Short technical report

SLaP mapper: A webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes

Michael Fiebig, Eva Gluenz, Mark Carrington, Steven Kelly

1. Introduction

The Kinetoplastida are a diverse and globally distributed class of free-living and parasitic single-celled eukaryotes that collectively cause a significant burden on human health and welfare. In kinetoplastids individual genes do not have promoters, but rather all genes are arranged downstream of a small number of RNA polymerase II transcription initiation sites and are thus transcribed in polycistronic gene clusters. Production of individual mRNAs from this continuous transcript occurs co-transcriptionally by trans-splicing of a ~39 nucleotide capped RNA and subsequent polyadenylation of the upstream mRNA.

SLaP mapper (Spliced-Leader and Polyadenylation mapper) is a fully automated web-service for identification, quantitation and gene-assignment of both spliced-leader and polyadenylation addition sites in Kinetoplastid genomes. SLaP mapper only requires raw read data from paired-end Illumina RNAseq and performs all read processing, mapping, quality control, quantification, and analysis in a fully automated pipeline. To provide usage examples and estimates of the quantity of sequence data required we use RNAseq obtained from two different library preparations from both Trypanosoma brucei and Leishmania mexicana to show the number of expected reads that are obtained from each preparation type. SLaP mapper is an easy to use, platform independent webserver that is freely available for use at http://www.stevekellylab.com/software/slap. Example files are provided on the website.

2. Materials and methods

2.1. Differences in library construction

Typical libraries generated from random hexamer primed cDNA are suitable for identification of splice acceptor sites (Table 1). However, the extent to which polyadenylation sites are discovered...
depends on the library preparation protocol that is used (Table 1). To generate a library enriched for poly(A) containing reads it is recommended that the first strand cDNA synthesis reaction is primed with a 5’-T15VN-3’ oligonucleotide (V = A, G, or C; N = T, A, G or C) [11], followed by second strand synthesis with random hexamer primers.

2.2. Algorithm overview

SLaP mapper uses pre-built indices for the currently available kinetoplastid genomes. The user must supply raw sequence reads in gzipped fastq format (phred encoding offset is automatically detected). Due to FTP limitations SLaP mapper can only accept individual files less than 2 GB. Read files larger than 2 GB can be analysed using SLaP mapper by splitting these files into pieces each smaller than 2 GB then combining the results files. Once read files have been uploaded, reads containing a putative poly(A) tail or spliced-leader sequence are identified, the spliced-leader or poly(A) tail is removed from the read and the rest of the read is mapped to the user specified genome. Each putative identified splice-acceptor site is checked to confirm that it does not contain the spliced-leader sequence and bona fide splice-acceptor sites are assigned to their nearest directionally appropriate coding sequence (CDS). Similarly, putative poly(A) addition sites are checked that they do not encode runs of A residues and bona fide sites are assigned to their nearest directionally appropriate CDS. When the analysis is complete the results are emailed to the user in tab-delimited text, BED and GFF file formats so that the results are easily viewed in spreadsheet editors or viewed on commonly used genome browsers such as the Integrative genomics viewer [13] (Fig. 1A). The results files contain the position of the observed site, its dinucleotide (for trans-splice sites only), its strand, its

Table 1

The number of reads observed using different library preparation methods in two different species. L. mexicana based on 3 independent biological replicates. T. brucei based on 2 independent biological replicates. Numbers in brackets indicate one standard deviation.

Species	Library type	Poly(A) reads per million reads	Trans-splice reads per million reads
L. mexicana	T15VN	34,784 (2100)	4,343 (300)
L. mexicana	Random primed	5,673 (730)	79,773 (10,000)
T. brucei	T15VN	167,864 (8000)	4,782 (250)
T. brucei	Random primed	701 (50)	76,563 (4800)

Fig. 1. (A) Screen shot of SLaP mapper results as visualised on the IGV genome browser. Four data tracks are shown. CDS are the gene models from V6 of the *L. mexicana* genome. Coverage is the from raw RNAseq reads mapped to the *L. mexicana* V6 genome (the coloured lines in the coverage plot indicate single nucleotide polymorphisms between the genome reference and the strain used for RNAseq). SAS are the splice acceptor addition sites identified by SLaP mapper. PAS are the polyadenylation addition sites identified by SLaP mapper. (B) The corresponding entries in the SLaP mapper results file for all SAS sites shown in A. The poly(A) results for the 55 sites shown in part A are not listed for space reasons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
occurrence (i.e. the number of mapped reads) and the nearest
directionally appropriate CDS (Fig. 1B). A summary of the mapp-
ing and filtration processes and the settings used to perform these
steps is also provided in the results package that is emailed to the
user.
SLaP mapper is an analysis pipeline and uses a number of freely
available programs and custom written Perl scripts. The algorithm
proceeds in five phases.

1. **Read quality control.** This step uses the Trimmomatic read
processing tool [14] to remove known Illumina adaptor
sequences and to trim reads based on quality scores. At this step
reads-pairs are also assessed for overlapping segments and those
reads that overlap in the centre are joined using the fastq-join
utility [15].

2. **Identification, preparation and mapping of spliced-leader
and poly(A) containing reads.** Here all reads are treated
individually and scanned for the presence of poly(A) tails
or the appropriate species-specific spliced-leader sequence. A
spliced-leader containing read is defined as a read containing
at least 12 nucleotides of the 3′ end of the spliced-leader sequence,
this minimum length is changeable by the user. A poly(A) con-
taining read is defined as a read which ends in 5 or more A
residues (reads are treated as un-stranded and scanned on both
strands). The minimum poly(A) length is also specifiable by the
user. Spliced-leader reads are split at the splice junction and the
non-spliced-leader part of the read is mapped to the selected
reference genome. Similarly the poly(A) read is split at the run
of A residues and the non-poly(A) tail part of the read is mapped
to the selected reference genome. Read mapping is performed
using bowtie2 [16].

3. **Filtering of putative splice-acceptor and poly(A) reads.**
Mapped putative splice-junction reads are checked to ensure
that the location in the genome does not encode the 12 bases
of the splice acceptor. Similarly mapped putative poly(A) tail
reads are checked to ensure that the location in the genome
does not contain an analogous run of A residues as was present
in the read. Only bona fide splice-junction and polyadenyla-
tion addition sites are retained for further analysis. The
option to disable this poly(A) site filter is provided on the
webserver.

4. **Assigning sites to genes.** Once reads have been mapped the
location of the sites is recorded and they are assigned to CDS
according to the following rules. Trans-splice sites are assigned
to a CDS if they occur on the same strand as the CDS and down-
stream of the stop codon of the preceding gene and upstream of
the stop codon of the gene in question. Polyadenylation sites
are assigned to a CDS if they lie on the same strand as the CDS,
downstream of the start codon of the CDS and upstream of the
start codon of the next downstream CDS. Splice leader addition
sites and poly(A) sites that occur within CDS are assigned to
the CDS in which they reside. It should be noted here that try-
panosomatid genomes contain a number of stable transcripts
lacking CDSs that occur between true mRNAs. Thus it is pos-
sible that some sites belonging to non-coding transcripts may
be incorrectly annotated to CDSs by this method. For this rea-
son a separate file is also provided that lists the identified sites
without assigning them to CDS.

5. **Quantification.** Sites are quantified as the number of reads
which uniquely map to each site location.

3. Discussion and conclusions

SLaP mapper is a simple to use resource that enables users
to identify and quantify trans-splice and polyadenylation sites in
kinetoplastid genomes. It is the only such software of its kind and
it requires only a web-browser and no specialised knowledge of any
programming environment. The user only need select the appro-
priate species and upload unprocessed read files. We describe
the expected number of informative reads per-million reads that are
obtained using two different library preparation protocols in two
different species (Table 1). This shows that relatively little sequence
data (<10 million reads) is required to provide a comprehensive
genome-wide analysis of site usage.

Recent RNA-sequencing studies of *T. brucei* and *L. major*
have revealed that many genes can harbour multiple alternative
processing sites [11,12]. While the functional significance of these
sites has yet to be determined on a genome wide scale, it is likely
that some of these alternative sites are important to the regula-
 tion and/or function of the final transcript. For example, alternative
use of two different spliced-leader addition sites in *T. brucei*
facilitates the dual localisation of an isoleucyl-tRNA synthetase [17].
In this case the alternative processing sites either include or
exlude a mitochondrial localisation signal from the N-terminus
of the final polypeptide. SLaP mapper can be readily used to
detect such alternative processing sites for transcripts (for example
see Fig. 1).

In addition to providing a resource that will facilitate the anno-
tation of novel kinetoplastid genomes, this server can also be used
to quantify differences in splice-acceptor and polyadenylation site
usage across a range of species. This is useful for comparative
gene expression studies and in the analysis of post-transcriptional
processing of kinetoplastid mRNA. Future releases of SLaP
mapper will include more kinetoplastid genomes as they become
available.

Acknowledgements

MF is supported by the Wellcome Trust. SK is a Leverhulme Trust
Early Career Fellow. EG is a Royal Society University Research Fel-
low. MC is supported by the Wellcome trust 085256/Z/08/Z. The
authors would like to thank the two anonymous Referees for their
advice on the manuscript.

References

[1] Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M,
et al. The genome of the kinetoplastid parasite, Leishmania major. Science
2005;309:436–42.
[2] Parsons M, Nelson RG, Watkins KP, Agabian N. Trypanosome mRNAs share
a common 5′ spliced leader sequence. Cell 1984;38:309–16.
[3] Ullu E, Matthews KR, Tschudi C. Temporal order of RNA-processing reactions
in trypanosomines: rapid trans splicing precedes polyadenylation of newly syn-
thesized tubulin transcripts. Mol Cell Biol 1993;13:720–5.
[4] Sutton RE, Boothroyd JC. Evidence for trans splicing in trypanosomes. Cell
1986;47:527–35.
[5] LeBowitz JH, Smith HQ, Rusche L, Beverley SM. Coupling of poly(A) site selection
and trans-splicing in Leishmania. Genes Dev 1993;7:996–1007.
[6] Wickens M. How the messenger got its tail: addition of poly(A) in the nucleus.
Trends Biochem Sci 1990;15:277–81.
[7] Schurc N, Hehl A, Vassella E, Braun R, Roditi I. Accurate polyadenylation of
procyclin mRNAs in Trypanosoma brucei is determined by pyrimidine-rich ele-
ments in the intergenic regions. Mol Cell Biol 1994;14:3668–75.
[8] Kelly S, Wickstead B, Maini PK, Gull K. Ab initio identification of novel regula-
tory elements in the genome of Trypanosoma brucei by Bayesian inference on
sequence segmentation. PLoS ONE 2011;6:e25666.
[9] Siegel TN, Tan KS, Cross GA. Systematic study of sequence motifs for RNA trans
splicing in Trypanosoma brucei. Mol Cell Biol 2005;25:9586–94.
[10] Gopal S, Awadalla S, Gaasterland T, Cross GA. A computational investigation
of kinetoplastid trans-splicing. Genome Biol 2005;6:R95.
[11] Kolev NG, Franklin JB, Carmi S, Shi H, Michaels S, Tschudi, C, et al. The trans-
criptome of the human pathogen Trypanosoma brucei at single-nucleotide
resolution. PLoS Pathog 2010;6.
[12] Rastrollo A, Carrasco-Ramiro F, Martin D, Crespillo A, Reguera RM, Aguado C,
et al. The transcriptome of Leishmania major in the axenic promastigote stage,
transcript annotation and relative expression levels by RNA-seq. BMC
Genomics 2013;14:223.
[13] Thorvaldottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14:178–92.

[14] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014.

[15] Aronsky E. Command-line tools for processing biological sequencing data; 2011 http://code.google.com/p/ea-utils

[16] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–9.

[17] Rettig J, Wang Y, Schneider A, Ochsenreiter T. Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing. Nucleic Acids Res 2012;40:1299–306.