Fusion of CTLA-4 with HPV16 E7 and E6 Enhanced the Potency of Therapeutic HPV DNA Vaccine

Lili Gan1, Rong Jia1, Lili Zhou1, Jihua Guo1,2*, Mingwen Fan1*

1 Hubei-MOST KLOS & KLOBME, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China, 2 Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China

Abstract

Preventive anti-HPV vaccines are effective against HPV infection but not against existing HPV-associated diseases, including cervical cancer and other malignant diseases. Therefore, the development of therapeutic vaccines is urgently needed. To improve anti-tumor effects of therapeutic vaccine, we fused cytotoxic T-lymphocyte antigen 4 (CTLA-4) with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine (pCTLA4-E7E6). pCTLA4-E7E6 induced significantly higher anti-E7E6 specific antibodies and relatively stronger specific CTL responses than the nonfusion DNA vaccine pE7E6 in C57BL/6 mice bearing with TC-1 tumors. pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization. These results suggest that fusing CTLA-4 with E7E6 is a useful strategy to develop therapeutic HPV DNA vaccines. In addition, fusing the C-terminal of E7 with the N-terminal of E6 impaired the functions of both E7 and E6.

Introduction

Persistent infection of high-risk human papillomavirus (HR-HPV) causes cervical cancer. Recent studies have considered this condition to be an independent risk factor associated with a subset of anogenital and head and neck cancers. HPV16 is the most prevalent genotype of HPV. It is found in approximately 50% of all cervical cancers. Moreover, HPV16 accounts for more than 90% of HPV-related head and neck squamous cell carcinomas [1,2].

GARDASIL (quadrivalent, Merck, 2006) and CEVARIX (bivalent, GlaxoSmithKline, 2009) are FDA-approved prophylactic vaccines that contain L1 capsid HPV proteins and that prevent infections with corresponding HPV types [3,4,5]. These vaccines can induce high concentrations of neutralizing antibodies, efficiently block the cell entry of high-risk HPVs, and prevent infections. However, they elicit no effect on existing infections and HPV-associated diseases, including cervical cancer. Hence, the development of therapeutic vaccines is urgently needed to control HPV-associated diseases [6].

A commercial therapeutic HPV vaccine remains lacking to date. Numerous therapeutic vaccines against HPV16 or HPV18 have been investigated in preclinical studies or clinical trials over the past decades; these vaccines include peptide/protein, dendritic cell (DC), plasmid DNA, and viral vector-based vaccines [7,8]. Currently, no therapeutic HPV vaccines have shown significant clinical efficacy against HPV-positive cervical intraepithelial neoplasia (CIN) [9].

E6 and E7 viral proteins induce and maintain malignant transformation by binding to p53 and pRb and disrupting normal cell cycle regulation; hence, these proteins are ideal targets for therapeutic vaccines [10]. Cellular immune responses to HPV are essential to achieve effective treatment. Meanwhile, specific antibodies are also considered to play important roles in tumor rejection [11].

DNA vaccination is an attractive strategy against HPV infection and associated diseases. This strategy is simple, stable, and capable of inducing both cellular and humoral immune responses. Cytotoxic T-lymphocyte antigen 4 (CTLA-4), expressed on T cell surfaces, is a ligand of B7 molecules on antigen-presenting cells (APCs). We and other groups had demonstrated that fusing CTLA-4 with antigens significantly improves specific immune responses [12,13,14,15]. In the present study, we fused CTLA-4 with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine. This strategy can enhance cellular and humoral anti-HPV16 immune responses and relatively improve anti-tumor effects.

Materials and Methods

Ethics statement

This study was approved by the Ethics Committee at the School of Stomatology in Wuhan University.

Animals and cell lines

Female C57/Bl mice (6–8 weeks old) were purchased and maintained in Wuhan University Center for Animal Experiment. HEK-293 cells were grown in Dulbecco’s modified Eagle medium (HyClone, USA) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic (Gibco, USA). TC-1 tumor cells...
(CCTCC, Wuhan, China) that express HPV16 E6 and E7 proteins were derived from primary C57BL/6 mouse lung epithelial cells. These tumor cells were grown in RPMI1640 (Gibco, USA) supplemented with 10% FBS and 1% antibiotic-antimycotic. DC2.4 cells (kindly provided by Dr. Kenneth Rock in Dana Farber Cancer Institute, Boston, MA, USA) were maintained in RPMI 1640 medium supplemented with 10% heat inactivated FBS and 1% antibiotic-antimycotic.

Construction of HPV16 E6 and E7 fusion DNA vaccine

To reduce transformation activity, amino acids C24 and E26 of HPV16 E7 were modified to disrupt the L-X-C-X-E (where X is any amino acid) motif, through which E7 binds to pRb [16,17,18]. In addition, C91 of the E7 region were modified to reduce transformation activity. In the HPV16 E6 region, amino acids C63 and C106 were modified to disrupt the C-X-X-C zinc finger binding motif and protect p53 from degradation [19,20]. All wild type amino acids were mutated to glycine. Codons of the modified E7/E6 fusion gene were further optimized with humanized codons to enhance expression and immunogenicity in humans. KpnI and NotI restriction sites were added before the first codon of E7 and after the last codon of E6, respectively. The designed fusion gene fragment was synthesized by Invitrogen Corporation and cloned to pVAX1 vector (Invitrogen, USA) by KpnI and NotI restriction sites. The resulting plasmid was named pE7E6. The pCTLA4-E7E6 vaccine was constructed by cloning the E7E6 fragment into pGAP/VAX1 [12] at KpnI and NotI sites. The resulting plasmid contains the signal peptide and extracellular domains of CTLA-4, the hinge and Fc region of human IgG1, and the E7E6 fusion gene. Corresponding plasmids carrying wild-type (wt) E7E6 were also constructed and named pwCTLA4-E7E6 and pwE7E6. Two plasmids expressing either wild-type E7 or E6 were constructed and named pwE7 or pwE6, respectively. All plasmids were verified by DNA sequencing (Figure 1). Plasmids were purified by using EndoFree Plasmid Mega Kit (Qiagen, German). The GenBank accession number of the HPV16 reference sequence is NC_001526.2. The exact nucleotide sequence of the fused region between E7 (underlined) and E6 is \(5'\text{AGCCAGAAGCCCTTCG}3'\). The exact nucleotide sequence of the fused region accession number of the HPV16 reference sequence is

![Figure 1. Construction of DNA vaccines pCTLA4-E7E6 and pE7E6. HPV16 E7 gene was fused with E6 gene. The fusion gene was optimized with human biased codons. (A) Mutation introduced into HPV16 E7 and E6 to disrupt transformation activity are labeled in the schema. C24E and E26C of E7 and C63C and 106C of E6 (arrows) were mutated to glycine. (B) pe7E6 was constructed by cloning the modified E7E6 fusion gene into pVAX1 vector at KpnI and NotI restriction sites. pCTLA4-E7E6 encodes the signal peptide and extracellular domains of CTLA-4, the hinge and Fc region of human IgG1, and the E7E6 fusion gene.](https://example.com/figure1.png)

Figure 1. Construction of DNA vaccines pCTLA4-E7E6 and pE7E6. HPV16 E7 gene was fused with E6 gene. The fusion gene was optimized with human biased codons. (A) Mutation introduced into HPV16 E7 and E6 to disrupt transformation activity are labeled in the schema. C24E and E26C of E7 and C63C and 106C of E6 (arrows) were mutated to glycine. (B) pe7E6 was constructed by cloning the modified E7E6 fusion gene into pVAX1 vector at KpnI and NotI restriction sites. pCTLA4-E7E6 encodes the signal peptide and extracellular domains of CTLA-4, the hinge and Fc region of human IgG1, and the E7E6 fusion gene.

doi:10.1371/journal.pone.0108892.g001

E7E6 expression analysis by Western blot and enzyme-linked immunosorbent assay (ELISA) in cells

A total of 5 × 10^5 293 cells were seeded into six-well plates for 24 hours and then transfected with 2 μg of pCTLA4-E7E6, pE7E6, or pVAX1 in the presence of Lipofectamine 2000 (Invitrogen, USA) according to the manufacturer's instructions. At 48 h after transfection, total protein samples were collected, separated in 10% SDS-PAGE gel, and then blotted with the following antibodies: mouse anti-E7 monoclonal antibody (Santa Cruz, USA), mouse anti-p53 (Ab-6) antibody (Calbiochem, USA), rabbit anti-pRb monoclonal antibody (Epitomics, USA), goat anti-E6 polyclonal antibody (Santa Cruz, USA), or mouse anti-b-actin antibody (Sigma, USA) (Figure 2).

The concentration of recombinant CTLA4-E7E6 fusion protein in the culture medium from the 293 cells transfected with pCTLA4-E7E6 was determined using capture ELISA. Briefly, the medium was serially diluted and added to a microtiter plate precoated with goat anti-human IgG γ chain specific antibody (Sigma) for 2 h. After washing, horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody (Sigma) was added to the plate. The HRP substrate ortho-phenylenediamine (OPD, Sigma) was used to develop the reaction. Optical density (OD) readings were obtained at 490 nm. The concentration of the CTLA4-E7E6 fusion protein was calculated by interpolation on a standard curve created with standard human IgG antibody (ZSGB-BIO, Beijing, China). Cultured media from 293 cells transfected with pE7E6 or pVAX1 were used as control.

Flow cytometric analysis (FACS)

FACS was performed to evaluate the binding activity of recombinant CTLA4-E7E6 fusion protein to mouse DC2.4 cells. DC2.4 cells were incubated with the supernatants of cultured media from the 293 cells transfected with pCTLA4-E7E6, pE7E6, or pVAX1. The incubated cells were washed twice with phosphate-buffered saline (PBS) containing 2% PBS (PBS/2%FBS), added with FITC-conjugated goat anti-human IgG (Sigma, USA), and then incubated for 30 min at room temperature. The binding of the CTLA4-E7E6 fusion protein to the cells was analyzed using a BD Biosciences FACS Calibur flow cytometer.

Therapeutic immunization

Plasmid pCTLA4-E7E6, pE7E6, and pVAX1 for in vivo application were vacuum dried (Eppendorf Concentrator 3301) and redissolved in normal saline (NS) to obtain the final DNA concentration at 1 μg/μl.

Thirty C57BL/6 mice were randomly divided into four groups. The protocol of therapeutic immunization is shown in Figure 3. TG-1 cells (2 × 10^5) in 100 μl of PBS were subcutaneously injected into the left flank of all mice. Group pCTLA4-E7E6 (n = 8) or Group pE7E6 (n = 7) was intramuscularly immunized with 100 μg of pCTLA4-E7E6 or pE7E6 on the left leg on day 10, respectively. Group pVAX1 (n = 8) and Group PBS (n = 7) were respectively immunized with pVAX1 and PBS as controls on day 10. All animals were boosted on day 17. Tumor size was recorded twice or thrice a week. Mice that exhibited tumor ulceration, cachexia, muscle wasting, or inappetence were sacrificed. On day 38, all mice were sacrificed, and spleens were harvested for CTL assay.
E7E6 or pE7E6 on the left leg on days 0 and 14, respectively.

Preventive immunization

Blood was collected from the eye vein and then maintained at 4°C overnight. Serum samples were collected on days 0, 24, and 38. Peripheral blood cells were lysed with RBC lysis buffer (Sigma, USA) for 6 min and then washed twice with HBSS (HyClone, USA). Spleen cells were resuspended to 1 × 10^7 cells/mL with RPMI 1640 (HyClone, USA) containing 10% inactivated FBS.

The CTL assay was performed by using the CytoTox 96 nonradioactive cytotoxicity assay (Promega, USA) based on the detection of lactate dehydrogenase (LDH) release. Brieﬂy, spleen cells were cultured in RPMI 1640 containing 50 units/mL IL-2 (Peprotech, USA) at 37°C for 12 h. The next day, 1 × 10^5 cells were harvested and co-cultured for 5 d with 2 × 10^5 TC-1 cells pretreated with 50 μg/mL mitomycin C (Sigma, USA) for 1 h at 37°C in six-well plates. The spleen cells were collected by centrifugation and then resuspended at a concentration of 2 × 10^6 cells/mL with RPMI 1640 containing 5% inactivated FBS. TC-1 cells used as target cells were suspended at 2 × 10^5 cells/mL. Spleen and target cells were added to 96-well plates at an effector cell/target cell (E:T) ratio of 2.5:1, 5:1, 10:1, or 20:1 and then incubated for 4 h at 37°C. The supernatant (50 μL) was transferred to enzymatic assay plates and then added to 50 μL of reconstituted substrate mix in each well. After 30 min of incubation at room temperature, 50 μL of stop solution was added to each well. The release of LDH in the supernatants from killed cells was measured at 490 nm absorbance according to the manufacturer’s protocol. The percent cytotoxicity was calculated as

\[
\text{% Cytotoxicity} = \frac{(\text{Experimental} - \text{Spontaneous})}{(\text{Target Maximum} - \text{Target Spontaneous})} \times 100
\]

Statistical analysis

SPSS20.0 for Mac (SPSS, USA) was used for statistical analysis. The survival rates of the mice were determined by Kaplan–Meier analysis. Differences in anti-E7E6 specific antibodies and E7E6 specific cytotoxicity among the groups were determined by one-way ANOVA.
CTLA-4 Enhanced Anti-HPV Therapeutic Effects

1. Therapeutic immunization

![Therapeutic immunization diagram](image)

2. Preventive immunization

![Preventive immunization diagram](image)

Figure 3. Schematic diagram of vaccination protocols. Therapeutic immunization: mice were challenged with 2×10^5 TC-1 cells on day 0 and vaccinated twice on day 10 and 17. Preventive immunization: mice were vaccinated on day 0 and day 14, and then challenged with 6×10^4 TC-1 cells on day 28. Tumor size was recorded twice or thrice a week.

doi:10.1371/journal.pone.0108892.g003

Results

Expression of E7E6 protein in 293 cells

Wild-type E6, recombinant CTLA4-E7E6, or E7E6 fusion protein was detected in the 293 cells transfected by pCTLA4-E7E6 or pE7E6 with mouse anti-HPV16 E7 antibody (Figure 2). The fusion proteins did not downregulate the expression of p53 or pRb in the 293 cells compared with wild-type E7 or E6 expression plasmids (Figure 2). This result indicates that the oncogenicity of E7 and E6 in recombinant fusion proteins was disrupted in 293 cells. Interestingly, wild type E7E6 or CTLA-4 and wild-type E7E6 fusion protein also did not downregulate the expression of p53 and pRb. The C-terminal of E7 directly fused with the N-terminal of E6. Thus, the functions of E7 and E6 may be disrupted.

Binding of CTLA4-E7E6 fusion protein to DCs

The results of ELISA assay showed that the concentration of recombinant CTLA4-E7E6 fusion protein in the culture medium of the 293 cells transfected with pCTLA4-E7E6 was 0.16 ng/μL. CTLA4 is a B7 molecule ligand that is expressed on the surface of APCs, including DCs. FACS analysis showed that the culture medium containing recombinant CTLA4-E7E6 fusion protein induced a remarkable shift in mean fluorescence intensity compared with the controls of pE7E6 or pVAX1-transfected cells (42.91 vs. 7.55 and 2.86, Figure S1). This result indicates that CTLA4-E7E6 fusion protein can bind to DCs and facilitate antigen capture.

Therapeutic immunization retarded tumor development in mice

Mice with TC-1 tumor cells were developed to assess the anti-tumor therapeutic efficacy of the DNA vaccines pCTLA4-E7E6 and pE7E6. Vaccination was conducted when tumors were established on day 10 and boosted on day 17. Group pCTLA4-E7E6 showed significantly smaller tumors than control groups (Group pVAX1 and Group PBS) at almost all examination time points after day 10 ($P<0.05$), as presented in Figure 4B (day 34). However, Group pE7E6 only showed significantly smaller tumors than Group PBS at all time points ($P<0.05$) (Figure 4A). The tumor growth between days 10 and 38 was calculated to analyze the growth rate of tumors. Group pCTLA4-E7E6 showed significantly slower tumor growth than the two control groups ($P=0.035$ or 0.001, respectively). However, Group pE7E6 only showed significantly slower tumor growth than Group PBS ($P=0.006$; Figure 4C).

In terms of protection outcomes, the survival rates of Group pCTLA4-E7E6, Group pE7E6, Group pVAX1, and Group PBS after the experiment were 100%, 85.7%, 75%, and 85.7%, respectively (Figure 4D). Although Kaplan–Meier analysis showed no significant difference among the groups, the only mice in Group pCTLA4-E7E6 were completely survived the tumor challenge (Figure 4D). Overall, pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization.

We analyzed cellular and humoral immune responses against HPV16 to further evaluate the protection responses induced by DNA vaccination. Group pCTLA4-E7E6 showed significantly higher CTL-mediated lysis against the TC-1 cells than the two control groups ($P<0.05$, E:T = 20:1; Figure 4E). Group pCTLA4-E7E6 showed higher CTL responses than Group pE7E6 without statistical significance ($P = 0.172$, E:T = 20:1) (Figure 4E). Group pCTLA4-E7E6 showed significantly higher anti-E7E6 specific antibodies than all other groups on days 24 and 38 ($P<0.05$). Overall, pCTLA4-E7E6 induced stronger immune responses than pE7E6 in therapeutic immunization.

Preventive immunization protected mice from tumor development

After therapeutic immunization, the preventive efficiency of pCTLA4-E7E6 or pE7E6 was also determined. After twice immunization, the mice were challenged with TC-1 tumor cells. The two DNA vaccination groups received complete protection from tumor cell challenge during the entire experimental period. By contrast, the two control groups developed tumors (Figure 5A). Approximately 62.5% of the mice from control groups survived from tumor cell challenge during the entire experimental period. Kaplan–Meier analysis showed that the two control groups had significantly lower survival rate than the two DNA vaccination groups ($P<0.05$). These results indicate that pre-immunization with E7E6 DNA vaccine can completely protect mice from low-dosage tumor cell challenge.

No difference in protection efficiency was observed between Group pCTLA4-E7E6 and Group pE7E6; however, Group pCTLA4-E7E6 generated significantly more anti-E7E6 specific antibodies than Group pE7E6 on day 14 (Figure 5D). The two DNA vaccination groups generated significantly more anti-E7E6 specific antibodies than the control groups ($P<0.00001$). Group pCTLA4-E7E6 also showed stronger CTL responses than Group...
pE7E6 without statistical significance \((P = 0.132, \text{E:T} = 20:1) \) (Figure 5C). The two DNA vaccination groups showed significantly stronger CTL responses than the control groups \((P < 0.05) \). Overall, pCTLA4-E7E6 induced stronger immune responses than pE7E6 in preventive immunization.

Discussion

HPV-preventive vaccines are highly effective in blocking viral entry but are generally ineffective in eliminating existing infections. Thus, developing therapeutic vaccines to treat patients with established HPV infection or HPV-associated malignancies is still urgently needed. During the past decade, many therapeutic vaccines have been tested in clinical and preclinical experiments, including proteins, peptides, DNA vaccines, and recombinant viruses. For example, Einstein et al. [21] used a fusion protein, HspE7, which contains heat shock protein (Hsp65) and HPV16 E7 in a clinical trial. Approximately 22.5% or 55% of patients with CIN III immunized with HspE7 showed complete or partial pathologic regression response, respectively. Another study using the same vaccine achieved complete pathologic regression in 35.5% of patients with high-grade CIN [22]. In a multicenter phase II trial, 17% of patients showed clinical responses after vaccination with a recombinant fusion protein comprising HPV 16, E6/E7/L2 (TA-CIN) as a primer vaccine, and a recombinant vaccinia virus encoding HPV 16 and 18 E6/E7 (TA-HPV) as a boost vaccine [23]. A clinical trial using a DNA vaccine (ZYC101a) encoding CTL epitopes against E6 and E7 of HPV 16 and HPV 18 showed that the resolved proportion in the ZYC101a group is higher than that in the placebo group (43% versus 27%), but these results show no statistical significance [24]. Another phase I clinical trial with HPV16 DNA vaccine expressing a

Figure 4. Anti-tumor therapeutic efficacy of pCTLA4-E7E6. (A) Effects on tumor growth by therapeutic vaccination. Tumor-carrier mice were vaccinated with pCTLA4-E7E6, pE7E6, pVAX1 or PBS twice on day 10 and 17 after TC-1 cells injection. Tumor size was recorded twice or thrice a week. (B) Statistic analysis of tumor sizes on day 34 among groups. The graph shows means \(\pm SE \). (C) Statistic analysis of tumor development between day 10 and day 38 among groups. (D) Kaplan-Meier survival analysis of mice survival in different groups. (E) Tumor-specific CTL responses. Spleen cells were collected from alive mice in different groups on day 38 and used as effector (E) cells. TC-1 cells were used as target (T) cells. The cellular immune response against E7E6 was determined by lactate dehydrogenase (LDH) release assay. Various E/T ratios were tested as indicated. The data were presented as means \(\pm SE \). (F) The levels of specific anti-E7E6 serum IgG were determined by ELISA assay on day 24 and 38. The antibody levels of each group were presented as mean OD values \(\pm SE \).

doi:10.1371/journal.pone.0108892.g004
Sig-E7(detox)-Hsp70 fusion protein showed completely histological regression in three out of nine patients in the highest-dose cohort, although the difference is not significant compared with the unvaccinated cohort [25]. These clinical studies have encouraged other studies. However, efficient therapeutic vaccines still need to be conducted to control HPV-related malignant diseases.

Strengthening immune responses against HPV E6 and E7 is the key to control the progress of HPV-associated malignant diseases. In the present study, CTLA-4 fusion DNA vaccine was used to enhance specific anti-HPV16 E7E6 immune responses. CTLA-4 or CD152 is principally expressed on the surface of helper T-cells (Th). CTLA-4 is the receptor of B7 molecules mainly expressed on the surface of APCs. Boyle et al. [26] fused CTLA-4 with human IgG and dramatically strengthened immune responses against human IgG. CTLA-4 was also fused with antigens of Streptococcus mutans, a well-documented cariogenic bacterium, and significantly enhanced specific immune responses and anti-caries effects [12]. In the present study, CTLA-4 was used to develop anti-HPV DNA vaccines. Similar to our previous study, the present study showed that CTLA-4 significantly enhanced humoral immune responses against HPV16 E7E6 in both preventive and therapeutic immunization experiments. Furthermore, pCTLA4-E7E6 showed relatively stronger specific CTL responses and anti-tumor effects than pE7E6 based on the results of therapeutic immunization experiment.

CTLA-4 is a negative regulator of immune responses. In the present study, the signal peptide and extracellular domains of human CTLA-4 were fused with E7E6. The CTLA-4 fragment bound to CD80 and CD86, and negatively regulated immune responses. Human CTLA-4 also induced anti-CTLA-4 antibody (Figure S2) and may promote anti-tumor immune responses. Many studies have reported that the negative regulatory function of CTLA-4 might be blocked by anti-CTLA-4 antibody. Tumor growth may be suppressed by either DNA vaccines against CTLA-4 or purified specific anti-CTLA-4 monoclonal antibody [27,28]. Thus, the mechanism by which CTLA-4 fusion DNA vaccine enhances immune responses needs further exploration.

Zheng et al. [29] attempted to utilize CTLA-4 to enhance anti-HPV immune responses. They found that a recombinant fusion

Figure 5. Anti-tumor preventive efficacy of pCTLA4-E7E6. (A) Effects on tumor growth by preventive vaccination. Mice were vaccinated with pCTLA4-E7E6, pE7E6, pVAX1 or PBS twice on day 0 and 14. On day 28 mice were challenged with 6×10^6 TC-1 tumor cells. Tumor size was recorded twice or thrice a week. (B) Kaplan-Meier survival analysis of mice survival in different groups. (C) Tumor specific CTL responses. Spleen cells were collected from alive mice in different groups on day 60 and used as effector (E) cells. TC-1 cells were used as target (T) cells. The cellular immune response against E7E6 was determined by lactate dehydrogenase (LDH) release assay. Various E/T ratios were tested as indicated. The data were presented as means ± SE. (D) The levels of specific anti-E7E6 serum IgG were determined by ELISA assay on day 14, 28, and 60. The antibody levels of each group were presented as mean OD values ± SE. doi:10.1371/journal.pone.0108892.g005
protein consisting of extracellular regions of CTLA-4 and HPV16 E7 can generate more specific antibodies and stronger specific CTL responses than the E7 protein alone. In the present study, a DNA vaccine encoding a fusion protein was constructed by fusing the extracellular region of CTLA-4 with both E6 and E7 genes. DNA vaccines generally display stronger and longer cellular anti-tumor immune responses than protein vaccines.

In tumor therapy treatment, cytotoxicity response is crucial in killing tumor cells. Aside from T-cell mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) has also attracted attention in the field of tumor therapy [30]. Therapeutic antibodies against tumors specifically bind and lyse tumor cells through ADCC or complement-mediated cytotoxicity [31]. Neutrophils [32], macrophages, and natural killer cells [33] reportedly express Fc receptors and mediate antibody-induced anti-tumor effects. Anti-E7E6 antibody may identify E7 or E6 peptides expressed on tumor cells. Increased specific anti-E7E6 antibody induced by pCTLA4-E7E6 may enhance its anti-tumor effects.

In summary, fusing CTLA-4 with E7 and E6 can enhance cellular and humoral immune responses against HPV16. This strategy may provide useful ideas for developing therapeutic HPV DNA vaccines. However, further studies are needed to optimize the strategy.

References

1. Marur S, D’Souza G, Westra WH, Forastiere AA (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11: 781–789.
2. Pyriv D, Maio D (2008) Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol 5: 24–31.
3. Paavonen J, Jenkins D, Bosch FX, Naud P, Salmeron J, et al. (2007) Efficacy of a prophylactic adjuvant bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369: 2161–2170.
4. Gilliam AR, Palefsky JM, Goldstone S, Moreira EJ, Penny ME, et al. (2011) Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med 364: 401–411.
5. Joura EA, Leodolter S, Hernandez-Avila M, Wheeler CM, Perez G, et al. (2007) Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369: 1693–1705.
6. Lehtinen M, Dillner J (2013) Clinical trials of human papillomavirus vaccines and beyond. Nat Rev Clin Oncol 10: 400–410.
7. Morie A, Tsen SW, Hung CF, Wu TC (2009) Therapeutic HPV DNA vaccines. Expert Rev Vaccines 8: 1221–1235.
8. Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, et al. (2013) Comprehensive control of human papillomavirus infections and related diseases. Vaccine 31 Suppl 8: I1–I31.
9. Kawana K, Achi K, Kojima S, Kosuma S, Fuji T (2012) Therapeutic Human Papillomavirus (HPV) Vaccines: A Novel Approach. Open Viral J 6: 264–269.
10. Zur H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.
11. Carter P (2004) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1: 118–129.
12. Jia R, Guo JH, Fan MW, Bian C, Zhen Z, et al. (2006) Immunogenicity of CTLA4 fusion anti-caries DNA vaccine in rabbits and monkeys. Vaccine 24: 5192–5200.
13. Jia R, Guo JH, Fan MW (2012) The effect of antigen size on the immunogenicity of antigen presenting cell targeted DNA vaccine. Int Immunopharmacol 12: 21–25.
14. Yin Y, Wu C, Song J, Wang J, Zhang E, et al. (2011) DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2-type responses and cleared HBV with an accelerated kinetic. PLoS One 6: e22524.
15. O’Day SJ, Hamid O, Urba WJ (2007) Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110: 2614–2627.
16. McLaughlin-Drebin ME, Mungur K (2009) The human papillomavirus E7 oncoprotein. Virulence 384: 335–344.
17. Dyson N, Guida P, Mungur K, Harlow E (1992) Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 66: 6893–6902.

Supporting Information

Figure S1 FACs analysis of the binding ability of CTLA-4-E7E6 fusion protein to mouse dendritic cell DC2.4. Cells were incubated with the supernatants of cultured media from the 293 cells transfected with pCTLA4-E7E6, pE7E6, or pVAX1. The binding of the CTLA-4-E7E6 fusion protein to cells was detected by FITC labeled goat anti-human IgG antibody (Sigma) and analyzed by FACS. Geometric mean fluorescence intensities of cells transfected by pCTLA4-E7E6, pE7E6, and pVAX1 were 42.91, 7.55, and 2.86 respectively. (TIF)

Figure S2 Anti-CTLA-4 antibody levels in therapeutic (A) or preventive (B) vaccination. The levels of specific anti-CTLA-4 serum IgG were determined by ELISA assay. The antibody levels of each group were presented as mean OD values ± SE. (TIF)

Author Contributions

Conceived and designed the experiments: LG RJ JG MF. Performed the experiments: LG RJ LZ JG. Analyzed the data: LG RJ JG MF. Contributed reagents/materials/analysis tools: LG MF. Wrote the paper: LG RJ JG MF.

18. Mungur K, Werness BA, Dyson N, Phelps WC, Harlow E, et al. (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8: 4699–4705.
19. Schwartz SM, Daling JR, Doody DR, Wipf GC, Carter JJ, et al. (1998) Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst 90: 1626–1636.
20. Smith EM, Richie JM, Summervell KG, Hoffman HT, Wang DH, et al. (2004) Human papillomavirus in oral exfoliated cells and risk of head and neck cancer. J Natl Cancer Inst 96: 449–455.
21. Einstein MH, Kadosh AS, Burk RD, Kim MY, Wadler S, et al. (2007) Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 106: 453–460.
22. Roman LD, Wizcynski S, Mardersch LL, Burnett AT, O’Meara A, et al. (2007) A phase II study of Ip-7 (SGN-001) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol 106: 538–546.
23. Funder AN, Trismam AJ, Davidson EJ, Tomlinson AE, Man S, et al. (2006) Comprehensive control of human papillomavirus infections and related diseases. Vaccine 31 Suppl 8: I1–I31.
24. Garcia P, Perry KF, Mardersch L, Gold MA, Brady P, et al. (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103: 317–326.
25. Trimble CL, Peng S, Kos F, Gravit P, Vascidi R, et al. (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15: 361–367.
26. Boyle JS, Bradley JL, Lew AM (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392: 406–411.
27. Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12: 864–872.
28. Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13: 5.
29. Zheng Y, Zhang Y, Ma Y, Wan J, Shi C, et al. (2008) Enhancement of anti-CTLA-4 antibody levels of each group were presented as mean OD values ± SE.
30. Liu J (2013) The role of CTLA-4 in the therapeutic effects of HP vaccine in cervical cancer by fusion with CTLA4 extracellular region. J Microbiol 6: 726–736.
31. Kohrt HE, Hroust R, Marabelle A, Cho HJ, Osman K, et al. (2012) Combination strategies to enhance antitumor ADCC. Immunotherapy 4: 511–527.
32. Smith EM, Richie JM, Summervell KG, Hoffman HT, Wang DH, et al. (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103: 317–326.
33. Trimble CL, Peng S, Kos F, Gravit P, Vascidi R, et al. (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15: 361–367.
34. Boyle JS, Bradley JL, Lew AM (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392: 406–411.
35. Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12: 864–872.
36. Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13: 5.