Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression

Dita Maixnerova1*, Chunyan Ling2,3, Stacy Hall2, Colin Reily1, Rhubell Brown2, Michaela Nprasova1, Miloslav Suchanek6, Eva Honsova6, Tomas Zima7, Jan Novak2, Vladimir Tesar1

1 General Teaching Hospital, 1st Faculty of Medicine, Charles University, Department of Nephrology, Prague, Czech Republic, 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 3 Longhua Hospital, Shanghai University of Traditional Medicine, Shanghai, China, 4 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 5 Jan Evangelista Purkyne University in Ústí nad Labem, Faculty of Environment, Ústí nad Labem, Czech Republic, 6 Institute of Clinical and Experimental Medicine, Department of Pathology, Prague, Czech Republic, 7 General Teaching Hospital, 1st Faculty of Medicine, Charles University, Institute of Medical Biochemistry and Laboratory Diagnostics, Prague, Czech Republic

* ditama@centrum.cz

Abstract

Background

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has serious outcomes with end-stage renal disease developing in 30–50% of patients. The diagnosis requires renal biopsy. Due to its inherent risks, non-invasive approaches are needed.

Methods

We evaluated 91 Czech patients with biopsy-proven IgAN who were assessed at time of diagnosis for estimated glomerular filtration rate (eGFR), proteinuria, microscopic hematuria, and hypertension, and then followed prospectively. Serum samples collected at diagnosis were analyzed for galactose-deficient IgA1 (Gd-IgA1) using new native-IgA1 and established neuraminidase-treated-IgA1 tests, Gd-IgA1-specific IgG autoantibodies, discriminant analysis and logistic regression model assessed correlations with renal function and Oxford classification (MEST score).

Results

Serum levels of native (P <0.005) and neuraminidase-treated (P <0.005) Gd-IgA1 were associated with the rate of eGFR decline. A higher relative degree of galactose deficiency in native serum IgA1 predicted a faster eGFR decline and poor renal survival (P <0.005). However, Gd-IgA1 has not differentiated patients with low vs. high baseline eGFR. Furthermore, patients with high baseline eGFR that was maintained during follow-up were characterized by low serum levels of Gd-IgA1-specific IgG autoantibodies (P = 0.003).
Conclusions
Including levels of native and neuraminidase-treated Gd-IgA1 and Gd-IgA1-specific autoantibodies at diagnosis may aid in the prognostication of disease progression in Czech patients with IgAN. Future tests will assess utility of these biomarkers in larger patients cohorts from geographically distinct areas.

Introduction
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide; diagnosis requires evaluation of a renal biopsy specimen [1]. Clinical risk factors predicting poor prognosis include time-averaged proteinuria, hypertension, decreased estimated glomerular filtration rate (eGFR) [2, 3], and Haas’ score for crescents, as well as histological lesions characterized by the Oxford classification (MEST score) [1, 4, 5]. IgAN is proposed to be an autoimmune disease with a multi-hit pathophysiological process [6], influenced by genetic and environmental factors [2, 7–10]. Key role in the multi-step process is played by galactose-deficient IgA1 (Gd-IgA1), the main autoantigen recognized by IgG autoantibodies [6]. Notably, serum levels of Gd-IgA1, assessed using a lectin assay with neuraminidase-treated IgA1, are elevated in most patients with IgAN [11] and predict disease progression in Chinese patients [12]. Testing of serum levels of Gd-IgA1 may aid in predicting disease progression as it is found elevated in IgAN patients compared to controls [13–15].

We tested a hypothesis that a combination of clinical, biochemical (serum Gd-IgA1), and histological markers improves the assessment of disease progression. We recruited 91 European Czech patients with biopsy-proven IgAN with a median follow-up 3.5±1.1 years since diagnosis. Notably, we used two assays to measure serum Gd-IgA1 levels: the current standard method that measures Gd-IgA1 after treatment with neuraminidase and a modified protocol that measured native Gd-IgA1 (without neuraminidase). Our results showed that serum levels of native and neuraminidase-treated Gd-IgA1 were associated with the rate of eGFR decline. However, Gd-IgA1 has not differentiated patients with low vs. high baseline eGFR. Therefore, we also assessed Gd-IgA1-specific IgG autoantibodies and have shown that patients with high baseline eGFR that was maintained during the follow up had low serum levels of these autoantibodies. Thus, early analysis of Gd-IgA1 and Gd-IgA1-specific autoantibodies may aid in the assessment of risk of disease progression.

Materials and methods
Subjects and samples
Serum was collected from 91 Czech patients at the time of diagnosis of IgAN, before renal biopsy was performed, and stored at -80°C. Clinical and laboratory data are summarized in S1 and S2 Tables. The study was approved by the Ethics Committee of the General Teaching Hospital in Prague, Czech Republic. Written informed consent was obtained.

Assays for serum IgA, Gd-IgA1 and Gd-IgA1-specific IgG autoantibodies
IgA was measured by ELISA and the levels of Gd-IgA1 by lectin ELISA with a lectin from Helix aspersa (Sigma; HAA) specific for terminal GalNAc [16, 17]. The original method [11] used neuraminidase to remove sialic acid from IgA1 O-glycans to determine IgA1 with terminal GalNAc residues, including those that were sialylated. Here, we assessed lectin binding to...
neuraminidase-treated as well as to native (i.e., not neuraminidase-treated) IgA1. The latter assay measured IgA1 with terminal (i.e., not sialylated) GalNAc residues. IgA1 has core 1 O-glycans, i.e., GalNAc-galactose disaccharide that may contain sialic acid attached at one or the other saccharide or both sugars can be sialylated. GalNAc-attached sialic acid is α2,6-linked whereas galactose-attached sialic acid is α2,3-linked. Some O-glycan can miss galactose, i.e., have terminal GalNAc. These terminal GalNAc moieties are recognized by HAA lectin. However, sialylation of GalNAc blocks HAA binding [18]. Moreover, sialylation of galactose in GalNAc-galactose disaccharides neighboring the sites with terminal GalNAc impairs access of HAA lectin to terminal GalNAc moieties. Removal of sialic acid from Gd-IgA1 by neuraminidase treatment restores HAA reactivity. These results together suggest that binding of a GalNAc-specific lectin to Gd-IgA1 is modulated by sialylation of GalNAc as well as galactose in the clustered IgA1 O-glycans and that HAA assay using native IgA1 (i.e., not treated with neuraminidase) and IgA1 pre-treated with neuraminidase will provide two types of assessment of Gd-IgA1. Serum levels of galactose-deficient IgA1 were expressed in units defined as the ratio of OD determined for the individual sample and the OD for a standard Gd-IgA1 protein. 100 U of Gd-IgA1 was defined as OD of 100 ng of Gd-IgA1 standard. Levels of serum IgG autoantibodies specific for Gd-IgA1 were measured using ELISA with Gd-IgA1 as an antigen, as described [19]. Specifically, Gd-IgA1 (2.5 μg/ml) was directly coated on ELISA plates, blocked by 1% BSA-Tween, and then probed with IgG using serum diluted 500-fold. One unit was defined as IgG binding to Gd-IgA1 with OD (@490 nm) equal to 1.

Statistical analyses

We used discrimination analysis with transformed variables (i.e., the principal) to predict a membership in a group or category based several continuous variables (i.e., values for biochemical, clinical, pathological markers) [20]. To verify the correct discriminant ability, confusion matrix was constructed, which resulted in classifying each of the objects in those categories to estimate selectivity and specificity of the combined biomarker tests. Logistic regression was used to link the occurrence or non-occurrence of an event to explanatory variables. We have used logistic regression with program XLSTAT (www.xlstat.com) to validate the results of the discriminant analysis and for the calculation of ROC curves in the case of two groups.

Results and discussion

Sera were analyzed for IgA and Gd-IgA1, and eGFR was calculated using MDRD (Modification of Diet in Chronic Renal Disease) formula. During the follow-up period, the patients exhibited three outcomes, based on renal function at the end of follow-up and its change since diagnosis: 1) non-progressors (n = 70, with stable renal function during follow-up), 2) progressors (n = 7, defined by the decline of eGFR ≥50% from baseline, but with eGFR >15 ml/min/1.73 m² at the end of follow-up), and 3) patients who reached end-stage renal disease during follow-up (n = 14, defined as those with serum creatinine >400 μmol/L at diagnosis, eGFR <15 ml/min/1.73 m² at the end of follow-up, or those who started renal replacement therapy) (S3 Table). Discrimination analysis was performed for eGFR, serum IgA, and serum Gd-IgA1 (without or with neuraminidase). eGFR alone as well as together with IgA and Gd-IgA1 divided the cohort of 91 patients in three groups (non-progressors, progressors, and ESRD) (S1 Fig, S3 Table). Fourteen patients with IgAN who reached ESRD during the follow-up period had higher relative degree of galactose deficiency measured using native IgA1, i.e., without neuraminidase treatment (U/1 μg IgA) (S4 Table, S2 Fig) but not serum Gd-IgA1 (U/1 μg IgA) with neuraminidase treatment.
However, this approach did not differentiate patients with stable vs. progressive disease. Therefore, we next assessed the remaining subjects who did not reach ESRD during the follow-up (n = 77). In these subjects, progressors had higher serum levels of Gd-IgA1 in both assays (with or without neuraminidase) than non-progressors (Table 1).

Next, we assessed potential correlations of histological findings (Oxford MEST classification of renal biopsy specimens) with clinical and biochemical data for 77 patients in the non-progressors and progressors groups. For individual parameters of Oxford MEST classification, we found an association of score E with serum levels of IgA and Gd-IgA1 (U/mL; without neuraminidase) and with eGFR (see Median test in S5 Table). Composite score (M+E+S+T) was associated with serum levels of IgA and Gd-IgA1 (expressed as a relative degree of galactose deficiency measured on native IgA1, i.e., without neuraminidase) and eGFR (see S6 Table). ROC curve (AUC 0.936) with eGFR, biochemical markers (IgA, Gd-IgA1), and histology (individual MEST scores) shown in S3 Fig (ROC curve a) indicated that eGFR, serum Gd-IgA1, and histological findings (MEST scores) discriminated non-progressor and progressor groups (P values for selected variables: eGFR, 0.028; serum levels of IgA, 0.014; serum levels [U/mL] of Gd-IgA1 as a relative degree of galactose deficiency measured for IgA1 without pretreatment with neuraminidase, 0.004; and serum levels [U/mL] of Gd-IgA1 treated with neuraminidase, 0.047). ROC curve with clinical parameters (eGFR), and histological findings (MEST scores) had an AUC of only 0.836 (S3 Fig, ROC curve b).

We next developed an ordinal logit model using XLSTAT software for assessment of 77 IgAN patients with eGFR values ≥60 ml/min/1.73 m² (group 1, n = 35) and those with eGFR values <60 ml/min/1.73 m² (group 2, n = 42) at the time of renal biopsy and maintained during follow up (Table 2). S4 Fig shows a ROC curve and a regression model for a limited number of explanatory variables that were significant according to discrimination analysis. When this regression model was applied to the data of the 77-patient cohort, the classification was correct in 100%.

Next, we tested whether certain levels of serum IgA and Gd-IgA1 are characteristic for 35 IgAN patients with high eGFR (group 1; patients with eGFR ≥60 mL/min/1.73 m²) that is maintained during the follow-up, i.e., patients who likely have a mild disease with low risk of progression, as compared to 42 IgAN patients with eGFR <60 mL/min/1.73 m² at biopsy and maintained during follow up (group 2). Surprisingly, none of these biomarkers fulfilled this criterion. Therefore, we extended the analysis and measured levels of serum IgG autoantibodies specific for Gd-IgA1. This biomarker differentiated these two groups of patients (Table 3).

Table 1. Median test (Mood test) for non-progressor [n = 70] vs. progressor [n = 7] groups.

Variable	p value
S creat	0.045
eGFR	0.049
IgA (μg/mL)	0.155
Gd-IgA1 (U/μg IgA)	0.155
Gd-IgA1 (U/mL)	0.005
Gd-IgA1 (U/μg IgA)	0.155
Gd-IgA1 (U/mL)	0.005

* serum Gd-IgA1 without neuraminidase pretreatment
** serum Gd-IgA1 with neuraminidase pretreatment
***p values means the risk to reject the null hypothesis (the medians are all equal). Confidence level is 90% (cut-off 0.1). Bold numbers indicate statistically significant P values.

S-creat, serum creatinine (μmol/L); eGFR (MDRD, ml/min/1.73 m²)

https://doi.org/10.1371/journal.pone.0212254.t001
eGFR values as mean (SD). Groups 1 and 2 denote two groups of patients with IgAN with eGFR (MDRD) values ≥60 ml/min/1.73 m² and <60 ml/min/1.73 m², respectively, at time of renal biopsy and maintained during follow-up. Group 1 with mean eGFR 97 ml/min/1.73 m², Group 2 with mean eGFR 33 ml/min/1.73 m².

Oxford histological scores for each group are shown; data (M0/1, E0/1, S0/1, T0/1/2) are presented as percentages of IgAN patients in each group. Patients (n), number of patients; eGFR, estimated glomerular filtration rate calculated by MDRD at renal biopsy (mean, ml/min/1.73 m²); SD, standard deviation.

https://doi.org/10.1371/journal.pone.0212254.t002

Table 3. Significance testing (Mann-Whitney test) of various parameters in patients with IgAN with eGFR (MDRD) ≥60 ml/min/1.73 m² (group 1) or <60 ml/min/1.73 m² (group 2).

Variable	p value
S creat	< 0.0001
eGFR	< 0.0001
PU	0.176
IgA (μg/mL)	0.190
Gd-IgA1 (U/1 μg IgA)	0.101
Gd-IgA1 (U/mL)	0.117
Gd-IgA1 (U/1 μg IgA)	0.686
Gd-IgA1 (U/mL)	0.545
IgG autoantibody specific for Gd-IgA1 (U/mL)	0.003
S creat	< 0.0001
eGFR	< 0.0001
PU	< 0.0001

* serum Gd-IgA1 without neuraminidase pretreatment
** serum Gd-IgA1 with neuraminidase pretreatment

Group 1 (n = 35), eGFR ≥60 mL/min/1.73 m²; group 2 (n = 42), eGFR <60 mL/min/1.73 m²; S creat, eGFR, PU, final values at the end of the period of investigation (3.5 yr); S-creat–serum creatinine (μmol/L); eGFR (MDRD, ml/min/1.73 m²); PU–proteinuria (g/24 h). Bold numbers indicate statistically significant P values (cut-off 0.1).

https://doi.org/10.1371/journal.pone.0212254.t003
higher serum level of Gd-IgA1 correlated with worse proteinuria; our results have not replicated this observation. In our study, we confirmed the association of Gd-IgA1-specific IgG autoantibodies in patients with IgAN with disease progression, in agreement with previous study that reported that the serum levels of IgG or IgA autoantibodies in IgAN patients associated with the absolute renal risk for ultimate dialysis or death [24]. A limitation of our study includes the calculation of glomerular filtration rate estimated with the MDRD formula, that has not been validated for eGFR \leq 60 mL/min/1.73 m2. However, eGFR assessed with CKD-EPI formula showed similar results and no significant difference was found by Student’s t-test between eGFR estimated with the MDRD formula and with CKD-EPI formula.

In summary, our results confirmed the levels of Gd-IgA1 as an important predictor of disease progression in Czech patients with IgAN. Levels of Gd-IgA1 with and without neuraminidase pre-treatment were associated with the rate of eGFR decline. This is, to our knowledge, the first report on a higher relative degree of galactose deficiency of native serum IgA1 predicting a faster eGFR decline and poor renal survival. Moreover, we found that renal function (eGFR) and one biomarker (serum levels of IgG autoantibodies specific for the Gd-IgA1) at the time of diagnosis can together predict risk of disease progression. Furthermore, low serum levels of IgG autoantibodies specific for Gd-IgA1 identified patients with IgAN who

Table 4. Average values for various parameters in the group with high eGFR that is maintained during the follow-up (group 1: 35 patients with eGFR \geq 60 mL/min/1.73 m2) compared to group 2 (42 patients with eGFR $<$ 60 mL/min/1.73 m2).

Variable	Group 1	Group 2	p value $\star \star$
S creat	83	212	<0.0001
S creatf	88	237	<0.0001
eGFR	96	33	<0.0001
eGFRf	85	34	<0.0001
ΔeGFR	-13%	-3%	0.486
PU	2.09	2.29	0.026
PUF	0.73	1.69	
ΔPU	-65%	-26%	
IgA (μg/mL)	4756	5226	0.190
Gd-IgA1 (U/1 μg IgA)*	100	115	0.101
Gd-IgA1 (U/mL)*	468 804	567 790	0.117
Gd-IgA1 (U/1 μg IgA) **	466	477	0.686
Gd-IgA1 (U/mL) **	2 210 341	2 371 748	0.545
IgG Ab	2 694	4 396	0.003
S creatf	91		
eGFRf	77		
PUF	0.6		

*S creatf, eGFRf, PUF – final values at the end of the follow-up (average 3.5 yrs); S creatf, eGFRf, PUF – final values at the end of the follow-up (average 5.0 yrs); S creat, serum creatinine (μmol/L); eGFR (MDRD, mL/min/1.73 m2); PU, proteinuria (g/24 h); IgG Ab, serum IgG autoantibody specific for Gd-IgA1 (U/mL). Both groups exhibited similar proteinuria at diagnosis (2.1 and 2.3 g/24 h, respectively), but patients in group 1 had lower proteinuria at the end of follow-up compared to patients in group 2 (0.7 vs. 1.7 g/24 h, respectively). Group 1 (n = 35), eGFR \geq 60 mL/min/1.73 m2; group 2 (n = 42), eGFR $<$ 60 mL/min/1.73 m2.

* serum Gd-IgA1 without neuraminidase pretreatment
** serum Gd-IgA1 with neuraminidase pretreatment
***p values means the risk to reject the null hypothesis (the medians are all equal). Confidence level is 90% (cut-off 0.1). Bold numbers indicate statistically significant P values.

https://doi.org/10.1371/journal.pone.0212254.t004

higher serum level of Gd-IgA1 correlated with worse proteinuria; our results have not replicated this observation. In our study, we confirmed the association of Gd-IgA1-specific IgG autoantibodies in patients with IgAN with disease progression, in agreement with previous study that reported that the serum levels of IgG or IgA autoantibodies in IgAN patients associated with the absolute renal risk for ultimate dialysis or death [24]. A limitation of our study includes the calculation of glomerular filtration rate estimated with the MDRD formula, that has not been validated for eGFR \geq 60 mL/min/1.73 m2. However, eGFR assessed with CKD-EPI formula showed similar results and no significant difference was found by Student’s t-test between eGFR estimated with the MDRD formula and with CKD-EPI formula.

In summary, our results confirmed the levels of Gd-IgA1 as an important predictor of disease progression in Czech patients with IgAN. Levels of Gd-IgA1 with and without neuraminidase pre-treatment were associated with the rate of eGFR decline. This is, to our knowledge, the first report on a higher relative degree of galactose deficiency of native serum IgA1 predicting a faster eGFR decline and poor renal survival. Moreover, we found that renal function (eGFR) and one biomarker (serum levels of IgG autoantibodies specific for the Gd-IgA1) at the time of diagnosis can together predict risk of disease progression. Furthermore, low serum levels of IgG autoantibodies specific for Gd-IgA1 identified patients with IgAN who
maintained high eGFR and, thus, had low risk of disease progression. However, patients with high serum levels of IgG autoantibodies specific for Gd-IgA1 and other risk factors, such as high proteinuria or active histological lesions, should be indicated for immunosuppressive regimen due to suspected worse renal outcome.

Supporting information

S1 Table. Baseline characteristics of the 91 Czech patients with biopsy-proven IgA nephropathy.

S2 Table. Baseline characteristics of the three groups of the 91 Czech patients with biopsy-proven IgA nephropathy (non-progressors, progressors, patients with ESRD).

S3 Table. Analysis of a combined group of IgAN non-progressors and progressors vs. IgAN patients who reached ESRD.

S4 Table. Median test (Mood test) comparing IgAN patients with end-stage renal disease reached during the follow-up vs. IgAN patients without ESRD for selected variables.

S5 Table. Assessment of two groups (non-progressors [n = 70] and progressors [n = 7]) for the influence of E from the Oxford classification (MEST); other parameters (M, S, T) did not reach significance).

S6 Table. Influence of Oxford classification MEST composite score in assessment of two groups (non-progressors [n = 70] and progressors [n = 7]).

S7 Table. Mean values of selected laboratory parameters in a subset of patients treated with corticosteroids in group 1 with eGFR \(\geq 60 \text{ mL/min/1.73 m}^2 \) (n = 16) and group 2 with eGFR < 60 mL/min/1.73 m^2 (n = 24).

S1 Fig. Discriminant analysis for three groups of IgAN patients (non-progressors in green, progressors in orange, ESRD in blue) and all parameters (eGFR, using MDRD formula (mL/min/1.73 m^2); serum IgA (mg/mL); serum Gd-IgA1 (U/g IgA; without neuraminidase); serum Gd-IgA1 (U/mL; without neuraminidase); serum Gd-IgA1 (U/g IgA; with neuraminidase); serum Gd-IgA1 (U/mL; with neuraminidase).

S2 Fig. Box-and-whiskers plots for progressors and non-progressors (group 1) vs. IgAN patients who reached ESRD during follow up (group 2) for selected parameters.

S3 Fig. Receiver operating characteristic (ROC) curves for non-progressors vs. progressors. a-ROC curve for non-progressors vs. progressors using eGFR (MDRD, mL/min/1.73 m^2), Gd-IgA1 biomarkers, and Oxford classification (individual parameters of Oxford MEST classification). Area under the curve, AUC = 0.936. b- Receiver operating characteristic (ROC) curve for non-progressors vs. progressors using eGFR (MDRD, mL/min/1.73 m^2) and Oxford classification (individual parameters of Oxford MEST classification). Area under the curve,
AUC = 0.836.

S4 Fig. Receiver operator curve within two groups (eGFR, serum levels of IgG autoantibody specific for Gd-IgA1). Area under the curve = 1.00. Accuracy of the discrimination is 100%. Group 1 (n = 35), eGFR ≥ 60 mL/min/1.73 m² at the time of renal-biopsy; group 2 (n = 42), eGFR < 60 mL/min/1.73 m² at the time of renal-biopsy. Prediction equation from logistic regression (predicts probability to choose group 1): Pred (group 1) = 1 / (1 + exp(-(1517.5–1.2E-02*AB-IgA-24.9*eGFR))).

S5 Fig. Box-and-whiskers plots for selected variables within two groups. S-creat, serum creatinine (μmol/L); eGFR (MDRD, mL/min/1.73 m²); serum IgG autoantibody specific for Gd-IgA1 (U/mL). Group 1 (n = 35), eGFR ≥ 60 mL/min/1.73 m² at the time of renal biopsy; group 2 (n = 42), eGFR < 60 mL/min/1.73 m² at the time of renal biopsy.

Acknowledgments
The authors appreciate critical reading by Dana V. Rizk and Bruce A. Julian.

Author Contributions
Conceptualization: Dita Maixnerova, Stacy Hall, Jan Novak.
Formal analysis: Rhubell Brown, Miloslav Suchanek, Jan Novak.
Funding acquisition: Tomas Zima.
Investigation: Miloslav Suchanek, Eva Honsova.
Methodology: Chunyan Ling, Stacy Hall, Rhubell Brown, Michaela Neprasova, Miloslav Suchanek, Eva Honsova, Jan Novak.
Project administration: Colin Reily, Michaela Neprasova, Vladimir Tesar.
Resources: Michaela Neprasova, Tomas Zima, Vladimir Tesar.
Supervision: Colin Reily, Tomas Zima, Jan Novak, Vladimir Tesar.
Validation: Jan Novak.
Visualization: Jan Novak.
Writing – original draft: Dita Maixnerova, Jan Novak.
Writing – review & editing: Dita Maixnerova, Jan Novak.

References
1. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts ISD, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009; 76: 534–545. https://doi.org/10.1038/ki.2009.243 PMID: 19571791
2. Wyatt RJ, Julian BA. IgA Nephropathy. New Engl J Med. 2013; 368: 2402–2414. https://doi.org/10.1056/NEJMr1206793 PMID: 23782179
3. Reich HN, Troyanov S, Scholey JW, Cattran DC. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007; 18: 3177–3183. https://doi.org/10.1681/ASN.2007050526 PMID: 17978307
Markers predicting progression of IgAN

4. Barbour SJ, Espino-Hernandez G, Reich HN, Coppo R, Roberts ISD, Feehally J, et al. The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int. 2016; 89: 167–175. https://doi.org/10.1038/ki.2015.322 PMID: 26759049

5. Haas M, Verhave JC, Liu ZH, Alpers CE, Barratt J, Becker JU, et al. J Am Soc Nephrol. 2017; 28: 691–701. https://doi.org/10.1681/ASN.2016040433 PMID: 27612994

6. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011; 22: 1795–803. https://doi.org/10.1681/ASN.2011050464 PMID: 21949093

7. Kiryluk K, Li YF, Sanna-Cherchi S, Rohanizadeh M, Suzuki H, Eltnier F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012; 8: e1002765. https://doi.org/10.1371/journal.pgen.1002765 PMID: 22737082

8. Kiryluk K, Li YF, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014; 46: 1187–1196. https://doi.org/10.1038/ng.3118 PMID: 25305756

9. Kiryluk K, Li YF, Moldoveanu Z, Suzuki H, Reily C, Hou P, et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017; 13: e1006609. https://doi.org/10.1371/journal.pgen.1006609 PMID: 28187132

10. Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol. 2017; 28: 2158–2166. https://doi.org/10.1681/ASN.2016091043 PMID: 28209808

11. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007; 71: 1148–1154. https://doi.org/10.1038/sj.ki.5002185 PMID: 17342176

12. Zhao N, Hou P, Lv JC, Moldoveanu Z, Li YF, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012; 82: 790–796. https://doi.org/10.1038/ki.2012.197 PMID: 22673888

13. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012; 23: 1579–1587. https://doi.org/10.1681/ASN.2012010053 PMID: 22904352

14. Hastings MC, Moldoveanu Z, Suzuki H, Berthoux F, Julian BA, Sanders JT, et al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opin Med Diagn. 2013; 7: 615–627. https://doi.org/10.1517/17530059.2013.856878 PMID: 24175678

15. Caliskan Y, Kiryluk K. Novel biomarkers in glomerular disease. Adv Chronic Kidney Dis. 2014; 21: 205–216. https://doi.org/10.1053/j.ackd.2013.12.002 PMID: 24602470

16. Coppo R, Fonsato V, Balegno S, Ricotti E, Loiacono E, Camilla R, et al. Aberrantly glycosylated IgA1 induces mesangial cells to produce platelet-activating factor that mediates nephrin loss in cultured podocytes. Kidney Int. 2010; 77: 417–427. https://doi.org/10.1038/ki.2009.473 PMID: 20016469

17. Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA, Wyatt RJ, et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem. 2014; 289: 5330–5339. https://doi.org/10.1074/jbc.M113.512277 PMID: 24398680

18. Takahashi K, Raska M, Stuchlova Horynova M, Hall SD, Poulsen K, Kiliian M, et al. Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One. 2014; 9(2): e99026. https://doi.org/10.1371/journal.pone.0099026 PMID: 24918438

19. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009; 119: 1668–1677. https://doi.org/10.1172/JCI38468 PMID: 19478457

20. Vandeginste BGM. Handbook of Chemometrics and Qualimetrics, part B. 1998, ISBN 0-444-82853-2.

21. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012; 82: 790–796. https://doi.org/10.1038/ki.2012.197 PMID: 22673888

22. Shimozato S, Hiki Y, Odani H, Takahashi K, Yamamoto K, Sugiyama S. Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant. 2008; 23(6): 1931–1939. https://doi.org/10.1093/ndt/gfm193 PMID: 18178603

23. Camilla R, Suzuki H, Daprà V, Loiacono E, Peruzzi L, Amore A, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol. 2011; 6(8): 1903–1911. https://doi.org/10.2215/CJN.11571210 PMID: 21784819

24. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephol. 2012; 23: 1579–1587. https://doi.org/10.1681/ASN.2012010053 PMID: 22904352