ABSTRACT

Purpose The main objective of this review was to describe and quantify the association between *Fusobacterium necrophorum* (FN) and acute sore throat in primary healthcare (PHC).

Methods In this systematic review and meta-analysis, we searched Scopus and PubMed for case–control studies reporting the prevalence of FN in patients attending primary care for an uncomplicated acute sore throat as well as in healthy controls. Only studies published in English were considered. Publications were not included if they were case studies, or if they included patients prescribed antibiotics before the throat swab, patients with a concurrent malignant disease, on immunosuppression, having an HIV infection, or patients having another acute infection in addition to a sore throat. Inclusion criteria and methods were specified in advance and published in PROSPERO. The primary outcome was positive etiologic predictive value (P-EPV), quantifying the probability for an association between acute sore throat and findings of FN in the pharynx. For comparison, our secondary outcome was the corresponding P-EPV for group A Streptococcus (GAS).

Results PubMed and Scopus yielded 258 and 232 studies, respectively. Removing duplicates and screening the abstracts resulted in 53 studies subsequently read in full text. For the four studies of medium to high quality included in the meta-analysis, the cumulative P-EPV regarding FN was 64% (95% CI 33% to 83%). GAS, based on data from the same publications and patients, yielded a positive EPV of 93% (95% CI 83% to 99%).

Conclusions The results indicate that FN may play a role in PHC patients with an acute sore throat, but the association is much weaker compared with GAS.

INTRODUCTION

An uncomplicated acute sore throat is a common reason for attending primary healthcare (PHC).1–3 Most current guidelines concerning the management of patients with a sore throat focus on group A Streptococcus (GAS).4–6 However, recent studies have indicated that *Fusobacterium necrophorum* (FN) might cause a sore throat, particularly among adolescents and young adults.7–9

FN is an anaerobic Gram-negative bacterium most known for causing the severe disease Lemierre’s syndrome, a potentially life-threatening condition that typically begins with a sore throat and is also an established pathogen in peritonsillar abscess (PTA).10–12

The role of FN in the sore throat has been studied in three recent reviews.7,9 None of the three reviews have taken into consideration the carriage rate of FN in healthy controls, which is of importance when estimating the clinical relevance of finding FN in patients with an uncomplicated acute sore throat.

This study aimed to estimate the probability for an association between FN and the uncomplicated acute sore throat in patients attending PHC, when taking into consideration the carriage rate of FN in healthy controls. A second aim was to compare the probability for FN with the same probability for an association between GAS and patients with an uncomplicated acute sore throat.

Patient and public involvement

No patients involved.

Ethics approval

No ethical approval was needed since only publicly available data from published articles (in which informed consent was obtained by the respective ethic committee) were included.
the primary investigators) were retrieved and analysed. No personal, sensitive or confidential information was collected in the scope of this study.

METHODS
The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Inclusion criteria and methods were specified in advance and documented in the review protocol. The initial protocol was registered and made available beforehand in PROSPERO (International Prospective Register of Systematic Reviews), 5 September 2018 (registration number CRD42018106800).

Search strategy
PubMed and SCOPUS were searched (17 September 2018) for case–control studies reporting the prevalence of FN in patients with an uncomplicated acute sore throat and in healthy individuals without any signs of infection. There were no time limitations. The search terms are described in online supplemental appendix 1.

Study selection
All case–control studies reporting the prevalence of FN in patients attending a PHC setting for an uncomplicated acute sore throat and in a healthy control group were included. Only studies published in English were considered. Publications were not included if they were case studies, or if they included patients prescribed antibiotics before the throat swab, patients with a concurrent malignant disease, on immunosuppression, having an HIV infection, or patients having another acute infection in addition to a sore throat.

SM performed the first screening by reading titles and abstract to remove duplicates from the two search strategies and, thereafter, to remove obviously irrelevant studies such as animal studies. The remaining studies were carefully screened again reading titles and abstracts independently by SM and SP to identify studies that potentially met the inclusion criteria outlined above. SM and SP started screening sitting together in the same room discussing each publication to ensure they aligned their judgement. They then continued screening separately but had a joint discussion whenever they decided differently if a publication should be kept or removed.

The full texts of these potentially eligible studies were retrieved and independently assessed for eligibility by SM and SP. Any disagreement between them over the eligibility of particular studies was resolved through discussion within the whole review team.

The reference lists for each article were screened for additional articles potentially matching the inclusion criteria. Such articles were added to the list of potentially eligible studies for further assessment.

Appraisal of methodological quality
SM and SP independently assessed the risk of bias in the included studies by using methodological quality characteristics (table 1). Overall high quality was defined as having a low risk of bias in all criteria. Having a high risk of bias in any criteria made the study to be of overall low quality. The rest was classified as having an overall moderate risk of bias. Disagreements over the risk of bias in particular studies were resolved by discussion within the review team.

Data extraction
A standardised, pre-piloted form was used to extract data from the included studies for assessment of methodological quality and evidence synthesis. Extracted information included study setting, definition of cases and classification of these using the Centor criteria if available,

Table 1 Methodological quality assessment of included studies
Low risk
Definition of cases
Healthy controls
Swab method
Culture method
Type of study
Same area and time period

FN, Fusobacterium necrophorum.
definition of healthy controls, swab method, culture or PCR method, outcomes of throat swabs and information for the assessment of the risk of bias. SM and SP extracted data independently. Discrepancies were identified and resolved through discussion.

Data analysis
A narrative synthesis was produced for each of the included studies, structured around the study methodology, target population characteristics, outcome and the assessment of methodological quality.

Studies with a healthy control group and of a medium to high methodological quality were used for the meta-analysis, where the pooled difference in prevalence of FN between cases and healthy controls was compared using χ^2 test.

The clinical relevance of any statistical differences between symptomatic patients and healthy controls was further explored by calculating the positive etiologic predictive value (P-EPV). P-EPV is a method of quantifying the probability of a true link between the symptom (a sore throat) and the finding of FN in the throat while considering the possibility of healthy carriers of FN (online supplemental appendix 2). P-EPV for FN was, when possible, compared with P-EPV for GAS using data from the same patients and publications.

Using a random effects meta-analysis would have provided ORs for harbouring FN among cases compared with controls. The statistical technique we used for meta-analysis, P-EPV, has been used previously and provides a probability for a true connection between FN and the symptom of a sore throat in the studied group. This outcome is a plain percent between 0% and 100%. If a bacterium is found equally often in patients and controls, the point estimate of P-EPV will be 0% with a 95% CI from 0.0% and the upper limit will be determined by the sample size. The point estimate of P-EPV will approach 100% when the difference in prevalence of a bacterium between patients and controls increases. This was in our opinion a more clinically useful outcome that can be easily understood, especially by clinicians unfamiliar with research and ORs.

P-EPV does not directly take into account between-study variation so it is not a random effect model. We compensate for this by presenting our outcome for each individual study as well as a sensitivity analysis where we compare the consequences of combining them differently. Furthermore, the between-study variation statistics (I^2) calculated in random effect models is very unreliable when the number of included publications is small and we knew already from the start that the number of available publications would be small.

P-EPV has the ability to adjust the proportion of individuals harbouring FN between healthy controls and symptomatic carriers ill from something else like a virus. However, in this review we chose to not adjust this, so we set theta to 1.0, meaning that symptomatic carriers harbour FN equally often as healthy controls. Finally, P-EPV allows us to consider the sensitivity of the test to detect FN, something that conventional random effects meta-analysis does not.

RESULTS
The PubMed search yielded 258 publications, and the Scopus database query yielded 232 (figure 1). Reviewing reference lists did not reveal any more relevant publications not found in the initial searches. Removing duplicates and screening the abstracts resulted in 53 studies subsequently read in full text.

Exclusion of publications
Thirty-seven of these 53 articles were not included because they had a different focus, that is, laboratory methods, or focused on a different category of patients than was the scope of this review: chronically ill patients, hospitalised patients, or patients with a subset of infections such as PTA, Lemierre’s syndrome, chronic/recurrent tonsillitis and intra-abdominal infections. Four were excluded because they lacked a control group.

Discussions in the review team prompted the exclusion of another five articles with methodological limitations in relation to the scope of this review.
The article published in 2004 by Aliyu et al.57 concerned a study where routine throat swabs were analysed for FN-specific DNA and compared with swabs obtained from healthy adults. The cases were randomly selected in the laboratory, but it was unclear to what extent they had a sore throat and how these symptoms were registered. The cases included children as young as 5 months. Hence, it was unclear what kind of patients the routine throat swabs sent to the laboratory represented. Inclusion in the control group required the absence of antibiotic therapy in the preceding 2 weeks, but not for cases. The swabs from cases were also cultured for GAS, but there was no information about the prevalence of GAS in the control group. The mean age and range differed substantially between cases and controls.

The article published in 2018 by Atkinson et al.58 presented the results of applying a new laboratory method on swabs from a previously published study62 and comparing the results of applying a new laboratory method on swabs sent to the laboratory. The laboratory served both PHC and secondary care, while the scope of this study was to focus on uncomplicated acute sore throat in PHC.

A Letter to the Editor published in 2014 by Eaton et al.59 concerned a project in which all throat swabs received by a microbiology laboratory in 1 year were cultured for GAS and FN, indicating that the only inclusion criterion was that a throat swab was taken. The laboratory served both PHC and secondary care, while the scope of this study was to focus on uncomplicated acute sore throat in PHC. Clinical details stated on accompanying request forms were used to determine if patients had pharyngitis. Those with either persistent or recurrent symptoms were considered to have persistent sore throat syndrome (PSTs), indicating that multiple swabs from the same individual were allowed in the data. There was no information about antibiotic treatment. In conclusion, it was decided not to include the Letter to the Editor by Eaton et al in this review.

The text published in 2009 by Ludlam et al.60 described a study design comparing cases from a local general practitioner to controls comprising healthy university students, collecting throat swabs for both groups during the same 2-month period. The description of inclusion and exclusion criteria for the cases was limited. The results for GAS, Epstein-Barr virus and FN were not shown for both groups, either in text or in tables. It is unclear whether the controls may become cases (and vice versa). Their online supplemental table contained information about antibiotic treatment in the control group, but not for the cases.

The article published in 2018 by Pallon et al.61 was a follow-up study based on the same initial data already included in a previously published article by Hedin et al.,63 which is included in this review. Therefore, the article published in 2018 by Pallon et al.61 was not included.

Methodological quality

Of the six studies included in the qualitative analysis, three were of overall high quality and one of medium quality62–65 (figure 2), and these were included in the meta-analysis.

Two studies presenting data from cases and controls were of low quality,66,67 and these were not included in the meta-analysis for the reasons described below.

The Danish study by Jensen et al.15 examined the outcome of throat cultures arriving at a microbiology laboratory. Most of the cases came from patients with 3–4 Centor criteria who had already tested negative with a rapid antigen detection test (RADT) for GAS. The control group consisted of subjects having a sore throat with 0–2 Centor criteria or fever or who were screened for carriage of Staphylococcus aureus. None of the controls were screened using the above-mentioned RADT. The cases and controls were, therefore, deemed inappropriate for inclusion in the meta-analysis.

The article published in 2007 by Jensen et al.66 had similar problems as those described above. The inclusion criteria were somewhat unclear. It appears as if primarily patients with a negative outcome of a RADT for GAS were included as cases. Hence, this study was also not included in the meta-analysis.

Presence of Fusobacterium necrophorum in patients with a sore throat

In high or medium quality articles, FN was detected in 18% of cases with a sore throat and a Centor score of 0–4, compared with 7.2% in healthy controls (p<0.00001, χ^2) (table 2). The cumulative positive EPV for FN for the four publications with low or medium risk for bias, including patients with 0–4 Centor scores, was 64% (95% CI 33% to 83%) (figure 3, table 3). In cases with a Centor score of 3–4, FN was detected in 21% (p<0.00001, χ^2) (table 2). The cumulative positive EPV regarding FN for patients with a Centor score of 3–4 was 71% (95% CI 34% to 88%) (figure 4, table 3).

Table 2: Quality assessment of included studies

Study	Case defined	Healthy controls	Swab method	Culture method	Type of study	Same-gender control cohort
Hedin, 2015	☐	☐	☐	☐	☐	☐
Center, 2015	☐	☐	☐	☐	☐	☐
Kjelluf, 2015	☐	☐	☐	☐	☐	☐
Hayakawa, 2018	☐	☐	☐	☐	☐	☐
Jensen, 2007	☐	☐	☐	☐	☐	☐
Jensen, 2015	☐	☐	☐	☐	☐	☐

- **Low risk of bias**: ☐
- **Intermediate risk of bias**: ☐
- **High risk of bias**: ☐
Table 2 Case–control studies examining *Fusobacterium necrophorum* and group A* Streptococcus* in patients with an acute uncomplicated sore throat in primary care

Study (Ref)	Design	Method	Age, years (range)	No of cases and controls	% FN detected (n)	% GAS detected (n)
Hedin et al 2015	Pro	Culture	63 (15–48)	33 (15–48)	15% (33)	30% (66)
Centor et al 2015	Pro	PCR	22 (15–30)	312 (15–48)	21% (64)	10% (32)
Kjærulf et al 2015	Pro	Culture	28 (15–40)	100 (15–40)	16% (16)	26% (26)
Hayakawa et al 2018	Pro	PCR+culture	29 (25–37)	44 (25–37)	14% (6)	11% (5)
Subtotal (low and medium risk for bias)			676 (15–37)	676 (15–37)	18% (119)	35% (69)
Jensen et al 2007	Pro	PCR+culture	25 (18–32)	105 (18–32)	51% (54)	51% (54)
Jensen et al 2015	Retro	Culture	19 (10–40)	179 (10–40)	24% (43)	5.7%* (7)
Subtotal (high risk for bias)			284 (10–40)	284 (10–40)	34% (97)	4.6%* (13)
Total (all six articles)			960 (10–40)	960 (10–40)	23% (216)	15%* (142)

*GAS-tonsillitis was excluded (by general practitioners using rapid antigen tests) in the two articles by Jensen et al; thus, those results for GAS were irrelevant for the purpose of this meta-analysis.

FN, *Fusobacterium necrophorum*; GAS, group A *Streptococcus.*
Fusobacterium necrophorum versus group A Streptococcus

When including all cases (Centor score 0–4) in studies with low or medium risk for bias also providing data for GAS in the very same patients, the cumulative positive EPV for a finding of GAS was 93% (95% CI 83% to 99%) (figure 5, table 3). In cases with a Centor score of 3–4, the positive EPV for GAS was 97% (95% CI 91% to 100%) (figure 6, table 3).

DISCUSSION

This literature review and meta-analysis showed that the P-EPV for FN (detected by culture or PCR) and the uncomplicated acute sore throat was 64% (95% CI 33% to 83%). The corresponding P-EPV for GAS was 93% (95% CI 83% to 99%), based on data from the same publications and patients. When limiting the analyses to the patients with Centor score 3–4, the P-EPV for FN was 71% (95% CI 34% to 88%) and for GAS was 97% (95% CI 91% to 100%).

Strengths and limitations

A potential limitation is that there were only four available case–control studies presenting the proportion of FN. However, this study is the first systematic literature review with meta-analysis using P-EPV to quantify the clinical relevance of a finding of FN in patients presenting with an acute uncomplicated sore throat in PHC. As such, it represents the current best understanding of the clinical importance of FN in patients with an uncomplicated acute sore throat.

The relatively high prevalence of FN in healthy controls (7.2%) indicates that FN, at least for some patients, is a part of the normal tonsillar flora. The proportion of patients with FN was 18% for Centor score 0–4% and 21% for Centor score 3–4, but the corresponding increase for GAS was from 19% to 35% (table 2). Subsequently, the

Study	Fusobacterium necrophorum	Group A Streptococcus
Hedin et al (Sweden)	82% (34–100)	95% (82–100)
Hedin et al (USA)	60% (8.2–87)	90% (57–100)
Kjaerulf et al (Denmark)	49% (0.0–92)	93% (71–100)
Hayakawa et al (Japan)	57% (0.0–100)	93% (83–99)
All studies combined	64% (33–83)	97% (91–100)

*P-EPV is a method of quantifying the probability of a true link between symptoms and signs (a sore throat) and the finding of a bacterium in the throat while considering the possibility of healthy carriers of the same bacterium. 0% indicates no probability for a true link and 100% indicates a certain link.

†Including either all patients with a sore throat (Centor criteria 0–4) or only those with more prominent symptoms (Centor score 3–4).

‡Only studies with low or medium risk for bias are included.
difference in the 95% CI for P-EPV between patients having 0–4 vs 3–4 Centor scores was very small for FN, even if there was a marginal increase in the point estimate for P-EPV. A larger difference would be expected if FN is the main aetiological agent in a relevant proportion of patients.

The P-EPV numbers indicate that FN plays a role as a pathogen in patients with an uncomplicated acute sore throat. However, compared with the results for GAS, the association between FN and the uncomplicated acute sore throat appears to be considerably weaker and only marginally higher than the P-EPV of 53% (95% CI 36% to 67%) previously found for adults harbouring Group C streptococci (GCS).15 Furthermore, the narrow CIs for GAS P-EPV are in contrast with the wide CIs associated with the P-EPV for FN.

The high P-EPV for a finding of GAS in a throat swab is convincing and confirms the already well-established link between GAS and sore throat.6

It has been suggested that antibiotic treatment of uncomplicated acute sore throat caused by FN would be cost-effective if it reduces the incidence of Lemierre’s syndrome by at least 20%.26 However, this has not yet been investigated in a clinical trial, and it is unlikely it ever will be due to the very low incidence of Lemierre’s syndrome. Other possible reasons for prescribing antibiotic treatment to patients with an uncomplicated acute sore throat caused by FN might be to shorten symptom duration or reduce the incidence of PTA. However, neither one has ever been tested in a clinical trial. Hence, although theoretically possible, we still have no proof that antibiotic treatment is beneficial to patients with an uncomplicated sore throat and presence of FN.

CONCLUSIONS AND IMPLICATIONS

For uncomplicated acute sore throat in PHC, the CI of P-EPV for FN (33%–83%) is wider and lower compared with the corresponding P-EPV for GAS (83%–99%). The level of certainty for these CIs is deemed as high as it is based on three high quality and one medium quality study including a total of 676 cases and 439 controls. Since the lower limit for the 95% CI for FN is well above 0%, we can, with a high level of certainty, state there is an association between FN and the uncomplicated acute sore throat in PHC. However, it is weaker than the same association for GAS.

We are not aware of any studies showing that antibiotic treatment has beneficial effects on the duration or severity of symptoms in an FN-associated acute sore throat. Nor do we have any evidence that antibiotic treatment to patients with an uncomplicated acute sore throat reduces the incidence of the life-threatening Lemierre’s syndrome. Hence, in the absence of this evidence, we do not recommend routinely searching for FN in throat swabs or prescribing antibiotics to patients with a GAS negative uncomplicated acute sore throat in PHC. However, it is weaker than the same association for GAS.

We are not aware of any studies showing that antibiotic treatment has beneficial effects on the duration or severity of symptoms in an FN-associated acute sore throat. Nor do we have any evidence that antibiotic treatment to patients with an uncomplicated acute sore throat reduces the incidence of the life-threatening Lemierre’s syndrome. Hence, in the absence of this evidence, we do not recommend routinely searching for FN in throat swabs or prescribing antibiotics to patients with a GAS negative uncomplicated acute sore throat in PHC. However, to our knowledge, at least one randomised controlled trial focusing on GAS-negative patients with a sore throat, and analysing the presence of FN, is underway. Hence, our current advice may in the future have to be revised.

More future studies should focus on randomising patients with an uncomplicated acute sore throat and presence of only FN to treatment with antibiotics or placebo in order to assess whether the treatment is effective to reduce duration and intensity of symptoms, and,
more importantly, if complications such as PTA can be prevented. The prevalence of Lemierre’s syndrome is so low that any effect of antibiotics on its prevalence most likely would need to be estimated using other designs than a simple clinical trial comparing antibiotics with placebo.

Author affiliations
1 General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2 Research, Education, Development & Innovation, Primary Health Care, Region Västra Götaland, Borås, Sweden
3 Centre for Antibiotic Resistance Research (CARE), University of Gothenburg, Gothenburg, Sweden
4 Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
5 Future Academy for Health and Care, Region Jönköpings County, Jönköping, Sweden
6 Department of Clinical Sciences in Malmö, Family Medicine, Lund University, Malmö, Sweden

Acknowledgements The authors would like to thank Professor Robert Centor who willingly provided further information from his study “The clinical presentation of Fusobacterium-positive and streptococcal-positive pharyngitis in a university health clinic: a cross-sectional study,” enabling us to calculate separate P-EPV for patients with 0–4 and 3–4 Centor criteria.

Contributors RG was responsible for the conception of the idea. The study’s overall design was made by RG, SM, BDS, SP and KH. SM and SP were responsible for assessing the eligibility and extract data from publications. Statistical analysis, interpretation of results and writing of the manuscript were made by all authors (RG, SM, BDS, SP and KH). All authors (RG, SM, BDS, SP and KH) approved the final version of the manuscript.

Funding Funding for this project came from the Local Research and Development Council, Södra Älvsborg, Sweden (reference number VFG1011A-937533). Funding was also received from Research and Development Centre for Primary Healthcare, Borås, Sweden (reference number VFG1011A-P-872381).

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The raw data files are available from the corresponding author upon request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been vetted by any other organization. The views expressed are not necessarily those of BMJ and may not have been reviewed by BMJ.

Open access

REFERENCES
1 André M, Vernby Åsa, Odenholt I, et al. Diagnosis-prescribing surveys in 2000, 2002 and 2005 in Swedish general practice: consultations, diagnosis, diagnostics and treatment choices. Scand J Infect Dis 2008;40:648–54.
2 Tystrup M, Beckman A, Mölstad S, et al. Reduction in antibiotic prescribing for respiratory tract infections in Swedish primary care- a retrospective study of electronic patient records. BMC Infect Dis 2016;16.
3 Armstrong GL, Pinner RW. Outpatient visits for infectious diseases in the United States, 1980 through 1996. Arch Intern Med 1999;159:2531–6.
4 Shultan ST, Bisno AL, Clegg HW, et al. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the infectious diseases Society of America. Clin Infect Dis 2012;55:e86–102.
5 Centor RM, Witherspoon JM, Dalton HP, et al. The diagnosis of Strep throat in adults in the emergency room. Med Decis Making 1981;1:239–46.
6 Pelucchi C, Grigoryan L, Galeone C. Guideline for the management of acute sore throat. UK: Oxford; 2012: 1–28.
7 Marchello C, Ebell MH. Prevalence of Group C Streptococcus and Fusobacterium Necrophorum in Patients With Sore Throat: A Meta-Analysis. Ann Fam Med 2016;14:567–74.
8 Klug TE, Rusan M, Fuursted K, et al. A systematic review of Fusobacterium necrophorum-positive acute tonsillitis: prevalence, methods of detection, patient characteristics, and the usefulness of the Centor score. Eur J Clin Microbiol Infect Dis 2016;35:1903–12.
9 Holm K, Bank S, Nielsen H, et al. The role of Fusobacterium necrophorum in pharyngotonsillitis - A review. Anaerobe 2016;42:89–97.
10 Rioran J. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev 2007;20:922–59.
11 Wikström J, Kaltiainen E, Pitkääranta A, et al. Renewal of peritonsillar abscesses: impact of the bacterial species of the infection and clinical features of the patient-A prospective comparative aetiological study. Clin Otolaryngol 2017;42:1358–62.
12 Knobel EL, Powell JR, Samuel JR, et al. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother 2013;68:1941–50.
13 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.
14 Gunnarsson RK, Ranke J. The predictive value of microbiologic diagnostic tests if asymptomatic carriers are present. Stat Med 2002;21:1773–85.
15 Gunnarsson RK, Manchel N, Group C beta hemolytic Streptococci as a potential pathogen in patients presenting with an uncomplicated acute sore throat - a systematic literature review and meta-analysis. Scand J Prim Health Care 2020;38:226–37.
16 von Hippel PT. The heterogeneity statistic I2 can be biased in small meta-analyses. BMJ Med Res Methodol 2015;15:35.
17 Bank S, Nielsen HM, Mathiasen BH, et al. Fusobacterium necrophorum- detection and identification on a selective agar. Anaerobe 2016;35:1903–12.
18 Holm K, Bank S, Nielsen H, et al. The role of Fusobacterium necrophorum in pharyngotonsillitis - A review. Anaerobe 2016;42:89–97.
19 Rioran J. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev 2007;20:922–59.
20 Wikström J, Kaltiainen E, Pitkääranta A, et al. Renewal of peritonsillar abscesses: impact of the bacterial species of the infection and clinical features of the patient-A prospective comparative aetiological study. Clin Otolaryngol 2017;42:1358–62.
21 Knobel EL, Powell JR, Samuel JR, et al. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother 2013;68:1941–50.
22 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.
23 Gunnarsson RK, Ranke J. The predictive value of microbiologic diagnostic tests if asymptomatic carriers are present. Stat Med 2002;21:1773–85.
24 Gunnarsson RK, Manchel N, Group C beta hemolytic Streptococci as a potential pathogen in patients presenting with an uncomplicated acute sore throat - a systematic literature review and meta-analysis. Scand J Prim Health Care 2020;38:226–37.
25 von Hippel PT. The heterogeneity statistic I2 can be biased in small meta-analyses. BMJ Med Res Methodol 2015;15:35.
26 Bank S, Nielsen HM, Mathiasen BH, et al. Fusobacterium necrophorum- detection and identification on a selective agar. Anaerobe 2016;35:1903–12.
27 Holm K, Bank S, Nielsen H, et al. The role of Fusobacterium necrophorum in pharyngotonsillitis - A review. Anaerobe 2016;42:89–97.
28 Rioran J. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev 2007;20:922–59.
29 Wikström J, Kaltiainen E, Pitkääranta A, et al. Renewal of peritonsillar abscesses: impact of the bacterial species of the infection and clinical features of the patient-A prospective comparative aetiological study. Clin Otolaryngol 2017;42:1358–62.
30 Knobel EL, Powell JR, Samuel JR, et al. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother 2013;68:1941–50.
syndrome and peritonsillar abscesses. *Eur J Clin Microbiol Infect Dis* 2013;32:71–8.
27 Battay A, Wren MWD, Gal M. Fusobacterium necrophorum as the cause of recurrent sore throat: comparison of isolates from persistent sore throat syndrome and Lemierre's disease. *J Infect* 2005;51:299–306.
28 Battay A, Wren MWD. Prevalence of *Fusobacterium necrophorum* and other upper respiratory tract pathogens isolated from throat swabs. *Br J Biomed Sci* 2005;62:66–70.
29 Birk H, Bieber L, Heitin K, et al. Tonsillar colonisation of *Fusobacterium necrophorum* in patients subjected to tonsillectomy. *BMC Infect Dis* 2015;15:264.
30 Brook I. Aerobic and anaerobic bacteriology of peritonsillar abscess in children. *Acta Paediatr* 1981;70:831–5.
31 Brook I, Role of anaerobic bacteria in upper respiratory tract infections. *Pediatr Infect Dis J* 1987;6:310–6.
32 Brook I, Foote PA, Slots J. Immune response to anaerobic bacteria in patients with peritonsillar cellulitis and abscess. *Acta Otolaryngol* 1985;98:188–91.
33 Brook I, Shah K, Jackson W. Microbiology of healthy and diseased adenoids. *Laryngoscope* 2000;110:994–9.
34 Daafredif A, Lundström B, Tano K. Prevalence of *Fusobacterium necrophorum* in tonsils from patients with chronic tonsillitis. *Acta Otolaryngol* 2011;131:297–301.
35 Develioğlu ON, İpek HD, Bahar H, et al. Bacteriological evaluation of tonsillar microbial flora according to age and tonsillar size in recurrent tonsillitis. *Eur Arch Otorhinolaryngol* 2014;271:1661–5.
36 Ehlers Klug T, Rusan M, Furusted K, et al. *Fusobacterium necrophorum* as a prevalent pathogen in peritonsillar abscesses in Denmark. *Clin Infect Dis* 2009;49:1467–72.
37 Hagskjaer Kristensen L, Prag J. Localised Fusobacterium necrophorum infections: a prospective laboratory-based Danish study. *Eur J Clin Microbiol Infect Dis* 2008;27:733–9.
38 Hagskjaer Kristensen L, Prag J. Tonsillar colonisation of *Fusobacterium necrophorum* infections: a prospective laboratory-based Danish study. *Eur J Clin Microbiol Infect Dis* 2008;27:779–89.
39 Hayakawa K, Nagashima M, Ohta K, et al. Fusobacterium necrophorum is a most prevalent pathogen in peritonsillar abscess in Japan. *Jpn J Infect Dis* 2018;71:365–7.
40 Holm K, Svennson PJ, Rasmussen M. Invasive Fusobacterium necrophorum infections and Lemierre's syndrome: the role of thrombophilia and EBV. *Eur J Clin Microbiol Infect Dis* 2015;34:2199–207.
41 Horn J, Bender BS, Bartlett JG. Role of anaerobic bacteria in perimandibular space infections. *Ann Otol Rhinol Laryngol* 1991;100:34–9.
42 Hugan PJ, Murdoch DR. Fusobacterial infections: clinical spectrum and incidence of invasive disease. *J Infect* 2008;57:283–9.
43 Jensen A, Fagb-Olsen H, Sorensen CH, et al. Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis. *PLoS One* 2013;8:e65418.
44 Jokipi AM, Jokipi L, Sipilä P, et al. Semiquantitative culture results and pathogenic significance of obligate anaerobes in peritonsillar abscesses. *J Clin Microbiol* 1988;26:957–61.
45 Klug TE. Incidence and microbiology of peritonsillar abscesses: the influence of season, age, and gender. *Eur J Clin Microbiol Infect Dis* 2014;33:1163–71.
46 Klug TE, Fischer ASL, Antonsen C, et al. Parapharyngeal abscess is frequently associated with concomitant peritonsillar abscess. *Eur Arch Otorhinolaryngol* 2014;271:1701–7.
47 Klug TE, Hennissen J-J, Furuusted K, et al. Significant pathogens in peritonsillar abscesses. *Eur J Clin Microbiol Infect Dis* 2011;30:619–27.
48 Lepelletier D, Pinaud V, Le Conte P, et al. Is there an association between prior anti-inflammatory drug exposure and occurrence of peritonsillar abscess (PTA)? a national multicenter prospective observational case-control study. *Eur J Clin Microbiol Infect Dis* 2017;36:57–63.
49 Mitchellmore IJ, Prior AJ, Montgomery PQ, et al. Microbiological features and tonsillar abscesses. *Eur J Clin Microbiol Infect Dis* 1995;14:870–7.
50 Price SL, Hardy S, Gale P, et al. Prevalence of Fusobacterium necrophorum in persistent sore throat samples. *Br J Biomed Sci* 2011;68:209–10.
51 Tacabana T, Yuta Y, Takao S, et al. The role of bacteriological studies in the management of peritonsillar abscess. *Auris Nasus Larynx* 2016;43:648–53.
52 Wikström JE, Laakso S, Mäki M, et al. Microarray identification of bacterial species in peritonsillar abscesses. *Eur J Clin Microbiol Infect Dis* 2014;33:1661–5.
53 Amess JA, O’Neill W, Giollariabaghii N, et al. A six-month audit of the isolation of *Fusobacterium necrophorum* from patients with sore throat in a district general hospital. *Br J Biomed Sci* 2007;64:63–5.
54 Suzuki K, Kuroto Y, Ikeda K, et al. Nationwide surveillance of 6 ototoxicomicrobial infectious diseases and antimicrobial susceptibility pattern in the isolated pathogens in Japan. *J Infect Chemother* 2015;21:483–91.
55 Van TT, Cox LM, Cox ME, et al. Prevalence of Fusobacterium necrophorum in children presenting with pharyngitis. *J Clin Microbiol* 2017;55:1147–53.
56 Windfuhr JP, Toepfner N, Steffen G, et al. Clinical practice guideline: tonsillitis I. diagnostics and nonsurgical management. *Eur Arch Otorhinolaryngol* 2016;273:973–87.
57 Naya SH, Marriott MD, Caus CQ, et al. Real-Time PCR investigation into the importance of Fusobacterium necrophorum as a cause of acute pharyngitis in general practice. *J Med Microbiol* 2004;53:1029–35.
58 Atkinson TP, Centor RM, Xiao L, et al. Analysis of the tonsillar microbiome in a district general hospital: exploring the abundance of Fusobacterium necrophorum with low diversity. *PLoS One* 2018;13:e0189423.
59 Eaton C, Swindells J. The significance and epidemiology of Fusobacterium necrophorum in sore throats. *J Infect* 2014;69:194–6.
60 Ludueñá H, Howard J, Kingston B, et al. Epidemiology of pharyngeal carriage of Fusobacterium necrophorum. *J Med Microbiol* 2009;58:1264–5.
61 Pallon J, Sundqvist M, Hedin K. A 2-year follow-up study of patients with pharyngotonsillitis. *BMJ Infect Dis* 2018;18:3.
62 Centor RM, Atkinson TP, Ratliff AE, et al. The clinical presentation of *Fusobacterium*-positive and streptococcal-positive pharyngitis in a university health clinic: a cross-sectional study. *Ann Intern Med* 2015;162:241–7.
63 Hedén K, Bieber L, Lindh M, et al. The aetiology of pharyngotonsillitis in adolescents and adults – Fusobacterium necrophorum is commonly found. *Clinical Microbiology and Infection* 2015;21:263.e1–263.e7.
64 Kjarulf AMG, Thomsen MK, Ovesen T, et al. Clinical and biochemical characteristics of patients with Fusobacterium necrophorum-positive acute tonsillitis. *Eur Arch Otorhinolaryngol* 2015;272:1457–63.
65 Hayakawa K, Nagashima M, Kanehisa E, et al. Real-Time PCR investigation of the prevalence of Fusobacterium necrophorum in patients with pharyngitis in Japan. *J Infect Chemother* 2018;24:969–74.
66 Jensen A, Hagskjaer Kristensen L, Prag J. Detection of Fusobacterium necrophorum subsp. funduliforme in tonsillitis in young adults with real-time PCR. *Clin Microbiol Infect* 2007;13:692–701.
67 Jensen A, Hansen TM, Bank S, et al. Fusobacterium necrophorum tonsillitis: an important cause of tonsillitis in adolescents and young adults. *Clin Microbiol Infect* 2015;21:266.e1–266.e3.