Phylogenetic analysis of Newcastle disease viruses isolated from wild birds in the Poyang Lake region of China

Shengtao FAN1,2), Tiecheng WANG2), Xiaolong GAO3), Ying YING4), Xue LI5), Yongcheng LI5), Yuanguo LI2), Jinzhu MA2), Heting SUN5), Dong CHU5), Yu XU5), Songtao YANG2), Qihan LI1), Yuwei GAO2)* and Xianzhui XIA2)*

1) Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650011, PR China
2) Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, No. 666, Luoying Xiliu, Jingyue Economic Development Zone, Changchun 130122, PR China
3) State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
4) College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
5) General Station for surveillance of wildlife Diseases & Wildlife Borne Disease, State Forestry Administration, Shenyang 110086, PR China

(Received 14 February 2014/Accepted 21 March 2015/Published online in J-STAGE 3 April 2015)

ABSTRACT. Newcastle disease virus (NDV) causes a highly contagious viral disease in poultry and wild birds, and it can cause significant economic loss worldwide. Eight viral strains were isolated by inoculating embryonated chicken eggs from the Poyang Lake region of China with swab samples. All eight of the NDV isolates were identified as class I genotype 3 strains, but they diverged notably from class II viruses. Further analysis revealed that all eight NDV isolates were lentogenic strains containing the 112ERQER117 motif at the F protein cleavage site. The strains were highly identical and were more species specific (chicken and waterfowl) than site specific (Nanchang and Duchang regions). The close phylogenetic proximity of these isolates indicates that viral transmission may happen between poultry and wild birds. Our study demonstrates that lentogenic class I NDVs exist in clinically healthy wild waterfowl and poultry within the Poyang Lake region. Active surveillance of these viruses to determine their evolution and origin is one of the most realistic strategies for preventing and controlling NDV outbreaks.

KEY WORDS. genotype, Newcastle disease virus, phylogenetic analysis, Poyang Lake

Newcastle disease virus (NDV) is a member of the Avulavirus genus in the Paramyxoviridae family and the Mononegavirales order [6]. It causes a highly contagious viral disease in wild birds worldwide, and it can cause severe economic losses in the poultry industry [1, 9, 23]. This non segmented and negative single-stranded RNA virus has a genome of 15,186 to 15,198 nucleotides encoding six major proteins: phosphoprotein (P), nucleoprotein (NP), hemagglutinin-neuraminidase (HN), fusion (F), matrix (M) and RNA polymerase (L) [4]. As the 2 surface glycoproteins, HN and F are the major protective antigens and viral neutralization antigens. The F protein cleavage site sequence is considered to be the major molecular determinant of NDV virulence [11]. Apart from the F protein cleavage site, the HN protein also contributes to NDV virulence [7]. Phylogenetically, NDVs are classified into 2 major groups, class I and class II [5, 12]. Class I viruses encompass at least nine genotypes [17]; however, in a recent study, these have been condensed into a single genotype [8]. These viruses are almost exclusively lentogenic and are found in waterfowl and at live bird markets [26]. Class II viruses are generally more virulent and are primarily responsible for the infections observed in pet birds and poultry [3] and are divided into different genotypes [5, 22, 24]. Some studies have indicated that wild birds and waterfowl may play a significant role in the evolution of NDV [16, 18, 21]. However, epidemiological and virological information about NDVs circulation in wild birds and waterfowl is still known little, and their potential to cause disease in domestic poultry is extraordinarily limited. Wild aquatic birds are thought to be the natural reservoirs of NDVs of both classes, but they predominantly harbor lentogenic strains [1, 18]. However, some lentogenic strains have the potential to become velogenic after transmission and circulation within poultry populations [27].

Poyang Lake is the largest freshwater lake in China and is an important breeding site for many migratory birds. Thus, there are opportunities for the transmission of viruses among waterfowl, which increases the risk of poultry being exposed to these strains. Here, we report our NDV screening results from wild waterfowl in the Nanchang, Jiujiang and Duchang sites near Poyang Lake. The NDV isolates in this study were characterized by sequencing to determine the genotypes and pathotypes involved.
A total of 284 swab samples were collected from three sites in Jiangxi province (Fig. 1) from March to July of 2013. The collected samples were inoculated into 9-day-old embryonated specific-pathogen-free (SPF) chicken eggs and incubated for 48 hr at 37°C. The presence virus of allantoic fluid was confirmed using the hemagglutination (HA) assay [1] and hemagglutination inhibition (HI) assay with NDV-specific polyclonal antiserum. Of these, eight samples from three bird species (Anas poecilorhyncha, Anser cygnoides and chicken) contained NDV based on HI analysis. The total isolation rate was 2.8% (4/143 in Nanchang City, 4/119 in Duchang County and 0/22 in Jiujiang County) (Table 2).

To evaluate the pathogenic potential of the isolated viruses, standard assay methods were used to determine the intracerebral pathogenicity index (ICPI) in 1-day-old SPF chicks and the mean death time (MDT) in 9-day-old embryonated SPF chicken eggs [14]. The MDT values of two strains isolated from chicken were 96 hr, however, the MDT values of six strains isolated from wild bird were more than 120 hr. The ICPI values of all 8 strains were 0, indicating that they were all lentogenic. It has been proven that cleavage of the NDV F protein is a major determinant of NDV virulence. The amino acid sequence of the F protein cleavage site is \(112^{R/K-R-Q-R/K-R\downarrow F}117\) for velogenic and mesogenic strains; however, the lentogenic strains F cleavage site is \(112^{G/E-K-R-Q-G/E-R\downarrow F}117\) [7, 17]. In addition, the HN protein also contributes to NDV virulence [7]. To gain a better understanding of NDV virulence in the Poyang Lake samples, the complete F and HN sequences were recovered from the eight isolates. All eight isolates were identified as lentogenic strains containing the \(112^{ERQER\downarrow L}117\) motif at the F protein cleavage site.

The coding regions of F and HN genes isolated were used for analysis. Prediction of amino acid sequences and alignment of sequences were performed using MegAlign in the Lasergene V 7.1. The fusion gene was amplified using the following primers: forward primer (47–69): 5’-ATGAATCCCAAGCCCTACCAG-3’ and reverse primer (1686–1708): 5’-TTACATCTTGGTCGCTTGCCT-3’. The HN gene was amplified as described previously [15]. The PCR products were sequenced as described previously [10]. Based on different genotypes, all eight isolates shared unique substitutions (N2-for-D, T93-for-A, D104-for-E, H337-for-Y and N489-for-D) in the F protein sequences compared with other class I viruses (Table 3, other aligned reference sequences are shown in Table S1). Nineteen specific residue substitutions were found in the Class I genotype 3 viruses HN protein sequences compared with other class I viruses (Table 4, other aligned reference sequences are shown in Table S2), and all eight isolates showed unique T 43-for-A, S60-for-P/T and S 577-for-A substitutions compared with other class I genotype 3 viruses. A comparison of the HN protein sequences between chicken strains (Ab859010 and Ab859008) and other class I genotype 3 viruses (including 6 wild bird strains isolated) was performed, and the following substitutions E 293-for-G, I580-for-T and I 590-for-V were found in chicken strains.

The amino acid sequences of the F protein were compared for the 8 isolates, and the sequence identities ranged from 98.5 to 99.5%. The amino acid identities for the 8 isolates
Table 1. Details of F and HN genes used in this study

GenBank accession number	Isolate name	Fusion gene cleavage site (112–117)	Class	Genotype	HN gene	Country
EF564833	Canada goose/US (OH)/87-78/1987	ERQER↓L	I	1	-	USA
HQ008337	Duck/China/JS10/2010	ERQER↓L	I	2	-	China
KF055275	Duck/China/Ch/D10/2009	ERQER↓L	I	2	-	China
JF893453	Duck/China/JX07/2007	ERQER↓L	I	2	-	China
EU493454	Pochard/Finland/13193/2006	ERQER↓L	I	2	-	Finland
HQ398788	Duck/China/NDV09-014/2009	ERQER↓L	I	3	-	China
HQ398789	Duck/China/NDV09-015/2009	ERQER↓L	I	3	-	China
HQ398790	Duck/China/NDV09-016/2009	ERQER↓L	I	3	-	China
FJ597594	Duck/China/D_ZJ_20_05/2005	EQQER↓L	I	3	-	China
FJ597597	Duck/China/D_SD_29_05/2005	EQQER↓L	I	3	-	China
JN688865	Goose/Jiangsu' G-JS-09-08/2009	EQQGR↓L	I	3	-	China
FJ597588	Duck/China/D JS _17_05/2005	EQQER↓L	I	3	-	China
FJ597600	Duck/China/D_ZJ_30_05/2005	EQQER↓L	I	3	-	China
EF564813	Green winged teal/US (AK)/176/1998	ERQER↓L	I	4	-	USA
EF564825	Mallard/US (MD)/02-336/2002	ERQER↓L	I	4	-	USA
AY626267	Duck/U.S./154979-1/2001	ERQER↓L	I	5	-	USA
AY626266	Duck/U.S./119535-1/2001	ERQER↓L	I	6	-	USA
AY626268	Chicken/U.S./101250-2/2001	ERQER↓L	I	6	-	USA
EF564819	Red knot/US (DE)/2026/2000	ERQER↓L	I	7	-	USA
EF564820	Mallard/US (MD)/04-125/2004	ERQER↓L	I	7	-	USA
JN941987	Northern Pintail/Idaho/19663-2/2009	ERQER↓L	I	7	-	USA
EF564815	Dunlin/US (DE)/A100-2093/2000	ERQER↓L	I	8	-	USA
EF564831	Ruddy turnstone/US (DE)/401/2004	ERQER↓L	I	8	-	USA
EF565029	Blue winged teal/US (TX)/02-11/2002	ERQER↓L	I	9	-	USA
AB858995*	Anser cygnoides/Duchang/J17-13-F/2013	ERQER↓L	I	3	-	China
AB858996	Anas poecilorhyncha/Nanchang/J72-13-F/2013	ERQER↓L	I	3	-	China
AB859001	Anas poecilorhyncha/Nanchang/J70-13-F/2013	ERQER↓L	I	3	-	China
AB859002	Chicken/Nanchang/J2-13-F/2013	ERQER↓L	I	3	-	China
AB858997	Anser cygnoides/Duchang/J55-13-F/2013	ERQER↓L	I	3	-	China
AB858998	Anas poecilorhyncha/Duchang/J77-13-F/2013	ERQER↓L	I	3	-	China
AB858999	Anas poecilorhyncha/Duchang/J80-13-F/2013	ERQER↓L	I	3	-	China
AB859000	Chicken/Nanchang/J36-13-F/2013	ERQER↓L	I	3	-	China
FJ597604	Duck/China/D/AH/6/04/2004	EKQGR↓L	II	1b	-	China
FJ597609	Duck/China/D/JS/51/05/2005	GKQGR↓V	II	1b	-	China
DQ195265	USA/LaSota/2005	GROGR↓L	II	II	-	USA
JN618349	Chicken/China/JS-3-05-Ch/2005	RQKR↓F	II	VII	-	China
DQ695677	China/NA-1/2006	RQKR↓F	II	VII	-	China
NC 00536	Goose/China/SF02/2002	RQKR↓F	II	VII	-	China
AB859003	Anser cygnoides/Duchang/J17-13-HN/2013	-	I	3	HN	China
AB859004	Anas poecilorhyncha/Nanchang/J72-13-HN/2013	-	I	3	HN	China
AB859005	Anser cygnoides/Duchang/J55-13-HN/2013	-	I	3	HN	China
AB859006	Anas poecilorhyncha/Duchang/J77-13-HN/2013	-	I	3	HN	China
AB859007	Anas poecilorhyncha/Duchang/J80-13-HN/2013	-	I	3	HN	China
AB859008	Chicken/Nanchang/J36-13-HN/2013	-	I	3	HN	China
AB859009	Anas poecilorhyncha/Nanchang/J70-13-HN/2013	-	I	3	HN	China
AB859010	Chicken/Nanchang/J2-13-HN/2013	-	I	3	HN	China
HQ997403	Chicken/China/NDV10-059/2010	-	I	3	HN	China
HQ997404	Chicken/China/NDV10-060/2010	-	I	3	HN	China
HQ997405	Chicken/China/NDV10-061/2010	-	I	3	HN	China
HQ997406	Chicken/China/NDV10-062/2010	-	I	3	HN	China
HQ997410	Chicken/China/NDV10-069/2010	-	I	3	HN	China
HQ398840	Chicken/China/NDV09-043/2009	-	I	3	HN	China
HQ398841	Chicken/China/NDV09-044/2009	-	I	3	HN	China
HQ398846	Chicken/China/NDV09-051/2009	-	I	3	HN	China
HQ398847	Chicken/China/NDV09-052/2009	-	I	3	HN	China
HQ398848	Chicken/China/NDV09-053/2009	-	I	3	HN	China
HQ398849	Chicken/China/NDV09-054/2009	-	I	3	HN	China

The bold indicated NDV strains isolated in this study
differed from other class I viruses (genotypes 1 to 9, presented in Table 1) by 3.3 to 10.8%, whereas the isolates differed from class II (presented in Table 1) viruses by 22.7 to 33.2%. The HN coding regions of the 8 isolates were 1,851 nt in length and encoded a protein product consisting of 617 amino acids. The amino acid identities for the HN regions from the isolates were compared to other class I genotype 3 viruses (presented in Table 1), and the isolates differed from the other viruses by 0.9 to 7.3%.

To estimate the risk of the viruses pose to poultry populations, it is essential to evaluate the evolution of these viruses. Prior to phylogenetic analysis, ClustalX 2.0 [19] and Lasergene V 7.1 software packages were used for sequences analysis. MEGA 5.0 software was used for phylogenetic analysis using a neighbor-joining method with 1,000 bootstrap replicates [28]. The strains of F gene are shown in Table 1. Phylogenetic analyses using the 1,662-bp region of the F gene and the 2001-bp region of the HN gene sequence indicate that all eight NDV strains form a distinct cluster within the genotype 3 viruses and are most closely related to Chinese poultry isolates. A phylogenetic analysis of F gene revealed that the isolated strains were highly identical and were more species

Location	Species	No. of samples	No. of positive (%)	Class (genotypes)
Nanchang	Anas poecilorhyncha	100	2 (2.0)	1 (3)
	Chicken	0	43 (4.7)	2 (3.9)
Jiujiang	Anser cygnoides	22	0	1 (3)
Duchang	Anas poecilorhyncha	43	2 (2.9)	1 (3)
	Anser cygnoides	37	14 (3.9)	1 (3)
Total		202	82 (2.8)	

GenBank accession number	Class	Genotype	Consensus amino acids and its position in the fusion protein
AB524405	I	1	2D 93A 104E 337Y 489D
JF893453	I	2
FJ597594	I	3
FJ597597	I	3
EF564825	I	4
AY626267	I	5
AY626266	I	6
EF564819	I	7
EF564815	I	8
AB858995-9002	I	3	N T D H N
NC 005036	II	VII	G T G . E
FJ597609	II	Ia	G T . .
DQ195265	II	IV	G T . .

Amino acids that match the consensus exactly are denoted by ‘·’

GenBank accession number	Class	Genotype	Consensus amino acids and its position in the HN protein of Class I genotype 3
AB859003			7Q 43A 52T 60p/T 61T 178F 248P 263D 293G 308I 311R 398T 423S 423P 567R/Q 577A 580T 590V
AB859005			. T . S S . . .
AB859006			E T S S E H . K C S . . .
AB859007			. T . S . S
AB859004			. T . S . S .
AB859009			T . S . L . H . S . S .
AB859010 (chicken strain)			. T . S . S .
AB859008 (chicken strain)			. T . S . S .

Amino acids that match the consensus exactly are denoted by ‘·’
specific (chicken and waterfowl) than site specific (Nanchang and Duchang regions). Two branches radiate out from class I genotype 3 (Fig. 2). The first branch contains poultry viruses, all of which originated in eastern China and were isolated between 2005 (D/ZJ/20/05, D/SD/29/05, D/JS/17/05 and D/ZJ/30/05) and 2009 (G-JS-09-08). The other cluster includes viruses associated with poultry viruses isolated in eastern China in 2009 (NDV09-014, NDV09-015 and NDV09-016) and isolated from Anas poecilorhyncha, Anser cygnoides, and chickens in our study. Anas poecilorhyncha and Anser cygnoides are found in most freshwater habitats, which are widespread throughout China. This finding indicates that class I genotype 3 viruses have also emerged in the wild bird and poultry population in China. A phylogenetic comparison of HN gene sequences from all eight NDV isolates and 11 reference NDVs from Genbank (all class I genotype 3) demonstrated that the 8 NDV strains form a distinct cluster within the genotype 3 viruses and are different from strains isolated between 2009 and 2010 (Fig. 3).

Most poultry in the Poyang Lake region are raised in a free-range style. This raises the possibility that migratory birds could introduce viruses into the local resident wild bird population, which could then distribute the virus to local domestic birds. Migratory wild birds have been shown to transmit NDVs to free-range poultry through direct contact or through the contamination of water or feed sources [29]. In our study, 2 NDVs isolated from chickens indicate that domestic poultry would shed these lentogenic viruses, which may be prevalent in local poultry populations. The close phylogenetic proximity of these isolates indicates that viral transmission may occur between poultry and wild birds. Efforts are needed to restrict the interactions between wild birds and poultry, as these 2 hosts appear to be subject to continuing exchange of NDV strains [20].

Since the discovery of NDV in 1926, ND has been regarded as endemic to many countries. Vaccination has been widely used for many years to prevent and control ND in China, but this disease is still sporadic and is a fatal viral disease for poultry industry [25]. Most NDV research has been performed on virulent isolates, and very little is known about
the evolution of lentogenic NDVs [23]. Wild aquatic birds are the natural reservoirs of NDV, and they generally harbor lentogenic strains [15], but lentogenic strains have also been detected in poultry vaccinated with live virus. However, lentogenic viruses would have the potential to increase their virulence long time or from one host to another [2, 27]. The MDT values of strains isolated from chickens are lower than those of strains isolated from wild birds. In addition, 3 residue substitutions were found in the HN protein sequences of strains isolated from chickens compared to strains isolated from wild birds. These results indicated that the MDT values and the mutation of the NDVs are related to the host. Moreover, the new host environment may play a selective forces role in the acquisition of virulence [30]. In Australia, endemic lentogenic viruses have been circulating in domestic poultry for more than 30 years, but unknown conditions have since caused these NDVs to undergo genomic changes, resulting in a more virulent genotype [13]. These results indicate that lentogenic poultry strains may exist in nature through waterfowl-to-domestic poultry transmission.

GenBank accession numbers: All the sequences (n=16) used in this study were submitted to GenBank with F gene accession numbers (AB858995-AB859002) and HN gene accession numbers (AB859003-AB859010).

ACKNOWLEDGMENTS. This work was supported by the National Key Technologies R&D Program (No.2013BAD12B04) and the Emergency Research Project on human infection with avian influenza H7N9 virus from the National Ministry of Science and Technology (No. KJYJ-2013-01-01 to Dr. Gao)

REFERENCES

1. Alexander, D. J. 2000. Newcastle disease and other avian paramyxoviruses. *Rev. Sci. Tech.* 19: 443–462. [Medline]
2. Alexander, D. J. and Parsons, G. 1986. Protection of chickens against challenge with the variant virus responsible for Newcastle disease in 1984 by conventional vaccination. *Vet. Rec.* 118: 176–177. [Medline] [CrossRef]
3. Cai, S., Li, J., Wong, M. T., Jiao, P., Fan, H., Liu, D., Liao, M., Jiang, J., Shi, M. and Lam, T. T. 2011. Genetic characterization and evolutionary analysis of 4 Newcastle disease virus isolate full genomes from waterbirds in South China during 2003–2007. *Vet. Microbiol.* 152: 46–54. [Medline] [CrossRef]
4. Chambers, P., Millar, N. S., bingham, R. W. and Emmerson, P. T. 1986. Molecular cloning of complementary DNA to Newcastle disease virus, and nucleotide sequence analysis of the junction between the genes encoding the haemagglutinin-neuraminidase and the large protein. *J. Gen. Virol.* 67: 475–486. [Medline] [CrossRef]
5. Czeglédi, A., Ujvari, D., Somogyi, E., Wehmann, E., Werner, O. and Lomniczi, B. 2006. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolu-
tionary implications. *Virus Res.* **120**: 36–48. [Medline] [CrossRef]
6. de Leeuw, O. and Peeters, B. 1999. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. *J. Gen. Virol.* **80**: 131–136. [Medline]
7. de Leeuw, O. S., Koch, G., Hartog, L., Ravenshorst, N. and Peeters, B. P. 2005. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. *J. Gen. Virol.* **86**: 1759–1769. [Medline] [CrossRef]
8. Diel, D. G., da Silva, L. H., Liu, H., Wang, Z., Miller, P. J. and Afonso, C. L. 2012. Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. *Infect. Genet. Evol.* **12**: 1770–1779. [Medline] [CrossRef]
9. Dortmans, J. C., Peeters, B. P. and Koch, G. 2012. Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? *Vet. Microbiol.* **160**: 17–22. [Medline] [CrossRef]
10. Fan, S., Sun, H., Ying, Y., Gao, X., Wang, Z., Yu, Y., Li, Y., Wang, T., Yu, Z. and Yang, S. 2013. Identification and characterization of porcine kobuvirus variant isolated from suckling piglet in Gansu province, China. *Viruses* **5**: 2548–2560. [Medline] [CrossRef]
11. Glickman, R. L., Syddall, R. J., Iorio, R. M., Sheehan, J. P. and Pratt, M. A. 1988. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. *J. Virol.* **62**: 354–356. [Medline]
12. Gould, A. R., Hansson, E., Selleck, K., Kattenbelt, J. A., Mackenzie, M. and Della-Porta, A. J. 2003. Newcastle disease virus fusion and haemagglutinin-neuraminidase gene motifs as markers for viral lineage. *Avian Pathol.* **32**: 361–373. [Medline] [CrossRef]
13. Gould, A. R., Kattenbelt, J. A., Selleck, P., Hansson, E., Della-Porta, A. and Westbury, H. A. 2001. Virulent Newcastle disease virus in Australia: molecular epidemiological analysis of viruses isolated prior to and during the outbreaks of 1998–2000. *Virus Res.* **77**: 51–60. [Medline] [CrossRef]
14. Gravendyk, M., Ammermann, P., Marschang, R. E. and Kaleta, E. F. 1998. Paramyxoviral and reoviral infections of iguanas on Honduran Islands. *J. Wildl. Dis.* **34**: 33–38. [Medline] [CrossRef]
15. Hu, B., Huang, Y., He, Y., Xu, C., Lu, X., Zhang, W., Meng, B., Yan, S. and Zhang, X. 2010. Avian influenza virus and Newcastle disease virus (NDV) surveillance in commercial breeding farm in China and the characterization of Class I NDV isolates. *Vet. Microbiol.* **144**: 82–86. [Medline] [CrossRef]
16. Jindal, N., Chander, Y., Chockalingam, A. K., de Abin, M., Redig, P. T. and Goyal, S. M. 2009. Phylogenetic analysis of Newcastle disease viruses isolated from waterfowl in the upper midwest region of the United States. *Virology J.* **6**: 191. [Medline] [CrossRef]
17. Kattenbelt, J. A., Stevens, M. P. and Gould, A. R. 2006. Sequence variation in the Newcastle disease virus genome. *Virus Res.* **116**: 168–184. [Medline] [CrossRef]
18. Kim, L. M., King, D. J., Curry, P. E., Suarez, D. L., Swayne, D. E., Stallknecht, D. E., Slemons, R. D., Pedersen, J. C., Senne, D. A. and Winker, K. 2007. Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. *J. Virol.* **81**: 12641–12653. [Medline] [CrossRef]
19. Larkin, E. K., Morris, N. J., Li, Y., Nock, N. L. and Stein, C. M. 2007. Comparison of affected sibling-pair linkage methods to identify gene x gene interaction in GAW15 simulated data. *BMC Proc.* **1** Suppl. 1: S66. [Medline] [CrossRef]
20. Lindh, E., Ek-Kommonen, C., Vaananen, V. M., Alasaari, J., Vaheri, A., Vapalahti, O. and Huovilainen, A. 2012. Molecular epidemiology of outbreak-associated and wild-waterfowl-derived Newcastle disease virus strains in Finland, including a novel class I genotype. *J. Clin. Microbiol.* **50**: 3664–3673. [Medline] [CrossRef]
21. Liu, H., Wang, Z., Wang, Y., Sun, C., Zheng, D. and Wu, Y. 2008. Characterization of Newcastle disease virus isolated from waterfowl in China. *Avian Dis.* **52**: 150–155. [Medline] [CrossRef]
22. Maminiaina, O. F., Gil, P., Briand, F. X., Albina, E., Keita, D., Andriamanivo, H. R., Chevalier, V., Lancelot, R., Martinez, D. and Rakotondravao, R. 2010. Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. *PLoS ONE* **5**: e13987. [Medline] [CrossRef]
23. Miller, P. J., Decanini, E. L. and Afonso, C. L. 2010. Newcastle disease: evolution of genotypes and the related diagnostic challenges. *Infect. Genet. Evol.* **10**: 26–35. [Medline] [CrossRef]
24. Miller, P. J., Kim, L. M., Ip, H. S. and Afonso, C. L. 2009. Evolutionary dynamics of Newcastle disease virus. *Virology* **391**: 64–72. [Medline] [CrossRef]
25. Rui, Z., Juan, P., Jingliang, S., Jixun, Z., Xiaoting, W., Shouping, Z., Xiaojiao, L. and Guozhong, Z. 2010. Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001–2009. *Vet. Microbiol.* **141**: 246–257. [Medline] [CrossRef]
26. Seal, B. S., King, D. J. and Bennett, J. D. 1995. Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. *J. Clin. Microbiol.* **33**: 2624–2630. [Medline]
27. Shengqing, Y., Kishida, N., Ito, H., Kida, H., Otsuki, K., Kawaoaka, Y. and Ito, T. 2002. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. *Virology* **301**: 206–211. [Medline] [CrossRef]
28. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* **28**: 2731–2739. [Medline] [CrossRef]
29. Warke, A., Appleby, L. and Mundt, E. 2008. Prevalence of antibodies to different avian paramyxoviruses in commercial poultry in the United States. *Avian Dis.* **52**: 694–697. [Medline] [CrossRef]
30. Zanetti, F., Berinstein, A. and Carrillo, E. 2008. Effect of host selective pressure on Newcastle disease virus virulence. *Microb. Pathog.* **44**: 135–140. [Medline] [CrossRef]