Providing a Model to Determine of Powder Factor using Principal Component Analysis Technique

Mohammad Hayati¹ and Mohammad Reza Abroshan²

¹Department of Mining, Faculty of Engineering, Lorestan University, Khorramabad, Iran; mohammad_hayaty@yahoo.com
²Rock Mechanic, Zanjan University, Zanjan, Iran; mohmdreza.abroshan.12@gmail.com

Abstract

Objectives: Powder factor is one of the main technical and economic parameters in the design of drilling models and tunnels blasting. Therefore, the prediction and optimization of powder is so important.

Methods/Statistical Analysis: The value of powder factor is dependent upon several parameters such as geological conditions, mechanical properties of the rock and geometric design parameters. In this study, based on geotechnical properties of the rock mass in construction operations for water delivery tunnel of Seimare Dam, a suitable model has been presented to determine the powder factor using statistical methods. Findings: In this regard, PCA analysis was used to eliminate the effect of co-linearity between input variables in prediction models and coefficient of determination (R²) and mean square error (MSE) were used to assess and compare the constructed models. Comparison of models shows that the elimination of co-linearity between input variables using PCA has given better prediction results. Application: In conclusion, a model proposed to determine the Powder Factor effects on cement by using principal component analysis technique, which is valuable in civil industry.

Keywords: Powder Factor, Prediction, Principal Component Analysis, Tunnel

1. Introduction

Powder factor defines the ratio of explosives’ weight to the amount of rock that must be exploded. Increase or decrease in the value of powder factor has a direct impact on rock fragmentation. If the value of powder factor is high, smaller fragments are produced and if it is low, coarse rocks are generated that require a second explosion. Given that the purpose of blasting operations in the mines is to achieve a uniform fragmentation, powder factor not only affects the dimensions of exploded rocks but also ground vibration, rock scatter in the air, and noise pollution. Several studies have been conducted to estimate the optimal value of powder factor in mines and each has implicated certain parameters of rock mass and explosives in determining the value of powder factor. Traditional methods based on empirical relationships such as the use of physical and geomechanical properties of the rock mass, blastability index of, RQI index, drilling index (DJ), Swedish Lundborg model, Larson model, Kuznetsov model, Kuz-Ram model, modified Kuz-Ram model, Rustan model, Svedefo model, Persson-Holmberg-lee model are among the methods that have been used to estimate the powder factor. To achieve the best blast ability pattern in which all the effective parameters have been taken into account, powerful results analysis techniques should be used to predict the value of powder factor proportionate to the conditions of rock mass.

Principal Component Analysis (PCA) is a data mining technique and approach to reduce multidimensional data sets into smaller dimensions that are more prone to be analyzed. In cases where a large quantity of data is involved, several statistical methods can be used to reduce the dimensions of data and group them and thus eliminate the negative effects of co-linearity between input variables in prediction models. There are several reasons to reduce data dimensions, including the higher speed of algorithms with data of less dimensions, lower storage space required, reduced likelihood of over fitting, and increased generalization power of learning algorithms.
PCA is the most common method to achieve this goal. An objective of multiple regressions is to determine the impact of each of independent variables by keeping constant other independent variables, which is realized in the first stage via estimation of regression coefficients in the model. However, if there is a linear relationship between the independent variables, a unique answer could not be reached for variables. In this case, the problem of co-linearity arises for the regression model and causes difficulties for the researcher in accurate estimation of parameters. PCA has been used in several studies to predict various parameters in the mines, tunnels, underground spaces, and the like, the most important of which are listed in Table 1. In this research, while collecting empirical data related to explosion operations in water delivery tunnel of Seimare Dam, a model to estimate powder factor has been presented using PCA approach. The approach presented in this research article has not been investigated so far.

Table 1. Some important studies on the application of PCA

subject	description
penetration rate	performance prediction of hard rock TBMs
	TBM Performance Prediction in Rock Tunneling
	penetration rate model for rotary drilling in surface mines
blasting	model for coal burst liability assessment
	Study of the Powder Factor in surface bench blasting
fragmentation	modeling of rock fragmentation
	Dynamic failure in coal seam
tunneling effects	Monitoring for close proximity tunneling effects on an existing tunnel
cost estimation	Hard-rock LHD cost estimation
	determination of overhaul and maintenance cost in surface mining
property prediction	Blended coal’s property prediction model
Fault diagnosis	Fault diagnosis of a mine hoist
	Mine-hoist fault-condition detection

2. Principal Component Analysis (PCA)

PCA is an approach providing a sequence of best linear approximations of observations in a large number of dimensions. This method has attracted the attention of many researchers in various fields in recent years. PCA is often used in different types of analysis since it is a simple non-parametric method to extract information from vague and confusing data sets. PCA provides a roadmap of how to reduce complex data sets to lower dimensions. It is a feature selection method that can be used to reduce the dimensions to enable easier evaluation of features in a space with less dimensions. PCA provides a linear transformation in which a feature vector of h dimensions is converted to feature vectors of d dimension in which h > d, so that the data are almost completely retained and the minimum mean square error is thus obtained. In other words, PCA attempts to find a linear transformation with minimum square error. In fact, the linear transformation aims to maximize $\mathbf{T}^T \mathbf{C} \mathbf{U} X - \mathbf{k}^T$ expression in which $\mathbf{C} \mathbf{U} X - \mathbf{k}$ represents the covariance matrix of data with zero mean of X. PCA calculates the new variables that have been obtained as a linear combination of the original variables.

3. Case Study

3.1 Introduction to Seimare Dam

Seimare Dam is located in the course of Seimare River in Badreh District in Darreh Shahr County, Ilam Province, Iran. It has a length of 417 kilometers with a slope of 0.3%, which is formed by joining together of Gharesoo and Gamasib rivers. Seimare Dam is a double-curvature arch dam with 33.0000°N 47.0000°E coordinates. Annual production of 844 GWh of hydropower energy, control and regulation of surface flows of the river, and downstream water supply are among the objectives of Seimare plan. Construction site is within folded Zagros zone in southwest. The dam is under construction on the northern flank of Ravandi anticline in Kafenil Valley. The bedrock is limestone type of Shahbazan from Asmari formation.

3.2 Data Collection

Data collection is one of the most important steps in the development of a statistical model. In this study, 12 parameters have been considered as model inputs (independent variables) and powder factor was regarded as output parameter (dependent variable) to develop the powder factor prediction model Table 2. In this regard, the data related to 290 phases of drilling and blasting operations in water delivery tunnel of Seimare Dam...
were used, from which 250 data series were applied for construction of statistical models and the remaining 40 series to test the models. Finally, coefficient of determination (R^2) and mean square error (MSE) were used to assess the constructed models.

3.3 Construction of Regression (Statistical) Models

All the basic assumptions of a classical regression model should be considered to construct a regression model, including the requirement of lack of co-linearity between input variables of the model. In case of co-linearity between the independent variables, the standard estimation error of regression coefficients is increased, which means increased reliability estimation distance of coefficients, and therefore the null hypothesis is often strengthened, which means a zero coefficient of regression model. Therefore, before construction and analysis of any linear regression model, the co-linearity relationship between the independent variables should be detected. There are several methods to explore co-linearity among the independent variables, including zero-order correlation (simple coefficient of correlation or Pearson correlation) between input variables or assessment of condition index (CI) for each variable. If the simple correlation coefficient between the two variables is higher than 0.8, co-linearity will be a serious problem. It should be noted that the zero-order correlation coefficient between the two variables is neither sufficient nor necessary for the existence of co-linearity. Some experts believe the condition index (CI) is the best available detector for co-linearity. CI value between 10 to 30 indicates moderate to severe co-linearity and CI>30 indicates the presence of severe co-linearity from that variable.

In this study, based on the collected data, the statistical models were constructed using SPSS software. After the discovery of co-linearity between the independent variables using CI, principal component analysis (PCA) was used to eliminate the co-linearity. In Table 3 the characteristics of powder factor regression model are shown before elimination of co-linearity.

Table 2. Effective variables (input) to construct the model of powder factor

Diameter of the drilled holes (mm)	2	Uniaxial compression resistance (Mpa)	1
0-30	4	1 0-30 Direction of the major joint relative to direction of the tunnel	
30-60	2	2 30-60 to direction of the tunnel	
60-90	3	3 60-90	
Handle slope of secondary joint (0-90)	6	Handle slope of major joint (0-90)	5
Clearance of the handle of secondary joint (m)	8	Clearance of the handle of major joint (m)	7
0-30	10	1 0-30 Opening score of major joint's handle	
30-60	2	2 30-60	
60-90	3	3 60-90	
Score (0-100) RMR	12	RQD Score (0-100)	11

Table 3. Regression model of powder factor before elimination of co-linearity

VAR (Constant)	B	SIG	CI	Std. Error	R-SQUARED	MSE	R-SQUARED	MSE	TOTAL PREDICTION	TEST
UCS	-0.052	0.37	5.102	0.06						
RQD	-0.290	0.02	7.956	0.12						
RMR	0.021	0.85	9.544	0.11						
DIJPS1	0.194	0.00	10.838	0.05						
DDR1	0.084	0.01	13.750	0.03						
JS1	0.337	0.00	15.992	0.10						
JAPP1	0.004	0.95	19.389	0.07						
DIJPS2	0.158	0.00	20.364	0.05						
DDR2	-0.045	0.23	27.819	0.04						
JS2	0.245	0.01	38.485	0.10						
JAPP2	-0.131	0.01	61.883	0.05						
D	0.425	0.00	100.372	0.03						

SIG . TOTAL 0.00
Providing a Model to Determine of Powder Factor using Principal Component Analysis Technique

CI in Table 3 indicates moderate to severe co-linearity between independent variables, which is also evident in Table 4. The numbers marked with red color indicate the presence of co-linearity caused by that variable. In Table 5, the significance levels of null hypothesis for zero-order correlation coefficient are shown. Null hypothesis for zero-order correlation coefficients states: “zero-order correlation between these two variables is zero”. If this value in Table 5 is close to zero, it suggests that this hypothesis can be rejected with a confidence level close to 100%. In other words, we can say with 100% confidence that there is a correlation between the two variables.

Then, after the detection of co-linearity, its impact is eliminated using principal component analysis (PCA) and a new model is constructed. The results of the new statistical model are listed in Table 6. According to this table, assessment of CI values can indicate the impact of PCA in severe reduction of co-linearity impact in the constructed model. The results presented in Table 7 and 8 also confirmed this point.

The general results of statistical models are listed in Table 9. The best regression model to predict the powder factor functions according to Figure 1 and 2.

Table 4. Zero-order correlation coefficients for the detection of co-linearity between variables

	UCS	RQD	RMR	DIPJS1	DDR1	JS1	JAPP1	DIPJS2	DDR2	JS2	JAPP2	D
UCS	1.000	.229	.237	.259	-.199	.028	-.100	.061	-.114	.307	-.240	-.199
RQD	.229	1.000	.823	-.267	-.011	.703	.669	-.014	-.021	.649	-.628	.291
RMR	.237	.823	1.000	-.170	-.043	.610	.862	.125	.018	.531	-.711	.254
DIPJS1	.259	-.267	-.170	1.000	-.072	-.507	.192	.147	-.088	.045	.032	-.599
DDR1	-.199	-.011	-.043	-.072	1.000	-.106	.043	.033	.284	-.079	-.023	.175
JS1	.028	.703	.610	-.507	-.106	1.000	-.527	.117	-.032	.256	-.339	.331
JAPP1	-.100	-.669	-.862	.192	.043	-.527	1.000	-.045	-.107	-.386	.621	.327
DIPJS2	.061	-.014	.125	.147	.033	.117	-.045	1.000	.189	-.315	-.065	.251
DDR2	-.114	-.021	.018	-.088	.284	-.032	-.107	.189	1.000	-.185	.009	.196
JS2	.307	.649	.531	.045	-.079	.256	-.386	-.315	-.015	1.000	-.513	.146
JAPP2	-.240	-.628	-.711	.032	-.023	-.339	.621	-.065	.009	-.513	1.000	-.211
D	-.199	.291	.254	-.599	.175	.331	-.327	-.251	.196	.146	-.211	1.000

Table 5. Significance level (Sig) of null hypothesis for zero-order correlation coefficients

	UCS	RQD	RMR	DIPJS1	DDR1	JS1	JAPP1	DIPJS2	DDR2	JS2	JAPP2	D
UCS	.	.000	.000	.001	.329	.057	.167	.034	.000	.000	.001	.000
RQD	.000	.	.000	.000	.429	.000	.412	.370	.000	.000	.000	.000
RMR	.000	.000	.	.003	.246	.000	.000	.024	.386	.000	.000	.000
DIPJS1	.000	.000	.003	.	.128	.000	.001	.010	.303	.000	.104	.355
DDR1	.001	.429	.246	.128	.	.046	.249	.303	.000	.104	.355	.003
JS1	.329	.000	.000	.000	.046	.	.000	.031	.305	.000	.000	.000
JAPP1	.057	.000	.000	.001	.249	.000	.	.237	.044	.000	.000	.000
DIPJS2	.167	.412	.024	.010	.303	.031	.237	.	.001	.000	.151	.000
DDR2	.034	.370	.386	.081	.000	.305	.044	.001	.	.002	.443	.001
JS2	.000	.000	.000	.240	.104	.000	.000	.000	.002	.	.000	.010
JAPP2	.000	.000	.000	.306	.355	.000	.151	.443	.000	.	.000	.000
D	.001	.000	.000	.003	.000	.000	.000	.001	.010	.000	.	.000
Table 6. Regression model of powder factor after elimination of co-linearity impact

VAR	B	SIG	CI	Std. Error	TOTAL PREDICTION	TEST		
(Constant)	.196	.123	1.00	0.13	R-SQUARED	MSE		
UCS	-0.110	.683	1.393	0.07	.6410	0.1790	0.2999	1.1313
RQD	-0.238	.000	1.402	0.05	.1790	0.2999	1.1313	
RMR	-0.117	.200	1.404	0.05	.2999	1.1313		
DIPJS1	0.420	.011	1.405	0.06	.2999	1.1313		
DDR1	0.024	.005	1.406	0.06	.2999	1.1313		
JS1	-0.001	.811	1.406	0.05	.2999	1.1313		
JAPP1	-0.061	.000	1.406	0.05	.2999	1.1313		
DIPJS2	0.455	.001	1.407	0.06	.2999	1.1313		
DDR2	-0.036	.000	1.407	0.09	.2999	1.1313		
JS2	0.219	.237	1.407	0.10	.2999	1.1313		
JAPP2	-0.198	.393	1.425	0.11	.2999	1.1313		
D	-0.235	.449	11.383	0.15	.2999	1.1313		

Table 7. Zero-order correlation coefficients for the detection of co-linearity between variables

UCS	RQD	RMR	DIPJS1	DDR1	JS1	JAPP1	DIPJS2	DDR2	JS2	JAPP2	D
1.00	-0.488	0.331	-0.350	-0.265	-0.078	0.049	0.071	-0.180	-0.156	-0.012	-0.041
-0.488	1.000	0.102	-0.107	-0.084	-0.028	0.021	0.020	-0.055	-0.065	-0.009	-0.012
0.331	0.102	1.000	0.073	0.056	0.016	-0.010	-0.015	0.038	0.033	0.003	0.009
-0.350	-0.107	0.073	1.000	-0.059	-0.017	0.010	0.016	-0.040	-0.033	-0.002	-0.009
-0.265	-0.084	0.056	-0.059	1.000	-0.014	0.010	0.011	-0.030	-0.030	-0.003	-0.007
-0.078	-0.028	0.016	-0.017	-0.014	1.000	0.005	0.003	-0.009	-0.009	-0.003	-0.002
0.049	0.021	-0.010	0.010	0.005	1.000	-0.001	0.005	0.015	0.003	0.001	0.002
0.071	0.020	-0.015	0.016	0.003	-0.001	1.000	0.008	0.003	-0.001	0.002	
-0.180	-0.055	0.038	-0.040	-0.030	-0.009	0.005	0.008	1.000	-0.017	-0.001	-0.005
-0.156	-0.065	0.033	-0.033	-0.030	-0.015	0.015	0.003	-0.017	1.000	-0.010	-0.003
-0.012	-0.009	0.003	-0.002	-0.003	-0.003	0.003	-0.001	-0.001	1.000	0.000	
-0.041	-0.012	0.009	-0.009	-0.007	-0.002	0.001	0.002	-0.005	-0.003	1.000	

Table 8. Significance level (Sig) of null hypothesis for zero-order correlation coefficients

s	UCS	RQD	RMR	DIPJS1	DDR1	JS1	JAPP1	DIPJS2	DDR2	JS2	JAPP2	D
.	.000	.000	.000	.000	.000	.108	.217	.132	.002	.007	.424	.256
.	.000	.052	.045	.091	.328	.370	.378	.192	.151	.443	.424	
.	.000	.052	.123	.190	.398	.434	.408	.276	.302	.483	.445	
.	.000	.045	.123	.177	.394	.434	.401	.264	.301	.486	.442	
.	.000	.091	.190	.177	.412	.439	.429	.317	.316	.479	.457	
.	.108	.328	.398	.394	.412	.470	.484	.445	.408	.483	.489	
.	.217	.370	.434	.434	.439	.470	.494	.466	.407	.478	.494	
.	.132	.378	.408	.401	.429	.484	.494	.449	.481	.496	.487	
.	.002	.192	.276	.264	.317	.445	.466	.449	.395	.493	.470	
.	.007	.151	.302	.301	.316	.408	.407	.481	.395	.434	.482	
.	.424	.443	.483	.486	.479	.483	.478	.496	.493	.434	.500	
.	.256	.424	.445	.442	.457	.489	.494	.487	.470	.482	.500	

Mohammad Hayati and Mohammad Reza Abroshan
Providing a Model to Determine of Powder Factor using Principal Component Analysis Technique

4. Conclusion

Powder factor is one of the most important technical and economic parameters in the design of drilling patterns and tunnel blasting, which is dependent upon various parameters such as geological conditions, rock mechanical properties, and geometric design parameters. For this reason, prediction and optimization of powder factor is of high importance. Several empirical equations have been presented to predict the powder factor; however, since these relationships have been usually developed based on specific geological conditions, they cannot be used for all conditions. In this study, based on geomechanical properties of the rock mass, statistical methods as well as principal component analysis (PCA) were used to predict and optimize the powder factor. Thus, data from 290 phases of drilling and blasting operations for water delivery tunnel of Seimare Dam were collected, from which 250 items of data were used to construct the statistical models and another 40 items to test the models obtained. In this respect, PCA algorithm was used to eliminate the negative effect of co-linearity between input variables in prediction models and R^2 as well as MSE parameters were used to assess the constructed models. Comparisons showed that the elimination of co-linearity between the input variables has given better prediction results in statistical models.

5. References

1. Persson A, Holmberg R, Lee J. Rock Blasting and Explosives Engineering. US: CRC Press; 1994. p. 45–9.
2. Holmberg R, Balkema AA. Explosives and Blasting Technique. Netherlands: 2000. p. 23–30.
3. Lu Sh, Jiang ZCH, Xu NX. Effect of Excavation Blasting in an Under-Cross Tunnel on Airport Runway. Geotechnical and Geological Engineering. 2015; 33:973–81. Crossref
4. Bhalchandra V. Rotary Drilling and Blasting in Large Surface Mines. US: CRC Press; 1979. p. 120–9.
5. Mohanty B, Balkema AA. Rock Fragmentation by Blasting. Netherlands: 1996. p. 14–29.
6. Jimeno LE, Jimino LC. Drilling and Blasting of Rocks. Eastbourne: CPI Antony Rowe; 1978. p. 46–55.
7. Dey K, Sen PH. Concept of Blastability. Indian mining & engineering journal. 2003; 42(8):24–31.
8. Singh P, Sinha A. Rock Fragmentation by Blasting. Leiden, The Netherlands: 2012. p. 231–43. Crossref PMCID:PMC3610461
9. Rossmanith H, Balkema AA. Rock Fragmentation by Blasting. Netherlands: 1993. p. 34–42.
10. Kuznetsov VM. The mean diameter of fragments formed by blasting rock. Soviet mining sci. 1973; 9(2):144–8. Crossref
11. Cunningham CVB. The KUZ-RAM model for prediction of fragmentation from blasting. 1st Int. Symp. On rock fragmentation. 1983; 2:439–53.
12. Cunningham CVB. Fragmentation estimations and the KUZ-RAM model four year on. 2nd Int. Symp. Rock fragmentation by blasting. 1987; 23–6
13. Rustan A. Rock Blasting Terms and Symbols. Netherlands: 1998. p. 45–52.

Table 9. General results of statistical models

	WITHOT PCA	WITH PCA
R^2	0.641	0.641
MSE	0.2559	0.2999
TOTAL PREDICTION	0.179	0.179
TEST	1.2777	1.1313

Figure 1. The coefficient of determination results of statistical model to predict powder factor using PCA.

Figure 2. Predicted results of statistical models optimized for a 40-member test data.
14. Roy PP, Balkema. Rock Blasting: Effects and Operations. Netherlands: 2005. p. 12–21.
15. Jolliffe I. Principal Component Analysis. Springer Science, Bussines Media. New York: 1986. p. 459–83. Crossref
16. Markland J. The analysis of principal components of orientation data. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1974; 11(5):157–63. Crossref
17. Salimi A, Rostami J, Moormann, Delisio CA. Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBM. Tunnelling and Underground Space Technology. 2016; 58:236–46. Crossref
18. Salimi A, Ch M, Singh TN, Jain P. TBM Performance Prediction in Rock Tunneling Using Various Artificial Intelligence Algorithms. Regional tunneling conference tunnels and the future, 2015. p. 34–43.
19. Saedi O, Torabi R, Ataei M, Rostami JA. Stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics & Mining Sciences. 2014; 68:55–65. Crossref
20. Cai W, Dou L, Si G, Cao A, He J, Liu S. A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment. International Journal of Rock Mechanics & Mining Sciences. 2016; 81:62–9. Crossref
21. Mohamed F, Hafsaoui A, Talhi K, Menacer K. Study of the powder factor in surface bench blasting. Procedia earth and planetary science. 2015; 15:892–9. Crossref
22. Esmaeili M, Salimi A, Drebenstedt C, Abbaszadeh M, Bazazi AA. Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arab J Geosci. 2015; 8(9):6881–93. Crossref
23. Heather L, Andrew W; Arthur M. Dynamic failure in coal seams: Implications of coal composition for bump susce-