Traditional processing increases biological activities of *Dendrobium officinale* Kimura et. Migo in Southeast Yunnan, China

Di Zhou¹,²,³,⁷, Ying Zhao¹,²,³,⁷, Zhilin Chen¹,⁶, Xiuxiang Yan¹,², Yanqiang Zhao⁴, Lu Gao⁵,² & Lixin Yang¹,²,³

The orchid *Dendrobium officinale* grows throughout southeast China and southeast Asian countries and is used to treat inflammation and diabetes in traditional Chinese medicine. Tie pi feng dou is a well-known traditional Chinese medicine made from the dried *D. officinale* stems. Processing alters the physicochemical properties of TPFD; however, it is unclear how processing affects the quality and medicinal value of this plant. Here, we analyzed and compared the chemical composition of fresh stems of *D. officinale* and TPFD and explored possible explanations for the enhanced medicinal efficacy of processed *D. officinale* stems using qualitative and quantitative methods. To identify the components of FSD and TPFD, we used ultra-high-performance liquid chromatography combined with mass spectrometry in negative and positive ion modes and interpreted the data using the Human Metabolome Database and multivariate statistical analysis. We detected 23,709 peaks and identified 2352 metabolites; 370 of these metabolites were differentially abundant between FSD and TPFD (245 more abundant in TPFD than in FSD, and 125 less abundant), including organooxygen compounds, prenol lipids, flavonoids, carboxylic acids and their derivatives, and fatty acyls. Of these, 43 chemical markers clearly distinguished between FSD and TPFD samples, as confirmed using orthogonal partial least squares discriminant analysis. A pharmacological activity analysis showed that, compared with FSD, TPFD had significantly higher levels of some metabolites with anti-inflammatory activity, consistent with its use to treat inflammation. In addition to revealing the basis of the medicinal efficacy of TPFD, this study supports the benefits of the traditional usage of *D. officinale*.

Abbreviations

Abbreviation	Description
TPD	Tipifengdou
FSD	Fresh stems of *D. officinale*
TCM	Traditional Chinese medicines
UHPLC-QEQO/MS	Ultra-high-performance liquid chromatography coupled with Q-Exactive plus quadrupole-Orbitrap mass spectrometry
HMDB	Human Metabolome Database
PCA	Principal component analysis
OPLS-DA	Orthogonal projections to latent structures discriminant analysis
PLS-DA	Partial least squares discriminant analysis
VIP	Variable importance of projection
ESI	Electrospray ionization

¹Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. ²Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. ³Center of Biodiversity and Indigenous Knowledge, Kunming 650034, Yunnan, China. ⁴College of Forestry and Vocational Technology in Yunnan, Kunming 650224, Yunnan, China. ⁵School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China. ⁶College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China. ⁷These authors contributed equally: Di Zhou and Ying Zhao. ²email: gl990@foxmail.com; Yangrattan@mail.kib.ac.cn
The therapeutic properties of traditional Chinese medicines (TCMs) are derived from the collective contributions of various chemical components, most of which are secondary metabolites and saccharides. Plants used in TCM accumulate secondary metabolites, including polysaccharides, alkaloids, amino acids, flavonoids, phenols, coumarins, terpenoids, and benzyl compounds, which enable them to adapt to diverse environmental conditions. These metabolites possess various physiological activities that underpin their medicinal value when consumed. Before the clinical use of a TCM, the raw materials are typically subjected to traditional processing methods, which change the physicochemical properties of the herbal materials. This can transform certain bioactive/toxic components, which is likely the primary way in which processing affects the therapeutic properties of TCM ingredients.

The perennial epiphytic herb *Dendrobium officinale* Kimura & Migo belongs to the Orchidaceae family and is native to China and southeast Asian countries. In TCM, this plant is used as a medicine or food to nourish “yin,” clearing heat, toning the stomach, and promoting fluid production. For over 1000 years, this herb has been processed and used by ethnic groups in southwest Yunnan, China, to treat inflammation and diabetes. According to the Pharmacopoeia of China (2020 edition), fresh stems of *D. officinale* (FSD) should be harvested, and the leaves and stem epidermis should be removed. The stem should then be semi-dried to a 45% moisture content before being twisted into a spring shape under heat. The resulting products, which have a moisture content of < 12%, are known as Xifengdou (translated as Tie pi feng dou, TPFD). Detailed records on the traditional processing of TPFD in China began in the Qing Dynasty.

Characterizing the composition of TCMs such as TPFD can inform the development of medicines and supplements with similar properties and help establish quality control standards for these biological products, which vary in activity levels. Conventional chemical research into herbal materials involves the systematic isolation of their chemical constituents, followed by qualitative and quantitative comparisons, chemical profiling, and identification of chemical markers. Metabolomics is widely used to elucidate the chemical compositions of herbal medicines. Typically performed using liquid chromatography with mass spectrometry (LC–MS), metabolomics is a powerful approach for elucidating the global profiles of complex secondary metabolites by measuring their presence, abundance, and chemical structures. LC–MS is also employed to identify marker compounds used to distinguish between raw and processed herbal medicines.

TPFD is a well-known traditional product of *D. officinale*; however, the chemical composition of *D. officinale* is complex, and conventional analytical approaches are time-consuming and have not yielded a complete chemical characterization of the major differences between FSD and TPFD. Previous studies of the chemical composition of *D. officinale* have mainly focused on elucidating the botanical, traditional use, phytochemistry, and pharmacology of *D. officinale*. While some studies have examined properties pertaining to the quality and safety of this herb and omics studies have explored the biosynthetic pathways and regulation mechanisms of the plant’s bioactive compounds, the major chemical differences between raw and processed TPFD products are largely unknown. Exploring the chemical changes that occur during *D. officinale* processing will therefore provide helpful information for understanding the therapeutic characteristics of TPFD. Here, we analyzed the chemical constituents of TPFD and FSD and explored the effect of traditional processing on the therapeutic value of *D. officinale* using a non-targeted metabolomics method and a variety of chromatographic techniques. We then examined the differences between FSD and TPFD using multivariate and univariate statistical analyses to elucidate the main chemical transformations that occur during *D. officinale* processing.

Materials and methods

Regulatory statement. The plant experiments were performed in accordance with relevant guidelines and regulations.

Reagents and materials. All chemicals and solvents used were of analytical or high-performance liquid chromatography grade. Water, acetonitrile, methanol, and formic acid were from Thermo Fisher Scientific (Waltham, MA, USA). L-2-chlorophenylalanine was obtained from Shanghai Hengchuang Biotechnology Co., Ltd. (Shanghai, China).

FSD and TPFD samples were obtained from the local market in Guangnan County, Wenshan Prefecture, Yunnan Province, southwest China. *D. officinale* is a National Geographic Indication Product. The raw materials for TPFD and FSD were collected from the fresh stems of *D. officinale* from the same batch in April 2021 and authenticated by Prof. Lixin Yang, Chinese Academy of Sciences. Type specimens were deposited in the Kunming Institute of Botany Herbarium (sample numbers: TPFD202110401 and FSD20210402).

Sample preparation. Similarly sized samples were selected for analysis. Each sample was prepared in quadruplicate. First, all samples were thoroughly ground. For the analysis, 80 mg of FSD (Sample No.: DF-1-1 to DF-1-4) and TPFD (Sample No.: DF-F-1 to DF-F-4) was transferred into a 1.5-mL microfuge tube. Twenty microliters of internal standard (L-2-chlorophenylalanine, 0.3 mg/mL; methanol), 1 mL methanol–water (V/V = 7:3), and two small steel balls were added. The samples were chilled to –20 °C for 2 min and then ground at 60 Hz for 2 min, extracted with ultrasonic waves for 30 min in an ice-water bath, and incubated at –20 °C for 20 min. The samples were centrifuged at 4 °C and 13,000 rpm for 10 min. Then, a glass syringe was used to collect 150 μL of supernatant, which was filtered through microfilters (0.22 μm). The filtrate was transferred into LC vials, which were stored at –80 °C until analysis.

For quality control (QC), pooled samples were prepared by mixing aliquots of all the samples.
Secondary metabolite analysis. An ultra-high-performance liquid chromatography (UHPLC, Dionex Ultimate 3000 RS) with a mass spectrometer (Q-Exactive plus quadrupole-Orbitrap) equipped with a heated electrospray ionization (ESI) source (Thermo Fisher Scientific) was used to analyze the metabolic profiles in ESI positive and negative ion modes. The column (ACQUITY UPLC HSS T3, 1.8 μm, 2.1 × 100 mm) was employed in positive and negative modes. The elution reagents were (A) water with 0.1% (v/v) formic acid and (B) acetonitrile with 0.1% (v/v) formic acid, and the gradient was as follows: 0 min, 5% B; 1 min, 5% B; 2.5 min, 30% B; 6 min, 50% B; 7 min, 70% B; 10 min, 80% B; 12 min, 100% B; 14 min, 100% B; 14.2 min, 5% B; and 16 min, 5% B at 0.35 mL/min and a column temperature of 40 °C. Samples were maintained at 4 °C during analysis. The injection volume was 5 μL.

The mass range was detected between 100 and 1200 mass-to-charge ratio (m/z). A resolution of 70,000 was used for full MS scans, and 17,500 was used for higher-energy collisional dissociation (HCD) MS/MS scans, with a collision energy of 10, 20, and 40 eV. The mass spectrometer was operated as follows: spray voltage, 3800 V(+) and 3200 V(−); sheath gas flow rate, 40 arbitrary units; auxiliary gas flow rate, 15 arbitrary units; capillary temperature, 320 °C; auxiliary gas heater temperature, 350 °C; and S-lens RF level, 55. Every four samples, a QC sample was injected to assess repeatability.

Statistical analysis. Progenesis QI V2.3 (Nonlinear Dynamics, Newcastle, UK) was used for baseline filtering, peak identification, integral retention time correction, peak alignment, and normalization of raw LC–MS
data, with 5 ppm precursor tolerance, 10 ppm product tolerance, and 5% product ion threshold. Compound identification was based on comparing the precise m/z values, secondary fragments, and isotopic distribution with the Human Metabolome Database (HMDB) for qualitative analysis.

The data were further processed by removing peaks with missing values (ion intensity = 0) in more than 50% of groups by replacing zero values with half of the minimum value and by screening according to the qualitative results of the compound. Compounds with scores below 36 (of 60) were deemed to be inaccurate and removed.

A data matrix was generated from the positive and negative ion data and used for principal component analysis (PCA) in R. Orthogonal partial least squares discriminant analysis (OPLS-DA) and partial least squares

Figure 2. Model of the multivariate analysis and its cross-validation. (A): PCA for TPFD samples versus FSD samples. (B): PLS-DA for TPFD samples versus FSD samples. (C): OPLS-DA for TPFD samples versus FSD samples. (D): Response permutation testing of the model predicted by OPLS-DA.

Figure 3. Differentially abundant metabolites between TPFD and FSD. (A): Volcano plot of the 2352 metabolites identified. (B): Main classes of differentially abundant metabolites.
Metabolites	Compound ID	m/z	Retention time(min)	VIP	P-value	log2(FC)
Isopropyl apiosylglucoside	HMBDR0041513	353.145	3.952	2.124	0.000	39.862
D-erythro-D-galacto-octitol	HMBDR0029953	281.063	2.998	1.763	0.000	39.372
Cyclodopa glucoside	HMBDR0029833	380.095	0.771	1.633	0.000	39.126
6'-Apiosyllotaustralin	HMBDR0034207	416.155	1.184	1.190	0.000	38.195
Maltobiose	HMBDR0012235	1013.316	1.004	1.108	0.000	38.010
N-(1-Deoxy-1-fructosyl)alanine	HMBDR0038662	234.097	0.816	1.797	0.000	15.901
(E)-2-O-Cinnamoyl-beta-D-glucopyranose	HMBDR0035880	328.139	0.867	2.119	0.000	13.310
Tetraphyllin B	HMBDR0029914	310.090	2.009	2.573	0.000	10.850
Ethyl beta-D-glucopyranoside	HMBDR0029968	231.084	1.385	1.657	0.000	6.401
Cyclodopa glucoside	HMBDR0036699	230.102	1.268	2.371	0.000	10.061
6'-Apiosyllotaustralin	HMBDR0034207	416.155	1.184	1.190	0.000	38.195
Maltohexaose	HMBDR0012235	1013.316	1.004	1.108	0.000	38.010
Isopropyl apiosylglucoside	HMBDR0041513	353.145	3.952	2.124	0.000	39.862
D-erythro-D-galacto-octitol	HMBDR0029953	281.063	2.998	1.763	0.000	39.372
Cyclodopa glucoside	HMBDR0029833	380.095	0.771	1.633	0.000	39.126
6'-Apiosyllotaustralin	HMBDR0034207	416.155	1.184	1.190	0.000	38.195
Maltobiose	HMBDR0012235	1013.316	1.004	1.108	0.000	38.010
N-(1-Deoxy-1-fructosyl)alanine	HMBDR0038662	234.097	0.816	1.797	0.000	15.901
(E)-2-O-Cinnamoyl-beta-D-glucopyranose	HMBDR0035880	328.139	0.867	2.119	0.000	13.310
Tetraphyllin B	HMBDR0029914	310.090	2.009	2.573	0.000	10.850
Ethyl beta-D-glucopyranoside	HMBDR0029968	231.084	1.385	1.657	0.000	6.401
Cyclodopa glucoside	HMBDR0036699	230.102	1.268	2.371	0.000	10.061
6'-Apiosyllotaustralin	HMBDR0034207	416.155	1.184	1.190	0.000	38.195
Maltohexaose	HMBDR0012235	1013.316	1.004	1.108	0.000	38.010
Isopropyl apiosylglucoside	HMBDR0041513	353.145	3.952	2.124	0.000	39.862
D-erythro-D-galacto-octitol	HMBDR0029953	281.063	2.998	1.763	0.000	39.372
Cyclodopa glucoside	HMBDR0029833	380.095	0.771	1.633	0.000	39.126
6'-Apiosyllotaustralin	HMBDR0034207	416.155	1.184	1.190	0.000	38.195
Maltobiose	HMBDR0012235	1013.316	1.004	1.108	0.000	38.010
Table 1. Information of organooxygen compounds with significant changes.

Metabolites	Compound ID	m/z	Retention time(min)	VIP	P-value	log2(FC)
Verbasoside	HMDB0039233	461.167	3.417	1.008	0.000	0.853
Linool 3,7-oxide beta-primveroside	HMDB0036571	482.259	4.067	1.773	0.000	0.766
Benzyl beta-primveroside	HMDB0041190	401.145	3.632	1.550	0.002	0.757
Myzodendrone	HMDB0041273	387.130	3.310	1.292	0.001	0.640
trans-p-Menthan-1,7,8-triol 8-glucoside	HMDB0034784	373.183	3.403	4.657	0.003	0.628
Pteroside P	HMDB0036608	441.176	3.931	1.233	0.007	0.401
2-O-beta-D-Glucopyranonosyl-D-mannose	HMDB0039722	337.078	0.860	1.176	0.007	0.384
Trehalose	HMDB0009975	387.114	0.804	7.692	0.004	0.301
4-O-beta-D-Galactopyranosyl-D-xylene	HMDB0038864	357.104	1.084	1.063	0.032	−0.245
3,5-Dihydroxyphenyl-1-O-(6-O-galloyl-beta-D-glucopyranoside)	HMDB0039307	439.086	0.810	8.940	0.000	−0.709
a-L-Arabinofuranosyl-(1→3)-[a-L-arabinofuranosyl-(1→5)]-L-arabinose	HMDB0041223	432.171	0.816	2.132	0.000	−0.894
3,4,5-Trimethoxyphenyl 2,6-digalloylglucoside	HMDB0039312	631.128	3.696	1.692	0.000	−0.921
(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1→4)-a-L-rhamnopyranosyl-(1→2)]-b-D-glucopyranoside	HMDB0040846	721.366	8.316	5.233	0.000	−1.917
(S)-Nerolidol 3-O-[a-L-rhamnopyranosyl-(1→4)-a-L-rhamnopyranosyl-(1→6)]-b-D-glucopyranoside	HMDB0040846	699.356	8.331	6.236	0.000	−2.019
cis-p-Coumaric acid 4-[apiosyl-(1→2)]-glucoside	HMDB0037078	481.132	4.215	1.852	0.000	−2.756
Gluconasturtiin	HMDB0038423	441.100	3.342	2.914	0.000	−3.586
Benzyl O-[arabinofuranosyl-(1→6)]-glucoside	HMDB0041514	383.135	4.904	1.221	0.000	−3.883
6-Phosphogluconic acid	HMDB0001316	277.032	0.850	2.739	0.000	−4.135
Mangalkanyl glucoside	HMDB0036015	431.265	7.825	2.676	0.000	−9.586
3-O-alpha-D-Glucopyranonosyl-D-xylene	HMDB0039723	651.161	8.771	1.070	0.000	−37.900
2-Phospho-D-glyceric acid	HMDB0003391	230.991	0.916	1.128	0.000	−38.044

Discriminant analysis (PLS-DA) were used to identify the metabolites that differed between groups. Seven-fold cross-validation and 200 response permutation tests were used to prevent overfitting and evaluate the quality of the model.

Variable importance of projection (VIP) values from OPLS-DA were used to rank the contribution of each variable to the discrimination of groups. A two-tailed Student’s t-test was used to verify the significance of the differences in metabolite abundance between the groups. Metabolites with VIP > 1.0 and P < 0.05 were selected as differentially abundant.

Results

Identification of metabolite diversity in *D. officinale.* Typical total ion current chromatograms (TICs) of FSD samples are presented in Fig. 1A (ESI+) and Fig. 1B (ESI−), and TICs of TPFD samples are presented in Fig. 1C (ESI+) and Fig. 1D (ESI−). A total of 23,709 substance peaks were detected in FSD and TPFD samples using the UHPLC Q-Exactive plus quadrupole-Orbitrap mass spectrometer, among which 2352 metabolites were identified (976 metabolites from the negative ion model (ESI−) and 1376 metabolites from the positive ion mode (ESI+) (Fig. 1E).

FSD and TPFD samples contained all the identified metabolites, but the relative contents of individual compounds were remarkably different between the two groups (Fig. 2). However, metabolite contents were similar in the four biological replicates of an individual sample. The PCA plots between FSD and TPFD samples also showed clear differences (Fig. 2A); for example, PC1 was clearly separated between FSD and TPFD and represented 69.7% of the difference in their chemical compositions. Figure 2B presents the PLS-DA of the two groups. The R2 value of the PCA and Q value of the PLS-DA (Fig. 2) show that compound abundances between FSD and TPFD samples were statistically significantly different. OPLS-DA, another supervised method, was used to highlight the quantitative variation in the metabolites between TPFD and FSD samples (Fig. 2C). Cross-validation with 200 permutations supported the reliability of this OPLS-DA model, with R2 and Q2 intercepts of 0.932 and 0.640, respectively (Fig. 2D). These results show that TCM processing techniques lead to significant changes to the metabolite contents of *D. officinale*.

Characterization of five categories of differentially abundant metabolites. Pairwise comparisons of metabolite abundances in FSD and TPFD using the OPLS-DA model identified differentially abundant metabolites based on the VIP value. Next, all identified and annotated metabolites were screened for different abundances between FSD and TPFD samples (Fig. 3A). Using the set criteria (VIP > 1; P < 0.05), 370 metabolites were found to be significantly differentially abundant between TPFD and FSD, the majority of which were organooxygen compounds, prenol lipids, flavonoids, carboxylic acids and their derivatives, and fatty acyls (Fig. 3B).

First, organooxygen compounds were significantly more abundant in TPFD than in FSD samples. These compounds, especially carbohydrates and carbohydrate conjugates, directly contribute to the physiological activity of *D. officinale* products. Carbohydrates and carbohydrate aggregates from *D. officinale* have antioxidant,
anti-tumor, immune-enhancing, and anti-inflammatory effects; they protect the liver and nerves; and they are useful for the treatment of diabetes and the intestinal microbiome. A total of 77 organooxygen compounds were significantly differentially abundant between FSD and TPFD samples in this study, accounting for 20.8% of all the differentially abundant metabolites. Of these, 74 compounds were carbohydrates or carbohydrate aggregates. Sixty-one carbohydrates and carbohydrate aggregates were significantly more abundant in TPFD samples, while 13 carbohydrates and carbohydrate aggregates were significantly less abundant (Table 1). In particular, isopropyl apiosylglucoside, D-erythro-D-galacto-octitol, cyclodopa glucoside, 6'-apiosyllotaustralin, and maltohexaose were an average of 5.80 × 10^{11} times more abundant in TPFD, likely due to the TCM processing. By contrast, 2-phospho-D-glyceric acid and 3-O-alpha-D-glucopyranosyl-D-xylose were an average of 3.72 × 10^{-12} times less abundant in TPFD than in FSD. In addition, 44 carbohydrates and carbohydrate aggregates were at least twice as abundant in TPFD as in FSD, but only 9 compounds were half as abundant. These results suggest that TCM processing positively affects the accumulation of carbohydrates in TPFD.

Second, Prenol lipids are naturally occurring and are formed by the condensation of isoprene subunits. Prenol lipids have critical roles not only as structural components of cell membranes, but also as essential signaling molecules in various biological processes.

Figure 4. Chemical structures of typical compounds from TPFD.
Metabolites	Compound ID	m/z	Retention time (min)	VIP	P-value log2(FC)	
Capsianoside V	HMDB0030737	559.276	4.622	1.176	0.000	10.228
4,11,13,15-Tetrahydrodoridentin B	HMDB0036150	269.175	4.215	1.530	0.000	8.906
ARLatin	HMDB0035740	289.141	5.365	5.270	0.000	8.883
(4beta,8alpha)-6-Hydroxy-7(11)-eremophilien-12,8-olide	HMDB0035148	251.164	3.569	1.558	0.000	6.910
Artenin	HMDB0034696	249.148	4.278	1.250	0.000	5.738
Geniposidic acid	HMDB0034942	397.111	3.486	2.191	0.000	5.418
Lactaronecatorin A	HMDB0037529	233.154	4.215	1.404	0.000	5.401
4-Episodeinosolide	HMDB0031378	249.148	3.859	1.018	0.000	5.304
Neryl rhamnmosyl-glucoside	HMDB0029349	443.229	6.172	1.723	0.000	4.670

Continued
molecules; for example, vitamin K plays a key role in bone health and cardiovascular homeostasis. Similarly, vitamins E and A, as well as ubiquinones, have crucial effects on the progression of age-related diseases and chronic conditions such as inflammation and diabetes.

In this study, the number of differentially abundant prenol lipids in TPFD samples was second only to that of organooxygen compounds, accounting for 17.8% of all the differentially abundant metabolites. The relative concentrations of 46 prenol lipids were significantly higher in TPFD than in FSD samples, while 13 prenol lipids were significantly lower (Table 2). When compared with FSD samples, capsianoside V, 4,11,13,15-tetrahydroridentin, and (6beta,8alpha)-6-hydroxy-7(11)-eremophilen-12,8-olide (Fig. 4) were more abundant in TPFD samples, while ginsenoside Rg3, tanacetol B, fauronyl acetate, and nerolidyl acetate were less abundant (Fig. 4). The variation in these compounds indicates their different contributions to the final quality of TPFD products. Third, fruits and vegetables contain abundant quantities of flavonoids, which contribute to plant color and protect against microbial infection. The properties of flavonoids depend on the arrangement of hydroxyl, methoxy, and glycosidic side groups and the conjugation between the A- and B-rings. A total of 40 flavonoids, including common flavonoids such as naringin and rutin (Fig. 4), were significantly differentially abundant between TPFD and FSD samples (Table 3). After TCM processing, 26 flavonoids were significantly more abundant in TPFD than in FSD samples, while 14 flavonoids were significantly less abundant. Flavonoids possess anti-inflammatory and antioxidant activities and are considered potential therapeutic agents. The content differences of these flavonoids therefore may influence the therapeutic characteristics of TPFD.

Finally, carboxylic acids, their derivatives, and fatty acyls are also major categories of compounds that are differentially abundant between TPFD and FSD samples. Here, 35 carboxylic acids and derivatives and 29 fatty acids were significantly differentially abundant between the samples (Tables 4 and 5). Carboxylic acids and derivatives are important substances in animal and plant metabolism and are used commercially in the synthesis of pesticides, herbicides, and insect repellents. Mounting evidence suggests that carboxylic acids and derivatives also have considerable pharmacological activities; for example, pentacyclic triterpenoid carboxylic acids have strong antioxidant, anti-inflammatory, antibacterial, anti-diabetic, and anti-tumor activities. TPFD is traditionally used for the treatment of diabetes, cancer, and inflammation, among other conditions, suggesting that changes in carboxylic acids and their derivatives may determine the efficacy of TPFD. Short-chain fatty acids contribute to the flavor of D. officinale, and long-chain fatty acids can be degraded and transformed into various active flavor components through oxidation reactions. The content differences of these fatty acids may therefore affect the flavor characteristics of TPFD.

Correlation analysis of biological activities. The chemical composition of TPFD affects its efficacy. As mentioned above, 370 metabolites are significantly changed in the traditional processing of FSD into TPFD for TCM, the majority of which are organooxygen compounds, flavonoids, prenol lipids, fatty acids, and carboxylic acids and their derivatives. These metabolites have different activities and therefore may affect the efficacy of TPFD; therefore, future research should examine these 370 differentially abundant metabolites as potential chemical markers.

To provide visual evidence of the distinct nature of TPFD samples, the above OPLS-DA models were used to construct an S-plot and loading analysis (Fig. 5A and B), which provided a graphical projection of specific compounds. In these plots, metabolites close to the origin make a small contribution to the separation of the samples. A total of 43 metabolites (Fig. 5C) had a VIP score ≥ 4.0 in the OPLS-DA model, and a t-test revealed that they significantly differed (P < 0.05) between FSD and TPFD. In the S-plot and loading analysis, these compounds were farthest from the origin (in the positive and negative directions), indicating that they make a greater contribution to the distinction between samples. These 43 metabolites (listed in Table 6 with their activities) could therefore be used as chemical markers to assess whether the biological activity of D. officinale is altered through traditional processing.
Of the 43 chemical markers, 29 were more abundant in TPFD than in FSD samples, while 14 were less abundant. Their medicinal properties include anti-inflammatory, anti-mutagenic, analgesic, neuroprotection and anti-Alzheimer’s, anti-tumor, antibacterial, anti-toxicity, antioxidant, anti-nociceptive, anti-hypertension, anti-diabetic, anti-depressant, lipase-inhibiting, immune-enhancing, cis-diaminedichloroplatinum nephrotoxicity-preventing, cytoprotective, Fanconi syndrome–attenuating, cardiotoxicity-preventing, anti-fatigue, and anti-tyrosinase activities. Anti-inflammatory activity is the most common function of the significantly upregulated metabolites (Table 6). Among the 43 chemical markers, [6]-dehydroshogaol and capsaicin (Fig. 4) showed the greatest difference in abundance between TPFD and FSD samples, with log2 fold-change values of 13.16 and 11.88, respectively. Imm et al. established that capsaicin and [6]-dehydroshogaol inhibited the production of nitric oxide (NO) in LPS-stimulated cells in a dose-dependent manner. These chemicals are also likely to have anti-inflammatory and antioxidant effects by inactivating the eukaryotic transcription factor NF-κB.
Furthermore, the log2 fold-change values of the anti-inflammatory compounds N2-(3-hydroxysuccinoyl)arginine, naringenin, citronellyl beta-sophoroside, methyl beta-D-glucopyranoside, and hydroxysafflor yellow A (Fig. 4) were > 3 (Table 6). Thus, TPFD has better anti-inflammatory properties than FSD, which is beneficial for its applications in TCM.

In addition, the 43 marker metabolites included compounds with anti-tumor and anti-diabetic activities. Arlatin, naringenin, and methyl beta-D-glucopyranoside (Fig. 4) showed significant anti-tumor activity, while citroside A (Fig. 4) possesses significant anti-diabetic activity. The contents of all these compounds were significantly higher in TPFD than in FSD samples. These results are consistent with the reported effects of TPFD in TCM, providing scientific evidence of the efficacy of the traditional application of *D. officinale*.

We also detected some compounds in *D. officinale* with potential therapeutic effects on neurological diseases; for example, norcapsaicin (Fig. 4) has neuroprotection and anti-Alzheimer’s activities, while osmanthuside B (Fig. 4) shows anti-depressant activity. Future studies should explore the relationship between the concentrations of these compounds present and the therapeutic effects and health-promoting properties of *D. officinale* products.

Discussion

The significant differences on metabolites between FSD and TPFD. We integrated UHPLC coupled with Q Exactive plus quadrupole-Orbitrap MS in the positive and negative ion modes, combined with a HMDB and multivariate statistical analysis for qualitative analyses, to screen the different constituents of FSD and TPFD. The result of this study reveals that five type compounds including organooxygen compounds, prenol lipids, flavonoids, carboxylic acids and their derivatives, and fatty acyls show the significant differences among 370 differential metabolites which were unambiguously detected or tentatively identified. FSD and TPFD sam-

Metabolites	Compound ID	m/z	Retention time (min)	VIP	P-value	log2(FC)
N-Carboxyacetyl-D-phenylalanine	HMBDR039102	232.061	4.016	1.111	0.000	37.990
Agaritinal	HMBDR040694	283.140	1.704	1.536	0.000	14.545
D-1-[(3-Carboxypropyl)amino]-1-deoxyfructose	HMBDR038663	266.123	0.816	8.636	0.000	11.310
(S)-2,3,4,5-Tetrahydropyridine-2-carboxylate	HMBDR012130	110.060	0.850	1.034	0.000	7.307
N5-Acetyl-N2-gamma-L-glutamyl-L-ornithine	HMBDR039423	605.282	4.081	3.591	0.000	7.153
Ustiloxin D	HMBDR041054	475.219	4.470	2.133	0.000	6.074
N2-(3-Hydroxysuccinoyl)arginine	HMBDR032765	329.084	1.184	4.284	0.000	5.518
N-Acetyl-L-glutamate 5-semialdehyde	HMBDR006488	156.066	0.906	1.428	0.000	2.683
2-Aminoheptanedioic acid	HMBDR034252	176.092	0.799	1.480	0.000	2.569
L-gamma-Glutamyl-S-allythio-L-cysteine	HMBDR038515	367.065	2.154	1.080	0.000	2.014
N2-Galacturonyl-L-lysine	HMBDR033105	305.135	0.816	1.179	0.001	1.973
Pyroglutamic acid	HMBDR000267	130.050	1.184	1.414	0.000	1.853
N,N'- Bis(gamma-glutamyl) cystine	HMBDR038458	499.114	0.886	1.916	0.004	0.407
N-gamma-Glutamyl-S-allycysteine	HMBDR031874	279.178	0.810	1.371	0.000	0.509
Isocitric acid	HMBDR000193	191.019	0.865	4.588	0.017	0.548
L-threo-Isocitric acid	HMBDR001874	191.019	1.197	4.778	0.008	0.831
L-Valine	HMBDR000883	118.086	0.867	1.908	0.000	0.929
O-Acetylsertine	HMBDR000311	130.050	0.867	1.791	0.000	1.471
L-Threonine	HMBDR000167	120.066	0.816	1.473	0.000	0.565
Citric acid	HMBDR000094	215.016	1.184	8.410	0.000	1.718
(−)-Dioxibrassinin	HMBDR038634	306.997	1.133	1.857	0.000	0.901
L-Proline	HMBDR000162	116.071	0.833	2.284	0.000	2.279
Glyclyglycylglycine	HMBDR029419	377.143	11.608	1.872	0.000	2.579
N6-Acetyl-5S-hydroxy-L-lysine	HMBDR033891	205.118	0.850	1.225	0.000	2.623
(S)-2-Azetidinocarboxylic acid	HMBDR029615	140.090	0.610	1.557	0.000	2.920
L-2-Amino-3-(1-pyrazolyl)propanoic acid	HMBDR034267	156.077	0.721	1.572	0.000	2.960
L-Isoleucine	HMBDR000172	132.102	1.422	8.430	0.000	2.970
Nigellimine N-oxide	HMBDR033436	237.123	3.226	1.033	0.000	3.139
L-Dihydroorotic acid	HMBDR003349	176.066	1.433	2.001	0.000	3.889
N5-(4-Methoxybenzyl)glutamine	HMBDR033598	267.134	3.226	1.254	0.000	4.033
L-Glutamine	HMBDR000641	147.076	0.799	3.313	0.000	4.087
Pyroglutamic acid	HMBDR000070	147.113	0.709	2.144	0.000	4.142
N-Perhydroxylpatic acid	HMBDR040830	327.120	7.595	1.316	0.004	4.986
(2S,2'S)-Pyrosaccharopine	HMBDR038676	276.155	2.289	1.017	0.000	7.770
L-2-Amino-5-hydroxypentanoic acid	HMBDR031658	172.037	1.683	1.822	0.006	15.423

Table 4. Information of carboxylic acids and derivatives with significant changes.
ples contained all the identified metabolites, there is a large amount of metabolites data available on FSD and TPFD under different processing. But the relative contents of individual compounds were remarkably different between the two groups.

The possible mechanism of substance and its bioactivities. Chemical structures of typical compounds and related bioactive in TPFD have been identified by OPLS-DA methods. For example, 43 metabolites were identified as chemical markers that could be used to distinguish FSD and TPFD samples according to qualitative research, and the contents of some compounds with anti-inflammatory and antioxidant, such as [6]-dehydroshogaol, capsaicin, arlatin, naringenin, methyl beta-D-glucopyranoside, and citroside A, significantly increased after processing according to quantitative research. This finding shows that traditional processing could possibly changed the contents of partial active compounds and improved the efficiency of *D. officinale*.

Anti-inflammatory and antioxidant related substance bases. 15 of 43 biomarkers screened for TPFD versus FSD, including [6]-Dehydroshogaol, N2-(3-Hydroxysuccinoyl)arginine, 4’5,8-Trihydroxyflavone, Naringenin, Citronellyl beta-sophoroside, Methyl beta-D-glucopyranoside, Hydroxysafflor yellow A, Corchoionol C 9-glucoside, Oleoside dimethyl ester, trans-p-Menthan-1,7,8-triol 8-glucoside, Acuminoside, Isocitric acid, D-threo-Isocitric acid, L-Isoleucine, Nerolidyl acetate, presented anti-inflammatory and antioxidant bio-activities. Their chemical construct show in following (Fig. 6).

This study found that 40 flavonoids were significantly different in TPFD and FSD samples, of which 26 flavonoids more abundant in TPFD than in FSD samples, while 14 flavonoids were significantly less abundant. Flavonoids as anti-inflammatory and antioxidant substances, two key substances, Naringenin and

Metabolites	Compound ID	m/z	Retention time (min)	VIP	P-value	log2(FC)
1-(3-Methyl-2-butenoyl)-6-apiosylglucose	HMDB003952	417.137	4.173	3.630	0.000	6.660
3-Hydroxy-methylsalicylic acid	HMDB000355	523.098	1.283	1.028	0.001	5.356
(3S,7E,9R)-4,7-Megastigmadiene-3,9-diol [apiosyl-(1→6)-glucoside]	HMDB0029766	549.255	3.696	1.583	0.000	4.962
Eriosiposide B	HMDB0038029	499.252	4.533	1.946	0.000	4.694
(3S,7E,9S)-7-Hydroxy-4,7-megastigmadien-3-one-9-glucoside	HMDB0036822	415.198	4.298	2.168	0.000	4.055
9-Hydroxy-7-megastigmen-3-one glucoside	HMDB0040701	417.213	4.059	1.208	0.000	2.878
3-Hydroxy-4,6-heptadiyne-1-yl 1-glucoside	HMDB0038688	395.204	4.321	2.859	0.000	2.553
Blumenol C glucoside	HMDB0040688	501.208	4.622	2.504	0.000	2.171
Eriosiposide A	HMDB0038028	501.208	4.622	2.504	0.000	2.171
(3S,5R,6S,7E,9x)-7-Megastigmene-3,6,9-triol 9-glucoside	HMDB0041176	435.224	3.696	1.929	0.000	2.102
Isopentyl gentiobioside	HMDB0041512	393.177	3.503	1.885	0.001	2.010
13-Oxo-9, 11-tridecadienoic acid	HMDB0034564	207.138	3.673	1.543	0.000	1.779
Corchoionol C 9-glucoside	HMDB0029772	431.192	3.674	4.472	0.000	1.724
Betulaluside A	HMDB0035634	355.173	4.278	3.904	0.000	1.246
Premil apiosyl-(1→6)-glucoside	HMDB0031956	379.161	3.546	1.250	0.000	1.196
(2E,4E,7R)-2,7-Dimethyl-2,4-octadiene-1,8-diol 8-O-b-D-glucopyranoside	HMDB0038747	355.173	3.901	7.401	0.000	1.187
[6]-Gingerdiol 5-O-beta-D-glucopyranoside	HMDB0036123	503.250	4.990	2.347	0.000	1.064
3,7-Dimethyl-5-octene-1,7-diol 1-glucoside	HMDB0034771	357.188	3.962	1.340	0.000	0.761
6-Feruloylglycose 2,3,4-trihydroxy-3-methylbutylglycoside	HMDB0036214	497.163	4.363	1.441	0.002	−0.443
Angelic acid	HMDB0029608	118.086	1.184	1.483	0.000	−2.146
Avenolic acid	HMDB0029978	279.232	9.311	1.333	0.000	−2.399
Mangiferic acid	HMDB0029800	263.237	8.565	1.810	0.000	−2.355
5a,6a-Epoxy-7E-megastigmente-3b,9e-diol 9-glucoside	HMDB0038306	389.218	9.883	1.387	0.000	−3.445
4,8,12,15-Octadecatetraenoic acid	HMDB0032672	277.216	9.709	1.684	0.000	−3.581
Stearidonic acid	HMDB0006547	277.216	8.799	2.397	0.000	−4.694
12-Hydroxy-8, 10-octadecadienoic acid	HMDB0029998	297.242	8.437	2.989	0.000	−4.897
9, 10-DHOME	HMDB0004704	313.238	8.414	2.529	0.000	−5.173
(R)-1-O-[b-D-Glucopyranosyl-(1→6)-b-D-glucopyranoside]-1,3-octanediol	HMDB0032799	488.271	3.569	2.465	0.000	−5.512
Corchorifatty acid F	HMDB0035919	309.207	8.814	1.747	0.000	−5.921

Table 5. Information of fatty acyls with significant changes.

https://doi.org/10.1038/s41598-022-17628-8
Figure 5. Orthogonal projections of latent structures discriminant analysis (OPLS-DA) and cluster analysis. (A): S-plots of the OPLS-DA model for the TPFD versus FSD sample comparison. (B): Loading of the OPLS-DA model for TPFD samples versus FSD samples. (C): Heatmap for TPFD samples versus FSD samples.
Metabolites	Compound ID	Class	VIP	log2(FC)	P-value	Activities	Reference
[6]-Dehydroshogaol	HMDB0033090	Cinnamic acids and derivatives	4.859	13.161	0.000	Anti-inflammatory Anti-oxidant	34,35,36
Capsaicin	HMDB0002227	Phenols	4.465	11.882	0.000	Anti-inflammatory; Analgesia	37,38,39
D-1-[(3-Carboxypropyl)amino]-1-deoxyfructose	HMDB0038663	Carboxylic acids and derivatives	8.636	11.310	0.000	N/A	N/A
Norcapsaicin	HMDB0036327	Phenols	4.355	9.189	0.000	Neuroprotection; Anti-Alzheimer	40,41,42
Arlatin	HMDB0035740	Prenol lipids	5.270	8.883	0.000	Anti-tumor	43
N2-(3-Hydroxy succinoyl)arginine	HMDB0032765	Carboxylic acids and derivatives	4.284	5.518	0.000	Anti-inflammatory	44
(4R,5S,7R,11S)-11,12-Dihydroxy-1(10)-spirovetiven-2-one 11-glucoside	HMDB0033150	Prenol lipids	4.807	4.462	0.000	N/A	N/A
Maltol	HMDB0030776	Pyrans	7.266	4.351	0.001	Anti-bacterial, Anti-toxicity	45,46
4',5,8-Trihydroxyflavonone	HMDB0031824	Flavonoids	10.133	4.266	0.000	Anti-mutagenic	47
Naringenin	HMDB0002670	Flavonoids	5.399	4.219	0.000	Anti-bacterial	48,49
Citronellyl beta-sophoroside	HMDB0032839	Prenol lipids	8.101	3.354	0.000	Anti-inflammatory	50
Methyl beta-D-glucopyranoside	HMDB0029965	Organooxygen compounds	5.375	3.525	0.000	Anti-tumor, Anti-bacterial, Anti-nociceptive, Anti-inflammatory	51,52
Hydroxysafflor yellow A	HMDB0040677	Cinnamic acids and derivatives	6.967	3.302	0.000	Anti-bacterial, Anti-inflammation	53
Apigenin 7-[(galactosyl)-(1->4)-mannoside]	HMDB0037852	Flavonoids	5.394	3.037	0.000	N/A	N/A
5a,6a-Epoxy-7E-megastigmen-3a,9e-diol 3-glucoside	HMDB0031676	Organooxygen compounds	4.134	2.426	0.000	N/A	N/A
Foeniculoside VIII	HMDB0033009	Organooxygen compounds	4.373	2.381	0.001	N/A	N/A
Kiwisonoside	HMDB0038691	Prenol lipids	4.578	2.217	0.000	N/A	N/A
Icariside B8	HMDB0036846	Prenol lipids	4.161	1.975	0.000	N/A	N/A
Cochoinosol C 9-glucoside	HMDB0029772	Fatty Acyls	4.472	1.724	0.000	N/A	N/A
Citroside A	HMDB0030370	Prenol lipids	4.761	1.723	0.000	Hypertension, Anti-inflammatory	54
6Z,8-Hydroxygeraniol 8-O-glucoside	HMDB0035925	Prenol lipids	5.028	1.480	0.000	N/A	N/A
beta-D-Galactopyranosyl-(1->3)-beta-D-galactopyranosyl-(1->6)-D-galactose	HMDB0038853	Organooxygen compounds	5.111	1.441	0.000	N/A	N/A
Oleoside dimethyl ester	HMDB0031350	Prenol lipids	4.651	1.346	0.000	Anti-oxidant	55
6-Kestose	HMDB0033673	Organooxygen compounds	4.641	1.289	0.000	N/A	N/A
(2E,4E,7R)-2,7-Dimethyl-2,4-octadiene-1,8-diol 8-O-b-D-glucopyranoside	HMDB0038747	Fatty Acyls	7.401	1.187	0.000	N/A	N/A
Linalool oxide D 3-[(apiosyl)-(1->6)-glucoside]	HMDB0031367	Organooxygen compounds	4.502	0.881	0.000	N/A	N/A
trans-p-Menthan-1,7,8-triol 8-glucoide	HMDB0034784	Organooxygen compounds	4.657	0.628	0.003	N/A	N/A
Osmanthuside B	HMDB0038749	Cinnamic acids and derivatives	4.202	0.567	0.001	Anti-depressant, Inflammatory, Anti-oxidant, Lipase inhibition	56
Trehalose	HMDB0000975	Organooxygen compounds	7.692	0.301	0.004	Anti-depressant	57
Acuminoside	HMDB0029347	Prenol lipids	4.358	-0.294	0.031	Immune enhancer abd Anti-inflammatory	58
Isocitric acid	HMDB000193	Carboxylic acids and derivatives	4.588	-0.548	0.017	Surfactants, detergents, ion chelators and biologically active, Anti-oxidant	59,60

Continued
4',5,8-Trihydroxyflavanone of flavonoids' compounds, have outstanding changed (Table 3) so that TPSD can better exert its anti-inflammatory and antioxidant effects (Table 6).

In order to promote further research into FSD and TPFD, attentions should be paid to the following work in the future: (1) Although current metabolites technologies have been used to study TPFD, there are limitedly comprehensive metabonomics studies. Obviously, the negative or positive ion model method such as metabolomics cannot satisfy the necessary deep research into D. officinale. (2) it is important to comprehensively investigate why differences exist in active compounds between FSD and TPFD which can provide propitiate conditions for metabolite accumulation. (3) its TPFD applications has been rarely described, and TPFD improvements are still required for its industrial applications. (4) the functions of most these compositions need to confirm through functional investigation.

Conclusion

For thousands of years, D. officinale has been processed to enhance its medicinal value for use in TCM. The chemical composition of this material after processing is key to its efficacy. Traditional processing of D. officinale produces a difference in the contents of key metabolites. Moreover, combining metabolomics and multivariate statistical analysis methods can accurately identify markers that differentiate processed and raw materials. Thus, we revealed the basis of the improvement in efficacy of TPFD compared with FSD, enabling the identification of active substances with functions not included in the traditional use of TPFD. These results indicate the need for the further exploration of TPFD in the treatment of additional, previously untested conditions. This systematic study of FSD and TPFD provides a useful analytical strategy for rapidly screening and identifying the constituents of other TCMs and TCM formulas. In addition, the results of this research provide a theoretical basis for quality control.

Table 6. 43 biomarkers screened for TPFD vs FSD and their biological activities.

Metabolites	Compound ID	Class	VIP	log2(FC)	P-value	Activities	Reference
L-Histidinol	HMDB0003431	Organonitrogen compounds	6.333	-0.585	0.000	Against CDDP, Nephrotoxicity, cytoprotective and attenuate fanconi syndrome, Anti-tumour activity and cardiotoxicity	73, 74
3,5-Dihydroxyphenyl 1-O-(6-O-galloyl-beta-D-glucopyranoside)	HMDB0039307	Organooxygen compounds	8.940	-0.709	0.000	Anti-oxidant	76
D-threo-Isocitric acid	HMDB0001874	Carboxylic acids and derivatives	4.778	-0.831	0.001	Anti-inflammatory	77
cis-Resveratrol 3-sulfate	HMDB0041712	Stilbenes	7.225	-0.906	0.000	N/A	N/A
Citric acid	HMDB0000094	Carboxylic acids and derivatives	8.410	-1.718	0.000	Anti-oxidant, Anti-fatigue	72
(5)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->2)-b-D-glucopyranoside]	HMDB0040845	Organooxygen compounds	5.223	-1.917	0.000	N/A	N/A
(5)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-a-L-rhamnopyranosyl-(1->6)-b-D-glucopyranoside]	HMDB0040846	Organooxygen compounds	6.236	-2.019	0.000	N/A	N/A
3,4-Dihydro-2H-1-benzopyran-2-one	HMDB0036626	3,4-dihydrocoumarins	8.459	-2.892	0.000	Anti-tyrosinase	80
L-Isoleucine	HMDB0000172	Carboxylic acids and derivatives	8.430	-2.970	0.000	Anti-oxidant	81
1-O-Cinnamoyl-(6-arabinosyl-glucose)	HMDB0030294	Cinnamic acids and derivatives	11.458	-3.554	0.000	N/A	N/A
3,8-Dihydroxy-9-methoxycoumestan	HMDB0030562	Isoflavonoids	4.619	-4.279	0.000	N/A	N/A
Nerolidyl acetate	HMDB0039630	Prenol lipids	4.241	-7.130	0.000	Anti-inflammatory	82
Figure 6. Chemical constructure of 15 significant increased compounds.

Received: 9 March 2022; Accepted: 28 July 2022
Published online: 31 August 2022

References
1. Ngo, L. T., Okogun, J. I. & Folk, W. R. 21st century natural product research and drug development and traditional medicines. Nat. Prod. Rep. 30, 584–592 (2013).
2. Li, S. P., Wu, D. T., Lv, G. P. & Zhao, J. Carbohydrates analysis in herbal glycomics. Trac-Trends Anal. Chem. 52, 155–169 (2013).
3. Lei, H. B. et al. A comprehensive quality evaluation of Fuzi and its processed product through integration of UPLC-QTOF/MS combined MS/MS-based mass spectral molecular networking with multivariate statistical analysis and HPLC-MS/MS. J. Ethnopharmacol. 266, 113455 (2021).
4. Zhao, Z. Z. et al. A unique issue in the standardization of Chinese materia medica: Processing. Planta Med. 76, 1975–1986 (2010).
7. Xu, M.
9. Zhao, Y.J., Han, B.X., Peng, H.S. & Peng, D.Y. Research on evolution and transition of quality evaluation of Shihu.
12. Wan, J.Y.
15. Hu, C. & Xu, G. Metabolomics and traditional Chinese medicine.
14. Sumner, L.W., Lei, Z., Nikolau, B.J. & Saito, K. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Nat. Prod. Rep. 32, 212–229 (2015).

16. Zhang, A. et al. Metabolomics: Towards understanding traditional Chinese medicine. Planta Med. 76, 2026–2035 (2010).
17. Sun, H. et al. Metabolomics study on Fuzi and its processed products using ultra-performance liquid-chromatography/electrospray-argon ionization synapt high-definition mass spectrometry coupled with pattern recognition analysis. Analyst 137, 170–185 (2012).
18. Wang, X. et al. Metabolomics study on the toxicity of aconite root and its processed products using ultraperformance liquid-chromatography/electrospray-argon ionization synapt high-definition mass spectrometry coupled with pattern recognition approach and ingenuity pathways analysis. J. Proteome Res. 11, 1284–1301 (2012).
19. Geng, L. et al. Discrimination of raw and vinegar-processed Genkwa Flos using metabolomics coupled with multivariate data analysis: A discrimination study with metabolomics coupled with PCA. Fitoterapia 84, 286–294 (2013).

20. Chen, H. et al. Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium officinale Kimura et. Migo. Front Pharmacol. 12, 726528 (2021).
21. Wang, Y., Tong, Y., Adejobi, O.I., Wang, Y.H. & Liu, A.Z. Research advances in multi-omics on the traditional Chinese Herb Dendrobium officinale. Front. Pharm. Sci. 12, 808288 (2022).
22. Yue, H., Zeng, H. & Ding, K. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin. J. Nat. Med. 18, 1–27 (2020).
23. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009).
24. Surmacz, I. & Swieszewska, E. Polysaccharides−secondary metabolites or physiologically important superlipids?. Biochimie Biophys. Res. Commun. 407, 627–632 (2011).
25. Kidd, P. Vitamin D and K as pleiotropic nutrients: Clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. 15, 199–222 (2010).
26. Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 72, 76–90 (2014).
27. Bayat, P., Farshchi, M., Yousefian, M., Mahmoudi, M. & Yagdian-Robati, R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int. Immunopharmacol. 95, 107562 (2021).
28. Heim, K.E., Tagliaferro, A.R. & Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572–584 (2002).
29. Aquila, S., Giner, R.M., Recio, M.C., Spegazzini, E.D. & Rios, J.L. Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots. J. Ethnopharmacol. 121, 333–337 (2009).
30. Sharma, H., Kumar, P., Deshmukh, R.R., Bisahaye, A. & Kumar, S. Pentacyclic triterpenes: New tools to fight metabolic syndrome. J. Agric. Food Chem. 57, 4467–4477 (2009).
31. Privitera, R. & Anand, P. Capsaicin 8% patch Quteza and other current treatments for neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN). Care Open Support. Palliat. Care 15, 125–131 (2021).
32. Vila, D.L., Nunes, N., Almeida, P., Gomes, J., Rosa, C., & Alvarez-Leite, J. Signaling targets related to antiobesity effects of capsicain: A scoping review. Adv. Nutr. 1–12 (2021).
33. Simpson, D.M., Estaniela, L., Brown, S.J. & Sampson, J. An open-label pilot study of high-concentration capsaicin patch in painful HIV neuropathy. J. Pain Symptom Manag. 35(3), 299–306 (2008).
34. Westphal, C., Cermax, J., Cole, R.O., Shortt, G.F., Perni, R., & Ponduru, S. Formulations and use of TRP channel activators in treatment of nervous system disorders. PCT Int. Appl. WO 2015160843 A1 (2015).
35. Chen, C.L., Mao, C., Zhang, J. Application of vaniloid receptor agonist to prevent anti-Alzheimer's medical products. Faming Zhouzi Shengying. CN 1736485 A (2006).
36. Ando, R., Sakurada, S., Kisara, K., Takahashi, M. & Ohnawa, K. Effects of intra-arterially administered capsainoids on vocalization in guinea pigs and medial thalamic neuronal activity in cats. Nippon Yakurigaku Zasshi 79, 275–283 (1982).
37. Chen, M. et al. Ligustrum robustum (Roxb.) blume extract modulates gut microbiota and prevents metabolic syndrome in high-fat diet-fed mice. J. Ethnopharmacol. 268, 11695 (2021).
Miceli, N. *D. officinale* We gratefully thank the local people and government of Wenshan, Yunnan Province, China, especially Mr. Gu, for his technical support in metabolome detection and analysis. This study was funded by the Natural Science Foundation of China (Grant Nos. 2015CASE-ABRIRG001 and Y4ZK111B01).

Acknowledgements

We gratefully thank the local people and government of Wenshan, Yunnan Province, China, especially Mr. Gu, who provided us with valuable information about *D. officinale*. In particular, we would like to thank Mr. Shi for his technical support in metabolome detection and analysis. This study was funded by the Natural Science Foundation of China (Grant Nos. 31670340 and 31970357) and the Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences. This work was also supported by Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (Grant Nos. 2015CASE-ABRIRG001 and Y4ZK111B01).
Author contributions
L.Y. designed the project, coordinated the entire study, and revised the manuscript. D.Z. performed all the experiments and the data analysis. Y.Z. and Z.C. conducted the field investigation and data collation. X.Y. analyzed the data, and revised the manuscript. Y.Z. and L.G. wrote and revised the final manuscript. All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.G. or L.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022, corrected publication 2023