Case report

Cement pulmonary embolism after percutaneous vertebroplasty in a patient with cushing's syndrome: A case report

Besharat Rahimia, Behdad Boroofeha, Roshan Dinparastisalehb,\textast, Hale Nazifib

a Pulmonology Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
b Internal Medicine Department, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran

ABSTRACT

Background: Vertebroplasty is a procedure most commonly used for vertebral compression fractures. Although it is a relatively safe procedure, complications have been reported. Cement embolism is seen in 2.1\textendash{}26\% of patients after percutaneous vertebroplasty.

Case presentation: a 38-year-old male who was diagnosed with cushing's syndrome, underwent percutaneous vertebroplasty for his thoracic osteoporotic compression fractures. 24-hours following vertebroplasty, he presented to emergency department with acute-onset dyspnea and chest pain. Chest radiography showed an opaque linear lesion in left pulmonary artery which was suggestive of cement embolism. Pulmonary spiral CT-scan further confirmed the diagnosis. The patient's symptoms improved over time, and warfarin was started with close cardiopulmonary assessments for indicators of cement embolus removal.

Conclusion: in patients with pulmonary cement embolism, conservative treatment may be recommended rather than a surgical removal except when the obstruction is extensive enough to cause hemodynamic changes. Given that all the related studies have suggested that pulmonary thromboembolism can occur as a complication due to bone cement leakage, discovering new cement alternatives and/or injection devices, seems beneficial.

1. Background

Vertebroplasty is a minimally invasive procedure most commonly used for vertebral compression fractures which was first introduced by Galibert et al., in 1987 [1]. In this procedure, polymethylmethacrylate (PMMA) is injected directly into the vertebral body through its pedicle, to restore the height partially, stabilize bony trabeculae, and alleviate pain. Due to its minimal invasion and immediate pain relief, percutaneous vertebroplasty gained popularity for the treatment of painful tumor infiltration disease such as multiple myeloma [2], and metastatic carcinoma [3\textendash{}5], and for patients who have refractory pain due to osteoporotic thoracolumbar compression fractures [6\textendash{}8] Although it is a relatively safe procedure, complications have been reported [9,10]. Acrylic cement of polymethylmethacrylate injected into the vertebral body can leak into the paravertebral venous system and reach the pulmonary artery via the azygos vein leading to a cement pulmonary embolism [11\textendash{}15]. Pulmonary embolism of cement is seen in 4.6\% of patients after percutaneous vertebroplasty. It can be asymptomatic and is directly related to the frequency of paravertebral venous leak, but not to the number of vertebral bodies treated [16]. Here, we report a case of cement pulmonary embolism following vertebroplasty for thoracic compression fracture.

2. Case report

This is a 38-year-old smoker male who is a truck driver. He visited his family physician in July 2017, because of unintentional weight gain and a debilitating back pain. In physical examination he had a buffalo hump and central obesity, thus he was prescribed symptomatic treatment for his back pain and referred to an endocrinologist to evaluate for cushing's syndrome. His laboratory studies in following month showed a significantly high level of 24-h urinary free cortisol which was repeated 3 times and a plasma ACTH of 82pg/ml, which was suggestive of an ACTH-dependent cushing's syndrome. The urinary free cortisol after low and high-dose dexamethasone suppression test reported to be 546 and 764 mcg/24h respectively, which means resistance to dexamethasone and a negative test result. A magnetic resonance image (MRI) of pituitary following gadolinium administration was done which showed no abnormality. Because of the discordance between pituitary MRI, plasma ACTH level, and high-dose dexamethasone suppression...
test results, inferior petrosal sinus sampling (IPSS) was done by interventional radiologist, which showed a petrosal/peripheral ACTH ratio of less than 2. An ectopic ACTH syndrome was suggested which could not be localized with chest and abdominal CT scan. Ketoconazole was administered to control the cortisol excess, while planning for a bilateral adrenalectomy. The patient was also evaluated for his refractory back pain. MRI revealed diffuse osteopenic signal changes in lumbar vertebrae and multiple sites of compression fracture in all thoraco-lumbar vertebral bodies. Bone densitometry showed osteoporosis most severe at spine (mean Z-score and T-score < −2.9). As the patient was symptomatic, the decision has been made to proceed with vertebroplasty. High viscosity cement was injected into T7 to T12 vertebral bodies under fluoroscopic guidance in February 2018. The total volume of injected cement was 4 cc in each level. The patient tolerated the procedure and was discharged uneventfully. 24-hours following his vertebroplasty, he presented to our emergency department with a history of sudden-onset dyspnea and chest pain. Vital signs were within normal limits except tachycardia. He had no hypoxia, fever, chills, cough, and hemoptysis. The ECG was normal, except sinus tachycardia and cardiac troponins were negative. Echocardiography revealed no regional wall motion abnormalities with a 50% ejection fraction, a tricuspid valve regurgitation, and mildly increased systolic pulmonary artery pressure (35 mmHg). Chest radiography showed an opaque linear lesion in the left pulmonary artery (Fig. 1), which raised the suspicion of bone cement pulmonary embolism. Parenteral anticoagulation was started, and patient underwent pulmonary spiral CT-scan which revealed artifact-like hyperdense area in main pulmonary artery and left pulmonary artery suggestive of cement embolism (Figs. 2 and 3). During the hospitalization, patient’s symptoms resolved, and warfarin was started. Cardiovascular surgery consultants recommended medical rather than surgical treatment with close cardiopulmonary monitoring for any signs and symptoms suggestive of worsening embolism. The patient was asymptomatic when he was discharged. Serial cardiac and pulmonary assessments will be carried out looking for increased pulmonary artery pressure as an indicator for the removal of the cement embolus.

3. Discussion

We present a case of 38-year-old man who underwent a T7 to T12 vertebroplasty because of osteoporotic compression fractures, and subsequently had a pulmonary cement embolization to his pulmonary arterial circulation, which was treated non-operatively with anticoagulation.

Operative treatment of vertebral compression fractures has included percutaneous vertebroplasty for the past 30 years. Introduced by Galibert et al. [1] in 1987, this procedure gained popularity steadily and is used as an immediate pain relief method, in osteoporotic compression fractures [6–8] and for treatment of tumor infiltration disease such as metastatic carcinoma [3–5], and multiple myeloma [2]. Efficacy of vertebroplasty in alleviating pain, is not without controversy according to Buchbinder et al. [17] and Kallmes et al. [18] studies, which showed no improvement in pain and pain-related disability in osteoporotic spinal fractures.

Bone cement leakage is of particular concern. Cement leakage into the spinal canal can lead to canal stenosis and cord compression [19,20], and cement leakage into the intervertebral foramina can cause nerve root compression [21]. Additionally, cement leakage into the perivertebral system and inferior vena cava (IVC) can drift toward the right heart and pulmonary arterial system with catastrophic results such as cardiopulmonary arrest [33,34], acute kidney injury [22], paradoxical embolism through a patent foramen ovale [23], and death [10,24,36]. Arterial embolization to the aorta and anterior spinal artery has also been described [25,26]. The risk of cement pulmonary embolism first reported by Padovani et al. [27] exists with both vertebroplasty and kyphoplasty, but the exact rate is uncertain because the patients are not routinely screened for cement embolism [28]. The incidences of pulmonary cement embolism after vertebroplasty ranges from 2.1% to 26%, with much of this variation resulting from which imaging technique is used and whether the study is prospective or retrospective [16,29–32]. Clinical features of cardiopulmonary side effects of cement leak in percutaneous vertebroplasty and kyphoplasty include precordial chest pain and tightness [33–36], dyspnea [35–38], cyanosis, palpitation [34], acute respiratory distress syndrome (ARDS).
Table 1

Outcome	Clinical manifestation	Indication	Gender	Age (years)	Author/Publication date
Uneventful recovery	Anticoagulant + Supportive oxygen	Chest pain, hemoptysis, dyspnea, hypoxia	F	41	Padovani et al. (1999)
Uneventful recovery	Supportive oxygen + Anticoagulant	Chronic osteoporotic pain and symptomatically patient	F	under	1999
Uneventful recovery	Supportive oxygen + Anticoagulant	Intermittent claudication, chronic dyspnea, and cardiac failure, dyspnea and chest discomfort	M	60	2002
Died	Open heart surgery for hemopericardium and cement removal	Compression fracture	M	57	2003
Discharged	Endovascular cement removal	Chronic osteoporotic pain	F	60	2003
Discharged	No treatment	Asymptomatic	F	65	2006
Discharged	No treatment	Asymptomatic due to multiple myeloma	F	65	2006
Died	Anticoagulant	Respiratory distress	F	68	2006
Discharged	Anticoagulant	Progressive dyspnea	F	65	Yoo et al. (2004)
Discharged	No treatment	Asymptomatic	F	68	Pleser et al. (2004)
Discharged	Open heart surgery for hemopericardium and cement removal	Compression fracture	F	68	2005
Died	Anticoagulant	Respiratory distress	F	68	Barragan-Campos et al. (2006)
Discharged	No treatment	Asymptomatic	F	64	2006
Discharged	No treatment	Asymptomatic	F	64	2007
Discharged	No treatment	Asymptomatic	F	65	2008
Discharged	Right cardiac catheterization	Failed cement removal	F	68	2009
Discharged	Endovascular cement removal	Chest pain palpitation	F	51	Braiteh et al. (2009)
Discharged	Anticoagulant	Surgical cement removal	F	64	2009
Discharged	Anticoagulant	Asymptomatic	F	64	2010
Discharged	No treatment	Asymptomatic	F	76	2010

(continued on next page)
Outcome	Treatment	Clinical manifestation	Indication	Gender	Age (years)	Author/Publication date
Discharged	Conservative management	Dyspnea	Osteoporotic fracture pain	F	79	Radcliffe et al. (2010)
Reported asymptomatic, and clinically silent patients with PCE in 26% of patients treated with PVP						
	Anticoagulant	Hypotension	Pneumonia	F	57	Calhoun et al. (2012)
Reported 25 cases of PCE after PVP in 244 patients whom 1 patient was symptomatic from PCE						
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	78	Abd El-Rahman et al. (2012)
Died	Percutaneous retrieval of large cement fragment	Mechanical ventilation	Multiple pulmonary emboli seen in fluoroscopy	ARDS		
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Cohen et al. (2012)
Reported 23 cases of PCE after PVP in 244 patients whom 1 patient was symptomatic from PCE						
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	63	Venmans et al. (2010)
Reported asymptomatic and clinically silent patients with PCE in 26% of patients treated with PVP						
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Luetmer et al. (2011)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	79	Radcliffe et al. (2010)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Kim et al. (2012)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	82	Rappaport et al. (2013)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
Discharged	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Calhoun et al. (2012)
	Anticoagulant	Hypoventilation	Pneumonia	M	69	Garcia-Hontan et al. (2013)
	Anticoagulant	Hypoventilation	Pneumonia	F	68	Llano et al. (2013)
Outcome	Treatment	Clinical manifestation	Indication	Gender	Age (years)	Author/Publication date
--------------------------	-------------------------------	------------------------	---------------------------------	--------	------------	------------------------
Discharged	No treatment	Asymptomatic	Painful fracture	M	72	Guirguis et al. (2015)
Discharged	No treatment	Dyspnea responding to nitroglycerine	Compression fracture pain	F	70	Nooh et al. (2015)
Discharged	Anticoagulant	Dyspnea	Not clear	F	69	Polli et al. (2015)
Discharged	Open-heart surgery	Sudden onset chest pain	Chronic back pain	M	65	Schuerer et al. (2015)
Uneventful recovery	Cardiopulmonary bypass	Chest pain	Not clear	F	63	Shi et al. (2015)
Discharged	Anticoagulant	Dyspnea	Traumatic fracture	M	70	Shroff et al. (2015)
Discharged	Not clear	Pulitation Chest pain	Osteoporotic fracture	F	54	Awwad et al. (2016)
Discharged	Anticoagulant	Asymptomatic	Fracture due to bone metastasis	F	51	Chai et al. (2016)
Uneventful recovery	Open-heart surgery	Dyspnea	Osteoporotic fracture	M	28	Diab et al. (2016)
Discharge	Open-heart surgery	Dyspnea	Traumatic fracture	M	64	Focardi et al. (2016)
Discharge	No treatment	Asymptomatic	Osteoporotic fracture	F	58	Gabe et al. (2016)
Discharge	No treatment	Asymptomatic	Fracture due to multiple myeloma	F	58	Gorospe et al. (2016)
Discharge	No treatment	Asymptomatic	Not clear	M	32	Memarpour et al. (2016)
Uneventful recovery	Endoscopic Robot-assisted open heart surgery	Chest pain, Tachycardia, Hypotension, Pericarditis, Atrial fibrillation	Osteoporotic fracture pain	F	72	Molby et al. (2016)
Uneventful recovery	Open-heart surgery	Chest pain, Right ventricular penetration	Compression fracture	M	49	Park et al. (2016)
Not clear	Not clear	Dyspnea	Osteoporotic fracture	F	77	Botia Gonzalez et al. (2017)
Discharged	Anticoagulant	Asymptomatic	Traumatic compression fracture	M	59	Chang et al. (2017)
Not clear	Not clear	Palpitation	Traumatic compression fracture	M	65	Gianculli et al. (2017)
Uneventful recovery	Anticoagulant	Chest pain Pleural effusion	Osteoporotic fracture	F	57	Hatzantonis et al. (2017)
Uneventful recovery	Steroids Anticoagulant	Fever, Respiratory distress, hemoptysis	Bone neuro-ectodermal tumor	F	15	Ramanathan et al. (2017)
Uneventful recovery	Anticoagulant	Hypoxemia	Fracture of femur	F	96	Talec et al. (2017)
Uneventful recovery	Anticoagulant Surgical removal	Dyspnea, Chest pain	Not clear	M	57	Wu et al. (2017)

M = male, F = female, PCE = pulmonary cement embolism, ARDS = acute respiratory distress syndrome, PVP = percutaneous vertebroplasty.
and cardiac arrest [12], although some patients with pulmonal cement embolism are asymptomatic [41–44]. The symptoms of cement embolism occurs more commonly days to months after, rather than during the procedure [12,24,39,45]. The cement used in vertebroplasty is of such high density compared to lung field that the visualization of cement emboli on CXR is quite striking, but multiple dense opacities with a branching shape which are scattered randomly or diffusely throughout the lungs are more common [16,29,44]. In our patient, CXR showed an opaque linear lesion in the left pulmonary artery without significant scattered lesions in the lungs. Echocardiography is a safe and non-invasive modality to evaluate hemodynamic status and to reveal the probable echogenic material in the cardiac chambers [46,47]. Chest CT scan accurately shows the locations, the lengths, and the number of cement emboli [35].

Abdul-Jalil et al. proposed that PMMA has a prothrombotic property and can cause endothelial injury, which can result in additional thrombosis [48]. The formation of PMMA toxins can cause direct cellular injury by increasing membrane permeability through releasing inflammatory mediators, and superoxide production. Pulmonary cement embolism finally shares similar pathophysiological similarities with pulmonary embolisms [40].

The cornerstone of treatment of pulmonary cement embolism is close cardiopulmonary monitoring and anticoagulation [27,49–53] but there are some reports of cement embolism requiring surgical removal (including cardiopulmonary bypass and arteriography) [33,35–39,54–56]. Choe et al. proposed that asymptomatic pulmonary cement embolii should not alter medical treatment [16]. In Venman’s study, all 11 patients with venous PMMA migration remained asymptomatic during 1-year follow up [31]. Krueger et al. proposed a management algorithm that includes conservative approach for peripheral asymptomatic cases, anticoagulation for the symptomatic peripheral and asymptomatic central emboli, and surgical treatment for symptomatic central embolism only [57]. We selected anticoagulation and close monitoring for our patient regarding the published case reports of cement embolism which is summarized in Table 1. Because of non-degradable and toxic properties of PMMA, attempts have been made to explore alternative materials that are more suitable for vertebroplasty and kyphoplasty [58–60].

4. Conclusion
In patients with pulmonary cement embolism, conservative treatment may be recommended rather than a surgical removal except when the obstruction is extensive enough to cause hemodynamic changes. Given that all the related studies have suggested that pulmonary thromboembolism can occur as a complication due to bone cement leakage, discovering new cement alternatives and/or injection devices, seems beneficial.

Funding
None.

Availability of data and materials
All data and materials described in the manuscript will be freely available to any scientist wishing to use them for non-commercial purposes.

Authors’ contribution
Authors contributed equally to this paper.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Written informed consent was obtained from the patient for publication of this case report. A copy of the written consent is available for review by the Editor of this journal.

Ethics approval and consent to participate
Not applicable.

Acknowledgements
None.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.org/10.1016/j.rmr.2018.06.009.

References

[1] P. Galibert, H. Deramond, P. Rosat, D. Le Gars, [Preliminary note on the treatment of vertebral angiomia by percutaneous acrylic verteoplasty], Neurochirurgie 33 (2) (1987) 166–168.
[2] P. Bosnjakovic, S. Ristic, M. Mrvic, A.E. Miljkovic, T. Vukicevic, G. Marjanovic, L. Macukanovic-Golubovic, Management of painful spinal lesions caused by multiple myeloma using percutaneous acrylic cement injection, Acta Chir. Iugosl. 56 (4) (2009) 153–158.
[3] S. Dalbayrak, M.R. Omen, M. Yilmaz, S. Naderi, Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas, J. Clin. Neurosci. Offic. J. Neurosur. Soc. Australasia 17 (2) (2010) 219–224.
[4] A. Mazumdar, L.A. Gilula, Relief of radicular pain in metastatic disease by vertebroplasty, Acta Radiologica (Stockholm, Sweden : 1967) 51 (2) (2010) 179–182.
[5] G. Salisu, M. Kochienda et, P. Lehmann, C. Depriester, G. Paradot, D. Le Gars, A. Bahut, H. Deramond, Percutaneous vertebroplasty for pain management in malignant fractures of the spine with epidural involvement, Radiology 254 (3) (2010) 882–890.
[6] H. Yang, G. Wang, J. Liu, N.A. Ebraheim, G. Niu, L. Hiltner, A.H. Lee, T. Tang, Balloon kyphoplasty in the treatment of osteoporotic vertebral compression fracture nonunion, Orthopedics 33 (1) (2010) 24.
[7] B. Blondel, S. Fuentes, P. Metelsius, T. Adeteshi, G. Pech-Gourg, H. Dufour, Severe thoraco-lumbar osteoporotic burst fractures: treatment combining open kyphoplasty and short-segment fixation, Orthop. Traumatol. Surg. Res. OTSR 95 (5) (2009) 359–364.
[8] F.M. Phillips, Minimally invasive treatments of osteoporotic vertebral compression fractures, Spine 28 (15 Suppl) (2003) S45–S53.
[9] M. Dohm, C.M. Black, A. Dacre, J.B. Tillman, G. Fueredi, A randomized trial comparing balloon kyphoplasty and vertebroplasty for vertebral compression fractures due to osteoporosis, AJNR Am. J. Neuroradiol. 35 (12) (2014) 2227–2236.
[10] H.M. Barragan-Campos, J.N. Vallee, D. Lo, E. Cormier, B. Jean, M. Rose, P. Astagneau, J. Chiras, Percutaneous vertebroplasty for spinal metastases: complications, Radiology 238 (1) (2006) 354–362.
[11] N. Milojkovic, S. Homsi, Poly(methylmethacrylate) pulmonary embolism as a complication of percutaneous vertebroplasty in cancer patients, J. Ark. Med. Soc. 111 (7) (2014) 140–142.
[12] F. Monticelli, H.J. Meyer, E. Tutsch-Bauer, Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP), Forensic Sci. Int. 149 (1) (2005) 35–38.
[13] Y.F. Wu, C.C. Lai, C.M. Chao, Severe pulmonary cement embolism, J. Emerg. Med. 53 (6) (2017) e139–e140.
[14] E. Unal, S. Balci, Z. Atceken, A. Akpinar, O.M. Ariyurek, Nonthrombotic pulmonary artery embolism: imaging findings and review of the literature, AJR Am. J. Roentgenol. 208 (3) (2017) 505–516.
[15] S. Ramanathan, T. Vora, A. Gula, A. Mahajan, S. Desai, Pulmonary cement embolism in a child following total elbow replacement for primitive neuroectodermal tumour (PNET) of the humerus, Skeletal Radiol. 46 (5) (2017) 715–718.
[16] D.H. Cho, E.M. Moram, K. Ahrr, M.T. Truong, J.E. Madewell, Pulmonary embolism of polymethyl methacrylate during percutaneous verteoplasty and kyphoplasty, AJR Am. J. Roentgenol. 183 (4) (2004) 1097–1102.
[17] R. Buchbinder, K. Golmohammadi, R.V. Johnston, R.J. Owen, J. Homik, A. Jones, S.S. Dhillon, D.F. Kallmes, R.G. Lambert, Percutaneous vertebroplasty for osteoporotic vertebral compression fracture, Cochrane Database Syst. Rev. (4) (2015) CD006349.
[18] D.F. Kallmes, B.A. Comstock, P.J. Heagerty, J.A. Turner, D.J. Wilson, T.H. Diamond, R. Edwards, L.A. Gray, L. Stout, S. Owen, et al., A randomized trial of vertebroplasty for osteoporotic spinal fractures, N. Engl. J. Med. 361 (6) (2009) 569–579.
[19] M.M. Teng, H. Cheng, D.M. Ho, C.Y. Chang, Intraspinal leakage of bone cement after vertebroplasty: a report of 3 cases, AJNR Am. J. Neuroradiol. 27 (1) (2006) 224–229.

[20] K.B. Harrington, Major neurological complications following percutaneous vertebral body augmentation by polymethylmethacrylate: a case report, J. Bone Joint Surg. Am. 83-A (7) (2001) 1070–1073.

[21] L. Alvarez, A. Perez-Higuera, D. Quinones, E. Calvo, R.E. Rossi, Vertebraloplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life, Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deformity Soc. Eur. Soc. Spine Surg. 13 (4) (2004) 356–360.

[22] S.E. Chung, S.H. Lee, T.H. Kim, K.H. Yoo, B.J. Jo, Renal cement embolism during percutaneous vertebroplasty, Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deformity Soc. Eur. Section Cervical Spine Res. Soc. 12 (4) (2003) 356–360.

[23] R. Scroop, J. Eskridge, G.W. Britz, Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: case report, AJNR Am. J. Neuroradiol. 23 (5) (2002) 866–870.

[24] H.L. Chen, C.S. Wong, S.T. Ho, F.L. Chang, C.H. Hsu, C.T. Wu, A lethal pulmonary embolism during percutaneous vertebroplasty, Anesth. Analg. 95 (4) (2002) 1060–1062 (table of contents).

[25] P.G. Yazbeck, R.B. Al Rouhban, S.G. Slaba, G.E. Kreichati, K.E. Kharrat, Anterior mediastinal mass from VERTOS II, AJNR Am. J. Neuroradiol. 31 (8) (2010) 1451–1453.

[26] B. Padovani, O. Kasriel, P. Brunner, P. Peretti-Viton, Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty, Anesth. Analg. 104 (4) (2007) 924–926.

[27] B. Padovani, O. Kasriel, P. Brunner, P. Peretti-Viton, Pulmonary embolism caused by cement leakage after percutaneous vertebroplasty, Eur. J. Cardiovasc. Thorac. Surg. 87 (1) (2009) 299–301.

[28] G. Lewis, M.R. Towler, D. Boyd, M.J. German, A.W. Wren, O.M. Clarkin, A. Yates, Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty, J. Mater. Sci. Med. Mater. 21 (1) (2010) 59–66.

[29] C. Kim, A. Mahar, A. Perry, J. Massie, L. Lu, B. Currier, M.J. Yasemski, Biomechanical evaluation of an injectable radiopaque polyurethane fumarate cement for kyphoplasty in a canine osteoporotic vertebral compression fracture model, J. Spinal Disord. Tech. 20 (8) (2007) 604–609.

[30] G. Lewis, M.R. Towler, D. Boyd, M.J. German, A.W. Wren, O.M. Clarkin, A. Yates, Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty, J. Mater. Sci. Med. Mater. 21 (1) (2010) 59–66.

[31] Y.J. Kim, J.W. Lee, K.S. Park, J.S. Jeong, H.S. Kang, Pulmonary cement embolism from percutaneous vertebroplasty in osteoporotic vertebral compression fractures: incidence, characteristics, and risk factors, Radiology 251 (1) (2009) 250–259.

[32] A. Vennema, C.A. Klaesen, P.N. Lohle, W.J. van Rooij, H.J. Verhaar, J. de Vries, W.P. Mali, Perforation of the vena cava and pulmonary arteries: a complication of percutaneous vertebroplasty, Eur. J. Vasc. Endovasc. Surg. 30 (10) (2005) 893–895.

[33] A. Vennema, P.N. Lohle, W.J. van Rooij, H.J. Verhaar, W.P. Mali, Frequency and outcome of pulmonary polyethylmethacrylate embolism during percutaneous vertebroplasty, AJNR Am. J. Neuroradiol. 29 (10) (2008) 1936–1938.

[34] S.Y. Kim, J.B. Seo, K.H. Do, J.S. Lee, K.S. Song, T.H. Lim, Cardiac perforation caused by acrylic cement: a rare complication of percutaneous vertebroplasty, AJR Am. J. Roentgenol. 185 (5) (2005) 1245–1247.

[35] F. Braith, M. Row, Right ventricular acrylic cement embolism: late complication of percutaneous vertebroplasty, Heart (British Cardiac Society) 95 (4) (2009) 275–277.

[36] S.H. Lim, H. Kim, H.K. Kim, M.J. Baek, Multiple cardiac perforations and pulmonary embolism caused by cement leakage after percutaneous vertebroplasty, Eur. J. Cardiovasc. Thorac. Surg. Off. J. Eur. Assoc. Cardiothorac. Surg. 33 (3) (2008) 510–512.

[37] B. Caymak, B. Onan, E. Sagbas, C. Duran, B. Akpinar, Cardiac tamponade and pulmonary embolism following cardiac perforation of percutaneous vertebroplasty, Ann. Thorac. Surg. 87 (1) (2009) 299–301.

[38] K.J. Lim, S.Z. Yoon, Y.S. Jeon, J.H. Bahk, C.S. Kim, J.H. Lee, J.W. Ha, An intrathoracic and pulmonary thromboembolism as a late complication of percutaneous vertebroplasty, Anesth. Analg. 105 (2007) 927–928.

[39] K. Francois, T. Tyasem, B. Poffny, G. Van Nooten, Successful management of a large pulmonary embolus after percutaneous vertebroplasty: a case report, Spine 28 (20) (2003) E424–E425.

[40] P. Tzou, Y. Abdelmoula, A.F. Cormo, P.A. Gershon, H.M. Hoogewoud, L.K. von Segesser, Management of pulmonary embolism during acrylic vertebroplasty, Annu. Thorac. Surg. 74 (5) (2002) 1706–1708.

[41] K.Y. Yoo, S.W. Jeong, W. Yoon, J. Lee, Acute respiratory distress syndrome associated with pulmonary embolism following percutaneous vertebroplasty with polymethylmethacrylate, Spine 29 (14) (2004) E294–E297.

[42] M.T. Lueter, J.B. Bartholmai, A.E. Rad, D.P. Kallmes, Asymptomatic and unrecognized cement pulmonary embolism commonly occurs with vertebroplasty, AJNR Am. J. Neuroradiol. 32 (4) (2011) 654–657.

[43] J.N. MacTaggart, L. Pipinos, J.M. Johanning, T.G. Lynch, Acrylic cement embolus masquerading as an embolized central venous catheter fragment, J. Vasc. Surg. 43 (1) (2006) 180–182.

[44] H. Ren, Y. Shen, V.Z. Zhang, W.Y. Ding, J.X. Xu, D.L. Yang, J.M. Cao, Correlative factor analysis on the complications resulting from cement leakage after percutaneous kyphoplasty in the treatment of osteoporotic vertebral compression fractures, Spinal Cord. Tech. 23 (7) (2016) 592–597.

[45] J. Bernhard, P.F. Heini, P.M. Villiger, Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty, Annu. Rheum. Dis. 62 (1) (2003) 85–86.

[46] K. Sterricker, R. Orfer, K. Yen, J. Takala, M. Lugniubhl, Severe hypercapnia due to pulmonary embolism of polymethylmethacrylate during vertebroplasty, Anesth. Analg. 98 (4) (2009) 1184–1186 table of contents.

[47] J.S. Lee, Y.S. Jeong, S.G. Ahn, Intracardiac bone cement embolism, Heart (British Cardiac Society) 96 (5) (2010) 387.
B. Rahimi et al.

Respiratory Medicine Case Reports 25 (2018) 78–85

cement embolization after vertebroplasty requiring pulmonary wedge resection, Clin. Orthop. Relat. Res. 472 (5) (2014) 1652–1657.

A.C. Stevens, Polyethylene-methacrylate cement pulmonary embolism and infarct, Emerg. Med. J. 31 (3) (2014) 257.

U. Toru, T. Goksan, M. Acat, H. Onaran, S. Gul, E. Cetinkaya, Pulmonary cement embolism following percutaneous vertebroplasty, Case Rep. Pulmonol. 2014 (2014) 851573.

Y. Zhao, T. Liu, Y. Zheng, L. Wang, D. Hao, Successful percutaneous retrieval of a large pulmonary cement embolus caused by cement leakage during percutaneous vertebroplasty: case report and literature review, Spine 39 (26) (2014) E1616–E1621.

M.S. Guirguis, G.S. Shroff, Cement pulmonary embolism, Am. J. Med. Sci. 349 (5) (2015) e5.

A. Nooh, F.H. Abduljabbar, A.H. Abduljabbar, P. Jarzem, Pulmonary artery cemen
t embolism after a vertebroplasty, Case Rep. Orthoped. 2015 (2015) 582769.

F.M. Polli, A. Marongiu, M. Miscusi, F. De Giorgio, A. Raco, Cardiopulmonary cement embolism after vertebroplasty, Spine J. – Off. J. North Am. Spine Soc. 15 (2) (2015) 376.

S. Schuerer, M. Misfeld, G. Schuler, N. Mangner, Intracardiac cement embolization in a 65-year-old man four months after multilevel spine fusion, Eur. Heart J. 36 (13) (2015) 783.

C. Shen, G. Liu, J.Z. Hu, X.H. Yang, Cardiac perforation and multiple emboli after percutaneous vertebroplasty, Orthop. Clinics 38 (10) (2015) e497–950.

G.S. Shroff, E. Okwanda, C. Visvanathan, M.T. Truong, Pulmonary cement embolism presenting with dyspnea, Semin. Roentgenol. 50 (3) (2015) 226–228.

A. Awwad, I. Le Jeune, M. Kumaran, M.D. Sosin, A rock in a hard place: cement pulmonary emboli after percutaneous vertebroplasty, Int. J. Cardiol. 208 (2016) 162–163.

T. Chai, G.S. Shroff, Cement pulmonary embolism after percutaneous vertebral augmentation in a patient with pathologic lumbar fracture from metastatic breast cancer, PM & R J. Inj. Funct. Rehabil. 8 (5) (2016) 488–490.

M.S. Diah, A. Diah, W. Dilmun, S. Diah, Acute right atrial and pulmonary artery bone cement mass emboli following vertebroplasty, JRSM Open 7 (6) (2016) 2054270416643891.

M. Focardi, A. Bonelli, V. Pinchi, F. De Luca, G.A. Norelli, Pulmonary cement embolism after kyphoplasty, J. Forensic Sci. 61 (Suppl 1) (2016) S252–S255.

L.M. Gabe, I.B. Oliva, Pulmonary cement embolism, Am. J. Med. 129 (11) (2016) e279–e280.

L. Gorospe, M.J. Blanchard-Rodriguez, A. Chinea-Rodriguez, Cement pulmonary embolism after percutaneous vertebroplasty in multiple myeloma, Asian Cardiovasc. Thorac. Ann. 24 (4) (2016) 400–401.

R. Memarpour, B. Tashthous, F. Nasim, D. Grobman, B.K. Upadhyay, F. Rahaghi, A deep-sea diver with cement pulmonary embolism, Undersea Hyperb. Med. J. Undersea Hyperb. Med. Soc. Inc. 43 (3) (2016) 249–255.

T. Mollo, A. Kos, A. Piwowarski, Robotic-assisted removal of intracardiac cement embolism following percutaneous vertebroplasty, Ann. Thorac. Surg. 101 (5) (2016) 1974–1976.

J.S. Park, J.H. Shin, S.H. Lim, H.M. Yang, Lethal cement leakage embolization after vertebroplasty, Circ. J. – Off. Jpn. Circ. Soc. 81 (1) (2016) 119–120.

C.M. Botia Gonzalez, L. Hernandez Sanchez, J.M. Plasencia Martinez, Ceramic pulmonary embolism, Am. J. Med. Sci. 353 (5) (2017) 507.

C.Y. Chang, S.F. Huang, Asymptomatic pulmonary cement embolism, CMAJ Can. Med. Assoc. J. – J. Assoc. medicale canadienne 189 (14) (2017) E5453.

T.F. Gianculli, D.E. Mc Loughlin, L.A. Morita, M.C. Saccheri, J.A. Lax, Bone cement and cardiac pulmonary embolism, Echocardiography (Mount Kisco, NY) 34 (10) (2017) 1239–1241.

C. Hatzantonios, M. Czyz, R. Pyzik, B.M. Boszycz, Intracardiac bone cement embolism as a complication of vertebroplasty: management strategy, Eur. Spine J. – Off. Publ. Eur. Spine Soc. Eur. Spinal Deformity Soc. Eur. Section Cervical Spine Res. Soc. 26 (12) (2017) 3199–2205.

P. Talec, M. Fromentin, C.M. Samama, Pulmonary embolism of cement after knee prosthesis replacement, Anesth. Crit. Care Pain Med. 36 (1) (2017) 71–72.
