A regularity criterion of 3D incompressible MHD system with mixed pressure-velocity-magnetic field

Ahmad M. Alghamdi1, Sadek Gala2,3, Maria Alessandra Ragusa3,4

1Department of Mathematical Science, Faculty of Applied Science, Umm Alqura University, P. O. Box 14035, Makkah 21955, Saudi Arabia,
2Department of Sciences Exactes, ENS of Mostaganem, University of Mostaganem, P.O. Box 227, Mostaganem 27000, Algeria,
3Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria, 6 95125 Catania - Italy,
4RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia

Abstract

This work focuses on the 3D incompressible magnetohydrodynamic (MHD) equations with mixed pressure-velocity-magnetic field in view of Lorentz spaces. Our main result shows the weak solution is regular, provided that

\[
\pi \left(e^{-|x|^2} + |u| + |b| \right)^\theta \in L^p(0, T; L^{q, \infty}(\mathbb{R}^3)), \quad \text{where} \quad \frac{2}{p} + \frac{3}{q} = 2 - \theta \quad \text{and} \quad 0 \leq \theta \leq 1.
\]

Mathematics Subject Classification(2000): 35Q35, 35B65, 76D05

Key words: MHD equations; Regularity criterion; A priori estimates
1 Introduction

We are interested in the regularity of weak solutions to the viscous incompressible magnetohydrodynamics (MHD) equations in \mathbb{R}^3

\[
\begin{aligned}
\partial_t u + (u \cdot \nabla) u - (b \cdot \nabla) b - \Delta u + \nabla \pi &= 0, \\
\partial_t b + (u \cdot \nabla) b - (b \cdot \nabla) u - \Delta b &= 0, \\
\nabla \cdot u &= \nabla \cdot b = 0, \\
u(x, 0) &= u_0(x), \quad b(x, 0) = b_0(x),
\end{aligned}
\tag{1.1}
\]

where $u = (u_1, u_2, u_3)$ is the velocity field, $b = (b_1, b_2, b_3)$ is the magnetic field, and π is the scalar pressure, while u_0 and b_0 are the corresponding initial data satisfying $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$ in the sense of distribution.

Local existence and uniqueness theories of solutions to the MHD equations have been studied by many mathematicians and physicists (see, e.g., [2, 5, 18]). But due to the presence of Navier-Stokes equations in the system (1.1) whether this unique local solution can exist globally is an outstanding challenge problem. For this reason, there are many regularity criteria of weak solutions for the MHD equations has been investigated by many authors over past years (see e.g., [3, 4, 6, 7, 9, 10, 11, 16, 17, 21, 22] and references therein). Note that the literatures listed here are far from being complete, we refer the readers to see for example [8, 12, 13, 14, 15] for expositions and more references.

More recently, Beirão and Yang [1] proved the following regularity criterion for the mixed pressure-velocity in Lorentz spaces for Leray-Hopf weak solutions to 3D Navier-Stokes equations

\[
\frac{\pi}{(e^{-|x|^2} + |u|)^\theta} \in L^p(0, T; L^{q, \infty}(\mathbb{R}^3)), \quad 0 \leq \theta \leq 1 \quad \text{and} \quad \frac{2}{p} + \frac{3}{q} = 2 - \theta, \quad (1.2)
\]

where $L^{q, \infty}(\mathbb{R}^3)$ denotes the Lorentz space (c.f. [20]).

Motivated by the recent work of [1], the purpose of this note is to establish the regularity for the MHD equations (1.1) with the mixed pressure-velocity-magnetic in Lorentz spaces. Our main result can be stated as follows:

Theorem 1.1 Suppose that $(u_0, b_0) \in L^2(\mathbb{R}^3) \cap L^4(\mathbb{R}^3)$ with $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$ in the sense of distribution. Let (u, b) be a weak solution to the MHD equations on some interval $[0, T]$ with $0 < T \leq \infty$. Assume that $0 \leq \theta \leq 1$ and that

\[
\frac{\pi}{(e^{-|x|^2} + |u| + |b|)^\theta} \in L^p(0, T; L^{q, \infty}(\mathbb{R}^3)), \quad \text{where} \quad \frac{2}{p} + \frac{3}{q} = 2 - \theta, \quad (1.3)
\]

then the weak (u, b) is regular on $(0, T]$.

Remark 1.1 A special consequence of Theorem 1.1 and its proof is the regularity criterion of the 3D Navier-Stokes equations with the mixed pressure-velocity in Lorentz spaces. This generalizes those of [1].
In order to derive the regularity criterion of weak solutions to the MHD equations (1.1), we introduce the definition of weak solution.

Next, let us writing
\[w^\pm = u \pm b, \quad w^\pm_0 = u_0 \pm b_0. \]

We reformulate equation (1.1) as follows. Formally, if the first equation of MHD equations (1.1) plus and minus the second one, respectively, then MHD equations (1.1) can be re-written as:
\[
\begin{align*}
\partial_t w^+ - \Delta w^+ + (w^- \cdot \nabla) w^+ + \nabla \pi &= 0, \\
\partial_t w^- - \Delta w^- + (w^+ \cdot \nabla) w^- + \nabla \pi &= 0, \\
\text{div } w^+ &= 0, \quad \text{div } w^- = 0, \\
w^+(x, 0) &= w^+_0(x), \quad w^-(x, 0) = w^-_0(x).
\end{align*}
\]

The advantage is that the equations becomes symmetric.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In order to do it, we first recall the following estimates for the pressure in terms of \(u \) and \(b \) (see e.g., [8]):
\[
\| \pi \|_{L^q} \leq C \left(\| u \|_{L^2}^2 + \| b \|_{L^2}^2 \right), \quad \text{with} \quad 1 < q < \infty. \tag{2.1}
\]

We are now in position to prove our main result.

Proof: Multiplying the first and the second equations of (1.4) by \(|w^+|^2 \) \(w^+ \) and \(|w^-|^2 \) \(w^- \), respectively, integrating by parts and summing up, we have
\[
\frac{1}{4} \frac{d}{dt} \left(\| w^+ \|_{L^4}^4 + \| w^- \|_{L^4}^4 \right) + \int_{\mathbb{R}^3} \left(\| \nabla w^+ \|^2 \| w^+ \|^2 + \| \nabla w^- \|^2 \| w^- \|^2 \right) dx + \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla |w^+|^2|^2 + |\nabla |w^-|^2|^2) dx
\]
\[
= - \int_{\mathbb{R}^3} \nabla \pi \cdot (w^+ |w^+|^2 + w^- |w^-|^2) dx
\]
\[
= \int_{\mathbb{R}^3} \pi \cdot \text{div}(w^+ |w^+|^2 + w^- |w^-|^2) dx
\]
\[
\leq \int_{\mathbb{R}^3} \| \pi \| (|w^+| + |w^-|)(|\nabla |w^+|^2 + |\nabla |w^-|^2) dx
\]
\[
\leq C \int_{\mathbb{R}^3} |\pi|^2 (|w^+| + |w^-|)^2 dx + \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla |w^+|^2|^2 + |\nabla |w^-|^2|^2) dx.
\]

Notice that \(u = \frac{1}{2}(w^+ + w^-) \) and \(b = \frac{1}{2}(w^+ - w^-) \), then the above inequality means that
\[
\frac{d}{dt} (\| u \|_{L^4}^4 + \| b \|_{L^4}^4) + 2 \left(\| \nabla |u|^2 \|_{L^2}^2 + 2 \| \nabla |b|^2 \|_{L^2}^2 \right)
\]
\[
+ 2 \| |u| \|_{L^2}^2 + 2 \| |b| \|_{L^2}^2 + 2 \| |u| |b| \|_{L^2}^2 + 2 \| |b| |u| \|_{L^2}^2
\]
\[
\leq C \int_{\mathbb{R}^3} |\pi|^2 (|u| + |b|)^2 dx = K, \tag{2.2}
\]
where we have used
\[
|w^+| + |w^-| \leq |w^+ + w^-| + |w^+ - w^-|.
\]
For K, borrowing the arguments in \[1\], we set
\[
V = e^{-|x|^2} + |u| + |b| \quad \text{and} \quad \bar{\pi} = \frac{\pi}{(e^{-|x|^2} + |u| + |b|)^\gamma}.
\]
By the Hölder inequality and the following interpolation in Lorentz space (see \[20\])
\[
\|f^\alpha\|_{L^p,q(\mathbb{R}^3)} \leq C \|f\|_{L^{p,q}(\mathbb{R}^3)}^\alpha \quad \text{for} \quad \alpha > 0, \quad p > 0, \quad q > 0,
\]
we have
\[
K = \int_{\mathbb{R}^3} |\bar{\pi}|^\lambda V^{-\lambda \theta} |\pi|^{2-\lambda} V^\lambda (|u| + |b|)^2 dx
\]
\[
\leq \int_{\mathbb{R}^3} |\bar{\pi}|^\lambda |\pi|^{2-\lambda} V^{2-\lambda \theta} dx
\]
\[
\leq \left(\|\bar{\pi}\|^\lambda_{L^{q,\infty}} \right)^{\frac{1}{q}} \left(\|\pi\|^\lambda_{L^{q,\infty}} \right)^{\frac{1}{q}} \|V\|^2_{L^{q,\infty}} \|V\|_{L^{r,2}}^2
\]
where
\[
\frac{\lambda}{q} + \frac{1}{s} + \frac{1}{r} = 1 \quad \text{and} \quad \lambda = \frac{2}{2 - \theta}.
\]
By \[2.1\], we have
\[
K \leq \|\bar{\pi}\|_{L^{q,\infty}}^{\lambda} \left(\|u\|_{L^{(2-\lambda),2}} + \|b\|_{L^{(2-\lambda),2}} \right)^{2-\lambda} \|V\|_{L^{r,2}}^\lambda
\]
\[
\leq C \|\bar{\pi}\|_{L^{q,\infty}}^{\lambda} \|V\|_{L^{(2-\lambda),2}} \|V\|_{L^{r,2}}^\lambda.
\]
By the interpolation and Sobolev inequalities in Lorentz spaces, it follows that
\[
\begin{align*}
\left\{ \begin{array}{l}
\|V^2\|_{L^{(2-\lambda),2}} \leq C \|V\|_{L^{2}}^{1-\delta_1} \|V^2\|_{L^{6,2}}^{\delta_1} \leq C \|V\|_{L^{2}}^{1-\delta_1} \|\nabla V\|_{L^{2}}^{\delta_1}, \\
\|V^2\|_{L^{r,2}} \leq C \|V\|_{L^{2}}^{1-\delta_2} \|V^2\|_{L^{6,2}}^{\delta_2} \leq C \|V\|_{L^{2}}^{1-\delta_2} \|\nabla V\|_{L^{2}}^{\delta_2},
\end{array} \right.
\end{align*}
\]
(2.3)
where $0 < \delta_1, \delta_2 < 1$ and
\[
\frac{1}{2} = \frac{1 - \delta_1}{6} + \frac{\delta_1}{6}, \quad \frac{1}{2} = \frac{1 - \delta_2}{6} + \frac{\delta_2}{6}.
\]
Hence from \[2.3\] and Young inequality, it follows that
\[
K \leq C \|\bar{\pi}\|_{L^{q,\infty}}^{\lambda} \|V^2\|_{L^{2}}^{(2-\lambda)(1-\delta_1) + \lambda(1-\delta_2)} \|\nabla V^2\|_{L^{2}}^{(2-\lambda)\delta_1 + \lambda\delta_2}
\]
\[
\leq C \|\bar{\pi}\|_{L^{q,\infty}}^{\lambda} \|V^2\|_{L^{2}}^{\frac{2 - \lambda}{2 - \lambda + \delta_1 - \delta_2}} \|\nabla V^2\|_{L^{2}}^{\frac{\delta_1}{2}} + \frac{1}{2} \|\nabla V^2\|_{L^{2}}^{\frac{\delta_2}{2}}.
\]
Due to the definition of V, we see that
\[
\|V^2\|_{L^{2}}^{2} \leq C(1 + |u| + |b|)^2 + \|u\|_{L^{2}}^2 + \|b\|_{L^{2}}^2,
\]
and
\[
\|\nabla V^2\|_{L^{2}}^{2} \leq C(1 + |u| + |b|)^2 + \|\nabla(|u| + |b|)^2 + \|\nabla(|u| + |b|)^2\|_{L^{2}}^2).
\]
and
\[
\|\nabla V^2\|_{L^{2}}^{2} \leq C(1 + |u| + |b|)^2 + \|\nabla(|u| + |b|)^2 + \|\nabla(|u| + |b|)^2\|_{L^{2}}^2).
\]
Consequently, we get
\[K \leq C \|\nabla \|^\frac{2}{2-n} \|u\|_{L^4} \|b\|_{L^4} (1 + \|u\| + \|b\|^2_{L^2} + \|u\|^2_{L^4} + \|b\|^2_{L^4}) \]
\[+ C(1 + \|u\| + \|b\|^2_{L^2} + \|\nabla (|u| + |b|)\|_{L^2}) + \frac{1}{2} \|\nabla (|u|^2 + |b|^2)\|_{L^2} \]
\[\leq C \|\nabla \|^\frac{2}{2-n} \|u\|_{L^4} \|b\|_{L^4} (1 + \|u\|^2_{L^2} + \|b\|^2_{L^2} + \|u\|^2_{L^4} + \|b\|^2_{L^4}) \]
\[+ C(1 + \|u\|^2_{L^2} + \|b\|^2_{L^2} + \|\nabla u\|^2_{L^2} + \|\nabla b\|^2_{L^2}) + \frac{1}{2} \|\nabla |u|^2\|_{L^2} + \frac{1}{2} \|\nabla |b|^2\|_{L^2}. \]

Since \((u, b)\) is a weak solution to (1.1), then \((u, b)\) satisfies
\[(u, b) \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; H^1(\mathbb{R}^3)). \]

Inserting the above estimates into (2.2), we obtain
\[\frac{d}{dt} (\|u\|^4_{L^4} + \|b\|^4_{L^4}) + \|\nabla |u|^2\|^2_{L^2} + \|\nabla |b|^2\|^2_{L^2} \]
\[+ 2 \|u\| |\nabla u| + \|b\| |\nabla b| + 2 \|u\| |\nabla u| |\nabla b| + 2 \|b\| |\nabla b| |\nabla u| \]
\[\leq C \|\nabla \|^\frac{2}{2-n} \|u\|_{L^4} \|b\|_{L^4} (1 + \|u\|^2_{L^2} + \|b\|^2_{L^2} + \|u\|^2_{L^4} + \|b\|^2_{L^4}) \]
\[+ C(1 + \|u\|^2_{L^2} + \|b\|^2_{L^2} + \|\nabla u\|^2_{L^2} + \|\nabla b\|^2_{L^2}) \]
\[\leq C \|\nabla \|^\frac{2}{2-n} \|u\|_{L^4} \|b\|_{L^4} (1 + \|u\|^4_{L^4} + \|b\|^4_{L^4}) + C(1 + \|\nabla u\|^2_{L^2} + \|\nabla b\|^2_{L^2}), \]

Using Gronwall’s inequality with the assumption (1.3), we deduce that
\[(u, b) \in L^\infty(0, T; L^4(\mathbb{R}^3)) \subset L^8(0, T; L^4(\mathbb{R}^3)). \]

We complete the proof of Theorem 1.1. \(\Box\)

References

[1] H. Beirão da Veiga and J. Yang, On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces. Chin. Ann. Math. Ser. B 42, 1–16 (2021). https://doi.org/10.1007/s11401-021-0242-0.

[2] C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations 248 (2010), 2263-2274.

[3] B. Q. Dong, Y. Jia and W. Zhang, An improved regularity criterion of three-dimensional magnetohydrodynamic equations, Nonlinear Anal. RWA 13 (2012), 1159-1169.

[4] H. Duan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Appl. Anal., 91 (2012), 947-952.

[5] G. Duvaut and J. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241-279.
[6] J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations, J. Math. Fluid Mech. 13 (2011), 557-571.

[7] S. Gala, Extension criterion on regularity for weak solutions to the 3D MHD equations, Math. Methods Appl. Sci. 33 (2010) 1496-1503.Z.

[8] S. Gala and M.A. Ragusa, A new regularity criterion for the 3D incompressible MHD equations via partial derivatives, J. Math. Anal. Appl. 481 (2020), https://doi.org/10.1016/j.jmaa.2019.123497.

[9] S. Gala and M.A. Ragusa, On the regularity criterion of weak solutions for the 3D MHD equations, Z. Angew. Math. Phys. 68, 140 (2017). https://doi.org/10.1007/s00033-017-0890-9.

[10] S. Gala and M.A. Ragusa, A note on regularity criteria in terms of pressure for the 3D viscous MHD equations, Math. Notes 102 (2017), 475-479.

[11] S. Gala, M.A. Ragusa and Z. Zhang, A regularity criterion in terms of pressure for the 3D viscous MHD equations, Bull. Malays. Math. Sci. Soc. 40 (2017), 1677-1690.

[12] X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 410-418.

[13] X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, Kinet. Relat. Models 5 (2012), no. 3, 505-516.

[14] X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations via partial derivatives, II. Kinet. Relat. Models 7 (2014), no. 2, 291-304

[15] X. Jia and Y. Zhou, Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3×3 mixture matrices, Nonlinearity 28 (2015), no. 9, 3289-3307.

[16] H. Lin and L. Du, Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity 26 (2013), 219-239.

[17] L. Ni, Z. Guo and Y. Zhou, Some new regularity criteria for the 3D MHD equations, J. Math. Anal. Appl. 396 (2012), 108-118.

[18] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), 635-6

[19] D. Tong and W. Wang, Conditional regularity for the 3D MHD equations in the critical Besov space, Appl. Math. Lett. 102 (2020), 106119. https://doi.org/10.1016/j.aml.2019.106119.

[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam-New York-Oxford, 1978.
[21] Y. Zhou, Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 12 (2005), no. 5, 881-886.

[22] Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure. Internat. J. Non-Linear Mech. 41 (2006), 1174-1180.