Increased sex ratio in Russia and Cuba after Chernobyl: a radiological hypothesis

Hagen Scherb*, Ralf Kusmierz and Kristina Voigt

Abstract

Background: The ratio of male to female offspring at birth may be a simple and non-invasive way to monitor the reproductive health of a population. Except in societies where selective abortion skews the sex ratio, approximately 105 boys are born for every 100 girls. Generally, the human sex ratio at birth is remarkably constant in large populations. After the Chernobyl nuclear power plant accident in April 1986, a long lasting significant elevation in the sex ratio has been found in Russia, i.e. more boys or fewer girls compared to expectation were born. Recently, also for Cuba an escalated sex ratio from 1987 onward has been documented and discussed in the scientific literature.

Presentation of the hypothesis: By the end of the eighties of the last century in Cuba as much as about 60% of the food imports were provided by the former Soviet Union. Due to its difficult economic situation, Cuba had neither the necessary insight nor the political strength to circumvent the detrimental genetic effects of imported radioactively contaminated foodstuffs after Chernobyl. We propose that the long term stable sex ratio increase in Cuba is essentially due to ionizing radiation.

Testing of the hypothesis: A synoptic trend analysis of Russian and Cuban annual sex ratios discloses upward jumps in 1987. The estimated jump height from 1986 to 1987 in Russia measures 0.51% with a 95% confidence interval (0.28, 0.75), p value < 0.0001. In Cuba the estimated jump height measures 2.99% (2.39, 3.60), p value < 0.0001. The hypothesis may be tested by reconstruction of imports from the world markets to Cuba and by radiological analyses of remains in Cuba for Cs-137 and Sr-90.

Implications of the hypothesis: If the evidence for the hypothesis is strengthened, there is potential to learn about genetic radiation risks and to prevent similar effects in present and future exposure situations.

Keywords: Food contamination, Food export import, Human secondary sex ratio, Radiation induced genetic effects, Radioactive fallout

Background

Sex ratio – a genetic indicator

According to Schull and Neel [1-3], the uniqueness of the human sex ratio at birth as an indicator of genetic health or genetic detriment arises from the fact that maternal chemical or physical mutagenic exposure is expected to produce a sex ratio different from the sex ratio after paternal exposure. Therefore, the ratio of male to female offspring at birth may be a simple and non-invasive way to study and monitor the reproductive status of a population. Among others, environmental and occupational hazards can alter the sex ratio at birth. In a recently published comprehensive review article [4], more than 100 studies were evaluated including several investigations on ionizing radiation and chemicals. Among the occupational exposure studies concerning ionizing radiation, Hama et al. [5] considered 586 male radiologists in Japan. As a group, male radiologists tended to father a lower proportion of boys compared with the control group. Maconochie et al. [6] looked at over 46,000 children born to UK nuclear industry workers and found no statistically significant alterations of the sex ratio. However, in a considerably larger study of 260,060 births to fathers employed at Sellafield, Dickinson et al. [7] reported that those men sired a greater proportion of boys...
than would be expected. An effect was also observed in fathers with recorded doses exceeding 10 mSv before conception. While this may reflect a true statistical association, it is also possible that it may be a chance finding due to imprecision in the dose estimates and consequent misclassification. Animal experiments shed light on the extreme complexity of radiation induced genetic effects. Irradiation of female mice with fission neutrons by Russel et al. [8] has shown that the length of the period between irradiation and conception has a striking effect on the mutation frequencies seen in the offspring. In conceptions seven weeks after irradiation, mutation frequencies turned out to be relatively high. Havenstein et al. [9] have shown that radiation exposure of spermatogonia entailed a real change in the sex ratio in the rat. Nevertheless, Russell and Havenstein doubt that their positive results received with mice and rats will apply to humans. Neel et al. [10] studied children of parents exposed to atomic bombs in Japan on the basis of revised radiation dose estimates. These revised estimates indicated that humans are less sensitive to genetic effects from radiation than has been assumed on the basis of extrapolations from animal experiments. However, this point of view has been challenged by Vogel [11].

According to Scholte and Sobels [12], one of the few methods available for studying the genetic effects of ionizing radiation in man in sufficiently large populations is the observation of changes in the sex ratio among offspring from irradiated parents. Radiation induced lethal factors of varying degree of dominance on the X chromosome depending on whether an impaired X chromosome is derived from the mother or the father impact the formation and the survival probability of the female zygote, entailing more or less girls at birth, which can also be interpreted as less or more boys, respectively. According to theory [13], Cox found reduced offspring sex ratio (deficit of boys) in irradiated women [14], and James emphasized “ionizing radiation is the only reproductive hazard, which causes men to sire an excess of sons” [15]. In addition to lethal factors on the X chromosome, Scholte and Sobels [12] allude to nondisjunction resulting in X0 genotypes, which are non-viable in man and, thus, may also distort the birth sex ratio. As Down syndrome is a well-known consequence of meiotic nondisjunction, evidence of increased nondisjunction across Europe after Chernobyl is obtained from increased Down syndrome prevalence at birth [16]. Except in societies where selective abortion skews the sex ratio [17-19], approximately 104 to 106 boys are born for every 100 girls. In humans, on the one hand, the sex ratio at birth is essentially constant at the secular population level [20], but on the other hand, considerable variability of the sex ratio may be observed under a variety of specific circumstances. A lot of hypothetical sex ratio determinants and methodological challenges assessing them have been discussed in the literature [21]. However, Steiner [22] points out that proposed determinants showed associations in small samples that could not be replicated in larger populations. This, of course, may be due to insufficient statistical power, i.e., large second kind error probabilities due to small effects or too small study-populations.

Offspring sex ratio – in atomic bomb survivors and in parents hit by nuclear testing

Schull and Neel performed studies in the sex ratio among infants born to survivors of the atomic bombings of Hiroshima and Nagasaki, Japan. The first study published in 1958 [1] revealed significant changes in the sex ratio of these children. The second study [2] still found a small effect in the early post-bomb years, which had apparently disappeared in later years. Schull et al. [2] explained: “One can argue that a small early effect has disappeared or that the original observation had no biological significance”. Mudie et al. [23] studied the sex ratio in the 11,464 offspring of parents with chronic radiation exposure from nuclear testing in Kazakhstan. They conclude: “No significant association was found between radiation exposure level and sex ratio, but some previously suggested demographic factors were positively associated with sex ratio.” However, looking at the tabulated Mudie et al. data, we can see that the sex ratio increases linearly from 1.04 at less than 20 cSv, to 1.05 at 20–40 cSv, to 1.08 at 40–60 cSv, and to 1.12 at more than 60 cSv. See Figure 1 for a sample logistic regression analysis of this data set using the statistical freeware package “R”. For an introduction to logistic regression see [24]. Although the Mudie et al. result was not significant, it is nevertheless consistent with a positive association of the sex ratio with radiation exposure; quite similar in principle to what we have found at the ecological district level in Germany after Chernobyl [25].

Sex ratio in Europe after Chernobyl

Motivated by Schull and Neel’s publication [1] and since we had found increased stillbirths and birth defects after Chernobyl [26,27], we have been investigating the influence of ionizing radiation on the human birth sex ratio for several years. By a pilot study, we assessed the trends in the sex ratio in several selected European countries with emphasis on the Chernobyl Nuclear Power Plant accident [25]. As this study yielded positive results including an ecological dose response association between fallout and the sex ratio, we investigated the behavior of the sex ratio after the atmospheric atomic bomb tests and after Chernobyl more thoroughly for longer time periods and on a global scale. One of the main results was a jump of the sex ratio after Chernobyl in all of
Europe, including Russia (Figure 2), and a subsequent trend reversal from 1987 onward. No such similar effect was seen in the less affected USA. This investigation [28] confirmed our opening study [25]. For debate and further findings see [29-32]. Peterka et al. [33] reported a sharply reduced male live birth proportion in November 1986 in the Czech Republic. The decreased male proportion restricted to a single month is in contrast to the long term increased male proportion across Europe. Moreover, replication of the Peterka et al. study with Bavarian data yields an estimate of the male proportion in November 1986 identical to the overall mean. Therefore, the finding by Peterka et al. could not be supported [34].

Sex ratio in Cuba after Chernobyl
S. J. Venero Fernandez et al.

An intriguing new example of an escalated sex ratio after Chernobyl has been published in the American Journal of Epidemiology by Cuban scientists [35]. In Cuba, the sex ratio is subject to a strong uptick immediately after Chernobyl in the year 1987 (Figure 3). Moreover, this jump in the sex ratio is followed by a long-lasting elevated trend up to the year 2000 when the Cuban sex ratio approaches 1.06 – 1.07, which are nearly pre-Chernobyl values. Contrary to the Trivers-Willard hypothesis postulating decreasing sex ratios during economic hardship [36], Venero Fernandez et al. [35] try to explain the striking sex ratio increase in Cuba by a sociological
aspect, namely by the economic depression in Cuba (‘Special Period’), which started in 1991 after the dissolution of the Soviet Union and the COMECON. However, the strong increase from the stable sex ratio of 1.0585 in the 29-years 1958 – 1986 to the escalated average sex ratio of 1.0864 (1.0785, 1.0944), p value < 0.0001 in the 4-years period 1987 – 1990 can hardly be explained neither by chance nor by economic depression. Chance can be excluded as this jump from the level in 1958 – 1986 to the level in 1987 – 1990 measures more than 5 standard errors and economic depression can be excluded as its onset occurred only 4 years after the sex ratio jump, see the GDP curve in Figure 2 in [35].

A. J. Wilcox and D. D. Baird
Together with the publication by Cuban scientists, an invited commentary by two American scientists appeared in the same issue of the American Journal of Epidemiology. Wilcox and Baird question the importance of the sex ratio as an environmental health indicator and try to explain the strong increase in the sex ratio in Cuba by sex selective abortions [37]. Abortions in Cuba have been described in the scientific literature [38] but
not gender-specific ones [39]. Therefore, the alternative explanation offered by Wilcox and Baird, sex selective abortion, is implausible as this practice is unusual in Cuba. Also, Wilcox and Baird do not address the question as to why sex selective abortion starts in 1987, which is not congruent with the ‘Special Period’ that began only in or after 1990.

L. Simpson

Simpson [40] attempts to explain the effect by a technical artifact of the data recording procedure, possibly caused by and acting from the ending of the former Soviet Union in 1990: “Russia’s breaking of economic trade agreements with Cuba in 1990 was followed by a tightening embargo on trade from the US government... As one specific example, there were insufficient funds to continue to import a gummed 2-page form that accurately replicated writing onto a copy. This form had been used to record birth details in hospitals, where over 99% of births in Cuba occurred throughout this period”. Again, Simpson oversees the significant uptick of the sex ratio in 1987 together with the even stronger increases in 1988 through 1990, clearly emerging before the Soviet breakdown. Quantifying this peculiar and stable 4-year increase from 1987 – 1990 yields a sex ratio ratio (or better sex odds ratio) of 1.0263 (1.0209, 1.0318), p value <0.0001. Therefore, Simpson's explanation does not apply to the period from 1987 through 1990, and thus his explanation may perhaps only partly account for the escalated sex ratio in Cuba from 1991 onward. Also, Simpson does not make sufficiently clear why a presumably random noise imposed on the recordings of the births’ sexes should be biased in favor of boys; one would rather expect non-differential misclassification instead. Eventually, one might speculate that Simpson's explanation is to the point in principle, but only for the years 1995/1996. However, this is not important for our hypothesis as we focus on the years 1987/1988, and Simpson did not restrict his argument to 1995/1996. The adjustment for the years 1995 and 1996 in our Cuban sex ratio trend model (Figure 3) is equivalent to excluding those years as outliers. Therefore, excluding these outliers would not change our effect estimates, confidence limits, and p-values. Consequently, our inference from the Cuban sex ratio data is independent from those outliers, and is thus somewhat conservative. In summary, no convincing explanation of the strong and transient sex ratio increase in Cuba from 1987 to 2000 has been offered in the literature as yet, neither by the authors themselves nor by the annotators.

Presentation of the hypothesis

There is no denying the fact that a strong and highly significant increase in the human sex ratio at birth in Cuba immediately after 1986 exists, and 1986 was the year of the Chernobyl accident. A sex ratio increase after 1986 also holds true for all of Europe, and in particular for single southern and eastern European countries, among them Russia [28,32]. The question arises whether any more or less smooth social, political, economic, etc. factor, could entail such an abrupt consequence across Europe and in Cuba simultaneously. Therefore, we hypothesize that the mechanism might be a direct biophysical one that acts synchronously in Europe, in Russia, and in Cuba from 1987 onward. It must not be overseen that according to the Trivers-Willard hypothesis [36], the effect in Cuba is in the wrong direction. Economic depression would lead to a decrease not an increase in the sex ratio. On the other hand, according to James [15], radiation is the only known reproductive hazard that increases the sex ratio. From this perspective, the previous explanation attempts are not convincing. Therefore, we are of the opinion that there is a direct effect of radioactively contaminated food and possibly feeding stuff exported from the former Soviet Union or from other Chernobyl affected European or Asian countries to Cuba. During the eighties of the last century in Cuba more than 50% of the food imports were provided by the former USSR. In the Seattle Post-Intelligencer, Buncombe [41] explained: “Cuba’s economy was extraordinarily reliant on subsidies from its political older brother, the Soviet Union. Its agriculture was designed with one aim in mind – namely to produce as much sugar cane as possible, which the Soviets bought at more than five times the market price, in addition to purchasing 95 percent of its citrus crop and 73 percent of its nickel. In exchange, the Soviets provided Cuba with 63 percent of its food imports and 90 percent of its petrol. Such a relationship made Cuba extraordinarily vulnerable”. From statistics published by the Food and Agriculture Organization of the United Nations (FAO, http://faostat.fao.org/), we can see for example that in the period 1986 – 1989 evaporated milk in the range of over 100,000 tons was imported in Cuba from the former USSR (Table 1). Interestingly, the amount of imported milk doubled just in 1987, however, at half the price compared to the remaining years.

Ross [42] explained the difficult food supply situation in Cuba during the so-called “Periodo Especial”, that is to say in the early years of the 1990s. Cuba had lost Soviet and Eastern Bloc trade preferences and per capita caloric consumption had fallen about 20%. Conversely, this means that the equivalent amount of food representing 20% of per capita caloric consumption can be attributed to imports from the Soviet Union before the crisis, especially from 1987 to 1990. During the ‘Special Period’, imported food has been a relevant factor of feeding Cuba’s population. Imports of dairy products, corn, wheat, wheat flour, fed grains and barley declined in the
mid-1990s. We, therefore, presume that Cuba’s imported food and probably feed products before the onset of the crisis were contaminated with radioactive elements from affected European and Asian countries after the Chernobyl accident. Comparison of Figure 1 and Figure 2 indicates that the Cuban effect, although much stronger than the overall Russian effect, seems to vanish somewhat earlier than the effect in Russia. This fits the assumption that ‘only’ imported food was transitally contaminated and not the whole surface of Cuba. It is even conceivable that contaminated produce found boosted its way to Cuba simply because it was cheaper and Cuba underwent difficult economic conditions, which prevented it from taking effective counter measures to protect its people. The causal interpretation by Venero Fernandez et al. [35]: “These data suggest that, in Cuba, contrary to the Trivers-Willard hypothesis [36], the human population responded to conditions of scarcity by increasing the ratio of males to females at live birth” goes along with our view on this problem, however, in a more concrete biological sense: We are of the opinion that radioactively contaminated human food and probably animal feed induced the increase in the human sex ratio at birth in Cuba after Chernobyl. Unlike other countries [43] and due to political constraints as well as its overall poor position, Cuba as a nation had not the necessary economic and political strength to circumvent the threat of contaminated consumer products before Chernobyl by imposing safe control measures on imports from abroad.

Testing of the hypothesis
Synoptic analysis of Russian and Cuban secular sex ratio trends

We compare the sex ratio trends of Cuba (1958 – 2011) and Russia (1959 – 2010) and quantify pertinent effect-parameters of those trends, especially the jumps in 1987. The relevant annual births figures by gender are presented in Table 2 (for the original data sources see: http://www.ehjournal.net/content/12/1/63, http://www.onecu/anuaridemografico2011.htm, http://data.euro.who.int/hfadb/, and http://www.mortality.org).

Reporter	Partner	Item	Element	Year	Units	Value	Flag
USSR	Cuba	Milk whole Evp	Export quantity	1986	Tonnes	21086	Official data
USSR	Cuba	Milk whole Evp	Export quantity	1987	Tonnes	55543	Official data
USSR	Cuba	Milk whole Evp	Export quantity	1988	Tonnes	21378	Official data
USSR	Cuba	Milk whole Evp	Export quantity	1989	Tonnes	20624	Official data
USSR	Cuba	Milk whole Evp	Export value	1986	1000 US$	20996	Official data
USSR	Cuba	Milk whole Evp	Export value	1987	1000 US$	24588	Official data
USSR	Cuba	Milk whole Evp	Export value	1988	1000 US$	24738	Official data
USSR	Cuba	Milk whole Evp	Export value	1989	1000 US$	22855	Official data

Sex ratio in Russia follows an overall linear decline from 1959 to 1986 with a reduction per 10 years of 0.12% (0.04, 0.20), p value 0.0021 (Figure 2). We may estimate a significant jump of the sex ratio from 1986 to 1987 of 0.51% (0.28, 0.75), p value < 0.0001. From 1987 onward, there is a long-term sex ratio increase to maximum values in 1999/2000 of nearly 1.065 and a subsequent decline after the year 2000. A parsimonious model for the partial Russian sex ratio trend after Chernobyl is a 2nd degree polynomial, i.e. a parabola with p value < 0.0001. If the decline starting in 2000 will continue linearly and undisturbed, the Russian sex ratio is to resume normal pre-Chernobyl values near 1.05 beyond the year 2020. Sex ratio in Cuba from 1958 to 1986 follows an essentially constant trend with no strong overall upward or downward tendency before Chernobyl (Figure 3). In Cuba, we may estimate a jump in 1987 of 2.99% (2.39, 3.60), p value < 0.0001, which is six times the jump estimate of the Russian sex ratio in 1987. Moreover, there are still even stronger increases in Cuba in 1995 and 1996 exceeding a sex ratio of 1.15. A well-fitting, however less parsimonious model for the partial Cuban sex ratio trend after Chernobyl consists of a 3rd degree polynomial adjusted for the extreme values in 1995 and 1996. This model approaches nearly normal pre-Chernobyl values of 1.06 around the year 2010. It is, therefore, quite obvious that in Cuba and Russia the sex ratio trends that had existed before the Chernobyl accident are markedly disturbed immediately after Chernobyl albeit the temporal patterns of the sex ratio changes as well as the maximum values taken on differ considerably between the two countries.

Contaminated food on the world markets after Chernobyl

The fact that contaminated food was in transit on the world markets [43] is documented especially for Mexico and Brazil where thousands of tons of contaminated milk powder had to be confiscated after the detection of violations of legal contamination limits for Cs-137. In 1988 in Mexico, the state National Company of People’s
Year	Total	Male	Female	Sex ratio	Total	Male	Female	Sex ratio
1958	176510	91040	85470	1.0652	2796228	1430060	1366168	1.0513
1959	191207	98538	92669	1.0633	2782353	1427225	1355128	1.0532
1960	211207	108940	102667	1.0610	2662135	1356700	1296435	1.0534
1961	249113	127982	121131	1.0566	2482539	1272461	1210782	1.0516
1962	260224	133615	126609	1.0553	2331505	1197738	1133767	1.0564
1963	266554	136880	129674	1.0536	221994	1087619	1032355	1.0515
1964	2782353	1427225	1355128	1.0532	2662135	1356700	1296435	1.0534
1965	2331505	1197738	1133767	1.0564	221994	1087619	1032355	1.0515
1966	221994	1087619	1032355	1.0515	2121994	1038619	1054375	1.0515
1967	2121994	1038619	1054375	1.0515	2011520	995251	916269	1.0491
1968	1957403	1021520	935883	1.0491	1847592	945265	902327	1.0476
1969	1847592	945265	902327	1.0476	1739113	904652	834461	1.0491
1970	1739113	904652	834461	1.0491	1636372	867737	768635	1.0515
1971	1636372	867737	768635	1.0515	1543628	819968	723660	1.0534
1972	1543628	819968	723660	1.0534	1452884	781204	671680	1.0554
1973	1452884	781204	671680	1.0554	1362140	733440	628670	1.0578
1974	1362140	733440	628670	1.0578	1271406	704606	566800	1.0593
1975	1271406	704606	566800	1.0593	1180772	665872	514800	1.0617
1976	1180772	665872	514800	1.0617	1090138	627138	462900	1.0644
1977	1090138	627138	462900	1.0644	1000504	588404	412100	1.0671
1978	1000504	588404	412100	1.0671	910870	522170	388630	1.0705
1979	910870	522170	388630	1.0705	821246	463546	357700	1.0740
1980	821246	463546	357700	1.0740	731622	414822	316800	1.0776
1981	731622	414822	316800	1.0776	642000	375200	266800	1.0812
1982	642000	375200	266800	1.0812	552376	315576	236800	1.0848
1983	552376	315576	236800	1.0848	462752	264952	197800	1.0884
1984	462752	264952	197800	1.0884	373128	205328	177800	1.0920
1985	373128	205328	177800	1.0920	283504	155704	127800	1.0956
1986	283504	155704	127800	1.0956	193880	106080	87800	1.1003
1987	193880	106080	87800	1.1003	104256	56456	47800	1.1050
1988	104256	56456	47800	1.1050	94632	50832	43800	1.1108
1989	94632	50832	43800	1.1108	85008	46008	39000	1.1166
1990	85008	46008	39000	1.1166	75384	40384	35000	1.1224
1991	75384	40384	35000	1.1224	65760	36760	29000	1.1282
1992	65760	36760	29000	1.1282	56136	29136	27000	1.1341
1993	56136	29136	27000	1.1341	46512	25512	21000	1.1400
1994	46512	25512	21000	1.1400	36888	19888	17000	1.1460
1995	36888	19888	17000	1.1460	27264	15264	12000	1.1521
1996	27264	15264	12000	1.1521	17640	9640	8000	1.1582
1997	17640	9640	8000	1.1582	9016	4816	4200	1.1644
1998	9016	4816	4200	1.1644	9382	5182	4200	1.1644
1999	9382	5182	4200	1.1644	9748	5548	4200	1.1644
2000	9748	5548	4200	1.1644	10114	5914	4200	1.1644
Subsistence (CONASUPO) distributed 2,436 tons of milk powder contaminated with Cs-137 after Chernobyl. The company was able to recall or otherwise account for 1,497 tons, and the whereabouts of the rest of the milk powder is unknown [44]. In 1987 in Brazil, import of powdered milk from seven European countries had to be stopped after its Cs-137 contamination due to the Chernobyl accident became known and large amounts of milk powder had already been bought by consumers [45]. We are not aware of any comparable counter measures taken in Cuba to protect people from imported Chernobyl contaminated products. This might be explained in general by the close political connection of Cuba to the Soviet Union at that time, and, in particular, by the intent to build a number of nuclear power plants in Cuba with the help of the USSR to overcome the Cuban dependence on imported oil [46]. That radioactively contaminated food, animal feed, and general consumer products were imported to Cuba can be tested in two ways: firstly, by reconstruction of export/import pathways from Chernobyl affected countries to Cuba in analogy to our Table 1, and secondly, by radiological analyses of possible general remains for Cs-137, and teeth of children and bones of deceased for Sr-90. The radioactive Cs-137 and Sr-90 isotopes have sufficiently long half-lives of approximately 30 years that makes them suited for that purpose.

Reasoning by analogy
There have been positive epidemiological findings after Chernobyl [16,26,27,47,48]. Therefore, our hypothesis can be tested by scrutinizing Cuban public health statistics for increases after 1986: e.g. stillbirths, perinatal mortality, and infant deaths including corresponding sex ratios. Historical hospital records may reflect increases in disease frequencies: e.g. cancer, diabetes, and heart diseases. Finally, children’s hospitals may have recorded data on the occurrence of chromosome anomalies and birth defects: e.g. Down syndrome, malformation of the heart, and cleft lip and palate.

Limitations of the hypothesis
One of the major limitations of the hypothesis and its testability is of course the long time period of now 27 years that have passed since the Chernobyl accident. It may prove difficult if not impossible to retrospectively throw light on imports to Cuba. Not to speak of the concrete estimation of the amounts of relevant produce from contaminated parts of Europe and Asia actually processed and consumed in Cuba. Also, it may be difficult to distinguish between more or less affected groups in the Cuban population. Did those who hypothetically ate the most contaminated food have the highest sex ratios among their offspring? This question cannot be answered by the as yet published highly aggregated data. It can possibly be answered if historical regional gender specific birth statistics and regional consumption statistics were available and could be linked appropriately. Another major limitation is the general lack of firm evidence that ionizing radiation increases the human sex ratio. It is even possible that certain kinds of radiation exposures decrease the sex ratio or act neutral on gender. Detailed animal experiments have clearly shown the enormous complexity of the diverse ionizing radiation exposures and mutational outcomes [8,9,11,13]. The biological, genetic, and social details in which way mankind sustains a stable gender proportion are largely unknown.

Implications of the hypothesis
If the evidence for the hypothesis can be strengthened by appropriate investigations, this would corroborate similar findings in Europe and Asia. Since in contrast to Europe, the Cuban surface was not contaminated by Chernobyl fallout, the effect must essentially be due to

Table 2 Annual live births by gender and sex ratio for Cuba and Russia (Continued)

Year	Cuba Male	Cuba Female	Russia Male	Russia Female	Sex Ratio	Cuba Total	Cuba Male	Cuba Female	Russia Total	Russia Male	Russia Female	Sex Ratio
2001	138718	71166	67552	1.0535	131160	675750	635854	1.0627				
2002	141276	72686	68590	1.0597	139696	71911	677456	1.0621				
2003	136795	70500	66295	1.0634	147730	760934	716367	1.0622				
2004	127192	65674	61518	1.0676	150247	772973	729504	1.0596				
2005	120716	62219	58497	1.0636	145736	749554	707822	1.0590				
2006	111323	57502	53821	1.0684	147963	76831	718806	1.0585				
2007	112472	57984	54488	1.0642	161012	828772	781350	1.0607				
2008	122569	63378	59191	1.0707	171394	880543	833404	1.0566				
2009	130036	67153	62883	1.0679	176168	905380	856307	1.0573				
2010	127746	65692	62054	1.0586	178894	919639	869309	1.0579				
2011	133067	68464	64603	1.0598								
internal radiation, i.e. so called internal emitters, following intake of radioactively contaminated food. This special situation could help to better understand etiologic pathways from food contamination to radiation induced genetic effects. Also, the hypothesis if corroborated would weaken the prevailing opinion, e.g. held by UNSCEAR [49], that radiation induced genetic effects have yet to be detected in humans. If the hypothesis can be confirmed, the Cuban experience dealt with in this paper could be a warning with regard to Fukushima and the unresolved problem of the now existing huge amount of radioactive waste worldwide.

Abbreviations

CHNPP: Chernobyl Nuclear Power Plant; COWECOM: Council for Mutual Economic Assistance; CONASUPO: Compañía Nacional de Subsistencias Populares; Cs: Cesium; cv: 1/100 sievert; FAO: Food and Agriculture Organization; GDP: Gross domestic product; Sr: Strontium; UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation; USSR: Union of Soviet Socialist Republics; X: X chromosome; Y: Y chromosome.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KV encountered the publications on increased sex ratio in Cuba, had the Cuban experience dealt with in this paper could be a warning with regard to Fukushima and the unresolved problem of the now existing huge amount of radioactive waste worldwide.

References

1. Schull WJ, Neel JV: Radiation and the sex ratio in man. Science 1958, 128:343–348.
2. Schull WJ, Neel JV, Hishizume A: Some further observations on the sex ratio among infants born to survivors of the atomic bombings of Hiroshima and Nagasaki. Am J Hum Genet 1966, 18:328–338.
3. Neel JV, Schull WJ: The children of atomic bomb survivors: a genetic study. Washington, DC: National Academy Press; 1991.
4. Terrell ML, Hartnett KP, Marcus M: Can environmental or occupational hazards alter the sex ratio at birth? A systematic review. Emerging Health Threats Journal 2011, 4:1–18.
5. Hama Y, Uematsu M, Sakurai Y, Kusano S: The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities, Hagen Scherb & Kristina Voigt, Environ, Sci Pollut Res; Special Issue 2012, 19:1335–1340. doi:10.1007/s11356-011-0644-8.
6. Maconochie N, Roman E, Doyle P, Davies G, Smith PG, Beral V: Sex ratio in the offspring of male radiologists. Acad Radiol 2001, 8:421–424.
7. Maconochie N, Romain E, Doyle P, Davies G, Smith PG, Beral V: Sex ratio of offspring. Proc Natl Acad Sci USA 2006, 103:13271–13275.
8. Venero Fernandez SJ, Medina RS, Britton J, Fogarty AW: The association between living through a prolonged economic depression and the male:female birth ratio—a longitudinal study from Cuba, 1960–2008. Am J Epidemiol 2011, 174:1213–1217. doi:10.1093/aje/kwr157.
9. Scholte PJ, Sobels FH: Sex ratio shifts among progeny from patients having received therapeutic X-radiation. Am J Hum Genet 1964, 16:26–37.
10. Vogel F, Motulsky AG: Human Genetics. Berlin Heidelberg New York Tokyo: Springer; 1986.
11. Cox DW: An investigation of possible genetic damage in the offspring of women receiving multiple diagnostic pelvic X rays. Am J Hum Genet 1964, 16:214–230.
12. James WH: Ionizing radiation and offspring sex ratio. J Epidemiol Community Health 1997, 51:340–341.
13. Scherb H, Voigt K: Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol 2012, 36:48–55.
14. Hesketh T, Xing ZW: Abnormal sex ratios in human populations: causes and consequences. Proc Natl Acad Sci USA 2006, 103:13271–13275.
15. Zhou C, Wang XL, Zhou XD, Hesketh T: Son preference and sex-selective abortion in China: informing policy options. Int J Publ Health 2012, 57:459–465.
16. Sahni M, Verma N, Narula D, Varghese RM, Seervais P, Puliyel JM: Missing girls in India: infanticide, feticide and made-to-order pregnancies? Insights from hospital-based sex-ratio-at-birth over the last century. PloS one 2008, 3:e2224.
17. Stein AD: Epidemiologic evidence for an ecological phenomenon. Fertil Steril 2012, 98:819–820.
18. Scherb H, Voigt K: Trends in the human sex odds at birth in Europe and the Chernobyl Nuclear Power Plant accident. Reprod Toxicol 2007, 23:593–599.
19. Scherb H, Voigt K: The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res int 2011, 18:691–707.
20. Kramer W: The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities: comment. Environ Sci Pollut Res int 2012, 19:1332–1334.
21. Scherb H, Voigt K: Response to W. Kramer: The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities: comment. Environ Sci Pollut Res int 2012a, 19:1335–1340. doi:10.1007/s11356-011-0644-8.
22. Scherb H, Voigt K: Comment on the human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environmetrics 2012, 23:116–117. doi:10.1002/env.1742.
23. Bochud F, Jung T: Comment on the human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environmetrics 2012a, 23:116–117. doi:10.1002/env.1742.
24. Trivers RL, Willard DE: Natural selection of parental ability to vary the sex ratio of offspring. Science 1973, 179:90–92.
37. Wilcox AJ, Baird DD: Invited commentary: Natural versus unnatural sex ratios—a quandary of modern times. Am J Epidemiol 2011, 174(12):1332–1334. doi:10.1093/aje/kwr360.

38. Belanger D, Flynn A: The persistence of induced abortion in Cuba: exploring the notion of an “abortion culture”. Stud Fam Plann 2009, 40:13–26.

39. Venero Fernandez SJ, Medina RS, Britton J, Fogarty AW: Fernandez et al. respond to “Natural Versus Unnatural Sex Ratios”. Am J Epidemiol 2011, 174(12):1335. doi:10.1093/aje/kwr361.

40. Simpson L: Re: "The association between living through a prolonged economic depression and the male: female birth ratio—a longitudinal study from Cuba, 1960–2008" and "Invited commentary: natural versus unnatural sex ratios—a quandary of modern times". Am J Epidemiol 2012, 175(1):973. doi:10.1093/aje/kws142.

41. Buncombe A: Cuba’s Agricultural Revolution an Example to the World. Seattle: Seattle Post-Intelligencer; 2006. http://www.commondreams.org/views06/0813-23.htm, Accessed 23 April 2013.

42. Ross JE: Food Security in Cuba. In Cuba Today: Continuity and Change Since the ‘Período Especial’. Edited by Font MA. New York: Bildner Center for Western Hemisphere Studies, 2004:115–125.

43. Bannink D: Contaminated foodstuffs dumped on world market. In WISE News Communiqué. Amsterdam: WISE-Amsterdam; 1991. http://www10.antenna.nl/wise/index.html/http://www10.antenna.nl/wise/349-50/corta.html.

44. Zamora G: Caso Conasupo: La Leche Radiactiva El Crimen Mas Atroz Contra El Pueblo Mexicano. Mexico: Editorial Planeta; 1997.

45. Anonymous: Brazilian federal court has banned the sales. Orlando Sentinel; 1987. http://articles.orlandosentinel.com/1987-01-13/news/0100130265_1_powdered-milk-cesium-radioactive.

46. Wikipedia: Juragua Nuclear Power Plant. In Juragua Nuclear Power Plant. Wikipedia; 2012. http://en.wikipedia.org/wiki/Juragua_Nuclear_Power_Plant (accessed 8/15/2013).

47. Busby C, Busby J, Returna D: Fukushima and Health: What to Expect. Green Audit Books; 2011. http://www.amazon.de/Fukushima-Health-Proceedings-International-Conference/dp/1897761171 (accessed 8/15/2013). ISBN -13: 978-1897761175.

48. Yablokov AV, Nesterenko VB, Nesterenko AV: Chernobyl: Consequences of the Catastrophe for People and the Environment. Berlin Heidelberg New York Tokyo: John Wiley and Sons; 2010.

49. UNSCEAR: Sources and effects of ionizing radiation, Report to the General Assembly, 6 June 2000. New York: United Nations; 2000.

Cite this article as: Scherb et al: Increased sex ratio in Russia and Cuba after Chernobyl: a radiological hypothesis. Environmental Health 2013 12:63.