The Hilbert scheme of hyperelliptic Jacobians and moduli of Picard sheaves

by

Andrea T. Ricolfi
The Hilbert scheme of hyperelliptic Jacobians and moduli of Picard sheaves

Andrea T. Ricolfi
THE HILBERT SCHEME OF HYPERELLiptic JACOBIANS AND MODULI OF PICARD SHEAVES

ANDREA T. RICOLFI

ABSTRACT. Let C be a hyperelliptic curve embedded in its Jacobian J via an Abel–Jacobi map. We compute the scheme structure of the Hilbert scheme component of Hilb_J containing the Abel–Jacobi embedding as a point. We relate the result to the ramification (and to the fibres) of the Torelli morphism $M_g \rightarrow A_g$ along the hyperelliptic locus. As an application, we determine the scheme structure of the moduli space of Picard sheaves (introduced by Mukai) on a hyperelliptic Jacobian.

CONTENTS

0. Introduction 1
1. Ramification of Torelli and the Hilbert scheme 2
2. Moduli spaces with level structures 4
3. Proof of the main theorem 6
4. An application to moduli of Picard sheaves 9
References 12

0. INTRODUCTION

Main result. In this note we study the deformation theory of a smooth hyperelliptic curve C of genus $g \geq 3$, embedded in its Jacobian $J = (\text{Pic}^0 C, \Theta_C)$ via an Abel–Jacobi map

$$aj : C \hookrightarrow J.$$ We work over an algebraically closed field k. Our aim is to compute the scheme structure of the Hilbert scheme component

$$\text{Hilb}_{C/J} \subset \text{Hilb}_J$$ containing the point defined by aj. It is well known that the embedded deformations of C into J are parametrised by translations of C, and that they are obstructed (see the next section for more details). In other words $\text{Hilb}_{C/J}$ is singular, with reduced underlying variety isomorphic to J. The tangent space dimension to the Hilbert scheme has been computed in [10, 7]. The result is

$$\text{dim}_k H^0(C, N_C) = 2g - 2.$$ Therefore, as $\text{dim } J = g$, the non-reduced structure of $\text{Hilb}_{C/J}$ along J is accounted for (up to first order) by $g - 2$ extra tangents. By homogeneity of the Jacobian, it is natural to expect a decomposition

$$\text{Hilb}_{C/J} = J \times R_g$$ for some Artinian scheme R_g with embedding dimension $g - 2$. As we shall see, this is precisely what happens, and R_g turns out to be the “smallest” Artinian scheme with the required embedding dimension. More precisely, let

$$R_g = \text{Spec } k[s_1, \ldots, s_{g-2}]/m^2.$$
where \(m = (s_1, \ldots, s_{g-2}) \) is the maximal ideal of the origin. The main result of this note is the following.

Theorem 1. Let \(C \) be a hyperelliptic curve of genus \(g \geq 2 \), and let \(J \) be its Jacobian. Then there is an isomorphism of schemes

\[
\text{Hilb}_{C/J} \cong J \times R_g,
\]

where \(R_g \) is the Artinian scheme \((0.1)\).

Interpretation. Let \(\mathcal{M}_g \) be the moduli stack of smooth curves of genus \(g \), and let \(A_g \) be the moduli stack of principally polarised Abelian varieties of dimension \(g \). The Torelli morphism

\[
\tau_g : \mathcal{M}_g \to A_g
\]

sends a curve \(C \) to its Jacobian \(J = \text{Pic}^0 C \), principally polarised by the Theta divisor \(\Theta_C \). One can interpret the Artinian scheme \(R_g \) as the fibre of \(\tau_g \) over a hyperelliptic point \([J, \Theta_C] \in A_g\). This makes explicit the link between the ramification of \(\tau_g \) along the hyperelliptic locus (in other words, the failure of the infinitesimal Torelli property) and the singularities of the Hilbert scheme \(\text{Hilb}_{C/J} \) (in other words, the obstructions to deform \(C \) in \(J \)).

Moduli of Picard sheaves. As an application of our result, in Section 4 we compute the scheme structure of certain moduli spaces of Picard sheaves on a hyperelliptic Jacobian \(J \). Mukai introduced these spaces as an application of his Fourier transform; he completed their study in the non-hyperelliptic case \([11, 12]\), leaving open the hyperelliptic one.

Let \(F \) be the Fourier–Mukai transform of a line bundle \(\xi = O_C(d \mathfrak{p}_0) \), where \(\mathfrak{p}_0 \in C \) and we assume \(1 \leq d \leq g-1 \) to ensure that \(F \) is a simple sheaf on \(J \). Let \(M(F) \) be the connected component of the moduli space of simple sheaves containing the point \([F] \). Mukai proved that \(M(F)_{\text{red}} = \tilde{J} \times J \), the isomorphism being given by the family of twists and translations of \(F \) \([12, \text{Example 1.15}]\). We prove the following.

Theorem 2. There is an isomorphism of schemes \(M(F) \cong \tilde{J} \times J \times R_g \).

Conventions. We work over an algebraically closed field \(k \) of characteristic \(p \neq 2 \). All curves are smooth and proper over \(k \), and their Jacobians are principally polarised by the Theta divisor.

1. Ramification of Torelli and the Hilbert Scheme

In this section we provide the framework where the problem tackled in this note naturally lives in.

1.1. Deformations of Abel–Jacobi curves

The following theorem was proved in the stated form by Lange–Sernesi, but see also the work of Griffiths \([7]\).

Theorem 1.1 ([10, Theorem 1.2]**).** Let \(C \) be a smooth curve of genus \(g \geq 3 \).

(i) If \(C \) is non-hyperelliptic, then \(\text{Hilb}_{C/J} \) is smooth of dimension \(g \).

(ii) If \(C \) is hyperelliptic, then \(\text{Hilb}_{C/J} \) is irreducible of dimension \(g \) and everywhere non-reduced, with Zariski tangent space of dimension \(2g-2 \).

In both cases, the only deformations of \(C \) in \(J \) are translations.

The statement of Theorem 1.1 is proved over \(\mathbb{C} \) in \([10]\), but it holds over algebraically closed fields \(k \) of arbitrary characteristic. To see this, we need Collino’s extension of the Ran–Matsusaka criterion for Jacobians to an arbitrary field, which we state here for completeness.

Theorem 1.2 ([5]**).** Let \(X \) be an Abelian variety of dimension \(g \) over an algebraically closed field \(k \). Let \(D \) be an effective 1-cycle generating \(X \) and let \(\Theta \subset X \) be an ample divisor such that \(D \cdot \Theta = g \). Then \((X, \Theta, D) \) is a Jacobian triple.
Let $C \to \text{Spec } k$ be a smooth curve of genus g and fix an Abel–Jacobi map $C \to J$. Consider the normal bundle exact sequence

$$0 \to T_C \to T|_C \to N_C \to 0.$$

Since we have a canonical identification $T|_C = H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_C$, the induced cohomology sequence is

$$0 \to H^1(C, \mathcal{O}_C) \to H^0(C, N_C) \overset{\partial}{\to} H^1(C, T_C) \overset{\sigma}{\to} H^1(C, \mathcal{O}_C)^{\otimes 2}.$$

Since $H^0(C, N_C)$ is the tangent space to the Hilbert scheme, it is clear that $\text{Hilb}_{C/J}$ is smooth of dimension g if and only if $\partial = 0$, if and only if σ is injective. The map σ factors through the subspace $\text{Sym}^2 H^1(C, \mathcal{O}_C)$, and its dual is the multiplication map

$$\mu_C : \text{Sym}^2 H^0(C, K_C) \to H^0(C, K_C^2),$$

where K_C is the canonical line bundle of C. By a theorem of Max Noether [2, Chapter III § 2], the map μ_C is surjective if and only if C is non-hyperelliptic (see also [7, 1] for different proofs). If C is hyperelliptic, the quotient $H^0(C, N_C)/H^1(C, \mathcal{O}_C) = \text{Im } \partial$ has dimension $g - 2$, as shown directly in [14, Section 2] by choosing appropriate bases of differentials. This proves part (i) of Theorem 1.1, along with the count $\mu(C) - 1$ of dimension $g - 2$ (and the non-reducedness statement) of part (ii). So in the non-hyperelliptic case, $\text{Hilb}_{C/J}$ is isomorphic to J, the family of translations.

To finish the proof of part (ii), suppose C is hyperelliptic, and let $D \subset J$ be a closed 1-dimensional k-subscheme defining a point of $\text{Hilb}_{C/J}$. Then D is represented by the minimal cohomology class

$$\mu_C^{g-1}[g-1]$$

on J. This implies at once that D generates J, and that $D \cdot \Theta_C = g$. Therefore, by Theorem 1.2, $(\text{Pic}^0 D, \Theta_D)$ and (J, Θ_C) are isomorphic as principally polarised Abelian varieties. By Torelli's theorem, this implies (using also that C is hyperelliptic) that D is a translate of C. Thus $\text{Hilb}_{C/J}$ is irreducible of dimension g, and its k-points coincide with those of J. Theorem 1.1 follows, over a field of arbitrary characteristic.

Remark 1.3. If C is a generic curve of genus at least 3, its 1-cycle on J is not algebraically equivalent to the cycle of $-C$ by a famous theorem of Ceresa [4]. Here $-C$ is the image of C under the automorphism $-1 : J \to J$. Therefore the Hilbert scheme Hilb_J contains another component $\text{Hilb}_{-C/J}$, disjoint from $\text{Hilb}_{C/J}$ and still isomorphic to J.

1.2. **Torelli problems.** Consider the Torelli morphism

$$\tau_g : \mathcal{M}_g \to \mathcal{A}_g$$

from the stack of nonsingular curves of genus g to the stack of principally polarised Abelian varieties, sending a curve to its (canonically polarised) Jacobian. The **infinitesimal Torelli problem** asks whether the Torelli morphism is an immersion. It is well known that τ_g is ramified along the hyperelliptic locus: this is again Noether’s theorem, stating that μ_C, the codifferential of τ_g at $[C] \in \mathcal{M}_g$, is not surjective. So, even though τ_g is injective on geometric points by Torelli’s theorem, it is not an immersion.\(^1\)

To sum up, we have the following. Let C be an arbitrary smooth curve of genus $g \geq 3$, and let J be its Jacobian. Then the following conditions are equivalent:

(i) C is hyperelliptic,

(ii) $\text{Hilb}_{C/J}$ is singular at $[a] : C \to J$,

(iii) the embedded deformations of C into J are obstructed,

(iv) $\tau_g : \mathcal{M}_g \to \mathcal{A}_g$ is ramified at $[C]$,

(v) infinitesimal Torelli fails at C.

\(^1\)Note, however, that since the image of μ_C has dimension $g - 2$, the restriction of τ_g to the hyperelliptic locus is an immersion.
The local Torelli problem for curves, studied by Oort and Steenbrink in [14], asks whether the morphism
\[t_g : M_g \rightarrow A_g \]
between the coarse moduli spaces is an immersion. These schemes do not represent the corresponding moduli functors, so the local structure of \(t_g \) is not (directly) linked with deformation theory of curves and their Jacobians. However, introducing suitable level structures, one replaces the normal varieties \(M_g \) and \(A_g \) with smooth varieties
\[M_{g}^{[n]}, \quad A_{g}^{[n]} \]
that are fine moduli spaces for the corresponding moduli problem, and are étale over \(M_g \) and \(A_g \), respectively.

Let \(p \geq 0 \) be the characteristic of the base field. Oort and Steenbrink show that \(t_g \) is an immersion if \(p = 0 \). The answer to the local Torelli problem is also affirmative if \(p > 2 \), at almost all points of \(M_g \). More precisely, \(t_g \) is an immersion at those points in \(M_g \) representing curves \(C \) such that \(\text{Aut} \ C \) has no elements of order \(p \) [14, Cor. 3.2]. Finally, \(t_g \) is not an immersion if \(p = 2 \) and \(g \geq 5 \) [14, Cor. 5.3].

2. Moduli spaces with level structures

In this section we introduce the moduli spaces of curves and Abelian varieties we will be working with throughout.

2.1. Level structures. Let \(S \) be a scheme. An Abelian scheme over \(S \) is a group scheme \(X \rightarrow S \) which is smooth and proper and has geometrically connected fibres. We let \(\overline{X} \rightarrow S \) denote the dual Abelian scheme. A polarisation on \(X \rightarrow S \) is an \(S \)-morphism \(\lambda : X \rightarrow \overline{X} \) such that its restriction to every geometric point \(s \in S \) is of the form
\[\phi_s : X_s \rightarrow \overline{X}_s, \quad x \mapsto \tau_{s}^* \mathcal{L} \otimes \mathcal{L}^\vee, \]
for some ample line bundle \(\mathcal{L} \) on \(X_s \). Here and in what follows, \(\tau_s \) is the translation \(y \mapsto x + y \) by the element \(x \in X_s \). We say \(\lambda \) is principal if it is an isomorphism.

Fix an integer \(n > 0 \) and an Abelian scheme \(X \rightarrow S \) of relative dimension \(g \). Multiplication by \(n \) is an \(S \)-morphism of group schemes
\[[n] : X \rightarrow X, \]
and we denote its kernel by \(X_n \). Assuming \(n \) is not divisible by \(p \), we have that \(X_n \) is an étale group scheme over \(S \), locally isomorphic in the étale topology to the constant group scheme \((\mathbb{Z}/n\mathbb{Z})^{2g}\). One has \(X_n = X_n^D \), where the superscript \(D \) denotes the Cartier dual of a finite group scheme. Then any principal polarisation \(\lambda \) on \(X \) induces a skew-symmetric bilinear form
\[E_n : X_n \times_S X_n \xrightarrow{id \times \lambda} X_n \times_S X_n^D \xrightarrow{e_n} \mu_n, \]
where \(e_n \) is the Weil pairing. The group \(\mathbb{Z}/n\mathbb{Z} \) is Cartier dual to \(\mu_n \). We endow \((\mathbb{Z}/n\mathbb{Z})^{2g} \sim \mu_n^g \)
with the standard symplectic structure, given by the \(2g \times 2g \) matrix
\[\begin{pmatrix} 0 & \mathbb{I}_g \\ -\mathbb{I}_g & 0 \end{pmatrix}. \]

Definition 2.1 ([14]). A (symplectic) level-\(n \) structure on a principally polarised Abelian scheme \((X/S, \lambda)\) is a symplectic isomorphism
\[\alpha : (X_n, E_n) \xrightarrow{n} (\mathbb{Z}/n\mathbb{Z})^{2g}. \]
A level-\(n \) structure on a smooth proper curve \(C \rightarrow S \) is a level structure on its Jacobian \(\text{Pic}^0(C/S) \rightarrow S \).

For later purposes, we need to strengthen the condition \((p, n) = 1\) by making the following:
Assumption 1. Having fixed \(p = \text{char} k \) and the genus \(g \), we choose \(n \geq 3 \) such that the order of the symplectic group

\[
|\text{Sp}(2g, \mathbb{Z}/n\mathbb{Z})| = n^{g^2 - \sum_{i=1}^{g} (n^{2i} - 1)}
\]

is not divisible by \(p \). In particular, \((p, n) = 1 \). The assumption implies that the symplectic group \(\text{Sp}(2g, \mathbb{Z}/n\mathbb{Z}) \) acts freely and transitively on the set of symplectic level-\(n \) structures on a curve defined over \(k \).

Curves with level structure are represented by pairs \((C, \alpha)\). We consider \((C, \alpha)\) and \((C', \alpha')\) as being isomorphic if there is an isomorphism \(u: C \to C' \) such that the induced isomorphism \(J(u): J \to J' \) between the Jacobians takes \(\alpha \) to \(\alpha' \). An isomorphism between \((X, \lambda, \alpha)\) and \((X', \lambda', \alpha')\) is an isomorphism \((X, \lambda) \cong (X', \lambda')\) of principally polarised Abelian schemes, taking \(\alpha \) to \(\alpha' \).

Remark 2.2. If \(C \) is a curve of genus \(g \geq 3 \) with trivial automorphism group, and \(\alpha \) is a level structure on \(C \), then \((C, \alpha)\) is not isomorphic to \((C, -\alpha)\). On the other hand, if \(J \) denotes the Jacobian of \(C \), one has that \((J, \Theta_C, \alpha)\) and \((J, \Theta_C, -\alpha)\) are isomorphic, because the automorphism \(-1: J \to J\), defined globally on \(J \), identifies the two pairs.

2.2. Moduli spaces. Let \(\mathcal{M}_g^{(n)} \) be the functor \(\text{Sch}_k^{\text{op}} \to \text{Sets} \) sending a \(k \)-scheme \(S \) to the set of \(S \)-isomorphism classes of curves of genus \(g \) with level-\(n \) structure. Similarly, let \(\mathcal{A}_g^{(n)} \) be the functor sending \(S \) to the set of \(S \)-isomorphism classes of principally polarised Abelian schemes of relative dimension \(g \) over \(S \) equipped with a level-\(n \) structure.

Theorem 2.3. If \(n \geq 3 \) and \((p, n) = 1 \), the functors \(\mathcal{M}_g^{(n)} \) and \(\mathcal{A}_g^{(n)} \) are represented by smooth quasi-projective varieties \(M_g^{(n)} \) and \(A_g^{(n)} \) of dimensions \(3g - 3 \) and \(g(g + 1)/2 \) respectively.

Proof. For the statement about \(\mathcal{M}_g^{(n)} \) we refer to [15], whereas the one about \(\mathcal{A}_g^{(n)} \) is [13, Theorem 7.9].

Consider the morphism

\[
j_n: M_g^{(n)} \to A_g^{(n)}
\]

sending a curve with level structure to its Jacobian, as usual principally polarised by the Theta divisor. The map \(j_n \) is generically of degree two onto its image, essentially because of Remark 2.2. To link it back to \(t_g: M_g \to A_g \), Oort and Steenbrink form the geometric quotient

\[
V^{(n)} = M_g^{(n)}/\Sigma,
\]

where

\[
\Sigma: M_g^{(n)} \to M_g^{(n)}
\]

is the involution sending \([D, \beta] \mapsto [D, -\beta]\). Note that \(\Sigma \) is the identity if \(g \leq 2 \). The map \(j_n \) factors through a morphism

\[
t: V^{(n)} \to A_g^{(n)}.
\]

which turns out to be injective on geometric points [14, Lemma 1.11]. In fact, we need the following stronger statement.

Theorem 2.4 ([14, Theorem 3.1]). If \(g \geq 2 \) and \(\text{char} k \neq 2 \) then \(t \) is an immersion.

Oort and Steenbrink use this result crucially to solve the local Torelli problem as we recalled in Section 1.2. For us, it is not important to have the statement of local Torelli (which strictly speaking only holds globally in characteristic 0): all we need in our argument is Theorem 2.4, which is why we assumed \(k \) has characteristic \(p \neq 2 \).

The following result was proven in [6, Prop. 5.8] in greater generality. We give a short proof here for the sake of completeness.
LEMMA 2.5. The maps $\varphi : M^{(n)}_g \to M_g$ and $\psi : A^{(n)}_g \to A_g$ forgetting the level structure are étale.

Proof. We start by showing that φ is flat. Choose an atlas for M_g, that is, an étale surjective map $a : U \to M_g$ from a scheme. Form the fibre square

$$
\begin{array}{ccc}
V & \xrightarrow{b} & M_g^{(n)} \\
\downarrow & & \downarrow \varphi \\
U & \xrightarrow{a} & M_g
\end{array}
$$

and pick a point $u \in U$, with image $y = a(u) \in M_g$. The fibre $V_u \subset V$ is contained in $b^{-1}\varphi^{-1}(y)$, which is étale over $\varphi^{-1}(y)$ because b is étale. In particular, since $\varphi^{-1}(y)$ is finite, the same is true for V_u. Therefore $V \to U$ is a map of smooth varieties with fibres of the same dimension (zero); by “miracle flatness” [8, Prop. 15.4.2], it is flat; therefore φ is flat. On the other hand, the geometric fibres of φ are the symplectic groups $\text{Sp}(2g, \mathbb{Z}/n\mathbb{Z})$, and they are reduced by Assumption 1. Hence φ is smooth of relative dimension zero, that is, étale. The same argument applies to the map ψ, with the symplectic group replaced by $\text{Sp}(2g, \mathbb{Z}/n\mathbb{Z})/\pm 1$. \hfill \Box

Note that the maps $M^{(n)}_g \to M_g$ and $A^{(n)}_g \to A_g$ down to the coarse moduli schemes are still finite Galois covers, but they are not étale.

By the lemma, we can identity the tangent space to a point $[C, \alpha] \in M^{(n)}_g$ with the tangent space to its image $[C] \in M_g$ under φ, and similarly on the Abelian variety side. Moreover, the cartesian diagram

$$
\begin{array}{ccc}
M^{(n)}_g & \xrightarrow{j_n} & A^{(n)}_g \\
\downarrow \varphi & & \downarrow \psi \\
M_g & \xrightarrow{\tau_g} & A_g
\end{array}
$$

allows us to identify the map

$$
\sigma : H^1(C, T_C) \to \text{Sym}^2 H^1(C, \Omega_C),
$$

already appeared in (1.1), with the tangent map of j_n at a point $[C, \alpha]$. As we already mentioned, in [14, Section 2] it is shown that if C is hyperelliptic the kernel of σ has dimension $g - 2$. In particular, the restriction of j_n to the hyperelliptic locus is an immersion.

3. PROOF OF THE MAIN THEOREM

Let C be a hyperelliptic curve of genus $g \geq 3$ and let J be its Jacobian. Fix an Abel–Jacobi embedding $C \hookrightarrow J$ and let

$$
H = \text{Hilb}_{C/J}
$$

be the Hilbert scheme component containing such embedding as a point. Let

$$
\begin{array}{ccc}
Z & \xrightarrow{i} & H \times J \\
\downarrow & & \downarrow \text{pr}_1 \\
H & &
\end{array}
$$

be the universal family over the Hilbert scheme.

LEMMA 3.1. The restriction morphism

$$
i^* : \text{Pic}^0(H \times J/H) \to \text{Pic}^0(Z/H)
$$

is an isomorphism of Abelian schemes over H.

Proof. We use the critère de platitude par fibres [8, Théorème 11.3.10] in the following special case: suppose given a scheme S and an S-morphism $f : X \to Y$ such that: (a) X/S is finitely presented and flat, (b) Y/S is locally of finite type, and (c) $f_s : X_s \to Y_s$ is flat for each $s \in S$.\hfill \Box
Then f is flat. Applying this to $(S, f) = (H, t^*)$, we conclude that t^* is flat. But $\text{Pic}^0(H \times J/H)$ is isomorphic, over H, to the constant Abelian scheme $H \times J$, and t^* is an isomorphism on each fibre over H. Therefore it is a flat, unramified and bijective morphism, hence an isomorphism.

Let a be a fixed level-n structure on J, with $n \geq 3$ and $(p, n) = 1$. Form the constant level structure a_H on the Abelian scheme $H \times J \to H$. Transferring the level structure a_H from $H \times J$ to $\text{Pic}^0(Z/H)$ using the isomorphism t^* of Lemma 3.1, we can now regard $Z \to H$ as a family of Abel–Jacobi curves with level-n structure. Since $M^{(n)}_g$ is a fine moduli space for these objects, we obtain a morphism

$$f : H \to M^{(n)}_g.$$

Note that the topological image of f is just the point $x \in M^{(n)}_g$ corresponding to $[C, a]$. The tangent map $d f$ at the point $[C] \in H$ is the connecting homomorphism

$$\partial : H^0(C, N_C) \to H^1(C, T_C),$$

already appeared in (1.1).

Our next goal is to view the Hilbert scheme H over a suitable Artinian scheme R_g. Recall the Torelli type morphism j_n introduced in (2.1). We define

$$R_g \subset M^{(n)}_g$$

to be the scheme-theoretic fibre of j_n over the moduli point $[J, a] \in A^{(n)}_g$. Let $y \in V^{(n)}$ be the image of the point $x = [C, a]$ under the quotient map

$$M^{(n)}_g \to V^{(n)} = M^{(n)}_g / \Sigma,$$

where Σ is the involution first appeared in (2.2). During the proof of [14, Cor. 3.2] it is shown that one can choose local coordinates t_1, \ldots, t_{3g-3} around x such that $\Sigma^* t_i = t_i$ if $i = 1, \ldots, 2g - 1$ and $\Sigma^* t_i = -t_i$ if $i = 2g, \ldots, 3g - 3$. Oort–Steenbrink deduce that

$$\overline{\alpha}_y = \overline{\alpha}_x = k[[t_1, \ldots, t_{2g-1}, t_{2g}, t_{2g+1}, \ldots, t_{3g-3}]].$$

Since we have a factorisation

$$j_n : M^{(n)}_g \to V^{(n)} \to A^{(n)}_g$$

where ι is an immersion by Theorem 2.4, we deduce from (3.2) that

$$R_g = \text{Spec } k[s_1, \ldots, s_{g-2}]/m^2,$$

where $m = (s_1, \ldots, s_{g-2}) \subset k[s_1, \ldots, s_{g-2}]$. For instance, R_3 is the scheme of dual numbers $k[s]/s^2$, and if $g = 4$ we get the triple point $k[s, t]/(s^2, s, t^2)$.

Recall the cohomology sequence

$$0 \to H^1(C, \mathcal{O}_C) \to H^0(C, N_C) \overset{\partial}{\to} H^1(C, T_C) \overset{\sigma}{\to} H^1(C, \mathcal{O}_C)^{\otimes 2},$$

where σ factors through $\text{Sym}^2 H^1(C, \mathcal{O}_C)$, the tangent space of A_g at $[J, \Theta_C]$. Since C is hyperelliptic, the image of ∂ has dimension $g - 2 > 0$. In other words, the differential $\partial = df$, where f was defined in (3.1), does not vanish at the point $[C] \in H$. Thus f is not scheme-theoretically constant, although $x = [C, a] \in M^{(n)}_g$ is the only point in the image. On the other hand, the composition

$$j_n \circ f : H \to M^{(n)}_g \to A^{(n)}_g$$

is the constant morphism since its differential is identically zero. Indeed the composition

$$\sigma \circ \partial : H^0(C, N_C) \to H^1(C, T_C) \to \text{Sym}^2 H^1(C, \mathcal{O}_C)$$

vanishes by exactness of (3.3). So the image point $[J, a]$ does not deform even at first order, and we conclude that f factors through the scheme-theoretic fibre of j_n. This gives us a morphism

$$\pi : H \to R_g.$$

We will exploit the following technical lemma.
LEMMA 3.2 ([9, Lemma 1.10.1]). Let R be the spectrum of a local ring, $p: U \to V$ a morphism over R, with $U \to R$ flat and proper. If the restriction $p_0: U_0 \to V_0$ of p over the closed point $0 \in R$ is an isomorphism, then p is an isomorphism.

Recall that $J = H_{\text{red}}$, so we have a closed immersion $J \hookrightarrow H$ (with empty complement). Consider the closed point 0 in J corresponding to C. Let us fix a regular sequence f_1, \ldots, f_g in the maximal ideal of $\mathcal{O}_{J,0}$. Choose lifts $\tilde{f}_i \in \mathcal{O}_{H,0}$ along the natural surjection $\mathcal{O}_H \to \mathcal{O}_{J,0}$, for $i = 1, \ldots, g$. Then we consider the zero scheme

$$i: S_g = Z(\tilde{f}_1, \ldots, \tilde{f}_g) \hookrightarrow H,$$

an Artin scheme supported at $0 \in H$. We next show that the composition

$$\rho = \pi \circ i: S_g \hookrightarrow H \to R_g$$

is an isomorphism, where π is defined in (3.4). The following lemma is elementary, and its proof is omitted.

LEMMA 3.3. Let $\ell: k[x_1, \ldots, x_d]/m^2 \to B$ be a surjection of local Artin k-algebras such that the differential $d\ell$ is an isomorphism. Then ℓ is an isomorphism.

LEMMA 3.4. The tangent map $d\rho: T_{S_g} \to T_{R_g}$ is an isomorphism.

Proof. The kernel of $H^1(C, T_C) \to H^1(C, \mathcal{O}_C)^{\otimes 2}$, which can be identified with the image of $\partial: H^0(C, N_C) \to H^1(C, T_C)$, is the tangent space T_{R_g} to the Artinian scheme R_g, as the latter is by definition the fibre of J_g. We then have a direct sum decomposition $T_{S_g} \to T_{R_g}$. The intersection of S_g and J inside H is the reduced origin $0 \in J$, so the linear subspace $T_{S_g} \subset T_{R_g}$ intersects T_{R_g} trivially, which implies that the tangent map

$$d\rho: T_{S_g} \subset T_{R_g} \to T_{R_g}$$

is injective. On the other hand, the inclusion $T_{S_g} \subset T_{R_g}$ is cut out by independent linear functions, again because $T_{S_g} \cap T_{R_g} = (0)$. It follows that the linear inclusion $T_{S_g} \subset T_{R_g}$ has codimension equal to $\dim T_{R_g} = g$, thus

$$\dim T_{S_g} = \dim T_{R_g} - g = g - 2 = \dim T_{R_g}.$$

The claim follows.

COROLLARY 3.5. The map $\rho: S_g \to R_g$ of (3.5) is an isomorphism.

Proof. The map ρ is proper, injective on points and, by Lemma 3.4, injective on tangent spaces. Then it is a closed immersion; in fact, by Lemma 3.4 again, it is an isomorphism on tangent spaces, so by Lemma 3.3 it is an isomorphism.

The corollary yields a section of π,

$$s = i \circ \rho^{-1}: R_g \hookrightarrow S_g \to H,$$

which finally allows us to prove the main result of this note.

THEOREM 3.6. Let C be a hyperelliptic curve of genus $g \geq 2$, and let J be its Jacobian. Then there is an isomorphism of schemes

$$J \times R_g \cong H.$$
Remark 3.7. The cartesian square (2.3) allows one to identify R_g with the fibre of the Torelli morphism $\tau_g: \mathcal{M}_g \to \mathcal{A}_g$ over a hyperelliptic point $[J, \Theta_C] \in \mathcal{A}_g$.

Therefore, understanding the ramification (the fibres) of the Torelli morphism is equivalent to understanding the singularities of the Hilbert scheme, and these are controlled by the Artinian scheme R_g.

3.1. Donaldson–Thomas invariants for Jacobians. Let C be a smooth complex projective curve of genus g. One can study the “C-local Donaldson–Thomas invariants” of the Abelian 3-fold $J = \text{Pic}^0 C$. As explained in [16], these invariants are completely determined by the “BPS number” of the curve,

$$n_C = \nu_H(\mathcal{N}_C) \in \mathbb{Z},$$

in the sense that their generating function is equal to the rational function

$$n_C \cdot q^{-2}(1 + q)^3.$$

Here $\nu_H: \text{Hilb}_{C/J} \to \mathbb{Z}$ is the Behrend function of the Hilbert scheme. The Behrend function attached to a general C-scheme X is an invariant of the singularities of X. It was introduced in [3] and is now a key tool in Donaldson–Thomas theory. For a smooth scheme Y one has that ν_Y is the constant $(-1)^{\dim Y}$, and moreover $\nu_{X \times Y} = \nu_X \cdot \nu_Y$ for two complex schemes X and Y. While for non-hyperelliptic C we have $n_C = -1$ (because the Hilbert scheme is a copy of the smooth 3-fold J), the structure result

$$\text{Hilb}_{C/J} = J \times \text{Spec} \mathbb{C}[s]/s^2$$

in the hyperelliptic case yields $n_C = -2$, because the scheme of dual numbers has Behrend function $\nu_B = 2$.

4. An application to moduli of Picard sheaves

Mukai introduced in [11] his celebrated Fourier transform, and gave an application to the moduli space of Picard sheaves on Jacobians of curves. We now review his results on non-hyperelliptic Jacobians and extend them to the hyperelliptic case. We let $\Phi: D^b(\mathcal{J}) \to D^b(\mathcal{C})$ be the Fourier transform with kernel the Poincaré line bundle $\mathcal{P} \in \text{Pic}(\mathcal{J} \times \mathcal{J})$.

If $\mathcal{F}: \mathcal{J} \times \mathcal{J} \to \mathcal{J}$ and $p: \mathcal{J} \times \mathcal{J} \to \mathcal{J}$ are the projections, by definition one has

$$\Phi(\mathcal{F}) = R\mathcal{P}_j(\mathcal{F}^* \mathcal{E} \otimes \mathcal{P}).$$

We will denote by $\Phi^i(\mathcal{F})$ the i-th cohomology sheaf of the complex $\Phi(\mathcal{F})$.

Let $p_0 \in C$ be a point on a smooth curve of genus $g \geq 2$. Let us form the line bundle $\xi = O_C(d p_0)$. From now on we view it as a sheaf on J by pushing it forward along the Abel–Jacobi map $\text{adj}: C \to J$ followed by the identification of J with its dual. Applying his Fourier transform, Mukai constructs

$$(4.1) \quad F = \Phi^1(\text{adj}^* \xi),$$

a Picard sheaf of rank $g - d - 1$ living on J. Assume $1 \leq d \leq g - 1$, so that by [11, Lemma 4.9] we know that F is simple (that is, $\text{End}_{\mathcal{O}_J}(F) = k$), and

$$(4.2) \quad \dim \text{Ext}^1_{\mathcal{O}_J}(F, F) = \begin{cases} 2g & \text{if } C \text{ is not hyperelliptic} \\ 3g - 2 & \text{if } C \text{ is hyperelliptic.} \end{cases}$$

Let Spl_J be the moduli space of simple coherent sheaves on J, and let $M(F) \subset \text{Spl}_J$ be the connected component containing the point corresponding to F. It is shown in [11, Theorem 4.8] that if $g = 2$ or C is non-hyperelliptic, the morphism

$$(4.3) \quad f: \mathcal{J} \times \mathcal{J} \to M(F), \quad (\eta, x) \mapsto t^*_x F \otimes \mathcal{P}_\eta,$$

is an isomorphism. By (4.2), the space $M(F)$ is reduced precisely when C has genus 2 or is non-hyperelliptic. For C hyperelliptic, f turns out to be an isomorphism onto the reduction $M(F)_{\text{red}} \subset M(F)$, as Mukai showed in [12, Example 1.15].
Remark 4.1. The moduli space $M(F)$ is a priori only an algebraic space. But an algebraic space is a scheme if and only if its reduction is a scheme. Therefore $M(F)$ is a scheme because of the isomorphism $J \times J \cong M(F)_{\text{red}}$.

The following result, which can be seen as a corollary of Theorem 3.6, completes the study of Picard sheaves on Jacobians considered by Mukai, namely those of rank $g-d-1$, with $d \leq g-1$.

Theorem 4.2. Let C be a hyperelliptic curve of genus $g \geq 2$. Let J be its Jacobian and F a Picard sheaf as above. Then, as schemes,

$$M(F) = \tilde{J} \times J \times R_g.$$

Proof. The case $g = 2$ is already covered by Mukai's tangent space calculation. By Theorem 3.6, it is enough to exhibit an isomorphism $\tilde{J} \times H \cong M(F)$, where as usual $H \subset \text{Hilb}_J$ is the Hilbert scheme component containing the Abel–Jacobi point $[C]$. We will do this by extending the morphism (4.3) defined by Mukai, that is, completing the diagram

$$
\begin{array}{ccc}
\tilde{J} \times J & \longrightarrow & M(F)_{\text{red}} \\
\bigg\uparrow & & \bigg\uparrow \\
\tilde{J} \times H & \longrightarrow & M(F)
\end{array}
$$

and showing that the extension ϕ is an isomorphism. Let

$$\mathcal{Z} \xrightarrow{\iota} H \times J \to H$$

be the universal family of the Hilbert scheme, where ι is the universal Abel–Jacobi map, restricting to $a_\iota \circ t_x : t_x C \to C \xrightarrow{\iota} [x] \times J$ over a point $x \in H$. We now construct a section σ of $\mathcal{Z} \to H$ restricting to the divisor $d p_0$ on C (in other words: a “universal” version of ξ). If $q: H \to J$ denotes the projection (forgetting the non-reduced structure) and $u: J \to J$ is the composition $t_{d p_0} \circ [d]$, the section σ is simply the map

$$\sigma: H \xrightarrow{(1_H, q)} H \times J \xrightarrow{1_H \times u} H \times J, \quad x \mapsto (x, d(x + p_0)),$$

clearly landing inside \mathcal{Z}. Let $\mathcal{L} = \mathcal{O}_\mathcal{Z}(\sigma)$ be the associated line bundle on the total space \mathcal{Z}. Then, by construction, restricting \mathcal{L} to a fibre of $\mathcal{Z} \to H$ we get

$$\mathcal{L}|_{H \times C} = \mathcal{O}_C(d(x + p_0)) = t_{-1}^* \xi.$$

If we consider the pushforward $t_{-1}\mathcal{L}$ to $H \times J$, using (4.5) it is clear that

$$\sigma|_{H \times J} = [a_\iota \circ t_{-1}].$$

Note that \mathcal{L} is flat over H (because $\mathcal{Z} \to H$ is flat), therefore the same is true for $t_{-1}\mathcal{L}$. Since taking the Fourier–Mukai transform commutes with base change, (4.6) yields

$$\Phi^1(t_{-1}\mathcal{L})|_{x \times J} = \Phi^1(a_\iota \xi) = F.$$

Now we consider the following diagram:

$$
\begin{array}{ccc}
(\tilde{J} \times J) \times J & \xrightarrow{\sim} & (J \times J) \times J \\
\bigg\uparrow & & \bigg\uparrow \\
\tilde{J} \times J & \xrightarrow{\mu} & (J \times J) \times J
\end{array}
$$

where m and μ are the translation actions by J on J and H respectively. The Fourier–Mukai transform $\Phi^1(t_{-1}\mathcal{L})$ lives on $H \times J$ and is flat over H, by flatness of $t_{-1}\mathcal{L}$. By (4.7), we know that the families of sheaves $\Phi^1(t_{-1}\mathcal{L})|_{x \times J}$ and $\mu^* F$ (both flat over J) define the same morphism $J \to M(F)$, namely the constant morphism hitting the point $[F]$. Since Mukai's morphism $\tilde{J} \times J \to M(F)$, defined in (4.3), corresponds (after identifying J with its dual) to the family of sheaves

$$(m \times \text{id}_J)^* \mu^* F \otimes (\text{pr}_{13} \circ \iota)^* \mathcal{P},$$
it follows that the family

$$(\mu \times \text{id})^\ast \Phi^1(\iota_* \mathcal{L}) \otimes \text{pr}_1^\ast \mathcal{P}$$

defines an extension $\phi: \tilde{J} \times H \to M(F)$, completing diagram (4.4). We know that ϕ is an isomorphism around $[\xi] \to [F]$. Indeed, ϕ is precisely the morphism constructed by Mukai in [12, Prop. 1.12], where he proves that $M(\xi)$ and $M(F)$ are isomorphic along a Zariski open subset. The construction is homogeneous, in the sense that ϕ does not depend on the initial point $[\xi] \in M(\xi)$. Therefore ϕ is globally an isomorphism, as claimed.

\[\square\]

Remark 4.3. The connected component $M(\xi)$ of the moduli space of simple sheaves containing the point $[\xi]$ is the relative Picard variety $\text{Pic}^d(\mathcal{Z}/H)$, which can be identified with $\tilde{J} \times H$ by Lemma 3.1. It is possible to adapt the proof of [12, Prop. 1.12] to show that the birational map

$$\text{Pic}^d(\mathcal{Z}/H) \dashrightarrow M(F)$$

is everywhere defined (and an isomorphism), giving an immediate proof of Corollary 4.2. We preferred to present the argument above, because the construction makes the isomorphism $\phi: \tilde{J} \times H \to M(F)$ arise directly, as a “thickening” of Mukai’s isomorphism $\tilde{J} \times J \to M(F)_{\text{red}}$. Moreover the argument makes explicit use of (the properties of) the Fourier–Mukai transform.

Acknowledgments. We are glad to thank Alberto Collino for generously sharing his insight and ideas on the problem. We also thank Martin Gulbrandsen, Michał Kapustka, Richard Thomas and Filippo Viviani for helpful discussions.
REFERENCES

1. Aldo Andreotti, *On a Theorem of Torelli*, American Journal of Mathematics 80 (1958), no. 4, 801–828.
2. E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, *Geometry of algebraic curves. Vol. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985.
3. Kai Behrend, *Donaldson–Thomas type invariants via microlocal geometry*, Ann. of Math. 2 (2009), no. 170, 1307–1338.
4. Giuseppe Ceresa, *C is not algebraically equivalent to C− in its Jacobian*, Ann. of Math. (2) 117 (1983), no. 2, 285–291.
5. Alberto Collino, *A new proof of the Ban–Matsusaka criterion for Jacobians*, Proceedings of the American Mathematical Society 92 (1984), no. 3, 329–329.
6. Pierre Deligne and David Mumford, *The irreducibility of the space of curves of given genus*, Publications Mathématiques de l’IHÉS 36 (1969), 75–109.
7. Phillip A. Griffiths, *Some remarks and examples on continuous systems and moduli*, J. Math. Mech. 16 (1967), 789–802.
8. A. Grothendieck, *Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III*, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
9. János Kollár, *Rational curves on algebraic varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, Springer Berlin Heidelberg, 1999.
10. Herbert Lange and Edoardo Sernesi, *On the Hilbert scheme of a Prym variety*, Ann. Mat. Pura Appl. (4) 183 (2004), no. 3, 375–386.
11. Shigeru Mukai, *Duality between D(X) and D(ˆX) with its application to Picard sheaves*, Nagoya Math. J. 81 (1981), 153–175. MR 607081
12. ———, *Fourier functor and its application to the moduli of bundles on an abelian variety*, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 515–550. MR 946249
13. David Mumford, *Geometric invariant theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965.
14. Frans Oort and Joseph Steenbrink, *The local Torelli problem for algebraic curves*, Journées de Géométrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 157–204.
15. Herbert Popp, *Moduli theory and classification theory of algebraic varieties*, Lecture Notes in Mathematics, Vol. 620, Springer-Verlag, Berlin-New York, 1977.
16. Andrea T. Ricolfi, *The DT/PT correspondence for smooth curves*, Mathematische Zeitschrift (2018).