An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

Jeffrey B. Rosa1, Mark M. Metzstein2, Amin S. Ghabrial3*

1 Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America, 3 Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America

* asg2236@columbia.edu

Abstract

During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.

Author summary

Biological tubes adopt a variety of shapes to carry out their functions. In addition to multicellular tubes, single epithelial or endothelial cells build unicellular lumens lined by an apical membrane devoid of cell junctions, or seams. Such seamless tubes are highly conserved from invertebrates to vertebrate organs, but the factors regulating their formation and maintenance remain poorly understood in any system. Using a forward genetic approach in the Drosophila tracheal (respiratory) system, we have characterized a mutant called ichor, which compromises the integrity and shape of seamless tubes in tracheal terminal cells. We demonstrate that Ichor promotes seamless tube integrity and shape by transcriptionally activating genes required to assemble an extracellular matrix (cuticle) lining the lumens of terminal cells. The cuticle has long been thought function as a passive exoskeleton, but this work demonstrates that the cuticle contains signals regulating seamless tube growth and/or maintenance. All tubes are lined by apical extracellular matrices, but their composition, assembly, and functions are poorly understood. By characterizing
effectors acting downstream of Ichor, we can systematically identify factors controlling all three processes in a model lumenal matrix.

Introduction

Biological tubes transport nutrients, respiratory gases, metabolic wastes, and secretions that are essential for viability. To function properly, these tubes must achieve and maintain their proper shapes. Defects in tube shape can result in severe organ malfunction, such as in polycystic kidney and liver diseases, and in hereditary hemorrhagic telangiectasia [1,2].

Most biological tubes are comprised of polarized epithelial or endothelial cells that shape their apical domains to build and expand a tube lumen. To carry out their specialized functions, tubes come in different architectures, shapes and sizes [3]. In multicellular tubes, an epithelial sheet surrounds an extracellular lumenal space with intercellular junctions connecting the cells to each other to form a selectively permeable barrier. Tubes can also be unicellular: an individual cell may wrap around a lumenal space and seal into a tube through the formation of self-junctions (autocellular tube), or may generate an internal subcellular lumenal space unbounded by cell junctions (seamless tube).

Seamless tubes are found across the animal kingdom, from invertebrates to vertebrates. The most extensively characterized seamless tubes are those of the nematode excretory system, the vertebrate vascular system, and the fly respiratory (tracheal) system. Within the duct and canal cells of the *C. elegans* excretory system, seamless tubes form by two distinct mechanisms—by fusion of membranes bridged by autocellular junctions, or by fusion of intracellular vacuoles into an internal subcellular tube [4–6]. In the vertebrate vasculature, seamless tubes form within endothelial tip cells that lead the migration of new branches and mediate anastomoses [7–10]. In a striking parallel, tracheal tip cells in *Drosophila* lead outgrowth of primary branches and form seamless tubes that either are blind-ended (terminal cells) or mediate anastomoses (fusion cells) [11]. During embryonic stages, terminal cells will form a single gas-filled seamless tube; however, during larval life terminal cells will emanate dozens of subcellular branches that ramify on internal tissues and organs, with each branch containing a blind-ended seamless tube that serves as the final interface for gas exchange [12]. Despite their ubiquity in the animal kingdom, the mechanisms regulating seamless tube morphogenesis remain poorly understood.

Branching morphogenesis has been examined in a broad range of model systems, with multiple mechanisms implicated in the shaping of tubes [13–34]. Among these are mechanisms in which the apical extracellular matrices (aECMs) that line the tube lumen play a key role. The aECM is a heterogeneous three-dimensional extracellular matrix comprised of polysaccharides, proteoglycans, and glycoproteins. Lumenal matrices are common to tubular organs [35–37] and are thought to regulate multiple steps of lumen morphogenesis; however, their mechanisms of action remain, in general, poorly defined. The lumenal matrix protein GP-135/Podocayxin is an early marker of apical domains in MDCK cysts [38,39] and is required for epithelial polarity, suggesting a role for lumenal matrix factors in lumen initiation. After apical membranes have been established, they must separate and expand to create a lumenal space. Matrix components are thought to promote lumen expansion by inhibiting adhesion between apical membranes [40,41] and/or creating an extensively glycosylated lumenal surface that promotes the osmotic influx of water to form an expandable gel-like matrix [42–46]. Finally, lumenal matrix components can regulate lumen growth by influencing apical membrane morphogenesis and cell shape [47–53] or by influencing cell rearrangements [52, 54].
Perhaps the most thoroughly studied aECM is that of the multicellular tube (the dorsal trunk) in the embryonic *Drosophila* tracheal system [55]. The most abundant component of insect aECM is chitin [56]. During embryonic development, a transient chitin filament is first deposited within the lumen of the dorsal trunk [57–59]. This filament regulates multiple aspects of tube shape, including length and diameter. In mutants disrupting chitin synthesis, tracheal lumens expand in an uncoordinated manner across the tracheal epithelium, resulting in a cystic lumen that has alternating areas of tube constriction and dilation [57–59]. Later, embryonic tracheal tubes elongate, to create a continuous network, as neighboring tracheal hemisegments fuse together. Coinciding with expansion of the apical domain to accommodate the increase in dorsal trunk tube length, the physicochemical properties of the chitin filament are altered through the action of the chitin deacetylases Vermiform and Serpentine. This covalent modification of chitin filaments is required to restrict axial tube growth [49, 50, 60]–dorsal trunk tubes in mutants lacking both deacyltases become excessively elongated and convoluted. The chitin filament expands in concert with the apical membrane, suggesting the two structures are physically coupled [61]. Through this physical coupling, the chitin filament may create a resistance force counterbalancing axial apical membrane growth [61].

During seamless tube growth, single epithelial cells must dramatically increase their surface area/volume ratio through a dramatic increase in the size of the apical compartment [10, 62], yet the continuity and shape of these lumens must be maintained across this relatively large surface area. How seamless tube diameter and shape are initially determined and then maintained is not known; likewise, the role of the aECM in seamless tube morphogenesis is unknown. The aECM is ideally positioned to coordinate apical membrane morphogenesis along the length of seamless tubes, either by providing mechanical support and by actively influencing apical membrane dynamics. Indeed, during seamless tube elongation in the duct cells of *C. elegans*, a transient lumenal matrix maintains lumen integrity by promoting apical membrane expansion [41]. In *Drosophila* terminal cells, the majority of seamless tube growth occurs during larval stages, after the chitin filament has been cleared and replaced by a more mature aECM called the cuticle [63]. Initial cuticle deposition is followed by tracheal gas-filling [64, 65]. The tracheal cuticle is a multi-layered aECM organized into a series of circumferential folds, called taenidia [12, 66]. Our understanding of how aECMs, such as the *Drosophila* cuticle, mediate outside-in signaling in tubular epithelia is greatly hindered by a grossly incomplete understanding of their molecular constituents and their functions. As a result, the outside-in signaling pathways linking aECM components to intracellular regulators of seamless tube morphogenesis remain entirely unknown. Roles for aECMs in tube morphogenesis span multiple organs and tissues from invertebrates to vertebrates, indicating an evolutionarily ancient reliance on aECMs to ensure proper lumen shape. An integrated model for lumen morphogenesis, therefore, requires a better understanding of the molecular components of lumenal matrices and their functions during tubulogenesis.

We find that the tracheal mutant, *ichor* (*ich*), previously identified in a forward genetic screen [67], compromises seamless tube shape and integrity by disrupting the aECM. We determined that *ich* mutations are loss of function alleles of the uncharacterized gene CG11966, which encodes a putative zinc finger transcription factor. Expression of *ich* coincides spatially and temporally with cuticle production, and *ich* is essential for aECM assembly, including of the lumenal matrix lining terminal cell lumens. Further, we show that Ich functions as a transcriptional activator in terminal cells and identify aECM components whose expression is Ich-dependent. Taken together, these data suggest a role for Ich in coordinating the assembly or modification of the aECM, and demonstrate that the aECM plays a crucial role in seamless tube shape and integrity.
Results

ichor (ich) is required for terminal cell seamless tube shape and integrity

A single mutation in the gene *ichorous*, here renamed *ichor (ich)* to avoid confusion with the vertebrate zinc finger transcription factor, *ikaros*, was identified on the basis of a terminal cell-specific gas filling defect (Fig 1A and 1A’, S1E–S1G’ Fig) in a genetic mosaic screen [67]. In contrast to neighboring heterozygous control terminal cells, GFP-labeled terminal cells homozygous for *ich* (see Materials and Methods) lack gas-filled seamless tubes. This phenotype indicates that *ich* terminal cells are defective in some aspect of tube formation and/or liquid clearance. To determine whether *ich* terminal cells lacked lumens, or instead contained fluid-filled lumens, a fluorescent reporter, lum-GFP, was utilized and found to be secreted into a liquid-filled lumenal space [67]. To further characterize the seamless tube defects, we expressed a genetically encoded chitin reporter [68] in heterozygous control cells (*ich*206/+ and GFP-labeled *ich*206 clones (Fig 1B and 1C’). Third instar larvae were heat-killed and examined in whole-mount preparations. In control terminal branches (Fig 1B–1B”), ChtVis-TdTomato was observed bounding gas-filled lumens as well as in the fluid-filled tips of terminal branches (Fig 1B’ and 1B”), indicating ChtVisTdTomato labels the cuticle-lined gas-filled lumens as well as fluid-filled lumens. In contrast, ChtVis-TdTomato in *ich* terminal cells outlines fragmented and discontinuous lumens (Fig 1C–1C”).

Discontinuities were present throughout the terminal cell; for example, in proximal regions connecting the terminal cell to the neighboring stalk cell (Fig 1C), and in distal regions near the growing tips of the cell (Fig 1C”). Staining against a lumenal membrane antigen (anti-Wkd peptide) [69] showed that in contrast to control (2FRT) terminal cells, which contained patent tubes with locally uniform morphology (Fig 1D’), *ich* terminal cells exhibited discontinuous membrane-bounded lumens (Fig 1E’ and 1F’) with an irregular cystic appearance. Other defects were noted at a lower penetrance (see S1A, S1A’ and S1D–1D” Fig). Although seamless tubes first form about 13 hours after egg lay (ael) [11], late stage *ich* embryos (16 hrs ael and older, S1B and S1C Fig) did not exhibit defects in initial seamless tube lumen extension, indicating that the tube discontinuities must arise after embryogenesis is complete. Collectively, these data suggest that *ich* disrupts multiple aspects of tube morphogenesis in terminal cells, including seamless tube growth, shape, and integrity.

ichor encodes an uncharacterized zinc finger protein

From the original screen [67], only a single allele of *ich* (*ich*206) was isolated. To facilitate mapping and gene characterization, an EMS mutagenesis and non-complementation screen was performed to recover additional *ich* alleles (see Materials and Methods). We recovered a single new allele (*ich*543) that exhibited identical terminal cell defects (Fig 1F–1F’, Fig 2F). Genetically, *ich*206 and *ich*543 behaved as strongly hypomorphic or amorphic alleles (see Materials and Methods); both were recessive embryonic lethal, and indistinguishable in homozygous and hemizygous conditions (S1J Fig). Using standard procedures (see Materials and Methods) we mapped *ich* to CG11966 (Fig 2A). The CG11966 open reading frame encodes a 592 amino acid protein with two C2H2-type zinc fingers and a predicted nuclear localization signal (NLS) (G473-Q483). The *ich*206 allele carries a non-sense mutation (coding for Q107→Stop) upstream of the two C-terminal zinc fingers, while the *ich*543 allele carries a missense mutation (coding for a H582→Y) resulting in the substitution of a tyrosine residue for a histidine that is required for zinc ion coordination in the second zinc finger. Combined with our genetic analysis, this suggests that at least the second zinc finger domain is essential for Ich function. Further establishing the identity CG11966 as *ich*, we showed that terminal cells homozygous for a
An ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity.
Fig 1. Mutations in ichor (ich) disrupt seamless tube integrity and shape in larval terminal cells. (A, A’) In a genetic mosaic third instar larva, GFP-labeled ichor206/206 terminal cells (green) are visualized next to GFP-negative control terminal cells (ichor206/+, asterisk). All tracheal nuclei are labeled (blue). Fluorescent images are superimposed on brightfield. Gas-filled tubes appear as dark lines; the ichor206/206 terminal cells lack gas-filled tubes (arrow marks intercellular junction between ichor terminal cell and wild type stalk cell). (B–B’) In control terminal cells, ChvVis-TdTomo (red) labels cuticle-lined gas-filled tracheal tubes (B’, B”) as well as fluid-filled lumens found at the tips of terminal branches (arrowheads in B’, B”). In ichor206/206 terminal cells (C), ChvVis-TdTomo accumulates in discontinuous, fluid-filled tubes (C’,C”). (D–F’) The apical membranes in wild-type (D, D’) and ichor (E–F’) seamless tubes is visualized by an antiserum raised against a Whacked peptide [69]. In contrast to the continuous apical membranes in control (D, D’), ichor terminal cell tubes display numerous apical membrane discontinuities and regions of cystic apical membrane (arrowheads in E’, F’). (Scale Bars: A, A’, B, and C 50 μm; B’-B”, C’-C” 10 μm; D-F’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g001

A Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

small chromosomal deletion [70] uncovering CG11966 (as well as oskar, skap, and CG11964) (Fig 2B’B”) show the ich phenotype. Likewise, expression of a dsRNA (hereafter ich RNAi) targeting the CG11966 transcript induced terminal cell-specific tube discontinuities (Fig 2C–2D’). Finally, full-length and flag-tagged ich cDNAs were used to generate transgenic strains (see Materials and Methods), and expression of wild type CG11966 under control of pan-tracheal btl-GAL4 [71] was able to rescue seamless tube continuity in ~67% of ich mutant clones (Fig 2E and 2F). Interestingly, expression level-dependent gain of function defects in morphology, including terminal cell pruning (Fig 2E and S2C–S2D’ Fig), were also observed.

Ichor is essential for the generation of mature aECM

To better understand ich function during tracheal development, we sought to characterize its expression pattern during embryogenesis. Though our genetic mosaic analysis indicated ich is required cell-autonomously in the trachea, previously published RNA in situ data [72] do not show ich expression in the trachea, suggesting ich may be weakly expressed. We used a LacZ enhancer trap, P[PZ]l(3)05652, at the ich locus to better characterize ich expression in the trachea and other tissues. From 9–15 h ael, the ich::nLacZ transcriptional reporter was expressed specifically in ectodermally-derived epithelia, including the trachea, that secrete cuticle (S3 Fig). This expression pattern was consistent with a role for Ichor in aECM assembly and/or modification, which was further supported by the observation that ich transcripts are expressed during cuticle deposition in the pupal wing epithelium [73].

To investigate further, we asked whether ich embryos, like embryos with known defects in the production of a mature aECM (cuticle), would appear grossly inflated in cuticle preparations—the “blimp” phenotype, which reflects an increased elasticity (compare Fig 3A and 3A’) [74]. Both ich206 and ich543 embryos exhibited mild “blimp” defects in cuticle preps (Fig 3B’) as well as reduced sclerotization of the head skeleton and ventral epidermal denticles (Fig 3B’ and 3C’), which are also characteristic of aECM defects. These defects were milder than those observed in embryos mutant for chitin synthase, suggesting that ich embryos are not completely chitin deficient.

In the tracheal system, a chitin filament is generated prior to the mature cuticle, and plays an essential role in tube expansion [57–59]. We find that the production of the chitin filament is unaffected in ich embryos (S4 Fig), consistent with ich not being required for chitin synthesis.

Though Ich is dispensable for tracheal specification, branching, and lumen growth during embryogenesis, pan-tracheal depletion causes a liquid-clearance defect and breaks in the multicellular dorsal trunk tubes in first instar larvae (S1H and S1I’ Fig). Since tracheal cuticle assembly is required for gas-filling [64] and tracheal tube integrity [12,75], we next visualized the ultrastructure of the tracheal cuticle in larval terminal cells using transmission electron microscopy (TEM). Wild-type terminal branches have locally uniform lumens lined by a cuticle organized into taenidia (Fig 3D). By contrast, terminal branches in ich-depleted cells have irregularly-shaped lumens devoid of taenidia and instead occluded with electron-dense
material (Fig 3E). The electron-dense material may represent mis-assembled matrix material. These phenotypes indicate that Ich is required for lumenal matrix assembly in seamless tubes and suggest that seamless tube shape requires a properly assembled lumenal matrix. Insofar as Ich is dispensable for chitin filament formation, we suggest that Ich functions in the trachea as a specific regulator of the mature aECM (cuticle).

Ichor functions as a transcriptional activator

Since the ich locus had not been previously characterized, we next sought to address Ich molecular function. To test the hypothesis that Ich acts as a transcription factor, we first examined the subcellular localization of a functional (Fig 2E) Flag-tagged isoform of Ich. UAS-Flag-Ich was expressed in terminal cells using the GAL4/UAS two-component system [76]. To limit over-expression phenotypes, we utilized a tubGAL80ts transgene [77] and shifted temperature to permit Flag-Ich expression only in third instar larvae (Fig 4A–4A”). As predicted for a transcription factor, Ich localizes at steady-state to terminal cell nuclei (Fig 4A’ and 4A”). To test whether Ich functions as a transcriptional activator, we assayed the rescuing activity of an Ich-VP16 chimera. The chimeric protein consisted of the putative DNA binding domain of Ich (the Ich zinc fingers) fused to the transcriptional activation domain of the viral protein VP16 [78] (Flag-VP16-IchDBD, Fig 4B). An exogenous NLS was introduced to ensure nuclear localization of the Flag-VP16-IchDBD chimera (Fig 4C’). Expression of Flag-VP16-IchDBD in ich206 terminal cells restored seamless tube continuity in 84% of cells (n = 46 cells) (Fig 4C”, Fig 2F). This result indicates that the essential terminal cell function of Ich is as a transcriptional activator. Consistent with this hypothesis, a fusion of the GAL4 DNA binding domain to full-length Ich (GAL4DBD-Ich) induced transcriptional activation of an artificial UAS-Luciferase reporter construct in S2 cells [79]. If Ich functions primarily as a transcriptional activator, then we predicted that ectopic recruitment of repressive machinery to Ich target genes in terminal cells would phenocopy ich loss-of-function. We expressed a chimeric Ich consisting of the Engrailed transcriptional repressor domain [80] fused to the Ich zinc fingers (EnR-IchDBD-Flag, Fig 4B), and found that EnR- IchDBD-Flag localized to the nucleus of terminal cells (S2B and S2B’ Fig) and induced ich-like tube discontinuities in 98% of cells (n = 42 terminal cells) (compare Fig 4D and 4D’ with Fig 4E and 4E’; Fig 2F). Importantly, the phenotypes caused by overexpression of EnR-IchDBD-Flag are distinct from those caused by overexpression of full-length Ich (see S2 Fig).

A requirement for chitin in seamless tubes

The best-characterized component of the insect aECM is chitin [66, 74, 81–83]; however, its requirement in seamless tubes has not been directly examined. While ich is not required for the chitin filament in embryonic development, we wished to determine if the ich seamless tube defects in terminal cells derive from the loss of chitin in the mature aECM. We turned to mutations in kkv, which encodes the sole tracheal chitin synthase. The short-of-breath (sob) alleles of kkv, were identified by their gas-filling defects (S5A and S5A’ Fig) [67], but had not been more
thoroughly examined. We now report that the transient chitin filament normally present in the embryonic tracheal lumens cannot be detected in \textit{kkv}^{sob483} and \textit{kkv}^{sob483} embryos (S5D–S5G' Fig), which displayed the cystic dorsal trunk defect (S5H–S5L Fig) characteristic of \textit{kkv}^l embryos \cite{57, 58}. All 6 \textit{sob} alleles carry point mutations predicted to disrupt the \textit{kkv} coding sequence (Fig 5A) and two of these seemed likely to be null for \textit{kkv} function. The \textit{kkv}^{sob404} allele carries a non-sense mutation predicted to truncate the open reading frame after 147

![Figure 3](https://doi.org/10.1371/journal.pgen.1007146.g003)
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity
Fig 4. Ichor functions as a transcriptional activator in terminal cells. (A-A”) tubGAL80ts; SRF>eGFP, FLAG-Ich larvae were upshifted to the restrictive temperature around the start of the third larval instar to induce GALA-dependent FLAG-Ich expression. FLAG-Ich accumulates at steady-state in the nucleus of terminal cells (A’, A”). (B) Domain organization of FLAG-VP16AD-IchDBD and EnR-IchDBD-FLAG chimeras is schematized. VP16AD (orange) is a potent transcriptional transactivating domain from a viral protein, while EnR (purple) is the transcriptional repressor domain of the Ich protein that includes the zinc finger domains (red) presumed to confer DNA binding. (C-C”) ich206 MARCM terminal cell clones expressing UAS-FLAG-VP16AD-IchDBD transgene. By virtue of an exogenous nuclear targeting sequence (see B, green), FLAG-VP16AD-IchDBD chimera accumulates in the nucleus (C, C’), restoring seamless tube integrity (C”), as observed by staining for the apical marker aPKC. (D-E’) Wild-type control SRF>eGFP (D-D’) and SRF>eGFP, EnR-IchDBD-FLAG (E, E’) terminal cells. The EnR-IchDBD-FLAG chimera behaves like an Ich dominant negative, inducing the ich loss of function phenotype. In contrast to the fully patent lumens of control terminal cells (D’), SRF>eGFP, EnR-IchDBD-FLAG terminal cells exhibited blind-ended, discontinuous lumens similar to ich mutant terminal cells. (Scale Bars: A, C, D, E 20 μm; A’ and A”, C’ and C”, D’, E’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g004

Fig 5. The aECM component chitin is essential for seamless tube shape and integrity. (A) Schematic of the kkv gene and the encoded Chitin Synthase protein structure with the position of the sob mutations indicated. (B-B”) kkv^{sob404} null terminal cell clone (green) exhibited apical membranes with cystic, irregular morphology. For the areas marqued in white, the apical membrane is shown enlarged in (B’, B”) as indicated. Terminal cell outlines in B’, B”, C’, D’ are shown by green dots. In (C) and (D), kkv^{sob761} and kkv^{sob483} clones, respectively, are shown. In distal terminal branches (B’, D’), discrete apical membrane cysts (arrowheads) are interspersed with tube of apparently normal morphology. (C-D’) limited regions of discontinuous apical membrane (C’, D’) were also observed with all kkv alleles. (E) Penetration of tube phenotypes for the kkv^{sob404} null allele and kkv^{sob483}, a putative recessive antimorphic allele (P<0.0001, Chi-Square test). (Scale Bars: B, C, D 20 μm; B’, B”, C’, C”, D’, E 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g005
amino acids (Fig 5A) and the kkvob-483 allele disrupts a conserved nucleotide in the splice donor site just upstream of the second intron, predicted to result in a S48→R missense mutation followed immediately by an in-frame stop codon. By genetic assays (S5H–S5L Fig, see Materials and Methods), kkvob-404 behaved as a strong hypomorphic or null allele, whereas kkvob-483 exhibited recessive antimorphic properties (or else carries a second-site modifier).

If a loss of chitin synthesis underlies the ich tube defects in terminal cells, then chitin-deficient terminal cells should phenocopy ich mutants. The apical membrane in kkvob terminal cells was cystic (cysts marked by arrowheads), showing irregular contours (Fig 5B, 5B′ and 5C′), in contrast to the smooth, locally uniform apical membrane of control terminal branches (Fig 1D and 1D′). In addition, kkv terminal branches contained apical membrane discontinuities, albeit with limited penetrance and expressivity (Fig 5C′ and 5D′). The penetrance of these discontinuities varied with the kkvob allele used (Fig 5E): whereas kkvob-404 terminal cell clones exhibit discontinuities in ~12% of terminal cells examined (n = 38), kkvob-483 clones exhibit discontinuities in ~52% of terminal cells examined (n = 28). This difference in penetrance is consistent with the analysis of allele strengths described above (S5H–S5L Fig). Additionally, while multiple terminal branches per cell showed discontinuities in ich terminal cells, discontinuities in kkvob terminal branches were typically limited to a single branch per cell. We conclude from these studies that a chitin-based aECM is required for seamless tube shape, and that it also contributes to tube integrity while not being absolutely essential. Interestingly, this suggests that other Ich-dependent aECM components may play chitin-independent roles in the maintenance of tube integrity.

Ich regulates expression of factors important for mature aECM assembly

Since the transcriptional targets of Ich regulation are not known, we sought to identify candidate genes. To focus our search, we utilized two previously published RNAseq data sets, one from the modENCODE consortium [84] and one from the Adler lab, which generated a systematic RNAseq data set across the stages of cuticle deposition in the pupal wing [73]. We reasoned that ich target genes would be co-expressed with ich, and might be enriched in the overlap of the ich co-expression clusters from each data set. We manually selected 4 genes, each expressed in the embryonic trachea, to examine for ich-dependent expression: ectodermal (ect), osi18, osi19, and CG8213.

Ect is an apically secreted protein expressed exclusively in chitin-secreting epithelia (S6A–S6D Fig) [85]. Depletion of ect in the pupal wing epithelium causes defects in cuticle assembly [73], suggesting Ect is a structural component of chitin-based cuticles. Although ich is dispensable for tracheal expression of ect (S6B and S6C–S6F Fig), ich is required for full ect expression in the foregut primordium and the epidermis.

Like all Osiris family members (24 in total), Osi18 and Osi19 are small proteins with predicted signal peptides and transmembrane domains [86]. Gene expression studies suggest Osiris family members may play a role in aECM assembly [73, 87], perhaps by affecting one or more steps of membrane trafficking [88]. Expression of osi18/19 mRNA initiates ~10h ael specifically in the trachea. Consistent with a role for Osi18/19 in tracheal aECM maturation, osi18/19 expression is coincident with aECM secretion and modification (S7 Fig). Wild-type ich function is essential for the expression of both osi18 and osi19. Embryos mutant for ich (ich206/Df(3R)osk) exhibit a delay in the onset of osi18/osi19 expression in the trachea (compare Fig 6A with 6D, 6B with 6E, Fig 6G with 6J and 6H with 6K). By ~15h ael osi18 and osi19 mRNA are readily detected in the dorsal trunks of ich206/Df(3R)osk embryos (Fig 6F and 6L) although expression in other tracheal branches remains severely reduced as compared to control siblings (compare Fig 6C with 6F and 6I with 6L). That osi18 and osi19 expression in the
Fig 6. Ichor is required for the pan-tracheal expression of osi18 and osi19. Expression of osi18 mRNA (A-F) was examined in sibling (WT; A-C) and ich206/Df(3R)osk embryos (D-F) by in situ hybridization. Expression of osi19 mRNA (G-N) was examined in siblings (G-I) and ich206/Df(3R)osk embryos (J-L) by in situ hybridization. In contrast to the wild type control heterozygous siblings (A-C and G-I), ich206 hemizygotes (D-F, J-L) lacked osi18 and osi19 expression throughout the trachea. However, by late Stage 16 (F, L) osi18 and osi19 mRNA became detectable in the multicellular dorsal trunks branches of the tracheal system. Stage 16 control (2Xbtl>GFP) embryos (M) detected the expected pattern of osi19 mRNA expression in contrast to embryos (N) expressing a transcriptional repressor domain (EnR) fused to the Ich DNA binding domain (IchDBD). The embryos expressing the Ich chimera (2Xbtl>GFP, EnR-IchDBD) exhibited pan-tracheal reduction of osi19 mRNA.

https://doi.org/10.1371/journal.pgen.1007146.g006
dorsal trunks eventually becomes strong in the absence of ich, suggests that other transcriptional regulators expressed in the dorsal trunk can compensate. Consistent with this hypothesis, recruitment of repressive transcriptional machinery to ich-regulated loci through the tracheal expression of EnR-IchDBD-Flag confers a complete loss of dorsal trunk osi19 expression (compare Fig 6N with 6M), suggesting that Ich is part of a network of transcription factors controlling gene expression during maturation of the tracheal aECM.

The ich candidate target gene, CG8213, encodes a transmembrane protease. RNAi studies in the pupal wing epithelium implicate CG8213 in cuticle assembly [73]. The expression pattern of CG8213 during embryogenesis is highly reminiscent of ich (Fig 7A–7D). To determine whether Ich is required for CG8213 expression in embryonic trachea, ich206/ich543 embryos and sibling controls (ich206 or ich543/+) were examined by in situ hybridization. While sibling controls (Fig 7F and 7F’) showed the expected wild type pattern, ich206/ich543 embryos showed a loss of both pan-tracheal (arrowhead Fig 7G) and hindgut (arrowhead Fig 7G’) expression of CG8213. Foregut expression (Fig 7G) of CG8213 persisted in ich mutant embryos, and thus is independent of Ich function and also serves as a convenient internal control. Tracheal expression of CG8213 in ich206/ich543 embryos was restricted to a small number of cells at the posterior spiracle, indicating that Ich is required (either directly or indirectly) for the induction of CG8213 expression in the trachea.

As an independent confirmation of this result, we found that pantracheal expression of the dominant negative Ich transgene (EnR-IchDBD-Flag) produced a tissue-autonomous reduction in CG8213 expression. Indeed, while control embryos showed prominent tracheal expression of CG8213 by ~11h ael (arrowhead, Fig 7H), embryos with pan-tracheal expression of EnR-IchDBD-Flag showed a loss of CG8213 transcript exclusively in the trachea. As in ich206/ich543 mutants, tracheal expression of CG8213 in ich206/ich543 embryos was restricted to a small number of cells at the posterior spiracle, indicating that Ich is required (either directly or indirectly) for the induction of CG8213 expression in the trachea.

We next sought to determine whether loss of CG8213 could account for the ich terminal cell defects. Terminal cell-specific knockdown, using either of two independent RNAi lines, induced numerous apical membrane discontinuities along each branch (Fig 8B–8B”), as well as seamless tube cysts (arrowheads. Fig 8B”). In light of these findings, we rename CG8213 lumens interrupted (lint). In addition, ~21% of terminal cells (n = 33) exhibited a dramatic decrease in branch number, with the remaining terminal branches containing only isolated inclusions of apical membrane (Fig 8C and 8C’), suggesting a defect in the addition of apical membrane in these terminal branches—similar to the most severe lumen defect observed in ich terminal cells (S1B and S1B’ Fig). We confirmed the specificity of these RNAi phenotypes by targeting the lint locus region using the CRISPR/Cas9 system (Fig 8D) [89]. Though we did not isolate alleles that deleted the entire coding region by targeting both gRNA sites, we isolated a lint mutant allele (lintΔ4Δ64) that behaves genetically as a loss-of-function (see Materials and Methods). We found that lintΔ4Δ64 terminal cells clones exhibited discontinuous lumens (Fig 8D, 8E and 8G) similar to those observed in RNAi experiments, in clones homozygous for a non-complementing, recessive lethal transgene insertion at lint (Fig 8F and 8G), and in ich clones. We propose that Lint acts downstream of Ich to regulate seamless tube growth and/or maintenance.

To further test if lint is the essential target of Ich regulation in tracheal morphogenesis, we asked whether expression of a lint cDNA could bypass a tracheal requirement for ich. Overexpressing lint in otherwise wild-type terminal cells caused liquid-clearance defects (S8A and S8A’ Fig), but did not impact terminal branching or lumen morphogenesis (S8B and S8B’ Fig) with the exception of a few small tube dilations observed in some, but not all, cells (arrowheads in S8B’ Fig). Expression of lint in ich206 terminal cells restored seamless tube integrity and shape at a low very low frequency (2% of clones, n = 103, P = 0.5, one-sided Fisher’s exact
Fig 7. Ichor is required for CG8213 expression in the trachea (A-D) Wild-type w^{1118} embryos hybridized with DIG-labeled antisense (A-C) and sense (D) CG8213 RNA probes. CG8213 expression is first detected at St. 13 in the posterior spiracles (arrowhead in A, A') and foregut primordium (arrow in B). By St. 15, CG8213 is expressed specifically in cuticle-secreting epithelia, including the trachea (black arrowheads in C), foregut (arrow in C), hindgut (white arrowhead in C), and epidermis (see asterisks in F, I). This signal is specific since a sense probe (D) shows no such pattern. (E) Transcripts and polypeptide encoded by CG8213 locus. Black bar denotes position of RNA probes, designed to detect all spliceo forms. (F-G') This signal is specific since a sense probe (D) shows no such pattern. (H) 2X> GFP btl, EnR-IchD BD embryos exhibited a significant reduction or loss of CG8213 expression in the trachea. Only a subset of cells in the posterior spiracles (black arrowhead in G) retain CG8213 expression. Hindgut expression (white arrowhead in G') is also reduced. (H-I) 2X> GFP (H) and 2X> GFP, EnR-IchDDB embryos hybridized with antisense CG8213 probe. Whereas control embryos (H) expressed CG8213 prominently in the major dorsal trunk (black arrowhead in H) of the trachea, tracheal-autonomous expression of the dominant-negative Ich transgene caused a loss of tracheal expression; only cells in the posterior spiracles retain CG8213 message, similar to ich loss-of-function phenotype. CG8213 expression in the epidermis (asterisk in I), foregut (arrow in I), and hindgut (white arrowhead in I) is unaffected, indicating a tracheal-autonomous loss of expression.

https://doi.org/10.1371/journal.pgen.1007146.g007

Discussion

While extracellular matrices coating the basal aspects of epithelia have long been known to play key roles in organ development and morphogenesis, any potential role of extracellular matrices lining the apical or lumenal aspects of epithelia (aECM) have, by comparison, been largely neglected. Critical gaps in knowledge include: what the components of the aECM are, how they interact with each other and with the apical membrane during assembly, how they are modified over time, and how the aECM regulates morphogenesis and is altered under varying physiological conditions or in disease. In this study we identify an essential role for the aECM in maintaining the shape and integrity of seamless tubes (S9 Fig). Tracheal terminal cells lacking the transcriptional activator Ichor, or its downstream target, Lumens Interrupted, exhibited discontinuous seamless tube fragments, in which the segments of tube that remained intact showed pronounced cystic dilations. TEM analysis demonstrates that aECM organization is compromised in ichor deficient larva. Further supporting the hypothesis that it is the aECM factors downstream of Ichor that are relevant to seamless tube morphogenesis, we show that the elimination of chitin, the most abundant aECM component in insects, is sufficient to compromise seamless tube shape and, to a lesser degree, integrity.

Our findings further strengthen the conclusion, prompted by previous studies in nematodes and flies, that the aECM is important for maintaining epithelial integrity. In C. elegans embryos, the so-called sheath at the apical surface of the epidermis maintains epidermal integrity during cell shape changes that elongate embryos along their anteroposterior axis [90–93]. In the Drosophila trachea [54] and C. elegans excretory system [91], luminal matrices form scaffolds that maintain the integrity of intercellular contacts joining unicellular tubes.

Do luminal matrices regulate seamless tube integrity in vertebrates? Endothelial cells secrete a luminal matrix known as the glycocalyx, which has been implicated in lumen expansion in multicellular blood vessels [40]. In endothelial tip cells, blood flow is required to expand seamless tubes [9,10]. Interestingly, during this initial lumen growth, seamless tube stability is quite labile, undergoing temporary collapse during changes in blood pressure [9, 10]. The endothelial glycocalyx, which promotes lumen expansion through electrostatic repulsion of luminal surfaces [40], is still maturing at the onset of blood flow [94]. It is possible that an
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity.
immature glycocalyx contributes to seamless tube collapse during vessel anastomosis. Alternatively, the glycocalyx, a known mediator of shear stress response in endothelial cells [95], could help transduce hemodynamic mechanical signals needed to promote the inward blebbing of luminal membrane in endothelial tip cells [10]. It would be interesting to determine whether an intact glycocalyx is a prerequisite for stable lumen expansion in endothelial tip cells.

The mechanisms by which the aECM promotes tube integrity in seamless tubes are not known. We favor two non-exclusive possibilities: first, we propose that the aECM may serve as a scaffold capable of dissipating tension along the apical membrane, and second, we propose that the luminal matrix may play a more direct role in regulating the growth of seamless tubes. In Drosophila terminal cells that ramify over areas of 100s of square microns, seamless tubes are likely under considerable tensile stress. These tensile forces are far from static, changing in both magnitude and direction during tube growth as well as during larval locomotion. Against such dynamic tensile strain, tube integrity must be maintained for proper gas-exchange. In larger tube types (autocellular and multicellular), cell junctions are thought to serve as a critical counter force resisting tensile stress; however, along the length of seamless tubes there are no cell junctions. The aECM, with its physical connections to the apical membrane, is ideally positioned to distribute the forces along the length of the tube and in that manner perhaps avoid local forces strong enough to fragment the tube.

We also think it likely that the aECM plays a more informative role in regulating tube growth. In gain-of-function experiments, Ich overexpression arrested the growth of seamless tubes in terminal cells without perturbing lumen continuity. These data suggest that seamless tube growth in terminal cells is sensitive to the levels of Ich effectors, possibly including luminal matrix factors. A model in which a luminal matrix merely maintains expanded terminal cell lumens cannot readily account for defects in apical membrane biogenesis, suggesting that components of the aECM may help to organize a membrane platform promoting the growth of the apical domain in terminal cells. Indeed, in loss of function studies, the most severely affected ich or lint mutant has a specific defect consistent with a failure in the addition of new apical membrane to the growing blind end of terminal cell seamless tubes. This would be consistent with previous work demonstrating that the aECM and the cortical actin meshwork underlying the apical membrane are in communication [58, 96, 97].

The question of how aECM change and mature over time is also one that applies broadly across tubular organs and phyla. For example, in order for the mammalian lungs or the Drosophila tracheal system to become functional, their lumens must transition from fluid-filled to gas-filled. Conserved mechanisms mediate this transition, such as liquid and salt reabsorption via epithelial Na⁺ channels [98–102]. The transition from fluid-filled to gas-filled lumens also entails secretion and modification of a luminal matrix. The ichor mutant has a specific defect...
in tracheal tube maturation without affecting earlier tracheal morphogenesis. Others [64, 75, 103] have reported that mature aECM assembly is required for tracheal liquid clearance and/or gas-filling. In our mosaic analysis, we found ich to be required only in larval terminal cells but to be dispensable for tracheal specification, branching, and lumen morphogenesis during embryogenesis. On the other hand, pan-tracheal knockdown of ich blocked tracheal gas-filling and resulted in one or more breaks in the dorsal trunks of first instar larvae, suggesting a tissue autonomous but non-cell autonomous role of Ich in larger tubes (presumably reflecting luminal secretion of Ich target genes). Thus ich is broadly required during the maturation of the trachea at the end of embryogenesis or shortly after hatching. This phenocritical phase for ich coincides with tracheal aECM maturation (cuticle deposition) and fits with our EM data demonstrating that aECM is disorganized in the trachea of larvae deficient for ich. The mature tracheal aECM is thought promote the liquid-to-gas transition by promoting de novo gas bubble generation via cavitation [103]. By this process, a column of luminal liquid must be ruptured at some point to generate a gas-bubble, requiring a decrease in the pressure gradient required to rupture the liquid column at the liquid–cell interface (also called tensile strength). Both the hydrophobic envelope layer of the cuticle, as well as its convoluted taenidial folds, at the surface-liquid interface are predicted to decrease the tensile strength of the luminal fluid [103]. Tracheal gas-filling takes place with temporal and spatial stereotypy [17], implying the execution of an equally stereotyped developmental program. We propose that Ichor helps ensure this timely transition by initiating the transcriptional activation of a suite of genes promoting mature aECM assembly.

Maintaining gas-filled respiratory lumens in insects and mammals is most critical in the finest luminal spaces, such as lung alveoli and tracheal terminal cells. In the mammalian lungs, the fine lumens of alveoli impose high surface tension at the air–liquid interface, threatening collapse of these air-filled lumens. To prevent the collapse of these fine lumens, specialized pneumocytes secrete a matrix of phospholipids and proteins that form a luminal surfactant matrix [104]. Failure to clear luminal lung liquid or secrete the surfactant matrix underlies lethal respiratory distress syndromes in neonates. The fine lumens of terminal cells exhibit variable regions of fluid-filling, especially at the tips of terminal branches where the lumens are finest [67, 105]. Analogous to the alveolar spaces of mammalian lungs, the fine luminal spaces of *Drosophila* terminal branches may impose high surface tension in a surface-associated aqueous phase, causing the collapse of gas-filled in limited portions of terminal branches. An Ich-dependent luminal matrix may be required to limit the expansion of these fluid-filled regions throughout the terminal cell, by reducing the surface tension in a luminal-surface-associated aqueous phase.

Modifications to a luminal matrix are a conserved process underlying the functional maturation of tubular organs. In the *Drosophila* trachea [57–59, 81] and *C. elegans* excretory system [41, 91, 106, 107] transient aECMs give way to stable ones at the completion of embryogenesis. However, the developmental signals controlling such matrix reorganizations remain poorly understood. In the trachea, this process presumably entails the upregulation of enzymatic processes, such as proteolysis and chitin hydrolysis, at the end of embryogenesis to clear the chitin filament. Endocytosis is then required to clear material from tracheal lumens [17]. We propose that Ich and its as-yet-unknown cooperating transcription factors (see above) help initiate stable aECM assembly in the trachea by transcriptionally activating a suite of genes, such as Lint, involved in cuticle biogenesis.

While zinc finger transcription factors are abundant throughout the animal kingdom, Ich does not have clear orthologs beyond insects; however, the aECM targets whose expression Ich regulates may be more closely conserved. The domain organization of Lint, for example, is similar to that observed in a family of vertebrate type II transmembrane serine proteases
(TTSPs). Vertebrate TTSPs are defined structurally by an N-terminal single-pass transmembrane domain separating a short cytosolic domain from a larger extracellular domain containing a trypsin protease domain at its C-terminus [108]. Genome sequencing in mouse and humans has identified ~20 TTSPs in mouse and humans. Lint shows 32–37% identity in its C-terminal trypsin protease domain to multiple mouse and human TTSPs, including TMPRSS11f, ST14 (Matriptase), TMPRSS9, and mouse TMPRSS11C. Lint differs from canonical TTSPs in that it lacks the variable array of protein-protein interaction domains found in their extracellular domains. But, like Lint, vertebrate TTSPs such as Matriptase are expressed broadly in epithelia, suggesting a conserved role for secreted transmembrane proteases in the development or physiology of epithelial tissues [108]. Indeed, membrane-anchored proteases have a conserved role in the assembly and maintenance of epithelial barriers. Lint is required for cuticle assembly in the pupal wing, where it is proposed to play an in instructive role, either directly or indirectly, in organizing the multi-layered aECM [73]. Similarly, in mice, TTSPs such as Matriptase [109, 110] and TMPRSS11f [111] are essential for the formation and/or function of an extracellular barrier in the mammalian cornified envelope. The cornified envelope is a complex meshwork of terminally differentiated non-living keratinocytes, called corneocytes, that are chemically cross-linked with a heterogeneous array of structural proteins and lipids. Together, these structures form a water-impermeable barrier preventing unregulated inside-out and outside-in passage. The cornified envelope serves the same physiological function as the extensively chemically cross-linked and hydrophobic insect cuticle. The murine Matriptase homolog is thought to play a role in the secretion of extracellular matrix material needed to maintain epidermal barrier integrity [110]. Our work implicates Lint-mediated lumenal matrix assembly in the integument for the formation and/or function of an extracellular barrier. Lint is required for cuticle assembly in the pupal wing, where it is proposed to play an instructive role, either directly or indirectly, in organizing the multi-layered aECM [73]. Similarly, in mice, TTSPs such as Matriptase [109, 110] and TMPRSS11f [111] are essential for the formation and/or function of an extracellular barrier in the mammalian cornified envelope.

Materials and methods

Fly stocks

To generate GFP-labeled mitotic clones in the tracheal system, the following stocks were used: ywFLP122; btl>GFP; FRT82B tubGAL80 and ywFLP122; btl>GFP, Wkd-mKate2; FRT82B P(tubGAL80) and ywFLP122; btl>moecABD-GFP; FRT82B P(tubGAL80) and ywFLP122; FRTG13 P(tubGAL80); btl>CD8-GFP to generate MARCM clones (Lee and Luo, 2001) or ywFLP122; btl>GFP, DsRednls; FRT82B UAS-GFPi (Ghabrial et al, 2011); btl>GFP; FRTA-FRT82B and btl>GFP; FRT82B kkvob stocks are described in [67]. An FRT82B ich122 sr e ca/TM3 stock was generated by recombining an FRT82B ich122 chromosome [67] with an isogenic FRT82B cua sr e ca chromosome. FRT82B ich122/TM2 was recovered from a non-complementation screen (see below). UAS-ChtVisT-TiTomato was a generous gift from Paul Adler’s lab [68], w; Df(3R)osk122 was a generous gift from Paul Adler’s lab (U. Texas at Austin) [70] and was recombined onto the FRTA-FRT82B chromosome. The P[PZ]l(3)05652 insertion was provided by the Bloomington Stock Center (Bloomington, IN, USA) and was recombined onto the FRTA-FRT82B chromosome. For RNA interference experiments, the following strains [113] were obtained through the Bloomington Stock Center: y1 sc1 v1; P[y+17.7] v1+1.8 = TriP.HMS02762[attP2 carrying a dsRNA against ich under UAS control; y1 sc1 v1; P[y+17.7] v1+1.8 = TriP.HM12360[attP40 and y1 sc1 v1; P[y+17.7] v1+1.8 = TriP.HM14037[attP40, expressing independent dsRNAs against lentin. ru1 th1 st1 Df(3R)3-4/TM3 was provided by the Bloomington Stock center. A recessive lethal transgene insertion at lentin, MI04680, was obtained from Bloomington Stock Center and recombined onto a FRT40A FRTG13 chromosome provided by Bloomington Stock Center. The following GAL4 drivers were used: btl-GAL4 [71], SRF-GAL4 (a gift...
from Mark Metzstein, U. Utah, Salt Lake City, UT, USA, and drumstick-GAL4 [114] (Bloomington Stock Center). For making germline clones of ich, the w¹; FRT¹²²B P[ovoD¹-18]/st¹ βtub85D¹ s¹ e¹/TM3 [115] was obtained from Bloomington Stock Center. An isogenic w¹¹¹⁸ wild-type strain was obtained from Bloomington Stock Center.

Mosaic analysis

Positively marked clones were generated in the tracheal system as previously described (Ghabrial et al, 2011). Briefly, embryos were collected for 4h at 25C, then heat-shocked 1h at 38˚C to induce FLPase expression. Embryos were aged at 25C until the wandering third instar unless otherwise indicated. Mosaics larvae were identified using a Leica MZ16F fluorescence stereo-microscope. Germline clones were generated using the dominant female-sterile technique [115]: briefly, hsp-FLP¹²²; FRT¹²²B P[ovoD¹-18]/FRT¹²²B ich²⁰⁶ sr e ca second and third instar larvae were heat-shocked twice for 2h at 38˚C, over the course of two days. Females with mosaic germlines were crossed to FRT¹²²B ich²⁰⁶/TM3 twi>GFP males, embryos were collected and maternal/zygotic null animals identified by lack of GFP expression.

Allele screen

To facilitate mapping of the ich locus, ethylmethanesulfonate (EMS)-induced mutations were screened for non-complementation of the original ich²⁰⁶ recessive lethal allele [67]. ~50 Males from an isogenic btl˃GFP; FRT²⁴A FRT⁸²B strain were fed 25 mM EMS in a sucrose solution overnight. These males were then mated to ~100 btl˃GFP; Pr hs-Hid/TM3 P[tubGAL80] females [67]. Eggs were collected over the course of several days, then heat-shocked to kill any hs-Hid animals. Approximately ~1000 mutagenized FRT²⁴A FRT⁸²B chromosomes were then screened for the presence of a recessive lethal mutation(s) that failed to complement the tester chromosome carrying the ich²⁰⁶ allele. One additional allele, ich⁵⁴⁳, was recovered. This allele was also for complementation with Df(3R)osk, which uncovers ich, and with P[PZ]l(3)05652, a hypomorphic P-element induced allele of ich. The ich⁵⁴³ allele failed to complement all of these independently derived ich-deficient chromosomes.

Mapping and genetic characterization

Mapping studies. Meiotic recombination was used to narrow down the candidate gene interval on chromosome 3R. FRT⁸²B ich²⁰⁶/TM3 flies were crossed to an isogenic FRT⁸²B cu¹ sr¹ e¹ ca¹ strain (Bloomington Stock Center) to generate FRT⁸²B ich²⁰⁶/FRT⁸²B cu¹ sr¹ e¹ ca¹ females, which were then crossed to ru¹ h¹ th¹ st¹ cu¹ sr¹ e¹ Prl¹ ca¹/TM6B (Bloomington Stock Center) males to recover recombinant chromosomes. Recombinant chromosomes were scored for recessive visible markers and then tested by complementation against the original ich²⁰⁶ mutant chromosome. The map was further refined using chromosomal deletions, and a recessive lethal lesion at 85B7-85B8 was identified. Genomic DNA was isolated from ich²⁰⁶ mutant embryos (Qiagen DNeasy Blood and Tissue Kit) and subjected to whole-genome sequencing (Otogethetics, Atlanta, GA). A non-synonymous mutation in the coding region of CG11966 at cytological position 85B8-85B9 was found. To confirm gene identity, a lethal insertion at CG11966, P[PZ]l(3)05652, was tested and found not to complement ich lethality. Finally, genomic DNA from ich⁵⁴³ homozygous embryos was isolated (Qiagen DNeasy Blood and Tissue Kit) and the genomic region encompassing CG11966 was PCR amplified and sequenced. See S1 Table for a list of primers used. All PCR reactions were carried out using either Taq DNA Polymerase (Sigma-Millipore) or Platinum Taq DNA polymerase (Invitrogen). Prior to sequencing, excess primers and nucleotides were removed from the reaction products using Exo-SAP-IT (Thermofisher Scientific), or desired amplicons were gel-extracted using
Allele characterization. To characterize ich allele strengths, hatching rates were determined in various ich mutant allele combinations. Eggs were collected for 16h at 25˚C and the embryos were allowed to develop for another 24h at 25˚C. Hatched first instar larvae were then genotyped by GFP expressed from a TM3 twi>GFp balancer chromosome. Tracheal phenotypes were visualized by brightfield in whole-mount larval preparations using a Leica upright widefield epifluorescence microscope. Both ich206 and ich543 are embryonic lethal in homozygotes and hemizygotes in trans to Df(3R)osk. The ich206/ich543 transheterozygotes showed a slight increase in hatch rate but died during the first instar. Thus, both ich206 and ich543 alleles behave as strongly hypomorphic or amorphic alleles. By contrast, viable P[PZ]l(3)05652 homozygous larvae with gas-filled trachea hatch at the expected Mendelian frequency, while P[PZ]l(3)05652 hemizygotes showed increased embryonic and first instar lethality, consistent with P[PZ]l(3)05652 behaving as a weak hypomorphic allele.

To characterize kkv404 alleles, genomic DNA from embryos homozygous for each of the kkv404 alleles was isolated using a Qiagen DNeasy Blood and Tissue kit. The kkv coding region was amplified by PCR and sequenced using the primers described in S1 Table. To functionally characterize the putative null alleles kkv404 and kkv483, the embryonic tracheal phenotypes of each homoallelic combination was compared to the corresponding hemizygous combination in trans to the Df(3R)3-4 chromosomal deletion. Staining of embryos for Gasp expression (mAb2A12; DSHB, Iowa City, IA) was used to score lumen phenotypes. By this assay, kkv404 homozygotes and kkv404/Df(3R)3-4 hemizygotes exhibited identical lumenal defects, consistent with kkv404 behaving as a strong hypomorphic or null allele. kkv483 homozygotes exhibited a distinct phenotype from kkv483/Df(3R)3-4 hemizygotes: namely, the showed reduced lumenal accumulation of Gasp.

Cuticle preparations

FRT82B kkv483/TM3 twi>GFp, FRT82B ich206/TM3 twi>GFp, or FRT82B ich543/TM3 twi>GFp adults were inter-crossed and eggs collected on apple juice agar plates for 6h at 25˚C. Eggs were aged further for 16h at 29˚C. Hatched first instar heterozygous control larvae were picked and placed in 1:1 methanol: heptane. Mutant embryos were sorted under a fluorescence stereo microscope by the absence of GFP expression and dechorionated in 50% bleach for 1.5 min. Embryos were devitellinated in 1:1 methanol: heptane and washed 3–4 times in 100% methanol. Methanol was replaced with 0.1% PBS-Tween-20 (PBS-Tw) and embryos/larvae were allowed to settle for 10min at room temperature. Cuticles were expanded in PBS-Tw at 65˚C for 20 min. PBS-Tw was replaced by 50 μl Hoyer’s medium. Embryos/larvae were incubated in a 2:1:1 mixture of Hoyer’s mountant: lactic acid: dH2O for 16–24h at room temperature and were then mounted on slides. Preparations were visualized by phase contrast using an Evos FL Auto Imaging microscope.

Transgenic constructs

The entire coding sequences of CG11966 (RE65372) and CG8213 (LD43328) were obtained as cDNAs from the Drosophila Genomics Resource Center (DGRC, Bloomington, IN, USA, NIH grant 2P40OD010949). To generate pUAST-ich, EcoRI and KpnI restriction sites were added during PCR amplification (see S1 Table). The amplicon was directionally subcloned into the pUAST vector (Brand and Perrimon, 1993). To generate pUAST-CG8213, the full-length cDNA insert was subcloned into pUAST at the EcoRI and XhoI restriction sites. To generate Flag-tagged Ich, the EcoRI site, start codon, and Flag epitope were added to the forward
primer, and a KpnI site was included in the reverse primer (see S1 Table). The Ich-Flag PCR product was TA cloned (TOPO-TA cloning kit, Invitrogen) and then subcloned into pUAST (EcoRI, KpnI). Sanger sequencing was used to verify the final constructs (S1 Table).

Overlap extension PCR [117] was used to generate the Flag-VP16-IchDBD and EnR-IchDBD-Flag fusions (for primers, see S1 Table). The following plasmid templates were used in the PCR strategy: pActPL-VP16AD (Addgene #15305) [78], en cDNA clone LD16125 (DGRC), and ich cDNA clone RE65372 (DGRC). EcoRI and KpnI restriction sites were added during PCR. PCR amplicons of the expected size were TA cloned (TOPO TA kit, Invitrogen) and subsequently subcloned into pUAST (EcoRI, KpnI). A start codon, flag sequence, and SV40 nuclear targeting signal were added to the VP16 transcriptional activation domain during PCR. An SV40 nuclear targeting sequence, followed by a flag sequence and stop codon were added to IchDBD during PCR for the EnR-IchDBD-Flag fusion.

Transgenic strains for UAS-ich, UAS-Flag-ich, UAS-Flag-VP16-IchDBD, UAS-EnR-IchDBD-Flag, and UAS-CG8213 were generated by P-element transformation (Rainbow Transgenic Services, Camarillo, CA, USA).

Generation of lint mutant allele by CRISPR/Cas9

Optimal gRNA target sites in the *Drosophila melanogaster* genome (release 6) were selected using the default settings of the flyCRISPR Optimal Target Finder web program (http://tools.flycrispr.molbio.wisc.edu/targetFinder/). Genomic DNA from a w1118; FRT40A FRTG113 stock (Bloomington Stock Center) was isolated using a Qiagen DNeasy Blood and Tissue kit. Genomic DNA flanking candidate gRNA sites was amplified and sequenced to rule out gRNA sites containing single-nucleotide polymorphisms. A site upstream of the transcription start site (GCCATGGACACCAACTG ATTCGG) and a site within the 3’ UTR (GCATTTCAAACGACTTCGCCGG) common to all spliceoforms were chosen. 5’ phosphorylated oligonucleotides were synthesized by Integrated DNA technologies (Coralville, IA, USA) according to [89]. 5’ gRNA plasmids were designed according to [89]. Single colonies of pU6-BbsI-gRNA [89] transformants were selected for plasmid isolation (GenElute Minipreparations, Sigma Millipore) and validated by sequencing. A y¹ M[nos-Cas9]; FRT40AFRTG113 stock was constructed using the y¹ M[nos-Cas9] stock [118] (Bloomington Stock Center) expressing the Cas9 nuclease from a germline promoter. y¹ M[nos-Cas9]; FRT40AFRTG113 embryos were injected with a mixture of two gRNA plasmids by Best Gene, Inc. (Chino Hills, CA, USA). Single GO’s were outcrossed to all³ dpw¹ bl¹ pl¹ Bl¹ c¹ px¹ sp¹/SIM (Bloomington Stock Center) flies and single G1’s were back-crossed to establish individual lines, which were tested by genetic complementation against multiple deficiencies uncovering CG8213, including Df(2R)Np5 In (2LR) w65-32n and Df(2R)H3E1 (Bloomington Stock Center), as well as a recessive lethal Minos insertion at CG8213 (y¹ w¹; CG8213M04660). PCR (see S1 Table for primers) analysis suggested that the 5’ gRNA site was targeted, while the 3’ gRNA site was left intact. However, the exact nature of the lesion remains unclear due to difficulties in PCR amplifying gDNA flanking the 5’ gRNA site from mutants.

Antibodies and immunofluorescence

Rat α-Trh. To generate the α-Trh polyclonal sera, the peptide C-SFHLYHKGSPAG-WYSTS was selected and used to immunize 3 rats, which were boosted and exsanguinated (Bio-Synthesis). The sera from primary bleeds were diluted at 1:10 in PBS and pre-adsorbed against wild type embryos.

Larval fillets for antibody staining. Third instar larvae were filleted in cold 1X PBS on Sylgard-coated dishes using dissection pins (Minute, Ento Sphinx). Briefly, larvae were
pinned down ventral side up. A longitudinal incision using fine scissors (Fine Science Tools, Foster, CA, USA) was made along ventral epidermis and the resulting epidermal pelt was pinned down on four sides. Forceps were used to clear away extraneous tissue, leaving the tracheal tree. Larvae were fixed in the dish in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) in 1X PBS for 15 min on ice. Fillets were unpinned and permeabilized in 0.3% Tween-20/0.3% Triton-X-100 in 1XPBS (PBST) for 15 min at room temperature. Fillets were then incubated overnight at 4C in primary antibody diluted in PBST. Following washes in fresh PBST (4X 15 min or 3X 30 min), secondary antibody incubations were done for 1.5-2h at room temperature or overnight at 4C, followed by washes in PBST at room temperature. Fillets were mounted in Aqua Polymount medium (Polysciences, Inc, Warrington, PA).

Embryos for antibody staining. Egg lays were collected at 25˚C on apple juice plates and aged to enrich for embryos of the appropriate stages. Eggs were then dechorionated in 50% bleach for 1.5–3 min, followed by formaldehyde fixation for 25 min. Embryos were then devitellinened in 1:1 heptane:methanol mixture. Embryos were successively rehydrated using 5 min washes in 80% methanol: 20% 1XPBS, 60% methanol: 40% 1X PBS; 40% meth-anol: 60% 1X PBS, 20% methanol: 80% PBS-Tween 20 (0.05%), 0.05% PBS-Tween-20. Embryos were blocked in 4% horse serum in 0.05% PBS-Tw for 1h at room temperature or overnight at 4C, then incubated overnight at 4C in primary antibody. Following washes in fresh 0.05% PBS-Tw (3X 30 min), secondary antibody incubations were performed for 2-3h at room temperature.

Antibodies and working dilutions. The following primary antibodies were used in this study: Chicken anti-GFP IgY (1:1000, Life Technologies A10262, Carlsbad, CA, USA); Rabbit anti-Whacked peptide (1:750) [69]; rabbit anti- aPKC ζ H-300 (1:200, Santa Cruz); mouse anti-aPKC ζ A-3 (1:200, Santa Cruz); mouse anti flag M2 (1:1000, Sigma Aldrich); mouse anti-Acetylated tubulin clone 6–11 B-1(1:2000, Sigma Aldrich); Rabbit anti-Verm (1:500) [49]; mAb2A12 (1:5, DSHB, Iowa City, IA); rat anti-Trh (1:500 final dilution, this study); mouse anti-β-galactosidase (1:5000–1:1000; Millipore-Sigma). The following secondary antibodies (Life technologies) were used: goat anti-chicken Alexa 488, donkey anti-mouse IgG Alexa 555, goat anti-rat Alexa 555, donkey anti-rabbit IgG Alexa 647, and donkey anti-mouse IgG Alexa 647 (1:1000 each). To visualize chitin in fixed embryos, a TMR Star-conjugated chitin-binding probe (NEB) was incubated along with secondary antibodies (1:1000).

Microscopy

Mosaic larvae were identified by direct fluorescence using a Leica MZ16F fluorescence stereomicroscope (Leica Microsystems). To visualize terminal cells in wholmount specimens, third instar larvae were placed in a drop of 60% glycerol in 1X PBS, then heat-killed at 70C for ~12s, and flattened under a coverslip. Larvae were then imaged using direct fluorescence and Brightfield optics using a Leica DM5500 B upright or A Leica DM6000 inverted widefield epifluorescence microscope (Leica Microsystems). Images were acquired using either a Leica DFC360FX camera or a Hamamatsu Orca-R2 Digital CCD camera (C10600, Hamamatsu Photonics). Z-stacks were captured and processed by deconvolution using Leica Advanced Fluorescence Application Suite (Leica Microsystems). For most images, a single deconvolved z-slice is shown, except where projected z-stacks were used to capture whole-cell detail.

To analyze terminal cell lumen ultrastructure by TEM, SRF>eGFP,ich RNAi first instar lar-vae were subjected to a high pressure freezing/freeze substitution protocol as described in [63]. SRF>eGFP and btl>GFP larvae were processed as a representative wild-type controls. 45–70 nm-thick sections were imaged at 125 keV using a Hitachi 7200 electron microscope.
RNA in situ hybridizations

RNA in situ hybridizations were performed on St.13-16 embryos according to the protocol described by [119]. Briefly, DIG-labeled RNA probes were synthesized from PCR templates amplified from cDNA clones for full-length *ect* (RE01075), CG8213 (LD43328), *osi18* (RE07882), and *osi19* (RE01054) obtained from the DGRC. Primers including T3 and T7 promoters were designed according to [120]. See S1 Table for description of PCR primers. PCR products were resolved by agarose gel electrophoresis and purified using glassmilk (MP Biomedicals). *in vitro* transcription reactions were performed using T3 (anti-sense) and T7 (sense) DNA-dependent RNA polymerases (Promega corp., Madison, WI). RNA was labeled with Digoxigenin (Roche Applied Science, Indianapolis, IN). Quality of *in vitro* transcription products was assessed by agarose electrophoresis and the RNA precipitated using ethanol.

Eggs were collected on apple juice plates for 6-7h at 25°C, then aged for ~16h at 18°C. Embryos were manually sorted under a fluorescence stereomicroscope to assess genotype (*TM3 twi* > *GFP* balancer). Embryos were dechorionated in 50% bleach for 1.5 min and fixed for 25 min in a formaldehyde and heptane mixture. Embryos were devitellinized using a 1:1 heptane:methanol mixture. Embryos were then processed for probe hybridization according to [119]. ~50 ng of DIG-labeled RNA probe was diluted in 100 μl hybridization buffer. RNA probe signal was detected by an Alkaline Phosphatase (AP) reaction using nitroblue tetrazolium (Roche Applied Science) and bromochloro indoyl phosphate (Roche Applied Science) in 0.1M Tris-Cl, 0.1 M NaCl, 0.05M MgCl$_2$ in 0.1% PBS-Tween-20, pH 9.5. For CG8213, *ect*, and *osi19* probes, the AP reaction was developed for 4.5h at room temperature, while for *osi18* probes, the AP reaction was developed for ~16h at room temperature. Embryos were mounted in 60% glycerol in 1X PBS and imaged using Brightfield microscopy.

Statistical analysis

For cDNA rescue experiments, the significance of categorical frequency data was determined using Fisher’s exact probability tests (http://vassarstats.net). One-sided P values were reported under the assumption that rescue conditions will deviate from mutant conditions in one direction. For frequency data with more than 2 possible outcomes, Chi-Square tests were used.

Supporting information

S1 Fig. *ichor* terminal cells exhibit multiple tube defects. (A-A’) *ich*$_{206}$ terminal cell clone exhibiting severe pruning (A) and tube growth defect (A’). (B,C) Wild-type control (C) and *ich*$_{206}$/Df(3R)osk (D) embryonic terminal branches visualized by fluorophore-conjugated chitin-binding probe. *ich* terminal cells are able to extend seamless tubes (arrowheads) beyond the cell body, as marked by the terminal cell nucleus (Trh). Larval (D-D”) *ich*$_{542}$ terminal cell clone exhibiting an accumulation of multiple lumen, often with convoluted trajectories (arrowheads in D’, D”). (E-G’) GFP-labeled *ich*$_{206}$ MARCM tracheal clones visualized in wholemount heat-killed larvae. Fluorescent images are superimposed on brightfield. Loss of *ich* in isolated dorsal trunk (E, E’), autacellular (F, F’), and fusion branch (G, G’) cells caused no gas-filling or overt lumen defects. (H-I’) Wholemount heat-killed *btl* > *DsRed* (H, H’) and *btl* > *DsRed, ich* RNAi (I, I’) first instar larvae (L1). In contrast to wild-type controls (H, H’), *btl* > *DsRed, ich* RNAi L1s exhibit pan-tracheal liquid clearance defect (I) as well as a breaks in the dorsal trunks (outlined in I’). (J) Comparison of lethal phase for *ich* loss-of-function alleles. (Scale Bars: A,D 20 μm; B,C 10 μm; A’,D’, D” 5μm; E-G’, 50 μm). (TIF)
S2 Fig. EnR-IchDBD-FLAG, but not full-length Ich, induced apical membrane discontinuities. (A-B') btl>gfp, EnR-IchDBD; 2FRT terminal cell clones stained for GFP, the apical membrane using Wkd antiserum (A'), and the Flag epitope (B, B'). EnR-IchDBD-FLAG localizes to the nucleus of terminal cells (B, B'). (C-D') Control btl>gfp, Wkd-mKate2; 2FRT terminal cell clones stained for GFP, the apical membrane using Wkd antiserum (C'), and the Flag epitope (D, D'). In contrast to wild-type controls (C, C'), terminal cells overexpressing full-length Ich (D, D') exhibit severe pruning with rudimentary lumens (D'). Unlike EnR-IchDBD, full-length Ich overexpression in terminal cells does not perturb lumen patency but does disrupt localization of certain apical membrane markers, such as aPKC. (Scale Bar: A-B', E-E"' 5μm; C-D', 50 μm).

S3 Fig. An ich::nLacZ transcriptional reporter is expressed in cuticle-secreting epithelia. Embryos heterozygous for the ich::nLacZ P element enhancer trap insertion were immunostained for nuclear LacZ (nLacZ, green) and the tracheal specific transcription factor Tracheless (Trh, red). (A, A') LacZ signal is first detected in Stage 10 embryos in broad epidermal stripes (A'). During germ band retraction (B, B'), epidermal expression is strongest in the T2, T3, and A8 epidermal parasegments (arrowheads in A-B'). LacZ reporter expression is not detected during primary branching (B-C'). Pan-tracheal LacZ expression is first detected at St. 14 (D, D') and continues during later stages (St. 15: E, E'), coinciding with lumen growth and cuticle deposition. In addition to tracheal expression, LacZ is also expressed in the epidermis (arrowhead in E'), foregut (F, G), and hindgut (arrowhead in H). All are ectodermally-derived epithelia that secrete chitin-based cuticles. (Scale Bars: 20 μm).

S4 Fig. ichor is dispensable for the formation and modification of the tracheal chitin cable. (A-B') Wild type (WT) (A, A') and ich206/Df(3R)osk (B, B') embryos immunostained for Tracheless (white) and chitin-binding probe (CBP, red). ich206/Df(3R)osk embryos deposit a wild-type chitin filament and exhibit neither cystic nor convoluted lumens. (C, C') kkv404 MARCM clones in wholemount heat-killed third instar larvae. Unlike wild-type control terminal cells (asterisk in A'), kkv404 terminal cell clones exhibit a cell-autonomous gas-filling defect (arrow in A'). Isolated kkv404 clones in the dorsal trunk (B, B') causes cell-autonomous ‘divots’ (arrows in B') in the gas-filled lumen. Cell-autonomous loss of kkv in autacellular branches (C, C') causes a cell-autonomous gas-filling defect (arrow in C'). (D-G') btl>gfp; kkvH404 mutant embryos and heterozygous control siblings stained for GFP (green) and chitin-binding probe (red). kkvH404 mutants fail to form the transient chitin filament and exhibit cystic lumens in the dorsal trunk. (H-L) Analysis of lumen morphology in wild-type (H), kkvH404 hemizygous mutants (I and K),
and homoallelic mutants (J and L) using mAb2A12. The cystic dorsal trunks of kkvob-404/Df(3R)3-4 hemizygotes (I) resembles that of kkvob-404 homoallelic mutants (J). However, kkvob-483 homozygotes (L) can exhibit a severe reduction of luminal 2A12 staining not observed in kkvob-404 hemizygotes (K). (Scale Bars: A-C' 50 μm; D-L, 10 μm).

S6 Fig. ich regulates ectodermal expression in the foregut and epidermis. (A, B, G) Wild-type (WT, w1118) embryos hybridized with DIG-labeled anti-sense (A, B) or sense (G) probe. At Stage 13, ect is expressed in the foregut primordium (brackets in A) and posterior spiracles (black arrowhead in A). By Stage 16, ect is expressed in all cuticle-secreting epithelia, including the foregut (bracket in B), epidermis (arrow in B), trachea (black arrowhead in B), and hindgut (white arrowhead in B). This signal is specific to ect transcript because the corresponding sense probe gives no such pattern (G). (C, D) Control ich543/+ heterozygotes hybridized with same anti-sense ect probe exhibit a wild-type expression pattern. By contrast, (E, F), ich543 homozygotes exhibit reduced ect expression in the foregut and epidermis, though ich is not absolutely required for tracheal expression (black arrowheads in E, F).

S7 Fig. osi18 and osi19 expression patterns in wild-type embryos. (A-D) Isogenic wild-type (WT, w1118) embryos hybridized with DIG-labeled osi18 (A-C) or osi19 (E-G) antisense probes and corresponding sense probes (D, H). osi18/19 expression is first detected at approximately Stage14 (A,E) in the dorsal trunk and transverse connectives. At Stages 15 (B, F) and 16 (C, G), osi18/19 are strongly expressed throughout the tracheal system. This pattern of expression is specific to osi18/19 transcript because w1118 embryos hybridized with the corresponding sense probes (D, H) give no tracheal signal.

S8 Fig. lint is one of multiple downstream targets of Ichor in the terminal cell. (A,A') Wholemount images of heat-killed third instar drm\textgreater{}GFP, lint terminal cells overexpressing lint from a UAS promoter. lint overexpression in the terminal cell causes a liquid clearance defect in terminal branches (arrows in A, A'). Unlike terminal cells overexpressing Ich (S2 Fig), lint overexpression (B, B') does not significantly impair terminal branching or lumen growth (B), but does cause dilations of the apical membrane (arrowheads in B'). (C-E) In most instances, restoring expression of lint in ich206 terminal cells is not sufficient to suppress tube integrity defects (C, C'). However, elevated transgene expression (D,D') could restore tube integrity at a non-significant frequency (E, 2% of cells, \(P = 0.5 \), one-sided Fisher's exact probability test). (Scale Bars: A, A' 50 μm; B, C, D 20 μm; B', C', D' 5 μm).

S9 Fig. Summary of results. Ichor encodes a zinc finger transcriptional activator (Figs 2 and 4) controlling the assembly of chitin-based cuticles (Figs 3 and S3). In terminal cells, Ichor is dispensable for the secretion of bulk aECM material, but rather, is essential for the organization of this material into an ordered extracellular matrix. In cooperation with other, as yet unidentified transcriptional regulators (compare Fig 6L and 6N), Ichor directly or indirectly activates the expression of known (Fig 7) or putative (Fig 6) regulators of aECM assembly in the trachea. We speculate that Ichor promotes extracellular assembly processes at the luminal surface of seamless tubes, in part by allowing proteolytic processing events needed for matrix proteins to be incorporated into the terminal cell aECM. The terminal cell aECM is built from a heterogeneous chitinous cuticle organized into a series of taenidial ridges ([63] and Fig 3). When ich function is compromised, taenidia fail to form and seamless tube lumens are occluded with disorganized matrix material (Fig 3). A luminal matrix is required in terminal
cells for the integrity and shape (Figs 1, 5 and 8) of seamless tubes—perhaps by forming a scaffold to dissipate tension acting on seamless tube lumens, as well as possibly forming an organizing scaffold to coordinate cell hollowing.

(TIF)

S1 Table. Primers used for sequencing, cloning, and RNA probe production.

(XLSX)

Acknowledgments
The authors would like to acknowledge L. S. Niklova for assistance with TEM analysis.

Author Contributions
Conceptualization: Jeffrey B. Rosa, Amin S. Ghabrial.
Data curation: Jeffrey B. Rosa.
Formal analysis: Jeffrey B. Rosa, Amin S. Ghabrial.
Funding acquisition: Jeffrey B. Rosa, Amin S. Ghabrial.
Investigation: Jeffrey B. Rosa, Mark M. Metzstein, Amin S. Ghabrial.
Methodology: Amin S. Ghabrial.
Project administration: Amin S. Ghabrial.
Resources: Amin S. Ghabrial.
Supervision: Amin S. Ghabrial.
Writing – original draft: Jeffrey B. Rosa, Amin S. Ghabrial.
Writing – review & editing: Amin S. Ghabrial.

References
1. Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nature Genetics. 2011 Jun 19; 43(7):639–47. https://doi.org/10.1038/ng.860 PMID: 21685914
2. Tual-Chalot S, Oh SP, Arthur HM. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Frontiers in Genetics [Internet]. 2015 Feb 18; 6. Available from: http://journal.frontiersin.org/Article/10.3389/fgene.2015.00025/abstract.
3. Lubarsky B, Krasnow MA. Tube Morphogenesis: making and shaping biological tubes. Cell. 2003 Jan; 112(1):19–28. PMID: 12526790
4. Buechner M. Tubes and the single C. elegans excretory cell. Trends in Cell Biology. 2002 Oct 1; 12 (10):479–84. PMID: 12441252
5. Berry KL. A C. elegans CLIC-like Protein Required for Intracellular Tube Formation and Maintenance. Science. 2003 Dec 19; 302(5653):2134–7. https://doi.org/10.1126/science.1087667 PMID: 14684823
6. Stone CE, Hall DH, Sundaram MV. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Developmental Biology. 2009 May; 329(2):201–11. https://doi.org/10.1016/j.ydbio.2009.02.030 PMID: 19269285
7. Bär T, Wolff JR. The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z Zellforsch Mikrosk Anat. 1972; 133(2):231–48. PMID: 5082884
8. Herwig L, Blum Y, Krudewig A, Ellertsdottir E, Lenard A, Belting H-G, et al. Distinct Cellular Mechanisms of Blood Vessel Fusion in the Zebrafish Embryo. Current Biology. 2011 Nov; 21(22):1942–8. https://doi.org/10.1016/j.cub.2011.10.016 PMID: 22079115
9. Lenard A, Ellerts-dottir E, Herwig L, Krudewig A, Sauteur L, Belting H-G, et al. In Vivo Analysis Reveals a Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis. Developmental Cell. 2013 Jun; 25(5):492–506. https://doi.org/10.1016/j.devcel.2013.05.010 PMID: 23763948

10. Gebala V, Collins R, Geudens I, Phng L-K, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nature Cell Biology. 2016 Feb 29; 18(4):443–50. https://doi.org/10.1038/ncb3320 PMID: 26928868

11. Samakovlis C, Hacohen N, Manning G, Sutherland DC, Guillemin K, Krasnow MA. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development. 1996 May; 122(5):1395–407. PMID: 8625828

12. Manning G., Krasnow MA. Development of the Drosophila tracheal system. In: The Development of Drosophila melanogaster, ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press; 1993. p. 609–85.

13. Wodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell. 1995 Jul 14; 82(1):67–76. PMID: 7606787

14. Horne-Badovinac S, Lin D, Waldron S, Schwarz M, Mbamalu G, Pawson T, et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol. 2001 Oct 21; 11(19):1492–502. PMID: 11591316

15. Kerman BE, Cheshire AM, Myat MM, Andrew DJ. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev Biol. 2008 Aug 1; 320(1):278–88. https://doi.org/10.1016/j.ydbio.2008.05.541 PMID: 18585700

16. Laprise P, Paul SM, Boulanger J, Robbins RM, Beitel GJ, Tepass U. Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol. 2010 Jan 12; 20(1):55–61. https://doi.org/10.1016/j.cub.2009.11.017 PMID: 2002244

17. Tsarouhas V, Senti K-A, Jayaram SA, Tiklová K, Hemphälä J, Adler J, et al. Sequential Pulses of Apical Epithelial Secretion and Endocytosis Drive Airway Maturation in Drosophila. Developmental Cell. 2007 Aug; 13(2):214–25. https://doi.org/10.1016/j.devcel.2007.06.008 PMID: 17681133

18. Massarwa R, Schejter ED, Shilo B-Z. Apical secretion in epithelial tubes of the Drosophila embryo is directed by the Formin-family protein Diaphanus. Dev Cell. 2009 Jun; 16(6):877–84. https://doi.org/10.1016/j.devcel.2009.04.010 PMID: 19531358

19. Myat MM, Andrew DJ. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell. 2002 Dec 13; 111(6):879–91. PMID: 12526813

20. Förster D, Armbruster K, Luschnig S. Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol. 2010 Jan 12; 20(1):62–8. https://doi.org/10.1016/j.cub.2009.11.062 PMID: 20045324

21. Jayaram SA, Senti K-A, Tiklová K, Tsarouhas V, Hemphälä J, Samakovlis C. COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS ONE. 2008 Apr 9; 3(4):e1964. https://doi.org/10.1371/journal.pone.0001964 PMID: 18398480

22. Armbruster K, Luschnig S. The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion. J Cell Sci. 2012 Mar 1; 125:1318–28. https://doi.org/10.1242/jcs.096263 PMID: 22349697

23. Schottenfeld-Roames J, Rosa JB, Ghabrial AS. Seamless Tube Shape Is Constrained by Endocytosis-Dependent Regulation of Active Moesin. Current Biology. 2014 Aug; 24(15):1756–64. https://doi.org/10.1016/j.cub.2014.06.029 PMID: 25065756

24. Shaye DD, Casanova J, Limargas M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat Cell Biol. 2008 Aug; 10(8):964–70. https://doi.org/10.1038/ncb1756 PMID: 18641639

25. Behr M, Wingen C, Wolf C, Schuh R, Hoch M. Wurst is essential for airway clearance and respiratory-tube size control. Nature Cell Biology. 2007 Jun 10; 9:847. https://doi.org/10.1038/ncb1611 PMID: 17558392

26. Förster D, Luschnig S. Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol. 2012 Mar 25; 14(5):526–34. https://doi.org/10.1038/ncb2456 PMID: 22446736

27. Pirraglia C, Jattani R, Myat MM. Rac function in epithelial tube morphogenesis. Dev Biol. 2006 Feb 15; 290(2):435–46. https://doi.org/10.1016/j.ydbio.2005.12.005 PMID: 16412417

28. Pirraglia C, Walters J, Myat MM. Pak1 control of E-cadherin endocytosis regulates salivary gland lumen size and shape. Development. 2010 Dec; 137(24):4177–89. https://doi.org/10.1242/dev.048827 PMID: 21068057

29. Pirraglia C, Walters J, Ahn N, Myat MM. Rac1 GTPase acts downstream of pPS18PS integrin to control collective migration and lumen size in the Drosophila salivary gland. Dev Biol. 2013 May 1; 377(1):21–32. https://doi.org/10.1016/j.ydbio.2013.02.020 PMID: 23500171
30. Farooqui S, Pellegrino MW, Rimann I, Morf MK, Müller L, Fröhli E, et al. Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Dev Cell. 2012 Sep 11; 23(3):494–506. https://doi.org/10.1016/j.devcel.2012.06.019 PMID: 22975323

31. Saxena A, Denholm B, Bunt S, Bischoff M, VijayRaghavan K, Skaer H. Epidermal growth factor signaling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol. 2014 Dec; 12(12):e1002013. https://doi.org/10.1371/journal.pbio.1002013 PMID: 25460353

32. Nelson KS, Khan Z, Molnár I, Mihály J, Kaschube M, Beitel GJ. Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol. 2012 Mar 25; 14(5):518–25. https://doi.org/10.1038/ncrib2467 PMID: 22446737

33. Bokel C, Prokop A., Brown NH. Papillote and Piopio: Drosophil a ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. Journal of Cell Science. 2005 Jan 8; 118(1):79–87. https://doi.org/10.1242/dev.00418-002-0422-2 PMID: 12122450

34. Strilić B, Eglinger J, Krieg M, Zeeb M, Axnick J, Babálová P, et al. Electrostatic Cell-Surface Repulsion Initiates Lumen Formation in Developing Blood Vessels. Current Biology. 2010 Nov; 20(22):2003–9. https://doi.org/10.1016/j.cub.2010.09.061 PMID: 20979396

35. Meder D, Shevchenko A, Simons K, Füllekrug J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. The Journal of Cell Biology. 2005 Jan 17; 168(2):303–13. https://doi.org/10.1083/jcb.200407072 PMID: 15642748

36. Navis A, Marjomar L, Bagnat M. Cfr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development. 2013 Apr; 140(8):1703–12. https://doi.org/10.1242/dev.091819 PMID: 23487313

37. Roch F. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation during wing morphogenesis. Journal of Cell Science. 2003 Apr 1; 116(7):1199–207. doi.org/10.1242/dev.091819

38. Belk C, Prokop A., Brown NH. Papilote and Piopio: Drosophil a ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. Journal of Cell Science. 2005 Jan 18; 118(3):494–506. https://doi.org/10.1016/j.cub.2012.06.019 PMID: 22975323

39. Bagnat M, Cheung ID, Mostov KE, Stainier DYR. Genetic control of single lumen formation in the zebrafish. Development. 2013 Feb; 140(2):248–58. https://doi.org/10.1242/dev.091819 PMID: 23487313

40. Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, et al. Integrity of Nar- row Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. Chis- holm AD, editor. PLOS Genetics. 2016 Aug 2; 12(8):e1006205. https://doi.org/10.1371/journal.pgen.1006205 PMID: 27482894

41. Farooqui S, Pellegrino MW, Rimann I, Morf MK, Müller L, Fröhli E, et al. Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Dev Cell. 2012 Sep 11; 23(3):494–506. https://doi.org/10.1016/j.devcel.2012.06.019 PMID: 22975323

42. Saxena A, Denholm B, Bunt S, Bischoff M, VijayRaghavan K, Skaer H. Epidermal growth factor signaling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol. 2014 Dec; 12(12):e1002013. https://doi.org/10.1371/journal.pbio.1002013 PMID: 25460353

43. Nelson KS, Khan Z, Molnár I, Mihály J, Kaschube M, Beitel GJ. Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol. 2012 Mar 25; 14(5):518–25. https://doi.org/10.1038/ncrib2467 PMID: 22446737

44. Bokel C, Prokop A., Brown NH. Papilote and Piopio: Drosophil a ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. Journal of Cell Science. 2005 Jan 8; 118(1):79–87. https://doi.org/10.1242/dev.00418-002-0422-2 PMID: 12122450

45. Strilić B, Eglinger J, Krieg M, Zeeb M, Axnick J, Babálová P, et al. Electrostatic Cell-Surface Repulsion Initiates Lumen Formation in Developing Blood Vessels. Current Biology. 2010 Nov; 20(22):2003–9. https://doi.org/10.1016/j.cub.2010.09.061 PMID: 20979396

46. Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, et al. Integrity of Nar- row Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. Chis- holm AD, editor. PLOS Genetics. 2016 Aug 2; 12(8):e1006205. https://doi.org/10.1371/journal.pgen.1006205 PMID: 27482894

47. Hermann T, Hartwig E, Horvitz HR. sqv mutants of Caenorhabditis elegans are defective in vulval ep-i-thelial invagination. Proc Natl Acad Sci USA. 1999 Feb 2; 96(3):968–73. PMID: 9927677

48. Bagnat M, Cheung ID, Mostov KE, Stainier DYR. Genetic control of single lumen formation in the zebra-fish gut. Nature Cell Biology. 2007 Aug; 9(8):954–60. https://doi.org/10.1038/nclb2007 PMID: 17632505

49. Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, et al. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proceedings of the National Academy of Sciences. 2010 Jan 26; 107(4):1425–30.

50. Khan LA, Zhang H, Abraham N, Sun L, Fleming JT, Buechner M, et al. Intracellular lumen expansion requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol. 2013 Feb; 15(2):143–56. https://doi.org/10.1038/ncb2656 PMID: 23334498

51. Navis A, Marjomar L, Bagnat M. Cfr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development. 2013 Apr; 140(8):1703–12. https://doi.org/10.1242/dev.091819 PMID: 23487313

52. Roch F. Drosophila miniature and dusky encode ZP proteins required for cytoskeletal reorganisation during wing morphogenesis. Journal of Cell Science. 2003 Apr 1; 116(7):1199–207. doi.org/10.1242/dev.091819

53. Belk C, Prokop A., Brown NH. Papilote and Piopio: Drosophil a ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. Journal of Cell Science. 2005 Jan 18; 118(3):633–42.

54. Luschnig S, Bätz T, Armbroster K, Krasnow MA. serpentine and vermiform Encode Matrix Proteins with Chitin Binding and Deacetylation Domains that Limit Tracheal Tube Length in Drosophila. Current Biology. 2006 Jan; 16(2):186–94. https://doi.org/10.1016/j.cub.2005.11.072 PMID: 16431371
50. Wang S, Jayaram SA, Hemphälä J, Senti K-A, Tsarouhas V, Jin H, et al. Septate-Junction-Dependent Luminal Deposition of Chitin Deacetylases Restricts Tube Elongation in the Drosophila Trachea. Current Biology. 2006 Jan; 16(2):180–5. https://doi.org/10.1016/j.cub.2005.11.074 PMID: 16431370

51. Fernandes I, Chanut-Delalonde H, Ferrer P, Latapie Y, Waltzer L, Affolter M, et al. Zona pellucida domain proteins remodel the apical compartment for localized cell shape changes. Dev Cell. 2010 Jan 19; 18(1):64–76. https://doi.org/10.1016/j.devcel.2009.11.009 PMID: 20152178

52. Syed ZA, Bougé A-L, Byri S, Chavooshi TM, Tàng E, Bouhin H, et al. A Luminal Glycoprotein Drives Dose-Dependent Diameter Expansion of the Drosophila melanogaster Hindgut Tube. PloS Genetics. 2012 Aug 2; 8(8):e1002850. https://doi.org/10.1371/journal.pgen.1002850 PMID: 22876194

53. Husain N, Pellikka M, Hong H, Klimentova T, Choe K-M, Clandinin TR, et al. The Agrin/Perlecian-Related Protein Eyes Shut Is Essential for Epithelial Lumen Formation in the Drosophila Retina. Developmental Cell. 2006 Oct; 11(4):483–93. https://doi.org/10.1016/j.devcel.2006.08.012 PMID: 17011488

54. Jazwinska A, Ribeiro C, Affolter M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nat Cell Biol. 2003 Oct; 5(10):895–901. https://doi.org/10.1038/ncb1049 PMID: 12973360

55. Luschng S, Uv A. Luminal matrices: An inside view on organ morphogenesis. Experimental Cell Research. 2014 Feb; 321(1):64–70. https://doi.org/10.1016/j.yexcr.2013.09.010 PMID: 24075963

56. Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology. 2003 Dec 15; 206(24):4393–412.

57. Devine WP, Lubarsky B, Krasnow MA. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proceedings of the National Academy of Sciences. 2005 Nov 22; 102(47):17014–9.

58. Tonning A, Hemphälä J, Tång E, Nannmark U, Samakovlis C, Uv A. A Transient Luminal Chitinous Matrix Is Required to Model Epithelial Tube Diameter in the Drosophila Trachea. Developmental Cell. 2005 Sep; 9(3):423–30. https://doi.org/10.1016/j.devcel.2005.07.012 PMID: 16139230

59. Araujo SJ, Aslam H, Tear G, Casanova J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis. Dev Biol. 2005 Dec 1; 288(1):179–93. https://doi.org/10.1016/j.ydbio.2005.09.031 PMID: 16277981

60. Beitel GJ, Krasnow MA. Genetic control of epithelial tube size in the Drosophila tracheal system. Development. 2000 Aug; 127(15):3271–82. PMID: 10887083

61. Dong B, Hannezo E, Hayashi S. Balance between Apical Membrane Growth and Luminal Matrix Resistance Determines Epithelial Tube Shape. Cell Reports. 2014 Oct 14; 8(2):390–8. https://doi.org/10.1016/j.celrep.2014.03.066 PMID: 24794438

62. Gervais L, Casanova J. In Vivo Coupling of Cell Elongation and Lumen Formation in a Single Cell. Current Biology. 2010 Apr; 20(7):439–43. https://doi.org/10.1016/j.cub.2009.12.043 PMID: 20137948

63. Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development. 2015 Nov 15; 142(22):3964–73. https://doi.org/10.1242/dev.127902 PMID: 26428009

64. Jaspers MHJ, Pfanz R, Riedel D, Kawelke S, Feussner I, Schuh R. The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila. Dev Biol. 2014 Jan 1; 385(1):23–31. https://doi.org/10.1016/j.ydbio.2013.10.022 PMID: 24183938

65. Öztürk-Çolak A, Moussian B, Araujo SJ. Drosophila chitinous aECM and its cellular interactions during tracheal development. Dev Dyn. 2016 Mar; 245(3):259–67. https://doi.org/10.1002/dvdy.24356 PMID: 26442625

66. Moussian B, Sefarth C, Müller U, Berger J, Schwar H. Cuticle differentiation during Drosophila embryogenesis. Arthropod Struct Dev. 2006 Sep; 35(3):137–52. https://doi.org/10.1016/j.asd.2006.05.003 PMID: 18089066

67. Ghabrial AS, Levi BP, Krasnow MA. A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genet. 2011 Jul; 7(7):e1002087. https://doi.org/10.1371/journal.pgen.1002087 PMID: 21750678

68. Sobala LF, Wang Y, Adler PN. ChtVis-Tomato, a genetic reporter for in vivo visualization of chitin deposition in Drosophila. Development. 2015 Nov 15; 142(22):3974–81. https://doi.org/10.1242/dev.126987 PMID: 26395478

69. Schottenfeld-Roames J, Ghabrial AS. Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nat Cell Biol. 2012 Apr; 14(4):386–93. https://doi.org/10.1038/ncb2454 PMID: 22407366
70. Reveal B, Yan N, Sne JJ, Pai C-I, Gim Y, Macdonald PM. BREs mediate both repression and activation of oskar mRNA translation and act in trans. Dev Cell. 2010 Mar 16; 18(3):496–502. https://doi.org/10.1016/j.devcel.2009.12.021 PMID: 20230756

71. Shiga Y, Tanaka-Matakatu M, Hayashi S. A nuclear GFP/beta-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Development, Growth and Differentiation. 1996 Feb; 38(1):99–106.

72. Hammounds AS, Bristow CA, Fisher WW, Weiszmann R, Wu S, Hartenstein V, et al. Spatio-temporal expression of transcription factors in Drosophila embryonic organ development. Genome Biol. 2013 Dec 20; 14(12):R140. https://doi.org/10.1186/gb-2013-14-12-r140 PMID: 24359758

73. Sobala LF, Adler PN. The Gene Expression Program for the Formation of Wing Cuticle in Drosophila. PLoS Genet. 2016 May; 12(5):e1006100. https://doi.org/10.1371/journal.pgen.1006100 PMID: 27232182

74. Ostrowski S, Dierick HA, Bejsvec A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics. 2002 May; 161(1):171–82. PMID: 12019232

75. Zhang L, Ward RE. Uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Dev Biol. 2009 Dec 15; 336(2):201–12. https://doi.org/10.1016/j.ydbio.2009.09.040 PMID: 19818339

76. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun; 118(2):401–15. PMID: 8223268

77. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL. Spatiotemporal rescue of memory dysfunction in the Drosophila mushroom body. Neuron. 2006 Nov 9; 52(3):425–36. https://doi.org/10.1016/j.neuron.2006.08.028 PMID: 17088209

78. Stampfel G, Kuzmar T, Frank O, Wienerroither S, Reiter F, Stark A. Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature. 2015 Dec 3; 528(7580):147–51. https://doi.org/10.1038/nature15545 PMID: 26550828

79. John A, Smith ST, Jaynes JB. Inserting the Ftz homeodomain into engrailed creates a dominant transcriptional repressor that specifically turns off Ftz target genes in vivo. Development. 1995 Jun; 121(6):1801–13. PMID: 7600995

80. Luan H, Peabody NC, Vinson CR, White BH. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron. 2006 Nov 9; 52(3):425–36. https://doi.org/10.1015/neuron.2006.08.028 PMID: 17088209

81. Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster: Chitin Organizes Cuticle Morphology. Journal of Morphology. 2005 Apr; 264(1):117–30. https://doi.org/10.1002/jmor.10324 PMID: 15747378

82. Moussian B, Tång E, Tonning A, Helms S, Schwarz H, Nüsslein-Volhard C, et al. Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development. 2006 Jan; 133(1):163–71. https://doi.org/10.1242/dev.02177 PMID: 16339194

83. Moussian B, Letizia A, Martínez-Corrales G, Rotstein B, Casali A, Llimargas M. Deciphering the gene programme triggering timely and spatially-regulated chitin deposition. PLoS Genet. 2015 Jan; 11(1):e1004939. https://doi.org/10.1371/journal.pgen.1004939 PMID: 25617778

84. modENCODE Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010 Dec 24; 330(6012):1787–97. https://doi.org/10.1126/science.1198374 PMID: 21177974

85. Raha D, Nguyen QD, Garen A. Molecular and developmental analyses of the protein encoded by the Drosophila geneEctodermal. Developmental Genetics. 1990; 11(4):310–7. https://doi.org/10.1242/dev.02177 PMID: 16339194

86. Shah N, Dorer DR, Moriyama EN, Christensen AC. Evolution of a large, conserved, and syntenic gene family in insects. G3 (Bethesda). 2012 Feb; 2(2):313–9.

87. Wu S, Tong X, Peng C, Xiong G, Lu K, Hu H, et al. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep. 2016 May 19; 6:26114. https://doi.org/10.1038/srep26114 PMID: 27193628

88. Lee J, Song M, Hong S. Negative regulation of the novel norpA(P24) suppressor, diehard4, in the endo-lysosomal trafficking underlies photoreceptor cell degeneration. PLoS Genet. 2013 Jun; 9(6):e1003559. https://doi.org/10.1371/journal.pgen.1003559 PMID: 23754968

89. Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O’Connor-Giles KM. CRISPR-Cas9 Genome Editing in Drosophila: CRISPR-Cas9 Genome Editing in Drosophila. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al., editors. Current Protocols in Molecular Biology.
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

100. Priess JR, Hirsh DI. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep; 117(1):156–73. PMID: 3743895

91. Mancuso VP, Parry JM, Storer L, Poggioi C, Nguyen KCQ, Hall DH, et al. Extracellular leucine-rich-repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development. 2012 Mar; 139(5):979–90. https://doi.org/10.1242/dev.075135 PMID: 22278925

92. Kelley M, Yochem J, Krieg M, Calixto A, Heiman MG, Kuzmanov A, et al. FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. Elife. 2015 Mar 23;4.

93. Vuong-Brender TTK, Suman SK, Labouesse M. The apical ECM preserves embryonic integrity and distributes mechanical stress during morphogenesis. Development. 2017 May 19;dev.150383.

94. Henderson-Toth CE, Jahnson ED, Jamarani R, Roubae S Al-, Jones EAV. The glyocalyx is present as soon as blood flow is initiated and is required for normal vascular development. Dev Biol. 2012 Sep 15; 369(2):330–9. https://doi.org/10.1016/j.ydbio.2012.07.009 PMID: 22820069

95. Tarbell JM, Simon SI, Curry F-RE. Mechanosensing at the vascular interface. Annu Rev Biomed Eng. 2014 Jul 11; 16:505–32. https://doi.org/10.1146/annurev-biomedeng-071813-104908 PMID: 24905872

96. Förster TD, Woods HA. Mechanisms of tracheal filling in insects. Biol Rev Camb Philos Soc. 2013 Feb; 88(1):1–14. https://doi.org/10.1111/brv.12033.x PMID: 22616845

97. Öztürk-Colak A, Moussian B, Araujo SJ, Casanova J. A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea. eLife [Internet]. 2016 Feb 2 [cited 2017 Sep 30]. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.09373.

98. O’Brodovich H, Hannam V, Seeam M, Mullen JB. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol. 1990 Apr; 68(4):1758–62. https://doi.org/10.1152/jappl.1990.68.4.1758 PMID: 2161411

99. Hummler E, Barker P, Gatzy J, Beermann F, Verduco M, Schmidt A, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar; 12(3):325–8. https://doi.org/10.1038/ng0396-325 PMID: 8589727

100. McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB, et al. Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci USA. 1999 Feb 16; 96(4):1727–31. PMID: 9990092

101. Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, et al. Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest. 1998 Oct 15; 102(8):1634–40. https://doi.org/10.1172/JCI3971 PMID: 9788978

102. Liu L, Johnson WA, Welsh MJ. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proc Natl Acad Sci USA. 2003 Feb 18; 100(4):2128–33. https://doi.org/10.1073/pnas.252785099 PMID: 12571352

103. Forster TD, Woods HA. Mechanisms of tracheal filling in insects. Biol Rev Camb Philos Soc. 2013 Feb; 88(1):1–14. https://doi.org/10.1111/brv.12033.x PMID: 22616845

104. Olmeda B, Martinez-Calle M, Perez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat. 2017 Jan; 209:78–92. https://doi.org/10.1016/j.aanat.2016.09.008 PMID: 27773772

105. Wigglesworth VB. The Regulation of Respiration in the Flea, Xenopsylla cheopis, Rotha. (Pulicidae). Proceedings of the Royal Society B: Biological Sciences. 1935 Oct 3; 118(310):397–419.

106. Page AP, Johnstone IL. The cuticle. WormBook, ed [Internet]. The C. elegans research community, Wormbook. 2007 Mar 19. Available from: https://doi.org/10.1895/wormbook.1.138.1, http://wormbook.org. PMID: 18050497

107. Forman-Rubinsky R, Cohen JD, Sundaram MV. Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics. 2017 Oct 1; 207(2):625. https://doi.org/10.1534/genetics.117.300207 PMID: 28842397

108. Szabo R, Bugge TH. Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol. 2008; 40(6–7):1297–316. https://doi.org/10.1016/j.biocel.2007.11.013 PMID: 18191610

109. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, et al. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene. 2002 May 23; 21(23):3765–79. https://doi.org/10.1038/sj.onc.1205502 PMID: 12032844
110. List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, et al. Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol. 2009 Oct; 175(4):1453–63. https://doi.org/10.2353/ajpath.2009.090240 PMID: 19717635

111. Zhang Z, Hu Y, Yan R, Dong L, Jiang Y, Zhou Z, et al. The Transmembrane Serine Protease HAT-like 4 Is Important for Epidermal Barrier Function to Prevent Body Fluid Loss. Scientific Reports. 2017 Mar 24; 7:45262. https://doi.org/10.1038/srep45262 PMID: 28383078

112. Szabo R, Hobson JP, Christoph K, Kosa P, List K, Bugge TH. Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development. 2009 Aug; 136(15):2653–63. https://doi.org/10.1242/dev.038430 PMID: 19592578

113. Ni J-Q, Zhou R, Czech B, Liu L-P, Holderbaum L, Yang-Zhou D, et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods. 2011 May; 8(5):405–7. https://doi.org/10.1038/nmeth.1592 PMID: 21460824

114. Green RB, Hatini V, Johansen KA, Liu X-J, Lengyel JA. Drumstick is a zinc finger protein that antagonizes Lines to control patterning and morphogenesis of the Drosophila hindgut. Development. 2002 Aug; 129(15):3645–56. PMID: 12117814

115. Chou TB, Perrimon N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics. 1996 Dec; 144(4):1673–9. PMID: 8978054

116. Tiklova K, Tsarouhas V, Samakovlis C. Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS ONE. 2013; 8(6):e67415. https://doi.org/10.1371/journal.pone.0067415 PMID: 23826295

117. Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007; 2(4):924–32. https://doi.org/10.1038/nprot.2007.132 PMID: 17446874

118. Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA. 2014 Jul 22; 111(29):E2967–76. https://doi.org/10.1073/pnas.1405500111 PMID: 25002478

119. Wilk R, Murthy SUM, Yan H, Krause HM. In Situ Hybridization: Fruit Fly Embryos and Tissues. In: Gallagher SR, Wiley EA, editors. Current Protocols Essential Laboratory Techniques [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010. p. 9.3.1–9.3.24. Available from: http://doi.wiley.com/10.1002/9780470089941.et0903s04

120. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 2012. p. 984–991.