Jet cross sections and α_s in deep inelastic scattering and photoproduction at HERA

Claire Gwenlan

Department of Physics, University of Oxford,
Denys Wilkinson Building, Keble Road, Oxford. OX1 3RH. UK.
email: c.gwenlan1@physics.ox.ac.uk

Recent ZEUS measurements of inclusive-jet and dijet cross sections in neutral current deep inelastic ep scattering at HERA are presented. The data correspond to more than a two-fold increase in statistics compared to previous studies. The cross sections are measured in the Breit frame, for boson virtualities of $Q^2 > 125$ GeV2, as functions of various kinematic and jet observables. The data are found to be well described by NLO QCD and have the potential to constrain the gluon density in the proton. Two new extractions of the strong coupling, α_s, are also presented: the first is determined from the inclusive-jet neutral current DIS measurement presented here, while the second is from a re-analysis of previously published data on inclusive jet photoproduction. Both measurements are of competitive precision and in agreement with the world average.

1 Introduction

Jet production in ep collisions at HERA provides an important testing ground for perturbative Quantum Chromodynamics (QCD), as well as giving direct access to the strong coupling constant, α_s. Furthermore, HERA jet measurements are sensitive to the parton distribution functions (PDFs) of the proton.

At HERA, there are broadly two kinematic regimes: Deep Inelastic Scattering (DIS), where the virtuality of the exchanged boson is large ($Q^2 \gg 1$ GeV2), and photoproduction (γp), which proceeds via the exchange of a quasi-real photon ($Q^2 \approx 0$). In this contribution, recent measurements of inclusive-jet [2] and dijet [3] production in neutral current (NC) DIS are presented. The data used in these measurements correspond to more than a two-fold increase in statistics compared to previous studies. The measurements are sensitive to the parton content of the proton, especially the gluon density at high momentum fractions, and may serve as valuable inputs to future QCD fits for the PDFs. In addition to the jet cross section measurements, two new determinations of α_s are presented: the first is extracted from the NC DIS inclusive-jet measurement [2] presented here, and the second is derived from a re-analysis [4] of previously published data [5] on inclusive jets in γp.

2 Data selection and correction

The data used for the jet cross section measurements were collected with the ZEUS detector at HERA. For the inclusive-jet analysis, the data are from the 05 – 06 running period and correspond to 188 pb$^{-1}$. For the dijet case, the data are from 98 – 00 and 04 – 05 running, combined, corresponding to a total of 209 pb$^{-1}$. During these times, HERA operated with protons of energy $E_p = 320$ GeV and electrons of energy $E_e = 27.5$ GeV.

*On behalf of the ZEUS Collaboration [1].
The phase space of the measurements is restricted to the region $Q^2 > 125$ GeV2 and $-0.65 < \cos(\gamma_{had}) < 0.65$, where γ_{had} is the polar angle of the hadronic system. For the dijet case, a further requirement of $Q^2 < 5000$ GeV2 was imposed: this restricts the data to a region where the contribution from Z^0 exchange is negligible.

Jets were reconstructed in the Breit frame, using the longitudinally invariant k_T-clustering algorithm, and were required to lie in the pseudo-rapidity range $-2 < \eta_{Breit} < 1.5$. For the inclusive-jet analysis, events were selected if they contained at least one jet with $E_{T,Breit} > 8$ GeV. For the dijet case, at least two jets were required with $E_{T,Breit}^{1,2} > 12.8$ GeV: the asymmetric cut is made in order to avoid infra-red sensitive regions where the next-to-leading order (NLO) QCD programs are not reliable.

The data were corrected for detector efficiency and acceptance effects using the ARIADNE and LEPTO Monte Carlo (MC) models. The MC programs were also used to correct the measured cross sections for QED radiative effects and the running of α_{em}.

The typical statistical precision on the final cross section measurements is $\sim 1 - 5\%$. The dominant experimental comes from the uncertainty on the jet energy scale (known to $\pm 3\%$ for $E_{T,Lab} < 10$ GeV and $\pm 1\%$ for higher jet-transverse-energies), leading to effects on the cross sections of typically $5 - 10\%$. The second-most-important is the model uncertainty arising from using ARIADNE versus LEPTO to correct for detector effects (this leads to uncertainties of typically $\lesssim 3\%$ on the cross sections).

3 NLO QCD calculations

The NLO QCD ($\mathcal{O}(\alpha_s^2)$) calculations used to compare with the data were obtained using the program DISENT. The factorisation scale was taken to be $\mu_F = Q$ and the renormalisation scale was taken to be $\mu_R = E_{T,Breit}$ (of each jet) for the inclusive-jet measurement and $\mu_R = (Q^2 + \overline{E}_{T,Breit}^2)^{1/2}$ for the dijet case, where $E_{T,Breit}$ is the average transverse energy of the two jets. The strong coupling was calculated at two loops using $\Lambda^{(5)}_{\overline{MS}} = 226$ MeV, corresponding to $\alpha_s(M_Z) = 0.118$. The calculations were performed using the ZEUS-S proton PDF for the inclusive-jet and CTEQ6 for the dijet measurement. In order to compare directly with the data, the NLO QCD predictions were corrected for hadronisation using the average of the corrections obtained from ARIADNE and LEPTO. The inclusive-jet predictions were also corrected for Z^0 exchange.

Several sources of theoretical uncertainty were considered: uncertainties due to neglected terms beyond NLO in the perturbative expansion; uncertainties from the input proton PDFs; uncertainties from α_s; hadronisation correction uncertainties; and those due to the choice of factorisation scale. The dominant theoretical uncertainty is due to the contribution from terms beyond NLO, which was estimated by varying the renormalisation scale by the (conventional) factors of $\frac{1}{2}$ and 2. This resulted in variations in the predicted cross section of $\sim 5 - 20\%$. All other sources typically resulted in only small changes to the predicted cross sections.

\begin{itemize}
 \item In Quark Parton Model type events, γ_{had} is the angle of the scattered quark.
 \item In NC DIS, the Breit frame is preferred to conduct the jet search since jet production is directly sensitive to hard QCD sub-processes at $\mathcal{O}(\alpha_s)$ (and higher); in the Born level process ($eq \rightarrow eq$), the virtual boson V^* (where $V^* = \gamma, Z^0$) is absorbed by the struck quark, which is back-scattered with zero transverse momentum with respect to the V^* direction. At leading order in α_s, the Boson-Gluon-Fusion ($V^*g \rightarrow q\bar{q}$) and QCD Compton ($V^*q \rightarrow q\bar{q}$) processes give rise to two hard jets with opposite transverse momenta.
 \item Other choices of scale were also checked.
\end{itemize}
Figure 1: Single differential cross section $d\sigma/dQ^2$ for inclusive-jet production with $E_{T,Breit} > 8$ GeV and $-2 < \eta_{Breit} < 1.5$ from ZEUS [2].

Figure 2: Double differential dijet cross sections as a function of $\log_{10}(\xi)$ in regions of Q^2 from ZEUS [3].

4 Results

4.1 Jet cross sections

The inclusive-jet cross sections were measured differentially as functions of Q^2, $E_{T,Breit}$ and η_{Breit}. Figure 1 shows the single differential cross section as a function of Q^2; the inner and outer error bars show the statistical and uncorrelated systematic uncertainties respectively; the shaded band indicates the bin-by-bin correlated systematic uncertainty due to the jet energy scale; and the hashed area gives the theoretical uncertainty. The results show that the data are well described by NLO QCD over the measured range. Except at the very highest Q^2 values, the theoretical uncertainties dominate over the experimental. Double differential cross sections as a function of $E_{T,Breit}$, in 6 bins of Q^2, were also measured. Previously, a similar measurement of inclusive jets in NC DIS [14] was included in a NLO QCD fit [16] performed by the ZEUS collaboration. The results showed that the HERA jet data were able to significantly constrain the gluon PDF at mid-to-high values of the proton momentum fraction. The new measurement presented here is in the same region of phase space but corresponds to ~ 4.5 times the statistics. The very high experimental precision makes it a promising candidate for inclusion in future QCD analyses, potentially providing substantial further constraints on the gluon density in the proton.

Along with a measurement of dijets in photoproduction [15].

DIS 2009
The dijet cross sections were measured differentially as functions of a number of kinematic and jet observables, including Q^2, M_{jj} (the dijet invariant mass), $\mathbf{p}_{T,\text{Breit}}$ and $\log_{10}(\xi)$.

The data are generally well described by the predictions of NLO QCD. Double differential cross sections as a function of $\log_{10}(\xi)$, in 5 regions of Q^2, were also measured (Fig. 2). The data are reasonably well described by NLO QCD, although there is some sensitivity to the choice of renormalisation scale. At large Q^2, the statistical uncertainties dominate. The contribution of gluon-induced events to the total cross section was also estimated as a function of Q^2 and ξ. It is observed that the contribution from gluon-induced processes is at least 30%, even for high values of Q^2 (≈ 3000 GeV2) and ξ. The uncertainties on the predicted cross sections, arising from the gluon PDF, are found to be substantial. Therefore, these data are also expected to provide potentially strong constraints on the gluon content of the proton.

4.2 Strong coupling, α_s

An NLO QCD analysis was performed on the single-differential NC DIS inclusive-jet cross section as a function of Q^2 in order to determine a value of $\alpha_s(M_Z)$ (see Fig. 1). Only the region $Q^2 > 500$ GeV2 was used, giving the best overall uncertainty on the extracted value. The QCD calculations were performed using the program DISENT (as described in Sec. 3), using 5 different sets of PDFs from the ZEUS-S fit, each with different values of $\alpha_s(M_Z)$. The value of $\alpha_s(M_Z)$ used in each cross section calculation was that associated with the PDF used. The α_s dependence of the predicted cross sections, in each Q^2 bin, was parameterised using a function quadratic in $\alpha_s(M_Z)$. The value obtained is: $\alpha_s(M_Z) = 0.1192 \pm 0.0009\text{(stat.)}^{+0.0035}_{-0.0032}\text{(exp.)}^{+0.0020}_{-0.0021}\text{(th.)}$, corresponding to a total uncertainty of 3.7%.

The experimental uncertainties are dominated by the contribution from the jet energy scale ($\pm 1.9\%$) while the theoretical uncertainties are dominated by terms beyond NLO ($\pm 1.8\%$), as evaluated using the method of Jones et al. \[17\]. The uncertainties from other sources (proton PDFs, hadronisation corrections and μ_F) are generally small.

A similar method was employed to extract a new value of $\alpha_s(M_Z)$ from a previously published measurement of inclusive-jets in γp \[5\]. The single differential inclusive-jet cross section as a function of E_T^{jet} was used for the determination. The NLO QCD calculations were performed using the program of Klasen, Kleinwort and Kramer \[18\]. The factorisation and renormalisation scales were taken to be $\mu_R = \mu_F = E_T^{\text{jet}}$ and the photon PDF was GRV-HO \[20\]. With respect to the original publication, the input proton PDF was updated to MRST01 \[19\] (c.f. MRST99) and the method of Jones et al. \[17\] was used to evaluate the uncertainties from terms beyond NLO. The value of $\alpha_s(M_Z)$ extracted is: $\alpha_s(M_Z) = 0.1223 \pm 0.0001\text{(stat.)}^{+0.0023}_{-0.0021}\text{(exp.)}^{+0.0029}_{-0.0030}\text{(th.)}$, corresponding to a 3.1% total uncertainty. The central value is almost identical to that obtained in the original publication using the same data. The dominant experimental uncertainty arises from the jet energy scale ($\pm 1.5\%$) and the theoretical uncertainty is again dominated by terms beyond NLO ($\pm 2.4\%$).\[1\]

Both measurements are in agreement with other determinations from HERA, and with the world average, and are of competitive precision. NNLO calculations will be needed to further improve the theoretical uncertainties in the future.

$^*\xi = x_{Bj} \left(1 + M_{jj}^2/Q^2 \right)$ is the parton momentum fraction, where x_{Bj} is the Bjorken-x variable.

1The method of Jones et al. results in a smaller theoretical uncertainty than in previously.
5 Summary

Inclusive-jet and dijet cross sections have been measured in NC DIS at HERA, for $Q^2 > 125$ GeV2, using more than a two-fold increase in statistics compared to previous studies. The measurements are well described by the predictions of NLO QCD and are sensitive to the proton PDFs, especially the gluon density at high momentum fractions. The measurements are therefore natural candidates for inclusion in future QCD fits for the proton PDFs.

In addition, a value of $\alpha_s(M_Z)$ has been extracted from the NC DIS inclusive-jet single-differential cross section as a function of Q^2 (for $Q^2 > 500$ GeV2). A further determination has been obtained from a re-analysis of previously published data on inclusive-jet γp. Both extractions are of competitive precision and in agreement with the world average.

References

[1] Slides: http://indico.cern.ch/getFile.py/access?contribId=238&sessionId=3&resId=19&materialId=slides&confId=53294
[2] ZEUS Coll., “Inclusive jet production in NC DIS with HERA II”, ZEUS-prel-09-006.
[3] ZEUS Coll., “Dijet cross sections in NC DIS with HERA II”, ZEUS-prel-07-005.
[4] ZEUS Coll., “$\alpha_s(M_Z)$ from inclusive jet cross sections in photoproduction”, ZEUS-prel-08-008.
[5] ZEUS Coll., S. Chekanov et al., Phys. Letts. B560 (2003) 7.
[6] R. P. Feynman, “Photon-Hadron Interactions”, Benjamin, New York (1972); K. H. Streng, T. F. Walsh and P. M. Zerwas, Z. Phys. C2 (1979) 2.
[7] S. Catani et al., Nucl. Phys. B406 (1993) 187.
[8] S. D. Ellis and D. E. Soper, Phys. Rev. D48 (1993) 3160.
[9] L. Lönnblad, Comp. Phys. Comm. 71 (1992) 15; Z. Phys. C65 (1995) 285.
[10] G. Ingelman, A. Edin and J. Rathsman, Comp. Phys. Comm. 101 (1997) 108.
[11] S. Catani and M. H. Seymour, Nucl. Phys. B485 (1997) 291; Erratum in Nucl. Phys. B510 (1998) 503.
[12] ZEUS Coll., S. Chekanov et al. Phys. Rev. D67 (2003) 012007.
[13] J. Pumplin et al. JHEP 0207 (2002) 012; D. Stump et al. JHEP 0310 (2003) 046.
[14] ZEUS Coll., S. Chekanov et al., Phys. Letts. B547 (2002) 164.
[15] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C23 (2002) 615.
[16] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C42 (2005) 1.
[17] R. W. L. Jones et al., JHEP 0312 (2003) 007.
[18] M. Klasen, T. Kleinwort and G. Kramer, Eur. Phys. J. C1 (1998) 1.
[19] A. D. Martin et al., Eur. Phys. J. C23 (2002) 73.
[20] M. Glück, E. Reya and A. Vogt, Phys. Rev. D45 (1992) 3986.

DIS 2009