LAGRANGIAN FIBRATIONS OF HYPERKÄHLER FOURFOLDS

DANIEL HUYBRECHTS1 AND CHENYANG XU2,3

1Mathematisches Institut and Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany (huybrech@math.uni-bonn.de)
2Mathematics Department, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA (cyxu@mit.edu)
3BICMR, Beijing, China (cyxu@math.pku.edu.cn)

(Received 11 March 2019; revised 19 May 2020; accepted 31 May 2020; first published online 20 July 2020)

Abstract The base surface B of a Lagrangian fibration $X \rightarrow B$ of a projective, irreducible symplectic fourfold X is shown to be isomorphic to \mathbb{P}^2.

Keywords: Lagrangian fibrations; irreducible symplectic varieties; hyperkähler manifolds

For a fibration $X \rightarrow B$ of a complex projective, irreducible symplectic manifold X onto a (normal) variety B, Matsushita [30, 31] proves that only three situations can occur: The morphism is generically finite, constant, or it describes a Lagrangian fibration.

Moreover, it has been generally conjectured that the normal base B of any connected Lagrangian fibration $X \rightarrow B$ of a compact, irreducible symplectic manifold X of dimension $2n$ is isomorphic to \mathbb{P}^n; cf. [18, § 21.4]. The conjecture has been verified for deformations of Hilbert schemes of K3 surfaces by Markman [27] and for the case that X is projective and B is smooth by Hwang [19]. In dimension four and assuming smoothness of the base, the conjecture follows easily from the ampleness of ω_B^*; the observation that the Hodge index theorem on X implies $b_2(B) = \rho(B) = 1$, and the classification theory of surfaces; see [28, 30].

By building upon the work of Ou [38], the present paper completes the verification of the conjecture in dimension four.

Theorem 0.1. Assume $X \rightarrow B$ is a connected Lagrangian fibration of a projective, irreducible symplectic fourfold X over a normal surface B. Then $B \cong \mathbb{P}^2$.

To prove this result, we study the local situation and exclude the case of E_8-singularities.

DH is supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’ of the DFG (German Research Foundation). CX is partially supported by a Chern Professorship of the MSRI (NSF No. DMS-1440140) and by the National Science Fund for Distinguished Young Scholars (NSFC 11425101) ‘Algebraic Geometry’.
Theorem 0.2. Assume $X \rightarrow B$ is a projective Lagrangian fibration of a quasi-projective symplectic fourfold over a normal algebraic surface B. If B is locally analytically at a point $0 \in B$ of the form \mathbb{C}^2/G for a finite subgroup $G \subset \text{GL}(2, \mathbb{C})$, then G is not the binary icosahedral group.

In the projective situation of Theorem 0.1, the normal surface B is known to be \mathbb{Q}-factorial with at most log-terminal singularities [30]. Thus, locally analytically, B is isomorphic to a quotient of the form \mathbb{C}^2/G for some finite subgroup $G \subset \text{GL}(2, \mathbb{C})$ (not containing quasi-reflections); cf. [29, Chapter 4.6]. As the quotient by the binary icosahedral group is the only factorial quotient singularity [6, 25, 34], Theorem 0.2 can be expressed equivalently by saying that all singular points of B are non-factorial. Note that once the morphism is known to be flat, the base is automatically smooth. In fact, by miracle flatness, smoothness of B is equivalent to flatness of the morphism.

The second theorem implies the first one. Indeed, according to [38], for X projective, either $B \cong \mathbb{P}^2$ or B is a specific Fano surface with exactly one singular point, which, moreover, is an E_8-singularity. Note that in the local situation non-factorial singularities do occur, which makes the proof of the conjecture in dimension four an interesting mix of global and local arguments.

The proof of Theorem 0.2 makes use of the results of Halle–Nicaise [16], building upon the work of Berkovich [4], and the results of Nicaise–Xu [37]. The former classifies the essential skeleton of semiabelian degenerations of abelian surfaces, which can be seen as a variant of the results of Kulikov and Persson; cf. [14]. The latter allows one to identify the essential skeleton and the dual complex of the degeneration. Another crucial input for our arguments is Alexeev’s work [2].

1. Actions of the binary icosahedral group

Let G be the binary icosahedral group, which by definition fits into a non-split, short exact sequence $1 \rightarrow \{\pm 1\} \rightarrow G \rightarrow A_5 \rightarrow 1$ with A_5 being the group of alternating permutations of five letters. We exploit the properties of G to study its actions in two settings. First, we let G act as a group of homeomorphisms on a low-dimensional topological manifold. Later, this arises as a G-action on the quotient of the essential skeleton of an abelian surface. Second, we study G-actions on complex varieties that are dominated by semiabelian surfaces.

1.1. We begin with the topological setting. Consider a finite extension $1 \rightarrow \Gamma_0 \rightarrow \Gamma \rightarrow G \rightarrow 1$.

Proposition 1.1. Assume Γ acts by homeomorphisms on a topological manifold S, which is either $S^1 \times S^1$ or S^1. Then the induced action of G on S/Γ_0 is trivial.

Proof. To deal with the case $S \cong S^1 \times S^1$, we first observe that if the action of G is not trivial, then the image of $\rho_G: G \rightarrow \text{Homeo}(S/\Gamma_0)$ is either A_5 or G and, in any case, admits a surjection onto A_5. To see this, recall that $\{\pm 1\}$ is the only non-trivial normal subgroup of G and that A_5 is simple.
We will also use the fact that for any finite subgroup \(H \subset \text{Homeo}(S) \) of orientation-preserving homeomorphisms of a compact real surface \(S \), there exists a complex structure on \(S \) with respect to which \(H \) is a group of biholomorphic automorphisms [9, pp. 340–341]. In our situation, the complex structure defines a complex curve \(E \cong \mathbb{C}/\Lambda \) of genus one. Now, the group of biholomorphic automorphisms of \(E \) is a semi-direct product of the abelian group \(E \) acting by translations and the group of automorphisms of \(E \) as an elliptic curve. The latter is a subgroup of \(\text{SL}(2, \mathbb{Z}) \), which only contains finite subgroups of order at most six. Hence, \(H \) contains an abelian subgroup of index at most six.

Let us apply this to the image of the given action \(\rho_T : \Gamma \to \text{Homeo}(S) \). Thus, if \(\text{Im}(\rho_T) \) contains only orientation-preserving homeomorphisms, it contains an abelian subgroup of index at most six. The same then holds for its image under the surjection \(\text{Im}(\rho_T) \to \text{Im}(\rho_G) \to A_5 \). However, the only non-trivial subgroups of \(A_5 \) of index at most six are isomorphic to \(A_4 \) or \(D_{10} \), which are both not abelian. If \(\text{Im}(\rho_T) \subset \text{Homeo}(S) \) does not only contain orientation-preserving homeomorphisms, then the above applies to a certain index two subgroup \(\text{Im}(\rho_T)' \subset \text{Im}(\rho_T) \). However, as \(A_5 \) does not contain any subgroup of index two, the image of \(\text{Im}(\rho_T)' \) under \(\text{Im}(\rho_T) \to \text{Im}(\rho_G) \to A_5 \) is still \(A_5 \), and the arguments above yield again a contradiction.

In the second case, the quotient \(S/\Gamma_0 \cong S^1/\Gamma_0 \) is either \(S^1 \) or the closed interval \([0, 1]\). Recall that any finite subgroup of the group \(\text{Homeo}(S^1) \) of homeomorphisms of the circle is either cyclic or dihedral; cf. [13, §4]. In the case that \(S/\Gamma_0 \) is again a circle, we apply this to the image of \(\rho : G \to \text{Homeo}(S^1) \). However, as the binary icosahedral group does not admit any non-trivial homomorphism onto a cyclic group, the image has to be trivial. Hence, any action of \(G \) on \(S^1 \) is actually trivial. If \(G \) acts by homeomorphisms on the interval \([0, 1]\), then it leaves invariant the boundary and hence, by gluing the boundary points, acts by homeomorphisms on \(S^1 \) as well. However, as before, on \(S^1 \), the action must be trivial, and hence \(G \) acts trivially on the open interval, which suffices to conclude.

1.2. Let us now turn to the actions of \(G \) on low-dimensional varieties.

Proposition 1.2. Let \(T \) be a variety of dimension at most two that is rationally dominated by a surface that is either abelian, rational, or of the form \(\mathbb{P}^1 \times E \) with \(E \) being an elliptic curve. Then, the binary icosahedral group \(G \) does not act freely on \(T \).

Proof. If \(T \) is a curve, its normalization is of genus at most one. However, \(\mathbb{P}^1 \) does not admit any non-trivial free group action and, according to Proposition 1.1, \(G \) does not act (freely) on any elliptic curve. Hence, \(G \) does not act freely on \(T \).

Let now \(T \) be a surface. Then, by universality of the minimal resolution, the action of \(G \) on \(T \) lifts to an action of \(G \) on its minimal resolution \(\tilde{T} \to T \). Moreover, the action on \(\tilde{T} \) is still free. Now pick a \(G \)-equivariant minimal model \(\tilde{T} \to T_0 \); cf. for example [33, Remark 0.3.14] or [11, §2]. Note that \(T_0 \) is indeed minimal unless, possibly, when it has negative Kodaira dimension. Suppose the induced \(G \)-action on \(T_0 \) has a non-trivial stabilizer \(G_x \) at some point \(x \in T_0 \). Then \(G_x \) leaves invariant the exceptional curve in \(\tilde{T} \) over \(x \) that is blown down last. However, this exceptional curve is a \(\mathbb{P}^1 \), which does not admit any non-trivial free group action. Therefore, the \(G \)-action on \(T_0 \) must also be free.
If \(T \) is a rational surface with a non-trivial free \(G \)-action, then the quotient of the free \(G \)-action on the smooth rational surface \(T_0 \) is again a smooth rational surface, contradicting the fact that such a surface is simply connected. Assume now that the equivariant minimal model \(T_0 \) of \(T \) is a blow-up of a ruled surface over a curve \(E_0 := \text{Alb}(T_0) \) of genus one. Then the action of \(G \) on \(T_0 \) covers an action of \(G \) on the base \(E_0 \) of its ruling. However, again using Proposition 1.1, \(G \) does not admit any non-trivial action on the elliptic curve \(E_0 \). Hence, \(G \) acts on the fibres of the ruling \(T_0 \to E_0 \), but as before there are no non-trivial free group actions on \(\mathbb{P}^1 \).

Assume now that the minimal model \(T_0 \) of \(T \) is isomorphic, as a complex manifold, to an abelian surface. It suffices to show that the induced action of \(G \) on \(T_0 \) is trivial. The \(G \)-action on \(T_0 \) naturally induces an action on the Albanese variety \(\text{Alb}(T_0) \), which now is an abelian surface non-canonically isomorphic to \(T_0 \). As \(\{ \pm 1 \} \) is the only non-trivial normal subgroup of \(G \), the image of \(\tau : G \to \text{Aut}(\text{Alb}(T_0)) \) is either \(G \), \(A_5 \), or trivial. Furthermore, the action on the one-dimensional \(H^{1,0}(T_0) \) is trivial, for \(G \) does not admit any non-trivial cyclic quotients. Hence, the action on \(H^{1,0}(T_0) \) is special, i.e. the image of \(G \) is contained in the special linear group. Then, according to [12, Lemma 3.3], the elements of \(\text{Im}(\tau) \) have order 1, 2, 3, 4, or 6, but both groups, \(A_5 \) and \(G \), contain elements of order five. See also [21, Corollary 3.17]. Hence, \(\tau \) is trivial, and therefore the action of \(G \) on \(T_0 \) factors through the abelian group of translations. However, \(G \) has only trivial abelian quotients.

Let us next consider the case that \(T_0 \) is a K3 or an Enriques surface. Now use that \(\chi(O_{T_0}) = 1 \) or 2 to show that \(T_0 \) does not admit any free group action of any group of order \(> 2 \).

Finally, assume that \(T_0 \) is a bielliptic surface \((E_1 \times E_2)/G_0 \) and consider the action of the natural extension \(1 \to G_0 \to \tilde{G} \to G \to 1 \) on \(E_1 \times E_2 \). As above, if this action on \(H^{1,0}(E_1 \times E_2) \) is special, then \(\tilde{G} \) acts by translations (note that \(\tilde{G} \) again contains an element of order five). Hence, the action of \(G \) on \(T_0 \) factors through an abelian group and, therefore, is trivial. If the action is not special, then replace \(\tilde{G} \) by the kernel of the induced surjection \(\tilde{G} \to \mathbb{Z}/n\mathbb{Z} \), which still surjects onto \(G \), and conclude as before.

2. Semiabelian degenerations

The generic fibre \(X_t \) of the Lagrangian fibration \(X \to B \) is a smooth variety isomorphic to an abelian surface. Indeed, its cotangent bundle is isomorphic to its normal bundle and, therefore, trivial. Thus, the fibration can be viewed as a degeneration of abelian surfaces to more singular fibres. Very little can be said about arbitrary degenerations of abelian surfaces, so we will have to construct a new family that has only mildly singular fibres and, in order to exploit the properties of the binary icosahedral group \(G \), that comes with a \(G \)-action. However, only one-dimensional degenerations of abelian surfaces can be studied by means of essential skeleta and dual complexes. So, in the second step, we will pass from the two-dimensional family of complex abelian surfaces to a one-dimensional family of abelian surface over a function field.
2.1. Assume B is étale locally at $0 \in B$ of the form $V := U/G$ with $G \subset \text{GL}(2, \mathbb{C})$ being an arbitrary finite group acting on a smooth surface U with a unique fixed point $0 \in U$ and such that the action is free on $U \setminus \{0\}$. To prove the theorem, we may actually reduce to the case $B = V = U/G$, which we will henceforth assume.

The action of G on U naturally lifts to an action on the fibre product $X_U := U \times_V X$ and, by functoriality, to an action on its normalization $Y \longrightarrow X_U$. Note that by construction, $Y|_{U \setminus \{0\}} \simeq X|_{U \setminus \{0\}}$, and due to the following lemma, Y is in fact smooth.

Lemma 2.1. The composition $\varphi: Y \longrightarrow X_U \longrightarrow X$ is étale and can be identified with the quotient of the action of G on Y, which is free:

$$\varphi: Y \longrightarrow Y/G \simeq X.$$

Proof. Indeed, as the action of G is free on the complement of $0 \in U$, the morphism $\varphi: Y \longrightarrow X$ is étale on the complement of the subscheme $Y_0 \subset Y$, which as a Lagrangian subvariety has codimension two [32]. However, as Y is normal and X is smooth, the ramification locus is pure of codimension one and hence empty, i.e. φ is étale. The induced morphism $Y/G \longrightarrow X$ is injective and birational and, using normality of both varieties, in fact an isomorphism.

From the lemma, one immediately deduces the following key fact.

Corollary 2.2. The induced action $G \times Y_0 \longrightarrow Y_0$ on the central fibre $Y_0 \subset Y$ is free.

Eventually, the free action on the fibre Y_0 will lead to a contradiction if the group G is the binary icosahedral group. This will be done in two steps:

(i) The G-action on Y_0 leaves invariant a certain subvariety T.

(ii) The subvariety T does not admit a free G-action.

2.2. Information about Y_0 together with its G-action is difficult to obtain. We will instead work with a functorial extension of the smooth part of the family $Y \longrightarrow U$ to a family of stable semiabelic pairs [2]. The extension has to be produced in a G-equivariant fashion.

In the first step, we turn the smooth fibres Y_t of $Y \longrightarrow U$ into stable semiabelic pairs and then later extend this smooth family to a family over the entire U. To realize this first step, we need to choose, in a uniform way, for each smooth fibre Y_t an effective ample divisor $D_t \subset Y_t$ and an origin $o(t) \in Y_t$ that makes Y_t an abelian surface. The first is easy to arrange, uniformly over U, by picking an ample divisor $D_X \subset X$. If necessary, shrink U and V to ensure that D_X does not contain any fibres so that its restriction to all fibres is a divisor. Its pull-back under φ yields a G-invariant relative ample effective divisor $D := \varphi^{-1}(D_X) \subset Y$. To turn the smooth part of $Y \longrightarrow U$ into a family of abelian surfaces, which amounts to choosing uniformly a zero section, we need to pass to an appropriate Galois cover $U' \longrightarrow U$ (shrink U if necessary), e.g. the Galois closure of a multisection of $Y \longrightarrow U$. Then the smooth part of $Y' := U' \times_U Y \longrightarrow U'$ together with the induced section $o: U' \longrightarrow Y'$ constitutes a family of abelian surfaces, and the pull-back of $D \subset Y$ is a relative ample effective divisor $D' \subset Y'$. Furthermore, the G-action on $Y \longrightarrow U$
lifts to an action of G' on $Y' \to U'$, where, after possibly passing to a further cover of Y, G' is an extension $1 \to H \to G' \to G \to 1$ of G by the Galois group H of the cover $U' \to U$. We summarize the construction above by the following diagram:

\[
\begin{array}{ccc}
G' & \to & G \\
\downarrow & & \downarrow \\
Y' & \to & X_U \\
\downarrow & & \downarrow \\
U' & \to & V \simeq U/G.
\end{array}
\]

Note that when passing to U', the origin $0 \in U$ gets replaced by an orbit $\{0_1, \ldots, 0_n\}$ of the action of H or, equivalently, of the action of G'.

Let $\Delta \subset U'$ be the discriminant locus of $Y' \to U'$. Then the restriction of Y', D', and the section o to its complement $U' \setminus \Delta$ describes a family of abelian surfaces together with an effective polarization of a certain degree d. It corresponds to a morphism to the moduli stack $\mathcal{A}\mathcal{P}_{2,d}$ of such pairs, which admits a coarse quasi-projective moduli space $\mathcal{A}\mathcal{P}_{2,d}$:

\[
U' \setminus \Delta \to \mathcal{A}\mathcal{P}_{2,d} \to \mathcal{A}\mathcal{P}_{2,d}. \tag{2.1}
\]

According to [2, Theorem 1.2.2], the main component $\overline{\mathcal{A}\mathcal{P}_{2,d}}$ of the moduli stack of stable semiabelic pairs admits a coarse moduli space $\overline{\mathcal{A}\mathcal{P}_{2,d}}$, which is a proper algebraic space and, in fact, a projective variety [24, Theorem 1.1]. Thus, $\overline{\mathcal{A}\mathcal{P}_{2,d}}$ provides a compactification of $\mathcal{A}\mathcal{P}_{2,d}$. As the surface U' is normal, we may shrink U' to an open, invariant neighbourhood of the H-orbit $\{0_t\}$ such that (2.1) extends to a morphism

\[
U' \setminus \{0_t\} \to \overline{\mathcal{A}\mathcal{P}_{2,d}}. \tag{2.2}
\]

This determines a stable semiabelic pair for each point $t \in U' \setminus \{0_t\}$ but not quite a family yet. In order to complete our family over $U' \setminus \Delta$ to a family of stable semiabelic varieties over Δ and, in particular, over the points 0_i, we need to modify U'. We do this in two steps. First, we resolve the indeterminacies of the rational map (2.2) by passing to a (multiple) blow-up $U' \leftarrow \text{Bl}(U') \to \overline{\mathcal{A}\mathcal{P}_{2,d}}$, which can be done in a G'-equivariant manner (with the trivial action on $\overline{\mathcal{A}\mathcal{P}_{2,d}}$). However, a morphism to $\overline{\mathcal{A}\mathcal{P}_{2,d}}$ still does not provide us with a family. But there exists a Galois cover $U'' \to \text{Bl}(U')$, with some Galois group H', by an irreducible normal surface U'' (to simplify, you may shrink U'' further) together with a lift $\tilde{\phi}$ of $\phi: \text{Bl}(U') \to \overline{\mathcal{A}\mathcal{P}_{2,d}}$ to the stack $\overline{\mathcal{A}\mathcal{P}_{2,d}}$:
Let Lemma 2.3. The irreducible components of B describe a degeneration of the abelian surface C. Geometrically, up to finite cover, we think of the curve G of the point η generic point in its generic point. The existence of the semiabelian extension A to Grothendieck and Mumford [15, Exp. IX, Proposition 3.5] and Faltings–Chai [10, Chapter 6]; cf. [7].

Note that over the pre-image under $U'' \to U'$ of the open subset $U' \setminus \Delta$, the two families A and B coincide with the pull-back $Y'' := U'' \times_{U'} Y'$ of $Y' \to U'$. Clearly, the action of G' on Y' lifts to an action of G'' on Y'', which in turn yields an action of G'' on the restriction of (A, B) to the pre-image of $U' \setminus \Delta$. In fact, as $\mathcal{AP}_{2, d}$ is separated, the action of G'' extends to all of $(A, B) \to U''$ over the given action on U''.

2.3. Consider the equivariant birational morphism $\sigma : \text{Bl}(U') \to U'$ with respect to the action of the stabilizer $G'_1 := \text{Stab}_{G'}(0_1)$ of the point $0_1 \in U'$. Then, running the equivariant MMP (minimal model program) for surfaces, one always finds a closed point $t_1 \in \sigma^{-1}(0_1)$ fixed under the G'_1-action or an irreducible G'_1-invariant curve $C_1 \subset \sigma^{-1}(0_1)$. This can also be seen as a special case of a more general result due to Hogadi–Xu [17, Theorem 1.3]; cf. [26, Proposition 3.6]. In the case of a fixed point t_1, we blow up once more to reduce to the case of a G'_1-invariant exceptional curve C_1. Note, for later reference, that G'_1 is a finite extension $1 \to K_1 \to G'_1 \to G \to 1$, i.e. the projection induces a surjection $G'_1 \to G$. Note that in general, the inclusion $K_1 \subset H$ is proper.

Next, we pick an irreducible curve $C \subset U''$ dominating C_1 with its scheme-theoretic generic point $\eta_C \in C$ and consider the subgroup $H'_C \subset H'$ leaving it invariant. Then there exists a subgroup $G''_C \subset G''$ given by an extension $1 \to H'_C \to G''_C \to G'_1 \to 1$, whose induced action on $(A, B) \to U''$ leaves $C \subset U''$ invariant.

Consider now a morphism $\text{Spec}(R) \to U''$ from the spectrum of a DVR R with its closed point 0_R mapped to η_C and its generic point η_R mapped to the generic point η_U of U''. We assume that both extensions $k(\eta_C) \subset k(0_R)$ and $k(\eta_U) \subset k(\eta_R)$ are finite and Galois. Geometrically, up to finite cover, we think of $\text{Spec}(R)$ as a curve in U'' intersecting the curve C in its generic point.

The pull-back of (A, B) to $\text{Spec}(R)$ shall be denoted by (A_R, B_R). Then, $A_R \to \text{Spec}(R)$ describes a degeneration of the abelian surface $A := A_{0 R}$ to the semiabelian variety $A_0 := A_{0 R}$. After passing to a further finite extension of R, we may assume that the irreducible components of B_0_R are geometrically irreducible. For later use, we state the following observation.

Lemma 2.3. Let $W_0 \subset B_{0 R}$ be an irreducible component of the closed fibre of $B_R \to \text{Spec}(R)$. Then the $k(0_R)$-variety W_0 is either an abelian surface, or birational
to $\mathbb{P}^1 \times E$ with E an elliptic curve, or a rational surface.

Proof. Indeed, the pair (A_{0_R}, B_{0_R}) forms a stable semiabelic variety. In particular, the semiabelian surface A_{0_R} acts with only finitely many orbits on B_{0_R}. The three cases correspond to the three possibilities for the dimension $0 \leq d \leq 2$ of the toric part of A_{0_R}. \square

2.4. Note that the normal surface U''/K comes with a birational morphism $U''/K \longrightarrow U$, where K is given by (2.3). Also, the two quotients A/K and B/K over U''/K are birational to $Y \longrightarrow U$. In fact, they coincide over the pre-image of the complement of the discriminant locus of the latter.

After possibly passing to a further cover of $\text{Spec}(R)$, the action of the group G''_C on (A, B) lifts to an action of a group Γ on $(A_{R}, B_{R}) \longrightarrow \text{Spec}(R)$. Here, Γ is described by an extension $1 \longrightarrow \text{Gal} \longrightarrow \Gamma \longrightarrow G''_C \longrightarrow 1$ of G''_C by the finite Galois group of the extension $k(\eta_{U''}) \subset k(\eta_R)$. The action of Γ respects the closed fibre B_{0_R}. However, as it involves the action of Gal, it is not an action on the $k(0_R)$-variety B_{0_R}. For later use, we remark that Γ can also be regarded as a finite extension of G, say

$$1 \longrightarrow \Gamma_0 \longrightarrow \Gamma \longrightarrow G \longrightarrow 1.$$

The situation is illustrated by the following diagram:

```
\[ \begin{array}{ccc}
\Gamma & \longrightarrow & G''_C \\
\downarrow & & \downarrow \circlearrowleft \\
\text{Spec}(k(0_R)) & \longrightarrow & C \\
\downarrow & & \downarrow \circlearrowleft \\
\Gamma \cap \text{Spec}(R) & \longrightarrow & U'' \\
\downarrow & & \downarrow \circlearrowleft \\
\text{Spec}(k(\eta_R)) & \longrightarrow & \text{Spec}(k(\eta_{U''})).
\end{array} \]
```

Let $K_C := K \cap G''_C$, which sits in an exact sequence $1 \longrightarrow K_C \longrightarrow G''_C \longrightarrow G \longrightarrow 1$, and let $\Gamma_C \subset \Gamma$ be its pre-image, for which we have an exact sequence $1 \longrightarrow \text{Gal} \longrightarrow \Gamma_C \longrightarrow K_C \longrightarrow 1$. Then, taking quotients of the semiabelic family B yields inclusions

$$B_{0_R}/\text{Gal} \subset B_C \text{ and } B_{0_R}/\Gamma_C \subset B_C/K_C \subset B/K \dashv Y.$$

In particular, the closure of the image of an irreducible $k(0_R)$-subvariety $W_0 \subset B_{0_R}$ yields a \mathbb{C}-subvariety $\overline{W}_0 \subset B_C$ fibred over C.

Remark 2.4. Assume $W_0 \subset B_{0_R}$ is invariant under a subgroup $\Gamma' \subset \Gamma$, which under the projection $\Gamma \longrightarrow G$ surjects onto G. Then $\overline{W}_0 \subset B_C$ is G''_C-invariant and

$$W := \overline{W}_0/K_C \subset B_C/K_C \subset B/K \dashv Y$$

is G-invariant. Also note that the varieties $W = \overline{W}_0/K_C \subset B_C/K_C$ are both fibred over the curve $C/K_C = C_1/K_1$, which is an exceptional curve of $\text{Bl}(U'/H) \longrightarrow U$.

Remark 2.5. Note that if the $k(0_R)$-variety W_0 is of dimension two, i.e. an irreducible component of the special fibre B_{0_R}, then $W = W_0/K_C$ is of complex dimension three and, hence, a divisor in B/K. Therefore, W rationally dominates a subvariety T of the closed fibre Y_0.

More concretely, as $C/K_C \subset U''/K$ is blown down under the birational map $U''/K \simeq \text{Bl}(U'/H) \to U$ and Y is a family over U, any fibre W_t of $W \to C/K_C$ for t in a dense open subset of C/K_C rationally dominates T. Now, specializing the $k(0_R)$-variety W_0 to the complex variety W_t, Lemma 2.3 allows one to conclude that T is dominated by a surface that is either abelian, rational, or isomorphic to $\mathbb{P}^1 \times E$ with E being an elliptic curve.

3. Action on the skeleton and the fibre

In this final section, we apply the results of Section 1.1 to the G-action on the essential skeleton of the one-dimensional degeneration over $\text{Spec}(R)$ constructed above. This will provide us with a G-invariant subvariety of the special fibre. Then, combining the results of Sections 1.2 and 2.2 leads to a contradiction.

3.1. The next result is a consequence of [16, Corollary 4.3.3], building upon [4, Section 6.5], adapted to our situation. As in the previous section, A denotes the generic fibre A_{η_R} of the semiabelian family $A_R \to \text{Spec}(R)$ over a DVR. By construction, the function field $k(\eta_R)$ of R is a finite Galois extension of the function field $k(\eta_{U''})$ of the complex surface U''. In the course of our discussion, we will tacitly replace R by a suitable finite extension when necessary. Passing to the algebraic closure of $k(0_R)$ and the completion of R, the base change of A yields an abelian surface over a complete discretely valued field with an algebraically closed residue field of characteristic zero. In this situation, the Kontsevich–Soibelman essential skeleton, a subspace of the Berkovich space associated with the abelian surface, was studied by Mustaţă and Nicaise [35]; see also [36] for a survey. Suppressing the passage to the completion in the notation, we will write $\text{Sk}(A)$ for the essential skeleton of the base change of A. Note that $\text{Sk}(A)$ can be computed in terms of any sncd model [35, Theorem 4.5.5] and is, therefore, a finite CW complex. In particular, it can in fact be computed over a finite extension of R.

Proposition 3.1. The group Γ acts continuously on the essential skeleton $\text{Sk}(A)$ of the fibre $A = A_{\eta_R}$. The homeomorphism type of $\text{Sk}(A)$ is given by one of the three possibilities:

(i) $\text{Sk}(A) \simeq \{\text{pt}\}$, (ii) $\text{Sk}(A) \simeq S^1$, or (iii) $\text{Sk}(A) \simeq S^1 \times S^1$. (3.1)

Proof. The description of the homeomorphism type of $\text{Sk}(A)$ is given by [16, Corollary 4.3.3]. For the first assertion, we use again that $\text{Sk}(A)$ can be computed in terms of an sncd model and of the dual complex of its closed fibre. Such a model can always be equivariantly constructed, starting with B_R and possibly enlarging the group Γ further, so that the group action on A can be extended to the closed fibre. Although the group action on the closed fibre does not respect the structure of the closed fibre as a variety over $k(0_R)$, it still acts continuously on its dual complex.

Combined with Proposition 1.1, one obtains the following result.

Corollary 3.2. If G is the binary icosahedral group, then the induced action on $\text{Sk}(A)/\Gamma_0$ is trivial.

We will again need the identification of the essential skeleton with the dual complex of an appropriate sncd model. The result is a consequence of [37] and [23]. Recall that the family $\mathcal{B}_R \to \text{Spec}(R)$, with generic fibre $A = A_{\eta R} \simeq B_{\eta R}$, was constructed in a way such that all irreducible components of the closed fibre $B_{0 R}$ are geometrically irreducible. However, $B_{0 R} \subset \mathcal{B}_R$ is usually not an snc divisor and its dual complex is not well defined. To remedy the situation, we first observe the following.

Lemma 3.3. The family $\mathcal{B}_R \to \text{Spec}(R)$ satisfies the following conditions: $B_{0 R}$ is reduced, the canonical bundle $K_{\mathcal{B}_R}$ is trivial, and the pair $(\mathcal{B}_R, B_{0 R})$ is log-canonical.

Proof. By construction, $B_{0 R}$ is a semiabelic variety and, therefore, by definition, reduced. The other two assertions follow from the explicit construction of the degeneration; see [2, Theorem 5.7.1] and [34]. See also [3, Lemma 4.1 and 4.2] for the fact that $B_{0 R}$ is Gorenstein and $K_{\mathcal{B}_R}$ is trivial and [1, Lemma 3.7 and 3.8] combined with [22, Theorem 4.9(2)] for the fact that $(\mathcal{B}_R, B_{0 R})$ is log-canonical.

Now we use the existence of a Γ-equivariant dlt modification $\pi: \tilde{\mathcal{B}} \to \mathcal{B}_R$ of the pair $(\mathcal{B}_R, B_{0 R})$; cf. [22, Theorem 1.34]. In particular, $(\tilde{\mathcal{B}}, (\tilde{\mathcal{B}}_{0 R})_{\text{red}} = \pi_*^{-1}B_{0 R} + E)$ is dlt. Here, $\pi_*^{-1}B_{0 R}$ is the strict transform of the (reduced) fibre $B_{0 R}$ and E is the reduced exceptional divisor of π. Hence, the dual complex $\Delta((\tilde{\mathcal{B}}_{0 R})_{\text{red}})$ of $(\tilde{\mathcal{B}}_{0 R})_{\text{red}}$ is well defined [8]. As $(\mathcal{B}_R, B_{0 R})$ is log-canonical, the dlt modification satisfies $\pi^*(K_{\mathcal{B}_R} + B_{0 R}) = K_{\tilde{\mathcal{B}}} + \pi_*^{-1}B_{0 R} + E$. As $K_{\mathcal{B}_R}$ and $B_{0 R}$ are both trivial divisors on \mathcal{B}_R, $K_{\tilde{\mathcal{B}}} + \pi_*^{-1}B_{0 R} + E$ is also trivial. Hence, both assumptions of [23, Theorem 24] are fulfilled, which immediately yields the next result.

Corollary 3.4. There exists a Γ-equivariant homeomorphism $\text{Sk}(A) \simeq \Delta((\tilde{\mathcal{B}}_{0 R})_{\text{red}})$ between the essential skeleton of A and the dual complex of the closed fibre $(\tilde{\mathcal{B}}_{0 R})_{\text{red}}$.

Let now $W_0 \subset B_{0 R}$ be an irreducible component and let $\Gamma' \subset \Gamma$ be the subgroup that leaves W_0 invariant. Combining Corollaries 3.2 and 3.4 and Remark 2.4, we have proved the following consequence.

Corollary 3.5. The composition $\Gamma' \subset \Gamma \to G$ is surjective, and therefore $W = \overline{W}_0/K_C$ is a G-invariant subvariety of $B_C/K_C \subset B/K$.

3.2. As the G-actions on B/K and Y are compatible under the birational map $B/K \dashrightarrow Y$, the subvariety $T \subset Y_0$ corresponding to W (cf. Remark 2.5) is G-invariant. However, due to Proposition 1.2, the action of G on T cannot be free, which contradicts Corollary 2.2. This concludes the proof of Theorem 0.2 and, at the same time, of Theorem 0.1.
Lagrangian fibrations of hyperkähler fourfolds

Acknowledgements. The authors are grateful to K. Hulek, J. Nicaise, W. Ou, and I. Smith for answering their questions. Special thanks go to V. Alexeev for explanations concerning [2] and to Ch. Lehn, M. Mauri, and W. Ou for helpful comments on the first version of this paper. The first author wishes to thank D. Greb, V. Lazić, and L. Tasin for discussions of the problem at an early stage. The second author thanks the Institut Henri Poincaré and the Institut de Mathématiques de Jussieu for their hospitality during his stay in 2018. The first version of the paper was written while the authors enjoyed the hospitality of the MSRI, which is gratefully acknowledged. While working on this project, F. Bogomolov and N. Kurnosov published [5] which uses results by J.-M. Hwang and K. Oguiso [20] to exclude the case of E_8-singularities. We are grateful to F. Bogomolov for explanations concerning their arguments.

References

1. V. Alexeev, Log canonical singularities and complete moduli of stable pairs, preprint, 1996, arXiv:alg-geom/9608013.
2. V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. 155 (2002), 611–708.
3. V. Alexeev and I. Nakamura, On Mumford’s construction of degenerating abelian varieties, Tohoku Math. J. 51 (1999), 399–420.
4. V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, in Math. Surv. Mon. (American Mathematical Society, Providence, 1990).
5. F. Bogomolov and N. Kurnosov, Lagrangian fibrations for IHS fourfolds, preprint, 2018, arXiv:1810.11011.
6. E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336–358.
7. S. Casalaina-Martin, A tour of stable reduction with applications, in A Celebration of Algebraic Geometry, Clay Math. Proc., Volume 18, pp. 65–117 (American Mathematical Society, Providence, 2013).
8. T. de Fernex, J. Kollár and C. Xu, The dual complex of singularities, in Higher Dimensional Algebraic Geometry–in Honour of Professor Yujiro Kawamata’s Sixtieth Birthday, Adv. Stud. Pure Math., Volume 74, pp. 103–129 (Math. Soc. Japan, Tokyo, 2017).
9. A. Edmonds, Transformation Groups and Low-Dimensional Manifolds, Contemp. Math., Volume 36, pp. 339–366 (American Mathematical Society, 1985).
10. G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Folge/A Series of Modern Surveys in Mathematics, Volume 22, (Springer, 1990).
11. K. Frantzen, K3-surfaces with special symmetry, PhD thesis, Bochum (2008), http://webdoc.sub.gwdg.de/ebook/dissts/Bochum/Frantzen2008.pdf.
12. A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. RIMS, Kyoto Univ. 24 (1988), 1–97.
13. E. Ghys, Groups acting on the circle, Enseign. Math. 47(2) (2001), 329–407.
14. R. Friedman and D. Morrison, The birational geometry of degenerations, Birkhäuser Prog. Math. 29 (1983).
15. A. Grothendieck, Groupes de Monodromie en Géométrie Algébrique I, SGA 7 I LNM, Volume 288, (Springer, 1972).
16. L. Halle and J. Nicaise, Motivic zeta functions of degenerating Calabi–Yau varieties,
17. A. Hogadi and C. Xu, Degenerations of rationally connected varieties, *Trans. Amer. Math. Soc.* **361** (2009), 3931–3949.

18. D. Huybrechts, Compact hyperkähler manifolds, in *Calabi–Yau Manifolds and Related Geometries* (Nordfjordeid, 2001), Universitext, pp. 161–225 (Springer, Berlin, 2003).

19. J.-M. Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, *Invent. Math.* **174** (2008), 625–644.

20. J.-M. Hwang and K. Oguiso, Multiple fibers of holomorphic Lagrangian fibrations, *Commun. Contemp. Math.* **13** (2011), 309–329.

21. T. Katsura, Generalized Kummer surfaces and their unirationality in characteristic p, *J. Fac. Sci. Univ. Tokyo, Math.* **34** (1987), 1–41.

22. J. Kollár, *Singularities of the Minimal Model Program*, Cambridge Tracts in Mathematics, Volume 200 (2013).

23. J. Kollár, J. Nicaise and C. Xu, Semi-stable extensions over 1-dimensional bases, *Acta Math. Sinica* **34** (2018), 103–113.

24. S. Kovács and Z. Patakfalvi, Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, *J. Amer. Math. Soc.* **30** (2017), 959–1021.

25. J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, *Publ. Math. Inst. Hautes Études Sci.* **36** (1969), 195–279.

26. Y. Liu and C. Xu, K-stability of cubic threefolds, *Duke Math. J.* **168**(11) (2019), 2029–2073.

27. E. Markman, Lagrangian fibrations of holomorphic-symplectic varieties of $K3^{[n]}$-type, in *Algebraic and Complex Geometry*, Springer Proc. Math. Stat., Volume 71, pp. 241–283. (2014).

28. D. Markushevich, Completely integrable projective symplectic 4-dimensional varieties, *Izv. Math.* **59** (1995), 159–187.

29. K. Matsuki, *Introduction to the Mori Program*, Universitext (Springer, New York, 2002).

30. D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, *Topology* **38** (1999), 79–83.

31. D. Matsushita, Addendum: ‘On fibre space structures of a projective irreducible symplectic manifold’ [Topology 38 (1999)], *Topology* **40** (2001), 431–432.

32. D. Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds, *Math. Res. Lett.* **7** (2000), 389–391.

33. S. Mori, Flip theorem and the existence of minimal models for 3-folds, *J. Amer. Math. Soc.* **1** (1988), 117–254.

34. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, *Publ. Math. Inst. Hautes Études Sci.* **9** (1961), 5–22.

35. M. Mustaţă and J. Nicaise, Weight functions on non-Archimedean analytic spaces and the Kontsevich–Soibelman skeleton, *Algebr. Geom.* **2** (2015), 365–404.

36. J. Nicaise, Berkovich skeleton and birational geometry, in *Nonarchimedean and Tropical Geometry, Simons Symposia* (ed. M. Baker and S. Payne), pp. 173–194 (Springer, Cham, 2016).

37. J. Nicaise and C. Xu, The essential skeleton of a degeneration of algebraic varieties, *Am. J. Math.* **138** (2016), 1645–1667.

38. W. Ou, Lagrangian fibration on symplectic fourfolds, *Crelle J. Reine Angew. Math.* **746** (2019), 117–147.