Tetravalent doping of CeO$_2$: The impact of valence electron character on group IV dopant influence.

D. E. P. Vanpoucke,1,2 S. Cottenier,1,2,3 V. Van Speybroeck,2 I. Van Driessche,1 and P. Bultinck1

1Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
2Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
3Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

(Dated: November 15, 2013)

Fluorite CeO$_2$ doped with group IV elements is studied within the DFT and DFT+U framework. Concentration dependent formation energies are calculated for Ce$_{1-x}$Zr$_x$O$_2$ (Z= C, Si, Ge, Sn, Pb, Ti, Zr, Hf) with 0 ≤ x ≤ 0.25 and a roughly decreasing trend with ionic radius is observed. The influence of the valence and near valence electronic configuration is discussed, indicating the importance of filled d and f shells near the Fermi level for all properties investigated. A clearly different behavior of group IVa and IVb dopants is observed: the former are more suitable for surface modifications, the latter are more suitable for bulk modifications.

For the entire set of group IV dopants, there exists an inverse relation between the change, due to doping, of the bulk modulus and the thermal expansion coefficients. Hirshfeld-I atomic charges show that charge transfer effects due to doping are limited to the nearest neighbor oxygen atoms.

I. INTRODUCTION

Over the last two decades, interest in ceria based materials has grown steadily. The facile Ce$^{4+} \rightarrow$ Ce$^{3+}$ redox conversion in combination with the fact that CeO$_2$ retains its fluorite crystal structure even with significant degrees of reduction makes ceria based materials ideal for controlling the oxygen atmosphere in three-way catalysts. Furthermore, the introduction of dopants like Zr has been shown to increase the oxygen storage capacity, increasing the range of practical applicability. The remarkable redox properties of CeO$_2$ make ceria based materials also of interest in several other industrially important applications, such as: catalytic support, thermal barrier coatings, ionic conductors and fuel cells. More recently, CeO$_2$ and ceria based materials have been used as thin film buffer layers in YBa$_2$Cu$_3$O$_{7−δ}$ coated superconductors.

For all these applications there is a constant search for ways to improve the properties of ceria based materials even further. One of the most common ways for such improvements is through the introduction of dopants, with regimes ranging from light doping (<1%) to mixed oxides containing 50% dopants or more. Different applications also require different properties to be optimized. Unfortunately, optimization towards one application may worsen the performance of the system for another. As an example, for ionic conductors one wishes to maximize the ionic conductivity, while for a buffer layer one often wishes to minimize this quantity. Such opposing and varying requirements make a more general theoretical study of the influence of dopants on the properties of CeO$_2$ of general interest. This is the particular aim of the present paper.

Experimentally, lanthanide elements are most often studied as dopants, in addition to standard catalyst d-block metals (Au, Pd, Cu, ...). Since all these elements can act as aliovalent dopants, charge compensating oxygen vacancies are introduced, contributing to the changes in the CeO$_2$ properties. To have a clear understanding of the influence dopants have on the properties of CeO$_2$, it is important to separate the contributions of these two structural changes; i.e. to distinguish between the consequences of doping and the subsequently introduced charge compensating vacancies. Theoretical calculations are ideally suited to separate the different contributions. Due to the tetravalent nature of Ce in CeO$_2$, group IV elements are the perfect starting point for such investigations.

Only few studies addressed group IV dopants in ceria based materials, although for example silica is a widely used catalyst support. This limited experimental work originates from the difficulty of forming solid solutions with CeO$_2$ in a controlled way. Improved redox properties compared to pure and Zr doped CeO$_2$ have been presented for mixed CeO$_2$-SiO_2 and CeO$_2$-SnO_2 materials. Andersson et al. studied the redox properties of tetravalent dopants at low dopant concentrations of 3% and found a correlation between the reducibility and the dopant’s ionic radius. Tang et al. investigated the redox properties of tetravalent dopants (Mn, Pr, Sn and Zr) and linked the lower oxygen vacancy formation energy to structural distortions and electronic modifications. Yashima studied tetragonal crystal phases of Ce$_{1−x}$Zr$_x$O$_2$ and found a tetragonal phase to appear for Zr concentrations ≥ 37.5%, and a cubic phase with displaced O atoms at lower concentrations.

We previously found Vegard law behavior for group IV doped CeO$_2$ and proposed the Shannon crystal radius instead of the ionic radius as parameter for the lattice expansion. In the present paper, we investigate the modification of the mechanical properties of CeO$_2$ due to doping
with group IV elements using density functional theory (DFT). We show there is a difference in energetics for doping between group IVa and IVb elements, and link this to the different valence electronic structure. An inverse relation between the bulk modulus and the thermal expansion coefficients is presented and the change in the charge distribution around the dopants discussed. Technical details of the computational methods used are provided in appendix A.

II. RESULTS AND DISCUSSION

A. Defect formation energies

The stability of the different group IV doped fluorite CeO$_2$ systems is investigated through the comparison of the defect formation energies E_f, which are calculated as:

$$E_f = E_{\text{Ce$_{1-z}$Z$_z$O$_2$}} - E_{\text{CeO$_2$}} + N_{df}(E_{\text{Ce}} - E_Z),$$

(1)

with N_{df} the number of substituent atoms in the system, $E_{\text{Ce$_{1-z}Z_zO_2$}}$ the total energy of the relaxed doped system, $E_{\text{CeO$_2$}}$ the total energy of a CeO$_2$ fluorite supercell of equal size, E_{Ce} and E_Z the energy per atom of bulk α-Ce and the bulk phase of the substituent element Z. Larger positive values of E_f indicate that more energy is required for doping. Pure Ce metal has several different phases depending on the external pressure and temperature. In our case we chose to use the α-phase, since the calculations are performed at zero temperature and pressure. The used crystal structure of the dopant element bulk phase is presented in appendix A. Table I shows that E_f varies only slightly with dopant concentration. For cells with a dopant concentration of 3.125% E_f is also calculated within the DFT+U framework, using the LDA/PBE optimized geometry and a Hubbard U= 5 eV for the Ce f electrons. As can be seen in Table II the formation energies are slightly larger in the DFT+U framework, although they do not change the relative stability of the systems compared to the pure LDA/PBE results. For different substituent elements the formation energies show a spread over quite a large range, with roughly 20 eV/atom required to imbed a C atom, down to merely 0.1 eV/atom required to imbed a Hf atom. This shows that none of the group IV elements increase the stability of CeO$_2$. A direct comparison with experiment is not straightforward, since ab initio calculations do not account for effects of pressure and temperature. In addition, during the experimental preparation of a compound there are often several steps (thermal and/or mechanical treatment, ...) involved which provide additional energy to the system that enable the formation of metastable doped systems. For example, in experiments one observes that oxygen vacancies form spontaneously in CeO$_2$ cubic fluorite although ab initio simulations

Table I: Crystal structure of the reference bulk and oxide materials used.

Element	Structure	Pearson Symbol	Space Group
C	diamond	cF8	Fd3m
Si	diamond	cF8	Fd3m
Ge	diamond	cF8	Fd3m
Sn	diamond	cF8	Fd3m
Pb	face centered cubic	cF4	Fm3m
Ti	hexagonal close packed	hP2	P63/mmc
Zr	hexagonal close packed	hP2	P63/mmc
Hf	hexagonal close packed	hP2	P63/mmc
CO$_2$	dry ice	cP12	Pn3
SiO$_2$	α-quartz	cF8	P3$_2$1
GeO$_2$	rutile (argutite)	tP6	P4$_2$/mm
SnO$_2$	rutile (cassiterite)	tP6	P4$_2$/mm
PbO$_2$	rutile (plattnerite)	tP6	P4$_2$/mm
TiO$_2$	Anatase	tI12	I$_1$/amn
ZrO$_2$	Baddeleyite	mP12	P12$_1$/c1
HfO$_2$	monoclinic(Baddeleyite)	mP12	P12$_1$/c1

Table II: Defect formation energy for group IV dopants at different concentrations.

Element	E_f(eV)	25%	12.5%	3.704%	3.125%
CeO$_2$	LDA	-11.484a	-	-	-
C	20.435	20.654	20.747	20.748	21.088
Si	8.288	8.078	8.050	8.052	8.358
Ge	9.404	9.134	9.110	9.105	9.341
Sn	7.061	6.866	6.851	6.851	7.013
Pb	8.963	8.757	8.742	8.745	8.866
Ti	3.168	3.254	3.248	3.233	3.563
Zr	0.530	0.555	0.548	0.543	0.796
Hf	0.105	0.139	0.131	0.128	0.392

a For the DFT+U calculations a Hubbard U= 5 eV was chosen both for the LDA and PBE calculations. b Instead of the formation energy the heat of formation is given.

Defect formation energies can also be calculated with regard to dopant-oxides, and are presented in appendix B. The obtained results remain qualitatively the same as those presented below.

Table I shows that E_f varies only slightly with dopant concentration. For cells with a dopant concentration of 3.125% E_f is also calculated within the DFT+U framework, using the LDA/PBE optimized geometry and a Hubbard U= 5 eV for the Ce f electrons. As can be seen in Table II the formation energies are slightly larger in the DFT+U framework, although they do not change the relative stability of the systems compared to the pure LDA/PBE results.
The formation energy E_f for group IV doped CeO$_2$, at a dopant concentration of 3.125%. LDA (LDA+U) values are indicated as black discs (green circles), while PBE (PBE+U) values are indicated as red solid (blue empty) triangles. The oxygen vacancy formation energy (E_f O$_{vac}$) for 1.56% of oxygen vacancies is indicated as a dashed and a dashed double dotted line for LDA and PBE, respectively.

show them always to require energy. In an attempt to compare with experiment, we use our calculated oxygen vacancy formation energy as a reference. Substitutions that require the same *ab initio* computed energy as this reference, or less, are considered more likely under experimental conditions, while those requiring more, less likely. For the LDA and PBE functionals we calculated the O vacancy formation energy to be 4.035 and 3.097 eV per vacancy, respectively, at a vacancy concentration of 1.5625%, in excellent agreement with values found in literature. Comparing the 4.035 eV found for pure LDA to the 3.61 eV for LDA+U presented by Andersson et al., shows that the introduction of a Hubbard U term does not qualitatively alter the stability difference observed for the group IVa and IVb dopants. Note, however, that the pure LDA value is closer to the experimental value of 4.65–5.00 eV for bulk reduction.

For higher O vacancy concentrations higher formation energies are found, up to 5.006 and 4.145 eV for LDA and PBE respectively, at 12.5%, which is within the range of experimentally derived values.

Based on these reference energies the dopants in Table I nicely split in the “more likely bulk dopants” (group IVa) and the “less likely bulk dopants” (group IVb). In this context, group IVb dopants are likely to remain (homogeneously) dispersed in the bulk of the CeO$_2$ grains and crystals, while the group IVa dopants would likely segregate to the surface regions of the CeO$_2$ grains, or the interface regions with other materials, or cluster to form small domains of the dopant element inside CeO$_2$ crystals and grains. This makes the latter of interest for applications where tuning of surface effects is important. The former, however, are expected to remain distributed in the CeO$_2$ bulk, making them well suited for applications where CeO$_2$ bulk parameters need to be modified, or in oxide mixing experiments. These results also agree with the observation that Zr-doped CeO$_2$ is widely used and easily produced in experiments, while it is much harder to form Si and Sn doped CeO$_2$ in a controlled way.

For the group IVb elements, the formation energy decreases with increasing atomic size, showing a better size-match with Ce results in reduced system strain. The additional oscillation is interesting, and is retained even with the introduction of the Hubbard U correction. The slight increase in the formation energy for Ge and Pb coincides with the introduction of a ‘new’ filled shell, the d shell in case of Ge, and the f shell in case of Pb. This shows that not only the outer valence electrons play a role in the stability of the system but also the presence of filled shells near the Fermi level.

TABLE III: Band gaps in group IV doped CeO$_2$.a

	LDA+U	PBE+U				
	$2p$–$4f$	$2p$–$5d$	$2p$–$4f$	$2p$–$5d$		
CeO$_2$	2.45	5.35	-	2.37	5.35	
C	2.26	5.18	-0.17	2.12	5.14	-0.21
Si	2.14	5.11	3.87	2.06	5.10	3.62
Ge	2.24	5.16	1.80	2.18	5.19	1.67
Sn	2.30	5.25	3.88	2.22	5.26	3.65
Pb	2.38	5.29	1.79	2.29	5.29	1.61
Ti	2.36	5.62	4.18	2.27	5.05	3.82
Zr	2.42	5.19	4.63	2.33	5.19	4.44
Hf	2.41	5.48	5.37	2.32	5.43	5.25

*a Size of the Ce$_{1-x}$Zr$_x$O$_2$ (with $x = 0.03125$) band gaps between the O 2p and Ce 4f bands and between the O 2p and Ce 5d bands (cf. Figs. 2 and 3). The position of the gap state (gs) with regard to the valence band edge is given for the group IVa elements (s state), and the group IVb elements (d state). All values are given in eV.

We investigated the influence, at low concentration ($x = 3.125\%$), of group IV dopants on the density of states (DOS) of Ce$_{1-x}$Zr$_x$O$_2$, within the DFT+U framework. Due to the low concentration, the general shape of the DOS is comparable to the DOS of pure CeO$_2$: there is a conduction band of unoccupied Ce 4f states in the band gap between the O 2p valence band and Ce 5d conduction band (e.g. Fig. 2 and 3). Table III shows that the band gap between the unoccupied Ce 4f states and the O 2p valence band is always smaller than for pure CeO$_2$. Excluding C, we find for both group IVa and IVb dopants an increase in the band gap size with the atomic number (within each group). The same behavior is ob-
FIG. 2: (Color online) The total DOS for Ce$_{0.96875}$Si$_{0.03125}$O$_2$, indicating important features (top). The 3s and 3p Si local density of states, showing the origin of the gap state and atomic state below the O 2p band (middle). The 2p O local density of states for the 8 nearest neighbor (NN) O atoms surrounding the Si dopant, and a O atom far away from the dopant (bottom). The upper and lower panels present the spin up and spin down channels, respectively. The calculations were performed within the DFT+U framework.

FIG. 3: (Color online) The total DOS for Ce$_{0.96875}$Zr$_{0.03125}$O$_2$, indicating important features (top). The 5s and 4d Zr local density of states, showing the origin of the gap state and atomic state below the O 2p band (middle). The 2p O local density of states for the 8 nearest neighbor (NN) O atoms surrounding the Zr dopant, and a O atom far away from the dopant (bottom). The upper and lower panels present the spin up and spin down channels, respectively. The calculations were performed within the DFT+U framework.

served for the O 2p–Ce 5d band gap. Comparison of the LDA+U and PBE+U results in Table III shows that the trends are independent of the functional used. In case of the group IVa elements, there is an atomic band roughly 2 eV below the O 2p band (e.g. Fig. 2). From the local DOS (LDOS) it is clear that this localized state is a combination of the dopant s state and the O 2p state of the O ions surrounding the dopant. This is shown for Si doping in Fig. 2 and agrees well with the work of Andersson et al., where a symmetry broken configuration was studied. In contrast to that work we also observe such a localized combined state in the 2p–5d band gap (cf. Fig. 2). Closer investigation reveals that both bands
each integrate to two electrons, indicating that this is a pair of bonding and anti-bonding states. To investigate this discrepancy the LDOS for a symmetry broken configuration \((\text{CeO}_2, \text{SiO}_3, \text{O}_2)\) was calculated. With the exception of the Ce 4f gap state, due to the presence of an oxygen vacancy in the structure of Andersson et al.\(^2\) we obtained qualitatively the same LDOS as was reported by these authors. This indicates that our observed s–p gap state originates from the different chemical environment for the Si dopant. However, it remains unclear to us if this state simply vanished upon symmetry breaking, or merely merged with the Ce 5d band. The work of Tang et al. on Sn doped CeO\(_2\) also shows the appearance of such atomic states below the O 2p band and in the band gap.\(^3\) Furthermore, Tang et al. show that the gap state lies under the Fermi level when an oxygen vacancy next to the dopant is created, showing the excess electrons to transfer to the group IVa dopant. Table III shows the position of these gap states with regard to the valence band edge. This shows that only for C doping this state is occupied and is located at the edge of the valence band (hence the negative value). For the other IVa elements the band is either located above or below the unoccupied Ce 4f band. The relation between these gap states and the atomic state below the O 2p valence band becomes even clearer due to the strong correlation of their position, placing the atomic states for the Ge and Pb doped systems roughly 0.7 eV below those of the Si and Sn doped systems.

In the LDOS of the heavier group IVa elements also filled d (Ge, Sn) and f (Pb) states near the Fermi level are observed, in line with the behavior expected from the calculated formation energies (cf. Table III), gap state positions (cf. Table III) and mechanical properties (cf. Table IV).

For the group IVb elements no atomic state below the O 2p valence band is present, only a gap state above the unoccupied Ce 4f band is observed (e.g. Fig. 3). This state moves toward the Ce 5d band, with increasing ionic size of the dopant (cf. Table III). For the Ti and Zr dopants the band integrates to 6 and 4 electrons, respectively. In case of the Hf dopant this band shows a small overlap with the Ce 5d band, and the number of electrons is estimated to be in the range of that found in Ti and Zr doped ceria. Just as for the IVa elements, this localized state is a combination with O 2p states of the O ions surrounding the dopant, as is shown for Zr in Fig. 3.

Additionally, the DOS and LDOS of systems with a dopant concentration of 25% were investigated within the pure DFT framework. We found qualitatively similar results, showing the presence of d and f states just below the Fermi-level for group IVa dopants with filled d and f shells.

For the group IVa dopants (except C), the presence of s-type conduction states results in a serious reduction of the 2p–4f band gap, compared to the low concentration systems. Furthermore, the position of the maximum of these s bands appears correlated with the defect formation energies.

In case of the group IVb dopants, on the other hand, the 2p–4f band gap does not change with the dopant concentration. Similar as for the low concentration systems, the unoccupied Ce 4f band contains a significant contribution of the group IVb dopant d-state (cf. Fig. 3).

As a result, the clearly better stability of the group IVb doped systems, may be attributed to the better resemblance of the dopant LDOS to the LDOS of Ce. In addition, the reduction of the 2p–4f band gap width in the group IVa doped systems, and its correlation to the defect formation energy suggests that either the 2p–4f band gap is important for the stability of the system, or that the presence of s states near the Fermi-level is detrimental for its stability.

TABLE IV: Calculated bulk moduli and thermal expansion coefficients for group IV doped CeO\(_2\).\(^2\)

Dopant	\(B_0\) (Mbar)	\(\alpha\) (10\(^{-6}\)K\(^{-1}\))		
CeO\(_2\)	LDA	PBE	LDA	PBE
C	1.528	1.235	16.287	20.379
Si	2.057	1.738	12.335	14.994
Ge	1.909	1.573	14.390	18.454
Sn	2.004	1.692	12.157	14.357
Pb	1.845	1.516	14.006	17.715
Ti	2.145	1.825	11.195	12.971
Zr	2.153	1.878	10.960	12.212
Hf	2.194	1.881	10.652	12.146

\(^a\) The bulk modulus (BM) \(B_0\) for CeO\(_2\) is calculated for a dopant concentration of 25%. The linear TEC \(\alpha\) is calculated at the same dopant concentration and a temperature of 500 K. The full TEC curves are shown in Fig. 4.

FIG. 4: (Color online) Volumetric (top) and linear (bottom) TECs for LDA calculations. Dopant concentrations of 25% are used.
C. Thermal expansion coefficients and bulk moduli

We investigated the influence of group IV dopants on the mechanical properties of CeO$_2$, more specifically the thermal expansion coefficient (TEC) and the bulk modulus (BM). To reduce the computational cost, cells with a dopant concentration of 25% are used.

The linear (α) and volumetric (β) TECs of the doped systems can clearly be distinguished, as is seen in figure [1]. Whereas group IVa dopants result in a significant increase of the TEC, group IVb dopants result in a status quo or a very small decrease of the CeO$_2$ TEC. In Table IV, the calculated BM and linear TEC at 500 K of doped CeO$_2$ are compared, since both the TEC and the BM give a measure for how easily a material deforms under external conditions. Doping of CeO$_2$ only has a small influence on the system’s BM, except for C. As experimentally most often lower concentrations are used, even a smaller influence is expected.

Similar as for the defect formation energies, an oscillation is seen for the BM and TEC values of group-IVa elements. For the group IVa elements, either the introduction of a filled d or f shell near the Fermi-level or the gap states in the O $2p – Ce 4f$ band gap reduces the resistance to compression (i.e. lower BM). Comparison of the BMs and TECs in Table IV shows an inverse relation between the two: an increase in the BM corresponds to a decrease in the TEC, and vice versa. However, the relative positions of Si and Sn appear reversed, as do those of Ge and Pb. Examining the TEC curves presented in Fig. 4 shows that around 250 K the order of the Sn and Ge curves switches (the same for Ge and Pb), restoring the inverse behavior of the TEC and BM for the group IVa elements at lower temperatures. Because the BM is calculated at 0 K the trend of the inverse behavior is found to be a general one. These findings agree with our expectations: First, since the BM is a measure of the resistance of a material against uniform compression/expansion, it stands to reason that a large BM will lead to a small TEC. Second, it is well known that both the BM and cohesive energy relate to the melting temperature, implying that the BM and cohesive energy correlate as well. On the other hand, the linear TEC α and the cohesive energy show an inverse correlation. As a result, an inverse correlation between the BM and linear TEC α is expected.

For practical applications, e.g. to reduce interfacial strain in a layered system through BM matching of the different layers, a linear interpolation of the presented BM could be used to obtain a first order approximation of the optimal dopant concentration. For the elements of group IVb, Table IV shows a BM that is only slightly larger than that of CeO$_2$ and that increases with the dopant atomic number. The group IVa elements show a more complex behavior (cf. above), and with the exception of Si, all lower the BM of CeO$_2$. As a result, group IV elements are not suitable as dopants if an increase of the CeO$_2$ BM is required. However, group IVa elements could be beneficial to obtain a lowered BM. In addition, the nature of the group IVa elements (cf. Sec. II A) may limit the effects to the grain boundaries or interfaces, allowing one to create a BM gradient using group IVa doped CeO$_2$.

D. Atomic charges and charge transfer

The introduction of dopants in CeO$_2$ not only influences the electronic structure at the level of bands and the density of states, but also at the level of the local charge density distribution. To investigate this effect we calculate the atomic charges in the doped systems using the Hirshfeld-I method. Table V shows the calculated charges on the dopant elements. The charge of the O and Ce atoms in pure CeO$_2$ is shown as reference.

The atomic charges for all dopants show an increase of no more than 0.05e when increasing the dopant concentration from 3.125% to 25%. This is a first indication that the influence of the dopants on the electron density distribution is quite localized. Mainly the atomic charge of the nearest neighbor O atoms changes. The atomic charges of the next nearest neighboring Ce atoms change very little due to doping (cf. Fig. 5 and Table V). The O atoms farther away from the dopant are indicated in the blue disc.
TABLE V: Hirshfeld-I charges in Ce$_{1-x}$Z$_x$O$_2$, with Z a group IV element.a

	M	O	Ce
	NN far		
CeO$_2$	−	−1.41	2.81
C	0.94	−1.17	2.79
Si	2.23	−1.30	2.79
Ge	2.33	−1.31	2.79
Sn	2.64	−1.37	2.80
Pb	2.49	−1.36	2.80
Ti	2.65	−1.37	2.80
Zr	2.97	−1.42	2.81
Hf	3.03	−1.42	2.80

a Calculated Hirshfeld-I atomic charges for Ce$_{1-x}$Z$_x$O$_2$ with $x = 3.125\%$ using LDA charge density distributions. All values are in e. The first column gives the atomic charge of the dopant Z. With regard to the dopant atom the shell of nearest and next nearest neighboring atoms (NN and NNN) consist entirely of O and Ce, respectively. The respective positions are shown in Fig. 5. The atomic charges of these atoms are compared to the charges of O and Ce atoms at a longer distance (indicated as ‘far’).

Although all dopants are tetravalent the atomic charges vary significantly. The difference in atomic charge of the dopants and Ce is almost entirely compensated by the change in atomic charge on the nearest neighbor O atoms, showing that even the nearby O-Ce bonds are barely affected by these dopants. For all group IV elements the amount of non-compensated charge is less than 0.05e per O atom in the nearest neighbor shell.

All dopants behave similarly, with carbon being the sole exception. This may be an indication of the much weaker bonds of the C atom with the surrounding O atoms than the other dopants, which is in agreement with the fact that the small C atom prefers short bonds. The small size of C (Shannon crystal radius50,51 of 0.29(0.3)Å for four (six) coordinated C) might make it very suited as an interstitial dopant or as substitutional dopant on an oxygen site, which are interesting scenarios for a study focussing on C doping of CeO$_2$, but are beyond the scope of this work.

Note, however, that even in the C case the effects remain localized to the C dopant and the surrounding O atoms in the nearest neighbor shell. The fact that the C atom loses roughly two electrons less (i.e. the two electrons remain localized on the C atom) than the other dopants and Ce to the surrounding O atoms is in line with the recent findings of Hellman et al.52 They observed that for reduced C-doped ceria the two electrons, which provided the formal charge of -II on the removed O atom, localize in C p orbitals.

From the results in Table V it appears that the group IV dopants cause no significant changes in the atomic charges beyond the nearest neighbor shell.

III. CONCLUSION

Using ab initio DFT calculations we investigated the influence of tetravalent doping on the properties of fluorite CeO$_2$. Based on the calculated defect formation energies we conclude that Ce-substitution with group IVa elements is rather unlikely, while group IVb elements are good substituents for tuning the CeO$_2$ fluorite lattice. This qualitative result is shown to be independent of the used functional and independent of the inclusion of a Coulomb correction.

Investigation of the DOS and LDOS for both high and low dopant concentrations shows that the presence of states in the O 2p–Ce 4f band gap are detrimental for the system. Low dopant concentration calculations show that group IVa dopants introduce localized gap states due to the overlap of their valence s states with the O 2p states of the surrounding O atoms. These gap states are connected to occupied atomic states below the O 2p band. These gap states also provide the means for excess electrons in reduced ceria to localize on the dopant. In case of the IVb elements the gap state is always located above the unoccupied Ce 4f band resulting in a much reduced influence on the CeO$_2$ properties.

Comparison of the bulk modulus (BM) and the thermal expansion coefficient (TEC) shows that an inverse relation between these properties exists. Also here, group IVa and IVb elements differentiate, with group IVb elements resulting only in a slight increase of the BM, while a decrease in the BM is observed for group IVa dopants.

The influence of group IV dopants on the charge distribution of the systems is very limited, and it is shown that, despite significant changes at the nearest neighbor atoms, no significant changes are observed farther away.

Throughout all results presented, the impact of the filled d and f shells located near the Fermi level is observed as oscillations in the presented trends that coincide with the introduction of a new shell. This shows that not only the outer valence electrons play a role, but also filled shells can promote significant modifications of the expected results.

Appendix A COMPUTATIONAL DETAILS

We perform ab-initio spin-polarized DFT calculations using the ab-initio Package (VASP) program. The LDA functional as parameterized by Ceperley and Alder and the GGA functional as constructed by Perdew, Burke and Ernzerhof (PBE) are used to model the exchange and correlation behavior of the electrons.53,54 This is sufficient for the mechanical and structural properties studied. To assess the influence of the strong on-site Coulomb repulsion between the Ce 4f electrons on electronic properties
such as defect formation energy and density of states, calculations are also performed within the DFT+U level framework, as formulated by Duradev et al.\cite{duradev2004} In different DFT+U studies, focused on finding an optimum value for the Hubbard U parameter for ceria, a value for U of 5–6 and 4–5 eV is suggested for LDA and GGA, respectively.\cite{duradev2004,Fausti2001} For this reason we have chosen to use an on-site Coulomb repulsion with U=5 eV for the Ce 4f electrons, for both LDA+U and PBE+U calculations. The plane wave kinetic energy cutoff is set to 500 eV.

Symmetric cells, containing a single substituent per cell are used to simulate a homogeneous distribution of dopants. Note that to have a clearer picture of the observed trends, C is also substituted at a Ce site and not at an O site, although this would be more in line with experimental expectations, as carbides of several rare earth elements, including cerium, are known.\cite{bahir1971,Yoshida2000} For all systems, the fluorite symmetry (space group \(Fm\bar{3}m\)) is maintained allowing for straightforward correlation of the observed trends and the dopant atomic properties. The cells used are the fluorite cubic \(1 \times 1 \times 1\) cell with 12 atoms (c111), the primitive \(2 \times 2 \times 2\) cell with 24 atoms (p222), the primitive \(3 \times 3 \times 3\) cell with 81 atoms (p333) and the cubic \(2 \times 2 \times 2\) cell with 96 atoms (c222). Replacing a single Ce atom with a group IV element in these specific \(\text{CeO}_2\) supercells results in dopant concentrations of 25, 12.5, 3.7037, and 3.125 \%, respectively.

The valence electron configurations considered in these systems are \(5s^25p^66s^24f^15d^1\) for Ce and \(2s^22p^4\) for O. For the group IVa dopants C and Si only the \(4s\) and \(p\) valence electrons are considered, while 10 additional \(d\) electrons are included for Ge, Sn and Pb. For the group IVb elements, the valence electron configurations considered are \(3p^64s^23d^2\), \(4s^24p^65s^24d^2\), and \(5p^66s^25d^2\) for Ti, Zr, and Hf, respectively. The crystal structure information of the reference bulk materials used for calculating defect formation energies is presented in Table I since many of these systems can have more than one (meta-)stable crystal structure.

Monkhorst-Pack special \(k\)-point grids are used to sample the Brillouin zone.\cite{Monkhorst1976} For the two smaller cells we use an \(8 \times 8 \times 8\) \(k\)-point grid while for the two large cells a \(4 \times 4 \times 4\) \(k\)-point grid is used.

To optimize the structures, a conjugate gradient method is used. During relaxation both atomic positions and cell-geometry are allowed to change simultaneously. Convergence is obtained when the difference in energy between subsequent steps is smaller than 1.0 \(\times 10^{-6}\) eV.

The thermal expansion coefficients are calculated as the numerical derivative of \(V(T)\) data. In turn, these \(V(T)\) data are obtained through minimization of the thermal non-equilibrium Gibbs function, which is calculated using the quasi-harmonic Debye approximation, and is implemented as a module in our HIVE code.\cite{Duradev2004,Fausti2001} The bulk modulus is calculated by fitting \(E(V)\) data from fixed volume calculations to the third order isothermal Birch-Murnaghan equation of state.\cite{Birch1947,Murnaghan1944}

To calculate the atomic charges of the dopant systems, we used the Hirshfeld-I approach.\cite{Hirshfeld1977,Hirshfeld1977a} Our implementation makes use of the grid stored pseudo-electron density distributions obtained from VASP. The atom centered spherical integrations are done using Lebedev-Laikov grids of 1202 grid points per shell, and a logarithmic radial grid.\cite{Lebedev1984,Laikov2000} The iterative scheme is considered converged when the largest difference in charge of a system atom is less than 1.0 \(\times 10^{-5}\) electron in two consecutive iterations.

Appendix B Oxide Based Defect Formation Energies

The defect formation energy of doped ceria can also be calculated with regard to the dopant \(\text{ZO}_2\) oxide (note that some group IV dopants, such as Pb, have multiple oxide stoichiometries). We chose to use \(\text{ZO}_2\) type oxides since this corresponds to the stoichiometry of \(\text{CeO}_2\) itself. Furthermore, since elements like Si have a large number of (meta-)stable oxide polymorphs with the \(\text{ZO}_2\) stoichiometry, and since temperature and pressure effects are not included in the \textit{ab initio} calculations, we opt for a low pressure/temperature structure as found in Reference \cite{75}. The oxide reference structures are shown in Table II. The defect formation energy, with regard to the oxides presented in Table I is calculated as:

\[
E_{f}^{\text{ZO}_2} = E_{\text{Ce}_{1-x}z_{x}\text{O}_2} + (x - 1)E_{\text{CeO}_2} - xE_{\text{ZO}_2},
\]

with \(E_{\text{Ce}_{1-x}z_{x}\text{O}_2}\) the total energy of the doped system, \(E_{\text{CeO}_2}\) the total energy of bulk \(\text{CeO}_2\) and \(E_{\text{ZO}_2}\) the bulk energy of the oxide \(\text{ZO}_2\) (with \(Z = C, Si, Ge, Sn, Pb, Ti, Zr, and Hf\)). The resulting energies are shown in

TABLE VI: Defect formation energy for group IV dopants at different concentrations, with respect to the dopant oxides mentioned.	25%	12.5%	3.704%	3.125%
LDA				
CO\(_2\)	13.276	13.495	13.588	13.589
SiO\(_2\)	6.343	6.133	6.105	6.107
GeO\(_2\)	4.192	3.922	3.898	3.893
SnO\(_2\)	1.760	1.565	1.550	1.550
PbO\(_2\)	1.082	0.876	0.861	0.864
TiO\(_2\)	2.019	2.105	2.100	2.085
ZrO\(_2\)	0.419	0.444	0.437	0.432
HfO\(_2\)	0.706	0.740	0.732	0.730
PBE				
CO\(_2\)	13.353	13.556	13.620	13.633
SiO\(_2\)	6.727	6.537	6.520	6.552
GeO\(_2\)	3.936	3.698	3.683	3.695
SnO\(_2\)	1.714	1.551	1.546	1.545
PbO\(_2\)	1.085	0.913	0.903	0.905
TiO\(_2\)	2.164	2.236	2.234	2.242
ZrO\(_2\)	0.554	0.587	0.588	0.586
HfO\(_2\)	0.765	0.798	0.798	0.798
The same general trends are observed as for the defect formation energy presented in the manuscript: a) little concentration dependence, b) large range of energies depending on the dopant element, c) none of the dopants improve the stability of CeO$_2$. The obtained energies, however, are lower due to the increased stability of the formed oxides. This means that for experiments, starting from the oxides, it will be easier to form group IV doped CeO$_2$, then if one would start with the bulk dopant material.

IV. ACKNOWLEDGEMENT

This research was financially supported by FWO-Vlaanderen, project no. G. 0802.09N. We also acknowledge the Research Board of Ghent University. All calculations were carried out using the Stevin Supercomputer Infrastructure at Ghent University.
D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, “Redox properties of CeO₂–ZrO₂,” J. Catal., 194[2] 461–478 (2000).

E. Rocchini, M. Vicario, J. Llorca, C. de Leitenburg, G. Dolcetti, and A. Trovarelli, “Reduction and Oxygen Storage Behavior of Noble Metals Supported on Silica-Doped Ceria,” J. Catal., 211[2] 407–421 (2002).

R. Liu, M.-F. Luo, Y.-J. Zhong, Z.-L. Yan, G.-Y. Liu, and W.-P. Liu, “Comparative study of CuO/CoOₓ/SiO₂, CuO/CoO₂ and CuO/SnO₂ catalysts for low-temperature CO oxidation,” Appl. Catal., A, 255[2] 331–336 (2003).

D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, “Theoretical study of CeO₂ doped with tetravalent ions,” Phys. Rev. B, 76[17] 174119 10pp. (2007).

D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, “Redox properties of CeO₂–MO₂ (M = Ti, Zr, Hf, or Th) solid solutions from first principles calculations,” Appl. Phys. Lett., 90[3] 031909 3pp. (2007).
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, 54[16] 11169–11186 (1996).

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B, 57[3] 1505–1509 (1998).

C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, “First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter,” Phys. Rev. B, 75[3] 035115 8pp. (2007).

C. W. M. Castleton, J. Kullgren, and K. Hermansson, “Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria,” J. Chem. Phys., 127[24] 244704 11pp. (2007).

J. L. F. Da Silva, “Stability of the CeO$_2$ phases: A DFT+U investigation,” Phys. Rev. B, 76[19] 193108 4pp. (2007).

F. H. Spedding, K. Gschneidner, and A. H. Daane, “The Crystal Structures of Some of the Rare Earth Carbides,” J. Am. Chem. Soc., 80[17] 4499–4503 (1958).

G.-Y. Adachi, T. Nishihata, and J. Shiokawa, “Rare-earth mixed dicarbides,” J. Less-Common MET, 32[2] 301–306 (1973).

T. Sakai, G.-Y. Adachi, T. Yoshida, and J. Shiokawa, “Magnetic and electrical properties of rare earth dicarbides and their solid solutions,” J. Less-Common MET, 81[1] 91–102 (1981).

H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B, 13[12] 5188–5192 (1976).

A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Theory of lattice dynamics in the harmonic approximation. New York: Academic press, 2 ed., 1971.

M. A. Blanco, A. M. Pendas, E. Francisco, J. M. Recio, and R. Franco, “Thermodynamical properties of solids from microscopic theory: Applications to MgF$_2$ and Al$_2$O$_3$,” Theochem-J. Mol. Struct., 368 245–255 (1996).

E. Francisco, M. A. Blanco, and G. Sanjurjo, “Atomic simulation of SrF$_2$ polymorphs,” Phys. Rev. B, 63[9] 094107 9pp. (2001).

D. E. P. Vanpoucke, “HIVE v2.1.” http://users.ugent.be/~devpouck/hive_refman/index.html (2011).

F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proc. Natl. Acad. Sci. USA, 30[9] 244–247 (1944).

F. Birch, “Finite Elastic Strain of Cubic Crystals,” Phys. Rev., 71[11] 809–824 (1947).

A. D. Becke, “A multicenter numerical integration scheme for polyatomic molecules,” J. Chem. Phys., 88[4] 2547–2553 (1988).

V. I. Lebedev and D. Laikov, “Quadrature formula for the sphere of 131-th algebraic order of accuracy,” Doklady Mathematics, 59[3] 477–481 (1999).

L. Merrill, “Behavior of the AB$_2$-Type Compounds at High Pressures and High Temperatures,” J. Phys. Chem. Ref. Data, 11[4] 1005–1064 (1982).