Four NP-complete problems about generalizations of perfect graphs

Vaidy Sivaraman
Binghamton University, Binghamton, NY 13902, USA

May 18, 2017

Abstract

We show that the following problems are NP-complete.

• Can the vertex set of a graph be partitioned into two sets such that each set induces a perfect graph?

• Is the difference between the chromatic number and clique number at most 1 for every induced subgraph of a graph?

• Can the vertex set of every induced subgraph of a graph be partitioned into two sets such that the first set induces a perfect graph, and the clique number of the graph induced by the second set is smaller than that of the original induced subgraph?

• Does a graph contain a stable set whose deletion results in a perfect graph?

The proofs of the NP-completeness of the four problems follow the same pattern: Showing that all the four problems are NP-complete when restricted to triangle-free graphs by using results of Maffray and Preissmann [3] on 3-colorability and 4-colorability of triangle-free graphs.

1 Introduction

All graphs considered in this article are finite and simple. Let G be a graph. The complement G^c of G is the graph with vertex set $V(G)$ and such that two vertices are adjacent in G^c if and only if they are non-adjacent in G. For two graphs H and G, H is an induced subgraph of G if $V(H) \subseteq V(G)$, and a pair of vertices $u, v \in V(H)$ is adjacent if and only if it is adjacent in G. We say that G contains H if G has an induced subgraph isomorphic to H. If G does not contain H, we say that G is H-free. For a set $X \subseteq V(G)$ we denote by $G\!\![X]$ the induced subgraph of G with vertex set X. A hole in a graph is an induced subgraph that is isomorphic to the cycle C_k with $k \geq 4$, and k is the length of the hole. A hole is odd if k is odd, and even otherwise. The chromatic number of a graph G is denoted by $\chi(G)$ and the clique number by $\omega(G)$. G is called perfect if for every induced subgraph H of G, $\chi(H) = \omega(H)$. G is said to be perfectly divisible if for all induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $H[A]$ is perfect and $\omega(B) < \omega(H)$. G is said to be nice if for every induced subgraph H of G, $\chi(H) - \omega(H) \in \{0, 1\}$. G is said to be
2-perfect if \(V(G) \) can be partitioned into two sets \(A, B \) such that both \(G[A] \) and \(G[B] \) are perfect. \(G \) is said to be stable-perfect if \(G \) contains a stable set \(S \) such that \(G \setminus S \) is perfect. Note that perfect graphs are stable-perfect, and stable-perfect graphs are 2-perfect, perfectly divisible, and nice. In this note, we show that the recognition problems for the four classes (2-perfect, nice, perfectly divisible, stable-perfect) are NP-complete, a stark contrast to the existence of a polynomial-time recognition algorithm for perfect graphs [1].

2 Four NP-complete problems

We need the following results from [3].

Theorem 2.1 (Maffray-Preissmann). It is NP-complete to determine whether a triangle-free graph is 3-colorable.

Theorem 2.2 (Maffray-Preissmann). It is NP-complete to determine whether a triangle-free graph is 4-colorable.

The following is a basic fact about perfect graphs.

Lemma 2.1. A triangle-free graph is perfect if and only if it is bipartite.

Proof. Since bipartite graphs are perfect, one direction is trivial. To prove the other direction, let \(G \) be a triangle-free perfect graph. Since \(G \) contains neither a triangle nor an odd hole, it contains no odd cycle as a subgraph. Hence \(G \) is bipartite. \(\square \)

We first prove the NP-completeness of recognizing 2-perfect graphs. First we need a lemma.

Lemma 2.2. A triangle-free graph is 2-perfect if and only if it is 4-colorable.

Proof. This follows easily from Lemma 2.1. \(\square \)

Theorem 2.3. It is NP-complete to determine whether a graph is 2-perfect.

Proof. We show that the restricted problem of determining whether a triangle-free graph is 2-perfect is NP-complete. Let \(G \) be a triangle-free graph. By Lemma 2.2 \(G \) is 2-perfect if and only if \(G \) is 4-colorable. By Theorem 2.2 it is NP-complete to determine whether a triangle-free graph is 4-colorable, We thus conclude that it is NP-complete to determine whether a triangle-free graph is 2-perfect. \(\square \)

We now move on to the classes of perfectly divisible graphs, stable-perfect, and nice graphs. Problem 32 in [4] asks whether nice graphs can be recognized in polynomial time. The recognition problem for nice graphs turns out to be NP-complete. The following lemma tells that for triangle-free graphs, the three classes mentioned above are equivalent to the class of 3-colorable graphs.

Lemma 2.3. For a triangle-free graph \(G \), the following are equivalent:

(i) \(G \) is 3-colorable.

(ii) \(G \) is perfectly divisible.
(iii) G is stable-perfect.

(iv) G is nice.

Proof. We prove the following chain of implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$.

$(i) \Rightarrow (ii)$: Suppose G is 3-colorable. Let H be an induced subgraph of G. Note that H is also 3-colorable. We may assume that H has clique number 2. Let (S_1, S_2, S_3) be a partition of $V(H)$ into three stable sets. Now $(S_1 \cup S_2, S_3)$ is a partition of $V(G)$ as in the definition of being perfectly divisible. We conclude that G is perfectly divisible.

$(ii) \Rightarrow (iii)$: Suppose G is perfectly divisible. Hence there is a partition of $V(G)$ into sets A, B such that $G[A]$ is perfect and $\omega(B) < \omega(G)$. Since G has no triangles, this implies that B is a stable set. Thus G is stable-perfect.

$(iii) \Rightarrow (iv)$: Suppose G is stable-perfect. Let H be an induced subgraph of G. We may assume that H has clique number 2. Thus H contains a stable set S such that $H \setminus S$ is perfect. Since H is also triangle-free, by Lemma 2.1, $H \setminus S$ is bipartite. Hence the chromatic number of H is at most 3. We conclude that G is nice.

$(iv) \Rightarrow (i)$: Suppose G is nice. Since G is triangle-free, its clique number is at most 2. Since G is nice, we conclude that its chromatic number is at most 3. Thus G is 3-colorable.

This concludes the proof of all the implications, and proves the theorem.

Theorem 2.4. The following problems are NP-complete:

1. Given a graph, is it perfectly divisible?
2. Given a graph, is it stable-perfect?
3. Given a graph, is it nice?

Proof. By Lemma 2.3 and Theorem 2.1, the problems are already NP-complete when restricted to triangle-free graphs.

3 Open problems

G is said to be 2-divisible if for all induced subgraphs H of G, $V(H)$ can be partitioned into two sets A, B such that $\omega(A) < \omega(H)$ and $\omega(B) < \omega(H)$.

Conjecture 3.1. It is NP-complete to determine whether a graph is 2-divisible.

There is a nice conjecture about 2-divisible graphs:

Conjecture 3.2 (Hoang-McDiarmid [2]). A graph is 2-divisible if and only if it is odd-hole-free.

The complexity of the recognition of odd-hole-free graphs is also unknown.

Conjecture 3.3. It is NP-complete to determine whether a graph contains an odd hole.
4 Acknowledgment

I would like to thank Maria Chudnovsky for some useful discussion about perfectly divisible graphs which inspired this note.

References

[1] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković, Recognizing Berge Graphs, *Combinatorica*, 25 (2005), 143-187.

[2] C. T. Hoang, C. McDiarmid, On the divisibility of graphs, Discrete Math. 242, 1-3 (2002), 145-156.

[3] F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Mathematics 162 (1996), 313-317.

[4] V. Sivaraman, Some problems on induced subgraphs, submitted.