Prognostic Factors of Hemifacial Spasm after Microvascular Decompression

Hong Rae Kim, M.D.,* Deok-Joo Rhee, M.D.,* Doo-Sik Kong, M.D., Kwan Park, M.D., Ph.D.
Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Objective: The factors that influence the prognosis of patients with hemifacial spasm (HFS) treated by microvascular decompression (MVD) have not been definitely established. We report a prospective study evaluating the prognostic factors in patients undergoing MVD for HFS.

Methods: From January 2004 to September 2006, the authors prospectively studied a series of 293 patients who underwent MVD for HFS. We prospectively analyzed a number of variables in order to evaluate the predictive value of independent variables for the prognosis of patients undergoing MVD. The patients were followed-up at regular intervals and divided into as cured and unsatisfactory groups based on symptom relief. Uni- and multivariate analyses were performed using logistic regression models.

Results: A total 273 of 293 (94.2%) patients achieved symptom relief within one year after the operation. Intraoperatively, the indentation of the root exit zone was observed in 259 (88.5%) patients. Uni- and multivariate analyses revealed that the symptoms at postoperative 3 months (p<0.001) and indentation of the root exit zone (p=0.036) were associated with good outcomes.

Conclusion: The intraoperative finding of root exit zone indentation will help physicians determine the prognosis in patients with HFS. To predict the prognosis of HFS, a regular follow-up period of at least 3 months following MVD should be required.

KEY WORDS: Hemifacial spasm · Microvascular decompression · Prognosis · Chronology.

INTRODUCTION

Hemifacial spasm (HFS) is an induced movement disorder characterized by intermittent, involuntary, irregular, unilateral, tonic or clonic contractions of muscles innervated by the ipsilateral facial nerve. In the typical syndrome, the spasm starts from the orbicularis oculi muscle and progresses downward to involve the orbicularis oris, buccinators, and/or platysma muscles.7,8 The pioneering work of Jannetta et al.7 provided a great contribution to our understanding of the pathophysiological mechanism of this rhizopathy and the concept of neurovascular decompression for the treatment of hemifacial spasm is now widely accepted.3,5,9,11,13,14,22

Neurovascular compression, as a leading cause of HFS, has been reported on by many authors with considerably satisfactory postoperative results.2,12,15,20 Although the concept of neurovascular compression and the rationale for microvascular decompression (MVD) have been sufficiently clarified, one cannot assume that patients will become spasm-free immediately after the MVD since the postoperative course can be variable. Some patients become spasm-free within several months or even years after the operation. But, some wax and wane, some go through recurrence following temporary relief and some fail to become spasm-free.4 Therefore, it is difficult to know when surgeons should judge the post-surgical results and how long they should “wait and see” before reoperating on patients with unsatisfactory results. The comprehension of several peri-operative findings would be helpful for physicians not only to choose the optimum post-surgical treatment, but also to give patients sufficient information about the potential post-operative courses they might experience.

We report a prospective study evaluating the prognostic factors following MVD for HFS.

MATERIALS AND METHODS

A total of 293 consecutive patients who underwent MVD for HFS between January 2004 and September 2006 were
included in the study. Patients who underwent re-operation were excluded. The patient population consisted of 209 women and 84 men (female/male ratio: 2.48 : 1); their ages ranged from 25 to 72 years (mean, 48.6 years) (Table 1). Postoperative follow-up review was available for 12 to 43.5 months with a median period of 26.9 months.

All of the patients underwent preoperative evaluation via computed tomography (CT), magnetic resonance imaging (MRI), and 3-dimensional time-of-flight MR angiography. Both pure tone audiometry and speech audiometry were performed preoperatively by an otolaryngologist in all patients. Facial electromyograms and brainstem auditory evoked potentials were recorded with surface electrodes from the orbicularis oculi muscles using Viking IV EMG equipment (Nicolet Biomedical Instrument, Madison, WI, USA).

The postoperative outcomes were evaluated by a specialized nurse practitioner (Lee JA), who did not know the patient’s intraoperative findings. Telephone interview was additionally used when patients could not make a follow-up visit. Because there is no universally approved scale system to measure the symptoms of HFS, we evaluated the patients’ symptoms by using the scale of zero to ten; if zero means spasm-free state and ten stood for the worst spasm they had ever had before the surgery in terms of both frequency and intensity.

### Surgical techniques and operative findings

All surgeries were performed by a single surgeon at the same institute. All of the surgical procedures were performed via a lateral retrosigmoid suboccipital approach, which has been well described in the literatures. After opening the dura mater, the cerebellum was gently retracted, exposing the facial nerve that was compressed by the arteries and/or veins. Teflon felt and thread (DuPont, Wilmington, DE, USA) were inserted between the facial nerve and the offending vessels. As a result of the operative procedure, the facial nerve was freed from the offending vessel. Lumbar drainage was not required during the intra- and postoperative periods. During surgery, brain stem auditory evoked potential and facial EMG monitoring were performed from the time of administration of general anesthesia until the time of dural closure.

The vessel that compressed the facial nerve was recorded as the compressing vessel, which was identified in all cases. Various types of vascular compression were found in most of the 293 patients. The compressive vascular structures involved were the antero-inferior cerebellar artery (AICA) in 158 (53.9%) patients, the postero-inferior cerebellar artery (PICA) in 73 (24.9%) patients, the vertebral artery (VA) in 2 (0.7%) patients, the anteroposterior common cerebellar trunk in 14 (4.8%) patients, a single vein in 1 (0.3%) patient, and two or more vessels in 45 (15.3%) patients (Table 1).

Indentation of the root exit zone (REZ) of the facial nerve caused by an offending vessel was identified in order to determine the severity of vascular compression. The indentation of the REZ by compressing vessels was observed in 259 (88.4%) patients and categorized into three grades (Table 2). Because there is no universally approved grade to assess the degree of indentation, we classified into three grades; grade 1 means no or mild indentation on the REZ and grade 3, severe indentation with discoloration. The degree of indentation reflects the severity of neurovascular compression intraoperatively. The degree of indentation was severe in 64 (21.6%) patients, moderate in 114 (39.2%) patients and mild in 115 (39.2%) patients.

### Statistical analyses

First, we investigated the following clinical characteristics for

---

**Table 1.** Characteristics and operative findings of patients

| Characteristic            | Cured group | Unsatisfactory group | Total         | p-value |
|---------------------------|-------------|----------------------|---------------|---------|
| No. of patients (%)       | 276 (94.2) | 17 (5.8)             | 293 (100)     |         |
| Age (year)                | 48.6 (25-72)| 48.2 (25-62)         | 48.6 (25-72)  | >0.05   |
| Sex                       |             |                      |               |         |
| Male                      | 79 (28.6%) | 5 (29.4%)            | 84 (28.7%)    |         |
| Female                    | 197 (71.4%)| 12 (70.6%)           | 209 (71.3%)   |         |
| Symptom duration (mo)     | 62.3 (5-300)| 68.8 (11-240)        | 62.7 (5-300)  | >0.05   |
| Side                      |             |                      |               |         |
| Left                      | 125 (45.3%)| 10 (58.8%)           | 135 (46.1%)   | >0.05   |
| Right                     | 151 (54.7%)| 7 (41.2%)            | 158 (53.9%)   | >0.05   |
| Offending vessel          |             |                      |               |         |
| AICA                      | 150 (54.3%)| 8 (47.1%)            | 158 (53.9%)   | >0.05   |
| PICA                      | 68 (24.6%) | 5 (29.4%)            | 73 (24.9%)    |         |
| VA                        | 2 (0.7%)   | 0                    | 2 (0.7%)      |         |
| Vein                      | 1 (0.4%)   | 0                    | 1 (0.3%)      |         |
| AICA+PICA                 | 13 (4.7%)  | 1 (5.9%)             | 14 (4.8%)     |         |
| AICA+VA                   | 27 (9.8%)  | 3 (17.6%)            | 30 (10.2%)    |         |
| Other complex             | 15 (5.4%)  | 0                    | 15 (5.1%)     |         |

**Table 2.** Grades of indentation on the root exit zone of the facial nerve

| Indentation                  | Definition                             | Total (%) |
|-----------------------------|----------------------------------------|-----------|
| Grade 1                     | No or mild indentation                 | 64 (21.6) |
| Grade 2                     | Moderate indentation                   | 114 (39.2)|
| Grade 3                     | Severe indentation with discoloration  | 115 (39.2)|
all patients: age, gender, spasm side, preoperative symptomatic period, compressive pattern by offending vessel, and clinical outcome at each time of follow-up. We prospectively analyzed these variables in order to assess the predictive value of independent variables for prognosis after MVD. Uni- and multivariate analyses were performed by using logistic regression models. All data were analyzed using the SPSS program (ver. 15). The patients were divided into two groups on the basis of their clinical outcomes (cured group and unsatisfactory group), and the clinical courses of the two groups were retrospectively compared. The cured group indicated that residual spasm or only minimal twitching remained with symptom relief over 80% and unsatisfactory group that below 80%22). Chi-square test was used to compare the clinical courses between the cured group and unsatisfactory group.

RESULTS

A total of 276 (94.2%) patients achieved symptom relief following MVD. The detailed distributions of the various parameters evaluated for association with prognosis are given in Tables 2 and 3. The major postoperative complications included permanent hearing loss in 6 (1.8%), immediate facial weakness in 4 (1.4%), delayed facial weakness in 6 (2.0%), and cerebrospinal fluid leakage in 1 (0.3%). One patient with delayed facial palsy had spontaneous symptom improvement19). There was neither death nor ischemic insults in our series.

Prognostic factors

In the univariate analyses, the intraoperative finding of indentation and clinical good outcome at 3 months postoperative were significantly associated with better outcomes (p=0.022 and p=0.001). Contrary to our expectation, severe indentation of the REZ of the facial nerve was closely associated with better outcomes, rather than no or minimal indentation. With regular interval follow-up examination, clinical outcome at 3 months postoperative was a strong predictor of prognosis, which implied that at least 3 months of follow up evaluations are needed in order to predict the outcome following MVD for HFS. In contrast, other variables such as age, gender, spasm side, preoperative symptomatic period, compressive pattern and type of offending vessel were not associated with the prognosis (Table 3). Furthermore, multivariate analysis revealed that both factors significantly affected the clinical outcome (p<0.001 and p=0.036) (Table 4).

Clinical course based on the outcome

Of the 293 patients in our series, 276 (94.6%) were included in the cured group based on their clinical outcomes at one-year postoperative, and 17 (5.4%) were included in the unsatisfactory group. The differences in clinical improvement between the two groups were not definite during the early follow-up period (post. 3 days and post. 1 month, p=0.826 and p=1.00). However, at 2 months postoperative, the cured group showed distinct clinical improvement in comparison

![Graph showing the pattern of clinical improvement in each group. Cured group, steady improvement that leads to cure after postoperative 3 months. Unsatisfactory group, symptomatic improvements are decreased (p<0.014).]
with the unsatisfactory group ($p=0.014$). The patients in the cured group showed gradual symptom improvement over the 3-month (91.3%) after the operation, but the patients in the unsatisfactory group showed no more symptom improvement at 3 months (17.6%) postoperative (Fig. 1).

**DISCUSSION**

MVD is an efficacious method for treating HFS, with good outcomes in 92 to 97% of patients$^{2,20}$. Such a high success rate of treatment makes a statistical analysis difficult because the subset of recurrences or treatment failures is very small, ranging from only 1 to 10.3%$^{18,20}$. Despite the small number of surgical failures, the exact reasons for surgical failure remain unclear.

In our study, the severity of indentation predicted the clinical outcome. In fact, we hypothesized that severe indentation would be associated with poor outcomes after MVD. However, our results demonstrated that patients with no or mild indentation of the REZ of the facial nerve had rather poor outcomes, which suggests that the surgeon could find the optimal site for decompression on the REZ more easily. Another possibility is that patients with no or mild indentation on the REZ of the facial nerve might have secondary HFS rather than primary HFS by neurovascular compression. In particular, facial synkinesis or post-herpetic facial spasm can induce symptoms similar to those of primary HFS, and these disease entities are generally associated with disappointing surgical results. On the other hand, vascular compression may not be the only cause of spasm in all cases. Aoki and Nagao$^{11}$ reported a case of HFS in which no vascular abnormality was observed during surgery and mere manipulation and surrounding dissection of the nerve resulted in symptom resolution. Wilkinson et al.$^{20}$ showed that facial muscle motor evoked potentials during MVD represent a novel tool for routine intraoperative monitoring of the facial nerve and can proceed uninterruptedly during surgery. In our previous study$^{10}$, we asserted surgical exploration to completely and directly identify the abnormalities, such as facial nerve indentation and nerve displacement, was more important than intraoperative monitoring during MVD.

Another important finding of this study is that some patients with residual symptoms on the third postoperative day or at the 1-month follow-up tended to show gradual improvement in their spasm throughout the follow-up period. This may be attributable to gradual resolution of the lateral spread response, as previously reported$^{21}$. The results of the present study suggest that residual hyper-excitability might be a contributing factor to the remaining symptoms, which can be proved by long-term follow-up examination using facial EMG. However, chronologic analysis of symptomatic changes revealed that the symptom of follow-up interval 3 months postoperative differentiated the cured group from the unsatisfactory group (Fig. 1); this finding implied that it might be possible to predict the surgical outcome as early as 3 months after the surgery (the overall cure rate in this study was 94.2% at postoperative 12 months which is close to the cure rate at 3 months postoperative (87.2%)). This knowledge would provide patients with more reliable information concerning their residual symptoms before and after surgery. In addition, unnecessary attempts to perform a re-operation could be prevented in patients who have residual symptoms. Although the postoperative result can be predicted as early as 3 months after the surgery, the results should be analyzed after 12 or more months postoperative period. Patients who have significant residual symptoms lasting for 12 months or longer should be informed of the need for a re-operation or consider other treatment options because the possibility of cure after 12 months is very low.

**CONCLUSION**

Due to the diversity of the postoperative course following MVD for HFS, surgeons have had difficulty in evaluating the postoperative results of the procedure. Our results demonstrate that a postoperative follow-up interval of 3 months is the minimum duration of follow-up required in order to predict the outcome of MVD for HFS. Our results also indicate that the intraoperative finding of indentation of the REZ would help surgeons determine the optimal decompression site in HFS. Although we have limited experience in MVD, this knowledge can be useful for informing patients about the postoperative course in a time-specific manner and in making decisions on the optimal post-surgical management, if needed. Additionally, the postoperative serial long-term follow-up needs to verify the relationship between the grade of indentation on the REZ and the speed of symptom relief.

**References**

1. Aoki N, Nagao T: Resolution of hemifacial spasm after posterior fossa exploration without vascular decompression. Neurosurgery 18: 478-479, 1986
2. Chung SS, Chang JH, Choi JY, Chang JW, Park YG: Microvascular decompression for hemifacial spasm: a long-term follow-up of 1,169 consecutive cases. Stereotact Funct Neurosurg 77: 190-193, 2001
3. De Ridder D, Møller A, Verlooy J, Cornelissen M, De Ridder L: Is the root entry/exit zone important in microvascular compression syndromes? Neurosurgery 51: 427-433; discussion 433-434, 2002
4. Huang CJ, Chen IH, Lee LS: Microvascular decompression for hemifacial spasm: analyses of operative findings and results in 310
patients. *Neurosurgery* **30**: 53-56; discussion 56-57, 1992
5. Illingworth RD, Porter DG, Jakubowski J: Hemifacial spasm: a prospective long-term follow up of 83 cases treated by microvascular decompression at two neurosurgical centres in the United Kingdom. *J Neurol Neurosurg Psychiatry* **60**: 72-77, 1996
6. Isu T, Kamada K, Mabuchi S, Kitaoka A, Ito T, Koiva M, et al: Intra-operative monitoring by facial electromyographic responses during microvascular decompressive surgery for hemifacial spasm. *Acta Neurochir (Wien)* **138**: 19-23; discussion 23, 1996
7. Jannetta PJ, Abbasy M, Maroon JC, Ramos FM, Albin MS: Etiology and definitive microsurgical treatment of hemifacial spasm. Operative techniques and results in 47 patients. *J Neurosurg* **47**: 321-328, 1977
8. Kemp LW, Reich SG: Hemifacial spasm. *Curr Treat Options Neurol* **6**: 175-179, 2004
9. Kiziltan ME, Uzun N, Savrun FK: Motor unit potential analysis in the cases with hemifacial spasm and postparalytic facial hyperactivity. *Electromyogr Clin Neurophysiol* **45**: 23-28, 2005
10. Kong DS, Park K, Shin BG, Lee JA, Eum DO: Prognostic value of the lateral spread response for intraoperative electromyography monitoring of the facial musculature during microvascular decompression for hemifacial spasm. *J Neurosurg* **106**: 384-387, 2007
11. Kwak HJ, Kim JH, Lee JK, Kim TS, Jung S, Kim SH, et al: Results of microvascular decompression in hemifacial spasm. *J Korean Neurosurg Soc* **30**: 501-508, 2001
12. Marneffe V, Polo G, Fischer C, Sindou M: [Microsurgical vascular decompression for hemifacial spasm. Follow-up over one year, clinical results and prognostic factors. Study of a series of 100 cases.]* Neurochirurgie* **49**: 527-535, 2003
13. Martin RG, Grant JL, Peace D, Theiss C, Rhoton AL Jr: Microsurgical relationships of the anterior inferior cerebellar artery and the facial-vestibulocochlear nerve complex. *Neurosurgery* **6**: 483-507, 1980
14. McLaughlin MR, Jannetta PJ, Clyde BL, Subach BR, Comey CH, Resnick DK: Microvascular decompression of cranial nerves: lessons learned after 4400 operations. *J Neurosurg* **90**: 1-8, 1999
15. Moffat DA, Durvasula VS, Stevens King A, De R, Hardy DG: Outcome following retrosigmoid microvascular decompression of the facial nerve for hemifacial spasm. *J Laryngol Otol* **119**: 779-783, 2005
16. Moller AR, Jannetta PJ: Monitoring facial EMG responses during microvascular decompression operations for hemifacial spasm. *J Neurosurg* **66**: 681-685, 1987
17. Park JS, Kong DS, Lee JA, Park K: Intraoperative management to prevent cerebrospinal fluid leakage after microvascular decompression: dural closure with a “plugging muscle” method. *Neurosurg Rev* **30**: 139-142; discussion 142, 2007
18. Payner TD, Tew JM Jr: Recurrence of hemifacial spasm after microvascular decompression. *Neurosurgery* **38**: 686-690; discussion 690-691, 1996
19. Rhee DJ, Kong DS, Park K, Lee JA: Frequency and prognosis of delayed facial palsy after microvascular decompression for hemifacial spasm. *Acta Neurochir (Wien)* **148**: 839-843; discussion 843, 2006
20. Samii M, Günther T, Iaconetta G, Muehling M, Vorkapic P, Samii A: Microvascular decompression to treat hemifacial spasm: long-term results for a consecutive series of 143 patients. *Neurosurgery* **50**: 712-718; discussion 718-719, 2002
21. Satoh T, Onoda K, Date I: Fusion imaging of three-dimensional magnetic resonance cisternograms and angiograms for the assessment of microvascular decompression in patients with hemifacial spasm. *J Neurosurg* **106**: 82-89, 2007
22. Sindou MP: Microvascular decompression for primary hemifacial spasm. Importance of intraoperative neurophysiological monitoring. *Acta Neurochir (Wien)* **147**: 1019-1026; discussion 1026, 2005
23. Uzun N, Erdemir-Kiziltan M, Karali-Savrun F: Relationship between reflex excitability and symptom duration in hemifacial spasm. *Electromyogr Clin Neurophysiol* **45**: 33-37, 2005
24. Wilkinson MF, Kaufmann AM: Monitoring of facial muscle motor evoked potentials during microvascular decompression for hemifacial spasm: evidence of changes in motor neuron excitability. *J Neurosurg* **103**: 64-69, 2005