SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus 2) or corona virus disease 2019 (COVID-19) was reported from Wuhan city of China in December 2019 and the viral infection has been spreading rapidly around the world thereby making serious problems to the public health.[1] The World Health Organization (WHO), on March 11, 2020, recognized the disease as a global pandemic due to rising concern about its fast spreading and capacity to transmit from human to human.[2] Like SARS-CoV, SARS-CoV-2 or COVID-19 belongs to the β genus of single strand enveloped RNA virus (family of Coronaviridae), which is responsible for acute lung injury accompanied by acute respiratory distress syndrome.[3] Early scientific investigations have shown that the entry of SARS-CoV as well as SARS-CoV-2 into the host cell occurs through the binding of the viral envelope-anchored spike protein with the host receptor ACE2 (angiotensin-converting enzyme 2), thereby causing the infection in the host.[4] There is still no vaccine or definite therapeutic agents for the treatment of the infection caused by SARS-CoV-2.[5] Several antiviral and antimalarial drugs, such as Favipiravir (Influenza), Ribavirin (RSV infection and hepatitis C infection), Nelfinavir (HIV infection), Lopinavir/ritonavir (HIV infection), remdesivir (Hepatitis C and Sars-CoV-2 infection), Umifenovir (Arbidol) (Influenza), Chloroquine, and Hydroxychloroquine (malaria), have been used for the preliminary treatment of COVID-19.[6-11] Recently, a combination of three drugs, Lopinavir, Oseltamivir, and Ritonavir has been formulated as a therapeutic measure to manage the virulence to a great extent in COVID-19 patients (The Scientist, February 3 2020,
https://www.the-scientist.com/news-opinion/flu-and-anti-hiv-drugs-show-efficacy-against-coronavirus-67052). However, these antiviral or antimalarial drugs have some limitations for the treatment of COVID-19. Moreover, so far, there is no specific drug against COVID-19 approved by the US Food and Drug Administration Agency.[12,13] Therefore, given the global pandemic situation, the world is in need of highly efficient, minimal side effect, inexpensive, and readily available drugs against COVID-19. After the outbreak of COVID-19, different research groups have been continuously working in designing and formulating antiviral drugs and vaccines to ascertain the therapeutic strategies for COVID-19.[14-22] Many of these research groups have reported the binding affinity of different natural products, fungal secondary metabolites, FDA approved antiviral or antimalarial drugs, and food supplements, among others, toward the main protease (6LU7) of SARS-CoV-2. Moreover, the nucleoside analogs usually show antiviral activities by inhibiting the viral replication through the blockage of cellular division or impairment of DNA/RNA synthesis or inhibition of cellular or viral enzymes activity.[40,41] The nucleoside analogs Telbivudine (Hepatitis B inhibitor), Entecavir (HIV/ AIDS and Hepatitis B inhibitor), Clevudine (Hepatitis B inhibitor), Zalcitabine (reverse-transcriptase inhibitor), Taribavirin (prodrug of Ribavirin), Stavudine (HIV/ AIDS inhibitors), Lamivudine (first-generation nucleoside reverse transcriptase inhibitor), Cordycepin (RNA synthesis inhibitor), and Cordycepin Triphosphate (polyadenylation inhibitors, antineoplastic, antioxidant, and anti-inflammatory agent) have been used in the treatment of many viral diseases.[42-52] In recent times, bioinformatics have provided an alternative and innovative technique to combat this problem of the design and manufacture of new drug molecule for specific diseases.[53] Molecular docking study provides an insight into the different types of intermolecular interactions between a target protein and its ligand in a three-dimensional space; therefore, this method serves as a simple and alternative way in the process of designing, evaluating, and comparing new drugs.[54] Thus, in this article, an attempt has been made to study the binding affinities as well as protein-ligand interaction of nine nucleoside analogs against the main protease (6LU7) of SARS-CoV-2.

Methods

Preparation of Protein

Crystal structures of the main protease (Mpro) of SARS-CoV-2 or COVID-19 with PDB ID: 6LU7 were retrieved through Protein Data Bank (http://www.rcsb.org/). In order to prepare the receptor protein input files, Graphical User Interface program “Auto Dock Tools (ADT) 1.5.6” from Molecular Graphics Laboratory developed by Scripps Research Institute was used.[55] In a typical receptor protein preparation for docking study, input file was generated by taking the specific chain of the protein (Chain A) and removing water molecules, ions, ligands, and subunits from the original structure file. The receptor protein input.pdbqt file was prepared by adding polar hydrogen atoms and Kollman united atom charges into the receptor PDB file.[56]

Preparation of Ligand

The three-dimensional structure of the nucleoside analogs, including Telbivudine (PubChem CID: 159269), Entecavir (PubChem CID: 135398508), Clevudine (PubChem CID: 73115), Zalcitabine (PubChem CID: 24066), Taribavirin (PubChem CID: 451448), Stavudine (PubChem CID: 18283), Lamivudine (PubChem CID: 60825), cordycepin (PubChem CID: 6303), and cordycepin triphosphate (PubChem CID: 65562), were downloaded in.sdf format from PubChem (http://pubchem.ncbi.nlm.nih.gov/) database and depicted in Figure 1. The 3D structures in.sdf format of nucleoside analogs were converted to standard.pdb file format using online SMILES translator (https://cactus.nci.nih.gov/translate/) and the input.pdbqt file was generated using ADT. Since the nucleoside analog drugs were non-peptides, Gasteiger charge was assigned and non-polar hydrogens were merged.

Docking Study

All docking simulations were performed in AutoDock Vina programme 1.1.2 developed by Scripps Research institute and results of the docking study and intermolecular interactions between the receptors and nucleoside analogs were analyzed using BIOVIA Discovery Studio 2020 (DS) version 20.1.0.0 (Dassault Systèmes BIOVIA, Discovery Studio Modelling Environment, Release 2017, San Diego: Dassault Systèmes, 2016) and Edupymol version 1.7.4.4.[57,58] In a typical docking simulation, three-dimensional affinity (grid) maps and electrostatic grid boxes of dimension 50x50x50 Å grid points and grid center (X, Y, Z) of −26.283, 12.599, and 58.966 with a spacing of 1.00 Å were generated to cover the entire active site of the receptor protein. Lamarckian genetic algorithm and a standard protocol with default setting of other run parameters were used for the docking simula-
The predicted inhibitory constant (pKi) was calculated using the following standardized equation.\(^{[59]}\)

\[
pKi = 10 \left(\frac{\text{Binding Energy Score}}{1.336} \right)
\]

Results and Discussion

According to WHO report, till 4\(^{th}\) August 2020, a total number of 18,603,263 people have been infected with COVID-19 across the world and over 701,253 people have lost their lives (Worldometer, Last updated: August 5\(^{th}\), 2020, https://www.worldometers.info/coronavirus). Till date, many countries are trying to develop a vaccine or antiviral drug for the effective treatment of COVID-19.\(^{[5]}\) However, many research studies have shown that the existing FDA approved drugs, such as Chloroquine, Hydroxychloroquine (antimalarial drug), Lopinavir, Ritonavir, Darunavir, Favipiravir (approved drug for HIV infection), Remdesivir, Ribavirin, Galidesivir (approved drug for Ebola virus infection), and Arbidol (influenza antiviral drug), are effective for the treatment of COVID-19.\(^{[6-11]}\) Recent studies on SARS-CoV-2 have shown that the main protease (M\(^{\text{pre}}\)) is highly conserved across the coronavirus family and that they are mainly responsible for viral replication.\(^{[60]}\) Moreover, the crystal structure of M\(^{\text{pre}}\) (6LU7) of SARS-CoV-2 in complex with the inhibitor ligand N3 have shown that the inhibitor ligand (N3) binds to the M\(^{\text{pre}}\) of SARS-CoV-2 through Cys145-His41 catalytic dyad present at the interface between domain I and domain II on the active site of M\(^{\text{pre}}\) (6LU7), similar to SARS-CoV (Fig. 2).\(^{[61]}\)

Therefore, the discovery of prominent and potentially active therapeutic agents that could inhibit the M\(^{\text{pre}}\) is a dire need of the situation to combat the COVID-19 pandemic. Herein, in this research work, we studied the binding affinities and inhibitory potential of nine nucleoside analog antiviral agents against the main protease (6LU7) of SARS-CoV-2 through molecular docking simulation by taking the blind docking calculations i.e., covering the entire protein surface as the binding pocket in order to avoid sampling bias. The binding energies, types of interactions with possible target amino acid residues, and predicted inhibitory constant (pKi) are depicted in Table 1. The detailed analysis of binding affinity, intermolecular protein-ligand interaction.
Nucleoside analogs:	Binding Energy (ΔG, Kcal/mole)	Predicted inhibitory constant (pKi) μM	Amino Acid residues	Types of interactions
Telbivudine	-6.5	7.7	Leu141, Gly143, Ser144, Cys145 and His163	H-bonding
			His41	Pi (n) donor H bond
			Met49, Phe140, Asn142, His164, Met165, Glu166 and His172	Van der walls
Entecavir	-6.8	6.1	Thr26, Leu141 and Glu166 Cys145	H-bonding
			Thr25, Leu27, His41, Met49, Phe140, Asn142, Gly143, Ser144, Met165, His172 and Gln189	Van der walls
			Cys145 Thr25, His41, Met49, Phe140, Asn142, Gly143, Ser144, Met165, His172 and Gln189	Pi(n)-alkyl
			Gly143, Phe140, Asn142, Gly143, His163, Met165, Glu166 and Gln189	Van der walls
Clevudine	-6.8	6.1	Phe140, Leu141, Ser144 and Cys145	H-bonding
			Cys145	Pi(n)-sigma
			His41	Halogen (F) bond
			Met49, Asn142, Gly143, His163, Met165, Glu166 and Gln189	Van der walls
			Phe140, Asn142, Gly143, His163, Met165, Glu166 and Gln189	Van der walls
Zalcitabine	-5.8	13.0	Leu141, Ser144, His163 and Glu166 Cys145	H-bonding
			Phe140, Asn142, Gly143, His163, Met165, Glu166 and Gln189	Pi(n)-alkyl
			His164	Van der walls
			Met49, Asn142, Gly143, His163, Met165, Glu166 and Gln189	Van der walls
Taribavirin	-6.1	10.4	Asn142, Ser144 and Glu166 Cys145	H-bonding
			Asn142, Ser144 and Glu166 Cys145	Pi(n)-alkyl
			Leu141, Gly143, His163, His164, Met165, Asp187, Arg188 and Gln189	Van der walls
			Leu141, Gly143, His163, His164, Met165, Asp187, Arg188 and Gln189	Van der walls
Stavudine	-6.5	7.7	Gly143, Ser144, Cys145 and His163	H-bonding
			Gly143, Ser144, Cys145 and His163	Pi(n)-alkyl
			His41 and Cys145	Van der walls
			Leu27, Met49, Phe140, Leu141, Asn142, His164, Met165, Glu166 and His172	Van der walls
Lamivudine	-5.7	14.0	Phe140, Ser144, Cys145, His163, His164 and Glu166 Cys145	H-bonding
			Phe140, Ser144, Cys145, His163, His164 and Glu166 Cys145	Pi(n)-alkyl
			Met49, His41, Leu141, Cys145 Met49, His41, Leu141, Asn142, Gly143, Met165 and His172	Van der walls
			Cys145 Cys145 Met49, His41, Leu141, Asn142, Gly143, Met165 and His172	Van der walls
Cordycepin	-6.5	7.7	Ser144 Cys145 Met165 His41	H-bonding
			Ser144 Cys145 Met165 His41	Pi(n)-alkyl
			Leu141, Asn142, Gly143, His163, His164, Glu166, Asp187, Arg188 and Gln189	Van der walls
actions, and possible amino acid residue for each type of proteins with the studied ligand are given below:

Analysis of Docking Result

The docking results of all the nine nucleoside molecules against the main protease of SARS-CoV-2 show that drug molecules binds significantly with the target protein at the interface between domain I and domain II on the active site of M^{pro} (6LU7) of SARS-CoV-2. The interaction of Telbivudine with the main protease show that the molecule interacts with the protein 6LU7 through five hydrogen bonds, with a binding energy (ΔG) of -6.5 Kcal/mole (Fig. 3). These hydrogen bonds are formed between: C=O group of residue Leu141 and NH (3) proton of pyrimidine ring at a distance of 2.54Å; NH group of residue Gly143 and C=O (2) of pyrimidine ring at a distance of 2.25Å; NH group and OH group of residue Ser144 and C=O (2) and NH (3) group of pyrimide ring at a distance of 2.30Å and 2.21Å; NH2 and SH group of residue Cys145 and C=O (2) group of pyrimidine ring and O (1) atom of tetrahydrofuran ring at a distance of 2.20Å and 3.48Å; and NH(imidazole) group of residue His163 and C=O (4) of pyrimidine ring at a distance of 2.07Å. Other types of interactions such as π-donor hydrogen bonding between the residue His41 and Telbivudine and van der walls interactions between Telbivudine and residues Met49, Phe140, Asn142, His164, Met165, Glu166, and His172 have also been observed.

The docking of Entecavir with the main protease of SARS-CoV-2 have shown that the molecule interacts with the protein at the interface between domain I and domain II on the active site of the protein, with a binding energy (ΔG) of -6.8 Kcal/mole. The major interactions are characterized by three hydrogen bonds between: OH (4) group of cyclopentane ring of Entecavir and C=O group of residue Thr26 at a distanceof 2.62Å; NH2(2) group of purine ring of Entecavir and C=O group of residue Ser144 at a distanceof 2.00Å; and C=O (6) group of purine ring of Entecavir and residue Glu166 at a distanceof 2.19Å (Fig. 4). Apart from the conventional hydrogen bonding, some π-alkyl (π-electron of

![Figure 3. Telbivudine docked with M^{pro} (6LU7) of SARS-CoV-2: (a) Best binding mode of Telbivudine in the pocket of protein (Telbivudine as green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding) and (c) Binding interaction (2D) of Telbivudine with amino acid residues of protein 6LU7 (green dash line represents H-bonding).](image-url)
purine ring of Entecavir and alkyl group of residue Cys145) and van der walls interactions (between the drug Entecavir and residues Thr25, Leu27, His41, Met49, Phe140, Asn142, Gly143, Ser144, met165, his172, and Gln189) were observed. An unfavorable donor-donor interaction between the residue His163 and NH2 (2) of purine ring of Entecavir has also been found.

After the successful docking of Clevudine against the main protease of SARS-CoV-2, the result shows that Clevudine-fits inside the core pocket region at the interface between domain I and domain II on the active site of the protein, with a binding energy (ΔG) of −6.8 Kcal/mol. Clevudine interacts with the target protein by the formation of four prominent hydrogen bonds and these hydrogen bonds are formed between: C=O group of residue Phe140 and OH (4) group of tetrahydrofuran ring of drug clevudine at a distance of 2.54Å; C=O group of residue Leu141 and H atom of CH2OH (5) group of cleavage at a distance of 2.31Å; NH2 and OH group of residue Ser144 and O and H atom of CH2OH (5) group of cleavage at a distance of 2.17Å and 2.48Å, respectively; and NH and SH group of Cys145 and O atom of CH2OH group and F (3) atom of tetrahydrofuran ring of cleavage at a distance of 2.54Å and 3.68Å, respectively (Fig. 5). Other types of interactions, such as π-sigma (between the π-electron of residue His41 and sigma electron of CH3 group of pyrimidine ring), Halogen (F) bond (between the F (3) atom of Clevudine and residue His163) and some van der walls interactions (between the residues Met49, Asn142, Gly143, His163, Met165, Gln189 and Clevudine) have also been observed.

Results obtained by the docking of Zalcitabine against the main protease of SARS-CoV-2 show the binding of Zalcitabine in the core pocket region at the interface between domain I and domain II of the main protease, with a binding affinity (ΔG) of −5.8 Kcal/mol. The major interaction between Zalcitabine and protein (6LU7) is characterized by four hydrogen bonds. The first two hydrogen bonds are formed between NH (imidazole ring) of residue His163 and C=O(2) group attached to pyrimidine ring of Zalcitabine at a distance of 1.91Å (Fig. 6). The amino acid residue Cys145 was found to interact with Zalcitabine through π-alkyl interaction. Moreover, some van der walls interactions between Zalcitabine and residues Phe140, Asn142, Gly143, His164, Met165, His172, and Gln189 have been observed.

The results obtained by docking Taribavirin against the main protease of SARS-CoV-2 show that the drug molecule fits inside the core pocket region at the interface between domain I and domain II on the catalytically active site of main protein, with binding affinity (ΔG) of −6.1 Kcal/mol. Taribavirin forms three hydrogen bonds with the target protein. The first hydrogen bond exists between C=O group of residue Asn142 and OH (4) group attached to tetrahydrofuran ring at a distance of 2.96Å. The second and third hydrogen bonds are formed by the NH group of residue Ser144 and NH group of residue Glu166 with CH2OH (5) group and OH (3) group attached to tetrahydrofuran ring at a distance of 2.21Å and 2.26Å, respectively (Fig. 7).
drogen bonding interactions, π-alkyl (alkyl group of cysteine and π-electron of triazole ring) interaction and some van der walls interaction between Taribavirin and residues His41, Met49, Phe140, Leu141, gly143, his163, His 164, Met165, Asp187, Arg188, and Gln189 were also observed.

The docking result of Stavudine against the main protease of SARS-CoV-2 showsthat Stavudine occupies the space at the interface between domain I and domain II on the catalytically active site of the enzyme and interacts with the target protein by four major hydrogen bonding, with a binding energy (ΔG)of−6.5 Kcal/mole. Interestingly, the first three hydrogen bonds are formed by NH group of residues Gly143, Ser144, and Cys145 with C=O(2) group attached to the pyrimidine ring of Stavudine at a distance of 2.54Å, 2.12Å, and 2.34Å, respectively. The fourth hydrogen bonding exists between NH (imidazole ring) of residue His163 and C=O(4) group attached to pyrimidine ring at a distance of 2.07Å (Fig. 8). His41 and Cys145 forms π-alkyl interaction with the Stavudine molecule. The residues Leu27, Met49, Phe140, Leu141, Asn142, His164, Met165, Glu166, and His172 interact with Stavudine through van der Waals interactions.
Analysis of the docking result of Lamivudine with the main protease of SARS-CoV-2 revealed that Lamivudine interacts with the protein at the interface between domain I and domain II on the active catalytic side, with a binding affinity (ΔG) of −5.7 Kcal/mole. Seven major hydrogen bonding interactions exist between the protein and Lamivudine. These hydrogen bonding are found to exist between: C=O group of Phe140 and COOH group of residue Glu166 with NH2 (4) attached to pyrimidine ring of Lamivudine at a distance of 2.39Å and 2.65Å, respectively; NH2 group of Ser144 with C=O (2) group attached to pyrimidine ring at a distance of 2.73Å; NH2 and SH group of residue Cys145 with C=O (2) attached to pyrimidine ring and O(1) of tetrahydrofuran ring at a distance of 2.75Å, 3.23Å, and 3.35Å, respectively; NH (imidazole ring) of residue His163 with N(3) group of pyrimidine ring at a distance of 2.27Å; and C=O group of residue His164 with CH2OH group attached to tetrahydrofuran ring at a distance of 2.34Å (Fig. 9). Apart from these hydrogen bonding interactions, residue Cys145 interacts with the drug through π-alkyl interaction and residues His41, Met49, Leu141, Asn142, Gly143, Met165, and His172 interacts with Lamivudine through van der walls interactions.
The docking of Cordycepin with the main protease of SARS-CoV-2 revealed that Cordycepin interacts with the protein in the core pocket region of catalytically active site (interface between domain I and domain II), with a binding affinity (ΔG) of -6.5 Kcal/mole. Furthermore, NH$_2$ and OH group of residues Ser144 and SH group residue Cys145 forms hydrogen bonds with CH$_2$OH group attached to tetrahydrofuran ring at a distance of 2.17Å, 2.81Å, and 2.97Å, respectively (Fig. 10). Residue His41 forms π-π T shaped interactions with the π electron of purine ring and residue Met165 forms π-alkyl interaction. The amino acid residues Leu141, Asn142, Gly143, His163, His164, Glu166, Asp187, Arg188, and Gln189 interacts with Cordycepin through van der walls interactions.

The docking of Cordycepin triphosphate against the main protease of SARS-CoV-2 showed significant interactions with the receptor protein in the catalytic pocket of protein 6LU7, with a binding affinity (ΔG) of -6.9 Kcal/mole. Analysis of the docking of cordycepin triphosphate against protein 6LU7, the main protease (Mpr°) of SARS-COV-2, has shown that they form favorable hydrogen bonding with the Cys145-His41 dyad of the main protease. Interestingly, NH (imidazole ring) of residue His41 forms hydrogen bonds with the Cys145-His41 dyad of the main protease.

Figure 9. Lamivudine docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Lamivudine in the pocket of protein (Lamivudine as green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Binding interaction (2D) of Lamivudine with amino acid residues of protein 6LU7 (green dash and pink dash line represents H-bond and Pi-alkyl interaction, respectively).

Figure 10. Cordycepin docked with Mpr° (6LU7) of SARS-CoV-2: (a) Best binding mode of Cordycepin in the pocket of protein (Cordycepin as green and red stick), (b) Amino acid residues involved in hydrogen bonding interaction (green dash line represents H-bonding), and (c) Binding interaction (2D) of Cordycepin with amino acid residues of protein 6LU7 (green dash, purple dash, and pink dash line represents H-bond, pi-pi T shaped, and Pi-alkyl interaction, respectively).
bond with one of the oxygen atom of the phosphate linkage of cordycepin triphosphate at a distance of 2.45Å and SH group of residue Cys145 forms hydrogen bond with the oxygen atom at the phosphate (CH2O-P) linkage of the cordycepin triphosphate at a distance of 3.73Å. Also, there is another hydrogen bond interaction between carbonyl oxygen (C=O) of residue Asp187 and NH2(6) group of Purine moiety (Fig. 11) at a distance of 2.41Å. Apart from the conventional hydrogen bonding, Cordycepin triphosphate interacts with the protein 6LU7 through Pi (π)-Pi (π) T shaped interaction between residue His41 and pi (π) electron of purine ring at a distance of 4.24Å and 5.32Å, Pi (π)-alkyl (alkyl group of Met 49 and met165 with Pi (π)electron of purine ring) and van der walls interaction between the residues Thr24, Thr25, Thr26, Leu27, Tyr54, Asn142, Gly143, Ser144, His163, His164, Glu166, Arg188, and Gln189 and Cordycepin triphosphate.

Conclusion

In this study, an attempt has been made to examine the inhibitory potential of nine nucleoside analogs against the main protease of SARS-COV-2. Based on the present study, it can be concluded that the nucleoside analogs investigated can interact with the important amino acid residues of the studied proteins (6LU7) at the interface between domain I and domain II of the catalytically active site of SARS-COV-2 main protease and can inhibit the main protease of this novel coronavirus. The docking studies suggest that the binding affinities (ΔG) of the nine nucleoside analogs against the main protease of SARS-COV-2 are in the range of −5.7 Kcal/mole to −6.9 Kcal/mole and the binding affinity of the nine nucleoside analogs follows the order: −6.9 Kcal/mole (cordycepin triphosphate) > −6.8 Kcal/mole (Entecavir ≈ Clevudine) > −6.5 Kcal/mole (Telbivudine ≈ Stavudine < Cordycepin) > −6.1 Kcal/mole (Taribavirin) > −5.8 Kcal/mole (Zalcitabine) > −5.7 Kcal/mole (Lamivudine). Furthermore, *in vitro* and *in vivo* studies are required to transform these potential inhibitors as therapeutic agents in clinical trials.

Disclosures

Acknowledgements: Authors sincerely acknowledge the research facilities available at the St. Joseph’s College, Darjeeling, India and Fr. Dr. Donatus Kujur SJ, Principal, St. Joseph’s College, Darjeeling, India for his constant encouragement.

Ethics Committee Approval: The study was approved by the Local Ethics Committee.

Peer-review: Externally peer-reviewed.

Conflict of Interest: None declared.

Authorship Contributions: Concept – D.B., A.C.; Design – D.B.; Supervision – D.B.; Materials – A.C., D.B.; Data collection & processing – D.B., A.C.; Analysis and/or interpretation – A.C., D.B.; Literature search – D.B., A.C.; Writing – D.B., A.C.; Critical review – D.B., A.C.

References
1. Sang P, Tian SH, Meng ZH, Yang LQ. Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances 2020;10:15775–83.
2. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature Medicine 2020;26:450–5.
3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 2020;382:727–33.
4. Hoffmann M, Weber HK, Schroeder S, Krüger N, Herrler T, Er-
ichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;81:271–80.
5. Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020;10:320–8.
6. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020;30:269–71.
7. Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv. 2020 Apr 8. doi: https://doi.org/10.1101/2020.04.06.026476. [Epub ahead of print].
8. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/ Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci 2020;35:e79.
9. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al; Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020;382:929–36.
10. Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 2020;6:28.
11. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932.
12. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020;382:1787–99.
13. Wafa T, Mohamed K. Molecular Docking Study of COVID-19 Main Protease with Clinically Approved Drugs. ChemRxiv. 2020 Jun 29. doi: https://doi.org/10.26434/chemrxiv.12318689.v1. [Epub ahead of print].
14. Peeke KA, Potla Durthi C, Srijhansa T, Krupanidhi S, Ayyagari VS, Babu DJ, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform Med Unlocked 2020;19:100345.
15. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30–1.
16. Mothay D, Ramesh KV. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock. Virusdisease 2020;31:1–6.
17. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020;14:241–6.
18. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020;19:149–50.
19. Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto, S. Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints 2020 Mar 13. doi: 10.20944/preprints202003.0226.v1. [Epub ahead of print].
20. Gao K, Nguyen DD, Wang R, Wei GW. Machine intelligence design of 2019-nCoV drugs. bioRxiv. 2020 Feb 4. doi: https://doi.org/10.1101/2020.01.30.927889. [Epub ahead of print].
21. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020;21:730–8.
22. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020;14:58–60.
23. Hall DC Jr, Ji HF. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis 2020;35:101646.
24. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020;47:119–21.
25. Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, et al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCoV main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv. 2020 Jan 28. doi: https://doi.org/10.1101/2020.01.27.921627.[Epub ahead of print].
26. Aly OM. Molecular Docking Reveals the Potential of Alikiren, Dipyridamole, Mopidamol, Rosuvastatin, Rolitetracycline and Metamizole to Inhibit COVID-19 Virus Main Protease. ChemRxiv. 2020 Apr 3. doi: doi.org/10.26434/chemrxiv.12061302.v1. [Epub ahead of print].
27. Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, et al. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. Nanomaterials 2020;10:852.
28. Belhassan A, Chtita S, Zaki H, Lakhlifi T, Bouachrine M. Molecular docking analysis of N-substituted oseltamivir derivatives with the SARS-CoV-2 main protease. Bioinformation 2020;16:404–10.
29. Huynh T, Wang H, Luan B. In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2’s Main Protease. Journal of Physical Chemistry Letters 2020;11:4413–20.
30. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends 2020;14:69–71.
31. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candi-
date drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020;157:104859.

32. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Risci- fina A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs 2020;18:225.

33. Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020;10:313–9.

34. Narkhede RR, Cheke RS, Ambhore JP, Sindhe SD. The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology 2020;4:185–95.

35. Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science 2020;6:315–31.

36. Harismah K, Mirzaei M. Favipiravir: Structural Analysis and Activity against COVID-19. Advance Journal of Chemistry B 2020;2:55–60.

37. Eyler L, Nencra K, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 2018;26:2040206618761299.

38. De Clercq E, Li G. Approved Antiviral Drugs over the Past 50 Years. Clin Microbiol Rev 2016;29:695–747.

39. Mahmoud S, Hasabelnaby S, Hammad SF, Sakr TM. Antiviral Nucleoside and Nucleotide Analogs: A Review. Journal of Advance Pharmaceutical Research 2018;2:73–88.

40. ZandiK, Bassit L, Amblard F, Cox BD, Hassanarvish P, Moghaddam E, et al. Nucleoside Analogs with Selective Antiviral Activity against Dengue Fever and Japanese Encephalitis Viruses. Antimicrobial Agents and Chemotherapy 2019;63:e00397–19.

41. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nature Review Drug Discovery 2013;12:447–64.

42. Seifer M, Patty A, Serra I, Li B, Standing DN. Telbivudine, a nucleoside analog inhibitor of HBV polymerase, has a different in vitro cross-resistance profile than the nucleo- tide analog inhibitors adeovir and tenofovir. Antiviral Research 2009;81:147–55.

43. Lai CL, Shouval D, Lok AS, Chang TT, Cheinquer H, Goodman Z, et al. BEHoLD AI463027 Study Group. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. New England Journal of Medicine 2006;354:1011–20.

44. Rivkin A. Entecavir: a new nucleoside analogue for the treatment of chronic hepatitis B. Drugs Today (Barc) 2007;43:201–20.

45. Korba BE, Furman PA, Otto MJ. Clevudine: a potent inhibitor of hepatitis B virus in vitro and in vivo. Expert Review of Anti-Infective Therapy 2006;4:549–61.

46. Leandro KC, Moreira JC, Farias PA. Determination of Zalcitabine in Medicaments by Differential Pulse Voltammetry. J Pharm (Cairo) 2013;2013:495814.

47. Kearney KR, Thornton JJ, Navarro VJ. Taribavirin for the treatment of chronic hepatitis C. Expert Opinion on Pharmacotheraphy 2008;9:3243–9.

48. Piscitelli SC, Kelly G, Walker RE, Kovacs J, Falloon J, Davey RT Jr. A multiple drug interaction study of stavudine with agents for opportunistic infections in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1999;43:647–50.

49. Lea AP, Faulds D. Stavudine: a review of its pharmacodynamic and pharmacokinetic properties and clinical potential in HIV infection. Drugs 1996;51:846–64.

50. Querco R, Perno CF, Koteff J, Moore K, McCoig C, St Clair M, et al. Twenty-Five Years of Lamivudine: Current and Future Use for the Treatment of HIV-1 Infection. J Acquir Immune Defic Syndr 2018;78:125–35.

51. Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, et al. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 2014;1:866–81.

52. Tuli HS, Sandhu SS, Sharma AK. Pharmacological and therapeuti- c potential of Cordyceps with special reference to Cordycepin. J Biotech 2014;4:1–12.

53. Xia X. Bioinformatics and Drug Discovery. Curr Top Med Chem 2017;17:1709–26.

54. Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Science 2019;20:4331–53.

55. Morris GM, Huey R, Lindstrom W, Sanner MF, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91.

56. Vijesh AM, Isloor AM, Telkar S, Arumoli T, Fun HK. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian Journal of Chemistry 2013;6:197–204.

57. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2010;31:455–61.

58. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 2002;40:82–93.

59. Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful met- ric for lead selection. Drug discovery Today 2004;9:430–1.

60. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the Novel Coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of Human Transmis- sion. Science China Life Sciences 2020;63:457–60.

61. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582:289–93.