Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants

Izabela Wa´sko 1,*, Aleksandra Kozi ´nska 1, Ewa Kotlarska 2 and Anna Baraniak 1

1 Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
2 Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland

* Correspondence: i.wasko@nil.gov.pl; Tel.: +48-228-410-623

Abstract: Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health’s concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).

Keywords: antibiotic resistance genes; wastewater treatment plant; β-lactamase; extended-spectrum β-lactamase; carbapenemases

1. Introduction

Antibiotics are widely used to prevent and treat infections in humans, animals, and plants, but their high and incorrect consumption have made them increasingly ineffective due to antimicrobial-resistant microorganisms emerging and spreading globally. Thus, antimicrobial resistance (AMR) was announced by the World Health Organization (WHO) as one of the top global public health threats facing humanity [1]. Some Gram-negative bacteria, such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales resistant to third-generation cephalosporins and carbapenems are considered to be of particular importance, and the WHO and Centers for Disease Control and Prevention (CDC) included them in the group of critical pathogens due to the fact that they are a major cause of nosocomial infections with high morbidity and mortality [2,3]. Systematic analysis estimated 4.95 million deaths associated with bacterial AMR in 2019 and indicated β-lactam-resistant (mainly to third generation cephalosporins and carbapenem) bacteria as the major cause of death [4]. Tremendously dangerous microorganisms accumulate various AMR mechanisms that lead to their multi-drug resistance (MDR), extensive-drug resistance (XDR), or even pan-drug resistance (PDR), leaving few, one, or no therapeutic options left, respectively. Consequently, infections caused by such bacteria carry an extremely high risk of death [5,6].

AMR is ubiquitous, associated with agriculture and livestock, medical, and veterinary settings, but it is also observed in many aquatic environments, which is in line with One Health’s concept (available online: https://www.cdc.gov/onehealth/index.html accessed...
on 23 May 2022) of close interconnections between people, animals, plants, and their shared environments (Figure 1) [7].

![Figure 1. Routes of ARG transmission in the total environment, created with BioRender (available online: https://biorender.com, accessed on 23 May 2022).](image)

Many aspects related to geographic location, socioeconomic level, climate, antibiotic consumption, and the technology of the treatment process affect the abundance of antimicrobial resistance genes (ARGs), the bacteria carrying them (antibiotic-resistant bacteria, ARB), and their dissemination in the environment [8,9]. One of the factors contributing to the scale and speed of AMR spreading is the fact that high amounts of antibiotics get into sewage and, consequently, into wastewater treatment plants (WWTPs). Although the applied technology and treatment methods are constantly being improved and developed, they are still insufficient to eliminate antibiotics, ARB, and ARGs completely. Moreover, the presence of antibiotics in sub-inhibitory concentrations creates conditions for selective pressure, and additionally, other factors present in sewage, such as pesticides, detergents, and heavy metals, stimulate the co-selection of resistant strains [10–16].

The genetic background of the AMR transmission process is of great importance. Resistance mechanisms are genetically based and linked with many genes localized on a bacterial chromosome or, what is more dangerous, on mobile genetic elements (MGEs). The genes encode enzymes, proteins that are involved in many processes, for example inactivating antibiotics or modifying their structure, altering drug target sites, modifying the outer membrane structure that inhibits antibiotic penetration into the cell, or the active removal of the chemotherapeutics from the cell. Due to their location on MGEs, they pose a big risk to be transferred between bacteria of the same or different species through conjugation, transduction, or transformation [17,18]. Bacteria interacting with each other and exchanging genes by horizontal gene transfer (HGT) may lead to situations wherein previously sensitive and nonpathogenic strains may get resistance determinants and become virulent or reservoirs of ARGs for further transmission. These microorganisms, as well as resistance genes, may be discharged from WWTP systems into natural water bodies like lakes, rivers, and seas [19–24], which plays an important role in their further dissemination into human, animal and plant populations [25–27]. Therefore, it is believed that the WWTPs are reservoirs of ARGs, so-called “hotspots”, and one of the sources of spreading AMR, especially clinically relevant ARGs [28–31].

A great effort has been made to fight AMR and many global strategies have been taken, including developing new drugs and vaccines, improving the diagnostics of resistance
mechanisms, the rational use of antibiotics, infection prevention and control, and developing new technological methods for the treatment and disinfection of wastewaters [32–35]. The monitoring of AMR and identifying the migration routes of bacteria with important mechanisms of resistance in the environment is also crucial and fundamental [36]. It may help to obtain knowledge about actual epidemiological situations, the origin of ARGs, mechanisms of spreading AMR, and transmission routes, which are essential for taking appropriate actions to prevent this phenomenon. Such surveillance studies concern the occurrence of not only resistant bacteria in ecosystems but also the occurrence of resistance genes that are easily and efficiently transmissible [16,30,31,34,37–40].

Zhuang et al. analyzed PubMed publications from the last 30 years (1990–2020) concerning reports of ARGs in the environment and showed that, on all continents, the highest frequency was related to genes encoding β-lactamases, enzymes that inactivate β-lactams, the most-used group of antibiotics [41]. Therefore, this paper aimed to present available research data on the identification of β-lactamase genes in WWTPs.

For this manual review of articles from the last decade, studies of β-lactamase genes in wastewater samples and from bacteria isolated from these type of samples were analyzed, including direct WWTP (i.e., influent, sewage sludge, effluent) and WWTP-related samples (i.e., air near bioreactors, discharge points). All of the research described below is summarized in detail in Table 1, where information about the type of tested samples, stages of the treatment process, methodology used, and detected variants are included. The reviewed studies were linked to municipal/urban WWTPs; however, if the authors involved additional information about the type of collected wastewater, it was noted.

2. β-Lactams and β-Lactamases—Background

Among the many antimicrobial drugs available, the group of β-lactams is one of the most important and most widely used in the treatment of bacterial infections, not only as the first choice, but above all as the last-choice drugs (available online https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database, accessed on 23 May 2022) [42]. β-lactams are classified based on chemical structure and the target of action. The common characteristic is the presence of the three carbon and one nitrogen ring (β-lactam ring). Depending on the modifications, different groups are distinguished. Generally, there are penicillins (natural penicillins, aminopenicillins, carboxypenicillins, and ureidopenicillins), cephalosporins (divided into five classes called generations), carbapenems, and monobactams.

All β-lactam antibiotics have a common mechanism of action, which is inhibition of the bacterial cell walls’ synthesis. They block the activity of bacterial enzymes, transpeptidases known as penicillin-binding proteins (PBPs), involved in the last stage of peptidoglycan synthesis, thus inducing a loss of viability and the lysis of bacterial cells. The modification of the PBPs’ structure may lead to a reduced affinity for β-lactams, which is the major pathway for β-lactam resistance among Gram-positive bacteria but is not very common for Gram-negative bacteria [5,43,44]. The other mechanisms of resistance, detected mainly in Gram-negative bacteria, are related to cell membrane modulations, including: (i) the reduction or loss of outer membrane porins that restrict the entry of antibiotic into the cell or (ii) the expression/overexpression of the efflux pump that allows the effective removal of the antibiotic from the cell. Examples are AcrAB-TolC-type pumps, described in clinical isolates of Klebsiella pneumoniae, and MexAB-OprM pumps, reported in P. aeruginosa [45]. Finally, the most common mechanism in Gram-negative bacteria, and relatively rarely found in Gram-positive bacteria, is the production of β-lactamases, enzymes that hydrolyze β-lactam antibiotics making them ineffective. These enzymes are critical, causing hard-treated human infections (urinary tract infections, bloodstream infections, wound infections, and pneumonia), especially caused by P. aeruginosa, A. baumannii, and Enterobacteriales; thus, this paper focuses on them.

Two classification systems of β-lactamases are used. The structural one, based on the amino acid sequence of the enzyme, groups β-lactamases into 4 classes, A, B, C, and
D, of which A, C, and D are β-lactamases with serine in the active center, while class B uses zinc cations as cofactors of the hydrolysis reaction (metallo-β-lactamases, MBL).

Another classification scheme, functional, is based on substrate hydrolysis profiles and the inhibitor profile, distinguishing four main functional groups, 1–4. Group 1 includes cephalosporinases and cephamycins, which are very weakly inhibited or uninhibited by clavulanic acid; group 2 is very extensive and diverse, with different substrate spectra, mostly inhibited by clavulanic acid. Group 3 additionally hydrolyzes carbapenemases, but their activity is inhibited by EDTA, and group 4 are penicillins weakly inhibited by clavulanic acid. Both classification systems of β-lactamases correlate well with each other. All of the enzymes that make up functional group 1 are structural class C; group 2 contains β-lactamases of classes A and D, and group 3 corresponds to class B [46,47].

The general scenario of β-lactamase evolution was stimulated by the mass use of β-lactam antibiotics, as shown in Figure 2. It reveals a kind of “race” between pathogenic microorganisms and the pharmaceutical industry, which develops ever newer “generations” of β-lactams, as well as the adaptation of bacteria to environments in which the selection pressure of “older” and “newer” drugs accumulates. Shortly after the introduction of penicillins (benzylpenicillins) into therapy in the 1940s, the emergence and rapid growth of β-lactamase-producing strains of Staphylococcus aureus was observed. The first cephalosporins and broad-spectrum penicillins, used since the early 1960s, mainly against β-lactamase-producing S. aureus and/or Gram-negative bacilli, contributed to the emergence of new resistance mechanisms. Among other things, this resulted in the selection of Enterobacteriales producing plasmid-encoded broad-spectrum β-lactamases. In turn, the intensive use of oxyimino-β-lactams since the early 1980s has led to the selection of new mechanisms of acquired resistance. This resistance is mainly related to the production of extended-spectrum β-lactamases (ESBLs) and acquired AmpC and includes phenomena such as the derepression or overexpression of AmpC. Finally, the bacterial response to the introduction of carbapenems has been the emergence of strains producing acquired carbapenemases such as MBLs and some class A and D enzymes.

All β-lactamases are encoded by bla genes and located on the bacterial chromosome or MGEs like plasmids, transposons, and integrons with gene cassettes. Bacteria can acquire ARGs by horizontal gene transfer, HGT, which enables the exchange of genetic material between commensals, environmental species, and pathogenic bacteria; therefore, HGT is considered the main method of antibiotic resistance dissemination [18].

Figure 2. Timeline of the evolution of β-lactamases, created with BioRender (available online: https://biorender.com, accessed on 23 May 2022).
3. Methods of AMR and ARGs Analysis in Environmental Samples

The monitoring and evaluation of ARB in water environments use various methods, generally divided into two groups: culture-dependent and culture-independent. The first one is based on traditional microbiological methods used in clinical surveillance, requiring strains isolated from the environmental samples (determining: taxonomy, antibiotic susceptibility profiles, resistance mechanisms). To evaluate the level and mechanism of resistance carried by bacteria, the disk diffusion method and minimum inhibitory concentration (MIC) assays are used, according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST; available online: www.eucast.org) and the Clinical & Laboratory Standards Institute (CLSI; available online: www.clsi.org). Analysis of the AMR patterns of strains may provide information about multidrug resistance. Bacterial conjugation assays are also conducted to confirm the transferability of selected genes. Time-consumption is the main limitation of such methods, because they require pure bacterial cultures, which may be troublesome or even unavailable for slow-growing bacteria. Additionally, breakpoints for antibiotic susceptibility tests may be applied to a narrow spectrum of pathogens detected in wastewater, only to clinical bacteria for which recommendations are available.

Therefore culture-independent, DNA-based methods were developed and, in recent years, have become extensively used. Molecular techniques, including nucleic acid amplification (polymerase chain reaction, PCR) and DNA sequencing, are successfully used for the analysis of direct environmental samples but are also widely used for the molecular analysis of isolated strains for the detection of genetic resistance determinants (ARGs, MGEs) and/or molecular typing methods to define genetic relatedness between isolates with clinical and environmental origin (multi-locus sequence typing, MLST; phylogrouping; pulsed-field gel electrophoresis, PFGE). Some studies focus on defining the efficiency of the treatment process; therefore, quantitative PCR (qPCR) is used to determine the number of selected gene copies/mL (absolute abundance) and/or the number of copies normalized to 16S rRNA copies (relative abundance). The developing metagenomics approaches that use various techniques of molecular biology deserve special attention. Metagenomics allows us to explore the biodiversity of a population of microorganisms and the identification of the present genes, as well as detecting new ones and determining their functions and analyzing their origin and the transfer and dissemination of ARGs between species [16,30,48–52]. Most results of the metagenomics approaches in sewage contain the data of the resistance genes present in different stages of the treatment process; correlations with various factors, like heavy metals, MGEs, and antibiotics, on the ARGs’ occurrence and abundance; and their transfer and removal efficiency in different types of treatment processes and disinfection. The intensification of metagenomics research concerning AMR in WWTPs has been significant in recent years; however, due to the different approaches, different goals of the research, variety of tested samples, and types of WWTFs, the obtained results may be difficult to compare; thus, the procedures should be standardized. However, the analysis of the data gives an overall picture and information on general trends concerning the spread of antibiotic resistance [36,53].

4. Clinically Significant β-Lactam Resistance Genes in Wastewater Treatment Plants—The Occurrence and Distribution

According to the β-lactamase database (available online: BLDB; http://blldb.eu/ accessed on 23 May 2022), these enzymes constitute a very heterogeneous group with more than 7000 genetic variants identified. Within each of the four classes (A, B, C, and D), β-lactamases of particular clinical importance can be distinguished. These are detected consistently in environmental niches, including WWTPs (Figure 3) [41].
Int. J. Environ. Res. Public Health 2022, 19, 13829

Figure 3. WWTP as a hotspot for the transmission of clinically relevant β-lactam resistance genes, created with BioRender available online: https://biorender.com, accessed on 23 May 2022. Descriptions of the enzymes included in the Figure 3 can be found in Sections 4.1–4.4.

4.1. Class A β-Lactamases

Class A β-lactamases are serine proteases that hydrolyze, on various levels, penicillins, monobactams, cephalosporins, and carbapenems and may be inhibited by β-lactamase inhibitors (e.g., clavulanic acid, sulbactam, tazobactam). It is the most diverse group, consisting of the enzymes with various spectra of hydrolysis, generally divided into: (i) a group with a narrow spectrum, e.g., carbenicillin-hydrolyzing β-lactamase (CARB) and Pseudomonas aeruginosa β-lactamase (PSE); (ii) a group with extended spectrum (ESBL) enzymes that originated from the first group but modified due to point mutations within the genes encoding them, which results in broadening their spectrum of hydrolyzing, e.g., cefotaximase-München-lactamase (CTX-M), Temoniera-lactamase (TEM), and sulfhydryl variable-lactamase (SHV); and (iii) a group with extremely extended spectrum including carbapenems—antibiotics of the last resort, e.g., Guiana extended-spectrum (GES), Klebsiella pneumoniae carbapenemase (KPC), Serratia marcescens enzyme (SME), and Serratia fonticola carbapenemase A (SFC-1) [54]. Among all, ESBL- and carbapenemase KPC-producing bacteria attracted the largest amount of clinical concern. Both TEM- and SHV-type ESBLs were described throughout the United States (US) and Europe in the late 1980s and 1990s, with specific variants noted to be regional in distribution [55,56]. The prevalence of these enzymes has now diminished at the same time as the worldwide dissemination of isolates producing CTX-M-type β-lactamases [57,58]. Once limited to hospital settings, ESBL-producing isolates quickly expanded into nursing homes and community settings as well [59,60]. The propagation of Enterobacteriaceae possessing ESBLs has had a significant impact on the choice of empirical antimicrobial therapy, driving the use of carbapenems in many institutions and resulting in increased resistance to carbapenems [61]. KPC carbapenemase has been extensively reported in K. pneumoniae, and it is endemic in the US but also in Latin America, China, Israel, and some European countries, such as Greece and Italy [62–64].

4.1.1. Class A β-Lactamases—Occurrence and Variability in WWTPs-Linked Samples

Due to the global spread of class A β-lactamases, it is a commonly, or even predominantly, detected group in WWTPs (Table 1). In a multi-national study of WWTPs from Denmark, Spain, and the United Kingdom (UK) with high-throughput qPCR used, these
β-lactamases was leading, accounting for 70% of all detected bla genes [65]. Among them, the most relevant were two groups linked with ESBL and KPC enzymes. It is noteworthy that, among the ESBL group, the most common in clinical settings and in various wastewater sources is CTX-M encoded by blaCTX-M, carried mainly by Enterobacterales [66]. In this review, blaCTX-M was detected in the majority of included studies and, in many, had the highest prevalence [67–81]. However, blaSHV and/or blaTEM were found frequently as well [15,82–85]. In some studies, blaTEM was predominant, e.g., in an Irish study [86], as well as in Colomba [87], Poland and Portugal [9,88], Belgium [89], the US [90], and Africa [91]. Another significant group representing the KPC family encoded by blaKPC genes was detected in numerous WWTPs from European [65,69,89,92–101], as well as from American [90,102–104], African [72,91,105], and Asian countries [106,107]. Moreover, analysis of reviewed articles, especially those using developed techniques as high-throughput qPCR, whole-genome sequencing, or metagenomics, shows a high variety of detected genes of the discussed β-lactamases, not only representing blaCTX-M, blaSHV, blaTEM, and blaKPC families, but also others less frequently associated with public health, i.e., BEL, cfxA, GES, PER, SME, VEB, and others [65,92,96,102,107–111].

Environmental studies based on the analysis of bacterial strains during the treatment process most often concern the most critical pathogens posing the greatest threat, mainly Enterobacterales. In the reviewed literature, the predominantly tested and detected species among this bacteria family were Escherichia coli and K. pneumoniae [67,68,71,72,74,77–79,81,83,85,99,112–125]; however, different species of Citrobacter spp., Enterobacter spp., Pseudomonas spp., Aeromonas spp., or others were noted as well [71,76,80,87,92,102,104,109,110,121,126–128]. It is noteworthy that antibiotic susceptibility testing of the studied ESBL-producing strains isolated from the WWTPs confirms a high percentage of multi-drug resistance. It was also noted that these bacteria may survive the treatment process and that the WWTPs were unable to eradicate them completely. Generally, the number of MDR isolates decreased during the treatment, but for some, their proportion was still significant in effluents, in some even higher than in influent samples [70,71,73,86,88,92,94,97,99,118,119,123,125,129,130]. Moreover, analyzing downstream river or marine samples where final effluents are released, MDR isolates carrying ESBL enzymes were commonly detected [20,79,88,92,130].

Molecular typing concerning bacteria isolated from WWTPs confirmed high genetic relatedness between bacteria from WWTPs and human- and animal-associated sources, as well as the presence of clinically important lineages such as pandemic ST131 E. coli in WWTPs-related samples. Liedhegner et al. compared E. coli isolated from samples of various environmental compartments from one geographic area (clinical samples, hospital wastewater, and WWTP). The data including antibiotic resistance, virulence, and ESBL gene profiles confirmed high phenotypic and genotypic similarity across strains of these different origins and demonstrated potential health risks related to ESBL transmission [125]. An interesting study conducted by Raven et al. showed genetic relatedness between E. coli isolated from 20 WWTPs in the UK, livestock farms, retail meat, and isolates responsible for human blood infections. The genomic analysis of i.e., ESBL-producing isolates revealed that the three most common sequence types (STs) associated with bloodstream infections (ST131, ST73, and ST95) and the specific and most common for livestock (ST10) were found in wastewater samples [120]. In many other studies, human-associated, multidrug-resistant, and highly virulent clone ST131 E. coli was detected in WWTP samples as well [75,87,113,131–134].

4.1.2. Class A β-Lactamases—Removal during the Treatment Process

Concerning the removal of class A β-lactam ARGs, there is no universal target panel in qPCR studies; however, it has been noted that, although the WWTPs could effectively eliminate examined genes, their abundance was still reported in effluents and receiving water bodies. For example, in the study of Schages et al., strains harboring blaCTX-M were isolated from the effluent [123], as well as in a Japanese study wherein strains possessing ARGs belonging to the blaCTX-M-1, blaCTX-M-9, blaTEM, and blaSHV families survived even
after sterilization [124]. Other studies reported similar results of the ARGs’ presence in effluent samples [108,135–138]. In Polish research from Kozięglo, it was noticed that the wastewater treatment process leads to a significant increase in the relative abundance of bla_{TEM} and bla_{GES} genes, while the abundance of bla_{KPC} decreased. Finally, the removal efficiency of ARGs was the least for bla_{GES} (94.8%) and $bla_{\text{CTX-M}}$ (95.3%), while for other genes, it was >98% [69]. In another study, the presence of bla_{KPC} was completely eliminated even after the first mechanical procedure [95]. In a Chinese survey comparing bacteria carrying $bla_{\text{CTX-M}}$, bla_{SHV}, and bla_{TEM} isolated from influent and effluent, higher prevalence was noted in influent samples, except for $bla_{\text{CTX-M}}$, which was more frequently detected in effluent samples [129]. Significant differences between influent and effluent were described in a Romanian investigation and concerned $bla_{\text{SHV-100}}, -145$, which were decreased during treatment [85]. Interestingly, Neudorf et al. analyzed 3 WWTPs in Arctic Canada and noted a decrease of bla_{TEM} abundance in two sites with a passive system and no significant changes for a third WWTP with a mechanical system. Moreover, no differences were found for $bla_{\text{CTX-M}}$ in all treatment plants [139]. A Spanish study by Rodríguez-Mozaz et al. demonstrated an increased frequency of bla_{TEM} during the treatment process [140], while in a study of three WWTPs from Finland and Estonia, no significant changes were noted for $bla_{\text{CTX-M-32}}$, unlike $bla_{\text{SHV-34}}$, of which the relative concentration was increased in effluent samples but only in one tested WWTP [141]. Comparable data with similar $bla_{\text{CTX-M}}$ and bla_{TEM} concentrations in influent and effluent samples were obtained in a study of five WWTPs in Tunisia; however, the abundance of the genes was higher in the effluent in a WWTP receiving additional hospital wastewater [142]. The occurrence of class A β-lactamases ARGs was also detected in downstream river samples whence final effluents were discharged, e.g., in a multi-national study including sixteen WWTPs from ten European countries [101], in a study conducted by Zielinski et al., wherein the predominant bla_{TEM} was noted in receiving river water samples [15], and in a study performed by Osirschka et al., wherein the presence of bla_{SHV} and bla_{TEM} in receiving river samples was confirmed [84].

WWTPs pose a health risk, not only because treated wastewater containing AMR genes or MDR bacteria are transferred into surface water bodies, but also because these pollutants are discharged into the air surrounding WWTPs through bioaerosol generated from bioreactors [15,68]. The study of the carriage of ESBL-producing Enterobacteriaceae in WWTP workers and surrounding residents shows that these groups are much more like to acquire bacteria harboring the ESBL mechanism [25], thus confirming the direct influence of WWTPs on spreading ARGs into air. The contribution of WWTPs’ bioaerosols in ARGs and ARB propagation into air and different environments is commonly investigated [143–146]. For example, Gaviro-Figueroa et al. studied bioaerosol samples collected downwind from sludge aeration tanks and showed a significant presence of clinically relevant class A β-lactamases, along with other classes of these enzymes and different antibiotic groups [147].

4.2. Class B β-Lactamases

Class B β-lactamases consist of a wide variety of metallo-β-lactamases (MBLs), enzymes able to hydrolyze almost all β-lactams: penicillins, cephalosporins, clinically available β-lactamase inhibitors, and carbapenems, except monobactams. They use zinc ions for activity, hence the name “metallo-“ and susceptibility to metallic ion chelators like EDTA. Numerous variants are distinguished and grouped into three subclasses, among which the most widespread MBLs are imipenem-resistant Pseudomonas (IMP), Verona integron-encoded metallo-β-lactamase (VIM), and New Delhi metallo-β-lactamase (NDM), all representing subclass B1 [54,148–150]. MBLs initially detected in P. aeruginosa are frequently found nowadays in K. pneumoniae and other Enterobacteriaceae [62–64]. IMP carbapenemases mainly contribute to carbapenem resistance in Japan, as well as in other regions of South-east Asia and Australia [151–153]. Although they have not spread extensively throughout the rest of the world, they are being reported more frequently in Middle-Eastern countries [154]. VIM MBLs are identified more frequently than IMP enzymes [155]. Initially,
they spread rapidly throughout southern Europe with major outbreaks of VIM-producing *P. aeruginosa* reported in Italy and Greece in 2006, followed by outbreaks of VIM-producing *K. pneumoniae* [156,157]. Today, they are found globally, mainly in *K. pneumoniae* and *E. cloacae* complex strains [151]. Among the major types of MBLs, the NDM-type variants are especially associated with *Enterobacterales*. The first NDM was identified in 2008 in a *K. pneumoniae* isolate from a patient in Sweden who had arrived from India [158]. The Indian subcontinent, the Balkans, and the Middle-East/North Africa are considered to be the main NDM reservoirs [62,63]. An extremely wide spectrum of metallo-β-lactamases and the fact that isolates possessing MBL genes often simultaneously harbor other antibiotic resistance genes make these organisms an urgent public health threat. Although there is substantial geographic variability in the prevalence of MBL enzymes, they are noted worldwide and the speed of their dissemination is alarming, especially NDM enzymes [44,54,159–161].

4.2.1. IMP and VIM β-Lactamases in WWTPs-Linked Samples

As with the previously discussed ARGs, the environment plays a role in the transmission of *bla* _IMP_ and _bla_ _VIM_ encoding MBLs enzymes with clinical importance, IMP and VIM, respectively (Table 1). Although the majority of reports focus on hospital wastewater, these genes were detected also in samples of wastewater treatment plants from the US [82,102,103,147], Canada [104], China [70,82], and Singapore [107] as well as from many European countries, such as Sweden [96,109], Switzerland [99], the UK [128], Germany [100,123,136,162], Poland [69,92,93,163], Slovakia [115], and Romania [94]. A multinational study concerning urban WWTPs in Denmark, Spain, and the UK showed the permanent presence of _bla_ _VIM_ during the treatment process even in downstream river samples, in contrast to other tested genes, which were reduced under a detectable level [65]. Interesting results were presented by Khan et al., who compared Klebsiella oxytoca strains isolated from clinical sources (hospital wastewater) and the river receiving effluents from WWTP in Örebro, Sweden. Results obtained for two selected strains—the same antibiotic susceptibility patterns, antibiotic resistance gene profiles (i.e., _bla_ _VIM-1, bla_ _OXA-10, bla_ _ACC-1_), MLST type, furthermore phylogenetic relationship based on core genome single nucleotide polymorphism (SNP) analysis, and core genome MLST—suggest the transfer of K. oxytoca-producing carbapenemases from the hospital setting to the aquatic environment, which may pose a threat to the community [164].

4.2.2. New Delhi Metallo-β-Lactamase (NDM) in WWTPs-Linked Samples

According to epidemiological data, NDMs seem to pose the greatest threat among class B β-lactamases. Genes encoding them were noted in many aquatic environments, including animal production wastewaters, industrial, domestic sewage, tap water, surface water, and groundwater. However, hospital wastewater is considered to be a major source of _bla_ _NDM_ variants [165–167]. As the geographical origin of NDM-producing bacteria is India, multiple publications detecting _bla_ _NDM_, especially in hospital sewage, come from India [168–170], together with other Asian [108,171–173] and African countries [105,174]. Interesting results were reported by Marathe et al., who studied hospital wastewater from Mumbai, India. Shotgun metagenomics revealed the presence of β-lactamase genes encoding clinically important MBLs, such as NDM, VIM, and IMP with _bla_ _NDM_ as the most common carbapenemase-encoding gene. Additionally, 27 unique MBL genes not known yet were detected, which showed the huge potential of the metagenomic approach [175]. However, NDM-lactamases in Asian countries were not only detected in hospital sewage samples (Table 1). Analysis of rivers and sewage treatment plants in five Indian states also showed an abundance of _bla_ _NDM_ [77]. Similarly obtained data from southwest China showed a wide distribution of _bla_ _NDM_ in hospital sewage, WWTP effluent, and river samples. Interestingly, the gene was found in many different bacterial species belonging to *Enterobacterales*, genus *Acinetobacter*, and *Pseudomonas* [176]. The data from northern China [177,178] and Saudi Arabia [179] also confirm the presence of _bla_ _NDM_ in WWTP samples. _bla_ _NDM_ has spread globally, and several variants were noted not only in India and China but in many other
countries in various water samples, including those from WWTPs and the surface waters of WWTP discharge points in the UK [128], Belgium [89], Switzerland [99], Germany [100], Poland [69,163], the Czech Republic [180], Romania [85,94], Spain [98], Africa [91,105], and the US [90,102,103]. Interesting results concern the Irish study conducted by Mahon et al. They examined the genetic relationship between NDM-possessing E. coli and K. pneumoniae (separately) cultivated from three locally linked sources: sewage samples from the collection system, freshwater streams, and clinical isolates. E. coli were considered indistinguishable, and K. pneumoniae were very closely related. These results confirm that water sewage plays an important role in the resistance transfer process [181]. Another analysis by Walsh et al. concerning public tap water and seepage water from sites around New Delhi also indicates that the environment has an undeniable influence on the propagation of NDM resistance [182].

Data regarding the wastewater treatment process show a different level of the transmission of bacteria with the NDM mechanism during the treatment process and the effectiveness of \(\text{bla}_{\text{NDM}} \) reduction. In a Polish urban WWTP from Kozięglowy, Makowska et al. studied \(\beta \)-lactamase genes in the genomes of ESBL-producing and carbapenem-resistant coliforms isolated from each stage of the treatment process. They found that \(\text{bla}_{\text{NDM}} \) and \(\text{bla}_{\text{VIM}} \) were present in all stages and that the highest frequency was recorded in isolates from effluent compared to raw sewage, which indicates that the treatment process in the mechanical–biological treatment plant is insufficient in eliminating \(\text{bla}_{\text{NDM}} \) and the organisms carrying them [69]. Similarly, data from two WWTPs in north China show the persistent and prevailing presence of \(\text{bla}_{\text{NDM}} \) even after disinfection [177] and the propagation of \(\text{bla}_{\text{NDM}} \) from a WWTP into its receiving river [178]. Other studies measuring absolute (copies/mL) and relative (copies/16S) abundance of \(\text{bla}_{\text{NDM}} \) in influent and effluent also confirm deficient reduction [98,183]. However, Divyashree et al., who studied treated and untreated effluents from hospital samples in Mangalore, South India, showed the absence of \(\text{bla}_{\text{NDM}} \) in treated effluents [184]. A Polish study also showed a complete reduction of \(\text{bla}_{\text{NDM}} \) in the treatment process, even after the initial treatment stage [93], similar to a multi-center study from Denmark, Spain, and the UK [65].

4.3. Class C \(\beta \)-Lactamases

\(\beta \)-lactamases belonging to class C (AmpC) confer resistance to broad-spectrum \(\beta \)-lactams including penicillins, monobactams, and, most of all, cephalosporins (except fourth and fifth generations). Three mechanisms of resistance are noted: (i) chromosomal resistance induced by \(\beta \)-lactams; (ii) derepression due to mutations in AmpC regulatory genes, which results in overexpression and the production of the enzyme at a very high level; and (iii) the presence of plasmid-mediated AmpC genes (pAmpC) that are easily transmissible, even between different species, thus posing the highest health risk among class C \(\beta \)-lactamases. The first pAmpC variant was identified in 1989 from K. pneumoniae isolated in South Korea [185]. Several families of plasmid-encoded AmpC variants were reported within the next decade, i.e., ACC, CIT (variants CMY, LAT, BIL), DHA, EBC (variants ACT, MIR), FOX, and MOX, differing in bacterial species of origin. The most commonly found among the strains responsible for human infections are ACC, CMY, and DHA enzymes encoded by \(\text{bla}_{\text{ACC}} \), \(\text{bla}_{\text{CMY}} \), and \(\text{bla}_{\text{DHA}} \) genes, respectively. Clinically relevant bacteria producing pAmpC enzymes are mainly Citrobacter spp., Salmonella spp., and Shigella spp., but they were also found in other Enterobacterales, including K. pneumoniae, Enterobacter aerogenes, Proteus mirabilis, Morganella morganii, and K. oxytoca [44,47,186,187].

Class C \(\beta \)-Lactamases in WWTPs-Linked Samples

Similar to the clinical surveillance of pAmpC, environmental studies concerning wastewaters and WWTPs report the predominance of genes encoding CMY and DHA enzymes (Table 1). Kwak et al. conducted an antimicrobial resistance analysis of E. coli in urban and hospital wastewaters. They noticed that, among \(\beta \)-lactam-resistant ARB, almost all (97%) were confirmed to possess ESBL or pAmpC, and among pAmpC, all were
detected as carrying the bla\textsubscript{CMY-2} variant [116]. This variant, as well as others representing the CMY and DHA families, were detected in many other European studies of WWTPs from Germany [123,135,136], Romania [85], Sweden [96,109], Portugal [88,110], Poland [92,93], Slovakia [115], and Spain [188], as well as in studies conducted in Africa [127], North America [80,90,102,147,189], South America [87], and Asia [77,107]. Interestingly, Yim et al. investigated samples for plasmid-mediated quinolone resistance genes from a WWTP in Canada and detected the presence of qnrB4-AmpC (bla\textsubscript{DHA-1}) genes in plasmids among \textit{Citrobacter freundii} isolates. These were almost identical to those found in pathogenic \textit{Klebsiella} isolates. Results of SNP analysis may suggest their dissemination from WWTP strains into clinical strains, which supports that WWTPs are a source of AMR spread [189].

In the reviewed studies, AmpC genes were detected in different stages of the treatment process, as well as in surface waters related to WWTPs. Alexander et al. conducted research on 20 critical points in aquatic systems, including WWTPs, and showed that, although the abundance at individual points and sampling periods over 2 years was variable, the presence of the AmpC genes was found in all sampling sites [162]. In another study, Su et al. analyzed the AmpC genes in \textit{Escherichia coli} from two municipal WWTPs in China and noted that AmpC was detected in all treatment stages [190]. In a multi-national study, Yang et al. used shotgun metagenomics on activated sludge samples of 15 WWTPs from China, Singapore, the US, and Canada and detected the highest abundance of AmpC genes among all tested \(\beta\)-lactam resistance genes. They also found very high genetic diversity of AmpC genes [82]. Generally, metagenomic studies or studies using high throughput PCR are very useful in detecting multiple variants of genes encoding AmpC and representing different families, including, i.e., FOX, MOX, MIR, ACT, and ACC [65,93,96,102,104,107,109,123,147].

Although bla\textsubscript{CMY} and bla\textsubscript{DHA} are the most often detected and prevalent pAmpC genes, in some studies, other variants are predominant. For example, Amador et al. showed that, among the AmpC-producing \textit{Enterobacteriales} isolated from Portuguese WWTP samples, the dominant was bla\textsubscript{EBC}, followed by bla\textsubscript{FOX} and bla\textsubscript{CIT} [88]; Piotrowska et al. analyzed \textit{Aeromonas} spp. strains isolated from urban WWTPs in Warsaw, Poland, and found bla\textsubscript{FOX} to be the most abundant, followed by bla\textsubscript{MOX} and bla\textsubscript{ACC} [97]. For comparison, Fadare and Okoh studied \textit{Enterobacteriales} isolated from the effluents of two WWTPs in South Africa and reported that the most predominant were bla\textsubscript{CIT} and bla\textsubscript{ACC}, whereas bla\textsubscript{FOX} was detected in only one isolate [72].

Due to the lower frequency and speed of spread compared to other \(\beta\)-lactam resistance mechanisms, AmpC enzymes do not represent such a high risk. However, they are present in WWTP samples including effluents, and as a result of plasmid-localized and HGT present during the treatment process, this group may still pose a health risk and needs to be monitored.

4.4. Class D \(\beta\)-Lactamases

According to the BLDB, class D \(\beta\)-lactamases, known as oxacillinases, include more than 1,000 enzymes divided into 19 groups, among which the OXA group is the most numerous and clinically relevant. Among these, carbapenem-hydrolyzing class D enzymes (CHDLs) pose the greatest risk [47]. The substrate spectrum of the variants and level of hydrolyzing may significantly differ; however, all class D \(\beta\)-lactamases are not inhibited by \(\beta\)-lactam inhibitors, and they confer resistance to the amino-, carboxy-, and ureidopenicillins [191]. Although not classical ESBLs, as defined by inhibition by clavulanate, several of the OXA-type \(\beta\)-lactamase variants, such as OXA-11 and OXA-14 to OXA-20, are associated with an ESBL phenotype in that they confer resistance to some of the late-generation cephalosporins [192]. Within the OXA family, only a small fraction has a functional role as a carbapenemase. Among these are OXA-23, OXA-40, and the increasingly prevalent OXA-48, with its related variants, OXA-162, OXA-181, and OXA-232 [193]. The major enterobacterial class D carbapenemase, OXA-48, was first reported in a Turkish \textit{K. pneumoniae} isolate in 2001 [194]. Thereafter, OXA-48 and related variants have been found in almost all
Enterobacteriales, mainly in K. pneumoniae and E. coli, that spread globally, causing endemic states in the Middle East, North Africa, India, and some European countries [62–64].

4.4.1. OXA Family β-Lactamases Carried in ARB

The reviewed approaches concerning class D β-lactamases are focused on bacterial strains carrying bla\textsubscript{OXA} isolated from WWTP samples (Table 1). The majority of these studies confirm a bla\textsubscript{OXA} presence in isolates from both untreated and treated samples, and the prevalent variants are bla\textsubscript{OXA-1} and bla\textsubscript{OXA-48}. Multiple examples come from European countries: a Czech study reported ESBL-producing Enterobacteriales carrying bla\textsubscript{OXA-1} and isolated from effluent; globally spread MDR clones of E. coli ST131 and K. pneumoniae ST321 and ST323 harboring large FIIK plasmids with multiple antibiotic-resistance genes were found among tested strains [91]; a Spanish study detected bla\textsubscript{OXA-1} in strains isolated from effluents of two out of 21 tested WWTPs [76]; two German studies reported the presence of bla\textsubscript{OXA-51} and bla\textsubscript{OXA-48} in carbapenemase-producing bacteria [100] and bla\textsubscript{OXA-58}, bla\textsubscript{OXA-48} and bla\textsubscript{OXA-23} in bacterial strains isolated from influent, activated sludge and effluent [123]; four Polish studies identified bla\textsubscript{OXA} genes among ceftazidime- or meropenem-resistant bacterial strains [92], Aeromonas spp. strains isolated from raw sewage, activated sludge, and effluent [97], ESBL-producing Enterobacteriales [68] and Acinetobacter spp. isolates [163]; an Austrian study of carbapenemase-producing Enterobacteriales from activated sludge confirmed harboring bla\textsubscript{OXA-48} [95]; and a study concerning the WWTP in Basel, Switzerland, where carbapenemase-resistant Enterobacteriales and other Gram-negative bacteria isolated from municipal and hospital wastewater and WWTP receiving this sewage were compared, and identical isolates from the WWTP and wastewater samples were detected, including OXA-48-producing E. coli ST38 and Citrobacter spp. [99]. Similarly, a molecular epidemiology approach was conducted in a Romanian study. Suriac et al. detected variants of bla\textsubscript{OXA} in K. pneumoniae isolated from samples of three WWTPs [85], while Teban-Man et al. compared carbapenemase-producing K. pneumoniae isolated from the influent and effluent of two WWTPs with and without hospital input and found that bla\textsubscript{OXA-48} was carried by strains isolated from raw and treated samples of WWTPs collecting hospital wastewater. In the second WWTP, the gene was observed only in strains from influent. Moreover, isolates harboring bla\textsubscript{OXA-48} were genetically typed, which showed they belonged to sequence types of high-risk clones (ST258, ST101, ST147, ST2502). These clones were associated with clinical settings and reported to be multi-drug resistant [94]. In a study of a Swedish WWTP, Gram-negative bacteria harboring bla\textsubscript{OXA} were noted in influent, effluent, and recipient waters of the river and lake [109]. However, in a Portuguese study conducted by Araujo et al., bla\textsubscript{OXA} was detected only in strains isolated from raw sewage samples [110]. Another Portuguese investigation of ampicillin-resistant Enterobacteriales isolated from influent and effluent showed different results; bla\textsubscript{OXA} was the most prevalent gene among tested ESBL-producing strains [88]. There are significantly fewer studies detecting bla\textsubscript{OXA} in the African region and they cover Algeria, where bla\textsubscript{OXA-1} was detected [74]; Durban, South Africa, where ceftazidime-resistant E. coli were studied and bla\textsubscript{OXA-1} was found as well [91]; Eastern Cape Province, South Africa, where bla\textsubscript{OXA-1-like} and bla\textsubscript{OXA-48-like} variants harbored by Enterobacteriales isolated from effluents of WWTPs were noted [72]; and Tunisia, where C. freundii isolate carrying bla\textsubscript{OXA-204} [121] and Enterobacteriales strains possessing bla\textsubscript{OXA-1} [127] were detected. American studies concerning WWTPs also confirm bla\textsubscript{OXA} presence in bacteria isolated from WWTP samples [80,90,102,104,119,125,133].

4.4.2. OXA Family β-Lactamases in Direct WWTP Samples—Occurrence and Removal

Multiple studies report the presence of bla\textsubscript{OXA} in direct WWTP samples and determine the concentration and relative abundance of selected gene variants to define the efficiency of the treatment process (Table 1). Comparable to previously discussed β-lactamases, bacteria producing OXA enzymes, as well as bla\textsubscript{OXA}, can be detected after the treatment process. For example, the study of two WWTPs in the Brussels region determined the relative abundance of bla\textsubscript{OXA-48} in different stages of the treatment, as well as in samples of
the river as the discharge point for the WWTP effluents. In that study, Proia et al. showed a significant increase of bla\textsubscript{OXA-48} from influent to effluent and from upstream to downstream river samples [89]. Similarly, in Koziegłowy, a Polish WWTP, it was reported that the wastewater treatment process leads to a significant increase in the relative abundance of bla\textsubscript{OXA-48} genes in the effluent [69], whereas in research from the Baltic Sea area, the relative abundance of bla\textsubscript{OXA-58} was decreased in the effluent; however it was weakly significant and found only in one of the three studied WWTPs [141]. In the German study, the absolute abundance of selected bla\textsubscript{OXA} genes was determined, and when comparing raw and treated samples from WWTP, a significant decrease was reported regarding bla\textsubscript{OXA-58} and bla\textsubscript{OXA-48} but not bla\textsubscript{OXA-23} [123]. Similar results were obtained in a multi-national study of WWTPs from ten European countries, where qPCR and absolute abundance were performed for selected bla\textsubscript{OXA} genes. It was noticeable that, among all tested β-lactamase genes, bla\textsubscript{OXA-58} was found in all tested samples, had the highest absolute abundance, and was significantly reduced during treatment [101]. In three Swedish municipal sludge treatment plants, a metagenomics approach was conducted, and many variants of bla\textsubscript{OXA} were detected at all stages of the treatment process. Some of them, like bla\textsubscript{OXA-48}, were consistently enriched in treated sludge compared to primary sludge [96]. Other metagenomic approaches or using qPCR provide similar results—the presence of multiple bla\textsubscript{OXA} gene variants, including effluent samples [93,109,136,147], while others detected only single or a few variants [65,69,89,101,107,108,111,141,163]. Interestingly, in a Polish study, where bla\textsubscript{OXA} was detected as one of the prevalent tested genes in influent and effluent samples, comparative metagenomic analysis of DNA from WWTP samples and employees’ swabs revealed the presence of similar ARGs in both types of samples with significantly higher concentrations than in control samples [15]. Other studies that report the presence of bla\textsubscript{OXA} genes at different stages of the treatment process include the research of Yang et al., wherein activated sewage sludge from 15 WWTPs was tested, and three variants (bla\textsubscript{OXA-1}, bla\textsubscript{OXA-2} and bla\textsubscript{OXA-10}) were detected [82], while in WWTP active sludge in South Carolina, in the US, a higher variability among bla\textsubscript{OXA} (seven variants) was noted [147]. Interesting results concerning the seasonal increase of bla\textsubscript{OXA} concentration between the summer and winter seasons were reported in the study of four small-scale domestic WWTPs. Furthermore, bla\textsubscript{OXA} in winter was prevalent among tested ARGs in raw sewage, as well as in effluent samples; additionally, the gene was detected in receiving river samples, in both the winter and summer seasons [84]. Results of a multi-national study, analyzing samples from Denmark, Spain, and the UK, indicated a country-specific presence for bla\textsubscript{OXA-10} detected only in WWTPs from the UK [65].

The above data, showing the presence of bla\textsubscript{OXA} genes and bacteria harboring them in WWTPs and related samples, confirms that WWTPs are a hotspot for antibiotic-resistant gene transmission into not only the aquatic compartments of the environment but also to the atmospheric air, creating an additional health risk for the workers of WWTPs.
Table 1. ARGs encoding class A, B, C, and D β-lactamases detected in WWTPs-linked samples.

Location	Gene Variant(s) Detected in WWTP Samples ¹	Sample Source(s) ²	Type of Tested Samples ³	Type of Methods ⁴	Ref.
Austria, Graz/Styria	CTX-M-15,-24\ KPC-2\ SHV-1,-26\ TEM-1	nd	FOX	CPE from SS	MM PCR seq-DNA
	CTX-M-1,-3,-14,-15,-38\ PER-1\ SHV-1,-2,-11,-12\ TEM-1	nd\ nd\ nd	FOX\ nd\ nd\ OXA-48	WWTP collecting DW and HW	MM PCR seq-DNA
					[95]
Austria	CTX-M\ TEM	nd	nd	5 WWTPs	MM PCR
Belgium, Brussels Capital Region	CTX-M\ KPC\ TEM	NDM-1	nd	ESBL-producing Enterobacterales from SS	MM PCR qPCR
Czech Republic, Brno	CTX-M-1\ 14b,-15\ TEM-1	nd	nd	WWTP collecting HW	MM PCR seq-DNA molecular typing (MLST, PFGE)
Czech Republic, Moravian-Silesian Region	nd\ NDM-1\ nd	nd	nd	samples from the nitrification and sedimentation tanks and bacteria isolated from them	MM qPCR WGS
France	CTX-M-1\ -14,-15,-27\ SHV-12	nd	nd	WWTP collecting HW, rainwater	MM PCR seq-DNA molecular typing (MLST, PFGE)
Germany, Bielefeld-Heepen	CTX-M-4,-27,-32\ GES-3\ PER-2\ SHV-34\ TEM-1\ TLA-2\ VEB-1	IMP-2,-5,-9,-11,-13\ AmpC\ CMY-5,-9,-10,-13\ VIM-4\ NPS-1,-2\ OXA -1,-2,-5,-9,-10,-12,-18,-20,-22,-27,-29,-40,-45,-46,-48,-50,-54,-55,-58,-60,-61,-75	WWTP	strains from SS and EF, resistant to selected antibiotics	MM PCR seq-DNA
					[136]
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.	
Germany, District of Kleve	CTX-M-1, -9 GES VIM ACT CMY-2 DHA FOX MIR OXA-23, -48, -58	WWTP collecting DW, HW and IW	samples of IN, SS and EF, imipenem-, cefotaxime- or colistin-resistant strains	MM PCR, qPCR seq-DNA	[123]	
Germany, North-Rhine Westphalia	IMI KPC GIM VIM NDM nd OXA-48, -51	WWTPs collecting HW	ESBL-producing bacteria and CPE from HW, IN, EF, RR and rural wastewater	MM PCR molecular typing	[100]	
Germany, South Region	nd VIM-1 AmpC nd	4 WWTPs collecting HW	samples of IN, EF and HW, receiving surface waters, groundwater and rain overflow	qPCR	[162]	
Germany	CTX-M TEM nd CMY-2 nd	7 WWTPs with various inflow	IN and EF samples	qPCR seq-DNA	[135]	
Ireland	CTX-M-1, -15 SHV-12 TEM-1-like, -12, -116 nd	2 WWTPs	coliform strains from EF	MM PCR seq-DNA	[86]	
Italy, The Oltrepò Pavese Plain	CTX-M-1, -14, -15, -28, -138 KPC-2 SHV-5 TEM-1 nd	4 WWTPs	cefotaxime-resistant Enterobacteriales from WWTP, RR and groundwaters	MM PCR seq-DNA molecular typing (MLST, PFGE)	[78]	
Poland, Kozieglowy	CTX-M KPC SHV TEM NDM VIM nd OXA-1, -48	WWTP	samples of IN and EF, ESBL-producing and carbapenems-resistant coliforms	MM PCR qPCR seq-DNA	[69]	
Location	Gene Variant(s) Detected in WWTP Samples ¹	Sample Source(s) ²	Type of Tested Samples ³	Type of Methods ⁴	Ref.	
----------	---	--------------------	--------------------------	-------------------	-----	
Poland, Olsztyn	CTX-M-1, -3, -9, -15 SHV-5 TEM-1, -47, -49	nd	samples of IN, SS, EF, RR and the air near WWTP Enterobacteriales from the samples	MM PCR seq-DNA	[68]	
	SHV TEM	nd	WWTP collecting HW			
	nd	IMP-1 VIM-2 NDM	WWTP collecting HW	metagenomics qPCR	[15]	
Poland, Warsaw	CTX-M-15, 27/98 GES-7 KPC PER-1/5, -3, -4 SHV-11, -12 TEM VEB	ACC FOX-1, -2-like, -3, -4-like, -9, -10, -10-like, -13-like MOX-10/11, -4/8	Aeromonas spp. from IN, SS and EF	MM PCR seq-DNA	[97]	
Poland, Warmia and Mazury District	multiple variants i.e., AER	SHV TEM	4 domestic WWTPs	samples of IN, EF, and RR	qPCR	[84]
Poland, Warmia and Mazury District/Silesia District	multiple variants i.e. CARB Cfx GES TEM VEB	multiple variants i.e., IMP VIM NDM	2 WWTPs collecting HW	samples of IN, SS and EF	metagenomics	[93]
Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.	
--	--	---	---	------------------	------	
Portugal, Coimbra	CTX-M-1, -9 TEM	WWTP collecting MW, HW and IW	*Enterobacterales* resistant to ampicillin from IN, EF, HW and RR	MM PCR	[88]	
Northern Portugal	BEL-1, GES-5, TEM-1b	WWTP collecting DW and HW	Gram-negative bacteria resistant to meropenem from IN, SS and EF	MM PCR qPCR seq-DNA molecular typing (rep-PCR, PFGE phylogrouping) WGS	[110]	
Northern Portugal	CTX-M-1, -14, -15, -27, -32 SHV-1, -27 TEM-1	WWTP	ESBL-producing and cefotaxime-resistant *Enterobacterales* from different stages of treatment	MM PCR seq-DNA	[118]	
Romania, Cluj County	KPC-2, NDM-1, -6 VIM-2	WWTP	carbenemase-producing *K. pneumoniae* from IN and EF	MM PCR molecular typing (MLST, phylogrouping)	[94]	
Romania, Bucharest/Galati/Târgoviște	CTX-M-15 KPC-2 SHV-1, -11, -12, -33, -100, -101, -106, -107, -145, -158, -187 TEM-1, -150 NDM-1	3 WWTPs HW	ESBL- and carbapenemase-producing *K. pneumoniae* from IN and EF	MM WGS	[85]	
Slovakia, Kosice	CTX-M-1, -2 IMP CMY-2 NDM	WWTP	ESBL-producing *E. coli* from IN and EF	MM PCR molecular typing	[115]	
Spain, Catalonia	KPC NDM	WWTP	samples of IN, EF, hospital EF, RR, sediment and biofilm	qPCR	[98]	
Location	Gene Variant(s) Detected in WWTP Samples \(^1\)	Sample Source(s) ²	Type of Tested Samples ³	Type of Methods ⁴	Ref.	
----------	---	------------------	--------------------------	--------------------	-----	
Spain, Girona	TEM, nd nd nd WWTP samples of IN, EF, HW and RR	qPCR		[140]		
Spain, Navarra	CTX-M-1, -14, -15, -55 SHV-12 TEM-1, 42, -145	nd nd nd 21 WWTPs cefpodoxime-resistant *Enterobacterales* from EF	MM PCR seq-DNA			
Spain, Navarra	nd nd ACC DHA EBC WWTPs	β-lactam-resistant bacteria from IN, EF and RR	MM PCR seq-DNA	[188]		
Sweden, Stockholm/Uppsala/Lidingö	CTX-M GES KPC PER SHV SME TEM VEB CAR IMP ACT CFE CMY-1, -2 DHA FOX MIR MOX OXA-1, -2, -10, -20, -23, -48, -50, -51, -58, -60, -63	3 WWTPs collecting MW, HW, IW and storm water				
Sweden, Örebro	CTX-M-1, -9 GES PER-1 SFO-1 SHV VEB IMP-5, -12	ACC-1, -3 ACT-1, -5/7 CFE-1 CMY-10 DHA FOX LAT MIR MOX OXA-2, -10, -50, -51, -58	WWTP collecting DW, HW and IW	Gram-negative bacteria from IN, EF, HW, RR and lake water	MM qPCR	[109]
Sweden, Stockholm	CTX-M-1, -9	nd CMY-2 nd WWTP	*E. coli* from IN, EF and HW	MM PCR	[116]	
Switzerland, Basel	KPC-2 NDM-1, -5 VIM-1	nd OXA-48, -181 WWTP collecting MW and HW	CPE and Gram-negative bacteria from IN, EF, HW and RR	MM PCR seq-DNA molecular typing (MLST, phylogrouping)	[99]	
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.	
The UK	CTX-M-15, LEN-25-like, OXY-6, SHV-12, TEM-1	Class A: IMP-1, NDM-1-like, OXA-1, TEM-1; Class B: nd; Class C: nd; Class D: OXA-1, -17, -48, -181	20 WWTPs carbapenem-resistant Gram-negative strains isolated from treated and untreated samples	MM WGS	[128]	
	CTX-M-1, -14, -15, -27	nd nd nd	ESBL-producing E. coli from treated and untreated samples	MM metagenomic	[120]	
Canada, Arnprior/Ottawa/Toronto	CARB, CTX-M, GES, KPC, OXY, PER, SHV, TEM	cphA, IMP, VIM, PAM	carbapenem-resistant strains from IN	MM PCR, WGS	[104]	
Canada, Alberta/Calgary	CTX-M-15	nd	AmpC	13 WWTPs multidrug-resistant E. coli from IN and EF	MM PCR WGS molecular typing	[133]
Canada, Baffin Island (Pond Inlet/Clyde river/Iqaluit)	CTX-M, TEM	nd nd nd	IN and EF samples	qPCR	[139]	
Guadeloupe/North America	CTX-M-1, -8, -14, -15, -27, TEM-1-like, -3, VEB-1	nd	CMY-2, -8	2 WWTPs Enterobacterales from IN, EF, RR and sea waters, with a focus on ESBL- and AmpC-producers	MM PCR seq-DNA phylogrouping	[80]
The US, Colorado	CTX-M, TEM	nd nd	OXA-1	WWTP ESBL- and KPC-producing E. coli from IN and EF	MM PCR seq-DNA WGS	[119]
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.		
The US, South Carolina	BES-1, CTX-M-1, GES, KPC, SHV, TLA-1, VEB	ccrA, IMP-5, -12	WWTP samples of SS and bioaerosol collected downwind from sludge aeration tanks and upwind from WWTP	MM, qPCR, seq-DNA	[147]		
The US, Washington	CTX-M, KPC	NDM-1, CMY-2, OXA-48	2 WWTPs	PCR	[90]		
The US, Wisconsin	CTX-M-1 and -9 group, TEM	nd, nd	OXA	PCR, seq-DNA molecular typing (WGS)	[125]		
The US (New Jersey, Maryland, Ohio, Texas, Colorado, California)	CTX-M, GES, KPC, TEM	VIM, NDM	OXA	7 WWTPs with various inflow	E. coli from EF	[103]	
The US	CARB-2, CTX-M-15, GES-5, KPC-2, -3, OKP-B-2, -7, ORN-1b, OXY-1, -5, PLA-2, SHV-11, -12, TEM-1, -1a, -1b	VIM-1, NDM-1, -5, -7, AmpC, ACT-1, CMY-66, -79, FOX-5, MIR-3, -6, -9, -15, OXA-1, -2, -9, -105	50 WWTPs	carbapenemase-producing bacteria from EF and surface water of WWTP discharge	MM, WGS	[102]	
Colombia, Antioquia	CTX-M-1, -2, -8/25, -9	nd	WWTP collecting DW, HW and IW	β-lactam-resistant Gramnegative bacilli from IN, SS and EF, with focus on E. coli	MM, PCR, seq-DNA molecular typing (PFGE, MLST)	[87]	
Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.		
---	--	------------------	------------------------	-----------------	------		
Brazil, Curitiba	CTXM-1, -2, -8, -9, -15 SHV-12 GES-5	nd	nd	WWTP	MM PCR seq-DNA	[79]	
Brazil, São Paulo	CTXM-8, -15 SHV-28	nd	nd	5 WWTPs	MM PCR seq-DNA molecular typing (phylogrouping E. coli, MLST)	[117]	
India, Jasola Vihar, New Delhi	CTXM-15, -152, -205 SHV TEM-1	nd	nd	WWTP	MM PCR seq-DNA	[71]	
India, New Dehli	NDM-1	nd	nd	12 WWTPs	MM PCR seq-DNA	[183]	
India, Jaipur	Multiple variants i.e., Cfx-A2, -A3 GES-15 VEB-1	nd	nd	4 WWTPs collecting HW samples of IN, SS and EF	metagenomics	[111]	
India, State of Bihar, Goa, Karnataka, Tamil Nadu and Telangana	CTXM-15, -55 SHV-12 TEM-1, -1b NDM-1, -5, -7 CMY-2, -6, -42 OXA-1, -9, -10	nd	nd	5 WWTPs	MM PCR seq-DNA, molecular typing WGS	[77]	
Singapore	cfxA6 TEM VEB-1a	nd	AmpC	WWTP	samples of IN, EF, HW and surface waters	metagenomics	[108]
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.
Singapore	AER-1, CARB-3, -(5-9), -12, Cfx-A2, -A3, CTX-M-1, -(15), -(19), -(34), -(47), KPC-1, -(10), -(11), -(13), -(16), LEN-19, -(21), OKP-1, -(A-B), PER-1, -(3), -(4), -(7), PSE-1, -4, ROB-1, SHV-4, -(12), -(39), -(51), -(53), -(167), multiple variants of GES and TEM groups	WWTP	samples of IN, SS and EF	metagenomics	[107]
China, Guangdong Province	nd, nd, AmpC	2 WWTPs	E. coli from WWTPs	MM PCR	[190]
China, Harbin	CTX-M	4 WWTPs	samples of IN, SS and EF	PCR qPCR	[137]
China, Tianjin	KPC-2, GES-1	WWTP collecting DW and IW	EF samples	qPCR	[106]
China, Wuxi	CTX-M, SHV, TEM	3 WWTPs collecting DW and IW	IN and EF samples, cultivable heterotrophic bacteria and total coliforms	MM qPCR seq-DNA	[129]
China	CTX-M, TEM	3 WWTPs	multiple antibiotic-resistant *Escherichia* spp. from WWTPs, BW and livestock manure	MM PCR seq-DNA	[70]
China	nd, NDM-1	2 WWTPs	samples of IN, SS and EF	MM PCR seq-DNA	[177]
Japan, Tokyo	CTX-M-1 group, -(2) group and -(9) group, SHV group, TEM group	WWTP	fecal coliforms from different stages of treatment process	MM PCR seq-DNA	[124]
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.		
Japan	CTX-M-1, -2, -3, -8, -14, -15, -27, -55, -64, -65, -123, -174	nd	4 WWTPs	MM PCR	[122]		
		nd		seq-DNA			
		nd		molecular			
		nd		typing (MLST,			
		nd		phylogrouping)			
		nd		WGS			
United Arab Emirates,	SHV TEM	nd	WWTP	MM PCR	[83]		
Dubai		nd	ESBL-producing E. coli	qPCR	[179]		
Saudi Arabia, Jeddach	nd NDM-1	nd	WWTP	MM PCR	[126]		
		nd	ESBL- and carbapenemase-	PCR	[73]		
		nd	producing bacteria from	WGS			
		nd	IN				
South Africa, Durban	CTX-M TEM	nd	4 WWTPs collecting DW,	MM PCR	[130]		
		nd	HW and IW	PCR			
	CTX-M KPC-2 TEM	NDM-1	WWTP collecting	ESBL-producing	[91]		
		nd	DW, HW and IW	E. coli			
		nd	ESBL-producing E. coli	PCR	[72]		
		nd	from IN and EF	PCR			
		nd	focused on E. coli	PCR			
South Africa, Mungundlovu	CTX-M-3, -15, -28 TEM-1, -116, -181, -213, -215	nd	4 WWTPs collecting DW,	ESBL-producing E. coli	[105]		
District		nd	HW and IW	from IN and EF			
		nd	ESBL-producing E. coli	PCR			
		nd	from IN and EF	seq-DNA			
South Africa, Eastern	FSE-1 TEM	nd	2 WWTPs	Aeromonas spp.	[126]		
Province, Amathole		nd	from WWTPs	PCR			
District		nd	Aeromonas spp. from	PCR			
		nd	WWTPs	PCR			
South Africa, Eastern	CTX-M-1, -2, -9 GES PER TEM	ACC CIT DHA EBC	2 WWTPs collecting DW,	Entrobacterales from EF	[72]		
Province, Amathole and		MOX	IW, run-off waters and				
Chris Hani District		OXA-1-like, -48-like	residential sewage				
		nd	Enterobacterales from EF	PCR			
South Africa, Eastern	KPC NDM-1	nd	4 WWTPs	Enterobacterales	[105]		
Province, Amathole, Chris		nd	from EF, HW and surface	from EF,	[105]		
Hani and Sarah Baartman		nd	waters, with focus on	Klebsiella spp.			
District		nd	Klebsiella spp.	PCR			
Algeria, Boumerdes	CTX-M-3, -15 TEM-1	nd	WWTP collecting DW, HW	MM PCR	[74]		
		nd	and IW	PCR			
		nd	cefotaxime-resistant	PCR			
		nd	strains from IN and EF	seq-DNA			
		nd	cefotaxime-resistant	molecular			
		nd	strains from IN and EF	typing (MLST,			
		nd	cefotaxime-resistant	phylogrouping)			
		nd	strains from IN and EF	WGS			
Location	Gene Variant(s) Detected in WWTP Samples	Sample Source(s)	Type of Tested Samples	Type of Methods	Ref.		
----------	--	-----------------	------------------------	-----------------	-----		
Tunisia	CTX-M-1, 14a, -15 TEM-1a, -1b	nd	CMY-2	OXA-1	8 WWTPs	MM PCR seq-DNA molecular typing of E. coli (MLST, phylogrouping, PFGE, virulence genotyping) [127]	
Tunisia	CTX-M-1, -3, -14, -15, -27	nd	nd	OXA-204	2 WWTPs	ESBL-producing Enterobacterales from WWTP and various animal samples	MM PCR seq-DNA, molecular typing (MLST, phylogrouping, PFGE) [121]
Tunisia, Monastir Governorate	CTX-M TEM	nd	nd	nd	5 WWTPs collecting DW, HW and IW	IN and EF samples	qPCR [142]
Australia, Queensland	CTX-M TEM	nd	nd	nd	2 WWTPs	ESBL-producing E. coli from IN and HW	MM PCR molecular typing [67]
Multinational study: Denmark, Spain, the UK	cfxA BEL CARB CTX-M-1, -3, -15 GES KPC LEN OXY-1, -2 SFO SHV-11 SPM TEM TLA VEB IMP VIM NDM AmpC ACC CMY DHA FOX MIR OXA-10	3 WWTPs collecting DW and HW	samples of IN, SS, EF and RR	qPCR seq-DNA [65]			
Multinational study: Finland, Estonia	CTX-M-32 SHV-34	nd	nd	OXA-58	3 WWTPs	IN and EF samples	qPCR [141]
Table 1. Cont.

Location	Gene Variant(s) Detected in WWTP Samples ¹	Sample Source(s) ²	Type of Tested Samples ³	Type of Methods ⁴	Ref.
Multinational study: France, Italy, Norway, Portugal, Germany, Netherlands, Cyprus, Turkey, Austria and the UK	CTX-M-15, -32 KPC-3 TEM nd nd OXA-48, -58	16 WWTPs	samples of EF and corresponding receiving water bodies	qPCR	[101]
Multinational study: China, Singapore, the US, Canada	TEM-1 IMP AmpC OXA-1, -2, -10	15 WWTPs	SS samples	PCR qPCR	[82]

¹ nd—no data. ² WWTP—wastewater treatment plant, DW—domestic wastewater, MW—municipal wastewater, HW—hospital wastewater, IW—industrial wastewater. ³ CPE—carbapenem-resistant Enterobacterales, IN—influent, EF—effluent, SS—sewage sludge, RR—receiving river waters. ⁴ MM—microbiological methods, PCR—specific PCR, qPCR—quantitative PCR, seq-DNA—sequencing DNA, WGS—whole genome sequencing, MLST—multilocus sequence typing, PFGE—pulsed-field gel electrophoresis.
5. Conclusions

AMR is a serious and urgent problem, and it is clear that the environment plays a key role in the process of transmission and propagation of ARGs and ARB with life-threatening clinical consequences. The multitude of publications confirms that β-lactamases genes encoding especially ESBLs (TEM, SHV, CTX-M) and KPC, NDM, and OXA carbapenemases, which pose one of the greatest health risks, are widely found in WWTPs and disseminated to further portions of the environment. Molecular analysis shows repeatedly high genetic relatedness between environmental and clinical isolates, e.g., ST131 E. coli. Generally, different kinds of sewage treatment processes do not eliminate these ARGs completely. Furthermore, some data indicate an increased level of β-lactam ARGs in effluent or even the presence of the genes and bacteria harboring them in samples after additional disinfection treatments.

Due to β-lactam ARGs’ potential to transfer via mobile genetic elements through horizontal gene transfer, their abundance in water samples discharged from WWTPs into natural aquatic sources used by humans or animals suggests a potential risk of transmission resistance determinants into pathogenic and non-pathogenic bacteria and acquiring multidrug resistance as well as the participation of WWTPs in AMR transmission route and distribution into surrounding ecosystems and clinical settings. The growing problem of AMR and the spread of clinically relevant ARGs related to, i.e., β-lactams in the environment, indicate the need to improve and evaluate the procedures of wastewater treatment and disinfection; thus, ARB, ARGs, and factors influencing their selection and co-selection during the treatment process would be completely removed.

The development and improvement of techniques used in testing wastewater for antibiotic resistance has been very significant in recent years. There are more and more publications indicating the use of modern metagenomic assays, which enables broadening the knowledge of the complexity and structural and functional biodiversity of microbial communities—i.e., analysis of resistance genes; taxonomic assignment; functional genes characterization; the identification of the HGT mechanism and mobile elements involved in the gene transmission; and exploring relationships between pathogenic and non-pathogenic species and susceptible and resistant bacteria. Therefore metagenomic analysis seems to be a very useful tool to understand the process of AMR transmission. However, the clinical surveillance of resistant strains responsible for life-threatening infections and nosocomial outbreaks caused by β-lactam-resistant strains also involve molecular techniques, but still the gold standard are culture-based methods detecting the expression of genes and the resistance mechanism. Therefore, according to the One Health’s concept, collaborative approaches concerning AMR in the environment and clinical setting are indispensable and should combine new technology with standard microbiological methods. As WWTPs are the crucial points on the routes of ARB and ARGs’ spread, they should be deeply explored, which would help to understand the process and make it possible to introduce procedures to stop, or at least slow down, the spreading of antibiotic resistance.

Author Contributions: Conceptualization, I.W., writing—original draft preparation, I.W., preparing table and figures, I.W., A.K., E.K. and A.B.; writing—review and editing, I.W., A.K., E.K. and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financed by internal funding (DS 8/2022) from the National Medicines Institute.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. WHO. Ten Threats to Global Health in 2019; World Health Organization: Geneva, Switzerland, 2019; pp. 1–18. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 10 May 2022).

2. CDC. Antibiotic Resistance Threats in the United States 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-atr-threats-report-508.pdf (accessed on 1 April 2022).

3. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [CrossRef]

4. Murray, C.J.; Ituka, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef]

5. Abushaheen, M.A.; Muzahheed, Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; et al. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month 2020, 66, 100971. [CrossRef] [PubMed]

6. Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [CrossRef] [PubMed]

7. Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1–20. [CrossRef]

8. Alexander, J.; Hembach, N.; Schwartz, T. Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Sci. Rep. 2020, 10, 8952. [CrossRef]

9. Vaz-Moreira, I.; Harnisz, M.; Abreu-Silva, J.; Rolbiecki, D.; Korzeniewska, E.; Luczkiewicz, A.; Manaia, C.M.; Plaza, G. Antibiotic resistance in wastewater, does the context matter? Poland and Portugal as a case study. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4194–4216. [CrossRef]

10. Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015, 16, 964. [CrossRef]

11. Pazda, M.; Kumińska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [CrossRef]

12. Wang, J.; Chu, L.; Wojn-Franco, D.; Gorecki, A.; Purkrtova, S.; Bartacek, J.; Dziewit, L.; Singleton, C.M.; Nielsen, P.H.; et al. Monitoring antibiotic resistance genes in wastewater treatment plants: The challenges of filling a gap in the One-Health cycle. J. Hazard. Mater. 2022, 424, 127407. [CrossRef]

13. Thomas, C.M.; Nielsen, K.M. Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nat. Rev. Microbiol. 2005, 3, 711–721. [CrossRef]

14. von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [CrossRef]

15. Zielirliškė, V.; Korzeniewska, E.; Harnisz, M.; Drzymała, J.; Felis, E.; Bajkacz, S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes—An epidemiological threat to workers and environment. Environ. Int. 2021, 156, 106641. [CrossRef]

16. Milobedzka, A.; Ferreira, C.; Vaz-Moreira, I.; Calderón-Francisco, D.; Gorecki, A.; Purkrtova, S.; Bartacek, J.; Dziewit, L.; Singleton, C.M.; Nielsen, P.H.; et al. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. J. Hazard. Mater. 2022, 424, 127407. [CrossRef]

17. Thomas, C.M.; Nielsen, K.M. Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nat. Rev. Microbiol. 2005, 3, 711–721. [CrossRef]

18. von Wintersdorff, C.J.H.; Penders, J.; vanNiekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [CrossRef]

19. Czekalski, N.; Gascon Diez, E.; Bürgmann, H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J. 2014, 8, 1381–1390. [CrossRef]

20. Kotłarska, E.; Luczkiewicz, A.; Pisowacka, M.; Burzyński, A. Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ. Sci. Pollut. Res. 2015, 22, 2018–2030. [CrossRef]

21. Chaturvedi, P.; Chaurasia, D.; Pandey, A.; Gupta, P. Co-occurrence of multidrug resistance, β-lactamase and plasmid mediated AmpC genes in bacteria isolated from river Ganga, northern India. Environ. Pollut. 2020, 267, 115502. [CrossRef]

22. Griffin, D.W.; Banks, K.; Gregg, K.; Shedler, S.; Walker, B.K. Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System. Antibiotics 2020, 9, 118. [CrossRef]

23. Kvesić, M.; Kalinić, H.; Dzelalija, M.; Šamanić, I.; Andričević, R.; Maravić, A. Microbiome and antibiotic resistance profiling in submarine effluent-receiving coastal waters in Croatia. Environ. Pollut. 2022, 292, 118282. [CrossRef] [PubMed]

24. Sabri, N.A.; Schmitt, H.; Van Der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [CrossRef]
25. Rodriguez-Molina, D.; Berglund, F.; Blaak, H.; Flach, C.-F.; Kemper, M.; Marutescu, L.; Gradsteinau, G.P.; Popa, M.; Spießberger, B.; Weinmann, T.; et al. Carriage of ESBL-producing Enterobacteriales in wastewater treatment plant workers and surrounding residents—The AWARE Study. Eur. J. Clin. Microbiol. Infect. Dis. 2021. [CrossRef] [PubMed]

26. Leonard, A.F.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol. 2022, 65, 40–46. [CrossRef] [PubMed]

27. Stanton, I.C.; Bethel, A.; Leonard, A.F.C.; Gaze, W.H.; Carside, R. Existing evidence on antibiotic resistance exposure and transmission to humans from the environment: A systematic map. Environ. Evid. 2022, 11, 1–24. [CrossRef]

28. Zhang, X.-X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [CrossRef]

29. Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [CrossRef]

30. Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [CrossRef]

31. Pärnänen, K.M.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [CrossRef]

32. Swami, O.C. Strategies to Combat Antibiotic Resistance. J. Clin. Diagn. Res. 2014, 8, 8–11. [CrossRef]

33. WHO. Global Action Plan on Antimicrobial Resistance 2015. Available online: https://apps.who.int/iris/handle/10665/193736 (accessed on 1 April 2022).

34. Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; et al. A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Sci. Adv. 2018, 4, 106174. [CrossRef] [PubMed]

35. Barancheshme, F.; Munir, M. Strategies to Combat Antibiotic Resistance. J. Clin. Diagn. Res. 2019, 8, 106035. [CrossRef]

36. Leonard, A.F.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol. 2022, 65, 40–46. [CrossRef] [PubMed]

37. Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Êvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.L.; Jiwakanon, J.; Jakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [CrossRef]

38. Marano, R.B.M.; Fernandes, T.; Manaia, C.; Nunes, O.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [CrossRef]

39. Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [CrossRef]

40. Daoud, Z.; Rolain, J.-M. Editorial: “One Health” Approach for Revealing Reservoirs and Transmission of Antimicrobial Resistance. Front. Microbiol. 2022, 12, 2021–2023. [CrossRef]

41. Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of antibiotic resistance genes in the environment. Environ. Polllut. 2021, 285, 117402. [CrossRef]

42. Australian Commission on Safety and Quality in Health Care. AURA 2019: Third Australian Report on Antimicrobial Use and Resistance in Human Health 2019. Available online: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/aura-2019-third-australian-report-antimicrobial-use-and-resistance-human-health (accessed on 1 April 2022).

43. Tang, S.S.; Apisarnthanarak, A.; Hsu, L.Y. Mechanisms of β-lactam antibiotic resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv. Drug Deliv. Rev. 2014, 78, 3–13. [CrossRef]

44. Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, 1–37. [CrossRef]

45. Li, X.-Z.; Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria. Drugs 2009, 69, 1555–1623. [CrossRef] [PubMed]

46. Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [CrossRef] [PubMed]

47. Bonomo, R.A. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a025239. [CrossRef] [PubMed]

48. Frickmann, H.; Masanta, W.O.; Zautner, A.E. Emerging Rapid Resistance Testing Methods for Clinical Microbiology Laboratories and Their Potential Impact on Patient Management. Biomed. Res. Int. 2014, 2014, 375681. [CrossRef] [PubMed]

49. Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [CrossRef]

50. Franklin, A.M.; Brinkman, N.E.; Jahne, M.A.; Keely, S.P. Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J. Microbiol. Methods 2021, 184, 106174. [CrossRef]

51. Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiemi, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ. 2021, 783, 146964. [CrossRef]

52. de Abreu, V.A.C.; Perdigão, J.; Almeida, S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview. Front. Genet. 2021, 11, 575592. [CrossRef]
53. Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Bianculli, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, J.; et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box. *Environ. Int.* **2018**, *115*, 312–324. [CrossRef]

54. Sawa, T.; Kooguchi, K.; Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. *J. Intensive Care* **2020**, *8*, 13. [CrossRef]

55. Baraniak, A.; Fiett, J.; Mrowka, A.; Walory, J.; Hryniewicz, W.; Gniadkowski, M. Evolution of TEM-Type Extended-Spectrum β-Lactamases in Clinical *Enterobacteriaceae* Strains in Poland. *Antimicrob. Agents Chemother.* **2005**, *49*, 1872–1880. [CrossRef]

56. De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J. A 1998 Survey of Extended-Spectrum β-Lactamases in *Enterobacteriaceae* in France. *Antimicrob. Agents Chemother.* **2000**, *44*, 3177–3179. [CrossRef]

57. Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. *J. Antimicrob. Chemother.* **2006**, *59*, 165–174. [CrossRef]

58. Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. *J. Travel Med.* **2017**, *24*, S44–S56. [CrossRef]

59. Wiener, J. Multiple Antibiotic-Resistant Klebsiella and Escherichia coli in Nursing Homes. *JAMA* **1999**, *281*, 517. [CrossRef]

60. Pitout, J.D.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of *Enterobacteriaceae* producing extended-spectrum β-lactamases (ESBLs) in the community. *J. Antimicrob. Chemother.* **2005**, *56*, 52–59. [CrossRef]

61. Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. *Clin. Microbiol. Rev.* **2005**, *18*, 657–686. [CrossRef]

62. Nordmann, P.; Cuzzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. *Lancet Infect. Dis.* **2009**, *9*, 228–236. [CrossRef]

63. Nordmann, P.; Naas, T.; Poirel, L. Global Spread of Carbapenemase-producing *Enterobacteriaceae*. *Emerg. Infect. Dis.* **2011**, *17*, 1791–1798. [CrossRef] [PubMed]

64. Munoz-Price, L.S.; Poirel, L.; Bonomo, R.A.; Schwaber, M.J.; Daikos, G.L.; Cormican, M.; Cornaglia, G.; Garau, J.; Gniadkowski, M.; Hayden, M.K.; et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. *Lancet Infect. Dis.* **2013**, *13*, 785–796. [CrossRef]

65. Li, L.; Nesme, J.; Quintela-Baluja, M.; Balboa, S.; Hashsham, S.; Williams, M.R.; Yu, Z.; Sørensen, S.J.; Graham, D.W.; Romalde, J.L.; et al. Extended-Spectrum β-Lactamase and Carbapenemase Genes Are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. *Environ. Sci. Technol.* **2021**, *55*, 5939–5949. [CrossRef] [PubMed]

66. Zaoutat, N.; Bouras, S.; Slimani, N. Prevalence of extended-spectrum β-lactamase (ESBL)-producing *Enterobacteriaceae* in wastewater: A systematic review and meta-analysis. *J. Water Health* **2021**, *19*, 705–723. [CrossRef] [PubMed]

67. Gündoğdu, A.; Jennison, A.V.; Smith, H.V.; Stratton, H.; Katouli, M. Extended-spectrum β-lactamase producing Escherichia coli in hospital wastewaters and sewage treatment plants in Queensland, Australia. *Can. J. Microbiol.* **2013**, *59*, 737–745. [CrossRef]

68. Korzeniewska, E.; Harnisz, M. Extended-spectrum beta-lactamase (ESBL)-positive *Enterobacteriaceae* in municipal sewage and their emission to the environment. *J. Environ. Manag.* **2013**, *128*, 904–911. [CrossRef]

69. Makowska, N.; Philips, A.; Dabert, M.; Nowis, K.; Trzebny, A.; Koczura, R.; Mokracka, J. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. *Water Res.* **2020**, *170*, 115277. [CrossRef]

70. Yuan, W.; Tian, T.; Yang, Q.; Riaz, L. Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. *Chemosphere* **2020**, *246*, 125736. [CrossRef]

71. Ali, A.; Sultan, I.; Mondal, A.H.; Siddiqui, M.T.; Gogry, F.A.; Haq, Q.M.R. Lentic and effluent water of Delhi-NCR: A reservoir of multidrug-resistant bacteria harbouring *bla* CTX-M, *bla* TEM and *bla* SHV type ESBL genes. *J. Water Health* **2021**, *19*, 592–603. [CrossRef]

72. Fadare, F.T.; Okoh, A.I. The Abundance of Genes Encoding ESBL, pAmpC and Non-β-Lactam Resistance in Multidrug-Resistant *Enterobacteriaceae* Recovered from Wastewater Effluents. *Front. Environ. Sci.* **2021**, *9*, 1–12. [CrossRef]

73. Gumede, S.N.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Analysis of Wastewater Reveals the Spread of Diverse Extended-Spectrum β-Lactamase-Producing *E. coli* Strains in uMgungundlovu District, South Africa. *Antibiotics* **2021**, *10*, 860. [CrossRef]

74. Alouache, S.; Estepa, V.; Messai, Y.; Ruiz, E.; Torres, C.; Bakour, R. Characterization of ESBLs and Associated Quinolone Resistance Determinants among Extended-Spectrum-Cephalosporin-Resistant or Carbapenem-Resistant Escherichia coli isolates from rivers and sewage treatment plants in India. *Antimicrob. Agents Chemother.* **2016**, *60*, 2972–2980. [CrossRef]

75. Caltagirone, M.; Nucleo, E.; Spalla, M.; Zara, F.; Novazzi, F.; Marchetti, V.M.; Piazza, A.; Bitar, I.; De Cicco, M.; Paolucci, S.; et al. Occurrence of Extended Spectrum β-Lactamases, KPC-Type, and MCR-1.2-Producing *Enterobacteriaceae* from Wells, River Water, and Wastewater Treatment Plants in Oltrepo Pavese Area, Northern Italy. *Front. Microbiol.* **2017**, *8*, 1–12. [CrossRef]
79. Conte, D.; Palmeiro, J.K.; da Silva Nogueira, K.; de Lima, T.M.R.; Cardoso, M.A.; Pontarolo, R.; Degaut Pontes, F.L.; Dalla-Costa, L.M. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol. Environ. Saf. 2017, 136, 62–69. [CrossRef]

80. Guyomard-Rabenirina, S.; Darton, C.; Falord, M.; Sadikaklay, S.; Ducat, C.; Richard, V.; Breurec, S.; Gros, O.; Talarmin, A. Resistance to antimicrobial drugs in different surface waters and wastewaters of Guadeloupe. PLoS ONE 2017, 12, e0173155. [CrossRef]

81. Galler, H.; Feierl, G.; Petternel, C.; Reinthaler, F.; Haas, D.; Habib, J.; Kittinger, C.; Luxner, J.; Zarfel, G. Multiresistant Multiresistant Bacteria Isolated from Activated Sludge in Austria. Int. J. Environ. Res. Public Health 2018, 15, 479. [CrossRef]

82. Yang, Y.; Zhang, T.; Zhang, X.-X.; Liang, D.-W.; Zhang, M.; Gao, D.-W.; Zhu, H.-G.; Huang, Q.-G.; Fang, H.H.P. Quantification and characterization of β-lactam resistance genes in 15 sewage treatment plants from East Asia and North America. Appl. Microbiol. Biotechnol. 2012, 95, 1351–1358. [CrossRef]

83. Khan, M.A.; Thurgood, N.E.; Faheem, S.M.; Rais, N.; Ansari, M.Z.; Kaleem, S.M.; Khan, S.T. Occurrence of Extended Spectrum Beta-Lactamase Gram-Negative Bacteria from Non-Clinical Sources in Dubai, United Arab Emirates. Water 2020, 12, 2562. [CrossRef]

84. Osińska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacz, S.; Jachimowicz, P.; Niestępski, S.; Konopka, I. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. J. Hazard. Mater. 2020, 381, 121221. [CrossRef]

85. Surlac, M.; Barbu, I.C.; Paraschiv, S.; Popa, L.I.; Gheorghe, I.; Marutescu, L.; Popa, M.; Sarbu, I.; Talapan, D.; Nita, M.; et al. Whole genome sequencing snapshot of multidrug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS ONE 2020, 15, e0228079. [CrossRef] [PubMed]

86. Smyth, C.; O’Flaherty, A.; Walsh, F.; Do, T.T. Antibiotic resistant and extended-spectrum β-lactamase producing faecal coliforms in wastewater treatment plant effluent. Environ. Pollut. 2020, 262, 114244. [CrossRef] [PubMed]

87. Aristizábal-Hoyos, A.M.; Rodriguez, E.A.; Arias, L.; Jiménez, J.N. High clonal diversity of multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in a wastewater treatment plant. J. Environ. Manag. 2019, 245, 37–47. [CrossRef] [PubMed]

88. Amador, P.P.; Fernandes, R.M.; Prudêncio, M.C.; Barreto, M.P.; Duarte, I.M. Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of Class A and Class C β-lactamases. J. Environ. Sci. Health Part A 2015, 50, 26–39. [CrossRef] [PubMed]

89. Proia, L.; Anzil, A.; Borrego, C.; Farrè, M.; Llorca, M.; Sanchis, J.; Bogaerts, P.; Balcázar, J.L.; Servais, P. Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. J. Hazard. Mater. 2018, 358, 33–43. [CrossRef]

90. Zhang, A.; Call, D.R.; Besser, T.E.; Liu, J.; Jones, L.; Wang, H.; Davis, M.A. β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. Water Res. 2019, 161, 335–340. [CrossRef]

91. Adelgkoe, A.A.; Madu, C.E.; Aiyeogoro, O.A.; Stenström, T.A.; Okoh, A.I. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob. Resist. Infect. Control 2020, 9, 46. [CrossRef]

92. Piotrowska, M.; Kowalska, S.; Popowska, M. Diversity of β-lactam resistance genes in gram-negative rods isolated from a municipal wastewater treatment plant. Ann. Microbiol. 2019, 69, 591–601. [CrossRef]

93. Hubeny, J.; Ciesielski, S.; Harnisz, M.; Korzeniewska, E.; Dulski, T.; Jaleweci, L.; Plaza, G. Impact of Hospital Wastewater on the Occurrence and Diversity of Beta-Lactamase Genes During Wastewater Treatment with an Emphasis on Carbapenemase Genes: A Metagenomic Approach. Front. Environ. Sci. 2021, 9, 738158. [CrossRef]

94. Teban-Man, A.; Farkas, A.; Baricz, A.; Hegeduš, A.; Szekerés, E.; Párvo, M.; Coman, C. Wastewaters, with or without Hospital Contribution, Harbour MDR, Carbapenemase-Producing, but Not Hypervirulent Klebsiella pneumoniae. Antibiotics 2021, 10, 361. [CrossRef]

95. Galler, H.; Feierl, G.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Grisold, A.J.; Luxner, J.; Zarfel, G. KPC-2 and OXA-48 carbapenemase-harbouroing Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin. Microbiol. Infect. 2014, 20, O132–O134. [CrossRef]

96. Bengtszon-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björnenius, B.; Flach, C.-F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 2016, 572, 697–712. [CrossRef]

97. Piotrowska, M.; Przygodzińska, D.; Matyjewicz, K.; Popowska, M. Occurrence and Variety of β-Lactamase Genes among Aeromonas spp. Isolated from Urban Wastewater Treatment Plant. Front. Microbiol. 2017, 8, 863. [CrossRef]

98. Subirats, J.; Royo, E.; Balcázar, J.L.; Borrego, C.M. Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples. Environ. Sci. Pollut. Res. 2017, 24, 6710–6714. [CrossRef]

99. Zurfluh, K.; Bagutti, C.; Brodmann, P.; Alt, M.; Schulze, J.; Fanning, S.; Stephan, R.; Nüesch-Inderbinen, M. Wastewater is a reservoir for clinically relevant carbapenemase- and 16s rRNA methylease-producing Enterobacteriaceae. Int. J. Antimicrob. Agents. 2017, 50, 436–440. [CrossRef]

100. Müller, H.; Sib, E.; Gadjiss, M.; Klange, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol. Ecol. 2018, 94, fiy057. [CrossRef]
101. Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karam, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water. 2019, 12, 300–330. [CrossRef]

102. Mathys, D.A.; Mollenkopf, D.F.; Feicht, S.M.; Adams, R.J.; Albers, A.L.; Stuever, D.M.; Grooters, S.V.; Ballash, C.A.; Daniels, J.B.; Wittum, T.E. Carbapenemase-producing Enterobacteriaceae and Acinetobacter spp. Present in wastewater treatment plant effluent and nearby surface waters in the US. PLoS ONE 2018, 14, e0218650. [CrossRef]

103. Hoelle, J.; Johnson, J.R.; Johnston, B.D.; Kinkel, B.; Boczek, L.; Ruy, H.; Hayes, S. Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. J. Water Health 2019, 17, 219–226. [CrossRef]

104. Cooper, A.L.; Carter, C.; McLeod, H.; Wright, M.; Sridharan, P.; Tamber, S.; Wong, A.; Carrillo, C.D.; Blais, B.W. Detection of carbapenem-resistance genes in bacteria isolated from wastewater in Ontario. FACETS 2021, 6, 569–591. [CrossRef]

105. Ebomah, K.E.; Okoh, A.I. Detection of Carbapenem-Resistance Genes in Klebsiella Species Recovered from Selected Environmental Niches in the Eastern Cape Province, South Africa. Antibiotics 2020, 9, 425. [CrossRef] [PubMed]

106. Yang, F.; Mao, D.; Zhou, H.; Luo, Y. Prevalence and Fate of Carbapenemase Genes in a Wastewater Treatment Plant in Northern China. PLoS ONE 2016, 11, e0156383. [CrossRef] [PubMed]

107. Ng, C.; Tan, B.; Jiang, X.-T.; Gu, X.; Chen, H.; Schmitz, B.W.; Haller, L.; Charles, F.R.; Zhang, T.; Gin, K. Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Front. Microbiol. 2019, 10, 172. [CrossRef] [PubMed]

108. Ng, C.; Tay, M.; Tan, B.; Le, T.-H.; Haller, L.; Chen, H.; Koh, T.H.; Barkham, T.M.S.; Thompson, J.R.; Gin, K.Y.H. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewater. Front. Microbiol. 2017, 8, 2200. [CrossRef] [PubMed]

109. Khan, F.A.; Söderquist, B.; Jass, J. Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Front. Microbiol. 2019, 10, 688. [CrossRef]

110. Araújo, S.; Sousa, M.; Tação, M.; Baraúna, R.A.; Silva, A.; Ramos, R.; Alves, A.; Manaia, C.M.; Henrique, I. Carbapenem-resistant bacteria over a wastewater treatment process: Carbapenem-resistant Enterobacteriaceae in untreated wastewater and intrinsically-resistant bacteria in final effluent. Sci. Total Environ. 2021, 782, 146892. [CrossRef]

111. Zhang, D.; Peng, Y.; Chan, C.-L.; On, H.; Rizzolatti, S.; Varshney, A.; Zhuo, X.; et al. Metagenomic Surveillance of More Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater Than Hospital Wastewater. Front. Microbiol. 2021, 12, 712843. [CrossRef]

112. Reinhaler, F.F.; Feierl, G.; Galler, H.; Haas, D.; Leitner, E.; Mascher, F.; Melkes, A.; Posch, J.; Winter, I.; Zarfel, G. ESBL-producing E. coli in Austrian sewage sludge. Water Res. 2010, 44, 1981–1985. [CrossRef]

113. Dolejska, M.; Frolikova, P.; Florek, M.; Jamborová, I.; Purgertova, M.; Kutilova, I.; Cizek, A.; Guenther, S.; Literak, I. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J. Antimicrob. Chemother. 2011, 66, 2784–2790. [CrossRef]

114. Korzeniewska, E.; Korzeniewska, A.; Harnisz, M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013, 91, 96–102. [CrossRef]

115. Čornejová, T.; Venglovský, J.; Gregova, G.; Kmetova, M.; Kmet, V. Extended spectrum beta-lactamases in Escherichia coli from municipal wastewater. Ann. Agric. Environ. Med. 2015, 22, 447–450. [CrossRef]

116. Kvak, Y.-K.; Colque, P.; Byfors, S.; Giske, C.G.; Mollby, R.; Kühn, I. Surveillance of antimicrobial resistance among Escherichia coli in wastewater during 1 year: Does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents 2015, 45, 25–32. [CrossRef]

117. Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; da Silva, Q.M.; Matté, G.R.; Sato, M.I.Z.; Matté, M.H. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater in San Paolo, Brazil. Environ. Sci. Pollut. Res. 2016, 23, 4953–4958. [CrossRef]

118. Silva, I.; Tação, M.; Tavares, R.D.S.; Miranda, R.; Araújo, S.; Manaia, C.M.; Henrique, I. Fate of cefotaxime-resistant Enterobacteriaceae and ESBL-producers over a full-scale wastewater treatment process with UV disinfection. Sci. Total Environ. 2018, 639, 1028–1037. [CrossRef]

119. Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilehez, S.; et al. Antimicrobial-Resistant Enterobacteriaceae in Northern Colorado. J. Environ. Public Health 2019, 2019, 1–13. [CrossRef]

120. Raven, K.E.; Ludden, C.; Gouliouris, T.; Blane, B.; Naydenova, P.; Brown, N.M.; Parkhill, J.; Peacock, S.J. Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes. Microb. Genom. 2019, 5, e002267. [CrossRef]

121. Sghaier, S.; Abbasi, M.S.; Pascual, A.; Serrano, L.; Díaz-De-Alba, P.; Said, M.B.; Hassen, B.; Ibrahim, C.; Hassen, A.; López-Cerero, L. Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: First detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J. Glob. Antimicrob. Resist. 2019, 17, 189–194. [CrossRef]
122. Tanaka, H.; Hayashi, W.; limura, M.; Taniguchi, Y.; Soga, E.; Matsuo, N.; Kawamura, K.; Arakawa, Y.; Nagano, Y.; Nagano, N. Wastewater as a Probable Environmental Reservoir of Extended-Spectrum-β-Lactamase Genes: Detection of Chimeric β-Lactamases CTX-M-64 and CTX-M-123. *Appl. Environ. Microbiol.* 2019, 85, 1–12. [CrossRef]

123. Schages, L.; Wichern, F.; Kalscheuer, R.; Bocknühl, D. Winter is coming—Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. *Sci. Total Environ.* 2020, 712, 136499. [CrossRef]

124. Urano, N.; Okai, M.; Tashiro, Y.; Takeuchi, A.; Endo, R.; Ishida, M.; Takashio, M. Behavior of Antibiotic-Resistant Fecal Coliforms in the Stream of a Sewage Treatment Plant in Tokyo. *Adv. Microbiol.* 2020, 10, 318–330. [CrossRef]

125. Liedhegner, E.; Bojar, B.; Beattie, R.E.; Cahak, C.; Hristova, K.R.; Skwor, T. Similarities in Virulence and Extended Spectrum Beta-Lactamase Gene Profiles among Cefotaxime-Resistant Escherichia coli Wastewater and Clinical Isolates. *Antibiotics* 2022, 11, 260. [CrossRef] [PubMed]

126. Igbinosa, I.H.; Okoh, A.I. Antibiotic Susceptibility Profile of *Aeromonas* Species Isolated from Wastewater Treatment Plant. *Sci. World J.* 2012, 2012, 1–6. [CrossRef]

127. Ben Said, L.; Jouini, A.; Alonso, C.A.; Klibi, N.; Dziri, R.; Boudabous, A.; Ben Slama, K.; Torres, C. Characteristics of extended-spectrum β-lactamase (ESBL) and pAmpC beta-lactamase-producing Enterobacteriaceae of water samples in Tunisia. *Sci. Total Environ.* 2016, 550, 1103–1109. [CrossRef] [PubMed]

128. Ludden, C.; Reuter, S.; Judge, K.; Gouliouris, T.; Blane, B.; Coll, F.; Naydenova, P.; Hunt, M.; Tracey, A.; Hopkins, K.L.; et al. Sharing of carbapenemase-encoding plasmids in UK sewage uncovered by MinION sequencing. *Microb. Genom.* 2017, 3, e00114. [CrossRef]

129. Zhang, S.; Han, B.; Wang, C.; Wang, P.; Ma, Y.; Cao, J.; He, Z. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. *Chemosphere* 2015, 135, 138–145. [CrossRef]

130. Nzima, B.; Adegoke, A.A.; Ofon, U.A.; Al-Dahmoshi, H.O.M.; Saki, M.; Ndubuisi-Nnaji, U.U.; Inyang, C.U. Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. *New Microbes New Infect.* 2020, 38, 100803. [CrossRef]

131. Gomi, R.; Matsuda, T.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Ichiyama, S.; Yoneda, M. Occurrence of clinically important lineages, including the sequence type 131 CT-M27 subclone, among extended-spectrum–lactamase-producing Escherichia coli in wastewater. *Antimicrob. Agents Chemother.* 2017, 61, e00564-17. [CrossRef]

132. Finn, T.J.; Scrimer, L.; Lam, L.; Duong, M.; Peirano, G.; Lynch, T.; Dong, T.; Pitout, J.D.D.; DeVinney, R. A comprehensive account of escherichia coli sequence type 131 in wastewater reveals an abundance of fluoroquinolone-resistant clade a strains. *Appl. Environ. Microbiol.* 2020, 86, 1–11. [CrossRef]

133. Zhi, S.; Stothard, P.; Banting, G.; Scott, C.; Huntley, K.; Ryu, K.; Otto, S.; Ashbolt, N.; Checkley, S.; Dong, T.; et al. Characterization of water treatment-resistant and multidrug-resistant urinary pathogenic Escherichia coli in treated wastewater. *Water Res.* 2020, 182, 115827. [CrossRef]

134. Mesquita, E.; Ribeiro, R.; Silva, C.J.C.; Alves, R.; Baptista, R.; Condinho, S.; Rosa, M.J.; Caneiras, C.; Duarte, A. An update on wastewater multi-resistant bacteria: Identification of clinical pathogens such as escherichia coli o25b:H4-b2-st131-producing ctx-m-15 esbl and kpc-3 carbapenemase-producing Klebsiella oxytoca. *Microorganisms* 2021, 9, 576. [CrossRef]

135. Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and Other mcr Genes in Hospital and Urban Wastewaters. *Sci. Total Environ.* 2018, 618, 179–188. [CrossRef]

136. Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.-H.; Gützkow, T.; Eichler, W.; Pühler, A.; Schlüter, A. Detection of 140 antibiotic-resistant bacteria in wastewater. *Sci. Total Environ.* 2019, 650, 1103–1109. [CrossRef] [PubMed]

137. Wen, Q.; Yang, L.; Duan, R.; Chen, Z. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China. *Environ. Pollut.* 2016, 212, 34–40. [CrossRef]

138. Narciso-da-Rocha, C.; Rocha, J.; Vaz-Moreira, I.; Lira, F.; Tamames, J.; Henriques, I.; Martinez, J.L.; Manaia, C.M. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. *Environ. Sci. Total Environ.* 2019, 69, 234–242. [CrossRef]

139. Neudorf, K.D.; Huang, Y.N.; Ragush, C.M.; Yost, C.K.; Jamieson, R.C.; Truestrup Hansen, L. Antibiotic resistance genes in municipal wastewater treatment system and receiving waters in Arctic Canada. *Sci. Total Environ.* 2017, 598, 1085–1094. [CrossRef]

140. Rodriguez-Mozaz, S.; Chamorro, S.; Martí, E.; Huerta, B.; Gros, M.; Sánchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. *Water Res.* 2015, 69, 234–242. [CrossRef]

141. Laht, M.; Karkman, A.; Voolaid, V.; Ritz, C.; Tenson, T.; Virta, M.; Kisand, V. Abundances of Tetracycline, Sulphonamide and Enterobacteriaceae Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. *PLoS ONE* 2014, 9, e103705. [CrossRef] [PubMed]

142. Igbinosa, I.H.; Okoh, A.I. Antibiotic Susceptibility Profile of *Aeromonas* Species Isolated from Wastewater Treatment Plant. *Sci. World J.* 2012, 2012, 1–6. [CrossRef]

143. Rafraf, I.; Lekunberri, I.; Sánchez-Melsió, A.; Aouni, M.; Borrego, C.M.; Balcázar, J.L. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. *Environ. Pollut.* 2016, 219, 353–358. [CrossRef]

144. Kowalski, M.; Wolany, J.; Pastuszka, J.S.; Plaza, G.; Wlazlo, A.; Ulfig, K.; Malina, A. Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. *Int. J. Environ. Sci. Technol.* 2017, 14, 2181–2192. [CrossRef]
Ginn, O.; Rocha-Melogno, L.; Bivins, A.; Lowry, S.; Cardelino, M.; Nichols, D.; Tripathi, S.N.; Soria, F.; Andrade, M.; Bergin, M.; et al. Detection and Quantification of Enteric Pathogens in Aerosols near Open Wastewater Canals in Cities with Poor Sanitation. *Environ. Sci. Technol.* **2021**, *55*, 14758–14771. [CrossRef]

Wengenroth, L.; Berglund, F.; Blaak, H.; Chifriju, M.C.; Flach, C.-F.; Piricalbioriu, G.G.; Larsson, D.G.J.; Marutescu, L.; van Passel, M.W.J.; Popa, M.; et al. Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. *Antibiotics* **2021**, *10*, 478. [CrossRef] [PubMed]

Lee, G.; Yoo, K. A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. *Rev. Environ. Sci. Bio/Tech.* **2022**, *21*, 799–827. [CrossRef]

Gaviria-Figueroa, A.; Preisner, E.C.; Hoque, S.; Feigley, C.E.; Norman, R.S. Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. *Sci. Total Environ.* **2019**, *686*, 402–412. [CrossRef] [PubMed]

Palzkill, T. Metallo-β-lactamase structure and function. *Ann. N. Y. Acad. Sci.* **2013**, *1277*, 91–104. [CrossRef] [PubMed]

Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): A threat to public health. *BMC Microbiol.* **2017**, *17*, 101. [CrossRef] [PubMed]

Cui, X.; Zhang, H.; Du, H. Carbapenemases in *Enterobacteriaceae*: Detection and Antimicrobial Therapy. *Front. Microbiol.* **2019**, *10*, 1823. [CrossRef]

Kazmierczak, K.M.; Rabine, S.; Hackel, M.; McLaughlin, R.E.; Biedenbach, D.J.; Bouchillon, S.K.; Sahm, D.F.; Bradford, P.A. Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing *Enterobacteriaceae* and *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* **2016**, *60*, 1067–1078. [CrossRef]

Matsumura, Y.; Peirano, G.; Mioty, M.R.; Adams, M.D.; Chen, L.; Kreiswirth, B.; DeVinney, R.; Pitout, J.D.D. Global Molecular Epidemiology of IMP-Producing Metallo-β-Lactamases. *Antimicrob. Agents Chemother.* **2017**, *61*, e02729-16. [CrossRef]

Matsumura, Y.; Peirano, G.; Bradford, P.A.; Mioty, M.R.; DeVinney, R.; Pitout, J.D.D. Genomic characterization of IMP and VIM carbapenemase-encoding transferable plasmids of *Enterobacteriaceae*. *J. Antimicrob. Chemother.* **2018**, *73*, 3034–3038. [CrossRef]

Ghaith, D.M.; Zafer, M.M.; Ismail, D.K.; Al-Agamy, M.H.; Bohol, M.F.F.; Al-Qahtani, A.; Al-Ahdal, M.N.; ElNagdy, S.M.; Mostafa, I.Y. First reported nosocomial outbreak of *Serratia marcescens* harboring blaIMP-4 and blaVIM-2 in a neonatal intensive care unit in Cairo, Egypt. *Infect. Drug Resist.* **2018**, *11*, 2211–2217. [CrossRef]

Castanheira, M.; Deshpande, L.M.; Mendes, R.E.; Canton, R.; Sader, H.S.; Jones, R.N. Variations in the Occurrence of Resistance Phenotypes and Carbapenemase Genes Among *Enterobacteriaceae* Isolates in 20 Years of the SENTRY Antimicrobial Surveillance Program. *Open Forum Infect. Dis.* **2019**, *6*, S23–S33. [CrossRef]

Pourmaras, S. Hospital outbreak of multiple clones of *Pseudomonas aeruginosa* carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4. *J. Antimicrob. Chemother.* **2003**, *51*, 1409–1414. [CrossRef]

Lagatolla, C.; Edalucci, E.; Dolzani, L.; Riccio, M.L.; De Luca, F.; Medessi, E.; Rossolini, G.M.; Tonin, E.A. Molecular Evolution of Metallo-β-Lactamase-Producing *Pseudomonas aeruginosa* in a Nosocomial Setting of High-Level Endemicity. *J. Clin. Microbiol.* **2006**, *44*, 2348–2353. [CrossRef]

Yong, D.; Tolemen, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, *bla* NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. *Antimicrob. Agents Chemother.* **2009**, *53*, 5046–5054. [CrossRef]

van Loon, K.; Voor in ‘t holt, A.F.; Vos, M.C. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant *Enterobacteriaceae*. *Antimicrob. Agents Chemother.* **2018**, *62*, 1–18. [CrossRef]

Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. *Clin. Microbiol. Rev.* **2019**, *6*, e00115-18. [CrossRef]

Hansen, G.T. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among *Enterobacteriaceae* and Other Gram-Negative Bacteria. *Infect. Dis. Ther.* **2021**, *10*, 75–92. [CrossRef]

Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T. Microbiological characterization of aquatic microorganisms targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. *Sci. Total Environ.* **2015**, *512–513*, 316–325. [CrossRef]

Hubeny, J.; Korzeniewska, E.; Buta-Hubeny, M.; Zieliński, W.; Rolbiecki, D.; Harnisz, M. Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. *Sci. Total Environ.* **2022**, *822*, 153437. [CrossRef]

Khan, F.A.; Hellmark, B.; Ehrich, R.; Söderquist, B.; Jass, J. Related carbapenemase-producing *Klebsiella* isolates detected in both a hospital and associated aquatic environment in Sweden. *Eur. J. Clin. Microbiol. Infect. Dis.* **2018**, *37*, 2241–2251. [CrossRef]

Mills, M.C.; Lee, J. The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. *Environ. Pollut.* **2019**, *255*, 113143. [CrossRef] [PubMed]

Cherak, Z.; Loucif, L.; Moussi, A.; Rolain, J.-M. Carbapenemase-producing Gram-negative bacteria in aquatic environments: A review. *J. Glob. Antimicrob. Resist.* **2021**, *25*, 287–309. [CrossRef] [PubMed]

Ranjan, R.; Thatikonda, S. β-Lactam Carbapenemase Resistance Gene NDM-1 in the Aquatic Environment: A Review. *Curr. Microbiol.* **2021**, *78*, 3634–3643. [CrossRef] [PubMed]

Lamba, M.; Graham, D.W.; Ahmad, S.Z. Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. *Environ. Sci. Technol.* **2017**, *51*, 13906–13912. [CrossRef] [PubMed]
169. Parvez, S.; Khan, A.U. Hospital sewage water: A reservoir for variants of New Delhi metallo-β-lactamase (NDM)- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. *Int. J. Antimicrob. Agents* 2018, 51, 82–88. [CrossRef]

170. Bardhan, T.; Chakraborthy, M.; Bhattacharjee, B. Prevalence of colistin-resistant, carbapenem-hydrolyzing proteobacteria in hospital water bodies and out-falls of West Bengal, India. *Int. J. Environ. Res. Public Health* 2020, 17, 1007. [CrossRef]

171. Hwang, S.H.; Kim, Y.J. Meropenem-resistant bacteria in hospital effluents in Seoul, Korea. *Environ. Monit. Assess.* 2018, 190, 673. [CrossRef]

172. Haller, L.; Chen, H.; Ng, C.; Le, T.H.; Koh, T.H.; Barkham, T.; Sobsey, M.; Gin, K.Y.H. Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemase-producing bacteria from hospital effluents in Singapore. *Sci. Total Environ.* 2018, 615, 1119–1125. [CrossRef]

173. Suzuki, Y.; Nazareno, P.J.; Nakano, R.; Mondoy, M.; Nakano, A.; Bugayong, M.P.; Bilan, J.; Perez, M.; Medina, E.J.; Saito-Obata, M.; et al. Environmental Presence and Genetic Characteristics of Carbapenemase-Producing Enterobacteriaceae from Hospital Sewage and River Water in the Philippines. *Appl. Environ. Microbiol.* 2020, 86, 1–10. [CrossRef]

174. Nasri, E.; Subirats, J.; Sánchez-Melsió, A.; Ben Mansour, H.; Borrego, C.M.; Balcázar, J.L. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals. *Environ. Pollut.* 2017, 229, 371–374. [CrossRef]

175. Marathe, N.P.; Berglund, F.; Razavi, M.; Pal, C.; Dröge, J.; Samant, S.; Kristiansson, E.; Larsson, D.G.J. Sewage effluent from an Indian hospital harbors novel carbapenemases and integron-borne antibiotic resistance genes. *Microbiome* 2019, 7, 97. [CrossRef]

176. Zhang, L.; Ma, X.; Luo, N.; Duan, J.; Yang, F.; Zhong, R.; Li, Y. The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. *Int. J. Environ. Res. Public Health* 2020, 17, 1183. [CrossRef]

177. Luo, Y.; Yang, F.; Mathieu, J.; Mao, D.; Wang, Q.; Alvarez, P.J.J. Proliferation of Multidrug-Resistant New Delhi Metallo-β-lactamase Genes in Municipal Wastewater Treatment Plants in Northern China. *Environ. Sci. Technol. Lett.* 2014, 1, 26–30. [CrossRef]

178. Yang, F.; Mao, D.; Zhou, H.; Wang, X.; Luo, Y. Propagation of New Delhi Metallo-β-lactamase Genes (bla NDM-1) from a Wastewater Treatment Plant to Its Receiving River. *Environ. Sci. Technol. Lett.* 2016, 3, 138–143. [CrossRef]

179. Mantilla-Calderon, D.; Jumat, M.R.; Wang, T.; Ganesan, P.; Al-Jassim, N.; Hong, P.Y. Isolation and characterization of NDM-positive Escherichia coli from municipal wastewater in Jeddah, Saudi Arabia. *Antimicrob. Agents Chemother.* 2016, 60, 5223–5231. [CrossRef]

180. Stachurová, T.; Piková, H.; Bartas, M.; Semerád, J.; Svoboďová, K.; Malachová, K. Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. *Chemosphere* 2021, 280, 130749. [CrossRef]

181. Mahon, B.M.; Brehony, C.; McGrath, E.; Killeen, J.; Cormican, M.; Hickey, P.; Keane, S.; Hanahoe, B.; Dolan, A.; Morris, D. Indistinguishable NDM-producing Escherichia coli isolated from recreational waters, sewage, and a clinical specimen in Ireland, 2016 to 2017. *Eurosurveillance* 2017, 22, 30513. [CrossRef]

182. Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. *Lancet Infect. Dis.* 2011, 11, 355–362. [CrossRef]

183. Lamba, M.; Gupta, S.; Shukla, R.; Graham, D.W.; Sreekrishnan, T.R.; Ammad, S.Z. Carbapenem resistance exposures via wastewater across New Delhi. *Environ. Int.* 2018, 119, 302–308. [CrossRef]

184. Divyashree, M.; Mani, M.K.; Shama Prakash, K.; Vijaya Kumar, D.; Veena Shetty, A.; Shetty, A.K.; Karunasagar, I. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies. *Water Environ. Res.* 2020, 92, 562–568. [CrossRef]

185. Bauernfeind, A.; Stemplinger, I.; Jungwirth, R.; Wilhelm, R.; Chong, Y. Comparative characterization of the cephemycinase *blaCMY-1* gene and its relationship with other beta-lactamase genes. *Antimicrob. Agents Chemother.* 1996, 40, 1926–1930. [CrossRef] [PubMed]

186. Philippson, A.; Arlet, G.; Jacoby, G.A. Plasmid-Determined AmpC-Type β-Lactamases. *Antimicrob. Agents Chemother.* 2002, 46, 1–11. [CrossRef] [PubMed]

187. Jacoby, G.A. AmpC β-Lactamases. *Clin. Microbiol. Rev.* 2009, 22, 161–182. [CrossRef] [PubMed]

188. Pérez- Etayo, L.; González, D.; Leiva, J.; Vitas, A.I. Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. *Microorganisms* 2020, 8, 1425. [CrossRef] [PubMed]

189. Yim, G.; Kwong, W.; Davies, J.; Miao, V. Complex integrons containing *qnrB4* (bla DHA-1) in plasmids of multidrug-resistant *Citrobacter freundii* from wastewater. *Can. J. Microbiol.* 2013, 59, 110–116. [CrossRef] [PubMed]

190. Su, H.-C.; Ying, G.-G.; He, L.-Y.; Liu, Y.-S.; Zhang, R.-Q.; Tao, R. Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. *Environ. Sci. Process. Impacts* 2014, 16, 324. [CrossRef] [PubMed]

191. Pitout, J.D.; Peirano, G.; Kock, M.M.; Strydom, K.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. *Clin. Microbiol. Rev.* 2019, 33, 1–48. [CrossRef]

192. Evans, B.A.; Ames, S.G.B. OXA β-Lactamases. *Clin. Microbiol. Rev.* 2014, 27, 241–263. [CrossRef]

193. Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.-P.; Touati, A. OXA-48-like carbapenemases producing *Enterobacteriaceae* in different niches. *Eur. J. Clin. Microbiol. Infect. Dis.* 2018, 37, 587–604. [CrossRef]

194. Poirel, L.; Héritier, C.; Tolun, V.; Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. *Antimicrob. Agents Chemother.* 2004, 48, 15–22. [CrossRef]