On the Weight Spectrum of Pre-Transformed Polar Codes

Yuan Li∗†‡, Huazi Zhang∗, Rong Li∗, Jun Wang∗, Guiying Yan†‡, and Zhiming Ma†‡

∗Huawei Technologies Co. Ltd.
†University of Chinese Academy of Sciences
‡Academy of Mathematics and Systems Science, CAS
Email: liyuan181@mails.ucas.ac.cn, {zhanghuazi, lirongone.li, justin.wangjun}@huawei.com, yangy@amss.ac.cn, mazm@amt.ac.cn

Abstract—Polar codes are the first class of channel codes achieving the symmetric capacity of the binary-input discrete memoryless channels with efficient encoding and decoding algorithms. But the weight spectrum of Polar codes is relatively poor compared to RM codes, which degrades their ML performance. Pre-transformation with an upper-triangular matrix (including cyclic redundancy check (CRC), parity-check (PC) and polarization-adjusted convolutional (PAC) codes), improves weight spectrum while retaining polarization. In this paper, we determine the weight spectrum of upper-triangular pre-transformed Polar Codes. In particular, we focus on determining the number of low-weight codewords due to their impact on error-correction performance. Simulation results verify the accuracy of the analysis.

I. INTRODUCTION

Polar codes [1], invented by Ariklan, are a great breakthrough in coding theory. As code length $N = 2^n$ approaches infinity, the synthesized channels become either noiseless or pure-noise, and the fraction of the noiseless channels approaches channel capacity. Thanks to channel polarization, efficient successive cancellation (SC) decoding algorithm can be implemented with a complexity of $O(N\log N)$. However, the performance of polar codes under SC decoding is poor at short to moderate block lengths.

In [2], a successive cancellation list (SCL) decoding algorithm was proposed. As the list size L increases, the performance of SCL decoding approaches that of maximum-likelihood (ML) decoding. But the ML performance of polar codes is still inferior to low minimum distance. Consequently, concatenation of polar codes with CRC [3] and PC [4] were proposed to improve weight spectrum. Recently, Ariklan proposed polarization-adjusted convolutional (PAC) codes [5], which is shown to approach BIAWGN dispersion bound [6] under large list decoding [7].

CRC-Aided (CA) Polar, PC-Polar, and PAC codes can be viewed as pre-transformed Polar codes with upper-triangular transformation matrices [7]. In [8], it is proved that any pre-transformation with an upper-triangular matrix does not reduce the minimum Hamming weight, and a properly designed pre-transformation can reduce the number of minimum-weight codewords. In this paper, we propose an efficient method to calculate the average weight spectrum of pre-transformed polar codes. Moreover, the method holds for arbitrary information sub-channel selection criteria, thus covers Polar codes, RM codes and is not constrained by “partial order” [9]. Our results confirm that the pre-transformation with an upper-triangular matrix can reduce the number of minimum-weight codewords significantly. In the meantime, it enhances error-correcting performance of SCL decoding.

In section II, we review Polar codes and pre-transformed Polar codes. In section III we propose a formula to calculate the average weight spectrum of pre-transformation Polar codes. In section IV the simulation results are presented to verify the accuracy of the formula. Finally we draw some conclusions in section V.

II. BACKGROUND

A. Polar code

Given a B-DMC $W : \{0, 1\} \to \mathcal{Y}$, the channel transition probabilities are defined as $W(y|x)$ where $y \in \mathcal{Y}, x \in \{0, 1\}$. W is said to be symmetric if there is a permutation π, such that $\forall y \in \mathcal{Y}, W(y|1) = W(\pi(y)|0)$ and $\pi^2 = id$.

Then the symmetric capacity and the Bhattacharyya parameter of W are defined as

$$I(W) \triangleq \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \frac{1}{2} W(y | x) \log \frac{W(y | x)}{\frac{1}{2} W(y | 0) + \frac{1}{2} W(y | 1)}$$

and

$$Z(W) \triangleq \sum_{y \in \mathcal{Y}} \sqrt{W(y | 0)W(y | 1)}$$

Let $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $N = 2^m$, and $H_N = F^\otimes m$. Starting from $N = 2^m$ independent channels W, we obtain N polarized channels $W_N^{(i)}$, after channel combining and splitting operations [11], where

$$W_N \left(y_1^N | u_1^N \right) \triangleq W_N \left(y_1^N | u_1^N H_N \right)$$

and

$$W_N^{(i)} \left(y_1^N, u_1^{i-1} | u_i
ight) \triangleq \sum_{u_{i+1}^N \in \mathcal{X}^{N-i}} \frac{1}{2^{N-i}} W_N \left(y_1^N | u_i^N \right)$$

Polar codes can be constructed by selecting the indices of K information sub-channels, denoted by the information set $A = \{I_1, I_2, \ldots, I_K\}$. The optimal sub-channel selection...
criterion for SC decoding is reliability, i.e., selecting the K most reliable sub-channel as information set. Density evolution (DE) algorithm [10], Gaussian approximation (GA) algorithm [11] and the channel-independent PW construction method [12] are efficient methods to find reliable sub-channels. The optimal sub-channel selection criterion for SCL decoding is still an open problem. Some heuristic approaches consider both reliability and row weight, such as RM-Polar codes [13] and PC-Polar codes [4], to improve minimum code distance. Others employ artificial intelligence techniques to find good information set [14] [15].

After determining the information set \mathcal{A}, the complement set \mathcal{A}^c is called the frozen set. Let $u_1^N = (u_1, u_2, \ldots, u_N)$ be the bit sequence to be encoded. The information bits are inserted into $u_\mathcal{A}$, and all zeros are filled into $u_{\mathcal{A}^c}$. Then the codeword x_1^N is obtained by $x_1^N = u_1^1 H_N$.

B. Weight Spectrum of Polar Codes

There are many prior works to analyze the weight spectrum of Polar codes. In [16], the authors use SCL decoding with a large list size to decode an all-zeros codeword. Codewords within the list are enumerated to estimate the number of low-weight codewords. In [17], the authors improve this approach in terms of memory usage. The above methods only obtain partial weight spectrum. In [18] [19], the probabilistic computation methods are proposed to estimate the weight spectrum of Polar codes.

C. Weight Spectrum of Polar Cosets

As in [20], let $u_1^{i-1} \in \{0, 1\}^{i-1}$, $u_i \in \{0, 1\}$, define the polar coset $C_N^{(i)} (u_1^{i-1}, u_i)$ as

$$C_N^{(i)} (u_1^{i-1}, u_i) = \{(u_1', u_i') H_N | u_i' \in \{0, 1\}^{n-i}\}$$

In [21] [22], recursive formulas are proposed to efficiently compute the weight spectrum of $C_N^{(i)} (0_1^{i-1}, 1)$. The weight spectrum of $C_N^{(i)} (0_1^{i-1}, 1)$ is tightly associated with the performance of SC decoding, our analysis of average weight spectrum of pre-transformed Polar codes is based on the polar coset spectrum as well.

D. Pre-Transformed Polar Codes

$$T = \begin{bmatrix} 1 & T_{12} & \cdots & T_{1N} \\ 0 & 1 & \cdots & T_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

The above non-degenerate upper-triangular pre-transformation matrix T has all ones on the main diagonal. Let $G_N = TH_N$ and $u_{\mathcal{A}^c} = 0$, the codeword of the pre-transformed Polar codes is given by $x_1^N = u_1^N G_N = u_1^N TH_N$. Let $z_i^N = u_1^N T$, the i-th pre-transformed bit is given by $z_i = u_i \oplus \sum_{j=i+1}^{N} u_j T_{ji}$. As seen, z_i is a linear combination of the i-th and previous bits, much like a parity-check bit or a dynamic frozen bits [23].

III. Average Code Spectrum Analysis

In this section, we propose a formula to compute the average weight spectrum of the pre-transformed Polar codes, with focus on the number of low-weight codewords. The average number assumes that $T_{ij}, 1 \leq i < j \leq N$ are i.i.d. Bernoulli($\frac{1}{2}$) r.v., T_{ij}^i are i.i.d. Bernoulli($\frac{1}{2}$) r.v. as well.

A. Notations and Definitions

$h_N^{(i)}$ is the i-th row vector of H_N, and $g_N^{(i)}$ is the i-th row vector of G_N. The number of codewords with Hamming weight d of the pre-transformed Polar codes is denoted by $N_d(U \times T \times H_N)$. The minimum distance of Polar/RM codes and the pre-transformed codes are denoted by $d_{\min}(U \times H_N)$ and $d_{\min}(U \times T \times H_N)$, respectively. The number of minimum-weight codewords of Polar/RM codes and the pre-transformed codes are denoted by $N_{\min}(U \times H_N)$ and $N_{\min}(U \times T \times H_N)$, respectively.

B. Code Spectrum Analysis

The expected number of codewords with Hamming weight d is

$$E[N_d(U \times T \times H_N)] = \sum_{u_1, u_2, \ldots, u_K \in \{0, 1\}^K} P\left(w\left(\sum_{i=1}^K u_I g_N^{(i)} \right) = d\right)$$

$$= \frac{K}{d} \sum_{j=1}^K \sum_{u_1, \ldots, u_{j-1} = 0}^{u_j = 1} \sum_{u_{j+1}, \ldots, u_K \in \{0, 1\}^{K-j}} P\left(w\left(g_N^{(j)} \oplus \sum_{i=j+1}^K u_I g_N^{(i)} \right) = d\right)$$

Lemma 1. For $u_{j+1}, \ldots, u_K \in \{0, 1\}^{K-j}$,

$$P\left(w\left(g_N^{(j)} \oplus \sum_{i=j+1}^K u_I g_N^{(i)} \right) = d\right) = P\left(w\left(g_N^{(j)} \right) = d\right)$$

Proof. According to the pre-transformation matrix

$$g_N^{(j)} = h_N^{(j)} \oplus \sum_{i=j+1}^K T_{ij} h_N^{(i)}$$

$$g_N^{(j)} \oplus \sum_{i=j+1}^K u_I g_N^{(i)} = h_N^{(j)} \oplus \sum_{i=j+1}^K T_{ij} h_N^{(i)}$$

And

$$T_{ij} = \begin{cases} \sum_{l_i < l, u_{k_i} = 1} T_{lk_i} & i \notin [J_{ij+1}, \ldots, I_K] \\ \sum_{l_i < l, u_{k_i} = 1} T_{lk_i} + u_i & i \in [J_{ij+1}, \ldots, I_K] \end{cases}$$

It is straightforward to see that when T_{ij} are i.i.d. Bernoulli($\frac{1}{2}$) r.v., T_{ij}^i are i.i.d. Bernoulli($\frac{1}{2}$) r.v. as well.
As a result, \(g_N^{(i)} \) and \(g_N \) follow the same distribution too, \(\forall \ u_{I_1}, \ldots, u_{I_K} \in \{0, 1\}^{K-j} \). Therefore \textbf{Lemma 1} holds.

\textbf{Lemma 2.} If \(w(h_N^{(i)}) > d \), \(P\left(w(g_N^{(i)}) = d \right) = 0 \).

\textit{Proof.} Recall that \(g_N^{(i)} = h_N^{(i)} + \sum_{i=I_1}^N T_{I_i} h_N^{(i)} \)

According to \[9\], corollary 1, \(w\left(g_N^{(i)}\right) \geq w\left(h_N^{(i)}\right) > d \)

Therefore \(P\left(w\left(g_N^{(i)}\right) = d \right) = 0 \)

According to \textbf{Lemma 1} and \textbf{Lemma 2}, \(5\) can be further simplified to

\[E\left[N_d(U \times T \times H_N)\right] = \sum_{1 \leq j \leq K \atop w(h_N^{(i)}) \leq d} 2^{K-j} P\left(w\left(g_N^{(i)}\right) = d \right) \]

(6)

Let \(P(m, i, d) \triangleq P\left(w\left(g_{2m}^{(i)}\right) = d \right) \), \(6\) can be rewritten as

\[E\left[N_d(U \times T \times H_N)\right] = \sum_{1 \leq j \leq K \atop w(h_N^{(i)}) \leq d} 2^{K-j} P(m, I_j, d) \]

(7)

In particular, let \(P(m, i) \triangleq P\left(w\left(g_{2m}^{(i)}\right) = w\left(h_{2m}^{(i)}\right)\right) \). So if \(d = d_{\min} \), \(6\) can be rewritten as

\[E\left[N_{\min}(U \times T \times H)\right] = \sum_{1 \leq j \leq K \atop w(h_N^{(i)}) = d_{\min}(U \times H)} 2^{K-j} P(m, I_j) \]

(8)

Let \(A_d \) denote the number of codewords in \(C_N^{(i)} \{0^{i-1}, 1\} \) with Hamming weight \(d \). Clearly, \(2^{N-1} P(m, i) = A_d \), \(2^{N-1} P(m, i, d) = A_d \). In \[21\] \[22\], the authors propose recursive formulas to calculate the weight spectrum of Polar cosets.

In \textbf{Theorem 1} and \textbf{Theorem 2}, we investigate the recursive formulas for \(P(m, i) \) and \(P(m, i, d) \), which are similar to the formula in \[22\]. But instead of Polar cosets, we are interested in the pre-transformed Polar codes. For the completeness of the paper, the proofs are in the appendix.

\textbf{Theorem 1.}

\[P(m, i) = \begin{cases} \frac{2^{w(h_N^{(i)})}}{2^{2m-i}} P(m-1, i) & 1 \leq i \leq 2^{m-1} \\ P(m-1, i-2^{m-1}) & 2^{m-1} < i \leq 2^m \end{cases} \]

(9)

with the boundary conditions \(P(1, 1) = P(1, 2) = 1 \).

With \(5\) and \(9\), we can recursively calculate the average number of minimum-weight codewords. We are also interested in other low-weight codewords on the weight spectrum, since together they determine the ML performance at high SNR. The problem boils down to evaluating the more general formula of \(P(m, i, d) \). As we will see in \textbf{Theorem 2}, the average weight spectrum can be calculated efficiently in the same recursive manner especially for codewords with small Hamming weight.

\textbf{Theorem 2.} If \(1 \leq i \leq 2^{m-1} \)

\[P(m, i, d) = \sum_{d' = w(h_{2m}^{(i)}) \atop d' \text{is even}}^{d} P(m-1, i, d') \]

(10)

\[\text{if } \frac{2^{m-1}}{d} < i \leq 2^m \]

with the boundary conditions \(P(1, 1) = P(1, 2, 1) = 1 \).

\[P(m, i, d) = \begin{cases} P(m-1, i-2^{m-1}, d/2) & \text{if } d \text{ is even} \\ 0 & \text{if } d \text{ is odd} \end{cases} \]

(10)

\textbf{IV. Simulation}

In this section, we verify the correctness of the recursive formula through simulations. In particular, we employ the "large list decoding" method described in \[10\] to collect low-weight codewords. At first, we randomly generate one thousand pre-transform matrices for RM\(128, 64\), and set \(L = 5 \times 10^3 \) to count the number of minimum-weight codewords for each matrix, and obtain their average \(N_{\min} \). The result is shown in Fig. 1: \(d_{\min} = 16 \), \(N_{\min} = 2768.1 \), \(N_{\text{recursion}} = 2766.9 \).

To show that our recursive formula is applicable for any sub-channel selection criterion we also construct Polar code \(128, 64\) by the PW method \[12\]. The simulation result is shown in Fig. 2: \(d_{\min} = 8 \), \(N_{\min} = 272.64 \), \(N_{\text{recursion}} = 272 \).

As seen, the recursively calculated minimum-weight codeword numbers are very close to ones obtained through simulation.

In Table. I, we display the number of minimum codewords of the original RM/Polar codes, and the average number is recursively calculated. It is shown that pre-transforming significantly reduces the number of minimum-weight code words, especially in RM\(128, 64\). The significant improvement of weight spectrum after pre-transformation explains why the CA-Polar, PC-Polar, and PAC codes outperform the original Polar codes under list decoding with large list size.

The improvement can be observed under different code lengths and rates, as we can see from Fig. 3. In all cases, pre-transformation reduces the number of minimum codewords significantly.
In addition to minimum-weight codewords, we also simulate to verify the accuracy of the formula for other low-weight codewords. The simulation results are shown in Table II for RM(128, 64) and PW(128, 64) respectively, where \(N_{\text{sim}} \) is the simulation results, and \(N_{\text{recur}} \) is the calculation results. In parity-check (PC) codes [4], both reliability and code distance are taken into consideration when selecting the information set. A coefficient \(\alpha \) is used to control the trade-off between reliability and code distance. The larger \(\alpha \) is, the greater code distance is. A parity check pattern can be considered as a realization of the pre-transformation matrix. Take PC-Polar (128, 64) \((\alpha = 1.5)\) as an example, we calculate the average number of low-weight codewords. The result implies that pre-transformation of the pre-transformed code can increase the minimum code distance when the information set is properly chosen, that is, reducing the number of original minimum-codewords to zero. The spectrum of the code ensemble average, the original code and a realization of the pre-transformed code are shown in Table III. In this case, although some rows of \(H_N \) with Hamming weight 8 are selected into the information set, PC-Polar codes can increase the minimum distance from 8 to 12.

Table I

Minimum-weight codewords	\(d_{\text{min}} \)	Original	Pre-transformed
RM(128,64)	16	94488	2767
PW(128,64)	8	304	272

Table II

	RM(128,64)	PW(128,64)			
\(d \)	\(N_{\text{sim}} \)	\(N_{\text{recur}} \)	\(d \)	\(N_{\text{sim}} \)	\(N_{\text{recur}} \)
16	2764.5	2766.9	8	272.2	272
18	397.1	393.5	12	896.6	896
20	80251	80182	16	76812.2	77111

Note that \(N_{10} = N_{14} = 0 \) for PW(128, 64)

Table III

	Average	Original	Pre-transformed
8	0.5	32	0
10	0.0547	0	0
12	0.395	0	48
14	0.27	128	28
16	0.5250	57048	5228

Fig. 4 and Fig. 5 provide the BLER performances of various constructions under different list sizes, with reference to finite-length performance bounds such as normal approximation (NA), random-coding union (RCU) and meta-converse (MC) bounds [6] [24] [25]. It is observed that reliability is the only contributing factor to decoding performance under SC decoding. Under SCL decoding with list size \(L = 8 \), the PC-Polar codes \((\alpha = 1.5)\) strike a good balance between reliability
and distance, and shows the best decoding performance. When the list size is large enough, both PAC and PC-Polar codes can approach NA bound with their ML performances.

V. CONCLUSION

In this paper, we propose recursively formulas to efficiently calculate the average weight spectrum of pre-transformed Polar codes, which include CA-Polar, PC-Polar and PAC codes as special cases. It is worth mentioning that our formulas work for any sub-channel selection criteria. We found that, with pre-transformation, the average number of minimum codewords decreases significantly, therefore outperforming the original RM/Polar codes under the ML decoding and SCL decoding with large list sizes. Furthermore, as in the instance of PC-Polar codes ($\alpha = 1.5$), the combination of a proper sub-channel selection and pre-transformation has the potential to increase minimum code distance by eliminating minimum-weight codewords.

REFERENCES

[1] E. Arıkan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
[2] I. Tal and A. Vardy, "List Decoding of Polar Codes," in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.
[3] K. Niu and K. Chen, "CRC-Aided Decoding of Polar Codes," in IEEE Communications Letters, vol. 16, no. 10, pp. 1668-1671, October 2012.
[4] J. Zhang et al., "Parity-Check Polar Coding for 5G and Beyond," 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, 2018, pp. 1-7.
[5] E. Arıkan, "From sequential decoding to channel Polarization and back again," arXiv:1908.09594 September 2019.
[6] Y. Polyanskiy, H. V. Poor and S. Verdu, "Channel Coding Rate in the Finite Blocklength Regime," in IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
[7] H. Yao, A. Fazeli and A. Vardy, "List Decoding of Arıkan’s PAC Codes," 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 2020, pp. 443-448.
[8] B. Li, H. Zhang, J. Gu, "On Pre-transformed Polar Codes," arXiv:1912.06359, December 2019.
[9] C. Schürr, "A partial order for the synthesized channels of a polar code," 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, 2016, pp. 220-224.
[10] R. Mori and T. Tanaka, "Performance of Polar Codes with the Construction using Density Evolution," in IEEE Communications Letters, vol. 13, no. 7, pp. 519-521, July 2009.
[11] P. Trifonov, "Efficient Design and Decoding of Polar Codes," in IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012.
[12] G. He et al., "β-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017, pp. 1-6.
[13] B. Li, H. Shen, D. Tse, "A RM-Polar Codes," arXiv:1407.5483, Jul 2014.
[14] L. Huang, H. Zhang, R. Li, Y. Ge, J. Wang, "Reinforcement Learning for Nested Polar Code Construction," arXiv:1904.07511, Nov 2019.
[15] L. Huang, H. Zhang, R. Li, Y. Ge and J. Wang, "AI Coding: Learning to Construct Error Correction Codes," in IEEE Transactions on Communications, vol. 68, no. 1, pp. 26-39, Jan. 2020.
[16] B. Li, H. Shen and D. Tse, "An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check," in IEEE Communications Letters, vol. 16, no. 12, pp. 2044-2047, December 2012.
[17] Z. Liu, K. Chen, K. Niu and Z. He, "Distance spectrum analysis of polar codes," 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014, pp. 490-495.
[18] M. Valipour and S. Yousefi, "On Probabilistic Weight Distribution of Polar Codes," in IEEE Communications Letters, vol. 17, no. 11, pp. 2120-2123, November 2013.
[19] Q. Zhang, A. Liu and X. Pan, "An Enhanced Probabilistic Computation Method for the Weight Distribution of Polar Codes," in IEEE Communications Letters, vol. 21, no. 12, pp. 2562-2565, Dec 2017.
[20] H. Yao, A. Fazeli, A. Vardy, "A Deterministic Algorithm for Computing the Weight Distribution of Polar Codes," arXiv:2102.07362, Feb 2021.
[21] K. Niu, Y. Li, W. Wu, "Polar Codes: Analysis and Construction Based on Polar Spectrum," arXiv:1908.05889, Nov 2019.
[22] R. Polyanskiy, M. Davletshin and N. Polyanskiy, "Weight Distributions for Successive Cancellation Decoding of Polar Codes," in IEEE Transactions on Communications, vol. 68, no. 12, pp. 7326-7336, Dec. 2020.
[23] P. Trifonov and V. Miloslavskaya, "Polar codes with dynamic frozen symbols and their decoding by directed search," Proc. IEEE Information Theory Workshop, pp. 1-5, Sevilla, Spain, September 2013.
[24] J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. Guillén i Fàbregas and A. Lancho, "Saddlepoint approximations of lower and upper bounds to the error probability in channel coding," 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, 2018, pp. 1-6.
[25] G. Vazquez-Vilar, A. G. i Fabregas, T. Koch and A. Lancho, "Saddlepoint Approximation of the Error Probability of Binary Hypothesis Testing," 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, 2018, pp. 2306-2310.
A. Proof of Theorem 1

Proof. A trivial examination can prove the correctness of the boundary conditions. Let us focus on deriving the recursive formula.

Case 1: $1 \leq i \leq 2^{m-1}$

$$g_{2^m}^{(i)} = h_{2^m}^{(i)} + \sum_{j=1+1}^{2^{m-1}} T_{ij} h_{2^m}^{(j)} + \sum_{j=2^{m-1}+1}^{2^m} T_{ij} h_{2^m}^{(j)}$$

Let $h_{2^m}^{(i)} \oplus \sum_{j=1+1}^{2^{m-1}} T_{ij} h_{2^m}^{(j)} \oplus [X, 0]$, $\sum_{j=2^{m-1}+1}^{2^m} T_{ij} h_{2^m}^{(j)} \oplus [Y, Y]$, where 0 is an all-zero row vector of length 2^{m-1}, $X = (x_1, \ldots, x_{2^{m-1}}), Y = (y_1, \ldots, y_{2^{m-1}})$.

Apparently, X and Y are independent, and $\forall a = (a_1, \ldots, a_{2^{m-1}}) \in \{0, 1\}^{2^{m-1}}$, $P(Y = a) = 2^{2^{m-1}}$. Let $w(X) = d_1$, $w(Y) = d_2$, and c be the number of positions where X and Y are both 1. We have

$$w(g_{2^m}^{(i)}) = w([X \oplus Y, Y]) = w(X \oplus Y) + w(Y) = d_1 + 2d_2 - 2c$$

Because $d_2 \geq c$ and $d_1 \geq w(h_{2^m}^{(i)})$ [9, corollary 1], the equation $w(g_{2^m}^{(i)}) = d_1 + 2d_2 - 2c = w(h_{2^m}^{(i)})$ holds if and only if $d_1 = w(h_{2^m}^{(i)})$, $d_2 = c$. In fact, $d_2 = c$ implies that if $x_i = 0$ then $y_i = 0$, $1 \leq i \leq 2^{m-1}$. Let $\{i_1, \ldots, i_{d_1}\}$ denote the d_1 locations where $x_{i_1}, \ldots, x_{i_{d_1}} = 1$, hence the recursive formula is

$$P(m, i) = P(d_1 = w(h_{2^m}^{(i)})) \ast P(d_2 = c | d_1 = w(h_{2^m}^{(i)}))$$

$$= P(m - 1, i) \ast P(y_{i_1}, \ldots, y_{i_{d_1}} \in \{0, 1\}^{d_1}, y_i = 0 \text{ otherwise})$$

$$= P(m - 1, i) \ast \frac{2d_1}{2^{2^{m-1}}}$$

$$= P(m - 1, i) \ast \frac{2w(h_{2^m}^{(i)})}{2^{2^{m-1}}}$$

Case 2: $2^{m-1} < i \leq 2^m$

$$g_{2^m}^{(i)} = \left[h_{2^m}^{(i)} \oplus \sum_{j=1+1}^{2^{m-1}} T_{ij} h_{2^m}^{(j)} \right]$$

$$= \left[h_{2^m-1}^{(i-2^{m-1})} \oplus \sum_{j=1+1}^{2^{m-1}} T_{ij} h_{2^m-1}^{(j-2^{m-1})}, h_{2^m-1}^{(i-2^{m-1})} \oplus \sum_{j=1+1}^{2^{m-1}} T_{ij} h_{2^m-1}^{(j-2^{m-1})} \right]$$

$$\oplus \left[g_{2^m-1}^{(i-2^{m-1})}, g_{2^m-1}^{(i-2^{m-1})} \right]$$

where $X_1 \sim X_2$ means X_1, X_2 have the same distribution.

B. Proof of Theorem 2

Proof. (10) is obtained with the observation that $w(h_{N}^{(i)})$ is odd and $\forall i > 1$, $w(h_{N}^{(i)})$ is even.

Case 1: $1 \leq i \leq 2^{m-1}$

Similar to the proof of Theorem 1, let $w(X) = d_1$, $w(Y) = d_2$ and c be the number of positions where X and Y are both 1. Denoted by $V = \{v_1, \ldots, v_c\}$ the set of positions where X and Y are both 1, and V^c its complement. Let Y_v denote the corresponding subvector of Y, we have $w(Y_v) = d_2 - c$. Because

$$w(g_{2^m}^{(i)}) = w([X \oplus Y, Y]) = w(X \oplus Y) + w(Y) = d_1 + 2d_2 - 2c = d$$

then $d_2 - c = \frac{d - d_1}{2}$, so $d - d_1$ must be even. No matter what c is, the equation is satisfied if and only if $w(Y_v) = \frac{d - d_1}{2}$.

Based on the above observations, $P(m, i, d)$ can be formulated as

$$P(m, i, d) = \sum_{d' = w(h_{2^m}^{(i)})}^{d} P(m, i, d | w(X) = d') \ast P(w(X) = d')$$

$$= \sum_{d' = w(h_{2^m}^{(i)})}^{d} P(m, i, d | w(X) = d') \ast P(m - 1, i, d')$$

The last equality holds due to $X \sim g_{2^{m-1}}^{(i)}$.

In particular

$$P(m, i, d | w(X) = d') = P \left(w(Y_v) = \frac{d - d_1}{2} \right) = 2^{2^d} \left(\frac{2^{2^{m-1}} - d'}{2^{2^{m-1}}} \right)$$

Consequently, the recursive formula is

$$P(m, i, d) = \sum_{d' = w(h_{2^m}^{(i)})}^{d} P(m - 1, i, d') \ast \frac{2^{2^d} \left(\frac{2^{2^{m-1}} - d'}{2^{2^{m-1}}} \right)}{2^{2^{m-1}}}$$

Case 2: $2^{m-1} < i \leq 2^m$, according to (11)

$$g_{2^m}^{(i)} = \left[g_{2^m-1}^{(i-2^{m-1})}, g_{2^m-1}^{(i-2^{m-1})} \right]$$

It is straightforward to obtain the recursive formula

$$P(m, i, d) = P(m - 1, i - 2^{m-1}, d/2)$$

