Volume-Sensitive Anion Channels Mediate Osmosensitive Glutathione Release from Rat Thymocytes

Ravshan Z. Sabirov1,2,3, Ranokon S. Kurbanazarova1,2,3, Nazira R. Melanova2, Yasunobu Okada1*

1 Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan, 2 Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of the RUz, Tashkent, Uzbekistan, 3 Department of Biophysics, National University, Tashkent, Uzbekistan

Abstract

Glutathione (GSH) is a negatively charged tripeptide, which is a major determinant of the cellular redox state and defense against oxidative stress. It is assembled inside and degraded outside the cells and is released under various physiological and pathophysiological conditions. The GSH release mechanism is poorly understood at present. In our experiments, freshly isolated rat thymocytes were found to release GSH under normal isotonic conditions at a low rate of 0.82 ± 0.07 attomol/cell/min and that was greatly enhanced under hypoosmotic stimulation to reach a level of 6.1 ± 0.4 attomol/cell/min. The swelling-induced GSH release was proportional to the cell density in the suspension and was temperature-dependent with relatively low activation energy of 5.4 ± 0.6 kcal/mol indicating a predominant diffusion mechanism of GSH translocation. The osmosensitive release of GSH was significantly inhibited by blockers of volume-sensitive outwardly rectifying (VSOR) anion channel, DCPIB and phloretin. In patch-clamp experiments, osmotic swelling activated large anionic conductance with the VSOR channel phenotype. Anion replacement studies suggested that the thymic VSOR anion channel is permeable to GSH+ with the permeability ratio P_GSH/P_Cl of 0.32 for influx and 0.10 for efflux of GSH. The osmosensitive GSH release was trans-stimulated by SLCO/OATP substrates, probenecid, taurocholic acid and estrone sulfate, and inhibited by an SLC22A/OAT blocker, p-aminohippuric acid (PAH). The inhibition by PAH was additive to the effect of DCPIB or phloretin implying that PAH and DCPIB/phloretin affected separate pathways. We suggest that the VSOR anion channel constitutes a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells.

Introduction

Stressed cells release their metabolic constituents as a message reporting to their neighbors about the physiological or pathophysiological cellular processes occurring inside the signal-emitter cells. ATP is one of the most recognized metabolites and is released from virtually every type of cells in the body [1]. In our previous studies, we demonstrated that electrogenic pathway mediated by activation of the maxi-anion channel contributes to the massive release of ATP from a number of cell types under a variety of stresses [2–7]. Osmotically and metabolically stressed cells release also other metabolites such as glutamate, which, in case of primary cultured astrocytes, exits the cells via two types of anion channels: the maxi-anion channel and the volume-sensitive outwardly rectifying (VSOR) anion channel [8]. Upon bradykinin stimulation, massive release of glutamate takes place via ROS and Ca2+-nanodomain-mediated VSOR anion channel activation with virtually no contribution of the maxi-anion channel [9–11]. Both maxi-anion and VSOR channels belong to the class of volume-regulated anion channels (VRACs) [12,13]; and they possess relatively wide pores with the effective radii of 1.3 nm [14] and 0.62 nm [15] for the maxi-anion and VSOR channels, respectively. Thus, it is feasible that these VRACs can pass other organic anions.

Glutathione (GSH) is a tripeptide (γ-L-glutamyl-L-cysteinylglycine) bearing one net negative charge. Our molecular modeling [13,16] for calculation method yielded an effective GSH radius of 0.32–0.36 nm, implying that the molecule could be accommodated or even passed by VRACs. Therefore, we hypothesized that activation of the maxi-anion and/or VSOR channels could result in a release of this key regulator of cellular oxidation/reduction status.

GSH is a ubiquitous and most prevalent intracellular thiol tripeptide found throughout the body and involved not only in maintaining the cytosolic redox potential and defense against the oxidative stress but also in many other cellular processes including protein and nucleic acid synthesis, regulation of cell cycle, proliferation, exocrine secretion and thermotolerance [17–22]. In most cells, the cytosolic concentration of GSH is in the range of 1–10 mM (>98% in thiol-reduced form), whereas micromolar concentrations are found in the plasma [17,19,20]. The biosynthesis of GSH occurs intracellularly, whereas it is degraded exclusively outside the cells via cleavage by an ectoenzyme, γ-glutamyl transpeptidase and by dipeptidase [17]. Therefore,
constant delivery of GSH and its S-conjugates to the cellular exterior is an important step for the γ-glutamyl cycle, which constitutes the cyclic process connecting between the GSH metabolism and the transport of amino acids. GSH release has been reported to be induced or enhanced by a variety of stimuli including hypoosmotic stress [23].

In the present study, we demonstrate that hypoosmotic stress induces mass release of GSH from rat thymocytes, which occurs via two main pathways: the VSOR anion channel and organic anion transporters with no detectable contribution of the maxi-anion channel.

Materials and Methods

Ethics statement

The experimental protocol was approved in advance by the Ethics Review Committee for Animal Experimentation of the National Institute for Physiological Sciences.

Solutions and chemicals

The normal isotonic Ringer solution contained (in mM): 135 NaCl, 5 KCl, 2 CaCl₂, 1 MgCl₂, 5 Na-HEPES, 6 HEPES, and 5 glucose (pH 7.4, 290 mosmol/kg-H₂O). Hypotonic solutions were prepared by mixing the normal Ringer solution with a HEPES-buffer solution containing (in mM): 5 KCl, 2 CaCl₂, 1 MgCl₂, 5 Na-HEPES, 6 HEPES, and 5 glucose (pH 7.4, 38 mosmol/kg-H₂O). The pipette solution for whole-cell experiments contained (in mM): 125 CsCl, 2 CaCl₂, 1 MgCl₂, 3 Na₂ATP, 5 HEPES (pH 7.4 adjusted with CsOH), and 10 EGTA (pCa 7.65; 275 mosmol/kg-H₂O). The hypertonic pipette solution (320 mosmol/kg-H₂O) was made by adding 50 mM mannitol. For measurements of glutamate or GSH permeability, the low-Cl⁻ bath solution was prepared by replacing 135 mM NaCl in the normal Ringer solution with 135 mM Na-glutamate or Na-GSH. In some experiments, for measurements of GSH permeability, the low-Cl⁻ pipette solution was prepared by replacing 100 mM CsCl in the pipette solution with 100 mM Cs-GSH.

Nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione reductase were from Oriental Yeast (Tokyo, Japan), 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1

Electrophysiology

Patch electrodes were fabricated from borosilicate glass capillaries using a laser micropipette puller (P-2000, Sutter Instrument, Novato, CA) and had a tip resistance of 3–5 MΩ when filled with pipette solution. Fast and slow capacitative transients were routinely compensated for. For whole-cell recordings, the access resistance did not exceed 10 MΩ and was always compensated for by 80%. Membrane currents were measured with an EPC-9 patch-clamp system (Heka-Electronics, Lambrecht/Pfalz, Germany). The membrane potential was controlled by shifting the pipette potential (Vp) and is reported as Vp for whole-cell recordings. Currents were filtered at 1 kHz and sampled at 5–10 kHz. Data acquisition and analysis were done using Pulse+PulseFit (Heka-Electronics). Whenever the bath Cl⁻ concentration was altered, a salt bridge containing 3 M KCl in 2% agarose was used to minimize variations of the bath electrode potential. Liquid junction potentials were calculated using pCLAMP 8.1 (Axon Instruments, Foster, CA) algorithms and were corrected off-line when appropriate. The relative mobility of GSH⁻ (0.24) was determined in 10 mM water solution by conductivity measurements performed as described earlier [14]. All experiments were performed at room temperature (23–25 °C).

Data analysis

For whole-cell macroscopic currents, the reversal potentials were either calculated by fitting instantaneous current-voltage (I-V) curves to the Goldman-Hodgkin-Katz equation or to the Nernst equation.
V) curves to a second-order polynomial [14] or were measured directly from the ramp I–V relationships. The permeability ratio for an organic anion X^- (glutamate $^-$ or GSH $^-$) was calculated from reversal potential shifts upon ion replacement based on the Goldman-Hodgkin-Katz (GHK) equation:

$$E_{\text{rev}} = -RT/F \ln \left(\frac{[C_l][X]_o + [X][C_i]}{[C_l][X]_i + [X][C_o]} \right)$$

where E_{rev} is the reversal potential; $[C_l]_o$ and $[C_l]_i$ are the C_l^- concentrations on the extracellular and intracellular sides, respectively; $[X]_o$ and $[X]_i$ are the concentrations of the organic anion X^- on the extracellular and intracellular sides, respectively (see corresponding solutions for respective experimental conditions). P_{C_l} and P_X are the permeability coefficients of C_l^- and organic anion X^-, respectively.

Data were analyzed by OriginPro 7.0 (MicroCal Software, Northampton, MA). Pooled data are given as means \pm SEM of observations (n). Statistical differences of the data were evaluated by ANOVA and the paired or unpaired Student’s t test where appropriate, and considered significant at $P<0.05$.

Results

Swelling-induced GSH release

In normal isotonic Ringer solution (290 mosmol/kg-H$_2$O), the basal release of GSH from rat thymocytes was low and totaled 0.29±0.08 M in the suspension containing 1.25×107 cells/ml and 1.42±0.09 M ($n=6$) in the suspension of 1.50×107 cells/ml after 10-min incubation at 25 °C (Fig. 1A). When the extracellular osmolarity was increased by adding 500 mM mannitol, the basal extracellular GSH level was only slightly increased by 29.0±2.6% ($n=5$; $P<0.05$). In contrast, when cell swelling was induced by exposing to hypotonic solution (147 mosmol/kg-H$_2$O), the extracellular GSH concentration drastically increased and reached the levels of 1.25±0.10 M ($n=6$) and 9.60±1.10 M ($n=6$) in the suspensions containing 1.25×107 cells/ml and 1.50×107 cells/ml, respectively (Fig. 1A). The GSH concentration in the extracellular medium was a linear function of the number of cells in the suspension both under normal isotonic conditions and under the hypoosmotic stress (Fig. 1A). The slope of this relationship yielded a rate of GSH release from a single cell equal to 0.29±0.07 attomol/cell/min in basal conditions and 6.1±0.4 attomol/cell/min under the hypoosmotic stress. The GSH scavenger, 2-VP, reduced the observed GSH signal by 80.3±6.3% ($n=4$) in basal isotonic conditions and by 85.2±2.4% ($n=4$) under the hypoosmotic stress, suggesting that glutathione is released from thymocytes predominantly in the reduced, but not oxidized, form.

The time course of GSH accumulation in the extracellular fluid was monotonic in the normal Ringer solution. However, when cells were suspended in the hypoosmotic solution, we observed an initial jump immediately after adding the cells followed by a further gradual increase in the GSH concentration which reached a steady-state level after approx. 20 min of incubation (Fig. 1B). Such biphasic kinetics of GSH release may suggest the presence of at least two different pathways with different kinetic parameters.

When the cells were incubated in solutions of different osmolality (ranging from 290 to 40 mosmol/kg-H$_2$O) for 20 min, the release of GSH increased with decreasing the medium osmolality (Fig. 1C). The osmolality dependence of the GSH release could be well fitted by a sigmoidal function with half-maximal activation at 135.1±2.9 mosmol/kg-H$_2$O.

Temperature of the incubation medium had a strong effect on the GSH release from thymocytes both in isotonic and hypotonic conditions. The extracellular GSH concentration gradually increased with the temperature rise from 15 °C to 37 °C (Fig. 2A). In the range from 15 °C to 37 °C, the temperature dependence of GSH release was linear in Arrhenius coordinates (Fig. 2B) with apparent activation energy of 11.1±1.8 kcal/mol and 5.4±0.6 kcal/mol for isotonic basal and hypotonic stress conditions, respectively. A relatively low level of the activation energy obtained for the swelling-induced GSH release may suggest a substantial contribution of some channel-mediated diffusional pathway to the observed release of GSH from osmotically swollen thymocytes.

Under hypotonic conditions (147 mosmol/kg-H$_2$O, 20 min), the total intracellular GSH content was found to be reduced by 56.9±1.9% ($n=7$) at 25 °C. When 1 or 5 mM GSH was added to the extracellular solution, hypotonic stress reduced the total GSH level only by 41.0±4.9% ($n=4$; $P<0.05$) at 1 mM...
and turned to increase by 39.0±16.3% (n=5; P<0.05) at 5 mM. These results suggest that the GSH efflux from swollen thymocytes is mainly driven by its electrochemical gradient.

Contribution of anion channels to the swelling-induced GSH release

Since the molecule of GSH bears one net negative charge, we hypothesized that anion-transporting pathways may contribute to the GSH release from thymocytes. Indeed, a broad-spectrum anion transport inhibitor, SITS (200 μM), and a non-specific anion channel blocker, NPPB (200 μM), significantly suppressed not only the basal GSH release (by 97.1±4.3 and 48.8±4.6%, n = 5, respectively) but also the swelling-induced GSH release from rat thymocytes (Fig. 3, A and B). However, gadolinium (50 μM), a blocker of maxi-anion channels, which are expressed in many cell types [16,29], was not effective for both basal (data not shown, n = 6) and swelling-induced GSH release (Fig. 3C), suggesting that this channel does not contribute to the GSH release from rat thymocytes. In contrast, phloretin (200 μM) and DCPiB (20 μM), both of which are blockers relatively specific to the VSOR anion channel [30,31], markedly suppressed the swelling-induced release of GSH from thymocytes (Fig. 3, D and E), whereas phloretin-induced inhibition of the basal GSH release was less marked (by 28.2 ± 2.3%, n = 5). Glibenclamide (200 μM), which is known to block the VSOR anion current effectively at positive potentials but only weakly at negative potentials [32], also significantly suppressed the GSH release from swollen thymocytes (Fig. 3F).

These results suggest that the VSOR anion channel serves as a major pathway for the swelling-induced GSH release from rat thymocytes. However, even most effective phloretin eliminated only approximately half of the total GSH release indicating that some other pathways may exist for GSH efflux from rat thymocytes under hyposmotic stress.

Contribution of organic anion transporters to the swelling-induced GSH release

Several anion transporter-mediated mechanisms can be envisioned for the swelling-induced GSH release. First, the multidrug resistance-associated proteins (ABCC/MRP family) could be activated and pump GSH out of the cells. However, MK571, a specific MRP inhibitor, had no effect on the swelling-induced GSH release at 50 μM (n = 5, data not shown). When we tested probenecid, which is also a known inhibitor of the ABCC/MRP proteins, we observed a stimulating rather than inhibiting effect of this drug (Fig. 4A). We supposed that this action could be a result of trans-stimulation of an equilibrative organic exchanger. Indeed, taurocholic acid and estrone sulfate, which are substrates for organic anion-transporting polypeptide proteins of SLCO/OATP family produced a trans-stimulation effect similar to the probenecid effect on the swelling-induced GSH release (Fig. 4, B and C) confirming an involvement of the anion exchange mechanism in the GSH release from rat thymocytes.

An inhibitor of the sodium-dependent organic anion transport mechanism mediated by SLCO22A/OAT family transporters, β-aminohippuric acid (PAH), produced a significant block of the swelling-induced GSH release from rat thymocytes (Fig. 4, D and F). Based on this result, we suggest that the portion of GSH release from swollen thymocytes, which was insensitive to the VSOR anion channel blockers, is likely to be mediated by organic anion transport via SLCO/OAT-like and SLCO22A/OAT-like groups of membrane transporters, but not by ATPases of the ABCC/MRP type. When PAH was applied together with a VSOR anion channel blocker, phloretin (200 μM) or DCPiB (20 μM), suppression of the GSH release was more prominent (Fig. 4, D and F) than that observed with each drug applied separately. Such additivity suggests that the VSOR channel and the SLCO22A/OAT-like transporter represent independent pathways for the GSH efflux from swollen thymocytes.

GSH permeability of the swelling-activated anion conductance

In the following experiments, we tested the possibility of physical movement of the GSH molecule through the plasma membrane of swollen rat thymocytes using the patch-clamp method. As in our previous study of mouse thymocytes [24], we induced cell swelling by employing the hypertonic pipette solution (made by adding mannitol) rather than the hypotonic bath solution, since under this experimental design the whole-cell configuration was more stable and reproducible, and thereby swelling-induced macroscopic currents could be consistently observed. As shown in a representative recording, the macroscopic current developed after attaining the whole-cell configuration using the hypertonic pipette solution, and gradually increased with cell swelling reaching a steady-state level after about 3 min (Fig. 5A). The current responses to step pulses exhibited time-dependent inactivation at positive potentials larger than +80 mV (Fig. 5B). The instantaneous I–V relationship showed moderate outward rectification and reversed at −4.2±1.6 mV (Fig. 5C), which is close to the equilibrium Cl⁻ potential of −2.8 mV. The steady-state current densities at all applied voltages were close to those measured in mouse thymocytes under the same experimental conditions [24]. The macroscopic current measured at ±25 mV was markedly suppressed by the VSOR anion channel blockers, phloretin (200 μM) and DCPiB (10 μM), as shown in Fig. 5D.

In the following series of experiments, we monitored the reversal potential changes upon ion substitution. After full activation of the swelling-induced macroscopic conductance, the whole-cell current responses to ramp pulses from −70 to +70 mV exhibited moderate outward rectification (Fig. 6A, trace 1) comparable to that observed in instantaneous I–V relationships from step-pulses (Fig. 5C). The ramp I–V curves reversed at −5.8±0.5 mV (n = 5) when the bath was filled with the normal Ringer solution. The reversal potential shifted to the value of +25.9±5.9 mV (n = 4) upon equimolar replacement of 135 mM Cl⁻ with glutamate⁻ in the bath solution (Fig. 6A, trace 2) indicating anion selectivity of

Figure 2. Effects of ambient temperature on the osmosensitive release of GSH from rat thymocytes. (A) The suspension containing 1×10⁸ cells/ml was incubated at indicated temperature for 10 min. All values measured in hyposmotic conditions were significantly different from those in isotonic control values at P<0.05. (B) The data from (A) are presented as an Arrhenius plot. The solid lines are linear fits with the activation energies given in the text.

doi:10.1371/journal.pone.0055646.g002
the whole-cell macroscopic conductance with the permeability ratio (evaluated by Eqn. (1)) of \(P_{\text{glutamate}} / P_{\text{Cl}} = 0.24 \pm 0.08 \). Next, we performed similar experiments with equimolar replacement of 135 mM \(\text{Cl}^- \) with \(\text{GSH}^- \) and obtained a shift of the reversal potential from \(-4.7 \pm 0.5 \text{ mV} \) \((n=6)\) to the value of \(+20.7 \pm 2.5 \text{ mV} \) \((n=5)\) (Fig. 6B), yielding the permeability ratio of \(P_{\text{GSH}} / P_{\text{Cl}} = 0.32 \pm 0.04 \). It should be noted that in these experiments, the direction of the GSH flux was inward, which is opposite to the outward flow of GSH observed in the swelling-induced GSH release experiments. Therefore, we next tested the

![Figure 3](image_url)

Figure 3. Effects of anion channel blockers on the GSH release from rat thymocytes upon hypotonic stimulation. The suspension containing 1×10^8 cells/ml was incubated for 20 min at 25 °C in the hypoosmotic (147 mosmol/kg-H_2O) conditions in the absence of any drug (control) or presence of 200 μM SITS (A), 200 μM NPPB (B), 50 μM Gd^3+ (C), 200 μM phloretin (D), 20 μM DCPIB (E) and 200 μM glibenclamide (F). *Significantly different from the control values at \(P<0.05 \).

doi:10.1371/journal.pone.0055646.g003

![Figure 4](image_url)

Figure 4. Effects of organic anion transporter substrates and inhibitors on the swelling-induced GSH release from rat thymocytes. Stimulating effects of the SLCO/OATP substrates, probenecid (A), taurocholic acid (B) and estrone sulfate (C), and a suppressing effect of the inhibitor of SLC23A/OAT transporter, p-aminomuramic acid (PAH), alone and in combination with VSOR blockers, phloretin (200 μM) (D) and DCPIB (20 μM) (F) on the net GSH release from rat thymocytes upon hypotonic stimulation are shown. The suspension containing 1×10^8 cells/ml was incubated for 20 min at 25 °C in the hypoosmotic (147 mosmol/kg-H_2O) conditions in the absence of any drug (control) or presence of the above-indicated drugs used at the concentration of 500 μM (A), 2 mM (B and C) and 1 mM (D and F). In order to minimize day-to-day variations, the results shown in (D) and (F) were obtained within one experiment performed in one day. *Significantly different from phloretin (D) or DCPIB (F) alone at \(P<0.05 \).

doi:10.1371/journal.pone.0055646.g004
glutathione permeability by equimolarly replacing 100 mM of Cl- ions in the pipette solution with GSH- . This maneuver produced a leftward shift of the reversal potential from -5.1 ± 1.8 mV ($n = 6$) to the value of -34.8 ± 1.1 mV ($n = 6$), yielding the permeability ratio of $P_{GSH} / P_{Cl} = 0.10 \pm 0.03$. Based on these results, we conclude that the VSOR anion channels activated on the plasma membrane of osmotically swollen rat thymocytes have substantial permeability to the negatively charged GSH molecule providing a physical path for its swelling-induced efflux. A lower permeability ratio for the GSH efflux compared to its influx may reflect the outwardly rectifying nature of the VSOR anion channel.

Discussion

Delivery of GSH to the cellular milieu is an important step in the γ-glutamyl cycle. Various stimuli have been reported to augment the GSH release, including oxidative stress in Cau-3 airway epithelial cells [33], divalent cation-free [34] or low extracellular Ca2+ medium [35] in cultured rat astrocytes, glutamate treatment in retinal cell cultures [28], NMDA and kainate [36] and high K+-induced depolarization [37] in rat brain slices, cerebral ischemia [38-40] and administration of ammonia [41] in microdialyzed rat brain, norepinephrine administration in capulated leghorn carotid artery, hepatic and portal veins and bile duct [42], apoptotic stimuli [43,44] in epithelial [45-50] and lymphoid [51-54] cells.

In the perfused whole-liver model, hypotonic exposure was found to increase hepatic GSH output in the effluent, and the main component was interpreted as an enhancement in the electroneutral efflux due to increased potassium conductance and membrane hyperpolarization [23]. The present paper represents a first report of the osmotic swelling-stimulated GSH release at the cellular level. Moderate GSH efflux from thymocytes observed under basal conditions and its profound increase by cell volume expansion would suggest that extracellular GSH plays an important role in the thymic environment.

The mechanism of GSH exit from cells is poorly understood at present. Since GSH is a negatively charged ion, it is conceivable that an anion channel may mediate its electrogenic translocation through the plasma membrane. Indeed, the broad-spectrum anion transport inhibitors, SITS and NPPB, significantly suppressed the swelling-induced GSH efflux (Fig. 3). Previously, the cystic fibrosis transmembrane conductance regulator (CFTR), a CAMP-activated anion channel, which has a pore wide enough to accommodate GSH [55], was shown to be permeable to GSH based on the data obtained by patch-clamp [56] and proteoliposome experiments [57]. Consistently, in the airway epithelial cells, a high level of GSH delivery to the extracellular space was greatly diminished in cells derived from ΔF508 homozygous cystic fibrosis (CF) patients and could be restored by repleting the cells with normal CFTR protein [58]. However, the observation that deficient GSH release of the CF epithelium can be restored also by a CFTR-unrelated synthetic Cl- channel-forming peptide, N-K4-M2GlyR, raises a possibility that CFTR acts as a regulator of another GSH-exporting pathway in the airway epithelium [59].

The results of the present study provide strong biophysical, pharmacological and electrophysiological evidence that the VSOR anion channel represents one of major pathways for the GSH efflux induced by osmotic cell swelling in rat thymocytes. First, low activation energy for the swelling-induced GSH release is an indicative of the channel-mediated GSH transport (Fig. 2). Second, VSOR anion channel blockers, DCPiB and phloretin, eliminated one-third to half of the total GSH release from osmotically stressed cells (Fig. 3, D and E). Third, the ion replacement patch-clamp experiments revealed a substantial permeability of the thymic VSOR anion channel to GSH- anions (Fig. 6). The permeability for GSH- was asymmetric in accord with the rectifying nature of the VSOR anion channel. The released GSH was predominantly in the reduced, but not oxidized,
form. This fact is in agreement with the concept that the efflux is mediated by the VSOR anion channel, the pore size of which is too narrow to pass the exceedingly large oxidized dimer, GSSG.

In our recent study, we found that the single VSOR channels recorded from swollen mouse thymocytes [24] had a unitary current-voltage relationship very similar to that observed earlier in human epithelial Intestine 407 cells [60], bovine endothelial cells [61], mouse mammary C127 cells [62], mouse ventricular myocytes [63], mouse cortical neurons [64], mouse cortical astrocytes [8] and other cell types [12,13,65]. Using the reported unitary amplitude of ~1 pA at ~60 mV (assumed to be close to the resting membrane potential of thymocyte) and \(I_{\text{VSOR}} / I_{\text{Cl}} = 1 \), we can estimate the rate of GSH transport through a single open VSOR channel to be around \(6 \times 10^5 \) GSH molecule/s. The GSH efflux of 6.1 atomol/cell/min measured for rat thymocytes under osmotic stress corresponds to the transport rate of approx. 0.6 \(\times 10^5 \) GSH molecule/s. This would mean that even a single constantly open VSOR channel could provide a level of GSH release comparable or even higher than that observed in the experiments. The steady-state whole-cell current of ~500 pA at ~60 mV (Fig. 5B) suggests that a single thymocyte may express several hundreds (~500 in this particular cell) of VSOR anion channels. Our results would suggest that only a small fraction of them will be active during the GSH release experiment, supposedly because the cells will be restoring their volume by the regulatory volume decrease (RVD) mechanism, which is very prominent in these cells [25,26]. In addition, swelling-induced membrane depolarization might also diminish the electrochemical driving force for GSH efflux.

In case of mice, thymocytes functionally express not only VSOR but also maxi-anion channels [24]. Hence, it is surprising that we were unable to detect any contribution of this channel to the swelling-induced GSH release in the present study. One explanation could be that the maxi-anion channel is expressed differentially in different species. Indeed, our patch-clamp study failed to detect any maxi-anion channel activity in thymocytes isolated from rats (Kurbannazarova, Kurganov and Sabirov, unpublished observation).

DCPIB and phloretin suppressed swelling-induced GSH release from thymocytes by 25–40% (Figs. 3E and 4E) and 50–53% (Figs. 3D and 4D), respectively, whereas SITS, a broad-spectrum anion transport inhibitor, suppressed it by around 97% (Fig. 3A). DCPIB is a blocker most specific to the VSOR channel [31], whereas phloretin is known to not only block more effectively the VSOR channel compared to other anion channels [30] but also inhibit aquaporins [66] and glucose transporters [67]. Therefore, it is likely that the swelling-induced GSH release from thymocytes is largely (up to 25–40%) mediated by the VSOR anion channel. Some additional phloretin- and/or SITS-sensitive pathways permeable to GSH may also be involved in the GSH release. However, an involvement of aquaporins seems unlikely, because the aquaporin pore is very tight and allows transport of only water and some small nonelectrolytes, but hardly would pass bulky GSH anion.

To date, numerous transporters capable of translocating large organic anions across the plasma membrane have been characterized, and GSH could be a substrate for some of them. Thus far, most of the authors considered two major types of transporters as putative GSH releasing pathways. First is the family of multidrug resistance-associated proteins (ABCC/MRP), which are implicated in high constitutive GSH efflux in the liver [19,20,68] and brain astrocytes [21,69]. MRP1-overexpression studies with BHK [46] and HEK293 [50] cells as well as siRNA-mediated MRP1 gene silencing in Jurkat cells [54] supported the notion of MRP-mediated apoptotic GSH release. In our present study, however, an MRP inhibitor, probenecid, produced stimulation rather than inhibition of the

Figure 6. Glutamate and GSH permeability of the whole-cell currents activated by cell swelling in rat thymocytes. (A) Whole-cell current responses to ramp pulses from −70 to +70 mV before and after replacement of extracellular Cl− with glutamate. The pipette solution was Cl−-rich (125 mM CsCl); the bath solution was normal Ringer (curve 1) or low-Cl− Ringer solution in which 135 mM NaCl was replaced with 135 mM Na-glutamate (curve 2). (B) Whole-cell current responses to ramp pulses from −70 to +70 mV before and after replacement of extracellular Cl− with GSH. The pipette solution was Cl−-rich (125 mM CsCl); the bath solution was the normal Ringer (curve 1) or low-Cl− Ringer solution in which 135 mM NaCl was replaced with 135 mM Na-GSH (curve 2). (C) Instantaneous whole-cell I−V relationships in response to step pulses in 20 mV increments. The pipette solution was Cl−-rich (1 curve 1: 125 mM CsCl) or GSH−-rich (curve 2: 100 mM Cs-GSH plus 25 mM CsCl). The bath solution was the normal Ringer solution. Averaged data of 6 experiments performed in each configuration are plotted.

doi:10.1371/journal.pone.0055646.g006
swelling-induced GSH release from rat thymocytes arguing against the contribution of this pathway in immature thymic lymphocytes. Also, a selective MRP inhibitor, MK571, was found to have no effect on the swelling-induced GSH release at 50 μM in the present study. This result is in contrast to the previous observations that MK571 stimulated and inhibited the GSH release from astrocytes at 1 and 50 μM, respectively [70], and stimulated the GSH release from MRPI-overexpressing leukemia cells at 50 μM [71].

The second commonly considered GSH-transporting pathway is the organic anion transporters of SLCO/OAT family. In the liver, the OATPs are presumably located on the sinusoidal membrane and responsible for the GSH efflux from hepatocytes to the bloodstream [72,73]. In Jurkat T-lymphocytes, OATPs but not MRPs were responsible for the apoptogenic GSH efflux [43,51]. We now show that in thymocytes, the swelling-induced GSH release is trans-stimulated by three OATP substrates, probenecid, taurocholate, and estrone sulfate (Fig. 4, A–D), a result consistent with the significant contribution of the SLCO/OATP-like pathway. An inhibiting effect of PAH, a blocker of the SLC22A/OAT group of anion transporting proteins, would suggest a contribution of the sodium-dependent transport mechanism in the GSH release from thymocytes (Fig. 4, D and E). The SLC22A/OAT-like route is separate from the VSOR anion channel as evidenced by additivity of the effects of the blockers of these two pathways (Fig. 4, D and E). It is noted that Na+-dependent GSH transport was reported in human cerebrovascular endothelial HCEC cells [74] and in retinal cell cultures [20], although it was not evident in the apoptotic GSH efflux from Jurkat cells [51].

In conclusion, we suggest that the VSOR anion channel is a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells, as schematically depicted in Fig. 7.

References

1. Burnstock G (2012) Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 34: 216–223.
2. Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118: 251–266.
3. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, et al. (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100: 4322–4327.
4. Dutta AK, Korchov YE, Shchvaka M, Hayashi S, Okada Y, et al. (2008) Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biochem J 49: 1646–1655.
5. Liu HT, Sabirov RZ, Uramoto H, Okada Y (2004) Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischemic or hypoxic conditions. J Physiol 559: 709–712.
6. Dutta AK, Korchov YE, Shchvaka M, Hayashi S, Okada Y, et al. (2008) Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biochem J 49: 1646–1655.
7. Li HT, Sabirov RZ, Okada Y (2008) Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 4: 147–154.
8. Li HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 18: 538–565.
9. Li HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54: 343–357.
10. Li HT, Akita T, Shimizu T, Sabirov RZ, Okada Y (2009) Bradykinin-induced astrocyte-neuron signalling glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 587: 2197–2209.
11. Akita T, Okada Y (2011) Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes. J Physiol 589: 3909–3927.
12. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587: 2141–2149.
13. Okada Y, Sato K, Toychiev AH, Suzuki M, Dutta AK, et al. (2009) The puzzles of volume-activated anion channels. In: Alvarez-Leefmans FJ, Delpire E (eds). Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. From Molecules to Diseases. San Diego: Elsevier. 283–306.
14. Sabirov RZ, Okada Y (2004) Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J 87: 1672–1685.
15. Ternovskiy VI, Okada Y, Sabirov RZ (2004) Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. FEBS Lett 576: 433–436.
16. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1: 311–320.
17. Meister A, Anderson ME (1985) Glutathione. Annu Rev Biochem 54: 711–760.
18. Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R (2005) Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC22A families of membrane proteins. Toxicol Appl Pharmacol 204: 238–255.
19. Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30: 13–28.
20. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, et al. (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390: 191–214.
21. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63: 177–188.
22. Zhang H, Forman HJ (2012) Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol (in press).
23. Hausynger D, Lang F, Bauers K, Gerok W (1996) Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur J Biochem 193: 891–896.
35. Stridh MH, Correa F, Nodin C, Weber SG, Blomstrand F, et al. (2010)
33. Cowley EA, Linsdell P (2002) Oxidant stress stimulates anion secretion from the
46. Trompier D, Chang XB, Barattin R, du Moulinet D’H, Di PA, et al. (2004)
45. Jungas T, Motta I, Duffieux F, Fanen P, Stoven V, et al. (2002) Glutathione
42. Song Z, Cawthon D, Beers K, Bottje WG (2000) Hepatic and extra-hepatic
39. Orwar O, Li X, Andine P, Bergstrom CM, Hagberg H, et al. (1994) Increased
30. Fan HT, Morishima S, Kida H, Okada Y (2001) Phloretin differentially inhibits
40. Yang CS, Chou ST, Lin NN, Liu L, Tsai PJ, et al. (1994) Determination of
32. Liu Y, Oiki S, Tsumura T, Shimizu T, Okada Y (1998) Glibenclamide blocks
27. Anderson ME (1985) Determination of glutathione and glutathione disulfide in
34. Liu Y, Oiki S, Tsumura T, Shimizu T, Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channels by dual mechanisms. Am J Physiol Cell Physiol 273: C345-C351.
37. Kogan I, Ramjeesingh M, Li C, Wang Y, Leslie EM, et al. (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22: 1801–1809.
50. Marchan R, Hammond CL, Ballatori N (2008) Multidrug resistance-associated protein 1 as a major mediator of basolateral and apical glutathione release. Biochim Biophys Acta 1778: 2413–2420.
59. Gao L, Broughman JR, Iwamoto T, Tomich JM, Venglarik CJ, et al. (2001) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22: 327-336.
51. Gao L, Broughman JR, Iwamoto T, Tomich JM, Venglarik CJ, et al. (2001) Multidrug resistance-associated protein (MRP1) mediates the release of GSH from rat mammary cells. J Physiol 549: 749–758.
52. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.
53. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.
54. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.
55. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.
56. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.
57. Grothaus JL, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat liver basolateral anion exchanger (BSEP). J Biol Chem 277: L113–L118.