WRONGKIAN-TYPE FORMULA FOR INHOMOGENEOUS TQ EQUATIONS

Rafael I. Nepomechie

It is known that the transfer-matrix eigenvalues of the isotropic open Heisenberg quantum spin-1/2 chain with nondiagonal boundary magnetic fields satisfy a TQ equation with an inhomogeneous term. We derive a discrete Wronskian-type formula relating a solution of this inhomogeneous TQ equation to the corresponding solution of a dual inhomogeneous TQ equation.

Keywords: Bethe ansatz, TQ equation, discrete Wronskian, boundary integrability

DOI: 10.1134/S004057792009007X

1. Introduction and summary of results

We consider the famous Baxter TQ equation for the closed periodic XXX spin chain of length N:

$$T(u)Q(u) = (u^+)^N Q^-(u) + (u^-)^N Q^+(u).$$ (1.1)

Here and hereafter, we use the brief notation $f^\pm(u) = f(u \pm i/2)$ and $f^{\pm\pm}(u) = f(u \pm i)$. It is known that for a given transfer-matrix eigenvalue $T(u)$, Eq. (1.1) can be regarded as a second-order finite-difference equation for $Q(u)$. The eigenvalue $T(u)$ is necessarily a polynomial in u (of degree N) because the model is integrable. It is well known that Eq. (1.1) has two independent polynomial solutions [1]. One of them is a polynomial $Q(u)$ of degree $M \leq N/2$ of the form

$$Q(u) = \prod_{k=1}^{M} (u - u_k),$$ (1.2)

whose zeros $\{u_k\}$ are solutions of the Bethe equations that follow directly from (1.1)

$$\left(\frac{u_j + i/2}{u_j - i/2}\right)^N = \prod_{k=1}^{M} \frac{u_j - u_k + i}{u_j - u_k - i}, \quad j = 1, \ldots, M.$$ (1.3)

The other is a polynomial $P(u)$ of degree $N - M + 1 > N/2$ corresponding to Bethe roots “on the other side of the equator.” These two solutions are related by a discrete Wronskian (or Casoratian) formula

$$P^+(u)Q^-(u) - P^-(u)Q^+(u) \propto u^N,$$ (1.4)
where \propto denotes equality up to a multiplicative constant. The existence of a second polynomial solution of the TQ equation is equivalent to the admissibility of the Bethe roots [2], [3]. Using the Wronskian formula, we can succinctly reformulate the Q-system for this model [4] (which provides an efficient way to compute the admissible Bethe roots) in terms of Q and P [5], [6].

A generalization of Wronskian formula (1.4) for the open XXX spin chain with diagonal boundary fields was recently obtained [7]:

$$g(u)P^+(u)Q^-(u) - f(u)P^-(u)Q^+(u) \propto u^{2N+1},$$

(1.5)

where $Q(u)$ and $P(u)$ are the respective polynomial solutions of a TQ and a dual TQ equation (see Eqs. (2.7) and (2.12) below). Moreover, the functions $f(u)$ and $g(u)$ are given by (diagonal case)

$$f(u) = (u - i\alpha)(u + i\beta), \quad g(u) = f(-u) = (u + i\alpha)(u - i\beta),$$

(1.6)

where α and β are boundary parameters. This result was used in [7] to formulate a Q-system for the model.

Our main result is a further generalization of the Wronskian formula to the case of non-diagonal boundary fields:

$$g(u)P^+(u)Q^-(u) - f(u)P^-(u)Q^+(u) = \mu(u)u^{2N+1},$$

(1.7)

where $Q(u)$ and $P(u)$ are the respective polynomial solutions of TQ equation (2.7) and dual TQ equation (2.12), $f(u)$ and $g(u)$ are now given by (2.9), and, most importantly, $\mu(u)$ is a polynomial that satisfies the remarkably simple relation

$$\mu^+(u) - \mu^-(u) = \gamma u(Q(u) - P(u)).$$

(1.8)

In other words, $\mu(u)$ is the discrete integral of $\gamma u(Q(u) - P(u))$. In the diagonal case, $\gamma = 0$; it then follows from (1.8) that $\mu(u) = \text{const}$, and (1.7) hence reduces to (1.5). The appearance of the nontrivial factor $\mu(u)$ in Wronskian-type formulas (1.7) and (1.8) is due to the presence of an inhomogeneous term in the TQ equation for the model [9]–[11]. We expect that this Wronskian-type formula will be useful for formulating a Q-system for this model, but this remains a challenge.

In Sec. 2, we briefly review the considered model and its TQ equations and then obtain a dual TQ equation. In Sec. 3, we derive the Wronskian-type formulas (1.7) and (1.8).

2. The model and its TQ equations

We consider the isotropic (XXX) open Heisenberg quantum spin-1/2 chain of length N with boundary magnetic fields, whose Hamiltonian is given by

$$H = \sum_{k=1}^{N-1} \vec{\sigma}_k \cdot \vec{\sigma}_{k+1} - \frac{\xi}{\beta} \sigma_1^x - \frac{1}{\beta} \sigma_1^z + \frac{1}{\alpha} \sigma_N^z,$$

(2.1)

where $\vec{\sigma} = (\sigma^x, \sigma^y, \sigma^z)$ are the usual Pauli matrices and α, β, and ξ are arbitrary real parameters. This model is not $U(1)$-invariant in the nondiagonal case $\xi \neq 0$.

To construct the corresponding transfer matrix, we use the R-matrix (solution of the Yang–Baxter equation) given by the 4×4 matrix

$$R(u) = \left(u - \frac{i}{2} \right) I + i\mathbb{P}$$

(2.2)

\mathbb{P}.

1After completing this work, we learned of a similar result for the closed XXX spin chain with a nondiagonal twist (see Theorem 4.10 in [8].
(where \mathbb{P} is the permutation matrix and I is the identity matrix) and the K-matrices (solutions of boundary Yang–Baxter equations) given by the 2×2 matrices [12], [13]

$$K^R(u) = \begin{pmatrix} i(\alpha - 1/2) + u & 0 \\ 0 & i(\alpha + 1/2) - u \end{pmatrix},$$

$$K^L(u) = \begin{pmatrix} i(\beta - 1/2) - u & -\xi(u + i/2) \\ -\xi(u + i/2) & i(\beta + 1/2) + u \end{pmatrix},$$

(2.3)

which depend on the boundary parameters α, β, and ξ.

The transfer matrix $T(u) = T(u; \alpha, \beta, \xi)$ is given by [14]

$$T(u) = \text{tr}_0 K^L_0(u)M_0(u)K^R_0(u)\tilde{M}_0(u),$$

(2.4)

where M and \tilde{M} are monodromy matrices given by

$$M_0(u) = R_{01}(u)R_{02}(u) \cdots R_{0N}(u), \quad \tilde{M}_0(u) = R_{0N}(u) \cdots R_{02}(u)R_{01}(u).$$

(2.5)

The transfer matrix is constructed to satisfy the fundamental commutativity condition

$$[T(u), T(v)] = 0$$

(2.6)

and the relation $T(-u) = T(u)$. Hamiltonian (2.1) is proportional to $(dT(u)/du)_{u=i/2}$ up to an additive constant.

The eigenvalues $T(u)$ of the transfer matrix $T(u)$ are polynomials in u (as a consequence of (2.6)) and satisfy the TQ equation [9]–[11]

$$-uT(u)Q(u) = g^-(u)(u^+)^{2N+1}Q^--(u) + f^+(u)(u^-)^{2N+1}Q^+- (u - u^+)^{2N+1},$$

(2.7)

where $Q(u)$ is an even polynomial of degree $2N$

$$Q(u) = \prod_{k=1}^{N} (u - u_k)(u + u_k),$$

(2.8)

the functions $f(u)$ and $g(u)$ are given by

$$f(u) = (u - i\alpha)(u\sqrt{1 + \xi^2} + i\beta), \quad g(u) = f(-u) = (u + i\alpha)(u\sqrt{1 + \xi^2} - i\beta),$$

(2.9)

and γ is defined by

$$\gamma = -2(1 - \sqrt{1 + \xi^2}).$$

(2.10)

We note the presence of an inhomogeneous term (proportional to γ) in TQ equation (2.7). In the diagonal case $\xi = 0$, from (2.10), we see that $\gamma = 0$ and the inhomogeneous term hence disappears. In this case, the functions $f(u)$ and $g(u)$ in (2.9) reduce to (1.6).

The transfer matrix transforms under charge conjugation by reflection (negation) of all the boundary parameters:

$$C T(u; \alpha, \beta, \xi) C = T(u; -\alpha, -\beta, -\xi), \quad C = (\sigma^x)^{\otimes N}. $$

(2.11)
We thus obtain a dual TQ equation from (2.7) as in [7] by changing $Q(u) \rightarrow P(u)$ and reflecting the boundary parameters $\alpha \rightarrow -\alpha$, $\beta \rightarrow -\beta$, and $\xi \rightarrow -\xi$, which implies that $f(u)$ and $g(u)$ become interchanged,

$$- uT(u)P(u) = f^-(u)(u^+)^{2N+1}P^--(u) + g^+(u)(u^-)^{2N+1}P^{++}(u) - \gamma u(u^-u^+)^{2N+1}, \quad (2.12)$$

where $P(u)$ is also an even polynomial of degree $2N$,

$$P(u) = \prod_{k=1}^{N} (u - \tilde{u}_k)(u + \tilde{u}_k), \quad (2.13)$$

whose zeros can be regarded as dual Bethe roots. We emphasize that the same eigenvalue $T(u)$ appears in both (2.7) and (2.12).

3. The Wronskian-type formula

We now consider the relation between $Q(u)$ (a solution of TQ equation (2.7) for some transfer-matrix eigenvalue $T(u)$) and the corresponding $P(u)$ (a solution of dual TQ equation (2.12) for the same transfer-matrix eigenvalue $T(u)$). For this, we use the ansatz

$$g(u)P^+(u)Q^-(u) - f(u)P^-(u)Q^+(u) = \mu(u)u^{2N+1}, \quad (3.1)$$

where $f(u)$ and $g(u)$ are given by (2.9) and the function $\mu(u)$ is yet to be determined. This ansatz is motivated by result (1.5) in the diagonal case.

We next define $R(u)$, following the results in [1], as

$$R = \frac{u^{2N+1}}{Q^+Q^-} = \frac{1}{\mu} \left(g \frac{P^+}{Q^+} - f \frac{P^-}{Q^-} \right), \quad (3.2)$$

where the second equality follows from ansatz (3.1). Dividing both sides of TQ equation (2.7) by $QQ^{++}Q^{--}$, we obtain

$$- \frac{uT}{Q^{++}Q^{--}} = f^+R^- + g^-R^+ - \gamma uQR^+R^- \quad (3.3)$$

Substituting R in this equation using the second equality in (3.2) and then multiplying both sides of the resulting equation by $\mu^+\mu^-Q^{++}Q^{--}$, we obtain

$$-uT\mu^+\mu^- = f^+g \frac{PQ^{++}Q^{--}}{Q}(\mu^+ - \mu^- + \gamma uP) - f^+f^-P^--Q^{++}(\mu^+ + \gamma uP) +$$

$$+ g^+g^-P^{++}Q^{--}(\mu^- - \gamma uP) + f^-g^+P^--P^{++}Q(\gamma u). \quad (3.4)$$

Similarly, we define $S(u)$ as

$$S = \frac{u^{2N+1}}{P^+P^-} = \frac{1}{\mu} \left(g \frac{Q^-}{P^-} - f \frac{Q^+}{P^+} \right), \quad (3.5)$$

and divide both sides of dual TQ equation (2.12) by $PP^{++}P^{--}$. We thus obtain

$$-\frac{uT}{P^{++}P^{--}} = f^+S^+ + g^+S^- - \gamma uPS^+S^- \quad (3.6)$$
Substituting the expression for S in this equation using the second equality in (3.5) and then multiplying both sides by $\mu^+\mu^-P^{++}P^{--}$, we obtain

$$-uT\mu^+\mu^- = f^+g^-PQ^{++}Q^{--}(\gamma u) - f^+f^-P^{--}Q^{++}(\mu^- + \gamma uQ) +$$

$$+ g^+g^-P^{++}Q^{--}(\mu^- - \gamma uQ) - f^+g^+\frac{P^{--}P^{++}Q}{P}(\mu^- - \mu^- - \gamma uQ).$$

(3.7)

Equating the right-hand sides of (3.4) and (3.7), we obtain the constraint

$$[\mu^+ - \mu^- + \gamma u(P - Q)]\frac{1}{QP}(gP^+Q^- - fP^-Q^+)^+ (gP^+Q^- - fP^-Q^+)^- = 0,$$

(3.8)

which is obviously satisfied if we set

$$\mu^+ - \mu^- = \gamma u(Q - P)$$

(3.9)

as required by (1.8). For given polynomials $Q(u)$ and $P(u)$, Eq. (3.9) can be solved for a polynomial function $\mu(u)$ up to an arbitrary additive constant.

Result (3.9) can in fact be obtained more directly. Let

$$\mu(u) = \frac{1}{u^{2N+1}}(g(u)P^+(u)Q^-(u) - f(u)P^-(u)Q^+(u)),$$

(3.10)

which is equivalent to (1.7). We multiply TQ equation (2.7) by $P(u)/(u^2-u)^{2N+1}$, multiply dual TQ equation (2.12) by $Q(u)/(u^2-u)^{2N+1}$, and subtract the second equation from the first. The obtained result written in terms of μ given by (3.10) exactly coincides with (3.9).

Acknowledgments

The author thanks the organizers of the CQIS-2019 workshop in St. Petersburg for the kind invitation.

Conflicts of interest. The author declares no conflicts of interest.

REFERENCES

1. G. P. Pronko and Yu. G. Stroganov, “Bethe equations ‘on the wrong side of equator’,” J. Phys. A: Math. Gen., 32, 2333–2340 (1999); arXiv:hep-th/9808153v2 (1998).
2. E. Mukhin, V. Tarasov, and A. Varchenko, “Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum,” Commun. Math. Phys., 288, 1–42 (2009); arXiv:0706.0688v2 [math.QA] (2007).
3. V. Tarasov, “Completeness of the Bethe ansatz for the periodic isotropic Heisenberg model,” Rev. Math. Phys., 30, 1840018 (2018).
4. C. Marboe and D. Volin, “Fast analytic solver of rational Bethe equations,” J. Phys. A: Math. Theor., 50, 204002 (2017); arXiv:1608.06504v3 [math-ph] (2016).
5. E. Granet and J. L. Jacobsen, “On zero-remainder conditions in the Bethe ansatz,” JHEP, 2003, 178 (2020); arXiv:1910.07797v2 [hep-th] (2019).
6. Z. Bajnok, E. Granet, J. L. Jacobsen, and R. I. Nepomechie, “On generalized Q-systems,” JHEP, 2003, 177 (2020); arXiv:1910.07805v2 [hep-th] (2019).
7. R. I. Nepomechie, “Q-systems with boundary parameters,” J. Phys. A: Math. Theor., 53, 294001 (2020); arXiv:1912.12702v4 [hep-th] (2019).
8. S. Belliard, N. A. Slavnov, and B. Vallet, “Modified algebraic Bethe ansatz: Twisted XXX case,” SIGMA, 14, 054 (2018); arXiv:1804.00597v3 [math-ph] (2018).

2 The author thanks a referee for this nice observation.
9. J. Cao, W.-L. Yang, K. Shi, and Y. Wang, “Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions,” *Nucl. Phys. B*, 875, 152–165 (2013); arXiv:1306.1742v3 [math-ph] (2013).

10. R. I. Nepomechie, “An inhomogeneous T-Q equation for the open XXX chain with general boundary terms: Completeness and arbitrary spin,” *J. Phys. A: Math. Theor.*, 46, 442002 (2013); arXiv:1307.5049v2 [math-ph] (2013).

11. Y. Wang, W.-L. Yang, J. Cao, and K. Shi, *Off-Diagonal Bethe Ansatz for Exactly Solvable Models*, Springer, Heidelberg (2015).

12. S. Ghoshal and A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory,” *Internat. J. Modern Phys. A*, 9, 3841–3885 (1994); Erratum, 9, 4353 (1994); arXiv:hep-th/9306002v2 (1993).

13. H. J. de Vega and A. Gonzalez-Ruiz, “Boundary K-matrices for the XYZ, XXZ, and XXX spin chains,” *J. Phys. A: Math. Gen.*, 27, 6129–6137 (1994); arXiv:hep-th/9306089v1 (1993).

14. E. K. Sklyanin, “Boundary conditions for integrable quantum systems,” *J. Phys. A: Math. Gen.*, 21, 2375–2389 (1988).