Efficacy of transcatheter arterial chemoembolization using pirarubicin-loaded microspheres combined with lobaplatin for primary liver cancer

Chao Zhang, Yu-Hui Dai, Shu-Feng Lian, Liang Liu, Ting Zhao, Jun-Ye Wen

BACKGROUND

Drug-eluting beads show good safety and promising efficacy when used as part of a transcatheter chemoembolization regimen for primary liver cancer. However, data on the clinical efficacy and safety of pirarubicin-loaded beads combined with lobaplatin are lacking in China.

AIM

To evaluate the efficacy and safety of transcatheter arterial chemoembolization using pirarubicin-loaded beads combined with lobaplatin for primary liver cancer.

METHODS

Between January 2019 and March 2020, 60 patients with primary liver cancer were selected at Hebei North University Affiliated First Hospital. According to different treatment methods, the participants were categorized into two groups with 30 patients treated with pirarubicin-loaded microspheres combined with lobaplatin included in an observation group and 30 patients treated with pirarubicin emulsion with lipiodol combined with lobaplatin were included in a control group. The progression-free survival, overall survival, clinical response rate, disease control rate, liver and kidney function and adverse reactions were compared between the two groups.
RESULTS
The progression-free survival was 14 mo in the observation group, which was significantly higher than 9 mo of the control group ($P < 0.05$). The 6-mo, 12-mo and 18-mo survival rates were 93.33% (28/30), 66.67% (20/30) and 23.33% (7/30), respectively in the observation group, which were significantly higher than 83.33% (25/30), 50.00% (15/30) and 13.33% (4/30), respectively, of the control group (all $P < 0.05$). The clinical efficacy rate and disease control rate were 73.33% and 93.33%, respectively, in the observation group, which were significantly higher than those of the control group (53.55% and 80.00%, respectively, all $P < 0.05$). There was no significant difference in alpha-fetoprotein between the two groups before the treatment ($P > 0.05$). After the treatment, alpha-fetoprotein was 289.06 ± 76.21 ng/mL in the observation group and 365.01 ± 73.11 ng/mL in the control group, which were low in both groups compared with those before the treatment (all $P < 0.05$). The incidence of nausea and vomiting was significantly lower in the observation group than in the control group ($P < 0.05$). There was no significant difference for the adverse reactions of pain and fever between the two groups ($P < 0.05$).

CONCLUSION
The combination of pirarubicin-loaded beads and lobaplatin can improve treatment efficacy resulting in mild liver function damage and postoperative complications in patients with primary liver cancer. It can be used in clinical practice.

Key Words: Pirarubicin; Drug-loaded microspheres; Lobaplatin; Transcatheter arterial chemoembolization; Primary liver cancer

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Drug-eluting beads, a relatively novel drug delivery embolization system, show advantages over the conventional lipiodol embolization in the most used interventional therapy of transcatheter arterial chemoembolization for unresectable hepatic carcinoma. This study investigated the efficacy and safety of transcatheter arterial chemoembolization using pirarubicin-loaded beads combined with lobaplatin for primary liver cancer in comparison with conventional transcatheter arterial chemoembolization. The results revealed this combination therapy can increase treatment efficacy and improve hepatic function in patients with primary liver cancer.

Citation: Zhang C, Dai YH, Lian SF, Liu L, Zhao T, Wen JY. Efficacy of transcatheter arterial chemoembolization using pirarubicin-loaded microspheres combined with lobaplatin for primary liver cancer. World J Clin Cases 2022; 10(27): 9650-9656
URL: https://www.wjgnet.com/2307-8960/full/v10/i27/9650.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i27.9650

INTRODUCTION
Primary liver cancer is one of the malignant diseases of the digestive system with high morbidity and mortality[1,2]. The number of deaths caused by primary liver cancer in China per annum is half of the deaths in the world. Currently, the main therapies for primary liver cancer include liver transplantation, surgical resection, local ablation therapy, transcatheter arterial chemoembolization (TACE) and targeted therapy[3,4].

The onset of this disease is insidious, and it develops very fast. When primary liver cancer is confirmed in a patient, generally it means a high degree of malignancy and the patient has lost the best opportunity of surgical resection[3]. Encouragingly, TACE is increasingly used in the clinical treatment of primary liver cancer with the advancement in the treatment approaches[6]. Lipiodol, as a carrier for chemotherapy agents, can selectively deliver agents into microvessels in liver tumor tissues via the hepatic artery, which improves the treatment efficacy for liver cancer[7]. Liposoluble chemotherapy agents dissolved in lipiodol remain in the liver tumor longer, which may strengthen the anti-tumor efficacy of chemotherapy agents[8].

Drug-eluting microspheres, as a new embolic agent for peripheral vessels in tumors, can enhance embolization efficacy and is independent of the impact of embolic materials being washed away by blood flow as well as that of tissue degradation[9]. Studies showed that intervention therapies with lobaplatin pirarubicin revealed obvious efficacy for primary liver cancer with mild adverse reactions and prolonged survival[10,11]. The present study aimed to discuss the efficacy of TACE with pi-
Zhang C et al. TACE in primary liver cancer

rubicin-loaded microspheres combined with lobaplatin for primary liver cancer and determine progression-free survival, overall survival, clinical response rate, disease control rate, liver and kidney function and adverse reactions.

MATERIALS AND METHODS

Participants
Sixty patients with primary liver cancer were selected at Hebei North University Affiliated First Hospital between January 2019 and March 2020. They were categorized into two groups based on the treatment approaches. Thirty patients receiving pirarubicin-loaded microspheres combined with lobaplatin were included in an observation group, and 30 patients receiving pirarubicin emulsion with lipiodol combined with lobaplatin were included in the control group. The current study was approved by the hospital ethics committee, and all included patients signed the informed consent form for the academic research.

Inclusion criteria for this study were as follows: (1) Patients who were pathologically diagnosed with primary liver cancer after a biopsy; (2) Patients with class of liver function A to B; (3) Patients whose alpha-fetoprotein (AFP) was above 50 ng/mL; (4) Patients without metastasis or portal vein thrombosis; and (5) Patients whose tumor volume was less than 60% of the liver volume. Exclusion criteria for this study included: (1) Patients with severe heart, liver and kidney dysfunction; (2) Patients with other types of cancer; (3) Patients with iodine allergy; and (4) Patients who had an arteriovenous shunt.

Of the 30 patients in the observation group, 24 were male and 6 were female aged 34 to 66 (52.13 ± 13.12) years. In terms of Child-Pugh classification for liver function, 25 were class A patients, and 5 were class B patients. For complications, 18 patients had hepatitis B virus, and 17 patients had hepatocirrhosis. Of 30 patients in the control group, 25 were male and 5 were female aged 33 to 65 (50.36 ± 11.09) years. Regarding Child-Pugh classification for liver function, 26 were class A patients, and 4 were class B patients. Concerning complications, 19 patients had hepatitis B virus and 16 patients had hepatocirrhosis. The general information was comparable between the two groups \((P > 0.05) \).

Protocols
For the observation group, a 5-F tube introducer was inserted following femoral artery puncture. Routine radiography of celiac arteries and superior mesenteric arteries including left gastric arteries, bilateral phrenic arteries, right suprarenal arteries, internal thoracic arteries and intercostal arteries was performed to determine feeding arteries and whether hepatic arteriportal fistulas or hepatic arterial venous fistulas existed. Then a 2.2-F microcatheter was inserted into the feeding artery branches for chemoembolization. First, 50 to 150 mg of lobaplatin (H20080359; Hainan Changan International Pharmaceutical Co., Ltd., China) was perfused based on each patient’s disease severity. Afterwards, 5 to 40 mL of pirarubicin-loaded microspheres (H10930105; Shenzhen Main Luck Pharmaceuticals Inc., China) were injected fluoroscopically at a slow pace. Patients were closely monitored until blood flow interruption occurred within the blood vessels on radiography and until the staining disappeared. The operation for the control group was similar to the observation group. In the same way, 50 to 150 mg of lobaplatin was perfused based on each patient’s condition. Then pirarubicin emulsion with lipiodol combined with lobaplatin was injected. Also, they were closely monitored until blood flow was interrupted on radiography and until the staining disappeared. Patients in both groups were followed-up for 18 mo after the operation.

Measures
Progression-free survival was estimated after a follow-up of 18 mo. Overall survival at 6 mo, 12 mo and 18 mo was compared between the two groups. Short-term efficacy was compared between the two groups based on Evaluation Criteria in Solid Tumors. Complete remission was defined as all contrast enhancement of targeted lesions in the arterial phase had disappeared. Partial remission (PR) was defined as the total sum of the diameter for contrast enhancement of targeted lesions in the arterial phase reduced ≥ 30%. Stable disease was defined as a reduction in tumor enhancement intensity in the arterial phase had disappeared. Partial remission (PR) was defined as the total sum of the diameter for contrast enhancement of targeted lesions in the arterial phase increased by ≥ 20% or new lesions were observed. Clinical efficacy = complete remission + PR. Disease control rate = complete remission + PR + stable disease. AFP was used to analyze hepatic and renal function. Higher AFP is associated with greater hepatic injury. In addition, adverse reactions were compared between the two groups.

Statistical analysis
SPSS22.0 software was used for data processing. Student’s \(t \) test was used for quantitative variables, which was reported with mean ± SD. \(\chi^2 \) test was used for qualitative variables and was presented as (%). \(P < 0.05 \) represented a significant difference.
RESULTS

Progression-free survival was 14 mo in the observation group, which was higher than 9 mo of the control group ($P < 0.05$). The 6-mo, 12-mo and 18-mo survival was 93.33% (28/30), 67.77% (20/30) and 23.33% (7/30), respectively, which was higher than 83.33% (25/30), 50.00% (15/30) and 13.33% (4/30), respectively, of the control group (all $P < 0.05$).

In terms of treatment efficacy, the clinical efficacy and disease control rate was 73.33% and 93.33%, respectively, which was higher than 53.55% and 80.00%, respectively, in the control group (all $P < 0.05$, Table 1).

There was no significant difference in AFP between the two groups before the treatment ($P > 0.05$). After the treatment, AFP was 289.06 ± 76.21 ng/mL in the observation group and 365.01 ± 73.11 ng/mL in the control group. AFP was low after the treatment compared with those before the treatment, and it was significantly lower in the observation group than in the control group (all $P < 0.05$, Table 2).

After comparing adverse reactions after the treatment, the primary adverse reactions included nausea and vomiting, pain and fever. Most of them were mild to moderate. The incidence of nausea and vomiting was significantly lower in the observation group than in the control group (all $P < 0.05$, Table 3). However, there was no significant difference in the incidence of pain and fever between the two groups ($P > 0.05$).

DISCUSSION

Currently, imaging and biopsy after resection are generally used for the diagnosis of primary liver cancer. However, most patients with liver cancer develop advanced stages before they are diagnosed, which causes the disease to be hard to treat and leads to high mortality\[12,13\]. The optimal treatment for liver cancer is surgical resection, which can thoroughly remove the primary lesions, and the recurrence rate is low. However, this therapy only applies to early-stage primary liver cancer patients with Child-Pugh class A or B and without metastasis\[14,15\].

For patients who were considered ineligible for surgery, the well-accepted therapy of TACE is used, which can effectively inhibit the development of primary liver cancer by blocking the blood flow to a tumor in the liver and cutting off the liver tumor’s nutrient supply\[16,17\]. Clinical studies showed that arterial embolization using a microcatheter can directly embolize blood supply to tumors and cut off nutrient supply for tumor growth\[18\]. Meanwhile, pirarubicin-loaded microspheres combined with lobaplatin contribute to a thorough embolism, which may inactivate tumor cells and tissues and to some extent inhibit tumor growth causing tumor atrophy and necrosis\[19,20\]. Moreover, hepatic artery embolization using lipiodol-based emulsion alone can easily lead to hepatic necrosis or biliary duct necrosis, which may increase the burden of liver function\[21,22\]. Favorably, microsphere embolism can effectively reduce tumor feeding arteries, embolize tumors, reduce establishment of collateral circulation for incomplete tumor necrosis and cut off nutrient supply for tumor growth\[23\].

Microspheres loaded with pirarubicin combined with lobaplatin can facilitate concentrations of chemotherapeutic agents to a high level for a prolonged period in local tumors. In this way, concentrations of chemotherapeutic agents in the systemic circulation was reduced thus mitigating adverse effects of these agents in other organ systems and to lower the incidence of complications. The present study manifested that pirarubicin-loaded microspheres combined with lobaplatin can extend survival in patients undergoing TACE. The 6-mo, 12-mo and 18-month survival was higher in patients receiving pirarubicin-loaded microspheres combined with lobaplatin than those receiving pirarubicin emulsion with lipiodol combined with lobaplatin for TACE.

Meanwhile, the clinical treatment efficacy and disease control rate was high in patients receiving pirarubicin-loaded microspheres combined with lobaplatin compared with those receiving pirarubicin emulsion with lipiodol combined with lobaplatin. The effect of pirarubicin-loaded microspheres combined with lobaplatin was relatively small, and the adverse reactions were mild after treatment. Further studies are needed to confirm these findings.

CONCLUSION

The efficacy is good and adverse reactions are mild in patients with primary liver cancer undergoing TACE using pirarubicin-loaded microspheres combined with lobaplatin. Large-scale studies with long follow-up periods are needed to further investigate these results.
Table 1 Efficacy of the two treatment approaches, n (%)

Groups	CR	PR	SD	PD	Clinical efficacy, %	Disease control rate, %
Observation group, n = 30	7 (23.33)	15 (50.00)	6 (20.00)	2 (6.67)	73.33	93.33
Control group, n = 30	5 (16.67)	11 (36.67)	8 (26.67)	6 (20.00)	53.33	80.00
χ² value	15.521	5.660				
P value	0.001	0.041				

Clinical efficacy = complete remission + partial remission; Disease control rate = complete remission + partial remission + stable disease. CR: Complete remission; PR: Partial remission; SD: Stable disease; PD: progressive disease.

Table 2 Comparison of alpha-fetoprotein between the two groups before and after the treatment (mean ± SD, ng/mL)

Groups	Before the treatment	After the treatment
Observation group, n = 30	621.07 ± 154.76	289.06 ± 76.21
Control group, n = 30	609.76 ± 145.69	365.01 ± 73.11
t value	1.024	6.843
P value	0.237	0.034

Table 3 Incidence of adverse reactions in the two groups after the treatment, n (%)

Groups	Nausea and vomiting	Pain	Fever
Observation group, n = 30	9 (30.00)	21 (70.00)	11 (36.67)
Control group, n = 30	19 (63.33)	22 (73.33)	12 (40.00)
χ² value	6.421	0.245	0.312
P value	0.035	0.543	0.564

ARTICLE HIGHLIGHTS

Research background
Transcatheter arterial chemoembolization (TACE) using microspheres as the drug carrier and embolization agent shows good efficacy and safety for the treatment of liver cancer compared with conventional chemotherapy.

Research motivation
Data on the clinical efficacy of TACE using pirarubicin-loaded microspheres combined with lobaplatin is rare in China.

Research objectives
This study evaluated the effectiveness and safety of TACE using pirarubicin-loaded microspheres combined with lobaplatin for treatment of primary liver cancer.

Research methods
In this observational study, patients with primary liver cancer undergoing TACE were recruited at Hebei North University Affiliated First Hospital. Patients were categorized into an observation group and a control group based on different types of embolic agents. The observation group received pirarubicin-loaded microspheres combined with lobaplatin, and the control group received conventional pirarubicin emulsion with lipiodol combined with lobaplatin. The primary outcomes included progression-free survival, overall survival, clinical response rate, disease control rate, liver and kidney function, and adverse reactions.

Research results
In general, the treatment efficacy was better in the observation group than in the control group. Progression-free survival was higher in the observation group than in the control group. After the
treatment, alpha-fetoprotein, which represents hepatic function, was lower in the observation group than in the control group. For the primary adverse reactions, the incidence of nausea and vomiting was lower in the observation group than in the control group. However, there was no significant difference in the incidence of pain and fever between the two groups.

Research conclusions

Pirarubicin-loaded microspheres combined with lobaplatin can extend survival and improve hepatic function in patients undergoing TACE compared with those receiving pirarubicin emulsion with lipiodol combined with lobaplatin.

Research perspectives

Further research is needed to better investigate the long-term efficacy and safety of cancer microsphere intervention in patients with primary liver cancer.

FOOTNOTES

Author contributions: Zhang C, Dai YH, Lian SF, Liu L, Zhao T and Wen JY designed the research study; Zhang C and Dai YH performed the research; Zhang C, Dai YH, Lian SF, Liu L, Zhao T and Wen JY analyzed the data and wrote the manuscript; All authors have read and approved the final manuscript.

Supported by Zhangjiakou Science and Technology Research and Development Program, No. 1821154H; and Zhangjiakou Technology Innovation Guidance Program, No. 2021194H.

Institutional review board statement: The study was reviewed and approved by the Hebei North University Affiliated First Hospital Institutional Review Board.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare no conflict of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Chao Zhang 0000-0002-2252-0328; Jun-Ye Wen 0000-0002-4085-5084.

S-Editor: Wang JL

L-Editor: Filipodia

P-Editor: Wang JL

REFERENCES

1. Zhang H, Zhang QQ, Xu H, Zu MH, Gu YM, Wei N, Cui YF, Liu HT, Wang WL. Clinical evaluation of transcatheter arterial chemoembolization using domestic CalliSpheres beads in treatment of primary hepatocellular carcinoma. Linchuang Fangshexue Zazhi 2019; 38: 4

2. Gholamrezazehad A, Mripour S, Geschwind JF, Rao P, Loffroy R, Pellerin O, Liapi EA. Evaluation of 70-150-μm doxorubicin-eluting beads for transcatheter arterial chemoembolization in the rabbit liver VX2 tumour model. Eur Radiol 2016; 26: 3474-3482 [PMID: 26780638 DOI: 10.1007/s00330-015-4197-y]

3. Luz JH, Luz PM, Martin HS, Gouveia HR, Levigard RB, Nogueira FD, Rodrigues BC, de Miranda TN, Mamede MH. DEB TACE for Intermediate and advanced HCC - Initial Experience in a Brazilian Cancer Center. Cancer Imaging 2017; 17: 5 [PMID: 28166821 DOI: 10.1186/s40644-017-0108-6]

4. Wang YL, Song W, Bian YT, Pan M, Li ZF, Cui J. Calli Spheres Drug-eluting Beads Versus Conventional Transarterial Chemoembolization (TACE) in the Treatment of Hepatocellular Carcinoma: Clinical Efficacy and Safety Comparative Study. Linchuang Fangshexue Zazhi 2020; 39: 1853-1859

5. Wang YC. Drug-loaded microspheres transcatheter arterial chemoembolization in the treatment of liver cancer: a safety analysis. Weichuang Yixue Zazhi 2020; 15: 295-297, 314

6. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010;
Zhang C et al. TACE in primary liver cancer

30: 52-60 [PMID: 20175033 DOI: 10.1055/s-0030-1247132]

7 Cosgrove DP, Reyes DK, Pawlik TM, Feng AL, Kamel IR, Geschwind JF. Open-Label Single-Arm Phase II Trial of Sorafenib Therapy with Drug-eluting Bead Transarterial Chemoembolization in Patients with Unresectable Hepatocellular Carcinoma: Clinical Results. Radiology 2015; 277: 594-603 [PMID: 26069923 DOI: 10.1148/radiol.2015142481]

8 Deiopoulos AR, Oklu R, Al-Ansari S, Zhu AX, Goyal L, Ganguli S. Safety and efficacy of 70-150 μm and 100-300 μm drug-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol 2015; 26: 516-522 [PMID: 25704226 DOI: 10.1016/j.jvir.2014.12.020]

9 Zhang FL, Yong F. Clinical efficacy of TACE with blank microspheres for liver cancer. Zhonghua Ganzang Waike Shouhua Dianzi Zazhi 2020; 9: 339-342 [DOI: 10.3877/cma.j.issn.2095-3232.2020.04.010]

10 Yu L, Tang F, Cao ZW. Granular embolization material of the treatment of primary hepatic carcinoma: analysis of clinical efficacy and safety. Jieyu Fangshexue Zazhi 2020; 29: 900-906 [DOI: 10.3969/j.issn.1008-794X.2020.09.010]

11 Fan S, Li QY, Zhou ZT. Efficacy of lobaplatin combined with pirarubicin for primary liver. Zhongguo Xiandai Yaowu Yingyong 2019; 13: 41-43 [DOI: 10.14164/j.cnki.cn11-5581/r.2019.18.024]

12 Du PQ, Liu YG, Wang D, Li TG, Yu JQ. Transcatheter arterial chemoembolization with drug-loaded microspheres in primary liver cancer and effect on placent al growth factor and prothrombin induced by vitamin K absence-II. Aizheng Jinzhan 2020; 18: 1358-1362

13 Malagari K, Kiakidis T, Pomoni M, Moschouris H, Emmanouil E, Spiridopoulos T, Sotirchos V, Tandeles S, Koundouri D, Kelekis A, Filippiadis D, Charokopakis B, Bouma E, Chatzioannou A, Dourakis S, Koskinas J, Karampelas T, Tamvakopoulos K, Kelekis N, Kelekis D. Pharmacokinetics, Safety, and Efficacy of Chemoembolization with Doxorubicin-Loaded Tightly Calibrated Small Microspheres in Patients with Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2016; 39: 1379-1391 [PMID: 27393274 DOI: 10.1007/s00270-016-1382-6]

14 Urbano J, Echevarria-Uraga JJ, Ciampi-Dopazo JJ, Sánchez-Corral JA, Cobos Alonso J, Anton-Ladislao A, Peña-Baranda B, Nacarino-Mejias V, González-Costero R, Muñoz Ruiz-Canela JJ, Pérez-Cuesta J, Lanciego C, de Gregorio MA, Urbano J, Echevarria-Uraga JJ, Ciampi-Dopazo JJ, Sánchez-Corral JA, Cobos Alonso J, Anton-Ladislao A, Peña-Baranda B, Nacarino-Mejias V, González-Costero R, Muñoz Ruiz-Canela JJ, Pérez-Cuesta J, Lanciego C, de Gregorio MA. Multicentre prospective study of drug-eluting bead chemoembolisation safety using tightly calibrated small microspheres in non-resectable hepatocellular carcinoma. Eur J Radiol 2020; 126: 108966 [PMID: 32278280 DOI: 10.1016/j.ejrad.2020.108966]

15 Huo YR, Xiang H, Chan MV, Chan C. Survival, tumour response and safety of 70-150 μm vs 100-300 μm doxorubicin eluting beads in transarterial chemoembolisation for hepatocellular carcinoma. J Med Imaging Radiat Oncol 2019; 63: 802-811 [PMID: 31709778 DOI: 10.1111/1754-9485.12971]

16 Kang YJ, Lee BC, Kim JK, Yim NY, Kim HO, Cho SB, Jeong YY. Conventional Versus Small Doxorubicin-eluting Bead Transcatheter Arterial Chemoembolization for Treating Barcelona Clinic Liver Cancer Stage 0/A Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2020; 43: 55-64 [PMID: 31646378 DOI: 10.1007/s00270-019-02349-9]

17 Luz JH, Luz PM, Martin HS, Gouveia HR, Muñoz Ruiz-Canela JJ, Pérez-Cuesta J, Lanciego C, de Gregorio MA, Deb TACE for Intermediate and advanced HCC - Initial Experience in a Brazilian Cancer Center. Cancer Imaging 2017; 17: 5 [DOI: 10.1186/s40668-017-0108-6]

18 Mikhail AS, Negussie AH, Mauda-Havakuk M, Owen JW, Pritchard WF, Lewis AL, Wood BJ. Drug-eluting embolic microspheres: State-of-the-art and emerging clinical applications. Expert Opin Drug Deliv 2021; 18: 383-398 [PMID: 33480306 DOI: 10.1080/17425247.2021.1835858]

19 de Baere T, Guita B, Ronot M, Chevallier P, Sergent G, Tancredi I, Tselikas G, Dioguardi Burgio M, Raynaud L, Deschamps F, Verset G. Real Life Prospective Evaluation of New Drug-Eluting Platform for Chemoembolization of Patients with Hepatocellular Carcinoma: PARIS Registry. Cancers (Basel) 2020; 12 [PMID: 33212917 DOI: 10.3390/cancers12113405]

20 Zhang M, Wang RY, Wang CX, Zhang J, Liu XJ. Raltitrexed combined with doxaplatin and pirarubicin for the treatment of advanced primary hepatocellular carcinoma: analysis of curative effect and safety. Jieyu Fangshexue Zazhi 2020; 29: 4 [DOI: 10.3969/j.issn.1008-794X.2020.06.016]

21 Lazuardi F, Valencia J, Zheng S. Adjuvant transcatheter arterial chemoembolization after radical resection of hepatocellular carcinoma patients with tumor size less than 5 cm: a retrospective study. Scand J Gastroenterol 2019; 54: 617-622 [PMID: 31079496 DOI: 10.1080/00365521.2019.1607896]

22 Chen ZH. Clinical observation of interventional therapy with lobaplatin and pirarubicin hydrochloride for primary cancer. Yiyou Qianyan 2020; 10: 75-76

23 Hsiao PJ, Jao JC, Tsai JL, Chang WT, Jeng KS, Kuo KK. Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic “stem-like” cells. Kaohstung J Med Sci 2014; 30: 57-67 x
