Mountain rock glaciers contain globally significant water stores

D. B. Jones, S. Harrison, K. Anderson & R. A. Betts

Glacier- and snowpack-derived meltwaters are threatened by climate change. Features such as rock glaciers (RGs) are climatically more resilient than glaciers and potentially contain hydrologically valuable ice volumes. However, while the distribution and hydrological significance of glaciers is well studied, RGs have received comparatively little attention. Here, we present the first near-global RG database (RGDB) through an analysis of current inventories and this contains >51,000 RGs. Using the RGDB, we identify key data-deficient regions as research priorities (e.g., Central Asia). We provide the first approximation of near-global RG water volume equivalent and this is 62.02 ± 12.40 Gt. Excluding the Antarctic and Subantarctic, Greenland Periphery, and regions lacking data, we estimate a near-global RG to glacier water volume equivalent ratio of 1.618. Significant RG water stores occur in arid and semi-arid regions (e.g., South Asia East, 1:57). These results represent a first-order approximation. Uncertainty in the water storage estimates includes errors within the RGDB, inherent flaws in the meta-analysis methodology, and RG thickness estimation. Here, only errors associated with the assumption of RG ice content are quantified and overall uncertainty is likely larger than that quantified. We suggest that RG water stores will become increasingly important under future climate warming.

In semi-arid and arid high mountain systems glaciers and seasonal snowpack form natural buffers to hydrological seasonality, as seasonal meltwater contributions smooth the effects of highly variable summer precipitation and associated irregular runoff. Described as the world’s natural “water towers”, glacier- and snowpack-derived meltwater is critical to ecological, social and economic systems in these regions. Additionally, mountain water stores provide buffering capacity for surrounding lowlands. Elevation dependent warming (i.e. an amplified rate of warming with altitude) suggests that high-altitude environments will likely experience comparatively faster warming than lower altitude areas. Furthermore, high-altitude hydrological resources are highly sensitive to environmental change. Indeed, between 2003 to 2009 glacier volume loss globally was estimated to be ~259 ± 28 Gt yr−1. With projected atmospheric warming, long-term glacier and seasonal snowpack changes are expected to impact significantly hydrological resources stored within high mountain systems. Small and low-lying glaciers are particularly likely to be sensitive to warming, with many disappearing. In the short-term glacier shrinkage results in increased runoff. However, following “peak non-renewable water”, summer runoff will significantly reduce in semi-arid and arid regions. Additionally, a warming-induced precipitation shift from snowfall to rainfall combined with a temporal shift towards earlier snowpack melt, will further lead to runoff reduction.

Consequently, effective water resource management in terms of climate change adaptation strategies is critical. However, this is hampered by an incomplete understanding of all components of the hydrological cycle in high mountain systems. Whilst much has been written on the hydrological role of glaciers, that of rock glaciers (RGs) has received comparatively little attention. RGs are cryospheric landforms that are formed by gravity-driven creep of accumulations of rock debris supersaturated with ice. They are characterised by a seasonally frozen, clastic-blocky surficial layer ~0.5 to 5 m thick that thaws each summer (this is known as the active layer). RGs are described as active or inactive if they contain ice beneath the active layer. These are described collectively as intact RGs. Those containing no or minimal ice content are termed relict RGs. RGs are thermally decoupled from external micro- and meso-climates because of the insulating effect of the active layer, which is shown to slow the rate of ice melt within RGs. Consequently, RGs respond to climate change at comparatively longer time scales than glaciers. Therefore, RGs are more climatically resilient than glaciers and form frozen water stores.
of potentially significant hydrological value23. Indeed, under future climate warming RGs are expected to form a larger component of base flow to rivers and streams24. RGs containing ice generally display slow movement rates (mm yr-1 to cm yr-1) because of the gravity-driven creep of the ice-supersaturated RG body. This movement creates distinctive morphometric characteristics that enable feature identification and activity classification (i.e. intact or relict) (Fig. 1).

Ubiquitously distributed through the world’s high mountain systems25, RGs have been found in greater numbers than glaciers in certain regions, for example the central Andes26. Despite this, RGs are not currently included in global-scale glacier databases such as the Global Land Ice Measurements from Space (GLIMS) glacier inventory. To date RG distribution has only been researched at regional scales (e.g., European Alps, PermaNET26).
Although described as the “most pressing need” in RG research, as yet no global-scale RG inventory exists\(^{(27)}\). This prevents full assessment of RG distribution and their hydrological value as water stores, and forms the motivation for this study.

Brief Methods

As the primary objective of this study, we present the first near-global-scale RG database (RGDB). The RGDB is shared as a Microsoft Excel database available in the supplementary information online. We argue that data dissemination forms a positive step towards scientific transparency and open-access research, benefitting both the scientific and local/regional communities. The RGDB was developed through meta-analysis of systematic inventory studies published prior to October 2017 (see Methods). In this study, ‘systematic inventory studies’ refer to the strategic and complete mapping of RG features within a study area. We identified these using ISI Web of Science, Scopus, ProQuest Dissertations and Theses, Google Scholar, and National Snow and Ice Data Center (NSIDC) search tools (Supplementary Table S1). The meta-analysis resulted in 131 systematic inventory studies. To avoid duplicate data (i.e. overlapping study areas) some studies were excluded or partially excluded. Consequently, 76 studies form the RGDB.

Within this study, our secondary objective was to establish the relative hydrological contributions of glaciers and RGs at a near-global scale. Therefore, it is important to be able to compare quantitatively the estimated water volume equivalent of RGs vs. glaciers. With regards to RGs, thickness-area (T-A) scaling relations, i.e. \(H = cA^{\beta}\) where mean RG thickness (H) is calculated as a function of surface area (A) and two scaling parameters (c and \(\beta\)), were applied. The scaling parameters applied here were derived from the empirical rule established by Brenning\(^{(28)}\) (see equation [1] in Methods). RG volume was estimated through multiplication of (H) and (A). Where complete RG inventories were available, RG surface area data were extracted for each individual feature for use in the T-A relationship. A three-step approach to determine RG volume was used where inventory data was incomplete or unknown (see Methods; Supplementary Fig. S1). By definition, RGs do not contain 100% ice (i.e. ice content is spatially heterogeneous), but because few geophysical investigations of RGs have been conducted, precisely estimating ice content is difficult. Here, we assumed ice content to be 40–60% by volume, enabling calculation of lower (40%), mean (50%), and upper (60%) estimates, following other studies\(^{(29–31)}\). Subsequently, water volume equivalent was calculated assuming an ice density conversion factor of 900 kg m\(^{-3}\). With regards to glaciers, the Randolph Glacier Inventory version 4.0 (herein RGIv4.0) released December 2014\(^{(32)}\) provides a globally complete set of outlines for all [ice- and debris-covered-] glaciers outside the two ice sheets Greenland and Antarctica\(^{(33)}\). For each glacier of the RGIv4.0, Huss and Hock\(^{(34)}\) calculated glacier volume and ice thickness distribution through the application of an ice-thickness distributed model\(^{(35)}\) (see Methods). These global-scale data were used within this study. To better enable regional assessment, the RGDB was divided into RGIv4.0 adapted regions (see Methods; Supplementary Fig. S2 and Supplementary Table S2). The above-described approaches have potentially large associated uncertainties as described in the ‘study uncertainty’ section. Therefore, the volumetric results presented here represent a first-order approximation. Nevertheless, we thought it prudent to include these results, as there exists a need to make significant advances in this research field in the context of continued climate change.

Results and Discussion

RGDB meta-analysis results. Searches of the ISI Web of Science, Scopus and ProQuest Dissertations and Theses generated 799, 1023, and 359 studies respectively (Supplementary Table S1). Excluding duplicates, peer-reviewed studies (i.e. ISI Web of Science and Scopus) published within the previous decade (2007–2017) totalled 579. In total, 131 systematic RG inventory studies resulted from the categorisation of the available collated literature, of which ~72% were published post-2000 and ~63% during the last 10 years (2007–2017). This reflects, as in previous studies\(^{(36)}\), an increased interest in RG research in the last decade. After duplicate RG data, i.e. overlapping study areas, were excluded, 76 studies formed the final RGDB. Systematic RG inventories forming the RGDB were predominantly generated using expert photomorphic mapping from remote sensing image data, with landforms manually identified and digitised based upon geomorphic indicators (see Fig. 1). Recent technological advancements in remote sensing science have:

(i) provided the opportunity for large-scale geomorphological surveys. For instance, fine spatial satellite image data are accessible freely through Google Earth, including SPOT and DigitalGlobe (e.g., QuickBird, Worldview-1 and 2, and IKONOS). The RGDB includes studies that have used the Google Earth platform to compile systematic RG inventories\(^{(37,38)}\);

(ii) provided open-access to <1 m resolution airborne laser scanning (LiDAR) data, enabling relict RGs covered by dense vegetation to be systematically mapped\(^{(39)}\). This is important as relict landforms strongly influence catchment hydrology\(^{(40)}\); and

(iii) provided accessible interferometric synthetic aperture radar (InSAR) data (e.g., ESA Sentinel-1). In the context of this study, InSAR has enabled systematic RG mapping through the investigation of surficial kinematics (i.e. feature movement). Subsequently, activity status classification can be defined with greater accuracy (e.g. Liu et al.\(^{(41)}\)).

RGDB coverage. Our results from the meta-analysis suggest that the number of systematic RG inventory studies is relatively strong, and significantly related to the total number of RGs identified \((r = 0.71, p\text{-value} = < 0.01)\). Study density is highest in Central Europe \((n = 27)\), followed by South America \((n = 17)\) and North America \((n = 7)\) (Table 1). These RGI regions account for ~67% of systematic RG studies within the final RGDB. Therefore, we can use the RGDB to identify regions that have been the focus of far less scientific research. Significant gaps in the available data are evident. For example, no systematic RG inventory studies have been
and a reg
49
volume equivalent of between
69
Gt assuming 50% ice content by volume. Therefore, intact RGs contain a total water
618
tain a total ice volume of ~
27
2
ap
3
pr
the pressures of climate change, poor infrastructure and increasing population is likely43,44.

They also provide an important water store for human use, for example in La Paz, Bolivia where future water scarcity due to the pressures of climate change, poor infrastructure and increasing population is likely43,44.

Table 1. RGDB data reflecting total studies, RG numbers, areas, and water volume equivalents at the regional (RGI) levels and near-global scale. The water volume equivalent calculations are associated with an estimated range of ice content by volume (%), with lower (40%), mean (50%), and upper (60%) estimates. Those RGI regions where no systematic RG inventory studies have been undertaken (i.e. Arctic Canada North, Arctic Canada South, Russian Arctic, South Asia West, and Svalbard and Jan Mayen) are excluded from the table. See Supplementary Fig. S1 and Supplementary Table S2 for details on the RGI regions. Values are reported to two decimal places. WVEQ = Water volume equivalent.

RGI region	No. studies (n)	Rock glaciers (n)	Rock glacier area	Water volume equivalent (Gt)					
	Total	Intact	Relict	Total	Intact	Relict	Total	Intact	Relict
Antarctic and Subantarctic	3	35	33	2	3.21	3.01	0.20	0.04 ± 0.01	
Caucasus and Middle East	3	983	551	332	113.22	68.52	44.70	0.93 ± 0.19	
Central Asia	5	2187	1991	196	291.61	290.35	17.24	4.08 ± 0.82	
Central Europe	27	11968	4189	7728	752.28	326.18	495.84	3.13 ± 0.63	
Greenland Periphery	1	390	386	204	46.00	21.91	24.09	0.30 ± 0.06	
Iceland	2	181	121	60	61.37	47.57	13.80	0.82 ± 0.16	
New Zealand	1	386	166	220	42.56	20.47	22.09	0.28 ± 0.08	
North America	7	13833	7874	5959	1710.67	1131.08	628.73	15.57 ± 3.11	
North Asia	5	7207	3431	3776	801.51	422.77	378.73	5.74 ± 1.15	
Scandinavia	2	248	67	181	26.44	8.26	18.18	0.11 ± 0.02	
South America	17	6991	4579	2412	976.51	725.01	251.50	11.14 ± 2.23	
South Asia East	2	6513	4556	2157	1417.57	950.80	466.77	19.48 ± 3.90	
Svalbard and Jan Mayen	1	500	238	262	55.66	29.36	26.30	0.40 ± 0.08	
NEAR-GLOBAL	76	51422	27783	23588	6298.62	4045.30	2388.33	62.02 ± 12.40	

Glacier- and rock glacier- hydrological value. The RGDB presented here contains 51,422 RGs (intact = 27,783, relict = 23,588) covering an estimated area of ~6,300 km². From this, we present a first-order approximation of volumetric ice content contained within intact RGs. In total, we estimate that intact RGs contain a total ice volume of ~69 Gt assuming 50% ice content by volume. Therefore, intact RGs contain a total water volume equivalent of between 49.61 and 74.42 Gt, equivalent to ~54–81 trillion litres (Table 1), if a possible range of ice content between 40% and 60% is considered. Regionally, intact RGs located within South Asia East (19.48 ± 3.90 Gt), North America (15.57 ± 3.11 Gt), and South America (11.14 ± 2.23 Gt) likely contain the largest water stores. Conversely, water volume equivalents found within the Antarctic and Subantarctic, Greenland Periphery, New Zealand, and Scandinavia RGI regions are the smallest, with the upper estimate (i.e. 60% ice content by volume) containing <0.88 Gt combined. Importantly, long-term RG water stores in arid and semi-arid regions are large (e.g., South America = 11.14 ± 2.23 Gt). This is particularly significant where glacial meltwater provides an important portion of potable water, for example in La Paz, Bolivia where future water scarcity due to the pressures of climate change, poor infrastructure and increasing population is likely43,44.

The RGv4.0 contains 197,654 digital glacier outlines covering an area of ~726,792 km² globally43. Furthermore, Huss and Hock43 estimated glaciers to contain 138,074 Gt of ice, equating to an estimated water volume equivalent of 124,266 Gt (Table 2). As a result, the total ratio of RG to glacier water volume equivalent is estimated to be 1:2,226 (Table 2). This implies that glaciers contain a store of water 2,226 larger than that of RGs at the near-global scale.

Excluding those RGI regions where no systematic RG inventory studies have been undertaken (i.e. Arctic Canada North, Arctic Canada South, Russian Arctic, and South Asia West), the estimated ratio of RG to glacier water volume equivalence is 1:1,482. For completeness we also excluded the Antarctic and Subantarctic and Greenland Periphery RGI regions, similar to other studies45, along with the aforementioned RGI regions where no systematic RG inventories have been undertaken. The resulting estimated ratio of RG to glacier water volume equivalence globally is 1:618. The ratio of RG to glacier water volume equivalence varies greatly geographically, between 1:26 (North Asia) and 1:18,395 (Svalbard and Jan Mayen), excluding the Antarctic and Subantarctic and Greenland Periphery RGI regions. However, continental-extent ratios are not reflective of national-level or regional-level ratios. For example, RG to glacier water volume equivalence ratios of 3:1 (semi-arid Chiloe Andes [29°–32°])46 and 1:3 (West region, Nepal)46 have been reported.

A number of RGI regions are underrepresented within the RGDB (Table 2). Importantly, this includes RGI regions within which severe water stress will likely result from future climate warming, for example, those RGI
regions encompassing the Hindu Kush Himalaya (Central Asia, South Asia East, South Asia West). From this we argue that the RGDB data set likely underestimates the potential hydrological value of RGs as future water stores. Furthermore, with continued climate-driven deglaciation, high mountain systems are in the initial stages of transitioning from glacial- to paraglacial-dominated process regimes. The term paraglacial is defined as "...nonglacial earth-surface processes, sediment accumulations, landforms, landsystems and landscapes that are directly conditioned by glaciation and deglaciation". Modification of rock slopes (through rock slope failures [RSFs]) dominate the rock slope paraglacial system, as high mountain systems respond to deglacial unloading or debuttressing following the exposure of glacially steepened rockwalls by glacier downwastage and retreat. This may subsequently increase glacier surface insulation through enhanced debris-supply. Therefore, frozen water store preservation may occur, as glaciers transition to RG forms. Sasaki estimated global supraglacial debris-cover to be ~43,750 km² (~20,830 km² classified as thick) and also provided regional estimations. For example, significant debris-cover in Central Asia (13,965 km²), South Asia East (5,555 km²), and South Asia East (3,343 km²) suggests that potentially suitable habitats for RG development exist within these locations. We suggest, therefore, that these are priority regions for future systematic RG inventory studies. Furthermore, given the global glacier volume loss projections of 25–48% between 2010–2100, we further suggest that RGs will play an increasingly important future role in regional water supply.

Study uncertainty. It is important to acknowledge possible sources of uncertainty within this study, particularly given the necessity to generalise with regards to RG ice volume and the associated water volume equivalent calculations. Possible sources of uncertainty are discussed below.

1. **Inherited errors within the RGDB:** Whereas automated and semi-automated techniques have enabled the mapping and monitoring of clean-ice glaciers from optical satellite data, these approaches are generally unsuitable for mapping debris-covered glaciers (e.g., Alifu). This is because both supraglacial-debris (upon the glacier) and debris at the glacier margins share a common source, and thus spectral similarity of features "render them mutually indistinguishable." This limitation is also applicable to RGs (e.g., Brenning). Therefore, manual RG identification and digitisation using geomorphic indicators (Fig. 1) remains the optimal approach for inventory compilation. This approach is used by many studies included within the RGDB. However, this methodology is inherently subjective and introduces potential uncertainties (see Scotti et al. and Jones et al.). Furthermore, Whalley et al. have previously highlighted the problem of mapping 'hidden' ice with respect to RGs. The RGDB presented here includes only meta-analysis derived data from the available systematic RG inventory studies. As such, any errors present (and where those errors are quantified or unquantified) in the original studies will be present here.

2. **The meta-analysis methodology:** The RGDB was developed through meta-analysis of systematic RG inventory studies published prior to October 2017, using ISI Web of Science, Scopus, ProQuest Dissertations and Theses and NSIDC search tools. Therefore, the RGDB comprehensiveness is predominantly governed by the availability of openly accessible academic information on the topic. As such, studies outside of

RGI region	Rock glacier	Glacier	Ratio			
	Area (km²)	WVEQ	Area (km²)	WVEQ	WVEQ: glacier	WVEQ
Antarctic and Subantarctic	3.21	0.04	132,867.00	39,834.76	1:995,869	
Arctic Canada North	No Data	No Data	104,873.00	24,742.59	1:∞	
Arctic Canada South	No Data	No Data	40,894.00	7,272.89	1:∞	
Caucasian and Middle East	113.22	0.93	1,139.00	55.38	1:60	
Central Asia	291.61	4.08	62,606.00	3,688.13	1:904	
Central Europe	752.28	3.13	2,063.00	103.37	1:33	
Greenland Periphery	46.00	0.30	89,721.00	13,958.78	1:46,529	
Iceland	61.37	0.82	11,060.00	3,001.45	1:3,660	
New Zealand	42.56	0.28	1,162.00	55.38	1:198	
North America	1710.67	15.57	101,274.00	17,628.45	1:1,132	
North Asia	801.51	5.74	3,430.00	147.67	1:26	
Russian Arctic	No Data	No Data	51,592.00	11,326.51	1:∞	
Scandinavia	26.44	0.11	2,851.00	132.91	1:1,208	
South America	976.51	11.14	31,679.00	4,873.21	1:437	
South Asia East	1417.57	19.48	21,799.00	1,103.85	1:57	
South Asia West	No Data	No Data	33,859.00	2,791.02	1:1,132	
Svalbard and Jan Mayen	55.66	0.40	33,922.00	7,357.80	1:18,395	
NEAR-GLOBAL	6298.62	62.02	726,792.00	138,074.14	1:2,226	

Table 2. RG and glacier total areas and water volume equivalents at the regional (RGI regions) and near-global scale. The ratios of RG to glacier water volume equivalence is also given. RG water volume equivalent uses the average ice content by volume (50%). Values are reported to two decimal places.
these research-bounds, in particular those published in non-ISI indexed journals, may have been missed. Furthermore, integration of systematic RG inventory data into the RGDB was hampered by: (i) non-standardised inventory datasets (see Cremonese et al.); (ii) non-English language writing; (iii) the absence of accessible open-access database (only 43 of studies in the full RGDB (~33%) had linked databases); and (iv) incomplete inventory data. With regards to (ii), we used Microsoft Translator/PROMT Translator to increase the accessibility of non-English manuscripts, and thus increased the completeness of the RGDB. Studies where Microsoft Translator/PROMT Translator was used are noted as such within the RGDB files available in the supplementary information. Additionally, a possible source of error occurs in situations where systematic RG inventory data are either incomplete or unknown ([iii] and [iv]). As previously mentioned, in these situations we chose to implement a three-step approach to determine RG activity status, area, and ice volume (Supplementary Fig. S2). This three-step approach has potentially large associated uncertainties as we have, of necessity, to generalise.

(3) Methodology for determining (a) glacier- and (b) rock glacier-hydrological stores: Regarding (a), within this study results provided in Huss and Hock were adopted. For each glacier of the RGIV4.0 Huss and Hock, calculated glacier volume and ice-thickness distribution through the application of their model (herein HF-model), updating the previous results of Huss and Farinotti that relied upon RGIV2.0 data (released June 2012). "[T]he RGI is intended to be a snapshot of the world's glaciers as they were near the beginning of the 21st century (although in fact its range of dates is still substantial)." Indeed, within the RGIV4.0 released in December 2014, the average satellite acquisition date (±1 standard deviation) of inventoried glacier outlines within each of the 19 first-order regions ranges from 1970 ± 19 (North Asia) to 2009 ± 2 (Alaska). Given that glacier volume loss globally was estimated to be ~259 ± 28 Gt yr⁻¹ between 2003 to 2009, RGI-derived data may overestimate the glacier area. With regards to the HF-model, previously uncertainty assessments have been undertaken, the results of which have been summarised and discussed in detail. Lastly regarding (a), results within Huss and Hock were presented as sea-level equivalent (SLE) assuming an ice density of 900 km m⁻³ and an ocean area of 3.625 × 10⁶ km². For the purposes of this study, these results were converted from SLE to ice volume for each RGI first-order region. Converted ice volumes may slightly differ compared to the original dataset, as Huss and Hock reported SLE only to 2 decimal places.

With regards to (b), we acknowledge that the results presented here represent a first-order approximation. Although without a detailed examination of the surface features of a RG [as used in many studies included in the RGDB] may also give a general indication of the position, activity, and quantity of hidden ice, generally, RG thickness and average ice content are unknown variables. Direct measurements of internal structure are limited, due to the practicalities of field-based research (e.g., direct drilling, geophysical investigations) in largely remote locations. Indeed, regarding the paucity of such scientific investigations, it has been purported that "[m]embers of the mining community have had more opportunities to study RGs internally than have geomorphologists." Furthermore, unless in situ internal structure data are spatially distributed with good coverage of the entire feature extent, the ice-thickness and ice-debris ratio at any location remains an assumption. Therefore, here T-A scaling relations, i.e. $H = cA^β$ (see Methods), were applied. Scaling parameters derived from the empirical rule established by Brenning were used (equation [1]). According to this power-law relationship, a RG sized 0.01 km² and 1 km would contain an ice-debris layer 20 m and 50 m thick, respectively. This estimation of RG thickness is based upon morphometric field measurements. However, this T-A scaling relationship was developed for RGs in Central Chile. As such, this approach cannot account for regional specificities of RGs around the globe, and thus we cannot be certain of the suitability of our approach to RGs globally. As an alternate approach, it can be argued that a thickness of 20 m is necessary for active RGs to creep. Indeed, some previous studies have adopted a consistent RG permafrost thickness of 20 m for all RG sites. However, Burger et al. (cf. Table 4) and Janke et al. detail examples where quantitative field measurements indicate RG thicknesses far in excess of 20 m. As such, application of this alternate approach may significantly underestimate RG thicknesses.

Further regarding (b), here we assume estimated ice volume is 40–60% by volume enabling the calculation of lower (40%), average (50%), and upper (60%) estimates. Ice content within RGs is spatially heterogeneous. Therefore, the volumetric ice content varies strongly within a RG and between individual RGs. "The average volumetric ice content of rock glaciers is widely accepted to vary between approximately 40 per cent and 70 per cent… (Barsch, 1996: 40–60%; Burger et al. 50–70%)". This percentage array is consistent with field data from different climatic regions worldwide. In this context, the assumption of an average 50% ice content is reasonable. Within the RGDB many studies assume RGs contain 40–60% ice content by volume; adoption of the same percentage array in this study enables inter-study comparative assessment. Furthermore, within the RGDB numerous studies classify RGs as intact, i.e. studies do not provide separate data for active and inactive RGs. Related to this, potential bias may be introduced by the typically lower ice contents of inactive RGs. Additionally, information regarding RG genesis, i.e. permafrost origin or glacigenic origin, is predominantly absent within the RGDB despite strongly influencing ice content. Therefore, we acknowledge that due to the nature of the RGDB and the methodology, we cannot comprehensively account for regional specificities. Further research related to ice-thickness and ice content by volume is certainly needed.

Conclusions
The significance of these results is fourfold. First, the systematic meta-analysis undertaken here has enabled the first near-global RGDB to be developed. This is based on the present state-of-knowledge of systematic RG inventory studies. Second, this work focuses on RGDB coverage and therefore enables identification of priority regions for systematic RG inventory studies, both at the RGI regional- and local- scales. Third, for the first time we present an assessment of water volume equivalents contained in the world’s observed RGs. These indicate that RG
water stores are of potentially significant hydrological value (62.02 ± 12.40 Gt). In particular, our RGI regional approach indicates significant frozen water stores contained within RGs in arid and semi-arid high mountain systems facing potential future water scarcity (e.g., South America). Fourth, the methodology presented here enable an approximate comparative assessment of the ratios of RG to glacier water volume equivalents at RGI regional- and near-global-spatial scales. Finally, we acknowledge and discuss the uncertainty associated with the results presented here. These results represent a first-order approximation; uncertainty in the near-global RG water storage estimates is due to several factors, e.g., inherited errors within the RGDB, inherent flaws in the meta-analysis methodology, and RG thickness estimation, but here only errors associated with the assumption on RG ice content are quantified. Therefore, overall uncertainty is likely larger than that quantified here. Importantly, a full understanding of all inputs to the high mountain system hydrological is critical for effective water resource management to mitigate or adapt to the impacts of climate change – this includes RGs.

Methods

Rock glacier database (RGDB) collation. RG studies published prior to October 2017 were identified by means of journal search tools (ISI Web of Science, Scopus, ProQuest Dissertations and Theses), online databases (NSIDC), and direct communication with academics involved in RG research. We searched the ISI Web of Science for peer-reviewed journal papers published between 1900–2017 using topic searches for “rock glacier” OR “rock glaciers” OR “rock glaciers” OR “rock glaciers”. Scopus was searched for peer-reviewed journal papers with ‘Document Type’ restricted to ‘Article’, ‘Conference Paper’, ‘Review’, and ‘Article in Press’ and no time-period restriction, also using the search terms “rock glacier” OR “rock glacier” OR “rock glaciers” OR “rock glaciers”. ProQuest Dissertations and Theses was searched for publications with full-text availability, using the search terms “rock glacier” OR “rock glaciers” OR “rock glaciers” OR “rock glaciers”. Note that dissertations and theses with research outcomes already published as journal papers, were not included in the RGDB. Lastly, Google Scholar and NSIDC searches for “rock glacier” OR “rock glacier” OR “rock glaciers” OR “rock glaciers” were undertaken. Search results from ISI Web of Science and Scopus were categorised into (i) systematic inventory resources or (ii) not relevant.

Excluding duplicate studies, a total of 131 systematic RG inventory studies resulted from the systematic meta-analysis. So as to avoid duplicate RG data, i.e. overlapping study areas, 55 studies were excluded from the RGDB where more comprehensive and/or up-to-date inventories included the same RGs. This process was undertaken through Google Earth (version 7.1.5.1557, Google Inc., California, USA) and ArcGIS (version 10.3.1, ESRI, Redlands, CA, USA). Partially overlapping study areas were partially excluded. For example, data from Cremonese et al.26 (European Alps) was partially excluded where the study area overlapped that of Winkler et al.40 (Niedere Tauern Range, Austria).

The full RGDB structure required that the following fields be filled, where the data was available: (i) Source; (ii) Author(s) (including full citation); (iii) Study Location; (iv) Datasets Applied: (a) image dataset(s), (b) topographic dataset(s); (v) Inventory Validation: (a) Yes, (b) No, (c) NA (i.e. unknown); (vi) Number of Rock Glaciers: (a) total, (b) intact, (c) relict; (vii) Elevation (All, Intact, Relict): (a) mean(s), (b) minimum elevation at the front (MEF), (c) maximum elevation of the landform (MaxE); (viii) Area (All, Intact, Relict): (a) total, (b) mean(s); (ix) Length (All, Intact, Relict): (a) mean(s), (b) maximum(s); (x) Width (All, Intact, Relict): (a) mean(s), (b) maximum(s); (xi) Planform-shape (tongue-shaped, lobate, spatulate, or coalescent); (xii) Dominant Aspect(s); (xiii) Water Volume Equivalent (WVEQ); (xiv) Specific Density; (xv) Ratio of Rock Glacier WVEQ to Glacier WVEQ; (xvi) Additional Information. Note that where inventory data is missing but calculable (e.g., dataset[s] provided as supplementary information files, requires unit conversion etc.), we reflect updated values in blue font within the full RGDB.

Supplementary Fig. S1 and Supplementary Table S2 illustrate the 19 first-order regions that form the spatial structure of the RGIv4.0.22. Further information is available from the Global Land Ice Measurements from Space (GLIMS) website (for access: http://www.glims.org/RGI/). In compiling the RGDB, a decision to merge consensus areas was taken for two key regions because the systematic RG inventory studies could not be split easily to account for regional differences. Here, we combined the RGIv4.0 regions: (i) ’01’ (Alaska) and ’02’ (Western Canada and US) to create a new dataset for “North America”; and (ii) ’16’ (Low Latitudes) and ’17’ (Southern Andes) to create a new dataset for “South America”, where there are high concentrations of both RGs and glaciers. Regarding (ii), sites in Central America, Africa, and Southeast Asia, which contained relatively insignificant proportions of RGs or glaciers, were grouped within the “South America” category. Systematic RG inventories resulting from the meta-analysis were similarly divided into the 17 regions (Supplementary Table S2).

Estimating rock glacier hydrological stores. Estimations of RG water volume equivalent were calculated based upon assumed ice volumes stored within intact RGs. In order to place this work in the context of traditional glacier studies, the units of giga tons (Gt) are used. Here, T-A scaling relations, i.e. $H = cA^\beta$ where mean RG thickness (H) is calculated as a function of surface area (A) and two scaling parameters (c and β), were applied. Scaling parameters derived from the empirical rule established by Brenning28 were used (equation [1]). RG volume was estimated through multiplication of (H) and (A). This approach has previously been applied in other studies46,67,68. Importantly, it should be noted that further research is needed to improve area-thickness relationships.

$$H = 50 \times \left(km^{20.2}\right) \quad (1)$$

By definition, RGs are ice-supersaturated accumulations of rock debris, and thus do not contain 100% ice. As such, ice content in RGs is spatially heterogeneous. Additionally, establishing RG genesis, i.e. permafrost origin or glaciogenic origin, and subsequent depth and distribution of ice is challenging67. Consequently, estimation of
ice volume and thus water volume equivalent proves difficult. The genesis of RGs remains contested; this controversy between supporters of the permafrost model (i.e. ice-cemented structure [permafrost origin]) versus those that support the glacier ice core model (i.e. glacier ice cored structure [glacialic origin]) has previously been summarised and discussed in detail58. Note that discussion of RG genesis and evolution is beyond the scope of this study and is briefly highlighted here for completeness. Relatively few geophysical investigations of RG internal structure have previously been conducted. Those studies that exist often focus on quantifying ice presence opposed to ice content by volume. Therefore, here we assume estimated ice volume is 40–60% by volume59–64, enabling lower (40%), average (50%), and upper (60%) estimates to be calculated. Finally, water volume equivalent was calculated assuming an ice density conversion factor of 900 kg m$^{-3}$.

Where complete RG inventories were available, RG surface area data were extracted for each individual feature for use in the abovementioned T-A relationship and subsequently water volume equivalent calculation. A three-step approach to determine RG volume was applied where inventory data was incomplete or unknown (Supplementary Fig. S2).

Estimating glacier hydrological stores. Regarding glaciers, volume-area (V-A) scaling relations, i.e. $V = cA^n$ where glacier volume (V) is calculated as a function of surface area (A) and two scaling parameters (c and γ), are frequently used approaches for volume estimations58. Indeed, previously V-A approaches have been used in rock glacier-glacier comparative studies60,66. Furthermore, V-A approaches have been applied to global-scale volume estimations of glaciers and ice caps2. Reports indicate, however, the potential of V-A approaches to systematically overestimate ice volume, particularly for large and/or relatively steep glaciers (e.g., those within the Himalayan-Karakoram region66). Estimated ice volumes derived from ice-thickness distribution models, for instance the model of Huss and Farinotti (HF-model), generally yield comparatively lower results than V-A approaches46. Additionally, HF-model ice-thickness results have previously been validated, indicating good agreement with a comprehensive set of ice-thickness observations from almost all glacialized mountain ranges globally54,55,57. Direct validation cannot be undertaken for results derived from V-A relations66. Therefore, here we use the results of Huss and Hock34. For each glacier of the RGIv4.0, Huss and Hock34 calculated glacier volume and ice thickness distribution through the application of the HF-model66. Results within Huss and Hock34 were presented as SLE assuming an ice density of 900 km$^{-3}$ and an ocean area of 3.625 x 106 km2. As such, conversion of SLE to ice volume was necessary. When converting from cubic kilometres to gigatons, we assumed that 1 Gt of nonporous ice equated to a volume of 1.091 km372.

Data availability. The datasets (RGDB) generated during and/or analysed during the current study are available in the supplementary information online.

References

1. Kaser, G., Groofhauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Nat. Acad. Sci. USA 107, 20233–20237 (2010).
2. Viviroli, D. et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 15, 471–504 (2011).
3. Beniston, M., Stoffel, M., Hill Clarvis, M. & Quevaullier, P. Assessing climate change impacts on the quantity of water in Alpine regions: Foreword to the adaptation and policy implications of the EU/FP7 'ACQWA' project. Environ. Sci. Policy. 43, 1–4 (2014).
4. Märl, B. Viviroli, D. & Weingartner, R. Mountains of the world: Vulnerable water towers for the 21st Century. Ambio Spec. Rep. 13, 29–34 (2004).
5. Hitchard, H. D. Asia's glaciers are a regionally important buffer against drought. Nature. 545, 169–174 (2017).
6. Mountain Research Initiative ED Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 5, 424–430 (2015).
7. Viviroli, D. & Weingartner, R. The hydrological significance of mountains: From regional to global scale. Hydrol. Earth Syst. Sci. 8, 1017–1030 (2004).
8. Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 340, 852–857 (2013).
9. Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change. 59, 5–31 (2003).
10. Vaughan, D. G. et al. Observations: Cryosphere in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F. et al.) 317–382 (Cambridge University Press, 2013).
11. Frenou, R., Ribstein, P., Wagon, P., Ramire, E. & Pouyaud, B. Glaciers of the Tropical Andes: Indicators of Global Climate Variability in Global Change and Mountain Regions: An Overview of Current Knowledge (eds Huber, U.M., Bugmann, H. K. M. & Reasoner, M. A.) 197–204 (Springer Netherlands, 2005).
12. Ramire, E. & et all. Small glaciers disappearing in the tropical Andes: A case-study in Bolivia: Glaciar Chacaltaya (16°S). J. Glaciol. 47, 187–194 (2001).
13. Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Nat. Acad. Sci. USA 107, 11155–11162 (2010).
14. Baraer, M. et al. Glacier recession and water resources in Peru's Cordillera Blanca. J. Glaciol. 58, 134–150 (2012).
15. Sorg, A., Huss, M., Rohrer, M. & Stoffel, M. The days of plenty might soon be over in glacierized Central Asian catchments. Environ. Res. Lett. 9, 104018 (2014).
16. Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change. 4, 583–586 (2014).
17. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 438, 303–309 (2005).
18. Vulliez, M. et al. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 89, 79–96 (2008).
19. Duguay, M. A., Edmunds, A., Arnenon, L. U. & Wainstein, P. A. Quantifying the significance of the hydrological contribution of a rock glacier - A review in GEOQuébec 2015: Challenges from North to South, 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference, https://www.researchgate.net/publication/282402787, Québec, Canada, 20–23 September.
20. Bonnventur, P.P. & Lamoureus, S. F. The active layer: A conceptual review of monitoring, modelling techniques and changes in a warming climate. Prog. Phys. Geogr. 37, 352–376 (2013).
21. Baraer, D. Permafrost creep and rockglaciers. Permafr. Periglac. Proc. 3, 175–188 (1992).
Haeberli, W. et al. Permafrost creep and rock glacier dynamics. *Permafrost Periglac.* Proc. 17, 189–214 (2006).

Rangecroft, S., Suggitt, A. J., Anderson, K., & Harrison, S. Future climate warming and changes to mountain permafrost in the Bolivian Andes. *Clim. Change.* 137, 231–243 (2016).

Janke, J. R., Bellisario, A. C. & Ferrando, F. A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. *Geomorphology.* 241, 98–121 (2015).

Harrison, S., Whalley, B. & Anderson, E. Relict rock glaciers and protalus lobes in the British Isles: Implications for Late Pleistocene mountain geomorphology and palaeoclimate. *J. Quat. Sci.* 23, 287–304 (2008).

Cremonese, E. et al. Brief communication: “An inventory of permafrost evidence for the European Alps” *Cryosphere.* 5, 651–657 (2011).

Janke, J. R., Regmi, N. R., Giardino, J. R. & Vitek, J. D. Rock Glaciers in *Treatise on Geomorphology* (eds Shroder, J., Giardino, R. & Harbor, J.) 238–273 (Academic Press, 2013).

Brenning, A. Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: Combining statistical modelling and field mapping. Ph.D thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Berlin, Germany, 153 pp (2005).

Barsch, D. *Rockglaciers: for the Present and Former Genealogy in High Mountain Environments.* Springer-Verlag Berlin Heidelberg, 331 pp (1996).

Haeberli, W. et al. Ten years after drilling through the permafrost of the active rock glacier Murtel, eastern Swiss Alps: Answered questions and new perspectives In (eds Lewkowicz, A. G. & Allard, M.) *Proceedings of the Seventh International Conference on Permafrost.* Yellowknife (Canada), Collection Nordicana 57, 403–410 (1998).

Haussmann, H., Krainer, K., Brückl, E. & Ullrich, C. Internal structure, ice content and dynamics of Olgulbre and Kaiserberg rock glaciers (Oetztal Alps, Austria) determined from geophysical surveys. *Aust. J. Earth Sci.* 105, 12–31 (2012).

RGI Consortium, Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-40 (2014).

Pfeffer, W. T. et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. *J. Glaciol.* 60, 537–552 (2014).

Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. *Front. Earth Sci.* 3 (2015).

Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. *J. Geophys. Res. Earth Surf.* 117 (2012).

Stine, M. Clyde Wahrhaftig and Allan Cox (1959) Rock glaciers in the Alaska Range. Bulletin of the Geological Society of America 70(4): 383–436. *Prog. Phys. Geog.* 37, 130–139 (2013).

Schmid, M. O. et al. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. *Cryosphere.* 9, 2089–2099 (2015).

Jones, D. B. et al. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. *Global Planet. Change.* 160, 122–148 (2018).

Colucci, R. R., Boccali, C., Žebrė, M. & Guglielmin, M. Rock glaciers, protalus ramps and pronival ramps in the south-eastern Alps. *Geomorphology.* 269, 112–121 (2016).

Winkler, G. et al. Identification and assessment of groundwater flow and storage components of the relict Schoneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). *Hydrogeol. J.* 24, 937–953 (2016).

Liu, L., Millar, C. L., Westfall, R. D. & Zebre, M. & Guglielmin, M. Rock glaciers and palaeoglacial significance of relict glaciers in the dry Andes, Chile (27° S). *Permafr. Periglac. Proc.* 117, 22–36 (2015).

Colucci, R. R., Boccali, C., Žebrė, M. & Guglielmin, M. Rock glaciers, protalus ramps and pronival ramps in the south-eastern Alps. *Geomorphology.* 269, 112–121 (2016).

Huntington, T., Whalley, B. A. & Sharpe, M. Ice flow and mass balance of a relict rock glacier in the Sierra Nevada, California, USA: An analysis of the “lost” rock glacier at the Lassen Peak summit. *Geol. Soc. Am. Bull.* 123, 1369–1380 (2011).

Deb, R. K., Wahr, J., Pfeffer, W. T. & Syed, M. A. Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. *Remote Sens. Environ.* 114, 1378–1387 (2010).

Brenning, A. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. *Remote Sens. Environ.* 113, 239–247 (2009).

Brenning, A. & Gräfe, G. F. A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. *Geog. Ann. Ser. A Phys. Geog.* 80, 221–236 (1998).

Brenning, A., Grassr, M. & Friend, D. A. Statistical estimation and generalized additive modeling of rock glacier distribution in the San Juan Mountains, Colorado, United States. *J. Geophys. Res. Earth Surf.* 112, F02S15 (2007).

Brenning, A. & Gräfe, G. F. A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. *Geog. Ann. Ser. A Phys. Geog.* 80, 221–236 (1998).

Brenning, A., Grassr, M. & Friend, D. A. Statistical estimation and generalized additive modeling of rock glacier distribution in the San Juan Mountains, Colorado, United States. *J. Geophys. Res. Earth Surf.* 112, F02S15 (2007).

Brenning, A. & Gräfe, G. F. A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. *Geog. Ann. Ser. A Phys. Geog.* 80, 221–236 (1998).

Brenning, A. The significance of rock glaciers in the dry Andes – reply to L. Arenson and M. Jakob. *Permafrost Periglac. Proc.* 21, 286–288 (2010).
66. Croce, F. A. & Milana, J. P. Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina. *Permaf. Periglac. Proc.* 13, 289–299 (2002).
67. Rangecroft, S., Harrison, S. & Anderson, K. Rock glaciers as water stores in the Bolivian Andes: An assessment of their hydrological importance. *Arct. Antarct. Alp. Res.* 47, 89–98 (2015).
68. Janke, J. R., Ng, S. & Bellissario, A. An inventory and estimate of water stored in firm fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. *Geomorphology.* 296, 142–152 (2017).
69. Seligman, Z. M. Rock-glacier distribution, activity, and movement, northern Absaroka and Beartooth ranges, MT, USA, MSc thesis, University of Montana, Department of Geography, Missoula, MT, 63 pp. (2009).
70. Berthling, I. Beyond confusion: Rock glaciers as cryo-conditioned landforms. *Geomorphology.* 131, 98–106 (2011).
71. Grinsted, A. An estimate of global glacier volume. *Cryosphere.* 7, 141–151 (2013).
72. Kargel, J. S. et al. A world of changing glaciers: Summary and climatic context in *Global Land Ice Measurements from Space* (eds Kargel, J. S. et al.) 781–840 (Springer Berlin Heidelberg, 2014).

Acknowledgements
This work was supported by the Natural Environment Research Council (grant number NE/L002434/1 to D.B.J.). S.H. and R.A.B. received funding from the European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no 603864 (HELIK: High-End cLimate Impacts and eXtremes; www.helixclimate.eu). The work of R.A.B. forms part of the BEIS/Defra Met Office Hadley Centre Climate Programme GA01101.

Author Contributions
S.H. and K.A. conceived the concept for the study as part of the PhD supervision of D.B.J. D.B.J. developed the methodology, conducted the meta-analysis to construct the RGDB, and undertook the subsequent GIS/statistical analysis. D.B.J. wrote the manuscript and prepared all figures and tables. S.H. and K.A. co-edited the manuscript with D.B.J., and R.A.B. commented on the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21244-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018, corrected publication 2021