Perturbation of Calcium Homeostasis by CCl₄ in Rats Pretreated with Chlordecone and Phenobarbital

by Arvind K. Agarwal* and Harihara M. Mehendale+†

Introduction

Various chemical toxins that initiate toxic events leading to liver cell death exhibit marked alterations in intracellular Ca²⁺ homeostasis with excessive accumulation of Ca²⁺ (1,2). The intracellular Ca²⁺ sequestration has been implicated as a potential mediator of toxic events which lead to hepatic cell death (3,4). Previous work from this laboratory has established the remarkable potentiation of CCl₄ hepatotoxicity and lethality by chlordecone (chlorinated insecticide, Kepone, CD) pretreatment in male (5,6) and female rats (7). Although an enhanced bioactivation of CCl₄ in CD-pretreated rats was reported (8), the quantum of increased bioactivation was considered insufficient to explain the 70-fold increase in lethality in these animals as compared to phenobarbital pretreated rats which exhibited only 2-fold increase in lethality (6).

With this background, the changes in hepatocellular Ca²⁺ homeostasis associated with potentiation of CCl₄ toxicity by CD were investigated. Also, in view of the earlier findings indicating stimulated bioactivation of CCl₄ in CD-treated animals (8), it was important to determine if enhanced bioactivation of CCl₄ by CD pretreatment resulted in greater destruction of cytochrome P-450. PB pretreatment was used as a positive control for the potentiation of CCl₄ hepatotoxicity.

Methods

Male Sprague-Dawley rats weighing 200 to 225 g (Charles River Breeding Laboratories, Wilmington, MA) were housed in a 12-hr photoperiod on a corn cob bedding untreated with any known inducers. The animals were maintained on normal commercial powdered rat chow (Ralston Purina Rat Chow Co., St. Louis, MO) or the diet containing 10 ppm CD or 225 ppm PB prepared as described previously (5) for 15 days. On day 15 a group of rats received a single IP injection of 100 µL CCl₄/kg in corn oil vehicle (1 mL/kg) and sacrificed at 0, 0.5, 2, 6, 12, 24 and 36 hr. Hepatic microsomal cytochrome P-450 was determined by the method of Omura and Sato (9). Other groups of rats received a single IP injection of 25 to 200 µL CCl₄/kg and sacrificed 12 hr later. Control animals received only the vehicle. Ca²⁺ levels in the whole liver, mitochondria, microsomes and cytosolic fraction were determined in nitric acid-digested samples by using atomic absorption spectrophotometry.

Results and Discussion

Hepatic microsomal cytochrome P-450 levels were determined at the time the animals would have received CCl₄ or at various time points after CCl₄ administration. CD treatment increased the hepatic microsomal P-450 by about 60%, whereas PB almost doubled P-450 levels (Fig. 1). CCl₄ administration (100 µL/kg) to these...
rats caused a progressive and time-dependent destruction of P-450 (Fig. 1A). The percent destruction remained the same in both CD- and PB-pretreated animals, despite the unequal induction of cytochrome P-450. Administration of different doses of CCl₄ (25–200 μL/kg) caused a significant destruction of P-450 at all the doses (Fig. 1B). In the rats maintained on normal diet, these doses of CCl₄ did not affect P-450 levels. These data are suggestive of enhanced bioactivation of CCl₄ in CD and PB pretreated animals. Previous studies (8,10) have shown greater \textit{in vivo} and \textit{in vitro} metabolism of CCl₄. Since this enhanced metabolism of CCl₄ occurs at lesser increases in P-450 levels, these findings are consistent with induction of specific form(s) of CCl₄-bioactivating hemoprotein by CD (10). However, in view of remarkable differences in the potentiation of CCl₄ toxicity between PB and CD treatments, it is necessary to consider factors other than just bioactivation that might be playing a role in initiating or promoting hepatic cell death due to CCl₄ poisoning.

Dietary exposure to CD or PB did not influence whole liver or subcellular Ca²⁺ levels. CCl₄ administration at a dose of 200 μL/kg to rats maintained on normal diet caused a significant rise in Ca²⁺ levels, but lower doses had no effect. Previous studies suggest that these animals recover to normal by 36 hr (11,12). A significant elevation in whole liver Ca²⁺ levels was evident after CCl₄ administration to both CD- and PB-pretreated rats at all four doses used (Fig. 2A), but the increase was much higher in CD-pretreated animals. These results are consistent with our earlier observations which indicated that animals receiving CD + 100 μL CCl₄/kg exhibit total hepatic failure with extensive hepatocellular necrosis which progresses and leads to animal death by 36 hr. In contrast, the animals receiving normal diet or PB + CCl₄ do not show such extensive necrosis, and these animals recover later (6,10,12).

Increased Ca²⁺ levels after CCl₄ administration were readily evident in mitochondria (Fig. 2B) due to a continuous influx of extracellular Ca²⁺ in cytosol (Fig. 2C). Microsomes also play a role in sequestering increased cytosolic Ca²⁺ levels (Fig. 2D); this was especially evident at higher doses of CCl₄. Plasma membrane changes taking place presumably due to increased lipid peroxidation or other factors consequent to CCl₄ bioactivation disrupt the permeability barrier with a consequent influx of Ca²⁺ which results in massive Ca²⁺ accumulation in the cell. Although, hepatic mitochondria and microsomes continue to regulate ever increasing cytosolic Ca²⁺ by increased sequestration.
the cytosolic Ca\(^{2+}\) levels still remain high (Fig. 2C), leading finally to cell death. Our earlier time-course histomorphometric studies (11,12) indicate that whereas animals treated with CCl\(_4\) (100 μL/kg) recover from liver damage by virtue of hepatocellular repair and renovation, those treated with CD + CCl\(_4\) do not. Instead, 3–4 hr after CCl\(_4\) when hepatocellular repair would have occurred (11,12), a progressive increase in cytosolic Ca\(^{2+}\) occurs in animals receiving the CD + CCl\(_4\) combination treatment, suggesting a cause-effect relationship. In animals receiving CCl\(_4\) alone, Ca\(^{2+}\) homeostasis is unperturbed, allowing the hepatocellular repair, renovation and recovery.

REFERENCES

1. Agarwal, A. K., and Mehendale, H. M. Excessive hepatic accumulation of intracellular Ca\(^{2+}\) in chlordecone potentiated CCl\(_4\) toxicity. Toxicology 30: 17–24 (1984).

2. Farber, J. L. Reactions of the liver to injury: necrosis. In: Toxic Injury of the Liver, Part A (E. Farber and M. M. Fisher, Eds.), Marcel Dekker, New York, 1979, pp. 215–241.

3. Schanne, F. A. X., Kane, A. B., Young, E. E., and Farber, J. L. Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702 (1979).

4. Smith, M. I., Thor, H., and Orrenius, S. Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science 213: 1257–1259 (1981).

5. Curtis, L. R., Williams, W. L., and Mehendale, H. M. Potentiation of carbon tetrachloride following preexposure to chlordecone (Kepone) in the male rat. Toxicol. Appl. Pharmacol. 51: 283–288 (1979).

6. Klingensmith, J. S., and Mehendale, H. M. Potentiation of CCl\(_4\) lethality by chlordecone. Toxicology Letters 11: 149–154 (1982).

7. Agarwal, A. K., and Mehendale, H. M. Potentiation of CCl\(_4\) hepatotoxicity and lethality by chlordecone in female rats. Toxicology 26: 231–242 (1983).

8. Klingensmith, J. S., and Mehendale, H. M. Hepatic microsomal metabolism of CCl\(_4\) after pretreatment with chlordecone, mirex or phenobarbital in male rats. Drug Metab. Dispos. 11: 329–334 (1983).

9. Omura, T., and Sato, R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370–2378 (1964).

10. Mehendale, H. M. Potentiation of halomethane hepatotoxicity. Fundam. Appl. Toxicol. 4: 295–308 (1984).

11. Lockard, V. G., Mehendale, H. M., and O’Neal, R. M. Chlordecone induced potentiation of carbon tetrachloride hepatotoxicity. A morphometric and biochemical study. Exp. Mol. Pathol. 39: 246–255 (1983).

12. Lockard, V. G., Mehendale, H. M., and O’Neal, R. M. Chlordecone induced potentiation of carbon tetrachloride hepatotoxicity. A light and electron microscopic study. Exp. Molec. Pathol. 39: 230–245 (1983).