MODIFIED FUTAKI INVARIANT AND EQUIVARIANT RIEMANN-ROCH FORMULA

FENG WANG BIN ZHOU* XIAOHUA ZHU**

ABSTRACT. In this paper, we give a new version of the modified Futaki invariant for a test configuration associated to the soliton action on a Fano manifold. Our version will naturally come from toric test configurations defined by Donaldson for toric manifolds. As an application, we show that the modified K-energy is proper for toric invariant Kähler potentials on a toric Fano manifold.

0. Introduction

Let (M, g) be a Fano manifold with a Kähler form $\omega_g \in 2\pi c_1(M)$ of g. Denote $\eta(M)$ to be the linear space of holomorphic vector fields on M. Then by Hodge Theorem, for any $X \in \eta(M)$, there exists a unique smooth complex-valued function $\theta_X(g)$ of M such that

\[
i_X \omega_g = \sqrt{-1} \partial \bar{\partial} \theta_X(g),
\]
\[
\int_M e^{\theta_X(g)} \omega^n_g = \int_M \omega^n_g.
\]

In [TZ2], Tian and Zhu introduced the modified Futaki invariant on $\eta(M) \times \eta(M)$,

\[
F_X(v) = \int_M v(h_g - \theta_X(g)) e^{\theta_X(g)} \frac{\omega^n_g}{n!}, \quad X, v \in \eta(M),
\]

where h_g is the Ricci potential of g such that

\[
\text{Ric}(\omega_g) - \omega_g = \sqrt{-1} \partial \bar{\partial} h_g.
\]

It was shown there that $F_X(v)$ is a holomorphic invariant independent of the choice of g with $\omega_g \in 2\pi c_1(M)$, and so it defines an obstruction to the existence of Kähler-Ricci solitons with respect to an element $X \in \eta_r(M)$, where $\eta_r(M)$ is the reductive part of $\eta(M)$. In particular, when $X = 0$, $F_X(v)$ is classical Futaki invariant [Fut]. It was also proved by Tian and Zhu that there exists a unique X such that $F_X(v) = 0$, $\forall v \in \eta(M)$. For convenience, we call such X the soliton vector field on M.

Recently, by using Ding-Tian’s idea of generalizing Futaki invariant [DT], Xiong and Berman, gave a generalization of the modified Futaki invariant $F_X(\cdot)$ for any special degeneration associated to X, independently [Xi, Be2]. As a consequence, they both proved that $F_X(\cdot)$ is nonnegative if M admits a Kähler-Ricci soliton. Berman also gave an algebraic formula for $F_X(\cdot)$, which depends on weights of the automorphisms group on holomorphic sections of multi-line bundles on the center fibre induced by the test configuration. The purpose of present paper is to define the modified Futaki invariant $F_X(\cdot)$ for any test configuration associated to X. Our motivation is inspired by Berman’s algebraic formula for special degenerations and is to modify his formula for general test configurations. Then by applying the

2000 Mathematics Subject Classification. Primary: 53C25; Secondary: 53C55, 58J05, 19L10.

Key words and phrases. modified Futaki-invariant, Riemann-Roch formula, Kähler-Ricci solitons, toric manifolds.

*Partially supported by NSFC 11101004 and ARC DECRA.

** Partially supported by the NSFC Grants 11271022 and 11331001.
equivariant Riemann-Roch formula with a 2-dimensional torus action we show that our definition coincides with Xiong-Berman’s for special degenerations. Our definition also includes Tian and Donaldson’s generalized Futaki invariant as a special case \([T1,D1]\) when \(X = 0\).

As examples, we compute the new version of the modified Futaki invariant for any toric degeneration on toric manifolds introduced by Donaldson [D1]. Then by using the method in [ZZ1], we are able to prove

Theorem 0.1. Any toric Fano manifold is modified K-stable for any toric degeneration. Furthermore, the modified K-energy is proper for toric invariant Kähler potentials.

Theorem [0.1] gives a new proof of Wang-Zhu’s result for the existence of Kähler-Ricci solitons on any toric Fano manifold [WZ]. We can also study the existence of conical Kähler-Ricci solitons on toric Fano manifolds by showing the properness of modified Log K-energy. As a consequence, we give a new proof of Datar-Guo-Song-Wang Theorem in [DGSW]. In particular, we have

Theorem 0.2. Let \(X\) be a soliton vector field on a toric Fano manifold \(M\). Then for any \(\beta \leq 1\) there exists a unique toric invariant conical Kähler-Ricci soliton which has conical angle \(2\pi \beta\) along each face divisor \(D_i\) of \(M\).

We note that the above energy argument was used by other people, such as in [JMR, LS, T3, LZ] to study the conical Kähler-Einstein metrics on general Fanon manifolds. Theorem 0.1 and Theorem 0.2 will be proved in Section 2-3 and Section 4, respectively.

Acknowledgements. The third author would like to thank professor Gang Tian for his interest to the paper and sharing his insight in Kähler geometry.

1. New version of modified Futaki invariant

According to [D1], a test-configuration on a Fano manifold \(M\) is a scheme \(\mathcal{M}\) with a \(\mathbb{C}^+\)-action which consists of two integrations:

1. an flat \(\mathbb{C}^+\)-equivavrant map \(\pi : \mathcal{M} \to \mathbb{C}\) such that \(\pi^{-1}(t)\) is biholomorphic to \(M\) for any \(t \neq 0\);
2. an holomorphic line bundle \(\mathcal{L}\) on \(\mathcal{M}\) such that \(\mathcal{L}|_{\pi^{-1}(t)}\) is isomorphic to \(K_M^{-r}\) for some integer \(r > 0\) for any \(t \neq 0\).

Definition 1.1. \(\mathcal{M}\) is called a test-configuration associated to the soliton action induced by \(X\) if \(\sigma_i^X\) communicate to \(\sigma_i^X\), where \(\sigma_i^X\) and \(\sigma_i^Y\) are two lifting one-parameter subgroups on \(\mathcal{M}\) induced by \(X\) and the holomorphic vector field \(v\) associated to the \(\mathbb{C}^+\)-action, respectively. If furthermore the center fibre \(M_0 = \pi^{-1}(0)\) is a normal variety we call \(\mathcal{M}\) is a special degeneration. In particular, if \(\mathcal{M} \cong M \times \mathbb{C}\), \(\mathcal{M}\) is called a trivial test-configuration.

For simplicity, we let \(L = \mathcal{L}|_{M_0}\). Let \(\sigma_i^X(k), \sigma_i^Y(k)\) be two induced one-parameter subgroups on \(H^0(M_0,L^k)\) by \(\sigma_i^X, \sigma_i^Y\), respectively. Denote by \(\{e_i^X\}\) and \(\{e_i^Y\}\) be eigenvalues of actions \(\sigma_i^X\) and \(\sigma_i^Y\). We set

\[
S_1 = \sum_i e_i^X v_i^k, \quad S_2 = \frac{1}{2} \sum_i e_i^X X_i^k v_i^k.
\]

\(^1\) \(X\) is not unique in general for the existence of conical Kähler-Ricci solitons while it is always unique modulo \(\text{Aut}^0(M)\) for the existence of Kähler-Ricci solitons [172].
Then
\[
S_1 = \frac{\partial}{\partial t}\text{trace}(e^{sX^k+nt^k})|_{s=1/2, t=0}, \quad S_2 = \frac{1}{2k^2}\frac{\partial}{\partial s}\frac{\partial}{\partial t}\text{trace}(e^{sX^k+nt^k})|_{s=1/2, t=0},
\]
where \(X^k = (X^k_{\alpha}), v^k = (v^k_{\alpha})\) are two vectors as elements of Lie algebra associated to \(\sigma^X_t(k), \sigma^v_t(k)\), respectively. Our observation is that both \(S_1\) and \(S_2\) can be computed by the equivariant Riemann-Roch formula with \(G = (S^1)^2\)-action. In fact
\[
\text{trace}(e^{sX^k+nt^k}) = \int_{M_0} \text{ch}^G(-kL)\text{Td}^G(X_0),
\]
where \(\text{ch}^G(-kL)\) is a \(G\)-equivariant Chern character of multi-line bundle \(-kL\) and \(\text{Td}^G(M_0)\) is a \(G\)-equivariant Todd character of \(M_0\) \cite{AS}. In particular, for a special degeneration associated to the soliton action, we can compute both \(S_1\) and \(S_2\) precisely in the following.

According to \cite{DT}, for a special degeneration, there exists a hermitian metric \(h\) on \((X_0, L)\) such that curvature \(c(h, L)\) is a \(r\)-multiple of an admissible metric \(g\) with property: there exists a \(L^p\)-integrable function \(h_\sigma\) (for any \(p \geq 0\)) with respect to \(g\) such that
i) \(\text{Ric}(\omega_g) - \omega_g = \sqrt{-1} \partial\bar{\partial} h_\sigma\), on the smooth part of \(M_0\);
ii) \(v(h_\sigma)\) is \(L^1\)-integrable with respect to \(g\). We note that \(v\) is an admissible holomorphic vector field \(w\) on \(M_0\) \cite{DT}.

For any admissible holomorphic vector field \(w\) on \(M_0\), we define a function by
\[
\theta_w = -\frac{L_w h}{h},
\]
Then a direct computation shows
\[
\sqrt{-1} \partial\bar{\partial} \theta_w = i_w \omega_g,
\]
and consequently
\[
\Delta \theta_w = \frac{L_w \omega_g^n}{\omega_g^n}.
\]

Lemma 1.1. \(\theta_w\) satisfies
\[
\Delta \theta_w + v(h_\sigma) + \theta_w = 0.
\]

Proof. It suffices to verify (1.4) on the smooth part of \(X_0\). Since
\[
\text{Ric}(\omega_g) - \omega_g = \text{Ric}(\omega_g) - \text{Ric}(h) = \sqrt{-1} \partial\bar{\partial} \log \frac{h}{\omega_g^n},
\]
we have
\[
h_\sigma = \log \frac{h}{\omega_g^n} + \text{const}.
\]
It follows
\[
v(h_\sigma) = v(\log \frac{h}{\omega_g^n}).
\]
Thus
\[
\Delta \theta_w + v(h_\sigma) + \theta_w = \frac{L_w \omega_g^n}{\omega_g^n} + v(\log \frac{h}{\omega_g^n}) - \frac{L_w h}{h} = 0.
\]
\[\square\]
Lemma 1.2. Let θ_X and θ_v be defined by (1.2) for the vectors X and v, respectively. Then, instead of k by kr, we have

$$S_1 = k^{n+1} \int_{M_0} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!}$$

(1.5)

$$+ \frac{k^n}{2} \left[n \int_{M_0} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} + \int_{M_0} \theta_X \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} - \int_{M_0} \nu(h_g - \theta_X) e^{\theta_X} \frac{\omega_g^n}{n!} \right] + O(k^{n-1}).$$

(1.6)

$$S_2 = \frac{k^n}{2} \int_{M_0} \theta_v \theta_X e^{\theta_X} \frac{\omega_g^n}{n!} + O(k^{n-1}).$$

Proof. Since

$$\text{ch}^G(-kK_{M_0}) = e^{k\rho_X + k\rho_v + k\theta_v}$$

and

$$\text{Td}^G(M_0) = 1 + \frac{1}{2} c_1^G + \sum_{i+j \geq 2} a_i j^j t^i + 2l - \text{forms } (l \geq 2),$$

where c_1^G is the first Chern G-equivariant form, we have

$$\left. \frac{d}{dt} \right|_{t=0} \text{trace}(e^{\theta_X+iv})$$

$$= k \int_{M_0} \theta_v e^{k\rho_X + \theta_X} \text{Td}^G(M_0) + \int_{M_0} e^{k\rho_X + \theta_X} \frac{d}{dt} \text{Td}^G(M_0)$$

$$= k^{n+1} \int_{M_0} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} \wedge (1 + \frac{1}{2} c_1^G) + \frac{k^n}{2} \int_{M_0} e^{\theta_X} \frac{\omega_g^{n-1}}{n!} \wedge c_1^G$$

$$+ \int_{M_0} e^{k\rho_X + \theta_X} \left(\frac{d}{dt} c_1^G \right) \frac{\omega_g^n}{n!} + O(k^{n-2}).$$

Note that

$$c_1^G = \text{Ric}(\omega_g) - s\Delta \theta_{V_0} - t\Delta \theta_{W_0}.$$

Thus

$$\left. \frac{d}{dt} \right|_{t=0} \text{trace}(e^{\theta_X+iv})$$

(1.7)

$$= k^{n+1} \int_{M_0} e^{\theta_X} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} + \frac{k^n}{2} \left(\int_{M_0} e^{\theta_X} \theta_v S \frac{\omega_g^n}{n!} - \int_{M_0} e^{\theta_X} \theta_v \Delta \theta_X \frac{\omega_g^n}{n!} - \int_{M_0} e^{\theta_X} \Delta \theta_v \frac{\omega_g^n}{n!} \right) + O(k^{n-1}).$$

On the other hand, using the integration by parts, it is easy to see that

$$\int_{M_0} \theta_v e^{\theta_X} S \frac{\omega_g^n}{n!} = n \int_{M_0} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} + \int_{M_0} \theta_v e^{\theta_X} \Delta h_g \frac{\omega_g^n}{n!}$$

(1.8)

$$= n \int_{M_0} \theta_v e^{\theta_X} \frac{\omega_g^n}{n!} - \int_{M_0} \theta_v e^{\theta_X} h_g \frac{\omega_g^n}{n!} - \int_{M_0} \nu(h_g) e^{\theta_X} \frac{\omega_g^n}{n!}.$$

Hence, by using the relation (1.4) for θ_X, we will get (1.5) from (1.7) and (1.8) immediately.

The proof of (1.6) is easy. We skip it. □
Let $N_k = \dim H^0(M_0, \mathcal{L}^k)$. Then by the Riemann-Roch formula, we have

\begin{equation}
(1.9) \quad N_k = \int_{M_0} c_h(-k K_{M_0}) Td(M_0) = \int_{M_0} e^{k \omega_g} Td(M_0).
\end{equation}

Note that the Todd class is given by

\[Td(M_0) = 1 + \frac{1}{2} c_1(M_0) + \cdots, \]

where $c_1(M_0)$ is the first Chern class of M_0. Thus

\begin{equation}
(1.10) \quad N_k = A_0 k^n + B_0 k^{n-1} + O(k^{n-2}),
\end{equation}

where

\begin{equation}
(1.11) \quad A_0 = \int_{M_0} \frac{\omega_g^n}{n!} = \text{Vol}(M_0), \quad B_0 = \frac{1}{2} \int_{M_0} S \frac{\omega_g^n}{n!} = \frac{n}{2} \text{Vol}(M_0).
\end{equation}

Here S is the scalar curvature of ω_g.

By Lemma 1.2, we can write

\[-\frac{S_1 - S_2}{k N_k} = F_0 + F_1 k^{-1} + O(k^{-2}). \]

Proposition 1.1. For a special degeneration on a Fano manifold, we have

\[F_1 = \frac{1}{2} F_0 = \frac{1}{2 \text{Vol}(M_0)} \int_{M_0} \nu(h_g - \theta \chi) e^{\theta \chi} \frac{\omega_g^n}{n!}. \]

Proof. By using the relation (1.4) for θ_ν, we have

\[\int_{M_0} \nu(h_g - \theta \chi) e^{\theta \chi} \frac{\omega_g^n}{n!} = -\int_{M_0} \theta_\nu e^{\theta \chi} \frac{\omega_g^n}{n!}. \]

Then the Proposition follows from Lemma 1.2 immediately. \hfill \Box

For a general test-configuration associated to the soliton action, by the equivariant Riemann-Roch formula (1.1), we write S_1 and S_2 formally as,

\begin{align*}
S_1 &= A k^{n+1} + B k^n + O(k^{n-1}), \\
S_2 &= C k^n + D k^{n-1} + O(k^{n-2}).
\end{align*}

Then the invariant F_1 in (1.12) is equal to $\frac{2(B-C)}{2A}$. We call this quantity the modified Futaki invariant for the test-configuration M associated to the soliton vector field X.

Remark 1.1. 1) In [Be2], Berman defines the modified Futaki invariant by F_0 for any special degeneration associated to the soliton vector field X. Proposition 1.1 means that our definition coincides Berman’s case. But in general F_0 will be different to F_1 as showed in next section for toric degenerations on a toric Fano manifold. In fact, we will show that the invariant F_1 comes naturally from the study of modified K-energy on toric manifolds (cf. Section 3).

2) Proposition 1.1 also shows that the Donaldson invariant F_1 in [D1] coincides with the generalized Futaki invariant defined by Tian in [T1] for special degenerations.

As in [T1] D1, we introduce a notation of modified K-stability for any Fano manifold M via the quantity F_1.

Definition 1.2. A Fano manifold M is called modified K-semi-stable if $F_1 \geq 0$ for any test-configuration associated to the soliton action of M and M is modified K-stable if in addition $F_1 = 0$ happens if and only if the test-configuration is trivial.

Due to the celebrated solving of Yau-Tian-Donaldson’s conjecture for the existence of Kähler-Einstein metrics \cite{T3, CDS}, we propose the following generalized Yau-Tian-Donaldson’s conjecture for the existence of Kähler-Ricci solitons.

Conjecture 1.1. A Fano manifold M admits a Kähler-Ricci soliton if and only if M is modified K-stable.

In the remaining sections, we verify Conjecture 1.1 in case of toric Fano manifolds (also for general conical Kähler-Ricci solitons).

2. Modified Futaki invariant for toric degenerations

In this section we compute the modified Futaki invariant F_1 for a toric degeneration on a toric Fano manifold M. Let $T = T^1 = (\mathbb{C}^*)^n = (S^1)^n \times \mathbb{R}^n$ be torus action on M and denote $G_0 = (S^1)^n$. Choose an G_0-invariant Kähler metric g on \mathbb{R}^n which depends only on $\xi_1, \ldots, \xi_n \in \mathbb{R}^n$ in the coordinates (z_1, \ldots, z_n), namely $\omega_g = \sqrt{-1} \partial \bar{\partial} \varphi_0$ on $(\mathbb{C}^*)^n$. Since the torus action T is Hamiltonian, there exists a moment map $m : M \rightarrow t^*$, where t^* is the dual of the Lie algebra of T which can be identified with \mathbb{R}^d. By the convexity theorem the image is a convex polytope in \mathbb{R}^n. Moreover, the moment map can be given by

$$(m_1, \ldots, m_n) = \nabla \varphi_0 = \left(\frac{\partial \varphi_0}{\partial \xi_1}, \ldots, \frac{\partial \varphi_0}{\partial \xi_n}\right).$$

Denote the image by $P = D\varphi_0(\mathbb{R}^n)$. Then P is a convex polytope represented by a set of inequalities of the form (up to translation of coordinates)

$$(2.1) P = \{x \in \mathbb{R}^n : \langle x, \ell_i \rangle \leq 1, \ i = 1, 2, \ldots, d\},$$

where ℓ_i is the outer normal vector to a face of P and d is the number of faces of P. This polytope is independent of the choice of the metric g in $2\pi c_1(M)$. See \cite{Ab1, Ab2, Gu} for more details.

On the other hand, the soliton vector field X can be written as $X = \sum_{i=1}^n \theta_i w_i \frac{\partial}{\partial w_i} = \sum_{i=1}^n \theta_i \frac{\partial}{\partial z_i}$. Let $\theta_X(\omega_g)$ be the potential function determined by

$$i_X \omega_g = \sqrt{-1} \partial \bar{\partial} \theta_X(\omega_g),$$

then $\theta_X(\omega_g) = \varphi_0 + c$ for some $c \in \mathbb{R}^n$. By (1.4), it is easy to see

$$(2.2) \int_M \theta_X(\omega_g) e^{h_k \frac{\omega_g^n}{n!}} = 0.$$
in the symplectic coordinates. One can see that $\theta(x)$ is also independent of the choice of metric g.

According to [DT], a toric degeneration is induced by positive rational, piecewise linear functions on P. Note that a piecewise linear(PL) convex function u on P is of the form

$$u = \max\{u^1, ..., u^r\},$$

where $u^\lambda = \sum a^\lambda_i x_i + c^\lambda$, $\lambda = 1, ..., r$, for some vectors $(a^\lambda_1, ..., a^\lambda_n) \in \mathbb{R}^n$ and some numbers $c^\lambda \in \mathbb{R}$. u is called a rational piecewise linear convex function if the coefficients a^λ_i and numbers c^λ are all rational.

For a positive rational PL convex function u on P, we choose a positive integer R so that

$$Q = \{(x,t) \mid x \in P, 0 < t < R-u(x)\}$$

is a convex polytope in \mathbb{R}^{n+1}. Without loss of generality, we may assume that the coefficients a^λ_i are integers and Q is an integral polytope. Otherwise we replace u by lu and Q by lQ for some integer l, respectively. Then the $n+1$-dimensional polytope Q determines an $(n+1)$-dimensional toric variety M_Q with a holomorphic line bundle $\mathcal{L} \to M_Q$. Note that the face $\bar{Q} \cap [\mathbb{R}^n \times \{0\}]$ of Q is a copy of the n-dimensional polytope P, so we have a natural embedding $i : M \to M_Q$ such that $\mathcal{L}|_M = -K_M$.

Decomposing the torus action T^{n+1}_C on M_Q as $T^n_C \times \mathbb{C}^*$ so that $T^n_C \times \{1\}$ is isomorphic to the torus action on M, we get \mathbb{C}^*-action σ^u by $\{1\} \times \mathbb{C}^*$. Hence, we define an equivariant map

$$\pi : M_Q \to \mathbb{C}P^1$$

satisfying $\pi^{-1}(\infty) = i(M)$. One can check that $W = M_Q\backslash i(M)$ is a test configuration for the pair M, called a toric degeneration.

Let kP be the polytope which corresponds to the bundle $-kK_M$. Let $B_{kP} = \mathbb{Z}^n \cap k\mathbb{P}$ be the lattices set of kP. Let $d\sigma = \langle \bar{n}, x \rangle d\sigma_0$, where \bar{n} is the unit outer normal vector field, and $d\sigma_0$ is the Lebesgue measure on on ∂P. We need the following lemma.

Lemma 2.1. Let ϕ be a continuous function on \mathbb{P}, then

$$\sum_{l \in B_{kP}} \phi(1/k) = k^n \int_P \phi dx + \frac{k^{n-1}}{2} \int_{\partial P} \phi d\sigma + O(k^{n-2}).$$

In particular,

$$N_k = k^n |P| + \frac{k^{n-1}}{2} |\partial P| + O(k^{n-2}).$$

Note that $\frac{\partial P}{|P|} = n$ if P corresponds to $2\pi c_1(M)$.

This lemma was proved in [DT] for convex rational PL functions. It is easy to see that the formula can be extended to continuous function by approximation arguments.

Proposition 2.1. Let

$$\mathcal{L}(u) = \int_{\partial P} u e^{\theta(x)} d\sigma - \int_P (n + \theta(x)) e^{\theta(x)} u \ dx.$$

Then for a toric degeneration on M induced by a positive rational PL-convex function u, we have

$$F_1 = \frac{1}{2Vol(P)} \mathcal{L}(u).$$
Proof. We consider the space $H^0(W, \mathcal{O}^k)$ of holomorphic sections over W. It is well-known that $H^0(W, \mathcal{O}^k)$ has a basis $\{S_{I,j}\}$, where I is a lattice in $B_{k,p}$ and $0 \leq i \leq k(R-u)(I/k)$. By using the exact sequence for large k,

$$0 \rightarrow H^0(W, \mathcal{O}^k \otimes \pi^*(\theta(-1))) \rightarrow H^0(W, \mathcal{O}^k) \rightarrow H^0(M_0, \mathcal{O}^k) \rightarrow 0,$$

$H^0(M_0, \mathcal{O}^k)$ has a basis $\{S_{I,k(R-u)(I/k)}\}_{I \in B_{k,p}}$. According to [ZZ1], the action σ^X induced by X acts on $S_{I,k(R-u)(I/k)}$ with weight $k\theta(I/k)$. The action σ^u induced by u acts on $S_{I,k(R-u)(I/k)}$ with weight $k(R-u)(I/k)$.

Then by Lemma 2.1 it is easy to see that

$$S_1 = \sum_{I \in B_{k,p}} e^{\theta(I/k)}k(R-u)(I/k)$$

$$= \int p e^{\theta(x)}(R-u) \, dx - \frac{k^n}{2} \int_{\partial p} e^{\theta(x)}(R-u) \, d\sigma + O(k^{n-1}) + \frac{1}{2} \left[k^n \int_p e^{\theta(x)}(R-u) \cdot \theta(x) \, dx \right],$$

$$S_2 = \sum_{I \in B_{k,p}} e^{\theta(I/k)} \theta(I/k) \cdot (R-u)(I/k)$$

$$= \frac{1}{2} \left[k^n \int_p e^{\theta(x)}(R-u) \cdot \theta(x) \, dx - \frac{k^{n-1}}{2} \int_{\partial p} e^{\theta(x)}(R-u) \cdot \theta(x) \, d\sigma + O(k^{n-2}) \right].$$

Then

$$-(S_1 - S_2)$$

$$= -k^{n+1} \int p e^{\theta(x)}(R-u) \, dx - \frac{k^n}{2} \left[\int_{\partial p} e^{\theta(x)}(R-u) \, d\sigma - \int_p e^{\theta(x)}(R-u) \cdot \theta(x) \, dx \right] + O(k^{n+1}).$$

We have

$$\frac{-(S_1 - S_2)}{kN_k} = F_0 + F_1 k^{-1} + \cdots,$$

where

$$F_0 = \frac{1}{|P|} \int_p e^{\theta(x)}(R-u) \, dx,$$

$$F_1 = \frac{1}{2|P|} \left[\int_{\partial p} e^{\theta(x)}(R-u) \, d\sigma - \int_p e^{\theta(x)}(R-u) \cdot \theta(x) \, dx - \frac{|\partial p|}{|P|} \int_p e^{\theta(x)}(R-u) \, dx \right]$$

$$= \frac{R}{2|P|} \left[\int_{\partial p} e^{\theta(x)} \, d\sigma - \int_p (n + \theta(x)) e^{\theta(x)} \, dx \right] - \frac{1}{2|P|} \left[\int_{\partial p} e^{\theta(x)} u \, d\sigma - \int_p (n + \theta(x)) e^{\theta(x)} u \, dx \right].$$

Integrating by parts, we have

$$\int_p e^{\theta(x)} \, dx = \frac{1}{n} \int_{\partial p} e^{\theta(x)} \, d\sigma - \frac{1}{n} \int_p \theta(x) e^{\theta(x)} \, dx.$$

Therefore, the coefficient of R in (2.7) vanishes, and we have

$$F_1 = \frac{1}{2|P|} \left[\int_{\partial p} e^{\theta(x)} u \, d\sigma - \int_p (n + \theta(x)) e^{\theta(x)} u \, dx \right].$$

□

Remark 2.1. As can be seen in the above lemma, the weights of the action depend on R and F_0 also depends on the integer R. But F_1 is independent of R. In particular, F_0 is different to F_1.

\[\square\]
Since X is the soliton vector field, $\mathcal{L}(u) = 0$ for any linear function u. This implies that $\mathcal{L}(u)$ is invariant when adding u by a linear function. We call a convex function is normalized at $0 \in P$ if $\inf_P u = u(0)$. Let C_∞ be the set of smooth convex functions on P and \tilde{C}_∞ be the set of smooth convex functions normalized at $0 \in P$. It is clear that the PL functions can be approximated uniformly by functions in C_∞.

Lemma 2.2. There exists a $\lambda > 0$ such that

$$\mathcal{L}(u) \geq \lambda \int_{\partial P} u e^{\theta(x)} d\sigma, \quad u \in \tilde{C}_\infty.$$

Proof. We note that $\mathcal{L}(u)$ can be rewritten as

$$\mathcal{L}(u) = \int_P \left[(\sum x_i u_i - u) + u \right] e^{\theta(x)} dx \geq \int_P u e^{\theta(x)} dx.$$

By the contradiction, we suppose that (2.9) is not true. Then there is a sequence of functions $\{u_k\}$ in \tilde{C}_∞ such that

$$\int_{\partial P} u_k e^{\theta(x)} d\sigma = 1$$

and

$$\mathcal{L}(u_k) \to 0, \quad k \to \infty.$$

By (2.11), there exists a subsequence (still denoted by $\{u_k\}$) of $\{u_k\}$, which converges locally uniformly to a convex function $u_\infty \geq 0$ on P. By (2.10) and (2.12), we have

$$\int_P u_k e^{\theta(x)} dx \leq \mathcal{L}(u_k) \to 0.$$

It follows

$$\int_P u_\infty e^{\theta(x)} dx = 0.$$

Hence, we obtain $u_\infty \equiv 0$ in P. On the other hand,

$$\mathcal{L}(u_k) = \int_{\partial P} u_k^k e^{\theta(x)} d\sigma - \int_P (n + \sum x_i \theta_i) u_k e^{\theta(x)} dx$$

$$\to 1 - \int_P (n + \sum x_i \theta_i) u_\infty e^{\theta(x)} dx = 1 > 0.$$

This contradicts with (2.12). The lemma is proved. □

By Lemma 2.2, we immediately get

Theorem 2.1. Any toric Fano manifold is modified K-stable for toric degenerations.
3. Modified K-energy on a toric Fano manifold

Let K_X be a one parameter compact subgroup generated by the image part $\text{Im}(X)$ and denote by $\mathcal{H}_X(\omega_\phi)$ a set of K_X-invariant Kähler potentials. In the study of Kähler-Ricci solitons, the modified Mabuchi’s K-energy $\mu_{\omega_\phi}(\phi)$ plays an important role [TZ2, CTZ], where

$$\mu_{\omega_\phi}(\phi) = -\frac{1}{V} \int_0^1 \int_M \phi_t [S(\phi_t) - n - tr \omega_t \nabla \omega_t \cdot X - X(h_{\omega_t} - \theta_X(\omega_\phi))] e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!} \wedge dt.$$

Here $\phi \in \mathcal{H}_X(\omega_\phi)$ and g is chosen to be K_X-invariant. Recall two Aubin typed functionals introduced in [Z1].

$$I_{\omega_\phi}(\phi) = \frac{1}{V} \int_M \phi (e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!} - e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!}),$$

$$J_{\omega_\phi}(\phi) = \frac{1}{V} \int_0^1 \int_M \phi_t (e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!} - e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!}) \wedge ds,$$

where $\omega_\phi = \omega_g + \sqrt{-1} \bar{\partial} \partial \phi$ and ϕ_t is a path in $\mathcal{H}_X(\omega_g)$. It is known that

$$c_1 I_{\omega_\phi}(\phi) \geq J_{\omega_\phi}(\phi) \geq c_2 I_{\omega_\phi}(\phi), \quad \forall \phi \in \mathcal{H}_X(\omega_g),$$

for two positive constants c_1, c_2. Then $\mu_{\omega_\phi}(\cdot)$ can also be written as

$$\mu_{\omega_\phi}(\phi) = -\frac{1}{V} \int_M \log \left(\frac{e^{\theta_X(\omega_\phi)} \omega_\phi^n}{e^{\theta_X(\omega_\phi)} \omega_g^n} \right) e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!} - (I_{\omega_\phi}(\phi) - J_{\omega_\phi}(\phi))$$

$$+ \frac{1}{V} \int_M (h_g - \theta_X(\omega_\phi))(e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!} - e^{\theta_X(\omega_\phi)} \frac{\omega_\phi^n}{n!}).$$

Definition 3.1. Let (M, g) be a Fano manifold M. Let G be a reductive subgroup of automorphisms group $\text{Aut}(M)$ which contains K_X. We call $\mu_{\omega_\phi}(\phi)$ proper modulo G if there is a continuous function $p(t)$ in \mathbb{R} with the property

$$\lim_{t \to +\infty} p(t) = +\infty,$$

such that

$$\mu_{\omega_\phi}(\phi) \geq \inf_{\sigma \in G} p(I_{\omega_\phi}(\phi_\sigma)),$$

where ϕ_σ is defined by

$$\omega_\phi + \sqrt{-1} \bar{\partial} \partial \phi_\sigma = \sigma^* (\omega_g + \sqrt{-1} \bar{\partial} \partial \phi).$$

The properness of $\mu_{\omega_\phi}(\phi)$ is a sufficient condition for the existence of Kähler-Ricci solitons due to the following lemma.

Lemma 3.1. Suppose that $\mu_{\omega_\phi}(\phi)$ is proper modulo a reductive subgroup G of automorphisms group $\text{Aut}(M)$ which contains K_X. Then M admits a Kähler-Ricci soliton.

Lemma 3.1 was proved by using Kähler-Ricci flow as in [TZ3, Z2, BB] and can be also proved by using the continuity method as in [CTZ, T2].

Let $P_g = \Delta_g + X(\cdot)$ be a linear elliptic operator defined on the space

$$\mathcal{N}_X = \{ u \in C^\infty(M) | \text{Im}(X(u)) = 0 \},$$
associated to \(\omega_g \) and a holomorphic on \(M \). \(P_g \) is a self-adjoint elliptic operator on \(\mathcal{N}_X \) with respect to the inner product,

\[
(\phi, \psi) = \int_M \phi \psi e^{\theta_g(\omega_g)} \frac{\omega^n_g}{n!}.
\]

The following lemma shows that the properness given in Definition 3.1 coincides with one as defined in [T1, CTZ], when \(g \) is a Kähler-Ricci soliton.

Lemma 3.2. Suppose that \(M \) admits a Kähler-Ricci soliton \(g_{KS} \). Then the modified K-energy \(\mu_{g_{KS}}(\phi) \) is proper with respect to \(X \) modulo \(\text{Aut}^0(M) \) iff there is a continuous function \(\tilde{p}(t) \) in \(\mathbb{R} \) with the property

\[
\lim_{t \to +\infty} \tilde{p}(t) = +\infty
\]

such that

\[
(3.4) \quad \mu_{g_{KS}}(\phi) \geq \tilde{p}(I_{g_{KS}}(\phi)), \quad \forall \phi \in \Lambda_1^+(M, g_{KS}),
\]

where \(\Lambda_1(M, g_{KS}) \) denotes the first non-zero eigenfunctions space for the operator \(P_{g_{KS}} \) associated to the metric \(g_{KS} \), i.e., \(\Lambda_1(M, g_{KS}) = \ker(P_{g_{KS}} + I) \).

Proof. First we prove the necessary part of the lemma. We choose the Kähler-Ricci soliton metric \(g_{KS} \) as an initial metric. Then we induce a functional on \(\text{Aut}^0(M) \) for any \(\phi \in H^X(\omega_{KS}) \) by

\[
\Phi(\sigma) = I_{\sigma^* \omega_{g}}(-\phi_\sigma) - J_{\sigma^* \omega_{g}}(-\phi_\sigma),
\]

where \(\phi_\sigma \) is an induced Kähler potential defined by

\[
\omega_{KS} + \sqrt{-1} \partial \bar{\partial} \phi_\sigma.
\]

\(I_{\sigma^* \omega_{g}}(\psi) \) and \(J_{\sigma^* \omega_{g}}(\psi) \) are functionals \(I(\psi) \) and \(J(\psi) \) respectively while the initial metric \(\omega_{KS} \) is replaced by \(\sigma^* \omega_{g} \). According to [TZ1], one can show that there exists a \(\tau \in \text{Aut}^0(M) \) such that

\[
\Phi(\tau) = \inf_{\sigma \in \text{Aut}^0(M)} \Phi(\sigma)
\]

and consequently \(\phi_\tau \in \Lambda_1^+(M, g_{KS}) \). In fact, from the proof of uniqueness of Kähler-Ricci solitons in [TZ1] it can be proved that \(\phi \in \Lambda_1^+(M, g_{KS}) \) iff

\[
I_{\omega_{g}}(-\phi) - J_{\omega_{g}}(-\phi) = \inf_{\sigma \in \Lambda_1^+(M, g_{KS})} \Phi(\sigma).
\]

Thus by the assumption (3.3) and relation (3.1), for any \(\phi \in \Lambda_1^+(M, g_{KS}) \), we have

\[
\mu_{g_{KS}}(\phi) \geq \inf_{\sigma \in \text{Aut}^0(M)} p(I_{\omega_{g}}(\phi_\sigma))
\]

\[
= \inf_{\sigma \in \text{Aut}^0(M)} p(I_{\sigma^* \omega_{g}}(-\phi_\sigma))
\]

\[
\geq \inf_{\sigma \in \text{Aut}^0(M)} \tilde{p}(\Phi(\sigma))
\]

\[
= \tilde{p}(I_{\omega_{g}}(-\phi) - J_{\omega_{g}}(-\phi))
\]

\[
\geq \tilde{p}(I_{\omega_{g}}(-\phi))
\]

\[
= \tilde{p}(I_{g_{KS}}(\phi)),
\]

where \(\tilde{p}(t) \) is another continuous function in \(\mathbb{R} \) which satisfying (2.9).
Next we prove the sufficient part. We note that the modified K-energy is invariant under $\text{Aut}^0(M)$ \cite{IZ2}. Then by the discussion at last paragraph, for any $\phi \in \mathcal{H}_X(\omega_{KS})$, we can choose a $\tau \in \text{Aut}^0(M)$ such that $\phi_\tau \in \Lambda^+_{1}(M, g_{KS})$ and
\[\mu(\phi) = \mu(\phi_\tau). \]
Thus by (3.4), we get
\[\mu(\phi) \geq \bar{p}(I(\phi_\tau)) \geq \inf_{\sigma \in \text{Aut}^0(M)} \bar{p}(I(\phi_\sigma)). \]

The converse of Lemma 3.1 was conjectured by Tian in sense of (3.4) in the case of Kähler-Einstein metrics \cite{T1} and was proved by him under the assumption that there is no any holomorphic vector field on M. Thus one may believe that the converse of Lemma 3.1 is also true as a generalization of Tian’s conjecture for the case of Kähler-Ricci solitons \cite{CTZ}. In this section we give a positive answer in the case of toric Fano manifolds. Namely, we shall prove

Theorem 3.1. On a toric Fano manifold, the modified K-energy is proper for toric invariant Kähler potentials modulo toric action.

Theorem 3.1 has been proved under the assumption that the Futaki invariant vanishes \cite{ZZ1}. In the following, we always assume that M is a toric Fano manifold.

3.1. **The reduction of modified K-energy.** Denote $\mathcal{H}_{G_0}(\omega_\kappa) \subset \mathcal{H}_X(\omega_\kappa)$ to be the set of G_0-invariant Kähler potentials. Then $\mathcal{H}_{G_0}(\omega_\kappa)$ is equal to the set
\[\{ \phi \in C^\infty(\mathbb{R}^n) \mid |\phi| < \infty \text{ and } \varphi_0 + \phi \text{ is strictly convex} \}. \]

By using the Legendre transformation $\xi = (D\varphi_0)^{-1}(x)$, one sees that the function (Legendre dual function) defined by
\[u_0(x) = \langle \xi, D\varphi_0(\xi) \rangle - \varphi_0(\xi) = \langle \xi(x), x \rangle - \varphi_0(\xi(x)), \quad \forall \ x \in P \]
is strictly convex. Set the space of symplectic functions by
\[C = \{ u = u_0 + f \mid u \text{ is a strictly convex function in } P, \ f \in C^{\infty}(\overline{P}) \}. \]
It was shown in \cite{Ab1} that there is a bijection between C and $\mathcal{H}_{G_0}(\omega_\kappa)$.

Proposition 3.1. Let $\phi \in \mathcal{H}_{G_0}(\omega_\kappa)$ and u be the Legendre dual function of $\varphi_0 + \phi$. Then the modified K-energy is given by
\[\mu_{\omega_\kappa}(\omega_\phi) = \frac{(2\pi)^n}{V} \mathcal{F}(u) + C, \]
where
\[\mathcal{F}(u) = - \int_P \log \det(u_{ij}) e^{\theta(u)} dx + \mathcal{L}(u), \]
and C is a constant.

Proof. By (3.2), a direct computation shows
\[\mu_{\omega_\kappa}(\phi) = \frac{1}{V} \int_M \log \left(\frac{e^{\theta_X(\omega_\phi)} \omega^n_\phi}{e^{\theta_X(\omega_\kappa)} \omega^n_\kappa} \right) - \frac{1}{V} \int_M \int_0^1 \phi_t e^{\theta_{X}(\omega_\phi)} \omega^n_\phi \wedge dt - \frac{1}{V} \int_M \phi e^{\theta_{X}(\omega_\phi)} \omega^n_\phi \]

\[-\frac{1}{V} \int_M (h_g - \theta_X(g)) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} + \frac{1}{V} \int_M (h_g - \theta_X(\omega_g)) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} + \frac{1}{V} \int_M (h_g - \theta_X(\omega_g)) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} = \frac{1}{V} \int_M \log \left(\frac{\omega^g}{\omega_g} \right) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} - \frac{1}{V} \int_M \int_0^1 \phi_0 e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} \wedge dt + \frac{1}{V} \int_M \theta_X(\omega_g) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} \wedge dt + \text{const.} \]

(3.7)

On the other hand,

\[h_g = -\varphi_0 - \log \det(\varphi_0) + C.\]

Then

\[\frac{\partial}{\partial \varphi} e^{-h_g} = C \det(\varphi) e^{\varphi}.\]

It follows

\[\int_M \log \left(\frac{\omega^g}{\omega_g} \right) e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} = (2\pi)^n \left[\int_{\mathbb{R}^n} \log \det(\varphi) e^{X(\varphi)} \det(\varphi) \, d\xi + \int_{\mathbb{R}^n} \varphi e^{X(\varphi)} \det(\varphi) \, d\xi \right].\]

By using the relations

\[\varphi = \sum_{i=1}^n x_i u_i - u, \quad \det(\varphi) \, d\xi = dx, \quad \phi_t = -u_t,\]

where \(\phi_t\) is a path in \(\mathcal{H}_{G_0}(\omega_g)\) and \(u_i\) is the symplectic potential of \(\varphi_t = \varphi_0 + \phi_t\), we also get

\[\int_0^1 \int_M \phi_t e^{\theta_X(\varphi_0)} \frac{\omega^g}{n!} \wedge dt = (2\pi)^n \int_0^1 \int_{\mathbb{R}^n} \phi_t e^{X(\varphi)} \det(\varphi) \, d\xi \wedge dt = -(2\pi)^n \int_{\mathbb{R}^n} u e^{\theta(x)} \, dx + \text{const.},\]

(3.9)

\[\int_{\mathbb{R}^n} \log \det(\varphi) e^{X(\varphi)} \det(\varphi) \, d\xi + \int_{\mathbb{R}^n} \varphi e^{X(\varphi)} \det(\varphi) \, d\xi = -\int_{\mathbb{R}^n} \log \det(\varphi) e^{\phi} \, dx + \int_{\mathbb{R}^n} \sum_{i=1}^n x_i u_i - u) e^{\theta(x)} \, dx.\]

(3.10)

Hence inserting (3.8)-(3.10) into (3.7), we obtain

\[\mu_{\omega_g}(\phi) = \frac{(2\pi)^n}{V} \left[-\int_{\mathbb{R}^n} \log \det(\varphi) e^{\theta(x)} \, dx + \int_{\mathbb{R}^n} \sum_{i=1}^n x_i u_i e^{\theta(x)} \, dx \right] + C.\]

Integrating by parts, we deduce (3.5) immediately. \[\square\]
3.2. **Properness of** $\mathcal{F}(u)$. In this subsection, we show the properness of $\mathcal{F}(u)$ by similar arguments as in [DT1, ZZ1]. First, we have

Lemma 3.3. There exists a constant $C > 0$ such that for any $u \in C_\infty$, it holds

\[
\int_P \log \det(u_{ij}) e^{\theta(x)} \, dx \leq L_B(u) + C
\]

where $B = (u_0)^{ij}_{ij} + 2(u_0)^{ij}_i \theta_j + (u_0)^{ij}_i \theta_i \theta_j$ is a bounded function, and

\[
L_B(u) = \int_{\partial P} u e^{\theta(x)} \, d\sigma + \int_P B e^{\theta(x)} \, dx.
\]

Proof. Let $f = u - u_0$. By the convexity of $-\log\det$, we have

\[
\log\det(u_{ij}) \leq \log\det((u_0)_{ij}) + (u_0)^{ij}_{ij} f_{ij}.
\]

For any $\delta > 0$, let P_δ be the interior polygon with faces parallel to those of P separated by distance δ, then f is smooth over the closure of P_δ.

Integrating by parts,

\[
\int_{P_\delta} (u_0)^{ij}_{ij} f_{ij} e^{\theta(x)} \, dx = \int_{\partial P_\delta} (u_0)^{ij}_{ij} f_{ij} \, d\sigma_0 - \int_{P_\delta} (u_0)^{ij}_{ij} f_{ij} e^{\theta(x)} \, dx - \int_{P_\delta} (u_0)^{ij}_{ij} f_{ij} e^{\theta(x)} \, dx.
\]

Integrating by parts for the last two terms again, we have

\[
\int_{P_\delta} (u_0)^{ij}_{ij} f_{ij} e^{\theta(x)} \, dx = \int_{\partial P_\delta} (u_0)^{ij}_{ij} f_{ij} \, d\sigma_0 - \int_{\partial P_\delta} (u_0)^{ij}_{ij} f_{ij} \, d\sigma_0 - \int_{\partial P_\delta} (u_0)^{ij}_{ij} f_{ij} \, d\sigma_0
\]

\[
+ \int_{P_\delta} ((u_0)^{ij}_{ij} + (u_0)^{ij}_{ij} \theta_i + (u_0)^{ij}_{ij} \theta_j + (u_0)^{ij}_{ij} \theta_i \theta_j) e^{\theta(x)} \, dx.
\]

Note that

\[
(u_0)^{ij}_{ij} n_j \, d\sigma_0 \to 0, \quad -(u_0)^{ij}_{ij} n_i \, d\sigma_0 \to \, d\sigma
\]

as $\delta \to 0$ [DT1, D2]. Then

\[
\int_{\partial P_\delta} (u_0)^{ij}_{ij} f_{ij} \, e^{\theta(x)} \, d\sigma_0, \quad \int_{\partial P_\delta} (u_0)^{ij}_{ij} n_i \theta_j e^{\theta(x)} \, d\sigma_0 \to 0,
\]

and

\[
\int_{\partial P_\delta} (u_0)^{ij}_{ij} n_i f e^{\theta(x)} \, d\sigma_0 \to \int_{\partial P} f e^{\theta(x)} \, d\sigma
\]

as $\delta \to 0$. In conclusion,

\[
\int_P (u_0)^{ij}_{ij} f_{ij} e^{\theta(x)} \, dx = \int_{\partial P} f e^{\theta(x)} \, d\sigma + \int_P B f e^{\theta(x)} \, dx.
\]

Hence,

\[
\int_P \log\det(u_{ij}) e^{\theta(x)} \, dx \leq \int_P u e^{\theta(x)} \, d\sigma + \int_P B e^{\theta(x)} \, dx + \int_P u_0 e^{\theta(x)} \, d\sigma - \int_P B u_0 e^{\theta(x)} \, dx + \int_P \log\det((u_0)_{ij}) e^{\theta(x)} \, dx
\]

\[
= \int_{\partial P} u e^{\theta(x)} \, d\sigma + \int_P B e^{\theta(x)} \, dx + \text{const.}
\]

\square
Remark 3.1. As in [ZZ2], Lemma 3.3 can be extended for any \(u \in C_* \), where

\[
C_* = \{ u \mid u \text{ is convex and satisfies } \int_{\partial P} u \, d\sigma < \infty \}.
\]

Denote

\[
H(u) = \int_P u e^{\theta(x)} \, dx.
\]

Proposition 3.2. For any \(0 < \delta < 1 \), there exists \(C_\delta > 0 \) such that

\[
\mathcal{F}(u) \geq \delta H(u) - C_\delta, \quad \forall u \in \tilde{C}_\infty.
\]

Proof. First, we compute the difference of \(L(u) \) and \(L_B(u) \)

\[
|L(u) - L_B(u)| = \left\| \int_P (n + \sum \theta_i x_i + B)e^{\theta(x)} \, dx \right\|
\leq C' \int_P u e^{\theta(x)} \, dx
\leq (1 + \delta)C_0 C' \int_{\partial P} u e^{\theta(x)} \, d\sigma - \delta C' \int_P u e^{\theta(x)} \, dx
\]

where \(C' = \|n + \sum \theta_i x_i + B\|_{L^\infty} \). Note

\[
\int_P u e^{\theta(x)} \, dx \leq C_0 \int_{\partial P} u e^{\theta(x)} \, d\sigma, \quad \forall u \in \tilde{C}_\infty.
\]

Then by (2.9), it follows

\[
|L(u) - L_B(u)| \leq \frac{(1 + \delta)C_0 C'}{\lambda} L(u) - \delta C' \int_P u e^{\theta(x)} \, dx.
\]

Thus

\[
\left(1 + \frac{(1 + \delta)C_0 C'}{\lambda} \right) L(u) \geq L_B(u) + \delta C' \int_P u e^{\theta(x)} \, dx.
\]

Now let \(r = \left(1 + \frac{(1 + \delta)C_0 C'}{\lambda} \right)^{-1} \), we get

\[
L(u) \geq L_B(ru) + r\delta C' \int_P u e^{\theta(x)} \, dx.
\]

Applying the inequality (3.11) to \(ru \), we obtain

\[
- \int_P \log \det(u_{ij}) e^{\theta(x)} \, dx \geq -L_B(ru) - C + n \log r.
\]

Hence,

\[
\mathcal{F}(u) \geq r\delta C' \int_P u e^{\theta(x)} \, dx - C + n \log r
\]

\(\square \)
3.3. Properness of $\mu_{\omega_s}(\cdot)$. In this subsection, we show that the properness of $\mathcal{F}(u)$ in the above subsection is equivalent to the properness of $\mu_{\omega_s}(\phi)$. We need a lemma as follows.

Lemma 3.4. There exists $C > 0$ such that

$$|J_{\omega_s}(\tilde{\phi}) - H(u_0)| \leq C, \quad \forall \, \phi \in \mathcal{H}_{G_0}(\omega_s),$$

where $\tilde{\phi} = \phi_{\sigma}$ is a normalization of ϕ after a transformation $\sigma \in T$ so that

$$(\psi_0 + \tilde{\phi})(0) = 0, \quad D(\psi_0 + \tilde{\phi})(0) = 0.$$

Proof. By the relation $\tilde{\phi}_t = -\nu_t$, it is easy to see

$$J_{\omega_s}(\phi) = \frac{1}{V} \int_M \phi e^{\theta_g(x)} \frac{\omega_s^n}{n!} + H(u_0) - H(u_0), \quad \forall \, \phi \in \mathcal{H}_{\mathcal{G}}(\omega_s).$$

In particular,

$$J_{\omega_s}(\tilde{\phi}) - H(u_0) = \frac{1}{V} \int_M \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} - H(u_0).$$

We claim that

$$\left| \frac{1}{V} \int_M \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} \right| \leq C$$

for some uniform constant C.

Let $G(p, p')$ be the Green function of P_{ω_s} so that

$$\int_M G(p, \cdot) e^{\theta_g(x)} \frac{\omega_s^n}{n!} = 0.$$

It is proved in [CTZ] that there exists a $C > 0$ depending only on g such that

$$G(p, p') \geq -C.$$

Then applying the Green’s formula to potential $\tilde{\phi}$, we have

$$\tilde{\phi}(x) = \frac{1}{V} \int_M \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} - \int_M G(x, \cdot)(\Delta \tilde{\phi}(\cdot) + X(\tilde{\phi})) e^{\theta_g(x)} \frac{\omega_s^n}{n!},$$

(3.15)

where C_0 is a uniform constant. The second inequality follows from $\Delta \tilde{\phi} \geq -n$ and that $X(\tilde{\phi})$ is uniformly bounded [Z1]. Thus

$$\frac{1}{V} \int_M \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} \geq \sup_M \{\tilde{\phi}\} - C_0 = \sup_{\mathbb{R}^n} \{\tilde{\phi}\} - C_0.$$

(3.16)

Set

$$\Omega_N = \{\xi \in M | \tilde{\phi}(\xi) \leq \sup_M \{\tilde{\phi}\} - N\}.$$

Note that

$$\frac{1}{V} \int_M \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} = \frac{1}{V} \int_{M \cap \Omega_N} \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} + \frac{1}{V} \int_{M \setminus \Omega_N} \tilde{\phi} e^{\theta_g(x)} \frac{\omega_s^n}{n!} \leq \frac{1}{V} (\sup_M \{\tilde{\phi}\} - N) \overline{\text{Vol}(M \cap \Omega_N)} + \sup_M \{\tilde{\phi}\} \overline{\text{Vol}(M \setminus \Omega_N)}$$
MODIFIED FUTAKI INvariant AND EQUIVARIANT RIEMANN-ROCH FORMULA

\[\sup_M \left\{ \tilde{\phi} \right\} - N \cdot \frac{\text{Vol}(M \cap \Omega_N)}{\text{Vol}(M)} \]

Here \(\text{Vol}(\cdot) \) represents the volume with form \(e^{\theta x(\phi)} \frac{\omega^p}{n!} \). Hence by (3.16), we derive

\[\text{Vol}(M \cap \Omega_N) \leq \frac{C_0 \text{Vol}(M)}{N} = \frac{C_0 V}{N} \to 0, \]

as \(N \to \infty \).

On the other hand, by the normalization, we have \(\tilde{\phi}(0) = -\psi_0(0) \). Note \(D(\tilde{\phi} + \psi_0) \in P \). Then we have

\[|D\tilde{\phi}| \leq 2 \sup\{ |p| : p \in P \} \]

and

\[\tilde{\phi}(x) \leq \tilde{\phi}(0) + 2r \sup\{ |p| : p \in P \} \leq C(r), \quad \forall \, x \in B_r(0), \]

where \(C(r) \) depends only on the radius \(r \) of ball \(B_r(0) \) centered at the original. Since the volume of domain \(B_1(0) \times (0, 2\pi)^n \subset M \) associated the metric \(\omega_g = \sqrt{-1} \partial \bar{\partial} \psi_0 \) is bigger than some number \(\varepsilon > 0 \), by (3.17), it is easy to see that there is at least a point \(x_0 \in B_1(0) \) such that

\[\tilde{\phi}(x_0) \geq \sup_M \tilde{\phi} - N \]

if \(N \) is sufficiently large. Hence

\[\sup_M \tilde{\phi} \leq N + C, \]

and consequently

\[\frac{1}{V} \int_M \tilde{\phi} e^{\theta x(\phi)} \frac{\omega^p}{n!} \leq N + C. \]

By (3.16), we also get

\[\frac{1}{V} \int_M \tilde{\phi} e^{\theta x(\phi)} \frac{\omega^p}{n!} \geq \tilde{\phi}(0) - C_0 = -\psi(0) - C_0. \]

Therefore the claim is true and the lemma is proved. \(\square \)

Theorem 3.2. There exist numbers \(\delta > 0 \) and \(C \) such that

\[\mu_{\omega_g}(\phi) \geq \delta \inf_{\tau \in T} I_{\omega_g}(\phi_\tau) - C, \quad \forall \, \phi \in \mathcal{H}_{G_0}(\omega_g). \]

In particular, \(\mu(\phi) \) is proper for any \(\phi \in \mathcal{H}_{G_0}(\omega_g) \) modulo \(G_0 \).

Proof. Let \(\phi \in \mathcal{H}_{G_0}(\omega_g) \). Then there exists a \(\sigma \in T \) such that the Legendre function \(u_{\phi_\sigma} \) associated to \(\phi_\sigma \) is belonged to \(C_\infty \). By Proposition 3.2, we see that

\[\mu_{\omega_g}(\phi_\sigma) \geq \delta H(\phi_\sigma) - C_\delta. \]

Note that \(\mu_{\omega_g}(\phi) = \mu_{\omega_g}(\phi_\sigma) \). Thus by Lemma 3.4, we get

\[\mu_{\omega_g}(\phi) = \mu_{\omega_g}(\phi_\sigma) \geq \delta J_{\omega_g}(\phi_\sigma) - C_\delta \]

\[\geq \delta \inf_{\tau \in T} J_{\omega_g}(\phi_\tau) - C_\delta \]

\[\geq \frac{\delta}{n+1} \inf_{\tau \in T} I_{\omega_g}(\phi_\tau) - C_\delta. \]

Here at the last inequality we used the relation (3.1). \(\square \)
Remark 3.2. Theorem 3.2 seems to overlap Theorem 4.5 in \cite{BB} where the Aubin-Ding typed functional is studied instead of modified K-energy by using the geodesic theory for Kähler potentials.\footnote{We are indebted to Chi Li for telling us Berman-Berndtsson’s results in \cite{BB}.}

As an application of Theorem 3.2 together with Lemma 3.1 we give a new proof of the following Wang-Zhu Theorem \cite{WZ}.

Theorem 3.3. There exists a Kähler-Ricci soliton on any toric Fano manifold.

4. Generalization to conic metrics case

Singular Kähler-Ricci solitons on toric manifolds have been extensively studied by \cite{SZ, Le, BB, DGSW}, etc. In this section, we generalize the discussion in former sections to give a new approach by showing the properness of modified Log K-energy.

Let M be a toric Fano manifold and K_M is the canonical line bundle. Let $(D_i)_{i=1}^d$ be the toric divisors corresponding to the faces of the moment polytope. Suppose $\beta > 0$ and $D = \sum_{i=1}^d (1-\beta_i)D_i \in \{-1, \ldots, -1-\beta\}K_M$ be an effective \mathbb{R}-divisor with strictly normal crossing support and $0 < \beta_i \leq 1$ for each i. A conical Kähler metric g on M with angle $2\pi\beta_i$ along D_i is a closed positive (1, 1) current in $2\pi\eta_1(M)$, which is a smooth Kähler metric ω_D in $M \setminus D$ and satisfies: for any $p \in D$, there is a coordinates neighborhood U with local holomorphic coordinates (z_1, \ldots, z_n) of p such that $D \cap U = \{z_i = 0, 1 \leq i \leq r\}$ and the metric is asymptotically equivalent along the model conic metric

$$\sqrt{-1} \sum_{j=1}^r |z_j|^2 h_j^{-1/2} dz^j \wedge d\bar{z}^j + \sqrt{-1} \sum_{j=r+1}^n dz^j \wedge d\bar{z}^j.$$

One can check that the Guillemin metric $\omega_g = \omega_D = \sqrt{-1} \partial \bar{\partial} \phi_0$ induced by symplectic potential $u_0 = \sum \beta_i^{-1} l_i \log l_i$ is a conical Kähler metric (cf. \cite{Ab, Le, DGSW}), where $l_i = 1 - \langle \ell_i, x \rangle$. In fact, if we let a set of symplectic potentials $C_\beta = \{u = u_0 + f | u$ is a strictly convex function in $P, f \in C^\infty(\overline{P})\}$, then there is a one-to-one correspondence between C_β and $\mathcal{H}^{G_0}_D(\omega_g)$, where $\mathcal{H}^{G_0}_D(\omega_g)$ consists all G_0-invariant Kähler potentials which are asymptotically equivalent to ω_D.

Let s_i be the defining section of D_i and h_i a Hermitian metric on D_i. Denote $\|s_i\|^2$ the norm of s_i. Then $h = \otimes_{i=1}^d h_i^{-1/\beta_i}$ defines a Hermitian metric on D and gives a norm $\|s_D\|$ for the defining section $s = \otimes_{i=1}^d s_i^{1-\beta_i}$ of D. By the Poincare-Lelong identity,

$$\sqrt{-1} \partial \bar{\partial} \log \|s_i\|^2 = -c_1([D_i], h_i) + \{D_i\},$$

where $\{D_i\}$ denotes the current of integration along D_i, we have

$$\sqrt{-1} \partial \bar{\partial} \log \|s_D\|^2 = -c_1([D], h) + \{D\}. \tag{4.1}$$

(4.1) implies that there exists $\tau \in \mathbb{R}^n$ such that

$$\log \|s_D\|^2 = -(1 - \beta)\phi_0 - \beta \langle \tau, \xi \rangle + \text{const}. \tag{4.2}$$

Remark 3.2 seems to overlap Theorem 4.5 in \cite{BB} where the Aubin-Ding typed functional is studied instead of modified K-energy by using the geodesic theory for Kähler potentials. We are indebted to Chi Li for telling us Berman-Berndtsson’s results in \cite{BB}.
A conical Kähler metric \(\omega \) with \(2\pi \beta_i \) angle along each \(D_i \) is called a conical Kähler-Ricci soliton if there is a holomorphic vector field \(X \) on \(M \) for some \(\beta \in (0, 1] \) such that
\[
(4.3) \quad \text{Ric}(\omega) - \beta \omega - \{D\} = L_X \omega.
\]
We will investigate a solution of (4.3) in \(\mathcal{H}^G_D(\omega_g) \). Let \(X = \sum \theta_{\alpha} \zeta_{\alpha} \), where \(\zeta_{\alpha} \) is a basis of Lie algebra \(\eta_T \) of \(T \). Then a lemma in [DGSW] shows that \(\tau = (\tau_1, ..., \tau_n) \) in (4.2) is uniquely determined by relation,
\[
(4.4) \quad \tau_{\alpha} = \int_P \alpha e^{\theta(x)} dx = \int_P e^{\phi(x)} dx, \quad \alpha = 1, ..., n.
\]
Moreover, \(\beta_i = 1 - \beta_i(\tau), \ i = 1, ..., d \).

Let \(\mathcal{H}_{X,D}(\omega_g) \) be a class of \(K_T \)-invariant functions \(\phi \in C^2(\alpha)(M) \) such that \(\omega_g + \sqrt{-1} i \partial \overline{\partial} \phi \) are conical metrics with \(2\pi \beta_i \) angle along each \(D_i \). Following [LS] (also see [Be1, Li]), we consider the following modified Log \(K \)-energy functional on \(\mathcal{H}_{X,D}(\omega_g) \),
\[
(4.5) \quad \mu_{\omega_g,D}(\phi) = \mu_{\omega}(\phi) + (1 - \beta)(I_{\omega_g}(\phi) - J_{\omega}(\phi)) + \int_M \log \|s_D\|^2 e^{\theta_X(\omega_g)} \frac{\omega^n}{n!}.
\]
It is easy to check that a solution of (4.5) is a critical point of \(\mu_{\omega_g,D}(\phi) \). We need to study the properness of \(\mu_{\omega_g,D}(\phi) \).

Define
\[
(4.6) \quad \mathcal{L}_{\beta,\tau}(u) = \beta \left(\mathcal{L}(u) - \int_P \langle \tau, \nabla u \rangle e^{\theta(x)} dx \right), \quad \forall \ u \in C_{\omega_g}.
\]
By (4.4), it is clear
\[
(4.7) \quad \mathcal{L}_{\beta,\tau}(u) = 0, \forall \ u = \sum a_{\alpha} x_{\alpha}, \ (a_1, ..., a_n) \in \mathbb{R}^n.
\]

Lemma 4.1. Let \(\phi \in \mathcal{H}^G_D(\omega_g) \) and \(u \) be the Legendre dual function of \(\varphi_0 + \phi \). Then
\[
(4.8) \quad \mu_{\omega_g,D}(\phi) = \frac{(2\pi)^n}{V} \mathcal{F}_{\beta,\tau}(u) + C,
\]
where
\[
(4.9) \quad \mathcal{F}_{\beta,\tau}(u) = -\int_M \log \det(u_{ij}) e^{\theta(x)} dx + \mathcal{L}_{\beta,\tau}(u),
\]
and \(C \) is a constant.

Proof. It suffices to transform the latter two terms in (4.5) under symplectic potentials. Note that
\[
I_{\omega_g}(\phi) - J_{\omega}(\phi) = -\frac{1}{V} \int_M \phi e^{\theta_X(\omega_g)} \frac{\omega^n}{n!} + \int_M \frac{1}{V} \int_0^1 \int_M \phi_X e^{\theta_X(\omega_g)} \frac{\omega^n}{n!} ds
\]
Hence by similar expression as in Proposition 3.5 we have
\[
(1 - \beta)(I_{\omega_g}(\phi) - J_{\omega}(\phi)) + \int_M \log \|s_D\|^2 e^{\theta_X(\omega_g)} \frac{\omega^n}{n!}
\]
\[
= \frac{(2\pi)^n}{V} \left[-\beta \int_{\mathbb{R}^n} e^{X(\varphi)} \det D^2 \varphi d\xi + \beta \int_{\mathbb{R}^n} \langle \tau, \xi \rangle e^{X(\varphi)} \det D^2 \varphi d\xi \right]
\]
\[
+ \frac{(2\pi)^n}{V} \int_0^1 \int_M \phi_X e^{\theta_X(\omega_g)} \frac{\omega^n}{n!} ds
\]
\[
\frac{(2\pi)^n}{V} \left[-(1 - \beta)\mathcal{L}(u) - \beta \int_P \langle \tau, \nabla u \rangle e^{\theta(x)} \, dx \right]
\]

Combing with (3.6), we obtain (4.9). \hfill \square

To prove the properness of \(F_{\beta, \tau}(u) \), by (4.7), it suffices to consider the function space \(\tilde{C}_{\infty, \tau} \) which contains all the functions in \(C_{\infty} \) normalized at \(\tau \).

Proposition 4.1. If \(\tau \in P \), then for any \(0 < \delta < 1 \), there exists \(C_{\delta, \beta} > 0 \) such that

\[
F_{\beta, \tau}(u) \geq \delta \int_P u e^{\theta(x)} \, dx - C_{\delta, \beta}, \quad \forall u \in \tilde{C}_{\infty, \tau}.
\]

Proof. The proof is similar to Proposition 3.2. Note that by the definition of Legendre transform, we have \((x - \tau) \cdot \nabla u - u \geq 0 \) for \(u \in \tilde{C}_{\infty, \tau} \). Then one can replace (2.10) in Lemma 2.2 by

\[
\mathcal{L}_{\beta, \tau}(x) = \beta \left(\int_P (x - \tau) \cdot \nabla u - u \right) e^{\theta(x)} \, dx + \int_P u e^{\theta(x)} \, dx \geq \beta \int_P u e^{\theta(x)} \, dx
\]

and check the arguments line by line in Section 3.2. \hfill \square

Applying Lemma 4.1 and Proposition 4.1 we can give a new proof of following Datar-Guo-Song-Wang Theorem [DGSW].

Theorem 4.1. Let \(X = \sum_{i=1}^n \theta_i \zeta_i \in \eta_T \). Let \(\bar{\beta} = \sup \{ \beta \mid \beta \zeta_i(\tau) < 1, \quad i = 1, ..., d \} \). Suppose that \(\tau \in P \). Then for any \(\beta \leq \bar{\beta} \) there exists a unique toric invariant conical Kähler-Ricci soliton \(\omega \) which solves (4.3) with \(D = \sum (1 - \beta_i)D_i \) and \(\beta_i = \beta \zeta_i(\tau) \). Moreover, the conical angles of \(\omega \) are \(2\pi \beta_i \) along \(D_i \).

Proof. Since higher order estimates depend on \(C^0 \)-estimate for a family of Kähler potentials \(\phi_i \) as in [TZ1, JMR] (also see [DGSW] for toric manifolds), it suffices to get the \(C^0 \)-estimate when we use the continuity method to solve (4.3). Since \(\mu_{\omega_i, D}(\phi) \) is monotonic for \(\phi_i \) as in the smooth metrics case [TZ1, CTZ], the properness of \(\mu_{\omega_i, D}(\phi) \) implies that \(I_{\omega_i}(\phi_i) \) is uniformly bonuded. As a consequence, we get an upper bound of \(\phi_i \). The lower bound can be also obtained by establishing a uniform lower bound for the Green functions of \(\omega_{\phi_i} \) as in [Ma, CTZ] for smooth metrics. There is another way to get a Hölder estimate for Legendre functions \(u_i \) of \(\phi_i \) by using an observation in [D3] for toric invariant metrics, if one knows the upper bound of \(u_i \), which is equal to one to one of \(\phi_i \). Then \(u_i \) is uniformly bounded, and so is \(\phi_i \) (also see [SZ]). In fact, the latter argument was presented by Datar-Guo-Song-Wang [DGSW] while they got an upper bound of \(u_i \) by studying a class of real Monge-Ampère equations as done in [WZ]. The uniqueness of \(\omega \) follows from the convexity of \(F_{\beta, \tau}(u) \).

In case that \(X \) is chosen as a soliton vector field on \(M \), \(\tau = 0 \) by (4.4). Then in Theorem 4.1 \(\beta_i = \beta \leq 1 \), \(i = 1, ..., d \), and \(D = \sum (1 - \beta)D_i \). Thus Theorem 0.2 is a corollary of Theorem 4.1.
MODIFIED FUTAKI INVARIANT AND EQUIVARIANT RIEMANN-ROCH FORMULA

References

[Ab1] Abreu, M., Kähler geometry of toric varieties and extremal metrics, Inter. J. Math. 9 (1998), 641-651.
[Ab2] Abreu, M., Kähler geometry of toric manifolds in symplectic coordinates, in “Symplectic and contact topology: interactions and perspectives”, pp. 1-24, Fields Inst. Commun., 35, Amer. Math. Soc., 2003.
[AS] Atiyah, M.F. and Singer, M.I., The index of elliptic operator, III, Annals of Math., 87 (1968), 546-604.
[BB] Berman, R. J., B. Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, arXiv:math.DG/1207.6128.
[Be1] Berman, R. J., A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math. 248 (2013), 1254-1297.
[Be2] Berman, R. J., Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, arXiv:math.DG/1401.8264.
[CDS] Chen, X., Donaldson, K. and Sun, S., Kähler-Einstein metrics on Fano manifolds, III: limit as cone angle approach 2π and completion of the main proof, arXiv:math.DG/1302.0282v1, to appear in JAMS.
[CTZ] Cao, H.D., Tian, G. and Zhu, X.H., Kähler-Ricci solitons on compact complex manifolds with $C_1(M)>0$, Geom. Funct. Anal. 15 (2005), 697-719.
[DGSW] Datar, V., Guo, B., Song, J. and Wang, X.W., Connecting toric manifolds by conical Kähler-Einstein metrics, arXiv:math.DG/1308.6781.
[De] Delzant, T., Hamiltoniens periodique et image convex del’application moment, Bull. Soc. Math. France, 116 (1988), 315-339.
[D1] Donaldson, S.K., Scalar curvature and stability of toric varieties, Jour. Diff. Geom. 62 (2002), 289-349.
[D2] Donaldson, S.K., Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005),103-142.
[D3] Donaldson, S.K., Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Advanced Lectures in Math., vol 7, International Press, Somerville, MA, 2008.
[DT] Ding, W. and Tian, G., Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), 315-335.
[Fut] Futaki, A., An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437-443.
[Gu] Guillemin, V., Moment maps and combinatorial invariants of Hamiltonian T^n-spaces, Progress in Math. 122 (1994), Birkhäuser, Boston.
[Li] Li, C., Remarks on logarithmic K-stability, arXiv:math.DG/1104.0428.
[JMR] Jeffres, T., Mazzeo, R. and Rubinstein, Y., Kähler-Einstein metrics with edge singularities, to appear in Annals of Math.
[LS] Li, C. and Sun, S., Conical Kähler-Einstein metric revisited, arXiv:math.DG/1207.5011.
[LZ] Liu, J. W. and Zhang, X., The conic Kähler-Ricci flow on Fano manifolds, arXiv:math.DG/1402.1832.
[Ma] Mabuchi, T., Multiplier hermitian structures on Kähler manifolds, Nagoya Math. J. 170 (2003), 73-115.
[SW] Song, J. and Wang, X.W., The greatest Ricci lower bound, conical eistein metrics and the Chern number inequality, arXiv:1207.4839.
[SZ] Shi, Y. L. and Zhu, X. H., Kähler-Ricci solitons on toric Fano orbifolds, Math. Z. 271 (2012), 1241-1251.
[T1] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-39.
[T2] Tian, G., Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry, The Jeff Cheeger Anniversary Volume, X. Dai and X. Rond edt., Prog. in Math., 297 (2012), 119-159.
[T3] Tian, G., K-stability and Kähler-Einstein metrics, arXiv:math.DG/1211.4669.
[TZ1] Tian, G. and Zhu, X.H., Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), 271-305.
[TZ2] Tian, G. and Zhu, X.H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comm.Math. Helv. 77 (2002), 297-325.
[TZ3] Tian, G. and Zhu, X.H., Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), 675-699.
[Xi] Xiong M., Kähler-Ricci solitons and generalized Tian-Zhu’s invariant, Int. J. Math. 25 (2014).
[WZ] Wang, X.J. and Zhu, X.H., Kähler-Ricci solitons on toric Fano manifolds with positive first Chern class, Adv. Math. 188 (2004), 87-103.
[ZZ1] Zhou, B. and Zhu, X. H., Relative K-stability and modified K-energy on toric manifolds, Adv. Math. 219 (2008), 1327-1362.
[ZZ2] Zhou, B. and Zhu, X.H., Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds, Cal. Var. PDE. 32 (2008), 191-217.
[Z1] Zhu, X. H., Kähler-Ricci soliton typed equations on compact complex manifolds with $C_1(M) > 0$, Jour. Geom. Anal. 10 (2000), 747-762.

[Z2] Zhu, X. H., Kähler-Ricci flow on a toric manifold with positive first Chern class, Advanced Lectures in Math., 22, editors, Y. Shen, Z. Shen and S.T. Yau, Higher Education Press, Beijing, and International Press, Somerville, 2012, or arXiv:math.DG/0703486.

FENG WANG, DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU 310027, CHINA

BIN ZHOU, SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, CHINA; AND MATHEMATICAL SCIENCES INSTITUTE, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT 2601, AUSTRALIA.

XIAOHUA ZHU, SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, CHINA.
E-mail address: wf19870517@163.com bzhou@pku.edu.cn xhzhu@math.pku.edu.cn