On Variants of Root Normalised Order-aware Divergence and a Divergence based on Kendall’s Tau

TETSUYA SAKAI, Waseda University, Japan

This paper reports on a follow-up study of the work reported in Sakai [15, 16], which explored suitable evaluation measures for ordinal quantification tasks. More specifically, the present study defines and evaluates, in addition to the quantification measures considered earlier, a few variants of an ordinal quantification measure called Root Normalised Order-aware Divergence (RNOD), as well as a measure which we call Divergence based on Kendall’s τ (DNKT). The RNOD variants represent alternative design choices based on the idea of Sakai’s Distance-Weighted sum of squares (DW), while DNKT is designed to ensure that the system’s estimated distribution over classes is faithful to the target priorities over classes. As this Priority Preserving Property (PPP) of DNKT may be useful in some applications, we also consider combining some of the existing quantification measures with DNKT. Our experiments with eight ordinal quantification data sets suggest that the variants of RNOD do not offer any benefit over the original RNOD at least in terms of system ranking consistency, i.e., robustness of the system ranking to the choice of test data. Of all ordinal quantification measures considered in this study (including Normalised Match Distance, a.k.a. Earth Mover’s Distance), RNOD is the most robust measure overall. Hence the design choice of RNOD is a good one from this viewpoint. Also, DNKT is the worst performer in terms of system ranking consistency. Hence, if DNKT seems appropriate for a task, sample size design should take its statistical instability into account.

Additional Key Words and Phrases: divergence; evaluation measures; ordinal quantification; quantification

1 INTRODUCTION

Quantification (or prevalence estimation) tasks [2, 3, 19] require systems to estimate, for each test case with N items, a gold distribution of the items over a given set of classes. (N may vary across the test cases.) When the classes are ordinal (e.g., \{negative, neutral, positive\} or \{1,2,3,4,5\} on a Likert scale), the task is an ordinal quantification task. Examples of ordinal quantification tasks include the SemEval 2017 Task 4 Subtask E [10], the Dialogue Breakdown Detection Challenge [20], and the NTCIR Dialogue Evaluation task [23]. Nominal quantification measures such as the Kullback-Leibler Divergence (KLD), Jensen-Shannon Divergence (JSD), Root Normalised Sum of Squares (RNSS, which is essentially Root Mean Squared Error), and Normalised Variational Distance (NVD, which is essentially Mean Absolute Error) are clearly not suitable for ordinal quantification tasks [13]: note, for example, that these measures cannot consider the fact that misinterpreting a negative instance as a positive instance is more serious than misinterpreting it as a neutral instance.

This paper reports on a follow-up study of the work reported in Sakai [15, 16], which explored suitable evaluation measures for ordinal quantification tasks. More specifically, the present study defines and evaluates, in addition to the quantification measures considered earlier, a few variants of an ordinal quantification measure called Root Normalised Order-aware Divergence (RNOD), as well as a measure which we call Divergence based on Kendall’s τ (DNKT). The RNOD variants represent alternative design choices based on the idea of Sakai’s Distance-Weighted sum of squares (DW), while DNKT is designed to ensure that the system’s estimated distribution over classes is faithful to the target priorities over classes. As this property of DNKT may be useful in some applications, we also consider combining some of the existing quantification measures with DNKT. Our experiments with eight ordinal quantification data sets suggest that the variants of RNOD do not offer any benefit over the original RNOD in terms of system ranking consistency, i.e., robustness...
Table 1. Properties of the measures considered in this study:
(a) considers the magnitude of the error in each class;
(b) suitable for ordinal classes;
(c) is symmetric;
(d) does not assume equidistance for ordinal classes;
“N/A” means “not applicable.”

	NMD	RNOD	RNOD2	RNADW	RNADW2	NVD	RNSS	JSD	DNKT
(a)	✓	✓	✓	✓	✓	✓	✓	✓	✓
(b)	✓	✓	✓	✓	✓	✓	✓	✓	✓
(c)	✓	✓	✓	✓	✓	✓	✓	✓	✓
(d)	✓	✓	✓	✓	✓	N/A	N/A	N/A	N/A

of the system ranking to the choice of test data [17]. Of all ordinal quantification measures considered in this study (including *Normalised Match Distance* (NMD) [13], a.k.a. *Earth Mover’s Distance*), RNOD is the most robust measure overall. Hence the design choice of RNOD is a good one from this viewpoint. Also, DNKT is the worst performer in terms of system ranking consistency.

2 QUANTIFICATION MEASURES

Table 1 provides an overview of the properties of the quantification measures considered in the present study. Note that a “✓” does not necessarily mean an advantage: for example, symmetry is not a required property for quantification tasks, since we know which of the two distributions is the gold one in these tasks. Section 2.1 defines ordinal quantification measures (the first five measures in Table 1, including RNOD2, RNADW, RNADW2 which are evaluated for the first time in this paper); Section 2.2 defines nominal quantification measures (NVD, RNSS, and JSD); Section 2.3 introduces DNKT, a divergence measure based on Kendall’s τ, which only considers the priorities across classes and is not strictly a quantification measure.

2.1 Ordinal Quantification Measures

Let C denote a set of ordinal classes, represented by consecutive integers for convenience. Let p_i denote the estimated probability for Class i, so that $\sum_{i\in C} p_i = 1$. Similarly, let p_i^* denote the gold probability. We also denote the entire probability mass functions by p and p^*, respectively. Let $c_{p_i} = \sum_{k\leq i} p_k$, and $c_{p_i^*} = \sum_{k\leq i} p_k^*$. NMD is given by [13]:

$$NMD(p, p^*) = \frac{\sum_{i\in C} |c_{p_i} - c_{p_i^*}|}{|C| - 1}. \quad (1)$$

NMD is a normalised form of Earth Mover’s Distance, also known as Wasserstein or Mallows Distance [6, 21].

RNOD [15, 16] is defined as follows. First, let the *Distance-Weighted sum of squares* for Class i be:

$$DW_i = \sum_{j\in C} \delta_{ij} (p_j - p_j^*)^2, \quad (2)$$

where

$$\delta_{ij} = |i - j|. \quad (3)$$

DW_i was designed to quantify the overall error from the viewpoint of a particular gold class i: it tries to measure how much of its probability p_i^* has been misallocated to other classes $j \in C (j \neq i)$, by assuming that the difference between p_j and p_j^* is directly caused by a misallocation of part
of \(p^*_i \); the weight \(\delta_{ij} \) is designed to penalise the misallocation based on the distance between the ordinal classes.

Let \(C^* = \{i \in C \mid p^*_i > 0\} \). That is, \(C^*(\subseteq C) \) is the set of classes with a non-zero gold probability. Order-aware Divergence is defined as:

\[
OD(p \parallel p^*) = \frac{1}{|C^*|} \sum_{i \in C} DW_i . \tag{4}
\]

Note that this is the average of \(DW_i \) over \(C^* \) rather than over \(C \) because, as mentioned earlier, \(DW_i \) was designed to quantify the overall error from the viewpoint of a particular gold class \(i \). RNOD is then defined as:

\[
RNOD(p \parallel p^*) = \sqrt{OD(p \parallel p^*)} \cdot \frac{1}{|C^*|} . \tag{5}
\]

Although a symmetric version of RNOD called RSNOD is available (based on symmetric order-aware divergence given by \(SOD(p, p^*) = (OD(p \parallel p^*) + OD(p^* \parallel p))/2 \) [13], we do not consider RSNOD in our experiments because (a) symmetry is not required for quantification evaluation; and (b) Sakai [15, 16] showed that introducing symmetry is not beneficial in terms of system ranking consistency (i.e., robustness of the system rankings to the choice of test data) [17].

Eq. 3 assumes equidistance. If one prefers to avoid this assumption (since ordinal classes may not be interval classes), the following is a natural alternative [15].

\[
\delta_{ij} = \left(\frac{\max(i, j)}{\sum_{k=\min(i, j)} p^*_k} \right) - \frac{p^*_i + p^*_j}{2} . \tag{6}
\]

That is, we utilise the gold probabilities that lie between Classes \(i \) and \(j \) to define the distance. This resembles the distance function used in Krippendorff’s alpha for ordinal classes [5]. If Eq. 6 is used instead of Eq. 3 when computing Eq. 5, we call the resultant measure \(RNOD^2 \) for convenience.

Sakai [15] defined yet another variant of RNOD based on simply averaging the \(DW \)'s over the entire set of classes \(C \), instead of over \(C^* \) (cf. Eq. 4).

\[
ADW(p, p^*) = \frac{1}{|C|} \sum_{i \in C} DW_i . \tag{7}
\]

From Eqs. 2 and 7, it is clear that \(ADW \) ("Average DW") is symmetric. Root Normalised ADW (RNADW) is then defined as:

\[
RNADW(p, p^*) = \sqrt{ADW(p, p^*)} \cdot \frac{1}{|C| - 1} . \tag{8}
\]

Furthermore, we also consider replacing Eq. 3 with Eq. 6 when computing the above, and call the resultant measure \(RNADW^2 \). That is, like RNOD2, RNADW2 avoids the equidistance assumption.

1This was a suggestion from one of the reviewers of the CIKM 2021 Learning to Quantify (LQ) workshop. Independently, one of my students also asked me why OD is not defined as the average of \(DW_i \) over the whole set of classes \(C \). But my original intention was to define \(DW_i \) for each gold class \((\in C^*) \), for the reason discussed earlier.

2Similarly, it is clear from Eqs. 2 and 4 that \(C^* = C \) (i.e., there is no gold probability that is zero) is a sufficient condition for OD to be symmetric [12]. Another sufficient condition for guaranteeing the symmetry of OD is: \(|C^*| = 1 \) and \(\{|p_i \in C \mid p_i > 0\} = 1 \) (i.e., both the gold and estimated distributions have exactly one positive probability).
2.2 Nominal Quantification Measures

The three measures defined below ignore the ordinal nature of the classes [13] and therefore should not be used for ordinal quantification tasks. However, including them in our experiments is useful for us to highlight the different properties of the ordinal quantification measures discussed earlier. For example, while the system ranking according to NMD is very different from those according to these nominal quantification measures, the system ranking according to RNOD is less so [16]. Moreover, when we examine the system ranking consistency (i.e., robustness to the choice of test data) of the ordinal quantification measures, it is informative to see how they perform relative to nominal quantification measures.

Normalised Variational Distance (NVD) [13] is essentially the Mean Absolute Error (MAE):

\[
NVD(p, p^*) = \frac{1}{2} \sum_{i \in C} |p_i - p_i^*|.
\]

(9)

Root Normalised Sum of Squares (RNSS) [13] is essentially the Root Mean Squared Error (RMSE):

\[
RNSS(p, p^*) = \sqrt{\frac{\sum_{i \in C} (p_i - p_i^*)^2}{2}}.
\]

(10)

The advantages of RMSE over MAE is discussed in Chai and Draxler [1].

The Kullback-Leibler divergence (KLD) for system and gold probability distributions over classes is given by:

\[
KLD(p \parallel p^*) = \sum_{i \in C \text{ s.t. } p_i > 0} p_i \log_2 \frac{p_i}{p_i^*}.
\]

(11)

As this is undefined if \(p_i^* = 0\), we only consider the more convenient Jensen-Shannon divergence (JSD) [7]:

\[
JSD(p, p^*) = \frac{KLD(p \parallel p^M) + KLD(p^* \parallel p^M)}{2},
\]

(12)

where \(p_i^M = (p_i + p_i^*)/2\). Note that, unlike KLD, JSD is symmetric and bounded.

2.3 DNKT: Divergence based on Kendall’s τ

Finally, consider a divergence measure that is not strictly a quantification measure, as it does not consider the quantity in each class: it only cares about the priorities across classes. While such a measure is not adequate for ordinal quantification, it may be useful in some other contexts, for example, in group-fair ranking evaluation [18]. We decided to examine the property of this measure along with the ordinal and nominal quantification measures described earlier.

This measure is based on Kendall’s τ-b rank correlation [4] and we therefore call it DNKT (Divergence based on Kendall’s τ). We sort the bins of the gold distribution by the probabilities; we do the same with the estimated distribution; and we finally compute the rank correlation between the two sorted lists, based on the number of concordant pairs of bins (CONC) and the number of discordant pairs of bins (DISC) across the two lists. Note that, when counting CONC and DISC, any bin pair is ignored if it is tied in at least one of the lists. We use τ-b rather than the regular τ in order to handle tied bin pairs into account, for this is a required feature for quantification evaluation. For example, consider a gold uniform distribution: all pairs of bins are tied so CONC = DISC = 0 by definition. While τ-b has the range of \([-1, 1]\), we transform it into a divergence measure where zero means perfect match.\(^3\)

\(^3\)But, as we shall discuss later, DNKT is not zero even if both distributions are uniform.
Formally, let TIED and TIED^* denote the number of tied pairs of bins in the sorted lists of estimated and gold probabilities, respectively. Then the number of bin pairs that are not tied in each list is given by:

$$
\text{notTIED} = \frac{|C|(|C| - 1)}{2} - \text{TIED}, \quad \text{notTIED}^* = \frac{|C|(|C| - 1)}{2} - \text{TIED}^*.
$$

(13)

We define τ-b as follows.

$$
\tau-b = \frac{\text{CONC} - \text{DISC}}{\sqrt{\max(1, \text{notTIED})} \sqrt{\max(1, \text{notTIED}^*)}}.
$$

(14)

Note that we have introduced the max operators to avoid division by zero: recall that a uniform distribution says that every pair of bins is tied.

A normalised version of τ-b with a $[0, 1]$ range can be obtained as:

$$
\text{NKT} = \frac{\tau-b + 1}{2},
$$

(15)

and a Divergence based on NKT (DNKT) can be defined as:

$$
\text{DNKT} = 1 - \text{NKT} = \frac{1 - \tau-b}{2}.
$$

(16)

DNKT completely ignores the magnitude of the error for each bin, unlike any other measure discussed above. For example, if the gold distribution is $(0.4, 0.3, 0.2, 0.1)$ and the estimated distribution is $(0.31, 0.30, 0.20, 0.19)$, the estimated distribution is considered perfect. As was mentioned earlier, we thought that this divergence may be useful in some contexts other than quantification tasks, such as group-fair ranking tasks. For example, if the target distribution for ranking scholarship applicants [18] says that the low-income group should be prioritised over middle-income group, which in turn should be prioritised over high-income groups, DNKT only cares about these priorities.

Because the above Priority Preserving Property (PPP) of DNKT may be desirable in some contexts and yet not satisfied by any of the quantification measures, we also explored the idea of combining DNKT with a quantification measure so that the hybrid measure inherits properties of both component measures. More specifically, we combine Measure M with DNKT as their harmonic mean if at least one of the measures is non-zero:

$$
\text{DNKT}_M = \frac{2 * \text{DNKT} * M}{\text{DNKT} + M}.
$$

(17)

If $\text{DNKT} = M = 0$, we let $\text{DNKT}_M = 0$. For M, we consider JSD (representing a nominal quantification measure), NMD, and RNOD (ordinal quantification measures).

It should be noted, however, that DNKT is not useful if the gold distribution is uniform: in general, when at least one of the two distributions is uniform, $\text{CONC} = \text{DISC} = 0$ and hence $\tau-b = 0$ and $\text{DNKT} = 0.5$.

3 DATA

The ordinal quantification data sets we use in our experiments are the same as those used in Sakai [15]; they are briefly described in Table 2. As can be seen, all data sets come with five ordinal classes. For the two SemEval data sets, the classes are tweet polarities, namely, highly negative, negative, neutral, positive, highly positive [9, 10]. For the six NTCIR data sets, the classes are five-point scale dialogue quality ratings ($-2, -1, 0, 1, 2$) based on three different viewpoints, namely, A-score (task accomplishment), E-score (dialogue effectiveness), and S-score (customer satisfaction) [22, 23]. Hence, for example, DialEval-1 DQ-A is the data set containing the gold and estimated probability distributions for the A-score estimation “subsubtask” of the NTCIR-15 DialEval-1 task. The NTCIR
Table 2. Eight data sets used in our experiments (C: Chinese; E: English; C+E: runs for both languages combined).

Short name in this paper	Evaluation venue	Task (Subtask)	Task Type	Language	#Ordinal classes	Test data sample size	#Runs used
Sem16T4E	SemEval-2016	Task 4 (Subtask E)	OQ	E	5	100	12
Sem17T4E	SemEval-2017	Task 4 (Subtask E)	OQ	E	5	125	14
STC-3	NTCIR-14	Short Text Conversation 3 (Dialogue Quality)	OQ	C+E	5	390	19 (10+9)
DQ-{A, E, S}	(2019)						
DialEval-1	NTCIR-15	Dialogue Evaluation 1 (Dialogue Quality)	OQ	C+E	5	300	22 (13+9)
DQ-{A, E, S}	(2020)						

dialogue data were provided in both Chinese and English (manually translated from the original Chinese text) to the participants, and the participants were allowed to submit Chinese and/or English runs. On the other hand, the gold distributions were constructed solely based on the original Chinese dialogues. Hence, both Chinese and English runs are evaluated using the same gold distributions. The gold distributions of the STC-3 and DialEval-1 data were constructed based on votes from 19 and 20 assessors for each dialogue, respectively [22].

It should be noted that the NTCIR data sets are larger than the SemEval data sets, especially in terms of test data sample size. Hence, our results with the NTCIR data sets may be more reliable than those with the SemEval data sets.

4 SYSTEM RANKING AGREEMENT OF DIFFERENT QUANTIFICATION MEASURES

In this section, we compare the system rankings according to different measures, using Kendall’s τ [4] with 95% confidence intervals [8]. Tables 3-18 show the results with each of the eight ordinal quantification data sets. “Average similarity with other measures” is computed as the average of all τ’s involving a particular measure. As a summary of these tables, Table 19 and 20 shows the average τ’s across the eight data sets and the average of the “Average similarity with other measures,” respectively.

The trends are very similar across the data sets and Table 20 serves as the summary of the results. The following can be observed from this table:

- DNKT is the clear outlier measure: its system rankings are substantially different from the rankings according to other measures. This is not surprising, as DNKT only cares about the PPP and ignores the absolute value of each probability.
- While it does not quite stand out as much as DNKT, NMD is also an outlier. RNOD and its variants behave relatively similarly to the nominal quantification measures (i.e., JSD, NVD, and RNSS). This generalises the results of Sakai [16], which showed that the property of RNOD lies somewhere between NMD and the nominal quantification measures.

Tables 21-23 show how the combined measures DNKT_JSD, DNKT_NMD, and DNKT_RNOD behave in terms of system ranking when compared to their component measures. As a summary,
Table 3. System ranking agreement in terms of Kendall’s τ with 95% CIs (Sem16T4E, 12 runs).

	RNADW	RNO2	RNADW2	RNO2	NVD	RNSS	JSD	DNKT
NMD	0.848	0.909	0.818	0.848	0.939	0.818	0.909	0.667
	[0.659, 0.936]	[0.787, 0.963]	[0.600, 0.923]	[0.659, 0.936]	[0.600, 0.923]	[0.787, 0.963]	[0.334, 0.852]	
RNADW	-	0.939	0.970	1	0.848	0.970	0.818	0.576
	[0.854, 0.975]	[0.927, 0.988]	[1.1]	[0.659, 0.936]	[0.927, 0.988]	[0.600, 0.923]	[0.196, 0.806]	
RNOD	-	-	0.909	0.939	0.909	0.909	0.879	0.576
	[0.787, 0.963]	[0.854, 0.975]	[0.787, 0.963]	[0.787, 0.963]	[0.723, 0.950]	[0.196, 0.806]		
RNADW2	-	-	-	0.970	0.818	1	0.788	0.545
	[0.927, 0.988]	[0.600, 0.923]	[1.1]	[0.543, 0.909]	[0.152, 0.789]			
RNOD2	-	-	-	-	0.848	0.970	0.818	0.576
	[0.659, 0.936]	[0.927, 0.988]	[0.600, 0.923]	[0.927, 0.988]	[0.600, 0.923]	[0.196, 0.806]		
NVD	-	-	-	-	-	0.818	0.970	0.667
	[0.600, 0.923]	[0.927, 0.988]	[0.334, 0.852]					
RNSS	-	-	-	-	-	-	0.788	0.545
	-	-	-	-	-	[0.543, 0.909]	[0.152, 0.789]	
JSD	-	-	-	-	-	-	0.636	0.285
	-	-	-	-	-	[0.152, 0.837]		

Table 4. Average similarity with other measures based on Table 3 (Sem16T4E).

Measure	Average τ
NMD	0.845
RNADW	0.871
RNO2	0.871
RNADW2	0.852
RNO2	0.871
NVD	0.852
RNSS	0.852
JSD	0.826
DNKT	0.599

Table 24 shows the average τ’s over the eight data sets. It can be observed that each combined measure inherits the properties of both component measures, which is not surprising.
Table 5. System ranking agreement in terms of Kendall’s τ with 95%CIs (Sem17T4E, 14 runs).

	RNADW	RNOD	RNADW2	RNOD2	NVD	RNSS	JSD	DNKT
NMD	0.802	0.865	0.802	0.890	0.780	0.912	0.670	
	[0.601, 0.908]	[0.724, 0.940]	[0.601, 0.908]	[0.767, 0.950]	[0.562, 0.897]	[0.811, 0.960]	[0.381, 0.840]	
RN-ADW	0.934	0.956	0.956	0.912	0.978	0.890	0.692	
	[0.856, 0.970]	[0.903, 0.990]	[0.903, 0.990]	[0.811, 0.960]	[0.951, 0.990]	[0.767, 0.950]	[0.415, 0.851]	
RNOD	-	0.934	0.934	0.978	0.912	0.956	0.714	
	[0.856, 0.970]	[0.856, 0.970]	[0.951, 0.990]	[0.811, 0.960]	[0.903, 0.980]	[0.451, 0.863]		
RN-ADW2	-	-	1	0.978	0.978	0.890	0.736	
	[1.1]	[0.811, 0.960]	[0.951, 0.990]	[0.767, 0.950]	[0.847, 0.874]			
RN-OD2	-	-	-	0.912	0.978	0.890	0.736	
	[0.811, 0.960]	[0.951, 0.990]	[0.767, 0.950]	[0.487, 0.874]				
NVD	-	-	-	-	0.890	0.978	0.692	
	[0.767, 0.950]	[0.951, 0.990]	[0.415, 0.851]					
RNSS	-	-	-	-	-	0.888	0.714	
	[0.724, 0.940]	[0.951, 0.990]	[0.451, 0.863]					
JSD	-	-	-	-	-	-	0.670	
	[0.381, 0.840]							

Table 6. Average similarity with other measures based on Table 5 (Sem17T4E).

Measure	Average τ
NMD	0.816
RNADW	0.890
RNOD	0.904
RNADW2	0.901
RNOD2	0.901
NVD	0.896
RNSS	0.887
JSD	0.882
DNKT	0.703

Table 7. System ranking agreement in terms of Kendall’s τ with 95%CIs (STC-3 DQ-A, 19 runs).

	RNADW	RNOD	RNADW2	RNOD2	NVD	RNSS	JSD	DNKT
NMD	0.801	0.830	0.795	0.830	0.819	0.784	0.901	0.620
	[0.645, 0.893]	[0.693, 0.909]	[0.635, 0.889]	[0.693, 0.909]	[0.675, 0.903]	[0.618, 0.883]	[0.815, 0.948]	[0.372, 0.785]
RN-ADW	0.953	0.977	0.953	0.953	0.965	0.883	0.556	
	[0.910, 0.976]	[0.956, 0.988]	[0.910, 0.976]	[0.910, 0.976]	[0.933, 0.982]	[0.784, 0.938]	[0.284, 0.745]	
RNOD	0.947	0.982	0.947	0.936	0.889	0.531		
	[0.899, 0.972]	[0.965, 0.991]	[0.899, 0.972]	[0.879, 0.967]	[0.794, 0.942]	[0.291, 0.748]		
RN-ADW2	0.947	0.959	0.971	0.877	0.550			
	[0.899, 0.972]	[0.921, 0.979]	[0.944, 0.985]	[0.773, 0.935]	[0.276, 0.741]			
RN-OD2	0.947	0.959	0.971	0.877	0.550			
	[0.899, 0.972]	[0.879, 0.967]	[0.794, 0.942]	[0.291, 0.748]				
NVD	0.947	0.959	0.971	0.877	0.550			
	[0.899, 0.972]	[0.879, 0.967]	[0.794, 0.942]	[0.291, 0.748]				
RNSS	0.868	0.887	0.887	0.887	0.887	0.385		
	[0.899, 0.972]	[0.879, 0.967]	[0.794, 0.942]	[0.291, 0.748]				
JSD	0.849	0.887	0.887	0.887	0.887	0.385		
	[0.899, 0.972]	[0.879, 0.967]	[0.794, 0.942]	[0.291, 0.748]				

Table 8. Average similarity with other measures based on Table 7 (STC-3 DQ-A).

Measure	Average τ
NMD	0.795
RNADW	0.880
RNOD	0.881
RNADW2	0.878
RNOD2	0.881
NVD	0.878
RNSS	0.868
JSD	0.849
DNKT	0.565
	[0.323, 0.764]
Table 9. System ranking agreement in terms of Kendall’s τ with 95% CIs (STC-3 DQ-E, 19 runs).

Measure	Average τ
NMD	0.836 [0.793, 0.913]
RNADW	0.871 [0.763, 0.932]
RNOD	0.836 [0.763, 0.913]
RNADW2	0.836 [0.733, 0.919]
RNOD2	0.836 [0.763, 0.913]
NVD	0.848 [0.824, 0.951]
RNSS	0.906 [0.824, 0.951]
JSD	0.322 [-0.001, 0.814]
DNKT	0.522 [-0.001, 0.814]

Table 10. Average similarity with other measures based on Table 9 (STC-3 DQ-E).

Measure	Average τ
NMD	0.791
RNADW	0.873
RNOD	0.875
RNADW2	0.873
RNOD2	0.875
NVD	0.875
RNSS	0.873
JSD	0.836
DNKT	0.406

Table 11. System ranking agreement in terms of Kendall’s τ with 95% CIs (STC-3 DQ-S, 19 runs).

Measure	Average τ
NMD	0.801 [0.645, 0.893]
RNADW	0.819 [0.668, 0.880]
RNOD	0.778 [0.645, 0.893]
RNADW2	0.801 [0.675, 0.903]
RNOD2	0.801 [0.635, 0.889]
NVD	0.819 [0.675, 0.903]
RNSS	0.795 [0.773, 0.935]
JSD	0.877 [0.439, 0.814]
DNKT	0.667 [0.439, 0.814]

Table 12. Average similarity with other measures based on Table 11 (STC-3 DQ-S).

Measure	Average τ
NMD	0.795
RNADW	0.887
RNOD	0.892
RNADW2	0.871
RNOD2	0.882
NVD	0.880
RNSS	0.882
JSD	0.841
DNKT	0.627

, Vol. 1, No. 1, Article . Publication date: April 2022.
Table 13. System ranking agreement in terms of Kendall’s τ with 95%CIs (DialEval-1 DQ-A, 22 runs).

Measure	Average τ
NMD	0.677
RNADW	0.857
RNOD	0.845
RNADW2	0.845
RNOD2	0.853
NVD	0.849
RNSS	0.817
JSD	0.835
DNKT	0.455

Table 14. Average similarity with other measures based on Table 13 (DialEval-1 DQ-A).

Table 15. System ranking agreement in terms of Kendall’s τ with 95%CIs (DialEval-1 DQ-E, 22 runs).

Measure	Average τ
NMD	0.717
RNADW	0.855
RNOD	0.867
RNADW2	0.836
RNOD2	0.865
NVD	0.857
RNSS	0.835
JSD	0.860
DNKT	0.545

Table 16. Average similarity with other measures based on Table 15 (DialEval-1 DQ-E).
Table 17. System ranking agreement in terms of Kendall’s τ with 95% CIs (DialEval-1 DQ-S, 22 runs).

	RNADW	RNOD	RNADW2	RNOD2	NVD	RNSS	JSD	DNKT	
NMD	0.584	0.576	0.584	0.571	0.576	0.530	0.610	0.680	
RNADW2									
RNOD	0.983	0.991	0.978	0.983	0.957	0.948	0.939	0.532	
RNOD2	[0.969, 0.991]	[0.969, 0.995]	[0.969, 0.998]	[0.969, 0.991]	[0.922, 0.976]	[0.906, 0.971]	[0.280, 0.715]		
NVD	-	-	-	0.970	0.970	0.935	0.519		
RNADW2	-	-	-	[0.960, 0.998]	[0.969, 0.991]	[0.922, 0.976]	[0.906, 0.971]	[0.280, 0.715]	
RNOD2	-	-	-	-	-	-	-	-	
NVD	-	-	-	[0.945, 0.984]	[0.945, 0.984]	[0.883, 0.964]	[0.263, 0.707]		
RNSS	-	-	-	-	-	-	-	0.915	
JSD	-	-	-	-	-	-	-	[0.845, 0.952]	[0.237, 0.692]

Table 18. Average similarity with other measures based on Table 17 (DialEval-1 DQ-S).

Measure	Average τ
RNADW	0.591
RNOD	0.870
RNADW2	0.866
RNOD2	0.870
NVD	0.864
RNSS	0.845
JSD	0.849
DNKT	0.544

Table 19. System ranking agreement averaged over the eight data sets (Tables 3, 5, 7, 9, 11, 13, 15, 17).

	RNADW	RNOD	RNADW2	RNOD2	NVD	RNSS	JSD	DNKT
NMD	0.760	0.792	0.751	0.766	0.791	0.734	0.822	0.612
RNADW2	-	0.950	0.972	0.965	0.939	0.961	0.892	0.545
RNOD	-	-	0.937	0.961	0.952	0.932	0.921	0.557
RNOD2	-	-	-	0.961	0.927	0.962	0.878	0.538
NVD	-	-	-	-	0.936	0.954	0.900	0.548
RNSS	-	-	-	-	-	-	0.873	0.527
JSD	-	-	-	-	-	-	-	0.559

Table 20. Average similarity with other measures further averaged over the eight data sets (Tables 4, 6, 8, 10, 12, 14, 16, 18).

Measure	Average τ
RNADW	0.873
RNOD	0.875
RNADW2	0.866
RNOD2	0.874
NVD	0.869
RNSS	0.857
JSD	0.847
DNKT	0.556
Table 21. The effect of combining DNKT and a quantification measure on system ranking in terms of Kendall’s τ with 95%CIs (SemEval).

	(a) Sem16T4E (12 runs)			(b) Sem17T4E (14 runs)				
	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD		
DNKT	0.656 0.788	DNKT 0.667	0.909	DNKT 0.576 0.864				
JSD	[0.285, 0.837]	[0.334, 0.852]	[0.787, 0.965]	[0.196, 0.806]	[0.692, 0.943]			
	- 0.848	NMD - 0.697		- 0.652				
	[0.659, 0.936]	[0.383, 0.867]		[0.310, 0.845]				
JSD	0.670 0.714	DNKT 0.670	0.758	DNKT 0.714 0.824				
	[0.381, 0.840]	[0.381, 0.840]	[0.524, 0.886]	[0.451, 0.863]	[0.641, 0.918]			
	- 0.956	NMD - 0.912		- 0.890				
	[0.903, 0.980]	[0.811, 0.960]		[0.767, 0.950]				

Table 22. The effect of combining DNKT and a quantification measure on system ranking in terms of Kendall’s τ with 95%CIs(STC-3).

	(a) DQ-A (19 runs)			(b) DQ-E (19 runs)				
	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD		
DNKT	0.585 0.678	DNKT 0.620	0.678	DNKT 0.561 0.690				
JSD	[0.323, 0.764]	[0.372, 0.785]	[0.455, 0.821]	[0.291, 0.748]	[0.473, 0.828]			
	- 0.842	NMD - 0.901		- 0.830				
	[0.713, 0.916]	[0.815, 0.948]		[0.693, 0.909]				
JSD	0.363 0.462	DNKT 0.322	0.450	DNKT 0.421 0.538				
	[0.046, 0.614]	[0.149, 0.675]	[0.114, 0.655]	[0.261, 0.733]				
	- 0.883	NMD - 0.842		- 0.842				
	[0.784, 0.938]	[0.713, 0.916]		[0.713, 0.916]				
JSD	0.649 0.772	DNKT 0.667	0.760	DNKT 0.626 0.807				
	[0.413, 0.803]	[0.439, 0.814]	[0.579, 0.869]	[0.380, 0.789]	[0.655, 0.896]			
	- 0.865	NMD - 0.883		- 0.807				
	[0.752, 0.929]	[0.784, 0.938]		[0.655, 0.896]				

Table 23. The effect of combining DNKT and a quantification measure on system ranking in terms of Kendall’s τ with 95%CIs (DialEval-1).

	(a) DQ-A (22 runs)			(b) DQ-E (22 runs)				
	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD	JSD DNKT JSD DNKT JSD	NMD DNKT NMD	RNOD DNKT RNOD		
DNKT	0.455 0.610	DNKT 0.671	0.948	DNKT 0.459 0.874				
JSD	[0.183, 0.662]	[0.468, 0.807]	[0.906, 0.971]	[0.188, 0.665]	[0.780, 0.930]			
	- 0.835	NMD - 0.714		- 0.576				
	[0.716, 0.907]	[0.530, 0.834]		[0.337, 0.745]				
JSD	0.576 0.662	DNKT 0.602	0.740	DNKT 0.571 0.693				
	[0.337, 0.745]	[0.372, 0.762]	[0.568, 0.850]	[0.331, 0.742]	[0.499, 0.821]			
	- 0.905	NMD - 0.835		- 0.853				
	[0.832, 0.947]	[0.716, 0.907]		[0.745, 0.917]				
JSD	0.541 0.636	DNKT 0.680	0.861	DNKT 0.524 0.758				
	[0.291, 0.722]	[0.481, 0.813]	[0.758, 0.922]	[0.270, 0.710]	[0.595, 0.861]			
	- 0.896	NMD - 0.810		- 0.749				
	[0.816, 0.942]	[0.676, 0.892]		[0.582, 0.855]				
Table 24. The effect of combining DNKT and a quantification measure on system ranking: average over the eight data sets (Tables 21-23).

	JSD	DNKT_JSD		NMD	DNKT_NMD		RNOD	DNKT_RNOD
DNKT	0.559	0.665	DNKT	0.612	0.763	DNKT	0.557	0.756
JSD	-	0.879	NMD	-	0.824	RNOD	-	0.775
Next, we discuss the system ranking consistency (i.e., robustness of the ranking to the choice of test data) of the measures discussed above, using the procedure described in Sakai [17, Figures 1 and 2]. That is, for each data set, the test data is split in half so that two system rankings are obtained according to Mean JSD etc.; the similarity of the two rankings is quantified by Kendall’s τ; The random splitting is carried out $B = 1,000$ times so that Mean τ’s are obtained. Similarly, to consider situations where the test data sample sizes are small, two disjoint test sets of size 10 are randomly sampled from the original test set (instead of splitting it in half), and Mean τ’s are obtained in the same way. The randomised Tukey HSD test [14] at the significance level of $\alpha = 0.05$ is used to discuss the statistical significance of the differences in system ranking consistency.

Tables 25-27 show the system ranking consistency results. For example, in Table 25(a) where the 12 Sem16T4E systems are ranked, JSD statistically significantly outperforms all other measures for both test set sizes (50 and 10). RNOD comes second, statistically significantly outperforming nine other measures when the test set size is 50, and seven other measures when the test set size is 10. As a summary of the eight sets of results, Table 28 shows the mean τ’s averaged over these results. In terms of system ranking consistency, it can be observed from this summary table that:

- Among the nominal quantification measures, NVD and JSD are the overall winners, although RNSS is the top performer in the “full split” experiments with STC-3 DQ-E and DQ-S (Table 26).
- Among the ordinal quantification measures (i.e., NMD, RNOD, and the variants of RNOD), RNOD is the winner. In this sense, the variants of RNOD do not offer any benefit.
- DNKT performs worse than any other measure. That is, the system ranking according to DNKT changes substantially depending on the choice of test data. Because of this property, the combined measures (DNKT_JSD, DNKT_NMD, DNKT_RNOD) do not do well either.
Table 25. Mean System Ranking Consistency r’s (SemEval data). The symbols indicate “statistically significantly outperforms NMD (†), RNADW (♣), RNOD (♥), RNADW2 (♠), RNOD2 (♦), NVD (*), RNSS (★), JSD (♮), DNKT (◦), DNKT_JSD (△), DNKT_NMD (▲), DNKT_RNOD (▼) at the 5% significance level with a randomised Tukey HSD test,” respectively.

	Full split (50 vs. 50)	10 vs. 10	
		(a) Sem16T4E	
JSD	0.9336	♥ ♦ ♠ ♡ ♣	0.7711
RNOD	0.8470	★ ♦ ♣ ♠ ♡	0.7077
DNKT_JSD	0.8456	♥ ♦ ♣ ♠ ♡	0.7069
NVD	0.8307	♣ ♠ ♡ ♠ ♡	0.7049
RNADW2	0.8229	♦ ♠ ♡ ♠ ♡	0.7033
RNOD2	0.8212	♡ ♠ ♡ ♠ ♡	0.6921
RNADW	0.8185	♠ ♡ ♠ ♡ ♡	0.6908
RNSS	0.8147	♠ ♡ ♡ ♡ ♡	0.6898
DNKT	0.8040	♡ ♠ ♡ ♡ ♡	0.6743
DNKT_RNOD	0.7918	♥ ♦ ♣ ♠ ♡	0.6667
NMD	0.7881	♥ ♦ ♣ ♠ ♡	0.6632
DNKT_NMD	0.7833	♥ ♦ ♣ ♠ ♡	0.6629
		(b) Sem17T4E	
NMD	0.9046	★ ♦ ♣ ♠ ♡	0.7053
NVD	0.8779	♦ ♣ ♡ ♠ ♡	0.6720
JSD	0.8668	♣ ♡ ♡ ♡ ♡	0.6083
RNOD	0.8256	♡ ♣ ♡ ♡ ♡	0.6007
DNKT_JSD	0.8222	♠ ♡ ♡ ♡ ♡	0.5895
RNOD2	0.8107	♠ ♡ ♡ ♡ ♡	0.5882
RNADW	0.8015	♠ ♡ ♡ ♡ ♡	0.5729
RNADW2	0.7956	♠ ♡ ♡ ♡ ♡	0.5672
DNKT_NMD	0.7943	♠ ♡ ♡ ♡ ♡	0.5607
RNSS	0.7650	♠ ♡ ♡ ♡ ♡	0.5569
DNKT_RNOD	0.7558	♠ ♡ ♡ ♡ ♡	0.5110
DNKT	0.7504	♠ ♡ ♡ ♡ ♡	0.4530
Table 26. Mean System Ranking Consistency r’s (STC-3 data). The symbols indicate “statistically significantly outperforms NMD (\dagger), RNADW (\heartsuit), RNOD (\spadesuit), RNADW2 (\clubsuit), RNOD2 (\diamondsuit), NVD (\ast), RNSS (\bigstar), JSD (\natural), DNKT (\circ), DNKT_JSD (\circlearrowright), DNKT_NMD (\triangle), DNKT_RNOD (\triangledown) at the 5% significance level with a randomised Tukey HSD test,” respectively.

(a) STC-3 DQ-A

	Full split (195 vs. 195)	10 vs. 10
RNADW2	0.7677 $\bigstar\spadesuit\heartsuit\checkmark\diamondsuit$	RNADW2 0.4479 $\checkmark\heartsuit\checkmark\diamondsuit$
RNSS	0.7662 $\bigstar\spadesuit\heartsuit\checkmark\diamondsuit$	RNSS 0.4472 $\checkmark\heartsuit\checkmark\diamondsuit$
RNOD2	0.7650 $\bigstar\spadesuit\heartsuit\checkmark\diamondsuit$	RNADW 0.4442 $\checkmark\heartsuit\checkmark\diamondsuit$
NVD	0.7647 $\bigstar\spadesuit\heartsuit\checkmark\diamondsuit$	RNOD2 0.4416 $\checkmark\heartsuit\checkmark\diamondsuit$
RNADW	0.7518 $\bigspadesuit\spadesuit\heartsuit\checkmark\diamondsuit$	NVD 0.4393 $\bigspadesuit\heartsuit\checkmark\diamondsuit$
RNOD	0.7506 $\bigspadesuit\spadesuit\heartsuit\checkmark\diamondsuit$	RNOD 0.4350 $\bigspadesuit\heartsuit\checkmark\diamondsuit$
DNKT_RNOD	0.7373 $\clubsuit\diamondsuit\checkmark\diamondsuit$	JSD 0.4253 $\checkmark\diamondsuit\checkmark\diamondsuit$
DNKT_JSD	0.7267 $\checkmark\heartsuit\checkmark\diamondsuit$	DNKT_RNOD 0.4151 $\checkmark\diamondsuit\checkmark\diamondsuit$
JSD	0.7071 $\checkmark\diamondsuit\checkmark\diamondsuit$	NMD 0.3966 $\checkmark\diamondsuit\checkmark\diamondsuit$
NMD	0.7060 $\checkmark\diamondsuit\checkmark\diamondsuit$	DNKT_NMD 0.3909 $\checkmark\diamondsuit\checkmark\diamondsuit$
DNKT_NMD	0.6862 $\clubsuit\spadesuit\spadesuit\heartsuit\checkmark\diamondsuit$	DNKT 0.2402 $\clubsuit\spadesuit\spadesuit\heartsuit\checkmark\diamondsuit$

(b) STC-3 DQ-E

	Full split (195 vs. 195)	10 vs. 10
RNSS	0.7853 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	NVD 0.4512 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
NVD	0.7805 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNSS 0.4503 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNADW	0.7790 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNADW 0.4478 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNADW2	0.7777 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNADW2 0.4455 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNOD2	0.7768 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNOD2 0.4454 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNOD	0.7733 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNOD 0.4449 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
JSD	0.7545 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	JSD 0.4447 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
NMD	0.7482 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_RNOD 0.4286 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_RNOD	0.7187 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_JSD 0.4174 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_JSD	0.6844 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_NMD 0.4129 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_NMD	0.6639 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	NMD 0.4124 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT	0.6205 $\clubsuit\spadesuit\spadesuit\heartsuit\checkmark\diamondsuit$	DNKT 0.2671 $\clubsuit\spadesuit\spadesuit\heartsuit\checkmark\diamondsuit$

(c) STC-3 DQ-S

	Full split (195 vs. 195)	10 vs. 10
RNSS	0.7556 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNADW2 0.4207 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNADW	0.7497 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNSS 0.4193 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNADW2	0.7492 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNADW 0.4179 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
NVD	0.7413 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_JSD 0.4150 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNOD2	0.7273 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNOD2 0.4102 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
RNOD	0.7166 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	JSD 0.4071 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
NMD	0.6935 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	NVD 0.4070 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_JSD	0.6852 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	NMD 0.4046 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_RNOD	0.6807 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	RNOD 0.4033 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
JSD	0.6743 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_RNOD 0.4031 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT_NMD	0.6529 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT_NMD 0.3899 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
DNKT	0.4944 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$	DNKT 0.2359 $\spadesuit\heartsuit\clubsuit\diamondsuit\checkmark\diamondsuit$
Table 27. Mean System Ranking Consistency \(r \)'s (DialEval-1 data). The symbols indicate “statistically significantly outperforms NMD (†), RNADW (♣), RNOD (♥), RNADW2 (♠), RNOD2 (♦), NVD (●), RNSS (★), JSD (△), DNKT (○), DNKT_JSD (◇), DNKT_NMD (◇), DNKT_RNOD (▽) at the 5% significance level with a randomised Tukey HSD test,” respectively.

(a) DialEval-1 DQ-A

	Full split (150 vs. 150)	10 vs. 10
RNODE2	0.9019	JSD 0.5495
RNODE2		
RNADW	0.8999	
RNADW2	0.8983	
RNSS	0.8954	
RNOD2	0.8760	
NVD	0.8738	
JSD	0.8699	
DNKT_NMD	0.8452	
DNKT	0.8404	
DNKT_RNOD	0.8184	
DNKT_JSD	0.7683	
NMD	0.7085	

(b) DialEval-1 DQ-E

	Full split (150 vs. 150)	10 vs. 10
NMD	0.8568	JSD 0.6150
JSD	0.8329	
RNSS	0.8265	
DNKT_JSD	0.8248	
NVD	0.8100	
DNKT_RNOD	0.8071	
RNOD	0.8041	
RNOD2	0.8021	
RNADW	0.8013	
DNKT	0.7926	
DNKT_RNOD	0.7911	
DNKT_NMD	0.7797	

(c) DialEval-1 DQ-S

	Full split (150 vs. 150)	10 vs. 10
RNODE2	0.9007	JSD 0.5714
RNSS	0.8972	
DNKT_JSD	0.8940	
RNADW	0.8926	
JSD	0.8925	
RNOD	0.8882	
RNADW2	0.8879	
NVD	0.8615	
DNKT	0.8550	
DNKT_RNOD	0.8170	
DNKT_NMD	0.7869	
NMD	0.7360	
Table 28. Mean System Ranking Consistency averaged over the eight data sets.

	Full split	10 vs. 10	
NVD	0.8176	JSD	0.5570
JSD	0.8164	RNOD	0.5272
RNOD	0.8132	NVD	0.5237
RNOD2	0.8132	RNADW	0.5198
RNADW	0.8115	RNOD2	0.5179
RNADW2	0.8110	RNADW2	0.5165
RNSS	0.8108	DNKT_JSD	0.5136
DNKT_JSD	0.7814	RNSS	0.5127
NMD	0.7677	NMD	0.4892
DNKT_RNOD	0.7659	DNKT_RNOD	0.4787
DNKT_NMD	0.7490	DNKT_NMD	0.4737
DNKT	0.7149	DNKT	0.4288
6 CONCLUSIONS

As a follow-up study of the work reported in Sakai [15, 16], we considered variants of RNOD, as well as DNKT which is designed to pay attention to the Priority Preserving Property rather than to the absolute probability in each class. We examined three nominal quantification measures (NVD, RNSS, and JSD), five ordinal quantification measures (NMD, RNOD, RNOD2, RNADW, RNADW2), and DNKT as well as three combined measures, in terms of system ranking agreement and system ranking consistency.

From our system ranking agreement results, we found that, not surprisingly, DNKT is the clear outlier measure in our suite of measures. Moreover, we found that NMD ranks system differently compared to other measures. The latter finding generalises the results of Sakai [15, 16], which showed that the property of RNOD lies somewhere between NMD and the nominal quantification measures.

From our system ranking consistency results, we found that RNOD is the overall winner among the ordinal quantification measures: that is, RNOD outperforms NMD and the variants of RNOD. Hence, the original design choice of RNOD is reasonable in this respect. More specifically, assuming equidistance (Eq. 3) and considering only classes with a non-zero gold probability (Eq. 4) when computing the Order-aware Divergence are actually beneficial to some degree. On the other hand, DNKT, which only cares about whether the classes are prioritised as defined in the gold distribution suffers in terms of the robustness of the ranking to the choice of test data, relative to the quantification measures discussed in this study. Hence, if the PPP is considered important and DNKT seems appropriate for the task, one should consider this statistical instability into account at the sample size design stage [11, 14], i.e., when deciding on the number of test cases for system evaluation. Recall also that DNKT is not useful if the gold distribution is uniform (See Section 2.3).

Sakai et al. [18] have used JSD, NMD, and RNOD as a component of their group-fair ranking evaluation measures. Our future work includes examining the relationship between ordinal quantification task evaluation and the evaluation of other tasks such as group-fair ranking that involve these divergence measures.

REFERENCES

[1] T. Chai and R.R. Draxler. 2014. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? – Arguments against avoiding RMSE in the Literature. *Geoscientific Model Development* 7 (2014), 1247–1250.
[2] Andrea Esuli and Fabrizio Sebastiani. 2010. Sentiment Quantification. *IEEE Intelligent Systems* 25, 4 (2010), 72–75.
[3] Wei Gao and Fabrizio Sebastiani. 2016. From Classification to Quantification in Tweet Sentiment Analysis. *Social Network Analysis and Mining* 6, 19 (2016), 1–22.
[4] Maurice G. Kendall. 1962. *Rank Correlation Methods (3rd Edition)*. Charles Griffin & Company Limited.
[5] Klaus Krippendorff. 2018. *Content Analysis: An Introduction to Its Methodology (Fourth Edition)*. SAGE Publications.
[6] Elizaveta Levina and Peter Bickel. 2001. The Earth Mover’s Distance is the Mallows Distance: Some Insights from Statistics. In *Proceedings of ICCV 2001*, 251–256.
[7] Jianhua Lin. 1991. Divergence Measures Based on the Shannon Entropy. *IEEE Transactions on Information Theory* 37, 1 (1991), 145–151.
[8] Jeffrey D. Long and Norman Cliff. 1997. Confidence Intervals for Kendall’s tau. *Brit. J. Math. Statist. Psych.* 50 (1997), 31–41.
[9] Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoyanov, and Fabrizio Sebastiani. 2016. SemEval-2016 Task 4: Sentiment Analysis in Twitter. In *Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval ’16)*. Association for Computational Linguistics, San Diego, California. https://www.aclweb.org/anthology/S16-1001.pdf
[10] Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017. SemEval-2017 Task 4: Sentiment Analysis in Twitter. In *Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval ’17)*. Association for Computational Linguistics, Vancouver, Canada. https://www.aclweb.org/anthology/S17-2088.pdf
[11] Tetsuya Sakai. 2016. Topic Set Size Design. *Information Retrieval Journal* 19, 3 (2016), 256–283.
[12] Tetsuya Sakai. 2017. Towards Automatic Evaluation of Multi-Turn Dialogues: A Task Design that Leverages Inherently Subjective Annotations. In *Proceedings of EVA 2017*. 24–30. http://ceur-ws.org/Vol-2008/paper_4.pdf
[13] Tetsuya Sakai. 2018. Comparing Two Binned Probability Distributions for Information Access Evaluation. In Proceedings of ACM SIGIR 2018. 1073–1076. https://dl.acm.org/doi/pdf/10.1145/3209978.3210073
[14] Tetsuya Sakai. 2018. Laboratory Experiments in Information Retrieval: Sample Sizes, Effect Sizes, and Statistical Power. Springer.
[15] Tetsuya Sakai. 2021. A Closer Look at Evaluation Measures for Ordinal Quantification. In Proceedings of the CIKM 2021 Workshops. http://ceur-ws.org/Vol-3052/paper21.pdf
[16] Tetsuya Sakai. 2021. Evaluating Evaluation Measures for Ordinal Classification and Ordinal Quantification. In Proceedings of ACL-IJCNLP 2021, 2759–2769. https://aclanthology.org/2021.acl-long.214.pdf
[17] Tetsuya Sakai. 2021. On the Instability of Diminishing Return IR Measures. In Proceedings of ECIR 2021 Part I (LNCS 12656). 572–586.
[18] Tetsuya Sakai, Jin Young Kim, and Inho Kang. 2022. A Versatile Framework for Evaluating Ranked Lists in terms of Group Fairness and Relevance. (2022). http://arxiv.org/abs/2204.00280
[19] Fabrizio Sebastiani. 2020. Evaluation Measures for Quantification: an Axiomatic Approach. Information Retrieval Journal 23, 3 (2020), 255–288.
[20] Yuiko Tsunomori, Ryuichiro Higashinaka, Tetsuro Takahashi, and Michimasa Inaba. 2020. Selection of Evaluation Metrics for Dialogue Breakdown Detection in Dialogue Breakdown Detection Challenge 3 (in Japanese). Transactions of the Japanese Society for Artificial Intelligence 35, 1 (2020). https://www.jstage.jst.go.jp/article/tjsai/35/1/35_DSI-G_/pdf/-char/ja
[21] Michael Werman, Shmuel Peleg, and Azriel Rosenfeld. 1985. A Distance Metric for Multidimensional Histograms. Computer Vision, Graphics, and Image Processing 32 (1985), 328–336.
[22] Zhaohao Zeng, Sosuke Kato, and Tetsuya Sakai. 2019. Overview of the NTCIR-14 Short Text Conversation Task: Dialogue Quality and Nugget Detection Subtasks. In Proceedings of NTCIR-14. 289–315. http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings14/pdf/ntcir/01-NTCIR14-OV-SC-ZengZ.pdf
[23] Zhaohao Zeng, Sosuke Kato, Tetsuya Sakai, and Inho Kang. 2020. Overview of the NTCIR-15 Dialogue Evaluation Task (DialEval-1). In Proceedings of NTCIR-15. 13–34. http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings15/pdf/ntcir/01-NTCIR15-OV-DIALEVAL-ZengZ.pdf