Magnetic Field Induced Low-Energy Spin Excitations in YBa$_2$Cu$_4$O$_8$ Measured by High Field Gd$^{3+}$ ESR

Titusz Fehér1, András Jánossy1,2, Gábor Oszlányi1,2, Ferenc Simon1, Bogdan Dabrowski3, Piotr W. Klamut3, Mladen Horvatić4, and Grant V. M. Williams5

1Institute of Physics, Technical University of Budapest, P. O. Box 91, H-1521 Budapest, Hungary
2Research Institute for Solid State Physics, P. O. Box 49, H-1525 Budapest Hungary
3Department of Physics, Northern Illinois University, De Kalb, Illinois 60115, USA
4Grenoble High Magnetic Field Laboratory, CNRS and MPI-FKF, BP 166, F-38042 Grenoble Cedex 9, France
5New Zealand Institute for Industrial Research, P. O. Box 31310, Lower Hutt, New Zealand

(March 21, 2022)

We have measured the spin susceptibility of the underdoped high temperature superconductor, YBa$_2$Cu$_4$O$_8$ by Gd$^{3+}$ electron spin resonance in single crystals and aligned powders at several magnetic fields between 3 and 15.4 T. At low temperatures and high fields, the spin susceptibility of the CuO$_2$ planes is enhanced slightly in the $B \parallel c$ orientation with respect to the $B \perp c$ orientation. The enhancement in an applied field of 15.4 T ($\approx 0.15 H_{c2}$) at 16 K ($0.2T_c$) is approximately 10 percent of the susceptibility measured at T_c. Such a small magnitude suggests that the second critical field of superconductivity, $H_{c2} \approx 100$ T, would not suppress the pseudogap. This work demonstrates the potential of high field ESR in single crystals for studying high T_c superconductors.

74.25.-q, 74.25.Nf, 74.72.Bk, 76.30.Kg

The structure of vortex lines in high temperature superconductors (HTSCs) may shed light on the microscopic mechanism of superconductivity. The earliest d-wave pairing theories implied that the zero temperature spin susceptibility should scale with magnetic field as $(B/H_{c2})^{1/2}$ in contrast to the linear dependence of the DOS at the field dependence of the DOS in YBa$_2$Cu$_3$O$_7$–δ. Scanning tunneling microscopy resolves the DOS at and around vortices, but is unsuitable to measure the total DOS. Bulk experiments on nearly optimally doped YBa$_2$Cu$_3$O$_7$–δ include heat capacity, infrared transmission, thermal conductivity, and high field muon spin rotation. Most of these experiments, together with early NMR on planar copper and oxygen, indicated some increase in the DOS with magnetic field but were inconclusive about its magnitude.

Underdoped HTSCs—which also possess a pseudogap in the normal state—are of special interest, as it is unclear how the pseudogap is related to the d-wave superconducting gap. An indication whether high magnetic fields suppress the pseudogap or not may contribute to understanding its nature. Also, most theoretical calculations of the quasiparticle spectra in HTSCs depend on the assumption that Landau’s theory of the Fermi-liquid is applicable below T_c, which is still to be justified by experiments. A recent 63Cu NMR study on YBa$_2$Cu$_4$O$_7$ at high fields reports a sizeable field induced DOS for B in the (a, b) plane, implying a large enhancement for $B \parallel c$. In contrast, we show that for $B \parallel c$ the DOS enhancement is small and incompatible with a suppression of the pseudogap at $B = H_{c2}$.

In this Letter, we report the spin susceptibility of YBa$_2$Cu$_4$O$_8$ obtained by high field electron spin resonance (ESR) spectroscopy of Gd$^{3+}$ in Gd:YBa$_2$Cu$_4$O$_8$. Gd$^{3+}$ is a non-perturbing probe of the CuO$_2$ spin polarization. We search for low-energy spin excitations induced by high magnetic fields in the superconducting phase. Our goal is to determine the field dependence of the anisotropy of the susceptibility, $\chi^{\perp} - \chi^{\parallel}$, from the Gd$^{3+}$ ESR shift. The anisotropy is a measure of the magnetic field induced DOS along c since H_{c2} in the (a, b) plane is several times larger than in the c direction. We measure both oriented powder (OP) and untwinned single crystal (SX) samples at several temperatures, frequencies, and magnetic field orientations. SX data are used to determine the zero field splitting (ZFS) parameters in the spin Hamiltonian of Gd$^{3+}$ in Gd:YBa$_2$Cu$_4$O$_8$ with precision. This allows us to model powder spectra and measure shifts in the OP sample in both $B \parallel c$ and $B \perp c$ orientations with high accuracy. Diamagnetic effects inhibit SX measurements at low temperatures.

The experiments were carried out on the high field ESR spectrometers in Budapest and Grenoble. In Budapest, a quartz oscillator stabilized Gunn-diode was used as a mm-wave source at $f = 75, 150$, and 225 GHz. In Grenoble, we used the same setup with a Gunn-oscillator at 95, 190, and 285 GHz and an optically pumped far infrared laser at 349 and 429 GHz, and a sweepable 17 Tesla NMR magnet. The frequency of 429 GHz corresponds to 15.4 T central Gd$^{3+}$ resonance field. The radiation is transmitted through the sample in an oversized waveguide and
no cavity is used. We detect the derivative of the absorption with respect to magnetic field. The magnetic field is calibrated by a reference sample, BDPA [4], at each sweep. The powder sample Gd:YBa$_2$Cu$_4$O$_8$ was sintered by a standard solid state reaction, with 1% of Y substituted by Gd. The powder with a characteristic grain size of 5 μm was mixed with epoxy resin, and aligned in a magnetic field. SX samples of typical dimensions 1 x 1 x 0.2 mm3 were grown by self-flux method at 1100°C in 600 atm of O$_2$. $T_c = 80$ K in both the SX and the OP samples.

The exchange induced shift of the Gd$^{3+}$ ESR lines is similar to the 89Y NMR Knight shift and yields the spin susceptibility of the CuO$_2$ planes. We define the Gd$^{3+}$ ESR shift, in analogy with the NMR notation as

$$Gd\ K^\alpha(B_0, T) = -(B^\alpha_m(B_0, T) - B_0)/B_0$$

(1)

with $B_0 = h f / g_0 \mu_B$, where f is the microwave frequency and the arbitrary zero of $Gd\ K$ is defined by $g_0 = 1.9901$. B^α_m is the measured resonance field as deduced from the measured positions of the Gd$^{3+}$ lines (after correcting for the ZFS, i.e., B^α_m would be the resonance field of a similar probe with no ZFS). Then

$$Gd\ K^\alpha(B_0, T) = K_0^\alpha + Gd\ A\chi^\alpha_s(B_0, T) - B^\alpha_{dia}(B_0, T)/B_0,$$

(2)

where $K_0^\alpha = (g^{\alpha}_{Gd} - g_0)/g_0$ plays the role of the NMR chemical shift. We denote by g^{α}_{Gd} the “pure” g-factor of Gd$^{3+}$ in Gd:YBa$_2$Cu$_4$O$_8$ from which the exchange with the CuO$_2$ spins is eliminated. g^{α}_{Gd} (thus K_0^α) is independent of magnetic field and temperature [6], and its anisotropy is small. The spin susceptibility of the CuO$_2$ planes is defined by $\chi^\alpha_s(B, T) = M^\alpha(B, T)/B$ where M^α_s is the CuO$_2$ spin magnetization. The Gd$^{3+}$ shift due to the electronic exchange interaction between Gd$^{3+}$ and CuO$_2$ is linked to the susceptibility through the constant $Gd\ A \approx -15$ mole/emu [10] (in analogy with the NMR hyperfine constant). We neglect the anisotropy of $Gd\ A$, since a comparison of the anisotropy of the shifts in the normal state YBa$_2$Cu$_3$O$_7$ [4] and antiferromagnetic YBa$_2$Cu$_3$O$_6$ [13] shows that the anisotropy of the product $Gd\ A\chi^\alpha_s$ is approximately 5%. B^α_{dia} is the bulk demagnetizing field of the supercurrents in the crystalites. In this work we shall estimate the vortex contribution to χ^α_s at high magnetic fields from $\Delta B/B_0 = (Gd\ K^C - Gd\ K^{ab}) - (K_0^C - K_0^{ab}) = Gd\ A(\chi^\alpha_s - \chi^{\alpha}_{dia}) - (B^\alpha_{dia} - B^{dia}_{dia})/B_0$.

Here $Gd\ K^\alpha$ is measured directly (Eq. [1]), and $K_0^C - K_0^{ab}$ is determined from the high field data at high temperatures. Unlike the 89Y case, B^α_{dia} is not prohibitively large since $Gd\ A$ is ten times greater than the 89Y hyperfine constant, 89A.

The temperature independent ZFS parameters of the nearly pure S state $S = 7/2$ Gd$^{3+}$ ion were obtained from the SX data. The ZFS of Gd$^{3+}$ is smaller than the

Fig. 1. (a) Gd$^{3+}$ ESR spectra of a single crystal Gd:YBa$_2$Cu$_4$O$_8$ taken with magnetic field along the three crystalline axes at $T = 40$ K and $f = 225$ GHz. Neither twinning nor mosaicity is observed. The field reference BDPA is cut out for clarity. Numbers $1, \ldots, 7$ denote transitions $|-7/2\rangle \rightarrow |-5/2\rangle, \ldots, |+5/2\rangle \rightarrow |+7/2\rangle$, respectively. Bars (□) show simulated line positions. We do not know whether $\phi = 0^\circ$ belongs to $B \parallel a$ or b. (b) Positions of the lines calculated from the spin Hamiltonian of Gd$^{3+}$ as a function of magnetic field orientation at 225 GHz.

Zeeman splitting in the fields employed and the spectrum consists of the 7 allowed fine structure transitions, whose relative positions depend little on the ESR frequency but are sensitive to the orientation of the sample with respect to magnetic field. Spectra of single crystals were recorded in the temperature range 30–70 K. Fig. 1(a) shows the 225 GHz spectra of an untwinned SX with magnetic field along the three crystalline axes at 40 K. The principal axes of the spin Hamiltonian of the Gd$^{3+}$ in its orthorhombic environment coincide with the crystalline axes. At 40 K Gd$^{3+}$ ESR lines are narrow and about the same width for all transitions showing that there are no strains or inhomogeneities in the high quality crystals. Although the small microwave penetration depth necessitates a few hours of averaging for each spectrum, the potential to use Gd$^{3+}$ ESR in small
gle crystals is clear, e.g., to measure internal fields around impurity atoms. The use of resonant cavities renders conventional X-band ESR spectrometers unsuitable to study the superconducting state. Although there are several reports on Gd$^{3+}$ ESR in perovskites, we do not know of any other report on the ESR of HTSC single crystals below T_c. Measuring the positions of the lines with magnetic fields in several orientations and at three frequencies allows us to fit the ZFS parameters of Gd$^{3+}$ \[1,7\]. Details of the spin Hamiltonian in a similar compound, YBa$_2$Cu$_3$O$_{6+x}$, were published elsewhere \[13\]. The spin Hamiltonian describes the SX spectra well, the difference between the calculated and measured line positions is always less than the line width. The simulated line positions as a function of orientation used for evaluating the OP spectra are indicated in Fig. 1(b).

Once the ZFS parameters are obtained from the SX, the Gd$^{3+}$ shifts, $^\text{Gd}K^\alpha(B, T)$, may be deduced with high accuracy from the OP spectra. To obtain the increase of χ_s^c with magnetic field we use $^\text{Gd}K^\alpha$ measured at several T and B in both $\alpha = c$ and ab directions as shown in Fig. 3. These data are uncorrected for reversible diamagnetic fields, while a small irreversibility in B_{dia}^c at low T and low B is eliminated by averaging $^\text{Gd}K^\alpha$ of spectra taken with field swept up and down at the same temperature \[13\]. At low T and high B the central lines fade away, we could therefore measure the shift in 15.4 T reliably only above 15 K. The dependence of the normalized shift on the resonance frequency (Fig. 2) is in a large part caused by diamagnetic shielding. However, as shown below, in the c direction at high fields there is also some contribution from the vortex spin susceptibility.

We assume that only χ_s^c has a measurable field dependence at the fields employed, and that of χ_s^{ab} may be neglected. This is consistent with our main result below that the field dependence of χ_s^c is weak, even if there is some field dependence of χ_s^{ab}, it is significantly smaller than that of χ_s^c, because of the much higher $H_{L2}^{(ab)}$. Diamagnetic corrections to B_{dia}^{ab} are also smaller than to B_{dia}^c, as $\lambda_s \ll \lambda_{ab}$ holds for the penetration depths. The measured field dependence of $^\text{Gd}K^{ab}$ is weak (Fig. 3(b)), and at 15.4 T we neglect the diamagnetic correction. At 15.4 T the raw ab data are already a good approximation of the spin susceptibility. Indeed, the shift at 15.4 T decreases with temperature at low T and the slope is close to that expected for a pure d-wave superconductor. In the weak coupling limit the low temperature slope of the susceptibility of a d-wave superconductor with $T_c = 80$ K corresponds to a $^\text{Gd}K$ shift of 10 ppm/K \[13\].

Diamagnetic corrections are not negligible for lower fields and in the c direction, and we estimate the field dependence of B_{dia}^c from classical expressions and recent numerical results \[18–22\]. Above the vortex lattice melting temperature the magnetic field inhomogeneity due to vortices is motionally averaged and B_{dia}^c equals the bulk demagnetization, which is roughly proportional to $\ln(H_{L2}/B)$ \[13,20\]. Therefore one expects a 15–30% reduction in B_{dia}^c from 8 to 15 T. Our bulk susceptibility measurements on the OP sample agree with such a reduction. A shift, ΔB_{saddle}, in addition to demagnetization appears when the vortex lattice freezes, because the magnetic field distribution is asymmetric and peaked at the saddle point, which is different from the average field. For zero superconducting coherence length, $\xi_{ab} = 0$, $\Delta B_{\text{saddle}}^{(0)} \approx 0.037\Phi_0/\lambda_s^{ab} \approx 3$ mT in a triangular vortex lattice with $\lambda_s^{ab} = 160$ nm \[21\]. However, numerical studies show \[20,22\] that already in fields where the distance between vortices is much larger than ξ_{ab}, ΔB_{saddle} is reduced significantly. Corti et al. \[23\] found a 3 mT field distribution due to vortices in a YBa$_2$Cu$_3$O$_8$ aligned powder for $B \parallel c$ at 9.4 T below 10 K, and the corresponding shift is expected to be a fraction of this value.

Now we estimate the increase of χ_s^c at $B = 15.4$ T and $T = 16$ K, the lowest temperature where experimental uncertainties are small at all fields. Fig. 3 shows $\Delta B = (^\text{Gd}K^c - ^\text{Gd}K^{ab})B_0 - (K_0^{c} - K_0^{ab})B_0$, the anisotropy

![Figure 2](image-url)
of the shifts as a function of field. In ΔB the anisotropy of K_0^a is taken into account but it is uncorrected for reversible diamagnetic effects. The anisotropy of the “chemical shift” $K_0^a - K_0^b = 500 \pm 70$ ppm was measured from the $B_0 = 15.4$ T data at 0.9 T_c. Above this temperature a Korringa-like relaxational broadening of the Gd$^{3+}$ lines reduces precision. This value of $K_0^a - K_0^b$ is consistent with what is found in the YBa$_2$Cu$_3$O$_{6+x}$ family [13]. Fig. 3 shows that there is a small field dependent contribution to $\chi_s^a(B_0, T) - \chi_s^b(B_0, T) = (\Delta B - B^a_{dia}(B_0, T))/GdAB$. ΔB varies little with field, at higher fields it is constant or increases slightly. In Fig. 3 we illustrate the variation of the reversible diamagnetic shift using $M_{dia}(B) = M_{dia,0}\ln(H_{c2}/B)$, assuming $H_{c2} = 100$ T and that the field dependence of χ_s^a is negligible below 3 T, i.e., we slightly overestimate B_{dia}. At 15.4 T the shift anisotropy is $\Delta B = 4.5 \pm 1.5$ mT, while $M_{dia} \approx 2.3$ mT. As seen in Fig. 3 the vortex contribution to $\chi_s^a(B_0 = 15.4$ T, $T = 16$ K) is of the order of 10% of the normal state spin susceptibility at T_c.

According to the semiclassical scaling relations for the spin susceptibility derived by Kopnin and Volovik, and the more sophisticated study of Ichioka et al., in a d-wave superconductor $\chi_s \propto (B/H_{c2})^\gamma$ with $\gamma = 0.4$ in the low temperature regime, and $\gamma \approx 1$ in the low field regime. We are close to the crossover [22], 15.4 T/$H_{c2} \approx 16$ K/T_c, but whatever γ is in our case, the 10% enhancement implies that the spin susceptibility of the underdoped YBa$_2$Cu$_3$O$_{6}$ is restored to $\chi_s(T_c)$ at maximum in a magnetic field of H_{c2}. Thus the pseudogap is little affected by magnetic fields that suppress superconductivity. Nowadays the most popular approach to explain the microscopic origin of the pseudogap is that it is associated with superconducting fluctuations above T_c [22]. In a naive picture, in which the normal state spin gap were due to incoherent Cooper pairs, breaking of the pairs by a magnetic field would restore the spin susceptibility to the value measured at $T \gg T_c$, which is approximately 3 times as much as $\chi_s(T_c)$. Our result differs from that of Zheng et al. [13] since they find an enhancement of the spin susceptibility with B in the (a, b) plane of similar magnitude as we do for $B \parallel c$.

In conclusion we found that at $T \ll T_c$ an applied field of $0.15 H_{c2}$ enhanced the spin susceptibility of the underdoped YBa$_2$Cu$_3$O$_{6}$ by only $\approx 3\%$ ($\approx 10\%$) of its normal state susceptibility measured at room temperature (at T_c). This suggests that even an applied field of H_{c2} would not destroy the pseudogap.

We are indebted to J. R. Cooper for the static susceptibility measurements, and I. Tüttö for useful discussions. Support from the US-NSF-STCS (DMR-91-20000) and the Hungarian state grants OTKA 029150 and AKP 97-39-22 is acknowledged.

[1] G. E. Volovik, JETP Lett. 58, 469 (1993).
[2] H. Won and K. Maki, Europhys. Lett. 30, 421 (1995).
[3] M. Franz and Z. Tešanović, Phys. Rev. Lett. 80, 4763 (1998); K. Yasui and T. Kita, Phys. Rev. Lett. 83, 4168 (1999).
[4] N. B. Kopnin and G. E. Volovik, JETP Lett. 64, 690 (1996).
[5] M. Ichioka, A. Hasegawa, and K. Machida, Phys. Rev. B 59, 184 (1999).
[6] I. Maggio-Aprile et al., Phys. Rev. Lett. 75, 2754 (1995).
[7] O. K. Andreisen et al., Phys. Rev. B 49, 4145 (1994); T. Xiang and J. M. Wheatley, Phys. Rev. Lett. 77, 4632 (1996); M. Franz and Z. Tešanović, Phys. Rev. B 60, 3581 (1999).
[8] K. A. Moler et al., Phys. Rev. B 55, 3954 (1997).
[9] K. Karrai et al., Phys. Rev. Lett. 69, 152 (1992).
[10] M. Chiao et al., Phys. Rev. Lett. 82, 2943 (1999); K. Krishana et al., ibid. 82, 5108 (1999).
[11] J. E. Sonier et al., Phys. Rev. Lett. 83, 4156 (1999).
[12] F. Borsa et al., Phys. Rev. Lett. 68, 698 (1992); J. A. Martinod et al., Phys. Rev. Lett. 68, 702 (1992); Phys. Rev. B 47, 9155 (1993); Bankay et al., Phys. Rev. B 46, 11228 (1992).
[13] G.-q. Zheng et al., Phys. Rev. B 60, R9947 (1999).
[14] A. Jánossy, L.-C. Brunel, and J. R. Cooper, Phys. Rev. B 54, 10 186 (1996).
[15] A. Jánossy et al., Phys. Rev. B 59, 1176 (1999).
[16] A. Jánossy, T. Fehér, G. Oszlányi, and G. V. M. Williams, Phys. Rev. Lett. 79, 2726 (1997).
[17] The ZFS parameters of Gd$^{3+}$ in Gd:YBa$_2$Cu$_3$O$_{6}$ at 40 K with all the orthorhombic terms included are $b_{2}^0 = -1579.2 \pm 1.5$ MHz, $b_{2}^2 = -238.9 \pm 2.4$ MHz, $b_{4}^0 = -188.8 \pm$
$0.5 \text{ MHz}, b_4^0 = -11.9 \pm 5.2 \text{ MHz}, b_4^1 = 841.9 \pm 2.9 \text{ MHz},$
$b_6^0 = 0.5 \pm 0.6 \text{ MHz}, b_6^0 = 85 \pm 45 \text{ MHz}, b_6^0 = -16 \pm 11 \text{ MHz},$
and $b_6^0 = -87 \pm 45 \text{ MHz}.$ (Note: the reference system of the spin Hamiltonian coincides with the crystalline axes.)

[18] M. Tinkham, *Introduction to Superconductivity, 2nd edition* (McGraw-Hill, Inc., New York, 1996), p. 159.

[19] E. H. Brandt Phys. Rev. Lett. 78, 2208 (1997); Z. Hao et al., Phys. Rev. B 43, 2844 (1991).

[20] M. Ichioka, A. Hasegawa, and K. Machida, Phys. Rev. B 59, 8902 (1999), and references therein.

[21] Y.-Q. Song et al., Phys. Rev. B 45, 4945 (1992).

[22] A. Yaouanc, P. Dalmas de Réotier, and E. H. Brandt, Phys. Rev. B 55, 11 107 (1997).

[23] M. Corti et al., Phys. Rev. B 54, 9469 (1996).

[24] S. H. Simon and P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997); G. E. Volovik and N. B. Kopnin, *ibid.* 78, 5028 (1997); S. H. Simon and P. A. Lee, *ibid.* 78, 5029 (1997).

[25] V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995); J. Ranninger and J. M. Robin, Phys. Rev. B 53, R11 961 (1996).