A Benchmark Dataset for Automatic Detection of Claims and Evidence in the Context of Controversial Topics

Ehud Aharoni*
IBM Haifa Research Lab, Haifa, Israel
Anatoly Polnarov*
Hebrew University, Israel
Tamar Lavee†
IBM Haifa Research Lab, Haifa, Israel
Daniel Hershcovitch
IBM Haifa Research Lab, Haifa, Israel
Ran Levy
IBM Haifa Research Lab, Haifa, Israel
Ruti Rinott
IBM Haifa Research Lab, Haifa, Israel
Dan Gutfreund
IBM Haifa Research Lab, Haifa, Israel
Noam Slonim‡
IBM Haifa Research Lab, Haifa, Israel

Abstract

We describe a novel and unique argumentative structure dataset. This corpus consists of data extracted from hundreds of Wikipedia articles using a meticulously monitored manual annotation process. The result is 2,683 argument elements, collected in the context of 33 controversial topics, organized under a simple claim-evidence structure. The obtained data are publicly available for academic research.

1 Introduction

One major obstacle in developing automatic argumentation mining techniques is the scarcity of relevant high quality annotated data. Here, we describe a novel and unique benchmark data that relies on a simple argument model and elaborates on the associated annotation process. Most importantly, the argumentative elements were gathered in the context of pre-defined controversial topics, which distinguishes our work from other previous related corpora.1 Two recent

1 E.g., AraucariaDB (Reed 2005, Moens et al 2007) and Vaccine/Injury Project (V/IP) Corpus (Ashley and Walker 2013).

* These authors contributed equally to this manuscript.
† Present affiliation: Yahoo!
‡ Corresponding author, at noams@il.ibm.com

works that are currently under review [Rinott et al, Levy et al] have reported first results over different subsets of this data, which is now publicly available for academic research upon request. We believe that this novel corpus should be of practical importance to many researches, and in particular to the emerging community of argumentation mining.

Unlike the classical Toulmin model (Freeley and Steinberg 2008), we considered a simple and robust argument structure comprising only two components – claim and associated supporting evidence. The argumentative structures were carefully annotated under a pre-defined topic, introduced as a debate motion. As the collected data covers a diverse set of 33 motions, we expect it could be used to develop generic tools for automatic detection and construction of argumentative structures in the context of new topics.

2 Data Model

We defined and implemented the following concepts:

Topic – a short, usually controversial statement that defines the subject of interest. Context De-
dependent Claim (CDC) – a general concise statement that directly supports or contests the Topic. Context Dependent Evidence (CDE) – a text segment that directly supports a CDC in the context of a given Topic. Examples are given in Section 6.

Furthermore, since one can support a claim using different types of evidence (Rieke et al 2012, Seech 2008), we defined and considered three CDE types: Study: Results of a quantitative analysis of data given as numbers or as conclusions. Expert: Testimony by a person / group / committee / organization with some known expertise in or authority on the topic. Anecdotal: a description of specific event(s)/instance(s) or concrete example(s).

3 Labeling Challenges and Approach

The main challenge we faced in collecting the annotated data was the inherently elusive nature of concepts such as "claim" and "evidence." To address that we formulated two sets of criteria for CDC and CDE, respectively, and relied on a team of about 20 carefully trained in-house labelers whose work was closely monitored. To further enhance the quality of the collected data we adopted a two-stage labeling approach. First, a team of five labelers worked independently on the same text and prepared the initial set of candidate CDCs or candidate CDEs. Next, a team of five labelers—not necessarily the same five—individually crosschecked the joint list of the detected candidates, each of which was either confirmed or rejected. Candidates confirmed by at least three labelers were included in the corpus.

4 Labeling Guidelines

The labeling guidelines defined the concepts of Topic, CDC, CDE, and CDE types, along with relevant examples. According to these guidelines, given a Topic, a text fragment should be labeled as a CDC if and only if it complies with all of the following five CDC criteria: Strength: Strong content that directly supports or contests the provided Topic. Generality: General content that deals with a relatively broad idea. Phrasing: Is well phrased, or requires at most a single and minor "allowed" change. Keeping text spirit: Keeps the spirit of the original text from which it was extracted. Topic unity: Deals with one, or at most two related topics. Four CDE criteria were defined in a similar way, given a Topic and a CDC, except for the generality criterion.

5 Labeling Details

The labeling process was carried out in the GATE environment (https://gate.ac.uk/). The 33 Topics were selected at random from the debate motions at http://idebate.org/ database. The labeling process was divided into five stages:

Search: Given a Topic, five labelers were asked to independently search English Wikipedia for articles with promising content.

Claim Detection: At this stage, five labelers independently detected candidate CDCs supporting or contesting the Topic within each article suggested by the Search team.

Claim Confirmation: At this stage, five labelers independently cross-examined the candidate CDCs suggested at the Claim Detection stage, aiming to confirm a candidate and its sentiment as to the given Topic, or reject it by referring to one of the five CDC Criteria it fails to meet. The candidate CDCs confirmed by at least three labelers were forwarded to the next stage.

Evidence Detection: At this stage, five labelers independently detected candidate CDEs supporting a confirmed CDC in the context of the given Topic. The search for CDEs was done...
only in the same article where the corresponding CDC was found.

Evidence Confirmation: This stage was carried out in a way similar to Claim Confirmation. The only difference was that the labelers were required to classify accepted CDE under one or more CDE types.

Labelers training and feedback: Before joining actual labeling tasks, novice labelers were assigned with several completed tasks and were expected to show a reasonable degree of agreement with a consensus solution prepared in advance by the project administrators. In addition, the results of each Claim Confirmation task were examined by one or two of the authors (AP and NS) to ensure the conformity to the guidelines. In case crude mistakes were spotted, the corresponding labeler was requested to revise and resubmit. Due to the large numbers of CDE candidates, it was impractical to rely on such a rigorous monitoring process in Evidence Confirmation. Instead, Evidence Consensus Solutions were created for selected articles by several experienced labelers, who first solved the tasks independently and then reached consensus in a joint meeting. Afterwards, the tasks were assigned to the rest of the labelers. Their results on these tasks were juxtaposed with the Consensus Solutions, and on the basis of this comparison individual feedback reports were drafted and sent to the team members. Each labeler received such a report on an approximately weekly basis.

6 Data Summary

For 33 debate motions, a total of 586 Wikipedia articles were labeled. The labeling process resulted in 1,392 CDCs distributed across 321 articles. In 12 debate motions, for which 350 distinct CDCs were confirmed across 104 articles, we further completed the CDE labeling, ending up with a total of 1,291 confirmed CDEs – 431 of type Study, 516 of type Expert, and 529 of type Anecdotal. Note that some CDEs were associated with more than one type (for example, 118 CDEs were classified both under the type Study and Expert).

Presented in Tables 1 and 2 are several examples of CDCs and CDEs gathered under the Topics we worked with, as well as some unacceptable candidates illustrating some of the subtleties of the performed work.

Topic	The sale of violent video games to minors should be banned
(Pro) CDC	Violent video games can increase children's aggression
(Pro) CDC	Video game publishers unethically train children in the use of weapons Note that a valid CDC is not necessarily factual.
(Con) CDC	Violent games affect children positively
Invalid CDC 1	Video game addiction is excessive or compulsive use of computer and video games that interferes with daily life. This statement defines a concept relevant to the Topic, not a relevant claim.
Invalid CDC 2	Violent TV shows just mirror the violence that goes on in the real world. This claim is not relevant enough to Topic.
Invalid CDC 3	Violent video games should not be sold to children. This candidate simply repeats the Topic and thus is not considered a valid CDC.
Invalid CDC 4	"Doom" has been blamed for nationally covered school shooting. This candidate fails the generality criterion, as it focuses on a specific single video game. Note that it could serve as CDE to a more general CDC.

Table 1: Examples of CDCs and invalid CDCs.
video games causes both short term and long term aggression in players

CDE (Anecdotal)	In April 2000, a 16-year-old teenager murdered his father, mother and sister proclaiming that he was on an "avenging mission" for the main character of the video game Final Fantasy VIII
Invalid CDE	While most experts reject any link between video games content and real-life violence, some media scholars argue that the connection exists. Invalid, because it includes information that contests the CDC.
Topic 2	The use of performance enhancing drugs in sports should be permitted
(Con) CDC	Drug abuse can be harmful to one’s health and even deadly.
CDE (Expert)	According to some nurse practitioners, stopping substance abuse can reduce the risk of dying early and also reduce some health risks like heart disease, lung disease, and strokes
Invalid CDE	Suicide is very common in adolescent alcohol abusers, with 1 in 4 suicides in adolescents being related to alcohol abuse. Although the candidate CDE does support the CDC, the notion of adolescent alcohol abusers is irrelevant to the Topic. Therefore, the candidate is invalid.

Table 2: Examples of CDE and invalid CDE

7 Agreement and Recall Results

To evaluate the labelers’ agreement we used Cohen’s kappa coefficient (Landis and Koch 1977). The average measure was calculated over all labelers’ pairs, for each pair taking those articles on which the corresponding labelers worked together and omitting labeler pairs which labeled together less than 100 CDCs/CDEs. This strategy was chosen since no two labelers worked on the exact same tasks, so standard multi-rater agreement measures could not be applied. The obtained average kappa was 0.39 and 0.4 in the Claim confirmation and Evidence confirmation stages, respectively, which we consider satisfactory given the subtlety of the concepts involved and the fact that the tasks naturally required a certain extent of subjective decision making.

We further employed a simple method to obtain a rough estimate of the recall at the detection stages. For CDCs (and similarly for CDEs), let n be the number of CDCs detected and confirmed in a given article, and x be the unknown total number of CDCs in this article. Assuming the i-th labeler detects a ratio p_i of x, and taking a strong assumption of independence between the labelers, we get:

$$x \prod (1 - p_i) = x - n$$

We estimated p_i from the observed data, and computed x for each article. We were then able to compute the estimated recall per motion, ending up with the estimated average recall of 90.6% and 90.0% for CDCs and CDEs, respectively.

8 Future Work and Conclusion

There are several natural ways to proceed further. First, a considerable increase in the quantity of gathered CDE data can be achieved by expanding the search scope beyond the article in which the CDC is found. Second, the argument model can be enhanced – for example, to include counter-CDE (i.e., evidence that contest the CDC). Third, one may look into ways to add more labeling layers on the top of the existing model (for example, distinguishing between factual CDCs, value CDCs, and so forth). Fourth, new topics and new sources besides Wikipedia can be considered.

The data is released and available upon request for academic research. We hope that it will prove useful for different data mining communities, and particularly for various purposes in the field of Argumentation Mining.

67
References

Austin J. Freeley and David L. Steinberg. 2008. *Argumentation and Debate*. Wadsworth, Belmont, California.

Chris Reed. 2005. “Preliminary Results from an Argument Corpus” in *Proceedings of the IX Symposium on Social Communication*, Santiago de Cuba, pp. 576-580.

J. Richard Landis and Gary G. Koch. 1977. “The measurement of observer agreement for categorical data.” *Biometrics* 33:159-174.

Kevid D. Ashley and Vern R. Walker. 2013. “Toward Constructing Evidence-Based Legal Arguments Using Legal Decision Documents and Machine Learning” in *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law (ICAIL ’13)*, Rome, Italy, pp. 176-180.

Marie-Francine Moens, Erik Boiy, Raquel Mochales Palau, and Chris Reed. 2007. “Automatic Detection of Arguments in Legal Texts” in *Proceedings of the International Conference on AI & Law (ICAIL-2007)*, Stanford, CA, pp. 225-230.

Richard D. Rieke, Malcolm O. Sillars and Tarla Rai Peterson. 2012. *Argumentation and Critical Decision Making (8e)*. Prentice Hall, USA.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aharoni and Noam Slonim. “Context Dependent Claim Detection.” Submitted

Zachary Seech. 2008. *Writing Philosophy Papers (5th edition)*. Wadsworth, Cengage Learning, Belmont, California.

Ruty Rinott, Lena Dankin, Carlos Alzate, Ehud Aharoni and Noam Slonim. “Show Me Your Evidence – an Automatic Method for Context Dependent Evidence Detection.” Submitted.