GENERALIZED SYNTHETIC ESTIMATOR FOR DOMAIN MEAN IN TWO PHASE SAMPLING USING SINGLE AUXILIARY CHARACTER

Ashutosh¹, B. B. Khare and S. Khare
Department of statistics, Institute of Science, Banaras Hindu University, Varanasi, India
¹Corresponding-author E Mail: kumarashubhustat@gmail.com

Received December 14, 2018
Modified November 20, 2019
Accepted December 07, 2019

Abstract
In this paper, we have proposed a two phase sampling estimator for domain mean using auxiliary character with unknown \bar{X}_d domain mean. Also discussed properties of the proposed estimator for domain mean $T_{ps,T,a}$ using auxiliary character. Simulation study of the proposed estimator $T_{ps,T,a}$ has been made with conventional ratio synthetic estimator for domain mean $T_{ps,1,a}$ using auxiliary character in terms of simulated relative standard error (SRSE) and absolute relative bias (ARB). Simulation study shows that under synthetic assumption proposed estimator is more efficient than conventional ratio synthetic estimator for domain mean using auxiliary character.

Key Words: Two Phase Sampling, Auxiliary Character, Domain Estimation, Absolute Relative Bias, Simulated Relative Standard Error.

1. Introduction
Sample surveys are usually conducted for a specific need for the estimation of population parameters, but when we are interested in the estimation of parameters of subpopulation (domain), it is required to have sufficient number of sampling units in the population. Due to the increasing use of domain mean estimation in the government and private sectors, the use of auxiliary character with unknown mean of auxiliary is used in proposed estimator for domain mean. Two phase sampling which is an important and effective method of estimation which was first discussed by Neyman (1938). Several works using two phase sampling design have been discussed in the small area field of estimation problem by Sarndal (1992), Sarndal and Swensson (1987), Choudhary and Roy (1994), Hidiroglou and Sarndal (1995, 1998), Wu and Luan (2003), Udofia (2012) and Sud et al. (2014).

The population mean of the auxiliary character is known but number of units in the domain is too small. Due to small sampling units, domain estimator has large standard error. We use other method of estimation such as synthetic estimator for domain mean estimation. The main advantage of synthetic estimation is that we use sample units from population instead of domain. The synthetic estimator gives better
than the direct estimator when sample size in the domain is small which have been
discussed by Gonzalez (1973). In recent years, due to growing different types of
demand by policy makers the difficulties arises during for program implementation in
the estimation of domain parameters. We use other methods of synthetic estimation for
the domain mean using auxiliary character which have been discussed by Tikkiwal and
Ghiya (2000), Tikkiwal et al. (2013), Singh and Seth (2014, 2015), Chandra et al.
(2014) and Khare and Ashutosh (2017, 2018) using simulation study.

In this paper, we have proposed a conventional generalized estimator for
domain mean using auxiliary character and discussed its members also. A simulation
study of the proposed estimator has been made with the conventional ratio estimator for
domain mean using auxiliary character in support of the problem.

2. Formulation of Problem and Notations

Let us suppose a finite population $U: (1,2,3\ldots\ldots,N)$ is classified into P non-
overlapping subpopulation (domain) U_a of size N_a ($a=1,2,3\ldots\ldots,P$). Here y and x
represent the study character and auxiliary character. We select a sample s of size n
from the population S of size N by using simple random sampling without replacement
(SRSWOR) method of sampling and we select the sample S_a of size n_a at first phase
from sample S_a of domain U_a of size N_a. We denote
\[
\sum_{a=1}^{P} N_a = N \quad \text{and} \quad \sum_{a=1}^{P} n_a = n. \tag{2.1}
\]

Notations used in the present context are given as follows:
- \overline{y}: Population mean of study character y based on N observations.
- \overline{y}_a: a^{th} domain mean of study character y based on N_a observations.
- \bar{y}: Sample mean of study character y based on n observations.
- \overline{x}: Population mean of auxiliary character x based on N observations.
- \overline{x}_a: a^{th} domain mean of auxiliary character x based on N_a observations.
- \bar{x}: Sample mean of auxiliary character x based on n observations.
- \bar{x}_a: Sample mean of auxiliary character x of a^{th} domain based on n_a observations.

The population mean square, coefficient of variation between y and x for population U
are given as follows:
\[
S_y^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (Y_i - \overline{Y})^2, \quad S_x^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (X_i - \overline{X})^2, \quad S_{yx} = \frac{1}{(N-1)} \sum_{i=1}^{N} (Y_i - \overline{Y})(X_i - \overline{X}), \quad C_Y = \frac{S_y}{\overline{Y}}, \quad C_X = \frac{S_x}{\overline{X}} \quad \text{and} \quad C_{XY} = \frac{S_{yx}}{\overline{Y} \overline{X}}. \tag{2.2}
\]
The domain mean square, coefficient of variation between y and x of domain U_a are given as follows:

\[
S_{Y_a}^2 = \frac{1}{(N_a - 1)} \sum_{i=1}^{N_a} (Y_{a_i} - \overline{Y}_a)^2, \quad S_{X_a}^2 = \frac{1}{(N_a - 1)} \sum_{i=1}^{N_a} (X_{a_i} - \overline{X}_a)^2,
\]

\[
S_{Y_aX_a} = \frac{1}{(N_a - 1)} \sum_{i=1}^{N_a} (Y_{a_i} - \overline{Y}_a)(X_{a_i} - \overline{X}_a), \quad C_{Y_a} = \frac{S_{Y_a}}{\overline{Y}_a}, \quad C_{X_a} = \frac{S_{X_a}}{\overline{X}_a}
\]

and

\[
C_{XaY_a} = \frac{S_{YaXa}}{\overline{X}_a \overline{Y}_a}
\]

(2.3)

3. Synthetic estimators for domain mean using auxiliary character

(i) Ratio Synthetic Estimator for Domain Mean ($T_{RS,a}$)

\[
T_{RS,a} = \frac{\overline{Y}_a}{\overline{X}_a}
\]

Rao (2003)

(3.1)

\[
Bias(T_{RS,a}) = \left(\frac{\overline{Y}_a}{\overline{X}_a} - \overline{Y}_a \right) - \frac{N-n}{Nn} \frac{\overline{Y}_a}{\overline{X}_a} \left(C_{X_a} ^2 - C_{YX} \right)
\]

(3.2)

\[
MSE(T_{RS,a}) = \left(\frac{\overline{Y}_a}{\overline{X}_a} - \overline{Y}_a \right)^2 + \frac{N-n}{Nn} \frac{\overline{Y}_a}{\overline{X}_a} \left(\overline{Y}_a \left(3C_{X_a} ^2 + C_{YX} ^2 - 4C_{YX} \right) - 2\overline{Y}_a \left(C_{X_a} ^2 - C_{YX} \right) \right)
\]

(3.3)

(ii) Generalized synthetic estimator for domain mean ($T_{GS,\beta,a}$)

\[
T_{GS,\beta,a} = \frac{\overline{Y}_a}{\left(\frac{\overline{X}_a}{\overline{X}_a} \right)^\beta}
\]

Tikkiwal and Ghiya (2000)

(3.4)

\[
Bias(T_{GS,\beta,a}) = \overline{Y}_a \left[\left(\frac{\overline{X}_a}{\overline{X}_a} \right)^\beta \left[1 + \frac{N-n}{Nn} \left(\beta(\beta-1) \frac{C_{X_a} ^2}{2} + \beta C_{YX} \right) \right] \right] - \overline{Y}_a
\]

(3.5)

\[
MSE(T_{GS,\beta,a}) = \overline{Y}_a^2 \left[\left(\frac{\overline{X}_a}{\overline{X}_a} \right) ^{2\beta} \left[1 + \frac{N-n}{Nn} \left(2\beta^2 - \beta \right) C_{X_a} ^2 + C_{YX} ^2 + 4\beta C_{YX} \right] \right] + \overline{Y}_a^2
\]

\[
- 2\overline{Y}_a \overline{Y}_a \left(\frac{\overline{X}_a}{\overline{X}_a} \right)^\beta \left[1 + \frac{N-n}{Nn} \left(\beta(\beta-1) \frac{C_{X_a} ^2}{2} + \beta C_{YX} \right) \right]
\]

(3.6)
4. Proposed Estimator for Domain Mean \(T_{ps,y,a}\)

We have proposed a conventional generalized estimator for domain mean using single auxiliary character which is given as follows:

\[
T_{ps,y,a} = \gamma \left(x - \frac{\bar{x}}{x_a} \right)^y
\]

(4.1)

The members of the estimator are given as follows:

(i) \(T_{ps,0,a} = \gamma, \text{ if } \gamma = 0\)

(4.2)

(ii) \(T_{ps,-1,a} = \frac{\gamma}{\bar{x}} \frac{\bar{y}}{x_a}, \text{ if } \gamma = -1\)

(4.3)

(iii) \(T_{ps,1,a} = \frac{\gamma}{\bar{x}} \frac{\bar{y}}{x_a}, \text{ if } \gamma = 1\)

(4.4)

For large sample approximations, we assume that

\[
\bar{y} = Y(1 + \varepsilon_0), \bar{x} = X(1 + \varepsilon_1) \quad \text{and} \quad \bar{x}_a = X_a(1 + \varepsilon_2) \quad \text{such that} \quad E(\varepsilon_0) = 0, \quad E(\varepsilon_1) = 0,
\]

\[
E(\varepsilon_2) = 0, \quad E(\varepsilon_0 \varepsilon_2) = 0, \quad E(\varepsilon_1 \varepsilon_2) = 0 \quad \text{and} \quad E(\varepsilon_0^2) = \frac{(N - n)}{Nn} C^2_Y,
\]

\[
E(\varepsilon_1^2) = \frac{(N - n)}{Nn} C^2_X, \quad E(\varepsilon_2^2) = \frac{(N_a - n_a)}{N_a n_a} C^2_{X_a} \quad \text{and} \quad E(\varepsilon_0 \varepsilon_1) = \frac{(N - n)}{Nn} C_{YX}.
\]

(4.5)

Bias and Mean square error of the conventional ratio estimator \(T_{ps,-1,a}\) and conventional generalized estimator \(T_{ps,y,a}\)

\[
Bias(T_{ps,-1,a}) = \left(\frac{\bar{Y}}{\bar{X}} X_a - \bar{Y}_a \right) - \left(\frac{1}{n} - \frac{1}{N} \right) \frac{\bar{Y}}{\bar{X}} X_a \left(C^2_X - C_{YX} \right)
\]

(4.6)

Under ratio synthetic assumption \(\frac{\bar{Y}_a}{\bar{Y}} = \frac{\bar{X}_a}{\bar{X}}\)

(4.7)

the equation (4.6) is reduced to

\[
Bias(T_{ps,-1,a}) = \left(\frac{1}{n} - \frac{1}{N} \right) \bar{Y}_a \left(C_{YX} - C^2_X \right)
\]

(4.8)

and
Generalized synthetic estimator for domain mean in ...

\[
MSE(T_{ps,-1,a}) = \left(\frac{\bar{Y}_a - \bar{Y}_a}{X_a} \right)^2 + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\bar{Y}_a - \bar{Y}_a}{X_a} \left[\bar{Y}_a \left(\frac{C_X^2 + C_Y^2}{2} - 2\bar{Y}_a \left(C_X^2 - C_Y^2 \right) \right) \right]
\]

\[
+ \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\bar{Y}_a - \bar{Y}_a}{X_a} \left(\frac{C_X^2}{2} \right) C_{X,a}^2
\]

(4.9)

Put assumption (4.7) in equation (4.9) then we have

\[
MSE(T_{ps,-1,a}) = \bar{Y}_a^2 \left[\left(\frac{1}{n} - \frac{1}{N} \right) \left(C_Y^2 - C_X^2 \right) + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) C_{X,a}^2 \right]
\]

(4.10)

and

\[
Bias(T_{ps,Y,a}) = \bar{Y} \left(\frac{X}{X_a} \right)^\gamma \left[1 + \left(\frac{1}{n} - \frac{1}{N} \right) \left(\frac{\gamma (\gamma - 1)}{2} C_X^2 + \gamma C_{YX} \right) \right] - \bar{Y}_a
\]

(4.11)

Partially differentiate \(Bias(T_{ps,Y,a}) \) w.r.t \(\gamma \) and equate to zero, we have

\[
\frac{\bar{Y}}{Y} \left(\frac{X}{X_a} \right)^\gamma \left[\log \left(\frac{X}{X_a} \right) \right] \left[1 + \left(\frac{1}{n} - \frac{1}{N} \right) \left(\frac{\gamma (\gamma - 1)}{2} C_X^2 + \gamma C_{YX} \right) \right]
\]

\[
+ \left(\frac{1}{n} - \frac{1}{N} \right) \left(\frac{2\gamma - 1}{2} C_X^2 + C_{YX} \right) = 0
\]

(4.12)

The equation (4.11) does not in close form, so, we can’t obtain value of \(\gamma \). Now we take the synthetic assumption \(\bar{Y}_a = \left(\frac{X}{X_a} \right)^\gamma \)

(4.13)

\(Bias(T_{ps,Y,a}) \) is reduced to the expression which is given as

\[
Bias(T_{ps,Y,a}) = \bar{Y}_a \left[\left(\frac{1}{n} - \frac{1}{N} \right) \left(\frac{\gamma (\gamma - 1)}{2} C_X^2 + \gamma C_{YX} \right) \right]
\]

(4.14)

Partially differentiate w.r.t \(\gamma \) and equating (4.14) to zero, then we have

\[
\gamma_{opt} = \frac{1 - C_{YX}}{2 C_X^2}
\]

(4.15)

After substitute value of \(\gamma_{opt} \) in equation (4.14) the obtained \(Bias(T_{ps,Y,a})_{opt} \). And
\[MSE(T_{ps,γ,a}) = \left(\frac{\bar{Y}}{X_a} \right)^2 \left[1 + \left(\frac{1}{n} - \frac{1}{N_a} \right) \gamma (2\gamma - 1) C_X^2 + C_{YY}^2 + 4\gamma C_{XY} \right] \]
\[+ \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \gamma (2\gamma + 1) C_{X_a}^2 \]
\[+ \bar{Y}^2 - 2\bar{Y}_a \left(\frac{\bar{X}}{X_a} \right)^\gamma \left[C_{YY} - \frac{\gamma}{2} C_X^2 \right] + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\gamma}{2} C_{X_a}^2 \]

\[\left[1 + \left(\frac{1}{n} - \frac{1}{N} \right) \gamma (2\gamma - 1) C_X^2 + C_{YY}^2 + 4\gamma C_{XY} \right] \]

For obtaining the optimum value of \(\gamma \), we partially differentiate \(MSE(T_{ps,γ,a}) \) w.r.t. \(\gamma \) and equating to zero, we have

\[2 \left(\frac{\bar{Y}}{X_a} \right)^\gamma \log \left(\frac{\bar{Y}}{X_a} \right) \left[1 + \left(\frac{1}{n} - \frac{1}{N} \right) \gamma (2\gamma - 1) C_X^2 + C_{YY}^2 + 4\gamma C_{XY} \right] \]
\[+ \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \gamma (2\gamma + 1) C_{X_a}^2 \]
\[+ \bar{Y}^2 - 2\bar{Y}_a \left(\frac{\bar{X}}{X_a} \right)^\gamma \left[1 + \left(\frac{1}{n} - \frac{1}{N} \right) \gamma C_{YY} - \frac{\gamma}{2} C_X^2 \right] + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\gamma}{2} C_{X_a}^2 \]

\[+ \left(\frac{1}{n} - \frac{1}{N} \right) \gamma (2\gamma - 1) C_X^2 + C_{YY}^2 + 4\gamma C_{XY} \]

\[- 2\bar{Y}_a \left(\frac{\bar{X}}{X_a} \right)^\gamma \left[\gamma C_{YY} - \frac{\gamma}{2} C_X^2 \right] + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\gamma}{2} C_{X_a}^2 \]

\[= 0 \]

(4.17)

The equation (4.17) does not come in the closed form for value of \(\gamma \). For minimizing the \(MSE(T_{ps,γ,a}) \) using synthetic assumption then the expression (4.16) is reduced to the expression which is given as follows:

\[MSR(T_{ps,γ,a}) = \bar{Y} \left[\gamma (2\gamma - 1) C_X^2 + C_{YY}^2 + 4\gamma C_{XY} \right] + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \gamma (2\gamma + 1) C_{X_a}^2 \]
\[- 2 \left(\frac{1}{n} - \frac{1}{N} \right) \gamma C_{YY} - \frac{\gamma}{2} C_X^2 \]
\[+ \left(\frac{1}{n_a} - \frac{1}{N_a} \right) \frac{\gamma}{2} C_{X_a}^2 \]

(4.18)

Now we solve \(\frac{\partial MSE(T_{ps,γ,a})}{\partial \gamma} = 0 \). The optimum value of \(\gamma \) is given as follows:
Generalized synthetic estimator for domain mean in …

\[
\gamma_{opt} = \frac{\left(\frac{1}{n} - \frac{1}{N} \right) C_{XY}}{\left(\frac{1}{n} - \frac{1}{N} \right) C_{X}^2 + \left(\frac{1}{n_a} - \frac{1}{N_a} \right) C_{X_a}^2}
\]

(4.19)

Now, substituting the value of \(\gamma_{opt} \) in the equation (4.18), we can obtain the minimum value of the \(MSE(T_{ps,y,a}) \).

5. Simulation Study

The empirical study is based on simulation procedure in which we have taken data from Sarndal et al. ((1992), Appendix B, pages: 652–659). In the present study, we consider five geographical regions have sizes (48, 32, 38, 56 and 29) out of eight domains have sizes (25, 48, 32, 38, 56, 41, 15 and 29). The performance of the proposed estimator \(T_{ps,y,a} \) is compared with the conventional ratio estimator \(T_{ps-1,a} \) in terms of simulate relative standard error (SRSE) and absolute relative bias (ARB) which is given as follows:

\[
ARB(T_{ps,y,a}) = \frac{\left| \sum_{s=1}^{5000} T_{ps,y,a}^s - \bar{Y}_a \right|}{\bar{Y}_a} \times 100
\]

(5.1)

\[
SRSE(T_{ps,y,a}) = \sqrt{\frac{SMSE(T_{ps,y,a})}{\bar{Y}_a}} \times 100
\]

(5.2)

where, \(SMSE(T_{ps,y,a}) = \frac{1}{5000} \sum_{s=1}^{5000} \left(T_{ps,y,a}^s - \bar{Y}_a \right)^2 \)

(5.3)

and \(T_{ps,y,a}^s \) represents, the specific conventional estimator for \(s^{th} \) sample and \(T_{ps,y,a} \) represents the specific conventional estimator for domains \(a=1,2,\ldots P \).

For the purpose of simulation study we have considered two populations 1 and 2. The information about domains about population 1 and population 2 are given in Table 1 and Table 2 respectively, also population parameters values of populations 1 and 2 are given as follows:

Population 1

We consider study variable \(y \) and auxiliary variable \(x \) which are given as follows:

\(y \): Real estate values according to 1984 assessment (in millions of Kronor).

\(x \): Number of municipal employees in 1984.

Here we are giving the technique used for two phase sample procedure for the selection of sample which is used in simulation. We select a sample of approximately 10% units (20 out of 203) from population by study character and auxiliary character and from each domain, and we select a sufficient sample of approximately 50% units at first
phase through simple random sampling without replacement (SRSWOR). The same process repeated by 5000 times.

The population of size 203 is classified into five domains have sizes 48, 32, 38, 56, and 29 respectively. The value of the parameters of population and domains are given as follows.

\[
N = 203, \quad \bar{Y} = 2806.842, \quad \bar{X} = 1651.458, \quad S_{YY} = 13722352, \quad S_{XX} = 15234672, \quad S_{YX} = 13335313, \quad \rho_{YX} = 0.922.
\]

Domain	Values				
1	48	2970.596	1658.71	11118969	0.967
2	32	2498.75	1316.94	4164522	0.932
3	38	2915.53	1937.71	9575690	0.945
4	56	3046.95	1950.39	27861139	0.966
5	29	2269.103	1056.241	1883429	0.816

Table 1. The values of the domains parameters for all domains (1, 2, 3, 4 and 5)

Population 2

We consider another population which is consisting of the 284 municipalities is referred to as the MU284 population in Sarndal et al. (1992) in appendix B, pages: 652-659. The study character y and auxiliary character x are given as follows:

y: Real estate values according to 1984 assessment (in millions of Kronor).

x: 1975 population (in thousands).

Further, two phase sampling method is used in this paper for simulation procedure. In this case, we select a sample each have approximately 10% units (20 out of 203) from population and from each domain, a sample is selected approximately 50% units at first phase by using simple random sampling without replacement (SRSWOR). This process repeat 5000 times.

For the study purpose, we use population .2 in which the population have size 203 divided into five domains have sizes 48, 32, 38, 56 and 29 respectively. The values of the parameters of population are given (Sarndal et al. (1992) in appendix B).

\[
N = 203, \quad \bar{Y} = 2806.842, \quad \bar{X} = 26.773, \quad S_{YY} = 13722352, \quad S_{XX} = 1714.899, \quad S_{YX} = 147046.8, \quad \rho_{YX} = 0.959.
\]
The synthetic assumption of conventional ratio synthetic estimator $T_{ps,1,a}$ and conventional generalized synthetic estimator $T_{ps,y,a}$ of population 1 for domains (1, 2, 3, 4 and 5) are given as:

Domain	$\frac{\bar{Y}_a}{\bar{Y}}$	$\frac{\bar{X}_a}{\bar{X}}$	$abs\left(\frac{\bar{Y}_a}{\bar{Y}} - \frac{\bar{X}_a}{\bar{X}}\right)$
1	1.05847	1.00439	0.05407
2	0.89023	0.79744	0.09279
3	1.038721	1.173333	0.13436
4	1.085542	1.181013	0.09547
5	0.8084186	0.639581	0.16883

Table 3. The absolute difference under synthetic assumption of the $T_{ps,y,a}$ for different domains (1, 2, 3, 4 and 5) (Population 1)
From the Table 3 and Table 4, it is observed that the value of absolute difference of the synthetic assumption of conventional generalized estimator $T_{ps,\gamma,a}$ is lower than the value of absolute difference of synthetic assumption of the conventional ratio estimator $T_{ps,-1,a}$ for domains (2, 3, 4 and 5) and approximately near for domain 1. Hence, the proposed estimator for domain mean using auxiliary character is more preferred than the conventional ratio estimator for domain mean using auxiliary character.

Similarly, the synthetic assumption of conventional ratio estimator $T_{ps,-1,a}$ and conventional generalized estimator $T_{ps,\gamma,a}$ of population 2 for different domains (1, 2, 3, 4 and 5) are given as:

Domain	$\frac{\bar{Y}_a}{\bar{Y}}$	$\frac{\bar{X}_a}{\bar{X}}$	$abs\left(\frac{\bar{Y}_a}{\bar{Y}} - \frac{\bar{X}_a}{\bar{X}}\right)$
1	1.05847	1.08939	0.03092
2	0.89024	0.89407	0.00384
3	1.03872	1.14410	0.10538
4	1.08554	1.03392	0.05162
5	0.80841	0.64011	0.16831
It is seen that from Table 5 and Table 6 the amount of absolute difference under synthetic assumption of $T_{ps,γ,a}$ is less than the amount of absolute difference of synthetic assumption of $T_{ps,−1,a}$ for domains (1, 3, 4 and 5) and approximately near for domain 2.

Population	Estimator	Domain				
1	$T_{ps,−1,a}$	1	2	3	4	5
	60.519	56.922	89.528	92.488	46.570	
	13.840*	6.423	36.700	30.512	0.162	
$T_{ps,γ,a}$ min	34.856	38.076	36.761	33.344	25.034	
	0.586*	6.0509	5.970	1.323	0.011	
	-0.5978	-0.3564	-0.2989	-0.2950		
	0.4524**					
2	$T_{ps,−1,a}$	53.026	49.608	59.990	54.222	43.206
	12.625*	10.889	20.925	7.077	12.609	
$T_{ps,γ,a}$ min	38.484	40.907	38.474	33.101	35.749	
	4.2656*	10.196	7.914	3.191	0.343	
	-0.6998	-0.5697	-0.4766	-0.5791		
	0.6425**					

Table 7. SRSE and ARB of $T_{ps,−1,a}$ and $T_{ps,γ,a}$ for different domains (1, 2, 3, 4 and 5) of populations 1 and 2

*represent Absolute Relative Bias; ** represent γ include in the proposed estimator $(T_{ps,γ,a})_{min}$.

Table 6. The absolute difference under synthetic assumption of $T_{ps,γ,a}$ for different domains (1, 2, 3, 4 and 5) (Population 2)
It is seen from Table 7 that the value of SRSE of the conventional generalized estimator for domain mean \((T_{ps,y,a})_{\min}\) is lower than the conventional ratio estimator for domain mean \(T_{ps,-1,a}\) for all domains (1, 2, 3, 4 and 5) of population 1 and population 2. However, ARB of the conventional generalized estimator for domain mean \((T_{ps,y,a})_{\min}\) is lower than the conventional ratio estimator for domain mean \(T_{ps,-1,a}\) for domains (2, 3, 4 and 5) and (1, 3, 4 and 5) for population 1 and population 2 respectively. Hence, conventional generalized estimator for domain mean using auxiliary character \((T_{ps,y,a})_{\min}\) is more efficient than conventional ratio estimator for domain mean using auxiliary character \(T_{ps,-1,a}\). It is also found that conventional generalized estimator \((T_{ps,y,a})_{\min}\) is more efficient than the conventional ratio estimator \(T_{ps,-1,a}\) in case of population 2 than population 1.

6. Conclusion

It is evident from the Table 7, that the value of SRSE of the proposed estimator for domain mean \(T_{ps,y,a}\) has less than the value of SRSE of the conventional ratio synthetic estimator for domain mean \(T_{ps,-1,a}\) for which domain where absolute difference of synthetic assumption of the proposed estimator meets closely in the population 1 (See Table 3 and Table 4) and for population 2 (See Table 5 and Table 6). The proposed estimator performed better than the conventional ratio synthetic estimator for both the populations 1 and 2 (See Table 7). Also it is seen that proposed estimator is more efficient than the conventional ratio synthetic estimator in population 1 than population 2.

So, it is preferred to use conventional generalized synthetic estimator for domain mean using auxiliary character \(T_{ps,y,a}\) over conventional ratio synthetic estimator for domain mean \(T_{ps,-1,a}\) using auxiliary character.

7. Applications

The proposed estimator may be used to estimate the domain mean when the number of units in interest domain is small and domain mean of auxiliary character is unknown. It is also applied in the ecological problem such as the estimation of pollution level in the city (domain) of the State (population).

References

1. Chandra, H., Sud, U.C. and Gharde, Yogita (2015). Small area estimation using estimated level auxiliary data, Communications in Statistics-Simulation and Computation, 44(5), p. 1197-1209.
2. Chaudhuri, A. and Roy, D. (1994). Model assisted survey sampling strategy in two phase, Metrika, 41, p. 355-362.
3. Gonzalez, M. E. (1973). Use and evaluation of synthetic estimators, Proceedings of the social Statistics, American Statistical Association, p. 33-36.

4. Hidiroglou, M. A. and Sarndal, C. E. (1995). Use of auxiliary information for two phase sampling. Proceeding of the section on survey research method, American Statistical Association, p. 873-878.

5. Hidiroglou, M. A. and Sarndal, C. E. (1998). Use of auxiliary information for two phase sampling, Survey Methodology, 24(1), p. 11-20.

6. Khare, B. B. and Ashutosh (2017). Synthetic estimator for domain mean using auxiliary character, International Journal of Statistics and Economics, 18(4), p. 32-44.

7. Khare, B. B. and Ashutosh (2018). Simulation study of the generalized synthetic estimator for domain in the sample survey, International Journal of Tomography and Simulation, 31(3), p. 87-100.

8. Neyman, J. (1938). Contribution to the theory of sampling human populations, Journal of the American Statistical Association, 33, p. 101-116.

9. Rao., J. N. K. (2003). Small Area Estimation, Wiley Inter-Science, New Jersey, John Wiley and Sons.

10. Sarndal, C. E. and Swensson, B. (1987). A general view of estimation for two phases of selection with applications to two-phase sampling and nonresponse, International Statistical Review, 55, p. 279-94.

11. Sarndal, C. E. Swensson, B. and Wretman, J. H. (1992). Model Assisted Survey Sampling, New York, Springer-Verlog.

12. Verma, H.K. Sharma, P. and Singh, R. (2015). Some families of estimators using two auxiliary variables in stratified random sampling, Revista Investigacion operacional, 36(2), p. 140-150.

13. Singh, R., Malik, S., Chaudhary, M.K., Verma, H.K. and Adewara, A.A. (2012). A general family of ratio-types estimators in systematic sampling, Journal of Reliability and Statistical Studies, 5(1), p. 73-82.

14. Singh, V. K. and Seth, S. K. (2014). On the use of one-parameter family of synthetic estimators for small areas, Journal of Statistics Application and Probability, 3(3), p. 355-361.

15. Singh, V. K. and Seth, S. K. (2015). An efficient family of synthetic estimators for small areas and applications, Journal of Statistical Applications and Probability Letters, 2(1), p. 59-69.

16. Singh, B. and Sisodia, B. V. S. (2012). Small area estimation in longitudinal surveys, Journal of Reliability and Statistical Studies, 4(2), 83-91.

17. Sud, U.C., Chandra, H. and Gupta, V. K. (2014). Calibration-based product estimator in single and two phase sampling, Journal of Statistical Theory and Practice, 8(1), p. 1-11.

18. Tikkiwal, G. C. and Ghiya, A. (2000). A generalized class of synthetic estimators with application to crop acreage Estimation for Small domains, Biometric Journal, 42(7), p. 865-876.

19. Tikkiwal et al. (2013). On the performance of generalized regression estimator for small domains, Communications in Statistics-Simulation and Computation, 42, p. 891-909.

20. Udofia, G. A. (2002). Estimation of domains in double sampling for probabilities proportional to size, Sankhya, B 64, p. 82-89.

21. Wu, C. and Luan, Y. (2003). Optimal calibration estimators under two-phase sampling, Jornal of Official Statistics, 19(2), p. 119-131.