Brevibacillus thermoruber: thermophilic bacteria isolated from hot spring with the promising potential as a biomolecule producer

D S Zilda

Research Center for Marine and Fisheries Product Processing and Biotechnology Jl. KS Tubun Petamburan VI Jakarta Pusat Telp/fax:021 53650147-158

E-mail: seswitazilda@gmail.com

Abstract. Activities and evolution of organisms are controlled by temperature, one of the most important environmental factors. Some microorganisms, have been known as thermophile, need thermal environment for growth and reproduction. They have been topics for much research during the last two decades. One of the interesting and potential thermophilic bacteria is *Br. thermoruber*. It is originated from hot spring that have been found and showed some abilities to produce important macromolecules. *Br. Thermoruber* is one of four *Brevibacillus* species recorded to produce a thermostable enzyme, such as keratinase, fibroinolytic enzyme and potential mitochondrial enzyme, which plays a major role in the degradation of intracellular proteins. It is also known as the exopolysaccharide cell factory. The genome sequencing and analysis of this species showed important information on the existence of some other potential enzymes. This project also opens up opportunities to conduct further research on production mechanisms of some enzyme previously found and to predict any potency that *Br. thermoruber* have.

1. Introduction

Thermophiles are microorganisms growing optimally between 55 - 80 °C. They are classified into thermophiles (50° C or higher), extreme thermophiles (65–79°C) and hyperthermophiles (above 80 °C) [1]. They are found either as Gram positive or negative, spore-forming or not, and may exhibit an aerobic or anaerobic metabolism. The intensive studies have been focused on their ability to produce thermostable enzymes with the properties that meet industrial needs. Some thermostable enzymes with novel properties produced by thermophiles were reported in last few years such as thermostable protease [2,3] Xylanases [4–6], cellulase [7,8] lipase [9,10] polymerases [11], beta-galactosidases [12] and esterases. The environment for microorganism to grow is not only characterized by temperature but also extreme pH and salinity [13].

The genus *Brevibacillus* contains organisms with significant biotechnological characteristics. One of them is *Brevibacillus brevis* which was reported having capability to degrade triphenyltin which contaminates the environment worldwide [14]. This species was also reported producing Edeines, a typical cationic peptides, with broad antimicrobial activity spectrum [15]. Another species was identified as a host for the expression system, *Brevibacillus choshinensis*. The system "*Brevibacillus* in vivo cloning" recently developed by the Higeta Shoyu Community facilitates efficient output screening. This expression mechanism has developed recombinant interferon μ, a form of cytokine that has been shown to promote adjuvant and growth in poultry and animals and is capable of being used as antibiotic alternatives [16]. Hybrid protein, Cholera toxin B subunit-insulin B chain peptide (a nasal vaccine against autoimmune diabetes), was also produced by *Brevibacillus choshinensis* [17]. It was also used to produce antigenic protein VP28, a recombinant protein which protect shrimp from
white spot syndrome disease [18] and single-chain antibody (scFv) which is produced by completely functional antigen-binding fragment technique [19].

Manachini et al. [20] reported for the first time that *Bacillus thermoruber* cells are gram positive, straight rods, with lateral flagellation with oval endospores. They are heat loving microorganisms and produce red pigment. Colonies are red colored, circular, entire, and convex and have glossy and mucilaginous surfaces [20]. Most of *Br. thermoruber* were isolated from hot spring [21–24]. This explains the optimum growth temperature (45 to 48°C) that differed from other *Brevibacillus* species (30°C) [25].

Brevibacillus thermoruber is one of four thermophilic *Brevibacillus* species i.e *Brevibacillus aydinogluensis* [26], *Brevibacillus borstelensis* [25] and *Brevibacillus limnophilus*. In this study, the recent update on the potential of *Br. thermoruber* as a producer of thermostable enzymes active in hard-to-degrade proteins (keratinase and fibroinolytic enzymes) and LON proteases, which play an important role in the intracellular degradation of proteins. *Br. thermoruber* is also a promising microbial cell factory for exopolysaccharide production.

2. Classification

Until 1996, the morphological identification of *B. brevis* were based on Laubach [27]. Shida et al. [25] listed it through genetic reclassification, along with nine other species as a new *Brevibacillus* genus i.e. *B. brevis*, *B. agric*, *B. centrosporus*, *B. choshinensis*, *B. parabrevis*, *B. reusseri*, *B. formosus*, *B. borstelensis*, *B. laterosporus*, and *Br. thermoruber*. Phylogenetic relationships of *Brevibacillus* and other *Bacillus* species based on 16S rRNA gene sequences was present in Figure 1. In the time of writing, the genus *Brevibacillus* includes in 21 species after Xian et al. [28] reported the novel species, *Brevibacillus sediminis* sp. (Figure 2.)

![Figure 1. Phylogenetic relationships of *Brevibacillus* and other *Bacillus* species based on 16S rRNA gene sequences](image-url)
3. Enzym producer for hard-to-degrade protein

Hard-to-degrade protein commonly used to mention the dense and strong structure protein which cannot be hydrolyzed using common protease such as trypsin or pepsin. These proteins, such as collagen, keratin, and prion protein, tend to gain plasticity, generating more susceptibility substrate for enzymatic degradation at elevated temperature [29]. This enables the use of thermophiles and their enzymes on such proteins to be successful. There were two strains of Br. thermoduric that have been reported producing thermostable protease which are active on keratin and fibroin degradation.

3.1. Keratinase

Keratin is an insoluble structural protein which has high stability i.e. feathers and wool [30]. Degradation of keratin is difficult as the polypeptide densely packed and strongly stabilized by several hydrogen bonds and hydrophobic interactions along with several disulfide bonds. The structural rigidity is warranted by composition and molecular configurations of its constituent amino acid. There are at least 30 different keratin polypeptides falling into two evolutionary families designated type I and type II. The helical rod domain of about 310 amino acids within each polypeptide chain is flanked by a shorter non helical head and tail domains which are thought to have a flexible conformation [31]. Keratin has mechanical stability and resistance to common proteolytic enzymes such as pepsin, trypsin, and papain due to its supercoiled polypeptide chain which is composed of α-helix (α-keratin) or β-sheet (β-keratin). Its tightly packed and cross linking of protein chain by cysteine bridges confers high mechanical stability and resistance to those enzymes [32].

Although a lot of important information on keratin hydrolysis available, the mechanism of keratin biodegradation by microorganisms is not completely elucidated. Nevertheless, the reduction of cysteine bridges may have a significant influence on keratin degradation [33]. Some investigations
revealed that most keratinases have the ability to hydrolyze diverse substrates [33,34], so that they are able to replace the used of conventional protease in leather industry and detergent additive. Recent application of keratinase as reported by Jang et al. [35] is to improve biosynthesis of silver nanoparticles that can be applied as anticoagulants, thrombolytic, anticancer, and larvicidal agents. Keratinase is also used for cosmetic formulation [36] and bioremediation [37].

A keratinolytic strain, Bevibacillus thermoruber T1E was isolated by Bihari et al [38]. The isolate was investigated as a gram-positive non-pathogenic rod with optimum growth at 50°C on native feathers. T1E was able to released 0.72 mg/ml protease after 7 days incubation. Keratinase T1E was reported as 2.23 kD protein which was active optimally at pH of 6. Although keratinase produced by T1E was claimed as the first one which was characterized from Brevibacillus, but the investigation on its characters was not complete.

Keratinase produced by Bevibacillus thermoruber LII isolated from Padang Cermin hotspring Lampung had been reported by Zilda et al. (2014) [21]. LII produced keratinase optimally at temperature of 50°C using minimal synthetic medium with 1% chicken feather after 36 hours. It was active optimally at temperature of 85°C and pH of 8-9. Degradation of feather keratin by Br. thermoruber is presented in Figure 3.

![Figure 3. High resolution scanning electron microscope image of chicken feather (500× magnification). (A) before incubation (B) after 24 hours incubation at 50°C with Br. thermoruber LII in liquid MSM medium [21].](image)

3.2. Fibroinase

Fibroin is the main component of silk produced by silkworm, Bombyx mori. The primary organization of fibroin, called crystalline structure, is divided into a heavy-chain (H-chain, 350 kDa) and the Light-chain (L-chain, 25 kDa), attached to a disulfide bond [39]. An accessory, glycoprotein (25 kDa) named P25, is also non-covalently linked to these chains [40]. The repeated amino acid sequences which are assembled into nano-crystals (β-sheet) form hydrophobic domains of polymeric chains. Secondary structure is constructed from these hydrophobic domains (consist of bulky and polar side chains) with hydrophilic links forming the amorphous part [41]. There are 18 different natural amino acids composing fibroin with the amino acid composition consists mainly of Gly (43%), Ala (30%), and Ser (12%) [42] with a molecular weight of 3.5 - 3.6 × 10^5 Da [43].

For years, this protein polymer attracts many interests for developing innovative applications due to its unique chemical and mechanical properties. As a protein, fibroin is susceptible to biological degradation by proteolytic enzymes. The rate and extent of degradation may be highly variable, depending on a series of factors related to structural and morphological features of the polymer (fiber, film, sponge), processing conditions, as well as characteristics of the biological environment, and the presence of different mechanical and chemical stresses. The fragmentation of fibroin through mild
hydrolysis by fibroinolytic enzymes leads to its conversion to a soluble form without causing significant damage to its natural conformation which in contrast with fragmentation by powerful chemical reagents. Enzymatically generated peptides from fibroin showed various biomedical functions. The application of peptide have been expanding in the manufacturing of foods, cosmetics, pharmaceuticals, and other products [44,45]. Fibroin hydrolysates had been reported having anti-diabetic and hypertensive effects [46]. Nanoparticle prepared from Silk fibroin have received considerable attention for drug delivery due to its high binding capacity for various drugs, control of drug release properties, and mild preparation conditions [47].

The strain of Br. thermoruber, YAS-1, was isolated by Suzuki et al. [48] from the Manza hot springs Gunma, Japan which was known to produce strongest fibroin-degrading activity. The strain was identified as B. thermoruber based on the phylogenetic analysis on 16S rRNA sequence which was shared 99.5% identity with B. thermoruber DSM 7064T. Biochemical characteristics (i.e. gram positive, aerobic, short rod 0.8–1.0 ~ 2.5–4.8 μm) have been reported as belonging to B. thermoruber species by the development, optimal cultivation or subterminal of oval endospores in swollen sporangia at temperatures from 45 to 55 °C.

Suzuki et al. [48] incubated fibrous fibroin (100 mg) from the culture supernatant (25 ml, obtained at 24 h) at 55 °C for 24 h with reciprocal shaking (150 rpm). The weight of insoluble fibrous fibroin was gradually decreased to nearly 30% of the initial weight after 14 days, indicating that 70% of the fibrous fibroin had been degraded to become soluble. The result showed that YAS-1 strain produced fibroinolytic enzyme that seemed to degrade the crystalline regions to some extent in addition to the amorphous regions of fibroin during incubation since the crystalline region is about 60% of the B. mori’s fibroin, based on the digestibility by chymotrypsin [49]. This investigation also reported that the fibroinolytic enzyme produced by strain YAS-1 was more specific to the H-chains. The significant damaged of fibrous fibroin by the fibroinolytic enzyme produced by strain YAS-1 is presented in Fig 4.

![Figure 4. Scanning electron micrographs of the fibrous fibroins. (A) Starting fibroin; (B) after 14 days incubation with enzyme produced by YAS-1 (modified from Suzuki et al., [48]).](image)

4. Lon protease producer

Lon protease is a family of proteases which is found in archaea, bacteria, and eukaryotes. Lon protease (La) is a member of AAA+ superfamily [50] this comprises an N-terminal domain component that includes, i.e., a central ATPase domain with ATP binding and hydrolysis activity and a C-terminal protease dominance on one single polypeptide [51]. Although La is active as a homooligomer, nevertheless the oligomeric state of La is still indistinct. In E. coli, La is found as a tetramer or an octamer [52], as a tetramer to a hexamer in Mycobacterium [53] and as a hexamer or a heptamer in yeast mitochondria [54].

Lon protease plays an important role in intracellular protein degradation. Critical roles played by bacterial LonA are in general protein quality control and in cell regulation by degrading abnormal
proteins and cleavage of specific regulatory proteins, respectively [55]. These roles are important for radiation tolerance, cell division, capsular oligosaccharide synthesis and biofilm formation [56]. Under stress conditions, Lon play a role to prevent proteotoxicity and maintain organelle quality control and mtDNA biogenesis by targeting aberrant proteins and conditional digest of regulatory proteins [57]. Quiro’s et al. [58] ATP-Dependent Lon Protease was found to regulate the bioenergy of tumors through the reprogramming of mitochondrial activity. The experiment on generation of mice deficient in Lon protease (LONP1) has showed the essential roles of Lon protease in cell and organismal viability.

Br.thermorumber WR-249 lonprotease gene was cloned and expressed in E.coli and its protein product was purified and characterized by Lee et al. [59]. They reported that Br. thermorumber WR-249 produced an 88 kDa protein encoded by Bt-Lon which consisted of an N-terminal domain, a central ATPase domain which includes an SSD (sensor- and substrate-discrimination) domain, and a C-terminal protease domain. Like those produced by B. Thermoruber, Bt-Lon is a thermostable enzyme. The structure was homoheaxamer and heat inducible gene with optimal temperature of 70°C for ATPase activity and 50°C for peptidase and DNA-binding activities. This implies that to regulate their physiological needs, the functions of Lon protease in thermophilic bacteria may be switched, depending on temperature with melting temperature was estimated at 71.5 °C. Compared to Lon produced by mesophilic E. coli which have homotetrameric structure, Bt-Lon is a homohexamer of 88 kDa subunits. This result corresponded with statement of Vieille, C. and Zeikus, G.J. [60] that thermophilic protein composed of more oligomer than mesophilic one. The sequence of amino acid makes the properties of Bt-LON differences from those produced by mesophilic in the rigidity, electrostatic interactions, and hydrogen bonding which is relevant to thermostability.

5. Cell factory for exopolysaccharide
Exopolysaccharides are polysaccharides which are synthesized and secreted extracellularly by microorganism. There are two group of exopolysaccharides based on monomeric composition, homopolysaccharides and heteropolysaccharides [61]. Based on the nomenclature, homopolysaccharides contain only one type of monosaccharide while heteropolysaccharides are composed by varying size from disaccharides to heptasaccharides Exopolysaccharides are water soluble polymers that can be readily prepared by a short process of fermentation. Because of their new chemical structures they compete with polysaccharides derived from plants and algae, and offer many new characteristics and applications. Their novelties are highlighted by recent publications encompassing the structure and function, chemical properties and their role in microbial ecology, medicine, dairy industry, biofilms, and corrosion and other biotechnology applications. Some of which produced in large scale are xanthan, gellan, and alginate. More upcoming industrial application of EPS which are in intensive search are as emulsifier, geller and as carbon source for polysaccharide conversion.

Many mesophilic EPS producing microorganisms with industrial value are pathogenic. Some thermophiles (obligate and hyperthermophile) which are known as EPS producer showed novel metabolic pathways [62] and in such a way they are also expected to produce exopolysaccharides with novel properties. EPS manufacturing with thermophile shows low accumulation of biomass and corresponding low EPS production, however it proposes short fermentation cycles, reduced fermentation broth viscosity, high molecular weight polymers and stable emulsions as well as nonpathogenic ones, suitable for use in food, pharmacy and cosmetic industries.

Radchenkova et al. [24] screened EPS producing bacteria isolated from nine hot springs located in three geographically separated areas in Bulgaria. A total of 38 aerobics showed the ability to produce EPS. From 12 strains which produced more than 20 μg/ml EPS, nine of them were identified as Br. thermorumber. Compared to mesophilic processes for EPS production, thermophile produced EPS in shorter period as showed by Br. thermorumber strain 423 with only less than one day [63]. Another strain, Br. thermorumber 438, even showed a very short period for EPS production that is in eight hours [24]. It is significantly different to those produced by mesophilic which needs at least few days to several weeks. Br. thermorumber strain 423 is highly recommended as potential microbial cell factory
for EPS both due to its high yield and productivity compared to other EPS-producing thermophilic bacteria.

6. The future potency based on genomic analysis

Draft genome sequence of *Br. thermoruber* was first submitted by Yildiz et al. [63]. Illumina HiSeq 2000 technology is used to sequence whole genome generating sequence data of 603 Mb which provides approximately 150-fold coverage. The size of nucleotide is 4,433,037 bp with total of 4446 coding sequences and 112 RNA genes which was generated from gene prediction and genome annotation. G+C content is 58.46% with coding region length of 3,830,130 bp. Among 3,020 protein-coding genes, 1,426 hypothetical proteins had no match to any known proteins which have high possibility encode novel protein with potential application.

Although genome analysis already been addressed by Yildiz et al. [64], it still calls for further laboratory works to obtain evidences on the exist of some genes. These results open up opportunities to conduct further study on the potency and mechanisms of any genes that previous found in *Br. thermoruber* such as: keratinolitic, fibroinolitic, Lon Protease, and EPS as describe above. These studies are important to design the strategies on optimizing of production and engineering for improving yield and properties of product so that it meets industrial needs. From genome analysis, Yildiz et al. [64] predicted some genes that code potential enzyme for industry as presented in Table below.

Predicted Enzyme	Potency Industry
Lipase	Dairy, baking, pulp and paper, polymer, detergent, leather, cosmetic, waste management
Glucoamylase	Baking, Beverages, pulp and paper, detergent, leather, Beverages, Animal feed,
Endo-1,4-β-glucanase	Sweetener, prodrug in chemotherapy
Dipeptidase	Detergent, textile, Meat, feed, leather, waste management, chemically industry, feed, medical uses, silver recovery
Serine protease	Therapeutic, fermented food, sanack and biscuit, anaitic, fine chemical, cost drug
Amidase	Carboxilic production, bioremediation, surface modification of polymer,
Nitrilase	

Yildiz et al. [64]

References
[1] Anon 2008 Diversity of Thermophilic Anaerobes 43 1–43
[2] Ginting E L, Kemer K, Wullur S and Uria A R 2020 Identification of Proteolytic Thermophiles from Moinit Coastal Hot-Spring, North Sulawesi, Indonesia Geomicrobiology Journal 37 50–8
[3] Abdullah Al-Dhabi N, Ali Esmail G, Mohammed Ghalan A-K, Valan Arasu M, Duraipandian V and Ponnurugan K 2020 Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications Journal of King Saud University - Science 32 1258–64
[4] Bibra M, Kunreddy V R and Sani R K 2018 Thermostable Xylanase Production by Geobacillus sp. Strain DUSELR13, and Its Application in Ethanol Production with Lignocellulosic Biomass Microorganisms 6
[5] Yang J, Ma T, Shang-guan F and Han Z 2020 Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone
subsites *Enzyme and Microbial Technology* **139** 109579

[6] Shi H, Zhang Y, Li X, Huang Y, Wang L, Wang Y, Ding H and Wang F 2013 A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. *Biotechnology for Biofuels* **6** 26

[7] Awasthi M K, Wong J W C, Kumar S, Awasthi S K, Wang Q, Wang M, Ren X, Zhao J, Chen H and Zhang Z 2018 Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. *Bioresource Technology* **248** 160–70

[8] Xie X, Ban X, Gu Z, Li C, Hong Y, Cheng L and Li Z 2020 Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. *Biotechnology Letters* **42** 295–303

[9] Kajiwara S, Yamada R, Matsumoto T and Ogino H 2020 N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability. *Enzyme and Microbial Technology* **132** 109416

[10] Nurul Furqan B R and Akhmaloka 2020 Heterologous expression and characterization of thermostable lipase (Lk1) in Pichia pastoris GS115. *Biocatalysis and Agricultural Biotechnology* **23** 101448

[11] Schoenfeld T W, Murugapiran S K, Dodsworth J A, Floyd S, Lodes M, Mead D A and Hedlund B P 2013 Lateral Gene Transfer of Family A α DNA Polymerases between Thermophilic Viruses, *Aquificae*, and *Apicomplexa*. *Molecular Biology and Evolution* **30** 1653–64

[12] Wang S, Guo G, Li L, Cao L, Tong L, Ren G and Liu Y 2014 Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library. *Enzyme and Microbial Technology* **57** 26–35

[13] De Castro M-E, Rodriguez-Belmonte E and González-Siso M-I 2016 Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. *Frontiers in Microbiology* **7** 1521

[14] Ye J, Yin H, Peng H, Bai J, Xie D and Wang L 2013 Biosorption and biodegradation of triphenyltin by *Brevibacillus brevis*. *Bioresource Technology* **129** 236–41

[15] Westman E L, Yan M, Waglechner N, Koteva K and Wright G D 2013 Self Resistance to the Atypical Cationic Antimicrobial Peptide Edeine of *Brevibacillus brevis* Vm4 by the N-Acetyltransferase EdeQ. *Chemistry & Biology* **20** 983–90

[16] Yashiro K, Lowenthal J W, O’Neil T E, Ebisu S, Takagi H and Moore R J 2001 High-Level Production of Recombinant Chicken Interferon-γ by *Brevibacillus choshinensis*. *Protein Expression and Purification* **23** 113–20

[17] Yuki Y, Hara-Yakoyama C, Guadiz A A E, Udaka S, Kiyono H and Chatterjee S 2005 Production of a recombinant cholera toxin B subunit-insulin B chain peptide hybrid protein by *Brevibacillus choshinensis* expression system as a nasal vaccine against autoimmune diabetes. *Biotechnology and Bioengineering* **92** 803–9

[18] Caipang C M A, Verjan N, Ooi E L, Kondo H, Hirono I, Aoki T, Kiyono H and Yuki Y 2008 Enhanced survival of shrimp, *Panaeus* (Marsupenaeus) japonicus from white spot syndrome disease after oral administration of recombinant VP28 expressed in *Brevibacillus brevis*. *Fish & Shellfish Immunology* **25** 315–20

[19] Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, Ishibashi M, Miyauchi A, Tsumoto K and Arakawa T 2013 Secretory production of single-chain antibody (scFv) in *Brevibacillus choshinensis* using novel fusion partner. *Applied Microbiology and Biotechnology* **97** 8569–80

[20] Manachini P L, Fortina M G, Parini C, Craveri R and Agraria M 1985 nov. nom. rev. 493–6

[21] Zilda D Z, Harmayani E, Widada J, Asmara W, Irianto H E, Patantis G and Fawzya Y N 2014 Purification and characterization of newly thermostable protease produced by *Brevibacillus thermoruber* L-II isolated from Padang Cermin Hotspring, Indonesia. *Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology* **9** 1

[22] Wang S, Lin X, Huang X, Zheng L and Zilda D S 2012 Screening and characterization of the alkaline protease isolated from PLI-1, a strain of *Brevibacillus* sp. collected from Indonesia’s
hot springs Journal of Ocean University of China 11 213–8
[23] Yasar Yildiz S, Kambourova M, Arga K Y and Toksoy Oner E 2013 Draft Genome Sequence of Exopolysaccharide-Producing Thermophilic Bacterium Brevibacillus thermoruber Strain WH0801 Journal of Applied Microbiology 125 77–9
[24] Radchenkova N, Tomova A and Kambourova M 2011 Biosynthesis of an exopolysaccharide produced by Brevibacillus thermoruber 438 Biotechnology and Biotechnological Equipment 25 77–9
[25] Shida O and Komagata K 1996 Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov International Journal of Systematic and evolutionary Microbiology 45 593–46
[26] Freile-Pelegrin Y and Robledo D 1997 Influence of alkali treatment on agar from Gracilaria cornea from Yucatán, México Journal of Applied Phycology 9 533
[27] Laubach C A 1916 Studies on Aerobic Spore-Bearing Non-Pathogenic Bacteria Part II Spore-Bearing Bacteria in Dust Journal of Bacteriology 1 493–533
[28] Liang Y, Ma X, Zhang L, Li F, Liu Z and Mao X 2017 Biochemical Characterization and Substrate Degradation Mode of a Novel Exotype β-Agarase from Agarivorans gilvus WH0801 Journal of Agricultural and Food Chemistry 65 7982–8
[29] Suzuki Y, Tsujimoto Y, Matsui H and Watanabe K 2006 Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria Journal of Bioscience and Bioengineering 102 73–81
[30] Bradbury J H 1973 The Structure and Chemistry of Keratin Fibers vol 27, ed C B Anfinsen, J T Edsall and F M B T-A in P C Richards (Academic Press) pp 111–211
[31] Cohlberg J A 1993 Textbook error: the structure of α-keratin Trends in Biochemical Sciences 18 360–2
[32] Kreplak L, Doucet J, Dumas P and Briki F 2004 New Aspects of the α-Helix to β-Sheet Transition in Stretched Hard α-Keratin Fibers Biophysical Journal 87 640–7
[33] Bockle B and Muller R 1997 Reduction of Disulfide Bonds by Streptomyces pactum during Growth on Chicken Feathers. Applied and Environmental Microbiology 63 790 LP – 792
[34] Brandelli A 2005 Hydrolysis of native proteins by a keratinolytic protease of Chryseobacterium sp Annals of microbiology 54 4–7
[35] Jang E-Y, Son Y-J, Park S-Y, Yoo J-Y, Cho Y-N, Jeong S-Y, Liu S and Son H-J 2018 Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomonas maltophilia R13: reaction optimization, structural characterization, and biomedical activity Bioprocess and Biosystems Engineering 41 381–93
[36] Sanghvi G, Patel H, Vaishnav D, Oza T, Dave G, Kunjadia P and Sheth N 2016 A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation International Journal of Biological Macromolecules 87 256–62
[37] Pandey S C, Pande V, Sati D, Gangola S, Kumar S, Pandey A and Samant M 2019 Chapter 13 - Microbial keratinase: a tool for bioremediation of feather waste ed P B T-S B T Bhatt (Academic Press) pp 217–53
[38] Bihari Z, Vidéki D, Mihálik E, Szvetnik A, Szabó Z, Balázs M, Kesseriu P and Kiss I 2010 Degradation of native feathers by a novel keratinase-producing, thermophilic isolate, Brevibacillus thermoruber T1E Zeitschrift für Naturforschung - Section C Journal of Biosciences 65 134–40
[39] Shimura K, Kikuchi A, Ohtomo K, Katagata Y and Hyodo A 1976 Studies on Silk Fibroin of Bombyx mori. I. Fractionation of Fibroin Prepared from the Posterior Silk Gland The Journal of Biochemistry 80 693–702
[40] Tanaka K, Inoue S and Mizuno S 1999 Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori Insect Biochemistry and Molecular Biology 29 269–76
[41] Lefèvre T, Rousseau M E and Pézolet M 2007 Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy Biophysical Journal 92 2885–95
[42] Qi Y, Wang H, Wei K, Yang Y, Zheng R-Y, Kim I S and Zhang K-Q 2017 A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures International Journal of Molecular Sciences 18

[43] Nojima H, Kimura I, Chen F, Sugihara Y, Haruno M, Kato A and Asano N 1998 Antihyperglycemic Effects of N-Containing Sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in Streptozotocin-Diabetic Mice Journal of Natural Products 61 397–400

[44] Igarashi K, Yoshioka K, Mizutani K, Miyakoshi M, Murakami T and Akizawa T 2006 Blood Pressure-Depressing Activity of a Peptide Derived from Silkworm Fibroin in Spontaneously Hypertensive Rats Bioscience, Biotechnology, and Biochemistry 70 517–20

[45] Yamada H, Igarashi Y, Takasu Y, Saito H and Tsubouchi K 2004 Identification of fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts Biomaterials 25 467–72

[46] Zhou F, Xue Z and Wang J 2010 Antihypertensive Effects of Silk Fibroin Hydrolysatse by Alcalase and Purification of an ACE Inhibitory Dipeptide Journal of Agricultural and Food Chemistry 58 6735–40

[47] Zhao Z, Li Y and Xie M Bin 2015 Silk fibroin-based nanoparticles for drug delivery International Journal of Molecular Sciences 16 4880–903

[48] Suzuki Y, Matsui H, Tsumoto Y and Watanabe K 2009 Enzymatic degradation of fibroin fiber by a fibroinolytic enzyme of Brevibacillus thermoruber YAS-1 Journal of Bioscience and Bioengineering 108 211–5

[49] Lucas F, Shaw J T and Smith S G 1957 The amino acid sequence in a fraction of the fibroin of Bombyx mori The Biochemical journal 66 468–79

[50] Neuwald A F, Aravind L, Spouge J L and Koonin E V. 1999 AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes Genome Research 9 27–43

[51] Botos I, Melnikov E E, Cherry S, Khalatova A G, Rasulova F S, Tropea J E, Maurizi M R, Rotanova T V, Guchchina A and Wlodawer A 2004 Crystal structure of the AAA+ α domain of E. coli Lon protease at 1.9Å resolution Journal of Structural Biology 146 113–22

[52] Goldberg A L, Moerschell R P, Hachung C and Maurizi M R B T-M in E 1994 [25] ATP-dependent protease La (Lon) from Escherichia coli Proteolytic Enyzmes: Serine and Cysteine Peptidases vol 244 (Academic Press) pp 350–75

[53] Rudnyk S G, Brenowitz M and Shrader T E 2001 Mg2+-Linked Oligomerization Modulates the Catalytic Activity of the Lon (La) Protease from Mycobacterium smegmatis Biochemistry 40 9317–23

[54] Stahlberg H, Kutejová E, Suda K, Wolpensinger B, Lustig A, Schatz G, Engel A and Suzuki C K 1999 Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits Proceedings of the National Academy of Sciences of the United States of America 96 6787–90

[55] Van Melderen L and Aertsen A 2009 Regulation and quality control by Lon-dependent proteolysis Research in Microbiology 160 645–51

[56] Gottesman S 1996 Protease and their target in Escherichia coli Annual Review of Genetics 30 465–506

[57] Venkatesh S, Lee J, Singh K, Lee I and Suzuki C K 2012 Multitasking in the mitochondrion by the ATP-dependent Lon protease Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823 56–66

[58] Quiróz P M, Español Y, Acín-Pérez R, Rodríguez F, Bárccena C, Watanabe K, Calvo E, Loureiro M, Fernández-García M S, Fuego A, Vázquez J, Enríquez J A and López-Otin C 2014 ATP-Dependent Lon Protease Controls Tumor Bioenergetics by Reprogramming Mitochondrial Activity Cell Reports 8 542–56

[59] Lee Tsay San-San A Y-L, Chen M-Y and Wu S-H 2004 Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme European Journal of Biochemistry 271 834–44
[60] Vieille C and Zeikus G J 2001 Hyperthermophilic Enzymes *Microbiology and Molecular Biology Reviews* **65** 1–43

[61] Ruas-Madiedo P, Hugenholtz J and Zoon P 2002 An overview of the functionality of exopolysaccharides produced by lactic acid bacteria *International Dairy Journal* **12** 163–71

[62] Demirjian D C, Moris-Varas F and Cassidy C S 2001 Enzymes from extremophiles *Current Opinion in Chemical Biology* **5** 144–51

[63] Yildiz S Y, Kambourova M, Arga K Y and Oner E T 2013 Draft genome sequence of exopolysaccharide-producing thermophilic bacterium Brevibacillus thermoruber strain 423 *Genome Announcements* **1** 4–5

[64] Yildiz S Y, Radchenkova N, Arga K Y, Kambourova M and Toksoy Oner E 2015 Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential *Applied Microbiology and Biotechnology* **99** 2277–89