Liver fibrosis indices are related to diabetic peripheral neuropathy in individuals with type 2 diabetes

Kyuho Kim1, Tae Jung Oh1,3,* Hyen Chung Cho1, Yun Kyung Lee1, Chang Ho Ahn1,3, Bo Kyung Koo2,3, Jae Hoon Moon1,3, Sung Hee Choi1,3 & Hak Chul Jang1,3

The association between nonalcoholic fatty liver (NAFL) or liver fibrosis and diabetic peripheral neuropathy (DPN) has not been well studied. We aimed to investigate the association of NAFL or liver fibrosis indices and DPN in individuals with type 2 diabetes. In this observational study, we included 264 individuals with type 2 diabetes, and calculated non-alcoholic fatty liver disease (NAFLD) liver fat score, NAFLD fibrosis score, and Fibrosis-4 (FIB-4) index to evaluate the status of NAFLD or liver fibrosis. DPN was diagnosed when the Michigan Neuropathy Screening Instrument—Physical Examination score was ≥ 2.5. The NAFLD fibrosis score and FIB-4 index were significantly higher in individuals with DPN than in those without DPN. Logistic analyses showed that the NAFLD fibrosis score and FIB-4 index were associated with DPN after adjustment for covariates (adjusted odds ratio 1.474 and 1.961, respectively). In the subgroup analysis, this association was only significant in the group with a high NAFLD liver fat score (> −0.640). Serum levels of fetuin-A, a hepatokine, were decreased in individuals with abnormal vibration perception or 10-g monofilament tests compared with their counterparts. The present study suggests that liver fibrosis might be associated with DPN in individuals with type 2 diabetes.

Results

Clinical and biochemical characteristics of the study participants. The present study included the data of 264 individuals with type 2 diabetes but without chronic liver diseases; 38.2% had DPN. Body mass index (BMI), fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), and aspartate aminotransferase (AST) levels...
were significantly higher in individuals with DPN than in those without DPN (Table 1). The prevalence of suspected NAFLD based on NAFLD liver fat score > −0.640 was compatible between individuals with and without DPN (73.3% vs. 69.3%, p = 0.493). However, both the NAFLD fibrosis score and Fibrosis-4 (FIB-4) index were significantly higher in individuals with DPN than in those without DPN.

We stratified individuals by NAFLD liver fat score (≤ −0.640 or > −0.640) and the presence of DPN. Compared with individuals with a low NAFLD liver fat score (≤ −0.640), individuals with a high NAFLD liver fat score (> −0.640) were more obese and had higher blood pressure (BP), triglyceride levels, AST, alanine aminotransferase (ALT), and homeostatic model assessment-insulin resistance (HOMA-IR) (Table 2). However, there were no significant differences in neuropathy examination results between individuals with a low NAFLD liver fat score (≤ −0.640) and those with a high NAFLD liver fat score (> −0.640). In contrast to the subgroup with a low NAFLD liver fat score (≤ −0.640), the NAFLD fibrosis score and FIB-4 index were significantly higher in individuals with DPN than in those without DPN among individuals with a high NAFLD liver fat score (> −0.640).

Association of NAFLD fibrosis score and FIB-4 index with DPN. Logistic regression analyses showed that the NAFLD liver fat score was not associated with DPN. However, the NAFLD fibrosis score and FIB-4 index were significantly associated with DPN: adjusted odds ratio (aOR) 1.474 (95% confidence interval [CI] 1.055, 2.058), and aOR 1.961 (95% CI 1.209, 3.183), respectively (Table 3). In the subgroup analysis, this association was only observed in individuals with a high NAFLD liver fat score (> −0.640). The aORs for the NAFLD fibrosis score and FIB-4 index were 1.501 (95% CI 1.006, 2.239) and 2.272 (95% CI 1.271, 4.059), respectively.

Association between fetuin-A and DPN features. Among individuals with a high NAFLD liver fat score (> −0.640), serum fetuin-A levels were 613.5 ± 181.0 µg/ml in individuals without DPN and 611.3 ± 182.7 µg/ml in those with DPN (p = 0.956). Serum fetuin-A levels were significantly lower in individuals with abnormal vibration perception (542.2 ± 144.9 µg/ml vs. 639.0 ± 183.0 µg/ml, p = 0.014) and in those with an abnormal 10-g monofilament test (494.2 ± 121.0 µg/ml vs. 625.2 ± 182.1 µg/ml, p = 0.029) compared with their counterparts. The area under the receiver operating characteristic curve (AUROC) of the fetuin-A levels for the absence of abnormal vibration perception was 0.671 (95% CI 0.531, 0.811) and for the absence of abnormal 10-g monofilament test was 0.736 (95% CI 0.561, 0.911) (Fig. 1).

Discrimination power of liver fibrosis indices and fetuin-A for DPN. Supplementary Table S1 shows the discrimination power and various cut-off values of the NAFLD fibrosis score, FIB-4 index, and fetuin-A for DPN. Overall, the performance was not sufficient for use as a diagnostic tool for DPN.

Discussion

In this cross-sectional study, there was a lack of significant association between NAFLD liver fat score and DPN, but liver fibrosis indices such as NAFLD fibrosis score and FIB-4 index were higher in individuals with DPN than in those without DPN. In addition, even after adjustment for known DPN risk factors, the NAFLD fibrosis score and FIB-4 index were independently associated with DPN.

Previous studies have shown conflicting results regarding the association between NAFLD and DPN. Mantovani et al. used ultrasonography for the diagnosis of NAFLD, and they used the Michigan Neuropathy Screening Instrument (MNSI) method and a vibration perception threshold (VPT) assessment for the diagnosis of DPN. They showed a positive association between NAFLD and DPN in Italian individuals with type 1 diabetes (mean age 43.4 years, mean HbA1c 8.0%, and median diabetes duration 17 years). Lv et al. used ultrasonography for the diagnosis of NAFLD, and diagnosed DPN based on physical examination. They showed a negative association between NAFLD and DPN in hospitalised Chinese individuals with type 2 diabetes (mean age 63.4 years, mean HbA1c 8.7%, and mean diabetes duration 9.6 years). Kim et al. used ultrasonography for the diagnosis of NAFLD, and used a nerve conduction study, a current perception threshold test, and physical examination for the diagnosis of DPN. They showed no association between NAFLD and DPN in Korean individuals with type 2 diabetes (mean age 57.7 years, mean HbA1c 8.4%, and mean diabetes duration 6.2 years), which was consistent with our results. Potential explanations for these differences are the different characteristics of participants in each study and different diagnostic criteria for DPN. Otherwise, considering that the majority of individuals with NAFLD in previous studies were estimated to have NAFL, which is an early stage of NAFLD, other medical conditions or more severe stages of NAFLD might be more important contributors to DPN than NAFL per se.

A previous cohort study reported that an elevated lower-limb vibration perception threshold was associated with markers of liver fibrosis, such as the NAFLD fibrosis score, and with liver stiffness measurement in individuals with type 2 diabetes. Our study is consistent with previous observations, and we further found that the association between DPN and liver fibrosis indices was only significant in individuals with a high NAFLD liver fat score (> −0.640). This can be explained by increased vulnerability of the liver to injuries such as oxidative stress or cytokines, as reflected by higher BMI, AST, ALT, and HOMA-IR levels in individuals with a high NAFLD liver fat score (> −0.640) compared with those with low NAFLD liver fat score (≤ −0.640).

The ‘multiple hit hypothesis’ suggests that multiple insults might be generated in individuals with type 2 diabetes due to altered inter-organ crosstalk between the intestine, adipose tissue, skeletal muscle, liver, and pancreas, and that these insults would synergistically result in the development and progression of NAFLD. During the development of NAFLD, hypercaloric diets can induce intestinal dysbiosis and excess fat storage in adipose tissue, skeletal muscle, and liver, which result in inflammation and insulin resistance. Insulin resistance results in hyperglycaemia and hyperinsulinaemia. During the progression of NAFLD, glucolipotoxicity increases reactive oxygen species (ROS) generation and endoplasmic reticulum stress, resulting in cell death. Together,
Characteristics	Total (n = 264)	DPN (−) (n = 163)	DPN (+) (n = 101)	p value
Male, n (%)	159 (60.2)	103 (63.2)	56 (55.4)	0.211
Age (years)	59.4 ± 9.2	58.8 ± 9.0	60.3 ± 9.4	0.212
Height (cm)	163.5 ± 8.9	163.9 ± 8.7	162.8 ± 9.1	0.312
Body weight (kg)	67.9 ± 11.7	67.3 ± 11.0	69.0 ± 12.6	0.243
BMI (kg/m²)	25.3 ± 3.4	24.9 ± 3.2	26.0 ± 3.8	0.016
Waist circumference (cm)	88.5 ± 8.8	87.9 ± 8.6	89.3 ± 9.0	0.208
Systolic BP (mmHg)	130.5 ± 14.0	130.4 ± 14.0	130.5 ± 14.0	0.932
Diastolic BP (mmHg)	74.9 ± 9.8	75.5 ± 10.2	74.0 ± 9.0	0.245
Diabetes duration (years)	11.3 ± 8.4	10.7 ± 8.4	12.2 ± 8.3	0.161
FPG (mmol/l)	7.6 ± 2.1	7.3 ± 1.5	8.0 ± 2.8	0.040
HbA1c (mmol/mol)	55.5 ± 12.6	53.6 ± 11.1	58.0 ± 14.4	0.009
HbA1c (%)	7.2 ± 1.2	7.1 ± 1.0	7.5 ± 1.3	0.009
Cholesterol (mmol/l)	4.0 ± 0.9	4.1 ± 0.9	3.9 ± 1.0	0.331
Triglyceride (mmol/l)	1.3 ± 0.0	1.3 ± 0.0	1.4 ± 0.0	0.157
HDL cholesterol (mmol/l)	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	0.076
LDL cholesterol (mmol/l)	2.3 ± 0.7	2.4 ± 0.6	2.3 ± 0.7	0.212
Urea nitrogen (mmol/l)	5.9 ± 1.6	5.9 ± 1.5	5.9 ± 1.8	0.916
Creatinine (µmol/l)	70.7 ± 17.7	70.5 ± 17.6	70.7 ± 17.7	0.733
eGFR (mL·min⁻¹·[1.73 m]⁻²)	93.4 ± 21.9	94.8 ± 21.8	91.1 ± 21.9	0.177
AST (U/l)	28.5 ± 12.2	27.2 ± 10.3	30.5 ± 14.6	0.048
ALT (U/l)	29.3 ± 15.6	29.1 ± 15.3	29.6 ± 16.2	0.781
Insulin (pmol/l)	58.1 ± 30.8	56.7 ± 29.4	59.6 ± 33.0	0.456
HOMA-IR	2.8 ± 1.8	2.6 ± 1.5	3.0 ± 2.3	0.097
Abnormal 10-g monofilament testb, n (%)	18 (6.8)	4 (2.5)	14 (13.9)	<0.001
MNSI-Q	2.1 ± 2.0	1.7 ± 1.9	2.8 ± 2.1	<0.001
MNSI-PE	2.1 ± 1.2	1.3 ± 0.6	3.5 ± 0.7	<0.001
Abnormal appearance, n (%)	93 (35.2)	10 (6.1)	83 (82.2)	<0.001
Ulceration, n (%)	1 (0.4)	0 (0.0)	1 (1.0)	0.203
Absent ankle reflexes, n (%)	18 (6.8)	4 (2.5)	14 (13.9)	<0.001
Absent vibration perception, n (%)	52 (19.7)	19 (11.7)	33 (32.7)	<0.001
Smoking status, n (%)				0.131
Never smoker	124 (47.0)	69 (42.3)	55 (54.5)	
Ex-smoker	86 (32.6)	56 (34.4)	30 (29.7)	
Current smoker	54 (20.5)	38 (23.3)	16 (15.8)	
Alcohol, n (%)	102 (38.6)	62 (38.0)	40 (39.6)	0.799
Exercise, n (%)	180 (68.2)	110 (67.5)	70 (69.3)	0.757
Hypertension, n (%)	145 (54.9)	86 (52.8)	59 (58.4)	0.369
Dyslipidaemia, n (%)	174 (65.9)	104 (63.8)	70 (69.3)	0.359
Insulin therapy, n (%)	50 (18.9)	27 (16.6)	23 (22.8)	0.211
Lipid-lowering agent, n (%)	203 (76.9)	124 (76.1)	79 (78.2)	0.688
NAFLD liver fat score	0.04 ± 1.24	−0.04 ± 1.0	0.15 ± 1.29	0.224
NAFLD liver fat score > −0.640, n (%)	187 (70.8)	113 (69.3)	74 (73.3)	0.493
NAFLD fibrosis score	−0.97 ± 1.11	−1.11 ± 1.08	−0.75 ± 1.14	0.010
NAFLD fibrosis score > 0.676, n (%)	16 (6.1)	5 (3.1)	11 (10.9)	0.010
FIB-4 index	1.43 ± 0.68	1.34 ± 0.59	1.58 ± 0.79	0.009
FIB-4 index ≥ 1.3*, n (%)	106 (40.2)	57 (35.0)	49 (48.5)	0.029

Table 1. Demographics of study participants according to the presence of DPN. Data are expressed as the mean ± standard deviation (SD) or geometric mean ± geometric SD or number (%). DPN diabetic peripheral neuropathy, BMI body mass index, BP blood pressure, FPG fasting plasma glucose, HbA1c haemoglobin A1c, HDL high-density lipoprotein, LDL low-density lipoprotein, eGFR estimated glomerular filtration rate, AST aspartate aminotransferase, ALT alanine aminotransferase, HOMA-IR homeostatic model assessment-insulin resistance, MNSI-Q michigan neuropathy screening instrument-questionnaire, MNSI-PE michigan neuropathy screening instrument-physical examination, NAFLD nonalcoholic fatty liver disease, FIB-4 fibrosis-4.

*Variable was natural log-transformed before statistical analysis and expressed as geometric mean ± geometric SD. Abnormal 10-g monofilament test was defined as a 10-g monofilament score < 7 on either side. For individuals aged ≥ 65 years, a cut-off of 2.0 was used. p value for χ² test or t test.
Table 2. Clinical and biochemical characteristics of individuals with type 2 diabetes according to the NAFLD liver fat score and the presence of DPN. Data are expressed as the mean ± standard deviation (SD) or geometric mean ± geometric SD or number (%). DPN diabetic peripheral neuropathy, BMI body mass index, BP blood pressure, FPG fasting plasma glucose, HbA1c haemoglobin A1c, HDL high-density lipoprotein, LDL low-density lipoprotein, eGFR estimated glomerular filtration rate, AST aspartate aminotransferase, ALT alanine aminotransferase, HOMA-IR homeostatic model assessment-insulin resistance, MNSI-Q michigan neuropathy screening instrument-questionnaire, MNSI-PE michigan neuropathy screening instrument-physial examination, NAFLD nonalcoholic fatty liver disease, FIB-4 fibrosis-4. *Variable was natural log-transformed before statistical analysis and expressed as geometric mean ± geometric SD. †Abnormal 10-g monofilament test, n (%) c For individuals aged ≥ 65 years, a cut-off of 2.0 was used. ‡Comparison between NAFLD liver fat score ≤ 0.640 group and NAFLD liver fat score > 0.640 group. p value for χ² test or t test.
these dead cells combined with infiltrated inflammatory cells in the liver, free fatty acids, intestine-derived lipopolysaccharides, and transforming growth factor (TGF)-β from Kupffer cells activate hepatic stellate cells (HSCs). Activated HSCs increase the extracellular matrix, leading to liver fibrosis. Among these insults related to the progression of NAFLD, hyperglycaemia, insulin resistance, oxidative stress, and inflammation are also involved in the pathogenesis of DPN21.

Advanced glycation end products (AGEs) are implicated in the pathogenesis of DPN. The formation of AGEs increases under chronic hyperglycaemia in diabetes. Interaction of AGEs with their receptors (RAGEs)

| Table 3. ORs between NAFLD liver fat score, NAFLD fibrosis score, FIB-4 index, and DPN. Data are presented as odds ratio (OR) and 95% confidence interval (CI). Model 1 is unadjusted. Model 2 is adjusted for sex, age, body mass index (BMI), systolic blood pressure (BP), and diabetes duration. Model 3 is additionally adjusted for haemoglobin A1c (HbA1c), low-density lipoprotein (LDL) cholesterol, and homeostatic model assessment-insulin resistance (HOMA-IR). NAFLD, nonalcoholic fatty liver disease; FIB-4, fibrosis-4; DPN, diabetic peripheral neuropathy. |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | Total population | NAFLD liver fat score ≤ −0.640 | NAFLD liver fat score > −0.640 |
| | | OR | 95% CI | p value | OR | 95% CI | p value | OR | 95% CI | p value |
| NAFLD liver fat score | | | | | | | | | | |
| Model 1 | 1.132 | 0.926, 1.384 | 0.225 | 0.964 | 0.328, 2.838 | 0.947 | 1.170 | 0.879, 1.558 | 0.282 |
| Model 2 | 1.028 | 0.814, 1.300 | 0.815 | 0.856 | 0.275, 2.666 | 0.788 | 1.085 | 0.793, 1.483 | 0.611 |
| Model 3 | 0.910 | 0.677, 1.224 | 0.533 | 0.485 | 0.132, 1.775 | 0.274 | 0.996 | 0.677, 1.465 | 0.983 |
| NAFLD fibrosis score | | | | | | | | | | |
| Model 1 | 1.445 | 1.116, 1.872 | 0.005 | 1.413 | 0.911, 2.191 | 0.122 | 1.354 | 1.004, 1.827 | 0.047 |
| Model 2 | 1.389 | 1.003, 1.923 | 0.048 | 1.451 | 0.783, 2.689 | 0.237 | 1.386 | 0.944, 2.035 | 0.096 |
| Model 3 | 1.474 | 1.055, 2.058 | 0.023 | 1.681 | 0.824, 3.431 | 0.153 | 1.501 | 1.006, 2.239 | 0.047 |
| FIB-4 index | | | | | | | | | | |
| Model 1 | 1.689 | 1.156, 2.467 | 0.007 | 1.288 | 0.634, 2.615 | 0.484 | 1.879 | 1.185, 2.978 | 0.007 |
| Model 2 | 1.753 | 1.106, 2.781 | 0.017 | 1.351 | 0.508, 3.596 | 0.546 | 2.028 | 1.166, 3.527 | 0.012 |
| Model 3 | 1.961 | 1.209, 3.183 | 0.006 | 1.840 | 0.617, 5.491 | 0.274 | 2.272 | 1.271, 4.059 | 0.006 |

Figure 1. Serum fetuin-A levels and ROC curves for the detection of abnormalities in DPN examination in individuals with a high NAFLD liver fat score (≥ −0.640). (A) Normal (n = 63) and abnormal (n = 19) vibration perception. (B) ROC curve of fetuin-A for the absence of abnormal vibration perception. (C) Normal (n = 74) and abnormal (n = 8) 10-g monofilament tests. (D) ROC curve of fetuin-A for the absence of an abnormal 10-g monofilament test. *p < 0.05. Data are the mean ± standard deviation. AUROC, area under the ROC curve; DPN, diabetic peripheral neuropathy; NAFLD, nonalcoholic fatty liver disease; ROC, receiver operating characteristic.
activates intracellular signalling pathways and increases oxidative stress and inflammation, ultimately resulting
in neuronal injuries. Interestingly, patients with NASH exhibited higher hepatic and serum glyceraldehyde-
derived AGES levels than those with simple steatosis or healthy controls. In addition, glyceraldehyde-derived
AGES increase ROS generation and upregulate fibrogenic genes such as α-smooth muscle actin, TGF-β1, and
collagen type Iα2 in human hepatic stellate cell line in vitro. These results suggest that glyceraldehyde-derived
AGES may contribute to the pathogenesis of NASH. Considering the potential role of AGES and RAGEs in the
pathogenesis of both DPN and NAFLD, our finding that the NAFLD fibrosis score and FIB-4 index were associ-
ated with DPN appears reasonable.

The progression of NAFLD alters the secretion of hepatokines such as fetuin-A, fetuin-B, and dipeptidyl
peptidase-4, and we evaluated an association between fetuin-A and DPN. Serum fetuin-A levels were nega-
tively associated with abnormal vibration perception and abnormal 10-g monofilament tests. Considering a
previous study that showed TGF-β1 signalling suppression by fetuin-A, and a previous study that showed high
TGF-β1 levels in individuals with DPN, our results seem to suggest a possibility of link between fetuin-A and
DPN. Although, fetuin-A cannot be used as a diagnostic tool for DPN, this link suggests the possibility of loss
of protection sensation.

This study has several limitations. First, it cannot establish a causal relationship because of its cross-sectional
nature. Second, liver biopsy, the gold standard method for the diagnosis of NAFLD and liver fibrosis, was not per-
formed. Third, neuropathological studies were not used for the diagnosis of DPN. Despite these limitations, this
study provides valuable insight implying that the progression of NAFL to liver fibrosis might affect the develop-
ment of DPN and suggests the possible role of fetuin-A in specific feature of DPN, a loss of protection sensation.

In conclusion, liver fibrosis might be associated with DPN in individuals with type 2 diabetes and suspected
NAFLD. Notably, this association was independent of previously known risk factors. The present study suggests
the need for special attention to DPN in individuals with type 2 diabetes and NAFLD, especially those with a high
NAFLD fibrosis score or FIB-4 index. Future studies to investigate the molecular mechanism of the association
between liver fibrosis and DPN are necessary.

Methods

Study population. A prospective observational study is ongoing to discover reliable screening tools and
biomarkers for DPN. The inclusion criteria were age ≥ 19 years, diagnosis of type 2 diabetes, and no change in
glucose-lowering drugs in the last 3 months. The exclusion criteria were stage 4 or 5 chronic kidney disease (esti-
mated glomerular filtration rate eGFR < 30 mL min⁻¹ [1.73 m]⁻²), pregnancy, and severe diabetic foot ulcers or
previous amputation. This is a subset study analysing data from individuals who were enrolled during the initial
3-year period (January 2017 to January 2020). We recruited 300 individuals with type 2 diabetes from Seoul
National University Bundang Hospital (SNUBH), a tertiary academic hospital. In the present study, the follow-
ing individuals were excluded: (1) individuals (n = 19) with cirrhosis of any etiology or chronic liver disease due
to excessive alcohol consumption (alcohol consumption > 30 g/day for men and > 20 g/day for women) or viral
hepatitis based on a medical history and medications; (2) individuals (n = 15) with incomplete data needed to
calculate the NAFLD liver fat score, NAFLD fibrosis score, or FIB-4 index; and (3) individuals (n = 2) aged under
35 years due to poor performance of NAFLD fibrosis score and FIB-4 index for a diagnosis of liver fibrosis in
those aged ≤ 35 years. The remaining 264 individuals with type 2 diabetes were included in the final analysis
(Fig. 2). The study was approved by the Institutional Review Board of SNUBH (no. B-2012-657-106), and was
performed in accordance with relevant guidelines and regulations. All participants provided written informed
consent.
Anthropometric and biochemical analyses. Anthropometric indices and neurologic tests were measured by a well-trained research nurse. BMI was calculated as weight (kg) divided by the square of the height (m). Waist circumference was measured at the midpoint between the margin of the lowest rib and the iliac crest. Systolic BP and diastolic BP were measured by an electronic blood pressure metre after 10 min of rest in a sitting position. Alcohol consumption was assessed by two questions from the Alcohol Use Disorders Identification Test-Consumption: (1) the usual frequency of drinking, (2) the typical quantity of drinking. We defined drinkers as those who drink any alcoholic beverage more than once a month. Smoking status was classified as never smoker (<100 cigarettes in lifetime and currently a nonsmoker), ex-smoker (≥100 cigarettes in lifetime and currently a nonsmoker), and current smoker (≥ 100 cigarettes in lifetime and currently a smoker). Positive exercise was defined as exercising for > 150 min/week. Blood samples were collected after an overnight fast. FPG and HbA1c levels were measured by the hexokinase method, and HbA1c levels were measured by high-performance liquid chromatography (Bio–Rad, Hercules, CA, USA). Serum insulin levels were measured by immunoradiometric assay (DIAsource, Nivelles, Belgium). Total cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, and LDL cholesterol were measured by enzymatic colorimetric assay. Liver function tests, including AST and ALT, and renal function tests were measured by the protocol of the central laboratory of SNUBH. HOMA-IR was calculated using the following formula: HOMA-IR = (fasting insulin [μIU/ml] × FPG [mg/dl] /405). Among individuals with a high NAFLD liver fat score (> -0.640), serum fetuin-A levels of 41 individuals with DPN and 41 individuals without DPN were measured using commercial enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems, no. DFTA00, Minneapolis, MN, USA).

Assessment of microvascular complications of diabetes. DPN was assessed using the MNSI, which includes two separate assessments: a 15-item self-administered questionnaire (MNSI-Q) and a lower extremity physical examination (MNSI-PE). The MNSI-PE is scored for abnormalities of foot appearance such as deformities, dry skin, calluses, infections and fissures (normal = 0, abnormal = 1), ulceration (absent = 0, present = 1), vibration perception at great toe (absent = 1, reduced = 0.5, present = 0), and ankle reflexes (absent = 1, present with reinforcement = 0.5, present = 0). The total possible score is 8 points for both feet. DPN was diagnosed when the MNSI-PE score was ≥ 2.5, based on prior studies. A 10-g monofilament test was considered abnormal when an individual had a sensation of fewer than seven points on one of the two feet. Abnormal appearance was defined as the presence of any abnormality except ulceration, as ulceration was defined separately. Ankle reflexes were tested using a tendon hammer at the Achilles tendon. Abnormal vibration perception was defined as the absence of vibration perception on either side of the great toe using a 128-Hz tuning fork. A trained nurse performed all neurologic examinations.

Noninvasive methods for evaluating NAFLD and liver fibrosis. The NAFLD liver fat score was calculated according to the following formula: - 2.89 + 1.18 × metabolic syndrome (yes = 1, no = 0) + 0.45 × type 2 diabetes (yes = 2, no = 0) + 0.15 × fasting serum insulin (IU/l) + 0.04 × AST (U/l) − 0.94 × ALT/AST. A NAFLD liver fat score > -0.640 was used to identify suspected NAFLD according to a previous report that a score > -0.640 detected NAFLD with a sensitivity of 86% and specificity of 71%. The NAFLD fibrosis score was calculated according to the following formula: -1.675 + 0.037 × age (years) + 0.094 × BMI (kg/m²) + 1.13 × impaired fasting glucose or diabetes (yes = 1, no = 0) + 0.99 × AST/ALT − 0.013 × platelets (10⁹/l) − 0.66 × albumin (g/dl). A NAFLD fibrosis score > 0.676 was used to identify liver fibrosis. The FIB-4 index was calculated according to the following formula: (age [years] × AST [U/l])/(platelets [10⁹/l] × ALT¹/² [U/l]). A FIB-4 index ≥ 1.3 was used to identify liver fibrosis. However, for individuals aged ≥ 65 years, a FIB-4 index ≥ 2.0 was used to identify liver fibrosis as previously reported.

Statistical analysis. Data were expressed as the mean ± standard deviation (SD) or number (%). Variables with a nonnormal distribution were log-transformed prior to analysis. Comparisons of continuous variables between individuals with and without DPN were performed using Student’s unpaired t-tests. Categorical variables were compared using χ² tests. The associations between the presence of DPN and NAFLD liver fat score, NAFLD fibrosis score, and FIB-4 index were analysed using logistic regression models. Multivariable logistic regression analysis was performed including known risk factors for DPN. The prediction performance of liver fibrosis indices and serum fetuin-A levels for DPN and for the absence of abnormal vibration perception or absence of abnormal 10-g monofilament test was assessed by analysing receiver operating characteristic (ROC) curves, and the AUROC was calculated. Based on various cut-off values, we calculated the sensitivity, specificity, positive predictive value, and negative predictive value. In all cases, p < 0.05 was considered statistically significant. Statistical analyses were performed using IBM SPSS version 25.0 (IBM, Armonk, NY, USA). Figures were drawn using GraphPad Prism software (version 9.1.2; GraphPad Software Inc., San Diego, CA, USA).
3. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosteato-steinopathy using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155. https://doi.org/10.1016/j.jhep.2014.11.034 (2015).

4. Caldwell, S. H. et al. Cryptogenic cirrhosis: Clinical characterization and risk factors for underlying disease. Hepatology 29, 664–669. https://doi.org/10.1002/hep.510290347 (1999).

5. Hossain, N. et al. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 7, 1224–1229. https://doi.org/10.1016/j.cgh.2009.06.007 (2009).

6. Lee, B. W. et al. Non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus: a position statement of the fatty liver research group of the Korean diabetes association. Diabetes Metab. J. 44, 382–401. https://doi.org/10.4093/dmj.2020.0010 (2020).

7. Ciardullo, S. & Perseghin, G. Statin use is associated with lower prevalence of advanced liver fibrosis in patients with type 2 diabetes. Metabolism 121, 154752. https://doi.org/10.1016/j.metabol.2021.154752 (2021).

8. Tarhger, G. et al. Nonalcoholic fatty liver disease is independently associated with an increased prevalence of cardiovascular events in type 2 diabetic patients. Diabetes Care 30, 2119–2121. https://doi.org/10.2337/dc07-0349 (2007).

9. Tarhger, G. et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30, 1212–1218. https://doi.org/10.2337/dc06-2247 (2007).

10. Targher, G. et al. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia 51, 444–450. https://doi.org/10.1007/s00125-007-0897-4 (2008).

11. Targher, G. et al. Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J. Am. Soc. Nephrol. 19, 1564–1570. https://doi.org/10.1681/ASN.2007101155 (2008).

12. Han, E., Kim, M. K., Jang, B. K. & Kim, H. S. Albuminuria is associated with steatosis burden in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Diabetes Metab. J. https://doi.org/10.4093/dmj.2020.0118 (2021).

13. Tesfaye, S. et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Metab. Clin. Pract. 33, 2285–2293. https://doi.org/10.2337/dmcp-10-1300 (2010).

14. Papanas, N. & Ziegler, D. Risk factors and comorbidities in diabetic neuropathy: An update 2015. J. Diabetes Investig. 6, 196–210. https://doi.org/10.1111/jdi.12139 (2014).

15. Haukeland, J. W. et al. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int 40, 858–866. https://doi.org/10.1111/liv.13451 (2019).

16. McPherson, S. et al. The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differently impact glucose homeostasis in humans. Am. J. Physiol. Endocrinol. Metab. 314, E266–E273. https://doi.org/10.1152/ajpendo.00262.2017 (2018).

17. Barchetta, L. et al. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J. Gastroenterol. 50, 230–238. https://doi.org/10.1007/s00535-017-1252-7 (2018).

18. Peter, A. et al. The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differentially impact glucose homeostasis in humans. Am. J. Physiol. Endocrinol. Metab. 314, E266–E273. https://doi.org/10.1152/ajpendo.00262.2017 (2018).

19. Barchetta, L. et al. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J. Gastroenterol. 50, 230–238. https://doi.org/10.1007/s00535-017-1252-7 (2018).

20. Sato, M. et al. Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int 35, 925–935. https://doi.org/10.1111/liv.12478 (2015).

21. McPherson, S. et al. The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differentially impact glucose homeostasis in humans. Am. J. Physiol. Endocrinol. Metab. 314, E266–E273. https://doi.org/10.1152/ajpendo.00262.2017 (2018).

22. Barchetta, L. et al. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J. Gastroenterol. 50, 230–238. https://doi.org/10.1007/s00535-017-1252-7 (2018).
Acknowledgements
The authors sincerely thank all the participants for their cooperation. We thank Yoojung Song (Seoul National University Bundang Hospital, Seongnam, Korea) for assistance with data registration and analysis.

Author contributions
K.K. conducted the study, acquired and analysed the data, and drafted the manuscript. H.C.C., Y.K.L., C.H.A., B.K.K., J.H.M., S.H.C., and H.C.J. contributed to the conception and design of the study and contributed to the production and interpretation of data. T.J.O. is the guarantor of the manuscript. All authors critically reviewed the manuscript and approved this version to be published.

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1013766).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-03870-z.

Correspondence and requests for materials should be addressed to T.J.O.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021