Precise timing is ubiquitous, consistent and coordinated across a comprehensive, spike-resolved flight motor program

Joy Putneya,1, Rachel Connb,c,1, and Simon Sponberga,b,2

aSchool of Biological Sciences & Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA; bSchool of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA; cNeuroscience Program, Emory University, Atlanta, GA, 30332 USA

This manuscript was compiled on September 19, 2019

Sequences of action potentials, or spikes, carry information in the number of spikes and their timing. Spike timing codes are critical in many sensory systems, but there is now growing evidence that millisecond-scale changes in timing also carry information in motor brain regions, descending decision-making circuits, and individual motor units. Across all the many signals that control a behavior how ubiquitous, consistent, and coordinated are spike timing codes? Assessing these open questions ideally involves recording across the whole motor program with spike-level resolution. To do this, we took advantage of the relatively few motor units controlling the wings of a hawk moth, \textit{Manduca sexta}. We simultaneously recorded nearly every action potential from all major wing muscles and the resulting forces in tethered flight. We found that timing encodes more information about turning behavior than spike count in every motor unit, even though there is sufficient variation in count alone. Flight muscles vary broadly in function as well as in the number and timing of spikes. Nonetheless, each muscle with multiple spikes consistently blends spike timing and count information in a 3:1 ratio. Coding strategies are consistent. Finally, we assess the coordination of muscles using pairwise redundancy measured through interaction information. Surprisingly, not only are all muscle pairs coordinated, but all coordination is accomplished almost exclusively through spike timing, not spike count. Spike timing codes are ubiquitous, consistent, and essential for coordination.

motor control | flight | information theory | spike timing | temporal code

Neurons convey information not only through the number of spikes, but also their timing (1–4). In sensory systems, both changes in the number of spikes over time and precise, millisecond-level shifts in sequences of spikes are well established as essential encoding mechanisms for proprioception (5), audition (6), vision (1, 7–9), touch (10), and other modalities (7, 11, 12). Spike timing codes have been shown to be of particular importance in sensory systems (1, 7, 8), and patterns of multiple spikes can convey more information about a stimulus than the sum of the individual timings (13). In vertebrate motor systems, rate codes, where muscle force is proportional to the firing rate of the motor neuron, are thought to predominate, in part due to recruitment principles of many motor units and the presumed low-pass nature of muscles (14–17). Although vertebrate muscle force may be modulated by spike rate under isometric conditions (15), precisely timed patterns of spikes affect the output force of muscle (18). Similarly, in invertebrates, rate codes can adjust force development in muscles, but the absolute number of spikes (spike count code) also matters (19, 20). The onset time a single spike or burst is also known to play a functional role for the control of invertebrate muscle (21–24).

Recent evidence in invertebrates and vertebrates shows that spike timing codes may be under-appreciated for controlling motor behaviors at least in specific muscles or motor circuits (4). Spike timing codes in which information is encoded in the precise timing patterns of neural or muscular action potentials have an even higher capacity to code for the output of muscles than rate or count (4, 13, 18). Such codes are found in a songbird cortical area for vocalization (25) and in mouse cerebellum for task error correction (26). Correlational, causal, and mechanistic studies show that millisecond-level changes in timing of spikes in motor neurons can manifest profound changes in force production (27) and even behavior selection (28). Causal evidence in support of spike timing codes is present in fast behaviors like invertebrate flight (27), but also in relatively slow behaviors like breathing in birds (18). However, evidence for the importance of spike timing codes in motor systems has been limited to only a few of the motor signals that typically control movement. Whether such timing codes are utilized broadly across a complete motor program for behavior is unknown as is their role in coordinating multiple motor units. Despite growing appreciation of the potential for motor timing codes, we have not yet established the ubiquity, consistency and coordination of spike timing across the motor signals that compose a behavior. This poses three hypotheses.

Significance Statement

Brains can encode precise sensory stimuli and specific motor systems also appear to be precise, but how important are millisecond changes in timing of neural spikes across the whole motor program for a behavior? We record every spike that the hawk moth’s nervous system sends to its wing muscles. We show that all muscles convey the majority of their information in spike timing. The number of spikes does play a role, but not in a coordinated way across muscles. Instead, all coordination is done using in the millisecond timing of in spikes. The importance and prevalence of timing across the motor program pose new questions for how nervous systems create precise, coordinated motor commands.

R.C. and S.S. developed experimental techniques. R.C. and J.P. conducted electrophysiological experiments. R.C. did spike sorting analysis. J.P. did data analysis. R.C., J.P., and S.S. wrote paper and made figures.

The authors declare no competing interests.

1 R.C. and J.P. contributed equally to this work.

To whom correspondence should be addressed. E-mail: sponberg@gatech.edu
First, timing codes may be restricted to only a few motor signals that control behavior. For example, recordings of muscles in locusts, hawk moths, and fruit flies have shown that spike timing and count variation are prevalent in specific motor units (21, 22, 29). Alternatively, timing codes may be ubiquitous–widespread across the entire motor program and present in all muscles controlling a behavior.

Regardless of the prevalence of timing codes, motor neurons within the population may exhibit specialized encoding strategies, varying the amount of information transmitted through spike timing or spike count depending on the function of the muscles they innervate. For example, Drosophila use combinations of functionally distinct phasic and tonic motor units to control flight (23). Additionally, evidence in some sensory systems show separate classes of neurons use either spike rate or spike timing to convey information (30). Alternatively, the entire motor program may be consistent in its use of spike timing for encoding.

Finally, coordination of multiple motor signals is typically assessed through covariation in firing rates. For example, motor coordination patterns across muscles (e.g., muscle synergies (31)) and population recordings of M1 neurons in motor cortex (32) all consider how populations of units encode movement through spike rate. Alternatively, spike timing codes may play a role in the coordination of muscles in motor systems. Resolving these hypotheses about the role of spike timing in motor control is challenging because they consider encoding strategies across an entire motor program. It is therefore necessary to record from a spike-resolved, comprehensive set of signals that control a behavior simultaneously in a consistent behavioral context.

Recording such a comprehensive motor program is difficult due to the requirements of completeness, sufficient temporal resolution, and sampling rich variation in a naturalistic behavior. Obtaining a nearly complete motor program is more tractable in the peripheral nervous system than in
Ecological and Evolutionary Research 19, 444–459. These five bilateral pairs of muscles that have important roles in controlling the wings during flight (Fig. S1). We recorded EMG signals from these muscles while moths visually tracked a robotic flower in tethered, smooth pursuit flight (27, 47). We simultaneously recorded within wing stroke yaw torque using a custom calibrated force-torque transducer (ATI Nano17Ti) (Fig. 1B-D). We segmented the EMG and torque data into wing strokes. We defined the onset time of each wing stroke as the zero phase crossing of the Hilbert transform of the moth’s force in the z-direction. The Hilbert transform estimates the phase of a periodic signal; here the zero phase crossing roughly corresponded to the peak downward force produced during each wing stroke. We treated each wing stroke as an independent sample of the muscle spikes and the yaw torque.

For the EMG data, we specified a time window relative to the onset of the wing stroke separately for each muscle to encompass the entire burst of spikes in all wing strokes. We computed the spike count (number of spikes per wing stroke) or the spike timing (precise spike times relative to the start of each wing stroke) for the 10 muscles (Fig. 1E). Because the wing stroke period varied a small amount (mean ± s.d.: 45.3 ± 3.8 ms across all moths), we shortened the yaw torque signal to roughly corresponded to the peak downward force produced during each wing stroke. We also repeated our analyses with a phase code (tuning normalized to wingstroke period) and obtained similar results. We then found a lower dimensional representation of the yaw torque using principal components analysis (PCA). The first two PCs explained most of the variance (78.0 ± 10.6%) in yaw torque (Fig. 1F). The oscillating visual stimulus elicted variation in the moths’ motor output and spiking activity (Fig. 1G-H). The scores of the two PCs correspond with left and right turns in the extreme deciles of movement and captured the main features of the torque timeseries (Fig. 2).

Both the spike count and the timing of spikes within the wing stroke show modulation along with the motor output (Fig. 3A). To test the contribution spike timing encoding in individual muscles, we estimated the mutual information timing coding. Faster invertebrate muscles fire fewer times per cycle but can still show rate coding during and across wing strokes (29).

We take advantage of these features to capture a spike-resolved, comprehensive motor program in a hawk moth, Manduca sexta, and investigate the importance of spike timings in a nearly complete population code for movement. We examine how turning torque in every wing stroke is encoded by spike count (the number of spikes per wing stroke) and spike timing (the precise timing patterns of all spikes within each wing stroke) for each of the 10 muscles most important for controlling the wings (SI Appendix) [21, 44–46]. This nearly complete motor program enables us to address three questions of ubiquity, consistency, and coordination in timing and count codes across this motor system.

Results
Temporal information is ubiquitous in the motor program. We recorded a comprehensive motor program with spike-level resolution across all the primary muscles actuating the wings in a hawk moth (Manduca sexta, N = 7) (Fig. 1A). The hawk moth musculature has been examined in detail anatomically and through in vivo and in vitro recordings (summarized in SI Appendix). Based on this rich literature we identified five bilateral pairs of muscles that have important roles in controlling the wings during flight (Fig. S1). We recorded EMG signals from these muscles while moths visually tracked a robotic flower in tethered, smooth pursuit flight (27, 47). We simultaneously recorded within wing stroke yaw torque using a custom calibrated force-torque transducer (ATI Nano17Ti) (Fig. 1B-D). We segmented the EMG and torque data into wing strokes. We defined the onset time of each wing stroke as the zero phase crossing of the Hilbert transform of the moth’s force in the z-direction. The Hilbert transform estimates the phase of a periodic signal; here the zero phase crossing roughly corresponded to the peak downward force produced during each wing stroke. We treated each wing stroke as an independent sample of the muscle spikes and the yaw torque.

For the EMG data, we specified a time window relative to the onset of the wing stroke separately for each muscle to encompass the entire burst of spikes in all wing strokes. We computed the spike count (number of spikes per wing stroke) or the spike timing (precise spike times relative to the start of each wing stroke) for the 10 muscles (Fig. 1E). Because the wing stroke period varied a small amount (mean ± s.d.: 45.3 ± 3.8 ms across all moths), we shortened the yaw torque signal to roughly corresponded to the peak downward force produced during each wing stroke. We also repeated our analyses with a phase code (tuning normalized to wingstroke period) and obtained similar results. We then found a lower dimensional representation of the yaw torque using principal components analysis (PCA). The first two PCs explained most of the variance (78.0 ± 10.6%) in yaw torque (Fig. 1F). The oscillating visual stimulus elicted variation in the moths’ motor output and spiking activity (Fig. 1G-H). The scores of the two PCs correspond with left and right turns in the extreme deciles of movement and captured the main features of the torque timeseries (Fig. 2).

Both the spike count and the timing of spikes within the wing stroke show modulation along with the motor output (Fig. 3A). To test the contribution spike timing encoding in individual muscles, we estimated the mutual information
between muscle activity and yaw torque using the Kraskov k-nearest neighbors method, which is data efficient and useful for experiments where sampling is finite and measured variables are continuous (34, 35). Unlike a direct method estimator, this method estimates mutual information between two variables (X and Y) using k-nearest neighbor Euclidean distances between each sample (wing stroke) and its kth nearest neighbor in the space spanning the two variables of interest (for us, a representation of spiking activity and torque). The joint probability distribution of the distances and the number of samples within a neighborhood defined by these distances is used to estimate the joint entropy H(X, Y) and the mutual information I(X, Y).

This information theoretic approach enables us to consider the importance of spike timing without assuming what features of the spike train are relevant or a linear relationship between spiking and motor output (48). It also enables separate of spike count mutual information (MI) from spike timing MI by conditioning spike timing on spike count (18):

$$I(S; \tau) = I(S_c; \tau) + \sum_{i=1}^{S_{c,\text{max}}} p(S_c = i) I(S_i; \tau | S_c = i) \quad [1]$$

where S is the combined representation of spike count and precise timing within the wingstroke of each spike, and \(\tau \) is the 2 variable representation of motor output taken as the scores of the two yaw torque PCs. \(S_c \) is the spike count for each wing stroke taking discrete states, \(i \), from 1 to \(S_{c,\text{max}} \). \(S_i \) is a vector of spike timing variables conditioned upon \(S_c \), such that for each spike count it has the same length, \(i \). The first term is the mutual information between torque and count. The second term is the mutual information between torque and timing once the information in count is accounted for.

For all 10 muscles, spike timing MI is higher than spike count MI (Fig. 3B). In all muscles both spike count MI and spike timing MI are non-zero, except for the DLM, which only spikes once per wing stroke during flight (range of mean
spike count MI across 10 muscles = 0.0 - 0.4 bits/wing stroke (ws); spike timing MI = 0.6 - 1 bits/ws. All muscles in the motor program that vary the number of spikes present in each wing stroke use mixed encoding, a combination of spike timing and spike count, to inform the torque. The error estimates (see Methods) of the MI's were small compared to the total MI (Table S1, mean spike count and timing MI error < 0.04 bits/ws across all muscles). Our MI estimates are stable across varying values of k, the number of nearest neighbors, and the number of data fractions (Fig. 3C, S2, S3). In the spike timing MI estimations, 90% of estimations from halved data sets deviated by less than 10% from the full data set estimate.

Temporal encoding is ubiquitous across the entire flight motor program, present in every muscle, and is utilized more than count encoding (Fig. 3B). Each motor unit encodes almost an order of magnitude more information per period about yaw torque in precise spike timings (0.8 bits/ws on average for all muscles) compared to other systems, like a cortical vocal area (between 0.1-0.3 bits/syllable) (25) and breathing muscles (between 0.05-0.2 bits/breath cycle) of song birds (18). The moth’s 10 motor units collectively code for flight using on the order of 1 bit per wing stroke each.

Encoding strategy is consistent across functionally diverse muscles. Muscles in the hawk moth motor program have diverse biomechanical functions. For example, the main indirect downstroke muscle (dorsolongitudinal muscle, DLM), acts by pulling on the exoskeleton to contract the thorax, propagating mechanical strain to the wing hinge and causing the wings to depress (21). In contrast to the DLM, the third axillary muscle (3AX) directly attaches to the wing hinge at the third axillary sclerite, which articulates the anal vein, the most posterior vein of the forewing (46, 51). Muscles also have variable spiking activity. Different muscles have different probability distributions of spike count per wing stroke (i.e. spike rate) and spike timing during the wing strokes (Fig. 4A-B).

Despite their diverse properties, the 10 muscles in the motor program of the hawk moth are consistent in the magnitude and proportion of timing information used to encode yaw.
torque (Fig. 4C). No muscle conveys significantly different spike timing MI. Additionally, all muscles that spike more than once per wing stroke carry similar amounts of spike count MI.

As a result, there is a consistent 3:1 ratio of spike timing MI to spike count MI for all muscles that spike more than once per wing stroke (Fig. 4C-E; mean ± 95% C.I. of the mean of the ratio of spike timing MI to total MI for all muscles excluding DLM = 0.75 ± 0.02).

Our conclusions were robust if we reduced the representation of the yaw torque to the scores of just the first PC (Fig. S4A) or the average torque during a wing stroke (Fig. S4B). Increasing dimensional to 3 PCs (Fig. S5) destabilizes estimates of information in some muscles due to data limits, but our conclusions nonetheless remain consistent.

Neurons in some sensory systems may use distinct strategies to encode particular types of information (30). However, this is not the case in the hawk moth motor program. Even though each muscle has a different probability distribution of spike count and spike timing (Fig. 4A-B), each muscle shares a comparable amount of MI with the moth’s torque. The different probability distributions may indicate that different muscles have varying amounts of total entropy (bandwidth) while transmitting the same amount of information. Alternatively, different muscle types may have comparable total entropies, but encode torque with varying precision.

Coordination is achieved through timing, not count. Because timing is ubiquitous across all muscles and encoding strategies are consistent, we next investigated the role of spike timings in the coordination of multiple muscles. To do this, we first estimated the pairwise MI between the spiking activity of two muscles and the yaw torque:

\[
I(S_A, S_B; \tau) = I(S_A, c; S_B, c; \tau) + \sum_{i_A=1}^{S_{A,c_{\max}}} \sum_{i_B=1}^{S_{B,c_{\max}}} p(i_A, i_B) I(S_A, S_B; \tau | (i_A, i_B))
\]

\[I(S_A, S_B; \tau)\] is the pairwise MI, or the mutual information between the torque and the joint spiking activity of two muscles,
This information rate allows the moth to specify a large number of possible motor outputs. To estimate this range of motor output, we determined how many states in the empirical torque probability distribution could be encoded by the total motor program using the direct method (Eq. S6 in SI Methods). Given the intermediate estimate between the upper and lower values, the motor program MI can specify 483 ± 109 states of yaw torque (N = 7 individuals) for each wing stroke. We also estimated the entropy in spike count using the direct method (Eq. S3 in SI Methods). Excluding the DLMs, the count entropy in each muscle was at least as large as the total MI (Fig. 5H). With noiseless transmission, the motor program could be encoded strictly in count.

Discussion

By investigating a comprehensive, spike-resolved motor program, we show that spike timing encoding is not a feature of just specialized motor units, but a ubiquitous control strategy that is consistently used for activation and coordination of muscles. There are few, if any, differences in magnitudes and proportions of spike timing and spike count encoding between the various muscles controlling the wings (Fig. 3B, 4), despite their different modes of actuation and functional diversity (21). All muscles encode information about yaw torque in both precise spike timing and spike count (Fig. 4C-E). Spike count is significant in every muscle with the exception of the DLMs which only spike once per wing stroke during flight. However, when it comes to coordination between pairwise combinations of muscles, timing is almost everything.

The moth motor program has individual muscles acting as mixed spike timing and spike count encoders. In situ preparations of a wing elevator muscle in a locust, *Schistocerca gregaria*, showed that changing either the spike timing or the number of spikes altered power output (54). Steering muscles, like the basalar muscle in the blowfly *Calliphora vicina*, can act by dissipating energy rather than doing positive work and the timing of activation can modulate power (55). In this species, timing in the basalar muscle and coordination between pairs of activated muscles have been shown to affect wing kinematics and total body force (42, 43). Most of the mechanistic studies to date have examined how activation signals of a subset of muscles affect muscle force or body movements, but comprehensive stimulation investigation the effects of coordinated control mechanisms across muscles will be needed to understand functional implications. From our results, we know any studies of the moth’s complete motor program must examine spike timing.

Spike timing can still matter in vertebrate muscle because of non-linearity in force development and biomechanics (4). By shifting when in the strain cycle a muscle spikes, timing can modulate force as much as rate in animals from cockroaches (56) to turkeys (57). For example, the same spike triplet can result in different force production depending on whether it occurs at onset of or during tetanus (58). Pressure production in bird respiratory muscle is sensitive to spike timing down to the millisecond scale. Across all these cases, the complex transformation of motor unit spike patterns into force gives potential for precise timing to convey rich information to control movement. Spike timing codes with corresponding timing sensitivity in muscle power production may be a prevalent feature in both individual motor programs and across species.
Convergent mixed coding strategies for flight. An unexpected feature of the comprehensive motor program is the consistency in timing and count encoding across all the motor units (Fig. 4). Calcium imaging of the direct muscles controlling the wings in Drosophila showed evidence for two categories of muscle encoding: phasic muscles that are transiently active, especially during saccades, or tonic muscles that are continuously active (23). Flies may utilize a dichotomy of these exclusively phasic and tonic muscles organized into mixed functional groups, where at least one phasic and one tonic muscle is acting on each sclerite. In contrast, Manduca sexta utilizes muscles with a mix of spike timing and spike count encoding and usually have a larger, functionally dominant muscle (or muscles sharing innervation) in the group of muscles attached to sclerite as opposed to the similarly-sized muscles attached to each sclerite in flies (SI Appendix). Additionally, Drosophila fly at wing beat frequencies an order of magnitude higher than Manduca sexta and Schistocerca nitens. Larger size and longer wingbeat periods might allow for a single mixed timing and rate motor unit to have more power to control the sclerites. Manduca sexta also do not use saccades during flight, and muscles typically contract and relax on each cycle. While phasic and tonic calcium activation does not have the resolution of precise spiking activity, it does show a separation of timescales and the potential for separated mechanisms of coordination across muscles.

The information framework we use here is powerful in its generality, separates timing and count, and reveals the ubiquity, consistency, and coordination of spike timing. However, it does not indicate content of the signals on its own. Many different parameters in the motor signals could covary with torque and dissecting each component will require other approaches. We complement this information approach by examining specific patterns of spike count and spike timing related to torque in two example moths (Fig. S8-S9). DLMs varied with turn direction, but in a narrow timing window with low variance. This is consistent with their known control potential where changing individual spike times by as little as ±4 ms can modulate the power output from 0% to 200% of normal and causally induce yaw torque (27). Overall left and right pairs of muscles shifted their timing differences across turns. Time separation in the DVM and modulating of the timing of the 3AX were also consistent with earlier work (41, 59). There were also some individual differences like in the basalar muscle where one moth increased the spike count for ipsilateral turns, while the other moth decreased the spike count. There may be significant individual variation in the particular control implementation each individual adopts even if the encoding strategy is conserved.

Spike timing codes challenge motor circuit precision. Timing codes are limited by precision, both in the degree to which a spike can be reliably specified by the nervous system and reliably translated by the muscle and skeletal machinery into differential forces (4). The precise spiking of the indirect flight muscles has causal consequences for turning down to the sub-millisecond scale (27). We now understand that this likely extends across the entire motor program (Fig. 3B) and that coordination is achieved primarily thorough spike timing across muscles (Fig. 5A-F).

Given the relatively few spikes per wing stroke, spike count per period could easily be interpreted as a rate code in fast, periodically activated muscles like the hawk moth flight musculature, but there is a distinction between rate and spike count in some slow muscles with many spikes per cycle. In the slow cycle frequencies of the crustacean stomastogastric pyloric rhythm and stick insect strides, muscle force does not strictly follow rate encoding and depends on the specific number of spikes (19, 20). Timing codes are sometimes argued to be precise rate codes, but that would require drastic changes to spike rate in a very short time period for single spike codes, like the one present in the hawk moth DLM, and for codes that depend on specific spike patterns. For example, some slow muscles such as the radula closer in Aplysia show force dependence on specific patterns of spikes (60). Timing codes can be distinguished from rate or count codes by a specific pattern of spikes activated at a precise time in relation to a behavior (4). Using a phase timing code gave similar results to using an absolute timing code, due to there being little variation in the wing beat period, but it is also possible that information in phase and absolute timing may differ in systems where more variation exists in a characteristic movement period.

It is still unknown how peripheral temporal codes arise from higher brain areas, the central nervous system, or motor circuits in the spinal or ventral nerve cord. Precise timing could come from direct connections between sensory receptors and efferent units. In moths, there are rapid mechanosensory pathways from the antenna (61), wings (62), and potentially other organs that can provide reafference of movement that could be used for precision. In locusts, mechanical feedback from the tegula, a sensory organ depressed during each wing stroke, produces phase resetting in the flight motor pattern which coordinates the fore and hind wings (63). In flies, gap junctions exist between precise haltere mechanoreceptors (64) and steering muscles (65), producing very fast reflexes, which, in conjunction with fast feedback from wing mechanoreceptors, precisely pattern the activity of the first basalar muscle (66). However these reflexes are still influenced by visual commands that have to incorporate feedback passing through a number of central nervous system synapses (67). The millisecond scale resolution of the motor code poses a challenge even for neural processing that requires only a few synapses.

Precision may arise from central brain regions. Some pairs of bilateral muscles in Drosophila are innervated by motor neurons that receive input from the same circuitry in the nerve cord (68) which could give a proximal source of the left-right precision seen in Manduca downstroke muscles (27), but this alone is unlikely to be sufficient to account for the prevalence of timing codes. Central brain regions have been thought to encode information primarily by rate, but a cortical area for vocalization in song birds does show millisecond scale precision in encoding (25). Peripheral precision may also come from transforming a population code or remapping of dynamics distributed over large populations of neurons (32). Both the central nervous system and rapid peripheral sensorimotor pathways provide potential mechanisms for spike timing precision.

Spike count does not inherently limit encoding. The prevalence of temporal coding in the moth motor program is not due to a limit in how much information can be encoded in spike count, since the spike count entropy was high enough to account for the total mutual information encoded by each
Spicelike synergies are likely to share net redundant informa-
tion either due to their coactivation. Differences in the
total MI of muscle combinations typically account for
most of the entropy in the total MI, but for the 3AX and BA muscles,
there could be transmission error and the spike count would
still account for the total MI. Because much of the entropy in
spike count is unused for encoding yaw torque, much of the
variation in spike count must be ignored in the transformation
from spiking activity to movement. The opposing trends in BA
spike count from our two example moths may not affect the
yaw torque (Fig. S8–S9). In fact, there is some evidence that
muscle force is invariant to spike count in cockroach running
(69).

While temporal codes are present both in faster, high fre-
quency systems and slower, low frequency systems (18), count
and rate codes are still used. Improved algorithms based on
population rate codes for decoding motor implications of neu-
ral activity on a single-trial-basis have led to better neural
prosthetic devices and brain-machine-interfaces (32, 70). In-
corporating spiking rate or pattern information shows promise
for improving these devices by adding more information than
what is present in just the rate code.

Spike timing is essential to coordination. The moth motor
program has redundancy in its information transmission. Yet,
our estimate of the motor program information rate while
accounting for shared information still enables the encoding
of hundreds of unique states. Redundancy and synergy in
information transmission have been explored in the sensory
periphery and in central brain regions where there may be
a trade-off between code efficiency and robustness to noise
(71–73). Dimensionality reduction techniques are commonly
used to study populations of neurons in motor brain areas
or ensembles of muscles (31–33, 70, 74–76). The activation
patterns of many muscles may be represented by low dimen-
sional linear combinations of many muscle, ‘muscle synergies’,
that capture most of the variation (31, 33, 74, 75, 77). There
is potential confusion of the terms synergy and redundancy,
because muscle synergies are likely to share net redundant
(not synergistic) information. In the moth, all combinations
of muscles do share information (negative $I(Y)$ values).

Analysis without considering timing may miss important
structure in how brains coordinate movement. Previous inves-
tigations of muscle synergies could not assess coordination at
the spike level, though modulation of muscle activation over
longer timescales was an important component of synergies
identified in frogs, cats, and humans (36, 74, 76). In the Mand-
acea system nearly all of the coordination between muscles may
be overlooked by not considering spike timing. All muscles are
more coordinated in their timings than the DLMs that have
zero entropy in spike count. The spike timings of the DLM
muscles have previously been shown to exhibit a low degree of
coordination in their code for yaw torque (33). This is consist-
ent with our results, since we found that these two muscles
have the least pairwise interaction information (Fig. 5 A–F,
Fig. S6). Not all information encoded by individual muscles
was shared. In the moth motor program, each muscle has a
small amount of independent motor information it can convey
with count, while control encoded in timing is coordinated
across multiple muscles (Fig. 5B).

The hawk moth motor program uses a precise, coordinated
spike timing code along with a less informative but independent

spike count code consistently in every muscle used to control
the wings. Spike timing codes likely necessitate millisecond
second precision arising from either sensory feedback loops or
central motor circuits. When combined with the growing
number of specific examples of spike timing motor codes across
vertebrates and invertebrates, the millisecond patterning of
spikes can not be safely ignored or necessarily relegated to
a few specific cases. Timing encoding in the most peripheral
motor output may be more of a rule, not an exception.

Materials and Methods

Data Archival. The data used in this paper will be made available
on Dryad (accession information upon publication).

Electrophysiology (EMG) recordings from flight muscles. Moths
(Manduca sexta) were obtained as pupae (University of Washing-
ton colony) and housed communally after eclosion with a 12-hour
light–dark cycle. Naïve males and females (N = 7) were used
in experiments conducted during the dark period of their cycle. We
cold anesthetized moths before removing scales from the ventral
and dorsal sides of their thoraxes. We made two small holes in
the cuticle using insect pins and inserted two silver EMG wires
to take differential recordings from the 10 indirect power muscles
and direct steering muscles (Fig. S1). These 5 pairs of muscles
comprise a nearly complete motor program for flight (SI Appendix).

A common ground wire was placed in the abdomen. We imaged
the external placement of silver EMG wires to ensure we targeted
the correct muscles (Fig. S1). We also conducted post-mortem
sections on a subset of animals to verify wire placement. All
images were captured with a Zeiss Stereo Discovery v.12 equipped
with a Zeiss AxioCam 105 color camera.

Experimental set-up. We tethered moths with cyanoacrylate glue to
a 3D-printed ABS plastic rod rigidly attached to the force-torque
(F/T) transducer (ATI Nano17Tt, FT20157; calibrated ranges: $F_x, F_y = \pm 1000$ N; $F_z = \pm 1\,80$ N; $\tau_r, \tau_s, \tau_t = \pm \pm 6250$ mN-mm). After
tethering, we allowed 30 minutes for the moth to adapt to dark
light conditions and recover from the surgery at room temperature
before starting experimental recordings. We amplified the EMG
signals using a 16-channel AC amplifier (AM Systems Inc., Model
3500) before acquisition with a NI USB-6259 DAQ board. We also
acquired Voltage channels from the F/T transducer a NI USB-6259
DAQ board. We sampled both the EMG and F/T transducer gauge
voltages at 10000 Hz. We captured outputs from these DAQ boards
using MATLAB (MathWorks).

SI Methods. See the SI Methods for reporting on the visual stimulus
used, spike train analysis, wing stroke alignment, and information
theoretic estimates.

ACKNOWLEDGMENTS. The authors thank Mark Willis, Tom
Daniel, Ilya Nemenman, and Sam Sober for helpful discussions.

This material is based upon work supported by the National Sci-
cence Foundation Graduate Research Fellowship under Grant No.
DGE-1650044 and Grant No. DGE-1444932. This work was also
supported by an NSF CAREER (PoLS – 1554790) to S.S. and a
Klingenstein-Simons Fellowship in the Neurosciences to S.S.

1. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and information
in neural spike trains. Physical Review Letters 80(1):197–200.
2. Theunissen FE, Miller JP (1999) Temporal encoding in nervous systems: A rigorous definition.
Journal of Computational Neuroscience 2(2):149–162.
3. Gerstner W, Krieter aK, Markram H, Herz aV (1997) Neural codes: firing rates and be-

Journal of Computational Neuroscience 2(2):149–162.
4. Theunissen FE, Miller JP (1999) Temporal encoding in nervous systems: A rigorous definition.
Journal of Computational Neuroscience 2(2):149–162.
5. Gerstner W, Krieter aK, Markram H, Herz aV (1997) Neural codes: firing rates and be-

Journal of Computational Neuroscience 2(2):149–162.
6. deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coor-

dination of action-potential timing. Nature 381(6583):610–613.
67. Bialek W, Rieke F, Van Steveninck RDR, Warland D (1991) Reading a neural code. Science 252(5024):1854–1857.

68. de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proceedings of the Royal Society of London. Series B: Biological sciences 234(1277):379–414.

69. Reingel P, Reid RC (2000) Temporal coding of visual information in the thalamus. Journal of Neuroscience 20(14):5392–5400.

70. Muddato E, Elbaum MD, Saal HP, Benosia J (2012) Millisecond precision spike timing shapes tactile perception. Journal of Neuroscience 32(44):15309–15317.

71. Lawhern V, Nikonov A, Wu W, Contreras R (2011) Spike rate and spike timing contributions to coding taste quality information in rat periphery. Frontiers in Integrative Neuroscience 5:1–14.

72. Egea-Weiss A, Renner A, Kleineidam CJ, Szczyglowski M, Szczyglowska A (2018) High precision of spike timing across olfactory receptor neurons allows rapid odor coding in Dro sophila. iScience 4:67–83.

73. Brenner N, Strong SP, Koberle R, Bialek W, Stein R (2000) Synergy in a neural code. Neuron 21(7):1351–1352.

74. Bülbring E (1995) Correlation between membrane potential, spike discharge, and tension in smooth muscle. Journal of Physiology 128:200–221.

75. Milner-Brown HS, Stein RB, Yemm R (1973) Changes in firing rate of human motor units during linearly changing voluntary contractions. The Journal of Physiology 230(2):371–390.

76. Ferster D, Spruston N (1995) Cracking the neuronal code. Science 270(5253):756–757.

77. Enoa RM, Duchateau J (2017) Rate coding and the control of muscle force. Cold Spring Harbor Perspectives in Medicine 7(10).

78. Srivastava KH, et al. (2017) Motor control by precisely timed spike patterns. Proceedings of the National Academy of Sciences of the United States of America 114(11):1711–1716.

79. Morris LG, Hooper SL (1997) Muscle response to chemical neutralizing input in the lobster (Panulirus interruptus) stomatogastric system: spike number- versus spike frequency-dependent domains. Journal of Neuroscience 17(15):5956–71.

80. Hotion SL, Guevara G, C. van Uitert K, G. Schyschlaw M, J. Schyschlaw (2006) Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles. Journal of Neurophysiology 97(2):1428–1444.

81. Kammer AE (1985) Flying in Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press.

82. Burrows M (1996) The Neurobiology of an Insect Brain Ch. 11. (Oxford University Press, Oxford).

83. Lindsay T, Sustar A, Dickson M (2017) The function and organization of the motor system controlling flight maneuvers in flies. Current Biology 27(3):345–358.

84. Ye H, Morton DW, Chiel HJ (2006) Behavioral/systems/cognitive neurobiomechanics of multi-facility functionality during repletion in Apis californica. Journal of Neuroscience 26:10743–10755.

85. Tang C, Chayebayt S, Srivastava K, Nemenman I, Sober SL (2014) Millisecond scale motor control in a cortico-spinal area. PLoS Biology 12(20):e2002508.

86. Suvrathan A, Payne HL, Raymond JL (2016) Timing rules for synaptic plasticity matched to functionality during rejection in Aplysia californica. Journal of Neuroscience 36(44):15309–15317.

87. Rosebush V, Brezina V (2006) Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia. Journal of Neuroscience 26(25):7056–7070.

88. Sane SP, Denisov A, Willis MA, Daniel TL (2007) Antennal mechanosensers mediate flight control in moths. Science 315(5813):863–866.

89. Pratt B, Deora T, Mohren T, Daniel TL (2017) Neural evidence supports a dual sensory-motor role for insect wings. Proceedings of the Royal Society B: Biological Sciences 284(18003):20170969.

90. Wolf H (1993) The locust tegula: significance for flight rhythm generation, wing movement control and antero-posterior flight coordination. Journal of Experimental Biology 186:229–253.

91. Fox JL, Fairhall AL, Daniel TL (2010) Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proceedings of the National Academy of Sciences of the United States of America 107(38):3840–3845.

92. Fayyazuddin A, Dickson MH (1996) Haltare afferents provide direct, electrotonic input to a steering motor neuron in the blowfly. Cell Physiology 15:6255–532.

93. Fayyazuddin A, Dickson MH (1999) Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly. Cell Physiology 24(1):1916–1926.

94. Chan WP, Prete F, Dickson MH (1998) Visual input to the efferent control system of a fly’s “gyroscope”. Science 280(5381):289–292.

95. Sadal S, Reddy OV, Sane SP, Hasan G (2015) Neural control of wing coordination in flies. Current Biology 25(1):80–86.

96. Spornberg S, Full RJ (2008) Neuromuscular control of free-flight yaw turns in the hawkmoth manduca sexta. Journal of Experimental Biology 211(5):1704–1716.

97. Zhurov Y, Brezina V (2006) Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia. Journal of Neuroscience 26(25):7056–7070.

98. Sane SP, Denisov A, Willis MA, Daniel TL (2007) Antennal mechanosensers mediate flight control in moths. Science 315(5813):863–866.

99. Pratt B, Deora T, Mohren T, Daniel TL (2017) Neural evidence supports a dual sensory-motor role for insect wings. Proceedings of the Royal Society B: Biological Sciences 284(18003):20170969.

100. Wolf H (1993) The locust tegula: significance for flight rhythm generation, wing movement control and antero-posterior flight coordination. Journal of Experimental Biology 186:229–253.

101. Fox JL, Fairhall AL, Daniel TL (2010) Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope. Proceedings of the National Academy of Sciences of the United States of America 107(38):3840–3845.

102. Fayyazuddin A, Dickson MH (1996) Haltare afferents provide direct, electrotonic input to a steering motor neuron in the blowfly. Cell Physiology 15:6255–532.

103. Fayyazuddin A, Dickson MH (1999) Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly. Cell Physiology 24(1):1916–1926.

104. Chan WP, Prete F, Dickson MH (1998) Visual input to the efferent control system of a fly’s “gyroscope”. Science 280(5381):289–292.

105. Sadal S, Reddy OV, Sane SP, Hasan G (2015) Neural control of wing coordination in flies. Current Biology 25(1):80–86.

106. Spornberg S, Full RJ (2008) Neuromuscular control of free-flight skeletal structures in cockroaches during rapid running on rough terrain. Journal of Experimental Biology 211(3):433–446.

107. Pandarath H, et al. (2016) Interfering single-trial neural population dynamics using sequential auto-encoders. Nature Methods 6:805–815.

108. Narayanani NS, Kimchi EY, Laubach M (2005) Redundancy and synergy of neuronal ensembles in motor cortex. Journal of Neuroscience 25(17):4207–4216.

109. Puchalla J, Schneidman E, Harris RA, Berry MJ (2005) Redundancy in the population code for muscle activity during human locomotion. Journal of Neuroscience 25(17):4207–4216.

110. Ting LH, Putney A (2003) The nature of ‘slow’ and ‘fast’ contractions in the coxal muscles of the blowfly, calliphora vicina. Journal of Comparative Physiology A: Neuroethology, Sensory, and Behavioral Physiology 19(7):373–402.

111. Torres-Oveido G, Ting LH (2007) Muscle synergies characterizing human postural responses. Journal of Neuroscience 27(23):6230–6241.

112. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2009) Merging of healthy motor neuron control and aerodynamic force production. Journal of Experimental Biology 212(5):749–763.

113. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2009) Merging of healthy motor neuron control and aerodynamic force production. Journal of Experimental Biology 212(5):749–763.

114. Putney et al.