Introduction

In Japan, the prevalence of ulcerative colitis (UC) has been increasing over the last two decades [1,2] and the age-standardized prevalence of UC was 63.6 per 100,000 persons in 2005 [3]. However, the etiology and pathogenesis of UC have remained largely unclear. Although several studies have confirmed an important role of genetic predisposition in UC [4], the number of UC patients with a family history of inflammatory bowel disease remains low [5], and the rising incidence against a background of stable prevalence of the genetic predisposition [5,6] has suggested the importance of environmental factors in the disease etiology.

Several potential environmental or external risk factors have been reported to date, including oral contraceptive use [7–9]. Two meta-analyses have provided evidence for a modest association between the use of oral contraceptive agents and the development of UC [10,11]. Another study indicated that hormone-replacement therapy increased the risk of UC among postmenopausal women [12]. Such findings suggest that pathways related to estrogens might mediate the pathogenesis of UC.

Materials and Methods

We conducted a hospital-based case control study, and compared the dietary habits of 126 newly diagnosed UC cases with those of 170 age- and gender-matched hospital controls. Information on dietary factors was collected using a self-administered diet history questionnaire. To consider potential changes in dietary habits due to disease symptoms, the habits were assessed separately during the previous 1 month and at 1 year before the recruitment.

Results

In the assessment of dietary habits during the previous 1 month, the highest tertile of isoflavone consumption revealed an increased odds ratio (OR) for UC (OR = 2.79; 95% confidence interval (CI), 1.39–5.59; Trend P = 0.004). A significant association was also observed for the dietary assessment at 1 year before, when most UC cases had not yet experienced their first disease symptoms (OR = 2.06; 95% CI, 1.05–4.04; Trend P = 0.04). Associations were more pronounced in females (OR in highest tertile of isoflavone consumption at 1 year before = 4.76; 95% CI, 1.30–17.5; Trend P = 0.02) but were obscured in males (corresponding OR = 1.21; 95% CI, 0.49–3.01; Trend P = 0.63).

Conclusions

Dietary isoflavone consumption may be associated with an increased risk of UC, particularly in females. Prospective cohort studies are warranted to confirm these findings.
Isoflavones have a similar structure to 17β-estradiol. Daidzein and genistein are the main isoflavones present in soybeans, and possess the ability to bind to estrogen receptors [13,14]. Dietary consumption of isoflavones has therefore been suggested to potentially exert a similar influence to estrogens on the development of UC. In addition, extensive animal studies showing the effect of isoflavones on immune parameters have suggested the feasibility of genistein and daidzein exerting immunological effects in humans [15]. However, these possible associations have yet to be evaluated.

We therefore sought to examine the association between isoflavone consumption and risk of UC development, using a multicenter case-control study in Japan. Since UC patients are likely to change dietary habits following the onset of disease symptoms, pre-illness dietary habits would be important to examine in considering issues of causality. Thus, the present hospital-based case-control study enrolled newly diagnosed UC patients as cases, and dietary habits both during the previous 1 month and at 1 year before recruitment were assessed separately in considering issues of causality. The following clinical findings of UC patients were reported by the gastroenterologists-in-charge using a standardized questionnaire: date at symptom onsets; date at first visit to the hospital; disease severity at diagnosis (mild, moderate, severe, or fulminant); location of disease at diagnosis (rectum, colon, cecum, or ileum); and parental complications. Afterwards, age at symptom onset, duration from symptom onset to recruitment, and duration from first visit to the hospital to recruitment were calculated from the date of birth, disease severity, date at first visit to the hospital and recruitment date. Disease severity, based on the criteria proposed by the Research Committee of Inflammatory Bowel Disease, was regarded as “mild” when the frequency of defecation was 4 times/day or less, bloody diarrhea or mucous bloody stool was absent or minimal, and systemic symptoms were absent, as “severe” when the frequency of defecation was 6 times/day or more, severe bloody diarrhea or mucous bloody stool was present, and systemic symptoms (fever, tachycardia, anemia, etc.) were apparent, and as “moderate” when the features were intermediate between “mild” and “severe”. In particular, patients with “severe” disease and those showing extremely severe symptoms (bloody stools of about 15 times/day or more, persistent high fever of 38°C or higher, increase in leukocyte count to 10,000/mm³ or more, and severe abdominal pain) were classified as having “fulminant” disease [16].

In addition, study subjects were asked to fill out a set of 2 self-administered, mail-back questionnaires. One questionnaire was used to obtain information about demographic factors, past medical history including appendicitis, family history of UC, smoking (never, ever, or current), alcohol drinking (never, ever, or current), and, for females, menopausal status and use of exogenous female hormones including oral contraceptives and hormone-replacement therapy.

The other questionnaire was a validated self-administered diet-history questionnaire (DHQ), which assessed dietary habits during the previous 1 month. In this instrument, estimates of daily consumption for a total 150 food items, energy, and selected nutrients were calculated using an ad hoc computer algorithm for the DHQ. Detailed descriptions of the methods used for calculating dietary consumption and the validity of the DHQ have been published elsewhere [17–20]. In this questionnaire, the frequencies of intake for 6 soy products (tofu, tofu products such as deep-fried tofu and fried bean curd, fermented soybeans, boiled soybeans, miso, and miso soup) were asked, and daily consumptions for each food item were estimated. Total consumption of soy products was considered as the sum of these 6 food items. Isoflavone consumption from these soy products, which included daidzein and genistein, was estimated according to previously published studies [21,22]. In the present study, the sum of daidzein and genistein consumptions was regarded as the isoflavone consumption. If study subjects answered that they had changed their dietary habits within 1 year, we asked for further information about their dietary habits at 1 year before recruitment using the same questionnaire. Previous studies have demonstrated that retrospective recall of dietary intake for the distant past using a self-administered food frequency questionnaire yielded moderate correlation coefficients with the original reports at that time, in terms of both dietary and nutrient consumptions [23,24].

Statistical Analysis

Energy-adjusted intake by the density method was used for the analyses. The chi-square test, Wilcoxon rank-sum test and Student’s t-test were used to compare characteristics between cases and controls. Intakes of selected foods and nutrients were
categorized into tertiles according to the distribution of control subjects. Logistic regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) for UC development. Trends for association were assessed by assigning ordinal scores to a single dietary variable. Variables showing p-values less than 0.1 or that seemed likely to correlate with isoflavone consumption were considered as potential confounders for adjustment.

In addition, to examine gender-specific associations between isoflavone consumption and UC development, stratified analyses by gender were also conducted. When we assessed associations in females, menopausal status and use of exogenous female hormones were also considered as potential confounders.

All tests were two-sided. All analyses were performed using SAS version 9.3 software (SAS Institute, Cary, NC, USA).

Results

Among the 150 UC cases and 206 controls enrolled, 126 cases and 170 controls responded to the questionnaire (response rates, 84% for cases and 83% for controls). The voluntary participation of study subjects thus resulted in some variations in matched status. Although 44 sets (44 cases and 88 controls) maintained the initial matching condition, 38 cases had only one matched control each, and 44 cases and 44 controls had no corresponding counterparts for pairing. Thus, to increase the statistical power, further main analyses were conducted in all 126 cases and 170 controls who responded to the questionnaire, using unconditional logistic regression model with adjustment for matching factors (age categories and gender).

Table 1 shows the clinical characteristics of the newly diagnosed UC cases. Mean age at recruitment was 41.2 years. About 90% of

Table 1. Clinical characteristics in patients with newly diagnosed ulcerative colitis (N = 126).*

Characteristics	n (%)
Age (years)	Mean (SD)
	41.2 (14.6)
	< 30
	33 (26)
	40–49
	31 (25)
	50+
	32 (25)
Age at symptom onsets (years)	Mean (SD)
	41.2 (14.8)
	< 30
	24 (27)
	30–39
	20 (22)
	40–49
	23 (26)
	50+
	23 (26)
	Unknown
	36
Duration from symptom onsets (months)	Median (range)
	2.4 (0–276)
	< 4
	59 (66)
	4–11
	21 (23)
	12+
	10 (11)
	Unknown
	36
Duration from first visit to the hospital (months)	Median (range)
	1.2 (0–651.6)
	< 4
	104 (85)
	4–11
	14 (11)
	12+
	4 (3)
	Unknown
	4
Disease severity	
Mild	35 (40)
Moderate	37 (42)
Severe	16 (18)
Fulminant	0 (0)
Unknown	38
Location of disease	
Rectum	19 (22)
Colon	39 (44)
Cecum	27 (31)
Ileum	3 (3)
Unknown	38
Parenteral complications	
Present	1 (1)
Unknown	40

SD, standard deviation.

*Data expressed as n (%) unless otherwise indicated.

doi:10.1371/journal.pone.0110270.t001
Table 2. Characteristics of the 126 cases and 170 controls.

Variables	Cases	Controls	p	
	n (%)	n (%)		
Age (years)				
< 30	32 (24)	36 (21)	0.39	
30–39	33 (26)	41 (24)		
40–49	31 (25)	43 (25)		
50+	32 (25)	50 (29)		
Gender				
Male	73 (58)	89 (52)	0.34	
Female	53 (42)	81 (48)		
Body mass index (kg/m²)				
< 21.0	67 (53)	58 (34)	0.001	
21.0–23.6	32 (25)	55 (32)		
23.7+	27 (21)	57 (34)		
History of appendicitis				
Present	8 (6)	29 (17)	0.006	
Family history of ulcerative colitis				
Present	9 (7)	5 (3)	0.09	
Smoking habit				
Never	63 (50)	98 (58)	0.003	
Ever	45 (36)	32 (19)		
Current	18 (14)	40 (24)		
Drinking habit				
Never	34 (27)	61 (36)	0.01	
Ever	25 (20)	14 (8)		
Current	67 (53)	95 (56)		
Age at menarche (years)	Mean (SD)	12.7 (1.4)	12.7 (1.6)	0.76
Postmenopausal status	Present	13/53 (25)	26/81 (32)	0.35
Age at menopause (years)	Mean (SD)	50.2 (5.8)	48.3 (6.3)	0.24
Use of exogenous female hormones				
Ever	8/52 (15)	17/79 (22)	0.38	
Current	1 2			

Dietary intake during the previous 1 month

Variables	Cases	Controls	p	
Total energy (kJ)	Mean (SD)	8590 (2761)	8541 (3314)	0.43
Total soy product (g/4184 kJ)	Mean (SD)	24.7 (17.8)	19.3 (14.8)	0.001
Tofu (g/4184 kJ)	Mean (SD)	13.7 (10.9)	9.9 (9.5)	0.001
Tofu product (g/4184 kJ)	Mean (SD)	0.9 (1.9)	1.0 (1.9)	0.15
Fermented soybeans (g/4184 kJ)	Mean (SD)	4.3 (6.2)	3.8 (6.2)	0.28
Boiled soybeans (g/4184 kJ)	Mean (SD)	1.7 (2.4)	1.7 (2.8)	0.66
Miso (g/4184 kJ)	Mean (SD)	1.3 (7.7)	0.4 (0.9)	0.71
Miso soup (g/4184 kJ)	Mean (SD)	2.9 (3.2)	2.5 (2.6)	0.40
Isoflavone (mg/4184 kJ)	Mean (SD)	13.6 (10.1)	11.1 (9.4)	0.005
Daidzein (mg/4184 kJ)	Mean (SD)	5.2 (3.8)	4.2 (3.5)	0.005
Genistein (mg/4184 kJ)	Mean (SD)	8.5 (6.3)	6.9 (5.8)	0.005

Dietary intake at 1 year before

Variables	Cases	Controls	p	
Total energy (kJ)	Mean (SD)	8859 (2837)	8624 (3451)	0.12
Total soy product (g/4184 kJ)	Mean (SD)	22.8 (17.6)	19.3 (14.7)	0.04
Tofu (g/4184 kJ)	Mean (SD)	11.8 (10.4)	10.2 (9.9)	0.11
Tofu product (g/4184 kJ)	Mean (SD)	0.8 (1.5)	1.1 (1.9)	0.20
Fermented soybeans (g/4184 kJ)	Mean (SD)	4.4 (6.4)	3.5 (6.1)	0.13
Boiled soybeans (g/4184 kJ)	Mean (SD)	1.8 (2.6)	1.6 (2.6)	0.20
Miso (g/4184 kJ)	Mean (SD)	1.3 (7.7)	0.4 (0.9)	0.71
Miso soup (g/4184 kJ)	Mean (SD)	2.7 (2.6)	2.5 (2.6)	0.36
Isoflavone (mg/4184 kJ)	Mean (SD)	13.0 (10.1)	10.9 (9.1)	0.02
cases had experienced the first symptoms of disease within the preceding 11 months. About 40% suffered from mild disease, whereas 18% had severe disease.

As for controls, we confirmed that they were derived from the departments of digestive diseases and other departments, at a ratio of approximately 1 to 1. The most frequent digestive disease was liver diseases (n = 36), followed by upper digestive diseases (n = 24) and colon diseases (n = 19). The most frequent disease from other departments was orthopedic disease (n = 26), followed by ophthalmologic disease (n = 7), chronic renal disease (n = 7), and others (n = 51).

Table 2 shows the background characteristics of study subjects. Age and gender distributions were similar between cases and controls. However, cases had a lower body mass index, less frequent history of appendicitis, but more frequent family history of UC than controls. In addition, significant differences were identified in smoking and drinking habits. Regarding dietary intake, cases consumed a higher total amount of soy products than controls, for assessments of both the previous 1 month and at 1 year before recruitment. In addition, isoflavone consumption including daidzein and genistein was also higher in cases both during the previous 1 month and at 1 year before.

After adjustment for potential confounders, consumption of total soy products during the previous 1 month revealed a significantly increased OR in the highest tertile (Table 3). The association was significantly dose-respondent (Trend P = 0.007). Among individual soy products, only tofu consumption showed a significantly higher OR in the highest tertile (OR = 1.98; 95%CI, 1.06–3.70). As for nutrients, higher isoflavone consumption (both daidzein and genistein) was associated with increased ORs with a trend towards (OR in highest tertile = 2.79; 95%CI, 1.39–5.59; Trend P = 0.004). Associations with isoflavone remained significant even for the assessment of consumption at 1 year before recruitment, although the OR in the highest tertile of isoflavone consumption was somewhat lower than that during the previous 1 month (OR = 2.06; 95%CI, 1.05–4.04; Trend P = 0.04). To exclude the possibility of reverse causality even in the assessment of dietary habits at 1 year before, sensitivity analyses were conducted, with analyzed UC cases limited to those patients who experienced the first symptom within the preceding 11 months (80 cases, 170 controls). However, the results were almost unchanged (OR in highest tertile of isoflavone consumption at 1 year before = 2.66; 95%CI, 1.18–6.03; Trend P = 0.021). When we examined the association between isoflavone consumption and localization of UC, the association was more clearly observed for disease reaching the cecum or ileum (OR in highest tertile of isoflavone consumption at 1 year before = 4.60; 95%CI, 1.18–18.0; Trend P = 0.035), but it was attenuated for disease located in the rectum only (OR in highest tertile of isoflavone consumption at 1 year before = 2.69; 95%CI, 0.73–9.93; Trend P = 0.110).

Table 4 shows the results of gender-stratified analyses regarding the association between isoflavone consumption and UC development. Increased ORs in highest tertiles were more clearly observed in females. In particular, an association with isoflavone consumption at 1 year before was obviously increased in females (OR in highest tertile = 4.76; 95%CI, 1.30–17.5; Trend P = 0.02) but was obscured in males (the corresponding OR = 1.21; 95%CI, 0.49–3.01; Trend P = 0.63). Increased ORs in females were unchanged even after adjusting for menopausal status and use of exogenous female hormones.

In addition, conditional logistic regression models were employed in which analyzed subjects were limited for the matched sets (92 cases and 126 controls). As a result, the increased ORs of isoflavone consumption at 1 year before were similarly observed, although lower statistical power brought about the broader confidence intervals (OR in highest tertile = 1.94; 95%CI, 0.76–4.98; Trend P = 0.16). In the gender-stratified analyses, we could not obtain meaningful ORs in females, since only 1 case fell into the lowest tertile of isoflavone consumption. When lowest and intermediate tertiles were combined to regard as a reference category, ORs in highest tertile of isoflavone consumption at 1 year before were 0.66 (95%CI, 0.19–2.35) in males and 4.90 (95%CI, 1.18–20.3) in females, respectively.

Discussion

The results of the present case-control study showed a possible association between higher isoflavone consumption and development of UC. The association was detected in dietary habits during the previous 1 month, as well as those at 1 year before. Since most UC cases had not experienced their first symptom of UC at 1 year before recruitment, isoflavone consumption at 1 year before seemed to represent an association with pre-illness dietary habits, although the association with dietary habits during the previous 1 month might have included some influence of changes in habits due to disease symptoms.

No previous studies have indicated associations between dietary isoflavone consumption and UC development. Since isoflavones, particularly genistein, show similar binding ability for estrogen receptor β to 17β-estradiol [13,14] and exert estrogenic activity in some organs [25,26], it is reasonable to consider that isoflavone consumption might be associated with UC development through similar mechanisms to estrogens. After an estrogen binds to estrogen receptor β in the gut, colonic barrier function is modified [27,28], which might trigger inappropriate mucosal immune responses. Higher estrogen doses might also cause gastrointestinal ischemia by increasing the tendency for intravascular coagulation [29]. In addition, mucosal inflammation in patients with UC is mediated by Th-2-related cytokines [30,31], which might offer another plausible biological mechanism for the effect of estrogen.
Table 3. Odds ratios of soy product intake and isoflavone intake for development of ulcerative colitis.

Variables	During the previous 1 month		1 year before	
	Tertile	P for trend	Tertile	P for trend
	1 (lowest) 2 3 (highest)		1 (lowest) 2 3 (highest)	
Total soy product	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	<11.3 11.3–21.8 21.9+		1.00 1.40 (0.75–2.59)	
	Crude OR (95%CI)†		1.00 1.32 (0.67–2.60)	
	Multivariate OR (95%CI)		1.00 1.51 (0.79–2.89)	
Tofu	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	<4.68 4.68–10.85 10.86+		1.00 1.05 (0.57–1.95)	
	Multivariate OR (95%CI)		1.00 1.25 (0.70–2.23)	
Fermented soybeans	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	0 0.01–3.47 3.48+		1.00 1.53 (0.83–2.83)	
	Multivariate OR (95%CI)		1.00 1.65 (0.89–3.06)	
Boiled soybeans	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	0 0.01–1.72 1.73+		1.00 1.53 (0.83–2.83)	
	Multivariate OR (95%CI)		1.00 1.65 (0.89–3.06)	
Miso	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	0 0.01–1.374 1.375+		1.00 1.62 (0.73–3.60)	
	Multivariate OR (95%CI)		1.00 1.62 (0.73–3.60)	
Miso soup	Daily intake (g/4184 kJ)*		Crude OR (95%CI)	
	<1.009 1.009–2.97 2.98+		1.00 1.60 (0.91–2.84)	
	Multivariate OR (95%CI)		1.00 1.42 (0.76–2.66)	
Isoflavone	Daily intake (mg/4184 kJ)		Crude OR (95%CI)	
	<6.0 6.0–12.2 12.3+		1.00 1.71 (0.92–3.17)	
	Multivariate OR (95%CI)		1.00 1.78 (0.91–3.50)	
Daidzein	Daily intake (mg/4184 kJ)		Crude OR (95%CI)	
	<2.28 2.28–4.66 4.67+		1.00 1.71 (0.92–3.17)	
	Multivariate OR (95%CI)		1.00 1.74 (0.89–3.42)	
Genistein	Daily intake (mg/4184 kJ)		Crude OR (95%CI)	
	<2.28 2.28–4.66 4.67+		1.00 1.71 (0.92–3.17)	
	Multivariate OR (95%CI)		1.00 1.74 (0.89–3.42)	
In conclusion, pre-illness isoflavone consumption might be associated with UC development, particularly among females. Prospective cohort studies are needed to confirm these findings.

Although the precise pathophysiology of UC remains largely unknown, these estrogen-mediated pathways might play roles in the association between isoflavone consumption and development of UC.

In the present study, gender-stratified analyses indicated that the association with isoflavone consumption was more pronounced in females, but was obscured in males, suggesting that the influence of isoflavone consumption on UC differs across gender. In light of previous studies, one experimental study also demonstrated that perinatal exposure to exogenous estrogens promoted the development of severe intestinal inflammation, particularly among adult female offspring, but not among male offspring [27]. Estrogen-mediated pathways might thus act to promote the development of intestinal inflammation, specifically among females. However, isoflavones exert a wide range of effects as demonstrated in ex vivo model systems and in animals. This already complex picture is further complicated by the fact that pathogenetically relevant in vitro or ex vivo findings do no correlate with the effects of isoflavones in animal models of inflammation [32]. Further epidemiological and experimental studies are thus needed to confirm these findings.

The present study design offered several methodological advantages. First, cases were identified using strict diagnostic criteria and thus the possibility of misclassification of UC was negligible. Second, use of incident cases (newly diagnosed UC patients) minimized the probability of poor recall about pre-illness dietary habits as precisely as possible, we collected information regarding: 1) dietary information on both the previous 1 month and at 1 year before; and 2) the time of first symptom occurrence. This information allowed us to consider the association from several aspects, and sensitivity analyses, in which analyzed UC cases were limited to patients who experienced their first symptom within the preceding 11 months, provided results in which any possible association with isoflavone consumption would be free from reverse causality. Third, the large variation in isoflavone consumption among Japanese individuals allowed the examination of associations between isoflavones and UC, although generalizability to other ethnic groups is uncertain. In fact, daily isoflavone consumption at 1 year before among the present study subjects ranged from 0.01 mg to 138.9 mg (mean daily consumption, 23.6 mg), representing a wider range than seen in other ethnic groups, including US adults (mean daily consumption, 2.6 mg) [33].

However, the following limitations might have influenced the study results. Although response rates among cases and controls were high (84%), non-respondents brought about some variation in matched status, and then provided results with lower power when using conditional logistic regression models limited to matched sets. However, the proportion of non-respondents was similar in both cases and controls, and was considered unrelated to isoflavone consumption. This selection bias might thus have attenuated the association between isoflavone consumption and UC. Second, information bias resulting from imperfect recall of past consumption of soy products might have occurred. However, the hypothesis that soy products are related to UC or inflammatory bowel disease was not recognized by study participants. Thus, all subjects would have received similar recall stimuli about past consumption of soy products. Misclassification due to such information bias, if any, is probably non-differential and would not affect the plausibility of the results. Third, it is also conceivable that other life style characteristics might account for the increasing effects of isoflavone consumption. Although the present results were obtained after adjusting for potential confounders (e.g., body mass index, smoking, and menopausal status) according to the previous study [34], other uncontrolled factors might have affected the validity of our results.

Here, it is important to note that while higher consumption of isoflavones may increase the risk of UC development, the benefits of isoflavones to females may still remain substantial. Several reports have indicated favorable effects of isoflavone intake for decreasing the incidences of breast cancer [35], lung cancer [36] and cerebral or myocardial infarctions [37] and the prevalence of periodontal disease [38]. A major issue is thus the balance between positive and negative health effects of isoflavones. The level of UC risk associated with isoflavone consumption might be rather low. We think that it may be important for clinicians to discuss the possible risks and benefits of isoflavone consumption, especially for females with a family history of UC.

In conclusion, pre-illness isoflavone consumption might be associated with UC development, particularly in females. Prospective cohort studies are needed to confirm these findings.

Table 3. Cont.

Variables	During the previous 1 month	1 year before		
	Tertile	P for trend	Tertile	P for trend
Daily intake (mg/4184 kJ)*	1 (lowest) 2 3 (highest)	1 (lowest) 2 3 (highest)		
Daily intake (mg/4184 kJ)*	<3.7 3.7–7.6 7.7+	<3.7 3.7–7.45 7.46+		
No. cases/controls	25/57 43/56 58/57	28/57 45/56 53/57		
Crude OR (95%CI)	1.00 1.75 (0.95–3.24) 2.32 (1.28–4.21)	0.006 1.00 1.64 (0.90–2.98) 1.89 (1.05–3.40) 0.04		
Multivariate OR (95%CI)	1.00 1.83 (0.94–3.59) 2.72 (1.36–5.46)	0.005 1.00 1.75 (0.91–3.37) 2.06 (1.05–4.07) 0.04		

OR, odds ratio; CI, confidence interval.

*Tertiles were based on intake in g/4184 kJ or mg/4184 kJ adjusted for energy intake using the density method.

*Adjusted for age, gender, body mass index, history of appendicitis, family history of ulcerative colitis, smoking and alcohol drinking status.

doi:10.1371/journal.pone.0110270.t003
Variables	During the previous 1 month	1 year before							
	Tertile	P for trend	Tertile	P for trend					
	1 (lowest)	2	3 (highest)	1 (lowest)	2	3 (highest)			
Isoflavone	OR (95%CI) in male[*]	1.00	1.50 (0.66–3.38)	2.15 (0.86–5.38)	0.099	1.00	1.27 (0.57–2.87)	1.21 (0.49–3.01)	0.63
	OR (95%CI) in female[*]	1.00	2.44 (0.61–9.67)	4.43 (1.21–16.3)	0.02	1.00	3.29 (0.85–12.7)	4.76 (1.30–17.5)	0.02
	OR (95%CI) in female[†]	1.00	2.53 (0.64–10.1)	4.61 (1.26–16.9)	0.02	1.00	3.06 (0.79–11.8)	4.44 (1.20–16.4)	0.03
Daidzein	OR (95%CI) in male[‡]	1.00	1.54 (0.68–3.47)	2.05 (0.83–5.08)	0.11	1.00	1.17 (0.51–2.65)	1.16 (0.47–2.90)	0.72
	OR (95%CI) in female[‡]	1.00	2.19 (0.56–8.65)	4.08 (1.14–14.6)	0.02	1.00	3.64 (0.95–14.0)	5.03 (1.38–18.3)	0.02
	OR (95%CI) in female[†]	1.00	2.25 (0.57–8.93)	4.21 (1.18–15.1)	0.02	1.00	3.41 (0.89–13.1)	4.71 (1.29–17.2)	0.02
Genistein	OR (95%CI) in male[‡]	1.00	1.57 (0.70–3.53)	2.01 (0.80–5.09)	0.13	1.00	1.23 (0.55–2.77)	1.27 (0.51–3.20)	0.58
	OR (95%CI) in female[‡]	1.00	2.44 (0.61–9.67)	4.43 (1.21–16.3)	0.02	1.00	3.48 (0.90–13.4)	4.56 (1.25–16.7)	0.03
	OR (95%CI) in female[†]	1.00	2.53 (0.64–10.1)	4.61 (1.26–16.9)	0.02	1.00	3.25 (0.84–12.6)	4.24 (1.15–15.6)	0.04

OR, odds ratio; CI, confidence interval.
[*]Adjusted for age, body mass index, history of appendicitis, family history of ulcerative colitis, smoking and alcohol drinking status.
[†]Further adjusted for menopausal status and use of exogenous female hormones.

doi:10.1371/journal.pone.0110270.t004
Acknowledgments

Other members of the Japanese Case-Control Study Group for Ulcerative Colitis are as follows (shown in alphabetical order of the affiliation): Masahiro Izuka (Akita Health Care Center, Akita Red Cross Hospital), Yutaka Kohgo, Yuhei Inaba (Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Akita Medical College), Takashi Horiuchi, Michiaki Matsui (Department of Gastroenterology, Fukuoka University Chikushi Hospital), Kitaro Fatumi (Department of Surgery, Fukuoka University Chikushi Hospital), Hiroyuki Hanai (Centre for Gastroenterology and IBD Research, Hamamatsu South Hospital), Yoh Ishiguro (Department of Endoscopy, Department of Gastroenterology and Hematology, Hiroshima University Graduate School of Medicine), Ken Fukumaga, Takayuki Matsumoto (Division of Lower Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine), Hiroki Ikuchi (Inflammatory Bowel Disease Center, Hyogo College of Medicine), Hiroshi Fujita, Hirohito Tsoubouchi (Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences), Kazuchii Okazaki (Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University), Kazuhiko Yoshikawa (Department of Gastroenterology and Hepatology, Kansai Medical University Kourii Hospital), Nagamu Inoue, Toshifumi Hibi (Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine), Kiyonori Kobayashi, Kazuo Yokoyama (Department of Gastroenterology, Kitanosato University School of Medicine), Hiroshi Yamashiki, Keiichi Mitsuyama (Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine), Yujirou Nakai (Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine), Tsutomu Chiba, Hiroshi Nakase (Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine), Masato Kusumoto (Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine), Haruhiko Inatou (Department of Internal Medicine, Circulatory and Body Fluid Regulation, Miyazaki University Faculty of Medicine), Shijiro Yamamoto (Division of Gastroenterology and Hematology, Department of Internal Medicine, Miyazaki University Faculty of Medicine), Hisako Fujii (Department of Endoscopy and Ultrasound, Nara Medical University Hospital), Ryota Hokari, Sotchiro Miura (Department of Internal Medicine, National Defense Medical College), Kazuhito Sugimura (Department of Gastroenterology and Hepatology, Niigata City General Hospital), Hideki Iijima (Department of Gastroenterology and Hepatology, Osaka University Faculty of Medicine), Yasuo Suzuki (Department of Internal Medicine, Sakura Medical Center, Toho University), Satoshi Motoya (IBD Center, Sapporo Kosei General Hospital), Yoshihide Fujimura, Akira Andoh (Department of Medicine, Shiga University of Medical Science), Shunji Ishihara (Department of Internal Medicine II, Shimane University Faculty of Medicine), Shin-Ei Kudo, Noriyuki Ogata (Dieticke Disease Center, Showa University, Northern Yokohama Hospital), Naoki Yoshimura (Department of Internal Medicine, Social Insurance Chuo General Hospital), Toshiaki Watanabe (Department of Surgical Oncology, Tokyo University), Kazuo Otsuka (Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University), Shinji Kameoka, Michio Ishihashi (Department of Surgery II, Tokyo Women’s Medical University), Yuji Funayama (Department of Colorectal Surgery, Tohoku Rosai Hospital), Fukumori Kinjo (Department of Endoscopy, University Hospital, University of the Ryukyus), Atsuo Kitano (Department of Gastroenterology, Wakakusa First Hospital), Atsushi Nakajima, Hirokazu Takahashi, Takuma Higurashi (Division of Gastroenterology, Yokohama City University School of Medicine), Akira Sugita (Department of Surgery, Yokohama Municipal Citizen’s Hospital).

Author Contributions

Conceived and designed the experiments: SO WF SS HY YH. Performed the experiments: SO WF KW HY MN MW YH. Analyzed the data: SO SS. Wrote the paper: SO. Introduced the patients to the experiments and received the agreements of all participating patients: KW HY MN MW YH Japanese Case-Control Study Group for Ulcerative Colitis. Analyzed the data: SO SS. Wrote the paper: SO. Introduced the patients to the experiments and received the agreements of all participating patients: KW HY MN MW YH Japanese Case-Control Study Group for Ulcerative Colitis. Drafted the manuscript: SO. Revised the manuscript critically for important intellectual content: SO WF KW HY MN MW YH Japanese Case-Control Study Group for Ulcerative Colitis.

References

1. Cosnes J, Gower-Rousseau C, Seksik P, Cottet A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140:1785–1794.
2. Japan Intractable Diseases Information Center (2013) The number of patients with inflammatory bowel disease in Japan. Available: http://www.intractable.or.jp/en/nd/ Accessed 2013 Aug 27.
3. Asakura K, Nishiwaki Y, Inoue N, Hibi T, Watanabe M, et al. (2009) Prevalence of ulcerative colitis and Crohn’s disease in Japan. J Gastroenterol 44:659–665.
4. Fukuda DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429.
5. Kuwahara E, Asakura K, Nishiwaki Y, Inoue N, Watanabe M, et al. (2012) Effects of family history on inflammatory bowel disease characteristics in Japanese patients. J Gastroenterol 47:961–968.
6. Kinoshita T, Utsunomiyta T, Yoshita A (1995) Epidemiological study of ulcerative colitis in Japan: incidence and familial occurrence. The Epidemiology Group of the Research Committee of Inflammatory Bowel Disease in Japan. J Gastroenterol 30:85–93.
7. Mahal SS, Minor KS, Soto RE, Hornung GA, Galadnik S (2006) Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc 81:1462–1471.
8. Koutoubakis IE, Vlachonikolis IG (2000) Appendectomy and the development of inflammatory bowel disease: a meta-analysis. Mayo Clin Proc 81:1462–1471.
9. Lefor EV Jr. (2004) Clinical epidemiology of inflammatory bowel disease. Incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517.
10. Goderie MK, Monickin AN, Clark SK, Steare J, et al. (2008) The risk of oral contraceptive agents in inflammatory bowel disease. Gut 57:668–673.
11. Cornish JA, Han J, Simillis C, Clark SK, Steare J, et al. (2008) The risk of oral contraceptive agents in the etiology of inflammatory bowel disease: a meta-analysis. J Gastroenterol Hepatol 23:2394–2400.
12. Khalil H, Higuchi LM, Ananthakrishnan AN, Manson JE, Feskanich D, et al. (2012) Hormone therapy increases risk of ulcerative colitis but not Crohn’s disease. Gastroenterology 143:1199–1206.
13. Nikov GN, Hopkins NE, Boue S, Absolvo WL, WK 2000) Interactions of dietary isoflavones with human estrogen receptors and the effect on estrogen receptor: estrogen response element complex formation. Environ Health Perspect 108:867–872.
14. Kuiper GG, Lemmen JG, Carlson B, Corton JC, Safe SH, et al. (1998) Interaction of estrogenic chemicals and phytostrogens with estrogen receptor β. Endocrinology 139:1432–1439.
15. Cooke PS, Secharaj V, Yellayi S (2006) Genistein, estrogen receptors, and the acquired immune response. J Nutr 136:704–708.
16. Hibi T, Ueno F, Matsuoka K, Lee TC, Research Group for Intractable Inflammatory Bowel Disease (2006) Guidelines for the management of ulcerative colitis in Japan-Developed through integration of evidence and consensus among experts- IBD Research 4:1-209.
17. Suzaki S, Yamasaki R, Amano K (1998) Self-administered diet history questionnaire developed for health education: a relative validation of the testversion by comparison with 3-day diet record in men. J Epidemiol 8:203–215.
18. Suzaki S, Ushio F, Amano K, Morihara M, Todoriki T, et al. (2000) Serum biomarker-based validation of a self-administered diet history questionnaire for Japanese subjects. J Nutr Sci Vitaminol 46:205–206.
19. Kobayashi S, Murakami K, Suzaki S, Okubo H, Hirota N, et al. (2011) Comparison of relative validity of food group intake estimates by comprehensive and brief-type self-administered diet history questionnaires vs 16 dietary records in Japanese adults. Public Health Nutr 14:1200–1211.
20. Kobayashi S, Honda S, Murakami K, Suzaki S, Okubo H, et al. (2012) Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 22:151–159.
21. Ari Y, Watanabe S, Kimura S, Shimoi K, Mochizuki R, et al. (2000) Dietary intake of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250.
22. Miyake Y, Suzaki S, Ooya M, Miyamoto S, Matsunaga I, et al. (2005) Soy, isoflavones, and prevalence of allergic rhinitis in Japanese women: the Osaka Maternal and Child Health Study. J Allergy Clin Immunol 115:1176–1178.
23. Wu ML, Whittemore AS, Jung DL (1988) Errors in reported dietary intakes. Am J Epidemiol 128:1137–1145.
24. Byers T, Marshall J, Anthony E, Friedler R, Zielensky M (1987) The reliability of dietary history from the distant past. Am J Epidemiol 125:999–1011.
25. Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:4398–4308.
26. Bingham SA, Atkinson C, Liggins J, Black L, Cosaraz A (1998) Phytoestrogens: where are we now? Br J Nutr 79:393–406.
27. Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac G, et al. (2010) Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc Natl Acad Sci USA 107:448–453.
28. Looijer-van Langen M, Hotte N, Dieleman LA, Albert E, Mulder C, et al. (2011) Estrogen receptor-β signaling modulates epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 300:G621–626.
29. Gomes MP, Deitcher SR (2004) Risk of venous thromboembolic disease associated with hormonal contraceptives and hormone replacement therapy: a clinical review. Arch Intern Med 164:1965–1976.
30. Fuss IJ, Heller F, Bouvier M, Leon F, Yoshiida M, et al. (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497.
31. Heller F, Florian P, Bojarski C, Richter J, Christ M, et al. (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129:550–564.
32. Oswald E, Sesarman A, Franzke CW, Wolfle U, Bruckner-Tuderman L, et al. (2012) The flavonoid luteolin inhibits Fcγ-dependent respiratory burst in granulocytes, but not skin blistering in a new model of pemphigoid in adult mice. PLoS One 7:e31066.
33. Nechuta SJ, Caan BJ, Chen WY, Lu W, Chen Z, et al. (2012) Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am J Clin Nutr 96:123–132.
34. Wu AH, Stancey EJ, Seow A, Lee HP, Yu MC (2002) Soy intake and other lifestyle determinants of serum estrogen levels among postmenopausal Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev 11:844–851.
35. Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S for the Japan Public Health Center-Based Prospective Study on Cancer and Cardiovascular Diseases (JPHC Study) Group (2003) Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst 95:906–913.
36. Shimazu T, Inoue M, Sasazuki S, Iwasaki M, Sowada N, et al for the JPHC Study Group (2011) Plasma isoflavones and the risk of lung cancer in women: a nested case-control study in Japan. Cancer Epidemiol Biomarkers Prev 20:419–427.
37. Kohko Y, Iso H, Ishihara J, Okada K, Inoue M, et al. (2007) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 116:2553–2562.
38. Tanaka K, Sasaki S, Murakami K, Okubo H, Takahashi Y, et al for the Freshmen in Dietetic Courses Study II Group (2008) Relationship between soy and isoflavone intake and periodontal disease: the Freshmen in Dietetic Courses Study II. BMC Public Health 8:39.