Unusual presentation of angiomyomatous hamartoma in an eight-month-old infant: case report and literature review

Vincenzo Davide Catania¹, Carlo Manzoni¹, Mariangela Novello², Libero Lauriola²* and Antonella Coli²

Abstract

Background: Evaluation of palpable neck masses may be a diagnostic problem in pediatric patients, with differential diagnosis including congenital, inflammatory, tumoral and traumatic lesions. Ultrasonography is usually a satisfactory method to make a correct pre-operative evaluation of neck masses, although diagnosis is often challenging for the surgeon and the radiologist and sometimes only possible after a histopathological examination of the resected lesion.

Case presentation: We report an 8-month-old patient with a cervical, anterior midline mass. Ultrasonographic images showed features suggesting a partly cystic lesion, with a preoperative suspect of thyroglossal duct cyst. Histological examination, performed after surgical removal of the mass, led to a diagnosis of lymph node angiomyomatous hamartoma (AH).

Conclusions: AH, a rarely occurring benign lymph node lesion, has been reported in the neck lateral region only twice. This case, presenting as a palpable neck midline mass, is the first reported case occurring in infancy. Although rare, AH should be included in the differential diagnosis of head and neck masses.

Keywords: Angiomyomatous hamartoma, Pediatric neck mass, Ultrasonography, Lymph node

Background

Palpable neck masses are a common clinical concern in pediatric patients, and differential diagnosis includes a wide range of pathologies, such as congenital, inflammatory, tumoral and traumatic lesions. Malformative neck masses in childhood are branchial cleft cysts, ectopic thymus, teratomas, cystic lymphangioma, aberrant thyroid tissue and others [1-6]. Thyroglossal duct cyst is a congenital anomaly related to persistence of thyroglossal duct, presenting as a midline cyst, near the hyoid bone with variable sonographic appearances [7,8]. AH is a rare, benign lymph node pathology consisting of a fibrous transformation of the hilar region, also with presence of vessels and smooth muscle cell proliferation. Of 28 cases hitherto reported, only two were located in the lateral neck region, both in adult patients, and the lesion has been more frequently found in the inguinal and femoral region [9-11].

Ultrasonography (US) is an accurate, cost-effective, non-invasive preoperative analysis, usually sufficient to make correct preoperative diagnoses, even if the accuracy of this imaging method may have limitations, because of the variability of the sonographic appearances [12,13]. Computed tomography and magnetic resonance imaging play a supplementary diagnostic role. Obviously, surgical excision with histological examination allows a definite diagnosis.

The authors herein describe an unusual case of AH presenting as a palpable mass in the anterior midline neck region of an infant. US preoperative evaluation of the lesion appeared compatible with a partly cystic mass, and, due to the peculiar location, a thyroglossal duct cyst was suspected or, secondly, a dermoid cyst, a small teratoma or an enlarged reactive lymph node.

Case presentation

An 8-month-old Philippine female baby without other health problems presented with a palpable neck mass of 4 months’ duration. The patient did not suffer from...
dysphagia nor dysphonia. The past medical history was unremarkable. On physical examination, a midline anterior neck mass, tender and mobile when swallowing, contiguous to the hyoid bone was observed. No enlarged lymph nodes were detected in the lateral neck region. Laboratory values were in normal range. At US, a lesion largely hypoechoic measuring 20 x 14 mm in diameter, with internal heterogeneous echoes, with a well defined periphery (Figure 1) was detected and the thyroid gland did not show abnormalities. A thyroglossal duct cyst was suspected and the patient underwent surgical excision. Intraoperatively we couldn’t differentiate if the lesion was a solid mass or a cystic one and its malignant potential, if any, so that the Sistrunk procedure was chosen for safety’s sake. A careful dissection of the lesion was performed, and the central portion of the hyoid bone was resected. In the postoperative course, the patient suffered from dyspnea and dysphonia, with relief of symptoms on the third post-operative day. At follow-up, 8 months after surgery, the patient was well, without evidence of disease.

On gross examination, the excised mass measured 20 mm in largest diameter; a central fibrous area was detected, without evidence of cyst. The tissue was fixed in 10% buffered formalin, routinely processed and paraffin embedded. Histological examination revealed a preserved lymph node structure at the periphery, with reactive follicles and dilated sinuses, whereas, in the region of the hilum, the nodal parenchyma was completely replaced by a fibrous tissue (Figure 2) containing numerous irregular vessels and spindle cell bundles (Figure 3). On immunohistochemical analysis, the spindle cells appeared as smooth muscle fibers, as confirmed by their positivity for HHF35 and desmin. Consecutive sections did not document presence of a cystic lesion. All the aforementioned findings were consistent with a pathological diagnosis of AH of the lymph node.

Conclusions

Neck lesions more commonly encountered in pediatric population consist of congenital, inflammatory or neoplastic diseases [3,5]. In addition to branchial cleft cysts, located in the lateral neck, malformative midline lesions prevalently belong to thyroglossal duct sinus and cyst, and present with a variable US appearance, ranging from a typical anechoic cyst to a pseudosolid lesion [7,8].
AH is a rare, benign form of lymph node hilar modification characterized by parenchymal replacement by fibrous tissue containing vessels and smooth-muscle proliferation. It prevalently involves inguinal lymph nodes, apparently starting in the hilum and extending towards the cortex. This entity was first described by Chan et al. in 1992, and, so far, 28 cases have been reported in the literature [9-11,14-23]. Table 1 shows age, gender and location of the lesion in 28 patients.

In our infant patient, AH occurred in a midline neck lymph node. To our knowledge, only two cases, both in adults, have been documented in the lateral neck region. The ultrasound image of the lump yielded a suspected cystic lesion, for the variable tissue density and for the presence of an internal fibro-vascular area contrasting with the intact lymph node periphery and providing the hypothesis of thyroglossal duct cyst. The histological examination, performed after excision, allowed the correct diagnosis.

The pathogenesis of this lesion is unclear. A possible explanation is that AH represents a vascular and smooth muscle proliferative response to chronic impairment of nodal lymphatic flow or to previous nodal inflammation [9,16].

Notwithstanding the rarity, AH should be included in the differential diagnosis of neck masses. The treatment of choice for this benign disease is surgical excision. The Sistrunk procedure, performed in our case, is a safe and successful technique with low complications.

Consent
Written informed consent was obtained from the parents for publication of this case report and any accompanying images.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VDC and AC conceived the study and drafted the manuscript. VDC participated in surgery. LL has been involved in drafting and critical revision of the manuscript. CM did surgery and revised the manuscript. MN was involved in preparation of figures and manuscript revision. All authors read and approved the final manuscript.

Author details
1Department of Pediatric Surgery, Catholic University of Sacred Heart, Largo A.Gemelli 8, Rome 00168, Italy.
2Department of Anatomic Pathology, Catholic University of Sacred Heart, Largo A. Gemelli 8, Rome 00168, Italy.

Received: 17 June 2012 Accepted: 26 October 2012
Published: 6 November 2012

References
1. Hsieh YY, Hsueh S, Hsueh C, Lin JN, Luo CC, Lai JY, Huang CS: Pathological analysis of congenital cervical cysts in children: 20 years of experience at Chang Gung Memorial Hospital. Chang Gung Med J 2003, 26:107–113.
2. Türkylüm Z, Karabulut R, Bayaıit YA, Sonmez K, Kobyasioglu A, Yılmaz M, Kemaloglu YK, Basaklar AC: Congenital neck masses in children and their embryologic and clinical features. B-ENT 2008, 4:7–18.
3. Tracy TF Jr, Muratore CS: Management of common head and neck masses. Semin Pediatr Surg 2007, 16:3–13.
4. Osifo OD, Ugiagbe EE: Neck masses in children: etiopathology in a tertiary center. Niger J Clin Pract 2011, 14:232–236.
5. Telander RL, Flitton HC: Review of head and neck lesions in infancy and childhood. Surg Clin North Am 1992, 72:1429–1447.
6. Turkington JR, Paterson A, Sweeney LE, Thombury GD: Neck masses in children. Br J Radiol 2005, 78:75–85.
7. Waldworth DT, Siegel MJ: Thyroglossal duct cyst: variability of sonographic findings. Am J Radiol 1994, 163:1475–1477.
8. Ahuja AT, King AD, Metreweli C: Sonographic evaluation of thyroglossal duct cysts in children. Clin Radiol 2000, 55:770–774.
9. Chan JKC, Frizera G, Fletcher CD, Rosai J: Primary vascular tumors of lymph nodes other than Kaposi’s sarcoma. Analysis of 39 cases and delineation of two new entities. AJR Am J Roentgenol 1993, 163:335–350.
10. Laeng RH, Hoeft MA, Bonnich B: Angiomyomatous hamartoma of a cervical lymph node combined with haemangiomatoids and vascular transformation of sinuses. Histopathology 1996, 29:85–84.
11. Barzilai G, Schindler Y, Cohen-Kerem R: Angiomyomatous hamartoma in a submandibular lymph node: a case report. Ear Nose Throat J 2009, 88:831–832.

Table 1 Cases of angiomyomatous hamartoma reported in literature

| Case no. | Author, year [ref] | Age (y) | Sex | Site          |
|----------|--------------------|---------|-----|---------------|
| 1-12     | Chan et al, 1992   | 80      | M   | L inguinal    |
| 24       |                     | 80      | M   | L inguinal    |
| 10       |                     | 10      | F   | L inguinal    |
| 19       |                     | 19      | M   | L inguinal    |
| 19       |                     | 19      | M   | R inguinal    |
| 50       |                     | 50      | F   | L inguinal    |
| 31       |                     | 31      | M   | R inguinal    |
| 56       |                     | 56      | M   | R inguinal    |
| 60       |                     | 60      | M   | L inguinal    |
| 56       |                     | 56      | M   | L inguinal    |
| 52       |                     | 52      | M   | R inguinal    |
| 44       |                     | 44      | M   | R femoral     |
| 13       | Allen et al, 1993  | 67      | F   | R femoral     |
| 14       | Laeng et al, 1996  | 17      | F   | L latero-cervical |
| 15       | Magro et al, 1997  | 68      | M   | L inguinal    |
| 16       | Sakurai et al, 2000| 51      | M   | R inguinal    |
| 17       | Dargent et al, 2004| 29      | M   | R inguinal    |
| 18       | Piedimonte et al, 2006 | 34 | F | L inguinal |
| 19       | Sullu et al, 2006  | 33      | F   | R inguinal    |
| 20       | Mauro et al, 2008  | 41      | M   | L popliteal   |
| 21       | Barzilai et al, 2009| 51     | F   | L latero-cervical |
| 22-26    | Bourgeois et al, 2009 | 8   | M   | L inguinal    |
| 27       | Ram et al, 2009    | 82      | M   | L inguinal    |
| 28       | Prusac et al, 2011 | 14      | M   | R popliteal   |
| 29       | Present case       | 8 months | F | Midline cervical |
12. Sidell DR, Shapiro NL: Diagnostic accuracy of ultrasonography for midline neck masses in children. Otolaryngol Head Neck Surg 2011, 144:431–434.
13. Friedman ER, John SD: Imaging of pediatric neck masses. Radiol Clin North Am 2011, 49:617–632.
14. Allen PW, Hoffman GI: Fat in angiomyomatous hamartoma of lymph node. Am J Surg Pathol 1993, 17:748–749.
15. Magro G, Grasso S: Angiomyomatous hamartoma of the lymph node: case report with adipose tissue component. Gen Diagn Pathol 1997, 143:247–249.
16. Sakurai Y, Shoji M, Matsubara T, Imazu H, Hasegawa S, Ochiai M, Funakiti T, Mizoguchi Y, Kureoda M, Kasaia M: Angiomyomatous hamartoma and associated stromal lesions in the right inguinal lymph node: a case report. Pathol Int 2000, 50:655–659.
17. Dargent JH, Lespagnard L, Verdebout J-M, Bourgeois P, Munck D: Glomeruloid microvascular proliferation in angiomyomatous hamartoma of the lymph node. Virchows Arch 2004, 445:320–322.
18. Piedimonte A, De Nictolis M, Lorenzini P, Speri V, Bertani A: Angiomyomatous hamartoma of inguinal lymph nodes. Plast Reconstr Surg 2006, 117:714–716.
19. Süllü Y, Gün S, Dabak N, Karagöz F: Angiomyomatous hamartoma in the inguinal lymph node: a case report. Turk J Pathol 2006, 22:42–44.
20. Mauro CS, McGough RL II, Rao UNM: Angiomyomatous hamartoma of a popliteal lymph node: an unusual cause of posterior knee pain. Ann Diagn Pathol 2008, 12:372–374.
21. Bourgeois P, Dargent JH, Larimont D, Munck D, Scales F, Boels M, De Valck C: Lymphoscintigraphy in angiomyomatous hamartomas and primary lower limb lymphedema. Clin Nucl Med 2009, 34:405–409.
22. Ram M, Alsanjari N, Ansari N: Angiomyomatous hamartoma: a rare case report with review of the literature. Rare Tumors 2009, 1:e25.
23. Pruscic JK, Juric I, Larnovec J, Culc V: Angiomyomatous hamartoma of the popliteal lymph nodes in a patient with Klippel-Trenaunay syndrome: case report. Fetal Pediatr Pathol 2011, 30:320–324.