Spin-reflection positivity of the Kondo lattice at half-filling

1,2Takashi Yanagisawa and 1Yukihiro Shimoi

1Fundamental Physics Section, Electrotechnical Laboratory
1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan

2Max Planck Institute for Physics of Complex Systems
Bayreuther Str.40, Haus 16, 01187 Dresden, Germany

Abstract

We examine the spin-reflection positivity of the ground state of the Kondo lattice model at half-filling with the antiferromagnetic and ferromagnetic exchange couplings $J \neq 0$. For every positive $U > 0$, where U is the Coulomb interaction between the conduction electrons, we can show that the ground state is unique.

75.30.Mb,75.20.Hr.
I. INTRODUCTION

Strongly-correlated electrons have been studied with considerable effort. Their complete understanding is now still difficult. Among the various models the Kondo lattice model is important as a fundamental model for heavy-fermion systems which are typical strongly-correlated-electron systems. In strongly-correlated electrons, rigorous results are still rare although they will provide us valuable information as benchmarks. Recently, exact results were obtained in some limiting cases for the Kondo lattice. \cite{1,2} Recently, an idea of the spin-reflection positivity was introduced, proving its validity for the strongly-correlated electrons at half-filling. \cite{4,5} This idea was first successfully applied to the Hubbard model for $U > 0$ at half-filling and $U < 0$ at every filling. \cite{5} Later it was shown that this method is valid for the symmetric-periodic Anderson model. \cite{6} The purpose of this paper is to investigate the spin-reflection positivity for the Kondo lattice following the method in Ref. \cite{7}. We show that the ground state of the Kondo lattice ($J \neq 0$) has the property of spin-reflection positivity at half-filling for $U > 0$ where U is the Coulomb interaction between the conduction electrons. In our method, the Coulomb interactions between the conduction electrons are crucial in deriving an energy inequality such as $E(C) \geq E(P)$ where C is a coefficient matrix of the eigenstates of Hamiltonian and P is a semipositive definite matrix defined by $P = (C^\dagger C)^{1/2}$. As we have pointed out first in Ref. \cite{7}, we can apply the Schwarz inequality by using fermions in dealing with the local-spin operators, where we investigated $J < 0$ and $U > |J|/4$. In this paper we discuss this method in more details and show that it is straightforward to generalize our method for any non-zero J and $U > 0$.

\lowercase{2}
II. THE SPIN-REFLECTION PROPERTY OF THE KONDO LATTICE

A. Antiferromagnetic Kondo lattice

Let us consider the Kondo lattice model given as

\[
H = - \sum_{\sigma, \langle i,j \rangle} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} - \frac{U}{2} \sum_{i\sigma} n_{ci\sigma} + U \sum_{i} n_{ci\uparrow} n_{ci\downarrow} + J \sum_{i} \sigma_i \cdot S_i, \tag{1}
\]

where \(\sigma_i\) and \(S_i\) denote spin operators of the conduction electrons and the localized spins, respectively. \(c_{i\sigma}(c_{i\sigma}^\dagger)\) denote annihilation (creation) operators of the conduction electrons and we write \(n_{ci\sigma} = c_{i\sigma}^\dagger c_{i\sigma}\). The second term indicates the chemical potential so that we consider the half-filling case. What we will consider is the following statement.

Proposition A We assume that the lattice is bipartite. \(\langle i,j \rangle\) in eq.(1) denotes a pair of sites where one is on the sublattice A and the other is on the B sublattice. The number of the lattice is finite and the lattice is connected which means that there is a connected path of bonds between every pair of sites. Then the ground state of the Kondo lattice in eq.(1) for the antiferromagnetic-coupling \(J > 0\) and \(U > 0\) at half-filling is unique.

Remarks We show several remarks before going into a proof. We have introduced the Coulomb interaction \(U\) on each site to show a uniqueness of the ground state. We write the Kondo lattice model in the following form,

\[
H = - \sum_{\langle i,j \rangle\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} J_{\perp} \left(c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger f_{i\uparrow}^\dagger f_{i\uparrow} + c_{i\downarrow}^\dagger c_{i\uparrow}^\dagger f_{i\downarrow}^\dagger f_{i\downarrow} \right) + \frac{1}{4} J_z (n_{ci\uparrow} - n_{ci\downarrow})(n_{fi\uparrow} - n_{fi\downarrow}) + U \sum_{i} n_{ci\uparrow} n_{ci\downarrow} - \frac{U}{2} \sum_{\sigma} n_{ci\sigma}, \tag{2}
\]

where \(f_{i\sigma}(f_{i\sigma}^\dagger)\) denote annihilation (creation) operators of localized spins. \(n_{ci\sigma}\) and \(n_{fi\sigma}\) indicate the number operators of the conduction electrons and the localized spins, respectively. We should work in the subspace where the condition \(n_{fi\uparrow} + n_{fi\downarrow} = 1\) holds. In Ref. [7] we introduced the Lagrange multipliers in the Hamiltonian. Of course, we do not necessarily need to introduce the Lagrange multiplier to restrict the Hilbert space. This is only a matter of taste. We have written the perpendicular- and z-component of exchange interaction as
J_\perp and J_z, respectively. Let us assume that $J = J_\perp = J_z$. We make the electron-hole transformation for the up spins: $c_{i\uparrow} \rightarrow c_{i\uparrow}^\dagger$, $c_{i\uparrow}^\dagger \rightarrow c_{i\uparrow}$ for $i \in A$, $f_{i\uparrow} \rightarrow -f_{i\uparrow}^\dagger$, $f_{i\uparrow}^\dagger \rightarrow f_{i\uparrow}$ for $i \in A$ and $c_{i\uparrow} \rightarrow -c_{i\uparrow}^\dagger$, $c_{i\uparrow}^\dagger \rightarrow -c_{i\uparrow}$ for $i \in B$, $f_{i\uparrow} \rightarrow f_{i\uparrow}^\dagger$, $f_{i\uparrow}^\dagger \rightarrow f_{i\uparrow}$ for $i \in B$ where we have assumed that the lattice is bipartite-divided into two disjoint sets A and B. The spin-down electrons are unaltered, $c_{i\downarrow} \rightarrow c_{i\downarrow}$ and $f_{i\downarrow} \rightarrow f_{i\downarrow}$. In this transformation the z-component of the total spin is invariant at half-filling: $S_z = 0 \rightarrow S_z = 0$. Then H is transformed into

$$\tilde{H} = - \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} - U \sum_i n_{ci\uparrow} n_{ci\downarrow} + \frac{U}{2} \sum_{i\sigma} n_{ci\sigma} + \frac{1}{2} \sum_i \left[-\frac{1}{2} J_\perp (c_{i\downarrow} f_{i\uparrow}^\dagger f_{i\uparrow} + c_{i\uparrow}^\dagger f_{i\uparrow} f_{i\downarrow}^\dagger) + \frac{1}{4} J_z (1 - n_{ci\uparrow} - n_{ci\downarrow})(1 - n_{fi\uparrow} - n_{fi\downarrow}) \right]. \quad (3)$$

We work in the $S_z = 0$ subspace since S_z and S_z are conserved and every energy eigenvalue has a corresponding eigenfunction in this subspace. For \tilde{H} the constraint should read $n_{fi\uparrow} = n_{fi\downarrow}$. Here let us comment on this constraint. We set $Q_i \equiv n_{fi\uparrow} - n_{fi\downarrow}$. It is easy to see that Q_i commutes with \tilde{H} and Q_j (for any j):

$$[Q_i, \tilde{H}] = 0; [Q_i, Q_j] = 0 (\forall i, j). \quad (4)$$

Therefore the total space is divided into disjoint subspaces which are specified by eigenvalues of Q_i. The physical space is given by $S_0 = \{ \psi(\neq 0)|Q_i \psi = 0 (\forall i) \}$. In this subspace, the wave function satisfies

$$\tilde{H}\psi = E\psi, \quad (5)$$

$$Q_i \psi = 0 (\forall i), \quad (6)$$

which are basic equations in our discussion.

Proof There are two kinds of electrons with spin up and spin down. Let ψ_α^σ be an orthonormal basis set which is composed solely of spin-σ c and f electrons. We assume that basis states are real. We follow the method of Ref. [5] and the ground-state wave function in the space $S_z = 0$ is written as $\psi = \sum_{\alpha\beta} C_{\alpha\beta} \psi_\alpha^\uparrow \otimes \psi_\beta^\downarrow$. $C = (C_{\alpha\beta})$ is called the coefficient matrix of ψ. Now the expectation value of \tilde{H} is given by:
\[F = \text{Tr}(C^\dagger H_0^c C + C H_0^c C^\dagger) - J_\perp \sum_i \frac{1}{2} \text{Tr}(M_{f^i}^\dagger C M_{c^i}^\dagger C^\dagger + M_{f^i}^\dagger C M_{c^i}^\dagger C) \]
\[+ \frac{1}{4} \sum_i \left[\frac{1}{4} \text{Tr}(C^{\dagger} N_{c^i}^{f^i} C + C N_{c^i}^{f^i} C^{\dagger}) \right] - \frac{1}{4} \text{Tr}(C^{\dagger} N_{c^i}^{f^i} C + C^{\dagger} N_{c^i}^{f^i} C) \]
\[+ \frac{1}{4} \text{Tr}(N_{c^i}^{f^i} C^{\dagger} N_{c^i}^{f^i} C + N_{f^i}^{f^i} C N_{c^i}^{f^i} C^{\dagger}) \]
\[- U \sum_i \text{Tr}(N_{c^i}^{f^i} C N_{c^i}^{f^i} C^{\dagger}) + \frac{U}{2} \sum_i \text{Tr}(C^{\dagger} N_{c^i}^{f^i} C + C N_{c^i}^{f^i} C^{\dagger}). \] (7)

The matrices are defined by the following,

\[(H_0^c)_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| - \sum_{<i,j>} t_{ij} c_{i\sigma} c_{j\sigma}|\psi^{\sigma}_{\alpha'}>, \] (8a)

\[(M_{f^i}^c)_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| f_{i\sigma} c_{i\sigma}|\psi^{\sigma}_{\alpha'}>, \] (8b)

\[(M_{c^i}^f)_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| f_{i\sigma} c_{i\sigma}|\psi^{\sigma}_{\alpha'}>, \] (8c)

\[(N_{c^i}^{f^i})_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| n_{c\sigma} n_{f\sigma}|\psi^{\sigma}_{\alpha'}>, \] (8d)

\[(N_{c^i}^{c^i})_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| n_{c\sigma}|\psi^{\sigma}_{\alpha'}>, \] (8e)

\[(N_{f^i}^{f^i})_{\alpha\alpha'} = <\psi^{\sigma}_{\alpha}| n_{f\sigma}|\psi^{\sigma}_{\alpha'}>. \] (8f)

Please note that these matrices are real ones. From the definition, \((N_{c^i}^{f^i})_{\alpha\alpha'} = \sum_\beta <\psi^{\sigma}_{\alpha}| n_{c\sigma}|\psi^{\sigma}_{\beta} <\psi^{\sigma}_{\beta}| n_{f\sigma}|\psi^{\sigma}_{\alpha} > = (N_{c^i}^{c^i})_{\alpha\alpha'}\). We have the up-down symmetry: \(N_{c^i}^{f^i} = N_{c^i}^{c^i}\), \(N_{f^i}^{f^i} = N_{f^i}^{c^i}\), \(H_0^c = H_0^{c^i}\) and \(M_{c^i}^{f^i} = M_{f^i}^{c^i}\). Variation of the functional \(F\) with respect to \(C\) leads to the following equation,

\[EC = CH_0^c + H_0^c C - J_\perp \sum_i \frac{1}{2} (M_{f^i}^c C M_{c^i}^c + M_{f^i}^c C M_{f^i}^c C^\dagger) + J_z \sum_i \frac{1}{4} (N_{c^i}^c C + C N_{c^i}^c) \]
\[- \frac{1}{4} (C N_{c^i}^f + N_{f^i}^f C) - \frac{1}{4} (C N_{c^i}^c + N_{c^i}^f C) + \frac{1}{4} (N_{c^i}^c C N_{c^i}^f + N_{f^i}^f C N_{c^i}^c) \]
\[- U \sum_i N_{c^i}^c C N_{c^i}^c + \frac{U}{2} \sum_i (C N_{c^i}^c + N_{c^i}^c C). \] (9)

From the constraint equations \(Q_i \psi = 0\), \(C\) must satisfy
We can easily show that this equation is equivalent to the constraint, \(n_{fi^\uparrow} = n_{fi^\downarrow} \) which indicates that we have no singly-occupied f-electron sites. From the equation in eq.(10), we obtain \(<n_{fi^\uparrow}(1-n_{fi^\downarrow})> = TrC^\dagger N_{fi^\downarrow}^\dagger (1-N_{fi^\downarrow}) = TrC^\dagger N_{fi^\downarrow}^\dagger (1-N_{fi^\downarrow})C = 0 \) because \(N_{fi^\downarrow}^\dagger \) is a diagonal matrix diag\((\sigma_1, \sigma_2, \cdots) \) where the diagonal elements are 0 or 1: \(\sigma_i = 0 \) or 1. Inversely, we set that \(<n_{fi^\uparrow}(1-n_{fi^\downarrow})> = 0 \). Then \(0 = TrC^\dagger N_{fi^\downarrow}^\dagger C(1-N_{fi^\downarrow}) = TrC^\dagger(N_{fi^\downarrow}^\dagger)^2 C(1-N_{fi^\downarrow})^2 = Tr(1-N_{fi^\downarrow})C^\dagger N_{fi^\downarrow}^\dagger N_{fi^\downarrow}^\dagger C(1-N_{fi^\downarrow}) = ||N_{fi^\downarrow}^\dagger C(1-N_{fi^\downarrow})||^2 \), where the norm \(|| \cdot || \) is defined by \(||A||^2 = TrA^\dagger A \). This means that \(N_{fi^\downarrow}^\dagger C(1-N_{fi^\downarrow}) = 0 \). Similarly, we have \((1-N_{fi^\downarrow}^\dagger)CN_{fi^\downarrow}^\dagger = 0 \). Hence eq.(10) is followed. More directly, we can show eq.(10) by calculating \(n_{fi^\uparrow} = \Sigma_{\alpha\beta} C_{\alpha\beta} \psi_{\alpha}^\dagger \psi_{\beta} = \Sigma_{\alpha\beta} \Sigma_{\alpha'\beta'} C_{\alpha\beta} |\psi_{\alpha'}| <\psi_{\alpha'}|n_{fi^\uparrow}|\psi_{\beta} = \Sigma_{\alpha\beta\alpha'} C_{\alpha\beta} \psi_{\alpha'}^\dagger \psi_{\alpha}\psi_{\beta} = \Sigma_{\alpha\beta\alpha'} C_{\alpha\beta} \psi_{\alpha'}^\dagger \psi_{\alpha}\psi_{\beta} = \Sigma_{\alpha\beta}(N_{fi^\dagger}^\dagger C)_{\alpha\beta} \psi_{\alpha} \psi_{\beta} \), where we denote the basis as \(\psi_{\alpha} = \psi_{\alpha}^\uparrow \otimes \psi_{\beta}^\downarrow \).

We can obtain similarly \(n_{fi^\downarrow} = \Sigma_{\alpha\beta}(CN_{fi^\uparrow}^\dagger)_{\alpha\beta} \psi_{\alpha} \psi_{\beta} \) and eq.(10) is also followed.

Then we can obtain the energy \(E(C) \) given by the right-hand side in eq.(7) with two equations (9) and (10). Now, the identity below is useful in the following discussion.

\[
J_z Tr(C^\dagger N_{ci^\dagger}^\dagger CN_{fi^\dagger}^\dagger + C^\dagger N_{fi^\dagger}^\dagger CN_{ci^\dagger}^\dagger) \\
= -J_z \frac{1}{z} TrC^\dagger (z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger) C(z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger) \\
+ z J_z TrC^\dagger N_{ci^\dagger}^\dagger CN_{fi^\dagger}^\dagger + \frac{1}{z} J_z TrC^\dagger N_{fi^\dagger}^\dagger CN_{ci^\dagger}^\dagger \\
= -J_z \frac{1}{z} TrC^\dagger (z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger) C(z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger) \\
+ z J_z TrC^\dagger N_{ci^\dagger}^\dagger CN_{fi^\dagger}^\dagger + \frac{1}{2z} J_z Tr(C^\dagger N_{fi^\dagger}^\dagger C + CN_{fi^\dagger}^\dagger C^\dagger), \tag{11}
\]

where \(z \) is a positive real number \(z > 0 \) and we have used the relation in eq.(10) to derive the second equality. Then the energy \(E(C) \) is written as

\[
E(C) = Tr(C^\dagger H_0^C + CH_0^C C^\dagger) + J_\perp \sum_i \frac{1}{2} Tr(M_{fi^\downarrow} C M_{fi^\uparrow} C^\dagger + M_{fi^\uparrow} C M_{fi^\downarrow} C^\dagger) \\
+ J_z \sum_i \frac{1}{4} Tr(C^\dagger N_{fi^\dagger}^\dagger C + CN_{fi^\dagger}^\dagger C^\dagger) - \frac{1}{4} Tr(CN_{fi^\dagger}^\dagger C^\dagger + C^\dagger N_{fi^\dagger}^\dagger C) - \frac{1}{4} Tr(CN_{ci^\dagger}^\dagger C^\dagger + C^\dagger N_{ci^\dagger}^\dagger C) \\
+ \sum_i \frac{-1}{4z J_z} TrC^\dagger (z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger) C(z N_{ci^\dagger}^\dagger - N_{fi^\dagger}^\dagger)
\]
\[
+ \frac{1}{4} z |J_z| \text{Tr} C^\dagger N_{ei}^k C N_{ei}^l + \frac{1}{8z} |J_z| \text{Tr}(C^\dagger N_{f_i}^i C + C N_{f_i}^i C^\dagger) ,
- U \sum_i \text{Tr} C_i^\dagger N_{ei}^i C N_{ei}^l + \frac{U}{2} \sum_i \text{Tr}(C_i^\dagger N_{ei}^i C + C N_{ei}^i C^\dagger) .
\]

(12)

Since the energy \(E(C) \) is symmetric with respect to the spin, we can set that \(C \) is hermitian: \(C = C^\dagger \). It is also easy to see that \(C \) and \(C^\dagger \) satisfy the same Schrödinger equation. There is a hermitian positive semidefinite matrix \(P \) which satisfies \(CC^\dagger = P^2 \), where \(P \) is determined uniquely. \[9\] According to the Schwarz inequality for a square matrix \(M \),

\[
|\text{Tr} CM C^\dagger M^\dagger| \leq \text{Tr} P M P^\dagger,
\]

(13)

we obtain an inequality \(E(C) \geq E(P) \) for \(J > 0 \) and \(U > z |J_z|/4 \). Since \(z \) is an arbitrary positive real number, we can choose \(z \) so that \(U > z |J_z|/4 \) holds for any positive \(U \). Therefore we have \(E(C) \geq E(P) \) for every \(U > 0 \). Since we have assumed that \(C \) is the coefficient matrix of the ground state, we obtain \(E(C) = E(P) \). This indicates that there is a state with \(C = P \) or \(C = -P \) among the ground states. Here we will show that the new matrix \(P \) also satisfies the constraint \(n_{fi\uparrow} = n_{fi\downarrow} \), i.e. \(N_i P = P N_i \) where we set \(N_i \equiv N_{f_i}^\dagger = N_{f_i}^\downarrow \).

Due to the Schwarz inequality \(\text{Tr} CN_i C N_i \leq \text{Tr} P N_i P N_i \), we have \(0 \leq \text{Tr} P N_i P(1 - N_i) = \text{Tr} P N_i P - \text{Tr} P N_i P N_i \leq \text{Tr} C N_i C - \text{Tr} C N_i C N_i = \text{Tr} C N_i C(1 - N_i) = 0 \).

Then \(\text{Tr} P N_i P(1 - N_i) = 0 \) is followed, which indicates that \(\text{Tr} P N_i P(1 - N_i) = \text{Tr} P N_i^2 P(1 - N_i)^2 = \text{Tr}(1 - N_i) P N_i N_i P(1 - N_i) = \| N_i P(1 - N_i) \|^2 = 0 \). Hence \(N_i P(1 - N_i) = 0 \), i.e. \(N_i P = N_i P N_i \) holds. Similarly we have \(P N_i = N_i P N_i \). Therefore we have obtained the constraint equation for \(P \) given by,

\[
N_{f_i}^\dagger P = P N_{f_i}^\dagger.
\]

(14)

This result shows that the equality \(E(C) = E(P) \) has its meaning.

Now we will show that the ground state is unique following the argument of Ref. \[4\].

The Schrödinger equation reads

\[
EC = C H_0^\dagger + H_0^\dagger C - J_z \sum_i \frac{1}{2} (M_{fci}^\dagger C M_{cfi}^i + M_{cfi}^\dagger C M_{fci}^i) + J_z \sum_i \frac{1}{4} (N_{cfi}^\dagger C + N_{cfi}^i C)
\]

7
\[-\frac{1}{4}(CN_{fi}^2 + N_{fi}^2) - \frac{1}{4}(CN_{ci}^2 + N_{ci}^2) \]
\[-\frac{1}{4z}|J_z| \sum_i (zN_{ci}^\dagger - N_{fi}^\dagger)C(zN_{ci}^\dagger - N_{fi}^\dagger) \]
\[+ \frac{1}{8z}|J_z| \sum_i (N_{ci}^\dagger C + CN_{fi}^\dagger) - (U - \frac{z}{4}|J_z|) \sum_i N_{ci}^\dagger C N_{ci}^\dagger + \frac{U}{2} \sum_i (CN_{ci}^\dagger + N_{ci}^\dagger C). \]

(15)

Let \(R = P - C \); then \(R \) is positive semidefinite and satisfies eq.(14). Let us define \(K \) as a kernel of \(R \), i.e. \(K = \{ v|Rv = 0 \} \). \(C \) and \(P \) are diagonalized by a unitary matrix \(U \):
\(C = U^\dagger \text{diag}(\sigma_1, \ldots, \sigma_r)U \) and \(P = U^\dagger \text{diag}(||\sigma_1||, \ldots, ||\sigma_r||)U \) where \(\sigma_1, \ldots, \sigma_r \) are eigenvalues of \(C \). At least there is one positive \(\sigma_i \), such that \(\sigma_i = ||\sigma_i|| \); otherwise we have \(C = -P \). Thus \(R = P - C \) has at least one zero eigenvalue, which indicates that there is a vector \(v \) satisfying \(Rv = 0 \). Then we obtain:
\[0 = RH_0^i v - J_z \sum_i \frac{1}{2}(M_{fi}^\dagger RM_{fi}^\dagger + M_{ci}^\dagger RM_{ci}^\dagger) v + J_z \sum_i \frac{1}{4} R N_{ci}^\dagger N_{fi}^\dagger v \]
\[- \frac{1}{4} R N_{fi}^\dagger v - \frac{1}{4} R N_{ci}^\dagger v - \frac{1}{4z}|J_z| \sum_i (zN_{ci}^\dagger - N_{fi}^\dagger)R(zN_{ci}^\dagger - N_{fi}^\dagger)v \]
\[- (U - z|J_z|/4) \sum_i N_{ci}^\dagger R N_{fi}^\dagger v + \frac{1}{8z}|J_z| \sum_i R N_{fi}^\dagger v + \frac{U}{2} \sum_i R N_{ci}^\dagger v. \]

(16)

Since \(v^\dagger R = 0 \), \(\sum_i [J_z v^\dagger(M_{fi}^\dagger RM_{fi}^\dagger + M_{ci}^\dagger RM_{ci}^\dagger)]v + (1/2z)J_z v^\dagger(zN_{ci}^\dagger - N_{fi}^\dagger)R(zN_{ci}^\dagger - N_{fi}^\dagger)v + 2(U - zJ_z/4)v^\dagger R N_{ci}^\dagger R N_{fi}^\dagger v = 0 \). holds. Because \(R \) is positive semidefinite and \(N_{ci}^\sigma = N_{ci}^{-\sigma} \), \(N_{fi}^\sigma = N_{fi}^{-\sigma} \) and \(M_{ci}^\sigma = M_{ci}^{-\sigma} \), we have \(v^\dagger M_{fi}^\dagger RM_{fi}^\dagger v = v^\dagger M_{fi}^\dagger RM_{fi}^\dagger v = v^\dagger N_{ci}^\dagger R N_{ci}^\dagger = v^\dagger N_{fi}^\dagger R N_{fi}^\dagger = 0 \) and then \(R M_{fi}^\dagger v = R N_{fi}^\dagger v = R N_{ci}^\dagger v = 0 \) is followed. If we substitute \(N_{fi}^\dagger v = 0 \) for v, we obtain \(R N_{ci}^\dagger N_{fi}^\dagger v = 0 \). As a result, \(RH_0v = 0 \) follows. Now, by successive application of \(H_0, M \) and \(N \), we can construct all the basis states by virtue of the connectivity. Thus, every vector is in \(K \). This proves the uniqueness of the lowest energy state for \(J > 0 \) and \(U > 0 \) because we can easily reach a contradiction if we assume that there are two ground states [3]. Since the energy-expectation value is continuous with respect to parameters involved in the Hamiltonian there is no level crossing with respect to \(J \).(q.e.d.)

In the large-\(U \) limit, \(H \) is mapped onto a spin-1/2 antiferromagnetic Heisenberg model. Then we can say that
Corollary: We assume the same conditions in the Proposition A. Then for the Kondo lattice with $J > 0$ and $U > 0$ at half-filling, the ground state has $S = 0$.

B. Ferromagnetic Kondo lattice

Let us turn to investigate the Kondo lattice model H with the ferromagnetic coupling $J = J_\perp = J_z < 0$ for the half-filled band. We again assume that Λ is bipartite and we make the electron-hole transformaton for the up spins: $c_{i \uparrow} \rightarrow c_{i \uparrow}^\dagger$, $c_{i \uparrow}^\dagger \rightarrow c_{i \uparrow}$ for $i \in A$, $f_{i \uparrow} \rightarrow f_{i \uparrow}^\dagger$, $f_{i \uparrow}^\dagger \rightarrow f_{i \uparrow}$ for $i \in A$ and $c_{i \uparrow} \rightarrow -c_{i \uparrow}^\dagger$, $c_{i \uparrow}^\dagger \rightarrow -c_{i \uparrow}$ for $i \in B$, $f_{i \uparrow} \rightarrow -f_{i \uparrow}^\dagger$, $f_{i \uparrow}^\dagger \rightarrow -f_{i \uparrow}$ for $i \in B$ where we have assumed that the lattice Λ is bipartite-divided into two disjoint sets A and B. Note that the signs in front of f-electron operators are different from those for the case $J > 0$.

The spin-down electrons are unaltered, $c_{i \downarrow} \rightarrow c_{i \downarrow}$ and $f_{i \downarrow} \rightarrow f_{i \downarrow}$. In this transformation the z-component of the total spin is invariant: $S_z = 0 \rightarrow S_z = 0$. Then H is transformed into

$$
\tilde{H} = -\sum_{<i,j>} t_{ij} c_{i\sigma} c_{j\sigma} - U \sum_i n_{c_{i\uparrow}} n_{c_{i\downarrow}} + \frac{U}{2} \sum_{i\sigma} n_{c_{i\sigma}} + \frac{1}{2} J_\perp (c_{i\uparrow} c_{i\downarrow} f_{i\uparrow}^\dagger f_{i\downarrow}^\dagger + c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger f_{i\uparrow} f_{i\downarrow}^\dagger) + \frac{1}{4} J_z (1 - n_{c_{i\uparrow}} - n_{c_{i\downarrow}})(1 - n_{f_{i\uparrow}} - n_{f_{i\downarrow}}). \quad (17)
$$

Clearly we can apply the method in the previous section and then we obtain the inequality $E(C) \geq E(P)$ for $J < 0$ and $U > 0$. A similar identity to eq.(11) is easy to derive for $J < 0$:

$$
J_z Tr(C^\dagger N_{ci}^\dagger C N_{fi}^\dagger + C^\dagger N_{fi}^\dagger C N_{ci}^\dagger)
= -|J_z| \frac{1}{z} Tr C^\dagger (z N_{ci}^\dagger + N_{fi}^\dagger) C (z N_{ci}^\dagger + N_{fi}^\dagger) + \frac{1}{z} J_z Tr C^\dagger N_{ci}^\dagger C N_{fi}^\dagger. \quad (18)
$$

We can prove that $C = P$ (or $C = -P$) is a unique solution of $E(C) = E(P)$. Thus we have shown that the lowest-energy state is unique. Therefore

Proposition B: If we assume the same conditions mentioned in Proposition A for the Hamiltonian in eq.(17), then the ground state at half-filling is unique for $J < 0$ and $U > 0$.

Remarks: If we assume that the A and B sublattices have the same number of lattice sites, then the ground state of the Kondo lattice has $S = 0$ since in the large-$|J|$ limit, H
is mapped onto the spin-1 Heisenberg model. In general, we may be able to consider the lattices where the number of sites in the A sublattice $|A|$ is greater than that of the B sublattice $|B|$. In this case, the ground state may have a high spin $S = |A| - |B|$, which is proved by the Perron-Frobenius theorem. For example, the 1D odd-site model with the open boundary condition has $S = 1$ ground state, while if we impose the periodic boundary condition, the ground state has $S = 0$ for small clusters according to a diagonalization method.

C. Spin-correlation functions

Our theorem for the Kondo lattice model may have many implications. Let us consider the spin-correlation functions given as $S_{fc}(i) \equiv \langle S_i^+ \sigma_i^- \rangle$, $S_{ff}(i,j) \equiv \langle S_i^+ S_j^- \rangle$ and $S_{cc}(i,j) \equiv \langle \sigma_i^+ \sigma_j^- \rangle$. The spin-reflection positivity implies that these correlation functions have definite signs for every $J (\neq 0)$. After making the electron-hole transformation for $J > 0$, $S_{fc}(i)$ is written as

$$S_{fc}(i) = -c_i^\dagger f^\dagger f_{i\uparrow} c_i^\dagger f_{i\downarrow} = -\text{Tr} C^\dagger M^\dagger C M_f^\dagger C \leq 0.$$ \hspace{1cm} (19)

In a similar manner, it is easy to obtain

$$S_{ff}(i,j) \leq 0; i \in A, j \in B,$$ \hspace{1cm} (20)

$$S_{cc}(i,j) \leq 0; i \in A, j \in B,$$ \hspace{1cm} (21)

$$S_{ff}(i,j) \geq 0; i \in A, j \in A,$$ \hspace{1cm} (22)

$$S_{cc}(i,j) \geq 0; i \in A, j \in A.$$ \hspace{1cm} (23)

Thus antiferromagnetic orderings are found for nearest-neighbor spins and for c and f electrons on each site. The RKKY interactions between localized spins are oscillating functions. Instead, for the ferromagnetic coupling $J < 0$, $S_{fc}(i)$ shows a ferromagnetic order.
\[S_{fc}(i) = Tr C^\dagger M^\dagger_{cf} C M^\dagger_{fc} \geq 0. \] (24)

Note that we have chosen the different signs for f electrons in the electron-hole transformation for \(J < 0 \). \(S_{ff}(i, j) \) and \(S_{cc}(i, j) \) have same structures as the case for \(J > 0 \).
III. DISCUSSION

In this paper we have applied the method of spin-reflection positivity to the Kondo lattice model by writing the exchange interaction with fermion operators of localized electrons. We have shown that the Kondo lattice with the non-zero exchange couplings $J \neq 0$ and $U > 0$ at half-filling has a unique ground state and the total spin is 0 where we have assumed that the A and B sublattices have the same number of lattice sites. Our theory depends on the Schwarz inequality to derive the equation $E(C) = E(P)$ where C is the coefficient matrix of the ground state and P is the semipositive definite matrix given by $P = (C^\dagger C)^{1/2}$. It is important that the constraint equation $N_i C = CN_i$, which represents $n_{fi\uparrow} = n_{fi\downarrow}$, is conserved for P: $N_i P = P N_i$. This is a highly non-trivial result. Our results can be generalized to more general models where the number of the f-electron sites is less than that of the conduction electrons. For example, the two-impurity Kondo model has a unique ground state which is continuous with respect to $J > 0$ and $J < 0$ as far as $U > 0$. A characteristic structure of the two-impurity problem may be observed as a sharp crossover between the RKKY regime and the on-site Kondo regime. The spin-reflection positivity implies the antiferromagnetic orderings between the f and conduction electrons within each site as well as the nearest-neighbor antiferromagnetic RKKY interactions for $J > 0$. The RKKY interaction shows an oscillating behavior with a period which is precisely equal to the lattice constant($\times 2$) for the half-filled conduction band.

From a technical point of view, the fact that Q_i commutes with Hamiltonian \tilde{H} and Q_j is important because an eigenfunction of \tilde{H} is also an eigenfunction of Q_i. The total space is divided into disjoint subspaces according to eigenvalues of Q_i. Let us comment here about the Lagrange-multiplier method in Ref. [7]. We define $H_{\text{eff}} = \tilde{H} + \sum_i \lambda_i Q_i$. Then basic equations in each subspace are written as

$$H_{\text{eff}}\psi = E\psi,$$ \hspace{1cm} (25)$$

and
\[Q_i \psi = q_i \psi (\forall i), \] (26)

where \(q_i \) takes 0, -1 and 1. The variational condition for \(F \equiv \langle H_{eff} \rangle = \langle \tilde{H} \rangle + \sum_i \lambda_i < Q_i \rangle \) reads \(\partial F/\partial \lambda_i = \langle \psi | Q_i | \psi \rangle = 0 \) which indicates \(q_i = 0 (\forall i) \). Therefore we obtain the same equations as eqs.(5) and (6). The conditions \(< Q_i > = 0 \) project out the physical subspace \(S_0 \). If we start from a state which does not belong to \(S_0 \), we cannot obtain a correct solution in a diagonalization since they have different (discrete) quantum numbers.
REFERENCES

[1] M. Sigrist, H. Tsunetsugu, and K. Ueda, Phys. Rev. Lett. 67, 221 (1991).

[2] M. Sigrist, H. Tsunetsugu, K. Ueda, and T. M. Rice, Phys. Rev. B46, 13838 (1992).

[3] T. Yanagisawa and K. Harigaya, Phys. Rev. B50, 9577 (1994).

[4] T. Kennedy, E. H. Lieb, and B. S. Shastry, J. Stat. Phys. 53, 1019 (1988).

[5] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

[6] K. Ueda, H. Tsunetsugu, and M. Sigrist, Phys. Rev. Lett. 68, 1030 (1992).

[7] T. Yanagisawa and Y. Shimoi, Phys. Rev. Lett. 75, 4939 (1995).

[8] This is basically due to identities $2xy = -(x-y)^2 + x^2 + y^2$ or $2xy = (x+y)^2 - (x^2+y^2)$.

Then we shift x to $xz (z > 0)$.

[9] See, for example, S. Lang, *Linear Algebra* (Addison-Wesley, California, 1972).

[10] H. Tsunetsugu, Y. Hatsugai, K. Ueda, and M. Sigrist, Phys. Rev. B46, 3175 (1992).

[11] S. Q. Shen, Z. M. Qiu and G. S. Tian, Phys. Rev. Lett. 72, 1280 (1994).

[12] B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett. 61, 125 (1988).

[13] T. Yanagisawa, J. Phys. Soc. Jpn. 60, 29 (1991); 60, 3449 (1991).

[14] L. C. Andreani and H. Beck, Phys. Rev. B48, 7322 (1993).