A Categorification of the Vandermonde Determinant

Alex Chandler

North Carolina State University

May 7, 2018
Categorification (a philosophy)

Categorification is the process of finding category theoretic analogues of set theoretic ideas by "adding extra structure":

Categorification	Decategorification
sets	categories
elements	objects
equations between elements	isomorphisms between objects
functions	functors

Decategorification is the reverse process (forgetting the extra structure)
Example: a categorification of \mathbb{N}

Objects: f.d. k-vector spaces

Morphisms: k-linear maps

k a field. The category k-Vect categorifies \mathbb{N}. Decategorify by taking dimension.

- V decategorifies to $\dim V$
- $V \oplus W$ decategorifies to $\dim V + \dim W$
- $V \otimes W$ decategorifies to $\dim V \dim W$
Categorifying \mathbb{Z}

Objects: bounded chain complexes
Morphisms: chain maps

The category $C^b(k\text{-Vect})$ categorifies \mathbb{Z}.

- C_* decategorifies to $\chi(C_*) = \sum (-1)^i \dim C_i$
- $C_* \oplus D_*$ decategorifies to $\chi(C_*) + \chi(D_*)$
- $C_* \otimes D_*$ decategorifies to $\chi(C_*)\chi(D_*)$
A classic example from topology

- \(\Delta \): a simplicial complex, \(c_i = \# \) faces of dim \(i \)
- The Euler characteristic of \(\Delta \) is
 \[
 \chi(\Delta) = \sum_{i \geq 0} (-1)^i c_i
 \]
- \(C_i(\Delta) \): free abelian group generated by faces of dimension \(i \)
- \(d : C_k \to C_{k-1} \) sends
 \[
 [v_{i_1}, \ldots, v_{i_k}] \mapsto \sum_j (-1)^j [v_{i_1}, \ldots, \hat{v}_{i_j}, \ldots, v_{i_k}]
 \]
- \(\chi(C_*(\Delta)) = \chi(\Delta) \)
The plan for this talk

The Vandermonde determinant is defined as

\[
V_n = \begin{vmatrix}
 x_1 & x_1^2 & \cdots & x_1^n \\
 x_2 & x_2^2 & \cdots & x_2^n \\
 \vdots & \vdots & \ddots & \vdots \\
 x_n & x_n^2 & \cdots & x_n^n \\
\end{vmatrix} = \sum_{\pi \in S_n} (-1)^{\text{inv}(\pi)} x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n)}
\]

- Categorify (evaluations of) \(V_n \) for \(x_1, \ldots, x_n \in \mathbb{N} \)
- Accomplish this in a way analogous to Khovanov’s categorification of the Kauffman bracket
Khovanov homology

Categorifies the Kauffman bracket

\[\langle K \rangle = \sum_{\alpha \in \{0,1\}^n} (-1)^{h(\alpha)} q^{h(\alpha)} (q + q^{-1})^{s(\alpha)} \]

where \(K \) is a link diagram with \(n \) crossings,

\[h(\alpha) = \#1's \ in \ \alpha, \]

\[s(\alpha) = \#circles \ in \ \alpha\text{-smoothing} \]
The n-cube $C_n = \{0, 1\}^n$

- Partially ordered set with vertices $\{0, 1\}^n$
- Cover relation (edge) when you change a 0 to a 1:
n-tuples of 1’s and 0’s encode smoothings of K
Edges encode **cobordisms** between smoothings

- Start with \((100\text{-smoothing}) \times [0, 1]\)
- Remove cylindrical neighborhood of changing crossing
- Replace with a saddle
Category of cobordisms

Objects: closed 1-dim manifolds

Morphisms: 2-dim cobordisms

The category Cob_2 contains smoothings and cobordisms as its objects and morphisms
Replace vertices in C_n by corresponding smoothings.
Replace edges in C_n by cobordisms

A commutative diagram in Cob_2
2D TQFTs and Frobenius algebras

A 2D TQFT is a monoidal functor from Cob_2 to k-Vect.

- Assigns a k-vector space A to each circle

$$
\begin{align*}
\text{Circle} & \quad \rightarrow \quad A \\
\text{Circle with 4 disks} & \quad \rightarrow \quad A \otimes A \otimes A \otimes A
\end{align*}
$$

- Assigns linear maps to cobordisms

$$
\begin{align*}
\text{Diagram 1} & \quad \rightarrow \quad \left(m : A \otimes A \rightarrow A \right) \\
\text{Diagram 2} & \quad \rightarrow \quad \left(\Delta : A \rightarrow A \otimes A \right)
\end{align*}
$$

- Multiplication

$$
\begin{align*}
\text{Diagram 3} & \quad \rightarrow \quad \left(\eta : R \rightarrow A \right) \\
\text{Diagram 4} & \quad \rightarrow \quad \left(\epsilon : A \rightarrow R \right)
\end{align*}
$$

- Unit

- Comultiplication

- Counit
Apply a 2D TQFT (with $q \dim A = q + q^{-1}$)

An anti-commutative diagram in R-gmod
Direct sum down ranks and get a chain complex

\[A \otimes A \rightarrow A \oplus A \rightarrow (A \otimes A) \oplus^3 \rightarrow A \otimes A \otimes A \]
The (shifted) homology groups of this chain complex are link invariants and the graded Euler characteristic of this complex is equal to the Kauffman bracket

$$\sum_{i \in \mathbb{Z}} (-1)^i q \dim H^i = \langle K \rangle$$

- The (shifted) Khovanov homology groups give a strictly stronger link invariant than the Jones polynomial
- Khovanov homology is a functor. That is, cobordisms between links induce maps between Khovanov homology groups
Why did this construction work?

- The Kauffman bracket is a rank alternating sum over a ranked poset \(P = C_n \)
 \[
 \sum_{x \in P} (-1)^{r(x)} f(x)
 \]
- Every interval of length 2 in \(C_n \) is a diamond (i.e. \(C_n \) is thin)
- There is a \(\{+1, -1\} \) edge coloring of \(C_n \) for which each diamond has an odd number of -1’s (a balanced coloring)
Categorifying Vandermonde

\[V_n = \sum_{\pi \in S_n} (-1)^{\text{inv}(\pi)} x_{\pi(1)} x_{\pi(2)} \ldots x_{\pi(n)} \]

- \(S_n \) has a thin poset structure: the **Bruhat order**
- \(\text{inv}(\pi) \) is the rank function for this ordering
- The Bruhat order has a balanced coloring

We're in business!
Bruhat Order on S_n

- An **inversion** in a permutation π is a pair (i, j) with $i < j$ and $\pi(i) > \pi(j)$
- $\text{inv}(\pi)$ denotes the number of inversions of π
- Bruhat order on S_n has a vertex for each $\pi \in S_n$
- Has an edge (cover relation) $\pi \lessdot \sigma$ whenever σ is gotten from π (in one line notation) by transposing a non-inversion pair for which $\text{inv}(\sigma) = \text{inv}(\pi) + 1$
E.g. Bruhat Order on S_3
Colored Cobordisms: \(\text{Cob}_2^n \)

Objects: \([n]\)-colored closed 1-manifolds

Morphisms: color preserving cobordisms

Let \([n] = \{1, 2, \ldots, n\}\). The category \(\text{Cob}_2^n\) has

- Objects: closed 1-manifolds with each connected component given a color from \([n]\)
- Morphisms: 2-dimensional manifolds for which each connected component has monochromatic boundary
For example, let $M = \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ and $N = \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

is a colored cobordism from M to N, but not
Permutations (vertices) encode colored smoothings

K a link diagram with crossings c_1, \ldots, c_n and $\pi \in S_n$

- The π-smoothing of K is

$$K^\pi = K_1^\pi \amalg K_2^\pi \amalg \ldots \amalg K_n^\pi \in \text{Ob Cob}_2^n$$

- K_i^π is gotten from K by giving $c_1, c_2, \ldots, c_{\pi(i)}$ 1-smoothings and all other crossings 0-smoothings

- All components of K_i^π are colored i
\(\pi \)-Smoothing Example

\[K = \begin{array}{c}
\varepsilon_3 \\
\varepsilon_2 \\
\varepsilon_1
\end{array} \quad \pi = 213 \text{ smoothing} \]

\[K_1^\pi \quad K_2^\pi \quad K_3^\pi \]
Edges encode colored cobordisms

If $\pi \preceq \sigma$ then $K^{\pi} = \bigoplus_{i=1}^{n} K_{i}^{\pi}$ and $K^{\sigma} = \bigoplus_{i=1}^{n} K_{i}^{\sigma}$ differ at exactly two colors. Use connected genus 0 cobordisms on the colored pieces which differ, and identity (cylinders) on pieces which do not change.
Replace vertex π with π-smoothing
Replace edges with colored cobordisms

A (non) commutative diagram in Cob_2^n
2D colored TQFTs

Definition

- A colored TQFT is a monoidal functor $F : \text{Cob}_2^n \to k\text{-Vect}$ which restricts to a TQFT on each color.

\[\sim A_{x_1} \quad \text{dim} = x_1 \]
\[\sim A_{x_2} \quad \text{dim} = x_2 \]
\[\ldots \]
\[\sim A_{x_n} \quad \text{dim} = x_n \]
Special TQFTs and special Frobenius algebras

A 2D TQFT F is \textbf{special} if the following condition holds:

$$F\left(\begin{array}{c}
\end{array}\right) = F\left(\begin{array}{c}
\end{array}\right) \iff \mu \circ \Delta = 1$$

A 2D colored TQFT is special if its restriction to each color is a special TQFT.
Apply a Special Colored TQFT

\[
\begin{align*}
\Delta \otimes m \otimes \text{Id} & \quad \rightarrow \quad \Delta^{2} \otimes \Delta \otimes \text{Id} \\
\text{Id} \otimes \Delta^{2} \otimes m^{2} & \quad \rightarrow \quad \Delta^{2} \otimes m \otimes \text{Id} \\
\Delta \otimes \text{Id} \otimes m & \quad \rightarrow \quad \Delta \otimes \text{Id} \otimes m^{2} \Delta \\
\text{Id} \otimes \Delta \otimes m & \quad \rightarrow \quad \Delta^{2} \otimes m \otimes \Delta m^{2} \\
A_{x_1} \otimes A_{x_2} \otimes A_{x_3} & \quad \rightarrow \quad A_{x_1}^{3} \otimes A_{x_2}^{2} \otimes A_{x_3}^{3} \\
A_{x_1} \otimes A_{x_2}^{2} \otimes A_{x_3}^{3} & \quad \rightarrow \quad A_{x_1}^{2} \otimes A_{x_3}^{3} \otimes A_{x_3} \\
A_{x_1} \otimes A_{x_2} \otimes A_{x_3} & \quad \rightarrow \quad A_{x_1} \otimes A_{x_2} \otimes A_{x_3}^{2} \\
\Delta^{2} \otimes m^{2} \otimes \text{Id} & \quad \rightarrow \quad \Delta^{2} \otimes m \otimes \Delta m^{2}
\end{align*}
\]

An anti-commutative diagram in \(k \)-Vect

Alex Chandler
North Carolina State University

A Categorification of the Vandermonde Determinant
Direct sum down ranks to get a chain complex

\[A_{x_1} \otimes A_{x_2} \otimes A_{x_3} \rightarrow A_{x_1} \otimes A_{x_2} \otimes A_{x_3} \]

\[\Delta \otimes m \otimes \text{Id} \]

\[\text{Id} \otimes \Delta^2 \otimes m^2 \]

\[\Delta \otimes \text{Id} \otimes m \]

\[\Delta^2 m \otimes \Delta m^2 \otimes \text{Id} \]

\[\Delta \otimes \text{Id} \otimes m \]

\[\text{Id} \otimes \Delta \otimes m \]

\[\Delta^2 \otimes m \otimes \text{Id} \]

\[\Delta^2 \otimes m \otimes \Delta^2 \]

\[\Delta \otimes \text{Id} \otimes \Delta \]

\[\text{Id} \otimes \Delta \otimes \Delta \]

\[\Delta^2 \otimes m^2 \otimes \text{Id} \]
Theorem (C.)

Let K be the alternating two strand braid diagram of the $(2, n)$-torus knot. Then the Euler characteristic of this chain complex is equal to the Vandermonde determinant

$$V_n = \sum_{i \geq 0} (-1)^i \dim H^i$$
What’s Next?

Questions:

- Is this categorification functorial?
- What kinds of polynomials do we recover for arbitrary knots?
- Do specific classes of knots correspond to known classes of polynomials?
- Relation to $V_n = x_1 \ldots x_n \prod_{i<j}(x_j - x_i)$
Thank you!