IMP-38-Producing High-Risk Sequence Type 307 Klebsiella pneumoniae Strains from a Neonatal Unit in China

Siyi Wang, Juan Zhao, Ning Liu, Fang Yang, Yiming Zhong, Xiumei Gu, Zijuan Jian, Qun Yan, Qingxia Liu, Hongling Li, Yanming Li, Jing Liu, Hui Li, Liang Chen, Wenen Liu

ABSTRACT An emerging multidrug-resistant Klebsiella pneumoniae high-risk clone of sequence type 307 (ST307) has been increasingly reported worldwide. Here, we described the genomic characteristics of an IMP-38-producing ST307 K. pneumoniae strain and investigated the prevalence of blaIMP-38 among carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital in central China. A total of 14 IMP-38-producing ST307 K. pneumoniae strains were identified from 2013 to 2016, with 13 strains isolated from patients with neonatal sepsis in the neonatal ward. PacBio and Illumina whole-genome sequencing analysis performed on a representative IMP-38-producing K. pneumoniae strain, WCGKP294, showed that it contained a circular chromosome and two plasmids. Carbenemase gene blaIMP-38 is colocalated with blaCTX-M-3 in transposon Tn6382 on an IncHI5 plasmid (pWCGKP294-2). WCGKP294 harbors another IncFIB plasmid, pWCGKP294-1, carrying three copies of tandem-repeated IS26-bla38KIV2A-deoR-ygbJ-ygbK-fucA-IS26 composite transposon elements. Phylogenetic analysis placed WCGKP294 in the global ST307 cluster, distant from the U.S. (Texas) and South Africa clusters. Nevertheless, WCGKP294 does not contain the chromosomal fluoroquinolone resistance-associated mutations and IncFIIK/IncFIBK plasmid-associated blaCTX-M-15 gene that are frequently found in other global ST307 strains.

IMPORTANCE We described the genome and resistome characterization of a carbapenem-resistant Klebsiella pneumoniae ST307 strain carrying blaIMP-38 in China. This report highlights that the high-risk ST307 clone continues to acquire different antimicrobial resistance genes, posing significant challenges to clinical practice, and should be closely monitored.

KEYWORDS carbapenem-resistant Klebsiella pneumoniae, IMP-38, ST307, whole-genome sequencing, plasmid, high-risk clone

Klebsiella pneumoniae is a common cause of both health care- and community-associated infections (1–3). Carbapenems were usually used as last-line antibiotics to treat infections by multidrug-resistant Gram-negative bacteria, including K. pneumoniae. With the widespread usage of carbapenems and the dissemination of carbapenemase-producing Gram-negative pathogens over recent decades, the number of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains increased globally (4), posing a significant challenge to clinical diagnosis, treatment, and infection control. The global dissemination of CRKP is largely mediated by certain high-risk CRKP strains, such as those of clonal group 258 (CG258), which comprises sequence type 11.
TABLE 1 Clinical features of patients carrying IMP-38-producing Klebsiella pneumoniae

Subject no.	Age (days)	Sex	Specimen source	Sepsis	MIC (mg/liter)	
1	0	Male	Blood	Yes	TZP: ≥ 64	FEP: ≥ 64
2	11	Female	Ascites	Yes	TZP: ≥ 128	FEP: ≥ 64
3	11	Male	Sputum	Yes	TZP: ≥ 64	FEP: ≥ 64
4	30	Female	Blood	Yes	TZP: ≥ 8	FEP: ≥ 8
5	24	Male	Blood	Yes	TZP: ≥ 64	FEP: ≥ 64
6	8	Female	Blood	Yes	TZP: ≥ 64	FEP: ≥ 64
7	10	Male	Blood	Yes	TZP: ≥ 8	FEP: ≥ 8
8	6	Female	Endotracheal tube	Yes	TZP: ≥ 64	FEP: ≥ 64
9	6	Male	Sputum	No	TZP: ≥ 128	FEP: ≥ 64
10	28	Male	Stool	Yes	TZP: ≥ 64	FEP: ≥ 64
11	15	Male	Stool	Yes	TZP: ≥ 64	FEP: ≥ 64
12	11	Male	Stool	Yes	TZP: ≥ 64	FEP: ≥ 64
13	30	Female	Sputum	Yes	TZP: ≥ 128	FEP: ≥ 64
14	60	Female	Stool	Yes	TZP: ≥ 128	FEP: ≥ 64

All of the patients were cured of their infections. TZP, piperacillin-tazobactam; FEP, cefepime; CRO, ceftiraxone; CAZ, ceftazidime; ATM, aztreonam; IPM, imipenem; ETP, ertapenem; MEM, meropenem; AMK, amikacin; LVX, levofloxacin; CIP, ciprofloxacin; SXT, trimethoprim-sulfamethoxazole.
suspected that the infections by IMP-38-producing CRKP might have been associated with endotracheal intubation and might have been caused either by contaminated equipment or by staff contact transmission. Previously published studies also suggested that endotracheal intubation was an independent risk factor for infections caused by multidrug-resistant *K. pneumoniae*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa* (13–15). However, since these clinical isolates were retrospectively collected, we were unable to recover CRKP from endotracheal tube cultures and therefore cannot confirm whether the presence of IMP-38-producing CRKP was due to endotracheal tube contamination.

Antibiotic susceptibilities and molecular detection. All 14 isolates exhibited susceptibility to amikacin, levofloxacin, ciprofloxacin, and trimethoprim-sulfamethoxazole but showed resistance to cefepime, ceftriaxone, ceftazidime, aztreonam, ertapenem, and meropenem, while 13 isolates were susceptible to imipenem (MIC \(\leq 1 \mu g/ml\)). Ten isolates were resistant to piperacillin-tazobactam (Table 1).

PCR detection of carbapenemase and ESBL genes revealed that all 14 strains carried *bla*\(_{IMP-38}\), *bla*\(_{CTX-M-3}\), *bla*\(_{SHV-28}\), and *bla*\(_{TEM-1}\). Pulsed-field gel electrophoresis (PFGE) analysis showed that these isolates shared highly similar profiles (see Fig. S1 in the supplemental material), suggesting a clonal spread of the same *bla*\(_{IMP-38}\)-harboring strains.

Multilocus sequence type (MLST) analysis showed that all 14 *bla*\(_{IMP-38}\)-harboring *K. pneumoniae* strains belonged to ST307. As mentioned above, ST307 strains have been associated with different carbapenemase genes (*bla*\(_{KPC}\), *bla*\(_{NDM}\), *bla*\(_{OXA-48}\), and *bla*\(_{OXA-181}\)) and ESBL genes (e.g., *bla*\(_{CTX-M-15}\)); however, *bla*\(_{IMP}\) has not been reported in ST307 strains. To the best of our knowledge, this is the first report of the presence of IMP metallo-\(\beta\)-lactamase in this high-risk clone. To reveal the genomic characteristics of IMP-38-producing *K. pneumoniae* ST307 strains, we selected one strain, WCGKP294, for whole-genome sequencing using the combination of PacBio and Illumina HiSeq sequencing.

Genomic characterization of *K. pneumoniae* strain WCGKP294. Strain WCGKP294 was isolated from a sputum sample from a preterm infant in 2016. The combination of PacBio SMRT and Illumina HiSeq sequencing generated the complete closure of the WCGKP294 genome. WCGKP294 harbors a 5,540,574-bp circular chromosome and two plasmids, pWCGKP294-1 and pWCGKP294-2. The WCGKP294 chromosome harbors the *oqxA* and *oqxB* genes, which have been linked to quinolone resistance; the *bla*\(_{SHV-28}\) gene, conferring cephalosporin resistance; and the *fosA6* gene, which has been linked to fosfomycin resistance. Strain WCGKP294 carried the same K and O loci (KL102, associated with wzi allele 173, and O2v2) as other global ST307 strains, as well as the second putative capsule synthesis locus (Cp2) and a \(\pi\)-fimbria-encoding gene cluster (16). However, inspection of the chromosomal quinolone resistance-determining regions (QRDR) failed to identify amino acid substitutions at GyrA codon 83 or 87 and at ParC codon 80 or 84, which appears to be one of the major genetic differences from other global ST307 genomes (17). Previous study of 95 global ST307 genomes showed that the ParC 80I and GyrA 83I mutations were 100% conserved among all the genomes, with a small cluster of strains carrying an additional GyrA 87N mutation (17). The QRDR mining results in WCGKP294 were in agreement with our susceptibility testing results indicating that all our strains were susceptible to ciprofloxacin and levofloxacin (Table 1).

In order to describe the relationship between IMP-38-producing strain WCGKP294 and other global ST307 strains obtained from different countries and sources, a hierarchical Bayesian clustering analysis of ST307 genomes was performed (Fig. 1). Similarly to the results of a previous study (8), the analysis divided ST307 into 6 distinct clades: clades I to VI. Strain WCGKP294 was found to belong to clade V, which is distinctly related to clades I to IV (the U.S. Texas clades) and clade VI (the South African OXA-181 clade). Clades I to IV and clade VI represent strains that have been locally isolated over a long period in the United States and South Africa, while the clade V is...
more like a global lineage and includes isolates from Australia, Brazil, Cambodia, Cameroon, China, Colombia, France, Guinea, Iran, Italy, Nepal, Netherlands, Nigeria, Norway, Pakistan, Thailand, the United Kingdom, and the United States (8).

Characteristics of \textit{bla}\textsubscript{IMP-38}-harboring plasmid pWCGKP294-2. WCGKP294 was found to contain two plasmids, pWCGKP294-1 and pWCGKP294-2. Plasmid pWCGKP294-1 (GenBank accession number CP046613) was found to be 237,090 bp in length and to belong to the IncFIB incompatibility group, carrying three copies of tandemly repeated \textit{IS26-bla}_\textit{SHV-2A-deoR-ygbJ-ygbK-fucA-IS26} composite transposon elements (see Text S1 in the supplemental material). Plasmid pWCGKP294-2 (GenBank accession number CP046614) was found to be 230,910 bp in length with GC content of 47%. Sequence analysis indicated that plasmid pWCGKP294-2 belonged to the IncHI5 incompatibility group (Fig. 2). BLAST analysis showed that pWCGKP294-2 had high similarity to \textit{bla}\textsubscript{IMP-38}-harboring pA324-IMP (MF344566), recovered from a \textit{K. pneumoniae} strain in Beijing, with 97% query coverage and >99.9% identity, and to \textit{bla}\textsubscript{IMP-4}-harboring pIMP-LL34 (CP025964), isolated from a \textit{K. pneumoniae} in Chengdu, with 91% query coverage and >99.9% identity (Fig. 2).

\textbf{FIG 1} Bayesian phylogenetic analysis of global ST307 \textit{K. pneumoniae} strains. The analysis included 708 global ST307 genomes from a previous study (6) and the WCGKP294 strain sequenced in the current study. CTX-M, active on cefotaxime; Bla_Carb, carbapenemase genes.
In China, the main IMP type of carbapenemase was found to be IMP-4 (18, 19), which differs from IMP-38 with an amino acid substitution at Ambler position 262 (S262G, serine to glycine) (12). It is likely that IMP-38 evolved from IMP-4 from amino acid substitution. The S262G substitution was previously identified as important for substrate specificity according to studies of other IMP variants, especially IMP-6, which differs from IMP-1 by the same S262G substitution (20–22). The S262G substitution led to a reduction in the imipenem MIC but to higher levels of meropenem and doripenem resistance in IMP-6. We therefore suspected that the imipenem-susceptible but meropenem-resistant profiles found in our IMP-38-producing ST307 CRKP strains may have been due to the S262G substitution (Table 1). Further enzyme kinetic analysis is ongoing to confirm the hypothesis.

Similarly to pA324-IMP, plasmid pWCGKP294-2 had two transposons, designated Tn6387 and Tn6382. The Tn6387 transposon was located in an ARI-B island, identified as a Tn6535 derivative, while the Tn6382 transposon was within an ARI-A island, identified as a Tn1696 derivative (23). The bla\textsubscript{IMP-38} gene was carried by a class I integron within Tn6382 with the gene cassette of bla\textsubscript{IMP-38}\textasciitilde qacG2-aacA4\textasciitilde cat3 on pWCGKP294-2. In addition to bla\textsubscript{IMP-38}, several antibiotic resistance genes have also been identified on pWCGKP294-2, including \beta-lactamase genes bla\textsubscript{CTX-M-3} and bla\textsubscript{TEM-1B}, and antimicrobial resistance genes aacA4, and chloramphenicol resistance gene catB3. In comparison to pIMP4_LL34 and pA324-IMP, pWCGKP294-2 contained an approximately 44-kb deletion that extended from the umuD gene to a hypothetical protein gene located upstream of hns. This deleted region included the conjugation-encoding cpl, rlx, and tivF genes, which is consistent with the inability of conjugation of pWCGKP294-2 seen during the conjugation experiment (data not shown).

A recent study suggested that IncHI5-type plasmid may be another key plasmid vector contributing to the rapid transmission of carbapenemase genes (23). Similarly, our study also suggested that IncHI5 plasmids could serve as a major vector in the spread of \textit{bla}\textsubscript{IMP} in \textit{Enterobacteriaceae}. To understand the phylogenetic relationship of IncHI5 plasmids, we downloaded 21 additional IncHI5 plasmids from the NCBI database and constructed a phylogenetic tree based on the sequence alignment (Fig. 3). The 22 plasmids were from various strains of \textit{K. pneumoniae}, \textit{K. aerogenes}, \textit{K. michiganensis}, \textit{Raoultella ornitholytica}, and \textit{R. planticola} and had been isolated in different regions in mainland China (n = 18), Taiwan (n = 1), Viet Nam (n = 1), Switzerland (n = 1) and the United States (n = 1), suggesting the wide distribution of IncHI5 plasmids. Eighteen of the 22 plasmids carried at least one carbapenemase gene, mostly metallo-\beta-lactamase genes, with the exception of 1 plasmid that coharbored \textit{bla}\textsubscript{KPC-2} and \textit{bla}\textsubscript{IMP-4} (pRo24724). The phylogenetic tree showed that pWCGKP294-2 is closest to pA324-IMP, carrying the same \textit{bla}\textsubscript{IMP-38} in a Tn6382 element, which is consistent with the BLAST results described above.

![Phylogenetic tree of IncHI5 plasmids](image-url)

FIG 2 Plasmid structures of pWCGKP294-2 (GenBank accession number CP046614), pA324-IMP (MF344566), and pIMP4-LL34 (CP025964). Light blue shading denotes shared regions of homology of >99% identities, while light green shading indicates reverse-oriented regions of homology. Open reading frames (ORFs) are portrayed by arrows and colored based on predicted gene function. Orange arrows indicate plasmid scaffold regions. The genes associated with the conjugation locus are indicated by green arrows, and replication-associated genes are denoted as dark blue arrows. Antimicrobial resistance genes are indicated by red arrows, while the accessory genes are indicated by yellow arrows.
Conversely, the previous genomic epidemiological study suggested that the global ST307 strains were closely associated with \(\text{bla}_{\text{CTX-M-15}} \). The \(\text{bla}_{\text{CTX-M-15}} \) ESBL gene was found in 93.7% of the ST307 genomes (\(n = 89 \)), and among them, 82 (92.1%) carried a \(\text{pKPN3-307_typeA IncFIIK/IncFIBK plasmid backbone, sharing the same insertion of the IS}_Ecp1-\text{bla}_{\text{CTX-M-15}} \) transposon within \(\text{Tn}_3 \) (16). Those results also suggested that \(\text{bla}_{\text{CTX-M-15}} \)-harboring IncFIIK/IncFIBK plasmids may have coevolved with ST307 strains over time. However, our IMP-38-producing strain, WCGKP294, does not contain \(\text{bla}_{\text{CTX-M-15}} \) and instead harbors another \(\text{bla}_{\text{CTX-M-3}} \) variant on IncHI5 plasmid \(\text{pWCGKP294-2} \) that was found to coexist with \(\text{bla}_{\text{IMP-38}} \) within the same \(\text{Tn6382} \) transposon.

In conclusion, we have reported here the identification of IMP-38-producing high-risk ST307 \(K. \) pneumoniae strains in a neonatal unit in China. The \(\text{bla}_{\text{IMP-38}} \) gene is harbored by a \(\text{Tn6382} \) transposon on an IncHI5 plasmid. Unlike the other global ST307 strains, our IMP-38-producing ST307 strain does not harbor QRDR fluoroquinolone resistance-associated mutations and was not associated with the ESBL \(\text{bla}_{\text{CTX-M-15}} \) gene on the IncFIIK/IncFIBK plasmid, suggesting that IMP-38-producing ST307 strains may have a different evolutionary path and are under different antibiotic selection pressures. Nevertheless, our study showed that this high-risk clone continues to acquire various antimicrobial resistance genes, posing significant challenges to clinical practice, and should be closely monitored.

MATERIALS AND METHODS

Bacterial isolates and antimicrobial susceptibility testing. Clinical isolates were collected from January 2013 to November 2016 in a tertiary care hospital in Changsha located in the middle of China. A total 515 unique CRKP isolates (one isolate per patient) were recovered from clinical specimens. MICs of 12 antimicrobial agents were determined for all 515 clinical isolates using the microdilution method.
according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) (24). The study was approved by the institutional review board (IRB) at Xiangya Hospital of Central South University.

Detection of \(\text{bla}_{\text{IMP-38}} \) gene. All CRKP isolates were screened for the presence of the \(\text{bla}_{\text{IMP-38}} \) gene using a previously described PCR protocol (25–27). PCR amplifications were carried out on an ABI 2720 thermal cycler (Applied Biosystems, USA). The amplicons from IMP-positive strains were then sequenced to determine \(\text{bla}_{\text{IMP-38}} \) variants.

MLST. MLST was performed on clinical \(\text{bla}_{\text{IMP-38}} \)-harboring isolates using a method described previously by Diancourt et al. (27). The ST was determined using the database maintained by the MLST Web server (https://pubmlst.org/mlst). A core singlenucleotide polymorphism (SNP) phylogenetic tree of WCGKP294 and of 708 global ST307 isolates (from 19 countries) was constructed using a method described previously (8). The phylogenetic tree was annotated in iTOL (32). A total of 21 IncHI1 plasmids were downloaded from GenBank, followed by alignment using Mauve 2.4.0 (33). Conserved regions were extracted from Mauve alignment, and a maximum likelihood (ML) phylogenetic tree was generated using FastTree 2.1 (34).

Data availability. The complete genome sequences of WCGKP294 were submitted to GenBank under accession numbers CP046612 to CP046614.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1. DOCX file, 0.01 MB.

FIG S1. PDF file, 2 MB.

ACKNOWLEDGMENTS

We thank Fangyou Yu from Shanghai Pulmonary Hospital for the support of PFGE analysis.

This work was supported by the National Natural Science Foundation of China (grant no. 81672066).

REFERENCES

1. Zhang Y, Zeng J, Liu W, Zhao F, Hu Z, Zhao C, Wang Q, Wang X, Chen H, Li H, Zhang F, Li S, Cao B, Wang H. 2015. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect 71:553–560. https://doi.org/10.1016/j.jinf.2015.07.010.
2. Wu D, Huang X, Jia C, Liu J, Wan Q. 2020. Clinical manifestation, distribution, and drug resistance of pathogens among abdominal solid organ transplant recipients with Klebsiella pneumoniae infections. Transplant Proc 52:289–294. https://doi.org/10.1016/j.transproceed.2019.11.023.
3. Xiao SZ, Wang S, Wu WM, Zhao SY, Gu FF, Ni YX, Guo XX, Qu JG, Han LZ. 2017. The resistance phenotype and molecular epidemiology of Klebsiella pneumoniae in bloodstream infections in Shanghai, China, 2012–2015. Front Microbiol 8:250. https://doi.org/10.3389/fmicb.2017.00250.
4. Zheng S, Li P, Zhang Z. 2019. CHINET surveillance of carbapenem-resistant Gram-negative bacteria in China from 2005 to 2017. J Clin Emerg 20:40–44.
5. Chmelinský I, Shklyar M, Hermesh O, Navon-Venezia S, Edgar R, Carmeli Y. 2013. Unique genes identified in the epidemic extremely drug-resistant KPC-producing Klebsiella pneumoniae sequence type 258. J Antimicrob Chemother 68:74–83. https://doi.org/10.1093/jac/dks370.
6. Rojas R, Macesic N, Tolari G, Guzman A, Ugljen K, Uhlemann AC. 2019. Multidrug-resistant Klebsiella pneumoniae ST307 in travel returning from Puerto Rico to Dominican Republic. Emerg Infect Dis 25:1583–1585. https://doi.org/10.3201/eid2508.171482.
7. Cejas D, Elena A, Guevara Nuñez D, Sevillano Platero P, De Paulis A, Magariños F, Alfonso C, Berger MA, Fernández-Canigia L, Gutkind G, Radice M. 2019. Changing epidemiology of KPC-producing Klebsiella pneumoniae in Argentina: emergence of hypermucoviscous ST25 and high-risk clone ST307. J Glob Antimicrob Resist 18:238–242. https://doi.org/10.1016/j.jgar.2019.06.005.
8. Lowe M, Kock MM, Coetzee J, Hoosen E, Peirano G, Strydom KA, Ehlers MM, Mbelle NM, Shashkina E, Haslam DB, Dhawan P, Donnelly RJ, Chen L, Kreiswirth BN, Pitout J. 2019. Klebsiella pneumoniae ST307 with \(\text{bla}_{\text{OXA-181}} \) in South Africa, 2014–2016. Emerg Infect Dis 25:739–747. https://doi.org/10.3201/eid2504.181482.
9. Long SW, Olsen RJ, Edgar T, Beres SB, Zhao P, Davis JJ, Brettin T, Xia F, Musser JM. 2017. Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307. mBio 8:e00489-17. https://doi.org/10.1128/mBio.00489-17.
10. Bocanegra-Ibarias P, Garza-González E, Padilla-Orozco M, Mendoza-Olazarán S, Pérez-Alba E, Flores-Treviño S, Garza-Ramos U, Silva-Sánchez J, Camacho-Ortiz A. 2019. The successful containment of a hospital outbreak caused by NDM-1-producing Klebsiella pneumoniae ST307 using active surveillance. PLoS One 14:e0209609. https://doi.org/10.1371/journal.pone.0209609.
11. Lai K, Ma Y, Guo L, An J, Ye L, Yang J. 2017. Molecular characterization of clinical IMP-producing Klebsiella pneumoniae isolates from a Chinese tertiary hospital. Ann Clin Microbiol Antimicrob 16:42. https://doi.org/10.1186/s12941-017-0218-9.
12. Jiang Z, Li Y, Liu W, Li H, Zhang Y, Li Y, Gu X, Peng W. 2014. Detection of the novel IMP-38 among carbapenemase-producing Enterobacteriaceae in a university hospital, China. J Infect Dev Ctries 8:1044–1048. https://doi.org/10.3855/jidc.4179.
13. Kikuchi T, Nagashima T, Taguchi K, Kuriashi H, Nemoto H, Yamanaka M, Kawano R, Ugaín J, Tazawa S, Marumo K. 2007. Contaminated oral intubation equipment associated with an outbreak of carbapenem-resistant Pseudomonas in an intensive care unit. J Hosp Infect 65:54–57. https://doi.org/10.1016/j.jhin.2006.07.017.
14. Timofte D, Dan M, Măcinu IE, Ciucu L, Dabija ER, Guguianu E, Panzaru CV. 2015. Emergence of concurrent infections with colistin-resistant ESBL-positive Klebsiella pneumoniae and OXA-23-producing Acinetobacter baumannii sensitive to colistin only in a Romanian cardiac intensive...
15. Peng Y, Bi J, Shi J, Li Y, Ye X, Chen X, Yao Z. 2014. Multidrug-resistant Pseudomonas aeruginosa infections pose growing threat to health care-associated infection control in the hospitals of Southern China: a case-control surveillance study. Am J Infect Control 42:1308–1311. https://doi.org/10.1016/j.ajic.2014.08.006.

16. Villa L, Feudi D, Fortini D, Brisse S, Passet V, Bonura C, Endimiani A, Mammina C, Ocampo AM, Jimenez JN, Doumith M, Woodford N, Hopkins K, Carattoli A. 2017. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 3:e000110. https://doi.org/10.1099/mgen.0.000110.

17. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR, Judd LM, Hamidian M, Howden BP, Lohe IH, Holt KE. 2019. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother 74:577–581. https://doi.org/10.1093/jac/dky492.

18. Liang J, Pan X, Huang W. 2019. Molecular typing characteristics of IMP-4-producing Klebsiella pneumoniae in neonates. Guangxi Med J 41:1095–1097.

19. Tao Y, Lian-Sheng B, Fang L. 2011. Molecular epidemiological analysis of KPC-2 and IMP-4 carbapenemase possessing Klebsiella pneumoniae isolated from children. Chin J Lab Med 34:254–259.

20. Iyobe S, Kusadokoro H, Ozaki J, Matsumura N, Minami S, Haruta S, Sawai T, O’Hara K. 2000. Amino acid substitutions in a variant of IMP-1 metallo-beta-lactamase. Antimicrob Agents Chemother 44:2023–2027. https://doi.org/10.1128/AAC.44.8.2023-2027.2000.

21. Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. 2001. Plasmid-encoded metallo-beta-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother 45:1343–1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001.

22. Liu EM, Pegg KM, Oelschlaeger P. 2012. The sequence-activity relationship between metallo-beta-lactamases IMP-1, IMP-6, and IMP-25 suggests an evolutionary adaptation to meropenem exposure. Antimicrob Agents Chemother 56:6403–6406. https://doi.org/10.1128/AAC.01440-12.

23. Liang Q, Jiang X, Hu L, Yin Z, Gao B, Zhao Y, Yang W, Yang H, Tong Y, Li W, Jiang L, Zhou D. 2018. Sequencing and genomic diversity analysis of IncHI5 plasmids. Front Microbiol 9:3318. https://doi.org/10.3389/fmicb.2018.03318.

24. CLSI. 2019. Performance standards for antimicrobial susceptibility testing: twenty-ninth edition. M100. CLSI, Wayne, PA.

25. Grobner S, Linke D, Schutz W, Fladerer C, Maudling J, Autenrieth IB, Witte W, Pfeifer Y. 2009. Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tubingen, Germany. J Med Microbiol 58:912–922. https://doi.org/10.1099/jmm.0.005850-0.

26. Zhong YM, Liu WE, Liang XH, Li YM, Jian ZJ, Hawkey PM. 2015. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J Antimicrob Chemother 70:2223–2227. https://doi.org/10.1093/jac/dkv114.

27. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005.

28. Zhou J, Bruns MA, Tiedje JM. 1996. DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322. https://doi.org/10.1128/AEM.62.2.316-322.1996.

29. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Uncycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

30. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261.

31. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3985–3993. https://doi.org/10.1128/AAC.02412-14.

32. Darling AE, Mau B, Perna NT. 2008. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 3:e214.

33. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147.

34. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490.