Rola przerostu bakteryjnego jelita cienkiego w nietolerancjach pokarmowych

The role of small intestinal bacterial overgrowth in food intolerances

Marcelina Bartuzi¹, Natalia Ukleja-Sokołowska²

¹ Studenckie Koło Naukowe Alergologiczne, Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
² Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu

Streszczenie:
Nietolerancje pokarmowe występują coraz częściej w populacjach krajów rozwiniętych. Jednym z istotnych czynników w etiopatogenezie tego zjawiska są zaburzenia składu flory bakteryjnej przewodu pokarmowego człowieka. Zarówno rozwój cywilizacji, jak i coraz nowocześniejsza produkcja żywności przyczyniają się do częstszej występowania chorób układu pokarmowego, takich jak przerost bakteryjny jelita cienkiego i nietolerancje pokarmowe. Schorzenia te mogą pojawiać się osobno lub współwystępować u jednego pacjenta. Częstość występowania nietolerancji pokarmowych, podobnie jak alergii, wciąż rośnie. Szacuje się, że mogą przyczyniać się do tego takie czynniki, jak: stres, nieodpowiedni styl życia, a także zbyt duże spożywanie przetworzonej, modyfikowanej żywności.

Artykuł przedstawia zależność pomiędzy przerostem bakterii w jelice cienkim a wpływem na różne aspekty nietolerancji pokarmowych, zarówno w kontekście diagnozy, jak i przebiegu tych schorzeń na podstawie najnowszych badań. Przedstawiono także charakter diety low FODMAP i diety eliminacyjnej, oraz jej wpływ na przebieg kliniczny przerostu bakteryjnego jelita cienkiego i nietolerancji pokarmowych.

Abstract:
Food intolerances are increasingly common in populations of developed countries. One of the important factors in the etiopathogenesis of this phenomenon is disorders of the bacterial composition of the human gastrointestinal tract. The development of civilization as well as the increasing production of processed food contribute to the increased incidence of diseases of the digestive system, such as small intestinal bacterial overgrowth and food intolerances. These conditions may occur separately or coexist in one patient. The incidence of food intolerances and also allergies, continues to increase. It is estimated that factors such as stress, inadequate lifestyle, excessive consumption of processed, modified foods may contribute to this phenomenon.

The article presents the relationship between bacterial overgrowth in the small intestine and the effect on various aspects of food intolerances, both in the context of diagnosis and the course of these diseases on the basis of recent research. The nature of low FODMAP diet was presented, as well as its effect on the clinical course of small intestinal bacterial overgrowth and food intolerances.

Stowa kluczowe: SIBO, nietolerancja laktozy, testy oddechowe, FODMAP

Key words: SIBO, lactose intolerance, hydrogen breath test, FODMAP
Wstęp

Niektorzy pacjenci spostrzegają coraz częściej w populacjach krajów rozwiniętych. Jednym z istotnych czynników w etiopatogenezie tego zjawiska są zaburzenia składu flory baterii przewodów pokarmowych człowieka. Mikrobiota ulega modyfikacji pod wpływem wielu czynników, zarówno zewnętrznych, jak i wewnętrznych.

Rozwijający się przemysł i coraz bardziej stresujący tryb życia przyczyniają się do częstszego występowania chorób układu pokarmowego, a także chorób o podłożu autoimmunologicznej, takich jak np. przerost bakteryjny jelita cienkiego (SIBO, small intestinal bacterial overgrowth) i nietolerancje pokarmowe. Schorzenia te mogą pojawiać się osobno lub współwystępują u jednego pacjenta [1, 2]. Częstość występowania nietolerancji pokarmowych, jak również alergii wciąż rośnie. Szacuje się, że mogą przyczyniać się do tego takie czynniki, jak: stres, nieodpowiedni styl życia czy zbyt duże spożywanie przetworzonej, modyfikowanej żywności [3]. Przyjmuje się, iż nietolerancje pokarmowe występują u ok. 20% populacji na świecie. Mikrobiota odgrywa istotną rolę w modulacji homeostazy, lecz zazwyczaj zawiera niewielką liczbę bakterii, są to głównie enterokoki i pałeczki kwasu mlekowego, bakterie Gram(+) i fakultatywne beztlenowce. U osób zdrowych nie spotkamy bakterii beztlenowych, które mogą się przyczynić do nietolerancji pokarmowych [8].

Przerost bakteryjny jelita cienkiego

Przerost bakteryjny jelita cienkiego charakteryzuje się wzmożoną fermentacją węglowodanów, spowodowaną nadmierną ilością bakterii w jelitach cienkich [5].

Typowy obraz kliniczny z STL: bóle w obrębie jamy brzusznej, gazy, wzdęcia, biegunki lub zaparcia [6]. Ponad 70% bakterii, które bytują w organizmie człowieka, znajduje się w przewodzie pokarmowym. Mikrobiota odgrywa istotną rolę w regulacji wchłaniania węglowodanów, glukozy, produkcji energii i witamin oraz pośrednio jest angażowana w uczucie satysfakcji. Prawidłowa mikroflora jelita cienkiego, głównie enterokoki i pałeczki kwasu mlekowego, utrzymuje odpowiednią sytuację hydrauliczną w jelicie. Część dalszą jelita krętego to strefa przejściowa między populacjami bakterii tlenowych a beztlenowych [8].

Bakterie znajdujące się w jelitach cienkich mogą przyczyniać się do zwiększenia ilości węglowodanów, co z kolei będzie skutkowało zaburzeniami wchłaniania węglowodanów [11].

SIBO jest dość trudne do prawidłowego zgadzowania. Co więcej, bywa oporne na leczenie nawet u pacjentów stosujących specjalistyczną dietę [12, 13]. Podstawową metodą diagnostyczną pozostają oddechowe testy wodorowe, metoda bardzo mało inwazyjna, ale o ograniczonej czułości [9, 14].

Nietolerancje pokarmowe

Nadwrażliwość pokarmową możemy zróżnicować w zależności od rodzaju patomechanizmu zaangażowanego w jego powstawanie. Dzielimy ją na nadwrażliwość alergiczną (mechanizm immunologiczny) i nietolerancję enzymatyczną. Nietolerancje enzymatyczne to reakcje spowodowane brakiem enzymów, co z kolei skutkuje zaburzeniami wchłaniania np. węglowodanów. Brak enzymów może być uwargunkowany genetycznie lub wynikać z choroby układu pokarmowego, a także oddziaływać na rozwój stanów zapalnych jelit [7].

Bliska część jelita czczego i dwunastnica zażywają niewielką liczbę bakterii, są to głównie enterokoki i paleczki kwasu mlekowego, bakterie Gram(+) i fakultatywne beztlenowce. U osób zdrowych nie spotkamy bakterii beztlenowych, które mogą się przyczynić do nietolerancji pokarmowych.
kterej efektem może być uszkodzenie nabłonka jelitowego. Nietolerancje o podłożu farmakologicznym są spowodowane substancjami chemicznymi znajdującymi się w żywności, np. histaminą, serotoniną, kofeiną. Nasilenie reakcji u pacjentów zależy od sposobu metabolizowania danej substancji w organizmie. Nietolerancje idiopatyczne należą do szerokiej grupy reakcji niepożądanych, również toksycznych, spowodowanych np. przez barwniki, konserwanty spożywcze lub przeciwutleniacze. Niektóre z reakcji mogą powstawać w patomechanizmie immunologicznym. Również możliwe są objawy nadwrażliwości pokarmowej na skutek reakcji psychogennych. Niekiedy reakcja, która występuje u pacjenta jest na tyle nietypowa, że istnieje konieczność wykonywania prób provokacji by zróżnicować etiologię objawów [16, 17].

Szczególnie warto zwrócić uwagę na nietolerancję cukrów, przede wszystkim laktozy i fruktozy, gdyż odgrywają one ogromną rolę w patogenezie zespołu przerostu baterijnego w jelitie cienkim.

Nietolerancja laktozy jest jednym z najczęstszych problemów wśród populacji świata. Szacuje się, że ok. 70% osób w wieku dorosłym cierpi na nietolerancję laktozy, która prowadzi do ograniczenia spożycia mleka oraz produktów miecznych w codziennjej diecie. Nietolerancja (można wyróżnić pierwotną i wtórną) może się ujawnić w każdym wieku. Pierwotną niedobór laktozy to zespół złego wchłaniania laktozy, związany z fizjologicznym procesem wyciszenia aktywności genu odpowiedzialnego za produkcję laktozy. Wówczas niedobór laktozy może zaś wystąpić w przebiegu różnych chorób błony śluzowej jelit, co powoduje czasowe upośledzenie trawienia laktozy. Nietolerancja laktozy może się ujawnić w wyniku chorób takich jak np.: celiakia, SIBO, infekcje wirusowe lub pasożyticzne.

Przewód pokarmowy człowieka jest doskonale przystosowany do wchłaniania glukozy, fruktoza natomiast nawet w fizjologicznych warunkach jest przyjazna mniej sprawnie. W przypadku nietolerancji fruktozy typowo występują objawy ze strony układu pokarmowego, takie jak: bóć brzucha, wzdęcia, nudności, biegunka, zaburzenia rytmu wypróżnień. Nietolerancja fruktozy występuje w dwóch formach: jako niepełna absorpcja fruktozy (zazwyczaj wraz z niewłaściwym wchłanianiem fruktozy) oraz jako dziedziczna nietolerancja fruktozy (HFI, hereditary fructose intolerance). Zaburzenie wchłaniania fruktozy bardzo często współwystępuje z zespołem jelita drażliwego. W obydwu schorzeniach obserwuje się zaburzenia mikrobioty przewodu pokarmowego [18–20].

Przerost bakteryjny jelita cienkiego a nietolerancje pokarmowe

Przerost bakterii w jelicie cienkim ma wpływ na różne aspekty nietolerancji pokarmowych, zarówno w kontekście diagnozy, jak i przebiegu tych schorzeń.

Nietolerancje pokarmowe mogą współwystępować z SIBO. W 2011 r. Yakoob i wsp. opublikowali ciekawe badanie, w którym przeanalizowano retrospektywnie 119 przypadków pacjentów z zespołem jelita drażliwego. Okazało się, że u 19% chorych występował SIBO, a u 21% – nietolerancja laktozy [21]. Zhao i wsp. zastosowali oddechowe testy wodorowe z laktozą i laktulozą z jednoczesną sygnałomierzną oceną pasażu jelitowego, u pacjentów z przewlekłą biegunką czynnościową. Badacze stwierdzili, że przestawienie wodorowych testów wodorowych z laktozą i laktulozą z jednoczesną sygnałomierzną oceną pasażu jelitowego, u pacjentów z przewlekłą biegunką czynnościową objawia się u 13,1% chorych sugerowały zaburzenia wchłaniania laktozy lub SIBO. Zwraca uwagę wysoka częstość występowania zaburzeń mikrobioty jelita cienkiego. Warto podkreślić, że 41% wszystkich badanych osób nie odczuwało skutków ubocznych po zażyciu laktozy niezbędnej do wykonania testu oddechowego. Wśród osób, które skarżyły się na nieprawidłowe działania po spożyciu laktozy, 93% zgłaszało dolegliwości żołądkowo-jelitowe. Najczęściej objawy sygnałomierznego z ujawnieniem zespółu nietolerancyjnego w kontekście diagnozy, jak i przebiegu tych schorzeń.}

Niektóre z reakcji mogą powstawać w patomechanizmie-immunologicznym. Również możliwe są objawy nadwrażliwości pokarmowej na skutek reakcji psychogennych. Niekiedy reakcja, która występuje u pacjenta jest na tyle nietypowa, że istnieje konieczność wykonywania prób provokacji by zróżnicować etiologię objawów [16, 17].
wczesny (≤ 90 min) i istotny (≥ 20 ppm) wzrost stężenia H₂ w powietrzu wydychanym, wysunięto podejrzenie SIBO. W analizowanej grupie 49,6% pacjentów miało zaburzenia trawienia laktozy, a 29,5% – nietolerancję laktozy. Co ciekawe, 34,8% pacjentów i jedno- cześnie 60% pacjentów objawowych miało rozpoznane SIBO. Autorzy podkreślają, że często SIBO utrudnia rozpoznanie nietolerancji laktozy, ze względu na fałszywie dodatnie wyniki wodorowych testów oddecho- wych. Szczegółowe monitorowanie pacjenta w trakcie testu oddechowego, w połączeniu z oceną objawów, może zwiększyć czułość i swoistość diagnostyki wymienionych jednostek chorobowych [24].

Silva i wsp. zbadali 117 studentów medycyny, którzy odpowiedzieli na zaproszenie do wzięcia udziału w badaniu. Studentów diagnozowano za pomocą wo- dorowych testów oddechowych. Nietolerancję laktozy potwierdzono u ośmiu pacjentów (6,8%), zaś SIBO u dwóch (1,7%). Nietolerancja laktozy występowała częściej u kobiet niż mężczyzn. Ponadto zwrócono uwagę na większą częstotliwość występowania SIBO. Autorzy podkreślają, że często SIBO utrudnia rozpoznanie nietolerancji laktozy, ze względu na fałszywie dodatnie wyniki wodorowych testów oddecho- wych. W badaniu przeprowadzonym przez Ranę i wsp. wzięło udział 350 osób, w tym 175 osób zdrowych i 175 chorych na cukrzycę typu 2. Wszyscy ochotnicy przeszli badanie przerostu bakterii w jelicie cienkim na czczo, po spożyciu 70 g glukozy rozpuszczanej w 250 ml wody. Nietolerancję laktozy badano za pomocą nieinwazyjnego testu oddecho- wego z 25 g laktozy rozpuszczonej w 250 ml wody. Nietolerancję laktozy badano za pomocą nieinwazyjnego testu oddecho- wego z 25 g laktozy rozpuszczonej w 250 ml wody. Zaoferowano znaczną częstość występowania nietolerancji laktozy u osób chorych na cukrzycę typu 2 – aż u 60% osób badanych. U osób zdrowych częstość występowania nietolerancji laktozy wynosiła 39,4%. Zauważono, że u osób z grupy badanej częściej występował przerost bakterii w jelicie cienkim w porównaniu z osobami z grupy kontrolnej (14,8% vs 2,8%). Na tej podstawie wysunięto hipotezę, że cukrzyca może być częściej u kobiet niż mężczyzn. Ponadto zwrócono uwagę na większą częstotliwość występowania SIBO. Autorzy podkreślają, że często SIBO utrudnia rozpoznanie nietolerancji laktozy, ze względu na fałszywie dodatnie wyniki wodorowych testów oddecho- wych.

W badaniu przeprowadzonym przez Enko i wsp. wzięło udział 360 osób, wśród których u 25,49% stwierdzono pierwotny zespół zło- go wchłaniania laktozy. U 11,11% zbadanych pacjentów zdiagnozowano nietolerancję fruktozy, a u 18,63% stwier- dzono nietolerancję sorbitolu. Stwierdzono, że prze-rost bakteryjny w jelicie cienkim występował wraz z zaburzeniami wchłaniania węglowodanów. U 6,53% osób badanych w kierunku nietolerancji węglowoda-
nów potwierdzono rozpoznanie przerostu bakteryjnego w jelicie cienkim. Pacjentom zalecono dietę wściwym czasie.

Słodziki: cukier, glukoza, sztuczne słodziki, których nazwy kończą się na -ol, -ol (np. aspartam)

Owoce: arbuz, jabłko kremowe, białe brzoskwinie, rambutan, kaki

Rośliny strączkowe: ciecierzyca, soczewica, czerwona fasola, fasolka po bretońsku

Owoce: jabłko, morele, winogrono, karambola, arbuzy

Monosacharydy: fruktany i/lub galaktooligosacharydy

Diety eliminacyjne, takie jak FODMAP, powinny być stosowane rozważnie. Należy zwrócić uwagę, że rozpoznanie SIBO nie zawsze jest równocześnie z nietolerancjami pokarmowymi. Jednocześnie warto zwrócić uwagę jego dolegliwości, nietolerancje i tolerancje po wstrzymaniu poszczególnych faz tej diety, jak i o ponownym wprowadzaniu ograniczonych produktów we własnym czasie.

Podsumowanie

Przerost bakteryjny jelita cienkiego często występuje równocześnie z nietolerancjami pokarmowymi. Współwystępowanie tych chorób może powodować nasilenie jego objawów. Jednocześnie warto zwrócić uwagę na to, że rozpoznanie SIBO nie zawsze jest proste, a niewłaściwa interpretacja wyniku testu oddechowego może uniemożliwić prawidłową diagnozę. Dobranie właściwej dla chorego diety, biorąc pod uwagę jego dolegliwości, nietolerancje i tolerancje pokarmowe oraz preferencje smakowe, umożliwia zmnieszenie nasilenia objawów chorobowych i poprawę jakości życia.

Pişmienictwo

1. Savage J, Johns CB. Food allergy: epidemiology and natural history. Immunol Allergy Clin. 2015; 35(1): 45-59.
2. Ruscio M. Is SIBO A Real Condition? Altern Ther Health Med. 2019; 15(1): 38.
3. Crowe SE. Food allergy vs food intolerance in patients with irritable bowel syndrome. Gastroenterol Hepatol. 2019; 15(1): 38.
4. Tuck CJ, Biesiekierski JR, Schmid-Grendelmeier P et al. Food intolerances. Nutrients. 2019; 11(7): 1684.
5. Esposito S, Biscarini A, Federici B et al. Role of Small Intestinal Bacterial Overgrowth (SIBO) and Inflammation in Obese Children. Front Pediatr. 2020; 8: 369.
6. Pawlik K, Rudzik R, Lewiński M et al. Dieta L-FODMAP w leczeniu zespołu jelita drażliwego. Bromat Chem Toksykol. 2017; 2: 179-83.
7. Olszewska J, Jagusztyn-Krynicka EK. Human Microbiome Project – mikroflora jelit oraz jej wpływ na fizjologię i zdrowie człowieka. Post Mikrobiol. 2012; 51(4): 243-356.
8. Ghoshal UC, Shakla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver. 2017; 11(2): 196.
9. Paik CN, Choi MG, Lim CH et al. The role of small intestinal bacterial overgrowth in postgastrectomy patients. Neurogastroenterol Motil. 2011; 23(5): e191-6.
10. Avelar Rodrigues D, Ryan PM, Toro Monjaraz EM et al. Small intestinal bacterial overgrowth in children: a state-of-the-art review. Front Pediatr. 2019; 7: 363.
11. Adike A, DiBaise JK. Small intestinal bacterial overgrowth: nutritional implications, diagnosis, and management. Gastroenterol Clin. 2018; 47(1): 193-208.
12. Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunology. 2017; 47(1): 32-50.
13. Mądry E, Krasinska B, Walkowiak J. Lipolaktaza, zespół złego wchłaniania laktozy, nietolerancja laktozy. Fam Med Prim Care Rev. 2011; 2: 334-6.
14. Braden B. Methods and functions: Breath tests. Best Pract Res Clin Gastroenterol. 2009; 23(3): 337-52.
15. Bartuzi Z, Ukleja-Sokołowska N. Alergia pokarmowa na mąkę i celiakia. Alergia. 2014; 2: 4-10.
16. Ukleja-Sokołowska N, Zaczniewski R, Gawrońska-Ukleja E et al. Food-dependent, exercise-induced anaphylaxis in a patient allergic to peach. Int J Immunopathol Pharmacol. 2018; 32: 2058738418803154.
17. Szilagyi A, Ishayek N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients. 2018; 10(12): 1994.
18. Coffee EM, Tolan DR. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance. J Inherit Metab Dis. 2010; 33(6): 715-25.
19. Żelowski A, Wojtul S, Gil J et al. Zespół jelita nadwrażliwego – podstawowe zasady rozpoznawania i leczenia. Pediatria i Medycyna Rodzinna. 2013; 9(3): 250-5.
20. Mehta M, Beg M. Fructose intolerance: cause or cure of chronic functional constipation. Glob Pediatr Health. 2018; 5: 2333794X18761460.
21. Yakoob J, Abbas Z, Khan R et al. Small intestinal bacterial overgrowth and lactose intolerance contribute to irritable bowel syndrome symptomatology in Pakistan. Saudi J Gastroenterol. 2011; 17(6): 371.
22. Zhao J, Fox M, Cong Y et al. Lactose intolerance in patients with chronic functional diarrhoea: the role of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2010; 31(8): 892-900.
23. Houwen E, De Preter V, Billen J et al. Additional value of CH4 measurement in a combined 13C/H2 lactose malabsorption breath test: a retrospective analysis. Nutrients. 2015; 7(9): 7469-85.
24. Varjú P, Ystad B, Gede N et al. The role of small intestinal bacterial overgrowth and false positive diagnosis of lactose intolerance in southwest Hungary – A retrospective observational study. PloS ONE. 2020; 15(5): e0230784.
25. Silva CD, Leite ID, Rodrigues JW et al. Analysis of lactose intolerance in patients with suggestive symptoms of irritable bowel syndrome. Arg Gastroenterol. 2019; 56(3): 304-11.
26. Rana SY, Malik A, Bhadada SK et al. Malabsorption, oroecal transit time and small intestinal bacterial overgrowth in type 2 diabetic patients: a conjection. Indian J Clin Biochem. 2017; 32(1): 84-9.
27. Perets TT, Himouda D, Layfer O et al. Small intestinal bacterial overgrowth may increase the likelihood of lactose and sorbitol but not fructose intolerance false positive diagnosis. Ann Clin Lab Sci. 2017; 47(4): 447-51.
28. Wilder-Smith CH, Olesen SS, Materna A et al. Predictors of response to a low-FODMAP diet in patients with functional gastrointestinal disorders and lactose or fructose intolerance. Aliment Pharmacol Ther. 2017; 45(8): 1094-106.
29. Enko D, Kriegshäuser G, Kimbacher C et al. Carbohydrate malabsorption and putative carbohydrate-specific small intestinal bacterial overgrowth: prevalence and diagnostic overlap observed in an Austrian outpatient center. Digestion. 2015; 92(1): 32-8.
30. Hill P, Mair JG, Gibson PR. Controversies and recent developments of the low-FODMAP diet. Gastroenterol Hepatol. 2017; 13(1): 36-45.
31. Cozma-Petruţ A, Loghin F, Miere D et al. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J Gastroenterol. 2017; 23(21): 3771-83.

ORCID
M. Bartuzi – ID – https://orcid.org/0000-0003-1988-6489
N. Ukleja-Sokołowska – ID – http://orcid.org/0000-0001-5957-8382

Wields autors/Authors’ contributions:
M. Bartuzi 80%; N. Ukleja-Sokołowska 20%.

Konflikt interesów/Conflict of interests:
Nie występuje.

Finansowanie/Financial support:
Nie występuje.

Etyka/Ethics:
Treści przedstawione w artykule są zgodne z zasadami Deklaracji Helsińskiej, dyrektywami EU oraz ujednoliconymi wymaganiami dla czasopism biomedycznych.
Copyright: © Medical Education sp. z o.o. This is an Open Access article distributed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

Adres do korespondencji
dr n. med. Natalia Ukleja-Sokołowska
Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych, Collegium Medicum w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
85-168 Bydgoszcz, ul. Ujejskiego 75
e-mail: ukleja@10g.pl
tel. 691 973 969