The kinase domain residue serine 173 of *S. pombe* Chk1 kinase is critical for the response to DNA replication stress

Naomi Coulton¹ and Thomas Caspari*,¹,²

¹: Genome Biology Group, Bangor University, School of Medical Sciences, Bangor LL57 2UW, United Kingdom

²: Paracelsus Medical University, Salzburg, Austria

* Corresponding Author: Dr Thomas Caspari, Bangor University, School of Medical Sciences, Bangor LL57 2UW, United Kingdom, email: t.caspari@bangor.ac.uk; phone 0044-(0)-1248382526

ORCID iD numbers: orcid.org/0000-0002-1450-4774

Key words: Chk1, kinase, cell cycle, DNA replication, checkpoint
Summary statement

Mutation of serine-173 in the kinase domain of Chk1 increases genomic instability as it abolishes the response to DNA lesions that arise while chromosomes are being copied.
Abstract

While mammalian Chk1 kinase regulates replication origins, safeguards fork integrity and promotes fork progression, yeast Chk1 acts only in G1 and G2. We report here that the mutation of serine 173 (S173A) in the kinase domain of fission yeast Chk1 abolishes the G1-M and S-M checkpoints with little impact on the G2-M arrest. This separation-of-function mutation strongly reduces the Rad3-dependent phosphorylation of Chk1 at serine 345 during logarithmic growth, but not when cells experience exogenous DNA damage. Loss of S173 lowers the restrictive temperature of a catalytic DNA polymerase epsilon mutant (cdc20.M10) and is epistatic with a mutation in DNA polymerase delta (cdc6.23) when DNA is alkylated by methyl-methanesulfate (MMS). The chk1-S173A allele is uniquely sensitive to high MMS concentrations where it displays a partial checkpoint defect. A complete checkpoint defect occurs only when DNA replication forks break in cells without the intra-S phase checkpoint kinase Cds1. Chk1-S173A is also unable to block mitosis when the G1 transcription factor Cdc10 (cdc10.V50) is impaired. We conclude that serine 173, which is equivalent to lysine 166 in the activation loop of human Chk1, is only critical in DNA polymerase mutants or when forks collapse in the absence of Cds1.
Introduction

S. pombe Chk1 is phosphorylated in its C-terminal domain at serine-345 by Rad3 (ATR) after the kinase is recruited to a broken chromosome by Rad4 (TopBP1), Crb2 (53BP1) and the Rad9-Rad1-Hus1 ring (Capasso et al., 2002) (Lopez-Girón et al., 2001) (Saka et al., 1997) (Furuya et al., 2004). Activated Chk1 delays cell cycle progression at the G2-M boundary by stimulating Wee1 to phosphorylate the inhibitory tyrosine-15 residue of Cdc2 (CDK1) kinase and by simultaneously removing the activating tyrosine phosphatase Cdc25 from the nucleus (Furnari et al., 1999) (O’Connell et al., 1997). It is generally believed that the Chk1 response in yeast is limited to G2 even though DNA replication forks collapse in S phase (Lindsay et al., 1998) (Francesconi et al., 1993) (Redon et al., 2003). *S. pombe* Chk1 performs a second, more enigmatic role in G1 where it prevents premature mitosis when the transcription factor Cdc10 is impaired (Carr et al., 1995). It also phosphorylates Cdc10 in the presence of methyl-methanesulfonate (MMS) that alkylates the DNA template to delay G1-S transition (Ivanova et al., 2013).

Unlike in yeast, human Chk1 acts mainly during S phase. It is also phosphorylated at S345 by ATR when the kinase associates with stalled DNA replication forks via Claspin (Mrc1), in a process aided by TopBP1 (Rad4) and the 9-1-1 ring. Modification of S345 depends on the additional phosphorylation of S317 and is followed by the auto-phosphorylation of Chk1 at S296 (reviewed in (González Besteiro and Gottifredi, 2015)). This auto-phosphorylation event is important for the association of Chk1 with Cdc25A and the subsequent degradation of the phosphatase (Kasahara et al., 2010). Modification of S280 by p90 RSK kinase ensures the nuclear localisation of Chk1 (Li et al., 2012). Human Chk1 associates also with DNA lesions independently of Claspin by binding to poly-ADP-ribosyl modified PARP (Min et al., 2013). Activated Chk1 blocks late replication origins by disrupting the TopBP1-Treslin complex, promotes translesion DNA polymerases, mediates homologous recombination at
broken forks through Rad51 and BRCA2, regulates fork elongation and arrests cell cycle progression by promoting the degradation of Cdc25A (reviewed in (González Besteiro and Gottifredi, 2015)). While yeast Chk1 can be deleted (Walworth and Bernards, 1996), mammalian cells depend on the kinase for viability. Interestingly, only S345 phosphorylation is required for the essential roles of Chk1 (Wilsker et al., 2008). Inhibition of human Chk1 in unperturbed cells interferes with S phase (Petermann et al., 2010) and mitosis (Zachos and Gillespie, 2007). Cdc2 (CDK1) phosphorylates human Chk1 at S286 and S301 during normal mitosis as well as in the response to DNA damage (Shiromizu et al., 2006) (Ikegami et al., 2008) with as yet unknown functional implications.

Another open question is how the catalytic activity of Chk1 is regulated. The generally accepted model predicts an auto-inhibitory complex between the N-terminal kinase domain and the C-terminal regulatory domain (Kosoy and O'Connell, 2008) (Palermo et al., 2008). This complex is thought to open up when S345 is phosphorylated by ATR (Rad3) at sites of DNA damage. Whether this model is correct is still unclear since only the N-terminal kinase domain of human Chk1 has been crystallised (Chen et al., 2000). The activation loop adopts an open conformation in this structure which implies that Chk1 does not depend on the modification by an upstream activator as many other kinases do. How Chk1 is silenced at the end of the DNA damage response is also not fully understood. Human Chk1 is degraded after its modification at S345 in a process that is independent of the other phosphorylation sites (Zhang et al., 2005). A similar degradation does not occur in yeast. Attenuation of Chk1 correlates with its dephosphorylation at S345 by Wip1 (PPM1D) in human cells (Lu et al., 2005) and by Dis2 in S. pombe (den Elzen and O’Connell, 2004). Interestingly, Wip1 is replaced by PPA2 in undamaged cells where it dephosphorylates Chk1 at S317 and S345 (Leung-Pineda et al., 2006). Currently no information is available on the regulation of Chk1 in unperturbed yeast cells.
We report here a rare separation-of-function mutation in Chk1 kinase. Mutation of serine 173 (S173A) in the kinase domain of *S. pombe* Chk1 abolishes the G1-M arrest, when cells arrest at start in a leaky *cdc10.V50* mutant stain, and the S-M arrest when DNA replication forks break in the absence of the intra-S checkpoint kinase Cds1 (Chk2). The G2-M checkpoint responses are largely intact with the exception of high MMS concentrations. Interestingly, the mutant kinase is fully phosphorylated by Rad3 at S345 upon exogenous DNA damage, but only at a very low level when logarithmically growing cells experience endogenous replication stress. The specific MMS sensitivity of *chk1-S173A* cells is epistatic with a mutation in the catalytic domain of the lagging strand DNA polymerase delta. Since S173 is equivalent to lysine 166 in the activation loop of human Chk1, a residue important for substrate recognition (Chen et al., 2000), we conclude that the corresponding section of *S. pombe* Chk1 is critical for the response to DNA replication stress.
Results

Reduced S345 phosphorylation of Chk1-S173A in unperturbed cells

Lysine 166 occupies a central position in the activation loop of human Chk1 opposite the catalytic aspartate 130 (D155 in *S.pombe*, Fig. 1A) where it may determine substrate specificity (Chen et al., 2000). The corresponding *S.pombe* residue is serine 173 (Fig. 1A) and aspartate 189 in *S.cerevisiae*.

To find out whether S173 plays a role in Chk1 activity, we mutated this residue to alanine and integrated the mutant gene with a C-terminal HA$_3$ tag (*chk1-S173A-HA$_3$*) at its endogenous locus using the Cre-lox recombination system (Watson et al., 2008). The integrated gene was amplified and the mutation was confirmed by DNA sequencing. We also integrated the wild type gene (*chk1-HA$_3$*) (Walworth and Bernards, 1996) to exclude any effects of the flanking lox DNA sequences on *chk1* expression (Fig. S1).

We first used the phos-tag electrophoresis assay (Caspari and Hilditch, 2015) to study the phosphorylation pattern of wild type Chk1 to establish a base line for the analysis of Chk1-S173A. Phos-tag acrylamide slows down the mobility of proteins relative to the extent of their phosphorylation (Kinoshita et al., 2006). We activated wild type Chk1 with the topoisomerase 1 inhibitor camptothecin (CPT) that breaks DNA replication forks in S phase (Pommier et al., 2010). As previously reported (Wan et al., 1999), CPT induced the mobility shift of Chk1-HA on normal SDS page which is triggered by the phosphorylation of S345 by Rad3 (ATR) (Capasso et al., 2002) (Fig. 1B). Analysis of the same samples on a phos-tag gel revealed a larger number of phosphorylated Chk1 forms in untreated cells and a group of additional bands when cells were treated with 10μM CPT for 3.5h (Fig. 1B,C). Since these inducible bands were absent in the S345A mutant (*chk1-S345A-HA$_3$*) (Janes et al., 2012) and in cells without Rad3 kinase (*chk1-HA$_3$ Δrad3*), they are related to the phosphorylation of serine 345 (Fig. 1C). We also noticed that the hypo-phosphorylated material of Chk1 at
the bottom of the phos-tag gel consists of at least two bands (1 & 2 in Fig 1C). Intriguingly, deletion of Rad3 kinase and mutation of its phosphorylation site S345 affected the two bands 1 and 2 differentially. While loss of the phosphorylation site advanced the mobility (i.e. reduced phosphorylation), inactivation of Rad3 had the opposite effect (i.e. increased phosphorylation)(Fig. 1C, Fig. S2A). This implies that other kinases gain access to Chk1 in the absence of Rad3. Mutation of S173 to alanine (S173A) had no obvious impact on the normal band shift when cells were treated with 12mM hydroxyurea (HU), which stalls DNA replication forks, with 10μM camptothecin (CPT) or with the UV mimetic 4-nitroquinoline 1-oxide (4-NQO) at 10μM (Fig. 1D). It resulted however in a decrease in the total amount of Chk1 (Fig. 1E; S2B).

To find out whether the unperturbed phosphorylation of Chk1 relates to cell physiology, we grew cells from an early logarithmic state into stationary phase and withdrew samples at different times (Fig. 1F). The band associated with S345 phosphorylation peaked during the most active growth phase of wild type cells (time points 2 and 3 in Fig. 1G) and was absent once cells had exited the cell cycle (time point 4 in Fig. 1G). This endogenous S345 phosphorylation of Chk1 reflects most likely the occurrence of DNA replication damage. It was however very interesting to find that the S173A mutation almost abolished S345 phosphorylation during the unperturbed growth phase (Fig. 1G, S2C,D). Given that S345 is fully phosphorylated when chc1-S173A cells experience exogenous DNA damage (Fig. 1D, 2H), we concluded that S173 is critical for checkpoint signals during an unchallenged S phase but not when exogenous DNA lesions occur. It was also interesting to find that highly phosphorylated forms (double band 3 in Fig. 1G) accumulated in stationary phase.

Chk1-S173A cells are sensitive to DNA alkylation

Since Chk1 is crucial for the G2-M checkpoint (Walworth and Bernards, 1996), we synchronised chc1-HA3 wild type and chc1-S173A-HA3 cells in G2 by lactose gradient
centrifugation (Luche and Forsburg, 2009) and released them into rich medium with or without MMS (0.05%), 4NQO (10μM) or HU (12mM) at 30°C to measure the delay time. The first telling observation came when we compared the untreated strains. While wild type cells (chk1-HA₃) entered the second cycle at around 180 min, chk1-S173A-HA₃ cells were delayed by 20 min (Fig. 2A). Such a second cycle delay is typical for agents like CPT or HU which interfere with DNA replication (Mahyous Saeyd et al., 2014). It is therefore possible that the chk1-S173A-HA₃ strain suffers from a DNA replication problem that triggers this short G2 delay. The UV mimetic 4-NQO and the DNA alkylation agent MMS blocked both the passage through the first G2 since DNA is instantly damaged, whereas HU caused the expected second cycle arrest as cells are only hit once they undergo DNA replication (Lindsay et al., 1998). While the S173A mutation had no impact on the HU arrest (Fig. 2B), it allowed cells to exit G2 slightly earlier in the presence of 4-NQO and MMS (Fig. 2C, D).

This small G2-M checkpoint defect was more prominent for the high MMS concentration as chk1-S173A-HA₃ cells started to return to the cell cycle already after 80 min compared with wild type cells which arrested throughout the experiment (Fig. 2D). This checkpoint defect correlated with a MMS sensitivity (0.05%) of the mutant strain (Fig. 2F, G). Interestingly, a similar loss of viability was not observed when the chk1-S173A-HA₃ strain was treated with HU, CPT or UV light (Fig. 2E). This is an important finding as it reveals S173A as a separation-of-function mutation. MMS modifies both guanine (to 7-methylguanine) and adenine (to 3-methyladenine) thereby inducing mismatches in the DNA that are repaired by base excision repair. Inefficient BER results in single-stranded DNA breaks independently of the cell cycle but causes DNA double-strand breaks when these gaps are encountered by a replication fork (Lundin et al., 2005). The MMS sensitivity of the chk1-S173A-HA₃ mutant was not related to a defect in S345 phosphorylation as the mutant kinase displayed the characteristic band shift on phos-tag SDS page in a concentration rage from 0.01% to
0.05% MMS (Fig. 2H). Interestingly, the S345 shift was strongest at the lowest MMS concentration of 0.01% and declined at the higher concentrations.

The MMS defect of Chk1-S173A is dose-dependent

Since phosphorylation of S345 was stronger at the lower MMS concentration of 0.01% compared to 0.05% at which the chk1-S173A mutant is sensitive and partly checkpoint defective (Fig. 2H), we analysed cell cycle progression and sensitivity again at 0.01% and 0.05%. To avoid any interference by the synchronisation protocol, we added MMS directly to asynchronous cultures and scored the number of septated G1/S cells. As previously reported (Lopez-Girona et al., 2001), chk1-S345A and checkpoint defective Δrad3Δtel1 strains failed to arrest at both MMS concentrations as their septation index remained high (Fig. 3A, C). While the chk1-S173A strain was partly checkpoint defective at 0.05% MMS consistent with the previous experiment (Fig. 2D), this defect was absent at the lower concentration of 0.01%. This concentration dependency was reflected in the MMS sensitivity. In contrast to the chk1-S345A and Δrad3Δtel1 strains, chk1-S173A cells only lost viability at 0.05% (Fig. 3B,D). Since MMS produces single-strand lesions which inhibit DNA replication and induces gene expression in a dose-dependent manner (Benton et al., 2006), the S173A mutation becomes problematic only when too many lesions affect the cell.

Chk1-S173A is defective in the G1-M checkpoint

In addition to its key role in G2, Chk1 blocks mitosis when S.pombe cells arrest at start in a cdc10.V50 mutant (Fig. 4A) (Carr et al., 1995). Cdc10 is a subunit of the MBF transcription factor complex that activates S phase genes during the G1-S transition (Lowndes et al., 1992). We constructed chk1-HA3 and chk1-S173A-HA3 double mutants with the temperature-sensitive cdc10.V50 (H362Y) allele (Marks et al., 1992) and released G2-
synchronised cells into rich medium at 30°C and 37°C (Fig. 4B, C). As reported previously (Carr et al., 1995), \textit{chk1-HA}\textsubscript{3} \textit{cdc10.V50} cells progressed through the first cycle before arresting in G2 at the restrictive temperature of 37°C (Fig. 4C). Entry into the first cycle was delayed by 60 min due to the increase in the temperature (Janes et al., 2012). While \textit{chk1-HA}\textsubscript{3} \textit{cdc10.V50} cells leaked slowly out of this G2-M arrest with only a few cells displaying the terminal cut phenotype where the new cell wall cuts through the nucleus, \textit{chk1-S173A-HA}\textsubscript{3} \textit{cdc10.V50} cells entered mitosis much faster with most cells showing the cut phenotype (Fig. 4C, D). We concluded from this experiment that the mutation of S173 impairs the G1-M checkpoint function of Chk1. Interestingly, this G1-M function of Chk1 is independent of its S345 phosphorylation as the temperature up-shift from 30°C to 37°C did not trigger the band shift on normal SDS page (Fig. 4E). We decided to utilise the leaky \textit{cdc10.V50} allele, where cells slowly exit the G1 arrest at 37°C to enter mitosis in a Chk1-dependent manner, instead of the stronger \textit{cdc10.M17} allele (Willis and Rhind, 2011) as the same allele was used in the earlier study by Carr and colleagues (Carr et al., 1995). Since Chk1 acts also upstream of Cdc10 to prevent entry into S phase when the DNA template is alkylated by MMS (Fig. 4F) (Ivanova et al., 2013), we synchronised \textit{chk1-HA}\textsubscript{3} and \textit{chk1-S173A-HA}\textsubscript{3} cells in metaphase using the cold sensitive \textit{nda3.KM311} allele (Hiraoka et al., 1984) and released cells into rich medium with or without 0.01% MMS by raising the temperature from 20°C to 30°C. This experiment would allow us to measure the delay in G1-S transition induced by MMS. Untreated wild type cells (\textit{chk1-HA}\textsubscript{3} \textit{nda3.KM311}) initiated DNA replication between 40 min and 60 min post-release which increased the DNA content from 2C to 4C (Fig. 4G, H). The mutant strain (\textit{chk1-S173A-HA}\textsubscript{3} \textit{nda3.KM311}) showed a similar behaviour but displayed one interesting difference. Not all cells were able to escape the mitotic arrest as they maintained a 2C DNA content (Fig. 4H). The delayed exit from the metaphase arrest could be linked with the ability of \textit{S.pombe} Chk1 to sustain
the activation of the spindle checkpoint that delays metaphase-to-anaphase transition (Collura et al., 2005). Hence, the S173A mutation may prolong this mitotic arrest. The addition of MMS delayed the accumulation of the 4C DNA content in both strains, with the S173A mutant showing a more pronounced effect (Fig. 4I). This led us to conclude that the S173A mutation affects only the down-stream function of Chk1 that restrains mitosis in the cdc10.V50 mutant, but not the up-stream function which delays G1-S transition in the presence of MMS.

Chk1-S173A fails to respond to broken replication forks in the absence of Cds1

The next decisive observation came when we analysed the S-M checkpoint response to broken DNA replication forks. As long as the structural integrity of a stalled fork is protected by Cds1 kinase, Chk1 activity remains low (Xu et al., 2006). Cds1 (Chk2) kinase shields stalled replication structures from nucleases and recombination enzymes (Kai et al., 2005) (Boddy et al., 2003). Chk1 is however strongly activated when forks break in the absence of Cds1, and cells without Chk1 and Cds1 are completely checkpoint defective (Lindsay et al., 1998). To test whether the S173A mutation impairs this response, we combined the chk1-S173A-HA3 allele with the deletion of cds1 (Δcds1). The double mutant was as HU sensitive as the Δchk1 Δcds1 strain strongly implying that the activation loop mutation blocks Chk1 activation when replication forks collapse in the absence of Cds1 (Fig. 5A). This conclusion was confirmed when we released G2-synchronised chk1-S173A-HA3 Δcds1 cells into rich medium with 12mM HU. Like the checkpoint defective Δchk1 Δcds1 strain, the chk1-S173A-HA3 Δcds1 mutant entered a fatal mitosis 140min post-release (Fig. 5B). The majority of cell died while they re-entered the cell cycle indicated by the cut phenotype where one daughter cells is anuclear or where the new wall cuts through the single nucleus (Fig. 5C). Collectively, these results demonstrate an outright dependency of cells on serine 173 when replication forks break in the absence of Cds1. As in the earlier experiments, Chk1-
S173A was fully phosphorylated at S345 in Δcds1 cells (Fig. 5D). These results imply a defect of Chk1-S173A down-stream of collapsed replication forks in the absence of Cds1. To our knowledge this is the first chk1 allele with this Cds1-specific defect.

Chk1-S173A reduces the viability of DNA polymerase epsilon mutant cells

Because deletion of *S.pombe* chk1 compromises the viability of temperature-sensitive mutants of DNA polymerase delta and epsilon (Francesconi et al., 1995), we combined mutant alleles in the three replicative DNA polymerases alpha (*swi7-H4*), delta (*cdc6.23*) and epsilon (*cdc20.M10*) with either *chk1-HA* or *chk1-S173A-HA*. While testing cell growth at the semi-restrictive temperature of 33°C, we noticed that the S173A mutation specifically reduced the viability of the pol epsilon (*cdc20.M10*) mutant as the *chk1-S173A-HA* *cdc20.M10* double mutant grew only very poorly compared to the *chk1-HA* *cdc20.M10* strain (Fig. 6A). DNA polymerase epsilon synthesises the leading strand (Pursell et al., 2007), is involved in long-patch BER (Wang et al., 1993), associates with the DNA replication checkpoint protein Mrc1 (Claspin) (Lou et al., 2008) and establishes heterochromatin (Li et al., 2011). The reduced viability at 33°C could suggest two roles of Chk1. Either the kinase responds to replication problems associated with the leading strand or it promotes DNA pol delta that can remove mismatches left behind by pol epsilon (Flood et al., 2015). Phos-tag analysis showed that some hypo-phosphorylated material was absent from Chk1-S173A, but this was the case for both, pol delta and epsilon (Fig. 6B).

We next synchronised the strains in early S phase using the HU protocol (Luche and Forsburg, 2009) and released them back into the cell cycle to follow their progression into G2. While the S173A mutation had no impact in the case of DNA polymerase delta (*chk1-S173A-HA* *cdc6.23*) (Fig. 6C), it did advance cell cycle progression in the DNA polymerase epsilon strain (*chk1-S173A-HA* *cdc20.M10*) (Fig. 6D). The mutation in the activation loop
allowed cells to acquire a G2 (2 copies, 2C) DNA content 90 min post-release, approximately 30 min earlier than the wild type Chk1 kinase (chk1-HA3 cdc20.M10). We did however find no evidence of S345 phosphorylation in any mutant strain during this experiment (Fig. 6E). The faster progression of the chk1-S173A-HA3 cdc20.M10 mutant could explain why the pol epsilon strain loses viability at the semi-permissive temperature. The S173A mutation might block the phosphorylation of a down-stream target that is crucial for a reduction in leading strand synthesis when DNA polymerase epsilon is impaired or when pol delta needs to remove mismatched nucleotides.

The MMS sensitivity of Chk1-S173A is linked with DNA polymerase delta

Given the requirement of pol delta for the removal of alkylated bases by BER (Blank et al., 1994), we tested the genetic relationship between chk1-S173A-HA3 and cdc6.23. Intriguingly, the mutation in the catalytic subunit of pol delta affected survival on MMS plates differentially depending on whether the chk1-HA3 wild type or chk1-S173A-HA3 mutant allele was present. While cdc6.23 cells containing the wild type kinase were MMS sensitive, cdc6.23 cells with the mutant kinase displayed some degree of resistance (Fig. 7A). We followed this observation up by conducting an acute survival test at 0.025% MMS and noticed that the chk1-HA3 cdc6.23 double mutant was significantly more MMS sensitive than the pol delta (cdc6.23) single mutant that contains the untagged chk1 gene (Fig. 7B). This implies that the tagged chk1-HA3 allele, which has been used in many studies (Walworth and Bernards, 1996), differs from the untagged gene in a cdc6.23 mutant background. Intriguingly, the mutation in the activation loop suppressed this hyper-sensitivity to a level observed for the chk1-S173A-HA3 single allele (Fig. 7B). Collectively, these data show that the MMS sensitivity of the chk1-S173A mutation is epistatic with the cdc6.23 mutation in the catalytic subunit of pol delta at 30°C and that the mutation also suppresses the damaging
activity of the tagged wild type Chk1 kinase. The nature of this activity is as yet unknown. We suspect however that the C-terminal tag interferes with the repair function of pol delta in BER (Blank et al., 1994). To test whether the polymerase mutations interfere with S345 phosphorylation of Chk1 and Chk1-S173A, the corresponding strains were treated with 0.01% MMS at 30°C and also exposed to the semi-permissive temperature of 33°C without MMS. While both Chk1 proteins were phosphorylated at S345 in the presence of MMS, the phosphorylation of the wild type kinase was lower in the pol delta mutant coinciding with its high MMS sensitivity (Fig. 7C). Chk1 was only weakly S345 modified at 33°C in both polymerase mutants indicating that no or very little endogenous DNA damage occurs under these conditions.
Discussion

The only separation-of-function conditions known so far are the phosphorylation of S317 of human Chk1, which is only required for the DNA damage response but not for its essential functions (Wilsker et al., 2008), and the mutations E92D and I484T in *S.pombe* Chk1 which affect the S-M checkpoint but only at 37°C (Francesconi et al., 1997). We report here a new separation-of-function mutation, S173A in the kinase domain of *S.pombe* Chk1, that abolishes the G1-M arrest in a *cdc10.V50* strain background and the S-M checkpoint in HU-treated Δ∗cds1* cells without affecting the G2-M arrest in the presence of exogenous DNA damaging agents. When *chk1-S173HA* cells arrest at start during the G1-S transition due to the *cdc10.V50* mutation, they cannot prevent mitosis (Fig. 4C,D). A similar problem arises when DNA replication forks break in HU medium in the absence of Cds1 (Fig. 5B, C). Since *cdc10.V50* cells arrest with unreplicated chromosomes at start (Luche and Forsburg, 2009), both Chk1 requirements must reflect distinct G1-M and S-M checkpoint activities of Chk1.

What is however intriguing is that the *chk1-S173A* mutant is not CPT sensitive (Fig. 2E), although camptothecin also breaks DNA replication forks (Pommier et al., 2010). This implies that the S173A mutation is only critical when Cds1 is absent. Since Cds1 protects damaged forks from nucleases and recombinases (Kai et al., 2005) (Boddy et al., 2003), it is possible that the mutation affects a DNA repair factor that is redundant as long as Cds1 is active. The DNA damage signal must reach Chk1-S173A as the mutant kinase is phosphorylated at S345 in the presence of CPT (Fig. 1D), 4-NQO (Fig. 1D), MMS (Fig. 2H) and HU (Fig. 1D). It is therefore unlikely that the S173A mutation interferes with Rad3 activation at damaged chromosomes involving Crb2 (53BP1), Rad4 (TopBP1) and the 9-1-1 ring (Furuya et al., 2004). Since the corresponding lysine-166 in human Chk1 is involved in substrate specificity (Chen et al., 2000), it is more likely that the S173A mutation blocks the phosphorylation of a down-stream target that is required to restrain mitosis in *cdc10.V50*
mutant cells and when forks break in \textit{cds1} deletion cells (Fig. 8A). This target appears to be distinct from Wee1 and Cdc25 because the \textit{chk1-S173A} strain is able to block mitosis when \textit{cds1+} cells are treated with HU or the UV mimetic 4-NQO (Fig. 2B, C). A clear difference exists however when DNA is alkylated at high MMS concentrations (0.05\%) as \textit{chk1-S173A} cells have a partial G2-M checkpoint defect (Fig. 2D, Fig. 3C) and are sensitive (Fig. 2G; 3D). Since MMS introduces single-strand DNA damage, the dose-dependency of the checkpoint defect and the sensitivity implies a role of S173 only when these lesions reach a high threshold. Such a threshold may be the conversion of single-strand lesions in close proximity into double-strand breaks or a more pronounced arrest of replication forks when both DNA strands are alkylated.

The genetic link between DNA polymerase delta and Chk1-S173A may hint at the unknown target that cannot be activated in a \textit{chk1-S173A} strain. The observation that the kinase domain mutation reduces the viability of the pol epsilon (\textit{cdc20.M10}) mutant at 33°C (Fig. 6A) could be explained by the faster progression through S phase (Fig. 6D). This faster progression may however be linked with DNA polymerase delta given that pol epsilon needs pol delta to repair any remaining mismatches in the leading strand which are not removed by its own 3’-exonuclease activity (Flood et al., 2015). Pol delta is also able to replicate the leading and the lagging strand once a fork has collapsed (Miyabe et al., 2015). The requirement of S173 for viability of the pol epsilon (\textit{cdc20.M10}) mutant could therefore mean that Chk1 is involved in the repair activities of pol delta either when mismatched bases remain in the leading strand after MMS treatment or when the leading strand is elongated by pol delta during the homologous recombination dependent re-start of collapsed replication forks in HU-treated \textit{Δcds1} cells (Fig. 8A). This conclusion is strengthened by the epistatic relationship between \textit{chk1-S173A} and \textit{cdc6.23}, the catalytic subunit of pol delta (Fig. 7B).
A second interesting characteristic of the S173A mutation is the separation of the S345 phosphorylation from endogenous DNA lesions that normally trigger Chk1 modification by Rad3 (Fig. 1G). Although S345 is normally phosphorylated in chk1-S173A cells after exposure to exogenous DNA damaging agents (Fig. 1D), it is only very poorly modified during unperturbed growth (Fig. 1G; S2C,D). Since DNA replication stress is the most likely source of endogenous damage in growing cells, the S173A mutation appears to reduce this risk, but how? The best explanation provides the requirement of mammalian Chk1 for the regulation of the replication speed indirectly through its control of origin firing (Petermann et al., 2010). An increase in active origins reduces replication speed and if fast replication in wild type cells is the source of the endogenous Chk1-S345 phosphorylation, the S173A mutation may suppress this modification by being defective in the suppression of origins. In other words, a higher number of active origins in the S173A strain may alleviate replication stress by slowing down fork progression. In summary, S173A is a rare separation-of-function mutation of Chk1 that may help to dissect its role in S phase where it might link post-replication repair by DNA polymerase delta with a block over mitosis. The identification of its proposed target will however require more work. It is intriguing that one of the other known separation-of-function mutations, E92D (Francesconi et al., 1997), sits at the beginning of a loop opposite the activation loop where S173A is (Fig. 8B).
Materials and Methods

Yeast strains

The genotype of the strains used in this study is ade6-M210 leu1–32 ura4-D18. The rad3 gene was deleted with the ade6+ gene and the cds1 gene was deleted with ura4+. The chk1 gene was deleted with kanMX4 antibiotic resistance gene. chk1-S345A-HA3 (h- ade6-M210 chk1::loxP-chk1-S345A-HA3-loxM leu1-32 ura4-D18); chk1-S173A-HA3 (h- ade6-M210 chk1::loxP-chk1-S173A-HA3-loxM leu1-32 ura4-D18) (Fig. S1). See figure legends for further details.

Base strain construction and integration of the Chk1 point mutations

The base strain was constructed as described in (Watson et al., 2008). The loxP and loxM Cre-recombinase recognition sequences were integrated 84nt upstream of the start codon and 84nt downstream of the stop codon (Fig. S1A) using the primers Base-1 and Base-2 (Fig. S1C). The point mutations S173A and S345A were introduced using fusion PCR as reported in (Janes et al., 2012). Genomic DNA from the chk1-HA3 strain (Walworth and Bernards, 1996) was used as the PCR template to introduce the C-terminal HA affinity tag. The two overlapping chk1 gene segments were amplified using the primers Base-3 and the mutation reverse primer, and the primer Base-4 and the mutation forward primer (Fig. S1C). The full-length fusion fragments were cloned into the lox-Cre integration plasmid using the restriction enzymes Sphi and SacI. Integration of the mutated chk1-HA3 genes resulted in the loss of 4nt upstream of the start codon and of 17nt downstream of the stop codon (Fig. S1B).
Cell synchronisation

Cells were synchronised as described in (Luche and Forsburg, 2009). HU was used at a final concentration of 15mM for 3.5h at 30 °C in rich medium. Lactose gradients were centrifuged for 8min at 800rpm. The *nda3.KM311* mitotic arrest was performed in rich medium as reported in (Nakazawa et al., 2011). One volume of pre-warmed medium (40°C) was added to the 20°C medium to quickly raise the temperature to 30°C at the up-shift to re-start the cell cycle.

Flow cytometry

The DNA content was measured using a CUBE 8 (Sysmex) instrument as described in (Luche and Forsburg, 2009). The histograms were produced using the free Flowing Software (http://flowingsoftware.btk.fi/)

Phos-tag SDS page

Phostag gels (6%) were prepared and run as reported in (Caspari and Hilditch, 2015).

Survival assays

The drop tests and acute survivals assays are described in (Kai et al., 2006).

Antibodies

Anti-HA antibody (BioScource, Covance MMS-101P-200)
Acknowledgements
The authors would like to thank Dr. Jacqueline Hayles (The Francis Crick Institute, London, UK) for supplying the cdc10.V50 strain.

Author Contributions
NC performed some experiments. TC performed some experiments, designed the study and analysed the results.

Competing Interests
No competing interest declared.

Funding
This work was not supported by a research grant. It was part of a research-informed teaching program in which students (NC) engage with original research over a period of 3 years in the modules MSE-2021 Genomic Instability & Disease, MSE-3013 Research Project and MSE-4073 Medical Master Research Project. The expenditure was funded indirectly by tuition fee income to Bangor University.
References

Benton, M. G., Somasundaram, S., Glasner, J. D. and Palecek, S. P. (2006). Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation. *BMC Genomics* 7, 305.

Blank, A., Kim, B. and Loeb, L. A. (1994). DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. *Proc. Natl. Acad. Sci. U. S. A.* 91, 9047–9051.

Boddy, M. N., Shanahan, P., McDonald, W. H., Lopez-Girona, A., Noguchi, E., Yates III, J. R. and Russell, P. (2003). Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. *Mol. Cell. Biol.* 23, 5939–5946.

Capasso, H., Palermo, C., Wan, S., Rao, H., John, U. P., O’Connell, M. J. and Walworth, N. C. (2002). Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest. *J. Cell Sci.* 115, 4555–4564.

Carr, A. M., Moudjou, M., Bentley, N. J. and Hagan, I. M. (1995). The chk1 pathway is required to prevent mitosis following cell-cycle arrest at “start.” *Curr. Biol. CB* 5, 1179–1190.

Caspari, T. and Hilditch, V. (2015). Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S. pombe. *PloS One* 10, e0130748.

Chaves-Sanjuan, A., Sanchez-Barrena, M. J., Gonzalez-Rubio, J. M., Moreno, M., Ragel, P., Jimenez, M., Pardo, J. M., Martinez-Ripoll, M., Quintero, F. J. and Albert, A. (2014). Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. *Proc. Natl. Acad. Sci. U. S. A.* 111, E4532-4541.

Chen, P., Luo, C., Deng, Y., Ryan, K., Register, J., Margosiak, S., Tempczyk-Russell, A., Nguyen, B., Myers, P., Lundgren, K., et al. (2000). The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. *Cell* 100, 681–692.

Collura, A., Blaisonneau, J., Baldacci, G. and Francesconi, S. (2005). The fission yeast Crb2/Chk1 pathway coordinates the DNA damage and spindle checkpoint in response to replication stress induced by topoisomerase I inhibitor. *Mol. Cell. Biol.* 25, 7889–7899.

den Elzen, N. R. and O’Connell, M. J. (2004). Recovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1. *EMBO J.* 23, 908–918.

Flood, C. L., Rodriguez, G. P., Bao, G., Shockley, A. H., Kow, Y. W. and Crouse, G. F. (2015). Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. *PLoS Genet.* 11, e1005049.

Francesconi, S., Park, H. and Wang, T. S. (1993). Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype. *Nucleic Acids Res.* 21, 3821–3828.
Francesconi, S., De Recondo, A. M. and Baldacci, G. (1995). DNA polymerase delta is required for the replication feedback control of cell cycle progression in Schizosaccharomyces pombe. *Mol. Gen. Genet. MGG* **246**, 561–569.

Francesconi, S., Grenon, M., Bouvier, D. and Baldacci, G. (1997). p56(chk1) protein kinase is required for the DNA replication checkpoint at 37 degrees C in fission yeast. *EMBO J.* **16**, 1332–1341.

Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H. and Russell, P. (1999). Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. *Mol. Biol. Cell* **10**, 833–845.

Furuya, K., Poitelea, M., Guo, L., Caspari, T. and Carr, A. M. (2004). Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1. *Genes Dev.* **18**, 1154–1164.

González Besteiro, M. A. and Gottifredi, V. (2015). The fork and the kinase: a DNA replication tale from a CHK1 perspective. *Mutat. Res. Rev. Mutat. Res.* **763**, 168–180.

Hiraoka, Y., Toda, T. and Yanagida, M. (1984). The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. *Cell* **39**, 349–358.

Ikegami, Y., Goto, H., Kiyono, T., Enomoto, M., Kasahara, K., Tomono, Y., Tozawa, K., Morita, A., Kohri, K. and Inagaki, M. (2008). Chk1 phosphorylation at Ser286 and Ser301 occurs with both stalled DNA replication and damage checkpoint stimulation. *Biochem. Biophys. Res. Commun.* **377**, 1227–1231.

Ivanova, T., Alves-Rodrigues, I., Gómez-Escoda, B., Dutta, C., DeCaprio, J. A., Rhind, N., Hidalgo, E. and Ayté, J. (2013). The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor. *Mol. Biol. Cell* **24**, 3350–3357.

Janes, S., Schmidt, U., Ashour Garrido, K., Ney, N., Concilio, S., Zekri, M. and Caspari, T. (2012). Heat induction of a novel Rad9 variant from a cryptic translation initiation site reduces mitotic commitment. *J. Cell Sci.* **125**, 4487–4497.

Kai, M., Boddy, M. N., Russell, P. and Wang, T. S.-F. (2005). Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. *Genes Dev.* **19**, 919–932.

Kai, M., Taricani, L. and Wang, T. S.-F. (2006). Methods for studying mutagenesis and checkpoints in Schizosaccharomyces pombe. *Methods Enzymol.* **409**, 183–194.

Kasahara, K., Goto, H., Enomoto, M., Tomono, Y., Kiyono, T. and Inagaki, M. (2010). 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. *EMBO J.* **29**, 2802–2812.

Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. and Koike, T. (2006). Phosphate-binding tag, a new tool to visualize phosphorylated proteins. *Mol. Cell. Proteomics MCP* **5**, 749–757.

Kosoy, A. and O’Connell, M. J. (2008). Regulation of Chk1 by its C-terminal domain. *Mol. Biol. Cell* **19**, 4546–4553.
Leung-Pineda, V., Ryan, C. E. and Piwnica-Worms, H. (2006). Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. *Mol. Cell. Biol.* **26**, 7529–7538.

Li, F., Martienssen, R. and Cande, W. Z. (2011). Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. *Nature* **475**, 244–248.

Li, P., Goto, H., Kasahara, K., Matsuyama, M., Wang, Z., Yatabe, Y., Kiyono, T. and Inagaki, M. (2012). P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. *Mol. Biol. Cell* **23**, 1582–1592.

Lindsay, H. D., Griffiths, D. J., Edwards, R. J., Christensen, P. U., Murray, J. M., Osman, F., Walworth, N. and Carr, A. M. (1998). S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. *Genes Dev.* **12**, 382–395.

Lopez-Girona, A., Tanaka, K., Chen, X. B., Baber, B. A., McGowan, C. H. and Russell, P. (2001). Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 11289–11294.

Lou, H., Komata, M., Katou, Y., Guan, Z., Reis, C. C., Budd, M., Shirahige, K. and Campbell, J. L. (2008). Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. *Mol. Cell* **32**, 106–117.

Lowndes, N. F., McInerny, C. J., Johnson, A. L., Fantes, P. A. and Johnston, L. H. (1992). Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10+. *Nature* **355**, 449–453.

Lu, X., Nannenga, B. and Donehower, L. A. (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. *Genes Dev.* **19**, 1162–1174.

Luche, D. D. and Forsburg, S. L. (2009). Cell-cycle synchrony for analysis of S. pombe DNA replication. *Methods Mol. Biol. Clifton NJ* **521**, 437–448.

Lundin, C., North, M., Erixon, K., Walters, K., Jenssen, D., Goldman, A. S. H. and Hellday, T. (2005). Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. *Nucleic Acids Res.* **33**, 3799–3811.

Mahyous Saeyd, S. A., Ewert-Krzemieniewska, K., Liu, B. and Caspari, T. (2014). Hyperactive Cdc2 kinase interferes with the response to broken replication forks by trapping S.pombe Crb2 in its mitotic T215 phosphorylated state. *Nucleic Acids Res.* **42**, 7734–7747.

Marks, J., Fankhauser, C., Reymond, A. and Simanis, V. (1992). Cytoskeletal and DNA structure abnormalities result from bypass of requirement for the cdc10 start gene in the fission yeast Schizosaccharomyces pombe. *J. Cell Sci.* **101**, 517–528.

Min, W., Bruhn, C., Grigaravicius, P., Zhou, Z.-W., Li, F., Krüger, A., Siddeek, B., Greulich, K.-O., Popp, O., Meisezahl, C., et al. (2013). Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. *Nat. Commun.* **4**, 2993.
Miyabe, I., Mizuno, K., Keszthelyi, A., Daigaku, Y., Skouteri, M., Mohebi, S., Kunkel, T. A., Murray, J. M. and Carr, A. M. (2015). Polymerase δ replicates both strands after homologous recombination-dependent fork restart. *Nat. Struct. Mol. Biol.* **22**, 932–938.

Nakazawa, N., Mehrotra, R., Ebe, M. and Yanagida, M. (2011). Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2. *J. Cell Sci.* **124**, 1795–1807.

O’Connell, M. J., Raleigh, J. M., Verkade, H. M. and Nurse, P. (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. *EMBO J.* **16**, 545–554.

Palermo, C., Hope, J. C., Freyer, G. A., Rao, H. and Walworth, N. C. (2008). Importance of a C-terminal conserved region of Chk1 for checkpoint function. *PloS One* **3**, e1427.

Petermann, E., Woodcock, M. and Hellday, T. (2010). Chk1 promotes replication fork progression by controlling replication initiation. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 16090–16095.

Pommier, Y., Leo, E., Zhang, H. and Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. *Chem. Biol.* **17**, 421–433.

Pursell, Z. F., Isoz, I., Lundström, E.-B., Johansson, E. and Kunkel, T. A. (2007). Yeast DNA polymerase epsilon participates in leading-strand DNA replication. *Science* **317**, 127–130.

Redon, C., Pilch, D. R., Rogakou, E. P., Orr, A. H., Lowndes, N. F. and Bonner, W. M. (2003). Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. *EMBO Rep.* **4**, 678–684.

Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. and Yanagida, M. (1997). Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. *Genes Dev.* **11**, 3387–3400.

Shiromizu, T., Goto, H., Tomono, Y., Bartek, J., Totsukawa, G., Inoko, A., Nakanishi, M., Matsumura, F. and Inagaki, M. (2006). Regulation of mitotic function of Chk1 through phosphorylation at novel sites by cyclin-dependent kinase 1 (Cdk1). *Genes Cells Devoted Mol. Cell. Mech.* **11**, 477–485.

Walworth, N. C. and Bernards, R. (1996). rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. *Science* **271**, 353–356.

Wan, S., Capasso, H. and Walworth, N. C. (1999). The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast. *Yeast Chichester Engl.* **15**, 821–828.

Wang, Z., Wu, X. and Friedberg, E. C. (1993). DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae. *Mol. Cell. Biol.* **13**, 1051–1058.

Watson, A. T., Garcia, V., Bone, N., Carr, A. M. and Armstrong, J. (2008). Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. *Gene* **407**, 63–74.
Willis, N. and Rhind, N. (2011). Studying S-phase DNA damage checkpoints using the fission yeast Schizosaccharomyces pombe. *Methods Mol. Biol. Clifton NJ* 782, 13–21.

Wilsker, D., Petermann, E., Helleday, T. and Bunz, F. (2008). Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. *Proc. Natl. Acad. Sci. U. S. A.* 105, 20752–20757.

Xu, Y., Davenport, M. and Kelly, T. J. (2006). Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast. *Genes Dev.* 20, 990–1003.

Zachos, G. and Gillespie, D. A. F. (2007). Exercising restraints: role of Chk1 in regulating the onset and progression of unperturbed mitosis in vertebrate cells. *Cell Cycle Georget. Tex* 6, 810–813.

Zhang, Y.-W., Otterness, D. M., Chiang, G. G., Xie, W., Liu, Y.-C., Mercurio, F. and Abraham, R. T. (2005). Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. *Mol. Cell* 19, 607–618.
Fig. 1. Reduced S345 phosphorylation of Chk1-S345 in unchallenged cells. (A) Model of the kinase domain of *S. pombe* Chk1. The Swiss model tool was used (swissmodel.expasy.org). The underlying crystal structure is 4czt (34.5% identity) (Chaves-Sanjuan et al., 2014). Serine-321 is the last C-terminal amino acid. (B) *chk1-HA* wild type cells were treated in rich medium with 10μM camptothecin (CPT) for 3.5h at 30°C. UT =
untreated. Total protein extracts were separated on normal 10% SDS page or 6% phos-tag SDS page [full image] (PT). The arrow indicates the group of shift bands related to S345 phosphorylation. (C) PT-SDS page showing extracts from \textit{chk1-HA}_3, \textit{chk1-S345A-HA}_3 and \textit{chk1-HA}_3 \textit{rad3::ade6+} cells treated with 10μM CPT for 3.5h [full image]. A and B indicated the hypo-phosphorylated double band. (D) Normal SDS page analysis of \textit{chk1-HA}_3 and \textit{chk1-S173A-HA}_3 cells treated with 12mM hydroxyurea (HU) and 10μM CPT for 3.5h or with 10μM nitroquinoline 1-oxide (4NQO) for 1h at 30°C [full image shown in Fig.S2B] (Chk1 runs at 58kDa). (E) PT-SDS page analysing extracts from untreated \textit{chk1-HA}_3, \textit{chk1-HA}_3 \textit{rad3::ade6+}, \textit{chk1-S173A-HA}_3 and \textit{chk1-S173A-HA}_3 \textit{rad3::ade6+} cells [full image]. (F, G) Untreated \textit{chk1-HA}_3 and \textit{chk1-S173A-HA}_3 cells were grown in rich medium from a low cell number into stationary phase. Samples were withdrawn at the indicated time points and analysed on PT-SDS page [full image]. 1 and 2 indicate the Chk1 double band. The two bands labelled with 3 appear specifically in non-growing cells.
Fig. 2. Chk1-S173A cells are MMS sensitive. (A-D). *chk1-HA$_3$* and *chk1-S173A-HA$_3$* cells were synchronised in G2 by lactose gradient centrifugation and released into rich medium containing no drug (UT), 12mM hydroxyurea (HU), 10µM nitroquinoline 1-oxide (4NQO) or 0.05% methyl-methanesulfonate (MMS). (E-F) Drop test of the indicated strains on rich medium plates containing 4mM HU, 10µM CPT, 0.01% MMS or were treated with 50J/m2 UV light (254nm). (G) Acute cell survival at 0.05% MMS. The *rad3::ade6* Δtel1::leu2+ double mutant is checkpoint defective (averages of 3 repeats). (H) PT-SDS page analysis of total protein extracts from *chk1-HA$_3$* and *chk1-S173A-HA$_3$* cells treated with the indicated MMS concentrations for 3.5h at 30°C in rich medium.
Fig. 3. The MMS defect of Chk1-S173A is dose-dependent. (A, C) The indicated strains were treated with 0.01% or 0.05% MMS over a period of 5h. Samples were withdrawn, fixed in methanol and septated G1/S cells were scored. (B, D). Survival of the same strains was analysed over a period of 2.5h. Averages and S.D. errors of three repeats.
Fig. 4. Chk1-S173A is defective in the G1-M checkpoint. (A) Inactivation of Cdc10 induces a Chk1-dependent block of mitosis. (B-D) *chk1-HA* *cdc10.V50* and *chk1-S173A-HA* *cdc10.V50* cells were grown in rich medium at 30°C, synchronised in G2 by lactose gradient centrifugation and released into rich medium at 30°C (B) or 37°C (C). Note the 60 min delay of the first cycle due to the temperature up-shift. The majority of *chk1-S173A-HA* *cdc10.V50* cells enter a terminal mitosis (cut phenotype) (D). (E) *chk1-HA* *cdc10.V50* and
chk1-S173A-HA3 cdc10.V50 cells were grown in rich medium at 30°C, at 37°C or at 30°C with 0.01% MMS for 3.5h. Total protein extracts were analysed on normal SDS page. (F) MMS treatment delays G1-S transition by activating Rad3-Chk1 phosphorylation of Cdc10. (G) The cold sensitive beta-tubulin gene nda3.KM311 arrests cells with a 2x1C = 2C DNA content in metaphase. Cells reach a 4C DNA content after S phase. (H) Flow cytometry histograms of untreated chk1-HA3 nda3.KM311 (blue) and chk1-S173A-HA3 nda3.KM311 cells (yellow) after release from the metaphase block in rich medium. Time is post-release. (I) Flow cytometry histograms of MMS-treated (0.01%) cells after the release from the metaphase block. Dark colours = plus 0.01% MMS. Blue & yellow = untreated. The 2C and 4C DNA content is indicated by dotted lines.
Fig. 5. Chk1-S173A fails to respond to broken replication forks. (A) Drop test with the indicated strains at 30°C on rich medium plates. (B, C) chk1-S173A-HA₃, chk1-S173A-HA₃ cds1::ura4⁺, cds1::ura4⁺ and cds1::ura4⁺ chk1::kanMX4 strains were synchronised by lactose gradient centrifugation and released into rich medium with 12mM HU at 30°C (B = sepated G1/S cells; C = cut cells). (D) chk1-HA₃, chk1-HA₃ cds1::ura4⁺, chk1-S173A-HA₃, chk1-S173A-HA₃ cds1::ura4⁺ strains were incubated for 3.5h at 30°C in rich medium [U], in 12mM HU [H] or 10μM CPT [C]. Total protein extracts were analysed on a 10% SDS page.
Fig. 6. Chk1-S173A reduces the viability of DNA polymerase epsilon mutant cells. (A) Drop test with the indicated strains on rich medium plates. The *chk1-HA*₃ (WT) and *chk1-S173A-HA*₃ (S173A) alleles were crossed into *swi7-H4* (pol alpha), *cdc6.23* (pol delta) and
cdc20.M10 (pol epsilon). (B) PT-SDS and normal SDS (N) analysis of the strains used in the drop test. Total protein was extracted after growth in rich medium for 3.5h at 30°C. The arrow indicates the hypo-phosphorylated Chk1 protein. (C, D) chk1-HA3 cdc6.23, chk1-HA3 cdc20.M10, chk1-S173A-HA3 cdc6.23 and chk1-S173A-HA3 cdc20.M10 cells were synchronised in early S phase by incubating cells in rich medium with 15mM HU for 3.5h. Flow cytometry histograms were recorded at the indicated times after HU was washed out. The dotted lines indicate HU arrested and G2 (2C) cells. (E) Total protein samples were prepared from samples taken from this experiment at the indicated times and analysed on normal SDS page.
Fig. 7. The MMS sensitivity of Chk1-S173A is linked with DNA polymerase delta. (A) Drop test with the indicated strains on rich medium plates at 30°C, 30°C with 0.01% MMS or 37°C. (B) Acute MMS survival (0.025%) at 30°C (averages and S.D. errors of 3 repeats). (C) chk1-HA₃ cdc6.23, chk1-HA₃ cdc20.M10, chk1-S173A-HA₃ cdc6.23 and chk1-S173A-HA₃ cdc20.M10 cells were grown at 30°C, 33°C or 30°C plus 0.01% MMS for 3.5h in rich medium. Total protein extracts were analysed on normal SDS page.
(A) Chk1-S173A may be defective in the phosphorylation of a protein that allows DNA pol delta, which acts in front of the moving replication fork on the lagging strand, to remove mismatches that remain in the leading strand in the presence of MMS. Since pol delta also synthesis both strands during the recombinogenic repair of collapse forks, Chk1-S173A might also impair this function. CMG = Cdc45 + Mcm2–7 + GINS replication complex.

(B) Model of the kinase domain of \textit{S.pombe} Chk1. The underlying crystal structure is 4czt (34.5% identity).
Supplementary Figure 1. Construction on the *chk1* base strain. (A) Location of the *loxP* and *loxM* sequences upstream and downstream of the *chk1* (SPCC1259.13) gene on chromosome III. (B) Location of the indicated primers. The nucleotides shown in red are deleted in the tagged *chk1* alleles. (C) Primer sequences.
Supplementary Figure 2. (A) *chk1-HA* and *chk1-HA rad3::ade6* strains were treated with 0.05% MMS for 1h at 30°C or left untreated. Total protein extracts were analysed on SDS page. (B) Full image of the western blot shown in Fig. 1D. The membrane was first probed with an anti-HA and then with an anti-Cdc2 antibody. (Chk1 runs at 58kDa and Cdc2 at 38kDa). (C, D) Repeat of the experiment shown in Fig. 1F, G.