Time-resolved serial femtosecond crystallography at the European XFEL

Suraj Pandey1,14, Richard Bean2,14, Tokushi Sato2,14, Ishwor Poudyal1, Johan Bielecki2, Jorvani Cruz Villarreal3, Oleksandr Yefanov4, Valerio Mariani4, Thomas A. White4, Christopher Kupitz2, Mark Hunter5, Mohamed H. Abdellatif6, Saša Bajt6, Valeri Bondar2, Austin Echelmeier3, Diandra Doppler3, Moritz Emons2, Matthias Frank7, Raimund Fromme3, Yaraslav Gevorkov4,8, Gabriele Giovanetti4, Man Jiang2, Daihyun Kim3, Yoonhee Kim2, Henry Kirkwood2, Anna Klimovskaia2, Juraj Knoska4,9, Faisal H. M. Koua4, Romain Letrun2, Stella Lisova10, Luis Maia2, Victoria Mazalova4, Domingo Meza11, Thomas Michelat2, Abbas Ourmazd1, Guido Palmer2, Marco Ramilli2, Robin Schubert3,11, Peter Schwander1, Alessandro Silenzi2, Jolanta Sztuk-Dambietz2, Alexandra Tolstikova4, Henry N. Chapman4,9,12, Alexandra Ros3, Anton Barty4, Petra Fromme3, Adrian P. Mancuso2,13 and Marius Schmidt6,14

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.

Time-resolved macromolecular crystallography (TRX) combines macromolecular structure determination with reaction dynamics1,2. Short and ultrashort light pulses are employed to enable snapshot observations that cope with the relevant timescales of biomolecular reactions. With TRX, biologically, biomedically and pharmacologically important reactions can be observed in real time with atomic or near-atomic spatial resolution. Hard X-ray free-electron lasers (XFELs) substantially changed the way X-ray pulses. Instead of examining macroscopically large crystals, microcrystals are injected into the X-ray beam at room temperature. Although these microcrystals are often destroyed, the femtosecond X-ray pulse duration at the EuXFEL largely outruns radiation damage and the associated structural rearrangements4–10. Once exposed to the XFEL beam, the crystal must be replaced, demanding a serial approach where, for each new observation, a pristine microcrystal interacts with the subsequent X-ray pulse, a technique known as serial femtosecond crystallography (SFX). It has been demonstrated recently at the EuXFEL that SFX is possible with megahertz X-ray pulses11–12. In time-resolved SFX (TR-SFX) a reaction in a microcrystal is initiated with an optical laser during sample delivery into the X-ray interaction volume, and the progress of the reaction is probed after a time delay Δt by the pulsed XFEL beam, as pioneered at the Linac Coherent Light Source (LCLS) at 120 Hz (refs. 3,4,13,14). TR-SFX has the potential to take advantage of the megahertz peak rate of the European XFEL, to structurally map multiple stages of a reaction with a single experiment. The experiments reported here examine the photocycle of PYP (Fig. 1a) using the MHz pulse structure of the EuXFEL (Supplementary Fig. 1). PYP is a bacterial photosensor, in which light triggers a reaction with several intermediates15. PYP is an excellent model system to establish TR-SFX at the EuXFEL, as it has been previously studied by TRX investigations at both synchrotrons and XFELs4,14,15,17. The photocycle is driven by the trans to cis isomerization of the central para-coumaric acid (pCA) chromophore16 (Fig. 1b). In addition to being chemically highly important, its ultrafast dynamics displays similarities to other light-triggered...
Fig. 1 | The photocycle of PYP in crystals. a, The photocycle (simplified) is initiated by blue light that excites the ground (dark) state \(pG \) to the electronic excited state \(pG* \). After the trans to cis isomerization at 600 fs, several electronic ground-state intermediate states, called \(I_2, pR_2, pB_2 \), \(pB_1 \), and \(pB_2 \), are populated on various timescales until the photocycle completes. Approximate relaxation times are shown. Red dotted box: relaxations on the picosecond timescale. b, The chemical structure of the pCA chromophore bound to the Cys 69 sulfur. The trans configuration is shown. The torsional angle \(\varphi_{\text{trans}} \), as defined by chromophore carbon atoms \(C_1-C_2 \) and \(C_3-C_1 \), is outlined in red. Hydrogen bonds between the pCA head and Glu 46 and Tyr 42 are marked. The rotation about the double bond as well as the head displacement at longer times are shown by arrows. c, The ultrafast timescale from 100 fs to 100 ps. Black dashed bars: time delays collected at the LCLS (Pande et al.14); green dashed bar: time delay collected at APS (Jung et al.33). Green solid bars: time delays in the 1 ps to 100 ps range (gray) as collected in this study. Red arrows: picosecond processes observed spectroscopically (Creelman et al.22).

Reactions, including photoisomerization reactions in rhodopsin in the mammalian eye25, and in other biologically relevant photoreceptors such as the phytochromes26, moreover, PYP has become a prominent optogenetic tool that can be used for the spatiotemporal optical control of complex biological processes, such as neural activity27. The photocycle of PYP has been extensively investigated from femtoseconds to seconds4,14,17,22. However, the time range between 1 ps and 100 ps has not been investigated in detail so far (Fig. 1c), with at least one more process observed by spectroscopy23 (Fig. 1c, red arrows) for which there is currently no experimental structural evidence.

At the EuXFEL, X-rays arrive in pulse trains at 10 Hz (Fig. 2a and Supplementary Fig. 1). Each train consisting of bursts of X-ray pulses with an intratrain rate of up to 4.5 MHz (ref. 11). In the current operational configuration, each train contains up to 176 pulses at a maximum rate of 1.13 MHz. This amounts to 1,760 pulses per second—all already almost 15 times more pulses per unit time than the next highest repetition rate, hard X-ray FEL. A high-intensity MHz optical laser system has been commissioned recently and is now available at the SPB/SFX instrument of the EuXFEL24. Our experiments require the synchronization of each optical laser pulse with a corresponding X-ray pulse, in the end at MHz rates, and each time with picosecond precision. The high pulse repetition rate offers new opportunities for TR-SFX investigations at the EuXFEL; closely spaced time delays can be collected rapidly to cover processes in biomolecules in detail. At other XFELs, the low pulse repetition rate limits the amount of data that can be collected during sparsely available beamtimes. Additional parameters such as temperature, laser pulse duration and laser chirp may then be varied to control28 and direct the biomolecular reaction.

Results

TR-SFX experiments. A dense microcrystalline slurry of PYP was prepared and injected into the vacuum chamber of the SPB/SFX instrument29 at the EuXFEL. The microcrystals were exposed to the trains of X-ray bursts. X-ray diffraction patterns were collected by the ‘adaptive gain integrating pixel detector’ (AGIPD)30 operating with MHz frame rates (Supplementary Fig. 1). The PYP photocycle was initiated using laser pulses of 240 fs at a wavelength of 420 nm with a flux density of 1.6 mJ mm\(^{-2}\) in a 42-μm (full-width half maximum, FWHM) focal spot. The viscosity of the dense microcrystalline slurry placed an upper limit to the achievable jet speed of 30 m s\(^{-1}\) (determined in the laboratory under similar injection conditions). Initial measurements were conducted to establish optimal X-ray and laser pulse rates at the achievable jet speed. Laser pulse rates and X-ray pulse structures that were used here are shown in Fig. 2b,c.

First, we collected SFX data without any laser excitation at 1.13 MHz X-ray repetition rate to establish a suitable X-ray pulse rate to ensure that the sample was being refreshed between X-ray pulses (Supplementary Table 1, pure ‘dark’). Next, we exposed crystals to the optical laser at 375 kHz repetition rate (every third X-ray pulse; Fig. 2b, control experiment) to determine when and whether the laser-excited jet had passed the X-ray interaction region. Data statistics are shown in Supplementary Table 2. With a jet velocity of 30 m s\(^{-1}\) and a laser focus of 42 μm, the excited volume should leave the X-ray interaction region within 2 μs. Accordingly, the difference electron density (DED) map at the 2.67 μs time delay should be free of signal. However, as shown in Fig. 3, the resulting DED maps display signal at all time delays. The same density features are observed (α for negative features, and β1 and β2 for positive features) in all difference maps. All three maps are essentially identical, and contain a mixture of PYP intermediates pR1 and pR2 that persist in the early μs time range31. Compare, for example, the structure displayed in Fig. 3a determined at 1 μs delay at the LCLS3 with those in Fig. 3b,c. In addition, the hit rate abruptly decayed from 2% at the first X-ray pulse in the train, to 1% (Supplementary Fig. 2a) in all subsequent pulses. This shows that jet velocities that are achievable with our dense PYP slurry do not reliably replace the sample at the X-ray interaction point at the 1.13 MHz X-ray repetition rate. Consequently, both the X-ray pulse repetition rate and the laser repetition rate are too high for our planned picosecond TR-SFX experiment. However, there is no indication that there are structural differences caused by the 1.13 MHz X-ray pulse rate. Values for \(F_{\text{iso}} \) / \(F_{\text{ref}} \) values of the reference model refined against the data collected in the dark are 17% / 24%, respectively, with no obvious differences in \(F_{\text{iso}} - F_{\text{ref}} \) difference maps. It seems that, at least in the case of PYP, the crystals are not affected by acoustic shockwaves observed earlier32 and the dominant effect is an absence of crystals at the interaction point.

Following these observations, the X-ray repetition rate was reduced to 564 kHz and the laser repetition rate was reduced to 141 kHz so that laser excitation was achieved before every fourth X-ray pulse (Fig. 2c). At the 0.56 MHz X-ray repetition rate, the hit rate across the entire pulse train remains essentially constant (Supplementary Fig. 2b). This shows that at 0.56 MHz the sample is sufficiently refreshed before the next X-ray pulse arrives. The pump–probe delay was set to a value of 10 ps, with subsequent X-ray pulses measuring delays of 1.78 μs, 3.56 μs and 5.33 μs.
Elongated, from 100 μm to 700 μm. This allowed us to increase the jet size, leading to uniform sample excitation. From the side illumination into the flanks of the absorption spectrum: excitation at 420 nm rather than into the central absorption peak (Fig. 4b) differs completely from the 10 ps data collected previously at LCLS and APS at 3 ps and 100 ps, respectively. In short, all time delays collected at the EuXFEL resulted in excellent DED maps that contain chemically meaningful positive and negative DED features (α and β in Fig. 5). The DED maps (Fig. 5b–d) are similar and comparable to those obtained at other X-ray sources on the ps timescale (Fig. 5a,e). The positive and negative DED features are interpreted by structural models using extrapolated maps (see Methods; Supplementary Tables 4 and 5 list the refinement statistics). In addition to the newly collected time delays of 10, 30 and 80 ps, we also revisited the 3 ps (ref. 14) and the 100 ps (ref. 18) data collected previously at LCLS and APS, respectively (Supplementary Fig. 3). We subjected all data across the time window from 3 ps to 100 ps to our objective procedures described in the Methods, to ensure consistent results.

Population transfer (PT) for each time point in this experiment is approximately 7% (see Supplementary Table 6), which is lower compared to similar excitation schemes at other XFELs. With a femtosecond laser pulse we are limited to the primary photoexcitation yield, which is 20% at best when excitation is achieved into the absorption maximum14. More details on how to estimate the PT are given in the Methods. The yield is further diminished here by illuminating into the flanks of the absorption spectrum: excitation was achieved at 420 nm rather than into the central absorption peak at 450 nm (Supplementary Fig. 4b). Still, excellent data can be collected because the laser penetration depth matches the micrometer crystal size, leading to uniform sample excitation. From the side view of the pCA chromophore at various time delays in Fig. 5f–j,
β (positive). Features labeled are on top of the reference structure (yellow), μs after the laser pulse (μb with 1.13 MHz X-ray pulse repetition and 376 kHz laser excitation (see also persists in all maps at all times. α (30°) at 100 ps. The torsional relaxations up to 3 ps occur in con-

Discussion
Structural dynamics. When comparing results at different pico-second time delays, the torsional angle at 3 ps (39°) increases at 10 ps (51°) and 30 ps (54°) and relaxes through 80 ps to a final value (30°) at 100 ps. The torsional relaxations up to 3 ps occur in concert with an initial increase of the hydrogen bond distance from the pCA-O to Glu-46-O- (3.3 Å). After 80 ps the hydrogen bonds subsequently relax to shorter distances that approach those observed in the dark structure. Assuming that about half of the absorbed photon energy is stored in the near-cis chromophore configuration (of the order of 100 kJ mol\(^{-1}\))\(^{13}\), the release of the chromophore head from a network of two hydrogen bonds should be possible, since the energies of the hydrogen bonds are only about 10 kJ mol\(^{-1}\) (ref. 36) each. However, for the pCA head displacements to occur, chromophore pocket relaxations are required, which are not yet developed on fast timescales. Displacements of the M\(_{1u}\) moiety (Supplementary Fig. 4a), which wraps around the chromophore pocket peak at 10 ps, revert slightly at 30 ps, and slowly increase towards 100 ps (Supplementary Fig. 4c).

The initial displacements are reminiscent of ultrafast structural dynamics detected by time-resolved experiments on myoglobin in solution\(^{12}\). Although the faster, ps time range (between 1 ps and 100 ps) is sparsely covered by previous experiments\(^{12,23}\) and the experiments at EuXFEL included here, direct structural evidence is provided to show how an energetically highly strained structure initially reorders and then only relaxes slowly for a longer period of time (Supplementary Figs. 4c and 5a-c). This is a direct visualization of a nonexponential, nonequilibrium, ultrafast relaxation from a high energy state towards a longer-lived thermal reservoir, which is structurally characterized by intermediate I\(_2\) (Fig. 1a). Only after 100 ps, may the PYP molecules that populate this reservoir sample configurational space more comprehensively to find a reaction coordinate that permits transition to the next intermediate state. As shown previously, transitions to two intermediates (I\(_1\) and pR1) are possible\(^{11}\), requiring reaction coordinates that likely arise from the two different positions in configurational space.
repetition rates not faster than 141 kHz, to minimize contamination of jet speed and from previous exposures. In this way, 22 laser pulses are accommodated per X-ray pulse train, which amounts to 220 laser excitations per second. This rate is between a factor 3.5 and 15 times faster than the deployment of enhanced analysis methods to extract macromolecular structures and their dynamics in the crystalline state. This has been achieved on slower timescales that add important time delays and may serve as invaluable controls to assess signal levels in the DED maps. When longer time delays are explored, different strategies with largely reduced laser repetition rates (10 Hz) may be employed, where the reaction is initiated already within the nozzle capillary and probed, after injection, by the entire train of X-ray pulses. The MHz data acquisition rate by the pulse trains will not be affected, however, and the time delays can be swiftly collected.

Data collection strategy

In this particular experimental case, reduction of the X-ray pulse repetition rate to 564 kHz was necessary to perform TR-SFX experiments with these dense crystalline slurries, with sample jet speeds of about 30 m s⁻¹. The combination of jet speed and 42 μm (FWHM) laser spots demanded optical laser repetition rates not faster than 141 kHz, to minimize contamination from previous exposures. In this way, 22 laser pulses are accommodated per X-ray pulse train, which amounts to 220 laser excitations per second. This rate is between a factor 3.5 and 15 times faster than that achieved previously at other XFELs.

To push data collection rates towards the MHz range the liquid flow rate, as well as the gas flow rate that narrows the jet to boost its speed, must be further increased. If synthetic oil flows together with the crystalline slurry, clogging of, and debris deposition on, the gas dynamic virtual nozzle (GDVN) is largely reduced and an increase in the flow rate is possible. With higher gas flow rates, provisions such as increased pump rates to maintain high vacuum levels are required to protect the highly sensitive MHz X-ray detector. When the laser focus is reduced to about 20 μm FWHM, the laser-excited jet volume will also leave the X-ray interaction region faster. Then, 564 kHz laser pulses interleaved by 1.13 MHz X-ray pulses will push the speed of the pump–probe data collection rates to the limit, and a time delay can be collected of the order of minutes. Our results also pave the way for collecting X-ray data with femtosecond time delays at the EuXFEL. At the same time, meaningful datasets on the fast μs timescale may be obtained, which add important time delays and may serve as invaluable controls to assess signal levels in the DED maps. When longer time delays are explored, different strategies with largely reduced laser repetition rates (10 Hz) may be employed, where the reaction is initiated already within the nozzle capillary and probed, after injection, by the entire train of X-ray pulses. The MHz data acquisition rate by the pulse trains will not be affected, however, and the time delays can be swiftly collected.

Future experiments

The results of this experiment at the SPB/SFX instrument of the European XFEL demonstrate that TR-SFX experiments are feasible at high repetition rate X-ray lasers. High power optical laser sources are required that match the specific X-ray repetition rates and that are tunable to the photon energies needed to initiate reactions in biological macromolecules. The methods implemented here are generally applicable to comprehensively investigate macromolecular reactions within a dedicated experimental time, including built-in control measurements. The increased data rate at the EuXFEL may, in the future, support the collection of TR-SFX data within very limited experimental time (Supplementary Table 6), assuming high uptime of all the necessary experimental apparatus. This opens the door to the deployment of enhanced analysis methods to extract macromolecular structures and their dynamics in the crystalline state. This has been achieved on slower timescales that were covered by dozens of TRX datasets collected over multiple days, and often weeks, of beamtime at synchrotrons, with specific atomic displacements linked to specific protein function. The close relationship between structural dynamics and function established in this way provides new avenues for the control and understanding of biological function, which then also paves the way to a deeper understanding of the mechanism of biomacromolecular reactions in biomedically and biologically important macromolecules.

Table 1 | Geometry of the pCA chromophore after refinement

	Dark	3 ps	10 ps	30 ps	80 ps	100 ps
\(N_{int} \)	—	16	30	29	29	40
Hydrogen bond pCA to E46 (Å)	2.55	3.30	2.82	2.87	2.86	2.79
Hydrogen bond pCA to Y42 (Å)	2.58	2.57	2.65	2.62	2.64	2.39
\(\varphi_{ext} \) (°)	172	39	51	54	40	30

*Characteristic \(N \) used to calculate extrapolated maps. The length of the hydrogen bonds from the pCA head hydroxyl to Glu 46 and Tyr 46, as well as the torsional angle \(\varphi \) of the pCA tail defined by pCA carbon atoms C1, C2, C3 and C1’ is shown. For the tail in the cis-configuration \(\varphi \) is close to 180°, in the cis-configuration \(\varphi \) is close to 0°.

Fig. 5 | Time series of TRX data from 3 ps to 100 ps collected at LCLS, EuXFEL and APS. Structures and DED in the chromophore-binding region of PYP. Red: negative DED (−3σ contour level), blue positive DED (3σ contour level). Important residues and the pCA chromophore are marked in a. Yellow structure: structure of the (dark) reference state. Arrows depict structural displacements in a, f and j. Upper: front view, lower side view. a, f. With a 3 ps delay as collected at LCLS. Green: PYP structure at 3 ps (Pande et al. [4]). b, g. With a 10 ps time delay, this study, cyan: PYP structure at 10 ps. c, h. With a 30 ps time delay, this study, sky blue: PYP structure at 30 ps. d, i. With an 80 ps time delay, this study, blue: PYP structure at 80 ps. e, j. With a 100 ps time delay as determined at APS, light blue: PYP structure at 100 ps (Jung et al. [33]).

Table 1 Geometry of the pCA chromophore after refinement

	Dark	3 ps	10 ps	30 ps	80 ps	100 ps
\(N_{int} \)	—	16	30	29	29	40
Hydrogen bond pCA to E46 (Å)	2.55	3.30	2.82	2.87	2.86	2.79
Hydrogen bond pCA to Y42 (Å)	2.58	2.57	2.65	2.62	2.64	2.39
\(\varphi_{ext} \) (°)	172	39	51	54	40	30

*Characteristic \(N \) used to calculate extrapolated maps. The length of the hydrogen bonds from the pCA head hydroxyl to Glu 46 and Tyr 46, as well as the torsional angle \(\varphi \) of the pCA tail defined by pCA carbon atoms C1, C2, C3 and C1’ is shown. For the tail in the cis-configuration \(\varphi \) is close to 180°, in the cis-configuration \(\varphi \) is close to 0°.

Future experiments. The results of this experiment at the SPB/SFX instrument of the European XFEL demonstrate that TR-SFX experiments are feasible at high repetition rate X-ray lasers. High power optical laser sources are required that match the specific X-ray repetition rates and that are tunable to the photon energies needed to initiate reactions in biological macromolecules. The methods implemented here are generally applicable to comprehensively investigate macromolecular reactions within a dedicated experimental time, including built-in control measurements. The increased data rate at the EuXFEL may, in the future, support the collection of TR-SFX data within very limited experimental time (Supplementary Table 6), assuming high uptime of all the necessary experimental apparatus. This opens the door to the deployment of enhanced analysis methods to extract macromolecular structures and their dynamics in the crystalline state. This has been achieved on slower timescales that were covered by dozens of TRX datasets collected over multiple days, and often weeks, of beamtime at synchrotrons, with specific atomic displacements linked to specific protein function. The close relationship between structural dynamics and function established in this way provides new avenues for the control and understanding of biological function, which then also paves the way to a deeper understanding of the mechanism of biomacromolecular reactions in biomedically and biologically important macromolecules.
Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-019-0628-z.

Received: 10 June 2019; Accepted: 3 October 2019; Published online: 18 November 2019

References
1. Moffat, K. Time-resolved biochemical crystallography: a mechanistic perspective. Chem. Rev. 101, 1569–1581 (2001).
2. Schmidt, M. Time-resolved macromolecular crystallography at modern X-ray sources. Methods Mol. Biol. 1607, 273–294 (2017).
3. Aquila, A. et al. Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt. Express 20, 2706–2716 (2012).
4. Tenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014).
5. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).
6. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).
7. Lomb, L. et al. Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron laser. Phys. Rev. B 84, 214111 (2011).
8. Nasi, K. et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22, 225–238 (2015).
9. Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).
10. Che referrals, G. et al. Crystal structure of the pristine peroxidase ferryl center and contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41592-019-0628-z.
11. Wiedorn, M. O. et al. Megahertz serial crystallography. Nat. Commun. 9, 4025 (2018).
12. Grünbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9, 3487 (2018).
13. Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2013).
14. Pandey, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).
15. Meyer, T. E., Yakali, E., Cusanovich, M. A. & Tollin, G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photocatalytic activity analogous to sensory rhodopsin. Biochemistry 26, 418–423 (1987).
16. Genick, U. K. et al. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475 (1997).
17. Ihee, H. et al. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc. Natl Acad. Sci. USA 102, 7145–7150 (2005).
18. Kort, R. et al. Evidence for trans–cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett. 382, 73–78 (1996).
19. Polli, D. et al. Conical intersection dynamics of the primary photosisomerization event in vision. Nature 467, 440–443 (2010).
20. Mathes, T. et al. Femto- to microsecond photodynamics of an unusual bacteriophytochrome. J. Phys. Chem. Lett. 6, 5 (2014).
21. Ali, A. M. et al. Optogentic inhibitor of the transcription factor CREB. Chem. Biol. 22, 1531–1539 (2015).
22. Schotte, F. et al. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc. Natl Acad. Sci. USA 109, 19256–19261 (2012).
23. Creelman, M., Kumau, M., Holf, W. D. & Mathies, R. A. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 118, 659–667 (2014).
24. Palmer, G. et al. Pump-probe laser system at the XFEL and SPB/SFX instruments of the European X-ray free-electron laser facility. J. Synchrotron Radiat. 26, 328–332 (2019).
25. Schmidt, M. et al. Protein energy landscapes determined by five-dimensional crystallography. Acta Crystallogr. D 69, 2534–2542 (2013).
26. Prokorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).
27. Mancuso, A. P. et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: initial installation. J. Synchrotron Radiat. 26, 660–676 (2019).
28. Allaghboli, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019).
29. Stan, C. A. et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12, 966–971 (2016).
30. Tripatis, S., Srajer, V., Purwar, N., Henning, R. & Schmidt, M. pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Biophys. J. 102, 325–332 (2012).
31. Schmidt, M. in Ultrashort Laser Pulses in Medicine and Biology (eds Braun, M. et al.) 201–241 (Springer, 2008).
32. Schmidt, M. Time-resolved macromolecular crystallography at pulsed X-ray sources. Int. J. Mol. Sci. 20, 1401 (2019).
33. Jung, Y. O. et al. Volume-conserving trans–cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat. Chem. 5, 212–220 (2013).
34. Hutchison, C. D. M. & van Thor, J. J. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. Int. Rev. Phys. Chem. 36, 117–143 (2017).
35. Groenhof, G. et al. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J. Am. Chem. Soc. 126, 4228–4233 (2004).
36. Markovitch, O. & Agmon, N. Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 111, 2253–2256 (2007).
37. Levantino, M. et al. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat. Commun. 6, 6772 (2015).
38. DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41, 195505 (2008).
39. Schmidt, M., Rajagopal, S., Ren, Z. & Moffat, K. Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys. J. 84, 2112–2129 (2003).
40. Rajagopal, S., Schmidt, M., Anderson, S., Ihee, H. & Moffat, K. Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Crystallogr. D 60, 860–871 (2004).
41. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).
42. Kupitz, C. et al. Serial enzymology using X-ray free electron lasers. Struct. Dyn. 4, 044003 (2017).
43. Olmos, I. L. Jr. et al. Enzyme intermediates captured “on the fly” by mix-and-inject serial crystallography. BMC Biol. 16, 59 (2018).
44. Paul, K. et al. Coherent control of an opsin in living brain tissue. Nat. Phys. 13, 1111–1116 (2017).
45. Wang, J. et al. Time-resolved protein activation by proximal decaging in living systems. Nature 569, 509–513 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Methods

A step-by-step protocol for a successful TR-SFX experiment with PYP at the EufXfel is available on the Protocol Exchange. This protocol can be readily modified for other (photoactive) biological macromolecules.

Sample preparation. PYP was overexpressed and purified as reported previously. PYP microcrystals were grown with the stir method using 3.3 mol·L⁻¹ malonate (pH 7) as precipitant. PYP was concentrated to 100 mg·ml⁻¹, and 4 mol·L⁻¹ Na-malonate, pH 7, was added at once to a final concentration of 3.3 mol·L⁻¹ under vigorous stirring. The suspension (20 ml) was stirred in a closed glass vial for 8 h by allowing to rest for an additional 24 h at room temperature. This method works equally well with smaller ~2 ml and larger ~20 ml volumes. Stirring is necessary to prevent the growth of crystals to sizes larger than 10 μm. The slurry was spun at 8,000 rpm for 10 min. The microcrystals swim up. The clear solution below the microcrystals swirled first by handpressing the slurry (placed in a 10 ml syringe) through a 10-μm stainless steel filter. The slurry was injected without further filtering into the vacuum chamber at the SPB/SFX imaging and serial crystallography instrument (SC2) using a GDVN with 75 μm inner diameter (Supplementary Fig. 1). Smaller nozzle diameters led to clogging and reduced flow rate due to pressure limitations.

Injection and alignment. With the 75 μm inner diameter nozzles, we attempted to maximize slurry flow and gas pressure to produce a fast jet that may be able to cope with the enormous X-ray pulse rates. We measured the jet diameter to be about 5 μm, with a flow rate of 35 μl·min⁻¹ under identical conditions to those used for the experiment (Supplementary Table. 1). This translates into a jet speed of approximately 30 μm·s⁻¹. To avoid clogging, for some time delays, we added an immiscible fluorinated oil mixture (perfluorodecalin and 1-fluoro-2-fluoro-1,2-dimethylcyclohexane) to the jet, which provides a convenient method to align the laser with the X-rays by centering the laser focal spot in the gap. Temperature was not controlled. Laser warming of the nozzle did not affect laser alignment. The PYP photocycle was initiated in the microcrystals with 240 fs laser pulses of wavelength 420 nm, which is 30 nm on the blue side of the PYP absorption maximum. The absorption at 420 nm is only 60% of that of the absorption maximum (Supplementary Fig. 4b), we used, accordingly, 1.6 mm² laser fluence in a 42 μm (FWHM) laser spot. Imaging the gaps in the jet provides a convenient method to align the laser with the X-rays by centering the laser focal spot in the gap. Temperature was not controlled. Laser warming (about 10°C) and evaporative cooling effects (a few degrees) fortuitously compensated each other during the experiments performed. The nozzle size, including laser set-up, laser alignment, the timing and the determination of the temporal overlap of X-ray and laser pulses are given in the following sections.

Instrumentation. Experiments were performed at the SPB/SFX instrument in March 2019 as a part of proposal 2166 using a similar configuration as that used in Wiedorn et al. The size of the mirror-focused focal spot in the interaction region was estimated to be 2 × 3 μm² FWHM diameter based on optical imaging of single shots using a 20 μm thick Ce:YAG screen. The X-ray pulse energy was about 700 μJ. Diffraction from the sample was measured using an AGIPD 14 of 1 megapixel located 117.7–118.6 mm downstream of the sample interaction point, with the unused direct beam passing through a central hole in the detector to a beam stop further downstream (Supplementary Fig. 1). The resolution at the edge of the AGIPD was 1.8 Å, and 1.6 Å data were obtained by integrating Bragg reflections into the detector corner. Experiment control was provided by Karabo and data acquisition was provided by dedicated technology with the megahertz repetition rates.

Laser set-up and timing. Optical laser radiation, with wavelength 840 nm and 15 fs pulse duration, was used to generate a 420 nm second harmonic using a 0.5 mm thick barium borate (BBO) crystal. Additionally, fused silica windows and lenses stretched the pulse to 250 fs duration. The beam size at the sample position was measured by a micro-scanner and a simple pinhole of diameter 42 μm FWHM. The average laser energy was about 2.3 μl, which corresponds to 1.6 mm²·s⁻¹ fluence at the sample. The optical laser timing was synchronized with a radiofrequency (RF) signal, and timing at the experiment was controlled by a phase shifter. The 0° position, when both optical and X-ray beams arrive simultaneously, was estimated by the spatial encoding method using a SrTiO₃ crystal. Both the intertrain timing and the intraintrain timing were measured earlier in facility experiments. The train arrival time jitter was determined to be 500 fs. The system in RR then run the intraintrain jitter was measured to be significantly shorter than 1 ps, which is negligible in terms of the ps timing scheme employed here. In addition, we never observed more than 1 ps drift in our RF synchronization over a 12 h shift.

Data processing. Experiment progress was monitored online using OnSDA for serial crystallography. Diffraction images with Bragg reflections were found using PeakDetect and Cheetah (peakfinder8, minSNR = 8, minADC = 200, MinPix = 1, minPeaks = 25) using the calibration process described by Wiedorn et al. Careful masking of shadowed and unreliable regions of the detector was performed on a run-by-run basis. Independent masks were used for peakfinding to avoid false peaks, for example, due to ice formation. Images of the detector counting rate (Supplementary Fig. 10) with peaks found by Cheetah using the indexing package XGANZALF3 (ref. 15). Detector geometry, especially the detector distance, was refined using the program Geomaximiser. Merging and scaling of the Bragg peak intensities were performed using the paratiltar program from CrySTAL. To avoid the integration of noise for weakly scattering patterns, reflections were included up to 1.0 nm⁻¹ above a conservative resolution estimate for each crystal (~push-res = 1.0). Since PYP crystallizes in P6₁, an indexing ambiguity is present. This was corrected by the ambiguate module in CrySTAL. Figures of merit were calculated using compare_hkl (Rmerge, C½,C) and check_hkl (signal-to-noise ratio, multiplicity, completeness), both a part of CrySTAL. The intensities from all indexed patterns were corrected for the other irrelevance of the delay setting. Images of the detector were separated, and their intensity merged. This separation has been achieved based on pulse identifications in the train (see below and Supplementary Fig. 1), which are stored together with the diffraction patterns. The corresponding intensities were then merged to generate reference datasets, and datasets at different time delays, for each (Supplementary Tables 1–3).

Pump–probe timing schemes. X-ray pulses arrive in pulse trains with, currently, up to 176 X-ray pulses with a 1.13 MHz repetition rate within the train. Each train repeats with 10 Hz (Fig. 2a and Supplementary Fig. 1). The tunable, high-energy femtosecond laser system installed at the SPB/SFX instrument is able to cope with the MHz pulse repetition rate. For the various experiments, two different pump–probe timing strategies were used. These are shown in Fig. 2. The laser was synchronized to X-ray pulse 1 in each train, whose radio frequency signal is delivered by the EufXfel control room to the instrument. The X-ray fluence in pulse 1 has been very low for this experiment, and spurious diffraction patterns produced by it were not used. In scheme 1, the X-ray pulse rate was 1.1 MHz (Fig. 2b). The laser was activated 2.3 ns after pulse 1. Accordingly, pulses 2, 3 and 4 probed the reaction after 0.89 μs (887 ns), 1.78 μs and 2.67 μs. This sequence repeats with laser activation after pulses 4, 7, 10 and so on, interleaved with the three μs time delays each. This results in a laser pulse repetition rate of 376 kHz, and 176/3 ≈ 58 laser activations per pulse train. The effective laser excitation rate is therefore 1.13 MHz. As demonstrated in Supplementary Figs. 2a and 2b, the X-ray repetition rate in the train is reduced to 564 kHz with 88 pulses per train (Fig. 2a). This time, the X-ray rate varies smoothly with the X-ray pulse energy across all X-ray pulses in the train (Supplementary Fig. 2b), and no abrupt decay as observed for higher X-ray pulse rates (as in Supplementary Fig. 2a) was observed. The laser was synchronized again with respect to X-ray pulse 1. This time, the synchronization was precisely adjusted, so that the pump–probe delay δt between the laser pulse and X-ray pulse 2 was on the picosecond timescale (Fig. 2c), which is necessary to collect data for the 10 ps, 30 ps and 80 ps time delays. As shown for other XFELs, the XFEL-to-laser timing fluctuations are of the order of 5 ps, which is negligible on the ps timescale, and a timing tool was not required. The next laser pulse arrives after X-ray pulse 5. The laser pulse repetition rate was therefore 141 kHz. Accordingly pulses 2, 6, 10, etc. in the train probe a picosecond time delay; and three additional interleaving X-ray pulses probe time delays at 1–350 ps and 533 μs. This results in 22 pump–probe sequences with ps pulse delays per train, and 220 effective laser excitation per second. At the Spring-8 Angstrom Compact Laser and the LCLS, typical X-ray pulse rates are 30 Hz and 120 Hz, respectively. Pump–probe sequences with interleaving dark data collection require 15 Hz or 60 Hz laser pulse rates. Compared with these machines, even with the small number of 88 X-ray pulses in the train in these early experiments, the effective laser repetition rate of scheme 2 is a factor of 3.5 to 15 times faster. In the future, more than one order of magnitude more X-ray pulses will be available per train, which speeds up data collection accordingly. It must be decided on a case-by-case basis whether MHz pulse rates can be used when low viscosity slurries with small crystals are available that allow narrow GDVN orifices and enable fast jetting. The X-ray laser was found to be highly suitable for the PYP crystal, as in the case of PYP. Of the order of 675 X-rays per train, with a 1.13 MHz intraintrain repetition rate, are prepared to be available soon. A pump–probe data collection strategy shown in Fig. 2a that contains only one interleaved dark will be feasible. In this case 337 laser pulses per train result in the enormous effective laser
excitation rate of 3.370 Hz. As the AGIPD measures up to 352 pulses per train, 3,520 patterns (out of the 6,750) can be stored per second. With a low 2% hit rate and a 50% indexing rate, as demonstrated in this paper, the approximately 25,000 indexed diffraction patterns that are required to detect low levels of population transfer can be collected in about 20 min. This includes collection of the reference (dark) data. Protein consumption is about 10% of that expected at slower XFELs (Supplementary Table 6), and should be between 20 mg and 40 mg per time delay, depending on the design of the experiment.

Difference map calculation. A reference (dark state) model MDark was refined by using the program REMAC (ref. 41) against structure factor (SF) amplitudes collected in the dark [Fobs-dark] without laser excitation. To check for spurious features at μs delays, the pure dark data (Supplementary Table 2) were used as a reference. The dark data from the 30 ps time series display superior statistics (Supplementary Table 2) and served as reference for all ps time delays. Model structure factors were calculated from MDark with amplitude |FCref| and phase ϕref.

The measured [Fobs-dark] were brought to the absolute scale by scaling them to |FCref| using the CCP4 program ‘scaleit’ (ref. 66). The time-dependent SF amplitudes Fobs-dark were then scaled in a second run of ‘scaleit’. As a result, both [Fobs-dark] and [FCref] are on the absolute scale, and are scaled together. Difference structure factor (DSF) amplitudes were calculated as:

\[\text{DSF}_{\text{obs}} = |F_{\text{obs-dark}}| - |F_{\text{FCref}}| \]

A weighting factor, w, for the DSFs was determined to reduce the influence of outliers24. The DSFs were combined with phases ϕref. From the weighted DSFs, a weighted DED map was calculated using the program ‘iF’ from the CCP4 suite of programs. Although |Fobs-dark| and |FCref| are on the absolute scale, the difference map was, due to the difference Fourier approximation68, only on half the absolute scale. The preserved absolute scale was necessary to estimate population transfer levels, as explained below. The DED maps were best contoured on the 3σ–10σ levels (Supplementary Fig. 6).

Refinement. Meaningful negative features in the DED map were necessarily located on top of the reference model MDark. However, contiguous, chemically sensible positive features in the DED map must be interpreted with a new structural model (Mobs-dark). To determine structures from DED maps, extrapolated, conventional electron density (ED) maps41–71 were used. For extrapolated structure factor (SF) maps, SFobs-dark = |FCref| + N × DSF and combined with the reference state (dark) phases ϕref.

Here the use of |FCref| derived from an accurately refined dark state model was preferred over the [Fobs-dark], as explained by Terwilliger and Berendsen69. From the phased SFobs-dark extrapolated electron density maps (EDobs-dark) were calculated with the CCP4 program ‘iFY’. A characteristic N10 was established when the electron density in the EDobs-dark at the positions with strong negative features in the DED maps just vanishes. When N is too large, false-negative features will appear in the EDobs-dark. This can be visualized by summing up negative values in the EDobs-dark within a volume that contains strong DED features in the DED maps. Supplementary Fig. 7 shows results for such a summation for all our TR-SFX time delays collected at the European XFEL and for TRX data selected from the literature14,16. The summation can be done with an arrow in Supplementary Fig. 7. The value of N10 is approximately related to the PT: PT ≈ 0.038 Å, the factor of two accounts for the difference Fourier approximation mentioned above. If the PT is small, N10 is large. A value of N10 = 30 is not uncommon in TRX, especially with fs excitation, since the primary yield of photodestruction can be small29 and is further diminished by experimental circumstances. Once N10 had been established, structural models were determined from the resulting EDobs-dark maps. The EDobs-dark map was displayed in a molecular modeling program such as ‘coot’59. The reference model can be used as an initial model for a refinement. When structural changes were small, the initial model was altered by directly refining it against the EDobs-dark map by a stepped real-space refinement in ‘coot’ with the torsional restraint switched off (default in ‘coot’). For PYP, isomerization and structural changes were modeled automatically in this way, entirely without manual intervention. For other systems64 structural changes can be modeled manually, analogous to conventional structure determination. A new structural model Mobs-dark was obtained this way. From the real-space refined Mobs-dark and MDark models, calculated DSFs can be determined, this time with all amplitudes and phases ϕref. When the DEDobs-dark calculated from the phased difference structure factors is compared with the DEDobs-dark prominent DED features should match (Supplementary Fig. 8). The ϕref were combined with the measured DSFobs-dark and phased extrapolated SFs (psSF) were obtained by adding the (now phased) DSFsref with amplitude |FCref| as vectors in the complex plane66. The Mobs-dark was refined against the psSF using restrained reciprocal space refinement, using, for example, refinAC. Typically, R-factors were acceptable and did not deviate much from those of refinements against conventional X-ray data. Structural models and ED maps are shown in Supplementary Fig. 3. Refinement statistics are shown in Supplementary Tables 4 and 5. Selected model parameters are listed in Table 1 for the 3 ps to 100 ps time range.

Displacements and difference distance matrices. Structural differences were analyzed by calculating the root mean square displacements of like Cα atoms in the MDark moiety (Supplementary Fig. 4a) between the structures determined at the various time delays and the reference structure. The root mean square displacements values in Supplementary Fig. 4c were fit by an empirical function consisting of an exponential term, a linear term and a strongly damped cosine function, which includes a phase shift:

\[\text{RMSD}_{\text{ts}} = A_0 (1 - e^{-t/\tau}) + b + A_1 \cos\left(\frac{2\pi}{T} + \phi\right) e^{-t/\tau} \]

The fit values were A0 = 0.181 Å, τ = 1.4 ps, b = 4.5 × 10^-4 Å ps^-1, A1 = 0.038 Å, T = 50 ps, φ = 25°, β = 1/50 ps^-1. Some of the fit values are not unique. For example, T in the cosine function can vary largely because only a few time delays are available across the 100 ps timescale. T was selected so that the decrease of the root mean square displacements at 30 ps was modeled correctly, and the damping constant β was selected so that the oscillation vanishes quickly. To show more global displacements, difference distance matrices (Supplementary Fig. 5a–d) were calculated30 using the Fortran code of the DDMP program from the Center for Structural Biology at Yale University. The calculations include residues 42–92 and use the 3 ps structure as a reference (note: if the dark structure were to be used as a reference, small structural changes in the time window from 3 ps to 100 ps would not be observable). With these matrices one can also visually identify the decline in the difference distances between 10 ps and 30 ps, and their increase at 100 ps, in particular in the H46–71 region (green bar), and then at 100 ps also more globally in the H46–71 region (also depicted in Supplementary Fig. 4a).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Data has been deposited with the Coherent X-ray Imaging Data Bank1 with CXIDB ID 100. This includes: stream files for all data and for data separated into each time delay; MTZ and PDB files for all time delays, including the dark/ reference structures. We have deposited data (mtz-files and structures) for the 3 ps, 10 ps and 80 ps time delays, as well as the dark3 (30 ps) and pure dark reference structures, with the Protein Data Bank, with deposition codes 6P41, 6P5D, 6P5E, 6P5G and 6P5F, respectively.

Code availability

Linux scripts and Fortran source codes for the calculation of weighted difference densities, extrapolated electron density maps and the integration of negative densities within a spherical volume are included in a demonstration, which is available online as Supplementary Data.

References

46. Pandey, S., Bean, R., Sato, T., Mancuso, A. P. & Schmidt, M. Time-resolved serial femtosecond crystallography at the European X-ray free electron laser. Prot. Exch. https://doi.org/10.21203/rs.2.14634/v1 (2019).
47. Mancuso, A. P., Aquila, A., Borchers, G., Giermek, K. R. & Reimers, C. Technical Design Report: Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB) https://doi.org/10.3204/XFEL.EU/TR-2013-004 (XFEL.EU, 2013).
48. Echlemeier, A. et al. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J. Appl. Cryst. 52, 1097–1108 (2019).
49. Hutchison, C. D. M. et al. Photocycle populations with femtosecond excitation of crystalline photoflavine yellow protein. Chem. Phys. Lett. 654, 63–71 (2016).
50. Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in prokaryotic bacteriorhodopsin. Nat. Comm. 11, 3177 (2020).
51. Bean, R. J., Aquila, A., Samoylova, L. & Mancuso, A. P. Design of the mirror optical systems for coherent diffractive imaging at the SPB/SIX instrument of the European XFEL. J. Opt. 18, 074011 (2016).
52. Greiffenberg, D. The AGIPD detector for the European XFEL. J. Instrum. 7, C02035 (2012).
53. Pangoh, H. et al. Data analysis support in Karabo at European XFEL. In Proc. of International Conference on Accelerator and Large Experimental Control Systems (eds Costa, I. et al.) 245–252 (inSPIRE, 2017).
54. Buchje, D., Szuba, I., Wrona, K. & Youngman, C. Software Development for High Speed Data Recording and Processing (JACoW2014).
55. Kirkwood, H. J. et al. Initial observations of the femtosecond timing jitter at the European XFEL. Opt. Lett. 44, 1650–1653 (2019).
56. Mariani, V. et al. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 49, 1073–1080 (2016).
57. Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial X-ray diffraction data. J. Appl. Crystallogr. 47, 1118–1131 (2014).
58. White, T. A. et al. Recent developments in CrystFEL. J. Appl. Cryst. 49, 680–689 (2016).
59. Gevorky, V. et al. XGANDALF – extended gradient descent algorithm for lattice finding. Acta Cryst. Found. Adv. 75, 694–704 (2019).
60. Yefanov, O. et al. Accurate determination of segmented X-ray detector geometry. Opt. Express 23, 28459–28470 (2015).
61. Brehm, W. & Diederichs, K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D 70, 101–109 (2014).
62. Glownia, J. M. et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).
63. Harmand, M. et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 7, 215–218 (2013).
64. Bionta, M. R. et al. Spectral encoding of X-ray/optical relative delay. Opt. Express 19, 21855–21865 (2011).
65. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).
66. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).
67. Ren, Z. et al. A molecular movie at 1.8 Å resolution displays the photocycle of photostable yellow protein, a subcellular blue-light receptor, from nanoseconds to seconds. Biochemistry 40, 13788–13801 (2001).
68. Drenth, J. Principles of Protein X-Ray Crystallography (Springer, 1999).
69. Terwilliger, T. C. & Berendzen, J. Bayesian difference refinement. Acta Crystallogr. D 52, 1004–1011 (1996).
70. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
71. Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science 361, eaat0094 (2018).
72. Richards, F. M. & Kandrot, C. E. Identification of structural motifs from protein coordinate data—secondary structure and 1st-level supersecondary structure. Proteins 3, 71–84 (1988).
73. Maia, F. R. The coherent X-ray imaging data bank. Nat. Methods 9, 854–855 (2012).

Acknowledgements

We acknowledge European XFEL in Schenefeld, Germany, for provision of X-ray free-electron laser beamtime at Scientific Instrument SPB/SFX and thank the instrument group and facility staff for their assistance. This work was supported by NSF Science and Technology Centers (grant no. NSF-1231306; Biology with X-ray Lasers) to H.N.C., P.F., A.O., A.R., P.S. and M.S.). CFEL (H.N.C.) is supported by the Gottfried Wilhelm Leibniz Program of the DFG; the project ‘X-probe’ funded by the European Union’s 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement (no. 637295); the European Research Council, ‘Frontiers in Attosecond X-ray Science; Imaging and Spectroscopy (AXSS)’ (no. ERC-2013-StG 609920, together with P.F.); and the Human Frontiers Science Program grant (no. RGP0010 2017). P.F. and A.R. acknowledge the support of funding from the Biodesign Center for Applied Structural Discovery at Arizona State University and NSF award (no. 1565180). Funding from the National Institutes of Health (grant nos. R01GM095583 to P.F. and R01GM117342 to M.F.) is also acknowledged.

Author contributions

S.P., I.P. and M.S. expressed, purified and crystallized the protein. R.B., T.S., J.B., V.B., M.E., G.G., M.J., Y.K., H.K., A.K., L.M., T.M., G.P., M.R., A.S., J.S.-D. and A.P. operated the SPB/SFX instrument. S.L., J.K., R.S. and H.N.C. provided injector nozzles. J.C.V., C.K., M.H.A., J.K., F.H.M.K., S.L., V.Maz., D.M., R.S. and A.T. collected the data. S.P., I.P., P.S., A.O. and M.S. analyzed the data. C.K., M.H.A., R.F. and P.F. logged the experiment. J.C.V., A.E., D.D., D.K. and A.R. conceived and operated the oil co-flow. R.B., T.S., M.F., H.N.C., A.R., A.B., P.F., A.P.M. and M.S. designed the experiment. S.P., S.B., A.B., P.F., A.P.M. and M.S. wrote the manuscript with input from all other authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41592-019-0628-z.

Correspondence and requests for materials should be addressed to M.S.

Peer review information Arunima Singh and Allison Doerr were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on Statistics for Biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
Data is collected using Karabo 2.4.0. and Cheetah. Karabo is EuXFEL’s homogeneous software framework available on-site. It is used for data acquisition, data management and data analysis. Cheetah is open source software to collect the data and perform preliminary data processing on-site at XFEL. The manuals for Cheetah is available on-line.

Data analysis
CrystFEL version 0.8.0., CCP4 suite of programs v7.0.075 including Coct v0.8.9.2 and reffmac version 5.0.32, self written Fortran programs (available as supplementary material online).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data has been deposited with the Coherent X-ray Imaging data bank with CIXDB ID 100. This includes: Stream files for all data and for data separated into each time-delay, M12 and PDB files for all time-delays including the dark/reference structures. We have deposited data (mtz files and structures) for the 10 ps, 30 ps and 80 ps time-delays, as well as the dark3 (30ps) and pure dark reference structures to the protein data bank, with deposition codes 6P4J, 6P5D, 6PSE, 6PSG and 6PSF, respectively.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

- **Sample size**: c.a. 1.5 g of recombinant photoactive yellow protein that yields on the order of 1.5 trillion microcrystals. The number of microcrystals were counted using the Neubauer counting chamber using well established method.

- **Data exclusions**: Diffraction patterns without Bragg reflections were excluded by a “hit-finding” algorithm implemented in the Cheetah program. Exclusion criteria was determined on-site using the parameters peakfinder8, minSNR=8, minADC=200, minPix=1, minPeaks=25 in Cheetah program.

- **Replication**: The experiment is a result from four 12 hrs beam time at EuXFEL. Millions of diffraction patterns were collected in total and, out of them, 421,532 patterns were meaningful and were used to determine the results. The robustness of the data were tested using various well established methods like R-split, CC-half etc. This verified the reproducibility of the results. The results can be reproduced using the data provided in CXI data bank.

- **Randomization**: Orientations of individual microcrystals are naturally random caused by the injection process. A diffraction pattern is produced due to the interaction between a X-ray pulse and a random crystal. So, each diffraction pattern is also naturally random. Millions of these kinds of patterns are collected. They are indexed, integrated and merged using different programs of CrystFEL. So, a data set for every time point is obtained from of tens of thousands of random diffraction patterns.

- **Blinding**: This is a macromolecular crystallographic experiment. Blinding does not apply.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

- n/a
- Involved in the study
 - Antibodies
 - Eukaryotic cell lines
 - Palaeontology
 - Animals and other organisms
 - Human research participants
 - Clinical data

Methods

- n/a
- Involved in the study
 - ChIP-seq
 - Flow cytometry
 - MRI-based neuroimaging