Klotho controls the brain–immune system interface in the choroid plexus

Lei Zhu,a,b Liana R. Stein,a,c,d Daniel Kim,c Kaitlyn Ho,c Gui-Qiu Yu,c Lihong Zhan,e Tobias E. Larsson,b and Lennart Mucke,a,c,2

Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158; Nephrology Unit, Department of Clinical Science, Intervention and Technology, Karolinska Institute, M 99 141 86 Stockholm, Sweden; and Department of Neurology, University of California, San Francisco, CA 94158Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved October 4, 2018 (received for review June 1, 2018)

Located within the brain’s ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klothoflox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed threoinulin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis.

Aging is associated with a progressive increase in inflammatory alterations in the brain and other organs, a process that has been dubbed “inflammaging” (1). Biomarkers of inflammation are robust predictors of morbidity and mortality in older humans (1) and of age-related cognitive decline (2). The choroid plexus (CP) is an important gateway for the entry of immune cells into the central nervous system (CNS) (3, 4). Located within the ventricles of the brain, the CP consists of tight junction-bound epithelial cells resting upon a basal lamina and an inner stromal core. The stroma contains connective tissue and large capillaries with thin fenestrated endothelial walls and can harbor additional cell types, including dendritic cells with antigen-presenting capacity, macrophages, and granulocytes (3–5). The CP responds to signals from blood and cerebrospinal fluid (CSF) and supports the CNS by producing CSF, nutrients, and growth factors and by regulating pH, osmolality, ion concentrations, and immune molecule content in the extracellular space of the brain and spinal cord (3–8). Throughout life, the CP produces much higher levels of the antiaging protein α-klotho (klotho) (9) than other components of the CNS [ref. 10 and the Allen Brain Atlas (portal.brain-map.org)]. However, the functions klotho fulfills in the CP remain to be defined.

Klotho production in peripheral organs is highest in the kidney where it regulates vitamin D metabolism and the transport of phosphate and calcium (8, 11). Alternative splicing gives rise to two isoforms: secreted klotho (s-KL, amino acids 1 to 550 in mice) and full-length transmembrane klotho (m-KL, amino acids 1 to 1014 in mice) (11). The latter can be cleaved by sheddases of the ADAM family, resulting in proteolytic release of klotho (p-KL, amino acids 1 to ~960 in mice) into blood and CSF (11–13). Klotho hypomorphic (kl/kl) mice have a deletion in the 5′ upstream region of the klotho gene, resulting in undetectable klotho mRNA levels in organs that normally express the klotho gene, such as the brain and kidney (9). While the possibility that the klotho gene is slightly transcribed in these mutants remains, the effect of this deletion is markedly reduced klotho expression throughout the body and a premature aging phenotype that affects multiple peripheral organs, resulting in early death (9, 14). CNS alterations in kl/kl mice include hyponymelination, increased expression or phosphorylation of neurofilaments, synaptic loss, and behavioral impairments (14–16). Conceivably, at least some of these alterations result from the global reduction of klotho during early development and related systemic alterations. Whether more circumscribed reductions of klotho later in life also cause CNS pathology is not known. Here, we demonstrate that reducing klotho levels selectively in the CP disrupts the barrier between the immune system and the brain and promotes neuroinflammation.

Significance

Global depletion of klotho accelerates aging, whereas klotho overexpression counteracts aging-related impairments. Why klotho is expressed at much higher levels in the choroid plexus than in other brain regions is unknown. We demonstrate in mice that aging is associated with klotho depletion in the choroid plexus. Reducing klotho selectively within the choroid plexus triggered inflammation within this structure and enhanced activation of innate immune cells within an adjacent brain region following a peripheral immune challenge. In cell culture, we identified a signaling pathway by which klotho suppresses activation of macrophages. Our findings shed light on klotho functions in the choroid plexus and provide a plausible mechanism by which klotho depletion from this structure promotes brain inflammation during the aging process.

Author contributions: L. Zhu, L.R.S., and L.M. designed research; L. Zhu and L.R.S. performed research; D.K., K.H., and G.-Q.Y. contributed new reagents/analytic tools; L. Zhan and L.R.S. analyzed data; and L. Zhu, L.R.S., and L.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1L. Zhu and L.R.S. contributed equally to this work.

2To whom correspondence should be addressed. Email: lennart.muske@gladstone.ucsf.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1808609115/-/DCSupplemental.

Published online November 9, 2018.
and mRNA were detected by mRNA levels (Fig. 1
s-KL expression in the CP at the pretranslational mRNA levels in WT mice Klotho C WT/Cre | PNAS
0.001 vs. leftmost bar by unpaired, two-tailed mice obtained 11 mo after mice < < (Flox) mice determined 5 to 6 mo after i.c.v. injection of AAV5-CMV-Cre (Cre).
Klotho (Flox) mice measured 11 mo after Cre injection (| n
and B no. 48 E11389 | 0.05, ** B and < = = SEM. = F mRNA levels (11 to12 (CP) or 3 to 4 (hippocampus) mice per genotype. (0.01, *** mRNA levels in 20- to 24-mo-old WT and H A8 (CP) or 15 (hippocampus) mice per group. Note that a log-10 scale was used because of the large mRNA as the internal reference and WT mice as the test (H and = = Klotho depletion in the CP caused by aging or experimental manipulation. (I E13 mice per group. (Fig. 1. E11389 Klotho protein level
Klotho levels decrease with age in the plasma and CSF of humans (20), the white matter of monkeys (21), and the brain and kidney of mice (22, 23); however, the effects of aging on klotho expression in the CP appear to be unknown. In WT mice, klotho levels in the CP were ~34% lower at 26 mo of age than at 2 to 3 mo (Fig. 1E). This reduction was accompanied by an ~32% decrease in m-KL mRNA levels (Fig. 1F), suggesting that aging affects Klotho expression in the CP at the pretranslational level. Although Massó et al. (23) found age-dependent reductions in hippocampal m-KL and s-KL mRNA levels in WT mice of a different genetic background, aging did not affect the hippocampal levels of klotho (SI Appendix, Fig. S1D) or Klotho mRNA (SI Appendix, Fig. S1E) in our WT mice.

Fig. 1. Klotho depletion in the CP caused by aging or experimental manipulation. (A) CP (arrow) in the lateral ventricle of a 4-mo-old WT mouse visualized by klotho immunostaining of a coronal brain section. (B) Images of confocal optical sections of CPs in the lateral ventricles of 4-mo-old WT and kl/kl mice immunostained for klotho (green) and for the CP marker protein anion exchanger 2 (AE2). [Scale bars: 500 μm (A), 60 μm (B), 20 μm (B, Inset.).] (C) Relative klotho levels in 2-mo-old mice (C, E, and H) were measured by Western blotting, normalized to GAPDH levels, and expressed relative to mean levels in WT controls. Relative Klotho mRNA levels (F and I) were calculated by the 2^-ΔΔCt method (75) using Gapdh mRNA as the internal reference and WT mice as the control. n = 11 to12 (CP) or 3 to 4 (hippocampus) mice per genotype. (D) Levels of Klotho mRNAs encoding the longer (exons 1 to 5) or shorter (exons 1 to 3) isoform in 4-mo-old WT mice determined by RT-qPCR. n = 8 (CP) or 15 (hippocampus) mice per group. Note that a log-10 scale was used because of the large differences in the levels of the Klotho transcripts. (E and F) CP levels of klotho protein (E) and Klotho mRNA (F) in WT mice. n = 13 mice per group. (G and H) Western blot (G) and klotho levels (H) in 7- to 8-mo-old WT and Klotho^cre/cre (Cre) mice determined 5 to 6 mo after i.c.v. injection of AAAS-CMV-Cre (Cre). n = 4 mice per group. (I) Klotho mRNA levels in 20- to 24-mo-old WT and Klotho^cre/cre (Flx) mice measured 11 mo after Cre injection (n = 4 to 8 mice per group). (J) Sagittal CP sections doublelabeled for klotho (green) and anion exchanger 2 (AE2) (red) from 20- to 24-mo-old WT and Klotho^cre/cre mice obtained 11 mo after Cre injection. (Scale bars: 50 μm.) *P < 0.05, **P < 0.01, ***P < 0.001 vs. leftmost bar by unpaired, two-tailed t test (C, F, H, and I) or one-way ANOVA and Tukey test (D and E). n.s., not significant. Values in bar graphs are means ± SEM.

analysis (SI Appendix, Fig. S1 B and C) and will be referred to simply as klotho. In the CP and hippocampus of WT mice, s-KL (the short isoform) was undetectable at the protein level (SI Appendix, Fig. S1C); very low levels of s-KL mRNA were detected by quantitative RT-PCR using isoform-specific primers (Fig. 1D).

Klotho levels decrease with age in the plasma and CSF of humans (20), the white matter of monkeys (21), and the brain and kidney of mice (22, 23); however, the effects of aging on klotho expression in the CP appear to be unknown. In WT mice,
Klotho Reduction in the CP Does Not Alter Hippocampal Klotho Levels.

To investigate the function of klotho in the CP, we reduced klotho levels specifically in this structure by intracerebroventricular (i.c.v.) injection of a viral vector encoding Cre recombinase into mice carrying two floxed Klotho alleles (Klotho_{flox/flox}) (24). We used an adenovirus-associated virus serotype 5 (AAV5)-CMV construct that selectively targets expression to the CP upon i.c.v. injection (SI Appendix, Fig. S2A). Mice injected with AAV5-CMV-Cre-GFP (Cre) at 2 mo of age had ~70% less klotho in the CP at 7 to 8 mo of age (Fig. 1G and H) when klotho levels had not yet decreased in WT controls (Fig. 1E). The klotho reduction in the CP of Cre-injected Klotho^{flox/flox} mice was comparable with that in uninjected k_{kk}k mice (Fig. 1C and ref. 9). Selective reduction of klotho in the CP did not alter the gross morphology of this structure (SI Appendix, Fig. S2 B–D), the expression of the CP epithelial cell markers anion-exchanger 2 (Fig. 1J), aquaporin-1, cytokeratin, and CD31 (SI Appendix, Fig. S2 C and D), or the level and distribution of the tight junction protein claudin-1 (SI Appendix, Fig. S2D). AAVS5-driven Cre expression was confined to the CP (SI Appendix, Fig. S2A) and reduced klotho levels similarly in the CPs of the lateral and fourth ventricles in Klotho^{flox/flox} mice (SI Appendix, Fig. S3 A and C). No Cre expression or klotho reduction was detected in peripheral klotho-expressing tissues, such as the kidney (SI Appendix, Fig. S3 B and D).

Because Klotho^{flox/flox} mice express abundant klotho in the brain, we determined whether this increase in klotho expression was due to an expansion in the CP volume or to an increase in klotho levels associated with brain changes. The volume of the lateral ventricles did not change in Klotho^{flox/flox} mice compared with WT controls, and the volume of the fourth ventricles in Klotho^{flox/flox} mice increased by twofold in the old group compared with the young group (SI Appendix, Fig. S2E). Consistent with the findings by Baruch et al. (27), MHC II immunoreactivity as a more reliable measure of MHC II expression can be difficult to differentiate between adjacent MHC II-positive cells (Fig. 1D, SI Appendix, Fig. S1B, and ref. 18).

Klotho Reduction Increases MHC II. Many aging-related alterations in the brain and other organs appear to involve inflammation (1). We therefore examined whether the reduced expression of klotho in the CP of old mice was associated with an increased expression of inflammatory mediators. One such mediator is the major histocompatibility complex class II (MHC II), whose expression by antigen-presenting cells in the brain increases with age (25, 26). In the CP, aging-related increases in MHC II are found primarily in antigen-presenting stromal cells, which have a highly irregular and elongated shape (27). Because of this shape, it can be difficult to differentiate between adjacent MHC II-positive cells. Therefore, we examined percent area occupied by MHC II immunoreactivity as a more reliable measure of MHC II expression in the CP. Consistent with the findings by Baruch et al. (27), MHC II immunoreactivity levels in the CP of uninjected WT mice were 5.6-fold higher at 22 to 23 mo than at 2 to 3 mo of age, and MHC II-positive cells were distinct from CP epithelial cells (Fig. 2A–C).

To determine whether this increase in MHC II expression was a cause or consequence of the associated klotho reduction, we analyzed 19- to 22-mo-old WT and Klotho^{flox/flox} mice 9 mo after i.c.v. injection of Cre. Selective reduction of klotho in the CP further increased MHC II expression in this structure by twofold (Fig. 2B and E), suggesting that klotho reduction increases MHC II expression in the CP.

Klotho Regulates IFN-Related Genes. MHC II expression is regulated by interferons (28, 29), a complex family of proteins and peptides that induce the expression of cell-adhesion molecules and other immunologically relevant cell membrane constituents, control growth and differentiation, and activate natural killer cells and macrophages (30). The expression of inflammatory regulators and mediators is altered in the CP of aged mice, and alterations in some of these factors can impair brain functions (3, 27, 31, 32). In the current study, we analyzed a selection of factors that (i) are expressed in the CP, (ii) are altered by aging, and (iii) represent diverse components of the innate immune system (27, 31, 32).

In WT mice, aging markedly increased the expression of intercellular adhesion molecule 1 (ICAM1) and IFN regulatory factor 7 (IRF7) in the CP (SI Appendix, Fig. S4A). Selective reduction of klotho in the CP of Klotho^{flox/flox} mice also increased CP levels of ICAM1 and IRF7 (Fig. 3 A–C) and of mRNAs encoding ICAM1, IRF7, chemokine (C-C motif) ligand 17 (Ccl17), CX3C motif chemokine 10 (Cx3cl10), and CX3C chemokine receptor 1 (Cx3cr1) (SI Appendix, Fig. S4B). ICAM1 expression was localized to the surface membrane of CP epithelial cells, as demonstrated by double labeling of brain sections for ICAM1 and transthyretin (Fig. 3D) or aquaporin 1 (AQP1) (Fig. 3E). In contrast, klotho reduction did not change CP levels of mRNAs encoding IFN β (Ifnb), TOLL-like receptor 9 (Tlr9), or IFN receptor 1 (Ifnar1) (SI Appendix, Fig. S4B).

Notably, Klotho^{flox/flox} mice and WT controls were age- and strain-matched and injected with the same Cre-expressing viral construct. Furthermore, age-matched uninjected WT mice, Cre-injected WT mice, and uninjected Klotho^{flox/flox} mice had similar klotho levels in the CP (SI Appendix, Fig. S3A). It is therefore unlikely that differences between Cre-injected WT and Cre-injected Klotho^{flox/flox} mice resulted from mouse strain differences.
Klotho Reduction Causes Macrophage Infiltration. The CP is an important gateway for entry of immune cells into the CNS (3, 4, 33), and interferons can promote the transepithelial migration of leukocytes through the CP (34). In light of our discovery that klotho controls the expression of multiple immune mediators in the CP, we further tested our hypothesis that klotho is a key regulator of this gateway.

Cre-mediated klotho reduction increased the number of cells bearing the macrophage markers MAC-2 or IBA-1 (Fig. 4A–D) in the CP of 19- to 22-mo-old Klotho^{flk/flk} mice. These cells were distinct from CP cells expressing transthyretin (Fig. 4C). To investigate the origin of this macrophage population, we immunostained the CP for lymphocyte antigen 6 complex (LY6C), which is primarily expressed on blood-derived monocytes (35). Klotho reduction in the CP increased the number of LY6C-positive cells in this structure (Fig. 4A–C, Fig. S5A–C). Neither of these klotho reduction strategies significantly altered the expression of such gene products in the hippocampus (Fig. S5D and E).

Klotho Reduction in the CP Promotes Microglial Activation. To determine whether klotho depletion from the CP affects other parts of the brain, we focused on the hippocampus, which is important for learning and memory and impaired by aging (36). Microglia, the primary immune cells of the hippocampus, are involved in neural plasticity, cognition, and neurological disease (37). Aging sensitizes these cells to activation by peripheral infections and lipopolysaccharide (LPS) injection, resulting in the excessive release of cytokines and chemokines that can impair cognitive functions (25, 38). To assess whether klotho reduction in the CP primes hippocampal microglia for activation, we challenged a cohort of 19- to 22-mo-old Klotho^{flk/flk} mice with two i.p. injections of low-dose ultrapure LPS (1 mg/kg) or saline 9 mo after they received an i.c.v. injection of AAV5-CMV-Cre (Cre) or AAV5-CMV-GFP (GFP). We then examined hippocampal levels of the microglial/macroage marker IBA-1 and the microglia-specific marker TMEM119 by fluorescence microscopy. Microglial activation is associated with increased IBA-1

or from effects of the viral infection. Nevertheless, in uninfected 2-mo-old kl/kl mice, we confirmed that global genetic reduction of klotho also increases the expression of IFN-related gene products in the CP (SI Appendix, Fig. S5 A–C). Neither of these klotho reduction strategies significantly altered the expression of such gene products in the hippocampus (SI Appendix, Fig. S5 D and E).

Klotho reduction in the CP increased the number of T cells expressing CD3 or CD4 (SI Appendix, Fig. S6A–C) and E). In contrast to Cre-injected Klotho^{flk/flk} mice, uninfected kl/kl mice showed no increases in the number of macrophages or the expression of macrophage-related gene products in the CP (SI Appendix, Fig. S7), although they had increased CP levels of at least some of the immune modulators (SI Appendix, Fig. S5) whose levels were increased in the CP of Cre-injected Klotho^{flk/flk} mice (SI Appendix, Fig. S4B and Table S1). Notably, kl/kl mice were analyzed at 2 mo of age because of their short life span, whereas Cre-injected Klotho^{flk/flk} mice were analyzed between 18 and 24 mo of age. Conceivably, the attraction of peripheral macrophages into the klotho-depleted CP takes time, requires aging-related cofactors that are missing in young kl/kl mice, or is counteracted by systemic alterations in these mice.

Fig. 3. Klotho reduction increases the expression of cytokine response factors in the CP. (A–C) ICAM1 (A and B) and IRF7 (C) immunoreactivity in the CP of 19- to 22-mo-old WT vs. Klotho^{flk/flk} (Flo) mice measured 9 mo after Cre injection. n = 5 to 7 mice per group. Sections of CP from the lateral ventricle (A–C) or fourth ventricle (C, Rightmost images) were colabeled for cytokeratin (gray), klotho (green), and ICAM1 (red) (A) or klotho (green) and IRF7 (red) (C). (Scale bars: 100 μm.) The percent of the cytokeratin-immunoreactive area that was also positive for ICAM1 was quantitated in B. (D and E) High magnification confocal images of the CP labeled for ICAM1 (red) and transthyretin (green) (D) or AQP1 (green) (E). [Scale bars: 25 μm (D), 50 μm (E).] ***P < 0.001 by unpaired, two-tailed t test. Values in bar graphs are means ± SEM.
expression, retraction of processes, and enlargement of cell bodies (39). Both IBA-1 and TMEM119 immunostaining revealed morphological changes typical of microglial activation in the hippocampus of LPS-injected mice (Fig. 5A). Klotho reduction in the CP increased the number of IBA-1–positive cells (Fig. 5B) and the level of IBA-1 intensity (Fig. 5C) in the hippocampus after LPS injection. It also decreased the hippocampal TMEM119/IBA-1 area ratio in LPS-treated mice (Fig. 5D), suggesting retraction of microglial processes. These results indicate that klotho reduction in the CP exacerbates LPS-induced microglial activation, possibly through the release of inflammatory mediators from peripheral macrophages that have invaded the CP and from cells that normally reside in this structure, such as antigen-presenting cells.

Klotho Controls the NLRP3 Inflammasome. To unravel how klotho suppresses inflammation in the CP and other brain regions, we turned our attention to its role in controlling the production of vitamin D3 and of thioridoxin-interacting protein (TXNIP) (also known as vitamin D3 up-regulated protein 1). In peripheral tissues, klotho (m-KL > p-KL) functions as an obligate coreceptor for fibroblast growth factor 23 (FGF23) (40), which is present in blood and can be expected to traverse the fenestrated endothelial walls of CP capillaries. Thus, similar to klotho released from CP epithelial cells, blood-derived FGF23 should be able to interact with FGF receptors on macrophages that have infiltrated the stroma of the CP.

The FGF23/klotho signaling pathway suppresses the expression of 1-α-hydroxylase, which converts 25-hydroxycholecalciferol (25-VD₃) into 1,25-dihydroxycholecalciferol (1,25-VD₃ or calcitriol), the bioactive form of vitamin D, and increases the expression of 24-hydroxylase, which promotes the degradation of 1,25-VD₃ (11, 40, 41). 1,25-VD₃ can increase the expression of TXNIP, which promotes activation of the nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and increases oxidative stress by inhibiting thioridoxin activity (42–45). Since 1-α-hydroxylase is expressed in many cell types, including epithelial cells and activated macrophages (46), we hypothesized that klotho normally controls 1,25-VD₃ production in the CP and thereby suppresses TXNIP expression in cells that reside within or can infiltrate this structure.

Compared with controls, Cre-injected klotho⁻/⁻ mice and un.injected klo⁻/⁻ mice had increased CP levels of Cyp27b1 mRNA (Fig. 6A and B), which encodes 1-α-hydroxylase. Both groups of mice also had increased levels of Txnip mRNA and TXNIP protein in the CP (Fig. 6 C–G), suggesting that klotho in the CP may control the production of inflammatory mediators and the entry of immune cells by suppressing local 1,25-VD₃ production and downstream inflammasome activation by TXNIP.

In contrast, Txnip mRNA levels in the hippocampus of Cre-injected klotho⁻/⁻ mice and un injected klo⁻/⁻ mice were not significantly different from those of their respective control littermates (SI Appendix, Fig. S8 A and B). Txnip mRNA levels in the kidney were also normal in klo⁻/⁻ mice, despite profound reductions of klotho in this organ (SI Appendix, Fig. S8 C and D). These findings suggest that klotho has an important role in controlling Txnip expression in some cell types, but not others. In klo⁻/⁻ mice, in which klotho levels are reduced during early development, this function of klotho may also be obscured by compensatory mechanisms.

Although macrophages do not appear to express full-length transmembrane klotho (47), their biological activity could be
Pretreatment of macrophages with a combination of klotho and FGF23 blocked the vitamin D$_3$-induced enhancement of IL-1β release (Fig. 6H) whereas klotho or FGF23 alone had no significant modulatory effects (Fig. 6H). Interestingly, FGF23/klotho blocked the enhancement of LPS/ATP-induced IL-1β release by both 25-VD$_3$ and 1,25-VD$_3$ (Fig. 6H). This result suggests that FGF23/klotho signaling suppresses NLRP3 activation, not only reducing the expression of 1-oxo-hydroxylase (Fig. 6A and B), which generates 1,25-VD$_3$ from 25-VD$_3$ but also by counteracting 1,25-VD$_3$ downstream, possibly by promoting its degradation or blocking its effect on Tnip expression. Thus, FGF23/klotho signaling suppresses 1,25-VD$_3$-dependent inflammation activation in macrophages, and depletion of klotho from the CP may increase the release of proinflammatory cytokines by infiltrating macrophages, which—in turn—could attract additional macrophages from the periphery and prime microglia in the brain parenchyma for activation (Fig. 5).

Discussion

Our findings suggest that klotho in the CP functions as a gatekeeper between the immune system and the CNS. The high level of klotho expressed in the CP of juvenile and adult mice, humans, and other mammals probably limits the penetration of this barrier by peripheral immune cells and suppresses the production of inflammatory mediators that could harm the CNS. We found that Klotho expression in the CP decreases with age and that experimental reduction of klotho levels specifically in this structure promotes the entry of peripheral macrophages and markedly increases the production of multiple proinflammatory mediators. Because similar proinflammatory changes occur during the natural aging process, the age-related decline in Klotho expression may contribute to the aging-related inflammation of the CNS. Because the CP produces and is bathed in CSF, inflammatory mediators produced in the CP are likely to reach other parts of the CNS via the CSF circulation (55), including the parenchyma of the brain and spinal cord, where they might contribute—by themselves or in combination with other factors—to the aging-related decline in neural functions (56). Indeed, experimental reduction of klotho in the CP exacerbated microglial activation in the hippocampus following peripheral injections of relatively low doses of LPS in the current study, suggesting that klotho depletion from the CP could contribute to the expression of “priming” of microglia for activation by peripheral infections (25, 35). Microglial activation and elevated IL-1β have been associated with deficits in synaptic plasticity in the hippocampus (57).

A more detailed comparison of the results we obtained after experimentally reducing klotho levels in the CP of mice to those reported to spontaneously develop in the CP of aged mice reveals both similarities and differences. For example, klotho reduction in the CP increased the expression of IRF7, a key regulator of type I IFN (IFNβ) responses, which have important roles in adaptive and innate immunity (58). IRF7 is also increased in the CP of aged mice and humans (32). In a similar vein, arginase-1 expression in the CP was increased in mice with selective klotho reduction in the CP (this study) as well as in aged mice (27). In contrast, we found increased levels of Icam1, Cxcl10, and Cell7 mRNAs and of ICAM1 protein in the CP of mice with reduced klotho expression, whereas others found decreased levels of these gene products in the CP of aged mice (32). Some of these differences may reflect the fact that processes other than klotho reduction also affect the CP during aging and may override changes caused by klotho depletion. Other differences may have methodological or other reasons. For example, Baruch et al. reported increased IRF7 but decreased ICAM1 levels in the CP of aged mice (32), whereas CP levels of both proteins were increased in our aged mice, consistent with the results we obtained after reducing klotho levels in the CP of Klotho$_{fl}x^{x}$ mice by Cre injection.
Our study provides insights into the mechanisms by which klotho may control the immune system/CNS interface in the CP. In combination, our in vivo and in vitro data support the hypothesis that klotho produced by CP epithelial cells suppresses the activation of the NLRP3 inflammasome in macrophages and possibly other cells, including the CP epithelial cells themselves, through FGFR2/klotho signaling, counteracting 1,25-VD₃, and inhibiting 1,25-VD₃-dependent *TNIP* expression. TXNIP, which was increased in the CP after klotho reduction, can directly increase the expression of proinflammatory gene products that promote leukocyte infiltration into the CNS, including ICAM-1 (59). TXNIP also promotes activation of the NLRP3 inflammasome, a process that probably contributes causally to multiple aging-related deficits and aging-related diseases, including cognitive decline and neurodegenerative disorders (49, 60).

Although TXNIP-dependent activation of the NLRP3 inflammasome is a plausible mechanism for many of the effects of klotho reduction we observed, our study was not designed to exclude alternative mechanisms by which klotho reduction in the CP might contribute to aging-related alterations of the CNS (5). Both klotho and the CP probably have diverse functions (3, 4, 6, 11, 33, 61). For example, klotho also attenuates the NF-κB pathway (62), which could contribute to the increase in ICAM1 expression after klotho reduction. Similarly, increased expression of TXNIP could affect multiple processes besides inflammation (42, 45). Another limitation of our study is that we did not systematically compare the effects of klotho reduction in CPs of all ventricles, which share many but not all properties (6).

In contrast to the genetic reduction of klotho in *kl/kl* mice, the injection of a Cre-expressing viral vector into *Klo tho^{lox/lox}* mice allowed us to (i) restrict klotho reduction specifically to the CP, (ii) avoid potential confounding effects of klotho reduction during early development, and (iii) lower klotho levels at distinct time points. Surprisingly, the viral vector approach revealed that klotho expression in the CP by the production is not needed to maintain normal klotho levels in the brain parenchyma, at least not in the hippocampus, where neurons produce low levels of klotho (18).

Despite the distinct ways in which klotho levels were reduced in the two models, we confirmed in uninjected *kl/kl* mice several of the findings we obtained in Cre-injected *Klotho^{lox/lox}* mice, highlighting the robustness of these findings. Alterations of the CP observed in both models included increased levels of *Cyp27b1* mRNA, *TNip* mRNA, and mRNAs encoding IFN-related factors, such as ICAM1, CCL17, and CXCR4. However, some changes we observed in Cre-injected *Klotho^{lox/lox}* mice between 18 and 24 mo of age were not seen in uninjected *kl/kl* mice at 2 mo of age, including increased numbers of MAC-2- and Ly6C- positive cells and increased expression of the macrophage markers Nos2 and Arg1 in the CP. It is conceivable that these changes emerge over time, require aging-related cofactors that are missing in young *kl/kl* mice, or are prevented in *kl/kl* mice by the activation of compensatory processes during early development.

Increased numbers of monocytes, macrophages, and T cells have been identified in the kidneys of heterozygous *Klotho* hypomorph (kl/+)-mice (63). Our *kl/kl* mice had elevated TXNIP levels in the CP but not in the kidney. The latter discrepancy may reflect differences in cell type-specific inflammatory mechanisms, as reported for NLRP3 and receptors on macrophages and epithelial cells (64).

Reduced klotho levels and increased IL-1β levels have also been observed in the CP of rats exposed to chronic unpredictable stress, an experimental paradigm that causes behavioral alterations in rodents reminiscent of endogenous depression in humans (19). IL-1β also elicits depression-related behaviors in rodents (65). Our findings may also be relevant to Alzheimer’s disease, in which klotho levels are decreased in the CSF (20, 23) and brain inflammation may have a critical pathogenic role (66–68).

Interestingly, global vitamin D₃ deficiency is a risk factor for age-related cognitive decline (69). Since vitamin D₃ has diverse effects throughout the body (69), it is tempting to speculate that high levels of klotho in the CP curtail immune invasion of the CNS via this important gateway by locally counteracting vitamin D₃ through FGFR2/klotho signaling and reducing IFN/NLRP3-related gene expression, enabling the organism to benefit from useful vitamin D₃ effects elsewhere. Further investigation of klotho’s immune-regulatory roles in the CP may identify therapeutic strategies to block entry of harmful cells and factors into the CNS through the blood–CSF barrier, which might help counteract cognitive decline in elderly people and inflammmatory-related neurological disorders.

Methods

Mice and Treatments. *Klotho^{lox/lox}* mice (24) were interbred to generate *Klotho^{lox/lox}* and *Klotho^{−/−}* littermates on the same C57BL/6J background. CP-specific ablation of *Klotho* in *Klotho^{−/−}* mice was achieved by stereotaxically injecting 2 μL of high-titer (1 to 10¹⁰/mL) AAV5-CMV-Cre-GFP (AAV5.CMV.HI.Cre.WPRE.SV40; Virovek) into the left lateral ventricle (coordinates: −1 mm medio-lateral (M/L), −0.22 mm anteroposterior (A/P), and −2.5 mm dorsoventral (D/V) from the bregma). Stereotaxic injections were carried out as described (70). WT mice injected with AAV5-CMV-Cre-GFP and in some cases *Klotho^{lox/lox}* mice injected with AAV5-CMV-GFP (AAV5.CMV.HI.Cre.WPRE.SV40; Virovek) served as negative controls. Overexpression of klotho in the hippocampus was achieved by injection of lentivirus encoding full-length klotho (Lenti-FUN2/klotho) into the dentate gyrus and CA1. The *kl/k* mouse line (9) was obtained from M. Kuro-o (National Institute of Neuroscience, Kodaira, Tokyo) and the *Nirp3^{−/−}* line (51) from A. Ma (University of California, San Francisco, CA) C57p1^{−/−} mice (52) were obtained from The Jackson Laboratory (strain 16621). Some mice received two separate i.p. injections of LPS (1 mg/kg; LPS-055; EBS; InvivoGen) 20 h apart and were perfused as described below 4 h after the second injection. Experimental and control groups were age-matched and littermates. Mice were maintained on a 12-h light/dark cycle, and experiments were conducted during the light cycle. Mice had free access to food (PicoLab Rodent Diet 20, 5053; LabDiet) and water, were housed 2 to 5 per cage. All procedures were approved by the Institutional Animal Care and Use Committee of the University of California, San Francisco.

Isolation of Mouse Tissues. Mice were anesthetized with Avertin (0.025 mg/mL) and perfused transcardially with 0.9% saline. Hemibrains were removed and drop-fixed in 4% paraformaldehyde overnight at 4 °C or flash-frozen in liquid nitrogen and stored at −80 °C. Frozen hemibrains were thawed in cold 1× PBS containing Halte Protease and Phosphatase Inhibitor Mixture (78447; Thermo Fisher Scientific) and microdissected immediately. The intact choroid plexus (CP) was removed first to avoid contaminating other tissues. Microdissected tissues were immediately frozen on dry ice and kept at −80 °C.

Primary Macrophage Cultures. Primary macrophages were prepared from 3- to 5-mo-old WT C57BL/6J mice as described (71). Femur bone marrow was extracted and mechanically dissociated in RPMI-1640 medium (Life Technologies). The cells were cultured in RPMI-1640, 10% FBS, 20 mM penicillin/streptomycin and 20 ng/mL macrophage colony-stimulating factor (ProSpec) at 2 × 10⁶ cells per non-Tc grade sterile 100-mm Petri dish (Corning). After 3 d, cells were dissociated in ice-cold PBS and replated in 12-well plates at 1 × 10⁵ per well. Experiments were performed on confluent cultures (typically days in vitro 7 to 8). Cultures were treated with ultrapure LPS (10 ng/units/mL) for 16 to 24 h and harvested for analysis. Some cultures were incubated for an additional 4 h with ATP (1 mM; Sigma). In some cases, recombinant klotho (R&D Systems) and FGF-23 (R&D Systems) were added 1 h before LPS. After treatment, cells were washed once with PBS and collected for protein or mRNA analysis.

Immunohistochemistry. Brain sections were prepared and immunostained as described (72–74). Briefly, hemibrains were drop-fixed in 4% paraformaldehyde overnight, washed in cold PBS, equilibrated in 30% sucrose for ≥48 h, and stored at 4 °C. Hemibrains were sectioned (30 μm) on a freezing microtome, immunostained, and imaged with a digital microscope (BZ-9000; Keyence) or a laser-scanning microscope (LSM 880, Zeiss). Except for MHC II, antigen retrieval was performed using 10 mM citrate buffer (pH 6.1) for 15 to 20 min before cooling at room temperature for at least 45 min, sections were incubated with 3% H₂O₂ for 5 min to quench endogenous peroxidase, washed four times in PBS, incubated in blocking/permeabilization solution containing 10% normal goat...
serum and 0.3% Triton-X in PBS for ≥45 min, and incubated for ≥24 h with primary antibodies in 3% normal goat serum and 0.1% Triton-X 100 in PBS at room temperature (dilutions provided in SI Appendix, Table S2). After three washes in PBS, sections were incubated with secondary antibodies (1:500; Invitrogen) and Hoechst 33342 (H33750; Thermo Scientific) diluted in 2% normal goat serum and 0.1% Triton-X 100 in PBS for 2 h at room temperature. CLAUDIN-1 was detected with TSA-Plus cyanine 5 kits (PerkinElmer). Negative controls included omission of primary or secondary antibodies. High-resolution imaging was done with a Zeiss LSM 880 or a Keyence BZ-9000 automated microscope. The Keyence BZ-9000 inverted epifluorescence microscope was equipped with a 12-bit monochrome camera with red, green, and blue (RGB) capability. Unless indicated otherwise, images were acquired from CP or the lateral ventricles. For confocal microscopy, images were taken in z-stacks (2- to 4-μm steps) through immunoreactive areas. Z-stacks were analyzed with ImageJ or with Imaris software (Bitplane). For each section, numbers of cells positive for IRF7, ICAM1, MAC-2, or LY6C in the CP were normalized to the CP area in any given section; numbers of cells positive for IRF7, ICAM1, MAC-2, or LY6C in the CP were normalized to the CP area in any given section; macrotubes of ImageJ.

The Keyence BZ-9000 inverted epifluorescence microscope was equipped with a 12-bit monochrome camera with red, green, and blue (RGB) capability. Differences between genotypes and treatments were assessed by unpaired, two-tailed t test with Welch’s correction or by one-way or two-way ANOVA and Bonferroni, Holm-Sidak, or Tukey post hoc tests. P < 0.05 was considered significant. Results were blinded to genotype and treatment of mice and cell cultures. Biological units were randomized during assays, sampling, and analysis.

ACKNOWLEDGMENTS. We thank M. Kuro-O for klotho mice; A. Ma for IRP2 mice; S. Imai for discussion; X. Wang and X. Yu for technical support; S. Ordway for editorial review; and R. Mott for administrative assistance. This work was supported by funding (to L.M.) from the US National Institutes of Health Grant N5088552 and the Ray and Dagmar Dolby Family Fund, L.R.S. was supported by Ruth L. Kirschstein National Research Service Award N5093766.

Statistical Analysis. Prism (version 5; GraphPad, R Development Core Team, www.R-project.org), and Microsoft Excel were used for statistical analyses. “n” refers to the number of mice for all figures except Fig. 6, in which “n” refers to independent experiments. Differences between genotypes and treatments were assessed by unpaired, two-tailed t test with Welch’s correction or by one-way or two-way ANOVA and Bonferroni, Holm-Sidak, or Tukey post hoc tests. P < 0.05 was considered significant. Results were blinded to genotype and treatment of mice and cell cultures. Biological units were randomized during assays, sampling, and analysis.

ACKNOWLEDGMENTS. We thank M. Kuro-O for klotho mice; A. Ma for IRP2 mice; S. Imai for discussion; X. Wang and X. Yu for technical support; S. Ordway for editorial review; and R. Mott for administrative assistance. This work was supported by funding (to L.M.) from the US National Institutes of Health Grant N5088552 and the Ray and Dagmar Dolby Family Fund, L.R.S. was supported by Ruth L. Kirschstein National Research Service Award N5093766.
30. Owens T, Khoroshii R, Wlodarczyk A, Asgari N (2014) Interferons in the central nervous system: A few instruments play many tunes. GLIA 62:339–355.
31. Mesquita SD, et al. (2015) The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun 49:280–292.
32. Baruch K, Schwartz M (2013) CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 34:11–16.
33. Baruch K, et al. (2013) Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:89–93.
34. Kunis G, et al. (2013) IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136:3427–3440.
35. Goldmann T, et al. (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:97–105.
36. Leal SL, Yassa MA (2015) Neurocognitive aging and the hippocampus across species. Trends Neurosci 38:800–812.
37. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: From origin to neurodegenerative disease. Nat Rev Neurosci 15:300–312.
38. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neuro 10:217–224.
39. Bennett ML, et al. (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 113:E1738–E1746.
40. Kurosu H, et al. (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123.
41. Urakawa I, et al. (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774.
42. Yoshihara E, et al. (2014) Thioredoxin/TrxR: Redoxosome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514.
43. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140.
44. Olsowski CM, et al. (2012) Thioredoxin-interacting protein mediates ER stress-induced cell death through initiation of the inflammasome. Cell Metab 16:265–273.
45. Spindel ON, World C, Berk BC (2012) Thioredoxin interacting protein: Redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 16:587–596.
46. Bikle DD (2009) Extra renal synthesis of 1,25-dihydroxyvitamin D and its health implications. Clin Rev Bone Miner Metab 7:114–125.
47. Han N, Xu J, Xu F, Liu Z, Yin J (2016) The in vivo effects of a fraction from Dioscorea spongiosa on glucocorticoid-induced osteoporosis. J Ethnopharmacol 185:53–59.
48. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: Guardians of the body. Annu Rev Immunol 27:229–265.
49. Youm YH, et al. (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18:519–532.
50. Abderrazak A, et al. (2015) NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 4:296–307.
51. Mariathasan S, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232.
52. Kuida K, et al. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267:2000–2003.
53. Kayagaki N, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121.
54. Chen L, Eslen MS, Zosky GR (2017) Vitamin D both facilitates and attenuates the cellular response to lipopolysaccharide. Sci Rep 7:45172.
55. Simon M, Ihff JJ (2016) Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 1862:442–451.
56. Samson RD, Barnes CA (2013) Impact of aging brain circuits on cognition. Eur J Neurosci 37:1903–1915.
57. Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: Implications of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 96:11–18.
58. Ning S, Pagano JS, Barber GN (2011) IRF7: Activation, regulation, modification and function. Genes Immun 12:399–414.
59. Perrone L, Devi TS, Hosoya K, Terasaki T, Singh LP (2009) Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221:262–272.
60. Heneka MT, et al. (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APPPS1 mice. Nature 493:674–678.
61. Dalton G, et al. (2017) Soluble klotho binds monosialoligodioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci USA 114:752–757.
62. Maekawa Y, et al. (2009) Klotho suppresses TNFα-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 35:341–346.
63. Zhou X, Chen K, Lei H, Sun Z (2015) Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemoattractant protein-1/CXC chemokine receptor 2-mediated inflammation. J Am Soc Nephrol 26:121–132.
64. Pothlichet J, et al. (2013) Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog 9:e1003256.
65. Koo JW, Duman RS (2008) IL-1β-1 is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756.
66. Stephan AH, et al. (2013) A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci 33:13460–13474.
67. Heneka MT, et al. (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405.
68. Czirr E, Wyss-Coray T (2012) The immunology of neurodegeneration. J Clin Invest 122:1156–1163.
69. Schöglo M, Holick MF (2014) Vitamin D and neurocognitive function. Clin Interv Aging 10:559–568.
70. Cissé M, et al. (2011) Ablation of cellular prion protein does not ameliorate abnormal protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221:262–272.