A Polymorphism (rs1801018, Thr7Thr) of BCL2 is Associated with Papillary Thyroid Cancer in Korean Population

Young Gyu Eun, MD* · Il Ki Hong, MD1* · Su Kang Kim, MS2 · Hyun-Kyung Park, MD3 · Sam Kwon, MD4
Dae Han Chung, MD5 · Kee Hwan Kwon, MD5

Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon; 1Department of Nuclear Medicine, Kyung Hee University School of Medicine, Seoul; 2Kohwang Medical Research Institute, Kyung Hee University, Seoul; 3Department of Emergency Medicine, Kyung Hee University School of Medicine, Seoul; 4Department of Endocrinology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon; 5Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Seoul, Korea

INTRODUCTION

Thyroid cancer is the most common cancer between ages 15 years and 64 years, and the most common cancer in women in Korea (1). The incidence of thyroid cancer has increased during the past 15-20 years, particularly for papillary thyroid cancer (PTC), which is the predominant subtype of malignant thyroid cancers (2, 3). Ionizing radiation exposure, diet, smoking, and hormonal factors are the risk factors for thyroid cancer (4, 5). Genetic predisposition has been implicated as a risk factor for PTC (6, 7). Case-control studies based on large populations have demonstrated that the genetic risk of thyroid cancer is about three to eight fold higher than that of any other major cancer (8, 9).

Apoptosis is involved in the destructive action of autoimmune thyroid disorders and in cell death of thyroid cancer. Apoptosis, programmed cell death, plays a crucial role in the prevention of uncontrolled cell growth and cancerous cells have developed mechanisms to avoid apoptosis. B-cell CLL/lymphoma 2 (BCL2)
Values are presented as number (%). Numbers are different, because PTC was comprised of 26 males and 66 females. The mean age of the patients was 53.5 \(\pm \) 6.0 years (mean \(\pm \) standard deviation [SD]). The control group was consisted of 222 healthy adults (53.8 \(\pm \) 6.0 years), comprised of 94 males and 128 females. This study was approved by the ethics review board of the Medical Research Institute, Kyung Hee University Medical Center (KMC IRB 1010-05). Written informed consent was obtained from each subject prior to study entry.

Patient subgroups

To determine the nature of the relationship between BCL2 SNPs and the clinicopathologic characteristics of PTC, patients were divided into subgroups according to tumor size (<1 cm and \(\geq \) 1 cm), number of tumors (unifocality and multifocality), location of cancer (one lobe and both lobe), extrathyroid invasion (presence and absence), angiolymphatic invasion (presence and absence) and cervical lymph node metastasis (presence and absence). Demographic characteristics of PTC patients are summarized in Table 1; small differences in subgroup numbers were caused by loss of clinical data.

SNP selection and genotyping

We searched the promoter and coding SNPs of the BCL2 gene in the SNP database of the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/SNP, BUILD 132). SNPs with unknown heterozygosity, minor allele frequency (MAF) below 10\%, and unknown genotype in Asians were excluded. Out of 7 SNPs in the promoter region, there were 3 SNPs with no heterozygosity data, 1 SNP with heterozygosity below 0.05, and 2 SNPs with unknown genotype in Asians. Among 5 coding SNPs, 3 SNPs with heterozygosity were below 0.05 and 1 SNP was with unknown MAF. Finally, two SNPs (rs2279115, -938A/C; rs1801018, Thr7Thr) were selected. These SNPs were also cited in several studies. Blood samples for DNA extraction from each subject were collected in EDTA tube and then stored in a -80°C refrigerator. Genomic DNA was extracted using a QAamp® DNA mini kit (QIAGEN, Valencia, CA, USA). SNP genotyping was determined by direct sequencing. Polymerase chain reactions (PCRs) were performed using specific primers.
for BCL2 SNPs that were selected for analysis: for rs2279115 (sense, 5′-ATAAAACCCTCCCCACCACCT-3′; antisense, 5′-ACAAATTTTCAGTCGGTATTCG-3′; product size, 343 bp) and for rs1801018 (sense, 5′-GGGAAAACACAGAACTCAAGT-3′; antisense, 5′-GGGCTGGAGGAGAAATGC-3′; product size, 334 bp). The PCR products were sequenced using an ABI PRISM 3730XL analyzer (PE Applied Biosystems, Foster City, CA, USA). Sequencing data were analyzed using SeqManII software (DNASTAR, Madison, WI, USA).

Statistical analysis
Continuous variables are presented as mean±SD using the independent t-test and chi square test. Hardy–Weinberg equilibrium (HWE) was calculated using the SNPStats software (http://bioinfo.iconcologia.net/index.php?module=Snpstats) in both patient and control groups. SPSS ver. 18.0 (SPSS Inc., Chicago, IL, USA) program and SNPStats were used to analyze genetic data. Linkage disequilibrium (LD) block and haplotypes were evaluated using Haplovie version 4.2 (23). Multiple logistic regression models adjusted for gender and sex (codominant1, codominant2, dominant, recessive, overdominant, and log-additive) were employed to obtain odds ratios (ORs), 95% confidence intervals (CIs), and P-values. Fisher exact test and Bonferroni correction were also performed. Statistical significance was set at P<0.05.

RESULTS

Genotypic distributions of the two SNPs examined in this study were in HWE (P>0.05, data not shown). Genetic associations between BCL2 and PTC were investigated. Multiple logistic regression analysis was performed: for the promoter SNP rs2279115, -938A/C (codominant 1, C/C vs. A/C; codominant 2, C/C vs. A/C + A/A; dominant, C/C + A/C vs. A/A; recessive, C/C + A/C vs. A/A; overdominant, C/C + A/A vs. A/C; log-additive, C/C vs. A/C vs. A/A) and for the synonymous SNP rs1801018, Thr7Thr (codominant 1, A/A vs. A/G; codominant 2, A/A vs. G/G; dominant, A/A vs. A/G + G/G; recessive, A/A + A/G vs. G/G; overdominant, A/A + G/G vs. A/G; log-additive, A/A vs. A/G vs. G/G).

In analyses of genotype data from 92 PTC patients and 222 controls, the frequencies of BCL2 SNP (rs1801018, Thr7Thr) were different in PTC and control (dominant model [A/A+A/G vs. G/G]; OR, 0.51; 95% CI, 0.26 to 1.00; P=0.042; overdominant model [G/G vs. A/A]; OR, 0.49; 95% CI, 0.25 to 0.99; P=0.036). However, the association disappeared after performing Bonferroni correction. The BCL2 promoter SNP (rs2279115, -938A/C) was not associated with PTC (Table 2).

One LD block by the Gabriel method was made (24). LD block was consisted of rs2279115 and rs1801018 of BCL2, and 3 haplotypes were constructed (Fig. 1). In haplotype analysis, haplotypes were not associated with PTC (Table 3).

When we assessed the genetic relationships between SNPs and subgroups of PTC patients, BCL2 SNP (rs1801018) was significantly associated with PTC multifocality (P=0.036 in genotype frequency after Bonferroni correction; P=0.046 in allele frequency after Bonferroni correction) and bilaterality (P=0.008 in genotype frequency after Bonferroni correction; P=0.012 in allele frequency after Bonferroni correction) (Tables 4 and 5). The

Table 2. Genotype and allele frequencies of SNPs of BCL2 gene in PTC and control subjects

SNP	Type	Control	PTC	Model	OR (95% CI)	P-value	Fisher exact P-value	Bonferroni correction P-value
rs2279115	Genotype	C/C	80 (36.0)	40 (43.5)	Codominant1	0.64 (0.38–1.10)	0.15	0.30
	-938 A/C	A/C	109 (49.1)	37 (40.2)	Codominant2	0.89 (0.43–1.85)	0.80	1.00
	A/A	33 (14.9)	15 (16.3)	Dominant	0.70 (0.42–1.16)	0.17	0.34	
				Recessive	1.13 (0.58–2.21)	0.73	1.00	
				Overdominant	0.67 (0.40–1.10)	0.11	0.22	
				Log-additive	0.67 (0.61–1.24)	0.43	0.86	
Allele C		269 (60.6)	117 (63.6)	1				
A		175 (39.4)	67 (36.4)	0.88 (0.62–1.26)	0.48	0.96		
rs1801018	Genotype	A/A	170 (76.6)	79 (85.9)	Codominant1	0.49 (0.25–0.98)	0.07	0.14
Thr7Thr	A/G	49 (22.1)	12 (13.0)	Codominant2	0.93 (0.09–9.35)	0.76	1.00	
	G/G	3 (1.4)	1 (1.1)	Dominant	0.51 (0.26–1.00)	0.042	0.08	
				Recessive	1.02 (0.10–10.30)	0.98	1.00	
				Overdominant	0.49 (0.25–0.99)	0.036	0.07	
				Log-additive	0.56 (0.30–1.05)	0.06	0.12	
Allele A		389 (87.6)	170 (92.4)	1				
G		55 (12.4)	14 (7.6)	0.58 (0.32–1.08)	0.08	0.16		

The P-values were calculated from logistic regression analyses adjusting sex and age. Bold numbers mean significance association. SNP: single nucleotide polymorphism; BCL2: B-cell CLL/lymphoma 2; PTC: papillary thyroid cancer; OR: odds ratio; CI: confidence interval.
G allele frequencies of rs1801018 in PTC patients with multifocality (13.3%) were about four-fold higher than those in PTC patients with unifocality (3.4%). The G allele frequencies of rs1801018 in PTC patients with both lobes (15.4%) were in

Table 3. Haplotype analysis of BLC2 polymorphisms in PTC and control subjects

Haplotype	Frequency	Control	PTC	Chi square	P-value
CA	0.615	269	175	0.50	0.48
AA	0.275	120	324	0.021	0.65
AG	0.11	55	389	3.04	0.08

Haplotype is comprised of rs2279115 and rs1801018.

Table 4. Genotype and allele frequencies of SNPs of BCL2 gene in PTC patients with unifocality and PTC patients with multifocality

SNP	Type	Unifocality	Multifocality	Model	OR (95% CI)	P-value	Fisher exact P-value	Bonferroni correction P-value
rs2279115 Genotype	C/C	24 (40.7)	14 (46.7)	Codominant1	0.77 (0.29-2.05)	0.69	1.00	
-938 A/C	A/C	25 (42.4)	12 (40.0)	Codominant2	0.62 (0.16-2.43)	0.58	1.00	
	A/A	10 (16.9)	4 (13.3)	Dominant	0.73 (0.30-1.81)	0.50	1.00	
				Recessive	0.71 (0.20-2.53)	0.59	0.77	
				Overdominant	0.88 (0.36-2.17)	0.78	1.00	
				Log-additive	0.79 (0.41-1.49)	0.46	0.96	
Allele A	45 (38.1)	20 (33.3)	1					
Allele C	73 (61.9)	40 (66.7)	1.23 (0.64-2.37)	0.53	1.00			
rs1801018 Genotype	A/A	55 (93.2)	22 (73.3)	1				
Thr7Thr	A/G	4 (6.8)	8 (26.7)	5.00 (1.37-18.31)	0.015	0.018	0.036	
	G/G	0 (0.0)	0 (0.0)					
Allele A	114 (96.6)	52 (86.7)	1					
Allele G	4 (3.4)	8 (13.3)	4.39 (1.26-15.22)	0.020	0.023	0.046		

The P-values were calculated from logistic regression analyses adjusting sex and age. Bold numbers mean significance association.

SNP: singe nucleotide polymorphism; BCL2: B-cell CLL/lymphoma 2; PTC: papillary thyroid cancer; OR: odds ratio; CI: confidence interval.

Table 5. Genotype and allele frequencies of SNPs of BCL2 gene in PTC patients with one lobe and PTC patients with both lobe

SNP	Type	One lobe	Both lobe	Model	OR (95% CI)	P-value	Fisher exact P-value	Bonferroni correction P-value
rs2279115 Genotype	C/C	28 (44.4)	10 (38.5)	Codominant1	1.10 (0.39-3.14)	0.56	1.00	
-938 A/C	A/C	25 (39.7)	12 (46.1)	Codominant2	0.81 (0.19-3.38)	0.87	1.00	
	A/A	10 (15.9)	4 (15.4)	Dominant	1.01 (0.38-2.71)	0.98	1.00	
				Recessive	0.77 (0.21-2.85)	0.69	1.00	
				Overdominant	1.17 (0.45-3.06)	0.75	1.00	
				Log-additive	0.94 (0.48-1.84)	0.85	1.00	
Allele C	45 (35.7)	20 (38.5)	1					
Allele A	81 (64.3)	32 (61.5)	0.89 (0.46-1.73)	0.73	1.00			
rs1801018 Genotype	A/A	59 (93.7)	18 (69.2)	1				
Thr7Thr	A/G	4 (6.3)	8 (30.8)	6.56 (1.77-24.32)	0.005	0.004	0.008	
	G/G	0 (0.0)	0 (0.0)					
Allele A	122 (96.8)	44 (84.6)	1					
Allele G	4 (3.2)	8 (15.4)	5.55 (1.59-19.33)	0.007	0.006	0.012		

The P-values were calculated from logistic regression analyses adjusting sex and age. Bold numbers mean significance association.

SNP: singe nucleotide polymorphism; BCL2: B-cell CLL/lymphoma 2; PTC: papillary thyroid cancer; OR: odds ratio; CI: confidence interval.

Fig. 1. Linkage disequilibrium block consists of rs2279115 and rs1801018.
increased by about five-fold compared to PTC patients with one cancerous lobe (3.2%). However, BCL2 SNPs (rs2279115 and rs1801018) were not associated with size, extrathyroid invasion, angiolymphatic invasion or lymph node metastasis.

DISCUSSION

This is the first study to investigate the association between BCL2 SNPs and PTC in the Korean population. We analyzed the promoter SNP (rs2279115, -938A/C) and synonymous SNP (rs1801018, Thr7Thr) in PTC patients and control subjects. We also assessed the relationships between two SNPs (rs2279115, -938A/C; rs1801018, Thr7Thr) and the clinicopathologic characteristics of PTC. Our results showed that synonymous SNP (rs1801018, Thr7Thr) of the BCL2 was weakly associated with the development of PTC (P=0.042 in dominant model, P=0.082 after Bonferroni correction; P=0.036 in dominant model, P=0.072 after Bonferroni correction). Haplotype was not different between PTC patients and control subjects. Regarding the clinicopathologic features of PTC, the synonymous rs1801018 SNP was associated with the number (unifocality and multifocality) (P=0.018 in genotype frequency adjusting Fisher exact test, P=0.036 after Bonferroni correction; P=0.023 in allele frequency adjusting Fisher exact test, P=0.046 after Bonferroni correction) and the location (one lobe and both lobe) (P=0.004 in genotype frequency adjusting Fisher exact test, P=0.008 after Bonferroni correction; P=0.006 in allele frequency adjusting Fisher exact test, P=0.012 after Bonferroni correction).

In recent times, several genetic studies have reported relationship between PTC and candidate genes, such as WD repeat domain 3 (WDR3) (25), vascular endothelial growth factor A (VEGFA) (26), RAD52 homolog (S. cerevisiae) (RAD52) (27), protein tyrosine phosphatase, receptor type, J (PTPRJ) (28), purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) (29), interleukin 6 (interferon, beta 2; IL6) (30), IL10 (31) and IL11 (32).

There is one study that investigated for the relationship between BCL2 SNPs and thyroid cancer. Ruiz-Llorente et al. (22) reported that a BCL2 SNP was associated with the development of sporadic medullary thyroid cancer (MTC) in the Spanish population. The genotype distribution of the rs1801018 SNP was different between MTC patients and controls (P=0.002 in codominant model, P=0.56 after Bonferroni correction). Their study did not show the promoter SNP (rs2279115, -938A/C) of BCL2 and the clinicopathologic characteristics, such as size, number, location, extrathyroid invasion, and lymph node metastasis of cancers. Although we use PTC instead of MTC, the results show similar patterns. For the exact correlation between BCL2 and thyroid cancer, other studies with larger sample size and based on different populations will be needed. In this study, associations between synonymous SNP (rs1801018, Thr7Thr) and the clinicopathologic features of PTC were found. The rs1801018 was associated with susceptibility to the number of PTC. The A/G genotype and G allele frequencies of rs1801018 in PTC patients with multifocality (A/G genotype, 26.7%; G allele, 13.3%) were about four-fold higher than those in PTC patients with unifocality (A/G genotype, 6.8%; G allele, 3.4%). The rs1801018 was also associated with the location of PTC. The A/G genotype and G allele frequencies of rs1801018 in PTC patients with both lobes (A/G genotype, 30.8%; G allele, 15.4%) were increased by about five-fold, compared to PTC patients with one lobe involvement (A/G genotype, 6.3%; G allele, 3.2%). Therefore, we propose that rs1801018 could be a useful marker for the number and location of PTC, and the G allele of rs1801018 may be a risk factor for multifocality or bilaterality of PTC. Although PTC has a good prognosis following appropriate treatment, the multifocality and bilaterality of PTC are indications for complete thyroidectomy and post-operative radioactive iodine ablation.

To determine whether the promoter SNP affects transcription factors, we used the online program AliBaba 2.1 (http://www.gene-regulation.com/pub/programs/aliBaba2). At the sites of the rs2279115 SNP in BCL2, the A-containing sequences can bind with Id2 and SP1 transcription factors, and the G-containing sequences bind only with SP1. Assuming transcription factor binding varies with promoter SNPs, this promoter SNP may influence gene and protein expressions of BCL2. This study has several limitations. The control group did not undergo thyroid ultrasound to exclude potentially undetected thyroid cancers. Considering the incidence of thyroid cancer (0.5–10/100,000 person), this limitation imposes low impact on this study. Small sample size was another limitation. To confirm our results, additional study with larger sample size should be conducted. Another limitation is absence of study using tumor tissue, the genetic changes of BCL2 will be examined in a cell line and immunohistochemical study in specimen tissue to determine the biologic effects.

In conclusion, our results indicate that synonymous SNP rs2010963 (Thr7Thr) of the BCL2 gene may be associated with the multifocality or bilaterality of PTC, and the G allele could be a risk factor for multifocality or bilaterality of PTC in Korean population.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGEMENT

This present study was sponsored by Hyoseok Research Fund.
REFERENCES

1. National Cancer Information Center. National cancer statistics [Internet]. Goyang: National Cancer Center; 2010 [cited 2011 Jun 20]. Available from: http://www.cancer.go.kr/cms/statics/incidence/index.html#2.

2. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006 May 10;295(18):2164-7.

3. Chen AY, Jemal A, Meli EA. Recent advances in thyroid cancer. Curr Probl Surg. 2008 Mar;45(3):156-250.

4. Multicenter Collaborative Group. Multicenter Collaborative Group. Haplotype block maps and genes of susceptibility to breast cancer. Nat Genet. 2007 Jul;39(1):1-11.

5. Grubbs EG, Rich TA, Li G, Sturgis EM, Younes MN, Myers JN, et al. Role of PTPRJ genotype in papillary thyroid carcinoma risk. Endocr Relat Cancer. 2010 Oct 29;17(4):1001-6.

6. Tanaka K, Matsudaira S, Watanabe K, Takayama K, Sakai S, Hiraoka Y, et al. Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2009 May 1;94(2):788-94.

7. Wang X, Zhang Y, Wang L, Zou J, Chen Z, Wu Y, et al. Bcl2 promoter polymorphism (-938C>A) is associated with adverse outcome in patients with prostate carcinoma. Int J Cancer. 2011 Jan 4 [Epub]. http://dx.doi.org/10.1002/ijc.25904.

8. Heubner M, Winberger P, Otterbach F, Kasimir-Bauer S, Siffert W, Kimmig R, et al. Association of the AA genotype of the BCL2 (-938C>A) promoter polymorphism with better survival in ovarian cancer. Int J Mol Markers. 2009 Oct-Dec;24(4):223-9.

9. Bachmann HS, Otterbach F, Callies R, Nuckel H, Bau M, Schmid KW, et al. The AA genotype of the regulatory BCL2 promoter polymorphism (938C>A) is associated with a favorable outcome in lymph node negative invasive breast cancer patients. Clin Cancer Res. 2007 Oct 1;13(19):5790-7.

10. Hirata H, Hinoda Y, Nakajima K, Kikuno N, Suehiro Y, Tabatabai ZL, et al. The bcl2 -938CC genotype has poor prognosis and lower survival in renal cancer. J Urol. 2009 Aug;182(2):721-7.

11. Lehnerdt GF, Franz P, Bankfalvi A, Greih S, Kelava A, Nuckel H, et al. The regulatory BCL2 promoter polymorphism (-938C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma. Ann Oncol. 2009 Jun;20(6):1094-9.

12. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular cell neoplasia. Nat Rev Cancer. 2006 Apr;6(4):292-306.

13. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse C, et al. Role of PTPRJ polymorphism in papillary thyroid carcinoma risk. Endocr Relat Cancer. 2010 Oct 29;17(4):1001-6.

14. Ruiz-Llorente S, Montero-Conde C, Milne RL, Cebrián A, Leton R, et al. Association study of 69 genes in the ret pathway identifies low-penetrance loci in sporadic medullary thyroid carcinoma. J Natl Cancer Inst. 2007 Oct 1;99(19):1654-61.

15. Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Familial Cancer Database. Int J Cancer. 2002 May 10;99(2):260-6.

16. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1973-2002. JAMA. 2006 May 10;295(18):2164-7.

17. Basolo F, Pollina L, Fontanini G, Fiore L, Pacini F, Baldanzi A. Apoptosis, cell survival, cell death and cell cycle pathways are inter-connected: implications for cancer therapy. Drug Resist Updat. 2007 Feb-Apr;10(1-2):13-29.

18. Eun YG, Shin IH, Kim MJ, Chung JH, Song IV, Kwon KH. Association between promoter polymorphism -106A/G of interleukin 11 receptor alpha and papillary thyroid carcinoma in Korean population. Surgery. In press.