Defying Dissolution: Discovery of Deep-Sea Scleractinian Coral Reefs in the North Pacific

Amy R. Baco1, Nicole Morgan1, E. Brendan Roark2, Mauricio Silva1, Kathryn E. F. Shamberger3 & Kelci Miller2

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535–732 m and aragonite saturation state (Ωarag) values of 0.71–1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

Seamounts with deep-sea scleractinian coral reefs fall into the classification of vulnerable marine ecosystems (VMEs) and ecologically and biologically significant areas (EBSAs), thus they receive special protection status, even on the high seas. Deep-sea coral reefs are vulnerable to anthropogenic stresses, including fishing trawling, which is known to destroy reef structures with recovery likely to take decades to centuries. In addition, anthropogenically induced shoaling of the aragonite saturation horizon (ASH), due to global climate change and ocean acidification, is expected to lead to loss of suitable habitat for slow-growing reef-forming coral species. Thus, determining the locations of deep-sea scleractinian reef sites is important in fisheries management and aids in the development of local, national and international conservation and protection policies.

Deep-sea scleractinian coral reefs are found throughout the North Atlantic and the South Pacific, but thus far have not been discovered in the Central and Northeast Pacific region. Instead, dense beds of octocorals and antipatharians dominate deep-sea hard substrates in this area. Although there are many species of scleractinians in deep waters of the North Pacific, they are predominantly solitary cup corals or individual colonies, rather than the type that accumulate into reefs. The general absence of observations of deep-sea scleractinian reefs in the North Pacific, despite a reasonable amount of exploration, has led to the hypothesis that reef formation in the North Pacific is “unlikely, if not impossible.” This hypothesis is based on two lines of reasoning: one is the relatively shallow ASH in the North Pacific (50–600 m) compared to other regions of the world’s oceans; the other is that carbonate dissolution rates in the North Pacific exceed those of the North Atlantic by a factor of two. Consistent with these observations, habitat suitability modeling for deep-sea scleractinian also shows very little suitable habitat in the North Pacific except for some scattered locations above the ASH.

Despite these expectations, here we report the discovery of live scleractinian reefs at six sites in the North Pacific on seamounts of the Northwestern Hawaiian Islands (NWHI) and Emperor Seamount Chain (ESC) during an exploratory Autonomous Underwater Vehicle (AUV) survey to examine recovery of deep-sea coral communities following fisheries trawling at these sites. We compare the observed reef distribution to the available environmental data and suggest that higher chlorophyll and stronger currents may be factors in the geographic distribution of these reefs. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.
environmental data for the sites where they occur, including aragonite saturation state (Ω_{arag}) and other abiotic factors, to gain insight into how reefs are able to form despite the challenging carbonate chemistry.

Results
Scleractinian reefs were observed on six of the 10 features within our surveyed depth range and occurred at depths of 535–732 m (the maximum depth surveyed) (Figs 1, 2 and 3, Table 1). The linear length of the reefs ranged from ~3–786 m. These values should be viewed as conservative estimates for reef length as the AUV employed in this study follows a preset course heading regardless of what is on the seafloor, as opposed to a survey with a research submersible or Remotely Operated Vehicle (ROV), which would map out the full extent of the reef.

The range of the available environmental parameters observed at the locations at which the scleractinian reefs occurred are summarized in Table 2. The occurrence of reef was shallower moving to the northwest along the seamount chain (Fig. 3A), with a statistically significant non-parametric Spearman Rank correlation ($Rho = -0.389$, $p < 0.0001$) between depth of occurrence and longitude. The Ω_{arag} of seawater at the locations of the reef sites ranged from 0.71–1.33. The ASH deepens moving to the northwest along the NWHI and ESC chains, with the mean depth of scleractinian reefs at several sites falling below the ASH (Fig. 4).

Table 1. Locations surveyed as a part of this study. All sites were surveyed at depths of 200–700 m along contours at 50 m depth intervals inclusive. Sites from Academician and southeast are part of the pre-2016 expansion boundaries of the Papahānaumokuākea Marine National Monument.

Site	LATITUDE N	LONGITUDE	Scleractinian Reef Observed	CTD Cast	CTD Date	Water Depth (m)	Max CTD Depth (m)	Bottle Samples Taken	
Koko Seamount	35.25	171.60	E	Yes	KM15-17 CTD-01	10/9/15	1189	1140	22
Yuryaku Seamount	32.67	172.25	E	Yes	SKQ201401S-001	11/27/14	1061	1000	24
Kammu Guyot	32.17	173.00	E	Yes	KM15-17 CTD-03	10/17/15	1216	1150	18
Northwest Hancock	30.27	178.72	E	Yes	KM15-17 CTD-04	10/20/15	1675	1500	5
Southeast Hancock	29.79	179.07	E	Yes	SKQ201401S-002	12/1/14	1100	1000	20
Zapadnya/Bank 11	28.90	179.60	W	No	SKQ201401S-002	12/1/14	1100	1000	20
Academician Berg	28.80	178.84	W	Yes	KM15-17 CTD-06	10/26/15	1508	1400	18
Pioneer Bank	26.00	173.43	W	No	KM15-17 CTD-06	10/26/15	1508	1400	18
French Frigate Shoals	23.61	166.01	W	No	KM15-17 CTD-07	10/31/15	1509	1000	18
Necker Island	23.65	164.80	W	No	KM15-17 CTD-08	11/5/15	1273	1000	5

Figure 1. Map showing the geographic locations of surveyed sites. Figure created using ArcMap 10.4.1 with basemap provided by ESRI.
polyps and colony morphology, *Enalopsammia rostrata*, a species known to occur at other sites in the Hawaiian Archipelago as individual colonies, was the likely reef-former at Academician, Kammu, Northwest Hancock and Yuryaku Seamounts (Fig. 2C). A second morphotype with orange polyps that is likely *Solenosmilia variabilis* was the abundant species on Koko and both Hancock Seamounts (Fig. 2A,B). At several sites both morphotypes occurred in the same images. We could not do a quantitative analysis of the distribution of either species separately because in many images the resolution was not sufficient to distinguish between them.

Principle Components Analysis (PCA) was performed to determine which environmental factors correlate most strongly with the distribution of scleractinian reefs. PCA shows that each site groups strongly with other points from the same seamount (Fig. 5). Scleractinian reefs sites occupy a small range of PCA axis 2, but a broad range of each of the other four PCA axes. PCA axis 2 was most strongly correlated with sound velocity and the east-west component of the surface current velocity (’u’), suggesting currents may be the most influential of the measured factors on the occurrence of scleractinian reefs (Table 3). There is a clear shift in current direction near the location where the reefs begin, with westward currents dominating to the southeast and eastward currents dominating to the northwest (Fig. 6A).

Discussion

Extensive explorations from Bank 11 to the southeast in the NWHI had so far not discovered any deep-sea coral reefs, even though both submersible dives and ROV explorations had included the same depth zones at several different islands and seamounts11. Indeed, it was thought to be improbable that scleractinian reefs would occur...
in the North Pacific due to carbonate chemistry that is expected to make reef formation and accumulation challenging. The carbonate dissolution rate in the North Pacific peaks between 400–600 m then decreases rapidly with depth\(^1\). This depth range overlaps with the relatively shallow range of the ASH in the North Pacific (50–600 m). Thus, theoretically, the most challenging depth range for reef formation in the North Pacific would begin somewhere around 600 m depth, and continue deeper. Yet, here we document observations of reefs at six seamounts in the NWHI and ESC at depths of 535–732 m.

This begs the question, how is it that the reefs can occur at these sites? One potential insight comes from a closer examination of the ASH depth in Feely et al.\(^1\), which indicates that the ASH becomes deeper moving to the northwest along the NWHI (confirmed by our results in Fig. 4). This suggests that, if the reef-forming species have a narrow depth range tolerance, the likelihood of finding reefs would increase moving to the northwest along the NWHI. That is indeed what we found, reefs were observed on every feature explored to the northwest of Academician Berg except Bank 11. However, if the ASH were the main factor governing the distribution of these corals, we would expect their depth range to stay the same or deepen moving northwest along the chain, paralleling the ASH. Instead the observed depth range becomes shallower. Further, a number of reef sites also occur below the ASH, with measured \(\Omega\text{arag}\) values of 0.71–1.33, together these suggest the ASH is not the primary controlling factor for the distribution of reefs.

Although the ASH would be expected to be a limiting factor for calcifying deep-sea coral species that produce aragonite\(^6\), results are mixed with respect to the response of calcifying species to low \(\Omega\text{arag}\) and pH. Supporting the idea that the ASH would be limiting, laboratory CO\(_2\) exposure experiments have shown that calcification rates of deep-sea corals decrease with decreasing \(\Omega\text{arag}\)\(^{16–20}\), that deep-sea corals produce skeletons that are more susceptible to erosion under low \(\Omega\text{arag}\) conditions\(^2\), and that net dissolution occurs in live corals in undersaturated (\(\Omega\text{arag} < 1\)) waters\(^{18–20}\). However, other experimental studies have shown no response in calcification and respiration rates to changing \(\Omega\text{arag}\)\(^{19,22,23}\), and it has been well documented that deep-sea corals can live and calcify in undersaturated waters\(^{24,25}\). For example, Thresher et al\(^2\) also found a number of deep-sea corals on seamounts south of Tasmania living below the ASH and calcite saturation horizon. An important exception that they note though is that the reef-forming scleractinians, including *Enalopsamnia* and *Solenosmilia*, were limited to depths

![Figure 3. Distribution of observed scleractinian reef with depth and longitude. (A) Box plot based on number of images with reef present at each depth. (B) Histogram showing frequency of occurrence within each depth bin across sites.](image-url)
“saturated or near saturated” with respect to aragonite. In contrast, we find scleractinian reefs in waters with Ω_{arag} well below 1 in the NWHI and ESC.

In fact, a number of studies have suggested that some deep-sea coral species have physiological mechanisms to compensate for undersaturation and to maintain their calcifying processes and internal pH25–27. For example, Thresher et al24 postulated that the non-reef forming scleractinian corals below the ASH might be able to survive due to high regional productivity resulting in an abundant food supply. This food supply could provide the excess energy needed for calcification in undersaturated waters. In contrast, Maier et al18 found that feeding in laboratory experiments did increase calcification rates of the Mediterranean deep-sea coral Madrepora oculata at ambient Ω_{arag}, but feeding had no effect on calcification rates under low Ω_{arag} conditions. While the authors attribute this to the small fraction (1–3%) of the total metabolic energy demand required for calcification in Madrepora oculata, this does not explain why feeding appears to have enhanced calcification at ambient Ω_{arag}. Georgian et al28 found that net calcification, respiration and prey capture rates of Lophelia pertusa from the Gulf of Mexico decreased with decreasing pH and Ω_{arag} but, in the same species from Norway, respiration and prey capture rates

| Table 2. Summary of available environmental data for each seamount in this study at the sites where scleractinians were observed, including both transect and non-transect data. |
|-----------------|---|---|---|---|---|---|
| Statistic | Koko | Yuryaku | Kammu | NW Hancock | SE Hancock | Academician |
| Latitude | Mean | 35.02 | 32.71 | 31.88 | 30.27 | 29.81 | 28.82 |
| Graphable Longitude | Mean | 188.01 | 187.76 | 186.85 | 181.28 | 180.93 | 178.92 |
| Pressure (db) | Mean 507.73 | 608.04 | 598.95 | 684.44 | 645.22 |
| Std Err | 0.38 | 2.15 | 0.75 | 4.40 | 2.81 |
| O\textsubscript{2} (μM) | Mean | 216.64 | 135.97 | 185.53 | 170.49 | 111.14 | 154.14 |
| Std Err | 0.70 | 1.47 | 0.76 | 2.01 | 1.34 |
| Temperature (°C) | Mean 9.72 | 5.66 | 7.43 | 7.04 | 5.33 |
| Std Err | 0.03 | 0.05 | 0.03 | 0.07 | 0.03 |
| Conductivity (siemens/m) | Mean 3.72 | 3.35 | 3.51 | 3.47 | 3.32 |
| Std Err | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| Chl a (μg/m3) | Mean | 0.17 | 0.13 | 0.11 | 0.09 | 0.08 |
| Std Err | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| Backscatter (dv) | Mean | 20.03 | 22.78 | 22.80 | 20.86 | 22.53 |
| Std Err | 0.12 | 0.16 | 0.50 | 0.47 |
| Roughness | Mean | 24.07 | 14.71 | 2.65 | 16.56 | 20.21 |
| Std Err | 0.83 | 0.75 | 0.32 | 0.62 |
| Slope (% rise) | Mean | 9.09 | 11.83 | 6.34 | 6.38 | 9.07 |
| Std Err | 0.43 | 0.60 | 0.86 | 0.24 |
| NO\textsubscript{3}− (μmol/L) | Mean | 20.95 | 35.59 | 25.32 | 34.79 |
| Std Err | 0.00 | 0.00 | 0.34 | 0.00 |
| HPO\textsubscript{4}2− (μmol/L) | Mean | 1.70 | 2.75 | 2.08 | 2.66 |
| Std Err | 0.00 | 0.00 | 0.02 |
| HSIO\textsubscript{3}− (μmol/L) | Mean | 36.64 | 90.96 | 50.47 | 79.93 |
| Std Err | 0.00 | 0.00 | 0.94 |
| NH\textsubscript{4}+ (μmol/L) | Mean | 0.12 | 0.00 | 0.25 | 0.11 |
| Std Err | 0.00 | 0.00 | 0.00 |
| NO\textsubscript{2}− (μmol/L) | Mean | 0.01 | 0.04 | 0.03 | 0.06 |
| Std Err | 0.00 | 0.00 | 0.00 |
| NO\textsubscript{3}−+NO\textsubscript{2}− (μM) | Mean | 20.96 | 35.63 | 25.35 | 34.86 |
| Std Err | 0.00 | 0.00 | 0.34 |
| TA (μmol/kg) | Mean | 2272.92 | 2306.85 | 2276.99 | 2297.69 |
| Std Err | 0.00 | 0.00 | 0.54 |
| DIC (μmol/kg) | Mean | 2152.57 | 2272.53 | 2191.40 | 2251.53 |
| Std Err | 0.00 | 0.00 | 2.33 |
| pH | Mean | 7.90 | 7.68 | 7.81 | 7.71 |
| Std Err | 0.00 | 0.00 | 0.00 |
| pCO\textsubscript{2} | Mean | 533.50 | 906.50 | 669.01 | 832.00 |
| Std Err | 0.00 | 0.00 | 7.02 |
| Ω_{cal} | Mean | 2.09 | 1.12 | 1.67 | 1.22 |
| Std Err | 0.00 | 0.00 | 0.02 |
| Ω_{arag} | Mean | 1.33 | 0.71 | 1.06 | 0.78 |
| Std Err | 0.00 | 0.00 | 0.01 |
increased, and calcification only decreased slightly with declining Ω_{arag}. These results suggest that local environmental conditions, including food supply, could result in regional differences in the ability of deep-sea corals to adapt and/or acclimate to ocean acidification.

While the main Hawaiian Islands and much of the NWHI are located in oligotrophic waters, there is a transition to higher chlorophyll waters moving to the northwest, characterized by a front referred to as the Transition Zone Chlorophyll Front (TZCF). The position of this front varies seasonally and annually, crossing the Archipelago somewhere near 180° longitude in the years it reaches its maximum extent, very close to our southeastern most site with reefs, Academician Berg at 178.84°W. Figure 6B shows the annual mean surface water chlorophyll concentration across this region averaged over the period 2008–2016. Sites with reefs have higher mean annual chlorophyll than those without. Thus higher chlorophyll, while not an explanation for why

Figure 4. Depth of the aragonite saturation horizon (ASH) at each site with the mean depth of occurrence of scleractinian reef for each site. Black squares are mean ASH depth for each site. White triangles are mean + 1 SD for reef occurrence depth. Note that the mean depth of reefs falls below the ASH for most sites.

Figure 5. PCA plot of available environmental data after removal of variables that were more than 90% correlated. Each point represents a single 1 km AUV transect.
The occurrence of the observed coral reefs in the NWHI and ESC was limited to sites located outside the pre-2016 expansion boundaries of the Papahānaumokuākea Marine National Monument, including several seamounts with active trawling. This raises concern for protection of these fragile habitats and the question of what their extent might have been in this region prior to trawling. Additionally, the long-term response to increasing...
seawater CO₂ levels by marine calcifying organisms susceptible to ocean acidification is a major concern for the management and conservation of corals. Determining the tie of these species distributions to Ω is becoming time-critical because the ASH is expected to continue shoaling in this region as anthropogenic CO₂ continues to increase in the atmosphere and ocean, which could further limit suitable habitat and thus threaten reef-forming scleractinians.

Methods
As part of a project examining the recovery potential of deep-sea coral communities impacted by trawling in the NWHI and ESC, we explored 10 seamounts at depths of 200–700 m using the AUV Sentry during cruises in

Figure 6. (A) One year average (2015–2016) raster of the eastward surface water velocity (u) across the study area. Positive values (blue) show predominance of eastward currents. Negative values (red) represent westward prevailing currents. Figure created using ArcMap 10.4.1 using HYCOM data as described in the methods. (B) Eight year average composite raster of surface chlorophyll-a concentration (2008–2016). Black contour delimits 0.07 mg/m³ chl-a concentration. Figure created using ArcMap 10.4.1 using satellite data obtained from Aqua-MODIS satellite available on the ERDDAP data set as described in the methods. In both panels white circles indicate the location of transects with scleractinian reefs and stars indicate transects which did not include reef structures.
2014 and 2015 (Table 1, Fig. 1). On each seamount three sides of the seamount were surveyed and on each side, replicate photo transects of 1000 m length were conducted. During image transects, the speed of the AUV was 0.5–0.7 m/s and the vehicle was approximately 5 m above the bottom.

All images taken during and between transects were scanned for presence of scleractinian reefs using enlarged thumbnails on a Macintosh computer. Images with scleractinians were then viewed more closely in Preview v 7.0 (Apple Inc.) and categorized into one of four categories — “Definite live reef” — which included images of reef that had visible open polyps; “Likely live reef” — images of reef with no visible polyps but areas of lighter colored skeleton similar to the skeleton found on the colonies with live polyps. Generally these images also occurred in proximity to images with definitely live reef. “Reef patches” — areas with smaller clusters of colonies that appeared live but did not form a continuous reef structure, and “Coral rubble” — areas with an accumulation of scleractinian coral skeleton fragments but no evidence of live colonies. For the environmental analyses, only images that fell into the first three categories were used.

Environmental data for the seamounts were obtained from several sources. A Seabird SBE49 Conductivity-Temperature-Depth (CTD) with a Seapoint optical backscatterer (OBS) sensor and an Aanderaa optode (model 4330) oxygen concentration sensor on the AUV Sentry provided in situ temperature, salinity, depth, dissolved oxygen and turbidity data that was linked directly to each image that was taken.

A Sea-Bird Electronics, Inc. (SBE) 911plus conductivity-temperature-depth (CTD) instrument with a rosette of twenty-four 10 L Niskin bottles was used to record water column environmental profiles and collect water samples. The CTD included sensors to measure temperature, salinity, pressure, sound velocity (Chen-Miller [m/s]), dissolved oxygen (SBE 43 [μmol/l]), and fluorescence (Wetlab ECO-AFL/LF [mg/m²]). The hydrocasts were conducted down to 800 to 1200 m water depth as close to the AUV survey areas as possible, typically within 1–4 km. At each site, at least one “high resolution” profile was completed with water samples taken at uniform standard depths (5, 25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200 m) with the final sample taken as near to the bottom as possible (~25 m off of the bottom). At least 3 Niskin bottles were used as duplicate samples. Additional “low resolution” profiles with water samples taken at 5, 125, 300, 700 and 1000 m and CTD only characterizing profiles were made at additional locations around the site to characterize the local heterogeneity. All hydrographic data were processed using the SBE data processing software using current manufacture calibrations. The locations, water depths, and sampling depths are listed in Table 1.

Dissolved nutrient seawater samples collected at each CTD station were stored in acid-cleaned high-density polyethylene 20 mL scintillation vials. Vials were rinsed and triple filled with sample seawater before saving the final sample for analysis. Samples were immediately frozen until analyzed at the Geochemical and Environmental Research Group at Texas A&M University, College Station. Nutrient samples were analyzed on an Astoria-Pacific auto-analyzer using nitrate/nitrite/silicate methods based on Armstrong et al.34; phosphate methods based on Bernhardt and Wilhelms35; and ammonium methods based on Harwood and Kuhn36. The dissolved inorganic nitrogen (DIN) concentrations were calculated as the sum of nitrite, nitrate, and ammonium concentrations. Analytical detection limits were 0.01 μM for phosphate, 0.003 μM for nitrite, 0.05 μM for nitrate and silicate, and 0.08 μM for ammonium.

Discrete water samples were collected from Niskin bottles for total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements into 250 ml borosilicate glass bottles by rinsing and triple filling, taking care to prevent bubbles in the sampling tubing and bottles. Water samples were preserved with 100 μl of saturated mercuric chloride (HgCl₂) and ground glass stoppers were sealed with Apege glass grease and electrical tape. TA and DIC analyses were performed with a Versatile Instrument for the Determination of Titration Alkalinity (VINDTA) produced by Marianda Marine Analytics and Data. The VINDTA uses coulometric titration for DIC analysis and an open cell potentiometric titration for TA analysis. DIC and TA measurements were standardized with certified reference materials obtained from Andrew Dickson at Scripps Institution of Oceanography.37, 38. Analyses of replicate samples yielded a mean precision of approximately 2.5 μmol/kg.

Salinity, temperature, TA, and DIC data (average, maximum, and minimum) for all data sets.

Summary statistics for the environmental data and determination of depth distributions were completed in JMP pro v 12.0.145. These analyses included all images with scleractinian reefs, regardless of whether they were taken on a transect or during transits between transects. Oceanographic CTD profiles were plotted using Ocean Data View software46.
To try to tease out what environmental factors were most correlated with scleractinian distributions, we performed a PCA including all transects from the AUV Sentry regardless of scleractinian presence or absence. We did not include data for transects between the transects in the PCA. Environmental data for the PCA plot were log (x+1) transformed and normalized in Primer v. 7.0.15. Draftsman plots showed a strong correlation among many of the environmental variables even after transformation and normalization. Thus the environmental data was reduced by eliminating 1 environmental variable out of each pair with a >90% correlation (Supplemental Table 1). Correlational PCA was then completed in PRIMER using 22 environmental variables.

References
1. Parker, S. J., Penney, A. J. & Clark, M. R. Detection criteria for managing trawl impacts on vulnerable marine ecosystems in high seas fisheries of the South Pacific Ocean. Mar. Ecol. Prog. Ser. 397, 309–317 (2009).
2. Clark, M. R. & Rowden, A. A. Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand. Deep-Sea Res. I. 56, 1540–1554 (2009).
3. Althaus, F. et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar. Ecol. Prog. Ser. 397, 279–294 (2009).
4. Williams, A. et al. Seamount megabenthic assemblages fail to recover from trawling impacts. Mar. Ecol. 31, 183–199 (2010).
5. Guinotte, J. M. et al. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front. Ecol. Environ. 4, 141–146 (2006).
6. Ardron, J. A. et al. A systematic approach towards the identification and protection of vulnerable marine ecosystems. Mar. Policy 49, 156–154 (2014).
7. Parrish, F. A. & Baco, A. R. In The State of Deep Coral Ecosystems of the United States: 2007 (eds Lumsden, S. E., Hourigan, T. F., Bruckner, A. W. & Dorr, G.) 115–194 (National Oceanic and Atmospheric Administration, 2007).
8. Baco, A. R. Exploration for deep-sea corals on north Pacific seamounts and islands. Oceanography 20, 108–117 (2007).
9. Cairns, S. D. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322 (2007).
10. Stone, R. P. & Shotwell, S. K. In The State of Deep Coral Ecosystems of the United States (eds Lumsden, S. E., Hourigan, T. F., Bruckner, A. W. & Dorr, G.) 65–108 (NOAA Technical Memorandum CRCP-3, 2007).
11. Parrish, F. A., Baco, A. R., Kelley, C. & Reiswig, H. In The State of Deep-Sea Coral and Sponge Ecosystems of the United States (eds Hourigan, T. F., Etnoyer, P. J. & Cairns, S. D.) 1–38 (NOAA Technical Report, 2015).
12. Whitmire, C. E. & Clarke, M. E. In The State of Deep Coral Ecosystems of the United States (eds Lumsden, S. E., Hourigan, T. F., Bruckner, A. W. & Dorr, G.) 109–154 (NOAA Technical Memorandum CRCP-3, 2007).
13. Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
14. Tittensor, D. P. et al. Predicting global habitat suitability for stony corals on seamounts. J. Biogeogr. 36, 1111–1128 (2009).
15. Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS One 6, e18483 (2011).
16. Maier, C., Hegeman, J., Weinbauer, M. G. &Gattuso, J.-C. Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH. Biogeosciences 6, 1671–1680 (2009).
17. Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J.-C. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. Roy. Soc. B-Biol. Sci. 279, 1716–1723 (2012).
18. Maier, C. et al. Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J. Exp. Biol. 219, 3208–3217 (2016).
19. Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biol. 18, 843–853 (2012).
20. Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1, 78 (2014).
21. Henning, S. J. et al. Hidden impacts of ocean acidification to live and dead coral framework. P. Roy. Soc. B-Biol. Sci. 282, 20150990 (2015).
22. Maier, C. et al. End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8, e62655 (2013).
23. Maier, C. et al. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10, 5671–5680 (2013).
24. Thresher, R. E., Tilbrook, B., Fallon, S., Wilson, N. C. & Adkins, J. Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar. Ecol. Prog. Ser. 442, 87–99 (2011).
25. Lebrato, M. et al. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Global Biogeochem. Cycles 30, 1038–1053 (2016).
26. Dupont, S., Dorey, N., Stumpf, M., Melzner, F. & Thordyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).
27. Wood, S. et al. El Nino and coral larval dispersal across the eastern Pacific marine barrier. Nature Communications 7, 1–11 (2016).
28. Georgian, S. E. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. 37, 1345–1359 (2016).
29. Baker, A. R. et al. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation. Deep Sea Res. 154, 1704–1720 (2007).
30. Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61 (1986).
31. Silva, M. & MacDonald, I. R. The mesophotic coral habitat in northeastern Gulf of Mexico: Suitability Modeling. Mar. Ecol. Prog. Ser. (in review).
32. Heegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
33. Feely, R. A. et al. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochem. Cycles 26, GB3001 (2012).
34. Armstrong, F. A. J., Stearns, C. R. & Strickland, J. D. H. The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer® and associated equipment (Deep Sea Research and Oceanographic Abstracts Ser. 14, Elsevier, 1967).
35. Bernhardt, H. & Wilhelms, A. The continuous determination of low level iron, soluble phosphate and total phosphate with the AutoAnalyzer (Technicon Symposia Ser. 1, 1967).
36. Harwood, J. E. & Kuhn, A. L. A colorimetric method for ammonia in natural waters. Water Res 4, 805–811 (1970).
37. Dlhave, F. G. Reference material for oceanic CO2 measurements. Oceano. 14, 21–22 (2001).
38. Dickson, A. G., Sabine, C. L. & Christian, J. R. In Guide to best practices for ocean CO2 measurements. (North Pacific Marine Science Organization, 2007).
39. Lewis, E. & Wallace, D. In Program developed for CO2 system calculations (Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy Tennessee, 1998).
40. Mehrbach, C., Culberson, C., Hawley, J. E. & Pytkowik, R. Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol. Oceanogr. 6, 897–907 (1973).
41. Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. A 34, 1733–1743 (1987).
42. Simons, R. A. ERDDAP–The Environmental Research Division’s Data Access Program. Available at http://coastwatch.pfeg.noaa.gov/erddap [2016] (2011).
43. ESRI. ArcGIS Desktop: Release 10.4.1 Redlands, CA: Environmental Systems Research Institute (2016).
44. QGIS Development Team. QGIS 2.14.3 Geographic Information System User Guide. Open Source Geospatial Foundation Project. Electronic document: http://docs.qgis.org/2.14/en/docs/user_manual (2016).
45. SAS Institute Inc., JMP®, Version 12.0.1. Cary, NC (1989–2007).
46. Schlitzer, R. Ocean Data View. 2012. (2015).
47. Clarke, K. R. & Gorley, R. N. In Getting started with PRIMER V7 (Plymouth, Plymouth Marine Laboratory, 2015).

Acknowledgements
We would like to thank the crew of the RV Sikuliaq and RV Kilo Moana as well as the AUV Sentry team. Shamberger NSF REU students Jahna Brooks and Ashley Davis assisted with carbonate chemistry analyses. Arvind Shantharam, Mackenzie Schoemann, and John Schiff provided assistance at sea. Stephen Cairns and Sandra Brooke assisted with tentative identifications of the scleractinian images. Ron Etter, Markus Huettel, Sven Kranz and Mike Stukel provided valuable discussion on regression statistics. This work was conducted through support from NSF grant #s OCE-1334652 to ARB and OCE-1334675 to EBR. Work in the Papahānaumokuākea Marine National Monument was permitted under permit #PMNM-2014-028. We used the publicly available output from http://hycom.org. Funding for the development of HYCOM has been provided by the National Ocean Partnership Program and the Office of Naval Research. Data assimilative products using HYCOM are funded by the U.S. Navy. Computer time was made available by the DoD High Performance Computing Modernization Program.

Author Contributions
Author contributions: A.R.B., E.B.R., designed research; N.M., E.B.R., A.R.B., K.M., performed field research; N.B.M. and A.R.B. analyzed images, K.E.F.S., K.M., E.B.R., analyzed water column chemistry; M.S. obtained and analyzed chlorophyll, POC and surface current data; A.R.B. compiled and analyzed the datasets; A.R.B., N.B.M., M.S., K.E.F.S. and E.B.R. wrote the manuscript.; All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05492-w

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017