The Double-Source Purchase Decisions with Substitution Under Cap and Trade Policy

Yi Zheng1,2,* and Xianli Zhao2

1School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
2Department of Industrial Engineering, School of Construction and Management Engineering, Xihua University, Chengdu, 610039, P. R. China
*Corresponding author

Abstract—Under carbon cap-and-trade policies, double-source purchase policy of two substitutable products by a monopoly retailer is studied, obtaining optimal purchase decision and optimal pricing decision of retailers. Firstly, optimal decisions of retailers under carbon-free constraints and carbon cap-and-trade policies are analyzed. Then, the influences of carbon trade price, initial carbon quota, carbon emission and the substitutability between two products on retailer optimal decision under carbon constraints are discussed. Finally, compared with the case under carbon-free constraints, the influences of carbon cap-and-trade policies on optimal decision are analyzed. The conclusion in this paper provides theoretical supports for retailer multi-source purchase strategies.

Keywords—substitution; double-source purchase; cap-and-trade policy

I. INTRODUCTION

In recent years, the excessive emissions of carbon dioxide and other greenhouse gases lead to global warming, which brings a severe challenge to human survival and development. For example, sea level rise, raging heat wave, constant heavy rainfall, and drought [1]. Studies have demonstrated that global warming may be caused by man-made reasons for at least 90%. Enterprises compete in the supply chain and carbon footprints are managed in production, transportation, inventory, sales and the whole process. For example, Wal-Mart, TESCO and HP all design environment networks with low-carbon supply chain by low-carbon supply chain management, establish multi-source purchase mechanism, fully utilize vehicle energy efficiency, control carbon emission and measure carbon footprint, further realizing the optimization of the whole emission process of the supply chain. IBM also utilizes carbon thermograph to analyze the carbon footprint of the global supply chain network and implements multi-channel and multi-source three-dimensional purchase, further realizing energy conservation and emission reduction of the supply chain [2]. For enterprises, aside from carbon emission in the production link, transportation is the second largest pollution source and almost 50% carbon emission is generated in the transportation link [3]. Therefore, the study on retailer multi-source purchase decisions under low-carbon policies is of important theoretical value and practical significance.

Many scholars are occupied in the retailer purchase decision of the supply chain. Hua [4] studied the optimal order quantity of enterprises under carbon trade policies. Chen et al. [5] utilized EOQ model to make numerical analysis. Also, the conditions of carbon emission reduction by modifying the order quantity, as well as the influence factors of carbon emission reduction and cost increase were studied. Choi [6] analyzed the influences of carbon cap-and-trade policies on retailer purchase source selection under wholesale price and price subsidy contracts. In the study of Jin et al. [7], the influences of carbon cap-and-trade and other carbon emission policies on the supply chain network design and retailer logistics transportation were explored and the numerical analysis indicated that different carbon emission policies had direct influences on transportation cost and emission reduction effects. Rosic et al. [8] considered (domestic and overseas) retailers faced with double-source purchase and studied the optimal order quantity and optimal order source selection under carbon cap-and-trade and carbon tax policies and compared the control effects on carbon emission under two carbon emission policies. For single-enterprise decision under low-carbon policies, He et al. [9] studied EOQ based model and studied the production quantity of manufacturing enterprises under carbon tax policies and carbon cap-and-trade policies. The study found that the optimal production quantity under carbon cap-and-trade depended on carbon emission permits trade and these two policies were not always superior to each other in carbon emission reduction. Zhang et al. [10] constructed a production and inventory decision optimization model of manufacturing enterprises considering carbon emission permits trade on the basis of the newsboy model. Through the solution method for this model, the optimal inventory policy for enterprises faced with random demands under cap-and-trade policies was obtained. Hong et al. [11] constructed a production model of environment-friendly manufacturers under cap and trade policy. Also, the optimal production and carbon emission permits trade strategy of manufacturers under given carbon emission quota were solved by dynamic programming method and the influences of carbon emission permits trade price on manufacturer optimal strategy were analyzed. Giraud-Carrier [12] simulated an enterprise operating decision process under three main emission policies (cap, cap and trade, and tax) and pointed out that under any regulation policies, it was inevitable for production to reduce. However, when the negative effects of pollution are very huge, these regulation policies will improve the whole social welfare. The above literatures all establish foundation for this study.
Considering carbon cap and trade policies, the study on retailer multi-source purchase is for great practical value to low-carbon retailer’s purchase and pricing and important reference significance to the formulation of carbon emission policies.

II. PROBLEM DESCRIPTION AND HYPOTHESIS

This paper considers a monopoly retailer’s purchase of homogeneous substitutable products of manufacturer A and manufacturer B in two different regions in the same trade market. Suppose manufacturer A produces \(S_1 \) and manufacturer B produces \(S_2 \). Under carbon cap and trade policies, the government distributes certain initial carbon quotas in the transportation and sales links to reduce carbon emission of enterprises in each link of the supply chain. If the total carbon emission in the transportation and sales links is greater than the initial carbon quotas, retailers must purchase extra carbon emission permits from the carbon emission trading market. If the total carbon emission in the transportation and sales links is lower than the initial carbon quotas, retailers can sell the spare carbon emission permits and make a profit. Carbon emission trade price is determined by carbon emission trade market, belonging to exogenous variable. The government formulates monocycol carbon cap according to the production in the last period and unit product emission in different industries, which is irrelevant to the production in the current period, belonging to exogenous variable. It cannot be passed on to the next period.

When manufacturers give no investment on green technology, its technology level of unit product in production and inventory links is unchanged and its carbon emission remains unchanged. Thus, this paper only takes the carbon emission in the transportation and sales links into consideration, instead of those in production, inventory and other links. Products are completely sold in sales season, so product stockout and order lead time are not considered. Due to the limits of retailer transportation conditions and inventory capacity, the maximum purchase quantity of retailers is \(k \). Therefore, when retailers make purchase decisions, the wholesale price of two manufacturers and also carbon emission costs in the transportation and sales links should be considered.

Parameters and variables in this study are shown as Table 1.

Symbols	Definition
\(q_1, q_2 \)	Retailer order quantity/market demands of product \(S_1 \) and \(S_2 \);
\(w_{s1}, w_{s2} \)	Wholesale price and unit product of \(S_1 \) and \(S_2 \) formulated by manufacturers;
\(p_1, p_2 \)	Retail price of two unit products;
\(C_e \)	Market trade price of unit carbon emission permit;
\(e_{s1}, e_{s2} \)	Carbon emission of wholesale unit product \(S_1 \) and \(S_2 \) in logistic link and \(e_{s1}>e_{s2} \);
\(A \)	Carbon quota of the government to retailers;
\(\alpha \)	Retailer profits;

The demand functions of product \(S_1 \) and \(S_2 \) respectively are,

\[
q_1 = q_1^* \alpha_1 p_1 + \beta q_2 \quad q_2 = q_2^* \alpha_2 p_2 + \beta q_1
\]

Where, \(\alpha_1, \alpha_2 \) and \(\beta \) are constant, and \(\beta>0, \beta \) is the mutually substitutability between two products. Considering the greater influences of product price than interactive price on demands, it is supposed \(\beta<1 \).

III. DOUBLE-SOURCE PURCHASE DECISION MODEL OF SUBSTITUTABLE PRODUCTS UNDER CARBON-FREE CONSTRAINTS

Under carbon-free constraints, retailers do not consider carbon emission in sales and transportation links and retailer decision order is as follows. First of all, retailers determine total purchase quantity \(k \) according to self-conditions to maximize their profits. Then, they decide optimal purchase quantity of two products according to market demand information. Suppose purchase quantity is \(k \), retailer profit function can be expressed as,

\[
\begin{align*}
\max & \quad \left(p_1 q_1 + p_2 q_2 - w_{s1} q_1 - w_{s2} q_2\right) \\
\text{subject to} & \quad q_1 + q_2 = k
\end{align*}
\]

\[
(2)
\]

Proposition 1 Under carbon-free constraints, the maximum purchase quantity of retailers is \(k^* = \frac{\alpha_1 + \alpha_2 - (1-\beta) \left(e_{s1} + e_{s2}\right)}{2} \), optimal purchase strategy is \((q_1^*, q_2^*) = \left(\frac{\alpha_1 + \alpha_2 - (1-\beta) e_{s1}}{2}, \frac{\alpha_1 + \alpha_2 - (1-\beta) e_{s2}}{2}\right) \), and optimal price is \((p_1^*, p_2^*) = \left(\frac{\alpha_1 + \alpha_2 - (1-\beta) e_{s1}}{2}, \frac{\alpha_1 + \alpha_2 - (1-\beta) e_{s2}}{2}\right) \).

Proof: The solution of Formula (2) can be seen as a multivariate function seeking for multi-condition extremal problem. The optimal purchase quantities of products \(S_1 \) and \(S_2 \), \(q_1^* \) and \(q_2^* \), can be solved.

If \(q_1^* + q_2^* < k \), the extremal occurs in the condition region. After it is solved, the optimal purchase quantity can be expressed as,

\[
(q_1^*, q_2^*) = \left(\frac{\alpha_1 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)}{2}, \frac{\alpha_1 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)}{2}\right)
\]

If \(q_1^* + q_2^* = k \), the extremal occurs on the margin of the condition region. \(q_1^* + q_2^* \leq q_1^* + q_2^* \), namely,

\[
k = \frac{\alpha_1 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)}{2}
\]

It is not easy to infer that extremal occurs in the region. If \(k^* = \frac{\alpha_1 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)}{2} \), the optimal wholesale quantity is,

\[
\begin{align*}
(q_1^*, q_2^*) = & \left(\frac{\alpha_1 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)(1+\beta)+2k}{4}, \right. \\
& \left. \frac{\alpha_2 + \alpha_2 - (1-\beta) \left(w_{s1} + w_{s2}\right)(1+\beta)+2k}{4}\right)
\end{align*}
\]

According to Formula (1), the retail price of product \(S_1 \) and \(S_2 \) can be solved.
can be expressed as,
\[p_1 = \frac{\alpha_1 + \beta a_1 - \beta q_2}{1 - \beta^2}, \]
\[p_2 = \frac{\alpha_2 + \beta a_2 - \beta q_1}{1 - \beta^2}. \]
According to \(p_1 > w_{s1}, p_2 > w_{s2} \), the wholesale prices of two products satisfy,
\[a_1 + a_2 > (1 - \beta)(w_{s1} + w_{s2}) \]
When \(k > \frac{a_1 + a_2 - (1 - \beta)(w_{s1} + w_{s2})}{2} \),
\[(q_{11}^*, q_{21}^*) = \left(\frac{a_1 + \beta w_{s1}}{2(1 - \beta)}, \frac{a_2 + \beta w_{s2}}{2} \right) \]
and the profit of retailers is,
\[\pi_t(k) = \frac{1}{4(1 - \beta^2)}(\alpha_1^2 + \alpha_2^2 + 2\beta a_1 a_2) - \frac{1}{4}(2a_1 w_{s1} + 2a_2 w_{s2}) + \frac{2w_{s1}w_{s2} - w_{s1}^2 - w_{s2}^2}{4} \]
When \(k \leq \frac{a_1 + a_2 - (1 - \beta)(w_{s1} + w_{s2})}{2} \),
\[(q_{12}^*, q_{22}^*) = \left(\frac{a_1 - a_2 - (1 - \beta)(w_{s1} + w_{s2})}{2(1 - \beta)} + \frac{\beta a_1 a_2}{2}, \frac{a_2 + a_1(1 - \beta)(w_{s1} + w_{s2})}{2(1 - \beta)} + \frac{\beta a_1 a_2}{2} \right), \]
the profit of retailers, \(\pi_t(k) \) is satisfied,
\[\frac{d\pi_t(k)}{dk} = -\frac{k}{2(1 - \beta^2)} + \frac{a_1 + a_2 - k}{2(1 - \beta)} \]
\[\frac{w_{s1} + w_{s2}}{2} \geq 0, \quad \frac{d\pi_t(k)}{dk} = \frac{1}{2} < 0, \]
suppose \(\frac{d\pi_t(k)}{dk} = 0 \), the optimal purchase quantity of retailers when \(k \leq \frac{a_1 + a_2 - (1 - \beta)(w_{s1} + w_{s2})}{2} \) can be expressed as,
\[k^* = \frac{a_1 + a_2 - (1 - \beta)(w_{s1} + w_{s2})}{2} \]
For the above two conditions, \(k^* \) is the optimal purchase quantity of retailers. The optimal purchase quantities and optimal pricing strategies of two products respectively are,
\[(q_{11}^*, q_{21}^*) = \left(\frac{a_1 + \beta w_{s1}}{2(1 - \beta)}, \frac{a_2 + \beta w_{s2}}{2} \right) \]
\[(p_{11}^*, p_{21}^*) = \left(\frac{a_1 + \beta w_{s1}}{2(1 - \beta)} + \frac{w_{s1}}{2}, \frac{a_2 + \beta w_{s2}}{2} + \frac{w_{s2}}{2} \right) \]
End.

Proposition 1 proves that under carbon-free constraints, the optimal purchase of a product has a negative correlation with its wholesale price while positive correlation with the wholesale price of its substitutable product. Thus, these two products mutually restrict for their wholesale prices. The optimal pricing strategy of a product has a positive correlation with the wholesale price of the product.

IV. RETAILER DOUBLE-SOURCE PURCHASE DECISION MODEL OF SUBSTITUTABLE PRODUCTS UNDER CAP-AND-TRADE POLICY

Under carbon cap and trade policies, retailers should consider the carbon emission cost of two products in sales and transportation links, which may influence retailer optimal decisions.

Proposition 2 Under carbon cap-and-trade policies, when retailers purchase two substitutable products by two manufacturers, the optimal order strategy is,
\[q_{c1}^* = \frac{a_1 + \beta w_{s1}}{2(1 - \beta)} + \frac{w_{s1}}{2}, \]
\[q_{c2}^* = \frac{a_2 + \beta w_{s2}}{2(1 - \beta)} + \frac{w_{s2}}{2}, \]
and the optimal pricing strategy of a product has a positive correlation with carbon emission and wholesale price.

Proof: Under carbon cap-and-trade policies, the retailer profit is shown as Formula (5).
\[\pi_c = p_1 q_1 + p_2 q_2 - w_{s1} q_1 - w_{s2} q_2 - C_{e1} q_1 - C_{e2} q_2 + A_C \]
(5)

Similarly, under carbon cap-and-trade policies, the optimal purchase quantities of products 1 and 2, \(q_{c1}^* \) and \(q_{c2}^* \) can be solved.
\[\begin{align*}
q_{c1}^* &= \frac{a_1 + \beta w_{s1}}{2(1 - \beta)} + \frac{w_{s1}}{2} + \frac{\beta a_1 a_2}{2} \\
q_{c2}^* &= \frac{a_2 + \beta w_{s2}}{2(1 - \beta)} + \frac{w_{s2}}{2} + \frac{\beta a_1 a_2}{2}
\end{align*} \]
(6)
The optimal order quantity is,
\[k^*_c = q_{c1}^* + q_{c2}^* = a_1 + a_2 + (\beta - 1)(w_{s1} + w_{s2}) \]
According to Formula (6), the optimal retail price can be calculated.
\[\begin{align*}
p_{c1}^* &= \frac{a_1 + \beta w_{s1}}{2(1 - \beta)} + \frac{w_{s1}}{2} + \frac{\beta a_1 a_2}{2} \\
p_{c2}^* &= \frac{a_2 + \beta w_{s2}}{2(1 - \beta)} + \frac{w_{s2}}{2} + \frac{\beta a_1 a_2}{2}
\end{align*} \]
(7)
End.

Proposition 2 proves that under carbon cap-and-trade policies, the optimal retail price of a product has a positive correlation with carbon emission bargain price and wholesale price. The optimal purchase quantity of a product has a positive correlation with carbon emission and wholesale price of substitutable products while negative correlation with its carbon emission and wholesale price. Because of the substitutability, the optimal purchase quantities of two products mutually restrict for their carbon emissions and wholesale prices. Compared with proposition 1 under carbon-free constraints, product cost includes the wholesale price. Because of the substitutability, the optimal purchase quantities of two products mutually restrict for their carbon emissions and wholesale prices.

Proposition 3 Under carbon cap-and-trade policies,
\[\begin{align*}
(1) \frac{d\pi_c}{dw_{s1}} &= \frac{d\pi_c}{dw_{s2}} < 0; \quad (2) \frac{d\pi_c}{dp_1} &= \frac{w_{s1} + w_{s2}}{2} C_{e1} a_1 + C_{e2} a_2 > 0; \\
(3) \frac{d\pi_c}{dw_{s1}} < 0, \quad \frac{d\pi_c}{dw_{s2}} < 0, \quad (4) \frac{d\pi_c}{dp_1} > 0, \quad \frac{d\pi_c}{dp_2} > 0; \\
(5) \frac{d\pi_c}{dp_1} - \frac{d\pi_c}{dp_2} > 0.
\end{align*} \]
Proof: According to the above conclusion, it is supposed that under carbon cap-and-trade policies, the total purchase quantity is \(k^*_c \), and then,

\[
k^*_c = q^*_c + q^*_2 = a_1 + a_2 + (\beta - 1)(w_{c1} + w_{c2}) + \beta C_e (e_{s1} + e_{s2}) - C_{e1} + C_{e2} > 0
\]

According to Formula (8), the derivative is taken, obtaining \(\frac{dk_c^*}{d\beta} = \frac{dA}{dw_{c1}} + \frac{dA}{dw_{c2}} - 1 + \frac{1}{\beta} < 0 \), namely, the total order quantity of retailers has a negative correlation with the wholesale prices of two products.

Thus, the order quantity of each product has a negative correlation with the order quantity and their wholesale prices while positive correlation with the other’s wholesale price.

End.

Proposition 3 shows under carbon cap-and-trade policies, (1) when the wholesale prices of both products increase, the total purchase quantity of retailers decreases; (2) with other factors unchanged, the total purchase quantity has a positive correlation with the substitutability of substitutable products. When the substitutability coefficient between two products increases, retailers will purchase more products to sell; while when the substitutability between two products decreases, retailers will reduce the purchase quantity of substitutable products. (3) The wholesale prices of two products have a negative correlation with their optimal purchase quantities. (4) When the wholesale price of product 1 increases, the order quantity of product 2 will increase and its increasing proportion is half of the substitutability index between two products. (5) The substitutability index between two products has a positive correlation with their optimal purchase quantities.

Proposition 4

(1) \(p_1^* > p_1^* \) \(\Rightarrow \) \(k^*_c < k^*_c \), \(q^*_2 < q^*_2 \), \(\beta^* > \beta^* \).

Proof: \(\frac{dq^*_1}{dw_{c1}} = \frac{1}{2} \frac{dq^*_2}{dw_{c2}} = \frac{1}{2} \frac{dA}{dw_{c1}} + \frac{dA}{dw_{c2}} > 0 \), \(\frac{dq^*_1}{dw_{c1}} = \beta \frac{dq^*_2}{dw_{c2}} = \beta \frac{1}{2} > 0 \), \(\frac{dq^*_1}{dw_{c1}} = \frac{w_{c1} + w_{c2} + C_{e1} + C_{e2}}{2} > 0 > 0 \).

Thus, the order quantity of each product has a negative correlation with the order quantity and their wholesale prices while positive correlation with the other’s wholesale price.

End.

Proposition 5 shows that under carbon cap-and-trade policies, carbon emission of product \(S_1 \) in the transportation and sales links decreases and total carbon emission of retailers drops. When \(\beta < \frac{e_{s2}}{e_{s1}} \), the carbon emission of product \(S_2 \) decreases; while when \(\beta > \frac{e_{s2}}{e_{s1}} \), the emission of carbon product \(S_2 \) increases.

End.
price; when $\beta < \frac{e_{s2}}{e_{s1}}$, the optimal order quantity of product S_2 has a negative correlation with the carbon trade price; when $\beta > \frac{e_{s2}}{e_{s1}}$, the order quantity of product S_2 has a positive correlation with the carbon trade price.

End.

Proposition 5 demonstrates that (1) under carbon cap-and-trade policies, the purchase quantity of products has no correlation with initial carbon quota and the initial carbon quota given by the government is equivalent to “welfares”. Thus, though the total purchase of retailers drops, profits may be higher than that under carbon-free constraints because of high carbon quota by the government. (2) The total purchase quantity of retailers has a negative correlation with carbon emission and carbon trade price of products. (3) It is supposed that if $e_{s1} > e_{s2}$, the optimal order quantity of product 1 has a negative correlation with carbon trade price. Thus, for product 2, with the increase of carbon trade price, its purchase quantity is not necessarily restricted. Its change depends on the shifting threshold of substitutability between two products, S_{α}.

When the substitutability of products is high, the increase of carbon trade can lead to the increases of product purchase quantity and the optimal purchase quantity of products with small carbon emission in the transportation and sales links, manifesting the positive promotion of carbon cap-and-trade policies on low-carbon products.

V. CONCLUSION

This paper studies the order and pricing strategies of retailer double-source purchase of substitutable products by two manufacturers and with different carbon emissions in the transportation and sales links under carbon cap-and-trade policies. This study indicates that, 1) carbon cap-and-trade policies may lead to the decrease of the total order quantity of retailers and the increase of the retail price. For product 2, its purchase quantity change depends on the shifting threshold (S_{α}). Profits may be higher than that under carbon-free constraints because of high carbon quota by the government. 2) If there is substitutability between two products, the total purchase quantity has a positive correlation with the substitutability of two substitutable products while negative correlation with the wholesale price and carbon trade price. With the increase of carbon trade price, the order quantity of product 2 is not necessarily restricted. Its change depends on the shifting threshold (S_{α}). When the substitutability of a product is high, the optimal purchase quantity of products with low carbon emission increases, manifesting the positive promotion of carbon cap-and-trade policies on low-carbon products. This study not only provides decisions for retailer goods supply selection, pricing and order, not only gives theoretical supports for the formulation of carbon emission policies by the government. In future studies, the vertical expansion of single retailers to the supply chain shall be considered, as well as the joint decision of manufacturers and retailers.

ACKNOWLEDGMENT

The authors would like to thank the editors and the anonymous reviewers for their insightful and constructive comments and suggestions that have led to this improved version of the paper. The work was supported in part by the “Chunhui” Plan of Ministry of Education in China (No. S2011012 and No. Z2012017).

REFERENCES

[1] H. Cheryl, J. Jeff, K. Jyllian, “Global-warming warnings,” Chemical & Engineering News, vol. 91, no. 3, pp. 4, 2013.
[2] B. Sundarakani, R. D. Souza, M. Goh, et al, “Modeling carbon footprints across the supply chain,” International Journal of Production Economics, vol. 128, no. 1, pp. 43-50, 2010.
[3] Eurostat, Panorama of Transport, online, http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-DA-09-001/EN/KS-DA-09-001-EN.PDF, 2009.
[4] G. Hua, T. C. E. Cheng, and S. Wang, “Managing carbon footprints in inventory management,” International Journal of Production Economics, vol. 132, no. 2, pp. 178-185, 2011.
[5] X. Chen, S. Benjaafar, A. Elomri, “The Carbon-Constrained EOQ,” Operations Research Letters, vol. 41, no. 2, pp. 172-179, 2013.
[6] T. M. Choi, “Carbon footprint tax on fashion supply chain systems,” International Journal of Advanced Manufacturing, vol. 68, no. 4, pp. 835-847, 2013.
[7] M. Jin, N. A. Giranda, and I. Down, “The impact of carbon policies on supply chain design and logistics of a major retailer,” Journal of Cleaner Production, vol. 85, pp. 453-461, 2014.
[8] H. Rosic, W. Jammermegg, “The economic and environmental performance of dual sourcing: A newsvendor approach,” International Journal of Production Economics, vol. 143, no. 1, pp. 109-119, 2013.
[9] P. He, W. Zhang, X. Xu, et al, “Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations,” Journal of Cleaner Production, vol. 103, pp. 241-248, 2014.
[10] J. Zhang, T. Nie, S. Du, “Optimal emission-dependent production policy with stochastic demand,” International Journal of Society Systems Science, vol. 3, no. 1-2, pp. 21-39, 2011.
[11] Z. Hong, C. Chu, Y. Yu, “Optimization of production planning for green manufacturing,” 9th IEEE International Conference on Networking, Sensing and Control (ICNSC), Paris, France, pp. 193-196, 2012.
[12] F. C. Giraud-Carrier. Pollution regulation and production in imperfect markets [D]. The University of Utah, 2014.