Recycling or utilization of industrial waste is becoming more popular as people become more environmentally conscious. Silica fume is a by-product of the smelting process in the silicon and ferrosilicon industries. This study examines the mechanical behavior of steel tubular composite columns filled with conventional concrete and silica fume concrete experimentally under axial compressive loading. For the study, variability in steel tube thickness and column height with a constant diameter are considered. To explore the influence of silica fume in concrete, microstructural analyses are carried out by SEM, XRD, and FTIR. The experimental results reveal that the use of silica fume as a replacement of cement is feasible; the silica fume concrete-filled steel tubular (SCFST) column has marginal enhancement strength capacity compared to CFST column as thickness increases.

1. Introduction

The concrete-filled steel tubular (CFST) composite columns are been used in the modern engineering systems. Detailed experimental and computational studies have been carried out in the past [1–3]. Main advantages of CFST columns are no reinforced cage and no formwork as the steel tube can extremely be used as formwork and they are fire resistant. Based on the various research works carried out, it can be said that circular columns should be preferred over square-shaped CFSTs [4, 5], in order to further enhance structural performance and meet various design requirements, the focus of tubular columns [6, 7], concrete-filled double-skin tubular columns [8], stub columns with carbon fiber reinforcement polymer (CFRP) wrap material [9–12], and concrete-filled aluminium columns [13, 14]. Such experiments were mainly aimed at using new alloys or modifying standard CFST column configurations to enhance the structural efficiency of composite columns. Yogeshwaran et al. [15] investigated 42 concretes with varying diameter-thickness ratio and three different concrete strengths. The strength, load-axial shortening, load-axial strain, and failure patterns of columns were studied and compared with American and Australian/New Zealand design approaches. Ren et al. [16] conducted an experimental and analytical study on 44 specimens with different shapes. The results of distinct CFST columns performed the ductile manner. Outward buckling is observed at the middle of the member. Infilled concrete makes a significant role in CFST columns; many researchers have attempted to build composite columns using different types of concrete other than traditional one. Wang et al. [17] had conducted an
experimental investigation on twenty composite columns filled with the reactive powder concrete (RPC) under axial compression. Paranthaman et al. [18] had investigated RAC with filled in stainless steel composite specimens with square and circular shapes, with a replacement ratio of 0, 25%, 50%, and 75%. Also, results were compared with six different codes. Abed et al. [26] studied member stiffness. Abed et al. [26] conducted a test on the 20 concrete-filled steel tubular (CFST) stub columns with dune sand and hollow columns under the axial compression. Results showed that the CFST stub columns with dune sand, identical to traditional CFST stub columns, acted in exhibited a high compressive strength outward buckling failure pattern. The use of waste materials/by-products in building products has been increasingly emphasized in the latest years. The use of by-products in concrete can bring important financial and environmental advantage in concrete making. In this study, for a sustainable ecofriendly environment, silica fume partially replaced with cement in conventional concrete as a core material and hollow steel pipe with a constant diameter, height variation, and thickness variation are the two constituents used.

2. Materials

2.1. Infill Material. In this experimental program, a nominal strength of 25 MPa with 0.4 water cement ratio was employed with various concrete combinations. To determine the compressive strength, cube specimens were prepared as per Indian Standards IS: 10086-1982. Silica fume was substituted by 0, 5, 10, and 15% with cement, manufacturing sand is completely replaced with fine aggregate in each mix, and superplasticizers up to 2% of the binder is used. A machine mixer was employed to prepare the mixes. Three specimens were tested to failure under the compressive testing machine of axial capacity 2000 kN. The optimum percent replacement of the silica fume is carried out for 7 and 28 days of curing of cube specimen. Mix proportions for each mix are given in Table 1. Figure 1 shows the materials used for the concrete mix. The average compressive strength concrete cubes are given in Table 2.

3. Experimental Procedure

3.1. Steel Tubular Columns. In this test program, all the hollow steel tubes (HSS) of circular cross-section with a constant diameter of 75 mm are provided from the local supplier with a thickness of 1.5 mm and 2 mm, with heights of 300 mm and 500 mm. The experimental test setup for composite column under loading is shown in Figure 2. The SCFSST columns are for determination of physical properties of HSS section, the coupon test is followed according to the American Standard Testing Materials (ASTM), the hollow section of the both thickness (2 specimens for each thickness) should be cut accordingly, and it should be inserted into the tensile compressive testing machine.

3.2. Infilled Composite Column. Totally, 24 infilled circular composite columns are cast with two different heights 300 mm and 500 mm and with a constant diameter of 75 mm were tested, which includes both the thickness of 1.5 mm and 2 mm. Conventional concrete mix and silica fume concrete matrix mix were used as the infilled material. The specimens were chosen based on height and thickness; concrete was placed in the corresponding hollow steel tubular columns in three layers, where the one end is closed with a thin film sheet placed on the flat base plate and the other end is open. Figure 3 shows the experimental test setup with two dial gauges to observe the lateral deflection of the specimen. Mix proportions for infilled concrete column values are given in Table 3.

4. Results and Discussion

4.1. Microstructural Studies. The material’s mechanical properties depend only on its microstructure, which is observed using scanning electron microscopy (SEM). SEM analyses are used to determine the material’s surface area. Scanning electron microscopy not only provides topographical but also the compositional study of the material. The raw powder of silica fume, harden conventional concrete powder, and silica fume concrete powder are viewed after 28 days under SEM analysis. Figure 4 shows the SEM microstructural images of the silica fume powder sample in various magnifications such as 50 μm, 20 μm, 10 μm, 5 μm, and 2 μm. The silica fume particles observed are spheroid shapes, and the particle sizes are too small that varies from 0.18 μm to 0.26 μm as shown in Figure 4. Also, noticed that in the SEM images, the raw material of silica fume is closely packed with no pores [22]. Figure 5 shows SEM images of conventional concrete after 28 days of curing in various magnifications such as 50 μm, 20 μm, 10 μm, 5 μm, and 2 μm. From the images, the formation of denser concrete was observed. This shows the formation of calcium silicate hydrate (CHS), portlandite (CH), and pores found. Particle sizes for conventional concrete vary from 0.19 μm to 0.26 μm. Formation a highly dense microstructure of CSH-formed concrete with a small amount of CH and less porous spaces are observed for silica fume concrete after 28 days of
curing as shown in Figure 6, a much denser and more compacted material compared to conventional concrete. The scale of particles varies from 0.18 to 0.32 μm, noticed that the influence of silica fume rises in compressive strength [27].

4.2. XRD Analysis. The qualitative materials are analyzed using X-ray diffraction (XRD). Mostly, this method is used to define the crystalline material structure. The graph is drawn between intensity and a frequency of 2θ. The raw powder of silica fume, harden conventional concrete powder, and silica fume concrete powder after 28 days of curing are tested under XRD analysis. The silica fume powder XRD pattern is illustrated in Figure 7. It observed the quartz presence from silica fume powder XRD graph. The first point is 2θ = 21.02, the second peak is 2θ = 26.5, and the third peak is 2θ = 28.14.
XRD results for the conventional concrete after 28 days of curing are shown in Figure 7. The result shows the presence of quartz (Q), silicate calcium hydrate (CSH), silicate calcium (CS), calcite (C), and portlandite (P) peaks. The first peak is measured at $2\theta = 2\text{1}^\circ$, the presence of a quartz compound, the second peak at $2\theta = 2\text{4}^\circ$, the presence of a calcite compound, and the peaks are at 2θ between 26° and 27.5°, indicating the presence of quartz compound reveals that crystalline phases in concrete. Figure 8 shows the XRD analysis of the sample of silica fume concrete. It shows the formation of calcite components significantly increased in silica fume concrete when the peak angle 2θ between 26° and 27.5° compared to plain concrete. This reflects the presence of amorphous material in compounds called calcite (C), quartz (Q), and calcium silicate (CS). It also reflects calcium silicate hydrate (CSH) formation at an angle $2\theta = 42.92\text{[27]}$.

4.3. FTIR Analysis. Figure 9 shows the FTIR graph of the conventional concrete after 28 days of the curing period. The primary characteristic peaks of C-S-H may be found between 1081 cm^{-1} and 981 cm^{-1} (Si-O asymmetric stretching vibration). The peaks below 3500 cm^{-1} are caused by stretching vibrations of free molecular water or adsorbed water on the surface of the control concrete. The presence of portlandite (CH) is easily recognized by FTIR spectroscopy, which is well detected by a strong distinct peak at 3640 cm^{-1}. The S-O stretching vibration of $(\text{SO}_4)^{2-}$ is also identified at $1150–1100\text{ cm}^{-1}$ [28].

Figure 10 shows the silica fume powder picture from FTIR. The strong bands at 681 cm^{-1}, 724 cm^{-1}, 871 cm^{-1}, 981 cm^{-1}, 1081 cm^{-1}, 1100 cm^{-1}, and 1200 cm^{-1} attribute the basic Si-O vibrations. They are identical in terms of silica modifications. The peaks between 1130 cm^{-1} and 1200 cm^{-1} are characteristics of Si-O-Si bonds (symmetric and asymmetric stretch). The presence of sodium alginate bands ranging from 800 cm^{-1} to 470 cm^{-1} are Si-O vibration absorption bands. The-OH stretching in silanol occurs generally as peaks above 3500 cm^{-1}. The peak bands between 3441 cm^{-1} and 3647 cm^{-1} indicate the presence of silica, while monohydrogen bond occurs between the bandwidths 3600 cm^{-1} and 3400 cm^{-1}). The closeness of these peaks generally results in spectra that are heavily overlapped. The peak 981 cm^{-1} indicates the occurrence on calcium silicate hydrate [29, 30].

4.4. Composite Column Test. The measured axial load capacity for the 24 concrete composite columns of both lengths and both thicknesses with a constant diameter are presented in Table 4, as an average of 3 specimens for each mix. From the experimental results, it was clear that the replacement of
Figure 5: SEM microstructure images of the conventional concrete.

Figure 6: SEM microstructure images of the silica fume concrete.
Figure 7: XRD image of conventional concrete after 28 days of curing.

Figure 8: XRD image of silica fume concrete after 28 days of curing.

Figure 9: FTIR analysis graph of conventional concrete after 28 days of curing.
silica fume with cement in concrete enhances the strength of concrete specimen after 28 days water curing. It was that the axial loading capacity increases with an increase in the thickness.

4.5. Mode of Failure. Figure 11 shows the mode of failure for the coupon specimens after the tensile test; it was observed that failure occurred at the web portion of the specimen. Also, it was observed that there was a change in the area of
the specimen after the test. Figure 12 shows the failure of the composite columns of 1.5 mm thickness and failure of the composite columns of 2 mm thickness. In both the cases, it observed the outward buckling at the middle portion of the column for 300 mm height specimens (both thicknesses). As the height of the column increases, it observed a shear failure at top and bottom with outward buckling at middle for 1.5 mm thick columns. The thickness increases the shear failure at the one end of the column.

5. Conclusions

(i) Optimum partial replacement is 10%. Compressive strength varies by 11.51% from normal mix to silica fume that replaced concrete after 28 days curing.

(ii) XRD results confirm the presence of quartz compound which helps in strengthening of concrete mix and forms a crystalline phase.

(iii) SEM analysis, it was observed that the microstructure gives the disintegration of Si and Al compounds. FTIR confirms strengthening of concrete mix.

(iv) Peak load of the normal concrete infilled column and silica fume concrete column with height 300 mm and 500 mm varies with 17.88% and 34.77%, respectively.

(v) Peak load of the hollow steel column with height 300 mm, 1.5 mm thickness, and 2 mm thickness varies with 8.04% and hollow steel column with height 500 mm, 1.5 mm thickness, and 2 mm thickness varies with 29.58%, respectively.

(vi) SCFST column strength capacity of 1.5 mm thick, 300 mm height varies with CFST column by 7.5%. For 1.5 mm thick, 500 mm height SCFST column varies with the CFST column by 9.3%. The strength capacity is 2 mm thick, and 300 mm height SCFST column varies with CFST column by 7.15%. For 2 mm thick, 500 mm height SCFST column varies with the CFST column by 5%.

(vii) Shear failure and outward buckling mode of failures are observed for long and short composite columns, respectively.

Data Availability

The data used to support the findings of this study are included in the article and are available from the corresponding author upon request.

Disclosure

It was performed as a part of the employment of Arba Minch University, Ethiopia.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors appreciate the supports from Arba Minch University, Ethiopia. The authors thank Vellore Institute of Technology, Chennai, for the technical assistance for carrying out the experiments.

References

[1] L.-H. Han, W. Li, and R. Bjorhovde, “Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members,” Journal of Constructional Steel Research, vol. 100, pp. 211–228, 2014.

[2] S. Güler, F. Korkut, N. Yaltay, and D. Yavuz, “Axial behaviour of concrete filled steel tube stub columns: a review,” Journal of Bio- and Tribo-Corrosion, vol. 5, no. 3, p. 77, 2019.

[3] S. Morino, “Recent developments on concrete-filled steel tube members in Japan,” in Composite Construction in Steel and Concrete, vol. 4, pp. 644–655, Elsevier, Amsterdam, Netherlands, 2002.

[4] S. Yogeshwaran, L. Natrayan, S. Rajaraman, S. Parthasarathi, and S. Nestro, “Experimental investigation on mechanical properties of epoxy/graphene/fish scale and fermented spinach hybrid bio composite by hand lay-up technique,” Materials Today: Proceedings, vol. 37, no. 2, pp. 1578–1583, 2021.

[5] D. Hernández-Figueirido and A. Piquer, “Behavior of steel-reinforced concrete-filled square steel tubular stub columns under axial loading,” Journal of Constructional Steel Research, vol. 104, pp. 211–230, 2015.

Figure 12: Mode of failure for composite columns of 1.5 mm and 2 mm steel tube thickness.
[6] V. Swamynadhand K. Muthumanii, “Properties of structural lightweight concrete containing treated oil palm shell as coarse aggregate,” Asian Journal of Civil Engineering, vol. 19, no. 6, pp. 673–678, 2018.

[7] M. Udayakumar, S. Aravindan, and K. Rajkumar, “Experimental investigation of concrete-filled single-skin and double-skin steel oval hollow section stub column,” Journal of Constructional Steel Research, vol. 224, pp. 106–112, 2017.

[8] K. Hemalatha, C. James, L. Natrayan, and V. Swamynadhand, “Analysis of RCC-T-beam and prestressed concrete box girder bridges super structure under different span conditions,” Materials Today: Proceedings, vol. 37, no. 2, pp. 1507–1516, 2021.

[9] F.-x. Ding, D.-r. Lu, Y. Bai et al., “Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading,” Thin-Walled Structures, vol. 125, pp. 107–118, 2018.

[10] K. R. Vaishali, S. R. Rammohan, L. Natrayan, D. Usha, and V. R. Niveditha, “Guided container selection for data streaming through neural learning in cloud,” International Journal of System Assurance Engineering and Management, pp. 1–7, 2021.

[11] J. Wang, Q. Shen, F. Wang, and W. Wang, “Experimental and analytical studies on CFRP strengthened circular thin-walled CFST stub columns under eccentric compression,” Thin-Walled Structures, vol. 127, pp. 102–119, 2018.

[12] K. Vasugi and S. Elavenil, “Performance of geopolymer materials concrete filled stainless steel tubular (GCFSST) column subject to axial compression,” Materials Today: Proceedings, vol. 45, no. 7, pp. 6415–6425, 2021.

[13] R. S. Bhatia and K. Kudlipsingh, “An experimental analysis of aluminium metal matrix composite using Al12O3/B4C/Gr particles,” International Journal of Advanced Research in Computer Science, vol. 8, no. 4, pp. 83–90, 2017.

[14] F. Zhou and B. Young, “Tests of concrete-filled aluminum stub columns,” Thin-Walled Structures, vol. 46, no. 6, pp. 573–583, 2008.

[15] S. Yogeshwaran, L. Natrayan, G. Udhayakumar, G. Godwin, and L. Yuvaraj, “Effect of waste tyre particles reinforcement on mechanical properties of jute and abaca fiber-epoxy hybrid composites with pre-treatment,” Materials Today: Proceedings, vol. 37, no. 2, pp. 1377–1380, 2021.

[16] Q.-X. Ren, L.-H. Han, D. Lam, and C. Hou, “Experiments on special-shaped CFST stub columns under axial compression,” Journal of Constructional Steel Research, vol. 98, pp. 123–133, 2014.

[17] Q. Wang, Q. Shi, E. M. Lui, and Z. Xu, “Axial compressive behavior of reactive powder concrete-filled circular steel tube stub columns,” Journal of Constructional Steel Research, vol. 153, pp. 42–54, 2019.

[18] V. Paranthaman, K. Shanmuga Sundaram, and L. Natrayan, “Influence of SiC particles on mechanical and microstructural properties of modified interlock friction stir weld lap joint for automotive grade aluminium alloy,” Silicon, pp. 1–11, 2021.

[19] Y. Geng, Y. Wang, and J. Chen, “Time dependent behavior of recycled aggregate concrete-filled steel tubular columns,” Journal of Structural Engineering, vol. 141, pp. 150–161, 2015.

[20] M. Krishnamurthy and S. N. Vandanapu, “Micro-structural and interfacial transition zone investigation on oil palm shell lightweight concrete,” International Journal of Microstructure and Materials Properties, vol. 14, no. 5, pp. 448–461, 2019.

[21] S. Vandanapu and K. Muthumanii, “Heat of hydration and alkali-silicate reaction in oil palm shell structural lightweight concrete,” Silicon, vol. 12, no. 5, pp. 1043–1049, 2020.