Effectiveness of Transfluthrin-impregnated Insecticide (Paper Rambo) and Mechanical Screening Against Culicine and Anopheline Mosquito Vectors in Kumbotso, Kano, Nigeria

Yayo A.M.1, Ado A. Habib A.G.1, Hamza M.3, Iliyasu Z.4, Sadeeq I.A.4, Ma’aruf Y.M.4, Musa K.A.4, Barodo M.M.3, Inuwa M.B.5, Ibrahim S.S.5

1 Department of Microbiology and Parasitology, Bayero University Kano (BUK), P M B 3011, Kano, Nigeria
2 SHAMACON, P O Box 465, Gyadi-Gyadi, Kano, Nigeria
3 Department of Medicine, Aminu Kano Teaching Hospital Kano (AKTH), P M B 3452, Kano, Nigeria
4 Department of Community Medicine, Aminu Kano Teaching Hospital (AKTH), P M B 3452, Kano, Nigeria
5 Department of Physics, Bayero University Kano (BUK), P M B 3011, P M B 3011, Kano, Nigeria
6 Department of Biochemistry, Bayero University Kano (BUK), P M B 3011, Kano, Nigeria

Corresponding author email: aado65@yahoo.com

Molecular Entomology, 2016, Vol.7, No.04, 1-8 doi: 10.5376/me.2016.07.0004

Accepted: 20 Jan., 2016
Published: 20 Apr., 2016

Copyright © 2016 Yayo et al., This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:
Yayo A.M., Ado A., Habib A.G., Hamza M., Iliyasu Z., Sadeeq I.A., Ma’aruf Y.M., Musa K.A., Barodo M.M., Inuwa M.B., and Ibrahim S.S., 2016, Effectiveness of Transfluthrin-impregnated Insecticide (Paper Rambo) and Mechanical Screening Against Culicine and Anopheline Mosquito Vectors in Kumbotso, Kano, Nigeria, Molecular Entomology, 7(04): 1-8 (doi: 10.5376/me.2016.07.0004)

Abstract The level of personal protection acquired from the use of mechanical screening of windows and doors alone or the screening in compliment with burning transfluthrin- impregnated paper was assessed. The specific objectives were to compare the indoor resting densities, and man biting rates of the Culicine and Anopheline mosquitoes, with and without the interventions. Pyrethrum spray collection (PSC) technique was used to collect mosquitoes from 30 randomly selected houses, 10 each from the two interventions and control areas, monthly, between May, 2010 to April 2011. The Culicine and Anopheline species were sorted morphologically and An. gambiae s.l were identified to sibling species by PCR. A total of 1592 Cx. quinquefasciatus were collected from the houses, out of which 57.2%, 27.6%, and 15.2% were from the control, screened only and the screened houses in which transfluthrin-impregnated papers were used, respectively. Statistically higher number of Anopheline mosquitoes, 363 were collected from the control houses compared to 49 from the screened and 40 from the screened-transfluthrin treated houses, χ²(2,N=452)=68.66 p<0.05. The indoor resting density was 33.6 in the control compared to 2.7 in the screened and 3.0 in the screened-transfluthrin treated houses while the number of female Anopheline per person was 6.7, 1.3 and 1.0 respectively. An.gambiae ss, and An. arabiensis were identified by PCR. Mechanical screening compares favorably with conventional use of treated impregnated fabrics for personal protection against mosquitoes.

Keywords Personal protection; Transfluthrin; Impregnation; Mechanical-screening; Anopheline; Culicine

Introduction

Despite the decrease in global mortality (42%) due to malaria (World Health Organisation, 2013), the disease kills 627,000 individuals in 2012 alone, mostly children. Control of malarial vectors relies greatly on the use of insecticide formulations, for wide-coverage as in Insecticide Treated Nets (ITNs) (World Health Organisation, 2013), Long-Lasting Insecticide Treated Nets (LLINs) and indoor residual spraying (IRS) (Hemingway, 2014). However, pyrethroids are the safest insecticides and the only class fully approved by WHO for impregnation of LLINs and ITNs (WHO, 2013). ITN repels or kills mosquitoes coming into contact with insecticide on its netting material (World Health Organization, 2007), and is increasingly deployed into WHO malaria region for universal coverage, with community-wide benefits established (Killeen et al., 2007). LLINs have been developed because they last longer, for its netting material has insecticide incorporated within or bound around its fibers been associated with reduced prevalence (51%) of P. falciparum infection (Clarke et al., 2001). Screening of windows can also be very effective in keeping out mosquitoes, provided the screening is without tears (Curtis, 1989). Insects repellents are also used to deter biting mosquitoes, especially N, N-diethyl-meta-toluamide (DEET) which
Transfluthrin is a pyrethroid similar to the compounds used on nets but evaporates at much lower temperature. The active ingredient at doses of between 0.02 – 0.04% is used preferentially for development of innovative anti-mosquito products such as indoor strips, coils and vaporizers which work at room temperature (WHO, 2002) www.who/WHOOPES/transfluthrin. As a pyrethroid specified for use in public health (http://www.who.int/whopes/quality/newspecif/en/) the effectiveness of transfluthrin to protect against biting mosquito has been shown in India and Tanzania (Sharma et. al. 1993; Pates, 2003). Recently, in a lab setting it was shown that transfluthrin as a vapour-phase special repellent, deter An. arabiensis mosquitoes (Ogoma et al., 2012). Rambo insecticide paper contains 0.45% transfluthrin and 2.5% essential oil and the product is used widely for personal protection against mosquitoes in both urban and rural communities within Kano State, and other places in Nigeria. Also common in the area, is the use of metal wire mesh to screen windows and doors a “mechanical screening” to prevent mosquitoes from entering bed rooms. However, the effectiveness of these personal protection measures on malaria transmission is yet to be established in Kano. Here, we conducted a household, randomized, controlled trial to compare the effectiveness of Paper Rambo insecticide with mechanical screening of houses, on malaria incidence and mosquito density. Specifically, the efficacy of the mechanical screening alone and in combination with insecticide Paper Rambo on indoor resting densities and man biting rates of populations of Cx. quinquefasciatus, An. funestus and An. gambiae s.l. in Panshekara town, of Kano state, was investigated.

1 Methods and Materials
1.1 Study area
The study was conducted at Panshekara town, Kumbotso LGA of Kano State, Nigeria. Panshekara is located within latitude 11° 51’ N to 11° 53’ N and longitude 8° 27’E to 8° 29’E, and is a peri-urban settlement in Kumbotso LGA. The houses are made of mud and concrete bricks with corrugated zinc roofs. The people of Panshekara are low income earners, mainly traders, industry workers, farmers and public servants. Farming is dominated by rain-fed cropping but active irrigation during dry season is practiced in some neighboring towns. Malaria is endemic in the densely populated area, with characteristic perennial transmission pattern, with peaks during the rainy months of May to September.

1.2 Study Design
The study was designed to measure and compare entomological parameters with and without interventions. The design permitted comparison between mechanical screenings alone and the combination of screening and use of Rambo paper, with internal control (Figure 1). After a detailed mapping and house numbering of the community, 150 houses were randomly selected. The doors and windows of all the selected houses were netted with mesh-wire. Rambo paper or a placebo were given randomly to 20 houses (intervention group) to use monthly and 10 houses unscreened (internal control) were allowed to use other personal protection measures of their choice.

1.3 Entomological Methods
1.3.1 Pyrethrum Spray Collection (PSC)
Adult mosquitoes were collected between May, 2010 to April, 2011 from houses, using pyrethrum Spray Collection (PSC) technique. Mosquitoes were collected by trained persons (housewives) between 4.30 -6.30 GMT. The PSC was conducted as outlined by WHO (1998) The technique involves collection of indoor resting mosquitoes on white sheets after knocking them down by space spraying with a pyrethrum aerosol. White sheet of cloth about 2 x 4 m were used to cover the entire floor surface. Doors and windows were closed and room sprayed with a pyrethrum insecticide for 2 minutes. After 10 minutes, all the mosquitoes which were knocked down were collected, transferred into labeled petri-dishes and transported to laboratory for further analysis.

1.3.2 Species identification
Mosquitoes were counted and sorted into the genera: Culex and Anopheles based on taxonomic characters
The genus *Anopheles* was further identified into *An. gambiae* s.l., and *An. funestus* group using the morphological keys (Gillies, 1987).

1.3.3 Molecular identification
Polymerase chain reaction (PCR) assay was used to identify members of the sibling species of *An. gambiae* complex. Genomic DNA (gDNA) was extracted from single specimen using the LIVAK extraction method described by Collins et al. (1987). 1µl of the gDNA was used in a PCR reaction with the following species – specific primers: UN (GTC TGC CCC TTC CTC GAT GT), AR (AAT TGT CCT TCT CCA TCC TA), GA (CTG GTT TGG TCG GCA CGT TT) and ME (TGA CCA ACC CAC TCC CTT GA), respectively for identification of GA, following the established protocol (Scott et al., 1993).

Figure 1 A diagram illustrating the design for the study

2 Results

2.1 Indoor resting density (IRD)
The indoor resting densities and man biting rates of the Anopheline mosquitoes estimated from the PSC during 12 month period is shown (Table 1). The highest number of Anopheline malaria vectors 339, feeding indoors during the peak transmission period (Aug – Oct.), was recorded in the control compared to 27 in the houses with screening only and 30 in the screen plus Rambo paper. The difference between the numbers caught in the houses with screening and those screened and treated with the insecticide is not significant X^2 (1, N=57) = 3.34. The number of blood fed Anopheline female per person in the period, was 15 in the control, and 1.3 and 1 for the netting and netting plus Rambo respectively. The seasonal distribution and IRDs for *An. funestus* group and *An. gambiae* s.l, the major malaria vectors is presented (Table 2). *An. gambiae* s.l. and *An. funestus* s.l. are the primary vectors abundant throughout the year. In the dry season (May – July) *An. funestus* s.l. is more predominant than the *An. gambiae* s.l., while in the rainy season (August – October) *An. gambiae* s.l. population is higher. the
variation of the two species differs significantly across the two seasons $X^2 (1,N=497)=74.45$, p<0.05. The populations of both two major malaria vectors decline in the periods Nov. – Jan. and Feb.-April.

Table 1 Percentage and number per person blood fed Anopheline vectors in Panshekara estimated from PSC: MAY, 2010 – APRIL, 2011

Period	Type of Intervention	No of Anoph Caught	No of Anoph. BF	% Anoph. BF	No. of BF Anoph./person
May-Jul	NONE	16	15	93.8	0.8
	NETTING	17	09	53.0	0.5
	RAMBO + NET	08	07	87.5	0.4
	NONE	339	298	88.1	15
Aug-Oct	NETTING	27	26	96.3	1.3
	RAMBO + NET	30	20	66.7	1.0
	NONE	06	06	0.3	
Nov-Jan	NET	03	03	0.2	
	NET + RAMBO	02	02	-	0.1
	NONE	02	02	0.1	
Feb-Apr	NET	02	02	0.1	
	NET + RAMBO	00	00	00	

Note: Anoph = Anopheles, None = Without intervention

The number of *An. gambiae s.l* and *An. funestus s.l* caught are pooled to estimate the indoor resting densities of the malaria vectors in the intervention houses and the controls. Catches are grouped to reflect the seasonal variation in malaria transmission in the area. The highest indoor resting density (33.19) was recorded in the control houses during the rainy season compared to 3.0 in house where net intervention were used in addition to transfluthrin-impregnated Paper Rambo

2.2 Effect of the interventions on Culicine

A total of 1592 Culicine mosquitoes, identified as *Cx. quinquefasciatus* were collected out of which 57.2% from the control, 27.6% and 15.1% from the screened only and screened plus transfluthrin (Rambo) paper respectively. The effect of the two interventions compared to the control on the indoor resting densities of Culicine mosquitoes is shown (Figure 2).

![Figure 2](image-url)

2.3 Molecular identification of *An. gambiae* complex mosquitoes

Out of the 40 specimens tested by PCR, 22 were successfully amplified. 16 of the specimens were identified as *An. gambiae s.s.* (390 bp) while six were identified as *An. arabiensis* (315 bp) (Figure 3).

![Figure 3](image-url)
3 Discussion

The effect of two interventions, mechanical screening of windows and doors with metal wire mesh and the screening in compliment with burning of (Rambo) paper impregnated with transfluthrin on entomological parameters of malaria transmission was measured in Panshekara town.

3.1 Indoor resting density (IRD)

In this study, mosquitoes were collected by trained house wives between (4 – 6 GMT) before the time endophilic mosquitoes were expected normally to exit the rooms. Appropriate measures were taken to prevent mosquitoes from outside to enter the rooms at the time of the collections to reduce confounding effects; hence the number caught was a fair representation of endophilic fraction of the population.

There was a significant drop in the number of the Anopheline malaria vectors caught resting in the houses which have been mechanically screened only and in those screened and complimented with transfluthrin impregnated paper compared to the control houses. There was also a corresponding decrease in the number of the malaria vector species feeding per person in the rooms in the interventions than in the control houses (Table 1). The average number of the Anopheline malaria vector mosquitoes feeding per person (18) in control houses was similar to that reported in unprotected sleepers in the transfluthrin trial studies in Tanzania (Pate et al., 2002). The indoor resting densities of the Anopheline malaria vectors have not differed significantly $X^2= 3.34$ between the houses which have been screened only (27) compared to those complimented with burning of transfluthrin impregnated paper (30). Lines et al. (1987) reported considerable reductions in the number of mosquitoes which have fed on persons in experimental huts whose eaves were covered with permethrin – treated curtains but such effects have not been observed when treated netting was placed around the eaves of dwelling houses. The absence of additional effects of transfluthrin in Panshekara could be due to the formulation of the product. Transfluthrin vapour is usually released from the smoke of a smouldering paper (Rambo) which burns slowly for 2 minutes. The concentration of the insecticide in the room and its effect on mosquitoes would decrease proportionately from the time the paper burns out in contrast to other slow release systems such as mosquito coil which release continually throughout the night (WHO, 2002). Transfluthrin released from the flame of typical African kerosene lamp burning for 4 hours was reported to be effective against biting mosquitoes (Pates et al., 2002).

3.2 Distribution of malaria vector species

An. gambiae s.l and An. funestus were collected in the ratio of 1: 2.3 and 1: 2.6 respectively (Table 2). Molineaux and Grammiccia (1980) have reported the preponderance of An. gambiae s.l over An. funestus in the rainy season and have demonstrated the expected contribution of each to malaria transmission in the Garki district in northern Nigeria. Our results suggested the potential of increasing dominance of An. funestus over An. gambiae probably due to the major ecological and climatic changes experienced in the region over the years (Louis and Mckenzie 2009). Similarly, the molecular analysis revealed the dominance of An. gambiae s.s over An. arabiensis in peri-urban Panshekara town and could be attributed to suitability of microclimate in Sudan savanna which seems to favour the occurrence of the former over the latter species (Colluzi et al., 1979). Of course, we recently have reported the dominance of An. coluzzii over An. arabiensis in the Sudan savannah of Jigawa states, of Nigeria (Ibrahim et al., 2014).

3.3 Personal protection

The Culicine and the Anopheline mosquito populations in the area responded to the control methods differently. The mechanical screening of doors and windows alone provided 51% protection against nuisance Culicine mosquitoes, while netting complimented with transfluthrin – impregnated paper gave 73%. The early biting habit of the Culicine mosquitoes in contrast to the midnight peaks of the local Anopheline populations might have made the Culicines more vulnerable to the excito – repellent effects of the transfluthrin –impregnated paper (Ogoma et al., 2014).
3.4 Side effects

People tend to recognize and recon with the beneficial and untoward effects of vector control operations. Irritation of skin, eyes and mucous membranes, manifesting as asthma – like symptoms have been caused by pyrethroid treated nets and some brands of mosquito coil (Paulin and Ozaki, 2015). We have not observed such effects with the transfluthrin impregnated paper, possibly because of the fast smoldering of the burning paper. The Rambo paper was unlikely to have toxic side – effects on domestic animals that have sometimes been noted to interfere with house-spraying (Curtis and Mnzava, 2000). The beneficial side – effects, in the form of additional protection against the nuisance mosquitoes could have more immediate public appeal than effect on vector – borne disease (Curtis et al., 1990).

Table 2 Seasonal distribution and IRDs of An. gambiae and An. funestus estimated from PSC in Panshekara Kumbotso LGA

Months	An. gambia s.l	An. gambia s.l /room	A. gambia s.l /person	An. funestus	An. fun/ room	An. fun./ person
May-Jul						
Control	-	-	-			
NET	-	-	-			
NET + RAMBO	01	01	01	01	01	01
Aug-Oct						
C	151	15.1	7.6	133	13.3	6.6
N	10	1	0.5	17	1.7	0.9
NR	15	1.5	0.8	15	1.5	0.8
Nov-Jan						
C	-	-	-	06	0.6	0.3
N	-	-	-	03	0.3	0.2
NR	-	-	-	02	0.2	0.1
Feb-Apr						
C	-	-	-	02	0.2	0.1
N	-	-	-	02	0.2	0.1
NR	-	-	-	00	0.2	00

Note: C= Control, N= netting, NR= netting + Rambo. Relative abundance of An. gambiae s.l. and An. funestus group collected in Panshekara between May 2010 – April 2011. An. funestus is preponderant and responsible for the biting in the dry season (May – July)

3.5 Mechanical screening and use of Paper Rambo in public health

Malaria vector control by conventional spraying of houses with residual insecticides and mass distribution of LLINs require large funding, intensive organization and often depended on foreign aids which are not readily available in many malaria endemic regions (Lines et al., 1987). Over the last five years, Nigeria has distributed over 60 million nets free of charge. (MIS, 2010). However, low utilization of bed nets has been recorded all over the country and in many places the nets were sold to hawkers at low prices due to the abject poverty at house – hold level (MIS, 2010). Resistance to the insecticides approved by WHO has been recorded in most of the ecological zones of Nigeria and we have established resistance to Permethrin, Lamdacyhalothrin and Deltamethrin in malaria vectors at Bunkure LGA which is adjacent to the study area (Ibrahim et al., 2014). It is possible that there may be cross – resistance with transfluthrin. The use of metal wire – mesh on windows and doors as mechanical screening against mosquitoes is increasingly becoming popular especially among the urban and semi – urban dwellers. The wide spread use of mechanical screening can reduce the selection for multiple resistance a problem which the insecticide based malaria control methods could pose in future. The government can make a policy supporting mechanical screening and encourage people by providing materials for the screening free of charge.

3.6 Limitations

Initially the entomological component was designed to compare Panshekara town (a treated community) and
Danbare village as a control but the two are epidemiologically dissimilar and an internal control has to be included in Panshekara.

The resistance status of the local mosquito populations to transfluthrin has not been detected. This is important in the interpretation of the result. It is important to know which of the two malaria vectors, *An. gambiae*s.l and *An. funestus* is more susceptible to transfluthrin. There was inadequate supervision for logistical reasons to ensure compliance of the participants with proper use of Rambo and maintenance of intact screening during the period of study.

4 Conclusion

Mechanical screening compares favorably with conventional methods in protection against mosquitoes and additional benefits of transfluthrin was demonstrated significantly on the culicine mosquitoes. The effects of the screening and transfluthrin impregnated paper on prevalence of malaria need to be investigated.

Reference

Benedict M.Q., 2007, Methods in Anopheles research CDC Atlanta USA
Charlwood J.D., and Graves P.M., 1987, The effect of permethrin-impregnated bednets on a population of Anopheles farauti in Coastal Papua New Guinea.Medical and Veterinary Entomology, 1: 319-327
Chen H.V., Behrens R., and Logan J.G., 2014, Assessment of methods used to determine the safety of the topical insect repellent N,N-diethyl-m-toluamide (DEET), Parasite Vectors, 7: 173
Clarke S.E., Bagh C., Brown R.C., Pinder M., Walraven G.E., and Lindsay S.W., 2001, do untreated bed nets protect against malaria? Transactions of the royal society of tropical medicine and hygiene, 95: 457-462
Collins F.H., Mandez M.A., Rasmussen M.O., Mehaffey N.J., and Finnerty V.A., 1987, Ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex, American Journal of Tropical Medicine and Hygiene, 39: 545-550
Coluzz M., Sabatini A., Petrarca V., and Di Deco M.A., 1979, Chromosomal differentiation and adaptation to human environments in Anopheles gambiae complex, Transactions of the Royal Society of Tropical Medicine and Hygiene, 73, (5): 479-483
Curtis C.F., and Lines J.D., 1985, Impregnated fabrics against malaria mosquitoes, Parasitology Today, 5: 147 – 148
Curtis C.F., 1989, Malaria control through anti-mosquito measures, R Soc Med, 82 Suppl 17: 18-21, discussion 21-2
Curtis C.F., Lines J.D., and Carnevale P., 1990, Impregnated bed nets and curtains against malaria mosquitoes, In CF. Curtis (Ed.), Appropriate Technology in vector control C.R.C Boca Raton, FL
Curtis C.F., Maxwell C.A., Finch R.J., and Njuwra K.J., 1998, A comparison of use of pyrethroid either for house spraying or for bed net treatment against malaria vectors, Trop Med Int Health, 3: 619-631
Collins C.F., and Muzava A.E., 2000, Comparison of house spraying and insecticide treated nets for malaria control, Bulletin World Health Org., 78: 389 – 400
Darriet F., Robert V., ThiVien N., and Carnevale P., 1984, Evaluation of the efficacy of permethrin-impregnated intact and perforated mosquito nets against vectors of malaria, WHO/VBC/84.899
F.R.N., 2006, Federal Republic of Nigeria, 2006 Population Census [cited 15th March, 2009] Available at <http://www.nigeriastat.gov.ng/Connections/Pop2006.pdf>
N.J. Gillies M.T., and Coetzee M.A., 1987, supplement to the Anopheline of Africa South of the Sahara (Afro-tropical region), South African Institute of Medical Research, No. 55
Hemingway J., 2014. The role of vector control in stopping the transmission of malaria threats and opportunities, Philos Trans R Soc Lond B BiolSci, 369: 20130431
Ibrahim S.S., Mann Y.A., Tukur Z., Irving H., and Wondji C.S., 2014, High frequency of KDR L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria, BMC infectious diseases, 14: 441
Killeen G.F., Smith T.A., Ferguson H.M., Mahinda, H., Abdulla S., Lengeler C., and Kachur S.P., 2007, Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets, PLoS Med, 4: e229
Lindsay I.S. and Mc Andless J.M., 1987 Permethrin-treated jackets and hoods for personal protection against blackflies and mosquitoes, Mosquito News, 38:
Lines J.D., Myamba J. and Curtis C.F., 1987, Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania, Medical and Veterinary Entomology, 38:1-37-51
http://dx.doi.org/10.1111/j.1475-2875.1987.tb00321.x

Li Z., 1986, Deltamethrin treated mosquito net efficacy against Anopheles sinensis and Anopheles funestus, Abstract IV Congress sur la protection de la santé humaine et der cultures en Milieu Tropical Marseille

Louis A.K., and McKenzie F.E., 2009, The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa, Malaria Journal, 8:19, PubMed Abstract Biomed Central Full Text. http://www.malariajournal.com/
http://dx.doi.org/10.1186/1475-2875-8-19

Luong K.P., Naidu S., Thevesseyam, E.S., and Cheong W.N., 1985, Evaluation of the effectiveness of permethrin and DDT impregnated bed nets against Anopheles maculatus, South –East African Journal of Tropical Medicine and Public Health, 16: 554-559

Malaria Indicator Survey 2010, National Population Commission, Abuja, and ICI Macro, Calverton, MD, USA, http://www.measuredhs.com

Molineaux L., and Grammiccia G., 1980, The Garki project Research on the epidemiology and control of malaria in the Sudan Savannah of West Africa, WHO Geneva

Njunwa K.J., Lines J.D., and Megasa S.M., 1991, Trial of pyrethroid impregnated bed nets in an area of Tanzania holoendemic for malaria part 1, Operational methods and acceptability ActaTropica, 49: 87-96
http://dx.doi.org/10.1016/0001-706X(91)90056-P

Ogoma., S.B., Ngonyani H., Simukue E.T., Muea A., Moore J., and Killeen G.F., 2012, Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage, Parasite Vectors, 5: 54
http://dx.doi.org/10.1186/1756-3305-5-54

Pates N., Lines J., Kato A., and Miller J., 2003, Personal protection against mosquitoes in Dares Salam Tanzania by using kerosene oil lamp to vaporize transfluthrin, Medical and Veterinary Entomology, 16(3): 277-84
http://dx.doi.org/10.1046/j.1365-2915.2002.00373.x

Schreck C.E., Haile D.G., and Kline D.L., 1984 The effectiveness of permethrin deet alone or in combination, for protection against Aedes aenorhynchus, American Journal of Tropical Medicine and Hygiene. 33:725-730
http://dx.doi.org/10.1093/aje/71.3.397

Scott J.A., Brogdon W.G., and Collins F.H., 1993, Identification of single specimens of Anopheles gambiae complex by polymerase chain reaction, American Journal of Tropical Medicine and Hygiene 49: 520-529

Schreck C.E., Posey K., and Smith D., 1978, Durability of permethrin as a potential clothing treatment to protect against blood feeding arthropods, Journal of Economic Entomology,71: 397-400
http://dx.doi.org/10.1093/jee/71.3.397

Service M.W., 2008, Medical Entomology for Students, University Press Cambridge, www.cambridge

Service M.W., 1977, a critical review of procedures for sampling populations of adult mosquitoes, Bulletin Entomological Research, 67: 343-382
http://dx.doi.org/10.1017/S0007485300011184

Sharma D.N., Joshi R.D., Srivastava P.K., Yadava R.L., Sadananad A.V., and Appavoo N.C., 1996, Impact of deltamethrin spraying on malaria transmission in Rameshwaran Island, Tamil Nadu State – India, Journal of Communicable Diseases, Vol.28 issue 1: 38–44

Snow R.W., Jawara M., and Curtis C.F., 1987, Observations on Anopheles gambiae made during a trial of permethrin impregnated bed nets in The Gambia, Bulletin of Entomological Research, 77: 279-286
http://dx.doi.org/10.1017/S0007464X00011755

World Health Organization (2002), WHO Specification and Evaluations for Public Health Pesticides, [cited 9th March 2009] Available at <http://www.who.int/whoses/quality/Transfluthrin_eval_only_Nov2006.pdf>

World Health Organization 2013, Report of the sixteenth WHOPES working group meeting: WHO/HQ, Geneva, 22-30 July 2013: review of Pirimiphos-methyl 300 CS, Chlorfenapyr 240 SC, Deltamethrin 62.5 SC-PE, Duranet L.N., Netprotect L.N., Yafe L.N., Spinosad 83.3, Monolayer D.T., Spinosad 25 Extended release GR, Geneva, Switzerland: World Health Organization

World Health Organization, 2013, World Malaria Report, WHO Global Malaria Programme, Geneva, Switzerland

World Health Organization 2007, Insecticide-treated mosquito nets, WHO Position Statement, Geneva, Switzerland

WHO, 1998, Techniques for detection of insecticide resistance mechanisms (field and laboratory manual), Document WHO/CPC/MAL/98.6 World Health Organization, Geneva