農産物直売所の空間的競争

菊島 良介

Spatial Competition among Farmers’ Markets

Ryosuke Kikushima (The University of Tokyo, Present: The Policy Research Institute of the Ministry of Agriculture, Forestry and Fisheries)

This paper aims to evaluate the competition of farmers’ markets in Japan’s Chiba Prefecture from three point of view: First, examination of spatial autocorrelation among farmers’ markets using a spatial econometric model and showing an agglomeration pattern; Second, calculation of the HHI (Herfindahl-Hirschman Index) which is based on sales floor area and displaying the results on a map with the use of GIS; Third, evaluation of the relationship between the structure and sales of farmers’ markets by estimating the first difference estimator. The main findings suggest that intense competition within 3-6 km of a market decreases the sales. This causes the dispersion of farmers’ markets in areas within a 3-km radius from the market, and the agglomeration in areas within a 12-km radius from the market.

Key words: farmer’s market, spatial competition, spatial autoregressive probit model, geographic information system (GIS), local production and consumption

1. はじめに

農産物直売所（以下、直売所）は、卸売市場を経由する流通（市場流通）ではカバーしきれない生産者と消費者のニーズを満たす、オルタナティブなフードシステムの一形態として発展し、設置数を伸ばしてきた。地産地消運動の高まりや都市農村交流の推進、それに伴う農山村へのアクセス改善などにより、都市近郊のみならず農村部にも直売所は開設されている（櫻井、2006；大浦、2011）。しかし、その著しい増加から競争の激化が懸念されている。岸（2002）は「直売所は競争・淘汰の時代に突入」したと評し、津谷ら（2006）や櫻井（2011）は顧客獲得など厳しい状況に直面していることを指摘している。

こうした直売所の競争状態は空間的競争と表現することができる。このことについて、Chamberlin (1933) は独占的競争。Suzumura and Kiyono (1987)、Mankiw and Winston (1986) は過剰参入問題として検討を行った。各企業の利潤がゼロとなる長期均衡で決定される企業数は、社会厚生を最大にする企業数を上回る。その状況は「過剰参入の定理」として知られ、新規参入企業が差別化戦略をとって既存企業の市場を侵食する顧客奪取効果（business-stealing effect）が発生している。しかしながら、過剰参入は常に生じるとは限らない。Dixit and Stiglitz (1977) は、企業数増加に伴う、財のバラエティ増加がもたらす効用の増加分（注 1）が顧客奪取効果を上回る時、参入はむしろ過少となることを示した。その後、Dixit and Stiglitz (1977) のモデルが基礎となり発展を遂げた新経済地理学（New Economic Geography: NEG）では、企業の産業集積効果が議論されている（注 2）。

直売所の市場競争はおのおのの直売所がある程度差別化を図っており、参入・退出が自由であることから、
ローカル市場においては独占的競争的な過剰参入となっている可能性が高い。しかしながら、先行研究を考慮しつつ、直売所の空間的競争を論じる際には、まずその状態を明らかにすることが求められる。均衡における直売所の立地傾向、その結果生じる市場構造、そして市場構造が直売所の販売金額に与える影響の明示が必要となる。

これまで、Hotelling (1929) が提示したモデルに基づき空間的競争の観点から、数多くの研究者によって競争均衡における立地の検討がなされた。モデルの拡張やそれに基づいた実証研究が試みられた (註 3) が、一般的な結論には至っていない。また、これらの研究では、ある施設の立地選択が他の施設のそれに影響を与えるといった、外部性に由来するサービス施設の集中に言及されている (吉田, 2007)。その際、被説明変数の自己回帰構造をパラメータ \(\rho \) に由来する空気圏競争をモートルで記述する (Spatial Autoregressive Model: 以下, SAR モデル; Anselin, 1988) を用いている。

Hotelling モデルと外部性について、ネットワーク外部性 (Rohls, 1974; Kats and Shapiro, 1985) の観点から Hotelling モデルを拡張した両面性市場 (Two-Sided Market) モデルがある (註 4)。Armstrong (2006) は両面性市場における買い手や売り手の数に着目し、売り手と買い手のグループの効用をそれぞれ互いの利用者数の関数として表現することで、ネットワーク外部性を明示的に導入する。Hotelling モデルと外部性を踏まえた立地傾向である。周辺直売所との競合関係を定量的に評価するため、SAR モデルを適用する (註 7)。その際、Armstrong (2006) および Zheng and Kaiser (2013) を参照し、プラットフォームとしての直売所の立地行動を想定する。第 2 に、両面性市場の集中度によって示される競争の程度が直売所の販売金額に与える影響も言及されていない。

以上の点を踏まえ、本稿では以下の 3 点の関係に着目し、千葉県を対象として直売所の空間的競争状態の検証を行う。第 1 に、外部性を踏まえた立地傾向である。周辺直売所との競合関係を定量的に評価するため、SAR モデルを適用 (註 7)。その際、Armstrong (2006) および Zheng and Kaiser (2013) を参照し、プラットフォームとしての直売所の立地動向を想定する。直売所利用者は、出荷者数が増加することで財のバラエティや交流機会が増大する。他方、出荷者は利用者数が増加することで販売機会や交流機会が増大するため、直売所を利用することで得られる効用が相互に高まると想定できる。
空間的集中度と販売金額の関係である。算出したHHIを用いて回帰分析を行う。

先行研究と比較して、本稿の分析上の特徴は以下の点に見出すことができる。①プラットフォームとしての直売所の立地行動や直売所立地の相互依存性を踏まえながら、SARモデルによって空間的立地パターンを定量的に評価すること。②その際、複数の空間重み行列を設定し、市場競争の範囲を具体的に提示すること。③先に求めた市場競争の範囲と市場圏域の設定を関連付けて、空間的市場構造として空間的集中度を提示すること。④空間的集中度が直売所の成果に与える影響を評価することである。

以下、第2節で、分析対象の千葉県内直売所の概況を整理する。第3節では、直売所の立地の空間的自己相関について検討し、競争の範囲を提示する。第4節では、それに基づき市場圏域を設定し、直売所間の競争構造の把握を行う。第5節では、競争構造が直売所の販売金額に与える影響を分析する。最後に、第6節で結論を述べる。

2. 千葉県における農産物直売所の概況

本節では、分析対象である千葉県内直売所について概観する。千葉県は古くから直売所が存在し、設置数は全国で最も多い（『2010年世界農林業センサス』）。都市化が進み人口過密な地域、過疎化が進む地域が偏在しており、多様な条件のもとで農業が営まれている。都市部でも農業が行われているため、都市部にも比較的直売所が多い。中山間地域にも一定数の直売所が設けられており、集落当たり設置数は中山間地域が平地農業地域を上回っている（桜井、2011）。近年は、県内直売所の大型化と競争の激化も確認されている（菊島ら、2012）。半島である地形のため県境の直売所から受けける影響は極めて少ないことも考慮すると、千葉県は直売所の空間的競争の分析対象として適している。

本稿の対象直売所（注8）は位置情報を活用できるため、GIS（Geographical Information System：地理情報システム）を用いて、農業地域類型別に分類した農業集落地図上に、設置主体別に直売所をプロットした。以下、設置主体別の直売所の分布と農業地域類型の関係を考察的に捉える。その上で、農業地域類型別と設置主体別のクロス集計を行う。

設置主体別の直売所の分布と農業地域類型の関係、クロス集計の結果をそれぞれ第1図、第1表に示した（注9）。第1図から、直売所が千葉県全域にわたって立地していることがわかる。農業地域の境目に多くの直売所が立地しており、特に、都市地域に隣接する平地農業地域に多く立地していること、南部では海岸沿いに立地していることが視覚的に確認できる。直売所の立地が集中する地域が散見され、直売所立地に空間的自己相関が存在すると示唆される。

設置主体に着目すると、農協が設置主体である直売所の立地選択は集落や旧市町村といった行政界に必ずしもとらわれない点を考慮し、空間的自己相関の分析はメッシュ区分で評価を行った。メッシュの大きさについては明確な基準がないため、先行研究とメッシュ数から検討し、3 km四方と設定した。河田・古川（2006）の商圏分析は半径3 km、3～6 kmの小売密度を分類指標としていること、中嶋ら（2011）は1.5 km単位を日安としていることからも、3 km四方が1つの日安となると判断した。この時のメッシュ数は、集落数よりは少なく旧市町村数よりも多い。

（注7）直売所の立地選択は集落や旧市町村といった行政界に必ずしもとらわれない点を考慮し、空間的自己相関の分析はメッシュ区分で評価を行った。メッシュの大きさについて明確な基準がないため、先行研究とメッシュ数から検討し、3 km四方と設定した。河田・古川（2006）の商圏分析は半径3 km、3～6 kmの小売密度を分類指標としていること、中嶋ら（2011）は1.5 km単位を日安としていることからも、3 km四方が1つの日安となると判断した。

この時のメッシュ数は、集落数よりは少なく旧市町村数よりも多い。

（注8）本稿の分析対象となる直売所は、千葉県庁資料（平成22年度千葉県農林水産物直売所開設状況一覧表）に記載されている直売所のうち、漁協が設置主体の直売所、野菜を取り扱っていない直売所を除外したものである。

（注9）第1図の設置主体ラベルはいくつかの主体を統合している。市区町村には、県、市町村、第3セクター、農業者には、農林漁業者、農業法人、その他には公益法人、NPO法人がそれぞれ含まれている。

農業地域類型

都市的地域
平地農業地域
中間農業地域
山間農業地域

第1図 設置主体別の直売所の分布と農業地域類型

農業集落地図上に、設置主体別に直売所をプロットした。以下、設置主体別の直売所の分布と農業地域類型の関係を考察的に捉える。その上で、農業地域類型別と設置主体別のクロス集計を行う。
所は、北部の都市的地域および平地農業地域に多く見受けられる。詳細を第1表で確認すると、県・市町村・第3セクターが設置主体である直売所は、都市的地域よりは平地農業地域に多く設けられている。農協が設置主体である直売所は、ほとんどが都市的地域あるいは平地農業地域に立地している。中間農業地域、山間農業地域の直売所の設置主体は、農業者を中心である。

3. 直売所立地の空間的自己相関

本節では、直売所立地の空間的自己相関について、点過程解析と空間自回帰モデルを用いて検討する。空間統計学の分析手法である点過程解析では、1つの直売所を1つの点とみなし、その分布がランダムであるという帰無仮説に基づいてポイント間の距離や密度について検定を行う。その上で空間的自己回帰モデルを適用し、立地選択に影響を与える変数の影響をコントロールした空間的自己相関を推計する。これにより、立地選択における空間的自己相関の程度についてより厳密な定量的評価が可能となる。

1) 直売所の空間的分布

以下では、直売所の立地状況に密集や分散のようなパターンが見られるかを、点過程解析により検討する。その際、点過程解析の代表的な手法である最近隣距離法とK関数法を用いる（註10）。なお、分析にはGISの空間統計ツールを使用する。

最近隣距離法を適用した結果、直売所の平均最近隣接距離は2,518 m、期待される平均最近隣接距離は3,590 mであり、直売所の分布がランダムであるという帰無仮説は有意水準1%で棄却された。また、Z値が-8.07と、観測された直売所の平均最近隣接距離はその理論値よりも有意に小さかった。このことから、千葉県の直売所の分布を点分布と捉えると、密集傾向にあることが示された。

ただし、最近隣距離法は最も近くにある直売所との距離で評価を行うため、直売所がクラスター化していると、そのクラスター同士が離散していても直売所が密集すると判断してしまう欠点をもつ。そこで、それぞれの直売所から半径rの円内の直売所密度を半径rの関数K(r)として表現し、半径rのスケールごとの立地パターンを示すK関数法を用いた分析をあわせて行った。

K関数も点の個数や密度の影響を受けるため、K(r)の期待値がrと等しくなるように尺度を変換し基準化した関数L(r)(E[L(r)] =r)によって、分布パターンを評価する。L(r)は相対密度を表す指標であり、ある特定のrにおいて、L(r)＞rならば、その範囲における点の集中傾向、逆にL(r)＜rの場合、分散傾向がそれぞれ認められる。L(r)の統計的な有意性は、GIS上で本稿の対象直売所を200の点として千葉県内にランダムに分布させるシミュレーションを1,000回行い、その時のL(r)の上限値と下限値から構成される信頼区間を用いて評価を行う（註11）。GISによるK関数法に基づいたL(r)の計算結果を

（註10）最近隣距離法はClark and Evans (1954)、K関数法についてはRipley (1981)が詳しい。本稿におけるこれらの手法に関する記述は、概念的なものに留める。K関数法は、点の分布が完全にランダムであるとすると、ある点を中心に半径rの円の中に入する点の密度は十分なサンプル数の下で平面全体の点の平均密度に近く、という帰無仮説の下、複数のrの設定のもと密度について検定を行うものである。

（註11）信頼区間はシミュレーション結果の上限値と下限値をとるため、理論値とズレが生じることもある。この手法では、直売所を1つの点として扱い、ランダムに分布させることを帰無仮説として検定を行うことで、立地傾向を判断する。実際には、人口密度等の影響を受けるため、分析手法上の限界がある。そのため、空間計量経済学の手法を用いて、人口密度や千葉県の自然地理条件の影響をコントロールした上で空間的自己相関のパラメータを推計する。
数Nから構成されるプラットフォームとしての直売所の利潤関数π(NC, NF)は次のように示される。
\[\pi(NC, NF) = \gamma \cdot \phi \cdot NC \cdot NF + A \cdot NF - X(NF) \] (1)

\(\gamma \)は直売所iの手数料, \(\phi \cdot NC \)は直売所iの出荷者一人当たり販売額, \(A \)は直売所iの年会費, \(X(NF) \)は直売所iの維持コストで, 出荷者数に関して単調増加である（\(\frac{\partial X(NF)}{\partial NF} > 0 \)）。

また, 設立時は出荷者数の確保が重要であり, (1)式において
\[\frac{\partial \pi}{\partial NF} = (\gamma \cdot \phi \cdot NC + A) - \frac{\partial X(NF)}{\partial NF} > 0 \]
が成立すると仮定する。直売所の潜在的な利用者と出荷者である, 地域の消費者と農家の双方の効用が高まるような場所に直売所が設立されやすいという仮定である。これは, Armstrong(2006)やZheng and Kaiser(2013)のように利用者数NC, 出荷者数NFがそれぞれの効用関数の関数型であることを想定することから導かれる（註14）。

次に, 直売所がメッシュiに立地することによって得られる利潤を\(\pi_i \), 直売所が立地していない場合の得られる利潤を\(\pi_0 \)と表す。\(\pi_i > \pi_0 \)になる時, 直売所の設置主体者は直売所を設置する。しかしながら, 同じ期待利潤が想定されても観察されない設置主体者の主観的評価の差などから設置をめぐる判断が分かれることが十分にありうる。そこで, 正規分布する誤差項\(\varepsilon \)を用いて利潤を確率変数\(\Pi_i = \pi_i + \varepsilon_i \)と定義し, 潜在的な最大利潤最大化プロセスを仮定する。\(\Pi_i \)は観測できない潜在変数であり（以下, 潜在的利潤（註15））。実際に観察可能な直売所の立地状況を用いて分析を行う。すなわち, 立地選択を質的選択モデルとして取り扱い, 立地状況はダミー変数\(y \)を用いて表す。

\[y_i = 1 \quad \text{直売所メッシュ} \quad \text{i} \quad \text{立地している} \]
\[y_i = 0 \quad \text{直売所メッシュ} \quad \text{i} \quad \text{立地していない} \]

（註12）道の駅に対して競合しないように距離の制限が設けられているが, すべての道の駅に直売所が併存しているわけではない。設置主体者の意思決定により自由に立地を行っていると考えられる。
（註13）直売所の手数料収入を, 手数料（率）, 出荷者一人当たり平均販売額および出荷者数の積として捉えている。
（註14）Zheng and Kaiser（2013）が示したように効用関数の定式化が望まれるが, データの制約上, 効用関数を構成する要素の多くを説明変数として推計に含めることができない。実証分析との齟齬が生じるため, 本稿における厳密な定式化は避けたいと考える。この点については今後の課題としたい。
（註15）潜在的利潤も1つの目的関数として捉えられる。
代表的な質的選択モデルとして,条項付きロジットモデルやプロビットモデルが挙げられるが,これらのモデルには設置主体者の意思決定がそれぞれ独立である仮定が置かれている. ある直売所の立地選択が他の直売所のそれに影響を与えるといった外部性は考慮されていない. そこで,吉田(2007)に倣い, SAR モデルを想定し, LeSage (2000) によって提案された SAR probit（空間的自己回帰プロビット）モデルを利用する. 潜在的利潤 \(\Pi^* \) は, 利潤に影響を与えるメッシュの属性行列 \(\mathbf{X} \) および, 他のメッシュ \(j \) の直売所の潜在的利潤 \(\Pi^*_j(\Pi_j^*) \) からの影響の線形和として, 以下のように定式化される。

\[
\Pi^* = \rho W \Pi^* + \mathbf{X} \beta + \varepsilon
\] 　(2)

ここで, \(\rho \) は空間的自己相関のパラメータベクトル（注 16）, \(W \) は空間重み行列, \(\beta = (\beta_k : k = 1, \ldots, K) \) ' はパラメータベクトル, \(\varepsilon = (\varepsilon_i : i = 1, \ldots, n) \) ' は, 平均値ベクトル \(\mathbf{0}_n \) で, 分散共分散行列 \(\mathbf{I}_n \) の \(n \) 次元正规分布に従う確率誤差項ベクトルである. \(\mathbf{0}_n \) は \(n \times n \) 元の零列ベクトル, \(\mathbf{I}_n \) は \(n \) 次元の単位行列を表している. 直売所がメッシュ \(i \) に立地する確率は, 以下のように表される.

\[
\Pr (y_i = 1) = \Pr (u_i < \mathbf{S}^{-1} \mathbf{X} \beta)
\]

ただし, \(\mathbf{S} = (I - \rho W)^{-1} \) である. また, \(\mathbf{S}^{-1} \mathbf{X} \beta \) は行列 \([I - \rho W]^{-1} \mathbf{X} \beta \) の \(i \) 行目を表している.

3) 空間的自己相関の推計方法

モデルの誤差項 \(u_i = n \times n \) の変量正规分布に従うため, 上記の確率を計算するには \(n-1 \) 次元の積分を行う必要がある. 本の時, 度数関数は複雑な構造となわり, 最尤法を用いたパラメータ推計は非常に困難である. そのため, LeSage (2000) に倣って, マルコフ連鎖モンテカルロ法（以下, MCMC 法）を用いたベイズ推定を行う（注 17）.

SAR probit モデルにおける空間的自己相関の有無の検証は, バラメータ \(\rho = 0 \) を帰無仮説とする検定によって行われる. つまり, 推定式におけるバラメータ \(\rho \) の有意性が空間的自己相関の有無を示し, 周辺のメッシュにおける直売所の立地状況がメッシュ \(i \) における直売所の立地状況に与える影響の程度を表す. 本研究で推計されるように直売所の競争が激しいならば, \(\rho > 0 \) をとると予想される.

ただし, 空間的自己相関パラメータ \(\rho \) の推定に当たって, 以下の二点に留意する必要がある. 一点目は, バラメータ \(\rho \) の値は空間重み行列 \(W \) の作成の仕方, すなわち, 何を基準に隣接関係を定義するかで大きく異なる点である. 二点目は, 前述したように利潤 \(\Pi^* \) は観測できない潜在変数であるため, 潜在的利潤と関連する直売所の立地要因をコントロールする必要がある点である.

一点目に関して, 空間重み行列 \(W \) を設定して推計を行い, それぞれの範囲において競合関係が考慮される程度を明示する. \(\rho \) が有意となる時, 推計に用いられた空間重み行列の設定は競争の範囲の指標となる.

具体的な対応法としては, メッシュの重心間の距離を昇順に並べ替えて, 上位 \(k \) 位以内のメッシュを隣接関係にあると定義する \(k^{th} \) Nearest Neighbors と, メッシュからの距離が \(d \) km 以内のメッシュを隣接関係にあると定義する Distance based Neighbors within \(d \) km の空間重み行列について \(k^{th} \) と \(d \) を複数設定した. \(k^{th} \) Nearest Neighbors は, 1 つメッシュに隣接する \(8 \) つのメッシュを基本単位として, これらを用いメッシュの数を設定し \(k^{th} \) を \(2^{nd}, 4^{th}, 8^{th}, 12^{th}, 24^{th} \) とし, Distance based Neighbors 設定 \(d \) km の空間重み行列は, いずれも \(2 \) 倍対称行列であり, それぞれを各空間を列挙する方法で除する行標準化行列として作成した.
二点目に関して、先に示した通り（1）式の利潤関数を構成する利用者数 N_{C_i} と出荷者数 N_{F_i} は、それぞれの効用関数の関数で与えられると仮定している。直売所の設立時には利用者数 N_{C_i} と出荷者数 N_{F_i} と関連する需要を構成する要因を考慮する必要がある。これらを考慮に入れると、代理変数として直売所の設立が容易であると考えられる。また、土地利用条件によって直売所の設立が容易であると予想される。このような理由から、都市人口を背後に持ちつつ、アクセスの良好な都市近郊に設立されやすいと考えられる。さらに、直売所は価値を高めることを目的としている。したがって、農業地域の観点から注目される変数の選択を行い、以下に考察を進めていきたいと考える。

（注19）ここで設置主体の選好は、確率変数 π_{i*} における ε_i に該当する。すなわち，$\varepsilon_i = \zeta_{i,A} + \zeta_{i,m-A} + \varepsilon_i$ と表現され，農協，農協以外の設置主体の選好は注目する変数によって，観察できるものとして扱う。

（注20）ここで取り上げた変数は3 km四方よりも集計単位が小さいため，メッシュ内に属する集計単位の平均値，もしくはメッシュ内の集計単位の合計値を用いた。なお，人口，50～60代女性比率は『平成17年国勢調査』，交通用地面積割合，森林面積割合は『平成9年度土地利用細分メッシュデータ』，量販店の数は『日本スーパー年鑑2011年度版』，部門特化係数，露地野菜農家率，農家人口，専業農家率，農協出荷率，農協依存度は『2005年度世界農林業センサス集落データ』による。
値であった。それぞれの数値を用いて、人口の平均値、交通用地面積の平均値における限界効果を求めると、それぞれ増加すると直売所の立地確率に正の影響を与える、という結果となった。直売所の立地確率に与える影響を最大にする人口はおよそ 7 万人（約 7,800 人/km²）、交通用地面積の割合はおよそ 0.02 であった。一方、量販店の数、50・60 代の女性人口の割合と森林面積割合の限界効果は有意な値を示さなかった。以上の結果から、人口が密集する都市部は避けられ、比較的交通アクセスが良好な都市近郊に設立される傾向にあることが確認できる。また、中山間地であることが直売所の立地を左右するとは言えないと推察できる。

次に、需要を確保するための競争戦略の変数の限界効果について、部門特化係数は、有意に負値であった。

SAR probit に対する尤度比検定とパラメータ \(\rho \) に対する \(t \) 検定

kth-Nearest-Neighbor	log Lik	\(\chi^2(1) \)	\(t \) 値	Distance Based Neighbors within \(d \) km					
\(k \)	log Lik	\(\chi^2(1) \)	\(t \) 値	d	log Lik	\(\chi^2(1) \)	\(t \) 値		
8	-347.01	-1.36	-0.21	-1.49	3	-346.78	-0.90	-0.21	-1.69*
24	-346.12	0.41	0.11	0.68	6	-346.14	0.37	0.07	0.42
48	-346.95	-1.25	-0.18	-1.37	9	-345.03	2.60	0.24	1.31
80	-345.01	2.63	0.26	1.13	12	-344.13	4.39**	0.39	1.97**
120	-345.68	1.28	0.22	0.89	15	-345.16	2.33	0.27	1.01

*、**はそれぞれ有意水準 10%、5% を示す。

(註 21) 直売所の集客範囲に関して、小柴（2005）が地方農政局の調査を取りまとめ、次の 2 点を指摘している。①直売所利用者の居住地について、「地元市町村」（60.7%）に限らず「近隣市町村」（29.3%）、「県内」（8.4%）、「県外」（1.3%）と利用者が広範囲に及ぶこと（農林水産省東海農政局構造統計課 2002「統計情報東海の「ファーマーズマーケット」」)。②具体的な直売所までの距離について、消費者の7割近くが自動車による直売所利用を前提としていること（農林水産省九州農政局 2002「地産地消アンケート（消費者）」、「平成13年度九州農業情勢報告」）である。
菊島：農産物直売所の空間的競争

第4表 SAR probit の推計結果

变数	SAR Probit (Distance Based Neighbors within 3 km)	SAR Probit (Distance Based Neighbors within 12 km)					
	Probit	限界効果	Z 値	限界効果	Z 値	限界効果	Z 値
人口	4.96×10^-6	1.98**	4.72×10^-6	1.80*	5.90×10^-6	2.33**	
人口	-3.57×10^-11	-1.79*	-3.25×10^-11	-1.75*	-4.27×10^-11	-2.39**	
50・60代女性比率	0.32	0.97	0.25	0.68	0.36	1.07	
交通用地面積割合	7.37	1.99**	9.75	2.40**	8.80	2.49**	
交通用地面積割合	-0.02	-1.80*	-0.02	-2.30*	-0.02	-2.35*	
森林面積割合	0.04	0.59	0.05	0.67	0.07	0.79	
量販店の数	-0.01	-0.47	-0.01	-0.44	-0.01	-0.53	
部門特化係数	-0.41	-2.71***	-0.29	-1.84*	-0.52	-3.17***	
露地野菜農家率	-0.16	-1.47	-0.14	-1.31	-0.19	-1.69*	
農家人口	1.31×10^-8	4.46***	1.12×10^-8	3.29***	1.67×10^-8	5.07***	
専業農家率	0.16	0.87	0.24	1.21	0.12	0.65	
農協利用率	0.44	2.94***	0.41	2.56**	0.50	3.20***	
農協依存度	-0.25	-2.10**	-0.24	-1.93*	-0.29	-2.28**	
\(\rho \) (係数)	-	-0.21	-1.69*	0.39	1.97**		
撮影決定係数	0.13	-	-	-	-		
サンプルサイズ	743	743	743	743			

*、**、***はそれぞれ有意水準 10%、5%、1% を示す。

露地野菜農家率は有意でないことからも、部門に特化していない地域でも直売所が設立される傾向が観られる。これは消費者の野菜品目への多様性の要求が背景にあると思われる。また千葉県の露地野菜農家は少品目大量生産型であり、直売所が必要とされにくいことも考えられる。

続いて、安定した農産物の供給の観点から検討した変数の限界効果に関して、農家人口は有意に正値であり、農業畑割台合は有意な値を示さなかった。安定した農産物の供給が求められているが、それだけ見ているのは専業農家に限られない。兼業農家、高齢者、そして女性の果たす役割が無視できない大きさであることを示唆しているのであろう。

最後に、設置主体の観点から考察した変数の限界効果について、農協会員数が有意な正値、農協依存度が有意な負値となっている。農協会員数がプラスに影響していることは、農協が設置主体となる直売所が多く存立しているためであろう。ただし、「農協出荷率・産直率」である農協依存度が高いほどマージナに影響していることから、農協を介していない販売への依存度が高い場合、直売所の必要性や有用性が低いと推計主体に判断されているとも解釈できる。

4. 直売所の空間的自己相関と競争構造

前節で推計したパラメータ \(\rho \) に示される立地傾向から、いかなる競争構造が生じているかを考える。具体的には、菊島ら（2012）と同様、GIS を用いて千葉県を 1 km 四分の一メッシュに区分し、各メッシュにおける HHI を導出する。その際、シェアの計算を行う直売所を定めるため、市場圏域の設定が必要となる。そこで、前節で空間的な自己相関が認められた 3 km と 12 km、さらに商圏分析の際の参照点の 1 つとされる 6 km を市場圏域とすることで示すこととした。

それぞれの市場圏域における HHI を第 3 〜 5 図、条件の内訳を第 5 表に示した。言葉でないことも可能だが、HHI の値が小さいと競争的、大きいという狭義的だと判断される。視覚的に確認すると、半径 3 km 圏ではほとんど直売所が周辺直売所と競合していないことがわかる。半径 6 km 圏では競合が見られるものの、寡占的なメッシュの割合が高くなっており、半径 12 km 圏では内陸部を中心に多くのメッシュに立地されていることも解釈できる。
シュが競争的であることが見て取れる。メッシュの内訳を第5表から確認すると、半径3km圏においてHHIの平均値が0.81と非常に高く、ほとんどのメッシュが寡占的クラスに分類されている。半径12km圏では4割のメッシュが競争的であり、互いに競合していることが窺える。以上のことから、前節の推計において半径3km圏で負の空間的自己相関があると判断されたのは、競合を避けられるように直売所が立地してこの範囲では直売所は寡占的と見なされたと考えられる。一方で、半径12km圏で正の空間的自己相関があると判断されたのは、直売所の立地が集中しこの範囲では非常に競争的であると見なされたと解釈できる。

5. 競争構造と直売所の販売金額

本節では、直売所の競争構造が直売所の販売金額に与える影響を検討する。先行研究では直売所間の過当競争が指摘され、競争が激しくなるにつれて直売所の販売金額は低くなると予想されている。市場構造と利益率についての分析が産業組織論の実証分析で数多くなされており、HHIが高いほど利益率が高いことが指摘されている（小田切，1988）。そのため、HHIと直売所の販売金額との関係について検討する。
した回帰分析を行い、直売所の売場面積をコントロールした上で、HHIが直売所の販売金額に与える影響を検討する。

OLSの結果を第6表右(1)に示す。先程と同様に市場圏域の設定を変えて9通りの推計を行った。表に示される値は、それぞれの推計におけるHHIの回帰係数である(註22)。HHI_3.0kmの係数は有意に正の値を示し、相関係数での議論を支持する結果が得られた。ただし、売場面積以外の直売所固有の変数の影響がコントロールできていないため、通常のOLSによる推計(レベル項での推計)では回帰係数がバイアスをもつ恐れがある。そのため、2007年と2010年の二期間パネルデータを構築し、直売所特有の効果を除去する1階差分モデル(First difference estimator)の

まず、HHIと直売所の販売金額の相関を見る。市場圏域の半径の大きさは、3kmから15kmまで、1.5kmごとに9通りの市場圏域を定義し、それぞれHHIを算出した。それを基にHHIと直売所の販売金額の相関係数を求めた（第6表左）。有意水準10％で相関の有無を確認すると、市場圏域の半径が3kmと4.5kmで有意な正の相関が見られた。この距離において、競争構造が販売金額に影響を与えること、すなわち、寡占に近い状態にある直売所は販売金額が高く、競争的な状態にある直売所は販売金額が低いという関係が窺われる。もちろん、この相関係数には他の変数の影響が考慮されていない。例えば、寡占状態にある直売所は、売場面積が大きく販売金額が大きいことが想定できる。そこで、直売所の販売金額を被説明変数とした回帰分析を行い、直売所の売場面積をコントロールした上で、HHIが直売所の販売金額に与える影響を検討する。

OLSの結果を第6表右(1)に示す。先程と同様に市場圏域の設定を変えて9通りの推計を行った。表に示される値は、それぞれの推計におけるHHIの回帰係数である（註22）。

メッシュ区分 (km)	HHI 0.00〜0.15	0.15〜0.25	0.25〜0.4	0.4〜0	平均
3 km	0.00	0.13	4.94	54.39	40.55
6 km	1.65	16.81	27.83	44.85	8.87
12 km	41.90	26.76	16.08	14.26	1.00

第5表 メッシュ区分によるHHIの内訳

第6表 直売所の販売金額とHHIの相関係数とOLSの推定結果

HHI_X km	0.25***	140,412.50	207.45	157,461.60	1.88***
3 km	0.21**	92,766.46	1.42	188,769.00	2.45**
6 km	0.12	20,774.01	0.26	209,180.90	2.15**
9 km	0.06	-37,282.60	-0.39	78,557.49	0.66
12 km	-0.01	-70,989.30	-0.73	25,463.62	0.20
15 km	0.00	-64,290.30	0.65	79,601.62	0.54
18 km	-0.02	-90,896.30	0.84	-27,082.30	0.18
21 km	-0.04	-135,962.90	1.03	-16,128.27	-0.09
24 km	-0.02	-134,833.10	0.92	-16,883.97	-0.08

註：*、**、***はそれぞれ有意水準10%，5%，1%を示す。

（註22）直売所の売場面積も説明変数に加えているが、表では売場面積の回帰係数は省略している。売場面積の係数は、いずれの市場圏域でも有意に正値を示しており、売場面積が大きい直売所は販売金額が高いことが確認できる。
推定を行った。パネルデータ構築にあたり、千葉県庁資料（平成19年度千葉県農林水産物直売所開設状況一覧表）を用いた。推計結果を第6表右（2）に示すが、それによるとHHI_3.0 km, HHI_4.5 km, HHI_6.0 kmの係数が有意水準10%で正であることが認められた。直売所の半径3～6 km圏において、HHIが高いと販売金額が高くなる傾向が窺え、すなわち、このような狭い地域で直売所間の競争が激しくなると、直売所の販売金額に負の影響が及ぶことが示唆される。

6. 結 論

本稿では千葉県を対象として、直売所の空間的競争状態を検討し、①ある直売所の立地選択が他の直売所のそれに影響を与えるとした外部性を踏まえた立地選択、②その結果関連した立地の集中度、③立地の集中度と販売金額の関係を定量的に分析した。その際、互いに競争する範囲は、直売所を中心とした一定半径をもった圏域で設定した。

分析の結果、既存研究で考慮されなかった外部性を直売所立地の空間的自己相関によって示し、空間重み行列の設定により、直売所間の立地競争に関して具体的な範囲を提示できた。また、競争が直売所の販売金額に及ぼす影響を定量的に捉えることができた。

現状では、半径3km程度の圏域で競合を避けながら、近隣の立地条件の良い場所に立地しようとしている。その結果として、半径12km程度の圏域だと競合した立地をしているのであろう。この範囲になると、直売所の販売金額は互いに影響を与えていない。外部経済効果に導かれて直売所が集積していると捉えこともできる。外部経済効果の1つとして来客数の増加が挙げられ、実態調査から、消費者は複数の直売所を買い回る行動が観察されている。買い回り行動の主な交通手段は車であり、半径12kmという圏域であれば買い回り行動は可能である。

しかししながら、将来的に半径3km程度の範囲で過当競争となっている、地域全体の直売所の販売金額が落ち込みそうするのが現実では待たれている。現実に直売所の来客数が増えたが客単価が低くなるという事例も見受けられ、今後は半径12kmの範囲における競争も十分に留意する必要がある。

今後の課題として、第1に、現実の直売所の運営や出荷者の行動において、直売所間の競争がどのような影響を与えているのかを、さらに詳細に明らかにすることが挙げられる。直売所の立地集中は、「過剰参入の定義」で指摘される過当競争を導くのか、それとも空間経済学で議論される集積効果が現れるのか、実態調査と組み合わせた研究が不可欠であろう。第2に、Zheng and Kaiser（2013）が示したようなわが国の直売所を両面性市場として捉えた理論モデルの構築が挙げられる。理論モデルと現実の直売所の運営を照らし合わせることで、豊富な蓄積を見せてきた実態分析において、理論的解釈を与えることが可能となる。

こうした直売所の立地の議論は、買い物支援サービスなど地域貢献へと拡がりを見せる直売所の今後の可能性を議論する上でも重要である。まもなく迎える超高齢化社会において、必要に応じて直売所の参入規制もしくは連携を支援する方策を講じ、地域住民への適正なサービスの提供が求められる。政策的インプリケーションを導くための実証的結果が必要である。

引用文献

Armstrong, M. (2006) Competition in Two-sided Markets, The RAND Journal of Economics 37 (3) :668-691.

Anselin, L. (1988) Spatial Econometrics: Methods and Models, Kluwer Academic Publishers.

有田昭一郎・小池拓司・畠山正人・三上俊平・大谷未奈（2010）「農産物直売所の立地条件と販売戦略の関係性についての事例研究」千葉県内の農産物直売所を対象として—」『島根県中山間地域研究センター研究報告』6: 35-45.

Boeckem, S. (1994) A Generalized Model of Horizontal Product Differentiation, The Journal of Industrial Economics 42 (3) :287-298.

Chamberlin, E. H. (1933) The Theory of Monopolistic Competition, Harvard University Press.

Chen, Y. and M. H. Riordan (2007) Price and Variety in the Spokes Model, The Economic Journal 117 (522) :897-921.

Clark, P. J. and F. C. Evans (1954) Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations, Ecology 35: 445-453.

d’Aspremont, C., J. J. Gabszewics, and J. F. Thisse (1979) On Hotelling’s “Stability in Competition,” Econometrica 47 (5) :1145-1150.

Dixit, A. K. and J. E. Stiglitz (1977) Monopolistic Competition and Optimum Product Diversity, The American Economic Review 67 (3) :297-308.

Fujita, M., P. Krugman, and A. J. Venables (1999) The Spatial Economy: Cities, Regions, and International Trade, MIT Press.

Gelfand, A. E. and A. F. M. Smith (1990) Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association 85: 398-409.

Gelman, A., J. B. Carlin, H. S. Stern, and A. B. Rubin (1995) Bayesian Data Analysis, Chapman & Hall.

Hotelling, H. (1929) Stability in Competition, The Economic Journal 39: 41-57.

Irmel, A. and J.-F. Thissie (1998) Competition in Multi-characteristics Spaces: Hotelling Was Almost Right, The Journal of Economic Theory 78 (1) :76-102.
香月敏孝・小林茂典・佐藤孝一・大橋美咲（2009）「農産物直売所の経済分析」『農林水産研究』16: 21-63.
Katz, M. L. and C. Shapiro (1985) Network Externalities, Competition, and Compatibility, *The American Economic Review* 75(3): 424-440.
菊島良介・中島幸夫・村上正明（2012）「千葉県における直売所の競争とその要因」『農業情報研究』19(3): 305-310.
Ripley, B. D. (1981) *Spatial Statistics*, Wiley.
Rochet, J. C. and J. Tirole (2003) Platform Competition in Two-sided Markets, *Journal of the European Economic Association* 1(4): 990-1029.
Rohlfis, J. (1974) A Theory of Interdependent Demand for a Communications Service, *The Bell Journal of Economics and Management Science* 5(1): 16-37.
Rysman, M. (2009) The Economics of Two-sided Markets, *The Journal of Economic Perspectives* 23(3): 125-143.
中嶋晋作・村上智明・佐藤和憲（2011）「農産物直売所の地域農業への影響評価-空間的地理情報を活用した差の差推定と空間計量経済学の適用-」『農業情報研究』20(3): 131-138.
R Core Team (2014) *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/.

要旨：農産物直売所の空間的競争状態を定量的に明らかにするため，直売所の運営に関する理論モデルを検討し，以下の分析を行った。①空間計量経済学の観点から，立地の集中傾向とその規定要因・競争の範囲の明示，②産業組織論の観点から，競争の程度・その地域差の所在の顕示，地理情報システムによるそれらの可視化，③競争が直売所に与える影響の定量的評価の3点である。分析対象は千葉県全域の直売所である。計算結果から，現状では12kmの範囲で集中しているが，この範囲における競争は互いの販売額に影響を与えていない。現時点において，先行研究で危惧されるような過度の競争は認められず，外部経済効果に導かれて積集していることが示唆された。

キーワード：農産物直売所，空間的競争，空間自己回帰プロビット，地理情報システム（GIS），地産地消

（2015年12月2日受理，2016年11月16日発行）