Glycoside Hydrolase Family 89 α-N-acetylglucosaminidase from Clostridium perfringens Specifically Acts on GlcNAcα1,4Galβ1R at the Non-reducing Terminus of O-Glycans in Gastric Mucin

Received for publication, November 25, 2010. Published, JBC Papers in Press, December 21, 2010, DOI 10.1074/jbc.M110.206722

Masaya Fujita, Akiko Tsuchida, Akiko Hirata, Natsumi Kobayashi, Kohtarō Goto, Kenji Osumi, Yuriko Hirose, Jun Nakayama, Takashi Yamanoi, Hisashi Ashida, and Mamoru Mizuno

From the 1Noguchi Institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, the 2Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, and the 3Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan

In mammals, α-linked GlcNAc is primarily found in heparan sulfate/heparin and gastric gland mucous cell type mucin. α-N-Acetylgalcosaminidases (αGnases) belonging to glycoside hydrolase family 89 are widely distributed from bacteria to higher eukaryotes. Human lysosomal αGnase is well known to degrade heparin and heparan sulfate. Here, we reveal the substrate specificity of αGnase (AgnC) from Clostridium perfringens strain 13, a bacterial homolog of human αGnase, by chemically synthesizing a series of disaccharide substrates containing α-linked GlcNAc. AgnC was found to release GlcNAc from GlcNAcα1,4Galβ1pMP and GlcNAcα1pNP substrates (where pMP and pNP represent p-methoxyphenyl and p-nitrophenyl, respectively). AgnC also released GlcNAc from porcine gastric mucin and cell surface mucin. Because AgnC showed no activity against any of the GlcNAcα1,2Galβ1pMP, GlcNAcα1,3Galβ1pMP, GlcNAcα1,6Galβ1pMP, and GlcNAcα1,4GalCβ1pMP substrates, this enzyme may represent a specific glycosidase required for degrading α-GlcNAc-capped O-glycans of the class III mucin secreted from the stomach and duodenum. Deletion of the C-terminal region containing several carbohydrate-binding module 32 (CBM32) domains significantly reduced the activity for porcine gastric mucin; however, activity against GlcNAcα1,4Galβ1pMP was markedly enhanced. Dot blot and ELISA analyses revealed that the deletion construct containing the C-terminal CBM-C2 to CBM-C6 domains binds strongly to porcine gastric mucin. Consequently, tandem CBM32 domains located near the C terminus of AgnC should function by increasing the affinity for branched or clustered α-GlcNAc-containing glycans. The agnc gene-disrupted strain showed significantly reduced growth on the class III mucin-containing medium compared with the wild type strain, suggesting that AgnC might have an important role in dominant growth in intestines.

In mammals, α-linked GlcNAc has been found as a repetitive disaccharide of glycosaminoglycans, such as heparin and heparan sulfate, and at the non-reducing terminus of O-glycans of mucin glycoproteins. α-GlcNAc also exists in lipopolysaccharides present on the surface of bacteria (1, 2) and phosphatidyl glycolipids in plants (3). Mucin containing peripheral α-GlcNAc, also called class III mucin, was characterized by paradoxical concanavalin A staining, which is a sequential histochemical process involving periodate reduction, sodium borohydrate reduction, and concanavalin A staining. This type of mucin was specifically detected within the gastric glands of the stomach, Brunner’s glands of the duodenum, and the accessory glands of the pancreaticobiliary tract. The representative O-glycan structure of this type of mucin was determined to be GlcNAcα1,4Galβ1,3(3GlcNAcα1,4Galβ1,4GlcNAcβ1,6)GalNAc (4–6). A monoclonal antibody, HIK1083, that recognizes the non-reducing terminal α-GlcNAc was developed. Using this antibody, α-GlcNAc-containing glycans were found to be expressed on several tumor tissues, such as gastric adenocarcinoma, pancreatic ductal carcinoma, and adenocarcinoma of the uterine cervix (7–9). Human α1,4-N-acetylgalosaminyltransferase (α4GnT)3 that generates GlcNAcα1,4Galβ1R in class III mucin has been cloned and characterized (10). α4GnT mRNA was detected in the stomach and pancreas, confirming the restricted expression of this glycan. Recently, α-GlcNAC-containing O-glycans in the stomach were found to function as a natural antibiotic against Helicobacter pylori infection (11). The α-glucosylsterol synthase that forms α-glucosylersterol, an essential membrane component of H. pylori, was inhibited by α-GlcNAc-containing glycans, resulting in cell growth arrest (12–14).

We previously reported that Clostridium perfringens ATCC 10543 present in the gastrointestinal tract of humans possesses an enzyme that liberates the disaccharide GlcNAcα1,4Gal from O-glycans of class III mucins (15). This

3 The abbreviations used are: α4GnT, α1,4-N-acetylgalosaminyltransferase; αGnase, α-N-acetylgalosaminidase; GH89, glycoside hydrolase; HMBC, H1-detected heteronuclear multiple-bond correlation; HMOC, H1-detected heteronuclear quantum coherence; PGM, porcine gastric mucin; pMP, p-methoxyphenyl; pNP, p-nitrophenyl; TF, trigger factor; FIVAR, found in various architectures; FN3, fibronectin type 3; nt, nucleotides; aa, amino acids; ESI, electrospray ionization.
finding raised the question of how GlcNAc-1,4Gal is further processed. Searching the databases of the genomes of several strains of C. perfringens revealed that there are possible α-N-acetylglicosaminidases (αNases) belonging to glycoside hydrolase family 89 (GH89) in the CAZy data base (see the CAZy Web site). Among GH89 members, only mammalian αNases have been characterized; the enzymes are responsible for the degradation of heparin and heparan sulfate in lysosomes. Defective αNase in humans causes Sanfilippo B syndrome (mucopolysaccharidosis IIIB), which is characterized by the accumulation of heparin and heparan sulfate (16–19).

Recently, a GH89 by the strain of C. perfringens ATCC 13124 was structurally characterized as a model protein of human αNase (20). Because αNase from C. perfringens is a large multimodular protein containing a number of accessory domains in addition to the catalytic GH89 domain, a deletion protein containing an N-terminal GH89 domain was expressed and crystallized. The activity of this recombinant enzyme was only measured using synthetic monosaccharide substrates, such as GlcNAc-1pNP, and therefore the specificity toward natural substrates remains unresolved. Here, we report the expression and characterization of the full-length αNase from another strain of C. perfringens (strain 13). The catalytic activity of the enzyme showed strict specificity toward class III mucin but not to the disaccharide unit of heparin and heparan sulfate. We also identify the function of the accessory domains that were found to increase affinity toward multivalent natural substrates.

EXPERIMENTAL PROCEDURES

Chemical Syntheses of Disaccharide Substrates

Galβ1pMP and GlcAβ1pMP were purchased from Kanto Chemical. GlcGlcNAca1,4Galβ1pMP, GlcNAca1,6Galβ1pMP, GlcNAca1,3Galβ1pMP, GlcNAca1,2Galβ1pMP, and GlcNAca1,4Galβ1pMP were chemically synthesized by the method of Schmidt et al. (21). Each disaccharide was isolated by silica gel column chromatography and identified by NMR spectroscopy (supplemental Tables 1 and 2) using a JEOL JNM-ECA-600 (600-MHz) spectrometer and high resolution MS using a Mariner™ mass spectrometer (Applied Biosystems).

GlcNAca1,4Galβ1pMP—The NMR analyses were carried out in CD3OD (1H NMR, 600 MHz; 13C NMR, 150 MHz). The correlation between the anomeric proton of the GlcNAc residue and the 4-position carbon of the Gal residue was observed by HMQC and HMBC NMR spectroscopic analyses. ESI-TOF-MS: calculated for C21H32NO12 m/z [M + H]+, 490.1919; found, 490.1891.

GlcNAca1,6Galβ1pMP—The NMR analyses were carried out in CD3OD (1H NMR, 600 MHz; 13C NMR, 150 MHz). The correlation between the anomeric proton of the GlcNAc residue and the 6-position carbon of the Gal residue was observed by HMQC and HMBC NMR spectroscopic analyses. ESI-TOF-MS: calculated for C21H32NO12 m/z [M + H]+, 490.1991; found, 490.1897.

GlcNAca1,3Galβ1pMP—Hexa-O-Ac-GlcNAca1,3Galβ1pMP was prepared as the precursor of GlcNAca1,3Galβ1pMP. NMR spectra were measured in this step.

Hexa-O-Ac-GlcNAca1,3Galβ1pMP—The NMR analyses were carried in CDCl3 (1H NMR, 600 MHz; 13C NMR, 150 MHz). The correlation between the anomeric proton of GlcNAc and the 3-position carbon of Gal was observed by HMQC and HMBC NMR spectroscopic analyses. The MS spectrum of GlcNAca1,3Galβ1pMP was measured after the deprotection of hexa-O-Ac-GlcNAca1,3Galβ1pMP. ESI-TOF-MS of GlcNAca1,3Galβ1pMP: calculated for C21H32NO12 m/z [M + H]+, 490.1919; found, 490.1923.

GlcNAca1,2Galβ1pMP—Hexa-O-Ac-GlcNAca1,2Galβ1pMP was prepared as the precursor of GlcNAca1,2Galβ1pMP. NMR spectra were measured in this step.

Hexa-O-Ac-GlcNAca1,2Galβ1pMP—The NMR analyses were carried out in CDCl3 (1H NMR, 600 MHz; 13C NMR, 150 MHz). The correlation between anomeric protons of GlcNAc residue and 2-position carbons of Gal residue was observed by HMQC and HMBC of NMR spectroscopic analyses. The MS spectrum of GlcNAca1,2Galβ1pMP was measured after the deprotection of hexa-O-Ac-GlcNAca1,2Galβ1pMP. ESI-TOF-MS of GlcNAca1,2Galβ1pMP: calculated for C21H32NO12 m/z [M + H]+, 504.1712; found, 504.1707.

Cloning of αNase from C. perfringens

Genomic DNA from C. perfringens strain 13 (22) was kindly provided by Dr. T. Shimizu. The DNA fragments of the probable αNase gene (CPE0866) (nucleotides (nt) 76–6312 for full-length AgnC, nt 76–3399 for AgnC, nt 2800–3618 for CBM(C2–C3), nt 2800–4845 for CBM(C2–C5), nt 2800–4875 for CBM(C2–C6), and nt 5404–5766 for FIVAR) were amplified by high fidelity PCR (Prime Star, Takara, Japan) using the genomic DNA of C. perfringens strain 13 and a pair of the following primers with restriction enzyme sites and the S-tag sequence: common forward primer for AgnC and AgnC, CGGCGAGCTCGG-TAGTGCAATTTAAGTAGGGCATCA; reverse primer for AgnC with S-tag, CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for AgnC with S-tag, CGGCTCAGGTTAGCTGCTCACTATGCTCG-GTTCGAATTTAG; reverse primer for AgnC without S-tag, CGGCTCAGGTTAAGCTCTAATAACATTACCAT-TTCT; forward primer for CBMs-GST, CGGCGAGCTCGG-AAAGCCGTGTAAGATGTAAC; reverse primer for CBM(C2–C3), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for CBM(C2–C5), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for CBM(C2–C6), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for AgnC with S-tag, CGGCTCAGGTTAAGCTCTAATAACATTACCAT-TTCT; forward primer for CBMs-GST, CGGCGAGCTCGG-AAAGCCGTGTAAGATGTAAC; reverse primer for CBM(C2–C3), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for CBM(C2–C5), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for CBM(C2–C6), CGGCTCAGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for FIVAR, CGGCGAGCTCGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG; reverse primer for FIVAR, CGGCGAGCTCGGTTAGCTGCTCACTATGCTCG-TGGCGTTGCAATTAG.
restriction enzyme recognition sites). PCR products were treated with SacI and Xhol, ligated into the corresponding site of the pBluescript II KS+ vector (Stratagene), and sequenced. These inserts containing the S-tag sequence were excised by digestion with SacI and Xhol and ligated into the expression vector pCold-TF-DNA (Takara).

Expression and Purification of αGNase

The expression plasmid was designed to express the recombinant enzyme fused with a tandem His$_{6}$ tag and trigger factor (TF) tag at the N terminus and a 15-amino acid S tag or GST tag at the C terminus. *Escherichia coli* BL21(ADE3) cells were transformed with each construct. The *E. coli* cells were grown in LB medium containing 50 μg/ml carbenicillin at 30 °C until the A$_{600}$ reached 0.5. The cells were then cooled to 15 °C for 0.5 h, expression was induced by the addition of 0.1 mM isopropyl β-d-thiogalactopyranoside, and the cells were grown at the same temperature for 24 h. The *E. coli* cells were harvested and lysed in a buffer (50 mM sodium phosphate, pH 8.0, and 300 mM sodium chloride for His tag purification or 50 mM Tris–HCl, pH 7.5, 0.1% Triton X-100, and 0.1% β-mercaptoethanol for S tag and GST tag purification) containing 0.5 mM 4-(2-aminoethyl)benzenesulfonyl fluoride and 0.2% lysozyme from chicken egg (Nacalai Tesque). The cells were treated with intermittent sonication in an ice-water bath using a sonicator (Ultrasonic Generator US150, Nissei) at 40–50% output. The crude lysate was fractionated by centrifugation (20,000 × g, 4 °C for 15 min) and the supernatant was filtered through a 0.22-μm filter. The clear supernatant was applied to either of the two types of affinity columns for purification of the target protein. For S tag and His$_{6}$ tag purification, S-protein–agarose beads (Novagen–Merck), and Ni$^{2+}$-charged beads (Protino Ni 2000, Macherey-Nagel) were used, respectively. The His$_{6}$-TF tag of the target protein was cleaved by Factor Xa (Novagen). For purification of GST-tagged proteins (CBMs-GST and FIVAR-GST), glutathione-Sepharose 4B (GE Healthcare) was used.

Protein concentrations were determined using the Bio-Rad protein assay kit. Protein purity was assessed by reducing SDS-PAGE followed by Coomassie Brilliant Blue staining. The purified recombinant protein yields were 5–15 mg/liter of culture.

Assay for αGNase

Activities for pNP-monosaccharide substrates (Sigma-Aldrich) were determined by measuring the release of p-nitrophenol and the absorbance at 420 nm. One unit of αGNase activity was defined as the amount of the enzyme releasing 1 μmol of p-nitrophenol/min. Activities for pMP-disaccharide substrates were assayed using HPLC. The reaction mixture consisting of 0.05–3 mM concentrations of the disaccharides and appropriate amounts of enzymes in 100 μl of PBS were incubated at 37 °C for the appropriate time. After termination of the reaction, the reaction mixtures were analyzed by HPLC. HPLC was carried out using a Hitachi D-7400 chromatography system equipped with a GL-7420 UV-PAD detector that is capable of simultaneously monitoring the absorbance between 210 and 400 nm. The reaction mixtures were separated using a reversed-phase column, Inertsil ODS-3 (0.46 × 25 cm, Shimadzu, Japan), under a constant flow (1.0 ml/min) of 5–20% acetonitrile (containing 0.1% TFA) over the course of 40 min at 40 °C. The pMP group was specifically detected at 280 nm.

Activity for natural O-glycans was determined using porcine gastric mucin (PGM) partially purified from crude PGM (Type III, Sigma-Aldrich) according to a previous method (6) (a gift from Dr. Kurihara). Released GlcNAc was detected/measured by TLC and HPLC. Silica gel TLC plates (Merck) were developed with 1-butanol/acetic acid/water (2:1:1, v/v/v), and the sugars were visualized using a diphenylamine-aniline-phosphoric acid reagent (23). HPLC was carried out using a normal phase column, NH2P50-E (0.30 × 20 cm, Asahi-Denka), under a constant flow of 0.5 ml/min of 70% acetonitrile over the course of 20 min at 40 °C. GlcNAc was monitored at 210 nm. A sandwich ELISA for α-linked GlcNAc on PGM was carried out using a commercially available ELISA kit using the HIK1083 monoclonal antibody (Kanto Chemical). The reaction mixtures containing 0.2% PGM and an appropriate amount of AgnC or AgnCΔC were incubated at 37 °C for 24 h and then loaded into the wells of a microtiter plate coated with the HIK1083 antibody and incubated at room temperature for 1 h. The wells were washed five times with 400 μl of PBS containing 0.05% Tween 20 (PBST), and the biotin-conjugated HIK1083 antibody was added. Colorimetric measurements were carried out according to the instruction manual.

The action of AgnC on the cell surface mucin was analyzed using adenocarcinoma AGS-α4GnT cells stably expressing GlcNAca1,4Galβ1R as O-glycans on the cell surface (10). The cells were grown on Lab-Tek chamber slides (Nalge Nunc International) and fixed with 20% buffered formalin, pH 7.4, for 15 min. After washing with PBS, the fixed cells were incubated with 0, 10.2, or 40.2 milliunits of His-TF-tagged AgnCΔC in 500 μl of PBS at 37 °C for 24 h. For the living cells, 80% confluent cells were incubated in 500 μl of DMEM containing 0, 10.2, or 40.2 milliunits of His-TF-tagged AgnCΔC at 37 °C for 24 h. The cells were subjected to immunohistochemical analysis using the HIK1083 antibody as described previously (15). Fluorescein isothiocyanate-conjugated anti-mouse IgM was used as the secondary antibody, and Vectashield (Vector Laboratories) was used for mounting the slides. The immunolabeling was analyzed using a confocal laser-scanning microscope, LSM510 (Carl Zeiss).

Binding Assay of GST-tagged CBMs to Glycoproteins

Dot Blot Overlay Assay—10 μg of various glycoproteins (bovine submaxillary gland mucin, Type I–S (Sigma-Aldrich); human gastric mucin; crude PGM; and PGM) and glycosaminoglycans (chondroitin sulfate (Seikagaku Biobusiness Corp.) and heparan sulfate (Sigma-Aldrich)) were spotted onto a nitrocellulose membrane (28). Membranes were dried completely then blocked with 3% bovine serum albumin in PBST. The membranes were incubated with His-TF-CBMs-GST (1 μM protein in PBST) overnight at 25 °C. Blots were washed five times with PBST and then incubated with horseradish peroxidase (HRP)-conjugated anti-GST antibody (1:25,000;
Nacalai Tesque) in PBS at 25 °C for 2 h. Membranes were washed five times with PBS, and the bound proteins were detected using the chemiluminescence reagent (ECL Plus, GE Healthcare).

**Sandwich ELISA—PGM (0.5% in PBS) was incubated at 37 °C for 2 h in the wells of a microtiter plate coated with the HIK1083 antibody. The His-TF-CBMs-GST constructs were added to wells (1 μM protein in PBST) and incubated at 37 °C for 24 h. The wells were washed five times with PBST, and the HRP-conjugated anti-GST monoclonal antibody (1:35,000) was added and incubated at 25 °C for 1 h. The wells were washed five times with PBST, and the substrates for HRP were added. Colorimetric measurements were carried out according to the instruction manual.

Stereochemistry of the Hydrolysis Catalyzed by αGNase

1H NMR spectra were recorded on a JEOL JNM-ECA-600 spectrometer. The reaction mixture contained 5.0 mM GlcNAcα1pNP in a total volume of 500 μl of D2O-PBS (prepared by the addition of D2O into lyophilized PBS). After recording the reference spectrum (t = 0 min, 37 °C), 20 milli-units (50 μl in D2O-PBS) of the His6-TF-tagged AgnCΔC, prepared by substituting PBS to D2O-PBS using a Centricon 10 (Millipore), was added to initiate the reaction. The spectra were recorded at different time intervals (9 min to 18 h).

Construction of an agrC Null Mutant

C. perfringens strain 13 (a gift from Dr. T. Shimizu of Kanazawa University) was cultured at 37 °C in GAM medium (Nissui Pharmaceutical) or brain heart infusion medium (Sigma-Aldrich) under anaerobic conditions using Anaeropack (Mitsubishi Chemical).

The agrC gene was disrupted using the TargeTron gene knock-out system (Sigma-Aldrich). The sense-orientated intron insertion was selected between nucleotides 303 and 304 of the agrC open reading frame (ORF) using the Sigma TargeTron algorithm (see the Sigma-Genosys Web site). Primers used to generate a 350-bp intron targeting sequence to this site of agrC ORF were (AAAAAGCTTATAATTACGCCCAAGATGGGTG), EBS1d (CAGATTGAACATGTTGGTATAACAGATAAGCTCAAATATAACTTACCTTTTCGTTGTGATAGGGATTAGAAG), and EBS2 (TGAAACGCAATTTCTATTTGATTTACAACCTCAGATAGGAGAAGATGGTC). The amplified 350-bp PCR fragment was then digested with HindIII and BsrGI and ligated into pJR750ai (24). The resultant plasmid, named pJR750agrC, was introduced into wild type C. perfringens strain 13 by electroporation (2.5 kV, 200 ohms, 25 microfarads). Transformants were plated onto BHI agar plates containing 15 μg/ml chloramphenicol. Colonies were PCR-screened for an intron-disrupted agrC gene using a pair of primers: TGGTATGAAGTGGATTTGAGG and TCTTTCCTGCTCATTATATCA. A mutant shown to carry an agrC intron insertion was subcultured daily in GAM medium without chloramphenicol for 10 days to cure the intron-carrying donor plasmid pJR750agrC. Curing was initially shown by lack of growth on chloramphenicol-containing GAM plates and then confirmed by Southern blotting, which demonstrated the presence of a single intron in the mutant. For Southern blotting, the genomic DNA from wild type or agrC null mutant was digested with EcoRI, separated by a 0.8% agarose gel, and transferred to a nylon membrane (GE Healthcare) for detection by an intron-specific digoxigenin-labeled probe. This probe was generated using primers IBS and EBS1d and a digoxigenin DNA labeling mix (Roche Applied Science). CSPD substrate (Roche Applied Science) was used for detection of digoxigenin-labeled hybridized probes according to the manufacturer’s instructions.

αGNase Activity of Wild Type or agrC Null Mutant

Wild type or agrC null mutant was grown overnight at 37 °C in Duncan-Strong medium under anaerobic conditions. Each 40-ml culture was centrifuged at 4 °C for 10 min at 8,000 × g and then passed through a 0.22-μm syringe filter to exclude the remaining bacteria within the supernatant. The culture supernatant was collected and concentrated 43-fold using Amicon Ultra-15 centrifugal filter devices (50,000 molecular weight cut-off, Millipore, MA). The concentrated supernatant (2 μl) was incubated with 5 mM GlcNAcα1,4Galβ1pMP (4 μl) at 37 °C for 20 h, and the hydrolysis of substrate was analyzed by TLC as described above.

Growth of Wild Type or agrC Null Mutant in Minimal Medium Containing Mucin

Minimal medium was prepared as described previously (25). The medium containing 12 g of sodium acetate, 10 g of casamino acids (Difco—BD, NJ), 6.3 g of Na2HPO4, 4.1 g of NaH2PO4, 1.2 g of ammonium sulfate, 0.88 g of KH2PO4, 0.6 g of K2HPO4, 0.45 g of trisodium citrate, 0.06 g of adenine, 0.06 g of uracil, 0.04 g of guanine, 0.02 g of ferrous sulfate, 0.02 g of manganous sulfate, and 0.02 g of NaCl in a total volume of 1 liter of distilled water was sterilized by autoclaving at 121 °C for 15 min. Prior to use, filter-sterilized solutions (0.2-μm pore size filters, Millipore) of MgSO4, cysteine-HCl, and Na2CO3 were added to final concentrations of 0.4, 0.5, and 4.4 g/liter, respectively, along with a filter-sterilized vitamin solution (2 ml/liter) (26). Carbohydrate sources in growth studies were prepared in 10 mM potassium phosphate buffer (pH 7.0) and comprised 20 mM glucose or 1% (w/v) PGM (Type III, Sigma-Aldrich); the former was sterilized by filtration and the latter by autoclaving. Each carbohydrate solution (10 ml) was mixed with equal volumes of minimal medium (10 ml) in sterile tubes. Overnight GAM cultures of wild type or agrC null mutant (1:20, v/v) were inoculated to various media and incubated anaerobically at 37 °C for 12 h. Growth of bacteria was monitored by removing 200-μl aliquots of each culture into a 96-well plate and measuring A620 using a microplate reader (Powerscan HT, DS Pharma Biomedical).

RESULTS

Identification of the Gene Encoding αGNase from C. perfringens—To identify αGNase acting on α-linked GlcNAc at the non-reducing terminus of O-glycans, we searched for genes homologous to the human αGNase (NAGLU) gene using the BLAST program. The search identified an open reading frame, CPE0866, in the genome of...
C. perfringens strain 13, which encodes a GH89 αGNase. Sequence analysis of CPE0866 using the SMART program (see the EMBL Web site) revealed the following features of the gene product (Fig. 1A). The protein is 2104 amino acids (aa) in length and contains a signal peptide at the N terminus (aa 1–25), a conserved catalytic GH89 domain (aa 245–906), six CBM32 domains (C1, aa 49–159; C2, aa 934–1063; C3, aa 1083–1206; C4, aa 1225–1348; C5, aa 1372–1495; C6, aa 1511–1625), two FIVAR domains (aa 1802–1849 and 1868–1922), two Hisα–TF and S-tagged forms; lanes 3 and 6, S-tagged forms; lanes 1 and 4, crude extracts; lanes 2 and 5, Hisα–TF, and S-tagged forms; lanes 1–3, AgnC(C; aa 26–2104) and C-terminal truncated (AgnCΔC; aa 26–1133) proteins using several conventional E. coli expression vectors was attempted. Expression of both proteins fused with Hisα and TF tags at the N terminus and an S tag at the C terminus using the cold shock expression plasmid pCold-TF was successfully achieved. Expressed proteins were purified by either S tag or Hisα tag affinity column chromatography and subsequently digested with Factor Xa to remove the Hisα and TF tags. Purified AgnC and AgnΔC gave a single protein band of 220 and 120 kDa, respectively, on SDS-PAGE (Fig. 1B). Because both of the purified proteins hydrolyzed the GlcNAc1pNP substrate, we designated CPE0866 as agnC (accession number AB517031).

General Properties of the Recombinant αGNases—We determined the general catalytic properties of the recombinant enzymes using GlcNAc1pNP as a substrate. Both AgnC and AgnΔC were stable up to 37 °C and retained 80% activity after incubation at 50 °C for 3 h in PBS. The optimum temperature and pH for catalytic activity were determined as 50 °C and 7.0–7.5, respectively. These results suggest that this enzyme acts optimally under intestinal conditions (pH 7.0–7.5), which are noticeably different from the optimal conditions of human αGNase (i.e. pH 4.5–5.0), a lysosomal glycosidase (18, 19).

Substrate Specificities of the Recombinant αGNases—Initially, we examined the substrate specificity of AgnC using various pNP-monosaccharides as substrates. AgnC specifically released GlcNAc from GlcNAc1pNP but did not act on the other substrates, such as GlcNAc1pNP, GalNAc1pNP, Galα1pNP, Glcα1pNP, Glcβ1pMP, Fucα1pNP, Fucβ1pMP, Galβ1pNP, Manα1pNP, and Xylα1pNP. AgnΔC also showed the same specificity as AgnC. The kinetic parameters of AgnC and AgnΔC for GlcNAc1pNP were estimated (Table 1). The K_m values of AgnC and AgnΔC for GlcNAc1pNP were 4.3 and 7.8 mM, respectively, which were significantly higher than the K_m value measured for human αGNase (0.30 mM) (30). Because GlcNAc1pNP is an artificial substrate, we chemically synthesized a new substrate GlcNAc1,4Galβ1pMP using the method of Schmidt et al. (21), which has the same disaccharide structure as the non-reducing terminus of gastric mucin O-glycan. The purity and identity of the produced substrate were confirmed by 1H and 13C NMR and MS analyses (data presented under “Experimental Procedures”). The enzymatic hydrolysis was monitored by reversed-phase HPLC. AgnC and AgnΔC hydrolyzed GlcNAc1,4Galβ1pMP (Fig. 2B), and the product peak was confirmed to be Galβ1pMP by MS analysis (calculated mass, 286.1053; observed mass, m/z [M + Na]$^+$ = 309.0945). The K_m values of AgnC and AgnΔC for the synthetic disaccharide were much lower than those for GlcNAc1pNP.
and 280 μm, respectively. The k_{cat} values were also higher than those for GlcNAc1pNP: 2-fold for AgnC and 20-fold for AgnCΔC (Table 1). These results suggest that αGnase from C. perfringens recognizes aglycone structure.

Next, to investigate the specificity of the enzyme for glycoside linkage between GlcNAc and Gal, we further synthesized GlcNAc1,4Galβ1pMP, GlcNAc1,3Galβ1pMP, and GlcNAc1–6Galβ1pMP. AgnC was incubated with one of the three disaccharide substrates and then analyzed by HPLC (Fig. 2, C–E). Among the four substrates, GlcNAc1,4Galβ1pMP was hydrolyzed to Galβ1pMP, whereas the other three substrates containing α1,2-, α1,3-, and α1,6-linked GlcNAc were not hydrolyzed. This result suggests that this enzyme selectively acts on α1,4-linked GlcNAc. Because α1,4-GlcNAc exists in heparin and heparan sulfate, we synthesized GlcNAc1,4Glcαβ1-pMP containing repetitive units of heparin and heparan sulfate and tested whether AgnC hydrolyzed this substrate. Hydrolysis and release of GlcNAc were not observed using this substrate (Fig. 2G). AgnCΔC also showed no activity toward this substrate (data not shown). Taken together, clostridial αGnase is highly specific for the GlcNAc1,4Gal structure.

Action of αGnase on PGM—PGM contains a GlcNAc1,4Galβ1 epitope at the terminus of the core-1 and core-2 type O-glycans. We first tested whether AgnC and AgnCΔC could release GlcNAc from PGM. PGM (2.5%) was incubated with 0.67 milliunits/ml of AgnC or AgnCΔC, and the reaction was analyzed by TLC. AgnC released GlcNAc from PGM, whereas AgnCΔC showed negligible release of GlcNAc under these conditions (Fig. 3A). We next quantified the amount of GlcNAc released from PGM by HPLC. In a 0.2% mucin solution, AgnC released GlcNAc from PGM significantly faster than AgnCΔC (Fig. 3B, left). The initial velocities of GlcNAc released from PGM were calculated to be 9.1 and 0.30 μmol min⁻¹ mg⁻¹ in AgnC and AgnCΔC, respectively. The activity of AgnC toward PGM was ~45-fold higher than the activity toward GlcNAc1,4Galβ1pMP (0.20 μmol min⁻¹ mg⁻¹), whereas the activity of AgnCΔC toward PGM was only one-tenth of the activity toward GlcNAc1,4Galβ1pMP (2.82 μmol min⁻¹ mg⁻¹) (Table 1). Increasing the mucin concentration to 2.5% did not change the initial velocity of GlcNAc release by AgnC; however, the release increased 15-fold when incubation was performed with AgnCΔC. This indicates that AgnCΔC has a much lower affinity for mucin. Incubation of the two proteins with 2.5% PGM for 20 h showed that the amount of released GlcNAc was more than 10-fold higher when the reaction was performed with AgnC than with AgnCΔC (Fig. 3B, right).

The action of AgnC and AgnCΔC on PGM using a sandwich ELISA and a HIK1083 monoclonal antibody against the α-linked GlcNAc was evaluated (Fig. 3C). PGM was incubated with AgnC or AgnCΔC and subsequently placed into a HIK1083 antibody-coated well. After washing, biotinylated HIK1083 antibody was added to measure the amount of the remaining α-GlcNAc epitope. The treatment with AgnC (both 0.01 and 1.0 units/ml) reduced the reactivity to the level of the control without PGM, indicating the complete removal of the α-GlcNAc epitope from PGM. In contrast, AgnCΔC treatment did not completely remove the α-GlcNAc epitope even when the concentration was 10 units/ml. This result suggests that the C-terminal section of this enzyme containing three CBM32 domains, two FIVAR and a FN3 domain, is functionally important in the recognition of native mucin glycoproteins.

Binding Activities of the CBM Domains toward PGMs—To characterize the crucial function of the C-terminal tandem CBM domains on substrate recognition, several CBM constructs tagged with GST were expressed, and the binding to-
ward mucins was tested. First, the binding toward glycoproteins/proteoglycans was determined by a dot blot overlay assay. Glycoproteins/proteoglycans were blotted onto the membrane, and CBMs were overlaid (Fig. 4A). CBM(C2–C4), CBM(C2–C5), and CBM(C2–C6)-FIVAR showed strong binding for PGM and moderate binding for crude PGM, human gastric mucin, and bovine submaxillary mucin. Strikingly, CBM(C2–C6) showed strong binding for all three mucin samples; for purified PGM, the membrane may be overexposed. In contrast, all CBMs did not bind fetuin and asialofetuin, which have N- and O-glycans. Next, we quantified the amount of bound CBMs toward PGM by ELISA. CBMs were added to the wells coated by PGM using a HIK1083 antibody and quantified using an anti-GST antibody (Fig. 4B). As observed in the dot blot overlay assay, CBM(C2–C6) showed remarkably higher binding activity than the other positive constructs.

Action of αGnase on Cell Surface Mucin—To evaluate the hydrolysis of αGlcNAc expressed on the surface of mammalian cells, we used AGS-αGnT cells, which stably express GlcNAc1,4Gal1 epitopes on the cell surface. Cells previously fixed with formalin were incubated with AgnC and then stained with the HIK1083 antibody. The cells treated with the enzyme stained much weaker than the cells that represented the control group (Fig. 5A). The results were essentially the same when living cells were treated with enzyme before fixation (Fig. 5B). These results clearly showed that AgnC acts on GlcNAc1,4Galβ1R at the non-reducing end of glycoproteins located on the surface of intact cells. The results were essentially identical when AgnC was tested at the same enzyme concentration (data not shown).

Stereochemistry of the Hydrolysis Catalyzed by the Recombinant αGnase—The stereochemical course of the hydrolysis of His6-tagged AgnC was determined by 1H NMR using GlcNAc1 as a substrate (Fig. 6). The chemical shifts
The GH89 family is composed exclusively of αGNases and is distributed from bacteria to higher eukaryotes. The mammalian αGNases have been well characterized as lysosomal enzymes that degrade heparin and heparan sulfate. In contrast, αGNases from other organisms have been poorly investigated. We have previously expressed AgnCΔC, a deletion protein of αGNase encoded by CPE0866 in the genome of C. perfringens strain 13 and reported preliminary results on its properties (31). The x-ray crystal structure of αGNase (CpGH89 encoded by CPE_0859) from C. perfringens ATCC 13124 was previously reported as a model protein of human αGNase. Here, a truncated protein construct containing an N-terminal CBM32 domain and a GH89 catalytic domain (aa 23–893) was used for the overexpression and crystallization analysis. The enzyme activity of CpGH89 was confirmed using only synthetic substrates, such as GlcNAcα1pNP (20). Consequently, the natural substrate for CpGH89 was not identified. In this study, we expressed AgnC from C. perfringens strain 13, which shares 97% identity with CpGH89 from C. perfringens ATCC 13124 and found that AgnC hydrolyzed not only GlcNAcα1pNP but also GlcNAcα1,4Gal in O-glycans of gastrodudodenal mucin. AgnC was highly specific toward α,1,4-linked GlcNAc (i.e. the enzyme showed no catalytic activity toward GlcNAcα1,3Gal or GlcNAcα1,6Gal). In addition, AgnC did not hydrolyze GlcNAcα1,4GlcA, a repetitive unit of heparin and heparan sulfate (Fig. 2). This result indicates that AgnC is not a heparin/heparan sulfate-degrading enzyme. GlcNAcα1,4GlcA also occurs in heparin and heparan sulfate; however, the activity of AgnC toward the disaccharide has not been examined because its chemical synthesis was difficult (21). We also found that heterologously expressed human αGNase acted on GlcNAcα1,4GlcAβ1pMP but not on GlcNAcα1,4Galβ1pMP, suggesting that the different substrate specificities may be due to the different structures of the catalytic sites of the two enzymes.

We have successfully expressed full-length AgnC and a truncated version of the protein, AgnCΔC, using the pCold vector system. Both enzymes showed similar kinetic parameters against GlcNAcα1pNP; however, the reactivity of AgnC for PGM was significantly higher than that of AgnCΔC (Fig. 3). Conceivably, AgnC prefers branched and/or clustered O-glycans over small monomeric substrates, such as GlcNAcα1,4Galβ1pMP and GlcNAcα1pNP. The C-terminal region of AgnC may enhance the affinity for PGM. In this region, there are three CBM32 domains (C4–C6), two FIVAR domains, and one FN3 domain. The results of binding assays

4 M. Fujita, A. Tsuchida, K. Goto, K. Osumi, Y. Hirose, and M. Mizuno, unpublished results.
Figure 6. 1H NMR spectra showing the hydrolysis of GlcNAc\(\alpha\)pNP after the addition of AgnC. A, reaction scheme and assignment of the anomeric protons. B, the reaction was monitored by 1H NMR at different times, and the regions of the signals for the anomeric protons (4.4–6.1 ppm) are shown. The signals for the equatorial anomeric proton of the GlcNAc residue (Ha' eq; 5.8 ppm, $J = 3.4$ Hz) appeared after 9 min, and then the signals for the axial anomeric proton of the GlcNAc residue (Ha' ax; 4.75 ppm, $J = 8.3$ Hz) appeared after 20 min as a consequence of mutarotation. The large signal around $\delta = 4.65$ is the HDO signal.
residues in O-glycans of the class III mucin and thus facilitate the hydrolysis reaction. The FIVAR and FN3 domains are also found in many microbial glycosidases, but the functions of these modules remain unresolved.

C. perfringens represents one of the major intestinal pathogens in humans. This enterobacterium has a series of mucin-degrading enzymes. The most important enzyme is endo-α-N-acetylgalactosaminidase, which hydrolyzes the glycosidic bond between α-GalNAc and Thr/Ser to release both the core-1 disaccharide and core-2 trisaccharide from mucin (36). To expose the core structures, this bacterium secretes several endo- and exoglycosidases. Three unique endo-β-galactosidases have been reported to act on the terminal sugar epitopes: Galα1,3Gal-releasing endo-β-galactosidase C (37), GlcNAcα1,4Gal-releasing endo-β-galactosidase (GngC) (15, 38), and blood group A- and B-trisaccharide-releasing endo-β-galactosidase (39). The exoglycosidases, such as sialidases (29), α-fucosidases (40), and β-N-acetylhexosaminidases (28, 35, 41), are also present in this pathogen. We have previously speculated that the GlcNAcα1,4Gal epitope is first released by GngC, and then the disaccharide is hydrolyzed by αGNase. However, the candidate gene encoding GngC has not been found in the genome of *C. perfringens* strain 13. Thus, the removal of the α-GlcNAc cap may be mediated by either αGNase or GngC. In fact, *C. perfringens* strain 13 showed αGNase activity but not GlcNAcα1,4Gal-releasing GngC activity (Fig. 7B). The *agnC* knock-out *C. perfringens* strain 13, which is unable to remove α-GlcNAc cap, showed significantly reduced growth in gastric mucin-containing minimal medium that may mimic the carbohydrate-limited environment of the lower intestine (Fig. 7C).

In conclusion, our results suggest that the natural substrate of clostridial αGNases is the α-GlcNAc-containing class III mucin secreted from the stomach and duodenum. The secreted mucin may flow into the intestines, where the enzyme plays an essential role in the utilization of α-GlcNAc-capped O-glycans.

Acknowledgments—We thank Dr. T. Shimizu (Kanazawa University) for providing *C. perfringens* strain 13 and its genomic DNA; M. Mori (The Noguchi Institute) and Drs. K. Haneda and M. Kurihara (Kanagawa Institute of Technology) for providing PGM; and Dr. T. Katayama (Ishikawa Prefectural University) for critically reading the manuscript.

REFERENCES

1. Parolis, H., Parolis, L. A., Stanley, S. M., and Dutton, G. G. (1990) *Carbohydr. Res.* 200, 449–456
2. Jan, B., Shashkov, A. A., Kochanowski, H., and Jann, K. (1994) *Carbohydr. Res.* 264, 305–311
3. Hsieh, T. C., Lester, R. L., and Laine, R. A. (1981) *J. Biol. Chem.* 256, 7747–7755
4. Lloyd, K. O., Kabat, E. A., and Beychok, S. (1969) *J. Immunol.* 102, 1354–1362
5. Van Halbeek, H., Gerwig, G. J., Vliegenthart, J. F., Smits, H. L., Van Kerkhof, P. J., and Kramer, M. F. (1983) *Biochim. Biophys. Acta* 747, 107–116
6. Ishihara, K., Kurihara, M., Goso, Y., Ura, T., Ota, H., Katsuyama, T., and Hotta, K. (1996) *Biochem. J.* 318, 409–416
7. Ota, H., Hayama, M., Nakayama, J., Hidaka, H., Honda, T., Ishii, K., Fukushima, M., Uehara, T., Kurihara, M., Ishihara, K., Hotta, K., and Katsuyama, T. (2001) *Am. J. Clin. Pathol.* **115**, 69–79
8. Mikami, Y., Ykiyokawa, T., Hata, S., Fujiwara, K., Moriya, T., Sasano, H., Manabe, T., Akahira, I., Ito, K., Tase, T., Yaegashi, N., Sato, I., Tateno, H., and Naganuma, H. (2004) *Mod. Pathol.* **17**, 962–972
9. Utsugi, K., Hirai, Y., Takeshima, N., Akiyama, F., Sakurai, S., and Hamasmi, K. (1999) *Gynecol. Oncol.* **75**, 345–348
10. Nakayama, J., Yeh, J. C., Misra, A. K., Ito, S., Katsuyama, T., and Fukuda, M. (1999) *Proc. Natl. Acad. Sci. U.S.A.* **96**, 8991–8996
11. Kawakubo, M., Ito, Y., Okimura, Y., Kobayashi, M., Sakura, K., Kasama, S., Fukuda, M. N., Fukuda, M., Katsuyama, T., and Nakayama, J. (2004) *Science* **305**, 1003–1006
12. Lee, H., Kobayashi, M., Wang, P., Nakayama, J., Seeberger, P. H., and Fukuda, M. (2006) *Biochem. Biophys. Res. Commun.* **349**, 1235–1241
13. Lee, H., Wang, P., Hoshino, H., Ito, Y., Kobayashi, M., Nakayama, J., Seeberger, P. H., and Fukuda, M. (2008) *Glycobiology* **18**, 549–558
14. Kobayashi, M., Lee, H., Nakayama, J., and Fukuda, M. (2009) *Curr. Drug. Metab.* **10**, 29–40
15. Ashida, H., Anderson, K., Nakayama, J., Maskos, K., Chou, C. W., Cole, R. B., Li, S. C., and Li, Y. T. (2001) *J. Biol. Chem.* **276**, 28226–28232
16. Roseman, S., and Dorfman, A. (1951) *J. Biol. Chem.* **191**, 607–620
17. Weber, B., Blanch, L., Clements, P. R., Scott, H. S., and Hopwood, J. J. (1996) *Hum. Mol. Genet.* **5**, 771–777
18. von Figura, K. (1977) *Eur. J. Biochem.* **80**, 535–542
19. Hopwood, J. J., and Elliott, H. (1982) *Clin. Chim. Acta* **120**, 77–86
20. Ficko-Blean, E., Stubbs, K. A., Nemirovsky, O., Vocadlo, D. J., and Boraston, A. B. (2008) *Proc. Natl. Acad. Sci. U.S.A.* **105**, 6560–6565
21. Schmidt, R. R., Michel, J., and Roos, M. (1984) *Liebigs Ann. Chem.* 1343–1357
22. Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shibata, T., Ogawara, N., Hattori, M., Kubara, S., and Hayashi, H. (2002) *Proc. Natl. Acad. Sci. U.S.A.* **99**, 996–1001
23. Anderson, K., Li, S. C., and Li, Y. T. (2000) *Anal. Biochem.* **287**, 337–339
24. Chen, Y., McClane, B. A., Fisher, D. J., Rood, J. I., and Gupta, P. (2005) *Appl. Environ. Microbiol.* **71**, 7542–7547
25. Homer, K. A., Kelley, S., Hawkes, J., Beighton, D., and Grootveld, M. C. (1996) *Microbiology* **142**, 1221–1230
26. Homer, K. A., Patel, R., and Beighton, D. (1993) *Infect. Immun.* **61**, 295–302
27. Abbott, D. W., Eirín-López, J. M., and Boraston, A. B. (2008) *Mol. Biol. Evol.* **25**, 155–167
28. Ficko-Blean, E., and Boraston, A. B. (2006) *J. Biol. Chem.* **281**, 37748–37757
29. Boraston, A. B., Ficko-Blean, E., and Healey, M. (2007) *Biochemistry* **46**, 11352–11360
30. Weissmann, B., Rowin, G., Marshall, J., and Friederic, D. (1967) *Biochemistry* **6**, 207–214
31. Fujita, M., Kobayashi, N., Tsuchida, A., Goto, K., Osumi, K., Mizuno, M., Yamanoi, T., Ashida, H., Haneda, K., and Nakayama, J. (2007) *Glycoconjug. J.* **24**, 326
32. Fujita, K., Oura, F., Nagamine, N., Katayama, T., Hiratake, J., Sakata, K., Kumagai, H., and Yamamoto, K. (2005) *J. Biol. Chem.* **280**, 37415–37422
33. Ashida, H., Miyake, A., Kiyohara, M., Wada, J., Yoshida, E., Kumagai, H., Katayama, T., and Yamamoto, K. (2009) *Glycobiology* **19**, 1010–1017
34. Miwa, M., Horimoto, T., Kiyohara, M., Katayama, T., Kitaoka, M., Ashida, H., and Yamamoto, K. (2010) *Glycobiology* **20**, 1402–1409
35. Ficko-Blean, E., Gregg, K. J., Adams, J. I., Hehemann, J. H., Czjzek, M., Smith, S. P., and Boraston, A. B. (2009) *J. Biol. Chem.* **284**, 9876–9884
36. Ashida, H., Maki, R., Ozawa, H., Tani, Y., Kiyohara, M., Fujita, M., Imamura, A., Ishida, H., Kiso, M., and Yamamoto, K. (2008) *Glycobiology* **18**, 727–734
37. Ogawa, H., Muramatsu, H., Kobayashi, T., Morozumi, K., Yokoyama, I., Kurosawa, N., Nakao, A., and Muramatsu, T. (2000) *J. Biol. Chem.* **275**, 19368–19374
38. Ashida, H., Maskos, K., Li, S. C., and Li, Y. T. (2002) *Biochemistry* **41**, 2388–2395
39. Anderson, K. M., Ashida, H., Maskos, K., Dell, A., Li, S. C., and Li, Y. T. (2005) *J. Biol. Chem.* **280**, 7720–7728
40. Gregg, K. J., Finn, R., Abbott, D. W., and Boraston, A. B. (2008) *J. Biol. Chem.* **283**, 12604–12613
41. Ficko-Blean, E., and Boraston, A. B. (2009) *J. Mol. Biol.* **390**, 208–220