Comparative analysis of radiofrequency ablation and resection for resectable colorectal liver metastases

Sanghwa Ko, Hongjae Jo, Seongpil Yun, Eunyoung Park, Suk Kim, Hyung-II Seo

Sanghwa Ko, Hongjae Jo, Seongpil Yun, Eunyoung Park, Hyung-II Seo, Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 602-739, South Korea
Suk Kim, Department of Radiology, Biomedical Research Institute, Pusan National University, Busan 602-739, South Korea

Author contributions: Ko S and Jo H contributed equally to this work; Seo HI designed the research; Jo H and Seo HI collected the data of surgical resection; Kim S collected the data of RFA; Yun S and Park E analyzed the data; Ko S wrote the manuscript.

Supported by Clinical research grant from Pusan, National University Hospital 2013; A 2-Year Research Grant of Pusan National University

Correspondence to: Hyung-II Seo, MD, PhD, Department of Surgery, Biomedical Research Institute, Pusan National University, 365 Gudeok-Ro, Soo-Gu, Busan, 602-739, South Korea. seohi71@hanmail.net
Telephone: +82-51-2407238 Fax: +82-51-2401365
Received: August 23, 2013 Revised: October 25, 2013
Accepted: November 2, 2013
Published online: January 14, 2014

Abstract

AIM: To evaluate the therapeutic efficacy of radiofrequency ablation (RFA) for resectable colorectal liver metastases (CRLM) compared with that of resection.

METHODS: Between June 2004 and June 2009, we retrospectively analyzed 29 patients with resectable CRLMs; 17 patients underwent RFA, and 12 underwent hepatic resection. All of the patients were informed about the treatment modalities and were allowed to choose either of them. RFA including an intraoperative approach was performed by a radiologist; otherwise, hepatic resection was performed by a surgeon. Comparative analysis of the two groups was performed, including comparisons of gender, age, and clinical outcomes, such as primary tumor stage and survival rates.

RESULTS: The mean tumor size was significantly larger in the resection group (3.59 cm vs 2.02 cm, P < 0.01), and the 5-year overall survival (OS) rate for all patients was 44.7%. There was no difference in the 5-year OS rates between the RFA and resection groups (37.8% vs 66.7%). Univariate analysis indicated significantly lower 5-year OS rates for patients with a tumor size > 3 cm. The 5-year disease-free survival (DFS) rates were 17.6% and 22.2% in the RFA and resection groups, respectively (P = 0.119). Univariate analysis revealed that in cases of male gender, age > 65 years, T stage < IV, absence of lymphatic metastasis, and tumor size > 3 cm, RFA resulted in significantly inferior 5-year DFS rates compared with surgical resection.

CONCLUSION: Surgical resection revealed superior outcomes in the treatment of resectable CRLMs, particularly in cases with a hepatic tumor size > 3 cm.

Key words: Colorectal neoplasm; Metastasis; Radiofrequency; Hepatectomy; Survival

Core tip: Colorectal liver metastasis is diagnosed in approximately 50% of patients with colorectal cancer. Surgical resection is the optimal treatment strategy. Alternative local treatment modalities can be adapted, and radiofrequency ablation (RFA) is widely accepted. We examined whether RFA is an appropriate alternative method to surgery for resectable colorectal liver metastases. This study retrospectively compared the therapeutic efficacy of RFA and compared it with that of surgical resection in a single institute.

Ko S, Jo H, Yun S, Park E, Kim S, Seo HI. Comparative analysis of radiofrequency ablation and resection for resectable colorectal liver metastases. World J Gastroenterol 2014; 20(2): 525-531 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i2/525.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i2.525
INTRODUCTION
A 2005 annual report of cancer incidence indicated that colorectal cancer (CRC) is the third most common malignancy worldwide and the second most common (12.5%) in Korea, following gastric cancer. The 5-year survival rate of CRC is reportedly 61%[6-8], and hepatic metastasis develops in approximately 40%-50% of patients with CRC; approximately 50% of diagnosed patients present the synchronous type[3,9]. Although surgical resection is the most effective current treatment for resectable colorectal cancer liver metastases (CRLMs)[6,10], only 10%-15% of such cases are suitable for the procedure[8,9]. Several alternative treatment modalities for unresectable CRLMs have been developed, of which radiofrequency ablation (RFA) is widely accepted as an effective alternative local treatment modality[10].

Surgical hepatic resection is the treatment of choice for resectable CRLMs. Although RFA is an alternative to resection in hepatocellular carcinoma[11-13], there is little information regarding indications for RFA in resectable CRLMs. RFA is performed within a limited number of clinical settings for resectable CRLMs[11,14]. The purpose of the present study was to compare the therapeutic efficacies of RFA and hepatic resection for resectable CRLMs within a single institution.

MATERIALS AND METHODS
In this study, we compared the treatment outcomes of 12 patients who underwent hepatic resection with 17 who underwent RFA for synchronous or metachronous resectable CRLMs between June 2004 and June 2009 at the Department of Surgery, Pusan National University Hospital (Busan, South Korea). The inclusion criteria for this study were as follows: (1) no signs of preoperative extrahepatic metastases; (2) tumor size < 5 cm; and (3) a single metastatic tumor. The exclusion criteria were as follows: (1) no signs of preoperative extrahepatic metastases; (2) tumor size < 5 cm; and (3) a single metastatic tumor. The exclusion criteria were as follows: (1) no signs of preoperative extrahepatic metastases; (2) tumor size < 5 cm; and (3) a single metastatic tumor. The exclusion criteria were as follows: (1) no signs of preoperative extrahepatic metastases; (2) tumor size < 5 cm; and (3) a single metastatic tumor. The purpose of the present study was to compare the therapeutic efficacies of RFA and hepatic resection for resectable CRLMs within a single institution.

Diagnosis of CRLM
The diagnosis of hepatic or extrahepatic metastasis was confirmed on the basis of the findings of serum carcinoembryonic antigen (CEA), contrast-enhanced computed tomography (CT) of the abdomen and chest, magnetic resonance imaging (MRI), and 18F-2-fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Hepatic metastasis was defined as any newly developed hepatic tumors detected during patient follow-up after curative resection of CRC. A needle biopsy was not routinely performed before RFA but was performed in patients with atypical hepatic mass enhancement.

RFA
RFA for hepatic metastases was performed when patients refused surgical hepatic resection after being informed of the treatment method, complications, and survival rates. RFA was performed percutaneously under local anesthesia or during and simultaneously with CRC resection. RFA was performed using a 200-W generator in the impedance control mode and a monopolar single or clustered internally cooled electrode (Covidien, Boulder, CO, United States). Written informed consent was obtained from all patients before initiating treatment.

Surgical resection
A major resection was defined as resection of more than three hepatic segments and minor resection as two segments or less. Major and minor resections were performed in five and seven patients, respectively (Table 1). None of the patients received perioperative transfusion, and there was no incidence of postoperative mortality.

Follow-up protocol
Seven days after resection or RFA, contrast-enhanced CT of the abdomen was performed, and serum CEA levels were measured to determine the baseline values. The same evaluations were repeated every four months during the initial two years and every six months thereafter. Endoscopic analysis and FDG-PET were performed annually, and chest CT or MRI was added when tumor recurrence was suspected.

Statistical analysis
Overall survival (OS) and disease-free survival (DFS) rates were analyzed using the Kaplan-Meier method, and the statistical significance of differences in the survival rates was evaluated using the log-rank test. A two-tailed P-value < 0.05 was considered statistically significant. The statistical analysis was performed using SPSS statistical software (ver. 12.0; SPSS Inc., Chicago, IL, United States).

RESULTS
Clinicopathological data
Information regarding the patients and pathological results is provided in Tables 2 and 3. The mean tumor diameter in the RFA group (2.02 cm; range, 0.8-4.6 cm) was significantly smaller than that in the resection group (3.59 cm; range, 1.6-4.9 cm). There were no other significant differences between the two groups. Four of the 17 patients in the RFA group and 7 of the 12 in the resection group presented a hepatic tumor > 3 cm in size; no significant difference was evident between the two
The 5-year OS rate was 44.7% among all patients with CRLMs, 37.8% in the RFA group, and 66.7% in the resection group ($P = 0.29$; Figure 1). The 5-year OS rate was lower in patients with a hepatic tumor size > 3 cm than in those with a tumor size < 3 cm (Table 5). Moreover, the 5-year DFS rates were 17.6% and 22.2% in the RFA and resection groups, respectively ($P = 0.119$; Figure 2). The variables associated with lower DFS rates included male gender, age > 65 years, CRC T stage < IV, absence of lymphatic invasion, and tumor size > 3 cm (Table 6).

DISCUSSION

Surgical resection is the treatment of choice for resectable CRLMs, whereas RFA has been used for unresectable CRLMs as an alternative treatment to improve patient survival\(^{[13,14]}\). While some series have reported RFA equivalent to resection, others have shown RFA to be inferior to resection based on overall survival\(^{[15-17]}\). However, the efficacy of RFA for resectable CRLMs remains controversial. Reuter et al\(^{[18]}\) reported superior DFS rates in patients with resectable CRLMs following surgical resection than follow-

Table 2 Summary of patient information

No.	Age (yr)	Sex	Comorbidity	Treatment modality	Location	Timing of metastasis	Recurrence	Results
1	51	M		RFA	Colon	Meta	Yes	S
2	60	M		RFA	Colon	Meta	Yes	D
3	69	M	DM, HT	Resection	Rectum	Meta	Yes	D
4	76	M		Resection	Rectum	Meta	Yes	D
5	62	M		RFA	Colon	Syn	No	S
6	61	M	DM	RFA	Rectum	Meta	Yes	D
7	70	F		Resection	Colon	Meta	Yes	S
8	70	M		Resection	Rectum	Meta	No	S
9	71	F		Resection	Rectum	Meta	Yes	S
10	69	F	DM, HT	Resection	Colon	Syn	Yes	S
11	74	F		Resection	Colon	Syn	No	S
12	71	M		Resection	Colon	Meta	Yes	S
13	82	M		Resection	Rectum	Meta	Yes	D
14	58	F		RFA	Colon	Meta	No	S
15	60	M	RFA	Colon	Syn	Meta	Yes	D
16	56	F		RFA	Colon	Meta	Yes	S
17	56	M		RFA	Colon	Meta	Yes	S
18	54	F		RFA	Colon	Meta	Yes	D
19	52	F		RFA	Rectum	Meta	No	S
20	60	M	RFA	Colon	Meta	Yes	D	
21	55	M	RFA	Rectum	Meta	Yes	D	
22	75	M	Resection	Colon	Syn	Meta	Yes	D
23	54	F	RFA	Rectum	Meta	Yes	D	
24	63	F	RFA	Colon	Syn	Yes	D	
25	66	M	Resection	Rectum	Syn	Yes	S	
26	56	F	RFA	Rectum	Meta	Yes	D	
27	67	M	Resection	Colon	Meta	Yes	D	
28	58	M	RFA	Rectum	Syn	No	S	
29	71	M	Resection	Colon	Meta	Yes	S	

DM: Diabetes mellitus; HT: Hypertension; RFA: Radiofrequency ablation; Meta: Metachronous; Syn: Synchronous; S: Survival; D: Death; M: Male; F: Female.

Figure 1 The 5-year overall survival rate. A: For all patients (44.7%); B: In the surgical resection (66.7%) and radiofrequency ablation (RFA) groups (37.8%).
ing RFA. By contrast, Mulier et al\(^{[19]}\) reported no significant difference in OS between RFA and surgical resection for local control of CRLMs. Furthermore, in a recent study, Kanas et al\(^{[20]}\) reported a 5-year OS rate of 30%-40% in

Table 3 Summary of pathological findings

No.	Metastatic tumor size (cm)	Diff	T	N	M	LNR	LV	PN
1	2.5	Mod	3	2	0	0.23	Pos	Pos
2	1.6	Mod	3	2	0	0.17	Pos	Pos
3	4	Mod	4	2	0	0.37	Pos	Pos
4	4.2	Mod	4	1	0	0.43	Pos	Pos
5	3.2	Mod	3	1	1	0.07	Pos	Neg
6	4.2	Mod	2	2	0	0.25	Pos	Pos
7	4	Mod	3	0	1	0	Pos	Pos
8	2.8	Mod	4	0	0	0	Pos	Pos
9	4.4	Mod	1	2	0	0.06	Neg	Neg
10	4.9	Well	3	1	1	0.03	Pos	Neg
11	2.8	Mod	3	0	0	0	Neg	Pos
12	2.3	Mod	4	1	0	0.08	Neg	Neg
13	3.2	Mod	4	2	1	0.33	Neg	Pos
14	1.2	Mod	3	2	0	0.14	Pos	Pos
15	0.9	Poor	3	2	0	0.12	Pos	Pos
16	1.7	Poor	3	1	0	0.04	Pos	Pos
17	2	Mod	3	1	0	0.03	Neg	Neg
18	1	Mod	3	2	0	0.34	Pos	Pos
19	2.5	Mod	4	0	0	0	Neg	Neg
20	2	Mod	3	1	0	0.14	Pos	Pos
21	1.6	Mod	3	1	0	0.08	Pos	Pos
22	1	Mod	3	1	0	0.04	Pos	Pos
23	3.8	Mod	2	0	0	0	Neg	Neg
24	3.7	Mod	3	0	1	0	Neg	Neg
25	1	Mod	3	0	0	0	Neg	Neg
26	3.6	Mod	4	2	1	0.58	Neg	Pos
27	1.2	Mod	3	0	0	0	Pos	Pos
28	0.8	Mod	4	1	1	0.03	Neg	Neg
29	1.3	Mod	3	0	0	0	Neg	Neg

Diff: Differentiation of primary tumor; T: T stage; N: N stage; M: M stage; LNR: Lymph node ratio; LN: Lymphovascular invasion; PN: Perineural invasion; Mod: Moderate; Poor: Poorly; Pos: Positive; Neg: Negative.

Table 4 Clinicopathological data of colorectal liver metastases \(n\) (%)

	RFA \((n = 17)\)	Resection \((n = 12)\)	\(P\)-value
Sex			
Male	7 (41)	4 (33)	0.49
Female	10 (59)	8 (67)	
Age (yr)			
≤ 65	12 (71)	4 (33)	0.07
> 65	5 (29)	8 (67)	
Timing of metastasis			
Synchronous	5 (29)	3 (25)	1.00
Metachronous	12 (71)	9 (75)	
Primary site			
Colon	10 (59)	8 (67)	0.72
Rectum	7 (41)	4 (33)	
T stage			
I - III	13 (76)	8 (67)	0.68
IV	4 (24)	4 (33)	
Lymphovascular			
Positive	8 (47)	8 (67)	0.45
Negative	9 (53)	4 (33)	
Perineural invasion			
Positive	10 (59)	7 (58)	1.00
Negative	7 (41)	5 (42)	
Lymph node metastasis			
Positive	11 (65)	9 (75)	0.69
Negative	6 (35)	3 (25)	
Size of metastasis (cm)			
≤ 3 cm	13 (76)	5 (42)	0.07
> 3 cm	4 (24)	7 (58)	
Recurrence			
Yes	14 (82)	9 (75)	0.67
No	3 (18)	3 (25)	

RFA: Radiofrequency ablation.
patients with resectable CRLMs. Moreover, they observed that the survival rate in the resection group was favorable and reported that statistical significance could be expected using a larger patient population, even in the actual 5-year OS rate in the RFA group and in the nonactual survival in the resection group. Our 5-year OS rates were 66.7% in the resection group and 37.8% in the RFA group (actuarial 5-year survival rates), which is comparable to those reported in other published studies. In patients with hepatic tumors < 3 cm, the 5-year OS rate was 80.0% in the RFA group and 49.5% in the resection group \((P = 0.46) \). In patients with a hepatic tumor size > 3 cm, the 5-year OS rates were 0% in the RFA group and 57.1% in the resection group \((P = 0.005) \). In addition, the DFS rate in the resection group was superior to that in the RFA group.

To date, there exist some controversies regarding the
contribution of clinicopathological factors to survival following surgery for resectable CRLMs\(^2(3)\). Surgical resection in CRLM is considered the treatment of choice for local tumor control rather than systemic therapy. RFA, which has the advantages of minimal invasiveness and sparing the liver parenchyma, might be favorable for the local control of CRLMs, which requires adjuvant chemotherapy as well\(^2(3)\). However, less definitive evidence exists regarding the risk of intrahepatic or hematogenous metastases after RFA for patients with CRLMs. Fourteen patients who underwent RFA in our study experienced recurrences of multiple liver metastases and peritoneal carcinomatosis, and two patients developed metastases in the lung and spleen. The local recurrence rates after RFA are reportedly 2%-40%\(^2(3,22-25)\), and Ahtisaari et al\(^2(6)\) reported that local recurrence rates reached 8.8% overall and 1.6% for CRLMs < 3 cm in diameter. In the present study, one patient developed tumor recurrence following RFA and was excluded; the patient was followed up for 37 mo without recurrence after consecutive hepatic resection.

The statistical analysis in the present study identified the following risk factors for poor DFS in the RFA group compared with the resection group: male gender, age > 65 years, lower T stage, colon cancer, and absence of lymph node metastasis. These findings might be the result of the omission of intensive adjuvant chemotherapy in patients with less-advanced CRC stages.

Some limitations to the present study include its retrospective design and the small number of included cases. However, to our knowledge, this is the first report regarding the actuarial 5-year survival rate after RFA, which was 37.8% in patients with resectable CRLMs. Surgical resection is believed to be superior to RFA for resectable CRLMs; nevertheless, RFA displayed some interesting advantages to justify its adoption in patients with resectable CRLMs. Although a randomized controlled study of RFA is warranted, more strict indication criteria are needed before adopting RFA as a replacement for surgical resection in resectable CRLMs.

REFERENCE

1 Ministry for Health, Welfare and Family Affairs. Annual Report of cancer incidence (2005) and survival (1993-2005) in Korea. Seoul: Ministry for Health, Welfare and Family Affairs, 2008

2 American Cancer Society. American Cancer Society (2012) Cancer facts and figures. Washington, DC: American Cancer Society. Available from: URL: http://www.cancer.org/acs/groups/content/@epidemiologysurveillance/documents/document/acspc-051941.pdf

3 Schindl M, Gruenberger T, Längle F. Current strategies in the treatment of colorectal cancer liver metastases: aspects of surgical treatment. Eur Surg 2002; 34: 332-336 [DOI: 10.1046/j.1563-2563.2002.02078.x]

4 Ballantyne GH, Quin J. Surgical treatment of liver metastases in patients with colorectal cancer. Cancer 1993; 71: 4252-4266 [PMID: 8083886]

5 Donadon M, Ribero D, Morris-Stiff G, Abdalla EK, Vauthey JN. New paradigm in the management of liver-only metastases from colorectal cancer. Gastrointest Cancer Res 2007; 1: 20-27 [PMID: 19262699]

6 Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999; 230: 309-318; discussion 318-321 [PMID: 10495478 DOI: 10.1097/00000658-199909000-00004]

7 Pavlik TM, Schulick RD, Choti MA. Expanding criteria for resectability of colorectal liver metastases. Oncologist 2008; 13: 51-64 [PMID: 18245012 DOI: 10.1634/theoncologist.2007-0142]

8 Garden OJ, Rees M, Poston GJ, Mirza D, Saunders M, Ledermann J, Primrose JN, Parks RW. Guidelines for resection of colorectal liver cancer metastases. Gut 2006; 55 Suppl 3: iiii-iiii [PMID: 16835531 DOI: 10.1136/gut.2006.098053]

9 McCarter MD, Fong Y. Metastatic liver tumors. Semin Surg Oncol 2000; 19: 177-188 [PMID: 1126581]

10 McKay A, Dixon E, Taylor M. Current role of radiofrequency ablation for the treatment of colorectal liver metastases. Br J Surg 2006; 93: 1192-1201 [PMID: 16983740]

11 Chen MS, Li JQ, Zheng Y, Guo RP, Liang HH, Zhang YQ, Lin XJ, Lau WY. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243: 321-328 [PMID: 16495695 DOI: 10.1097/01.sla.0000201481.65519.1e]

12 Lu MD, Kuang M, Liang LJ, Xie XY, Peng BG, Liu GJ, Li DM, Lai JM, Li SQ. Surgical resection versus percutaneous thermal

REFERENCES

Peer review

This article examined the usefulness of RFA in patients with resectable CRLMs. In this study, the authors found that RFA can be useful in patients with CRLMs < 3 cm in diameter.
ablation for early-stage hepatocellular carcinoma: a randomized clinical trial. Zhonghua Yixue Zazhi 2006; 86: 801-805 [PMID: 16681964]

13 Curley SA, Izzo F, Delrio P, Ellis LM, Granchi J, Vallone P, Fiore F, Pignata S, Daniele S, Cremona F. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 1999; 230: 1-8 [PMID: 10400029 DOI: 10.1097/00000658-199907000-00001]

14 Wong SL, Edwards MJ, Chao C, Simpson D, McMasters KM. Radiofrequency ablation for unresectable hepatic tumors. Ann Surg 1999; 230: 1-8 [PMID: 10400029 DOI: 10.1097/00000658-199907000-00001]

15 Oshowo A, Gillams A, Harrison E, Lees WR, Taylor I. Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg 2003; 90: 1240-1243 [PMID: 14515293 DOI: 10.1002/bjs.4264]

16 Abdalla EK, Vauthey JN, Ellis LM, Ellis V, Pollock R, Broglio KR, Hess K, Curley SA. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004; 239: 818-825; discussion 825-827 [PMID: 15166961 DOI: 10.1097/01.sla.0000128305.90650.71]

17 Aloia TA, Vauthey JN, Loyer EM, Ribero D, Pawlik TM, Wei SH, Curley SA, Zorzi D, Abdalla EK. Solitary colorectal liver metastasis: resection determines outcome. Arch Surg 2006; 141: 460-466; discussion 466-467 [PMID: 16702517 DOI: 10.1001/archsurg.141.5.460]

18 Reuter NP, Woodall CE, Scoggins CR, McMasters KM, Martin RC. Radiofrequency ablation vs. resection for hepatic colorectal metastasis: therapeutically equivalent? J Gastrointest Surg 2009; 13: 486-491 [PMID: 18972167 DOI: 10.1007/s11605-008-0727-0]

19 Mulier S, Ruers T, Janart J, Michel L, Marchal G, Ni Y. Radiofrequency ablation versus resection for resectable colorectal liver metastases: time for a randomized trial? An update. Dig Surg 2008; 25: 445-460 [PMID: 19212117 DOI: 10.1159/000184736]

20 Kanas GP, Taylor A, Primrose JN, Langeberg WJ, Kehd MA, Mowat FS, Alexander DD, Choti MA, Poston G. Survival after liver resection in metastatic colorectal cancer: review and meta-analysis of prognostic factors. Clin Epidemiol 2012; 4: 283-301 [PMID: 23152705]

21 Hur H, Ko YT, Min BS, Kim KS, Choi JS, Sohn SK, Cho CH, Ko HK, Lee JT, Kim NK. Comparative study of resection and radiofrequency ablation in the treatment of solitary colorectal liver metastases. Ann Surg 2009; 197: 728-736 [PMID: 18789428 DOI: 10.1016/j.amjsurg.2008.04.013]

22 Otto G, Düker C, Hoppe-Lotichius M, König J, Heise M, Pitton MB. Radiofrequency ablation as first-line treatment in patients with early colorectal liver metastases amenable to surgery. Ann Surg 2010; 251: 796-803 [PMID: 19858704 DOI: 10.1097/SLA.0b013e3181bc9f0a]

23 Park J, Kim HC, Yu CS, Kim PN, Won HJ, Kim JC. Radiofrequency ablation for metastochronous liver metastasis from colorectal cancer after curative surgery. Ann Oncol 2008; 19: 227-232 [PMID: 17882491 DOI: 10.1093/annonc/dmd185]

24 Schiffman SC, Bower M, Brown RE, Martin RC, McMasters KM, Scoggins CR. Hepatectomy is superior to thermal ablation for patients with a solitary colorectal liver metastasis. J Gastrointest Surg 2010; 14: 1881-1886; discussion 1886-1887 [PMID: 20859701 DOI: 10.1007/s11605-010-1339-z]

25 White RR, Avital I, Soffocles CT, Brown KT, Brody LA, Covey A, Getrajdman GI, Jarnagin WR, Dematteo RP, Fong Y, Blumgart LH, D’Angelica M. Rates and patterns of recurrence for percutaneous radiofrequency ablation and open wedge resection for solitary colorectal liver metastasis. J Gastrointest Surg 2007; 11: 256-263 [PMID: 17488995 DOI: 10.1007/s11605-007-0100-8]

26 Abitabile P, Hartl U, Lange J, Maurer CA. Radiofrequency ablation permits an effective treatment for colorectal liver metastasis. Eur J Surg Oncol 2007; 33: 67-71 [PMID: 17174059 DOI: 10.1016/j.ejso.2006.10.040]

P- Reviewers: Cucchetti A, Guerra JLL, Rao US
S- Editor: Wen LL L- Editor: A E- Editor: Liu XM
