LETTER TO THE EDITOR

A prediction about the age of thick discs as a function of the stellar mass of the host galaxy

S. Comerón1,2

1 Departamento de Astrofísica, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
e-mail: seb.comeron@gmail.com
2 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain

Received 18 December 2020 / Accepted 12 January 2021

ABSTRACT

One of the suggested thick disc formation mechanisms is that they were born quickly and in situ from a turbulent clumpy disc. Subsequently, thin discs formed slowly within them from leftovers of the turbulent phase and from material accreted through cold flows and minor mergers. In this Letter, I propose an observational test to verify this hypothesis. By combining thick disc and total stellar masses of edge-on galaxies with galaxy stellar mass functions calculated in the redshift range of $z \leq 3.0$, I derived a positive correlation between the age of the youngest stars in thick discs and the stellar mass of the host galaxy; galaxies with a present-day stellar mass of $M_\star(z=0) < 10^{10} M_\odot$ have thick disc stars as young as 4 Gyr, whereas the youngest stars in the thick discs of Milky-Way-like galaxies are ~ 10 Gyr old. I tested this prediction against the scarcely available thick disc age estimates, all of them are from galaxies with $M_\star(z=0) \gtrsim 10^{10} M_\odot$, and I find that field spiral galaxies seem to follow the expectation. On the other hand, my derivation predicts ages that are too low for the thick discs in lenticular galaxies, indicating a fast early evolution for S0 galaxies. I propose the idea of conclusively testing whether thick discs formed quickly and in situ by obtaining the ages of thick discs in field galaxies with masses of $M_\star(z=0) \sim 10^{10-11} M_\odot$ and by checking whether they contain ~ 5 Gyr-old stars.

Key words. galaxies: evolution – galaxies: spiral – galaxies: structure

1. Introduction

Thick discs in galaxies are the low surface brightness and large scale-height counterparts of the canonical thin discs. Thick disc stars are older than those of the thin discs (e.g., Bensby et al. 2005 for the Milky Way, and Yoachim & Dalcanton 2008; Comerón et al. 2015; Pinna et al. 2019a for other galaxies) and they comprise at least several tens of percent of the baryons in discs (e.g., Reid 2005; Fuhrmann 2008; Fuhrmann et al. 2012; Snaith et al. 2014 for the Milky Way, and Yoachim & Dalcanton 2006; Comerón et al. 2011, 2018 for other galaxies). Hence, thick discs are key to understand how early galaxies evolved.

The origin of thick discs is controversial. The proposed formation mechanisms cover the four corners of the diagram that summarises the processes of galactic evolution in Kormendy & Kennicutt (2004). The position of a mechanism in this diagram is characterised by two parameters: whether it is internally- or environment-driven, and whether the process is fast (of the order of a dynamical timescale) or secular. In this framework, the possible thick disc formation mechanisms are as follows: (1) external fast processes, where the thick disc is a consequence of the merger of gas-rich galaxies during the initial galaxy assembly process (Brook et al. 2004; Martig et al. 2014), (2) internal fast processes where the thick disc is born thick due to the turbulent and clumpy nature of the first discs (Elmegreen & Elmegreen 2006; Bournaud et al. 2009; Comerón et al. 2014), (3) external secular processes where the thick disc is made of stars stripped from infalling satellites (Abadi et al. 2003) and by the disc dynamical heating caused by satellites (Qu et al. 2011), and (4) internal secular processes, where the thick disc is caused by dynamical heating due to disc overdensities (Villumsen 1985) and/or the radial migration of stars (Schönrich & Binney 2009; Roškar et al. 2013).

Several of the abovementioned mechanisms might be acting concurrently. For example, simulations have shown that the combination of internally and externally driven secular heating can produce realistic thick discs (Minchev et al. 2015; García de la Cruz et al. 2020). Another example is the fact that the thick discs in three S0 galaxies in the Fornax cluster show traces of a significant minority of accreted stars on top of a population that was formed in situ (Pinna et al. 2019a,b). It is also possible that galaxies with different masses have different thick disc formation paths (Comerón et al. 2012).

In this Letter, I present a prediction about the age of the youngest stars of thick discs as a function of the stellar mass of the host galaxy if the main formation mechanism is internal and fast. The confrontation between this prediction and forthcoming spectroscopically-derived thick disc ages will make it possible to confirm or reject the scenario put to the test.

I assume that the formation of thick disc stars is completed before the thin disc starts forming (Elmegreen & Elmegreen 2006; Bournaud et al. 2009) and that the thick disc and the classical bulge form simultaneously (Comerón et al. 2014). In this framework, the first discs were clumpy and with a large star formation rate, roughly ten times larger than that in the present day. Because the star formation scale height scales with the specific star formation rate (Comerón et al. 2014), these discs were thick. Due to dynamical friction, some of the clumps spiralled inwards and formed bulges. The thick disc and the classical bulge are collectively called the dynamically hot components.
2. Derivation

Here I derive the age of the youngest stars in thick discs (and classical bulges) as a function of the host stellar mass for thick discs which form quickly and in situ. Given a galaxy with a present-day stellar mass \(M_\star(z = 0) \), two elements are required to do so: (1) the mass of the dynamically hot components, \(M_h \), and (2) the evolution with redshift of the total stellar mass, \(M_\star(z) \).

The first point can be addressed by resorting to the decompositions of Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al. 2010) edge-on galaxies by Comerón et al. (2018), which provide the masses of the thin discs, the thick discs, and the classical bulges. The risk of confusion between pseudobulges and classical bulges was minimised by assigning the light of flattened components to the disc (usually the thin disc). Figure 1 displays the hot component mass, \(\log (M_h/M_\odot) \), as a function of the total stellar mass, \(\log (M_\star(z = 0)/M_\odot) \), for the 124 galaxies with a fitted thick disc in Comerón et al. (2018). A linear regression to the scatter plot gives

\[
\log (M_h/M_\odot) = 0.489 + 0.9161 \log (M_\star(z = 0)/M_\odot). \tag{1}
\]

To find how the stellar mass of galaxies evolves with time, I followed the method proposed by van Dokkum et al. (2013). For a given stellar mass at present, \(M_\star(z = 0) \), I find the progenitors at a given redshift, \(z \), by assuming that the comoving density does not vary with time. This approach is valid as long as galaxies conserve their mass rank order, which is true within 0.15 dex in the simulations by Leja et al. (2013). In practice, this is done by integrating galaxy stellar mass functions at different redshifts, \(\phi(M,z) \), to find the mass, \(M_\star(z) \), above which the cumulative comoving density is equal to that for the present-day stellar mass \(M_\star(z = 0) \)

\[
\rho(M > M_\star(z = 0)) = \int_{M_\star(z = 0)}^{\infty} \phi(M,z = 0) \, dM \tag{2}
\]

\[
= \int_{M_\star(z)}^{\infty} \phi(M,z) \, dM = \rho(M > M_\star(z)).
\]

Leja et al. (2020) compiled data from galaxies in the redshift range of \(0.2 \leq z \leq 3.0 \) and constructed a continuity model to describe \(\phi(M,z) \) at an arbitrary redshift within the studied range. Their model was built using all the masses and redshifts of the galaxies in their sample simultaneously, without using any sort of binning in either mass or redshift. I computed the mass functions with a python code provided by Leja et al. (2020) and used the mass functions and Eq. (2) to derive the stellar mass evolution of galaxies with \(M_\star(z = 0) \) between \(10^9 \) and \(10^{11.2} \) \(M_\odot \). The evolution at \(z < 0.2 \) was calculated with extrapolated stellar mass functions. The resulting stellar mass evolution estimates are presented in Fig. 2.

Under the assumption that the thick disc and the classical bulge form before the thin disc, Eq. (1) and the information in Fig. 2 can be combined to obtain, for each present-day stellar mass, \(M_\star(z = 0) \), the redshift when the thick disc formation ended, that is the redshift for which

\[
M_h = M_\star(z) \tag{3}
\]

These redshifts can be transformed into an age, \(\tau \), so they can be compared with the observed thick disc ages. For consistency with Leja et al. (2020), I assume the WMAP9 cosmology (Hinshaw et al. 2013). The resulting age of the youngest stars in thick discs as a function of the host stellar mass is shown in Fig. 3.

\[
\tau(\text{in Gyr}) = 104 - 22.15 \log (M_\star(z = 0)) + 1.237 (\log (M_\star(z = 0)))^2. \tag{4}
\]
This yielded 5 Gyr for NGC 4111, 4−9 Gyr for NGC 4110, and 8−11 Gyr for NGC 5422. In the latter two galaxies, however, the slit was placed in regions where the light is dominated by the thick disc according to Comerón et al. (2018). In the case of NGC 4111, the galaxy is thick disc-dominated everywhere at 3.6 μm (Comerón et al. 2018), but the slit was placed only 400 pc above the midplane, in a region where the thin disc has a significant contribution at 3.6 μm, which is probably even larger in the optical. Therefore, the estimated thick disc ages for these galaxies might be significantly biased downwards by the thin disc.

3. Comparison with observations

In this section, the prediction that thick discs are older in the most massive galaxies is confronted with thick disc ages that were obtained spectroscopically for a few galaxies with thick disc stellar masses derived in Comerón et al. (2018). Strictly speaking, the prediction concerns the age of the youngest stars in the thick disc. However, from an observational perspective, the difference is small because the luminosity of a galaxy component is dominated by its youngest stars.

The observational data and thick disc ages have been obtained by different groups. Hence, the data are heterogeneous, both in their acquisition and processing, as explained below. The recovery of star formation histories from spectra is an ill-posed inverse problem, which might result in large uncertainties in the estimated ages. Furthermore, bursty star formation is smoothed by regularisation. As a consequence, if the thick discs formed in a short burst, the recovered star formation history would be an artificially broadened peak causing an underestimation of the age of the youngest thick disc stars.

I find that the two non-lenticular galaxies, the Milky Way and ESO 533−4, approximately fall in the relation derived in Sect. 2 (Fig. 3). On the other hand, lenticular galaxies do not follow the relation (Fig. 4).

ESO 533−4 (Comerón et al. 2015). The data were obtained with the optical integral field spectrograph (IFS) VIMOS at the VLT. The thick disc age was estimated with pPXF (Cappellari & Emsellem 2004). In order to account for a possible excessive regularisation-induced smoothing, I estimated the age of the newest stars in the thick disc to be 7−9 Gyr by finding the interval between which 90% and 99% of thick disc stars were formed according to the fit.

NGC 4111, NGC 4710, and NGC 5422 (Kasparova et al. 2016). The data were obtained with the single-slit spectrographs SCORPIO and SCORPIO-2 at BTA. The ages of the thick discs were estimated with NBURSTS (Chilingarian et al. 2007a,b). This yielded 5 Gyr for NGC 4111, 4−5 Gyr for NGC 4710, and 8−11 Gyr for NGC 5422. In the latter two galaxies, however, the slit was placed in regions where the light is dominated by the thin disc according to Comerón et al. (2018). In the case of NGC 4111, the galaxy is thick disc-dominated everywhere at 3.6 μm (Comerón et al. 2018), but the slit was placed only 400 pc above the midplane, in a region where the thin disc has a significant contribution at 3.6 μm, which is probably even larger in the optical. Therefore, the estimated thick disc ages for these galaxies might be significantly biased downwards by the thin disc.

4. Discussion: Potential different evolution for the thick discs in spiral and S0 galaxies

The derivation in Sect. 2 shows that if thick discs form quickly and in situ, those in low-mass galaxies form slower. This is the consequence of two concurrent factors: (1) the smaller the total stellar mass of a galaxy, the larger the relative thick disc mass (Yoachim & Dalcanton 2006; Comerón et al. 2011, 2012, 2014, 2018); and (2) downsizing, which is the process by which large-mass galaxies form faster than small-mass ones (Cowie et al. 1996). These two factors are demonstrated in Figs. 1 and 2, respectively.

Based on the scarce observational evidence, the predicted trend between the age of the youngest stars in a thick disc and the total stellar mass is not followed by S0 galaxies. On the other hand, the two spiral galaxies for which we have data seem to follow it. Assuming that the literature data are representative of the whole population, it is important to determine what the implications are.

Two of the three lenticular galaxies in Kasparova et al. (2016) have thick disc ages that fall well below the expectation (Fig. 4), although most likely, they are measuring a population with a significant thin disc contribution. On the other hand, some lenticular galaxies – including the three galaxies in the Fornax cluster – have ages that are above those predicted. This might be due to a difference in evolutionary paths between isolated galaxies and those in clusters. Sil’chenko et al. (2012) and Comerón et al. (2016) propose that, for at least some S0 galaxies, the evolution when entering a cluster is greatly accelerated (perhaps almost as in a monolithic collapse). Regarding the galaxies discussed...
in Sect. 3, this is clearly the case for NGC 1381, where the thin and the thick discs show no age difference (Pinna et al. 2019b). Because the thin disc is more metal-rich than the thick disc, it is likely that the thin disc is slightly younger, but the difference in age cannot be resolved (see the case of ESO 243–49 in Comerón et al. 2016). On the other hand, IC 335 and NGC 1380A have thin discs whose mean age is noticeably younger than the thick disc, perhaps indicating a ‘traditional’ evolution where star formation is not quenched by the environment, or indicating that the galaxy has been rejuvenated by accreting fresh material, as suggested by Katkov et al. (2019).

The possibility of two evolutionary paths distinguishing galaxies in the field and at least some lenticular galaxies in clusters is intriguing. Furthermore, it could undermine some of the premises under which this study was done: (1) that all the galaxies fall into a single log M_\star versus log $M_\star(z=0)$ relation, and (2) that the evolution of the stellar mass function does not depend on the galaxy type. Point (1) was tested by redoing the fit in Fig. 1 with the 3G by the hypothesis that the thin discs form quickly and in situ from turbulent clumpy discs before the thin disc formed within them (Elmegreen & Elmegreen 2006; Bournaud et al. 2009; Comerón et al. 2014).

By combining the thick disc and the total stellar masses of field galaxies in the S4G from Comerón et al. (2018) and a model allowing me to calculate galaxy stellar mass functions in the redshift range of 0.2 $\leq z \leq$ 3.0 (Leja et al. 2020), I derived a relationship between the age of the youngest stars in the thick discs and total stellar mass of the host. I thus predict that the age of the youngest thick disc stars increases with the host stellar mass: as young as 4–6 Gyr in galaxies with a total stellar mass below $M_\star(z=0)$ $\sim 10^{10}$, versus \sim10 Gyr in Milky-Way-like galaxies.

The scarce available observational data indicate that spiral field galaxies (including the Milky Way) seem to follow the expectation. However, lenticular galaxies in clusters have thick disc stars that are older than predicted, perhaps indicating a very fast early evolution as suggested by Sil’chenko et al. (2012) and Comerón et al. (2016).

To strengthen the tentative evidence that field galaxies formed their thick discs in situ and quickly at high redshift, further observations are required, especially for the unexplored mass range of $M_\star(z=0)$ $\sim 10^{10}$ M_\odot. We might expect to find that galaxies with a total stellar mass of $M_\star(z=0)$ $\sim 10^{10}$ M_\odot have thick disc stars as young as \sim5 Gyr.

Acknowledgements. I thank the anonymous referee for comments that have helped to improve this Letter. I thank Dr. Simón Díaz-García for useful discussions and Prof. Johan H. Knapen for revising the manuscript. I acknowledge support from the State Research Agency (AEI-MCINN) of the Spanish Ministry of Science and Innovation under the grant ‘The structure and evolution of galaxies and their central regions’ with reference PID2019-105602GB-I00/10.13039/50110001033.

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 597, 21
Bensby, T., Feltzing, S., Lundström, I., & Ilyin, I. 2005, A&A, 433, 185
Bensby, T., Zinn, A. R., Oey, M. S., & Feltzing, S. 2007, ApJ, 663, L13
Bournaud, F., Elmegreen, B. G., & Martig, M. 2009, ApJ, 707, L1
Brook, C. B., Kawaia, D., Gibson, B. K., & Freeman, K. C. 2004, ApJ, 612, 894
Capellari, M., & Enkel, E. 2004, PASP, 116, 138
Chilingarian, I. L., Prugniel, P., Sil’chenko, O. K., & Koleva, M. 2007a, in Stellar Populations as Building Blocks of Galaxies, eds. A. Vaidekas, & R. Peletier, 241, 175
Chilingarian, I. L., Prugniel, P., Sil’chenko, O. K., & Afanasiev, V. L. 2007b, MNRAS, 376, 1033
Comerón, S., Elmegreen, B. G., Knapen, J. H., et al. 2011, ApJ, 741, 28
Comerón, S., Elmegreen, B. G., Salo, H., et al. 2012, ApJ, 759, 98
Comerón, S., Elmegreen, B. G., Salo, H., et al. 2014, A&A, 571, A58
Comerón, S., Salo, H., Janz, J., Laurikainen, E., & Yoachim, P. 2015, A&A, 584, A34
Comerón, S., Salo, H., Peletier, R. F., & Mentz, J. 2016, A&A, 593, L6
Comerón, S., Salo, H., & Knapen, J. H. 2018, A&A, 610, A5
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Elmegreen, B. G., & Elmegreen, D. M. 2006, ApJ, 650, 644
Fuhrmann, K. 2008, MNRAS, 384, 173
Fuhrmann, K., Chini, R., Hofmeister, V. H., & Berntkop, J. 2012, MNRAS, 420, 1423
Garcia de la Cruz, J., Martig, M., Minchev, I., & James, P. 2020, MNRAS, submitted [arXiv:2102.07279]
Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19
Kasparova, A. V., Katkov, I. Y., Chilingarian, I. V., et al. 2016, MNRAS, 460, L89
Katkov, I. Y., Kniazev, A. Y., Kasparova, A. V., & Sil’chenko, O. K. 2019, MNRAS, 483, 2413
Kormendy, J., & Kennicutt, R. C., Jr. 2004, ARA&A, 42, 603
Leja, J., van Dokkum, P., & Franx, M. 2013, ApJ, 766, 33
Leja, J., Speagle, J. S., Johnson, B. D., et al. 2020, ApJ, 893, 111
Martig, M., Minchev, I., & Flynn, C. 2014, MNRAS, 443, 2452
McMillan, P. J. 2011, MNRAS, 414, 2466
Minchev, I., Martig, M., Streich, D., et al. 2015, ApJ, 804, L9
Pinna, F., Falcón-Barroso, J., Martig, M., et al. 2019a, A&A, 625, A95
Pinna, F., Falcón-Barroso, J., Martig, M., et al. 2019b, A&A, 623, A19
Qu, Y., Di Matteo, P., Luehrt, M. D., & van Driel, W. 2011, A&A, 530, A10
Reid, I. N. 2005, ARA&A, 43, 247
Roškar, R., Debattista, V. P., & Loebman, S. R. 2013, MNRAS, 433, 976
Schönrich, R., & Binney, J. 2009, MNRAS, 396, 203
Sheth, K., Regan, M., Hinz, J. L., et al. 2010, PASP, 122, 1397
Sil’chenko, O. K., Proshina, I. S., Shulga, A. P., & Kupovosov, S. E. 2012, MNRAS, 427, 790
Snaith, O. N., Haywood, M., Di Matteo, P., et al. 2014, ApJ, 781, L31
van Dokkum, P. G., Leja, J., Nelson, E. J., et al. 2013, ApJ, 771, L35
Villumsen, J. V. 1985, ApJ, 290, 75
Yoachim, P., & Dalcanton, J. J. 2006, AJ, 131, 226
Yoachim, P., & Dalcanton, J. J. 2008, ApJ, 683, 707