The effect of aluminium on the microstructure and hardness of high austenitic manganese steel

To cite this article: F Bahfie et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 285 012020

View the article online for updates and enhancements.
The effect of aluminium on the microstructure and hardness of high austenitic manganese steel

F Bahfie¹, B B Aji¹, F Nurjaman¹, A Junaedi¹ and E H Sururiah²

¹ Research Division for Mineral Technology, Indonesia Institute of Science, Ir. Sutami Kmur 15 South Lampung, Lampung 35361, Indonesia
² Physic Department, Faculty of Mathematics and Natural Sciences, Lampung University, Prof. Dr. Soemantri Brodjonegoro No. 1 Bandar Lampung, Lampung 35145, Indonesia

Email: fathan.bahfie@lipi.go.id

Abstract. High-strength manganese aluminium and austenitic steels have the reason of their perfect combination of high mechanical properties and good plasticity for the structural elements. They have the microstructure stability, and goodstrength properties because of the addition of aluminium. The effect of aluminium on high austenitic manganese steel were investigated. The samples were examined with several tests such as microstructure, chemical content, and hardness. The effect of aluminium had been influenced the formation of the Fe-Al-Mn-C phase and the lower hardness of samples.

1. Introduction

In recent new, the structural elements (automotive and railway industries) are used high-strength manganese-aluminium austenitic and austenitic-ferritic steels by reason their perfect combination of high mechanical properties and good plasticity. The application of construction materials is relied on improvement of their casting properties and deformability under conditions of plastic working by their development and commercialization. A proper selection of chemical composition, modification of the initial microstructure, grain refining, and application of proper parameters of the thermomechanical treatment may be accepted by its, completing an optimal combination of strength and plastic properties[1-9].

In various industries, the demand for high strength steels with excellent ductility has been increasing and automobile manufacturing in particular, aimed at not only improving the productivity, safety and comfort levels, but also reducing the weight of automobile body to decrease fuel consumption and exhaust emission as well [7-10]. On other hand, the newest high-manganese steels, such as transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP), have the microstructure stability, stacking fault energy value and good strength properties [10-14]. Material TWIP (twinning induced plasticity) is represented by Fe-Mn-C chemical composition with low aluminium content, finally, even with poor silicon. Consequently, even though, material TRIPLEX (beside iron three elements) is established on the origin of Fe-Mn-C-Al with aluminium content higher than 8 wt % and without silicon content. Depending on high manganese type and on carbon content manganese reaches higher level than 19 wt. % usually and in this way recognizes the basic austenite microstructure of FCC type, consequently [15-17].

Therefore, the main of this research was to investigate the effect of low weight percent aluminium on the microstructure and hardness of high austenitic manganese steel. Whereas high carbon in high austenitic manganese steel can affect on its microstructure.
2. Experimental
The high carbon austenitic manganese steel with aluminium and non-aluminium was investigated. The chemical composition of the sample is presented in table 1. Steel, aluminium scrap, and ferromanganese was melted at temperature 1600°C and then it was poured in the mould. The effects of aluminium on the hardness and microstructure of austenitic manganese steel were examined. The measurement of hardness and density was conducted by using Rockwell hardness testing machine and Archemedes’s theory, while the microstructure was analyzed by an optical microscope (Nikon Eclipse MA 100, Japan).

Sample	C	Mn	Si	Ni	Al
Sample 1	1.15	15	0.73	0.26	0.002
Sample 2	1.06	20	0.7	0.23	2.78

3. Result and Discussion

3.1 The characterization of high carbon austenitic manganese steel
The microstructure of high carbon austenitic manganese steel in as-cast condition comprised austenitic and some of the carbides (Fe,Mn)₃C (black) in austenite (white) and grain boundaries, as shown in figure 1. According [18], the carbides were formed and precipitated along austenite grain boundaries due to the slow cooling in solidification process. This carbide network resulted a negative effect on toughness. From figure 1, the matrix was austenite. The hardness of high carbon austenitic manganese steel was only 19 HRC.

![Figure 1. Microstructure of sample 1](image)

Note: Carbide → Austenite

3.2 The effect of aluminium on the microstructure and hardness of high carbon austenitic manganese steel
The addition of aluminium was conducted to dissolve the carbides that were found in sample 1. In figure 2 shows the microstructure of austenitic manganese steel after adding aluminium. It was found that Fe-Mn-Al-C phase appeared on its structure. According [4], the characteristic of high aluminium manganese alloys with high content of carbon was the presence in the structure of carbide variable composition (Fe,Mn)₃AlC₁₋ₓ with FCC lattice in which atoms of iron or manganese are arranged on the faces, and a carbon atom is in the center. Its matrix will be dominated by dendrite of Fe-Al-C structure and austenite matrix. This Fe-Al-C structure resulted the low hardness of this austenitic manganese steel. All carbides were dissolved into the dendrite Fe-Al-C by adding...
aluminium. Carbon will be decreased in the austenitic matrix in table 1 and figure 2. The hardness of sample 2 was only 1.5 HRC. The hardness of sample 2 was lower than sample 1.

Note:
Fe-Al-C Structure.
Austenite.

Figure 2. Microstructure of sample 2

4. Conclusion
The microstructure of material 1 consisted the austenitic matrix with carbide along its grain boundaries. However the material 2 founded the Fe-Al-C dendrite in austenite matrix was caused the addition of aluminium. The hardness have the small effect of aluminium. At higher weight percent of aluminium would be affected larger the dispersion of Fe-Al-C dendrite, and lower hardness. Adding aluminium hadn’t.

Acknowledgment
We would like to thank the Indonesian Institute of Sciences for the financial support, Mrs. Nurbaiti Marsas and Mr. Zulkifli Ilyas for the technician support.

References
[1] Hamada A S, 2007 Manufacturing, Mechanical Properties and Corrosion Behaviour of High-MnTWIP Steels (Czech Republic:Universitatis Ouluensis) 1 - 56.
[2] Kuc D, Hadasiśk E, Niewielski G, Schindler I, Mazan-cová E, Rusz S and Kawulok P 2012 Archives of Civil and Mechanical Engineering 12 312 - 7
[3] Lasek S and Mazancova E 2013 Metalurgija 52(4) 441 - 4
[4] Mazancova E, Ruziak I and Schindler I 2012 Archives of Civil and Mechanical Engineering 12 142 - 7
[5] Wiewiórowska S 2013 Archives of Metallurgy and Material 58 573 - 8
[6] Jabłońska M and Śmieglewicz A 2013 Defect and Diffusion Forum 334-335 177 – 81
[7] Bleck W and Phiuon K 2007 Freiberg: Säische Fachtagung Uniformtechnik, Werkstoffe und Komponenten für Fahrzeuge 14 38 - 55
[8] Jabłońska M, Śmieglewicz A, Niewielski G and Hetmańczyk M 2011 IOP Conference Series - Materials Science and Engineering 22 1 - 5
[9] Farahata A I Z, Hamedb O, El-Sisi A and Hawash M 2011 Materials Science and Engineering A 530 98 – 106
[10] Jabłońska M B 2014 Arch. of Metal. and Mater. 59(3) 1193 - 7
[11] Grajcar A, Różanski M, Kaminska M and Grzegorczyk B 2014 Arch. of Metal. and Mater. 59 3 1164 - 9
[12] Yang W S and Wan C M 1990 Journal of Materials Science 25 1 - 3
[13] Kuziak R, Kawalla R and Waengler S 2008 Archives of Civil and Mechanical Engineering 2 103 - 18
[14] Chen L, Zhao Y and Qin X 2013 Acta Metall Sin. 26 1 - 15
[15] Scott C, Allain S, Farel M and Guelton N 2006 Rev. de Met. 103 307 – 17
[16] Schumann V H 1972 Neue ütte 17 605 – 9
[17] Grässer O and Frommeyer G 1998 Material Sci. and Technology 14 1213-121
[18] Nurjaman F, Bahfie F, Widi A and Shofi A 2017 IOP Conf. Series: Journal of Physics: Conf. Series 817 012063