Primary care models for treating opioid use disorders: What actually works? A systematic review

Pooja Lagisetty1,2,3*, Katarzyna Klasa4, Christopher Bush5, Michele Heisler1,2,3, Vineet Chopra1,2, Amy Bohnert2,3,6

1 Division of General Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America, 2 VA Center for Clinical Management Research, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America, 3 Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, Michigan, United States of America, 4 University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America, 5 Department of Population Health Sciences, School of Medicine, Duke University, Durham, North Carolina, United States of America, 6 Division of Psychiatry, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America

* lagiset@med.umich.edu

Abstract

Background

Primary care-based models for Medication-Assisted Treatment (MAT) have been shown to reduce mortality for Opioid Use Disorder (OUD) and have equivalent efficacy to MAT in specialty substance treatment facilities.

Objective

The objective of this study is to systematically analyze current evidence-based, primary care OUD MAT interventions and identify program structures and processes associated with improved patient outcomes in order to guide future policy and implementation in primary care settings.

Data sources

PubMed, EMBASE, CINAHL, and PsychInfo.

Methods

We included randomized controlled or quasi experimental trials and observational studies evaluating OUD treatment in primary care settings treating adult patient populations and assessed structural domains using an established systems engineering framework.

Results

We included 35 interventions (10 RCTs and 25 quasi-experimental interventions) that all tested MAT, buprenorphine or methadone, in primary care settings across 8 countries. Most included interventions used joint multi-disciplinary (specialty addiction services combined with primary care) and coordinated care by physician and non-physician provider delivery
models to provide MAT. Despite large variability in reported patient outcomes, processes, and tasks/tools used, similar key design factors arose among successful programs including integrated clinical teams with support staff who were often advanced practice clinicians (nurses and pharmacists) as clinical care managers, incorporating patient “agreements,” and using home inductions to make treatment more convenient for patients and providers.

Conclusions
The findings suggest that multidisciplinary and coordinated care delivery models are an effective strategy to implement OUD treatment and increase MAT access in primary care, but research directly comparing specific structures and processes of care models is still needed.

Introduction
Recent spikes in opioid-related overdoses have led experts to advocate for the creation of primary care-based treatment models to expand access to treatment for Opioid Use Disorders (OUD). [1, 2] OUD is categorized by individuals exhibiting signs and symptoms of compulsive behavior related to the self-administration of opioid substances [3] without a legitimate medical cause or in doses excess of what is clinically [2] necessary. [2] Internationally, of an estimated 48.9 million opioid/opiate users, 187,100 experience drug-related deaths annually. [4] In the US alone, about 2.5 million citizens have OUD, with an estimated 60,000 deaths due to drug overdoses [3] occurring annually. [5] A paucity of specialized substance treatment facilities and rising demand for OUD treatment presents primary care-based models the opportunity to increase access to treatment.

Over the past 15 years, health systems have developed and tested models to incorporate the use of medication-assisted treatment (MAT), also referred to as opioid-assisted treatment, into primary care settings. MAT uses pharmacological treatments such as buprenorphine and methadone coupled with psychosocial care to treat patients with OUD. [6] Primary care-based models for MAT appear to have roughly equivalent efficacy and outcomes to specialty substance treatment facilities in certain populations with the added advantage of managing, and potentially improving, comorbidity outcomes[7–12]. A recent scoping review has only looked at U.S. models, but no systematic, rigorous international comparisons with a focus on implementation structures and processes of OUD MAT in primary care settings exist to date [13]. No studies have attempted to synthesize the core implementation structures of these interventions, and as a result, little is known about the components included in effective models in primary care settings. This gap in the literature demonstrates the need to identify which components of primary care models for OUD treatment have shown success in implementation and acceptance by patients.

This systematic review aims to evaluate the literature on interventions for treating OUD in primary care settings using an established systems design framework: Systems Engineering Initiative for Patient Safety (SEIPS) 2.0 [14]. We use this framework to answer the questions: what structural characteristics and implementation components are described in existing primary care models for treating OUD, and how can we improve upon them in the future? Specifically, we aim to: (1) identify thematic components of primary care OUD MAT models that are accepted by patients and physicians and associated with improved health outcomes (2) use
those findings to guide future policy and provide recommendations on design features of
delivery models found to be effective in the primary care setting.

Methods

Data sources and searches

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) recommendations in conducting this systematic review (PROSPERO 2016:
CRD42016033762) [15]. With the assistance of a medical research librarian (MC), we per-
formed serial literature searches for English language articles. MEDLINE via PubMed,
CINAHL, EMBASE, and PsychInfo were searched for studies published prior to August 1,
2016 using Medical Subject Headings (MeSH) and keywords based on primary care settings
and treatment of OUDs (S1 Table). All human studies published in full-text were eligible for
inclusion, and no publication date or status restrictions were placed. Additional studies of
interest were identified by hand searches of bibliographies. Authors were contacted by email if
further clarification was needed.

Study selection

Two authors (KK and CB) independently screened titles and abstracts for eligibility. Given the
complexity of designing and evaluating care models [16], we included both experimental
(RCTs) and observational studies (cohort, case-control, cross-sectional) if they met inclusion
criteria. Articles were included if the intervention: (1) evaluated a primary care-based health
delivery model where primary care was defined as care delivered in a general practice setting
(i.e. private practice, academic primary care clinic) by a general medical internist and/or family
medicine physician only, (2) targeted adults (18 years or older) with OUD defined as patients
engaged in care to treat their opioid addiction, (3) evaluated patient-level outcomes (e.g.
patient retention, urine toxicology screens, satisfaction, effect on health screening for comor-
bidities, etc.), and (4) evaluated the care model using qualitative or quantitative methods. Stud-
ies that did not include a description of the care delivery model evaluated (i.e. only discussed
physician perceptions of OUD or drug dosage efficacy studies), focused exclusively on com-
paring intervention settings (e.g. specialty care versus primary care settings) without a detailed
description of the primary care intervention/program design, and concentrated on specialty-
based primary care (e.g. HIV care) outside of a primary care physician (PCP) led primary care
practice were excluded (S2 Table). In the event of a disagreement in exclusion or inclusion
between the two reviewers, a third reviewer (PL) resolved the discrepancy.

Data extraction and quality assessment

Two authors (KK and CB) used a standardized form adapted from the Cochrane Collaboration
[17, 18] to extract data from the included studies, independently and in duplicate. The follow-
ing data was extracted for all studies: location, study design, intervention design and duration,
care model structures and processes, classification, delivery staff, sample size, patient popula-
tion, and primary/secondary outcomes as stated by the authors of each study.

Two authors (KK and CB) independently assessed risk of bias via the validated Downs and
Black tool which utilizes the following elements to assess risk of bias in both experimental and
observational studies: quality of reporting, internal validity of the study and its power, and
external validity and confounding [19]. The tool evaluates each of these elements using 27
questions, allowing each article to receive a sum score of up to 32 points. For the purposes of
this study, the last question assessing statistical power was interpreted as a dichotomous
outcome: 0 for insufficient/no power calculation and 1 for studies that provided evidence of power calculation or reference to statistical power. From this alteration, 28 was the highest score possible. As previously reported [20] [21] the following were the final score ranges: excellent (26–28); good (20–25); fair (15–19); and poor (≤ 14). Any discrepancies or disagreements in data review, extraction, or assessment of risk of bias were resolved by a third author (PL).

Data synthesis and analysis

Given substantial clinical heterogeneity in patient outcomes reported (i.e. retention, relapse rates, comorbidity management, satisfaction, etc.) and variability in the drug treatments and dosages used in the models (e.g. methadone versus buprenorphine) within the included studies, formal meta-analyses were not performed.

Results

Identification of studies

The database search retrieved a total of 1,844 articles and 7 articles identified as related publications to those uncovered in the search through other sources. Initial screening eliminated 1,131 articles at the title and abstract level for not fitting the inclusion criteria. Following full review of each of the remaining 104 articles, 63 articles were eliminated because they did not meet inclusion criteria, leading to 41 included publications (Fig 1). Reasons for exclusion of full-text studies included not a delivery care system, not an intervention, not a primary care setting, opiate addiction not primary care diagnosis, and unreported patient-level outcomes. The qualitative synthesis included 41 publications that described a total of 35 unique interventions. Two included models each had >1 publications that reported different outcomes from the same study (implementation outcomes and patient outcomes), which required inclusion of multiple publications for the same study to best evaluate the model's efficacy. Of these unique interventions (n = 35), there were 10 randomized controlled trials and 25 quasi-experimental or observational studies.

Study findings

We present the general study characteristics including settings and outcomes within the appropriate SEIPS domains to concisely summarize the findings without duplication of reporting. In addition, we present case-by-case examples of barriers and facilitators for the interventions using the SEIPS organizational framework (Table 1).

Definitions of SEIPS domains

The SEIPS 2.0 framework, previously used to evaluate system-level approaches to work systems, was used to evaluate the implementation of included study interventions. [14] The SEIPS model is a widely used healthcare human factors framework adopted by patient safety leaders and applied to multiple health settings including primary care clinics. The three human factor principles this model embraces are 1) evaluating performance from a systems orientation, 2) supporting person centeredness through designing work systems that best fit peoples’ capabilities, limitations and performance needs, and 3) focusing on design-driven improvements to develop structures and processes that enhance patient, provider and organizational outcomes. [14] This framework includes domains regarding the person, organization, technologies and tools, tasks, environment, process, patient outcomes, and employee and organizational outcomes of interventions [14] (Table 2). This framework allowed us to categorize the components across the included studies in a systematic way for better comparisons.
among interventions considering the heterogeneity of study outcomes and processes. Furthermore, SEIPS guided our assessment of the various components that were included in each model to identify what specific processes were impacted and who was involved.

Environment. Studies were conducted in the following countries: U.S. (24), U.K. (3), Australia (2), Canada (2), Austria (1), France (1), Ireland (1), and Italy (1). All studies occurred in primary care centers; however, ten studies compared specialty versus primary care settings [27–36]. Some of the studies (n = 14) were conducted in academic primary care centers.
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
Alford et al	QE	Homeless Clinic vs. traditional PCP setting	Boston, MA, USA, Urban, Academic PCC	Coordinated Care Model between PC physician and Nurse Care Manager Model(s): Coordinated Care	PCP: general internets; NCM: Nurse Care Manager; medications: buprenorphine	Start: NCM: conducted home phone calls; initial assessment; tracked patients, on-call 24/7	Call phone with NCM 24/7; Patient contact	Retention: 55% in Homeless vs. 61% in Housed at 12mo; Treatment failure, drug use, and utilization of substance abuse treatment services were examined	Not discussed	18 Fair
	Comparison group (homeless clinic vs primary care)	Total n = 85	PCP: overviewed prescribing and confirmed results of physical and overview NCM	PCP: overviewed prescribing and confirmed results of physical and overview NCM	Patient: Encouraged to engage in self-help groups/therapy (recommended and tracked), but no individual counseling explicitly given; "intensified treatment" (substance abuse counseling) was provided to patients with ongoing opioid, other drug, or alcohol use					

(Continued)
| Author | Study Design | Environment | Organization | Person | Tasks | Process | Tech. & Tools | Patient Outcomes | Provider Outcomes | Quality Rating |
|--------------|--------------|----------------------------------|----------------------------------|--|--|---|--------------|------------------|-------------------|----------------|}
| Alford et al (2011) | QE | No comparison group | Total N = 408 | Multi-disciplinary Care Model with PCP, Nurse Director, and NCM with 1 program coordinator (medical assistant) | Multi-disciplinary Care Model, Nurse care manager with 1-day training in BP | PCP: general internist, NCM: Nurse care manager with 1-day training in BP | Medication: Buprenorphine | PCP: generalists with part-time clinical practices, reviewed and supplemented the NCM assessments (including laboratory results), performed physical examinations, prescribed buprenorphine, and followed patients at least every 6 months (more if needed) | NCM: assessed qualification for OBOT assessment, education, obtained informed consent, developed treatment plans, oversaw medication management (direct supervision of BP), referrals, monitored for treatment adherence, and communicated with PCP, addiction counselors, and pharmacists | Nurse Program Director: oversee the NCM | Program Coordinator: medical assistant trained to collect standardized intake information for individuals requesting OBOT | PCP: generally with part-time clinical practices, reviewed and supplemented the NCM assessments (including laboratory results), performed physical examinations, prescribed buprenorphine, and followed patients at least every 6 months (more if needed) | Shift | The treatment model included 3 stages: (1) NCM and physician assessment (appropriateness for OBOT and intake evaluations), (2) NCM-supervised induction and stabilization (buprenorphine dose adjustments on days 1–7) | (Continued) | Open communication between the NCM and addiction counselors improved patients' ability to comply with addiction care | Patient contract | Retention: 51.3% at 12 mo. At 12 mo, 91.1% of patients remaining in treatment had negative urine drug tests | 18 Fair |
Author	Study Design	Environment	Organization	Person	Tasks & Tools	Process	Provider Outcomes	Patient Outcomes	Tech. & Tools	Quality Rating		
Carrieri et al (2014)	RCT, Comparison group (primary care vs specialized care)	North, North-Eastern, South-Western and South-Eastern France	PCPs & SCCs	PCP, SCP, Pharmacist & Staff	Staff	BP is accessible in PC as of 2014 in France; only SC provides methadone	SC can transfer patients to PC after methadone stabilization takes place (~14 days, randomized in study)	Retention: Total sample: 73% at 12 mo.; 73% in PC and 50% in SC	+	Good		
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes[^1]	Provider Outcomes	Quality Rating		
-----------------	--------------	-----------------	------------------------------------	--	--	--------------------------------	---------------	----------------------	------------------	-----------------		
Colameco et al (2005)	QE	Philadelphia, PA	Urban Family Practice Center	Multi-disciplinary Model in which addiction counselor referred patients to PCP who then communicated with other treatment providers, family members, and patient pharmacies Model(s): Coordinated Care, Multi-disciplinary Care	PCP: interviewed the patient over the phone prior to study enrollment, oversaw prescriptions and monitoring	Trained addiction counselors referred patients to PCP	Staff	Phone calls to patients	Patient contact	17 Fair		
	No comparison group	Total n = 35						Retention: 62.9% at 12 mo.				
Cunningham et al (2008)	Observational Cohort	FQHC in the Bronx, N.Y., USA	Urban	Team-based care between pharmacist and physician to jointly induce and monitor patients treated with BP Model(s): Coordinated Care, Multi-disciplinary Care, Shared Care	PCP: General Internist, Pharmacist, Patient Social Worker	PCP, collaborated with the pharmacist to induce patient on BP as well as prescribe and monitor patient progress	Pharmacist monitored and observed patient induction on BP, held joint phone/ appointment visits with patient as needed	Social worker: provided routine care as needed, though not required with program	N/A	Retention: 70.7% at 90 days		17 Fair

[^1]: Not discussed
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes*	Provider Outcomes	Quality Rating
Cunningham et al (2011)	• QE	• Community Health Center in the Bronx, N.Y., USA	• Multi-disciplinary Care Model with patient-centered home-based induction of BP vs. standard of care office-based induction Model(s): Coordinated Care, Multi-disciplinary Care	• PCP (Physician)	• PCP prescribed and monitored patient in either home induction or office-based induction; PCP also available to answer questions & concerns throughout induction and maintenance for patients	• Staff • PCP either induced patients in office-based setting or provided patients for patient-induced take home induction with kits and BP education prior to induction • All prescriptions and dispensing provided by pharmacist at on-site pharmacy • At all points met with physician and/or pharmacist for visits and provided urine samples as requested • Home-induced patients were given kit and instructed to follow all directions	• Home-based induction kit: instruction sheet & BP • Six sections explaining contents of the kit, when to start taking BPNX, things not to do, how to take BPNX, plans to guide treatment and facilitate follow-up, and a log to track medications taken	• Retention: N/A • Self-report of opioid use in previous 6 months • Results: Among all participants, opioid use declined from 88.6% at baseline to 42.0% at 1 month, 33.3% at 3 months, and 27.3% at 6 months • Opioid use and any drug use consistently declined at each period in patient-centered home-based inductions	• Not discussed	20 Good
DiPaula & Menachery (2014)	• Observational Cohort	• Maryland, USA	• Coordinated care with collaboration between physician and psychiatric pharmacist Model(s): Coordinated Care, Multi-disciplinary Care • Duration: 12 mo • Medication: Buprenorphine	• PCP (Physician)	• PCP induced patients on BP, followed up with pharmacist and patient to confirm and document treatment	• Staff • Initial visit, pharmacist met with patient to discuss: substance use, mental, and physical history as well as review difficult procedures and complete treatment contract with patient • Physicians spent ~30 minutes after confirming treatment plan and discussed program with patient • Attended all scheduled appointments, adhered to prescription and treatment contract	• Patient contract • Retention: 75% at 12 mo. • Substance abuse discovered via urine tox screens • Results: 96% positive for BP and negative for other substances	• Physicians favored the take-home BP induction method vs. traditional long-term maintenance	18 Fair	

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating	
Doolittle & Becker	Observational Cohort	New Haven, CT, USA	Physician-centric model where patients were self-referred. OUD care was provided within the practice with BP in conjunction with other comorbidities Model(s): Physician-Centric	Physician: no extra training in addiction medicine	PCP: counseled patient about opioid withdrawal and the mechanism of action of BP in patient-centered language	Shift	*Buprenorphine contract*: patient agreed to attend all appointments, submit regular urine drug tests, and not receive early refills of BP until next appointment	*BP*: 16 mg dosing with home induction and shared decision-making on length of treatment	*Retention: N/A*	*Home induction helped in ameliorating potential barriers* (e.g., clinic resources and time) for providers	15 Fair
Drainoni et al	QE, Comparison group (Infectious Disease clinic vs. General Internal Medicine clinic)	Boston, MA	FAST PATH team-based model of integrated care developed by a physician, nurse, and addiction counselor case manager team that used BP in PC with addiction treatment Model(s): Coordinated Care, Multi-disciplinary Care	PCP, RN, Addiction counselor case manager	FAST PATH Team: weekly meetings to discuss all services provided (individual tasks not discussed)	Shift	*Provided ongoing primary care, medication assisted treatment when indicated* (i.e. BPNLX), HIV risk reduction counseling, individual and group counseling, referral to additional SUD treatment	*In FAST PATH the RN/counselor took ownership of the program*—cited as key component to success of the program	*Patients felt most strongly about their interactions with program staff, nonjudgmental, caring attitudes were highly valued*	15 Fair	
Table 1. (Continued)

Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
Drucker et al	Observational Cohort	Lancaster, PA, USA	"Lancaster Model": PCP and community pharmacist worked collaboratively in sharing patient care Model(s):	PCP	provided initial rx and acted as case manager for patients; responsible for meeting with patient at least once a month.	Physician: observed patient taking methadone at clinic, provided them with take-home rx, and communicated patient status and updates with PCP	Logs for rx's and bottle-return monitoring	Retention: 86% at 12 mo.	Provider satisfaction overall very good, staff felt that the bottle returns were not necessary	17 Fair
Ezard et al	Observational Cohort	Victoria, Australia	Community based service delivery in which patients were prescribed methadone via PCP then received daily dose from pharmacist at a separate site Model(s):	PCP	prescribed the methadone.	Pharmacist: supervised the daily dispensing of methadone	N/A	Retention: 73% at 12 mo.	Not discussed	16 Fair
Fiellin et al	Comparison group	New Haven, CT, USA	"New Haven Model": treatment 3X weekly with trained RN covering: review of recent drug use, past history, and abstinence self-help groups attendance at self-help groups support for drug reduction/abstinence brief advice on how to achieve or maintain abstinence 3x week urine sample collection Model(s):	PCP	general internists	RN: nursing staff who had no prior experience in substance abuse	Medical management guide	Retention: 79% at 13 wks.	Physician and psychologist provided support for nursing staff, but no real discussion on provider outcomes or perception	23 Good

Note: For more detailed information, please refer to the original research articles.
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	
Fiellin et al (2004)	RCT (Fiellin et al, 2001) Comparison group (office-based treatment vs. opioid-treatment program)	New Haven, CT, USA	2 Academic PC practices 1 suburban-based practice	PCP: all general internists, 4/6 certified in addiction medicine, RN: nursing staff, and other office personnel	PCP: during initial visit reviewed patient's medical and substance abuse history and treatment records from the OTP, performed a physical exam, and discussed components of OBOT-M with patient. Mandatory 2x 4 hr training sessions.	Training & Resource Guide (developed specifically for program)	Retention: N/A, Logistics of dispensing, the receipt of urine toxicology results, difficulties arranging psychiatric services, communications with the opioid treatment program, and non-adherence to medication as problematic.	19	Fair

From Fiellin et al (2001): No statistically significant differences between primary care versus narcotic treatment programs for illicit opiate use. PCP patients did think the quality of care was excellent compared to narcotic treatment programs.

- 50% of OBOT-M patients vs. 38% of control had self-report or urine tox for positive illicit drug use.
- Ongoing illicit substance use (defined as clinical instability) found in 18% of OBOT-M patients vs. 21% in control.
- 73% of OBOT-M patients thought quality of care was "excellent" vs. 13% of control.

- Clinical management issues: charting certain findings (i.e., positive urine drug screens), incorrect methadone bottle logs, reformating logs, difficulty referring patients to psychiatric services, problems with patient's medication adherence, and unnecessary required counseling for patients with prolonged abstinence.

- Training adequately prepared MDs.

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes*	Provider Outcomes	Quality Rating
Fiellin et al	RCT	New Haven, CT, USA	Academic PCC	Provider	Recorded audio for counseling					
	Comparison group (standard medical management + 1 or 3x medical dispensing) vs. enhanced medical management + 3x medical dispensing)	Total n = 166	Patient centered model with standard or enhanced medical management given to individual patients.	PCP: met with patients monthly for 20 minutes	Shift	Electronic caps of medication bottles (Medication Event Monitoring System)				
				PCP: met with patients monthly for 20 minutes	Nurses dispensed the BP & facilitated weekly manually guided standard or enhanced MM to individual patients.					
				PCP: met with patients monthly for 20 minutes	Psychologist: met weekly with physician and nurse to review counseling					
				PCP: met with patients monthly for 20 minutes	Shift	Recorded audio for counseling				
				PCP: met with patients monthly for 20 minutes	Electronic caps of medication bottles (Medication Event Monitoring System)					
				PCP: met with patients monthly for 20 minutes	Nurses dispensed the BP, and were the facilitators for the counseling sessions					
				PCP: met with patients monthly for 20 minutes	The nurses, physician, and psychologist met monthly to discuss the counseling sessions					
				PCP: met with patients monthly for 20 minutes	Patient:	Retention: N/A				
				PCP: met with patients monthly for 20 minutes	No statistical significance in negative urine screens, maximum consecutive weeks of abstinence, reduction in frequency of illicit drug use or proportion of patients remaining in study between groups					
				PCP: met with patients monthly for 20 minutes	Overall significant reduction in illicit opioid and cocaine use					
				PCP: met with patients monthly for 20 minutes	Treatment satisfaction was significant with treatment group: higher satisfaction with standard MM and 1x wk medication dispensing*					

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Quality Rating
Fiellin et al (2013)	RCT, Comparison group (physician management vs. physician management + cognitive behavioral therapy)	New Haven, CT, USA	Urban PCC	Patient centered model with randomization to 2 groups and followed over 12 weeks	2 treatment arms: 1) Physician Management 2) CBT Model(s): Coordinated Care, Multi-disciplinary Care	Duration: 24 weeks, Medication: Buprenorphine	Good

Tasks & Tools

- **Self:**
 - Physician Management: Initial 30 minute counseling interaction for first 2 weeks, then every other week for 4 weeks, and then monthly.
 - Topics discussed: recent drug use and efforts to achieve or maintain abstinence, urine analysis results, abstinence advice on achievement/maintenance, review of medical/psychiatric symptoms, assess social, work, and legal function, group attendance, and urine screen results.

- **CBT:**
 - Manual guided, weekly 50 minute sessions provided by Masters and PhD clinicians.
 - Main components: performing functional behavior analysis, promoting behavioral activation, identifying/coping with drug cravings, enhancing drug-refusal skills, enhancing decision-making about high-risk situations, and improving problem-solving skills.

- **Staff:**
 - Physician Management (PM): Manual guided, medically focused, 15–20 minute weekly counseling session for first 2 weeks, every other week for 4 weeks, and then monthly.
 - Topics discussed: recent drug use and efforts to achieve or maintain abstinence, urine analysis results, abstinence advice on achievement/maintenance, review of medical/psychiatric symptoms, assess social, work, and legal function, group attendance, and urine screen results.

- **CBT:**
 - Manual guided, weekly 50 minute sessions provided by Masters and PhD clinicians.
 - Main components: performing functional behavior analysis, promoting behavioral activation, identifying/coping with drug cravings, enhancing drug-refusal skills, enhancing decision-making about high-risk situations, and improving problem-solving skills.

Provider Outcomes

- Quality reduction from baseline of opioid use 10/14* of group randomized to CBT model.
- Differences between groups in retention rates.

Patient Outcomes

- Significant reductions in opioid use from baseline of opioid use 10/14* of group randomized to CBT model.
- No significant differences between groups.
- Time had significant impact on retention rates.

- However, PCPs cite lack of available ancillary psychosocial services as a barrier.
- For some patients, psych may not be necessary.

Quality Rating

- Retention: 45% in PM; 39% in CBT at 6 months.
- Self-reported frequency of illicit opioid use, maximum number of weeks abstinent from illicit opioids evidenced by urine tox and self-report.
- Significant reductions from baseline in both treatments from 5.3 average days of opioid use to 0.4.*
| Author | Study Design | Environment | Organization | Person | Tasks | Process | Tech. & Tools | Patient Outcomes | Provider Outcomes | Quality Rating | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Gossop et al. | QE | UK National Health System | General practitioners | PCP | General practitioners | PCP, responsible for prescribing medications | Pharmacist | N/A | Retention: 66% of GP patients; 50% of SC at 6 mo. | 19 Fair |
| | Comparison group (primary care vs specialty care clinic) | Urban | Community-based specialist clinic or GP setting | SCP | | SCP, provided counseling services | Pharmacist | Staff | Processes differed between groups | |
| | Total n = 452 | Community-based specialist clinic or GP setting | | | | Supervisor was provided at retail pharmacy | Patient | | At the program level, differences were found in the manner in which methadone was dispensed | |
| | SC n = 297, PC n = 155 | | | | | Data on patient outcomes was collected using interviews, but not discussed who collected them | | | Fewer GP agencies (57%) than clinics (75%) prescribed daily dispensing of methadone | |
| | | | | | | 6 of the 8 clinics used supervised dispensing procedures (onsite or supervised by a retail pharmacist) | | | 6 of the 8 clinics used supervised dispensing procedures (onsite or supervised by a retail pharmacist) | |
| | | | | | | Supervision (to be provided at retail pharmacies) was used less often by GP agencies (14%) | | | Supervision (to be provided at retail pharmacies) was used less often by GP agencies (14%) | |
| | | | | | | Adhered to prescription as well as follow-up appointments | | | Adhered to prescription as well as follow-up appointments | |
| | | | | | | N/A | Concerns highlighted include: the perception that the methadone maintenance patients may be difficult and upset other patients within the clinic | | | Not discussed | |

(Continued)
Table 1. (Continued)

Author	Study Design	Environment	Task & Tools	Patient Outcomes
Gruer et al (1997)	Observational	Glasgow, U.K.	- Galsgow, Scotland, U.K. Urban Health Board	Retention: 60% at 12 mo, Beneficial in establishing the Glasgow drug problem service, Scheme provides detailed guidance on methadone maintenance therapy, Improves managing patients who are entering treatment.

Note:
- **Quality Rating:** Poor (13)
- **Process:** Interprofessional care model, including a multidisciplinary approach with a team of specialists involved in the treatment process.
- **Tasks:**
 - **PCP:** General practitioner focused on providing prescription and attending drug misuse training at least twice a year, completed the opiate treatment index for each patient, and provided routine care as needed.
 - **Nurses:** Trained in counseling and provided services as necessary.
 - **Community pharmacist:** Supervised dosage.
 - **Drug counsellor:** Provided patient counseling.

Author Study Design Environment Organization Person Tasks Process Tech. & Tools Patient Outcomes

- **Patient Contract:** Stabilized patient ongoing care returned to PCP with service still available for advice.

Reference:
Primary care models for treating opioid use disorders: What actually works? A systematic review. PLOS ONE | https://doi.org/10.1371/journal.pone.0186315 October 17, 2017 17 / 40
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating	
Gunderson et al (2010)	• RCT	• NYC, NY, USA	• Urban	• Patient centered model with unobserved vs. observed induction of BP	• PCP: BP induction, provided routine care, and provided phone support to induced patients	• Retention: 45% at 3 mo.	• Subjective Opioid Withdrawal Scale (SOWS) administered via phone	• Not discussed		21 Good	
	• Comparison group (observed vs. unobserved office induction)				• Pharmacists: dispensed BP						
	• Total n = 20				• Study personnel: picked up BP from pharmacy and stored in locked medicine cabinet and phone calls to patients						
	• Point of care clinic				• Shift	• Subjects with daily maintenance dose 12–16 mg with max of 32 mg					
	• 12 week followup				• Weekly clinical visits during 4-week induction and stabilization phase then decreased to monthly visits						
	• Medication: Buprenorphine				• Ulira toxicology with BP-specific immunoassay performed at all clinical visits as well as						
	• Drug: Buprenorphine				• Research visits occurred every 4 wks (urine screen, self-reported substance use assessed, research scale administered)						
	• PCP: Internist with BP experience				• Patients receiving clinical dosage suggested to use psychosocial services and counseling support but not enforced						
	• PCP: BP induction, provided routine care, and provided phone support to induced patients				• No prolonged withdrawal						
	• Pharmacist				• Similar induction rates between groups						
	• Study Personnel				• 60% successfully induced in both groups						
	• Study personnel				• 30% experienced prolonged withdrawal						
	• PCP: BP induction, provided routine care, and provided phone support to induced patients				• 80% stabilized by week 4						
	• Pharmacist				• No statistical significance in phone calls for home-induced patients in office vs. unobserved induction						
	• Study personnel				• Patients receiving clinical dosage suggested to use psychosocial services and counseling support but not enforced						
	• PCP: BP induction, provided routine care, and provided phone support to induced patients				• No prolonged withdrawal						
	• Pharmacist				• Similar induction rates between groups						
	• Study personnel				• 60% successfully induced in both groups						
	• PCP: BP induction, provided routine care, and provided phone support to induced patients				• 30% experienced prolonged withdrawal						
	• Pharmacist				• 80% stabilized by week 4						
	• Study personnel				• No statistical significance in phone calls for home-induced patients in office vs. unobserved induction						

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes*	Provider Outcomes	Quality Rating
Hersh et al	Observational cohort study	San Francisco, CA	Patient care delivered in 3 model sites	PCP, some physicians trained in BP while others not	Physician and NP at the OBIC: induced the patient on BP and stabilized maintenance dose	Phone Screening	OBOT electronic database	Retention: 61% at 12 mo	Over time community PCPs grew increasingly comfortable leading to lower pharmacy visits average of 2–3 visits per week to weekly, every other week, or monthly visits	20 Good
	No comparison group	Urban	community based, PC office clinics							
	Total n = 57									
Hersh et al	Cohort study	Toronto, Ontario, Canada	Multi-disciplinary care program with nurse clinician, family therapist, 6 PCPs, clinical fellow in which patients receive brief counseling intervention, outpatient medical detox, pharmacotherapy & follow-up	PCP: nurse clinician	PCP: Initial physical assessment, pharmacotherapy selection and induction	Staff				20 Good
	No comparison group	Urban								
	Total n = 200									
Kahan et al	Observational cohort study	Toronto, Ontario, Canada	Multi-disciplinary Care	PCP: nurse clinician	PCP: Initial physical assessment, pharmacotherapy selection and induction	Staff				20 Good
	No comparison group	Urban								
	Total n = 200									

(Continued)
Table 1. (Continued)

Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating	
Lintzeris et al (2004)	RCT	SC (1) and PC clinics (16) and Community Pharmacies (30)	Melbourne and Victoria, Australia	Urban	PCP: General practitioners without BP training	PCP: prescribed BP and coordinated patient care	Pharmacist	N/A	N/A	20 Good	
				PCP: prescribed BP and coordinated patient care	Supervised dosing by pharmacist	PCP prescribed BP and coordinated patient care		Retention: 70% in PC, 77% in SC at 3 mo.	Create readily available set of BP guidelines suited for community settings		
					Patients assigned to either control group (conventional methadone maintenance treatment program) or experimental group (BP treatment with option for methadone transfer)	Subjects followed over 12 mo period with treatment coordinated by prescribing PCP		N/A	N/A		
					Daily supervised induction of sublingual BP tablets (2 and 8 mg) with flexible doses	Daily supervised induction of sublingual BP tablets (2 and 8 mg) with flexible doses		N/A	N/A		
					Parented transition to alternate-day or 3-day dosing			N/A	N/A		
Lucas et al (2010)	RCT	Baltimore, MD, USA	The Johns Hopkins HIV Clinic (single center) where BP treatment was integrated into an HIV primary care clinic	Multi-disciplinary care between 2-5 BP PCPs, social worker, substance abuse counselor, and nursing staff	PCP: consulted with LPN and substance abuse counselor, oversaw prescribing, and met with patients for follow-up	PCP: consulted with LPN and substance abuse counselor, oversaw prescribing, and met with patients for follow-up	Substance abuse counselor	N/A	N/A	Not discussed	23 Good
				PCP: consulted with LPN and substance abuse counselor, oversaw prescribing, and met with patients for follow-up	LPN: managed the patients		Substance abuse counselor	N/A	N/A	Not discussed	
					Substance abuse counselor: met with patients to schedule follow-up and induction education			N/A	N/A	Not discussed	
					Shift			N/A	N/A	Not discussed	
					Social worker and registered nurse ran the case management program, coordinated appointments, and assisted with overcoming barriers to adherence			N/A	N/A	Not discussed	
					PCP met with patient after 4 wks			N/A	N/A	Not discussed	
					Patient initial 2-day BP induction (3x BP daily dose) & progressed to clinic treatment until stabilized			N/A	N/A	Not discussed	
					Unstructured counseling provided, urine drug tests, and take-home supplies of BP provided each visit			N/A	N/A	Not discussed	
								N/A	N/A	Not discussed	

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes*	Provider Outcomes	Quality Rating
Michelazzi et al (2008)	Observational Cohort	Trieste, Italy	CBO(TM) Model(s): Physician-Centric	GP	GP prescribed methadone, met with patients at least one weekly and provided routine care	Shift	N/A	Retention, 78% at 12 mo.	N/A	17 Fair
	RCT	Urban	PCP and CS centers	PCP	PCP led BP treatment with added CBT Model(s): Coordinated Care, Multi-disciplinary Care	Shift	N/A	Retention: PM-CBT: 19%; PM: 26% at 14 wks.	Difficulties arose with CBT	21 Good
		Ireland	PCP and CS centers	RN	PCP & RN provided methadone maintenance and psychosocial support as needed and lead SC centers	Staff	N/A	In SC and PC combined, retention: 61% at 12 mo.	SC has more severe patient population	22 Good

(Table 1. Continued)
Author	Study Design	Environment	Organization	Person	Tasks & Tools	Process	Provider Outcomes	Patient Outcomes
O'Connor et al.	RCT	PC clinic	PCP General Internists	N/A	PCP prescribed treatment and medication	Staff	Retention: 78% in PC; 52% in SC at 3 mo.	Retention: 78% in PC; 52% in SC at 3 mo.
			RN, NPs		NP ran semi-structured weekly group therapy		PC patients (63%) had lower rates of opioid use than SC (85%)*	PC patients (63%) had lower rates of opioid use than SC (85%)*
			Physician Associates		Counselors: in SC provided substance abuse counseling and services		PC higher 3+ week abstinence (43%) vs. SC (13%)*	PC higher 3+ week abstinence (43%) vs. SC (13%)*
					PC clinic: Staff:		Properly trained General internists can provide OUD treatment	Properly trained General internists can provide OUD treatment
					PC clinic: Patient:		Full-risk managed care plan possible	Full-risk managed care plan possible
					SC clinic: Staff:		Decreased prescription frequency can diminish long-run retention in treatment	Decreased prescription frequency can diminish long-run retention in treatment
					SC clinic: Patient:		Reimbursement method for these services in PC is lacking (capitated vs. full-risk managed care plan)	Reimbursement method for these services in PC is lacking (capitated vs. full-risk managed care plan)

*Significant difference at p < 0.05
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating	
Ortner et al (2004)	Observational Cohort	Austria	Coordinated Care between SC and PC with long term PC care	PCP in primary care setting with special training for opioid addiction	Induction was initiated by SCP and then care transferred to PCP	N/A	Provider Outcomes	Retention: 57% at 15 wks. (after completion of SC and PC segments)	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair	
	No comparison group	Urban	SC initiation with transfer of care to PC centers	SCP in specialty care setting in short based SC induction and long-term treatment continuation in PC	PCP: prescribed BP and oversee duration of care after induction	PCP, prescibed BP and oversee duration of care after induction	Multi-disciplinary Care	Patient:	N/A		
	Total n = 60	SC initiation with transfer of care to PC centers	PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	Provider Outcomes	Patient:	Retention: 57% at 15 wks. (after completion of SC and PC segments)	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair	
			PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	Provider Outcomes	Patient:	Retention: 57% at 15 wks. (after completion of SC and PC segments)	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair	
			PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	PCP: prescribed BP and oversee duration of care after induction	Provider Outcomes	Patient:	Retention: 57% at 15 wks. (after completion of SC and PC segments)	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair	
Roll et al (2015)	Cross-sectional observational study	Revere, M, USA	Shared medical appointments model run by PCP and certified addictions nurse with patients treated with OBOT/BP	PCP: provided general care	PCP: provided general care	N/A	Provider Outcomes	Patient:	Retention: N/A	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair
	No comparison group		PCP: provided general care	PCP: provided general care	PCP: provided general care	N/A	Provider Outcomes	Patient:	Retention: N/A	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair
	Total n = 28	Safety net primary care center at Revere Family Health Center	PCP: provided general care	PCP: provided general care	PCP: provided general care	N/A	Provider Outcomes	Patient:	Retention: N/A	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair
			PCP: provided general care	PCP: provided general care	PCP: provided general care	N/A	Provider Outcomes	Patient:	Retention: N/A	PCP active involvement in treatment needed for patients to receive adequate care	19 Fair

(Continued)
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
Ross et al	Observational Cohort	Edmonton, Alberta, Canada	Urban community-based PCC	PCP, RN, NP; Psych: Mental Health Workers; Social Workers	PCP: BP prescription as well as scope of care beyond NP and bridging patient; NP: enrollment of physicians and routine care	Staff: PCP had primary role in prescribing medication and coordinating follow-up care	Staff provided additional services to patient throughout process	PCP oversaw medical issues and prescribing BP beyond NP scope; NP provided limited prescribing and enrollment of physicians; Social workers and mental health workers provided mental health assessment, individual patient counseling, and financial aid housing, and social assistance	Patient: Retention: N/A; Types of medication used for bridging in patients waiting for methadone treatment	16 Fair
Sohler et al	QE	Bronx, NYC, USA	Urban community-based health center that provides PC	PCP, RN	PCP: oversaw care for patients including BP pre-counselling, induction dosage, and patient follow ups; RN: provided assistance as needed	Staff: PCPs helped determine patient eligibility for office-based versus home-based induction	PCP available via phone; pharmacist contacted via phone to prevent precession misuse	Patient contract	Provider: Not discussed	21 Good
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
-----------------	----------------------------	------------------------------	-----------------------------	-----------------------------	--	--	--------------	---	--	--------------
Tuchman et al (2006)	RCT	Albuquerque & Santa Fe, New Mexico, USA	PCP	Staff	Providers (4 PCPs and 1 NP) provided continuous care for assigned methadone maintenance patients	Retention: 100% in office based experimental group; 86% in MMT at 12 mo	EMR	Retention: N/A	Pharmacy dispensing was a critical factor in program; provided a positive environment for patient without any stigma and viewed as strength for rural settings	20 Good
Walley et al (2015)	Observational cohort study	Urban	Team of PCPs, NCM and licensed addiction counselor that collaborated to provide addiction care and patients had established treatment agreements with care teams	Social worker met with each patient for psychosocial treatment once a month	N/A	Results: patients in the experimental group did as well or better than the control (routine methadone maintenance treatment program)		Patient contact	Important for PDP to understand which patients more likely to engage	20 Good
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
------------------------------	-------------------------------	-----------------	---	---	--	--	---------------	--	-------------------	----------------
Weiss et al (2011)	Observational cohort study	No Comparison Group	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair
Fiellin et al (2011)	(23)	Urban								
Korthuis et al (2011)	Observational cohort study	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair	
Altice et al (2011)	Observational cohort study	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair	
Egan et al (2011)	Observational cohort study	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair	
Korthuis, Tozzi, et al (2011)	Observational cohort study	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair	
Egan et al (2011)	Observational cohort study	Total n = 427 included in analyses n = 303 funded program n = 10	Multi-disciplinary care model with comprehensive medical and social services available to all participants within the BHIVES program in which a “specialist” model of BP/NX treatment [limited number of PCPs oversaw entire pharmacotherapy process] was employed	PCP, NP, RN: registered nurse, Pharmacist, Psychologist, Social Worker, Health Educator, Substance Abuse Specialist	PCP: oversaw entire pharmacotherapy process	BMR	Weiss et al (2017); Evaluation and Support of programs to improve better understanding of BP/NX integration practices, services offered, staffing needs, PCP experiences/perceptions of BP/NX, perception of barriers and facilitators, sustainability measures, and recommendations for replication of integrated care program components	Patient contract	17 Fair	

Weiss et al (2011): 78.4% of patients receiving buprenorphine remained on treatment at 3 mo, 72.7% at 6 mo, 62.9% at 9 mo, & 53.1% at 12 mo
Author	Study Design	Environment	Organization	Person	Tasks	Process	Tech. & Tools	Patient Outcomes	Provider Outcomes	Quality Rating
Korthuis, Tozzi, et al (2011)	• Mean summary quality score increased over 12 mo from 45.6% to 51.6% for bup/nx patients									
Egan et al (2011)	• At 12 mo, average composite mental health-related quality of life (HRQOL) improved (38.3 to 43.4) and composite physical HRQOL did not change									
	• Bup/nx associated with improvements in HRQOL									
	• Patients satisfied with Buprenorphine/Naloxone and reported overall increased quality of life									
	• Counseling seen as an important component									
	• All patients strongly positive about integrated care model									
	• Retention on BUP/NX for 3+ quarters, significantly associated with increased ART initiating									
	• Prescription of BUP/NX for 3+ quarters for patients on ART (at baseline) was not associated with statistically significant improvements in viral suppression and CD4 counts									

*Patient outcomes ranged from retention rate, increase in comorbidity screening, etc.

*statistically significant (p < 0.05) outcomes

https://doi.org/10.1371/journal.pone.0186315.t001
Table 2. SEIPS model, current state, and areas for improvement.

SEIPS DOMAINS	DEFINITIONS	CURRENT STATE	AREAS FOR IMPROVEMENT
ENVIRONMENT	• **Environment**: the physical environment and location of the system	• 8 countries globally (U.S., UK, Australia, Canada, Austria, France, Ireland, Italy)	• Expand primary care interventions to more community health settings
		• Highly variable setting	
		• Primarily health centers affiliated with academic institutions	
	Organization: includes concepts such as relationships between healthcare workers and patients as well as coordination, collaboration, and communication between those involved in the system	**Existing Care Organization Models**	**Implement Coordinated Care models with non-physician team members (i.e. RNs) to help manage patient appointments and lab results**
		• Coordinated Care: minimum 2–3 professions working to coordinate care to deliver best practices (e.g. NCM, Pharmacist & Physician)	**Evaluate effectiveness of multidisciplinary teams in providing comprehensive behavioral counseling and better outcomes**
		• Multi-disciplinary Care: 2 disciplines working together (e.g. Psych & GIM)	**Determine appropriate skillset needed by non-physician team members to appropriately delegate tasks for high quality care**
		• Shared Care: specialty services (e.g. addiction psychiatry) lead the induction process & hands off to Internal Medicine/Primary Care to share longitudinal care	
		• Chronic Care: utilizing healthcare resources to self-empower individual management of chronic disease	
		• Physician Centric: single physician (or group of only physicians) working with available resources to manage OUD with BP/Methadone/NX	
PERSON/TASKS	• **Person**: all of the individuals, both healthcare workers and patients, involved in the design of the work system	• Large variation in type of skilled professionals providing support (e.g. nurses, pharmacists, counselors)	**Capitalize on various providers’ skillsets to deliver high quality care**
	• **Tasks**: clinical processes and responsibilities of both the healthcare workers involved in the system as well as responsibilities for the patient (i.e. receiving medication, counseling attendance, etc.)	• Pharmacists roles and tasks (i.e. supervising dispensing, clinical appointments, management) dependent upon intervention	**Employ clinical pharmacists for complicated medication dosing and management**
		• Behavioral health providers ranged in training (i.e. PhD psychologists, certified addiction counselors, social workers)	**Increase clinical support (i.e. nursing) responsibility in management of patients**
PROCESS	• **Process**: the flow of actions or steps taken to provide patient care (e.g. order of delivery for intake, induction, maintenance, and follow up)	• Use of non-physician staff to conduct patient intakes decreased physician work load	**Understand which patients can safely undergo home inductions**
		• Home inductions allowed patient autonomy and less frequent initial appointments	**Streamline home induction process to decrease care utilization during induction time period**
		• Limited studies evaluated behavioral counseling approaches compared to medical management	**Utilize non-physician team members to conduct patient intakes**
TECHNOLOGY & TOOLS	• **Technology and Tools**: components of the system including various information technologies like electronic health records, human factors characteristics of technologies (i.e. usability), and other technologies incorporated	• Only 10 studies explicitly noted using patient treatment agreement	**Develop technologies and systems providing after hour support for patient care, data collection, & feedback**
		• Most studies used some form of a urine drug screen to monitor adherence	**Promote PCP management of stabilized patients on maintenance medications within specialty addiction treatment programs**
		• Only 3 studies used panel management structure to keep track of patient level data	**Standardize important tools (i.e. toxicology screenings & management structures) to monitor patient and population level outcomes**

(Continued)
Organization. All of the studies meeting inclusion criteria studied buprenorphine (n = 25) and/or methadone (n = 12) treatment in primary care settings. Due to large variability in terminology and reporting, the interventions were grouped into at least one of five care models (e.g. collaborative care vs. integrated care). The most common type was a coordinated care model which had at least two different types of healthcare professionals actively communicating and working together to share care responsibilities (e.g. nurse case manager or pharmacist plus physician). Of the 32 “coordinated care” models, twelve relied upon a nurse case manager or other skilled nursing staff to lead and provide logistical support to the PCP [8, 10, 32, 35, 38, 51, 58, 60–64]. Often the nurse received training to provide some behavioral counseling [38, 58, 60, 65]. Pharmacists also provided assistance to PCPs by supervising medication dosages [49, 51, 53, 66, 67]. Multi-disciplinary models consisted of two physician disciplines working closely together within the same clinic (e.g. addiction psychiatry and internal medicine). For example, one study specifically evaluated the benefit of adding in-clinic behavioral counseling to standard medical management provided by a general internist for patients receiving methadone for heroin use [61]. Shared care models had specialty services lead the medication induction process (the first week of MAT where the physician determines the dosing, timing and treatment goals of the medication) and then later “handed-off” patients to general internal PCPs [33, 45, 56, 58]. In Cunningham et al (2008), patient induction was initiated by the pharmacist before transfer to the physician’s care [56]. The chronic care model, utilized healthcare resources to increase patients’ self-efficacy in managing their chronic disease [57]. Only two studies met this criterion [10, 34]. For example, one study used this framework to design a home induction protocol to empower patients to self-administer medications [34]. Last, the physician-centric model had a single physician or group of physicians working together to provide patient-centered MAT without major structural support from other provider types or disciplines. In Doolittle & Becker (2011), the physician independently counseled and treated the patient [68].

Studies were assigned to models via the criteria outlined above and could be categorized more than once to best capture treatment delivery. Most included studies (n = 32) had coordinated care models with 32 studies falling into two or more care models (e.g. coordinated care

Table 2. (Continued)

SEIPS DOMAINS	DEFINITIONS	CURRENT STATE	AREAS FOR IMPROVEMENT
PATIENT/ PROVIDER OUTCOMES	• Patient Outcomes: participant perceptions of the care delivery model, retention rates in the intervention, and health outcomes for the participant • Provider Outcomes: provider perceptions of the care delivery model and system	• The most commonly measured patient outcomes were retention in intervention, self-reported abstinence, and abstinence via/urine toxicology screens • Less than half of the studies collected outcomes regarding other common primary care based comorbidities • Provider outcomes were only discussed in 10 included trials • Provider outcomes did highlight the benefits of coordinated care models	• Gather patient-centered outcomes including management of physical and mental comorbidities • Collect outcomes related to social determinants, social support, and improvement in work/personal level functioning • Collect provider outcomes regarding appropriate levels of training to provide care • Develop and evaluate provider support systems to provide ongoing education and prevent provider burnout

https://doi.org/10.1371/journal.pone.0186315.t002
and multi-disciplinary care) [8, 10–12, 28–30, 32, 33, 38, 43, 45, 48–51, 56–58, 60, 61, 63, 64, 66, 67, 69–75]. Only three physician-centric studies existed, predominantly in community health centers, where physicians independently provided MAT [34, 68, 76].

Person/Tasks. Thirty-one studies included non-physician providers (e.g. nurses, pharmacists, counselors) to carry out tasks. [8, 10, 11, 27–30, 32, 33, 38, 45, 49–51, 56–60, 62–67, 69–73, 75, 77] The level of training and specific tasks managed by each non-physician provider varied across interventions. First, multiple studies used nurses as liaisons in coordinating care between PCPs and behavioral specialists. [8, 10, 32, 51, 58, 63] This configuration improved performance processes and collaborative work[14]. Both licensed practicing nurses (LPN) and advanced practicing nurses (NPs) were used as program coordinators to lead the intervention while supporting both patients and staff [10, 38, 60]. For example, Lucas et al (2010) had LPNs oversee patient-physician scheduling and assist with induction. Other studies used nursing staff to not only provide care collaboration, but to lead patient visits [8, 10, 32, 38, 51, 60, 62, 64–66]. However, only physicians could prescribe medications. Second, pharmacist roles and tasks varied across interventions. Multiple studies had pharmacists supervise dispensing of buprenorphine or methadone [27–30, 33, 49, 51, 56, 57, 63, 67, 71, 75, 77, 78]. The majority of these were conducted in the Europe [27–30, 51]. One U.S. study used a clinical pharmacist to provide physician guidance regarding appropriate dosing/tapering strategies [75] and to lead most patient follow-up appointments. Third, heterogeneity in formal training among clinicians for providing addiction counseling emerged. Behavioral counseling providers ranged from PhD-trained psychologists [65, 70] to certified addiction counselors [8, 10, 11, 32, 51, 58, 73, 74] to nurses with brief training in addiction counseling [38, 50, 66].

Process. Process focused on the flow of patient care within organizational models. Seven studies had a non-physician (e.g. nurse case manager) perform an initial detailed intake that often consisted of a physical and mental health history, allowing PCPs to focus their time on medication management [10, 38, 45, 49, 60, 74, 75]. Following the intake visit, studies varied on how they handled medication induction. Twenty-nine studies supervised patient induction with frequent appointments and supervised medication dosing [8, 10, 11, 27–30, 32–34, 38, 49–51, 56–58, 60, 62, 63, 65, 67, 69–72, 75–77]. In contrast, four studies evaluated “home” inductions, which increased patient autonomy via a specific plan for how to first begin self-treatment with the chosen medication [55, 57, 68, 71]. Following induction, frequency of appointments with staff ranged from daily to quarterly depending upon patient needs and intervention design. Behavioral counseling appointments were often coordinated with medical management appointments [11, 62, 65, 69, 70, 72]. In cases requiring more intense addiction counseling/treatment, nineteen studies had a plan for referral to specialty services [8, 11, 12, 27, 30, 32, 37, 38, 50, 51, 56, 62, 63, 70, 72–75, 79].

Only four studies formally tested if counseling modality or duration affected treatment outcomes [9, 43, 80, 81]. Of these four studies, only two demonstrated that their form of counseling was more efficacious (e.g. patients undergoing CBT had higher rates of negative urine toxicology screens or >80% Quality Health Indicator score) than medical management alone possibly because of their adaptive, stepped-care treatments or highly integrated care teams with numerous support staff [9, 81].

Technology/Tools. Technology/Tools focused on electronic and non-electronic tools that helped manage data and monitor patient outcomes like patient agreements, drug screenings, and electronic information technology systems. Ten studies had formal treatment agreements (“contract”) between patients and providers to outline consequences for continued drug misuse. [8, 11, 37, 38, 51, 68, 69, 75, 77] Most interventions (n = 29) noted that they used urine drug screening as a tool to monitor adherence to medication and drug misuse; although, there was no standardization in what drugs were screened or how often.
Regarding technologies, three studies noted that they had a panel management structure to monitor patient level data (i.e. urine toxicology screens, drug tests, etc.) [10, 75, 81]. Four studies noted using electronic medical records to facilitate treatment team member communication and to document patient updates [58, 63, 72, 75]. No studies utilized home-based or web-based counseling modalities [73].

Patient outcomes. Reported patient outcomes varied. However, most studies (n = 25) reported patient-level retention within treatment. At 3 months, nineteen interventions achieved at least 60% retention. Some studies evaluated if patients had self-reported abstinence (n = 15) while others incorporated quantitative measures of abstinence (i.e. urine toxicology screens; n = 22).

Few studies asked about patient perceptions of the care delivery models. One study evaluating a coordinated care model for patients receiving MAT obtained patient feedback regarding care with 90% of patients reporting overall satisfaction with the care model [52]. Additionally, less than half of the interventions (n = 11) assessed management of other common primary-care comorbidities and age-appropriate screenings [10, 12, 38, 45, 49, 50, 57, 58, 60, 64, 68]. One of these studies evaluated what percentage of patients were meeting nine quality health indicators (QHI) of an age appropriate health screening per CDC criteria via retrospective chart review [58]. Greater than 3 months of treatment on buprenorphine was positively associated with achieving a recommended QHI screening score [(AOR) = 2.19; 95% confidence interval (CI) = 1.18–4.04]. Similarly, Roll et al (2015) surveyed 28 patients receiving shared medical appointments for buprenorphine management therapy. They found that 60% of patients reported learning more about comorbidities like Hepatitis C and 43% reported receiving appropriate immunizations since starting the intervention. [54] The BHIVES collaborative was a ten site intervention evaluating the use of buprenorphine/naloxone for patients with both HIV and OUD. The evaluation used mixed-methods and reported patient outcomes on OUD treatment, HIV treatment, HIV related quality of life, patient perspectives on the intervention, and overall quality of life. [12, 22, 23, 25–27, 82].

Provider outcomes. Provider level outcomes were only reported in ten of the included studies [28, 30, 32, 49, 63, 69, 72, 74, 77, 83]. Of these, six studies asked providers qualitatively about barriers and facilitators of the intervention’s success [12, 32, 49, 50, 69, 74].

Themes that emerged from provider outcome data included provider education, cost-related barriers, and benefits of a coordinated-care approach. Three studies noted that providers felt under-trained or that some training in providing the chosen medication (i.e. buprenorphine or methadone) or substance abuse treatment was important. O’Connor et al (1998) found that the intervention itself increased provider confidence in treating patients with OUD. [32, 50, 69, 77]. However, Fiellin et al (2004) reported that physicians felt “adequately prepared for much of the care they provided,” but requested that further training be offered with respect to medication tapering, billing, and additional training for support staff [52]. Nine studies reported that providers felt that there were benefits of coordinated care [8, 38, 49, 51, 58, 60, 75, 77, 81]. In Drainoni et al (2014), providers noted that the RN/Counselor taking ownership of the program was pivotal to program success [8]. Likewise, in Weiss et al (2011), providers noted that coordinated care is crucial in a busy academic setting where physicians had limited availability during clinic hours [12].

Presence of SEIPS domains in good quality studies with high patient retention. There was heterogeneity in study caliber, medications and dosages, reported patient outcomes, and duration of study making it difficult to perform any meta-analysis with the 35 included studies. However, in order to describe which SEIPS domains may be associated with successful treatment and establish a level of standardization, we defined successful studies as interventions that achieved 60% retention rates at 3 months and received a good score with our validated...
risk assessment tool. Seven studies met this metric for success (Fig 2) [27, 31, 32, 42, 52, 84, 85].

All seven successful studies used coordinated care models with multidisciplinary teams. Six of the studies used buprenorphine as the medication, had a modality for delivering behavioral counseling (although not necessarily through trained behavioral health specialists), used nurses as part of the care team, and monitored treatment outcomes with urine toxicology screens. With respect to technology/tools none of the included studies used patient and provider contracts or panel management structures. In addition, only 4/7 included studies provided additional educational training for the clinical staff.

Risk of bias

No study scored an excellent quality/risk of bias score: sixteen interventions scored good, seventeen scored fair, and two were poor for their reporting of patient outcomes significance (i.e. power within the study to detect differences in outcomes) and their lack of both external and internal validity [51, 54].

Discussion

Few comparisons of primary care models for OUD exist. Our study addresses this gap in knowledge by using the SEIPS domains to categorize features of MAT interventions to better understand specific structural, process and outcome elements of primary care models. The range of studies spanned small physician-led interventions within single clinics to large RCTs with multi-disciplinary teams in academic settings. Based on our synthesis of peer-reviewed literature, we report the current structures and processes of primary care-based OUD MAT models and present a proposed research agenda for future studies within each SEIPS domain.

Coordinated care models (with non-physician team members such as RNs helping manage patient appointments and lab results) are by far the most common delivery structures studied. There was some indication that physicians felt this program model allowed for improved team communication and higher quality of care delivery [8, 12, 47, 51, 52, 66, 86]. Similarly,
multidisciplinary teams can promote comprehensive behavioral health counseling in addition to standard PCP-led counseling during routine primary care appointments. However, future studies will need to further delineate the cost and feasibility of these resources in settings where multidisciplinary care is inaccessible or not viable. Ideally, studies would evaluate a physician-centered model against models with varying degrees of care coordination with randomized controlled trials but such studies are costly. With the need to rapidly disseminate primary care based models to provide MAT, this study highlights that policy makers and health care professionals should strive to provide and pragmatically evaluate at the very least, the provision of some coordinated care. These models may include smaller teams or clinical partnerships (i.e. physician-RN teams, physician-pharmacist teams) that are more common across resource settings.

The effective use of clinicians’ skillsets can improve overall care delivery. For example, clinical pharmacists can provide medication dosing and management rather than only supervised medication-taking. In terms of behavioral counseling, more research is needed to identify the optimal level of training necessary for OUD care delivery. Studies have suggested that additional counseling beyond the scope of the physician is ineffectual for certain outcomes [43, 87]. However, future research will need to understand whether certain patient populations benefit more or less from additional counseling to help allocate limited behavioral health resources to those patients that would derive the most benefit.

Home inductions proved successful (≥ 60% retention) for select patients, but future research is still needed to recommend the routine use of home inductions [55, 57, 71] and to identify the patient characteristics that are associated with successful and non-successful home inductions. Furthermore, the use of RNs or other support staff to conduct patient intakes (i.e. physicals, mental health screenings) helped disencumber physician responsibilities. [8, 10, 11, 32, 38, 50, 51, 58, 60, 62–64, 78] Providing patients with “after hours” support was another component of care noted in numerous studies. [39, 45, 55–57, 60, 71, 74] More research is needed to assess the effects of augmenting such support with the use of mobile technology (i.e. telehealth, text messages, emails) to improve the process of providing 24-hour support. Only three studies examined the influence of addiction specialists transferring stabilized patients to primary care [30, 33, 63]. This approach may appeal to primary care workforces wanting to expand access to MAT through a stepped-care approach (i.e. providing stabilized patients maintenance dosing and managing comorbidities), but who are less comfortable providing initial MAT induction.

Wide variation in the use of toxicology screens, patient contracts, and data management structures existed and were largely underdeveloped. Our conclusions correlated with findings from a systematic review examining the use of urine drug screens and treatment agreements in patients with chronic pain, and found that more research is needed to standardize these tools to not only monitor patient level outcomes, but provide population-level feedback to care teams [88]. Additionally, much of the technological aids discussed were relatively nascent with Mullen et al (2012) noting that a more sophisticated data management structure would be helpful [31]. There was substantial heterogeneity with respect to patient and provider outcomes measured. Patient retention was the most common outcome reported, yet there was no uniform definition given dissimilar program lengths between studies (i.e. 1 month to 2 years). Additionally, there was a lack of consideration given to the remitting nature of OUD. Many of the study samples excluded co-dependence on other illicit substances like benzodiazepines, leading to possible confounders that could affect the analyses.

Few studies evaluated provider outcomes such as quality of medical care, physician perceptions, and factors related to care delivery in relation to a primary care-based MAT intervention. While other studies in the literature measure provider barriers to delivering OUD
treatment in primary care settings [89–91], these studies do not measure provider outcomes concurrently to testing patient level outcomes within specified care model structures. This gap indicates key areas for future research such as determining the appropriate level of provider training, testing provider training and mentoring support mechanisms such as the Providers’ Clinical Support System for Medication Assisted Treatment [92] and Project ECHO (Extension for Community Health Outcomes) a video-based distance education program, and determining how to prevent physician burnout. [85]

Our study could not make any definitive statements regarding whether particular care models or treatment elements are strongly associated with favorable patient outcomes compared to alternatives. However, when we did look across studies with good quality and high patient retention there was a pattern suggesting that successful studies used coordinated, multidisciplinary models to support physicians in delivering MAT. The majority of the seven studies did not use tools such as patient/provider contracts nor did they provide additional clinical staff training suggesting that they may not be necessary to successfully carry out primary care based MAT.

Our study has limitations. First, because of both the heterogeneity in reporting of outcomes and variability in medications used and dosages, we were unable to perform a pooled meta-analysis to clearly link structural domains identified via SEIPS to health outcomes. Second, not all of the studies included had randomized designs. Potential for bias and confounding should be considered, though it was formally assessed within our methods. Third, we were unable to quantitatively evaluate which particular SEIPS domains contributed to intervention success or failure. Fourth, we only included studies that were published in peer-reviewed literature. Therefore, we did not capture interventions that may be in the pilot phase or have outcomes presented via other “grey” literature such as websites/forums.

Our study has several strengths. To our knowledge, this is the first systematic review that describes both patient outcomes and structural organization of interventions to treat OUD in primary care settings both domestically and internationally. Second, by using the SEIPS framework, we described systems design elements within each intervention rather than focusing only on the broad organizational framework of the intervention. Not all primary care settings have access to the same resources with some unable to structurally accommodate a multi-person coordinated care team. However, we provide details on how to improve systems (e.g. person, tasks, and process) depending on the resources that are available in various settings.

There is variability in regulations for treatment programs, payment models, and provider training structures which may limit or enhance the ability of health systems to provide high quality multidisciplinary, coordinated care with the most cost-effective, efficacious OUD interventions. As the US allocates funding towards expanding MAT access, programs receiving such funding would benefit from considering the intervention models found to support MAT implementation in prior studies [93]. By evaluating not only patient efficacy, but also structural characteristics of primary care models for delivering MAT, this review provides key insights for PCPs and researchers about ways to build upon existing resources and personnel to more effectively deliver OUD treatment. Specifically, this study identified key components of primary care OUD delivery models. As we continue to grapple with the global rise of opioid-related morbidity and mortality, this review can help enhance the rapid dissemination of effective OUD treatment programs across diverse settings.

Supporting information
S1 Table. Search terms.

(TIFF)
S2 Table. Inclusion and exclusion criteria.
(TIFF)

S1 Fig. PRISMA checklist.
(TIFF)

Acknowledgments
We would like to acknowledge Marisa Conte for assistance with setting up our database searches.

Author Contributions
Conceptualization: Pooja Lagisetty, Michele Heisler, Vineet Chopra, Amy Bohnert.
Data curation: Pooja Lagisetty, Katarzyna Klasa, Christopher Bush.
Formal analysis: Pooja Lagisetty, Katarzyna Klasa, Christopher Bush.
Investigation: Pooja Lagisetty, Christopher Bush, Vineet Chopra.
Methodology: Michele Heisler.
Resources: Amy Bohnert.
Supervision: Pooja Lagisetty, Michele Heisler, Vineet Chopra, Amy Bohnert.
Writing – original draft: Pooja Lagisetty, Katarzyna Klasa, Christopher Bush, Amy Bohnert.
Writing – review & editing: Pooja Lagisetty, Katarzyna Klasa, Christopher Bush, Michele Heisler, Vineet Chopra, Amy Bohnert.

References
1. Burwell S. CDC Opioid Prescribing Guideline Call. HHS.gov; 2016 [cited 2016 May 6, 2016]. http://www.hhs.gov/about/leadership/secretary/speeches/2016/cdc-opioid-prescribing-guideline-call.html.
2. Association AP. Opioid Use Disorder—Diagnostic Criteria. In: Association AP, editor. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Fifth ed. 1–92013. p. 1–9.
3. Katz J. Drug deaths in American are rising faster than ever New York City: The New York Times Company; 2017 [cited 2017 07/25/2017]. https://www.nytimes.com/interactive/2017/06/05/upshot/opioid-epidemic-drug-overdose-deaths-are-rising-faster-than-ever.html
4. Crime UNOoDa. World Drug Report 2015.
5. Rudd RA, Aleshire N, Zibbell JE, Gladden RM. Increases in Drug and Opioid Overdose Deaths—United States, 2000–2014. MMWR Morbidity and mortality weekly report. 2016; 64(50–51):1378–82. https://doi.org/10.15585/mmwr.mm6450a3 PMID: 26720857.
6. Policy OoNDC. Medication-Assisted Treatment for Opioid Addiction. Executive Office of the President; 2012.
7. Brown R, Gassman M, Hetzel S, Berger L. Community-based treatment for opioid dependent offenders: A pilot study. American Journal on Addictions. 2013; 22(5):500–2. https://doi.org/10.1111/j.1521-0391.2013.12049.x PMID: 23952897. Language: English. Entry Date: 20140509. Revision Date: 20150710. Publication Type: Journal Article.
8. Drainoni M-L, Farrell C, Sorensen-Alawad A, Palmisano JN, Chaisson C, Walley AY. Patient Perspectives of an Integrated Program of Medical Care and Substance Use Treatment. AIDS Patient Care & STDs. 2014; 28(2):71–81. https://doi.org/10.1089/apc.2013.0179 Language: English. Entry Date: 20140214. Revision Date: 20150710. Publication Type: Journal Article.
9. Haddad MS, Zelenev A, Altice FL. Buprenorphine maintenance treatment retention improves nationally recommended preventive primary care screenings when integrated into urban federally qualified health centers. Journal of urban health: bulletin of the New York Academy of Medicine. 2015; 92(1):193–213. Epub 2015/01/01. https://doi.org/10.1007/s11524-014-9924-1 PMID: 25550126
Primary care models for treating opioid use disorders: What actually works? A systematic review

10. Lucas GM, Chaudhry A, Hsu J, Woodson T, Lau B, Olsen Y, et al. Clinic-based treatment of opioid-dependent HIV-infected patients versus referral to an opioid treatment program: A randomized trial. Annals of internal medicine. 2010; 152(11):704–11. https://doi.org/10.7326/0003-4819-152-11-20100610-00003 PMID: 2051828. Language: English. Entry Date: 20100924. Revision Date: 20150711. Publication Type: Journal Article.

11. Walley AY, Palmisano J, Sorensen-Alawad A, Chaisson C, Raj A, Samet JH, et al. Engagement and Substance Dependence in a Primary Care-Based Addiction Treatment Program for People Infected with HIV and People at High-Risk for HIV Infection. J Subst Abuse Treat. 2015; 59:59–66. Epub 2015/08/25. https://doi.org/10.1016/j.jsat.2015.07.007 PMID: 26298399.

12. Weiss L, Egan JE, Botsko M, Netherland J, Fiellin DA, Finkelstein R. The BHIVES collaborative: Organization and evaluation of a multisite demonstration of integrated buprenorphine/naloxone and HIV treatment. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2011; 56(Suppl 1):S7–S13. https://doi.org/10.1097/QAI.0b013e3182097426 2011-04994-002. PMID: 21317598.

13. Korthuis PT, McCarty D, Weimer M, Bougatsos C, Blazina I, Zakher B, et al. Primary Care-Based Models for the Treatment of Opioid Use Disorder: A Scoping Review. Annals of internal medicine. 2016. https://doi.org/10.7326/M16-2149 PMID: 27919103.

14. Holden RJ, Carayon P, Gurau AP, Hoonakker P, Hundt AS, Ozok AA, et al. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics. 2013; 56(11):1669–86. https://doi.org/10.1080/00140139.2013.838643 PMID: 24088063.

15. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open medicine: a peer-reviewed, independent, open-access journal. 2009; 3(3):e123–30. PMID: 21603405.

16. Eccles M, Grimshaw J, Campbell M, Ramsay C. Research designs for studies evaluating the effectiveness of change and improvement strategies. Quality & safety in health care. 2003; 12(1):47–52. https://doi.org/10.1136/qhc.12.1.47 PMID: 12571345.

17. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Versions 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.

18. Green S, McDonald S. Cochrane Collaboration: more than systematic reviews? Internal medicine journal. 2005; 35(1):3–4. https://doi.org/10.1111/j.1445-5994.2004.00747.x PMID: 15667459.

19. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of epidemiology and community health. 1998; 52(6):377–84. PMID: 9764259.

20. Hooper P, Jutai JW, Strong G, Russell-Minda E. Age-related macular degeneration and low-vision rehabilitation: a systematic review. Can J Ophthalmol. 2008; 43(2):180–7. https://doi.org/10.3129/i08-001 PMID: 18347620.

21. Silverman SR, Schertz LA, Yuen HK, Lowman JD, Bickel CS. Systematic review of the methodological quality and outcome measures utilized in exercise interventions for adults with spinal cord injury. Spinal Cord. 2012; 50(10):718–27. https://doi.org/10.1038/sc.2012.78 PMID: 22777488.

22. Altice FL, Bruce RD, Lucas GM, Lum PJ, Korthuis PT, Flanigan TP, et al. HIV treatment outcomes among HIV-infected, opioid-dependent patients receiving buprenorphine/naloxone treatment within HIV clinical care settings: results from a multisite study. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S22–32. https://doi.org/10.1097/QAI.0b013e318209751e PMID: 21317590.

23. Korthuis PT, Fiellin DA, Fu R, Lum PJ, Altice FL, Sohler N, et al. Improving adherence to HIV quality of care indicators in persons with opioid dependence: the role of buprenorphine. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S83–90. https://doi.org/10.1097/QAI.0b013e318208bc9a5 PMID: 21317600.

24. Egan JE, Casadonte P, Gartenmann T, Martin J, McCance-Katz EF, Netherland J, et al. The Physician Clinical Support System–Buprenorphine (PCSS-B): a novel project to expand/improve buprenorphine treatment. J Gen Intern Med. 2010; 25(9):936–41. Epub 2010/05/12. https://doi.org/10.1007/s11606-010-1377-y PMID: 20458550.

25. Egan JE, Netherland J, Gass J, Finkelstein R, Weiss L, Collaborative B. Patient perspectives on buprenorphine/naloxone treatment in the context of HIV care. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S46–53. https://doi.org/10.1097/QAI.0b013e3182097561 PMID: 21317594.

26. Korthuis PT, Tozzi MJ, Nandi V, Fiellin DA, Weiss L, Egan JE, et al. Improved quality of life for opioid-dependent patients receiving buprenorphine treatment in HIV clinics. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S39–45. https://doi.org/10.1097/QAI.0b013e318209754c PMID: 21317593.

27. Carrieri PM, Michel L, Lions C, Cohen J, Vray M, Mora M, et al. Methadone induction in primary care for opioid dependence: A pragmatic randomized trial (ANRS Methaville). PLoS ONE. 2014; 9(11). 2015-30799-001.
28. Gossop M, Marsden J, Stewart D, Lehmann P, Strang J. Methadone treatment practices and outcome for opiate addicts treated in drug clinics and in general practice: results from the National Treatment Outcome Research Study. Br J Gen Pract. 1999; 49(438):31–4. Epub 2000/01/06. PMID: 1062013

29. Gossop M, Stewart D, Browne N, Marsden J. Methadone treatment for opiate dependent patients in general practice and specialist clinic settings: Outcomes at 2-year follow-up. J Subst Abuse Treat. 2003; 24(4):313–21. Epub 2003/07/18. PMID: 12867205.

30. Lintzeris N, Ritter A, Panjari M, Clark N, Kutlin J, Bammer G. Implementing Buprenorphine Treatment in Community Settings in Australia: Experiences from the Buprenorphine Implementation Trial. The American Journal on Addictions. 2004; 13(Suppl 1):S29–S41. https://doi.org/10.1080/10550490490440799 2004-95153-004. PMID: 15204674

31. Mullen L, Barry J, Long J, Keenan E, Mulholland D, Grogan L, et al. A national study of the retention of Irish opiate users in methadone substitution treatment. Am J Drug Alcohol Abuse. 2012; 38(6):551–8. Epub 2012/07/04. https://doi.org/10.3109/00952990.2012.694516 PMID: 22747484.

32. O’Connor PG, Oliveto AH, Shi JM, Triffleman EG, Carroll KM, Kosten TR, et al. A randomized trial of buprenorphine maintenance for heroin dependence in a primary care clinic for substance users versus a methadone clinic. Am J Med. 1998; 105(2):100–5. Epub 1998/09/04. PMID: 9727815.

33. Ortner R, Jagsch R, Schindler SD, Primorac A, Fischer G. Buprenorphine Maintenance: Office-Based Treatment with Addiction Clinic Support. European Addiction Research. 2004; 10(3):105–11. https://doi.org/10.1159/000077698 2005-03896-003. PMID: 15258440

34. Sohler NL, Li X, Kunins HV, Sacajiu G, Giovanniello A, Whitley S, et al. Home-versus office-based buprenorphine inductions for opioid-dependent patients. Journal of Substance Abuse Treatment. 2010; 38(2):153–8. https://doi.org/10.1016/j.jsat.2009.08.001 PMID: 19801178. Language: English. Entry Date: 20100423. Revision Date: 20150711. Publication Type: Journal Article. Journal Subset: Biomedical.

35. Tuchman E. A model-guided process evaluation: Office-based prescribing and pharmacy dispensing of methadone. Evaluation and Program Planning. 2008; 31(4):376–81. https://doi.org/10.1016/j.evalprogplan.2008.04.011 2008-15610-005. PMID: 18582940

36. Fiellin DA, Rosenheck RA, Kosten TR. Office-based treatment for opioid dependence: reaching new patient populations. The American journal of psychiatry. 2001; 158(8):1200–4. https://doi.org/10.1176/ appi.ajp.158.8.1200 PMID: 11481150.

37. Alford DP, LaBelle CT, Richardson JM, O’Connell JJ, Hohl CA, Cheng DM, et al. Treating homeless opiate dependent patients with buprenorphine in an office-based setting. Journal of General Internal Medicine. 2007; 22(2):171–6. https://doi.org/10.1111/j.1525-1594.2010.01168.x 2010-08114-002. PMID: 17356982

38. Alford DP, Labelle CT, Kretsch N, Bergeron A, Winter M, Botticelli M, et al. Collaborative care of opioid-addicted patients in primary care using buprenorphine: five-year experience. Archives of Internal Medicine. 2011; 171(5):425–31. https://doi.org/10.1001/archinternmed.2010.541 PMID: 21403039. Language: English. Entry Date: 20110617. Revision Date: 20150711. Publication Type: Journal Article.

39. Colameco S, Armando J, Trotz C. Opiate dependence treatment with buprenorphine: one year’s experience in a family practice residency setting. J Addict Dis. 2005; 24(2):25–32. Epub 2005/03/24. https://doi.org/10.1300/J069v24n02_03 PMID: 15784521.

40. Fiellin DA, Barthwell AG. Guideline Development for Office-Based Pharmacotherapies for Opioid Dependence. Journal of Addictive Diseases. 2003; 22(4):109–20. https://doi.org/10.1300/J069v22n04_09 2004-10538-007. PMID: 14723481

41. Fiellin DA, Kleber H, Trumble-Hejduk JG, McLellan AT, Kosten TR. Consensus statement on office-based treatment of opioid dependence using buprenorphine. Journal of Substance Abuse Treatment. 2004; 27(2):153–9. https://doi.org/10.1016/j.jsat.2004.06.005 2004-19824-006. PMID: 15450648

42. Fiellin DA, Moore BA, Sullivan LE, Becker WC, Pantalon MV, Chawarski MC, et al. Long-term treatment with buprenorphine/naloxone in primary care: results at 2–5 years. Am J Addict. 2008; 17(2):116–20. Epub 2008/04/09. https://doi.org/10.1080/10550490701860971 PMID: 18393054.

43. Fiellin DA, Pantalon MV, Chawarski MC, Moore BA, Sullivan LE, O’Connor PG, et al. Counseling plus buprenorphine-naloxone maintenance therapy for opioid dependence. N Engl J Med. 2006; 355(4):365–74. Epub 2006/07/28. https://doi.org/10.1056/NEJMoa055255 PMID: 16870915.

44. Gunderson EW, Wang XQ, Fiellin DA, Bryan B, Levin FR. Unobserved versus observed office buprenorphine/naloxone induction: a pilot randomized clinical trial. Addict Behav. 2010; 35(5):537–40. Epub 2010/01/29. https://doi.org/10.1016/j.addbeh.2010.01.001 PMID: 20106601

45. Kahan M, Wilson L, Midmer D, Ordean A, Lim H. Short-term outcomes in patients attending a primary care-based addiction shared care program. Can Fam Physician. 2009; 55(11):1108–9.e5. Epub 2009/11/17. PMID: 19910601
46. Moore BA, Barry DT, Sullivan LE, O’Connor PG, Cutter CJ, Schottenfeld RS, et al. Counseling and directly observed medication for primary care buprenorphine maintenance: A pilot study. Journal of Addiction Medicine. 2012; 6(3):205–11. 2013-07525-005. PMID: 22614936

47. Ortner R, Jagsch R, Schindler SD, Primorac A, Fischer G. Buprenorphine maintenance: office-based treatment with addiction clinic support. Eur Addict Res. 2004; 10(3):105–11. Epub 2004/07/20. https://doi.org/10.1158/00007698 PMID: 15258440.

48. Carrieri PM, Michel L, Lions C, Cohen J, Vray M, Mora M, et al. Methadone induction in primary care for opioid dependence: a pragmatic randomized trial (ANRS Methaville). PLoS One. 2014; 9(11):e112328. Epub 2014/11/14. https://doi.org/10.1371/journal.pone.0112328 PMID: 25393311

49. Drucker E, Rice S, Ganse G, Kegley JJ, Bonuck K, Tuchman E. The Lancaster office based opiate treatment program: a case study and prototype for community physicians and pharmacists providing methadone maintenance treatment in the United States. Addictive Disorders & Their Treatment. 2007; 6(3):121–35. Language: English. Entry Date: 20080125. Revision Date: 20150711. Publication Type: Journal Article.

50. Fiellin DA, O’Connor PG, Chawarski M, Schottenfeld RS. Processes of Care During a Randomized Trial of Office-based Treatment of Opioid Dependence in Primary Care. The American Journal on Addictions. 2004; 13(Suppl 1):S67–S78. https://doi.org/10.1080/105549049040843 2004-95153-006. PMID: 15204676

51. Gruer L, Wilson P, Scott R, Elliott L, Macleod J, Harden K, et al. General practitioner centred scheme for treatment of opiate dependent drug injectors in Glasgow. Bmj. 1997; 314(7096):1730–5. Epub 1997/06/14. PMID: 9202504

52. Hersh D, Little SL, Gleghorn A. Integrating buprenorphine treatment into a public healthcare system: the San Francisco Department of Public Health’s office-based Buprenorphine Pilot Program. J Psychoactive Drugs. 2011; 43(2):136–45. Epub 2011/08/24. https://doi.org/10.1080/02791072.2011.587704 PMID: 21858689.

53. Lintzeris N, Ritter A, Panjari M, Clark N, Kutlin J, Bammer G. Implementing buprenorphine treatment in community settings in Australia: experiences from the Buprenorphine Implementation Trial. Am J Addict. 2004; 13 Suppl 1:S29–41. Epub 2004/06/19. https://doi.org/10.1080/105549049040799 PMID: 15204674.

54. Roll D, Spottswood M, Huang H. Using Shared Medical Appointments to Increase Access to Buprenorphine Treatment. J Am Board Fam Med. 2015; 28(5):676–7. Epub 2015/09/12. https://doi.org/10.3122/jabfm.2015.05.150017 PMID: 26355141.

55. Sohler NL, Li X, Kunins HV, Sacajiu G, Giovannelli A, Whitley S, et al. Home- versus office-based buprenorphine inductions for opioid-dependent patients. J Subst Abuse Treat. 2010; 38(2):153–9. Epub 2009/10/06. https://doi.org/10.1016/j.jsat.2009.08.001 PMID: 19801178

56. Cunningham C, Giovannelli A, Sacajiu G, Whitley S, Mund P, Beil R, et al. Buprenorphine treatment in an urban community health center: what to expect. Fam Med. 2008; 40(7):500–6. Epub 2008/10/22. PMID: 18928077

57. Cunningham CO, Giovannelli A, Li X, Kunins HV, Roose RJ, Sohler NL. A comparison of buprenorphine induction strategies: Patient-centered home-based inductions versus standard-of-care office-based inductions. Journal of Substance Abuse Treatment. 2011; 40(4):349–56. https://doi.org/10.1016/j.jsat.2010.12.002 2011-08603-006. PMID: 21310583

58. Haddad MS, Zelenev A, Altice FL. Buprenorphine maintenance treatment retention improves nationally recommended preventive primary care screenings when integrated into urban federally qualified health centers. Journal of Urban Health. 2015; 92(1):193–213. https://doi.org/10.1007/s11524-014-9924-1 PMID: 25550126. Language: English. Entry Date: 20150923. Revision Date: 20160204. Publication Type: journal article. Journal Subset: Public Health.

59. Ross D, Lo F, McKim R, Allan GM. A primary care/multidisciplinary harm reduction clinic including opiate bridging. Subst Use Misuse. 2008; 43(11):1628–39. Epub 2008/08/30. https://doi.org/10.1080/10826080802241193 PMID: 18752164.

60. Alford DP, LaBelle CT, Richardson JM, O’Connell JJ, Hohl CA, Cheng DM, et al. Treating homeless opioid-dependent patients with buprenorphine in an office-based setting. J Gen Intern Med. 2007; 22 (2):171–6. Epub 2007/03/16. https://doi.org/10.1007/s11606-006-0023-1 PMID: 17356982

61. Fiellin DA, Pantalon MV, Pakes JP, O’Connor PG, Chawarski M, Schottenfeld RS. Treatment of heroin dependence with buprenorphine in primary care. Am J Drug Alcohol Abuse. 2002; 28(2):231–41. Epub 2002/05/17. PMID: 12014814.

62. Fiellin DA, Pantalon MV, Chawarski MC, Moore BA, Sullivan LE, O’Connor PG, et al. Counseling plus Buprenorphine-Naloxone Maintenance Therapy for Opioid Dependence. The New England Journal of Medicine. 2006; 355(4):365–74. https://doi.org/10.1056/NEJMoa055255 2006-09991 -001. PMID: 16870915
Primary care models for treating opioid use disorders: What actually works? A systematic review

63. Hersh D, Little SL, Gleghorn A. Integrating buprenorphine treatment into a public healthcare system: The San Francisco Department of Public Health’s office-based buprenorphine pilot program. Journal of Psychoactive Drugs. 2011; 43(2):136–45. https://doi.org/10.1080/02791072.2011.587704 2011-15572-006. PMID: 21858959

64. Roll D, Spottswood M, Huang H. Using Shared Medical Appointments to Increase Access to Buprenorphine Treatment. Journal of the American Board of Family Medicine. 2015; 28(5):676–7. https://doi.org/10.3122/jabfm.2015.05.150017 PMID: 26355141. Language: English. Entry Date: 20150923. Revision Date: 20150923. Publication Type: Journal Article. Journal Subset: Biomedical.

65. Fiellin DA, Pantalon MV, Pakes JP, O’Connor PG, Chawarski M, Schottenfeld RS. Treatment of heroin dependence with buprenorphine in primary care. The American Journal of Drug and Alcohol Abuse. 2002; 28(2):231–41. https://doi.org/10.1081/ADA-120002972 2002-01210-003. PMID: 12014814

66. Tuchman E, Gregory C, Simson M, Drucker E. Safety, Efficacy, and Feasibility of Office-based Prescribing and Community Pharmacy Dispensing of Methadone: Results of a Pilot Study in New Mexico. Addictive Disorders & Their Treatment. 2006; 5(2):43–51. 2006-08963-001.

67. Ezard N, Lintzeris N, Ogders P, Kourtoulis G, Hulheisen P, Stowe A, et al. An evaluation of community methadone services in Victoria, Australia: Results of a client survey. Drug and alcohol review. 1999; 18(4):417–23. https://doi.org/10.1080/09595239996284 2000-13550-006.

68. Doolittle B, Becker W. A case series of buprenorphine/naloxone treatment in a primary care practice. Substance Abuse. 2011; 32(4):262–5. https://doi.org/10.1080/08897077.2011.599256 2011-24462-012. PMID: 22601457

69. Colameco S, Armando J, Trotz C. Opiate Dependence Treatment with Buprenorphine: One Year’s Experience in a Family Practice Residency Setting. Journal of Addictive Diseases. 2005; 24(2):25–32. https://doi.org/10.1300/J069v24n02_03 2005-04417-003. PMID: 15784521

70. Fiellin DA, Barry DT, Sullivan LE, Cutter CJ, Moore BA, O’Connor PG, et al. A randomized trial of cognitive-behavioral therapy in primary care-based buprenorphine. American Journal of Medicine. 2013; 126(1):74.e11–7. https://doi.org/10.1016/j.amjmed.2012.07.005 Language: English. Entry Date: 20130301. Revision Date: 20151226. Publication Type: journal article.

71. Gunderson EW, Wang X-Q, Fiellin DA, Bryan B, Levin FR. Unobserved versus observed office buprenorphine/naloxone induction: A pilot randomized clinical trial. Addictive Behaviors. 2010; 35(5):537–40. https://doi.org/10.1016/j.addbeh.2010.01.001 2010-01902-001. PMID: 20106601

72. Moore BA, Barry DT, Sullivan LE, O’Connor PG, Cutter CJ, Schottenfeld RS, et al. Counseling and Directly Observed Medication for Primary Care Buprenorphine Maintenance: A Pilot Study. Journal of Addiction Medicine. 2012; 6(3):205–11. PMID: 22614936. Language: English. Entry Date: 20120830. Revision Date: 20150712. Publication Type: journal article.

73. Mullen L, Barry J, Long J, Keenan E, Mulholland D, Grogan L, et al. A national study of the retention of Irish opiate users in methadone substitution treatment. The American Journal of Drug and Alcohol Abuse. 2012; 38(6):551–8. https://doi.org/10.3109/00952990.2012.694516 2012-27770-007. PMID: 22747484

74. Ross D, Lo F, McKim R, Allan GM. A primary care/multidisciplinary harm reduction clinic including opiate bridging. Substance Use & Misuse. 2008; 43(11):1628–39. https://doi.org/10.1080/1082608080241193 2008-14587-004. PMID: 18752164

75. DiPaula BA, Manchery A. Physician-pharmacist collaborative model for buprenorphine-maintained opioid-dependent patients. Journal of the American Pharmacists Association: JAPhA. 2015; 55(2):187–92. https://doi.org/10.1331/JAPhA.2015.14177 PMID: 25749264.

76. Michelazzi A, Vecchioli F, Leprini R, Popovic D, Delitto J, Maremmani I. GPs’ office based methadone maintenance treatment in Trieste, Italy. Therapeutic efficacy and predictors of clinical response. Heroin Addiction and Related Clinical Problems. 2008; 10(2):27–38.

77. Weiss L, Netherland J, Egan JE, Flanigan TP, Fiellin DA, Finkelstein R, et al. Integration of buprenorphine/naloxone treatment into HIV clinical care: lessons from the BHIVES collaborative. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S68–75. Epub 2011/03/01. https://doi.org/10.1097/QAI.0b013e31820a8226 PMID: 21317597.

78. Tuchman E, Drucker E. Lessons learned in OBOT: 3 case studies of women who did not succeed in pharmacy-based methadone treatment. Addictive Disorders & Their Treatment. 2008; 7(3):129–41. https://doi.org/10.1097/ADT.0b013e31805dad80 2008-12797-002.

79. Kahan M, Srivastava A, Ordean A, Cirone S. Buprenorphine: New treatment of opioid addiction in primary care. Canadian Family Physician. 2011; 57:281–9. PMID: 21402963. Language: English. Entry Date: 20110812. Revision Date: 20150711. Publication Type: Journal Article.

80. Fiellin DA, Barry DT, Sullivan LE, Cutter CJ, Moore BA, O’Connor PG, et al. A randomized trial of cognitive-behavioral therapy in primary care-based buprenorphine. Am J Med. 2013; 126(1):74.e11–7. Epub 2012/12/25. https://doi.org/10.1016/j.amjmed.2012.07.005 PMID: 23260506
81. Moore BA, Barry DT, Sullivan LE, O'Connor PG, Cutter CJ, Schottenfeld RS, et al. Counseling and directly observed medication for primary care buprenorphine maintenance: a pilot study. J Addict Med. 2012; 6(3):205–11. Epub 2012/05/23. PMID: 22614936
82. Fiellin DA, Weiss L, Botsko M, Egan JE, Altice FL, Bazerman LB, et al. Drug treatment outcomes among HIV-infected opioid-dependent patients receiving buprenorphine/naloxone. Journal of acquired immune deficiency syndromes. 2011; 56 Suppl 1:S33–8. https://doi.org/10.1097/QAI.0b013e3182097537 PMID: 21317592
83. Fiellin DA, O’Connor PG, Chawarski M, Schottenfeld RS. Processes of care during a randomized trial of office-based treatment of opioid dependence in primary care. Am J Addict. 2004; 13 Suppl 1:S67–78. Epub 2004/06/19. https://doi.org/10.1080/10550490490440843 PMID: 15204676.
84. Bonuck K, Drucker E, Tuchman E, Hartel D. Initiating office based prescribing of methadone: experience of primary care providers in New York City. Journal of Maintenance in the Addictions. 2003; 2 (3):19–34. Language: English. Entry Date: 20040604. Revision Date: 20150711. Publication Type: Journal Article.
85. Komaromy M, Duhigg D, Metcalf A, Carlson C, Kalishman S, Hayes L, et al. Project ECHO (Extension for Community Healthcare Outcomes): A new model for educating primary care providers about treatment of substance use disorders. Subst Abus. 2016; 37(1):20–4. Epub 2016/02/06. https://doi.org/10.1080/08897077.2015.1129388 PMID: 26848803.
86. Alford DP, LaBelle CT, Kretsch N, Bergeron A, Winter M, Botticelli M, et al. Collaborative care of opioid-addicted patients in primary care using buprenorphine: five-year experience. Arch Intern Med. 2011; 171(5):425–31. Epub 2011/03/16. https://doi.org/10.1001/archinternmed.2010.541 PMID: 21403039.
87. Fiellin DA, Schottenfeld RS, Cutter CJ, Moore BA, Barry DT, O’Connor PG. Primary care-based buprenorphine taper vs maintenance therapy for prescription opioid dependence: a randomized clinical trial. JAMA Intern Med. 2014; 174(12):1947–54. Epub 2014/10/21. PMID: 25330017.
88. Starrels JL, Becker WC, Alford DP, Kapoor A, Williams AR, Turner BJ. Systematic review: treatment agreements and urine drug testing to reduce opioid misuse in patients with chronic pain. Annals of internal medicine. 2010; 152(11):712–20. Epub 2010/06/02. https://doi.org/10.7326/0003-4819-152-11-201006010-00004 PMID: 20512829.
89. Molfenter T, Sherbeck C, Zehner M, Quanbeck A, McCarty D, Kim J-S, et al. Implementing buprenorphine in addiction treatment: Payer and provider perspectives in Ohio. Substance Abuse Treatment, Prevention, and Policy. 2015; 10. https://doi.org/10.1186/s13011-015-0009-2 2015-16878-001. PMID: 25884206.
90. Deering DEA, Sheridan J, Sellman JD, Adamson SJ, Pooley S, Robertson R, et al. Consumer and treatment provider perspectives on reducing barriers to opioid substitution treatment and improving treatment attractiveness. Addictive Behaviors. 2011; 36(6):636–42. https://doi.org/10.1016/j.addbeh.2011.01.004 2011-01821-001. PMID: 21276664.
91. Schulte B, Schmidt CS, Kuhnigk O, Schafer I, Fischer B, Wedemeyer H, et al. Structural barriers in the context of opiate substitution treatment in Germany—a survey among physicians in primary care. Subst Abuse Treat Prev Policy. 2013; 8:26. Epub 2013/07/24. https://doi.org/10.1186/1747-597X-8-26 PMID: 23875627.
92. PCSSMAT. PCSSMAT PCSS-MAT http://pcssmat.org/ PCSSO Training; [cited 2016].
93. Mannelli P, Wu LT. Primary care for opioid use disorder. Substance abuse and rehabilitation. 2016; 7:107–9. https://doi.org/10.2147/SAR.S69715 PMID: 27574479.