Comment on “Inferring broken detailed balance in the absence of observable currents”

Ref. 1 entitled “Inferring broken detailed balance in the absence of observable currents” claims to derive a method which allows to identify an “underlying nonequilibrium process, even if no net current, flow, or drift, are present”. Below we explain that the above main result of said work, which is supposed to hold for semi-Markov processes, was in fact never tested by the authors, nor applied to an example. The main results of said work are supposed to hold for semi-Markov processes, but unfortunately we are not convinced that they have been adequately tested and applied to an example in the original publication. The central result of an older work by Wang and Qian2 (cited in ref. [50] in ref. 1) already disproves the main conclusion of ref. 1 and, moreover, contains a recipe to construct counterexamples to the findings of ref. 1.

The main result of ref. 1 cannot be tested

As the main result ref. 1 derives Eq. (4) quantifying “irreversibility of stationary trajectories with zero current”, which is supposed to hold for semi-Markov processes and is to be used to infer broken detailed balance. While the work contains two explicit examples, none of them in fact seems to apply to the main result. Instead, a variant of the main result (i.e. Eq. (6)) is derived, which provides a technique to identify irreversibility in certain second order semi-Markov processes, and is used in Figs. 2 and 3 of ref. 1.

Counterexample

Following ref. 2, it is straightforward to construct an example that disproves the main conclusion of. Consider a molecular motor that walks in two directions x and y “fueled” by a chemical reaction A ⇄ B. Along the x direction the motor’s position x is at any time t advances in a two step reaction

\[E + A + x_1 \xrightarrow{k_1^-} E + A + (x_1 + 1), \]

where “E” represents the enzymatic motor. The intermediate step – the formation of the complex “EA” – is assumed not to be visible or monitored (see dotted circles in Fig. 1a). Note that one could also consider a more complex enzyme with more unobserved intermediate enzymatic states. For simplicity and without loss of generality, we stick to this simple model. The motor’s position along the y direction, y, evolves as a one-step process

\[E + A + y_1 \xrightarrow{k_1^+} E + B + (y_1 + 1). \]

Whenever a molecule “A” is bound to the enzymatic motor we assume that the motor cannot be detected and the reaction (2) is switched off. For simplicity we set the rates equal to \(k_1^+ = \omega_1^+ = 2 \) and \(k_1^- = 1 \), tacitly assuming that all chemical species are kept at the same chemical potential, \(\mu_A = \mu_B \). That is, the system satisfies detailed balance due to \(\ln(k_1^+ / k_1^-) = \ln(\omega_1^+ / \omega_1^-) = 0 \) and the full dynamics is a Markov-jump process (see Fig. 1a). The last monitored position \(z_t = (x_t, y_t) \) at any time t becomes a semi-Markov process due to the hidden intermediate step in Eq. (1). The process \(z_t \) thus satisfies all the assumptions that were made in ref. 1 to derive the main result. Consequently, our example also satisfies Eq. (1) in ref. 1. Note that we refer to hidden states if they are unobserved. The number of unobserved states in general cannot be known. In the present example, the reader only knows the number of hidden states because we describe the complete underlying mathematical model for the sake of reproducibility.

The probabilities of the two reactions to be completed for the first time are equal, \(p_{x,1} = p_{y,1} = p_{x,-} = p_{y,-} = 1/4 \), in both reactions. The turnover time until any of the two reactions is completed is distributed according to waiting time densities \(\psi_{x,1}(t) \) and \(\psi_{y,1}(t) \), which read

\[
\psi_{x,1}(t) = \psi_{y,1}(t) = \frac{4}{3} \left[2e^{-2t} - 2e^{-8t} \right].
\]

To obtain Eq. (3), we solve the conditional first passage problem in Fig. 1, where we use a filled circle as the starting point and impose absorbing boundaries on the filled circles adjacent to the starting point.
and α commute with the time reversal become non-instantaneous. In this case the coarse-graining must of momenta\(^4\). We are not aware of any example without kinetic hysteresis (see arrow in Fig. 1). In this particular case the time to leave a state in either x or y direction is actually exponential $\psi^{\text{ex}(t)} = \sum_{i\in\{x,y\}} \rho_i \psi_i(t)\Psi_i(t) = 2e^{-2t}$ with mean exit time $T = \int_0^\infty \psi^{\text{ex}}(t)dt = 1/2$. As shown in Fig. 1b, we have $\psi_i(t) = \psi_j(t)$, that is, the waiting time densities are different and thus have a genuinely non-zero Kullback-Leibler divergence

$$D_{\text{KL}}[\psi_i|\psi_j] \approx 0.28, \quad D_{\text{KL}}[\psi_i|\psi_0] \approx 0.47,$$

respectively, where we have defined $D_{\text{KL}}[\psi_i|\psi_j] = \int_0^\infty \psi_i(t) \ln[\psi_i(t)/\psi_j(t)]dt$, where $i, j = x, y$. Using Eqs. (1) and (4) in ref. 1 along with $D_{\text{KL}}[\psi_i|\psi_j] > 0$ for $i \neq j$ one would mistakenly confuse this equilibrium system to be out of equilibrium. More precisely, Eq. (4) in ref. 1 states that the entropy production of the waiting time is given by $S_{\text{WTD}} = \sum_{i,a,p} \rho_i \rho_i \frac{\partial}{\partial t} D_{\text{KL}}[\psi_i|\psi_j] / T \approx 2 \times (0.28 + 0.47) \approx -1.5$, where and $a, \beta = \pm$; each term in the sum in fact is non-negative.

Opposing views on broken detailed balance

A similar counterexample was sketched in an earlier work by Wang and Qian and also stated in their abstract: “We show that for a semi-Markov process broken detailed balance is only a necessary condition, but not sufficient, for its time reversibility\(^-\)”. In technical terms, ref. 2 showed that if the waiting-time distribution to another state depends on the final state, the process becomes (mathematically) irreversible (here $\psi_i(t) = \psi_j(t)$) even if detailed balance is satisfied. Thus, $\psi_i(t) = \psi_j(t)$ must not be used as a signature of broken detailed balance as erroneously concluded in ref. 1. The opposite views in refs. 1 and 2 have not been appropriately addressed in the discussion in ref. 1.

Crucial elements of the counterexample

Counterexamples to the main conclusion of\(^-\) are obtained as soon as hidden states states (see dotted circles in Fig. 1a) emerge between at least one pair of observed states (see filled circles). This allows for passages over hidden states, called transition paths (see, e.g.,\(^3\)), to become non-instantaneous. In this case the coarse-graining must not commute with the time reversal – a phenomenon that we coined “kinetic hysteresis” which is an overdamped analogue of the odd parity of momenta\(^-\). We are not aware of any example without kinetic hysteresis which would allow for a non-vanishing waiting time entropy production, i.e. $S_{\text{WTD}} > 0$, for a semi-Markov process. For example, in absence of hidden cycles at least one transition-path time must be non-vanishing to allow for the waiting-time distribution to couple to the state change\(^\ddagger\) and in turn to allow for $S_{\text{WTD}} > 0$. Thus, if the transition paths become (effectively) instantaneous, the waiting time does not couple to the state change\(^\ddagger\) (see ref. 5 for a generalization that includes hidden cycles), i.e., $S_{\text{WTD}} = 0$. These examples satisfying $S_{\text{WTD}} = 0$ clearly cannot be used to infer “broken detailed balance in the absence of observable currents”, which was recently confirmed in ref. 6 (see paragraph after Eq. (58) therein).

We emphasize that while our example disproves the main conclusion of ref. 1, we do not claim that all mathematical results in\(^\ddagger\) are incorrect. In particular, we explicitly acknowledge that the compact expressions for the Kullback-Leibler divergence between two path measures indeed have some mathematical appeal (see also ref. 7). In other words Eq. (4) is mathematically sound it does not, however, allow to infer broken detailed balance. Moreover, whether a model in fact exists that upon coarse-graining yields a semi-Markov process (Note that we explicitly refer to semi-Markov processes (sMP) and not to possible generalizations to second- or higher order SMPS. However, any sMP is also a higher order sMP but the converse is untrue.) and concurrently allows to infer broken detailed balance according to\(^\ddagger\) remains an intriguing question.

Discussion

It is our conclusion that the authors of ref. 1 failed to detect broken detailed balance using their Eq. (4). Here we presented an explicit model of a molecular motor that disproves this main conclusion of ref. 1, which was in fact already invalidated earlier in ref. 2 (ref. [50] in ref. 1). Note that the example in Fig. 1 only formally disproves the variant of the main result in Eq. (6) in\(^\ddagger\) for the more specialized semi-Markov processes of second order – processes with a waiting-time distribution that depends on the past and future states (see e.g.,\(^1,\ddagger\)). This variant thus allows to find examples for which it holds and thus potentially allows to infer “broken detailed balance in the absence of observable currents”\(^-\); see, however, the counterexample shown in ref. 10. We hope that this comment raises awareness of the importance of considering the underlying dynamics from which possible non-Markovian (or Markovian) coarse-grained dynamics emerge.

References

1. Martinez, I. A., Bisker, G., Horowitz, J. M. & Parrondo, J. M. R. Inferring broken detailed balance in the absence of observable currents. Nat. Commun. 10, 3542 (2019).

2. Wang, H. & Qian, H. On detailed balance and reversibility of semi-Markov processes and single-molecule enzyme kinetics. J. Math. Phys. 48, 013303 (2007).

3. Makarov, D. E. Barrier crossing dynamics from single-molecule measurements. J. Phys. Chem. B 125, 2467–2476 (2021).

4. Hartich, D. & Godec, A. Emergent memory and kinetic hysteresis in strongly driven networks. Phys. Rev. X 11, 041047 (2021).

5. Ertel, B., van der Meer, J. & Seifert, U. Operationally accessible uncertainty relations for thermodynamically consistent semi-Markov processes. Phys. Rev. E 105, 044113 (2022).

6. van der Meer, J., Ertel, B. & Seifert, U. Thermodynamic inference in partially accessible Markov networks: A unifying perspective from transition-based waiting time distributions. Phys. Rev. X 12, 031025 (2022).

7. Girardin, V. & Limnios, N. On the entropy for semi-Markov processes. J. Appl. Prob. 40, 1060–1068 (2003).

8. Ehrich, T. Tightest bound on hidden entropy production from partially observed dynamics. J. Stat. Mech. 2021, 083214 (2021).

9. Hartich, D. & Godec, A. Violation of local detailed balance upon lumping despite a clear timescale separation. Phys. Rev. Res. 5, L032017 (2023).

10. Blom, K., Song, K., Vouga, E., Godec, A. & Makarov, D. E. Milestoning estimators of dissipation in systems observed at a coarse resolution. Proc. Natl. Acad. Sci. USA 121, e2318333121 (2024).

Acknowledgements

The financial support from the German Research Foundation (DFG) through the Emmy Noether Program GO 2762/1-2 to A. G. is gratefully acknowledged.
Author contributions
D.H. and A.G. conceived the study, performed the research, discussed the results, and wrote and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Aljaž Godec.

Peer review information Nature Communications thanks Raphaël Che-trite, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdical claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024