Risk factors of interstitial lung diseases in clinically amyopathic dermatomyositis

Yu-Zhou Gan1,2, Li-Hua Zhang3, Lin Ma4, Feng Sun1,2, Yu-Hui Li1,2, Yuan An1,2, Zhan-Guo Li1,2, Hua Ye1,2

1Department of Rheumatology & Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing 100044, China; 2Center of Clinical Immunology, Peking University, Beijing 100044, China; 3Department of Rheumatology, Hulunbeier People’s Hospital, Hulunbeier, Inner Mongolia 021008, China; 4Department of Rheumatology, Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050200, China.

Abstract

Background: Clinically amyopathic dermatomyositis (CADM) is a unique sub-type of idiopathic inflammatory myopathies with a high prevalence of interstitial lung disease (ILD). Poor prognosis of the patients was strongly associated with rapid progressive ILD. The aim of this study was to identify risk factors for prediction of different types of ILD in CADM.

Methods: In this study, data of 108 inpatients with CADM were collected, including 87 with ILD. The baseline clinical data and laboratory parameters, including myositis-specific and associated antibodies and tumor-associated antigens were analyzed to identify risk factors for acute or subacute interstitial pneumonitis (A/SIP) and chronic interstitial pneumonitis (CIP).

Results: In 87 patients with CADM-ILD, 39 (36.1%) were A/SIP, and 48 (44.4%) were CIP. There were 22 (20.4%) patients with asymptomatic ILD who were detected by routine high resolution computed tomography. Cytokeratin-19 fragment (CYFRA21-1) was significantly higher in CADM-ILD than that in CADM patients without ILD; carcinoembryonic antigen and neuron-specific enolase were significantly elevated in A/SIP than that in CIP. Patients with A/SIP had a higher positive rate of anti-melanoma differentiation-associated gene 5 (MDA5), while patients with CIP had a higher positive rate of anti PL-12 and anti-Ro-52. Logistic regression analysis indicated that elevation of CYFRA21-1 was a risk factor for ILD, higher titer of anti-MDA5 indicated increased likelihood for A/SIP, and higher titer of anti-Ro-52 was also clearly associated with CIP.

Conclusions: This study indicated that the prevalence of ILD was high in CADM. Asymptomatic ILD has been previously underestimated. Anti-MDA5 was a risk factor for the presence of A/SIP, and CYFRA21-1 was a risk factor for ILD.

Keywords: Clinically amyopathic dermatomyositis; Interstitial lung diseases; Myositis autoantibodies; Tumor-associated antigen

Introduction

Clinically amyopathic dermatomyositis (CADM) is a distinct sub-type of idiopathic inflammatory myopathies. It has typical cutaneous symptoms as classic dermatomyositis with little or no evidence of muscular manifestations.[1-3] CADM was reported to comprise 10% to 20% of all dermatomyositis patients, characterized by an increased risk of interstitial lung disease (ILD), especially rapid progressive ILD (RP-ILD).[4,5] It results in high morbidity and mortality.[6,7] Therefore, it is important to explore key risk biomarkers for different types of ILD, especially acute or subacute ILD, in the management of CADM.

Myositis autoantibodies were found in over 80% patients with idiopathic inflammatory myopathies and traditionally classified into two groups based on their diagnostic accuracy: myositis-specific autoantibodies (MSAs) and myositis-associated autoantibodies (MAAs).[8-10] Previous studies have proved that some MSAs were specifically expressed and serves as a risk factor for RP-ILD in CADM,[4,9,11-13] but recent studies have pointed out that these antibodies alone were insufficient to predict RP-ILD in CADM.[11,14] The predictive factor for chronic ILD was also not fully studied. In addition, other MSAs and MAAs remains elusive in CADM-ILD.

It has been suggested that dermatomyositis is frequently complicated by malignant tumors, and screening malignances is important in clinical practice.[15,16] Recently,
several tumor-associated antigens (TAAs) have been reported in dermatomyositis associated ILD in a small group of patients. Therefore, the potential correlation of TAAs with CADM-ILD needs to be further studied.

In this study, we evaluated the prevalence and clinical relevance of myositis autoantibodies and TAAs in patients with CADM, and identified the risk factors for different types of ILD in CADM.

Methods
Ethical approval
The study was approved by the Ethics Committee of Peking University People’s Hospital and the study complied with the Declaration of Helsinki guidelines. Given the retrospective nature of the study, the requirement of written informed consent was waived.

Patients
Data of 108 inpatients diagnosed with CADM were collected during March 2008 to July 2019, from the Peking University People’s Hospital in Beijing. The diagnosis of CADM was based on the Sontheimer criteria\(^1\) or Gerami criteria.\(^2\) Briefly as following: (1) typical rash of classical dermatomyositis, such as Gottron rash or heliotrope rash, occurring for 6 months or longer; (2) no clinical evidence of proximal muscle weakness or only mildly reduced muscle strength; (3) patients might have sub-clinical evidence of myositis upon laboratory, electrophysiologic, and/or radiologic evaluation.\(^1\) The exclusion criteria including: (1) typical muscular manifestations of dermatomyositis occurred within 6 months of being diagnosed with CADM; (2) to eliminate the influence of malignant tumors on TAAs, patients with malignancy at the beginning of diagnosis.

The presence of ILD was defined according to the 2013 statement of the American Thoracic Society and the European Respiratory Society.\(^1\) In general, patients were considered to have ILD if they met the following criteria: (1) restrictive impairments in lung function (total lung capacity and diffusion capacity of the lung for carbon monoxide <80% of predicted), and (2) radiographic signs of ILD on high resolution computed tomography (HRCT) (nodular; reticulonodular; linear or ground-glass opacities; consolidations; irregular interface; honeycombing; or traction bronchiectasis). Patients with ILD were further divided into three subgroups: acute interstitial pneumonitis (AIP) (deterioration within 1 month), subacute interstitial pneumonitis (SIP) (deterioration within 3 months but more than 1 month) and chronic interstitial pneumonitis (CIP) (slowly progressive presentation with gradual deterioration over a period longer than 3 months). The deterioration was defined by two or more of the following: (a) symptomatic exacerbation (dyspnea on exertion), (b) an increase in parenchymal abnormality on HRCT scan, and (c) physiologic change defined by one of the following: >10% decrease in vital capacity or >1.33 kPa decrease in arterial oxygen tension (PaO\(_2\)).

Clinical and laboratory findings
The clinical and laboratory data in the study were based on the patients’ medical records. TAAs were evaluated, including carcinoembryonic antigen (CEA), alpha-fetoprotein, cytokeratin-19 fragment (CYFRA21-1), neuromuscular specific enolase (NSE). The cut-off value of TAAs was according to the normal range of the commercial kits. MSAs (anti-Jo-1, anti-PL-7, anti-PL-12, anti-EJ, anti-OJ, anti-Mi-2α, anti-Mi-2β, anti-signal recognition particle, anti-nuclear matrix protein 2, anti-melanoma differentiation-associated gene 5 [MDA5], anti-transcriptional intermediary factor 1γ, and anti-SAE1) and MAAs (anti-Ro-52, anti-polymyositis [PM]-Scl100, anti-PM-Scl75, and anti-Ku) were measured by immunoblotting according to manufacturers’ instructions (Euroimmun, Germany). The results were arbitrarily classified as negative (0/3+), weakly (1+/3+), moderately (2+/3+), or strongly (3+/3+) reactive by two independent laboratory technicians who had no knowledge of the diagnostic data from each analyzed case. Besides, weakly, moderately, and strongly reactive were defined as positive.

Statistical analysis
Data analyses were performed using SPSS 20.0 for Windows (SPSS Inc., Chicago, IL, USA). Continuous data with normal distribution were expressed as the mean ± standard deviation and differences between groups were analyzed by one-way analysis of variance. Continuous data with skewed distribution were expressed as median (P25, P75) and differences between groups were analyzed by Kruskal-Wallis test. Dichotomous variables were reported as frequency (percentages) and differences between groups were compared using the Chi-square test (or Fisher exact test when appropriate). Univariate and multivariate logistic regression analysis were adopted to identify risk factors of different types of ILD. The variables assessed in univariate regression analysis were entered as independent variables in multivariate logistic regression analysis when P value <0.1. Two-sided P < 0.05 was considered statistically significant. P values were adjusted in multiple tests by the Bonferroni correction.

Results
Clinical characteristics of patients
Demographics and clinical features are shown in Table 1. Most patients were female (80.6%) and the average age at onset was 49.0 ± 12.4 years. For cutaneous manifestations, Gottron sign (80.5%) were the most common, followed by V/Shawl neck sign (52.8%), heliotrope eruption (30.0%), mechanic’s hands (38.0%), cutaneous puritus (30.6%), and perionychia erythma (22.2%). Skin ulceration and cutaneous calcinosis were relatively rare (8.3% and 5.6%, respectively). For systemic symptoms, arthralgia (53.7%) was the most frequent, and noninfectious fever (38.0%) and weight loss (35.2%) were also common at the time of CADM diagnosis. The presence of ILD was observed in 87 (80.5%) patients, 39 (36.1%) with A/SIP and 48 (44.4%) with CIP; and the most common respiratory symptom was dyspnea (55.6%). Remarkably,
22 patients (20.4%) were asymptomatic ILD, only diagnosed after HRCT scan. Besides, 15 patients (13.9%) were initially complained with idiopathic ILD and diagnosed as CADM based on their later appearance of typical cutaneous manifestations. Significant differences were not seen among the three sub-groups (A/SIP, CIP, and without ILD) about demographic figures (age and gender) and clinical features (skin rash and systemic features).

TAAs in CADM-associated ILD

Patients without ILD had lower levels of CYFRA21-1 than patients with A/SIP and patients with CIP (2.01 [1.78, 2.73] vs. 3.49 [2.31, 5.49] ng/mL; F = 20.306, P < 0.001). Patients with A/SIP had higher levels of CEA and NSE than patients without ILD and patients with CIP (CEA: 5.01 [1.58, 6.60] vs. 2.41 [1.64, 3.19] vs. 2.41 [1.64, 3.19] ng/mL; F = 26.051, P = 0.001). Table 1 shows the CEA and NSE of patients with CADM using at different ILD stages and different antibody profiles. CEA and NSE were measured in 14 patients.

Myositis autoantibodies profiles and their distribution in CADM-associated ILD

Myositis autoantibody testing was performed in 84 of total 108 patients, and their results and the relationship between antibodies profiles and ILD are displayed in Table 2. Among all the MSAs in our study, anti-MDA5 was the most commonly detected autoantibody (29.9%). Anti-aminoacyl-tRNA synthetase antibodies (anti-ARS) were relatively less common in CADM. The positive rate of anti-PL-7 was 12.0%, followed by anti-Jo-1 (10.8%), anti-PL-12 (8.4%), anti-OJ (3.6%), and anti-EJ (1.2%). Intriguingly, anti-Ro-52 had the highest positivity rate (52.4%) among the MAAs. Other MSAs, such as anti-Ku (9.6%), anti-PM-Scl100 (6.0%), and anti-PM-Scl75 (6.0%) were much less frequent in CADM. Chi-square test was used to explore the difference of distribution of myositis autoantibodies in different types of ILD. The positive rate of anti-MDA5 was the highest in patients with A/SIP (44.1%) than patients without ILD (14.3%) and patients with CIP (22.2%). Anti-PL-12 had a higher positive rate in patients with CIP than that in patients with A/SIP (19.4% vs. 0, P = 0.011). Anti-Ro-52 showed a higher positive rate in patients with CIP than that in patients without ILD (66.7% vs. 28.6%, P = 0.025).

Risk factors of ILD in patients with CADM

In the overall patients of CADM, the results of univariate models found that elevation of CYFRA21-1 (odds ratio [OR] = 8.571, 95% confidence interval [CI] 2.280–32.225, P = 0.001) and CEA (OR = 5.043, 95% CI 1.079–23.563, P = 0.040) were positively associated with ILD in CADM, and multivariate logistic models showed elevation of CYFRA21-1 was a risk factor for ILD (OR = 17.838, 95% CI [2.062–154.297], P = 0.009) [Table 3].

Table 1: Comparison of demographics, clinical features, and TAAs in CADM.

Items	Overall (n = 108)	Without ILD (n = 21)	A/SIP (n = 39)	CIP (n = 48)	F(2, 105) P
Demographic feature					
Age (years), mean ± SD	50.4 ± 12.1	46.3 ± 16.6	51.6 ± 10.7	53.3 ± 11.3	1.535^x 0.220
Female, n (%)	87 (80.6)	15 (71.4)	32 (82.1)	40 (83.3)	1.409^x 0.494
Smoking history, n (%)	17 (15.7)	4 (19.0)	8 (20.5)	5 (10.4)	1.866^x 0.393
Age of onset (years), mean ± SD	49.0 ± 12.4	44.8 ± 15.6	50.9 ± 11.0	49.3 ± 11.7	1.705^x 0.187
Pulmonary involvement, n (%)	87 (80.5)				
Dry cough, n (%)	45 (40.7)				
Dyspnea on exertion, n (%)	60 (55.6)				
Veloce rale, n (%)	46 (42.6)				
ILD without symptoms, n (%)	22 (20.4)				
ILD onset before CADM diagnosed, n (%)	15 (13.9)				
Cutaneous manifestation, n (%)					
Gottron sign/papule, n (%)	87 (80.5)	17 (81.0)	30 (76.2)	30 (62.5)	0.276^x 0.871
Mechanic's hands, n (%)	41 (38.0)	4 (19.0)	16 (41.0)	21 (43.8)	4.028^x 0.133
Heliotrope eruption, n (%)	54 (50.0)	13 (61.9)	21 (53.8)	20 (41.7)	2.755^x 0.252
Vihawel neck sign, n (%)	57 (52.8)	13 (61.9)	22 (56.4)	22 (45.8)	1.837^x 0.399
skin ulceration, n (%)	9 (8.3)	1 (4.8)	3 (7.7)	5 (10.4)	0.644^x 0.725
Perionychia erythema, n (%)	24 (22.2)	3 (14.3)	12 (30.8)	9 (18.8)	2.748^x 0.253
Systemic symptoms, n (%)					
Non-infectious fever, n (%)	41 (38.0)	8 (38.1)	16 (41.0)	17 (35.4)	0.288^x 0.866
Arthralgia, n (%)	58 (53.7)	10 (47.6)	23 (59.0)	25 (52.1)	0.799^x 0.671
Raynaud phenomenon, n (%)	11 (10.2)	2 (9.5)	2 (5.1)	7 (14.6)	2.115^x 0.347
Weight loss, n (%)	38 (35.2)	12 (57.1)	13 (33.3)	13 (27.1)	5.880^x 0.053

Values displayed as n (%), mean ± SD, or median (P25, P75) according to their features of distribution. *Fourteen patients did not have the data of serum tumor markers; † Adjusted P < 0.05, ‡ Adjusted P < 0.01, compared with patients without ILD; †† Adjusted P < 0.05, compared with patients with A/SIP; †‡ Differences were analyzed by Chi-square test and the statistics value was χ²; ††† Differences were analyzed by one-way analysis of variance and the statistics value was F. TAA: Tumor-associated antigens; CADM: Clinically amyopathic dermatomyositis; ILD: Interstitial lung disease; A/SIP: Acute or subacute interstitial pneumonitis; CIP: Chronic interstitial pneumonitis; SD: Standard deviation; CEA: Carcinoembryonic antigen; AFP: Alpha-fetoprotein; CYFRA21-1: Cytokeratin-19 fragment; NES: Neuron-specific enolase; –: Not applicable.

Table 2: Serum tumor markers in patients with CADM.

Item	Without ILD (n = 21)	A/SIP (n = 39)	CIP (n = 48)	F(2, 44) P	
CEA (ng/mL)	2.14 (1.48, 3.52)	5.01 (1.58, 6.60)^x	2.45 (1.67, 4.87)^x	6.685^x 0.035	
CEA (ng/mL)	2.46 (1.93, 3.28)				
AFP (ng/mL)	2.41 (1.64, 3.19)				
CYFRA21-1 (ng/mL)	3.44 (2.09, 5.11)				
NSE (ng/mL)	14.41 (11.28, 17.45)				9.004^x 0.011
In patients with CADM-ILD, the univariate logistic regression analysis showed that both higher titer of anti-MDA5 and elevation of NSE were positively associated with A/SIP, OR = 1.429, 95% CI (1.193–1.759), P = 0.025 and OR = 10.000, 95% CI (1.125–88.910), P = 0.039, respectively, and higher titer of anti-Ro-52 was negatively associated with A/SIP (OR = 0.332, 95% CI [0.126–0.874], P = 0.026). Furthermore, the multivariate logistic models indicated that higher titer of anti-MDA5 was a risk factor for A/SIP (OR = 5.697, 95% CI [1.242–26.130], P = 0.025), and higher titer of anti-Ro-52 was a risk factor for CIP (OR = 0.308, 95% CI [0.091–0.922], P = 0.036) [Table 4].

Discussion

In this study, we retrospectively reviewed the clinical features of CAMD patients with ILD. By comprehensive analysis on the distribution of myositis autoantibodies and TAAs in CADM-ILD, we found some MSAs, MAAs, and TAAs were might be useful for the prediction of different types of CADM-ILD.

CADM is frequently complicated by ILD, and rapidly progressive ILD are life-threatening in Asian population.[6,19] In our study, more than 80% patients suffered from ILD, A/SIP was 36.1%; but one fifth were asymptomatic when diagnosed with CADM, reminding rheumatologists that lung HRCT might be served as a routine test even in patients without respiratory complains.

Previous studies have reported that some MSAs and MAAs were associated with CADM-ILD and anti-MDA5 was related with fatal RP-ILD.[4,12,20–22] In our study, the positive rate of anti-MDA5 was highest in patients with A/SIP, but there were two patients with anti-MDA5...
In conclusion, our study revealed the clinical significance of serum tumor markers and myositis antibodies in CADM-ILD. CYFRA21-1 was a predictor for ILD. In CADM-ILD patients, anti-MDA5 might serve as a predictive biomarker for A/SIP. Anti-Ro-52, the most common MAAs, was a risk factor for CIP. Further research might verify our findings by multi-center studies and explore the prognostic value for myositis antibodies by a prospective cohort.

Acknowledgements
The authors thank Dr. Hui-Xin Liu for support in the statistics of the project.

Funding
This work was supported by grants from the National Natural Science Foundation of China (Nos. 81801615 and 81871289).

Conflicts of interest
None.

References
1. Sontheimer RD. Would a new name hasten the acceptance of amyopathic dermatomyositis (dermatomyositis siné myositis) as a distinctive subset within the idiopathic inflammatory dermatomyopathies spectrum of clinical illness? J Am Acad Dermatol 2002;46:626–636. doi: 10.1067/mjd.2002.120621.

2. Gerami P, Schope JM, McDonald I, Walling HW, Sontheimer RD. A systematic review of adult-onset clinically amyopathic dermatomysitis (dermatomyositis siné myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol 2006;54:597–613. doi: 10.1016/j.jaad.2005.10.041.

3. Ghazi E, Sontheimer RD, Werth VP. The importance of including amyopathic dermatomyositis in the idiopathic inflammatory myositis spectrum. Clin Exp Rheumatol 2013;31:128–134.

4. Xu Y, Yang CS, Li YJ, Liu XD, Wang JN, Zhao Q, et al. Predictive factors of rapidly progressive-interstitial lung disease in patients with clinically amyopathic dermatomyositis. Clin Rheumatol 2016;35:113–116. doi: 10.1007/s10067-015-3199-7.

5. Bailey EE, Fiorentino DF. Amyopathic dermatomysitis: definitions, diagnosis, and management. Curr Rheumatol Rep 2014;16:465. doi: 10.1007/s11926-014-0465-0.

6. Yamazaki Y, Yamada H, Ohkubo M, Yamasaki M, Azuma K, Ogawa H, et al. Longterm survival and associated risk factors in patients with adult-onset idiopathic inflammatory myopathies and amyopathic dermatomyositis: experience in a single institute in Japan. J Rheumatol 2011;38:1636–1643. doi: 10.3899/jrheum.101002.
7. Mukae H, Ishimoto H, Sakamoto N, Hara S, Kakugawa T, Nakayama S, et al. Clinical differences between interstitial lung disease associated with clinically amyopathic dermatomyositis and classic dermatomyositis. Chest 2009;136:1341–1347. doi: 10.1378/chest.08-2740.
8. Paltrer B, Vintello G, Carraresi A, Giudizi MG, Cammelli D, Parronchi P. Bench to bedside review of myositis autoantibodies. Clin Mol Allergy 2018;16:5. doi: 10.1186/s12948-018-0084-9.
9. Satoh M, Tanaka S, Ceribelli A, Calise SJ, Chan EK. A comprehensive overview on myositis-specific antibodies new and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol 2017;52:1–19. doi: 10.1007/s12016-015-8510-y.
10. Ghirardello A, Bassi N, Palma L, Borella E, Domeneghetti M, Punzi L, et al. Autoantibodies in polymyositis and dermatomyositis. Curr Rheumatol Rep 2013;15:335. doi: 10.1007/s11926-013-0335-1.
11. Temmoku J, Sato S, Fujita Y, Asano T, Suzuki E, Kanno T, et al. Clinical significance of myositis-specific autoantibody profiles in Japanese patients with polymyositis/dermatomyositis. Medicine (Baltimore) 2019;98:e15578. doi: 10.1097/MD.00000000000015578.
12. Li L, Wang H, Wang Q, Wu C, Liu C, Zhang Y, et al. Myositis-specific autoantibodies in dermatomyositis/polymyositis with interstitial lung disease. J Neurol Sci 2019;397:123–128. doi: 10.1016/j.jns.2018.12.040.
13. Fiorentino D, Chung L, Zwerener J, Rosen A, Casciola-Rosen L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J Am Acad Dermatol 2011;65:25–34. doi: 10.1016/j.jaad.2010.09.016.
14. Fujisawa T, Hozumi H, Kono M, Enomoto N, Nakamura Y, Iinui N, et al. Predictive factors for long-term outcome in polymyositis/dermatomyositis-associated interstitial lung diseases. Respir Investig 2017;55:130–137. doi: 10.1016/j.resinv.2016.09.006.
15. Dai H, Liu J, Liang L, Ban C, Jiang J, Liu Y, et al. Increased lung cancer risk in patients with interstitial lung disease and elevated CEA and CA125 serum tumour markers. Respirrology 2014;19:707–713. doi: 10.1111/resl.12317.
16. Qiang JK, Kim WR, Baibergenova A, Alhusayen R. Risk of malignancy in dermatomyositis and polymyositis. J Cutan Med Surg 2017;21:131–136. doi: 10.1177/1203475416665601.
17. Yang Y, Hao JC, Chen Y, Liu Y, Xie QB, Yin G. The clinical significance of tumor-associated antigens in dermatomyositis patients with interstitial lung disease (in Chinese). J Sichuan Univ (Med Sci Ed) 2018;49:195–199.