Abstract

Calculation of error ratios and measures of dependence for rare and common behaviours as a function of sampling interval length.

1 The data

Behavioural data of animals is categorized into \(k \) categories. By \(p_{h,1}, \ldots, p_{h,k} \) we will denote the fraction of time animal \(h, h = 1, \ldots, H, \) spends in category \(1, \ldots, k, \) respectively. So, \(p_{h,j} \) is the probability animal \(h \) shows behaviour from category \(j \) when observed at a random point in time. This means we are dealing with a multinomial distribution with parameters \(1 \) and \(p_{h,1}, \ldots, p_{h,k}, \) Mult\((1, p_{h,1}, \ldots, p_{h,k})\), for this one observation.

Behavioural data is scored at interval lengths \(\ell_i, i = 1, \ldots, L. \) Here we assume there are no dependencies in each of these discretized time series; however, see Sections 3 and 4 below.

This implies that for animal \(h \) at interval length \(\ell_i \) we have a total of \(n_{h,i} \), say, independent observations from the Mult\((1, p_{1}, \ldots, p_{k})\) distribution, and that we have to deal with a Mult\((n_{h,i}, p_{h,1}, \ldots, p_{h,k})\) distribution. Observe the smaller the length \(\ell_i \) the larger the sample size \(n_{h,i} \), i.e.,

\[
\ell_i n_{h,i} = c_h
\]

holds for some constant \(c_h \) depending on the total observation time of animal \(h \).

To formulate it differently, the data for animal \(h \) at interval length \(\ell_i \) constitute a realization of a random vector \((X_{h,i,1}, \ldots, X_{h,i,k})\) with distribution Mult\((n_{h,i}, p_{h,1}, \ldots, p_{h,k})\). Note that \(X_{h,i,j} \) has a binomial distribution with parameters \(n_{h,i} \) and \(p_{h,i,j} \) and that hence the coefficient of variation for the \(j \)th category equals

\[
\frac{\sqrt{p_j(1-p_j)}}{p_j} = \frac{1-p_j}{p_j} = \frac{1}{p_j} - 1.
\]

(1.2)

2 The influence of the interval length

We are interested in the size of the standard deviation in estimating \(p_{h,i,j} \) relative to the value of \(p_{h,i,j} \), in particular in how this error ratio depends on \(\ell_i \).

Now \(p_{h,i,j} \) is estimated by \(X_{h,i,j}/n_{h,i} \) and according to Section 1 this estimator has standard deviation

\[
\sqrt{\frac{p_{h,i,j}(1-p_{h,i,j})}{n_{h,i}}}. \]

(2.3)

Consequently the error ratio equals (cf. (1.1))

\[
r_{h,i,j} = \frac{\sqrt{p_{h,i,j}(1-p_{h,i,j})}}{p_{h,i,j}} = \frac{1}{\sqrt{n_{h,i}}} \sqrt{\frac{1}{p_{h,i,j}}} - 1 = \frac{1}{\sqrt{c_h}} \sqrt{\frac{1}{p_{h,i,j}}} - 1 \sqrt{\ell_i}
\]

(2.4)
and hence
\[\ln r_{h,i,j} = -\frac{1}{2}\ln c_h + \frac{1}{2}\ln \ell_i - \frac{1}{2}\ln p_{h,i,j} + \frac{1}{2}\ln(1 - p_{h,i,j}). \]
(2.5)

This means that the error ratio is a square root function of the interval length as visible in Figure 3; note also that the regression mentioned in the caption of Figure 3 basically resembles (2.5).

The error ratio can be estimated using (cf. (2.4))
\[R_{h,i,j} = \sqrt{\frac{X_{h,i,j}/n_{h,i}}{X_{h,i,j}/n_{h,i}}} = \frac{1}{\sqrt{c_h}} \sqrt{\frac{1}{X_{h,i,j}/n_{h,i}} - 1} \sqrt{\ell_i}. \]
(2.6)

Note that this estimator might take the value infinity, since \(X_{h,i,j} = 0 \) has positive probability.

3 Markov Chains

Consider observations of animal \(h \) taken at interval length \(\ell_i \). A natural model for the behaviour of animals is that the present behaviour has some influence on the behaviour in the immediate future, more precisely, the probability \(p_{g,j} \) that the behaviour at time \(t + \ell_i \) is \(j \), given the behaviour at time \(t \) is \(g \), might deviate from \(p_j \). This leads to a Markov chain as model for the consecutive observations. In our case we have \(k \) behaviours (or states in the Markov Chain terminology). The probabilities \(p_{g,j}, \ g = 1, \ldots, k, \ j = 1, \ldots, k, \) can be arranged in a \(k \times k \)-matrix (the transition matrix) in which the \(g \)th row contains the probabilities \(p_{g,j}, \ j = 1, \ldots, k. \) In case of independence between consecutive points in time all rows in the matrix will be the same and equal \((p_1, \ldots, p_k) \). Note that the continuous observations yield a very accurate estimate of \((p_1, \ldots, p_k) \).

To test if the \(g \)th row of the transition matrix equals \((p_1, \ldots, p_k) \) one often applies the Pearson \(\chi^2 \) test; see e.g. https://en.wikipedia.org/wiki/Chi-squared_test. Let \(n_g \) be the number of observations (of animal \(h \) at interval length \(\ell_i \)) at which the animal shows behaviour \(g \) (or is in state \(g \)). Let \(X_{g,j} \) be the number of times the behaviour changes from \(g \) to \(j \); so, \(\sum_{j=1}^k X_{g,j} = n_g \). Now the Pearson \(\chi^2 \) test statistic equals
\[T_g = \sum_{j=1}^k \frac{n_g (X_{g,j}/n_g - p_j)^2}{p_j} = \sum_{j=1}^k \frac{(X_{g,j} - n_g p_j)^2}{n_g p_j}. \]
(3.7)

Under the null hypothesis of independence, i.e., the hypothesis that all rows of the transition matrix are the same, the test statistic \(T_g \) has approximately a \(\chi^2 \) distribution with \(k - 1 \) degrees of freedom. The fact that \(n_g \) is a random variable doesn’t matter here. Given \(n_g \) the random variable \(X_{g,j} \) has a binomial distribution with parameters \(n_g \) and \(p_j \).

Since we want to test if all rows of the transition matrix are the same, it makes sense to consider the test statistic
\[T = \sum_{g=1}^k T_g = \sum_{g=1}^k \sum_{j=1}^k \frac{(X_{g,j} - n_g p_j)^2}{n_g p_j}, \]
(3.8)

which has approximately a \(\chi^2 \) distribution with \(k(k - 1) \) degrees of freedom under the null hypothesis for reasonably large values of \(n_g \).

4 A measure of dependence

Even the slightest deviation from independence causes the test based on \(T \) to reject independence, since we have very many observations. Therefore it makes more sense to consider a measure for the dependence. To this end we fix the interval length \(\ell_i \) and restrict attention to the \(g \)th row of the transition matrix, which
we don’t know, but which is estimated by \((X_{g,1}/n_g, \ldots, X_{g,k}/n_g) = (q_1, \ldots, q_k)\). In case of independence this \(k\)-vector should be close to the \(k\)-vector \((p_1, \ldots, p_k)\).

Now, it seems natural to look for a suitable distance measure to determine the distance between these two \(k\)-vectors, \(p = (p_1, \ldots, p_k)\) and \(q = (q_1, \ldots, q_k)\). Note that \(p\) and \(q\) are elements of the so-called \((k-1)\)-simplex, which is the collection of \(k\)-vectors with nonnegative components that add up to 1.

A simple distance is the \(L_1\)-distance, which has many exotic names; see \url{https://en.wikipedia.org/wiki/Taxicab_geometry}. It is defined by

\[
d_1(p, q) = \sum_{i=1}^{k} |q_i - p_i|, \quad (4.9)
\]

whereas the standard Euclidean or \(L_2\)-distance is defined by

\[
d_2(p, q) = \sqrt{\sum_{i=1}^{k} (q_i - p_i)^2}. \quad (4.10)
\]

Let \(p_{\text{min}}\) be the minimum value among \(p_1, \ldots, p_k\). Then one can show

\[
0 \leq d_1(p, q) \leq 2(1 - p_{\text{min}}). \quad (4.11)
\]

Consequently it seems natural to choose as a dependence measure (for each row \(g\) and each \(\ell_i\))

\[
\Delta_1(p, q) = \frac{d_1(p, q)}{2(1 - p_{\text{min}})} = \frac{\sum_{i=1}^{k} |q_i - p_i|}{2(1 - p_{\text{min}})}, \quad (4.12)
\]

since the value of \(\Delta_1(p, q)\) is in between 0 and 1. Here 0 corresponds with independence in the Markov Chain when starting from state/behaviour \(g\) and 1 corresponds with the worst possible dependence.

An important issue is, what values of \(\Delta_1(p, q)\) are close enough to 0 to make results based on monitoring with interval length \(\ell_i\) sufficiently reliable.

Proof of (4.11)

Since the simplex \(\Delta^{k-1}\) is a convex and compact set and since \(q \mapsto d_1(p, q)\) is a convex function, this function attains its maximum at an extreme point of the simplex, according to Bauer’s maximum principle. These extreme points are the unit vectors. This implies (with \(e_j\) the \(j\)th unit vector)

\[
\max_{q \in \Delta^{k-1}} d_1(p, q) = \max_{j=1,\ldots,k} d_1(p, e_j) = \max_{j=1,\ldots,k} 1 - p_j + \sum_{i \neq j} p_i = \max_{j=1,\ldots,k} 2(1 - p_j) = 2(1 - p_{\text{min}}). \quad (4.13)
\]

\(\square\)