Residual stress management: recent advances in engineering methods for non-destructive measurement and beneficial redistribution of residual stresses

Kontrolisanje zaostalih napona: razvoj najnovijih inženjerskih metoda za merenje bez razaranja i povoljnu preraspodelu zaostalih napona

Specimens were subjected to axial loading at R=0 until complete specimen failure. The results of fatigue testing of the overlap welds prepared from 3mm-thick 6061-T6 aluminium alloy are illustrated in Fig. 14b.

As can be seen from Fig. 14b, the data for both overlap welds of 3mm-thick 6061-T6 aluminium alloy that were treated by UP are located considerably higher (lines 3 and 4 in Fig. 14b) than the data of “as-welded” samples (lines 1 and 2 in Fig. 14b). At 10,000 cycles of fatigue, an increase in the stress range was achieved by a factor of ~2 for overlap size of 6 mm and a factor of ~2.3 for the 15 mm overlap. At the same time, the number of cycles to fatigue increased ~6 times for the 6 mm overlap, and ~10 times for the 15 mm overlap.

In a different study, the influence of the ultrasonic peening treatment was evaluated for 5083 type aluminium alloy samples welded in two different configurations as shown in Fig. 15 and using different welding processes.

Epruvete su jednoosno opterećene pri odnosu napona R=0, do potpunog loma epruvete. Rezultati ispitivanja zamora zavarenih spojeva sa prekllopom, napravljenih od 6061-T6 legure debljine 3 mm su prikazani na Slici 14b.

Kao što se može videti sa Slike 14b, podaci za oba preklopnog spoja od legure 6061-T6, debljine 3 mm, koja je obrađena ultrazvučnim sačmarenjem (linije 3 i 4 na Slici 14b) se nalaze značajno iznad podataka dobijenih za epruvete u početnom stanju (linije 1 i 2 na slici 14b). Pri broju zamornih ciklusa od 10,000, faktor uvećanja napona koji je dostignut za preklapanje od 6 mm je iznosio ~2, dok je za preklapanje od 15 mm iznosio ~2.3. Istovremeno, broj zamornih ciklusa se povećao ~6 puta za preklop od 6 mm, i ~10 puta za preklop od 15 mm.

Druga studija se bavila uticajem ultrazvučnog sačmarenja na aluminijumsku leguru 5083, pri čemu su korišćene epruvete sa dve različite konfiguracije, koje se mogu videti na Slici 15. U ovoj studiji su korišćeni različiti postupci zavarivanja.
The results of fatigue testing of these samples, using axial loading and R=0, in “as-welded” condition and after UP treatment are shown in Fig. 16. As can be seen from Fig. 16, the data for samples welded in both configurations that were treated by UP are located considerably higher than the data of “as-welded” samples.

Figure 15. Drawings of welded specimens in butt-weld and T-joint configurations

Slika 15. Crteži zavarenih epruveta sa sučeonom i ugaonom konfiguracijom

Rezultati ispitivanja zamora za ove epruvete, pri jednoosnom opterećenju i R=0, u početnom stanju, kao i nakon obrade UP, su prikazani na Slici 16. Kao što se može videti sa slike, vrednosti za obrađene epruvete su daleko iznad vrednosti za epruvete u početnom stanju.

Figure 16. Results of fatigue testing of samples made from 5083 alloy. a) butt-welded (as in Fig. 16a): 1, 2- in as-welded condition; 3, 4- after UP. 1, 3 – technology of welding A; 2, 4 – technology of welding B; b) T-joint weld (as in Fig. 16b): 1- in as-welded condition; 2 - after UP

Slika 16. Rezultati zamornih ispitivanja epruveta od legure 5083. a) sučeoni spoj (kao na slici 16a); 1,2 – početno stanje; 3,4 – nakon UP; 1,3 – tehnologija zavarivanja A; 2,4 – tehnologija zavarivanja B; b) T-spoj (kao na slici 16b): 1 – početno stanje; 2 – nakon UP
At 10,000 cycles of fatigue, a ~54% increase in the stress range was achieved for the butt-welded samples and 30% for the T-joint samples. The fatigue life was also increase considerably, i.e. the number of cycles to fatigue increased ~ 12 times for both welded configurations.

4.4 Ultrasonic Underwater Peening (UUP) of Welded Structures

An ultrasonic peening system was designed and built for applications under water [29], [30]. The system (Fig. 17) looks similar to the basic UP systems shown in Fig. 10, but actually is very different in design.

Specially selected anti-corrosion materials were used in the design of the underwater UP instrument. The length of the cable connecting the peening gun to the generator can be adjusted to allow for treatments underwater at depths up to 30 meters or, if required, with certain modifications, even deeper. Acoustic pump principle is used in the originally developed system for water cooling of the transducer. The developed UP system allows for improvement treatments at four different power levels and is using replaceable working heads that come in various configurations with variable numbers of pins, depending on the application. Fig. 18 shows the process of underwater welding (Fig. 18a) followed by ultrasonic peening using the UUP system in manual treatment by an operator (Fig. 18b). The system was also operated in an automated mode, without the help from an operator.

Pri broju ciklusa od 10.000, postognuto je povećanje opsega napona od ~54% u slučaju sučeonih, i ~30% u slučaju T-spojeva. Zamorni vek je takođe značajno produžen, odnosno broj ciklusa je povećan ~12 puta za obe konfiguracije.

4.4 Podvodno ultrazvučno sačmarenje (Ultrasonic Underwater Peening – UUP) zavarenih konstrukcija

Sistem ultrazvučnog sačmarenja razvijen za primenu pod vodom [29, 30] je prikazan na slici 17 i izgleda slično kao i klasičan UP sistem prikazan na Slici 10, iako je zapravo veoma drugačije konstruisan.

Figure 17. The ultrasonic system UltraPeen for underwater ultrasonic peening (UUP)

Slika 17. Sistem za ultrazvučno sačmarenje UltraPeen za podvodnu primenu

Posebno odabrani antikorozivni materijali su korišćeni pri izradi instrumenata za podvodno ultrazvučno sačmarenje. Dužina kablova koji povezuju pištolj sa generatorom se može prilagoditi radu pod vodom na dubini do 30 metara, ili po potrebi i sa određenim modifikacijama, za još veće dubine. Princip akustične pumpe je primenjen na ovaj sistem kako bi se omogućilo vodeno hlađenje sonde. Ovako razvijen UP sistem omogućava poboljšanje u četiri različita nivoa snage i koristi zamenljive radne glave koje postoje u velikom broj različitih konfiguracija sa promenljivim brojem pinova, u zavisnosti od primene. Slika 18 prikazuje proces podvodnog zavarivanja (Slika 18a), praćen ultrazvučnim sačmarenjem primenom UUP sistema, od strane operatera (Slika 18b). Ovaj sistem takođe može da radi u automatskom režimu, bez pomoći operatera.
To evaluate the efficiency of the new UltraPeen® technology and equipment for underwater ultrasonic peening (UUP) of welded elements, a study was conducted in which thirty four large-scale welded samples were produced (Fig. 19a) and fatigue tested after underwater UP treatment.

Half of these samples were welded in open air and another half – underwater (Fig. 18a). Then, 50% of the samples from both batches were subjected to UUP (Fig. 18b) and all samples were fatigue tested. The results of the fatigue testing (Fig. 19b) had shown that the UUP provides significant fatigue improvement of welded elements, similar to what is observed for UP in air. The fatigue life of welded samples increased under the action of UUP 4-5 times depending on the level of applied stresses.

Kako bi se ocenila efikasnost nove UltraPeen® tehnologije i opreme za podvodno ultrazvučno sačmarenje, sprovedena je studija u okviru koje su napravljena 34 velika zavarena uzorka (Slika 19a), koji su ispitani na zamor nakon podvodnog ultrazvučnog sačmarenja.

Polovina ovih uzoraka je zavarena na otvorenom, a druga polovina pod vodom (Slika 18a). Nakon toga, 50% uzoraka iz obe ture su podvrgnute obradi UUP metodom (Slika 18b), pri čemu su svi uzorci ispitani na zamor. Rezultati ispitivanja zamora (Slika 19b) su pokazali da UUP obezbeđuje značajno poboljšanje zavarenih elemenata u pogledu otpornosti na zamor, slično kao što je uočeno kod ultrazvučnog sačmarenja na otvorenom. Zamorni vek zavarenih uzoraka je na ovaj način produžen 4-5 puta, u zavisnosti od nivoa delujućih napona.
Summary

In summary, it is safe to say that the concept of residual stress management is helping welders and the welding community to fully understand the effect of residual stresses by addressing major aspects of residual stresses in welds and welded structures. When the elements of the RSM are used together, the optimum performance of welded structures can be achieved.

The effect of residual stresses on material properties like fatigue, fracture, corrosion resistance and dimensional stability can be considerable and they, therefore, should be taken into account during design, fatigue assessment and manufacturing of parts and welded elements.

Substantial technological progress was made in the non-destructive measurement of applied and residual stresses by ultrasonic method. The UltraMARS-7 system incorporates new software and new functional capabilities, allowing evaluate the bulk, average through thickness stresses as well as the subsurface and surface stress changes. In addition it allows also evaluating the thickness of the materials and their Young modulus and Poisson ratio. The residual and applied stresses can be measured, calculated and their distribution displayed on the screen of the UltraMARS-7 instrument as continuous curves, with the option of transferring the data onto an USB device for further processing. The developed advanced ultrasonic method for non-destructive measurement of stresses and based on it portable instrument were used successfully in laboratory and field conditions for non-destructive measurement of applied and residual stresses in real parts and structural elements.

The ultrasonic peening technology was also matured with new models of the instrumentation for air and underwater treatments being developed and successfully demonstrated. The UP technology was successfully applied in construction industry, shipbuilding, railway and highway bridges, nuclear reactors, aerospace industry, oil and gas engineering and in other areas during manufacturing, in service inspection and repair of welded elements and structures.

Zaklučci

Na kraju se može sa sigurnošću zaključiti da koncept kontrolišanja zaostalih napona pomaže zavarivačima da u potpunosti razumeju uticaj zaostalih napona u zavarenim spojevima i konstrukcijama. Kada se elementi RSM koriste istovremeno, može se ostvariti optimalno fukncionisanje zavarenih konstrukcija.

Uticaj zaostalih napona na osobine materijala, poput zamora, sklonosti ka lomu, otpornosti na koroziju i stabilnosti dimenzija može biti značajan i stoga se oni moraju uzeti u obzir tokom projektovanja, ocene zamornog veka i proizvodnje delova i zavarenih elemenata.

Značajan tehnološki napredak je načinjen u oblasti merenja metodama bez razaranja delujućih i zaostalih napona pomoću ultrazvuka. UltraMARS-7 sistem koristi novi softver i nove funkcije koje omogućavaju merenje prosećnog napona kroz celu debljinu, kao i na i pod površinom. Pored toga je takođe moguće oceniti debljinu materijala i njegov modul elastičnosti i Poasonov koeficijent. Delujući i zaostali naponi se mogu izmeriti, proračunati i prikazati na monitoru uređaja UltraMARS-7 u obliku neprekidnih kriva, sa opcijom prebacivanja podataka na USB uređaj za potrebe dalje obrade. Razvijene napredne ultrazvučne metode za merenje bez razaranja zasnovane na prenosivim uređajima su uspešno primenjene u laboratorijskim i terenskim uslovima za merenje delujućih i zaostalih napona u stvarnim delovima i konstrukcijama.

Tehnologija ultrazvučnog sačmarenja je takođe „sazrela“ sa primenom novih modela uređaja za obradu na vazduhu i pod vodom, koji su sa uspehom razvijeni i primenjeni u te svrhe. UP tehnologija je uspešno primenjena u građevinskoj industriji, brodogradnji, zatim u izradi železnice i mostova, nuklearnih reaktora, aviindustriji, naftnoj industriji i mnogim drugim oblastima, pri kontroli i reparaciji zavarenih elemenata i konstrukcija.
References / Literatura

[1] Trufyakov, V., Mikheev, P. and Kudryavtsev, Y., “Fatigue Strength of Welded Structures. Residual Stresses and Improvement Treatments”, London. Harwood Academic Publishers GmbH. 1995.

[2] Kudryavtsev, Y., “Effect of Residual Stresses on the Endurance of Welded Joints”, “International Institute of Welding”, IIW Doc. XIII - 1568 - 94. 1994.

[3] Kleiman, J. and Kudryavtsev, Y., “Residual Stress Management in Welding: Residual Stress Measurement and Improvement Treatments”, in Proceedings of ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, v 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, Rio de Janeiro, Brazil, July 1–6, 2012, pp. 73-79

[4] Lu, J., Handbook of Measurement of Residual Stresses. Society for Experimental Mechanics. Edited by J. Lu. 1996. [5] Kleiman, J. and Kudryavtsev, Y., Ultrasonic Measurement of Residual Stresses in Welded Elements. 5 TH Annual CWA CanWeld Conference and IIW Congress, Westin Bayshore Hotel Vancouver, Canada, September 28 – October 1, 2014.

[6] Kudryavtsev, Y., Application of the ultrasonic method for residual stress measurement. Development of fracture toughness requirement for weld joints in steel structures for arctic service. VTT-MET. B-89. Espoo. Finland, (1985), pp.62-76.

[7] Kudryavtsev, Y., Kleiman, J., and Gushch, O., Residual Stress Measurement in Welded Elements by Ultrasonic Method, IX International Congress on Experimental Mechanics, Orlando, Florida, USA, June 5-8, (2000), pp. 954-957.

[8] Kudryavtsev, Y., Kleiman, J., and Gushch, O., Ultrasonic Measurement of Residual Stresses in Welded Railway Bridge, Structural Materials Technology: An NDT Conference. Atlantic Cit., NJ. February 28-March 3, (2000), pp. 213-218.

[9] Kudryavtsev, Y., Kleiman, J., Gushch, O., Smilenko, V., and Brodovy, V., Ultrasonic Technique and Device for Residual Stress Measurement, X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, California USA, June 7-10, (2004), pp. 1-7.

[10] Kudryavtsev, Y., Kleiman, J., Trufiakov, V. and Mikheev, P., Expert System for Fatigue Assessment and Optimization of Welded Elements. Short Paper Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization. Buffalo, New York, USA, May 17-21, 1999. Volume 2. p. 469-471.

[11] Kudryavtsev, Y. and Kleiman, J., Residual Stress Management: Measurement, Fatigue Analysis and Beneficial Redistribution, 2004 SEM X International congress and Exposition on Experimental and Applied Mechanics, June 7- 10, 2014, The Hilton Costa Mesa, Costa Mesa, CA, USA.

[12] Marquis, G. and Barsoum, Z., Fatigue Strength Improvement of Steel Structures by HFMI: Proposed Procedures and Quality Assurance Guidelines, International Institute of Welding IIW Document XIII- 2453-13, 201.

[13] Kudryavtsev, Y., Korshun, V. and Kuzmenko, A., Improvement of Fatigue Life of Welded Joints by Ultrasonic Impact Treatment, Paton Welding Journal, 1989, No. 7. pp. 24-28.

[14] Kudryavtsev, Y, Mikheev, P., and Korshun, V., Influence of Plastic Deformation and Residual Stresses Created by Ultrasonic Impact Treatment on Fatigue Strength of Welded Joints, Paton Welding Journal, 1995, No. 12. pp. 3-7

[15] Trufiakov, V., Mikheev, P., Kudryavtsev, Y. and Statnikov, E., Ultrasonic Impact Treatment of Welded Joints, International Institute of Welding, IIW Document XIII-1609-95. 1995.

[16] Statnikov, E., Trufiakov, V., Mikheev, P. and Kudryavtsev, Y., Specifications for Weld Toe Improvement by Ultrasonic Impact Treatment. International Institute of Welding, IIW Document XIII-1617-96. 1996.

[17] Kudryavtsev, Y., and Kleiman, J., Increasing Fatigue Strength of Welded Elements and Structures by Ultrasonic Impact Treatment. International Institute of Welding. IIW Document XIII-2318-10, 2010.

[18] Kudryavtsev, Y., Kleiman, J., Lobanov, L., et al. Fatigue Life Improvement of Welded Elements by Ultrasonic Peening, International Institute of Welding. IIW Document XIII-2010-04. 2004. 20 p.

[19] Kudryavtsev, Y., Kleiman, J., Lugovskoy, A., et al., Rehabilitation and Repair of Welded Elements and Structures by Ultrasonic Peening, International Institute of Welding, IIW Document XIII-2076-05. 2005. 13 p.

[20] Kudryavtsev, Y., Kleiman, J., Lugovskoy, A., and Prokopenko, G., Fatigue Life Improvement of Tubular Welded Joints by Ultrasonic Peening, International Institute of Welding. IIW Document XIII-2117-06. 2006. 24 p.

[21] Kudryavtsev, Y., Kleiman, J., Application of Ultrasonic Peening for Fatigue Life Improvement of Automotive Welded Wheels, International Institute of Welding, IIW Document XIII-2075-05, 2005. 9 p.

[22] Kudryavtsev, Y., Kleiman, J., Fatigue of Welded Elements: Residual Stresses and Improvement Treatments, Proceedings of the IIW International Conference on Welding & Materials, July 1-8, 2007, Dubrovnik, Croatia. P. 255-264.

[23] Haagensen, P., Progress Report on IIW WG2 Round Robin Fatigue Testing Program on 700 MPa and 350 MPa YS Steels, International Institute of Welding. IIW Document XIII-2081-05, 2005.
[24] Marquis, G. and Björk, T., Variable Amplitude Fatigue Strength of Improved HSS Welds, International Institute of Welding, IIW Document XIII-2224-08, 2008.

[25] US Patent # 8,747,732 B2, Ultrasonic instrument for the deformation treatment of surfaces and weld joints, Jun. 10, 2014.

[26] Kudryavtsev, Y., Kleiman, J., Kiryan, V., Klochkov, I., Fatigue Life Improvement of Welded Elements of Aluminum Alloys by Ultrasonic Impact Treatment, European Conference on Aluminum Alloys ECAA2011, Bremen, Germany October 5-7, 2011.

[27] Klochkov, I., Berezin, I., Kudryavtsev, Y. and Kleiman, J., Fatigue Assessment of Fusion Welded Al Alloys: Scale Factor and Residual Stresses, European Conference on Aluminum Alloys ECAA2011, Bremen, Germany October 5-7, 2011.

[28] Klochkov, I., Kiryan, V., Berezin, I., Kudryavtsev, Y., Kleiman, J., Fatigue Improvement of AA2024 Aluminum Welded Joints by Ultrasonic Impact Treatment, MATERIALS SCIENCE ENGINEERING, Darmstadt, Germany, 25-27 September, 2012, https://www.spp1473.kit.edu/downloads/MSE2012_programm_e.pdf

[29] Kleiman, J., Kudryavtsev, Y., and Lugovskoy, A., Underwater stress relieve and fatigue improvement by ultrasonic peening. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2012, July 1-6, 2012, Rio de Janeiro, Brazil, Paper # 83469

[30] Kudryavtsev, Y., Kleiman, J., and Lugovskoy, A., Underwater Ultrasonic Peening of Welded Elements and Structures, Integrity, Reliability & Failure 2013, Funchal, Portugal, June 24-26, 2013.