chem. 2010, 122, 1507 –1509; e) B. Kuschebauch, B. Busch, K. Scherlach, M. Roth, C. Hertweck, Angew. Chem. Int. Ed. 2010, 49, 1460–1464; Angew. Chem. 2010, 122, 1502 –1506; f) P. Poplau, S. Frank, B. I. Morinaka, J. Piel, Angew. Chem. Int. Ed. 2013, 52, 13215 –13218; Angew. Chem. 2013, 125, 13457 –13460.

[5] J. Piel, G. P. Wen, M. Platzter, D. Q. Hui, ChemBioChem 2004, 5, 93 –98.

[6] a) G. Borroni, V. Brazzelli, R. Rosso, M. Pavan, Am. J. Dermatopathol. 1991, 13, 467 –474; b) S. Wan, F. Wu, J. C. Rech, M. E. Green, R. Balachandran, W. S. Horne, B. W. Day, P. E. Floreancig, J. Am. Chem. Soc. 2011, 133, 16668 –16679; c) R. L. L. Kellner, K. Dettrner, Oecologia 1996, 107, 293 –300.

[7] S. Sakemi, T. Ichiba, S. Kohimoto, G. Saucy, T. Higa, J. Am. Chem. Soc. 1988, 110, 4851 –4853.

[8] a) J. Piel, D. Q. Hui, G. P. Wen, D. Butzke, M. Platzter, N. Fusetani, S. Matsunaga, Proc. Natl. Acad. Sci. USA 2004, 101, 16222 –16227; b) M. C. Wilson, T. Mori, C. Ruckert, A. R. Uría, M. J. Helft, K. Takada, C. Gernert, U. A. Steffens, N. Heycke, S. Schmitt, C. Rinké, E. J. Helfrich, A. O. Brachmann, C. Gurgui, T. Wakimoto, M. Kracht, M. C. Tang, H. H. He, F. Zhang, H. Koshino, J. Harper, W. M. Hess, Microbiology 1999, 145 (Pt 12), 3557 –3564; c) B. H. Sato, K. Suenaga, H. Arimoto, K. Yamada, K. UCEDA, D. UEMURA, Tetrahedron Lett. 1999, 40, 6305 –6308.

[9] N. Takada, H. Sato, K. Suenaga, H. Arimoto, K. Yamada, K. Ueda, D. Uemura, Tetrahedron Lett. 1999, 40, 6309 –6312.

[10] a) J. J. Levenfors, R. Hedin, C. Thaning, B. Gerhardsson, C. J. Welch, Soil Biol. Biochem. 2004, 36, 677 –685; b) G. Strobel, J. Li, F. Sugawara, H. Koshino, J. Harper, W. M. Hess, Microbiology 1999, 145 (Pt 12), 3557 –3564; c) B. H. Sato, H. Nakajima, T. Fujita, S. Takase, S. Yoshimura, T. Kinoshita, K. Terano, J. Antibiot. 2005, 58, 634 –639.

[11] H. Kigoshi, I. Hayakawa, Chem. Rec. 2007, 7, 254 –264.

[12] M. J. Bertin, A. Vulpanovici, E. A. Monroe, A. Korobeynikov, D. H. Sherman, L. Gerwick, W. H. Gerwick, ChemBioChem 2016, 17, 164 –173.

[13] a) M. Hildebrandt, L. E. Waggoner, H. B. Liu, S. SUDEK, S. Allen, C. Anderson, D. H. Sherman, M. Haygood, Chem. Biol. 2004, 11, 1543 –1552; b) Y. H. Sun, H. Hong, F. Gilles, J. B. Spencer, P. P. Leadlay, ChemBioChem 2008, 9, 150 –156.

[14] B. Gerhardsson, C. Thaning, R. Weissmann, C. Welch, J. Borowicz, R. Hedman (Google Patents), US20030130121A1, 2003.

[15] a) J. B. Biggins, M. A. Melinda, S. F. Brady, J. Am. Chem. Soc. 2012, 134, 13192 –13195; b) J. Franke, K. Ishida, C. Hertweck, Angew. Chem. Int. Ed. 2012, 51, 11611–11615; Angew. Chem. 2012, 124, 11779 –11783; c) C. M. Thomas, J. Hothersall, C. L. Willis, T. J. Simpson, Nat. Rev. Microbiol. 2010, 8, 281 –289.

[16] M. C. Tang, H. Y. He, F. Zhang, G. L. Tang, ACS Catal. 2013, 3, 444 –447.

[17] A. S. Eustaquio, J. E. Janso, A. S. Ratnayake, C. J. O’Donnell, F. E. Kochen, Proc. Natl. Acad. Sci. USA 2014, 111, 3376 –3385.

[18] T. Wakimoto, Y. Egami, Y. Nakashima, Y. Wakimoto, T. Mori, T. Awakawa, T. Ito, H. KENNOMU, Y. ASAKAWA, J. PIEL, I. ABE, Nat. Chem. Biol. 2014, 10, 648 –655.

[19] J. Lopera, I. J. Miller, K. L. McPhail, J. C. Kwan, mSystems 2017, 2, e00096-17.

Manuscript received: May 8, 2018
Revised manuscript received: June 8, 2018
Accepted manuscript online: June 13, 2018
Version of record online: July 31, 2018