NONHYPERBOLIC COXETER GROUPS WITH MENDER BOUNDARY

MATTHEW HAULMARK, G. CHRISTOPHER HRUSKA, AND BAKUL SATHAYE

Abstract. A generic finite presentation defines a word hyperbolic group whose boundary is homeomorphic to the Menger curve. In this article we produce the first known examples of non-hyperbolic CAT(0) groups whose visual boundary is homeomorphic to the Menger curve. The examples in question are the Coxeter groups whose nerve is a complete graph on \(n \) vertices for \(n \geq 5 \). The construction depends on a slight extension of Sierpinski’s theorem on embedding 1-dimensional planar compacta into the Sierpinski carpet. We give a simplified proof of this theorem using the Baire category theorem.

1. Introduction

Many word hyperbolic groups have Gromov boundary homeomorphic to the Menger curve. Indeed random groups have Menger boundary with overwhelming probability [Cha95, DGP11]. Therefore, in a strong sense, Menger boundaries are ubiquitous among hyperbolic groups. This phenomenon depends heavily on the fact that the boundary of a one-ended hyperbolic group is always locally connected, a necessary condition since the Menger curve is a locally connected compactum.

However in the broader setting of CAT(0) groups, the visual boundary often fails to be locally connected, especially in the case when the boundary is one-dimensional. For instance the direct product \(F_2 \times \mathbb{Z} \) of a free group with the integers has boundary homeomorphic to the suspension of the Cantor set, which is one-dimensional but not locally connected. The CAT(0) groups with isolated flats are, in many ways, similar to hyperbolic groups, and are often viewed as the simplest nontrivial generalization of hyperbolicity. However, even in that setting many visual boundaries are not locally connected. For example if \(X \) is formed by gluing a closed hyperbolic surface to a torus along a simple closed geodesic loop, then its fundamental group \(G \) is a CAT(0) group with isolated flats that has non–locally connected boundary [MR99].

One might wonder whether the Menger curve boundary is a unique feature of the hyperbolic setting. Indeed, recently Kim Ruane observed that not a single example was known of a nonhyperbolic CAT(0) group with a visual boundary homeomorphic to the Menger curve, posing the following question.

Date: February 7, 2019.

2010 Mathematics Subject Classification. 20F67, 20E08.

Key words and phrases. Nonpositive curvature, Menger curve, Coxeter group.

1
Question 1.1 (Ruane). Does there exist a nonhyperbolic group \(G \) acting properly, cocompactly, and isometrically on a CAT(0) space \(X \) such that the visual boundary of \(X \) is homeomorphic to the Menger curve?

In this article we provide the first explicit examples of nonhyperbolic CAT(0) groups with Menger visual boundary.

Theorem 1.2. Let \(W \) be the Coxeter group defined by a presentation with \(n \) generators of order two such that the order \(m_{st} \) of \(st \) satisfies \(3 \leq m_{st} < \infty \) for all generators \(s \neq t \) (or more generally let \(W \) be any Coxeter group with nerve equal to the complete graph \(K_n \)).

1. If \(n = 3 \) the group \(W \) has visual boundary homeomorphic to the circle and acts as a reflection group on the Euclidean or hyperbolic plane.
2. If \(n = 4 \) the group \(W \) has visual boundary homeomorphic to the Sierpiński carpet and acts as a reflection group on a convex subset of \(\mathbb{H}^3 \) with fundamental chamber a (possibly ideal) convex polytope.
3. For each \(n \geq 5 \), the group \(W \) has visual boundary homeomorphic to the Menger curve.

The proof of this theorem depends on work of Hruska–Ruane determining which CAT(0) groups with isolated flats have locally connected visual boundary [HR] and subsequent work of Haulmark on the existence of local cut points in boundaries [Hau]. In particular, [Hau] gives a criterion that ensures the visual boundary of a CAT(0) group with isolated flats will be either the circle, the Sierpiński carpet, or the Menger curve (extending a theorem of Kapovich–Kleiner from the word hyperbolic setting [KK00]). The circle occurs only for virtual surface groups. In order to distinguish between the other two possible boundaries, one needs to determine whether the boundary is planar. In general the nerve of a Coxeter group does not have an obvious natural embedding into the visual boundary. However we show in this article that Coxeter groups with nerve \(K_n \) do admit an embedding of \(K_5 \) in the boundary and hence have non-planar boundary whenever \(n \geq 5 \).

By Bestvina–Kapovich–Kleiner [BKK02], we get the following corollary.

Corollary 1.3. Let \(W \) be a Coxeter group with at least 5 generators such that every \(m_{st} \) satisfies \(3 \leq m_{st} < \infty \). Then \(W \) acts properly on a contractible 4–manifold but does not admit a coarse embedding into any contractible 3–manifold. In particular, \(W \) is not virtually the fundamental group of any 3–manifold.

1.1. **Related Problems and Open Questions.** A word hyperbolic special case of Theorem 1.2 (when all \(m_{st} \) are equal and are strictly greater than 3) is due to Benakli [Ben92]. Related results of Bestvina–Mess, Champetier, and Bonk–Kleiner [BM91, Cha95, BK05] provide various methods for constructing embedded arcs and graphs in boundaries of hyperbolic groups.

In principle, any of the well-known hyperbolic techniques could be expected to generalize to some families of CAT(0) spaces with isolated flats,
although the details of such extensions would necessarily be more subtle than in the hyperbolic case. For example, as mentioned above many groups with isolated flats have non–locally connected boundary, and thus are not linearly connected with respect to any metric.

We note that the proof of Theorem 1.2 given here is substantially different from the methods used by Benakli in the hyperbolic setting. The proof here is quite short and depends only on elementary properties of Coxeter groups and Sierpiński’s classical embedding theorem, for which we provide a short self-contained proof.

Nevertheless it seems likely that many of the hyperbolic techniques mentioned above could also be extended to the present setting, which suggests the following natural questions.

Question 1.4. What conditions on the nerve of a Coxeter group W are sufficient to ensure that the open cone on the nerve L admits a proper, Lipschitz, expanding map into the Davis–Moussong complex of W? When does the nerve L embed in the visual boundary?

Question 1.5. Let G be a one-ended CAT(0) group with isolated flats. Does the visual boundary of G have the doubling property? If the boundary is locally connected, is it linearly connected? Note that the usual visual metrics on Gromov boundaries do not exist in the CAT(0) setting, so a different metric must be used—such as the metric studied in [OS15].

Question 1.6. Let W be the family of all nonhyperbolic Coxeter groups W with nerve a complete graph K_n where $n \geq 5$. Are all groups in W quasi-isometric? Can conformal dimension be used to distinguish quasi-isometry classes of groups in W? As above, one would need to select an appropriate metric on the boundary in order to make this question more precise.

1.2. **Acknowledgements.** During the preparation of this paper, the authors had many helpful conversations with Craig Guilbault, Mike Mihalik, Boris Okun, Kim Ruane, and Kevin Schreve. We are grateful for the insights obtained during these conversations. The authors also thank the referee for useful feedback that has led to improvements in the exposition.

This work was partially supported by a grant from the Simons Foundation (#318815 to G. Christopher Hruska).

2. **Arcs in the Sierpiński carpet**

In 1916, Sierpiński proved that every planar compactum of dimension at most one embeds in the Sierpiński carpet [Sie16]. The main result of this section is Proposition 2.3—a slight extension of Sierpiński’s theorem—which establishes the existence of embedded graphs in the Sierpiński carpet that connect an arbitrary finite collection of points lying on peripheral circles.

Although Sierpiński’s proof of the embedding theorem was rather elaborate, we present here a simplified proof using the Baire Category Theorem. The general technique of applying the Baire Category Theorem to function
spaces in order to prove embedding theorems is well-known in dimension theory and appears to originate in work of Hurewicz from the 1930s. The conclusion of Proposition 2.3 may not be surprising to experts, but we have provided the proof for the benefit of the reader.

We begin our discussion with a brief review of Whyburn’s topological characterization of planar embeddings of the Sierpiński carpet.

Definition 2.1 (Null family of subspaces). Let M be a compact metric space. A collection \mathcal{A} of subspaces of M is a null family if for each $\epsilon > 0$ only finitely many members of \mathcal{A} have diameter greater than ϵ. If \mathcal{A} is a null family of closed, pairwise disjoint subspaces, the quotient map $\pi: M \to M/\mathcal{A}$, which collapses each member of \mathcal{A} to a point, is upper semicontinuous in the sense that π is a closed map (see for example Proposition I.2.3 of [Dav86]).

Remark 2.2 (Planar Sierpiński carpets). A Jordan region in the sphere S^2 is a closed disc bounded by a Jordan curve. By a theorem of Whyburn [Why58], a subset $S \subset S^2$ is homeomorphic to the Sierpiński carpet if and only if it can be expressed as $S = S^2 - \bigcup \text{int}(D_i)$ for some null family of pairwise disjoint Jordan regions $\{D_1, D_2, \ldots\}$ such that $\bigcup D_i$ is dense in S^2. A peripheral circle of S is an embedded circle whose removal does not disconnect S. Equivalently the peripheral circles in a planar Sierpiński carpet $S \subset S^2$ are precisely the boundaries of the Jordan regions D_i. We will denote the collection of peripheral circles in S by P.

Let E_k be the k–pointed star, i.e., the cone on a set of k points. Let e_1, \ldots, e_k be the edges of E_k, which we will think of as embeddings of $[0,1]$ into E parametrized such that $e_i(0) = e_j(0)$ for all $i, j \in \{1, \ldots, k\}$.

Proposition 2.3. Let $P_1, \ldots, P_k \in \mathcal{P}$ be distinct peripheral circles in the Sierpiński carpet S, and fix points $p_i \in P_i$. There is a topological embedding $h: E_k \hookrightarrow S$ such that $h \circ e_i(1) = p_i$ for each $i \in \{1, \ldots, k\}$. Furthermore the image of E_k intersects the union of all peripheral circles precisely in the given points p_1, \ldots, p_k.

Proof. Let Q be the quotient space S/\sim formed by collapsing each peripheral circle $P \in \mathcal{P} - \{P_1, \ldots, P_k\}$ to a point. Our strategy is to first show that Q is an orientable, genus zero surface with k boundary curves. Then we apply the Baire Category Theorem and the fact that E_k is 1–dimensional to find embeddings of E_k that avoid the countably many peripheral points of Q. The conclusion of the Proposition is illustrated in Figure 1.

We first check that Q is a surface. Fix an embedding $S \hookrightarrow S^2$ as in Remark 2.2. We may form Q from S^2 in two steps as follows. First collapse each peripheral Jordan region to a point except for those bounded by the curves P_1, \ldots, P_k. By a theorem of R.L. Moore [Moo25], this upper semicontinuous quotient of S^2 is again homeomorphic to S^2. (In particular, the quotient is Hausdorff.) The space Q may be recovered from this quotient by removing the interiors of the regions bounded by P_1, \ldots, P_k. Therefore
Figure 1. An embedding of the graph E_5 that intersects the union of all peripheral circles precisely in the given points p_1, \ldots, p_5.

Q may be obtained from a 2–sphere by removing the interiors of k pairwise disjoint Jordan regions.

Let $\pi: \mathcal{S} \to Q$ be the associated quotient map. By a slight abuse of notation we let $P_i \subset Q$ and $p_i \in Q$ denote $\pi(P_i)$ and $\pi(p_i)$. A peripheral point of Q is the image of a peripheral circle $P \in \mathcal{P} - \{P_1, \ldots, P_k\}$. Observe that the peripheral points are a countable dense set in Q.

Let E be the space of all embeddings $\iota: E_k \hookrightarrow Q$ such that for each i we have $\iota \circ e_i(1) = p_i$ and the image of ι intersects $P_1 \cup \cdots \cup P_k$ only in the k points p_1, \ldots, p_k. We fix a metric ρ on Q and equip E with the complete metric given by $d(f,g) = \sup \{ \rho(f(x), g(x)) \mid x \in E_k \}$. Our strategy is to show that for each peripheral point p, the set of embeddings avoiding p is open and dense in E. It then follows by the Baire Category Theorem that there exists an embedding $\iota \in E$ whose image contains no peripheral points.

Toward this end, we fix an arbitrary peripheral point $p \in Q$. Since E_k is compact, the set of embeddings avoiding p is open, so we only need to prove that it is dense. Suppose $f \in E$ and p is in the image of f. Let ϵ be any positive number small enough that the ball $B(p, \epsilon)$ lies in the interior of Q. Since f is a homeomorphism onto its image, the image $f(E_k)$ is 1–dimensional and thus does not contain any 2–dimensional disc. In particular, there is at least one point $q \in B(p, \epsilon)$ not in the image $f(E_k)$. Apply an isotopy Φ_t to Q keeping $Q - B(p, \epsilon)$ fixed and such that $\Phi_1(q) = p$. Then $\Phi_1 \circ f: E_k \hookrightarrow Q$ is an element of E which misses p. Furthermore its distance from f is less than 2ϵ. Since ϵ may be chosen arbitrarily small, we conclude that the set of embeddings avoiding p is open and dense in E.

Since the quotient map $\pi: \mathcal{S} \to Q$ is one-to-one on the complement of the peripheral circles, we may lift any embedding $f \in E$ that avoids peripheral points to an embedding $E_k \hookrightarrow \mathcal{S}$ satisfying the conclusion of the proposition.
Indeed by compactness, $f(E_k)$ is closed in Q, so its preimage $\pi^{-1}f(E_k)$ in S is closed. The restriction of π to this compact preimage is a continuous bijection onto the Hausdorff space $f(E_k)$, so there is a continuous inverse function π^{-1} defined on $f(E_k)$. The composition $\pi^{-1}f$ is the desired lift. □

3. COXETER GROUPS AND THE DAVIS–MOUSSONG COMPLEX

Let Υ be a finite simplicial graph with vertex set S whose edges are labeled by integers ≥ 2. Let m_{st} denote the label on the edge $\{s, t\}$. If s and t are distinct vertices not joined by an edge, we let $m_{st} = \infty$. The Coxeter group determined by Υ is the group $W = \langle S \mid s^2, (st)^{m_{st}} \text{ for all } s, t \text{ distinct elements of } S \rangle$.

A Coxeter system (W, S) is a Coxeter group W with generating set S as above. For each Coxeter system (W, S) the group W acts on the associated Davis–Moussong complex $\Sigma(W, S)$, a piecewise Euclidean CAT(0) complex such that the link L of each vertex is equal to the nerve, a metric simplicial complex with a 0–simplex for each generator $s \in S$ and a higher simplex for each subset $T \subseteq S$ such that T generates an infinite subgroup of W \cite{Dav83, Mou88, Dav08}.

We state here a folklore result regarding limit sets of special subgroups (for a proof see, for example, Świątkowski \cite{Swi16}).

Proposition 3.1. Let (W, S) be any Coxeter system and let W_T denote the special subgroup of W generated by a subset $T \subset S$.

1. The Davis–Moussong complex $\Sigma(W_T, T)$ is a convex subspace of $\Sigma(W, S)$ whose limit set is naturally homeomorphic to the visual boundary of $\Sigma(W_T, T)$.
2. For any two subsets T and T' of S, we have $\Lambda \Sigma(W_T, T) \cap \Lambda \Sigma(W_{T'}, T') = \Lambda \Sigma(W_{T \cap T'}, T \cap T')$.

Definition 3.2 (Complete nerve). A Coxeter group has complete nerve if the nerve L is a complete graph K_n. In particular the nerve contains every possible 1–simplex (every m_{st} is finite) and does not contain a 2–simplex (every three generator special subgroup is infinite). In this case, the nerve L is equal to the graph Υ, the Davis–Moussong complex is 2–dimensional, each face is isometric to a regular Euclidean $(2m_{st})$–sided polygon, and the nerve L has a natural angular metric in which each edge $\{s, t\}$ has length $\pi - (\pi/m_{st})$. We refer the reader to \cite{Dav08} for more background on Coxeter groups from the CAT(0) point of view.

Remark 3.3 (Combinatorial description of complete nerves). One can easily determine whether a Coxeter group has a complete graph as its nerve by examining the labels on the graph Υ. Indeed if Υ is a complete graph, a set of three generators $\{r, s, t\}$ bounds a 2–simplex in L precisely when it generates a finite subgroup, i.e., when $1/m_{rs} + 1/m_{st} + 1/m_{rt} < 1$. Therefore the nerve L is 1–dimensional if for each triangle, the sum above is ≥ 1.

A particularly clean special case is when all m_{st} satisfy $3 \leq m_{st} < \infty$. In this large type setting, it is evident that all three-generator special subgroups are infinite and the nerve is a complete graph.

Coxeter groups with all $m_{st} \geq 3$ always have isolated flats—even when the nerve is not complete—by an observation of Wise (see [Hru04] for details). The following analogous result for Coxeter groups with complete nerve follows immediately from Corollary D of [Cap09], since two adjacent edges in the nerve cannot both have label 2.

Proposition 3.4. Coxeter groups with complete nerve have isolated flats.

By Hruska–Kleiner [HK05], the groups acting geometrically on CAT(0) spaces with isolated flats have a well-defined boundary in the following sense: If G acts geometrically on two CAT(0) spaces X and Y with isolated flats, then there exists a G–equivariant homeomorphism between their visual boundaries ∂X and ∂Y. This common boundary will be denoted ∂G.

Proposition 3.5. Let W be a Coxeter group whose nerve is a complete graph K_n with $n \geq 3$. The boundary ∂W of W is homeomorphic to either the circle, the Sierpiński carpet, or the Menger curve.

Proof. A theorem due to Serre [Ser77, §I.6.5] states that if G is generated by a finite number of elements s_1, \ldots, s_n such that each s_i and each product $s_i s_j$ has finite order, then G has Serre’s Property FA. In other words, every action of G on a simplicial tree has a global fixed point. Evidently W satisfies Serre’s criterion, and hence W does not split as a nontrivial graph of groups.

Since W acts geometrically on a 2–dimensional CAT(0) space, its boundary has dimension at most 1 by [Bes96]. As W is infinite and not virtually free the dimension of the boundary must be exactly 1, provided that $n \geq 3$.

The first author proves in [Hau] that a CAT(0) group with isolated flats with 1–dimensional boundary that does not split over a virtually cyclic subgroup must have visual boundary homeomorphic to either the circle, the Sierpiński carpet, or the Menger curve. □

Infinite Coxeter triangle groups always act as reflection groups on either the Euclidean plane or the hyperbolic plane. In particular they have circle boundary. The following proposition examines the case of Coxeter groups with nerve K_4.

Proposition 3.6. Let W be a Coxeter group whose nerve L is a complete graph K_4 on 4 vertices. Then the boundary ∂W of W is homeomorphic to the Sierpiński carpet, and the limit set of each three generator special subgroup of W is a peripheral circle.

Proof. The nerve L of W is planar, so W embeds as a special subgroup of a Coxeter group with visual boundary S^2 by a well-known doubling construction. (See, for example, [DO01].) Indeed, one embeds L into S^2, and then fills each complementary region in the sphere with 2–simplices by adding a
vertex in the interior of the region and coning off the boundary of the region to the new vertex. Each such cone is “right-angled” in the sense that each added edge \{s, t\} is assigned the label \(m_{st} = 2\). This procedure produces a metric flag triangulation \(\hat{L}\) of \(S^2\), which has \(L\) as a full subcomplex. Let \(W_{\hat{L}}\) be the Coxeter group determined by the 1-skeleton of \(\hat{L}\), and having the triangulated 2-sphere \(\hat{L}\) as its nerve. Then \(\partial W_{\hat{L}}\) is homeomorphic to \(S^2\). By Proposition 3.1(1), it follows that \(\partial W\) is planar.

Let \(T\) be the collection of three generator special subgroups of \(W\). Each element \(W' \in T\) is an infinite triangle reflection group, i.e., either Euclidean or hyperbolic type. By Proposition 3.1 the circle boundary of each \(W' \in T\) embeds in \(\partial W\), and these circles are pairwise disjoint. Since \(\partial W\) is planar and contains more than one circle, it must be homeomorphic to the Sierpiński carpet by Proposition 3.5.

The group \(W\) is hyperbolic relative to \(T\) by [Cap09]. Hung Cong Tran has shown that the Bowditch boundary is the quotient space obtained from the visual boundary \(\partial W\) by collapsing the limit sets of the three generator special subgroups and their conjugates to points [Tra13]. Since \(W\) has Property FA, its Bowditch boundary \(\partial (W, T)\) has no cut points [Bow01]. It follows that the limit set of a three-generator special subgroup (or any of its conjugates) is always a peripheral circle of the Sierpiński carpet. □

In fact, the group \(W\) in the preceding proposition acts on \(H^3\) as a geometrically finite reflection group, as described below.

Remark 3.7. In the special case where the nerve is \(K_4\) and every \(m_{st} = 3\), the group \(W\) is an arithmetic nonuniform lattice acting on \(H^3\) as the group generated by the reflections in the faces of a regular ideal tetrahedron and is commensurable with the fundamental group of the figure eight knot compliment and the Bianchi group \(\text{PGL}(2, O_3)\). The relationship between \(W\) and the figure eight knot group is discussed, for example, by Maclachlan–Reid (see Section 4.7.1 and Figure 13.2 of [MR03]).

More generally each Coxeter group with nerve \(K_4\) acts as a reflection group on a convex subset of \(H^3\) with fundamental chamber a possibly ideal convex polytope. Start with the triangulation \(\hat{L}\) of \(S^2\) described in the proof of Proposition 3.6 and replace each right-angled cone on a Euclidean triangle with a single 2-simplex. The dual polytope \(K\) has a (possibly ideal) hyperbolic metric by Andreev’s theorem (see Theorem 3.5 of [Sch09] for a detailed explanation). The reflections in the faces of \(K\) generate a Coxeter group that contains \(W\) as a special subgroup. The union of all \(W\)-translates of \(K\) is a convex subspace of \(H^3\) on which \(W\) acts as a reflection group with fundamental chamber \(K\).

4. **Proof of the main theorem**

The goal of this section is to prove that the boundary of a Coxeter group \(W\) is homeomorphic to the Menger curve when the nerve is \(K_n\) for \(n \geq 5\).
By Proposition 3.5, it suffices to show that ∂W is nonplanar when $n \geq 5$. Thus the following result completes the proof of Theorem 1.2.

Proposition 4.1. If W is any Coxeter group with nerve K_n for $n \geq 5$, then the complete graph K_5 embeds in ∂W. In particular, ∂W is not planar.

Proof. Let W_5 be any five generator special subgroup of W. By Proposition 3.1(1) it suffices to embed K_5 into ∂W_5.

Suppose s_1, \ldots, s_5 are the five generators of W_5. For each $i \in \{1, \ldots, 5\}$, let W_i be the special subgroup of W_5 generated by $\{s_1, \ldots, \hat{s}_i, \ldots, s_5\}$. The limit set ΛW_i is homeomorphic to the Sierpinski carpet by Proposition 3.6. Similarly for each $i \neq j$ in $\{1, \ldots, 5\}$ let $W_{i,j}$ denote the special subgroup generated by $\{s_1, \ldots, \hat{s}_i, \ldots, \hat{s}_j, \ldots, s_5\}$, whose limit set is a circle.

Since $W_{i,j}$ is a subgroup of W_i, its limit set is a peripheral circle of the Sierpinski carpet ΛW_i, and similarly it is a peripheral circle in the carpet ΛW_j. Indeed this circle is precisely the intersection of these two Sierpinski carpets by Proposition 3.1(2). The five Sierpinski carpets ΛW_i and their circles of intersection are illustrated in Figure 2.

Choose points $p_{i,j}$ on the circles $\Lambda W_{i,j}$ such that $p_{i,j} = p_{j,i}$ for $i \neq j$. Let E_i be a collection of 4-pointed stars for $1 \leq i \leq 5$. For a fixed i, we label the four edges of E_i as $e_{i,j}$, where $1 \leq j \leq 5$ and $j \neq i$. By Proposition 2.5 for every i, there is a topological embedding $h_i: E_i \to \partial W_i$ such that $h_i \circ e_{i,j}(1) = p_{i,j} \in \partial W_{i,j}$. Then $h_i \circ e_{i,j}(0)$ is the center of the star in ΛW_i, and we will denote it by v_i.

The union of the five stars is an embedded complete graph K_5 in ∂W_5. Indeed, we have 5 vertices v_1, \ldots, v_5 and an edge between every two vertices. An edge between vertices v_i and v_j is given by concatenating the images of the edges $e_{i,j}$ and $e_{j,i}$ in ΛW_i and ΛW_j respectively. These edges do not intersect except at their endpoints v_i. \square

References

[Ben92] N. Benakli. *Polyèdres hyperboliques: passage du local au global*. PhD thesis, Université Paris–Sud, 1992.

[Bes96] Mladen Bestvina. Local homology properties of boundaries of groups. *Michigan Math. J.*, 43(1):123–139, 1996.

[BK05] Mario Bonk and Bruce Kleiner. Quasi-hyperbolic planes in hyperbolic groups. *Proc. Amer. Math. Soc.*, 133(9):2491–2494, 2005.

[BKK02] Mladen Bestvina, Michael Kapovich, and Bruce Kleiner. Van Kampen’s embedding obstruction for discrete groups. *Invent. Math.*, 150(2):219–235, 2002.

[BM91] Mladen Bestvina and Geoffrey Mess. The boundary of negatively curved groups. *J. Amer. Math. Soc.*, 4(3):469–481, 1991.

[Bow01] B.H. Bowditch. Peripheral splittings of groups. *Trans. Amer. Math. Soc.*, 353(10):4057–4082, 2001.

[Cap09] Pierre-Emmanuel Caprace. Buildings with isolated subspaces and relatively hyperbolic Coxeter groups. *Innov. Incidence Geom.*, 10:15–31, 2009.

[Cha95] Christophe Champetier. Propriétés statistiques des groupes de présentation finie. *Adv. Math.*, 116(2):197–262, 1995.
Figure 2. The five Sierpiński carpets $\Lambda W_4^1, \ldots, \Lambda W_4^5$ and their circles of intersection. The dotted edges between carpets indicate the pairs of peripheral circles that are identified in ∂W_5.

[Dav83] Michael W. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. *Ann. of Math. (2)*, 117(2):293–324, 1983.

[Dav86] Robert J. Daverman. *Decompositions of manifolds*, volume 124 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.

[Dav08] Michael W. Davis. *The geometry and topology of Coxeter groups*, volume 32 of *London Mathematical Society Monographs Series*. Princeton University Press, Princeton, NJ, 2008.

[DGP11] François Dahmani, Vincent Guirardel, and Piotr Przytycki. Random groups do not split. *Math. Ann.*, 349(3):657–673, 2011.

[DO01] Michael W. Davis and Boris Okun. Vanishing theorems and conjectures for the ℓ^2–homology of right-angled Coxeter groups. *Geom. Topol.*, 5:7–74, 2001.

[Hau] Matthew Haulmark. Boundary classification and 2-ended splittings of groups with isolated flats. To appear in *J. Topology*. arXiv:1704.07937.
NONHYPERBOLIC COXETER GROUPS WITH MENGER BOUNDARY

[HK05] G. Christopher Hruska and Bruce Kleiner. Hadamard spaces with isolated flats. *Geom. Topol.*, 9:1501–1538, 2005. With an appendix by the authors and Mohammad Hindawi.

[HR] G. Christopher Hruska and Kim Ruane. Connectedness properties and splittings of groups with isolated flats. Preprint, arXiv:1705.00784 [math.GR].

[Hru04] G. Christopher Hruska. Nonpositively curved 2–complexes with isolated flats. *Geom. Topol.*, 8:205–275, 2004.

[KK00] Michael Kapovich and Bruce Kleiner. Hyperbolic groups with low-dimensional boundary. *Ann. Sci. École Norm. Sup.* (4), 33(5):647–669, 2000.

[Moo25] R.L. Moore. Concerning upper semi-continuous collections of continua. *Trans. Amer. Math. Soc.*, 27(4):416–428, 1925.

[Mou88] Gabor Moussong, *Hyperbolic Coxeter groups*. PhD thesis, Ohio State Univ., 1988.

[MR99] Michael Mihalik and Kim Ruane. CAT(0) groups with non–locally connected boundary. *J. London Math. Soc.* (2), 60(3):757–770, 1999.

[MR03] Colin Maclachlan and Alan W. Reid. *The arithmetic of hyperbolic 3–manifolds*, volume 219 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2003.

[OS15] Damian Osajda and Jacek Świątkowski. On asymptotically hereditarily aspherical groups. *Proc. Lond. Math. Soc.* (3), 111(1):93–126, 2015.

[Sch09] Timothy A. Schroeder. Geometrization of 3–dimensional Coxeter orbifolds and Singer’s conjecture. *Geom. Dedicata*, 140:163–174, 2009.

[Ser77] Jean-Pierre Serre. *Arbres, amalgames, SL_2*, volume 46 of *Astérisque*. Société Mathématique de France, Paris, 1977. Written in collaboration with Hyman Bass.

[Sie16] W. Sierpiński. Sur une courbe cantoriennne qui contient une image biunivoque et continue de toute courbe donnée. *C.R. Acad. Sci. Paris*, 162:629–632, 1916.

[Świ16] J. Świątkowski. Hyperbolic Coxeter groups with Sierpiński carpet boundary. *Bull. Lond. Math. Soc.*, 48(4):708–716, 2016.

[Tra13] Hung Cong Tran. Relations between various boundaries of relatively hyperbolic groups. *Internat. J. Algebra Comput.*, 23(7):1551–1572, 2013.

[Why58] G.T. Whyburn. Topological characterization of the Sierpiński curve. *Fund. Math.*, 45:320–324, 1958.

DEPARTMENT OF MATHEMATICS, 1326 STEVENSON CENTER, VANDERBILT UNIVERSITY, NASHVILLE, TN 37240, USA

E-mail address: m.haulmark@vanderbilt.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF WISCONSIN–MILWAUKEE, PO BOX 413, MILWAUKEE, WI 53211, USA

E-mail address: chruska@uwm.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WAKE FOREST UNIVERSITY, 127 MANCHESTER HALL, PO BOX 7388, WINSTON-SALEM, NC 27109, USA

E-mail address: sathaybv@wfu.edu