On endomorphism algebras of functors with non-compact domain

Brian Day

August 16, 2011

Abstract

As a development of [2] and [3], we construct a “VN-core” in Vect$_k$ for each k-linear split-semigroupal functor from a suitable monoidal category C to Vect$_k$. The main aim here is to avoid the customary compactness assumption on the set of generators of the domain category C (cf. [3]).

1 Introduction

We propose the construction of a VN-core associated to each (k-linear) split semigroupal functor U from a suitable monoidal category C to Vect$_k$, where all our categories, functors, and natural transformations are assumed to be k-linear, for a fixed field k. Essentially, the category C must be equipped with a small “U-generator” A carrying some extra duality information and with UA still being finite dimensional for all A in A.

We shall use the term “VN-core” (in Vect$_k$) to mean a (usual) k-semibialgebra E together with a k-linear endomorphism S such that

$$\mu(\mu \otimes 1)(1 \otimes S \otimes 1)(1 \otimes \delta)\delta = 1 : E \to E.$$

The VN-core is called “antipodal” if $S(xy) = SxSy$ (and $S(1) = 1$) for all $x, y \in E$. This minimal type of structure is introduced here in order to avoid compactness assumptions on the generator $A \subset C$ and, at the same time, retain the “fusion” operator, namely

$$(\mu \otimes 1)(1 \otimes \delta) : E \otimes E \to E \otimes E,$$

satisfying the usual fusion equation [7]. Note that here the fusion operator always has a partial inverse (see [1]).

In §2 we establish sufficient conditions on a functor U in order that

$$\text{End}^U = \int^A (UA)^* \otimes UA$$

be a VN-core in Vect$_k$ (following [2]). This core can be completed to a VN-core $\text{End}^U \oplus k$ with a unit element. In §3 we give several examples of suitable functors U for the theory.
2 The construction of End^U

Let $\mathcal{C} = (\mathcal{C}, \otimes, I)$ be a monoidal category and let $U : \mathcal{C} \to \text{Vect}$ be a functor with both a semigroupal structure, denoted $r = r_{C,D} : UC \otimes UD \to U(C \otimes D)$, and a cosemigroupal structure, denoted $i = i_{C,D} : U(C \otimes D) \to UC \otimes UD$, such that $ri = 1$.

We shall suppose also that there exists a small full subcategory \mathcal{A} of \mathcal{C} with the properties:

1. UA is finite dimensional for all $A \in \mathcal{A}$,
2. U-density; the canonical map $\alpha_C : \int^A \mathcal{C}(A, C) \otimes UA \to UC$ is an isomorphism for all $C \in \mathcal{C}$,
3. there is an “antipode” functor $(-)^* : \mathcal{A}^{\text{op}} \to \mathcal{A}$ with a ("canonical") map $e_A : A \otimes A^* \otimes A \to A$ in \mathcal{C} for each $A \in \mathcal{A}$,
4. there is a natural isomorphism $u = u_A : U(A^*) \xrightarrow{\cong} U(A)^*$,
5. the following diagrams defining $\tilde{\tau}$, $\tilde{\rho}$ both commute

\[\begin{array}{ccc}
UA \otimes U(A^*) \otimes UA & \xrightarrow{\tilde{\tau}} & U(A \otimes A^* \otimes A) \\
\downarrow 1 \otimes u^{-1} \otimes 1 & & \downarrow e_{UA} \\
UA \otimes U(A^*) \otimes UA & \xrightarrow{\tilde{\rho}} & U(A \otimes A^* \otimes A) \\
\end{array} \]

and

\[\begin{array}{ccc}
UA \otimes U(A^*) \otimes UA & \xrightarrow{\tilde{\rho}} & U(A \otimes A^* \otimes A) \\
\downarrow 1 \otimes u \otimes 1 & & \downarrow e_{UA} \\
UA \otimes U(A^*) \otimes UA & \xrightarrow{\tilde{\tau}} & U(A \otimes A^* \otimes A) \\
\end{array} \]

where $e_{UA} = 1 \otimes \text{ev}$ in Vect, and $r_3i_3 = 1$.
We now define the semibialgebra structure \((\text{End}^\vee U, \mu, \delta)\) on

\[
\text{End}^\vee U = \int^A U(A)^* \otimes U A
\]
as in \([2]\) §2, with the isomorphism of \(k\)-linear spaces

\[
S = \sigma : \text{End}^\vee U \to \text{End}^\vee U
\]
given (as in \([2]\) §3) by the usual components

\[
\begin{array}{c}
U(A)^* \otimes U A \\
\downarrow^1\otimes\sigma \\
U(A)^* \otimes U(A)^{**} \otimes U (A^*)^*
\end{array}
\begin{array}{c}
\rightarrow
\sigma_A \\
\downarrow \\
\rightarrow
\end{array}
\begin{array}{c}
U(A)^* \otimes U(A^*) \\
\downarrow \\
U(A^*) \otimes U(A^*)^*
\end{array}
\]

where \(d\) is the canonical map from a vector space to its double dual. Furthermore, each map

\[
e_{UA} = 1 \otimes \text{ev} : U A \otimes U A^* \otimes U A \to U A
\]
satisfies both the conditions

\[
\begin{array}{c}
U A \otimes U A^* \otimes U A
\end{array}
\begin{array}{c}
\uparrow^n \otimes 1 \\
\downarrow^e_{UA}
\end{array}
\begin{array}{c}
U A \\
\rightarrow 1
\end{array}
\begin{array}{c}
\rightarrow U A
\end{array}
\]

(E1)

commutes, and

\[
\begin{array}{c}
U A^* \otimes U A \otimes U A^*
\end{array}
\begin{array}{c}
\uparrow^1 \otimes n \\
\downarrow^1 \otimes d \otimes 1
\end{array}
\begin{array}{c}
U A^* \\
\rightarrow e_{UA}
\end{array}
\begin{array}{c}
\rightarrow U A^* \otimes U A^{**} \otimes U A^*
\end{array}
\]

(E2)

commutes, where \(n = \text{coev} : 1 \to U A \otimes U A^*\) in \(\text{Vect}\).

Then we obtain:

Theorem 2.1. The structure \((\text{End}^\vee U, \mu, \delta, S)\) is a VN-core in \(\text{Vect}_k\) which can be completed to the VN-core \((\text{End}^\vee U) \oplus k\).

Proof. The von Neumann axiom

\[
\mu_3(1 \otimes S \otimes 1) \delta_3 = 1
\]
becomes the diagram (in which we have omitted “⊗”):

$$
\begin{array}{c}
\begin{array}{c}
U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^* \\
\downarrow U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^* \\
U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^*
\end{array}
\end{array}
\end{array}
$$

where (*\) is the exterior of the diagram

$$
\begin{array}{c}
\begin{array}{c}
U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^* \\
\downarrow U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^* \\
U(A)^* \otimes U(A)^* \otimes U(A) \otimes U(A)^* \otimes U(A)^*
\end{array}
\end{array}
\end{array}
$$

which commutes using (E2) and commutativity of
3 Examples

3.1 Example

The first type of example is derived from the idea of a (contravariant) involution on a (small) comonoidal category \(\mathcal{D} \). This includes the doubles \(\mathcal{D} = B^{\text{op}} + B \) and \(\mathcal{D} = B^{\text{op}} \otimes B \) with their respective “switch” maps (where \(B \) is a given small comonoidal \(\text{Vect}_k \)-category), or any small comonoidal and compact-monoidal \(\text{Vect}_k \)-category \(\mathcal{D} \) (such as the category \(\text{Mat}_k \) of finite matrices over \(k \)) with the tensor duals of objects now providing an antipode on the comonoidal aspect of the structure rather than on the monoidal part, or any \(*\)-algebra structure on a given \(k \)-bialgebra (e.g., a \(C^* \)-bialgebra) with the \(*\)-operation providing the antipode.

In each case, an even functor from \(\mathcal{D} \) to \(\text{Vect} \) is defined to be a (\(k \)-linear) functor \(F \) equipped with a (chosen) dinatural isomorphism

\[
F(D^*) \cong F(D).
\]

If we take the morphisms of even functors to be all the natural transformations between them then we obtain a category

\[
\mathcal{E} = \mathcal{E}(\mathcal{D}, \text{Vect}).
\]

Let \(\mathcal{A} = \mathcal{E}(\mathcal{D}, \text{Vect}_{\text{fd}})_{\text{fs}} \) be the full subcategory of \(\mathcal{E} \) consisting of the finitely valued functors of finite support. While this category is generally not compact, it has on it a natural antipode derived from those on \(\mathcal{D} \) and \(\text{Vect}_{\text{fd}} \), namely

\[
A^*(D) := A(D^*)^*.
\]

Of course, there are also examples where \(\mathcal{A} \) is actually compact, such as those where \(\mathcal{D} \) is a Hopf algebroid, in the sense of [4], with antipode \((-)^* = S \), in which case each \(A \) from \(\mathcal{D} \) to \(\text{Vect} \) has a symmetry structure on it.

Now let \(\mathcal{C} \) be the full subcategory of \(\mathcal{E} \) consisting of the small coproducts in \(\mathcal{E} \) of objects from \(\mathcal{A} \). This category \(\mathcal{C} \) is easily seen to be monoidal under the pointwise convolution structure from \(\mathcal{D} \), and the inclusion \(\mathcal{A} \subset \mathcal{C} \) is \(U \)-dense for the functor

\[
U : \mathcal{C} \to \text{Vect}_k
\]

given by

\[
U(C) = \sum_{D} C(D)
\]

which is split semigrouplar with \(UA \) finite dimensional for all \(A \in \mathcal{A} \). Moreover,

\[
U(A^*) = \bigoplus_{D} A^*(D)
\]
\[= \bigoplus_{D} A(D)^*
\]
\[= U(A)^*,
\]

for all \(A \in \mathcal{A} \). The conditions of (5) are easily verified if we define maps

\[
e : A \otimes A^* \otimes A \to A
\]
by commutativity of the diagrams

\[
\begin{array}{ccc}
A(D) \otimes A^*(D) \otimes A(D) & \xrightarrow{\varepsilon_D} & A(D) \\
\downarrow \cong & & \downarrow 1 \otimes \text{ev} \\
A(D) \otimes A(D)^* \otimes A(D), & & \\
\end{array}
\]

where the exterior of

\[
\begin{array}{ccc}
A^*(D) \otimes A(D) & \xrightarrow{\cong} & A^*(D) \otimes A(D) \\
\downarrow A(f) \otimes 1 & & \downarrow \varepsilon \\
A^*(E) \otimes A(D) & \xrightarrow{\cong} & A^*(E) \otimes A(D) \\
\downarrow 1 \otimes A(f) & & \downarrow \varepsilon \\
A^*(E) \otimes A(E) & \xrightarrow{\cong} & A^*(E) \otimes A(E) \\
\end{array}
\]

commutes for all maps \(f : D \to E \) in \(\mathcal{D} \) so that

\[
e = 1 \otimes \hat{e} : A \otimes A^* \otimes A \to A \otimes k \cong A
\]

is a genuine map in \(\mathcal{C} \) when \(\mathcal{C} \) is given the pointwise monoidal structure from \(\mathcal{D} \). This completes the details of the general example.

3.2 Example

In the case where \(k = \mathbb{C} \) and \(\mathcal{D} \) has just one object \(D \) whose endomorphism algebra is a \(C^* \)-bialgebra, we have a one-object co-monoidal category \(\mathcal{D} \) with a \(\mathbb{C} \)-conjugate-linear antipode given by the \(* \)-operation. Then the convolution

\[
[D, \text{Hilb}_{\mathbb{C}}] \subset [D, \text{Vect}_{\mathbb{C}}],
\]

is a monoidal category, with a \(\mathbb{C} \)-linear antipode given by

\[
F^*(D) = F(D^*)^\circ
\]

where \(H^\circ \) denotes the conjugate-transpose of \(H \in \text{Hilb}_{\mathbb{C}} \). We now interpret an even functor \(F \) to be a functor equipped with a dinatural isomorphism \(F(D^*) \cong F(D) \) in \(D \in \mathcal{D} \) which is \(\mathbb{C} \)-linear, so that \(F^*(D) \cong F(D^*)^\circ \) for such a functor.

Take \(\mathcal{A} = \mathcal{E}(\mathcal{D}, \text{Hilb}_{\mathbb{C}}) \) and let \(\mathcal{C} \) be the class of small coproducts in \([\mathcal{D}, \text{Vect}_{\mathbb{C}}] \) of the underlying \([\mathcal{D}, \text{Vect}_{\mathbb{C}}] \)-representations of \(A \)'s in \(\mathcal{A} \) (with the appropriate maps). Each map

\[
e : A \otimes A^* \otimes A \to A
\]

in \(\mathcal{C} \) is defined by the \(\mathbb{C} \)-linear components

\[
e : A(D) \otimes A^*(D) \otimes A(D) \xrightarrow{1 \otimes \hat{e}} A(D),
\]
where
\[\hat{c} : A^*(D) \otimes A(D) \to C \]
in \textbf{Vect}_C comes from the \(C \)-bilinear composite of two maps which are both \(C \)-linear in the first variable and \(C \)-linear in the second, namely
\[
\begin{array}{c}
A^*(D) \times A(D) \\
\overset{\cong}{\longrightarrow} \\
A(D)^\circ \times A(D).
\end{array}
\]

The remainder of this example is as seen before in Example 3.1.

3.3 Example

Let \(V = (\mathcal{V}, \otimes, I) \) be a (small) braided monoidal category and let \(B \) be the \(k \)-linearization of \textbf{Semicoalg}(\(V \)) with the monoidal structure induced from that on \(V \). By analogy with [5], let \(\mathcal{X} \subset B \) be a finite full subcategory of \(B \) with \(I \in \mathcal{X} \) and \(\mathcal{X}^{\text{op}} \) promonoidal when
\[
p(x, y, z) = B(z, x \otimes y) \\
j(z) = B(z, I)
\]
for \(x, y, z \in \mathcal{X} \).

For example (cf. [5]), one could take \(\mathcal{X} \) to be a (finite) set of non-isomorphic “basic” objects in some braided monoidal category \(V \), where each \(x \in \mathcal{X} \) has a coassociative diagonal map \(\delta : x \to x \otimes x \). However, we won’t need the category \(\mathcal{X} \) to be discrete or locally finite in the following.

Now let \(C \) be the convolution \([\mathcal{X}^{\text{op}}, \textbf{Vect}] \) and let \(A = [\mathcal{X}^{\text{op}}, \textbf{Vect}_{fd}] \). The functor
\[
U : C \to \textbf{Vect}
\]
is defined by
\[
U(C) = \bigoplus_x C(x),
\]
and the obvious inclusion \(A \subset C \) is \(U \)-dense. If there is a canonical (natural) retraction
\[
p(x, y, z) = B(z, x \otimes y) \\
\overset{r_{x, y}}{\longrightarrow} B(z, x) \otimes B(z, y),
\]
derived from the semicoalgebra structures on \(x, y, z \), then \(U \) becomes a split semigroupal functor via the structure maps
\[
\begin{array}{c}
U(C) \otimes U(D) \\
\overset{r}{\longrightarrow} U(C \otimes D) \\
\bigoplus_x C(x) \otimes \bigoplus_y D(y) \\
\Delta \Delta^* \\
\bigoplus_z C(z) \otimes D(z) \\
\overset{\cong}{\longrightarrow} \\
\bigoplus_z \int^{x,y} p(x, y, z) \otimes C(x) \otimes D(y) \\
\Delta^* \Delta \\
\bigoplus_z \int^{x,y} B(z, x) \otimes B(z, y) \otimes C(x) \otimes D(y),
\end{array}
\]
where the isomorphism follows from the Yoneda lemma, and \(ri = 1 \).

If \(\mathcal{X} \) also has on it a duality
\[
(-)^* : \mathcal{X} \to \mathcal{X}^{\text{op}}
\]
such that \(x \cong x^{**} \), then, on defining
\[
A^*(x) = A(x^*)^*,
\]
we obtain
\[
U(A^*) = \bigoplus_x A^*(x) = \bigoplus_x A(x^*)^* \cong \bigoplus_x A(x)^* \quad \text{since } x \cong x^{**} \cong U(A)^*,
\]
for \(A \in \mathcal{A} \), in accordance with the fourth requirement on \(U \).

Finally, to obtain a suitable map
\[
e = 1 \otimes \hat{e} : A \otimes A^* \otimes A \to A \otimes I \cong A,
\]
where \(\hat{e} : A^* \otimes A \to I \), we suppose each \(A \) in \(\mathcal{A} \) has on it a “dual coupling”
\[
\chi = \chi_{xy} : A(x)^* \otimes A(y) \to B(x^* \otimes y, I).
\]
By considering the Yoneda expansion
\[
A(x) \cong \int^z A(z) \otimes \mathcal{X}(x, z)
\]
of the various functors \(A \) in \(\mathcal{A} = [\mathcal{X}^{\text{op}}, \text{Vect}_{fd}] \), such a coupling exists on each \(A \) if we suppose merely that \(\mathcal{X} \) itself is “coupled” by a natural transformation
\[
\chi : \mathcal{X}(y, z) \to \mathcal{X}(x, z) \otimes B(x^* \otimes y, I);
\]
or simply
\[
\chi : \mathcal{X}(x, z)^* \otimes \mathcal{X}(y, z) \to B(x^* \otimes y, I),
\]
if \(\mathcal{X} \) is locally finite. Then, the composite natural transformation
\[
\begin{array}{c}
A(x^*)^* \otimes A(y) \otimes B(z, x \otimes y) \\
\downarrow \chi \otimes 1
\end{array}
\]
\[
\begin{array}{c}
B(x^{**} \otimes y, I) \otimes B(z, x \otimes y) \\
\cong \\
B(x \otimes y, I) \otimes B(z, x \otimes y) \\
\downarrow \text{comp’n}
\end{array}
\]
\[
B(z, I)
\]
yields the map

\[A^* \otimes A \xrightarrow{\delta} I \]

\[\int^{xy} A^*(x) \otimes A(y) \otimes p(x, y, -) \longrightarrow B(-, I) \]

because \(p(x, y, -) = B(-, x \otimes y) \) (by definition). Thus suitable conditions on the coupling \(\chi \) give (5).

Remark. Actually, this last example in which the basic promonoidal structure occurs as a canonical retract of a comonoidal structure is typical of many other examples which can be treated along similar lines.

References

[1] Brian Day. Note on the fusion map and Hopf algebras, [arXiv:0902.2259v3 [math.CT]], 2009.

[2] Brian Day and Craig Pastro. On endomorphism algebras of separable monoidal functors, Theory and Applications of Categories 22 (2009) 77–96.

[3] Brian Day and Craig Pastro. Note on endomorphism algebras of separable monoidal functors, [arXiv:0907.3259v1 [math.CT]], 2009.

[4] Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids, Advances in Mathematics 129 (1997) 99–157.

[5] Reinhard Häring-Oldenburg. Reconstruction of weak quasi-Hopf algebras, Journal of Algebra 194 (1997) 14–35.

[6] Saunders Mac Lane. Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (Second edition, Springer, 1998).

[7] Ross Street. Fusion operators and cocycloids in monoidal categories, Applied Categorical Structures 6 (1998) 177–191.