Device-Aware Routing and Scheduling in Multi-Hop Device-to-Device Networks

Yuxuan Xing and Hulya Seferoglu
ECE Department, University of Illinois at Chicago
yxing7@uic.edu, hulya@uic.edu

Abstract—The dramatic increase in data and connectivity demand, in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices directly without traversing the core network, is promising to address the increasing data and connectivity demand. In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly improves throughput in our testbed as compared to state-of-the-art.

I. INTRODUCTION

The dramatic increase in the data and connectivity demand [1], [2], in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking.

The default operation in current wireless networks is to connect each device to the Internet via its cellular or Wi-Fi interface, Fig. 1(a). The D2D connectivity breaks this assumption: it advocates that two or more devices can be connected directly, i.e., without traversing through an auxiliary device such as a base station if they are in close proximity [3]. Fig. 1(b). D2D networks can be formed by exploiting D2D connections such as Wi-Fi Direct [4] or Bluetooth. D2D networks are promising to address the ever-increasing number of devices as well as the demand for data and connectivity.

Although D2D networking looks very promising to address the increasing data demand and the number of devices, and is expected to play a crucial role for the next generation networks, the following question is still open: How to design device-aware networking algorithms and protocols?

In this paper, we consider a scenario where a number of devices, e.g., mobile devices or Internet of Things (IoT), seek Internet connectivity via other devices using D2D connections as shown in Fig. 1(c). In this context, it is possible to connect a device to the Internet via multiple hops, so it is crucial to determine which devices should forward packets, and how to make scheduling decisions. E.g., in Fig. 1(c), there are two paths; \(D_1 - D_2 - D_4 \) and \(D_3 - D_2 - D_4 \), and it is crucial to determine the path that provides better connectivity. However, these decisions should be made by taking into account device capabilities.

Fig. 1. (a) The default operation for the Internet connection. (b) D2D connectivity: two or more mobile devices can be connected directly, i.e., without traversing through the core network, if they are in close proximity by exploiting D2D connections such as Wi-Fi Direct or Bluetooth. (c) A number of devices (e.g., IoT) seek connectivity via other devices (e.g., mobile devices) using D2D connections.

Pilot Study: We developed a prototype for this pilot study as shown in Fig. 2(a), where three devices \(D_1, D_2, \) and \(D_3 \) are connected as a line topology by exploiting the Wi-Fi Direct connections. In our pilot study, we used two Nexus 7 tablets, one Samsung S4 smartphone, and one Samsung S3 smartphone. Nexus 7 tablets are used as \(D_1 \) and \(D_3 \), and either Samsung S4 or Samsung S3 smartphone is used as \(D_2 \). In this setup, the capabilities of the intermediate device \(D_2 \), have direct impact on the transmission rate from \(D_1 \) to \(D_3 \). Our experimental results in Fig. 2(b) show that when \(D_2 \) is Samsung S4 (a more powerful device as compared to Samsung S3), the transmission rate between \(D_1 - D_3 \) is higher as compared to the case that \(D_2 \) is Samsung S3. As seen, the intermediate device with less computing power (Samsung S3) limits the transmission rate.

Our pilot study shows that it is crucial to take into account device capabilities while designing D2D networking algorithms. Although our pilot study only focuses on the computing power, other parameters such as limited energy, human participation (or incentives), and bandwidth should be taken into account. For example, it could be possible that the owner of \(D_2 \) may limit its participation in a D2D activity, which would eventually reduce the rate between \(D_1 - D_3 \).

In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activi-
that DARS brings significant performance benefits as compared to backpressure.

The structure of the rest of the paper is as follows. Section II gives an overview of the system model and the problem formulation. Section III presents DARS algorithm. Section IV presents the implementation and evaluation of DARS. Section V presents related work. Section VI concludes the paper.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. System Overview

We consider a multi-hop D2D network with mobile devices, where devices are connected to each other via D2D connections. In this setup, packets from a source device traverse potentially multiple devices before arriving to the destination device. Devices in this setup are capable of performing various tasks including routing, scheduling, and rate control. However, depending on device capabilities and configurations, the transmission rates vary. Our system model, and algorithm design capture this heterogeneity. In this section, we provide an overview of this setup and highlight some of its key characteristics.

Setup: We consider a multi-hop D2D network, which consists of \(N \) devices and \(L \) edges, where \(N \) and \(L \) are the set of nodes and edges, respectively. We consider in our formulation and analysis that time is slotted, and \(t \) refers to the beginning of slot \(t \).

Sources and Flows: Let \(S \) be the set of unicast flows between source and destination device pairs. Each flow \(s \in S \) generates \(A_s(t) \) packets at the application layer at time \(t \).

The packet arrivals are i.i.d. over the slots and the first and second moments of the arrival distribution is finite; i.e., \(\lambda_s = E[A_s(t)] \), and \(E[A_s(t)^2] \). Packets are stored at the source device in an initial buffer in the application layer. Each flow \(s \) is associated with rate \(x_s \) and a utility function \(g_s(x_s) \), which we assume to be a strictly concave function of \(x_s \) for our analysis purposes. Packets from the initial buffer are passed to the main buffer with rate \(x_s(t) \) at time \(t \) and depending on the utility function \(g_s(x_s(t)) \).

At time \(t \), \(f^s_{i,j}(t) \) packets from flow \(s \) are passed from node \(i \) to node \(j \). The number of packets, i.e., \(f^s_{i,j}(t) \), are determined by device-aware framework by taking into account device capabilities.

B. Problem Formulation

Now, we formulate our device-aware framework. Our objective is to determine \(x, f \), where \(x = \{x_s\}_{s \in S} \), and \(f = \)

\[f^s_{i,j}(t) \]

\[g_s(x_s(t)) \]
\{f_{i,j}^s\}_{s \in S, (i,j) \in L} by maximizing the total utility function:
\[\sum_{s \in S} g_s(x_s) \] subject to the constraints:
\[\sum_{j \in N} f_{i,j}^s - \sum_{j \in N} f_{j,i}^s = x_s 1_{[i = o(s)]}, \forall s \in S, i \in N \]
\[\sum_{s \in S} \sum_{i \in N} f_{i,j}^s \leq \min \{ R_{p}^i, R_{E}^i, R_{W}^i \}, \forall j \in N \]
\[f \in \Gamma \]

The first constraint in (1) is the flow conservation at device \(i \) and for flow \(s \), where \(\sum_{j \in N} f_{i,j}^s + x_s 1_{[i = o(s)]} \) is the arrival rate of flow \(s \) to node \(i \), while \(\sum_{j \in N} f_{j,i}^s \) is the departure rate.

The second constraint captures device capabilities. The arrival rate to device \(j \), i.e., \(\sum_{s \in S} \sum_{i \in N} f_{i,j}^s \) should be supported by the device, where \(R_{p}^j, R_{E}^j, R_{W}^j \) are the maximum rates that device \(j \) can support (receive and transmit) with its computing power, while \(R_{p}^i \) and \(R_{E}^i, R_{W}^i \) are the rates that device \(j \) can support by with its energy and incentives, respectively.

The last constraint in (1) is the feasibility constraint, where \(\Gamma \) is the set of all feasible rates that can be in the network. Thus, \(f \) should be an element of \(\Gamma \).

Although the solution of (1) provides a device-aware routing and scheduling, the solution is not practical, because it requires an active involvement of all devices in D2D network even if a device does not prefer any involvement. For example, even if a node \(j \) has very small min \(\{ R_{p}^j, R_{E}^j, R_{W}^j \} \), it needs to periodically update the other devices in the network about its status (whether it can relay packets or not), which is not practical and introduces overhead. Thus, we modify the problem in (1) so that the solution can be more practical.

Our first step is to explicitly involve link rates in the formulation. Assume that \(R_{i,j} \) is the transmission rate between nodes \(i, j \) and \(\tau_{i,j} \) is the percentage of time that the link \(i - j \) is used. Then, we can express \(f_{i,j}^s = R_{i,j} \tau_{i,j}^s, \forall i \in N, j \in N, s \in S \). This translates the constraints in (1) to \(\sum_{j \in N} R_{i,j} \tau_{i,j}^s - \sum_{j \in N} R_{j,i} \tau_{j,i}^s = x_s 1_{[i = o(s)]}, \forall s \in S, i \in N \), and \(\tau \in \Gamma \), where \(\tau = \{ \tau_{i,j}^s \}_{s \in S, (i,j) \in L} \) and \(\Gamma \) is the set of all feasible link schedules, so \(\tau \in \Gamma \) should hold.

The next step is to create a new variable \(\gamma_{i,j}^s \) as \(\gamma_{i,j}^s = \frac{R_{i,j} \tau_{i,j}^s}{\min \{ R_{p}^i, R_{E}^i, R_{W}^i \}} \), assuming that min \(\{ R_{p}^i, R_{E}^i, R_{W}^i \} \) is positive, at least slightly larger than 0. Then, the constraints become
\[\sum_{j \in N} \gamma_{i,j}^s \min \{ R_{p}^i, R_{E}^i, R_{W}^i \} - \sum_{j \in N} \gamma_{j,i}^s \min \{ R_{p}^j, R_{E}^j, R_{W}^j \} = x_s 1_{[i = o(s)]}, \forall s \in S, i \in N \]
\[\sum_{s \in S} \sum_{i \in N} \gamma_{i,j}^s \leq 1, \forall j \in N \text{ and } \gamma \in \Gamma \],
(2)
where \(\gamma = \{ \gamma_{i,j}^s \}_{s \in S, (i,j) \in L} \), and \(\Gamma \) is the set of feasible \(\gamma \)'s.
Next, we provide a solution to the problem of maximizing the total utility: \(\sum_{s \in S} g_s(x_s) \) subject to the constraints in (2).

C. Solution

Lagrangian relaxation of the first constraint of (2) gives the following Lagrange function:
\[L = \sum_{s \in S} g_s(x_s) - \sum_{s \in S} \sum_{i \in N} u_i^s (\sum_{j \in N} \gamma_{i,j}^s \min \{ R_{p}^i, R_{E}^i, R_{W}^i \} - \sum_{j \in N} \gamma_{j,i}^s \min \{ R_{p}^j, R_{E}^j, R_{W}^j \} - x_s 1_{[i = o(s)]}) \]
\[\sum_{j \in N} \gamma_{i,j}^s \min \{ R_{p}^i, R_{E}^i, R_{W}^i \} - \sum_{j \in N} \gamma_{j,i}^s \min \{ R_{p}^j, R_{E}^j, R_{W}^j \} - x_s 1_{[i = o(s)]}) \]
(3)
where \(u_i^s \) is the Lagrange multiplier. The Lagrange function is expressed as
\[L = \sum_{s \in S} [g_s(x_s) - u_{o(s)}^s x_s] + \sum_{s \in S} \sum_{i \in N} \sum_{j \in N} \gamma_{i,j}^s \min \{ R_{p}^i, R_{E}^i, R_{W}^i \} (u_i^s - u_j^s) \]
(4)
This Lagrange function is decomposed into two sub-problems:
(i) rate control, and (ii) routing and scheduling. If we solve the Lagrangian function with respect to \(x_s \), we have an optimization problem: \(\max x \sum_{s \in S} [g_s(x_s) - u_{o(s)}^s x_s] \), which is the rate control part. On the other hand, the routing and scheduling part solves the following optimization problem
\[\max \gamma \sum_{s \in S} \sum_{i \in N} \sum_{j \in N} \gamma_{i,j}^s \min \{ R_{p}^i, R_{E}^i, R_{W}^i \} (u_i^s - u_j^s) \]
\[\text{s.t.} \sum_{i \in N} \gamma_{i,j}^s \leq 1, \forall j \in N \text{ and } \gamma \in \Gamma \].
(5)
Note that the solution of (5) is easier as compared to the solution of (1), because it reduces to selecting the link \(i \rightarrow j \), which maximizes \(\min \{ R_{p}^i, R_{E}^i, R_{W}^i \} (u_i^s - u_j^s) \) among all feasible schedules of links. Based on this idea, we will develop our device-aware stochastic routing and scheduling algorithm in the next section.

III. DARS: DEVICE-AWARE ROUTING AND SCHEDULING

Now, we design DARS, which has (i) rate control, (ii) routing and scheduling, and (iii) queue evolution parts, based on the solutions developed in Section II-C.

Device-Aware Routing and Scheduling Algorithm (DARS):
- **Rate Control**: At slot \(t \), the rate controller at node \(o(s) \) determines the number of packets that should be passed from the initial buffer to the main buffer according to
\[\max x \sum_{s \in S} [M g_s(x_s(t)) - U_{o(s)}^s x_s(t)] \]
\[\text{s.t.} x_s(t) \leq R_{\text{max}}, \]
(6)
where \(U_{o(s)}^s \) is the queue that stores packets from flow \(s \) at node \(o(s) \), \(R_{\text{max}} \) is a positive constant larger than the transmission rate from device \(o(s) \), and \(M \) is a large positive constant. Note that flow control algorithm in (6) is designed based on the structure of the rate control solution in Section II-C.
- **Routing and Scheduling**: At slot \(t \), device \(j \) determines the number of packets that it can receive, process, and
forward according to
\[
\max_{\gamma} \sum_{s \in S} \sum_{i \in N} \gamma_{i,j}^s(t) \min\{R_p^s, R_E^s, R_W^s\}[U_i^s(t) - U_j^s(t)] \\
\text{s.t.} \sum_{s \in S} \sum_{i \in N} \gamma_{i,j}^s(t) \leq 1, \text{ and } \gamma(t) \in \Gamma(t) \tag{7}
\]
where \(U_i^s(t)\) and \(U_j^s(t)\) are queue sizes at nodes \(i\) and \(j\), respectively. After the value of \(\gamma_{i,j}^s(t)\) is determined, if \(\gamma_{i,j}^s(t) = 1\), \(f_{i,j}^s(t)\) is set to \(f_{i,j}^s(t) = F_{\text{max}}\), where \(F_{\text{max}}\) is a positive constant larger than the transmission rate from device \(i\) to device \(j\), as well as larger than \(\min\{R_p^s, R_E^s, R_W^s\}\). Otherwise, i.e., if \(\gamma_{i,j}^s(t) = 0\), then \(f_{i,j}^s(t) = 0\). The solution in (7) has two strengths: (i) it takes into account device capabilities, i.e., \(\min\{R_p^s, R_E^s, R_W^s\}\), and (ii) each device \(j\) makes its own decision on how much data it can handle (route & schedule), which is fundamentally different than the classical backpressure [5, 6, 7], where each device \(j\) should do its best to route and schedule any amount of data it receives. Also, note that the solution of (7) is both a routing decision as it determines the next hops, and a scheduling decision as it determines which links to activate (the ones \(\gamma_{i,j}^s(t) = 1\) are activated).

- **Queue Evolution:** The evolution of the queue \(U_i^s(t)\) at time \(t\) is as follows:
\[
U_i^s(t + 1) \leq \max[U_i^s(t) - \sum_{j \in N} f_{i,j}^s(t), 0] + \sum_{j \in N} f_{j,i}^s(t) + x_a(s)1_{[i = o(s)]}
\tag{8}
\]
where \(o(s)\) is the source node of flow \(s\) and \(1_{[i = o(s)]}\) is an indicator function, which is 1 if \(i = o(s)\), and 0, otherwise. Note that (8) is an inequality, because the actual amount of data arriving to the queue may be smaller than \(\sum_{j \in N} f_{j,i}^s(t) + x_a(s)1_{[i = o(s)]}\).

In Section IV we will provide the implementation details and evaluation of DARS in a real testbed. Yet, before delving into that, we present simulation results of DARS as compared to backpressure [6] in an idealized setup.

We first consider a diamond topology shown in Fig. 3 where there is a flow from \(D_1\) to \(D_4\). For this scenario, Fig. 4(a) shows the flow rate versus min \(\{R_p^3, R_E^3, R_W^3\}\), when min \(\{R_p^3, R_E^3, R_W^3\}\) = 1, for \(i = 1, 3, 4\), and links are not lossy. Fig. 4(b) shows the flow rate versus loss probability (all links are lossy), when min \(\{R_p^3, R_E^3, R_W^3\}\) = 0.1 and min \(\{R_p^4, R_E^4, R_W^4\}\) = 1, for \(i = 1, 3, 4\). In both simulations, \(M = 200\), \(R_{\text{max}} = 1\), \(F_{\text{max}} = 1\). The results show that DARS significantly improves over backpressure (implemented according to [6]), because DARS takes into account device capabilities while backpressure does not. I.e., even if packets and links are scheduled by backpressure, they may not be realized due to the device (\(D_2\) in this simulation) bottleneck.

Next, we consider the diamond topology shown in Fig. 3 for two flows; one from \(D_1\) to \(D_2\), and another from \(D_3\) to \(D_4\). Considering the same parameters of the one-flow scenario above, we have results as shown in Fig. 5. As seen, DARS dramatically improves over backpressure as in the one-flow case thanks to taking into account device capabilities.

IV. Implementation Details and Evaluation

In this section, we present the implementation details of our testbed. First, we start with how we create a multi-hop topology with Android-based devices using Wi-Fi Direct. Then, we present our DARS implementation on our testbed.

A. Creating Multi-Hop Topology with Android Devices

Wi-Fi Direct: Our approach to create multi-hop topology using Android-based devices is to employ Wi-Fi Direct connections [4]. However, existing Wi-Fi Direct implementation in Android-based devices only supports a star topology as shown in Fig. 6(a), but not any other multi-hop topology.

Our Approach: We use the star topology of Wi-Fi Direct shown in Fig. 6(a) as our basic constructing unit for creating multi-hop topologies. In particular, multiple groups are constructed using the star topology (i.e., each group is a star topology), and these groups are connected to each
Our approach of using legacy Wi-Fi interfaces simultaneously with Wi-Fi Direct interfaces is challenging, because both legacy Wi-Fi interface and Wi-Fi Direct interfaces are actually using the same means of communication interface in the MAC layer, which is 802.11. Thus, if we naively open both legacy Wi-Fi and Wi-Fi Direct interfaces, only one of them will operate due to IP addressing conflicts. For example, D_2 would transmit data to D_1 even if it means to transmit to D_3 in Fig. 6(c). We provide a solution to this problem in a simple way (i.e., without rooting mobile devices). In particular, we use a class called ConnectivityManager in Android API, which provides instances (objects of the class) of all active network interfaces on each device. Thus, we access the instance of legacy Wi-Fi interface, and bind it with transmission sockets TCP or UDP. This approach eliminates addressing issues and conflicts between legacy Wi-Fi and Wi-Fi Direct interfaces.

B. DARS Implementation

In this section, we present how DARS is implemented over our multi-hop testbed described in Section IV-A.

Devices: We implemented a testbed of the different topologies including line topology, diamond topology using real mobile devices, specifically Android 5.1.1 based Nexus 5 smartphones and Nexus 7 tablets.

Integration to the Protocol Stack: We implemented DARS as a slim layer between transport and application layers as demonstrated in Fig. 6(b). In other words, we implemented DARS on top of TCP. This kind of implementation has benefits as (i) mobile devices do not require rooting, and (ii) our DARS codes could be easily transferred to mobile devices using other operating systems such as iOS.

Virtual Slots: As mentioned in Section III, DARS uses slots to make transmission decisions. By following the theory, in our implementation, we divided the time into virtual slots. Each decision is made at the start of the slot. We set slot durations to 50msec.

Multiple Threads: Three sets of threads operate at each device simultaneously to perform the tasks of rate control, routing and scheduling, and actual data transmission.

The first set of threads are implemented for the rate control, so we call them rate control threads. In particular, the rate control thread at the source device $o(s)$ reads data bytes from a file, packetizes them and inserts them into the transmission queue $U^s_{o(s)}$. The rate of reading packets from the file is determined according to the rate control algorithm in (6). Note that if a device is the source of two flows, a rate control thread is created for each flow.

The second set of threads determine how many packets should be transmitted from $U^s_{o(s)}$ to other devices. Thus, these threads are called routing and scheduling threads. This part implements (7). For example, in the diamond topology in Fig. 6(d), at each slot, D_1 determines whether it should transmit packets to D_2, or D_3, or none of them.

The final set of threads make actual packet transmissions possible, so we call them transmission threads. A transmission thread is constructed for each neighboring node. For example,
in the diamond topology Fig. 6(c), D_1 constructs two transmission threads for D_2 and D_3. Packets, whose number is determined by the routing and scheduling thread, are received by this thread and inserted into queues that we call socket queues. The transmission threads will dequeue packets from the socket queues and pass them to TCP sockets. Another task of transmission threads is to receive queue size information from neighboring nodes.

Information Exchange: Our implementation is lightweight in the sense that it limits control information exchange among mobile devices. The control information that is transmitted by node i is $U_i(t)$ and $\min\{R'_P, R'_E, R'_W\}$, and this information is transmitted to only i’s neighbors. These control packets are transmitted periodically at every 50msec.

Calculating $\min\{R'_P, R'_E, R'_W\}$: Each node i, based on its computing power, energy level, and incentives (willingness), calculates its rate. For example, if node i has limited energy, then it limits R'_E to 1Mbps even if it can support up to 20Mbps. Thus, in our implementation, every device calculates its own rate, and exchange this information with its neighbors.

Test Environment: We conducted our experiments in a lab environment where several other Wi-Fi networks were operating in the background. We located all the devices at varying distances, and we have evaluated device-centric routing and scheduling. Next, we present our evaluation results.

C. Evaluation Results

Now, we focus on evaluating the performance of DARS. Fig. 7(a) shows data rate versus time graph for three-node and four-node line topologies shown in Fig. 6(b), where a a flow is transmitted from D_1 to D_4. The receive & forward algorithm is the baseline in this scenario, where the intermediate nodes just receive packets and forward. As seen, the performance of DARS is close to receive & forward. Note that since there is no routing and scheduling diversity in the line topology, the receive & forward provides the best performance. The results prove that DARS does not introduce too much overhead into the system.

Fig. 8(b) shows the transmission rate for the diamond topology shown in Fig. 6(c), where a flow is transmitted from D_1 to D_4. In this setup, D_1, D_2, and D_3 are connected to D_4 using legacy Wi-Fi interface. This creates a 4-node line topology. (c) Diamond topology. D_1 and D_3 are group owners, and D_2 and D_4 are clients of Group I and Group II, respectively. D_2 is connected to D_3 using legacy Wi-Fi interface. This creates a 4-node line topology. (c) Diamond topology. D_1 and D_3 are group owners, and D_2 and D_4 are clients of Group I and Group II, respectively. D_2 is connected to D_3 using legacy Wi-Fi interface.
$D_2 - D_4$ route is selected a priori. As seen, DARS performs very close to the best case scenario, which shows the efficiency of our algorithm. Backpressure is the implementation of the scheme proposed in [6]. As seen, DARS improves over backpressure (up to %15), because it takes into account device specific properties, while backpressure does not. Equal Split is another baseline, which allows transmitting data over both paths in the diamond topology. As long as TCP supports transmissions, packets are simultaneously transmitted over both links. As seen, DARS significantly improves as compared to this baseline. Finally, the worst case scenario is the case that $D_1 - D_3 - D_4$ route is selected a priori, which is included in the results for completeness.

V. RELATED WORK

The idea of exploiting D2D connectivity is very promising to improve throughput and reduce delay, so it has found several applications in the literature. For example, opportunistic D2D connections is often used for the purpose of (i) offloading cellular networks [11], [12], [13], (ii) content dissemination among mobile devices [14], [15], and (iii) cooperative video streaming over mobile devices [16], [17]. As compared to this line of work, we focus on developing device-aware routing and scheduling algorithm over multi-hop D2D networks by taking into account device capabilities such as computing power, energy, and incentives.

Our approach in this work involves using network utility maximization to characterize the system as it is promising to understand how different layers and/or algorithms, such as flow control, routing, and scheduling should be designed and optimized [18], [19]. However, we formulate the NUM framework considering device capabilities to develop device-aware framework. Second, we develop DARS. In that sense, our approach is similar to the line of work emerged after the pioneering work in [5], [20], [6]. However, our focus is on incorporating device capabilities in the framework. Furthermore, we develop a testbed of our algorithm using real devices, which was not the focus of the previous work.

Multi-hop data transmission testbed using Wi-Fi Direct over mobile devices has been considered in [8]. In this work, intermediate devices receive a whole file first, and then transmits it to other devices. As compared to this work, our implementation makes simultaneous transmission and reception possible, so there is no need to wait to receive a complete file before starting to transmit it to a next hop. More similar work to ours is [9], where both legacy and Wi-Fi interfaces are exploited at group owners (not at clients as in our approach). As compared to this work, our approach (i) uses unicast transmissions (rather than broadcast like [9]), so our testbed can operate at higher rates, (ii) supports bidirectional IP communication supporting both TCP and UDP, (iii) requires minimal changes to existing Wi-Fi Direct and legacy Wi-Fi operations. Furthermore, we implement DARS over this testbed by taking into account device capabilities.

VI. CONCLUSION

In this paper, we developed a device-aware routing and scheduling algorithm (DARS) over D2D networks by taking into account device capabilities such as computing power, energy, and incentives. Our approach is grounded on a network utility maximization formulation of the problem and its solution. We developed a multi-hop D2D testbed using real mobile devices. We implemented DARS over this testbed. The experimental results demonstrate the benefits of our algorithm.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast update,” 2014-2019.
[2] “Ericsson mobility report,” February 2015.
[3] A. Asadi. Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” April 2014, technical report - arXiv:1310.0720v6[cs.GT].
[4] “Wi-fi direct.” http://www.wi-fi.org/discover-and-learn/wi-fi-direct.
[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multi-hop wireless networks,” IEEE Trans. on Automatic Control, vol. 37, no. 12, December 1992.
[6] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for heterogeneous networks,” IEEE Trans. on Networking, vol. 16, no. 2, April 2008.
[7] M. J. Neely, Stochastic network optimization with application to communication and queueing systems. Morgan & Claypool, 2010.
[8] “A multi-layer application for multi-hop messaging on android devices.” [Online]. Available: http://anrg.usc.edu/ce5795_52012/Group02/index.html.
[9] C. Casetti, C.-F. Chiasserini, L. C. Pelle, C. D. Valle, Y. Duan, and P. Giaccone, “Content-centric routing in wi-fi direct multi-group networks.” [Online]. Available: http://arxiv.org/abs/1412.0880.
[10] Y. Xing and H. Seferoglu, “Dars: Device-aware routing and scheduling in device-to-device networks - technical report.” [Online]. Available: http://nrl.ece.uic.edu/.
[11] S. Ioannidis, A. Chaintreau, and L. Massoulié, “Optimal and scalable distribution of content updates over a mobile social network,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, April 2009.
[12] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan, “Cellular traffic offloading through opportunistic communications: a case study,” in Proc. of ACM Workshop on Challenged Networks (CHANTS), Chicago, IL, September 2010.
[13] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and V. Conan, “Relieving the wireless infrastructure: When opportunistic networks meet guaranteed delays,” in Proc. of IEEE WoWMoM, Lucca, Italy, June 2011.
[14] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forwarding in delay tolerant networks,” in Proc. of ACM MobiHoc, Hong Kong, May 2008.
[15] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social relations to forward data in opportunistic networks: The hibop solution,” in Proc. of Pervasive and Mobile Computing, October 2008.
[16] M. Ramadan, L. E. Zein, and Z. Dawy, “Implementation and evaluation of cooperative video streaming for mobile devices,” in Proc. of IEEE PIMRC, Cannes, France, September 2008.
[17] S. Li and S. Chan, “Bopper: wireless video broadcasting with peer-to-peer error recovery,” in Proc. of IEEE ICME, Beijing, China, July 2007.
[18] M. Chiang, S. T. Low, A. R. Calderbank, and J. C. Doyle, “Layering as optimization decomposition: a mathematical theory of network architectures,” Proceedings of the IEEE, vol. 95, no. 1, January 2007.
[19] X. Lin, N. B. Schroff, and R. Srikanth, “A tutorial on cross-layer optimization in wireless networks,” IEEE JSAC, vol. 24, no. 8, August 2006.
[20] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues with randomly varying connectivity,” IEEE Trans. on Information Theory, vol. 39, no. 2, March 1993.