Controlled Release of Curcumin from HPMC (Hydroxypropyl Methyl Cellulose) Co-Spray-Dried Materials

Jiao Zheng, Bo Wang, Jia Xiang, and Zhengyu Yu

1Drug Clinical Trial Institution Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410000, China
2Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410000, China
3Faculty of Engineering and IT, University of Technology, Sydney, NSW 2007, Australia

Correspondence should be addressed to Zhengyu Yu; zhengyu.yu@uts.edu.au

Received 3 May 2021; Accepted 7 June 2021; Published 15 June 2021

Academic Editor: Xuncai Chen

Copyright © 2021 Jiao Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to achieve the controlled release of curcumin, HPMC (hydroxypropyl methyl cellulose) was spray dried with curcumin and lactose. The spray-dried materials were pressed into tablets with a diameter of 8 mm, and their release characteristics in vitro were measured. In vitro experiments showed that the release of curcumin from the HPMC mixture was significantly slower due to the sustained-release property of HPMC as a typical excipient. The release profile of curcumin from the HPMC mixture was relatively stable for a controlled release. SEM images show that the HPMC co-spray-dried powders have crumpled surfaces due to the large molecular weight of HPMC. DSC, XRD, FTIR, N₂ adsorption, and TGA have been measured for the spray-dried curcumin materials. This work indicates that HPMC can be used as a controlled-release excipient for curcumin preparations.

1. Introduction

Curcumin is a hydrophobic polyphenol extracted from the root and stem of turmeric. It has a variety of pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and treatment of nerve diseases [1]. However, curcumin is easily degraded by light induction and unstable under physiological pH of human body. In addition, its poor solubility in water leads to its low oral absorption efficiency and many challenges in clinical application [2]. Therefore, it is important to improve the chemical stability, solubility, and bioavailability of curcumin.

Hydroxypropyl methyl cellulose (HPMC) is a semisynthetic dietary polymer based on cellulose. HPMC is used as a food ingredient and in the food industry as an emulsifier, suspension agent, film-forming agent, stabilizer, or thickener. In addition, HPMC is used as an excipient in pharmaceutical preparations to improve the solubility of active pharmaceutical ingredients and to control drug delivery [3–5].

Many methods have been reported to increase the solubility of curcumin and promote its bioavailability. Relative techniques include the preparation of colloids, protein-based complexes, solid dispersions, nanoemulsions [6–8], and so forth. However, most of these methods have complex processes and poor physical stability and many risks such as drug leakage and potential toxicity of excipients and reagents [6], which limits the clinical application.

Considering the physical product stability and security problems, the experimental design used water as a dispersion medium and selected lactose, a commonly used drug-excipient, as the water-soluble carrier. HPMC was used as the studying excipient for the control the curcumin dissolution rate. After high-speed stirring of mixed suspension, the spray drying technique was used to dry the mixture.

2. Materials and Methods

2.1. Chemicals. HPMC (SE-E5) was purchased from Anhui Sunhere Pharmaceutical Excipients Co., Ltd.; the
pharmaceutical-grade α-lactose monohydrate (purity > 99.9%) was purchased from Jiangsu Dawning Pharmaceutical Co., Ltd.; and curcumin (purity > 98.0%) was purchased from Tonghua Food & Chemical Co., Ltd.

2.2. Design of the Experiment. In order to study the sustained-release effects of HPMC for curcumin, the experiment was carried out with spray drying of suspension A containing curcumin and lactose and suspension B containing curcumin, lactose, and HPMC, respectively. Suspension A contains 10% curcumin and 20% lactose in water, which were mixed at high stirring speed for 1 min. Suspension B contains 10% curcumin, 15% lactose, and 10% HPMC in water, after mixing by high-speed stirring, forming a foam-like mixture for spray drying. In the experiment, the same spray-drying parameters were used for the two suspensions. The spray dryer (YC-015A, Shanghai Pilotech Instrument & Equipment Co., Ltd.) was adjusted to the optimal parameters: an inlet air temperature of 140°C, outlet air temperature of 125°C, fan frequency of 50 Hz, peristaltic pump speed of 15 rpm/min, spray pressure of 0.65 MPa, and nozzle diameter of 1.0 mm. Suspensions A and B were spray dried, respectively, and the powders were collected in the collection vessel [9].

2.3. Characterization of the Spray-Dried Materials. The UV-vis absorption spectra were recorded in the range 350–450 nm [10] with a UV-2401PC spectrophotometer (Shimadzu, Kyoto, Japan). The powder was pressed into tablets with a diameter of 8 mm and then dissolved in pure water; both samples were prepared in triplicate at room temperature. DSC analysis was performed using a differential scanning calorimeter (HSC-4 DSC, Henven, China) for the solid powder. The sample for DSC measurement was prepared following standard procedures using a sealed aluminum pan. About 10 mg of sample was used in the analysis. The analyses were performed by heating the samples from 25°C to 300°C at a heating rate of 5°C/min with N₂ as the purge gas. Heat flow as a function of increasing temperature was recorded for the analysis of each sample. Fourier transform infrared (FTIR) spectroscopy was used to investigate the production and the raw material (HPMC, lactose, and curcumin crystal). The specimen was mixed with KBr powder, tableted, and scanned for transmission FTIR spectra of the HPMC-contained sample (Figure 4), α-lactose peaks are observed at 2Θ of 12.5°, 19.1°, 19.6°, and 19.9°. The spectra showed that the HPMC-contained sample was crystalline with sharp peaks observed. The changes in peak intensity and wavenumber shift were studied by FTIR (Figure 5). The peak of 3400 cm⁻¹ indicates the presence of hydroxide, indicating the presence of water which agreed with the DSC result [12, 13].

The DSC curves (Figure 3) show that the HPMC-contained sample has an upward exothermic peak at 210–220°C, indicating the mixing of these materials. Besides, the HPMC-contained sample has a large endothermic peak of free water at 50–100°C, suggesting that the HPMC bonded some water molecules. Some small peaks are observed, which may indicate the formation of a relatively more disordered crystalline state [11]. According to the XRD spectrum of the HPMC-contained sample (Figure 4), α-lactose peaks are observed at 2Θ of 12.5°, 19.1°, 19.6°, and 19.9°. The spectra showed that the HPMC-contained sample was crystalline with sharp peaks observed. The changes in peak intensity and wavenumber shift were studied by FTIR (Figure 5). The peak of 3400 cm⁻¹ indicates the presence of hydroxide, indicating the presence of water which agreed with the DSC result [12, 13].

BET (Figure 6) spectra show the N₂ adsorption-desorption isotherms for the HPMC-contained sample. The isotherms display class II behavior. In the process of increasing gas pressure, countermolecular layer adsorption and multimolecular layer adsorption are carried out simultaneously in which the “knee” point is not sharp. According to the BET result, the sample has a nonporous or macroporous structure. According to TGA analysis (Figure 7), HPMC did not affect much on the result since the polymer has a large molecular weight.
3. Results

In this work, HPMC was spray dried with curcumin and lactose. The spray-dried materials were pressed into tablets, and its release characteristics in vitro were measured. In vitro experiments showed that the release of curcumin from the HPMC mixture was significantly slower due to the sustained-release property of HPMC as a typical excipient. The release profile of curcumin from the HPMC mixture was relatively stable for a controlled release. SEM images show that the HPMC co-spray-dried powders have crumpled surfaces due to the large molecular weight of HPMC. DSC, XRD, FTIR, N₂ adsorption, and TGA have been measured for the spray-dried curcumin materials. The work indicates...
Figure 3: DSC spectrum of the raw materials and productions.

Figure 4: XRD spectrum of the HPMC-contained sample.

Figure 5: FTIR spectra of the products and the raw materials.
that HPMC can be used as a controlled-release excipient for curcumin preparations.

Data Availability

All data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the 131 Talent Engineering Fund (2020-32), Scientific Research Project of Hunan Provincial Department of Education (20C1156), Scientific Research Project of Hunan Provincial Health Commission (202115011227), and Clinical Pharmacy Project of Medical Research Fund of Hunan Medical Association (HMA202001008).

References

[1] S. Abrahams, W. L. Haylett, G. Johnson, J. A. Carr, and S. Bardien, "Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review," Neuroscience, vol. 406, pp. 1–21, 2019.

[2] P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, "Bioavailability of curcumin: problems and promises," Molecular Pharmacuetics, vol. 4, no. 6, pp. 807–818, 2007.

[3] C. L. Li, L. G. Martini, J. L. Ford, and M. Roberts, "The use of hypropomolose in oral drug delivery," Journal of Pharmacy and Pharmacology, vol. 57, no. 5, pp. 533–546, 2010.

[4] M. S. Shin, J. S. Yu, J. Lee et al., "A hydroxypropyl methyl-cellulose-based solid dispersion of curcumin with enhanced..."
bioavailability and its hepatoprotective activity,” *Biomolecules*, vol. 9, no. 7, p. 281, 2019.

[5] P. Zarmpi, T. Flanagan, E. Meehan, J. Mann, and N. Fotaki, “Biopharmaceutical understanding of excipient variability on drug apparent solubility based on drug physicochemical properties: case study-hypromellose (HPMC),” *The AAPS Journal*, vol. 22, no. 2, p. 49, 2020.

[6] H. Ji, J. Tang, M. Li, J. Ren, N. Zheng, and L. Wu, “Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin,” *Drug Delivery*, vol. 23, no. 2, pp. 459–470, 2016.

[7] A. Araiza-Calahorra, Y. Wang, C. Boesch, Y. Zhao, and A. Sarkar, “Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin,” *Current Research in Food Science*, vol. 3, pp. 178–188, 2020.

[8] N. Surti, A. N. Mahajan, D. Patel, A. Patel, and Z. Surti, “Spray dried solid dispersion of repaglinide using hypromellose acetate succinate: in vitro and in vivo characterization,” *Drug Development and Industrial Pharmacy*, vol. 46, no. 10, pp. 1622–1631, 2020.

[9] S. Tan, T. Jiang, A. Ebrahimi, and T. Langrish, “Effect of spray-drying temperature on the formation of flower-like lactose for griseofulvin loading,” *European Journal of Pharmaceutical Sciences*, vol. 111, pp. 534–539, 2018.

[10] R. K. Thapa, F. Cazzador, K. G. Grønlien, and H. H. Tønnesen, “Effect of curcumin and cosolvents on the micellization of Pluronic F127 in aqueous solution,” *Colloids and Surfaces B: Biointerfaces*, vol. 195, p. 111250, 2020.

[11] N. Fan, Z. He, P. Ma et al., “Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions,” *Carbohydrate Polymers*, vol. 181, pp. 543–550, 2018.

[12] N. Wijiani, D. Isadiartuti, M. A. S. Rijal, and H. Yusuf, “Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery,” *International Journal of Nanomedicine*, vol. 15, pp. 1787–1796, 2020.

[13] Y. He, H. Liu, W. Bian et al., “Molecular interactions for the curcumin-polymer complex with enhanced anti-inflammatory effects,” *Pharmaceutics*, vol. 11, no. 9, p. 442, 2019.