Case Report

MFN2-related Charcot-Marie-Tooth Disease with Atypical Ocular Manifestations

Haitian Nan¹, Takanori Hata¹, Toko Fukao¹, Toshimichi Fukao², Wanjing Chen³, Takafumi Kurita¹, Takahiro Natori¹ and Yoshihisa Takiyama¹

Abstract:
We herein describe a Charcot-Marie-Tooth disease (CMT) family with a MFN2 mutation with atypical ocular manifestations. The proband, his mother, his third daughter, and his deceased maternal grandfather all had symptoms of CMT and a visual impairment (either cataracts or severe astigmatism). On whole-exome sequencing for the proband having CMT and congenital cataracts, we identified a c.314C>T (p.Thr105Met) mutation in MFN2, but no mutation in the causative genes associated with cataracts. This missense mutation in MFN2 co-segregated with CMT and the atypical ocular manifestations in this family. The findings of this study might help to expand the clinical phenotype of heterogeneous MFN2-related CMT.

Key words: Charcot-Marie-Tooth disease, MFN2, visual impairment, cataracts, astigmatism

(Intern Med 60: 3969-3974, 2021)
(DOI: 10.2169/internalmedicine.7463-21)

Introduction	Case Report
Charcot-Marie-Tooth disease (CMT) comprises the most common group of degenerative disorders of the peripheral nervous system and it is both clinically and genetically heterogeneous. Mutations in the mitofusin 2 (MFN2) gene, which encodes a mitochondrial GTPase mitofusin protein, have been reported to cause Charcot-Marie-Tooth 2A (CMT 2A), and hereditary motor and sensory neuropathy type VIA with optic atrophy (HMSN6A) (1). Mutations in MFN2 are the most prevalent cause of CMT2, accounting for up to 20% of all such patients and families (2). However, CMT1, as well as intermediate CMT phenotypes, have also been reported (3).	
CMT caused by MFN2 mutations presents complex phenotypes including not only neuropathy-related features but also systemic impairment of the central nervous system (3). Although optic atrophy has been frequently reported, mutations in MFN2 have only rarely been associated with cataracts. We herein report a Japanese CMT family with atypical ocular manifestations of cataracts or severe astigmatism with a p.T105M mutation in MFN2. | The pedigree is shown in Figure A. The proband (Figure A, III-1) was the first child of unrelated parents. He had congenital cataracts in both eyes and could not see clearly after birth. He could not even identify people’s faces or recognize his school bag in kindergarten, so he chose to go to a school for the blind. He had drop feet and a steppage gait from age 4. At age 6, he underwent his first cataract surgery. His muscle weakness and atrophy of the lower limbs both gradually worsened. He experienced difficulty in climbing stairs from his late teens, and experienced unsteadiness, clumsiness, and recurrent falls from 30 years of age. At 20 years of age, he underwent his second cataract surgery and intraocular lens implantation was performed. He had experienced frequent cramping since childhood and had developed severe pain in the waist and hips from age 39. On examination at age 40, he showed a steppage gait, drop feet, stork legs, a pes cavus deformity, hammertoes, absent Achilles tendon reflexes, distal muscle weakness, and atrophy in the lower extremities, and moderately decreased sensitivity to vibration and pain. Other than Achilles tendon reflexes, he |

¹Department of Neurology, University of Yamanashi, Japan, ²Department of Pediatrics, University of Yamanashi, Japan and ³Department of Ophthalmology, University of Yamanashi, Japan

Received: March 2, 2021; Accepted: April 29, 2021; Advance Publication by J-STAGE: June 12, 2021

Correspondence to Dr. Yoshihisa Takiyama, ytakiyama@yamanashi.ac.jp
was first diagnosed with age-related cataracts at 60 years of age. The proband’s 6-year-old third daughter (Figure A, IV-3) exhibited drop feet and a steppage gait, unsteadiness, clumsiness and recurrent falls after birth. Mild mental retardation was also noted. She also presented with severe visual impairment after birth, and at 4 years of age she was diagnosed to have severe astigmatism at a local clinic.

No other family members are known to have been affected by this pedigree. The proband’s younger brother (34 years of age; Figure A, III-2), and first and second daughters (15 and 6 years of age; Figure A, IV-1 and IV-2) have not shown any neurological or visual abnormalities thus far.

Genetic Study

We carried out whole-exome sequencing of genomic DNA from the proband. The genomic DNA was isolated from peripheral blood leukocytes using standard methods. Exome capture was performed with a SureSelect Human All Exon V6+UTR (89Mb) Kit (Agilent Technologies, Santa Clara, USA). Paired-end sequencing was carried out on a HiSeq2500 (Illumina, San Diego, USA) using a HiSeq SBS Kit V4 (Illumina), which generated 100-bp reads. The reference databases utilized included hg19 (GRCh37) (http://genome.ucsc.edu), HGMD (https://portal.biobase-international.co...
Table 1. Electrophysiologic Studies of the Proband Reported in This Study.

	Proband	Normal range
Median nerves		
DML (ms)	3.7	<4.4
MCV (m/s)	37.7	>49
Distal CMAP (mV)	11.1	>4
Proximal CMAP (mV)	5.4	>4
SCV (m/s)	34	>45
SNAP (μv)	6.1	>7
Ulnar nerves		
DML (ms)	2.9	<3.3
MCV (m/s)	50.5	>49
Distal CMAP (mV)	5.3	>6
Proximal CMAP (mV)	0.99	>6
SCV (m/s)	47.1	>47
SNAP (μv)	5.6	>3
Peroneal nerves		
DML (ms)	10.4	<5.8
MCV (m/s)	25.5	>41
Distal CMAP (mV)	0.23	>4
Proximal CMAP (mV)	0.26	>4
Tibial nerves		
DML (ms)	5.0	<5.8
MCV (m/s)	9.3	>41
Distal CMAP (mV)	0.64	>4
Proximal CMAP (mV)	0.25	>4
Sural nerves		
SCV (m/s)	19.1	>40
SNAP (μv)	9.4	>6

DML: distal motor latency, MCV: motor conduction velocity, CMAP: compound muscle action potential, SCV: sensory conduction velocity, SNAP: sensory nerve action potential.

m), GnomAD (http://gnomad.broadinstitute.org), and dbSNP (https://www.ncbi.nlm.nih.gov/snp/). We examined the variants of a total of 172 genes known to be responsible for CMT or hereditary spastic paraplegia (HSP) (Table 2). Through this analysis, we identified a c.314C>T (p.Thr105Met) mutation in exon 3 of the MFN2 gene and ruled out mutations in other causative genes for CMT and HSP. We then examined exon 3 in the MFN2 gene in the proband, the proband’s mother (Figure A, II-1) and father (Figure A, II-2), the younger brother (Figure A, III-2), the wife, and the youngest daughter (Figure A, IV-3) using polymerase chain reaction (PCR). On Sanger sequencing, we reconfirmed the c.314C>T (p.Thr105Met) mutation in exon 3 of the MFN2 gene, which was in a heterozygous state in the proband, his mother and his youngest daughter (Figure D). On the other hand, this mutation was not detected in the proband’s father, wife, or younger brother without symptoms (Figure E). We also examined variants of a total of 146 genes known to be responsible for or associated with cataracts (Table 2). Nevertheless, on whole-exome sequencing for the proband, we could not find any mutations in the causative genes associated with cataracts. Therefore, we considered that this missense mutation in MFN2 might have been co-segregated with CMT and the atypical ocular manifestations in this family.

Discussion

To date, the p.Thr105Met mutation in MFN2 has been reported in eight families throughout the world (1, 4-10). It appears to be a mutational spot exhibiting a high frequency in MFN2. The clinical features of patients or families with this mutation are shown in Table 3. There were some common clinical characteristics with this mutation, including a first-decade onset, bilateral foot drop, Achilles areflexia, distal loss of pinprick sensation greater than vibratory sensory loss, and distal muscle weakness severer in the lower than upper limbs. The initial symptoms were mostly walking difficulties caused by weakness of the distal lower limbs. None of the patients with this mutation have developed optic atrophy or have been reported to have any visual impairment so far. Interestingly, the inheritance mode of this mutation was de novo in a significant proportion of the carriers.

Among the families with this p.T105M mutation, our family has some unique characteristics: including pyramidal signs, dysphonia, and both tongue atrophy and fasciculation. These features had also been reported in CMT2A families with other mutations in MFN2 (3, 9, 11), suggesting a MFN 2-induced systemic impairment. CMT with a pyramidal feature is an axonal form of CMT with variable pyramidal features but without frank spasticity (12). In the present study, extensor plantar responses and increased reflexes were found in the proband, while brain MRI findings revealed no white matter alterations. However, our patient had no frank spasticity, which is differentiated from spastic paraplegia. These findings are similar to those described in the previous reports (1, 13), indicating that MFN2-related CMT can present with pyramidal features. Above all, although electrophysiologic examinations revealed axonal neuropathy in most families with p.Thr105Met mutation reported previously, our case showed a decreased MCV in the median, peroneal, and tibial nerves. Although amplitude reductions of CMAP were found in the peroneal and tibial nerves, a severe reduction of SCV for the sural nerves was identified with the CMAP amplitudes being preserved. Therefore, the proband might be classified within either the CMT1 or intermediate CMT phenotypes. The electrophysiological data of other affected family members should be further investigated with a co-segregation analysis. Unfortunately, we were not able to further perform electrophysiological studies on other affected family members.

HMS6N6A caused by a heterozygous mutation in MFN2 is typically characterized by severe peripheral neuropathy with optic atrophy (1). As far as we know, only one previous report has described two patients with both optic atrophy and cataracts in a large family associated with a missense mutation (c.629A>T, p.D210V) in MFN2 (14). However, the author did not mention whether the cataracts were congenital, and the other 10 patients with the same mutation in this
family did not present with cataracts.

In our family, the proband presented with congenital cataracts, the proband’s mother and deceased maternal grandfather also had confirmed age-related cataracts, and the proband’s youngest daughter presented with congenital visual impairment, which was initially diagnosed as astigmatism. It is noteworthy that the last time the proband’s youngest daughter went to an ophthalmological clinic had been 2 years previously when she still had visual impairment even with corrective lenses. It is possible that cataracts might have since developed or may develop in the near future. Unfortunately, the proband refused permission for further ophthalmologic examinations of his daughter and thus we could not get more information regarding this factor.

The other family members without this mutation in MFN2 did not present with cataracts or severe astigmatism with a p.T105M mutation did not exhibit either cataracts or severe astigmatism with a p.T105M mutation, which was initially diagnosed as astigmatism. It is noteworthy that the last time the proband’s youngest daughter went to an ophthalmological clinic had been 2 years previously when she still had visual impairment even with corrective lenses. It is possible that cataracts might have since developed or may develop in the near future. Unfortunately, the proband refused permission for further ophthalmologic examinations of his daughter and thus we could not get more information regarding this factor. The other family members without this mutation in MFN2 did not present with cataracts.

Table 2. Genes Known to Be Associated with CMT, HSP, or Cataracts.

Genes known to be responsible for CMT or HSP
ATLA1, SPAST, NIPA1, KIAA0196, ALDH1A1, KIF5A, RTN2, HSPD1, BCL2L2, RPEEP2, CPT1C, CYP7B1, SPG7, SPG11, ZFYVE27, SLC33A1, EEF2, CYP7B1, SPG7, SPG11, ZFYVE26, ERLIN2, SPG20, SPG21, B4GALNT1, DDHD1, FA2H, PNP, PLA2G6, C1orf12, GIC2, NTSC2, GBA2, AP4B1, AP5Z1, TECPB2, AP4M1, AP4E1, VPS37A, DDHD2, C12orf65, CYP2U1, TGF, KIF1C, USP8, WDR48, ARL6IP1, ERLN1, ANPD2, ENTPD1, ARSI, PGAP1, FLRT1, RAB3GAP2, MARS, ZFR, IBA57, MAG, MT-C03, MT-TI, MT-ND4, MT-ATP6, L1CAM, PLP, SLC16A2, BICD2, CHS1, IFH1, CCT5, FAM134B, ALS2, EXOSC3, GAD1, HACE1, IYST, SACS, AARS, ADH2, AIFM1, ARHGEF10, ARSA, AASSH1, COX6A1, TD, DCP1, DCAP8, DGAT2, DH11, DHT, DNAJB2, DNAJC5, DNAJ2, DRP2, DYN1C1H1, EGR2, EMLN1, FBXL5, FGST4, FIG4, GALC, GAN, GARS, GDAP1, GB1, GJB1, GNB4, HARS, HINT1, HK1, HOXD10, HSPB1, HSPB8, IFRD1, IGHMBP2, INF2, KARS, SLC12A6, KIF1B, LITA, LMNA, LRSAM1, MED25, MFF, MORC2, MPZ, MTA2, MUB2, NAGLU, NDRG1, NEF, NEFL, PDK3, PEX6, PH2Y, PLA2G6, PLEKHG5, PMM2, PMP22, PRPS1, PRX, RAB7, SFB1, SB2, SCY1, SH3TC2, SLC25A46, SOX10, SPTLC1, SPTLC2, SPTLC3, SURF1, TDP1, TRIM2, TRPV4, TUBB3, VCP, YARS, KIF1A, UBA1, HDP1, SELENOL, PCTY2, KNCNA2, KIDINS220, UCHL1, ATP13A2, FARS2, CAPN1, KLC2, SOD1, ACC20, RNFI, TFP1, WASHC5, MTTV.

Genes known to be responsible for cataracts or associated with CMT or HSP
ABCA3, TRAPP1C11, SLURP1, RIMS1, PANK4, MED13, IARS2, GDF3, EPHA2, CRYBB3, ABHD12, TRNT1, STX3, RNLS, PARK7, MFSD6L, IDO1, GEMIN4, ERCC2, CRYGA, ACRK1, TRPM3, TFAT1A, RRAGA, PAX6, MIP, INP5K, GFER, EYA1, CRYGB, ADAM9, TAP1, RRM2B, PEX11B, MR184, INT5, GI3, E3K, CRYGC, ADAMTS18, TUBA1A, TDRD7, RYR1, PIGV, M15, IPO13, GI5A, FAM126A, CRYG4, ADD3, TUBB, TFR2, SCSD, PITX2, SNY89, IAM3, GLS, FAR1, CRYGS, AGK, UCHL1, TMCO3, SIL1, PITX3, MYOC, KNCNA4, GNPAT, FBN1, CTD1P1, AKR1E2, UNC45B, TMEM114, SAPII1, POLG, NACC1, LEMD2, GSR, FOXE3, CYP1B1, ALDH1A1, VIM, TMEM70, SI5, PRX, NECAP2, LIM2, GSTM1, FTL, CYP27A1, APP, VXX2, CLPB, SLC16A12, PXDN, NECST3, LONP1, GSTT1, FFCO1, CYP51A1, BOCR, WDR36, COAL4, SLC35A1, RG56, NLS, SLS, HSFD, GALC, DNA2, BEST1, WDR87, COAL2, SLC40A1, RCI1, OCRL, MAF, HSFD, GALK1, DNM2, BDFS1, WSFI, CRYAA, CRYBA4, CDK5RAP2, OOG1, DYN1C1H1, BMP4, ALG1, DNM, BDFS2, WRN, CRYAB, CRYB1B, CHD7, OPA1, EFN4, BRD4, GCNT2, ZNF350, XILTL, CRYBA1, CRYBB2, CHMP4B, OPA3, EF1B2, CRYBA2, CRYAB2.

In summary, we herein described a Japanese CMT family with cataracts or severe astigmatism with a p.T105M mutation in MFN2. The findings of this family might expand the clinical phenotype of heterogeneous CMT and provide an opportunity to further study the genotype-phenotype correlation.
tion of MFN2 and cataracts.

The present clinical and genetic study was approved by the institutional review board of Yamanashi University, and written informed consent was obtained from all participating individuals.

The authors state that they have no Conflict of Interest (COI).

Financial Support

This work was supported by Grants-in-Aid from the Research Committee for Ataxic Disease (Y.T.), the Ministry of Health, Labor and Welfare, Japan, and JSPS KAKENHI Grant Number JP 18K07495 (Y. T.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

1. Chung KW, Kim SB, Park KD, et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129: 2103-2118, 2006.
2. Züchner S, Vance JM. Molecular genetics of autosomal-dominant axonal Charcot-Marie-Tooth disease. Neuromolecular Med 74(6): 356-374, 2006.
3. Stuppia G, Rizzo F, Riboldi G, et al. MFN2-related neuropathies: clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci 356: 7-18, 2015.
4. Feely SM, Laura M, Siskind CE, et al. MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 76:

Table 3. Clinical Features of Patients or Families with the P.Thr105Met Mutation in MFN2 Reported in the Literature.

Ethnic origin	North America	America, Utah State	Korea	America, Detroit	France	China	China	Dominican Republic	Japan (this report)		
Mode of inheritance	AD	De novo	De novo	De novo	AD	AD	De novo	NR	AD		
Onset age (years)	3-15/ NR	First decade/13	11/12	1/32	1/63	12/32	4/5	1/10	1/40		
Symptoms at onset	NR	Difficulty running or walking, clumsiness and unsteadiness	NR	Distal weakness	Distal weakness	Walking difficulties, falls, ankle and knee sprains and cramps	Weakness of the distal lower limbs	Abnormal gait	Inability to walk or sit straight	Drop feet and steppage gait	NR
Distal muscle weakness and atrophy, UL/LL	+/+++	+/+	+++	++++	++++	+/+	-/+	-/+			
Proximal muscle weakness	-	-	-	-	-	-	-	-	-		
Distal proprioception sensory loss	+	+	-	+	+	+	NR	+	-		
Distal cutaneous sensory loss	+	++	+	-	+	+	NR	+	-		
CMTNS (Severity)	NR	(Mild)	6 (Mild)	(Mild)	27 (Severe)	(Severe)	(Severe)	Intermediate	(Severe)	(Intermedimate)	
Pes cavus	No	Yes	Yes	NR	Yes	Yes	No	No	Yes		
Achilles tendon reflex	Absent	Absent	Absent	NR	Absent	NR	Diminished	Absent	Absent		
MCV (CV/Amp)	Median 47.52	Ulnar 55.6 (5.6)	Median 54.8 (12.9)	NR	Median 40-59	Median 38.4 (4.5)	Median 53.7 (8.4)	NR	Median 37.7 (11.1)		
SCV (CV/Amp)	NR	Sural 46.7 (8.7)	Median 37.5 (9.9)	NR	NR	NR	Median 39.8 (3.3)	NR	Sural 19.1 (9.4)		
Other symptoms	Ataxia, scoliosis	NR	Tremor	NR	Hip dysplasia	POEMS	NR	Cerebellar ataxia, intellectual disability	Cataracts, astigmatism, tongue atrophy and fasciculation, dysphonia		

Reference | 6 | 5 | 1 | 4 | 9 | 7 | 8 | 10 | This study |

AD: autosomal dominant, Muscle weakness and sensory loss: -: normal, +: mild, ++: moderate, +++: severe, UL: upper limbs, LL: lower limbs, proprioception based on joint position sensation and cutaneous sensation based on pinpoint examination. CMTNS: Charcot-Marie-Tooth disease neuropathy score. Patients with mild, intermediate, and severe disabilities typically have a CMTNS between 1 and 10, 11 and 20, and 21 or greater, respectively. CV: conduction velocity (in m/s), MCV: motor conduction velocity, SCV: sensory conduction velocity, Amp: amplitude (for motor: in mV; for sensory: in μV), POEMS: Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal gammopathy, and Skin changes, NR: Unknown or observation not recorded.
1690-1696, 2011.
5. Lawson VH, Graham BV, Flanigan KM. Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 65: 197-204, 2005.
6. Züchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-451, 2004.
7. Wang C, Guan YZ, Cai QQ, Su W, Zhou DB, Li J. Rapidly progressive polyneuropathy in a patient with monoclonal gammopathy: a case report of POEMS syndrome and beyond. Medicine (Baltimore) 95: e3453, 2016.
8. Xie Y, Li X, Liu L, et al. MFN2-related genetic and clinical features in a cohort of Chinese CMT2 patients. J Peripher Nerv Syst 21: 38-44, 2016.
9. Bombelli F, Stojkovic T, Dubourg O, et al. Charcot-Marie-Tooth disease type 2A: from typical to rare phenotypic and genotypic features. JAMA Neurol 71: 1036-1042, 2014.
10. Madrid R, Guariglia SR, Haworth A, Korosh W, Gavin M, Lyon GJ. Early-onset cerebellar ataxia in a patient with CMT2A2. Cold Spring Harb Mol Case Stud 6: a005108, 2020.
11. Ando M, Hashiguchi A, Okamoto Y, et al. Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study. J Peripher Nerv Syst 22: 191-199, 2017.
12. Vucic S, Kennerson M, Zhu D, Miedema E, Kok C, Nicholson GA. CMT with pyramidal features. Charcot-Marie-Tooth. Neurology 60: 696-699, 2003.
13. Zhu D, Kennerson ML, Walizada G, Zuchner S, Vance JM, Nicholson GA. Charcot-Marie-Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations. Neurology 65: 496-497, 2005.
14. Rouzier C, Bannwarth S, Chaussenot A, et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 135: 23-34, 2012.
15. Zhao J, Wu X, Wu D, et al. Embryonic surface ectoderm-specific mitofusin 2 conditional knockout induces congenital cataracts in mice. Sci Rep 8: 1522, 2018.
16. Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 176: 405-414, 2007.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).