Hadamard states for the linearized Yang-Mills equation on curved spacetime

C. Gérard and M. Wrochna

Abstract. We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal \mathbb{R}^d.

We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs.

The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald.

As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.

1. Introduction

The construction of a sufficiently explicit parametrix for the Klein-Gordon is essential in Quantum Field Theory on curved spacetime, where two-point functions of physically admissible states (Hadamard states) are required to be distributions with a specified wave front set. By using methods of pseudodifferential calculus it is possible to control at the same time the propagation of singularities and the additional properties of the parametrix, which are needed to treat physical conditions such as positivity (or purity) of states. As shown in the scalar case in [J, GW] for a large class of spacetimes, this allows to construct a large class of Hadamard states.

The generalization to gauge theories poses difficulties which are due to two main obstacles.

First of all, the equations of motions are given by a non-hyperbolic differential operator P. This is usually coped with by identifying the space of solutions of P with a quotient V_P of subspaces of solutions of some hyperbolic operator D_1. Although one is essentially reduced to constructing two-point functions for D_1, one has to make sure that their restriction to V_P is well defined. This entails a compatibility condition that will be termed gauge-invariance.

Secondly, the hyperbolic operator D_1 is formally self-adjoint w.r.t. a hermitian product which is typically non-positive on fibers. This results in a conflict between the Hadamard condition and positivity of states for D_1. Although one can still expect positivity to hold on the subspace V_P, it is not obvious how this can be controlled.

An additional difficulty are infrared problems, which are inherent to any massless theory, but have also their special incarnations in the context of gauge-invariance and positivity on V_P.

In the present paper we study those issues in the case of the Yang-Mills equation, linearized around a (possibly non-vanishing) background solution \bar{A}.

2010 Mathematics Subject Classification. 81T13, 81T20, 35S05, 35S35.
Key words and phrases. Hadamard states, microlocal spectrum condition, pseudo-differential calculus, Yang-Mills equation, curved spacetimes.
Framework for gauge theories. We work (when possible) in the abstract framework for gauge theories proposed recently by Hack & Schenkel [HS]. More precisely, we consider its simplified version, in which the classical theory is determined by:

1. two vector bundles V_0, V_1 over a globally hyperbolic manifold (M, g), both equipped with a hermitian structure,
2. a formally self-adjoint operator $P \in \text{Diff}(M; V_1)$, which accounts for the equations of motion,
3. a non-zero operator $K \in \text{Diff}(M; V_0, V_1)$ s.t. $PK = 0$, which accounts for gauge transformations $u \mapsto u + Kf$.

We then assume $D_1 := P + KK^*$ is hyperbolic and define the physical space by identifying solutions of P with those solutions of D_1 which satisfy the additional constraint $K^*u = 0$ (cf. Sect. 2 for precise definitions). The latter is often called subsidiary condition in the physics literature, we will thus term this approach the subsidiary condition framework. The version we consider applies to the Maxwell and Yang-Mills equations, K being then the covariant differential \bar{d} (note however that for other gauge theories one would have to use the more extended version from [HS]).

Hadamard two-point functions. In our framework, a pair of operators $\lambda_1^\pm : \Gamma_c(M; V_1) \to \Gamma(M; V_1)$ induces two-point functions of a Hadamard state on the phase space of P if it satisfies

$$D_1 \lambda_1^\pm = \lambda_1^\pm D_1 = 0, \quad \lambda_1^+ - \lambda_1^- = i^{-1}G_1,$$

where G_1 is the causal propagator of D_1 and if moreover:

- Condition (μ_{sc}) $\text{WF}(\lambda_1^\pm) \subset N^\pm \times N^\pm$,
- $(g.i.)$ $(\lambda_1^\pm)^* = \lambda_1^\mp$ and $\lambda_1^\pm : \text{Ran} K \to \text{Ran} K$,
- (pos) $\lambda_1^\pm \geq 0$ on $\ker K^*$.

Condition (μ_{sc}) is just the same as the Hadamard condition in ordinary (i.e., hyperbolic) field theory. What differs is the non-trivial requirement of gauge-invariance $(g.i.)$. Moreover, positivity (pos) is no longer required to hold on all test sections, but on a specified subspace instead.

Main results. Our main result is the construction of Hadamard states for the Yang-Mills equation linearized around a smooth background solution \bar{A}, under various assumptions on \bar{A} and the spacetime (M, g). Let us first formulate some hypotheses.

1.0.1. Spacetimes.

Hypothesis 1.1. (M, g) is a globally hyperbolic spacetime with a Cauchy surface Σ diffeomorphic either to \mathbb{R}^d or to a compact, parallelizable manifold.

Hypothesis 1.2. If $\Sigma = \mathbb{R}^d$, $h_{ij}(x)dx^i dx^j$ is a smooth Riemannian metric on Σ such that:

$$c^{-1}1 \leq [h_{ij}(x)] \leq c1, \quad c > 0, \quad |\partial^\alpha h_{ij}(x)| \leq C_\alpha, \quad \forall \alpha \in \mathbb{N}^d, \quad x \in \mathbb{R}^d.$$

Because we are working in a purely algebraic setting, the terminology is rather ambiguous. We refer the interested reader to [Der] for a review on the flat case that explains the terminology used in the physics literature.
1.0.2. Background Yang Mills connections.

Hypothesis 1.3. G is a linear Lie group with compact Lie algebra \mathfrak{g}.

We consider the trivial principal bundle over $(M \times G, M, g)$ and the associated trivial vector bundle $(M \times \mathfrak{g}, M, g)$. Using the horizontal connection on $M \times G$, a connection on $M \times \mathfrak{g}$ can be identified with a section \bar{A} of the bundle $T^*M \times \mathfrak{g}$, i.e. with a Lie algebra valued 1–form \bar{A}.

Hypothesis 1.4. If $\Sigma = \mathbb{R}^d$, \bar{A} is a smooth global solution of the non-linear Yang-Mills equation (2.14) on $\mathbb{R} \times \Sigma$ such that

i) \bar{A} is in the temporal gauge i.e. $\bar{A}_t = 0$,

ii) $|\partial^\nu \bar{A}_x(t, x)| \leq C_\alpha$, locally uniformly in t,

iii) $|\partial^\nu \bar{\delta}_x \bar{F}_x(0, x)| \leq C_\alpha \langle x \rangle^{-1}$, $|\partial^\nu \bar{F}_t(0, x)| \leq C_\alpha \langle x \rangle^{-2}$ $\alpha \in \mathbb{N}^d$, $x \in \mathbb{R}^d$,

where the components \bar{A}_x, \bar{A}_t, \bar{F}_x, \bar{F}_t of \bar{A} and the curvature $\bar{F} = d\bar{A}$ are defined in [4.4.1]

Our first theorem deals with ultra-static background metrics and background solutions \bar{A} satisfying conditions near infinity in the case $\Sigma = \mathbb{R}^d$.

Theorem 1.1. Let us assume Hypotheses [1.1] [1.3] and if $\Sigma = \mathbb{R}^d$ also Hypotheses [1.2] [1.4]. Let $g = -dt^2 + h_{ij}(x)dx^i dx^j$ on $M = \mathbb{R}_t \times \Sigma$. Then there exist quasi-free Hadamard states for the linearized Yang Mills equation on (M, g) around \bar{A}.

Our next theorem covers the general case, with a space-compact background solution \bar{A}. We will deduce it from Thm. 1.1 by a deformation argument explained in Subsect. 3.3. This deformation relies on the global solvability of the non-linear Yang-Mills equation, which requires that $\dim M \leq 4$.

Theorem 1.2. Let us assume Hypotheses [1.1] [1.3] and $\dim M \leq 4$.

Let $\bar{A} \in \mathcal{C}^1_\infty(M) \otimes \mathfrak{g}$ a smooth, space-compact solution of the non-linear Yang-Mills equation (2.14) on (M, g). Then there exist quasi-free Hadamard states for the linearized Yang Mills equation around \bar{A}.

Let us emphasize that the case $\bar{A} \neq 0$ differs substantially from the case of a vanishing background solution (or of an abelian gauge group), as was so far assumed in other works on Hadamard states. Indeed, if $\bar{A} \neq 0$ then the deformation argument cannot be used to reduce the problem to the situation when (M, g) is ultra-static and the coefficients of D_1, P do not depend on time. This is our main motivation for considering the case of a time-dependent Klein-Gordon operator D_1 on an ultra-static spacetime.

Known results. In the literature, other constructions were already considered in the special case of the Maxwell equations or Yang-Mills linearized around $\bar{A} = 0$.

In these cases the deformation argument yields a time-independent problem, and it is possible to use arguments from spectral theory at least if the Cauchy surface Σ has special properties that make the infrared problems less serious. For the Maxwell equations, this strategy was employed in [FP] for Σ compact with vanishing first cohomology group (extending some earlier results of [Ful]), and in [FS] for Σ subject to an ‘absence of zero resonances’ condition for the Laplace-Beltrami operator on 1-forms (which appears to be more general, but similar in nature to our assumptions). The Yang-Mills equation with $\bar{A} = 0$ was considered in [Hol2] (in the BRST framework) for Σ compact with vanishing first cohomology group.

Another approach was studied in [DS] on asymptotically flat spacetimes, where the use of spectral theory arguments is made possible by considering a characteristic Cauchy problem.
Summary of the construction. Let us summarize the strategy adopted in the paper.

The construction of the parametrix by pseudodifferential calculus is a generalization of the arguments used in [GW] in the scalar case. As an output, we obtain Hadamard two-point functions λ_1^\pm that satisfy (g.i.) only ‘modulo smooth terms’. Moreover, they are positive on some subspace (the space of ‘purely spatial’ 1-forms on M) that needs not to coincide with $\text{Ker} K^\ast$.

To solve this, we work with quantities on a fixed Cauchy surface Σ. We define a Cauchy-surface analogue K_Σ of the operator K, and deduce that the Cauchy-surface version of the phase space for P can be expressed as a quotient $\text{Ker} K_\Sigma^\dagger / \text{Ran} K_\Sigma$ (where † is the symplectic adjoint, defined in (2.9)).

Next, we argue that gauge-invariance can be obtained by modifying λ_1^\pm with the help of a projection Π that maps to a complement of $\text{Ran} K_\Sigma$. The whole task that remains then is to show that:

- The range of Π is a space on which λ_1^\pm is positive (after restricting to the phase space of P).
- The modification of λ_1^\pm does not affect (μ_{sc}).

Both tasks are unfortunately made difficult by infrared problems. For example, the projection Π can contain terms such as $(\delta_x \delta_y)^{-1} \delta_x$ (see Subsect. 8.2), whose definition is already ambiguous, not to mention boundedness between Sobolev spaces of appropriate order.

One way we deal with such problems is to use a Hardy’s inequality on \mathbb{R}^d for the Hodge Laplacian on 0-forms.

The essential novelty is the systematic use of two classes of pseudodifferential operators

$$\Psi^p_{\text{as}}(\Sigma; V_\alpha, V_\beta), \quad \Psi^p_{\text{reg}}(\Sigma; V_\alpha, V_\beta),$$

that contain infrared regularizations of different type — either a simple ‘microlocal’ cutoff in the low frequencies (for the Ψ^p_{as} class), or in addition to that a ‘spectral’ cutoff (the Ψ^p_{reg} class), defined using (functions of) some elliptic self-adjoint operators. Moreover, the norm of the regularization is controlled by a parameter R that can be chosen arbitrarily large. This allows to obtain exact inverses in situations where standard pseudodifferential calculus gives only inverses modulo regularizing remainders. Using this method, we first construct a reference projection, establish its boundedness as an operator between appropriate (weighted) Sobolev spaces, and then perturb it in order to finally get the positivity.

Auxiliary results. Beside of what is of direct interest for Maxwell and Yang-Mills fields, let us mention some auxiliary results obtained in the present work.

First of all, our construction of the parametrix actually produces exact solutions, and not merely solutions modulo smooth terms (Sect. 5). This improves on previous works [J, GW] and turns out to be useful in gauge theory.

Moreover, in the context of ordinary field theory (without gauge), we derive a direct relation between (bosonic) Hadamard two-point functions and parametrices that satisfy certain special properties (Subsect. 5.3). This allows to generalize and simplify results in [GW] that tell how to obtain more Hadamard states out of an already given one.

We also derive a number of results for the classical Yang-Mills theory linearized around a non-vanishing background, for instance our formula for the phase space of P in terms of Cauchy data appears to be new (see 2.4.1).

Outlook. An evident limitation of our method is that we have to assume that the Cauchy surface Σ is either compact or equal \mathbb{R}^d, as the construction is based on standard pseudodifferential operator classes. We also use Hardy’s inequality in the case $\Sigma = \mathbb{R}^d$. We expect, however, that it would be possible to extend our results to other Cauchy surfaces by considering extensions
Hadamard states for the Yang-Mills equation on curved spacetime

of the standard pseudodifferential calculus on classes of non-compact manifolds on which a
generalized form of Hardy’s inequality still holds true.

Let us also stress that all our results are formulated in the subsidiary condition framework to
gauge theories. Especially for applications in perturbative Quantum Field Theory, a different
approach — the BRST framework, is commonly believed to be more efficient [Ho2]. We do
not consider it here, although it seems plausible that one can transport Hadamard states from
one framework to the other, as illustrated in [FS, Appendix B]. Another assumption that we
implicitly make is that \bar{A} is a connection on a trivial principal bundle and one can ask whether
the methods of this paper can be applied to the non-trivial case. We plan to address these
issues in a future work.

Structure of the paper. The paper is structured as follows.

Sect. 2 concerns the classical theory. We first recall well-known facts on ordinary field
theories, then in Subsect. 2.4 review gauge theories on curved spacetime in the (simplified)
subsidiary condition framework. We introduce the corresponding quantities on a Cauchy surface
in 2.4.1 and then in Subsect. 2.5 we show how the linearized Yang-Mills equation fits into this
framework.

Sect. 3 discusses Hadamard states for both ordinary field theories and for gauge theories
in the subsidiary framework in general terms. We introduce in Subsect. 3.2 the definition
of Hadamard states that we use for ordinary field theories. We then set up in Subsect. 3.3 a
correspondence between Hadamard states and parametrices subject to special conditions. Next,
we discuss in Subsect. 3.4 two-point functions in gauge theory, and formulate the conditions
μ_{sc}, (μi), (pos) and the Cauchy surface analogues of the latter two. In the same subsection we
outline our method to cope with (μi) and (pos), and discuss the main technical obstructions.
The section ends with an extended version of the Fulling, Narcowich & Wald argument in
Subsect. 3.5, which allows us to reduce the construction of Hadamard states for the Yang-Mills
equation to a situation where the spacetime is static, but the equations of motions still depend
on the time coordinate.

Sect. 4 reviews the vector and scalar Klein-Gordon equations on ultra-static spacetimes.

In Sect. 5 we give a detailed construction of the parametrix for the vector Klein-Gordon
equations considered in Sect. 4, generalizing results from [GW].

In Sect. 6 using the results of Sect. 5 we obtain two-point functions for the vector and scalar
Klein-Gordon equations on an ultra-static spacetime and study their properties. At this point,
the properties (μi) and (pos) are not satisfied and only their weaker versions are available.

As a byproduct of our constructions, we prove that for vector Klein-Gordon equations,
where the natural hermitian product is not positive-definite on the fibers, there does not exist
Hadamard states, but only Hadamard pseudo-states.

In Sect. 7 we study the relationship between the two-point functions constructed in Sect. 6
in the vector and scalar case. In particular Thm. 7.3 will be important later on.

In Sect. 8 we prove Thm. 1.1 by the method described in Subsect. 3.4. This is the most
technical part of the paper.

In Appendix A we introduce the necessary background on pseudodifferential calculus. It
includes amongst other a version of Egorov’s theorem adapted to the case of matrices of pseu-
dodifferential operators.

Appendix B gathers independent results, used in several parts of the main text. In B.1 we
prove a version of Hardy’s inequality adapted to our applications for the Yang-Mills equation.
In B.2 we recall the transition to the temporal gauge for the non-linear Yang-Mills equation.
In B.3 we sketch the proof of Prop. 3.18.
2. Classical gauge field theory

2.1. Notation. Let V be a finite rank vector bundle over a smooth manifold M. We denote by $\Gamma(M; V)$, resp. $\Gamma_c(M; V)$ the space of smooth, resp. smooth with compact support, sections of V, the later notation requiring that M is equipped with some causal structure.

If V_1, V_2 are two vector bundles, the set of differential operators (of order m) $\Gamma(M; V_1) \rightarrow \Gamma(M; V_2)$ is denoted $\text{Diff}(M; V_1, V_2)$ (or $\text{Diff}^m(M; V_1, V_2)$, we also use the notation $\text{Diff}(M; V) = \text{Diff}(M; V, V)$.

By a bundle with hermitian structure we will mean a vector bundle V equipped with a fiber wise non-degenerate hermitian form (in the literature the name ‘hermitian bundle’ is usually reserved for positive definite hermitian structures).

Suppose now that (M, g) is a pseudo-Riemannian oriented manifold. If V is a bundle on M with hermitian structure, we denote V^* the anti-dual bundle. The hermitian structure on V and the volume form on M allow to embed $\Gamma(M; V)$ into $\Gamma_c^*(M; V)$, using the non-degenerate hermitian form on $\Gamma_c^*(M; V)$

\[
(u|v)_V := \int_M (u(x)|v(x))_V d\text{Vol}_g, \quad u, v \in \Gamma_c(M; V).
\]

Therefore, we have a well-defined notion of the formal adjoint $A^* : \Gamma_c(M; W) \rightarrow \Gamma(M; V)$ of an operator $A : \Gamma_c(M; V) \rightarrow \Gamma(M; W)$.

If E, F are vector spaces, the space of linear operators is denoted $L(E, F)$. If E, F are additionally endowed with some topology, we write $A : E \rightarrow F$ if $A \in L(E, F)$ is continuous.

To distinguish between the same operator A acting on different spaces of functions and distributions, for instance $A : \Gamma_c(M; V) \rightarrow \Gamma_c^*(M; W)$ and $A : \Gamma(M; V) \rightarrow \Gamma(M; W)$, we use the notation $A|_{\Gamma_c}$ and $A|_{\Gamma}$.

2.2. Quotient spaces. In the sequel we will frequently encounter operators and sesquilinear forms on quotients of linear spaces, we recall thus the relevant basic facts.

2.2.1. Operators on quotient spaces. Let $F_i \subset E_i$, $i = 1, 2$ be vector spaces and let $A \in L(E_1, E_2)$. Then the induced map

$$[A] \in L(E_1/F_1, E_2/F_2),$$

defined in the obvious way, is

- well-defined if $AE_1 \subset E_2$ and $AF_1 \subset F_2$;
- injective iff $A^{-1}F_2 = F_1$;
- surjective iff $E_2 = AE_1 + F_2$.

2.2.2. Sesquilinear forms on quotients. Let now $E \subset F$ be vector spaces and let $C \in L(E, E^*)$, where E^* is the anti-dual space of E. Then the induced map

$$[C] \in L(E/F, (E/F)^*),$$

defined as before, is

- well-defined if $CE \subset F^*$ (where $F^* \subset E^*$ denotes the annihilator of F) and $F \subset \text{Ker} C$;
- non-degenerate iff $F = \text{Ker} C$.

If C is hermitian or anti-hermitian (which will usually be the case in our examples) then the condition $F \subset \text{Ker} C$ implies the other one $CE \subset F^*$ (and vice versa).
2.3. Ordinary classical field theory. We recall now some standard results, see eg. [BGP, HS].

Let (M, g) be a globally hyperbolic spacetime (we use the convention $(-, +, \ldots, +)$ for the Lorentzian signature). If V is a vector bundle over M, we denote $\Gamma_{sc}(M; V)$ the space of space-compact sections, i.e. sections in $\Gamma(M; V)$ such that their restriction to a Cauchy surface has compact support.

One says that $D \in \text{Diff}(M; V)$ is Green hyperbolic if D and D^* possess retarded and advanced propagators — the ones for D will be denoted respectively G^+ and G^- (for the definition, see [BGP]). The causal propagator (or Pauli-Jordan commutator function) of D is then by definition $G := G^+ - G^-$. Normally hyperbolic and prenormally hyperbolic operators (defined below) are Green hyperbolic.

Definition 2.1. (1) An operator $D \in \text{Diff}(M; V)$ is normally hyperbolic if its principal symbol equals $-\xi \mu \xi^\mu 1_V$.

(2) An operator $D \in \text{Diff}(M; V)$ is prenormally hyperbolic if there exists $\tilde{D} \in \text{Diff}(M; V)$ s.t. $D \tilde{D}$ is normally hyperbolic.

This terminology is slightly more general than the one used in e.g. [Müh], cf. [W, W2] for examples.

Proposition 2.2. If $D, \tilde{D} \in \text{Diff}(M; V)$ are such that $D \tilde{D}$ is Green hyperbolic then D is Green hyperbolic and their retarded/advanced propagators G^\pm and $G^\pm_{D \tilde{D}}$ are related by

$$G^\pm = \tilde{D} G^\pm D \tilde{D}.$$

The proof of Prop. 2.2 is a straightforward generalization of the arguments of Dimock [Dim] [Müh].

Before discussing gauge theories, let us recall the basic data that define an ordinary classical field theory (i.e., with no gauge freedom built in) on a globally hyperbolic manifold (M, g).

Hypothesis 2.1. Suppose that we are given:

(1) a bundle V over M with hermitian structure;

(2) a Green hyperbolic operator $D \in \text{Diff}(M; V)$ s.t. $D^* = D$.

Proposition 2.3. As a consequence of Hypothesis 2.1:

(1) the induced map

$$[G] : \frac{\Gamma_{sc}(M; V)}{\text{Ran } D|\Gamma_{sc}} \rightarrow \text{Ker } D|\Gamma_{sc}$$

is well defined and bijective.

(2) $(G^\pm)^* = G^\mp$ and consequently $G^* = -G$;

To fix some terminology, by a phase space we mean a pair (\mathcal{V}, q) consisting of a complex vector space \mathcal{V} and a sesquilinear form q on \mathcal{V}. Actual physical meaning can be associated to (\mathcal{V}, q) if q is hermitian. The classical phase space associated to D is (\mathcal{V}, q), where

$$\mathcal{V} := \frac{\Gamma_{sc}(M; V)}{\text{Ran } D|\Gamma_{sc}}, \quad q_v := i^{-1}u|D|v_v.$$

By (2) of Prop. 2.3 the sesquilinear form q is hermitian, and it is not difficult to show that it is non-degenerate. As a rule, we will work with hermitian forms rather than with real symplectic ones, but it should be kept in mind that the two approaches are equivalent.
2.3.1. Phase space on Cauchy surface. Let us fix a Cauchy surface Σ of (M, g). Consider a Green hyperbolic operator $D \in \text{Diff}^m(M; V)$. Let V_ρ be a vector bundle over Σ and $\rho : \Gamma_c(\Sigma; V_\rho) \to \Gamma_c(\Sigma; V_\rho)$ an operator which is the composition of a differential operator of order $\leq m$ with the pullback ι^* of the embedding $\iota : \Sigma \hookrightarrow M$.

We equip V_ρ with a hermitian structure $(\cdot | \cdot)_{\rho}$ which extends to $\Gamma_c(\Sigma; V_\rho)$ as in (2.1), using the volume form on Σ induced by g. It is convenient to assume that this hermitian structure is positive definite. The adjoint map:

$$\rho^* : \Gamma_c(\Sigma; V_\rho) \to \Gamma'(M; V)$$

is defined using the two hermitian structures $(\cdot | \cdot)_V$ and $(\cdot | \cdot)_{\rho}$.

Hypothesis 2.2. Assume that for each initial datum $\varphi \in \Gamma_c(\Sigma; V_\rho)$, the Cauchy problem

$$
\begin{aligned}
Df &= 0, & f &\in \Gamma_{sc}(M; V) \\
\rho f &= \varphi,
\end{aligned}
$$

has a unique solution.

In other words, the map $\rho : \text{Ker} D|_{\Gamma_{sc}} \to \Gamma_c(\Sigma; V_\rho)$ is a bijection. If D satisfies Hypothesis 2.2, we will say that it is Cauchy hyperbolic (for the map ρ). It can be proved that if D is Green hyperbolic then there exists ρ s.t. D is Cauchy hyperbolic, cf. the reasoning in [K, Sec. 4.3].

By Hypothesis 2.2, assuming additionally $D = D^*$ and using (1) of Prop. 2.3 we deduce that the phase space (\mathcal{V}, q) is isomorphic to $(\mathcal{V}_\Sigma, q_{\Sigma})$, defined in the following way:

$$
\begin{aligned}
\mathcal{V}_\Sigma &:= \Gamma_c(\Sigma; V_\rho), & \mathfrak{q}_{\Sigma} \mathfrak{v} &:= i^{-1}(\mathfrak{u}(G_\Sigma \mathfrak{v}))_{V_\rho},
\end{aligned}
$$

where G_Σ is uniquely defined by

$$
G =: (\rho G)^* G_\Sigma (\rho G).
$$

(Let us stress again that the stars refer to formal adjoints using the hermitian structures of V and V_ρ, the latter can be chosen quite arbitrarily.) As a consequence of this definition,

$$
1 = G^* \rho^* G_\Sigma \rho \quad \text{on} \quad \text{Ker} D|_{\Gamma_{sc}}.
$$

This also implies $\rho = \rho G^* \rho^* G_\Sigma \rho$ on $\text{Ker} D|_{\Gamma_{sc}}$, hence

$$
1 = \rho G^* \rho^* G_\Sigma \quad \text{on} \quad \Gamma_c(\Sigma; V_\rho).
$$

It is useful to introduce the Cauchy evolution operator:

$$
U := G^* \rho^* G_\Sigma.
$$

By (2.5) and (2.6), it satisfies $\rho U = 1$ and $U \rho = 1$ (on space-compact solutions of D). Moreover, since $G^* = -G$ we get $DU = 0$. Applying both sides of (2.6) to f we obtain a formula for the solution of the Cauchy problem.

Proposition 2.4. Assume D is Cauchy hyperbolic for ρ and $D = D^*$. Then the unique solution of the Cauchy problem (2.3) equals

$$
f = U \varphi = G^* \rho^* G_\Sigma \varphi = -G \rho^* G_\Sigma \varphi.
$$

\footnote{Of course one has to choose ρ sensibly, cf. the example in [BG, Sec. 2.7].}
2.4. Gauge theory in subsidiary condition formalism. The following data is used to define a classical linearized gauge field theory on a globally hyperbolic manifold \((M, g)\). This is a special case of the setting proposed by Hack and Schenkel in [HS], well suited for the case of Maxwell and Yang-Mills fields.

Hypothesis 2.3. Suppose that we are given:

1. bundles with hermitian structures \(V_0, V_1\) over \(M\);
2. a formally self-adjoint operator \(P \in \text{Diff}(M; V_1)\);
3. an operator \(K \in \text{Diff}(M; V_0, V_1)\), such that \(K \neq 0\) and
 a. \(PK = 0\),
 b. \(D_0 := K^*K \in \text{Diff}(M; V_0)\) is Green hyperbolic;
 c. \(D_1 := P + KK^* \in \text{Diff}(M; V_1)\) is Green hyperbolic.

The operator \(P\) accounts for the equations of motions, linearized around a background solution. The operator \(K\) defines the linear gauge transformation \(f \mapsto f + Kg\), and the condition \(PK = 0\) states that \(P\) is invariant under this transformation, which entails that \(P\) is not hyperbolic. Making use of the assumption on \(D_0\), the non-hyperbolic equation \(Pf = 0\) can be reduced by gauge transformations to the subspace \(K^*f = 0\) of solutions of the hyperbolic problem \(D_1f = 0\). The equation \(K^*f = 0\) is traditionally called subsidiary condition and can be thought as a covariant fixing of gauge (that generalizes the Lorenz gauge).

Let us first observe that the differential operators from Hypothesis 2.3 satisfy the algebraic relations

\[
K^*D_1 = D_0K^*, \quad D_1K = KD_0.
\]

These have the following consequences on the level of propagators and spaces of solutions, proved in [HS].

Proposition 2.5. As a consequence of Hypothesis 2.3,

1. \(K^*G_1^1 = G_0^1 K^*\) on \(\Gamma_c(M; V_1)\) and \(KG_0^1 = G_1^1 K\) on \(\Gamma_c(M; V_0)\);
2. For all \(\psi \in \Gamma_w(M; V_1)\) there exists \(h \in \Gamma_w(M; V_0)\) s.t. \(\psi - Kh \in \text{Ker} K^*|_{\Gamma_w}\). If moreover \(\psi \in \text{Ker} P|_{\Gamma_w}\) then \(\psi - Kh \in \text{Ker} P|_{\Gamma_w} \cap \text{Ker} K^*|_{\Gamma_w}\);
3. We have
 \[
 \text{Ker} P|_{\Gamma_w} \cap \text{Ker} K^*|_{\Gamma_w} \subset G_1 \text{Ker} K^*|_{\Gamma_w} + G_1 \text{Ran} K|_{\Gamma_w};
 \]
4. \(\text{Ran} P|_{\Gamma_w} = \text{Ker} K^*|_{\Gamma_w} \cap G_1^{-1} \text{Ran} K|_{\Gamma_w}\).

Since the auxiliary operators \(D_1, D_0\) are Green hyperbolic, we can associate to them phase spaces \((V_1, q_1), (V_0, q_0)\) as in the previous subsection.

In the ‘subsidiary condition’ framework, the physical phase space associated to \(P\), denoted \((\mathcal{V}_P, q_P)\), is defined by

\[
\mathcal{V}_P := \frac{\text{Ker} K^*|_{\Gamma_w}}{\text{Ran} P|_{\Gamma_w}}, \quad q_P v := i^{-1}(u|G_1|v)_{V_1}.
\]

The first thing to check is that the propagator \(G_1\) of \(D_1\) induces a well-defined linear map on the quotient space above.

Proposition 2.6. The sesquilinear form \(q_P\) is well defined on \(\mathcal{V}_P\).

Proof. We need to show that \((u|G_1v)_{V_1} = 0\) if \(u \in \text{Ker} K^*|_{\Gamma_w}\) and \(v = Pf\) for some \(f \in \Gamma_c(M; V_1)\). We have in such case

\[
G_1Pf = -G_1KK^*f = -KG_0K^*f,
\]

hence \((u|G_1Pf)_{V_1} = -(K^*u|G_0K^*f)_{V_0} = 0\). \(\square\)
The definition of the phase space \(\mathcal{V}_\Sigma \) agrees with the one considered in \([\text{Dim2}], [\text{EP}], [\text{P}], [\text{HS}]\) and is arguably the most natural one. Other possible definitions are discussed in \([\text{DHK}], [\text{HS}],[\text{B}]\).

Let us also mention that the form \(q_\rho \) needs not be non-degenerate on \(\mathcal{V}_\Sigma \), cf. examples and further discussion in \([\text{DHK}],[\text{HS}], [\text{B}]\).

It is possible to give different generalizations of Prop. 2.3, (1) (claim a) below is proved in \([\text{HS}]\).

Proposition 2.7. The induced maps

\[
\begin{align*}
\text{a)} \quad [G_1]: & \quad \frac{\ker K^*|_{\Gamma_{\Sigma_0}}}{\text{ran } \rho_1|_{\Gamma_{\Sigma_0}}} \rightarrow \frac{\ker \rho_1|_{\Gamma_{\Sigma_0}}}{\text{ran } \rho_2|_{\Gamma_{\Sigma_0}},} \\
\text{b)} \quad [G_1]: & \quad \frac{\ker K^*|_{\Gamma_{\Sigma_0}}}{\text{ran } \rho_1|_{\Gamma_{\Sigma_0}}} \rightarrow \frac{\ker \rho_1|_{\Gamma_{\Sigma_0}} \cap \ker K^*|_{\Gamma_{\Sigma_0}}}{\text{ran } K_{\Sigma_0}|_{\Gamma_{\Sigma_0}}},
\end{align*}
\]

are well defined and bijective.

Proof. b): For well-definiteness we check that \(G_1 \ker K^*|_{\Gamma_{\Sigma_0}} \subset \ker \rho_1 \) which is obvious, and \(G_1 \ker K^*|_{\Gamma_{\Sigma_0}} \subset \ker K^* \), which follows from \(\ker K^* G_1 = G_0 K^* \). We need also to check that \(G_1 \text{ran } \rho_1 \subset \text{ran } G_1 K \) which follows from Hypothesis 2.3 (e).

For injectivity we see that if \(K^* u = 0 \) and \(G_1 u = G_1 K u \), then \(u - K u = D_1 f \) for \(f \in \Gamma_c(M; \Sigma) \), hence \(D_0 (v + K^* f) = 0 \), which implies that \(v + K^* f = 0 \) and hence \(u = P f \).

Surjectivity amounts to showing

\[
\ker D_1|_{\Gamma_{\Sigma_0}} \cap \ker K^*|_{\Gamma_{\Sigma_0}} = G_1 \ker K^*|_{\Gamma_{\Sigma_0}} + G_1 \text{ran } K_{\Sigma_0}|_{\Gamma_{\Sigma_0}}.
\]

The inclusion ‘\(\supset \)’ is easy, the other one follows from Prop. 2.5, (2).

Finally, let us quote another useful result, shown in the present context in \([\text{HS}]\), and often called the *time-slice property* (or time-slice axiom). Below, \(J^+(O) \) (resp. \(J^-(O) \)) denotes the causal future (resp. causal past) of \(O \subset M \).

Proposition 2.8. Let \(\Sigma_+, \Sigma_- \) be two Cauchy surfaces s.t. \(J^-(\Sigma_+) \cap J^+(\Sigma_-) \) contains properly a Cauchy surface. Then for all \([f] \in \ker K^*|_{\Gamma_{\Sigma_0}}/\text{ran } \rho_1|_{\Gamma_{\Sigma_0}} \) there exists \(\tilde{f} \in \ker K^*|_{\Gamma_{\Sigma_0}} \) s.t.

\[
[f] = [\tilde{f}], \quad \text{supp } \tilde{f} \subset J^+(\Sigma_+) \cap J^+(\Sigma_-).
\]

2.4.1. Phase spaces on a Cauchy surface. Let us now discuss the corresponding phase spaces on a fixed Cauchy surface \(\Sigma \subset M \). Recall that in Hypothesis 2.3 we have required that the operators \(D_1 \) and \(D_0 \) are Green hyperbolic, and thus Cauchy hyperbolic. The corresponding maps will be denoted

\[
\begin{align*}
\rho_1 : & \quad \Gamma_c(M; \Sigma) \rightarrow \Gamma_c(\Sigma; \rho_1), \\
\rho_2 : & \quad \Gamma_c(M; \Sigma) \rightarrow \Gamma_c(\Sigma; \rho_2).
\end{align*}
\]

We also recall that we have defined operators \(G_{1 \Sigma} \) such that \(G_1 = (\rho_1 G_1^*)^* G_{1 \Sigma} (\rho_1 G_1) \) and Cauchy evolution operators \(U_i \) for \(i = 0, 1 \).

To the operator \(K \) we associate an operator \(K_{\Sigma} \in \text{Diff}(\Sigma; \rho_0, \rho_1) \):

\[
K_{\Sigma} := \rho_1 K U_0.
\]

It is useful to introduce the adjoint \(K_{\Sigma}^+ \in \text{Diff}(\Sigma; \rho_1, \rho_0) \) w.r.t. the hermitian forms \(q_{\Sigma_0} \) (the so-called symplectic adjoint), i.e.

\[
G_{0 \Sigma} K_{\Sigma}^+ := K_{\Sigma}^* G_{1 \Sigma}.
\]

The notation \(\dagger \) is used to avoid confusion with the formal adjoint * w.r.t. the hermitian structures on the bundles \(V_{\rho_0}, V_{\rho_1} \), appearing for instance in the LHS of the above equation.

Lemma 2.9. As a consequence of Hypothesis 2.3,

\[
(1) \quad K U_0 = U_1 K_{\Sigma} \quad \text{and} \quad K^* U_1 = U_0 K_{\Sigma}^+.
\]
(2) \(\rho_1 K = K \rho_0 \) on \(\text{Ker} D_0|_{\Gamma_v} \) and \(\rho_0 K^* = K^* \rho_1 \) on \(\text{Ker} D_1|_{\Gamma_v} \);
(3) \(\text{Ker} K^*|_{\Gamma_v} = \rho_1 G^*_1 \text{Ker} K^*|_{\Gamma_v} \);
(4) \(\text{Ran} K_0|_{\Gamma_v} = \rho_1 G^*_1 \text{Ran} K|_{\Gamma_v} \);
(5) \(K^*_1 K_v = 0 \).

Proof. 1: Let us prove the second assertion (the first one is trivial). By (2.9) and Prop. 2.5,

\[
U_0 K^*_1 = G_0^* \rho_0^* G_{02} K^*_1 = G_0^* \rho_0^* K^*_1 G_{12} = G_0^* \rho_0^* U_0^* K^* \rho_1^* G_{12} = G_0^* K^* \rho_1^* G_{12} = K^*_1 U_1.
\]

2: By 1 we have \(\rho_0 K^* = \rho_0 K^* U_1 \rho_1 = \rho_0 U_0 K^*_1 \rho_1 = K^*_1 \rho_1 \). The other assertion is trivial.

3: If \(u = \rho_1 G^*_1 f \) with \(f \in \text{Ker} K^*|_{\Gamma_v} \), then \(K^*_1 u = \rho_0 K^* \rho_1^* G_{12} f = \rho_0 G_{12} f \). Conversely, if \(u \in \text{Ker} K^*_1|_{\Gamma_v} \) then using that \(1 = \rho_1 G^*_1 \rho_1 G_{12} \) we get \(u = \rho_1 G^*_1 f \) with \(f = \rho_1^* G_{12} u \) and

\[
K^* f = K^* \rho_1^* G_{12} u = \rho_0 K^*_1 G_{12} u = \rho_0 G_{02} K^*_1 u = 0.
\]

4: If \(u = \rho_1 G^*_1 f \) then \(u = \rho_1 G_1 f = K \rho_0 G_0 f \). Conversely, if \(u = K \rho_0 \) then using that \(1 = \rho_1 G^*_1 \rho_1 G_{12} \) we get

\[
u = \rho_1 G^*_1 \rho_1 G_{12} K \rho_0 G_0 h = \rho_1^* G_{12} K \rho_0 G_0 h.
\]

5: By 1, \(K^*_1 K_v = \rho_0 U_0 K^*_1 K_v = \rho_0 K^* U_1 K_v = \rho_0 K^* K U_0 = 0 \). \(\square \)

Proposition 2.10. The induced map

\[
[\rho_1] : \frac{\text{Ker} D_1|_{\Gamma_v} \cap \text{Ker} K^*|_{\Gamma_v}}{\text{Ran} G_1 K|_{\Gamma_v}} \rightarrow \frac{\text{Ker} K^*_1|_{\Gamma_v}}{\text{Ran} K_v|_{\Gamma_v}}
\]

is well defined and bijective.

Proof. Recall that we proved \(\text{Ker} D_1|_{\Gamma_v} \cap \text{Ker} K^*|_{\Gamma_v} = G_1 \text{Ker} K^*|_{\Gamma_v} + G_1 \text{Ran} K|_{\Gamma_v} \).

For well-definiteness and surjectivity of \([\rho_1]\) it is thus sufficient to check that

\[
\rho_1 (G_1 \text{Ker} K^*|_{\Gamma_v} + G_1 \text{Ran} K|_{\Gamma_v}) = \text{Ker} K^*_1|_{\Gamma_v},
\]

which follows directly from (2) and (3) of Lemma 2.9 (using \(G^*_1 = -G_1 \)).

For injectivity we need to show that if \(u \in G_1 \text{Ker} K^*|_{\Gamma_v} + G_1 \text{Ran} K|_{\Gamma_v} \) and \(\rho_1 u \in \text{Ran} K_v|_{\Gamma_v} \) then \(u \in \text{Ran} G_1 K|_{\Gamma_v} \). This follows from (4) of Lemma 2.9. \(\square \)

We deduce from Prop. 2.7 and Prop. 2.10 that the map \(\rho_1 G_1 \) induces an isomorphism between the phase space \((V_\rho, q_\rho)\) and the phase space \((V_{\rho_1}, q_{\rho_1})\), defined in the following way:

\[
V_{\rho_1} := \frac{\text{Ker} K^*_1|_{\Gamma_v}}{\text{Ran} K_v|_{\Gamma_v}}, \quad q_{\rho_1} := i^{-1}(u||G_{12}|v)_{V_{\rho_1}}.
\]

2.5. Linearized Yang-Mills

We now recall how the formalism of Subsect. 2.4 applies to Yang-Mills equations linearized around a background solution \(\tilde{A} \). We follow [MM] [HS].

Let \(\mathfrak{g} \) be a real compact Lie algebra as in Hypothesis 1.3. We still denote by \(\mathfrak{g} \) its complexification. The complexification of the Killing form yields a sesquilinear form

\[
\mathfrak{k} \in L(\mathfrak{g}, \mathfrak{g}^*), \quad \mathfrak{k} > 0.
\]

For simplicity we will work in a geometrically trivial situation 3.

As in [HS] we take \(V_0 \) to be the trivial bundle

\[
V_0 := M \times \mathfrak{g},
\]
equipped with the hermitian structure induced by \(\mathfrak{k} \), and \(V_1 \) the corresponding 1-form bundle

\[
V_1 := T^* M \times \mathfrak{g}.
\]

3 Otherwise one has to use the language of principal bundles, some indications can be found in [MM] 2.
We equip V_i with the hermitian structure given by the tensor product of the canonical hermitian structure on T^*M with ξ.

Note that under Hypothesis 1.3, this bundle is trivial since Σ and hence M is then parallelizable.

Let us denote by $\mathcal{E}^p(M)$ the space of smooth p-forms on M and by $\mathcal{E}^\otimes(M) = \bigoplus_p \mathcal{E}^p(M)$ the space of smooth forms on M. As explained in 1.3, the spaces of sections $\Gamma(M; V_i)$, $i = 0, 1$ can be identified respectively with $\mathcal{E}^0(M) \otimes g$ and $\mathcal{E}^1(M) \otimes g$. The exterior product on $\mathcal{E}^\otimes(M) \otimes g$ is defined by

$$(\alpha \otimes a) \wedge (\beta \otimes b) := (\alpha \wedge \beta) \otimes [a, b], \quad a, b \in g, \quad \alpha, \beta \in \mathcal{E}^\otimes(M),$$

(note that in the physics literature a bracket notation is sometimes used instead). The interior product is defined by

$$(\alpha \otimes a) \lrcorner (\beta \otimes b) := (\alpha \lrcorner \beta) \otimes [b, a], \quad a, b \in g, \quad \alpha, \beta \in \mathcal{E}^\otimes(M).$$

We also define

$$A_L : \mathcal{E}^\otimes(M) \otimes g \ni B \mapsto B \lrcorner A \in \mathcal{E}^\otimes(M) \otimes g.$$

It holds that

$$(B \wedge \lrcorner)^* = \overline{B} \lrcorner \quad B \in \mathcal{E}^0(M) \otimes g,$$

where the bar stands for ordinary complex conjugation. Note also that for 0-forms the interior product reduces to

$$(2.10) \quad \overline{f} \lrcorner = -f \wedge \lrcorner, \quad f \in \mathcal{E}^0(M) \otimes g.$$

Let $d : \mathcal{E}^p(M) \rightarrow \mathcal{E}^{p+1}(M)$ be the ordinary differential and let $\overline{A} \in \mathcal{E}^1(M) \otimes g$ (the thick bar is designed to distinguish \overline{A} from dynamical variables A, it should not to be confused with complex conjugation \overline{A}). The covariant differential $\bar{d} : \mathcal{E}^p(M) \otimes g \rightarrow \mathcal{E}^{p+1}(M) \otimes g$ respective to \overline{A} is defined by

$$\bar{d} f := df + \overline{A} \wedge f, \quad f \in \mathcal{E}^p(M) \otimes g.$$

Despite its name, it is in general not a differential in the sense that $\bar{d} \bar{d}$ would vanish, instead it holds that

$$(2.11) \quad \overline{\bar{d}d} = \bar{F} \wedge \lrcorner, \quad$$

where $\bar{F} := d\overline{A} + \overline{A} \wedge \overline{A} \in \mathcal{E}^2(M) \otimes g$ is the curvature of \overline{A}. The covariant co-differential $\bar{\delta} : \mathcal{E}^{p+1}(M) \otimes g \rightarrow \mathcal{E}^p(M) \otimes g$ is by definition the formal adjoint $d^* \bar{d}$ of \bar{d}. The covariant differential satisfies

$$\bar{d}(A \wedge B) = (\bar{d}A) \wedge B + (-1)^p A \wedge (\bar{d}B), \quad A \in \mathcal{E}^p(M) \otimes g, \quad B \in \mathcal{E}^q(M) \otimes g,$$

This can be written as an identity for operators and by taking their adjoints, one gets

$$(2.12) \quad A \lrcorner \bar{\delta} B = (\bar{d}A) \lrcorner B + (-1)^p \bar{\delta}(A \lrcorner B), \quad A \in \mathcal{E}^p(M) \otimes g, \quad B \in \mathcal{E}^q(M) \otimes g.$$

A consequence of the definition $\bar{F} = \overline{\bar{d}A}$ is the Bianchi identity

$$(2.13) \quad \overline{\bar{d}\bar{F}} = 0.$$

The non-linear Yang-Mills equation for \overline{A} reads

$$(2.14) \quad \bar{\delta} \bar{d} \overline{A} (= \overline{\bar{d}d}) = 0.$$

This system can be linearized as follows. We fix a real-valued section $\overline{A} \in \mathcal{E}^1(M) \otimes g$ and assume it is on-shell, i.e. satisfies the Yang-Mills equation (2.14). The linearized Yang-Mills operator is

$$(2.15) \quad P := \bar{\delta} \bar{d} + \bar{F}_L \in \text{Diff}^2(M; V_1),$$

where \bar{F}_L is the linearization of \bar{F}.
where \bar{d}, δ and \bar{F} refer to the background solution \bar{A}. The linearized Yang-Mills equation is
\begin{equation}
PA = 0.
\end{equation}

Gauge transformations are described in this linearized setting by the differential operator
\[K := \bar{d} \in \text{Diff}^1(M; V_0, V_1). \]
It is not difficult to see that Hypothesis (2.23) is satisfied by P and K. More precisely, the operators $D_0 = K^*K$ and $D_1 = P + KK^*$ equal
\begin{align*}
D_0 &= \delta \bar{d} \in \text{Diff}^2(M; V_0), \\
D_1 &= \delta \bar{d} + \bar{d} \bar{d} + \bar{F} \bar{L} \in \text{Diff}^2(M; V_1).
\end{align*}

To show $PK = 0$, we compute using (2.11), (2.12) and (2.10)
\begin{align*}
PK f &= \delta \bar{d} \bar{d} f + \bar{F} \bar{L} (\bar{f} + (\bar{d} f) \bar{F} \\
&= \delta (\bar{F} \bar{L} f) + (\bar{d} f) \bar{F} = f \bar{F} \quad \forall f \in \mathcal{E}^0(M) \otimes g.
\end{align*}
By the assumption that \bar{A} is on-shell (2.13) this vanishes.

2.5.1. Adapted Cauchy data. Let us denote by ν the future directed unit normal vector field to a Cauchy surface Σ.

Since D_1, D_0 are normally hyperbolic, they are Cauchy hyperbolic for the maps ρ_1, ρ_0 defined by taking the restriction to Σ of a given section and of its first derivative along ν.

For many purposes it will however be more convenient to consider different maps ρ_1^F, ρ_0^F, which appear to be due to Furlani [Fur2] (cf. also [P]), and which are defined as follows.

We equip $\mathcal{E}^0_c(\Sigma) \otimes g$ with their standard (positive) hermitian scalar products, obtained from $\bar{\kappa}_0$ and the Riemannian metric h induced by g on Σ. We also recall that $\iota : \mathcal{E}^0_c(M) \otimes g \to \mathcal{E}^0_c(\Sigma) \otimes g$ is the pullback map induced by the embedding $\iota : \Sigma \to M$.

Definition 2.11. If $\zeta \in \mathcal{E}^0_c(\Sigma) \otimes g$, we set:
\begin{align*}
g_0^0 &:= \iota^* n_\nu \zeta \in \mathcal{E}^0_c(\Sigma) \otimes g, \\
g_0^1 &:= \iota^* \zeta \in \mathcal{E}^1_c(\Sigma) \otimes g, \\
g_1^1 &:= i^{-1} \iota^* \delta \zeta \in \mathcal{E}^0_c(\Sigma) \otimes g, \\
g_2^1 &:= i^{-1} \iota^* n_\nu \delta \zeta \in \mathcal{E}^1_c(\Sigma) \otimes g.
\end{align*}

For $g^0 := (g_0^0, g_0^1) \in \mathcal{E}^0_c(\Sigma) \otimes g \oplus \mathcal{E}^1_c(\Sigma) \otimes g$ we set:
\[g := (g^0, g^1) =: \rho_1^F \zeta. \]

Analogously, if $\zeta \in \mathcal{E}^0_c(M) \otimes g$, we set
\begin{align*}
g_0^0 &:= \iota^* \zeta \in \mathcal{E}^0_c(\Sigma) \otimes g, \\
g_1^0 &:= i^{-1} \iota^* n_\nu \delta \zeta \in \mathcal{E}^0_c(\Sigma) \otimes g,
\end{align*}
and
\[g := (g^0, g^1) =: \rho_0^F \zeta. \]

\footnote{To be precise, reference [Fur2] uses Cauchy data which are denoted $(A_{(n)}, A_{(0)}, A_{(d)}, A_{(d)})$ therein and are related to ours by $g_0^0 = A_{(n)}, g_0^1 = A_{(0)}, g_1^1 = i^{-1} A_{(d)}, g_2^1 = i^{-1} A_{(d)}$.}
Hadamard states for the Yang-Mills equation on curved spacetime

In the terminology of Sect. 2.4.1, \(\rho_F^e : \Gamma_e(M; V_i) \to \Gamma_e(\Sigma; V_{\rho_f}^e) \) where the bundles
\[
V_{\rho_f}^e = (T^+ \Sigma \oplus T^+ \Sigma) \times g, \quad V_{\rho_f}^g = (\Sigma \oplus \Sigma) \times g
\]
are equipped with their canonical hermitian structures inherited from the inverse Riemannian metric on \(\Sigma \) and the Killing form \(k \).

As in \cite{Fur2, P}, it can be checked that the corresponding Cauchy problems are well-posed and that the operators \(G_{1e} \) (defined using the \(\rho_F^e \) data) can be written as
\[
G_{1e} = i^{-1} \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad G_{0e} = i^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

We denote by \(\bar{d}_e, \bar{\delta}_e \) the covariant differential and co-differential on \(\Sigma \) respective to \(\bar{A}_e := \iota^* \bar{A} \), i.e.
\[
\bar{d}_e := d_e + \bar{A}_e \wedge \cdot : \mathcal{E}_e^p(\Sigma) \otimes g \to \mathcal{E}_e^{p+1}(\Sigma) \otimes g,
\]
\[
\bar{\delta}_e := \bar{d}_e^*: \mathcal{E}_e^p(\Sigma) \otimes g \to \mathcal{E}_e^{p-1}(\Sigma) \otimes g,
\]
where now the adjoint is computed using the inverse metric on \(\Sigma \) and the Killing form \(k \).

The \(\rho_F^e \) Cauchy data are particularly useful to express the operators \(K_{\Sigma} = U_1^F \rho_0^F \) and \(K_{\Sigma}^\dagger \) (where \(U_1^F \) is defined as \(U_1 \) but with \(\rho_1^F \) instead of \(\rho_1 \)).

Lemma 2.12. We have:
\[
K_{\Sigma} = \begin{pmatrix} 0 & i \\ \bar{d}_e & 0 \\ 0 & 0 \\ i^{-1} a \end{pmatrix}, \quad K_{\Sigma}^\dagger = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & i a^* & 0 & \bar{\delta}_e \end{pmatrix},
\]
where \(a := \iota^* (n, i \bar{F}) \wedge \cdot \).

Proof. The formula for \(K_{\Sigma} \) is a routine computation. To obtain the formula for \(K_{\Sigma}^\dagger \) we use \eqref{2.17} and \eqref{2.9}. \(\square \)

Using Lemma 2.12 and the identity \(K_{\Sigma}^\dagger K_{\Sigma} = 0 \) (Lemma 2.9 \cite{GW}), we obtain the following important identity:
\[
\bar{\delta}_e \circ a = a^* \circ \bar{d}_e \text{ in } L(\mathcal{E}^0(\Sigma) \otimes g).
\]

3. Hadamard states

In this section we discuss Hadamard states both in ordinary field theory and the subsidiary condition framework. In Subsect. 3.1 we recall basic facts on quasi-free states on complex symplectic spaces. The Hadamard condition in ordinary field theory is recalled in Subsect. 3.2. Subsect. 3.3 contains a streamlined version of the arguments in \cite{GW}, dealing with the correspondence between Hadamard states and parametrices for the Cauchy problem in the ordinary framework. In Subsect. 3.4 we consider the subsidiary gauge framework. We explain there in detail the strategy we will follow in later sections to construct Hadamard states in this case, thereby proving Thm. 1.1.

Finally in Subsect. 3.5 we explain the version of the Fulling-Narcowich-Wald deformation argument adapted to the Yang-Mills case, which we use to deduce Thm. 1.2 from Thm. 1.1.
3.1. Quasi-free states. Let \mathcal{V} a complex vector space, \mathcal{V}^* its anti-dual and $L_0(\mathcal{V}, \mathcal{V}^*)$ the space of hermitian sesquilinear forms on \mathcal{V}. If $q \in L_0(\mathcal{V})$ then we can define the polynomial CCR $*$-algebra $\text{CCR}^\text{pol}(\mathcal{V}, q)$ (see eg DG Sect. 8.3.1). The (complex) field operators $\mathcal{V} \ni v \mapsto \psi(v), \psi^*(v)$, which generate $\text{CCR}^\text{pol}(\mathcal{V}, q)$ are anti-linear, resp. linear in v and satisfy the canonical commutation relations

$$[\psi(v), \psi(w)] = [\psi^*(v), \psi^*(w)] = 0, \quad [\psi(v), \psi^*(w)] = \overline{v}qw1, \quad v, w \in \mathcal{V}.$$

The complex covariances $\Lambda^\pm \in L(\mathcal{V}, \mathcal{V}^*)$ of a (gauge-invariant) state ω on $\text{CCR}^\text{pol}(\mathcal{V}, q)$ are defined in terms of the abstract field operators by

$$\overline{v}\Lambda^+ w := \omega(\psi(v)\psi^*(w)), \quad \overline{v}\Lambda^- w := \omega(\psi^*(w)\psi(v)), \quad v, w \in \mathcal{V}.$$

By the canonical commutation relations, one has $\Lambda^+ - \Lambda^- = q$.

In what follows we will consider only quasi-free states, which means that they are uniquely determined by their covariances Λ^\pm (since $\Lambda^+ - \Lambda^- = q$ it suffices to know one of them).

Definition 3.1. A pair Λ^\pm of hermitian forms on \mathcal{V} such that $\Lambda^+ - \Lambda^- = q$ will be called a pair of pseudo-covariances.

Let us recall the following characterization of covariances of quasi-free states on $\text{CCR}^\text{pol}(\mathcal{V}, q)$ (cf. AS GW).

Proposition 3.2. Pseudo-covariances $\Lambda^\pm \in L_0(\mathcal{V}, \mathcal{V}^*)$ are covariances of a (bosonic, gauge-invariant) quasi-free state on $\text{CCR}^\text{pol}(\mathcal{V}, q)$ iff

$$\Lambda^\pm \geq 0.$$

If q is non-degenerate then this is equivalent to $\pm qc^\pm \geq 0$, where $c^\pm := \pm \overline{q}^{-1}\Lambda^\pm$. If moreover, $(c^+)^2 = \overline{c}$ on the completion of \mathcal{V} w.r.t. $\Lambda^+ + \Lambda^-$, then the associated state is pure.

Hence a pair of (pseudo-)covariances $\Lambda^\pm \in L_0(\mathcal{V}, \mathcal{V}^*)$ uniquely define a (pseudo-)state on $\text{CCR}^\text{pol}(\mathcal{V}, q)$, where by pseudo-state we mean a $*$-invariant linear functional on $\text{CCR}^\text{pol}(\mathcal{V}, q)$.

Definition 3.3. A (bosonic) charge reversal on (\mathcal{V}, q) is an anti-linear operator κ on \mathcal{V} such that $\kappa^2 = \pm 1$ and $\kappa^* q \kappa = -q$, where the bar stands for ordinary complex conjugation. A quasi-free state on $\text{CCR}^\text{pol}(\mathcal{V}, q)$ with two-point function Λ^\dagger is said to be invariant under charge reversal if $\Lambda^- = -\kappa^* \Lambda^\dagger \kappa$. If q is non-degenerate then this is equivalent to $c^\dagger = -\kappa^* c \kappa$.

Clearly, if Λ^\dagger is a covariance of a quasi-free state invariant under charge conjugation then one of the two conditions in 3.3 implies the other. Note that one can always obtain a state invariant under charge reversal by taking $\frac{1}{2}(\Lambda^+ - \kappa^* \Lambda^- \kappa)$ instead of Λ^\dagger. For this reason, we will disregard this issue and consider states that need not be invariant under a charge reversal (contrarily to most of the literature on Hadamard states).

3.2. Hadamard two-point functions.

\footnote{See [GW] W2 for remarks on the transition between real and complex vector space terminology.} \footnote{Here by gauge invariance we mean invariance w.r.t. transformations generated by the complex structure. We always consider states that are gauge-invariant in this sense and not mention it anymore in order to avoid confusion with other possible meanings of gauge invariance.}
3.2.1. Two-point functions. Let \(D \in \text{Diff}^m(M; V) \) be prenormally hyperbolic and formally selfadjoint for \((\cdot|\cdot)_V\). Let us introduce the assumptions:

\[
\begin{align*}
\text{i)} & \quad \lambda^\pm : \Gamma_c(M; V) \to \Gamma(M; V) \\
\text{ii)} & \quad \lambda^\pm = \lambda^\pm* \text{ for } (\cdot|\cdot)_V \text{ on } \Gamma_c(M; V), \\
\text{iii)} & \quad \lambda^+ - \lambda^- = i^{-1}G, \\
\text{iv)} & \quad D\lambda^\pm = \lambda^\pm D = 0,
\end{align*}
\]

(3.2)

(3.3) \(\lambda^\pm \geq 0 \) for \((\cdot|\cdot)_V\) on \(\Gamma_c(M; V) \).

Note that (3.2) implies that \(\lambda^\pm : \Gamma'_c(M; V) \to \Gamma'_c(M; V) \). Let us set

\[
\Pi\Lambda^\pm v := (u|\lambda^\pm v)_V, \quad u, v \in \Gamma_c(M; V).
\]

If (3.2) hold, then \(\Lambda^\pm \) defines a pair of complex pseudo-covariances on the phase space \((\mathcal{V},q)\) defined in (2.2), hence defines a unique quasi-free pseudo-state on \(\text{CCR}^\text{pol}(\mathcal{V},q)\). If additionally (3.3) holds, they are (true) covariances, and define a unique quasi-free state on \(\text{CCR}^\text{pol}(\mathcal{V},q)\).

Definition 3.4. A pair of maps \(\lambda^\pm : \Gamma_c(M; V) \to \Gamma(M; V) \) satisfying (3.2) will be called a pair of spacetime two-point functions.

3.2.2. Hadamard condition. The (primed) wave front set of \(\lambda^\pm \) is by definition the (primed) wave front set of its Schwartz kernel. For \(x \in M \), we denote \(V_x^\pm = \text{positive/negative energy cones} \), dual future/past light cones and set

\[
\mathcal{N}^\pm := \{(x,\xi) \in T^*_xM \setminus \{0\} : g^{\mu\nu}(x)\xi_\mu\xi_\nu = 0, \xi \in V_{x}^\pm\}, \quad \mathcal{N} := \mathcal{N}^+ \cup \mathcal{N}^-.
\]

Definition 3.5. A pair of two-point functions \(\lambda^\pm \) satisfying (3.2) is Hadamard if

\[
(\text{Had}) \quad \text{WF}^\prime(\lambda^\pm) \subset \mathcal{N}^\pm \times \mathcal{N}^\pm.
\]

Remark 3.6. Assume that there exists an anti-linear operator \(\kappa : \Gamma(M; V) \to \Gamma(M; V) \) with \(\kappa^2 = \pm 1 \) and \(D\kappa = \kappa D \). It follows that \(\kappa \) induces a charge reversal on \((\mathcal{V},q)\) defined in (2.2). If moreover \(\kappa \) has the property that

\[
(\kappa f u) = f \kappa u, \quad f \in \Gamma(M), \quad u \in \Gamma_c(M; V)
\]

then it is easy to see that

\[
\text{WF}(\kappa u) = \text{WF}(u), \quad u \in \Gamma'_c(M; V)
\]

where

\[
\Gamma := \{(x,-\xi) : (x,\xi) \in \Gamma\}, \quad \text{for } \Gamma \subset T^*M.
\]

If \(\lambda^\pm \) are the two-point functions of a (pseudo-)state \(\omega \) invariant under the charge reversal \(\kappa \), then the relation between \(\lambda^+ \) and \(\lambda^- \) shows that the two conditions in (Had) are equivalent. Most of the literature on Hadamard states deals only with the charge-reversal invariant case, see however \cite{Hol, W2}.

3.3. Correspondence between Hadamard states and parametrices. One of the methods to impose (\(\mu\text{sc}\)) is to construct a sufficiently explicit parametrix for the Cauchy problem on a given Cauchy surface \(\Sigma \), as was done in \cite{GW} for the scalar Klein-Gordon equation. In the present subsection, we will derive the precise relation between two-point functions of Hadamard states in ordinary field theory and parametrices.
3.3.1. **Two-point functions on a Cauchy surface.** Let $D \in \text{Diff}^m(M; V)$ be prenormally hyperbolic, formally selfadjoint on $\Gamma_c(M; V)$ and Cauchy hyperbolic for some map ρ as in \[\text{2.3.1}^\text{iii}\].

Lemma 3.7. The operator ρG extends continuously to a surjection

$$\rho G : \Gamma'(M; V) \to \Gamma'(\Sigma; V_\rho)$$

with $\text{Ker}\rho G|_V = \text{Ran}D|_V$.

Proof. To show that $\rho G : \Gamma'(M; V) \to \Gamma'(\Sigma; V_\rho)$ is well-defined and continuous, it suffices to use the well-known fact that

$$(3.5) \text{WF}''(G) \subset N \times N$$

and the rules for composition of distributional kernels in terms of the wavefront set (see [Hor]). The fact that $\rho G : \Gamma'(M; V) \to \Gamma'(\Sigma; V_\rho)$ follows then from the support properties of G. To prove the surjectivity it suffices to show that the identity

$$1 = -\rho G \rho^* G_\Sigma \text{ valid on } \Gamma_c(\Sigma; V_\rho)$$

extends to $\Gamma'(\Sigma; V_\rho)$. This is indeed the case because G_Σ is a differential operator (this is usually shown using Green’s formula) and consequently acts continuously from Γ' to Γ', hence $\rho^* G_\Sigma : \Gamma'(\Sigma; V_\rho) \to \Gamma'(M; V)$.

The fact that $\text{Ker}\rho G|_V = \text{Ker}G|_V = \text{Ran}D|_V$ follows by the same proof as before. \(\Box\)

Let us introduce the assumptions:

- $\lambda^\pm_\Sigma : \Gamma_c(\Sigma; V_\rho) \to \Gamma(\Sigma; V_\rho)$,

- $\lambda^\pm = (\lambda_\Sigma^\pm)^* \text{ for } (\cdot|\cdot)_V$,

- $\lambda_\Sigma^\pm - \lambda_\Sigma^\mp = i^{-1}G_\Sigma$.

Definition 3.8. A pair of maps λ_Σ^\pm satisfying \(\text{3.3.1}\) will be called a pair of Cauchy surface two-point functions.

In the proposition below we recall a well known bijection between spacetime and Cauchy surface two-point functions.

Proposition 3.9. The maps:

$$(3.6) \lambda^\pm_\Sigma \mapsto \lambda^\pm := (\rho G)^* \lambda^\pm_\Sigma (\rho G),$$

and

$$(3.7) \lambda^\pm \mapsto \lambda^\mp_\Sigma := (\rho^* G_\Sigma)^* \lambda^\pm (\rho^* G_\Sigma)$$

are bijective and inverse from one another. Moreover, λ^\pm are the two-point functions of a quasi-free state iff

$$\lambda^\pm_\Sigma \geq 0 \text{ for } (\cdot|\cdot)_V.$$

Proof. (1): let λ^\pm_Σ satisfy \(\text{3.3.1}\). Clearly λ^\pm is well defined as a map from $\Gamma_c(M; V)$ to $\Gamma'_c(M; V)$. If $u \in \Gamma_c(M; V)$, then $f^\pm := \lambda^\pm_\Sigma \rho Gu \in \Gamma(\Sigma; V_\rho)$, hence $\text{WF}(\rho^* f^\pm) \subset N_\Sigma M$, the conormal bundle to Σ in M. We use now \(\text{3.3.1}\), the fact that Σ is non-characteristic i.e. $N^*_\Sigma M \cap N = \emptyset$ and standard arguments with wave front sets (see [Hor]) to obtain that $\lambda^\pm u = -G_\rho^* f^\pm \in \Gamma(M; V)$. The other conditions in \(\text{3.3.1}\) are immediate.

(2): let λ satisfies \(\text{3.3.1}\). Since $\lambda D = 0$, we have $\text{WF}(\lambda) \subset T^* M \times N$ which implies that $\lambda^\rho G : \Gamma_c(\Sigma; V_\rho) \to \Gamma(M; V)$. Next we use that G_Σ is a differential operator hence $G_\Sigma : \Gamma(\Sigma; V_\rho) \to \Gamma(\Sigma; V_\rho)$ to obtain that $\lambda^\pm_\Sigma : \Gamma_c(\Sigma; V_\rho) \to \Gamma(\Sigma; V_\rho)$. The other conditions in \(\text{3.3.1}\) is immediate.

The fact that the two maps are inverse from each other follows from $\rho U = \rho G^* \rho^* G_\Sigma = I$. The last statement about positivity is obvious. \(\Box\)
Prop. 3.9 leads to the following definition:

Definition 3.10. A pair \(\lambda^\pm \) of Cauchy surface two-point functions is Hadamard if the associated spacetime two-point functions \(\lambda^\pm \) are Hadamard.

3.3.2. Hadamard two-point functions and parametrices

Let us now discuss the link between Hadamard two-point functions and parametrices for the Cauchy problem. Let \(\lambda^\pm \) be the two-point functions of a state. We set

(3.8) \[H^0(\Sigma; V_\rho) := (\Gamma_c(\Sigma; V_\rho))^cpl \]

where the completion is taken w.r.t. \(\langle \cdot | \cdot \rangle_\nu \).

Theorem 3.11. Let \(D \in \text{Diff}^m(M; V) \) be prenormally hyperbolic, formally self-adjoint and Cauchy hyperbolic. Let \(\lambda^\pm \) be the two-point functions of a quasi-free Hadamard state and define

\[U^\pm := Uc^\pm : \Gamma'(\Sigma; V_\rho) \to \Gamma'_c(M; V), \]

where \(c^\pm = \mp G_\Sigma^{-1} \lambda^\pm_\Sigma \). Then

1. \(U^+ + U^- = U \).
2. The spaces \(\text{Ker} U^+|_{H^0} \) and \(\text{Ker} U^-|_{H^0} \) are orthogonal for \(q_\Sigma \).
3. If the state is pure then
 \[H^0(\Sigma; V_\rho) = \text{Ker} U^+|_{H^0} \oplus \text{Ker} U^-|_{H^0}. \]
4. \(\omega \) is positive on \(\text{Ker} U^\pm|_{H^0} \) for \(\langle \cdot | \cdot \rangle_\nu \).
5. \(\omega \) is analogous.

Proof. (1) follows from \(c^+ + c^- = 1 \). To prove (2a) we note that for \(u^\pm \in \text{Ker} c^\pm \) and \(q_\Sigma \) defined in (2.3) one has:

\[(u^+ + zu^-)q_\Sigma u^+ = (u^+ + zu^-)q_\Sigma c^+ (u^+ + zu^-) \in \mathbb{R}, \forall z \in \mathbb{C}, \]

which implies that \(u^- q_\Sigma u^+ = 0 \). (2b) follows from the fact that \(c^\pm \) are bounded projections on \(H^0 \) if the state \(\omega \) is pure, (3) follows from the conditions \(\lambda^\pm_\Sigma \geq 0 \). To show (4), observe that for all \(u \in \Gamma'(M; V) \)

\[\lambda^\pm u = (\rho G)^* \lambda^\pm_\Sigma \rho Gu = U^+ \rho Gu. \]

Thus, the Hadamard condition entails that \(\text{WF}(U^+ \rho Gu) \subset \mathcal{N}^+ \). Since \(\rho G \) is surjective this means \(\text{WF}(U^+ f) \subset \mathcal{N}^+ \) for all \(f \in \Gamma'(\Sigma; V_\rho) \). The proof for \(U^- \) is analogous.

To obtain a converse statement, it is not sufficient to work with local ‘Sobolev’ spaces — we rather need some global ones that can replace the space \(H^0(\Sigma; V_\rho) \), and that will allow to compose operators.

To this end, suppose \(\mathcal{H}(\Sigma; V_\rho) \) is a topological vector space s.t.

\[\Gamma_c(\Sigma; V_\rho) \subset \mathcal{H}(\Sigma; V_\rho) \subset \Gamma(\Sigma; V_\rho). \]

Examples of such spaces are (intersections of) scales of Sobolev spaces associated to a positive, elliptic pseudodifferential operator. The dual space of \(\mathcal{H}(\Sigma; V_\rho) \), denoted \(\mathcal{H}'(\Sigma; V_\rho) \), satisfies

\[\Gamma'(\Sigma; V_\rho) \subset \mathcal{H}'(\Sigma; V_\rho) \subset \Gamma'_c(\Sigma; V_\rho). \]

We will denote \(B^{-\infty}(\Sigma; V_\rho) \) the class of operators that map \(\mathcal{H}'(\Sigma; V_\rho) \) into \(\Gamma(\Sigma; V_\rho) \).

We assume that

(3.9) \[G_\Sigma, G_\Sigma^{-1} : \mathcal{H}(\Sigma; V_\rho) \to \mathcal{H}(\Sigma; V_\rho), \]

7For instance, if \(\lambda^\pm \) are the two-point functions of the vacuum for the scalar Klein-Gordon equation on Minkowski space then \(H^0(\Sigma; V_\rho) = H^{\frac{d}{2}}(\mathbb{R}^d) \oplus H^{-\frac{d}{2}}(\mathbb{R}^d) \), where \(H^m(\mathbb{R}^d) \) are the usual Sobolev spaces.
which since $i^{-1}G_{\xi}$ is selfadjoint for $(\cdot|\cdot)_{\nu_{\rho}}$ implies of course
\[G_{\xi}, \; G_{\xi}^{-1} : \mathcal{H}'(\Sigma; V_{\rho}) \to \mathcal{H}'(\Sigma; V_{\rho}), \]
The corresponding natural assumption for a pair of Cauchy surface two-point functions λ_{B}^{\pm} is
\begin{equation}
\lambda_{B}^{\pm} : \mathcal{H}(\Sigma; V_{\rho}) \to \mathcal{H}(\Sigma; V_{\rho}),
\end{equation}
where as before one of the above conditions implies the other.

Theorem 3.12. Assume that there exist operators $U^{\pm} : \mathcal{H}'(\Sigma; V_{\rho}) \to \Gamma_{c}(M; V)$ such that $U^{\pm} : \mathcal{H}(\Sigma; V_{\rho}) \to \Gamma(M; V)$
\[DU^{\pm} = 0, \quad U^{+} + U^{-} = U, \]
up to remainders that map $\mathcal{H}(\Sigma; V_{\rho}) \to \Gamma(M; V)$.
Assume moreover that
\begin{enumerate}
\item The spaces $\ker U^{+}|_{\mathcal{H}}$ and $\ker U^{-}|_{\mathcal{H}}$ are orthogonal for η_{ξ} and $\mathcal{H}(\Sigma; V_{\rho}) = \ker U^{+}|_{\mathcal{H}} \oplus \ker U^{-}|_{\mathcal{H}}$.
\item $\mathrm{WF}(U^{\pm}f) \subset \mathcal{N}_{B}$ for all $f \in \Gamma'(\Sigma; V_{\rho})$.
\end{enumerate}
Let $c^{\pm} : \mathcal{H}(\Sigma; V_{\rho}) \to \mathcal{H}(\Sigma; V_{\rho})$ be the projection s.t.
\begin{equation}
\mathrm{Ran} c^{\pm} = \ker U^{\mp}|_{\mathcal{H}}, \quad \ker c^{\pm} = \ker U^{\pm}|_{\mathcal{H}}.
\end{equation}
Then $\lambda_{B}^{\pm} := \pm i^{-1}G_{\xi}c^{\pm}$ are Hadamard Cauchy surface two-point functions. If moreover
\begin{enumerate}
\item $\pm i^{-1}G_{\xi}c^{\pm} \geq 0$ for $(\cdot|\cdot)_{\nu_{\rho}},$
\end{enumerate}
then λ_{B}^{\pm} are the Cauchy surface two-point functions of a Hadamard state.

Proof. (1) implies $c^{+} + c^{-} = 1$. By duality, $c^{\pm} : \mathcal{H}'(\Sigma; V_{\rho}) \to \mathcal{H}'(\Sigma; V_{\rho})$. Next, for all $f \in \Gamma'(\Sigma; V_{\rho})$ we have:
\[Uc^{\pm}f = (U^{+} + U^{-})c^{\pm}f = U^{\pm}c^{\pm}f = U^{\pm}(1 - e^{\mp})f = U^{\pm}f \mod C^{\infty}. \]
Therefore,
\[\lambda^{\pm}u = \pm i^{-1}Uc^{\pm}\rho Gu = \pm iU^{\pm}\rho Gu \mod C^{\infty}, \quad u \in \Gamma'(M; V). \]
Let a^{\pm} be a properly supported pseudodifferential operator, non-characteristic on \mathcal{N}_{B} and with essential support disjoint from \mathcal{N}_{B}. From (3) and the relation above it follows that $a^{\pm}\lambda^{\pm}$ is smoothing, hence $\mathrm{WF}'(\lambda^{\pm}) \subset \mathcal{N}^{\perp} \times \mathcal{N}$. Since $\lambda^{\pm} = (\lambda^{\pm})^{\ast}$ this implies $\mathrm{WF}'(\lambda^{\pm}) \subset \mathcal{N}^{\perp} \times \mathcal{N}^{\perp}$. This proves the first statement of the proposition. The second statement is obvious. \hfill \square

Thm. 3.12 allows to simplify the construction of Hadamard states for the scalar Klein-Gordon equation given in [GW] — it is in fact not difficult to check properties (1)-(3) directly from the construction of the parametrix therein. The space $\mathcal{H}(\Sigma; V_{\rho})$ is taken there to be the intersection of usual Sobolev spaces on \mathbb{R}^{2d}. The next proposition is an abstract version of a result from [GW].

Proposition 3.13. Assume that $\lambda_{B}^{\pm}, \lambda_{C}^{\pm}$ satisfy (3.10) and are the Cauchy surface two-point functions of two quasi-free states, and suppose the first of them is pure and Hadamard. Then the other one is Hadamard iff
\begin{equation}
c^{-}c^{+}c^{-}, \; e^{+}c^{+}c^{-}, \; e^{-}c^{-}e^{+} \in B^{-\infty}(\Sigma; V_{\rho})
\end{equation}
or, equivalently, iff
\begin{equation}
c^{\pm} = c^{\pm} \in B^{-\infty}(\Sigma; V_{\rho})
\end{equation}
functions will thus aim at solving all of them when possible.

operator P to gauge theories in the ‘subsidiary condition’ framework. Recall that to a given non-hyperbolic
3.4.1. Hadamard states in the subsidiary condition formalism. Definition 3.5 can be generalized
to survival if one replaces gauge-invariance (g.)

Lemma 3.16. The following lemma is obvious.

Proof. \Leftarrow: If (3.11) or (3.12) holds then

$$U\hat{c}^\pm - Uc^\pm\hat{c}^\pm : \mathcal{H}(\Sigma; V_\rho) \to \Gamma(M; V).$$

By Thm. 3.11 it follows that $WF(U\hat{c}^\pm f) \subset N^\pm$ for all $f \in \Gamma'(\Sigma; V_\rho)$ and consequently $\tilde{\lambda}$ is
Hadamard by Thm. 3.12.

$$U\hat{c}^\pm f = Uc^\pm\hat{c}^\pm f - Uc^\pm\hat{c}^\pm f.$$

By Thm. 3.11 the wave front set of the LHS is contained in N^-, and the wave front set of the
RHS is contained in N^\pm. This shows that the operators $U\hat{c}^\pm c^\pm$ are smoothing, therefore $c^\pm\hat{c}^\pm$ are smoothing. The assertion $c^\pm\hat{c}^\pm \in B^{-\infty}(\Sigma; V_\rho)$ is shown similarly.

Moreover, (3.11) entails that

$$\hat{c}^\pm - c^\pm = (c^+ + c^-)\hat{c}^\pm (c^\pm + c^-) - c^\pm c^\pm c^\pm - c^\pm - c^\pm (\hat{c}^\pm - 1)c^\pm = -c^\pm\hat{c}^\pm c^\pm \mod B^{-\infty}(\Sigma; V_\rho),$$

where the last term belongs to $B^{-\infty}(\Sigma; V_\rho)$. This proves (3.12).

Corollary 3.14. If λ^\pm_2 satisfying (3.10) are Hadamard Cauchy surfaces two-point functions
then so are $v^\dagger \lambda^\pm_2 v$ for any $v \in 1 + B^{-\infty}(\Sigma; V_\rho)$ s.t. $v^\dagger G_\Sigma v = G_\Sigma$.

3.4. Hadamard states in the subsidiary condition formalism.

3.4.1. Hadamard states in the subsidiary condition formalism. Definition 3.5 can be generalized
to gauge theories (the subsidiary condition) framework. Recall that to a given non-hyperbolic
operator P we have assigned a hyperbolic operator D_1 and introduced phase spaces $V_\rho =
\ker K^*/\ker D$. We consider the following definition, which generalizes the one
used by [FP, FS]. Let us recall that V_ρ is the quotient ρ.

Definition 3.15. We say that a quasi-free state ω on $\text{CCR}^{\text{pol}}(\mathcal{V}_\rho, \mathcal{q}_\rho)$ is Hadamard if there
exists Hadamard two-point functions λ^\pm_1 on $\Gamma_c(M; V_1)$ such that the complex covariances of ω
are given by:

$$[u]^\pm \omega[v] = (u|\lambda^\pm_1 v)_{V_\rho}, \quad u, v \in \ker K^*/\ker D_1,$$

where $\ker K^*/\ker D_1 \ni u \mapsto [u] \in \ker K^*/\ker D_1$ is the canonical map and λ^\pm_1 are Hadamard two-point
functions on $\Gamma_c(M; V_1)$.

We say that λ^\pm_1 are the two-point functions of the Hadamard state ω on $\text{CCR}^{\text{pol}}(\mathcal{V}_\rho, \mathcal{q}_\rho)$. The following lemma is obvious.

Lemma 3.16. $\lambda^\pm_1 : \Gamma_c(M; V_1) \to \Gamma(M; V_1)$ are the two-point functions of a Hadamard state
on $\text{CCR}^{\text{pol}}(\mathcal{V}_\rho, \mathcal{q}_\rho)$ if:

(1) $D_1 \lambda^\pm_1 = \lambda_1^\pm D_1 = 0, \quad WF'(\lambda^\pm_1) \subset N^\pm \times N^\pm$,

(3.13)

(2) $(\lambda^\pm_1)^* = \lambda^\mp_1$ and $\lambda^\pm_1 : \Gamma_c(M; V_1) \to \Gamma(M; V_1)$,

(3) $\lambda^\pm_1 \geq 0$ on $\ker K^*/\ker D_1$.

It is worth keeping in mind that in applications in perturbative Quantum Field Theory,
the positivity condition (pos) appears to be unessential. Moreover, some constructions seem
to survive if one replaces gauge-invariance (g.i.) by a condition ‘modulo smooth terms’ [Rej].
Nevertheless, all three conditions are needed to have a reasonable non-interacting theory, we
will thus aim at solving all of them when possible.

We now discuss gauge-invariance and positivity on the level of Cauchy surface two-point
functions $\lambda^\pm_{1}\Sigma$. We explain the main steps of the construction of Hadamard states for the
linearized Yang-Mills equations, leading to a proof of Thm. 1.1 which will be completed in Sect. 8.

The construction is somewhat complicated by the need to justify that various operators can be composed. These technical points can be bypassed on the first reading.

We fix spaces $\mathcal{H}(\Sigma; V_{\rho_i})$, $i = 0, 1$ as in Subsect. 3.3 and assume that $G_{i\Sigma}$ satisfy (3.9). The corresponding assumption on K_{Σ} is:

(3.14) \[K_{\Sigma} : \mathcal{H}(\Sigma; V_{\rho_0}) \rightarrow \mathcal{H}(\Sigma; V_{\rho_1}), \]

(3.15) \[K_{\Sigma} : \mathcal{H}'(\Sigma; V_{\rho_0}) \rightarrow \mathcal{H}'(\Sigma; V_{\rho_1}). \]

The operator K_{Σ} has then the same properties as K_{Σ}. Thus it is possible to ensure (g.i.) by subtracting to c_{Σ}^{+} a term $c_{1\text{reg}}^{+}$, which is expected to be smoothing, and hence will not invalidate the Hadamard property.

The method works as follows.

3.4.2. Cauchy surface two-point functions. Assume that we are given Cauchy surface two-point functions $\lambda_{i\Sigma}^{\pm}$ for $i = 0, 1$ satisfying (3.13) and (3.10) for $V = V_{i}$. To $\lambda_{i\Sigma}^{\pm}$ we associate as before operators $c_{\Sigma}^{i \pm} := \pm iG_{i\Sigma}^{-1}\lambda_{i\Sigma}^{\pm}$ which by the above assumptions satisfy:

i) \[c_{\Sigma}^{i \pm} : \mathcal{H}(\Sigma; V_{\rho_0}) \rightarrow \mathcal{H}(\Sigma; V_{\rho_1}), \]

\[c_{\Sigma}^{i \pm} : \mathcal{H}'(\Sigma; V_{\rho_0}) \rightarrow \mathcal{H}'(\Sigma; V_{\rho_1}), \]

iii) \[c_{\Sigma}^{i +} + c_{\Sigma}^{i -} = 1. \]

Conditions (pos), (g.i.) on $\lambda_{i\Sigma}^{\pm}$ in (3.13) can be rewritten as

(pos) $\lambda_{i\Sigma}^{\pm} = \pm i^{-1}G_{i\Sigma}c_{\Sigma}^{i \pm} \geq 0$ for $(\cdot)_{V_{i}}$ on $\text{Ker}(K_{\Sigma})$,\n
(g.i.) $\quad (c_{\Sigma}^{i \pm})^\dagger = c_{\Sigma}^{i \pm}$, $c_{\Sigma}^{i \pm} : \text{Ran}(K_{\Sigma}) \rightarrow \text{Ran}(K_{\Sigma})$.

Note that the last condition can be rewritten as:

(g.i.) $\quad (c_{\Sigma}^{i \pm})^\dagger = c_{\Sigma}^{i \pm}$, $c_{\Sigma}^{i \pm} : \text{Ker}(K_{\Sigma}) \rightarrow \text{Ker}(K_{\Sigma})$.

Let us now set:

(3.16) \[\text{R}_{-\infty} := c_{\Sigma}^{i \pm}K_{\Sigma} - K_{\Sigma}c_{\Sigma}^{i \pm}. \]

Condition (g.i.) is clearly satisfied if $\text{R}_{-\infty} = 0$.

The operators $c_{\Sigma}^{i \pm}$ are obtained from parametrices $U_{i\Sigma}^{\pm}$ for the Cauchy problems for D_{i} as in Thm. 3.12 in order to enforce the Hadamard condition for $\lambda_{i\Sigma}^{\pm}$. The construction of parametrices done in Sect. 8 relies on pseudodifferential calculus, from which we will only be able to obtain that $\text{R}_{-\infty}$ is smoothing.

Nevertheless, it is possible to ensure (g.i.) by subtracting to $c_{\Sigma}^{i \pm}$ a term $c_{1\text{reg}}^{+}$, which is expected to be smoothing, and hence will not invalidate the Hadamard property.

The method works as follows.

3.4.3. Construction of a projection. Let Π be a projection s.t.

\[\text{Ker}(\Pi) = \text{Ran}(K_{\Sigma}), \]

(3.17) \[\Pi : \mathcal{H}(\Sigma; V_{\rho_1}) \rightarrow \mathcal{H}(\Sigma; V_{\rho_1}), \]

(3.18) \[\Pi : \mathcal{H}'(\Sigma; V_{\rho_1}) \rightarrow \mathcal{H}'(\Sigma; V_{\rho_1}). \]

Clearly Π^{\dagger} has the same mapping properties as Π. Moreover one has:

(3.19) \[\text{Ran}(\Pi^{\dagger}) = \text{Ker}(K_{\Sigma}), \quad \text{Ran}(1 - \Pi) = \text{Ran}(K_{\Sigma}), \quad \text{Ker}(1 - \Pi^{\dagger}) = \text{Ker}(K_{\Sigma}). \]

Since $\text{Ran}(K_{\Sigma}) \subset \text{Ker}(K_{\Sigma})$ we also have:

(3.20) \[\Pi^{\dagger}K_{\Sigma} = K_{\Sigma}, \quad K_{\Sigma}^{\dagger}\Pi = K_{\Sigma}^{\dagger}. \]
3.4.4. Construction of a right inverse to K_Σ. Let also $B : \Gamma_c(\Sigma; V_{\rho_1}) \to \Gamma(\Sigma; V_{\rho_0})$ an operator such that
\begin{equation}
K_\Sigma B = 1 - \Pi, \text{ and hence } B^\dagger K_\Sigma^\dagger = 1 - \Pi^\dagger.
\end{equation}
The operator B is typically \textit{unbounded} from $\mathcal{H}(\Sigma; V_{\rho_1})$ to $\mathcal{H}(\Sigma; V_{\rho_0})$, because of infrared problems. To control its unboundedness, we introduce a smooth positive function $\langle x \rangle$: $\Sigma \to \mathbb{R}$ and still denote by $\langle x \rangle$ the operator of multiplication by $\langle x \rangle$, acting on $\Gamma(\Sigma; V_{\rho_1})$. If Σ is compact the weight is unnecessary and one can take $\langle x \rangle = 1$.

We assume that:
\begin{enumerate}
 \item $\langle x \rangle G_{1\Sigma}(x)^{-1} : \mathcal{H}(\Sigma; V_{\rho_1}) \to \mathcal{H}(\Sigma; V_{\rho_0})$, $i = 0, 1$,
 \item $\langle x \rangle^{-1} K_\Sigma(x) : \mathcal{H}(\Sigma; V_{\rho_0}) \to \mathcal{H}(\Sigma; V_{\rho_1})$,
 \item $\langle x \rangle^{-1} c_{1\Sigma}^\dagger(x) : \mathcal{H}(\Sigma; V_{\rho_1}) \to \mathcal{H}(\Sigma; V_{\rho_0})$.
\end{enumerate}

Concerning the operator B we assume that:
\begin{equation}
B : \mathcal{H}(\Sigma; V_{\rho_1}) \to \langle x \rangle \mathcal{H}(\Sigma; V_{\rho_0}),
\end{equation}
\begin{equation}
B : \mathcal{H}'(\Sigma; V_{\rho_1}) \to \langle x \rangle \mathcal{H}'(\Sigma; V_{\rho_0}),
\end{equation}
\begin{theorem}
Let $c_{1\Sigma}^\pm$, Π, B be as above. Let us set:
\begin{equation}
c_{1\Sigma}^\pm := \Pi^\pm c_{\Pi}^\dagger \Pi + B^\dagger c_{\Pi}^\dagger K_\Sigma^\dagger + K_{\Sigma^\dagger}^\dagger B,
\end{equation}
\begin{equation}
c_{1\Sigma}^\dagger \text{reg} := \pm (B^\dagger R_{\Lambda} + \Pi^\dagger R_{\Lambda} B),
\end{equation}
\begin{equation}
\lambda_{1\Sigma}^\pm := \pm i^{-1} G_{1\Sigma} c_{1\Sigma}^\dagger.
\end{equation}
Then:
\begin{enumerate}
 \item $\tilde{c}_{1\Sigma}^\pm : \langle x \rangle^{-1} \mathcal{H}(\Sigma; V_{\rho_1}) \to \langle x \rangle \mathcal{H}(\Sigma; V_{\rho_0})$, hence $\tilde{c}_{1\Sigma}^\pm : \Gamma_c(\Sigma; V_{\rho_1}) \to \Gamma(\Sigma; V_{\rho_0})$.
 \item One has:
 \begin{enumerate}
 \item $\tilde{c}_{1\Sigma}^\pm = \tilde{c}_{1\Sigma}^\dagger$,
 \item $\tilde{c}_{1\Sigma}^\dagger + \tilde{c}_{1\Sigma}^- = 1$,
 \item $\tilde{c}_{1\Sigma}^\dagger : \text{Ker} K_{\Sigma^\dagger} \to \text{Ker} K_{\Sigma^\dagger}$,
 \item $\lambda_{1\Sigma}^- = \Pi^* \circ \lambda_{1\Sigma}^\pm \circ \Pi$ on $\text{Ker} K_{\Sigma^\dagger}$,
 \item $c_{1\Sigma}^\dagger = \tilde{c}_{1\Sigma}^\dagger + c_{1\Sigma}^\dagger \text{reg}$,
 \end{enumerate}
 \item In particular $\lambda_{1\Sigma}^\pm$ satisfy (g.i.).
 \item If the projection Π can be chosen such that
 \begin{equation}
 \lambda_{1\Sigma}^\pm \geq 0 \text{ on } \Pi \text{Ker} K_{\Sigma^\dagger},
 \end{equation}
 then $\lambda_{1\Sigma}^\pm$ satisfy also (pos).
 \item If moreover
 \begin{equation}
 c_{1\Sigma}^\dagger \text{reg} : \Gamma_c(\Sigma; V_{\rho_1}) \to \Gamma(\Sigma; V_{\rho_0})
 \end{equation}
 and $\lambda_{1\Sigma}^\pm$ are Hadamard, then $\lambda_{1\Sigma}^\pm$ are Hadamard.
\end{enumerate}
\end{theorem}
\begin{proof}
Let us first prove (1). Clearly $\Pi^\dagger \Pi = \mathcal{H}(\Sigma; V_{\rho_1}) \to \mathcal{H}(\Sigma; V_{\rho_0})$, by (3.21). Next we obtain that $K_{\Sigma^\dagger} c_{\Pi}^\dagger B : \mathcal{H}(\Sigma; V_{\rho_1}) \to \langle x \rangle \mathcal{H}(\Sigma; V_{\rho_0})$, by (3.22). Using the same assumptions and duality we obtain that $B^\dagger c_{\Pi}^\dagger K_{\Sigma^\dagger}^\dagger : \langle x \rangle^{-1} \mathcal{H}(\Sigma; V_{\rho_1}) \to \mathcal{H}(\Sigma; V_{\rho_0})$.
\end{proof}
Let us now prove \((2)\). \(i\) is obvious. To prove \(ii\) we write
\[
\tilde{c}_i^+ + \tilde{c}_i^- = \Pi^\dagger \Pi + B^\dagger \tilde{c}_0^+ K_\Sigma + K_\Sigma B
\]
\[
= \Pi^\dagger \Pi + B^\dagger \tilde{c}_0^+ \Pi + K_\Sigma B
\]
\[
= \Pi^\dagger \Pi + (1 - \Pi^\dagger)\Pi + (1 - \Pi) = 1,
\]
using successively \(c_i^+ + c_i^- = 1\), \((3.19)\), and \((3.20)\). \(iii\) follows from \(\text{ Ran } \Pi^\dagger = \text{ Ker } K_\Sigma^\dagger\) (see \((3.18)\)), and \(\text{ Ran } K_\Sigma \subset \text{ Ker } K_\Sigma^\dagger\). \(iv\) is immediate. To prove \(v\) we write:
\[
\tilde{c}_i^+ = \Pi^\dagger c_i^+ \Pi + B^\dagger c_0^+ K_\Sigma + K_\Sigma c_0^+ B
\]
\[
= \Pi^\dagger c_i^+ \Pi + B^\dagger c_0^+ K_\Sigma + \Pi^\dagger K_\Sigma c_0^+ B
\]
\[
= \Pi^\dagger c_i^+ \Pi + B^\dagger K_\Sigma c_0^+ + \Pi^\dagger c_0^+ K_\Sigma B = B^\dagger R_{-\infty}^\dagger + \Pi^\dagger R_{-\infty} B
\]
\[
= \Pi^\dagger c_i^+ \Pi + (1 - \Pi) c_i^+ + \Pi^\dagger c_0^+ (1 - \Pi) = B^\dagger R_{-\infty}^\dagger + \Pi^\dagger R_{-\infty} B
\]
\[
= c_i^+ - c_i^+_{\text{reg}}.
\]
(3) follows from the fact that \((|\tilde{\lambda}_{\Sigma 1}^\pm\rangle)_V = (|\lambda_{\Sigma 1}^\pm\rangle)_V\) on \(\text{ Ker } K_\Sigma^\dagger\).

Under the hypotheses of \((4)\) \(\lambda_{\Sigma 1}^\pm - \tilde{\lambda}_{\Sigma 1}^\pm\) is smoothing, hence so is \(\lambda_{\Sigma 1}^\pm - \tilde{\lambda}_{\Sigma 1}^\pm\). This completes the proof of the theorem. \(\square\)

3.5. Reduction to ultra-static spacetimes by deformation. A well-known argument due to Fulling, Narcowich and Wald [FNW] allows one to reduce the construction of Hadamard states for the Klein-Gordon equation to the special case of an ultra-static spacetime, and an extension of this method can be used for the Maxwell equations [FP] and Yang-Mills linearized around \(\bar{A} = 0\) [He].

Let us first recall the FNW deformation argument for ordinary field theory: let \(g, g'\) be Lorentzian metrics on \(M\) such that \((M, g)\) and \((M, g')\) are globally hyperbolic and \(\Sigma \subset M\) a Cauchy surface for \((M, g)\) and \((M, g')\). Assume that \(g = g'\) on a causal neighborhood \(O(\Sigma)\) of \(\Sigma\). Assume also that \(D, D' \in \text{ Diff}^\infty(M; V)\) are normally hyperbolic operators satisfying the assumptions in Subsect. 2.3 such that \(\tilde{D} = D'\) on \(O(\Sigma)\). Then by the time-slice property and propagation of singularities theorems, the restriction of a Hadamard state for \(D'\) to \(O(\Sigma)\) yields a Hadamard state for \(D\).

In the subsidiary condition formalism, one has to assume the existence of operators \(P, K, P', K'\) as in Hypothesis 2.3 such that \(P = P', K = K'\) on \(O(\Sigma)\). The same argument using the gauge invariant version of the time slice property, i.e. Prop. 2.8 shows that the restriction of a Hadamard state for \((P', K')\) to \(O(\Sigma)\) yields a Hadamard state for \((P, K)\).

In the ordinary case one fixes an ultra-static metric \(g_{\text{us}}\), a normally hyperbolic operator \(D_{\text{us}}\) with coefficients independent on the associated time coordinate, an interpolating metric \(g'\) sharing a Cauchy surface \(\Sigma\) with \(g\) and a Cauchy surface \(\Sigma_{\text{us}}\) with \(g_{\text{us}}\), and finally a normally hyperbolic operator \(D'\) with \(D' = D\) near \(O(\Sigma)\) and \(D' = D_{\text{us}}\) near \(O(\Sigma_{\text{us}})\). Applying twice the above argument, one obtains a one-to-one correspondence between Hadamard states for \(D\) and Hadamard states for \(D_{\text{us}}\). The construction of Hadamard states for \(D_{\text{us}}\) is easier since \(D_{\text{us}}\) admits a natural vacuum state which can be shown to be Hadamard.

3.5.1. Deformation argument for Yang-Mills. In the subsidiary condition formalism, it is not obvious how to find interpolating operators \(P', K'\) equal to \(P, K\) near \(O(\Sigma)\) and satisfying
Hypothesis 2.3 globally on M. Moreover even if (M, g') is ultra-static on some $O(\Sigma_{us})$, this does not imply in general that P', K' will be independent on the time coordinate on $O(\Sigma_{us})$.

For linearized Yang-Mills equations, it is possible to find interpolating operators P', K' if we can find a 1-form \bar{A}' on (M, g') such that $\delta' F' = 0$ and $\bar{A}' = \bar{A}$ near $O(\Sigma)$. This will follow in turn from a result of global existence of smooth solutions of the non-linear Yang-Mills equation, on the spacetime (M, g'), with smooth Cauchy data on Σ.

Assuming this problem is solved, there is another issue that we need to consider:

by the deformation argument explained above, to prove the existence of Hadamard states for the linearized Yang-Mills equations on (M, g), we may assume that (M, g) is ultra-static, i.e. $g = g_{us} = -dt^2 + h_{ij}(x)dx^i dx^j$ on $M = \mathbb{R}^4 \times \Sigma$.

Recall that we assume that Σ is either a compact manifold or $\Sigma = \mathbb{R}^d$. The Riemannian metric $h_{ij}(x)dx^i dx^j$ on Σ can be chosen as we wish, in particular if $\Sigma = \mathbb{R}^d$ is not compact, we may assume that it satisfies Hypothesis 1.2. However if $\Sigma = \mathbb{R}^d$, we need also to ensure Hypothesis 1.4 on the background solution A_{us} (recall that this is a decay condition at spatial infinity). Moreover we have to assume that \bar{A}_{us} is in the temporal gauge, i.e. that $\bar{A}_{us,t} \equiv 0$.

If our model problem is obtained from the above deformation argument, A_{us} is obtained by solving two Cauchy problems for non-linear Yang-Mills equations:

in the first step one has to solve it on (M, g'), from a Cauchy surface Σ in the future (where $g' = g$) to a Cauchy surface Σ_{us} in the past (where $g' = g_{us}$). In a second step one has to solve it globally on (M, g_{us}) with the Cauchy data on Σ_{us} obtained in the first step.

Clearly if the Cauchy problem for the Yang-Mills equation (2.14) on a globally hyperbolic spacetime (M, g) can be globally solved in the space of smooth space-compact solutions, then all the intermediate background fields \bar{A}' and \bar{A}_{us} will be space compact, and hence \bar{A}_{us} will satisfy the decay condition (1.4). As a consequence the FNW deformation argument can be applied, giving the existence of Hadamard states if the background field \bar{A} is space-compact.

Fortunately it is not very difficult to deduce the result we need in dimensions lower than 4, from the existing literature, in particular from the work by Chruściel & Shatah [CS] Thm. 1.1]. The proof of the following proposition will be sketched in Appendix B.3.

Proposition 3.18. Assume that $\dim M \leq 4$ and (M, g) is globally hyperbolic. Let $\bar{A} \in E^1_{\text{sc}}(M; g)$ a local solution of the Yang-Mills equation (2.14) near some Cauchy surface Σ. Then there exists $\bar{A}' \in E^1_{\text{sc}}(M; g)$ such that:

1. $\bar{A}' \sim \bar{A}$ near Σ, where \sim denotes gauge equivalence,
2. $\bar{A}'_{,t} \equiv 0$, i.e. \bar{A}' is in the temporal gauge,
3. \bar{A}' is a global solution of (2.14).

Combining Prop. 3.18 with the above discussion, we see that Thm. 1.2 follows from Thm. 1.1.

4. **Vector and scalar Klein-Gordon equations on ultra-static spacetimes**

In this section we consider a general framework containing the operators $D_0 = \delta d$ and $D_1 = \delta \delta + \delta \bar{d} + \bar{F}_\nu$ associated to the Yang-Mills equation (defined in Subsect. 2.3) on ultra-static spacetimes. This will provide a basis for the construction of the parametrix in Sect. 5.

4.1. Preparations. The operator D_1, (resp. D_0) acts on $E^1(M) \otimes g$ (resp. $E^0(M) \otimes g$). Since by Hypothesis 1.1 $M = \mathbb{R}^4 \times \Sigma$ is parallelizable, we fix a global trivialization of TM and identify $E^1(M) \otimes g$ (resp. $E^0(M) \otimes g$) with $C^\infty(M; W)$ for

$$W := V \otimes g \quad \text{and} \quad V = C^{1+d} \quad (\text{resp. } V = C).$$

We refer to the two cases as the vector case (resp. scalar case).
The background metric is ultra-static:
\[g = -dt^2 + h_{ij}(x)dx^idx^j, \]
on \(M = \mathbb{R} \times \Sigma \), with either \(\Sigma = \mathbb{R}^d \) or \(\Sigma \) a compact manifold. We obtain a splitting
\[V = V_t \oplus V_\Sigma, \quad W_\Sigma := V_\Sigma \otimes \mathfrak{g}, \quad W = V_t \oplus W_\Sigma, \]
by writing a 1-form as \(A = A_t dt + A_\Sigma dx \), and we identify \(V_t \) with \(\mathbb{C} \). In the scalar case we take \(V_t = \{ 0 \} \), \(V_\Sigma = \mathbb{C} \). Setting
\[J := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]
if \(V = C^{1+d} \), \(J := 1 \) if \(V = \mathbb{C} \), we see that \(V_t = \text{Ker}(J + 1) \), \(V_\Sigma = \text{Ker}(J - 1) \).

We denote by \(\langle \cdot, \cdot \rangle \) the canonical positive definite scalar product on \(C^\infty_0(M; W) \) in the scalar case, defined using the Killing form \(\kappa \). In the vector case we set:
\[(u|v) := \int_\Sigma \mathcal{M}(x)Jg^{-1}(x) \otimes \kappa v(x)|h|^\frac{4}{d}dx, \]
which is also positive definite.

We denote by \(\Gamma_a \in C^\infty(\Sigma; L(V)) \) the coefficients of the Levi-Civita connection for \(g \). Since this connection is metric for \(g^{-1} \), we have:
\[\partial_ag^{-1} = \Gamma^a_ag^{-1} + g^{-1}\Gamma_a. \]
Since the metric is ultra-static we have moreover \(\Gamma_0 = 0 \), and \(\Gamma_i \) are the Levi-Civita connection coefficients for \((\Sigma; h_{ij}(x)dx^idx^j) \).

We denote by \(M_a = \text{ad}_{T_a} \in C^\infty(\mathbb{R} \times \Sigma; L(\mathfrak{g})) \) the connection coefficients for the algebra degrees of freedom. They can also depend on \(x^0 \) because the background Yang-Mills solution is obviously time-dependent in general. In the vector case we set
\[T_a := \Gamma_a \otimes 1_{\mathfrak{g}} + 1_V \otimes M_a \in C^\infty(\mathbb{R} \times \Sigma; L(W)), \]
and \(T_a = M_a \) in the scalar case. We have of course \(M_a^* \kappa + \kappa M_a = 0 \).

In the vector case we also fix a map \(\rho \in C^\infty(\mathbb{R} \times \Sigma; L(W)) \) representing the term \(F_\rho \) such that
\[\rho^*(g^{-1} \otimes \kappa) = (g^{-1} \otimes \kappa)\rho, \]
in the scalar case we take \(\rho = 0 \). We set:
\[D := -|g|^{-\frac{1}{2}}\nabla^T_a|g|^\frac{1}{2}g^{ab}\nabla^T_b + \rho. \]

The charge \(q \) defined in (2.2) equals:
\[\xi q\zeta := \int_{\{ t \} \times \Sigma} i^{-1}i^{-1}\nabla^T_0\zeta \cdot g^{-1} \otimes \kappa \cdot \zeta + \zeta \cdot g^{-1} \otimes \kappa \cdot i^{-1}\nabla^T_0\zeta|h|^\frac{4}{d}dx, \]
in the vector case and
\[\xi q\zeta := \int_{\{ t \} \times \Sigma} i^{-1}i^{-1}\nabla^T_0\zeta \cdot \kappa \cdot \zeta + \zeta \cdot \kappa \cdot i^{-1}\nabla^T_0\zeta|h|^\frac{4}{d}dx, \]
in the scalar case.
4.2. Temporal gauge. The temporal gauge is $\tilde{A}_0(t, x) \equiv 0$, which since $M_a = \text{ad} \tilde{A}_a$ implies that $\tilde{T}_0 = 0$, i.e. $\nabla^T_0 = \partial_t$. It is well known that one can always assume that one is in the temporal gauge, cf. Appendix B.2.

In this case the operator D takes the form:

$$D = \partial^2 + a(t, x, D_x), \quad a(t, x, D_x) = -|\hbar|^{-\frac{1}{2}} \nabla^2 h^{ij}(x)|\hbar|^{\frac{1}{2}} \nabla^T_j + \rho(t, x).$$

Denoting by a^* the formal adjoint of a for the positive scalar product $(\cdot|\cdot)$, we deduce from the fact that q defined in (4.7), (4.8) is independent on t that:

$$a^* J = J a,

for J defined in (4.3). In other terms, D is self-adjoint for $(\cdot|\cdot)_{V} := (\cdot|J \cdot)$. In the next sections we will use primarily the product $(\cdot|\cdot)_{V}$.

4.3. Cauchy problem. The standard Cauchy problem for the operator D is

$$D \zeta = 0, \quad \rho \zeta = f,$$

for $\rho \zeta(x) = (\zeta(0, x), i^{-1} \partial_t \zeta(0, x))$, $f = (f^0, f^1)$. We denote by $\zeta = U f$ the solution of (4.11).

We will denote by f^i_t, f^i, $i = 0, 1$ the time and space components of f^i, according to the decomposition

$$W = W_t \oplus W_E.$$

Denoting still by q the charge expressed in terms of Cauchy data we obtain that in the vector case:

$$T f q f = (f^1|J f^0) + (f^0|J f^1)$$

$$= (f^1_t|f^0_t) + (f^0_t|f^1_t) - (f^0_t|f^0_t) - (f^1_t|f^1_t).$$

In the first line above the positive scalar product $(\cdot|\cdot)$ is defined in (4.4), the positive scalar products in the second line are equal to

$$(f_k|f_k) := \int_{\Sigma} \int_{\Sigma} h^{-1} \otimes \kappa f_k | h|^{\frac{1}{2}} dx, \quad (f_i|f_i) := \int_{\Sigma} \kappa f_i | h|^{\frac{1}{2}} dx.$$

In the scalar case we have instead

$$T f q f = (f^1|f^0) + (f^0|f^1), \quad (u|v) = \int_{\Sigma} \kappa v | h|^{\frac{1}{2}} dx.$$

4.4. Adapted Cauchy data. The above choice of Cauchy data is the usual one for any operator obtained from a metric connection. In the vector case, however, it will often be more convenient to work with the adapted Cauchy data ρ^E_Σ defined in Sect. 2.5.1. In this subsection we discuss the transition from one choice of Cauchy data to the other.

4.4.1. Identifications. The space $\mathcal{E}^1_{sc}(M) \otimes g$ equals $C_{sc}^\infty(M; W)$.

For $A \in \mathcal{E}^1_{sc}(M) \otimes g$ we set:

$$A := A_t dt + A_x,$$

for $A_t \in C^\infty(\mathbb{R}, \mathcal{E}^0_{sc}(\Sigma) \otimes g)$, $A_x \in C^\infty(\mathbb{R}, \mathcal{E}^1_{sc}(\Sigma) \otimes g)$, which corresponds to the decomposition $\zeta = \zeta_t \oplus \zeta_x$, using (4.3). We will use the corresponding identifications for restrictions to Σ, i.e.:

$$C_{sc}^\infty(\Sigma; W) \sim C_{sc}^\infty(\Sigma; W_t) \oplus C_{sc}^\infty(\Sigma; W_x) \sim (\mathcal{E}^0_{sc}(\Sigma) \otimes g) \oplus (\mathcal{E}^1_{sc}(\Sigma) \otimes g).$$

We have also corresponding decompositions for 2–forms. Namely, if $F \in \mathcal{E}^2_{sc}(M) \otimes g$ we set:

$$F := dt \wedge F_t + F_x,$$

for $F_t \in C^\infty(\mathbb{R}, \mathcal{E}^1_{sc}(\Sigma) \otimes g)$, $F_x \in C^\infty(\mathbb{R}, \mathcal{E}^2_{sc}(\Sigma) \otimes g)$.

The spatial decomposition of A in A_t and A_x is convenient to work with the adapted Cauchy data ρ^E_Σ defined in Sect. 2.5.1. In this subsection we discuss the transition from one choice of Cauchy data to the other.
We recall that $\bar{A} \in \mathcal{E}^1_c(M) \otimes \mathfrak{g}$ is the background connection, which we assume to be in the temporal gauge. We introduce the derivative and co-derivative on Σ:

$$d_{\Sigma} := d\Sigma + \bar{A}_\Sigma \wedge \cdot : \mathcal{E}^p_c(\Sigma) \otimes \mathfrak{g} \to \mathcal{E}^{p+1}_c(\Sigma) \otimes \mathfrak{g},$$

$$\bar{\delta}_\Sigma := \bar{d}_\Sigma : \mathcal{E}^p_c(\Sigma) \otimes \mathfrak{g} \to \mathcal{E}^{p-1}_c(\Sigma) \otimes \mathfrak{g},$$

and one has $\bar{d}_\Sigma \bar{d}_\Sigma = \bar{F}_\Sigma \wedge \cdot$ using the notation in (4.10). An easy computation using that $\bar{A}_t \equiv 0$ shows that:

$$\bar{d}u = \partial_u d t + \bar{d}_x u, \quad u \in \mathcal{E}^0_c(M) \otimes \mathfrak{g},$$

$$\bar{d}A = d t \wedge (\partial_t A_x - \bar{d}_x A_t) + \bar{d}_x A_x, \quad A \in \mathcal{E}^1_c(M) \otimes \mathfrak{g},$$

$$\bar{\delta} A = \partial_t A_t + \bar{\delta}_x A_x, \quad A \in \mathcal{E}^1_c(M) \otimes \mathfrak{g},$$

$$\bar{\delta} F = -(\bar{\delta}_x F_1) d t + \partial_t F_t + \bar{\delta}_x F_x, \quad F \in \mathcal{E}^2_c(M) \otimes \mathfrak{g}.$$

Using (4.17), we see that

$$\bar{F}_t = \partial_t \bar{A}_x, \quad \bar{F}_x = \bar{d}_x \bar{A}_x,$$

and that the Yang-Mills equation $\bar{\delta} F = 0$ is equivalent to:

$$\bar{\delta} \bar{F}_t = 0, \quad \bar{\delta} \bar{F}_t + \bar{\delta}_x \bar{F}_x = 0,$$

where of course (4.18) holds for all $t \in \mathbb{R}$.

4.4.2. Transition to adapted Cauchy data. The adapted Cauchy data were defined in Sect. 2.5.1. Using (4.17) we obtain the following relation between the standard Cauchy data ρ_1 and the adapted ones ρ_1^F.

Lemma 4.1. Let $R_F := \rho_1^F \circ \rho_1^{-1}$. Then:

1. $R_F = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -i\delta_x & 1 & 0 \\
i\delta_x & 0 & 0 & 1
\end{pmatrix}$, $R_F^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & i\delta_x & 1 & 0 \\
-i\delta_x & 0 & 0 & 1
\end{pmatrix}.$

2. We have:

$$R_F^t q_1 R_F = q_1,$$

i.e. R_F is symplectic.

Note that the precise form of R_F relies on the assumption that the spacetime is ultra-static. It enjoys some good properties particular to that case, like for instance $JR_F = R_FJ$, which is used implicitly in some computations in Sect. 8.

5. Parametrices for the Cauchy problem

In this section we give a construction of the parametrix for the Cauchy problem (4.11), by adapting arguments in [GW] to vector-valued Klein-Gordon equations. In the rest of the paper, the principal part of the operator $a(t, x, D_x)$ below is time-independent, since the background metric is ultra-static. In this section however we treat the more general case where the principal part is time-dependent, which corresponds to the case when the riemannian metric $h_{ij}(t, x)dx^i dx^j$ is time-dependent. The completely general situation of a metric $-\beta(t, x)dt^2 + h_{ij}(t, x)dx^i dx^j$ could be treated as well by our methods.

The construction of a parametrix for the Cauchy problem given later on will rely heavily on pseudodifferential calculus. For the necessary basic facts and definitions we refer the reader to Appendix A.
5.1. Setup and notation. We consider an operator
\[D = \partial_t^2 + a(t, x, D_x), \quad a(t, x, D_x) = -|h|^{-\frac{1}{2}} \nabla^T h^{ij}(t, x) |h|^{\frac{1}{2}} \nabla_j + \rho(t, x), \]
where \(T, \rho \) etc. are as in Sect. 4.

We assume that the metric \(h_{ij}(t, x)dx^i dx^j \) satisfies Hypothesis (2), locally uniformly in \(t \), and that the background Yang-Mills solution \(A \) satisfies Hypothesis (1, 2, 3, 4).

In the sequel we denote \(a(t, x, D_x) \) simply by \(a(t) \in C^\infty(\mathbb{R}, \Psi^2(\Sigma; W)) \) (see Appendix A for the definition of pseudodifferential operators classes \(\Psi^m, \Psi^m_{\text{scal}} \)). One has:
\[(5.1) \quad a(t) = a_{\text{scal}}(t) + r_1(t), \quad r_1 \in C^\infty(\mathbb{R}, \Psi^1(\Sigma; W)), \]
and \(a_{\text{scal}} \in C^\infty(\mathbb{R}, \Psi^2_{\text{scal}}(\Sigma; W)) \) equals:
\[(5.2) \quad a_{\text{scal}}(t, x, D_x) = -|h|^{-\frac{1}{2}} \partial_t |h|^{\frac{1}{2}} h^{ij}(t, x) \partial_j. \]

Its principal symbol is
\[(5.3) \quad \sigma_{pr}(a_{\text{scal}})(t, x, k) = k_i h^{ij}(t, x) k^j \otimes 1_W. \]

For \(V \) a finite dimensional vector space, we set
\[(5.4) \quad \mathcal{H}(\Sigma; V) := \bigcap_{m \in \mathbb{Z}} H^m(\Sigma; V), \quad \mathcal{H}'(\Sigma; V) := \bigcup_{m \in \mathbb{Z}} H^m(\Sigma; V), \]
equipped with their natural topologies, where \(H^m(\Sigma; V) \) are the Sobolev spaces, which are canonically defined since \(\Sigma \) is equal either to \(\mathbb{R}^d \) or to a compact manifold. We set also
\[L^2(\Sigma; W) = H^0(\Sigma; W), \]
where in the situation considered in Sect. 4 \(L^2(\Sigma; W) \) is equipped with the scalar product \((\cdot, \cdot)_W\).

5.2. Some classes of pseudodifferential operators. In this subsection we introduce some special classes of pseudodifferential operators which will play an important role later on.

5.2.1. High momenta localization. A first problem that we have to face is the need to construct exact inverses to some elliptic operators, not only inverses modulo smoothing errors. Let us explain the well-known way to solve this problem on a simple scalar example:

if \(r \in \Psi^{-1}(\mathbb{R}^d) \), the operator \(1 + r \) is not necessarily invertible on \(L^2(\mathbb{R}^d) \). However if we fix some cutoff function \(\chi \in C^\infty(\mathbb{R}) \), with \(\chi(s) \equiv 0 \) for \(|s| < 1 \), \(\chi(s) \equiv 1 \) for \(|s| \geq 2 \) and set
\[(5.5) \quad r_R(x, k) := \chi(R^{-1}|k|) r(x, k), \quad r := r_R(x, D_x), \]
then \(r - r_R \in \Psi^{-\infty}(\mathbb{R}^d) \) and \(r_R \to 0 \) in \(\Psi^0(\mathbb{R}^d) \) as \(R \to +\infty \). It follows that
\[(5.6) \quad 1 + r_R \text{ is invertible on } L^2(\mathbb{R}^d) \text{ for } R \gg 1, \quad (1 + r_R)^{-1} \in 1 + \Psi^{-1}(\mathbb{R}^d). \]

We formalize this method by introducing the following definition.

Definition 5.1. Let \(V_1, V_2 \) be finite dimensional hermitian spaces. We denote by \(\Psi^p_{\text{as}}(\Sigma; V_1, V_2) \) the space of \(R \)-dependent pseudodifferential operators \(c_R \) such that:

i) \(c_R \) is uniformly bounded in \(\Psi^p(\Sigma; V_1, V_2) \),

ii) \(c_R \to 0 \) in \(\Psi^{p+\varepsilon}(\Sigma; V_1, V_2) \) when \(R \to +\infty \) for some (and hence for all) \(\varepsilon > 0 \).

The space \(\Psi^p_{\text{as}}(\Sigma; V, V) \) will be simply denoted by \(\Psi^p_{\text{as}}(\Sigma; V) \).

We now collect some easy properties of the above classes (the meaning of statement (2) below is explained in the proof).

Lemma 5.2. (1) \((\Psi^p_{\text{as}}(\Sigma; V_1, V_2))^* = \Psi^p_{\text{as}}(\Sigma; V_2, V_1) \),

(2) \(\Psi^p(\Sigma; V_1, V_2) \subset \Psi^p_{\text{as}}(\Sigma; V_1, V_2) + \Psi^{-\infty}(\Sigma; V_1, V_2) \).
(3) let $c_R \in \Psi^\infty_{\text{reg}}(\Sigma; V)$ for $\varepsilon > 0$ and let $\alpha \in \mathbb{R}$. Then for $R \geq R_0$ we have:

$$(1 + c_R)^\alpha \in 1 + \Psi^{-\varepsilon}_{\text{reg}}(\Sigma; V).$$

Proof. (1) is immediate. If $c \in S^0(\Sigma; V_1, V_2)$ we set $c_R(x, k) = \chi(R^{-1}|k|)c(x, k)$, for χ as in (5.5), and obtain that $c_R(x, D_x) \in \Psi^0_{\text{reg}}(\Sigma; V_1, V_2)$, $(x, D_x) - c_R(x, D_x) \in \Psi^{-\infty}(\Sigma; V_1, V_2)$, which proves (2). Let us now prove (3). We obtain that $c_R \to 0$ in $\Psi^0(\Sigma; V)$, hence in $B(L^2(\Sigma; V))$. It follows that for $R \geq R_0$ $(1 + c_R)^\alpha$ is well defined by the holomorphic functional calculus of bounded operators. The map $c_R \to (1 + c_R)^\alpha - 1$ is then continuous on $\Psi^{-\varepsilon}(\Sigma; V)$ for all $\varepsilon > 0$, from which we deduce that $(1 + c_R)^\alpha \in 1 + \Psi^{-\varepsilon}_{\text{reg}}(\Sigma; V)$. □

5.2.2. Infrared cutoffs. Furthermore, some operators will need to contain additional low energy (infrared) cutoffs, defined using some selfadjoint operators. These cutoffs will play an important role in Sect. [5].

In the rest of the paper we denote by $\chi_-, \chi_+ \in C^\infty(\mathbb{R})$ two cutoff functions with

$$(5.7) \quad \chi_- + \chi_+ = 1, \quad \text{supp} \chi_- \subset [-\infty, -1] \cup [1, +\infty[, \quad \text{supp} \chi_+ \subset [-2, 2].$$

Definition 5.3. Let V_1, V_2 be finite dimensional hermitian spaces and $h_1 \in \text{Diff}^2(\Sigma; V_1)$ be elliptic, selfadjoint and bounded from below. We denote by $\Psi^p_{\text{reg}}(\Sigma; V_1, V_2)$ the space of $R-$dependent pseudodifferential operators c_R such that:

i) $c_R \in \Psi^p_{\text{reg}}(\Sigma; V_1, V_2)$,

ii) $c_R = \chi_+(h_2) c_R \chi_+(h_1)$ for some χ_+ as in (5.7).

The space $\Psi^p_{\text{reg}}(\Sigma; V, V)$ will be simply denoted by $\Psi^p_{\text{reg}}(\Sigma; V)$.

Lemma 5.4. (1) $(\Psi^p_{\text{reg}}(\Sigma; V_1, V_2))^* = \Psi^p_{\text{reg}}(\Sigma; V_2, V_1)$,

(2) $\Psi^p(\Sigma; V_1, V_2) \subset \Psi^p_{\text{reg}}(\Sigma; V_1, V_2)$.

(3) let $c_R \in \Psi^p_{\text{reg}}(\Sigma; V)$ for $\varepsilon > 0$ and let $\alpha \in \mathbb{R}$. Then for $R \geq R_0$ we have:

$$(1 + c_R)^\alpha \in 1 + \Psi^{-\varepsilon}_{\text{reg}}(\Sigma; V).$$

Proof. (1) is obvious. (2) follows from Lemma 5.2. (2) and the fact that $\chi_-(h_1) \in \Psi^{-\infty}(\Sigma; V_1)$, since h_1 is elliptic and bounded below. Next $(1 + c_R)^\alpha$ is well defined for R large enough by Lemma 5.2. For $f(\lambda) = (1 + \lambda)^\alpha$ we have (denoting $\chi_-(h)$ simply by χ):

$$f(c_R) = f(\chi_- c_R \chi_+) = 1 + f'(0)\chi_- c_R \chi_+ + \chi_- c_R \chi_+ \theta(\chi_- c_R \chi_+) \chi_- c_R \chi_+,$$

for $g(\lambda) = \lambda^{-2} f(\lambda) - 1 - f'(0)\lambda$. Since g is analytic near 0, we obtain that $g(\chi_- c_R \chi_+) \in \Psi^0(\Sigma; V)$ and moreover that $g(\chi_- c_R \chi_+)$ is uniformly bounded in $\Psi^0(\Sigma; V)$. This implies (3). □

We will use the above operators classes for $V = W_t, W_x, W$ or $W \oplus W$. We start by defining the operators h that will be used in our case.

Definition 5.5. We set:

$$h_t := \delta_x d_x : \mathcal{D}_c^0(\Sigma) \otimes g \to \mathcal{D}_c^0(\Sigma) \otimes g,$$

$$h_x := \delta_x d_x + d_x \delta_x + F_{\mathbb{R}}. \cdot : \mathcal{D}_c^1(\Sigma) \otimes g \to \mathcal{D}_c^1(\Sigma) \otimes g,$$

and denote still by h_t, h_x their selfadjoint extensions, with domains $H^2(\Sigma; W_t), H^2(\Sigma; W_x)$. We set:

$$h := h_t \oplus h_x \text{ acting on } L^2(\Sigma; W).$$

We equip then the spaces W_t, W_x, W and $W \oplus W$ with the elliptic operators h_t, h_x, h and define the various spaces Ψ^p_{reg} using the above operators.

Finally we choose a number $C \gg 1$ such that $h + C1 \geq 1$ and set:

$$\varepsilon := (h + C1)^{\frac{1}{2}} = \epsilon_t + \epsilon_x,$$
where $\epsilon_1 := (h_1 + C1)^{\frac{1}{2}}$, $\epsilon_2 := (h_2 + C1)^{\frac{1}{2}}$. Let us collect some useful properties of the above operators.

Lemma 5.6. (1) $h \in \text{Diff}^2(\Sigma; W)$ is an elliptic differential operator with principal symbol

$$\sigma_{pr}(h)(x, k) = k_i h_i^j(x)k_j \otimes 1_W.$$

(2) $\epsilon \in \Psi^1(\Sigma; W)$ is an elliptic pseudodifferential operator with principal symbol:

$$\sigma_{pr}(\epsilon)(x, k) = (k_i h_i^j(x)k_j)^{\frac{1}{2}} \otimes 1_W.$$

(iii) $h = h^*$, $\epsilon = \epsilon^*$, $[h, J] = [\epsilon, J] = 0$,

(ii) $h_\Sigma \delta_{\Sigma} = \delta_{\Sigma} h_t + \delta_{\Sigma} F_{\Sigma} \wedge \cdots$, $\delta_{\Sigma} h_{\Sigma} = h_t \delta_{\Sigma} + \delta_{\Sigma} F_{\Sigma} \wedge \cdots$.

Proof. (1), (2) and (3) i) are immediate. (3) ii) follows from the Riemannian version of the computations at the end of Subsect. 2.5. \(\square\)

5.3. Construction of generators. In this subsection we construct the two generators for the parametrix of the Cauchy problem by modifying arguments from [GW].

Proposition 5.7. There exists for $R \geq 1$ an operator such that:

$$b_R(t) = (a_{\text{scal}}(t) + 1)^{\frac{1}{2}} + C^\infty(\mathbb{R}, \Psi^0(\Sigma; W)),$$

and:

(i) $i\partial_t b_R(t) - b_R^2(t) + a(t) = 0,$

(ii) $b_R(0) + J b_R^*(0) J = \epsilon^{\frac{1}{2}} (2\epsilon + \Psi^{-1}(\Sigma; W)) e^{\frac{1}{2}},$

(iii) $(b_R(0) + J b_R^*(0) J)^{-1} = \epsilon^{-\frac{1}{2}} (\frac{2}{\epsilon} 1 + \Psi^{-1}(\Sigma; W)) e^{-\frac{1}{2}}$

(iv) $b_R(0) = \epsilon^{\frac{1}{2}} (1 + r_{-1, R}) e^{\frac{1}{2}}, \ r_{-1, R} \in \Psi^{-1}(\Sigma; W).$

Remark 5.8. It is easy to see that the equation

$$i\partial_t b(t) - b^2(t) + a(t) = 0$$

is equivalent to

$$(\partial_t + i b(t)) \circ (\partial_t - i b(t)) = \partial_t^2 + a(t).$$

Proof. The proof is separated in several steps, the most important one being to solve the equation:

$$i\partial_t b_R(t) - b_R^2(t) + a(t) = 0.$$

Step 1: In Step 1 the parameter R will be absent, so we suppress the subscript R to simplify notation. We first try to solve (5.8) modulo $C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W))$. We set $\epsilon(t) = (a_{\text{scal}}(t) + 1)^{\frac{1}{2}}$ and look for $b(t)$ of the form:

$$b(t) = \epsilon(t) + b_0(t), \ b_0(t) \in C^\infty(\mathbb{R}, \Psi^0(\Sigma; W)).$$

Using that $a(t) = a_{\text{scal}}(t) + r_1(t)$ by (5.1), we obtain that $b_0(t)$ should solve:

$$b_0 = (2\epsilon)^{-1} i\partial_t \epsilon + (2\epsilon)^{-1} (r_1(t) - 1) + (2\epsilon)^{-1} (i\partial_t b_0 - b_0^2 + [\epsilon, b_0])$$

$$= (2\epsilon)^{-1} (i\partial_t \epsilon + r_1 - 1) + F(b_0).$$

Since $\epsilon(t) \in C^\infty(\mathbb{R}, \Psi^1_{\text{sc}}(\Sigma; W))$ we obtain that $[\epsilon, c] \in C^\infty(\mathbb{R}, \Psi^{m}(\Sigma; W))$ for any operator $c \in C^\infty(\mathbb{R}, \Psi^{m}(\Sigma; W))$. Therefore we can apply [GW] Lemma A.1 and find $b(t) = \epsilon(t) + b_0(t)$, unique modulo $C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W))$ such that

$$i\partial_t b(t) - b^2(t) + a(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)).$$
Step 2: In Step 2 we modify \(b(t) \) by subtracting an \(R \)-dependent term in \(\Psi^{-\infty}(W) \) to ensure conditions ii), iii), iv). Note that the principal symbols of the two operators \(\epsilon(0) \) and \(\epsilon \) defined in Def. 5.5 are both equal to \((k_i h^{ij}(0, x) k_j) \Psi^{1/2} \). Hence we deduce from (5.9) that:

\[
b(0) = \epsilon \Psi^{1/2}(0)(1 + r_{-1}) \epsilon \Psi^{1/2}(0), \quad r_{-1} \in \Psi^{-1}(\Sigma; W).
\]

By Lemma 5.3 (2) we can write

\[
(5.12) \quad r_{-1} = r_{-1,R} + r_{-\infty,R}, \quad r_{-1,R} \in \Psi_{\text{reg}}^{-1}(\Sigma; W), \quad r_{-\infty,R} \in \Psi^{-\infty}(\Sigma; W).
\]

We now choose any \(b_{-\infty,R}(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)) \) such that \(b_{-\infty,R}(0) = \epsilon \Psi^{1/2} r_{-\infty,R} \epsilon \Psi^{1/2} \) and replace \(b(t) \) by

\[
b_R(t) = b(t) - b_{-\infty,R}(t).
\]

Then \(b_R(t) \) still satisfies (5.11) (with a different error term), and

\[
b_R(0) = \epsilon \Psi^{1/2}(1 + r_{-1,R}) \epsilon \Psi^{1/2},
\]

i.e. condition iv) is satisfied. It is then easy to verify conditions ii), iii). In fact we have \([\epsilon, J] = 0 \) and hence:

\[
b_R(0) + Jb_R^*(0)J = \epsilon \Psi^{1/2}(21 + r_{-1,R} + Jr_{-1,R}^*) \epsilon \Psi^{1/2}.
\]

Since \([h, J] = 0 \) we obtain that \(r_{-1,R} + Jr_{-1,R}^* \in \Psi_{\text{reg}}^{-1}(\Sigma; W) \), hence by Lemma 5.4 (3)

\[
(21 + r_{-1,R} + Jr_{-1,R}^*)^{-1} \in \frac{1}{2} \Psi_{\text{reg}}^{-1}(\Sigma; W).
\]

If follows that conditions ii), iii), iv) are satisfied.

Step 3: We now further correct \(b_R(t) \) to solve (5.8) exactly, not modulo \(C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)) \), without changing \(b_R(0) \). Again we can suppress the subscript \(R \). The operator \(b(t) \) solves

\[
i\partial_t b - b^2 + a = r_{-\infty}, \quad r_{-\infty} \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)).
\]

Setting \(\tilde{b}(t) = b(t) + c_{-\infty}(t) \) we see that

\[
i\partial_t \tilde{b} - \tilde{b}^2 + a = 0
\]

iff

\[
(5.13) \quad \partial_t c_{-\infty}(t) = -ib(t)c_{-\infty}(t) - ic_{-\infty}(t)b(t) + ir_{-\infty}(t).
\]

Setting

\[
(5.14) \quad c_{-\infty}(t) =: T \exp(-i \int_0^t b(s) ds) \circ s_{-\infty}(t) \circ T \exp(i \int_0^t b(s) ds),
\]

we obtain that \(s_{-\infty}(t) \) should solve the equation:

\[
\partial_t s_{-\infty}(t) = iT \exp(-i \int_0^0 b(s) ds) \circ r_{-\infty}(t) \circ T \exp(i \int_0^0 b(s) ds) =: \tilde{r}_{-\infty}(t).
\]

By Lemma 4.5 we know that \(\tilde{r}_{-\infty} \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)) \), hence

\[
s_{-\infty}(t) = \int_0^t \tilde{r}_{-\infty}(s) ds \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W))
\]

solves the above equation. Again by [GW, Lemma 4.7] we obtain that \(c_{-\infty} \) given by (5.14) belongs to \(C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W)) \). Moreover since \(s_{-\infty}(0) = r_{-\infty}(0) = 0 \), we have \(\tilde{b}(0) = b(0) \). Denoting \(b(t) \) again by \(b(t) \), we have proved the proposition. \(\Box \)
5.4. **Parametrices for the Cauchy problem.** It is well known that if \(f \in \mathcal{H}(\Sigma; W \oplus W) \), then the Cauchy problem (4.11) has a unique solution \(\zeta = U(t) f \in C^\infty(\mathbb{R}, \mathcal{H}(\Sigma; W)) \). In this subsection we give a representation of \(U(t) \) by generalizing to vector-valued wave equations the constructions in [GW, Sect. 5] for the scalar case. Note that we also improve upon [GW] by obtaining an exact solution, not only a parametrix.

Theorem 5.9. Let \(b(t) = b_R(t) \in C^\infty(\mathbb{R}, \Psi^1(\Sigma; W)) \) be the operator constructed in Prop. 4.11 and let us set:

\[
b^+(t) := b(t), \quad b^-(t) := -Jb^*(t)J,
\]

\[
u^\pm(t) := \text{Texp}(i \int_0^1 b^\pm(s)ds)
\]

\[
r^{0\pm} := \mp(b^+(0) - b^-(0))^{-1}b^\mp(0) \in \Psi^0(\Sigma; W),
\]

\[
r^{1\pm} := \pm(b^+(0) - b^-(0))^{-1} \in \Psi^{-1}(\Sigma; W),
\]

and

\[
r^\pm f := r^{0\pm} f^0 + r^{1\pm} f^1, \quad f \in \mathcal{H}(\Sigma; W \oplus W).
\]

Then

\[
U(t) = u^+(t)r^+ + u^-(t)r^-.
\]

Proof. By Remark 5.8 we have:

\[
(\partial_t + ib(t))(\partial_t - ib(t)) = \partial_t^2 + a(t).
\]

Since \(a(t) = J a^*(t)J \), we see that if \(b(t) \) solves (5.10), so does \(-Jb^*(t)J\). Therefore \(b^\pm(t) \) solve (5.10) hence \((\partial_t^2 + a(t))u^\pm(t) = 0\). It remain to check that the initial conditions in (4.11) are satisfied, which is equivalent to

\[
\left(\begin{array}{c} r^+ + r^- \\ b^+(0)r^+ + b^-(0)r^- \end{array} \right) = \mathbf{1} \quad \text{on} \quad \mathcal{H} \otimes (V \oplus V).
\]

An easy computation shows that \(r^\pm \) given in the theorem is the unique solution of (5.17). This completes the proof of the theorem. \(\square \)

At this point, we could set \(U^\pm := u^\pm(t)r^\pm \) and prove directly that these are parametrices that satisfy properties analogous to those listed in Thm. 3.12 (but with positivity w.r.t. the product \(\langle \cdot | \cdot \rangle \), not \(\langle \cdot | \cdot \rangle_V \)), and associate to them pseudo-covariances \(\lambda^\pm \) in an abstract manner as in Thm. 3.12. However, we prefer to do this in a more systematic way in Sect. 6 in order to derive additional information needed to cope later on with the conditions (g.i.) and (pos) in gauge theory.

6. **Hadamard two-point functions**

6.1. Preparations. In the present section, we continue with the setup of Sect. 5 and deduce expressions for Hadamard two-point functions from the construction of the parametrix. This is done in a similar way as in [GW], i.e. we construct an operator \(T_R \) that diagonalizes the symplectic form and separates Cauchy data that propagate with positive and negative frequencies in the wave front set. We also show in Subsect. 6.3 that Hadamard states do not exist for vector Klein-Gordon equations if the scalar product is not positive-definite on the fibers.

In the sequel, if \(b_R(t) \) is the operator constructed in Prop. 5.7 we denote \(b_R(0) \) simply by \(b_R \).
Lemma 6.1. There exists \(W_R \in \Psi^\pm_\text{reg}(\Sigma; W) \) such that:

\[
(6.1) \quad b_R J + J b_R^* = W_R^* J W_R,
\]

and additionally:

\[
W_R = (1 + \Psi_{\text{reg}}^{-1}(\Sigma; W))(2e)^{\frac{1}{2}}, \quad W_R^{-1} = (2e)^{-\frac{1}{2}}(1 + \Psi_{\text{reg}}^{-1}(\Sigma; W)).
\]

Proof. By Prop. 5.7 we have

\[
J b_R + b_R^* J = (2e)^{\frac{1}{2}}(J + J c_R + c_R^* J)(2e)^{\frac{1}{2}}, \quad c_R \in \Psi_{\text{reg}}^{-1}(\Sigma; W).
\]

We look for \(W_R \) in the lemma under the form \(W_R = S_R(2e)^{\frac{1}{2}} \) for

\[
(6.2) \quad S_R = 1 + d_R, \quad d_R \in \Psi_{\text{reg}}^{-1}(\Sigma; W).
\]

The identity (6.1) is satisfied if

\[
(6.3) \quad S_R^* J S_R = J + J c_R + c_R^* J.
\]

Using \(W = W_t \oplus W_c \) (see (4.2)), we can write:

\[
S_R = \begin{pmatrix} s_{tt,R} & s_{tc,R} \\ s_{ct,R} & s_{cc,R} \end{pmatrix}, \quad c_R = \begin{pmatrix} c_{tt,R} & c_{tc,R} \\ c_{ct,R} & c_{cc,R} \end{pmatrix}.
\]

Let us now formulate the property that \(c_R \in \Psi_{\text{reg}}^{-1}(\Sigma; W) \) in terms of the components of \(c_R \).

If \(\alpha, \beta \) are any of the symbols \(t \) or \(c \), then since \(h = h_t \oplus h_c \), we obtain that \(c_{\alpha \beta,R} \in \Psi_{\text{reg}}^{-1}(\Sigma; W_{\alpha}, W_\beta) \). We are looking for \(s_{\alpha \beta,R} \) such that

\[
s_{\alpha \beta,R} - \delta_{\alpha \beta} \in \Psi_{\text{reg}}^{-1}(\Sigma; W_{\alpha}, W_\beta)
\]

Let us now suppress the index \(R \) to simplify notation. The equation (6.3) is satisfied iff:

\[
(6.4) \quad \begin{cases} -s_{tt,t}^* s_{tt} + s_{ct,c}^* s_{ct} = 1 - c_{tt}^* - c_{tt}, \\ -s_{tt,c}^* s_{tt} + s_{ct,t}^* s_{ct} = -c_{tt}^* + c_{tt}, \\ -s_{ct,t}^* s_{ct} + s_{ct,c}^* s_{ct} = c_{tt}^* - c_{tt}, \\ s_{ct,c}^* s_{ct} - s_{ct,t}^* s_{ct} = 1 + c_{ct}^* + c_{ct}. \end{cases}
\]

To solve this system we first set \(s_{ct,c} = 0 \). The last equation of (6.4) can then be solved for \(R \) large enough by

\[
s_{ct,c} = s_{ct,c}^* = (1 + c_{ct} + c_{ct}^*)^{\frac{1}{2}} \in 1 + \Psi_{\text{reg}}^{-1}(\Sigma; W_t, W_c),
\]

using Lemma 5.4 (3). The second and third equations are then solved by

\[
s_{ct,t} = s_{ct,c}^{-1}(c_{tt} - c_{tt}^*) \in \Psi_{\text{reg}}^{-1}(\Sigma; W_t, W_c),
\]

again by Lemma 5.4. Finally we solve the first equation by

\[
s_{tt} = s_{tt}^* = (1 + c_{tt} + c_{tt}^* + s_{tt}^* s_{tt})^{\frac{1}{2}} \in 1 + \Psi_{\text{reg}}^{-1}(\Sigma; W_t, W_c).
\]

This completes the proof of the lemma. \(\square \)

We now set

\[
(6.5) \quad T_R := W_R(b_R^+ - b_R^-)^{-1} \otimes 1_{\mathbb{C}^2} \circ \begin{pmatrix} -b_R^- & 1 \\ b_R^+ & -1 \end{pmatrix} \in \Psi^\infty_\text{reg}(\Sigma; W \oplus W),
\]

so that \(T_R f = \begin{pmatrix} W_R f_R^+ \\ W_R^* f_R^- \end{pmatrix} \), where \(f_R^\pm \) are defined in (5.19). We have:

\[
(6.6) \quad T_R^{-1} = \begin{pmatrix} 1 & b_R^- \\ b_R^+ & 1 \end{pmatrix} \circ W_R^{-1} \otimes 1_{\mathbb{C}^2}.
\]
Proposition 6.2. We have:

\[
(T^{-1}_R)^* \circ q \circ T^{-1}_R = \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix},
\]

(6.7)

\[
T_R = \frac{1}{\sqrt{2}} (1 + \Psi^{-1}_{\text{reg}}(\Sigma; W \oplus W)) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} e^\frac{\delta}{2} & 0 \\ 0 & e^{-\frac{\delta}{2}} \end{pmatrix}.
\]

Proof. Let us suppress again the subscript \(R \) and denote \(b^\pm_R \) simply by \(b^\pm \). Set \(f^\pm = r^\pm f \), so that

\[
f^0 = f^+ + f^-, \quad f^1 = b^+ f^+ + b^- f^-.
\]

An easy computation using that \(b^+ = b^- \), \(b^- = -Jb^* J \) yields:

\[
T f = (f^+ | (Jb + b^* J)f^+) - (f^- | (Jb + b^* J)f^-).
\]

By Lemma 6.1 we have \(Jb + b^* J = W^* J W \). This implies (6.7) by the definition of \(T_R \).

Let us now prove (6.8). From Lemma 6.1 and Prop. 5.7 we have

\[
W_R = (1 + \Psi^{-1}_{\text{reg}}(\Sigma; W))(2\epsilon)^{\frac{1}{2}},
\]

\[
(b_R^+ - b_R^-)^{-1} = (b_R + Jb_R^* J)^{-1} = (2\epsilon)^{-\frac{1}{2}} (1 + \Psi^{-1}_{\text{reg}}(\Sigma; W))(2\epsilon)^{-\frac{1}{2}}.
\]

Similarly we have

\[
\begin{pmatrix} -b_R^- & 1 \\ b_R^+ & -1 \end{pmatrix} \begin{pmatrix} e^{-\frac{\delta}{2}} & 0 \\ 0 & e^{\frac{\delta}{2}} \end{pmatrix} = \begin{pmatrix} Jb_R J e^{-\frac{\delta}{2}} & c^\frac{\delta}{2} \\ b e^{-\frac{\delta}{2}} & -e^{\frac{\delta}{2}} \end{pmatrix}.
\]

Then (6.8) follows by applying formula (6.5). \(\square \)

6.2. Hadamard two-point functions. In this subsection we construct pairs of Hadamard two-point functions.

Proposition 6.3. Let us define \(c^\pm : \mathcal{H}(\Sigma; W \oplus W) \to \mathcal{H}(\Sigma; W \oplus W) \) by:

\[
c^+ := T^{-1}_R \circ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \circ T_R, \quad c^- := T^{-1}_R \circ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \circ T_R.
\]

Then the following holds:

(1) One has

\[
c^\pm f := \begin{pmatrix} r^\pm f \\ b^{\pm \pm} f \end{pmatrix}, \quad f \in \mathcal{H}(\Sigma; W \oplus W),
\]

(2)

\[
\begin{align*}
i) \quad c^+ + c^- &= 1, \quad (c^\pm)^2 = c^\pm, \\
ii) \quad (c^\pm)^\dagger &= c^\pm, \\
iii) \quad r^\pm \circ c^\pm &= r^\pm.
\end{align*}
\]

Proof. (1) is a routine computation using (6.5), (6.6). (2) follows from (6.7). \(\square \)

Theorem 6.4. Let \(c^\pm \) be defined by (6.5) and set

\[
\lambda^\pm_E := \pm q \circ c^\pm \in B(\mathcal{H}(\Sigma; W \oplus W), \mathcal{H}(\Sigma; W \oplus W)).
\]

Then

(1) \(\lambda^\pm_E \) is a pair of Hadamard Cauchy surface two-point functions;
Theorem 6.6. Assume that pseudo-states λ_D^\pm for subsection we consider a vector Klein-Gordon operator \mathcal{D}.

Proof. The proof of (1) is identical to the proof of [GW, Thm. 7.1]. Note that only the proof of the implication \Rightarrow in [GW, Thm. 7.1] needs to be copied. (2) is immediate. □

Remark 6.5. Statement (1) of Thm. 6.4 still holds if we replace e^\pm by $e^\pm \pm r_{-\infty}$, for $r_{-\infty} \in \Psi^{-\infty}(\Sigma; W \oplus W)$.

6.3. Non-existence of Hadamard states for vector Klein-Gordon equations. In this subsection we consider a vector Klein-Gordon operator \mathcal{D} as above, assuming that $J \neq 1$, i.e. that the hermitian form on W is not positive definite. We show that under a mild additional condition on its two-point functions, there does not exist any Hadamard state, but only Hadamard pseudo-states.

Theorem 6.6. Assume that $J \neq 1$. Then there does not exist spacetime two-point functions $\tilde{\lambda}_\Sigma^\pm$ for \mathcal{D} satisfying (usc) and (pos) such that additionally the Cauchy surface two-point functions $\tilde{\lambda}_\Sigma^\pm$ map continuously $\mathcal{H}(\Sigma; W \oplus W)$ into itself.

Proof. Let $\tilde{\lambda}_\Sigma^\pm$ be the Cauchy surface two-point functions of the state ω. Since by assumption $\tilde{\lambda}_\Sigma^\pm$ preserve $\mathcal{H}(\Sigma; W \oplus W)$ we can apply [GW, Thm. 7.1], which generalizes directly to the vector case. We obtain that if (usc) holds then $\tilde{\lambda}_\Sigma^+ - \tilde{\lambda}_\Sigma^-$ is smoothing. Let us set

$$
\tilde{B} := (T_R)^{-1} \left(\tilde{\lambda}_\Sigma^+ + \tilde{\lambda}_\Sigma^- \right) T_R^{-1}, \quad B := \left(\begin{array}{cc} J & 0 \\ 0 & J \end{array} \right).
$$

By (6.11) we obtain that $\tilde{B} = B + R_\infty$ where R_∞ is smoothing. We may choose a sequence $f_n \in L^2(\Sigma; W \oplus W)$ with $\|f_n\| = 1$, $(f_n|Bf_n) = -1$, $w-\lim f_n = 0$, with support in some fixed compact $K \subset \Sigma$. Let us denote $\tilde{1}_K$ the characteristic function of K, understood as a multiplication operator. Since $\tilde{1}_K R_\infty \tilde{1}_K$ is compact we obtain that $\lim_{n \to \infty} (f_n|\tilde{B}f_n) = -1$. But this contradicts the positivity condition (pos), which implies that $\tilde{B} \geq 0$.

6.4. Positivity of Hadamard two-point functions on subspaces. We saw in Thm. 6.6 that it is impossible to construct Hadamard two-point functions for D_1, since in this case $J \neq 1$. However there exist subspaces of $\mathcal{H}(\Sigma; W \oplus W)$ on which λ_Σ^\pm are positive. This will follow from the fact that J is positive on $W_\Sigma \equiv (\ker(J - 1)) \oplus \mathfrak{g}$.

Proposition 6.7. Let λ^\pm_Σ be defined in (6.14), for $D = D_1$. Then there exists $r_{-1,R} \in \Psi^{-1}(\Sigma; W \oplus W)$ such that:

$$
\lambda^\pm_\Sigma \geq 0 \text{ on } (1 + r_{-1,R})\mathcal{H}(\Sigma; W_\Sigma \oplus W_\Sigma).
$$

Proof. From (6.8) we obtain that

$$
T_R = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \left(\begin{array}{cc} e^{\frac{1}{2}} & 0 \\ 0 & e^{-\frac{1}{2}} \end{array} \right) \left(1 + \Psi^{-1}(\Sigma; W \oplus W) \right).
$$

This implies, using also Lemma (6.4)(3) that for R large enough there exists $r_{-1,R} \in \Psi^{-1}(\Sigma; W \oplus W)$ such that

$$
T_R = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \left(\begin{array}{cc} e^{\frac{1}{2}} & 0 \\ 0 & e^{-\frac{1}{2}} \end{array} \right) \left(1 + r_{-1,R} \right)^{-1}.
$$
We note that \(\begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 0 \\ 0 & J \end{pmatrix} \) are positive on \(\mathcal{H}(\Sigma; W_\Sigma + W_\Sigma), \) since \(J \) is positive on \(W_\Sigma. \) The operators \(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \) and \(\begin{pmatrix} \epsilon & 0 \\ 0 & -\epsilon \end{pmatrix} \) preserve the space \(\mathcal{H}(\Sigma; W_\Sigma + W_\Sigma), \) since \(\epsilon = \epsilon_t + \epsilon_\Sigma. \) The proposition follows then from (6.11) and (6.12). \(\square \)

7. Pair of Hadamard pseudo-covariances

In this section we consider the pair of operators \(D_0 = \tilde{d} \tilde{d}, \) \(D_1 = \tilde{d} \tilde{d} + \tilde{d} \tilde{d} + \tilde{F}_\perp \) as in Subsect. 2.3. After going to the temporal gauge, we may assume that both operators fit into the framework of Sect. 5 i.e. that:

\[
D_i = \partial^2_t + a_i(t, x, D_x),
\]

where \(a_i(t) \in C^\infty(\mathbb{R}; \Psi^2(\Sigma; W_i)) \) for \(W_1 = V_1 \otimes g, \) and \(W_0 = g. \) The operator \(K = \tilde{d} \) becomes in this framework:

\[
(7.1) \quad K = K_0(t) \partial_t + K_1(t),
\]

where \(K_j(t) \in C^\infty(\mathbb{R}, \text{Diff}^j(\Sigma; W_0, W_1)) \) is a differential operator in \(x, \) of order \(j \) such that

\[
(7.2) \quad (\partial^2_t + a_1(t)) \circ K = K \circ (\partial^2_t + a_0(t)).
\]

It is easy to check that

\[
(7.3) \quad K_0(t, x) \in L(W_0, W_1) \neq 0, \ \forall (t, x) \in \mathbb{R} \times \Sigma.
\]

We recall that

\[
K_\Sigma := \rho_1 \circ K \circ U_0 \in \text{Diff}(W_0 \oplus W_0, W_1 \oplus W_1),
\]

where \(\rho_i, U_i \) are the trace and Cauchy evolution operators.

7.1. Some preparations. Let us denote by \(u_i^{\pm}(t), i = 0, 1 \) the operators constructed in Thm. 5.9.

Lemma 7.1. There exist \(m_i^{\pm} \in \Psi^1(\Sigma; W_0, W_1) \) and \(r_\pm^{\infty}(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1)) \) such that:

\[
K \circ u_0^{\pm}(t) = u_0^{\pm}(t)m_1^{\pm} + r_\pm^{\infty}(t).
\]

Proof. We consider only the + case and suppress the + superscripts to simplify notation. Since \(u_0(t) = T \exp(i \int_0^t b_0(s)ds) \), we obtain from (7.1) that:

\[
K \circ u_0(t) = (iK_0b_0(t) + K_1) \circ u_0(t).
\]

Composing this identity to the left with \(\partial_t - ib_1 \) and using that \(i\partial_t b_0 - (b_0)^2 + a_0 = 0 \) by Prop. 5.7 we obtain:

\[
(\partial_t - ib_1) \circ K \circ u_0(t)
\]

\[
(7.4) \quad = (-K_0a_0 + \partial_t K_1 + i(\partial_t K_0 + K_1)b_0 + b_1(K_0b_0 - iK_1)) \circ u_0(t)
\]

\[
= m_2(t) \circ u_0(t), \text{ for } m_2(t) \in C^\infty(\mathbb{R}, \Psi^2(\Sigma; W_0, W_1)).
\]

Expanding both sides of the identity (7.2), we obtain the following identities:

\[
2\partial_t K_0 + K_0 = K_1 - K_0,
\]

\[
(7.5) \quad K_0a_0 = \partial^2_t K_0 + 2\partial_t K_1 + a_1 K_0,
\]

\[
\partial^2_t K_1 + a_1 K_1 = (K_1 - K_0)a_0 + K_0 \partial_t K_0.
\]
The second identity of (7.4) implies that $K_0(t)a_0(t) = a_1(t)K_0(t)$ mod $C^\infty(\mathbb{R}, \text{Diff}^1(W_0, W_1))$, hence taking the principal symbols of both sides we obtain:

$$\langle \sigma_{pr}(a_1)(t, x, k) \otimes 1_{W_1} \rangle \circ K_0(t, x) = K_0(t, x) \circ (\sigma_{pr}(a_0)(t, x, k) \otimes 1_{W_0}),$$

as an identity in $C^\infty(T^*\Sigma; L(W_0, W_1))$. Now a_0 and a_1 have a scalar principal part (see assumption (5.1)), which using that $K_0(t, x) \neq 0$ implies that

$$\sigma_{pr}(a_1)(t, x, k) = \sigma_{pr}(a_0)(t, x, k), \ (t, x, k) \in \mathbb{R} \times T^*\Sigma;$$

hence

$$\sigma_{pr}(\epsilon_1)(t, x, k) = \sigma_{pr}(\epsilon_0)(t, x, k), \ (t, x, k) \in \mathbb{R} \times T^*\Sigma;$$

by taking square roots.

Therefore we can apply Prop. A.3 (2) and obtain that:

$$(7.6) \quad m_2(t) \circ u_0(t) = u_1(t) \circ \tilde{m}_2(t), \text{ where } \tilde{m}_2(t) \in C^\infty(\mathbb{R}, \Psi^2(\Sigma; W_0, W_1)).$$

Combining (7.4) and (7.6), we obtain that:

$$\langle \partial_t - ib_1 \rangle \circ K \circ u_0(t) = u_1(t) \circ \tilde{m}_2(t).$$

Using that $(\partial^2_t + a_0) \circ u_0(t) = 0$, identity (7.2) and Remark 5.8 we obtain finally

$$\langle \partial^2_t + a_1 \rangle \circ K \circ u_0(t) = (\partial_t + ib_1) \circ u_1(t) \circ \tilde{m}_2(t) = u_1(t) \circ (\partial_t \tilde{m}_2(t) + 2ib_1 \tilde{m}_2(t)) = 0.$$

Therefore $\tilde{m}_2(t) = T\exp(-2i \int_0^t b_1(s)ds)\tilde{m}_2(0)$. By Lemma 7.2 below this implies that $\tilde{m}_2(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1))$, hence by Lemma A.3 that $m_2(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1))$. The identity (7.4) becomes

$$(\partial_t - ib_1) \circ K \circ u_0(t) = m_{-\infty}(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1)),$$

hence

$$K \circ u_0(t) = u_1(t) \circ (K \circ u_0)(0) + \int_0^t T\exp(i \int_s^t b(s)ds) \circ r_{-\infty}(t)dt = u_1(t) \circ (iK_0 + K_1) + r_{-\infty}(t),$$

for $r_{-\infty}(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1))$. This completes the proof of the lemma.

Lemma 7.2. Let $b_1(t) \in C^\infty(\mathbb{R}, \Psi^1(\Sigma; W_1))$ satisfying the assumptions of Prop. A.3 and $m(t) \in C^\infty(\mathbb{R}, \Psi^p(\Sigma; W_0, W_1))$, $p \in \mathbb{R}$ such that:

$$m(t) = T\exp(i \int_0^t b_1(s)ds)m(0).$$

Then $m(t) \in C^\infty(\mathbb{R}, \Psi^{-\infty}(\Sigma; W_0, W_1))$.

Proof. We have $\partial_t m(t) = ib_1(t)m(t)$. By induction we obtain that for any $k \in \mathbb{N}$

$$\partial^k_t m(t) = p_k(t)m(t), \text{ where } p_k(t) \in C^\infty(\mathbb{R}, \Psi^k(\Sigma; W_1)), \sigma_{pr}(p_k) = (i\sigma_{pr}(b_1))^k.$$

Note that b_1 is elliptic in $\Psi^1(W_1)$ hence p_k is elliptic in $\Psi^k(W_1)$ and since $\partial^k_t m(t)$ belongs to $C^\infty(\mathbb{R}, \Psi^{p-k}(\Sigma; W_0, W_1))$ by assumption we obtain that $m(t) \in C^\infty(\mathbb{R}, \Psi^{-k}(\Sigma; W_0, W_1))$. This completes the proof.

□
7.2. Compatibility of Hadamard pseudo-covariances. We prove now the main result of this section, which will be important later on.

Theorem 7.3. Let \(c_i^\pm \in B(\mathcal{H} \otimes (W_i \oplus W_i)) \), \(i = 0, 1 \) be as in Prop. 6.3. Then
\[
c_i^\pm K_{w^c} - K_{w^c} c_0^\pm \in \Psi^{-\infty}(W_0 \oplus W_0, W_1 \oplus W_1) .
\]

Proof. Since \(c_i^+ + c_i^- = 1 \), it suffices to prove the + case, which amounts to show that
\[
(7.7) \quad c_i^- K_{w^c} c_0^+ \in \Psi^{-\infty}(W_0 \oplus W_0, W_1 \oplus W_1) .
\]
We recall that from Thm. 5.9 and Prop. 6.3 we have:
\[
\text{We claim that if } (8.1) \text{ following two properties:}
\]
\[
\text{(8.2) } \text{Ran } \Pi \text{ is positive on } \text{Ran } \Pi \cap \text{Ker } K_w^+ .
\]
We will ensure (ii) by choosing \(\Pi \) in such a way that
\[
(8.2) \quad \text{Ran } \Pi \cap \text{Ker } K_w^+ \subset (1 - r_{-1,R}) \mathcal{H}(\Sigma; W_x \oplus W_x),
\]
where the operator \(r_{-1,R} \) appears in Prop. 6.7.
8.1. **Notations.** - As before, if \(E, F \) are two topological vector spaces, we write \(A : E \to F \) if \(A \) is linear continuous from \(E \) to \(F \). We write \(A : E \rightharpoonup F \) if additionally \(A \) is bijective and both \(A^{-1} \) is linear continuous.

- We denote \(\langle x \rangle H^m(\Sigma; V) \) the Sobolev space of order \(m \) with weight \(\langle x \rangle = (1 + ||x||)^p \) (of course this is just the same as \(H^m(\Sigma; V) \) if \(\Sigma \) is compact) and \(\langle x \rangle L^2(\Sigma; V) = \langle x \rangle H^0(\Sigma; V) \) the weighted \(L^2 \) space.

- We will denote \(B^{-\infty}(\Sigma; V_1, V_2) \) the space of operators that are bounded from \(H^{-m}(\Sigma; V_1) \) to \(H^m(\Sigma; V_2) \) for any \(m \in \mathbb{R} \).

8.2. **The reference projection for** \(\Sigma = \mathbb{R}^d \). In this subsection we assume that \(\Sigma = \mathbb{R}^d \). We define a reference projection \(\Pi_0 \), which will be used to construct the projection \(\Pi \). We first state an easy consequence of the Hardy inequality.

Lemma 8.1. The following operators are bounded:

\[
\begin{align*}
&i) \quad h^{-\frac{1}{2}}_t : L^2(\Sigma; W_x) \to L^2(\Sigma; W_t), \\
&ii) \quad \overline{d}_s h^{-\frac{1}{2}}_t : L^2(\Sigma; W_t) \to L^2(\Sigma; W_s), \\
&iii) \quad h^{-\frac{1}{2}}_t (x)^{-1} : L^2(\Sigma; W_t) \to L^2(\Sigma; W_t)
\end{align*}
\]

Proof. \(i \) and \(ii \) are immediate. To prove \(iii \) we use the Hardy inequality (8.1) and the Kato-Heinz theorem which yield \(h_t^{-1} \leq C(x)^{-2} \).

Definition 8.2. We set:

\[
\begin{align*}
&\pi := \overline{d}_s h^{-\frac{1}{2}}_t : L^2(\Sigma; W_x) \to L^2(\Sigma; W_t), \\
&b := h^{-\frac{1}{2}}_t \overline{d}_s : L^2(\Sigma; W_t) \to \langle x \rangle L^2(\Sigma; W_t), \\
&a := \overline{F}_t \wedge \cdot : \langle x \rangle L^2(\Sigma; W_t) \to L^2(\Sigma; W_t)
\end{align*}
\]

The above operators are well defined by Lemma 8.1 and Hypothesis 1.3. Clearly \(\pi \) is the orthogonal projection on \(\text{Ran} \overline{d}_s \), where \(\overline{d}_s \) is considered as a closed operator on \(L^2(\Sigma; W_t) \) with domain \(H^1(\Sigma; W_t) \). Moreover one has:

\[
(8.3) \quad \overline{d}_s \circ b = \pi, \quad b \circ \overline{d}_s = 1.
\]

We will construct \(\Pi \) by modifying a reference projection \(\Pi_0 \). We denote by \(\Pi_0 : \mathcal{H}(\Sigma; W \oplus W) \to \mathcal{H}(\Sigma; W \oplus W) \) the operator defined in the adapted Cauchy data by the matrix:

\[
(8.4) \quad \Pi_0 := \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 - \pi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & \imath a \circ \imath b & 0 & 1
\end{pmatrix}.
\]

Since \(a(x)^{-1} : L^2(\Sigma; W_t) \to L^2(\Sigma; W_t) \) by Hypothesis 1.3 we see that \(\Pi_0 : L^2(\Sigma; W \oplus W) \to L^2(\Sigma; W \oplus W) \).

Let us consider the operator \(K_\xi \) given in Lemma 2.12 as an unbounded operator:

\[
K_\xi : L^2(\Sigma; W_t \oplus W_t) \to L^2(\Sigma; W_x \oplus W_x),
\]

\(\text{Dom} K_\xi = H^1(\Sigma; W_t) \oplus L^2(\Sigma; W_t) \).

Lemma 8.3. \(\Pi_0 \) is a bounded projection on \(L^2(\Sigma; W \oplus W) \) with \(\text{Ker} \Pi_0 = \text{Ran} K_\xi \).
Moreover, since $\ker\pi C(8.8)$ we set now: $\pi C(8.9)$ of the unit $1 l$ of the Lie algebra g. From the first equation we get $g_0^0 = d_xu^0$ for $u^0 \in H^1(\Sigma; g)$, and hence $g_0^1 = -iab^0$, i.e. $g = K_xu$, for $u = (u^0, i^{-1}g^0)$. □

We end this subsection by constructing an operator B_0 such that $(1 - \Pi_0) = K_xB_0$ (see the discussion at the end of Subsect. 8.3).

Lemma 8.4. Let $B_0 : L^2(\Sigma; W \oplus W) \to \langle x \rangle L^2(\Sigma; W) \oplus L^2(\Sigma; W)$ be given by:

\[
B_0 := \begin{pmatrix}
0 & b & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}.
\]

Then one has

\[
(1 - \Pi_0) = K_xB_0.
\]

Proof. The proof is a direct computation that uses $\bar{d}_xb = \pi$. □

8.3. The reference projection for Σ compact. In this subsection, we assume that Σ is compact. This implies that $\ker h_t = \ker d_x$ is non trivial, since it contains constant multiples of the unit $1 g$ in the Lie algebra g. Therefore we need to change the definition of π, b and Π_0. We set now:

Definition 8.5.

\[
\pi := \bar{d}_xh_t^{-1}\mathbb{1}_{\mathbb{R}\setminus\{0\}}(h_t)d_x : L^2(\Sigma; W_x) \to L^2(\Sigma; W_x),
\]

\[
b := h_t^{-1}\mathbb{1}_{\mathbb{R}\setminus\{0\}}(h_t)\delta_x : L^2(\Sigma; W_x) \to L^2(\Sigma; W_x),
\]

\[
a := \bar{F}_1 \wedge \cdots \in L^2(\Sigma; W_x) \to L^2(\Sigma; W_x),
\]

where $\mathbb{1}_{\mathbb{R}\setminus\{0\}}$ stands for the characteristic function of $\mathbb{R}\setminus\{0\}$.

Note that since h_t has compact resolvent, we know that

\[
\pi \in \Psi^0(\Sigma; W_x), \quad b \in \Psi^{-1}(\Sigma; W_x, W_t), \quad a \in \Psi^0(\Sigma; W, W_t).
\]

We also denote by $\pi_1 : L^2(\Sigma; W_x) \to L^2(\Sigma; W_x)$ a bounded projection with

\[
\ker \pi_1 = a(\ker h_t),
\]

like for example the orthogonal projection for the natural Hilbertian scalar product on $L^2(\Sigma; W_x)$ along $a\ker h_t$. By the ellipticity of h_t, we know that $\ker h_t \subset C^\infty(\Sigma; W_t)$, hence $a\ker h_t \subset C^\infty(\Sigma; W_x)$ and these two spaces are finite dimensional.

This implies first that there exists a right inverse $a^{-1} \in L(\ker \pi_1, \ker h_t)$ such that

\[
a \circ a^{-1} = 1 \text{ on } \ker \pi_1.
\]

Moreover since $\ker \pi_1$ is a finite dimensional subspace of $C^\infty(\Sigma; W_x)$ we have:

\[
\pi_1 \in 1 + \Psi^{-\infty}(\Sigma; W_x), \quad a^{-1}(1 - \pi_1) \in \Psi^{-\infty}(\Sigma; W_x, W_t).
\]

We set now:

\[
\Pi_0 := \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 - \pi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & i\pi_1 a \circ b & 0 & \pi_1
\end{pmatrix}.
\]
Lemma 8.6. \(\Pi_0 \) is a bounded projection on \(L^2(\Sigma; W \oplus W) \) with \(\text{Ker} \Pi_0 = \text{Ran} K_\Sigma \). Moreover \(\Pi_0 \in \Psi^0(\Sigma; W \oplus W) \).

Proof. The fact that \(\Pi_0 \) is bounded is immediate. Again the fact that \(\Pi_0 \) is a projection follows from \(b(1 - \pi) = 0 \). Let us now prove that \(\Pi_0 K_\Sigma = 0 \) hence \(\text{Ran} K_\Sigma \subset \text{Ker} \Pi_0 \). By a routine computation this amounts to show that \((1 - \pi)\bar{d}_\Sigma = 0 \) and that \(\pi_1 a(b\bar{d}_\Sigma - 1) = 0 \). The first identity is immediate. To prove the second, we use that \(b\bar{d}_\Sigma - 1 = 1_{(0)}(h_t) \). Then \(\pi_1 a1_{(0)}(h_t) = 0 \) since \(\text{Ker} \pi_1 = a(\text{Ker} h_t) \).

Let us now prove that \(\text{Ker} \Pi_0 \subset \text{Ran} K_\Sigma \). Let \(g \in \text{Ker} \Pi_0 \) i.e.

\[
g_0^0 = \pi g_0^0, \quad g_1^1 = 0, \quad \pi_1(g_1^1 + iabg_0^0) = 0.
\]

Then \(g = K_\Sigma u \) for \(u = (u^0, u^1) \) if

\[
iu^1 = g_1^0, \quad \bar{d}_\Sigma u^0 = g_2^0, \quad -iau^0 = g_3^0.
\]

We take \(u^1 = i^{-1}g_1^0 \) and \(u^0 = bg_0^0 + v^0 \) for \(v^0 \in \text{Ker} h_t \), so that \(\bar{d}_\Sigma u^0 = \bar{d}_\Sigma bg_0^0 = \pi g_2^0 = g_3^0 \).

It remains to satisfy the third identity in \((8.11)\), which yields \(-iu^0 = g_3^1 + iabg_2^0 \). Since \(\pi_1(g_3^1 + iabg_2^0) = 0 \), we can find \(v^0 \in \text{Ker} h_t \) satisfying the above condition, using that \(\text{Ker} \pi_1 = a(\text{Ker} h_t) \). The fact that \(\Pi_0 \in \Psi^0 \) follows from \((8.9)\) and \((8.10)\). \(\square \)

We need the analog of Lemma 8.4 in the compact case.

Lemma 8.7. Let \(B_0 : L^2(\Sigma; W \oplus W) \to L^2(\Sigma; W_t) \oplus L^2(\Sigma; W_t) \) be given by:

\[
B_0 := \begin{pmatrix}
0 & b - a^{-1}(1 - \pi_1)ab & 0 \\
-1 & 0 & 0
\end{pmatrix},
\]

where \(a^{-1} : \text{Ker} \pi_1 \to \text{Ker} h_t \) is defined in \((8.3)\). Then one has

\[
(1 - \Pi_0) = K_\Sigma B_0.
\]

Moreover \(B_0 \in \Psi^\infty(\Sigma; W \oplus W, W_t \oplus W_t) \).

Proof. Again the first property of \(B_0 \) is a direct computation, the fact that \(B_0 \in \Psi^\infty \) follows from \((8.9), (8.10)\). \(\square \)

8.4 Change of Cauchy data. In this section we systematically work with the adapted Cauchy data, in which the operators \(K_\Sigma \) and \(K_\Sigma^\dagger \) take simple forms. Therefore the operator \(r_{-1,R} \in \Psi^{-1}_0(\Sigma; W \oplus W) \) appearing in Prop. 6.7 is replaced by \(R_F \circ r_{-1,R} \circ R_F^{-1} \).

Moreover it is convenient to perform another change of Cauchy data, corresponding to putting different weights on the two components \(f^0, f^1 \) or \(g^0, g^1 \) of a set of Cauchy data. The need for these weights is already apparent from the presence of the matrix

\[
S := \begin{pmatrix}
\epsilon^+ & 0 \\
0 & \epsilon^-
\end{pmatrix},
\]

in the expression of the operator \(T_R \) in Prop. 6.2. It can also be seen from the fact that the natural space of Cauchy data appearing for example in the quantization of the scalar Klein-Gordon equation is \(H^\dagger(\Sigma) \oplus H^{-\dagger}(\Sigma) \). It is convenient to treat the two components of the Cauchy data as follows: If \(f \in H(\Sigma; W \oplus W) \) and \(g = R_F f \) we will set

\[
\tilde{f} := Sf, \quad \tilde{g} := Sg.
\]

Note that \(S \) maps \(H^\dagger(\Sigma; W) \oplus H^{-\dagger}(\Sigma; W) \) into \(L^2(\Sigma; W \oplus W) \). Let us now collect a few properties of \(S \). Clearly

\[
S^* q_1 S = q_1.
\]
Hadamard states for the Yang-Mills equation on curved spacetime

\[S \Psi_{\text{as}}(\Sigma; W \oplus W)S^{-1} = \Psi_{\text{as}}(\Sigma; W \oplus W), \]
\[S \Psi_{\text{reg}}(\Sigma; W \oplus W)S^{-1} = \Psi_{\text{reg}}(\Sigma; W \oplus W). \]

If \(\tilde{f}, \tilde{g} \) are as in (8.14), then \(\tilde{g} = R_F \tilde{f} \) for

\[\tilde{R}_F := SR_F S^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -i\delta_{\Sigma} & 1 & 0 \\ id_{\Sigma} & 0 & 0 & 1 \end{pmatrix} \in \Psi(\Sigma; W \oplus W), \]

and

\[\tilde{\delta}_{\Sigma} := \epsilon_{t}^{-\frac{1}{2}} \delta_{\Sigma} \epsilon_{t}^{-\frac{1}{2}}, \]
\[\tilde{d}_{\Sigma} := \epsilon_{t}^{-\frac{1}{2}} d_{\Sigma} \epsilon_{t}^{-\frac{1}{2}}. \]

Finally let us express the transformed reference projection. If \(\Sigma = \mathbb{R}^d \) then:

\[\tilde{\Pi}_0 := S \Pi_{0} S^{-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 - \epsilon_{t}^{-\frac{1}{2}} \pi \epsilon_{t}^{-\frac{1}{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & i\epsilon_{t}^{-\frac{1}{2}} a \circ b \epsilon_{t}^{-\frac{1}{2}} & 0 & 1 \end{pmatrix}, \]

and if \(\Sigma \) is compact:

\[\tilde{\Pi}_0 := S \Pi_{0} S^{-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 - \epsilon_{t}^{-\frac{1}{2}} \pi \epsilon_{t}^{-\frac{1}{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & i\epsilon_{t}^{-\frac{1}{2}} a \circ b \epsilon_{t}^{-\frac{1}{2}} & 0 & \epsilon_{t}^{-\frac{1}{2}} \pi \epsilon_{t}^{-\frac{1}{2}} \end{pmatrix}. \]

8.5. Operator classes for adapted Cauchy data. It follows from the above discussion that after going to the adapted Cauchy data and conjugating by \(S \), the class \(\Psi_{\text{reg}}^{-1}(\Sigma; W \oplus W) \) appearing in Sect. 5 should be replaced by \(R_F \Psi_{\text{reg}}^{-1}(\Sigma; W \oplus W) R_F^{-1} \), which is different from \(\Psi_{\text{reg}}^{-1}(\Sigma; W \oplus W) \). In this subsection we introduce classes of pseudodifferential operators in which the operator equation \(\delta_{\Sigma} \circ v = r \) can be solved in \(v \) (see Lemma 8.10) and which contain the class \(R_F \Psi_{\text{reg}}^{-1}(\Sigma; W \oplus W) R_F^{-1} \). We first introduce some notation.

In the sequel \(i, j \) are indices equal to either 0 or 1, and \(\alpha, \beta \) are indices equal to either \(t \) or \(\Sigma \). If \(\alpha = t \), resp. \(\Sigma \), we set \(\pi = \Sigma \), resp. \(t \) and:

\[s_{\alpha} = \begin{cases} \delta_{\Sigma}, & \text{if } \alpha = t, \\ \delta_{t}, & \text{if } \alpha = \Sigma, \end{cases} \]

so that \(s_{\alpha} \in \Psi(\Sigma; W_{\alpha}, W_{\pi}). \)

If \(c \in \Psi(\Sigma; W \oplus W) \) we denote by \(c_{\alpha, \beta} \) its matrix entries according to the decomposition

\[W \oplus W = (W_t \oplus W_{\Sigma}) \oplus (W_t \oplus W_{\Sigma}) = W_{0t} \oplus W_{0\Sigma} \oplus W_{1t} \oplus W_{1\Sigma}. \]

Recall also that \(\chi_{\alpha} \) denotes a cutoff function as in (5.7).

Definition 8.8. Let \(p \in \mathbb{R} \).
Lemma 8.11. \(m \) for all \(A \) using notation we see that Hypothesis 1.4 implies that \(B \). Recall that \(\pi, b \).

The following properties hold:

(1) Technical estimates for \(\tilde{\Psi} \). We end this subsection with another technical lemma, which will motivate the introduction of such \(d \). \(\tilde{\Psi} \).

(2) We say that \(c \in \tilde{\Psi} \) for \(t = 1, t_{\alpha} \) if \(c_{\alpha} \in \tilde{\Psi} \) for all \(i, \alpha, j, \beta \).

The next lemma shows that the above classes have similar properties to \(\Psi \).

Lemma 8.9. The following properties hold:

(1) \(R_{\alpha}^{-1} \), \(\Psi_{\alpha}^{-1} \).

(2) \(R_{\alpha}^{-1} \subset \Psi_{\alpha}^{-1} \subset \Psi_{\alpha} \subset \Psi_{\alpha} \), \(\Psi_{\alpha} \).

(3) Let \(c_{R} \in \Psi_{\alpha} \) for \(\varepsilon > 0 \) and let \(\alpha \in \mathbb{R} \).

Then for \(R \geq R_{0} \) we have
\[
(1 + c_{R})^{a} \in 1 + \Psi_{\alpha}.
\]

Proof. (1) is obvious. (2) is a routine computation, introducing the matrix entries of some \(c \in \Psi_{\alpha} \) and using \(\Sigma \).

To prove (3) we use the identity \((1 - a) \). The following easy observations:

\[
\Psi_{\alpha}^{-1} \subset \Psi_{\alpha}^{-1} \subset \Psi_{\alpha}^{-1} \subset \Psi_{\alpha}^{-1} \subset \Psi_{\alpha}^{-1}.
\]

We end this subsection with another technical lemma, which will motivate the introduction of the above operator classes.

Lemma 8.10. Let \(r \in \Psi_{\alpha}(\Sigma; W_{\alpha}) \) for \(\alpha = t, \Sigma \).

Then there exists \(v \in \Psi_{\alpha}(\Sigma; W_{\alpha}, W_{\beta}) \) such that
\[
\tilde{\delta}_{\Sigma} \circ v = r.
\]

Proof. Since \(r \in \Psi_{\alpha}(\Sigma; W_{\alpha}, W_{\beta}) \) we can write
\[
r = \chi_{\alpha}(h_{1})m_{1} + \delta_{\Sigma}m_{2}, \quad m_{1} \in \Psi_{\alpha}(\Sigma; W_{\alpha}, W_{\beta}), \quad m_{2} \in \Psi_{\alpha}(\Sigma; W_{\alpha}, W_{\beta}).
\]

If follows that
\[
v = \varepsilon_{\alpha, \beta}h_{1}^{-1} \tilde{\delta}_{\Sigma}(h_{1})m_{1} + m_{2} \in \Psi_{\alpha}(\Sigma; W_{\alpha}, W_{\beta}).
\]

solves \(\tilde{\delta}_{\Sigma} \circ v = r. \)

8.6. Technical estimates for \(\Sigma = \mathbb{R}^{d} \). In this subsection we collect some delicate technical estimates on the operators \(\pi, b \) in the case \(\Sigma = \mathbb{R}^{d} \). It is convenient to introduce some notation related to Hypothesis 1.3 if \(V \) is a finite dimensional vector space we set:
\[
S^{m}(\Sigma; V) := \{ f \in C^{\infty}(\Sigma; V) : \partial_{\alpha}^{a}f(x) \in O(|x|^{-m|a|}), \alpha \in \mathbb{N}^{d} \}.
\]

Abusing notation we see that Hypothesis 1.3 implies that \(A_{x} \in S^{0} \), \(\delta_{x} \in S^{-1} \), \(\tilde{F} \in S^{-2} \).

Recall that \(B^{\infty}(\Sigma; V_{1}, V_{2}) \) denotes the space of operators that map \(H^{-m}(\Sigma; V_{1}) \to H^{m}(\Sigma; V_{2}) \) for all \(m \).

Lemma 8.11. Assume that \(\Sigma = \mathbb{R}^{d} \). Then:

(1) \(\tilde{\delta}_{x,h}(h_{1})h_{1}^{-1} \delta_{x} \in B^{\infty}(\Sigma; W_{\beta}) \).
(2) \(\langle x \rangle^{-1} \chi_s(h_\Sigma) \delta_{\Sigma}^{-1} \bar{\delta}_{\Sigma} \in B^{-\infty}(\Sigma; W_{\Sigma}) \)
(3) \(\pi \in \Psi^0(\Sigma; W_{\Sigma}) + B^{-\infty}(\Sigma; W_{\Sigma}) \),
(4) \(b \in \Psi^{-1}(\Sigma; W_{\Sigma}, W_{\Sigma}) + \langle x \rangle B^{-\infty}(\Sigma; W_{\Sigma}, W_{\Sigma}) \),
(5) \(\chi_s(h_\Sigma) \pi \in \Psi^0(\Sigma; W_{\Sigma}) + \langle x \rangle^{-1} B^{-\infty}(\Sigma; W_{\Sigma}) \),
(6) \(a \circ b \in \langle x \rangle^{-1} \Psi^{-1}(\Sigma; W_{\Sigma}) + \langle x \rangle^{-1} B^{-\infty}(\Sigma; W_{\Sigma}) \).

Proof. (1): let \(A = \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} \). We need to prove that
\[(h_n^a + i_{1}) A (h_n^a + i_{1}) : L^2 \to L^2, \forall n \in \mathbb{N}, \]
which follows from
\[i) : A : L^2 \to L^2, \quad ii) : \text{Ah}_\Sigma : H^{-n} \to L^2, \]
\[iii) : h_\Sigma A : L^2 \to H^n, \quad iv) : h_\Sigma \text{Ah}_\Sigma : H^{-n} \to H^n. \]
i) is immediate by Lemma 8.1. Let us now prove ii). By Lemma 5.6 (3), we have:
\[\text{Ah}_\Sigma = \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} h_\Sigma + h_\Sigma \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} R, \]
for \(R = \bar{\delta}_{\Sigma} \bar{F}_{\Sigma} \). The first term on the right belongs to \(\Psi^{-\infty} \). We write the second term as \(\bar{d}_{\Sigma} h_\Sigma^{-1} \langle x \rangle^{-1} \bar{\delta}_{\Sigma} \chi_s(h_\Sigma) R \). The first factor is bounded on \(L^2 \) by Lemma 8.1, the second belongs to \(\Psi^{-\infty} \), since \(\delta_{\Sigma} \bar{F}_{\Sigma} \in S^{-1} \). This implies ii) and hence iii) by duality. To prove iv) we write
\[h_\Sigma \text{Ah}_\Sigma = h_\Sigma \bar{d}_{\Sigma} \chi_s(h_\Sigma) \delta_{\Sigma} + h_\Sigma \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} R \]
\[= h_\Sigma \bar{d}_{\Sigma} \chi_s(h_\Sigma) \delta_{\Sigma} + h_\Sigma \bar{d}_{\Sigma} \chi_s(h_\Sigma) R + R^* \chi_s(h_\Sigma) h_\Sigma^{-1} R. \]
The first two terms belong to \(\Psi^{-\infty} \). We factor the third term as:
\[R^* \chi_s(h_\Sigma) \langle x \rangle \circ \langle x \rangle^{-1} h_\Sigma^{-1} \langle x \rangle^{-1} \circ \langle x \rangle \bar{\chi}_s(h_\Sigma) R, \]
for some cutoff function \(\bar{\chi}_s \) with the same properties as \(\chi_s \) and \(\bar{\chi}_s \chi_s = \chi_s \). The first and last factor belong to \(\Psi^{-\infty} \), the middle one is bounded on \(L^2 \) by Lemma 8.1. This proves iv) and completes the proof of (1).

(2): the proof of (2) is completely analogous to the proof of (1) and left to the reader.

(3): we write
\[\pi = \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} + \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}. \]
The first term belongs to \(\Psi^0 \), the second to \(B^{-\infty} \) by (1). This proves (3).

(4): we write
\[b = \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} + \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}, \]
the first term belongs to \(\Psi^{-1} \), the second to \(\langle x \rangle B^{-\infty} \), by (2).

(5): We write as before:
\[\chi_s(h_\Sigma) \pi = \chi_s(h_\Sigma) \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} + \chi_s(h_\Sigma) \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}. \]
The first term belongs to \(\Psi^0 \). We write the second term as
\[\chi_s(h_\Sigma) h_\Sigma^{-1} \bar{d}_{\Sigma} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} = \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{d}_{\Sigma} \chi_s(h_\Sigma) \bar{\delta}_{\Sigma} + \chi_s(h_\Sigma) h_\Sigma^{-1} R^* \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}. \]
The first term belongs to \(\Psi^{-\infty} \). We factor the second term as:
\[\langle x \rangle^{-1} \circ \langle x \rangle \chi_s(h_\Sigma) h_\Sigma^{-1} R^* \langle x \rangle \circ \langle x \rangle^{-1} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}. \]
Now \(\langle x \rangle \chi_s(h_\Sigma) h_\Sigma^{-1} R^* \langle x \rangle \in \Psi^0 \) since \(\bar{d}_{\Sigma} \bar{F}_{\Sigma} \in S^{-2} \) and \(\langle x \rangle^{-1} \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} \in B^{-\infty} \) by (2). This proves that the second term belongs to \(\langle x \rangle^{-1} B^{-\infty} \) and completes the proof of (5).

(6): we write once again:
\[a \circ b = a \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma} + a \circ \chi_s(h_\Sigma) h_\Sigma^{-1} \bar{\delta}_{\Sigma}. \]
The first term belongs to \(\langle x \rangle^{-1} \Psi^{-1} \), since \(\bar{F}_t \in S^{-1} \). The second term belongs to \(\langle x \rangle^{-1} B^{-\infty} \), using (2) and the fact that \(\bar{F}_t \in S^{-2} \).

\[\square \]
8.7. Construction of the projection II. In this subsection we construct the projection II. The first step consists in determining its range.

Proposition 8.12. There exists \(s_{-1,R} \in \Psi^{-1}_{\text{as}}(\Sigma; W \oplus W) \) such that:
\[
(1 + s_{-1,R}) \text{Ran} \Pi_0 \cap \text{Ker} K^1_\Sigma \subset (1 + r_{-1,R}) L^2(\Sigma; W^\epsilon \oplus W^\epsilon),
\]
where \(r_{-1,R} \in \Psi^{-1}_{\text{reg}}(\Sigma; W \oplus W) \) is the operator in Prop. 6.7.

Proof. We set \(g = R_F f \). It is easy to check that for \(\Pi_0 \) given either by (8.4) or (8.10):
\[
f \in \text{Ker} K^1_\Sigma \quad \Rightarrow \quad g^1 = 0,
\]
(8.20)
\[
f \in \mathcal{H}'(\Sigma; W^\epsilon \oplus W^\epsilon) \quad \Leftrightarrow \quad g^0 = 0, \quad g^1 + i\delta_\Sigma g^0 = 0,
\]
\[
f \in \text{Ran} \Pi_0 \quad \Rightarrow \quad g^0 = 0, \quad \delta_\Sigma g^0 = 0.
\]
As explained in Subsect. 8.5, it is convenient to work with \(\tilde{g} = S g \), which amounts to replace \(r_{-1,R} \) by \(\tilde{R}_{FR_{-1,R}} \tilde{R}_{F}^{-1} =: \tilde{r} \), and \(s_{-1,R} \) by \(\tilde{R}_{FR_{-1,R}} \tilde{R}_{F}^{-1} =: \tilde{s} \).

By Lemma 8.9 we know that \(\tilde{r} \in \Psi^{-1}_{\text{reg}}(\Sigma; W \oplus W) \), and we will look for \(\tilde{s} \in \tilde{\Psi}^{-1}_{\text{reg},r}(\Sigma; W \oplus W) \). Again by Lemma 8.9 it will follow that \(s \in \Psi^{-1}_{\text{as}}(\Sigma; W \oplus W) \).

Expressed in terms of \(\tilde{g} \), the statements in (8.20) become:
\[
f \in \text{Ker} K^1_\Sigma \quad \Rightarrow \quad \tilde{g}^1 = 0,
\]
(8.21)
\[
f \in \mathcal{H}'(\Sigma; W^\epsilon \oplus W^\epsilon) \quad \Leftrightarrow \quad \tilde{g}^0 = 0, \quad \tilde{g}^1 + i\delta_\Sigma \tilde{g}^0 = 0,
\]
\[
f \in \text{Ran} \Pi_0 \quad \Rightarrow \quad \tilde{g}^0 = 0, \quad \delta_\Sigma \tilde{g}^0 = 0,
\]
where \(\delta_\Sigma = \epsilon_\Sigma \cdot \epsilon_\Sigma \cdot \epsilon_\Sigma \) was defined in (8.17). We set:
\[
A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \delta_\Sigma & i^{-1} & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \delta_\Sigma & 0 & 0 \end{pmatrix},
\]
so that
\[
f \in (1 + r) \mathcal{H}'(\Sigma; W^\epsilon \oplus W^\epsilon) \quad \Leftrightarrow \quad \tilde{g} \in \text{Ker} (A_1 \circ (1 + \tilde{r})^{-1}),
\]
(8.22)
\[
f \in (1 + s) \text{Ran} \Pi_0 \quad \Rightarrow \quad \tilde{g} \in \text{Ker} (A_2 \circ (1 + \tilde{s})^{-1}).
\]
To prove the proposition it suffices to find \(\tilde{s} \in \tilde{\Psi}^{-1}_{\text{reg},r}(\Sigma; W \oplus W) \) such that:
\[
\tilde{g} \in \text{Ker} (A_2 \circ (1 + \tilde{s})^{-1}), \quad \tilde{g}^0 = 0 \quad \Rightarrow \quad \tilde{g} \in \text{Ker} (A_1 \circ (1 + \tilde{r})^{-1}).
\]
(8.23)
Again by Lemma 8.9 (3), we know that for \(R \) large enough \((1 + \tilde{r})^{-1} = 1 + \tilde{r} \) for \(\tilde{r} \in \tilde{\Psi}^{-1}_{\text{reg}} \). Let assume that we have found \(\tilde{s} \in \tilde{\Psi}^{-1}_{\text{reg},r} \) such that:
\[
\tilde{g} \in \text{Ker} (A_2 \circ (1 + \tilde{s})^{-1}), \quad \tilde{g}^0 = 0 \quad \Rightarrow \quad \tilde{g} \in \text{Ker} (A_1 \circ (1 + \tilde{r})^{-1})).
\]
(8.24)
Then setting \(1 + \tilde{s} := (1 + \tilde{s})^{-1} \), we know that \(\tilde{s} \in \tilde{\Psi}^{-1}_{\text{reg},r} \) by Lemma 8.9 and that \(\tilde{s} \) solves (8.23).

Hence to complete the proof of the proposition, it remains to solve (8.24).

We have
\[
A_1 = A_2 + A_3 \quad \text{for} \quad A_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]

Therefore we look for \(\tilde{s} = \tilde{r} + \tilde{v} \) and need to find \(\tilde{v} \in \tilde{\Psi}^{-1}_{\text{reg},r} \) such that:
\[
A_2 \tilde{v} = A_3 (1 + \tilde{r}) \quad \text{on} \quad \{ \tilde{g}^1 = 0 \}.
\]
Since \(A_3 = 0 \) on \(\{ \tilde{g}^1 = 0 \} \), we finally need to find \(\tilde{v} \) such that:
\[
A_2 \tilde{v} = A_3 \tilde{r} \quad \text{on} \quad \{ \tilde{g}^1 = 0 \}.
\]
A routine computation yields the following equations for the entries of \(\hat{v} \):

\[
\hat{v}_{0t,j\beta} = 0, \quad \forall j\beta, \\
\hat{\delta}_{x} \hat{v}_{0c,j\beta} = i^{-1} \hat{r}_{1t,j\beta} \text{ for } j\beta = 0t, 0c, 1v.
\]

We can set all the other entries of \(\hat{v} \) to 0. It remains to solve the equations in the second line of (8.25). This can be done by applying Lemma 8.10. This completes the proof of the proposition.

In the proof of Prop. 8.12 we use the assumption that \((M, g)\) is ultra-static: otherwise the expression in the second line of (8.21) becomes more complicated and it is not clear how to choose the reference projection \(\Pi_0 \).

If \(\Sigma = \mathbb{R}^d \) we will need some further properties of the operator \(s_{-1,R} \) constructed in Prop. 8.12.

Proposition 8.13. Assume that \(\Sigma = \mathbb{R}^d \). Then there exists \(R_0 \) such that for \(R \geq R_0 \) and for any \(m \in \mathbb{R}^d \):

- i) \(1 + s_{-1,R} \Pi_0 : H^{m+\frac{1}{2}}(\Sigma; W) \oplus H^{m-\frac{1}{2}}(\Sigma; W) \rightarrow H^{m+\frac{1}{2}}(\Sigma; W) \oplus H^{m-\frac{1}{2}}(\Sigma; W) \)
- ii) \((x)(1 + s_{-1,R} \Pi_0)(x)^{-1} : H^{m+\frac{1}{2}}(\Sigma; W) \oplus H^{m-\frac{1}{2}}(\Sigma; W) \rightarrow H^{m+\frac{1}{2}}(\Sigma; W) \oplus H^{m-\frac{1}{2}}(\Sigma; W) \)

Proof. As before we conjugate all operators by \(\hat{R}_F \), which amounts to replace \(s_{-1,R} \) by \(\hat{s}_{-1,R} = \hat{R}_F s_{-1,R} \hat{R}_F^{-1} \), \(\Pi_0 \) by \(\hat{\Pi}_0 = \hat{R}_F \Pi_0 \hat{R}_F^{-1} \) and \(H^{m+\frac{1}{2}} \oplus H^{m-\frac{1}{2}} \) by \(H^m \oplus H^m \). From the expression (8.18) of \(\hat{\Pi}_0 \) we see that the entries of \(\hat{s}_{-1,R} \hat{\Pi}_0 \) are of one of these three types:

- 1) \(\Psi_{\text{reg},r}^{-1} \)
- 2) \(\Psi_{\text{reg},r}^{-1}(1 - \pi) \)
- 3) \(\Psi_{\text{reg},a \circ b}^{-1} \)

Terms of type 1) are simply considered as belonging to \(\Psi_{\text{as}}^{-1} \). To control terms of type 2) we recall that \(\Psi_{\text{reg},x}^{-1} = \psi_{\text{as}}^{-1}(h_x) + \psi_{\text{as}}^{-1} \hat{\delta}_x \). By Lemma 8.11 (5) we know that \(\psi_{\text{as}}^{-1}(h_x) \pi \in \psi_{\text{as}}^{-1} + \langle x \rangle^{-1} \psi_{\text{as}}^{-1} B^{-\infty} \). The terms of type 3) belong to \(\psi_{\text{as}}^{-1} + \langle x \rangle^{-1} \psi_{\text{as}}^{-1} B^{-\infty} \), by Lemma 8.11 (6). It follows that

(8.26)

\[\hat{s}_{-1,R} \hat{\Pi}_0 \in \psi_{\text{as}}^{-1} + \langle x \rangle^{-1} \psi_{\text{as}}^{-1} B^{-\infty} . \]

Let us now prove i). From (8.20) we first deduce that \(\| \hat{s}_{-1,R} \hat{\Pi}_0 \|_{B(L^2)} = o(R^0) \), hence we can find \(R_0 \) such that

\[1 + \hat{s}_{-1,R} \hat{\Pi}_0 : L^2(\Sigma; W \oplus W) \rightarrow L^2(\Sigma; W \oplus W) . \]

Let us first assume that \(m > 0 \). We apply the identity

\[(1 - A)^{-1} = \sum_{j=0}^{n-1} A^j + A^n(1 - A)^{-1} \]

to \(A = -\hat{s}_{-1,R} \hat{\Pi}_0 \). By (8.20) we know that \(\hat{s}_{-1,R} \hat{\Pi}_0 : H^m(\Sigma; W \oplus W) \rightarrow H^{m+1}(\Sigma; W \oplus W) \). We obtain taking \(n \) large enough that

\[(1 + \hat{s}_{-1,R} \hat{\Pi}_0)^{-1} : H^m(\Sigma; W \oplus W) \rightarrow H^{m}(\Sigma; W \oplus W) \]

which proves i) for \(m > 0 \). The same argument shows that for \(m > 0 \)

\[1 + (\hat{s}_{-1,R} \hat{\Pi}_0)^* : H^m(\Sigma; W \oplus W) \rightarrow H^{m}(\Sigma; W \oplus W) , \]

which by duality proves i) for \(m < 0 \).

To prove ii) we split \(\hat{s}_{-1,R} \hat{\Pi}_0 \) as \(m_{1,R} + m_{2,R} \), where \(m_{1,R} \in \psi_{\text{as}}^{-1} \) and \(m_{2,R} \in \langle x \rangle^{-1} \psi_{\text{as}}^{-1} B^{-\infty} \). We can choose \(R_0 \) above large enough such that \((1 + m_{1,R})^{-1} \in \Psi^0 \) for \(R \geq R_0 \). We have

\[(1 + \hat{s}_{-1,R} \hat{\Pi}_0)^{-1} = (1 + m_{1,R})^{-1}(1 - m_{2,R}(1 + \hat{s}_{-1,R} \hat{\Pi}_0)^{-1}) . \]
Now $m_{2,R} : H^m \to \langle x \rangle^{-1} H^m$ and $(1 + m_{1,R})^{-1} : \langle x \rangle^{-1} H^m \to \langle x \rangle^{-1} H^m$ by pdo calculus, which implies that $(1 + s_{-1,R} \Pi_0)^{-1} : \langle x \rangle^{-1} H^m \to \langle x \rangle^{-1} H^m$. This completes the proof of the proposition.

\[\square \]

8.8. The projection Π and the right inverse B. We now define a projection Π and a right inverse B to K_{Σ} as in 3.3.3 and 8.7.

Theorem 8.14. Let Π_0 be given by (8.4) if $\Sigma = \mathbb{R}^d$ and (8.10) if Σ is compact. Let also $s_{-1,R}$ be the operator constructed in Prop. 8.12. Then there exists R_0 such that for all $R \geq R_0$:

1. the operator
 \[\Pi := (1 + s_{-1,R}) \Pi_0 (1 + \Pi_0 s_{-1,R} \Pi_0)^{-1} \]
 is a bounded projection on $L^2(\Sigma; W \oplus W)$.
2. moreover
 \[1 - \Pi = (1 - \Pi_0)(1 + s_{-1,R} \Pi_0)^{-1}. \]
3. one has
 \[a) \quad \ker \Pi = \ran K_{\Sigma}, \]
 \[b) \quad \lambda_{1\Sigma}^{\pm} \text{ are positive on } \ran \Pi \cap \ker K_{\Sigma}^{\pm}. \]
4. $\Pi : \mathcal{H}(\Sigma; W) \to \mathcal{H}(\Sigma; W)$, $\Pi : \mathcal{H}^\prime(\Sigma; W) \to \mathcal{H}^\prime(\Sigma; W)$.
5. if Σ is compact then $\Pi \in \Psi^\infty(\Sigma; W \oplus W)$.

Proof. If Π_0 is a bounded projection on a Hilbert space \mathcal{H} and $\|r\| \ll 1$, then $\ker \Pi_0$ and $(1 + r)\ran \Pi_0$ are supplementary subspaces and it is easy to show that the projection Π with $\ker \Pi = \ker \Pi_0$ and $\ran \Pi = (1 + r)\ran \Pi_0$ is given by the formulas in (1) and (2). Statement (3a) follows from $\ker \Pi = \ker \Pi_0 = \ran K_{\Sigma}$. Statement (3b) follows from $\ran \Pi = (1 + s_{-1,R})\ran \Pi_0 \subset (1 + r_{-1,R})\mathcal{H}(\Sigma; W \oplus W)$ by Prop. 8.12 and from Prop. 6.7.

Let us now prove (4). It suffices to prove the corresponding statements for $1 - \Pi$. Using that by Prop. 8.13 $(1 + s_{-1,R} \Pi_0)^{-1}$ maps $\mathcal{H}(\Sigma; W)$ and $\mathcal{H}^\prime(\Sigma; W)$ into themselves, we can replace $1 - \Pi$ by $1 - \Pi_0$. The result follows then from the expression of Π_0 in (8.4) and statements (3), (6) of Lemma 8.11. Finally the fact that $\Pi \in \Psi^\infty$ if Σ is compact, follows from the same property of Π_0, see Lemma 8.6. This proves (5).

\[\square \]

Let us now define the right inverse B to K_{Σ}.

Proposition 8.15. Let B_0 be given by (8.5) if $\Sigma = \mathbb{R}^d$ or by (8.12) if Σ is compact. Let
\[B := B_0 (1 + s_{-1,R} \Pi_0)^{-1}. \]

Then
\[K_{\Sigma} B = 1 - \Pi. \]

Moreover
1. if $\Sigma = \mathbb{R}^d$ then $B : \mathcal{H}(\Sigma; W) \to \langle x \rangle \mathcal{H}(\Sigma; W)$, $B : \mathcal{H}^\prime(\Sigma; W) \to \langle x \rangle \mathcal{H}^\prime(\Sigma; W)$.
2. if Σ is compact then $B \in \Psi^\infty(\Sigma; W \oplus W; W_i \oplus W_i)$.

Proof. The fact that $K_{\Sigma} B = 1 - \Pi$ is obvious. To prove (2) we can as in the proof of Thm. 8.14 replace B by B_0. The statement follows then for the expression (8.5) of B_0 and from (4) of Lemma 8.11. Finally, (2) follows from the fact that B_0, Π_0 belong to Ψ^∞, see Lemmas 8.6 and 8.7.

\[\square \]
8.9. Proof of Thm. 1.1. We now complete the proof of Thm. 1.1 by checking the assumptions of Thm. 8.17. We take for \(c_i^\pm \) for \(i = 0, 1 \) the operators constructed in Prop. 8.13 for the operators \(\partial_i^2 + a_i(t) = D_i \).

- \(c_i^\pm \) are pseudodifferential operators, hence \(c_i^\pm \) satisfy (8.15) i), ii) and \(c_0^\pm \) satisfy (8.21) iii).
- \(G_{1\epsilon} \) are equal to \(i \begin{pmatrix} J_i & 0 \\ 0 & -J_i \end{pmatrix} \), for \(J_i \) given in (1.3), hence conditions (8.9) and (8.21) i) are satisfied.

- \(K_\Sigma \) is a matrix of differential operators with coefficients bounded with all derivatives, by Hypothesis 1.1, hence conditions (8.14) and (8.21) ii) are satisfied.

- \(\Pi \) and \(B \) satisfy conditions (8.14) and (8.22), by Thm. 8.14 and Prop. 8.15.
- the positivity condition (3.23) is satisfied by \(\Pi \), using Thm. 8.14 and the fact that \(\text{Ran}\Pi \cap \text{Ker} K_\Sigma^\dagger = \Pi \text{Ker} K_\Sigma^\dagger \) since \(\text{Ran}\Pi = \text{Ran} K_\Sigma \subset \text{Ker} K_\Sigma^\dagger \).
- the two-point functions \(\lambda^\pm_{1\Sigma} \) are Hadamard, by Prop. 8.3. To prove that \(\tilde{\lambda}^\pm_{1\Sigma} \) are also Hadamard, we need to check that \(c_i^{\reg} \) are regularizing. This delicate point is shown in Prop. 8.17 below. The proof of Thm. 1.1 is complete. □

Remark 8.16. It is easy to deduce from (8.17) and the property \(\text{Ker} \Pi = \text{Ran} K_\Sigma \) that the two-point functions \(\lambda^{\pm}_{1\Sigma} \) construct have the property that \((\lambda^{\pm}_{1\Sigma} + \tilde{\lambda}^{\pm}_{1\Sigma}) \) induces a non-degenerate hermitian form on \(V_{\reg} = \text{Ker} K_\Sigma^\dagger / \text{Ran} K_\Sigma \). One can show that this property entails that the corresponding quasi-free state \(\omega \) is faithful, even if \(q \) is degenerate on \(V_{\reg} \).

Proposition 8.17. (1) assume that \(\Sigma = \mathbb{R}^d \). Then for any \(n \in \mathbb{N} \) one has:

\[
\begin{align*}
\text{i)} & \quad R_{-\infty} B : H^{-n}(\Sigma; W \oplus W) \to \langle x \rangle H^n(\Sigma; W \oplus W), \\
\text{ii)} & \quad (1 - \Pi^\dagger) R_{-\infty} B : H^{-n}(\Sigma; W \oplus W) \to \langle x \rangle H^n(\Sigma; W \oplus W).
\end{align*}
\]

(2) assume that \(\Sigma \) is compact. Then \(R_{-\infty} B \) and \((1 - \Pi^\dagger) R_{-\infty} B \) belong to \(\Psi^{-\infty}(\Sigma; W \oplus W) \).

Proof. The proof of (2) is immediate, since if \(\Sigma \) is compact we know that \(B, (1 - \Pi^\dagger) \in \Psi^{-\infty} \) and \(R_{-\infty} \in \Psi^{-\infty} \).

We now turn to the proof of (1) which is much more delicate. The Sobolev spaces or pseudodifferential classes between the various vector bundles over \(\Sigma \) will be abbreviated \(H^m, \Psi^p, m, p \in \mathbb{R} \).

We will work with the adapted Cauchy data. Note that because the operators \(R_{-\infty} B \) are differential operators (see Lemma 1.1), the operator \(R_{-\infty} \), expressed in Furlani variables, i.e. \(R_{-\infty} R_{-\infty}^{-1} \) belongs also to \(\Psi^{-\infty} \), and will still be denoted by \(R_{-\infty} \).

Let us first consider the operator \(R_{-\infty} B_0 \), which we write as a \(4 \times 4 \) matrix. A routine computation shows that the entries of \(R_{-\infty} B_0 \) are of one of the two forms

\[
(8.29)\quad r_{-\infty}, \quad r_{-\infty} b,
\]

for \(r_{-\infty} \in \Psi^{-\infty} \). From Lemma 8.11 (4) we obtain that \(b : H^{-m} \to \langle x \rangle H^{-m} \) for all \(m \in \mathbb{N} \).

Since \(r_{-\infty} : \langle x \rangle H^{-n} \to \langle x \rangle H^n \) by pdo calculus, we obtain that \(R_{-\infty} B_0 : H^{-n} \to \langle x \rangle H^n \). By Prop. 8.13 i) we know that \(1 + s_{-1} \Pi_0 : H^{-n} \to H^{-n} \). This completes the proof of i).

The proof of ii) is more delicate. We claim that it suffices to prove that:

\[
(8.30)\quad (1 - \Pi^\dagger) R_{-\infty} B_0 : H^{-n} \to \langle x \rangle H^n, \quad \forall n \in \mathbb{N}.
\]

In fact by Thm. 8.14 we have:

\[
(1 - \Pi^\dagger) = (1 + (s_{-1} \Pi_0)^{-1})^{-1}(1 - \Pi^\dagger).
\]

By Prop. 8.13 i) \((1 + s_{-1} \Pi_0)^{-1} : H^{-n} \to H^{-n} \), and by Prop. 8.13 ii) and duality \((1 + (s_{-1} \Pi_0)^{-1})^{-1} : \langle x \rangle H^n \to \langle x \rangle H^n \). Hence ii) will follow from (8.30).
Let us now prove \(\tilde{a} \). We write \(R_{-\infty} \) as a \(4 \times 2 \) matrix:

\[
R_{-\infty} = \begin{pmatrix}
 r_{0t,0} & r_{0t,1} \\
 r_{0\xi,0} & r_{0\xi,1} \\
 r_{tt,0} & r_{tt,1} \\
 r_{\xi\xi,0} & r_{\xi\xi,1}
\end{pmatrix}.
\]

Using that

\[
1 - \Pi_0^t = \begin{pmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & ib^*a^* & 0 & \pi
\end{pmatrix},
\]

we obtain that the entries of \((1 - \Pi_0^t)R_{-\infty}B_0\) are of the form \(8.31\), except for (sums) of the more singular terms

\[
\begin{align*}
(1) & \pi r_{1\xi,1}, \\
(2) & b^*a^*r_{0\xi,1}, \\
(3) & b^*a^*r_{0\xi,0}b, \\
(4) & \pi r_{1\xi,0}b,
\end{align*}
\]

where as before all the \(r_{ij}\) terms belong to \(\Psi^{-\infty}\). We will examine successively these 4 terms.

Term 1: by Lemma 8.11 (3) we know that \(\pi : H^n \rightarrow H^n\) for all \(n \in \mathbb{N}\), hence \(\pi r_{1\xi,1} : H^{-n} \rightarrow H^n\).

Term 2: by Lemma 8.11 (6) duality, we know that \(b^*a^* : H^n \rightarrow H^n\), the same argument as before shows that \(b^*a^*r_{0\xi,1} : H^{-n} \rightarrow H^n\).

The terms 3 and 4 will be more delicate to estimate. We will cut them into a high and low energy part. The high energy part is not affected by the infrared problem and is easy to estimate. The low energy part will be estimated by ’undoing the commutator’, i.e. rewriting \(R_{-\infty}\) as \(c^+_1K_x - K_xc^+_0\).

Term 3: we write \(r_{0\xi,0} = r_{0\xi,0}\chi_\xi(h_t) + r_{0\xi,0}\chi_\xi(h_t)\). We know that \(\chi_\xi(h_t)b = \chi_\xi(h_t)b_t^{-1}\delta_x \in \Psi^{-1}\), hence \(r_{0\xi,0}\chi_\xi(h_t)b \in \Psi^{-\infty}\). This implies that \(r_{0\xi,0}\chi_\xi(h_t)b : H^{-n} \rightarrow H^n\). Since by Lemma 8.11 (6) \(b^*a^* : (x)H^n \rightarrow (x)H^n\) it follows that \(b^*a^*r_{0\xi,0}\chi_\xi(h_t)b : H^{-n} \rightarrow (x)H^n\).

It remains to control the term \(b^*a^*r_{0\xi,0}\chi_\xi(h_t)b\). We claim that

\[
(8.31) \quad b^*a^*r_{0\xi,0}\chi_\xi(h_t)b : H^{-n} \rightarrow (x)H^n, \quad \forall n \in \mathbb{N}.
\]

To prove \(8.31\) we write \(R_{-\infty}\) as \(c^+_1K_x - K_xc^+_0\). Writing \(c^+_1\) and \(c^+_0\) in matrix form, we obtain after a routine computation that:

\[
r_{0\xi,0} = m_1\bar{d}_x + m_2a + \bar{d}_x m_3, \quad m_i \in \Psi^\infty.
\]

We have hence to consider the three terms:

\[
\begin{align*}
(3a) & b^*a^*m_1\bar{d}_x\chi_\xi(h_t)b, \\
(3b) & b^*a^*m_2a\chi_\xi(h_t)b, \\
(3c) & b^*a^*\bar{d}_x m_3\chi_\xi(h_t)b,
\end{align*}
\]

and to show that each of them maps \(H^{-n}\) into \((x)H^n\).

Term 3a: we have

\[
b^*a^*m_1\bar{d}_x\chi_\xi(h_t)b = b^*a^*m_1\bar{d}_x\chi_\xi(h_t)b_t^{-1}\delta_x.
\]

Using Lemma 8.11 (1) and the fact that \(m_1 \in \Psi^\infty\), we know that \(m_1\bar{d}_x\chi_\xi(h_t)b_t^{-1}\delta_x : H^{-n} \rightarrow H^n\). Next we use that by Lemma 8.11 (6) \(b^*a^* : (x)H^n \rightarrow (x)H^n\).

Term 3b: by Lemma 8.11 (2) and the fact that \(F_t \in S^{-1}\) we know that \(m_2a\chi_\xi(h_t)b : H^{-n} \rightarrow H^n\) and we can conclude the proof as for term 3a).

Term 3c: we use identity \(2.18\) to obtain that \(b^*a^*\bar{d}_x = b^*\delta_x a = \pi a\). Therefore:

\[
b^*a^*\bar{d}_x m_3\chi_\xi(h_t)b = \pi a m_3\chi_\xi(h_t)b.
\]

Since \(F_t \in S^{-1}\) we deduce from Lemma 8.11 (2) that \(am_3\chi_\xi(h_t)b : H^{-n} \rightarrow H^n\). Next by Lemma 8.11 (3) we know that \(\pi : H^n \rightarrow H^n\). This completes the proof of \(8.31\).
Term 4; we split $r_{1\Sigma, 0}$ as $\chi(x)(h_z)r_{1\Sigma, 0} + \chi(z)(h_z)r_{1\Sigma, 0}$. By Lemma 8.11 (4) we know that $b : H^{-n} \to \langle x \rangle H^n$. Since $r_{1\Sigma, 0} \in \Psi^{-\infty}$ we know that $r_{1\Sigma, 0} : \langle x \rangle H^{-n} \to \langle x \rangle H^n$. Finally by Lemma 8.11 (5) and duality $\pi\chi_z(h_z)\langle x \rangle H^n \to \langle x \rangle H^n$.

We now claim that:

$$\pi\chi_z(h_z)r_{1\Sigma, 0}b : H^{-n} \to \langle x \rangle H^n.$$

Again we write $R_{-\infty}$ as $c^*_i K_{\Sigma} - K_{\Sigma} c^+_0$, obtain that

$$r_{1\Sigma, 0} = m_1 \bar{d}_c + a_2 = \bar{m}_1 \bar{d}_c + a_3, \; m_1 \in \Psi^{\infty},$$

and have to consider the three terms:

$$
\begin{align*}
(4a) & \; \pi\chi_z(h_z)m_1 \bar{d}_c b, \\
(4b) & \; \pi\chi_z(h_z)m_2 ab, \\
(4c) & \; \pi\chi_z(h_z)a_3 b.
\end{align*}
$$

Term 4a; using that $\bar{d}_c b = \pi$, this term equals $\pi\chi_z(h_z)m_1 \pi$, which maps H^{-n} into H^n by now standard arguments.

Term 4b, 4c: these two terms can be treated as term 3b), using that $\bar{F}_1 \in S^{-1}$.

Acknowledgments. The authors are grateful to Jochen Zahn for suggesting the problem and for useful discussions. The work of M. W. was partially supported by the FMJH (Governement Program: ANR-10-CAMP-0151-02).

APPENDIX A. BACKGROUND ON PSEUDO-DIFFERENTIAL CALCULUS

In this section we recall some facts about pseudo-differential calculus. We refer to [GW] Sect. 4] for more details. We need to extend slightly the situation in [GW] to include matrix-valued symbols.

A.1. Notation. - We denote by Σ either \mathbb{R}^d or a smooth compact manifold. If Σ is compact we choose a smooth, non-vanishing density μ which allows to equip $C^\infty(\Sigma)$ with an Hilbertian scalar product. Typically μ will be the canonical density associated to some Riemannian metric on Σ. If $\Sigma = \mathbb{R}^d$ we use of course the Lebesgue density $dx.$

- We denote by V a finite dimensional complex vector space. For simplicity we assume that V is equipped with a Hilbertian scalar product, which allows to identify V and V^*.

- We denote by $C_{bd}^\infty(\Sigma; V)$ the space of smooth functions $\Sigma \to V$ uniformly bounded with all derivatives. We equip $C_{bd}^\infty(\Sigma)$ with its canonical Fréchet space structure.

- The Sobolev space of order m is denoted $H^m(\Sigma; V)$. Furthermore, we define the spaces

$$
\begin{align*}
\mathcal{H}(\Sigma; V) & := \bigcap_{m \in \mathbb{R}} H^m(\Sigma; V), \\
\mathcal{H}'(\Sigma; V) & := \bigcup_{m \in \mathbb{R}} H^m(\Sigma; V),
\end{align*}
$$

equipped with their canonical topologies.

A.2. Symbol classes. We denote by $S^m(T^*\Sigma), \; m \in \mathbb{R}$ the usual class of poly-homogeneous symbols of order m such that additionally

$$
(\tilde{A}1) \; \partial^\alpha_x \partial^\beta_k a(x, k) \in O(|k|^{-m+|\beta|}), \; \alpha, \beta \in \mathbb{N}^d.
$$

Similarly we will denote by $S^m(\mathbb{R})$ the class of poly-homogeneous functions $f : T^*\Sigma \to \mathbb{C}$.

We denote by $S^m_h(T^*\Sigma) \subset S^m(T^*\Sigma)$ the subspace of symbols homogeneous of degree m in k away from 0.

These spaces are equipped with the Fréchet space topology given by the semi-norms:

$$
||a||_{m,N} := \sup_{|\alpha| + |\beta| \leq N} |k|^{-m-|\beta|} \partial^\alpha_x \partial^\beta_k a |.
$$

We set

$$
\begin{align*}
S^{-\infty}(T^*\Sigma) & := \bigcap_{m \in \mathbb{R}} S^m(T^*\Sigma), \\
S^{\infty}(T^*\Sigma) & := \bigcup_{m \in \mathbb{R}} S^m(T^*\Sigma).
\end{align*}
$$
Let now V_1, V_2 be finite dimensional complex vector spaces equipped with non-degenerate hermitian sesquilinear forms. The spaces $S^m_{\psi,\infty}(T^*\Sigma) \otimes L(V_1, V_2)$ will be denoted by $S^m_{\psi,\infty}(T^*\Sigma; V_1, V_2)$ and by $S^m_{\psi,\infty}(T^*\Sigma; V)$ if $V_1 = V_2 = V$.

The subspace of scalar symbols $S^m(T^*\Sigma) \otimes 1_V$ will be denoted by $S^m_{\text{scal}}(T^*\Sigma; V)$.

A.3. Principal symbol and characteristic set. For $a \in S^m(T^*\Sigma; V_1, V_2)$ we denote by $a_{\text{pr}} \in S^m_{\psi,\infty}(T^*\Sigma; V_1, V_2)$ the principal part of a, which is homogeneous of degree m. The characteristic set of $a \in S^m(T^*\Sigma; V)$ is defined as

$$\text{Char}(a) := \{(x, k) \in T^*\Sigma \setminus \{0\} : \det a_{\text{pr}}(x, k) = 0\},$$

which is conic in the k variable.

A symbol $a \in S^m(T^*\Sigma; V)$ is elliptic if $\text{Char}(a) = \emptyset$.

A.4. Pseudo-differential operators. In this subsection we collect some well-known results about pseudo-differential calculus.

We denote by $\text{Op} : a \mapsto \text{Op}(a)$ a quantization procedure assigning to a symbol in $S^\infty(T^*\Sigma; V_1, V_2)$ a pseudo-differential operator on Σ. If Σ is compact, this quantization depends on the choice of a partition of unity on Σ and of associated coordinate mappings, the difference between two choices being a smoothing operator. If $\Sigma = \mathbb{R}^d$ it is convenient to choose the Weyl quantization.

One has

$$\text{Op}(a) : H(\Sigma; V_1) \to H(\Sigma; V_2), \quad \text{Op}(a) : H'(\Sigma; V_1) \to H'(\Sigma; V_2).$$

We denote by $\Psi^m_{\text{(scal)}}(\Sigma; V_1, V_2) \subset \text{Op}(S^m_{\psi,\infty}(\Sigma; V_1, V_2))$ the space $\text{Op}(S^m_{\psi,\infty}(\Sigma; V_1, V_2))$ and set

$$\Psi^-\infty(\Sigma; V_1, V_2) = \bigcap_{m \in \mathbb{R}} \Psi^m(\Sigma; V_1, V_2), \quad \Psi^\infty(\Sigma; V_1, V_2) = \bigcup_{m \in \mathbb{R}} \Psi^m(\Sigma; V_1, V_2).$$

We equip $\Psi^m(\Sigma; V_1, V_2)$ with the Fréchet space topology induced from the one of $S^m(\Sigma; V_1, V_2)$.

Let $s, m \in \mathbb{R}$. Then the map

$$S^m(T^*\Sigma; V_1, V_2) \ni a \mapsto \text{Op}(a) \in B(H^s(\Sigma; V_1), H'^{-m}(\Sigma; V_2))$$

is continuous.

We denote by $\sigma : \Psi^\infty(\Sigma; V_1, V_2) \to S^\infty(T^*\Sigma; V_1, V_2)$ the inverse of Op, $\sigma(a)$ being called the (full) symbol of a.

If Σ is a compact manifold, different choices of Op lead of course to different maps σ, differing by a map from $\Psi^-\infty$ to $S^-\infty$. On the other hand, the principal symbol map:

$$\sigma_{\text{pr}} : \Psi^m(\Sigma; V_1, V_2) \to S^m_{\psi,\infty}(T^*\Sigma; V_1, V_2)$$

is independent on the choice of the quantization.

An operator $\text{Op}(a) \in \Psi^m(\Sigma; V)$ is elliptic if its principal symbol $\sigma_{\text{pr}}(a)(x, k)$ is elliptic in $S^m(\Sigma; V)$. If $a \in \Psi^m_{\text{(scal)}}(\Sigma; V_1, V_2)$ is elliptic then there exists $b \in \Psi^{-m}$, unique modulo $\Psi^-\infty$ such that $ab = ba = 1$ modulo $\Psi^-\infty$. Such an operator b is called a pseudo-inverse or a parametrix of a. As a typical example $1 + b$ for $b \in \Psi^{-m}$, $m > 0$ is elliptic in Ψ^0.

A.5. Functional calculus for pseudo-differential operators. We recall without proof some well-known results about functional calculus and pseudo-differential operators.

Proposition A.1. Let $a \in \Psi^m(\Sigma; V)$ for $m \geq 0$ be elliptic in $\Psi^m(\Sigma; V)$ and symmetric on $H(\Sigma; V)$. Then:

1. a is selfadjoint on $H^m(\Sigma; V)$,
2. Denote by $\text{rs}(a)$ the resolvent set of a, with domain $H^m(\Sigma; V)$. Then for $z \in \text{rs}(a)$, $(z - a)^{-1} \in \Psi^{-m}(\Sigma; V)$,
3. if $f \in S^p(\mathbb{R})$, $p \in \mathbb{R}$, then $f(a)$, defined by the functional calculus, belongs to $\Psi^{mp}(\Sigma; V)$.
4. if f is elliptic in $S^p(\mathbb{R})$ then $\sigma_{\text{pr}}(f(a)) = f_{\text{pr}}(\sigma_{\text{pr}}(a))$.

A.6. Propagators. In this subsection we state some results about propagators, associated to elliptic operators in $\Psi^1(\Sigma; V)$. It is important to restrict oneself to operators with real and scalar principal symbols. The propagators in our presentation replace Fourier integral operators which are often used in the literature.

Let us fix a map $\epsilon(t) = \epsilon_1(t) + \epsilon_0(t)$, where $\epsilon_i(t) \in C^\infty(\mathbb{R}, \Psi^i(\Sigma; V))$ for $i = 0, 1$. We assume that

1. $\epsilon_1(t)$ is scalar, i.e. belongs to $\Psi^1_{\text{scal}}(\Sigma; V)$,
2. $\epsilon_1(t)$ is elliptic in $\Psi^1(\Sigma; V)$,
3. $\epsilon_1(t)$ is symmetric on $\mathcal{H}(\Sigma; V)$.

It follows by Prop. [A.1] that $\epsilon_1(t)$ is selfadjoint with domain $H^1(\Sigma; V)$, hence $\epsilon(t)$ with domain $H^1(\Sigma; V)$ is closed, with non empty resolvent set.

We denote by $T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma)$ the associated propagator defined by:

$$
\begin{aligned}
\partial_x T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) &= i\epsilon(t) T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma), \\
\partial_x T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) &= -iT^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) \epsilon(s), \\
T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) &= 1.
\end{aligned}
$$

It is easy to see (see e.g. [GW] Subsect. 4.6) that $T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma)$ is strongly continuous in (t, s) with values in $B(L^2(\Sigma; V))$.

Definition A.2. We denote by $\Phi_\epsilon(t, s) : T^*\Sigma \setminus \{0\} \to T^*\Sigma \setminus \{0\}$ the symplectic flow associated to the time-dependent Hamiltonian $-\sigma_{\mu\nu}(t, x, k)$.

Clearly $\Phi_\epsilon(t, s)$ is an homogeneous map of degree 0.

We now state a version of the Egorov’s theorem for matrix-valued symbols.

Proposition A.3. (1) $T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma)$ is bounded on $\mathcal{H}(\Sigma; V)$ hence on $\mathcal{H}'(\Sigma; V)$ by duality.

2. There exists $m(t, s) \in C^\infty(\mathbb{R}^2; \Psi^0(\Sigma; V))$ elliptic, invertible on $L^2(\Sigma; V)$ with $m^{-1}(t, s) \in C^\infty(\mathbb{R}; \Psi^0(\Sigma; V))$ such that

$$
T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) = m(t, s) T^{\exp}(\int_s^t i \epsilon_1(\sigma) d\sigma).
$$

3. Let $a \in \Psi^m(\Sigma; V)$. Then

$$
a(t, s) := T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma) a T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma)
$$

belongs to $C^\infty(\mathbb{R}^2, \Psi^m(\Sigma; V))$. Moreover

$$
\sigma_{\mu\nu}(a)(t, s) = \sigma_{\mu\nu}(a) \circ \Phi_\epsilon(s, t).
$$

Proof. The proposition is well-known in the scalar case, i.e. if $\epsilon(t) = \epsilon_1(t)$, see eg [P] Sec. 0.9 for the proof. It is easy to extend it to our situation. Let us denote $T^{\exp}(\int_s^t i \epsilon(\sigma) d\sigma)$, resp. $T^{\exp}(\int_s^t i \epsilon_1(\sigma) d\sigma)$ by $U(t, s)$ resp. $U_1(t, s)$. Setting

$$
U(t, s) := m(t, s) U_1(t, s),
$$

we obtain that $m(t, s)$ solves the equation:

$$
\begin{aligned}
\partial_t m(t, s) - i\epsilon_0(t, s) m(t, s) &= 0, \\
m(s, s) &= 1,
\end{aligned}
$$

for $\epsilon_0(t, s) := U_1(s, t) e_0(t) U_1(t, s)$. Note that $\epsilon_0(t, s) \in C^\infty(\mathbb{R}^2, \Psi^0(\Sigma; V))$, by Egorov’s theorem for the scalar case. The solution is

$$
m(t, s) = T^{\exp}(\int_s^t i\epsilon_0(\sigma) d\sigma).
$$
It is easy to see that \(m(t, s) \in C^\infty(\mathbb{R}^2; \Psi^0(\Sigma; V)) \), using for example Beals criterion. Moreover \(m(t, s) : L^2(\Sigma; V) \to L^2(\Sigma; V) \) is boundedly invertible, with inverse
\[
m^{-1}(t, s) = \text{Exp}(\int_{s}^{t} i\epsilon(\sigma) d\sigma).
\]

The same argument shows that \(m^{-1}(t, s) \in C^\infty(\mathbb{R}^2; \Psi^0(\Sigma; V)) \), hence \(m(t, s) \) is elliptic in \(\Psi^0(\Sigma; V) \). This proves (2). (1) follows from (2) and the analogous result in the scalar case.

From (3)
\[
a(t, s) = U_1(t, s)m(t, s)am^{-1}(t, s)U_1(s, t) = U_1(t, s)\tilde{a}(t, s)U_1(s, t),
\]
where \(\tilde{a}(t, s) = m(t, s)am^{-1}(t, s) \in C^\infty(\mathbb{R}^2, \Psi^m(\Sigma; V)) \) has principal symbol \(\sigma_{pr}(a(t, s)) = \sigma_{pr}(a) \). The proposition follows then from Egorov’s theorem for the scalar case. \(\square \)

The following two results are proved in [GW, Sect. 4] for the scalar case. By the argument outlined in the proof of Prop. [A.3] they immediately extend to our situation.

Proposition A.4. For \(u \in \mathcal{H}'(\Sigma; V) \) one has:
\[
WF(\text{Exp}(\int_{s}^{t} i\epsilon(\sigma) d\sigma)u) = \Phi_\epsilon(t, s)WF(u),
\]
hence
\[
WF'(\text{Exp}(\int_{s}^{t} i\epsilon(\sigma) d\sigma)) = \{(x, k, x', k') : (x, k) = \Phi_\epsilon(t, s)(x', k')\}.
\]

Lemma A.5. Let \(\epsilon(t) \in C^\infty(\mathbb{R}, \Psi^1(\Sigma; V)) \) as above, \(s_{-\infty}(t, s) \in C^\infty(\mathbb{R}^2, \Psi^{-\infty}(\Sigma; V)) \). Then \(\text{Exp}(\int_{s}^{t} i\epsilon(\sigma) d\sigma)s_{-\infty}(t, s) \in C^\infty(\mathbb{R}^2, \Psi^{-\infty}(\Sigma; V)) \).

Appendix B. Some auxiliary results

B.1. Hardy inequality.

Proposition B.1. There exists \(C > 0 \) such that
\[
(\text{B.4}) \quad \delta_x \tilde{a}_x \geq C|x|^{-2}, \text{ on } L^2(\mathbb{R}^d, |h|^2 dx) \otimes g.
\]

Proof. Let us denote by \(M_j(x) \in L(g) \) the operator \(i^{-1} \tilde{A}_j(x) \wedge \cdot \) and note that \(M_j(x) \) is selfadjoint on \((g, \tilde{k})\). Let
\[
h_M := \sum_{j=1}^{d} (D_j + M_j(x))^2,
\]
acting on \(L^2(\mathbb{R}^d, dx) \otimes g \). We claim that the proposition follows from
\[
(\text{B.5}) \quad h_M \geq C|x|^{-2}.
\]

In fact we have:
\[
h_t = \delta_x \tilde{a}_x = |h|^{-\frac{1}{2}}(x) \sum_{j,k=1}^{d} (D_j + M_j(x))h^{jk}(x)|h|^{-\frac{1}{2}}(x)(D_k + M_k(x)),
\]
acting on \(L^2(\mathbb{R}^d, |h|^{\frac{1}{2}} dx) \otimes g \). Clearly \(h_t \) is unitarily equivalent to:
\[
\tilde{h}_t = |h|^{-\frac{1}{2}}(x) \sum_{j,k=1}^{d} (D_j + M_j(x))h^{jk}(x)|h|^{-\frac{1}{2}}(x)(D_k + M_k(x))|h|^{-\frac{1}{2}}(x),
\]
acting on \(L^2(\mathbb{R}^d, |h|^{\frac{1}{2}} dx) \otimes g \), by the map \(U : u \mapsto |h|^{\frac{1}{2}} u \). It suffices to prove Hardy’s inequality for \(\tilde{h}_t \). Since \(c_0 \leq |h(x)| \leq c_0^{-1} \) for some \(c_0 > 0 \), we can also replace \(\tilde{h}_t \) by \(|h|^2 \tilde{h}_t |h|^{-2} \). Finally since \(|h|^2 \tilde{h}_t |h|^{\frac{1}{2}} \geq Ch_M \) for some \(C > 0 \), we see that (B.5) implies (B.4).
Let us now prove (B.3). From the usual Hardy inequality we know that there exists $C > 0$ such that
\begin{equation}
 - \Delta - C \langle x \rangle^{-2} \geq 0.
\end{equation}
We use now the diamagnetic inequality:
\begin{equation}
\|e^{-t(h_M-C(x)^{-2})}u\| \leq e^{-t(-\Delta-C(x)^{-2})}\|u\|, \ u \in L^2(\mathbb{R}^d, dx) \otimes g, \ t \geq 0,
\end{equation}
where $\|u\|(x) = \overline{u}(x) \cdot \hat{k}u(x)$. The proof of (B.7) can be done as in [CFKS Thm. 1.3]. The key fact is that
\begin{equation}
D_j + iM_j(x) = S_j^{-1}(x)D_jS_j(x)
\end{equation}
for
\begin{equation}
S_j(x) = \text{Temp}(\int \Gamma(t)M_j(x_1, \ldots, x_{j-1}, s, x_{j+1}, \ldots, x_d) ds)
\end{equation}
where $S_j(x)$ is unitary on (g, k). Using $a^{-1} = \int_0^{t^\infty} e^{-t_\varepsilon dt}$, we deduce from (B.7) that for $\varepsilon > 0$
\begin{equation}
(u|(h_M - C(x)^{-2} + \varepsilon)^{-1}u))_{L^2 \otimes g} \leq (\|u\|(-\Delta + C(x)^{-2} + \varepsilon)^{-1}\|u\|)_{L^2} \leq \varepsilon^{-1}(\|u\|\|u\|)_{L^2} = \varepsilon^{-1}(u|u|)_{L^2 \otimes g}.
\end{equation}
This implies that $h_M - C(x)^2 \geq 0$ and completes the proof of the proposition.

B.2. Transition to the temporal gauge. In this section we review the transition to the temporal gauge, explained in the language of connections.

We assume here that $g = -\beta(t, x)dt^2 + h_{ij}(t, x)dx^i dx^j$, i.e. that we are in the general globally hyperbolic case.

We set:
\begin{equation}
S(t, x) := \text{Temp}(\int T_0(s, x) ds) \in C^\infty(M; L(W)),
\end{equation}
so that
\begin{equation}
\begin{cases}
\partial_t S(t, x) = S(t, x)T_0(t, x) \\
S(0, x) = 1_W.
\end{cases}
\end{equation}
Note that $S(t, x) = S_V(t, x) \otimes S_0(t, x)$, for:
\begin{equation}
S_V(t, x) = \text{Temp}(\int \Gamma_0(s, x) ds), \ S_0(t, x) = \text{Temp}(\int M_0(s, x) ds).
\end{equation}
An easy computation using that T is metric for $g^{-1} \otimes k$ shows that:
\begin{equation}
g^{-1}(t, x) \otimes k = S^*(t, x)g^{-1}(0, x) \otimes kS(t, x).
\end{equation}
Again if we set
\begin{equation}
\tilde{T}_a := S\partial_a S^{-1} + ST_a S^{-1}, \ \tilde{\rho} := S\rho S^{-1},
\end{equation}
then setting $g_0^{-1}(t, x) := g^{-1}(0, x)$ we have:
\begin{equation}
\begin{aligned}
\partial_a g_0^{-1} \otimes k &= \tilde{T}_a g_0^{-1} \otimes k + g_0^{-1} \otimes \tilde{k}_a, \\
\tilde{\rho}^* g_0^{-1} \otimes k &= g_0^{-1} \otimes \tilde{k}_{\tilde{\rho}}, \\
\tilde{T}_0 &= 0.
\end{aligned}
\end{equation}
Setting $\tilde{D}_1 = S_D S^{-1}$ we have:
\begin{equation}
\tilde{D}_1 = -|g|^{-\frac{1}{2}} \nabla \tilde{\rho}^{-1} |g|^{\frac{1}{2}} g^{ab} \nabla \tilde{T}_a + \tilde{\rho}.
\end{equation}
The conserved charge is:
\begin{equation}
\tilde{\eta}_{\tilde{\xi} \tilde{\kappa}} := \int_{\{t\} \times \Sigma} i^{-1}_0 \nabla_0 \tilde{T}_a \xi_1 \cdot g_0^{-1} \otimes \tilde{k}_a + \tilde{\xi} \cdot g_0^{-1} \otimes \xi_1 \cdot \nabla_0 \tilde{T}_a |\tilde{\rho}|^2 dx.
\end{equation}
B.3. Global existence of smooth space-compact solutions for non-linear Yang-Mills equations. In this subsection we explain how to deduce Prop. 3.18 from the arguments of Chruściel-Shatah [CS].

Proposition B.2. (1) for each \(\bar{A} \in \mathcal{E}_{\mu}^{\prime}(M) \otimes \mathfrak{g} \) there exists \(\bar{A}' \in \mathcal{E}_{\mu}^{\prime}(M) \otimes \mathfrak{g} \) such that \(\bar{A}' \equiv 0 \) and \(\bar{A}' \sim \bar{A} \).

(2) Assume that \(\dim M \leq 4 \). Let \(\bar{A} \in \mathcal{E}_{\mu}^{\prime}(M) \otimes \mathfrak{g} \) be a solution of the non linear Yang-Mills equation \([2.14]\) near a Cauchy surface \(\Sigma \). Then there exists \(\bar{A}' \in \mathcal{E}_{\mu}^{\prime}(M) \otimes \mathfrak{g} \) such that \(\bar{A}' \sim \bar{A} \), \(\bar{A}' \equiv 0 \) and \(\bar{A}' \) solves \([2.14]\) globally.

Proof. (1): recall that we assumed that \(G \) is represented as a subgroup of \(L(V) \) for some finite dimensional vector space \(V \). The gauge transformation generated by the map \(M \ni x \mapsto \mathcal{G}(x) \in G \) is:

\[
\bar{A}_\mu \mapsto \bar{A}_\mu' = \mathcal{G}^{-1} \bar{A}_\mu \mathcal{G} + \mathcal{G}^{-1} \partial_\mu \mathcal{G}.
\]

Writing \(M = \mathbb{R}_t \times \Sigma_x \), we obtain \(\bar{A}'_\mu \equiv 0 \) if \(\partial_t \mathcal{G} = \bar{A}_\mu \mathcal{G} = 0 \). This can be solved by

\[
\mathcal{G}(t, x) = \text{Exp}(\int_0^t -\bar{A}_s(s, x) ds).
\]

Since \(\bar{A}_\mu \in C^{\infty}(\mathbb{R}_t \times \Sigma_x) \), \(\mathcal{G} - 1 \in C^{\infty}(\mathbb{R}_t \times M; G) \), hence \(\bar{A}'_\mu \in C^{\infty}(\mathbb{R}_t \times \Sigma_x) \).

(2): By (1) we can assume that \(\bar{A}_t \equiv 0 \), i.e. that \(\bar{A} \) is in the temporal gauge. We recall the form of the Yang-Mills equations in the temporal gauge, recalled in [CS Sect. 4]. Denoting by \(\bar{F}_{\mu\nu} \) the curvature, we obtain the equations:

\[
\begin{align*}
\partial_t \bar{A}_i &= \bar{F}_{0i}, \\
\partial_t \bar{F}_{ij} &= \partial_j \bar{F}_{0i} - \partial_i \bar{F}_{0j}, \\
\partial_t \bar{F}_{0i} &= \partial_j \bar{F}_{ji},
\end{align*}
\]

(B.8)

where \(\partial_t = \nabla_t + [\bar{A}_t, \cdot] \), and \(\partial_t = \partial_0 \).

Another fact is that if \(G_{\mu\nu} := \bar{F}_{\mu\nu} - \partial_\mu \bar{A}_\nu + \partial_\nu \bar{A}_\mu - [\bar{A}_\mu, \bar{A}_\nu] \) vanishes at \(t = 0 \) and \([B.8]\) holds in some region \(I \times \Theta \) where \(I \) is a time interval, then \(G_{\mu\nu} \) vanishes identically in \(I \times \Theta \), hence \(\bar{F} = \partial_\bar{A} \).

By [CS Thm. 1.1] the local in time solution \((\bar{A}_t, \bar{F}_{ij}, \bar{F}_{0j}) \) of \([B.8]\) extends globally as a smooth solution. Moreover since \([B.8]\) is a symmetric hyperbolic semi-linear system of equations (see eg the proof of [CS Prop. 4.1]), its solutions satisfy Huygens’ principle, which implies that the global solution of \([B.8]\) belongs to \(\mathcal{E}_{\mu}^{\prime}(M) \otimes \mathfrak{g} \). Note that [CS] deals with the most difficult case \(\dim M = 4 \). It is easy to extend the result to lower dimensions. In fact if \(\dim M = n < 4 \), we consider \(M = M \times \mathbb{R}_t^{4-n} \) with metric \(g + dy^2 \). A 1–form \(A = A_\mu(x)dx^\mu \in \mathcal{E}_1^{\prime}(M) \otimes \mathfrak{g} \) is extended to \(\bar{A} = A_\mu(x)dx^\mu \in \mathcal{E}_1(M) \otimes \mathfrak{g} \). It is easy to see that \(\bar{A} \) satisfies the Yang-Mills equation on \(M \) if \(\bar{A} \) satisfies the YM equation on \(\bar{M} \). It follows that the Cauchy problem can be globally solved for smooth Cauchy data in \(M \). The fact that a local space-compact solution extends as a global space-compact solution follows by the same argument based on Huygens’ principle. \(\square \)

References

[AS] Araki, H., Shiraishi, M.: *On quasi-free states of canonical commutation relations I*, Publ. RIMS Kyoto Univ. 7 (1971/72), 105-120.

[B] Benini, M.: *Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies*, arXiv:1401.7563 (2014).

[BF] Bär, C. (ed.), Fredenhagen, K. (ed.): *Quantum Field Theory on Curved spacetimes*, Lect. Notes Phys. 786 (2009).

[BGP] Bär, C., Ginoux, N., Pfäffle, F.: *Wave equation on Lorentzian Manifolds and Quantization*, ESI Lectures in Mathematics and Physics, EMS 2007.
Hadamard states for the Yang-Mills equation on curved spacetime

[CFKS] Cycon, H.L., Froese, R., Kirsch, W., Simon, B.: *Schrödinger Operators with applications to Quantum Mechanics and Global Geometry*, Springer 1987.

[BG] Bär, C., Ginoux, N.: *Classical and quantum fields on Lorentzian manifolds.*, Global Differential Geometry, 359-400, Springer Berlin Heidelberg, 2012.

[CS] Chruściel, P.T., Shatah, J.: Global existence of solutions of the Yang-Mills equations on globally hyperbolic four dimensional Lorentzian manifolds, Asian Jour. Math. 1 (1997), 530-548.

[Der] Dereźiński, J.: Quantum fields with classical perturbations, arXiv:1307.1162 (2013)

[DG] Dereźiński, J., Gérard, C.: *Mathematics of Quantization and Quantum Fields*, Cambridge Monographs in Mathematical Physics, Cambridge University Press 2013.

[Dim] Dimock, J.: *Dirac quantum fields on a manifold*. Tran. Amer. Math. Soc., 269 (1) (1982), 133–147.

[Dim2] Dimock, J.: Quantized electromagnetic field on a manifold, Rev. Math. Phys., 4(02) (1992), 223-233.

[DH] Duistermaat, J.J., Hörmander, L.: Fourier integral operators II, Acta Math. 128 (1972), 183–269.

[DHK] Dappiaggi, C., Hack, T.-P., Sanders, K.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law, arXiv:1211.6420 (2012).

[DS] Dappiaggi C., Siemssen D.: Hadamard States for the Vector Potential on Asymptotically Flat spacetimes, Rev. Math. Phys. 25, 1350002 (2013).

[FNW] Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II, Annals of Physics, 136 (1981), 243-272.

[FP] Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin-one fields in curved spacetime, J. Math. Phys., 44, 4480 (2003).

[FS] Finster, F., Strohmaier, A.: Gupta-Bleuler quantization of the Maxwell field in globally hyperbolic space-times, arXiv:1307.1632 (2013).

[Fur1] Furlani, E.P.: Quantization of the electromagnetic field on static spacetimes, J. Math. Phys. 36 (1995), no. 3, 1063-1079.

[Fur2] Furlani, E.P.: Quantization of massive vector fields in curved spacetime, J. Math. Phys. 40, 2611 (1999).

[GW] Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculi, Comm. Math. Phys. 325 (2) (2014), 713-755.

[HS] Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes, General Relativity and Gravitation, (2012), 1–34.

[Hol] Hollands, S.: The Hadamard Condition for Dirac Fields and Adiabatic States on Robertson-Walker spacetimes, Comm. Math. Phys. 216 (2001), 635–661.

[Hol2] Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime, Rev. Math. Phys., 20(09) (2008), 1033-1172.

[Hör] Hörmander, L.: *The analysis of linear partial differential operators I. Distribution Theory and Fourier Analysis*, Springer, Berlin Heidelberg New York, 1985.

[J] Junker, W.: Adiabatic Vacua and Hadamard States for Scalar Quantum Fields on Curved Space-time, PhD thesis, University of Hamburg 1995.

[K] Khavkine, I.: Characteristics, conal geometry and causality in locally covariant field theory, arXiv:1211.1914 (2012).

[MM] Marathe, K.B., Martucci, G: Mathematical foundations of gauge theories, Studies in Mathematical Physics, 5, North-Holland 1992.

[Müh] Mühllhoff, R.: Cauchy problem and Green’s functions for first order differential operators and algebraic quantization, J. Math. Phys., 52, 022303 (2011).

[Müll] Müller, O.: Asymptotic Flexibility of globally hyperbolic manifolds, R. Math. Acad. Sci. Paris 350, no. 7-8 (2012), 421–423.

[P] Pfenning, M. J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension, Classical and Quantum Gravity, 26(13), 135017 (2009).

[Rad] Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time, Comm. Math. Phys. 179 (1996), 529–553.
Hadamard states for the Yang-Mills equation on curved spacetime

[Rej] Rejzner, K.: Remarks on local gauge invariance in perturbative algebraic quantum field theory, arXiv:1301.7037 (2013).

[Seg] Segal, I.: The Cauchy problem for the Yang-Mills equations. J. Funct. Anal., 33(2) (1979), 175-194.

[Shu] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, Springer 2001.

[T] Taylor, M.: Pseudo-differential Operators and Nonlinear PDE, Birkhäuser, 1991.

[W] Wrochna, M.: Quantum Field Theory in Static External Potentials and Hadamard States, Ann. Henri Poincaré, vol. 13, no. 8 (2012), 1841–1871.

[W2] Wrochna, M.: Singularities of two-point functions in Quantum Field Theory, PhD thesis, University of Göttingen 2013.

[Z] Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 1330012 (2014).

Département de Mathématiques, Université de Paris XI, 91405 Orsay Cedex France
E-mail address: christian.gerard@math.u-psud.fr, michal.wrochna@math.u-psud.fr