DISCOVERY OF A MOLECULAR OUTFLOW IN THE HARO 6-10 STAR-FORMING REGION

IRENA STOJIMIROVIĆ, Gopal Narayanan, and Ronald L. Snell

Astronomy Department, University of Massachusetts at Amherst, MA 01003;
irena@nova.astro.umass.edu, gopal@astro.umass.edu, snell@astro.umass.edu

Received 2006 November 8; accepted 2007 February 1

ABSTRACT

We present high-sensitivity ¹²CO and ¹³CO J = 1 → 0 molecular line maps covering the full extent of the parsec scale Haro 6-10 Herbig-Haro (HH) flow. We report the discovery of a molecular CO outflow along the axis of parsec-scale HH flow. Previous molecular studies missed the identification of the outflow probably due to their smaller mapping area and the confusing spectral features present toward the object. Our detailed molecular line study of the full 1.6 pc extent of the optical flow shows evidence for both blueshifted and redshifted gas set in motion by Haro 6-10 activity. The molecular outflow is centered at Haro 6-10, with redshifted gas being clumpy and directed toward the northeast, while blueshifted gas is in the southwest direction. The molecular gas terminates well within the cloud, short of the most distant HH objects of the optical flow. Contamination from an unrelated cloud along the same line of sight prevents a thorough study of the blueshifted outflow lobe and the mass distribution at the lowest velocities in both lobes. The cloud core in which Haro 6-10 is embedded is filamentary and flattened in the east-west direction. The total cloud mass is calculated from ¹³CO J = 1 → 0 to be ∼200 M☉. The lower limit of the mass associated with the outflow is ∼0.25 M☉.

Subject headings: ISM: clouds — ISM: individual (Haro 6-10) — circumstellar matter — stars: formation

1. INTRODUCTION

In the last 10 years, wide-field CCD camera observations have shown that it is quite common for outflows traced by Herbig-Haro (HH) objects to attain parsec scale dimensions, at least an order of magnitude larger than previously thought (Reipurth et al. 1997). It is now becoming clear that optical HH objects (which are lit up from the cooling behind shock fronts within the flows), near-infrared H₂ jets (tracing shocked regions), and the swept-up CO bipolar molecular outflows are intimately linked to one another (see, e.g., Bachiller et al. 1995). With the development of large-format heterodyne arrays at millimeter wavelengths and the availability of “on-the-fly” (OTF) mapping capabilities, millimeter mapping of the full extent of some of the known parsec-scale HH flows is possible with increased data sensitivity. This allows a more thorough study of the observational properties of the outflows and provides better constraints on the theoretical models of molecular outflow entrainment mechanisms.

Devine et al. (1999) discovered a giant 1.6 pc long HH flow, centered on Haro 6-10 at a position angle of 222° delineated by HH 410 and HH 411 at its edges, and HH 412 and HH 184E along the HH flow axis. Haro 6-10 is located in the L1524 cloud within the B18 region of the Taurus molecular cloud complex. It is a binary system composed of an optically visible southern component (Haro 6-10S), and its infrared companion (Haro 6-10N). High-resolution 3.6 cm VLA map (Reipurth et al. 2004) strongly suggests that the optical component, Haro 6-10S, is driving the current outflow activity. The same set of data suggests that there might be an additional stellar companion to Haro 6-10S, more closely bound to it than Haro 6-10N.

There has been other evidence for the outflow activity from the Haro 6-10 system such as 2.12 μm molecular hydrogen emission, observed at the position of the northern companion (Carr 1990; Herbst et al. 1995). Movsessian & Magakian (1999) found a small HH jet associated with Haro 6-10 itself at a position angle of 195° with blueshifted radial velocities. Reipurth et al. (2004) reported a VLA jet along the same angle. These latter jet angles are significantly different from the 222° angle of the parsec scale HH flow. The difference in these position angles have led some authors to suggest that the outflow from Haro 6-10 has undergone precession or reorientation (Reipurth et al. 2004; Devine et al. 1999). Devine et al. (1999) have argued that HH 184F-G and HH 184A-B are two different flows originating at the same time from two different protostars, probably due to an interaction in the binary pair. They have position angles of 162° and 231°–249°, respectively. HH 184E is the only knot in the HH 184 that is found along the parsec scale 222° axis and is the farthest away from the driving source.

In the past, a few attempts have been made to detect molecular CO outflow from the Haro 6-10 source. Small maps, only a couple of arcminutes wide, have been made toward Haro 6-10, which presented the evidence of weak non-Gaussian CO wings emission in the direction of the optical object (Edwards & Snell 1984; Leveen 1988; Hogerheijde et al. 1997, 1998; Chandler et al. 1998). Hitherto, Haro 6-10 has been considered to be devoid of molecular outflow (Devine et al. 1999).

We made large, sensitive ¹²CO J = 1 → 0 and ¹³CO J = 1 → 0 maps of the Haro 6-10 region, over the full extent of the optical parsec-scale HH flow. Here we show the evidence for the redshifted high-velocity CO gas along the outflow axis defined by the HH parsec scale flow. Due to “contamination” by emission from another molecular cloud along the same line of sight, a thorough study of the blueshifted outflow lobe is limited.

2. OBSERVATIONS

A full mapping of ¹²CO and ¹³CO in the J = 1 → 0 transition was performed with the SEQUOIA receiver at the Five College Radio Astronomy Observatory (FCRAO) 14 m telescope during a period spanning 2003 and 2004. The receiver was configured as a dual-polarized 4 × 4 array. The orthogonal polarizations of the SEQUOIA array were averaged to produce spectra with higher signal-to-noise ratio (S/N). The telescope’s half-power beam widths are 45° and 47° for ¹²CO and ¹³CO transitions, respectively. Channel maps as well as individual spectra were checked
for any scanning artifacts, baselined and regridded to the 22.5° sampled grid, and rms noise weighting was used to combine the data. For all calculations, the antenna temperatures were corrected for the main-beam efficiencies of 0.45 for 12CO and 0.5 for 13CO.

Both 12CO and 13CO spectra are smoothed to 0.13 km s⁻¹ channel spacing. The system temperatures (T_{sys}) in our observations range from 400–700 K for 12CO and between 200–500 K for 13CO. Regions mapped with the higher noise level were repeated, combined and averaged in order to get a constant lower noise level over the whole extent of the map. The resulting mean rms per velocity channel is 0.2 K for 12CO and 0.1 K for 13CO. Antenna pointing and focus were checked every few hours and corrected using SiO masers.

The analysis were done both using the Gildas software package and IDL software of Research Systems Inc. Detailed studies of the physical parameters characterizing the outflows were performed using IDL.

3. MORPHOLOGY OF THE CO GAS

3.1. Two-Component Emission in B18 Cloud

In Figure 1 we show 12CO and 13CO spectra averaged over a 15' area centered on Haro 6-10. In both lines, the averaged spectra consists of two Gaussian-like components: a stronger component centered at 6.4 km s⁻¹ and a weaker component at ~4 km s⁻¹. A similar double peak profile has been observed by Arce & Goodman (2001, hereafter AG01) by studying the parsec scale outflow from IRAS 04239+2426 in the adjacent B18w cloud. They named the component at lower velocity “cloud A,” and surmised that it was produced by another cloud in Taurus along the same line of sight.

The stronger Gaussian component is associated with the Haro 6-10 host cloud, L1524. This is in agreement with the ammonia core identified at LSR velocity of 6.4 km s⁻¹ (Codella et al. 1997) toward L1524. Haro 6-10 is located at the edge of the compact ammonia core (see Fig. 3 of Codella et al. 1997). Our spatially averaged spectra toward the L1524 cloud show some evidence for line wing emission at both blueshifted and redshifted velocities, although the contaminating cloud component at ~4 km s⁻¹ obscures much of the wing emission at blueshifted velocities. Even with our higher sensitivity data, we do not see evidence for high-velocity molecular gas as is seen in other prototypical outflows. Since the outflow is composed mainly of gas with slow radial velocities, emission from outflowing gas at the slowest velocities might be hidden under the ambient cloud emission.

In order to examine this contaminating emission at 4 km s⁻¹, we used a 2° by 2° portion of the much larger FCRAO Taurus Molecular Cloud Survey in both 12CO and 13CO J = 1 → 0 (G. Narayanan et al. 2007, in preparation). In Figure 2 we plot for each line, the integrated intensity emission in two narrow velocity intervals. The first velocity interval preferentially selects the contaminating emission in the 3.5–4.5 km s⁻¹ velocity range, (Figs. 2a and 2c). This contaminating cloud component is traced by 13CO molecule as an arc like filament, stretching from south of Haro 6-10 to north and appearing to bend toward IRS 04239+2436 in B18w cloud and south from it again (see Fig. 2a). The maximum intensity of this emission is south from IRS 04239+2436 source in the B18w cloud, while at the location of Haro 6-10, the contaminating emission is quite clumpy. The 12CO tracer shows similar morphology of the emitting gas in the region (see Fig. 2c).

In the other velocity interval, from 5.5 to 7.0 km s⁻¹, we preferentially select the CO emission associated with the B18 clouds, which have LSR velocities around 6.4 km s⁻¹. In 13CO (see Fig. 2b), the B18 cloud is revealed as a flattened structure elongated in the east-west direction. In the same panel we identify L1529, L1524, and B18w clouds within the B18 region.

The dramatic change in the morphology for each isotope at only a slightly different velocity offset indicates quite clearly that we are looking at two spatially distinct and possibly unrelated cloud features. From Figure 2 it can be seen that toward Haro 6-10, the intensity of the contaminating emission is not as high as the intensity of the L1524 cloud. However, toward B18w it is seen that the emission in both velocity bins seem to be of comparable intensity. The same was evident in the average spectra of the region presented by AG01. In this study by AG01, it was thus a clear cut in the case of IRAS 04239+2426 to concentrate only on the redshifted emission in the outflow. From the large-scale CO maps derived from the Taurus survey, it appears that while the blue-shifted component in the Haro 6-10 spectra at 4.5 km s⁻¹ is part of the contaminating emission seen toward B18w, the contamination is not nearly as severe as in the case of B18w. Some of the emission toward Haro 6-10 at 4.5 km s⁻¹ might be part of the outflow system from that object.

3.2. The Haro 6-10 Cloud Core

In the following sections we examine in more detail the behavior of the ambient, blueshifted and redshifted gas using our new 12CO and 13CO J = 1 → 0 data of Haro 6-10 outflow, which are of smaller scale than those of the Taurus survey, but have better sensitivity. For the rest of this paper, the Taurus survey data are not used for any analysis. As already discussed, in the velocity range between 3.5 and 4.5 km s⁻¹, the emission is dominated by the contaminating cloud component. Figure 3 shows the 13CO in two different velocity bins. Here the contamination is clearly detected as strong feature at the northwest edge of the map (see Fig. 3b). In addition, a small clump of emission centered at Haro 6-10 is present, which is elongated and extended toward north, at the ~30° angle with respect to the axis defined by the HH flow (Fig. 3a, crosses). In the next panel, 13CO emission traces the column density distribution within the L1524 cloud. The flattened structure of the L1524 cloud seen in the larger-scale map of Figure 2 is also visible here, and Haro 6-10 lies close to the peak of integrated intensity emission. This peak traces the same core identified in ammonia by Codella et al. (1997). The elongated L1524 cloud is perpendicular to the HH outflow axis. From Haro 6-10, along the HH flow axis, the integrated intensity decreases, and HH 411 and
HH 410 are found in the regions of very low 13CO integrated intensity. The ridge of 13CO emission is seen to extend northward from Haro 6-10 toward HH 414 IRS.

3.3. Outflow Emission

In Figure 4 we show integrated intensity emission of 12CO in several different velocity bins. In the panels a, f, and g we show the distribution of emission at the highest blueshifted and redshifted velocities. We believe that at these velocities we are selecting almost exclusively emission that arises from the outflow associated with Haro 6-10. Figure 4a shows that the blueshifted emission in the velocity range from 0 to 2 km s$^{-1}$ is spatially restricted and centered on Haro 6-10. Compared to the bubble-like structures defined by the knots A-G of HH 184, the blueshifted emission has a smaller spatial extent and is elongated in the direction defined by A and F knots of HH 184. The spatial resolution of our data is such that it does not allow a more detailed comparison. In Figures 4f and 4g the redshifted emission consists of two bright regions centered on Haro 6-10 and HH 412, respectively. The clump centered at Haro 6-10 has extended emission toward southeast, similar to the highest velocity blueshifted gas identified in Figure 4a. The redshifted emission seen toward HH 412, located about 7$''$ northeast of Haro 6-10, is detected to velocities as high as 14 km s$^{-1}$, nearly 8 km s$^{-1}$ from the ambient cloud line center. The emission is slightly extended along the HH flow axis. In the optical images (Devine et al. 1999), HH 412 appears as a 1$''$ long fairly diffuse emission feature, also elongated along the flow axis. Therefore, morphologies of the CO and optical emissions are quite similar around HH 412.

In Figure 5 we show the optical Hα image of the Haro 6-10 region (Devine et al. 1999), overlayed with the 12CO $J = 1 \rightarrow 0$ integrated emission in 9–14 km s$^{-1}$ velocity range for the redshifted gas and 0–2 km s$^{-1}$ for the blueshifted gas. In the optical image, HH 410 and HH 411 lie at the extremes of the HH flow,
Fig. 3.—L1524 cloud emission using our high-sensitivity 13CO $J = 1 \rightarrow 0$ data integrated in two velocity bins, representing two distinct component in L1524 cloud. Contours at each panel start at 5σ level and go in steps of 10σ in panel a (0.4 K km s$^{-1}$) and in steps of 20σ (0.9 K km s$^{-1}$) in panel b. HH 184 coordinate is taken from B. Reipurth’s General Catalog of HH Objects (http://casa.colorado.edu/hhcat).

Fig. 4.—12CO line integrated in different velocity intervals. Top row: Blueshifted gas. In panel a contours start and increase with 2σ certainty (2 K km s$^{-1}$), while in panel b they start and increase in 3σ steps (2.1 K km s$^{-1}$). Middle row: Line core. Contours in panels c and d start at 10σ and go in step of 10σ (1 K km s$^{-1}$ at panel c and 1.2 K km s$^{-1}$ at panel d). In panel e contours start at 8σ level (0.56 K km s$^{-1}$) and increase in the same step. Bottom row: Redshifted gas. At both panels contours start and increase with 2σ certainty, which is 0.2 K km s$^{-1}$ in panel f and 0.32 K km s$^{-1}$ in panel g. In panels a and b we mark different knots of HH 184 (Devine et al. 1999), while in the rest of the panels we use HH 184 coordinate as defined in Fig. 3.
and HH 412. Devine et al. (1999) detected a small jet originating from HH 414 IRS (IRAS 04264+2433) that was directed toward HH 413. They also suggested that the morphology of HH 413 knots resembled bow shocks originating from the direction of HH 414 IRS. The morphology of the CO emission is suggestive that it is tracing the molecular counterpart to the HH 414 IRS flow. There could be also some contamination at these velocities from the overall Haro 6-10 flow oriented northeast to southwest. It is noteworthy that the outflow axis, defined by the HH 414/413 optical flow and by the CO emission connecting them, is nearly perpendicular to the axis of the main parsec-scale HH outflow. Bright CO emission is also seen northwest of Haro 6-10 that is presumably unrelated to either flow. Again the emission in this velocity range is likely a mix of outflow emission and emission from the ambient gas.

Finally it is interesting to note the structure in the 3–5 km s\(^{-1}\) interval (Fig. 4c). This velocity interval would be expected to include the outflow emission from Haro 6-10, since it lies a few km s\(^{-1}\) from the line center of the L1524 cloud emission; however, the second cloud contaminates the emission. It is intriguing that there is a finger-like emission from Haro 6-10 toward the northeast, and a bow-shaped feature centered on Haro 6-10, and opening toward HH 410 in the southwest. These two features line up with the HH flow direction. The relevance of this structure to the outflow is unclear. In the following velocity bin (5–8 km s\(^{-1}\)), the \(^{12}\)CO emission is dominated by L1524 ambient cloud emission and no clear structure can be identified, although there is a maximum of emission toward Haro 6-10.

4. MASS AND ENERGETICS

The emission from \(^{13}\)CO is usually optically thin and therefore a good tracer of the gas column density. However, the emission can also be very weak, limiting the spatial and velocity extent to which outflows can be traced. While \(^{12}\)CO is more readily detected, it is often optically thick, even in the high-velocity emission of outflows. To derive accurate gas column densities we may need to correct for the optical depth of this line. Several recent studies have combined \(^{12}\)CO and \(^{13}\)CO to estimate the mass of the outflow, using a velocity-dependent opacity correction (Bally et al. 1999; Yu et al. 1999; Arce & Goodman 2001; Stojimirović et al. 2006). This approach usually requires construction of spatially averaged spectra, since \(^{13}\)CO emission is usually not detectable in most mapping positions. The application of this method in Haro 6-10 has some limitations due to the weak emission in the line wings.

4.1. Outflow Mass

In Figures 6 and 7 we show the spatially averaged \(^{12}\)CO and \(^{13}\)CO spectra in the redshifted and blueshifted gas, respectively. These spectra were constructed using the following procedure to isolate the strongest outflow emission. For the redshifted gas we found the integrated intensity at each location in our \(^{12}\)CO map in the velocity range from 0 to 2 km s\(^{-1}\). We then averaged the spectra at every location where the integrated intensity of \(^{12}\)CO was at least one-third of the peak integrated intensity. The \(^{13}\)CO spectrum was obtained by averaging the same spatial locations as was used to form the \(^{12}\)CO spectrum. For the redshifted gas we applied the same approach integrating over the velocity range of 9–12 km s\(^{-1}\). The resulting spectra differ from the average spectrum shown in Figure 1 in having both a weaker contaminating component and enhanced outflow wings. The outflow in \(^{12}\)CO can be traced over a full velocity range from 0 to 14 km s\(^{-1}\).
Despite this averaging approach, the 13CO emission outside the line cores, has low S/N. Examining both Figures 6 and 7 we see that at the full spectral resolution, the 13CO emission is lost in noise at velocities below than 2 km s$^{-1}$ and greater than 9 km s$^{-1}$. The 12CO outflow emission is too weak to use velocity-dependent opacity correction. We have instead integrated the emission in four velocity intervals. In the near wings of the redshifted outflow emission (between 8 and 9 km s$^{-1}$) the ratio of 12CO to 13CO is 112 ± 20, consistent with the 13CO emission being optically thin. At higher outflow velocities (between 9 and 12 km s$^{-1}$), 13CO emission is not detected, and the 1σ lower limit on this ratio is 47. The 12CO emission in the blueshifted gas is even weaker, and only limits on the ratio can be obtained. In the near blueshifted outflow (2–3 km s$^{-1}$) the 1σ lower limit is 45 and at higher blueshifted velocities (0–2 km s$^{-1}$) the lower limit is 20. Thus, where 13CO emission is detected it is consistent with optically thin 12CO emission and everywhere else we can only determine an upper limit to the 12CO optical depth. Therefore, to estimate the gas column density and outflow mass, we will assume that 13CO emission is optically thin (eq. [3] from Stojimirović et al. 2006), and we will apply no correction for the optical depth.

The outflow mass as a function of velocity and position is then computed from $M(v) = 2\mu m_{H}AN_{H_{2}}(v)$, where $\mu = 1.36$ is the mean atomic weight including He and other constituents, m_{H} is the mass of the hydrogen atom and A is the physical area of 1 pixel at the distance of the source. $N_{H_{2}}$ is the molecular hydrogen column density obtained using the relation $N_{H_{2}} = 1.1 \times 10^{4}N_{12}$ by Frerking et al. (1982) for the Taurus cloud; this result is consistent with more recent determinations, summarized by Harjupää et al. (2004) for other nearby dark clouds. The greatest uncertainty in our mass estimates comes from the uncertainty in the $N_{H_{2}}$ to N_{12} ratio (Frerking et al. 1982).

The gas column density derived assuming that CO is in LTE depends on the gas temperature. For a gas temperature of 10 K we find 0.02 M_{\odot} in the velocity range from 9 to 14 km s$^{-1}$, while the mass in the velocity range from 0 to 2 km s$^{-1}$ is found to be 0.01 M_{\odot}. For a gas temperature of 25 K, in the same velocity ranges, the redshifted gas has mass of 0.04 M_{\odot} and blueshifted of 0.02 M_{\odot}. We believe that these velocity ranges are dominated by outflow emission.

The cutoff velocity of 9 km s$^{-1}$ for the start of the redshifted component of the outflow and 2 km s$^{-1}$ for the start of the blueshifted component correspond to velocity offsets from the systemic velocity of the cloud of 2.5 and 4.5 km s$^{-1}$, respectively. There is likely slower moving gas at lower redshifted and blueshifted velocities that is missed in our analysis. Within the blueshifted velocities, the presence of the contaminating emission at 4.5 km s$^{-1}$ clearly makes it problematic to single out the low-velocity outflow component. Our outflow mass estimates are therefore lower limits. In an effort to include any lower velocity outflow gas, we have repeated the mass calculation for the redshifted velocity range of 8–9 km s$^{-1}$ and derive a mass of 0.15 M_{\odot}, and for the blueshifted velocity range of 2–3 km s$^{-1}$ and derive a mass of 0.04 M_{\odot}, both assuming a gas temperature of 25 K. Our mass estimates are summarized in Table 1.

The mass distribution with velocity for molecular outflow has been shown to have a power-law dependence, such that $M_{CO}(v) \propto v^{-\gamma}$ (Richer et al. 2000). We have derived the mass-velocity relation for Haro 6-10 using the 12CO emission and assuming it is optically thin as we assumed earlier. We computed the mass in each velocity channel within the outflow and plotted this versus the velocity offset from the host cloud’s mean velocity. The velocity range over which outflow gas is detected in Haro 6-10 is very limited, making the determination of this relation very uncertain. In a log-log plot, the slope of the linear fit determines the γ index. The value of γ for the blueshifted gas is 6 ± 0.6 and for the redshifted gas is 5.5 ± 0.6.

4.2 Cloud Mass and Energy

We determine the cloud mass by using the 13CO map, Figure 3b. The line center optical depth at each point in the map is derived from the 13CO peak temperature. The excitation temperature is obtained at each position by solving the radiative transfer equation

VELOCITY INTERVAL	$T_{ex} = 10$ K	$T_{ex} = 25$ K
Red 8–9 km s$^{-1}$	0.1	0.15
Red 9–14 km s$^{-1}$	0.02	0.03
Blue 0–2 km s$^{-1}$	0.01	0.02
Blue 2–3 km s$^{-1}$	0.02	0.04
Red total	0.12	0.18
Blue total	0.03	0.06

TABLE 1

OUTFLOW MASS ESTIMATES
for the excitation temperature, assuming 12CO line to be optically thick. We find the total mass of the cloud using this method to be $\sim 200 M_\odot$. The cloud mass estimate is mostly free from the foreground contamination, since we only searched for peak 13CO emission in the narrow velocity range around line center.

The kinetic energy of the cloud is dominated by the turbulent energy of the cloud, and is estimated using $E_{\text{turb}} = 3/(16\ln2) M_{\text{cloud}} \Delta v^2$. The mean turbulent velocity of the ambient gas is determined from the 13CO line profiles in the cloud. We find the full line width at the half maximum to be $\Delta v = 1.2$ km s$^{-1}$. We find that kinetic energy of the L1524 cloud is $\sim 1.6 \times 10^{46}$ ergs.

5. DISCUSSION

Although at the lowest outflow velocities, the blueshifted emission is strongly contaminated by the foreground cloud emission, we see signatures of the outflow from Haro 6-10 at the higher blueshifted velocities. There is significant overlap between blueshifted and redshifted emission at the position of Haro 6-10, which together with relatively low velocities observed in the line wings, suggests that the flow is in the plane of the sky. If the flow is in the plane of sky, slower radial velocities are hidden under the ambient cloud emission. In such a scenario, the clumps that we see defined in the redshifted gas (see, e.g., Fig. 5) are probably the highest velocity components seen projected in the map.

A position-velocity (P-V) cut along the axis of the HH flow is shown in Figure 8. High-velocity emission is seen at the location of Haro 6-10 (at offset 0 in the P-V plot) and at the position of HH 412 (at offset 6.3). The highest velocity redshifted emission is associated with HH 412. The P-V plot also reveals a general broadening of the CO emission at redshifted velocities between offsets of 0 and $+20^\prime$, and at blueshifted velocities between offsets of -1^\prime and -10^\prime. The broadening at these positions is not symmetric about the cloud’s systemic velocity, but rather is wider at redshifted velocities for positive offsets and at blueshifted velocities for negative offsets. The positive and negative positional offsets in Figure 8 correspond to the location of redshifted and blueshifted lobes, respectively, of the overall Haro 6-10 outflow system. The slight broadening at positive and negative offsets in the P-V plot further bolsters the argument that the Haro 6-10 molecular outflow is, at least in the current epoch, a very low-velocity outflow that has slowed down close to ambient cloud velocities. If this is correct, it may be possible to see the subtle signature of the outflow at lower velocities from constructing a centroid velocity map with velocities confined to the ambient cloud emission alone ($6-7$ km s$^{-1}$). When such centroid velocity mapping was performed, for instance in the Cepheus A outflow system (see Fig. 4 of Narayanan & Walker 1996), it was found that the outflow signature is clearly seen as a velocity gradient along the outflow direction. We have performed such centroid velocity mapping analysis (figure not shown) for Haro 6-10, but we do not see any such gradient present at ambient cloud velocities. This leads us to conclude that even if the outflow has slowed to ambient cloud velocities in Haro 6-10, the outflow has not imparted any significant velocity gradients over the normally present random velocities inherent in the ambient cloud.

Yet another puzzling feature of the Haro 6-10 outflow is that it entrains very little gas. The morphology of the outflow is very clumpy and the total mass found in the outflow in only 0.25 M_\odot.

In evolved sources, the previous outflow episodes may clear up the ambient gas and leave no gas to be entrained by later outflow episodes. In such a case, large ambient gas cavities are expected to be seen around source. Our 13CO maps show that no such cavities are found around Haro 6-10 and that the overall L1524 cloud is somewhat flattened and filamentary, with the column density decreasing from Haro 6-10 source toward HH 410 and HH 411 along the outflow axis. While the L1524 cloud is flattened, there appears to be enough ambient gas in the direction of the outflow lobes to be entrained (see Fig. 3).

The clumpy morphology and low total mass may be a consequence of the outflow viewing geometry. If the outflow is mostly in the plane of sky, much of its mass would be missed since we have excluded ambient gas components from our calculations. It would be interesting to obtain proper motion study of the HH knots to determine the orientation of the flow with respect to the plane of the sky.

The outflow emission beyond Haro 6-10 is strictly confined to the HH 412 knot and it has the same elongated morphology as its optical counterpart. Therefore, they seem to be created by the same mechanism. The HH knots are formed where the fast jet is interacting with the ambient gas. They can be found at the head of the jet or along its body at the locations of internal working surfaces where the new ejecta is catching up with the previously ejected slow-down gas. The CO clump at HH 412 is detached from the Haro 6-10 source. It has small mass, and it is detected up to the projected velocities of 8 km s$^{-1}$ from the line center.

Due to various contaminations, we had to use velocities far from the line core to study the mass distribution in the case of Haro 6-10. This could be another reason why there is so little mass recovered in the outflow. Observational studies show that outflows show a power-law distribution of the mass with respect to the velocity offset from the cloud velocity. This distribution is such that most of the outflow mass is at low velocities. The first mass point that we account for, in Haro 6-10 outflow, is offset by 2.6 km s$^{-1}$ from the line center. For the V_{LSR} of 6.4 km s$^{-1}$ we calculated the outflow mass only for the points between 9–14 and 0–2 km s$^{-1}$. Therefore, we may be missing a significant fraction of the mass as it is increasing with the decreasing outflow velocity, and the estimated outflow masses are consequently lower limit.

Lastly, we can compare Haro 6-10 outflow to the HH 300 parsec scale flow in the nearby B18w cloud, studied by AG01. AG01 found that the HH 300 outflow has a very clumpy structure and they identified five 12CO redshifted clumps with masses from 0.03
to 0.23 M_\odot and radial velocities of about 3 km s$^{-1}$ from the ambient cloud velocity. They also noted that the clumps have different position angles with respect to the driving source and concluded that the flow most likely precess with each clump corresponding to different ejection event. The similarity of the HH 300 and Haro 6-10 outflow in terms of clumpy morphology and mass content is apparent. However, while the redshifted clumps of HH 300 flow are found at different position angles with respect to the IRAS source, the redshifted clump at HH 412 location in Haro 6-10 flow is found elongated along the jet (as is HH 412) axis defined by HH flow. Although there is evidence that the current jet axis from the Haro 6-10 differs from the axis defined by the parsec scale flow (Reipurth et al. 2004; Devine et al. 1999; Movsessian & Magakian 1999), the jet in Haro 6-10 must have had a stable orientation for a long time since all HH knots in the Haro 6-10 outflow that are found at large distance from the source (HH 410, 411, and 412), as well as HH 184E, lie on the 222° position angle jet axis. The HH 300 outflow exhibits larger impact on its host cloud, with 13CO line showing bipolar structure of the cloud gas at velocities close to the line center. Surprisingly, Haro 6-10 outflow does not seem to be affecting its host cloud’s kinematics significantly.

AG01 find a steep broken power law in the mass-velocity distribution with $\gamma = 4.0$ at low outflow velocities and $\gamma = 7.8$ for outflow velocities greater than 1.85 km s$^{-1}$. We find the slope γ in the mass-velocity distribution of the Haro 6-10 outflows to be around \sim6. This value is much steeper than the average of $\gamma \sim 2$ reported for a collection of outflow sources (Richer et al. 2000). The steepening of the γ index is expected for the older outflows, where once accelerated ambient material will slow down leading to accumulation of slow material. It is worth noting that the break in the mass-velocity distribution in the nearby HH 300 outflow happens very close to the line core. If the same holds for the Haro 6-10 we may be missing the shallower part at low velocities since we only account for the mass at velocities that have offset of at least 2.5 km s$^{-1}$ (toward redshifted) and 4.5 km s$^{-1}$ (toward blueshifted) from the systemic velocity of the cloud. The broken power law is usually a good indicator of the jet entrainment model (Zhang & Zheng 1997).

6. SUMMARY AND CONCLUSIONS

We made large, sensitive 12CO $J = 1 \rightarrow 0$ and 13CO $J = 1 \rightarrow 0$ maps of the Haro 6-10 region, over the full extent of the optical parsec-scale HH flow. Here we summarize our main conclusions:

1. The redshifted outflow component is clearly detected emerging from Haro 6-10 toward northeast, along the axis of optically defined parsec-scale HH flow.

2. Contamination from an unrelated foreground cloud along the same line of sight prevents a thorough study of the blueshifted outflow lobe, which we detect centered on Haro 6-10 in the opposite direction from redshifted lobe, and in the velocity range from 0 to 2 km s$^{-1}$.

3. The mass and energies of the outflow are significantly smaller then those of the host molecular cloud. However, most of the mass might be missed due to an unrelated contamination at lower outflow velocities, along the same line of sight, and/or in the plane of the sky orientation of the outflow.

4. In the optical maps next to the HH 412, Haro 6-10 parsec scale flow is crossed by HH 414/413 flow. In CO data at the lowest redshifted velocities, there seem to be evidence of HH 414 IRS activity toward HH 413.

This work was supported by NSF grant AST 02-28993 to the Five College Radio Astronomy Observatory.

Facilities: FCRAO

REFERENCES

Arce, H. G., & Goodman, A. A. 2001a, ApJ, 554, 132
Bachiller, R., Guilloteau, S., Dutrey, A., Planesas, P., & Martin-Pintado, J. 1995, A&A, 299, 857
Bally, J., Reipurth, B., Lada, C. J., & Billawala, Y. 1999, AJ, 117, 410
Chandler, C. J., Barsby, M., & Moore, T. J. T. 1998, MNRAS, 299, 789
Carr, J. S. 1990, AJ, 100, 1244
Codella, C., Welser, R., Henkel, C., Benson, P. J., & Myers, P. C. 1997, A&A, 324, 203
Devine, D., Reipurth, B., Bally, J., & Balonek, T. J. 1999, AJ, 117, 2931
Edwards, S., & Snell, R. L. 1984, ApJ, 281, 237
Freking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
Harjumäe, P., Lehtinen, K., & Haikala, I. K. 2004, A&A, 421, 1087
Herbst, T. M., Koresko, C. D., & Leinert, C. 1995, ApJ, 444, 193
Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & van Langevelde, H. J. 1997, ApJ, 489, 293
Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & van Langevelde, H. J. 1998, ApJ, 502, 315
Levreault, R. M. 1988, ApJ, 330, 897
Movsessian, T. A., & Magakian, T. Y. 1999, A&A, 347, 266
Narayanan, G., & Walker, C. K. 1996, ApJ, 466, 844
Reipurth, B., Bally, J., & Devine, D. 1997, AJ, 114, 2708
Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R., & Churchwell, E. 2000, Protostars and Planets IV, ed. ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson: Univ. Arizona Press), 867
Stojimirović, I., Narayanan, G., Snell, R. L., & Bally, J. 2006, ApJ, 649, 280
Yu, K., Billawala, Y., & Bally, J. 1999, AJ, 118, 2940
Zhang, Q., & Zheng, X. 1997, ApJ, 474, 719