On The Two and Three Dimensional Ideal Magnetic Bénard Problem - Local Existence and Blow-up Criterion

Utpal Manna and Akash A. Panda

Abstract. In this paper, we consider the ideal magnetic Bénard problem in both two and three dimensions and prove local-in-time existence and uniqueness of strong solutions in H^s for $s > \frac{n}{2} + 1, n = 2, 3$. In addition, a necessary condition is derived for singularity development with respect to the BMO-norm of the vorticity and electrical current, generalising the Beale-Kato-Majda condition for ideal hydrodynamics.

Mathematics Subject Classification (2010). Primary 76D05; Secondary 76D03.

Keywords. Magnetic Bénard problem, Commutator estimates, Blow-up criterion, Logarithmic Sobolev inequality.

1. Introduction

The magnetic Bénard problem with full viscosity is given by:

\[
\frac{\partial u}{\partial t} + (u \cdot \nabla) u - \nu \Delta u + \nabla p_* = (b \cdot \nabla) b + \theta e_n, \quad \text{in } \mathbb{R}^n \times (0, \infty),
\]

\[
\frac{\partial \theta}{\partial t} + (u \cdot \nabla) \theta - \kappa \Delta \theta = u \cdot e_n, \quad \text{in } \mathbb{R}^n \times (0, \infty),
\]

\[
\frac{\partial b}{\partial t} + (u \cdot \nabla) b - \mu \Delta b = (b \cdot \nabla) u, \quad \text{in } \mathbb{R}^n \times (0, \infty),
\]

\[
\nabla \cdot u = 0 = \nabla \cdot b, \quad \text{in } \mathbb{R}^n \times (0, \infty),
\]

with initial conditions

\[
u(x, 0) = u_0(x), \theta(x, 0) = \theta_0(x), b(x, 0) = b_0(x) \quad \text{in } \mathbb{R}^n,
\]

where $n = 2, 3$. Here $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}^n$ is the velocity field, $\theta : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is the temperature, $b : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}^n$ is the magnetic field, p_* is the total pressure field where $p_* = p + \frac{1}{2} |b|^2$, $p : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is the pressure. e_n denotes the unit vector along the nth direction. The
term θe_n represents buoyancy force on fluid motion and $u \cdot e_n$ signifies the Rayleigh-Bénard convection in a heated inviscid fluid. $\nu \geq 0$, $\mu \geq 0$ and $\kappa \geq 0$ denote the coefficients of kinematic viscosity, magnetic diffusion and thermal diffusion respectively.

The global-in-time regularity in two-dimensions of the above problem when ν, μ and $\kappa > 0$ is known for a long time [14]. Due to the parabolic couplings, it is indeed possible to rewrite the above system in the abstract framework of the Navier-Stokes equations and then use the standard solvability techniques (e.g. see Temam [30]). In three-dimensions, one can almost expect local-in-time solvability result with arbitrary initial data and global-in-time result for sufficiently small initial data, much like the Navier-Stokes equations. In [9], the authors obtained the global well-posedness of two-dimensional magnetic Bénard problem without thermal diffusivity and with vertical or horizontal magnetic diffusion. Moreover, the authors prove global regularity and some conditional regularity of strong solutions with mixed partial viscosity. This work provides an extension of an earlier result [33] on the global regularity with full dissipation and magnetic diffusion. It is worthwhile to note that there are very few literatures available where the case $\nu = \kappa = \mu = 0$ has been discussed in two and three dimensions for the magnetic Bénard problem.

However, for the ideal magneto hydrodynamic (MHD) equations, i.e. when $\theta \equiv 0$ and $\nu = \mu = 0$, in (1.1)-(1.3), the local-in-time existence of strong solutions have been proved by Schmidt [28] and Secchi [29], when the initial data is in H^m for integer $m > 1 + n/2$. Schmidt [28] obtained the well-posedness and regularity of maximal solutions and continuous dependence on forcing terms and initial data (using a regularisation procedure). Caflisch, Klapper and Steele [7] derived a criteria for energy conservation and helicity conservation for weak solutions of ideal MHD equations. The authors in [7] extended the Beale-Kato-Majda [3] criterion to the three-dimensional ideal MHD equations by showing that for sufficiently regular initial data the following condition

$$\int_0^T (\| \nabla \times u(\tau) \|_{L^\infty} + \| \nabla \times b(\tau) \|_{L^\infty}) \, d\tau < \infty,$$

ensures that the solution can be continued beyond time T, where $\nabla \times u$ is the fluid vorticity, $\nabla \times b$ is the electrical current.

On the other hand, for the ideal Boussinesq system, i.e. when $b \equiv 0, \nu = \kappa = 0$, and the Rayleigh-Bénard convection term $u \cdot e_n$ is absent in (1.1)-(1.3), only local-in-time existence results are available even in two-dimensions. It was proved in [8] that if the initial data $(u_0, \theta_0) \in H^3(\mathbb{R}^2) \times H^3(\mathbb{R}^2)$, then local-in-time classical solutions exist and is unique. Moreover, Beale-Kato-Majda type criterion for blow-up of smooth solutions is established in [8]. More precisely, they proved that the smooth solution exists on $[0, T]$ if and only if $\nabla \theta \in L^1(0, T; L^\infty(\mathbb{R}^2))$. For the three-dimensional Boussinesq system, a very few results on local-in-time existence and blow-up criterion are available (e.g. see [15, 16, 26, 31]). However, in the very particular case of the
axisymmetric initial data, global-in-time well-posedness has been proven in three-dimensions by Abidi et al. \cite{1}. In a very recent work \cite{23}, authors proved local-in-time existence and uniqueness of strong solutions in H^s for real $s > n/2 + 1$ for the ideal Boussinesq equations in $\mathbb{R}^n, n = 2, 3$ and established Beale-Kato-Majda type blow-up criterion with respect to the BMO-norm of the vorticity.

In this work, we consider the ideal magnetic Bénard problem (i.e. when $\nu = \kappa = \mu = 0$) in both two and three dimensions and prove local-in-time existence and uniqueness of strong solutions when the initial data $(u_0, \theta_0, b_0) \in H^s_\nu(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \times H^s_\sigma(\mathbb{R}^n)$, where $s > n/2 + 1$. We prove when $s > n/2 + 1$, BMO-norms of the vorticity, electrical current and that of the gradient of the temperature (i.e. $\nabla \times u, \nabla \times b, \nabla \theta \in L^1(0, T; BMO)$) control the breakdown of smooth solutions of the above systems. However, we later show that under suitable additional assumption on θ_0, one can completely relax the condition on gradient of the temperature and the conditions $\nabla \times u, \nabla \times b \in L^1(0, T; BMO)$ are sufficient to ensure that the smooth solution persists. To the best of authors’ knowledge, this work is new in the literature and may be seen as an extension of the blow-up criterion for ideal MHD equations due to Caflisch et. al. \cite{7} and that of ideal Boussinesq equations due to Manna et. al. \cite{23}.

We note that, in view of the recent work of Bourgain and Li \cite{4} on the ill-posedness of the two and three dimensional Euler equations in $H^{n/2+1}, n = 2, 3$, it seems likely that the ideal magnetic Bénard problem is also ill-posed in $H^{n/2+1}, n = 2, 3$, although it still remains an open problem.

To be precise, in this work, we consider the following ideal magnetic Bénard problem

$$
\frac{\partial u}{\partial t} + (u \cdot \nabla) u + \nabla p_\sigma = (b \cdot \nabla)b + \theta e_n, \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

(1.5)

$$
\frac{\partial \theta}{\partial t} + (u \cdot \nabla) \theta = u \cdot e_n, \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

(1.6)

$$
\frac{\partial b}{\partial t} + (u \cdot \nabla)b = (b \cdot \nabla)u, \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

(1.7)

with

$$
\nabla \cdot u = 0 = \nabla \cdot b, \quad \text{in } \mathbb{R}^n \times (0, \infty),
$$

(1.8)

$$
u(x, 0) = u_0(x), \theta(x, 0) = \theta_0(x), b(x, 0) = b_0(x) \quad \text{in } \mathbb{R}^n,
$$

(1.9)

and prove the following main results.

Main Result 1.1. Let $s \in \mathbb{R}$ be such that $s > \frac{n}{2} + 1, n = 2, 3$. Let $(u_0, \theta_0, b_0) \in H^s_\nu(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \times H^s_\sigma(\mathbb{R}^n)$. Then there exists a unique strong solution (u, θ, b) to the problem (1.5)–(1.9), with $u \in C([0, T^*]; H^s_\nu(\mathbb{R}^n))$, $\theta \in C([0, T^*]; H^s(\mathbb{R}^n))$ and $b \in C([0, T^*]; H^s_\sigma(\mathbb{R}^n))$ for some finite time $T^* = T^*(s, \|u_0\|_{H^s_\nu}, \|\theta_0\|_{H^s}, \|b_0\|_{H^s_\sigma}) > 0$.

First we state the result concerning local-in-time existence of strong solutions.
To prove this result, we consider the Fourier truncated ideal magnetic Bénard problem on the whole of \mathbb{R}^n, $n = 2, 3$, and show that the solutions (u^R, θ^R, b^R) of some smoothed version of the ideal magnetic Bénard system exist. We then establish that the H^s-norm of (u^R, θ^R, b^R) are uniformly bounded up to a terminal time \bar{T}, which is independent of R. We further show that up to the blowup time, the solution $(u^R, \theta^R, b^R) \to (u, \theta, b)$ in any H^s' for $0 < s' < s$. Finally we provide the proof of the above Main Result 1.1 in Theorem 3.10.

Next, we establish that the BMO norms of the vorticity and electrical current control the breakdown of smooth solutions. Our main result concerning the blow-up criterion is as follows:

Main Result 1.2. Let (u_0, θ_0, b_0) have same regularity as above and $s > \frac{n}{2} + 1, n = 2, 3$. If (u, θ, b) satisfy the condition

$$\int_0^{T^*} \left(\|\nabla \times u(\tau)\|_{\text{BMO}} + \|\nabla \theta(\tau)\|_{\text{BMO}} + \|\nabla \times b(\tau)\|_{\text{BMO}} \right) \, d\tau < \infty,$$

then the solution (u, θ, b) can be continuously extended to $[0, T]$ for some $T > T^*$. However, if $\theta_0 \in H^s(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$, $2 \leq p \leq \infty$, then the condition

$$\int_0^{T^*} \left(\|\nabla \times u(\tau)\|_{\text{BMO}} + \|\nabla \times b(\tau)\|_{\text{BMO}} \right) \, d\tau < \infty$$

is sufficient to ensure that the solution (u, θ, b) can be extended continuously to $[0, T]$ for some $T > T^*$.

Remark 1.3. The above result still holds if we replace BMO with the Besov space $B^0_{\infty, \infty}$ used in Kozono et. al. [19] or if we replace the condition by the one introduced in Planchon [25]. To be precise, the condition above can be weakened to

$$\int_0^{T^*} \left(\|\nabla \times u(\tau)\|_{B^0_{\infty, \infty}} + \|\nabla \times b(\tau)\|_{B^0_{\infty, \infty}} \right) \, d\tau < \infty,$$

or to

$$\lim_{\delta \to 0} \int_{T^* - \delta}^{T^*} \left(\sup_j \|\triangle_j(\nabla \times u(\tau))\|_{L^\infty} + \sup_j \|\triangle_j(\nabla \times b(\tau))\|_{L^\infty} \right) \, d\tau < \epsilon,$$

for some sufficiently small $\epsilon > 0$.

The rest of the paper is organised as follows. After defining various operators, function spaces, its properties and certain basic inequalities in Section 2, we start investigating about the ideal magnetic Bénard problem in Section 3 and prove results concerning energy estimates and convergence of the approximate solutions before proving the Main Result 1.1 in Theorem 3.10. In section 4, we provide the proof of the Main Result 1.2 in Theorem 4.1 and Theorem 4.3.
2. Preliminaries

2.1. Fractional Derivative Operator.

Let us define J^s (real $s > 0$), which denotes the Bessel potential of order s, in terms of Fourier transform as follows:

$$\mathcal{F}[J^s f](\xi) = (1 + |\xi|^2)^{s/2} \hat{f}(\xi).$$

J^s is also equivalent to the operator $(I - \Delta)^{s/2}$.

Assume $0 < s < \infty$ and $f \in L^2(\mathbb{R}^n)$. Then $f \in H^s(\mathbb{R}^n)$ if $(1 + |\xi|^2)^{s/2} \hat{f}(\xi) \in L^2(\mathbb{R}^n)$. The norm on $H^s(\mathbb{R}^n)$ is given by

$$\|f\|_{H^s} = \left(\int_{\mathbb{R}^n} \left(1 + |\xi|^2 \right)^{s/2} |\hat{f}(\xi)|^2 \right)^{1/2} = \left\| (1 + |\xi|^2)^{s/2} \hat{f}(\xi) \right\|_{L^2} = \|J^s f\|_{L^2}$$

and the inner product on $H^s(\mathbb{R}^n)$ is given by

$$(f, g)_{H^s} = \left((1 + |\xi|^2)^{s/2} \hat{f}(\xi), (1 + |\xi|^2)^{s/2} \hat{g}(\xi) \right)_{L^2} = (\mathcal{F}[J^s f](\xi), \mathcal{F}[J^s g](\xi))_{L^2} = (J^s f, J^s g)_{L^2}.$$

Remark 2.1. It is trivial to observe that

$$\|\nabla f\|_{H^{s-1}} \leq \|f\|_{H^s}.$$

2.2. Fourier Truncation Operator.

Let us define the Fourier truncation operator S_R as follows:

$$S_R \hat{f}(\xi) := 1_{B_R}(\xi) \hat{f}(\xi),$$

where B_R, a ball of radius R centered at the origin and 1_{B_R} is the indicator function. Then we infer the following important properties:

1. $\|S_R f\|_{H^s(\mathbb{R}^n)} \leq C \|f\|_{H^s(\mathbb{R}^n)}$. (where C is a constant independent of R)

2. $\|S_R f - f\|_{H^s(\mathbb{R}^n)} \leq \frac{C}{R^k} \|f\|_{H^{s+k}(\mathbb{R}^n)}$.

3. $\|(S_R - S_R') f\|_{H^s} \leq C \max \left\{ \left(\frac{1}{R^k} \right)^k, \left(\frac{1}{R^k} \right)^k \right\} \|f\|_{H^{s+k}}$.

For the proofs of the properties see [13].

We define the function spaces

$$H^s_\sigma(\mathbb{R}^n) = \{ f \in H^s(\mathbb{R}^n) : \nabla \cdot f = 0 \}, \text{ and } H^s_\sigma(\mathbb{R}^n) = (H^s_\sigma(\mathbb{R}^n))^\ast.$$

Remark 2.2. If $s > n/2$, then each $f \in H^s(\mathbb{R}^n)$ is bounded and continuous and hence

$$\|f\|_{L^\infty(\mathbb{R}^n)} \leq C \|f\|_{H^s(\mathbb{R}^n)}, \text{ for } s > n/2.$$

Also, note that H^s is an algebra for $s > n/2$, i.e., if $f, g \in H^s(\mathbb{R}^n)$, then $fg \in H^s(\mathbb{R}^n)$, for $s > n/2$. Hence, we have

$$\|fg\|_{H^s} \leq C \|f\|_{H^s}\|g\|_{H^s}, \text{ for } s > n/2.$$

Lemma 2.3. Fix $s > n/2$ and let $f \in H^s_\sigma$ and $g \in H^s$. Then

$$\|(f \cdot \nabla)g\|_{H^{s-1}} \leq C \|f\|_{H^s}\|g\|_{H^s}. $$
Proof. Being in H^s, f is divergence free, and hence $(f \cdot \nabla)g = \nabla \cdot (f \otimes g)$. Rest of the proof is straightforward, since H^s is an algebra for $s > n/2$. □

Lemma 2.4. (Sobolev Inequality) For $f \in H^s(\mathbb{R}^n)$, we have

$$\|f\|_{L^q(\mathbb{R}^n)} \leq C_{n,s,q}\|f\|_{H^s(\mathbb{R}^n)}$$

provided that q lies in the following range

(i) if $s < n/2$, then $2 \leq q \leq \frac{2n}{n-2s}$.

(ii) if $s = n/2$, then $2 \leq q < \infty$.

(iii) if $s > n/2$, then $2 \leq q \leq \infty$.

For details see Kesavan [18].

Remark 2.5. We deduce the following result using Lemma 2.4. For $n = 2$, we use Hölder’s inequality with exponents $2/\epsilon$ and $2/(1-\epsilon)$, and Sobolev inequality for $0 < \epsilon < s - 1$ to obtain

$$\|fg\|_{L^2} \leq \|f\|_{L^{2/\epsilon}}\|g\|_{L^{2/(1-\epsilon)}} \leq C\|f\|_{H^{1-\epsilon}}\|g\|_{H^\epsilon} \leq C\|f\|_{H^1}\|g\|_{H^{s-1}}.$$

For $n = 3$, we use Hölder’s inequality with exponents 6 and 3, and Sobolev inequality to obtain

$$\|fg\|_{L^2} \leq \|f\|_{L^6}\|g\|_{L^3} \leq C\|f\|_{H^{3/2}}\|g\|_{H^{1/2}} \leq C\|f\|_{H^1}\|g\|_{H^{s-1}}.$$

We note that for both 2D and 3D we have the same estimate.

Lemma 2.6. (Interpolation in Sobolev spaces). Given $s > 0$, there exists a constant C depending on s, so that for all $f \in H^s(\mathbb{R}^n)$ and $0 < s' < s$,

$$\|f\|_{H^{s'}} \leq C\|f\|_{L^2}\|f\|_{H^s}^{1-s'/s}\|f\|_{H^s}^{s'/s}.$$

For details see [2] and for proof see Theorem 9.6, Remark 9.1 of [22].

Lemma 2.7. (Gagliardo-Nirenberg interpolation inequality [24]) Let $g \in L^q(\mathbb{R}^n)$ and its derivatives of order m, $D^m g \in L^r(\mathbb{R}^n)$, $1 \leq q, r \leq \infty$. For the derivatives $D^j g$, $0 \leq j < m$, the following inequality holds,

$$\|D^j g\|_{L^p} \leq C\|D^m g\|_{L^q}^{1-a}\|g\|_{L^r}^{1-a},$$

where

$$\frac{1}{p} = \frac{j}{n} + \left(\frac{1}{r} - \frac{m}{n}\right)a + \frac{1-a}{q},$$

for all a in the interval

$$\frac{jm}{m} \leq a < 1.$$

The constant C depends only on n, m, j, q, r, a.

2.3. Commutator Estimates.

Let f and g are Schwartz class functions. Then for $s \geq 0$ we define,

$$[J^s, f]g = J^s(fg) - f(J^s g),$$

and

$$[J^s, f]\nabla g = J^s((f \cdot \nabla)g) - (f \cdot \nabla)J^s g. \quad (2.2)$$

where $[J^s, f] = J^s f - f J^s$ is the commutator, in which f is regarded as a multiplication operator.

Lemma 2.8. For $s \geq 0$, and $1 < p < \infty$, we have a basic estimate

$$\| [J^s, f]g \|_{L^p} \leq C (\|\nabla f\|_{L^\infty} \|J^{s-1} g\|_{L^p} + \|J^s f\|_{L^p} \|g\|_{L^\infty}),$$

where C is a constant depending only on n, p, s.

For proof see the appendix of [17].

2.4. BMO space and Logarithmic Sobolev inequality.

Definition 2.9. The space BMO (Bounded Mean Oscillation) is the Banach space of all functions $f \in L^1_{loc}(\mathbb{R}^n)$ for which

$$\| f \|_{BMO} = \sup_Q \left(\frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx \right) < \infty,$$

where the sup ranges over all cubes $Q \subset \mathbb{R}^n$, and f_Q is the mean of f over Q.

For more details see [12].

The space BMO has two distinct advantageous properties compared to L^∞. The first being the Riesz transforms are bounded in BMO and secondly the singular integral operators of the Calderon-Zygmund type are also bounded in BMO. Hence, one can show that $\| \nabla u \|_{BMO} \leq C \| \nabla \times u \|_{BMO}$ (see [20]).

It is well known that the Sobolev space $W^{s,p}$ is embedded continuously into L^∞ for $sp > n$. However this embedding is false in the space $W^{k,r}$ when $kr = n$. Brezis-Gallouet [5] and Brezis-Wainger [6] provided the following inequality which relates the function spaces L^∞ and $W^{s,p}$ at the critical value and was used to prove the existence of global solutions to the nonlinear Schrödinger equations.

Lemma 2.10. Let $sp > n$. Then

$$\| f \|_{L^\infty} \leq C \left(1 + \log^{\frac{s-1}{r}} (1 + \| f \|_{W^{s,p}}) \right),$$

provided $\| f \|_{W^{k,r}} \leq 1$ for $kr = n$.

Similar embedding was investigated by Beale-Kato-Majda [3] for vector functions to obtain the blow-up criterion of the solutions to the Euler equations.
Lemma 2.11. Let $s > \frac{n}{p} + 1$, then we have
\[\| \nabla f \|_{L^\infty} \leq C \left(1 + \| \nabla \cdot f \|_{L^\infty} + \| \nabla \times f \|_{L^\infty} \left(1 + \log(e + \| f \|_{W^{s,p}}) \right) \right), \]
for all $f \in W^{s,p}(\mathbb{R}^n)$.

Kozono and Taniuchi improved the above logarithmic Sobolev inequality in BMO space, and applied the result to the three-dimensional Euler equations to prove that BMO-norm of the vorticity controls breakdown of smooth solutions.

Lemma 2.12. Let $1 < p < \infty$ and let $s > \frac{n}{p}$, then we have
\[\| f \|_{L^\infty} \leq C \left(1 + \| f \|_{BMO}(1 + \log^+ \| f \|_{W^{s,p}}) \right), \]
for all $f \in W^{s,p}$, where $\log^+ a = \log a$ if $a \geq 1$ and zero otherwise.

For proof see Theorem 1 of [20].

Remark 2.13. Throughout the following sections, C denotes a generic constant.

3. Energy estimates, Local Existence and Uniqueness of magnetic Bénard problem.

We consider the following truncated ideal magnetic Bénard problem on the whole of \mathbb{R}^n, for $n = 2, 3$:
\[\frac{\partial u^R}{\partial t} + S_R \left((u^R \cdot \nabla) u^R \right) + \nabla p^R = \theta^R \epsilon_n + S_R \left((b^R \cdot \nabla) b^R \right), \tag{3.1} \]
\[\frac{\partial \theta^R}{\partial t} + S_R \left((u^R \cdot \nabla) \theta^R \right) = u^R \cdot \epsilon_n, \tag{3.2} \]
\[\frac{\partial b^R}{\partial t} + S_R \left((u^R \cdot \nabla) b^R \right) = S_R \left((b^R \cdot \nabla) u^R \right), \tag{3.3} \]
\[\nabla \cdot u^R = 0 = \nabla \cdot b^R, \tag{3.4} \]
\[u^R(0) = S_R u_0, \theta^R(0) = S_R \theta_0, b^R(0) = S_R b_0. \tag{3.5} \]

As the truncations are invariant under the flow of the equation, by taking the truncated initial data we ensure that u^R, b^R lie in the space $V^p_R := \{ g \in L^2(\mathbb{R}^n) : \text{supp(\hat{g})} \subset B_R, \nabla \cdot g = 0 \}$ and θ^R lie in the space $V_R := \{ g \in L^2(\mathbb{R}^n) : \text{supp(\hat{g})} \subset B_R \}$.

The divergence free condition for u^R can be obtained easily as
\[\nabla \cdot u^R(\xi) = i \xi \cdot 1_{B_R}(\xi) \hat{u}(\xi) = \epsilon_0^R(\xi) i \xi \cdot \hat{u}(\xi) = 1_{B_R}(\xi) \nabla \cdot u^R(\xi) = 0. \]
Similarly we obtain divergence free condition for b^R.
Lemma 2.4 to get,

\[F \text{ is locally Lipschitz in } u \]

And hence \(F \) is locally Lipschitz in \(u \) and \(b \) on the space \(V^s_R \).

Proof. Let \(b^R \in H^s_\sigma(\mathbb{R}^n) \), for \(s > n/2 + 1 \). Then for proving \(F(\cdot, \cdot) \) to be locally Lipschitz in \(u \), we use integration by parts, Hölder’s inequality and Lemma 2.4 to get,

\[
|F(u^R_1, b^R) - F(u^R_2, b^R), u^R_1 - u^R_2)|_{L^2} \\
= |(S_R [(u^R_1 - u^R_2) \cdot \nabla b^R], u^R_1 - u^R_2)|_{L^2} \\
= |((u^R_1 - u^R_2) \cdot \nabla) b^R, S_R(u^R_1 - u^R_2))|_{L^2} \\
\leq \|u^R_1 - u^R_2\|_{L^2} \|\nabla(u^R_1 - u^R_2)\|_{L^2} \|S_R b^R\|_{L^\infty} \\
\leq \|u^R_1 - u^R_2\|_{L^2} \|u^R_1 - u^R_2\|_{H^s} \|b^R\|_{L^2} \\
\leq C\|u^R_1 - u^R_2\|_{H^s} \|b^R\|_{H^s} \|u^R_1 - u^R_2\|_{L^2}.
\]

This gives for \(b^R \in H^s_\sigma(\mathbb{R}^n) \),

\[
\|F(u^R_1, b^R) - F(u^R_2, b^R)\|_{L^2} \leq C\|b^R\|_{H^s} \|u^R_1 - u^R_2\|_{H^s}.
\]

And hence \(F(\cdot, \cdot) \) is locally Lipschitz in \(u \). To prove \(F \) to be locally Lipschitz in \(b \), we use Remark 2.3. For \(s > n/2 + 1 \) and \(u^R \in H^s_\sigma(\mathbb{R}^n) \), we have

\[
|F(u^R_1, b^R_1) - F(u^R_2, b^R_2)|_{L^2} \\
= |(S_R(u^R \cdot \nabla)(b^R_1 - b^R_2), b^R_1 - b^R_2)|_{L^2} \\
= |(u^R \cdot \nabla)(b^R_1 - b^R_2), S_R(b^R_1 - b^R_2))|_{L^2} \\
\leq \|u^R \cdot \nabla\|_{L^2} \|b^R_1 - b^R_2\|_{H^{s-1}} \|b^R_1 - b^R_2\|_{L^2} \\
\leq C\|u^R\|_{H^s} \|b^R_1 - b^R_2\|_{H^s} \|b^R_1 - b^R_2\|_{L^2}.
\]

Hence for \(u^R \in H^s_\sigma(\mathbb{R}^n) \), we have

\[
|F(u^R_1, b^R_1) - F(u^R_2, b^R_2)|_{L^2} \leq C\|u^R\|_{H^s} \|b^R_1 - b^R_2\|_{H^s}.
\]

And hence \(F(\cdot, \cdot) \) is locally Lipschitz in \(b \). \qed

Similarly one can show \(F(b^R, u^R) \) is locally Lipschitz in \(b^R \) and \(u^R \) on the space \(V^s_R \times V^s_R \) and \(F(u^R, \theta^R) \) is locally Lipschitz in \(u^R \) and \(\theta^R \) on the space \(V^s_R \times V^s_R \).

Hence by Picard’s theorem for infinite dimensional ordinary differential equations, there exist a solution \((u^R, \theta^R, b^R)\) in \(V^s_R \times V^s_R \times V^s_R \) for some interval \([0, T]\), where \(T \) depends on \(R \). Moreover, the solution will exist as long as \(\|u^R\|_{H^s} \), \(\|	heta^R\|_{H^s} \) and \(\|b^R\|_{H^s} \) remain finite.
3.1. Energy Estimates.
In this section we will obtain L^2 and H^s, $s > n/2 + 1$, energy estimates for u^R, θ^R and b^R. In the course of proving the $\|u^R\|_{H^2}$, $\|\theta^R\|_{H^s}$ and $\|b^R\|_{H^s}$ are uniformly bounded, we will pick up a blow-up time T^*.

Proposition 3.2. $(L^2$-Energy Estimate) Given $(u_0, \theta_0, b_0) \in L^2_\sigma(\mathbb{R}^n) \times L^2(\mathbb{R}^n)$ with $s > n/2 + 1$, then for any $t \in [0, T]$, where $0 < T < \infty$, we have
\[
\sup_{t \in [0, T]} \left(\|u^R(t)\|_{L^2}^2 + \|\theta^R(t)\|_{L^2}^2 + \|b^R(t)\|_{L^2}^2 \right) < C
\]
where C depends only on $\|u_0\|_{L^2_\sigma}$, $\|\theta_0\|_{L^2}$, $\|b_0\|_{L^2}$ and T.

Proof. Consider the equations (3.1)–(3.3). Taking L^2– inner product of (3.1), (3.2) and (3.3) with u^R, θ^R and b^R respectively, and adding we obtain
\[
\frac{1}{2} \frac{d}{dt} \left(\|u^R\|_{L^2}^2 + \|\theta^R\|_{L^2}^2 + \|b^R\|_{L^2}^2 \right) = (\theta^R e_n, u^R)_{L^2} + ((u^R, e_n), \theta^R)_{L^2}.
\]
(3.6)

In the above calculation, we have used the fact that $((u^R, \nabla))_{L^2}$, $((u^R, \nabla))_{\theta^R} \theta^R)_{L^2}$ and $((u^R, \nabla)) b^R, b^R)_{L^2}$ vanish and $((b^R, \nabla)) b^R, u^R)_{L^2} = -((b^R, \nabla)) u^R, b^R)_{L^2}$.

It is easy to see that,
\[
| (\theta^R e_n, u^R)_{L^2} | \leq \|\theta^R e_n\|_{L^2} \|u^R\|_{L^2} \leq \|\theta^R\|_{L^2} \|u^R\|_{L^2} \leq \frac{1}{2} \left(\|u^R\|_{L^2}^2 + \|\theta^R\|_{L^2}^2 + \|b^R\|_{L^2}^2 \right),
\]
and
\[
| ((u^R, e_n), \theta^R)_{L^2} | \leq \|u^R\|_{L^2} \|\theta^R\|_{L^2} \leq \frac{1}{2} \left(\|u^R\|_{L^2}^2 + \|\theta^R\|_{L^2}^2 + \|b^R\|_{L^2}^2 \right).
\]

Using the above estimates in (3.6) and letting $Y(t) = \|u^R(t)\|_{L^2}^2 + \|\theta^R(t)\|_{L^2}^2 + \|b^R(t)\|_{L^2}^2$, we obtain
\[
\frac{dY(t)}{dt} \leq 2Y(t).
\]

Straightforward integration and the fact that $\|u^R(0)\|_{L^2} \leq \|u_0\|_{L^2}$, $\|\theta^R(0)\|_{L^2} \leq \|\theta_0\|_{L^2}$ and $\|b^R(0)\|_{L^2} \leq \|b_0\|_{L^2}$ yield
\[
\sup_{t \in [0, T]} Y(t) \leq C(\|u_0\|_{L^2_\sigma}, \|\theta_0\|_{L^2}, \|b_0\|_{L^2}, T)
\]
So we have the desired result. □

Proposition 3.3. Let $(u_0, \theta_0, b_0) \in H^s_\sigma(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \times H^s_\sigma(\mathbb{R}^n)$ with $s > n/2 + 1$. Then there exists a time $T^* = T^*(s, \|u_0\|_{H^2}, \|\theta_0\|_{H^s}, \|b_0\|_{H^s}) > 0$ such that the following norms
\[
\sup_{t \in [0, T^*]} \|u^R(t)\|_{H^2}, \quad \sup_{t \in [0, T^*]} \|\theta^R(t)\|_{H^s}, \quad \sup_{t \in [0, T^*]} \|b^R(t)\|_{H^s}
\]
are bounded uniformly in R.

10 Utpal Manna and Akash A. Panda
Proof. Let J^s denote the fractional derivative operator as defined earlier. Now for $s > n/2 + 1$, apply J^s to all the equations (3.1) - (3.3):

\[
\frac{\partial}{\partial t} (J^s u^R) + S_R J^s \left[(u^R \cdot \nabla) u^R \right] + \nabla J^s p^R = J^s(u^R \cdot e_n) + S_R J^s \left[(b^R \cdot \nabla) b^R \right],
\]

(3.7)

\[
\frac{\partial}{\partial t} (J^s \theta^R) + S_R J^s \left[(u^R \cdot \nabla) \theta^R \right] = J^s(u^R \cdot e_n),
\]

(3.8)

\[
\frac{\partial}{\partial t} (J^s b^R) + S_R J^s \left[(u^R \cdot \nabla) b^R \right] = S_R J^s \left[(b^R \cdot \nabla) u^R \right]
\]

(3.9)

Taking L^2-inner product of (3.7), (3.8) and (3.9) with $J^s u^R$, $J^s \theta^R$ and $J^s b^R$ respectively, we obtain

\[
\left(\frac{\partial}{\partial t} (J^s u^R), J^s u^R \right)_{L^2} + \left(S_R J^s \left[(u^R \cdot \nabla) u^R \right], J^s u^R \right)_{L^2} + \left(\nabla J^s p^R, J^s u^R \right)_{L^2} = \left(J^s(u^R \cdot e_n), J^s u^R \right)_{L^2} + \left(S_R J^s \left[(b^R \cdot \nabla) b^R \right], J^s u^R \right)_{L^2},
\]

(3.10)

\[
\left(\frac{\partial}{\partial t} (J^s \theta^R), J^s \theta^R \right)_{L^2} + \left(S_R J^s \left[(u^R \cdot \nabla) \theta^R \right], J^s \theta^R \right)_{L^2} = \left(J^s(u^R \cdot e_n), J^s \theta^R \right)_{L^2},
\]

(3.11)

\[
\left(\frac{\partial}{\partial t} (J^s b^R), J^s b^R \right)_{L^2} + \left(S_R J^s \left[(u^R \cdot \nabla) b^R \right], J^s b^R \right)_{L^2} = \left(S_R J^s \left[(b^R \cdot \nabla) u^R \right], J^s b^R \right)_{L^2}.
\]

(3.12)

We estimate each term of (3.10), (3.11) and (3.12) separately,

1. \(\left(\frac{\partial}{\partial t} (J^s u^R), J^s u^R \right)_{L^2} \)

\[
= \int_{B_R} \frac{\partial}{\partial t} J^s u^R \cdot J^s u^R \, dx = \frac{1}{2} \int_{B_R} \left(\frac{\partial}{\partial t} J^s u^R \right)^2 \, dx = \frac{1}{2} \frac{d}{dt} \| J^s u^R \|^2_{L^2} = \frac{1}{2} \frac{d}{dt} \| u^R \|^2_{H^s}.
\]

2. Applying weak Parseval’s identity and using the fact that $S_R u^R = u^R$, since $u^R \in V^R$ we get,

\[
\left(S_R J^s \left[(u^R \cdot \nabla) u^R \right], J^s u^R \right)_{L^2} = \left(J^s \left[(u^R \cdot \nabla) u^R \right], J^s u^R \right)_{L^2}.
\]

Using definition of commutator and incompressibility of u^R, we obtain

\[
\left[J^s, u^R \right] \nabla u^R, J^s u^R \right)_{L^2} = \left(J^s \left[(u^R \cdot \nabla) u^R \right] - (u^R \cdot \nabla) J^s u^R, J^s u^R \right)_{L^2} = \left(J^s \left[(u^R \cdot \nabla) u^R \right], J^s u^R \right)_{L^2}.
\]

Now using Lemma 2.8 and Hölder’s inequality we obtain,

\[
\left(\left[J^s, u^R \right] \nabla u^R, J^s u^R \right)_{L^2} \leq \| J^s, u^R \|_{L^2} \| \nabla u^R \|_{L^2} \| J^s u^R \|_{L^2}
\]
\begin{align*}
&\leq C \left(\| \nabla u^R \|_{L^\infty} \| J^{s-1} \nabla u^R \|_{L^2_{\sigma}} + \| J^s u^R \|_{L^2_{\sigma}} \| \nabla u^R \|_{L^\infty} \right) \| u^R \|_{H^s_{\sigma}} \\
&\leq C \left(\| \nabla u^R \|_{H^s_{\sigma}} \| \nabla u^R \|_{H^s_{\sigma}}^{-1} + \| u^R \|_{H^s_{\sigma}} \| \nabla u^R \|_{H^s_{\sigma}}^{-1} \right) \| u^R \|_{H^s_{\sigma}} \\
&\leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| u^R \|_{H^s_{\sigma}}^2 \right) \| u^R \|_{H^s_{\sigma}} \\
&\leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| \theta R \|_{H^s_{\sigma}}^2 + \| b^R \|_{H^s_{\sigma}}^2 \right) \| u^R \|_{H^s_{\sigma}}.
\end{align*}

3. Using integration by parts and then divergence free condition on \(u^R \) yields
\[
(\nabla J^s p^R, J^s u^R)_{L^2} = (J^s p^R, J^s \nabla \cdot u^R)_{L^2} = 0.
\]
4. Using Hölder’s inequality and then Young’s inequality to the term
\[
|J^s(\theta R e_n), J^s u^R)_{L^2}| \leq \|J^s(\theta R e_n)\|_{L^2} \|J^s u^R\|_{L^2_{\sigma}} \leq \|\theta R e_n\|_{H^s_{\sigma}} \|u^R\|_{H^s_{\sigma}} \leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| \theta R \|_{H^s_{\sigma}}^2 + \| b^R \|_{H^s_{\sigma}}^2 \right).
\]
5. Using property of the bilinear operator, we have
\[
(S_R J^s [b^R \cdot \nabla] u^R, J^s u^R)_{L^2} = (J^s [(b^R \cdot \nabla) b^R], J^s S_R u^R)_{L^2} = (J^s [(b^R \cdot \nabla) b^R], J^s u^R)_{L^2} = -(J^s [(b^R \cdot \nabla) u^R], J^s b^R)_{L^2}.
\]
6. Calculation similar to (1) gives
\[
\left(\frac{\partial (J^s R)}{\partial t}, J^s \theta R \right)_{L^2} = \frac{1}{2} d^2 dt \| \theta R \|_{H^s_{\sigma}}^2.
\]
7. Following similar calculation as in (2) and using Lemma 2.8 to the term
\((S_R J^s [(u^R \cdot \nabla) \theta R], J^s \theta R)_{L^2}\) we get,
\[
|J^s(u^R \cdot \nabla) R, J^s \theta R)_{L^2}| \leq \|J^s(u^R \cdot \nabla) R\|_{L^2} \|J^s \theta R\|_{L^2_{\sigma}} \leq C \left(\| \nabla u^R \|_{L^\infty} \| J^{s-1} \nabla \theta R \|_{L^2} + \| J^s u^R \|_{L^2_{\sigma}} \| \nabla \theta R \|_{L^\infty} \right) \| \theta R \|_{H^s_{\sigma}} \leq C \left(\| \nabla u^R \|_{H^s_{\sigma}} \| \nabla \theta R \|_{H^s_{\sigma}}^{-1} + \| u^R \|_{H^s_{\sigma}} \| \nabla \theta R \|_{H^s_{\sigma}}^{-1} \right) \| \theta R \|_{H^s_{\sigma}} \leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| \theta R \|_{H^s_{\sigma}}^2 + \| b^R \|_{H^s_{\sigma}}^2 \right) \| \theta R \|_{H^s_{\sigma}}.
\]
8. Application of Hölder’s inequality and Young’s inequality yield
\[
|J^s(u^R \cdot \nabla) e_n, J^s \theta R)_{L^2}| \leq \|J^s(u^R \cdot \nabla) e_n\|_{L^2} \|J^s \theta R\|_{L^2} \leq \| u^R \|_{H^s_{\sigma}} \| \theta R \|_{H^s_{\sigma}} \leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| \theta R \|_{H^s_{\sigma}}^2 + \| b^R \|_{H^s_{\sigma}}^2 \right) \| \theta R \|_{H^s_{\sigma}}.
\]
9. Similarly, \(\left(\frac{\partial (J^s R b^R)}{\partial t}, J^s b^R \right)_{L^2} = \frac{1}{2} d^2 dt \| b^R \|_{H^s_{\sigma}}^2 \).
10. Following similar steps as in (7), replacing \(R \) by \(b^R \) we obtain
\[
|S_R J^s [(u^R \cdot \nabla) b^R], J^s b^R)_{L^2}| \leq C \left(\| u^R \|_{H^s_{\sigma}}^2 + \| \theta R \|_{H^s_{\sigma}}^2 + \| b^R \|_{H^s_{\sigma}}^2 \right) \| b^R \|_{H^s_{\sigma}}.
\]
11. Weak Parseval’s identity gives,
\[
(S_R J^s [(b^R \cdot \nabla) u^R], J^s b^R)_{L^2} = (J^s [(b^R \cdot \nabla) u^R], J^s b^R)_{L^2}
\]
Now adding (3.10), (3.11) and (3.12) (using the estimates obtained through (1) to (11)) we have,
\[
\frac{1}{2} \frac{d}{dt} \left(\|u^R\|_{H^s}^2 + \|\theta^R\|_{H^s}^2 + \|b^R\|_{H^s}^2 \right) \\
\leq C \left(\|u^R\|_{H^s}^2 + \|\theta^R\|_{H^s}^2 + \|b^R\|_{H^s}^2 \right) \left(\|u^R\|_{H^s}^2 + \|\theta^R\|_{H^s}^2 + \|b^R\|_{H^s}^2 \right) \\
\leq \frac{C}{2} \left(\|u^R\|_{H^s}^2 + \|\theta^R\|_{H^s}^2 + \|b^R\|_{H^s}^2 \right)^2 + \frac{3C}{2} \left(\|u^R\|_{H^s}^2 + \|\theta^R\|_{H^s}^2 + \|b^R\|_{H^s}^2 \right).
\]
Now letting \(X(t) = \|u^R(t)\|_{H^s}^2 + \|\theta^R(t)\|_{H^s}^2 + \|b^R(t)\|_{H^s}^2\), we have,
\[
\frac{d}{dt} X(t) \leq 3CX(t) + X(t)^2 \leq \frac{3}{2}C^2 + \left(\frac{3}{2} + C \right) X(t)^2.
\]
So for all \(0 \leq t \leq T\),
\[
X(t) \leq X(0) + \frac{3}{2}C^2 + \left(\frac{3}{2} + C \right) \int_0^t X(s)^2 \, ds.
\]
Now applying Bihari’s inequality \([10]\), we have,
\[
X(t) \leq \frac{\frac{3}{2}C^2 + X(0)}{1 - \left(\frac{3}{2}C^2 + X(0) \right) \left(\frac{3}{2} + C \right) T}.
\]
Note that \(\|u^R(0)\|_{H^s} \leq \|u_0\|_{H^s}, \|\theta^R(0)\|_{H^s} \leq \|\theta_0\|_{H^s}\) and \(\|b^R(0)\|_{H^s} \leq \|b_0\|_{H^s}\). So provided we choose \(T^* < \frac{1}{(\frac{3}{2}C^2 + X(0)) (\frac{3}{2} + C)}\), \(\|u^R\|_{H^s}, \|\theta^R\|_{H^s}\) and \(\|b^R\|_{H^s}\) remain bounded on \([0, T^*]\) independent of \(R\).

3.2. Local Existence and Uniqueness.

In this subsection, we will prove existence and uniqueness of the local-in-time strong solution of the magnetic Bénard problem (1.5)-(1.8).

Proposition 3.4. The family \((u^R, \theta^R, b^R)\) of solutions of the magnetic Bénard problem (3.1)-(3.5) are Cauchy as \(R \to \infty\) in the space \(L^\infty([0, T^*]; L^2_\sigma(\mathbb{R}^n)) \times L^\infty([0, T^*]; L^2(\mathbb{R}^n))\).

Proof. Consider the equations (3.1), (3.2) and (3.3). Then taking the difference between the equations for \(R\) and \(R'\) with \(R' > R\) we get,
\[
\frac{\partial}{\partial t} \left(u^R - u^{R'} \right) + \nabla \left(p^R - p^{R'} \right) \\
= \theta^R e_n - \theta^{R'} e_n - S_R \left[(u^R \cdot \nabla) u^R \right] + S_{R'} \left[(u^{R'} \cdot \nabla) u^{R'} \right] \\
+ S_R \left[(b^R \cdot \nabla) b^R \right] - S_{R'} \left[(b^{R'} \cdot \nabla) b^{R'} \right],
\]
(3.13)
\[
\frac{\partial}{\partial t} \left(\theta^R - \theta^{R'} \right) + S_R \left[(u^R \cdot \nabla) \theta^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) \theta^{R'} \right] = u^R e_n - u^{R'} e_n,
\]
(3.14)
\[
\frac{\partial}{\partial t} \left(b^R - b^{R'} \right) + S_R \left[(u^R \cdot \nabla) b^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) b^{R'} \right]
\]
We will calculate each term on the right hand side of (3.16) separately. First taking inner product of (3.13), (3.14) and (3.15) with $u^R - u^{R'}$, $\theta^R - \theta^{R'}$ and $b^R - b^{R'}$ respectively, and then adding we get

\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \left(\|u^R - u^{R'}\|_{L^2}^2 + \|\theta^R - \theta^{R'}\|_{L^2}^2 + \|b^R - b^{R'}\|_{L^2}^2 \right) \\
= \left(\theta^R e_n - \theta^{R'} e_n, u^R - u^{R'} \right) & - \left(u^R \cdot e_n - u^{R'} \cdot e_n, \theta^R - \theta^{R'} \right) \\
&- \left(S_R \left[(u^R \cdot \nabla) u^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) u^{R'} \right], u^R - u^{R'} \right) \\
&+ \left(S_R \left[(b^R \cdot \nabla) b^R \right] - S_{R'} \left[(b^{R'} \cdot \nabla) b^{R'} \right], u^R - u^{R'} \right) \\
&- \left(S_R \left[(u^R \cdot \nabla) \theta^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) \theta^{R'} \right], \theta^R - \theta^{R'} \right) \\
&+ \left(S_R \left[(b^R \cdot \nabla) u^R \right] - S_{R'} \left[(b^{R'} \cdot \nabla) u^{R'} \right], b^R - b^{R'} \right) \\
&- \left(S_R \left[(u^R \cdot \nabla) b^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) b^{R'} \right], b^R - b^{R'} \right)
\end{align*}
\]

(3.16)

We will calculate each term on the right hand side of (3.16) separately. First observe that,

\[
\begin{align*}
\left| \left(\theta^R e_n - \theta^{R'} e_n, u^R - u^{R'} \right) \right| & \leq \|\theta^R e_n - \theta^{R'} e_n\|_{L^2} \|u^R - u^{R'}\|_{L^2} \\
& \leq \|\theta^R - \theta^{R'}\|_{L^2} \|u^R - u^{R'}\|_{L^2},
\end{align*}
\]

(3.17)

and

\[
\begin{align*}
\left| \left(u^R \cdot e_n - u^{R'} \cdot e_n, \theta^R - \theta^{R'} \right) \right| & \leq \|u^R \cdot e_n - u^{R'} \cdot e_n\|_{L^2} \|\theta^R - \theta^{R'}\|_{L^2} \\
& \leq \|u^R - u^{R'}\|_{L^2} \|\theta^R - \theta^{R'}\|_{L^2}.
\end{align*}
\]

(3.18)

We split $I_1 = \left(S_R \left[(u^R \cdot \nabla) u^R \right] - S_{R'} \left[(u^{R'} \cdot \nabla) u^{R'} \right], u^R - u^{R'} \right)$ in to three parts:

\[
\begin{align*}
I_1 = \left(\left(S_R - S_{R'} \right) \left[(u^R \cdot \nabla) u^R \right], u^R - u^{R'} \right) \\
&+ \left(S_{R'} \left[((u^R - u^{R'}) \cdot \nabla) u^R \right], u^R - u^{R'} \right) \\
&+ \left(S_{R'} \left[(u^{R'} \cdot \nabla)(u^R - u^{R'}) \right], u^R - u^{R'} \right).
\end{align*}
\]

(3.19)
For $R' > R$, using the property of Fourier truncation operator provided $0 < \epsilon < s - 1$, the first term of (3.19) becomes
\[
\left\| (S_{R'} - S_{R'}) \left[(u^R \cdot \nabla) u^R \right], u^R - u^{R'} \right\|_{L^2} \leq \left\| (S_{R'} - S_{R'}) \left[(u^R \cdot \nabla) u^R \right] \right\|_{L^2} \left\| u^R - u^{R'} \right\|_{L^2} = C \left\| \nabla \cdot (u^R \otimes u^R) \right\|_{H^s_{\omega}} \left\| u^R - u^{R'} \right\|_{L^2} \leq C \left\| u^R \right\|_{H^s_{\omega}}^2 \left\| u^R - u^{R'} \right\|_{L^2}^2.
\]
(3.21)

Now for $s > n/2 + 1$, the second term of (3.19) gives,
\[
\left\| (S_{R'} \left[((u^R - u^{R'}) \cdot \nabla) u^R \right], u^R - u^{R'} \right\|_{L^2} \leq \left\| ((u^R - u^{R'}) \cdot \nabla) u^R \right\|_{L^2} \left\| u^R - u^{R'} \right\|_{L^2} \leq \left\| u^R - u^{R'} \right\|_{L^2} \left\| \nabla u^R \right\|_{L^\infty} \left\| u^R - u^{R'} \right\|_{L^2} \leq \left\| \nabla u^R \right\|_{H^{s-1}_{\omega}} \left\| u^R - u^{R'} \right\|_{L^2}^2 \leq \left\| u^R \right\|_{H^s_{\omega}} \left\| u^R - u^{R'} \right\|_{L^2}^2.
\]
(3.22)

Using weak Parseval’s identity, integration by parts and divergence free condition on u^R and $u^{R'}$ to the third term of (3.19) we get,
\[
\left(S_{R'} \left[(u^R \cdot \nabla) (u^R - u^{R'}) \right], u^R - u^{R'} \right) = 0.
\]

Therefore we obtain, using (3.20), (3.21) in (3.19),
\[
|I_1| \leq \frac{C}{R^c} \left\| u^R \right\|_{H^s_{\omega}} \left\| u^R - u^{R'} \right\|_{L^2}^2 + \left\| u^R \right\|_{H^s_{\omega}} \left\| u^R - u^{R'} \right\|_{L^2}^2.
\]
(3.23)

Similarly we split I_3 and I_5 to obtain,
\[
|I_3| \leq \frac{C}{R^c} \left\| u^R \right\|_{H^s_{\omega}} \left\| \theta^R \right\|_{H^s_{\omega}} \left\| \theta^R - \theta^{R'} \right\|_{L^2} + \left\| u^R - u^{R'} \right\|_{L^2} \left\| \theta^R \right\|_{H^s_{\omega}} \left\| \theta^R - \theta^{R'} \right\|_{L^2}.
\]
(3.24)

We spilt I_2 and I_4 in the similar manner. However, note that one term of I_2 will cancel with one term of I_4 due to
\[
\left(S_{R'} \left[(b^{R'} \cdot \nabla) (b^R - b^{R'}) \right], u^R - u^{R'} \right) = - \left((b^{R'} \cdot \nabla) (u^R - u^{R'}), b^R - b^{R'} \right).
\]

Therefore we have,
\[
I_2 \leq \frac{C}{R^c} \left\| b^R \right\|_{H^s_{\omega}}^2 \left\| u^R - u^{R'} \right\|_{L^2} + \left\| b^R \right\|_{H^s_{\omega}} \left\| b^R - b^{R'} \right\|_{L^2} \left\| u^R - u^{R'} \right\|_{L^2}.
\]
(3.25)

and
\[
I_4 \leq \frac{C}{R^c} \left\| b^R \right\|_{H^s_{\omega}} \left\| u^R \right\|_{H^s_{\omega}} \left\| b^R - b^{R'} \right\|_{L^2} + \left\| u^R \right\|_{H^s_{\omega}} \left\| b^R - b^{R'} \right\|_{L^2}^2.
\]
(3.26)
Using the estimates obtained in (3.17), (3.18), (3.22)–(3.26) in (3.16), we have

\[
\frac{1}{2} \frac{d}{dt} \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right)
\]

\[
\leq \frac{C}{R} \|u^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma} + \|u^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma}^2
\]

\[
+ \frac{C}{R} \|u^R\|_{H^2_\sigma} \|\theta^R - \theta'^R\|_{L^2_\sigma} + \|\theta^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma} \|b^R - b'^R\|_{L^2_\sigma}
\]

\[
+ \|u^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma} \|\theta^R - \theta'^R\|_{L^2_\sigma} + \frac{C}{R} \|\theta^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma} \|b^R - b'^R\|_{L^2_\sigma}
\]

\[
+ \frac{C}{R} \|b^R\|_{H^2_\sigma} \|u^R - u'^R\|_{L^2_\sigma} \|b^R - b'^R\|_{L^2_\sigma} + \|u^R\|_{H^2_\sigma} \|b^R - b'^R\|_{L^2_\sigma}^2
\]

\[
+ \frac{C}{R^2} \|b^R - b'^R\|_{L^2_\sigma}^2
\]

\[
\leq \frac{C_1}{R^2} \|u^R - u'^R\|_{L^2_\sigma} + C_2 \|u^R - u'^R\|_{L^2_\sigma}^2 + 2 \left(\|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|u^R - u'^R\|_{L^2_\sigma}^2 \right)
\]

\[
+ \frac{C_3}{R^2} \|\theta^R - \theta'^R\|_{L^2_\sigma} + C_4 \left(\|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|u^R - u'^R\|_{L^2_\sigma}^2 \right)
\]

\[
+ \frac{C_5}{R^2} \|b^R - b'^R\|_{L^2_\sigma} + C_6 \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right)
\]

\[
+ \frac{C_7}{R^2} \|u^R - u'^R\|_{L^2_\sigma} + C_8 \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right)
\]

\[
+ C_{10} \|b^R - b'^R\|_{L^2_\sigma}^2
\]

\[
\leq \frac{M}{R^2} \left(\|u^R - u'^R\|_{L^2_\sigma} + \|\theta^R - \theta'^R\|_{L^2_\sigma} + \|b^R - b'^R\|_{L^2_\sigma} \right)
\]

\[
+ M \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right). \tag{3.27}
\]

Let \(Y(t) = \|u^R - u'^R\|_{L^2_\sigma} + \|\theta^R - \theta'^R\|_{L^2_\sigma} + \|b^R - b'^R\|_{L^2_\sigma}^2\), then

\[
\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2
\]

\[
\leq Y(t)^2 \leq 3 \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right).
\]

So

\[
\frac{d}{dt} (Y(t)^2) \leq 3 \frac{d}{dt} \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right)
\]

\[
2Y \frac{dY}{dt} \leq 3 \frac{d}{dt} \left(\|u^R - u'^R\|_{L^2_\sigma}^2 + \|\theta^R - \theta'^R\|_{L^2_\sigma}^2 + \|b^R - b'^R\|_{L^2_\sigma}^2 \right)
\]
Then from (3.27) we obtain,
\[\frac{dY}{dt} \leq MY + \frac{M}{R^c}. \]

Finally applying Gronwall’s lemma, we observe
\[\sup_{t \in [0,T^*]} Y(t) \leq \frac{C(M, T^*)}{R^c} \to 0, \quad \text{(3.28)} \]
as \(R \to \infty \) (as \(R' > R, R' \to \infty \) as well), concluding that \((u^R, \theta^R, b^R) \) are Cauchy in \(L^\infty ([0, T^*]; L^2_{\sigma}(\mathbb{R}^n)) \times L^\infty ([0, T^*]; L^2(\mathbb{R}^n)) \times L^\infty ([0, T^*]; L^2_{\sigma}(\mathbb{R}^n)) \) as \(R \to \infty \).

Proposition 3.5. For any \(s' > n/2 + 1 \) with \(s' < s \), \((u^R, \theta^R, b^R) \to (u, \theta, b) \) in \(L^\infty ([0, T^*]; H^s_{\sigma}(\mathbb{R}^n)) \times L^\infty ([0, T^*]; H^{s'}(\mathbb{R}^n)) \times L^\infty ([0, T^*]; H^{s'}_{\sigma}(\mathbb{R}^n)) \).

Proof. From Proposition 3.4 we conclude that \((u^R, \theta^R, b^R) \to (u, \theta, b) \) strongly in
\[L^\infty ([0, T^*]; L^2_{\sigma}(\mathbb{R}^n)) \times L^\infty ([0, T^*]; L^2(\mathbb{R}^n)) \times L^\infty ([0, T^*]; L^2_{\sigma}(\mathbb{R}^n)) \).

Using Lemma 2.6 for \(s' < s \) and \(s' > n/2 + 1 \),
\[\sup_{t \in [0,T^*]} \| b^R - b \|_{H^s_{\sigma}} \leq C \sup_{t \in [0,T^*]} \left(\| b^R - b \|_{L^2_{\sigma}}^{1-s'/s} \| b^R - b \|_{H^s_{\sigma}}^{s'/s} \right) \]
\[\leq C \left(\sup_{t \in [0,T^*]} \| b^R - b \|_{L^2_{\sigma}} \right)^{1-s'/s} \left(\sup_{t \in [0,T^*]} \| b^R - b \|_{H^s_{\sigma}} \right)^{s'/s}. \]

From Proposition 3.3 and Proposition 3.4 we obtain
\[\sup_{t \in [0,T^*]} \| b^R - b \|_{H^s_{\sigma}} \leq M \left(\sup_{t \in [0,T^*]} \| b^R - b \|_{L^2_{\sigma}} \right)^{1-s'/s} \to 0 \quad \text{as} \quad R \to \infty. \]

So we get,
\[b^R \to b \quad \text{in} \quad L^\infty ([0, T^*]; H^s_{\sigma}(\mathbb{R}^n)), \quad \text{(3.29)} \]

Similarly we can show
\[\theta^R \to \theta \quad \text{in} \quad L^\infty ([0, T^*]; H^{s'}(\mathbb{R}^n)), \quad u^R \to u \quad \text{in} \quad L^\infty ([0, T^*]; H^{s'}_{\sigma}(\mathbb{R}^n)). \]

Proposition 3.6. For any \(s' > n/2 + 1 \), as \(R \to \infty \) the non-linear terms
\[S_R [(u^R \cdot \nabla)u^R] \to (u \cdot \nabla)u, \quad S_R [(b^R \cdot \nabla)b^R] \to (b \cdot \nabla)b, \quad S_R [(u^R \cdot \nabla)b^R] \to (u \cdot \nabla)b, \quad \text{strongly in} \quad L^\infty ([0, T^*]; H^{s'-1}_{\sigma}(\mathbb{R}^n)), \]
and \(S_R [(u^R \cdot \nabla)\theta^R] \to (u \cdot \nabla)\theta, \quad \text{strongly in} \quad L^\infty ([0, T^*]; H^{s'-1}_{\sigma}(\mathbb{R}^n)). \)
Proof. We prove the result for one of the non-linear terms, namely $S_R [(b^R \cdot \nabla) b^R]$, when $s' > n/2 + 1$. One can follow the similar steps to show the convergence of the other non-linear terms in the respective spaces as claimed.

Using the properties of Fourier truncation operator and Remark 2.2 we have,

$$
\sup_{t \in [0,T^*]} \| S_R [(b^R \cdot \nabla) b^R] - (b \cdot \nabla) b \|_{H^{s'-1}}
$$

$$
\leq \sup_{t \in [0,T^*]} \left(\| S_R [(b^R - b) \cdot \nabla) b^R] \|_{H^{s'-1}} + \| S_R [(b \cdot \nabla)(b^R - b)] \|_{H^{s'-1}} \right)
$$

$$
\leq \sup_{t \in [0,T^*]} \left(C \| (b^R - b) \|_{H^{s'}} \| b^R \|_{H^{s'}} + C \| b \|_{H^{s'}} \| b^R - b \|_{H^{s'}} \right)
$$

Clearly from (3.29), Proposition 3.3 and Proposition 3.4 the right hand side tends to 0 as $R \to \infty$. □

Next we will show the convergence of time derivatives.

Proposition 3.7. For any $s' > n/2 + 1$, $\frac{\partial u^R}{\partial t} \to \frac{\partial u}{\partial t}$ and $\frac{\partial b^R}{\partial t} \to \frac{\partial b}{\partial t}$ strongly in the space $L^\infty \left([0,T^*]; H^{s'-1}_\sigma (\mathbb{R}^n)\right)$ and $\frac{\partial \theta^R}{\partial t}$ converges strongly to $\frac{\partial \theta}{\partial t}$ in $L^\infty \left([0,T^*]; H^{s'-1}_\sigma (\mathbb{R}^n)\right)$ as $R \to \infty$.

Proof. Taking $H^{s'-1}$-norm on both sides of (3.1)-(3.3) and using properties of Fourier truncation operator, Remark 2.2 and Remark 2.3 we get for $s' > n/2 + 1$,

$$
\left\| \frac{\partial u^R}{\partial t} \right\|_{H^{s'-1}_\sigma} \leq \| \theta^R e_n \|_{H^{s'-1}} + \| S_R [(b^R \cdot \nabla) b^R] \|_{H^{s'-1}}
$$

$$
+ \| S_R [(u^R \cdot \nabla) u^R] \|_{H^{s'-1}}
$$

$$
\leq C \left(\| \theta^R \|_{H^{s'}} + \| b^R \|_{H^{s'}}^2 + \| u^R \|_{H^{s'}}^2 \right)
$$

and

$$
\left\| \frac{\partial \theta^R}{\partial t} \right\|_{H^{s'-1}_\sigma} \leq \| u^R \cdot e_n \|_{H^{s'-1}} + \| S_R [(u^R \cdot \nabla) \theta^R] \|_{H^{s'-1}}
$$

$$
\leq C \left(\| u^R \|_{H^{s'}} + \| u^R \|_{H^{s'}} \| \theta^R \|_{H^{s'}} \right)
$$

and

$$
\left\| \frac{\partial b^R}{\partial t} \right\|_{H^{s'-1}_\sigma} \leq \| S_R [(b^R \cdot \nabla) u^R] \|_{H^{s'-1}} + \| S_R [(u^R \cdot \nabla) b^R] \|_{H^{s'-1}}
$$

$$
\leq C \| b^R \|_{H^{s'}} \| u^R \|_{H^{s'}}
$$
After adding

\[
\left\| \frac{\partial u^R}{\partial t} \right\|_{H^{s'}_\sigma} + \left\| \frac{\partial \theta^R}{\partial t} \right\|_{H^{s'}_\sigma} + \left\| \frac{\partial b^R}{\partial t} \right\|_{H^{s'}_\sigma} \
\leq C(\|u^R\|_{H^s_\sigma} + \|\theta^R\|_{H^s_\sigma} + \|u^R\|_{H^s_\sigma}^2 + \|b^R\|_{H^s_\sigma} + \|u^R\|_{H^s_\sigma} \|\theta^R\|_{H^s_\sigma} + \|b^R\|_{H^s_\sigma} \|u^R\|_{H^s_\sigma})
\]

(3.30)

Now taking supremum in both side over \(t \in [0, T^*] \), then using Proposition 3.3 and dropping the first two terms of left hand side we obtain

\[
\sup_{t \in [0, T^*]} \left\| \frac{\partial b^R}{\partial t} \right\|_{H^{s'}_\sigma} \leq C(T^*) < \infty
\]

Using Banach-Alaoglu Theorem (see Robinson [27], Yosida [32]) we can extract a subsequence \(R_m \to +\infty \) such that

\[
\frac{\partial b^{R_m}}{\partial t} \xrightarrow{\ast} \frac{\partial b}{\partial t} \quad \text{in} \quad L^\infty \left([0, T^*]; H^{s'-1}_\sigma (\mathbb{R}^n) \right).
\]

(3.31)

Similar argument works for \(\frac{\partial u^R}{\partial t} \) and \(\frac{\partial \theta^R}{\partial t} \) as well.

Note that \(\|u^R\|_{H^s_\sigma} \|\theta^R\|_{H^s_\sigma} \to \|u\|_{H^s_\sigma} \|\theta\|_{H^s_\sigma} \) and \(\|b^R\|_{H^s_\sigma} \|u^R\|_{H^s_\sigma} \to \|b\|_{H^s_\sigma} \|u\|_{H^s_\sigma} \) holds due to the strong convergences of \((u^R, \theta^R, b^R)\) to \((u, \theta, b)\) in \(L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \times L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \times L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \). Hence all the terms on the right hand side of (3.30) converge strongly (from Proposition 3.4), we observe that the convergence of the time derivatives are strong.

Proposition 3.8. For \(s > n/2 + 1 \), \((u, \theta, b)\) lie in the space \(L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \times L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \times L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \).

Proof. By Banach-Alaoglu Theorem, the uniform bounds in Proposition 3.3 guarantee the existence of a subsequence such that

\[
\begin{align*}
\mathbf{u}^{R_m} &\xrightarrow{\ast} \mathbf{u} \quad \text{in} \quad L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \quad (3.32) \\
\theta^{R_m} &\xrightarrow{\ast} \theta \quad \text{in} \quad L^\infty \left([0, T^*]; H^s (\mathbb{R}^n) \right) \quad (3.33)
\end{align*}
\]

and

\[
\begin{align*}
\mathbf{b}^{R_m} &\xrightarrow{\ast} \mathbf{b} \quad \text{in} \quad L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right), \quad (3.34)
\end{align*}
\]

which guarantees that the limit satisfies

\[
\begin{align*}
\mathbf{u} &\in L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right), \quad \theta \in L^\infty \left([0, T^*]; H^s (\mathbb{R}^n) \right) \quad (3.35) \\
\mathbf{b} &\in L^\infty \left([0, T^*]; H^s_\sigma (\mathbb{R}^n) \right) \quad (3.36)
\end{align*}
\]
Proposition 3.9. Let \((u_0, \theta_0, b_0) \in H^s_\sigma(\mathbb{R}^n) \times H^s_\sigma(\mathbb{R}^n) \times H^s_\sigma(\mathbb{R}^n)\) for \(s > n/2 + 1\). Let the solutions \((u, \theta, b)\) of the ideal magnetic Bénard problem \((1.5) - (1.8)\) have the regularity
\[
\|u\|_{L^\infty([0,T^*]; H^s_\sigma(\mathbb{R}^n)), \|\theta\|_{L^\infty([0,T^*]; H^s_\sigma(\mathbb{R}^n)), \|b\|_{L^\infty([0,T^*]; H^s_\sigma(\mathbb{R}^n))}.}
\]
Then the solutions \((u, \theta, b)\) are unique in \([0, T^*]\).

Proof. The proof of the uniqueness is very similar to the proof of Proposition 3.4. Let \((u^R, \theta^R, b^R)\) and \((u^{R'}, \theta^{R'}, b^{R'})\) be two solutions of the truncated ideal magnetic Bénard problem \((3.1) - (3.3)\) for \(R > R'\). Then from \((3.28)\), we have,
\[
\sup_{t \in [0,T^*]} \left(\|u^R - u^{R'}\|_{L^2} + \|\theta^R - \theta^{R'}\|_{L^2} + \|b^R - b^{R'}\|_{L^2} \right) \leq \frac{C}{R^\epsilon}.
\]
Now letting \(R \to R'\) then letting \(R \to \infty\) we observe,
\[
u^R \to u^{R'}, \quad \theta^R \to \theta^{R'} \quad \text{and} \quad b^R \to b^{R'}.
\]
Thus we have the uniqueness of the limits \((u, \theta, b)\).

We finally prove that the solutions \((u, \theta, b)\) are continuous in time.

Theorem 3.10. Let \(s > \frac{n}{2} + 1\), \(u_0 \in H^s_\sigma(\mathbb{R}^n), \theta_0 \in H^s(\mathbb{R}^n)\) and \(b_0 \in H^s_\sigma(\mathbb{R}^n)\). Then there exists a unique strong solution \((u, \theta, b) \in C([0,T^*]; H^s_\sigma(\mathbb{R}^n)) \times C([0,T^*]; H^s(\mathbb{R}^n)) \times C([0,T^*]; H^s_\sigma(\mathbb{R}^n))\) to the system \((1.5) - (1.8)\).

Proof. We shall prove \(u \in C([0,T^*]; H^s_\sigma(\mathbb{R}^n))\). Proofs for \(\theta\) and \(b\) will follow in the similar manner. Let us first recall that for \(s \in \mathbb{R}, 1 \leq p, q < \infty\), the inhomogeneous Besov space \(B^s_{p,q}\) is defined as the space of all tempered distributions \(f \in S'(\mathbb{R}^n)\) such that
\[
B^s_{p,q} = \left\{ f \in S'(\mathbb{R}^n) : \|f\|_{B^s_{p,q}} < \infty \right\}.
\]
where
\[
\|f\|_{B^s_{p,q}} = \left(\sum_{j \geq -1} 2^{jsq} \|\Delta_j f\|_{L^p}^q\right)^{\frac{1}{q}},
\]
where \(\Delta_j\) are the inhomogeneous Littlewood-Paley operators. We note that \(\|f\|_{B^s_{2,2}} \approx \|f\|_{H^s}\). For more details see Chapter 3 of [21].

We consider \(t_1, t_2 \in [0,T^*]\) such that \(0 < t_1 < t_2 \leq T^*\). Then,
\[
\|u(t_2) - u(t_1)\|_{H^s_\sigma} \approx \|u(t_2) - u(t_1)\|_{B^s_{2,2}} = \left\{ \sum_{j \in \mathbb{Z}} \left(2^{js} \|\Delta_j u(t_2) - \Delta_j u(t_1)\|_{L^2_\sigma}^2 \right)^{\frac{1}{2}} \right\}^{\frac{1}{2}}.
\]

Let \(\epsilon > 0\) be arbitrarily small. As \(u \in L^\infty([0,T^*]; H^s(\mathbb{R}^n))\), there exists an integer \(N > 0\) such that
\[
\left\{ \sum_{j \geq N} \left(2^{js} \|\Delta_j u(t_2) - \Delta_j u(t_1)\|_{L^2_\sigma}^2 \right)^{\frac{1}{2}} \right\} \leq \frac{\epsilon}{2}.
\]
But we have
\[
\left\{ \sum_{j \in \mathbb{Z}} \left(2^{js} \| \Delta_j u(t_2) - \Delta_j u(t_1) \|_{L^2_\sigma}^2 \right) \right\}^{1/2} = \left\{ \left(\sum_{j < N} + \sum_{j \geq N} \right) \left(2^{js} \| \Delta_j u(t_2) - \Delta_j u(t_1) \|_{L^2_\sigma}^2 \right) \right\}^{1/2}.
\]

Now for \(0 \leq t_1 < t_2 \leq T^* \) we have,
\[
\Delta_j u(t_2) - \Delta_j u(t_1) = \int_{t_1}^{t_2} \frac{\partial}{\partial \tau} \Delta_j u(\tau) \, d\tau
= \int_{t_1}^{t_2} \Delta_j \mathcal{P} [(b \cdot \nabla) b + \theta \epsilon_n - (u \cdot \nabla) u] (\tau) \, d\tau.
\]

So we get,
\[
\sum_{j < N} 2^{2js} \| \Delta_j u(t_2) - \Delta_j u(t_1) \|_{L^2_\sigma}^2
\leq \sum_{j < N} 2^{2js} \left(\int_{t_1}^{t_2} [\| \Delta_j (b \cdot \nabla b) \|_{L^2_\sigma} + \| \Delta_j \theta \|_{L^2} + \| \Delta_j (u \cdot \nabla u) \|_{L^2_\sigma}] \, d\tau \right)^2
\leq \sum_{j < N} 2^{2j} \left(\int_{t_1}^{t_2} \left(\| (b \cdot \nabla) b \|_{H^{s-1}_\sigma}^2 + \| \theta \|_{H^{s-1}}^2 + \| (u \cdot \nabla) u \|_{H^{s-1}_\sigma}^2 \right) \, d\tau \right)^2
\leq \sum_{j < N} 2^{2j} \left(\sup_{t \in [0,T^*]} \| (u \cdot \nabla) u \|_{H^{s-1}_\sigma} \right)^2 \leq \left(\sup_{t \in [0,T^*]} \| u \|_{H^{s}_\sigma} \cdot \sup_{t \in [0,T^*]} \| u \|_{H^{s}_\sigma} \right)^2 < C_1 \leq C_1 \leq C_1 < \infty.
\]

Clearly the individual terms of right hand side of (3.38) is further less than their \(L^\infty ([0,T^*]; H^{s-1}_\sigma) \) norm.

As \((u, \theta, b) \in L^\infty ([0,T^*]; H^{s}_\sigma) \times L^\infty ([0,T^*]; H^{s}_\sigma) \times L^\infty ([0,T^*]; H^{s}_\sigma)\) and from Remark 2.2 and Remark 2.3 we obtain,
Similarly, $\| (u \cdot \nabla) u \|_{L^2}^2 < C_2$ and from Proposition 3.3, $\| \theta \|_{L^\infty(0,T^*; H^{s-1}_x)} < C_3$. Choosing $M = C \cdot \max\{C_1, C_2, C_3\}$, for $|t_2 - t_1| < \frac{\epsilon}{M^{2N+1}}$, we get from (3.38)

$$\sum_{j<N} 2^{2js} \| \Delta_j u(t_2) - \Delta_j u(t_1) \|_{L^2_x}^2 \leq M \sum_{j<N} 2^{2j} |t_2 - t_1| \leq M^{2N} |t_2 - t_1| < \frac{\epsilon}{2}.$$

(3.39)

Finally combining (3.37) and (3.39), we conclude $u \in C([0,T^*]; H^s_x(\mathbb{R}^n))$. □

4. Blow-up criterion

In this section, we will establish the Blow-up criterion of the local-in-time solution obtained in the previous section. We show that the BMO norms of the vorticity and electrical current inhibit the breakdown of smooth solutions, relaxing the condition on the gradient of temperature, under suitable assumption on the regularity of the initial data.

Theorem 4.1. Let $(u_0, \theta_0, b_0) \in H^s_x(\mathbb{R}^n) \times H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n)$, $s > \frac{n}{2} + 1$, $n = 2, 3$. Let $(u, \theta, b) \in C([0,T^*]; H^s_x(\mathbb{R}^n)) \times C([0,T^*]; H^s(\mathbb{R}^n)) \times C([0,T^*]; H^s(\mathbb{R}^n))$ be a strong solution of the magnetic Bénard problem (1.5)-(1.8). If (u, θ, b) satisfies the condition

$$\int_0^{T^*} (\| \nabla \times u(\tau) \|_{BMO} + \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO}) d\tau < \infty,$$

(4.1)

then the solution (u, θ, b) can be continuously extended to $[0,T]$ for some $T > T^*$.

Proof. Applying J^s to (1.5)-(1.7) and then taking L^2-inner product with $J^s u, J^s \theta$ and $J^s b$ respectively, we obtain, for $s > \frac{n}{2} + 1$,

$$\left(\frac{\partial (J^s u)}{\partial t}, J^s u \right)_{L^2} = (J^s ([b \cdot \nabla] b), J^s u)_{L^2} - (J^s ([u \cdot \nabla] u), J^s u)_{L^2} - \nabla (\nabla^s p_s, J^s u)_{L^2} + \nabla (J^s (\theta e_n), J^s u)_{L^2},$$

(4.2)

$$\left(\frac{\partial (J^s \theta)}{\partial t}, J^s \theta \right)_{L^2} = - (J^s ([u \cdot \nabla] \theta), J^s \theta)_{L^2} + (J^s u_n, J^s \theta)_{L^2},$$

(4.3)

$$\left(\frac{\partial (J^s b)}{\partial t}, J^s b \right)_{L^2} = (J^s ([b \cdot \nabla] u), J^s b)_{L^2} - (J^s ([u \cdot \nabla] b), J^s b)_{L^2}.$$

(4.4)

Using the definition of commutator, (4.2)-(4.4) become

$$\frac{1}{2} \frac{d}{dt} \| J^s u \|_{L^2}^2 = ([J^s, b] \nabla b, J^s u)_{L^2} + ([b \cdot \nabla] J^s b, J^s u)_{L^2} - ([J^s, u] \nabla u, J^s u)_{L^2} - ([u \cdot \nabla] J^s u, J^s u)_{L^2} - (J^s p_s, J^s \nabla \cdot u)_{L^2} + (J^s (\theta e_n), J^s u)_{L^2},$$

(4.5)
\[
\frac{1}{2} \frac{d}{dt} \| J^s \theta \|_{L^2}^2 = - ([J^s, \mathbf{u}] \nabla \theta, J^s \theta)_{L^2} - (u \cdot \nabla) J^s \theta, J^s \theta)_{L^2} + (J^s u_n, J^s \theta)_{L^2},
\]

\[
\frac{1}{2} \frac{d}{dt} \| J^s \mathbf{b} \|_{L^2}^2 = ([J^s, \mathbf{b}] \nabla \mathbf{u}, J^s \mathbf{b})_{L^2} + ((b \cdot \nabla) J^s \mathbf{u}, J^s \mathbf{b})_{L^2} - ([J^s, \mathbf{u}] \nabla \mathbf{b}, J^s \mathbf{b})_{L^2} - ((u \cdot \nabla) J^s \mathbf{b}, J^s \mathbf{b})_{L^2}.
\]

Now adding (4.5), (4.6) and (4.7), then applying integration by parts, divergence free condition on \(\mathbf{u} \) and \(\mathbf{b} \) and the fact \((b \cdot \nabla) J^s \mathbf{b}, J^s \mathbf{u})_{L^2} = - ((b \cdot \nabla) J^s \mathbf{u}, J^s \mathbf{b})_{L^2} \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \left(\| \mathbf{u} \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| \mathbf{b} \|_{H^s}^2 \right) = ([J^s, \mathbf{b}] \nabla \mathbf{b}, J^s \mathbf{u})_{L^2} - ([J^s, \mathbf{u}] \nabla \mathbf{u}, J^s \mathbf{u})_{L^2} + (J^s(\theta e_n), J^s \mathbf{u})_{L^2} - ([J^s, \mathbf{u}] \nabla \theta, J^s \theta)_{L^2} + (J^s u_n, J^s \theta)_{L^2}.
\]

We will estimate each term on the right hand side of (4.8) separately. Using Lemma 2.8 Remark 2.1 Young’s inequality and finally rearranging, we obtain,

\[
|[J^s, \mathbf{b}] \nabla \mathbf{b}, J^s \mathbf{u})_{L^2}| \leq \| [J^s, \mathbf{b}] \nabla \mathbf{b} \|_{L^2} \| J^s \mathbf{u} \|_{L^2}
\leq C \left(\| \nabla \mathbf{b} \|_{L^\infty} J^{s-1} \nabla \mathbf{b} \|_{L^2} + J^s \mathbf{b} \|_{L^2} \| \nabla \mathbf{b} \|_{L^\infty} \right) \| J^s \mathbf{u} \|_{L^2}
\leq C \left(\| \nabla \mathbf{b} \|_{L^\infty} \| \nabla \mathbf{b} \|_{H^{s-1}} + \| \mathbf{b} \|_{H^s} \| \nabla \mathbf{b} \|_{L^\infty} \right) \| \mathbf{u} \|_{H^s}
\leq C \| \nabla \mathbf{b} \|_{L^\infty} \| \mathbf{u} \|_{H^s} + \| \mathbf{b} \|_{H^s} \| \mathbf{u} \|_{H^s} \| \nabla \mathbf{b} \|_{L^\infty}
\leq C \| \nabla \mathbf{u} \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla \mathbf{b} \|_{L^\infty})(\| \mathbf{u} \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| \mathbf{b} \|_{H^s}^2).
\]

Similarly the other commutator terms on the right hand side of (4.8) can be estimated.

\[
|[J^s, \mathbf{u}] \nabla \mathbf{u}, J^s \mathbf{u})_{L^2}| \leq C(\| \nabla \mathbf{u} \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla \mathbf{b} \|_{L^\infty})(\| \mathbf{u} \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| \mathbf{b} \|_{H^s}^2).
\]

\[
|[J^s, \mathbf{b}] \nabla \theta, J^s \theta)_{L^2}| \leq C(\| \nabla \mathbf{u} \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla \mathbf{b} \|_{L^\infty})(\| \mathbf{u} \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| \mathbf{b} \|_{H^s}^2).
\]

\[
|[J^s, \mathbf{b}] \nabla \mathbf{b}, J^s \mathbf{b})_{L^2}| \leq C(\| \nabla \mathbf{u} \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla \mathbf{b} \|_{L^\infty})(\| \mathbf{u} \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| \mathbf{b} \|_{H^s}^2).
\]

Now

\[
(J^s(\theta e_n), J^s \mathbf{u})_{L^2} \leq \| J^s(\theta e_n) \|_{L^2} \| J^s \mathbf{u} \|_{L^2} \leq \| \theta \|_{H^s} \| \mathbf{u} \|_{H^s}.
\]
singular integral operators of Calderon-Zygmund type are bounded in

Due to the logarithmic Sobolev inequality in Lemma 2.12, and the fact that

\[\| \nabla \theta \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2 \right).

and

\[|(J^s u, J^s \theta)_{L^2}| \leq C(\| u \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2). \]

Combining all the estimates above, from (4.8) after taking \(X(t) = \| u(t) \|_{H^s}^2 + \| \theta(t) \|_{H^s}^2 + \| b(t) \|_{H^s}^2 \) for \(t \in [0, T^*] \), we obtain

\[\frac{d}{dt} X(t) \leq C(\| \nabla u \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla b \|_{L^\infty} + 2) X(t). \]

Standard Gronwall’s inequality yields

\[X(t) \leq X(0) \exp \left(C \int_0^t (\| \nabla u \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla b \|_{L^\infty} + 2) \, d\tau \right). \]

Hence

\[X(t) \leq X(0) \exp \left(C \int_0^t (\| \nabla u \|_{L^\infty} + \| \nabla \theta \|_{L^\infty} + \| \nabla b \|_{L^\infty} + 2) \, d\tau \right). \]

(4.9)

Due to the logarithmic Sobolev inequality in Lemma 2.12 and the fact that singular integral operators of Calderon-Zygmund type are bounded in \(BMO \) (i.e. \(\| \nabla u \|_{BMO} \leq \| \nabla \times u \|_{BMO} \)), for \(s > \frac{n}{2} + 1 \) we obtain,

\[\| \nabla u \|_{L^\infty} \leq C \left(1 + \| \nabla u \|_{BMO} \left(1 + \log^+ \| \nabla \theta \|_{H^s} \right) \right), \]

\[\leq C \left(1 + \| \nabla \times u \|_{BMO} \left(1 + \log^+ \| u \|_{H^s} \right) \right), \]

\[\leq C \left(1 + \| \nabla \times u \|_{BMO} \left(1 + \frac{1}{2} \log^+ \| u \|_{H^s} \right) \right), \]

\[\leq C \left(1 + \| \nabla \times u \|_{BMO} \left(1 + \frac{1}{2} \log^+ \left(\| u \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2 \right) \right) \right), \]

\[\leq C \left(1 + \| \nabla \times u \|_{BMO} \left(1 + \log^+ \left(\| u \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2 \right) \right) \right). \]

(4.10)

Similarly we obtain,

\[\| \nabla \theta \|_{L^\infty} \leq C \left(1 + \| \nabla \theta \|_{BMO} \left(1 + \log^+ \left(\| u \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2 \right) \right) \right). \]

(4.11)

and

\[\| \nabla b \|_{L^\infty} \leq C \left(1 + \| \nabla \times b \|_{BMO} \left(1 + \log^+ \left(\| u \|_{H^s}^2 + \| \theta \|_{H^s}^2 + \| b \|_{H^s}^2 \right) \right) \right). \]

(4.12)

Now using (4.10), (4.11) and (4.12) in (4.9), we obtain for all \(t \in [0, T^*] \),

\[X(t) \leq X(0) \exp \left[C \int_0^t \left\{ 5 + \| \nabla \times u(\tau) \|_{BMO} + \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO} \right\} d\tau \right]. \]
Taking “log” on both sides we get for all $t \in [0, T^*]$,
\[
\log X(t) \leq \log X(0) + C \int_0^t \left\{ 5 + (\| \nabla \times u(\tau) \|_{BMO} + \| \nabla \theta(\tau) \|_{BMO} \\
+ \| \nabla \times b(\tau) \|_{BMO}) \times \left(1 + \log^+ X(\tau) \right) \right\} \, d\tau.
\]
Rearranging the terms we have
\[
\log(eX(t)) \leq \log(eX(0)) + CT^* + \int_0^t \left\{ (\| \nabla \times u(\tau) \|_{BMO} + \| \nabla \theta(\tau) \|_{BMO} \\
+ \| \nabla \times b(\tau) \|_{BMO}) \log(eX(\tau)) \right\} \, d\tau.
\]
Now Gronwall’s inequality yields
\[
\log(eX(t)) \leq \left\{ (\log(eX(0)) + CT^*) \times \exp \left(C \int_0^t (\| \nabla \times u(\tau) \|_{BMO} \\
+ \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO}) \, d\tau \right) \right\}.
\]
Taking supremum over all $t \in [0, T^*]$ we obtain,
\[
\sup_{t \in [0, T^*]} \log X(t) \leq \sup_{t \in [0, T^*]} \log(eX(t)) \leq \left\{ (\log(eX(0)) + CT^*) \times \exp \left(C \int_0^{T^*} (\| \nabla \times u(\tau) \|_{BMO} \\
+ \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO}) \, d\tau \right) \right\}.
\]
So finally we acquire,
\[
\sup_{t \in [0, T^*]} X(t) \leq e^{(1+CT^*)} X(0) \times \exp \left\{ \exp \left(C \int_0^{T^*} (\| \nabla \times u(\tau) \|_{BMO} \\
+ \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO}) \, d\tau \right) \right\}.
\]
This concludes that if
\[
\int_0^{T^*} (\| \nabla \times u(\tau) \|_{BMO} + \| \nabla \theta(\tau) \|_{BMO} + \| \nabla \times b(\tau) \|_{BMO}) \, d\tau < \infty,
\]
then by continuation of local solutions, we can extend the solution to $[0, T]$ for some $T > T^*$.

We now show that the assumption we made in Theorem 4.1 for $\nabla \theta$ can be relaxed completely. In other words, provided $\theta_0 \in H^s(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n), p \geq 2$, the bound on curl of u and curl of b are enough to extend the solution continuously to some time $T > T^*$.

Before proving the above result let us note the following vector identity.
Remark 4.2.
\[
\nabla (u \cdot \nabla \theta) = (u \cdot \nabla) \nabla \theta + (\nabla \theta \cdot \nabla) u + u \times (\nabla \times \nabla \theta) + \nabla \times (\nabla \times u)
\]
\[
= (u \cdot \nabla) \nabla \theta + (\nabla \theta \cdot \nabla) u + \nabla \times (\nabla \times u)
\]
\[
= (u \cdot \nabla) \nabla \theta + (\nabla u)^t \cdot \nabla \theta
\]
where we have used the facts that curl of the gradient of a scalar function is zero (i.e., \(u \times (\nabla \times \nabla \theta) = 0 \)) and \((\nabla u)^t \cdot \nabla \theta = (\nabla \theta \cdot \nabla) u + \nabla \times (\nabla \times u)\).

Theorem 4.3. Let \(s > \frac{n}{2} + 1, \) \(u_0 \in H^s_0(\mathbb{R}^n), \) \(b_0 \in H^s_0(\mathbb{R}^n) \) and \(\theta_0 \in H^s(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n), \) for \(2 \leq p \leq \infty, \) \(n=2,3. \) Let \((u, \theta, b) \in C([0,T^*]; H^s(\mathbb{R}^n)) \times C([0,T^*]; H^s(\mathbb{R}^n)) \times C([0,T^*]; H^s(\mathbb{R}^n))\) be a strong solution of the ideal magnetic Bénard problem \((1.5)-(1.8). \) Then
\[
\int_0^{T^*} \|\nabla \times u(\tau)\|_{BMO} + \|\nabla \times b(\tau)\|_{BMO} d\tau < \infty
\]
guarantees that the solution can be extended continuously to \([0,T]\) for some \(T > T^*\).

Proof. We consider the equation \((1.6)\) as follows,
\[
\frac{\partial \theta}{\partial t} + (u \cdot \nabla) \theta = u_n,
\]
and apply the gradient operator \(\nabla = (\partial_{x_1}, \ldots, \partial_{x_n}) \) on both sides and take \(L^2 \)-inner product with \(\nabla \theta|\nabla \theta|^{p-2} \) to obtain,
\[
\left(\frac{\partial}{\partial t} (\nabla \theta), \nabla \theta |\nabla \theta|^{p-2} \right) + (\nabla (u \cdot \nabla \theta), \nabla \theta |\nabla \theta|^{p-2}) = (\nabla u_n, \nabla \theta |\nabla \theta|^{p-2}).
\]
Using the vector identity in Remark 4.2 we obtain,
\[
\left(\frac{\partial}{\partial t} (\nabla \theta), \nabla \theta |\nabla \theta|^{p-2} \right) + ((\nabla u)^t \cdot \nabla \theta, \nabla \theta |\nabla \theta|^{p-2}) + ((u \cdot \nabla) \nabla \theta, \nabla \theta |\nabla \theta|^{p-2})
\]
\[
= (\nabla u_n, \nabla \theta |\nabla \theta|^{p-2}).
\]
(4.13)

We will calculate each term separately. The first term of left hand side of \((4.13)\) gives,
\[
\left(\frac{\partial}{\partial t} (\nabla \theta), \nabla \theta |\nabla \theta|^{p-2} \right) = \frac{1}{p} \int_{\mathbb{R}^n} \frac{\partial}{\partial t} |\nabla \theta|^p \, dx = \frac{1}{p} \frac{d}{dt} \|\nabla \theta\|_{L^p}^p
\]
and
\[
((\nabla u)^t \cdot \nabla \theta, \nabla \theta |\nabla \theta|^{p-2}) = \int_{\mathbb{R}^n} (\nabla u)^t \cdot \nabla \theta \cdot \nabla \theta |\nabla \theta|^{p-2} \, dx
\]
\[
\leq \int_{\mathbb{R}^n} (\nabla u)^t \cdot |\nabla \theta|^p \leq \|\nabla u\|_{L^\infty} \|\nabla \theta\|_{L^p}^p.
\]
By applying integration by parts and the divergence free condition of \(u \), we have from the third term of (4.13),

\[
\left((u \cdot \nabla) \nabla \theta, \nabla \theta | \nabla \theta |^{p-2} \right) = \int_{\mathbb{R}^n} (u \cdot \nabla) \nabla \theta \cdot \nabla \theta | \nabla \theta |^{p-2} \, dx \\
= \frac{1}{p} \int_{\mathbb{R}^n} u \cdot \nabla |\nabla \theta|^p \, dx = -\frac{1}{p} \int_{\mathbb{R}^n} (\nabla \cdot u) \cdot |\nabla \theta|^p \, dx = 0.
\]

Now

\[
\left| (\nabla u_n, \nabla \theta | \nabla \theta |^{p-2}) \right| = \left| \int_{\mathbb{R}^n} \nabla u_n \cdot \nabla \theta | \nabla \theta |^{p-2} \, dx \right| \leq \int_{\mathbb{R}^n} |\nabla u_n| |\nabla \theta |^{p-2} \, dx \leq \int_{\mathbb{R}^n} |\nabla u_n| |\nabla \theta |^{p-1} \, dx \leq \left(\int_{\mathbb{R}^n} |\nabla u_n|^p \right)^{1/p} \left(\int_{\mathbb{R}^n} (|\nabla \theta |^{p-1}) \frac{p-1}{p} \right)^{p-1/p} \leq \| \nabla u_n \|_{L^p} \| \nabla \theta |^{p-1} \leq \frac{1}{p} \left(\| \nabla u_n \|_{L^p}^p + (p-1) \| \nabla \theta |^{p}_{L^p} \right)
\]

Due to the Gagliardo-Nirenberg interpolation inequality (see Lemma 2.7), while \(j = 1, m = 3, r = 2, q = 2 \), we have for \(n = 2 \),

\[
\| \nabla u_2 \|_{L^p} \leq C \| u_2 \|_{L^2}^{2 + \frac{mp}{6}} \| u_2 \|_{H^2}^{\frac{2p-2}{3p}}, \quad p \geq 2.
\]

and for \(n = 3 \),

\[
\| \nabla u_3 \|_{L^p} \leq C \| u_3 \|_{L^2}^{6 + p} \| u_3 \|_{H^3}^{\frac{5p-6}{6}}, \quad p \geq 2.
\]

From the term-wise estimates of (4.13), we obtain when \(n = 3 \),

\[
\frac{d}{dt} \| \nabla \theta |^{p}_{L^p} \leq p \| \nabla u \|_{L^\infty} \| \nabla \theta |^{p}_{L^p} + C_p \| u_3 \|_{L^2}^{\frac{6 + p}{2}} \| u_3 \|_{H^3}^{\frac{5p-6}{6}} \quad p \geq 2.
\]

which further gives due to Gronwall’s inequality,

\[
\| \nabla \theta |^{p}_{L^p} \leq \left(\| \nabla \theta |^{p}_{L^p} + C_p \int_0^t \| u_3(\tau) \|_{L^2}^{\frac{6 + p}{2}} \| u_3(\tau) \|_{H^3}^{\frac{5p-6}{6}} \, d\tau \right)
\times \exp \left(\int_0^t (p \| \nabla u(\tau) \|_{L^\infty} + p - 1) \, d\tau \right)
\]

\[
\leq \left(\| \nabla \theta |^{p}_{L^p} + C_p \, T^* \left(\sup_{t \in [0,T^*]} \| u_3 \|_{L^2}^{\frac{6 + p}{2}} \right)^{\frac{5p-6}{6}} \right)
\]

\[
\times \exp(pT^*) \exp \left(p \int_0^t \| \nabla u(\tau) \|_{L^\infty} \, d\tau \right).
\]

Therefore we obtain, when \(n = 3 \),

\[
\| \nabla \theta \|_{L^p} \leq \left(\| \nabla \theta |^{p}_{L^p} + C_p \, T^* \left(\sup_{t \in [0,T^*]} \| u_3 \|_{L^2}^{\frac{6 + p}{2}} \right)^{\frac{5p-6}{6}} \right)^{\frac{1}{p}}
\]

\[
\times \exp(T^*) \exp \left(\int_0^t \| \nabla u(\tau) \|_{L^\infty} \, d\tau \right).
\]
\[
\leq \left(\left\| \nabla \theta_0 \right\|_{L^p} + CT^*_\theta^{\frac{1}{p}} \left(\sup_{t \in [0,T^*]} \left\| u_3 \right\|_{L^2} \right)^{\frac{6+p}{6p}} \left(\sup_{t \in [0,T^*]} \left\| u_3 \right\|_{H^3} \right)^{\frac{5p-6}{6p}} \right) \\
\times \exp(T^*) \exp \left(\int_0^t \left\| \nabla u(\tau) \right\|_{L^\infty} \, d\tau \right).
\]

Since the \(L^2 \)-energy estimate and \(H^3 \)-energy estimate of \(u \) are finite due to Propositions 3.2 and 3.3, letting \(p \to \infty \), we finally obtain
\[
\left\| \nabla \theta \right\|_{L^\infty} \leq C(T^*) \left\| \nabla \theta_0 \right\|_{L^\infty} \exp \left(\int_0^t \left\| \nabla u(\tau) \right\|_{L^\infty} \, d\tau \right).
\]

Similarly, the case \(n = 2 \) (from (4.14)) will also yield the same above estimate. Note that, due to Lemma 2.12 and properties of the \(BMO \) space, we further have,
\[
\left\| \nabla \theta \right\|_{L^\infty} \leq \left\| \nabla \theta_0 \right\|_{L^\infty} \exp \left(C \int_0^t \left(1 + \left\| \nabla \times u(\tau) \right\|_{BMO} \left(1 + \log^+ \left\| u(\tau) \right\|_{H^s} \right) \right) \, d\tau \right).
\]
As \(\theta_0 \in H^s(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n), 2 \leq p \leq \infty \) and \(\sup_{t \in [0,T^*]} \left\| u \right\|_{H^s} \) is bounded for \(s > n/2 + 1 \), we have,
\[
\left\| \nabla \theta \right\|_{L^\infty} \leq C \exp \left(\int_0^{T^*} \left\| \nabla \times u(\tau) \right\|_{BMO} \, d\tau \right) \tag{4.16}
\]
where \(C = C(\left\| \nabla \theta_0 \right\|_{L^\infty}, \left\| u \right\|_{H^s}, T^*) \).

Due to the assumption \(\int_0^{T^*} \left\| \nabla \times u(\tau) \right\|_{BMO} \, d\tau < \infty \), the estimate in (4.16) is bounded. Hence, \(\left\| \nabla \theta \right\|_{BMO} \leq 2 \left\| \nabla \theta \right\|_{L^\infty} \leq C < \infty \). So the bound on \(BMO \) norms of vorticity and electrical current are enough to guarantee that the solution can be extended to \([0,T]\) for some \(T > T^* \) provided \(\theta_0 \in H^s(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n) \). \(\Box \)

Acknowledgements: Utpal Manna’s work has been supported by National Board of Higher Mathematics (NBHM), Govt. of India. Both the authors would like to thank Indian Institute of Science Education and Research Thiruvananthapuram for providing stimulating scientific environment and resources.

References

[1] Abidi, H., Hmidi, T., Keraani, S. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, *Discrete Contin. Dyn. Syst.*, 29 (3), 737-756, 2011.

[2] Adams, R. A., Fournier, J. J. F. *Sobolev Spaces*, Pure and Applied Mathematics (Amsterdam) Vol.140, Academic press, 1975.

[3] Beale, J.T., Kato, T., Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, *Comm. Math. Phys.*, 94, 61-66, 1984.
[4] **Bourgain, J., Li, D.** Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, *Inventiones mathematicae*, 201(1), 97-157, 2015.

[5] **Brezis, H., Gallouet, T.** Nonlinear Schrödinger evolution equations, *Nonlinear Anal. TMA* 4, 677-681, 1980.

[6] **Brezis, H., Wainger, S.** A note on limiting cases of Sobolev embeddings and convolution inequalities, *Comm. Partial Differential Equations* 5, 773-789, 1980.

[7] Caflisch, R. E., Klapper, I. and Steele, G. Remarks on Singularities, Dimension and Energy Dissipation for Ideal Hydrodynamics and MHD, *Communications in Mathematical Physics* 184 (2) 443-455, 1997.

[8] **Chae, D., Nam H.-S.** Local existence and blow-up criterion for the Boussinesq equations, *Proc. of Roy. Soc. Edinburgh, Sect. A*, 127 (5), 935-946, 1997.

[9] **Cheng, J., Du, L.** On Two-Dimensional Magnetic Bénard Problem with Mixed Partial Viscosity *J. Math. Fluid Mech.* 17, 769-797, 2015.

[10] Dhongade, U. D., Deo, S. G. A Nonlinear Generalization of Bihari’s Inequality, *Proceedings of the American Mathematical Society* 54 (1), 211-216, 1976.

[11] Evans, L.C. *Partial Differential Equations*, Second Ed., Grad. Stud. Math., vol. 19, American Mathematical Society, Providence, RI, 2010.

[12] **Fefferman, C. L.** Characterizations of Bounded Mean Oscillation, *Bulletin of the American Mathematical Society*, 77 (4), 587-588, 1971.

[13] **Fefferman, C. L., McCormick, D. S., Robinson, J. C. and Rodrigo, J. L.** Higher Order Commutator Estimates and Local Existence for the Non-resistive MHD Equations and Related Models, *Journal of Functional Analysis*, 267, 1035-1056, 2014.

[14] Galdi, G.P., and Padula, M. A new approach to energy theory in the stability of fluid motion, *Arch. Rational Mech. Anal.* 110, 187-286, 1990.

[15] Geng, J., Fan, J. A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity, *Appl. Math. Lett.* 25 (1), 63-66, 2012.

[16] Ishimura, N., Morimoto, H. Remarks on the blow-up criterion for the 3-D Boussinesq equations, *Mathematical Models and Methods in Applied Sciences* 9 (9), 1323-1332, 1999.

[17] Kato, T., Ponce, G. Commutator estimates and the Euler and Navier-Stokes Equations, *Comm. Pure Appl. Math.*, 41, 891-907, 1988.

[18] Kesavan, S., *Topics in Functional Analysis and Applications*, Second Ed., 2015.

[19] **Kozono, H., Ogawa, T., Taniuchi, Y.** The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations, *em Math. Z.*, 242 (2), 251-278, 2002.

[20] **Kozono, H., Taniuchi, Y.** Limiting Case of the Sobolev Inequality in BMO, with Application to the Euler Equations, *Comm. Math. Phys.*, 214, 191-200, 2000.

[21] Lemarié-Rieusset P. G. *Recent developments in the Navier-Stokes problem*, Chapman & Hall/CRC research in mathematics series, 431, 2002.

[22] **Lions, J. L., Magenes, E.** *Non-homogeneous boundary Value problems and Applications*, Vol.1, Springer-Verlag, Newyork, 1972.
[23] Manna, U., Panda, A. A. Higher Order Regularity and Blow-up Criterion for Semi-dissipative and Ideal Boussinesq Equations, preprint.

[24] Nirenberg L. On elliptic partial differential equations, Ann. Scoula Norm. Sup. Pisa, 13 (2), 115-162, 1959.

[25] Planchon, F. An extension of the Beale-Kato-Majda criterion for the Euler equations, Comm. Math. Phys. 232 (2), 319-326, 2003.

[26] Qiu, H., Du, Y., Yao, Z. A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Anal., 73 (3), 806-815, 2010.

[27] Robinson, J. C. Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, UK, 2001.

[28] Schmidt, P. G. On a Magnetohydrodynamic Problem of Euler Type, Journal of Differential Equations 74 (2), 318-335, 1988.

[29] Secchi, P. On the Equations of Ideal Incompressible Magnetohydrodynamics, Rend. Semin. Mat. Univ. Padova 90 103-119, 1993.

[30] Temam, R. Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1979.

[31] Ye, Z. Regularity criteria for 3D Boussinesq equations with zero thermal diffusion, Electronic Journal of Differential Equations, 2015 (97), 1-7, 2015.

[32] Yosida, K. Functional Analysis, Sixth Ed. Springer-Verlag, Berlin Heidelberg Newyork, 1980.

[33] Zhou, Y., Fan, J.S., Nakamura, G. Global Cauchy problem for a 2D magnetic Bénard problem with zero thermal conductivity Appl. Math. Lett. 26, 627-630, 2013.

Utpal Manna
(iiser) School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, 695016, Kerala, INDIA

e-mail: manna.utpal@iisertvm.ac.in

Akash A. Panda
School of Mathematics
Indian Institute of Science Education and Research (IISER) Thiruvananthapuram
Thiruvananthapuram 695016
Kerala, INDIA

e-mail: akash.panda13@iisertvm.ac.in