The lexicographically least word in the orbit closure of the Rudin-Shapiro word

James Currie*
Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba R3B 2E9 (Canada)
j.currie@uwinnipeg.ca

June 1, 2009

Abstract

We show that the lexicographically least word in the orbit closure of
the Rudin-Shapiro word w is $0w$.

Keywords: Combinatorics on words, Rudin-Shapiro word, morphic
words, automatic words.

Let $f : \{a, b, c, d\}^* \rightarrow \{0,1\}^*$ and $g : \{a, b, c, d\}^* \rightarrow \{a, b, c, d\}^*$ be given
respectively by

\begin{align*}
f(a) &= 0 \\
f(b) &= 0 \\
f(c) &= 1 \\
f(d) &= 1
\end{align*}

*The author is supported by an NSERC Discovery Grant.
and
\[
\begin{align*}
g(a) &= ab \\
g(b) &= ac \\
g(c) &= db \\
g(d) &= dc.
\end{align*}
\]

Let \(u = g^\omega(a) \). The Rudin-Shapiro word \(w \) is given by \(w = f(u) \). Thus
\[
w = 00010010000111 \cdots
\]

The Rudin-Shapiro word has been the subject of much study in combinatorics on words. A standard reference is [1]. An alternative characterization of the Rudin-Shapiro word is as follows: For each non-negative integer \(n \), let \(P(n) \) denote the parity of the number of times 11 appears in the binary representation of \(n \). For example, 59 has binary representation 111011, which contains 3 occurrences of 11, so that \(P(59) = 1 \equiv 3 \pmod 2 \). The Rudin-Shapiro word is the infinite binary word whose \(i \)th bit (starting at \(i = 0 \) on the left) is \(P(i) \).

Remark 1. From this second characterization, it follows that if \(p \) is any finite prefix of \(w \), then \(0p \) is a factor of \(w \); indeed, choose odd \(s > |p| \). Then the binary representation of \(2^s - 1 \) is a string of 1’s of length \(s \), whence \(P(2^s - 1) = 0 \). On the other hand, \(P(i) = P(2^s + i) \) for \(0 \leq i \leq |p| - 1 \), so that \(0p \) appears in \(w \), starting at bit \(2^s - 1 \).

The orbit closure of a right infinite word \(v \) is the set of those right infinite words whose every finite prefix is a factor of \(v \). Our remarks of the previous paragraph show that \(0w \) is in the orbit closure of \(w \). Recently it was conjectured [2] that

Conjecture 1. Word \(0w \) is the lexicographically least word in the orbit closure of \(w \).

The purpose of our note is to prove this conjecture.

Remark 2. Morphism \(g \) is order-preserving; i.e., \(g(x) \leq g(y) \) if and only if \(x \leq y \). One also notices that \(f \circ g \) is order preserving.
Remark 3. We say that word x appears with index i in word y if we can write $y = pxq$ for some words p and q where $|p| = i$. Note that letter a only ever appears in u with an even index. In particular, aa is not a factor of u. At this point we also note that if $f(g(x)) = 00$, then $x = a$.

Lemma 2. Suppose $p0000$ is a prefix of w. Then $|p|$ is odd. Thus 0000 only appears in w with odd index.

Proof: Otherwise, write $p0000 = f(g(q))$ where q is a prefix of u. But this forces q to have aa as a suffix, which is impossible. □

Denote by π_n the length n prefix of w.

Lemma 3. For $i \leq 12$, $0\pi_i$ is the lexicographically least factor of w of length $i + 1$.

Remark 4. One can effectively list all factors of w of length 13 or less, establishing the truth of the lemma. However, a briefer proof follows:

Proof: Certainly each $0\pi_i$ is a factor of w by Remark 1. Clearly our result holds for $i \leq 3$. By Lemma 2, word 00000 cannot be a factor of w so that the result holds for $i \leq 6$.

Suppose that $0\pi_60$ is a factor of w. Then one of $0\pi_600$ and $0\pi_601$ is a factor of w. Since these words have 0000 as a prefix, by Lemma 2 they could only appear in w with odd index, forcing one of π_600 and π_601 to have a length 4 suffix of the form $f(g(v))$, some factor v of u. This hypothetical v would then have the form $abaa$ (in the case where $f(g(v)) = \pi_600$), or $abab$ (in the case where $f(g(v)) = \pi_601$). In either case, $f(v) = 0000$, forcing v to have odd index in u. However, then the initial a of v has odd index in u, which is impossible.

It follows that $0\pi_61$ is the lexicographically least length 8 factor of w, and the result holds for $i \leq 11$. Since 00000 is not a factor of w, our lemma holds for $i = 12$ also. □

Proof of Conjecture 1: Suppose that z is lexicographically least in the orbit closure of w, but $z \neq 0w$. It follows that a prefix $0q$ of z is lexicographically less than $0\pi_{|q|}$. Since z is in the orbit closure of w, $0q$ is a factor of w. From the fact that $0q$ is lexicographically less that $0\pi_{|q|}$, it follows from Lemma 3 that π_{12} is a proper prefix of q. Using the fact that 0000 is a factor with odd index in π_{12}, we deduce that q has even index in w. Let q be the shortest factor of w having the property that
1. q is lexicographically less than $\pi_{|q|}$

2. q appears in w with even index.

Let q' be a shortest factor of w with prefix q and even length. (Thus $|q'| \leq |q| + 1$.) Write $q' = f(g(v))$, some factor v of u. Let v' be a shortest factor of w with prefix v and even length. (Thus $|v'| \leq |v| + 1$.) Let u' be the prefix of u of length v'. Since q is a prefix of $f(g(v'))$, and q is lexicographically less than the prefix $\pi_{|q|}$ of $f(g(u'))$, we see that $f(g(v'))$ is lexicographically less than $f(g(u'))$. Since $f \circ g$ is order-preserving, v' is lexicographically less than u'. Write $u' = g(U)$, where U is a prefix of u.

Suppose that an occurrence of v has even index in u. Then we can write $v' = g(V)$, some factor V of u with $|V| = |v'|/2$. Since g is order-preserving, V is lexicographically less than U. It follows that $f(v') = f(g(V))$ is lexicographically less than $f(g(U))$, which is a prefix of w. However the index of $f(v')$ in w is just the index of v' in u, which is even. Thus

1. $f(v')$ is lexicographically less than $\pi_{|f(v')|}$

2. $f(v')$ appears in w with even index.

However, $|f(v')| \leq |v'| + 1 = |q'|/2 + 1 \leq (|q| + 1)/2 + 1 = |q|/2 + 3/2 < |q|$, since $|q| > |\pi_{12}| = 12$. This contradicts the minimality of $|q|$. We conclude that v cannot have even index in u.

We now use the fact that π_{12} is a proper prefix of $q' = f(g(v))$. From $\pi_{12} = 000100100001$, we deduce that $g(v) = abacabdbabac$. This implies that $v = abacab$. Since v begins with an a, it must have even index in u. This is a contradiction. \square

References

[1] Jean-Paul Allouche and Jeffrey Shallit, *Automatic Sequences: Theory, Applications, Generalizations*. Cambridge University Press, 2003.

[2] Jean-Paul Allouche, Narad Rampersad & Jeffrey Shallit, Periodicity, repetitions, and orbits of an automatic sequence, *Theoret. Comput. Sci.* To appear.