Оценены риски операторов, находящихся в мобильных зданиях, в условиях Арктического севера. Одним из важнейших факторов, способных привести к развитию различных патологических состояний, сопровождающихся снижением работоспособности, является нерациональное освещение. В приведенном обзоре воздействия на операторов звукового и светового освещения использованы причины «эффекта последствия» светового освещения в части увеличения затяжности № 95 паттерна-электротипограммы (ПЭРГ), которая характеризует состояние ганглиозных клеток зрительного анализатора. Сформулирована гипотеза, что уменьшение эффективности «торможения» обусловлено поглощением синего света в диапазоне 380–450 нм, а увеличение амплитуды P50 PЭРГ обусловлено дополнительным увеличением поглощения натрия Na+, Ca2+ при посещении белым ChR2 избытчной дозой синего света 470 нм по сравнению с дозой синего в спектре люминесцентной лампы.

Показано, что состояние операторов после пребывания в условиях динамического светового освещения практически не изменилось, однако у всех участников эксперимента было обнаружено W-образное раздвоение пика P100 в ZВКП (зрительные вызванные корковые потенциалы) в ответ на стимулы с разными условиями размерами. В условиях воздействия синего света на ганглиозные клетки процесс взаимодействия их деградирующих митохондрий и астроцитов является очень важным. При световом освещении происходит поражение митохондрий ганглиозных клеток. Митохондрии направляются для утилизации в область головки зрительного нерва, где они поглощаются астроцитами и ликвидируются их лизосомой. Если скорость притока деградирующих митохондрий превысит скорость их утилизации, то в головках зрительного нерва возникнут механические нарушения из-за эффекта «митохондриальной пробки», что может привести к длительным нарушениям в головном мозге и развитию глаукомы.

Сформулированы рекомендации ГОСТ 23274-84 «Здания мобильные (интавитарные). Электроустановки. Общие технические условия» по применению в них полупроводниковых источников белого света с биологически адекватным спектром излучения.

Ключевые слова: мобильные здания, световтоидное освещение, синий свет, зрительный нерв, митохондрия, астроцит, глаукома, биологически адекватный спектр излучения.

Арктика – зона естественного развития России. Освоение этих пространств нашей страной актуально и предполагает не только перспективы страны, но и решение текущих экономических задач. Большое значение придается Арктике как форпосту, защищающему наши северные рубежи. Уже сегодня на острове Земля Александры архипелага Земли Франца-Иосифа построена одна из баз министерства обороны «Арктический триллион», а всего в Арктической зоне планируется построить шесть военных городков, 13 аэродромов, наземный авиационный полигон, 10 технических позиций для радиолокационных станций и пунктов наведения авиации. Предполагается, что на этих базах будет размещаться несколько тысяч военнослужащих, которые большую часть времени года будут находиться в условиях полярной ночи или в помещениях при искусственном освещении, спектр которого не адекватен спектру солнечного света.

Известно, что недостаточное качество освещение может привести к дрейфу циркадной фазы, особенно в сочетании с нарушением сна ночью. Более низкие уровни света в течение дня также могут вызывать сонливость. Наш организм требует как периодов яркости, так и темноты в течение дня для поддержания оптимального суточного ритма, дисгармонизация которого может привести к физиологическим изменениям, так и к нарушениям здоровья и, как следствие, к снижению работоспособности и интеллектуальной деятельности.

Утверждают, что таланты древнетрекского философа Диогена развивались благодаря жизни в бочке.
ке. Десятки тысяч работающих на «северах» людей удобно и тепло жили, живут и будут жить в металлических бочках – цельнометаллическом цилиндрическом унифицированном блоке (ЦУБ), или в «цубиках», и лишь иногда чувствуя себя Диогенами... [1].

Животворящий свет превращает бочку в жилище человека и благоприятно влияет на его здоровье и творческую работоспособность.

Идея жить в освещенных цилиндрических домах оказалась живучей и практичной. Ей покорились просторы севера, космоса и морские глубины. Цилиндрическая форма обеспечивает высокую надежность при транспортировке по бездорожью и минимальные металлоемкость, трудоемкость изготовления и стоимость.

Широкое распространение получил дом-бочка ЦУБ-2М – жилой модуль со всеми необходимыми коммунальными удобствами, рассчитанный на проживание четырех человек при формировании вахтовых поселков на севере и иных отдаленных местностях СССР. В армии ЦУБ используются в качестве жилищ и укрытий при размещении войск вне населенных пунктов. Цельнометаллические унифицированные блоки полной заводской готовности для военных обладают преимуществом немедленной готовности к заселению, так как имеют внутри необходи́мое встроенное оборудование – откидные полки для сна, столы, санитарно-технические устройства.

Все перечисленные особенности позволяли создавать максимальный комфорт проживания в блоках ЦУБ-2М в трассовых условиях севера, когда основным источником света были лампы накаливания.

На рис. 1 приведена современная планировка мобильного здания для проживания восьми человек – модель «САВА А8», 8,0×2,4, или «САВА А8», 8,0×2,8 [2].

В разное время для освещения блоков ЦУБ применялись источники света от ламп накаливания до люминесцентных и энергосберегающих ламп, на смену которым пришло светодиодное освещение. Для этого обратимся к ГОСТ 23274-84, авторы которого предусмотрели применение светодиодного освещения. В подпункте 3.4.4 данного документа указано: «Для электрического освещения помещений зданий следует, как правило, применять осветительные приборы с люминесцентными и светодиодными источниками света. Допускается применение ламп накаливания в случаях невозможности применения указанных выше типов источников света». При этом возникает вопрос правомочности использования ярких светодиодных источников света в низкопотолочных помещениях по ГОСТ 22853-86, в соответствии с которым размеры контейнерных зданий должны соответствовать значениям, приведенным в табл. 1.

Для низкопотолочных мобильных зданий (высота 2200 мм) очень важно оценить фотобиологическую безопасность люминесцентных ламп и LED Tubes на соответствие стандарта IEC 62471:2013 [3]. При высоте помещения 2200 мм светильники находятся на близком расстоянии от глаз человека. При этом для оценки фотобезопасности очень важна за- висимость показателя приведенной яркости светильника от расстояния до глаз. Такие зависимости были получены для расстояния 200 мм и далее до 1000 мм в работах F. Leccese и др. [3], а результаты представлены на рис. 2, 3.
Нерациональное освещение как риск здоровью в условиях Арктики

Таблица 1

Наименование здания	Ширина, мм	Длина, мм	Высота помещений*, мм			
Буксируемые** с несъемной ходовой частью	2500	+	+	+	+	Не менее 2200
Перевозимые*** и буксируемые со съемной ходовой частью	3000	–	+	+	+	То же 2400
3000	–	+	+	+	+	

П р и м е ч а н и я:
* – высота помещения блок-контейнера – расстояние от чистого пола до потолка. В случае непрямолинейного очертания потолка высота помещения блок-контейнера принимается по среднему между наибольшим и наименьшим значениями;
** – буксируемые здания – здания, имеющие собственную съемную или несъемную ходовую часть;
*** – перевозимые здания – здания, не имеющие собственной ходовой части (блок-контейнеры).

Рис. 2. Общие характеристики светодиодной лампы Led Tube и люминесцентной лампы

Рис. 3. Сравнение приведенной яркости в диапазоне синего света между светодиодными (темно-серый) и люминесцентными лампами (светло-серый) с различными цветовыми температурами на расстоянии 0,20 м

Рис. 4. Зависимость приведенной яркости светодиодных трубок и люминесцентных ламп с цветовой температурой 6000 K в зависимости от расстояния [4]
Сегодня хорошо известно, что одним из важнейших факторов обитаемости, способным привести к развитию различных патологических состояний, сопровождающихся снижением работоспособности, является неадекватное освещение.

Поскольку в спектре излучения современных белых светодиодов преобладает синий компонент (440–460 нм), имеющий наибольшую фотохимическую активность в отношении ретинального пигментного эпителия, многие исследователи указывают на высокую потенциальную опасность светодиодов [7]. Подавляющее большинство литературных данных, указывающих на потенциальную фотохимическую опасность светодиодного освещения, опираются на результаты опытов с животными.

Так, исследования, выполненные на японских перепелах (Coturnix japonica), показали, что под действием света синих светодиодов происходит изменение в сосудистой оболочке глаза, а также фотоиндукционные изменения субклеточных структур ретинального пигментного эпителия. В данных исследованиях также было показано, что умеренное синее светодиодное освещение (440–460 нм) вызывает у молодых животных 1,5-кратную перегрузку метаболизма сетчатки (по сравнению с лампами накаливания), приводящую к ее ускоренному старению и снижению функциональной активности структур гематоретинального барьера [8].

Результаты данных исследований подтверждают гипотезу о том, что сине-голубая часть спектра обладает более выраженной способностью вызывать фотохимическое повреждение сетчатки, чем желто-зеленая и красная части.

Однако ряд зарубежных и отечественных экспертов [8] считают, что результаты экспериментов на животных не могут быть напрямую экстраполированы на человека из-за выраженных морфофундаментальных различий их зрительного анализатора и человеческого, а также из-за несоответствия лабораторных условий естественной световой среде обитания людей.

Эксперименты с участием человека немногочисленны и в основном связаны со исследованиями уровней мелатонина в ночной время. Первыми вопрос о сертификации светодиодных светильников по медицинским нормам подняло руководство Центрального научно-исследовательского института Министерства обороны Российской Федерации (ЦНИИ МО РФ). Но провести такую работу в 2007 г. за средства Министерства обороны РФ не удалось. В 2008 г. военное ведомство США инициировало работу по теме «Спектрально динамический свет для активного управления суточным циклом» (SB082-055 «A Spectrally Dynamic Berth Light for Active Circadian Cycle Management») [9]. Стоимость работы составила 98 990 долларов. Эти исследования четко показали, что под воздействием синей части спектра света на короткий срок значительно менялась работоспособность личного состава объекта ВМФ [10, 11].

Для ВМФ США светодиодные светильники разрабатывала фирма Energy Focus, которая получила контракт на 1 600 000 000 долларов. Roger Buelow – ведущий специалист этой фирмы отмечал: «Повторное исследование DARPA вновь подтвердило развитие суточного ритма под влиянием улучшения освещения для военно-морского флота. Эти источники света регулируют их спектр в течение дня для улучшения сна и производительности. В армии это особенно важно для бойцов, чьи обязанности включают 24-часовую оперативную готовность» [12].

Одной из последних работ, посвященных влиянию светодиодов на психическую работоспособность оператора, которая привлекла наш интерес, стала диссертация А.Е. Смолеевского 4.

Исследования выполнялись на базе ГНЦ РФ Институт медико-биологических проблем РАН в период 2014–2015 гг. и являлись частью многолетней комплексной программы экспериментальных исследований «Гермокамерные испытания светодиодных светильников для космических летательных аппаратов с оценкой психофизиологических эффектов их использования». Исследование выполнялось на выборках, состоящих из здоровых добровольцев мужчин, и проводилось в два этапа – при постоянном и динамическом освещении в течение 12 суток.

Фоновые значения показателей психической работоспособности и психоэмоционального состояния оценивались в условиях люминесцентного освещения с цветностью 4000 К («нейтрально-белый» свет). Лампы располагались в камере ограниченного объема таким образом, чтобы создаваемые ими фоновые значения показателей психической работоспособности соответствовали требованиям 1 и были сопоставимы по значению с уровнями освещенности 200 люкс, создаваемыми экспериментальными светодиодными светильниками. Оценка «эффектов последействия» светодиодного света также производилась в условиях люминесцентного освещения.

На первом этапе оценивались психофизиологические эффекты постоянного светодиодного освещения, создаваемого борцовыми светильниками ССД301, ССД305 и ССД307. Светильники ССД301

4 Смолеевский А.Е. Психическая работоспособность оператора в условиях светодиодного освещения с различными спектрально-энергетическими характеристиками: дис. … канд. мед. наук. – М.: ГНЦ РФ-ИМБП, 2018. – 133 с.
5 ГОСТ Р 50804-95. Среда обитания космонавта в пилотируемом космическом аппарате. Общие медико-технические требования [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: http://docs.cntd.ru/document/gost-r-50804-95 (дата обращения: 12.04.2019).

Анализ риска здоровью. 2020. № 1
были установлены в туалетах и переходном отсеке, светильники ССД305 и ССД307 – в жилом и лечебном отсеках. Коррелированная цветовая температура (КЦТ) системы освещения составляла 4000 К, а уровень освещенности 200 люкс. Поскольку спектрально-энергетические характеристики светильников ССД311 во время работы изменились в широком диапазоне, психическая работоспособность операторов оценивалась при двух значениях КЦТ: 4000–5000 К и 8000 ± 800 К.

К сожалению, в работе не были приведены спектрально-энергетические характеристики светодиодных светильников ССД301, ССД305, ССД307 и ССД311, а представлены только типы светодиодов, примененных в светильниках, фирм CREE и Seoul Semiconductor. Для гигиенической оценки спектральной характеристики примененных светильников мы приводим спектры на светодиоды фирмы CREE (рис. 5).

Можно предположить, что спектры примененных светодиодных светильников мало отличались от таковых вышеуказанных фирм, если разработчик указанных светодиодов ЗАО НПЦ НИИ микроприборов не применял специальных мер корректировки спектров светодиодов.

Из представленного на рис. 5 спектра светодиодов фирмы CREE видно следующее:
– спектр имеет повышенную дозу синего света по сравнению с гигиенически безопасным солнечным светом при том же уровне освещенности;
– в спектре максимум приходится на дозу синего света 450 нм – воздействие на сетчатку (на синапсы дендритного поля ганглиозных клеток зрительного канала сетчатки);
– уровень синего света, воздействующий на ганглиозные клетки глаза, находится на уровне 60 % от максимального значения синего 450 нм – не очень выраженное воздействие на гормональную систему (уровня мелатонина, кортизола) и комфортность сна;
– исходя из физиологии глаза, первыми воспринимают синий свет ганглиозные клетки и их дендритное поле. Избыточная доза синего света влияет на работоспособность ганглиозных клеток, которые воспринимают сигналы других фоточувствительных клеток сетчатки, реагирующих на световые стимулы;
– в спектре есть четкий провал 480 нм. Фотонный поток голубого света 480 нм отвечает за управление диаметром зрачка глаза и его удержание в закрытом состоянии. Расширенный зрачок при светодиодном свете не ограничивает световой поток с избыточной дозой синего света.

В статье [13] выявлено, что для светодиодов, спектр которых приведен на рис. 5, была установлена зависимость диаметра зрачка от яркости (рис. 6).

При общей освещенности 200 люкс уровень яркости от белого листа бумаги будет менее чем 100 cd/m². Это значит, что диаметр зрачка глаза будет расширен более 3,5 мм. При таких уровнях освещенности и спектрах излучения можно предположить наличие повышенного риска «эффектов последействия» при работе аккомодационного аппарата, а также наличие стохастических эффектов при работе клеток сетчатки и психических изменений в состоянии человека, вызванных повышенной дозой синего света (от 4500 до 8000 ± 800 К).

В табл. 2 представлена обобщенная информация о психическом состоянии операторов в условиях светодиодного освещения при различных режимах работы освещения. Работа проводилась по методике «Профиль настроения» – российский аналог вопросника Profile of mood states, широко применяемого в изоляционных и космических экспериментах.

Приведенные данные наглядно показывают, что светодиодное освещение значительно влияет на психическое состояние некоторых операторов, что может вызывать негативные последствия в малых коллективах в замкнутых пространствах. Понимание этого вывода очень важно для сохранения доброжелательной атмосферы среди лиц, выполняющих ответственные задания в тяжелых условиях Севера или гидрообъектов.
По результатам проведенных исследований автором работы было отмечено снижение отдельных функциональных показателей:
– запаса относительной аккомодации (на 14,3 % по медиане);
– суммарной границы поля зрения на синий и зеленый цвета (на 6,3 и 9,1 % по медиане соответственно) без развития субъективной симптоматики. Однако у 25 % операторов после пребывания в светодиодной световой среде произошло уменьшение показателя критической частоты слияния мельканий (КЧСМ) (у оператора 3 – на четыре единицы (до 42/42 после 38/38), у оператора 6 – на три единицы (до 45/45 после 42/42)).

Представляет интерес исследование паттерна ЭРГ (ПЭРГ), характеризующего функцию макулярной области (Р50) и ганглиозных клеток сетчатки (Н95) [14]. Паттерн-электроретинограмма (ПЭРГ) является наиболее чувствительным тестом для определения функции ганглиозных клеток. При первичной глаукоме (ПОУГ) первично поражаются ганглиозные клетки [15]. В данной работе приведены значения показателей (Р50) и (Н95) у пациентов с начальной глаукомой. Исследование выполнено на базе консультативной поликлиники ГАУЗ РКОБ МЗ РТ. В исследовании участвовали 21 пациент с ПОУГ. Обобщенные результаты первых измерений приведены в табл. 3.

Шкала показателей	Операторы, у которых изменились значения показателей, усл. ед., по сравнению с фоном (в условиях освещения люминесцентных ламп)	Показатели ПЭРГ у пациентов с начальной глаукомой	Показатели ПЭРГ
Усталость – инертность	У 4 повысилась на 2–9 усл. ед., у 4 снизилась на 1–3 усл. ед., у 2 осталась без изменений	Латентность Р (50), мс 74 ± 3,3	Латентность № 95, мс 118 ± 4,2
Усталость – инертность	У 3 повысилась на 2–9 усл. ед., у 3 снизилась на 2–4 усл. ед., у одного осталась без изменений	У 5 повысилась на 10–20 усл. ед. (в 2–3 раза), у 2 снизилась на 2–3 усл. ед., у одного осталась без изменений	
Водород – активность	У 6 снизилась на 2–8 усл. ед., у 3 повысилась на 1–6 усл. ед., у одного осталась без изменений	У 5 повысилась на 10–20 усл. ед., у 2 снизилась на 2–3 усл. ед., у одного осталась без изменений	
Напряженность – беспокойство	У 4 увеличилась на 1–4 усл. ед., у 4 снизилась на 1–7 усл. ед., у 2 осталась без изменений	У 4 увеличилась на 5–12 усл. ед., у 2 снизилась на 1–3 усл. ед., у 2 осталась без изменений	
Растерянность – замешательство	У одного повысилась на 3 усл. ед., у 5 снизилась на 1–2 усл. ед., у 4 осталась без изменения	У 4 повысилась на 1–10 усл. ед., у 3 снизилась на 1–2 усл. ед., у одного осталась без изменения	
Интегральный показатель настроения – «Общее изменение настроения»	У 5 выросла на 5–25 %, у 4 снизилась на 15–20 %, у одного осталась без изменений	У 5 вырос на 30–230 %, у 3 снизился на 5–30 %, операторов без изменений нет	

Форма отклика сигнала ПЭРГ была стандартизирована ISCTV (International Society for Clinical Electrophysiology of Vision) [16]. Стандартный вид отклика приведен на рис. 7, на котором изображены уровни Р (50) и № 95 для начальной стадии глаукомы. В работе В.В. Егорова и др. [18] приведены нормальные отклики ПЭРГ (рис. 8).

Данная форма отклика содержит два основных компонента: положительный примерно в 50–55 мс (Р50) и отрицательный примерно в 85–90 мс (Н95). В нашем случае наиболее информативным является параметр латентности. Обращает на себя внимание, что у 25 % операторов после пребывания в светодиодной световой среде произошло уменьшение показателя критической частоты слияния мельканий (КЧСМ) (у оператора 3 – на четыре единицы (до 42/42 после 38/38), у оператора 6 – на три единицы (до 45/45 после 42/42)).

6 Standards, Guidelines and Extended Protocols [Электронный ресурс] // International Society for Clinical Electrophysiology of Vision. – URL: https://iscev.wildapricot.org/standards/ (дата обращения: 12.04.2019).
внимание, что запас по латентности стандартного ПЭРГ показателя № 95 очень маленький и равен 23 мс, что соизмеримо для показателя Р (50) – 24 мс. Эти запасы могут быть израсходованы за годы жизни пациентов.

В табл. 4 приведены обобщенные результаты исследования ПЭРГ.

Из представленных данных видно, что при светодиодном освещении с цветовой температурой более 4000 К, но менее 8800 К, по показателю № 95 время латентности увеличивалось от 2 до 19–28 мс. Этот «эффект последействия» сохранялся при измерениях, которые проводили специалисты отдела клинической физиологии зрения им. С.В. Кравкова ФГБУ «Московского НИИ глазных болезней им. Гельмгольца» Минздрава России.

Излучение биологического действия света на человека остается актуальной проблемой гигиены освещения. Экспериментально на клеточном, биологическом и психофизиологическом уровнях доказана биологическая неадекватность естественного и искусственного света равной интенсивности, которая сохраняется и при повышении уровня освещенности от искусственных источников света [19].

Таблица 4

Оператор	Глаз	Порядок воздействия	Размер ячеек 0,8°	Размер ячеек 0,3°	
		П50 T (мс)	№ 95 T (мс)	П50 T (мс)	№ 95 T (мс)
1	Правый	До	48,3	55,7	98,3
		После	53,9	105,7	
	Левый	До	52,8	50,4	95,5
		После	52,1	105,3	
2	Правый	До	50,4	50,4	92,3
		После	50,4	111,8	
	Левый	До	51,1	54,6	92,6
		После	50,7	98,3	
3	Правый	До	53,9	54,2	97,9
		После	57,1	50	89,5
	Левый	До	52,5	54,6	96,9
		После	55,3	98,3	
4	Правый	До	53,2	53,5	96,9
		После	52,5	98,3	
	Левый	До	49,3	92,6	97,6
		После	52,1	87,7	
Это говорит о том, что следует провести более глубокие исследования по изучению устойчивой работы водородной, натриевой и хлорной АТ-фазы в схеме натрий-кальциевого, хлорного транспорта в клетках (их дендритах и митохондриях) в условиях воздействия избыточной дозы синего света 450 нм.

Изменение концентрации ионов приводит к изменению потоков воды через мембрану клетки и изменению ее pH [21]. На перенос указанных ионов значительно влияет свет, воздействующий на белки соответствующих рецепторов. В работах R.J. Sizemore и др. [22], В. Шевченко [23] говорится, что классическими оптогенетическими инструментами являются белки галородопсин, археародопсин и канальный родопсин (рис. 9). Галородопсин и археародопсин используются для деактивации нейронов, они блокируют передачу нервного импульса. Под действием света галородопсин переносит отрицательно заряженные ионы хлора внутрь клетки, тем самым вызывая гиперполяризацию нейрона. Археародопсин выкачивает протоны (положительные заряды) из клетки, что, естественно, также гиперполяризует нейрон. И галородопсин, и археародопсин – это так называемые насосы, помпы. Если вокруг есть нужный им ион (а он есть почти всегда), то, поглотив квант света, эти белки активно перенесут ион с одной стороны мембраны на другую.

Синий свет с длинной волны 470 нм стимулирует белок ChR2 для переноса ионов Na⁺ и Ca²⁺. При этом необходимо отметить, что хлор поглощает свет в области длины волны 250–450 нм [24]. Ионы хлора совместно с гамма-аминомасляной кислотой (ГАМК) в области длины волны 250–450 нм [24]. Ионы хлора совместно с гамма-аминомасляной кислотой (ГАМК) используются для деактивации нейронов, они блокируют передачу нервного импульса. Под действием света галородопсин переносит отрицательно заряженные ионы хлора внутрь клетки, тем самым вызывая гиперполяризацию нейрона. Археародопсин выкачивает протоны (положительные заряды) из клетки, что, естественно, также гиперполяризует нейрон. И галородопсин, и археародопсин – это так называемые насосы, помпы. Если вокруг есть нужный им ион (а он есть почти всегда), то, поглотив квант света, эти белки активно перенесут ион с одной стороны мембраны на другую.

Синий свет с длинной волны 470 нм стимулирует белок ChR2 для переноса ионов Na⁺ и Ca²⁺. При этом необходимо отметить, что хлор поглощает свет в области длины волны 250–450 нм [24]. Ионы хлора совместно с гамма-аминомасляной кислотой (ГАМК) используются для деактивации нейронов, они блокируют передачу нервного импульса. Под действием света галородопсин переносит отрицательно заряженные ионы хлора внутрь клетки, тем самым вызывая гиперполяризацию нейрона. Археародопсин выкачивает протоны (положительные заряды) из клетки, что, естественно, также гиперполяризует нейрон. И галородопсин, и археародопсин – это так называемые насосы, помпы. Если вокруг есть нужный им ион (а он есть почти всегда), то, поглотив квант света, эти белки активно перенесут ион с одной стороны мембраны на другую.

Количество астроцитов в 20 раз превышает количество нейронов. Астроциты участвуют в гормон-индуцированных перестройках синапсов, выполняющих эндокринные функции [28]. Ученые Школы медицины Калифорнийского университета в Сан-Диего (University of California, San Diego School of Medicine), Школы медицины Университета Джона Хопкинса (Johns Hopkins University School of Medicine) и Института Кеннеди Кригера (Kennedy Krieger Institute) продемонстрировали, что некоторые нейроны передают функцию утилизации ненужных им митохондрий – крошечных внутриклеточных энергетических станций – клеткам гли, известным как астроциты. Ученые сосредоточили свое внимание на аксонах ганглионарных клеток сетчатки – нейронов, передающих визуальную информацию от глаза к головному мозгу [29].
Внутринейронный ионный состав является важным фактором, определяющим функционирование мозга. Существует доказательство того, что аномальный томоэласт клеточной концентрации CL (глютаминовая кислота) вызывает совместно с Na и Ca2+ нарушение возбудимости нейронов и нервной передачи и тем самым способствует развитию неврологических состояний [30–33].

Все нейродегенеративные заболевания объединяет несколько признаков: тенденция к прогрессированию с медленной потерей функций; селективная потеря определенных популяций нейронов в результате апоптоза; транссинаптическая дегенерация (первичная, вторичная); обобщение механизмов клеточной смерти - остатитивный стресс и глуатаминд токсичность. Накопление "мусора" внутри клеток может быть причиной развития нейродегенеративных процессов [29]. Клетки сетчатки глаз имеют поле дендритов, и можно предположить, что патология синапсов дендритов является одним из самых ранних признаков этого процесса. При этом ганглиозные клетки сетчатки с измененными дендритами показывают ослабленный ответ на зрительные стимулы, что подтверждает прямую связь дегенерации дендритов и зрительной дисфункции, а синапсы являются наиболее уязвимым местом при дегенеративном процессе, приводящем к гибели клеток.

В отличие от электроэнцефалограммы, отражающей активность коры головного мозга, зрительные вызванные корковые потенциалы (ЗВКП) позволяют более продолжительное наблюдение за работой зрительного анализатора. Детальное изучение данного феномена и выяснение его связи с функциональной активностью сетчатки и головного мозга потребует более продолжительного исследования с участием большого количества волонтеров.

Митохондрии являются органеллами, которые выполняют многие важные функции, в том числе предоставление энергии клеткам. Клетки удаляют поврежденные митохондрии через процесс, называемый митофагией. Митофагия считается подмножеством процесса, называемого аутофагией, с помощью которого поврежденные органеллы доставляются в лизосомы для деградации. Тем не менее показано, что в месте, называемом головкой зрительного нерва, большое количество митохондрий выходит из нейронов, чтобы быть деградированными в лизосомах прилегающих глиальных клеток. Этот вывод ставит под сомнение предположение о том, что клетка обязательно деградирует свои собственные органеллы.

Важнейшей функцией астроцитов является ликивизация деградирующих митохондрий ганглиозных клеток (клеток), которые поддерживают их жизнеспособности и надежного устойчивого функционирования в условиях световой нагрузки глаза. Подобно механизму поглощения митохондрий ганглиозных клеток рассмотрен в работах T.C. Burdett et al. [34], N.N. Osborne et al. [35], S. LaFee [36]. Этот процесс взаимодействия митохондрий и астроцитов принципиально важен в условиях воздействия на диапазоны света.

Проведенные автором исследования показали, что применение светодиодного освещения на базе светодиодной технологии «синий кристалл, покрытый желтым люминофором» сопряжено со значительным риском нарушения работы зрительного анализатора в перспективе. В частности, он указывает: «Если планировка и габариты гермообъекта предполагают продолжительное совместное пребывание нескольких членов экипажа в одном помещении, то желательно обеспечить экипаж очками со специальными линзами. Такие очки позволят не только облегчить адаптацию членов экипажа к световой нагрузке, но и сузят зрительное утомление оператора при работе со средствами отображения информации». Также автор отмечает: «При использовании режима светодиодного освещения с дополнительным присутствием синей составляющей в спектре излучения светильника следует соблюдать осторожность. Длительное регулярное использование такого режима освещения может привести к морфофункциональным изменениям зрительного анализатора (повреждение хрусталика и сетчатки глаза), изменениям настроения (повышенная возбудимость, раздражительность, гнев, враждебность), развитию ин-

7 Панюшкин Л.А. Клинико-морфологические особенности зрительного пути при глаукоме и при болезни Альцгеймера: дис. … канд. мед. наук. – М., 2015. – С. 106.
8 Смоляевский А.Е. Указ. соч.
сомнений (затруднение засыпания, нарушение структуры и качества сна)".

Это заключение особенно важно, поскольку персонал северных мобильных городков и военнослужащие надводных и подводных кораблей будут находиться в этих условиях гораздо больше 12 суток проведения эксперимента.

Обращает на себя внимание, что автор использовал зарубежные источники света, которые, по нашему мнению, будут недоступны для оборудования северных военных городков в случае усиления напряженности между нашими странами. Хотя в России специалистами ВНИИГ Роспотребнадзора и ЗАО «ЭЛТАН» в инициативном порядке были разработаны теоретические основы концепции "светодиодных источников света с биологически адекватным спектром" (рис. 11) [37].

Разработанная технология запатентована, что обеспечивает приоритет России в области создания энергоэффективных светодиодных источников белого света с биологически адекватным спектром излучения. Для уменьшения эффекта влияния низконтенсивного "синюшного" светодиодного света необходимо, чтобы спектр белого света светодиодного источника излучения приближался к таковому лампы накаливания, а еще лучше – к спектру солнечного света с гигиенически безопасной цветовой температурой 3000 К.

Этот спектр белого света не имеет недостатков, присущих стандартному белому светодиоду (синий кристалл, покрытый желтым люминифором) – наличия значительной дозы красного света. Данный спектр является непрерывным и по составу соответствует спектру солнечного света при безопасной цветовой температуре 3000 K.

Мы считаем, что применение полупроводниковых источников белого света с биологическим адекватным спектром излучения обеспечит:

– уменьшение негативного влияния света на зрительный анализатор и гормональную систему человека;
– условия для дополнительной экономии электроэнергии за счет снижения уровня освещенности на рабочих местах при заданной производительности труда почти в два раза;
– стабильность светового потока и заданные показатели надежности для системы освещения.

Выводы:
1. В России разработана оригинальная технология, позволяющая создавать светодиодные лампы белого света с биологически адекватным спектром света. Мировой приоритет этой технологии защищен патентами.
2. Можно рекомендовать авторам ГОСТ 23274-84 «Здания мобильные (инвентарные). Электрические установки. Общие технические условия» в подпункте 3.4.4 данного документа указать: «Для электрического освещения помещений мобильных зданий следует, как правило, применять осветительные приборы с люминесцентными лампами и светодиодными источниками белого света с биологически адекватным спектром излучения».
3. Выбор между светодиодным освещением с постоянными спектрально-энергетическими характеристиками и динамическим освещением зависит от конкретных условий и решаемых задач: оптимизация баланса процессов возбуждения и торможения в ЦНС или более выраженное активирующее действие на большинство показателей психоэмоционального состояния.
4. Необходимо расширить исследования новых источников освещения применительно к задачам медицины труда, военной и коммунальной гигиены, общей и профессиональной патологии в интересах сохранения здоровья населения и укрепления оборонноспособности нашей страны.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы статьи заявляют об отсутствии конфликта интересов.

Список литературы

1. Скупов Б. Цилиндрический унифицированный блок. Мобильный дом для жизни в экстремальных условиях [Электронный ресурс] // Строительный эксперт. Портал для специалистов архитектурно-строительной области. – URL: https://ardexpert.ru/article/6227 (дата обращения: 12.04.2019).
2. Жилые вагон-дома. Для обеспечения комфортных условий проживания и работы на Крайнем Севере [Электронный ресурс] // САВА сервис. Завод мобильных зданий. – URL: https://www.savaservis.ru/catalog/vagon-doma/zhilye/ (дата обращения: 12.04.2019).

9 Смолеевский А.Е. Указ. соч.
We assessed health risks for operators who had to live in mobile houses in the Arctic regions. Inadequate lighting is a most significant factor related to housing conditions that can cause various pathologies resulting in decreasing working capacity. We revised data on impacts exerted by luminous and LED lighting on operators and it allowed us to determine reasons for “aftereffects” produced by LED lighting regarding an increase in latency in No. 95 pattern electroretinogram (PERG); this latency characterizes a situation with ganglionic cells in the visual analyzer. We put forward a hypothesis that lower “inhibition” efficiency was caused by absorption of blue light within 380–450 nanometers range, and an increase in PERG P50 amplitude was caused by an additional increase in Na⁺, Ca⁺ ions flows when ChR2 protein absorbed excessive 470 nm blue light against a blue light dose in a luminous lamp spectrum.

We showed that there were practically no changes in operators’ health after they had been exposed to dynamic LED lighting; however, all the participants in the experiment had a W-like splitting in P100 peak in visually induced cortical potentials as a response to stimuli with different angle sizes. When ganglionic cells are exposed to blue lighting, interaction between their degrading mitochondria and astrocytes becomes very important. LED lighting results in damage to mitochondria in ganglionic cells. Mitochondria are moved to the optic nerve head to be utilized where they are absorbed by astrocytes and eliminated with their lysosome. Should a speed of degrading mitochondria inflow exceed a speed at which they are utilized, it will cause mechanic strains in fibers of the optic nerve head due to “mitochondria jam”; this, in its turn, can lead to long-term disorders in the optic nerve head and glaucoma occurrence.

© Kaptsov V.A., Deinego V.N., 2020

Valerii A. Kaptsov – Doctor of Medical Sciences, The Corresponding Member of the RAS, Head of the Occupational Hygiene Department (e-mail: kapcovva39@mail.ru; tel.: +7 (499) 15-33-628; ORCID: http://orcid.org/0000-0002-3130-2592).

Vitalii N. Deinego – Senior researcher (e-mail: vn-led@bk.ru; tel.: +7 (916) 530-68-82).
We formulated recommendations for the State Standard 23274-84 “Mobile houses. Electrical appliances. Overall technical conditions” and advised applying semi-conductor white light sources in them as they had a biologically adequate irradiation spectrum.

Key words: mobile houses, LED lighting, blue light, optic nerve, mitochondrion, astrocyte, glaucoma, biologically adequate irradiation spectrum.

References

1. Skupov B. Tsilindricheskies unifitsirovannyi blok. Mobil'nii dom dlya zhizni v ekstremal'nykh usloviiakh [A cylindrical unified block. A mobile house for living under extreme conditions]. stroitel'nyi ekspert. Portal dlya spetsialistov architekturno-stroitelnoi oblasti. Available at: https://arxesper.ru/article/6227 (12.04.2019) (in Russian).

2. Zhiyliy vagon-doma. Dlya obsepleniiya komfortnykh usloviyi prozhivaniya i raboty na Krainem Severе [Mobile houses used for providing comfortable conditions for living and working in the Polar Regions]. CABA servis. Zavod mobil'nikh zdaniy. Available at: https://www.savaservis.ru/catalog/vagon-dom;i/zhiyliy/ (12.04.2019) (in Russian).

3. Leccese F., Vandelanotte V., Salvadori G., Rocca M. Blue Light Hazard and Risk Group Classification of 8 W LED Tubes, Replacing Fluorescent Tubes, through Optical Radiation Measurements. Sustainability, 2015, vol. 7, no. 10, pp. 13454–13468. DOI: 10.3390/su71013454

4. Vandelanotte V., Leccese F., Corucci T., Rocca M. Optical Radiation Measurements and Risk Group Determination of 8W LED Tubes for General Lighting. CIRLAIF National Congress Environmental Footprint and Sustainable Development Perugia, Italy, 2015, pp. 1–11.

5. Bazyleva L.V., Bolekhyan V.N., Ganapolskii V.P. Svetodiody v kachestve osnovnogo osveshcheniya: problem i puti resheniya [LEDs as a basic lighting source: issues and ways to resolve them]. Materialy 3-go Azatsko-Tikhookeanskogo kongressa po voennoi meditsine: sbornik tezisov konferentsii, Sankt-Peterburg, 2016, pp. 7–8 (in Russian).

6. Bolekhyan V.N., Ganapolskii V.P., Shchukina N.A., Bazyleva L.V. Kompleksnoe issledovanie osveshcheniya v klassakh funktsional'nogo sostoyaniya organizma cheloveka [A complex examination of impacts exerted by LED lighting sources on functional state of a human body]. Meditsina i zdraavoekhranenie: materialy V Mezhdunarodnoi nauchnoi konferentsii, Kuz邦 Publ., 2017, pp. 85–88 (in Russian).

7. Zak P.P., Ostrovskiy M.A. Potential danger of light emitting diode illumination to the eye, in children and teenagers. Svetotekhnika, 2012, no. 2, pp. 4–6 (in Russian).

8. Smoleevskiy A.E., Man'ko O.M., Bubeev Yu.A., Smirnova T.A. Psychophysiological effects of led lighting in conditions of the hermetic objects. Izvestiya Rossiskoi voenno-meditsinskoi akademii, 2018, vol. 37, no. 2, pp. 124–127 (in Russian).

9. SB082-055 A Spectrally Dynamic Berth Light for Active Circadian Cycle Management. SBIR. STTR. America’s seed fund, 2010. Available at: https://www.sbir.gov/sbirsearch/detail/166396 (12.04.2019).

10. Deinego V.N., Kaptsov V.A., Balashevich L.I., Svetlova O.V., Makarov F.N., Guseva M.G., Koshits I.N. Prevention of ocular diseases in children and teenager in classrooms with led light sources of the first generation. Rossiiskaya detskaya oftal'mologiya, 2016, no. 2, pp. 57–73 (in Russian).

11. SB082-055 A Spectrally Dynamic Berth Light for Active Circadian Cycle Management. SBIR. STTR. America’s seed fund, 2010. Available at: https://www.sbir.gov/sbirsearch/detail/131805 (12.04.2019).

12. Energy Focus, Inc. Receives $ 1.6 Million to Develop LED Lighting for DARPA and NASA. LIGHTimes Online – LED Industry News. Available at: http://www soliditylighting.net/energy-focus-inc-receives-1-6-million-to-develop-led-lighting-for-darpa-and-nasa/ (12/04/2019).

13. Rao F., Chan A.H.S., Zhu X.-F. Effects of photopic and cirtopic illumination on steady state pupil size. Vision Research, 2017, vol. 137, pp. 24–28. DOI: 10.1016/j.visres.2017.02.010

14. Kuryshkova N.I., Kiseleva T.N., Khodak N.A., Irtegovoy E.Yu. Issledovanie bioelektriesskoi aktivnosti i krovosnabzheniya setchatki pri glaukome RMZh [Research on bioelectrical activity and blood supply to the retina in patients with glaucoma]. RMZh. Klinicheskaya oftal'mologiya, 2012, vol. 13, no. 3, pp. 91–94 (in Russian).

15. Amirov A.N., Zainutdinov I.I., Zvereva O.G., Korobitsin A.N. Elektroretinograficheskie pokazateli sostoyaniya setchatki i irokevnoego narva u pacientov POUM primenyaushchikh Travanat [Electroretinogram parameters showing a state of the retina and optic nerve in patients with primary simple glaucoma who take Travanat]. Novosti glaukomy, 2016, vol. 37, no. 1, pp. 83–84 (in Russian).

16. Bach M., Briggell M.G., Hawlin M., Holder G.E., Johnson M.A., McCulloch D.L., Meigen T., Viswanathan S. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Ophthalmol, 2013, no. 126, pp. 1–7. DOI: 10.1007/s10633-012-9353-y

17. Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog. Retin. Eye Res, 2001, vol. 20, no. 4, pp. 531–561. DOI: 10.1016/s1350-9462(00)00030-6

18. Egorov V.V., Smolyakova G.P., Borisova T.V., Gokhua O.I. Fizioteraipiya v oftal'mologii: monografiya dlya vychel'scoy i fizioterapevтов [Physiotherapy in ophthalmology: a monograph for ophthalmologists and physiotherapists]. Khabarovsk: Red.-izd. tsentr IPKSZ Publ., 2010, 335 p. (in Russian).

19. Skoberavza Z.A., Teksheva L.M. Biologicheskie aspekty gigienicheskoi otsenki estestvennogo i iskusstvennogo osveshcheniya [Biological aspects in hygienic assessment of natural and artificial lighting]. Svetotekhnika, 2003, no. 4, pp. 7–13 (in Russian).

20. Zefirov A.L., Mukhamedyarov M.A. Elektricheskie signaly vozbudimykh kletok [Electrical signals in excitable cells]. Kazan', Kazanskii gosudarstvennyi meditsinskii universitet Publ., 2008, pp. 119 (in Russian).

21. Chamma I., Chevy Q., Ponceur J.C., Lévi S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front. Cell. Neurosci, vol. 21, no. 6, pp. 5. DOI: 10.3389/fncel.2012.00005
22. Sizemore R.J., Seeger-Armbruster S., Hughes S.M., Parr-Brownlie L.C. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. *J. Neurophysiol*, 2016, vol. 115, no. 4, pp. 2124–2146. DOI: 10.1152/jn.01131.2015
23. Shevchenko V. Svet, kamera … nervnyi impul's! [Light, camera … a nerve impulse!] *Biomolekula*, 2017. Available at: https://biomolecula.ru/articles/svet-kamera-nervnyi-impuls/#source-5 (12.04.2019) (in Russian).
24. Fioletovyi [Violet]. *Spravochnik khimika 21*. Available at: http://chem21.info/info/193001/(12.04.2019) (in Russian).
25. Puller C., Haverkamp S., Neitz M., Neitz J., Neuhaus S.C.F. Synaptic Elements for GABAergic Feed-Forward Signaling between HII Horizontal Cells and Blue Cone Bipolar Cells Are Enriched beneath Primate S-Cones. *PLoS One*, 2014, vol. 9, no. 2, pp. e89863. DOI: 10.1371/journal.pone.0088963
26. Makarov S.S., Dzhebrailova Y.N., Gracheva M.E., Grachev A.A., Gubskii L.V. Mathematical modeling of group of neurons and astrocytes in ischemic stroke. *Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova*, 2012, vol. 112, no. 8 (2), pp. 59–62 (in Russian).
27. Drone M.A. A mathematical model of ion movements in grey matter during a stroke. *Journal of Theoretical Biology*, 2006, no. 240, pp. 599–615. DOI: 10.1016/j.jtbi.2005.10.023
28. Teresina E.V. Obosnovanie metabolicheskoi sostavlyayushchei perfuzionnoi sredy dlya izolirovannogo mozga [Substantiating a metabolic component in perfusion medium for an isolated brain]. Rossiya-2045. *Strategicheskie obschestvennoe dvizhenie*, 2014. Available at: http://2045.ru/news/32991.html (13.04.2019) (in Russian).
29. Davis C.O., Kim K.-Y., Bushong E. A., Mills E.A., Boassa D., Shih T., Kinebuchi M., Phan S. [et al.]. Transcellular degradation of axonal mitochondria. *PNAS*, 2014, vol. 111, no. 26, pp. 9633–9638. DOI: 10.1073/pnas.1404651111
30. Rahmati N., Hoebeek F.E., Peter S., De Zeeuw C.I. Chloride homeostasis in neurons with special emphasis on the Olivocerebellar system: differential roles for transporters and channels. *Front. Cell. Neurosci*, 2018, no. 12, pp. 101. DOI: 10.3389/fncel.2018.00101
31. Go M.A., Daria V.R. Light-neuron interactions: key to understanding the brain. *Journal of Optics*, 2017, vol. 19, no. 2, pp. 023002. DOI: 10.1088/2040-8986/19/2/023002
32. Delpeire E., Staley K.J. Novel determinants of the neuronal Cl− concentration. *J. Physiol*, 2014, vol. 1, no. 592 (19), pp. 4099–4114. DOI: 10.1113/jphysiol.2014.275529
33. Duebel J., Haverkamp S., Schleicht W., Feng G., Augustine G.J., Kuner T., Euler T. Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. *Neuron*, 2006, vol. 5, no. 49 (1), pp. 81–94. DOI: 10.1016/j.neuron.2005.10.035
34. Burdett T.C., Freeman M.R. Astrocytes eyeball axonal mitochondria. Retinal neurons transfer mitochondria to astrocytes for rapid turnover to meet energy demands. *Science*, 2014, vol. 25, no. 345 (6195), pp. 385–386. DOI: 10.1126/science.1258295
35. Osborne N.N., Del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. *Current Opinion in Pharmacolog*, 2013, vol. 13, no. 1, pp. 16–22. DOI: 10.1016/j.coph.2012.09.002
36. LaFee S. Getting rid of old mitochondria: Some neurons turn to neighbors to help take out the trash. *UC San Diego*, 2014. Available at: https://www.technology.org/2014/06/17/getting-rid-old-mitochondria-neurons-turn-neighbors-help-take-trash/(13.04.2019).
37. Kaptsov V.A., Deinego V.N., Ulassik V.N. Semiconductor sources of white light with biologically adequate radiation spectrum. *Glas*, 2018, vol. 119, no. 1, pp. 25–33 (in Russian).

Kaptsov V.A., Deinego V.N. *Irrational lighting as a health risk occurring in the arctic*. *Health Risk Analysis*, 2020, no. 1, pp. 177–190. DOI: 10.21668/health.risk/2020.1.18.eng

Получена: 29.10.2019
Принята: 09.02.2020
Опубликована: 30.03.2020