A case report of a boy suffering from Type 1 Diabetes Mellitus and Familial Mediterranean Fever

maria francesca gicchino (francesca.gicchino@gmail.com)
University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli
https://orcid.org/0000-0003-0329-6583

Dario Iafusco
University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli

Angela Zanfardino
University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli

Emanuele Miraglia del Giudice
University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli

Alma Nunzia Olivieri
University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli

Case report

Keywords: recurrent fever, abdominal pain, arthritis, diabetes mellitus, colchicine, anti interleukin 1 drugs

DOI: https://doi.org/10.21203/rs.3.rs-118207/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Type 1 diabetes mellitus could be associated with other autoimmune diseases, such as autoimmune thyroid disease, celiac disease, but the association with Familial Mediterranean Fever is rare, we describe a case of a boy with type 1 Diabetes Mellitus associated with Familial Mediterranean Fever (FMF)

Case presentation: A 13 year old boy already suffering from Diabetes Mellitus type 1 since the age of 4 years, came to our attention because of periodic fever associated with abdominal pain, chest pain and arthralgia. The fever appeared every 15-30 days with peaks that reached 40°C and lasted 24-48 hours. Laboratory investigation, were normal between febrile episodes, but during the attacks revealed an increase in inflammatory markers. Suspecting Familial Mediterranean Fever molecular analysis of MEFV gene, was performed. The genetic analysis showed homozygous E148Q mutation. So Familial Mediterranean Fever was diagnosed and colchicine treatment was started with good response.

Conclusion. Familial Mediterranean Fever could be associated with other autoimmune diseases such as Ankylosing Spondylitis, Rheumatoid Arthritis, Polyarteritis Nodosa, Behcet disease, Systemic Lupus, Henoch-Schönlein Purpura, and Hashimoto's Thyroiditis. Association of type 1 Diabetes Mellitus and Familial Mediterranean Fever has been newly reported in the medical literature, this is the third association of these two diseases described in the medical literature so far.

Background

Familial Mediterranean fever (FMF) is a monogenic autoinflammatory disease with autosomal recessive inheritance[1]. The main clinical findings of FMF are recurrent and self-limited fever attacks lasting between 12 to 72 hours. Severe abdominal, articular and/or chest pain, due to inflammation of the peritoneum, synovia or pleura usually accompany fever[2]. Between attacks, FMF patients are free of symptoms. The most important factor determining the prognosis of FMF is the development of amyloidosis, which could lead to renal failure[3]. FMF is the most common hereditary recurrent fever syndrome[1]. Approximately 150,000 people worldwide are estimated to have this condition. The prevalence of FMF is very high among certain ethnic groups such as Jewish, Turkish, Armenian and Arabs, reaching figures as high as 1/500 individuals. However, FMF has also been report all around the world[4]. FMF result from a mutation of the Mediterranean fever (MEFV) gene, located on chromosome 16[5] and is inherited in an autosomal recessive manner. Although this is a monogenic disease, epigenetic factors and microbiota may play a role in the pathogenesis of FMF or phenotypic expression[6]. Nearly 30% of documented FMF patients carry only one mutation, and up to 20% of patients do not have detectable mutations [7]. More than 50 FMF-associated mutations in MEFV have been reported [8]. The most frequent are: M694V, V726A, M694I, and M680l located at exon 10 and E148Q located at exon 2[1]. The MEFV gene encodes the protein pyrin, that has an important role in the inflammatory response by regulating caspase-1 activation and processing mature IL-1β[9]. The diagnosis
of FMF relies mainly on clinical findings, and molecular analysis of the MEFV gene provides genetic confirmation [10].

There are different sets criteria for FMF diagnosis. The first set criteria was created for adults by a group of experts [11]. In 2009 Yalcikaya et al validated a set criteria for paediatric patients [12]. Recently, the Eurofever group proposed a new set criteria for autoinflammatory recurrent fevers which include the combination of ethnicity, clinical manifestations and genotype (these sets criteria are compared in table 1) [13].

Colchicine is the standard treatment for FMF. However, it could be ineffective or associated with side effects in 5 to 10% of patients [13]. Different studies suggested that interleukin-1(IL-1) inhibition improves clinical and laboratory features in colchicine-resistant FMF [14–16]. In this group of patients anti IL-1 drugs like anakinra, canakinumab or rinolacept could be used [14]. Canakinumab is the only biologic agent approved by the U.S. FDA for the treatment of FMF [17].

FMF could be associated with other autoimmune diseases such as ankylosing spondylitis, rheumatoid arthritis, polyarteritis nodosa, Behcet, multiple sclerosis, and Systemic Lupus, Henoch-Schönlein purpura, and Hashimoto’s thyroiditis [18, 19]. Association of type 1 diabetes mellitus (T1D) and FMF has been newly reported in the medical literature [20, 21]. We report a case of a boy suffering from T1D, who developed FMF. This is the third association of these two diseases described in the medical literature.

Case Report

The patient was in follow up in the Paediatric Diabetological Center of our Department because he developed T1D at the age of 4. At the age of 13 he was referred to the Paediatric Rheumatological Centre of our Department because of episodes of recurrent fever since the age of 6. Fever attacks, with temperature ranging between 39 to 40 °C, lasted 24 to 72 hours and occurred every 21–30 days. These episodes where associated with arthralgia, abdomen, and chest pain.

Over the years because of fever and abdominal pain, the patient usually referred to Emergency, where he underwent to abdomen ultrasounds in order to exclude acute appendicitis. Blood tests performed during fever attacks showed increase in inflammatory parameters, erythrocyte sedimentation rate (ERS) and C-reactive protein (CRP).

Fever attacks were treated with antipyretic drugs and in some occasion with antibiotic. Between attacks patient was well and blood tests were normal. The patient came to our attention during a febrile attack. Physical examination revealed: fever (body temperature up to 40 °C), abdominal and chest pain, arthritis of the right ankle. Blood tests revealed an increase in white cells (17.000/mm3, normal value < 10.000/mm3), ERS (60 mm/ h), CRP (3.7 mg/dl) serum amyloid A (SAA, 200 mg/dL). Blood tests were unremarkable for: viral serology, liver and kidney function, serum immunoglobulins, celiac screening, thyroid hormone, antinuclear antibodies, extractable nuclear antigens, anti neutrophil Cytoplasmic antibodies, rheumatoid factor, anti-double stranded DNA, serum antistreptolysin O titre and complement
levels. Throat swab was negative and so were the urinalysis, and the abdomen ultrasound. Chest ultrasound showed pleural effusion. Given his personal history, clinical and laboratory findings FMF was suspected, so colchicine therapy (1 mg/day) was prescribed and genetic investigation was performed. The molecular analysis of MEFV gene, showed homozygous E148Q mutation. Colchicine determined the immediate disappearance of the symptoms and normalization of inflammatory parameters. Colchicine was well tolerated.

After one year a renal biopsy was performed because of onset of persistent microalbuminuria. On biopsy Congo red staining was negative, so amyloidosis was excluded, but a slight and irregular thickening of the lamina densa of some glomerular capillaries was detected, so diabetic nephropathy was diagnosed and Ramipril treatment (2,5 mg/day) was prescribed. Regarding FMF, after 18 months without symptoms, the patient presented again fever and abdominal pain, associated with an increase in inflammatory parameters, so colchicine was increased to 1.5 mg/day. On his recent follow up visit, at 17 years of age, the patient was in good general conditions. Daily insulin requirement was 0,8U/kg/day. Patient did not refer fever or abdominal pain, and urynalysis did not reveal microalbuminuria. As he did not refer any side effects, both colchicine (1,5 mg/day) and ramipril (2,5 mg/day) were confirmed.

Discussion And Conclusion

FMF is an autoinflammatory disease with autosomal recessive inheritance. Our patient presented homozygous E148Q mutation. E148Q is the most frequent variant among carriers, its pathogenic role is uncertain[22]. In a recent analysis Topaloglu et al. demonstrated that patients homozygous for E148Q displayed typical FMF phenotype and half of these patients had moderate/severe disease before colchicine treatment [22].

Aydin et al. demonstrated that E148Q mutation is associated with a milder disease course, despite patients may have similar clinical findings and well response to colchicine therapy, when compared to patients with other mutations [23]. In our case, the patient presented recurrent fever episodes associated to abdominal, chest pain, and arthralgia and presented a good response to colchicine treatment.

It has been reported that E148Q mutation could induce a nonamyloidosis renal involvement. In particular Eroglu et al. described a case of mesangial proliferative glomerulonephritis in a woman affected by FMF with an heterozygous E148Q mutation[24]. Ardalan et al reported a case of an acute glomerulonephritis with proteinuria in a patient affected from FMF with an heterozygous E148Q mutation[25]. Our patient presented persistent microalbuminuria one year later FMF diagnosis, so a renal biopsy was performed that revealed slight and irregular thickening of the lamina densa of some glomerular capillaries. This histopathological finding was compatible with diabetic nephropathy, so treatment with Ramipril was started[26].

Pyrin, the protein product of MEFV, is a 781-aminoacid protein expressed in serosal and synovial fibroblasts, granulocytes, and cytokine-activated monocytes.
The role of pyrin in IL-1 activation is controversial [8]. Campbell et al. supposed that pyrin suppresses the activation of pro-caspase-1, by competing for ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), and therefore pyrin interferes with NALP3 inflammasome activation [8]. Chae et al. demonstrated that Pyrin containing FMF-associated mutations has less of an inhibitory effect on the inflammasome, leading to upregulated synthesis of IL-1β [9].

T1D is a T-cell–mediated autoimmune disease characterized by the destruction of pancreatic beta cells in genetically predisposed individuals[27].

As in other autoimmune conditions, both innate and adaptive immunity play a role in disease pathogenesis[28, 29].

Kumar et al demonstrated that T-helper type 17 (Th17) cells, have a pivotal role in T1D pathogenesis [30]. Proinflammatory cytokine, in particular interleukin 1 (IL-1) and 6 (IL-6), are involved in differentiation of T-cells in Th17 [30]. Dogan et al. showed that there is an increase in serum TNFα, IL-6, IL-1 in diabetic subjects compared to control subjects at onset of clinical disease [31]. Bradshaw et al. showed that monocytes of T1D patients secrete high levels of pro-inflammatory cytokines IL-1 and IL-6, which are known to induce and expand Th17 cells [32].

In 2015 Hu et al. demonstrated that NLRP3 could play an important role in the development of T1D in mice [33]. The authors showed that inhibition of NLRP3 protected from T1D development in mice.

The coexistence of FMF and type T1D is a rare finding. In 2006 Atabek et al. described a case of a 9 years old girl affected from T1D who developed FMF 11 months later diabetes onset[20]. In 2009 Baş et al reported a second patient with type T1D associated with FMF who also had autoimmune thyroid disease (ATD), celiac disease (CD) [21]. In line with the recent progress in the understanding of T1D pathogenesis, in particular regarding the possible role of NALP 3 inflammasome, we can suppose that the immune dysregulation in FMF leading to an increase production of IL1 could be involved in development of T1D.

Here we report the third association of FMF and T1D. FMF should be kept in mind in the differential diagnosis of disorders associated with T1D in the presence of recurrent and limited attacks of fever, associated with abdominal or chest pain or arthritis. The emerging role of the inflammasome in the development of T1D adds a further dimension to our understanding of the multifactorial nature of the immunopathology that leads to the development of T1D but also opens a new area of research for potential therapy.

List Of Abbreviations

FMF: Familial Mediterranean Fever; IL-1: Interleukine 1; IL-6: Interleukine 6; T1D: type 1 diabetes mellitus; ERS: erythrocyte sedimentation rate; CRP: C-reactive protein; SAA: serum amyloid A; ASC: apoptosis-associated speck-like protein containing a caspase recruitment domain; TNFα: tumor necrosis factor alfa; Th-17: T-helper type 17; ATD: autoimmune thyroid disease; CD: celiac disease.
Declarations

ACKNOWLEDGEMENTS

All Authors are grateful to Prof. Maria Rosaria Taddeo for the English revision of the manuscript.

Funding

There is no institutional, financial or material support for publishing the manuscript.

Availability of data and materials

Not applicable.

Author information

Affiliations

Department of Woman and Child and General and Specialized Surgery, University of the Study of Campania "Luigi Vanvitelli", Via Luigi de Crecchio 4, 80138, Naples, Italy

Maria Francesca Gicchino, Dario Iafusco, Angela Zanfardino, Alma Nunzia Olivieri & Emanuele Miraglia del Giudice

Contributions

MFG: involvement in medical diagnosis and follow up of the patient; first writers of the manuscript (they contributed equally to this work). AZ, DI, ANO: involvement in diagnosis and management of the patient. ANO, EM: supervision of the medical procedures and of the process of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Francesca Gicchino

Ethics declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication

Written informed consent was obtained from the patient's parents for publication of this case report.

Competing interests

The authors declare no potential competing interests with respect to the research, authorship, and/or publication of this article.
Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1 Sari I, Birlik M, Kasifoglu T (2014) Familial Mediterranean fever: an updated review. Eur J Rheumatol 1: 21-23.

2 Ozen S, Bilginer Y (2014) A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin Nat Rev Rheumatol 10(3):135–147. https://doi.org/10.1038/nrrheum.2013.174

3 Nursal AF, Tekcan A, Kaya SU, Turkmen E, Yigit S (2016) Mutational Spectrum of the MEFV Gene in AA Amyloidosis Associated With Familia Mediterranean Fever IJKD 10:107-12

4 Ozen S (2018) Update on the epidemiology and disease outcome of Familial Mediterranean fever Best Practice & Research Clinical Rheumatology 32 254e260

5 International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever Cell 90: 797–807.

6 Ozen S, Batu ED, Demir S (2017) Familial Mediterranean Fever: Recent Developments in Pathogenesis and New Recommendations for Management Front Immunol 8:253. https://doi10.3389/mmu.2017.00253. eCollection

7 Ben-Zvi I, Herskovizh C, Kukuy O, Kassel Y, Grossman C, Livneh A (2015) Familial Mediterranean fever without MEFV mutations: a case-control study Orphanet Journal of Rare Diseases 10: 34.

8 Campbell L, Raheem I, Malemud CJ and Askari AD (2016) The Relationship between NALP3 and Autoinflammatory Syndromes Int. J. Mol. Sci. 17:725

9 Chae JJ, Cho YH, Lee GS, et al (2011) Gain of function pyrin mutations induce NLRP3 protein – independent interleukin-1 beta activation and severe autoinflammation in mice. Immunity 34:755-768.

10 Sönmez HE, Batu ED, Özen S (2016) Familial Mediterranean fever: current perspectives, J Inflamm Res 9:13-20

11 Livneh A, Langevitz P, Zemer D, et al (1997) Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum 40: 1879–85.

12 Yalcinkaya F, Ozen S, Ozcakar ZB, et al (2009) A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology 48: 395–8.
13 Ozen S, Demirkaya E, Erer B, et al (2016) EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis 75:644-51

14 Gül A, Ozdogan H, Erer B, et al (2015) Efficacy and safety of canakinumab in adolescents and adults with colchicine-resistant familial Mediterranean fever. Arthritis Res Ther 17:243.

15 Ozen S, Bilginer Y, Aktay Ayaz N, Calguneri M (2011) Anti-interleukin 1 treatment for patients with familial Mediterranean fever resistant to colchicine Journal of Rheumatology 38:516–8.

16 Ozen S, Kone-Paut I, Gül A (2017) Colchicine resistance and intolerance in familial Mediterranean fever: Definition, causes, and alternative treatments. Semin Arthritis Rheum 47:115-120

17 Ilaris (canakinumab) Prescribing Information. Novartis Pharmaceuticals Corporation. September 2016

18 Ergul AB, Dursun I, Torun YA (2013) Hashimoto's thyroiditis in a child with familial Mediterranean fever: a case report. Iran J Pediatr 23:489e90.

19 Erten S, Taskaldiran I, Yakut ZI (2013) Are systemic lupus erythematosus patients carrying MEFV gene less prone to renal involvement? Report of three cases and review of the literature. Ren Fail 35:1013e6.

20 Atabek ME, Pirgon O, Sert A, Arslan U(2006) Familial Mediterranean fever associated with type 1 diabetes. Endocrinol 16:133e5.

21 Bas F, Kabatas -Eryilmaz S, Günöz H, Darendeliler F, Küçü kemre B, Bundak R, Saka N(2009) Type 1 diabetes mellitus associated with autoimmune thyroid disease, celiac disease and familial Mediterranean fever: case report. Turk J Ped 51:183e6.

22 Topaloglu R, Batu ED, Yildiz Ç, Korkmaz E, Özen S, Beşbaş N, Özaltın F (2018) Familial Mediterranean fever patients homozygous for E148Q variant may have milder disease. Int J Rheum Dis 21(10):1857-1862.

23 Aydın F, Çakar N, Özçakar ZB, Uncu N, Başaran O, Özdel S (2019) Clinical features and disease severity of Turkish FMF children carrying E148Q mutation J Clin Lab Anal 33:e22852.

24 Eroglu E, Kocyigit I, Ates O, et al (2013) Mesangial proliferative glomerulonephritis in familial Mediterranean fever patient with E148Q mutation: the first case report Int Urol Nephrol. 45(2):591-594.

25 Ardalan M, Nasri H (2014) Massive proteinuria and acute glomerulonephritis picture in a patient with Familial Mediterranean fever and E148Q mutation. Iran J Kidney Dis 8(6):486-488...Seza mber of patients with FMF,rom oteiunuria one year later FMF diagnosis, so he underwent to renal biopsy that or crescentig

26 Chandragiri S, Raju SB, Mandarapu SB, Goli R, Nimmagadda S, Uppin M (2020)
A Clinicopathological Study of 267 Patients with Diabetic Kidney Disease Based on the Renal Pathology Society - 2010 Classification System. Indian J Nephrol 30(2):104-109.

27 DiMeglio LA, Evans-Molina C, Oram RA (2018) Type 1 diabetes. Lancet 391:2449–62. https://doi.org/10.1016/S0140-6736(18)31320-5

28 Diplomatico M, Gicchino MF, Ametrano O, Marzuillo P, Olivieri AN (2017)
A case of urticarial vasculitis in a female patient with lupus: Mycoplasma pneumoniae infection or lupus reactivation? Rheumatol Int. 37(5):837-840

29 Olivieri AN, Iafusco D, Mellos A, Zanfardino A, Mauro A, Granato C, Gicchino MF, Prisco F, Perrone L (2013) Refractory rheumatoid factor positive polyarthritis in a female adolescent already suffering from type 1 diabetes mellitus and Hashimoto's thyroiditis successfully treated with etanercept. Ital J Pediatr.39:64

30. Kumar P, Subramaniyam G (2015) Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes, Cytokine 71(2):366-76. https://doi.org/:10.1016/j.cyto.2014.10.010

31 Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurogoze MK (2006) Serum IL-1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm 2006(1):59206.
https://doi.org/:10.1155/MI/2006/59206.

32 Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, Hafler DA (2009) Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells, J. Immunol. 183: 4432–4439.

33 Hu C, Ding H, Li Y, Pearson JA, Zhang X, Flavell RA, Wong FS, Wen L (2015) NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets Proc Natl Acad Sci U S A 112(36):11318-23.

Tables

Table 1
Tel Hashomer Criteria	Yalcinkaya Ozen criteria	Eurofever/PRINTO clinical + genetic criteria	Eurofever/PRINTO clinical only criteria
Major Criteria			
1. Recurrent febrile episodes with serositis (peritonitis, synovitis or pleuritis)	1- Fever (Axillary temperature of >38°C, 6 72 h of duration, >3 attacks)	Presence of confirmatory MEFV genotype and at least one among the following: 1-Duration of episodes 1-3 days	Presence of 1-Eastern Mediterranean ethnicity
2. Amyloidosis of AA type without a predisposing disease	2- Abdominal pain (6 72 h of duration, >3 attacks)	2-Arthritis	2-Duration of episodes 1-3 days
3. Favorable response to regular colchicine treatment	3- Chest pain (6 72 h of duration, >3 attacks)	3- Chest pain	3- Arthritis
	4- Arthritis (6 72 h of duration, >3 attacks, oligoarthritis)	4- Abdominal pain	4- Chest pain
	5- Family history of FMF	Presence of not confirmatory MEFV genotype and at least two among the following: 1-Duration of episodes 1-3 days	5- Abdominal pain
		2-Arthritis	Absence of 1- Aphthous stomatitis
		3- Chest pain	2- Urticarial rash
		4- Abdominal pain	3- Maculopapular rash
			4- Painful lymph nodes

Comparison of Tel-Hashomer, Yalcinkaya Ozen and Eurofer/Printo set criteria. Modified from references 11,12,13

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- carechecklist.pdf