THE SIMILARITY DEGREE OF SOME C*-ALGEBRAS

DON HADWIN and WEIHUA LI

Abstract

We define the class of weakly approximately divisible unital C*-algebras and show that this class is closed under direct sums, direct limits, any tensor product with any C*-algebra, and quotients. A nuclear C*-algebra is weakly approximately divisible if and only if it has no finite-dimensional representations. We also show that Pisier’s similarity degree of a weakly approximately divisible C*-algebra is at most five.

2010 Mathematics subject classification: primary 46L05; secondary 46A22, 46H25, 46M10, 47A20.

Keywords and phrases: Kadison similarity problem, similarity degree, tracially nuclear, C*-algebra.

1. Introduction

One of the most famous and oldest open problems in the theory of C*-algebras is Kadison’s similarity problem [12], which asks whether every bounded unital homomorphism \(\rho \) from a C*-algebra \(\mathcal{A} \) into the algebra \(B(H) \) of operators on a Hilbert space \(H \) must be similar to a \(*\)-homomorphism, that is, does there exist an invertible \(S \in B(H) \) such that \(\pi(A) = S \rho(A)S^{-1} \) defines a \(*\)-homomorphism? One measure of the quality of a good problem is the number of interesting equivalent formulations. In this regard Kadison’s problem gets high marks.

(1) Inner derivation problem [4, 13]: if \(\mathcal{M} \subseteq B(H) \) is a von Neumann algebra and \(\delta : \mathcal{M} \to B(H) \) is a derivation, does there exist a \(T \in B(H) \) such that, for every \(A \in \mathcal{M} \),

\[\delta(A) = AT - TA \]

(2) Hyperreflexivity problem [4, 13]: if \(\mathcal{M} \subseteq B(H) \) is a von Neumann algebra, does there exist a \(K, 1 \leq K < \infty \), such that, for every \(T \in B(H) \),

\[\text{dist}(T, \mathcal{M}) \leq K \sup\{\|PT - TP\| : P \in \mathcal{M}', \ P = P^* = P^2\} \]

(3) Dixmier’s invariant operator range problem [6] (Foiaş [7], Pisier [21, Theorem 10.5], see also [10]): if \(\mathcal{M} \subseteq B(H) \) is a von Neumann algebra, \(A \in B(H) \) and \(T(A(H)) \subseteq A(H) \) for every \(T \in \mathcal{M} \), then does there exist \(D \in \mathcal{M}' \) such
that $A(H) = D(H)$? Paulsen [16] proved that an affirmative answer is equivalent to the assertion that the range of $A \oplus A \oplus \cdots$ is invariant for $M \otimes \mathcal{K}(\ell^2)$.

In [8] Haagerup proved that Kadison’s question has an affirmative answer whenever the representation ρ has a cyclic vector, a result that is independent of the structure of the algebra \mathcal{A}. Haagerup [8] also showed that a homomorphism ρ is similar to a $*$-homomorphism if and only if ρ is completely bounded. (See also [3]; see the union of [9] and [26] for another proof; see [16, 17] for a lovely exposition of these ideas.) In [18] Pisier proved that, for a fixed C^*-algebra \mathcal{A}, every bounded homomorphism of \mathcal{A} is similar to a $*$-homomorphism if and only if $\rho(\mathcal{A})$ is bounded, $\rho(\mathcal{T}) = D^{-1}TD = (2^{j-i}A_{ij})$ is bounded, then Kadison’s similarity problem has an affirmative answer if and only if, for every unital C^*-subalgebra \mathcal{A} of \mathcal{S}, the homomorphism $\rho|_{\mathcal{A}}$ is similar to a $*$-homomorphism.

Our main focus in this paper is another amazing result of Pisier [18] where he shows that, for a unital C^*-algebra \mathcal{A}, Kadison’s similarity property holds for \mathcal{A} if and only if there is a positive number d for which there is a positive number K such that

$$
\|\rho\|_{cb} \leq K\|\rho\|^d
$$

for every bounded unital homomorphism ρ on \mathcal{A}. Pisier proved that the smallest such d is an integer which he calls the similarity degree $d(\mathcal{A})$ of \mathcal{A}. Here are a few results on the similarity degree.

1. \mathcal{A} is nuclear if and only if $d(\mathcal{A}) = 2 [2, 4, 22]$;
2. if $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then $d(\mathcal{A}) = 3 [20]$;
3. $d(\mathcal{A} \otimes \mathcal{K}(\mathcal{H})) \leq 3$ for any C^*-algebra $\mathcal{A} [8, 19]$;
4. if \mathcal{M} is a factor of type II_1 with property Γ, then $d(\mathcal{M}) = 3 [5]$;
5. if \mathcal{A} is an approximately divisible C^*-algebra [1], then $d(\mathcal{A}) \leq 5 [14, 15]$;
6. if \mathcal{A} is nuclear and contains unital matrix algebras of any order, then $d(\mathcal{A} \otimes \mathcal{B}) \leq 5$ for any unital C^*-algebra $\mathcal{B} [23]$;
7. if \mathcal{A} is nuclear and contains finite-dimensional C^*-subalgebras of arbitrarily large subrank (see the definition below), then $d(\mathcal{A} \otimes \mathcal{B}) \leq 5$ for any unital C^*-algebra $\mathcal{B} [14]$;
8. if \mathcal{A} is nuclear and contains homomorphic images of certain dimension-drop C^*-algebras $\mathcal{Z}_{p,q}$ for all relatively prime integers p, q (for example, \mathcal{A} contains a copy of the Jiang–Su algebra), then $d(\mathcal{A} \otimes \mathcal{B}) \leq 5$ for any unital C^*-algebra $\mathcal{B} [11]$.

In this paper we define the class of weakly approximately divisible C^*-algebras and show that this class is closed under unital $*$-homomorphisms, arbitrary tensor products
and direct limits. We also define the class of tracially nuclear C^*-algebras that properly contains the class of nuclear C^*-algebras, and we show that a tracially nuclear C^*-algebra is weakly approximately divisible if and only if it has no finite-dimensional representations. We prove that if \mathcal{A} is weakly approximately divisible, then $d(\mathcal{A}) \leq 5$. We extend the results (6)–(8) above to the case when \mathcal{A} is tracially nuclear and has no finite-dimensional representations, and the tensor product is with respect to any C^*-crossnorm.

2. Weakly approximately divisible algebras

If τ is a tracial state on \mathcal{M}, we let $\| \cdot \|_\tau$ denote the seminorm on \mathcal{M} defined in the Gelfand–Naimark–Segal (GNS) construction by

$$\|a\|_\tau^2 = \tau(a^*a).$$

Let \mathcal{B} be a finite-dimensional unital C^*-subalgebra of a unital C^*-algebra \mathcal{A}. First, we know that \mathcal{B} is $*$-isomorphic to $M_{k_1}(\mathbb{C}) \oplus \cdots \oplus M_{k_m}(\mathbb{C})$ and its subrank, $\text{subrank}(\mathcal{B})$, is defined to be $\min(k_1, \ldots, k_m)$. Note that if $\pi : \mathcal{B} \to \mathcal{D}$ is a unital $*$-homomorphism, then

$$\text{subrank}(\mathcal{B}) \leq \text{subrank}(\pi(\mathcal{B})).$$

If $P_1 = 1 \oplus 0 \oplus \cdots \oplus 0$, $P_2 = 0 \oplus 1 \oplus 0 \oplus \cdots \oplus 0, \ldots, P_m = 0 \oplus \cdots \oplus 1$ are the minimal central projections of \mathcal{B}, then, for $1 \leq s \leq m$, we have $P_s \mathcal{A} P_s$ is isomorphic to $M_{k_s}(\mathbb{C}) \otimes \mathcal{A}_s = M_{k_s}(\mathcal{A}_s)$ for some algebra \mathcal{A}_s. The relative commutant of $M_{k_s}(\mathbb{C})$ in $M_{k_s}(\mathcal{A}_s)$ is

$$D_s = \left\{ \begin{pmatrix} A & & & \\ & A & & \\ & & \ddots & \\ & & & A \end{pmatrix} : A \in \mathcal{A}_s \right\},$$

and the relative commutant of \mathcal{B} in \mathcal{A} is $D_1 \oplus \cdots \oplus D_m$. Suppose that $T \in \mathcal{A}$, and $P_s T P_s = (a_{ij,s})_{1 \leq i, j \leq k_s}$. Let $D_s = \text{diag}(c, \ldots, c)$ where $c = (1/k_s a_{11,s} + \cdots + a_{k_s,s})$. The map $E_{\mathcal{B}} : \mathcal{A} \to \mathcal{B}' \cap \mathcal{A}$ sending T to $D_1 \oplus \cdots \oplus D_m$ is called the conditional expectation from \mathcal{A} to $\mathcal{B}' \cap \mathcal{A}$ and is a completely positive unital idempotent. For $1 \leq s \leq m$, let G_s be the group of all matrices in $M_{k_s}(\mathbb{C})$ such that the only nonzero entry in each row and each column is 1 or -1, and let $G = G_1 \oplus \cdots \oplus G_m \subseteq \mathcal{B}$. Then

$$E_{\mathcal{B}}(T) = \frac{1}{\text{Card } G} \sum_{U \in G} U T U^*.$$

Moreover, if $S \in \mathcal{B}' \cap \mathcal{A}$ and $T \in \mathcal{A}$, then

$$E_{\mathcal{B}}(ST) = SE_{\mathcal{B}}(T) \quad \text{and} \quad E_{\mathcal{B}}(TS) = E_{\mathcal{B}}(T)S.$$

Furthermore, if τ is a tracial state on \mathcal{A}, then, for every $A \in \mathcal{A}$,

$$\|E_{\mathcal{B}}(A)\|_\tau \leq \|A\|_\tau.$$
Suppose that \mathcal{M} is a von Neumann algebra and $\{v_i : i \in I\} \subseteq \mathcal{M}$ is a family satisfying $\sum_{i \in I} v_i^* v_i = 1$ (convergence is in the weak* topology). Then $\varphi(T) = \sum_{i \in I} v_i^* T v_i$ defines a unital completely positive map from \mathcal{M} to \mathcal{M}. Let us call such a map "internally spatial," and call a unital completely positive map "internal" if it is a convex combination of internally spatial maps on \mathcal{M}.

Remark 2.1. There are two key properties of internal maps.

1. They can be pushed forward through normal unital \ast-homomorphisms between von Neumann algebras. Suppose that \mathcal{M} and \mathcal{N} are von Neumann algebras and $\rho : \mathcal{M} \to \mathcal{N}$ is a unital weak*-weak*-continuous unital \ast-homomorphism, and suppose that $\{v_i : i \in I\} \subseteq \mathcal{M}$ with $\sum_{i \in I} v_i^* v_i = 1$ and $\varphi(T) = \sum_{i \in I} v_i^* T v_i$. Then $\{\pi(v_i) : i \in I\} \subseteq \mathcal{N}$ and

$$
1 = \pi(1) = \pi\left(\sum_{i \in I} v_i^* v_i \right) = \sum_{i \in I} \pi(v_i)^* \pi(v_i).
$$

We define $\varphi^\pi(S) = \sum_{i \in I} \pi(v_i)^* S \pi(v_i)$, and we have, for every $a \in \mathcal{M}$,

$$
\varphi^\pi(\pi(a)) = \pi(\varphi(a)).
$$

So if $b \in \pi(\mathcal{A})$ and $b = \pi(a)$, then $\varphi^\pi(b) = \pi(\varphi(a))$, which is independent of a. For a general φ this only makes sense when $\varphi(\ker \pi) \subseteq \ker \pi$. It follows that φ^π makes sense when φ is an internal map, and in this case, φ^π is an internal map on \mathcal{N}.

2. If $\varphi(T) = \sum_{i \in I} v_i^* T v_i$ and T commutes with each v_i, then, for every S,

$$
\varphi(S T) = \varphi(S) T.
$$

Hence if ψ is a convex combination of spatially internal maps defined in terms of elements commuting with an operator T, we have $\psi(S T) = \psi(S) T$.

Definition 2.2. We say that a unital C^*-algebra \mathcal{A} is weakly approximately divisible if and only if, for every finite subset \mathcal{F} of \mathcal{A}, there is a net $\{(\mathcal{B}_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda}$ where each \mathcal{B}_λ is a finite-dimensional unital C^*-subalgebra of $\mathcal{A}^{\#\#}$ and φ_λ is an internal completely positive map such that:

1. $\lim_{\lambda} \text{subrank}(\mathcal{B}_\lambda) = \infty$;
2. $\varphi_\lambda : \mathcal{A} \to \mathcal{B}_\lambda' \cap \mathcal{A}^{\#\#}$;
3. for every $a \in \mathcal{F}$, $\varphi_\lambda(a) \to a$ in the weak* topology on $\mathcal{A}^{\#\#}$.

Remark 2.3. Suppose that n is a positive integer and let \mathcal{V}_n be the set of n-tuples (a_1, \ldots, a_n) of elements in \mathcal{A} such that the conditions in Definition 2.2 hold when $\mathcal{F} = \{a_1, \ldots, a_n\}$. Suppose that U_k is a weak* neighbourhood of a_k in $\mathcal{A}^{\#\#}$ for $1 \leq k \leq n$. Since addition on $\mathcal{A}^{\#\#}$ is weak*-continuous, there is a weak* neighbourhood \mathcal{V}_k of a_k and a weak* neighbourhood \mathcal{E} of 0 such that

$$
\mathcal{V}_k + \mathcal{E} \subseteq U_k
$$
for \(1 \leq k \leq n \). Suppose that \((b_1, \ldots, b_n)\) is in the norm closure of \(V_n \) and that \(U_k \) is a weak* neighbourhood of \(b_k \) in \(\mathcal{A}^{\#\#} \) for \(1 \leq k \leq n \). Since addition on \(\mathcal{A}^{\#\#} \) is weak*-continuous, there is a weak* neighbourhood \(V_k \) of \(b_k \) and a weak* neighbourhood \(E \) of 0 such that

\[
V_k + E \subseteq U_k
\]

for \(1 \leq k \leq n \). Since \(0 \in E \) and \(E \) is weak*-open, there is an \(\varepsilon > 0 \) such that \(\{ x \in \mathcal{A}^{\#\#} : \| x \| < \varepsilon \} \subseteq E \). Now choose \((a_1, \ldots, a_n)\) in \(V_n \) so that \(a_k \in V_k \) and \(\| a_k - b_k \| < \varepsilon \) for \(1 \leq k \leq n \). Next suppose that \(m \) is a positive integer. It follows from the definition of \(V_n \) that there is a finite-dimensional \(C^*\)-subalgebra \(\mathcal{B} \) of \(\mathcal{A}^{\#\#} \) and a completely positive unital map \(\varphi : \mathcal{A} \to \mathcal{B} \cap \mathcal{A}^{\#\#} \) such that \(\text{subrank}(\mathcal{B}) \geq m \) and such that \(\varphi(a_k) \in V_k \) for \(1 \leq k \leq n \). It follows that \(\varphi(b_k) - \varphi(a_k) = \varphi(b_k - a_k) \in E \) for \(1 \leq k \leq n \), so

\[
\varphi(b_k) \in V_k + E \subseteq U_k
\]

for \(1 \leq k \leq n \). Hence \((b_1, \ldots, b_n) \in V_n \). Thus \(V_n \) is norm closed. It is also clear that \(V_n \) is a linear space. Hence, to verify that \(\mathcal{A} \) is weakly approximately divisible, it is sufficient to show that the conditions of Definition 2.2 hold for all finite subsets \(\mathcal{F} \) of a set \(W \) whose norm closed linear span \(\overline{\text{sp}}(W) \) is \(\mathcal{A} \).

Recall [25] that a \(C^*\)-algebra \(\mathcal{A} \) is **nuclear** if, for every Hilbert space \(H \) and every unital \(*\)-homomorphism \(\pi : \mathcal{A} \to \mathcal{B}(H) \), we have that \(\pi(\mathcal{A})'' \) is a hyperfinite von Neumann algebra. We say that \(\mathcal{A} \) is **tracially nuclear** if, for every tracial state \(\tau \) on \(\mathcal{A} \) with GNS representation \(\pi_\tau \), we have that \(\pi_\tau(\mathcal{A})'' \) is a hyperfinite von Neumann algebra. As a flip side of the notion of residually finite-dimensional (RFD) \(C^*\)-algebras, we say that a unital \(C^*\)-algebra \(\mathcal{A} \) is **NFD** if \(\mathcal{A} \) has no unital finite-dimensional representations.

Theorem 2.4. Suppose that \(\mathcal{A} \) and \(\mathcal{D} \) are unital \(C^*\)-algebras. Then the following statements hold.

1. If \(\mathcal{A} \) is approximately divisible, then \(\mathcal{A} \) is weakly approximately divisible.
2. If \(\mathcal{A} \) is weakly approximately divisible and \(\pi : \mathcal{A} \to \mathcal{D} \) is a surjective unital \(*\)-homomorphism, then \(\mathcal{D} \) is weakly approximately divisible.
3. If \(\mathcal{A} \) is weakly approximately divisible, then \(\mathcal{A} \) has no finite-dimensional representations.
4. If \(\mathcal{A} \) is weakly approximately divisible, then \(\mathcal{A} \otimes_{\text{max}} \mathcal{D} \) is weakly approximately divisible.
5. A finite direct sum \(\sum_{1 \leq k \leq n} \mathcal{A}_k \) of unital \(C^*\)-algebras is weakly approximately divisible if and only if each summand \(\mathcal{A}_k \) is weakly approximately divisible.
6. If \(n \) is a positive integer, then \(\mathcal{A} \otimes \mathcal{M}_n(\mathbb{C}) \) is weakly approximately divisible if and only if \(\mathcal{A} \) is.
7. A direct limit of weakly approximately divisible \(C^*\)-algebras is weakly approximately divisible.
8. If \(\mathcal{A} \) is an NFD \(C^*\)-algebra and \(\mathcal{M} \) is the type \(II_1 \) direct summand of \(\mathcal{A}^{\#\#} \) and \(\gamma : \mathcal{A} \to \mathcal{M} \) is the inclusion into \(\mathcal{A}^{\#\#} \) followed by the projection map, then \(\mathcal{A} \) is...
weakly approximately divisible if and only if, for every finite subset $\mathcal{F} \subseteq \mathcal{A}$ there is a net $((\mathcal{B}_i, \varphi_i))$ where \mathcal{B}_i is a finite-dimensional C^*-subalgebra of \mathcal{M}, φ_i is an internal map on \mathcal{M} and

$$\varphi_i(\pi(a)) \rightarrow \gamma(a)$$

in the weak* topology for every $a \in \mathcal{F}$.

(9) If \mathcal{A} is tracially nuclear, then \mathcal{A} is weakly approximately divisible if and only if \mathcal{A} is NFD.

(10) If \mathcal{A} is nuclear, then \mathcal{A} is weakly approximately divisible if and only if \mathcal{A} is NFD.

Proof. (1) This follows immediately from the definitions.

(2) If $\pi : \mathcal{A} \rightarrow \mathcal{D}$ is a surjective unital $*$-homomorphism, then π extends to a weak*-weak*-continuous surjective unital $*$-homomorphism $\rho : \mathcal{A}^{##} \rightarrow \mathcal{D}^{##}$. Given $d_1, \ldots, d_n \in \mathcal{D}$, choose $a_1, \ldots, a_n \in \mathcal{A}$ so that $\pi(a_k) = d_k$ for $1 \leq k \leq n$. Choose a net $((\mathcal{B}_k, \varphi_k))$ according to Definition 2.2 with $\mathcal{F} = \{a_1, \ldots, a_n\}$. It follows that φ_k^{\prime} is an internal completely positive map on $\mathcal{D}^{##}$ and

$$\varphi_k(\mathcal{D}) = \varphi_k^{\prime}(\rho(\mathcal{A})) = \rho(\varphi_k(\mathcal{A})) \subseteq \rho(\mathcal{B}_k \cap \mathcal{A}^{##}) \subseteq \rho(\mathcal{B}_k) \cap \mathcal{D}^{##}.$$

Further, for each d_k,

$$\text{w*-lim}_A \varphi_k^{\prime}(d_k) = \text{w*-lim}_A \rho(\varphi_k(a_k)) = \rho(a_k) = d_k,$$

since ρ is weak*-weak*-continuous. Since $\text{subrank}(\mathcal{B}_k) \leq \text{subrank}(\rho(\mathcal{B}_k))$, we conclude that \mathcal{D} is weakly approximately divisible.

(3) This follows from (2) and the obvious fact that no finite-dimensional C^*-algebra is weakly approximately divisible.

(4) Let $\rho : \mathcal{A} \otimes_{\text{max}} \mathcal{D} \rightarrow (\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##}$ be the natural inclusion map. We can assume $(\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##} \subseteq B(H)$ for some Hilbert space H so that, on bounded subsets of $(\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##}$, the weak* topology coincides with the weak-operator topology. If $\rho : \mathcal{A} \rightarrow \mathcal{A} \otimes 1 \subseteq \mathcal{A} \otimes_{\text{max}} \mathcal{D}$ is the inclusion map, then there is a weak*-weak*-continuous unital $*$-homomorphism $\sigma : \mathcal{A}^{##} \rightarrow (\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##}$ such that the restriction of σ to \mathcal{A} is ρ. Let $W = \{a \otimes b : a \in \mathcal{A}, b \in \mathcal{B}\}$. Clearly, $\overline{\text{sp}} W = \mathcal{A} \otimes_{\text{max}} \mathcal{B}$ (where the closure is with respect to $\|\|_{\text{max}}$). Suppose that $a_1 \otimes b_1, \ldots, a_n \otimes b_n \in W$. Since \mathcal{A} is weakly approximately divisible, we can choose a net $((\mathcal{B}_k, \varphi_k))$ as in Definition 2.2. We know that $\{\varphi_k^{\prime}\}$ is a net of internal maps on $(\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##}$ and

$$\varphi_k^{\prime}(a_k \otimes 1) = \varphi_k^{\prime}(\sigma(a_k)) = \sigma(\varphi_k(a_k)) \rightarrow \sigma(a_k) = a_k \otimes 1$$

in the weak* topology for $1 \leq k \leq n$. On the other hand, each φ_k is a convex combination of spatially internal maps defined by partial isometries in $\mathcal{A}^{##}$, so each φ_k^{\prime} is a convex combination of spatially internal maps defined by partial isometries in $\sigma(\mathcal{A}^{##})$ which is contained in $(\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##} \cap (1 \otimes \mathcal{D})^\prime$. Hence, for every $S \in (\mathcal{A} \otimes_{\text{max}} \mathcal{D})^{##}$ and every $d \in \mathcal{D}$,

$$\varphi_k^{\prime}(S(1 \otimes d)) = \varphi_k^{\prime}(S)(1 \otimes d).$$
Hence, for $1 \leq k \leq n$,

$$\varphi^T_\lambda (a_k \otimes d_k) = \varphi^T_\lambda ((a_k \otimes 1)(1 \otimes d_k)) = \varphi^T_\lambda (a_k \otimes 1) (1 \otimes d_k).$$

But $\varphi^T_\lambda (a_k \otimes 1) \to a_k \otimes 1$ in the weak* topology. Hence

$$\varphi^T_\lambda (a_k \otimes d_k) \to a_k \otimes d_k$$

in the weak* topology on $(\mathcal{A} \otimes_{\text{max}} \mathcal{B})^{\#\#}$ for $1 \leq k \leq n$. Since, for every λ,

$$\text{subrank}(\mathcal{B}_\lambda) \leq \text{subrank}(\sigma(\mathcal{B}_\lambda)),$$

we see that $\mathcal{A} \otimes_{\text{max}} \mathcal{B}$ is weakly approximately divisible.

(5) This easily follows from the fact that $(\sum_{1 \leq k \leq n} \mathcal{A}_k)^{\#\#} = \sum_{1 \leq k \leq n} \mathcal{A}_k^{\#\#}$.

(6) This is clear, since $(\mathcal{A} \otimes \mathcal{M}_n(\mathbb{C}))^{\#\#}$ is isomorphic to $\mathcal{A}^{\#\#} \otimes \mathcal{M}_n(\mathbb{C})$.

(7) Suppose that $\{\mathcal{A}_i : i \in I\}$ is an increasingly directed family of C^*-subalgebras of \mathcal{A} such that $W = \bigcup_{i \in I} \mathcal{A}_i$ is dense in \mathcal{A}. Suppose that $\mathcal{F} \subseteq W$ is finite. Then there is an $i \in I$ such that $\mathcal{F} \subseteq \mathcal{A}_i$. If $\rho : \mathcal{A}_i \to \mathcal{A}$ is the inclusion map, there is a unital weak*–weak*-continuous unital $*$-homomorphism $\sigma : \mathcal{A}_i^{\#\#} \to \mathcal{A}^{\#\#}$ whose restriction to \mathcal{A}_i is ρ. The rest follows as in the proof of (2).

(8) If \mathcal{A} is weakly approximately divisible, then for a finite subset $\mathcal{F} \subseteq \mathcal{A}$ we can find a net $\{(\mathcal{B}_\lambda, \varphi_\lambda)\}$ as in Definition 2.2 that works in $\mathcal{A}^{\#\#}$, and if we project all of this onto \mathcal{M}, we get the desired net. Now suppose that \mathcal{A} satisfies the condition in (8). We can write $\mathcal{A}^{\#\#} = \mathcal{M} \oplus \mathcal{N}$, and since \mathcal{A} has no finite-dimensional representations, \mathcal{N} is the direct sum of a type I_∞ algebra, a II_∞ and a type III algebra. In particular, this means that there is an orthogonal sequence $\{P_n\}$ of pairwise Murray–von Neumann equivalent projections whose sum is 1. Suppose that N is a positive integer, and let $Q_k = \sum_{j=(k-1)N+1}^{kN} P_j$. Then $\{Q_n\}$ is an orthogonal sequence of pairwise equivalent projections whose sum is 1. We can construct a system of matrix units $\{E_{ij}\}_{1 \leq i, j < \infty}$ so that $E_{kk} = Q_k$ for all $k \geq 1$. Then every $T \in \mathcal{N}$ has an infinite operator matrix $T = (T_{ij})$. The map

$$\psi_N(T) = \text{diag}(T_{11}, T_{11}, \ldots) = \sum_{j=1}^{\infty} E_{j1} T E_{j1}^*$$

is spatially internal and, for every T,

$$\left(\sum_{k=1}^{N} P_k \right) \psi_N(T) \left(\sum_{k=1}^{N} P_k \right) = \left(\sum_{k=1}^{N} P_k \right) T \left(\sum_{k=1}^{N} P_k \right) \to T$$

in the weak* topology. Hence $\psi_N(T) \to T$ in the weak* topology. Moreover, $\mathcal{N} \cap \psi_N(\mathcal{N})$ contains full matrix algebras of all orders. Next suppose that $\mathcal{F} \subseteq \mathcal{A}$ is finite. For each $A \in \mathcal{F}$ we write $A = \gamma(A) \oplus T_A$ relative to $\mathcal{A}^{\#\#} = \mathcal{M} \oplus \mathcal{N}$. Given the net $\{(\mathcal{B}_\lambda, \varphi_\lambda)\}$ in \mathcal{M} based on our assumption on \mathcal{A}, we let $N_\lambda = \text{subrank}(\mathcal{B}_\lambda)$ and choose a full $N_\lambda \times N_\lambda$ matrix algebra C_λ in $\mathcal{N} \cap \psi_N(\mathcal{N})$. Then $\tau_\lambda(S \oplus T) = \varphi_\lambda(S) \oplus \psi_N(T)$ is an internal map on $\mathcal{A}^{\#\#}$ whose range is in $(\mathcal{B}_1 \oplus C_\lambda)' \cap \mathcal{A}^{\#\#}$ such that

$$\tau_\lambda(A) \to A$$
in the weak* topology for every \(A \in \mathcal{F} \). Hence \(\mathcal{A} \) is weakly approximately divisible.

(9) Let \(\mathcal{M} \) and \(\gamma \) be as in (8). Let \(\Lambda \) be the set of all triples \(\lambda = (\mathcal{F}_\lambda, \mathcal{T}_\lambda, k_\lambda) \) where \(\mathcal{F}_\lambda \subseteq \mathcal{A} \) is finite, \(\mathcal{T}_\lambda \) is a finite set of normal tracial states on \(\mathcal{M} \), and \(k_\lambda \in \mathbb{N} \). With the ordering \((\subseteq, \subseteq, \leq) \) we see that \(\Lambda \) is a directed set. If \(\tau \) is a tracial state on \(\mathcal{M} \), we let \(\| \cdot \|_\tau \) denote the seminorm on \(\mathcal{M} \) defined by

\[
\| A \|_\tau = \tau(A^* A)^{1/2}.
\]

Suppose that \(\lambda \in \Lambda \). There is a central projection \(P \in \mathcal{M} \) so that \(\mathcal{M} = \mathcal{M}_a \oplus \mathcal{M}_s \) (\(\mathcal{M}_a = \mathcal{P} \mathcal{M} \)) and so that \(\gamma = \gamma_a \oplus \gamma_s \) and such that \(\gamma_a \ll \sum_{\tau \in \mathcal{T}_\lambda} \pi_\tau \) and \(\gamma_s \) is disjoint from \(\sum_{\tau \in \mathcal{T}_\lambda} \pi_\tau \). Also, by assumption, \((\sum_{\tau \in \mathcal{T}_\lambda} \pi_\tau)(\mathcal{A})' = \mathcal{M}_a \) is hyperfinite. Hence, there is a finite-dimensional unital subalgebra \(\mathcal{D}_\lambda \) of \(\mathcal{M}_a \) and a contractive map \(\eta : \mathcal{F}_\gamma \to \mathcal{D}_\lambda \) such that

\[
\max_{\tau \in \mathcal{T}_\lambda, \lambda \in \mathcal{F}_\lambda} \| P \gamma(A) - \eta(A) \|_\tau < \frac{1}{k_\lambda}.
\]

Note that \(\| T \|_\tau = \| PT \|_\tau \) for every \(T \in \mathcal{M} \) and every \(\tau \in \mathcal{T}_\lambda \). The relative commutant \(\mathcal{D}_\lambda' \cap \mathcal{M}_a \) is also a \(II_1 \) von Neumann algebra, so there are \(k_\lambda \) mutually orthogonal unitarily equivalent projections in \(\mathcal{D}_\lambda' \cap \mathcal{M}_a \) whose sum is 1. Hence \(\mathcal{D}_\lambda' \cap \mathcal{M}_a \) contains a unital subalgebra \(\mathcal{E}_\lambda \) that is isomorphic to \(\mathcal{M}_{k_{\lambda}}(\mathbb{C}) \). Similarly, \(\mathcal{M}_s \) (if it is not 0) is a \(II_1 \) von Neumann algebra and contains an isomorphic copy \(\mathcal{G}_\lambda \) of \(\mathcal{M}_{k_{\lambda}}(\mathbb{C}) \). Then \(\mathcal{B}_\lambda = \mathcal{E}_\lambda \oplus \mathcal{G}_\lambda \) is finite-dimensional and \(\text{subrank}(\mathcal{B}_\lambda) = k_\lambda \). Define \(\varphi_\lambda = E_{\mathcal{B}_\lambda} \). For every \(A \in \mathcal{F}_\lambda \) and \(\tau \in \mathcal{T}_\lambda \),

\[
\| A - \varphi_\lambda(A) \|_\tau = \| PA - P \varphi_\lambda(A) \|_\tau \leq \| PA - \eta(A) \|_\tau + \| \eta(A) - E_{\mathcal{E}_\lambda}(PA) \|_\tau
\]

\[
= \| PA - \eta(A) \|_\tau + \| E_{\mathcal{E}_\lambda}(\eta(A)) - E_{\mathcal{E}_\lambda}(PA) \|_\tau
\]

\[
\leq 2 \| PA - \eta(A) \|_\tau \leq \frac{2}{k_\lambda}.
\]

Clearly,

\[
\lim_{\lambda} \text{subrank}(\mathcal{B}_\lambda) = \infty,
\]

and, since there are sufficiently many tracial states on \(\mathcal{M} \) [24], we have, for every \(A \in \mathcal{A} \),

\[
\varphi_\lambda(a) \to A
\]

in the ultrastrong topology on \(\mathcal{M} \). By assumption \(\mathcal{A} \) has no finite-dimensional representations, so it follows from (8) that \(\mathcal{A} \) is weakly approximately divisible.

(10) This follows immediately from (9) since the nuclearity of \(\mathcal{A} \) is equivalent to the hyperfiniteness of \(\pi(\mathcal{A})'' \) for every representation \(\pi \) of \(\mathcal{A} \). \(\Box \)

3. Similarity degree

Theorem 3.1. If \(\mathcal{A} \) is weakly approximately divisible, then the similarity degree of \(\mathcal{A} \) is at most five.
Proof. Suppose that H is a Hilbert space and $\rho : A \to B(H)$ is a bounded unital homomorphism. Then ρ extends uniquely to a normal homomorphism $\overline{\rho} : A^{\text{\#}} \to B(H)$. Suppose that $A = (a_{ij}) \in M_n(A)$. Since A is weakly approximately divisible, we can choose a net $\{(B_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda}$ as in Definition 2.2 corresponding to $F = \{a_{ij} : 1 \leq i, j \leq n\}$. We know that

$$\overline{\rho}_n(\varphi_\lambda(a_{ij})) = (\overline{\rho}(\varphi_\lambda(a_{ij}))) \to (\overline{\rho}(a_{ij})) = \rho_n(A),$$

where the convergence is in the weak* topology. Moreover, since φ_λ is completely contractive,

$$\|\varphi_\lambda(a_{ij})\| \leq \|A\|,$$

so

$$\lim_{\lambda} \|\varphi_\lambda(a_{ij})\| = \|A\|,$$

and

$$\|\rho_n(A)\| \leq \limsup_{\lambda} \|\overline{\rho}_n(\varphi_\lambda(a_{ij}))\|.$$

However, $\varphi_\lambda(a_{ij}) \in B_\lambda'$ for $1 \leq i, j \leq n$ and $\lim_{\lambda} \text{subrank}(B_\lambda) = \infty$. So the remainder of the proof follows from [14, Lemma 3.1].

In [23] Pop proved that if A is a nuclear C^*-algebra containing copies of $M_n(\mathbb{C})$ for arbitrarily large values of n, then the similarity degree of $A \otimes B$ is at most five for every unital C^*-algebra B. In [14] the second author showed that this result remains true if A is nuclear and contains finite-dimensional algebras with arbitrarily large subrank. It was shown by [11] that if A is nuclear and contains homomorphic images of certain dimension-drop C^*-algebras $\mathbb{Z}_{p,q}$ for all relatively prime integers p, q (for example, A contains a copy of the Jiang–Su algebra), then, for every unital C^*-algebra B, the similarity degree of $A \otimes B$ is at most five. The following corollary includes all of these results.

Corollary 3.2. If A is a unital tracially nuclear NFD C^*-algebra, then, for every unital C^*-algebra B, the similarity degree of $A \otimes B$ is at most five.

References

[1] B. Blackadar, A. Kumjian and M. Rørdam, ‘Approximately central matrix units and the structure of noncommutative tori’, K-Theory 6 (1992), 267–284.
[2] J. W. Bunce, ‘The similarity problem for representations of C^*-algebras’, Proc. Amer. Math. Soc. 81 (1981), 409–414.
[3] E. Christensen, ‘On nonselfadjoint representations of C^*-algebras’, Amer. J. Math. 103 (1981), 817–833.
[4] E. Christensen, ‘Extensions of derivations II’, Math. Scand. 50 (1982), 111–122.
[5] E. Christensen, ‘Finite von Neumann algebra factors with property Γ’, J. Funct. Anal. 186 (2001), 366–380.
[6] J. Dixmier, ‘Étude sur les variétés et les opérateurs de Julia, avec quelques applications’, Bull. Soc. Math. France 77 (1949), 11–101.
[7] C. Foiaş, ‘Invariant para-closed subspaces’, Indiana Univ. Math. J. 21 (1971/72), 887–906.
[8] U. Haagerup, ‘Solution of the similarity problem for cyclic representations of C^*-algebras’, *Ann. Math.* **118** (1983), 215–240.

[9] D. Hadwin, ‘Dilations and Hahn decompositions for linear maps’, *Canad. J. Math.* **33** (1981), 826–839.

[10] D. Hadwin and V. Paulsen, ‘Two reformulations of Kadison’s similarity problem’, *J. Operator Theory* **55** (2006), 3–16.

[11] M. Johanesová and W. Winter, ‘The similarity problem for Z-stable C^*-algebras’, *Bull. Lond. Math. Soc.* **44**(6) (2012), 1215–1220.

[12] R. Kadison, ‘On the orthogonality of operator representations’, *Amer. J. Math.* **77** (1955), 600–622.

[13] E. Kirchberg, ‘The derivation problem and the similarity problem are equivalent’, *J. Operator Theory* **36**(1) (1996), 59–62.

[14] W. Li, ‘The similarity degree of approximately divisible C^*-algebras’, Preprint, 2012, *Oper. Matrices*, to appear.

[15] W. Li and J. Shen, ‘A note on approximately divisible C^*-algebras’, Preprint arXiv 0804.0465.

[16] V. I. Paulsen, ‘Completely bounded maps on C^*-algebras and invariant operator ranges’, *Proc. Amer. Math. Soc.* **86** (1982), 91–96.

[17] V. I. Paulsen, *Completely Bounded Maps and Dilations*, Pitman Research Notes in Mathematics Series, 146 (Longman Scientific & Technical, Harlow, 1986).

[18] G. Pisier, ‘The similarity degree of an operator algebra’, *Algebra i Analiz* **10** (1998), 132–186; translation in *St. Petersburg Math. J.* **10** (1999), 103–146.

[19] G. Pisier, ‘Remarks on the similarity degree of an operator algebra’, *Internat. J. Math.* **12** (2001), 403–414.

[20] G. Pisier, ‘Similarity problems and length’, *Taiwanese J. Math.* **5** (2001), 1–17.

[21] G. Pisier, *Similarity Problems and Completely Bounded Maps*, second, expanded edition. Lecture Notes in Mathematics, 1618 (Springer, Berlin, 2001).

[22] G. Pisier, ‘A similarity degree characterization of nuclear C^*-algebras’, *Publ. Res. Inst. Math. Sci.* **42**(3) (2006), 691–704.

[23] F. Pop, ‘The similarity problem for tensor products of certain C^*-algebras’, *Bull. Aust. Math. Soc.* **70** (2004), 385–389.

[24] M. Takesaki, *Theory of Operator Algebras. I* (Springer, New York, 1979).

[25] M. Takesaki, ‘Nuclear C^*-algebras’, in: *Theory of Operator Algebras. III*, Encyclopaedia of Mathematical Sciences, 127 (Springer, Berlin, 2003), 153–204.

[26] G. Wittstock, ‘Ein operatorwertiger Hahn-Banach Satz’, *J. Funct. Anal.* **40** (1981), 127–150.