BEST POLYNOMIAL APPROXIMATION ON THE TRIANGLE

HAN FENG, CHRISTIAN KRATTENTHALER, AND YUAN XU

Abstract. Let $E_n(f)_{\alpha,\beta,\gamma}$ denote the error of best approximation by polynomials of degree at most n in the space $L^2(\varpi_{\alpha,\beta,\gamma})$ on the triangle $\{(x,y) : x, y \geq 0, x + y \leq 1\}$, where $\varpi_{\alpha,\beta,\gamma}(x,y) := x^\alpha y^\beta (1-x-y)^\gamma$ for $\alpha, \beta, \gamma > -1$. Our main result gives a sharp estimate of $E_n(f)_{\alpha,\beta,\gamma}$ in terms of the error of best approximation for higher order derivatives of f in appropriate Sobolev spaces. The result also leads to a characterization of $E_n(f)_{\alpha,\beta,\gamma}$ by a weighted K-functional.

1. Introduction

We study best polynomial approximation on the weighted spaces on a triangle. We fix our triangle as

$\triangle := \{(x, y) : x \geq 0, y \geq 0, x + y \leq 1\}$

and define the weight function to be the Jacobi weight

$\varpi_{\alpha,\beta,\gamma}(x, y) := x^\alpha y^\beta (1-x-y)^\gamma, \; \alpha, \beta, \gamma > -1$.

Let Π^2_n denote the space of polynomials of degree at most n. For $1 \leq p < \infty$, the error of best approximation by polynomials in $L^p(\varpi_{\alpha,\beta,\gamma})$ is defined by

$$E_n(f)_{L^p(\varpi_{\alpha,\beta,\gamma})} := \inf_{p \in \Pi^2_n} \| f - p \|_{L^p(\varpi_{\alpha,\beta,\gamma})},$$

and we replace $L^p(\varpi_{\alpha,\beta,\gamma})$ by the space $C(\triangle)$ of continuous functions on \triangle when $p = \infty$. For $p = 2$ we simplify the notation and write

$$E_n(f)_{\alpha,\beta,\gamma} := E_n(f)_{L^2(\varpi_{\alpha,\beta,\gamma})}.$$

The characterization of best approximation by polynomials on the triangle and, more generally, on the d-dimensional simplex, has been studied by several authors; see [3, 4, 12, 14]. In the unweighted case ($\alpha = \beta = \gamma = 0$), the best approximation on the simplex is characterized by a modulus of smoothness and an equivalent K-functional in [4] and more recently in [12] for all p with $1 \leq p \leq \infty$, as a special case of a more general theorem in the setting of polytopes. In these articles, the modulus of smoothness and the K-functional are defined as the supremum, over all chords in the simplex, of appropriate moduli of smoothness or K-functionals of one variable over chords. The weighted case is much more difficult to characterize, and the complication can be already seen in the case of one variable (see [4]). Currently

Date: July 24, 2018.

2010 Mathematics Subject Classification. 33C50, 42C10.

Key words and phrases. Best polynomial approximation, orthogonal expansion, triangle, K-functional.

The second author was supported in part by the Austrian Science Foundation FWF, grant SFB F50 (Special Research Program “Algorithmic and Enumerative Combinatorics”. The third author was supported in part by NSF Grant DMS-1510296.
the only characterization in the weighted case is the one given in [14], in which the K-functional on the triangle is defined by

\begin{equation}
K_r(f; t)_{L^p(\varpi_{a, b, c})} := \inf_g \left\{ \|f - g\|_{L^p(\varpi_{a, b, c})} + t^r \|(-D)_{a, b, c}^r g\|_{L^p(\varpi_{a, b, c})} \right\},
\end{equation}

where $D_{a, b, c}$ is the second order differential operator

\begin{equation}
D_{a, b, c} := \left[w_{a, b, c}(x, y) \right]^{-1} \left[\partial_x w_{a+1, b, c+1}(x, y) \partial_1 + \partial_y w_{a+1, b, c+1}(x, y) \partial_2 + \partial_3 w_{a+1, b+1, c+1}(x, y) \partial_3 \right],
\end{equation}

in which ∂_1 and ∂_2 are the first partial derivatives and we define $\partial_3 := \partial_2 - \partial_1$ throughout this paper. In the unweighted case, a more informative modulus of smoothness and its equivalent K-functional on the simplex were defined in [1], and the K-functional can be extended to the weighted setting by

\begin{equation}
K_r(f; t)_{L^p(\varpi_{a, b, c})} := \inf_g \left\{ \|f - g\|_{L^p(\varpi_{a, b, c})} + t^r \sum_{1 \leq i \leq 3} \|\phi_i D^r g\|_{L^p(\varpi_{a, b, c})} \right\},
\end{equation}

where the ϕ_i's are defined by

\begin{equation}
\phi_1(x, y) = \sqrt{x(1 - x - y)}, \quad \phi_2(x, y) = \sqrt{y(1 - x - y)}, \quad \phi_3(x, y) = \sqrt{xy}.
\end{equation}

For $r = 2$, the two K-functionals in (1.3) and (1.5) are comparable (cf. [3]), but the characterization of the best approximation via $K^*_r(f; t)_{L^2(\varpi_{a, b, c})}$ is still open.

Our study is motivated by the recent work in [13], where simultaneous approximation by polynomials on the triangle is studied, and the main result involves the errors of best approximation for various derivatives of functions. This raises the question of bounding the error of best approximation for a function by those of its derivatives. Our main result (see Theorem 3.1) is the estimate

\begin{equation}
E_n(f)_{a, b, c} \leq \frac{c}{n^r} \left[E_{n-r}(\partial_1 f)_{a+r, b, c+r} + E_{n-r}(\partial_2 f)_{a, b+r, c+r} + E_{n-r}(\partial_3 f)_{a, b, c+r} \right],
\end{equation}

where r is a positive integer and c is a constant independent of n and f. The indices on the right–hand side may look strange at first sight, but this turns out to be natural for at least two reasons. First, let $V_n(\varpi_{a, b, c})$ be the space of orthogonal polynomials with respect to $w_{a, b, c}$ on the triangle; then we have

\begin{align*}
\partial_1 : V_n(\varpi_{a, b, c}) &\rightarrow V_{n-1}(\varpi_{a+1, b, c+1}), \\
\partial_2 : V_n(\varpi_{a, b, c}) &\rightarrow V_{n-1}(\varpi_{a, b+1, c+1}), \\
\partial_3 : V_n(\varpi_{a, b, c}) &\rightarrow V_{n}(\varpi_{a+1, b+1, c+1}),
\end{align*}

which shows that $\partial_i^r f$ on the right–hand side of the estimate are being approximated in the right spaces. Secondly, the estimate turns out to be what we need to establish the characterization of best approximation by $K^*_r(f; t)_{L^2(\varpi_{a, b, c})}$ for all r.

Our paper is organized as follows. Since we work in the L^2 setting, we need to deal with the Fourier orthogonal expansions on the triangle. This is developed in the next section. The main results on best polynomial approximation are presented and proved in the third section. The proof relies on a closed form formula for a family of determinants, which is established in the fourth section.
2. Fourier orthogonal expansions on the triangle

Since the polynomial of best approximation that attains $E_n(f)_{\alpha,\beta,\gamma}$ is the n-th partial sum of the Fourier orthogonal expansion with respect to $\mathcal{W}_{\alpha,\beta,\gamma}$, we need to examine orthogonal structure on the triangle. For $\alpha, \beta, \gamma > -1$, we define an inner product by

$$\langle f, g \rangle_{\alpha,\beta,\gamma} := c_{\alpha,\beta,\gamma} \int_{\triangle} f(x,y)g(x,y)\mathcal{W}_{\alpha,\beta,\gamma}(x,y)dxdy,$$

where $c_{\alpha,\beta,\gamma}$ is chosen so that $\langle 1, 1 \rangle_{\alpha,\beta,\gamma} = 1$; more precisely, we have

$$c_{\alpha,\beta,\gamma} = \frac{\Gamma(\alpha + \beta + \gamma + 3)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)\Gamma(\gamma + 1)}.$$

Let Π_n be the space of polynomials of total degree at most n in two variables and let $\mathcal{V}_n(\mathcal{W}_{\alpha,\beta,\gamma})$ be the subspace of orthogonal polynomials of degree n with respect to this inner product. Then $\Pi_n = \bigoplus_{k=0}^{n} \mathcal{V}_k(\mathcal{W}_{\alpha,\beta,\gamma})$. The polynomials in $\mathcal{V}_n(\mathcal{W}_{\alpha,\beta,\gamma})$ are eigenfunctions of the second order differential operator $D_{\alpha,\beta,\gamma}$ defined in (1.4); more precisely, we have

$$D_{\alpha,\beta,\gamma} P = \lambda_n P \quad \text{with} \quad \lambda_n := -n(n + \alpha + \beta + \gamma + 2)$$

for all $P \in \mathcal{V}_n(\mathcal{W}_{\alpha,\beta,\gamma})$. An orthogonal basis of the space $\mathcal{V}_n(\mathcal{W}_{\alpha,\beta,\gamma})$ can be given in terms of the Jacobi polynomials. Let $P_n^{(\alpha,\beta)}$ be the usual Jacobi polynomial of degree n on $[-1,1]$. We adopt the normalization

$$J_n^{\alpha,\beta}(t) = \frac{1}{(n + \alpha + \beta + 1)_n} P_n^{(\alpha,\beta)}(t),$$

where $(a)_n = a(a + 1) \cdots (a + n - 1)$ is the Pochhammer symbol. By the derivative formula for $P_n^{(\alpha,\beta)}$ (cf. [11, (4.5.5)]), we then have $\frac{d}{dt} J_n^{\alpha,\beta}(2t - 1) = J_{n-1}^{\alpha+1,\beta+1}(2t-1)$. An orthogonal basis of $\mathcal{V}_n(\mathcal{W}_{\alpha,\beta,\gamma})$ is given by (cf. [15, Section 2.4])

$$J_{k,n}^{\alpha,\beta,\gamma}(x,y) := (x+y)^k J_k^{\alpha,\beta} \left(\frac{y-x}{x+y} \right) J_{n-k}^{2k+\alpha+\beta+1,\gamma}(1-2x-2y), \quad 0 \leq k \leq n.$$

More precisely, we have

$$\langle J_{k,n}^{\alpha,\beta,\gamma}, J_{j,m}^{\alpha,\beta,\gamma} \rangle_{\alpha,\beta,\gamma} = h_{k,n}^{\alpha,\beta,\gamma} \delta_{j,k} \delta_{n,m},$$

where

$$h_{k,n}^{\alpha,\beta,\gamma} = \frac{(\alpha + 1)_{k} (\beta + 1)_{k} (\alpha + \beta + 1)_{n-k} (\gamma + 1)_n}{k! (n-k)! (\alpha + \beta + 1)_{2k} (\alpha + \gamma + 2)_{2k} (\alpha + \beta + \gamma + 3)_{2n}}.$$

The derivatives of $J_{k,n}^{\alpha,\beta,\gamma}$ satisfy the following relations (cf. [15, (4.17)]):

$$\partial_1 J_{k,n}^{\alpha,\beta,\gamma}(x,y) = -a_{k,n}^{\alpha,\beta,\gamma} J_{k-1,n-1}^{\alpha+1,\beta,\gamma+1}(x,y) - J_{k,n-1}^{\alpha+1,\beta,\gamma+1}(x,y),$$

$$\partial_2 J_{k,n}^{\alpha,\beta,\gamma}(x,y) = a_{k,n}^{\alpha,\beta,\gamma} J_{k-1,n-1}^{\alpha+1,\beta+1,\gamma+1}(x,y) - J_{k,n-1}^{\alpha+1,\beta+1,\gamma+1}(x,y),$$

$$\partial_3 J_{k,n}^{\alpha,\beta,\gamma}(x,y) = J_{k-1,n-1}^{\alpha+1,\beta+1,\gamma+1}(x,y)$$

for $0 \leq k \leq n$, where

$$a_{k,n}^{\alpha,\beta} := \frac{(k + \beta)(n + k + \alpha + \beta + 1)}{(2k + \alpha + \beta)(2k + \alpha + \beta + 1)}.$$
The space $V_n(\omega_{\alpha,\beta,\gamma})$ has several other bases that can be explicitly given. For example, simultaneous permutation of α, β, γ and of $x, y, 1-x-y$ in $J_{k,n}^{\alpha,\beta,\gamma}$ leads to two different orthogonal bases of $V_n(\omega_{\alpha,\beta,\gamma})$.

The Fourier orthogonal expansion of $f \in L^2(\omega_{\alpha,\beta,\gamma})$ is given by
\[
f = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \hat{f}_{k,m}^{\alpha,\beta,\gamma} f_{k,m}^{\alpha,\beta,\gamma}, \quad \text{where} \quad \hat{f}_{k,m}^{\alpha,\beta,\gamma} := \frac{\langle f, J_{k,m}^{\alpha,\beta,\gamma} \rangle}{h_{k,m}^{\alpha,\beta,\gamma}}.
\]
The projection operator $\text{proj}_{S_n}^{\alpha,\beta,\gamma}$ is defined by
\[
\text{proj}_{S_n}^{\alpha,\beta,\gamma} f := \sum_{k=0}^{n} \hat{f}_{k,m}^{\alpha,\beta,\gamma} f_{k,m}^{\alpha,\beta,\gamma} \quad \text{and} \quad S_n^{\alpha,\beta,\gamma} f := \sum_{m=0}^{n} \text{proj}_{m}^{\alpha,\beta,\gamma} f.
\]
Standard Hilbert space theory shows that the n-th partial sum $S_n^{\alpha,\beta,\gamma} f$ is the least square polynomial of degree at most n in $L^2(\omega_{\alpha,\beta,\gamma})$: that is,
\[
E_n(f)_{\alpha,\beta,\gamma} := \inf_{p \in \Pi_n^{\alpha,\beta,\gamma}} \| f - p \|_{\alpha,\beta,\gamma} = \| f - S_n^{\alpha,\beta,\gamma} f \|_{\alpha,\beta,\gamma},
\]
where, and throughout the rest of this paper, $\| \cdot \|_{\alpha,\beta,\gamma} = \| \cdot \|_{L^2(\omega_{\alpha,\beta,\gamma})}$. As the orthogonal projection from $L^2(\omega_{\alpha,\beta,\gamma})$ to $\Pi_n^{\alpha,\beta,\gamma}$, the partial sum operators are independent of the choices of orthogonal bases. The derivatives act commutatively on the partial sum operators in the sense that (cf. [15(4.2.7)]).
\[
\partial_1 \text{proj}_{n-r}^{\alpha,\beta,\gamma} f = \text{proj}_{n-r}^{\alpha,\beta,\gamma} \partial_1 f,
\]
\[
\partial_2 \text{proj}_{n-r}^{\alpha,\beta,\gamma} f = \text{proj}_{n-r}^{\alpha,\beta,\gamma} \partial_2 f,
\]
\[
\partial_3 \text{proj}_{n-r}^{\alpha,\beta,\gamma} f = \text{proj}_{n-r}^{\alpha,\beta,\gamma} \partial_3 f.
\]
These relations play an important role for our study. It implies, in particular, the following lemma.

\textbf{Lemma 2.1.} For $r = 1, 2, 3, \ldots$ and $0 \leq k \leq n - r$, we have
\[
(-1)^r \partial_1^{r} f_{k,n-r}^{\alpha,\beta,\gamma+r} = \sum_{j=0}^{r} A_{r,j,k,n}^{\alpha,\beta,\gamma} \hat{f}_{k,j,n}^{\alpha,\beta,\gamma},
\]
\[
(-1)^r \partial_2^{r} f_{k,n-r}^{\alpha,\beta,\gamma+r} = \sum_{j=0}^{r} (-1)^{j} A_{r,j,k,n}^{\alpha,\beta,\gamma} \hat{f}_{k+j,n}^{\alpha,\beta,\gamma},
\]
\[
(-1)^r \partial_3^{r} f_{k,n-r}^{\alpha,\beta,\gamma+r} = \hat{f}_{k+r,n}^{\alpha,\beta,\gamma},
\]
where
\[
A_{r,j,k,n}^{\alpha,\beta} = \binom{r}{j} \frac{(k + \beta + 1)_j (n + k + \alpha + \beta + 2)_j}{(2k + \alpha + \beta + j + 1)_j (2k + \alpha + \beta + r + 2)_j}.
\]

\textbf{Proof.} By the first identity in (2.3), we obtain
\[
\partial_1 \text{proj}_{n}^{\alpha,\beta,\gamma} f = -\sum_{k=0}^{n} \hat{f}_{k,n}^{\alpha,\beta,\gamma} (a_{k,n}^{\alpha,\beta} J_{k,n-1}^{\alpha+1,\beta+1,\gamma+1} + J_{k,n-1}^{\alpha,\beta,\gamma+1})
\]
\[
= -\sum_{k=0}^{n-1} (\hat{f}_{k,n}^{\alpha,\beta,\gamma} + a_{k+1,n}^{\alpha,\beta} \hat{f}_{k+1,n}^{\alpha,\beta,\gamma}) J_{k,n-1}^{\alpha+1,\beta+1,\gamma+1}.
\]
Hence, by the first identity in (2.6), we conclude that
\[- \partial_r f_{k,n}^{\alpha+1,\beta,\gamma+1} = \hat{f}_{k,n}^{\alpha,\beta,\gamma} + \hat{a}_{k,n} f_{k-1,n}^{\alpha,\beta,\gamma},\]
which is the first identity in (2.7) with \(r > 1\). The above consideration with \(r = 1\), as \(A_{1,0,k,n} = 1\) and \(A_{1,1,k,n} = a_{k+1,n}\).

The case \(r > 1\) follows by induction. Indeed, assume that (2.7) holds up to the \(r\)th derivative. The above consideration with \(\alpha, \gamma\) replaced by \(\alpha + r, \gamma + r\), \(n\) replaced by \(n - r\), and \(f\) replaced by \(\partial_r^j f\) then shows that
\[
(-1)^{r+1} \partial_1^{a+r+1,\beta,\gamma+r+1} f_{k,n-r-1} = \sum_{j=0}^{r} A_{r,j,k,n} \hat{f}_{k+j,n}^{\alpha,\beta,\gamma} + \sum_{j=0}^{r} A_{r,j,k+1,n} \hat{f}_{k+j+1,n}^{\alpha,\beta,\gamma} + \left(\sum_{j=0}^{r} A_{r,j,k+1,n} \hat{f}_{k+j+1,n}^{\alpha,\beta,\gamma} \right) \]
where the second identity follows from the induction hypothesis. By reordering the second sum, we see that the first identity in (2.7) holds for the \((r+1)\)th derivative with coefficients given by
\[
A_{r+1,j,k,n}^{\alpha,\beta} = A_{r,j,k,n}^{\alpha,\beta} + \hat{a}_{k+1,n+r} A_{r,j-1,k+1,n}^{\alpha,\beta},
\]
from which the explicit formula for \(A_{r,j,k,n}^{\alpha,\beta}\) follows by induction and a straightforward computation.

The proof of the second identity in (2.7) is similar, and the third identity follows immediately from the third identity in (2.8) and the third identity in (2.7).

For \(n \geq k + 2r - 1\), the first two equations in (2.7) lead to the system of linear equations

\[
M_r(k,n) \begin{bmatrix}
\hat{f}_{k,n}^{\alpha,\beta,\gamma} \\
\hat{f}_{k+1,n}^{\alpha,\beta,\gamma} \\
\vdots \\
\hat{f}_{k+2r-1,n}^{\alpha,\beta,\gamma}
\end{bmatrix} = \begin{bmatrix}
\partial_1^{\alpha+r,\beta,\gamma+r} f_{k,n-1} \\
\partial_2^{\alpha+r,\beta,\gamma+r} f_{k+1,n-1} \\
\vdots \\
\partial_2^{\alpha+r,\beta,\gamma+r} f_{k+r,n-1}
\end{bmatrix},
\]
where \(M_r(k,n)\) is the \(2r \times 2r\) matrix defined by
\[
M_r(k,n) := \begin{pmatrix}
A_{r,j-i,k+i,n}^{\alpha,\beta} & \text{for } 0 \leq i < r \\
(-1)^{j-i+r} A_{r,j-i+r,k+i-r,n}^{\alpha,\beta} & \text{for } r \leq i < 2r - 1
\end{pmatrix}_{0 \leq j \leq 2r-1}.
\]
The matrix \(M_r(k,n)\) is invertible. In fact, its determinant has a closed form as seen in the following lemma.

Lemma 2.2. For \(r \in \mathbb{N}, n \geq k \geq 0\) and \(\alpha, \beta > -1\),
\[
\det M_r(k,n) = (-1)^{r^2} \prod_{j=1}^r \frac{(n+k+\alpha+\beta+j+1)_j}{(2k+\alpha+\beta+2r+j)_j}.
\]

Proof. The proof relies on Theorem 4.1 proved in Section 4. Here we show how it can be deduced from Theorem 4.1. We define
\[
A_{r,j}^{\alpha,\beta} = \binom{r}{j} \frac{(k+\beta+1)_j}{(2k+\alpha+\beta+j+1)_j (2k+\alpha+\beta+r+2)_j},
\]
which is $A_{r,j,k,n}^\alpha\beta$ without its factor that depends on n, and we define the matrix $M_r(k)$ by

$$M_r(k) := \begin{cases} A_{r,j-i,k+i}^\alpha\beta & \text{for } 0 \leq i < r \\ (-1)^{j-i+r}A_{r,j-r,k+r-i}^\alpha\beta & \text{for } r \leq i < 2r-1 \end{cases} \quad 0 \leq i, j \leq 2r-1.$$

Using the fact that $(n + k + i + \alpha + \beta + 2)_j = (n + k + \alpha + \beta + 2)_j$, it is not difficult to see that the factors containing n in the matrix $M_r(k,n)$ can be factored out. More precisely, define two diagonal matrices by

$$R_r(k,n) = \text{diag}\{(n + k + \alpha + \beta + 2)_j : 0 \leq j \leq 2r-1\}$$

and

$$L_r(k,n) = \begin{bmatrix} \Lambda_r & 0 \\ 0 & \Lambda_r \end{bmatrix}, \quad \Lambda_r = \text{diag}\left\{\frac{1}{(n + k + \alpha + \beta + 2)_i} : 0 \leq i \leq r-1\right\}.$$

Then it is easy to verify that

$$M_r(k) = L_r(k,n)M_r(k,n)R_r(k,n).$$

Evaluating the determinants of $L_r(k,n)$ and $R_r(k,n)$, we see that (2.9) reduces to

$$\det M_r(k) = (-1)^{r^2} \frac{1}{\prod_{j=1}^r (2k + \alpha + \beta + 2r + j)}.$$

This last identity is a special case of Theorem 4.1 as can be seen by setting $s_1 = k + \alpha + 1$, $s_2 = k + \beta + 1$, and $r_1 = r_2 = r$ in (4.1). \qed

Since the matrix $M_r(k,n)$ is invertible, the system of equations (2.8) can be solved to give an expression for $\hat{f}_{\alpha+\beta+r,\gamma+r} k,j,n$ as a sum of $\hat{f}_{\alpha+\beta+r,\gamma+r} k,j,n$ over j, which will be needed in the proof of our main result.

Lemma 2.3. Let $r \in \mathbb{N}$. For $n \geq k + 2r - 1$, we have

$$\hat{f}_{\alpha+\beta+r,\gamma+r} k,j,n = \sum_{\ell=1}^r B_{\ell,1}(k,n)\hat{f}_{\alpha+\beta+r,\gamma+r} k+\ell-1,n-r + \sum_{\ell=1}^r B_{\ell,2}(k,n)\hat{f}_{\alpha+\beta+r,\gamma+r} k+\ell-1,n-r,$$

where the constants $B_{\ell,i}(k,n)$ satisfy

$$|B_{\ell,i}(k,n)| \leq c \left(\frac{n}{k+1}\right)^{\ell-1}, \quad 0 \leq \ell \leq r-1, \quad i = 1, 2,$$

where c is a constant independent of n and k.

Proof. We only need to solve for the first element, $\hat{f}_{\alpha+\beta+r,\gamma+r} k,j,n$, in the linear system (2.8). For $1 \leq \ell \leq 2r$, let $M_{\ell,1}(k,n)$ be the matrix formed by eliminating the first column and the ℓ-th row from the matrix $M_r(k,n)$. By Cramer’s rule,

$$B_{\ell,i}(k,n) = \frac{\det M_{\ell,1}(k,n)}{\det M_r(k,n)},$$

where $1 \leq \ell \leq r$ for $i = 1$ and $r + 1 \leq \ell \leq 2r$ for $i = 2$. From the explicit expression for $M_r(k,n)$, it follows readily that

$$|\det M_r(k,n)| \sim \left(\frac{n}{k+1}\right)^{r^2}, \quad 0 \leq k \leq n.$$
where $A \sim B$ means that there exist positive constant c_1 and c_2 such that $c_1 \leq A/B \leq c_2$. We now estimate $|\det M^{i,1}_r(k, n)|$ from above.

We first assume $1 \leq \ell \leq r$. Let $A_{i,j}$ denote the (i, j)-entry of a matrix A. The entries of $M_r(k, n)$ and $M^{i,1}_r(k, n)$ are indexed by $i, j = 1, \ldots, 2r$ and $2r-1$, respectively. Then

$$M^{i,1}_r(k, n)_{i,j} = \begin{cases} M_r(k, n)_{i,j+1}, & 1 \leq i \leq \ell - 1; \\ M_r(k, n)_{i+1,j+1}, & \ell \leq i \leq 2r - 1. \end{cases}$$

From the explicit formula for $A^{\alpha,\beta}_{r,j-i,k+i,n}$, it follows that

$$M_r(k, n)_{i,j} = A^{\alpha,\beta}_{r,j-i,k+i-1,n} \lesssim \left(\frac{n}{k+1} \right)^{j-i}$$

for $1 \leq i \leq r$ and $i \leq j \leq i + r$, where \lesssim means that the inequality holds up to a constant independent of k and n, and

$$|M_r(k, n)_{i,j}| = A^{\beta,\alpha}_{r,j-i+1,k+i-1,n} \lesssim \left(\frac{n}{k+1} \right)^{j-i+r}$$

for $r + 1 \leq i \leq 2r$ and $i - r \leq j \leq i$. Consequently, we deduce that, for $i, j = 1, 2, \ldots, 2r - 1$, we have

$$|M^{i,1}_r(k, n)_{i,j}| \lesssim \begin{cases} \left(\frac{n}{k+1} \right)^{j+1-i}, & 1 \leq i \leq \ell - 1, \\ \left(\frac{n}{k+1} \right)^{j-i}, & \ell \leq i \leq r - 1, \\ \left(\frac{n}{k+1} \right)^{j-i+r}, & r \leq i \leq 2r - 1. \end{cases}$$

(2.11)

Now, by the definition of the determinant,

$$\det M^{i,1}_r(k, n) = \sum_{\sigma \in S_{2r-1}} \text{sign}(\sigma) \prod_{i=1}^{2r-1} M^{i,1}_r(k, n)_{i,\sigma(i)},$$

where S_{2r-1} is the set of all permutations of $\{1, 2, \ldots, 2r-1\}$. For each $\sigma \in S_{2r-1}$, we then obtain, using (2.11),

$$\left| \prod_{i=1}^{2r-1} M^{i,1}_r(k, n)_{i,\sigma(i)} \right| \lesssim \prod_{i=1}^{\ell-1} \left(\frac{n}{k+1} \right)^{\sigma(i)+1-i} \times \prod_{i=1}^{r-1} \left(\frac{n}{k+1} \right)^{\sigma(i)-i}$$

$$\times \prod_{i=r}^{2r-1} \left(\frac{n}{k+1} \right)^{\sigma(i)-i+r} = \left(\frac{n}{k+1} \right)^{r^2+\ell-1},$$

where the last equation follows from $\sum_{i=1}^{2r-1} (\sigma(i) - i) = 0$. Consequently, we conclude that

$$|\det M^{i,1}_r(k, n)| \lesssim \left(\frac{n}{k+1} \right)^{r^2+\ell-1}.$$

Together with (2.10), this establishes the desired estimate for $B_{\ell,1}(k, n)$.

The estimate for $B_{\ell,2}(k, n)$ can be proved in the same way. Indeed, if ℓ satisfies $r + 1 \leq \ell \leq 2r$, we may exchange the rows of $M^{i,1}_r(k, n)$ so that the last $r - 1$ rows become the first $r - 1$ rows, which does not change the value of the absolute value of the determinant. Furthermore, since our proof relies only on absolute values of the entries, the signs $(-1)^{j-i+r}$ in the entries of $M_r(k, n)$ can be ignored. \square
3. Best Polynomial Approximation in Weighted Space

For \(\alpha, \beta, \gamma > -1 \), let \(W^2_2(\omega_{\alpha, \beta, \gamma}) \) denote the Sobolev space defined by

\[
W^2_2(\omega_{\alpha, \beta, \gamma}) = \{ f \in L^2(\omega_{\alpha, \beta, \gamma}) : \phi_i^* \partial_i^2 f \in L^2(\omega_{\alpha, \beta, \gamma}), \quad i = 1, 2, 3 \},
\]

where the \(\phi_i^* \)'s are defined in (1.9). Since \(\phi_i^* g \in L^2(\omega_{\alpha, \beta, \gamma}) \) is equivalent with the assertion that \(g \in L^2(\omega_{\alpha+r, \beta, \gamma+r}) \) for \(i = 1 \), \(g \in L^2(\omega_{\alpha+r, \beta+r, \gamma}) \) for \(i = 2 \), and \(g \in L^2(\omega_{\alpha+r, \beta+r, \gamma}) \) for \(i = 3 \), it follows from (2.3) that \(J_{k,n}^{\alpha, \beta, \gamma} \in W^2_2(\omega_{\alpha, \beta, \gamma}) \). Our main result is the following theorem.

Theorem 3.1. Let \(\alpha, \beta, \gamma > -1 \), and let \(r \) be a positive integer. For \(f \in W^2_2(\omega_{\alpha, \beta, \gamma}) \), we have

\[
E_n(f)_{\alpha, \beta, \gamma} \leq \frac{c}{n^r} E_{n-r}(\partial^r f)_{\alpha+r, \beta, \gamma+r} + E_{n-r}(\partial^r f)_{\alpha, \beta+r, \gamma+r} + E_{n-r}(\partial^r f)_{\alpha+r, \beta+r, \gamma}
\]

for \(n \geq 3r \), where \(c \) is a constant independent of \(n \) and \(f \).

Proof. By Parseval’s identity,

\[
|E_n(f)_{\alpha, \beta, \gamma}|^2 = \|f - S^0_n\|_{\alpha, \beta, \gamma}^2 = \sum_{m=n+1}^{\infty} \sum_{k=0}^{m} |\tilde{f}_{k,m}^{\alpha, \beta, \gamma}|^2 h_{k,m}^{\alpha, \beta, \gamma}.
\]

In order to bound this series, we consider two cases. First of all, for \(m/3 \leq k \leq m \), the third identity in (2.7) shows that, for \(m \geq r \), we have

\[
|\tilde{f}_{k,m}^{\alpha, \beta, \gamma}|^2 h_{k,m}^{\alpha, \beta, \gamma} \leq \sum_{m=n+1}^{\infty} \sum_{k=0}^{m} |\partial^r \tilde{f}_{k,m}^{\alpha+r, \beta+r, \gamma+r}|^2 h_{k-r,m-r}^{\alpha+r, \beta+r, \gamma+r},
\]

since, by the explicit formula for \(h_{k,m}^{\alpha, \beta, \gamma} \), it is easy to see that

\[
h_{k-r,m-r}^{\alpha+r, \beta+r, \gamma+r} = (k + \alpha + \beta + 1) (k - r) h_{k,m}^{\alpha, \beta, \gamma} \sim k^{2r} h_{k,m}^{\alpha, \beta, \gamma}.
\]

Consequently, it follows that

\[
\sum_{m=n+1}^{\infty} \sum_{k=0}^{m} |\tilde{f}_{k,m}^{\alpha, \beta, \gamma}|^2 h_{k,m}^{\alpha, \beta, \gamma} \lesssim \sum_{m=n+1}^{\infty} m^{-2r} \sum_{k=0}^{m} |\partial^r \tilde{f}_{k,m}^{\alpha+r, \beta+r, \gamma+r}|^2 h_{k-r,m-r}^{\alpha+r, \beta+r, \gamma+r},
\]

\[
\lesssim \sum_{m=n+1}^{\infty} m^{-2r} \sum_{k=0}^{m} \sum_{n=m+1}^{\infty} \sum_{k=0}^{m} |\partial^r \tilde{f}_{k,m}^{\alpha+r, \beta+r, \gamma+r}|^2 h_{k,m}^{\alpha+r, \beta+r, \gamma+r},
\]

\[
\lesssim n^{-2r} |E_{n-r}(\partial^r f)_{\alpha+r, \beta+r, \gamma+r}|^2,
\]

where the last step follows again by Parseval’s identity. For the case \(0 \leq k \leq m/3 \), we use the elementary estimates

\[
h_{k,m}^{\alpha, \beta, \gamma} \sim \left(\frac{k+1}{m} \right)^2 h_{k+1,m-1}^{\alpha, \beta, \gamma} \quad \text{and} \quad h_{k,m}^{\alpha, \beta, \gamma} \sim \frac{1}{(m+1-k)m} h_{k+1,m-1}^{\alpha+1, \beta, \gamma+1},
\]

derived from the explicit formula for \(h_{k,m}^{\alpha, \beta, \gamma} \), and use them iteratively to obtain

\[
h_{k,m}^{\alpha, \beta, \gamma} \lesssim \left(\frac{k+1}{m} \right)^{2r-2} \frac{1}{(m+1-k)^r} h_{k+r+1,m-r}^{\alpha+r, \beta, \gamma+r} \leq \left(\frac{k+1}{m} \right)^{2r-2} \frac{1}{m^{2r}} h_{k+r, \beta, \gamma+r}^{\alpha+r, \beta, \gamma+r},
\]

The same estimate holds if the last term is \(h_{k,m}^{\alpha, \beta, \gamma} \). We now use Lemma 2.3 whose assumption is satisfied since \(m \geq n+1 \geq 3r+1 \) implies \(m \geq m/3 + 2r - 1 \), to obtain

\[
|\tilde{f}_{k,m}^{\alpha, \beta, \gamma}|^2 \lesssim \left(\frac{m}{k+1} \right)^{2r-2} \sum_{\ell=1}^{r} \left(|\partial^\ell f_{k+\ell-1,n-r}^{\alpha+r, \beta, \gamma+r}|^2 + |\partial^\ell f_{k+\ell-1,n-r}^{\alpha+r, \beta, \gamma+r}|^2 \right).
\]
Putting these estimates together, that
\[
|\hat{f}_{k,m}|^2 \lesssim \left(\frac{m}{k+1} \right)^{2 \ell-2} \sum_{\ell=1}^{r} \left(\left| \frac{\partial_k^r f_{k+\ell-1,m-r}}{h_{k+\ell-1,m-r}} \right|^2 + \left| \frac{\partial_k^{r+2} f_{k+\ell-1,m-r}}{h_{k+\ell-1,m-r}} \right|^2 \right).
\]

Combining these estimates, we see that
\[
\left| \hat{f}_{k,m} \right|^2 h_{k,m} \lesssim \frac{1}{m^{2r}} \sum_{\ell=1}^{r} \left(\sum_{m-n+1}^{m} \left| \frac{\partial_k^r f_{k,m}}{h_{k,m}} \right|^2 \right) + \sum_{m-n+1}^{m} \left| \frac{\partial_k^{r+2} f_{k,m}}{h_{k,m}} \right|^2 \lesssim n^{-2r} \left(|E_{n-r} (\partial_t^r f)|^2 + |E_{n-r} (\partial_t^{r+2} f)|^2 \right).
\]

The proof is finally completed by putting the estimates in the two cases together. □

Corollary 3.2. Let \(\alpha, \beta, \gamma > -1 \), and let \(r \) be a positive integer. For \(f \in W^2_r (\varpi_{\alpha, \beta, \gamma}) \), we have
\[
E_n (f)_{\alpha, \beta, \gamma} \leq \frac{c}{n^r} \sum_{i=1}^{3} \| \phi_i^r \partial_t^r f \|_{L^2(\varpi_{\alpha, \beta, \gamma})}.
\]

Proof. By its definition, \(E_n (f)_{\alpha, \beta, \gamma} \leq \| f \|_{L^2(\varpi_{\alpha, \beta, \gamma})} \) if the approximating polynomial is chosen to be zero. Application of this estimate on the right–hand side of the estimate in Theorem [3.3] yields the above estimate, since \(\partial_t^r f \in L^2(\varpi_{\alpha,r,\beta,\gamma+\gamma}) \) is equivalent with \(\phi_i^r \partial_t^r f \in L^2(\varpi_{\alpha,\beta,\gamma}) \), and a similar equivalence works for \(\partial_k^{r+2} f \) and \(\partial_t^r f \). □

As an immediate corollary of the above estimate, we also obtain a characterization of the best approximation by polynomials by the K-functional \(K^* (f; t)_{L^2(\varpi_{\alpha, \beta, \gamma})} \), defined in (1.3).

Theorem 3.3. Let \(\alpha, \beta, \gamma > -1 \). For \(r \in \mathbb{N} \) and \(f \in L^2(\varpi_{\alpha, \beta, \gamma}) \), we have
\[
E_n (f)_{\alpha, \beta, \gamma} \leq c K^* (f; n^{-1})_{L^2(\varpi_{\alpha, \beta, \gamma})},
\]

and, conversely,
\[
K^* (f; n^{-1})_{L^2(\varpi_{\alpha, \beta, \gamma})} \leq c n^{-r} \sum_{k=0}^{n} (k+1)^{r-1} E_k (f)_{\alpha, \beta, \gamma}.
\]

Proof. For simplicity, let \(\| \cdot \| = \| \cdot \|_{L^2(\varpi_{\alpha, \beta, \gamma})} \) in this proof. The partial sum \(S_n^{\alpha, \beta, \gamma} f \) defines a linear operator that satisfies \(\| S_n^{\alpha, \beta, \gamma} f \| \leq \| f \| \) by Parseval’s identity. Hence, for \(g \in W^2_r (\varpi_{\alpha, \beta, \gamma}) \), the triangle inequality gives
\[
\| f - S_n^{\alpha, \beta, \gamma} f \| \leq \| f - g \| + \| S_n^{\alpha, \beta, \gamma} f - S_n^{\alpha, \beta, \gamma} g \| + \| S_n^{\alpha, \beta, \gamma} g - g \| \\
\leq 2 \| f - g \| + \frac{c}{n^r} \sum_{i=1}^{3} \| \phi_i^r \partial_t^r g \| \leq c_1 \left(\| f - g \| + \frac{1}{n^r} \sum_{i=1}^{3} \| \phi_i^r \partial_t^r g \| \right),
\]
where \(c_1 = \max\{2, c\} \) is independent of \(g \) and \(n \). The direct estimate (3.4) follows by taking the infimum over \(g \).

The inverse estimate (3.5) can be derived from the first inequality in (3.6) below and the inverse estimate of the \(K \)-functional \(K_r(f; t)_{L^2(\varpi_{\alpha,\beta,\gamma})} \) established in \cite{Krattenthaler-book}. \qed

Recall that the \(K \)-functional \(K_r(f; t)_{L^2(\varpi_{\alpha,\beta,\gamma})} \) in (1.3) is defined in terms of the operator \((-D_{\alpha,\beta,\gamma})^{r/2}\) where \(D_{\alpha,\beta,\gamma} \) is the second order differential operator (1.4). For an integer \(r \), the operator \((-D_{\alpha,\beta,\gamma})^{r/2}\) is defined via its orthogonal expansion (see (2.1))

\[
(-D_{\alpha,\beta,\gamma})^{r/2} g = \sum_{m=1}^{\infty} \lambda_m^r \sum_{k=0}^{m} \hat{g}_{k,m}^{\alpha,\beta,\gamma} \hat{f}_{k,m}^{\alpha,\beta,\gamma},
\]

where \(\lambda_m = -m(m + \alpha + \beta + 1) \). Notice that the sum starts with \(m = 1 \) since \(\lambda_0 = 0 \). The \(K \)-functional \(K_r(f; t)_{L^p(\varpi_{\alpha,\beta,\gamma})} \) characterizes the best approximation by polynomials for all \(p \geq 1 \), and, more generally, on the \(d \)-dimensional simplex \cite{Krattenthaler-book}. These two \(K \)-functionals can be compared as follows.

Theorem 3.4. Let \(r \in \mathbb{N} \). For \(f \in L^2(\varpi_{\alpha,\beta,\gamma}) \), we have

\[
(3.6) \quad c_1 K_r^*(f; t)_{L^2(\varpi_{\alpha,\beta,\gamma})} \leq K_r(f; t) \leq c_2 \left(K_r^*(f; t)_{L^2(\varpi_{\alpha,\beta,\gamma})} + t^r \| f \|_{L^2(\varpi_{\alpha,\beta,\gamma})} \right),
\]

where \(c_1 \) and \(c_2 \) are positive constants independent of \(f \).

Proof. We first prove the inequality on the left, by establishing the inequality

\[
(3.7) \quad \| \phi_i^r \|_{\alpha,\beta,\gamma} \leq c \left\| (-D_{\alpha,\beta,\gamma})^{r/2} g \right\|_{\alpha,\beta,\gamma}, \quad i = 1, 2, 3.
\]

Once (3.6) is established, we see that we could restrict ourselves to \(g \in L^2(\varpi_{\alpha,\beta,\gamma}) \). By Parseval’s identity, we have

\[
\left\| (-D_{\alpha,\beta,\gamma})^{r/2} g \right\|_{\alpha,\beta,\gamma}^2 = \sum_{m=1}^{\infty} \left| \lambda_m \right|^r \sum_{k=0}^{m} \left| \hat{g}_{k,m}^{\alpha,\beta,\gamma} \right|^2 \left| h_{k,m}^{\alpha,\beta,\gamma} \right|^2.
\]

For \(i = 3 \), we need to examine the proof of the relations in (3.6), which implies that

\[
\left\| \phi_3^r \|_{\alpha,\beta,\gamma} \right\|^2 = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \left| \partial_3 g_{k,m} \right|^2 \left| h_{k,m}^{\alpha,\beta,\gamma} \right|^2 \left| h_{k,m}^{\alpha,\beta,\gamma} \right|^2 \\
\sim \sum_{m=0}^{\infty} \sum_{k=0}^{m} k^{2m} \left| \frac{\partial_3 g_{k,m}^{\alpha,\beta,\gamma}} {h_{k,m}^{\alpha,\beta,\gamma}} \right|^2 \left| h_{k,m}^{\alpha,\beta,\gamma} \right|^2 \\
\lesssim \sum_{m=r}^{\infty} m^{2r} \sum_{k=0}^{m} \left| \frac{\partial_3 g_{k,m}^{\alpha,\beta,\gamma}} {h_{k,m}^{\alpha,\beta,\gamma}} \right|^2 \left| h_{k,m}^{\alpha,\beta,\gamma} \right|^2 \left\| (-D_{\alpha,\beta,\gamma})^{r/2} g \right\|_{\alpha,\beta,\gamma}^2,
\]

since \(|\lambda_m| \sim m^2 \). This proves (3.7) for \(i = 3 \). For \(i = 1, 2 \), we need the estimates

\[
A_{r,j,k,m}^{\alpha,\beta,\gamma} \sim \left(\frac{m}{k+1} \right)^j, \quad h_{k,m-r}^{\alpha,\beta,\gamma+r} \sim h_{k,m-r}^{\alpha,\beta,\gamma+r} \sim \left(\frac{k+1}{m} \right)^{2j} m^{2r} h_{k+j,m}^{\alpha,\beta,\gamma}.
\]
while the first one is immediate, the second follows from iterations of relations in (3.2). These two estimates imply, if one also uses the first identity in (2.7), that
\[
\|\phi^r_i \partial^r_i g\|_{\alpha,\beta,\gamma}^2 = \sum_{m=0}^\infty \sum_{k=0}^m \left| \partial^r_i g_{k,m} \right|^2 h_{k,m}^{\alpha+r,\beta,\gamma+r} \\
= \sum_{m=0}^\infty \sum_{k=0}^m \sum_{j=0}^r A_{r,j,k,m+r}^\alpha \partial^r g_{k+j,m+r}^{\alpha,\beta,\gamma} \\
\lesssim \sum_{m=r}^\infty \sum_{k=0}^{m^2 r} \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma+r} \lesssim \|(-D_{\alpha,\beta,\gamma})^{r/2} g\|_{\alpha,\beta,\gamma}^2.
\]
This establishes (3.4) for \(i = 1 \). The proof for the the case \(i = 2 \) is similar.

We now prove the inequality on the right in (3.6). First we prove the inequality
\[
\|(-D_{\alpha,\beta,\gamma})^{r/2} g\|_{\alpha,\beta,\gamma} \leq c \left(\sum_{i=1}^3 \|\phi^r_i \partial^r_i g\|_{\alpha,\beta,\gamma} + \|g\|_{\alpha,\beta,\gamma} \right).
\]
The proof is similar to that of Theorem 3.1. We need to divide the sum into two parts,
\[
\|(-D_{\alpha,\beta,\gamma})^{r/2} g\|_{\alpha,\beta,\gamma}^2 = \sum_{m=1}^\infty |\lambda_m|^r \sum_{k=\lfloor \frac{m}{3} \rfloor +1}^m \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma} \\
+ \sum_{m=1}^\infty |\lambda_m|^r \sum_{k=0}^{r/3} \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma}.
\]
For the first part, we use the estimate in (3.1), which holds for \(m \geq r \), and it leads to
\[
\sum_{m=1}^\infty |\lambda_m|^r \sum_{k=\lfloor \frac{m}{3} \rfloor +1}^m \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma} \lesssim \sum_{m=1}^{r-1} |\lambda_m|^r \sum_{k=\lfloor \frac{m}{3} \rfloor +1}^m \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma} + \|\phi^r_1 \partial^r_1 g\|_{\alpha,\beta,\gamma} \\
\lesssim \|g\|_{\alpha,\beta,\gamma} + \|\phi^r_1 \partial^r_1 g\|_{\alpha,\beta,\gamma}.
\]
For the second part, we also follow the proof of Theorem 3.1 and notice that the estimate (3.3) holds for \(m \geq 3r - 1 \), so that a similar split as in the case of \(i = 3 \) appears, and we can conclude that
\[
\sum_{m=1}^\infty |\lambda_m|^r \sum_{k=0}^{r/3} \left| g_{k,m}^{\alpha,\beta,\gamma} \right|^2 h_{k,m}^{\alpha,\beta,\gamma} \lesssim \|g\|_{\alpha,\beta,\gamma} + \|\phi^r_1 \partial^r_1 g\|_{\alpha,\beta,\gamma} + \|\phi^r_2 \partial^r_2 g\|_{\alpha,\beta,\gamma}.
\]
This completes the proof of (3.6). By the definition of \(K \)-functional, and by the use of the triangle inequality \(\|g\|_{\alpha,\beta,\gamma} \leq \|f\|_{\alpha,\beta,\gamma} + \|f - g\|_{\alpha,\beta,\gamma} \), it is easy to see that (3.6) implies (3.4).

For \(r = 2 \), the above theorem has been established in (3.1) for \(1 < p < \infty \) and, more generally, for the \(d \)-dimensional simplex.

Remark 3.1. Although the inverse estimate (3.3) follows from the inverse estimate that holds for \(K_{r}(f,t)_{L^2(\mathbb{R}^d)} \), because of (3.1), the direct estimate (3.2) cannot be deduced from the direct estimate for \(K_{r}(f,t)_{L^2(\mathbb{R}^d)} \) because of the extra term \(t^r \|f\|_{\alpha,\beta,\gamma} \) in (3.6). Our proof indicates that the term \(t^r \|f\|_{\alpha,\beta,\gamma} \) in (3.6) is necessary.
The standard proof of the inverse estimate (3.5) (see, for example, [5]) shows that the estimate follows as a consequence of the Bernstein inequality. In our case, the proof follows from the inequalities in the following theorem.

Theorem 3.5. Let \(r \in \mathbb{N} \) and \(\alpha, \beta, \gamma > -1 \). Then, for every \(P_n \in \Pi_n^2 \), we have

\[
\|\phi_i^r \partial_i^r P_n\|_{\alpha, \beta, \gamma} \leq c n^r \|P_n\|_{\alpha, \beta, \gamma}, \quad 1 \leq i \leq 3,
\]

where \(c \) is a constant independent of \(n \).

It is easy to see that these inequalities can be proved by following the proof of (3.7).

4. A family of Determinants

In this section we prove a closed form formula for a family of determinants, which includes the determinant that we need in Lemma 2.2 in a special case.

Theorem 4.1. Define

\[
f(s_1, s_2; r, i, j) := \binom{r}{j-i} \frac{(s_1 + i)_j}{(s_1 + s_2 + i + j - 1)_j (s_1 + s_2 + 2i)_j}
\]

and

\[
M(r_1, r_2) := \left((-1)^{j-i-r_2} f(s_2, s_1, r_1, i, j) \quad \text{for } 0 \leq i < r_2 \right) \left(-1 \right) \left(r_1 \right)^{r_1} \prod_{j=1}^{r_1} \frac{1}{(s_1 + s_2 + r_1 + j - 2)r_2}.
\]

Then the determinant of \(M(r_1, r_2) \) equals

\[
(4.1) \quad (-1)^{r_1 r_2} \prod_{j=1}^{r_1} \frac{1}{(s_1 + s_2 + r_1 + r_2 + j - 2)r_2}.
\]

Proof. The proof is based on the two lemmas given below. If we write \(M \) for \(M(r_1, r_2) \) for short, the idea is to do a Laplace expansion of \(\det M \) with respect to the first \(r_2 \) rows,

\[
(4.2) \quad \det M = \sum_{0 \leq k_0 < \ldots < k_{r_2-1} \leq r_1 + r_2 - 1} (-1)^{k_0 + \ldots + k_{r_2-1} - 1} \det M^{k_0, \ldots, k_{r_2-1}}_{r_2, \ldots, r_1 + r_2 - 1},
\]

where \(M^{a_1, \ldots, a_r}_{b_1, \ldots, b_r} \) denotes the submatrix of \(M \) consisting of rows \(a_1, \ldots, a_r \) and columns \(b_1, \ldots, b_r \), and \(\{l_0, \ldots, l_{r_1-1}\} \) is the complement of \(\{k_0, \ldots, k_{r_2-1}\} \) in \(\{1, 2, \ldots, r_1 + r_2 - 1\} \). It turns out that both determinants on the right-hand side of (4.2) can be evaluated by means of Lemma 4.2. Thus, we obtain a multiple sum for \(\det M(r_1, r_2) \). This sum can then be evaluated by Lemma 4.3 and (considerable) simplification leads to the claimed result on the right-hand side of (4.1).
So, if we use Lemma 4.2 on the right-hand side of (4.2), we obtain

\[
(4.3) \sum_{0 \leq k_0 < \cdots < k_{r_2 - 1} \leq r_1 + r_2 - 1} (-1)^{(\frac{r_2 - 1}{2}) + \sum_{i=0}^{r_2 - 1} k_i} \prod_{0 \leq i < j \leq r_2 - 1} (k_j - k_i)(k_i + k_j + s_1 + s_2 - 1)
\]

\[
\cdot \prod_{i=0}^{r_2 - 1} \frac{(s_1)_{k_i} (s_1 + s_2 + r_1 + 2i - 2)! (s_1 + s_2 + r_1 + 2i - 1)!}{(s_1)_{k_i} (s_1 + s_2 + r_1 + i - 2)! (s_1 + s_2 + 2k_i - 2)! k_i! (r_1 + i)! (s_1 + s_2 + k_i - 2)! (r_1 + r_2 - k_i - 1)! (s_1 + s_2 + r_1 + r_2 + k_i - 2)!}
\]

\[
\cdot (-1)^{(\frac{r_2 - 1}{2}) + \sum_{i=0}^{r_2 - 1} l_i} \prod_{0 \leq i < j \leq r_1 - 1} (l_j - l_i)(l_i + l_j + s_1 + s_2 - 1)
\]

where the \(l_i\)'s have the same meaning as before. Clearly, we have

\[
\sum_{i=0}^{r_1 - 1} l_i = \left(\binom{r_1 + r_2}{2} - \sum_{i=0}^{r_2 - 1} k_i \right)
\]

and

\[
\left(\binom{r_1 + r_2}{2} - \binom{r_1}{2} - \binom{r_2}{2} \right) = r_1 r_2.
\]

Furthermore, we use the inclusion/exclusion formulae

\[
\prod_{0 \leq i < j \leq r_1 - 1} (l_j - l_i) = \prod_{0 \leq i < j \leq r_2 - 1} (j - i) \prod_{0 \leq i < j \leq r_2 - 1} (k_j - k_i) \prod_{j=0}^{r_2 - 1} \prod_{i=0}^{r_2 - 1} \frac{(j - i)!}{(j - i)!} \prod_{j=0}^{r_1 + r_2 - 1} \frac{(j - i)!}{(j - i)!} \prod_{j=0}^{r_2 - 1} (k_j - k_i)
\]

\[
= \prod_{j=0}^{r_2 - 1} (k_j - k_i) \prod_{j=0}^{r_2 - 1} (l_i) \prod_{i=0}^{r_2 - 1} (r_1 + r_2 - k_i - 1)!
\]

and

\[
\prod_{0 \leq i < j \leq r_1 - 1} (l_i + l_j + s_1 + s_2 - 1)
\]

\[
= \prod_{0 \leq i < j \leq r_1 + r_2 - 1} (i + j + s_1 + s_2 - 1) \prod_{0 \leq i < j \leq r_2 - 1} (k_i + k_j + s_1 + s_2 - 1)
\]

\[
= \prod_{j=0}^{r_2 - 1} (k_j + s_1 + s_2 - 1) \prod_{j=0}^{r_2 - 1} (2k_i + s_1 + s_2) \prod_{j=0}^{r_2 - 1} (2k_i + s_1 + s_2) \prod_{j=0}^{r_1 + r_2 - 1} (k_j + s_1 + s_2 - 1)\]
If we substitute all this in [13], then, upon further manipulation, we arrive at
\[
(-1)^{r_1r_2} \prod_{i=0}^{r_1+1} \frac{(s_2)_i (s_1 + s_2 + i - 2)! (i + s_1 + s_2 - 1)_i}{(s_1 + s_2 + 2i - 2)! (r_1 + r_2 - i - 1)! (s_1 + s_2 + r_1 + r_2 + i - 2)!} \\
\times \prod_{i=0}^{r_2-1} \frac{(s_1 + s_2 + r_1 + 2i - 2)! (s_1 + s_2 + r_1 + 2i - 1)! (r_1 + i)!}{(s_1)_i (s_1 + s_2 + r_1 + i - 2)! (r_1 + r_2 - 1)! (s_1 + s_2 + r_1 + r_2 + i - 2)!} \\
\times \prod_{i=0}^{r_1-1} \frac{(s_1 + s_2 + r_2 + 2i - 2)! (s_1 + s_2 + r_2 + 2i - 1)! (r_2 + i)!}{(s_2)_i (s_1 + s_2 + r_2 + i - 2)!} \\
\times \sum_{0 \leq k_0 < \cdots < k_{r_2-1} \leq r_1 + r_2 - 1} (-1)^{\sum_{i=0}^{r_2-1} k_i} \prod_{0 \leq i < j \leq r_2-1} \frac{(k_j - k_i)^2 (k_1 + k_j + s_1 + s_2 - 1)^2}{(s_1 + s_2 - 1) (s_1 + s_2 + 1) (s_1 + s_2 + r_1 + r_2 - 1) k_i! (s_2)_i (s_1 + s_2 + r_1 + r_2 - 1) k_i!}.
\]
Now we apply Lemma [14] with \(r = r_2, a = s_1 + s_2 - 1, b = s_1, \) and \(m = r_1 + r_2 - 1. \) The result then finally condenses to the right-hand side of (11).

Lemma 4.2. For any positive integer \(r_2, \) we have
\[
\text{det}_{0 \leq i, j \leq r_2-1} \left(\frac{r_1}{k_j - k_i} \frac{(s_1 + i)_{k_j-i}}{(s_1 + s_2 + i + k_j - 1)_{k_j-i} (s_1 + s_2 + r_1 + 2i)_{k_j-i}} \right) \\
= \prod_{0 \leq i < j \leq r_2-1} (k_j - k_i)(s_1 + s_2 + r_1 + s_2 + 2i - 1) \\
\times \prod_{i=0}^{r_2-1} \frac{(s_1)_i (s_1 + s_2 + r_1 + 2i - 2)! (s_1 + s_2 + r_1 + 2i - 1)!}{(s_1)_i (s_1 + s_2 + r_1 + i - 2)! (s_1 + s_2 + 2k_i - 2)! k_i!} \frac{(r_1 + i)! (s_1 + s_2 + k_i - 2)!}{(r_1 + r_2 - k_i - 1)! (s_1 + s_2 + r_1 + r_2 + k_i - 2)!}.
\]

Proof. We take as many factors out of rows or columns such that inside the determinant there remains a polynomial. More precisely, our determinant equals
\[
\prod_{i=0}^{r_2-1} \frac{(s_1)_i (s_1 + s_2 + r_1 + 2i - 1)! r_1! (s_1 + s_2 + k_i - 2)!}{(s_1)_i (s_1 + s_2 + 2k_i - 2)! k_i! (r_1 + r_2 - k_i - 1)! (s_1 + s_2 + r_1 + r_2 + k_i - 2)!} \\
\times \text{det}_{0 \leq i, j \leq r_2-1} ((r_1 - k_j + i + 1)_{r_2-1-i} - 1) (s_1 + s_2 + r_1 + i + k_j)_{r_2-i-1} \\
\quad \cdot (k_j - i + 1)_i (s_1 + s_2 + k_j - 1)_i.
\]
We claim that the determinant in the last line equals
\[
\prod_{0 \leq i < j \leq r_2-1} (k_j - k_i)(k_i + k_j + S - 1) \prod_{i=0}^{r_2-1} (r_1 + 1)_i (s_1 + s_2 + r_1 + i - 1)_i.
\]
This is seen by specializing \(n = r_2, X = k_j, A_i = -(r_1 + i - 1), C = -(s_1 + s_2 - 1), \) and
\[
p_i(X) = (X - i + 1)_i (s_1 + s_2 + X - 1)_i
\]
in [7] Lemma 7. \qed
Lemma 4.3. For all non-negative integers m, we have

$$
\sum_{0 \leq k_1 < \cdots < k_r \leq m} (-1)^{\sum_{i=1}^{r} k_i} \prod_{1 \leq i < j \leq r} (k_j - k_i)^2 (k_i + k_j + a)^2 \\
\cdot \prod_{i=1}^{r} \frac{(a + 2k_i)}{a} \frac{(a)_k, (b)_k, (-m)_k}{k_i!(a + 1 - b)_k, (a + 1 + m)_k} = \prod_{i=1}^{r} \frac{(i - 1)! (b)_{i-1} m! (a + 1)_m}{(m + 1 - i)! (a + 1 - b)_{m+1-i}}.
$$

Proof. This is a special case of a multi-dimensional $10V_9$ summation formula conjectured by Warnaar (let $x = q$ in [13 Cor. 6.2]), which has subsequently been proven by Rosengren [9] (and in more generality by Rains [8 Theorem 4.9] and, independently, by Coskun and Gustafson [2]). Using the statement of the identity in [10 Theorem 3.1], we have to first specialize $p = 0$, then let $c, d \to \infty$, and finally replace a by q^a and b by q^b and let $q \to 1$. \hfill \Box

References

[1] H. Berens and Y. Xu, K-moduli, moduli of smoothness, and Bernstein polynomials on simplices, *Indag. Math. (N.S.)* 2 (1991), 411–421.
[2] H. Coskun and R. A. Gustafson, Well-poised Macdonald functions W_λ and Jackson coefficients ω_λ, in: *Proceedings of the workshop on Jack, Hall–Littlewood and Macdonald polynomials*, V. B. Kuznetsov and S. Sahi (eds.), *Contemp. Math.*, vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 127–155.
[3] F. Dai, H. Huang and K. Wang, Approximation by the Bernstein–Durrmeyer operator on a simplex, *Constr. Approx.* 31 (2010), 289–308.
[4] Z. Ditzian and V. Totik, *Moduli of smoothness*, Springer-Verlag, Berlin, 1987.
[5] R. DeVore and G. G. Lorentz, *Constructive Approximation*, Springer-Verlag, Berlin, 1993
[6] C. F. Dunkl and Y. Xu, *Orthogonal polynomials of several variables*, 2nd ed. *Encyclopedia of Mathematics and its Applications* 155, Cambridge University Press, 2014.
[7] C. Krattenthaler, Advanced determinant calculus, *Séminaire Lotharingien Combin.* 42 (1999) (“The Andrews Festschrift”), Article B42q, 67 pp.
[8] E. Rains, BC_n-symmetric abelian functions, *Duke Math. J.* 135 (2006), 99–180.
[9] H. Rosengren, A proof of a multivariable elliptic summation formula conjectured by Warnaar, *Contemp. Math.* 291 (2001), 193–202.
[10] M. J. Schlosser, Elliptic enumeration of nonintersecting lattice paths, *J. Combin. Theory Ser. A* 114 (2007), 505–521.
[11] G. Szegő, *Orthogonal polynomials*, 4th edition, Amer. Math. Soc., Providence, RI, 1975.
[12] V. Totik, Polynomial approximation on polytopes, *Mem. Amer. Math. Soc.* 232 (2014), no. 1091, vi+112 pp.
[13] S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, *Constr. Approx.* 18 (2002), 479–502.
[14] Y. Xu, Weighted approximation of functions on the unit sphere, *Constr. Approx.*, 21 (2005), 1–28.
[15] Y. Xu, Approximation and orthogonality in Sobolev spaces on a triangle, *Constr. Approx.* 46 (2017), 349–434.
