The magnetically-active, low-mass, triple system
WDS 19312+3607

J. A. Caballero1,2, D. Montes2, A. Klutsch2, J. Genebriera3, F. X. Miret4, T. Tobal4, J. Cairo4, and S. Pedraz5,2

1 Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
2 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
3 Observatorio de Tacande, La Palma, Spain
4 Observatori Astronòmic del Garraf, Barcelona, Spain
5 Centro Astronómico Hispano Alemán de Calar Alto (CSIC-MPG), c/ Jesús Durbán Remón 2–2, 04004 Almería, Spain

Received 12 March 2010; accepted 7 Jun 2010

ABSTRACT

\textbf{Aims.} We investigated in detail the system WDS 19312+3607, whose primary is an active M4.5Ve star previously thought to be young (\(\tau \sim 300–500\) Ma) based on high X-ray luminosity.

\textbf{Methods.} We collected intermediate- and low-resolution optical spectra taken with 2 m-class telescopes, photometric data from the \(B\) to \(8\)\(\mu m\) bands, and eleven astrometric epochs with a time baseline of over 56 years for the two components in the system, G 125–15 and G 125–14.

\textbf{Results.} We derived M4.5V spectral types for both stars, confirmed their common proper motion, estimated the heliocentric distance and projected physical separation, determined the galactocentric space velocities, and deduced a most-probable age older than 600 Ma. We discovered that the primary, G 125–15, is in turn an inflated, double-lined, spectroscopic binary with a short period of photometric variability of \(P \sim 1.6\) d, which we associated to orbital synchronisation. The observed X-ray and H\(\alpha\) emissions, photometric variability, and abnormal radius and effective temperature of G 125–15 AB indicate strong magnetic activity, possibly due to fast rotation. Besides, the estimated projected physical separation between G 125–15 AB and G 125–14 of about 1200 AU makes WDS 19312+3607 to be one of the widest systems with intermediate M-type primaries.

\textbf{Conclusions.} G 125–15 AB is a nearby \((d \approx 26\) pc), bright \((J \approx 9.6\) mag), active spectroscopic binary with a single proper-motion companion of the same spectral type at a wide separation. They are thus ideal targets for specific follow-ups to investigate wide and close multiplicity or stellar expansion and surface cooling due to reduced convective efficiency.

\textbf{Key words.} stars: activity – binaries: visual – binaries: spectroscopic – stars: individual (G 125–14, G 125–15) – stars: low mass – stars: variables: general

1. Introduction

The binary WDS 19312+3607 (Washington Double Star identifier: GIC 158) is formed by the two nearby high proper-motion stars G 125–15 and G 125–14 (Giclas et al. 1971; Worley & Douglass 1997; Caballero et al. 2010). The primary, G 125–15, is an active M4.5Ve star with near-solar metal abundance (Reid et al. 2004). The secondary, G 125–14, is about 1 mag fainter in the visible and has never been investigated spectroscopically.

Interestingly, the system WDS 19312+3607 was hypothesised to be a few hundred million years old. First, Fuhrmeister & Schmitt (2003) associated a \textit{ROSAT} soft X-ray source to G 125–15. Secondly, Daemgen et al. (2007) and Allen & Reid (2008) inferred from its location in a \(\log(F_X/F_J)\) vs. \(V – J\) diagram that G 125–15 has X-ray activity levels that exceed those of Pleiades stars of a similar spectral type and conservatively assumed an age of 300–500 Ma, although the M dwarfs in their sample could be younger. Youth, closeness, and late spectral type are the optimal properties for the search for faint companions to stars, which made G 125–15 to be the target of adaptive optics and \textit{IRAC/Spitzer} searches by Daemgen et al. (2007) and Allen & Reid (2008), respectively. They provided restrictive upper limits for the magnitudes and masses of hypothetical brown dwarf and planetary companions at \textit{close separations} (up to a few arcseconds). The secondary star, G 125–14, fell out of the field of view of Altair+\textit{NIRI/Gemini North} in Daemgen et al. (2007), but is among the brightest sources in the \textit{IRAC/Spitzer} images in Allen & Reid (2008). Both groups unintentionally overlooked the existence of the stellar companion. They did not take into account the photometric variability of the primary either, which might be related to activity (and in turn to youth). During the Hungarian-made Automated Telescope Network (HATnet) variability survey in a
field chosen to overlap with the Kepler mission, Hartman et al. (2004) found G 125–15 to be a periodic variable with a pulsating variable-like light curve. They measured a period $P_{\text{phot}} = 1.6267$ d and an amplitude $\Delta I = 0.097$ mag. The secondary star, G 125–14, was not analysed.

From the approximate angular separation of 47 arcsec between G 125–15 and G 125–14 and preliminary estimates of the heliocentric distance to the primary based on spectroscopic parallax (d = 15 pc – Reid et al. 2004; Allen & Reid 2008), we derived a rough projected physical separation $s \sim 700$ AU. This wide separation and the late spectral type of the primary would make the system to be one of the widest low-mass binaries in the field (Caballero 2007, 2009; Artigau et al. 2007; Radigan et al. 2009). If the age estimation by Daemgen et al. (2007) and preliminary estimates of G 125–15 by Daemgen et al. (2009). If the age estimation by Daemgen et al. (2007) and preliminary estimates of G 125–15 by Daemgen et al. (2009) were correct, the WDS 19312+3607 system would besides be the first young wide low-mass binary in the solar neighbourhood. Thus, we aimed at characterising in detail this system with new observations and data compilation from the literature.

2. Observations and analysis

First, we used 11 astrometric epochs to measure the mean angular separation, position angle, and common proper motion of G 125–15 and G 125–14, as listed in Table 1. We collected coordinates tabulated by the SDSS DR7, 2MASS, and CMC14 catalogues, and carried out standard astrometric analyses on public images (POSS, IRAC) and optical images obtained by

Table 1. Multi-epoch astrometric measurements of WDS 19312+3607.

Epoch	ρ [arcsec]	θ [deg]	Source†
1952 Jul 17	45.5±0.4	348	POSS-I Red
1988 Jun 13	46.2±0.4	347	POSS-II Blue
1992 Aug 31	46.0±0.4	348	POSS-II Red
1993 Jun 13	45.7±0.4	347	POSS-II Infrared
1994 Aug 20	45.82±0.10	347.3	SDSS DR7
1998 Jun 01	45.80±0.12	347.4	2MASS
2001 Aug 26	45.90±0.06	347.5	CMC14
2004 Oct 30	45.81±0.10	347.4	IRAC
2008 Mar 07	45.82±0.15	347.3	Tacande
2008 May 05	45.70±0.15	347.4	CAfos
2008 Oct 23	45.80±0.15	347.3	Tacande

† POSS: SuperCOSMOS (Hambly et al. 2001) digitisations of the First (1948–1958) and Second (1985–2000) Palomar Observatory Sky Survey; 2MASS: Two-Micron All-Sky Survey (Skrutskie et al. 2006); SDSS DR7: Sloan Digital Sky Survey (Abazajian et al. 2009); CMC14: Carlsberg Meridian Catalogue 14 (Maíños 2006); IRAC: Spitzer Heritage Archive, program name/identification INR/3286; CAFOs: Calar Alto Faint Object Spectrograph with the Site#1d detector at the 2.2 m Calar Alto Telescop in Almeria, Spain; Tacande: dual CCD camera SBIG ST-8XME at the 0.4 m Telescopio del Observatorio de Tacande in La Palma, Spain.

Next, we compiled $BVRI$, $ugriz$, JHK_s, and $[3.6],[4.5],[5.8],[8.0]$ photometric data of G 125–15 and G 125–14, which are listed in Table 2 with their associated uncertainties. CAFOs images in the $BVRI$ bands were calibrated using stars in common with a number of overlapping optical catalogues (Hög et al. 2000; Weis 1996; Hartman et al. 2004). We retrieved $ugriz$ and JHK_s magnitudes and coordinates from the SDSS and 2MASS catalogues, respectively (the SDSS iz magnitudes of G 125–15 were affected by saturation). The magnitudes of G 125–15 in the four IRAC/Spitzer channels were taken from Allen & Reid (2008), while those of G 125–14 were measured by us on the public IRAC post-calibrated images.

On 2008 May 05, we used CAFOs with the grism Blue–400 for taking low-resolution optical spectra ($R \sim 200$ at $\lambda_{\text{rest}} = 6562$ Å) of both G 125–15 and G 125–14. The two stars felt saturated). The measurements are consistent within 1σ with mean angular separation $\rho = 45.83±0.17$ arcsec and position angle $\theta = 347.5±0.4$ deg. For comparison, during the 56.271 years of our time baseline, the two stars travelled together about 10.3 arcsec. Using the methodology exposed in Caballero (2010), we also determined the proper motion of the primary at $(\mu_x \cos \delta, \mu_y) = (-116.3±2.0, -100.6±1.2)$ mas a$^{-1}$, which supersedes previous determinations with larger uncertainties (Luyten 1979; Salim & Gould 2003; Hanson et al. 2004; Lépine & Shara 2005; Ivanov 2008).

![Image of Multi-epoch astrometric measurements of WDS 19312+3607](http://www.caha.es/alises/cafos/cafos.html)

![Image of Multi-epoch astrometric measurements of WDS 19312+3607](http://www.astropalma.com/astropalma_eng.htm)
Table 2. Basic data of G 125−15 AB and G 125−14.

Parameter	G 125−15 AB	G 125−14
α_{2000}	19 31 12.57	19 31 11.75
δ_{2000}	+36 07 30.1	+36 08 14.8
u [mag]	17.094±0.009	18.598±0.020
B [mag]	15.61±0.05	16.58±0.06
g [mag]	15.075±0.003	16.072±0.003
V [mag]	14.12±0.09	15.16±0.10
r [mag]	14.148±0.010	14.690±0.003
R [mag]	12.60±0.06	13.71±0.06
i [mag]	...	13.852±0.010
I [mag]	11.02±0.05	12.30±0.05
z [mag]	...	13.327±0.003
J [mag]	9.609±0.022	10.924±0.022
H [mag]	9.061±0.020	10.408±0.020
K_s [mag]	8.839±0.019	10.137±0.019
$[3.6]$ [mag]	8.9±0.2	10.0±0.2
$[4.5]$ [mag]	8.59±0.01	9.90±0.05
$[5.8]$ [mag]	8.45±0.01	9.79±0.05
$[8.0]$ [mag]	8.39±0.01	9.71±0.05
Sp. type	M4.5±0.5Ve	M4.5±0.5V
V_r [km s$^{-1}$]	–23±5a	–26±2
$pEW(H\alpha)$ [Å]	–5.8±0.7	< +0.13
$pEW(Li\,\lambda)$ [Å]	< +0.13	< +0.13
M_1 [mag]	7.5$^{+0.7}_{-0.8}$	8.6$^{+0.7}_{-0.8}$
$M(M_\odot)$	0.18±0.06 / 0.18±0.06	0.18±0.05

a We tabulate the mean radial velocity of G 125−15 AB. The individual values were -43 ± 5 and -3 ± 5 km s$^{-1}$ for the components A and B, respectively.

Useful wavelength coverage was from 4 000 Å to 10 000 Å. The final CAFOS spectra of G 125−15, G 125−14, and FL Vir AB are shown in Fig. 1. From our data and classification based on pseudo-continuum indices (e.g., Martín et al. 1999), we agreed with the spectral type determination of the primary at G 125−15 and G 125−14 are identical within an uncertainty of 0.5 dex (Table 2).

Two new spectra were taken on 2009 Sep 09 with the Intermediate Dispersion Spectrograph (IDS) at the 2.5 m Isaac Newton Telescope (INT) on the Observatorio del Roque de los Muchachos, La Palma, Spain. In this case, we used the H1800V grating and the 0.95 arcsec slit, which provided a spectral resolution power of R ~ 9 200, and observed in parallactic angle. With the same configuration, we also obtained spectra of the comparison stars GJ 687 (M3.5V) and GJ 1227 (M4.5V) and a number of radial-velocity standards. The reduction and analysis of the data were carried out using common tasks within the IRAF environment. A part of the spectra of G 125−15, G 125−14, and GJ 1227 around the Hα region is shown in Fig. 2.

The Hα line in the intermediate-resolution spectrum of G 125−15 was in apparent, symmetric emission. We measured a pseudo-equivalent width of $pEW(H\alpha) = –5.8\pm0.7$ Å. The line width at 10% height was 3.0 Å, significantly larger than those of arc lines or of Hα emission lines in some active late-type stars observed during the run with the same instrumental configuration (of about 1.5 Å; Klutsch et al., in prep.). Remarkably, the absorption lines of G 125−15 appeared double, which implies that it is in turn a spectroscopic binary (SB2). The apparent broadening of the Hα line is more likely associated to the partial overlapping of two non-broadened emission lines, one redshifted and other blueshifted, than to a process of accretion from a circumstellar disc, such as those found in classical T Tauri stars. The consequences of the spectroscopic binarity of G 125−15 (hereafter G 125−15 AB) are discussed in Section 3. Besides this, we imposed a restrictive upper limit to the pseudo-equivalent width of the Li λ 6707.8 Å line. This is not surprising, since M dwarfs destroy their lithium content in 20−150 Myr. Similar upper limits were established for the Hα and Li λ lines in G 125−14 (the Hα line of the secondary is filled or in very faint absorption). The results are summarised in Table 2.

Finally, we determined the radial heliocentric velocity of the three components in WDS 19312+3607. First, we analysed the cross-correlation functions of the IDS/INT spectra of G 125−15 AB, G 125−14, the comparison stars, and radial-velocity standard stars with the latest spectral types (about K7V) observed during our run. We found that the cross-correlation function of G 125−15 AB compared to any other star broadened, but not blueshifted, than to a process of accretion from a circumstellar disc, such as those found in classical T Tauri stars. The consequences of the spectroscopic binarity of G 125−15 (hereafter G 125−15 AB) are discussed in Section 3. Besides this, we imposed a restrictive upper limit to the pseudo-equivalent width of the Li λ 6707.8 Å line. This is not surprising, since M dwarfs destroy their lithium content in 20−150 Myr. Similar upper limits were established for the Hα and Li λ lines in G 125−14 (the Hα line of the secondary is filled or in very faint absorption). The results are summarised in Table 2.

First, we analysed the cross-correlation functions of the IDS/INT spectra of G 125−15 AB, G 125−14, the comparison stars, and radial-velocity standard stars with the latest spectral types (about K7V) observed during our run. We found that the cross-correlation function of G 125−15 AB compared to any other single star observed with IDS had always two peaks, which agrees with the double-lined spectrum of the primary and, hence, its spectroscopic binarity. While we could measure a radial velocity for G 125−14 with a reasonable precision of 2 km s$^{-1}$ (Table 2), the binarity of G 125−15 AB and the prox-
3. Discussion

3.1. Heliocentric distance

Allen & Reid (2008) derived $d = 15.3^{+1.9}_{-1.6}$ pc to G 125–15 AB assuming singleness and normal radius and effective temperature (Reid et al. 2004 had derived $d = 11.0^{+0.9}_{-0.6}$ pc to G 125–15 AB, but also $d = 85^{+17}_{-13}$ pc to G 125–14 based on an incorrect V magnitude). This would lead to a projected physical separation of $s = 1200^{+600}_{-300}$ AU, which makes WDS 19312+3607 to be one of the brightest, closest, low-mass systems with very low binding energies.

3.2. Close binary and magnetic activity

From Table 2, the primary is 1.0–1.5 mag brighter than the secondary depending on the passband, while they have the same spectral type within a 0.5 dex uncertainty. The equal-mass binarity of the primary accounts for only about 0.75 mag (2.5 log 2). Since the stars are located at the same short heliocentric distance, the primary displays a wavelength-dependent overbrightness of 0.3–0.8 mag. Besides, G 125–15 AB is redder than G 125–14. For example, the difference in r–J colours, which are indicative of effective temperature, is $\Delta(r-J) = 0.77^{+0.03}_{-0.03}$ mag. This deviation is marginally consistent within the 0.5 dex uncertainty in spectral type determination, but not with the observed overbrightness of 0.3–0.8 mag.

We estimated the ratios of effective temperature and radius needed to explain the observed magnitude and colour differences between G 125–15 AB and G 125–14. The ratio of the sum of observed fluxes at the B to [8.0] bands is $F_B / \sum F_{[8.0]} = 3.2$ (using $\sum F_{[8.0]} = \sum F_{[8.0]} \times 10^{-8}$ and the corresponding zero-point conversion factors), where ‘(1)’ and ‘(2)’ indicate G 125–15 AB and G 125–14, respectively. This quotient is a reasonable approximation to the ratio of total luminosities, $L_{[8.0]} / L_{[8.0]}$, where from one derives $2(R_{[8.0]}/R_{[2.2]})^2 (T_{eff,[8.0]}/T_{eff,[2.2]})^4 \sim 3.2$ after assuming that the two components in G 125–15 AB have the same mass and effective temperature. A cooler effective temperature, shown by a redder r–J colour, must be counterbalanced by a larger radius. We estimated that the two components in G 125–15 AB are $\Delta T_{eff} \lesssim 5$ % cooler and $\Delta R \lesssim 30$ % larger than normal M4.5 dwarfs (including G 125–14), which have $T_{eff} \sim 2900–3300$ K and $R \sim 0.23–0.26 R_\odot$. Effective temperature variations larger than 5 % would lead to a different spectral type classification of G 125–15 AB and G 125–14.

Radii and effective temperatures in M dwarfs are affected by activity levels (Stauffer & Hartmann 1986; Mullan & MacDonald 2001; Torres & Ribas 2002; López-Morales 2007; Reiners et al. 2007; Morales et al. 2008). According to Chabrier et al. (2007), reduced heat fluxes and, thus, larger radii and cooler effective temperatures in active low-mass stars and brown dwarfs than in regular (inactive) ones are due to “reduced convective efficiency, due to fast rotation and large field strengths, and/or to magnetic spot coverage of the radiating surface”. Previously, the activity scenario of G 125–15 AB was only sustained by the large relative X-ray flux (Daemgen et al. 2007; Allen & Reid 2008). Now, we back it by its Hz emission (Reid et al. 2004; this work), stellar expansion (by about 30 %; this work), and photometric variability (Hartman et al. 2004). This variability is more easily explained by an asymmetrical distribution of cool spots concentrated in certain hemispheres of two close, magnetically-active, orbital-locked, M4.5Ve stars.

Table 3. Properties of the WDS 19312+3607 system.

Quantity	Value	Unit
ρ	45.83$^{+0.17}_{-0.17}$	arcsec
θ	0.76$^{+0.003}_{-0.003}$	arcmin
d	26$^{+12}_{-7}$	pc
$\mu_\alpha \cos \delta$	$-116.3^{+2.0}_{-2.0}$	mas a$^{-1}$
μ_δ	$-100.6^{+1.2}_{-1.2}$	mas a$^{-1}$
V	26$^{+2}_{-2}$	km s$^{-1}$
U	7$^{+8}_{-8}$	km s$^{-1}$
V	31$^{+4}_{-4}$	km s$^{-1}$
W	3$^{+4}_{-4}$	km s$^{-1}$
s	1200$^{+600}_{-300}$	AU
τ	0.6$^{+5}_{-5}$	108 a
M_{total}	0.54$^{+0.09}_{-0.09}$	M_\odot
U_B	-10^{+3}_{-3}	10$^{-14}$ J
P	57	103 a

Reference: http://nsted.ipac.caltech.edu/NStED/docs/parhelp/Photometry.html
rather than by pulsations in a low-mass dwarf. The period observed by Hartman et al. (2004) would be the rotational period of the system at $P_{\text{phot}} \sim 1.6 \, \text{d}$. This value is quite short for field M dwarfs and indicative of fast rotation, as expected from the Chabrier et al. (2007) scenario.

3.3. Space motion, age, mass, and semimajor axis

We considered that the strong magnetic activity in G 125–15 AB is not due to youth, as previously reckoned, but to fast rotation in a close orbital-locked system. First, if it were young, G 125–14 should also display signposts of youth. Second, we derived the galactocentric space velocities UVW of the WDS 19312+3607 system (Table 3) as in Montes et al. (2001). In the U-V and U-W diagrams, WDS 19312+3607 lies outside the region that includes young moving groups with ages from $\tau \approx 100 \, \text{Ma}$ (e.g., TW Hydra, β Pictoris, AB Doradus) to $\tau \approx 300$–$600 \, \text{Ma}$ (e.g., Castor, Hyades). However, the UVW velocities of WDS 19312+3607 are very different from those of old-disc stars (Leggett 1992). The most probable age of G 125–15 AB and G 125–14 from kinematics criteria is thus $\tau \sim 0.6$–5 Ga.

We estimated the semimajor axis of the close binary G 125–15 AB assuming that the orbital period coincides with the photometric one. Before applying the third Kepler’s law, we had to estimate the masses of each component in the system from their absolute magnitudes and theoretical models. We determined the mass of G 125–14, the only normal single dwarf in the system, at about $0.18 M_\odot$ using its M_J magnitude (Table 3) and NextGen theoretical isochrones (Baraffe et al. 1998), which are little sensitive to age if $0.3 \, \text{Ga} < \tau < 10 \, \text{Ga}$. Based on the resemblance of spectral types, we cautiously assigned similar masses to the components in G 125–15 AB. Using these masses and the rotational-orbital period of the system, we estimated that the two stars are separated by only $0.019 \pm 0.004 \, \text{AU}$ ($4.0 \pm 1.0 \, \text{R}_\odot$ or about 10–20 stellar radii).

The estimated semimajor axis a is very short for M dwarfs and comparable to that of the well-known CM Dra system, which is formed by two population II M4.5 dwarfs (Lacy 1977; Vilhu et al. 1989; Chabrier & Baraffe 1995; Metcalfe et al. 1996; Viti et al. 1997; Doyle et al. 2000; Morales et al. 2009). The two flaring stars in CM Dra are separated by $0.0175 \pm 0.0004 \, \text{AU}$ and have a rapid tidally-synchronised rotation period of 1.27 d, slightly shorter than the photometric period of G 125–15 AB. Because of its high inclination angle of $i = 89.82 \, \text{deg}$, CM Dra is an eclipsing binary. In analogy, the probability of eclipsing in G 125–15 AB must be relatively high, of about 10–20% (estimated from the ratio R_*/a, where R_* is the radius of the two components). If the individual masses in G 125–15 AB were lower than expected for its spectral type due to activity (as seen in CM Dra – Lacy 1977), the semimajor axis would be shorter than 0.019 AU and the probability of eclipsing would increase.

Radii, masses, and effective temperatures of the two components in CM Dra, as well as in other eclipsing binaries, are widely used to compare observations to theoretical models. On the contrary to CM Dra, which has a white-dwarf proper-motion companion at 26 arcsec, G 125–15 AB has a wide proper-motion companion, G 125–14, that is a dwarf of the same spectral type within an uncertainty of 0.5 dex. The three stars can be used properly to study the relation of stellar radius and effective temperature with activity at the bottom of the main sequence. Besides, as discussed in Section 3.2 G 125–15 AB and G 125–14 show a temperature reversal with a relative amplitude of $\Delta T \approx 5 \%$. Such temperature reversals have been also detected in other cornerstone active M-type eclipsing binaries, such as the young brown-dwarf pair 2MASS J05352184–0546085 (Stassun et al. 2006, 2007).

4. Summary

Daengen et al. (2007) and Allen & Reid (2008) proposed that G 125–15 is a single, active, M4.5Ve-type star in the solar neighbourhood younger than the Hyades ($\tau < 600 \, \text{Ma}$) based mainly on strong X-ray activity detected by Fuhrmeister & Schmitt (2003). Actually, the dwarf is part of the wide binary system candidate WDS 19312+3607, which was tabulated earlier by Giclas et al. (1971). The proper-motion companion candidate is G 125–14, a poorly-known late-type dwarf more than 1.0 mag fainter located at about 46 arcsec to the north. To test the youth and wide-binarity hypotheses, we carried out spectroscopic, photometric, and astrometric analyses of the system using a collection of multi-wavelength public and private data.

We found that the primary is actually a spectroscopic binary with Hr in broad emission and concluded that G 125–15 AB and G 125–14 form a 0.6–5 Ga-old hierarchical triple system at about 26 pc from the Sun. The three components have estimated masses of $0.18 \, M_\odot$ each. While G 125–15 AB and G 125–14 are separated by $p_r = 45.83 \pm 0.17 \, \text{arcsec}$, which translates into a wide projected physical separation of 1200–600 AU. G 125–15 A and B are separated only by about 0.02 AU. This close separation is responsible of the synchronisation of the pair and, thus, a fast rotational period identical to the observed photometric period of $P_{\text{phot}} = 1.6267 \, \text{d}$. Fast rotation accounts for the increased magnetic activity of the pair, which is evidenced by the strong X-ray activity, Hr emission, photometric variability (possibly associated to the presence of cool spots), and, especially, larger radii of the two components with respect to normal dwarfs of the same spectral type.

The brightness and proximity of WDS 19312+3607 will facilitate further astrometric, photometric, and spectroscopic follow-ups, especially aimed at determining accurate trigonometric parallax, age, and radial and rotational velocities of the system, and investigating the relation between radius, effective temperature, and magnetic activity.

Acknowledgements

We thank the anonymous referee for helpful comments and P. G. Pérez-González for software help. Based on observations collected at the Centro Astronómico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucia. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. This research made use of the SIMBAD, operated at Centre de Données astronomiques de Strasbourg, France,
and NASA’s Astrophysics Data System. Financial support was provided by the Universidad Complutense de Madrid, the Comunidad Autónoma de Madrid, and the Spanish Ministerio de Ciencia e Innovación under grants AyA2008-00695, AyA2008-06423-C03-03, and SP2009/ESP-1496.

References

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A. et al. 2009, ApJS, 182, 543
Allen, P. R. & Reid, I. N. 2008, AJ, 135, 2024
Artigau, É., Lafrenière, D., Doyon, R. et al. 2007, ApJ, 659, L49
Baraffe, I., Chabrier, G., Allard, F., Hauschildt, P. H. 1998, A&A, 337, 403
Caballero, J. A. 2007, A&A, 462, L61
Caballero, J. A., Burgasser, A. J., Klement, R. 2008, A&A, 488, 181
Caballero, J. A. 2009, A&A, 507, 251
Caballero, J. A. 2010, A&A, 514, A18
Caballero, J. A. Miret, F. X., Genebriera, J. et al. Highlights of Spanish Astrophysics V, Astrophysics and Space Science Proceedings. ISBN 978-3-642-11249-2. Springer-Verlag Berlin Heidelberg, 2010, p. 379
Cardiel, N. 1999, PhD thesis, Universidad Complutense de Madrid, Spain
Chabrier, G., Baraffe, I. 1995, ApJ, 451, L29
Chabrier, G., Gallardo, J., Baraffe, I. 2007, A&A, 472, L17
Cruz, K. L., Reid, I. N., Liebert, J., Kirkpatrick, J. D., Lowrance, P. J. 2003, AJ, 126, 2421
Daemgen, S., Siegler, N., Reid, I. N., Close, L. M. 2007, ApJ, 654, 558
Doyle, L. R., Deeg, H. J., Kozhevnikov, V. P. et al. 2000, ApJ, 535, 338
Fuhrmeister, B. & Schmitt, J. H. M. M. 2003, A&A, 403, 247
Giclas, H. L., Burnham, R., Thomas, N. G. 1971, Lowell proper motion survey Northern Hemisphere. The G numbered stars. 8991 stars fainter than magnitude 8 with motions > 0.26/year, Flagstaff, Arizona: Lowell Observatory
Hambly, N. C., MacGillivray, H. T., Read, M. A. et al. 2001, MNRAS, 326, 1279
Hanson, R. B., Klemola, A. R., Jones, B. F., Monet, D. G. 2004, AJ, 128, 1430
Hartman, J. D., Bakos, G., Stanek, K. Z., Noyes, R. W. 2004, AJ, 128, 1761
Hawley, S. L., Covey, K. R., Knapp, G. R. 2002, AJ, 123, 3409
Henry, T. J., Kirkpatrick, J. D., Simons, D. A. 1994, AJ, 108, 1437
Høg, E., Fabricius, C., Makarov, V. V. et al. 2000, A&A, 355, L27
Ivanov, G. A. 2008, KFNT, 24, 480 (VizieR on-line data catalogue: I/306A)
Joy, A. H. 1947, ApJ, 105, 96
Lacy, C. H. 1977, ApJS, 34, 479
Leggett, S. K. 1992, ApJS, 82, 351
Lépine, S. & Shara, M. M. 2005, AJ, 129, 1483
López-Morales, M. 2007, ApJ, 660, 732
Luyten, W. J. 1979, LHS catalogue. A catalogue of stars with proper motions exceeding 0.5 annually, Minneapolis: University of Minnesota, 2nd ed.
Martin, E. L., Delfosse, X., Basri, G. et al. 1999, AJ, 118, 2466
Metcalfe, T. S., Mathieu, R. D., Latham, D. W., Torres, G. 1996, ApJ, 456, 356
Montes, D., López-Santiago, J., Gálvez, M. C. 2001, MNRAS, 328, 45
Morales, J. C., Ribas, I., Jordi, C. 2008, A&A, 478, 507
Morales, J. C., Ribas, I., Jordi, C. et al. 2009, ApJ, 691, 1400
Muxíños, J. L. on behalf of the Carlsberg Meridian Catalog Number 14 team, 2006, VizieR on-line catalogue I/304
Mullan, D. J. & MacDonald, J. 2001, ApJ, 559, 353
Phan-Bao, N. & Bessell, M. S. 2006, A&A, 466, 515
Radigan, J., Lafrenière, D., Jayawardhana, R., Doyon, R. 2009, ApJ, 698, 405
Reid, I. N., Cruz, K. L., Allen, P. et al. 2004, AJ, 128, 463
Reiners, A., Seifahrt, A., Stassun, K. G., Melo, C., Mathieu, R. D. 2007, ApJ, 671, L149
Salim, S. & Gould, A. 2003, ApJ, 582, 1011
Scholz, R.-D., Meusinger, H., Jahreiß, H. 2005, A&A, 442, 211
Skrutskie, M. F., Cutri, R. M., Stiening, R. et al. 2006, AJ, 131, 1163
Stassun, K. G., Mathieu, R. D., Valenti, J. A. 2006, Nature, 440, 311
Stassun, K. G., Mathieu, R. D., Valenti, J. A. 2007, ApJ, 664, 1154
Stauffer, J. R. & Hartmann, L. W. 1986, ApJS, 81, 531
Torres, G. & Ribas, I. 2002, ApJ, 567, 1140
Vilhu, O., Ambruster, C. W., Neff, J. E. et al. 1989, A&A, 222, 179
Viti, S., Jones, H. R. A., Schweitzer, A. et al. 1997, MNRAS, 291, 780
Weis, E. W. 1996, AJ, 112, 2300
Whitworth, A. P. & Stamatellos, D. 2006, A&A, 458, 817
Worley, C. E. & Douglass, G. G. 1997, A&AS, 125, 523

List of Objects

‘G 125–15’ on page 6
‘G 125–14’ on page 5
‘FL Vir’ on page 5
‘HZ 44’ on page 5
‘GJ 687’ on page 5
‘GJ 1227’ on page 5
‘CM Dra’ on page 5
‘2MASS J05352184–0546085’ on page 5