The core of the bacterial translocase harbors a tilted transmembrane segment 3 of SecE

Veenendaal, A.K.J.; van der Does, C.; Driessen, A.J.M.

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M205713200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Veenendaal, A. K. J., van der Does, C., & Driessen, A. J. M. (2002). The core of the bacterial translocase harbors a tilted transmembrane segment 3 of SecE. The Journal of Biological Chemistry, 277(39), 36640 - 36645. https://doi.org/10.1074/jbc.M205713200

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The Core of the Bacterial Translocase Harbors a Tilted Transmembrane Segment 3 of SecE*

Received for publication, June 10, 2002, and in revised form, July 12, 2002
Published, JBC Papers in Press, July 22, 2002, DOI 10.1074/jbc.M205713200

Andreas K. J. Veenendaal, Chris van der Does, and Arnold J. M. Driessen‡

From the Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

The bacterial translocase mediates the translocation and membrane integration of proteins. The integral membrane proteins SecY and SecE are conserved core subunits of the translocase. Previous cysteine-scanning studies showed that the transmembrane segment (TMS) 3 of SecE contacts TMS 2 and 7 of SecY, and TMS 3 of another SecE. We now demonstrate that SecE also contacts TMS 10 of SecY. Combining all available cysteine-scanning mutagenesis data, a three-dimensional model has been built in which the positions of the helices that form the central core of the bacterial translocase are mapped. Remarkably, this model reveals that TMS 3 of SecE is strongly tilted relative to SecY.

In bacteria, the translocase mediates the translocation of proteins across and integration of membrane proteins into the cytoplasmic membrane. Translocase consists of the membrane-bound SecA and the integral membrane protein complex SecYEG (for reviews see Refs. 1 and 2). SecY, SecE, and SecG are membrane proteins that together form a heterotrimeric complex (3, 4), which constitutes a high affinity binding site for the SecA dimer (i.e. with a non-hydrolyzable ATP analog or with a trapped preprotein intermediate) was found to be associated with a trapped preprotein intermediate remains stably associated with SecYEG dimers in the absence of SecA (22). A chemical cross-linking study failed to demonstrate the presence of SecYEG oligomers, and it was suggested that such forms represent aggregates formed as an artifact of the overproduction (23). However, cysteine-directed cross-linking demonstrates that a trapped preprotein intermediate remains stably associated with SecYEG dimers in the absence of SecA (22).

The SecYEG protomer is a dynamic complex that can organize into dimers and tetramers as revealed by electron microscopy, cysteine-scanning mutagenesis, sedimentation analysis, and Blue Native (BN)-PAGE (18, 20–22). An activated state of the SecA dimer (i.e. with a non-hydrolyzable ATP analog or with a trapped preprotein intermediate) was found to be associated with a trapped preprotein intermediate remains stably associated with SecYEG dimers in the absence of SecA (22). A chemical cross-linking study failed to demonstrate the presence of SecYEG oligomers, and it was suggested that such forms represent aggregates formed as an artifact of the overproduction (23). However, cysteine-directed cross-linking demonstrates that a trapped preprotein intermediate remains stably associated with SecYEG dimers in the absence of SecA (22). A chemical cross-linking study failed to demonstrate the presence of SecYEG oligomers, and it was suggested that such forms represent aggregates formed as an artifact of the overproduction (23). However, cysteine-directed cross-linking demonstrates that a trapped preprotein intermediate remains stably associated with SecYEG dimers in the absence of SecA (22).

A central question is how the SecYEG complex forms the protein-conducting channel. To answer this, detailed information is required about the molecular architecture of the SecYEG complex. For this purpose, we have initiated a cysteine-scanning mutagenesis approach to probe sites of interaction between SecY and SecE (17, 18). A model has been presented in which one face of TMS 3 of SecE stably interacts with TMS 2 and 7 of SecY whereas the opposite face dynamically interacts with TMS 3 of a neighboring SecE molecule that is part of a separate SecYEG complex. The periodic reappearance of the contacts suggests the presence of α-helices as the secondary structure of the investigated transmembrane segments. Based on the conserved residues and the high incidence of prlA mutations in TMS 10 and observed synthetic lethal combinations of prlA and prlG mutations, we expected also that TMS 10 of SecY is located in the core of the translocase in close vicinity to SecE. Here, we indeed present evidence that TMS 3 of SecE contacts TMS 10 of SecY periodically in space. Using our com-

* This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) and subsidized by the Dutch Organization for the Advancement of Scientific Research (NWO). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 31-503632164; Fax: 31-503632154; E-mail: a.j.m.driessen@biol.rug.nl.

1 The abbreviations used are: TMS, transmembrane segment; BN, Blue Native; IMV, inner membrane vesicle.
TABLE I

Plasmids

Plasmid	Relevant characteristic	Mutation	Source
pET607	Cysteine-less SecYEG in pET610	C329S (TGAG−AGT); C385S (TGCG−AGC)	Ref. 17
pET2510	SecY TMS 10 mutants in pET607	L406C	This work
pET2511		L407C	This work
pET2512		I408C	This work
pET2513		V409C	This work
pET2514		V410C	This work
pET2515		V411C	This work
pET2516		V412C	This work
pET2517		I413C	This work
SecE TMS 3 mutants in pET607:			
pET2500		L95C	Ref. 18
pET2501		I96C	Ref. 18
pET2502		V97C	Ref. 18
pET2503		A98C	Ref. 18
pET2504		A99C	Ref. 18
pET2521		V100C	Ref. 18
pET2522		T101C	Ref. 18

* ActA \((ATCGAT→ATCGAC)\) between the SecY and SecE gene. The names of the double cysteine mutants are combined, e.g. pET2513/2522 contains SecY V409C and SecE T101C mutations.

RESULTS

Construction, Expression, and Activity of Single Cysteine Mutants of SecY—Unique cysteine mutations were introduced into TMS 10 of SecY to investigate possible contacts with TMS 3 of SecE as suggested by the synthetic lethality of combined prlA and prlG mutants (15). The previously constructed SecE mutants (L95C to T101C) (18) were located at the cytosolic side of TMS 3. The new set of eight consecutive mutations (L406C to I413C) of SecY covers at least two turns of the putative \(α\)-helical structure of TMS 10. Sequence alignment and hydrophobicity analysis predict the same depth in the membrane as for the SecE mutants (Fig. 1). The single cysteine SecY mutations were placed into a cysteine-less SecYEG expression vector (17), and the mutant SecYEG complexes were overproduced in \(E.\ coli\) strain SF100. IMVs derived from these cells were analyzed for the SecY and SecE expression levels and proOmpA translocation activity. The \(in\ vitro\) translocation assay monitoring the protease protection of the translocated proOmpA was performed as described (17) except that fluorescein maleimide-proOmpA was used instead of \(\text{125I-proOmpA,}^2\) and visualization of the fluorescent bands in the gel after SDS-PAGE was done with a fluorescence imager. Cysteine-less SecYEG was used as the control because it is indistinguishable from wild-type SecYEG (17). The expression level of the SecYEG mutants as analyzed by SDS-PAGE and Coomassie Brilliant Blue staining were found to be similar to that of the overexpressed cysteine-less SecYEG complex with one exception. IMVs harboring mutant SecY(I408C)EG showed a lower expression of SecY but not of SecE (data not shown) and a correspondingly lower translocation activity (Fig. 2). Fig. 2 suggests a slightly lower activity for mutant Y(V411C)EG. However, this was not representative for SecY(V411C)EG as repeated experiments show a translocation activity for the mutant that is similar to wild-type SecYEG (data not shown). The cysteine mutations did not produce a strong \(prf\) phenotype as none of the mutants supported the translocation of \(\Delta\)-proOmpA, a preprotein with a defective signal sequence that is translocated by PrlA4 (Refs. 28 and 29 and data not shown), nor did they reveal a significantly higher proOmpA translocation activity (Fig. 2).

TMS 10 of SecY Contacts TMS 3 of SecE at an \(α\)-Helical Interface—To identify possible sites of contact between SecY and SecE, 56 pairs of cysteine mutations were constructed of...
combinations in TMS 10 of SecY (at positions 406–413) and TMS 3 of SecE (at positions 95–101). The overexpression level and activity of the SecYEG complexes, which contain the SecE cysteine mutations that are used in this study, have been analyzed before and shown to be similar to wild-type SecYEG (18). SecYEG IMVs of 49 pairs of cysteine mutations exhibited normal levels of overexpression whereas the 7 combinations with SecY I408C showed a lower SecY expression level (data not shown). IMVs, corrected for the SecY level, were oxidized with 1 mM Cu²⁺/H₁₁₀₀¹(phenanthroline)₃ and analyzed by SDS-PAGE and immunoblotting using antibodies against SecY and SecE (Fig. 3). Four cysteine combinations display reproducibly a higher molecular mass band, which reacts with both antibodies against SecY and SecE and corresponds to an expected SecY-SecE cross-link. In particular the combinations SecY(V409C)-SecE(T101C) and SecY(I413C)-SecE(V100C) yielded a strong SecY-SecE cross-link. As shown previously for other identified cross-links (18), oxidation of these cysteine mutant pairs resulted in the inactivation of the protein translocation reaction, whereas the activity was recovered after reduction with dithiothreitol (data not shown). Several other cysteine pairs, especially in combination with SecY I408C, show a faint band at the position of the expected SecY-SecE cross-link (Fig. 3). These bands are significantly weaker than those for the four cysteine pairs mentioned above, did not stain with the SecE antibody, and lacked apparent reproducibility. Therefore, we do not believe that these bands reflect clear contact points between SecY and SecE. The cross-linking data could be modeled by assuming an α-helical contact interface between TMS 10 of SecY and TMS 3 of SecE (Figs. 4 and 5).

Model for the Core of the SecYE Complex—To incorporate the identified cross-links into a three-dimensional model, TMS 2 (Ala₇₅–Ile₉₂), 7 (Val₂₇₄–Ala₂₉₁), and 10 (Val₃₉₇–Met₄₁₄) of SecY and TMS 3 (Leu₉₅–Asp¹₁₂) of SecE were built as α-helices in silico. Strikingly, TMS 7 and 10 of SecY contact the same side of TMS 3 of SecE. However, the position on SecE (Val 97) that shows the strongest cross-linking reaction with TMS 7 of SecY is located at a different depth in the membrane than the positions (Val¹⁰⁰ and Thr¹⁰¹) that are the strongest contact sites to TMS 10 of SecY. Only one model (Fig. 5) could explain all 13 observed transmembrane contacts (Refs. 17 and 18 and this study). Remarkably, this model implies a strongly tilted SecE helix surrounded by TMS 2, 7, and 10 of SecY. We therefore conclude that TMS 3 of SecE is tilted relative to the surrounding transmembrane segments of SecY in the core of the translocase.

DISCUSSION

To fully understand the mechanism of translocation and membrane insertion of proteins, detailed structural information of the translocase is essential. The highest level of structural information can be derived from x-ray crystallography. However, crystallization of membrane proteins is very difficult to accomplish. This is in particular a major challenge with the SecYEG complex as it needs to interact with the soluble SecA protein to form a functional translocase. Recently, two-dimensional crystals of SecYEG have been produced from which a 9-Å projection structure was calculated, but the structural information in this projection of SecYEG is limited as it is not
possible to assign the helices at this resolution (21). An alternative approach for obtaining structural information is cysteine-scanning mutagenesis, a technique that can be used to map the sites of contact between the transmembrane segments in membrane proteins. An important advantage of this technique is that structural information is obtained from the functional, membrane-embedded proteins, and observed sites of interaction can be further exploited to obtain information on the dynamics of the proteins involved. We have used this technique to reveal the sites of interaction between SecY and SecE, both essential components of the protein-conducting channel. In this study, we show that TMS 3 of SecE contacts TMS 10 of SecY. Furthermore, we present a three-dimensional model of the SecYE core based on the combined cross-linking data.

All cross-links reappear periodically, consistent with an \(\alpha\)-helical structure of these transmembrane segments (Figs. 4 and 5A). Oligomeric forms of SecYEG were revealed by covalently linked SecE dimers when cysteines are introduced at the positions of Ala\(^{59}\), Leu\(^{106}\), and Gly\(^{110}\) in TMS 3 (17, 18). These contacts also display spatial periodicity, indicating an \(\alpha\)-helical interface that covers the entire span of the membrane. Furthermore, the SecE dimer interface is mapped opposite to the SecY-SecE contacts (Fig. 5B).

prl mutations in SecY and SecE result in thermally induced destabilization of the SecY-SecE interaction (30). The current study shows that the positions of known **prl** mutations in TMS 10 are directed away from the SecY-SecE interface (Fig. 4). This phenomenon has also been observed previously for TMS 2 and 7 of SecY (18). This implies that the effect on the SecY-SecE interaction caused by **prl** mutations must be indirect, probably mediated by a local disturbance of the structure or helical packing. The mutation Ile\(^{408}\)C in SecY resulted in lowered expression levels, but the translocation activity was found to be comparable with cysteine-less SecYEG when corrected for the reduced SecY levels (Fig. 2). Ile\(^{408}\) is a hot spot for known **prl** mutations and thus sensitive to mutational changes. However, Ile\(^{408}\)C did not yield a strong **prl** phenotype as assayed by translocation of \(\Delta\)-proOmpA (data not shown).

Strikingly, the suggested contact interfaces of TMS 3 of SecE to TMS 7 and 10 of SecY are overlapping. An effort to fit all observed inner membrane cross-links resulted in the model shown in Fig. 5. For this, TMS 2, 7, and 10 of SecY and TMS 3 of SecE were modeled as \(\alpha\)-helices and arranged such that all identified sites of contact could be accommodated. Extensive modeling and probing of the different contacts resulted in only one model that met the set criteria. Other models could not fit the complete set of identified cross-links or even generate expected sites of contact that were not observed experimentally. Our model revealed a tilted TMS 3 of SecE relative to the surrounding TMS 2, 7, and 10 of SecY. Furthermore, a tilted helix implies a crossed contact interface between two SecYE
FIG. 5. Three-dimensional models of the SecYE complex. Side view of helices representing TMS 2, 7, and 10 of SecY and TMS 3 of SecE. A, monomeric view; B, dimeric view. SecY and SecE helices are indicated and displayed in white and gray, respectively. Colored patches and lines are used to specify the residues that are involved in contacts between TMS 3 of SecE and the following helices of SecY: TMS 2 (green), TMS 7 (blue), and TMS 10 (yellow). TMS 7 and 10 of SecY can be cross-linked to the same residues of SecE. Therefore, the residues involved are colored only according to their strongest contacts (i.e. SecE Val97 in blue; Val100 and Thr101 in yellow). Sites of contact between neighboring SecE molecules are depicted in red patches and connected by red lines. Efficiency of cross-linking is categorized in strong (thick lines) and weak (thin lines).
molecules and the presence of an optimal point of contact because the formation of a SecYE dimer involves TMS 3 of SecE (Fig. 5B). Indeed, Leu106 of SecE has been observed as an optimal point of contact as the SecE-SecE cross-linking efficiency for the L106C mutation is significantly higher than for the surrounding A99C and G110C (18). We believe that our model is a correct representation of the core of the translocase because: 1) it accommodates all 13 identified inner membrane contacts; 2) periodically re-appearing contacts have been found for every helix-helix interface; and 3) it predicts no additional strong cross-links other than those already observed for the cysteine combinations we have tested. Strikingly, a recent three-dimensional reconstruction of the SecYEG dimer from two-dimensional crystals reveals the presence of two highly tilted helices at the SecYEG contact interface (31). Because SecE has been mapped at this interface, we propose that these helices represent the SecE dimer contact interface (17, 18).

The dynamics of the identified interactions within the functional translocase have been investigated before (17, 18). The formation of thiol-stabilized interactions in the interface between TMS 3 of SecE and TMS 7 of SecY and another TMS 3 of SecE inhibits preprotein translocation reversibly (17, 18). This is also observed for the identified SecY TMS 10–SecE TMS 3 contacts (data not shown). These disulfide bonds can, however, also be formed between SecY and SecE (17, 18) and even much more efficiently between neighboring SecE molecules (17) during an active cycle of preprotein translocation. Therefore, transient flexibility and conformational changes within the integral membrane domain of the translocase appear essential for its function. The current data will facilitate future attempts to resolve the structure of the translocase and to study its dynamic nature during preprotein translocation.

Acknowledgments—We would like to thank Jeanine de Keyzer and Jelto Swaving for their help and fruitful discussions and Eli van der Sluis for critically reviewing the manuscript.

REFERENCES

1. Driessen, A. J. M., Manting, E. H., and van der Does, C. (2001) Nat. Struct. Biol. 8, 492–498
2. Mori, H., and Ito, K. (2001) Trends Microbiol. 9, 494–500
3. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M., and Wickner, W. T. (2000) Cell 102, 625–634
4. Hanada, M., Nishiyama, K. I., Mizushima, S., and Tokuda, H. (1994) J. Biol. Chem. 269, 23625–23631
5. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., and Wickner, W. T. (1990) EMBO J. 9, 269–279
6. Schiebel, E., Driessen, A. J. M., Hartl, F. U., and Wickner, W. T. (1991) Cell 64, 927–939
7. Economidou, A., and Wickner, W. T. (1994) Cell 78, 835–843
8. van der Walk, J. P., de Wit, J. G., and Driessen, A. J. M. (1997) EMBO J. 16, 7297–7304
9. Fogliano, J. A., and Beckwith, J. (1994) EMBO J. 13, 554–561
10. Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J., and Beckwith, J. (1991) EMBO J. 10, 1749–1757
11. Joly, J. C., Leonard, M. R., and Wickner, W. T. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 4703–4707
12. Kihara, A., Akiyama, Y., and Ito, K. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4532–4536
13. Baba, T., Taura, T., Shimoike, T., Akiyama, Y., Yoshihisa, T., and Ito, K. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 4539–4543
14. Pohlschroder, M., Murphy, C., and Beckwith, J. (1996) J. Biol. Chem. 271, 19908–19914
15. Flower, A. M., Osborne, R. S., and Silhavy, T. J. (1995) EMBO J. 14, 884–893
16. Harris, C. R., and Silhavy, T. J. (1999) J. Bacteriol. 181, 3438–3444
17. Kaufmann, A., Manting, E. H., Veenendaal, A. K. J., Driessen, A. J. M., and van der Does, C. (1999) Biochemistry 38, 9115–9125
18. Veenendaal, A. K. J., van der Does, C., and Driessen, A. J. M. (2001) J. Biol. Chem. 276, 23529–23536
19. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J., and Rapoport, T. A. (1998) Cell 94, 795–807
20. Manting, E. H., van der Does, C., Remigy, H., Engel, A., and Driessen, A. J. M. (2000) EMBO J. 19, 852–861
21. Collinson, I., Breyton, C., Duong, F., Tziatzios, C., Schubert, D., Or, E., Rapoport, T., and Kuhlbrandt, W. (2001) EMBO J. 20, 2462–2471
22. Bessonneau, P., Besson, V., Collinson, I., and Duong, F. (2002) EMBO J. 21, 995–1005
23. Yahr, T. L., and Wickner, W. T. (2000) EMBO J. 19, 4393–4401
24. Cabelli, R. J., Chen, L., Tai, P. C., and Oliver, D. B. (1988) Cell 55, 683–692
25. Weiss, J. B., Ray, P. H., and Bassford, P. J., Jr. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8873–8876
26. Crooke, E., Guthrie, B., Lecker, S., Lill, R., and Wickner, W. T. (1988) Cell 54, 1003–1011
27. van der Does, C., Manting, E. H., Kaufmann, A., Lutz, M., and Driessen, A. J. M. (1998) Biochemistry 37, 201–210
28. van der Walk, J. P., Fekkes, P., Boorsma, A., Huie, J. L., Silhavy, T. J., and Driessen, A. J. M. (1998) EMBO J. 17, 3631–3639
29. de Keyzer, J., van der Does, C., Swaging, J., and Driessen, A. J. M. (2002) FEBS Lett. 510, 17–21
30. Duong, F., and Wickner, W. T. (1999) EMBO J. 18, 3263–3270
31. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W., and Collinson, I. (2002) Nature 418, 662–665