This is a repository copy of First Measurement of Timelike Compton Scattering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/183249/

Version: Published Version

Article:
(2021) First Measurement of Timelike Compton Scattering. Physical Review Letters. 262501. ISSN 1079-7114

https://doi.org/10.1103/PhysRevLett.127.262501

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
First Measurement of Timelike Compton Scattering

P. Chatagnon, S. Nicolai, S. Stepanyan, M. J. Amaryan, G. Angelini, W. R. Armstrong, H. Atac, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, F. Bennokhtar, A. Bianconi, L. Bianco, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, W. J. Briscoe, W. K. Brooks, D. Bulumulla, V. D. Burkert, D. S. Carman, J. C. Carvajal, M. Caudron, A. Celentano, T. Chetry, G. Ciullo, L. Clark, P. L. Cole, M. Contalbrigo, G. Costantini, V. Crede, A. D’Angelo, N. Dashyan, M. Defurne, R. De Vita, A. Deur, S. Diehl, C. Djalali, R. Dupre, H. Egyian, M. Ehrhart, A. El Alaoui, L. El Fassi, E. Elouadrhiri, S. Fegan, R. Fersch, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, D. I. Glazier, A. A. Golubenko, R. W. Gothe, Y. Gotha, K. A. Griffioen, M. Guidal, L. Guo, H. Hakobyan, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, K. Joo, M. L. Kabir, D. Keller, G. Khachatryan, A. Khanal, A. Kim, W. Kim, A. Kripko, V. Kubarovsky, S. E. Kuhn, L. Lanza, M. Leali, S. Lee, P. Lenisa, J. Libby, I. J. D. MacGregor, D. Marchand, L. Marsicano, V. Mascagna, B. McKinnon, C. McLaughlin, S. Migliorati, M. Mirazita, V. Mokeev, R. A. Montgomery, C. Munoz Camacho, P. Nadel-Turonski, P. Naidoo, K. Neupane, T. R. O’Connell, M. Osipenko, M. Ouillon, P. Pandey, M. Paolone, L. L. Pappalardo, R. Parenzuoli, E. Pasyuk, W. Phelps, O. Pogorelko, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, A. Rizzo, P. Rossi, J. Rowley, F. Sabatié, A. Schmidt, E. P. Segarra, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, D. Sokhan, O. Soto, N. Sparveris, I. I. Strakovsky, S. Strauch, N. Tyler, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, A. Vossen, E. Voutier, D. P. Watts, K. Wei, X. Wei, R. Wishart, B. Yale, N. Zachariou, J. Zhang, and Z. W. Zhao

(CLS) Collaboration

1Argonne National Laboratory, Argonne, Illinois 60439, USA
2California State University, Dominguez Hills, Carson, California 90747, USA
3IFRF, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
4Christopher Newport University, Newport News, Virginia 23606, USA
5University of Connecticut, Storrs, Connecticut 06269, USA
6Duke University, Durham, North Carolina 27708-0305, USA
7Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA
8Fairfield University, Fairfield, Connecticut 06824, USA
9Universita` di Ferrara, 44121 Ferrara, Italy
10Florida International University, Miami, Florida 33199, USA
11Florida State University, Tallahassee, Florida 32306, USA
12The George Washington University, Washington, D.C. 20052, USA
13INFN, Sezione di Ferrara, 44100 Ferrara, Italy
14INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
15INFN, Sezione di Genova, 16146 Genova, Italy
16INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
17INFN, Sezione di Torino, 10125 Torino, Italy
18INFN, Sezione di Catania, 95123 Catania, Italy
19INFN, Sezione di Pavia, 27100 Pavia, Italy
20University Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
21Kyungpook National University, Daegu 41566, Republic of Korea
22Lamar University, 4400 M. L. King, Jr. Boulevard, P.O. Box 10046, Beaumont, Texas 77710, USA
23Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
24Mississippi State University, Mississippi State, Mississippi 39762-5167, USA
25National Research Center Kurchatov Institute—ITCE, Moscow, 117259, Russia
26University of New Hampshire, Durham, New Hampshire 03824-3568, USA
27New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003, USA
28Ohio University, Athens, Ohio 45701, USA
29Old Dominion University, Norfolk, Virginia 23529, USA
30II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany
We present the first measurement of the timelike Compton scattering process, \(pp \to p' \gamma^* (\gamma^* \to e^+ e^-) \), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities \(2.25 < Q^2 < 9 \text{ GeV}^2 \), squared momentum transferred \(0.1 < -t < 0.8 \text{ GeV}^2 \), and average total center-of-mass energy squared \(s = 14.5 \text{ GeV}^2 \). The photon beam polarization asymmetry, similar to the beam-spin asymmetry in deep virtual Compton scattering, is sensitive to the imaginary part of the Compton form factors and provides a way to test the universality of the generalized parton distributions. The angular asymmetry of the decay leptons accesses the real part of the Compton form factors and thus the \(D \)-term in the parametrization of the generalized parton distributions.

DOI: 10.1103/PhysRevLett.127.262501

Most of the mass of the observable universe comes from protons and neutrons. The nucleon mass comes mainly from the interactions between their fundamental constituents, the quarks and the gluons (or “partons”), which are described by the quantum chromodynamics (QCD) Lagrangian [1]. However, QCD-based calculations cannot yet be performed to fully explain the properties of nucleons in terms of their constituents. Phenomenological functions are used to connect experimental observables with the QCD matrix elements describing the dynamics of partons in nucleons. Typical examples of such functions are data-driven parametrizations for the form factors (FFs) and parton distribution functions (PDFs). Generalized parton distributions (GPDs) combine and extend the information contained in FFs and PDFs [2]. They describe the correlations between the longitudinal momentum and transverse spatial position of the partons inside the nucleon, giving access to the contribution of the orbital momentum of the quarks to the nucleon, and they are sensitive to the correlated \(q \bar{q} \) components [3–8].

Compton scattering has long been identified as a golden process among deep exclusive reactions to study GPDs experimentally. Deep virtual Compton scattering (DVCS), the exclusive electroproduction of a real photon \((ep \to e' p' \gamma) \), proposed in Refs. [4–6], has been the preferred tool for accessing GPDs until now [9–14]. Meanwhile, timelike Compton scattering (TCS) has been widely discussed theoretically [15–18], but never measured experimentally. This Letter reports on the first measurement of TCS on the proton, \(pp \to p' \gamma^* (\gamma^* \to e^+ e^-) \), with quasireal photon beam. TCS is the time-reversal-symmetric process to DVCS: the incoming photon is real and the outgoing photon has large timelike virtuality. In TCS, the virtuality of the outgoing photon \(Q^2 \equiv M^2 \), where \(M \) is the invariant mass of the lepton pair, sets the hard scale. In the regime \(-t/Q^2 \ll 1 \), where \(t \) is the squared momentum transfer to the target proton, the factorization theorem [19] applies: it separates the hard scattering process \((q q \gamma) \), described via perturbation theory, from the soft dynamics encoded in GPDs (see Fig. 1, left). The TCS amplitude can then be expressed as a convolution of the hard scattering amplitude with GPDs, appearing in Compton form factors (CFDs). At leading order in \(\alpha_s \), the CFF for the GPD \(H \) is defined in Ref. [15] using the notations of Refs. [4,5] as

\[
H(\xi, t) = \int_{-1}^{1} dx \ H(x, \xi, t) \left(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \right),
\]
where x, ξ, and t are defined in Fig. 1. Similar equations apply to the other GPDs E, \vec{E}, and \vec{H}. With a beam of circularly polarized photons, TCS can access both the real and imaginary parts of the CFFs [16].

As in DVCS, the Bethe-Heitler (BH) process, which can be computed in a quasi-model-independent way, contributes to the TCS-BH interference. At leading order in the virtuality of the real photon, $x = Q^2/(2(s - m_p^2) - Q^2)$ is the momentum imbalance of the struck quark, s is the squared center-of-mass energy, and m_p is the proton mass. x is the average momentum fraction of the struck quark.

\[
\sigma(\gamma p \rightarrow p'e^+e^-) = \sigma_{BH} + \sigma_{TCS} + \sigma_{INT}.
\]

where INT stands for the TCS-BH interference term. As presented in Refs. [15,16], the BH contribution dominates over the TCS in the total cross section by 2 orders of magnitude in the kinematic range accessible at JLab (CLAS12). Therefore, the best practical way to access GPDs with the TCS reaction is to measure observables giving access to the TCS-BH interference. At leading order and leading twist in QCD, σ_{INT} can be expressed as a linear combination of GPD-related quantities [15],

\[
\frac{d^4\sigma_{INT}}{dQ^2\, dt d\Omega} = A \frac{1 + \cos^2 \theta}{\sin \theta} \times [\cos \phi \text{Re} \tilde{M}^{--} - \nu \sin \phi \text{Im} \tilde{M}^{--}],
\]

where

\[
\tilde{M}^{--} = \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \mathcal{H} - \frac{t}{4m_p^2} F_2 \mathcal{E} \right].
\]

A is a kinematic factor given in Ref. [15], ϕ and θ are defined in Fig. 2, Ω is the solid angle defined by θ and ϕ, ν is the circular polarization of the photon beam (equal to $+1$ for right-handed and -1 for left-handed polarization), m_p is the proton mass, F_1 and F_2 are the electromagnetic form factors, and \mathcal{H}, $\tilde{\mathcal{H}}$, and \mathcal{E} are the TCS CFFs of the H, \tilde{H}, and E GPDs, respectively, which are given in Eq. (1). As the coefficients of $\tilde{\mathcal{H}}$ and $\tilde{\mathcal{E}}$ in Eq. (4) are zero if only BH contributes to the $\gamma p \rightarrow p'e^+e^-$ cross section. Furthermore, it was shown in Ref. [21] that the QED radiative corrections are negligible for both of these observables.

The experiment was carried out in Hall B at JLab, using a 10.6-GeV electron beam, impinging on a 5-cm-long liquid-hydrogen target placed at the center of the solenoid magnet of CLAS12 [22]. Potential quasireal photoproduction events ($e p \rightarrow p'e^+e^- X$) were selected requiring one electron, one positron, and one proton. The trajectories of charged particles, bent by the CLAS12 torus and solenoid magnetic fields, were measured by the drift chambers and in the central vertex tracker, providing their charge and momentum. The leptons were identified combining the information from the high-threshold Cherenkov counters and the forward electromagnetic calorimeter (ECAL) [23]. Leptons with momenta below 1 GeV were removed to eliminate poorly reconstructed tracks in the forward
detector. The background due to positive pions in the positron sample was minimized using a neural-network-based multivariate analysis of the transverse and longitudinal profiles of showers in the ECAL. The protons were identified by analyzing the velocity of positive tracks measured by the time-of-flight systems as a function of their momentum. The momenta of the protons were corrected for energy loss in the detector materials using Monte Carlo (MC) simulations. Data-driven corrections were included to account, in the case of the leptons, for radiative losses and, in the case of protons, for detector-dependent momentum shifts not accounted by the simulation.

Once the \(p' e^+ e^- \) events were selected, exclusivity selection criteria were applied to ensure kinematics in the quasireal photoproduction regime [20]. The 4-momenta of the scattered electron and initial quasireal photon were determined via energy-momentum conservation from the measured 4-momenta of the final-state particles. Then the mass and the transverse momentum fraction \(P_t / P \) of the scattered electron were constrained to be close to zero \((P_t / P < 0.05, |M^2| < 0.4 \text{ GeV}^2)\). These criteria ensure that the virtuality of the incoming photon is low \((Q^2 < 0.15 \text{ GeV}^2)\). The invariant mass spectrum of the outgoing lepton pair after exclusivity selection is shown in Fig. 3. The vector meson resonances decaying into an electron-positron pair are clearly visible. 2921 events with invariant mass between 1.5 and 3 GeV were selected to measure the TCS observables. In this region, the factorization condition \(-t / Q^2 \ll 1\) needed for the GPD formalism to apply is fulfilled. In Fig. 3, the experimental invariant mass distribution is compared with BH MC events. The good agreement between the two distributions rules out the possible contamination of the data by high mass meson resonances decaying into \(e^+ e^- \) pairs [e.g., \(\rho(1450) \) and \(\rho(1700) \)].

\[A_{O\Upsilon}(t, E_\gamma, M, \phi) = \frac{1}{P_b N^+ + N^-}, \quad (6) \]

where the number of events with reported positive and negative electron helicity in each bin is corrected by the acceptance and efficiency of CLAS12 (Acc) for the \(p p \to p' e^+ e^- \) reaction and by the polarization transfer as

\[N^\pm = \sum \frac{1}{\text{Acc}} P_{\text{trans}}. \quad (7) \]

Acc was estimated using the CLAS12 GEANT-4 [25] simulations framework [26]. A MC sample of \(3.6 \times 10^7 \) events was used. The acceptance was calculated in a five-dimensional grid of \((-t, E_\gamma, Q^2, \theta, \phi)\) bins. In a given bin, the acceptance is defined as the number of events reconstructed in this bin divided by the number of events generated in this bin. Low-occupancy bins, yielding an acceptance below 5% and with a relative uncertainty greater than 50%, were discarded from the analysis.

The obtained \(\phi \) distributions of Eq. (6) are shown in Fig. 4 and are fitted with a sinusoidal function. In Fig. 5, the

![FIG. 3. Invariant mass of the electron-positron pairs. The indicated peaks correspond to the \(\rho_0 / \omega \), \(\phi \), and \(J/\psi \) mesons. The TCS events are selected in the 1.5–3 GeV mass range (within the dotted vertical lines) and are compared to MC simulation of BH events. The simulation is normalized to the total number of events. The data-simulation bin-by-bin ratio agrees at the 15% level.](image)

![FIG. 4. \(A_{O\Upsilon} \) as a function of \(\phi \) for the four \(t \) bins used in this analysis. The sine fit function is superimposed. The amplitude of the fit \(A_{O\Upsilon} \) is plotted as a function of \(-t \) in Fig. 5.](image)
FIG. 5. A_{UU} as a function of $-t$ at the averaged kinematic point $E_γ = 7.29 \pm 1.55$ GeV; $M = 1.80 \pm 0.26$ GeV. The errors on the averaged kinematic point are the standard deviations of the corresponding distributions of events. The blue data points are represented with statistical error bars, horizontal bin widths, and shaded total systematic uncertainty. Red triangles show the asymmetry computed for simulated BH events. The dashed and dash-dotted lines are the predictions of, respectively, the VGG [27–30] and the GK [31–33] models, evaluated at the average kinematics.

t dependence of the amplitude of the sinusoidal modulation is presented.

In-depth systematic checks were performed. Seven sources of systematic uncertainties were studied: the uncertainties associated with the binning of the acceptance corrections and with the rejection of low-acceptance bins; the uncertainties from the MC model used to calculate the acceptance and the related efficiency corrections; the systematic shifts induced by the identification procedure of protons and positrons; the impact of the variation of the acceptance and the related efficiency corrections; the contributions only, which was estimated using MC simulation.

This correction assumes that the cross section of the TCS reaction is constant within the volume of the forward (respectively, backward) bin and that it can be estimated only by measuring it in the volume covered by the acceptance of CLAS12. These approximations were accounted for in the systematic uncertainties by computing A_{FB} with BH-weighted simulated events. The difference between the expected vanishing asymmetry and the obtained value was assigned as a systematic uncertainty.

Figure 6 shows A_{FB} for $1.5 < M < 3$ GeV. In order to explore the dependence on the hard scale of the FB

FIG. 6. FB asymmetry as a function of $-t$ at the averaged kinematic point $E_γ = 7.23 \pm 1.61$ GeV; $M = 1.81 \pm 0.26$ GeV. The solid line shows the model predictions of the VGG model with D-term (from Ref. [39]) evaluated at the average kinematic point. The other curves are defined in the caption of Fig. 5.
asymmetry, it was extracted separately for the invariant mass region between 2 and 3 GeV as shown in Fig. 7. The asymmetries in both mass regions are not comparable with the zero asymmetry predicted if only the BH process was contributing to the total cross section. This confirms that the TCS diagram contributes to the $\gamma p \rightarrow p' e^+ e^-$ cross section. These results were compared with model predictions and seem to be better described by the VGG model when the D-term (taken from Ref. [39]) is included, although the error bars are still too large to completely rule out the case without the D-term. The D-term, a poorly known element of GPD parametrizations that appears as a subtraction term in dispersion relations of DVCS amplitudes, has recently gained relevance for its links to the mechanical properties of the nucleon [40–43]. The GK model predictions largely underestimate the asymmetry in both mass regions. This could be explained by the absence of the D-term in this prediction, although the GK model differs also from the VGG model without the D-term. The comparison was also done in the high-mass region in Fig. 7. In this region, where factorization-breaking terms are more strongly suppressed, the previous conclusion stands, supporting the interpretation in terms of GPDs and the importance of the D-term in their parametrization.

In summary, we reported in this Letter the first ever measurement of TCS on the proton. The photon circular polarization and forward-backward asymmetries were measured. The nonzero asymmetries provide strong evidence for the contribution of the quark-level mechanisms parametrized by GPDs to the cross section of this reaction. The comparison of the measured polarization asymmetry with model predictions points toward the interpretation of GPDs as universal functions. The reported results on the FB asymmetry open a new promising path toward the extraction of the real part of H and ultimately to a better understanding of the internal pressure of the proton via the extraction of the D-term. Future measurements of TCS at JLab will provide a wealth of data to be included in the ongoing fitting efforts to extract CFFs [44–47]. In particular, TCS measurements should have a strong impact in constraining the real part of CFFs [48] and in the determination of the D-term that relates to the gravitational form factor of the nucleon. A comparison of these results with possible measurements of TCS at the Electron Ion Collider (EIC) [49] and in ultraperipheral collisions at the LHC [50] could provide a better understanding of the behaviour of the CFFs of TCS at low x [36,37].

We thank Professors M. Vanderhaeghen, B. Pire, and P. Szczepaniak for the fruitful exchanges and discussions on the phenomenological aspects of this work and for providing us with the model predictions. We acknowledge the great efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab in making this experiment possible. This work is supported in part by the U.S. Department of Energy, the National Science Foundation (NSF), the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), the French Commissariat pour l'Energie Atomique, the UK Science and Technology Facilities Council, the National Research Foundation (NRF) of Korea, the Helmholtz-Forschungskademie Hessen für FAIR (HFHF), and the Ministry of Science and Higher Education of the Russian Federation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 824093. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the U.S. Department of Energy under Award No. DE-AC05-06OR23177.

[1] G. Altarelli, Phys. Rep. 81, 1 (1982).
[2] M. Diehl, Eur. Phys. J. A 52, 149 (2016).
[3] D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, and J. Hofsajß, Fortschr. Phys. 42, 101 (1994).
[4] X. Ji, Phys. Rev. Lett. 78, 610 (1997).
[5] X. Ji, Phys. Rev. D 55, 7114 (1997).
[6] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997).
[7] A. V. Radyushkin, Phys. Lett. B 449, 81 (1999).
[8] M. Burkardt, Phys. Rev. D 62, 071503(R) (2000).
[9] S. Stepanyan et al. (CLAS Collaboration), Phys. Rev. Lett. 87, 182002 (2001).
[10] C. Muñoz Camacho et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 97, 262002 (2006).
[11] F. X. Girod et al. (CLAS Collaboration), Phys. Rev. Lett. 100, 162002 (2008).
[12] E. Seder et al. (CLAS Collaboration), Phys. Rev. Lett. 114, 032001 (2015).
[13] S. Pisano et al. (CLAS Collaboration), Phys. Rev. D 91, 052014 (2015).
[14] H. S. Jo et al. (CLAS Collaboration), Phys. Rev. Lett. 115, 212003 (2015).
[15] E. Berger, M. Diehl, and B. Pire, Eur. Phys. J. C 23, 675 (2002).
[16] M. Boër, M. Guidal, and M. Vanderhaeghen, Eur. Phys. J. A 51, 103 (2015).
[17] P. Nadel-Turonski, T. Horn, Y. Ilieva, F. J. Klein, R. Paremuzyan, and S. Stepanyan, AIP Conf. Proc. 1182, 843 (2009).
[18] M. Boër, M. Guidal, and M. Vanderhaeghen, Eur. Phys. J. A 52, 33 (2016).
[19] J. C. Collins and A. Freund, Phys. Rev. D 59, 074009 (1999).
[20] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.127.262501 for a detailed description of the quasireal photoproduction reaction of lepton pairs, on the extraction of the real part of the Compton amplitude in the forward-backward asymmetry and for the numerical values of the obtained results.
[21] M. Heller, N. Keil, and M. Vanderhaeghen, Phys. Rev. D 103, 036009 (2021).
[22] V. D. Burkert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 959, 163419 (2020).
[23] V. Ziegler et al., Nucl. Instrum. Methods Phys. Res., Sect. A 959, 163472 (2020).
[24] H. Olsen and L. C. Maximon, Phys. Rev. 114, 887 (1959).
[25] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[26] M. Ungaro et al., Nucl. Instrum. Methods Phys. Res., Sect. A 959, 163422 (2020).
[27] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Phys. Rev. Lett. 80, 5064 (1998).
[28] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Phys. Rev. D 60, 094017 (1999).
[29] M. Guidal, M. V. Polyakov, A. V. Radyushkin, and M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).
[30] M. Guidal, H. Moutarde, and M. Vanderhaeghen, Rep. Prog. Phys. 76, 066202 (2013).
[31] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 42, 281 (2005).
[32] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 53, 367 (2008).
[33] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 65, 137 (2010).
[34] B. Berthou et al., Eur. Phys. J. C 78, 478 (2018).
[35] B. Pire, L. Szymanowski, and J. Wagner, Phys. Rev. D 83, 034009 (2011).
[36] D. Müller, B. Pire, L. Szymanowski, and J. Wagner, Phys. Rev. D 86, 031502(R) (2012).
[37] H. Moutarde, B. Pire, F. Sabatié, L. Szymanowski, and J. Wagner, Phys. Rev. D 87, 054029 (2013).
[38] R. Dupre, M. Guidal, and M. Vanderhaeghen, Phys. Rev. D 95, 011501(R) (2017).
[39] B. Pasquini, M. Polyakov, and M. Vanderhaeghen, Phys. Lett. B 739, 133 (2014).
[40] M. Polyakov, Phys. Lett. B 555, 57 (2003).
[41] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature (London) 557, 396 (2018).
[42] K. Kumerički, Nature (London) 570, E1 (2019).
[43] H. Dutrieux, C. Lorcé, H. Moutarde, P. Sznajder, A. Trawiński, and J. Wagner, Eur. Phys. J. C 81, 300 (2021).
[44] K. Kumerički, S. Liuti, and H. Moutarde, Eur. Phys. J. A 52, 157 (2016).
[45] R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017).
[46] H. Moutarde, P. Sznajder, and J. Wagner, Eur. Phys. J. C 78, 890 (2018).
[47] H. Moutarde, P. Sznajder, and J. Wagner, Eur. Phys. J. C 79, 614 (2019).
[48] O. Grocholski, H. Moutarde, B. Pire, P. Sznajder, and J. Wagner, Eur. Phys. J. C 80, 171 (2020).
[49] R. A. Khalek et al., arXiv:2103.05419.
[50] B. Pire, L. Szymanowski, and J. Wagner, Phys. Rev. D 79, 014010 (2009).