Remarks on the *Bačinella* Radoičić, 1959 (type species *B. irregularis*) and its representatives

**FELIX SCHLAGINTWEIT** & **TELM BOVER-ARNAL**

with 8 Figures and 1 Table

*Lerchenauerstraße 167, D-80935 München, Germany

**Département de Géosciences, Université d’Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland.

e-mail <ef.schlagintweit@t-online.de>, <telm.boverarnal@unifr.ch>

Abstract: *Bačinella irregularis* was described by RADOIČIĆ (1959) as an alga incertae sedis. Based on material from the Lower Aptian of the western Maestrat Basin (Spain), the genus *Bačinella* with its various species is revised; an emended diagnosis is given as well as a detailed description. *Bačinella* is interpreted as an organism excavating complex branching galleries into biogenic hard substrates, e.g., the crusts of *Lithocodium aggregatum* ELLIOTT (such as in the holotype specimen of *B. irregularis*). Its morphology and boring pattern is comparable to that of modern filamentous-septate euendolithic green algae of the class Ulvophyceae. These forms, however, are microfilamentous (microborer) whereas *Bačinella* has larger filament diameter. Nearly all of the “*Bačinella irregularis*” occurrences reported in the literature do not belong to this taxon, but represent irregular vesicular crusts (“bacinellid” fabrics = *Bačinella irregularis* auct. non) that display some resemblances with modern microbial mats.

**Keywords:** Calcareous algae Chlorophyceae Taxonomy Bioerosion Lower Cretaceous Spain

**Zusammenfassung:** *Bačinella irregularis* wurde von RADOIČIĆ (1959) als eine Alge incertae sedis beschrieben. Basierend auf Material aus dem Unter-Aptium des westlichen Maestrat-
Beckens (Spanien) wird die Gattung Bačinella mit ihren verschiedenen Arten revidiert sowie eine emendierte Diagnose wie auch detaillierte Beschreibung gegeben. Bačinella wird als Organismus der komplexe, sich verzweigende Bohrgänge in biogene Hartsubstrate, zum Beispiel Krusten von Lithocodium aggregatum ELLIOTT (wie der Holotyp von B. irregularis), anlegt. Die Morphologie und das Bohrmuster ist vergleichbar mit modernen filamentös-septaten euendolithischen Grünalgen der Klasse Ulvophyceae. Beinahe alle Vorkommen von B. irregularis in der Literatur gehören nicht zu diesem Taxon sondern stellen irregulär vesiculäre Krusten („bacinellide Gefüge“ = Bačinella irregularis auct. non) dar, die gewisse Ähnlichkeiten zu modernen mikrobiellen Matten haben.

**Introduction**

*Lithocodium aggregatum* ELLIOTT (1956) and *Bačinella irregularis* RADOIĆIĆ (1959) are two enigmatic taxa of the Late Jurassic to Early Cretaceous epeiric sedimentary record, which have aroused more than 50 years of controversy concerning their taxonomic position, possible relationship and synonymies. Several authors considered *Bačinella irregularis* and *Lithocodium aggregatum* as synonyms with *Lithocodium* having priority as described earlier (SEGONZAC & MARIN 1972; LUPERTO SINI 1979; BANNER et al. 1990; KOCH et al. 2002), while others treated the two microproblematica as different taxa (ELLIOIT 1963; SCHMID 1996; SCHMID & LEINFELDER 1996; CHERCHI & SCHROEDER 2006). *Lithocodium aggregatum* was originally described by ELLIOTT as a siphonal (= non-septate filaments) codiacean (= udoteacean) alga from the Lower Cretaceous of Iraq; other interpretations include a sponge, red algal, foraminiferal and cyanobacterial (calcimicrobial) origin. Recently, *Lithocodium aggregatum* was re-interpreted as a heterotrichale filamentous-septate green alga (order Ulotrichales?) by SCHLAGINTWEIT et al. (2010). The crusts as described by these authors are formed by a basal prostrate and an erect filament system, which correspond to the
“medullary” and “cortical” filaments of the previous udoteacean algal terminology used by Elliott (1956).

On the other hand, Bačinella irregularis was originally described by RADOIĆIĆ (1959) as an alga incertae sedis. However, many authors have later assumed a cyanobacterial/microbial origin for this microproblematicum (Schäfer & Senowbari-Daryan 1983; Maurin et al. 1985; Camoin & Maurin 1988; Riding 1991a; Schmid & Leinfelder 1996; Vachard et al. 2001; Uța & Bucur 2003). Alternatively, Schlagintweit et al. (2010) re-interpreted Bačinella irregularis as a euendolithic chlorophycean alga, possibly belonging to the Ulotrichales. Given that the main goal of the last-mentioned work was the re-description of Lithocodium aggregatum, the present study deals exclusively with the genus Bačinella RADOIĆIĆ. It critically discusses the species inventory, and provides a new generic diagnosis along with a detailed description of the type species. In addition, new microstructural details of “bacinellid fabrics” (= Bačinella irregularis RADOIĆIĆ auctorum non) are presented.

Sample location and material

The specimens studied are from Lower Aptian sedimentary successions that crop out in the western Maestrat Basin of the eastern Iberian Chain (Fig. 1). The deposits studied lie within the marls of the Forcall Formation and constitute a sub-basin-wide horizon formed by several episodes of coral rubble encrusted by microorganisms, clearly dominated by Lithocodium aggregatum crusts (Bover-Arnal et al. 2010, 2011). The ammonite-biostratigraphic data (Moreno-Bedmar et al. 2009, 2010) permit to ascribe this horizon to the upper part of the Deshayesites forbesi biozone (Lower Aptian).

The material studied comprises 73 thin-sections, which were sampled from nine different outcrop sections in the vicinity of the towns of Aliaga, Montoro de Mezquita, Camarillas and Miravete de la Sierra (Teruel province, Spain; Fig. 1).
**Taxonomic part**

Kingdom Plantae  
Division Chlorophyta Pascher, 1914  
Class Ulvophyceae Mattox & Stewart, 1984  
? Order Ulotrichales Bortzi, 1895  
Family ?  
Genus *Bačinella* Radoičić, 1959, emended herein  

The following species of *Bačinella* (in alphabetical order) were described since its establishment by Radoičić in 1959:

*Bačinella bicellularis* Sadati, 1981 (Fig. 2/5-6), Late Triassic of Austria. From the Middle Jurassic of Egypt, *B. bicellularis* was reported by Kuss (1990) forming individual layers within oncoids. Internal structures with two types of cells, large basal cavities and smaller “distal” cells as in *B. bicellularis* are also known from thaumatoporellacean algae (De Castro 1990) (Fig. 2/7) or *Pseudolithocodium carpathicum* Mišik, 1979. Affinities between the latter taxon and thaumatoporellaceans were remarked by Cherchi & Schroeder (2005), distinguishing “an upper zone subdivided by small partitions” (= smaller distal cells of Sadati) and “a lower zone made up of large irregular cavities” (= large basal cavities of Sadati). The taxon described in open nomenclature by Cherchi & Schroeder (2005) from the Liassic of the Southern Alps/Italy is formed by superimposed crust layers and shows striking similarities (if not identical) to *Bačinella bicellularis*. The transverse section of Sadati (1981: Pl. 1, Fig. 2) displays an identical mosaic-like pattern and fine perforations (much smaller than the “dermal” cells) in the walls as in *Bačinella ordinata* Pantić, 1972 (see below). Bearing in mind the wide morphological variability usually exhibited by
thumatoporellacean algae (DE CASTRO 1990), “Bačinella bicellularis” is here interpreted as belonging to this group. Status: not a representative of Bačinella. It has been interpreted as a thumatoporellacean alga (SCHLAGINTWEIT 2011).

*Bačinella crispa* ELIÁŠOVÁ, 1981, Late Jurassic of Czech Republic. *B. crispa* was defined as a “Bacinella with a central tissue consisting of lobate elements”. According to SCHMID (1996), the description of *B. crispa* was inadequate and corresponds to a consortium of the cryptobiotic foraminifer *Troglotella incrustans* WERNLI & FOOKES, 1992 inside “Lithocodium”. This view was also accepted by SCHLAGINTWEIT (2008) demonstrating the irregular branching habitus of the epilithic, non-boring adult stage of *Troglotella* (= lobate elements of ELIÁŠOVÁ, 1981). Status: not a representative of Bačinella.

*Bačinella elongata* FOIS, 1981, Late Ladinian of Southern Alps, N-Italy. This species is represented by crusts or encrusting masses exhibiting a vertical growth. The inner structure consists of cells with an elongate tubular pattern “arranged in vertical series” and with “irregularly spaced, thin micritic transverse partitions”. This structure strongly recalls a solenoporacean alga. Status: this taxon must be removed from the genus Bačinella. It is unknown, and should be checked whether it corresponds to an individual taxon or belongs to an already existing solenoporacean alga.

*Bačinella irregularis* RADOIČIĆ, 1959 (type-species), Barremian-Aptian of Bosnia and Herzegovina. As can be inferred from the original diagnosis and description, the specific name refers to the irregularity of cells with respect to size and form. According to R. RADOIČIĆ (pers. comm.), the genus name refers to the region of the Bačina lakes, northwest of the delta of the river Neretva/Croatia where the taxon was observed for the first time in blocks of a megabreccia. The generic diagnosis of *Bačinella* was given as follows: “Nodular and incrusted algae whose interior is constructed by unregular cells of different size and form, which are filled with crystalline calcite (Remark: = sparitic), whereas the intercellular mass is cryptocrystalline (Remark: = micritic). The subdermal structure is differentiated” (RADOIČIĆ,
In the species description the “cells” of *Bačinella irregularis* were further specified by Radoičić as being “arranged into association or into some sort of unregular series which are intermingled”. The thin microcrystalline cross-partitions within the sparite-filled “cells” were not mentioned by Radoičić, but it can be inferred that the author was aware of this as otherwise the term “cell” would most likely have been replaced by “filament” or “siphon”. The holotype specimen shows that the “cells” are not really disorganised, but are radiating and successively branching, forming a network (Fig. 3/1). The description of these cells as being arranged in series, the mentioning of their intermingled character (= branching-radiating pattern) and the micritic intercellular mass make it clear, that RADOIČIĆ’s description directly refers to the holotype specimen and not the sparitic vesicular meshworks (= bacinellid fabrics) that are treated later in the paper. In the original description only two figures were provided: the holotype specimen and one paratype. The paratype also clearly shows the micritic intercellular mass but the arrangement of the cells is more irregular than in the holotype. The holotype is interpreted as representing a section subparallel to the plane of filament growth direction. The paratype seems to cut the filaments obliquely in a supposedly more adult part of the thallus where successive branching and anastomization results in a more complex and irregular cell pattern. Following article 7.2 of the International Code of Botanical Nomenclature (ICBN) (McNeill et al. 2006), the nomenclatural type (here: holotype) “is not necessarily the most typical or representative element of a taxon”. In fact, the holotype specimen of RADOIČIĆ and the specimen from the Early Aptian of Spain showing the boring character of *Bačinella irregularis* are untypical (as being very rare) for the thin-section material as these are cutting in the plane where the branching-radiating filamentous cell pattern of the alga is well recognizable.

The specimens from the Lower Aptian of the western Maestrat Basin correspond to the taxon described by RADOIČIĆ (1959). In the Iberian material, it is evident that *Bačinella irregularis* represents an organism boring into micritic crusts of *Lithocodium aggregatum* (=
micritic “intercellular mass”). The original diagnosis of *Bačinella* is therefore interpreted as representing a mixture that refers to two different taxa (*Bačinella* and *Lithocodium*) and moreover does not include an adequate description of all morphological characteristics. An emended diagnosis is presented below. Status: valid.

*Bačinella ordinata* PANTIĆ, 1972 (Fig. 2/1), Ladinian of Montenegro: Its occurrence has been documented throughout the Late Triassic (SENOWBARI-DARYAN, 1984) and the Liassic (SCHIEBNER & REIJMER 1999). The thin external micritic wall usually appears homogeneously micritic. In some specimens, however, the wall exhibits a fine perforation (Fig. 2/2-4). On the basis of this external micritic alveolar wall, *Bačinella ordinata* is interpreted as a thaumatoporellacean alga *sensu* DE CASTRO (1990). It must be stated, that no holotype was designated by PANTIĆ (1972) in the original description. Status: not a representative of *Bačinella*. It has been interpreted as a thaumatoporellacean alga (SCHLAGINTWEIT 2011).

*Bačinella? sterni* RADOIĆIĆ, 1972: The Cenomanian age of the Serbian type-strata of *Bačinella? sterni* was later revised as belonging to the Albian (BANJAC et al. 2007). The species was removed from *Bačinella* by BANNER et al. (1990), making it the type-species of the newly erected genus *Radoicicinellopsis*. The latter genus was established as a siphonous green alga (family Codiaceae). The nodular-shaped, indistinctly laminated thalli, however, do not show a siphonal architecture differentiated into a medulla and cortex, and can therefore not be included in this algal group. Status: *Radoicicinellopsis sterni* (RADOIĆIĆ, 1972) is here considered a valid taxon (in any case not a representative of *Bačinella*), but the suprageneric position (udoteaceous green alga according to BANNER et al. 1990) is unclear. An indefinite microbial origin is favoured.

In conclusion, no other *Bačinella* species diagnosed after the description of the type-species *B. irregularis* belongs to this genus (Tab. 1). Thus, *Bačinella* is interpreted as a monotypic taxon.
**Emended diagnosis:** Life-cycle is assumed to be heteromorphous, including a free-living (gametophytic) and a euendolithic (sporophytic) stage. The multicellular thallus of the euendolithic stage consists of irregular branching and anastomizing filaments with cross-walls forming a complex network that accommodates in a plane parallel to the substrate surface. The upwards-directed branching with successive reduction of diameter results in a close-set layer of fine terminal branches that end shortly before the substrate surface. The filaments consist of uniseriate barrel-shaped, cylindrical to irregularly swollen cells. Rare hairs (setae) occur, one to a cell.

*Bačinella irregularis* RADOIĆIĆ, 1959

Fig. 3/1-2, Fig. 4/1-5, Fig. 5/1-5 (pars), Fig. 6/1-2

**Synonymy:** There are plenty of illustrations of “*Bačinella irregularis*” published since its description in 1959. Their listing would fill several pages. According to our emendation, only the figuration of REITNER (1987) from the Albian of Spain is included. For the interpretation of most illustrations in the literature see the chapter *Discussion*.

1959. *Bačinella irregularis* nov. gen., nov. sp. - RADOIĆIĆ, Pl. 3, Figs.1-2.

1987. *Bačinella irregularis* RADOIĆIĆ - REITNER, Pl. 21, Fig. 1.

2010. *Bačinella irregularis* RADOIĆIĆ - SCHLAGINTWEIT et al., Figs. 11a-h, 12e-g.

**Diagnosis:** see generic diagnosis. According to our interpretation, the genus is monospecific so far. Diagnostic criteria for species differentiation might be cell dimensions and/or morphological criteria (e.g., branching pattern).
**Description:** The supposed heteromorphous life-cycle includes a free gametophytic generation of unknown shape and an euendolithic sporophytic phase to which the following description refers exclusively. The multicellular thallus is composed of branching septate filaments, euendolithic typically in crusts of *Lithocodium aggregatum* ELLIOTT, 1956, but also in thalli of other calcareous algae or metazoan skeletons. Cells that make up the filaments are arranged in linear rows (= septate filaments). Mostly, these are barrel-shaped to cylindrical (diameter 50-150 µm; 70-220 µm measured from the holotype specimen). In the central part, large irregularly swollen cells occur (diameter up to 500 µm). Cells are separated by thin microcrystalline cross-walls (thickness ~6-35 µm) occurring at distances of 0.15 to 0.5 mm. Thick walls may have an indistinct lamellate appearance. The large irregularly shaped cells are mostly deeply lobed and interdigitated with adjacent cells in a puzzle-like manner. The marginal final cells are comparably thin (diameter 25-40 µm) forming a pseudoalveolar layer (= differentiated subdermal structure of RADOIČIĆ) towards the substrate surface without penetrating it (Fig. 4/5). Starting from the substrate entrance point, the alga may bore with a single straight to slightly undulating filament before they irregularly branch in all directions (Fig. 3/2). This network of branching and anastomizing filaments accommodates in a plane parallel manner to the substrate surface; the greatest observed thallus width is up to 5 mm (specimen shown in Fig. 3/2). Three different types of branching patterns occur: dichotomous, a Y-shaped bifurcating cell, branching by bisection of a cell during radial division resulting partitions that form a “T” (Fig. 6/1) (e.g., GRAHAM 1982 for details), and opposite, rectangular branching with the so-called “four-armed central cell” (NIELSEN, 1987) (Fig. 6/2).

Within the central part, rare hairs (or setae) one to a cell occur. They have a length of up to 0.5 mm with a basal diameter of 24-35 µm and are tapering distally (Figs. 4/2, 4/6). A basal septum towards the attaching cell is not detectable. As three-dimensional specimens are not available, it is unclear whether roundly terminating lateral appendages are rhizoidal processes or oblique sections of branches.
Within the studied material, there are all transitions from sparite-filled specimens with preserved cell cross-walls (e.g., Fig. 4/2) to specimens with microsparitic (e.g., Fig. 4/7) to micritic fillings without preserved cross-walls. In the latter case, only the empty boring trace is present.

**Discussion:** First of all, it must be noted that from the living alga, only the cross-walls of the cells of the filaments are preserved as a thin microcrystalline structure. An outer cell wall is not evident within the dark crusts of *Lithocodium* but it is detectable in the boring affecting a solenoporacean thallus (Fig. 5a). In another case, *Bačinella irregularis* was observed boring into a Liassic spongiomorphid skeleton (LEM AITRE 1935) (Fig. 5b-e). According to our knowledge, this finding represents the oldest record of *Bačinella irregularis*. With these two examples, the long-lasting discussion about a synonymy of *Bačinella irregularis* with *Lithocodium aggregatum* becomes obsolete, since in both cases the micritic “intercellular mass” *sensu* RADOIČIĆ (1959) (= *Lithocodium* crusts) is lacking.

As the description of *Bačinella irregularis* does not refer to a trace (here: boring gallery), it is treated taxonomically rather than ichnotaxonomically. Normally, fossil euendolithic chlorophyts are usually known from their borings. Mention should be made that the boring galleries of *Bačinella* resemble to some extent those produced by boring sponges: non-camerate (or open-camerate) representatives of the ichnogenus *Entobia* (e.g., Fig. 4/7). An example comprises the ichnospecies *E. cateniformis* consisting of a branching and anastomizing boring system (BROMLEY & D’ALESSANDRO 1984). These galleries, however, are continuous, whereas *Bačinella irregularis* displays transverse walls and thus cannot be transferred to the activity of boring sponges. Instead, from its morphology and boring pattern, *Bačinella* can be compared with modern chlorophycean algae (SCHLAGINTWEIT et al. 2010). The current classification of the Chlorophyta is based on a combination of morphological and ultrastructural features (e.g., COQUYT 2009). Hence, since many structural and reproductive
features of *Bačinella* are unknown, the genus cannot reliably be accommodated in any of the existing orders and families of the Ulvophyceae. Concerning the supposed heteromorphic life-cycle, a free-living gametophytic generation can be inferred from the infection of the *Lithocodium* crusts via the hollow borings of lithophagine bivalves (Fig. 3/2). Furthermore, it can be stated, that the modern euendolithic genera comparable to *Bačinella*, such as *Endocladia (=Ectochaete) AGARDH, 1841* or *Eugomontia KORNmann, 1960*, belong to the orders Ulotrichales or with *Phaeophila HAUCK, 1876*, to the Ulvales (O’KELLY et al. 2004; GUIRY & GUIRY 2011) (Fig. 7). Both Ulotrichales and Ulvales belong to the class Ulvophyceae (GUIRY & GUIRY 2011). All the afore-mentioned taxa are filamentous, septate (with transverse walls) forms as *Bačinella*, but distinctly smaller. For example, filament (or cell) diameters are ~3-20 µm in *Endocladia* (THIVY 1943), ~6-9 µm in *Eugomontia* (KORNmann 1960; NIELSEN 1987), ~5-25 µm in *Phaeophila* (THIVY 1943; NIELSEN 1987; KITAYAMA & GARRIGUE 1998), up to ~25 µm in the siphonaceous *Ostreobium* BORNET & FLAHAULT, 1889 (type-species *O. quekettii*) and even up to 140 µm in *O. duerdenii* (LUKAS 1974). Occasionally, euendolithic and/or cryptoendolithic calcitic *Ostreobium*-type siphonaceous tubes are preserved in Early Aptian *Lithocodium* crusts (SCHLAGINTWEIT et al. 2010). The general shape of the boring of *Bačinella*, however, does not allow a direct inference whether its trace-maker was siphonous or septate-filamentous. Boring networks of filamentous chlorophytes are known since the Ordovician (GLAUB & VOGEL 2004), e.g., the ichnotaxa *Reticulina* RADTKE, 1991 and *Rhopalia* RADTKE, 1991. Various examples are from the Early Jurassic-Late Cretaceous period (e.g., MÄGEFRAU 1937; SCHINDEWOLF 1962; PUGACZEWSKA 1965). In any case, with filament or boring diameters > 100 µm, *Bačinella* must be considered a macroborer whereas modern euendolithic chlorophyts are typically microborer (e.g., SCHMIDT 1990; GLAUB 1994). Empty borings of *Bačinella* without preserved anatomical details such as walls or perforations must not be named by their producer. They rather constitute a discrete ichnotaxon, which remains to be named, however.
As already stated, the majority of references in the literature of *Bačinella irregularis* refer to “epibenthic meshwork crusts of noticeable thickness and extension” (SCHMID & LEINFELDER 1996: 31). These, however, are completely different to the taxon that RADOIČIĆ described in 1959, but identical to an illustration provided by the same author one year later that might be a reason for the following decades-lasting controversies (RADOIČIĆ 1960) (Fig. 3c). These structures have later been termed “bacinellid textures” (MAURIN et al. 1985) or “filamentous fabrics” (HILLGÄRTNER et al. 2001), and a cyanobacterian/calcimicrobial origin has been assumed by several authors (SCHÄFER & SENOWBARI-DARYAN 1983; MAURIN et al. 1985; CAMOIN & MAURIN 1988; RIDING 1991a; SCHMID & LEINFELDER 1996; VACHARD et al. 2001). Illustrated evidence for such an interpretation, however, was not provided. A more detailed interpretation/description of the micritic laminae that form these irregular vesicles was given by DUPRAZ (1999: 28) (Fig. 8/1). He remarked that they consist of many small dark (= micritic) dots that should represent calcification centers for light needles of possible primary aragonite, later transformed to a sparitic cement. The dark calcification centers could represent cyanobacteria that triggered calcification by photosynthesis upon or within a mucilaginous sheath (PENTECOST & RIDING 1986; RIDING 1991b) (Fig. 8/2).

In thin-sections of “bacinellid” vesicular fabrics from the Latest Jurassic-Earliest Cretaceous of the Getic Carbonate Platform (leg. O. Dragastan), individual small hollow tubes with a micritic envelope were detected forming the “walls” of many of the vesicles (Figs. 8/3-6). The outer diameter ranges from 9.5 to 50 µm, the width of the inner hollow tube is 5 to 25 µm. They can be compared with the so-called *Girvanella* group that is compared with calcified oscillatoriacean (cyanobacterian) sheaths. Although being rather common in the studied material, many of the micritic “laminae” appear solid without a detectable central tubiform hollow. Referring to the morphology and the size range, it seems likely that the observed tubes represent filaments of cyanobacteria. In fact, the fossil “bacinellid” crusts show morphological features that resemble those reported from modern microbial mats such
as pinnacles or reticulate surface patterns (NOFFKE et al. 2001; GERDES & KLENKE 2003; GERDES 2007; PORADA & BOUOUGRI 2007) (Fig. 9). It is worth to mention that already DRAGASTAN & RICHTER (2003: 87) mentioned a possible interpretation of “Bačinella” as an “algal mat resembling elephant skin texture”. The mat-character of these vesicular fabrics is furthermore evident in cases where they form bindstones that exhibit a high lateral extension in preferentially back-reefal or peritidal depositional settings and may show features of sub-aerial exposure (e.g., MASSE et al. 1998; BUCUR et al. 2010). Further studies for the understanding of these three-dimensional structures (mats), however, are needed.

Acknowledgements

Ovidiu Dragastan (Bucharest), Ivo Velić (Zagreb) and Adrian Immenhauser (Bochum) are thanked for providing thin-sections for this study. We are grateful to Ioan Bucur (Cluj-Napoca) for providing the figure from the Late Jurassic of Bulgaria, to Gisela Gerdes (Wilhelmshaven) for providing figures from modern microbial mats (including the permission for illustration), to Christophe Dupraz (Connecticut) for providing the figure from his Ph.D. thesis and to André Strasser (Fribourg) who helped to prepare a first version of this manuscript. The figurations from the original material of LeMaitre were kindly produced and provided by Hubert Benoit (Lille). With this respect we also acknowledge the intermediation of Daniel Vachard (Lille). Financial support by the Swiss National Science Foundation grant no. 20-121545.08, the I+D+I research project CGL2008-04916, the Consolider-Igenio 2010 programme, under CSD 2006-0004 “Topo-Iberia”, and the Grup Consolidat de Recerca “Geologia Sedimentària” (2009SGR-1451), is greatly appreciated. Last but not least, we thank the two reviewers….

References
AGARDH, J.G. 1841. In historiam algarum symbolae. – Linnaea 15: 1–50, 443–457.

BANJAC, N., BANDEL, K. & KIEL, S. 2007. Cassiopod gastropods from the Cretaceous of western Serbia. – Annales Géologiques de la Péninsule Balkanique 68: 61–71.

BANNER, F.T., FINCH, E.M. & SIMMONS, M.D. 1990. On Lithocodium ELLIOTT (Calcareous algae); its paleobiological and stratigraphical significance. – Journal of Micropaleontology 9: 21–36.

BORNET, É. & FLAHAULT, C. 1889. Sur quelques plantes vivants dans le test calcaire des mollusques. – Bulletin de la Société Botanique de France 36: 167–176.

BORZI, A. 1895. Studi algologici. Saggio di recherche´ sulla biologia delle alghe. – A. Reber, Palermo, 119–378.

BOVER-ARNAL, T., MORENO-BEDMAR, J.A., SALAS, R., SKELTON, P.W., BITZER, K. & GILL, E. 2010. Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. – Geologica Acta 8: 249–280.

BOVER-ARNAL T., SALAS, R., MARTIN-CLOSAS, M., SCHLAGINTWEIT, F. & MORENO-BEDMAR, J.A. 2011. Expression of an oceanic anoxic event in a neritic setting: Lower Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain). – Palaios 26 (1): 18–32.

BROMLEY, R.G. & D’ALESSANDRO, A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of Southern Italy. – Rivista Italiana di Paleontologia e Stratigrafia 90: 227–296.

BUCUR, I.I., SĂSĂRĂN, E., BALICA, C., BELEȘ, D., BRUCHENTAL, C., CHENDEȘ, C., CHENDEȘ, O., HOSU, A., LAZĂR, D.F., LĂPĂDAT, A., MARIAN, A.V., MIRCESCU, C., TURI, V., UNGUREANU, R. 2010. Mesozoic carbonate deposits from some areas of the Romanian Carpathians – Case studies. – Cluj University Press, 1–203.

CAMOIN, G. & MAURIN, A.F. 1988. Rôles des microorganismes (bactéries, cyanobactéries) dans la genese des « Mud Mounds ». Exemples du Turonien des Jebels Bireno et Mirhila (Tunisie). – Comptes rendus de l’Académie des Sciences Ser. II 307: 401–407.

CANÉROT, J., CRESPO, A. & NAVARRO, D. 1979. Montalbán, hoja nº 518. Mapa Geológico de España 1:50,000. 2ª Serie. 1ª Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid, 31 pp.
CHERCHI, A., SCHROEDER, R. 2005. Calcimicrobial oncoid coatings from the Pliensbachian Massone Member (Calcare Grigi Formation, Trento Platform, Italy). Preliminary communications. – In: FUGAGNOLI, A. & BASSI, D., Eds., Giornata di Studi Paleontologici “Prof. C. Loriga Broglio”. Annali dell’ Università di Ferrara special volume: 45–49.

CHERCHI, A. & SCHROEDER, R. 2006. Remarks on the systematic position of Lithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. – Facies 52, 435–440.

COCQUYT, E. 2009. Phylogeny and molecular evolution of green algae. – PhD Thesis University of Gent, 1–168. http://www.phycology.ugent.be/reprints/phd_thesis_ellen_cocquyt.pdf. last accessed: 21.11.2011

DE CASTRO, P. 1990. Thaumatoporelle: Conoscenze attuali e approcio all’interpretazione. – Bolletino della Società Paleontologica Italiana 29: 179–206.

DRAGASTAN, O. & RICHTER, D.K. 2003. Calcareous algae and foraminifers from Neocomian limestones of Methana Peninsula, Asprovouni Mts. (Greece) and from South Dobrogea (Romania). – Analele Universităţii Bucureşti, Geology, Special Publication 1: 57–128.

DUPRAZ, C. 1999. Paléontologie, paléoécologie et evolution des faciès récifaux de l’Oxfordien Moyen-Supérieur (Jura suisse et français). – Ph.D. thesis University of Fribourg, 1–200. Available online: http://doc.rero.ch/record/5040. last accessed: 21.11.2011

ELIÁŠOVÁ, H. 1981. Some binding microorganisms of the Štramberk reef limestones (Tithonian, Czechoslovakia). – Vestnik Ustredniho Ustavu Geologickeho 56 (1): 27–31.

ELLIOTT, G.F. 1956. Further records of fossil calcareous algae from the Middle East. – Micropalaeontology 2: 327–334.

ELLIOTT, G.F. 1963. Problematical microfossils from the Cretaceous and Paleocene of the Middle East. – Palaeontology 6: 293–300.

FOIS, E. 1981. The sass da Putia carbonate build-ups (Western dolomites): Biofacies succession and margin development during the Ladinian. – Rivista Italiana di Paleontologia 87 (4): 565–598.

GAUTIER, F. 1980. Villarluengo, hoja nº 543. Mapa Geológico de España 1:50.000. 2ª Serie. 1ª Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid: 1–45.
GERDES, G. 2007. Structures left by modern microbial mats in their host sediments. – In: SCHIEBER, J., BOSE, P.K., ERIKSSON, P.G., BANERJEE, S., SARKAR, S., ALTERMANN, W. & CATUNEAU, O., Eds., Atlas of microbial mat features preserved within the clastic rock record. Amsterdam, Elsevier: 5–38.

GERDES, G. & KLENKE, T. 2003. Geologische Bedeutung ökologischer Zeiträume in biogener Schichtung (Mikrobenmatten, potenti elle Stromatolithe). – Journal of Alpine Geology (Mitt. Ges. Geol. Bergbaustud. Österr.) 46: 35–49.

GLAUB, I. 1994. Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). – Courier Forschungsinstitut Senckenberg 174: 1–324.

GLAUB, I. & VOGEL, K. 2004. The stratigraphic record of microborings. Fossils and Strata 51: 126–135.

GRAHAM, L.E. 1982. The occurrence, evolution, and phylogenetic significance of parenchyma in Coleochaete Bréb. (Chlorophyta). – American Journal of Botany 69: 447–454.

GUIRY, M.D., GUIRY, G.M., 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org last accessed: 21.11.2011

HAUCK, F. 1876. Verzeichniss der im Golfe von Triest gesammelten Meeralgen. (Fortsetzung). – Österreichische Botanische Zeitschrift 26: 24–26, 54–57.

HILLGÄRTNER, H., DUPRAZ, C. & HUG, W. 2001. Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators for vadose diagenesis? – Sedimentology 48: 117–131.

KITAYAMA, T. & GARRIGUE, C. 1998. Marine algal endophyte and epiphytes new to New Caledonia. – Bulletin of the National Science Museum Tokyo ser. B., 24 (3): 93-101.

KOCH, R., MOUSSAVIAN, E., OGORELEC, B., SKABERNE, D. & BUCUR, I.I. 2002. Development of a Lithocodium (syn. Bačinella irregularis)-reef-mound – A patch reef within Middle Albian lagoonal limestone sequence near Nova Gorica (Sabotin Mountain, W-Slovenia). – Geologija 45: 71–90.

KORNMAANN, P., 1960. Die heterogene Gattung Gomontia II. Der fädige Anteil, Eugomontia sacculata nov. gen. nov. spec. – Helgoland Marine Research 7: 59–71.

KUSS, J. 1990. Middle Jurassic calcareous algae from the circum-Arabian area. – Facies 22: 59–86.
LE MAITRE, D. (1935): Etudes paléontologiques sur le Lias du Maroc. Spongiomorphides et Algues. – Mémoire du Service des Mines et de la Carte géologique du Maroc 34: 1–58.

LUKAS, K.J. (1974): Two species of the chlorophyte genus *Ostreobium* from skeletons of Atlantic and Caribbean coral reefs. Journal of Phycology 10: 331–335.

LUPERTO SINNI, E. 1979. I microfossili del “livello a Palorbitolina lenticularis” delle Murge Baresi. – Rivista Italiana di Paleontologia e Stratigrafia 85: 411–480.

MÄGDEFRAU, K. (1937): Lebensspuren fossiler “Bohr”-Organismen. – Beiträge zur naturkundlichen Forschung in Südwestdeutschland 2: 54–67.

MASSE, J.-P., BORGOMANO, J. & AL MASKIRY, S. 1998. A platform-to-basin transition for lower Aptian carbonates (Shuaiba Formation) of the northeastern Jebel Akhdar (Sultanate of Oman). – Sedimentary Geology 119: 297–309.

MATTOX, K. R. & STEWART, K. D. 1984. Classification of the green algae: a concept based on comparative cytology. – In: IRVINE, D.E.G. & JOHN, D.M., Eds., Systematics of the Green Algae. Academic Press, London: 29–72.

MAURIN, A.F., BERNET-ROLLANDE, M.C., MONTY, C.L.V. & NAZHAT, S. 1985. The microbial nature of bacinellid textures. Sedimentological bearings. – 9th European Regional Meeting of Sedimentology, Leiden, Abstracts: 285–287.

MCNEILL, J., BARRIE, F.R., BURDET, H.M., DEMOULIN, V., HAWKSWORTH, D.L., MARHOLD, K., NICOLSON, D.H., PRADO, J., SILVA, P.C., SKOG, J.E., WIERSEMA, J.H. & TURLAND, N.J. 2006. International Code of Botanical Nomenclature (Vienna Code), [http://ibot.sav.sk/icbn/main.htm](http://ibot.sav.sk/icbn/main.htm), last accessed 21.11.2011

MİŞİK, M. 1979. Jurassic and Cretaceous algae (Dasycladales excepted) from the West Carpathians. – Bulletin du Centre Recherches Exploration-Production Elf-Aquitaine 3: 705–712.

MORENO-BEDMAR, J.A., COMPANY, M., BOVER-ARNAL, T., SALAS, R., DELANØY, G., MARTÍNEZ, R. & GRAUGES, A. 2009. Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE1a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain). – Cretaceous Research 30: 864–872.
MORENO-BEDMAR, J.A., COMPANY, M., BOVER-ARNAL, T., SALAS, R., MAURRASSE, F.J., DELANOY, G., GRAUGES, A. & MARTÍNEZ, R. 2010. Lower Aptian ammonite biostratigraphy in the Maestrat Basin (Eastern Iberian chain, Eastern Spain). A Tethyan transgressive record enhanced by synrift subsidence: – Geologica Acta 8: 281–299.

NIELSEN, R. 1987. Marine algae within calcareous shells from New Zealand. – New Zealand Journal of Botany 25: 425–438.

NOFFKE, S., GERDES, G., KLENKE, T. & KRUMBEIN, W.E. 2001. Microbially induced sedimentary structures – a new category of primary sedimentary structures. – Journal of Sedimentary Research 71: 649–655.

O’KELLY, C.J., WYSOR, B. & BELLOWS, W.K. 2004. Collinsiella (Ulvophyceae, Chlorophyta) and other ulotrichalean taxa with shell-boring sporophytes form a monophyletic clade. – Phycologia 43: 41–49.

PANTIĆ, S. 1972. Bacinella ordinata sp. n. from the Middle Triassic of the southeastern Dinarides. – Annales Géologiques de la Péninsule Balkanique 37: 151–154.

PASCHER, A. 1914. Über Flagellaten und Algen. – Berichte der Deutschen Botanischen Gesellschaft 32: 136–160.

PENTECOST, A. & RIDING, R. 1986. Calcification in Cyanobacteria. – In: LEADBEATER, B.S.C. & RIDING, R., Eds., Biomineralization of lower plants and animals. Claredon, Oxford: 125–139.

PORADA, H. & BOUOUGRI E.H. 2007. Wrinkle structures – a critical review. Earth-Science Reviews 81: 199–215.

PUGACZEWSKA, H. 1965. Les Organisms sédentaires sur les Rostres des Bélemnites du Crétacé Supérieur. – Acta Paleontologica Polonica 10: 73–95.

RADTKE, G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre paläokologische Bedeutung. – Courier Forschungsinstitut Senckenberg 138: 1–185.

RADOIČIĆ, R. 1959. Nekoliko problematičnih mikrofosila iz dinarske krede [Some problematic microfossils from the Dinarian Cretaceous]. – Bulletin du Service de Géologie et Géophysique Republique de Serbie 17: 87–92 (in Serbian and English).
RADOIĆIĆ, R. 1960. Microfacies du Crétacé et du Paléogene des Dinarides externes des Yougoslavie. Institut de Recherches Géologiques de la R.P. Crna Gora 4: 1–172.

RADOIĆIĆ, R. 1972. Bačinella? sterni nov. sp. (Codiaceae?) from the Cenomanian of the environs of Orohac (Metohija). – Bulletin scientifique, conseil des Académies des Sciences et des Arts RSF de Yougoslavie 17 (7-8): 228–229.

REITNER, J. 1987. Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Basko-kantabrischen Strike Slip Fault-Becken-System (Nordspanien) an der Wende von der Unterkreide zur Oberkreide. – Documenta naturae 40: 1–239.

RIDING, R. 1991a. Calcified Cyanobacteria. – In: RIDING, R., Ed., Calcareous Algae and Stromatolites. Springer, Berlin-Heidelberg-New York: 55–87.

RIDING, R. 1991b. Classification of microbial carbonates. – In: RIDING, R., Ed., Calcareous Algae and Stromatolites. Springer, Berlin-Heidelberg-New York: 21–51.

SADATI, S.M. 1981. Bacinella bicellularis n. sp., eine Alge (?) aus dem obertriadischen Riffkalk der Hohen Wand (Nieder-Österreich). – Mitteilungen der Gesellschaft österreichischer Geologie- und Bergbaustudenten 27: 201–205.

SCHÄFER, P. & SENOWBAR-DARYAN, B. 1983. Die Kalkalgen aus der Obertrias von Hydra, Griechenland. – Palaeontographica, Reihe A 185: 83–142.

SCHEIBNER, C. & REIJMER, J.G. 1999. Facies patterns within a Lower Jurassic upper slope to inner platform transect (Jbel Bou Dahar, Morocco). – Facies 41: 55–80.

SCHINDEWOLF, O.H. (1962): Parasitäre Thallophyten in Ammoniten-Schalen. – Paläontologische Zeitschrift 36 (H. Schmidt-Festband): 206–215.

SCHLAGINTWEIT, F. 2008. Bioerosional structures and pseudoborings from Late Jurassic and Late Cretaceous-Paleocene shallow-water carbonates (Northern Calcareous Alps, Austria; SE France) with special reference to cryptobiotic foraminifera. – Facies 54 (3): 377–402.

SCHLAGINTWEIT, F. 2011. Interpreting the microencruster incertae sedis Bacinella ordinata PANTIĆ, 1972 and Bacinella bicellularis SADATI, 1981 as thaumatoporellacean algae. – In: BUCUR, I.I. & SASARAN, E., Eds. 10th International Symposium on Fossil Algae, Cluj-Napoca, Romania, 12-18 September 2011, Abstracts: 78-79.
New insights into *Lithocodium aggregatum* Elliott 1956 and *Bacinella irregularis* Radoičić 1959 (Late Jurassic-Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). – Facies **56**: 509–547.

SCHMID, D.U. 1996. Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura. – Profil **9**: 101–251.

SCHMID, D.U. & LEINFELDER, R.R. 1996. The Jurassic *Lithocodium aggregatum-Troglotella incrustans* foraminiferal consortium. – Palaeontology **39**: 21–52.

SCHMIDT, H. (1990): Mikrobohrspuren in Fossilien der triassischen Hallstätter Kalken und ihre bathymetrische Bedeutung. – Facies **23**: 109–120.

SEGONZAC, G. & MARIN, P. 1972. *Lithocodium aggregatum* ELLIOTT et *Bacinella irregularis* RADOICIC de l’Aptien de Teruel (Espagne): deux stades de croissance d’un seul et même organisme incertae sedis. – Bulletin de la Société géologique de France (Série 7) **14**: 331–335.

SENOWBARI-DARYAN, B. 1984. Mikroproblematika aus den obertriadischen Riffkalken von Sizilien. – Münstersche Forschungen zur Geologie und Paläontologie **61**: 1–81.

THIVY, F. 1943. New records of some marine Chaetophoraceae and Chaetosphaeridiaceae for North America. – Biological Bulletin **85**: 244–264.

UŢA, A. & BUCUR, I.I. 2003. Microbial structures and microencrusters in the Upper Jurassic-Lower Cretaceous deposits from Buila-Vânturariţa Massif (South Carpathians). – Studia Universitatis Babeş-Bolyai Geologia XLVIII: 3–14.

VACHARD, D., HAUSER, M., MARTINI, R., ZANINETTI, L., MATTER, A. & PETERS, T. 2001. New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). – Géobios **34**: 375–404.

WERNLI, R. & FOOKES, E. 1992. *Troglotella incrustans* n. gen., n. sp., un étrange et nouveau foraminifère calcicavicole du complexe récifal Kimméridgien de Saint-Germain-de-Joux (Ain, France). – Bolletino della Societa Paleontologica Italiana **31**: 95–103.
Figure Captions

Fig. 1. Geological map of the study area in the western Maestrat Basin (modified after CANÉROT et al. 1979 and GAUTIER 1980). The outcrop sections sampled are marked with a star and are the following (abbreviations of thin-section samples in brackets): Barranco de los Degollados (DE), Casa Cartujo (CC), Loma del Horcajo (PO), Las Cubetas (CUB), Cabezo de las Hoyas (HO), Camarillas (CA), Barranco de las Calzadas (CAL) and Barranco de la Serna (SE).

Fig. 2. *Bačinella ordinata* PANTIĆ, 1972 (1) and *Bačinella bicellularis* SADATI, 1981 (5-6), and their interpretation as thaumatoporellacean algae (2-4, 7). 1: From PANTIĆ (1972: Pl. 4/1), Ladinian of Montenegro. 2: Thaumatoporellacean alga from the Norian-Rhaetian Dachstein reefal limestone of the Northern Calcareous Alps of Austria. 3-4: Detailed views showing the finely perforated external wall. 5-6: From SADATI (1981: Pl. 1, Fig. 2 and Fig. 3), Norian-Rhaetian of Northern Calcareous Alps of Austria. Two types of cell sizes (a and b). Note the mosaic-like central part with homogeneous partitions comparable to *Bačinella ordinata* (Fig. 2/1); the external wall is finely alveolar/perforated (arrows in 5). 7: *Thaumatoparella parvovesiculifera* (RAINERI) from the Middle Jurassic of Croatia showing a finely perforated external wall and internal constrictions with two types of “cell” sizes (a and b).
Scale bars: 0.5 mm.

Fig. 3. *Bačinella irregularis* RADOIČIĆ, 1959. 1: Holotype specimen (from RADOIČIĆ 1959: Pl. 3, Fig. 1), Barremian-Aptian of Bosnia and Herzegovina (icm = micritic “intercellular mass” sensu RADOIČIĆ). 2: *Bačinella irregularis* specimen boring through superimposed and micritized crusts of *Lithocodium aggregatum* ELLIOTT, 1956 (= icm of RADOIČIĆ) starting from a *Gastrochaenolites* macroboring (G) where the gametophyte entered the hard substrate. The growth direction is marked by the white arrow. Lower Aptian of the western Maestrat
Basin, Spain. Thin-section DE-5H. 3: Irregular, foam-like meshwork (“bacinellid fabric”) figured as *Bačinella irregularis* by RADOIČIĆ (1960, Pl. 17, Fig. 1), Barremian-Aptian of Croatia. Note the completely different microstructure compared to the holotype specimen and not matching the original description, e.g., lacking of intercellular mass or cells arranged in series. 4: Same as 3. Note the completely encrusted coral (c) in the centre. Early Aptian of Oman (material leg. A. Immenhauser).

Scale bars: 0.5 mm.

**Fig. 4.** *Bačinella irregularis* RADOIČIĆ, 1959 boring into crusts of *Lithocodium aggregatum* ELLIOTT, 1956. Lower Aptian of the western Maestrat Basin, Spain. 1: Network of branching and anastomosing filaments of *Bačinella irregularis* which end with terminal fine branchlets (left above). Thin-section CAL-5V. 2: Detail from Fig. 2/2 showing cells each with one thin hair or seta (arrows). Thin-section DE-5H. 3-4: Network of *Bačinella irregularis* filaments exhibiting irregular swollen cells. Note the microsparitic filling in 3. Thin-sections HO-3V and HO-17V. 5: Branching filaments with terminal fine branchlets (above). Thin-section CAL-2V. 6-7: Boring galleries of *Bačinella irregularis* with microsparitic filling resembling to some extent those produced by non-camerate boring sponges (ichnogenus *Entobia*). Note the absence of preserved cell cross-walls. Note also the two thin tapering appendages (= setae) with upward growth towards the substrate surface in 6 (arrows). Thin-sections CA-3H and DE-3V.

Scale bars: 0.5 mm.

**Fig. 5.** a *Bačinella irregularis* RADOIČIĆ boring into the thallus of a solenoporacean alga. Note the visible filament cross-walls (arrows). Late Jurassic (most probably Late Tithonian) of Bulgaria (leg. Ioan Bucur). b *Bačinella irregularis* RADOIČIĆ (arrows) boring into a spongiomorphid skeleton. Pliensbachian of Morocco (slightly modified from LE MAITRE...
1935, pl. 8/8). c-e Detailed views from a showing filament branchings and preserved transverse cell walls (arrows in c; e).

**Fig. 6.** Filament branching pattern in *Bačinella irregularis* RADOIĆIĆ, 1959. 1: Detail from the holotype specimen of RADOIĆIĆ, 1959 (see Fig. 3.1) showing dichotomous branching starting from a Y-shaped cell (black arrows) and the biseriate branching type with three cells separated by T-shaped cross-walls (white arrows). 2: Rectangular branching exhibiting the so-called “four-armed central cell” (NIELSEN, 1987). Thin-section HO-16V.

Scale bars: 0.5 mm.

**Fig. 7.** Modern euendolithic chlorophytes that can be compared with the fossil genus *Bačinella* RADOIĆIĆ, 1959. Note the indication of some of the morphological details used in the description 1, 3-4: *Phaeophila dendroides* (CROUAN & CROUAN) (1, 3 from THIVY 1943, Pl. 1/1 and 1/3; 4 from NIELSEN 1987). 2: *Eugomontia sacculata* Kornmann (from KORNMANN 1960, Fig. 5b).

**Fig. 8.** Calcification processes in filamentous cyanobacteria and vesicular crusts (“bacinellid fabric” = *Bačinella irregularis* RADOIĆIĆ, 1959 auct. non) of assumed calcimicrobial origin. 1: Microstructure of a Late Jurassic (Oxfordian) “bacinellid fabric”, Switzerland (modified from DUPRAZ 1999: Fig. 4.1). Without scale. 2: Calcification of a filamentous cyanobacterium during life-time. S = sheath, T = trichome (modified from RIDING 1991b: Fig. 2b-c). Without scale. 3: “Bacinellid fabric”, Tithonian-Berriasian of the Getic Carbonate Platform, Romania. Thin-section Ghimba 387-1. Scale bar 0.5 mm. 4-6: Detailed views showing tiny, bended hollow tubes interpreted as calcimicrobial filaments. Scale bars 0.5 mm.
**Fig. 9** Comparison of modern microbial mats (1, 3) with Early Cretaceous “bacinellid” fabrics (2, 4). 1: Microbial mat surface structure with pinnacles. Saline, southern Bretagne, France (from GERDES & KLENKE 2003: Fig. 8a). Scale bar 0.5 mm. 2: Structured top of a “bacinellid” crust. Early Aptian of Croatia. Scale bar 0.5 mm. 3: Polygonal reticulate surface pattern resembling “elephant skin” (from GERDES 2007: Fig. 2-1-5e). Scale bar 1cm. 4: Surface structure of a “bacinellid” crust. Early Aptian of Croatia. Note the differing dimensions compared to the modern example. Scale bar 0.5 mm.

**Tab. 1.** Comparative table of *Bačinella* species and their interpretation. Details are given in the text.
| species                  | interpretation                                           |
|--------------------------|----------------------------------------------------------|
| *Bacinella irregularis*  | euendolithic chlorophyte alga                           |
| RADOICIC, 1959 Barremian-Aptian of Montenegro |                                                      |
| *Bacinella ordinata*     | thauماتопореллесиан alga                                  |
| PANTIC, 1972 Ladinian of Montenegro |                                                      |
| *Bacinella? sterni*      | indefinite microbial origin                               |
| RADOICIC, 1972 Albian of Serbia |                                                      |
| *Bacinella crispa*       | irregular final part of the foraminifer *Troglotella incrustans* |
| ELIASOVA, 1981 Late Jurassic of Czech Republic |                                                      |
| *Bacinella elongata*     | solenoporacean alga                                      |
| FOIS, 1981 Ladinian of Italy |                                                      |
| *Bacinella bicellularis* | thauماتپورلیلیسیان alga                                    |
| SADATI, 1991 Rhaetian of Austria |                                                      |