Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202101074

Machine Learning-Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation

Shidang Xu*, Xiaoli Liu*, Pengfei Cai, Jiali Li, Xiaonan Wang* and Bin Liu*
Supporting Information

Machine Learning-Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation

Shidang Xu*, Xiaoli Liu*, Pengfei Cai, Jiali Li, Xiaonan Wang* and Bin Liu*
Materials Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under dry nitrogen immediately prior to use. Azetidine, bis(4-(dimethylamino)phenyl)methanone, malononitrile, 4-bromoiodobenzene, and other chemicals and reagents for the synthesis were purchased from Sigma-Aldrich and Tee Hai Chem Ltd., and used as received without any further purification.

Characterization. NMR spectra were recorded on a Bruker ARX 400 NMR spectrometer. Chemical shifts are recorded in parts per million referenced according to residual solvent (CDCl$_3$ = 7.26 ppm) in 1H NMR and (CDCl$_3$ = 77.0 ppm) in 13C NMR. Mass spectra of synthetic small molecules were reported on the AmaZon X LC-MS for ESI. Mass spectra for proteomic study were recorded on a Finnigan LCQ mass spectrometer. UV-vis and photoluminescence spectra were recorded using Shimadzu UV-1700 and Perkin-Elmer LS 55 spectrometer, respectively. Hydrodynamic diameter and size distribution were tested by a Zetasizer Nano S (Malvern Instruments Ltd, Worcestershire, UK) at room temperature.

Synthesis of 1. To the solution of bis(4-(dimethylamino)phenyl)methanone (26.8 mg, 0.10 mmol) and malononitrile (19.8 mg, 0.30 mmol) in dichloromethane (10 mL) was added titanium tetrachloride (0.04 mL, 0.35 mmol) slowly at 0 °C. After the reaction mixture was stirred for 30 min, pyridine (0.03 mL, 0.35 mmol) was injected and stirred for another 30 min. Then the mixture was heated at 40 °C for 4 h. After the mixture was cooled down to room temperature, the reaction was quenched by water (10 mL) and the mixture was extracted with dichloromethane. The collected organic layer was washed with brine (20 mL), dried over Na$_2$SO$_4$ and concentrated under reduced pressure. The desired residue was purified by column chromatography using n-hexane/dichloromethane (10/1 to 1/1, v/v) as eluent to give the desired product 1 as a red solid (23.7 mg, 75.0% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.40 (d, J = 8.8 Hz, 1H), 6.69 (d, J = 9.0 Hz, 1H), 3.10 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 173.92, 153.19, 133.57, 123.18, 117.24, 110.88, 69.45, 40.04. ESI-MS, m/z: [M+Na]$^+$ calcd 339.1586, found 339.1582.
Synthesis of 2. To the solution of compound 3 (29.6 mg, 0.10 mmol) and malononitrile (19.8 mg, 0.30 mmol) in dichloromethane (10 mL) was added titanium tetrachloride (0.04 mL, 0.35 mmol) slowly at 0 °C. After the reaction mixture was stirred for 30 min, pyridine (0.03 mL, 0.35 mmol) was injected and stirred for another 30 min. Then the mixture was heated at 40 °C for 4 h. After the mixture was cooled down to room temperature, the reaction was quenched by water (10 mL) and the mixture was extracted with dichloromethane. The collected organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The desired residue was purified by column chromatography using n-hexane/dichloromethane (8/1 to 1/1, v/v) as eluent to give the desired product 2 as a red solid (26.5 mg, 78.0% yield). ¹H NMR (400 MHz, Chloroform-d) δ 7.77 – 7.21 (m, 4H), 6.70 – 5.77 (m, 4H), 4.00 – 3.30 (m, 8H), 2.40 – 1.99 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 194.09, 153.97, 150.91, 133.75, 133.41, 132.46, 132.06, 127.83, 126.88, 111.69, 111.30, 109.67, 109.50, 77.35, 77.03, 76.72, 51.79, 51.50, 42.43, 40.44, 31.73, 29.71, 22.70, 16.49, 14.13. ESI-MS, m/z: [M+1]⁺ calcd 341.1766, found 341.1765

Synthesis of 3. A mixture of dibromobenzophenone (169.0 mg, 0.5 mmol), azetidine (85.0 mg, 1.5 mmol), caesium carbonate (1.14 g, 3.5 mmol), palladium(II) acetate (11.2 mg, 0.05 mmol), tri-tertbutylphosphine (30.3 mg, 0.15 mmol) and toluene (30 mL) was heated at 40°C for 2 h. The reaction mixture was then heated at 110°C for 24 h. After the mixture was cooled to room temperature, water (80 mL) and chloroform (200 mL) were added. The organic layer was separated and washed with brine, dried over anhydrous MgSO₄ and evaporated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel using hexane/toluene as eluent to afford 3 as a white solid in 60% yield (102 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.63 (d, J = 8.7 Hz, 4H), 6.30 (d, J = 8.5 Hz, 4H), 3.89 (t, J = 7.3 Hz, 8H), 2.43 – 2.22 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 194.20, 153.90, 132.02, 127.07, 109.49, 51.79, 16.69. ESI-MS, m/z: [M+1]⁺ calcd 293.1648, found 293.1654.
Figure S1. Examples of classic AIE/ACQ counterparts.

Figure S2. Encode a molecule into a series of binary digits. The SMILES of the molecule is "C1CNC2CCCN2C1".

(a) C1CC2CCCCC2O1 (b) C1NC2CCCN2C1
Figure S3: The quantized molecules.

Figure S4: Morgan circular fingerprint.

Figure S5: Topological or path-based fingerprint.

Table S1: 1D and 2D quantitative descriptors.

Num	Type	Descriptor	Description	Descriptor class
1	1D	FractionCSP3	The fraction of C atoms that are SP3 hybridized.	Constitutional descriptor
Index	Descriptor	Description		
-------	--	--		
2	1D HeavyAtomCount	Number of heavy atoms of a molecule.		
3	1D HeavyAtomMolWt	The average molecular weight of the molecule ignoring hydrogens.		
4	1D NHOHCount	Number of NHs or OHs		
5	1D NOCount	Number of Nitrogens and Oxygens		
6	1D NumAliphaticCarbocycles	The number of aliphatic (containing at least one non-aromatic bond) carbocycles for a molecule		
7	1D NumAliphaticHeterocycles	The number of aliphatic (containing at least one non-aromatic bond) heterocycles for a molecule		
8	1D NumAliphaticRings	The number of aliphatic (containing at least one non-aromatic bond) rings for a molecule		
9	1D NumAromaticCarbocycles	The number of aromatic carbocycles for a molecule		
10	1D NumAromaticHeterocycles	The number of aromatic heterocycles for a molecule		
11	1D NumAromaticRings	The number of aromatic rings for a molecule		
12	1D NumHAcceptors	Number of Hydrogen Bond Acceptors		
13	1D NumHDonors	Number of Hydrogen Bond Donors		
14	1D NumHeteroatoms	Number of Heteroatoms		
15	1D NumRadicalElectrons	The number of radical electrons the molecule has (says nothing about spin state)		
16	1D NumRotatableBonds	Number of Rotatable Bonds		
17	1D NumSaturatedCarbocycles	The number of saturated carbocycles for a molecule		
18	1D NumSaturatedHeterocycles	The number of saturated heterocycles for a molecule		
19	1D NumSaturatedRings	The number of saturated rings for a molecule		
20	1D NumValenceElectrons	The number of valence electrons the molecule has		
21	1D RingCount	The number of rings for a molecule		
22	2D BalabanJ	Balaban's J value for a molecule.		
23	2D BertzCT	A topological index meant to quantify "complexity" of molecules.		
24	2D Chi0	From equations (1),(9) and (10) of.		
25	2D Chi0n	Similar to Hall Kier Chi0n, but uses nVal instead of valence.		
26	2D Chi0v	From equations (5),(9) and (10) of.		
27	2D Chi1	From equations (1),(11) and (12) of.		
28	2D Chi1n	Similar to Hall Kier Chi1n, but uses nVal instead of valence.		
29	2D Chi1v	From equations (5),(11) and (12) of.		
30	2D Chi2n	Similar to Hall Kier Chi2n, but uses nVal instead of valence.		
31	2D Chi2v	From equations (5),(15) and (16) of.		
32	2D Chi3n	Similar to Hall Kier Chi3n, but uses nVal instead of valence.		
33	2D Chi3v	From equations (5),(15) and (16) of.		
34 2D Chi4n	Similar to Hall Kier Chi4v, but uses nVal instead of valence.	Connectivity descriptor		
35 2D Chi4v	From equations (5),(15) and (16) of	Connectivity descriptor		
36 2D EState_VSA10	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
37 2D EState_VSA11	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
38 2D EState_VSA1	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
39 2D EState_VSA2	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
40 2D EState_VSA3	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
41 2D EState_VSA4	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
42 2D EState_VSA5	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
43 2D EState_VSA6	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
44 2D EState_VSA7	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
45 2D EState_VSA8	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
46 2D EState_VSA9	MOE-type descriptors using EState indices and surface area contributions.	MOE-type descriptor		
47 2D ExactMolWt	The molecule’s exact molecular weight.	Molecular property descriptor		
48 2D FpDensityMorgan1	Morgan fingerprint density	Topological descriptor		
49 2D FpDensityMorgan2	Morgan fingerprint density	Topological descriptor		
50 2D FpDensityMorgan3	Morgan fingerprint density	Topological descriptor		
51 2D HallKierAlpha	The Hall-Kier alpha value for a molecule.	Topological descriptor		
52 2D Ipc	The information of characteristic polynomial coefficients in the adjacency matrix of molecular hydrogen graphs.	Topological descriptor		
53 2D Kappa1	Hall-Kier Kappa1 value	Topological descriptor		
54 2D Kappa2	Hall-Kier Kappa2 value	Topological descriptor		
55 2D Kappa3	Hall-Kier Kappa3 value	Topological descriptor		
56 2D LabuteASA	Labute’s Approximate Surface Area (ASA from MOE)	MOE-type descriptor		
57 2D MaxEStateIndex	Returns a tuple of EState indices for the molecule.	Topological descriptor		
58 2D MinEStateIndex	Returns a tuple of EState indices for the molecule.	Topological descriptor		
59 2D MolLogP
Wildman-Crippen LogP value. \(^{14}\)
Molecular property descriptor

60 2D MolMR
Wildman-Crippen MR value. \(^{18}\)
Molecular property descriptor

61 2D MolWt
The average molecular weight of the molecule
Molecular property descriptor

61 2D PEOE_VSA1
MOE Charge VSA Descriptor 1
MOE-type descriptor

63 2D PEOE_VSA10
MOE Charge VSA Descriptor 10
MOE-type descriptor

64 2D PEOE_VSA11
MOE Charge VSA Descriptor 11
MOE-type descriptor

65 2D PEOE_VSA12
MOE Charge VSA Descriptor 12
MOE-type descriptor

66 2D PEOE_VSA13
MOE Charge VSA Descriptor 13
MOE-type descriptor

67 2D PEOE_VSA14
MOE Charge VSA Descriptor 14
MOE-type descriptor

68 2D PEOE_VSA2
MOE Charge VSA Descriptor 2
MOE-type descriptor

69 2D PEOE_VSA3
MOE Charge VSA Descriptor 3
MOE-type descriptor

70 2D PEOE_VSA4
MOE Charge VSA Descriptor 4
MOE-type descriptor

71 2D PEOE_VSA5
MOE Charge VSA Descriptor 5
MOE-type descriptor

72 2D PEOE_VSA6
MOE Charge VSA Descriptor 6
MOE-type descriptor

73 2D PEOE_VSA7
MOE Charge VSA Descriptor 7
MOE-type descriptor

74 2D PEOE_VSA8
MOE Charge VSA Descriptor 8
MOE-type descriptor

75 2D PEOE_VSA9
MOE Charge VSA Descriptor 9
MOE-type descriptor

76 2D qed
Quantitative estimation of drug-likeness
Topological descriptor

77 2D SlogP_VSA1
MOE logP VSA Descriptor 1
MOE-type descriptor

78 2D SlogP_VSA10
MOE logP VSA Descriptor 10
MOE-type descriptor

79 2D SlogP_VSA11
MOE logP VSA Descriptor 11
MOE-type descriptor

80 2D SlogP_VSA12
MOE logP VSA Descriptor 12
MOE-type descriptor

81 2D SlogP_VSA2
MOE logP VSA Descriptor 2
MOE-type descriptor

82 2D SlogP_VSA3
MOE logP VSA Descriptor 3
MOE-type descriptor

83 2D SlogP_VSA4
MOE logP VSA Descriptor 4
MOE-type descriptor

84 2D SlogP_VSA5
MOE logP VSA Descriptor 5
MOE-type descriptor

85 2D SlogP_VSA6
MOE logP VSA Descriptor 6
MOE-type descriptor

86 2D SlogP_VSA7
MOE logP VSA Descriptor 7
MOE-type descriptor

87 2D SlogP_VSA8
MOE logP VSA Descriptor 8
MOE-type descriptor

88 2D SlogP_VSA9
MOE logP VSA Descriptor 9
MOE-type descriptor

89 2D SMR_VSA10
MOE MR VSA Descriptor 10
MOE-type descriptor

90 2D SMR_VSA1
MOE MR VSA Descriptor 1
MOE-type descriptor

91 2D SMR_VSA2
MOE MR VSA Descriptor 2
MOE-type descriptor

92 2D SMR_VSA3
MOE MR VSA Descriptor 3
MOE-type descriptor

93 2D SMR_VSA4
MOE MR VSA Descriptor 4
MOE-type descriptor
94 2D SMR_VSA5 MOE MR VSA Descriptor 5 MOE-type descriptor
95 2D SMR_VSA6 MOE MR VSA Descriptor 6 MOE-type descriptor
96 2D SMR_VSA7 MOE MR VSA Descriptor 7 MOE-type descriptor
97 2D SMR_VSA8 MOE MR VSA Descriptor 8 MOE-type descriptor
98 2D SMR_VSA9 MOE MR VSA Descriptor 9 MOE-type descriptor
99 2D TPSA Topological polar surface area Molecular property descriptor

100 2D VSA_EState1 VSA EState Descriptor 1 MOE-type descriptor
101 2D VSA_EState10 VSA EState Descriptor 10 MOE-type descriptor
102 2D VSA_EState2 VSA EState Descriptor 2 MOE-type descriptor
103 2D VSA_EState3 VSA EState Descriptor 3 MOE-type descriptor
104 2D VSA_EState4 VSA EState Descriptor 4 MOE-type descriptor
105 2D VSA_EState5 VSA EState Descriptor 5 MOE-type descriptor
106 2D VSA_EState6 VSA EState Descriptor 6 MOE-type descriptor
107 2D VSA_EState7 VSA EState Descriptor 7 MOE-type descriptor
108 2D VSA_EState8 VSA EState Descriptor 8 MOE-type descriptor
109 2D VSA_EState9 VSA EState Descriptor 9 MOE-type descriptor
Figure S6. Confounding matrix of Ensemble method and competing methods based on single-modal descriptors.
Figure S7. Confounding matrix of Ensemble method and competing methods based on multi-modal descriptors.
Figure S8. (a-e) Test accuracy of five methods with different descriptors. (f) Confounding matrix of Ensemble method base on single-modal descriptor.

Figure S9. UI of the prediction system. 1 and 0 represent AIE and ACQ, respectively. (https://aiapp.gaha.xyz:7443/nus/html/#/works)

Benchmark against SELF-referencIng Embedded Strings
Krenn, Mario, et al. [S1] introduced a string-based representation of molecular, SELFIES (SELF-referencIng Embedded Strings). The motivation for proposing SELFIES is that current generative models are hard to generate valid SMILES molecules, even if sufficient diversity
of molecular SMILES data is trained. The reason for this problem is that SMILES describes not only the string representation of the molecules, but also information between different components, such as bonds and rings. SELFIES is robust precisely because it considers only the embedding of strings, ignoring the correlations between the different components in the molecule. However, SELFIES does not have such a generalization property as SMILES. Besides, SELFIES is only quantitatively evaluated based on the results of the algorithms. The validity of SELFIES needs to be further tested in chemical laboratory experiments.

In ref [S3], Nigam, A. et al. proposed the STONED algorithm, a simple algorithm to perform interpolation and exploration in the chemical space. The author implemented STONED and other comparable methods based on SELFIES molecular representation, making it easier to obtain the valid representation of string embedding. Experiments confirmed that the combination of STONED and SELFIES could produce considerable results. However, what STONED achieved was rediscovery, which is to modify the original molecular expression. Specifically, this means modifying an existing molecule by interpolation, modifying only parts of the molecule, without reconstructing a new molecule from characters or fragments. In this way, the model can only generate molecules with modified parts of their composition, without the ability to learn and create molecules.

Chem-VAE was proposed in ref [S1] and is widely used as a baseline comparison method in molecular generation work. Ref [S2] and ref [S3] use Chem-VAE to verify the effectiveness of SELFIES and STONED. Chem-VAE simply applies VAE to molecular research through one-hot encoding. First, the vector was encoded into a high-dimensional vector, then the potential vector is obtained through the normalization of transformation, and finally the vector is decoded back to the molecule using decoding blocks. The author emphasizes that the current challenge is how to generate valid molecules, and VAE is expected to achieve this.
However, the results of Chem-VAE were not ideal, probably because it did not take into account the connection and sequence of the molecules. For the molecules generated using the variational autoencoder in the experiment, the latent space points were encoded by 1000 seed molecules, which are from ZINC data. This means that a code is generated from a valid molecule to a latent vector, and then the vector is decoded to a new molecule. From the algorithm evaluation perspective, if the molecule is decoded back to the original molecule, it proves that the model learns well and can accurately decode the molecule back to the input molecule. If there were different parts from the input molecules, that is, the mutation parts, it means that the algorithm is creative and the results can be diversified. Therefore, it is not easy to evaluate the VAE model quantitatively.

Actually, we have done a lot of research in this area and read a lot of literature, such as [S4-S7]. In these methods, the target tasks are generated from random latent vectors, randomly generating a latent vector with Gaussian distribution, then decoding this vector to the target. We implemented Chem-VAE (the author published the code\[S8\]), transformer-VAE (code by ourselves, method architecture in ref [S6]), and the method proposed by ourselves on ZINC. We generated 1000 samples from random latent vectors for all the methods. The results are listed as follows:

Chem-VAE

None of the 1000 samples generated is a valid SMILES.

An example:

The dimension of latent vector is 1×292:

$[0.0043497234582901, -0.015666436403989792, 0.004856988321989775, \ldots]$

The corresponding molecule is:

```
CCB)lFBBIS[C##CC8#I])##B\lBB4CCB4CC8B]-8\lCC
```
Transformer-VAE

None of the 1000 samples generated is a valid SMILES.

An example:
The dimension of latent vector is 16 × 16:

\[
[[0.30958104133605957, 1.0263967514038086, 0.9525277614593506, \ldots]]
\]

The corresponding molecule is:

\(-\text{PS}(Nc(CC(___))\text{N}(cc3ccON@=-3)N(c(Cc2-O)Nc2PSc2c(-cc(2SN

Our proposed sequence model

952 valid SMILES are achieved. Here, we listed two valid examples:

The dimension of latent vector is 1 × 32:

\([-0.6104545593261719, 1.0966098308563232, 0.2640085816383362, \ldots]\]

The corresponding molecules are:

\(\text{C}[NH2+]\{C@__/1(C(=O)[O-])CCC[C@__H](\text{[NH+]}2CC[C@__H](C)[C@__H](SC)C2)C1}
\(\text{CNc1nc(NC(=O)c2ncnc2N)nc(C)c1Br}

These are shown in Figure S10.

It can be seen from the experimental results that it is feasible to generate effective SMILES. The key is to find a suitable algorithm to learn the dataset efficiently. For our AIE dataset, we also applied Chem-VAE and proposed our method to conduct experiments. The results are as follows:

Chem-VAE

None of the 1000 samples generated is a valid SMILES.

An example:
The dimension of latent vector is 1×292:

$[-0.0005187964416109025, -0.008428120985627174, 0.02279096841812133, \ldots]$

The corresponding molecule is:

$9 :: 999999999999999999999999:::$

Our proposed fragment method

All the generated molecules are valid. Here, we listed two valid examples:

The dimension of latent vector is 20×24:

$[-1.5255959033966064, -0.7502318024635315, -0.6539809107780457, \ldots]$

The corresponding molecules are:

$CCN1C(C=Cc2ccc(-c3ccc(N(c4ccccc4)c4ccccc4)cc3)s2)=CC(=C(C#N)C#N)c2ccccc21$

$CCn1c2ccccc2c2cc(C=C3C(=O)c4cccc4C3=O)ccc21$

These are shown in Figure S11.

In this experiment, we also used 356 samples for training. The results clearly indicate that the Chem-VAE algorithm cannot be optimized on small datasets, which the author also pointed out in the paper. But our proposed fragment method can work very well, which further illustrates that the number of our datasets is sufficient to train the model, including both prediction and generation. The information in SMILES can be used for in-depth study of molecular properties and we think this is a direction that the community should pay more attention in further research.

The above is the discussion of the problem of molecule generation, that is, the inverse question. Now we want to summarize the roles played by forward prediction and inverse generation. When a generative model is trained, it is easy to generate molecules. Ten of
thousands of molecules can be generated with only one line of code and simple operations. Just like the model we trained on the AIE dataset. But it is hard to verify and obtain the required molecules. For example, after we generate molecules, they do not make sense if we do not verify and label them. We have used our prediction model proposed in this paper as a discriminator to predict our generated molecules, and then every molecule have its label, AIE/ACQ. This completes the process of the whole flowchart for molecular generation in this field.

In addition to generation, we also proposed a discovery strategy. We further added elements that do not exist in the current molecular dataset to be reasonably combined into unseen molecules. Here, we just want to show that it is impossible to rely solely on chemists to do experimental verification, but prediction and learning can be used for analysis. Therefore, the forward algorithm can be used to preliminary screen the generated molecules, provide a preliminary analysis of their properties, and further manual analysis. In ref [S1], the authors also trained a model for predicting molecular properties to measure molecules. In short, only by achieving good results in two directions at the same time, we can truly implement end-to-end algorithms to simulate human thoughts. Therefore, research in these two directions is equally essential, and the key is how to apply the model to real data. Our work is based on real data and problems. In future work, our goal is to improve the closed-loop analysis of molecules, so that the model has the ability of generation and analysis and prediction at the same time.
Figure S10. Plots of molecules generated by our proposed method on ZINC dataset

Figure S11. Plots of molecules generated by our proposed method on AIE dataset
Figure S12. The 1H NMR spectrum of 1 in CDCl$_3$.

Figure S13. The 13C NMR spectrum of 1 in CDCl$_3$.
Figure S14. The HRMS of 1.

Figure S15. The 1H NMR spectrum of 2 in in CDCl$_3$.
Figure S16. The 13C NMR spectrum of 2 in CDCl$_3$.

Figure S17. The HRMS of 2.
Figure S18. The 1H NMR spectrum of 3 in CDCl$_3$.

Figure S19. The 13C NMR spectrum of 3 in CDCl$_3$.
Figure S20. The HRMS of 3.

[S1] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a datadriven continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[S2] Mario Krenn, Florian Häse, Akshat Kumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-referencing embedded strings (selfies): A 100% robust molecular string representation. Machine Learning: Science and Technology, 1(4):045024, 2020.

[S3] A Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-Guzik. Beyond generative models: Superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm for molecules using selfies. 2020.

[S4] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning, pages 2323–2332. PMLR, 2018.

[S5] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using structural motifs. In International Conference on Machine Learning, pages 4839–4848. PMLR, 2020.
[S6] Junyan Jiang, Gus G Xia, Dave B Carlton, Chris N Anderson, and Ryan H Miyakawa. Transformer vae: A hierarchical model for structure-aware and interpretable music representation learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 516–520. IEEE, 2020.

[S7] Danyang Liu and Gongshen Liu. A transformer-based variational autoencoder for sentence generation. In 2019 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2019.

[S8] https://github.com/hips/molecule-autoencoder.