The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective

Parviz Mammadzada1 · Pablo M. Corredoira1 · Helder André1

Received: 4 December 2019 / Revised: 4 December 2019 / Accepted: 10 December 2019 / Published online: 31 December 2019
© The Author(s) 2019

Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.

Keywords Age-related macular degeneration · Angiogenesis · Hypoxia-inducible factors · Gene therapy

Introduction
Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with particular incidence in the geriatric population [1]. AMD is the third global cause of blindness (8.7% of patients’ blindness), preceded by cataract and glaucoma [2]. By the year 2020, AMD patients are predicted at 196 million, rising to 288 million in 2040, in association with the global aging of human population [3]. Patients with AMD suffer from impaired fine and color vision, with particular clinical relevance when the fovea (center of the macula, containing the highest density of cone photoreceptors) is affected and the central field of vision is compromised [4, 5].

Cellular events in AMD involve disruption of photoreceptors, retinal pigment epithelial (RPE) cells, Bruch’s membrane (BM), and the choroid. The observed cellular events are a result of destabilized homeostasis of reactive oxygen species (ROS) response [6], phagocytosis [7, 8], extracellular matrix remodeling [9], and alternative complement-related inflammation [10].

Etiologically, AMD is a multifactorial disease. Genetic variants associated with AMD include complement factor (CF)H [11] and CFH-related genes 1 to 5 [12], complement protein (C)3 [13], C9 [14], age-related maculopathy susceptibility (ARMS)2 gene [15], and the vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) axis [16, 17]. In addition, other genetic variants have shown a causal link to AMD, such as tissue inhibitor metalloproteinase (TIMP) 3 [18], fibrillin [19], collagen 4A3, and metalloproteinase (MMP) 19 and − 9 [20]. Moreover, environmental factors, e.g., advanced age, female gender, white race, smoking, increased body mass index, hypertension, and hyperopia, have been suggested to predispose to AMD [21]. In addition, certain biomarkers as carboxyethylpyrrole [22] and homocysteine [23, 24] have been shown to correlate with AMD. Despite this knowledge, AMD etiology is still evasive, urging a need for further research to deepen the understanding of AMD initiation and progression.

Here, the role of hypoxia and the hypoxia-inducible factors (HIFs) are revised in a perspective of AMD initiation and progression, as well as putative therapeutic targets, as they are the predominant molecular pathways of neovascular AMD (nAMD) [25–29].
Types of AMD

In general terms, AMD is designated according to disease progression and symptoms into early, intermediate, and advanced AMD [30]. Advanced cases (3% of the population [31]) are categorized into two types: “dry” or geographic atrophic form, and “wet” or neovascular form [30]. Atrophic AMD (aAMD) is more common but spanning only 20% of greater central visual loss. nAMD comprehends fewer cases, but has been related with 80% of greater central vision loss [32–34]. Albeit not a clinical constant, some cases of aAMD progress into nAMD, illustrating a possible clinical evolution or a certain redundancy between the two advanced types of AMD [4, 35, 36].

Drusen maculopathy

A common characteristic of AMD is pigment alteration in the RPE and hard or soft extracellular deposits between the RPE and the BM, referred to as drusen deposits [5, 37–39]. Soft drusen have been associated with higher risk of developing advanced AMD [40] and involved in the progression into geographic atrophy and causally associated with the initiation of choroidal neovascularization (CNV). CNV results in the formation of immature and fragile blood vessels that cause exudates into the subretinal spaces [41]. In rare cases, large soft drusen assemble and form pigment epithelial detachments (PEDs), which lead to an elevation of the RPE under the retina and impair the oxygenation of RPE cells, physiologically dependent on the intricate contact with the choroidal vascular bed [42].

The Beaver Dam Eye Study estimates that the prevalence of drusen is 2% in persons 43–54 years of age and 24% in persons over 75 years of age [43, 44]. Drusen are accepted as one of the causes of AMD, but the molecular pathway of drusen formation is still elusive [5, 37–39].

Drusen deposits are understood as the result of an incomplete processing of photoreceptor outer segments (POS) by the RPE [45], which cannot transmigrate through the BM for removal by the choriocapillaries. Such deposits create a barrier that decreases the diffusion of oxygen and nutrients from the choroid to the photoreceptors and the RPE in one direction, and decreases the removal of debris by the choriocapillaries into the other direction [4, 5, 37, 46]. Drusen contain lipids [47, 48], glycoconjugates [49, 50], glycosaminoglycan [51], and pigments, such as lipofuscin [52]. Concomitantly, the presence of advanced glycation end-products in drusen and on the BM, a product of aging, seems to contribute to AMD pathogenesis [53]. Finally, when cholesterol accumulates, soft drusen are formed [54, 55] and a higher risk association for advanced AMD is denoted. Drusen proteomic analysis has demonstrated the presence of multiple proteins, among which TIMP3 [18], clusterin, vitronectin, and serum albumin were the most common proteins in normal donor drusen, whereas crystallins were more frequently present in AMD donor drusen [38, 56, 57]. Drusen inflammatory and complement proteins, such as beta amyloid [58], immunoglobulin light chains, factor X, and C5 and −5b, have received special attention [59], specifically since CFH [11] and -B [60] gene mutations have been associated with AMD [61].

Lipofuscin [52], an aging pigment containing the autofluorescent oxidatively modified lipid N-retinylidene-N-retinylethanolamine (A2E) [62, 63] together with minimal amounts of oxidatively modified proteins [64], is the product of impaired phagocytosis of the POS due to decreased RPE lysosomal activity [65]. Physiologically, lipofuscin is degraded completely or exocytosed by the RPE cells basolaterally and removed by the choroidal blood stream [66]. In AMD, lipofuscin accumulates intracellularly in the RPE and on the BM and is highly present in drusen deposits [67]. In addition, age-dependent reduction in enzyme and mitochondria functions results in ROS accumulation, which contributes to the pathogenesis of AMD [6, 8].

In sum, drusen maculopathy results from the combination of accumulated lipofuscin, ROS, and complement alternative-related inflammation, and the decreased extracellular matrix remodeling and phagocytosis. These culminate in the thickening of Bruch’s membrane, creating a barrier that reduces the diffusion of oxygen and nutrients from the choroid to the photoreceptors and the RPE, and decreases the removal of debris by the choriocapillaries [4, 5, 37, 46]. Ultimately, macular drusenopathy leads to a status of relative hypoxia within the subretinal compartments and contributes to the pathogenesis of AMD (Fig. 1) [25, 68, 69]. In response, the RPE is triggered to secrete proangiogenic factors, such as VEGF into the choroidal space, in an attempt to minimize hypoxia-induced events. Hypoxia stimulates secretion of not only VEGF but several vasculogenic and inflammatory cytokines by the RPE, thus contributing to the development of CNV [70–73].

Treatment of AMD

To date, there is neither an effective preventive treatment [74–76] nor a cure for AMD. Yet if untreated, AMD will evolve to a severe and irreversible disciform scar, resulting in extremely compromised vision or even blindness [4, 5].

Nowadays, nAMD is treated by routine intraocular injections of anti-VEGF agents [77–83], and to some extent by photodynamic therapy and thermal laser [84, 85]. The use of intravitreal anti-VEGF agents has revolutionized the treatment of nAMD with pegaptanib being the first approved
The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a…

The Hypoxia-inducible Factors

HIFs, the main regulators of hypoxia, are members of the basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family. HIFs are composed of α and β subunits, where the latter is the constitutively expressed hydrocarbon receptor nuclear translocator (ARNT). Three isoforms have been identified for α subunits: HIF-1α, -2α and -3α [26, 27, 90, 91] with HIF-1α and HIF-2α being more prone for active responses to hypoxia. HIF-1α is widely expressed in all human normoxic and hypoxic tissues [92], while HIF-2α expression has been associated with physiologically hypoxic tissues [93] and spans 48% structure homology to HIF-1α [94]. The less characterized HIF-3α is expressed in adult thymus, lung, brain, heart, and kidney [95], and different splice variants of HIF-3α have opposite functions varying from activation to repression of hypoxia-inducible genes [91, 96].

Structurally, HIF-α subunits span at the N-terminus a basic helix-loop-helix (bHLH) and a Period-ARNT-Sim (PAS) domains responsible for DNA binding and dimerization to ARNT [97]. HIF-α transcription factors at the C-terminus contain two transactivation domains (TAD) which recruit coactivators [98, 99], and an inhibitory domain (ID) between the two TADs [100]. Oxygen-dependent protein regulation has been mapped to an internal oxygen-dependent degradation domain (ODD) [101]. In addition, two nuclear localization signals (C-terminal NLS and N-terminal NLS) have been identified, determining a near exclusive nuclear subcellular localization of HIF-α subunits [99, 102].

Regulation of HIF expression

Interestingly, HIF-α subunits are constitutively expressed, yet protein levels and transcription activity are regulated by oxygen-dependent posttranslational modification (PTM), followed by epigenetic regulation of HIF-mediated transcription [103].
In normal oxygen conditions (Fig. 2), HIF-α is hydroxylated in two conserved prolines by a family of three oxygen-dependent orthologues of prolyl hydroxylase domain (PHD1-3) [104, 105]. Subsequent to hydroxylation of prolines 402 and 564 of HIF-1α (P405 and P531 in HIF-2α), the von Hippel–Lindau (pVHL), acting as the substrate-recognition component of an E3 ubiquitin ligase complex, recognizes and polyubiquitinates HIF-α, resulting in 26S proteasome-mediated degradation of HIF-α proteins [106–109]. An additional oxygen-dependent asparaginyl hydroxylase factor inhibiting HIF-1α (FIH-1) regulates HIF transcriptional activation in normoxia. Hydroxylation of asparagine 803 of HIF-1α C-terminal TAD (N851 of HIF-2α) inhibits the binding of coactivators (CBP/p300) and renders HIF-α subunits transcriptionally inactive in normoxia [98, 99, 110, 111].

In addition, non-oxygen-dependent regulation of HIF-α has been attributed to lysine acetylation within the ODD by the ADP-ribosylation factor domain protein 1 (ARD1). Acetylation of lysine 532 promotes interaction between VHL and HIF-1α and stimulates HIF protein degradation. Despite oxygen-independent, PTM of HIF-α by acetylation is regulated by hypoxia-induced downregulation of ARD1 expression [112, 113].

In hypoxic conditions (Fig. 2), molecular oxygen is limited, the oxygen-dependent PHDs activity is compromised, and HIF remains unhydroxylated bypassing ubiquitin–proteasome degradation. Once stabilized and translocated to the nucleus, HIF-α heterodimerizes with ARNT, and the dimer binds to hypoxia-response elements (HRE; 5′RA/GCGTG3′) [114, 115], thus mediating upregulation of hypoxic genes [116]. Finally, phosphorylation of HIF-1α by p42/44 [117] and p38 [118] mitogen-activated protein kinases (MAPK) enhances heterodimerization and transcriptional activity of HIF, leading to the upregulation of hypoxic genes.

Canonical HIF pathway

In hypoxia, the nuclear and transcriptionally active HIF heterodimer binds HRE, and the hypoxia-inducible genes are expressed [26, 119, 120]. Classically, the hypoxia-inducible genes are principally involved in cell differentiation, proliferation, and survival or apoptosis, cellular energy and metabolism, extracellular matrix (ECM) degradation and chemotaxis, and angiogenesis. HIF-mediated genes are involved also in a myriad of pathologies from stroke and ischemia, neovascular diseases, and several tumors and metastatic disease [26, 120].

In regard to tumor metastasis, HIFs are directly enrolled in tumor cellular growth by upregulating survival and proliferation genes, such as twist-related protein 1 (TWIST1) [121], integrins αvβ3, αvβ5 and αvβ6 [122], and several cadherins [123]. Concomitantly, HIF genes regulate ECM degradation and chemotaxis, modulating tumor metastasis directly. Matrixmetalloproteinases such as MMP2 [124] and MMP9 [125] together with urokinase-like plasminogen activator and its receptor (uPA; uPAR) and plasminogen activator inhibitor (PAI)-1 [126–128] are upregulated by HIFs in metastatic tumors. Moreover, the HIF-driven genes C–X–C motif chemokine receptor 4 (CXCR4) [129, 130] and C–C
motif chemokine receptor 7 (CCR7) [131] contribute to metastasis guidance and dissemination of certain cancers.

Angiogenesis is regulated by HIFs, with VEGF and VEGFR major family as the principal intermediary [132–134]. In addition, calcitonin receptor-like receptor (CRLR) [135], stem cell factor (SCF) [136], and angiopoi-etin 2 (ANGPT2) [137] are overexpressed by HIFs and contribute to VEGF-independent angiogenesis.

Regarding cellular energy and metabolism, HIFs directly regulate the glycolytic shift from Krebs cycle to anaerobic pathways in hypoxia by upregulation of glucose transporters GLUT1 and GLUT3 [138, 139], glycolytic enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) [140], phosphoglycerate kinase 1 (PGK1) [141, 142], pyruvate kinase M2 (PKM2) [143], pyruvate dehydrogenase kinase 1 (PDK1) [144], lactate dehydrogenase A (LDHA) [114], c-Myc [145], and monocarboxylate transporter 4 (MCT4) [146].

On cellular differentiation processes, HIFs maintain cells undifferentiated by promoting the expression of octamer-binding transcription factor 4 (OCT-4), and stage-specific embryonic antigen-1 (SSEA-1) and SSEA-4 [147], therefore contributing the stemness of specific progenitor niches in adult tissues. In addition, HIFs contribute to de-differentiation of cancer cells by modulating the Notch-dependent epithelial-mesenchymal transition signal involved in the maintenance of undifferentiated cells [148, 149]. On the other hand, HIFs through erythropoietin and its receptor (EPO; EPOR) [150, 151] produce proliferation and differentiation of hematopoietic stem cells into red blood cells. In addition, HIF-1α upregulates the transcription factor SOX-9 expression, which participates in chondrogenesis [152].

Finally, HIFs have been reported to induce apoptosis via the p53 tumor-suppressor gene [153] and the B-cell lymphoma (Bcl-2) gene family—BNip3 [154] and Noxa [155]. On the other hand, HIF can contribute to prevent apoptosis by the upregulation of nucleophosmin (NPM) [156] and human urocortin 2 (hUcn2) [157].

The role of HIF pathway in nAMD

Some tissues in the eye, including the cornea and the macula, are physiologically avascular and prone to hypoxia. In the eye, HIFs play specific physiologic roles in contributing to the avascularity: in the cornea, a splice variant of HIF-3α is responsible for blocking hypoxia-inducible neoangiogenesis during sleep [158], while in the foveal pit, HIFs contribute to the expression of VEGFR2 to sequester VEGF and impair vascularization into the macula [159]. In the particular case of the RPE layer, HIFs have been suggested to contribute to the apical secretion of pigment epithelium-derived factor (PEDF; antiangiogenic factor) and baso-lateral VEGF (angiogenic factor), thus simultaneously ensuring avascularity of the POS layer and vascular proximity from the choriocapillaries [27].

With regard to nAMD, genes encoding the canonical angiogenic factors VEGF [16, 132–134, 160, 161] and VEGFR [162, 163] have been widely associated with the development and progression of the disease. In addition, multiple molecular effectors have been associated with progression of nAMD [26] by contributing to: endothelial cell proliferation and recruitment of inflammatory cells—placental growth factor (PLGF) [164] and its receptor VEGFR1 [162], platelet-derived growth factor B (PDGF-B) [165] and its receptor PDGFRB [166], ANGPT-1, ANGPT-2 and their receptor Tie2 [161, 167], angiopoietin-like 4 (ANGPTL4) [168], stromal-derived growth factor-1 (SDF-1) [169] and its receptor CXCR4 [130]; ECM degradation—PAI-1 [126], and MMP2 and MMP9 [125]; vascular permeability and vasodilation—VEGF (particularly VEGF-A), VEGFR1, VEGFR2 [162, 163]; endothelial sprouting—ANGPT-2 [170]; and fibroplasia—transforming growth factor beta (TGF-β) [171].

Interestingly, all of the aforementioned factors, which directly contribute to nAMD, are HIF target genes [26, 27, 29, 69, 172, 173]. Drusen maculopathy and the age-related thickening of the BM together contribute to the increased hypoxic status of the RPE and thus lead to increased levels of HIF transcription factors. The expression of HIFs has been detected in choroidal neovascular membranes from clinical samples of nAMD patients [28, 29] and further corroborated to contribute to nAMD in mouse models of CNV [174, 175]. Moreover, HIFs also increase RPE apoptosis and autophagy, similarly to the choriocapillaries, which stimulates the endothelial proliferation [176–178] observed in nAMD.

Addressing unmet needs in nAMD treatment

Nowadays, nAMD practitioners widely recur to anti-VEGF agents [79–82] for treatment, albeit with limitations or side effects: high probability of ocular infection, increased ocular pressure, cataract, vitreous hemorrhaging and retinal detachment; elevated price; transient (demands repeated intravitreal injections); limited recovery of patients’ visual acuity in a long period [179–182]. Some of these issues evolve from the use of mono-factor therapies, such as anti-VEGF drugs, to address a multifactorial, multi-genetic disease, as is the case of nAMD. In order to improve effectiveness, combination of treatment with other proangiogenic inhibitors as blocking PDGF ([183, 184], clinicaltrials.gov/NCT01940900), steroids, e.g., triamcinolone [185], or AINEs, such as ketorolac [186], and integrin antagonists [187] has been suggested as adjuvants to anti-VEGF regiments. Collectively, these novel
Pharmacological inhibition of HIF in nAMD

With HIFs as a central pathway in the pathogenesis of AMD [188–191], pharmacological inhibition of HIF would delimitate the production and secretion of many angiogenic factors and cytokines, in contrast to anti-VEGF drugs.

The inhibition of HIFs can be achieved indirectly by impairing pathways that mediate hypoxic responses, such as phosphoinositide 3-kinases/mammalian target of rapamycin (PI3K/mTOR) [192], topoisomerase I [193]/II [194], microtubules [195], Hsp90 [196], farnesyltransferase [197, 198], histone deacetylase [199], or thioredoxin 1 (TRX1) [200]. In animal models of ocular neovascular diseases, pharmacological inhibition of hypoxia-related pathways has displayed some success. Some of these drugs include cardiac glycosides as digoxin (inhibits p53 protein synthesis and target nuclear factor (NF)-kB; nuclear competitors of HIF) [201], anthracyclines as doxorubicin and daunorubicin (inhibits topoisomerase II, hence blocking the binding of HIF to DNA) [202], YC-1 (inactivates the upregulated PI3K/mTOR pathway, thus inducing degradation of HIF-1α) [203], and honokiol—which inactivates multiple pathways including NF-kB, mTOR, epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and caspase-mediated pathways, while also blocking the binding of HIFs to VEGF promoter and simultaneously decreasing VEGF secretion in RPE cells by HIF-independent effects on EGFR and STAT3 [204]. Expectedly, many of the indirect HIF inhibitors have shown considerable side effects both in vitro and in vivo studies, which implies a preferable direct inhibition approach. A multi-kinase inhibitor of uPAR co-receptor dimerization, UPARANT, has been demonstrated to indirectly inhibit HIF [205–208] with promising effects on systemic administration and unobserved side effects in animal models of ocular diseases, including nAMD [206].

Direct inhibition can affect different stages of HIFs, by reducing protein levels, interfering with dimerization, or binding to HREs. The first specific direct HIF inhibitor, echinomycin, has been reported to interfere with the HIF transcription factor binding to DNA [209], although reports of the effects of echinomycin on ocular cells or models are currently missing. Alternative direct inhibition of HIF has been achieved by overexpressing specific HIF modulators, such as PHD2 [210] or microRNAs [211]. Due to the intracellular nature, HIF modulator molecules must undergo gene therapy strategies.

Gene therapy for the treatment of nAMD

Nowadays, a few inherited mono-genetic diseases can be treated by gene replacement therapies. Interestingly, gene therapy for a rare form of Leber congenital amaurosis (LCA) by the replacement of Rpe65 gene—Luxturna—has been approved by the FDA [212].

The eye has been considered as an ideal organ for gene therapy-based transduction: it is compartmentalized and on the fringes of the immune system actions; the adult eye cell proliferation is limited and thus non-integrating vectors are feasible; easy access for direct treatment and evaluating effects; and need for small quantities of drug which correlate to neglectable-to-none systematic side effects. For AMD, gene therapy should be delivered in the macular subretinal space since RPE cells and photoreceptors are the principal targets of treatment [213]. Subretinal injections are becoming more standard with the currently approved ocular gene therapy treatment.

Generally, gene transfer can be achieved by viral and non-viral vectors [214], and the target gene can be replaced or inactivated. Viral vectors are more sustainable and effective than non-viral vectors, and thus preferable. Commonly used viral vectors in gene therapy models include recombinant adeno-associated virus (rAAV) vectors, adenovirus (Ad), and integrating-deficient lentivirus (IDLV) [215]. rAAV vectors have been the most effective for retinal gene therapy due to sustainable transduction of photoreceptors and RPE. Nonetheless, due to their small size, DNA capacity is limited to genes smaller than 4.7 kb [216]. In addition, rAAV vectors are non-integrating to the mammalian genome, thus displaying good safety profile as it is reported in multiple animal models, including large-eyed animals, such as dogs and primates [217]. It is noteworthy that minimal immune response to the rAAV vectors can occur [218, 219], although the use of specific viral serotypes, such as rAAV2, has demonstrated good tolerability in patients [220].

Ongoing clinical trials for gene therapies for the treatment of nAMD exploit protein-based and RNA interference (RNAi) antiangiogenic strategies. Considerable effort has been applied on protein-based gene therapy trial for nAMD, where the transduced cells overexpress angiostatic proteins in order to arrest CNV. As an example, subretinal rAAV-mediated gene transfer of the VEGF inhibitor—sVEGFR1—decreases choroidal vascularization in animal models by sequestration of VEGF and forming inactive heterodimers incapable of activating the VEGF receptors [221]. AAV vectors with other angiostatic factors, such as PEDF [222] and angiostatin [223], also have successfully arrested CNV in animal models. At present, clinical trials include Ad transducing PEDF protein [224], rAAV2
transducing sVEGFR1 (clinicaltrials.gov NCT01494805, NCT01024998, [221]), and the first lentiviral vector clinical trial, RetinoStat (clinicaltrials.gov NCT01301443, [225]), transducing two antiangiogenic genes: endostatin and angiostatin.

Anti-HIF gene therapy in nAMD

Specifically targeting HIF transcription factors have been an attractive strategy for the treatment of the multifactorial nAMD [226–228]. Currently, only animal models of CNV-associated with nAMD have been addressed with anti-HIF gene therapies. Assessing HIFs directly appears to mitigate angiogenesis and inflammatory responses, both associated with nAMD disease initiation and progression.

Inhibition of HIFs by gene therapy constructs has most commonly been achieved by anti-HIF microRNAs (miRNA). The expression of miRNA-20b modulates VEGF by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells [229, 230] and has been suggested as a putative candidate for nAMD gene therapy [26, 27]. Nevertheless, miRNAs have been suggested to display considerable unspecificity by targeting multiple pathways; therefore, the use of HIF-specific RNAi has been reported beneficial in AMD models [211].

Use of protein-based gene therapy strategies for the treatment of CNV-associated with nAMD has been less explored, partly due to the lack of RPE- and HIF-specific modulators of the hypoxia pathway. Gene transfer of PHD2 in vivo resulted in the mitigation of HIF-mediated angiogenesis in a mouse model of nAMD [210] by reducing several nAMD-associated angiogenic factors and cytokines. PHD2 has been suggested as the ideal candidate for targeting HIF in RPE cells and has considerable HIF-selectivity in hypoxia [231] rendering it a putative candidate for anti-HIF gene therapy treatments of nAMD.

Future perspectives

Treatment of multifactorial diseases, such as nAMD, presents an immense clinical challenge. Despite prevalent use and significant success, current treatments for patients afflicted with nAMD by the administration of anti-VEGF drugs are far from optimal. Treatments must be administered on routine basis with substantial cost for health care systems and associated risks for the patients. Development of sustainable treatments could considerably improve nAMD therapies.

Gene therapy presents a possibility of sustainability when compared to pharmacological or surgical treatments, since the treatment is localized to the target cells, sustained with one dose, and regulated through gene-construct engineering. The regulation of gene expression is desirable to minimize side effects [226, 232]. The use of tissue- and cell-specific promoters has increased targeted expression of therapeutic genes in gene therapy. In nAMD, the involvement of RPE cells is pivotal, and RPE-specific promoters, such as pRpe65 (encoding RPE65 protein) and pVMD2 (promoter for the vitelliform macular dystrophy 2, encoding bestrophin-1 protein), grant expression of therapeutic genes specifically in RPE cells. Albeit non-integrative viral vectors are used for gene therapy in ophthalmology, the post-mitotic character of adult RPE and photoreceptors results in long-term expression of transduced genes. Despite the attractiveness of sustainable treatments for nAMD, in opposition to the need for routine injections currently applied with anti-VEGF drugs, the risk of long-term secondary events of the therapeutic gene should be considered. Engineering of inducible cell-specific promoters to the administration of exogenous genes for the treatment of nAMD has been proposed [233]. Combining tissue-specific promoters (pRpe65) with HRE regulatory elements, hypoxia-mediated spatial and temporal regulation of angiostatic proteins can be achieved to mitigate CNV in mouse models of nAMD [234].

The subretinal injection routinely used to deliver gene therapy to RPE cells requires a vitrectomy to hamper retinal detachments, which could result in surgical complications. Present intravitreal transduction of gene therapy vectors most commonly is limited to the inner layers of the retina [235, 236], yet modified adeno-associated virus (AAV) capsids have been reported to transduce both photoreceptor and RPE cells in non-human primates [237]. Development of novel mutant virus packaging capsids of different serotype will certainly improve gene expression kinetics and cellular tropism for the future of gene therapies [238–240].

Conclusion

Anti-HIF therapies have demonstrated considerable improvement in models of nAMD when compared to anti-VEGF drugs. Targeting a transcription factor can present its own challenges, yet advances on gene therapy strategies have paved bright conceptual avenues for future anti-HIF sustainable and long-term treatments for nAMD patients.

Acknowledgements Open access funding provided by Karolinska Institute. The authors thank Anders Kvanta and Flavia Plastino for support and valuable input on the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Leibowitz HM, Krueger DE, Maund LR et al (1980) The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol 24:335–610

2. Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234. https://doi.org/10.1016/S2214-109X(17)30393-5

3. Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1

4. Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2009) Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471. https://doi.org/10.1080/0785380600946724

5. Algvere PV, Kvanta A, Seregard S (2016) Drusen maculopathy: a risk factor for visual deterioration. Acta Ophthalmol 94:427–433. https://doi.org/10.1111/aos.13011

6. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

7. Mitter SK, Song C, Qi X et al (2014) Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10:1989–2005. https://doi.org/10.4161/auto.36184

8. Golestaneh N, Chu Y, Xiao Y-Y et al (2017) Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 8:e2537–e2537. https://doi.org/10.1038/cddis.2016.453

9. Fernandes-Godino R, Pierce EA, Garland DL (2016) Extracellular matrix alterations and deposition in AMD. Adv Exp Med Biol 854:53–58. https://doi.org/10.1007/978-3-319-17121-0_8

10. Gemenetzi M, Lotery AJ (2016) Complement pathway biomarkers and age-related macular degeneration. Eye 30:1–14. https://doi.org/10.1038/eye.2015.203

11. Mattapallil MJ, Caspi RR (2017) Compliments of factor H: what’s in it for AMD? Immunity 46:167–169. https://doi.org/10.1016/j.immuni.2017.02.008

12. Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT (2013) Complement factor H-related proteins (CFHRs). Mol Immunol 56:170–180. https://doi.org/10.1016/j.molimm.2013.06.001

13. Natoli R, Fernando N, Jiao H et al (2017) Retinal macrophages and the future. Ophthalmology 124:1753–1763. https://doi.org/10.1016/j.ophtha.2017.05.030

14. Rochtchina E, Wang JJ, Flood VM, Mitchell P (2007) Elevated vascular endothelial growth factor polymorphisms and age-related macular degeneration: the Blue Mountains Eye Study. Am J Ophthalmol 143:344–346. https://doi.org/10.1016/j.ajo.2006.08.032

15. Arjamaa O, Aaltonen V, Piippo N et al (2017) Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-017-2711-0

16. Rohrich RJ, Strawderman M, Peschka DP et al (2017) Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 14:919–935

17. Peet DJ, Kittipassorn T, Wood JP et al (2017) HIF signaling: the eyes have it. Exp Cell Res 356:136–140. https://doi.org/10.1016/j.yexcr.2017.03.030

18. Sheridan CM, Pate S, Hiscott P et al (2009) Expression of hypoxia-inducible factor−1α and −2α in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol. 247:1361–1367. https://doi.org/10.1007/s00417-009-1133-3

19. Inoue Y, Yanagi Y, Matsuura K et al (2007) Expression of hypoxia-inducible factor 1alpha and 2alpha in choroidal neovascular membranes associated with age-related macular degeneration. Br J Ophthalmol 91:1720–1721. https://doi.org/10.1136/bjo.2006.111583

20. Ferris FL, Wilkinson CP, Bird A et al (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120:844–851. https://doi.org/10.1016/j.ophtha.2012.10.036

21. Colijn JM, Buitendijk GHS, Prokofyeva E et al (2017) Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology 124:1753–1763. https://doi.org/10.1016/j.ophtha.2017.05.035
The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a…

32. Murphy RP (1986) Age-related macular degeneration. Ophthalmology 93:969–971
33. Sunness JS (1999) The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis 5:25
34. Ferris FL, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102:1640–1642. https://doi.org/10.1001/archophthalm.1984.0104031330019
35. Vietti A (2008) Neovascular age-related macular degeneration: too many theories, too little knowledge? Acta Ophthalmol 86:468–469. https://doi.org/10.1111/j.1755-3768.2008.01283.x
36. Grunwald JE, Pistilli M, Ying G-S et al (2015) Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 122:809–816. https://doi.org/10.1016/j.ophtha.2014.11.007
37. Khan KN, Mahroo OA, Khan RS et al (2016) Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 53:70–106. https://doi.org/10.1016/j.preteyeres.2016.04.008
38. Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: An approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687. https://doi.org/10.1073/pnas.122255189
39. Johnson LV, Forest DL, Banna CD et al (2011) Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci USA 108:18227–18282. https://doi.org/10.1073/pnas.10119703108
40. Sarks JP, Sarks SH, Killingsworth MC (1994) Evolution of soft drusen in age-related macular degeneration. Eye (Lond) 8(Pt 3):269–283. https://doi.org/10.1038/eye.1994.57
41. Ichiyama Y, Sawada T, Ito Y et al (2017) Optical coherence tomography angiography reveals blood flow in choroidal neovascular membrane in remission phase of neovascular age-related macular degeneration. Retina 37:724–730. https://doi.org/10.1097/IAE.0000000000001576
42. Balaratnasingam C, Yannuzzi LA, Curcio CA et al (2016) Associations between retinal pigment epithelium and drusen volume changes during the lifecycle of large drusenoid pigment epithelial detachments, Invest Ophthalmol Vis Sci 57:5479–5489. https://doi.org/10.1167/iovs.16-19816
43. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam eye study. Ophthalmology 99:933–943
44. Klein R, Klein BEK, Tomany SC, Moss SE (2002) Ten-year incidence of age-related maculopathy and smoking and drinking: the Beaver Dam Eye Study. Am J Epidemiol 156:589–598. https://doi.org/10.1093/aje/kwf092
45. Sarks SH (1976) Ageing and degeneration in the macular region: a clinicopathological study. Br J Ophthalmol 60:324–341. https://doi.org/10.1136/bjo.60.5.324
46. Ko A, Cao S, Pakzad-Vaezi K et al (2013) Optical coherence tomography-based correlation between choroidal thickness and drusen load in dry age-related macular degeneration. Retina 33:1005–1010. https://doi.org/10.1097/IAE.0b013e31827d266e
47. Curcio CA, Presley JB, Millican CL, Medeiros NE (2005) Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles. Exp Eye Res 80:761–775. https://doi.org/10.1016/j.exer.2004.09.017
48. Curcio CA, Presley JB, Malek G et al (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741. https://doi.org/10.1016/j.exer.2005.04.012
49. D’souza YB, Jones CJP, Short CD, Bonshek RE (2010) Basal laminar drusen and soft drusen have similar glycan composition. Can J Ophthalmol 45:297–299. https://doi.org/10.3129/09-232
50. Mullins RF, Johnson LV, Anderson DH, Hageman GS (1997) Characterization of drusen-associated glycoconjugates. Ophthalmol 104:288–294
51. Kliften M, Moyo CM, Luider TM et al (1996) Identification of glycosaminoglycans in age-related macular deposits. Arch Ophthalmol 114:1009–1014. https://doi.org/10.1001/archophthalm.1996.011004217021
52. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606. https://doi.org/10.1016/j.exer.2005.01.007
53. Lin T, Walker GB, Kurji K et al (2013) Parainflammation associated with advanced glycation endproduct stimulation of RPE in vitro: implications for age-related degenerative diseases of the eye. Cytokine 62:369–381. https://doi.org/10.1016/j.cyt.2013.03.027
54. Delcourt C, Michel F, Colvez A et al (2001) Associations of cardiovascular disease and its risk factors with age-related macular degeneration: the POLA study. Ophthalmic Epidemiol 8:237–249
55. Cougnard-Gregoire A, Delyfer M-N, Korobelnik J-F et al (2014) Elevated high-density lipoprotein cholesterol and age-related macular degeneration: the Alenior study. PLoS ONE 9:e90973. https://doi.org/10.1371/journal.pone.0090973
56. Nakata K, Crabb JW, Hollyfield JG (2005) Crystallin distribution in Bruch’s membrane-chorioid complex from AMD and age-matched donor eyes. Exp Eye Res 80:821–826. https://doi.org/10.1016/j.exer.2004.12.011
57. Yuan X, Gu X, Crabb JS et al (2010) Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 9:1031–1046. https://doi.org/10.1074/mcp.M900523-MCP200
58. Anderson DH, Talaga KC, Rivest AJ et al (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256
59. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846
60. Mantel I, Ambresin A, Moetteli I et al (2014) Complement factor B polymorphism and the phenotype of early age-related macular degeneration. Ophthalmic Genet 35:12–17. https://doi.org/10.3109/13816810.2013.766217
61. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73:887–896. https://doi.org/10.1006/exer.2001.1094
62. Adler L, Boyer NP, Anderson DM et al (2015) Determination of N-retinylidene-N-retinylethanolamine (A2E) levels in central and peripheral areas of human retinal pigment epithelium. Photochem Photobiol Sci 14:1983–1990. https://doi.org/10.1039/c5pp00156k
63. Eldred GE, Lasky MR (1993) Retinal age pigmentations generated by self-assembling lysosomotropic detergents. Nature 361:724–726. https://doi.org/10.1038/361724a0
64. Ng K-P, Giguier B, Renganathan K et al (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405. https://doi.org/10.1074/mcp.M700525-MCP200
65. Gupta S, Liu J, Baltazar G et al (2014) Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented
epithelial cells. Adv Exp Med Biol 801:105–111. https://doi.org/10.1007/978-1-4614-3209-8_14
66. Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMS 106:265–276
67. Booj BC, Baas DC, Beisekeeva J et al (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29:1–18. https://doi.org/10.1016/j.pretereyres.2009.08.003
68. Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242:91–101. https://doi.org/10.1007/s00417-003-0828-0
69. Kvanta A (2006) Ocular angiogenesis: the role of growth factors. Acta Ophthalmol 84:282–288. https://doi.org/10.111 j.1600-0420.2006.00659.x
70. Bhattu I, Lutty GA (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retninal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317. https://doi.org/10.1016/j.mam.2012.04.005
71. Mammadzada P, Gudmundsson J, Kvanta A, André H (2016) Differential hypoxic response of human choroidal and retinal endothelial cells proposes tissue heterogeneity of ocular angiogenesis. Acta Ophthalmol 94:805–814. https://doi.org/10.1111/aos.13119
72. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal neovascular diseases. Prog Retin Eye Res 49:67–81. https://doi.org/10.1016/j.preteryes.2015.06.002
73. Alizadeh E, Mammadzada P, André H (2018) The different facades of retinal and choroidal endothelial cells in response to hypoxia. Int J Mol Sci 19:3846. https://doi.org/10.3390/ijms19123846
74. Chew YE, Clemons TE, Agrón E et al (2013) Long-term effects of vitamins C and E, β-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmolog 120:1604–11.e4. https://doi.org/10.1016/j.jophtha.2013.01.021
75. Ho L, van Leeuwen R, Witteman JCM et al (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and Ô-3 fatty acids: the Rotterdam study. Arch Ophthalmol 129:758–766. https://doi.org/10.1001/archophth.2011.141
76. Sundelin SP, Nilsson SE (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31:217–225
77. Lotery A, Griner R, Ferreira A et al (2017) Real-world visual acuity outcomes between ranibizumab and aflibercept in treatment of neovascular AMD in a large US data set. Eye 31:1697–1706. https://doi.org/10.1038/eye.2017.143
78. Eadie JA, Gottlieb JL, Ip MS et al (2014) Response to aflibercept in patients with persistent exudation despite prior treatment with bevacizumab or ranibizumab for age-related macular degeneration. Ophthamlc Surg Lasers Imaging Retina 45:394–397. https://doi.org/10.3928/23258160-20140909-03
79. Kimoto K, Kubota T (2012) Anti-VEGF agents for ocular angiogenesis and vascular permeability. J Ophthalmol 2012:852183. https://doi.org/10.1155/2012/852183
80. Tolentino M (2011) Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 56:95–113. https://doi.org/10.1016/j.survophtha.12010.08.006
81. Pieramici DJ, Rabena MD (2008) Anti-VEGF therapy: comparison of current and future agents. Eye 22:1330–1336. https://doi.org/10.1038/eye.2008.88
82. Ba J, Peng R-S, Xu D et al (2015) Intravitreal anti-VEGF injections for treating wet age-related macular degeneration: a systematic review and meta-analysis. Drug Des Devel Ther 9:5397–5405. https://doi.org/10.2147/DDDT.S86269
83. Rush RB, Simunovic MP, Vandiver L et al (2014) Treat-and-extend bevacizumab for neovascular age-related macular degeneration: the importance of baseline characteristics. Retina 34:846–852. https://doi.org/10.1097/IAE.0000000000000333
84. Selim A, Koçak N, Aslanhara K, Kaynak S (2014) Comparative study of photodynamic therapy monotherapy versus triple management in age-related macular degeneration. Turk J Med Sci 44:889–895
85. Kawczyk-Krupka A, Bugaj AM, Potempska M et al (2015) Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: clinical perspectives. Photodiagnosis Photodyn Ther 12:161–175. https://doi. org/10.1016/j.pdpt.2015.03.007
86. Amadio M, Govoni S, Pascale A (2016) Targeting VEGF in eye neovascularization: what’s new? A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacol Res 103:253–269. https://doi.org/10.1016/j.phrs.2015.11.027
87. Biagi C, Conti V, Montanaro N et al (2014) Comparative safety profiles of intravitreal bevacizumab, ranibizumab and pegaptanib: the analysis of the WHO database of adverse drug reactions. Eur J Clin Pharmacol 70:1505–1512. https://doi.org/10.1007/s00228-014-1755-1
88. CATT Research Group, Martin DF, Maguire MG, et al (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908. doi:10.1056/NEJMoa1102673
89. Krishnadev N, Meleth AD, Chew EY (2010) Nutritional supplements for age-related macular degeneration. Curr Opin Ophthalmol 21:184–189. https://doi.org/10.1097/ICO.0b013 e32833866ee
90. Li Y, Ye D (2010) Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets 10:782–796
91. Yang S-L, Wu C, Xiong Z-F, Fang X (2015) Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (review). Mol Med Rep 12:2411–2416. https://doi.org/10.3892/mmr.2015.3689
92. Stroka DM, Burkhardt T, Desbailllets I et al (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453. https://doi.org/10.1096/fj.01-0125com
93. Wiesener MS, Jürgensen JS, Rosenberger C et al (2003) Wide-spectrum hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17:271–273. https://doi.org/10.1096/fj.02-0445fje
94. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82. https://doi.org/10.1101/gad.11.1.72
95. Gu YZ, Moran SM, Hogenesch JB et al (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213
96. Duan C (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol 310:C260–C269. https://doi.org/10.1152/ajpcell.00315.2015
97. Jiang BH, Rue E, Wang GL et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor-1. J Biol Chem 271:17771–17778. https://doi. org/10.1074/jbc.271.30.17771
98. Rusas JL, Poellinger L, Pereira T (2002) Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J Biol Chem 277:38723–38730. https://doi.org/10.1074/jbc.M205051200
The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a…
gene by hypoxia. J Biol Chem 270:13333–13340. https://doi.org/10.1074/jbc.270.22.13333

133. Kurihara T, Westenskow PD, Friedlander M (2014) Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol 801:275–281. https://doi.org/10.1007/978-1-4614-3209-8_35

134. Metzger CS, Koutsimpealas D, Brierje J (2015) Transcriptional regulation of the VEGF gene in dependence of individual genetic variations. Cytokine 76:519–526. https://doi.org/10.1016/j.cyto.2015.07.015

135. Nikitenko LL, Smith DM, Bicknell R, Rees MCP (2003) Transcriptional regulation of the ETS-1 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol 217:809–818. https://doi.org/10.1002/jcp.21558

136. Han Z-B, Ren H, Zhao H et al (2008) Hypoxia-inducible factor (HIF)-1 alpha directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF), Carcinogenesis 29:1853–1861. https://doi.org/10.1093/carcin/bgn066

137. Simon M-P, Tournaire R, Pouyssegur J (2008) The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol 217:809–818. https://doi.org/10.1002/jcp.21558

138. Ren B-F, Deng L-F, Wang J et al (2008) Hypoxia regulation of facilitated glucose transporter-1 and glucose transporter-3 in mouse chondrocytes mediated by HIF-1alpha. J Bone Spine 75:176–181. https://doi.org/10.1016/j.jbspin.2007.05.012

139. Thamotharan S, Raychaudhuri N, Tomi M et al (2013) HIF adaptation enganges the CBP/CREST-induced coactivator complex of Creb-HIF-1α in transactivating murine neuroblastoma glucosel cssure. Am J Physiol Endocrinol Metab 304:E583–E598. https://doi.org/10.1152/ajpendo.00513.2012

140. Minchenko A, Leshchinsky I, Opentanova I et al (2002) Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277:6183–6187. https://doi.org/10.1074/jbc.M110978200

141. Zhou C-H, Zhang X-P, Liu F, Wang W (2015) Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 5:13834. https://doi.org/10.1038/srep13834

142. Luo W, Hu H, Chang R et al (2011) Pyruvate kinase M2 is a chondrogenic phenotype of mesangial cells and contributes to advanced diabetic nephropathy. J Biol Chem 286:32162–32169. https://doi.org/10.1074/jbc.M111.244541

143. Narumi K, Kobayashi S, Yamada T et al (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159:584–596. https://doi.org/10.1016/j.cell.2014.09.025

144. Bühler K, Plaisance I, Dieterle T, Brink M (2009) The human urocortin 2 gene is regulated by hypoxia: identification of a hypoxia-responsive element in the 3′-flanking region. Biochem J 424:119–127. https://doi.org/10.1042/BJ20090311

145. Li J, Zhang X, Sejas DP et al (2004) Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 279:41275–41279. https://doi.org/10.1074/jbc.C400297200

146. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554. https://doi.org/10.1038/35107085

147. Obake K, Kobayashi S, Yamada T et al (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159:584–596. https://doi.org/10.1016/j.cell.2014.09.025

148. Lip PL, Blann AD, Hope-Ross M et al (2001) Age-related macular degeneration is associated with increased vascular endothelial growth factor, hemorheology and endothelial dysfunction. Ophthalmology 108:705–710

149. Geeraerts M, Keramidas M, Pocch M et al (2005) Expression of VEGF in and angiopoietsins in subfoveal membranes from patients with age-related macular degeneration. Am J Ophthalmol 139:589–596. https://doi.org/10.1016/j.ajo.2004.11.064

150. Gerber HP, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes, Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272:23659–23667. https://doi.org/10.1074/jbc.272.38.23659

151. Rissanen TT, Vajanto I, Hiltunen MO et al (2002) Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160:1393–1403. https://doi.org/10.1016/S0002-9440(10)62566-7

152. Nomura M, Yamagishi S, Harada S et al (1998) Placenta growth factor (PIGF) mRNA expression in brain tumors. J Neurooncol 40:123–130
The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a...
The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a...