Control of the finite size corrections in exact diagonalization studies

Claudius Gros
Institut für Physik, Universität Dortmund, 44221 Dortmund, Germany
(January 16, 2022)

The finite size corrections in exact diagonalization studies of the one- and two dimensional Hubbard model can be reduced systematically by a grand-canonical integration over boundary conditions. We present results for ground-state properties of the 2D Hubbard model and an evaluation of the specific heat for the 1D and 2D Hubbard model. We find the reduction of the finite size corrections to be substantial, especially in 2D.

INTRODUCTION

The exact diagonalization of the Hubbard model (or the t–J model) on finite clusters has become one of the prominent techniques in the study of correlated electron systems. This technique has the advantage of treating the correlations on finite clusters without any approximation. Since the Hilbert space grows exponentially with cluster size one is limited, for the Hubbard model, to clusters with up $N_s = 10$ sites. By finite size corrections one means the difference between the results obtained for the finite cluster and its (unknown) value in the thermodynamic limit, $N_s = \infty$.

The control of the finite size corrections poses a great challenge to the exact diagonalization technique, especially in the case of two dimensions (2D). In 1D, it is a standard procedure to plot the results systematically as a function of chain length, $N_s = 6, 8, 10, 12, \ldots$ sites. In 2D, on the other side, where most calculations have been done up to now with either periodic or antiperiodic boundary conditions, it is difficult to estimate the finite size corrections by direct comparison of clusters of different sizes, for two reasons:

1. The finite size corrections are often non-monotonic as a function of N_s, due to strongly varying cluster geometries.

2. The nominal density of particles, $n = N_e/N_s$, does normally not coincide for clusters of different sizes as the allowed number of particles $N_e = 1, 2, 3, \ldots$ is an integer.

Both of these difficulties can be circumvented by a method introduced recently, the integration over boundary conditions (IBC). The IBC circumvents the first of above difficulties by performing a grand-canonical integration over boundary conditions. It has been shown, that this procedure removes all those finite size corrections which are caused by the special geometry of the Fermi-sea of the cluster. The \textit{grand-canonical} approach then leads to the possibility of directly comparing the results for different N_s with the \textit{same} density n, solving also the second of above difficulties.

In a previous publication the IBC had been introduced and some results for the Hubbard model on very small clusters had been presented. Here we want to study in detail how the finite size corrections can be estimated \textit{systematically} within the IBC both at zero and at finite temperatures. For this purpose we will concentrate on the Hubbard model, the same study could be performed, in principle, for the t–J model or any other cluster Hamiltonian.

INTEGRATION OVER BOUNDARY CONDITIONS

We consider the Hubbard Hamiltonian on a cluster with N_s sites,

$$H = \sum_{<i,j>,\sigma} \left(t_{i,j} c_{i,\sigma}^\dagger c_{j,\sigma} + t_{i,j}^* c_{j,\sigma}^\dagger c_{i,\sigma} \right) + U \sum_i n_{i,\uparrow} n_{i,\downarrow}$$

(1)

where the symbol $<i,j>$ denotes pairs of n.n. sites and where the $c_{i,\sigma}^\dagger$ and the $c_{i,\sigma}$ are the electron creation/destruction operators of spin $\sigma = \uparrow, \downarrow$ respectively. The hopping amplitudes,

$$t_{i,j} \equiv -t \exp[i\alpha_{i,j}]$$

(2)

depend, in general, on phases $\alpha_{i,j}$, related to the boundary condition. In the following all energies will be measured in unities of t. We will now give an account of the IBC for 1D, the generalization to 2D is then straightforward.

In 1D we can choose the $\alpha_{i,j} = \alpha/N_s$, where $\alpha \in [0,2\pi]$ is the boundary condition. Periodic and antiperiodic boundary conditions correspond to $\alpha = 0$ and $\alpha = \pi$ respectively. The IBC technique needs the exact diagonalization of the cluster for any particle number $N_e = 0, 1, 2, \ldots, 2N_s$ and any $\alpha \in [0,2\pi]$. For any given α one then calculates the free energy

$$F_\alpha(\mu) = -T k_B \ln \left(\sum_{N_e=0}^{2N_s} e^{\beta \mu N_e} \sum_{k=0}^{N\mu-1} e^{-\beta E_k(\alpha,N_e)} \right),$$

(3)
where $\beta = 1/(k_BT)$ is the inverse temperature, μ the chemical potential, N_H the dimension of the Hilbert space and the $E_k(\alpha, N_e)$ the eigenenergies. (N_H depends on both on N_e and N_c). The total free energy of the cluster and the particle density $n \in [0, 2]$ are then given by the average

$$F(\mu) = \int_0^{2\pi} \frac{d\alpha}{2\pi} F_\alpha(\mu).$$

and by $n = -\frac{1}{N_c} \frac{\partial F(\mu)}{\partial \mu}$. The free energy Eq. (4) obtained with the IBC technique is constructed in such a way that the finite size corrections vanish identically in the limit $U = 0$. One can understand this result most easily in momentum space, noting that the Fermi-sea, as obtained by the IBC, has no finite size corrections for $U = 0$. This property of the IBC holds in any dimension and is especially important in 2D.

The integration over boundary conditions, appearing in Eq. (4), is replaced in actual calculations by a finite sum over N_a equal-distant boundary conditions. Indeed we will find further below that only a few N_a are needed in order to already obtain most of the reduction in the finite size corrections. Ground-state properties can be calculated, as usual, by the Lanczos technique. With $E_0(\alpha, N_e)$ being the ground-state energy for a given α and N_e one finds the estimate $e_0(\mu)$ for the grandcanonical ground-state energy per site to be

$$e_0(\mu) = \frac{1}{N_a N_s} \sum_\alpha \inf_{N_e} [E_0(\alpha, N_e) - \mu N_e].$$

A Legendre transformation then yields the canonical ground-state energy of the cluster, $e_0(n, N_s)$, as a function of density. In Fig. 3 we have plotted results obtained for the 2D Hubbard model with $U = 4t$. The results for $N_a = 1$, corresponding to periodic boundary conditions only, differ typically by 10% to 20% in between clusters with $N_s = 8$ and $N_s = 10$ sites. Also shown in Fig. 3 are the data obtained for $N_a = 25$. Here the data differ only by 1% to 2% in between $N_s = 8$ and $N_s = 10$, an improvement by one order of magnitude. For comparison we have plotted also data obtained by projection Monte Carlo for a 10×10 system with periodic boundary condition by Furukawa and Imada.

Specific Heat

Eq. (3) for the free energy needs the knowledge of all eigenstates and can therefore be used only for very small systems, typically up to $N_s = 6$ for the Hubbard model. Several approximative methods have been developed for the numerical evaluation of thermodynamic properties of systems with large Hilbert space. Here we use the kernel polynomial approximation (KPA) developed by Silver and Roeder since it has a very good error control. One starts by scaling the Hamiltonian so that the magnitude of all eigenenergies is less than unity. The grandcanonical partition function, $Z_\alpha(\mu) = \exp[-\beta F_\alpha(\mu)]$, is then expressed as an integral over the density of states, $D_\alpha(\omega, N_e) = 1/N_H \sum_{k=0}^{N_H-1} \delta(\omega - E_k(\alpha, N_e))$.

$$Z_\alpha(\mu) = \sum_{N_e=0}^{2N} N_H e^{\beta \mu} \int_{-1}^{1} d\omega D_\alpha(\omega, N_e) e^{-\beta \omega}.$$ (6)

The density of states can be expanded in a set of orthogonal polynomials, here we take Legendre polynomials, $P_l(\omega)$:

$$D_\alpha(\omega, N_e) = \sum_{l=0}^{N_{\text{mom}}} a_l(\alpha, N_e) P_l(\omega),$$ (7)

with $N_{\text{mom}} \to \infty$. Using the orthogonality relations for Legendre polynomials one can express the coefficients $a_l(\alpha, N_e)$ in term of the eigenstates of the Hamiltonian, $H[E_k(\alpha, N_e)] = E_k(\alpha, N_e)[E_k(\alpha, N_e)]$, via

$$a_l(\alpha, N_e) = \frac{2l + 1}{2N_H} \sum_{k=0}^{N_H-1} \langle E_k(\alpha, N_e)|P_l(H)|E_k(\alpha, N_e)\rangle.$$ (8)

In practice one uses a finite $N_{\text{mom}} < \infty$. A finite values of N_{mom} leads to the well known Gibbs oscillations in $D_\alpha(\omega, N_e)$. The Gibbs oscillations can be smoothed out by the replacement $a_l \to a_l g_l(N_{\text{mom}})$ in (7). The optimal functional form of the smoothing functions $g_l(N_{\text{mom}})$, with $g_l(N_{\text{mom}}) = 1$ and $g_{N_{\text{mom}}+1}(N_{\text{mom}}) = 0$, has been studied intensively in the literature. We use $g_l(N_{\text{mom}}) = (\sin(z)/z)^l$, with $z = t\pi/(N_{\text{mom}}+1)$.

The number N_{mom} of polynomials necessary for an accurate representation of the density of states in (8) increases with decreasing temperature, T. We have evaluated the specific heat $c_V = \beta^2 <(H - \langle H\rangle)^2>$ for a 6-site Hubbard chain with periodic boundary conditions exactly, via Eq. (2), and via the kernel polynomial approximation with various N_{mom}. We have plotted in Fig. 2 the results for (a) $U = 2$ and (b) $U = 16$. The KPA becomes asymptotically exact for large temperatures and any values of N_{mom}. A numerical accurate approximation to the specific heat for temperatures down to $T \sim 0.25t$ may be obtained with $N_{\text{mom}} \sim 10^3$ and $N_{\text{mom}} \sim 10^4$, for $U = 2$ and $U = 16$ respectively. The large value, $N_{\text{mom}} \sim 10^4$, needed for big U’s is the reason that all data presented further below will be for $U = 2$.

Formula (2) is clearly not useful for larger clusters. It has been observed that one can systematically approximate the trace occurring in the RHS side of (2) by sampling over N_r random states $\{|r\}$,
\[a(\alpha, N_e) \approx \frac{2l + 1}{2N_r} \sum_{r=1}^{N_r} (r|P(H)|r). \]

It is possible to evaluate (9) recursively, by a procedure very similar to the Lanczos technique. The errors introduced by random averaging vanish like \(1/\sqrt{N_r}\). We have performed extensive tests of the dependence of the data on \(N_r\); we will present further below only data which are unaffected by finite-\(N_r\) effects.

RESULTS

In Fig. 3 we have plotted the results for the specific heat per site for various 1D chains of length \(N_s = 4, 8, 10\), both for the case of periodic boundary conditions only, \(N_\alpha = 1\), and for \(N_\alpha = 10\). Let us first note that the specific-heat curves for clusters of different sizes have eventually all to coincide at large enough temperatures, due to the grand-canonical formulation. At large enough temperatures the leading terms contributing to the specific heat of a cluster of a given size are identical to the leading terms of a high-temperature expansions. One can consequently define a \(T^*(N_s, \epsilon)\) as the temperature above which the finite size corrections to the specific heat are smaller than a given accuracy \(\epsilon\), say \(\epsilon \sim 1\%\). As the specific heat for \(N_r = \infty\) is generally not known we took as a practical estimate for \(T^*(N_s, \epsilon)\) the criterium that \(|c_v(T, N_s) - c_v(T, N_s - 2)| < \epsilon\) for all \(T > T^*(N_s, \epsilon)\). We found that \(T^*(N_s, \epsilon)\) is roughly inversely proportional to \(N_s\), for the 1D data presented in Fig. 3 and that the integration over boundary conditions reduces \(T^*(N_s, \epsilon)\) by factors of 2 – 3, as it is evident from a comparison of Fig. 3(a) and Fig. 3(b).

The IBC improves the cluster estimates of the specific heat in a second way, besides the reduction of \(T^*(N_s, \epsilon)\). One finds empirically that the specific heat becomes linear at low temperatures in the limit \(N_r \to \infty\). This property of the low-T specific heat is present for all \(N_r\), and is a consequence of the absence of those finite size corrections which are caused by the geometry of the Fermi-surface of the cluster, within the IBC. For finite \(N_r\) there will be in general an intermediate temperature range where the specific heat is roughly linear, like it is the case for \(N_\alpha = 10\) in Fig. 3(b) for temperatures \(0.1t \sim T \sim 0.3t\). This feature of the specific heat data obtained with the IBC may be used, e.g., to estimate the inverse effective mass.

In Fig. 3 we present the specific heat per site, as a function of temperature, for 2D clusters with \(N_s = 8, 10, U = 2t, n = 0.8\) and \(N_\alpha = 1\) and \(N_\alpha = 16\). The improvement obtained with the IBC is even more pronounced than in 1D. The data for periodic boundary conditions is affected so much by finite size errors that is does not allow for a reliable estimate of the specific heat for \(T < 2t\). For \(N_\alpha = 16\) the finite size corrections are, on the other side, practically absent for \(T > T^*(N_s = 10, \epsilon \sim 1\%\) \(\sim 0.72t\).

In conclusion we have shown that the integration over boundary conditions (IBC) can be used to reduce substantially the finite size corrections occurring in exact diagonalization studies. The data obtained by the IBC show typically a smooth behaviour as a function of cluster size, even in 2D where the cluster geometry may vary widely from cluster to cluster. This smooth behaviour often allows for quantitative estimates of the finite size corrections of the data obtained by the IBC, even in 2D. One obtains furthermore certain qualitative improvements with the IBC, like a linear specific heat for the Hubbard model on one- and two dimensional clusters.

This work was supported by the Deutsche Forschungsgemeinschaft, the Graduiertenkolleg “Festkörperspektroskopie” and by the European Community Human Capital and Mobility program.

1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
2. C. Gros, Z. Phys. B 86, 359 (1992).
3. With this we mean that for \(U = 0\) the Fermi surface of the thermodynamic limit is exactly reproduced by the IBC, for any finite cluster. At finite \(U > 0\) there may be subtle deformations of the Fermi-surface in the thermodynamic limit due to the interaction, which are, of course, not exactly reproduced by the IBC.
4. D. Poilblanc, Phys. Rev. B 44, 9562 (1991).
5. For 2D clusters \(N_\alpha = 25 = 5^2\) corresponds to a grid of 5 different boundary conditions both in \(\vec{L}_1\) direction and in \(\vec{L}_2\) direction. Here \(\vec{L}_{1,2}\) are the vectors of periodicity of the cluster. For \(N_\alpha = 8\) one has \(\vec{L}_1 = (2, 2)\) and \(\vec{L}_2 = (-2, 2)\) and for \(N_\alpha = 10\) one has \(\vec{L}_1 = (3, 1)\) and \(\vec{L}_2 = (-1, 3)\).
6. N. Furukawa and M. Imada, J. Phys. Soc. Jp. 61, 3331 (1992).
7. Silver and H. Roeder, Int. Jour. Mod. Phys. C 5, 735 (1994).
8. J. Jaklič and P. Prelovšek, Phys. Rev. B 49, 5065 (1994).

FIG. 1. The ground-state energy, \(c_0\), per site as a function of particle density \(n\). Plotted are the results for the 2D Hubbard model and \(U = 4t\). The filled circles and squares denote the results for clusters with periodic boundary conditions only, \(N_\alpha = 1\), for clusters with \(N_\alpha = 8\) and \(N_\alpha = 10\) sites respectively. The long-dashed and the continuous line are the respective results for \(N_\alpha = 25\). Also shown (stars) is data obtained by projection Monte Carlo for a \(10 \times 10\) system by Furukawa and Imada.

FIG. 2. The specific heat, \(c_v\), per site, as a function of temperature, of a 6-site chain with periodic boundary condition, \(n = 0.8\) and (a) \(U = 2t\) and (b) \(U = 16t\). Plotted are the exact results (solid line) and the results of the kernel polynomial approximaition with (a) \(N_{\text{mom}} = 10, 100, 1000\) and with (b) \(N_{\text{mom}} = 100, 1000, 10000\).
FIG. 3. The specific heat, c_V, per site as a function of temperature, for 1D chains with $N_s = 4, 6, 8, 10$, $U = 2t$, $n = 0.8$ and (a) $N_\alpha = 1$ and (b) $N_\alpha = 10$. For $N_s = 4, 6$ the data are exact, for $N_s = 8, 10$ the KPA has been used with $N_{mom} = 1000$ and $N_r = 100, 10$ for $N_s = 8, 10$ respectively.

FIG. 4. The specific heat, c_V, per site as a function of temperature, for 2D clusters with $N_s = 8, 10$, $U = 2t$, $n = 0.8$. Plotted are the data for $N_\alpha = 1$ (dotted/dashed line) and $N_\alpha = 16$ (dashed-dotted/solid line). The KPA has been used with $N_{mom} = 1000$ and $N_r = 10, 8$ for $N_\alpha = 1, 16$ respectively.
$N_S = 8$, periodic boundary conditions
$N_S = 10$, periodic boundary conditions
$N_S = 8$, 25 boundary conditions
$N_S = 10$, 25 boundary conditions
$N_S = 100$ (Monte Carlo)

e_0/t

$U = 4t$

2D Hubbard
1D Hubbard

$U = 2t$

$n = 0.8$, $N_S = 6$

1 boundary condition

$N_{\text{mom}} = 1000$

$N_{\text{mom}} = 100$

$N_{\text{mom}} = 10$
1D Hubbard
$U = 16 \, t$
$n = 0.8, N_S = 6$
1 boundary condition

- **exact**
- $N_{\text{mom}} = 10000$
- $N_{\text{mom}} = 1000$
- $N_{\text{mom}} = 100$
1D Hubbard
$U = 2 \, t$
n = 0.8
1 boundary condition
1D Hubbard
$U = 2 \, t$
$n = 0.8$
10 boundary conditions
2D Hubbard
$U = 2 \, t$, $n = 0.8$

Legend:
- Dotted line: 8 sites, 1 boundary condition
- Dashed line: 10 sites, 1 boundary condition
- Dashed-dotted line: 8 sites, 16 boundary conditions
- Solid line: 10 sites, 16 boundary conditions