Presentation of a distractor speeds the decay of a pentobarbital-insensitive nonopioid hypoalgesia in rats

MARY W. MEAGHER, JULIE BARTER, TAMARA E. KING, and JAMES W. GRAU
Texas A&M University, College Station, Texas

Higher psychological/neural processes are thought to be involved in brief, but not long, shock-induced hypoalgesia. Researchers have shown that three brief (0.75-sec) tailshocks produce a hypoalgesia that is eliminated by spinalization, decerebration, pentobarbital anesthesia, and a post-shock distractor. In contrast, three long (25-sec) tailshocks produce a hypoalgesia that is eliminated by spinalization but not decerebration. Although it has been assumed that this hypoalgesia would survive pentobarbital anesthesia and exposure to a distracting stimulus, this has not been previously tested. Experiment 1 demonstrates that pentobarbital has no effect on long shock-induced hypoalgesia. Contrary to our expectations, this nonopioid hypoalgesia was attenuated by a postshock distractor (Experiment 2). This distractor effect appears to be opioid mediated because it was blocked by naltrexone (Experiment 3) and a low dose of morphine effectively substituted for the distractor (Experiment 4). The role of memorial processing in hypoalgesia is discussed.

Animals exposed to an aversive event often exhibit a reduction in pain reactivity, a phenomenon known as hypoalgesia. For example, exposure to three mild (0.75-sec 1.0-mA) shocks can produce a hypoalgesia in rats that lasts 10 min or more (Grau, 1984, 1987a; Meagher, Grau, & King, 1989, 1990). This hypoalgesia attenuates both supraspinally (e.g., formalin-induced recuperative behavior [the "formalin test"]) and spinally mediated (e.g., tail-withdrawal from radiant heat [the "tailflick test"]) measures of pain reactivity (Fanselow, 1984; Grau, 1984). Importantly, we have shown that the reduced pain reactivity observed on the tailflick test does not reflect a general disruption in either sensory processing or motor reactivity: at the same time points where subjects are unresponsive to painful radiant heat, they exhibit normal or enhanced reactivity to tactile stimulation (Illich & Grau, 1990).

Our early studies of this phenomenon focused on the hypoalgesia observed on the tailflick test after three brief (0.75-sec) 1-mA tailshocks (Grau, 1984, 1987a, 1987b; Meagher, Grau, & King, 1989, 1990). A summary of our findings is presented in Figure 1 under the heading Brief Shock. Because the opioid antagonist naltrexone has a very different impact on this hypoalgesia depending upon when pain reactivity is tested (Grau, 1987a), this column has been subdivided into two columns, one for 2 min after shock and one for 6–10 min after shock. At the 2-min time point, the hypoalgesia is naltrexone-insensitive, or nonopioid, in form, whereas at 6–10 min after shock, the hypoalgesia is naltrexone-reversible, or opioid, in nature (a similar pattern of results is obtained if subjects are made tolerant to morphine; see Grau, Biles, & Illich, 1991). Given this, we have suggested that three brief shocks elicit a transient nonopioid hypoalgesia followed by a long-lasting opioid hypoalgesia (Grau, 1984; Grau, Biles, & Illich, 1991). Both of these hypoalgesic responses are eliminated by a high-level spinal transection (at the second thoracic vertebrae, T2), which suggests supraspinal systems play a critical role (Meagher et al., 1990). Indeed, the hypoalgesia is also eliminated by decerebration (Meagher et al., 1990), lesions of the frontal cortex (Meagher et al., 1989), and pentobarbital anesthesia (Grau, 1987a), a pattern of results that has led us to propose that the hypoalgesia depends on forebrain mechanisms (for further evidence on this issue, see Chance, 1980, Fanselow, 1986, and Maier, 1989).

We (Grau, 1987a, 1987b; Grau, Illich, Chen, & Meagher, 1991), and others (Maier, 1989), have suggested that learning and memory play a critical role in producing the hypoalgesia observed after a brief exposure to shock. Specifically, we argued that the "central representation" of the aversive event in working memory acts to maintain the activation of the hypoalgesic systems. If this is true, then the presentation of an unexpected "distractor" after shock should displace the representation of shock from working memory and cause the hypoalgesia to decay more rapidly (for a detailed derivation of these predictions, see Grau 1987a, 1987b). Supporting this, we have shown that a postshock distractor (a 1-min flashing light) causes both the nonopioid and opioid hypoalgesic responses to decay more rapidly (Grau, 1987a). (For other evidence supporting the memorial perspective, see Grau,
engaged by long and/or intense shocks, while higher levels of activation were directly psychological/forebrain processes mediated the hypoalgesia. To test this notion, the lower level modes of activation were directly dependent on higher psychological/neural mechanisms; for more information, see Grau, IIIich, & Mayer, 1982; Watkins, Kinscheck, Mayer, & Hayes, 1984.) When we originally outlined our theory, it was clear that some hypoalgesic effects do not depend on higher psychological/forebrain systems. For example, Watkins and Mayer (1982) had shown that exposure to relatively severe footshock elicits a hypogesia that is eliminated by spinal transection but not decerebration (Watkins, Cobelli, & Mayer, 1982; Watkins, Kinscheck, & Mayer, 1983). These findings led Watkins and Mayer (1982, 1986) to suggest that the afferent nociceptive information was “directly” activating a hypoalgesic system at the level of the brainstem. Learning and memory presumably played little role in the production of this hypoalgesic effect. Instead, from this perspective, the magnitude and time course of the hypoalgesia is a simple function of shock severity; the greater the shock severity, the stronger and more long lasting the hypoalgesia (Terman, Shavit, Lewis, Cannon, & Liebeskind, 1984).

We extended this basic notion and suggested that shock severity may also determine whether hypoalgesia depends on higher psychological/forebrain mechanisms (Grau, 1987a; Grau, Burks, Kallina, King, & Meagher, 1995; Meagher et al., 1990). Our basic hypothesis was that the lower level modes of activation were directly engaged by long and/or intense shocks, while higher psychological/forebrain processes mediated the hypoalgesia observed after brief mild shocks. To test this notion, we assessed the impact of increasing shock severity by simply increasing the duration of the shocks from 0.75 to 25 sec. A summary of our results is presented in Figure 1 under the heading Long Shock. We found that three long (25-sec) 1.0-mA tailshocks produced a hypoalgesia that was eliminated by spinal transection but not decerebration or lesions of the frontal cortex (Meagher et al., 1989, 1990). In fact, decerebration actually potentiated the hypoalgesia, a finding that suggests the operation “released” the hypoalgesic system from a source of tonic inhibition. We also tested the form of the hypoalgesia observed in decerebrated and sham-operated rats. It proved to be naltrexone-insensitive, or nonopioid, in form, and this was true over the entire 10 min of testing (Meagher et al., 1990). Finally, we tested the impact of the cholinergic antagonist scopolamine. Given that forebrain systems appeared to inhibit the activation of this nonopioid mechanism, and that cholinergic systems have been frequently implicated in similar inhibitory effects (Thomas, 1988), we hypothesized that scopolamine might potentiate the hypoalgesia. We found that scopolamine did indeed potentiate long-shock-induced hypoalgesia (Grau, IIIich, et al., 1991). Given these findings, we have argued that the afferent nociceptive information directly activates a nonopioid hypoalgesic system at the level of the brainstem (Meagher, Chen, Salinas, & Grau, 1993; Meagher et al., 1990).

Similarly, Maier (1989) has reported that five 5-sec 1-mA tailshocks produces a pentobarbital-insensitive, nonopioid, hypoalgesia on the tailflick test. He too has argued that this hypoalgesic effect reflects a simple unconditioned response to shock, one that does not depend on learning or memory.

Given the theories outlined by our laboratory (Grau, 1987a, 1987b; Grau, IIIich, et al., 1991; Meagher et al., 1993) and by Maier (1989), one would expect that the hypoalgesia observed after three long tailshocks should survive both pentobarbital anesthesia and exposure to a postshock distractor. Indeed, because other manipulations that disrupt memorial processing (administration of scopolamine) and forebrain functioning (decerebration) potentiate this hypoalgesia, one might expect to find that these manipulations actually potentiate the nonopioid hypoalgesia observed after three long shocks. We addressed these issues by testing the impact of pentobarbital anesthesia (Experiment 1) and the presentation of a postshock distractor (Experiment 2). Contrary to our expectations, the distractor attenuated the hypoalgesia. In Experiments 3 and 4, we explored the mechanism that mediates this effect.

GENERAL METHOD

Subjects

The subjects were male Sprague-Dawley rats obtained from Harlan (Houston, TX). They were 100–120 days old and weighed between 420 and 520 g. The animals were individually housed and maintained on ad-lib food and water. They were maintained on a 12:12-h light/dark cycle, and behavioral testing occurred during the last 4 h of the light cycle.
treated rats were in a flaccid state of surgical anesthesia but were pentobarbital. Prior to testing, we verified that the pentobarbital-jects were treated the same except that shock was withheld. Two the exception that they received an injection of saline instead of remained un shocked.

by Grau (1987a). The other subjects were similarly treated, with (n sodium pentobarbital (V-Pento; distributed by A-J Buck et aI., 1990). Experiment 1 tested whether pentobarbital anesthesia has a similar potentiating effect.

Method

During behavioral testing, the rats were restrained in one of two Plexiglas tubes (22 cm length, 6.8 cm internal diameter). Tail-shock was provided by a 660-V transformer that provided a constant-current 1.0-mA shock. The shock electrodes were con­structed from a modified fuse clip and were lightly coated with electrode paste. The electrode was taped to the rat's tail, approxi­mately 15 cm behind the rear of the tubes. Pain reactivity was assessed using a radiant heat tailflick device. A detailed description of this device, as well as other details of the apparatus, can be found elsewhere (Grau, 1984, 1987a; Meagher et aI., 1993; Meagher et aI., 1990).

Procedure

All subjects were randomly assigned to experimental conditions and placed in restraining tubes for a 15-min acclimation period. They then received four baseline tailflick tests at 2-min intervals. An 8-sec cutoff was used in order to prevent tissue damage. The last three tests were used to compute the subject's baseline level of pain reactivity. After the last tailflick test, the electrodes were at­tached to the rat's tail with adhesive tape. In all the experiments, one half of the subjects in each experimental condition then received three 25-sec 1.0-mA shocks at 20-sec intervals. The remaining sub­jects were treated the same except that shock was withheld. Two minutes after shock termination, or an equivalent period of restraint, the rat's tail was untaped and pain reactivity was tested five times at 2-min intervals.

Statistical Analyses

Analyses of variance (ANOVAs) were performed on both the baseline and the postshock tailflick data. Post hoc comparisons of the group means were made with the Newman-Keuls test.

EXPERIMENT 1

Researchers have generally used two manipulations to explore the role of forebrain systems in environment­ally induced hypoalgesia: decerebration and pentobarbital anesthesia. In a prior study, we showed that decer­ebration potentiates the hypoalgesia observed after three long shocks, suggesting that the operation releases the nonopioid system from descending inhibition (Meagher et aI., 1990). Experiment 1 tested whether pentobarbital anesthesia has a similar potentiating effect.

Method

The experiment involved a 2 (drug) X 2 (shock) factorial design (n = 6). Half of the subjects were injected (i.p.) with 45 mg/kg of sodium pentobarbital (V-Pento; distributed by A-J Buck & Son) and returned to their home cages for a 20-min interval, as described by Grau (1987a). The other subjects were similarly treated, with the exception that they received an injection of saline instead of pentobarbital. Prior to testing, we verified that the pentobarbital-treated rats were in a flaccid state of surgical anesthesia but were breathing normally and could exhibit a tailflick reflex. Half the subjects then received three 25-sec 1.0-mA shocks; the other half remained unshocked.

Results and Discussion

The results are depicted in Figure 2. Baseline tailflick latencies are presented in the left corner of the graph. An ANOVA indicated that baseline tailflick latencies did not differ prior to shock treatment (all Fs < 2.71, p > .05). Tailflick latencies observed after shock are pre­sented on the right side of the graph. Exposure to shock induced a strong hypoalgesia in both the saline- and the pentobarbital-treated groups. An ANOVA confirmed that shock had a significant impact [F(1,20) = 34.75, p < .001]. Neither the main effect of drug treatment nor its interaction with shock treatment approached statistical significance (both Fs < 1.90, p > .05). Although there was a significant trials effect [F(4,80) = 4.05, p < .01], the trials effect did not interact with any of the between-subjects treatments (all Fs < 1.0, p > .05). Post hoc com­parisons showed that the two shocked groups were hypo­algesic relative to the unshocked controls. No other differences were significant.

Thus, long shock-induced hypoalgesia survives pento­barbital anesthesia as well as decerebration (Meagher et aI., 1993; Meagher et aI., 1990). However, unlike de­cerebration, pentobarbital anesthesia did not potentiate the hypoalgesia. If the potentiated hypoalgesia observed after decerebration reflects a release from tonic inhibitio­n, pentobarbital must spare this inhibitory mechanism.

EXPERIMENT 2

We have previously shown that a postshock distractor causes the hypoalgesia observed after three brief (0.75­sec) shocks to decay more rapidly (Grau, 1987a). Experiment 2 tested whether a distractor has a similar effect on the hypoalgesia observed after three long (25-sec) shocks. Given the theories outlined by our laboratory (Grau, 1987a, 1987b; Grau, Illich, et aI., 1991; Meagher et aI., 1993) and by Maier (1989), one would expect that
memorial mechanisms are not involved in the production of this brainstem-mediated hypoalgesia and, consequently, that the distractor should have no effect.

Nevertheless, there are reasons to entertain the opposite hypothesis. We recently showed that a postshock distractor can speed the decay of hypoalgesia in spinalized rats (Grau, Salinas, Illich, & Meagher, 1990). If spinal systems exhibit memory-like effects, brainstem-mediated effects may also prove sensitive to distraction.

Method

The experiment involved a 2 (shock) × 2 (distractor) factorial design (n = 8). Immediately after the last shock, or an equivalent period of restraint, half the subjects in each condition (squares) experienced the distractor (DIS), while the other half experienced nothing (circles). Baseline (BL) nociceptive thresholds are depicted on the left side of the figure. The mean latencies observed 2–10 min after shock, or an equivalent period of restraint, are depicted to the right of the baseline scores. The error bars indicate the SEM.

Results and Discussion

The results are depicted in Figure 3. It is evident that baseline levels of pain reactivity did not differ prior to shock (all Fs < 2.44, p > .05). Shock alone induced a strong hypoalgesia. Presentation of the distractor caused this hypoalgesia to decay more rapidly. An ANOVA confirmed that shock had a significant impact [F(1,28) = 12.01, p < .005]. Neither the main effect of distractor treatment nor its interaction with shock treatment were statistically significant (both Fs < 1.67, p > .05). The within-subjects terms revealed that there was a significant trials effect and that whether the distractor had an effect depended on the trial of testing (both Fs > 8.00, p < .001). The overall effect of shock treatment also varied across trials [F(4,112) = 4.57, p < .005]. Most importantly, the three-way interaction between test trial, shock, and distractor treatment confirmed that the time course of shock-induced hypoalgesia was modified by the presentation of the distractor [F(4,112) = 4.62, p < .01].

We found that the presentation of a distractor causes the hypoalgesia observed after three 25-sec tailshocks to decay more rapidly. Given that this basic effect has now been obtained with forebrain-mediated, brainstem-mediated, and spinally mediated hypoalgesic effects (Grau, 1987a; Grau et al., 1990), it is tempting to conclude that sensitivity to distraction represents a general property of pain modulatory circuits.

EXPERIMENT 3

Elsewhere, we have shown that the presentation of a distractor after three brief (0.75-sec) shocks not only speeds the decay of the hypoalgesia but it also modifies its form (Grau, 1987a). Specifically, we found that a postshock distractor alters the form of the hypoalgesia observed 2–4 min after shock, changing it from one that is naltrexone-insensitive to one that is fully naltrexone-reversible, or opioid, in form. Experiment 3 tested whether the presentation of a distractor has a similar impact on the hypoalgesia observed after three long (25-sec) shocks, changing it from one that is naltrexone-insensitive to one that is naltrexone-reversible. If it does, then naltrexone should eliminate the hypoalgesia that survives the distractor treatment.

Again, there is reason to anticipate the opposite outcome—that naltrexone may block the distractor effect. It is known that exposure to a novel stimulus, such as a distractor, can elicit some opioid release (Izquierdo & McGaugh, 1985, 1987; Netto et al., 1987; Rochford, 1992; Scallet, 1982). This is of interest because the opioid and nonopioid systems appear to be linked by a collateral inhibitory mechanism, so that the activation of one system inhibits the other (Grisel, Fleshner, Watkins, & Maier, 1993; Kirchgessner, Bodnar, & Pasternak, 1982; Steinman et al., 1990). Thus, the distractor may attenuate long shock-induced hypoalgesia because it elicits an opioid release that antagonizes the nonopioid hypoalgesia by means of collateral inhibition. If so, then blocking the opioid receptors with naltrexone should prevent the induction of collateral inhibition and, consequently, prevent the distractor from attenuating the hypoalgesia.

Method

The complete experiment involved a 2 (drug) × 2 (shock) × 2 (distractor) factorial design (n = 8). Half the rats were given an s.c. injection of naltrexone (14 mg/kg); the other half received saline. Although this is a high dose, which may preclude specification of receptor subtype, this dose was used in the prior studies (Grau, 1987a; Grisel et al., 1993), and comparisons across studies were of interest. After the injection, the subjects were placed in the restraining tubes for acclimation and baseline testing. Half the subjects then received three 25-sec 1.0-mA shocks; the other half re-
Results and Discussion

The results are depicted in Figure 4. It is evident that baseline levels of pain reactivity did not differ prior to shock treatment (all Fs < 1.0, $p > .05$). In the absence of the distractor (upper panel), shock induced a strong, naltrexone-insensitive hypoalgesia. As expected, presentation of the distractor (lower panel) caused the hypoalgesia to decay more rapidly in saline-treated subjects.

The distractor had much less of an effect in subjects pretreated with naltrexone.

An ANOVA confirmed that shock had a significant impact [$F(1,56) = 71.00$, $p < .001$] and that the impact of shock depended on distractor treatment [$F(1,56) = 6.35$, $p < .05$]. The main effect of distractor treatment was marginally significant [$F(1,56) = 3.45$, $p < .07$]. The remaining between-subjects terms did not approach statistical significance (all Fs < 2.42, $p > .05$). Post hoc comparisons indicated that shocked rats that did not experience the distractor and that naltrexone-treated rats that received the distractor were hypoalgesic, relative to the rats in the other five groups. No other differences were statistically significant.

The within-subjects terms showed that the change in tailflick latencies observed across trials depended on distractor treatment [$F(4,224) = 2.62$, $p < .05$]. Most importantly, the three-way interaction confirmed that the effect of shock depended on both the trial of testing and the distractor treatment [$F(4,224) = 6.71$, $p < .001$]. There was also a significant drug \times test trial interaction [$F(4,224) = 2.59$, $p < .05$]. The remaining within-subjects terms did not approach statistical significance (all Fs < 1.96, $p > .05$).

As reported elsewhere (Grau et al., 1995; Meagher et al., 1990), naltrexone did not attenuate the hypoalgesia observed after three long shocks. As found in Experiment 2, presentation of the distractor caused this nonopioid hypoalgesia to decay more rapidly. The distractor had less effect on shocked rats pretreated with naltrexone. This suggests that the distractor effect may depend on an opioid synapse, a synapse that could antagonize the nonopioid hypoalgesia by means of collateral inhibition (Grisel et al., 1993; Kirchgessner et al., 1982; Steinman et al., 1990).

EXPERIMENT 4

If the distractor attenuates long shock-induced hypoalgesia because it induces the release of an opioid, then other manipulations that activate this opioid system should have a similar effect. In Experiment 4, we explored this possibility by testing whether a postshock injection of an opiate (morphine), like a distractor, attenuates long-shock-induced hypoalgesia. Naturally, a very low dose (0.5 mg/kg) was used, one that should induce little hypoalgesia.

Method

The subjects were randomly assigned to four groups ($n = 8$). Half the subjects received three 25-sec 1.0-mA shocks; the other half served as the unshocked controls. Immediately after the last shock, or an equivalent period of restraint, half of the rats in each condition received either an s.c. injection of morphine (0.5 mg/kg) or saline while they remained in the restraining tubes.

Results and Discussion

The results are depicted in Figure 5. As can be seen, baseline tailflick latencies did not differ among groups prior to shock treatment (all Fs < 1.173, $p > .05$). Expe-
sure to shock induced a strong hypoalgesia in the saline-treated rats (Group Shock–Sal). This hypoalgesia was reduced by an injection of morphine given after shock (Group Shock–Mor). An ANOVA confirmed that both the main effect of shock and the shock \times drug interaction were significant (both Fs > 7.00, $p < .05$). The main effect of drug treatment was also statistically significant [$F(1,28) = 5.1, p < .05$]. The within-subjects terms revealed that there was a significant trials effect [$F(4,112) = 6.37, p < .001$]. The remaining within-subjects terms did not reach statistical significance (all Fs < 2.35, $p > .05$). Post hoc comparisons of the group means confirmed that the two shocked groups were hypoalgesic relative to the unshocked controls and that the difference between the two shocked groups was significant. No other differences were significant.

As predicted by the collateral inhibition model (Grisel et al., 1993; Kirchgessner et al., 1982; Steinman et al., 1990), postshock administration of morphine attenuated the nonopioid hypoalgesia elicited by long shock. Not only does this experiment extend the generality of the collateral inhibition model, it also addresses a limitation of a prior report. The problem is that Grisel et al. (1993) administered morphine before they stressed their subjects, and, consequently, the drug could have attenuated the impact of the stressor. This in turn could influence both the form and the magnitude of the hypoalgesia observed (Grau et al., 1995; Meagher et al., 1993; Terman et al., 1984). Experiment 4 avoided this interpretive problem by showing that morphine administered after shock antagonizes the nonopioid hypoalgesia elicited by long shock.

GENERAL DISCUSSION

The present study examined the impact of pentobarbital anesthesia and a postshock distractor on long shock-induced hypoalgesia. As expected, long shock-induced hypoalgesia survived pentobarbital anesthesia (Experiment 1). However, in contrast to decerebration, anesthe sia did not potentiate the hypoalgesia. A similar outcome was reported by Maier (1989) using five 5-sec tailshocks. In this regard, pentobarbital appears to have an effect that is more analogous to that produced by lesioning the frontal cortex, which neither potentiates nor attenuates long-shock-induced hypoalgesia. Elsewhere, we have argued that the septohippocampal cholinergic system may play a critical role in producing the potentiation effect (Grau, Illich, et al., 1991). Supporting this, we have shown that scopolamine potentiates long shock-induced hypoalgesia. Furthermore, septal lesions can potentiate both shock-induced and handling-induced hypoalgesia (Chance, 1980; Kelsey & Baker, 1983). According to this perspective, frontal cortex lesions fail to potentiate long-shock-induced hypoalgesia because they spare septal-hippocampal functioning. The dose of pentobarbital we used may have failed to produce potentiation for the same reason: it may have spared enough septohippocampal functioning to allow this system to maintain an inhibitory effect over the brainstem nonopioid system.

It is generally held (Grau, 1987a; Maier, 1989; Watkins & Mayer, 1982, 1986) that hypoalgesic effects that survive decerebration and/or pentobarbital anesthesia reflect the activation of pain inhibitory systems through lower level pathways. From this perspective, this hypoalgesia reflects an unconditioned response—one that does not depend on memorial processing. Accordingly, the magnitude and time course of the hypoalgesia observed after severe aversive stimuli should depend entirely on stimulus severity. Given this, we expected that a postshock distractor would not attenuate the brainstem-mediated hypoalgesia that we observe after three long tailshocks. Contrary to our expectations, Experiment 2 showed that a distractor causes long shock-induced hypoalgesia to decay more rapidly. This finding, together with our finding that a similar outcome can be obtained in spinalized rats (Grau et al., 1990), suggests that memorylike processing may occur at every level of the nervous system—that, at each level, the magnitude of hypoalgesia observed is primarily determined by the last event experienced. That this memory-like processing occurs for forebrain-mediated hypoalgesic effects is, in some ways, hardly surprising. What is remarkable, and what runs counter to prevailing theories (Grau, 1987a; Maier, 1989; Watkins & Mayer, 1982), is that this is also true
for brainstem-mediated and spinally mediated hypoalgesic effects. Interestingly, a similar principle appears to also determine judgments of pain in humans (Kahneman, Frederickson, Schreiber, & Redelmeir, 1993).

The results of Experiment 2 also have important methodological implications: they suggest that how subjects are treated after they experience shock may be a major determinant of the magnitude and duration of the hypoalgesia observed and that this is true even though the hypoalgesia is mediated at the level of the brainstem or spinal cord. Indeed, this variable may help to explain a number of discrepancies and anomalies. For example, a comparison of the nonopioid hypoalgesia observed after shock schedules similar to the ones used in the present study reveals that the magnitude of the nonopioid hypoalgesia observed varies tremendously (cf. Cannon, Terman, Lewis, & Liebeskind, 1984; Terman et al., 1984). Interestingly, researchers who report little hypoalgesia repeatedly remove their subjects from the shock apparatus for testing—a manipulation that effectively exposes subjects to a variety of distracting stimuli. Conversely, we test subjects under conditions that should minimize exposure to extraneous stimuli and observe a much more robust hypoalgesia. A similar analysis may help to explain an odd outcome noted by Liebeskind and his colleagues (Liebeskind, 1985). Using their usual testing procedure, which exposed subjects to a variety of distracting stimuli, they found that their hypoalgesia decayed within about 10 min. Interestingly, no decay was observed if subjects were simply allowed to remain in the shock context undisturbed. Again, it appears that events that occurred after subjects experienced shock determined the time course of the hypoalgesia observed.

We hypothesized that a novel distractor might attenuate the nonopioid hypoalgesia observed after three long shocks because it induces the release of an opioid (Izquierdo & McGaugh, 1985, 1987; Netto et al., 1987; Rochford, 1992; Scallet, 1982). This is important because other evidence suggests that the opioid and nonopioid systems are linked by a form of collateral inhibition (Kirchgessner et al., 1982). Even though the amount of opioid release may be insufficient to elicit hypoalgesia (Experiment 2), it may be sufficient to inhibit the nonopioid system by means of collateral inhibition. If so, then preventing the opioid's action with naltrexone should prevent the distractor from attenuating the hypoalgesia. The results of Experiment 3 were consistent with this prediction.

To further evaluate whether a collateral inhibition mechanism mediates the distractor effect, Experiment 4 examined the effect of giving rats morphine after shock. The morphine effectively substituted for the distractor and attenuated the hypoalgesia. These findings both confirm and extend the results of Grisel et al. (1993), who reported that prior administration of morphine antagonizes the nonopioid hypoalgesia elicited by environmental stressors. However, because Grisel et al. (1993) administered morphine before the animals were exposed to the stressors, morphine may have decreased the magnitude of the hypoalgesia observed simply because it altered the perceived severity of these stressors. Our results help to refute this alternative explanation by showing that morphine given after the stressor has a similar effect.

REFERENCES

Cannon, J. T., Terman, G. W., Lewis, J. W., & Liebeskind, J. C. (1984). Body region shocked need not critically define the neurochemical basis of stress analgesia. Brain Research, 323, 316-319.

Chance, W. T. (1980). Autoalgesia: Opiate and non-opiate mechanisms. Neuroscience & Biobehavioral Reviews, 4, 55-67.

Fanelso, M. S. (1984). Shock-induced analgesia on the formalin test: Effects of shock severity, naloxone, hypophysectomy, and associational variables. Behavioral Neuroscience, 98, 79-95.

Fanelso, M. S. (1986). Conditioned fear-induced opiate analgesia: A competing motivational state theory of stress analgesia. In D. D. Kelley (Ed.), Stress-induced analgesia (Annals of the New York Academy of Sciences, Vol. 467, pp. 40-54). New York: New York Academy of Sciences.

Feldley, D. A., Beakey, W., & Saynisch, M. J. (1976). Effect of scopolamine on the reactivity of the albino rat to footshock. Pharmacology, Biochemistry & Behavior, 4, 255-258.

Grau, J. W. (1984). The influence of naloxone on shock-induced freezing and analgesia. Behavioral Neuroscience, 98, 278-292.

Grau, J. W. (1987a). The central representation of an averse event maintains the opioid and nonopioid forms of analgesia. Behavioral Neuroscience, 101, 272-288.

Grau, J. W. (1987b). The variables which control the activation of analgesic systems: Evidence for a memory hypothesis and against the coulometric hypothesis. Journal of Experimental Psychology: Animal Behavior Processes, 13, 215-225.

Grau, J. W., Biles, M. K., & Illrich, P. A. (1991). The impact of naltrexone and morphine tolerance on mild shock-induced hypoalgesia. Psychobiology, 19, 85-90.

Grau, J. W., Burks, K. D., Kallina, C. F., King, T. E., & Meagher, M. W. (in press). Activation of the opioid and nonopioid antinociceptive systems in pentobarbital anesthetized rats: Assessing the role of shock severity. Psychobiology.

Grau, J. W., Illrich, P. A., Chien, P. S., & Meagher, M. W. (1991). Role of cholinergic systems in pain modulation: I. Impact of scopolamine on environmentally induced hypoalgesia and pain reactivity. Behavioral Neuroscience, 105, 62-81.

Grau, J. W., Salinas, J. A., Illrich, P. A., & Meagher, M. W. (1990). Associative learning and memory for an antinociceptive response in the spinalized rat. Behavioral Neuroscience, 104, 489-494.

Grisel, J. E., Fleshner, M., Watkins, L. R., & Maier, S. F. (1993). Opioid and nonopioid interactions in two forms of stress-induced analgesia. Pharmacology, Biochemistry & Behavior, 45, 161-172.

Illrich, P. A., & Grau, J. W. (1990). The impact of shock on reactivity to a tactile stimulus. Learning & Motivation, 21, 287-298.

Izquierdo, I., & McGaugh, J. L. (1985). Effect of novel experience prior to testing on retention of an inhibitory avoidance response in mice: Involvement of an opioid system. Behavioral & Neural Biology, 44, 228-238.

Izquierdo, I., & McGaugh, J. L. (1987). Effect of novel experience on retention of inhibitory avoidance behavior in mice: The influence of previous exposure to the same or another experience. Behavioral & Neural Biology, 47, 109-115.

Kahneman, D., Frederickson, B. L., Schreiber, C. A., & Redelmeir, D. A. (1993). When more pain is preferred to less: Adding a better end. Psychological Science, 4, 401-405.

Kelsey, J. E., & Baker, M. D. (1983). Ventromedial septal lesions in rats reduce the effects of inescapable shock in escape performance and analgesia. Behavioral Neuroscience, 97, 945-961.

Kirchgessner, A. L., Bodnar, R. J., & Pastersnak, G. W. (1982). Naloxone and pain-inhibitory systems: Evidence for a collateral inhibition model. Pharmacology, Biochemistry & Behavior, 17, 1175-1179.

Liebeskind, J. C. (1985, May). Relation of stress induced analgesia to stimulation-produced analgesia. Paper presented at the New York Academy of Sciences, Vol. 467, pp. 40-54). New York: New York Academy of Sciences.
Academy of Sciences Conference on Stress-Induced Analgesia, New York.

MAIER, S. E. (1989). Determinants of the nature of environmentally induced hypoalgesia. Behavioral Neuroscience, 103, 131-143.

MAIER, S. E., & KEITH, J. R. (1987). Shock signals and the development of stress-induced analgesia. Journal of Experimental Psychology: Animal Behavior Processes, 13, 226-238.

MEAGHER, M. W., CHEN, P.-S., SALINAS, J. A., & GRAU, J. W. (1993). Activation of the opioid and nonopioid hypoalgesic systems at the level of the brainstem and spinal cord: Does a coulometric relation predict the emergence or form of environmentally induced hypoalgesia? Behavioral Neuroscience, 107, 493-505.

MEAGHER, M. W., GRAU, J. W., & KING, R. A. (1989). The role of the frontal cortex in analgesia: Lesions of the frontal cortex block the analgesia observed after brief, but not long, shocks. Behavioral Neuroscience, 103, 1366-1371.

MEAGHER, M. W., GRAU, J. W., & KING, R. A. (1990). The role of supraspinal systems in environmentally induced antinociception: The effects of spinalization and decerebration on brief and long shock-induced antinociception. Behavioral Neuroscience, 104, 328-338.

NETTO, C. A., SIEGFRIED, B., & IZQUIERDO, I. (1987). Analgesia induced by exposure to a novel environment in rats: Effects of concurrent and post-training stressful stimulation. Behavioral & Neural Biology, 48, 304-309.

ROCHFORD, J. (1992). The effects of clonidine and yohimbine on novelty-induced hypoalgesia. Psychobiology, 20, 163-165.

SCALLET, A. C. (1982). Effects of conditioned fear and environmental novelty on plasma beta-endorphin in the rat. Peptides, 3, 203-206.

STEINMAN, J. L., FARIS, P. L., MANN, P. E., OLNEY, J. W., KOMISARUK, B. R., WILLIS, W. D., & BODNAR, R. J. (1990). Antagonism of morphine analgesia by nonopioid cold-water swim analgesia: Direct evidence for collateral inhibition. Neuroscience & Biobehavioral Reviews, 14, 1-7.

TERMAN, G. W., SHAVIT, Y., LEWIS, J. W., CANNON, J. T., & LIEBESKIND, J. C. (1984, December 14). Intrinsic mechanisms of pain inhibition: Activation by stress. Science, 226, 1270-1277.

THOMAS, E. (1988). Forebrain mechanisms in the relief of fear: The role of the lateral septum. Psychobiology, 16, 36-44.

WATKINS, L. R., CEBELLI, D. A., & MAYER, D. J. (1982). Opiate vs. non-opiate foot shock induced analgesia (FSI/A): Descending and intraspinal components. Brain Research, 245, 97-106.

WATKINS, L. R., KATAYAMA, Y., KINSCHECK, I. B., MAYER, D. J., & HAYES, R. L. (1984). Muscarinic cholinergic mediation of opiate and non-opiate environmentally induced analgesias. Brain Research, 300, 231-242.

WATKINS, L. R., KINSCHECK, I. B., & MAYER, D. J. (1983). The neural basis of footshock analgesia: The effect of periaqueductal gray lesions and decerebration. Brain Research, 276, 317-324.

WATKINS, L. R., & MAYER, D. J. (1982, June 11). Organization of endogenous opiate and nonopiate pain control systems. Science, 216, 1185-1192.

WATKINS, L. R., & MAYER, D. J. (1986). Multiple endogenous opiate and nonopiate analgesic systems: Evidence of their existence and clinical implications. In D. D. Kelly (Ed.), Stress-induced analgesia (Annals of the New York Academy of Sciences, Vol. 467, pp. 273-299). New York: New York Academy of Sciences.

(Manuscript received October 18, 1994; revision accepted for publication June 13, 1995.)