Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide

Matthew T. Henkea, Douglas J. Kennyb, Chelsi D. Cassillya, Hera Vlamakisb, Ramnik J. Xavierb,c,d, and Jon Clardya,1

aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115; bBroad Institute of MIT and Harvard, Cambridge, MA 02142; cDepartment of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; and dCenter for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114

Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved May 16, 2019 (received for review March 9, 2019)

A substantial and increasing number of human diseases are associated with changes in the gut microbiota, and discovering the molecules and mechanisms underlying these associations represents a major research goal. Multiple studies associate Ruminococcus gnavus, a prevalent gut microbe, with Crohn’s disease, a major type of inflammatory bowel disease. We have found that R. gnavus synthesizes and secretes a complex glucorhamnan polysaccharide with a rhamnose backbone and glucose sidechains. Chemical and spectroscopic studies indicated that the glucorhamnan was largely a repeating unit of five sugars with a linear backbone formed from three rhamnose units and a short sidechain composed of two glucose units. The rhamnose backbone is made from 1,2- and 1,3-linked rhamnose units, and the sidechain has a terminal glucose linked to a 1,6-glucose. This glucorhamnan potently induces inflammatory cytokine (TNF\textalpha) secretion by dendritic cells, and TNF\textalpha secretion is dependent on toll-like receptor 4 (TLR4). We also identify a putative biosynthetic gene cluster for this molecule, which has the four biosynthetic genes needed to convert glucose to rhamnose and the five glycosyl transferases needed to build the repeating pentasaccharide unit of the inflammatory glucorhamnan.

inflammatory bowel disease | microbiome | polysaccharide

Several lines of evidence show an association between changes in the human gut microbiome and disease states in the host, but few studies have probed the molecules and mechanisms underlying these associations. A particularly robust association exists between Crohn’s disease (CD) and Ruminococcus gnavus, an anaerobic, Gram-positive member of the human gut microbiome. Several studies link an increased relative abundance of R. gnavus to increased symptoms of CD, a major form of inflammatory bowel disease (1–5). Patients with CD experience abdominal pain, diarrhea, and bloody stool. Severe CD cases may even involve extraintestinal manifestations of inflammation of the eyes, skin, and spine (6). CD is currently incurable and symptoms can only be managed, often through treatment with antibiotics against the major inflammatory cytokine, tumor necrosis factor alpha (TNF\textalpha).

The cause of CD is likely a combination of genetic predisposition and environmental triggers that shape the microbiome, such as diet, antibiotic exposure, and infections. Mutations found in genes involved in the innate immune system (nod2) and autophagy (atg16l1) are among those most associated with susceptibility to Crohn’s disease (7). These mutations are thought to impair proper immune recruitment and response to commensal gut microbes by epithelial and dendritic cells, an innate immune cell type found in circulation and in the gut.

Incidence of CD is increasing worldwide (8), and has been linked to adoption of a Western diet (9). This strongly suggests that environmental factors are responsible for development of disease in genetically susceptible individuals. Chief among these environmental factors is the microbial dysbiosis often seen in CD patients. Extensive microbiome sequencing studies have shown that the relative abundance of R. gnavus is consistently increased in CD patients compared with healthy individuals (1–5). R. gnavus colonizes the intestinal mucosal surface, where it can use sialic acid from mucin glycans as a carbon source (5, 10). R. gnavus is a prevalent gut microbe found in the intestines of nearly 90% of people. In a healthy gut R. gnavus typically represents <0.1% of the gut microbiota. However, some CD patients experience transient blooms of R. gnavus levels that coincide with disease flares. In some severe cases, R. gnavus levels peak at 69% of the gut microbiota (3). Additionally, R. gnavus blooms in CD are transient and return to healthy levels during remission of disease symptoms. Earlier misclassification as a Ruminococcaceae (now a Lachnospiraceae) of R. gnavus made identification as biomarker for CD difficult. This was further complicated by the overall decreases of both of these clades in CD, such that blooms of R. gnavus were not observed because of this general trend at a genus and family level. As the microbiome field has shifted to analyzing more metagenomic data, which allows more robust species-level taxonomic profiling than 16S rRNA amplicon sequencing, the association of R. gnavus with CD has become more clear.

The effects of increases in R. gnavus level have also been linked to other inflammatory diseases including spondyloarthritids

Significance

The bacteria that live within the human gut play crucial roles in regulating our primary metabolism, protecting us from pathogens, and developing our immune system. Imbalances in bacterial community structure have been implicated in many diseases, such as Crohn’s disease, an inflammatory bowel disease. We found and characterized an inflammatory polysaccharide produced by the gut bacterium Ruminococcus gnavus, populations of which bloom during flares of symptoms in patients with Crohn’s disease. This molecule induces the production of inflammatory cytokines like TNF\textalpha by dendritic cells and may contribute to the association between R. gnavus and Crohn’s disease. This work establishes a plausible molecular mechanism that may explain the association between a member of the gut microbiome and an inflammatory disease.
(11), itself a frequent symptom of CD (6); eczema in infants (12); and pouchitis in ulcerative colitis patients who have undergone a total colectomy (13). However, despite numerous studies associating *R. gnavus* with various inflammatory diseases, no molecular mechanisms to explain these correlations have been developed, and we began a study to identify a possible mechanism.

The disease associations described above suggest that *R. gnavus* produces molecules that directly induce an inflammatory response by innate immune cells. Through bioactivity-guided fractionation, we found that *R. gnavus* produces a potent, inflammatory polysaccharide with a rhamnose backbone and short glucose sidechains—a glucorhamnan. Culturing in defined medium was necessary to purify the bacterially produced polysaccharide away from the overwhelming amounts of polysaccharides present in many commercial media. We further show that the *R. gnavus* glucorhamnan is recognized by innate immune cells through the toll-like receptor 4 (TLR4). Finally, we identified a biosynthetic gene cluster that is likely responsible for glucorhamnan production in the genomes of *R. gnavus*.

Results

R. gnavus Produces an Inflammatory Polysaccharide. Initially *R. gnavus* was grown in rich media (Brain-Heart Infusion or Todd-Hewitt from Bacto) that are typically used to culture gut anaerobes. However, this led to confounding media-derived materials, and prompted us to culture *R. gnavus* in defined, albeit complex, media. The defined media used were based on a recipe that was recently described (14). Dendritic cells differentiated from mouse bone marrow (mBMDCs) were used in the primary screen to identify inflammatory substances from *R. gnavus*; lipopolysaccharide (LPS), a Gram-negative inducer of the inflammatory response, was used as a positive control. Following treatment of mBMDCs with fractions generated from *R. gnavus*, levels of the inflammatory cytokine TNFα were measured by enzyme-linked immunosorbent assay (ELISA) (Fig. 1A).

This assay indicated a dose-dependent potent TNFα-inducing activity in the spent medium, but this activity could not be extracted with organic solvents from either the spent medium or the cell pellet. Size-exclusion filters showed that activity was retained above a 10-kDa molecular-weight cutoff. Collectively these results indicated that the TNFα-inducing factor was a hydrophilic, large-molecular weight, bacterially produced molecule. Further treatment of the spent medium with proteinases, nuclease, lysozyme, or boiling did not abolish activity, indicating that the molecule was a polysaccharide (Fig. 1B). The polysaccharide was purified via enzymatic digestion of contaminating biopolymers, followed by size-exchange and anion-exchange chromatographies, while following the TNFα-inducing activity at each step.

R. gnavus Polysaccharide Is a Glucorhamnan. To determine which monosaccharides are present in the purified polysaccharide, gas chromatography–mass spectrometry (GC-MS) monitoring of chemically modified acid-hydrolyzed monosaccharides was performed, which indicated roughly 1:4 glucose to rhamnose (the 6-deoxy form of mannose) (SI Appendix, Table S1). Since glucose is particularly susceptible to chemical degradation during chemical derivation steps, this ratio likely represents a lower limit to the amount of glucose present.

Determing how the monosaccharides are linked to each other was performed by generating partially methylated acetylated alditols (15). Linkage analysis showed five major types of monosaccharides to be present: 1-linked (terminally-linked) glucose, 1,6-linked glucose, 1,3-linked rhamnose, 1,2-linked rhamnose, and 1,2,3-linked rhamnose. These were present in roughly 1:1:1:1 stoichiometry (SI Appendix, Table S2). NMR studies were consistent with the linkage data as the 1H-NMR spectrum (SI Appendix, Fig. S1) showed five distinct anomeric signals (H1 through E).
of a monosaccharide) between 4.9 and 5.4 ppm (Fig. 1C). We next turned to ordering the monosaccharides using the anomic proton chemical shifts.

We assigned 5.32 ppm to H1 of the A monosaccharide, 5.20 ppm to H1 of B, 5.05 ppm as H1 to C, 4.98 ppm to H1 of D, and 4.95 ppm as H1 of E. The identity of a monosaccharide can often be deduced from the total correlation spectroscopy (TOCSY) cross-peaks from the anomic proton (16). Since there is only one TOCSY cross-peak from H1 to H2 for A, B, and E, these must be rhamnose. The bond angle between H2 and H3 of rhamnose limits coupling between these protons, thus cross-peaks between H1 and H3 to H6 of rhamnose residues are very faint if present at all. Since all protons of glucose residues are axial, coupling along the entire glucose backbone is often observed in TOCSY.

Since H1 of monosaccharides systems C and D have at least four TOCSY cross-peaks, C and D are glucose residues.

The H2 protons for monosaccharides A through E could be assigned by COSY. Carbon chemical shifts for C2 of both the A and B rhamnose indicated these positions were substituted, while carbon chemical shift at C2 of E indicated no substitution, and a faint H2BC signal from E H2 to C3 at 39 ppm, was substituted at the three position. Thus, E was assigned as 1,3-rhamnose. NOESY showed cross-peaks for H1 of E to H2 of A and for H1 of B to H3 of E. Additionally, since H2 of B showed a NOESY cross-peak with H1 of C, B could be assigned to 1,2,3-rhamnose, and A could be assigned to 1,3-rhamnose. NOESY showed a cross-peak between H1 of A and a methine at 4.03 ppm. Since linkage data showed glucose residues are only attached at the methylene at C6, this 4.03-ppm peak must be H3 of B, although no direct correlations could connect H2 and H3 of B.

Finally, the assignment of the two glucose residues was largely determined by process of elimination. HSQC-TOCSY showed H1 of D in the same spin system as a methylene at 61 ppm, indicating that D is unlinked at the C6, and therefore, the terminally linked glucose. Thus, C must be the 1,6-linked glucose residue. NOESY from H1 of D shows it to be linked to a proton at 3.71 ppm. The only proton at 3.71 that has a carbon shift consistent with being linked is a methylene at 65.64 ppm, whose other proton has a shift at 4.12 ppm. Unfortunately, there is not a clear NOESY peak between H1 of D at the other methylene proton at 4.12 ppm. Although there are no data directly tying this carbon signal to the C glucose system, by process of elimination, it is the only position shown in linkage analysis not otherwise explained. Key NMR spectral observations are summarized in SI Appendix, Table S3. Full NMR spectra and peaks are provided in SI Appendix, Figs. S1–S9 and Dataset S1.

In summary, the polysaccharide from R. gnavus is a glucorhamnan such that the backbone contains 1,3- and 1,2-linked rhamnose residues, with short sidechains of two glucose residues (Fig. 1D).

Based on

\[^{31}P\]

and

\[^{1}H\rightarrow^{31}P\]

HMBC NMR experiments, some level of poly-1,3-phosphoglycerol (the canonical teichoic acid) is attached to the glucorhamnan. The exact connectivity between the phosphoglycerol and the glucorhamnan has not been elucidated, as no NOESY or \[^{1}H\rightarrow^{31}P\]

HMBC correlations between the glucorhamnan and the phosphoglycerol portions were observed. Upon mild hydrolysis with hydrofluoric acid (HF), which hydrolyzes phosphate bonds, but not glycosidic, ester, or peptide bonds, the corresponding phosphoglycerol signals are lost, but the repeating unit remains intact (SI Appendix, Fig. S10), with exactly the correct number of methyl, methane, and methylene NMR signals expected from the proposed repeating unit. Analytical size-exclusion chromatography indicates the mass of the intact glucorhamnan is roughly 9 kDa, while the HF-treated glucorhamnan is roughly 8 kDa. Thus, the phosphoglycerol is unlikely to be attached along the main backbone of the glucorhamnan, but rather as extensions or sidechains thereto. The phosphoglycerol is also unlikely to be contaminating teichoic acid, as this latter molecule can be separated from the glucorhamnan by anion exchange as a distinct fraction.

Dendritic Cells Recognize Inflammatory Glucorhamnan Through Toll-Like Receptor 4. Having purified the active polysaccharide, we showed that the R. gnavus glucorhamnan induced secretion of TNFα in a dose-dependent manner, and that the R. gnavus glucorhamnan was as potent as the well-characterized yeast mannan, a potent inflammatory polysaccharide also recognized by the innate immune system (Fig. 2A). We also show that this response was dependent on the toll-like receptor 4 (TLR4), as mBMDCs generated from tlr4-knockout mice failed to respond to the glucorhamnan. As a control, mBMDCs were generated from tlr2-knockout mice [toll-like receptor 2 (TLR2) recognizes pathogen-associated molecular patterns with lipid tails] still secreted TNFα in response to treatment with R. gnavus glucorhamnan.

Identification of the Putative Glucorhamnan Biosynthetic Gene Cluster. Since linking the glucorhamnan to its biosynthetic gene cluster would enable both the mining of microbiota sequence data to identify other bacterial producers and of patient transcriptomic data to assess disease association we examined R. gnavus genomes. In the genome of the R. gnavus type strain ATCC 29149 (NZ_AAYG02000000) there are three gene clusters annotated to make polysaccharides (17). Only one of them (contig NZ_AAYG02000032) from RUMGNA_03512 to RUMGNA_03534 is likely to encode the biosynthetic pathway for the glucorhamnan (17). This cluster contains all four genes necessary for rhamnose biosynthesis as well as five glycosyltransferases.
This number of glycosyltransferases is consistent with the number of different monosaccharides seen in the glucorhamnan repeating unit, and the majority of genes in this cluster. Of the 23 genes in the potential gene cluster, 18 have been assigned to likely functions in the biosynthetic pathway for glucorhamnan (Fig. 3B). The biosynthesis can largely be summarized as: (i) monosaccharide synthesis and priming, (ii) assembly by glycosyltransferases of the pentasaccharide repeat unit on an undecaprenylphosphate lipid anchor, (iii) flipping of the assembled pentasaccharide repeat unit to the extracellular leaflet of the membrane, (iv) polymerization of the pentasaccharide repeat units to form a polysaccharide, (v) which is then transferred to the peptidoglycan.

While the glucorhamnan was initially isolated from the cell-free supernatant, two genes in the potential gene cluster encode LytR/CpsA/Psr-like proteins (RUMGNA_03513 and RUMGNA_03516). LytR/CpsA/Psr-like proteins catalyze the transfer of polysaccharides from undecaprenylphosphate lipid anchors to N-acetyl-muramic acid of peptidoglycan. While trace levels of the glucorhamnan could be recovered from lipid anchored cell-associated polysaccharides, treatment of the cell pellet of R. gnavus with mutanolysin (a lysozyme-like enzyme), liberated significantly greater amounts of the glucorhamnan into the supernatant. This suggests that the majority of the glucorhamnan is actually a cell-wall polysaccharide, covalently linked to the peptidoglycan. The exact nature of this linkage has not yet been determined.

The five remaining genes in the gene cluster have not been assigned to a specific role in the biosynthesis of the glucorhamnan. Of these, two are likely to be involved in regulatory functions, as the
only detectable domains were a gernane domain (implicated in sporation) (RUMGNA_03520), and a carbohydrate binding do-
main (RUMGNA_03512). Two genes are homologs of enzymes
involved in cell-wall teichoic acid assembly [LtaA (RUMGNA_03523) and LtaS (RUMGNA_03533)]. While their role in glu-
corhanman synthesis is unknown, their presence, combined with
the presence of phosphoglycerol NMR signals in the purified
glucorhanman, suggest that there is some potential to transfer
phosphoglycerol units onto the glucorhanman repeating unit.
And finally, one gene (RUMGNA_03525) has no known
homologs, and could not be annotated with a potential function.

As genetic manipulation of R. gnavus is not yet possible,
quantitative PCR was performed on a cDNA library generated
from R. gnavus to assess if the gene cluster is expressed. Three
of the glycosyltransferases (RUMGNA_03514, RUMGNA_03519,
and RUMGNA_03524), and two rhamnose biosynthesis genes
[RUMGNA_03528 (rtB analog) and RUMGNA_03521 (rtBD
analog)] were shown to be expressed during growth of R. gnavus
(SI Appendix, Fig. S11). These genes were no longer expressed
when cells reached stationary phase, consistent with the observa-
tion that no additional glucorhanman appears to be generated in
culture after maximum OD600 is reached (~1.4 after 24 h).

Further suggesting that this gene cluster is the likely candidate,
the other two polysaccharide biosynthetic gene clusters in the R.
gnavus ATCC 29149 genome contain more glycosyltransferase
genases than are required for the biosynthesis of a pentasaccharide
repeat unit. The polysaccharide gene cluster from RUMGNA_01817
to RUMGNA_01849 contains seven glycosyltransferase genes as well
as several genes involved in the biosynthesis of siaic acid, which is
not present in the glucorhanman. And, the polysaccharide gene
cluster from RUMGNA_02393 to RUMGNA_02407 contains
glycosyltransferase genes. In addition, only the proposed
polysaccharide gene cluster is conserved among many clinical
isolates of R. gnavus (SI Appendix, Fig. S12), many of which
produce the glucorhanman in culture.

Discussion
We have identified and described a potent, TLR4-dependent,
inflammatory glucorhanman polysaccharide made by R. gnavus,
a gut microbe associated with Crohn’s disease and a variety of
other inflammatory diseases. Initial culturing of R. gnavus
was done in rich commercial media. Unfortunately, the TNFα-
inducing polysaccharide produced by R. gnavus could not be
purified away from contaminating yeast polysaccharides from the
media. As we wanted to focus on inflammatory signals produced
de novo by bacteria, not media components that might be
modified by bacteria, a defined medium (based on ref. 14) was
developed for the purification of the TNFα-inducing glucorhanman
that would be produced in the gut (SI Appendix, Dataset S3).

Bacteria produce a variety of cell-associated polysaccharides
that play roles in cell morphology, cell-wall rigidity, evasion of
the host immune system, and preventing desiccation. Polysac-
charides as mediators of host-microbe communication is well
documented in polysaccharide A from Bacteroides fragilis (18,
19), but polysaccharide-mediated interactions are likely to be
widespread among gut microbes. The polysaccharides potentially
involved in these interactions are difficult to study, and the
ability of many bacteria to exert effects by modifying environ-
mental polysaccharides is also a complicating factor. The mo-
lecular level analysis is especially challenging as polysaccharides
are enzymatically, not genetically, encoded. Their molecular
structures are described as a population average: the composi-
tion of the repeating unit and the number of those repeating
units. For these reasons the precise molecular structure of these
biomolecules is often impossible to determine with atomic-level
specificity.

Cell-wall–associated rhamnans that are structurally similar to
the R. gnavus glucorhanman have been broadly described in many
Lactobacillales, which are a group of distantly related, aerotolerant,
Gram-positive bacteria that produce lactic acid. These include
species of Lactococcus (20), Streptococcus (21), and several En-
terococcus species (22). These cell-wall rhamnose-glucose polysac-
charides (RGP s) all share the same 1,3- and 1,2-linked rhamnose
backbone with the R. gnavus glucorhanman described here. How-
ever, between species, and even strains of the same species, there is
tremendous variability in the number, linkage, and identity of the
monosaccharides that make up the sidechains. Among these, the
RGP from pathobiont Streptococcus mutans serotype c is the most
similar to the R. gnavus glucorhanman.

Unlike the distantly related Lactobacillales, R. gnavus is in the
order Clostridiales which are Gram-positive, obligate anaerobes.
Within this group, only a single example of a high-rhamnose
polysaccharide has been reported: the anti-tumorogenic “clostr-
hamnan” from Clostridium saccharoperbutylacetonicum, which is
simply the rhamnose backbone with infrequent sidechains of a
single glucose monomer (23).

These Gram-positive, cell-wall rhamnans have previously been
identified as playing a role in establishing cell shape, cell-wall
rigidity, and pathogenesis. For instance, mutants in Enterococcus
faecalis enterococcal polysaccharide antigen (epa) gene cluster
impair colonization of the human GI tract (24), and when Group
A Streptococcus can no longer add sidechains to the rhamnan
backbone, they are not impaired in their ability to grow, but are
much less virulent in models of infections (25).

The last common ancestor to R. gnavus and the Lactobacillales
likely lived around three billion years ago (26), which indicates
that the rhamnose polysaccharide backbone is conserved from an
ancient ancestor, evolved independently in these branches, or
spread among these organisms through horizontal gene transfer.
Further studies on the distribution of these polysaccharides within
Clostridiales and gene cluster evolution will be needed to distin-
guish between these possibilities. While the gene cluster presented
above is likely responsible for the biosynthesis of the R. gnavus
glucorhanman, this will need to be confirmed by knocking out
production in the wild-type strain, for which there is currently no
generic system; discovering a naturally occurring mutant that lacks
production; or by recombinantly expressing the gene cluster in a
rhamnan negative species.

Currently, the degree of structural conservation of the
glucorhanman(s) among strains of R. gnavus is unknown, but if
the conservation of the putative biosynthetic gene cluster is an
indicator (SI Appendix, Fig. S12), the structure will be highly
conserved among most clinically sequenced isolates. Future analysis
into how clinical isolates vary in this respect, along with tran-
scriptomic analysis in healthy and CD patients, will help establish
the clinical relevance of the glucorhanman in Crohn’s disease.

R. gnavus can utilize mucin as a carbon source (5, 10, 27),
and may directly contribute to breakdown in gut barrier function.
The degradation of this barrier, or the host’s ability to maintain
a bacteria-free zone within the mucin layer, may increase the immune
system’s exposure to triggers like the R. gnavus glucorhanman, which
would otherwise not be sensed by the immune system. In this way,
mucin destruction and glucorhanman production by R. gnavus
could have profound effects on human inflammatory responses.
Ultimately, we have identified a molecular hypothesis that can be
interrogated to explain the link between the human gut com-
mensal, R. gnavus, and Crohn’s disease pathology.

Methods and Materials
Bacterial Growth Conditions. R. gnavus ATCC 29149 was grown in Bacto
Todd-Hewitt broth, Bacto Brain-Heart infusion, and defined medium (SI
Appendix, Dataset S3, based on ref. 14). Starter cultures were grown over-
night for 16 h in Todd-Hewitt or Brain-Heart Infusion broths, or for 2 d for
defined medium from glycerol stocks or agar plates of Todd Hewitt or de-
defined medium. Large-scale (1 L) cultures were inoculated with 1:1,000 ratio

Henke et al.

12676 | www.pnas.org/cgi/doi/10.1073/pnas.1904099116
Composition Analysis. Composition analysis was performed by GC-MS of per-O-trimethylsilyl (TMS) derivatives of the monosaccharide methyl glycosides produced from purified polysaccharide by acidic methanolysis as described previously (28). Briefly, the polysaccharide (400 μg) and inositol (20 μg as internal standard) were freeze-dried. Dry residue was heated with molybdenum HCl in a sealed screw-top glass test tube for 16 h at 80 °C. After cooling and removal of the solvent under a stream of nitrogen, the sample was treated with a mixture of methanol, pyridine, and acetic anhydride for 30 min. The solvents were evaporated, and the sample was derivatized with Tri-Sil (Pierce) at 80 °C for 30 min. GC-MS analysis of the TMS methyl glycosides was performed on an Agilent 7890A GC interfaced to a 5975C MSD, using a Supelco Equity-1 fused silica capillary column (30 m × 0.25 mm ID).

Linkage Analysis. For glycosyl linkage analysis, dry sample (1 mg) was permethylated, depolymerized, reduced, and acetylated. The resulting partially methylated alditol acetates (PMAAAs) were analyzed by GC-MS as described previously (15). Briefly, dry polysaccharide was suspended in 200 μmol methylated alditol acetates (PMAAAs) were analyzed by GC-MS as described previously (15).

Quantitative Reverse Transcription PCR. Total RNA was purified by chloroform–phenol extraction from cell pellets of replicate cultures of R. gnavus grown in defined medium, aliquots of which were taken at the time points indicated. RNA was Dnase treated and cDNA was prepared using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with or without reverse transcriptase. Transcripts of interest were amplified from the cDNA library with gene-specific primers and visualized on an agarose gel, as well as quantified by real-time PCR carried out using Taq Universal SYBR Green Supermix (Bio-Rad). All qPCRs were normalized to 16S rRNA gene expression at 24 h. Primers used are listed in SI Appendix, Table S6 and S7.

ACKNOWLEDGMENTS. We thank the East Quad NMR Core at Harvard Medical School, and Prof. A. Sloan Devlin for GC-MS access. This work was funded by the National Institutes of Health R01-AT009708 (J.C. and R.J.X.) and F32-GM126650 (M.T.H.). Polysaccharide structural analysis was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy Grant (DE-SC0015662) to the Complex Carbohydrate Research Center.

1. B. P. Willing et al., A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844-1854.e1 (2010).
2. M. Joosens et al., Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).
3. A. B. Hall et al., A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).
4. K. Nishino et al., Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 58, 95–106 (2018).
5. C. W. Png et al., Mucoytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).
6. J. S. Levine, R. Burakoff, Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.) 7, 235–241 (2011).
7. T.-C. Liu, T. S. Steappenbeck, Genetics and pathogenesis of inflammatory bowel disease. Annu. Rev. Pathol. 11, 127–148 (2016).
8. N. A. Molodecky et al., Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 (2012).
9. D. Lee et al., Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148, 1087–1106 (2015).
10. E. H. Crost et al., Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One 8, e67341 (2013).
11. M. Breban et al., Faecal microbiota study reveals specific dysbiosis in spondyloarthropathy. Ann. Rheum. Dis. 76, 1614-1622 (2017).
12. H. Zheng et al., Altered gut microbiota composition associated with eczema in infants. PLoS One 11, e0160266 (2016).
13. K. Machiels et al., Specific members of the predominant gut microbiota predict pock- and infectious colectomy and IPAA in UC. Gut 66, 79–88 (2017).
14. M. Tramontano et al., Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).
15. C. Heiss, J. S. Klotz, Z. Wang, T. L. Doering, P. Azadi, The structure of Cryptococcus neoformans galactosylmannan contains β-D-glucuronic acid. Carbohydr. Res. 344, 915–920 (2009).
16. K. Gheysem, C. Mihai, K. Conrath, J. C. Martins, Rapid identification of common hexapyranosyl monosaccharide units by a simple TOCSY matching approach. Chem. Sci. 7, 8865–8878 (2008).
17. P. Suderman et al., [Ruminococcus gnavus] ATCC 29149, whole genome shotgun sequencing project. GenBank. https://www.ncbi.nlm.nih.gov/nuccore/AAYG00000000.2. Accessed 2 January 2018.
18. S. K. Mazmanian, J. L. Round, D. L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).
19. L. E. Comstock, D. L. Kasper, Bacterial glycans: Key mediators of diverse host immune responses. Cell 126, 847–850 (2006).
20. I. Sadowskaya et al., Another brick in the wall: A rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. Mol. Biol. 8, e01303-17 (2017).
21. F. St Michael et al., Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans. Glycoconjug. J. 35, 53–64 (2018).
22. M. Y. Mistou, I. C. Sutcliffe, N. M. van Sorge, Bacterial glycoligobiochemistry: Rhamnose-containing cell wall polymers in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 464–479 (2016).
23. Y. Watanabe, H. Misaki, Structure of a new rhamnose polysaccharide, clostrhamnan, isolated from antitumor hot water extract of Clostridium perfringens sp. endocardium. Agric. Biol. Chem. 51, 931–932 (1987).
24. L. Rigottier-Gois et al., The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. J. Infect. Dis. 212, 67–72 (2015).
25. N. M. van Sorge et al., The classical lancedelf antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15, 729–740 (2014).
26. F. U. Battistuzzi, A. Feijao, S. B. Hedges, A genomic timescale of prokaryote evolution: Energy Sciences, US Department of Energy Grant (DE-SC0015662) to the Complex Carbohydrate Research Center.