METHODOLOGY

Identifying model error in metabolic flux analysis – A generalized least squares approach

Stanislav Sokolenko, Marco Quattrociocchi and Marc G Aucoin

*Correspondence: maucoin@uwaterloo.ca
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, ON, Canada
Full list of author information is available at the end of the article

Additional file 2 – Model definition
The model used in this work was largely taken from [1] with only minimal changes (listed in the Materials and Methods section of the manuscript). A full list of reactions is presented below with a rough outline of material flow in figure 1.

Glycolysis and PPP

Reaction	Species
HK	Glc + ATP \rightarrow ADP + G6P
FBA	G6P + ATP \rightarrow ADP + 2 DHAP
PK	DHAP + 2 ADP + NAD + P \rightarrow 2 ATP + NADH + Pyr + H$_2$O
PPP	G6P + 2 NADP + H$_2$O \rightarrow 2 NADPH + R5P + CO$_2$

HK hexokinase

FBA fructose-biphosphate aldolase

PK pyruvate kinase

PPP pentose phosphate pathway

Pyr and AcCoA

Reaction	Species
LDH	Pyr + NADH \rightarrow Lac + NAD
ACAS	mAcCoA + \rightarrow mCoA + AcOH
ME	Mal + NADP \rightarrow Pyr + CO$_2$ + NADPH
PDH	mPyr + mCoA + NAD \rightarrow mAcCoA + NADH + CO$_2$

LDH lactate dehydrogenase

ACAS acetyl-coa synthetase

ME NADP-malic enzyme

PDH pyruvate dehydrogenase

TCA cycle

Reaction	Species
CS	mAcCoA + mOxal + H$_2$O \rightarrow mCit + mCoA
	mCit + NAD \rightarrow mAKG + NADH + CO$_2$
AKGDH	mAKG + mCoA + NAD \rightarrow mSucCoA + NADH + CO$_2$
SCS	ADP + mSucCoA + P \rightarrow ATP + mCoA + mSuc
	mFAD + mSuc + H$_2$O \rightarrow mFADH + mMal
mMalDH	mMal + NAD \rightarrow mOxal + NADH
cMalDH	NADH + Oxal \rightarrow Mal + NAD
CS citrate synthase
AKGDH alpha-ketoglutarate dehydrogenase
SCS succinyl-coa synthetase
mMalDH mitochondrial malate dehydrogenase
cMalDH cytosolic malate dehydrogenase

Glutaminolysis

ALT	Glu + Pyr \rightarrow AKG + Ala
GLDH	mGlu + NAD + H$_2$O \rightarrow Amm + mAKG + NADH
GS	Glu + ATP + Amm \rightarrow Gln + ADP + P
AST	Glu + Oxal \rightarrow Asp + AKG
	Glu \rightarrow Pgl

ALT alanine transaminase
GLDH glutamate dehydrogenase
GS glutamine synthetase
AST aspartate transaminase

Amino acid degradation

SDH	Ser \rightarrow Pyr + Amm
SHMT	Ser + FH$_4$ \rightarrow Gly + N$_5$N$_{10}$methyleneFH$_4$ + H$_2$O
GCS	CO$_2$ + Amm + N$_5$N$_{10}$methyleneFH$_4$ + NAD \rightarrow Gly + FH$_4$ + NAD
	Thr + mCoA + NAD \rightarrow Gly + mAcCoA + NADH
	Cys + AKG \rightarrow Glu + Pyr
	His + FH$_4$ + NADPH + 2 H$_2$O \rightarrow
	Glu + N$_5$N$_{10}$methyleneFH$_4$ + NADP + 2 Amm
	Arg + AKG + NAD + 2 H$_2$O \rightarrow 2 Glu + NADH
	Pro + 2 NAD + 2 H$_2$O \rightarrow Glu + 2 NADH
ASNS	Asn + H$_2$O \rightarrow Amm + Asp
	Ile + AKG + ATP + 2 mCoA + mFAD + 2 NAD + H$_2$O \rightarrow
	mSucCoA + Glu + mAcCoA + ADP + P + mFADH + 2 NADH
	Leu + ATP + AKG + NAD + mCoA + mFAD + H$_2$O + mSucCoA \rightarrow
	2 mAcCoA + mSuc + Glu + NADH + mFADH + ADP + P
	Lys + AKG + 2 mCoA + 0.5 O$_2$ + 2 H$_2$O + 2 mFAD + 2 NAD \rightarrow
	Glu + 2 mAcCoA + 2 CO$_2$ + Amm + 2 mFADH + 2 NADH
	Met + Ser + 3 ATP + FH$_4$ + 2 NAD + ATP + mCoA + 4 H$_2$O \rightarrow
	mSucCoA + Cys + Amm + 3 ADP + 3 P + N$_5$N$_{10}$methyleneFH$_4$ + 2 NADH + ADP
PAH	Phe + NADPH + O$_2$ \rightarrow Tyr + NADP + H$_2$O
	Trp + 2 mCoA + 3 O$_2$ + 4 H$_2$O + NADPH + 3 NAD + mFAD \rightarrow
	2 mAcCoA + 4 CO$_2$ + Ala + NADP + 3 NADH + mFADH + Amm
	Tyr + AKG + mCoA + mSucCoA + 2 O$_2$ + 2 H$_2$O \rightarrow
	Glu + Mal + 2 mAcCoA + mSuc + CO$_2$
	Val + AKG + 2 ATP + mCoA + mFAD + 3 NAD + 4 H$_2$O \rightarrow
	mSucCoA + Glu + 2 ADP + 2 P + mFADH + 3 NADH + CO$_2$
SDH serine dehydratase
SHMT serine hydroxymethyltransferase
GCS glycine cleavage system
ASNS asparagine synthetase
PAH phenylalanine hydroxylase

Macromolecules

| Carb | G6P + 3.5 ATP \(\rightarrow\) Carb + ADP
| OA | 9 mCit + 9 Mal + 17 ATP + 17 NADPH + 9 NADH + O\(_2\) \(\rightarrow\)
| DNA | 1.9 Gln + 1.3 Asp + 7.5 ATP + 0.5 Gly + 1.3 N\(_5\)N\(_{10}\)methyleneFH\(_4\) +
| RNA | 2.091 Gln + 1.194 Asp + 7.487 ATP + 0.489 Gly + 0.978 N\(_5\)N\(_{10}\)methyleneFH\(_4\) +
| Prot | 0.095 Ala + 0.048 Asp + 0.039 Asn + 0.063 Arg + 0.028 Cys +

Misc.

| mMal + AKG \(\rightarrow\) mAKG + Mal
| mMal + Cit \(\rightarrow\) mCit + Mal
| GLAST Glu \(\rightarrow\) mGlu
| MPC Pyr \(\rightarrow\) mPyr
| FH\(_4\) + FoOH + ATP + NADH \(\rightarrow\) ADP + P + NAD + N\(_5\)N\(_{10}\)methyleneFH\(_4\)

GLAST glutamate aspartate transporter
MPC mitochondrial pyruvate carrier

Phosphorylation

| 3 ADP + NADH + 0.5 O\(_2\) + 3 P \(\rightarrow\) 3 ATP + NAD + 4 H\(_2\)O
| 2 ADP + mFADH + 0.5 O\(_2\) + 2 P \(\rightarrow\) 2 ATP + mFAD + 2 H\(_2\)O
Figure 1 Outline of metabolic network used in this work. A number of intermediate compounds have been omitted to clarify overall material flow.
References
1. Altamirano, C., Illanes, A., Casablancas, A., Gámez, X., Cairó, J.J., Gódia, C.: Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnology Progress 17(6), 1032–41 (2001). doi:10.1021/bp0100981