Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal mechanism

Steven Patrick Li Fraine
Department of Physiology
McGill University, Montreal

December 2015

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of a Master of Science.

© Steven Patrick Li Fraine 2015
Abstract

Mechanosensing is essential for several physiological functions including osmoregulation, touch and pain sensation, hearing, blood pressure regulation, salt and fluid balance, urination, tissue growth, and vestibular function. Understanding how mechanosensitive ion channels (MSCs) are gated thus brings important information regarding the aforementioned physiological processes. In this thesis, we focused specifically on the TREK1 channel and its gating by polycystin 2 (TRPP2). The TREK subfamily of two-pore domain potassium channels (K₂P) includes TREK1, TREK2, and TRAAK, all of which are mechanosensitive. When TREK1 channels are expressed in Cos7 cells, a mechanically-induced outward current is observed. In basal conditions, this current is under a partial inhibition by the F-actin cytoskeleton. Previous work has demonstrated that TRPP2 can increase the inhibitory effect of the F-actin cytoskeleton in TREK1 currents by recruiting the actin binding protein filamin A (FLNa). However, the characteristics of this inhibition are poorly understood. Our hypothesis is that this inhibition is highly dynamic and is mediated by a FLNa-dependent increase in F-actin turnover. Our results show that gradual removal of the F-actin cytoskeleton relieves TRPP2-mediated TREK1 inhibition. Moreover, the rate at which the inhibition recovers is faster in cells expressing TREK1 with TRPP2 than TREK1 alone, suggesting an increased F-actin turnover. However, through Fluorescence Recovery After Photobleaching (FRAP), we show that the F-actin dynamics are not enhanced in the presence of TRPP2. We have also determined that this process requires FLNa as TRPP2 does not alter the recovery of TREK1 inhibition in FLNa knockout (M2) cells but does so in wild type control (A7) cells. Through immunofluorescence techniques and generation of a stable S8 cell line expressing FLNa-RFP, we show that FLNa is instead recruited to the cell membrane in the presence of TRPP2. This recruitment leads to an alteration
in the subcellular reorganization of actin filaments that in turn is believed to regulate TREK1 opening.
Résumé

Le détection mécanique est essentiel pour plusieurs fonctions physiologiques incluant la régulation osmotique, la sensation de douleur et le toucher, de l'audition, la régulation de la pression artérielle, l'équilibre des fluides et le sel, la miction, la croissance des tissus, et la fonction vestibulaire. Comprendre comment les canaux ioniques et mécanosensible sont régulé apporte ainsi des informations importantes concernant les processus physiologiques susmentionnés. Dans cette thèse, nous nous sommes concentrés spécifiquement sur le canal TREK1 et son déclenchement par polycystine 2 (TRPP2). La sous-famille de TREK comprend TREK1, TREK2, et TRAAK qui sont tous des canaux de potassium contenant deux domaines de pores (K2P) et qui sont tous mécanosensible. Lorsque les canaux de TREK1 sont exprimés dans des cellules Cos7, on observe un courant induite mécaniquement vers l'extérieur. Dans des conditions basales, ce courant est sous une inhibition partielle par le cytosquelette F-actine. Des travaux antérieurs ont démontré que le TRPP2 peut augmenter l'effet inhibiteur du cytosquelette d'actine sur les courants TREK1 par le recrutement de filamine A (FLNa), une protéine qui se lie à actine. Cependant, les caractéristiques de cette inhibition ne sont pas complètement compris. Notre hypothèse est que cette inhibition est très dynamique et est médidée par une augmentation de renouvellement d’actine qui est dépendant sur le FLNa. Nos résultats montrent que l'élimination progressive du cytosquelette d'actine soulage inhibition de TREK1 par le TRPP2. De plus, la vitesse à laquelle l'inhibition récupère et plus rapides dans les cellules exprimant TREK1 avec TRPP2 que dans les cellules exprimant TREK1 seul. Ceci suggère une renouvellement de F-actine augmenté dans la présence de TRPP2. Cependant, grâce à la technique Fluorescence Recovery After Photobleaching (FRAP), nous montrons que la dynamique de F-actine n’est pas améliorée en présence de TRPP2. Nous avons également
déterminé que ce processus nécessite le FLNa car le TRPP2 ne modifie pas la reprise de l'inhibition de TREK1 dans les cellules M2 où le FLNa est génétiquement supprimé, mais le fait dans les cellules A7 de contrôle qui exprime le FLNa. Grâce à des techniques d'immunofluorescence et la génération d'une lignée de cellules S8 exprimant le FLNA-RFP, nous montrons que FLNA est plutôt recruté à la membrane cellulaire en présence de TRPP2. Ce recrutement mène à une altération de la réorganisation subcellulaire des filaments d'actine qui à son tour régulent l’ouverture de TREK1.
Acknowledgements

First and foremost, I would like to thank Dr. Reza Sharif-Naeini for his never-ending support and guidance throughout my Master’s project and thesis writing. Although I first joined the start-up lab as an inexperienced undergraduate student, Dr. Sharif-Naeini gave me every opportunity to work on several projects and develop the tools and skills that will benefit me throughout my career. It has been an honour to work with such an attentive and skilled mentor, who was always happy to discuss my questions and concerns both within and outside the realm of science. I truly appreciate my experience under his guidance and I look forward to hearing about all the future successes and achievements of Dr. Sharif-Naeini and his lab.

I would also like to thank all the many members of the lab that I’ve had the pleasure of working with. Most notably, I would like to mention Albena Davidova and Haitian (Billy) He. Albena is without a doubt one of the most important members of the lab. Her thoroughness and multitude of skills are fundamental reasons for the success of the lab. I sincerely appreciate her eagerness to teach me something new and her friendship. Billy is someone who always had my back. Whether it be helping me troubleshoot the electrophysiology setup in the late hours of the night or joining me for lunch at some unusual hours, I always appreciated his company. I wish him nothing but the best in his future endeavours.

Finally, I would like to thank my family and friends who have supported me during my graduate studies. In particular, I’d like to thank my significant other, Isabella Albanese, who has been with me through every step of the way. From failed experiments to difficulty organizing my time, Isabella has always been happy to lend her advice and emotional support. I am forever grateful for her never-ending encouragement and confidence in me.
Table of Contents

Abstract... ii
Résumé... iv
Acknowledgements .. vi
List of Figures ... ix
Legend .. x

Chapter 1 – Introduction .. 1
1.1 Mechanotransduction .. 1
 1.1.1 Mechanosensitive Ion Channels ... 1
 1.1.2 Types of Mechanosensitive Ion channels .. 2
1.2 Putative Mammalian Mechanosensitive Ion Channels ... 3
 1.2.1 Transient Receptor Potential Ion Channels .. 3
 1.2.2 Na⁺ Channels .. 6
 1.2.3 Ca²⁺ Channels ... 6
 1.2.4 Cl⁻ Channels .. 7
 1.2.5 Piezo Channels .. 7
 1.2.6 K⁺ Channels .. 8
1.3 Cytoskeleton ... 8
 1.3.1 Actin Cytoskeleton .. 8
 1.3.2 Microtubule Cytoskeleton ... 10
1.4 TREK Channels ... 11
 1.4.1 Structure .. 13
 1.4.2 Expression Pattern .. 13
 1.4.3 Mechanosensitive Functions of TREK1 in Different Physiological Systems 14
 1.4.4 Activation and Modulation of TREK1 .. 16
 1.4.5 Interaction with the Cytoskeleton .. 17
 1.4.6 TREK1 Regulation via Polycystins ... 18
1.5 Polycystins .. 18
 1.5.1 Autosomal Dominant Polycystic Kidney Disease .. 18
 1.5.2 Polycystin 1 .. 19
 1.5.3 Polycystin 2 .. 19
 1.5.4 Polycystins as Mechanotransducers .. 20
 1.5.5 Polycystins as Regulators of Mechanosensitive Ion Channels 21
1.6 Filamin A ... 22
 1.6.1 Cell Lines ... 23
 1.6.2 Cellular Functions .. 24
 1.6.3 Filamin A Mutations and Disease ... 25
 1.6.4 Mechanoprotection and Mechanosensitive Channels ... 25
 1.6.5 Filamin A-dependent regulation of TREK1 via Polycystin 2 ... 26

Chapter 2 – Hypothesis .. 30

Chapter 3 – Methods .. 32
 3.1 Cell Culture .. 32
 3.2 Electrophysiology .. 32
 3.3 Fluorescence Recovery After Photobleaching (FRAP) .. 33
 3.4 Filamin A Subcellular Localization ... 33
List of Figures

Figure 1-1: Bilayer and tether models of SAC gating ... 28

Figure 1-2: Topology of two-pore domain K⁺ channels .. 29

Figure 2-1: The Upholstery Model .. 31

Figure 4-1: TRPP2 induces an accelerated recovery of TREK1 current inhibition in Cos7 cells following sensitization via a -70 mmHg 2Hz pressure pulse train ... 39

Figure 4-2: TRPP2 requires Filamin A to induce an accelerated recovery of TREK1 current inhibition following sensitization via a -70 mmHg 2Hz pressure pulse train 40

Figure 4-3: Rate of actin recruitment to the cell membrane is not altered following expression of TRPP2 ... 41

Figure 4-4: FRAP using GFP-Actin expressing Cos7 cells shows no change in actin dynamics following TRPP2 expression ... 42

Figure 4-5: Filamin A localizes to the plasma membrane without mechanical stimulation following TRPP2 transfection but not in the presence of mechanical stimulation 43

Figure 4-6: SIM data suggesting actin reorganization in Filamin A expressing cells following transfection with TRPP2 .. 44
Abbreviation	Description
A7	Human Melanoma Cell Line
ABD	Actin Binding Domain
ADPKD	Autosomal Dominant Polycystic Kidney Disease
ANP	Atrial Natriuretic Peptide
ATP	Adenoside Triphosphate
BKCa$^{2+}$	Large Conductance Ca$^{2+}$-Activated K$^+$ Channel
Ca	Calcium
cDNA	Complementary Deoxyribonucleic Acid
CHO	Chinese Hamster Ovary
CFTR	Cystic Fibrosis Transmembrane Conductance Regulator
CNS	Central Nervous System
Cos7	African Green Monkey Kidney Cell Line
DMEM	Dulbecco’s Modified Eagle’s Growth Medium
DRG	Dorsal Root Ganglion
EMEM	Eagle’s Minimum Essential Medium
ER	Endoplasmic Reticulum
F-actin	Filamentous Actin
FLNa	Filamin A
FRAP	Fluorescence Recovery After Photobleaching
G	Gravitational Force
GABA	γ-aminobutyric Acid
G-actin	Globular Actin
GFP	Green Fluorescent Protein
GPCR	G Protein Coupled Receptor
GTP	Guanosine Triphosphate
HEK293	Human Embryonic Kidney Cell Line
HeLa	Human Cervical Cancer Cell Line
HPMVEC	Human Pulmonary Microvascular Endothelial Cell
Hz	Hertz
IMCD	Inner Medullar Collecting Duct Cells
K	Potassium
K$_{2P}$	Two-pore-domain potassium channel family
K562	Human Leukemia Cell Line
Kv	Voltage-Gated Outward Rectifying Potassium Channel
K$_{ir}$	Two Transmembrane Domain Inward Rectifying Potassium Channel
M2	Human Melanoma Cell Line
MDCK	Madin-Darby Canine Kidney Cells
MEF	Mechanoelectric Feedback
mL	Milliliter
mM	Milimolar
mm	Millimeter
mmHg	Millimeter of Mercury
MNSc	Magnocellular Neurosecretory Cells
mOsm	Miliosmolar
ms Millisecond
MSC Mechanosensitive Ion Channel
MscL Mechanosensitive Channel of Large Conductance
MΩ MegaOhm
Na Sodium
P Pressure
PCR Polymerase Chain Reaction
PCT Proximal Convoluted Tubule
PH Periventricular Heterotopia
PKD Polycystic Kidney Disease
r Radius of Curvature
RFP Red Fluorescent Protein
RPM Revolutions Per Minute
s Seconds
SAC Stretch-Activated Non-Selective Cationic Channel
SAK Stretch Activated Potassium-Selective Channel
SIC Stretch Inactivated Cation Channel
SIM Structured Illumination Microscopy
T Tension
TRAAK TWIK-Related Arachidonic Acid-Stimulated K⁺ Channel
TREK TWIK-Related K⁺ Channel
TWIK Tandem of P Domains In A Weak Inward Rectifying K⁺ Channel
TRP Transient Receptor Potential
TRPA Transient Receptor Potential, Ankyrin Subtype
TRPC Transient Receptor Potential, Canonical Subtype
TRPM Transient Receptor Potential, Melastatin Subtype
TRPP Transient Receptor Potential, Polycystic Subtype
TRPP1 Polycystin 1
TRPP2 Polycystin 2
TRPV Transient Receptor Potential, Vanilloid Subtype
x times
α Alpha
β Beta
μg Microgram
μm Micrometer
μm² Micrometer squared
°C Degrees Celsius
% Percentage
Chapter 1 – Introduction

1.1 Mechanotransduction

Mechanotransduction is the conversion of a mechanical stimulus into an electrical or biochemical signal that can be processed by the cell\(^1\). This process can be traced back to archaebacteria and eubacteria, where it is necessary for cell protection against hypo- or hypertonic environments through osmoregulation\(^2\). Mechanotransducers must therefore have emerged early on during evolution\(^2\). In higher organisms, mechanotransduction is the basis of several fundamental physiological functions including touch and pain sensation, hearing, blood pressure regulation, salt and fluid balance, urination, tissue growth, and vestibular function\(^3-10\).

1.1.1 Mechanosensitive Ion Channels

Mechanosensitive ion channels (MSCs) are important molecules of cellular mechanotransduction. These proteins are activated by mechanical stretch/pressure, which leads to a conformation change of the channel and a resulting change in the membrane potential following ion flux. Because MSCs respond directly to mechanical stimuli, the mechanosensory cells are capable of transducing the stimulus into electrical information within microseconds to milliseconds\(^11,12\). Two principal models of channel gating are currently proposed: the bilayer model and the tether model (Figure 1-1). The “bilayer model” reasons that the polar head groups and non-polar tails result in the anisotropic nature of the lipid bilayer that creates a force profile of the membrane and any inserted proteins. Therefore any mechanical stimulus on the cell membrane is converted into a lateral tension that is perceived by the embedded MSCs and may make it energetically more favorable for them to change their conformation\(^13,14\). The bilayer model of MSC opening is strongly supported by the fact that the bacterial mechanosensitive
channel of large conductance (MscL) found in *Escherichia coli* retains its mechanosensitivity when placed in lipid bilayers15,16. Since no other molecules are present, the force detected by the channels when a stimulus is applied to the membrane must come directly from the lipids13. The “dual-tether” model suggests that the MSC is tethered to intracellular cytoskeletal proteins and/or extracellular components such as the extracellular matrix. Gating of the channel would thus be controlled by the relative bending/stretching of the tethered components17-19. The dual-tether model was first proposed to describe hair cell transduction. In this case, the MSC is tethered to the extracellular tip links that are attached to the stereocilia, as well as the actin filaments of the underlying cytoskeleton. The stereocilia bending causes the channel to be stretched between its two tether points and opens it like a “trap door”17,19. A third model termed the “single-tether” model suggests that mechanogating involves the force profile of the membrane and a single tether. In this instance, manipulation of the tether would reposition the MSC into or out of the membrane like an “elevator” and the altered force of the membrane on the channel would allow it to alter its conductive state13,17.

1.1.2 Types of Mechanosensitive Ion channels

All mechanosensitive ion channels can be categorized into three main classes. The stretch-activated non-selective cationic channels (SACs) are permeable to Na+, K+, and Ca2+ ions and lead to cellular depolarization when opened by mechanical stimuli. In contrast, stretch-activated potassium-selective channels (SAKs) are only permeable to K+ ions and are thus hyperpolarizing when activated11. A third class of MSCs exists which are termed stretch-inactivated cation channels (SICs). These MSCs permeate Na+ and K+ ions and unlike SACs and SAKs, SICs are most active in the absence of a mechanical stimulus. Magnocellular
neurosecretory cells (MNCs) of the supraoptic nucleus normally express SICs. These channels display basal activity when the host is euhydrated. During overhydration, the extracellular fluid becomes hypo-osmotic and causes the cells to swell. A mechanical force such as membrane stretch during cell swelling inhibits the SICs, therefore removes a source of depolarization, and leads to cellular hyperpolarization. When cells shrink and mechanical force is minimal, there is a disinhibition of SIC activity, which leads to depolarization20.

1.2 Putative Mammalian Mechanosensitive Ion Channels

While many ion channels are involved in mechanosensation, it is unknown whether the channel is intrinsically mechanosensitive or if it is indirectly regulating mechanotransduction. Certain criteria have been proposed by Nilius and Honoré to determine whether a channel can be considered a stretch-activated channel11,12. These include the direct activation of the channel by mechanical stimuli, a rapid change in channel kinetics, a dependence of evoked current on the stimulus magnitude, and an association of mechanogating with conformational changes11,12. Here we will review certain ion channels for which there exists evidence of mechanosensitivity.

1.2.1 Transient Receptor Potential Ion Channels

The transient receptor potential (TRP) family is a large class of ion channels where each subunit contains six transmembrane domains with a putative pore between S5 and S6, and four subunits assemble to form a channel. Most TRP channels are non-selective cation channels that are involved in several sensory pathways throughout an organism including vision, olfaction, taste, chemosensation, thermosensation, and mechnosensation21,22.
TRPA1 of the TRP subfamily A was initially shown to be responsive to noxious cold temperatures23. More recent studies have suggested that TRPA1 is also mechanosensitive. When the \textit{C. elegans} ortholog TRPA1 is mutated, the worms no longer have proper escape response following tactile stimulation of the nose. Furthermore, heterogeneous expression of TRPA1 in Chinese hamster ovary (CHO) cells show that TRPA1 is responsive to mechanical stimuli24. In one mammalian study, TRPA1−/− mice had no altered sensitivity to mechanical stimuli whereas another study showed mice having a lowered sensitivity to such stimuli25,26. Whole cell recordings of dorsal root ganglion (DRG) neurons also showed that \textit{trpa1} deletion significantly reduced mechanically induced currents27. Together, these studies show that TRPA1 is involved in mechanotransduction; however further experiments are required to determine if TRPA1 is in fact a MSC as opposed to an accessory protein.

Like TRPA1, the canonical TRPC1 is also considered to have mechanosensitive properties. By reconstituting membrane proteins of CHO cells into liposomes, Maroto et al. identified TRPC1 as a candidate for the cell’s endogenous SAC. Overexpression of TRPC1 resulted in a 10-fold increase in the total current with the single cell conductance remaining the same as endogenous channels suggesting that TRPC1 is at least involved in the cell’s mechanosensation. TRPC1 knockdown using antisense RNA expectedly reduced stretch induced currents therefore supporting TRPC1’s mechanosensitive role. Moreover, because the liposomes contained only membrane proteins and still retained mechanosensitivity, TRPC1 may function as a MSC through the bilayer model28. Overexpression of TRPC6 in CHO cells also leads to an increase in mechanosensitive currents that are blocked by the known inhibitor of mechanosensitive ion channels, GsMTx4, thus suggesting that TRPC6 is also a MSC candidate29. More recent findings however, suggest that TRPC1 and TRPC6 are not directly
activated by membrane stretch and are instead indirectly activated during mechanotransduction30. Moreover, another study shows that the overexpression of TRPC1 or TRPC6 does not alter the amplitude of mechanosensitive currents thus decreasing the likelihood of TRPC1 and TRPC6 being actual MSCs31.

The transient receptor potential vanilloid type 1 channel (TRPV1) is expressed widely in primary afferent neurons, in particular, nociceptors as well as in other organs such as the kidneys32. The channel is activated by noxious temperatures (above 43°C), low pH, and capsaicin, which lead to an inward nonselective cation current33. In one study, afferent renal nerve activity was increased following mechanostimulation by elevated intrapelvic pressure. This effect was attenuated in the presence of the TRPV1 antagonist, capsazepine, therefore suggesting a role for TRPV1 in mechanotransduction32. Another member of the vanilloid type channels is TRPV4 which is activated by warm temperatures and acidic pH and is involved in the transduction of osmotic and mechanical stimuli34. Because TRPV4 knockout in mice only displays a moderate loss of mechanosensation despite a strong desensitization to noxious mechanical stimulation, it is suggested that TRPV4 is not itself a MSC but is instead involved in mechanotransduction indirectly1,35,36. Furthermore, TRPV4 channel opening to hypotonic stress occurs through the phospholipase A\textsubscript{2}-dependent formation of arachidonic acid therefore confirming that TRPV4 activation is not directly activated by membrane stretch37.

In the melastatin subfamily of TRP channels, both TRPM4 and TRPM7 are candidates for MSCs38,39. In HEK cells, overexpression of TRPM4 increased the extent of channel activation following mechanical stimulation38. In HeLa cells, knockdown of TRPM7 reduced SAC activity and the rate of cell volume recovery39. While both phenomena propose mechanosensitive function, it was shown that both channels are inhibited when extracellular
calcium is removed. Therefore TRPM4 and TRPM7 may simply be responding to calcium instead of membrane stretch38,39.

1.2.2 Na+ Channels

Na\textsubscript{v}1.5 is a voltage-sensitive sodium channel that is found in the human heart and the gut, which are both mechanical systems40,41. Expression of the sodium channel in human embryonic kidney cells 293 (HEK293) reveals that there is a leftward shift in voltage dependent activation and inactivation curves. Therefore Na\textsubscript{v}1.5 has mechanosensitive properties42. Moreover, these channels are no longer mechanosensitive when the actin cytoskeleton is abolished by cytochalasin D therefore showing that mechanosensation is dependent on an intact actin cytoskeleton43. However, mechanical stimuli appear to simply modulate Na\textsubscript{v}1.5 channel opening instead of directly gating it. Therefore Na\textsubscript{v}1.5 is not likely to be a MSC42.

1.2.3 Ca2+ Channels

Ca\textsubscript{v}1.2 is a voltage sensitive L-type calcium channel that may give intestinal smooth muscle cells their mechanosensitive properties. When these channels are expressed in heterologous systems, an increased voltage-dependent current is observed following mechanical shear stress44. Similar experiments in expression system show a similar phenomenon in N-type calcium channels whereas T-type channels (Ca\textsubscript{v}3.3) appear to be insensitive to membrane stretch45. However, others have reported that T-type calcium channels are linked to the mechanical sensitivity of the D-hair mechanoreceptors that populate dorsal root ganglia (DRG)46. These voltage gated calcium channels are similar to voltage gated sodium channels in that they are simply modulated by mechanical stimulation as opposed to directly opened by it. Though
conversely, L-type (CaV1.2) calcium channels elicit an electrical current following mechanical stimulation therefore suggesting that this subtype of calcium channel is a MSC47.

1.2.4 Cl− Channels

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion selective channel that is ligand-gated by cAMP. When a mechanical stimulus is applied to cells expressing these channels, a current is evoked that is increased as the stimulus magnitude is increased. Interestingly, the mechanical force also increased single channel conductances, suggesting the channel may have subconductive states. Similar pressure dependent responses were seen in excised, inside-out patches in the absence of ATP thus showing that CFTR mechanosensitivity is not dependent on intracellular mediators48.

1.2.5 Piezo Channels

The latest MSC candidates are the Piezo1 and Piezo2 proteins discovered by the Patapoutian lab in 2010. Both proteins contain over 30 putative transmembrane domains and therefore do not resemble any other ion channel. Regardless, overexpression of either protein in various cell types leads to stretch activated currents with nonselective cationic conductances. Moreover, Piezo2 knockdown in mouse DRG neurons reduced rapidly adapting stretch activated currents49. In subsequent reports, Piezo1 was reconstituted into asymmetric bilayers containing no intracellular components and retained its ability to pass a current thus confirming its pore-forming properties but its mechanical sensitivity was not tested50. Piezo1 and Piezo 2 are also inhibited by GsMTx4 and ruthenium red, which are known blockers of MSC, and thus provide other evidence in support of their candidacy as MSCs50,51.

7
1.2.6 K⁺ Channels

TREK1, TREK2, and TRAAK are confirmed mechanosensitive ion channels pertaining to the TREK subfamily of two-pore-domain K⁺ (K₂P) channels that have previously been well characterized. Expression of purified subunits in lipid bilayers has confirmed that TREK1 channels are in fact directly sensitive to membrane tension⁵². These channels are potassium selective and thus hyperpolarize the cell following mechanical activation⁵³,⁵⁴. The TREK channels will be the main focus throughout this thesis.

1.3 Cytoskeleton

The eukaryotic cell cytoskeleton is composed of actin microfilaments, microtubules, and intermediate filaments. Together, these filaments create an intracellular infrastructure that is crucial for maintaining cell shape and responding to mechanical forces. Here we will review the roles of the actin and microtubule cytoskeleton in modulating MSC gating⁵⁵.

1.3.1 Actin Cytoskeleton

Monomeric actin subunits (G-actin) assemble into two twisted polymers to form actin microfilaments (F-actin). These filaments are highly dynamic since subunits are constantly added and removed at both ends of the filament. Moreover, one end (barbed) of the actin filament undergoes a faster rate of polymerization compared to the other (pointed) end therefore creating polarity within the fiber⁵⁶,⁵⁷. The overall rate of actin polymerization can effectively be enhanced or inhibited using pharmacological agents to study the effects of the actin cytoskeleton on MSCs⁵⁸.
When human gingival fibroblasts are mechanically stimulated at the cell membrane, a large influx of calcium ions through MSCs is observed. The actin-barbed end capping toxin, cytochalasin D, promotes depolymerization of the F-actin and leads to a disruption of the actin cytoskeleton. When the fibroblasts are first pre-treated with cytochalasin D (1 μM), the stretch-activated calcium transients have a 3-fold higher amplitude compared to controls58. Cytochalasin D effects can also be replicated on SACs found in Cos7 cells and myotubes while alternatively disrupting the actin cytoskeleton of Cos7 cells using the G-actin sequestering agent latrunculin A causes a similar 2-fold increase in stretch-induced currents59,60. Conversely, stabilizing and polymerizing F-actin with jasplakinolide (3 μM) inhibits the activity of SACs59. Together, these results insinuate that MSCs are under tonic inhibition by the underlying actin cytoskeleton.

In 2005, Staruschenko showed that the actin cytoskeleton might sometimes be capable of reinforcing MSC activity. Human leukemia k562 cells were treated with either cytochalasin D, cytochalasin B, or latrunculin B to degrade the actin cytoskeleton. Each toxin led to a significant decrease in the single channel conductance of SACs compared to control conditions. It is also worth mentioning that two populations of SACs were observed in the leukemia cells and the cytochalasins and latrunculin had similar effects on both groups61. Another group performed calcium imaging experiments on human pulmonary microvascular endothelial cells (HPMVECs) following mechanical stretch and observed a rise in intracellular calcium levels. Pre-treatment with cytochalasin D (0.1 μM) nearly completely abolished the calcium response whereas jasplakinolide (0.5 μM) enhanced the stretch induced calcium response62. In 2007, the Bourque lab studied the effects of the actin cytoskeleton on SICs. When recording from isolated magnocellular neurosecretory cells (MNCs) in the whole-cell configuration, the group was able to apply negative pressure through the recording pipette to lower the cell volume and activate
SICs. Pre-treatment with cytochalasin D (195-250 μM) decreased the current response to stretch removal (lowered cell volume) whereas pre-treatment with jasplakinolide (2.5 μM) led to a significantly greater response compared to control conditions. Together, these findings propose that the actin cytoskeleton instead reinforces the MSC activity in response to mechanical stimuli.

It is unclear as to whether the differing effects of the actin cytoskeleton are due to the different cell types being examined or perhaps different MSCs are regulated differently by the actin cytoskeleton. One thing that remains consistent throughout each study however is that the actin cytoskeleton plays a crucial role in the modulation of MSC mechanogating.

1.3.2 Microtubule Cytoskeleton

Microtubules are composed of α- and β-tubulins that together form heterodimers. These dimers polymerize with the α-subunit (-) end of one dimer contacting the β-subunit (+) end of another and therefore result in a protofilament with a (+) and (-) end. Thirteen protofilaments bundle together in parallel to form a microtubule with a hollow core. During polymerization, both α- and β-tubulins are both bound to GTP. However, once bound to the polymerizing protofilament, the GTP on the β-tubulin may be hydrolyzed to GDP. If the GDP-bound tubulin is in the middle of the microtubule, the structure remains stable. In contrast, if the GDP-bound tubulin is at the (+) tip of the microtubule, then rapid depolymerization and shrinking of the microtubule occurs. The importance of microtubules in MSC regulation can be linked to the findings of Howard et al. who showed a loss of electron-dense material in the microtubule cytoskeleton in mutant *Drosophila* that led to dysfunctional mechanical sensation. Like the actin cytoskeleton, the rate of microtubule growth or shrinkage can be altered using...
pharmacological techniques to then examine the microtubule cytoskeleton’s role on regulation MSCs.

In the same study performed in 2005 by the Staruschenko lab, the role of microtubules on MSC activity was also assessed pharmacologically. Both colchicine and nocodazole bind to tubulin and therefore prevent microtubule polymerization. When human leukemia k562 cells were treated with either compound to disrupt to microtubule cytoskeleton, no changes in the single channel conductance or open probability of SACs were observed\(^6\)\(^1\). A later study measured the current passing through SAC expressed in Cos7 cells. Pre-treatment with nocodazole (10 μM) for 1.5 hours or with colchicine (500μM) for 2 hours did not show any changes in the elicited current compared to control cells following a pressure stimulus\(^5\)\(^9\). Finally, a different study on the large conductance Ca\(^{2+}\)-activated K\(^+\) channel (BK\(_{\text{Ca}}^{2^+}\)) found in coronary artery smooth muscle cells did not show any changes in open probability to membrane stretch when pre-treated with taxol, a microtubule stabilizer that protects from disassembly\(^6\)\(^8\). The findings together show that microtubules may play a role in mechanotransduction as observed in \textit{Drosophila}, however there is no evidence suggesting that microtubules directly affect MSC mechanogating.

1.4 TREK Channels

While the identity of the mammalian stretch-activated non-selective cationic channel (SAC) remains elusive, the TWIK-related K\(^+\) channel 1 (TREK1) is a well-characterized stretch-activated potassium-selective channel (SAK)\(^6\)\(^9\). The discovery of TREK1 in 1996 came as a result of an exploratory investigation that took place soon after the identification of the tandem of P domains in a weak inward rectifying K\(^+\) channel 1 (TWIK1), a potassium channel whose
structure and function differed from that of previously described voltage-gated outward rectifying (K_v) and two transmembrane domain-containing inward rectifying (K_ir) potassium channels70-73. After alignment of TWIK-1 and related orthologues from \textit{C.elegans}, conserved amino acid sequences were identified and used for degenerative PCR. The amplified fragment was then used to probe a mouse cDNA library and identify TREK1. Like TWIK1, TREK1 subunits contain four transmembrane domains and two pore domains and their discovery provided evidence for a third family of potassium channels termed the two-pore-domain K+ (K\textsubscript{2P}) channels71. Despite its structural similarity to TWIK1, the amino acid identity between the two channels is only 26\% and TREK1 displays outward rectification as opposed to TWIK1’s inward rectification71.

In 1998, the same group investigated the biophysical, pharmacological, and regulatory properties of TREK1 and compared it to its hypothesized ortholog, the S-type K+ channel of \textit{Aplysia californica}69. The molluscan S channel, which is involved in the sensitization of the gill-withdrawal reflex, is notably characterized by its sensitivity to membrane stretch in addition to its other properties of regulation and gating69,74,75. When heterologously expressed in Cos7 cells and \textit{Xenopus} oocytes, TREK1 displayed similar properties to the \textit{Aplysia} S channel including its sensitivity to membrane stretch69. Disruption of the cytoskeletal integrity via colchicine, which disrupts microtubules, and cytochalasin D, which disrupts F-actin, did not prevent stretch activation of TREK1 whereas modification of the lipid bilayer altered stretch-induced TREK1 currents, suggesting the mechanogating of this channel functions via a bilayer model as opposed to a tethered model69. Later experiments reconstituting TREK1 in lipid bilayers confirmed this hypothesis52. Moreover, insertion of crenators into the external leaflet of the bilayer, which cause the membrane to bulge outwards and stretch the outer lipid layer as opposed to the inner layer,
increased the sensitivity of TREK1 to stretch while cup-forming amphipathic molecules, which insert into the inner leaflet and cause stretching of the inner lipid layer, inhibit TREK1 activity69,76. This data suggests that the opening of the outer half of the lipid bilayer specifically controls TREK1. The higher efficiency of channel opening with negative versus positive pressure applied through cell-attached patch pipettes further favors this hypothesis69.

1.4.1 Structure

The \textit{KCNK2} (K\textsubscript{2p}2.1) gene, located on human chromosome 1, encodes the 370 amino acid subunit that dimerizes to form a functional TREK1 (Figure 1-2)71,77,78. Like other K\textsubscript{2p} members, TREK1 contains four transmembrane segments (M1-M4) with two pore domains (P1 and P2) located between segments M1 and M2 (P1), and segments M3 and M4 (P2). The short N-terminal and long C-terminal are both located within the cytoplasm while an extended loop between M1 and P1 is situated extracellular. This M1P1 domain appears to be necessary for the dimerization of subunits to form functional homo- or possibly heterodimers79,80. Unlike the conventional GYG (glycine, tyrosine, glycine) selectivity motif found in the pore of conventional K+ channels, both pore regions of TREK1 contain a GFG motif instead. The substituting phenylalanine (F) in the GFG motif of P1 interacts with a conserved aspartate residue following the GFG motif of P2 to retain K+ selectivity and determine gating properties81,82.

1.4.2 Expression Pattern

TREK1 is widely expressed in the mammalian central nervous system (CNS). In the brain, TREK1 is abundant in \textgamma-aminobutyric (GABA)-ergic projection neurons and interneurons83. Most notably, high expression of TREK1 is observed in the putamen, amygdala,
caudate nucleus, thalamus, hypothalamus, hippocampus, frontal, occipital, and temporal cortices54,83. High TREK1 expression is also found in the spinal cord and sensory dorsal root ganglia neurons54. Outside the nervous system, TREK1 can be found in the gastrointestinal system, with rich expression in the stomach, and other peripheral tissues such as bone54,84. TREK1 is also found in the heart atrial and ventricular myocytes as well as myocytes and endothelial cells of various arteries85-88. Other members of the TREK1 family, TREK2 (KCNK10) and TRAAK (TWIK-related arachidonic acid-stimulated K+ channel, KCNK4), show similar expression patterns to TREK1. TREK2 does however show increased expression in the periphery such as the kidneys, pancreas, spleen and testis. In contrast, TRAAK expression mostly occurs in the brain and DRGs54.

1.4.3 Mechanosensitive Functions of TREK1 in Different Physiological Systems

Nearly 60\% of pain sensing TRPV1-expressing dorsal root ganglia (DRG) neurons also express TREK1, suggesting that the latter may be involved in nociception89. When KCNK2 is deleted in genetically knocked out mice, they become more sensitive to low threshold mechanical stimuli compared to their wild-type littermates when assessed by stimulating the hindpaw with von Frey filaments of increasing stiffness89. The mechanical hypersensitivity observed after TREK1 knockout suggests that the channel is, at least in part, involved in tuning the mechanosensitivity of pain sensing neurons78,89. In fact, TREK1 is likely to act as a brake to nociceptive stimuli and promote cellular hyperpolarization while other nociceptive sensing SACs are inducing membrane depolarization. Moreover, inflammation-induced mechanical hyperalgesia is greater in TREK1 knockout mice which indicates that TREK1 is partly involved in the sensitization of peripheral nociceptors to inflammation89.
Mouse knockout studies of TREK1 and its isoforms (TREK2 & TRAAK) revealed that proximal convoluted tubule epithelial cells (PCT) of the kidney are more susceptible to cell death in response to elevated intrarenal pressures. TREK channels therefore have a protective role against cell death during mechanical stresses.90.

TREK1 is also highly expressed in rat atrial myocytes where its outward rectifying current regulates the duration of the cardiac action potential.87 Since the main stimulus for atrial natriuretic peptide (ANP) release is stretch, TREK1 may possibly control blood pressure by regulating ANP secretion.87,91 The most supported theory is that ANP secretion is triggered by stretch activation of SACs whereas TREK1 would act as a negative feedback for secretion.87,92 Moreover, TREK1 is expressed on the plasma membrane of rat ventricular myocytes. When these cells get stretched during the cardiac cycle, TREK1 would get activated and provide a feedback signal.88,93 This mechanoelectric feedback (MEF) is the process in which mechanical forces on the myocardium alter the myocardium’s electrical properties via SACs and SAKs.94 TREK1 may thus function in detecting the mechanical forces in atrial and ventricular myocytes to maintain proper cardiac function.93.

TREK1 currents are also modulated by changes in cell volume. TREK1 current amplitudes are significantly increased by cell swelling in response to hypotonic extracellular solutions whereas cell shrinking hypertonic solution decrease TREK1 current amplitudes. This phenomenon insinuates that TREK-1 mechanogating is involved in detecting changes in cell volume.69.

TREK1 is functionally expressed in human osteoblasts suggesting that it may be involved in bone remodeling in response to mechanical loads.84,95 Pharmacologically inhibiting TREK1
via the local anesthetic, bupivacaine, reduces osteoblast proliferation and demonstrates how mechanical forces can directly alter the bone remodeling osteoblasts84,96.

1.4.4 Activation and Modulation of TREK1

Although TREK1 is a background K^+ channel responsible for maintaining the resting membrane potential, the channel is remarkable for its unconventional polymodal activation71,78. Aside from its stretch sensitivity, TREK1 is stimulated by progressive rises in temperature whereas cold temperatures effectively inhibit channel activity. Interestingly, excision of the patch during channel recordings results in a loss of thermal sensitivity, indicating that cytosolic factors are necessary for the channel’s thermal activation. In contrast, TREK1 still maintains stretch sensitivity in excised patches suggesting that mechanosensitivity is an intrinsic property of the channel78,97. Unlike typical leak K^+ channels, TREK1 is voltage dependent and shows preferential opening at depolarized potentials, making it an outward rectifier71. Deletion and mutation studies show that the carboxy (C)-terminal domain is responsible for the voltage-dependent gating98. Removal of the C-terminal domain also renders the channel more resistant to stretch, indicating that the domain is necessary for TREK1 mechanogating53. A lowered intracellular pH also stimulates TREK1 activation through a negatively charged glutamic acid (Glu306) residue located on the C-terminus that acts as a proton sensor78,99. Polyunsaturated fatty acids, most notably arachidonic acid, are also capable of reversibly opening TREK169. Phospholipids including phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine enhance TREK1 activity by interacting with the C-terminal domain including Glu 30678,100. Also, extracellular lysophospholipids activate TREK1 and intracellular lysophospholipids inhibit TREK1 due to their triggered curvature of the cell membrane following insertion78,101,102.
Downstream effects of G protein coupled receptor (GPCRs) stimulation including, phosphorylation of Serine 333 by protein kinase A, phosphorylation of Serine 300 and Serine 333 by protein kinase C, and direct binding of diacylglycerol, all inhibit TREK1 activity\(^69,78,103,104\). Finally, numerous volatile general anesthetics stimulate TREK1. These include chloroform, diethyl ether, halothane, isoflurane, nitrous oxide, xenon, cyclopropane, and chloral hydrate. The C-terminus is also essential for the modulation of TREK1 by these anesthetics\(^78,105-107\).

1.4.5 Interaction with the Cytoskeleton

When TREK1 is overexpressed in neurons, an induction of numerous filopodia is observed in dendrites and the axon. Moreover, strong colocalization between TREK1 and actin occurs in these structures, suggesting an interaction between these two molecules. When actin polymerization is disrupted using latrunculin A, TREK1 exhibits increased sensitivity to membrane stretch. Separating TREK1 from the actin cytoskeleton via patch excision from the cell-attached to the inside-out configuration also shows a similar effect and demonstrates that actin inhibits TREK1 mechanogating. Disrupting the microtubule cytoskeleton with nocodazole has no effect. The sites Glutamate 306 and Serine 333 of TREK1’s C-terminal domain are both necessary for the actin cytoskeleton to interact with TREK1 and tonically inhibit it\(^108\). The results and discussion chapters of this thesis will further explore the importance of the actin cytoskeleton in regulating TREK1 gating.
1.4.6 TREK1 Regulation via Polycystins

Recently, novel modulators of TREK channels have been identified. Polycystins 1 (TRPP1) and 2 (TRPP2) are both linked to autosomal dominant polycystic kidney disease and interact together to regulate TREK channel mechanogating\(^9\),\(^10\). The following section will highlight the physiological roles of the polycystins and their involvement in the regulation of TREK1 channel gating.

1.5 Polycystins

1.5.1 Autosomal Dominant Polycystic Kidney Disease

Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary diseases and is a leading cause of renal failure with patients frequently necessitating dialysis or kidney transplantation since they are the only available cures. ADPKD occurs in 1 in 800 live births and affects approximately 4 to 6 million people worldwide\(^11\). The disease is characterized by the presence of several hundreds to thousands of cysts in the kidneys in addition to the liver, pancreas and intestine. Patient symptoms often include hypertension, hematuria, polyuria, abdominal pain, urinary tract infections, and kidney stones. Patients also have a greater likelihood of developing aortic aneurysms and defects with heart valves\(^11\),\(^11\). Two types of ADPKD are currently defined. Type 1 is caused by a mutation in the \(PKD1\) gene and accounts for 85-90% of cases whereas type 2 is caused by a mutation in the \(PKD2\) gene and is responsible for 10-15% of cases\(^11\),\(^11\),\(^11\). Type 1 and type 2 are pathologically similar with the most significant difference being the later onset in type 2. Patients suffering from ADPKD type 2 thus have a longer life expectancy (69 years) compared to those with type 1 (53 years). Both patients still have a lower life expectancy compared to controls (78 years)\(^11\). Over 100 \(PKD1\) mutations
and 75 PKD2 mutations causing ADPKD have been identified and include deletions, insertions, frame shifts, splicing, nonsense, missense, and point mutations115,116. Such mutations may lead to a decreased/absent production of polycystins or an overexpression of polycystins, but the most common consequence is the expression of polycystins with a loss of function mutation110,117,118.

1.5.2 Polycystin 1

Polycystin 1 is a large (460 kD), 4302 amino acid-containing glycoprotein encoded by the PKD1 gene of chromosome 16. It contains 11 transmembrane domains, a short intracellular C-terminal domain and a sizable extracellular N-terminal domain. This large domain contains a multitude of binding motifs for other proteins, lipids, and carbohydrates and is thus involved in cell-cell and cell-matrix interactions and signaling pathways110,119,120. Furthermore, TRPP1 forms multiprotein complexes within the cell for signaling purposes121. TRRP1 is expressed on the plasma membrane of cells in the kidneys, liver, pancreas, heart, intestine, lungs, and brain122,123.

1.5.3 Polycystin 2

Unlike Polycystin 1, Polycystin 2 is a member of the transient receptor potential (TRP) superfamily as it structurally resembles other TRP channels, including its six transmembrane domains, intracellular N- and C- termini, and a pore region124. It is a 968 amino acid-containing protein (110kD) encoded by the PKD2 gene located on chromosome 4113. \textit{PKD2} is expressed in most tissues including the kidneys, liver, pancreas, heart, lungs, and brain125. A coiled-coil domain on the C-termini of both TRPP1 and TRPP2 enables the two polycystins to interact126. Aside from TRPP1 binding, TRPP2 interacts with TRPC1 and multiple components of the actin and microtubule cytoskeleton127,128. TRPP2’s function as a channel is controversial. Some
studies report that TRPP2 is incapable of permeating ions whereas some evidence supports TRPP2’s function as a calcium permeable, non-selective cationic channel129. Reports have shown that TRPP2 functions as a Ca2+ dependent intracellular release channel on the endoplasmic reticulum (ER) where much of the protein is located due to an ER retention signal130,131. Others have shown modest yet functional TRPP2 channels on the plasma membrane of inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells132. The extent to which TRPP1 plays in TRRP2’s channel activity at the plasma membrane is currently under investigation. Co-assembly of TRPP2 with TRPP1 may be necessary to form a functional TRPP2 channel at the plasma membrane or TRPP1 may only be required to recruit TRPP2 channels to the plasma membrane132,133. The controversies regarding TRPP2’s localization and function may be due to differences in adapter proteins and other intracellular components that exist between cell types, differentiation status, or environmental components132,134.

1.5.4 Polycystins as Mechanotransducers

Polycystin 1 and 2 both co-localize to the primary cilium of renal epithelial cells where they have been reported to together function as a mechanical transducer135. When kidney epithelial cells are exposed to a flow stimulus, the resulting bending of their primary cilium is converted to a calcium signal that develops in the cilium, but then triggers a Ca2+-induced Ca2+ release in the cytosol136. However, when TRPP1 activity is blocked, using function-blocking antibodies, or genetically replaced with a truncated mutant, the flow-induced Ca2+ response is no longer observed. Alternatively blocking TRPP2 with function-blocking antibodies also elicits a similar loss in the flow-induced rise in the intracellular Ca2+ concentration. Like renal epithelial
cells, vascular endothelial cells have primary cilia which contain both TRPP1 and TRPP2137-140. Again, interfering with TRPP1 or TRPP2 prevents any observable flow-induced calcium response139,140. Furthermore, disrupting TRPP1 and TRPP2 in endothelial cells abolishes nitric oxide production, a vasodilator and subsequently crucial regulator of the cardiac vascular tone, and may thus explain extrarenal vascular abnormalities associated with PKD139-142. Interestingly, exposure to shear flow induces proteolytic cleavage of TRPP1 thereby rendering the cell insensitive to further stimuli. This phenomenon exposes a complex feedback mechanism that occurs during mechanotransduction of shear stresses135. Together, the findings propose that TRPP1 functions as the mechanical sensor to shear stress via its large extracellular N-terminal domain. Detection of shear flow by TRPP1 would regulate the opening of TRPP2 to elicit a Ca2+ response. Failure of flow detection in ADPKD would effectively block any downstream calcium signaling135,139.

1.5.5 Polycystins as Regulators of Mechanosensitive Ion Channels

Instead of acting as direct mechanotransducers, TRPP1 and TRPP2 may in fact be regulators of endogenous mechanosensitive channels. When overexpressed in Cos7 cells, TRPP2 inhibits the activity of endogenous SACs. This inhibition is remarkably reversed when TRPP1 is co-expressed with TRPP2. Conversely, knockout of PKD1 in arterial myocytes reduces SAC activity suggesting that the dosage between TRPP1 and TRPP2 is important since only TRPP2 that is unbound to TRPP1 can inhibit SACs. The PKD1 knockout cardiomyocytes display an increased threshold for intraluminal pressure to induce a myogenic contraction thus signifying that the altered SAC activity reduces the effectiveness of the myogenic tone, which is the contraction of vascular smooth muscle cells in response to mechanical stretch. Knockdown of
TRPP2 in these cells effectively recovers SAC activity and myogenic tone thereby confirming that the activity of SACs is regulated by the relative dosage and binding of TRPP1 and TRPP2. Disrupting the F-actin cytoskeleton using cytochalasin D or latrunculin A removes TRPP2’s inhibitory effects whereas microtubule-disrupting agents had no effect. In contrast, stabilization of actin filaments by jasplakinolide inhibited SAC activity similarly to TRPP2. Therefore, excess TRPP2 that is not bound to TRPP1 inhibits SAC by a mechanism involving the F-actin cytoskeleton\(^5^9\). Because TRPP2 and TRPP1 regulate SACs indirectly via the F-actin cytoskeleton, then their regulation may not be specific to one type of mechanosensitive ion channel. Indeed, TRPP2 was later shown to be capable of inhibiting endogenous SAKs of PCT cells and heterologously expressed TREK1, TREK2, and TRAAK channels in Cos7 cells through a mechanism that also requires an intact F-actin cytoskeleton\(^9^0\). Interestingly, TRPP2’s mechanism for SAC and SAK inhibition necessitates Filamin A (FLNa), an actin crosslinking protein that binds to TRPP2\(^5^9,12^9,14^3,14^4\).

1.6 Filamin A

Filamin is an actin cross-linking protein that also serves as a scaffold for over 90 binding partners including channels, receptors, intracellular signaling molecules, and transcription factors\(^1^4^5,14^6\). Three isoforms filamin are expressed in mammals. Filamin A (FLNa) is encoded on the X chromosome and is the most abundantly expressed isoform in non-muscle cells\(^1^4^7\). Filamin B is also a non-muscle filamin and encoded on chromosome 3 whereas Filamin C is on chromosome 7 and is primarily found in adult cardiac, skeletal, and smooth muscle cells\(^1^4^8,14^9\). Functional FLNa consists of two 280 kDa dimers, each containing an N-terminal spectrin family F-actin binding domain (ABD) and an elongated flexible segment composed of immunoglobulin-
like repeats that make up rod 1 (repeats 1-15), rod 2 (repeats 16-23), and a self association domain (repeat 24). The 24th repeat at the C-terminal end allows dimerization of the two subunits to form a V-shaped complex. This arrangement of FLNa subunits results in the orthogonal branching of F-actin when bound to the ABDs. A second lower affinity ABD is located on the rod 1 domain to permit high avidity binding between FLNa and F-actin. Conversely, the rod 2 domain is not involved in F-actin binding and is instead the site where the majority of partner interactions occur.

1.6.1 Cell Lines

Two important cell lines are currently used to advance the study of Filamin A. The M2 cell line is derived from malignant human melanomas with undetectable levels of FLNa when assayed via immunoprecipitation, immunoblotting, and immunostaining. The cells have minute amounts of FLNa mRNA with apparently normal FLNa DNA gene structure suggesting that the protein deficiency is due to a defect in the regulation of gene expression or a decrease in mRNA stability. The M2 cells have reversible but continuous extensive blebbing when ambient temperatures fall below 30°C or if serum is removed. An A7 cell line was subsequently developed by stably transfecting the M2 cell line with FLNa. The new cell line only displayed transient localized blebbing that was more resembling of native FLNa+/+ cell lines. Furthermore, the A7 cells regained a asymmetrical shape with the presence of focal lamellae. The discovery of the M2 cell line and the development of the A7 cell line thus introduced an invaluable tool for the study of Filamin A’s cellular functions.
1.6.2 Cellular Functions

M2 cells deficient in FLNa have reduced motility suggesting that FLNa is involved in promoting cellular locomotion153. FLNa is thus hypothesized to localize to growing lamellipodia and recruit interacting signaling molecules for efficient signal transduction that is necessary for cellular movement146. In contrast, FLNa plays an inhibitory role in cellular migration. By negatively regulating integrin, a necessary component for cellular migration, FLNa can effectively prevent the atypical migration of cells throughout the body146,155,156. Consistently, decreased FLNa expression in breast cancer cells results in increased migration, invasion, and metastasis157. Furthermore, FLNa-deficient M2 melanoma cells display membrane blebbing153. These blebbing cells can squeeze through the extracellular matrix and can more easily migrate and metastasize156. FLNa thus functions as a regulator of cellular migration by controlling integrin activation and maintaining proper membrane structure146.

FLNa plays an important role in maintaining cellular integrity and shape. Cells lacking FLNa (M2 cells) are softer/less stiff than cells expressing physiological concentrations of FLNa. This occurrence is due to the inability of FLNa-lacking cells to generate large enough internal contractile stresses. Moreover, these cells have an impaired ability to tune their stiffness to match that of a changed substrate, rendering the cells unable to properly probe their local environment158. This mechanical feedback from the extracellular matrix is a crucial step implicated in biological processes including development, differentiation, regeneration, and disease159.
1.6.3 Filamin A Mutations and Disease

Mutations and deletions in the FLNa gene have been linked to several diseases including a multitude of congenital disorders. Periventricular heterotopia (PH) is one disorder which first becomes evident when seizures appear in teenagers. PH is a disorder in which neurons fail to migrate to the cerebral cortex in the fetal brain. Common indicators may include brain malformations, microcephaly, recurrent infections, and developmental delays or intellectual disability. In one study, 83% of patients with regular PH symptoms showed mutations in the FLNa gene thus showing a link between FLNa and PH and highlighting FLNa’s importance in brain development. A second related congenital disorder is FG syndrome which is characterized by mental development delays, congenital heart disease, anal atresia, inguinal hernia, and cryptorchidism among other defects. A previous report has linked a FLNa missense mutation as a cause for FG syndrome. Furthermore, FLNa mutations have been linked to various cancers including breast, colon, and prostate cancers. Finally missense and deletion mutations of the FLNa gene have also been found in patients with myxomatous valvular dystrophy, a disorder leading to incompetent cardiac valves.

1.6.4 Mechanoprotection and Mechanosensitive Channels

When a repeated mechanical force is applied to the cell membrane via a magnetic bead, an accumulation of F-actin is observed at the site of membrane stress. Interestingly, FLNa is the only actin-interacting protein also found at the site suggesting that FLNa recruits F-actin in response to membrane stress. Indeed, minimal force-induced actin accumulation to the membrane occurs in M2 cells whereas a strong recruitment of F-actin is observed in A7 cells. The actin accumulation at the site of stress is correlated with increased membrane rigidity and a
dampened sensitivity of SACs to membrane stretch165. Disrupting the F-actin cytoskeleton using cytochalasin D ablated the inhibition of SAC activity thereby confirming the necessity of the actin cytoskeleton166. Moreover, after successive mechanical stimulation, FLNa-lacking M2 cells displayed significantly less SAC inhibition when compared to FLNa-containing A7 cells thus confirming FLNa’s role in recruiting actin to block SAC activity166.

Under the same conditions, repeated mechanical forces induces cell death as assessed by membrane leakage166. However, the cell death induced by mechanical force was minimal in A7 cells as compared to M2 cells therefore highlighting FLNa’s mechanoprotective role166. Repeated experiments in Rat-2 cells confirmed the importance of FLNa’s actin cross-linking function as FLNa constructs lacking the actin-binding domain did not render transfected cells less susceptible to mechanical force-induced death whereas full length FLNa did167. The studies link mechanoprotection to the regulation of SACs since overstimulation of these channels by mechanical forces would lead to the excessive influx of calcium and subsequent cell death166,168. It is therefore believed that under mechanical stress, FLNa recruits actin to the plasma membrane where it stiffens the membrane to inhibit SAC activity and prevents apoptosis by pathological levels of intracellular calcium166,167.

1.6.5 Filamin A-dependent regulation of TREK1 via Polycystin 2

As previously mentioned, the Honoré lab described how SACs expressed in Cos7 cells respond with a markedly reduced current to a negative pressure pulse when co-expressed with TRPP259. In M2 cells lacking FLNa however, the net channel probability of opening is higher compared to FLNA+/- A7 cells suggesting that FLNa is inhibiting channel opening. More importantly, the effects of TRPP2 are completely nonexistent in M2 cells suggesting that Filamin
A is a required downstream component of TRPP2’s mechanism of SAC inhibition59. In a follow-up study, the group highlighted Filamin A’s role on TREK1 channels90. TREK1 current was similarly inhibited by TRPP2 however this effect was again lacking when FLNa−/− cells were used. Furthermore, excision of the recording patch in FLNa+/+ had a similar effect on the elicited current to using FLNa−/− cells in that TRPP2 was no longer inhibiting the inward TREK1 current. This observation suggested that intracellular components were a necessary factor for Filamin A to have its effects. Treating the cells with the actin polymerization inhibitor, latrunculin A, had the same effect as membrane excision and therefore proposes that actin is the necessary downstream component for Filamin A’s effects90.
Figure 1-1: Bilayer and tether models of SAC gating. (A) Channels may open in direct response to tension in the lipid bilayer. (B) Intracellular and/or extracellular components may instead transmit force to the channel via a tether to control gating. Adapted from: Nilius et al. 2012.
Figure 1-2: Topology of two-pore domain K\(^+\) channels. (A) Illustration of K\(_{2P}\) subunit with four transmembrane segments and two pore-forming domains (P1 & P2) arranged in tandem (top). The M1P1 domain is necessary for dimerization of subunits. (B) Pore sequence of 3 K\(_{2P}\) channels (TWIK1, TREK1, and TASK1) showing differences in the selectivity motifs compared to that of the conventional GYG motif found in voltage gated K\(^+\) channels (Kv1.1 & KcsA). A, alanine; F, phenylalanine; G, glycine; I, isoleucine; L, leucine; S, serine; T, threonine; V, valine; Y, tyrosine. Adapted from Honoré 2007.
Chapter 2 – Hypothesis

Previous studies have already begun to investigate the mechanical regulation of TREK1 mechanosensitive potassium channels. They have since proposed a model termed “The Upholstery Model” originally for SAC but then adapted for TREK1 channels. According to the model, Filamin A binds to TRPP2 and alters the underlying actin cytoskeleton. It does so by binding to two F-actin filaments and, because of its V-shaped structure, holds the filaments in an orthogonal crosslink. The altered arrangement of the actin cytoskeleton is believed to pull segments of the cell membrane closer together and create bulges of the membrane at the site of TREK1 channels. These micro domains have smaller radii of curvature compared to a flatter membrane. According to Laplace’s Law (T=Pr/2), a lower radius of curvature results in a lowered lateral tension on TREK1 channels when a given pressure stimulus is applied. A lowered perceived lateral tension on the channels results in a lower probability of opening and ultimately causes channel inhibition. When TRPP2 is no longer available at the plasma membrane possibly due to interaction with TRPP1, Filamin A is not recruited to alter the actin cytoskeleton and TREK1 thus perceives a greater lateral tension following a mechanical stimulus (Figure 2-1) \(^{59,90}\). This proposed model has been portrayed as a static one and the characteristics of this mechanism are not fully understood. Our central hypothesis is that the mechanical regulation of TREK1 is a highly dynamic one in which there is an increase in actin dynamics at the plasma membrane through TRPP2 and filamin A.
Figure 2-1: The Upholstery Model. For a given pressure stimulus (P), TREK1 channels perceive a lateral tension (T) which is dependent on the radius of curvature (I) of the cell membrane. Binding of FLNa to local TRPP2 increases actin crosslinking and creates microdomains with smaller radii of curvature. According to Laplace’s Law (T=Pr/2), a reduced tension is perceived by TREK1 channels for a given pressure which results in a diminished probability of opening. When TRPP2 of FLNa is absent, TRPP1 interacts with TRPP2, or when the actin cytoskeleton is disrupted, no microdomains are formed and the larger radius of curvature results in a stronger activation of TREK1 channels for every pressure stimulus. Adapted from: Sharif-Naeini, R. et al. 2009.
Chapter 3 – Methods

3.1 Cell Culture

The fibroblast-like Cos-7 cell line derived from African green monkey kidneys were used in addition to the human melanoma derived M2 and A7 cell lines. Cos-7 cells were maintained with Dulbeco’s Modified Eagle’s Growth Medium (DMEM; Wisent) supplemented with 10% Fetal Bovine Serum and 1% penicillin/streptomycin. M2 and A7 cells were maintained in Eagle’s Minimum Essential Medium (EMEM; Wisent) supplemented with 2% Newborn Calf Serum, 8% Fetal Bovine Serum, and 1% penicillin/streptomycin. A7 cells were additionally grown with 200 μg/mL of geneticin (Wisent) to maintain stable expression of Filamin A. One day prior to transfection, cells were plated at ~50% confluency onto 35 mm plastic dishes. All constructs were transfected using FuGene 6 (Promega) according to manufacturer’s instructions using 2 μg of DNA. Cells co-transfected with two plasmids received 1 μg of each plasmid. One day following transfection, cells were plated onto 35 mm glass bottom dishes. All recordings were performed 48 hours after transfection.

3.2 Electrophysiology

Cell-attached recordings were performed on transiently transfected Cos7, M2, and A7 cells. The extracellular recording medium contained 155 mM KCl, 5 mM, EGTA, 3 mM MgCl2, and 10 mM HEPES (pH 7.22, 310 mOsm). The pipette solution contained 150 mM NaCl, 5 mM KCl, 1 mM CaCl2, and 10 mM HEPES (pH 7.4, 310 mOsm). The pipette solution also contained 10 mM Tetraethyl-ammonium (TEA), 5 mM 4-Aminopyridine (4AP), and 10 μM glibenclamide to block contaminating potassium channels. After achieving a gigaseal in the cell-attached configuration and voltage clamping at 0 mV, membrane patches were stimulated with repeated
200 ms pressures pulses (-70 mmHg at 2Hz) through the recording electrode/pipette setup using a high-speed pressure clamp device (ALA Scientific Instruments). After the 10s stimulation, the membrane was allowed to rest for 2s, 15s, and 30s before a following pressure pulse was given. All recordings were performed with an Axon MultiClamp 700B amplifier (Molecular Devices) using non-coated fire polished glass pipettes (1.4-2.4 MΩ). Clampex 10.3 (Molecular Devices) was used for data acquisition. Data analysis and figure preparation was performed using Clampfit 10.3 (Molecular Devices), Microsoft Excel, and Prism 6 (GraphPad Software).

3.3 Fluorescence Recovery After Photobleaching (FRAP)

FRAP experiments were performed on a spinning disk confocal microscope (Quorum WaveFX, Leica) using a 63x objective. A 100 ms laser pulse was used to photobleach a 6.53 μm² area on the cell membrane. Images were captured with MetaMorph (Molecular Devices) before and for ~17s after photobleaching to acquire fluorescence recovery at the cell membrane. Data was corrected for the overall bleaching of the background signal resulting from image acquisition. Fluorescence data was fit to an exponential function to extrapolate the recovery time constant using Prism 6 (GraphPad Software).

3.4 Filamin A Subcellular Localization

The S8 cell line was generated by stably transfecting M2 cells with a red fluorescent form of Filamin A (Filamin A-RFP; Stossel Lab). Transiently transfected (TRPP2 or Mock) S8 cells were placed in a 6-well plate and centrifuged for 20 minutes at 0RPM (0G), 500RPM (63G), or 2000RPM (1010G) to apply a mechanical force. Immediately after centrifugation, cells were fixed with 4% paraformaldehyde and then treated with WGA-350 to label the plasma membrane.
Images were captured at 63x on a spinning disk confocal microscope (Quorum WaveFX, Leica). The WGA-350 signal was used as a mask to determine the Filamin A-RFP signal at the membrane, which was then normalized to the overall Filamin A-RFP cell intensity. ImageJ (National Institutes of Health) was used to perform data analysis.

3.5 Structured Illumination Microscopy (SIM)

Transiently transfected M2 and A7 cells were fixed with 4% paraformaldehyde and treated with phalloidin-488 (Cytoskeleton) to stain actin filaments. Cos7 were similarly prepared with the addition of a 20 minute mechanical stimulation via centrifugation at 2000RPM (1010G) prior to fixation and staining. Super resolution images were collected using an OMX V4 microscope (Applied Precision/GE Deltavision) using a 100x objective. OMX and softWoRx softwares (Applied Precision/GE Deltavision) were used for image acquisition and structured illumination reconstruction, respectively. Analysis of SIM data was performed using ImageJ (NIH) and the plugin FibrilTool to calculate anisotropy, the property of being directionally dependent, amongst actin filaments. The cell anisotropy values were measured by analyzing 4 μm thickness of actin staining just deep to the entire plasma membrane.

3.6 Statistical Analysis

Results are represented as mean ± SEM. Statistical significance was tested using unpaired t-tests for comparison of means. Differences were considered significant for p < 0.05 (*).
Chapter 4 – Results

4.1 Recovery of TREK1 Current Inhibition by TRPP2 in Cos7 Cells

Cos7 cells transiently expressing TREK1 with Mock or TREK1 with TRPP2 displayed an increasing peak potassium current following 10s of a 2Hz pressure pulse train, initially starting at 51.74 ± 6.80 % and 42.37 ± 4.66 % of the 20th pulse current, respectively (n= 40 for control group and n=38 for TRPP2 group, Figure 4-1A-B). After the cell membrane was permitted to rest, a recovery of the TREK1 current inhibition was observed in both conditions. By t=57s (47s after the pressure pulse train), control cells (n=28) recovered to only 92.94 ± 14.43 % of the 20th pulse current whereas cells expressing TRPP2 (n=36) recovered to 63.72 ± 5.58 % current (Figure 4-1C, p<0.05).

4.2 Recovery of TREK1 Current Inhibition by TRPP2 in FLNa+/+ and FLNa−/− Cells

To determine the importance of Filamin A in TRPP2 mediated TREK1 inhibition, we used M2 FLNa−/− cells and A7 FLNa+/+ control cells. In M2 cells transfected with TRPP2, no significant changes were observed in the current inhibition recovery curves when compared to control conditions (Figure 4-2A). At 47s after the pressure pulse train, TRPP2 transfected M2 cells (n=38) recovered to 70.70 ± 6.05 %, similar to control cells (n=51), which recovered to 68.63 ± 5.65 % (Figure 4-2C). In contrast, A7 cells expressing Filamin A displayed rescued TRPP2 mediated TREK1 current inhibition akin to Cos7 cells expressing TRPP2 (Figure 4-2B). At 47s post pulse pressure train, TRPP2 expressing A7 cells (n=17) recovered to 47.36 ± 6.00 % current while control cells (n=23) recovered to 70.16 ± 7.44 % (Figure 4-2C, p<0.05).
4.3 Actin Dynamics at the Plasma Membrane

To determine whether TRPP2 functions via a change in actin dynamics at the plasma membrane, we transfected Cos7 cells with LifeAct-RFP (to stain F-actin) and performed FRAP imaging to observe the rate of actin membrane recruitment and polymerization170. Photobleaching the cell membrane did not demonstrate any significant differences in actin dynamics at 37°C in cells expressing TRPP2 (n=34) versus controls (n=24, Figure 4-3A). Fitting the data to an exponential function revealed time constants of 3.40 ± 0.38 seconds for TRPP2 expressing cells and 3.29 ± 0.39 seconds for control cells (Figure 4-3C). In an attempt to tease out possible minor differences in actin dynamics, we slowed kinetics and performed the experiment again at room temperature (Figure 4-3B). Time constants were indeed slower but no different among TRPP2 (n=20) and control (n=15) conditions (tau = 7.58 ± 1.46 s for TRPP2 transfected cells and tau = 6.53 ± 0.83 s for GFP transfected cells, Figure 4-3D).

FRAP experiments were then performed on cells transfected with GFP-Actin as opposed to LifeAct-RFP to more directly measure actin monomer recruitment (Figure 4-4A). Recordings at room temperature again showed no significant differences in time constants between TRPP2 and mock transfected cells (3.88 ± 0.47 s, n=21, in TRPP2 transfected cells compared to 3.11 ± 0.50 s, n=22, in mock transfected cells, Figure 4-4B). No differences in mobile fraction were observed either between conditions (0.42 ± 0.06 in TRPP2 transfected cells versus 0.41 ± 0.07 in mock transfected cells, Figure 4-4C).

4.4 Polycystin 2 Mediated Recruitment of Filamin A to the Plasma Membrane

We next suspected that Filamin A may itself be recruited to the cell membrane via TRPP2 to regulate TREK mechano-gating. In order to track the subcellular localization of FLNa,
we generated a new S8 cell line expressing the Filamin A-RFP fusion protein (Figure 4-5A). Transiently transfecting the cells with TRPP2 resulted in a significant increase in the RFP fluorescence signal at the cell membrane when compared to mock transfected cells (0.844 ± 0.047, n=10, in TRPP2 transfected S8 cells compared to 0.582 ± 0.046, n=10, in mock transfected cells) indicating that Filamin A is in fact recruited to the membrane following TRPP2 overexpression (Figure 4-5B). As previously described by the Glogauer lab, FLNa is found localized at sites of membrane stress following repeated mechanical force stimulation with magnetic beads.166 We thus suspected that mechanically stimulating the cell membrane via a centrifugal force would also lead to increased membrane RFP intensity in mock transfected cells and would potentiate the rise in intensity observed in TRPP2 transfected cells. Centrifuging the cells at 500RPM (63G) for 20 minutes did not result in an increased FLNa membrane localization (0.687 ± 0.035, n=10, in TRPP2 transfected S8 cells and 0.627 ± 0.040, n=10, in mock transfected cells) and neither did centrifugation at 2000RPM (1010G) for 20 minutes (0.812 ± 0.058, n=10, in TRPP2 transfected S8 cells compared to 0.714 ± 0.045, n=10, in mock transfected cells, Figure 4-5B). Furthermore, no significance difference was found between S8 cells transfected with TRPP2 and control cells at any of the mechanical stimulation exercises.

4.5 TRPP2-Induced Actin Reorganization at the Plasma Membrane

Since actin dynamics at the plasma membrane were not affected by TRPP2 overexpression, we hypothesized that the organization of the actin cytoskeleton may instead be altered via the recruitment of the actin crosslinking protein, Filamin A. To study the organization of the actin meshwork, we resorted to structured illumination microscopy, a form of super resolution microscopy, and measured the degree of anisotropy amongst actin filaments. Since
anisotropy is the property of being directionally dependent, a high anisotropy value with regards to actin filaments is suggestive of filaments being organized in a more parallel fashion whereas lower anisotropy values suggest an actin meshwork with more orthogonal crosslinking. When SIM was performed on A7 control cells, a 0.1905 ± 0.0171, $n=15$, anisotropy value was measured (Figure 4-6A). In contrast, A7 cells overexpressing TRPP2 displayed a significantly lowered 0.1397 ± 0.0082, $n=15$, anisotropy value which proposes a rearranged actin cytoskeleton from a more parallel to a more orthogonal state in the presence of TRPP2. No difference however was found between FLNa deficient M2 cells expressing a control vector (0.1135 ± 0.0082, $n=15$) and those expressing TRPP2 (0.1121 ± 0.0103, $n=13$). Therefore Filamin A appears to play an intricate role in mediating actin cytoskeleton rearrangement by Polycystin 2.

As mentioned before, the literature suggests FLNa localization to membrane patches subjected to mechanical forces166. We therefore mechanically stimulated Cos7 via centrifugal force and observed for actin cytoskeleton rearrangement (Figure 4-6B). Unlike what was observed in A7 cells, TRPP2 transfected Cos7 cells did not display a change in anisotropy (0.1062 ± 0.0075, $n=14$) compared to mock transfected cells (0.1081 ± 0.0065, $n=15$). When exposed to centrifugation at 2000RPM (1010G), TRPP2 transfected Cos7 cells unexpectedly showed a raised anisotropy value (0.1408 ± 0.0098, $n=15$) compared to centrifuged mock transfected cells (0.1119 ± 0.0084, $n=15$) and non stimulated TRPP2 transfected cells.
Figure 4-1: TRPP2 induces an accelerated recovery of TREK1 current inhibition in Cos7 cells following sensitization via a -70 mmHg 2Hz pressure pulse train. (A) Representative traces showing elicited current during 2Hz pressure pulse train and after 2s, 15s, and 30s of rest. (B) Normalized stimulus response curves of mechanically activated TREK1 current during (0-10 s) and after (10-57 s) pressure pulse train in TRPP2 (n=38) expressing and mock (n=40) cells. (C) Recovered TREK1 current inhibition at 47s post pressure pulse train showing a significant increase in TREK1 current inhibition when TRPP2 is expressed. All data expressed as a percentage to the 20th (final) pulse at 10s. Statistical significance at *=p<0.05.
Figure 4-2: TRPP2 requires Filamin A to induce an accelerated recovery of TREK1 current inhibition following sensitization via a -70 mmHg 2Hz pressure pulse train.
(A) Stimulus response curves of mechanically activated TREK1 currents of M2 FLNa⁻/⁻ cells expressing TRPP2 (n=38) or mock (n=51) vectors and (B) of A7 FLNa⁺/+ cells expressing TRPP2 (n=17) or mock (n=23). (C) Recovered TREK1 current inhibition at 47s post pressure pulse train showing a significant recovering of TREK current inhibition in Cos7 and A7 FLNa⁺/+ cells when expressing TRPP2 but not in M2 FLNa⁻/⁻ cells. All data expressed as a percentage to the 20th (final) pulse at 10s. Statistical significance at *=p<0.05.
Figure 4-3: Rate of actin recruitment to the cell membrane is not altered following expression of TRPP2. (A) Averaged traces showing recovery of LifeAct-RFP fluorescence signal following membrane photobleaching at t=1.5s in GFP (n=24) or TRPP2 (n=34) expressing Cos7 cells at 37°C and (B) at 22°C. (C) Tau value of fluorescence recovery trace at 37°C and (D) at 22°C showing no significant difference in recovery time constants between GFP transfected and TRPP2 transfected cells.
Figure 4-4: FRAP using GFP-Actin expressing Cos7 cells shows no change in actin dynamics following TRPP2 expression. (A) Averaged fluorescence recovery traces following membrane photobleaching of GFP-Actin in mock transfected (n=22) and TRPP2 transfected (n=21) cells at 22°C. (B) Time constant and (C) mobile fraction unaltered following TRPP2 expression.
Figure 4-5: Filamin A localizes to the plasma membrane without mechanical stimulation following TRPP2 transfection but not in the presence of mechanical stimulation. (A) S8 cells expressing Filamin A-RFP in red transfected with (i) TRPP2 or (ii) GFP control. (B) Filamin A-RFP fluorescence intensity expressed as membrane signal normalized to whole cell signal in S8 cells transfected with or with TRPP2 under resting or mechanically stimulating conditions. n=10. Statistical significance at ***=p<0.001.
Figure 4-6: SIM data suggesting actin reorganization in Filamin A expressing cells following transfection with TRPP2. (A) A7 and M2 cell anisotropy values following transfection with TRPP2 or mock plasmid (n=13-15). (B) Comparison of anisotropy values for Cos7 cells with or without mechanical stimulation following transfection with TRPP2 or mock plasmid (n=14-15). Statistical significance at *=p<0.05, **=p<0.01.
Chapter 5 – Discussion

5.1 Dynamic Inhibition of TREK1 Channels via Polycystin 2

The TREK1 two-pore-domain K⁺ channels play an intricate role in detecting mechanical stresses and to mediate the appropriate cellular responses such as volume regulation and mechanoprotection⁶⁹,⁷¹,⁹⁰. Previous studies demonstrate how Polycystin 2 inhibits TREK1 channels through a mechanism that involves an intact actin cytoskeleton and the actin binding protein Filamin A. The proposed model however is one that is static and does not investigate whether any dynamic cellular processes such as protein recruitment are involved⁵⁹,⁹⁰. In our electrophysiology experiments, we designed a protocol that is capable of exercising the plasma membrane through repeated negative pressure pulses to disrupt the underlying cytoskeleton¹⁷¹. As expected, the elicited TREK1 current increases progressively and nearly doubles as the membrane is exercised up until the 20th and final pulse. When the membrane is allowed to rest we see minimal recovery of current inhibition with the TREK1 current remaining elevated at 92.94 ± 14.43 % of the 20th pressure pulse even after 47s of membrane rest. Cos7 cells transfected with TRRP2 show the same rising induced current during membrane exercise but instead recovered to 63.72 ± 5.58 % of the 20th pulse after membrane rest. Ideally, recordings would have been continued until TREK1 currents have been fully inhibited back to baseline pre-exercise conditions however a limiting factor was a low success rate at maintaining a cell-attached configuration for longer than 1 minute. This is to be expected considering the rapid successive pulses used for membrane stimulation. Regardless, this greater degree of the recovered current inhibition observed in the same timespan suggests cells expressing TRPP2 recover to pre-membrane stimulation conditions at a faster rate than cells simply
expressing a mock vector. This novel finding is the first evidence that supports the notion that TRPP2 regulates TREK1 channels through a dynamic process.

We next investigated whether the dynamic regulation of TREK1 channels by TRPP2 required the actin binding protein Filamin A as suggested in the previously proposed static model\(^{59}\). The M2 cell line was a perfect tool for testing the involvement of Filamin A; not only because the gene encoding FLNa was completely knocked out, but because the A7 cell line is a perfect FLNa\(^{+/+}\) control since it originated from transfected M2 cells\(^{153}\). Similar to Cos7 cells, membrane exercise elicited a rising outward TREK1 current in A7 cells until a plateau was reached. Membrane rest allowed a degree of current inhibition recovery in control cells whereas TRPP2 transfected cells showed a complete recovery of inhibition by 47s post pressure pulse train. M2 cells also showed recovery post exercise but failed to display any differences between TRPP2 transfected and mock transfected conditions. In fact, both conditions recovered to the same degree as A7 cells lacking TRPP2 thus highlighting Filamin A’s key role as a player in the TRPP2 pathway. The fact that mock transfected A7 and M2 cells still recovered to about 70% of the 20\(^{th}\) pressure pulse shows that an intrinsic mechanism of actin re-polymerization at the plasma membrane not dependent on TRPP2 is involved in dynamically inhibiting the TREK1 currents whereas TRPP2 likely serves to speed up the process. The faster recovery rate observed in A7 cells expressing TRPP2 compared to that of Cos7 cells may be explained by A7 cells potentially having an intrinsically faster actin cytoskeleton recovery rate or due to an increased Filamin A expression pattern since the A7 cells are in fact an overexpression system. Regardless, TRPP2 accelerates the recovery rate of TREK1 current.
inhibition, therefore confirming that the inhibition is dynamic, and that the process is clearly dependent on Filamin A availability.

5.2 Actin Recruitment to the Cell Membrane

Seeing that TREK1 current inhibition recovers following disruption of the actin cytoskeleton and that polymerized actin has previously been reported as crucial for TRPP2’s mechanism, we suspected that actin might be actively recruited to the plasma membrane by TRPP259,90. Fluorescence Recovery After Photobleaching (FRAP) was the ideal technique to measure the recruitment rate of actin to the cell membrane after bleaching the fluorescence signal at a small patch of membrane. In our first set of experiments we used cells transfected with LifeAct-RFP to visualize F-actin as opposed to G-actin since we reasoned that only actin that was recruited to the cell membrane and polymerized could affect cell membrane structure and therefore regulate TREK1 channel opening170. Measurements fit to an exponential curve to extrapolate times constants revealed no difference in LifeAct-RFP fluorescence recovery between TRPP2 and control transfected cells. We then hypothesized that TRPP2’s effect on actin recruitment may be too small to be detected under such experimental conditions. We therefore re-performed the experiments at 22°C as opposed to 37°C to slow down the kinetics of actin recruitment. Any difference in time constants would thus be more evident when comparing transfection conditions. Indeed, colder experimental conditions resulted in overall slower time constant values however no difference was evident with cells expressing TRPP2 compared to controls (Figure 4-3).
We next attempted FRAP experiments with GFP-actin to observe directly the trafficking of G-actin monomers to the plasma membrane (Figure 4-4). Again, the experiments suggested that actin was not recruited at an accelerated rate to the plasma membrane due to TRPP2. We speculated that the mobile fraction of actin could be altered in TRPP2 conditions. A lower actin mobile fraction at the cell membrane could suggest that TRPP2 holds actin in place to inhibit local TREK1 channels. Calculation of mobile fractions from FRAP curves however yielded no significant differences. Our data thus far suggest that actin dynamics are not altered in TRPP2 expressing conditions. It would be worth it however for future experiments to investigate actin dynamics directly following mechanical stimulation at the cellular membrane. Perhaps such stimulus is a necessary factor for TRPP2 to recruit actin to the membrane.

5.3 Filamin A Localization

The clear evidence of Filamin A’s necessity for the TRPP2 to regulate TREK1 channels lead to the postulation that Filamin A was preferentially localized to the membrane via TRPP2. To track the subcellular localization of Filamin A, we developed a new cell line by stably transfecting M2 cells with Filamin A-RFP. This new cell line, termed the S8 line, is essentially an A7 cell but with a fluorescently tagged Filamin A. The morphology of the S8 cell line resembled a hybrid of M2 and A7 cells which is assumed to be due to a Filamin A expression level subpar to A7 cells (data not shown). Regardless, all S8 cells displayed adequate RFP fluorescence signal to track the subcellular localization of Filamin A. In cells subsequently transfected with TRPP2, we observed a greater fluorescence signal at the cell membrane compared to control cells, therefore suggesting
that TRPP2 does indeed alter the subcellular localization of FLNa (Figure 4-5). TRPP2 likely holds FLNa at the membrane due to the direct interaction between FLNa’s C-terminal domain with the intracellular N- and C- termini of TRPP2.144

As previously mentioned, FLNa has been found to concentrate to sites of local mechanical stress.166 We aimed to apply a mechanical stress to the entire cell in an attempt to determine whether a greater degree of Filamin A is localized to the cell membrane with TRPP2. Mechanically stimulating the cells via centrifugation yielded unexpected results in that there was no longer a greater proportion of FLNa at the cell membrane in TRPP2 cells compared to mock cells. This unanticipated observation may be due to our method of mechanical stimulation which contrasts that of the Glogauer lab. The aforementioned group used magnetic beads to mechanically stimulate local regions of the cell membrane whereas our centrifugation technique stimulates the entire cell.166 This includes not only the complete cell membrane but also all the intracellular components which may lead to inaccurate results. Our results without any mechanical stimulation still stand however and show that the inhibition of TREK1 channels via TRPP2 function through a recruitment of FLNa to the plasma membrane.

5.4 Actin Reorganization

Our recent findings are not suggestive of faster actin recruitment to the cell membrane however the current literature and our electrophysiology findings validate actin’s role in TRPP2-induced TREK1 inhibition.59,90 Since we observe a subcellular localization of Filamin A to the cell membrane in cells co-expressing TRPP2 (Figure 4-5), we suspected that the localized concentration of FLNa was capable of reorganizing the
actin cytoskeleton due to FLNa’s ability to crosslink actin in an orthogonal fashion143. Using structured illumination microscopy, we were able to acquire super resolution images of phalloidin stained actin filaments and then measure the anisotropy values at the membrane as a technique to determine how orthogonal the F-actin was arranged. As we expected, A7 cells displayed a decrease in anisotropy following transfection with TRPP2 (Figure3-7A). This measured decrease in anisotropy articulates that the microfilaments are less directionally dependent, or in other words, more orthogonal instead of parallel. This finding is reasonable since greater FLNa levels are found at the membrane with TRPP2 expression which allows for a greater degree of actin crosslinking just deep to the cell membrane. M2 cells did not exhibit any changes in anisotropy value during TRPP2 transfection which further validates the necessity of Filamin A in crosslinking actin. Further experimentation with Cos7 cells yielded results that were less expected. No change in anisotropy was found when transfection with TRPP2 was performed compared to mock control cells. We correlate these findings to the lower expression level of Filamin A in Cos7 cells compared to that of A7 cells. We suspect that the expression level of Filamin A is high enough to see the functional difference in our electrophysiology recordings but too low to see any structural changes with our imaging techniques. Furthermore, we showed that TREK1 current inhibition recovered to a lesser degree with and without TRPP2 in Cos7 cells compared to A7 cells which may potentially be explained by non visual changes in the actin reorganization due to lower Filamin A expression. Future studies will require the overexpression of Filamin A in Cos7 cells to see if electrophysiology results are enhanced and whether changes in actin reorganization become evident.
Finally, we subjected the Cos7 cells to mechanical stimulation via centrifugation in a similar manner to our S8 cells for analyzing the subcellular localization of FLNa. When SIM was performed of Cos7 cells subjected to mechanical stimulation we observed an increase in the anisotropy with cells expressing TRPP2 therefore showing a reorganization of actin to more parallel bundles instead of orthogonal structures (Figure 4-6B). Although not originally expected, this finding is consistent with the decrease in Filamin A localization found at the cell membrane following centrifugal stimulation. As we develop better techniques for mechanically stimulating the plasma membrane independently from the entire cell such as performed in the previous literature, we will then be able to stimulate just a local region of the membrane in A7, M2, and Cos7 cells and compare that region to the rest of the cell membrane166.

5.5 Revised Upholstery Model

Our current findings remain consistent with the Upholstery Model first described by Sharif-Naeini et al. in 2009 for SACs and then applied to TREK1 by the same group in 201259,90. The model originally proposed that uninterrupted TRPP2 is capable of recruiting actin and crosslinking the filaments of the cytoskeleton to create microdomains of the lipid bilayer with relatively small radii of curvature. Thus according to Laplace’s Law, lower tension is perceived by TREK1 channels for a given transmembrane pressure in the presence of TRPP2 with FLNa and an intact actin cytoskeleton. Our studies confirm that Filamin A shows preferential subcellular localization to the cell membrane in the presence of TRPP2. Moreover, while the rate of actin recruitment is not altered, we show that actin is reorganized orthogonally which was originally suspected for the Upholstery Model to
create the microdomains. As an update to the model, through our electrophysiology data, we show that the process of TREK1 inhibition occurs through a dynamic process since inhibition recovers at a faster rate in TRPP2 transfected cells following disruption of the actin cytoskeleton (Figure 4-1). We show that this process occurs not because actin is recruited at a faster rate, but because of the way it is organized following recruitment (Figure 4-6). Future experiments will however be required to prove that the orthogonal reorganization of actin does indeed cause a rigidification of the membrane that can impede channel opening. This question can be solved using Atomic Force Microscopy whereby a probe is pressed against the cell membrane and a feedback force is measured for a given indentation. Ultimately, we can calculate of the membrane tension of cells under different conditions. Cells overexpressing FLNa and TRPP2 will likely display a higher effective membrane tension compared to cells with lower levels of FLNa and TRPP2.

Chapter 6 – Conclusion

Our study features the mechanical regulation of the TREK1 mechanosensitive potassium channel by Polycystin 2. We show that while co-expressing TRPP2 in heterologous systems with TREK1 greatly inhibits the elicited current following mechanical stimulation, this inhibition can be removed by disrupting the underlying actin cytoskeleton by exercising the membrane with repeated pressure pulses. Furthermore, during membrane rest, the inhibition of TREK1 occurs at a faster rate when TRPP2 is expressed. We then show that this process is not due to an increased recruitment of actin to the cell membrane, but because Filamin A is preferentially localized at the cell membrane and crosslinks actin filaments in an orthogonal fashion. Because TREK1 is widely
expressed in the human body, especially the nervous system, and has several mechanosensory functions, understanding how it is regulated may prove useful in future therapy development. The data presented in this thesis refine the roles of Polycystin 2, Filamin A, and the actin cytoskeleton in regulating TREK1 mechanosensitivity.
Chapter 7 - References

1. Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. *Nature reviews. Neuroscience* **12**, 139-153, doi:10.1038/nrn2993 (2011).
2. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. *Physiological reviews* **81**, 685-740 (2001).
3. Nakamura, F. & Strittmatter, S. M. P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 10465-10470 (1996).
4. Burnstock, G. & Wood, J. N. Purinergic receptors: their role in nociception and primary afferent neurotransmission. *Current opinion in neurobiology* **6**, 526-532 (1996).
5. Howard, J., Roberts, W. M. & Hudspeth, A. J. Mechanoelectrical transduction by hair cells. *Annual review of biophysics and biophysical chemistry* **17**, 99-124, doi:10.1146/annurev.bb.17.060188.000531 (1988).
6. Hackney, C. M. & Furness, D. N. Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. *The American journal of physiology* **268**, C1-13 (1995).
7. Burnstock, G. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. *Journal of anatomy* **194 (Pt 3)**, 335-342 (1999).
8. Bourque, C. W. & Oliet, S. H. Osmoreceptors in the central nervous system. *Annual review of physiology* **59**, 601-619, doi:10.1146/annurev.physiol.59.1.601 (1997).
9. Brading, A. F. The physiology of the mammalian urinary outflow tract. *Experimental physiology* **84**, 215-221 (1999).
10. Duncan, R. L. & Turner, C. H. Mechanotransduction and the functional response of bone to mechanical strain. *Calcified tissue international* **57**, 344-358 (1995).
11. Nilius, B. & Honore, E. Sensing pressure with ion channels. *Trends Neurosci* **35**, 477-486, doi:10.1016/j.tins.2012.04.002 (2012).
12. Gu, Y. & Gu, C. Physiological and Pathological Functions of Mechanosensitive Ion Channels. *Mol Neurobiol*, doi:10.1007/s12035-014-8654-4 (2014).
13. Kung, C. A possible unifying principle for mechanosensation. *Nature* **436**, 647-654, doi:10.1038/nature03896 (2005).
14. Cantor, R. S. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. *Chemistry and physics of lipids* **101**, 45-56 (1999).
15. Perozo, E., Cortes, D. M., Somportpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. *Nature* **418**, 942-948, doi:10.1038/nature00992 (2002).
16. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. *Nature structural biology* **9**, 696-703, doi:10.1038/nsb827 (2002).
17. Chalfie, M. Neurosensory mechanotransduction. *Nature reviews. Molecular cell biology* **10**, 44-52, doi:10.1038/nrm2595 (2009).
18. Morris, C. E. Mechanosensitive ion channels. *The Journal of membrane biology* **113**, 93-107 (1990).
Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. *Nature* **413**, 194-202, doi:10.1038/35093011 (2001).

Bourque, C. W., Voisin, D. L. & Chakfe, Y. Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. *Progress in brain research* **139**, 85-94 (2002).

Minke, B. & Cook, B. TRP channel proteins and signal transduction. *Physiological reviews* **82**, 429-472, doi:10.1152/physrev.00001.2002 (2002).

Christensen, A. P. & Corey, D. P. TRP channels in mechanosensation: direct or indirect activation? *Nature reviews. Neuroscience* **8**, 510-521, doi:10.1038/nrn2149 (2007).

Story, G. M. *et al.* ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. *Cell* **112**, 819-829 (2003).

Kindt, K. S. *et al.* Caenorhabditis elegans TRPA-1 functions in mechanosensation. *Nature neuroscience* **10**, 568-577, doi:10.1038/nn1886 (2007).

Bautista, D. M. *et al.* TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. *Cell* **124**, 1269-1282, doi:10.1016/j.cell.2006.02.023 (2006).

Story, G. M. & Gereau, R. W. t. Numbing the senses: role of TRPA1 in mechanical and cold sensation. *Neuron* **50**, 177-180, doi:10.1016/j.neuron.2006.04.009 (2006).

Brierley, S. M. *et al.* TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. *The Journal of physiology* **589**, 3575-3593, doi:10.1113/jphysiol.2011.206789 (2011).

Maroto, R. *et al.* TRPC1 forms the stretch-activated cation channel in vertebrate cells. *Nature cell biology* **7**, 179-185, doi:10.1038/ncb1218 (2005).

Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J. & Gill, D. L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. *Proceedings of the National Academy of Sciences of the United States of America* **103**, 16586-16591, doi:10.1073/pnas.0606894103 (2006).

Patel, A. *et al.* Canonical TRP channels and mechanotransduction: from physiology to disease states. *Pflugers Archiv : European journal of physiology* **460**, 571-581, doi:10.1007/s00424-010-0847-8 (2010).

Gottlieb, P. *et al.* Revisiting TRPC1 and TRPC6 mechanosensitivity. *Pflugers Archiv : European journal of physiology* **455**, 1097-1103, doi:10.1007/s00424-007-0359-3 (2008).

Feng, N. H., Lee, H. H., Shiang, J. C. & Ma, M. C. Transient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance P release and sensory activation in rat kidneys. *American journal of physiology. Renal physiology* **294**, F316-325, doi:10.1152/ajprenal.00308.2007 (2008).

Caterina, M. J. *et al.* The capsaicin receptor: a heat-activated ion channel in the pain pathway. *Nature* **389**, 816-824, doi:10.1038/39807 (1997).

Liedtke, W. TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. *The Journal of physiology* **567**, 53-58, doi:10.1113/jphysiol.2005.088963 (2005).

Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in trpv4-/- mice. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 13698-13703, doi:10.1073/pnas.1735416100 (2003).
36 Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. *The Journal of biological chemistry* **278**, 22664-22668, doi:10.1074/jbc.M302561200 (2003).

37 Vriens, J. *et al.* Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 396-401, doi:10.1073/pnas.0303329101 (2004).

38 Morita, H. *et al.* Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. *Journal of pharmacological sciences* **103**, 417-426 (2007).

39 Numata, T., Shimizu, T. & Okada, Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. *American journal of physiology. Cell physiology* **292**, C460-467, doi:10.1152/ajpcell.00367.2006 (2007).

40 Gellens, M. E. *et al.* Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. *Proceedings of the National Academy of Sciences of the United States of America* **89**, 554-558 (1992).

41 Lyford, G. L. & Farrugia, G. Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. *Current opinion in pharmacology* **3**, 583-587 (2003).

42 Beyder, A. *et al.* Mechano-sensitivity of Nav1.5, a voltage-sensitive sodium channel. *The Journal of physiology* **588**, 4969-4985, doi:10.1113/jphysiol.2010.199034 (2010).

43 Strege, P. R. *et al.* Cytoskeletal modulation of sodium current in human jejunal circular smooth muscle cells. *American journal of physiology. Cell physiology* **284**, C60-66, doi:10.1152/ajpcell.00532.2001 (2003).

44 Lyford, G. L. *et al.* alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechano-sensitive calcium regulation. *American journal of physiology. Cell physiology* **283**, C1001-1008, doi:10.1152/ajpcell.00140.2002 (2002).

45 Calabrese, B., Tabarean, I. V., Juranka, P. & Morris, C. E. Mechano-sensitivity of N-type calcium channel currents. *Biophysical journal* **83**, 2560-2574, doi:10.1016/s0006-3495(02)75267-3 (2002).

46 Shin, J. B., Martinez-Salgado, C., Heppenstall, P. A. & Lewin, G. R. A T-type calcium channel required for normal function of a mammalian mechanoreceptor. *Nature neuroscience* **6**, 724-730, doi:10.1038/nn1076 (2003).

47 Kraichely, R. E., Strege, P. R., Sarr, M. G., Kendrick, M. L. & Farrugia, G. Lysophosphatidyl choline modulates mechano-sensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. *American journal of physiology. Gastrointestinal and liver physiology* **296**, G833-839, doi:10.1152/ajpgi.90610.2008 (2009).

48 Zhang, W. K. *et al.* Mechanosensitive gating of CFTR. *Nature cell biology* **12**, 507-512, doi:10.1038/ncb2053 (2010).

49 Coste, B. *et al.* Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. *Science (New York, N.Y.)* **330**, 55-60, doi:10.1126/science.1193270 (2010).

50 Coste, B. *et al.* Piezo proteins are pore-forming subunits of mechanically activated channels. *Nature* **483**, 176-181, doi:10.1038/nature10812 (2012).

51 Bae, C., Sachs, F. & Gottlieb, P. A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. *Biochemistry* **50**, 6295-6300, doi:10.1021/bi200770q (2011).
Berrier, C. et al. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. *The Journal of biological chemistry* **288**, 27307-27314, doi:10.1074/jbc.M113.478321 (2013).

Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. *The Journal of biological chemistry* **274**, 26691-26696 (1999).

Medhurst, A. D. et al. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. *Brain research. Molecular brain research* **86**, 101-114 (2001).

Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. *Journal of cell science* **116**, 1157-1173 (2003).

Schevzov, G., Curthoys, N. M., Gunning, P. W. & Fath, T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. *International review of cell and molecular biology* **298**, 33-94, doi:10.1016/b978-0-12-394309-5.00002-x (2012).

Wickstead, B. & Gull, K. The evolution of the cytoskeleton. *The Journal of cell biology* **194**, 513-525, doi:10.1083/jcb.201102065 (2011).

Wu, Z., Wong, K., Glogauer, M., Ellen, R. P. & McCulloch, C. A. G. Regulation of Stretch-Activated Intracellular Calcium Transients by Actin Filaments. *Biochemical and biophysical research communications* **261**, 419-425, doi:http://dx.doi.org/10.1006/bbrc.1999.1057 (1999).

Sharif-Naeini, R. et al. Polycystin-1 and -2 dosage regulates pressure sensing. *Cell* **139**, 587-596, doi:10.1016/j.cell.2009.08.045 (2009).

Nakamura, T. Y. et al. Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. *American journal of physiology. Cell physiology* **281**, C690-699 (2001).

Staruschenko, A., Negulyaev, Y. A. & Morachevskaya, E. A. Actin cytoskeleton disassembly affects conductive properties of stretch-activated cation channels in leukaemia cells. *Biochimica et biophysica acta* **1669**, 53-60, doi:10.1016/j.bbamem.2005.02.013 (2005).

Ito, S. et al. Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. *American journal of respiratory cell and molecular biology* **43**, 26-34, doi:10.1165/rcmb.2009-0073OC (2010).

Zhang, Z., Kindrat, A. N., Sharif-Naeini, R. & Bourque, C. W. Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **27**, 4008-4013, doi:10.1523/jneurosci.3278-06.2007 (2007).

Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. *The Journal of cell biology* **107**, 1437-1448 (1988).

Weisenberg, R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. *Science (New York, N.Y.)* **177**, 1104-1105 (1972).

Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. *Nature* **312**, 237-242 (1984).

Bechstedt, S. et al. A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia. *Nature communications* **1**, 11, doi:10.1038/ncomms1007 (2010).
Piao, L., Ho, W. K. & Earm, Y. E. Actin filaments regulate the stretch sensitivity of large-conductance, Ca2+-activated K+ channels in coronary artery smooth muscle cells. *Pflugers Archiv : European journal of physiology* **446**, 523-528, doi:10.1007/s00424-003-1079-y (2003).

Patel, A. J. *et al.* A mammalian two pore domain mechano-gated S-like K+ channel. *The EMBO journal* **17**, 4283-4290, doi:10.1093/emboj/17.15.4283 (1998).

Lesage, F. *et al.* TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. *The EMBO journal* **15**, 1004-1011 (1996).

Fink, M. *et al.* Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. *The EMBO journal* **15**, 6854-6862 (1996).

Salkoff, L. *et al.* An essential 'set' of K+ channels conserved in flies, mice and humans. *Trends Neurosci* **15**, 161-166 (1992).

Doupnik, C. A., Davidson, N. & Lester, H. A. The inward rectifier potassium channel family. *Current opinion in neurobiology* **5**, 268-277 (1995).

Castellucci, V. & Kandel, E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. *Science (New York, N.Y.)* **194**, 1176-1178 (1976).

Sigurdson, W. J. & Morris, C. E. Stretch-activated ion channels in growth cones of snail neurons. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **9**, 2801-2808 (1989).

Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. *Proceedings of the National Academy of Sciences of the United States of America* **71**, 4457-4461 (1974).

Lesage, F. & Lazdunski, M. Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23. *Genomics* **51**, 478-479, doi:10.1006/geno.1998.5397 (1998).

Honore, E. The neuronal background K2P channels: focus on TREK1. *Nature reviews. Neuroscience* **8**, 251-261, doi:10.1038/nrn2117 (2007).

Lesage, F. & Lazdunski, M. Molecular and functional properties of two-pore-domain potassium channels. *American journal of physiology. Renal physiology* **279**, F793-801 (2000).

Berg, A. P., Talley, E. M., Manger, J. P. & Bayliss, D. A. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **24**, 6693-6702, doi:10.1523/jneurosci.1408-04.2004 (2004).

O’Connell, A. D., Morton, M. J. & Hunter, M. Two-pore domain K+ channels-molecular sensors. *Biochimica et biophysica acta* **1566**, 152-161 (2002).

Chapman, M. L., Krovetz, H. S. & VanDongen, A. M. GYGD pore motifs in neighbouring potassium channel subunits interact to determine ion selectivity. *The Journal of physiology* **530**, 21-33 (2001).

Hervieu, G. J. *et al.* Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. *Neuroscience* **103**, 899-919 (2001).

Hughes, S. *et al.* Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts. *Journal of cellular physiology* **206**, 738-748, doi:10.1002/jcp.20536 (2006).
Garry, A. et al. Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. *EMBO reports* **8**, 354-359, doi:10.1038/sj.embor.7400916 (2007).

Blondeau, N. et al. Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. *Circulation research* **101**, 176-184, doi:10.1161/circresaha.107.154443 (2007).

Terrenoire, C., Lauritzen, I., Lesage, F., Romey, G. & Lazdunski, M. A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. *Circulation research* **89**, 336-342 (2001).

Xian Tao, L. et al. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. *Cardiovascular research* **69**, 86-97, doi:10.1016/j.cardiores.2005.08.018 (2006).

Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. *The EMBO journal* **25**, 2368-2376, doi:10.1038/sj.emboj.7601116 (2006).

Peyronnet, R. et al. Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. *Cell reports* **1**, 241-250, doi:10.1016/j.celrep.2012.01.006 (2012).

Ruskoaho, H. Atrial natriuretic peptide: synthesis, release, and metabolism. *Pharmacological reviews* **44**, 479-602 (1992).

Kim, D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. *Circulation research* **72**, 225-231 (1993).

Goonetilleke, L. & Quayle, J. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target. *Cardiovascular therapeutics* **30**, e23-29, doi:10.1111/j.1755-5922.2010.00227.x (2012).

Kohl, P. & Ravens, U. Cardiac mechano-electric feedback: past, present, and prospect. *Progress in biophysics and molecular biology* **82**, 3-9 (2003).

Lanyon, L. E. Control of bone architecture by functional load bearing. *Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research* **7 Suppl 2**, S369-375, doi:10.1002/jbmr.5650071403 (1992).

Punke, M. A., Licher, T., Pongs, O. & Friederich, P. Inhibition of human TREK-1 channels by bupivacaine. *Anesthesia and analgesia* **96**, 1665-1673, table of contents (2003).

Maingret, F. et al. TREK-1 is a heat-activated background K(+) channel. *The EMBO journal* **19**, 2483-2491, doi:10.1093/emboj/19.11.2483 (2000).

Maingret, F., Honore, E., Lazdunski, M. & Patel, A. J. Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel. *Biochemical and biophysical research communications* **292**, 339-346, doi:10.1006.bbrc.2002.6674 (2002).

Honore, E., Maingret, F., Lazdunski, M. & Patel, A. J. An intracellular proton sensor commands lipid- and mechano-gating of the K(+)-channel TREK-1. *The EMBO journal* **21**, 2968-2976, doi:10.1093/emboj/cdf288 (2002).

Chemin, J. et al. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. *The EMBO journal* **24**, 44-53, doi:10.1038/sj.emboj.7600494 (2005).

Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Lyposphospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. *The Journal of biological chemistry* **275**, 10128-10133 (2000).
102 Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K(+) channels. *Current opinion in cell biology* **13**, 422-428 (2001).

103 Murbartian, J., Lei, Q., Sando, J. J. & Bayliss, D. A. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TRENK-1 background potassium channels. *The Journal of biological chemistry* **280**, 30175-30184, doi:10.1074/jbc.M503862200 (2005).

104 Chemin, J. *et al.* Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. *The EMBO journal* **22**, 5403-5411, doi:10.1093/emboj/cdg528 (2003).

105 Patel, A. J. *et al.* Inhalational anesthetics activate two-pore-domain background K+ channels. *Nature neuroscience* **2**, 422-426, doi:10.1038/8084 (1999).

106 Gruss, M. *et al.* Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. *Molecular pharmacology* **65**, 443-452, doi:10.1124/mol.65.2.443 (2004).

107 Harinath, S. & Sikdar, S. K. Trichloroethanol enhances the activity of recombinant human TRENK-1 and TRAAK channels. *Neuropharmacology* **46**, 750-760, doi:10.1016/j.neuropharm.2003.11.023 (2004).

108 Lauritzen, I. *et al.* Cross-talk between the mechano-gated K2P channel TRENK-1 and the actin cytoskeleton. *EMBO reports* **6**, 642-648, doi:10.1038/sj.embor.7400449 (2005).

109 Harris, P. C. & Torres, V. E. Polycystic kidney disease. *Annual review of medicine* **60**, 321-337, doi:10.1146/annurev.med.60.101707.125712 (2009).

110 Wilson, P. D. Polycystic kidney disease. *The New England journal of medicine* **350**, 151-164, doi:10.1056/NEJMra022161 (2004).

111 Mochizuki, T. *et al.* PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. *Science (New York, N.Y.)* **272**, 1339-1342 (1996).

112 The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. *Cell* **77**, 881-894 (1994).

113 Pei, Y. *et al.* A spectrum of mutations in the polycystic kidney disease-2 (PKD2) gene from eight Canadian kindreds. *Journal of the American Society of Nephrology : JASN* **9**, 1853-1860 (1998).

114 Hateboer, N. *et al.* Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. *Lancet* **353**, 103-107 (1999).

115 Harris, P. C. Autosomal dominant polycystic kidney disease: clues to pathogenesis. *Human molecular genetics* **8**, 1861-1866 (1999).

116 Brook-Carter, P. T. *et al.* Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease--a contiguous gene syndrome. *Nature genetics* **8**, 328-332, doi:10.1038/ng1294-328 (1994).

117 Pritchard, L. *et al.* A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. *Human molecular genetics* **9**, 2617-2627 (2000).

119 Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. *Cell* **81**, 289-298 (1995).
Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. *Nature genetics* **10**, 151-160, doi:10.1038/ng0695-151 (1995).

Wilson, P. D. Polycystin: new aspects of structure, function, and regulation. *Journal of the American Society of Nephrology : JASN* **12**, 834-845 (2001).

Geng, L. et al. Identification and localization of polycystin, the PKD1 gene product. *The Journal of clinical investigation* **98**, 2674-2682, doi:10.1172/jci119090 (1996).

Geng, L. et al. Distribution and developmentally regulated expression of murine polycystin. *The American journal of physiology* **272**, F451-459 (1997).

Wilson, P. D. Polycystin: new aspects of structure, function, and regulation. *The Journal of clinical investigation* **98**, 2674-2682, doi:10.1172/jci119090 (1996).

Chauvet, V. et al. Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. *The American journal of pathology* **160**, 973-983, doi:10.1016/s0002-9440(02)64919-x (2002).

Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. *Nature genetics* **16**, 179-183, doi:10.1038/ng0697-179 (1997).

Geng, L. et al. Distribution and developmentally regulated expression of murine polycystin. *The American journal of physiology* **272**, F451-459 (1997).

Nilius, B., Owssianik, G., Voets, T. & Peters, J. A. Transient receptor potential cation channels in disease. *Physiological reviews* **87**, 165-217, doi:10.1152/physrev.00021.2006 (2007).

Chauvet, V. et al. Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. *The American journal of pathology* **160**, 973-983, doi:10.1016/s0002-9440(02)64919-x (2002).

Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. *Nature genetics* **16**, 179-183, doi:10.1038/ng0697-179 (1997).

Tsiokas, L. et al. Specific association of the gene product of PKD2 with the TRPC1 channel. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 3934-3939 (1999).

Chen, X. Z. et al. Submembraneous microtubule cytoskeleton: interaction of TRPP2 with the cell cytoskeleton. *The FEBS journal* **275**, 4675-4683, doi:10.1111/j.1742-4658.2008.06616.x (2008).

Giamarchi, A. et al. The versatile nature of the calcium-permeable cation channel TRPP2. *EMBO reports* **7**, 787-793, doi:10.1038/sj.emboj.7400745 (2006).

Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. *Nature cell biology* **4**, 191-197, doi:10.1038/ncb754 (2002).

Cai, Y. et al. Identification and characterization of polycystin-2, the PKD2 gene product. *The Journal of biological chemistry* **274**, 28557-28565 (1999).

Luo, Y., Vassilev, P. M., Li, X., Kawanabe, Y. & Zhou, J. Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. *Molecular and cellular biology* **23**, 2600-2607 (2003).

Hanaoka, K. et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. *Nature* **408**, 990-994, doi:10.1038/35050128 (2000).

Kottgen, M. et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. *The EMBO journal* **24**, 705-716, doi:10.1038/sj.emboj.7600566 (2005).

Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. *Nature genetics* **33**, 129-137, doi:10.1038/ng1076 (2003).

Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. *The Journal of membrane biology* **184**, 71-79 (2001).

Iomini, C., Tejada, K., Mo, W., Vaananen, H. & Piperno, G. Primary cilia of human endothelial cells disassemble under laminar shear stress. *The Journal of cell biology* **164**, 811-817, doi:10.1083/jcb.200312133 (2004).
Van der Heiden, K. et al. Monocilia on chicken embryonic endocardium in low shear stress areas. Developmental dynamics: an official publication of the American Association of Anatomists 235, 19-28, doi:10.1002/dvdy.20557 (2006).

Nauli, S. M. et al. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161-1171, doi:10.1161/circulationaha.107.710111 (2008).

AbouAlaiwi, W. A. et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circulation research 104, 860-869, doi:10.1160/circresaha.108.192765 (2009).

Boo, Y. C. & Jo, H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. American journal of physiology. Cell physiology 285, C499-508, doi:10.1152/ajpcell.00122.2003 (2003).

Torres, V. E. & Harris, P. C. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. Nature clinical practice. Nephrology 2, 40-55; quiz 55, doi:10.1038/ncpneph0070 (2006).

Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature reviews. Molecular cell biology 2, 138-145, doi:10.1038/35052082 (2001).

Wang, Q. et al. Structural interaction and functional regulation of polycystin-2 by filamin. PloS one 7, e40448, doi:10.1371/journal.pone.0040448 (2012).

Hartwig, J. H. & Stossel, T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. The Journal of biological chemistry 250, 5696-5705 (1975).

Nakamura, F., Stossel, T. P. & Hartwig, J. H. The filamins: organizers of cell structure and function. Cell adhesion & migration 5, 160-169 (2011).

Gorlin, J. B. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. The Journal of cell biology 111, 1089-1105 (1990).

Takahata, T., Wu, G., Murphy, G. F. & Shapiro, S. S. Human beta-filamin is a new protein that interacts with the cytoplasmic tail of glycoprotein Ibalpha. The Journal of biological chemistry 273, 17531-17538 (1998).

Thompson, T. G. et al. Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein. The Journal of cell biology 148, 115-126 (2000).

van der Flier, A. & Sonnenberg, A. Structural and functional aspects of filamins. Biochimica et biophysica acta 1538, 99-117 (2001).

Nakamura, F., Osborn, T. M., Hartemink, C. A., Hartwig, J. H. & Stossel, T. P. Structural basis of filamin A functions. The Journal of cell biology 179, 1011-1025, doi:10.1083/jcb.200707073 (2007).

Seo, M. D. et al. Crystal structure of the dimerization domain of human filamin A. Proteins 75, 258-263, doi:10.1002/prot.22336 (2009).

Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science (New York, N.Y.) 255, 325-327 (1992).

Byers, H. R., Etoh, T., Doherty, J. R., Sober, A. J. & Mihm, M. C., Jr. Cell migration and actin organization in cultured human primary, recurrent cutaneous and metastatic melanoma. Time-lapse and image analysis. The American journal of pathology 139, 423-435 (1991).

Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Molecular cell 21, 337-347, doi:10.1016/j.molcel.2006.01.011 (2006).
Fackler, O. T. & Grosse, R. Cell motility through plasma membrane blebbing. *The Journal of cell biology* **181**, 879-884, doi:10.1083/jcb.200802081 (2008).

Xu, Y. *et al.* Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. *The Journal of experimental medicine* **207**, 2421-2437, doi:10.1084/jem.20100433 (2010).

Kasza, K. E. *et al.* Filamin A is essential for active cell stiffening but not passive stiffening under external force. *Biophysical journal* **96**, 4326-4335, doi:10.1016/j.bpj.2009.02.035 (2009).

Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. *Science (New York, N.Y.)* **310**, 1139-1143, doi:10.1126/science.1116995 (2005).

Sheen, V. L. *et al.* Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. *Human molecular genetics* **10**, 1775-1783 (2001).

Unger, S. *et al.* Filamin A mutation is one cause of FG syndrome. *American journal of medical genetics. Part A* **143A**, 1876-1879, doi:10.1002/ajmg.a.31751 (2007).

Sjoblom, T. *et al.* The consensus coding sequences of human breast and colorectal cancers. *Science (New York, N.Y.)* **314**, 268-274, doi:10.1126/science.1133427 (2006).

Wang, Y. *et al.* A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. *Oncogene* **26**, 6061-6070, doi:10.1038/sj.onc.1210435 (2007).

Kyndt, F. *et al.* Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. *Circulation* **115**, 40-49, doi:10.1161/circulationaha.106.622621 (2007).

Glogauer, M. *et al.* Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. *Journal of cell science* **110** (Pt 1), 11-21 (1997).

Glogauer, M. *et al.* The Role of Actin-binding Protein 280 in Integrin-dependent Mechanoprotection. *Journal of Biological Chemistry* **273**, 1689-1698 (1998).

Kainulainen, T. *et al.* Cell Death and Mechanoprotection by Filamin A in Connective Tissues after Challenge by Applied Tensile Forces. *Journal of Biological Chemistry* **277**, 21998-22009, doi:10.1074/jbc.M200715200 (2002).

Clapham, D. E. Calcium signaling. *Cell* **80**, 259-268 (1995).

Boudaoud, A. *et al.* FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. *Nature protocols* **9**, 457-463, doi:10.1038/nprot.2014.024 (2014).

Riedl, J. *et al.* Lifeact: a versatile marker to visualize F-actin. *Nature methods* **5**, 605-607, doi:10.1038/nmeth.1220 (2008).

Wan, X., Juranka, P. & Morris, C. E. Activation of mechanosensitive currents in traumatized membrane. *The American journal of physiology* **276**, C318-327 (1999).
Chapter 8 – Appendix

ELSEVIER LICENSE TERMS AND CONDITIONS

Dec 13, 2015

This is an Agreement between Steven Li Fraine ("You") and Elsevier ("Elsevier"). It consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier
Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

Registered Company Number
1982084

Customer name
Steven Li Fraine

Customer address
2870 Croissant Giffard
Laval, QC H7E 4Y2

License number
3761451252505

License date
Dec 03, 2015

Licensed content publisher
Elsevier

Licensed content publication
Trends in Neurosciences

Licensed content title
Sensing pressure with ion channels

Licensed content author
Bernd Nilius, Eric Honore

Licensed content date
August 2012

Licensed content volume number
35

Licensed content issue number
8

Number of pages
10

Start Page
477

End Page
486

Type of Use
reuse in a thesis/dissertation

Portion
figures/tables/illustrations

Number of figures/tables/illustrations
1

Format
both print and electronic

Are you the author of this Elsevier article?
No

Will you be translating?
No

Original figure numbers
figure 1

Title of your thesis/dissertation
Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal mechanism

Expected completion date
Dec 2015

Estimated size (number of pages)
73

Elsevier VAT number
GB 494 6272 12

Price
0.00 CAD
INTRODUCTION
1. The publisher for this copyrighted material is Elsevier. By clicking “accept” in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at [http://myaccount.copyright.com]).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:
"Reprinted from Publication title, Vol./edition number, Author(s), Title of article / title of chapter, Pages Nc., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages Nc., Copyright (Year), with permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.). Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscripts:

- immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
- after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (PJA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers
have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and coursework programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository**: Authors are permitted to post a summary of their chapter only in their institution's repository.

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY-NC-SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY-NC-ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons
Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? customerCare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
NATURE PUBLISHING GROUP LICENSE
TERMS AND CONDITIONS

This is an Agreement between Steven Li Fraine ("You") and Nature Publishing Group ("Nature Publishing Group"). It consists of your order details, the terms and conditions provided by Nature Publishing Group, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number	3761460175647
License date	Dec 03, 2015
Licensed Content Publisher	Nature Publishing Group
Licensed Content Publication	Nature Reviews Neuroscience
Licensed Content Title	The neuronal background K2P channels: focus on TREK1
Licensed Content Author	Eric Honoré
Licensed Content Date	Apr 1, 2007
Volume number	8
Issue number	4
Type of Use	reuse in a dissertation / thesis
Requestor type	academic/educational
Format	print and electronic
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
High-res required	no
Figures	Figure 1
Author of this NPG article	no
Your reference number	None
Title of your thesis / dissertation	Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal mechanism
Expected completion date	Dec 2015
Estimated size (number of pages)	73

Total: 0.00 USD

Terms and Conditions

Terms and Conditions for Permissions

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for this purpose, and for no other use, subject to the conditions below:

1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to Nature Publishing Group and does not carry the copyright of another entity (as credited in the published version). If the credit line on any part of the material you have requested indicates that it was reprinted or adapted by NPG with permission from another source, then you should also seek permission from that source to reuse the material.

2. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to the work as a whole and that the electronic version is essentially equivalent to,
or substitutes for, the print version. Where print permission has been granted for a fee, separate permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has already been accounted for during your initial request in the calculation of a print run). NB: In all cases, web-based use of full-text articles must be authorized separately through the ‘Use on a Web Site’ option when requesting permission.

3. Permission granted for a first edition does not apply to second and subsequent editions and for editions in other languages (except for signatories to the STM Permissions Guidelines, or where the first edition permission was granted for free).

4. Nature Publishing Group’s permission must be acknowledged next to the figure, table or abstract in print. In electronic form, this acknowledgement must be visible at the same time as the figure/table/abstract, and must be hyperlinked to the journal’s homepage.

5. The credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)
For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXX)

Note: For republication from the British Journal of Cancer, the following credit lines apply.
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)For AOP papers, the credit line should read:
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME], advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXX)

6. Adaptations of single figures do not require NPG approval. However, the adaptation should be credited as follows:
Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For adaptation from the British Journal of Cancer, the following credit line applies.
Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

7. Translations of 401 words up to a whole article require NPG approval. Please visit http://www.macmillanmedicalcommunications.com for more information. Translations of up to 400 words do not require NPG approval. The translation should be credited as follows:
Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), copyright (year of publication)

Note: For translation from the British Journal of Cancer, the following credit line applies.
Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME] (reference citation), copyright (year of publication)

We are certain that all parties will benefit from this agreement and wish you the best in the use of this material. Thank you.
Special Terms:
v1.1

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
ELSEVIER LICENSE TERMS AND CONDITIONS

Dec 13, 2015

This is an Agreement between Steven Li Fraine ("You") and Elsevier ("Elsevier"). It consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier	Elsevier Limited
Registered Company Number	1982084
Customer name	Steven Li Fraine
Customer address	2870 Croissant Giffard, Laval, QC H7E 4Y2
License number	3761460349856
License date	Dec 03, 2015
Licensed content publisher	Elsevier
Licensed content publication	Cell
Licensed content title	Polycystin-1 and -2 Dosage Regulates Pressure Sensing
Licensed content author	Reza Sharif-Naeini, Joost H.A. Folgering, Delphine Bichet, Fabrice Duprat, Inger Lauritzen, Malika Arhatte, Martine Jodar, Alexandra Dedman, Franck C. Chatelain, Uwe Schulte, Kevin Retailleau, Laurent Loufrani, Amanda Patel, Frederick Sachs, Patrick Delmas et al.
Licensed content date	30 October 2009
Licensed content volume number	139
Licensed content issue number	3
Number of pages	10
Start Page	587
End Page	596
Type of Use	reuse in a thesis/dissertation
Intended publisher of new work	other
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Original figure numbers	Figure 7
Title of your thesis/dissertation	Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal mechanism
Expected completion date	Dec 2015
INTRODUCTION
1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows: "Reprinted from Publication title, Vol./Edition number, Author(s), Title of article / title of chapter, Pages No.-No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No.-No., Copyright (Year), with permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoiced license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against all and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order/acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or for no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or
Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by HeronXanEdu. Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. For journal authors: The following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.). Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications. Authors can share their accepted author manuscript:

- immediately
 - via their non-commercial person homepage or blog
 - by uploading a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- after the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (PJA): A published journal article (PJA) is the definitive final record of published research that appears
or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PjAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and coursework programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a CrossMark logo, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier’s posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation:** If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PjAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:
- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.8

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.