Cloud-based Smart Grid Architecture for Secured Big Data Information Management

D. Amirtha Sughi, R.M. Bhavadharini, K.M. Anandkumar, R. Arunprakash

Abstract: There exists a growing concern about energy utilization nowadays, which is prominent to asset-up that supports Real-Time (RT) control and monitoring with a 2-way message between the services and clients. The Cloud-based Smart Grid Architecture (C-SGA) is the technological innovation that came up to meet these requirements and develop productivity, trustworthiness, finances, and sustainability of energy services. To manage communications to millions of endpoints and to process the data received from several front-end smart, intelligent components, Cloud Computing (CC) serves as a better technology for providing the necessary computational resources on demand for large-scale Smart Grid (SG) applications. The factors slow-cost assistance, the flexible, redundant, and fast, responsive architecture of CC are the primary goals of energy conservation and demand response achieved in SGs for efficient, secure, and scalable electricity services.

Keywords – Cloud computing, Big Data, Smart Grid, Smart Frame, Cyber-Physical system

I. INTRODUCTION

There occurs a fast-paced development of power systems nowadays, which necessitates an efficient framework (FWK) to process the large volume of data of the consumers to provide the best effort services. It has found that the accuracy in monitoring and providing the relevant information to the electricity consumers enables them to determine their power consumption limits and adjust accordingly.

C-SGA is an electronic grid renovation plan that aims at implementing bidirectional communication FWK, where data collected with finer granularity. It brings substantial enhancement in the proficiency, trustworthiness, and substantiality of energy services. The 2-way energy stream permits for free-network topology with the distributed process. For the information controlling and BDA in SGs, CC is the best option to be integrated. CC offers more extensive opportunities in building a scalable and secure FWK to observe the procedure and authentication of data from several C-SGA causes in RT over its better storage and handling abilities. Besides, it is the best option for offering low cost and robust computing capabilities. The 3 services presented to the SGBenefits by CC are Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) for a better functioning FWK.

Revised Manuscript Received on December 05, 2019.

D. Amirtha Sughi, Assistant Professor, Department of Computer Science and Engineering, Easwari Engineering College, Chennai
R.M. Bhavadharini, Associate Professor, Department of Computer Science and Engineering, Easwari Engineering College, Chennai
K.M. Anandkumar, Professor, Department of Computer Science and Engineering, Easwari Engineering College, Chennai
Dr. R. Arunprakash, Assistant Professor, Dept of Computer Science and Engineering, University College of Engineering, Ariyalur

II. LITERATURE REVIEW

The revolutions in the power industry have resulted in the development of modern energy infrastructure to monitor and control the power practice of clients. SGs rose up with the vital idea of achieving the goal of such efficient energy management. The critical task faced by SG is the requirement for security-aided information set-up for Big Data Information Management (BGIM). The primary responsibility involved in SG Information Management (IM) are information gathering/processing/storage. In information gathering, since SG has to obtain data from numerous dissimilar devices, efficient methods are to be found out. To address this experiment, several solutions proposed by recent surveys [4][5]. In information processing, a proposal to achieve data interoperability by standardizing the data structures used in SG applications implemented. For IS, the properties of SG and CC were analyzed to meet the requirements. Due to massive-scale deployment, SGs undergo various weaknesses, which are addressed by multiple proposed methods. NISTIR [6] describes security standards in SG systems. Zhang et al. [7] and Wei at el. [8] introduced such security FWKs to protect SGs against cyber-attacks. Rogers et al. [9] presented validation and reliability approach using digital signatures and time-stamps. Besides this, security combination protocols by Li et al. [10]. Yigit et al. [1] described the SG architecture and its applications. It also discusses how the computational requirements for SG met by utilizing the CC model. CC architecture explained thoroughly. The efficiency, security, and reliability of the architecture analyzed in detail in this work. The paper also points out the openings and issues in applying CC in SG. CC based SG projects like a cloud-based smart meter, cloud-based M2M communication, and cyber-physical systems and discussed in detail.

Joon-sang et al. [2] suggested a secure CC based FWK for BGIM in SG and called as “Smart Frame.” First, the design of the FWK is to construct a classified model of C-chubs to afford computing methods for IM and BDA. This proposed solution ensures several properties like save energy, less computation cost, scalability, agility, and flexibility. In addition to this FWK, the paper also presents a security result based on IBE digital signature, and proxy re-encryption to discourses serious security problems of the suggested FWK.

Yuan-yuan et al. [3] projected an idea focusing on cloud-based data handling and investigation practices of the user side in SG. To demonstrate that the incorporation of CC, SG, data analysis techniques are real-world, they presented the Cloud Platform (CP) architecture designed for data handling and its essential tools first.
The critical divisions of cloud-based data processing, including data assemblage, storage, analysis, and imagining, conferred. Rajesh Narayanan et al. [11] recommend an advanced method to derive scalable information infrastructure for SG. It is an open, scalable, and manageable FWK with complex and distributed communications among different modules to maintain the message and computing requirements. The FWK well supports the evolving micro-grid system of the SG. Anachetype FWK is developed consisting of CloudLab [12], GENI [13] networks, and RTenergy system base at the RTPIS Lab [14].

Ling Zheng et al. [15] in this author compares private/public clouds, lists the changes between them, and puts onward a design of private CC to support SG. It expounds the structure of the respective layer and presents the concept of a reserved CC system and network virtualization. It provides a theoretical reference to build the private CC, thus endorses the creation of the SG. Sebnem Rusitschka et al.,[16] model for SG Data Management (DM) based on precise behaviors of CC, such as distributed DM for RT data gathering, parallel processing for RT information recovery, and pervasive access. There is an analysis of the set of well-known SG use cases, the maximum of which requests flexible association through administrative limits of network operators and energy service providers, as well as the active contribution of the client. Hence, preserving secrecy and confidentiality, while handling the enormous quantities of SG data, is of dominantsignificance in the design of the SG Data Cloud.

Sofana Reka et al. [17] proposes a CCFWK in SG background by forming SG energy hub associate RT estimation for maintaining massive data storage. A stochastic encoding model created with the CC for actual Demand Side Management in SG. Investigation outcomes are achieved using GUI interface and Gurobi optimizer in Mat lab to decrease the energy demand by forming energy save networks in a smart hub method (refer table 1.)

Table 1. SG Surveys

Survey Area	Survey Content
Physical Power Infrastructure	Field demonstrations, Microgrids and Distributed energy resources
Communication Networking	Communication protocols, Quality of service (QoS), Time synchronization
	Communication routing protocols, Energy web, HANs, NANs, WANs
Security and Privacy	Cyber security, Data integrity, Privacy, Authentication, Encryption
Smart Grid Protocols	Information protocol standardization IEC 61850, IEC 61970/61968
Cloud Computing	Cloud computing and communication for smart grid applications

Energy focus [18] is the significant client standpoint face of the SG, giving in help for the clients to lessen the energy and in this way, economy. It instead delivers a smart, practical instrument that invigorates the connection between the clients and the utility suppliers, and to deal with the essentialness issues of all periods. For the need of making a fundamental vitality center point as client-server architecture, CC in SG assumes a predominant job.

III. PROPOSED METHOD

A computational model enabling convenient, scalable, and on-demand access to a collective pool of data for the C-SGAs necessary for meeting the service requirements of the users who consume the energy for various needs. CC emerged as active support for meeting these challenges and providing RTDM and parallel processing of information Figure 1. Steps in C-SGA.

[Figure 1. SG Conceptual Classical Prototype]
3.1. CCfor SGApplications
CC is considered to have various characteristics that can yield improved SG applications and projects. At the same time, multiple challenges are faced by the SG architecture based on CC, and hence, a technical and security analysis is necessary for the same. The various characteristics of CC applied in SG are agility, device and location independence, maintenance and virtualization, multi-tenancy, reliability, performance.

3.2. Methodology
SG can advantage from all characteristics of CC since the power industry mainly focuses on business motives. Figure 2 depicts the conceptual model of SG architecture. The significant challenges faced by this system as follows:
1. Location of Data
2. Mixing of data
3. Inefficient security policy
4. Term of agreement

Figure 2: CC Characteristics for Security

3.3. SGDevelopments and RTApplications
Under the topic of C-SGApIPs and applications, the techniques used in SG demand-response optimization explained. Scalable stream processing, Semantic information integration, Data mining, and complicated event processing, ML, Natural language processing, etc. are some of the techniques used.
Cloud-based smart is another innovation that is an FWK used to control and gather data from client gadgets and check their status. Correspondence innovation is given by M2M interchanges to guaranteeing correspondence among FWKs and devices without requiring clients. Like this, numerous C-SGAs use M2M innovation for SG and its energy the board FWKs to exchange data. CC joined with M2M interchanges due to its ease, proficiency, and elite. In this regard, a C-SGA’s vitality, the board FWK, is upheld by M2M with CC.
Cyber-Physical System (CPS) is a CC process of the SG. The joining of processing energy, message capacity, and self-administering regulator capacity is finished by CPS. C-SGA observing RT need to control the cloud environment progressively, and CPS encourages this by controlling circumstances of data, procedures, broadcasts, and condition continuously. CPS additionally gives C-SGA security MicroGridthat is joined to C-SGA FWK and is called as Micro network CPS FWK.
C-SGA systems practicea massivequantity of data containingRT information, operating data, test data, and the data size is increasing. Therefore, C-SGA condition monitoring develops more problematic in terms of reliability and security. In this manner, it proposes the cloud model for CPs that hold the state of information of a C-SGA. This technology offers proficient, and RTC-SGA condition monitoring with big data combines with different types of technologies to guarantee high performance, efficient, and robust C-SGAc cloud environment control systems. Hadoop is one of the used techniques to increase efficiency by running idle servers. Dynamic internet data centers also exist for minimizing electricity costs.

5. Dependence of CSP’s Application Programming Interface (APIs)
6. Compatibility
7. Redundant data organization and disaster rescue

IV. TECHNICAL AND CLOUD SECURITY ANALYSIS
The practical examination of CC for SG discusses the threecritical services, namely: SaaS, PaaS, and IaaS. The security approach for the CC based SGIM by ensuring the quality of service by the CP is made using a Protection Policy Manager (PPM). The PPM offers data-security permitting to the requirements of C-SGAMethods by using 3 different approaches as:
- Selection of trustworthy CC service sources.
- Information and computation were ciphering.
- Improving the redundancy of data computation and storage
devices such as power assets and SG efficiently; and how to practice a vast volume of data received from SG devices. CC, a technology that delivers computational data resources on demands, is an excellent tool to address these tasks since it has numerous useful belongings such as energy-saving, cost-saving, agility, scalability, and flexibility.

3.4. SF for Cloud Security

Here, a secure CC based FWK for BGIM in SGs, which called “Smart-Frame,” proposed. The initial idea of this C-SGAFWK is to construct a hierarchical model of CC centers to ensure various types of CC services for IM and Big Data Analysis (BDA). In addition to this model FWK, a security aide IBE, signature, and proxy re-encryption to address serious security problems of the proposed FWK presented. C-SGA (refer figure 3) is a flexible, scalable, and secureIMFWK which built at 3 hierarchical stages: topmost, regional, and end-user levels, in which the first two stages involve CC centers while the end level encloses end-user SG devices.

![Hierarchical architecture](image)

Figure 3. Hierarchical architecture

Table 4. Frame Rate Edge Vs. Cloud

The top CC center proceeds accountability of managing standard devices and increasing of data across the local CC centers, which employed in the low-level in the order, and the frame rate compared with the edge is represented in figure 4. The local CC centers are, in turn, in charge of managing intelligent devices, which have low-level than the regional CC centers in specific regions, and processing data of these devices.

In addition to this overall FWK, the paper proposes a secured C-SGA explanation for the FWK based on IBE and signature and IBPR. Providing information security for SGs is most significant since much of the information in SGs is sensitive and needs to be rigorously protected. Information leakage in SGs can lead to vulnerabilities that affect not only individuals but also the whole nation because disclosed information can be used to introduce attacks to both individuals and the entire SGs at the home level.

3.5. Security Solution to SF

The first idea of the security OF C-SGAresult for the Smart-Frame (SF) is to permit all the complicated objects, i.e., top and regional CC centers, and end-users, to be signified by their individualities which used as encryption keys. The entities in the low-level can use the identities of higher-level entities to encrypt their data for secure communication with the objects at a high-level. One of the noticeable aids we can gain from applying IBE cryptography to the SF is that through using identities rather than digital certificates, which depend on traditional Public Key Infrastructure (PKI), we can save an essential volume of resources for computation and communications and resolve scalability problems.

Cryptographic schemes Pairing-Based IBE and ID-based proxy re-encryption and IBS involving the following steps for ensuring confidentiality and authentication services.

1. Key Generation
2. Encryption to Information Storage (IS)
3. Encryption to top cloud
4. Proxy re-encryption by IS
5. Signature Generation (SG) by end-users
6. SG by objects in regional cloud
7. SG by high cloud

In the present scenario, where a tremendous amount of data is to processed for efficient management of energy in SGs, this concrete design is relevant. The hierarchical setting of CC centers enables this concept. Besides, data confidentiality is achieved using the proposed security solution.

VI. CONCLUSION AND FUTURE WORK

It has originated that the integration of CC technology to C-SGA has served numerous applications for sharable, reliable, on-demand, and scalable access to the computing resources in the C-SGA. The C-SGA IT infrastructure provides management and monitoring of the data and services to the users. Also, efficient data processing FWK on the user side is necessary for C-SGA. Cloud-based analysis of user side data enabled the collection and storage of data, preprocessing of data, and analysis of data, visualization, and securing the data within the SG.

It also provides provision for managing heterogeneous data fusion consisting of structured, semi-structured, and unstructured data. Moreover, it offers interoperability of data for flexible and efficient resource utilization. But still, the security risks in the SG architecture needs to be addressed for reliable and efficient BGIM and thereby providing quality to the information. If those vulnerabilities are resolved, there is no doubt that CC can assist well in the improvement of SG services.
REFERENCES

1. Yigit, Melike, V. CagriGungor, and SelcukBaktir, "Cloud computing for smart grid applications" Computer Networks, vol 70, pp. 312-329, 2014.
2. J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, "A Secure Cloud Computing Based Framework for Big Data Information Management of Smart Grid," in IEEE Transactions on Cloud Computing, vol. 3, no. 2, pp. 233-244, April-June 1, 2015.
3. Yuan-Yuan Sun, Jing-Jing Yuan, Ming- Yue Zhai, "Cloud-Based Data Analysis of User Side in Smart Grid," Pp. 39-44, 2016.
4. Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis, M. Sooryabandara, Z. Zhu, S. Lambtharan, and W. Chin, “Smart grid communications: Overview of research challenges, solutions, and standardization activities,” IEEE Commun. Survey Tutorials, vol. 15, no. 1, pp. 21–38, Jan. 2012.
5. W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Comput. Netw., vol. 55, no. 15, pp. 3604–3629, 2011.
6. Lee A, Brewer T (2010) Smart grid cybersecurity strategy and requirements (NISTIR 7628 Draft). National Institute of Standards and Technology, [7] T. Zhang, W. Lin, Y. Wang, S. Deng, C. Shi, and L. Chen, “The design of information security protection framework to support smart grid,” in Proc. Int. Conf. Power Syst. Technol., 2010, pp. 1–5.
7. D. Wei, Y. Lu, M. Jafari, P. Skare, and K. Rohde, “An integrated security system of protecting the smart grid against cyberattacks,” in Proc. Eur. Conf. Innovative Smart Grid Technol., 2010, pp. 1–7.
8. K. Rogers, R. Klump, H. Khurana, A. Aquino-Lugo, and T. Overbye, “An authenticated control framework for distributed voltage support on the smart grid,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 40–47, Jun. 2010.
9. F. Li, B. Luo, and P. Liu, “Secure information aggregation for smartgrids using homomorphic encryption,” in Proc. IEEE Conf. Smart Grid Commun., 2010, pp. 327–332.
10. R. Narayananan, Ke Xu, Kuang-Ching Wang, and G. K. Venayagamoorthy, "An information infrastructure framework for smart grids leveraging SDN and cloud," 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, 2016, pp. 1-7. doi: 10.1109/PSC.2016.7462876
11. CloudLab. [Online]. Available: http://cloudlab.us
12. GENI, "Global Environment for Network Innovation" [Online]. Available: geni.net.
13. K. Venayagamoorthy, "Real-Time Power and Intelligent Systems (RTPS) Laboratory," [Online]. Available: RTPS.org.
14. L. Zheng, Y. Hu and C. Yang, "Design and Research on Private Cloud Computing Architecture to Support Smart Grid," 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics, Zhejiang, 2011, pp. 159-161. doi: 10.1109/IHMSC.2011.109