ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

Authors: Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, Yuxiong He
Large model training landscape

- GPU Memory Wall
 - 1T (10T) params: 800 (8K) V100 GPUs
 - How do we support the growth in model size?

- Accessibility to large model training
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources

- Model code refactoring
 - Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
 - Painful and error prone

AI and Memory Wall. (This blogpost has been written in... by Amir Gholami | riselab | Medium
Beyond the GPU Memory

• Modern clusters have heterogeneous memory systems.

• GPU memory comprises a small fraction

• Leverages GPU/CPU/NVMe memory
 • 32T params on 32 nodes
 • 1T params on a single node

• GPT-3 can be fine-tuned on a single node
How to leverage non-GPU memory?

• Can we extend an existing parallel training technology to use CPU/NVMe memory?

• Data Parallelism: Replication causes memory explosion
• Tensor-Slicing: scaling challenge for multi-GPU
• Pipeline-Parallelism: Requires significant code refactoring

• What about Zero Redundancy Optimizer (ZeRO)?
 • Efficiently scale across nodes – trillions of parameters
 • No model code refactoring necessary
ZeRO: Zero Redundancy Optimizer

- Memory efficient form of data parallelism
- Each GPU stores a mutually exclusive subset of the parameters
- Broadcast parameters from owner to all the GPUs as needed

Model States mapping in **Data Parallel** Training

Model States mapping in **ZeRO** Training
Zero Infinity Overview

• Infinity offload engine
 • Based on GPU memory,
 • Offload partitioned model states -> CPU/NVMe
 • Fetch back at time of needed

• Optimization: memory centric tiling
 • Breakdown large linear operator -> small sequential ones
 • Reduce required working memory
ZeRO with CPU/NVME Offload

- Store in CPU/NVME instead of GPU
- Send from CPU/NVMe to GPU
- Broadcast or reduce as ZeRO

- Is NVME↔GPU bandwidth sufficient?
 - Efficiency analysis based on bandwidth

\[
\text{efficiency} = \frac{\text{compute time}}{\text{compute time} + \text{communication time}}
\]

\[
\text{compute time} = \frac{\text{total computation}}{\text{peak}_p}
\]

\[
\text{ait} = \frac{\text{total computation}}{\text{total data movement}}
\]

\[
\text{communication time} = \frac{\text{total data movement}}{\text{bw}} = \frac{\text{total computation}}{\text{ait} \times \text{bw}}
\]

\[
\text{efficiency} = \frac{\text{ait} \times \text{bw}}{\text{ait} \times \text{bw} + \text{peak}_p}
\]
Efficiency as a function of bandwidth

(a) Parameter and Gradient Bandwidth
(b) Optimizer States bandwidth
(c) Activation Checkpoint Bandwidth

Figure 3: Impact of bandwidth on efficiency assuming an accelerator with 70 TFlops of single GPU peak achievable throughput.

Data Type	Overlap	Requirement
Params/Grads	Yes	70 GB/s
Optimizer States	No	1500 GB/s
Activations	Yes	1-4 GB/s

Overlap: prefetch data from CPU to GPU before computation. Need BW to achieve at least 50% efficiency.
ZeRO with CPU/NVME Offload

Example: Training using ZeRO with Offload on 64x DGX-2 nodes.

ZeRO with non-GPU memory

GPUs	Data Type	Required
1024	Params/Grads	70 GB/s
1024	Optimizer States	1500 GB/s
1024	Activations	1-4 GB/s

• Is CPU/NVME↔GPU bandwidth sufficient?
 - Params/grads: PCIe bottleneck 12 GB/s
 - Optimizer States: More than needed
 - Activations: CPU Memory bandwidth sufficient
Efficiency Design Choice

• Require 70GB/s
 • GPU-GPU BW can satisfy
 • But not PCIE’s 12GB/s BW
 • Zero-Offload, CPU-> owner GPU then broadcast
 • Require larger batch size
 • Activation memory too large for CPU memory
 • May not lead to effective convergence
BW-centric Partition

- Partition each parameter across GPUs
- Send from NVMe to GPU in parallel

- Bandwidth Increases linearly with devices
 - \#gpus x host-to-device bandwidth
 - CPU \to GPU: 64 GB/s – 4 TB/s (1-64 nodes)
 - NVMe \to GPU: 28 GB/s – 1.8 TB/s (1-64 nodes)

- Limited by GPU\leftrightarrow GPU bw
 - \text{min} (\#gpus x host-device bw, gpu-gpu bw)
 - 70 GB/s

GPUs	Data Type	Required	NVMe memory	CPU Memory
1024	Params/Grads	70 GB/s	70 GB/s	70 GB/s
1024	Optimizer States	1500 GB/s	1792 GB/s	4096 GB/s
1024	Activations	4 GB/s	1.75 GB/s	4 GB/s

ZeRO Infinity

GPU Interconnect

PCIe

Layer 0
Layer 1
Layer 2
Overlap-Centric Design

- **Data movement flow**
 - NVMe -> CPU
 - CPU -> GPU
 - GPU <-> GPU (all gather)

- **Prefetch required data before consumption**
 - While executing ith operator, fetch i + 1, i + 2 ...

Overlapped layer prefetching during forward pass
Ease Inspired Implementation

- Automatic Data Movement
 - Auto registration of all parameters
 - Intercepting parameter access to automate communication

- Automatic Model Partitioning during Initialization
 - Initializing models that are larger than GPU/CPU memory
 - Automatically partitioning parameters as they are created
Evaluation
Massive model scale

![Graph showing parameters in trillions for different node counts. The x-axis represents the number of NVIDIA V100 DGX-2 nodes, ranging from 1 to 128, and the y-axis represents parameters in trillions. The graph shows bars for 3D parallelism and ZeRO-Infinity, with peaks at 128 T for 128 nodes.]
Excellent Efficiency
Super-linear Scalability

![Graph showing throughput vs. number of V100 GPUs]

- Measured Throughput
- Perfect Linear Scaling (ref.)
Democratizing Large Model Training

- Data Parallel: 1.4
- ZeRO Offload: 13
- ZeRO Stage 3: 20
- 3D Parallelism: 20
- ZeRO-Infinity (CPU): 70
- ZeRO-Infinity (NVMe): 1000

Trainable Model Parameter (Billions)
Impact of System Features on Performance

- Prefetching and Overlapping

More effective for smaller batch sizes

- Activation checkpoint offload

Overhead is negligible for large hidden dims
Large model training landscape today

• **GPU Memory Wall**
 - 1T (10T) params: 800 (8K) V100 GPUs
 - How do we support the growth in model size?

• **Accessibility to large model training**
 - 256 GPUs to fine-tune GPT-3
 - Limited access to such resources

• **Model code refactoring**
 - Re-writing the model using 3D parallelism (tensor-slicing + pipeline parallelism)
 - Painful and error prone

*AI and Memory Wall. [This blogpost has been written in... by Amir Gholami](https://riselab.medium)
Redefining the landscape with ZeRO-Infinity

• Beyond GPU Memory
 • 50x larger models
 • 32T params on 512 GPUs (instead of 25K)

• Broader access to large model training
 • GPT-3 sized fine-tuning on a single node/GPU (instead of 16 nodes)

• Excellent Throughput and Scalability
 • Comparable to 3D-parallelism

• Ease of Use
 • No model refactoring necessary
Plus and Minus

• Clear analysis on BW requirement
 • Clear illustration on why Offloading can achieve high efficiency

• Leveraging huge NVMe room
 • Much larger capacity for ML models

• Data placement
 • Activation memory on CPU memory
 • But other states, CPU becomes cache of NVMe
 • Can have some pre knowledge of hotness of data
Discussion

• CPU by passing?
 • NVMe -> CPU -> GPU
 • GPU direct accessing NVMe, greatly cutdown GPU fetching time