ON GLOBALLY SYMMETRIC FINSLER SPACES

R. CHAVOSH KHATAMY *, R. ESMALI

Abstract. The paper considers the symmetry of Finsler spaces. We give some conditions about globally symmetric Finsler spaces. Then we prove that these spaces can be written as a coset space of Lie group with an invariant Finsler metric. Finally, we prove that such a space must be Berwaldian.

1. Introduction

The study of Finsler spaces has important in physics and Biology ([5]). In particular there are several important books about such spaces (see [1], [8]). For example recently D. Bao, C. Robels, Z. Shen used the Randers metric in Finsler on Riemannian manifolds ([9] and [8], page 214). We must also point out there was only little study about symmetry of such spaces ([5], [12]). For example E. Cartan has been showed symmetry plays very important role in Riemannian geometry ([5] and [12], page 203).

Definition 1.1. A Finsler space is locally symmetric if, for any \(p \in M \), the geodesic reflection \(s_p \) is a local isometry of the Finsler metric.

Definition 1.2. A reversible Finsler space \((M, F)\) is called globally symmetric if for any \(p \in M \) there exists an involutive isometry \(\sigma_x \) (that is, \(\sigma_x^2 = I \) but \(\sigma_x \neq I \)) of such that \(x \) is an isolated fixed point of \(\sigma_x \).

Definition 1.3. Let \(G \) be a Lie group and \(K \) is a closed subgroup of \(G \). Then the coset space \(G/K \) is called symmetric if there exists an involutive automorphism \(\sigma \)
of G such that
\[G^0_\sigma \subset K \subset G_\sigma, \]
where G_σ is the subgroup consisting of the fixed points of σ in G and G^0_σ denotes the identity component of G_σ.

Theorem 1.4. Let G/K be a symmetric coset space. Then any G-invariant reversible Finsler metric (if exists) F on G/K makes $(G/K, F)$ a globally symmetric Finsler space (\cite{8}, page 8).

Theorem 1.5. Let (M, F) be a globally Symmetric Finsler space. For $p \in M$, denote the involutive isometry of (M, F) at p by S_p. Then we have

(a) For any $p \in M$, $(dS_p)_p = -I$. In particular, F must be reversible.

(b) (M, F) is forward and backward complete;

(c) (M, F) is homogeneous. This is, the group of isometries of $(M, F), I(M, F)$, acts transitively on M.

(d) Let \tilde{M} be the universal covering space of M and π be the projection mapping. Then $(\tilde{M}, \pi^*(F))$ is a globally Symmetric Finsler space, where $\pi^*(F)$ is define by
\[\pi^*(F)(q) = F((d\pi)_p(q)), \quad q \in T_p(M), \]
(See \cite{8} to prove).

Corollary 1.6. Let (M, F) be a globally Symmetric Finsler space. Then for any $p \in M$, s_p is a local geodesic Symmetry at p. The Symmetry s_p, is unique. (See prove of Theorem 1.2 and \cite{12})

2. A theorem on globally Symmetric Finsler spaces

Theorem 2.1. Let (M, F) be a globally Symmetric Finsler space. Then exists a Riemannian Symmetric pair (G, K) such that M is diffeomorphic to G/K and F is invariant under G.

Proof. The group $I(M, F)$ of isometries of (M, F) acts transitively on M. (C) of theorem 1.5. We proved that $I(M, F)$ is a Lie transformation group of M and for any $p \in M$ (\cite{12} and \cite{7}, page 78), the isotropic subgroup $I_p(M, F)$ is a compact subgroup of $I(M, F)$ (\cite{11}). Since M is connected (\cite{7}, \cite{10}) and the subgroup K of G which p fixed is a compact subgroup of G. Furthermore, M is diffeomorphic to G/K under the mapping $gH \rightarrow g.p$, $g \in G$ (\cite{7} Theorem 2.5, \cite{10}).

As in the Riemannian case in page 209 of \cite{7}, we define a mapping s of G into G by $s(g) = s_pgs_p$, where s_p denote the (unique) involutive isometry of (M, f) with p as an isolated fixed point. Then it is easily seen that s is an involutive automorphism of G and the group K lies between the closed subgroup K_s of fixed points of s and
the identity component of K_s (See definition of the symmetric coset space, [11]). Furthermore, the group K contains no normal subgroup of G other than \{e\}. That is, (G, K) is symmetric pair. (G, K) is a Riemannian symmetric pair, because K is compact.

The following useful will be results in the proof of our aim of this paper.

Proposition 2.2. Let (M, \bar{F}) be a Finsler space, $p \in M$ and H_p be the holonomy group of \bar{F} at p. If F_p is a H_p invariant Minkowski norm on $T_p(M)$, then F_p can be extended to a Finsler metric F on M by parallel translations of \bar{F} such that F is affinely equivalent to \bar{F} ([5], proposition 4.2.2)

Proposition 2.3. A Finsler metric F on a manifold M is a Berwald metric if and only if it is affinely equivalent to a Riemannian metric g. In this case, F and g have the same holonomy group at any point $p \in M$ (see proposition 4.3.3 of [5]).

Now the main aim

Theorem 2.4. Let (M, F) be a globally symmetric Finsler space. Then (M, F) is a Berwald space. Furthermore, the connection of F coincides with the Levi-civita connection of a Riemannian metric g such that (M, g) is a Riemannian globally symmetric space.

Proof. We first prove F is Beraldian. By Theorem 2.1, there exists a Riemannian symmetric pair (G, K) such that M is diffeomorphic to G/K and F is invariant under G. Fix a G- invariant Riemannian metric g on G/K. Without losing generality, we can assume that (G, K) is effective (see [11] page 213). Since being a Berwald space is a local property, we can assume further that G/K is simple connected. Then we have a decomposition (page 244 of [11]):

$$G/K = E \times G_1/K_1 \times G_2/K_2 \times \ldots \times G_n/K_n,$$

where E is a Euclidean space, G_i/K_i are simply connected irreducible Riemannian globally symmetric spaces, $i = 1, 2, \ldots, n$. Now we determine the holonomy groups of g at the origin of G/K. According to the de Rham decomposition theorem ([2]), it is equal to the product of the holonomy groups of E and G_i/K_i at the origin. Now E has trivial holonomy group. For G_i/K_i, by the holonomy theorem of Ambrose and Singer ([12], page 231, it shows, for any connection, how the curvature form generates the holonomy group), we know that the lie algebra η_i of the holonomy group H_i is spanned by the linear mappings of the form $\{\bar{\tau}^{-1}R_0(X, Y)\bar{\tau}\}$, where τ denotes any piecewise smooth curve starting from o, $\bar{\tau}$ denotes parallel displacements (with respect to the restricted Riemannian metric) a long $\bar{\tau}$, $\bar{\tau}^{-1}$ is the inverse of $\bar{\tau}$, R_0 is the curvature tensor of G_i/K_i of the restricted Riemannian metric and $X, Y \in$
Consider the space $T_0(G_i/K_i)$. Since G_i/K_i is a globally symmetric space, the curvature tensor is invariant under parallel displacements (page 201 of [10], [11]). So

$$\eta_i = \text{span}\{R_0(X,Y)|X,Y \in T_0(G_i/K_i)\},$$

(see page 243 of [7], [11]).

On the other hand, since G_i is a semisimple group, we know that the Lie algebra of $K_i^* = \text{Ad}(K_i) \simeq K$ is equal to the span of $R_0(X,Y)$ ([11]). The groups H_i, K_i^* are connected (because G_i/K_i is simply connected) ([10] and [11]). Hence we have $H_i = K_i^*$. Consequently the holonomy group H_0 of G/K at the origin is

$$K_1^* \times K_2^* \times \ldots \times K_n^*$$

Now F defines a Minkowski norm F_0 on $T_0(G/K)$ which is invariant by H_0 ([2]). By proposition 2.2, we can construct a Finsler metric \bar{F} on G/K by parallel translations of g. By proposition 2.3, \bar{F} is Berwaldian. Now for any point $p_0 = aK \in G/K$, there exists a geodesic of the Riemannian manifold $(G/K, g)$, say $\gamma(t)$ such that $\gamma(0) = 0, \gamma(1) = p_0$. Suppose the initial vector of γ is X_0 and take $X \in p$ such that $d\pi(X) = X_0$. Then it is known that $\gamma(t) = \exp tX.p_0$ and $d\tau(\exp tX)$ is the parallel translate of $(G/K, g)$ along γ ([11] and [7], page 208). Since F is G-invariant, it is invariant under this parallel translate. This means that F and \bar{F} coincide at $T_{p_0}(G/K)$. Consequently they coincide everywhere. Thus F is a Berwald metric.

For the next assertion, we use a result of Szabo’ ([2], page 278) which asserts that for any Berwald metric on M there exists a Riemannian metric with the same connection. We have proved that (M, F) is a Berwald space. Therefore there exists a Riemannian metric g_1 on M with the same connection as F. In [11], we showed that the connection of a globally symmetric Berwald space is affine symmetric. So (M, F) is a Riemannian globally symmetric space ([7], [11]).

From the proof of theorem 2.4, we have the following corollary.

Corollary 2.5. Let $(G/K, F)$ be a globally symmetric Finsler space and $g = \ell + p$ be the corresponding decomposition of the Lie algebras. Let π be the natural mapping of G onto G/K. Then $(d\pi)_e$ maps p isomorphically onto the tangent space of G/K at $p_0 = eK$. If $X \in p$, then the geodesic emanating from p_0 with initial tangent vector $(d\pi)_eX$ is given by

$$\gamma_{d\pi.eX}(t) = \exp tX.p_0.$$

Furthermore, if $Y \in T_{p_0}(G/K)$, then $(d\exp tX)_{p_0}(Y)$ is the parallel of Y along the geodesic (see [11], [7] proof of theorem 3.3).

Example 2.6. Let G_1/K_1, G_2/K_2 be two symmetric coset spaces with K_1, K_2 compact (in this coset, they are Riemannian symmetric spaces) and g_1, g_2 be invariant
Riemannian metric on G_1/K_1, G_2/K_2, respectively. Let $M = G_1/K_1 \times G_2/K_2$ and O_1, O_2 be the origin of $G_1/K_1, G_2/K_2$, respectively and denote $O = (O_1, O_2)$ (the origin of M). Now for $y = y_1 + y_2 \in T_O(M) = T_{O_1}(G_1/K_1) + T_{O_2}(G_2/K_2)$, we define

$$F(y) = \sqrt{g_1(y_1, y_2) + g_2(y_1, y_2)} + s\sqrt{g_1(y_1, y_2)^s + g_2(y_1, y_2)^s},$$

where s is any integer ≥ 2. Then $F(y)$ is a Minkowski norm on $T_O(M)$ which is invariant under $K_1 \times K_2$ [4]. Hence it defines an G- invariant Finsler metric on M [6, Corollary 1.2, of page 8246]. By theorem 2.1, (M, F) is a globally symmetric Finsler space. By theorem 2.4 and (2, page 266) F is non-Riemannian.

References

[1] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66 (2004), 377-435.
[2] D. Bao, S.S. Chern, Z. Shen. An Introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.
[3] P. Foulon, Curvature and global rigidity in Finsler manifolds, Houston J. Math. 28.2 (2002), 263-292.
[4] P. Foulon, Locally symmetric Finsler spaces in negative curvature, C.R. Acad. Sci. Paris 324 (1997), 1127-1132.
[5] P. L. Antonelli, R.S. Ingardan and M. Matsumoto, The Theory of Sprays and Finsler space with applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
[6] S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds, J. Phys. A: Math. Gen. 37 (2004), 8245-8253.
[7] S. Deng and Z. Hou, On locally and globally symmetric Berwald space, J. Phys. A: Math. Gen. 38 (2005), 1691-1697.
[8] S. Deng and Z. Hou, On symmetric Finsler space, IJM 216(2007), 197-219.
[9] S.S Chern, Z. Shen, Riemann-Finsler Geometry, WorldScientific, Singapore, 2004.
[10] S. Helgason, Differential Geometry, Lie groups and Symmetric Spaces, 2nd ed., Academic Press, 1978.
[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, Vol. 1, 1963, Vol. 2, 1969.
[12] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. AMS. 75 (1953), 428-443.

Department of Mathematics, Faculty of Sciences, Islamic Azad University, Tabriz Branch
E-mail address: chavosh@tabrizu.ac.ir, r_chavosh@iaut.ac.ir

Department of Mathematics, Faculty of Sciences, Payame noor University, Ahar Branch
E-mail address: Rogayyeesmaili@yahoo.com