The verification of concurrent programs remains an open challenge due to the non-determinism in inter-process communication. One recurring algorithmic problem in this challenge is the consistency verification of concurrent executions. In particular, consistency verification under a reads-from map allows to compute the reads-from (RF) equivalence between concurrent traces, with direct applications to areas such as Stateless Model Checking (SMC). Importantly, the RF equivalence was recently shown to be coarser than the standard Mazurkiewicz equivalence, leading to impressive scalability improvements for SMC under SC (sequential consistency). However, for the relaxed memory models of TSO and PSO (total/partial store order), the algorithmic problem of deciding the RF equivalence, as well as its impact on SMC, has been elusive.

In this work we solve the algorithmic problem of consistency verification for the TSO and PSO memory models given a reads-from map, denoted VTSO-rf and VPSO-rf, respectively. For an execution of n events over k threads and d variables, we establish novel bounds that scale as n^{k+1} for TSO and as $n^{k+1} \cdot \min(n^{k^2}, 2^{k\cdot d})$ for PSO. Moreover, based on our solution to these problems, we develop an SMC algorithm under TSO and PSO that uses the RF equivalence. The algorithm is exploration-optimal, in the sense that it is guaranteed to explore each class of the RF partitioning exactly once, and spends polynomial time per class when k is bounded. Finally, we implement all our algorithms in the SMC tool Nidhugg, and perform a large number of experiments over benchmarks from existing literature. Our experimental results show that our algorithms for VTSO-rf and VPSO-rf provide significant scalability improvements over standard alternatives. Moreover, when used for SMC, the RF partitioning is often much coarser than the standard Shasha–Snir partitioning for TSO/PSO, which yields a significant speedup in the model checking task.

CCS Concepts:
- Theory of computation → Verification by model checking.
- Software and its engineering → Formal software verification.

Additional Key Words and Phrases: concurrency, relaxed memory models, execution-consistency verification, stateless model checking

ACM Reference Format:
Truc Lam Bui, Krishnendu Chatterjee, Tushar Gautam, Andreas Pavlogiannis, and Viktor Toman. 2021. The Reads-From Equivalence for the TSO and PSO Memory Models. Proc. ACM Program. Lang. 1, CONF, Article 1 (January 2021), 49 pages.

1 INTRODUCTION

The formal analysis of concurrent programs is a key problem in program analysis and verification. Scheduling non-determinism makes programs both hard to write correctly, and to analyze formally,
as both the programmer and the model checker need to account for all possible communication patterns among threads. This non-determinism incurs an exponential blow-up in the state space of the program, which in turn yields a significant computational cost on the verification task.

Traditional verification has focused on concurrent programs adhering to sequential consistency [Lamport 1979]. Programs operating under relaxed memory semantics exhibit additional behavior compared to sequential consistency. This makes it exceptionally hard to reason about correctness, as, besides scheduling subtleties, the formal reasoning needs to account for buffer/caching mechanisms. Two of the most standard operational relaxed memory models in the literature are Total Store Order (TSO) and Partial Store Order (PSO) [Adve and Gharachorloo 1996; Alglave 2010; Alglave et al. 2017; Owens et al. 2009; Sewell et al. 2010; SPARC International 1994].

On the operational level, both models introduce subtle mechanisms via which write operations become visible to the shared memory and thus to the whole system. Under TSO, every thread is equipped with its own buffer. Every write to a shared variable is pushed into the buffer, and thus remains hidden from the other threads. The buffer is flushed non-deterministically to the shared memory, at which point the writes become visible to the other threads. The semantics under PSO are even more involved, as now every thread has one buffer per shared variable, and non-determinism now governs not only when a thread flushes its buffers, but also which buffers are flushed.

To illustrate the intricacies under TSO and PSO, consider the examples in Figure 1. On the left, under SC, in every execution at least one of \(r(y) \) and \(r'(x) \) will observe the corresponding \(w'(y) \) and \(w(x) \). Under TSO, however, the write events may become visible on the shared memory only after the read events have executed, and hence both write events go unobserved. Executions under PSO are even more involved, see Figure 1 right. Under either SC or TSO, if \(r(y) \) observes \(w'(y) \), then \(r'(x) \) must observe \(w(x) \), as \(w(x) \) becomes visible on the shared memory before \(w'(y) \). Under PSO, however, there is a single local buffer for each variable. Hence the order in which \(w(x) \) and \(w'(y) \) become visible in the shared memory can be reversed, allowing \(r(y) \) to observe \(w'(y) \) while \(r'(x) \) does not observe \(w(x) \).

The great challenge in verification under relaxed memory is to systematically, yet efficiently, explore all such extra behaviors of the system, i.e., account for the additional non-determinism that comes from the buffers. In this work we tackle this challenge for two verification tasks under TSO and PSO, namely, (A) for verifying the consistency of executions, and (B) for stateless model checking.

A. Verifying execution consistency with a reads-from function. One of the most basic problems for a given memory model is the verification of the consistency of program executions with respect to the given model [Chini and Saivasan 2020]. The input is a set of thread executions, where each execution performs operations accessing the shared memory. The task is to verify whether the thread executions can be interleaved to a concurrent execution, which has the property that every read observes a specific value written by some write [Gibbons and Korach 1997]. The problem is of foundational importance to concurrency, and has been studied heavily under SC [Cain and Lipasti 2002; Chen et al. 2009; Hu et al. 2012].
The input is often enhanced with a \textit{reads-from (RF) map}, which further specifies for each read access the write access that the former should observe. Under sequential consistency, the corresponding problem VSC-rf was shown to be \(NP\)-hard in the landmark work of Gibbons and Korach [1997], while it was recently shown \(W[1]\)-hard [Mathur et al. 2020]. The problem lies at the heart of many verification tasks in concurrency, such as dynamic analyses [Kini et al. 2017; Mathur et al. 2020, 2021; Pavlogiannis 2019; Roemer et al. 2020; Smaragdakis et al. 2012], linearizability and transactional consistency [Biswas and Enea 2019; Herlihy and Wing 1990], as well as SMC [Abdulla et al. 2019; Chalupa et al. 2017; Kokologiannakis et al. 2019b].

\textit{Executions under relaxed memory.} The natural extension of verifying execution consistency with an RF map is from SC to relaxed memory models such as TSO and PSO, we denote the respective problems by VTSO-rf and VPSO-rf. Given the importance of VSC-rf for SC, and the success in establishing both upper and lower bounds, the complexity of VTSO-rf and VPSO-rf is a very natural question and of equal importance. The verification problem is known to be \(NP\)-hard for most memory models [Furbach et al. 2015], including TSO and PSO, however, no other bounds are known. Some heuristics have been developed for VTSO-rf [Manovit and Hangal 2006; Zennou et al. 2019], while other works study TSO executions that are also sequentially consistent [Bouajjani et al. 2013, 2011].

\textbf{B. Stateless Model Checking.} The most standard solution to the space-explosion problem is \textit{stateless model checking} [Godefroid 1996]. Stateless model-checking methods typically explore traces rather than states of the analyzed program. The depth-first nature of the exploration enables it to be both systematic and memory-efficient, by storing only a few traces at any given time. Stateless model-checking techniques have been employed successfully in several well-established tools, e.g., VeriSoft [Godefroid 1997, 2005] and CHESS [Madan Musuvathi 2007].

As there are exponentially many interleavings, a trace-based exploration typically has to explore exponentially many traces, which is intractable in practice. One standard approach is the partitioning of the trace space into equivalence classes, and then attempting to explore every class via a single representative trace. The most successful adoption of this technique is in \textit{dynamic partial order reduction (DPOR)} techniques [Clarke et al. 1999; Flanagan and Godefroid 2005; Godefroid 1996; Peled 1993]. The great advantage of DPOR is that it handles indirect memory accesses precisely without introducing spurious interleavings. The foundation underpinning DPOR is the famous Mazurkiewicz equivalence, which constructs equivalence classes based on the order in which traces execute conflicting memory access events. This idea has led to a rich body of work, with improvements using symbolic techniques [Kahlon et al. 2009], context-sensitivity [Albert et al. 2017], unfoldings [Rodriguez et al. 2015], effective lock handling [Kokologiannakis et al. 2019a], and others [Albert et al. 2018; Aronis et al. 2018; Chatterjee et al. 2019]. The work of Abdulla et al. [2014] developed an SMC algorithm that is exploration-optimal for the Mazurkiewicz equivalence, in the sense that it explores each class of the underlying partitioning exactly once. Finally, techniques based on SAT/SMT solvers have been used to construct even coarser partitionings [Demsky and Lam 2015; Huang 2015; Huang and Huang 2017].

\textit{The reads-from equivalence for SMC.} A new direction of SMC techniques has been recently developed using the \textit{reads-from (RF) equivalence} to partition the trace space. The key principle is to classify traces as equivalent based on whether read accesses observe the same write accesses. This idea was initially explored for acyclic communication topologies [Chalupa et al. 2017], and has been recently extended to all topologies [Abdulla et al. 2019]. As the RF partitioning is guaranteed to be (even exponentially) coarser than the Mazurkiewicz partitioning, SMC based on RF has shown remarkable scalability potential [Abdulla et al. 2019, 2018; Kokologiannakis et al. 2019b;
Kokologiannakis and Vafeiadis 2020]. The key technical component for SMC using RF is the verification of execution consistency, as presented in the previous section. The success of SMC using RF under SC has thus rested upon new efficient methods for the problem VSC-rf.

SMC under relaxed memory. The SMC literature has taken up the challenge of model checking concurrent programs under relaxed memory. Extensions to SMC for TSO/PSO have been considered by Zhang et al. [2015] using shadow threads to model memory buffers, as well as by Abdulla et al. [2015] using chronological traces to represent the Shasha–Snir notion of trace under relaxed memory [Shasha and Snir 1988]. Chronological/Shasha–Snir traces are the generalization of Mazurkiewicz traces to TSO/PSO. Further extensions have also been made to other memory models, namely by Abdulla et al. [2018] for the release-acquire fragment of C++11, Kokologiannakis et al. [2017, 2019b] for the RC11 model [Lahav et al. 2017], and Kokologiannakis and Vafeiadis [2020] for the IMM model [Podkopaev et al. 2019], but notably none for TSO and PSO using the RF equivalence. Given the advantages of the RF equivalence for SMC under SC [Abdulla et al. 2019], release-acquire [Abdulla et al. 2018], RC11 [Kokologiannakis et al. 2019b] and IMM [Kokologiannakis and Vafeiadis 2020], a very natural standing question is whether RF can be used for effective SMC under TSO and PSO. Here we tackle this challenge.

1.1 Our Contributions

Here we outline the main results of our work. We refer to Section 3 for a formal presentation.

A. Verifying execution consistency for TSO and PSO. Our first set of results and the main contribution of this paper is on the problems VTSO-rf and VPSO-rf for verifying TSO- and PSO-consistent executions, respectively. Consider an input to the corresponding problem that consists of \(k \) threads and \(n \) operations, where each thread executes write and read operations, as well as fence operations that flush each thread-local buffer to the main memory. Our results are as follows.

1. We present an algorithm that solves VTSO-rf in \(O(k \cdot n^{k+1}) \) time. The case of VSC-rf is solvable in \(O(k \cdot n^k) \) time [Abdulla et al. 2019; Biswas and Enea 2019; Mathur et al. 2020]. Although for TSO there are \(k \) additional buffers, our result shows that the complexity is only minorly impacted by an additional factor \(n \), as opposed to \(n^k \).

2. We present an algorithm that solves VPSO-rf in \(O(k \cdot n^{k+1} \cdot \min(n^k \cdot (k-1), 2^{k-d})) \) time, where \(d \) is the number of variables. Note that even though there are \(k \cdot d \) buffers, one of our two bounds is independent of \(d \) and thus yields polynomial time when the number of threads is bounded. Moreover, our bound collapses to \(O(k \cdot n^{k+1}) \) when there are no fences, and hence this case is no more difficult that VTSO-rf.

B. Stateless model checking for TSO and PSO using the reads-from equivalence (RF). Our second contribution is an algorithm RF-SMC for SMC under TSO and PSO using the RF equivalence. The algorithm is based on the reads-from algorithm for SC [Abdulla et al. 2019] and uses our solutions to VTSO-rf and VPSO-rf for visiting each class of the respective partitioning. Moreover, RF-SMC is exploration-optimal, in the sense that it explores only maximal traces and further it is guaranteed to explore each class of the RF partitioning exactly once. For the complexity statements, let \(k \) be the total number of threads and \(n \) be the number of events of the longest trace.

The time spent by RF-SMC per class of the RF partitioning is

1. \(n^{O(k)} \) time, for the case of TSO, and
2. \(n^{O(k^3)} \) time, for the case of PSO.

Note that the time complexity per class is polynomial in \(n \) when \(k \) is bounded.
C. Implementation and experiments. We have implemented RF-SMC in the stateless model checker Nidhugg [Abdulla et al. 2015], and performed an evaluation on an extensive set of benchmarks from the recent literature. Our results show that our algorithms for VTSO-rf and VPSO-rf provide significant scalability improvements over standard alternatives, often by orders of magnitude. Moreover, when used for SMC, the RF partitioning is often much coarser than the standard Shasha–Snir partitioning for TSO/PSO, which yields a significant speedup in the model checking task.

2 PRELIMINARIES

General notation. Given a natural number \(i \geq 1 \), we let \([i]\) be the set \(\{1, 2, \ldots, i\} \). Given a map \(f : X \rightarrow Y \), we let \(\text{dom}(f) = X \) and \(\text{img}(f) = Y \) denote the domain and image of \(f \), respectively. We represent maps \(f \) as sets of tuples \(\{(x, f(x))\}_x \). Given two maps \(f_1, f_2 \) over the same domain \(X \), we write \(f_1 = f_2 \) if for every \(x \in X \) we have \(f_1(x) = f_2(x) \). Given a set \(X' \subset X \), we denote by \(f|X' \) the restriction of \(f \) to \(X' \). A binary relation \(\sim \) on a set \(X \) is an equivalence iff \(\sim \) is reflexive, symmetric and transitive. We denote by \(X/\sim \) the quotient (i.e., the set of all equivalence classes) of \(X \) under \(\sim \).

2.1 Concurrent Model under TSO/PSO

Here we describe the computational model of concurrent programs with shared memory under the Total Store Order (TSO) and Partial Store Order (PSO) memory models. We follow a standard exposition, similarly to Abdulla et al. [2015]; Huang and Huang [2016]. We first describe TSO and then extend our description to PSO.

Concurrent program with Total Store Order. We consider a concurrent program \(\mathcal{P} = \{\text{thr}_i\}^k_{i=1} \) of \(k \) threads. The threads communicate over a shared memory \(\mathcal{G} \) of global variables. Each thread additionally owns a store buffer, which is a FIFO queue for storing updates of variables to the shared memory. Threads execute events of the following types.

1. A buffer-write event \(wB \) enqueues into the local store buffer an update that wants to write a value \(v \) to a global variable \(x \in \mathcal{G} \).
2. A read event \(r \) reads the value \(v \) of a global variable \(x \in \mathcal{G} \). The value \(v \) is the value of the most recent local buffer-write event, if one still exists in the buffer, otherwise \(v \) is the value of \(x \) in the shared memory.

Additionally, whenever a store buffer of some thread is nonempty, the respective thread can execute the following.

3. A memory-write event \(wM \) that dequeues the oldest update from the local buffer and performs the corresponding write-update on the shared memory.

Threads can also flush their local buffers into the memory using fences.

4. A fence event \(fnc \) blocks the corresponding thread until its store buffer is empty.

Finally, threads can execute local events that are not modeled explicitly, as usual. We refer to all non-memory-write events as thread events. Following the typical setting of stateless model checking [Abdulla et al. 2014, 2015; Chalupa et al. 2017; Flanagan and Godefroid 2005], each thread of the program \(\mathcal{P} \) is deterministic, and further \(\mathcal{P} \) is bounded, meaning that all executions of \(\mathcal{P} \) are finite and the number of events of \(\mathcal{P} \)’s longest execution is a parameter of the input.

Given an event \(e \), we denote by \(\text{thr}(e) \) its thread and by \(\text{var}(e) \) its global variable. We denote by \(\mathcal{E} \) the set of all events, by \(\mathcal{R} \) the set of read events, by \(\mathcal{W}^B \) the set of buffer-write events, by \(\mathcal{W}^M \) the set of memory-write events, and by \(\mathcal{F} \) the set of fence events. Given a buffer-write event \(wB \in \mathcal{W}^B \) and its corresponding memory-write \(wM \in \mathcal{W}^M \), we let \(w = (wB, wM) \) be the two-phase write event, and we denote \(\text{thr}(w) = \text{thr}(wB) = \text{thr}(wM) \) and \(\text{var}(w) = \text{var}(wB) = \text{var}(wM) \). We denote by \(\mathcal{W} \) the set of all such two-phase write events. Given two events \(e_1, e_2 \in \mathcal{R} \cup \mathcal{W}^M \), we say that...
they conflict, denoted \(e_1 \bowtie e_2\), if they access the same global variable and at least one of them is a memory-write event.

Proper event sets. Given a set of events \(X \subseteq E\), we write \(R(X) = X \cap R\) for the set of read events of \(X\), and similarly \(W^B(X) = X \cap W^B\) and \(W^M(X) = X \cap W^M\) for the buffer-write and memory-write events of \(X\), respectively. We also denote by \(L(X) = X \setminus W^M(X)\) the thread events (i.e., the non-memory-write events) of \(X\). We write \(W(X) = (X \times X) \cap W\) for the set of two-phase write events in \(X\). We call \(X\) proper if \(wB \in X\) if \(wM \in X\) for each \((wB, wM) \in W\). Finally, given a set of events \(X \subseteq E\) and a thread \(thr\), we denote by \(X_{thr}\) and \(X_{\bar{thr}}\) the events of \(thr\) and the events of all other threads in \(X\), respectively.

Sequences and Traces. Given a sequence of events \(\tau = e_1, \ldots, e_j\), we denote by \(E(\tau)\) the set of events that appear in \(\tau\). We further denote \(R(\tau) = R(E(\tau)), W^B(\tau) = W^B(E(\tau)), W^M(\tau) = W^M(E(\tau)), \) and \(W(\tau) = W(E(\tau))\). Finally we denote by \(\varepsilon\) an empty sequence.

Given a sequence \(\tau\) and two events \(e_1, e_2 \in E(\tau)\), we write \(e_1 \prec e_2\) when \(e_1\) appears before \(e_2\) in \(\tau\), and \(e_1 \leq e_2\) to denote that \(e_1 \leq e_2\) or \(e_1 = e_2\). Given a sequence \(\tau\) and a set of events \(A\), we denote by \(\tau|A\) the projection of \(\tau\) on \(A\), which is the unique sub-sequence of \(\tau\) that contains all events of \(A \cap E(\tau)\), and only those. Given a sequence \(\tau\) and an event \(e \in E(\tau)\), we denote by \(\text{pre}_\tau(e)\) the prefix up until and including \(e\), formally \(\tau\left\{e' \in E(\tau) \mid e' \leq e\right\}\). Given two sequences \(\tau_1\) and \(\tau_2\), we denote by \(\tau_1 \circ \tau_2\) the sequence that results in appending \(\tau_2\) after \(\tau_1\).

A (concrete, concurrent) trace is a sequence of events \(\sigma\) that corresponds to a concrete valid execution of \(\mathcal{P}\) under standard semantics [Shasha and Snir 1988]. We let \(\text{enabled}(\sigma)\) be the set of enabled events after \(\sigma\) is executed, and call \(\sigma\) maximal if \(\text{enabled}(\sigma) = \emptyset\). A concrete local trace \(\rho\) is a sequence of thread events of the same thread.

Reads-from functions. Given a proper event set \(X \subseteq E\), a reads-from function over \(X\) is a function that maps each read event of \(X\) to some two-phase write event of \(X\) accessing the same global variable. Formally, \(RF: R(X) \rightarrow W(X)\), where \(\text{var}(r) = \text{var}(RF(r))\) for all \(r \in R(X)\). Given a buffer-write event \(wB\) (resp. a memory-write event \(wM\)), we write \(RF(r) = (wB, ____)\) (resp. \(RF(r) = (___, wM)\)) to denote that \(RF(r)\) is a two-phase write for which \(wB\) (resp. \(wM\)) is the corresponding buffer-write (resp. memory-write) event.

Given a sequence of events \(\tau\) where the set \(E(\tau)\) is proper, we define the reads-from-function of \(\tau\), denoted \(RF_\tau: R(\tau) \rightarrow W(\tau)\), as follows. Given a read event \(r \in R(\tau)\), consider the set \(\text{Upd}\) of enqueued conflicting updates in the same thread that have not yet been dequeued, i.e., \(\text{Upd} = \{(wB, wM) \in (W(\tau))_{thr(r)} \mid wM \bowtie r, wB \prec r, wM\}\). Then, \(RF_\tau(r) = (wB', wM')\), where one of the two cases happens:

- \(\text{Upd} \neq \emptyset\), and \((wB', wM') \in \text{Upd}\) is the latest in \(\tau\), i.e., for each \((wB'', wM'') \in \text{Upd}\) we have \(wB'' \leq_r wB'\).
- \(\text{Upd} = \emptyset\), and \((wM') \in W^M(\tau), wM' \bowtie r, wM' \prec r\) is the latest memory-write (of any thread) conflicting with \(r\) and occurring before \(r\) in \(\tau\), i.e., for each \(wM'' \in W^M(\tau)\) such that \(wM'' \bowtie r\) and \(wM'' \prec_r wM'\), we have \(wM'' \leq_r wM'\).

Notice how relaxed memory comes into play in the above definition, as \(RF_\tau(r)\) does not record which of the two above cases actually happened.

Partial Store Order and Sequential Consistency. The memory model of Partial Store Order (PSO) is more relaxed than TSO. On the operational level, each thread is equipped with a store buffer for each global variable, rather than a single buffer for all global variables. Then, at any point during execution, a thread can non-deterministically dequeue and perform the oldest update from any of its nonempty store buffers. The notions of events, traces and reads-from functions remain the same for PSO as defined for TSO. The Sequential Consistency (SC) memory model can
be simply thought of as a model where each thread flushes its buffer immediately after a write event, e.g., by using a fence.

Concurrent program semantics. The semantics of \(\mathcal{P} \) are defined by means of a transition system over a state space of global states. A global state consists of (i) a memory function that maps every global variable to a value, (ii) a local state for each thread, which contains the values of the local variables of the thread, and (iii) a local state for each store buffer, which captures the contents of the queue. We consider the standard setting with the TSO/PSO memory model, and refer to Abdulla et al. [2015] for formal details. As usual in stateless model checking, we focus on concurrent programs with acyclic state spaces.

Reads-from trace partitioning. Given a concurrent program \(\mathcal{P} \) and a memory model \(M \in \{ \text{SC, TSO, PSO} \} \), we denote by \(T_M \) the set of maximal traces of the program \(\mathcal{P} \) under the respective memory model. We call two traces \(\sigma_1 \) and \(\sigma_2 \) reads-from equivalent if \(E(\sigma_1) = E(\sigma_2) \) and RF \(\sigma_1 = RF \sigma_2 \). The corresponding reads-from equivalence \(\sim_{\text{RF}} \) partitions the trace space into equivalence classes \(T_M/\sim_{\text{RF}} \) and we call this the reads-from partitioning (or RF partitioning). Traces in the same class of the RF partitioning visit the same set of local states in each thread, and thus the RF partitioning is a sound partitioning for local state reachability [Abdulla et al. 2019; Chalupa et al. 2017; Kokologianakis et al. 2019b].

2.2 Partial Orders

Here we present relevant notation around partial orders.

Partial orders. Given a set of events \(X \subseteq E \), a (strict) partial order \(P \) over \(X \) is an irreflexive, antisymmetric and transitive relation over \(X \) (i.e., \(\prec \subseteq X \times X \)). Given two events \(e_1, e_2 \in X \), we write \(e_1 \preceq e_2 \) to denote that \(e_1 \prec e_2 \) or \(e_1 = e_2 \). Two distinct events \(e_1, e_2 \in X \) are unordered by \(P \), denoted \(e_1 \not\prec e_2 \) if neither \(e_1 \prec e_2 \) nor \(e_2 \prec e_1 \), and ordered (denoted \(e_1 \prec e_2 \)) otherwise. Given a set \(Y \subseteq X \), we denote by \(P|Y \) the projection of \(P \) on the set \(Y \), where for every pair of events \(e_1, e_2 \in Y \), we have that \(e_1 \prec_{P|Y} e_2 \) iff \(e_1 \prec P e_2 \). Given two partial orders \(P \) and \(Q \) over a common set \(X \), we say that \(Q \) refines \(P \), denoted by \(Q \sqsubseteq P \), if for every pair of events \(e_1, e_2 \in X \), if \(e_1 \prec P e_2 \) then \(e_1 \prec Q e_2 \). A linearization of \(P \) is a total order that refines \(P \).

Lower sets. Given a pair \((X,P)\), where \(X \) is a set of events and \(P \) is a partial order over \(X \), a lower set of \((X,P)\) is a set \(Y \subseteq X \) such that for every event \(e_1 \in Y \) and event \(e_2 \in X \) such that \(e_2 \preceq e_1 \), we have \(e_2 \in Y \).

The program order PO. The program order PO of \(\mathcal{P} \) is a partial order \(\prec_{\text{PO}} \subseteq E \times E \) that defines a fixed order between some pairs of events of the same thread. Given any (concrete) trace \(\sigma \) and thread thr, the buffer-writes, reads, and fences of thr that appear in \(\sigma \) are fully ordered in PO the same way as they are ordered in \(\sigma \). Further, for each thread thr, the program order PO satisfies the following conditions:

- \(wB \prec_{\text{PO}} wM \) for each \((wB, wM) \in W_{\text{thr}}\).
- \(wB \prec_{\text{PO}} \text{fnc iff } wM \prec_{\text{PO}} \text{fnc} \) for each \((wB, wM) \in W_{\text{thr}}\).
- \(wB_i \prec_{\text{PO}} wB_j \) iff \(wM_i \prec_{\text{PO}} wM_j \) for each \((wB_i, wM_i) \in W_{\text{thr}}, i \in \{1, 2\}\).

In PSO, this condition is enforced only when \(\text{var}(wB_i, wM_i) = \text{var}(wB_j, wM_j) \).

A sequence \(\tau \) is well-formed if it respects the program order, i.e., \(\tau \subseteq \text{PO}|E(\tau) \). Naturally, every trace \(\sigma \) is well-formed, as it corresponds to a concrete valid program execution.

3 SUMMARY OF RESULTS

Here we present formally the main results of this paper. In later sections we present the details, algorithms and examples. Due to space restrictions, proofs appear in the appendix.
A. Verifying execution consistency for TSO and PSO. Our first set of results and the main contribution of this paper is on the problems VTSO-rf and VPSO-rf for verifying TSO- and PSO-consistent executions, respectively. The corresponding problem VSC-rf for Sequential Consistency (SC) was recently shown to be in polynomial time for a constant number of threads [Abdulla et al. 2019; Biswas and Enea 2019]. The solution for SC is obtained by essentially enumerating all the n^k possible lower sets of the program order (X, PO), where k is the number of threads, and hence yields a polynomial when $k = O(1)$. For TSO, the number of possible lower sets is $n^{2 \cdot k}$, since there are k threads and k buffers (one for each thread). For PSO, the number of possible lower sets is $n^{k \cdot (d+1)}$, where d is the number of variables, since there are k threads and $k \cdot d$ buffers (d buffers for each thread). Hence, following an approach similar to Abdulla et al. [2019]; Biswas and Enea [2019] would yield a running time of a polynomial with degree $2 \cdot k$ for TSO, and with degree $k \cdot (d + 1)$ for PSO (thus the solution for PSO is not polynomial-time even when the number of threads is bounded). In this work we show that both problems can be solved significantly faster.

Theorem 3.1. VTSO-rf for n events and k threads is solvable in $O(k \cdot n^{k+1})$ time.

Theorem 3.2. VPSO-rf for n events, k threads and d variables is solvable in $O(k \cdot n^{k+1} \cdot \min(n^{k \cdot (k-1)}, 2^{d-k}))$. Moreover, if there are no fences, the problem is solvable in $O(k \cdot n^{k+1})$ time.

Novelty. For TSO, Theorem 3.1 yields an improvement of order n^{k-1} compared to the naive $n^{2 \cdot k}$ bound. For PSO, perhaps surprisingly, the first upper-bound of Theorem 3.2 does not depend on the number of variables. Moreover, when there are no fences, the cost for PSO is the same as for TSO (with or without fences).

B. Stateless Model Checking for TSO and PSO. Our second result concerns stateless model checking (SMC) under TSO and PSO. We introduce an SMC algorithm RF-SMC that explores the RF partitioning in the TSO and PSO settings, as stated in the following theorem.

Theorem 3.3. Consider a concurrent program P with k threads and d variables, under a memory model $M \in \{TSO, PSO\}$ with trace space T_M and n being the number of events of the longest trace in T_M. RF-SMC is a sound, complete and exploration-optimal algorithm for local state reachability in P, i.e., it explores only maximal traces and visits each class of the RF partitioning exactly once. The time complexity is $O(\alpha \cdot |T_M/\sim_{RF}|)$, where

1. $\alpha = n^{O(k)}$ under $M = TSO$, and
2. $\alpha = n^{O(k^2)}$ under $M = PSO$.

An algorithm with RF exploration-optimality in SC is presented by Abdulla et al. [2019]. Our RF-SMC algorithm generalizes the above approach to achieve RF exploration-optimality in the relaxed memory models TSO and PSO. Further, the time complexity of RF-SMC per class of RF partitioning is equal between PSO and TSO for programs with no fence instructions.

RF-SMC uses the verification algorithms developed in Theorem 3.1 and Theorem 3.2 as black-boxes to decide whether any specific class of the RF partitioning is TSO- or PSO-consistent, respectively. We remark that these theorems can potentially be used as black-boxes to other SMC algorithms that explore the RF partitioning (e.g., Chalupa et al. [2017]; Kokologiannakis et al. [2019b]; Kokologiannakis and Vafeiadis [2020]).

4 VERIFYING TSO AND PSO EXECUTIONS WITH A READS-FROM FUNCTION

In this section we tackle the verification problems VTSO-rf and VPSO-rf. In each case, the input is a pair (X, RF), where X is a proper set of events of P, and RF: $R(X) \rightarrow W(X)$ is a reads-from function. The task is to decide whether there exists a trace σ that is a linearization of (X, PO) with $RF_{\sigma} = RF$, where RF_{σ} is wrt TSO/PSO memory semantics. In case such σ exists, we say that
(X, RF) is realizable and σ is its witness trace. We first define some relevant notation, and then establish upper bounds for VTSO-rf and VPSO-rf, i.e., Theorem 3.1 and Theorem 3.2.

Held variables. Given a trace σ and a memory-write wM ∈ W^M(σ) present in the trace, we say that wM holds variable x = var(wM) in σ if the following hold.
1. wM is the last memory-write event of σ on variable x.
2. There exists a read event r ∈ X \ E(σ) such that RF(r) = (_, wM).
We similarly say that the thread thr(wM) holds x in σ. Finally, a variable x is held in σ if it is held by some thread in σ. Intuitively, wM holds x until all reads that need to read-from wM get executed.

Witness prefixes. Throughout this section, we use the notion of witness prefixes. Formally, a witness prefix is a trace σ that can be extended to a trace σ* that realizes (X, RF), under the respective memory model. Our algorithms for VTSO-rf and VPSO-rf operate by constructing traces σ such that if (X, RF) is realizable, then σ is a witness prefix that can be extended with the remaining events and finally realize (X, RF).

Throughout, we assume wlog that whenever RF(r) = (wB, wM) with thr(r) = thr(wB), then wB is the last buffer-write on var(wB) before r in their respective thread. Clearly, if this condition does not hold, then the corresponding pair (X, RF) is not realizable in TSO nor PSO.

4.1 Verifying TSO Executions

In this section we establish Theorem 3.1, i.e., we present an algorithm VerifyTSO that solves VTSO-rf in O(k · n^{k+1}) time. The algorithm relies crucially on the notion of TSO-executable events, defined below. Throughout this section we consider fixed an instance (X, RF) of VTSO-rf, and all traces σ considered in this section are such that E(σ) ⊆ X.

TSO-executable events. Consider a trace σ. An event e ∈ X \ E(σ) is TSO-executable (or executable for short) in σ if E(σ) ∪ {e} is a lower set of (X, PO) and the following conditions hold.
1. If e is a read event r, let RF(r) = (wB, wM). If thr(r) ≠ thr(wB), then wM ∈ σ.
2. If e is a memory-write event wM then the following hold.
 a. Variable var(wM) is not held in σ.
 b. Let r ∈ R(X) be an arbitrary read with RF(r) = (wB, wM) and thr(r) ≠ thr(wM). For each two-phase write (wB', wM') with var(r) = var(wB') and wB' <_PO r, we have wM' ∈ σ.

Fig. 2. TSO-executability. The already executed events (i.e., E(σ)) are in the gray zone, the remaining events are outside the gray zone. The buffer threads are gray and thin, the main threads are black and thick.
Intuitively, the conditions of executable events ensure that executing an event does not immediately create an invalid witness prefix. The lower-set condition ensures that the program order PO is respected. This is a sufficient condition for a buffer-write or a fence (in particular, for a fence this implies that the respective buffer is currently empty). The extra condition for a read ensures that its reads-from constraint is satisfied. The extra conditions for a memory-write prevent it from causing some reads-from constraint to become unsatisfiable.

Figure 2 illustrates the notion of TSO-executability on several examples. Observe that if \(\sigma \) is a valid trace, extending \(\sigma \) with an executable event (i.e., \(\sigma \circ e \)) also yields a valid trace that is well-formed, as, by definition, \(E(\sigma) \cup \{e\} \) is a lower set of \((X, PO)\).

Algorithm VerifyTSO. We are now ready to describe our algorithm VerifyTSO for the problem VTSo-rf. At a high level, the algorithm enumerates all lower sets of \((W^M(X), PO)\) by constructing a trace \(\sigma \) with \(W^M(\sigma) = Y \) for every lower set \(Y \) of \((W^M(X), PO)\). The crux of the algorithm is to maintain the following. Each constructed trace \(\sigma \) is *maximal* in the set of thread events, among all witness prefixes with the same set of memory-writes. That is, for every witness prefix \(\sigma' \) with \(W^M(\sigma') = W^M(\sigma) \), we have that \(L(\sigma) \supseteq L(\sigma') \). Thus, the algorithm will only explore \(n^k \) traces, as opposed to \(n^{2k} \) from a naive enumeration of all lower sets of \((X, PO)\).

The formal description of VerifyTSO is in Algorithm 1. The algorithm maintains a worklist \(S \) of prefixes and a set \(\text{Done} \) of already-explored lower sets of \((W^M(X), PO)\). In each iteration, the Line 4 loop makes the prefix maximal in the thread events, then Line 6 checks if we are done, otherwise the loop in Line 7 enumerates the executable memory-writes to extend the prefix with.

```plaintext
Algorithm 1: VerifyTSO

Input: An event set \( X \) and a reads-from function RF: \( R(X) \rightarrow W(X) \)
Output: A witness \( \sigma \) that realizes \((X, RF)\) if \((X, RF)\) is realizable under TSO, else \( \perp \)
1 \( S \leftarrow \{\} \); \( \text{Done} \leftarrow \{\emptyset\} \)
2 while \( S \neq \emptyset \) do
3   Extract a trace \( \sigma \) from \( S \)
   while \( \exists \) thread event \( e \) TSO-executable in \( \sigma \) do
5     \( \sigma \leftarrow \sigma \circ e \) // Execute the thread event \( e \)
   if \( E(\sigma) = X \) then return \( \sigma \) // Witness found
7   foreach memory-write \( \mathit{wM} \) that is TSO-executable in \( \sigma \) do
8     \( \sigma_{\mathit{wM}} \leftarrow \sigma \circ \mathit{wM} \) // Execute \( \mathit{wM} \)
9     if \( \exists \sigma' \in \text{Done} \text{ s.t. } W^M(\sigma_{\mathit{wM}}) = W^M(\sigma') \) then
10     \( \text{Insert } \sigma_{\mathit{wM}} \text{ in } S \text{ and in } \text{Done} \) // Continue from \( \sigma_{\mathit{wM}} \)
11 return \( \perp \)
```

We now provide the insights behind the correctness of VerifyTSO. The correctness proof has two components: (i) soundness and (ii) completeness, which we present below.

Soundness. The soundness follows directly from the definition of TSO-executable events. In particular, when the algorithm extends a trace \(\sigma \) with a read \(r \), where RF(\(r \)) = (\(\mathit{wB}, \mathit{wM} \)), the following hold.
1. If \(\mathit{thr}(r) \neq \mathit{thr}(\mathit{wB}) \), then \(\mathit{wM} \in \sigma \), since \(r \) became executable. Moreover, when \(\mathit{wM} \) appeared in \(\sigma \), the variable \(x = \mathit{var}(\mathit{wM}) \) became held by \(\mathit{wM} \), and remained held at least until the current step where \(r \) is executed. Hence, no other memory-write \(\mathit{wM}' \) with \(\mathit{var}(\mathit{wM}') = x \) could have become executable in the meantime, to violate the observation of \(r \). Moreover, \(r \) cannot read-from a local buffer write \(\mathit{wB}' \) with \(\mathit{var}(\mathit{wB}') = x \), as by definition, when \(\mathit{wM} \) became executable, all
buffer-writes on \(x \) that are local to \(r \) and precede \(r \) must have been flushed to the main memory (i.e., \(wM' \) must have also appeared in the trace).

2. If \(\text{thr}(r) = \text{thr}(wB) \), then either \(wM \) has not appeared already in \(\sigma \), in which case \(r \) reads-from \(wB \) from its local buffer, or \(wM \) has appeared in the trace and held its variable until \(r \) is executed, as in the previous item.

Completeness. Let \(\sigma' \) be an arbitrary witness prefix, VerifyTSO constructs a trace \(\sigma \) such that \(W^M(\sigma') = W^M(\sigma) \) and \(L(\sigma) \supseteq L(\sigma') \). This is because VerifyTSO constructs for every lower set \(Y \) of \((W^M(X), \text{PO}) \) a single representative trace \(\sigma \) with \(W^M(\sigma) = Y \). The key is to make \(\sigma \) maximal on the thread events, i.e., \(L(\sigma) \supseteq L(\sigma') \) for any witness prefix \(\sigma' \) with \(W^M(\sigma') = W^M(\sigma) \), and thus any memory-write \(wM \) that is executable in \(\sigma' \) is also executable in \(\sigma \).

We now present the above insight in detail. Indeed, if \(wM \) is not executable in \(\sigma \), one of the following holds. Let \(\text{var}(wM) = x \).

1. \(x \) is already held in \(\sigma \). But since \(W^M(\sigma') = W^M(\sigma) \) and any read of \(\sigma' \) also appears in \(\sigma \), the variable \(x \) is also held in \(\sigma' \), thus \(wM \) is not executable in \(\sigma' \) either.

2. There is a later read \(r \notin \sigma \) that must read-from \(wM \), but \(r \) is preceded by a local write \((wB', wM') \) (i.e., \(wB' <_\text{PO} r \)) also on \(x \), for which \(wM' \notin \sigma \). Since \(L(\sigma) \supseteq L(\sigma') \), we have \(r \notin \sigma' \), and as \(W^M(\sigma') = W^M(\sigma) \), also \(wM' \notin \sigma' \). Thus \(wM \) is also not executable in \(\sigma' \).

The final insight is on how the algorithm maintains the maximality invariant as it extends \(\sigma \) with new events. This holds because read events become executable as soon as their corresponding remote observation \(wM \) appears in the trace, and hence all such reads are executable for a given lower set of \((W^M(X), \text{PO}) \). All other thread events are executable without any further conditions. Figure 3 illustrates the intuition behind the maximality invariant. The following lemma states the formal correctness, which together with the complexity argument gives us Theorem 3.1.

Lemma 4.1. \((X, RF) \) is realizable under TSO iff VerifyTSO returns a trace \(\sigma \neq \epsilon \).

4.2 Verifying PSO Executions

In this section we show Theorem 3.2, i.e., we present an algorithm VerifyPSO that solves VPSO-rf in \(O(k \cdot n^{k+1} \cdot \min(n^{k \cdot (k-1)}, 2^{k \cdot d})) \) time, while the bound becomes \(O(k \cdot n^{k+1}) \) when there are no fences. Similarly to the case of TSO, the algorithm relies on the notion of PSO-executable events, defined below. We first introduce some relevant notation that makes our presentation simpler.

Spurious and pending writes. Consider a trace \(\sigma \) with \(E(\sigma) \subseteq X \). A memory-write \(wM \in W^M(X) \) is called spurious in \(\sigma \) if the following conditions hold.

Fig. 3. VerifyTSO maximality invariant. The gray zone shows the events of some witness prefix \(\sigma' \); the lighter gray shows the events of the corresponding trace \(\sigma \), constructed by the algorithm, which is maximal on thread events. Yellow writes (\(wM_2 \) and \(wM_4 \)) are those that are TSO-executable in \(\sigma \) but not in \(\sigma' \). Green writes (\(wM_3 \)) and red writes (\(wM_5 \)) are TSO-executable and non TSO-executable, respectively.
(1) There is no read \(r \in R(X) \setminus \sigma \) with \(RF(r) = (_, wM) \) (informally, no remaining read wants to read-from wM).

(2) If \(wM \in \sigma \), then for every read \(r \in \sigma \) with \(RF_\sigma(r) = (_, wM) \) we have \(r < _\sigma wM \) (informally, reads in \(\sigma \) that read-from this write read it from the local buffer).

Note that if \(wM \) is a spurious memory-write in \(\sigma \) then \(wM \) is spurious in all extensions of \(\sigma \). We denote by \(S^W^M(\sigma) \) the set of memory-writes of \(\sigma \) that are spurious in \(\sigma \). A memory-write \(wM \) is pending in \(\sigma \) if \(wB \in \sigma \) and \(wM \notin \sigma \), where \(wB \) is the corresponding buffer-write of \(wM \). We denote by \(P^W^M(\sigma, \text{thr}) \) the set of all pending memory-writes \(wM \) in \(\sigma \) with \(\text{thr}(wM) = \text{thr} \). See Figure 4 for an intuitive illustration of spurious and pending memory-writes.

(a) Linearization where \(wM_1 \) is spurious. The table shows the spurious and pending writes after each step.

\[
\begin{array}{c|c|c}
\text{\(\sigma \)} & \text{\(P^W^M(\sigma, \text{thr}_1) \)} \\
\hline
0 & 0 \\
\hline
wM_1(x) & 0 \\
\hline
\end{array}
\]

(b) Linearization where \(wM_1 \) is not spurious; here \(RF_\sigma(r_1) = (_, wM_1) \) and \(wM_1 < _\sigma r_1 \).

Fig. 4. Illustration of spurious and pending writes.

PSO-executable events. Similarly to the case of VTSO-rf, we define the notion of PSO-executable events (executable for short). An event \(e \in X \setminus E(\sigma) \) is PSO-executable in \(\sigma \) if the following conditions hold.

1. If \(e \) is a buffer-write or a memory-write, then the same conditions apply as for TSO-executable.
2. If \(e \) is a fence \(fnc \), then every pending memory-write from \(\text{thr}(fnc) \) is PSO-executable in \(\sigma \), and these memory-writes together with \(fnc \) and \(E(\sigma) \) form a lower set of \((X, PO) \).
3. If \(e \) is a read \(r \), let \(RF(r) = (wB, wM) \). We have \(wB \in \sigma \), and the following conditions.
 a. if \(\text{thr}(r) = \text{thr}(wB) \), then \(E(\sigma) \cup \{r\} \) is a lower set of \((X, PO) \).
 b. if \(\text{thr}(r) \neq \text{thr}(wB) \), then \(E(\sigma) \cup \{wM, r\} \) is a lower set of \((X, PO) \)
 and further either \(wM \in \sigma \) or \(wM \) is PSO-executable in \(\sigma \).

Figure 5 illustrates several examples of PSO-(un)executable events. Similarly to the case of TSO, the PSO-executable conditions ensure that we do not execute events creating an invalid witness prefix. The executability conditions for PSO are different (e.g., there are extra conditions for a fence), since our approach for VPSO-rf fundamentally differs from the approach for VTSO-rf.

Fig. 5. PSO-executability. The green events are PSO-executable; the red events are not. The memory-write \(wM_2(x) \) is executable, and thus so are \(r_1(x) \) and \(fnc_1 \). The memory-write \(wM_3(y) \) is not executable, as the variable \(y \) is held by \(wM_1(y) \) until \(r_2(y) \) is executed. Consequently, \(fnc_2 \) and \(r_3(y) \) are not executable.
Fence maps. We define a fence map as a function $\text{FM}_\sigma : \text{Threads} \times \text{Threads} \rightarrow [n]$ as follows. First, $\text{FM}_\sigma(\text{thr}, \text{thr}) = 0$ for all $\text{thr} \in \text{Threads}$. In addition, if thr does not have a fence unexecuted in σ (i.e., a fence $\text{fnc} \in (X_{\text{thr}} \setminus \mathcal{E}(\sigma))$, then $\text{FM}_\sigma(\text{thr}, \text{thr}') = 0$ for all $\text{thr}' \in \text{Threads}$. Otherwise, consider the set of all reads $A_{\text{thr}, \text{thr}'}$ such that every $r \in A_{\text{thr}, \text{thr}'}$ with $\text{RF}(r) = (\text{wB}, \text{wM})$ satisfies the following conditions.

1. $\text{thr}(\text{r}) = \text{thr}'$ and $\text{r} \not\in \sigma$.
2. $\text{thr}(\text{wB}) \not\in \{\text{thr}, \text{thr}'\}$, and $\text{var}(\text{r})$ is held by wM in σ, and there is a pending memory write wM' in σ with $\text{thr}(\text{wM}') = \text{thr}$ and $\text{var}(\text{wM}') = \text{var}(\text{r})$.

If $A_{\text{thr}, \text{thr}'} = \emptyset$ then we let $\text{FM}_\sigma(\text{thr}, \text{thr}') = 0$, otherwise $\text{FM}_\sigma(\text{thr}, \text{thr}')$ is the largest index of a read in $A_{\text{thr}, \text{thr}'}$. Given two traces σ_1, σ_2, $\text{FM}_{\sigma_1} \leq \text{FM}_{\sigma_2}$ denotes that $\text{FM}_{\sigma_1}(\text{thr}, \text{thr}') \leq \text{FM}_{\sigma_2}(\text{thr}, \text{thr}')$ for all thr, $\text{thr}' \in [k]$.

The intuition behind fence maps is as follows. Given a trace σ, the index $\text{FM}_\sigma(\text{thr}, \text{thr}')$ points to the latest (wrt PO) read r of thr' that must be executed in any extension of σ before thr can execute its next fence. This occurs because the following hold in σ.

1. The variable $\text{var}(\text{r})$ is held by the memory-write $\text{wM} \in \sigma$ with $\text{RF}(\text{r}) = (_, \text{wM})$.
2. Thread thr has executed some buffer-write $\text{wB} \in \sigma$ with $\text{var}(\text{wB}) = \text{var}(\text{r}) = \text{var}(\text{wM})$, but the corresponding memory-write wM has not yet been executed in σ. Hence, thr cannot flush its buffers in any extension of σ that does not contain r (as wM' will not become executable until r gets executed).

The following lemmas state two key monotonicity properties of fence maps.

Lemma 4.2. Consider two witness prefixes σ_1, σ_2 such that $\sigma_2 = \sigma_1 \circ \text{wM}$ for some memory-write wM executable in σ_1. We have $\text{FM}_{\sigma_1} \leq \text{FM}_{\sigma_2}$. Moreover, if wM is a spurious memory-write in σ_1, then $\text{FM}_{\sigma_1} = \text{FM}_{\sigma_2}$.

Lemma 4.3. Consider two witness prefixes σ_1, σ_2 such that (i) $\mathcal{L}(\sigma_1) = \mathcal{L}(\sigma_2)$, (ii) $\text{FM}_{\sigma_1} \leq \text{FM}_{\sigma_2}$, and (iii) $\text{wM}(\sigma_1) \setminus \text{S'_wM}(\sigma_1) \subseteq \text{wM}(\sigma_2)$. Let $e \in \mathcal{L}(X)$ be a thread event that is executable in σ_1 for each $i \in [2]$, and let $\sigma'_i = \sigma_1 \circ e$, for each $i \in [2]$. Then $\text{FM}_{\sigma'_1} \leq \text{FM}_{\sigma'_2}$.

Note that there exist in total at most n^{k-k} different fence maps. Further, the following lemma gives a bound on the number of different fence maps among witness prefixes that contain the same thread events.

Lemma 4.4. Let d be the number of variables. There exist at most 2^{k-d} distinct witness prefixes σ_1, σ_2 such that $\mathcal{L}(\sigma_1) = \mathcal{L}(\sigma_2)$ and $\text{FM}_{\sigma_1} \neq \text{FM}_{\sigma_2}$.

Algorithm VerifyPSO. We are now ready to describe our algorithm VerifyPSO for the problem VPSO-rf. In high level, the algorithm enumerates all lower sets of $(\mathcal{L}(X), \text{PO})$, i.e., the lower sets of the thread events. The crux of the algorithm is to guarantee that for every witness-prefix σ', the algorithm constructs a trace σ such that (i) $\mathcal{L}(\sigma) = \mathcal{L}(\sigma')$, (ii) $\text{wM}(\sigma) \setminus \text{S'_wM}(\sigma) \subseteq \text{wM}(\sigma')$, and (iii) $\text{FM}_\sigma \leq \text{FM}_{\sigma'}$. To achieve this, for a given lower set Y of $(\mathcal{L}(X), \text{PO})$, the algorithm examines at most as many traces σ with $\mathcal{L}(\sigma) = Y$ as the number of different fence maps of witness prefixes with the same set of thread events. Hence, the algorithm examines significantly fewer traces than the $n^{k-(d+1)}$ lower sets of (X, PO).

Algorithm 2 presents a formal description of VerifyPSO. The algorithm maintains a worklist \mathcal{S} of prefixes, and a set Done of explored pairs "(thread events, fence map)". Consider an iteration of the main loop in Line 2. First in the loop of Line 4 all spurious executable memory-writes are executed. Then Line 6 checks whether the witness is complete. In case it is not complete, the loop in Line 7 enumerates the possibilities to extend with a thread event. Crucially, the condition in Line 16 ensures that there are no duplicates with the same pair "(thread events, fence map)".
Algorithm 2: VerifyPSO

Input: An event set \(X \) and a reads-from function \(\text{RF}: \mathcal{R}(X) \rightarrow \mathcal{W}(X) \)
Output: A witness \(\sigma \) that realizes \((X, \text{RF})\) if \((X, \text{RF})\) is realizable under PSO, else \(\sigma = \perp \)

1: \(S \leftarrow \{\epsilon\}; \text{Done} \leftarrow \{\emptyset\} \)
2: while \(S \neq \emptyset \) do
3: Extract a trace \(\sigma \) from \(S \)
4: while \(\exists \) spurious wM PSO-executable in \(\sigma \) do
5: \(\sigma \leftarrow \sigma \circ \text{wM} \) // Flush spurious memory-write wM
6: if \(E(\sigma) = X \) then return \(\sigma \) // Witness found
7: foreach thread event \(e \) PSO-executable in \(\sigma \) do
8: Let \(\sigma_e \leftarrow \sigma \)
9: if \(e \) is a read event with \(\text{RF}(r) = (\text{wB}, \text{wM}) \) then
10: \(\sigma_e \leftarrow \sigma_e \circ \text{wB} \) and \(\text{wM} \notin \sigma_e \) then
11: \(\sigma_e \leftarrow \sigma_e \circ \text{wM} \) // Execute the reads-from of \(e \)
12: else if \(e \) is a fence event then
13: Let \(\mu \leftarrow \) any linearization of \((P^\ast W^M(\sigma, \text{thr}(e)), \text{PO})\)
14: \(\sigma_e \leftarrow \sigma_e \circ \mu \) // Execute pending memory writes
15: \(\sigma_e \leftarrow \sigma_e \circ e \) // Finally, execute \(e \)
16: Insert \(\sigma_e \) in \(S \) and in Done // Continue from \(\sigma_e \)
17: return \(\perp \)

Soundness. The soundness of VerifyPSO follows directly from the definition of PSO-executable events, and is similar to the case of VerifyTSO.

Completeness. For each witness prefix \(\sigma' \), algorithm VerifyPSO generates a trace \(\sigma \) with (i) \(\mathcal{L}(\sigma) = \mathcal{L}(\sigma') \), (ii) \(\mathcal{W}^M(\sigma) \setminus S'W^M(\sigma) \subseteq \mathcal{W}^M(\sigma') \), and (iii) \(\text{FMap}_\sigma \leq \text{FMap}_{\sigma'} \). This fact directly implies completeness, and it is achieved by the following key invariant. Consider that the algorithm has constructed a trace \(\sigma \), and is attempting to extend \(\sigma \) with a thread event \(e \). Further, let \(\sigma' \) be an arbitrary witness prefix with (i) \(\mathcal{L}(\sigma) = \mathcal{L}(\sigma') \), (ii) \(\mathcal{W}^M(\sigma) \setminus S'W^M(\sigma) \subseteq \mathcal{W}^M(\sigma') \), and (iii) \(\text{FMap}_\sigma \leq \text{FMap}_{\sigma'} \). If \(\sigma' \) can be extended so that the next thread event is \(e \), then \(e \) is also executable in \(\sigma \), and (by Lemma 4.2 and Lemma 4.3) the extension of \(\sigma \) with \(e \) maintains the invariant. In Figure 6 we provide an intuitive illustration of the completeness idea.

We now prove the argument in detail for the above \(\sigma, \sigma' \) and thread event \(e \). Assume that \(\sigma' \circ \kappa \circ e \) is a witness prefix as well, for a sequence of memory-writes \(\kappa \). Consider the following cases.

1. If \(e \) is a read event, let \(w = (\text{wB}, \text{wM}) = \text{RF}(e) \). If it is a local write (i.e., \(\text{thr}(w) = \text{thr}(e) \)), necessarily \(\text{wB} \in \sigma' \circ \kappa \), and since the traces agree on thread events, we have \(\text{wB} \in \sigma \); thus \(e \) is executable in \(\sigma \). Otherwise, \(w \) is a remote write (i.e., \(\text{thr}(w) \neq \text{thr}(e) \)). Assume towards contradiction that \(e \) is not executable in \(\sigma \); this can happen in two cases.

In the first case, the variable \(x = \text{var}(e) \) is held by another (non-spurious) memory-write \(\text{wM}' \) in \(\sigma \). Since \(\mathcal{W}^M(\sigma) \setminus S'W^M(\sigma) \subseteq \mathcal{W}^M(\sigma') \), and \(\mathcal{L}(\sigma) = \mathcal{L}(\sigma') \), the variable \(x \) is also held by \(\text{wM}' \) in \(\sigma' \circ \kappa \). But then, both \(\text{wB} \) and \(\text{wM}' \) hold \(x \) in \(\sigma' \circ \kappa \), a contradiction.

In the second case, there is a write \((\text{wB}', \text{wM}')\) with \(\text{var}(\text{wM}') = \text{var}(e) \) and \(\text{wB}' \prec_{\text{PO}} e \) and \(\text{wM}' \notin \sigma \). If \(\text{wM}' \notin \sigma' \circ \kappa \), then \(e \) would read-from \(\text{wB}' \) from the buffer in \(\sigma' \circ \kappa \circ e \), contradicting \(\text{RF}(e) = (\ldots, \text{wM}) \). Thus \(\text{wM}' \in \sigma' \circ \kappa \), and further \(\text{wM} \in \sigma' \circ \kappa \) with \(\text{wM}' \prec_{\sigma' \circ \kappa} \text{wM} \). Since \(\sigma' \circ \kappa \circ e \) is a witness prefix and \(\text{wB}' \prec_{\text{PO}} e \), we have \(\text{wB}' \in \sigma' \). From this and \(\mathcal{L}(\sigma) = \mathcal{L}(\sigma') \) we have that \(\text{wB}' \in \sigma \) and \(\text{wM}' \in \sigma \) is pending in \(\sigma \). This together gives us that \(\text{wM}' \) is spurious in \(\sigma \). Consider the example memory-write pending in \(\sigma \) on the same buffer (i.e., \(\text{thr}(\text{wM}') \) and
VerifyPSO completeness idea. Consider the witness prefix σ' (lighter gray) and the corresponding trace σ constructed by the algorithm (darker gray). The fence fnc_1 is PSO-executable in σ but not in σ', since in the latter, $\text{thr}(\text{fnc}_1)$ has non-empty buffers, but the variables x and y are held by wM_1 and wM_2, respectively. This is equivalent to waiting until after r_1 and r_2 have been executed. Since executing r_2 implies having executed r_1, the fence map $\text{FMap}_\sigma(\text{thr}_3, \text{thr}_2)$ compresses this information by only pointing to r_2.

Let $\text{var}(wM')$, denote it wM''. We have that $wM'' \leq_{\text{PO}} wM'$ and wM'' is spurious in σ. Further, wM'' is executable in σ. But then it would have been added to σ in the while loop of Line 4, a contradiction.

(2) Assume that e is a fence event, and let wM_1, \ldots, wM_j be the pending memory-writes of $\text{thr}(e)$ in σ. Suppose towards contradiction that e is not executable. Then one of the wM_i is not executable, let $x = \text{var}(wM_i)$. Similarly to the above, there can be two cases where this might happen.

The first case is when wM_i must be read-from by some read event $r \notin \sigma$, but r is preceded by a local write (wB, wM) (i.e., $wB \leq_{\text{PO}} r$) on the same variable x while $wM \notin \sigma$. A similar analysis to the previous case shows that the earliest pending write on $\text{thr}(wM)$ for variable x is spurious, and thus already added to σ due to the while loop in Line 4, a contradiction.

The second case is when the variable x is held in σ. Since $\text{FMap}_\sigma \leq \text{FMap}_{\sigma'}$, the variable x is also held in σ', and thus wM_i is not executable in σ' either. But then $\sigma' \circ \kappa \circ e$ cannot be a witness prefix, a contradiction.

The following lemma states the correctness of VerifyPSO, which together with the complexity argument establishes Theorem 3.2.

Lemma 4.5. (X, RF) is realizable under PSO iff VerifyPSO returns a trace $\sigma \neq e$.

We conclude this section with some insights on the relationship between VTSO-rf and VPSO-rf.

Relation between TSO and PSO verification. In high level, TSO might be perceived as a special case of PSO, where every thread is equipped with one buffer (TSO) as opposed to one buffer per global variable (PSO). However, the communication patterns between TSO and PSO are drastically different. As a result, our algorithm VerifyPSO is not applicable to TSO, and we do not see an extension of VerifyTSO for handling PSO efficiently. In particular, the minimal strategy of VerifyPSO on memory-writes is based on the following observation: for a read r observing a remote memory-write wM, it always suffices to execute wM exactly before executing r (unless wM has already been executed). This holds because the corresponding buffer contains memory-writes only on the same variable, and thus all such memory-writes that precede wM cannot be read-from by any subsequent read. This property does not hold for TSO: as there is a single buffer, wM might be executed as a result of flushing the buffer of thread $\text{thr}(wM)$ to make another memory-write wM' visible, on a different variable than $\text{var}(wM)$, and thus wM' might be observable by a subsequent read. Hence the minimal strategy of VerifyPSO on memory-writes does not apply to TSO.
other hand, the maximal strategy of VerifyTSO is not effective for PSO, as it requires enumerating all lower sets of (\(W^M(X), RF\)), which are \(n^{K^d}\) many in PSO (where \(d\) is the number of variables), and thus this leads to worse bounds than the ones we achieve in Theorem 3.2.

4.3 Closure for VerifyTSO and VerifyPSO

In this section we introduce closure, a practical heuristic to efficiently detect whether a given instance \((X, RF)\) of the verification problem VTSO-rf resp. VPSO-rf is unrealizable. Closure is sound, meaning that a realizable instance \((X, RF)\) is never declared unrealizable by closure. Further, closure is not complete, which means there exist unrealizable instances \((X, RF)\) not detected as such by closure. Finally, closure can be computed in time polynomial with respect to the number of events (i.e., size of \(X\)), irrespective of the underlying number of threads and variables.

Given an instance \((X, RF)\), any solution of VTSO-rf/VPSO-rf \((X, RF)\) respects PO\(\mid X\), i.e., the program order upon \(X\). Closure constructs the weakest partial order \(P(X)\) that refines the program order (i.e., \(P \subseteq PO\mid X\)) and further satisfies for each read \(r \in R\mid X\) with RF\((r) = (wb, wM)\):

1. If \(\text{thr}(r) \neq \text{thr}(RF(r))\), then (i) \(wM <_P r\) and (ii) \(wM <_P wM\) for any \((wb, wM) \in W\mid X_{\text{thr}(r)}\) such that \(\overline{wM} \bowtie r\) and \(\overline{wb} <_{PO} r\).
2. For any \(wM \in W\mid X_{\text{thr}(r)}\) such that \(\overline{wM} \bowtie r\) and \(\overline{wM} \neq wM\), \(\overline{wM} <_{P} r\) implies \(\overline{wM} <_{P} wM\).
3. For any \(\overline{wM} \in W\mid X_{\text{thr}(r)}\) such that \(\overline{wM} \bowtie r\) and \(\overline{wM} \neq wM\), \(wM <_{P} wM\) implies \(r <_{P} wM\).

If no above \(P\) exists, the instance VTSO-rf/VPSO-rf \((X, RF)\) provably has no solution. In case \(P\) exists, each solution \(\sigma\) of VTSO-rf/VPSO-rf \((X, RF)\) provably respects \(P\) (formally, \(\sigma \subseteq P\)).

Fig. 7. Illustration of the three closure rules. In each example, the read \(r\) has to read-from the write \((wb, wM)\), i.e., RF\((r) = (wb, wM)\). All depicted events are on the same variable (which is omitted for clarity). The gray solid edges illustrate orderings already present in the partial order, and the red dashed edges illustrate the resulting new orderings enforced by the specific rule.

The intuition behind closure is as follows. The construction starts with the program order PO\(\mid X\), and then, utilizing the above rules Item 1, Item 2 and Item 3, it iteratively adds further event orderings such that every witness execution provably has to follow the orderings. Consequently, if the added orderings induce a cycle, this serves as a proof that there exists no witness of the input instance \((X, RF)\). The rules Item 1, Item 2 and Item 3 intuitively be though of as simple reasoning arguments why specific orderings have to be present in each witness of \((X, RF)\), and Figure 7 provides an illustration of the rules.

We leverage the guarantees of closure by computing it before executing VerifyTSO resp. VerifyPSO. If no closure \(P\) of \((X, RF)\) exists, the algorithm VerifyTSO resp. VerifyPSO does not
need to be executed at all, as we already know that \((X, RF)\) is unrealizable. Otherwise we obtain the closure \(P\), we execute VerifyTSO/VerifyPSO to search for a witness of \((X, RF)\), and we restrict VerifyTSO/VerifyPSO to only consider prefixes \(\sigma'\) respecting \(P\) (formally, \(\sigma' \subseteq P|E(\sigma')\)), since we know that each solution of VTSO-rf/VPSO-rf\((X, RF)\) has to respect \(P\).

The notion of closure, its beneficial properties, as well as construction algorithms are well-studied for the SC memory model [Abdulla et al. 2019; Chalupa et al. 2017; Pavlogiannis 2019]. Our conditions above extend this notion to TSO and PSO. Moreover, the closure we introduce here is complete for concurrent programs with two threads, i.e., if \(P\) exists then there is a valid trace realizing \((X, RF)\) under the respective memory model.

4.4 Verifying Executions with Atomic Primitives

For clarity of presentation of the core algorithmic concepts, we have thus far neglected more involved atomic operations, namely atomic read-modify-write (RMW) and atomic compare-and-swap (CAS). We show how our approach handles verification of TSO and PSO executions that also include RMW and CAS operations here in a separate section. Importantly, our treatment retains the complexity bounds established in Theorem 3.1 and Theorem 3.2.

Atomic instructions. We consider the concurrent program under the TSO resp. PSO memory model, which can further atomically execute the following types of instructions.

1. A **read-modify-write** instruction \(rmw\) executes atomically the following sequence. It (i) reads, with respect to the TSO resp. PSO semantics, the value \(v\) of a global variable \(x \in G\), then (ii) uses \(v\) to compute a new value \(v'\), and finally (iii) writes the new value \(v'\) to the global variable \(x\). An example of a typical \(rmw\) computation is fetch-and-add (resp. fetch-and-sub), where \(v' = v + c\) for some positive (resp. negative) constant \(c\).

2. A **compare-and-swap** instruction \(cas\) executes atomically the following sequence. It (i) reads, with respect to the TSO resp. PSO semantics, the value \(v\) of a global variable \(x \in G\), (ii) compares it with a value \(c\), and (iii) if \(v = c\) then it writes a new value \(v'\) to the global variable \(x\). Each instruction of the above two types blocks (i.e., it cannot get executed) until the buffer of its thread is empty (resp. all buffers of its thread are empty in PSO). Finally, the instruction specifies the nature of its final write. This write is either enqueued into its respective buffer (to be dequeued into shared memory at a later point), or it gets immediately flushed into the shared memory.

Atomic instructions modeling. In our approach we handle atomic RMW and CAS instructions without introducing them as new event types. Instead, we model these instructions as sequences of already considered events, i.e., reads, buffer-writes, memory-writes, and fences. We annotate some events of an atomic instruction to constitute an **atomic block**, which intuitively indicates that the event sequence of the atomic block cannot be interleaved with other events, thus respecting the semantics of the instruction.

1. A **read-modify-write** instruction \(rmw\) on a variable \(x\) is modeled as a sequence of four events: (i) a fence event, (ii) a read of \(x\), (iii) a buffer-write of \(x\), and (iv) a memory-write of \(x\). The read and buffer-write events (ii)+(iii) are annotated as constituting an atomic block; in case the write of \(rmw\) is specified to proceed immediately to the shared memory, the memory-write event (iv) is also part of the atomic block.

2. For a **compare-and-swap** instruction \(cas\) we consider separately the following two cases. A **successful** \(cas\) (i.e., the write proceeds) is modeled the same way as a read-modify-write. A **failed** \(cas\) (i.e., the write does not proceed) is modeled simply as a fence followed by a read, with no atomic block.
Executable atomic blocks. Here we describe the TSO- and PSO-executability conditions for an atomic block. No further additions for executability are required, since no new event types are introduced to handle RMW and CAS instructions.

Consider an instance \((X, \text{RF})\) of VTSO-rf, and a trace \(\sigma\) with \(E(\sigma) \subseteq X\). An atomic block containing a sequence of events \(e_1, ..., e_j\) is TSO-executable in \(\sigma\) if:
1. for each \(1 \leq i \leq j\) we have that \(e_i \in X \setminus E(\sigma)\), and
2. for each \(1 \leq i \leq j\) we have that \(e_i\) is TSO-executable in \(\sigma \circ e_1...e_{i-1}\).

Intuitively, an atomic block is TSO-executable if it can be executed as a sequence at once (i.e., without other events interleaved), and the TSO-executable conditions of each event (i.e., a read or a buffer-write or a memory-write or a fence) within the block are respected.

The PSO-executable conditions are analogous. Given an instance \((X, \text{RF})\) of VPSO-rf and a trace \(\sigma\) with \(E(\sigma) \subseteq X\), an atomic block of events \(e_1, ..., e_j\) is PSO-executable in \(\sigma\) if:
1. for each \(1 \leq i \leq j\) we have that \(e_i \in X \setminus E(\sigma)\), and
2. for each \(1 \leq i \leq j\) we have that \(e_i\) is PSO-executable in \(\sigma \circ e_1...e_{i-1}\).

Execution verification. Given the above executable conditions, the execution verification algorithms VerifyTSO and VerifyPSO only require minor technical modifications to verify executions including RMW and CAS instructions.

The core idea of the VerifyTSO resp. VerifyPSO modifications is to not extend prefixes with single events that are part of some atomic block, and instead extend the atomic blocks fully. This way, a lower set of \((X, \text{PO})\) is considered only if for each atomic block, the block is either fully present or fully not present in the lower set.

In VerifyTSO (Algorithm 1), in Line 4 we further consider each TSO-executable atomic block \(e_1, ..., e_j\) not containing any memory-write event, and then in Line 5 we extend the prefix with the entire atomic block, i.e., \(\sigma \gets \sigma \circ e_1, ..., e_j\). Further, in Line 7 we further consider each TSO-executable atomic block \(e_1, ..., e_j\) containing a memory-write-event, and in Line 8 we then extend the prefix with the whole atomic block, i.e., \(\sigma \gets \sigma \circ e_1, ..., e_j\).

In VerifyPSO (Algorithm 2), in the loop of Line 7 we further consider each PSO-executable atomic block. Consider a fixed iteration of this loop with an atomic block \(e_1, ..., e_j\). The first event of the atomic block \(e_1\) is a read, thus the condition in Line 9 is evaluated true with \(e_1\) and the control flow moves to Line 10. Later, the condition in Line 12 is evaluated false (since \(e_1\) is a read). Finally, in Line 15 the prefix is extended with the whole atomic block, i.e., \(\sigma_e \gets \sigma_e \circ e_1, ..., e_j\).

For VerifyTSO the argument of maintaining maximality in the set of thread events applies also in the presence of RMW and CAS, and thus the bound of Theorem 3.1 is retained. Similarly, for VerifyPSO the enumeration of fence maps and the maximality in the spurious writes is preserved also with RMW and CAS, and hence the bound of Theorem 3.2 holds.

Closure. When verifying executions with RMW and CAS instructions, while the closure retains its guarantees as is, it can more effectively detect unrealizable instances with additional rules. Specifically, the closure \(P\) of \((X, \text{RF})\) satisfies the rules 1–3 described in Section 4.3, and additionally, given an event \(e\) and an atomic block \(e_1, ..., e_j\), \(P\) satisfies the following.

4. If \(e_1 <_P e\) for any \(1 \leq i \leq j\), then \(e_j <_P e\) (i.e., if some part of the block is before \(e\) then the entire block is before \(e\)).
5. If \(e <_P e_i\) for any \(1 \leq i \leq j\), then \(e <_P e_1\) (i.e., if \(e\) is before some part of the block then \(e\) is before the entire block).

5 **READS-FROM SMC FOR TSO AND PSO**

In this section we present RF-SMC, an exploration-optimal reads-from SMC algorithm for TSO and PSO. The algorithm RF-SMC is based on the reads-from algorithm for SC [Abdulla et al. 2019], and...
adapted in this work to handle the relaxed memory models TSO and PSO. The algorithm uses as subroutines VerifyTSO (resp. VerifyPSO) to decide whether any given class of the RF partitioning is consistent under the TSO (resp. PSO) semantics.

RF-SMC is a recursive algorithm, each call of RF-SMC is constructed by a tuple \((\tau, RF, \sigma, \text{mrk})\) where the following points hold:

- \(\tau\) is a sequence of thread events. Let \(X\) denote the set of events of \(\tau\) together with their memory-write counterparts, formally \(X = E(\tau) \cup \{\text{wM} : \exists \text{thr}(\text{wM}) \in \{E\} \text{such that } \text{wB} \in \{E\}(\text{wM})\}\).
- \(RF: \mathcal{R}(X) \rightarrow \{E\}(X)\) is a desired reads-from function.
- \(\sigma\) is a concrete valid trace that is a witness of \((X, RF)\), i.e., \(E(\sigma) = X\) and \(RF_\sigma = RF\).
- \(\text{mrk} \subseteq \mathcal{R}(\tau)\) is a set of reads that are marked to be committed to the source they read-from in \(\sigma\).

Further, a globally accessible set of schedule sets called schedules is maintained throughout the recursion. The schedules set is initialized empty \((\text{schedules} = \emptyset)\) and the initial call of the algorithm is argumented with empty sequences and sets — RF-SMC\((\epsilon, \emptyset, \epsilon, \emptyset)\).

Algorithm 3 presents the pseudocode of RF-SMC. In each call of RF-SMC, a number of possible changes (or mutations) of the desired reads-from function RF is proposed in iterations of the loop in Line 5. Consider the read \(r\) of a fixed iteration of the Line 5 loop. First, in Lines 6–8 a partial order \(P\) is constructed to capture the causal past of write events. In Lines 9–11 the set of mutations for \(r\) is computed. Then in each iteration of the Line 12 loop a mutation is constructed \((\text{Lines} \ 13–16)\). The partial order \(P\) is utilized in Line 13 to help determine the event set of the mutation. The constructed mutation, if deemed novel \((\text{checked in Line} \ 17)\), is probed whether it is realizable \((\text{in}

\begin{verbatim}
Algorithm 3: RF-SMC(\(\tau, RF, \sigma, \text{mrk}\))

Input: Sequence \(\tau\), desired reads-from RF, valid trace \(\sigma\) such that \(RF_\sigma = RF\), marked reads \(\text{mrk}\).

1. \(\overline{\sigma} \leftarrow \sigma \circ \overline{\sigma}\) where \(\overline{\sigma}\) is an arbitrary maximal extension of \(\sigma\) // Maximally extend trace \(\sigma\)
2. \(\overline{\tau} \leftarrow \tau \circ \overline{\tau}\) // Extend \(\tau\) with the thread-events subsquence of the extension \(\overline{\sigma}\)
3. \textbf{foreach} \(r \in \mathcal{R}(\overline{\sigma})\) do // Reads of the extension \(\overline{\sigma}\)
 4. \(\text{schedules}(\text{pre}_\overline{\tau}(r)) \leftarrow \emptyset\) // Initialize new schedule set
5. \textbf{foreach} \(r \in \mathcal{R}(\overline{\sigma}) \setminus \text{mrk}\) do // Unmarked reads
 6. \(P \leftarrow \text{PO}(\mathcal{E}(\overline{\sigma}))\) // Program order on all the events of \(\overline{\sigma}\)
 7. \textbf{foreach} \(r' \in \mathcal{R}(\overline{\tau}) \setminus \{r\}\) with \(\text{causesafter}(r')\) do // Different-thread-RF\(_P\) reads except \(r\)
 8. \text{insert} \(\text{wM} \rightarrow r'\) into \(P\) where \(RF_{\overline{\tau}}(r') = \text{wM}\) // Add the reads-from ordering into \(P\)
 9. \(\text{mutations} \leftarrow \{(\text{wB}, \text{wM}) \in \mathcal{W}(\overline{\sigma}) | h \text{wM} \} \setminus \{\text{RF}_{\overline{\tau}}(r)\}\) // All different writes \(r\) may read-from
10. \textbf{if} \(r \notin \mathcal{R}(\overline{\sigma})\) then // If \(r\) is not part of the extension then
11. \(\text{mutations} \leftarrow \text{mutations} \cap \mathcal{W}(\overline{\sigma})\) // Only consider writes of the extension
12. \textbf{foreach} \((\text{wB}, \text{wM}) \in \text{mutations}\) do // Considered mutations
 13. \(\text{causesafter} \leftarrow \{e \in \mathcal{E}(\overline{\tau}) | e \prec_\tau e \text{ and } e \preceq_\tau \text{wB}\}\) // Causal past of \(\text{wB}\) after \(r\) in \(\overline{\tau}\)
 14. \(\tau' \leftarrow \text{pre}_\overline{\tau}(r) \circ \tau\) // Causalesafter
 15. \(X' \leftarrow \mathcal{E}(\tau') \cup \{\text{wM}' : (\text{wB}', \text{wM}') \in \mathcal{W}(\overline{\tau}) \text{ and } \text{wB}' \in \mathcal{W}(\tau')\}\) // \(\tau\)-prefix followed by causesafter
 16. \((\text{RF}', \text{RF}_{\overline{\tau}}(r')) : r' \in \mathcal{R}(\tau') \text{ and } r' \neq r)\cup\{(r, (\text{wB}, \text{wM}))\}\) // Reads-from for this mutation
17. \textbf{if} \((\text{RF}', \text{RF}_{\overline{\tau}}(r')) \notin \text{schedules}(\text{pre}_\overline{\tau}(r))\) then // If this is a new schedule
18. \(\sigma' \leftarrow \text{Witness}(\text{X}', \text{RF}')\) // VerifyTSO (Algorithm 1) or VerifyPSO (Algorithm 2)
19. \textbf{if} \(\sigma' \neq \bot\) then // If the mutation is realizable
20. \(\text{mrk}' \leftarrow (\text{mrk} \cap \mathcal{R}(\tau')) \cup \mathcal{R}(\text{causesafter})\) // Reads in causesafter get newly marked
21. \textbf{add} \((\text{r}', \text{RF}', \sigma', \text{mrk}')\) to \text{schedule}(\text{pre}_\overline{\tau}(r)) // Add the successful new schedule
22. \textbf{foreach} \(r' \in \mathcal{R}(\overline{\tau})\) in the reverse order of \(\prec_\overline{\tau}\) do // Extension reads starting from the end
23. \textbf{foreach} \((\text{r}', \text{RF}', \sigma', \text{mrk}') \in \text{schedules}(\text{pre}_\overline{\tau}(r))\) do // Collected schedules mutating \(\overline{\tau}\)
24. \(\text{RF-SMC}(\text{r}', \text{RF}', \sigma', \text{mrk}')\) // Recursive call on the schedule
25. \textbf{delete} \text{schedule}(\text{pre}_\overline{\tau}(r)) // This schedule set has been fully explored, hence it can be deleted
\end{verbatim}
We address in Section 4 (Line 18 of Algorithm 3 calls our algorithms VerifyTSO and VerifyPSO. The fundamental challenge is then to ensure that the exploration optimality is preserved. To that end, we have to exclude certain events (in particular, memory-write events) from subsequences and event subsets that guide the exploration of Algorithm 3. Specifically, the sequences \(\tau, \tau', \\text{and } \bar{\tau} \) invariantly contain only the thread events, which is ensured in Line 2, Line 13 and Line 14, and then in Line 15 the absent memory-writes are reintroduced. No such distinction is required under SC.

Remark 1 (Handling locks and atomic primitives). For clarity of presentation, so far we have neglected locks in our model. However, lock events can be naturally handled by our approach as follows. We consider each lock-release event release as an atomic write event (i.e., its effects are not deferred by a buffer but instead are instantly visible to each thread). Then, each lock-acquire event acquire is considered as a read event that accesses the unique memory location.

Extension from SC to TSO and PSO. The fundamental challenge in extending the SC algorithm of Abdulla et al. [2019] to TSO and PSO is verifying execution consistency for TSO and PSO, which we address in Section 4 (Line 18 of Algorithm 3 calls our algorithms VerifyTSO and VerifyPSO). The main remaining challenge is then to ensure that the exploration optimality is preserved. To that end, we have to exclude certain events (in particular, memory-write events) from subsequences and event subsets that guide the exploration of Algorithm 3. Specifically, the sequences \(\tau, \tau', \text{and } \bar{\tau} \) invariantly contain only the thread events, which is ensured in Line 2, Line 13 and Line 14, and then in Line 15 the absent memory-writes are reintroduced. No such distinction is required under SC.

Remark 1 (Handling locks and atomic primitives). For clarity of presentation, so far we have neglected locks in our model. However, lock events can be naturally handled by our approach as follows. We consider each lock-release event release as an atomic write event (i.e., its effects are not deferred by a buffer but instead are instantly visible to each thread). Then, each lock-acquire event acquire is considered as a read event that accesses the unique memory location.
In SMC, we enumerate the reads-from functions that also consider locks, thus having constraints of the form $\text{RF}(\text{acquire}) = \text{release}$. This treatment totally orders the critical sections of each lock, which naturally solves all reads-from constraints of locks, and further ensures that no thread acquires an already acquired (and so-far unreleased) lock. Therefore $\text{VerifyTSO}/\text{VerifyPSO}$ need not take additional care for locks. The approach to handle locks by Abdulla et al. [2019] directly carries over to our exploration algorithm RF-SMC.

The atomic operations read-modify-write (RMW) and compare-and-swap (CAS) are modeled as in Section 4.4, except for the fact that the atomic blocks are not necessary for SMC. Then RF-SMC can handle programs with such operations as described by Abdulla et al. [2019]. In particular, the modification of RF-SMC (Algorithm 3) to handle RMW and CAS operations is as follows.

Consider an iteration of the loop in Line 5 where r is the read-part of either a RMW or a successful CAS, denoted e, and let $(wB'', wM'') = \text{RF}_\sigma(r)$. Then, in Line 9 we additionally consider as an extra mutation each atomic instruction e' satisfying:

1. The read-part r' of e' reads-from the write-part (wB, wM) of e (i.e., $\text{RF}_\sigma(r') = (wB, wM)$), and
2. e' is either a RMW, or it will be a successful CAS when it reads-from (wB'', wM''). In this case, let (wB', wM') denote the write-part of e'.

When considering the above mutation in Line 12, we set $\text{RF}'(r') = (wB'', wM'')$ and $\text{RF}'(r) = (wB', wM')$ in Line 16, which intuitively aims to “reverse” e and e' in the trace.

6 EXPERIMENTS

In this section we report on an experimental evaluation of the consistency verification algorithms VerifyTSO and VerifyPSO, as well as the reads-from SMC algorithm RF-SMC. We have implemented our algorithms as an extension in Nidhugg [Abdulla et al. 2015], a state-of-the-art stateless model checker for multithreaded C/C++ programs with pthreads library, operating on LLVM IR.

Benchmarks. For our experimental evaluation of both the consistency verification and SMC, we consider 109 benchmarks coming from four different categories, namely: (i) SV-COMP benchmarks, (ii) benchmarks from related papers and works [Abdulla et al. 2015, 2019; Chatterjee et al. 2019; Huang and Huang 2016], (iii) mutual-exclusion algorithms, and (iv) dynamic-programming benchmarks of Chatterjee et al. [2019]. Although the consistency and SMC algorithms can be extended to support atomic compare-and-swap and read-modify-write primitives (cf. Remark 1), our current implementation does not support these primitives. Therefore, we used all benchmarks without such primitives that we could obtain (e.g., we include every benchmark of the relevant SC reads-from work [Abdulla et al. 2019] except the one benchmark with compare-and-swap). Each benchmark comes with a scaling parameter, called the unroll bound, which controls the bound on the number of iterations in all loops of the benchmark (and in some cases it further controls the number of threads).

6.1 Experiments on Execution Verification for TSO and PSO

In this section we perform an experimental evaluation of our execution verification algorithms VerifyTSO and VerifyPSO. For the purpose of comparison, we have also implemented within Nidhugg the naive lower-set enumeration algorithm of Abdulla et al. [2019]; Biswas and Enea [2019], extended to TSO and PSO. Intuitively, this approach enumerates all lower sets of the program order restricted to the input event set, which yields a better complexity bound than enumerating write-coherence orders (even with just one location). The extensions to TSO and PSO are called NaiveVerifyTSO and NaiveVerifyPSO, respectively, and their worst-case complexity is n^{2k} and $n^{k-(d+1)}$, respectively (as discussed in Section 3). Further, for each of the above verification algorithms, we consider two variants, namely, with and without the closure heuristic of Section 4.3.
Setup. We evaluate the verification algorithms on execution consistency instances induced during SMC of the benchmarks. For TSO we have collected 9400 instances, 1600 of which are not realizable. For PSO we have collected 9250 instances, 1400 of which are not realizable. The collection process is described in detail in Appendix C.1. For each instance, we run the verification algorithms subject to a timeout of one minute, and we report the average time achieved over 5 runs.

Below we present the results using logarithmically scaled plots, where the opaque and semi-transparent red lines represent identity and an order-of-magnitude difference, respectively.

Results – algorithms with closure. Here we evaluate the verification algorithms that execute the closure as the preceding step. The plots in Figure 9 present the results for TSO and PSO.

![Fig. 9. Consistency verification comparison on TSO (left) and PSO (right) when using closure.](image)

In TSO, our algorithm VerifyTSO is similar to or faster than NaiveVerifyTSO on the realizable instances (blue dots), and the improvement is mostly within an order of magnitude. All unrealizable instances (green dots) were detected as such by closure, and hence the closure-using VerifyTSO and NaiveVerifyTSO coincide on these instances.

We make similar observations in PSO, where VerifyPSO is similar or superior to NaiveVerifyPSO for the realizable instances, and the algorithms are identical on the unrealizable instances, since these are all detected as unrealizable by closure.

![Fig. 10. Consistency verification comparison on TSO (left) and PSO (right) without the closure.](image)
Results – algorithms without closure. Here we evaluate the verification algorithms without the closure. The plots in Figure 10 present the results for TSO and PSO.

In TSO, the algorithm VerifyTSO outperforms NaiveVerifyTSO on most of the realizable instances (blue dots). Further, VerifyTSO significantly outperforms NaiveVerifyTSO on the unrealizable instances (green dots). This is because without closure, a verification algorithm can declare an instance unrealizable only after an exhaustive exploration of its respective lower-set space. VerifyTSO explores a significantly smaller space compared to NaiveVerifyTSO, as outlined in Section 3.

Similar observations as above hold in PSO for the algorithms VerifyPSO and NaiveVerifyPSO without closure, both for the realizable and the unrealizable instances.

Results – effect of closure. Here we comment on the effect of closure for the verification algorithms, in Appendix C.2 we present the detailed analysis. Recall that closure constructs a partial order that each witness has to satisfy, and declares an instance unrealizable when it detects that the partial order cannot be constructed for this instance (we refer to Section 4.3 for details).

For each verification algorithm, its version without closure is faster on most instances that are realizable (i.e., a witness exists). This means that the overhead of computing the closure typically outweighs the consecutive benefit of the verification being guided by the partial order.

On the other hand, for each verification algorithm, its version with closure is significantly faster on the unrealizable instances (i.e., no witness exists). This is because a verification algorithm has to enumerate all its lower sets before declaring an instance unrealizable, and this is much slower than the polynomial close language.

Results – verification with atomic operations. Here we present additional experiments to evaluate TSO verification algorithms VerifyTSO and NaiveVerifyTSO on executions containing atomic operations read-modify-write (RMW) and compare-and-swap (CAS). To that end, we consider 1088 verification instances (779 realizable and 309 not realizable) that arise during stateless model checking of benchmarks containing RMW and CAS, namely:

- synthetic benchmarks casrot [Abdulla et al. 2019] and cinc [Kokologiannakis et al. 2019b],
- data structure benchmarks barrier, chase-lev, ms-queue and linuxrwlocks [Kokologiannakis et al. 2019b; Norris and Demsky 2013], and
- Linux kernel benchmarks mcs_spinlock and qspinlock [Kokologiannakis et al. 2019b].

![Fig. 11. Consistency verification comparison of VerifyTSO and NaiveVerifyTSO with closure (left) and without closure (right) on verification instances that contain RMW and CAS instructions.](image-url)

The results are presented in Figure 11. The left plot depicts the results for VerifyTSO and NaiveVerifyTSO when closure is used as a preceding step. Here the results are all within an order-of-magnitude difference, and they are identical for unrealizable instances, since all of them were
detected as unrealizable already by the closure. The right plot depicts the results for VerifyTSO and NaiveVerifyTSO without using the closure. Here the difference for realizable instances is also within an order of magnitude, but for some unrealizable instances the algorithm VerifyTSO is significantly faster. Generally, the observed improvement of our VerifyTSO as compared to NaiveVerifyTSO is somewhat smaller in Figure 11, which could be due to the fact that executions with RMW and CAS instructions typically have fewer concurrent writes (indeed, in an execution where each write event is a part of a RMW/CAS instruction, each conflicting pair of writes is inherently ordered by the reads-from orderings together with PO). Finally, in Appendix C.2 the effect of closure is evaluated for both verification algorithms VerifyTSO and NaiveVerifyTSO on instances with RMW and CAS.

6.2 Experiments on SMC for TSO and PSO

In this section we focus on assessing the advantages of utilizing the reads-from equivalence for SMC in TSO and PSO. We have used RF-SMC for stateless model checking of 109 benchmarks under each memory model \(M \in \{ SC, TSO, PSO \} \), where SC is handled in our implementation as TSO with a fence after each thread event. Appendix C.3 provides further details on our SMC setup.

Comparison. As a baseline for comparison, we have also executed Source-DPOR [Abdulla et al. 2014], which is implemented in Nidhugg and explores the trace space using the partitioning based on the Shasha–Snir equivalence. In SC, we have further executed rfsc, the Nidhugg implementation of the reads-from SMC algorithm for SC by Abdulla et al. [2019], and the full comparison that includes rfsc for SC is in Appendix C.4. Both rfsc and Source are well-optimized, and recently started using advanced data-structures for SMC [Lång and Sagonas 2020]. The works of Kokologiannakis et al. [2019b]; Kokologiannakis and Vafeiadis [2020] provide a general interface for reads-from SMC in relaxed memory models. However, they handle a given memory model assuming that an auxiliary consistency verification algorithm for that memory model is provided. No such consistency algorithm for TSO or PSO is presented by Kokologiannakis et al. [2019b]; Kokologiannakis and Vafeiadis [2020], and, to our knowledge, the tool implementations of Kokologiannakis et al. [2019b]; Kokologiannakis and Vafeiadis [2020] also lack a consistency algorithm for both TSO and PSO. Thus these tools are not included in the evaluation.\(^1\)

Evaluation objective. Our objective for the SMC evaluation is three-fold. First, we want to quantify how each memory model \(M \in \{ SC, TSO, PSO \} \) impacts the size of the RF partitioning. Second, we are interested to see whether, as compared to the baseline Shasha–Snir equivalence, the RF equivalence leads to coarser partitionings for TSO and PSO, as it does for SC [Abdulla et al. 2019]. Finally, we want to determine whether a coarser RF partitioning leads to faster exploration. Theorem 3.3 states that RF-SMC spends polynomial time per partitioning class, and we aim to see whether this is a small polynomial in practice.

Results. We illustrate the obtained results with several scatter plots. Each plot compares two algorithms executing under specified memory models. Then for each benchmark, we consider the highest attempted unroll bound where both the compared algorithms finish before the one-hour timeout. Green dots indicate that a trace reduction was achieved on the underlying benchmark by the algorithm on the y-axis as compared to the algorithm on the x-axis. Benchmarks with no trace reduction are represented by the blue dots. All scatter plots are in log scale, the opaque and semi-transparent red lines represent identity and an order-of-magnitude difference, respectively.

The plots in Figure 12 illustrate how the size of the RF partitioning explored by RF-SMC changes as we move to more relaxed memory models (SC to TSO to PSO). The plots in Figure 13 capture how the size of the RF partitioning explored by RF-SMC relates to the size of the Shasha–Snir

\(^1\)Another related work is MCR [Huang and Huang 2016], however, the corresponding tool operates on Java programs and uses heavyweight SMT solvers that require fine tuning, and thus is beyond the experimental scope of this work.
partitioning explored by Source. Finally, the plots in Figure 14 demonstrate the time comparison of RF-SMC and Source when there is some (green dots) or no (blue dots) RF-induced trace reduction.

Below we discuss the observations on the obtained results. Table 1 captures detailed results on several benchmarks that we refer to as examples in the discussion.
Table 1. SMC results on several benchmarks. U denotes the unroll bound. The timeout of one hour is indicated by “-”. Bold-font entries indicate the smallest numbers for the respective memory model.

Discussion. We notice that the analysed programs can often exhibit additional behavior in relaxed memory settings. This causes an increase in the size of the partitionings explored by SMC algorithms (see 27_Boop4 in Table 1 as an example). Figure 12 illustrates the overall phenomenon for RF-SMC, where the increase of the RF partitioning size (and hence the number of traces explored) is sometimes beyond an order of magnitude when moving from SC to TSO, or from TSO to PSO.

We observe that across all memory models, the reads-from equivalence can offer significant reduction in the trace partitioning as compared to Shasha–Snir equivalence. This leads to fewer traces that need to be explored, see the plots of Figure 13. As we move towards more relaxed memory (SC to TSO to PSO), the reduction of RF partitioning often becomes more prominent (see 27_Boop4 in Table 1). Interestingly, in some cases the size of the Shasha–Snir partitioning explored by Source increases as we move to more relaxed settings, while the RF partitioning remains unchanged (cf. fillarray_false in Table 1). All these observations signify advantages of RF for analysis of the more complex program behavior that arises due to relaxed memory.

We now discuss how trace partitioning coarseness affects execution time, observing the plots of Figure 14. We see that in cases where RF partitioning is coarser (green dots), our RF algorithm RF-SMC often becomes significantly faster than the Shasha–Snir-based Source, allowing us to analyse programs scaled several levels further (see 27_Boop4 in Table 1). In cases where the sizes of the RF partitioning and the Shasha–Snir partitioning coincide (blue dots), the well-engineered Source outperforms our RF-SMC implementation. The time differences in these cases are reasonably moderate, suggesting that the polynomial overhead incurred to operate on the RF partitioning is small in practice.

Appendix C.4 contains the complete results on all 109 benchmarks, as well as further scatter plots, illustrating (i) comparison of RF-SMC with Source and rfsc in SC, (ii) time comparison of RF-SMC across memory models, and (iii) the effect of using closure in the constency checking during SMC.

7 CONCLUSIONS

In this work we have solved the consistency verification problem under a reads-from map for the TSO and PSO relaxed memory models. Our algorithms scale as $O(k \cdot n^{k+1})$ for TSO, and as $O(k \cdot n^{k+1} \cdot \min(n^{k-(k-1)}, 2^{k-d}))$ for PSO, for n events, k threads and d variables. Thus, they both become polynomial-time for a bounded number of threads, similar to the case for SC that was established recently [Abdulla et al. 2019; Biswas and Enea 2019]. In practice, our algorithms perform much better than the standard baseline methods, offering significant scalability improvements.
Encouraged by these scalability improvements, we have used these algorithms to develop, for the first time, SMC under TSO and PSO using the reads-from equivalence, as opposed to the standard Shasha–Snir equivalence. Our experiments show that the underlying reads-from partitioning is often much coarser than the Shasha–Snir partitioning, which yields a significant speedup in the model checking task.

We remark that our consistency-verification algorithms have direct applications beyond SMC. In particular, most predictive dynamic analyses solve a consistency-verification problem in order to infer whether an erroneous execution can be generated by a concurrent system (see, e.g., Kini et al. [2017]; Mathur et al. [2020]; Smaragdakis et al. [2012]). Hence, the results of this work allow to extend predictive analyses to TSO/PSO in a scalable way that does not sacrifice precision. We will pursue this direction in our future work.

REFERENCES

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal Dynamic Partial Order Reduction (POPL).

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015. Stateless Model Checking for TSO and PSO. In TACAS.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal Stateless Model Checking for Reads-from Equivalence under Sequential Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article 150 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360576

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal stateless model checking under the release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA (2018), 135:1–135:29. https://doi.org/10.1145/3276505

S. V. Adve and K. Gharachorloo. 1996. Shared memory consistency models: a tutorial. Computer 29, 12 (Dec 1996), 66–76. https://doi.org/10.1109/2.546611

Elvira Albert, Puri Arenas, María García de la Banda, Miguel Gómez-Zamalloa, and Peter J. Stuckey. 2017. Context-Sensitive Dynamic Partial Order Reduction. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham, 526–543.

Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. 2018. Constrained Dynamic Partial Order Reduction. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham, 392–410.

Jade Alglave. 2010. A Shared Memory Poetics. Ph.D. Dissertation. Paris Diderot University.

Jade Alglave, Patrick Cousot, and Caterina Urban. 2017. Concurrency with Weak Memory Models (Dagstuhl Seminar 16471). Dagstuhl Reports 6, 11 (2017), 108–128. https://doi.org/10.4230/DagRep.6.11.108

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. 2018. Optimal Dynamic Partial Order Reduction with Observers. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and Mariëtte Huisman (Eds.). Springer International Publishing, Cham, 229–248.

Ranadeep Biswas and Constantin Enea. 2019. On the complexity of checking transactional consistency. Proc. ACM Program. Lang. 3, OOPSLA (2019), 165:1–165:28. https://doi.org/10.1145/3360591

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In Programming Languages and Systems, Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 533–553.

Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding Robustness against Total Store Ordering. In Automata, Languages and Programming, Luca Aceto, Monika Henzinger, and Jiří Sgall (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 428–440.

Harold W. Cain and Mikko H. Lipasti. 2002. Verifying Sequential Consistency Using Vector Clocks. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA ’02). Association for Computing Machinery, New York, NY, USA, 153–154. https://doi.org/10.1145/564870.564897

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-centric Dynamic Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158119

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. 2019. Value-Centric Dynamic Partial Order Reduction. Proc. ACM Program. Lang. 3, OOPSLA, Article 124 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360550

Y. Chen, Yi Lv, W. Hu, T. Chen, Hailhua Shen, Pengyu Wang, and Hong Pan. 2009. Fast complete memory consistency verification. In 2009 IEEE 15th International Symposium on High Performance Computer Architecture. 381–392.
A Details of Section 4

Here we proceed with proofs of our theorems and lemmas regarding algorithms VerifyTSO and VerifyPSO. Then, we describe an extension of VerifyPSO to handle store-store fences.

A.1 Proofs of Section 4.1

LEMMA 4.1. \((X, RF)\) is realizable under TSO iff VerifyTSO returns a trace \(\sigma \neq \epsilon\).

PROOF. We argue separately about soundness and completeness.

Soundness. We prove by induction that every trace \(\sigma\) extracted from \(\mathcal{S}\) in Line 3 is a trace that realizes \((X|E(\sigma), RF|E(\sigma))\) under TSO. The claim clearly holds for \(\sigma = \epsilon\). Now consider a trace \(\sigma\) such that \(\sigma \neq \emptyset\), hence \(\sigma\) was inserted in \(\mathcal{S}\) in Line 10 while executing a previous iteration of the while-loop in Line 2. Let \(\sigma'\) be the trace that was extracted from \(\mathcal{S}\) in that iteration. Observe that \(\sigma'\) is extended with TSO-executable events in Line 5 and Line 8, hence it is well-formed. It remains to argue that for every new read \(r\) executed in Line 5, we have \(RF_{\sigma'}(r) = RF(r)\). Assume towards contradiction otherwise, and let \(r\) be the first read for which this equality fails. For the remaining of the proof, we let \(\sigma'\) be the trace in the iteration of Line 5 that executed \(r\), i.e., \(\sigma'\) ends in \(r\). Let \(RF(r) = (wB, wM)\) and \(RF_{\sigma'}(r) = (wB', wM')\). We distinguish the following cases.

(1) If \(r\) reads-from \(wB'\) in \(\sigma'\), then \(\text{thr}(r) \neq \text{thr}(wB)\), while also \(wM' \notin E(\sigma)\). Since \(r\) became TSO-executable, we have \(wM \in E(\sigma')\), hence \(wM\) has already become TSO-executable. This violates Item 2b of the definition of TSO-executable memory-writes for \(wM\), a contradiction.

(2) If \(r\) reads-from \(wM'\) in \(\sigma'\), then \(wM \in E(\sigma')\) and \(wM'\) was executed after \(wM\) was executed in \(\sigma'\). This violates Item 2a of the definition of TSO-executable memory-writes for \(wM'\), a contradiction.

It follows that \(RF_{\sigma'}(r) = RF(r)\) for all reads \(r \in R(\sigma')\), and hence \(\sigma'\) realizes \((X|E(\sigma'), RF|E(\sigma'))\) under TSO. The above soundness argument carries over to executions containing RMW and CAS instructions, since (i) such instructions are modeled by events of already considered types (c.f. Section 4.4), while respecting the TSO-executability requirements of these events (as were defined in Section 4.1), and (ii) in Line 4 resp. Line 7 we only consider TSO-executable atomic blocks (described in detail in Section 4.4).

Completeness. Consider any trace \(\sigma'\) that realizes \((X, RF)\). We show by induction that for every prefix \(\overline{\sigma}\) of \(\sigma'\), the algorithm examines a trace \(\sigma\) in Line 3 such that (i) \(\mathcal{W}^{M}(\overline{\sigma}) = \mathcal{W}^{M}(\sigma)\), and (ii) \(\mathcal{L}(\overline{\sigma}) \subseteq \mathcal{L}(\sigma)\). The proof is by induction on the number of memory-writes of \(\overline{\sigma}\). Let \(\overline{\sigma} = \overline{\sigma}' \circ \kappa \circ wM\), where \(\kappa\) is a sequence of thread events. Assume by the induction hypothesis that the algorithm extracts a trace \(\sigma'\) in Line 3 such that (i) \(\mathcal{W}^{M}(\overline{\sigma}') = \mathcal{W}^{M}(\sigma')\), and (ii) \(\mathcal{L}(\overline{\sigma}') \subseteq \mathcal{L}(\sigma')\). (note that the statement clearly holds for the base case where \(\overline{\sigma}' = \epsilon\)). By a straightforward induction, all the events of \(\kappa\) not already present in \(\sigma'\) become eventually TSO-executable in \(\sigma'\), and thus appended in \(\sigma'\), as the algorithm executes the while-loop in Line 4. Hence, at the end of this while-loop, we have (i) \(\mathcal{W}^{M}(\overline{\sigma}') = \mathcal{W}^{M}(\sigma')\), and (ii) \(\mathcal{L}(\overline{\sigma}') \cup \mathcal{E}(\kappa) \subseteq \mathcal{L}(\sigma')\).

It remains to argue that \(wM\) is TSO-executable in \(\sigma'\) at this point (i.e., in Line 7). Assume towards contradiction otherwise, hence one of the following hold.

(1) There is a read \(r \in R(X)\) with \(RF(r) = (wB', wM')\) and such that (i) \(r \prec wM\), (ii) \(wM \neq wM'\), (iii) \(wM' \in \sigma'\), and (iv) \(r \notin \sigma'\). By the induction hypothesis, we have \(\mathcal{W}^{M}(\sigma') = \mathcal{W}^{M}(\overline{\sigma}')\) and thus \(wM' \in \overline{\sigma}'\). Moreover, we have \(\mathcal{E}(\overline{\sigma}' \circ \kappa) \subseteq \mathcal{E}(\sigma')\), and thus \(r \notin \overline{\sigma}' \circ \kappa\). This violates the fact that \(\overline{\sigma}\) is a witness prefix for \((X, RF)\).

(2) There is a read \(r \in R(X)\) with \(RF(r) = (wB, wM)\) and such that there exists a two-phase write \((wB', wM')\) with (i) \(r \prec wB'\), (ii) \(wB' \prec_{PO} r\), (iii) \(wM' \notin \sigma'\). By the induction hypothesis, we
have \(W^M(\sigma') = W^M(\sigma') \) and thus \(wM' \notin \sigma' \). Moreover, we have \(E(\sigma' \circ \kappa) \subseteq E(\sigma') \), and thus \(r \notin \sigma' \circ \kappa \). This violates the fact that \(\sigma' \) is a witness prefix for \((X, RF)\).

Hence \(wM \) is TSO-executable in \(\sigma' \) in Line 7, and thus the algorithm will construct the trace \(\sigma_{wM}' = \sigma' \circ wM \) in Line 8. If \(W^M(\sigma_{wM}) \notin \text{Done} \), the test in Line 9 succeeds, and the statement holds for \(\sigma \) being \(\sigma_{wM} \) extracted from \(S \) in a later iteration. Otherwise, the algorithm previously constructed a trace \(\sigma'' \) with \(W^M(\sigma'') = W^M(\sigma_{wM}) \), and the statement holds for \(\sigma \) being \(\sigma'' \) extracted from \(S \) in a later iteration.

When arguing about completeness in the presence of RMW and CAS instructions, additional care needs to be taken, as follows. The above induction argument applies, but it needs to additionally consider a case with \(\sigma = \sigma' \circ \kappa \circ r \circ wB \circ wM \) and \(\text{fnc} \in E(\sigma' \circ \kappa) \), where \(\text{fnc} \) together with \(r \circ wB \circ wM \) represent an atomic RMW resp. CAS instruction with the write-part designated to be immediately propagated to the shared memory. Let us consider this case in what follows.

As above, we start with the induction hypothesis that in Line 3 we have \(\sigma' \) with (i) \(W^M(\sigma') = W^M(\sigma') \), and (ii) \(L(\sigma') \subseteq L(\sigma') \). Further, by an argument similar to the above, we reach Line 7 where \(\sigma' \) now satisfies (i) \(W^M(\sigma') = W^M(\sigma') \), and (ii) \(L(\sigma') \cup E(\kappa) \subseteq L(\sigma') \). At this point, we have \(\text{fnc} \in E(\sigma' \circ \kappa) \) and \(\text{fnc} \in L(\sigma') \). Further, since in our approach we emplace \(r, wB \) and \(wM \) in an atomic block, and we never allow execution of a singular event that is part of some atomic block (described in detail in Section 4.4), we have that \(E(\sigma') \cap \{r, wB, wM\} = \emptyset \). As a result, since there are no events between \(\text{fnc} \) and \(r \) in the thread of the atomic instruction, we have that the buffer of the thread of the atomic instruction is empty in both \(\sigma' \circ \kappa \) and \(\sigma' \). What remains to argue is that the atomic block \(r \circ wB \circ wM \) is TSO-executable in \(\sigma' \). For this, we refer to the TSO-executable conditions of atomic blocks defined in Section 4.4. In turn, utilizing the TSO-executable conditions of (i) reads, (ii) buffer-writes, and (iii) memory-writes, defined in Section 4.1, we show that (i) \(r \) is TSO-executable in \(\sigma' \), (ii) \(wB \) is TSO-executable in \(\sigma' \circ r \), and (iii) \(wM \) is TSO-executable in \(\sigma' \circ r \circ wB \). This together with \(E(\sigma') \cap \{r, wB, wM\} = \emptyset \) gives us that the atomic block \(r \circ wB \circ wM \) is TSO-executable in \(\sigma' \), and thus in Line 8 the algorithm will construct the trace \(\sigma'' = \sigma' \circ r \circ wB \circ wM \).

The desired completeness result follows. \(\square \)

We conclude the section with the proof of Theorem 3.1.

THEOREM 3.1. VTSO-rf for \(n \) events and \(k \) threads is solvable in \(O(k \cdot n^{k+1}) \) time.

PROOF. Lemma 4.1 establishes the correctness, so here we focus on the complexity, and the following argument applies also to executions containing RMW and CAS instructions.

Since there are \(k \) threads, there exist at most \(n^k \) distinct traces \(\sigma_1, \sigma_2 \) with \(W^M(\sigma_1) \neq W^M(\sigma_2) \). Hence, the main loop in Line 2 is executed at most \(n^k \) times. For each of the \(\leq n^k \) traces \(\sigma \) inserted in \(S \) in Line 10, there exist at most \(k - 1 \) traces that are not inserted in \(S \) because \(W^M(\sigma) = W^M(\sigma') \) (hence the test in Line 9 fails). Hence, the algorithm handles \(O(k \cdot n^k) \) traces in total, while each trace is constructed in \(O(n) \) time. Thus, the complexity of VerifyTSO is \(O(k \cdot n^{k+1}) \). The desired result follows. \(\square \)

A.2 Proofs of Section 4.2

LEMMA 4.2. Consider two witness prefixes \(\sigma_1, \sigma_2 \) such that \(\sigma_2 = \sigma_1 \circ wM \) for some memory-write \(wM \) executable in \(\sigma_1 \). We have \(FMap_{\sigma_1} \leq FMap_{\sigma_2} \). Moreover, if \(wM \) is a spurious memory-write in \(\sigma_1 \), then \(FMap_{\sigma_1} = FMap_{\sigma_2} \).

PROOF. Since \(wM \) is executable in \(\sigma_1 \), the variable \(\text{var}(\sigma_1) \) is not held in \(\sigma_1 \). It follows directly from the definition of fence maps that the read sets \(A_{\text{thr,thr'}} \) can only increase in \(FMap_{\sigma_2} \) compared
to FMap_{σ_1}. Hence, $\text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2) \leq \text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2)$ for all $\text{thr}_1, \text{thr}_2$. Moreover, if wM is spurious then the sets $A_{\text{thr},\text{thr}'}$ are identical, thus $\text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2) = \text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2)$ for all $\text{thr}_1, \text{thr}_2$.

The desired result follows.

\[\square \]

Lemma 4.3. Consider two witness prefixes σ_1, σ_2 such that (i) $L(\sigma_1) = L(\sigma_2)$, (ii) $\text{FMap}_{\sigma_1} \leq \text{FMap}_{\sigma_2}$, and (iii) $\mathcal{W}^M(\sigma_1 \setminus S\mathcal{W}^M(\sigma_1)) \subseteq \mathcal{W}^M(\sigma_2)$. Let $e \in L(X)$ be a thread event that is executable in σ_i for each $i \in \{2\}$, and let $\sigma'_i = \sigma_i \circ e$, for each $i \in \{2\}$. Then $\text{FMap}_{\sigma'_1} \leq \text{FMap}_{\sigma'_2}$.

Proof. We distinguish cases based on the type of e.

1. If e is a fence fnc, the fence maps do not chance, hence the claim holds directly from the fact that $\text{FMap}_{\sigma_1} \leq \text{FMap}_{\sigma_2}$.

2. If e is a read r, observe that $\text{FMap}_{\sigma'_i} \leq \text{FMap}_{\sigma_i}$ for each $i \in \{2\}$. Hence we must have $\text{FMap}_{\sigma'_i}(\text{thr}_1, \text{thr}_2) < \text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2)$, for some thread $\text{thr}_1 \in \text{Threads}$ and $\text{thr}_2 = \text{thr}(r)$. Note that in fact $\text{FMap}_{\sigma'_i}(\text{thr}_1, \text{thr}_2) = 0$, which occurs because $\text{FMap}_{\sigma'_i}(\text{thr}_1, \text{thr}_2)$ is the index of r in thr_i. Since $\text{FMap}_{\sigma_1} \leq \text{FMap}_{\sigma'_i}$, we have either $\text{FMap}_{\sigma'_i}(\text{thr}_1, \text{thr}_2) = 0$ or $\text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2) = \text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2)$. In either case, we have $\text{FMap}_{\sigma'_1} \leq \text{FMap}_{\sigma_2} = 0$, a contradiction.

3. If e is a buffer-write wB, observe that $\text{FMap}_{\sigma_1} \leq \text{FMap}_{\sigma'_2}$ for each $i \in \{2\}$. Hence we must have $\text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2) < \text{FMap}_{\sigma'_2}(\text{thr}_1, \text{thr}_2)$, where $\text{thr}_1 = \text{thr}(wB)$ and thr_2 is some other thread. It follows that $v = \text{var}(wB)$ is held in σ_1 by an active memory-write wM' (thus wM' is not spurious in σ_1), and $\text{FMap}_{\sigma'_2}(\text{thr}_1, \text{thr}_2)$ is the index of thr_2 that contains a read r with $\text{RF}(r) = (\sigma', wM')$. Since $\mathcal{W}^M(\sigma_1 \setminus S\mathcal{W}^M(\sigma_1)) \subseteq \mathcal{W}^M(\sigma_2)$, we have $\mathcal{W}^M(\sigma'_2) \subseteq \mathcal{W}^M(\sigma_2)$. Hence $\text{FMap}_{\sigma'_2}(\text{thr}_1, \text{thr}_2) \geq \text{FMap}_{\sigma'_2}(\text{thr}_1, \text{thr}_2)$, a contradiction.

The desired result follows.

\[\square \]

Lemma 4.4. Let d be the number of variables. There exist at most $2^k d$ distinct witness prefixes σ_1, σ_2 such that $L(\sigma_1) = L(\sigma_2)$ and $\text{FMap}_{\sigma_1} \neq \text{FMap}_{\sigma_2}$.

Proof. Given a trace σ, we define the non-empty-buffer map $\text{NEBMap}_{\sigma} : \text{Threads} \times \mathcal{G} \rightarrow \{\text{True}, \text{False}\}$, such that $\text{NEBMap}_{\sigma}(\text{thr}, v) = \text{True}$ iff (i) the thr does not hold variable v, and (ii) the buffer of thread thr on variable v is non-empty. Clearly there exist at most $2^k d$ different non-empty-buffer maps. We argue that for every two traces σ_1, σ_2, if $L(\sigma_1) = L(\sigma_2)$ and $\text{NEBMap}_{\sigma_1} = \text{NEBMap}_{\sigma_2}$ then $\text{FMap}_{\sigma_1} = \text{FMap}_{\sigma_2}$, from which the $2^k d$ bound of the lemma follows.

Assume towards contradiction that $\text{FMap}_{\sigma_1} \neq \text{FMap}_{\sigma_2}$. Hence, wlog, there exist two threads $\text{thr}_1, \text{thr}_2$ such that $\text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2) > \text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2)$. Let $\text{FMap}_{\sigma_2}(\text{thr}_1, \text{thr}_2) = m$, and consider the read r of thr_2 at index m. Let $v = \text{var}(r)$ and $\text{RF}(r) = (wB, wM)$ and $\text{thr}_3 = \text{thr}(wB)$. By the definition of fence maps, we have that thr_3 holds variable v in σ_2. By the definition of non-empty-buffer maps, we have that $\text{NEBMap}_{\sigma_2}(\text{thr}_3, v) = \text{False}$, and since $\text{NEBMap}_{\sigma_1} = \text{NEBMap}_{\sigma_2}$, we also have $\text{NEBMap}_{\sigma_1}(\text{thr}_3, v) = \text{False}$. Since $L(\sigma_1) = L(\sigma_2)$, we have that $wB \in \sigma_1$. Moreover, we have $wM \notin \sigma_1$, as otherwise, since $\text{NEBMap}_{\sigma_1}(\text{thr}_1) = \text{NEBMap}_{\sigma_2}(\text{thr}_2)$, we would have $\text{FMap}_{\sigma_1}(\text{thr}_1, \text{thr}_2) \geq m$. Hence, the buffer of thread thr_3 on variable v is non-empty in σ_1. Since $\text{NEBMap}_{\sigma_1}(\text{thr}_3, v) = \text{False}$, we have that thr_3 holds v in σ_1. Thus, there is a read $r' \notin \sigma_1$ with $\text{RF}(r') = (wB', wM')$, where $wM' <_{\text{PO}} wM$. Since $L(\sigma_1) = L(\sigma_2)$, we have that $r' \notin \sigma_2$, which violates the observation of r' in any extension of σ_2.

The desired result follows.

\[\square \]
Lemma 4.5. \((X, RF)\) is realizable under PSO iff VerifyPSO returns a trace \(\sigma \neq \epsilon\).

Proof. We argue separately about soundness and completeness.

Soundness. We prove by induction that every trace \(\sigma\) extracted from \(S\) in Line 3 is a trace that realizes \((X|E(\sigma), RF|E(\sigma))\) under PSO. The claim clearly holds for \(\sigma = \epsilon\). Now consider a trace \(\sigma\) such that \(\sigma \neq \emptyset\), hence \(\sigma\) was inserted in \(S\) in Line 17 while executing a previous iteration of the while-loop in Line 2. Let \(\sigma'\) be the trace that was extracted from \(S\) in that iteration, and consider the trace \(\sigma_e\) constructed in Line 15. Since \(\sigma_e\) is obtained by extending \(\sigma'\) with PSO-executable events, it follows that \(\sigma_e\) is well-formed. It remains to argue that \(RF_e \subseteq RF\). If \(e\) is not a read, then the claim holds by the induction hypothesis as \(R(\sigma_e) = R(\sigma')\). Now assume that \(e\) is a read with \(RF_{\sigma_e}(e) = (wB', wM')\). Let \(RF(e) = (wB, wM)\), and assume towards contradiction that \(wB \neq wB\). We distinguish the following cases.

1. If \(e\) reads-from \(wB'\) in \(\sigma_e\), we have that \(\text{thr}(r) \neq \text{thr}(wB)\). But then \(wM \in \sigma_e\), hence \(wM\) has become PSO-executable, and thus \(wM' \in \sigma_e\). Since \(e\) is the last event of \(\sigma_e\) this violates the fact that \(e\) reads-from \(wB'\) in \(\sigma_e\).
2. If \(e\) reads-from \(wM'\) in \(\sigma_e\), then \(wM \in \sigma'\), and \(wM'\) was executed after \(wM\) in \(\sigma'\). By the definition of PSO-executable events, \(wM'\) could not have been PSO-executable at that point, a contradiction.

It follows that \(RF_{\sigma_e}(e) = RF(e)\), and this with the induction hypothesis gives us that \(RF_{\sigma_e}(r) = RF(r)\) for all reads \(r \in R(\sigma_e)\). As a result, \(\sigma_e\) realizes \((X|E(\sigma_e), RF|E(\sigma_e))\) under PSO. The soundness argument carries over directly to executions containing RMW and CAS instructions. Indeed, since in Line 7 we only consider atomic blocks that are PSO-executable (described in Section 4.4), consequently, the PSO-executable conditions of fences, reads, buffer-writes and memory-writes (as defined in Section 4.2) used to model RMW and CAS are preserved, which by the above argument implies soundness.

Completeness. Consider any trace \(\sigma^*\) that realizes \((X, RF)\). We show by induction that for every prefix \(\sigma^*\), the algorithm examines a trace \(\sigma\) in Line 3 such that (i) \(L(\sigma) = L(\overline{\sigma})\), (ii) \(W^M(\sigma) \setminus S\overline{W}^M(\sigma) \subseteq W^M(\overline{\sigma})\), and (iii) \(\text{FMap}_{\sigma^*} \leq \text{FMap}_{\overline{\sigma}}\).

The proof is by induction on the number of thread events of \(\overline{\sigma}\). The statement clearly holds when \(\overline{\sigma} = \epsilon\) due to the initialization of \(S\). For the inductive step, let \(\overline{\sigma} = \overline{\sigma}' \circ \kappa \circ \epsilon\), where \(\kappa\) is a sequence of memory-writes and \(\epsilon\) is a thread event. By the induction hypothesis, the algorithm extracts a trace \(\sigma'\) in Line 3 such that (i) \(L(\sigma') = L(\overline{\sigma}')\), (ii) \(W^M(\sigma') \setminus S\overline{W}^M(\sigma') \subseteq W^M(\overline{\sigma}')\), (iii) \(\text{FMap}_{\sigma'} \leq \text{FMap}_{\overline{\sigma}'}\). Let \(\overline{\sigma}_1 = \overline{\sigma}' \circ \kappa\), and \(\sigma_1\) be the trace \(\sigma'\) after the algorithm has extended \(\sigma'\) with all events in the while-loop of Line 4. By Lemma 4.2, we have \(\text{FMap}_{\sigma_1} \leq \text{FMap}_{\overline{\sigma}_1}\). Since all events appended to \(\sigma'\) are spurious memory-writes in \(\sigma'_1\), by Lemma 4.2, we have \(\text{FMap}_{\sigma_1} = \text{FMap}_{\overline{\sigma}_1}\), and thus \(\text{FMap}_{\sigma} \leq \text{FMap}_{\overline{\sigma}}\). Moreover, since the while-loop only appends spurious memory-writes to \(\sigma'_1\), we have \(W^M(\sigma_1) \setminus S\overline{W}^M(\sigma_1) \subseteq W^M(\overline{\sigma}_1)\). Finally, we trivially have \(L(\sigma_1) = L(\overline{\sigma}_1)\).

We now argue that \(e\) is PSO-executable in \(\sigma_1\) in Line 7, and the statement holds for the new trace \(\sigma_e\) constructed in Line 15. We distinguish cases based on the type of \(e\).

1. **If \(e\) is a buffer-write**, then \(E(\sigma_1) \cup \{e\}\) is a lower set of \((X, RF)\), hence \(e\) is PSO-executable in \(\sigma_1\). Thus, we have \(L(\overline{\sigma}_1) = L(\overline{\sigma}_e)\). Moreover, note that \(\sigma_e = \sigma_1 \circ \epsilon\) and \(\overline{\sigma} = \overline{\sigma}_1 \circ \epsilon\). By Lemma 4.3 on \(\sigma_1\) and \(\overline{\sigma}_1\), we have \(\text{FMap}_{\sigma_e} \leq \text{FMap}_{\overline{\sigma}}\). Finally, we have \(W^M(\sigma_e) = W^M(\sigma_1)\) and thus \(W^M(\sigma_e) \setminus S\overline{W}^M(\sigma_e) \subseteq W^M(\overline{\sigma})\).
2. **If \(e\) is a read**, let \(RF(e) = (wB, wM)\) and \(v = \var(r)(e)\). We have \(wB \in \sigma_1\) and thus \(wB \in \sigma_1\). If \(\text{thr}(wB) = \text{thr}(e)\), then \(e\) is PSO-executable in \(\sigma_1\). Now consider that \(\text{thr}(wB) \neq \text{thr}(e)\), and assume towards contradiction that \(e\) is not PSO-executable in \(\sigma_1\). There are two cases where this can happen.
The first case is when the variable v is held by another memory write in σ. Since $L(\sigma_1) = L(\overline{\sigma})$ and $W^M(\sigma_1) \setminus S'W^M(\sigma_1) \subseteq W^M(\overline{\sigma})$, the variable v is also held by another memory write in $\overline{\sigma}$, and thus wM is neither in $\overline{\sigma}$ nor PSO-executable in $\overline{\sigma}$. Thus e is not PSO-executable in $\overline{\sigma}$ either, a contradiction.

The second case is when there exists a read $r \notin \sigma_1$ such that $RF(r) = (_, wM)$, and there exists a local write event $w' = (wB', wM')$ with $\text{thr}(w'B') = \text{thr}(r)$ but $w'M' \notin \sigma_1$. Since $\overline{\sigma}$, is a witness prefix, we have $wM' \in \overline{\sigma}$, hence $wB' \in \overline{\sigma}$, and since $L(\sigma_1) = L(\overline{\sigma})$, we also have $wB' \in \sigma_1$. Thus wM' is a pending memory write for the thread $\text{thr}' = \text{thr}(wM')$. Let wM'' be the earliest (wrt PO) pending memory-write of thr' for the variable v. Thus $wM'' <_P wM'$, and hence $wM'' \in \overline{\sigma}$. Note that wM'' is not read-from by any read not in σ_1, and hence wM'' is spurious in σ_1. But then, the while loop in Line 4 must have added wM'' in σ_1, a contradiction.

It follows that e is PSO-executable in σ_1, and thus $L(\overline{\sigma}) = L(\sigma_e)$. Let $\sigma_2 = \sigma_1$ if $wM \in \sigma_1$, else $\sigma_2 = \sigma_1 \circ wM$. Observe that if wM is PSO-executable in σ_1, all pending memory-writes wM' on variable v of threads other than $\text{thr}(wB)$ are spurious in σ', and thus all such buffers are empty in σ_1. It follows that $FMap_{\sigma_2} \leq FMap_{\sigma_1}$ and thus $FMap_{\sigma_2} \leq FMap_{\sigma_1}$. Moreover, trivially $W^M(\sigma_2) \setminus S'W^M(\sigma_2) \subseteq \overline{\sigma}$. Finally, executing e in σ_2 and $\overline{\sigma}$, we obtain respectively σ_e and $\overline{\sigma}$, and by Lemma 4.3, we have $\text{FMap}_{\sigma_e} \leq \text{FMap}_{\overline{\sigma}}$. Moreover, clearly $W^M(\sigma_e) = W^M(\sigma_2)$ and thus $W^M(\sigma_e) \setminus W^M(\sigma_2) \subseteq \overline{\sigma}$.

(3) If e is a fence, let $\mu = wM_1, \ldots, wM_j$ be the sequence of pending memory-writes constructed in Line 13. By a similar analysis to the case where e is a read event, we have that μ contains at most one memory-write per variable, as all preceding ones (wrt PO) must be spurious. Assume towards contradiction that some pending memory write wM_i is not PSO-executable in σ, and let $v = \text{var}(wM_i)$. There are two cases to consider.

(a) wM_i is not PSO-executable because v is held in σ_1. Let wM be the memory-write that holds v in σ_1, and r be the corresponding read with $RF(r) = (_, wM)$ and $r \notin \sigma_1$. Since $L(\sigma_1) = L(\overline{\sigma})$, we have $r \notin \overline{\sigma}$. Let $\text{thr}_1 = \text{thr}(e)$, $\text{thr}_2 = \text{thr}(r)$, and m be the index of r in thr_2. We have $FMap_{\sigma_1}(\text{thr}_1, \text{thr}_2) \geq m$, and since $FMap_{\sigma_1} \leq FMap_{\overline{\sigma}}$, we also have $FMap_{\overline{\sigma}}(\text{thr}_1, \text{thr}_2) \geq m$.

But then there is a pending memory-write $wM' \in \overline{\sigma}'$ with $\text{thr}(wM') = \text{thr}_1$ and $wM' \notin \overline{\sigma}$. Hence e is not PSO-executable in $\overline{\sigma}$, a contradiction.

(b) wM_i is not PSO-executable because there exists a read $r \notin \sigma_1$ such that $RF(r) = (_, wM_i)$, and there exists a local write event $w = (wB, wM)$ with $\text{thr}(wB) = \text{thr}(r)$ but $wM \notin \sigma_1$. The analysis is similar to the case of e being a read, which leads to a contradiction.

Thus, we have that the fence e is PSO-executable in σ_1. It is straightforward to see that $W^M(\sigma_e) \setminus S'W^M(\sigma_e) \subseteq \overline{\sigma}$, and thus it remains to argue that $FMap_{\sigma_e} \leq FMap_{\overline{\sigma}}$. Let $\sigma'_1 = \sigma_1 \circ wM_1, \ldots, wM_j-1$. It suffices to argue that $FMap_{\sigma'_1} \leq FMap_{\overline{\sigma}}$, as $\sigma_e = \sigma'_1 \circ e$ and $\overline{\sigma} = \overline{\sigma} \circ e$, and the claim holds by Lemma 4.3 on $\sigma'_1 \circ e$ and $\overline{\sigma}$. The proof is by induction on σ'_i. The claim clearly holds for $i = 1$, as then $\sigma'_1 = \sigma_1$ and we have $FMap_{\sigma_1} \leq FMap_{\overline{\sigma}_1}$. Now consider that for some $i > 1$, there exist two threads $\text{thr}_1, \text{thr}_2$, \in Threads such that $FMap_{\sigma'_i} > FMap_{\sigma'_i-1}(\text{thr}_1, \text{thr}_2)$. Hence, variable $v = \text{var}(wM_i)$ is held in σ'_i and wM_i is the respective active-memory-write, and thread thr_2 has a read r in index $m = FMap_{\sigma'_i}(\text{thr}_1, \text{thr}_2)$ with $RF(r) = (_, wM_i)$. In addition, there exists a buffer-write $wB \in \sigma_1$ such that $\text{thr}(wB) = \text{thr}_1$ and $\text{var}(wB) = v$. Since $L(\sigma_1) = L(\overline{\sigma})$, we have that $wB \in \overline{\sigma}$ and $r \notin \overline{\sigma}$. Moreover, since $wM_i <_P e$, we have $wM_i \notin \overline{\sigma}$. Hence wM_i is an active-memory-write in $\overline{\sigma}$ as well, and thus $FMap_{\overline{\sigma}}(\text{thr}_1, \text{thr}_2) \geq FMap_{\sigma'_i}(\text{thr}_1, \text{thr}_2)$. At the end of the induction, we have $FMap_{\sigma'_i \circ e} \leq FMap_{\overline{\sigma}}$, as desired.

This concludes the completeness argument for executions without RMW and CAS instructions.
When executions contain RMW and CAS instructions, additional argument has to be made for completeness, as follows. We proceed with the same induction argument as above, but additionally consider the inductive case where $\bar{\sigma} = \bar{\sigma}' \circ \kappa \circ e$ such that e is an atomic block corresponding to a RMW or a CAS instruction. In this case, e is a sequence of (i) a read r, (ii) a buffer-write wB, and optionally (in the case the write-part of e is designated to proceed directly into the shared memory) (iii) a memory-write wM. Finally, e is preceded in its thread by a fence fnc.

First, since $\bar{\sigma}$ is a witness prefix we have $fnc \in L(\bar{\sigma}')$, and from the induction hypothesis regarding σ' such that $L(\sigma') = L(\bar{\sigma}')$ we also have $fnc \in L(\sigma')$. Thus all buffers of the thread of e are empty in both $\bar{\sigma}'$ and σ'. Then the argument is followed identically to above until Line 7, where we have to show that the atomic block e is PSO-executable in σ_1 in Line 7, and that consequently the induction statement holds for the new trace σ_e constructed in Line 15.

The crucial observation is that no event from the second event onward in the atomic block e is a read or a fence. This is important as reads and fences may need additional events executed right before them (see Lines 9–14), which would invalidate the atomicity of the atomic block. Given this observation, we simply utilize the PSO-executable requirements to prove the following. First, using the argument of Item 2 above we show that r is PSO-executable in σ_1, let σ_r denote the trace resulting after executing r. Second, using Item 1 above we show that wB is PSO-executable in σ_r, and further that (i) $L(\sigma_r \circ wB) = L(\bar{\sigma}' \circ \kappa \circ r \circ wB)$, (ii) $W^M(\sigma_r \circ wB) \setminus S^W(\sigma_r \circ wB) \subseteq W^M(\bar{\sigma}' \circ \kappa \circ r \circ wB)$, and (iii) $\text{FMap}_{\sigma_r \circ wB} \leq \text{FMap}_{\bar{\sigma}' \circ \kappa \circ r \circ wB}$. Finally, in the case where wM is part of the atomic block e, we have that wM is PSO-executable in $\sigma_r \circ wB$, resulting in the trace σ_e. Further, since the induction statement held already for $\sigma_r \circ wB$ with respect to $\bar{\sigma}' \circ \kappa \circ r \circ wB$ (see (i),(ii),(iii) above), we have that the induction statement holds also for σ_e with respect to $\bar{\sigma}$, which concludes the argument.

The desired result follows. □

We can now proceed with the proof of Theorem 3.2.

Theorem 3.2. VPSO-rf for n events, k threads and d variables is solvable in $O(k \cdot n^{k+1} \cdot \min(n^{k-(k-1)}, 2^{k-d}))$. Moreover, if there are no fences, the problem is solvable in $O(k \cdot n^{k+1})$ time.

Proof. Lemma 4.5 establishes the correctness, so here we focus on the complexity, and the following argument applies also for executions with RMW and CAS instructions. Since there are k threads, there exist at most n^k distinct traces σ_1, σ_2 with $L(\sigma_1) \neq L(\sigma_2)$. Because of the test in Line 16, for any two traces σ_1, σ_2 inserted in the worklist with $L(\sigma_1) = L(\sigma_2)$, we have $\text{FMap}_{\sigma_1} \neq \text{FMap}_{\sigma_2}$. If there are no fences, there is only one possible fence map, hence there are n^k traces inserted in S. If there are fences, the number of different fence maps with $\text{FMap}_{\sigma_1} \neq \text{FMap}_{\sigma_2}$ when $L(\sigma_1) = L(\sigma_2)$ is bounded by 2^{k-d} (by Lemma 4.4) and also by $n^{k-(k-1)}$ (since there are at most that many difference fence maps). Hence the number of traces inserted in the worklist is bounded by $n^k \cdot \min(n^{k-(k-1)}, 2^{k-d})$. Since there are k threads, for every trace σ_1 inserted in the worklist, the algorithm examines at most $k-1$ other traces σ_2 that are not inserted in the worklist because $L(\sigma_1) = L(\sigma_2)$ and $\text{FMap}_{\sigma_1} = \text{FMap}_{\sigma_2}$. Hence the algorithm examines at most $k \cdot n^k \cdot \min(n^{k-(k-1)}, 2^{k-d})$ traces in total, while each such trace is handled in $O(n)$ time. Hence the total running time is $O(k \cdot n^{k+1} \cdot \min(n^{k-(k-1)}, 2^{k-d}))$.

Finally, note that if there are no fences present, we can completely drop the fence maps from the algorithm, which results in complexity $O(k \cdot n^{k+1})$. The desired result follows. □

A.3 Verifying PSO Executions with Store-store Fences

Here we describe our extension to handle VPSO-rf in the presence of store-store-fences.
A store-store fence event storefnc happening on a thread thr introduces further orderings into the program order PO, namely \(wM <_{PO} wM' \) for each \((wB, wM), (wB', wM') \in \mathcal{W}_{thr}^M \) with \(wB <_{PO} \) storefnc <_{PO} wB'.

Store-store fences are considered only for the PSO memory model, as they would have no effect in TSO, since in TSO all memory-writes within the same thread are already ordered. In fact, the TSO model can be seen as PSO with a store-store fence inserted after every buffer-write event.

We extend our notion of PSO-executability to accommodate store-store-fences. Given \((X, PO)\) and \(\sigma\) with \(E(\sigma) \subseteq X\):

1. A store-store fence storefnc \(\in X \setminus E(\sigma)\) is PSO-executable if \(E(\sigma) \cup \{\text{storefnc}\}\) is a lower set of \((X, PO)\).
2. An additional condition for a memory-write \(wM \in X \setminus E(\sigma)\) to be PSO-executable, is that every memory-write \(wM' \in X \setminus E(\sigma)\) with \(wM' <_{PO} wM\) is PSO-executable.

We consider a notion very similar to the fence maps introduced in Section 4.2, to efficiently represent the PSO-executability requirements introduced by store-store fences, namely store-store fence maps \(\text{SFMap}_{\sigma} : \text{Threads} \times \text{Threads} \rightarrow [n]\). While \(\text{FMap}_{\sigma}(\text{thr})\) efficiently captures the requirements for executing a fence event of \(\text{thr}\), \(\text{SFMap}_{\sigma}(\text{thr})\) captures efficiently, in the same manner as \(\text{FMap}_{\sigma}(\text{thr})\) does, the following. Consider the latest storefnc \(\in E(\sigma)\) of thread \(\text{thr}\), and consider that no memory-write of \(\text{thr}\) has been executed in \(\sigma\) after storefnc yet. Then, \(\text{SFMap}_{\sigma}(\text{thr})\) captures the requirements for executing a memory-write of \(\text{thr}\).

We utilize the store-store fence maps to refine our identification of duplicate witness-prefixes. This then gives us a time-complexity bound of \(O(k \cdot n^{k+1} \cdot \min(n^2k^k(k-1), 2^k))\).

B Details of Section 5

In this section we provide the proof of Theorem 3.3 regarding RF-SMC.

Theorem 3.3. Consider a concurrent program \(\mathcal{P}\) with \(k\) threads and \(d\) variables, under a memory model \(\mathcal{M} \in \{\text{TSO, PSO}\}\) with trace space \(\mathcal{T}_\mathcal{M}\) and \(n\) being the number of events of the longest trace in \(\mathcal{T}_\mathcal{M}\). RF-SMC is a sound, complete and exploration-optimal algorithm for local state reachability in \(\mathcal{P}\), i.e., it explores only maximal traces and visits each class of the RF partitioning exactly once. The time complexity is \(O(\alpha \cdot |\mathcal{T}_\mathcal{M}/\sim_{RF}|)\), where

1. \(\alpha = n^{O(k)}\) under \(\mathcal{M} = \text{TSO}\), and
2. \(\alpha = n^{O(k^2)}\) under \(\mathcal{M} = \text{PSO}\).

Proof. Let \(\mathcal{M}\) be the memory model from \(\{\text{TSO, PSO}\}\). We sketch the correctness (i.e., soundness and completeness), exploration-optimality, and time complexity of RF-SMC.

Soundness. The soundness trivially follows from soundness of VerifyTSO used in TSO and of VerifyPSO used in PSO, which are used as subroutines for verifying execution consistency.

Completeness. The completeness of RF-SMC rests upon the completeness of its variant for SC introduced by Abdulla et al. [2019]. We now argue that the modifications to accommodate TSO and PSO have no effect on completeness. First, consider in each recursive call the sequences \(\tau\) (argument of the call) and \(\bar{\tau}\) (Line 2 of Algorithm 3). The sequence \(\tau\) (resp. \(\bar{\tau}\)) in each call contains exactly the thread events of the trace \(\sigma\) (resp. \(\bar{\sigma}\)) in that call. Thus \(\tau\) (resp. \(\bar{\tau}\)) contains exactly the events of local traces of each thread in \(\sigma\) (resp. \(\bar{\sigma}\)). This gives that the usage of \(\bar{\tau}\) to manipulate schedules is equivalent to the SC case where there are only thread events. Second, the proper event set formed in Line 15 of Algorithm 3 is uniquely determined, and mirrors the set of events \(E(\tau')\) of the sequence \(\tau'\) created in Line 14 of Algorithm 3. The set of events \(E(\tau')\) would be considered for the mutation in the SC case, given that we consider buffer-writes of \(E(\tau')\) as simply atomic write events that SC models. Finally, the witness subroutine is handled by VerifyTSO for TSO and VerifyPSO for PSO.
VerifyPSO for PSO, whose completeness is established in Lemma 4.1 and Lemma 4.5. Thus the completeness of RF-SMC follows.

Exploration-optimality. The exploration-optimality argument mirrors the one made by Abdulla et al. [2019], and can be simply established by considering the sequence \(\tau \) (Line 2 of Algorithm 3) of each recursive call. The sequences \(\tau \) of all calls, coalesced together with equal events merged, form a rooted tree. Each node in the tree with multiple children is some read \(r \). Let us label each child branch by the source \(r \) reads-from, in the trace of the same call that owns the sequence introducing the child branch. The source for \(r \) is different in each branch, and thus the same trace can never appear when following two different branches of \(r \). The exploration-optimality follows.

Time complexity. From exploration-optimality we have that a run of RF-SMC performs exactly \(|T_M/\sim RF| \) calls. It remains to argue that each class of \(T_M/\sim RF \) spends time \(O(\alpha) \) where

\[
\begin{align*}
(1) & \quad \alpha = n^{k+O(1)} \text{ under } M = TSO, \\
(2) & \quad \alpha = n^{k+O(1)} \cdot \min(n^{k-(k-1)}, 2^{k-d}) \text{ under } M = PSO.
\end{align*}
\]

We split this argument to three parts.

1. Lines 1-4 spend \(O(n) \) time per call.
2. One call of VerifyTSO resp. VerifyPSO spends \(O(\alpha) \) time by Theorem 3.1 resp. Theorem 3.2. Thus Lines 5-21 spend \(O(n^2 \cdot \alpha) \) time per call.
3. The total number of mutations added into schedules (on Line 21) equals \(|T_M/\sim RF| - 1 \), i.e., it equals the total number of calls minus the initial call. However, we note that (i) each call adds only polynomially many new schedules, and (ii) a call to a new schedule is considered work spent on the class corresponding to the new schedule. Thus Lines 22-25 spend \(O(1) \) amortized time per recursive call, and \(O(1) \) time is spent in this location per partitioning class.

The complexity result follows. □

C Details of Section 6

In this section we provide further details on our consistency verification and SMC experiments.

Technical details. For all our experiments we have used a Linux machine with Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz (12 CPUs) and 128GB of RAM. We have run the Nidhugg version of 26. November 2020, with Clang and LLVM version 8.

C.1 Consistency Verification – Experimental Setup Details

Here we describe in detail the collection of instances for evaluation of the consistency verification algorithms. We generate and collect the VTSO-rf and VPSO-rf instances that appear during SMC of our benchmarks using the reads-from SMC algorithm RF-SMC.

We supply the unroll bounds to the benchmarks so that the created VTSO-rf/VPSO-rf instances are solvable in a time reasonable for experiments (i.e., more than a tiny fraction of a second, and within a minute). We run each benchmark with several such unroll bounds. Further, as a filter of too small instances, we only consider realizable instances where at least one verification algorithm without closure took at least 0.05 seconds.

For each SMC run, to collect a diverse set of instances, we collect every fifth realizable instance we encounter, and every fifth unrealizable instance we encounter. In this way we collect 50 realizable instances and 20 unrealizable instances. For each collected instance, we run all verification algorithms and closure/no-closure variants 5 times, and average the results. We run all verification algorithms subject to a timeout of one minute.
C.2 Consistency Verification – Further Results

Here we provide further analysis of the results obtained for evaluation of the consistency verification algorithms VerifyTSO, VerifyPSO, NaiveVerifyTSO and NaiveVerifyPSO, as well as the closure heuristic of Section 4.3.

Detailed results – effect of closure. Here we compare each verification algorithm against itself, where one version uses closure and the other one does not.

![Comparison of VerifyTSO (left) and VerifyPSO (right) with and without the closure.](image1)

Figure 15. Comparison of VerifyTSO (left) and VerifyPSO (right) with and without the closure.

For both memory models, we see that for instances that are realizable (blue dots), the version without closure is superior, sometimes even beyond an order of magnitude. This suggests that computing the closure-partial-order takes more time than is subsequently saved by utilizing it during the witness search. On the other hand, we observe that for the instances that are not realizable (green dots), the version with closure is orders-of-magnitude faster. This signifies that closure detects unrealizable instances much faster than complete exploration of a consistency verification algorithm.

![Comparison of NaiveVerifyTSO (left) and NaiveVerifyPSO (right) with and without the closure.](image2)

Figure 16. Comparison of NaiveVerifyTSO (left) and NaiveVerifyPSO (right) with and without the closure.

Specifically, both NaiveVerifyTSO and NaiveVerifyPSO are mostly faster without closure on realizable instances, while they are significantly faster with closure on unrealizable instances.
Finally, Figure 17 presents the effect of closure for VerifyTSO and NaiveVerifyTSO on verification instances that contain RMW and CAS instructions. Similarly to the verification without RMW and CAS instructions, both verification algorithms are somewhat slower when using closure on the realizable instances, and they are significantly faster when using closure on the unrealizable instances.

C.3 SMC – Experimental Setup Details

Here we present further details regarding the setup for SMC experiments.

Handling assertion violations. We note that not all benchmarks behave as intended under all memory models, e.g., a benchmark might be correct under SC, but contain bugs under TSO. However, this is not an issue, as our goal is to characterize the size of the underlying partitionings, rather than detecting assertion violations. We have disabled all assertions, in order to not have the measured parameters be affected by how fast a violation is discovered, as the latter is arbitrary. As a sanity check, we have confirmed that for each memory model, all algorithms considered for that model discover the same bugs when assertions are enabled.

Identifying events. Our implementation extends the Nidhugg model checker and we rely on the interpreter built inside Nidhugg to identify events. An event e is defined by a triple (a_e, b_e, c_e), where a_e is the thread-id of e, b_e is the id of either the buffer of a_e or the main-thread of a_e that e is a part of, and c_e is the sequential number of the last LLVM instruction (of the corresponding thread/buffer) that is part of e. It can happen that there exist two traces σ_1 and σ_2, and two different events $e_1 \in \sigma_1$, $e_2 \in \sigma_2$, such that their identifiers are equal, i.e., $a_{e_1} = a_{e_2}$, $b_{e_1} = b_{e_2}$, and $c_{e_1} = c_{e_2}$. However, this means that the control-flow leading to each event is different. In this case, σ_1 and σ_2 differ in the reads-from of a common event that is ordered by the program order PO both before e_1 in σ_1 and before e_2 in σ_2, and hence e_1 and e_2 are treated as inequivalent.

Dynamic thread creation. For simplicity of presentation of our approach, we have neglected dynamic thread creation and assumed a static set of threads for a given concurrent program. In practice, all our benchmarks spawn threads dynamically. This situation is handled straightforwardly, by including in the program order PO the orderings naturally induced by spawn and join events.

Benchmark adaptations. We have made small changes to some of the SVCOMP benchmarks so they can be processed by our prototype implementation in Nidhugg:

- Verifier calls to perform acquire and release are handled by a $pthread_mutex$.

Fig. 17. Comparison of VerifyTSO (left) and NaiveVerifyTSO (right) with and without closure on verification instances with RMW and CAS instructions.
In order to eliminate intra-thread nondeterminism, verifier calls to nondeterministically produce an arbitrary integer are replaced by a constant value.

Further, we have made steps to obtain scalable versions of benchmarks:

- In mutual exclusion benchmarks, the thread routines are put in a loop with scalable size, so threads can reenter a critical section multiple times.
- We manually perform loop unrolling, i.e., we limit the amount of times each loop is executed by a scalable bound, instead of relying on the loop bounding technique provided by Nidhugg.

C.4 SMC – Full Experimental Results

Here we provide full results of the SMC experiments. We first provide several further scatter plots to compactly illustrate the full experimental results. For each fixed plot comparing two algorithms, we plot the execution times and the numbers of explored maximal traces as follows. For each benchmark, we consider the highest attempted unroll bound where both compared algorithms finish before the one-hour timeout. Then we plot the time and the number of traces obtained by the two algorithms on the benchmark scaled with the above unroll bound.

In each plot, the opaque (resp. semi-transparent) red line represents identity (resp. order-of-magnitude improvement). Green dots indicate that a trace reduction was achieved on the underlying benchmark by the algorithm on the y-axis, as compared to the algorithm on the x-axis. Benchmarks with no trace reduction are represented by blue dots.

Figure 18 captures how analyzing a concurrent program by RF-SMC under more relaxed memory settings affects the execution time. Unsurprisingly, when a program exhibits additional behavior under a more relaxed model, more time is required to fully analyze it under the more relaxed model. Green dots represent such programs. On the other hand, for programs (represented by blue dots) where the number of traces stays the same in the more relaxed model, the time required for analysis is only minorly impacted.

Figure 19 compares in SC the algorithm Source with our algorithm RF-SMC that handles SC as TSO where a fence event is inserted after every buffer-write event. Similar trends are observed as when Source and RF-SMC are compared in TSO and PSO. Specifically, there are cases where the RF partitioning offers reduction of the trace space size to be explored (green dots), and this often leads to significant speedup of the exploration. On the other hand, Source dominates in cases where no RF-based partitioning is induced (blue dots).

Further, Figure 20 compares in SC the algorithm RF-SMC with rfsc, the reads-from SMC algorithm for SC presented by Abdulla et al. [2019]. These two are essentially identical algorithms, thus...
unsurprisingly, the number of explored traces coincides in all cases. However, the well-engineered implementation of rfsc is faster than our implementation of RF-SMC. This comparison provides a rough illustration of the effect of the optimizations and data-structures recently employed by rfsc in the work of Lång and Sagonas [2020].
In Appendix C.2 we have seen that utilizing closure in consistency verification of realizable instances is mostly detrimental, whereas in consistency verification of unrealizable cases it is extremely helpful. This naturally begs a question whether it is overall beneficial to use closure in SMC. The plots in Figure 21 present the results for such an experiment. The plots demonstrate that the time differences are negligible. The number of traces is, unsurprisingly, unaffected (it is also supposed to be unaffected, since closure is sound and VerifyTSO/VerifyPSO are sound and complete).

We have further considered an auxiliary-trace heuristic for guiding VerifyTSO resp. VerifyPSO, similar to the heuristic reported by Abdulla et al. [2019]. Similar to the paragraph above, this heuristic provided little-to-no time difference in the model checking task in our experiments.

Related-work benchmarks and synthetic benchmarks. In Tables 2 and 3 we present benchmarks collected from previous SMC works, namely Abdulla et al. [2015, 2019]; Chatterjee et al. [2019]; Huang and Huang [2016]. The benchmarks contain several examples originating from industrial code, such as `parker` and `pgsql`. Further there are several synthetic benchmarks, such as `spammer` and `overtake`.

SVCOMP. In Tables 4, 5 and 6 we present our results on SVCOMP concurrency benchmarks.

Mutual exclusion benchmarks. In Tables 7 and 8 we present our results for mutual-exclusion algorithms from the literature. We include the classical solutions, and novel solutions presented by Correia and Ramalhete [2016] (prefixed with X2Tv).

Benchmarks on dynamic programming. Finally, we present benchmarks that perform parallel dynamic programming tasks, introduced by Chatterjee et al. [2019]. Table 9 presents the results.
Benchmark	U	Times	Total Store Order	Partial Store Order
benchmarks				

Table 2. Part 1: Related papers and works, and synthetic benchmarks.
Benchmark	Sequential Consistency	Total Store Order	Partial Store Order
	risc RF-SMC Source	RF-SMC Source	RF-SMC Source
multiprocon			
threads: 2U			
Traces 4	1.64e+11	1.94e+11	1.94e+11
Times 5	2.13s 4.17s 2.48s	2.46s 1.43s	5.63s 2.28s
opt_lock2			
threads: 2			
Traces 8	9.91e+11	1.19e+11	3.15e+11
Times 12	8.05s 1.09s 3.56s	1.05s 8.33s	0.31s 5.4s
opt_lock3			
threads: 3			
Traces 2	8.74e+11	1.15e+11	4.25e+11
Times 3	0.53s 1.47s 6.75s	2.23s 47s	4.27s 115s
overtake			
threads: U			
Traces 3	8.26e+11	8.26e+11	2.19e+11
Times 5	0.25s 0.40s 0.82s	0.40s 0.71s	1.37e+11 33s
parker			
threads: 2			
Traces 40	2.99e+11	3.23e+11	3.45e+11
Times 50	7.67e+11	6.22e+11	7.77e+11
postgresql			
threads: 2			
Traces 4	9.98e+11	1.08e+11	1.56e+11
Times 5	3.25s 2.80s 33s	3.21e+11	7.03s 25s
poke			
threads: U+8			
Traces 5	1.94e+11	7.07e+09	9.94e+09
Times 4	2.98s 7.61s 11s	7.77s 9.57s	6.96s 34s
ra			
threads: U			
Traces 5	1.29e+11	1.29e+11	1.29e+11
Times 6	3.39e+07	0.73e+07	0.79e+07
race_parametric			
threads: 2			
Traces 7	7.37e+09	7.37e+09	7.37e+09
Times 6	4.94s 11s 7.6s	11s 12s 12s	2.36s 26s
readers			
threads: U+1			
Traces 10	1.63e+11	1.63e+11	1.63e+11
Times 15	8.00s 2.8s 7.7s	8.00s 8.63s	7.26s 16s
redundant_co			
threads: 2			
Traces 5	9.11e+11	9.11e+11	9.11e+11
Times 40	1.04s 0.68s 1.04s	0.69s 0.42s	0.95s 16s
seqlock			
threads: U+1			
Traces 7	1.81e+14	1.81e+14	1.81e+14
Times 8	112s 235s 77s	112s 235s 77s	307s 88s
seqlock.atomic			
threads: U+1			
Traces 4	2.98e+04	2.98e+04	2.98e+04
Times 5	8.00s 2.8s 7.7s	8.00s 8.63s	7.26s 16s
spammer			
threads: U			
Traces 4	1.78e+11	2.56e+11	2.56e+11
Times 7	0.15s 0.14s 5.14s	0.17s 6s	0.25s 80s
writer_reader			
threads: 2			
Traces 11	7.05e+12	7.05e+12	7.05e+12
Times 12	8.26s 1.93s 48s	8.42s 201s	9.3s 10s

Table 3. Part2: Related papers and works, and synthetic benchmarks.
Benchmark	U	Sequential Consistency	Total Store Order	Partial Store Order
01_inc	Threads: U	2.12s 2.12s 2.12s	8.93s 3.90s	9.83s 2.02s
	Traces: 3	14000 14000 14000	14000 14000	14000 14000
	Times: 6	518400 518400 518400	518400 518400	518400 518400
02_inc cas	Threads: U	0.18s 0.18s 0.18s	0.22s 0.09s	0.24s 0.13s
	Traces: 3	159552 159552 159552	159552 159552	159552 159552
	Times: 4	114s 37s 24s	114s 37s	114s 37s
03_inedc	Threads: U	3.67s 9.30s 2.74s	9.42s 3.48s	12s 5.11s
	Traces: 3	2289708 2289708 2289708	2289708 2289708	2289708 2289708
	Times: 6	866s 2410s 469s	2939s 747s	3434s 662s
13_un verifier	Threads: U	5.20s 9.31s 2.99s	9.47s 2.29s	10s 3.03s
	Traces: 5	158s 464s 125s	467s 100s	518s 178s
18_read_write_lock	U+2	5.57s 9.30s 2.74s	9.42s 3.48s	12s 5.11s
	Traces: 3	1419912 1419912 1419912	1419912 1419912	1419912 1419912
	Times: 6	69s 160s 54s	159s 66s	218s 42s
27_Boop	Threads: U+1	2.12s 2.12s 2.12s	8.93s 3.90s	9.83s 2.02s
	Traces: 2	165s 165s 364s	205s 536s	713 14604
	Times: 5	60803 60803 96834	100897 2157426	447739
27_Boop4	Threads: 4	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	197260 197260 3873360	313336 9412428	1804708
	Times: 7	695 1819s 603s	1834s 687s	2595s 536s
30_Function_Pointer	U+1	5.20s 9.31s 2.99s	9.47s 2.29s	10s 3.03s
	Traces: 5	158s 464s 125s	467s 100s	518s 178s
32_pthread	Threads: U+2	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	1470 1470 1890	1470 1890	1470 1890
	Times: 5	60803 60803 96834	100897 2157426	447739
40_barrier	Threads: U	7.52s 17s 5.74s	16s 7.23s	19s 7.62s
	Traces: 6	205s 537s 114s	552s 157s	548s 174s
45_monabsex1	Threads: U	7.52s 17s 5.74s	16s 7.23s	19s 7.62s
	Traces: 6	205s 537s 114s	552s 157s	548s 174s
46_monabsex2	Threads: U	7.52s 17s 5.74s	16s 7.23s	19s 7.62s
	Traces: 6	205s 537s 114s	552s 157s	548s 174s
47_ticket_hc	Threads: U	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	1470 1470 1890	1470 1890	1470 1890
	Times: 5	60803 60803 96834	100897 2157426	447739
48_ticket_low	Threads: U	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	1470 1470 1890	1470 1890	1470 1890
	Times: 5	60803 60803 96834	100897 2157426	447739
56_bench	Threads: 2	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	1470 1470 1890	1470 1890	1470 1890
	Times: 5	60803 60803 96834	100897 2157426	447739
fillarray_false	Threads: 2	0.10s 0.10s 0.08s	0.11s 0.10s	0.36s 2.65s
	Traces: 2	1470 1470 1890	1470 1890	1470 1890
	Times: 5	60803 60803 96834	100897 2157426	447739

Table 4. Part 1: SVCOMP benchmarks.
Benchmark	U	Sequential Consistency	Total Store Order	Partial Store Order
			RF-SMC Source	RF-SMC Source
fillarray_true	threads: 2			
Traces	Times			
3	2	0.05s 0.05s 0.05s	230s 1.86s	3.86s 5.14s
3	4	0.05s 0.05s 0.05s	139s 148s	257s 652s
fck2012_1p1c	threads: 2			
Traces	Times			
15	16	1999336 1999336 3236936	1999336 3236936	1999336 3236936
15	16	2399193 2399193 3884313	2399193 3884313	2399193 3884313
fck2012_1p2c	threads: 3			
Traces	Times			
3	3	33886 33886 42144	33886 42144	33886 42144
3	4	888404 888404 1217826	888404 1217826	888404 1217826
fck2012_2p1c	threads: 3			
Traces	Times			
12	13	1250886 1250886 1931566	1250886 1931566	1250886 1931566
12	13	2059540 2059540 3230710	2059540 3230710	2059540 3230710
fck2012_2p2c	threads: 4			
Traces	Times			
3	3	129120 129120 1450686	129120 1450686	129120 1450686
3	4	52s 104s 29s	104s 50s	114s 34s
fkp2013	threads: U+1			
Traces	Times			
6	7	117649 117649 3628800	117649 3628800	117649 3628800
6	7	2097152 2097152	2097152	2097152
fkp2014	threads: U			
Traces	Times			
3	4	1098 1098 1098	1098 1098	1098 1098
3	4	207024 207024 207024	207024 207024	207024 207024
gcd	threads: 2			
Traces	Times			
25	30	61302 61302 61302	61302 61302	61302 61302
25	30	106262 106262 106262	106262 106262	106262 106262
indexer	threads: U			
Traces	Times			
3	16	4096 4096 4096	4096 4096	4096 4096
3	16	32768 32768 32768	32768 32768	32768 32768
nondet-array	threads: U			
Traces	Times			
6	7	75486 75486 9854640	75486 9854640	75486 -
6	7	1649221 1649221	1649221	1649221
nondet-loop-variant	threads: U+1			
Traces	Times			
6	7	5040 5040 5040	5040 5040	5040 5040
6	7	40320 40320 40320	40320 40320	40320 40320
pthread-datarace	threads: 2			
Traces	Times			
6	7	99442 99442 372436	99442 372436	99442 372436
6	7	829168 829168 4027216	829168 4027216	829168 4027216
queue_ok	threads: U+1			
Traces	Times			
6	7	5040 5040 5040	5040 5040	5040 5040
6	7	40320 40320 40320	40320 40320	40320 40320
qw2004	threads: U+1			
Traces	Times			
4	3	28152 28152 28152	28152 28152	28152 -
4	3	1354920 1354920 1354920	1354920 1354920	1354920 -
reorder_5	threads: U+1			
Traces	Times			
4	3	145 145 40032	145 40032	145 40032
4	3	54901 54901 -	54901 -	54901 -
scull_Rloop	threads: 3			
Traces	Times			
3	3	148684 148684 617706	148684 617706	148684 617706
3	3	569409 569409 2732933	569409 2732933	569409 2732933

Table 5. Part2: SVCOMP benchmarks.
Table 6. Part3: SVCOMP benchmarks.

Benchmark	U	Sequential Consistency	Total Store Order	Partial Store Order							
		rfsc	RF-SMC	Source	rfsc	RF-SMC	Source	rfsc	RF-SMC	Source	
sckill	Traces	4	5	6	7	8	9	10	11		
	Times	2	3	4	5	6	7	8	9	10	
Wloop	Traces	1	2	3	4	5	6	7	8	9	10
	Times	1	2	3	4	5	6	7	8	9	10
sckill	Traces	1	2	3	4	5	6	7	8	9	10
	Times	1	2	3	4	5	6	7	8	9	10
sigmad	Traces	1	2	3	4	5	6	7	8	9	10
	Times	1	2	3	4	5	6	7	8	9	10
singleton	Traces	1	2	3	4	5	6	7	8	9	10
	Times	1	2	3	4	5	6	7	8	9	10

Table 7. Part1: Mutual exclusion benchmarks.
Benchmark	U	Sequential Consistency	Total Store Order	Partial Store Order
X2Tv7				
threads: 2	4	153725 153725 153725	2340172 2340172	2340172 2340172
bakery	2	849 849 849	23502 23502	23502 23502
threads: 2				
dijkstra	2	319 319 319	540 540	9961 9961
threads: 2				
lamport	2	1456 1456 3940	2449 10652	100521 473670
threads: 2				
kessels	2	624 624 624	3779 3779	3779 3779
threads: 2				
peterson	2	1609 1609 1686	9251 29546	15925 48500
threads: 2				
pet_fischer	2	4386 4386 4386	13895 13895	13895 13895
threads: 2				
tsay	2	45 45 45	63 63	63 63
threads: 2				
RF-SMC				

Table 8. Part2: Mutual exclusion benchmarks.
Benchmark	U	Sequential Consistency	Total Store Order	Partial Store Order						
		rfs	RF-SMC	Source	rfs	RF-SMC	Source	rfs	RF-SMC	Source
bin_nocasec_bu3	Traces	6	11875	11875	110446	36288	710000	155648	546750	
threads: 3	Times	7	5.15s	9.49s	38s	29s	192s	201s	2276s	
		41s	56s	207s	201s	2323s	2002s	-	-	
bin_nocasec_td3	Traces	6	5308	5308	50960	29794	661015	69741	314112	
threads: 3	Times	8	88294	88294	1664672	939466	-	-	-	
		2.30s	5.62s	17s	33s	398s	124s	2456s	-	
coin_all_bu3	Traces	3	2673	2673	26624	2673	26624	2673	26624	
threads: 3	Times	4	96294	96294	1704560	98307	1855656	104247	2342912	
		0.85s	1.18s	4.13s	1.19s	4.62s	1.75s	7.32s	-	
		31s	57s	476s	59s	423s	101s	888s	-	
coin_all_bu4	Traces	1	4	4	24	4	24	4	24	
threads: 4	Times	2	6400	6400	264600	6400	264600	6400	264600	
		0.05s	0.05s	0.08s	0.05s	0.05s	0.05s	0.05s	-	
coin_all_td3	Traces	11	1771	1771	94484	10216	1898560	184561	-	
threads: 3	Times	16	37171	37171	-	590116	-	-	-	
		2.04s	3.06s	50s	21s	1277s	667s	-	-	
coin_all_td4	Traces	4	946	946	234984	946	234984	946	234984	
threads: 4	Times	7	110182	110182	-	321298	-	-	-	
		0.59s	0.74s	121s	0.76s	78s	0.99s	117s	-	
coin_min_bu3	Traces	14	229550	229550	1719384	271319	2930352	322950	613324	
threads: 3	Times	15	918794	918794	6865920	1140407	-	-	-	
		136s	220s	481s	261s	839s	546s	3501s	-	
coin_min_bu4	Traces	9	64000	64000	555660	64000	555660	64000	555660	
threads: 4	Times	10	64000	64000	-	64000	-	-	-	
		19s	48s	1589s	47s	1328s	78s	2050s	-	
coin_min_td3	Traces	14	86091	86091	500260	252261	3389906	458256	-	
threads: 3	Times	15	326976	326976	1902262	1328496	-	-	-	
		136s	220s	481s	261s	839s	546s	3501s	-	
coin_min_td4	Traces	9	16682	16682	1470312	19502	4482536	30736	-	
threads: 4	Times	10	230402	230402	-	332182	-	-	-	
		13s	24s	521s	28s	1869s	66s	-	-	
rod_cut_bu3	Traces	6	60396	60396	183516	143259	518767	259857	1302112	
threads: 3	Times	7	362364	362364	1101084	1288981	476876	-	-	
		28s	62s	71s	154s	2335s	401s	996s	-	
rod_cut_bu4	Traces	2	2008	2008	33912	2008	33912	2008	33912	
threads: 4	Times	3	106500	106500	2264642	1359883	3354504	151720	4081638	
		0.65s	0.94s	6.95s	0.97s	7.32s	1.26s	12s	-	
rod_cut_td3	Traces	7	20336	20336	102128	99281	762492	181701	1873610	
threads: 3	Times	8	101001	101001	508664	938731	-	-	-	
		17s	37s	55s	185s	528s	465s	2271s	-	
rod_cut_td4	Traces	3	1790	1790	91592	1890	144488	2504	184068	
threads: 4	Times	4	33550	33550	2459640	62748	-	103622	-	
		1.26s	1.36s	29s	1.49s	46s	2.52s	90s	-	
lis_bu3	Traces	7	163260	163260	429632	165105	975040	229965	1862144	
threads: 3	Times	8	325740	325740	1740064	596473	467656	977685	-	
		37s	99s	519s	168s	336s	2149s	-	-	
lis_bu4	Traces	3	28900	28900	1024002	28900	1024002	28900	1024002	
threads: 4	Times	4	1504120	1504120	-	1863700	-	2059000	-	
		16s	18s	307s	19s	335s	25s	543s	-	

Table 9. Dynamic programming benchmarks.