Dynamic sustainable productivity growth of Dutch dairy farming

Liyun Zhu¹, Alfons Oude Lansink²*

¹ Hebei Agricultural University, Hebei, China, ² Wageningen University, Wageningen, The Netherlands

* alfons.oudelansink@wur.nl

Abstract

The economic, environmental and social sustainability of Dutch dairy farms have attracted increasing societal concern in the past decades. In this paper, we propose a recently developed dynamic Luenberger indicator based on the by-production model to measure dynamic productivity growth in the economic, environmental and social dimensions of sustainability of Dutch dairy farms. Subsequently, we investigate the statistical associations between productivity growth and socio-economic factors using the OLS bootstrap regression model. We find that dairy farms have suffered a decline in dynamic sustainable productivity growth, especially in the environmental dimension where it is more pronounced than in the economic and social dimensions. Furthermore, we find that both technical and scale inefficiency change contribute to the decline of environmental productivity growth. Specialization and government support are associated with a higher economic and environmental sustainability productivity growth, and with a decreased growth of social sustainable productivity. We found no significant association between the age of the oldest entrepreneur, financial structure, farm size or cost of advisory service and dynamic productivity growth in the three sustainability dimensions. The results provide insights into potential pathways towards improving the three pillars of sustainability.

1. Introduction

The concept of sustainable agricultural production has become key to policy recommendations in the European Union and elsewhere in the past decades. Montabon et al. [1] proposed that environmental and social issues are increasingly prioritized over economic issues. Dairy farms that use more fertilizer inputs, may put pressure on the environment through air, water and soil emissions [2]. For instance, the nitrogen surplus on many dairy farms results in leaching of soil nitrate to groundwater and loss of nitrous oxide [3]; also, P₂O₅ surpluses above 5Kg/ha/year increase the risk of P losses to water [4]. Currently, the Netherlands has the highest N surplus per hectare of agricultural land in the EU, and Dutch dairy cows have the highest per cow emission of N in the EU [5]. From the societal perspective, animal welfare and animal health in dairy farming have been the subject of increasing societal concern [6]. Milk yield is associated with lower fertility and higher incidence of production diseases such as mastitis and laminitis, indicating pursuing higher yields comes at the cost of lower welfare of dairy cows in the long term [9]. National governments and stakeholders within the supply chain have reacted to these increasing societal concerns by introducing environmental regulations on emissions and the use of animal manure, and by introducing animal welfare concepts.
The relevant economic literature on sustainability assessment of dairy farms can be classified into two major streams. The first stream focuses on a single dimension of sustainability beyond economic sustainability. The majority of these studies evaluated economic performance [10, 11], and environmental sustainability [12–17]. Only a few studies investigated the social impacts of dairy farms, mainly because of methodological and data shortcomings [18]. Although the welfare assessment of dairy calves [19, 20] as well as the relationship between animal welfare and technical efficiency of dairy farms [21, 22] have been studied, only a few studies take animal welfare into account as an input or output indicator of the production process when examining dairy farm performance [23, 24]. The second stream of literature includes integrated sustainability assessments of dairy farms, incorporating economic, environmental and social factors through the MOTIFS approach, sustainability scorecard or sustainability index (SI) [25–28]. (However, the results of these studies rely on stakeholders’ subjective weights of sustainability indicators.

This study proposes the use of Data Envelopment Analysis (DEA) in assessing the sustainability improvements on Dutch dairy farms. DEA has two main advantages that make it a useful method for evaluating sustainability. The first is that it does not require an ex-ante assumption about the functional specification of the production frontier which defines the best performing farms in the sample and indicates the potential for sustainability improvement. Second, the method allows for combining monetary and non-monetary inputs and outputs, i.e., social and environmental sustainability indicators can be included in the analysis along with economic indicators. Nevertheless, comprehensive sustainability assessments incorporating the three sustainability dimensions (economic, social and environmental) are currently lacking [29, 30]. In the existing DEA literature, sustainability has been frequently assessed from the perspective of (in) efficiency for a specific time period. A more recent example of this approach is the seminal work of [31] who introduced the by-production model which can consider two sub-frontiers to characterize the good and bad outputs production process. Dakpo and Oude Lansink [32] extended the by-production model to the dynamic setting, accounting for the adjustment costs associated with investments in new capital assets [33–38]. Studies measuring dynamic productivity growth in each of the three pillars of sustainability are missing to date. Such information could provide guidance for future policy interventions that seek to enhance farm performance and sustainable development. Our review of the relevant literature shows that previous studies on sustainability evaluation of dairy farms have typically addressed two out of the three sustainability dimensions. There are, to the best of our knowledge, no studies that have analyzed the productivity growth of the three dimensions of sustainability, neither in a static context, nor in a dynamic context.

In the light of the foregoing, the objective of this paper is to measure dynamic sustainable productivity growth in the three sustainability dimensions and to identify the main farm and farmer characteristics that drive dynamic sustainable productivity growth. The empirical application focuses on panel data of Dutch dairy farms over the period 2015–2018. This paper contributes to the literature in two ways. First, we develop a new framework of the dynamic Luenberger indicator combined with the by-production model, which can estimate productivity growth of the economic, environmental and social sustainability dimensions simultaneously. Second, the proposed model accounts for sluggish adjustment of quasi-fixed factors. The main research questions addressed in this paper are: (1) what was the dynamic sustainable productivity growth of Dutch dairy farms in the period 2015–2018? (2) What were the main drivers of dynamic sustainable productivity growth on Dutch dairy farms in the period 2015–2018?

The remainder of this paper is organized as follows: the next section outlines the methodology for computing dynamic Luenberger sustainable productivity growth and analyzing the associated relationship between productivity growth and socio-economic farm-and farmer characteristics. Section 3 describes the dataset, the main inputs and outputs used for the dynamic sustainable productivity growth evaluation, as well as the farm- and farmer characteristic influencing the dynamic...
2. Method

2.1 The Luenberger indicator of dynamic sustainable productivity growth

The model in this paper is inspired by the enhanced Russell-based directional distance measure for assessing the output-specific and input-specific dynamic productivity change proposed by [38]. In order to assess the economic, environmental and social sustainability productivity growth, this paper models the dairy farm’s production technology as the intersection of three sub-technologies: the first and second technology generate the intended economic and social outputs, respectively, whereas the third technology generates the unintended environmental outputs.

Suppose we have a data series in time \(t \), consisting of inputs and outputs. The inputs are given by \(v' \), a vector of variable inputs which represents the pollution-generating inputs, \(k' \), a vector of quasi-fixed inputs which are subject to sluggish adjustment through investments \(f' \). \(f' \) is a vector of fixed inputs which represent the nonpollution-generating inputs. The outputs are given by \(y'_i \), a vector of intended outputs reflecting the economic indicators, \(y'_e \), a vector of intended outputs reflecting the social indicators and \(y'_s \), the vector of unintended environmental outputs. The representation of pollution-generating technology in our study is based on the by-production model [31, 39]. The production technology \(\psi' \) is given by the intersection of three sub-technologies, one for the economic good outputs \(\psi'_e \), the second for the social good outputs \(\psi'_s \), and the third one for the (bad) environmental outputs \(\psi'_f \). The production technology \(\psi' \) is represented by \(\psi' = \psi'_e \cap \psi'_s \cap \psi'_f \).

Given \(\psi'_e \) satisfies the free disposability of inputs and intended outputs, and assuming variable returns to scale (VRS), the economical good output production sub-technology in time \(t \) is defined under a piecewise linear technology as:

\[
\psi'_e = \{(v', f', k', l', y'_e, y'_f) : \sum_{i=1}^N \mu_i y'_e \geq y'_e, \sum_{i=1}^N \mu_i l'_f \leq l'_f, \sum_{i=1}^N \mu_i (l'_f - \delta k'_f) \geq l'_f - \delta k'_f, \mu_i \geq 0, i = 1, \ldots, N \}
\]

Given \(\psi'_f \) satisfies the free disposability of inputs and intended outputs, and assuming VRS, the social good output production sub-technology in time \(t \) is defined under a piecewise linear technology as:

\[
\psi'_f = \{(v', f', k', l', y'_e, y'_f) : \sum_{i=1}^N \lambda_i y'_e \geq y'_e, \sum_{i=1}^N \lambda_i l'_f \leq l'_f, \sum_{i=1}^N \lambda_i (l'_f - \delta k'_f) \geq l'_f - \delta k'_f, \lambda_i \geq 0, i = 1, \ldots, N \}
\]
Finally, given ψ_i^t satisfies the costly disposability of pollution and inputs that cause pollution, and assuming VRS, the environmental bad output production sub-technology in time t is defined under a piecewise linear technology as:

$$
\psi^t = \{(v^t, f^t, x^t, y^t, z^t) : \\
\sum_{n=1}^N w_n^t y_{bn}^t \leq y_{bn}^t, \\
\sum_{n=1}^N z_{bn}^t \geq z_{bn}^t, \\
\sum_{n=1}^N (z_n^t - \Delta k_n) \leq z_n^t - \Delta k_n^t, \\
\sum_{n=1}^N \xi_n \geq 0, n = 1, \ldots, N\}
$$

In total, four DEA models need to be solved to compute the dynamic directional distance functions for two consecutive years t and $t+1$:

- two single period Linear Programming models, i.e. one for time t (Eq 4) and the second for time $t+1$ (Eq 7)
- two cross-period Linear Programming models, i.e. one for a farm at time $t+1$ in relation to the technology at time t (Eq 6), and the second for a farm at time t in relation to the technology at time $t+1$ (Eq 5).

The four models are:

$$
W^t(v^t, f^t, x^t, y^t, z^t, x^t, y^t, z^t) = \max_{w^t} \frac{1}{N} \sum_{n=1}^N (\beta_n + \beta_n^t + \beta_n + \beta_n^t)
$$

$$
\begin{align*}
\sum_{n=1}^N \xi_n^t &\geq \xi_n + \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n - \Delta k_n, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n, \\
\sum_{n=1}^N (\xi_n - \Delta k_n) &\geq \xi_n - \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\geq \xi_n^t + \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n^t - \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n, \\
\sum_{n=1}^N (\xi_n - \Delta k_n) &\geq \xi_n - \Delta k_n, \\
\sum_{n=1}^N \xi_n^t &\geq \xi_n^t + \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n^t - \Delta k_n^t, \\
\sum_{n=1}^N (\xi_n - \Delta k_n) &\geq \xi_n - \Delta k_n, \\
\sum_{n=1}^N \xi_n^t &\geq \xi_n^t + \Delta k_n^t, \\
\sum_{n=1}^N \xi_n^t &\leq \xi_n^t - \Delta k_n^t.
\end{align*}
$$
\[
\overline{D}^{i+1}(y^i, f^i, k^i, \ell^i, y^1; \overline{g}_v^i, \overline{g}_i^1, \overline{g}_{ys}^i, \overline{g}_{yb}^i)(\text{CRS}) = \max_{\beta, \beta_n, \beta_i} \frac{1}{Ng} \left(\beta_e^2 + \beta_n^2 + \beta_b^2 + \beta_i^2 \right)
\]

\[
\begin{align*}
\sum_{n=1}^{N} \mu_n^2 \psi_n^{i+1} & \geq \psi_0 + \beta_e^2 \overline{g}_v^i \\
\sum_{n=1}^{N} \mu_n^2 \psi_n^{i+1} & \leq \psi_0 - \beta_e^2 \overline{g}_v^i \\
\sum_{n=1}^{N} \mu_n^2 f_n^{i+1} & \leq f_0 \\
\sum_{n=1}^{N} \mu_n^2 (q_n^{i+1} - \delta k_n^{i+1}) & \geq \delta_k^i - \delta k_0^i + \beta_n^2 \overline{g}_v^i \\
\sum_{n=1}^{N} \xi_n^2 y_n^{i+1} & \geq \psi_0 + \beta_i^2 \overline{g}_i^1 \\
\sum_{n=1}^{N} \xi_n^2 y_n^{i+1} & \leq \psi_0 - \beta_i^2 \overline{g}_i^1 \\
\sum_{n=1}^{N} \xi_n^2 f_n^{i+1} & \leq f_0 \\
\sum_{n=1}^{N} \xi_n^2 (q_n^{i+1} - \delta k_n^{i+1}) & \geq \delta_k^i - \delta k_0^i + \beta_n^2 \overline{g}_i^1 \\
\sum_{n=1}^{N} \xi_n^2 y_n^{i+1} & \geq \psi_0 + \beta_b^2 \overline{g}_b^2 \\
\sum_{n=1}^{N} \xi_n^2 y_n^{i+1} & \leq \psi_0 - \beta_b^2 \overline{g}_b^2 \\
\sum_{n=1}^{N} \xi_n^2 f_n^{i+1} & \leq f_0 \\
\sum_{n=1}^{N} \xi_n^2 (q_n^{i+1} - \delta k_n^{i+1}) & \geq \delta_k^i - \delta k_0^i + \beta_n^2 \overline{g}_b^2 \\
\sum_{n=1}^{N} \mu_n^2 \psi_n^{i+1} = \sum_{n=1}^{N} \mu_n^2 \psi_n^{i+1} &= \sum_{n=1}^{N} \mu_n^2 \psi_n^{i+1} \\
\sum_{n=1}^{N} \mu_n^2 (q_n^{i+1} - \delta k_n^{i+1}) = \sum_{n=1}^{N} \mu_n^2 (q_n^{i+1} - \delta k_n^{i+1}) & = \sum_{n=1}^{N} \mu_n^2 (q_n^{i+1} - \delta k_n^{i+1})
\end{align*}
\]

\[
\overline{D}^{i+1}(y^i, f^i, k^i, \ell^i, y^1; \overline{g}_v^i, \overline{g}_i^1, \overline{g}_{ys}^i, \overline{g}_{yb}^i)(\text{CRS}) = \max_{\beta, \beta_n, \beta_i} \frac{1}{Ng} \left(\beta_e^2 + \beta_n^2 + \beta_b^2 + \beta_i^2 \right)
\]
\[
\begin{align*}
\sum_{n=1}^{N} \mu_n^0 \, y_n^0 & \geq y_{d_0}^0 + \beta_1 \, g_{d_0}^0 \\
\sum_{n=1}^{N} \mu_n^1 \, y_n^1 & \leq y_{d_0}^1 - \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \mu_n^0 \, x_n^0 & \leq f_0^0 \\
\sum_{n=1}^{N} \mu_n^0 \left(x_n^0 - \delta x_n^0 \right) & \geq \delta x_n^0 - \delta \xi_n^0 + \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \mu_n^1 \, y_n^1 & \geq y_{d_0}^1 + \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \mu_n^1 \, x_n^1 & \leq y_{d_0}^1 - \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \mu_n^1 \, x_n^1 & \leq f_0^1 \\
\sum_{n=1}^{N} \left(x_n^1 - \delta x_n^1 \right) & \geq \delta x_n^1 - \delta \xi_n^1 + \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \xi_n^1 \, y_n^1 & \leq b_0^0 - \beta_1 \, g_{d_0}^0 \\
\sum_{n=1}^{N} \xi_n^1 \, y_n^1 & \geq b_0^1 - \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \xi_n^1 \, x_n^1 & \leq f_0^1 \\
\sum_{n=1}^{N} \left(x_n^1 - \delta x_n^1 \right) & \leq \delta x_n^1 - \delta \xi_n^1 + \beta_1 \, g_{d_0}^1 \\
\sum_{n=1}^{N} \mu_n^1 \, y_n^1 & = \sum_{n=1}^{N} \mu_n^1 \, x_n^1 = \sum_{n=1}^{N} \xi_n^1 \, y_n^1 \\
\sum_{n=1}^{N} \mu_n^1 \, (x_n^1 - \xi_n^1) & = \sum_{n=1}^{N} \mu_n^1 \, (x_n^1 - \xi_n^1) = \sum_{n=1}^{N} \xi_n^1 \, (x_n^1 - \xi_n^1)
\end{align*}
\]

(6)
\[
\bar{D}^{t+1}(\nu^t, f^{t+1}, k^{t+1}, \ell^{t+1}, y^{t+1}, \bar{g}_x^{t+1}, \bar{g}_y^{t+1}, \bar{g}_{ys}^{t+1}, \bar{g}_{yb}^{t+1}, \bar{g}_v^{t+1}, \bar{g}_y^{t+1}) | (\text{CRS}) = \max_{\beta_{0,0,0}} \frac{1}{N_g} (\beta_x^t + \beta_y^t + \beta_{ys}^t + \beta_{yb}^t + \beta_v^t)
\]

\[
\begin{align*}
\sum_{n=1}^{N} \tilde{\lambda}_n^{t+1} & \geq \tilde{\delta}_0^{t+1} + \beta_x^t \bar{g}_x^{t+1} \\
\sum_{n=1}^{N} \tilde{\mu}_n^{t+1} & \leq \tilde{\nu}_0^{t+1} - \beta_y^t \bar{g}_y^{t+1} \\
\sum_{n=1}^{N} \tilde{\mu}_n^{t+1} & \leq \tilde{\ell}^{t+1} \\
\sum_{n=1}^{N} \tilde{\mu}_n^{t+1} & \leq (\tilde{\nu}_0^{t+1} - \delta \bar{k}_n^{t+1}) \leq \tilde{\nu}_0^{t+1} - \delta \bar{k}_0^{t+1} + \beta_i^{t+1} \bar{g}_i^{t+1} \\
\sum_{n=1}^{N} \tilde{\gamma}_n^{t+1} & \geq \tilde{\nu}_0^{t+1} + \beta_y^t \bar{g}_{ys}^{t+1} \\
\sum_{n=1}^{N} \tilde{\gamma}_n^{t+1} & \leq \tilde{\nu}_0^{t+1} - \beta_y^t \bar{g}_{ys}^{t+1} \\
\sum_{n=1}^{N} \tilde{\gamma}_n^{t+1} & \leq \tilde{\ell}_0^{t+1} \\
\sum_{n=1}^{N} \tilde{\xi}_n^{t+1} & \leq \tilde{\nu}_0^{t+1} - \delta \bar{k}_n^{t+1} \leq \tilde{\nu}_0^{t+1} - \delta \bar{k}_0^{t+1} + \beta_i^{t+1} \bar{g}_i^{t+1} \\
\sum_{n=1}^{N} \tilde{\xi}_n^{t+1} & = \sum_{n=1}^{N} \tilde{\lambda}_n^{t+1} = \sum_{n=1}^{N} \tilde{\mu}_n^{t+1} = \sum_{n=1}^{N} \tilde{\gamma}_n^{t+1} = \sum_{n=1}^{N} \tilde{\xi}_n^{t+1} (\tilde{\nu}_0^{t+1} - \delta \bar{k}_n^{t+1}) = \sum_{n=1}^{N} \tilde{\xi}_n^{t+1} (\tilde{\nu}_0^{t+1} - \delta \bar{k}_0^{t+1})
\end{align*}
\]

In order to allow for a convenient percentage interpretation of increases in good outputs and decreases in inputs or bad outputs [40] and to avoid infeasibilities [41], the values of the directional vectors are set as the observed values for the variable inputs, the good outputs and the bad outputs, i.e. \(\bar{g}_x^{t+1} = \tilde{\gamma}_{0,0} \bar{g}_x = \tilde{\gamma}_{0,0} \bar{g}_y = \tilde{\gamma}_{0,0} \bar{g}_{ys} = \tilde{\gamma}_{0,0} \bar{g}_{yb} = \tilde{\gamma}_{0,0} \bar{g}_v = \tilde{\gamma}_{0,0} \) given the variation and frequent occurrence of zero’s in the investment variable, the directional vector is set to 20% of the value of the quasi-fixed assets, i.e. \(\bar{g}_x = 0.2 \times k_0\). Where \(N_g \bar{g}_x\) represents the number of decision.
variables in the objective function. We can identify the economic, social and environmental sustainability productivity through b_j^e.

Following [42], the Luenberger indicator of dynamic productivity change for economic (L^{EC}), social (L^{SO}) and environmental (L^{EN}) sustainability can be denoted as the arithmetic average of productivity change measured by the technology at time $t+1$ and time t. These indicators are as follows:

\[
L^{EC} = \frac{1}{2} (\beta^e - \beta^i_e + \beta^i_e - \beta^i_e)
\]

\[
L^{SO} = \frac{1}{2} (\beta^s - \beta^i_s + \beta^i_s - \beta^i_s)
\]

\[
L^{EN} = \frac{1}{2} (\beta^b - \beta^i_b + \beta^i_b - \beta^i_b)
\]

Following [33], the economic Luenberger indicator of dynamic productivity growth can be decomposed into the contributions of economic dynamic technical change (EC^T) and dynamic technical inefficiency changes (EC^E). The economic dynamic technical change represents the shift of dynamic economic production sub-technology between time t and time $t+1$. Dynamic technical inefficiency change measures the difference between the value of the dynamic directional distance function under constant return to scale (CRS) at time t and time $t+1$.

\[
EC^T = \frac{1}{2} (\beta^i_e - \beta^i_e + \beta^i_e - \beta^i_e)
\]

\[
EC^E = \beta^i_e - \beta^i_e
\]

Building on [42], dynamic technical inefficiency change can be further decomposed into economic dynamic technical inefficiency change under VRS ($EC^{E/VRS}$) and dynamic scale inefficiency change (EC^S). Dynamic scale inefficiency change measures the difference between the values of the dynamic directional distance functions in CRS and VRS between time t and time $t+1$. These measures are estimated by running the two single-period LP models, corresponding to model (4) after adding the restriction

\[
\sum_{n=1}^{N} \mu_n^e = 1, \sum_{n=1}^{N} \lambda_n^e = 1, \sum_{n=1}^{N} \zeta_n^e = 1
\]

And model (7) after adding the restriction

\[
\sum_{n=1}^{N} \mu_n^i_e = 1, \sum_{n=1}^{N} \lambda_n^i_e = 1, \sum_{n=1}^{N} \zeta_n^i_e = 1
\]

The economic dynamic technical inefficiency changes under VRS are then computed as

\[
EC^{E/VRS} = \beta^{i/VRS}_e - \beta^{i_v}_e
\]

The dynamic scale inefficiency change can be then computed as:

\[
EC^S = (\beta^i_e - \beta^{i/VRS}_e) - (\beta^{i/VRS}_e - \beta^{i/VRS}_e)
\]
Summarizing, the final decomposition of dynamic Luenberger indicator of economic sustainability productivity growth is:

\[L^{EC} = EC^T + EC^{E/VRS} + EC^S \] (14)

Analogously, the environmental Luenberger indicator can be decomposed into environmental dynamic technical change \((EN^T)\), environmental dynamic inefficiency change under VRS \((EN^{E/VRS})\) and environmental dynamic scale inefficiency change \((EN^S)\).

\[L^{EN} = EN^T + EN^{E/VRS} + EN^S \]
\[EN^T = \frac{1}{2} (\beta^i - \beta^v + \beta^s - \beta^i) \]
\[EN^{E/VRS} = \beta^i_{VRS} - \beta^v_{VRS} \]
\[EN^S = (\beta^i - \beta^v) - (\beta^i_{VRS} - \beta^v_{VRS}) \] (15)

The social Luenberger indicator can be decomposed into social dynamic technical change \((SO^T)\), social dynamic inefficiency change under VRS \((SO^{E/VRS})\) and social dynamic scale inefficiency change \((SO^S)\).

\[L^{SO} = SO^T + SO^{E/VRS} + SO^S \]
\[SO^T = \frac{1}{2} (\beta^i - \beta^2 + \beta^3 - \beta^1) \]
\[SO^{E/VRS} = \beta^1_{VRS} - \beta^2_{VRS} \]
\[SO^S = (\beta^1 - \beta^2) - (\beta^1_{VRS} - \beta^2_{VRS}) \] (16)

2.2 OLS bootstrap regression

The bootstrap approach is used to address the well-known problem of serial correlation among DEA efficiency scores [43]. Since the productivity growth indicators based on DEA are not truncated, the OLS bootstrap regression with heteroskedasticity and autocorrelation robust standard errors is an appropriate approach in our context. Kapelko et al. [33] apply this approach to investigate the impact of food regulation on dynamic productivity growth of the Spanish meat, dairy, and oils and fats industries over the period 1996–2011. In a follow-up study, Kapelko et al. [34] used the same approach to estimate the statistical association between past investment spikes with dynamic productivity growth for oils and fats firms during the same period. The regression model has the following form:

\[y_{it} = \alpha_i + \beta \cdot x_{it} + \epsilon_{it} \] (17)

Where \(y_{it}\) indicates the dynamic economic, social or environmental productivity growth for farm \(i\) in year \(t\), \(x_{it}\) is a vector of independent variables that represent farm and farmer characteristics for dairy farm \(i\) in year \(t\), \(\alpha_i\) is the constant, \(\beta\) is a vector of coefficients to be estimated, \(\epsilon_{it}\) is an error term. Eq (17) allows us to compute bootstrap regression coefficients and bootstrap confidence intervals for the three dynamic sustainable productivity growth measures, with 2000 bootstrap replications.

3. Data

Our research focuses on panel data of specialized dairy farms in the Netherlands obtained from the European Commission’s Farm Accountancy Data Network (FADN). Farms were included in the sample in case their revenue from dairy products comprised at least 66% of their total revenue. Taking into account that dynamic Luenberger productivity growth is
assessed using pairs of observations from the same farms in two consecutive years, the final data set is unbalanced, consisting of 1096 observations and 775 such pairs during the period 2015–2018.

The DEA model distinguishes two variable inputs v_t, two fixed inputs f_t, one quasi-fixed input k_t, gross investments in quasi-fixed input i_t and three outputs, i.e., economic outputs y_{te}, social outputs y_{ts} and environmental outputs y_{tb}. The two fixed inputs are total utilized agricultural area and labor. The former was measured in hectares and the latter was measured in annual working units. The two variable inputs are intermediate consumption and herd size. The intermediate consumption is the aggregation of different operational expenses and structural costs, including the animal feed costs, fertilizers, materials, artificial insemination, energy, seed and veterinary costs. The total expenses were deflated with a Tornqvist price index (base year 2015). Herd size is measured as the number of dairy cows in standardized Livestock Units. The quasi-fixed inputs are measured as the capital stock of buildings and machinery; the total investment includes the annual investments in buildings and machinery, and was expressed in euros of 2015.

The empirical model classifies the three dimensions of sustainability performance as different outputs. The economic performance is quantified here via the good output y_{te}, i.e. total revenue, which includes the total dairy revenue, the arable crops revenue, vegetables revenue, cut flowers revenue and total intensive livestock revenue. The total dairy revenue and the arable crops revenue are the main components. Total revenue was deflated by the Tornqvist price index (base year 2015) of the outputs. The social performance was measured as the number of days dairy cows grazed at least 6 hours and is treated as a good output y_{ts}, since grazing may have positive effects on animal welfare [44, 45]. Additionally, Armbrökt et al. [46] concluded that farms with higher daily grazing times (6–10 h and >10 h per day) had better scores with respect to the WQ principal “good housing” and “good health” compared to farms with lower daily grazing hours or zero grazing. In addition, Wagner et al. [47] found a positive relation between grazing time and animal welfare. With the public’s increasing awareness of animal welfare problems [48, 49], it is closely linked to the social sustainability of animal production. The environmental performance is assessed by considering three bad outputs y_{tb}: the greenhouse gas emission, the surplus of nitrogen with farm processing and the surplus of P$_2$O$_5$ with farm processing. Three GHGs were distinguished, i.e. carbon dioxide (CO$_2$), methane (CH$_4$) and nitrous oxide (NO$_2$), which are aggregated and expressed in kg CO$_2$ equivalents. Methane and nitrous oxide are converted to CO$_2$ equivalents via the characterization factors published in the IPCC standard (2007), i.e. 1 kg N$_2$O is 298 CO$_2$ equivalents and 1 kg CH$_4$ is 25 CO$_2$ equivalents. Table 1 provides the descriptive statistics of the indicators that were used in the empirical analysis.

The variables used in the OLS bootstrap regression are presented in the bottom part of Table 1 and are explained in what follows. The relationship between the farm(er)- characteristics and economic productivity are more often present in the literature, whereas the relationship with social and environmental productivity needs further verification in our study.

1) Age oldest entrepreneur. The evidence about the effect of farm households’ age on productivity is ambiguous. In the later stage of their life cycle, farmers will adjust their goal from investing and expansion to improving efficiency, leading to productivity increases with experience. However, older farmers may be unwilling to adopt technological innovations which hinder the productivity growth. Kimura and Sauer [50] found that the age of the farm manager has a positive relationship with productivity growth in the Netherlands, but the opposite is the case in Estonia.
Financial structure is described using the debt ratio which is measured as the ratio of debts to assets. It captures the farm’s ability to manage long-term debt and growth over time [51, 52]. It also indicates the resilience of a dairy farm to financial distress. According to the credit evaluation hypothesis, technically efficient firms may easily borrow as they are more likely to repay the debt and borrowers with high credit ratings may obtain more credit [53]. Hence, lack of credit can impede uptake of appropriate technology and limit productivity growth. This could explain a positive relationship between long-term debt and productivity growth [54]. In contrast, [55] proposed that the short run variations in debt servicing ratio are negative and significantly related to productivity growth.

Farm size is included via the standard output, which is a size measure used in the FADN based on value added of the outputs. Smaller farms usually face the challenge of attracting professional employees, leading smallholders to employ more family labor per hectare, and that average labor productivity is lower than larger farms [56]. [50] found the farm size was positively associated with the productivity growth of dairy farms in the Netherlands and Estonia. In addition, the principal-agent relationship and asymmetric information between hired labor and managers of large farms may lead to supervision costs which in turn lower productivity growth on large farms [57]. [58] reported that total factor productivity (TFP) decreased with farm size because large farms fail to use their labor resources in full. Factor market transactions costs, coupled with economies of scale in farm mechanization, can also lead to a U-shaped pattern of the relationship between TFP and farm size [59]. [60] revealed that farm size was not associated with productivity growth for dairy farms in the southern part of Chile during the period from 2005 to 2010.

Specialization is measured as the ratio of the revenue from dairy farming to total revenue. The empirical literature is inconclusive regarding the impact of specialization on productivity growth. On the one hand, specialization may enable farmers to accumulate knowledge in a single production activity, which could positively affect farm performance [61]. Kazuakauskas et al. [62] found that increased specialization had positive effects on productivity. On the other hand, more diversified farms may experience economies of scope through cost savings that

Table 1. Descriptive statistics of the dairy farms (average over the period 2015–2018).

Variables	Dimension	Mean	SD	Min	Max
Land	10 hectares	7.47	4.35	0.95	42.8
labor	full-time equivalent	2.05	1.05	0.7	12.88
Herd size	100 livestock units	1.72	1.06	0.24	9.68
Intermediate consumption	100000 Euro	1.75	1.25	0.07	11.39
Quasi-fixed asset	100000 Euro	6.12	4.61	0.43	44.21
Investments	100000 Euro	1.61	3.22	0	48.71
Total revenue	100000 Euro	5.05	3.67	0.48	50.24
Total GHG emissions	100000 kg of CO₂-eq	15.99	10.3	1.75	68.73
P₂O₅ surplus	1000 kg	13.2	1.83	0.66	24.64
Nitrogen surplus	1000 kg	26.94	9.72	0.3	103.09
Grazing days	10 days	12.87	8.43	0	27
Age oldest entrepreneur	10 years	5.38	0.95	2.7	8.6
Financial structure	ratio	0.65	0.18	−0.07	1
Farm size	1000 Euro	0.52	0.28	0.09	1.88
Specialization	ratio	0.88	0.06	0.67	1.08
Government support	ratio	0.01	0.01	0	0.11
Cost of advisory service	ratio	0.02	0.02	0	0.25

https://doi.org/10.1371/journal.pone.0264410.t001
occur when farms can use the same input for the production of several outputs (see e.g. [36, 63]). Melhim and Shumway [64] reported that economies of scope lead to 27% cost savings when milk, livestock, and crops were jointly produced on the average US dairy farm. In the presence of economies of scope specialization will lead to a lower productivity growth.

(5) Government support is included as the ratio of revenue from subsidies to total revenues. The relation between governmental support and a producer’s performance is complex. Subsidies may be positively related with productivity growth by providing a source of financing and credit directly and, hence, enable further investment on innovation. Therefore, some studies reported a positive relation between subsidies and farm productivity growth [62, 65, 66]. On the other hand, subsidies that are coupled to production may decrease producers’ incentives to increase productivity and hinder reallocation of existing resources [67]. Hence, several studies have found a negative relationship with productivity growth [68, 69].

(6) Cost of advisory service is included as the ratio of advisory service costs to the total variable cost. By measuring this as a ratio, we avoid capturing size-effects. Through the livestock extension service support, farmers could analyze and improve farm performance, for example through adoption of innovative technologies. Sheng and Chancellor [70] reported that use of contract services to replace self-owned capital may lift the productivity level of small farms. Khan et al. [71] also showed that the provision of reliable livestock extension services positively influences the productivity of dairy farms and ultimately improves dairy farmers’ income.

4. Results and discussion

Table 2 shows the arithmetic means of dynamic economic, social and environmental productivity changes and their decomposition into dynamic technical changes, technical inefficiency changes and scale inefficiency changes for the pairs of consecutive years. Please note that the mixed period directional distance functions used to compute the dynamic Luenberger indicator may yield infeasibilities. In our computations, infeasibilities occurred in 2015/2016, 2016/2017 and 2017/2018 for 12.4%, 17.3% and 12.5% of the observations, respectively. Literature suggests two possible solutions for this problem in case of the static Luenberger productivity indicator [34], i.e., omitting the infeasible observations in the computation of averages or

Dimension	2015/2016	2016/2017	2017/2018	mean
Economic				
Productivity change	−0.009	0.010	−0.001	0.000
Technical change	0.010	0.061	−0.045	0.009
Technical inefficiency change (VRS)	−0.025	−0.013	0.011	−0.009
Scale inefficiency change	0.004	−0.031	0.029	0.001
Social				
Productivity change	0.007	−0.031	0.014	−0.003
Technical change	−0.016	−0.054	−0.004	−0.025
Technical inefficiency change (VRS)	−0.003	0.001	0.020	0.006
Scale inefficiency change	0.026	0.015	−0.003	0.013
Environmental				
Productivity change	−0.015	0.011	−0.028	−0.011
Technical change	0.038	0.040	−0.040	0.013
Technical inefficiency change (VRS)	0.010	−0.002	−0.016	−0.003
Scale inefficiency change	−0.063	−0.257	0.034	−0.095

https://doi.org/10.1371/journal.pone.0264410.t002
assigning to the indices the value zero. In this study, we opted for the first solution, i.e. we excluded infeasibilities in the computation of averages.

As for the economic sustainability dimension, the average dynamic Luenberger productivity growth is zero, suggesting no change in performance during the study period. Dynamic technical change and dynamic scale inefficiency change made, on average, positive contributions to dynamic productivity growth, while dynamic technical inefficiency change contributed negatively. The average technical progress is 0.9%, which is line with [50], who show that the productivity of the Dutch dairy farm improved through adoption of new technologies during the period 2001–2012. Skevas et al. [72] also apply the dynamic stochastic frontier model and found that technical progress is the main driver of TFP growth for German dairy farms in the period 2001–2009. The dynamic scale inefficiency increased by 0.1%, suggesting that farms have succeeded in moving the scale of the firm towards constant returns to scale. The dynamic technical inefficiency decreased by 0.9%, which suggest that the farms on average used the existing production technology less efficiently. Our results show some similarity with the study of [33], who also reported a zero value for dynamic Luenberger productivity growth of Spanish dairy farms during the period 1996–2011. However, they found a technical change, a technical inefficiency change and scale inefficiency change of −1.1%, 0.9% and 0.2%, respectively. Nevertheless, our finding points to larger changes than the ones identified by [73], who used the Malmquist index to assess the productivity growth of European dairy farms from 2004 to 2012, and reported that both total productivity change and technological change were −2.3%, and pure efficiency change and scale efficiency change was 0 in the Netherlands. Latruffe et al. [74] also used the static Malmquist index to assess the French dairy farms’ TFP change of −0.7%, with a technological change of 2.6%, a pure technical efficiency change of −3% and a scale efficiency change of −0.2% during the period 2001–2007.

As for the social sustainability dimension, the average dynamic Luenberger productivity growth estimate was approximately −0.3% per year. While the productivity increased in 2015/2016 and 2017/2018, it did not make up for the large decrease in productivity in 2016/2017. Overall, social sustainability productivity worsened during the entire study period, and this was due to a technological deterioration of −2.5% on average. Both the technical inefficiency change and scale inefficiency change made positive contributions to social sustainability productivity growth, with a progress of 0.6% and 1.3% on average, respectively. There are no previous studies that evaluated the productivity change of social output.

Compared with the economic and social sustainability dimension, the average dynamic Luenberger productivity growth of the environmental dimension was the lowest, i.e., −1.1% each year. In contrast to the social dimension, the decrease in environmental sustainability productivity is accompanied by a technological progress of 1.3% on average, whereas, a deterioration in technical inefficiency and scale inefficiency of −0.3% and −9.5%, respectively, occurred. Our environmental technical inefficiency findings are similar to those of [32], who showed that the GHG emissions inefficiency of French suckler cow farms in 1978–1992, 1993–2005 and 2006–2014 was 0.080, 0.056 and 0.067, respectively. The GHG emissions inefficiency change during the entire period 1978–2014 was smaller than 0.

Table 3 presents the corresponding parameter estimation results of economic, social and environmental sustainability productivity change using the OLS bootstrap regression model. We can conclude that specialization is positively and significantly related with economic and environmental productivity change, but negatively and significantly associated with social sustainability productivity change. More specialized dairy farms may have an advantage, ceteris paribus, in the use of land, labor, and fodder; hence, they can simultaneously increase output and decrease the environment load per unit of output. Forgacs [75] reported that the average farm output of specialized farms exceeds that of non-specialized farms and concluded that the
former has achieved higher growth in land, labor and total factor productivity. However, excessive stock density and the pursuit of higher milk yields may not take dairy cows welfare into account, therefore leading to a decrease in social sustainability productivity.

The ratio of revenue from subsidies to total revenues is also positively and significantly associated with economic and environmental sustainability productivity change, suggesting that dairy farms that received subsidies had a relatively higher economic and environmental productivity growth. Similar results were reported by [76], who found that subsidies are positively and significantly related with total productivity change for French dairy farms over the period 1995 to 2002. Kleinhanss [77] also found that TFP growth was slightly higher on small German farms with subsidies than on large farms without subsidies. Our results show that government support is not related with social sustainability productivity growth. This suggests that dairy farmers are more inclined to use government subsidies to purchase automation equipment and expand the scale of production, rather than to focus on improving production systems that enable outdoor grazing. In line with this, Latruffe and Desjeux [78] found that subsidies linked to production were positively and significantly related with productivity change and pure technical efficiency change.

The other farm- and farmer- characteristics, i.e. age oldest entrepreneur, financial structure, farm size and cost of advisory service are not significantly related with economic, social and environmental sustainability productivity growth, indicating these factors are generally not important for dynamic productivity growth.

5. Conclusion

This paper introduced a dynamic Luenberger measure of dynamic productivity changes in the economic, social and environmental dimensions, and applied it to a sample of Dutch dairy farms over the period 2015–2018. Our results suggest that over the entire study period, the Dutch dairy farms’ economic sustainability productivity did not change, whereas, dynamic social and environmental sustainability productivity change decreased by -0.3% and -1.1%, respectively. The component analysis of the dynamic sustainable productivity change showed that the decrease in social sustainability productivity was mainly driven by technical regress, whereas the decrease in environmental sustainability productivity was mostly due to a decrease of pure technical and scale inefficiency change, and thus attributable to inefficient management practices and diseconomies of scale. In addition, the results from the bootstrap regression model indicated that specialization and government support affected the dynamic sustainable productivity.

Economic productivity	Social productivity	Environmental productivity	
Intercept	-0.131***	0.191***	-0.339***
Age oldest entrepreneur	0.001	-0.002	0.002
Financial structure	0.026	0.007	0.011
Farm size	0.007	0.010	-0.011
Specialization	0.117***	-0.221***	0.356***
Government support	0.323*	-0.210	0.789***
Cost of advisory service	-0.038	0.137	-0.193

Notes: *** and * indicate about significance at 1%, 5% and 10% significance level, respectively.
https://doi.org/10.1371/journal.pone.0264410.t003
The results of this paper clearly indicate a decrease in social and environmental productivity change, and identify their main drivers. Furthermore, it provides insights into their association with farm(er)-specific characteristics. Policy-makers and dairy farmers may use the findings of this study to improve the productivity of the economic, social and environmental sustainability dimensions. Firstly, our finding that, social sustainability productivity change is negatively affected by technical regress implies the need for better grazing management systems, which would make outdoor grazing more attractive to farmers. Policy makers could play a role here by enhancing research into more productive outdoor grazing systems. Secondly, our finding that technical inefficiency change and scale inefficiency change are the main drivers of the decrease in environmental sustainability productivity change has two implications: (i) it implies the need for better on farm use of feed inputs and fertilizers, and (ii) adjusting the farm scale can help to reduce the N and P surplus on farms and enhance their environmental performance. Thirdly, both specialization and the ratio of revenue from subsidies to total revenues appear to be negatively related with social sustainability productivity growth, but are positively associated with economic and environmental sustainability productivity growth. Thus, farmers should be made aware of these trade-offs, for example by making use of professional advisors. Policy makers can motivate dairy farmers by coupling the use of subsidies to enhancing animal welfare, e.g. by requiring more outdoor grazing.

Moving to the limitations of this research, we measure animal welfare as the number of days cows are grazing outside. Future research could extend animal welfare to include animal disease prevalence. In addition, other social sustainability indicators could be integrated such as indicators that account for the contribution of farmers to rural livelihood. Future research may also investigate the role of advisory services in enhancing productivity growth in other countries and economic sectors.

Acknowledgments
The authors are grateful to the anonymous reviewers for their constructive comments and suggestions.

Author Contributions
Conceptualization: Liyun Zhu, Alfons Oude Lansink.
Data curation: Liyun Zhu.
Methodology: Liyun Zhu, Alfons Oude Lansink.
Supervision: Alfons Oude Lansink.
Writing – original draft: Liyun Zhu, Alfons Oude Lansink.
Writing – review & editing: Alfons Oude Lansink.

References
1. Montabon F., Pagell M., Wu Z. Making sustainability sustainable. J Supply Chain Manag. 2016; 52(2):11–27.
2. Thomassen M.A. and de Boer I.J.M. Evaluation of indicators to assess the environmental impact of dairy production systems. Agr Ecosyst Environ. 2005; 111(1–4): 185–199.
3. McLellan E.L., Cassman K.G., Eagle A.J., Woodbury P.B., Sela S., Tonitto C., et al. The nitrogen balancing act: tracking the environmental performance of food production. BioScience. 2018; 68 (3):194–203. https://doi.org/10.1093/biosci/bbx168 PMID: 29662247
4. Bailey, J. S. Phosphorus management for sustainable dairy production. Paper Presented at the Step to Sustainable Livestock International Conference, Bristol, United Kingdom; 2016
5. Hou Y., Bai Z., Lesschen J.P., Staritsky I.G., Sikirica N., Ma L., et al. O. Feed use and nitrogen excretion of livestock in EU-27. Agr Ecosyst Environ. 2016; 218(2): 232–244.

6. Noordhuizen J.P.T.M. and Metz J.H.M. Quality control on dairy farms with emphasis on public health, food safety, animal health and welfare. Livestock Production Science. 2005; 59(1):39–55.

7. McGlone J. Farm animal welfare in the context of other societal issues: toward sustainable systems. Livestock Production Science. 2001; 72, 75–81.

8. Oltenacu P.A. and Broom D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim Welfare. 2010; 19(1):39–49.

9. Ingvartsen K.L., Dewhurst R.J., and Friggin N.C. On the relationship between lactational performance and health: is it yield or metabolic imbalance that causes diseases in dairy cattle? A position paper. Livestock Production Science. 2003; 83(2–3):277–308.

10. Lapple D. The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms. J Agr Econ. 2019; 70(1): 178–197.

11. Giordano J.O., Fricke P.M., Wiltbank M.C. and Cabrera V.E. An economic decision-making support system for selection of reproductive management programs on dairy farms. J Dairy Sci. 2011; 94(12):6216–6232. https://doi.org/10.3168/jds.2011-4376 PMID: 22118110

12. Yan M.J., Humphreys J. and Holden N.M. An evaluation of life cycle assessment of European milk production. J Environ Manage. 2011; 92(3): 372–739. https://doi.org/10.1016/j.jenvman.2010.02.005 PMID: 21055870

13. Acosta-Alba I., Corson M.S., Werf H.M.G. and Leterme V.P. Using reference values to assess environmental sustainability of dairy farms. Renew Agr Food Syst. 2011; 27(3):217–227.

14. O’Brien D., Shalloo L., Patton J., Buckley F., Grainger C. and Wallace M. A life cycle assessment of seasonal grass-based and confinement dairy farms. Agr Syst. 2012; 107:33–46.

15. Guerci M., Knudsen M.T., Bava L., Zucali M., Schönbach P. and Kristensen T. Parameters affecting the environmental impact of a range of Dairy farming systems in Denmark, Germany and Italy. J Clean Prod. 2013; 54:133–141.

16. Mas K., Pardo G., Galán E and Prado A.D. Assessing dairy farm sustainability using whole-farm modeling and life cycle analysis. Advances in Animal Biosciences. 2016; 7(3):259–260.

17. Lovarelli D., Bava L., Zucali M., Dimporzano G., Adani F. and Tamburini A. Improvements to dairy farms for environmental sustainability in Grana Padano and Parmigiano Reggiano production systems. Ital J Anim Sci. 2019; 18(1): 1035–1048.

18. Chen W. and Holden N.M. Social life cycle assessment of average Irish dairy farm. The International Int J Life Cycle Ass. 2017; 22:1459–1472.

19. Vries M.D., Bokkers E.A.M., Schaik G.V., Botreau R., Engel B., Dijkstra T. et al. Evaluating results of the Welfare Quality multi-criteria evaluation model for classification of dairy cattle welfare at the herd level. J Dairy Sci. 2013; 96(10): 6264–6273. https://doi.org/10.3168/jds.2012-6129 PMID: 23932136

20. Barry J., Kennedy E., Sayers R., de Boer I.J.M and Bokkers E.A.M. Development of a welfare assessment protocol for dairy calves from birth through to weaning. Anim Welfare. 2019; 28(3):331–344.

21. Allendorf J.J., and Wettemann P. J. C. Does animal welfare influence dairy farm efficiency? A two-stage approach. J Dairy Sci.2015; 98(11):7730–7740. https://doi.org/10.3168/jds.2015-9390 PMID: 26364105

22. Tremetsberger L., Winckler C. and Kantelhardt J. Animal health and welfare state and technical efficiency of dairy farms: possible synergies. Anim Welfare. 2019; 28(3):345–352.

23. Barnes A.P., Rutherford K.M.D., Langford F.M. and Haskell M.J. The effect of lameness prevalence on technical efficiency at the dairy farm level: An adjusted data envelopment analysis approach. J Dairy Sci. 2011; 94(11):5449–5457. https://doi.org/10.3168/jds.2011-4262 PMID: 22032367

24. Schulte H.D., Armbrrecht L., Bürger R, Gauly M., Musshoff O. and Huttel S. Let the cows graze: An empirical investigation on the trade-off between efficiency and farm animal welfare in milk production. Land Use Policy. 2018; 79:375–385.

25. Buys L., Mengersen K., Johnson, Buuren N.V. and Chauvin A. Creating a Sustainability Scorecard as a predictive tool for measuring the complex social, economic and environmental impacts of industries, a case study: Assessing the viability and sustainability of the dairy industry. J Environ Manage. 2014; 133:184–192. https://doi.org/10.1016/j.jenvman.2013.12.013 PMID: 24374467

26. Asselt E. V., Capuano H.J. and Fels-Klerx V.D. Sustainability of milk production in the Netherlands: A comparison between raw organic, pasteurised organic and conventional milk. Int Dairy J. 2015; 47:19–26.
27. Gazola M.G., Bankuti F.I., Brito M.M.D., Prizon R.C., Kuwahara K.C., Pozza M.S.D.S. and Damasceno J.C. Development and application of a sustainability assessment model for dairy production systems. Semina: Ciências Agrárias, Londrina. 2018; 39(6):2685–2702.

28. Nahed J., Gonzalez Pineda S., Grand D., Aguilar J.R., Sanchez B and Rojas J.L.R. Evaluating sustainability of conventional and organic dairy cattle production units in the Zoque Region of Chiapas, Mexico. Agroecol Sust Food. 2019; 43(6):605–638.

29. Zhou H., Yang Y., Chen Y. and Zhu J. Data envelopment analysis application in sustainability: the origins, development and future directions. Eur J Oper Res. 2018; 264:1–16.

30. Segerkvist K.A., Hansson H., Sonesson U. and Gunnarsson S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability. 2020; 12: 5502.

31. Murty S., Russell R. R. and Levkoff S. B. On modeling pollution-generating technologies. Journal of J Environ Econ Manag. 2012; 64:117–135.

32. Dakpo K.H. and Oude Lansink A. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs. Eur J Oper Res. 2019; 276 (1): 202–211.

33. Kapelko M., Oude Lansink A. and Stefanou S. Effect of food regulation on the Spanish food processing industry: A dynamic productivity analysis. PLoS One, 2015; 10:1–16. https://doi.org/10.1371/journal.pone.0128217 PMID: 26057878

34. Kapelko M., Oude Lansink A. and Stefanou S. Analyzing the impact of investment spikes on dynamic productivity growth. Omega, 2015; 54:116–124.

35. Silva E., Stefanou S. and Oude Lansink A. The adjustment-cost model of the firm: Duality and productive efficiency. Int J Prod Econ. 2015; 168(1): 245–256.

36. Oude Lansink A.G.J.M.; Stefanou S.E.; Kapelko M. The impact of inefficiency on diversification. J Prod Anal. 2015; 44 (2): 189–198.

37. Kapelko M., Oude Lansink A. and Stefanou S. The impact of 2008 financial crisis on dynamic productivity growth of the Spanish food manufacturing industry. Agr Econ. 2017; 48(5):561–571.

38. Dakpo, K. H. On modeling pollution-generating technologies: A new formulation of the by-production approach. In. Rome, Italy: EAAE Ph.D. Workshop, EAAE; 2015.

39. Chung Y. H., Färe R. and Grosskopf S. Productivity and undesirable outputs: a directional distance function approach. J Environ Manage. 1997; 51(3): 229–240.

40. Briec W. and Kerstens K. The Luenberger Productivity Indicator: An Economic Specification Leading to Infeasibilities. Econ Model. 2009; 26(3): 597–600.

41. Oude Lansink A., Stefanou S. E. and Serra S. Primal and dual dynamic Luenberger productivity indicators. Eur J Oper Res. 2015; 241: 555–563.

42. Simar L. and Wilson P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J Econometrics, 2007; 136(1):31–64.

43. Olmos G., Mee J.F., Hanlon A., Patton J., Murphy J.J. and Boyle L. Peripartum health and welfare of Holstein-Friesian cows in a confinement-TMR system compared to a pasture-based system. Anim Welfare.2009; 18(4), 467–476.

44. Burow E., Rousig T., Thomsen P.T., Otten N.D. and Sorensen J.T. Effect of grazing on the cow welfare of dairy herds evaluated by a multidimensional welfare index. Animal. 2013; 7: 834–842. https://doi.org/10.1017/S1751731112002297 PMID: 23244468

45. Armbrrecht, L., Lambertz, C., Albers, D. and Gauly, M. Animal Welfare of Dairy Cows in Stables and Pastures—A Comparison Using the Welfare Quality Protocol. In Proceedings of the Animal Husbandry tension between animal welfare, economy and society Conference on the challenges of animal welfare in livestock husbandry, Göttingen, Germany, 2015; 10:70–72.

46. Wagner K., Brinkmann J., March S., Hinterstößer P., Warnecke S., Schüler M et al. Impact of Daily Grazing Time on Dairy Cow Welfare—Results of the Welfare Quality Protocol. Animals. 2018; 8(1):1–11.

47. Ingenbleek P.T.M.; Imminck V.M. Consumer decision-making for animal-friendly products: Synthesis and implications. Anim Welfare.2011; 20:11–19.

48. European Commission. Attitudes of Europeans towards Animal Welfare; Directorate-General for Communication: Brussels, Belgium; 2015.

49. Kimura S. and Sauer J. Dynamics of dairy farm productivity growth Cross-country comparison. OECD Food, Agriculture and Fisheries Papers, 2015; 87:1–34.
| Number | Citation |
|--------|----------|
| 51. | Weiss C.R. Farm growth and survival: econometric evidence for individual farms in upper Austria. AM J Agr Econ. 1999; 81:103–116. |
| 52. | Featherstone A.M., Ibendahl G.A., Winter J.R. and Spaulding A.D. Farm financial structure. Agr Finance Rev. 2005; 65(2): 97–117. |
| 53. | Berger A.N. and Di Patti E.B. Capital structure and firm performance: a new approach to testing agency theory and an application to the banking industry. J Bank Financ, 2006; 30(4):1065–1102. |
| 54. | Zhengfei G. and Lansink A.O. The sources of productivity growth in Dutch agriculture: a perspective from finance. AM J Agr Econ. 2006; 88: 644–656. |
| 55. | Shaik S. Impact of liquidity risk on variations in efficiency and productivity: A panel gamma simulated maximum likelihood estimation. Eur J Oper Res. 2015; 245:463–469. |
| 56. | Sen, A. An aspect of Indian agriculture. Econ. Weekly, Annual Number, 1962; 243–266. |
| 57. | Eswaran M. and Kotwal A. Access to capital and agrarian production organization. The Economic Journal, 1986; 96:482–498. |
| 58. | Armagan G. and Nizam S. Productivity and efficiency scores of dairy farms: the case of Turkey. Qual & Quant. 2012; 46(1):351–358. |
| 59. | Foster, A.D. and Rosenzweig, M.R. Are there too many farms in the world? Labor-market transaction costs, machine capacities and optimal farm size. NBER Working Paper No. 23909. National Bureau of Economic Research, Cambridge, MA; 2017. |
| 60. | Moreira V.H. and Bravo-Ureta B.E. Total factor productivity change in dairy farming: Empirical evidence from southern Chile. J Dairy Sci. 2016; 99(10):8356–8364. https://doi.org/10.3168/jds.2016-11055 PMID: 27448859 |
| 61. | Latruffe L., Balcombe K., Davidova S. and Zawalinska K. Technical and scale efficiency of crop and livestock farms in Poland: Does specialization matter? Agr Econ. 2005; 32(3):281–296. |
| 62. | Kazukauskas, A., Newman, C. and Sauer, J. CAP Reform and Its Impact on Structural Change and Productivity Growth: A Cross Country Analysis. Trinity Economics Papers tep0411, Trinity College Dublin, Department of Economics; 2011. |
| 63. | Rahman S. Whether crop diversification is a desired strategy for agricultural growth in Bangladesh? Food Policy, 2009; 34 (4): 340–349. |
| 64. | Melhim A. and Shumway C. R. Enterprise diversification in US dairy: Impact of risk preferences on scale and scope economies. In: Applied Economics. 2011; 43 (26): 3849–3862. |
| 65. | McCloud N. and Kumbhakar S. C. Do subsidies drive productivity? A cross-country analysis of Nordic dairy farms. In Chib S., Griffiths W., Koop G. & Terrell D (ed.) Bayesian Econometrics (Advances in Econometrics, Volume 23). Emerald Group Publishing Limited, 2008; 245–274. |
| 66. | Rizov M., Pokrivcak J. and Ciaian P. CAP subsidies and productivity of the EU farms. J Agr Econ. 2013; 64(3), 537–557. |
| 67. | Matthews, A. Impact of CAP subsidies on productivity. CAP Reform.eu April 1, 2013. Available: http://capreform.eu/impact-of-cap-subsidies-on-productivity/ Referred: September 2013; 15, 2015. |
| 68. | Kumbhakar S. C. and Lien G. Impact of Subsidies on Farm Productivity and Efficiency. The Economic Impact of Public Support to Agriculture. 2010; 109–124. Springer, New York, NY. |
| 69. | Mary S. Assessing the impacts of pillar 1 and 2 subsidies on TFP in French crop farms. J Agron Econ. 2013; 64(1): 133–144. |
| 70. | Sheng Y. and Chancellor W. Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry. Food Policy, 2019; 84: 196–204. |
| 71. | Khan M.I. Younas M., Bilal M.Q., Rehman M.S.U., Fiaz M., Anjum N., et al. Assessment of livestock extension services on dairy farm’s productivity. Pakistan Journal of Science. 2018; 70(2):131–138. |
| 72. | Skevas I., Emvalomatris G. and Brümmer B. Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms. Eur J Oper Res. 2018; 271: 250–261. |
| 73. | Madau F.A., Furesi R. and Pulina P. Technical efficiency and total factor productivity changes in European dairy farm sectors. Agricultural & Food Economics, 2017; 5(1):1–14. |
| 74. | Latruffe L., Fogaşari J. and Desjeux Y. Efficiency, productivity and technology comparison for farms in Central and Western Europe: the case of field crop and dairy farming in Hungary and France. Econ Syst. 2012; 36(2):264–278. |
| 75. | Forgacs C. Growth and productivity advantages of specialized farms in central and eastern European countries in 2005–2013. Acta Scientiarum Polonorum. Oeconomia. 2017; 16 (1):13–23. |
76. Guyomard, H., Latruffe, L. and Le Mouël, C. Technical efficiency, technical progress and productivity change in French agriculture: Do subsidies and farms' size matter?, 96th EAAE Seminar, January 10–11, Tänikon, Switzerland; 2006.

77. Kleinhanss W. Development of Total Factor Productivity of dairy farms in Germany. Appl Agric Forestry Res. 2015; 65: 217–226.

78. Latruffe L and Desjeux Y. Common Agricultural Policy support, technical efficiency and productivity change in French agriculture. Review of Agricultural, Food and Environmental Studies, 2016; 97: 15–28.