Do sex steroids exert sex-specific and/or opposite effects on gene expression in lacrimal and meibomian glands?

David A. Sullivan,1 Roderick V. Jensen,2 Tomo Suzuki,1 Stephen M. Richards1

1Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA; 2Department of Biological Sciences, Virginia Tech, Blacksburg, VA

Purpose: We hypothesize that sex steroids induce sex-specific and/or opposite effects in the lacrimal and meibomian glands and that these actions may influence the prevalence of dry eye syndrome. The objective of this study was to begin to test this hypothesis.

Methods: Lacrimal and meibomian glands were obtained from ovariectomized mice that had been treated with testosterone or control vehicle for 14 days. Samples were processed for the isolation of RNA, and analyzed for differentially expressed mRNAs using CodeLink Bioarrays and quantitative real-time PCR (qPCR) techniques. Data were compared to those obtained following testosterone treatment of orchiectomized mice, as well as after the administration of 17β-estradiol and/or progesterone to ovariectomized mice.

Results: Our findings demonstrate that testosterone regulates the expression of thousands of genes in the lacrimal and meibomian glands of ovariectomized mice. The magnitude and extent of these hormonal effects, which encompassed numerous biological, molecular, and cellular ontologies, was tissue-dependent. Particularly notable was the androgen stimulation of meibomian gland genes related to lipid metabolic pathways, and the suppression of genes associated with keratinization. Many of the genes regulated by testosterone in female tissues were identical to those controlled by androgens in male lacrimal and meibomian glands. However, some genes were modulated in a sex-specific manner. In addition, a number of the androgen-regulated genes in female glands were altered in the opposite direction by 17β-estradiol and/or progesterone.

Conclusions: Our results support our hypothesis that sex steroids may induce sex-specific and/or opposite effects in the lacrimal and meibomian glands. Whether these actions contribute to the prevalence of dry eye remains to be determined.

Sex steroid hormones, such as androgens and estrogens, exert significant effects on almost every cell, tissue, and organ system of the body [1]. However, these hormone actions may not be the same in both males and females. Rather, sex steroid influence may be sex-specific. For example, sex steroids elicit sex-specific effects on many tissues (e.g. hippocampus, spinal cord, vasculature, muscle, and liver) and cells (e.g. preadipocytes, neutrophils, and antigen-presenting cells) [2-9]. Sex steroids may also induce opposite [10-14], and even antagonistic [15], influences, such as on sebaceous gland activity, cerebrovascular function, microtubule polymerization, chronic allograft nephropathy, autoimmunity, and the cystic fibrosis transmembrane conductance regulator (i.e. a chloride channel). These differential actions of sex steroids in males and females may contribute to a variety of conditions, including stress, atherosclerosis, coronary heart disease, fat distribution, inflammation, autoimmune disease, infection, pain syndromes, stroke, and lung development [2-5,8-10,14].

We hypothesize that sex-specific and/or opposite effects of sex steroids also occur in the lacrimal and meibomian glands and may influence the prevalence of dry eye disease. In support of this hypothesis, investigators have reported that sex steroid actions on the transcription of certain genes, the translation of the corresponding proteins, and the development of paradoxical inflammation in the lacrimal gland are sex-biased [15-21]. Moreover, we have discovered that sex and sex steroid hormones are critical factors in the pathogenesis of dry eye syndromes [22-31], which occur predominantly in women [32]. We have also discovered that androgens may suppress, and estrogens may promote, aqueous-deficient and/or evaporative dry eye [22-26,31]. We hypothesize that these opposing sex steroid actions may involve antagonist effects between androgens and estrogens in the lacrimal and meibomian glands.

However, whether sex steroids exert sex-specific or antagonistic effects in ocular adnexal tissues is unknown. The purpose of this study was to determine whether sex steroids do elicit sex-specific and/or opposite effects in both the lacrimal and meibomian glands. Towards this end, we examined the impact of testosterone on glandular gene expression in ovariectomized mice, and compared these effects to those found in androgen-treated ovariectomized mice. We also compared the testosterone-induced gene
alterations in the female lacrimal and meibomian glands to those elicited by 17ß-estradiol, progesterone, or both hormones together in these tissues.

METHODS

Animals and hormone treatment: Age-matched and young adult BALB/c mice, that were ovariectomized at 8 weeks of age, were obtained from Taconic Laboratories (Germantown, NY). Animals were housed in constant temperature rooms with fixed light/dark intervals of 12 h duration. Ten days after surgery, pellets containing vehicle (cholesterol, methylcellulose, lactose) or testosterone (10 mg) were implanted subcutaneously in the ovariectomized mice. The pellets were purchased from Innovative Research of America (Sarasota, FL) and were designed for the constant release of placebo or physiological amounts of androgen (for a male [33-36]) for 3 weeks. After 14 days of treatment, mice (n=5-6 mice/condition/experiment) were sacrificed by CO₂ inhalation and exorbital lacrimal and meibomian glands were removed. The meibomian glands were excised from the upper and lower lids under direct visualization with a biomicroscope. This surgical procedure involved making a small incision near the inner corner of the eyelid, separating skin and subcutaneous tissue from the inner to outer aspect of the lid, and then removing skin from the meibomian glands by cutting at the mucocutaneous junction. Following these steps, the palpebral conjunctiva was removed from the meibomian glands, and the glands were dissected from the remaining tissue by starting at the outer lid corner and carefully avoiding an adjacent vein. Tissues were pooled according to group (n=10-12 glands/sample) and processed for RNA analysis. All studies with mice were approved by the Institutional Animal Care and Use Committee of The Schepens Eye Research Institute (Boston, MA) and adhered to the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research.

Molecular biological procedures: To determine the influence of testosterone on lacrimal and meibomian gland gene expression, total RNA was extracted from tissues by using TRIzol reagent (Invitrogen Corp., Carlsbad, CA). Lacrimal tissue RNA was further purified with RNAqueous spin columns (Ambion, Austin, Tx). Glandular RNA samples were exposed to RNase-free DNase (Invitrogen), examined spectrophotometrically at 260 nm to determine concentration and analyzed with a RNA 6000 Nano LabChip and an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA) to verify RNA integrity.

Gene expression was assessed by using CodeLink Uniset Mouse I Bioarrays (~10,000 genes; Amersham Biosciences/GE Healthcare, Piscataway, NJ). The RNA samples were processed for CodeLink Bioarray hybridization, according to published procedures [37]. In brief, cDNA was synthesized from RNA (2 µg) with a CodeLink Expression Assay Reagent Kit (Amersham, Piscataway, NJ) and purified with a QIAquick purification kit (Qiagen, Valencia, CA). Samples were then dried, and cRNA was produced with a CodeLink Expression Assay Reagent Kit (Amersham), recovered with an RNeasy kit (Qiagen) and quantified with an UV spectrophotometer. Fragmented, biotin-labeled cRNA was incubated and shaken (300 rpm shaker) on a CodeLink Bioarray at 37 °C for 18 h. After this time period, the Bioarray was washed, exposed to streptavidin-Alexa 647, and scanned by utilizing ScanArray Express software and a ScanArray Express HT scanner (Packard BioScience, Meriden, CT) with the laser set at 635 nm, laser power at 100%, and photomultiplier tube voltage at 60%. Scanned image files were appraised by utilizing CodeLink image and data analysis software (Amersham), which yielded both raw and normalized hybridization signal intensities for each array spot. The spot intensities (~10,000) on the microarray image were standardized to a median of 1. Normalized data, with signal intensities exceeding 0.50 for the meibomian gland and 0.75 for the lacrimal gland, were evaluated with GeneSifter.net software (Geospiza, Seattle, WA). This comprehensive program also generated gene ontology and z-score reports. These ontologies encompassed biological processes, molecular functions and cellular components and were organized according to the guidelines of the Gene Ontology Consortium [38]. Gene expression data were analyzed without and with log transformation and statistical evaluation of these data was performed with Student’s t-test (two-tailed, unpaired) with GeneSifter.net software. Genes that were expressed in similar or opposite directions in different experiments were identified by using the GeneSifter.net intersector program (Geospiza). The data from the individual Bioarrays (n=6) are accessible for download through the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO) via series accession number GSE3995.

Real time PCR procedures: The differential expression of selected genes was confirmed by using quantitative real-time PCR (qPCR), as previously described [33,39]. In brief, sense and anti-sense primers were designed by utilizing Primer Express Software, version 1.5a (Applied Biosystems, Inc., Foster City, CA). The qPCR reactions were performed with Applied Biosystems’ SYBR Green PCR Master Mix, MicroAmp Optical 96-Well Reaction Plates, ABI PRISM Optical Adhesive Covers and the GeneAmp 7900 HT Sequence Detection System. Gene expression was calculated by using either the Relative Standard Curve Method or the Comparative Cr Method, and standardizing levels to that of glyceraldehyde-3-phosphate dehydrogenase or tubulin δ1 mRNA. Dissociation curves were examined to ensure the absence of secondary PCR products.

RESULTS

Androgen influence on gene expression in female lacrimal and meibomian glands: To determine the influence of
testosterone on lacrimal and meibomian gland gene expression, tissues were obtained from placebo- and androgen-treated, ovariectomized mice (n=5-6/group/experiment) and processed for analysis by utilizing CodeLink Uniset Mouse I Bioarrays. Examination of non- and log-transformed data from 3 separate experiments demonstrated that testosterone significantly altered the expression of thousands of genes in female ocular tissues. Androgen action significantly upregulated 768 genes (e.g. transforming growth factor β1 and β3), and significantly downregulated 1,350 genes (e.g. pancreatic lipase related protein 1; Table 1 and Table 2), in the lacrimal gland. Moreover, testosterone administration increased the expression of 726 genes (e.g. glutathione peroxidase 3) and decreased the activity of 283 genes (e.g. small proline-rich protein 2A) in the meibomian gland (Table 1 and Table 3). The magnitude of these hormonal effects was tissue-dependent. Testosterone treatment induced a ≥10 fold change in the expression of over 45 lacrimal gland genes, and elicited a ≥2 fold response in the activity of 23 meibomian gland genes.

The influence of androgen exposure was particularly notable in its significant stimulation of such ontologies as cell cycle, transferase activity and chromosomes in the lacrimal gland (Table 4), and protein transport, oxidoreductase activity and mitochondria in the meibomian gland (Table 5). Testosterone treatment was also associated with a significant suppression of pathways linked to translation, structural molecule activity and ribosomes in lacrimal tissue, and the immune response, receptor binding and plasma membranes in the meibomian gland. Of particular interest was the significant androgen impact on the expression of genes linked to multiple lipid metabolic processes (e.g. biosynthesis, transport, oxidation) in meibomian tissue (Table 6). Also striking was the testosterone suppression of genes related to keratinization (z score=10.2) and cell fate commitment (z score=3.2) in the meibomian gland (Table 7).

To verify in part the CodeLink Bioarray results, selected genes were analyzed by qPCR. This experimental approach confirmed the effect of testosterone on all tested genes (Table 8).

Surprisingly, the effects of testosterone on the lacrimal and meibomian gland were not entirely tissue-specific. As shown in Table 9, androgen treatment caused analogous changes in the expression of 127 genes in both tissues, and opposite responses in 165 genes. Genes regulated in the same manner included vascular endothelial growth factor A, hyaluronan mediated motility receptor, and lipocalin 3 (Table 10). Those controlled in a different way included chemokine binding protein 2, cholecystokinin, and matrix metalloproteinase 3 (Table 10).

Comparative effects of androgens on gene expression in male and female lacrimal and meibomian glands:
We have previously discovered that testosterone treatment significantly influences the expression of over 2,000 and 1,500 genes in the lacrimal and meibomian glands, respectively, of orchiectomized mice [40]. To examine whether these androgen actions are analogous to those found in ovariectomized mice, we compared the data from the earlier studies (n=10-14 glands/ sample/ experiment; n=3 experiments/ study) with orchiectomized mice to those in the present investigation. All gene expression results were generated with CodeLink Uniset Mouse I Bioarrays and analyzed with GeneSifter software.

Our analysis of log transformed data demonstrated that testosterone administration significantly altered the expression of many of the same genes in both ovariectomized and orchiectomized mice. This hormonal control included 1,072 similar genes in lacrimal glands and 285 similar genes in meibomian glands. The nature (i.e. up- or down-regulation) of the androgen effects was identical in 95.5% of the lacrimal gland genes, and 77.6% of the meibomian gland genes.

TABLE 1. INFLUENCE OF TESTOSTERONE ON GENE EXPRESSION IN THE FEMALE LACRIMAL AND MEIBOMIAN GLANDS.
Lacrimal gland
No transformation
Log transformation
Total
Meibomian gland
No transformation
Log transformation
Total

Data were evaluated with and without log transformation. The numbers of common and non-overlapping genes between analytical categories were determined, and then the total numbers were calculated. The expression of listed genes was significantly (p <0.05) up (↑) or down (↓)-regulated by testosterone treatment.
Accession number	Gene Description	Ratio	p value	Ontology
NM_019515	neuromedin	975.7	0.0003	cell communication
AF071068	dopa decarboxylase	86.2	0.0005	amino acid metabolism
NM_008957	patched homolog 1	64.5	0.0000	regulation of growth
NM_009021	retinoic acid induced 1	40.6	0.0033	transcription
NM_010643	kallikrein 1-related peptidase b24	38.8	0.0001	proteolysis
NM_053178	acyl-CoA synthetase bubblegum family member 1	37.6	0.0023	very-long-chain fatty acid metabolic process
NM_007936	Eph receptor A4	29.4	0.0001	neumogenesis
NM_007413	adenosine A2b receptor	28.2	0.0001	signal transduction
NM_007556	bone morphogenetic protein 6	27.2	0.0082	transmembrane receptor protein serine/threonine kinase signaling pathway
AK007577	chordin-like 2	27.2	0.0005	transmembrane receptor protein serine/threonine kinase signaling pathway
NM_018874	pancreatic lipase related protein 1	81.1	0.0001	metabolism
NM_018781	early growth response 3	19.8	0.0401	transcription
NM_009714	asialoglycoprotein receptor 1	15.7	0.0118	vesicle-mediated transport
NM_023186	chitinase, acidic	15.1	0.0480	polysaccharide catabolic process
NM_008456	kallikrein 1-related peptidase b5	15.1	0.0288	proteolysis
NM_007446	amylase 1, salivary	12.5	0.0418	carbohydrate metabolic process
NM_011105	polycystin	14.8	0.0015	cell communication
AK002477	plasma membrane proteolipid	12.0	0.0004	transport
NM_02305	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 1	9.2	0.0003	metabolism
NM_007409	alcohol dehydrogenase 1 (class I)	9.1	0.0049	metabolism

The accession number is the sequence identity of the gene fragment expressed on the CodeLink Bioarray. This sequence appears in the nucleotide database of the National Center for Biotechnology Information (NCBI). Relative ratios were calculated by comparing the degree of gene expression in lacrimal glands from placebo- and testosterone-treated ovariectomized mice. Genes listed had a signal intensity average of >5.0 in at least one group, a comparative p value (between glands) of <0.05 and a known identity. These ratios were generated from non- and log-transformed data.
Accession number	Gene	Ratio	p value	Ontology
Testosterone>Placebo				
NM_030265	Kv channel interacting protein 4	8.8	0.0134	transport
NM_011351	sema domain, transmembrane domain, and cytoplasmic domain, (semaphorin) 6C	4.0	0.0036	multicellular organismal development
NM_008161	glutathione peroxidase 3	3.0	0.0063	response to oxidative stress
NM_008362	interleukin 1 receptor, type 1	2.4	0.0021	signal transduction
NM_026523	neuregulin B	2.3	0.0019	neuropeptide signaling pathway
NM_008288	hydroxysteroid 11β dehydrogenase 1	2.2	0.0123	lipid metabolic process
NM_008324	indoleamine-pyrrole 2,3 dioxygenase	2.2	0.0380	positive regulation of T cell tolerance induction
AA832579	a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 2	2.2	0.0003	proteolysis
NM_010174	eosinophil-associated, ribonuclease A family, member 1	4.3	0.0016	nucleic acid binding
U08020	fatty acid binding protein 3	2.2	0.0409	phosphatidylinositol biosynthetic process
Placebo>Testosterone				
NM_007894	eosinophil-associated, ribonuclease A family, member 1	4.3	0.0016	nucleic acid binding
NM_011468	small proline-rich protein 2A	3.3	0.0082	regulation of cell shape
NM_013650	S100 calcium binding protein A8	2.8	0.0332	chemotaxis
NM_022948	resistin	2.4	0.0136	hormone activity
NM_009154	sema domain, seven thrombospondin repeats, trans-membrane domain	2.1	0.0077	multicellular organismal development
AK005197	kin of IRRE like 3	2.0	0.0003	hemopoiesis
NM_010449	homeo box A 1	1.9	0.0441	transcription
NM_008150	guanylate binding protein 4	1.9	0.0231	biological process
NM_031184	GLIS family zinc finger 2	1.9	0.0206	transcription
AK011647	protein kinase, cAMP dependent regulatory, type IIβ	1.9	0.0021	regulation of protein amino acid phosphorylation

Relative ratios were determined by comparing the degree of gene expression in meibomian glands from placebo- and testosterone-treated ovariectomized mice. Genes listed had a comparative p value (between glands) of <0.05, as well as a known identity. These ratios were generated from non- and log-transformed data.
To further compare testosterone influence on glandular gene expression in female and male mice, we focused on genes in female tissues with relatively high array intensities, expression ratios (i.e., compared to the placebo-treated group), and significant differences (i.e., versus placebo). These more stringent criteria (lacrimal=$p<0.001$; intensity >2.0; ratio >1.8; meibomian=$p<0.01$; intensity >1.0; ratio >1.35) identified 173 (8.7% of the total) and 80 (8.4% of the total).

Table 4. Impact of Testosterone on the Expression of Gene Ontologies in the Female Lacrimal Gland.

Ontology	Testosterone genes ↑	Placebo genes ↑	Testosterone z-score	Placebo z-score
Biological process				
cell cycle	54	48	4.42	-1.43
mitotic cell cycle	25	18	4.02	-0.94
DNA metabolic process	35	25	3.78	-2.01
protein metabolic process	98	248	-2.06	2.45
anatomical structure development	81	173	-2.51	-1.66
multicellular organismal process	119	231	-2.52	-2.88
translation	5	62	-2.64	7.28
cellular protein metabolic process	96	242	-2.02	2.36
proteolysis	30	89	-1.59	2.06
protein amino acid phosphorylation	30	36	-0.44	-3.47
signal transduction	113	152	0.67	-4.06
cell communication	122	169	0.14	-4.59
Molecular function				
transferase activity, transferring acyl groups	15	5	3.18	-2.35
small GTPase regulator activity	13	8	2.47	-1.38
vitamin binding	10	12	2.07	0.73
endopeptidase activity	8	38	-2.04	1.88
calcium ion binding	24	71	-2.2	0.59
structural constituent of ribosome	5	51	-0.8	11.45
structural molecule activity	12	75	-1.62	7.63
hydrogen ion transmembrane transporter activity	5	18	0.73	4.68
ribonucleotide binding	65	95	-0.53	-3.21
signal transducer activity	64	91	-0.37	-3.24
transferase activity	83	97	1.63	-3.28
Cellular component				
chromosome	28	11	3.91	-3.17
nucleolus	13	18	2.84	2.1
nucleus	207	329	2.43	-0.23
plasma membrane part	40	77	-2.25	-2.76
ribosome	6	59	-1.15	10.91
ribonucleoprotein complex	13	85	-1.69	8.59
macromolecular complex	80	228	-1.12	5.79
chromosomal part	22	9	3.39	-2.77
intrinsic to membrane	163	281	-0.89	-2.58
membrane	230	417	-1.46	-2.43

Specific ontologies, with some of the highest and lowest z-scores, were selected after the analysis of non-transformed data. A z-score is a statistical rating of the relative expression of gene ontologies, and shows how much each ontology is over- or under-represented in a given gene list. In other words, the z-score is a standardized difference using the expected value and standard deviation of the number of genes meeting the criterion of a gene ontology term under a hypergeometric distribution [97]. Positive z scores represent gene ontology terms with a greater number of genes meeting the criterion than is expected by chance, whereas negative z scores reflect gene ontology terms with fewer genes meeting the criterion than expected by chance. A z score close to zero indicates that the number of genes meeting the criterion approximates the expected number [97]. Z-scores with values >2.0 or less than <-2.0, and with ≥20 genes, are shown for selected ontologies. High and low values for the placebo and testosterone groups in designated ontologies are highlighted in bold print. Terms: Testosterone genes ↑ - number of genes up-regulated in lacrimal glands of testosterone-treated mice, as compared to those of the ‘placebo’ group; Placebo genes ↑ - number of genes up-regulated in lacrimal glands of placebo-treated mice, relative to those of the ‘testosterone’ group; z-score - specific score for the up-regulated genes in the placebo- and hormone-treated lacrimal glands.
genes in female lacrimal and meibomian glands, respectively. Comparative analyses showed that, with the exception of 4 genes, all lacrimal gland genes were increased or decreased in the same direction in males. The 4 exceptions were genes that were significantly reduced (ratios between 2.5 to 3.6 fold) by testosterone in female mice, but were not lower following androgen exposure in male lacrimal tissues (Table 11). In the meibomian gland the expression of 2 genes, that were significantly decreased (ratios=1.4 fold) in female tissues, were significantly increased (ratios=1.3 fold) in males (Table 11). Another 13 genes in the female meibomian gland, that showed significant expression differences (ratios between 1.4 to 1.8 fold) after testosterone exposure, were not influenced in the same direction in males (Table 11). Overall, these comparisons did not reveal any gene that was unique to female lacrimal or meibomian glands.

Ontology	Testosterone genes ↑	Placebo genes ↑	Testosterone z-score	Placebo z-score
Biological Process				
cellular catabolic process	66	12	5.53	-0.5
oxidation reduction	53	5	5.46	-1.72
protein transport	45	3	3.44	-2.49
cell communication	72	48	-4.85	0.47
signal transduction	58	41	-5.16	0.16
regulation of biological process	151	96	-6.67	1.34
immune response	16	24	-1.26	5.6
organ development	40	50	-4.34	4.43
response to stimulus	56	51	-3.32	3.68
protein transport	45	3	3.44	-2.49
protein localization	49	4	3.15	-2.53
macromolecule localization	51	4	3.25	-2.62
Molecular Function				
oxidoreductase activity	57	8	5.81	-0.88
catalytic activity	258	58	5.36	-2.7
peptidase activity	33	10	2.4	0.51
DNA binding	39	35	-4.57	1.33
molecular transducer activity	31	32	-4.63	1.56
signal transducer activity	31	32	-4.63	1.56
receptor binding	18	19	-2.05	2.59
receptor activity	23	29	-4.5	2.05
nucleotide binding	80	19	0.06	-2.28
Cellular Component				
mitochondrion	82	11	6.19	-1.2
cytoplasm	341	76	6.1	-2.67
organelle membrane	59	10	5.64	-0.18
cytoskeleton	21	15	-2.76	0.62
nucleus	149	65	-3.02	0.15
plasma membrane	53	51	-6.25	2.21
extracellular space	8	16	-2.57	3.83
plasma membrane part	20	33	-5.21	3.22
extracellular region part	29	19	-0.44	2.49
intracellular part	425	124	2.81	-2.17
cytoplasmic part	235	40	7.44	-2.47
cytoplasm	341	76	6.1	-2.67

Specific ontologies, with some of the highest and lowest z-scores, were selected following the analysis of non-transformed data. Criteria for inclusion in the Table were an ontology containing ≥20 genes and having a z-score >2.0 or <-2.0. High and low values for the placebo and testosterone groups in designated ontologies are highlighted in bold print.
Table 6. Androgen effect on genes associated with lipid metabolic processes in the female meibomian gland.

Up-regulation	**Down-regulation**
3-hydroxy-3-methylglutaryl-Coenzyme A reductase	Arachidonate 15-lipoxygenase
Acyl-CoA synthetase medium-chain family member 3	ATPase, Na+/K+ transporting, α1 polypeptide
Acyl-CoA thioesterase 12	Enoyl-Coenzyme A, hydratase/3-hydroxyacyl
Acyl-Coenzyme A oxidase 2, branched chain	Coenzyme A dehydrogenase
Adipose differentiation related protein	Farnesyl diphosphate farnesyl transferase
Aldehyde dehydrogenase family 1, subfamily A1	Fatty acid binding protein 5, epidermal
Apolipoprotein C-II	HNF1 homeobox A
Apolipoprotein E	Interleukin 1β
Arachidonate 12-lipoxygenase	Phospholipase A2, group IIF
Dodecenoyl-Coenzyme A δ isomerase (3,2 trans-enoyl-Coenzyme A isomerase)	Phospholipase D1
Dolichol-phosphate (βD) mannosyltransferase 1	Protein kinase, cAMP dependent regulatory, type I1β
Elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 3	Sortilin-related receptor, LDLR class A repeats-containing
Fatty acid binding protein 3, muscle and heart	Steroid sulfatase
Glycerol-3-phosphate acyltransferase, mitochondrial	
Hexosaminidase A	
Hexosaminidase B	
Hydroxysteroid (17β) dehydrogenase 12	
Hydroxysteroid (17β) dehydrogenase 2	
Hydroxysteroid (17β) dehydrogenase 7	
Hydroxysteroid 11β dehydrogenase 1	
LAG1 homolog, ceramide synthase 4	
Mitochondrial trans-2-enoyl-CoA reductase	
N-acylsphingosine amidohydrolase 2	
Oxysterol binding protein-like 5	
Peroxisome biogenesis factor 7	
Phenylalkylamine Ca2+ antagonist (emopamil) binding protein	
Phosphatidylserine synthase 1	
Prenyl (solanesyl) diphosphate synthase, subunit 1	
Prostaglandin E synthase 2	
RIKEN cDNA 0610007P14 gene	
Solute carrier family 27 (fatty acid transporter), member 4	
Sphingomyelin phosphodiesterase 1, acid lysosomal	
Sphingomyelin phosphodiesterase, acid-like 3A	
Sphingosine-1-phosphate phosphatase 1	
Stearoyl-Coenzyme A desaturase 1	
Stearoyl-coenzyme A desaturase 3	
Sulfotransferase family 1A, phenol-prefering, member 1	
Transmembrane 7 superfamily member 2	

Genes were significantly (p <0.05) up- or down-regulated by testosterone treatment.
Additional comparisons demonstrated that many of the androgen effects on biological process, molecular function and cellular component ontologies in lacrimal and meibomian glands were the same in both females and males (data not shown).

Comparative effects of testosterone, 17β-estradiol and/or progesterone on gene expression in female lacrimal and meibomian glands: We have found that 17β-estradiol and/or progesterone administration for 2 weeks significantly alters the expression of hundreds of genes in the lacrimal and meibomian glands of ovariectomized mice [41,42] (Table 12).

Table 7. Androgen Influence on Genes Linked to Keratinization and Cell Fate Commitment in the Female Meibomian Gland.

Keratinization	Down-regulation	Keratinization
Small proline-rich protein 2A	Keratin 17	Small proline-rich protein 2B
Small proline-rich protein 2B	Cornifelin	Small proline-rich protein 3
Small proline-rich protein 3	Periplakin	Transglutaminase 1, K polypeptide
Keratin 17	Notch gene homolog 2	Notch gene homolog 1
Cornifelin	Notch gene homolog 1	Multiple endocrine neoplasia 1
Periplakin	Delta-like 3	GS homeobox 1
Transglutaminase 1, K polypeptide	Kinase insert domain protein receptor	Sine oculis-related homeobox 1 homolog
Cell fate commitment		T-cell acute lymphocytic leukemia 1

POU domain, class 2, transcription factor 1
Cell division cycle 42 homolog (S. cerevisiae)

Genes were significantly (p <0.05) up- or down-regulated by testosterone treatment.

Table 8. Confirmation of selected CodeLink Bioarray results.

Accession number	Gene	CodeLink Ratios	qPCR Ratios
Lacrimal gland			
Testosterone>Placebo			
NM_009735	β-2 Microglobulin	2.6; 3.4; 3.6	6.8; 9.4; 10.0
NM_011978	Solute carrier family 27, member 2	4.4; 3.7; 4.0	8.0; 10.0; 18.9
NM_009031	Retinoblastoma binding protein 7	4.0; 3.0; 3.2	4.4; 3.4; 4.8
Placebo>Testosterone			
NM_018874	Pancreatic lipase related protein 1	77.3; 91.3; 73.0	2,121; 680; 320
NM_009714	Asialoglycoprotein receptor 1	10.0; 21.3; 14.8	7.1; 35.9; 52.1
NM_010726	Phytanoyl-CoA-hydroxylase	6.1; 7.1; 5.8	13.1; 13.2; 20.4
Meibomian gland			
Testosterone>Placebo			
NM_008161	Glutathione peroxidase 3	3.6; 3.0; 2.2	5.7; 3.8; 5.0
NM_026523	Neuromedin B	2.5; 2.3; 1.9	2.1; 1.8; 1.5
Placebo>Testosterone			
NM_011468	Small proline-rich protein 2A	3.9; 3.6; 2.5	5.3; 7.3; 4.9
NM_022984	Resistin	2.0; 2.1; 2.9	3.6; 2.9; 2.5

The expression of designated genes, that were shown to be significantly altered in lacrimal and meibomian glands of placebo- or testosterone-treated mice by using CodeLink Bioarrays, were re-examined with qPCR procedures. The relative ratios of gene expression in 3 separate experiments are listed in the CodeLink and qPCR “Ratios” columns.

Additional comparisons demonstrated that many of the androgen effects on biological process, molecular function and cellular component ontologies in lacrimal and meibomian glands were the same in both females and males (data not shown). To determine whether these sex steroid actions are unique, or the same as, or opposite to, those elicited by testosterone exposure, we compared the data from our previous investigations (n=14 glands/ sample/ experiment; n=3 experiments/ study) [41,42] to those in the current study. The ages of the BALB/c mice used in all experiments were similar.

In addition, all gene expression results were obtained with CodeLink Uniset Mouse I Bioarrays and analyzed with GeneSifter software.

As shown in Table 12 and Table 13, the majority of genes regulated by testosterone, 17β-estradiol and/or progesterone
in the lacrimal and meibomian glands were unique (i.e. hormone-specific). Treatment with 17β-estradiol, progesterone, or both sex steroids in combination significantly influenced less than 6.4% of genes controlled by androgens (Table 13). Conversely, testosterone significantly influenced less than 23.3% of estrogen- and progestin-regulated genes (Table 13).

However, although the total number of common genes was limited, the nature of the hormone response to testosterone, as compared to 17β-estradiol, progesterone or both hormones together, was typically different. Between 62.3 to 68.8% of the sex steroid effects (i.e. testosterone versus other hormones) in the lacrimal gland were in the opposite direction. Moreover, between 45.2 to 54.0% of the hormone responses in the meibomian gland were in the opposite direction. Examples of estrogen- and progestin-regulated genes that were modulated in a similar or opposite manner relative to testosterone are shown in Table 14 and Table 15.

DISCUSSION

Our findings demonstrate that testosterone regulates the expression of thousands of genes in the lacrimal and meibomian glands of ovariectomized mice. The magnitude and extent of these hormonal effects, which encompassed numerous biological, molecular and cellular ontologies, was tissue-dependent. Particularly notable was the androgen stimulation of meibomian gland genes related to lipid metabolic pathways, and the suppression of genes associated with keratinization. Many of the genes regulated by testosterone in female tissues were identical to those controlled by androgens in male lacrimal and meibomian glands. However, some genes were modulated in a sex-specific manner. In addition, a number of the androgen-regulated genes in female glands were altered in the opposite direction by 17β-estradiol and/or progesterone. Overall, our results support our hypothesis that sex steroids may induce sex-specific and opposite effects in the lacrimal and meibomian glands.

Our observation that testosterone influences the expression of multiple genes in female ocular adnexal tissues was anticipated. Androgens are known to exert a tremendous impact on the structure and function of the lacrimal gland, including such aspects as the cellular morphology, nuclear architecture, protein synthesis, enzyme activity, receptor expression and fluid and protein secretion [28]. Similarly, the meibomian gland is an androgen target organ, and androgens appear to regulate this tissue’s function (e.g. lipid production [22-25,43-45]. Androgen deficiency, in turn, has been linked to lacrimal and meibomian gland dysfunction, and a corresponding aqueous tear deficiency and evaporative dry eye [22-26,28-30]. A number of these ocular effects, due to the presence or absence of androgens, may be associated with glandular alterations in gene activity [39,40].

Of the many androgen actions on gene expression in the lacrimal and meibomian glands, two that stand out are the stimulation of meibomian gland genes associated with lipid metabolic pathways, and the suppression of genes related to keratinization. First, the upregulation of genes involved with lipid biosynthesis, transport, and metabolism is reminiscent of testosterone’s similar influence on the male meibomian gland [39,46,47]. Androgens stimulate numerous lipid pathway genes in this tissue, including those related to lipogenesis, steroidogenesis, and cholesterogenesis [39,46,47]. Second, the testosterone downregulation of meibomian gland genes associated with keratinization may explain on a molecular level how androgens inhibit this process. Keratinization is believed to be a primary cause of meibomian gland dysfunction [48,49], which leads to tear film hyperosmolarity and instability and evaporative dry eye [50-53]. Androgens appear to prevent this keratinization, because androgen insufficiency (e.g. during anti-androgen treatment, complete androgen insensitivity syndrome and/or aging) is associated with keratinization of the meibomian gland ductal epithelium (i.e. orifice metaplasia) and the lid [22,25,54]. It may be that these combined androgen actions, promoting lipogenesis and suppressing keratinization, are the reason why topical androgens reportedly enhance the synthesis and secretion of meibomian gland lipids, prolong the tear film breakup time, and alleviate dry eye syndrome [44,45].

Testosterone's effects on the female lacrimal and meibomian gland most likely involve an association with

Table 9. Similar and opposite effects of testosterone on gene expression in female lacrimal and meibomian glands.

Testosterone effect	Genes - no transform	Genes - log transform	Total genes
Lacrimal Gland ↑, Meibomian Gland ↑	58	54	59
Lacrimal Gland ↑, Meibomian Gland ↓	26	30	31
Lacrimal Gland ↓, Meibomian Gland ↑	153	141	154
Lacrimal Gland ↓, Meibomian Gland ↓	64	67	68

Data were analyzed with and without log transformation (“Transform”). The expression of the same genes was significantly (p <0.05) up (↑)- or down (↓)-regulated by androgen treatment of ovariectomized mice.
TABLE 10. TESTOSTERONE EFFECT ON SPECIFIC GENES IN THE LACRIMAL AND MEIBOMIAN GLANDS.

Accession number	Gene	LG % ↑	LG % ↓	MG % ↑	MG % ↓
NM_009127	stearoyl-Coenzyme A desaturase 1	53	24		
NM_009505	vascular endothelial growth factor A	50	8		
NM_010555	interleukin 1 receptor, type II	82	36		
NM_011026	purinergic receptor P2X, ligand-gated ion channel 4	38	34		
NM_013552	hyaluronan mediated motility receptor	640	22		
NM_013754	insulin-like 6	433	49		
NM_007470	apolipoprotein D	88		29	
NM_010483	5-hydroxytryptamine (serotonin) receptor 5B	30		29	
NM_010694	lipocalin 3	199		25	
NM_013706	CD52 antigen	88		19	
NM_013822	jagged 1	181	27		
NM_018766	neurotensin receptor	38		34	
AK010367	dynamin binding protein	528		67	
NM_021489	coagulation factor XII (Hageman factor)	233		77	
NM_021609	chemokine binding protein	240		26	
NM_023580	Eph receptor A1	55		12	
NM_023907	forkhead box I1	18		15	
NM_008351	interleukin 12a	110		45	
NM_009801	carbonic anhydrase 2		30	13	
NM_031161	cholecystokinin		161	23	
NM_017370	haptoglobin		218	105	
NM_010809	matrix metalloproteinase 3		197	81	
NM_007740	procollagen, type IX, alpha 1		35	16	
NM_009425	tumor necrosis factor (ligand) superfamily, member 10		104	30	

Genes were significantly (p <0.05) increased (↑) or decreased (↓) by testosterone treatment in the lacrimal (LG) and meibomian (MG) glands of ovariectomized mice. Numbers equal the percentage (%) increase or decrease, relative to the placebo-treated control level.
Table 11. Comparative effects of testosterone on gene expression in female and male glands.

Genes significantly increased by testosterone in female, but not increased in male	Genes significantly decreased by testosterone in female, but not decreased in male	Genes significantly decreased by testosterone in female, but significantly increased in male
Lacrimal gland	Lacrimal gland	Lacrimal gland
Adult male medulla oblongata clone: 6330419D11	homer homolog 3	potassium voltage-gated channel, shaker-related subfamily, member 2
lysophosphatidylcholine acyltransferase	lymphocyte antigen 78	
	Meibomian gland	
prostaglandin E synthase 2	glial fibrillary acidic protein	
estrogen related receptor a	bone morphogenetic protein 8b	
neural proliferation, differentiation and control gene 1	interleukin 1β	
procollagen, type VI, α1	epithelial membrane protein 3	
tropomodulin 4	fatty acid binding protein 5, epidermal	
	chemokine (C-C motif) ligand 7	
	interleukin 1 family, member 6	

All genes were significantly (p < 0.05) up- or down-regulated by testosterone treatment in ovariectomized mice. The female genes in not transformed data had the following characteristics: lacrimal gland = p < 0.001, intensity > 2.0, ratio > 1.8; meibomian gland = p < 0.01, intensity > 1.0, ratio > 1.35.
saturable, high-affinity and androgen-specific receptors in acinar epithelial cell nuclei. Androgen receptors are members of the steroid/thyroid hormone/retinoic acid family of ligand-activated transcription factors and mediate the classical actions of androgens throughout the body [55,56]. After androgen binding to the receptor, the monomeric, activated hormone-receptor complex associates with an androgen response element in the regulatory region of specific target genes, typically dimerizes with another androgen-bound complex and, in combination with appropriate coactivators and promoter elements, modulates gene transcription [55, 56]. In support of this hypothesis, androgen receptors have been shown to exist in lacrimal and meibomian gland epithelial cells [57-63] and androgen activity in these cells may be compromised by androgen receptor mutations or antagonists [22-25,64-69]. Another mechanism of androgen action may involve binding to glandular membrane receptors, stimulation of signal transduction cascades and consequent alteration of gene transcription [56,70]. Testosterone may also act indirectly, by regulating the release of anterior pituitary hormones that may influence the lacrimal and meibomian glands.

Many of the genes modulated by testosterone in female tissues are identical to those regulated by androgens in male lacrimal and meibomian glands. However, some genes are controlled in a sex-specific manner. There were 4 genes downregulated by testosterone in the female, but not male, lacrimal gland. These include lymphocyte antigen 78, which is involved in innate immunity [70], a potassium voltage-gated channel member, and homer protein homolog 3, that helps couple surface receptors to intracellular calcium release [71]. In the meibomian gland, several genes were upregulated in the female, but not male, including prostaglandin (PG) E synthase 2 (catalyzes the conversion of PG H2 to PG E2 [71]), estrogen related receptor α (may modulate the estrogen signaling pathway [71]), and tropomodulin 4 (blocks the elongation and depolymerization of actin filaments [71]). In addition, a series of meibomian gland genes were downregulated by testosterone solely in the female, such as glial fibrillary acidic protein (an intermediate filament [71]), chemokine (C-C motif) ligand 7 (attracts monocytes and eosinophils [71]) and interleukin 1β. Our analyses did not identify any gene that was uniquely and significantly expressed in female, as compared to male, glands.

Table 12. Similarities and Differences Between the Numbers of Genes Regulated by Testosterone, 17β-Estradiol and Progesterone in the Lacrimal and Meibomian Glands of Ovariectomized Mice.

Sex steroid effect on gene expression	Lacrimal gland	Meibomian gland
Testosterone ↑	725	693
Testosterone ↓	1304	273
17β-Estradiol ↑	175	82
17β-Estradiol ↓	188	87
Progesterone ↑	93	25
Progesterone ↓	137	134
17β-Estradiol + Progesterone ↑	144	101
17β-Estradiol + Progesterone ↓	198	188
17β-Estradiol ↑, Testosterone ↑	13	12
17β-Estradiol ↓, Testosterone ↓	17	5
17β-Estradiol ↑, Testosterone ↓	24	1
17β-Estradiol ↓, Testosterone ↑	42	13
Progesterone ↑, Testosterone ↑	9	0
Progesterone ↓, Testosterone ↓	13	11
Progesterone ↑, Testosterone ↓	2	0
Progesterone ↓, Testosterone ↑	19	12
17β-Estradiol + Progesterone ↑, Testosterone ↑	17 12	
17β-Estradiol + Progesterone ↓, Testosterone ↓	29 11	
17β-Estradiol + Progesterone ↑, Testosterone ↓	30 4	
17β-Estradiol + Progesterone ↓, Testosterone ↑	46 23	

The number of genes significantly (p <0.05) up (↑)- or down (↓)-regulated by steroid treatment of castrated mice is shown in the columns entitled “Lacrimal gland” and “Meibomian gland.” Results were obtained by comparing log-transformed data. The 17β-estradiol and progesterone data originated from other studies [42,43], for which the Association for Research in Vision and Ophthalmology is the copyright holder.
We were especially interested in comparing the effects of the different sex steroids on gene expression in the lacrimal and meibomian glands. Androgens, estrogens and progestins play essential roles in the health and well-being of both men and women [72,73]. However, these hormones may also have antagonistic effects. An example is the influence of androgens and estrogens on the sebaceous gland. Androgens regulate the development, differentiation and lipid production of sebaceous glands throughout the body [74-78], and many of these actions appear to involve androgen receptors and the control of gene transcription in acinar epithelial cells [78-82]. Conversely, estrogens reduce the size, activity and lipid output of sebaceous glands [74,76,82-86] and for years were used clinically to decrease sebaceous gland function and secretion [74,75,84,85,87,88]. One mechanism proposed for estrogen action is that this hormone induces the release of lysosomal enzymes within sebocytes, resulting in premature cellular destruction and attenuated sebum elaboration [86, 89]. Additional mechanisms, though, are that estrogens decrease testosterone uptake, interfere with testosterone's conversion to dihydrotestosterone, and antagonize androgen action in the sebaceous gland [15,83,86]. Indeed, estrogens have been described as the mainstay of treatment to reduce androgen effects on the sebaceous gland [75]. These 'anti-androgen' actions of estrogens are dose-dependent, and may be overridden by exposure to physiological levels of androgens [74,84].

Androgen treatment also causes a significant decrease in the number of estradiol binding sites [89,90], and both hormones antagonize each other's regulation of their own receptor [15], in sebaceous glands. Indeed, some androgen effects are thought to be dependent upon low levels of estrogen [91]. This steroid antagonism is not limited to androgens and estrogens. Androgens and progestins, for instance, may also show opposite effects on the same processes [92].

In the lacrimal and meibomian glands, a number of identical genes were influenced by testosterone, 17β-estradiol and/or progesterone. The nature of the gene response to these hormones was sometimes similar, but often opposite. One lacrimal gland gene upregulated by 17β-estradiol and downregulated by testosterone is asialoglycoprotein receptor 1, which has been linked to the development of exocrine gland inflammation and dry eye [93-95]. These differential actions could contribute to the estrogen pro-inflammatory [33], and the androgen anti-inflammatory [33-36], effects in lacrimal tissue in Sjögren's syndrome. Genes stimulated by testosterone, but suppressed by 17β-estradiol, in the meibomian gland include secreted acidic cysteine rich glycoprotein (regulates cell growth [71]), vascular endothelial growth factor A (promotes cell migration, among many other actions [71]), matrix metalloproteinase 3 (degrades fibronectin, laminin, gelatins and collagens [71]) and cathepsin K (degrades extracellular matrices [71]).

Sex steroid effect on gene expression	Lacrimal gland	Meibomian gland
	E2±Prog/Test %	Test/E2±Prog %
E2↑, Test↑	1.8	7.4
E2↓, Test↓	1.3	9.0
E2↑, Test↓	1.8	10.7
E2↓, Test↑	5.8	22.3
Prog↑, Test↑	1.2	9.7
Prog↓, Test↓	1.0	9.5
Prog↑, Test↓	0.002	2.2
Prog↓, Test↑	2.6	13.9
E2+ Prog↑, Test↑	2.3	11.8
E2+ Prog↓, Test↓	2.2	14.6
E2+ Prog↑, Test↓	2.3	20.8
E2+ Prog↓, Test↑	6.3	23.2

The percentages were calculated by dividing the number of genes significantly (p <0.05) up (↑)- or down (↓)-regulated by a given sex steroid treatment by the number of genes significantly (p <0.05) influenced by a different hormone(s), and multiplying that fraction by 100. The gene numbers used for these calculations are reported in Table 12. Abbreviations: E2=17β-estradiol; Prog=progesterone; Test=testosterone.
TABLE 14. SIMILAR AND OPPOSITE EFFECTS OF TESTOSTERONE, 17β-ESTRADIOL AND PROGESTERONE ON GENE EXPRESSION IN THE LACRIMAL GLANDS OF OVARIECTOMIZED MICE

E2↑, Test↑	Prog↑, Test↑	E2 + Prog↑, Test↑
Fas apoptotic inhibitory molecule 2	transmembrane channel-like gene family 4	monoacylglycerol O-acyltransferase 1
acyl-Coenzyme A dehydrogenase, short chain	adenosine A2b receptor	adenosine A2b receptor
CD151 antigen	cytokine receptor-like factor 1	cyclin B2
topoisomerase (DNA) IIα	cell division cycle 20 homolog	vascular endothelial growth factor A
1-acylglycerol-3-phosphate O-acyltransferase 3	splicing factor 3a, subunit 1	cyclin A2

E2↓, Test↓	Prog↓, Test↓	E2 + Prog↓, Test↓
calpain 9	calpain 9	calpain 9
cholinergic receptor, nicotinic, α poly-peptide 1	nidogen 1	preproenkephalin 1
preproenkephalin 1	biotinidase	lymphocyte antigen 78
caspase 6	solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 4	Notch gene homolog 1
hephaestin	zinc finger protein 95	

E2↑, Test↑	Prog↑, Test↑	E2 + Prog↑, Test↑
asialoglycoprotein receptor 1	glycerol phosphate dehydrogenase 2, mitochondrial ribosomal protein L6	
CD14 antigen		
pancreatic lipase related protein 1		
CD 81 antigen		
polycystin		

E2↓, Test↓	Prog↓, Test↓	E2 + Prog↓, Test↓
cyclin E1	proteasome 26S subunit, ATPase 3, interacting protein	dynamin binding protein
dynamin binding protein	sialyltransferase 7	interleukin 12a
interleukin 12a	CD3 antigen, zeta polypeptide	retinol dehydrogenase 6
neuregulin 4	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 6	solute carrier family 27 (fatty acid transporter), member 2
forkhead box P3		forkhead box P3

Genes were significantly (p <0.05) up (↑)- or down (↓)-regulated by a given sex steroid treatment. Abbreviations: E2=17β-estradiol; Prog=progesterone; Test=testosterone
Table 15. Analogous and Opposite Effects of Testosterone, 17β-Estradiol and Progesterone on Gene Expression in the Meibomian Glands of Ovariectomized Mice

E2↑, Test↑	Prog↑, Test↑	E2 + Prog↑, Test↑
hydroxysteroid (17β) dehydrogenase 7	haptoglobin	tocopherol (α) transfer protein
glutathione peroxidase 3	interleukin 1 receptor, type II	glutathione peroxidase 3
haptoglobin	cholesterol	FK506 binding protein 5
interleukin 1 receptor, type II	cholecystokinin	interleukin 1 receptor, type II
cholecystokinin		cholecystokinin

E2↓, Test↓	Prog↓, Test↓	E2 + Prog↓, Test↓
myotubularin related protein 4	homoer homolog 3 (Drosophila)	G protein-coupled receptor, family C, group 5, member C
heat shock protein 2	uridine mono-phosphate synthetase	heat shock protein 2
chemokine (C-C motif) ligand 27	frizzled-related protein	interleukin 12a
RE1-silencing transcription factor (REST) co-repressor 1	fatty acid binding protein 5, epidermal	CD52 antigen
phospholipase D1	phospholipase D1	phospholipase D1

E2↑, Test↓	Prog↓, Test↓	E2 + Prog↓, Test↓
cytochrome P450, family 2, subfamily g, polypeptide 1	cytochrome c oxidase, subunit VIb	cytochrome P450, family 2, subfamily g, polypeptide 1
preproenkephalin 1	amin oxidase, copper containing 3	double cortin and calcium/calmodulin-dependent
cathepsin K	gastric intrinsic factor	protein kinase-like 1
secreted acidic cysteine rich glycoprotein	proteasome 26S subunit, non-ATPase, 5	RIKEN cDNA 1810016I24 gene
vascular endothelial growth factor A	mannose acetyl-glucosaminyl-transferase 3	RIKEN cDNA 2700085M18 gene

Genes were significantly (p < 0.05) up (↑) or down (↓)-regulated by a given sex steroid exposure. Abbreviations: E2=17β-estradiol; Prog=progestosterone; Test=testosterone.
genes could theoretically be involved in cell maturation, migration and holocrine secretion in the meibomian gland. If so, this would be consistent with a pro-sebaceous effect of androgens and an anti-sebaceous activity of estrogens. Such opposite effects of androgens and estrogens could also involve post-transcriptional [14] and non-genomic [96] pathways.

In summary, our data demonstrate that testosterone, 17β-estradiol and progesterone exert multiple effects on the lacrimal and meibomian glands, and that certain of these sex steroid actions are sex-specific and/or opposite. It is quite possible that these opposing sex steroid effects may play a role in the pathogenesis of dry eye syndrome.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to Mr. Michael J. Lombardi and Ms. Patricia Rowley for their technical assistance. The first author, David A. Sullivan, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analyses. This research was supported by a grant from NIH (EY05612).

REFERENCES

1. Wierman ME. Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ 2007; 31:26-33. [PMID: 17327579]

2. Mitsushima D, Takase K, Takahashi T, Kimura F. Activational and organisational effects of gonadal steroids on sex-specific acetylcholine release in the dorsal hippocampus. J Neuroendocrinol 2009; 21:400-5. [PMID: 19356199]

3. Ng MK. New perspectives on Mars and Venus: unravelling the role of androgens in gender differences in cardiovascular biology and disease. 2007; 16:185-92. Heart Lung Circ [PMID: 17448726]

4. Dieudonné MN, Sammari A, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R. Sex steroids and leptin regulate acetylcholine release in the dorsal hippocampus. J Neuroendocrinol 2007; 19:207-11. [PMID: 17448726]

5. Molloy EJ, O’Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW, Watson RW. Sex-specific alterations in neutrophil apoptosis: the role of estradiol and progesterone. Blood 2003; 102:2653-9. [PMID: 12791649]

6. MacLean HE, Chiu WS, Notini AJ, Axell AM, Davey RA, McManus JF, Ma C, Plant DR, Lynch GS, Zajac JD. Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J 2008; 22:2676-89. [PMID: 18390925]

7. van Nas A, Gahathakurta D, Wang SS, Yehya N, Horvath S, Zhang B, Ingram-Dlake R, Chaudhuri G, Schadt EE, Drake TA, Arnold AP, Luisi AJ. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinology 2009; 150:1235-49. [PMID: 18974276]

8. Nalbandian G, Kovats S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res 2005; 31:91-106. [PMID: 15778508]

9. Thompson AD, Angelotti T, Nag S, Mukha SS. Sex-specific modulation of spinal nociception by α2-adrenoceptors: differential regulation by estrogen and testosterone. Neuroscience 2008; 153:1268-77. [PMID: 18434028]

10. Krause DN, Duckles SP, Pelligrino DA. Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol 2006; 101:1252-61. [PMID: 16794020]

11. Kipp JL, Ramirez VD. Estradiol and testosterone have opposite effects on microtubule polymerization. Neuroendocrinology 2003; 77:258-72. [PMID: 12766326]

12. Antus B, Yao Y, Song E, Liu S, Lutz J, Heemann U. Opposite effects of testosterone and estrogens on chronic allograft nephropathy. Transpl Int 2002; 15:494-501. [PMID: 12389082]

13. Cutolo M, Wilder RL. Different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheum Dis Clin North Am 2000; 26:825-39. [PMID: 11084946]

14. Sweeney NB, Ghibu F, Gagnon S. Sex hormones regulate CFTR expression in human preadipocytes: Sex specificities. J Steroid Biochem Mol Biol 2006; 99:189-96. [PMID: 16621515]

15. Azzi L, El-Alfy M, Labrie F. Gender differences and effects of sex steroids and dehydroepiandrosterone on androgen and oestrogen alpha receptors in mouse sebaceous glands. Br J Dermatol 2006; 154:21-7. [PMID: 16403089]

16. Winderickx J, Vercaeren I, Verhoeven G, Heyns W. Androgen dependent expression of cystatin-related protein (CRP) in the exorbital lacrimal gland of the rat. J Steroid Biochem Mol Biol 1994; 48:165-70. [PMID: 8142291]

17. Ranganathan V, Jana NR, De PK. Hormonal effects on hamster lacrimal gland female-specific major 20 kDa secretory protein and its immunological similarity with submandibular gland major male-specific proteins. J Steroid Biochem Mol Biol 1999; 70:151-8. [PMID: 10622403]

18. Palival A, De PK. Marked sexual dimorphism of lacrimal gland peroxidase in hamster: repression by androgens and estrogens. Biochem Biophys Res Comm 2006; 341:1286-93. [PMID: 16469299]

19. Sakulsak N, Wakayama T, Hipkaeo W, Iseki S. A novel mouse protein differentially regulated by androgens in the submandibular and lacrimal glands. Arch Oral Biol 2007; 52:507-17. [PMID: 17174266]

20. Hunger RE, Carnaud C, Vogt I, Mueller C. Male gonadal environment paradoxically promotes dacyrooadenitis in nonobese diabetic mice. J Clin Invest 1998; 101:1300-9. [PMID: 9502771]

21. Takahashi M, Ishimaru N, Yanagi K, Haneji N, Saito I, Hayashi Y. High incidence of autoimmune dacryoadenitis in male non-obese diabetic (NOD) mice depending on sex steroid. Clin Exp Immunol 1997; 109:555-61. [PMID: 9328136]

22. Krenzer KL, Dana MR, Cermak JM, Evans DA, Sullivan DA. Complete androgen insensitivity syndrome: Impact of anti-androgen treatment on the fatty acid profile of human meibomian gland and ocular surface. J Clin Endocrinol Metab 2000; 85:4874-82. [PMID: 11134156]

23. Sullivan BD, Evans JE, Krenzer KL, Dana MR, Sullivan DA. Impact of anti-androgen treatment on the fatty acid profile of neutral lipids in human meibomian gland secretions. J Clin Endocrinol Metab 2000; 85:4866-73. [PMID: 11134155]

24. Sullivan BD, Evans JE, Cermak JM, Krenzer KL, Dana MR, Sullivan DA. Complete androgen insensitivity syndrome:
Effect on human meibomian gland secretions. Arch Ophthalmol 2002; 120:1689-99. [PMID: 12470144]

25. Cermak JM, Krenzer KL, Sullivan RM, Dana MR, Sullivan DA. Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface? Cornea 2003; 22:516-21. [PMID: 12883343]

26. Sullivan DA, Bélanger A, Cermak JM, Bérubé R, Papas AS, Cermak JM, Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye syndrome among US women. Am J Ophthalmol 2003; 136:318-26. [PMID: 12888056]

27. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US men. Arch Ophthalmol 2009; 127:763-8. [PMID: 19506195]

28. Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence and risk factors for dry eye disease among US men. Arch Ophthalmol 2009; 127:763-8. [PMID: 19506195]

29. Sullivan DA, Schaumberg DA, Schirra F, Suzuki T, Liu M, Richards SM, Sullivan RM, Dana MR, Sullivan BD. Sex, sex steroids and dry eye disease. In Zierhut M, Stern ME, Worda C, Nepp J, Huber JC, Sator MO. Treatment of dry eye disorders. Int Patent Application WO 2004/04155, March, 1994.

30. Schirra F, Suzuki T, Richards SM, Jensen RV, Liu M, Lombardi MJ, Rowley P, Treister NS, Sullivan DA. Androgen control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci 2005; 46:3666-75. [PMID: 16186348]

31. Schirra F, Richards SM, Sherman JA, Rowley P, Treister NS, Sullivan DA. Androgen regulation of gene expression in the mouse meibomian gland. J Steroid Biochem Mol Biol 2005; 96:401-13. [PMID: 1606120]

32. Schirra F, Suzuki T, Richards SM, Sherman JA, Rowley P, Treister NS, Sullivan DA. Estrogen and progesterone impact on gene expression in the mouse lacrimal gland. Invest Ophthalmol Vis Sci 2006; 47:158-68. [PMID: 16384958]

33. Schirra F, Schirra F, Richards SM, Sullivan DA. Estrogen and progesterone control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci 2008; 49:1797-808. [PMID: 18436814]

34. Schirra F, Sullivan BD, Ullman MD, Rocha EM, Krenzer KL, Cermak JM, Toda I, Doane M, Evans JE, Wickham LA. Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci 2000; 41:3732-42. [PMID: 11053270]

35. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]

36. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]

37. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]

38. Schirra F, Suzuki T, Richards SM, Jensen RV, Liu M, Lombardi MJ, Rowley P, Treister NS, Sullivan DA. Androgen control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci 2005; 46:3666-75. [PMID: 16186348]

39. Schirra F, Suzuki T, Richards SM, Jensen RV, Liu M, Lombardi MJ, Rowley P, Treister NS, Sullivan DA. Androgen control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci 2005; 46:3666-75. [PMID: 16186348]

40. Richards SM, Liu M, Jensen RV, Schirra F, Yamagami H, Lombardi MJ, Rowley P, Treister NS, Suzuki T, Sullivan BD, Sullivan DA. Androgen regulation of gene expression in the mouse lacrimal gland. J Steroid Biochem Mol Biol 2005; 96:401-13. [PMID: 1606120]

41. Suzuki T, Schirra F, Richards SM, Treister NS, Lombardi MJ, Rowley P, Jensen RV, Sullivan DA. Estrogen and progesterone impact on gene expression in the mouse lacrimal gland. Invest Ophthalmol Vis Sci 2006; 47:158-68. [PMID: 16384958]

42. Suzuki T, Schirra F, Richards SM, Jensen RV, Sullivan DA. Estrogen and progesterone control of gene expression in the mouse meibomian gland. Invest Ophthalmol Vis Sci 2008; 49:1797-808. [PMID: 18436814]

43. Sullivan DA, Sullivan BD, Ullman MD, Rocha EM, Krenzer KL, Cermak JM, Toda I, Doane M, Evans JE, Wickham LA. Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci 2000; 41:3732-42. [PMID: 11053270]

44. Schirra F, Richards SM, Sullivan DA. Androgen regulation of lipogenic pathways in the mouse meibomian gland. Exp Eye Res 2006; 83:291-6. [PMID: 16579987]

45. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]

46. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]

47. Schirra F, Richards SM, Sullivan DA. Androgen influence on cholesterogenic enzyme mRNA levels in the mouse meibomian gland. Curr Eye Res 2007; 32:393-8. [PMID: 17514523]
57. Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand 2000; 78:146-53. [PMID: 10794246]
58. Rocha EM, Wickham LA, Silveira LA, Krenzer KL, Yu FS, Toda I, Sullivan BD, Sullivan DA. Identification of androgen receptor protein and 5α-reductase mRNA in human ocular tissues. Br J Ophthalmol 2000; 84:76-84. [PMID: 10611104]
59. Rocha FJ, Wickham LA, Pena JDO, Gao J, Ono M, Lambert RW, Kelleher RS, Sullivan DA. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland. J Steroid Biochem Mol Biol 1993; 46:737-49. [PMID: 8274407]
60. Ono M, Rocha FJ, Sullivan DA. Immunocytochemical location and hormonal control of androgen receptors in lacrimal tissues of the female MRL/Mp-lpr/lpr mouse model of Sjögren's syndrome. Exp Eye Res 1995; 61:659-66. [PMID: 8846837]
61. Upverterre MD, Wertz JT, Ingersoll KE, Ubels. Identification of androgen receptors in rabbit lacrimal gland by immunohistochemistry. Adv Exp Med Biol 2002; 506:137-41. [PMID: 12613900]
62. Sullivan DA, Edwards JA, Wickham LA, Pena JDO, Gao J, Ono M, Kelleher RS. Identification and endocrine control of sex steroid binding sites in the lacrimal gland. Curr Eye Res 1996; 15:279-91. [PMID: 8654108]
63. Ota M, Kyakumo S, Nemoto T. Demonstration and characterization of cytosol androgen receptor in rat exorbital lacrimal gland. Biochem Int 1985; 10:129-35. [PMID: 3873241]
64. Sullivan BD, Evans JE, Dana MR, Sullivan DA. Impact of androgen deficiency on the lipid profiles in human meibomian gland secretions. Adv Exp Med Biol 2002; 506:449-58. [PMID: 12613945]
65. Hahn JD. Effect of cyproterone acetate on sexual dimorphism of the exorbital lacrimal gland in rats. J Endocrinol 1969; 45:421-5. [PMID: 5358268]
66. Sullivan DA, Bloch KJ, Allansmith MR. Hormonal influence on the secretory immune system of the eye: androgen control of secretory component production by the rat exorbital gland. Immunology 1984; 52:239-46. [PMID: 6735436]
67. Winderickx J, Hemschoote K, De Clercq N, Van Dijck P, Lambert RW, Kelleher RS, Wickham LA, Vaerman JP, Ubels JL, Wertz JT, Ingersoll KE, Jackson RS 2nd, Applerue MD. Down-regulation of androgen receptor expression and inhibition of lacrimal gland cell proliferation by retinoic acid. Exp Eye Res 2002; 75:561-71. [PMID: 12457868]
68. Kampa M, Pelekanou V, Castanas E. Membrane-initiated steroid action in breast and prostate cancer. Steroids 2008; 73:953-60. [PMID: 18249430]
69. Winderickx J, Hemschoote K, De Clercq N, Van Dijck P, Lambert RW, Kelleher RS, Wickham LA, Vaerman JP, Ubels JL, Wertz JT, Ingersoll KE, Jackson RS 2nd, Aupperlee M, Pelekanou V, Castanas E. Membrane-initiated steroid action in breast and prostate cancer. Steroids 2008; 73:953-60. [PMID: 18249430]
70. Kampa M, Pelekanou V, Castanas E. Membrane-initiated steroid action in breast and prostate cancer. Steroids 2008; 73:953-60. [PMID: 18249430]
71. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/, and European Molecular Biology Laboratory Bioinformatic Harvester, http://harvester.embl.de/.
72. Khosla S, Bilezikian JP. The role of estrogens in men and women. Endocrinol Metab Clin North Am 2003; 32:195-218. [PMID: 12699299]
73. Herson PS, Koerner IP, Hurn PD. Sex, sex steroids, and brain injury. Semin Reprod Med 2009; 27:229-39. [PMID: 19401954]
74. Pochi PE, Strauss JS. Endocrinologic control of the development and activity of the human sebaceous gland. J Invest Dermatol 1974; 62:191-201. [PMID: 4361985]
75. Pochi PE. Acne: endocrinologic aspects. Cutis 1982; 30:212-22. [PMID: 6215213]
76. Thody AJ, Shuster S. Control and function of sebaceous glands. Physiol Rev 1989; 69:383-416. [PMID: 2648418]
77. Deplweis D, Rosenfeld RL. Role of hormones in pilosebaceous unit development. Endocrin Rev 2000; 21:363-92. [PMID: 10930157]
78. Puy LA, Turgeon C, Gagne D, Labrie Y, Chen C, Pelletier G, Simard J, Labrie F. Localization and regulation of expression of the FAR-17A gene in the hamster flank organs. J Invest Dermatol 1996; 107:44-50. [PMID: 8752838]
79. Schroeder HG, Ziegler M, Nickisch K, Kaufmann J, el Etreby MF. Effects of topically applied antiandrogenic compounds on sebaceous glands of hamster ears and flank organs. J Invest Dermatol 1989; 92:769-73. [PMID: 2715647]
80. Emanuell SV. Quantitative determinations of the sebaceous glands' function, with particular mention of the method employed. Acta Derm Venereol (Stockh) 1936; 17:444-56.
81. Smith JG, Brunot FR. Hormonal effects on aged human sebaceous glands. Acta Derm Venereol (Stockh) 1961; 41:61-5.
82. Wirth H, Gloor M, Kimmel W. Influence of cyproterone acetate and estradiol on cell kinetics in the sebaceous gland of the golden hamster ear. Arch Dermatol Res 1980; 268:277-81. [PMID: 7612772]
83. Schaefer G, Krause W. The effect of estradiol on the sebaceous gland of the hamster ear and its antagonism by tamoxifen. Arch Dermatol Res 1985; 277:230-4. [PMID: 4015185]
84. Sweepney TM, Szarnicki RJ, Strauss JS, Pochi PE. The effect of estrogen and androgen on the sebaceous gland turnover time. J Invest Dermatol 1969; 53:8-10. [PMID: 5793140]
85. Strauss JS, Kligman AM, Pochi PE. The effect of androgens and estrogens on human sebaceous glands. J Invest Dermatol 1962; 39:139-55. [PMID: 1397704]
86. Sansone-Bazzano G, Reisner RM, Bazzano G. A possible mechanism of action of estrogen at the cellular level in a model sebaceous gland. J Invest Dermatol 1972; 59:299-304. [PMID: 4652619]
87. Saihan EM, Burton JL. Sebaceous gland suppression in female acne patients by combined glucocorticoid-oestrogen therapy. Br J Dermatol 1980; 103:139-42. [PMID: 6448623]
88. Pochi PE, Strauss JS. Sebaceous gland inhibition from combined glucocorticoid-estrogen treatment. Arch Dermatol 1976; 112:1108-9. [PMID: 952527]
89. Smith E, Szego CM. Direct photomicroscopic evidence for rapid nuclear penetration of lysosomal products in steroid targets after estrogen in vivo. Endocrinology 1971; 88:A151.
90. Luderschmidt C, Eiermann W, Jawny J. Steroid hormone receptors and their relevance for sebum production in the sebaceous gland ear model of the Syrian hamster. Arch Dermatol Res 1983; 275:175-80. [PMID: 6614993]

91. Wiren KM. Androgens and bone growth: it's location, location, location. Curr Opin Pharmacol 2005; 5:626-32. [PMID: 16185926]

92. Rodriguez AM, Monjo M, Roca P, Palou A. Opposite actions of testosterone and progesterone on UCP1 mRNA expression in cultured brown adipocytes. Cell Mol Life Sci 2002; 59:1714-23. [PMID: 12475182]

93. De Vita S, Damato R, De Marchi G, Sacco S, Ferraccioli G. True primary Sjogren's syndrome in a subset of patients with hepatitis C infection: a model linking chronic infection to chronic sialadenitis. Isr Med Assoc J 2002; 4:1101-5. [PMID: 12516900]

94. Toussirot E, Le Huede G, Mougin C, Baillanc JC, Bettinger D, Wendling D. Presence of hepatitis C virus RNA in the salivary glands of patients with Sjogren's syndrome and hepatitis C virus infection. J Rheumatol 2002; 29:2382-5. [PMID: 12415596]

95. Siagris D, Pharmakakis N, Christofidou M, Petropoulos JK, Vantzou C, Lekkou A, Gogos CA, Labropoulou-Karatza C. Keratoconjunctivitis sicca and chronic HCV infection. Infection 2002; 30:229-33. [PMID: 12236567]

96. McMillan J, Fatehi-Sedeh S, Sylvia VL, Bingham V, Zhong M, Boyan BD, Schwartz Z. Sex-specific regulation of growth plate chondrocytes by estrogen is via multiple MAP kinase signaling pathways. Biochim Biophys Acta 2006; 1763:381-92. [PMID: 16713447]

97. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR. MAPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 2003; 4:R7.http://genomebiology.com/2003/4/1/R7 [PMID: 12540299]