The Mathematical Treatment for Air Pollutant Diffusion Using Laplace Adomain Decomposition Method with Ground Surface

Esmail S* and Mayhoub AB
Department of Mathematics and Theoretical Physics, Atomic Energy Authority, Cairo, Egypt

Abstract

The method of Laplace Adomain Decomposition has been used to obtain a semi-analytical solution of the three-dimensional steady state advection diffusion equation for dispersion of air pollutant from a point source. The present treatment takes into account a realistic boundary condition which considers the ground surface as an absorber-reflector surface for the pollutant, simultaneously. This physical consideration is achieved by assuming that the vertical eddy diffusivity coefficient should be non-zero at the ground surface for vertical diffusion to be possible. The wind prevailing speed is parameterized in terms of vertical height using the power law profile. An upper boundary condition assuming capping inversion is considered which means that pollutant is subjected to a boundary Condition of zero flux. The present model calculations are compared with the available data of the atmospheric dispersion experiments that were carried out in the Copenhagen area (Denmark) and the semi-empirical model for Gaussian plume model with the same input data. In both comparison tasks, the solutions are reasonably good which indicates that the present treatment performs well as a simple analytical dispersion model.

Keywords: Air pollutant; Decomposition method; Ground surface; Mathematical treatment

Introduction

In the last few decades, special attention has been devoted to the task of predicting analytical solutions for the atmospheric dispersion of pollutants in the planetary boundary layer (PBL). Presently, analytical solutions of the advection diffusion equation are usually obtained for steady state conditions with assuming specific formulae for both eddy diffusivity (k) and (u). They are assumed as constants through the PBL or follow a power law [1]. Despite that k profile is not physically realistic, the solutions of the dispersion equation are widely used for regulatory application, because they can give generally, a qualitative concepts and reasonable description of the pollutant dispersion within the PBL. In the frame work of analytical solutions for the sake of illustration, we draw the attention to the work of Sharan et al. [2], Moreira et al. [3] and Wortmann et al. [4]. For more details, refer to the work of Vilhena et al. [5] and Degrazia et al. [6].

Different mathematical treatments have been adopted in the above mentioned literatures such as, Laplace transform technique with numerical inversion. A step forward is taken by Wortmann et al. [4] by application of the generalized integral Laplace transform technique (GILT) to solve the two-dimensional advection diffusion equation. In general, dispersion modeling depends principally on parameterization of the eddy diffusivity in terms of the physical parameter of the dispersion process. Also it depends on the suitable realistic boundary conditions assumed at the ground level and the top of the PBL which work reasonable well during most meteorological regimes. Various parameterizations for the diffusivity have been made in the literature to explain dispersion process. As examples of these researches, Sharan et al. expressed the diffusivity coefficients ky and kz in y and z directions in terms of the standard deviations ¾y and ¾z, the standard deviations of the crosswind and vertical concentration distribution respectively. Moreira et al. [3] put forward a new parameterization of the diffusivity coefficient kz by assuming that the height of the PBL can be discretized in N sub-intervals in such a manner that inside each interval kz take an average constant value. In this work, we will present the solution for the 3-dimensional advection diffusion equation in non-stationary condition applying Laplace Adomian de-composition technique. Laplace Adomain decomposition is used for solving our problem; this method is a numerical algorithm to solve linear and non-linear partial differential equations and ordinary differential equations. Khuri is the first one who used this method. Agajanov applied this method for the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the first one who used this method. Agajanov applied this method for the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and . Karande solved the solution of Duffing equation, Sujit Handibag and Karande solved the solution of Duffing equation, Sujit Handibag and...
Cartesian components of wind speed. In order to solve the equation (1) we included the following assumptions: (i) the pollutants are inert and have no additional sinks or sources downwind from the point source, (ii) the vertical w and lateral v components of the mean flow are assumed to be zero, kx is function of down distance (x) and the ground is considered as an absorber-reflector surface for the pollutant. This realistic boundary condition is achieved by expressing the diffusivity coefficient kx as a sum of two terms. The first one is of constant value which represents the value of kx at the ground level (z = 0), this is an essential requirement for the absorptive of the ground surface to the pollutants. The second term which is z-dependent (power law profile), represents the diffusivity coefficient at different heights above the ground (z > 0) and indicates the reflectivity of the ground surface to the pollutants, and (iii) the mean horizontal flow is incompressible and horizontally homogeneous (steady state). Then, we have where

\[u \frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(k_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial C}{\partial z} \right) \]

(2)

\[k_z = k_0 + k_z z^n \]

(3)

Kz is the eddy diffusivity at the ground, kx is turbulent parameter, n and p are constants depend on the atmospheric stability classes. The mathematical description of the dispersion problem (2) is completed by the following boundary conditions:

\[C(x, z) = 0 \text{ at } z \rightarrow \infty \]

(6)

\[\frac{\partial C}{\partial z} = 0 \text{ at } z = h; \quad k_z \frac{\partial C}{\partial z} = u d C \text{ at } z = 0 \]

(7)

Where vd is the deposition velocity which is constant forever and Q is the emission rate. Taking integration for equation (2) with respect to y, we get:

\[u \frac{\partial C}{\partial y} = \frac{\partial}{\partial y} \left(k_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial C}{\partial z} \right) \]

(8)

Where \(C_y = \int C(x, y, z) dy \) is the cross-wind concentration. Applying Laplace transform (LT) for equation (8) with respect to x, we obtain:

\[L_x \left(\frac{\partial C_y}{\partial x} \right) = \frac{1}{2} L_x \left[\frac{\partial}{\partial x} \left(k_x \frac{\partial C_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial C_y}{\partial z} \right) \right] \]

(9)

\[C_y(x, z) = \frac{C_0}{s} + \frac{1}{u} \left[\frac{1}{s} \right] L_x \left[\frac{\partial}{\partial x} \left(k_x \frac{\partial C_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial C_y}{\partial z} \right) \right] \]

(10)

where C0 = Cy(0; z). By taking inverse Laplace transform for equation (10), we get:

\[C_y(x, z) = C_y + \frac{1}{u} L_x^{-1} \left[\left(\frac{1}{s} \right) L_x \left[\frac{\partial}{\partial x} \left(k_x \frac{\partial C_y}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial C_y}{\partial z} \right) \right] \right] \]

(11)

In Laplace decomposition method, the solution is assumed in infinite series form.

Therefore we suppose that:

\[C_y(x, z) = \sum_{n=0}^{\infty} V_n(x, z) \]

(12)

By substituting from Eqs. (12) and (6) into equation (11), we obtain:

\[\sum_{n=0}^{\infty} V_n(x, z) = \frac{1}{u} L_x^{-1} \left[\left(\frac{1}{s} \right) L_x \left[\frac{\partial}{\partial x} \left(k_x \frac{\partial V_n}{\partial x} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial V_n}{\partial z} \right) \right] \right] \]

(13)

Comparing the two sides of the above equation, we get:

\[V_0(x, z) = \frac{1}{u}, \quad \text{and} \quad V_1(x, z) = \frac{1}{u} L_x^{-1} \left[\left(\frac{1}{s} \right) L_x \left(k_x \frac{\partial V_0}{\partial x} + k_z \frac{\partial V_0}{\partial z} \right) \right] \]

(14)

In general, the recursive relation is given by:

\[V_n(x, z) = \frac{1}{u} L_x^{-1} \left[\left(\frac{1}{s} \right) L_x \left(k_x \frac{\partial V_{n-1}}{\partial x} + k_z \frac{\partial V_{n-1}}{\partial z} \right) \right] \]

(15)

Using the above relation, \(n \geq 0 \); we can find the components of \(V(x, z) \), namely

\[V_0 V_1, V_2, \ldots, V_n \]

\[V_n(x, z) = \left(\frac{z}{u} \right)^{n} \]

(16)

and so on. In this manner the rest of the components of the series (12) have been calculated using mathmod (mathematica programme). Substituting all these values in equation (12) in series form, we get the exact solution for general case:

\[X(x, z) = \frac{1}{u_x} \left(\frac{z}{\sigma} \right)^{y} + \frac{1}{u_x} \left(\frac{z}{\sigma} \right)^{y+1} + \frac{k_x(p+1)z^{p+1}u_x}{u_x^{p+1}} \]

(17)

Where \(u_x \) is the fraction velocity and \(\sigma \) is the roughness length.

Gaussian model

The ground level Gaussian model of the concentration for an elevated source in the form [9]:

\[C(x, y, z) = \frac{Q}{2 \pi \sigma u_x z} e^{-\frac{x^2}{2 \pi \sigma u_x z}} \]

(18)

Describes the relationship between the ground level concentration C, source emission rate Q, effective height H, downwind speed u and the lateral and vertical dispersion coefficients \(\frac{\sigma_x}{u} \) and \(\frac{\sigma_z}{u} \) [11,12]. The dispersion coefficients determine how much the plume is dispersed horizontally and vertically. In order to solve the equation (12) w.r.to y, we obtain:

\[\frac{C(x, z)}{Q} = e^{-\frac{x^2}{2 \pi \sigma u_x z}} \]

(19)
Applications

In order to examine the performance of the present model, crosswind integrated concentrations predicted by the model have been compared with the observed experimental data collected from the diffusion experiment carried out in the northern part of Copenhagen (Denmark) [9] and k, is taken in the form [13]:

$$k_i = 0.16 \left(\frac{w_c}{u} \right)^2 w_c = \frac{-h}{kL}$$

Where w_c is the convective velocity, L is the Monin Obukhov length and $k = 0.4$. Table 1 shows the comparison between our results using Laplace Adomain decomposition method and both the observed data [9] and the output of Gaussian plume model (Figure 1).

Results and Conclusions

We have solved the three-dimensional steady state advection diffusion equation with a realistic boundary condition which considers the ground surface as an absorber-reflector surface for the pollutant from a point source using Laplace Adomain Decomposition method. The main advantage of this method is that it can be applied directly for all types of differential and integral equations, linear or nonlinear, homogeneous or inhomogeneous, with constant coefficients or with variable coefficients. Another important advantage is that the method is capable of greatly reducing the size of computation work while still maintaining high accuracy of the numerical solution. The present model calculations are compared with the available data of the atmospheric dispersion experiments that were carried out in the northern part of Copenhagen area (Denmark). Further, the model is also validated with the atmospheric dispersion experiments that were carried out in the northern part of Copenhagen (Denmark) [9] and k_1 is taken in the form [13]:

$$k_1 = 0.16 \left(\frac{w_c}{u} \right)^2 w_c = \frac{-h}{kL}$$

We have found that for every run there is value of k_0 (eddy diffusivity at the ground surface) which depends on the physical properties of the run (where k_0 physically depends on the type of the earth surface over which the diffusion occurs). It is our intention to perform the mathematical analysis of this method for the case of high penetrated inversion layer (i.e. different stability conditions that permits the pollutant penetration and diffusion through the mixing height.)

$$H = h_i + \Delta h, \Delta h = 3\left(\frac{w}{u} \right)D$$

Where is the exit velocity, h_i is the stack height and D is the external diameter of the plume.

References

1. Pasquill F, Smith FB (1983) Atmospheric Diffusion, Wiley, New York.
2. Sharan M, Yadav AK, Singh M, Agrawal P, Nigam S (1995) Mathematical model for the dispersion of air pollutants in low wind conditions. Atmos Environ 30: 1209-1220.
3. Moreira DM, Degrazio GA, Vilhena MT (1999) Dispersion from low sources in a convective boundary layer: an analytical model. Nuovo Cimento 22C: 685-691.
4. Wortmann S, Vilhan MT, Moriera DM, Buske D (2005) A new analytical approach to simulate the pollutant dispersion in the PBL. Atmos Environ 39: 2171-2178.
5. Vilhena MT, Rizza U, Degrazia GA, Mengia C, Moreira DT, Tirbassi T (1998) An analytical air pollution model development and evaluation. Cont Atmos Phys 71: 315-320.
6. Degrazio GA, Moreira DM, Vilhena MT (2001) Derivation of eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a convective boundary layer. J appl Meteorolog 40: 1233-1240.
7. Basiri Parsa A, Rashidi MM, Anwar BGO, Sadri SM (2013) Semi computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods. Comput Biol and Med 43: 1142-1153.
8. Erfani E, Rashidi MM, Pars A (2010) The Modified Differential Transform Method for Solving Off-Centered Stagnation Flow Toward a Rotating Disc. UCM 7: 655-670.
9. Gynning SE, Lyck E (1984) Atmospheric dispersion from elevated sources in an urban area: comparison between tracer experiments and model calculations, J Clim Appl Meteorolog 23: 651-660.
10. Blackadar A (1997) Turbulence and Diffusion in the Atmosphere: Lectures in Environmental Sciences. Springer-Verlag.
11. Moreira DM, Ferreira PN, Carvalho JC (2005) Analytical solution of the Eulerian dispersion equation for non-stationary conditions: development and evaluation. Env mod soft 20: 1159-1165.
12. Sharan M, Yadav AK, Singh M (1996) Mathematical model for atmospheric dispersion in low winds with eddy diffusivity as linear function of downwind distances. Atmos Environ 30: 1137-1145.
13. KSM Essa, I Hassan, SM Etman, S Esmail (2011) A New technique for the three-dimensional atmospheric advection diffusion equation using Greens method. Appl Math Inf Sci 5: 422S-434S.

Run.no	PG stability	h(m)	k_0	down distance	$X(10^{5} \text{sm}^{-2})$	observed	present	Gaussian
1	C	1980	1.29	1900	6.48	5.98		
2	C	1920	-0.32	2100	5.38	5.06	5.32	
3	C	1120	-0.58	1900	7.26	7.3	8.17	
4	C	390	-0.39	4000	11.7	11.15		
5	C	820	-0.35	2100	6.72	6.53		
6	D	1300	-0.32	2000	3.76	3.15		
7	B	1850	-1.09	2000	6.7	6.6	5.78	
8	B	810	-0.32	1900	4.16	3.15	4.25	
9	D	2090	-0.51	2100	4.58	4.2		

Table 1: Comparison between observed, Gaussian plume model and calculated concentrations (s/m^{-2}).