THE PRACTICE OF TIME MANAGEMENT IN CONSTRUCTION PROJECTS

LOK SIEW CHIN

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2014
To my beloved father and mother
ACKNOWLEDGEMENT

Firstly, I would like to thank my God for His blessings and guidance throughout conducting this study and my academic studies.

In particular, I would like to express my highest gratitude to my supervisor, En. Abdul Rahim Abdul Hamid for his patience, awesome tips for presentation, support, guidance, and also his reminders for this study. It is indeed my blessings to be able to work under such cool supervisor.

Also, not forgetting my friends who have stayed by me during these master years! Without them, I would be so lonely throughout the three semesters. To Debbie Melissa who is always cool and funny, without her, my master years are sure to be very boring and lonely! To Xiao Xu, thank you for helping in my crisis financial times and being a dear friend. To Yee Shian and Vrida, thank you both for the fun time together.

Last but not least, I am grateful to my family members for their love, care, support and daily encouragement during carrying the study. They are indeed my pillars of love, support and of course my financial aids!
ABSTRACT

The Malaysian construction industry plays a vital role in the country development. CIOB in 2008 has indicated that the quality of time-management on construction projects is generally poor. Therefore, an effective time management for the construction project is important in managing risk of delayed completion project. The aim of this project is to examine the practice of time management on construction project. The objectives of this study are to assess the respondents’ participation in the planning of construction works, to investigate how progress records are kept and to identify the process of monitoring the progress of work on construction industry. To achieve these objectives, there were thirty questionnaire survey distributed to the respondents. From the findings, project manager has the highest percentage in both drafting a planning method statement and project planning meetings. Most of the respondents had their experience of sequence was planned as a result of a discussion and written method statement, the activity durations being calculated in whole or in part, the price were allocated in separate documents with contingency, date constraints were used constraint the performance to dates given in the contract documents and float constraints were used to control critically. As for the progress reports, majority prefer to keep the records on paper but were immediately input into database. Most of them had the experience of additional work relation to labour allocation. When it came to relating the resource used to the work done and in which location, it was the experience of majority respondents identified task on schedule for both labour and plant and equipment records. The respondents preferred to report the progress in meeting or correspondence and the schedules were updated monthly. Lastly, most of them have corrected the logic to conform to progress achieved to deal with consequences of out of sequence work.
ABSTRAK

Industri pembinaan Malaysia memainkan peranan penting dalam pembangunan negara. CIOB pada tahun 2008 telah menunjukkan bahawa kualiti pengurusan masa projek-projek pembinaan umumnya miskin. Oleh itu, pengurusan masa yang berkesan untuk projek pembinaan adalah penting dalam menguruskan risiko projek siap lambat. Tujuan projek ini adalah untuk mengkaji amalan pengurusan masa di projek pembinaan. Objektif kajian ini adalah untuk menilai penyertaan responden dalam perancangan kerja-kerja pembinaan, menyiapkan bagaimana rekod kemajuan disimpan dan mengenal pasti proses memantau kemajuan kerja pada industri pembinaan. Untuk mencapai objektif ini, tiga puluh soal selidik telah diedarkan kepada responden. Daripada penemuan ini, pengurus projek mempunyai peratusan yang tertinggi dalam draf kenyataan kaedah perancangan dan mesyuarat perancangan projek. Kebanyakan responden mempunyai pengalaman mereka urutan telah dirancang hasil daripada perbincangan dan ditulis kenyataan kaedah, jangkamasa untuk aktiviti yang dikira secara keseluruhan atau sebahagian, harga yang telah diperuntukkan dalam dokumen berasingan dengan luar jangka, kekangan tarikh telah digunakan kekangan prestasi untuk tarikh yang diberikan dalam dokumen kontrak dan kekangan apungan telah digunakan untuk mengawal secara kritikal. Bagi laporan kemajuan, majoriti lebih suka menyimpan rekod-rekod di atas kertas tetapi segera input ke dalam pangkalan data. Kebanyakan mereka mempunyai pengalaman berhubung kerja-kerja tambahan kepada peruntukan buruh. Kebanyakan responden mengikut jadual bagi buruh dan jentera dan rekod peralatan apabila berkaitan dengan sumber yang digunakan untuk kerja-kerja yang dilakukan dan untuk lokasi tertentu. Responden lebih suka melaporkan kemajuan dalam mesyuarat atau surat-menyurat dan jadual telah dikemaskini setiap bulan. Akhir sekali, kebanyakan mereka membetulkan logik untuk menepati kemajuan dicapai untuk menangani akibat daripada kerja urutan.
TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARATION	ii	
DEDICATION	iii	
ACKNOWLEDGEMENTS	iv	
ABSTRACT	v	
ABSTRAK	vi	
TABLE OF CONTENTS	vii	
LIST OF TABLES	xii	
LIST OF FIGURES	xv	
LIST OF APPENDICES	xiv	

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objective 3
1.4 Scope of Study 3
1.5 Significance of the Study 4
1.6 Brief Methodology 5
1.7 Arrangement of the Report 6

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Time Management Definition 8
2.2.1 Time Management in Construction Industry 9
2.2.2 Time Management Process 9
2.3 Managing a Construction Project 14
 2.3.1 Procurement Definition 14
 2.3.2 Categorization of Procurement System 15
 2.3.3 Principle Tools for Time Management 19
2.4 Shareholders’ Involvement in the Planning of Construction Work 21
2.5 Types of Software 23
2.6 Progress Records 23
 2.6.1 Problems Encounter in Keeping Progress Record 25
2.7 Process of Monitoring the Progress of Work on Construction Industry 26
2.8 Conclusion 29

3 METHODOLOGY OF STUDY

 3.1 Introduction 30
 3.2 First Stage: Background Study 32
 3.3 Second Stage: Literature Review and Questionnaire Survey Design 32
 3.4 Third Stage: Data collection and Data Analysis 33
 3.5 Fourth Stage: Data and Result Discussion 34
 3.6 Fifth Stage: Conclusion and Recommendations 34
 3.7 Conclusion 35

4 RESULTS AND DISCUSSION

 4.1 Introduction 36
 4.2 Questionnaire Survey 37
 4.2.1 The Organization Represented By the Respondents 37
 4.2.2 Respondents’ Participation in the Planning of Construction Works 41
4.2.2.1 Method of Contract Procurement 41
4.2.2.2 Type of Tool used for Time Management 43
4.2.2.3 Softwares used to prepare the Construction Schedule 44
4.2.2.4 Parties Who Are Usually Involved In Drafting and Project Planning Meetings 46
4.2.2.5 Establishment of the Planned Sequence of Work 47
4.2.2.6 Method That Is Usually Used Identify the Duration of A Planned Activity 49
4.2.2.7 Application of Cost to Planned Activities 50
4.2.2.8 Application of Logic to Planned Activities 52
4.2.2.9 Application of Constraints in Construction Schedule
 4.2.2.9.1 Date Constraints 53
 4.2.2.9.2 Float Constraints 54
4.2.3 How Progress Records are kept in the Construction Industry 55
 4.2.3.1 Type of Progress Records kept in the Company 56
 4.2.3.2 Type of Delay and Compensation Event Record Kept 57
 4.2.3.3 Types of Labour Record Data (Basic Data And Work Data) kept in the Company 58
 4.2.3.4 Type of Plant and Equipment Records (Basic Data and Work Data) kept 60
4.2.4 The Process of Monitoring the Progress of Work on Construction Industry 63
 4.2.4.1 Methods That Are Adopted To Measure the Progress of Activities On Site 63
 4.2.4.2 Assessment of the Progress of the Project as a Whole 64
 4.2.4.3 Monitoring and Updating Construction Schedules 65
4.2.4.4 The Respondents Monitored or Updated Schedules 66
4.2.4.5 Dealing with the Consequences Of Out Of Work Sequence in the Project 67

5 CONCLUSIONS & RECOMMENDATIONS

5.1 Introduction 69
5.2 Conclusions of Study 69
5.3 Limitations of Study 71
5.4 Recommendation 71

REFERENCES 73
APPENDIX A 77
LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Input, tools and techniques and outputs of each of the	13
	processes	
2.2	Common use of tools on construction	20
2.3	Project Stakeholders	22
4.1	List of construction companies that participated in study	38
4.2	Respondent’s nature of work	39
4.3	Company’s grade	40
4.4	Method of contract procurement	42
4.5	Type of tool used for time management	43
4.6	Softwares used to prepare the construction schedule	45
4.7	Parties who are usually involved in drafting a planning	47
	method statement and project planning meeting	
4.8	Establishing the planned sequence of work	48
4.9	Method that is usually used to identify the duration of	49
	a planned activity	
4.10	Application of cost to planned activities	51
4.11	Application of logic to planned activities	52
4.12	The use of date constraints in construction schedule	53
4.13	The use of float constraints in construction schedule	55
4.14	Type of progress records kept in the company	56
4.15	Types of delay and compensation event record kept in	57
	construction	
4.16	How basic labour data is kept	58
4.17	How work labour records are kept	59
Section	Description	
---------	-------------	
4.18	How plant and equipment basic labour records are kept	
4.19	How plants and equipment work data records are kept	
4.20	Methods that are adopted to measure the progress of activities on site	
4.21	Assessment of the progress of the project as a whole	
4.22	Monitoring and updating construction schedules	
4.23	Monitored or updated schedules	
4.24	Dealing with the consequences of out of work sequence in the project	
LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Flowchart of the methodology	5
2.1	Category of building procurement systems	15
2.2	Flowchart for traditional project progress	28
	monitoring practice	
3.1	Methodology of Study Flow Chart	31
4.1	The percentage of respondents’ nature of work	30
4.2	The percentage of company’s grade	40
4.3	The percentage of respondents involving in the method of procurement	42
4.4	The percentage of type of tool used for time management in construction	44
4.5	The percentage of respondents on using the types of software in preparing the construction schedule	45
4.6	The percentage of respondents in establishing the planned sequence of work	48
4.7	The percentage of respondents in using method to identify the duration of a planned activity	50
4.8	The percentage of respondents in applying costs to planned activities	51
4.9	The Percentage of respondents in applying the logic to planned activities	52
4.10	The percentage of respondents using date constraints in construction schedule	54
4.11	The percentage of respondents used float	55
constraints in construction schedule

4.12 The percentage of respondents in keeping the types of progress records in the company 56

4.13 The Percentage of Respondents has the experience of types of delay and compensation event record kept 58

4.14 The percentage of respondents in recording basic labour data 59

4.15 The percentage of respondents in recording work labour data 60

4.16 The percentage of respondents in recording basic plants and equipment data 61

4.17 The percentage of respondents in recording work plants and equipment data 62

4.18 The percentage of respondents in adopting methods in measuring the progress of activities on site 64

4.19 The percentage of respondents in assessing the progress of the project as a whole 65

4.20 The percentage of respondents in monitoring and updating construction schedules 66

4.21 The percentage of respondents in ways of monitoring or updating schedules 67

4.22 The percentage of respondents in dealing with the consequences of out of work sequence in the project 68
LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Questionnaire Survey	77
CHAPTER 1

INTRODUCTION

1.1 Introduction

Construction industry only contributed only around 3 percent to the Gross Domestic Product in the year 2010 but however it makes up an important part of the Malaysian economy due to the involvement with other industry branches such as the metals processing industry and the mechanical engineering or the tourism sector. Therefore, the construction industry is a substantial economic driver for Malaysia (ANK Malaysia, 2012). But however, construction has been facing numerous issues and one of them is time management issues which have cause delayed completion of a project. According to Westland (2006), time management is the process of recording and controlling time spent by staff on the project. According to Crutsinger (1994), time management involves determining what one should do by setting goals, deciding which events are the most important and realizing that other activities will have to be scheduled around them (prioritizing), making decisions about how much time to allow for certain tasks (time estimation), adjusting to the unexpected (problem solving), reconsidering goals and priorities on a regular basis (evaluation), and observing patterns and trends in behavior. The issues are poor management of time, choice of procurement methods, participation of shareholders, poor planning of construction works, lack of participation of scheduler and lack of implementation of
software and etc. Thus these issues can lead to delays are insidious often resulting in time overrun, cost overrun, disputes, litigation, and complete abandonment of projects (Sambasivan and Soon, 2007).

1.2 Problem Statement

A research conducted by the Chartered Industry of Building (CIOB) in 2008 has indicated that the quality of time-management on construction projects is generally poor. The research also indicates that the growth in training, education and skill levels within the industry in the use of time-management techniques has not kept pace with the technology available. In addition, there are also very few projects are currently managed by reference to modern methods of time control. Ahmed et al. (2003) found that delay happen in every construction project and the magnitude of these delays varies considerably from project to project. Some projects are only a few days behind schedule and some are delayed by over a year. Also, conflicts in shareholders are one of the factors of unsuccessful projects. El-Razek et al. (2008) identified that different parties of construction in Egyptian construction projects do not agree with each other on the importance of various factors of delay, and they mostly blaming each other of delays. He too finds that team effort is vital in the success of a project. Daniel and Mohan(2002) has discussed that only first-order approximations of duration estimates are provided by the construction time prediction models developed for the Hong Kong public housing industry. Thus, more advanced or available programming computer software such as Primavera Project Planner 2.0 and Microsoft Project 98 to be utilized in order to prepare detailed construction programmes. Liberatore et al in 2001 has mentioned that high percentage of the construction respondents used project management software for general work planning or presentation (Liberatore et al, 2001).Thus this has shown the importance of use of project management software in construction works. Also, Scott and Assadi in 1999 has stated that majority of respondents did not keep records of progress that show each of the work activities on the contractor’s programme,
exactly when work took place. The problems were lack of an organized and formalized approach, lack of clear rules and guidelines on how the records are kept and organized, difficulties in ensuring the consistency of reporting by various responsible individuals, inexperience staffs and etc (Scott and Assadi, 1999). Therefore, the importance of project control techniques in managing time to improve the risk of delayed project are needed to be known and recognize so that the risk of project delayed can be minimized.

1.3 Aim and Objectives of Study

The aim of this project is to examine the practice of time management on construction project and the objectives of this study are as follows:

i. To assess the respondents’ participation in the planning of construction works

ii. To investigate how progress records are kept on construction industry

iii. To identify the process of monitoring the progress of work on construction industry

1.4 Scope of Study

The scopes of data collection in this study will focus on the aspects as follows:

i. The construction company such as contractor who involved in building and infrastructures construction.

ii. The selected construction company must be in the range of Class A till Class F for those register under Pusat Khidmat Kontractor (PKK) or Grade G1 till
G7 for those register under Construction Industry Development Board (CIDB).

iii. The selected construction company also must have their own’s managerial staffs such as project managers and site manager as well as their subordinates like site supervisors, architect, quantity surveyor and administration staff excluding foreman and labours.

iv. The selected construction companies are located around the Johor and Kuala Lumpur due to the availability of good number of projects.

1.5 Significant of Study

Successful project management insures the completion of project in time, within budget, and to the project specifications. Therefore, this study is significant to investigate on how time is managed on construction industry. So that the managerial staffs can get a clear understanding on time management and they are able to prevent them early. Shareholders need to know their roles and their responsibilities. Construction works need to have a good and detail progress records to deal with future claims. This study is to let the managerial staff to know the importance of monitoring the progress of work on construction industry. Lastly, this study can become a guideline for future development in other possible areas.
1.6 Brief Methodology

The methodologies used in this study are literature search, interview with expert panels and distribution of questionnaire survey. Figure 1.1 shows the flowchart of the methodology.

![Flowchart of the methodology]

Figure 1.1: Flowchart of the methodology
1.7 **Arrangement of the Report**

In order to achieve the objective of the study, methodology of study is illustrated in Figure 1.1. This study has five chapters which are discussed below.

In the first chapter, problem statement is to identify by latest global demand and trending. Based on the problem statement, formation of objective, title selection and scope of the study then can be determine.

The second chapter is the literature review where this chapter has discussed all the information on time management and other information that relates to the objectives of the study from the literature or from previous researchers. The information is based on articles, journals, research paper, published books and websites.

In the third chapter which is the methodology of the study, this chapter discussed in detail how the study being conducted as well as the method of analysis used to get the results data. Data analysis of primary data collected form the respondent answered questionnaire using SPSS version 12.0, average index formula. From analyzed data, table, graph, bar chart and pie chart can be made.

Then, in the fourth chapter, data interpretation, data discussion and data comparison are based on the result that has been analysed.

Lastly, conclusion and recommendation of the study will be discussed in detail in the fifth chapter.
Abdel-Wahhab, O., & Elazouni, A. (2010, May). Progress monitoring of construction projects using statistical pattern recognition. In Construction Research Congress (Vol. 2, pp. 1204-13).

Ahmed, S.M., Azhar, S., Kappagntula, P. and Gollapudil, D. (2003), “Delays in construction: a brief study of the Florida construction industry”, Proceedings of the 39th Annual ASC

ANK Malaysia (2012). Market Watch 2012-Construction Industry in Malaysia. Available from: http://www.malaysia.ahk.de/fileadmin/ahk_malaysia/Market_reports_2012/Market_Watch_2012_-_Construction.pdf [Assessed on 6/5/2013]

Arditi, D., Pattanakitchamroon,T. (2006). Selecting a delay analysis method in resolving construction claims, International Journal of Project Management 24, 145–155.

Ashworth A (2001) Contractual Procedures in the Construction Industry, UNITEC, New Zealand

Australian Chambers of Commerce and Industry (2003). Government Procurement 2003, ACCI, Australia.

Bramble, B.B. and Callahan, M.T. (1992) Construction Delay Claims, 2nd Edn. Wiley, New York.

Chartered Industry of Building (CIOB), 2008. Managing the Risk of Delayed Completion in the 21st Century

Crutsinger, C. (1994). Thinking smarter: Skills for academic success. Carrollton, TX: Brainworks, Inc.
Daniel W.M. Chan, Mohan M. Kumaraswamy. (2002) Compressing construction durations lessons learned from Hong Kong building projects. International Journal of Project Management 2035
El-Razek, A.M.E., Bassioni, H.A., Mobarak, A.M. (2008). Causes of delay in building construction projects in Egypt. Journal of Construction Engineering Management 134, 831–841.
Fewings, P (2005). Construction project management: An integrated approach. London: Taylor and Francis.
Gibson, K. (2000). The moral basis of stakeholder theory. Journal of Business Ethics, 26(3), 245-257.
Heesom D, Mahdjoubi L. (2002). Technology opportunities and potential volume 2: project planning software, a VIRCON project report: University of Wolverhampton.
Hegazy, T., Elbeltagi, E., & Zhang, K. (2005). Keeping better site records using intelligent bar charts. Journal of construction engineering and management, 131(5), 513-521.
Ireland, V. (1985). The role of managerial actions in the cost, time and quality performance of high-rise commercial building projects. Construction Management and Economics, 3(1), 59-87.
Iyer, K.C., Jha, K.N. (2005). Factors affecting cost performance: evidence from Indian construction projects. International Journal of Project Management 23, 283–295
Jergeas, G. F., & Hartman, F. T. (1994). Contractors’ construction-claims avoidance. Journal of Construction Engineering and Management, 120(3), 553-560.
Jordan, C., Cobb, N., & McCully, R. (1989). Clinical issues of the dual-career couple. Social Work, January, 29-32.
Kangari, R. (1995). Construction documentation in arbitration. Journal of construction engineering and management, 121(2), 201-208.
Kelly, W. E. (2002). No time to worry: the relationship between worry, time structure, and time management. Personality and Individual Differences, 35, 1119-1126.
Lakein, A. (1973). How to get control of your time and your life. PH Wyden.
Liberatore, M. J., Pollack-Johnson, B., & Smith, C. A. (2001). Project management in construction: software use and research directions. Journal of Construction Engineering and Management, 127(2), 101-107.

Lo, T.Y., Fung, I.W.H., Tung, K.C.F. (2006). Construction delays in Hong Kong civil engineering projects. Journal of Construction Engineering Management, 132, 636–649.

Mackenzie, R. A. (1972). The time trap: How to get more done in less time. New York, NY: AMACOM.

Mackenzie, R. A. (1975). New time management methods for you and your staff. Chicago, IL: The Dartnell Corporation.

Mackenzie, R. A. (1990). The time trap. New York, NY: AMACOM.

Major, W.T. and Ranson, A. (1980) Building and Engineering Claims, Oyez Publishing, London.

Masterman J W E (1996) – Building Procurement Systems: An Introduction, E & FN Spon, London

Mcgraw, B.A, Leonoudakis, R. (2009). Project Time Management: The Foundation for Effective Resource Management. Available from: http://www.rbryanpeterson.com/files/Project_Time_Management_v2_2 Feb 2009-1.pdf [Assessed on 15/04/2013]

Memon, Z. A., Majid, M. Z. A., & Mustaffar, M. (2006). A systematic approach for monitoring and evaluating the construction project progress. The Journal of the Institution of Engineers, 67 (3), 26-32.

Nash, S, Chinyio, E, Gameson, R and Suresh, S (2010). The dynamism of stakeholders’ power in construction projects. In: Egbu, C. (Ed) Procs 26th Annual ARCOM Conference, 6-8 September 2010, Leeds, UK, Association of Researchers in Construction Management, 471-480.

Onacken, W. Jr., & Wass, D. L. (1985). Management time: Who’s got the monkey? In Winning the Race Against Time: How Successful Executives Get More Done in a Day (pp. 49-54). Boston, MA: Harvard Business Review.

PMBOK Guide (2008). Project Management Institute, Inc. Newtown Square, Pennsylvania, USA

Pogorilich, D. A. (1992). The daily report as a job management tool. Cost Engineering, 34(2), 23-25.
Rashid, R. A., Taib, I. M., Ahmad, W. B. W., Nasid, M. A., Ali, W. N. W., & Zainordin, Z. M. (2006). Effect of procurement systems on the performance of construction projects. Department of Quantity Surveying, University of Technology, Malaysia.

Russell, A. D. (1993) Computerised daily site reporting. Journal of Construction Engineering and Management, ASCE, 119(2), 385-402.

Russell, A. D. ~1995!. “Automated interpretation of job site records.” Proc., 2nd Congress on Computing in Civil Engineering, Atlanta, 989–996.

Sambasivan, M., Soon, Y.W. (2007). Causes and effects of delays in Malaysian construction industry. International Journal of Project Management 25, 517–526.

Satyanarayana, K.N., Iyer, K.C. (1996). Evaluation of delays in Indian construction contracts. Journal of the Institution of Engineers (India) 77, 14–22.

Sawalhi, N., & Enshassi, A. (2012). Application of Project Time Management Tools and Techniques to the Construction Industry in the Gaza Strip. Australasian Journal of Construction Economics and Building, 5(1), 1-8.

Schuler, R. S. (1979). Managing stress means managing time. Personnel Journal, December, 851-854.

Scott, S., & Assadi, S. (1999). A survey of the site records kept by construction supervisors. Construction Management & Economics, 17(3), 375-382.

Simpson, B. G. (1978). Effective time management. Parks & Recreation, 13, (9), 61-63

Skitmore, R. M., & Marsden, D. E. (1988). Which procurement system? Towards a universal procurement selection technique. Construction Management and Economics, 6(1), 71-89.

Soucie, D. (1986). Proper management of your time. CAHPER Journal, 52, (2), 36.

Turner, J.R. (2009), The Handbook of Project Based Management: Leading Strategic Change In Organization, 3rd edition, United States of America: McGraw-Hill, print.

Westland, J. (2006). The Project Management Life Cycle: A Complete Step-by-step Methodology for Initiating Planning Executing and Closing the Project. Kogan Page Limited, London, UK

Winch, G (2002) Managing construction projects. London: Blackwell Publishing.