Investigation of the influence of vertical force on the contact between truck tyre and road using finite element analyses

Alexandra-Raluca Moisescu, Gabriel Anghelache
University POLITEHNICA of Bucharest, Automotive Engineering Department, Splaiul Independentei 313, sector 6, 060042, Bucharest, Romania
raluca.moisescu@upb.ro

Abstract. In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.

1. Introduction

The integration of the modern automobile in the evolution of the increasingly interconnected human society depends on the development of emerging smart technologies such as the intelligent tyre systems [1]-[8]. In this progressively complex context, the interaction between tyre and road is an element of crucial importance not only for automobile safety and fuel economy, but also for passenger comfort, environmental protection, durability of vehicle and infrastructure [9]-[11]. The tyre-road contact is concretized through the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses, which can be decomposed on three orthogonal directions.

The experimental research of tyre-road contact stresses distributions involves complex measuring equipment, embedded in the rolling surface [12]-[15] or mounted inside the tyre [16]. The numerical investigation of the distribution of contact stresses throughout the contact patch surface requires the development of finite element models capable of accurately describing the tyre behaviour and the interaction between tyre and rolling surface [17]-[21]. Several complex measuring systems, as well as numerous finite element models have been developed in the University POLITEHNICA of Bucharest for the investigation of tyre-road interaction [1], [12], [21]-[24].

Taking into consideration the non-uniformity and anisotropy that generate the highly non-linear behaviour of tyres, the finite element model of a radial truck tyre has been developed with particular attention to the complexity of the tyre structure and multitude of different components. The complex
finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force, applied in stationary conditions, on the distributions of contact stresses.

In addition to these contributions, the current paper presents aspects related to the numerical simulation of tyre radial stiffness. The influences of rolling speed and rolling conditions have not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions. Furthermore, the results presented in this paper are obtained taking into account constant inflation pressure and zero degrees camber angle for the radial tyre model.

2. Finite element model of radial truck tyre
The finite element model for investigation of the contact between truck tyre and road has been developed using Abaqus software. The profile coordinates have been measured on the exterior contour of an 11R22.5 truck tyre as well as on the exterior and interior contours of a corresponding truck tyre section. The 3D model shown in Figure 1 has been created accordingly [22], taking into consideration the components of real tyre structure, including the tread profile with circumferential grooves, the shape and position of beads, the real position and orientation of cord layers, and the different types of rubber components.

![Figure 1. Perspective view of the 3D model compared to the image of the real tyre section](image)

The finite element model includes the surface type elements for modelling the rebar layers, which have been defined with angle, spacing, section area and material properties, as well as the volume type elements for the different types of rubber components in the tyre structure [25]. Due to the orientation of belt plies, the model of tyre section is not symmetrical, and therefore the entire section has been modelled instead of using a symmetrical model for only half of the tyre section, which would have allowed reducing the number of elements and nodes [23]. The circumferential meshing is non-uniform, as it can be seen in Figure 2, in view of increasing the resolution in the contact patch [24], while maintaining a relatively small model size: 43214 nodes and 50441 elements.

Linear elastic properties have been attributed to the cord materials and bead materials [26], while hyperelastic behaviour has been defined using neo-Hookean model for the different types of rubber components [27]-[30]. Boundary conditions have been defined using a rigid body for modelling the
rim, with all degrees of freedom suppressed excepting rotation around tyre axis, and a rigid planar
surface representing the road, with one translational degree of freedom allowed on vertical direction.

Figure 2. Three-dimensional tyre model with non-uniform circumferential meshing [31]

Tyre inflation pressure has been defined on the interior surface of the model, and subsequently road
contact has been applied, with friction coefficient corresponding to real conditions [32],[33].

3. Steady-state analyses with vertical force applied between tyre and road surface
The steady-state analyses performed on the finite element model of the 11R22.5 truck tyre, with
inflation pressure and with vertical force, allowed simulating the contact between tyre and road and
obtaining the contact patch shape.

The contact patch shape resulting from the finite element analyses performed at 780 kPa inflation
pressure with 20234 N vertical force has been compared, as shown in Figure 3, with the contact patch
print determined experimentally in corresponding conditions. The tyre-road contact model is validated
by the good similarity of these results, although there are some small differences of shape which can
be explained by the mounting position with small camber angle of the real truck wheel. It can also be
noticed that some ribs in the tread profile of the real tyre have very thin transversal sipes, which have
not been included in the finite element model, because of limited meshing density.

Figure 3. Contact patch shape of the truck tyre model at 780 kPa inflation pressure,
compared to the contact print obtained experimentally
The radial stiffness curve of the truck tyre model shown in Figure 4 has been determined from the finite element analyses performed at 800 kPa inflation pressure, for a wide range of vertical loads. The highlighted point represents the radial stiffness obtained experimentally at 800 kPa inflation pressure, for a single value of vertical load, corresponding to the truck load in the road test conditions. It can be seen that the measured stiffness is relatively similar to the simulated value, but the real tyre stiffness is slightly higher than that of the finite element model. The radial stiffness of the tyre model tends to increase when the vertical load is higher [34], as it can be seen from the shape of the curve.

![Radial stiffness curve of the truck tyre model at 800 kPa inflation pressure, compared to the value of radial stiffness obtained experimentally](image)

Figure 4. Radial stiffness curve of the truck tyre model at 800 kPa inflation pressure, compared to the value of radial stiffness obtained experimentally

The influence of vertical force on the shape of contact patch and on the distributions of contact stresses on three orthogonal directions obtained from simulations is presented in Figure 5; the comparison has been made between the results obtained at two different values of vertical force, 20445 N and 10223 N, applied in stationary conditions. The simulations have been performed on the finite element model of the 11R22.5 truck tyre with 780 kPa inflation pressure and 1° camber angle.

The dimensions of the contact patch are strongly influenced by the vertical force applied on the tyre model. The shape of the contact patch under smaller vertical load is closer to a circular shape. The distributions of normal and lateral stresses are symmetrical with respect to the lateral plane containing the contact patch centre, while the longitudinal stresses are antisymmetrical with respect to this plane [35]. The symmetry of the distributions of normal and longitudinal stresses with respect to the longitudinal plane containing the contact patch centre is slightly affected by the camber angle. In stationary conditions, the maximum values of lateral stresses are located on the edges of tread ribs, and the global distribution of lateral stresses tends to be antisymmetrical with respect to the longitudinal plane containing the contact patch centre.

The values of longitudinal stresses are significantly smaller in the case of the lower vertical force, and the values of lateral stresses are also reduced in this case. The maximum values of normal stresses are approximately the same for the two different values of vertical force, and in both cases they are located at the contact patch centre. However the high values of normal stress are applied on a much smaller area of the contact patch in the case of the lower vertical force.
Figure 5. The distributions of contact stresses in [N/m²] for finite element tyre model with 20445 N vertical force (left) and 10223 N vertical force (right) at 780 kPa inflation pressure: a) longitudinal stresses, b) lateral stresses, c) normal stresses
4. Conclusions
The finite element model developed for the 11R22.5 truck tyre has allowed investigating the contact patch shape and dimensions, as well as the tyre radial stiffness. These parameters have been used for finite element model validation against experimental results.

The influence of vertical force applied in stationary conditions on the distributions of contact stresses has also been emphasized by the results of finite element analyses. The dimensions of the contact patch are strongly influenced by the vertical force applied on the tyre model. The vertical force has negligible influence of on the peak values of normal stresses, but changes significantly the area of the contact patch on which the high values of normal stress are applied. The distribution of lateral stresses is also related to the vertical force applied on the tyre model, while the effect on the values of longitudinal stresses is even more significant, with major consequences on vehicle stability and safety.

Acknowledgement
The research activities presented in this paper were performed within the scientific research contract ‘Experimental and Numerical Research on Tyre–Road Interaction in View of Increasing Automotive Safety and Road Transport Efficiency’, National Research Development and Innovation Plan – IDEAS Program, financed by National Authority for Scientific Research of the Romanian Ministry of Education, Research and Innovation.

References
[1] Anghelache G 1999 Tyre-Road Interaction at High Passenger Car Rolling Speed PhD Thesis - University POLITEHNICA of Bucharest
[2] Yang X et al. 2013 Experimental Investigation of Tire Dynamic Strain Characteristics for Developing Strain-Based Intelligent Tire System SAE International Journal of Passenger Cars-Mechanical Systems 8;6(2013-01-0633):97-108
[3] Yang X et al. 2015 FE-Based Tire Loading Estimation for Developing Strain-Based Intelligent Tire System SAE Technical Paper 2015-01-0627 2015 doi:10.4271/2015-01-0627
[4] Garcia-Pozuelo D et al. 2017 A novel strain-based method to estimate tire conditions using fuzzy logic for intelligent tires Sensors 17.2 (2017): 350. doi: 10.3390/s17020350
[5] Garcia-Pozuelo D et al. 2017 A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic Sensors 17.4 (2017): 874
[6] Buretea DL, Cormos CA 2009 Hybrid Car Battery Management International Congress ESFA2009 Bucharest Paper E09H102
[7] Buretea DL et al. 2006 Reducerea poluării prin optimizarea traficului rutier urban International Conference CLEANPROD2007 Suceava
[8] Nemtanu F et al. 2016 Mobility as a service in smart cities Responsible Entrepreneurship Vision Development and Ethics (2016): 425-435
[9] Li T, Burdisso R and Sandu C 2017 An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise SAE Technical Paper 2017-01-1904 2017
[10] Huang H et al. 2015 Three-dimensional global pattern prediction for tyre tread wear Proceedings of the Institution of Mechanical Engineers Part D: Journal of automobile engineering 229.2 (2015): 197-213 http://dx.doi.org/10.1177/0954407014537640
[11] Wang C et al. 2016 The influence of the contact features on the tyre wear in steady-state conditions Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering (2016): 0954407016671462. doi: 10.1177/0954407016671462
[12] Anghelache G et al. 2011 Measuring system for investigation of tri-axial stress distribution across the tyre-road contact patch Measurement 2011 Mar 31;44(3):559-68
[13] De Beer M, Fisher C 2013 Stress-In-Motion (SIM) system for capturing tri-axial tyre-road interaction in the contact patch. Measurement 46.7 (2013): 2155-2173
[14] Hernandez JA et al. 2013 Impact of tire loading and tire pressure on measured 3D contact stresses Airfield and highway pavement 2013: Sustainable and efficient pavements (551-560)
[15] Lundberg OE et al. 2017 A compact internal drum test rig for measurements of rolling contact force between a single tread block and a substrate Measurement 103 (2017): 370-378

[16] Matilainen M, Tuononen A 2015 Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer Mechanical Systems and Signal Processing 2015 28;52:548-58

[17] Hernandez JA et al. 2015 Numerical prediction of three-dimensional tire-pavement contact stresses Illinois Center for Transportation Research Report No. ICT-17-004 ISSN0197-9191

[18] Olatunbosun OA, Bolarinwa EO 2002 Analysis of rolling tire dynamic response using a 3D finite element model Twenty-first Annual Meeting and Conference on Tire Science and Technology Akron Ohio USA

[19] Chang YP, El-Gindy M 2002 FEA Rotating Tire Modeling for Transient Response Simulations ASME 2002 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers 2002. doi: 10.1115/IMECE2002-33200

[20] Shokouhifar S et al. 2016 Modal analysis of a rolling truck tyre subjected to inflation pressure and vertical deflection International Journal of Vehicle Systems Modelling and Testing 2016;11(2):116-41

[21] Negruş EM et al. 1997 Finite Element Analysis and Experimental Analysis of Natural Frequencies and Mode Shapes for a Non-Rotating Tyre Vehicle System Dynamics Supplement vol. 27 pp. 221-224. http://dx.doi.org/10.1080/00423119708969656

[22] Moisescu AR 2010 Research on Automotive Active Safety (The Tyre as an Element of Active Safety) PhD Thesis - University POLITEHNICA of Bucharest

[23] Moisescu AR, Anghelache G 2005 A Numerical Approach to the Contact between Tyre and Road CAR2005 - The 9th International Congress on Automotive Pitești 2005 ISBN 973-690-450-4 Paper CAR20051099

[24] Moisescu AR, Fratila G 2011 Finite Element Model of Radial Truck Tyre for Analysis of Tyre-Road Contact Stress University POLITEHNICA of Bucharest Mechanical Engineering Nr. 3 ISSN 1454-2358 Bucharest

[25] Wei C et al. 2017 A finite-element-based approach to characterising FTire model for extended range of operation conditions Vehicle System Dynamics 55.3 (2017): 295-312

[26] Celigueta-Azurmendi MC 2014 Modelización estructural de un neumático de competición por el método de los elementos finitos MSc Thesis Universidad de Navarra

[27] Yang X et al. 2010 Materials Testing for Finite Element Tire Model SAE Int. J. Mater. Manuf. 3(1):211-220 2010 doi: 10.4271/2010-01-0418.

[28] Anghelache G Moisescu AR 2008 Analysis of Rubber Elastic Behaviour and Influence on Modal Properties of Truck Tyre Materiale Plastice 45.2 (2008): 143-148

[29] Lopez Arteaga I 2011 Green’s functions for a loaded rolling tyre International Journal of Solids and Structures 2011 Dec 15;48(25):3462-70

[30] Behroozi M et al. 2012 Finite element analysis of aircraft tyre – Effect of model complexity on tyre performance characteristics Materials & Design 35 (2012): 810-819

[31] Anghelache G, Moisescu AR 2015 Truck Tyre-Road Contact Stress Measurement and Modelling Proceedings of the 4th International Tyre Colloquium University of Surrey Guildford UK 2015 http://epubs.surrey.ac.uk/id/eprint/807823

[32] Ghoreshy MH 2008 A state of the art review of the finite element modelling of rolling tyres Iranian Polymer Journal 2008 Aug 1;17(8):571-97

[33] Svendenius J 2007 Tire modeling and friction estimation PhD Thesis - Department of Automatic Control - Lund Institute of Technology - Lund University

[34] Li B, Yang X and Yang J 2014 Tire model application and parameter identification-A literature review SAE International Journal of Passenger Cars-Mechanical System 2014 Apr 1;7(2014-01-0872):231-43

[35] Anghelache G Moisescu AR 2006 Numerical and Experimental Research on Truck Tire-Road Contact Stress FISITA Congress Yokohama Japan 2006 Paper No. F2006V162 Session 3