Cubic constraints for the resolvents of the ABJM matrix model and its cousins

H. Itoyamaa,b T. Ootab, Takao Suyamab and R. Yoshiokab

aDepartment of Mathematics and Physics, Graduate School of Science
Osaka City University

bOsaka City University Advanced Mathematical Institute (OCAMI)
3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract

A set of Schwinger-Dyson equations forming constraints for at most three resolvent functions are considered for a class of Chern-Simons matter matrix models with two nodes labelled by a non-vanishing number n. The two cases $n = 2$ and $n = -2$ label respectively the ABJM matrix model, which is the hyperbolic lift of the affine $A_1^{(1)}$ quiver matrix model, and the lens space matrix model. In the planar limit, we derive two cubic loop equations for the two planar resolvents. One of these reduces to the quadratic one when $n = \pm 2$.

ae-mail: itoyama@sci.osaka-cu.ac.jp
be-mail: toota@sci.osaka-cu.ac.jp
ce-mail: suyama@sci.osaka-cu.ac.jp
de-mail: yoshioka@sci.osaka-cu.ac.jp
1 Introduction

Chern-Simons-matter (CSm) matrix models [1–14] have attracted considerable attentions in recent years in the context of theory on multiple M2 branes and its generalization [15–17]. They belong to a class of two matrix (to be denoted by two nodes in this paper) models connected by the measure factor which is attributed to the contributions from the \(n \) bi-fundamental multiplets upon localization of the CSm action in three dimensions. The cases \(n = 2, n = -2 \) correspond to the celebrated ABJM matrix model and the lens space matrix model respectively and are well studied [18–25] mainly by the Fermi-gas approach.

This class of matrix models is interesting also from the point of view of the \(q \)-deformation [26–48] of the Virasoro/W block [49–56] and of the 2d-4d connection [57–59] (For more references, see, for example, [60]): the \(n = 1 \) case provides a hyperbolic lift of the \(A_2 \) quiver hermitean matrix model that obeys \(W_3 \) constraints [61–64] and that produces [65] the \(su(3), \ N_f = 6 \) Witten-Gaiotto curve [66, 67] while the \(n = 2 \) case provides a hyperbolic lift of the \(A_m^{(1)} (m = 1) \) affine quiver matrix [68] model that is defined by the incidence matrix of the extended Cartan matrix and whose spacetime interpretation is yet obscure to us. A class of CSm models labelled by \(n \) provides a deformation of these cases and we study a set of Schwinger-Dyson equations forming cubic constraints from this generic point of view in this paper.

In the next section, we briefly recall the partition function of the CSm matrix model with two nodes. In section three, we consider the Schwinger-Dyson equations which take the form of the second and the third order constraints for the two resolvents. In section four, the planar limit of the equations derived in section three is taken. We derive a cubic loop equation for each of the symmetric and antisymmetric combination of the planar loop resolvents. The remarkable simplicity takes place in those cases \(n = \pm 2 \), where one of the two cubic equations reduces to a quadratic one. In Appendix A and B, we give some detail of the derivations of the cubic loop equations.

2 The partition function

The partition function of the Chern-Simons-matter matrix models with 2 nodes is defined by

\[
Z := \int d^{N_1} u \int d^{N_2} w \, e^{S_{\text{eff}}},
\]

where the “effective action” \(S_{\text{eff}} \) is given by

\[
e^{S_{\text{eff}}} = \prod_{1 \leq i < j \leq N_1} \left(\frac{2 \sinh u_i - u_j}{2} \right)^2 \prod_{1 \leq a < b \leq N_2} \left(\frac{2 \sinh w_a - w_b}{2} \right)^2 \\
\times \prod_{i=1}^{N_1} \prod_{a=1}^{N_2} \left(\cosh \frac{u_i - w_a}{2} \right)^{-n} \exp \left(-\frac{\kappa_1}{2 g_s} \sum_{i=1}^{N_1} u_i^2 - \frac{\kappa_2}{2 g_s} \sum_{a=1}^{N_2} w_a^2 \right).\]

If we set

\[g_s = \frac{2 \pi i}{k}, \quad k_1 = k \times \kappa_1, \quad k_2 = k \times \kappa_2,\]
we have
\[- \frac{\kappa_i}{2g_s} = \frac{i k_i}{4\pi}. \tag{2.4}\]

Then the partition function (2.1) arises from the localization applied to a supersymmetric \(U(N_1)_{k_1} \times U(N_2)_{k_2}\) Chern-Simons theory with \(n\) bi-fundamental hypermultiplets.

In the following, we assume that \(n \neq 0\). The average of a function \(f(u, w)\) with respect to \(Z\) is denoted by
\[
\langle f(u, w) \rangle := \frac{1}{Z} \int d^{N_1} u \int d^{N_2} w f(u, w) e^{S_{\text{eff}}}.
\tag{2.5}\]

3 Constraints for resolvents

The resolvents
\[
\hat{\omega}_i(z), \quad (i = 1, 2) \tag{3.1}
\]
play important roles in matrix models. Here
\[
\hat{\omega}_1(z) := g_s \sum_{i=1}^{N_1} \frac{1}{z - e^{u_i}}, \quad \hat{\omega}_2(z) := g_s \sum_{a=1}^{N_2} \frac{1}{z - e^{w_a}}. \tag{3.2}
\]

In this section, we derive second and third order constraints for \(\hat{\omega}_i(z)\). It is known that instead of (3.1), the resolvents of the following form is natural in the matrix model of Chern-Simons type:
\[
\langle \hat{v}_i(z) \rangle \quad (i = 1, 2) \tag{3.3}
\]
where
\[
\hat{v}_1(z) := g_s \sum_{i=1}^{N_1} \frac{z + e^{u_i}}{z - e^{u_i}}, \quad \hat{v}_2(z) := g_s \sum_{a=1}^{N_2} \frac{z + e^{w_a}}{z - e^{w_a}}. \tag{3.4}
\]

(3.2) and (3.4) are related by
\[
\hat{v}_i(z) = 2z \hat{\omega}_i(z) - t_i. \tag{3.5}
\]

Here \(t_i := N_i g_s\) are the ’t Hooft couplings.

For the sake of simplicity, we use \(\hat{\omega}_i(z)\) in order to derive constraints for the resolvents. The constraints for \(\hat{\omega}_i(z)\) are easily converted into those for \(\hat{v}_i(z)\).

3.1 Second order constraints

From
\[
\int d^{N_1} u \int d^{N_2} w \sum_{i=1}^{N_1} \frac{\partial}{\partial u_i} \left(\frac{1}{z - e^{u_i}} e^{S_{\text{eff}}} \right) = 0, \tag{3.6}
\]
which is the hyperbolic counterpart of the Virasoro constraints \([69, 73]\), we obtain the following constraint:
\[
\left\langle \sum_i \frac{e^{u_i}}{(z - e^{u_i})^2} \right\rangle + \left\langle \sum_i \sum_{j \neq i} \frac{1}{(z - e^{u_i})} \coth \frac{u_i - u_j}{2} \right\rangle - \frac{n}{2} \left\langle \sum_i \sum_a \frac{1}{(z - e^{u_i})} \tanh \frac{u_i - w_a}{2} \right\rangle - \frac{\kappa_1}{g_s} \left\langle \sum_i \frac{u_i}{z - e^{u_i}} \right\rangle = 0. \tag{3.7}
\]
Using an identity
\[
\sum_i \frac{e^{u_i}}{(z - e^{u_i})^2} + \sum_i \sum_{j \neq i} \frac{1}{(z - e^{u_i})} \coth \frac{u_i - u_j}{2} = z \left(\sum_i \frac{1}{z - e^{u_i}} \right)^2 - N_1 \sum_i \frac{1}{z - e^{u_i}},
\]
we can rewrite the above constraint as follows
\[
z \langle \dot{\omega}_1(z)^2 \rangle - (t_1 + \kappa_1 \log z) \langle \dot{\omega}_1(z) \rangle = \frac{n}{2} \left(\hat{R}_1^{(2)}(z) \right) - \langle \hat{F}_1(z) \rangle,
\]
where
\[
\hat{F}_1(z) := \kappa_1 g_s \sum_{i=1}^{N_1} \frac{\log z - u_i}{z - e^{u_i}},
\]
\[
\hat{R}_1^{(2)}(z) := g_s^2 \sum_{i=1}^{N_1} \sum_{a=1}^{N_2} \frac{1}{z - e^{w_a}} \tanh \frac{u_i - w_a}{2}.
\]
Here \(\log z \) takes a real value on the positive \(\text{Re} \ z \) axis and has a cut along the negative \(\text{Re} \ z \) axis.

Similarly, from
\[
\int d^{N_1} u \int d^{N_2} w \left(\frac{1}{z + e^{w}} e^{g_s} \right) = 0,
\]
we obtain
\[
z \langle \dot{\omega}_2(-z)^2 \rangle + (t_2 + \kappa_2 \log(-z)) \langle \dot{\omega}_2(-z) \rangle = -\frac{n}{2} \left(\hat{R}_2^{(2)}(-z) \right) + \langle \hat{F}_2(-z) \rangle,
\]
where
\[
\hat{F}_2(z) := \kappa_2 g_s \sum_{a=1}^{N_2} \frac{\log z - w_a}{z - e^{w_a}},
\]
\[
\hat{R}_2^{(2)}(z) := g_s^2 \sum_{i=1}^{N_1} \sum_{a=1}^{N_2} \frac{1}{z - e^{w_a}} \tanh \frac{w_a - u_i}{2}.
\]
Here \(\log(-z) \) has a cut along the positive \(\text{Re} \ z \) axis and takes real values on the negative \(\text{Re} \ z \) axis.

By adding (3.9) and (3.13), we find the second order constraints for the resolvent operators \(\dot{\omega}_1(z) \):
\[
z \langle \dot{\omega}_1(z)^2 + n \dot{\omega}_1(z) \dot{\omega}_2(-z) + \dot{\omega}_2(-z)^2 \rangle - (t_1 - \frac{n}{2} t_2 + \kappa_1 \log z) \langle \dot{\omega}_1(z) \rangle + (t_2 - \frac{n}{2} t_1 + \kappa_2 \log(-z)) \langle \dot{\omega}_2(-z) \rangle = -\langle \hat{F}_1(z) \rangle + \langle \hat{F}_2(-z) \rangle.
\]
Here we have used the following identity:
\[
\hat{R}_1^{(2)}(z) - \hat{R}_2^{(2)}(-z) = g_s^2 \sum_i \sum_a \left(\frac{1}{z - e^{u_i}} - \frac{1}{z + e^{w_a}} \right) \tanh \frac{u_i - w_a}{2}
\]
\[
= g_s^2 \sum_i \sum_a \left(\frac{2z}{(z - e^{u_i})(z + e^{w_a})} - \frac{1}{z - e^{u_i}} - \frac{1}{z + e^{w_a}} \right)
\]
\[
= -2z \dot{\omega}_1(z) \dot{\omega}_2(-z) - t_2 \dot{\omega}_1(z) + t_1 \dot{\omega}_2(-z).
\]
3.2 Third order constraints

There are four third order constraints.

3.2.1 Third order constraint 1

From

$$\int d^{N_1} u \int d^{N_2} w \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \frac{\partial}{\partial u_i} \left(\frac{2}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} e^{S_{\text{eff}}} \right) = 0,$$

we obtain a constraint

$$S_{11}^{(0)}(z) + g_s S_{11}^{(1)}(z) = 0,$$

where

$$S_{11}^{(0)}(z) = \frac{8z^2}{3} \left\langle \hat{\omega}_1(z)^3 \right\rangle - 2z(2t_1 - 4g_s + \kappa_1 \log z) \left\langle \hat{\omega}_1(z)^2 \right\rangle$$

$$+ 2(t_1 - g_s)(t_1 - 2g_s + \kappa_1 \log z) \left\langle \hat{\omega}_1(z) \right\rangle - n \left\langle \hat{R}_1^{(3)}(z) \right\rangle + 2 \left\langle \hat{H}_1(z) \right\rangle$$

$$+ 4z^2 g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - 2z(2t_1 - 4g_s + \kappa_1 \log z) g_s \left\langle \hat{\omega}_1(z) \right\rangle' + \frac{8z^2}{3} g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle''$$

$$S_{11}^{(1)}(z) = \left(-2z^2 \left\langle \hat{\omega}_1(z)^2 \right\rangle + 2(t_1 - g_s) z \left\langle \hat{\omega}_1(z) \right\rangle - 2z^2 g_s \left\langle \hat{\omega}_1(z) \right\rangle \right)'$$

$$+ 2(t_1 - g_s) \left\langle \hat{\omega}_1(z) \right\rangle + g_s^2 \left\langle \sum_i \sum_{j \neq i} \frac{1}{2} \frac{1}{z - e^{u_i}} \frac{1}{\coth \frac{u_i - u_j}{2}} \right\rangle.$$

Here $'$ denotes the derivative with respect to z and

$$\hat{R}_1^{(3)}(z) := g_s^3 \sum_i \sum_a \sum_{j \neq i} \frac{1}{z - e^{u_i}} \frac{1}{\coth \frac{u_i - u_j}{2}},$$

$$\hat{H}_1(z) := \kappa_1 g_s^2 \sum_i \sum_{j \neq i} \frac{\log z - u_i}{z - e^{u_i}} \coth \frac{u_i - u_j}{2}.$$

See Appendix A for details.

Since we have assumed that $n \neq 0$, the third order constraint (3.19) is equivalent to the following condition

$$\left\langle \hat{R}_1^{(3)}(z) \right\rangle = \frac{8z^2}{3n} \left\langle \hat{\omega}_1(z)^3 \right\rangle - \frac{2z}{n} (2t_1 - 4g_s + \kappa_1 \log z) \left\langle \hat{\omega}_1(z)^2 \right\rangle$$

$$+ \frac{2}{n} (t_1 - g_s)(t_1 - 2g_s + \kappa_1 \log z) \left\langle \hat{\omega}_1(z) \right\rangle + \frac{2}{n} \left\langle \hat{H}_1(z) \right\rangle$$

$$+ \frac{4z^2}{n} g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - \frac{2z}{n} (2t_1 - 4g_s + \kappa_1 \log z) g_s \left\langle \hat{\omega}_1(z) \right\rangle'$$

$$+ \frac{8z^2}{3n} g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle'' + \frac{g_s}{n} S_{11}^{(1)}(z).$$
3.2.2 Third order constraint 2

Similar to the case of constraint 1,

\[
\int d^{N_1}u \int d^{N_2}w \sum_{a=1}^{N_2} \sum_{b=1}^{N_2} \frac{1}{\partial w_a} \left(\frac{2}{z + e^{u_a}} \coth \left(\frac{w_a - w_b}{2} \right) \right) = 0
\]

(3.25)

implies the following condition

\[
\begin{align*}
\langle \hat{R}_{2}^{(3)}(-z) \rangle &= \frac{8z^2}{3n} \langle \hat{\omega}_2(-z)^3 \rangle + \frac{2z}{n} (2t_2 - 4g_s + \kappa_2 \log(-z)) \langle \hat{\omega}_2(-z)^2 \rangle \\
&\quad + \frac{2}{n} (t_2 - g_s) (t_2 - 2g_s + \kappa_2 \log(-z)) \langle \hat{\omega}_2(-z) \rangle + \frac{2}{n} \langle \hat{H}_2(-z) \rangle \\
&\quad - \frac{4z^2}{n} g_s (\hat{\omega}_2(-z)^2)' - \frac{2z}{n} (2t_2 - 4g_s + \kappa_2 \log(-z)) g_s \langle \hat{\omega}_2(-z) \rangle' \\
&\quad + \frac{8z^2}{3n} g_s^2 \langle \hat{\omega}_2(-z) \rangle'' + \frac{g_s}{n} S_{22}^{(1)}(-z),
\end{align*}
\]

(3.26)

where

\[
S_{22}^{(1)}(z) := \left(-2z^2 \langle \hat{\omega}_2(z)^2 \rangle + 2(t_2 - g_s) z \langle \hat{\omega}_2(z) \rangle - 2z^2 g_s \langle \hat{\omega}_2(z) \rangle' \right)'
\]

\[
+ 2(t_2 - g_s) \langle \hat{\omega}_2(z) \rangle + g_s^2 \left(\sum_{a} \sum_{b \neq a} \frac{1}{(z - e^{w_a})} \frac{1}{\sinh^2 \frac{w_a - w_b}{2}} \right).
\]

(3.27)

Here

\[
\begin{align*}
\hat{R}_{2}^{(3)}(z) &:= g_s^3 \sum_{i} \sum_{a} \sum_{b \neq a} \frac{1}{z - e^{w_a}} \tanh \frac{w_a - u_i}{2} \coth \frac{w_a - w_b}{2}, \\
\hat{H}_2(z) &:= \kappa_2 g_s^2 \sum_{a} \sum_{b \neq a} \frac{\log z - w_a}{z - e^{w_a}} \coth \frac{w_a - w_b}{2}.
\end{align*}
\]

(3.28)

(3.29)

In our convention, ' always denotes the derivative with respect to z. Hence under \(z \to -z\), it transforms as follows:

\[
f(z)' = \frac{\partial}{\partial z} f(z) \to \frac{\partial}{\partial(-z)} f(-z) = -\frac{\partial}{\partial z} f(-z) = -(f(-z))'.
\]

(3.30)

3.2.3 Third order constraint 3

From

\[
\int d^{N_1}u \int d^{N_2}w \sum_{i=1}^{N_1} \sum_{a=1}^{N_2} \frac{\partial}{\partial u_i} \left(\frac{2}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} e^{S_{at}} \right) = 0,
\]

(3.31)

we obtain a constraint

\[
S_{12}^{(0)}(z) + g_s S_{12}^{(1)}(z) = 0,
\]

(3.32)
where
\[
S_{12}^{(0)}(z) = 2\left\langle \hat{R}_1^{(3)}(z) \right\rangle - 2n\left\langle \hat{R}_2^{(3)}(-z) \right\rangle
- n\left\langle \hat{\omega}_1(z)(2z \hat{\omega}_2(-z) + t_2)^2 \right\rangle + 2nt_1\hat{z}\left\langle \hat{\omega}_2(-z)^2 \right\rangle + 2nt_1(t_2 - g_s)\left\langle \hat{\omega}_2(-z) \right\rangle
- 2\kappa_1 \log z \left\langle \hat{R}_1^{(2)}(z) \right\rangle + 2\left\langle \hat{G}_1(z) \right\rangle
+ 4nz^2g_s\left\langle \hat{\omega}_1(z)(\hat{\omega}_2(-z))^2 \right\rangle + 4nzg_s\left\langle \hat{\omega}_1(z)\hat{\omega}_2(-z) \right\rangle
- 2nt_1zg_s\left\langle \hat{\omega}_2(-z) \right\rangle' + nt_2g_s\left\langle \hat{\omega}_1(z) \right\rangle,
\]
\[
S_{12}^{(1)}(z) = -nt_2\left\langle \hat{\omega}_1(z) \right\rangle - 2\left(z\left\langle \hat{R}_1^{(2)}(z) \right\rangle \right)' + (n + 1)g_s^2\left(\sum_i \sum_a \frac{1}{\kappa_a} \frac{1}{z e^{u_i} \cosh^2 \frac{w_a - u_i}{2}} \right).
\]
(3.34)

Here
\[
\hat{G}_1(z) := \kappa_1 g_s^2 \sum_i \sum_a \log z - u_i \tanh \frac{u_i - w_a}{2}.
\]
(3.35)

See Appendix B for details.

Using the third order constraints (3.24), (3.26) and the second order constraint (3.9), we can rewrite the terms containing \(\left\langle \hat{R}_1^{(3)}(z) \right\rangle, \left\langle \hat{R}_2^{(3)}(-z) \right\rangle\) and \(\left\langle \hat{R}_1^{(2)}(z) \right\rangle\).

3.2.4 Third order constraint 4

Similar to the case of the third order constraint 3,
\[
\int d^{N_2}u \int d^{N_2}w \sum_{i=1}^{N_2} \sum_{a=1}^{N_2} \frac{\partial}{\partial w_a} \left(\frac{2}{z + e^{w_a}} \tanh \frac{w_a - u_i}{2} e^{S_{\text{eff}}} \right) = 0
\]
(3.36)
leads to
\[
S_{21}^{(0)}(-z) + g_s S_{21}^{(1)}(-z) = 0,
\]
(3.37)
where
\[
S_{21}^{(0)}(-z) = 2\left\langle \hat{R}_2^{(3)}(-z) \right\rangle - 2n\left\langle \hat{R}_1^{(3)}(z) \right\rangle
- n\left\langle \hat{\omega}_2(-z)(2z \hat{\omega}_1(z) - t_1)^2 \right\rangle - 2nt_2\hat{z}\left\langle \hat{\omega}_1(z)^2 \right\rangle + 2nt_2(t_1 - g_s)\left\langle \hat{\omega}_1(z) \right\rangle
- 2\kappa_2 \log(-z) \left\langle \hat{R}_2^{(2)}(-z) \right\rangle + 2\left\langle \hat{G}_2(-z) \right\rangle
- 4nz^2g_s\left\langle \hat{\omega}_1(\hat{\omega}_2(-z))^2 \right\rangle - 4nzg_s\left\langle \hat{\omega}_2(-z)\hat{\omega}_1(z) \right\rangle
- 2nt_2zg_s\left\langle \hat{\omega}_1(z) \right\rangle' + nt_1g_s\left\langle \hat{\omega}_2(-z) \right\rangle',
\]
(3.38)
\[
S_{21}^{(1)}(-z) = -nt_1\left\langle \hat{\omega}_2(-z) \right\rangle - 2\left(z\left\langle \hat{R}_2^{(2)}(-z) \right\rangle \right)'
- (n + 1)g_s^2\left(\sum_i \sum_a \frac{1}{\kappa_a} \frac{1}{z e^{u_i} \cosh^2 \frac{w_a - u_i}{2}} \right).
\]
(3.39)
Here
\[\tilde{G}_2(z) := \kappa_2 g^2 \sum_{i} \sum_{a} \log z - w_a \tanh \frac{w_a - u_i}{2}. \]

3.2.5 Summary: third order constraints

We have obtained the following third order constraints:

\[
2 \left< \hat{R}_{1}^{(3)}(z) \right> - 2n \left< \hat{R}_{2}^{(3)}(-z) \right>
- n \left< \hat{\omega}_1(z) \left(2z \hat{\omega}_2(-z) + t_2 \right) \right> + 2nt_2 \left< \hat{\omega}_2(-z) \right> + 2nt_1 \left(t_2 - g_s \right) \left< \hat{\omega}_2(-z) \right>
- 2\kappa_1 \log z \left< \hat{R}_{1}^{(2)}(z) \right> + 2 \left< \hat{G}_1(z) \right>
+ 4nz^2 g_s \left< \hat{\omega}_1(z) \left(\hat{\omega}_2(-z) \right) \right> + 4ng_s \left< \hat{\omega}_1(z) \hat{\omega}_2(-z) \right> - 2nt_1 z g_s \left< \hat{\omega}_2(-z) \right>
- 2g_s \left< z \left< \hat{R}_{1}^{(2)}(z) \right> \right> + (n + 1) g^3 \left< \frac{1}{z - e^{u_i}} \frac{1}{\cosh^2 \frac{u_i - w_a}{2}} \sum_{a} \sum_{a} \right> = 0,
\]

\[
2 \left< \hat{R}_{2}^{(3)}(-z) \right> - 2n \left< \hat{R}_{1}^{(3)}(z) \right>
- n \left< \hat{\omega}_2(-z) \left(2z \hat{\omega}_1(z) - t_1 \right) \right> - 2nt_2 z \left< \hat{\omega}_1(z) \right> + 2nt_2 \left(t_1 - g_s \right) \left< \hat{\omega}_1(z) \right>
- 2\kappa_2 \log(-z) \left< \hat{R}_{2}^{(2)}(-z) \right> + 2 \left< \hat{G}_2(-z) \right>
- 4nz^2 g_s \left< \hat{\omega}_2(-z) \left(\hat{\omega}_1(z) \right) \right> - 4ng_s \left< \hat{\omega}_2(-z) \hat{\omega}_1(z) \right> - 2nt_2 z g_s \left< \hat{\omega}_1(z) \right>
- 2g_s \left< z \left< \hat{R}_{2}^{(2)}(-z) \right> \right> - (n + 1) g^3 \left< \frac{1}{z - e^{u_i}} \frac{1}{\cosh^2 \frac{u_i - w_a}{2}} \sum_{a} \sum_{a} \right> = 0,
\]

where \(\left< \hat{R}_{1}^{(3)}(z) \right> \) and \(\left< \hat{R}_{2}^{(3)}(-z) \right> \) are respectively given by (3.24) and (3.26). The second order constraints also imply

\[
\left< \hat{R}_{1}^{(2)}(z) \right> = \frac{2z}{n} \left< \hat{\omega}_1(z)^2 \right> - \frac{2}{n} \left(t_1 + \kappa_1 \log z \right) \left< \hat{\omega}_1(z) \right> + \frac{2}{n} \left< \hat{F}_1(z) \right>,
\]

\[
\left< \hat{R}_{2}^{(2)}(-z) \right> = -\frac{2z}{n} \left< \hat{\omega}_2(-z)^2 \right> - \frac{2}{n} \left(t_2 + \kappa_2 \log(-z) \right) \left< \hat{\omega}_2(-z) \right> + \frac{2}{n} \left< \hat{F}_2(-z) \right>.
\]

4 Planar limit and loop equations

Keeping the ’t Hooft couplings \(t_1 = N_1 g_s \) and \(t_2 = N_2 g_s \) finite, we take the planar limit \(g_s \to 0 \).

For \(i = 1, 2 \), let

\[
\omega_i(z) := \lim_{g_s \to 0} \left< \hat{\omega}_i(z) \right>, \quad f_i(z) := \lim_{g_s \to 0} \left< \hat{F}_i(z) \right>,
\]

\[
g_i(z) := \lim_{g_s \to 0} \left< \hat{G}_i(z) \right>, \quad h_i(z) := \lim_{g_s \to 0} \left< \hat{H}_i(z) \right>,
\]

\[
r_i^{(2)}(z) := \lim_{g_s \to 0} \left< \hat{R}_i^{(2)}(z) \right>, \quad r_i^{(3)}(z) := \lim_{g_s \to 0} \left< \hat{R}_i^{(3)}(z) \right>,
\]

\[
l_i^{(4)}(z) := \lim_{g_s \to 0} \left< \hat{R}_i^{(4)}(z) \right>, \quad k_i(z) := \lim_{g_s \to 0} \left< \hat{K}_i(z) \right>.
\]
We also introduce
\[v_i(z) := \lim_{g_i \to 0} \langle \hat{v}_i(z) \rangle = 2z \omega_i(z) - t_i. \] (4.4)

4.1 Planar second order constraint

The planar limit of the second order constraint (3.16) is given by
\[
zw_1(z)^2 + nzw_1(z)\omega_2(-z) + z\omega_2(-z)^2 \\
- A_1(z)\omega_1(z) + A_2(-z)\omega_2(-z) + f_1(z) - f_2(-z) = 0,
\] (4.5)
where
\[
A_1(z) := t_1 - \frac{n}{2} t_2 + \kappa_1 \log z, \quad A_2(z) := t_2 - \frac{n}{2} t_1 + \kappa_2 \log z.
\] (4.6)

4.2 Planar third order constraints

The planar limit of the third order constraints (3.41) and (3.42) are respectively given by
\[
2r_1^{(3)}(z) - 2nr_2^{(3)}(-z) - n\omega_1(z)(2z\omega_2(-z) + t_2)^2 \\
+ 2nt_1z\omega_2(-z)^2 + 2nt_1t_2\omega_2(-z) - 2\kappa_1 \log z r_1^{(2)}(z) + 2g_1(z) = 0,
\] (4.7)
\[
2r_2^{(3)}(-z) - 2nr_1^{(3)}(z) - n\omega_2(-z)(2z\omega_1(z) - t_1)^2 \\
- 2nt_2z\omega_1(z)^2 + 2nt_1t_2\omega_1(z) - 2\kappa_2 \log(-z) r_2^{(2)}(-z) + 2g_2(-z) = 0,
\] (4.8)
where
\[
r_1^{(3)}(z) = \frac{8z^2}{3n} \omega_1(z)^3 - \frac{2z}{n} (2t_1 + \kappa_1 \log z) \omega_1(z)^2 \\
+ \frac{2}{n} t_1(t_2 + \kappa_2 \log z) \omega_1(z) + \frac{2}{n} h_1(z),
\]
\[
r_2^{(3)}(-z) = \frac{8z^2}{3n} \omega_2(-z)^3 + \frac{2z}{n} (2t_2 + \kappa_2 \log(-z)) \omega_2(-z)^2 \\
+ \frac{2}{n} t_2(t_2 + \kappa_2 \log(-z)) \omega_2(-z) + \frac{2}{n} h_2(-z),
\] (4.9)
\[
r_1^{(2)}(z) = \frac{2z}{n} \omega_1(z)^2 - \frac{2}{n} (t_1 + \kappa_1 \log z) \omega_1(z) + \frac{2}{n} f_1(z),
\]
\[
r_2^{(2)}(-z) = -\frac{2z}{n} \omega_2(-z)^2 - \frac{2}{n} (t_2 + \kappa_2 \log(-z)) \omega_2(-z) + \frac{2}{n} f_2(-z).
\]
4.2.1 Explicit forms

The explicit form of the planar third order constraints (4.7) and (4.8) are respectively

\[
\begin{align*}
&\frac{16z^2}{3n}\omega_1(z)^3 - 4nz^2\omega_1(z)\omega_2(-z)^2 - \frac{16z^2}{3}\omega_2(-z)^3 \\
&- \frac{8z}{n}(t_1 + \kappa_1 \log z)\omega_1(z)^2 - 4nt_2\omega_1(z)\omega_2(-z) - 2z(4t_2 - nt_1 + 2\kappa_2 \log(-z))\omega_2(-z)^2 \\
&+ \frac{1}{n}(2t_1 - nt_2 + 2\kappa_1 \log z)(2t_1 + nt_2 + 2\kappa_1 \log z)\omega_1(z) \\
&- 2t_2(2t_2 - nt_1 + 2\kappa_1 \log(-z))\omega_2(-z) \\
&+ \frac{4}{n}h_1(z) - \frac{4\kappa_1}{n} \log z f_1(z) + 2g_1(z) - 4h_2(-z) = 0, \\
&- \frac{16z^2}{3}\omega_1(z)^3 - 4nz^2\omega_1(z)^2\omega_2(-z) + \frac{16z^2}{3n}\omega_2(-z)^3 \\
&+ 2z(4t_1 + 2\kappa_1 \log z - nt_2)\omega_1(z)^2 + 4nt_1\omega_1(z)\omega_2(-z) + \frac{8z}{n}(t_2 + \kappa_2 \log(-z))\omega_2(-z)^2 \\
&- 2t_1(2t_1 + 2\kappa_1 \log z - nt_2)\omega_1(z) \\
&+ \frac{1}{n}(2t_2 - nt_1 + 2\kappa_2 \log(-z))(2t_2 + nt_1 + 2\kappa_2 \log(-z))\omega_2(-z) \\
&+ \frac{4}{n}h_2(-z) - \frac{4\kappa_2}{n} \log(-z) f_2(-z) + 2g_2(-z) - 4h_1(z) = 0.
\end{align*}
\]

4.3 Cubic loop equations

Let

\[
\begin{align*}
\omega_\pm(z) := \omega_1(z) \pm \omega_2(-z), & \quad f_\pm(z) := f_1(z) \pm f_2(-z), \\
g_\pm(z) := g_1(z) \pm g_2(-z), & \quad h_\pm(z) := h_1(z) \pm h_2(-z), \\
v_\pm(z) := v_1(z) \pm v_2(-z), & \quad A_\pm(z) := A_1(z) \pm A_2(-z),
\end{align*}
\]

Note that

\[
A_+(z) = -\left(\frac{n-2}{2}\right)t_+ + K_+(z), \quad A_-(z) = \left(\frac{n+2}{2}\right)t_- + K_-(z),
\]

where

\[
K_\pm(z) := \kappa_1 \log z \pm \kappa_2 \log(-z).
\]

In terms of \(\omega_\pm(z)\), the planar second order constraint (4.5) can be rewritten as

\[
\frac{(n+2)}{2}z\omega_+(z)^2 - \frac{(n-2)}{2}z\omega_-(z)^2 - A_-(z)\omega_+(z) - A_+(z)\omega_-(z) + 2f_-(z) = 0.
\]
4.3.1 Cubic equation for $\omega_+(z)$

By adding (4.10) and (4.11), we find

\[
-\frac{(n+2)(3n-2)}{3n}z^2\omega_+(z)^3 + \left\{ (n+2)t_- + \frac{(n-2)}{n}A_-(z) \right\} z\omega_+(z)^2 \\
+ \frac{1}{n} \left(A_+(z)^2 + A_-(z)^2 - 2nt_-A_-(z) \right) \omega_+(z) \\
+ \frac{1}{n} \left\{ (n-2)z\omega_-(z)^2 + 2A_+(z)\omega_-(z) \right\} \left\{ (n-2)z\omega_+(z) - nt_- + A_-(z) \right\} \\
- \frac{2}{n}K_+(z)f_+(z) - \frac{2}{n}K_-(z)f_-(z) - \frac{4(n-1)}{n}h_+(z) + 2g_+(z) = 0.
\]

(4.19)

Using the planar second order constraint (4.18), we can convert this equation into an algebraic equation for $\omega_+(z)$:

\[
-\frac{4(n+2)}{3}z^2\omega_+(z)^3 + 4A_-(z)z\omega_+(z)^2 \\
+ \left\{ A_+(z)^2 - A_-(z)^2 + 4(n-2)zf_-(z) \right\} \omega_+(z) \\
- 2K_+(z)f_+(z) - 2\left\{ (n-2)t_- - K_-(z) \right\} f_-(z) \\
- 4(n-1)h_+(z) + 2ng_+(z) = 0.
\]

(4.20)

For $n \neq -2$, this is a cubic equation. For $n = -2$, it is quadratic.

When $n \neq -2$, in terms of

\[
x_-(z) := (n+2)z\omega_+(z) - A_-(z) = \frac{(n+2)}{2}v_-(z) - K_-(z),
\]

(4.21)

the cubic equation (4.20) becomes

\[
x_-(z)^3 - 3 \left(\frac{n+2}{2} \right)^2 x_-(z)^2 - q_+(z) = 0,
\]

(4.22)

where

\[
p(z) = \frac{1}{4} \left\{ (n+2)A_+(z)^2 - (n-2)A_-(z)^2 + 4(n+2)(n-2)zf_-(z) \right\},
\]

(4.23)

\[
q_+(z) = \frac{1}{4}A_-(z) \left\{ 3(n+2)A_+(z)^2 - (3n-2)A_-(z)^2 \right\} \\
- \frac{3(n+2)^2}{2}zK_+(z)f_+(z) + \frac{3(n+2)(3n-2)}{2}zK_-(z)f_-(z) \\
- 3(n+2)^2(n-1)z h_+(z) + \frac{3n(n+2)^2}{2}zg_+(z).
\]

(4.24)
4.3.2 Cubic equation for ω_-

By subtracting (4.11) from (4.10), we obtain

$$-\frac{(3n+2)(n-2)}{3n}z^2\omega_-(z)^3 + \left\{(n-2)t_+ - \frac{(n+2)}{n}A_+(z)\right\}z\omega_-(z)^2$$

$$+ \frac{1}{n}\left(A_+(z)^2 + A_-(z)^2 + 2nt_+A_+(z)\right)\omega_- (z)$$

$$+ \frac{1}{n}\left\{(n+2)z\omega_-(z)^2 - 2A_-(z)\omega_+(z)\right\}\left\{(n+2)z\omega_-(z) - nt_+ - A_+(z)\right\}$$

$$- \frac{2}{n}K_-(z)f_+(z) - \frac{2}{n}K_+(z)f_-(z) + \frac{4(n+1)}{n}h_-(z) + 2g_-(z) = 0. \quad (4.25)$$

Using the planar second order constraint (4.18), we can convert this equation into an algebraic equation for $\omega_-(z)$:

$$\frac{4(n-2)}{3}z^2\omega_-(z)^3 + 4A_+(z)z\omega_-(z)^2$$

$$- \left\{A_+(z)^2 - A_-(z)^2 + 4(n+2)zf_-(z)\right\}\omega_-(z)$$

$$- 2K_-(z)f_+(z) + 2\left\{(n+2)t_+ + K_+(z)\right\}f_-(z)$$

$$+ 4(n+1)h_-(z) + 2ng_-(z) = 0. \quad (4.26)$$

For $n \neq 2$, this is a cubic equation. For $n = 2$, it is quadratic.

When $n \neq 2$, in terms of

$$x_+(z) := (n-2)z\omega_-(z) + A_+(z) = \frac{(n-2)}{2}v_+(z) + K_+(z), \quad (4.27)$$

the cubic equation (4.26) becomes

$$x_+(z)^3 - 3p(z)x_+(z) - q_-(z) = 0. \quad (4.28)$$

where $p(z)$ is given by (4.23) and

$$q_-(z) = -\frac{1}{4}A_+(z)\left\{(3n+2)A_+(z)^2 - 3(n-2)A_-(z)^2\right\}$$

$$+ \frac{3(n-2)^2}{2}zK_-(z)f_+(z) - \frac{3(n-2)(3n+2)}{2}zK_+(z)f_-(z)$$

$$- 3(n-2)^2(n+1)z h_-(z) - \frac{3n(n-2)^2}{2}z g_-(z). \quad (4.29)$$

4.3.3 Remark

For $n \neq -2$, if we introduce $\alpha_-(z)$ and β_- as a solution to

$$\alpha_-(z)\beta_-(z) = p(z), \quad \alpha_-(z)^3 + \beta_-(z)^3 = q_+(z), \quad (4.30)$$

then

$$x_-(z) = \alpha_-(z) + \beta_-(z) \quad (4.31)$$
solves the cubic equation (4.22).

Similarly, for $n \neq 2$, using $\alpha_+(z)$ and $\beta_+(z)$ obeying
\[\alpha_+(z)\beta_+(z) = p(z), \quad \alpha_+(z)^3 + \beta_+(z)^3 = q_-(z), \] we have a solution to (4.28):
\[x_+(z) = \alpha_+(z) + \beta_+(z). \] (4.33)

4.4 Loop equations for special cases

4.4.1 $n = 2$ case

When $n = 2$, (4.26) reduces to a quadratic equation for $2z \omega_-(z) = v_+(z) + t_+$:
\[
K_+(z)(v_+(z) + t_+)^2 - \frac{1}{2}\left\{ K_+(z)^2 - A_-(z)^2 + 16z f_-(z) \right\}(v_+(z) + t_+)
- 2z K_-(z)f_+(z) + 2z\left\{ 4t_+ + K_+(z) \right\}f_-(z) + 12z h_-(z) + 4z g_-(z) = 0,
\] (4.34)
where
\[A_-(z) = 2t_- + K_-(z), \] (4.35)
while $x_-(z) = 2v_-(z) - K_-(z)$ obeys the cubic equation (4.22) with
\[p(z) = K_-(z)^2, \] (4.36)
\[
q_+(z) = A_-(z)\left\{ 3K_+(z)^2 - A_-(z)^2 \right\}
- 24z K_+(z)f_+(z) + 24z K_-(z)f_-(z) - 148z h_+(z) + 48z g_+(z).
\] (4.37)

Note that in the case of the ABJ(M) matrix model ($k_1 = -k_2$), (4.16) and (4.17) imply
\[K_+(z) = A_+(z) = \pi i \kappa_2. \] (4.38)

4.4.2 $n = -2$ case

When $n = -2$, $x_+(z) = -2v_+(z) + K_+(z)$ obeys the cubic equation (4.28) with
\[p(z) = K_-(z)^2, \] (4.39)
\[
q_-(z) = A_+(z)\left\{ A_+(z)^2 - 3K_-(z)^2 \right\}
+ 24z K_-(z)f_+(z) - 24z K_+(z)f_-(z) + 48z h_-(z) + 48z g_-(z),
\] (4.40)
where
\[A_+(z) = 2t_+ + K_+(z), \] (4.41)
while (4.20) reduces to a quadratic equation for $2z \omega_+(z) = v_-(z) + t_-$:
\[
K_-(z)(v_-(z) + t_-)^2 + \frac{1}{2}\left\{ A_+(z)^2 - K_-(z)^2 - 16z f_-(z) \right\}(v_-(z) + t_-)
- 2z K_+(z)f_+(z) + 2z\left\{ 4t_- + K_-(z) \right\}f_-(z) + 12z h_+(z) - 4z g_+(z) = 0.
\] (4.42)
Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15K05059. Support from JSPS/RFBR bilateral collaborations “Faces of matrix models in quantum field theory and statistical mechanics” (H. I., T. S. and R. Y.) and “Exploration of Quantum Geometry via Symmetry and Duality” (T. O.) is gratefully appreciated. The work of T. S. was also supported in part by Fujukai Foundation.

A Derivation of third order constraint 1: eq. (3.19)

From (3.18) we have

\[
2 \left< \sum_{i} \sum_{j \neq i} \frac{e^{u_i}}{(z-e^{u_i})^2} \coth \frac{u_i-u_j}{2} \right> - \left< \sum_{i} \sum_{j \neq i} \frac{1}{z-e^{u_i}} \frac{1}{\sinh^2 \frac{u_i-u_j}{2}} \right> \\
+ 2 \left< \sum_{i} \sum_{j \neq i} \sum_{k \neq i} \frac{1}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \coth \frac{u_i-u_k}{2} \right> \\
- n \left< \sum_{i} \sum_{j \neq i} \sum_{a} \frac{1}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \tanh \frac{u_i-u_a}{2} \right> \\
- \frac{2\kappa_1}{g_s} \left< \sum_{i} \sum_{j \neq i} \frac{u_i}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \right> = 0.
\]

The third term in (A.1) can be rewritten as

\[
2 \left< \sum_{i} \sum_{j \neq i} \sum_{k \neq i} \frac{1}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \coth \frac{u_i-u_k}{2} \right> \\
= 2 \left< \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \coth \frac{u_i-u_k}{2} \right> \\
+ 2 \left< \sum_{i} \sum_{j \neq i} \frac{1}{z-e^{u_i}} \coth^2 \frac{u_i-u_j}{2} \right> \\
= 2 \left< \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z-e^{u_i}} \coth \frac{u_i-u_j}{2} \coth \frac{u_i-u_k}{2} \right> \\
+ 2 \left< \sum_{i} \sum_{j \neq i} \frac{1}{z-e^{u_i}} \frac{1}{\sinh^2 \frac{u_i-u_j}{2}} \right> + 2(N_1-1) \left< \sum_{i} \frac{1}{z-e^{u_i}} \right>.
\]

Here we have used

\[
\coth^2 x = 1 + \frac{1}{\sinh^2 x}.
\]
Then (A.1) can be expressed in the form (3.19) with

\[
S_{11}^{(0)}(z) := 2g_s^3 \left(\sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \coth \frac{u_i - u_k}{2} \right)
- n \left(\hat{R}_1^{(3)}(z) \right) - 2\kappa_1 g_s^2 \left(\sum_{i} \sum_{j \neq i} \frac{u_i}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \right),
\]

(A.4)

\[
S_{11}^{(1)}(z) := 2g_s^2 \left(\sum_{i} \sum_{j \neq i} \frac{e^{u_i}}{(z - e^{u_i})^2} \coth \frac{u_i - u_j}{2} \right)
+ 2(N_1 - 1)g_s^2 \left(\sum_{i} \frac{1}{z - e^{u_i}} \right) + g_s^2 \left(\sum_{i} \sum_{j \neq i} \frac{1}{(z - e^{u_i})} \frac{1}{\sinh^2 \frac{u_i - u_j}{2}} \right).
\]

(A.5)

In the following part, we show that \(S_{11}^{(0)}(z) \) (A.4) and \(S_{11}^{(1)}(z) \) (A.5) can be converted respectively into (3.20) and (3.21).

A.1 Rewriting of \(S_{11}^{(0)}(z) \): from (A.4) to (3.20)

Let us rewrite the first term in the right-handed side of \(S_{11}^{(0)}(z) \) (A.4). Notice that

\[
2 \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \coth \frac{u_i - u_k}{2}
= \frac{2}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \coth \frac{u_i - u_k}{2} \right)
+ \frac{1}{z - e^{u_j}} \coth \frac{u_j - u_k}{2} \coth \frac{u_j - u_i}{2} + \frac{1}{z - e^{u_k}} \coth \frac{u_k - u_i}{2} \coth \frac{u_k - u_j}{2}
= \frac{2}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{z^2 + e^{u_i+u_j} + e^{u_i+u_k} + e^{u_j+u_k}}{(z - e^{u_i})(z - e^{u_j})(z - e^{u_k})} \right)
= \frac{8z^2}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{1}{(z - e^{u_i})(z - e^{u_j})(z - e^{u_k})} \right)
- \frac{4z}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{1}{(z - e^{u_i})(z - e^{u_j})} + \frac{1}{(z - e^{u_i})(z - e^{u_k})} + \frac{1}{(z - e^{u_j})(z - e^{u_k})} \right)
+ \frac{2}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{1}{z - e^{u_i}} + \frac{1}{z - e^{u_j}} + \frac{1}{z - e^{u_k}} \right)
= \frac{8z^2}{3} \sum_{i} \sum_{j \neq i} \sum_{k \neq i,j} \left(\frac{1}{(z - e^{u_i})(z - e^{u_j})(z - e^{u_k})} \right)
- 4(N_1 - 2)z \sum_{i} \sum_{j \neq i} \left(\frac{1}{z - e^{u_i})(z - e^{u_j})} \right) + 2(N_1 - 1)(N_1 - 2) \sum_{i} \frac{1}{z - e^{u_i}}.
\]
Thus, the first term of $S_{11}^{(0)}(z)$ (A.4) can be finally rewritten as follows

\[
2g_s^3 \left\langle \sum_i \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \coth \frac{u_i - u_k}{2} \right\rangle = \frac{8z^2}{3} \left\langle \hat{\omega}_1(z)^3 \right\rangle - 4(t_1 - 2g_s)z \left\langle \hat{\omega}_1(z)^2 \right\rangle + 2(t_1 - g_s)(t_1 - 2g_s) \left\langle \hat{\omega}_1(z) \right\rangle + 4z^2g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - 4(t_1 - 2)zg_s \left\langle \hat{\omega}_1(z) \right\rangle' + \frac{8z^2}{3}g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle''.
\]

Thus, the first term of $S_{11}^{(0)}(z)$ (A.4) can be finally rewritten as follows

\[
2g_s^3 \left\langle \sum_i \sum_{j \neq i} \sum_{k \neq i,j} \frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} \coth \frac{u_i - u_k}{2} \right\rangle = \frac{8z^2}{3} \left\langle \hat{\omega}_1(z)^3 \right\rangle - 4(t_1 - 2g_s)z \left\langle \hat{\omega}_1(z)^2 \right\rangle + 2(t_1 - g_s)(t_1 - 2g_s) \left\langle \hat{\omega}_1(z) \right\rangle + 4z^2g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - 4(t_1 - 2)zg_s \left\langle \hat{\omega}_1(z) \right\rangle' + \frac{8z^2}{3}g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle''.
\]

This leads to

\[
S_{11}^{(0)}(z) = \frac{8z^2}{3} \left\langle \hat{\omega}_1(z)^3 \right\rangle - 4(t_1 - 2g_s)z \left\langle \hat{\omega}_1(z)^2 \right\rangle + 2(t_1 - g_s)(t_1 - 2g_s) \left\langle \hat{\omega}_1(z) \right\rangle + 4z^2g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - 4(t_1 - 2)zg_s \left\langle \hat{\omega}_1(z) \right\rangle' + \frac{8z^2}{3}g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle''.
\]

\[
S_{11}^{(0)}(z) = \frac{8z^2}{3} \left\langle \hat{\omega}_1(z)^3 \right\rangle - 4(t_1 - 2g_s)z \left\langle \hat{\omega}_1(z)^2 \right\rangle + 2(t_1 - g_s)(t_1 - 2g_s) \left\langle \hat{\omega}_1(z) \right\rangle + 4z^2g_s \left\langle \hat{\omega}_1(z)^2 \right\rangle' - 4(t_1 - 2)zg_s \left\langle \hat{\omega}_1(z) \right\rangle' + \frac{8z^2}{3}g_s^2 \left\langle \hat{\omega}_1(z) \right\rangle''.
\]
By substituting the following identity
\[
2g_s^2 \sum_i \sum_{j \neq i} \frac{1}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} = 2z\hat{\omega}_1(z)^2 - 2(t_1 - g_s)\hat{\omega}_1(z) + 2zg_s\hat{\omega}_1(z)'
\] (A.11)
into (A.10), we obtain (3.20).

A.2 Rewriting of \(S_{11}^{(1)}(z) \): from (A.5) to (3.21)

Next, we rewrite \(S_{11}^{(1)}(z) \). The first term in (A.5) can be rewritten as
\[
2g_s^2 \left\langle \sum_i \sum_{j \neq i} \frac{e^{u_i}}{(z - e^{u_i})^2} \coth \frac{u_i - u_j}{2} \right\rangle = - \left(\left\langle \sum_i \sum_{j \neq i} \frac{2g_s^2 e^{u_i}}{(z - e^{u_i})} \coth \frac{u_i - u_j}{2} \right\rangle \right)'.
\] (A.12)

Note that
\[
\sum_i \sum_{j \neq i} \frac{2g_s^2 e^{u_i}}{z - e^{u_i}} \coth \frac{u_i - u_j}{2} = g_s^2 \sum_i \sum_{j \neq i} \frac{z(e^{u_i} + e^{u_j})}{z - e^{u_i}(z - e^{u_j})} = g_s^2 \sum_i \sum_{j \neq i} \frac{1}{z - e^{u_i}} \sum_{j \neq i} \frac{1}{z - e^{u_j}}
\] (A.13)
\[
= 2z^2 g_s^2 \left(\sum_i \frac{1}{z - e^{u_i}} \right)^2 - 2(N_1 - 1)zg_s^2 \sum_i \frac{1}{z - e^{u_i}} + 2z^2 g_s^2 \left(\sum_i \frac{1}{z - e^{u_i}} \right)'
\]
\[
= 2z^2\hat{\omega}_1(z)^2 - 2(N_1 - 1)zg_s\hat{\omega}_1(z) + 2z^2 g_s\hat{\omega}_1(z).
\]

Therefore, the first term in (A.5) can be written by using \(\hat{\omega}_1(z) \) and its derivatives:
\[
2g_s^2 \left\langle \sum_i \sum_{j \neq i} \frac{e^{u_i}}{(z - e^{u_i})^2} \coth \frac{u_i - u_j}{2} \right\rangle = \left(-2z^2 \langle \hat{\omega}_1(z)^2 \rangle + 2(t_1 - g_s)z \langle \hat{\omega}_1(z) \rangle - 2z^2 g_s \langle \hat{\omega}_1(z) \rangle \right)'.
\] (A.14)

Using this relation, we can easily find the final expression (3.21).
B Derivation of third order constraint 3: eq. (3.32)

From (3.31) we have

\[
2 \left\langle \sum_i \sum_a \frac{e^{u_i}}{(z - e^{u_i})^2} \tanh \frac{u_i - w_a}{2} \right\rangle + \left\langle \sum_i \sum_a \frac{1}{z - e^{u_i} \cosh^2 \frac{u_i - w_a}{2}} \right\rangle \\
+ 2 \left\langle \sum_i \sum_a \sum_{j \neq i} \frac{1}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \coth \frac{u_i - u_j}{2} \right\rangle \\
- n \left\langle \sum_i \sum_a \sum_b \frac{1}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \tanh \frac{u_i - w_b}{2} \right\rangle \\
- \frac{2\kappa_1}{g_s} \left\langle \sum_i \sum_a \frac{u_i}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \right\rangle = 0.
\]

(B.1)

With some work, we can rewrite this constraint in the form (3.32) with

\[
S_{12}^{(0)}(z) := 2 \left\langle \hat{R}_1^{(3)}(z) \right\rangle \\
- n g_s^3 \left\langle \sum_i \sum_a \sum_{b \neq a} \frac{1}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \tanh \frac{u_i - w_b}{2} \right\rangle \\
- 2\kappa_1 g_s^2 \left\langle \sum_i \sum_a \frac{u_i}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \right\rangle,
\]

(B.2)

\[
S_{12}^{(1)}(z) := 2 g_s^2 \left\langle \sum_i \sum_a \frac{e^{u_i}}{(z - e^{u_i})^2} \tanh \frac{u_i - w_a}{2} \right\rangle \\
+ (n + 1) g_s^2 \left\langle \sum_i \sum_a \frac{1}{z - e^{u_i} \cosh^2 \frac{u_i - w_a}{2}} \frac{1}{z - e^{u_i}} \right\rangle - n t_2 g_s \left\langle \sum_i \frac{1}{z - e^{u_i}} \right\rangle.
\]

(B.3)

Here we have used

\[
\tanh^2 x = 1 - \frac{1}{\cosh^2 x}.
\]

(B.4)

In the following part, we show that \(S_{12}^{(0)}(z)\) (B.2) and \(S_{12}^{(1)}(z)\) (B.3) can be converted respectively into (3.33) and (3.34).
B.1 Rewriting of $S_{12}^{(0)}(z)$: from (B.2) to (3.33)

Let us rewrite the second term in $S_{12}^{(0)}(z)$ [B.2]. We use the following identity

\[
\frac{1}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \tanh \frac{u_i - w_b}{2} = \frac{1}{(z - e^{u_i})(z - e^{w_a})(z - e^{w_b})} \left(\frac{1}{z + e^{w_a}} \tanh \frac{w_a - u_i}{2} \coth \frac{w_a - w_b}{2} - \frac{1}{z + e^{w_b}} \tanh \frac{w_b - u_i}{2} \coth \frac{w_b - w_a}{2} \right)
\]

This leads to

\[
g_s^3 \left\langle \sum_i \sum_a \sum_{b \neq a} \frac{1}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \tanh \frac{u_i - w_b}{2} \right\rangle \\
= g_s^3 \left\langle \sum_i \sum_a \sum_{b \neq a} \frac{1}{(z - e^{u_i})(z + e^{w_a})(z + e^{w_b})} \right\rangle + 2 \left\langle \hat{R}_2^{(3)}(-z) \right\rangle - 2t_1(z) \hat{\omega}_2(-z) + 2t_1(t_2 - g_s) \left\langle \hat{\omega}_2(-z) \right\rangle \\
- 4z^2 g_s \left\langle \hat{\omega}_1(z) (\hat{\omega}_2(-z))^2 \right\rangle - 4g_s \left\langle \hat{\omega}_1(z) \hat{\omega}_2(-z) \right\rangle + 2t_2 g_s \left\langle \hat{\omega}_2(-z) \right\rangle - t_2 g_s \left\langle \hat{\omega}_1(z) \right\rangle.
\]

Using this relation, [B.2] is easily converted into (3.33).

B.2 Rewriting of $S_{12}^{(1)}(z)$: from (B.3) to (3.34)

The first term in [B.3] can be rewritten by using the following relation:

\[
g_s^2 \left\langle \sum_i \sum_a \frac{e^{u_i}}{z - e^{u_i}} \tanh \frac{u_i - w_a}{2} \right\rangle = \left(-z \left\langle \hat{R}_1^{(2)}(z) \right\rangle \right)'.
\]

With help of this, we can rewrite [B.3] in the form (3.34).

References

[1] M. Mariño, “Chern-Simons theory, matrix integrals, and perturbative three manifold invariants,” Commun. Math. Phys. 253, 25–49 (2004), [arXiv:hep-th/0207096].

[2] M. Aganagic, A. Klemm, M. Marino, and C. Vafa, “Matrix model as a mirror of Chern-Simons theory,” JHEP 02, 010 (2004), [arXiv:hep-th/0211098].
[3] N. Halmagyi and V. Yasnov, “The Spectral curve of the lens space matrix model,” JHEP 11, 104 (2009), [arXiv:hep-th/0311117].

[4] M. Mariño, *Chern-Simons theory, matrix models, and topological strings*, Number 131. (Oxford University Press, 2005).

[5] A. Kapustin, B. Willett, and I. Yaakov, “Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter,” JHEP 03, 089 (2010), [arXiv:0909.4559[hep-th]].

[6] T. Suyama, “On Large N Solution of ABJM Theory,” Nucl. Phys. B 834, 50–76 (2010), [arXiv:0912.1084[hep-th]].

[7] N. Drukker and D. Trancanelli, “A supermatrix model for $\mathcal{N} = 6$ super Chern-Simons-matter theory,” JHEP 02 058 (2010), [arXiv:0912.3006 [hep-th]].

[8] M. Mariño and P. Putrov, “Exact Results in ABJM Theory from Topological Strings,” JHEP 06, 011 (2010), [arXiv:0912.3074[hep-th]].

[9] T. Suyama, “On Large N Solution of Gaiotto-Tomasiello Theory,” JHEP 10, 101 (2010), [arXiv:1008.3950[hep-th]].

[10] N. Drukker, M. Mariño, and P. Putrov, “Nonperturbative aspects of ABJM theory,” JHEP 11, 141 (2011), [arXiv:1103.4844[hep-th]].

[11] M. Mariño, “Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories,” J. Phys. A 44, 463001 (2011), [arXiv:1104.0783[hep-th]].

[12] T. Suyama, “Eigenvalue Distributions in Matrix Models for Chern-Simons-matter Theories,” Nucl. Phys. B 856, 497–527 (2012), [arXiv:1106.3147[hep-th]].

[13] T. Suyama, “A Systematic Study on Matrix Models for Chern-Simons-matter Theories,” Nucl. Phys. B 874, 528–566 (2013), [arXiv:1304.7831[hep-th]].

[14] T. Suyama, “Notes on Planar Resolvents of Chern-Simons-matter Matrix Models,” arXiv:1605.09110[hep-th].

[15] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “$\mathcal{N} = 6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10, 091 (2008), [arXiv:0806.1218[hep-th]].

[16] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, “$\mathcal{N} = 5,6$ Superconformal Chern-Simons Theories and M2-branes on Orbifolds,” JHEP 09, 002 (2008), [arXiv:0806.4977[hep-th]].

[17] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” JHEP 11, 043 (2008), [arXiv:0807.4924[hep-th]].

[18] H. Fuji, S. Hirano, and S. Moriyama, “Summing Up All Genus Free Energy of ABJM Matrix Model,” JHEP 08, 001 (2011), [arXiv:1106.4631[hep-th]].
[19] M. Mariño and P. Putrov, “ABJM theory as a Fermi gas,” J. Stat. Mech. 1203, P03001 (2012), [arXiv:1110.4066[hep-th]].

[20] P. Putrov and M. Yamazaki, “Exact ABJM Partition Function from TBA,” Mod. Phys. Lett. A 27, 1250200 (2012), [arXiv:1207.5066[hep-th]].

[21] A. Klemm, M. Mariño, M. Schiereck, and M. Soroush, “Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach,” Z. Naturforsch. A 68, 178–209 (2013), [arXiv:1207.0611[hep-th]].

[22] Y. Hatsuda, S. Moriyama, and K. Okuyama, “Instanton Effects in ABJM Theory from Fermi Gas Approach,” JHEP 01, 158 (2013), [arXiv:1211.1251[hep-th]].

[23] H. Awata, S. Hirano, and M. Shigemori, “The Partition Function of ABJ Theory,” PTEP 2013, 053B04 (2013), [arXiv:1212.2966[hep-th]].

[24] Y. Hatsuda, S. Moriyama, and K. Okuyama, “Instanton Bound States in ABJM Theory,” JHEP 05, 054 (2013), [arXiv:1301.5184[hep-th]].

[25] Y. Hatsuda, M. Mariño, S. Moriyama, and K. Okuyama, “Non-perturbative effects and the refined topological string,” JHEP 09, 168 (2014), [arXiv:1306.1734[hep-th]].

[26] M. Jimbo and J. Shiraishi, “A coset-type construction for the deformed virasoro algebra,” Lett. Math. Phys. 43(2), 173–185 (1998).

[27] J. Shiraishi, H. Kubo, H. Awata, and S. Odake, “A Quantum deformation of the Virasoro algebra and the Macdonald symmetric functions,” Lett. Math. Phys. 38, 33–51 (1996), [arXiv:q-alg/9507034].

[28] H. Awata, H. Kubo, S. Odake, and J. Shiraishi, “Quantum \(W_N \) algebras and Macdonald polynomials,” Commun. Math. Phys. 179, 401–416 (1996), [arXiv:q-alg/9508011].

[29] H. Awata, H. Kubo, Y. Morita, S. Odake, and J. Shiraishi, “Vertex operators of the \(q \) Virasoro algebra: Defining relations, adjoint actions and four point functions,” Lett. Math. Phys. 41, 65–78 (1997), [arXiv:q-alg/9604023].

[30] A. A. Kadeishvili, “Vertex operators for deformed Virasoro algebra.” JETP Lett. 63, 917–923 (1996), [Pisma Zh. Eksp. Teor. Fiz.63,876(1996)], [arXiv:hep-th/9604153].

[31] H. Awata and Y. Yamada, “Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra,” JHEP 01, 125 (2010), [arXiv:0910.4431[hep-th]].

[32] H. Awata and Y. Yamada, “Five-dimensional AGT Relation and the Deformed beta-ensemble,” Prog. Theor. Phys. 124, 227–262 (2010), [arXiv:1004.5122[hep-th]].

[33] A. Mironov, A. Morozov, Sh. Shakirov, and A. Smirnov, “Proving AGT conjecture as HS duality: extension to five dimensions,” Nucl. Phys. B 855, 128–151 (2012), [arXiv:1105.0948[hep-th]].
[34] A. A. Belavin, M. A. Bershtein, and G. M. Tarnopolsky, “Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity,” JHEP 03, 019 (2013), [arXiv:1211.2788[hep-th]].

[35] F. Nieri, S. Pasquetti, and F. Passerini, “3d and 5d Gauge Theory Partition Functions as q-deformed CFT Correlators,” Lett. Math. Phys. 105(1), 109–148 (2015), [arXiv:1303.2626[hep-th]].

[36] H. Itoyama, T. Oota, and R. Yoshioka, “2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space,” Nucl. Phys. B 877, 506–537 (2013), [arXiv:1308.2068[hep-th]].

[37] H. Itoyama, T. Oota, and R. Yoshioka, “q-Virasoro algebra at root of unity limit and 2d-4d connection,” J. Phys. Conf. Ser. 474, 012022 (2013).

[38] M.-C. Tan, “An M-Theoretic Derivation of a 5d and 6d AGT Correspondence, and Relativistic and Elliptized Integrable Systems,” JHEP 12, 031 (2013), [arXiv:1309.4775[hep-th]].

[39] F. Nieri, S. Pasquetti, F. Passerini, and A. Torrielli, “5D partition functions, q-Virasoro systems and integrable spin-chains,” JHEP 12, 040 (2014), [arXiv:1312.1294[hep-th]].

[40] Y. Ohkubo, “Existence and Orthogonality of Generalized Jack Polynomials and Its q-Deformation,” arXiv:1404.5401[math-ph].

[41] H. Itoyama, T. Oota, and R. Yoshioka, “q-Virasoro/W Algebra at Root of Unity and Parafermions,” Nucl. Phys. B 889, 25–35 (2014), [arXiv:1408.4216[hep-th]].

[42] L. Spodyneiko, “AGT correspondence: Ding-Iohara algebra at roots of unity and Lepowsky-Wilson construction,” J. Phys. A 48, 275404 (2015), [arXiv:1409.3465[hep-th]].

[43] Y. Zenkevich, “Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions,” JHEP 05, 131 (2015), [arXiv:1412.8592[hep-th]].

[44] R. Yoshioka, “The integral representation of solutions of KZ equation and a modification by K operator insertion,” arXiv:1512.01084[hep-th].

[45] Y. Ohkubo, H. Awata, and H. Fujino, “Crystallization of deformed Virasoro algebra, Ding-Iohara-Miki algebra and 5D AGT correspondence,” arXiv:1512.08016[math-ph].

[46] H. Itoyama, T. Oota, and R. Yoshioka, “q-Vertex Operator from 5D Nekrasov Function,” J. Phys. A 49(34), 345201 (2016), [arXiv:1602.01209[hep-th]].

[47] A. Nedelin, F. Nieri, and M. Zabzine, “q-Virasoro modular double and 3d partition functions,” arXiv:1605.07029[hep-th].

[48] H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, And. Morozov, Y. Ohkubo, and Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models,” JHEP 07, 103 (2016), [arXiv:1604.08366[hep-th]].
[49] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and $N = 2$ Gauge Systems,” arXiv:0909.2453[hep-th].

[50] A. Mironov, A. Morozov, and Sh. Shakirov, “Conformal blocks as Dotsenko-Fateev Integral Discriminants,” Int. J. Mod. Phys. A 25, 3173–3207 (2010), [arXiv:1001.0563[hep-th]].

[51] H. Itoyama and T. Oota, “Method of Generating q-Expansion Coefficients for Conformal Block and $\mathcal{N} = 2$ Nekrasov Function by β-Deformed Matrix Model,” Nucl. Phys. B 838, 298–330 (2010), [arXiv:1003.2929[hep-th]].

[52] A. Mironov, A. Morozov, and And. Morozov, “Conformal blocks and generalized Selberg integrals,” Nucl. Phys. B843, 534–557 (2011), [arXiv:1003.5752[hep-th]].

[53] H. Itoyama, T. Oota, and N. Yonezawa, “Massive Scaling Limit of beta-Deformed Matrix Model of Selberg Type,” Phys. Rev. D 82, 085031 (2010), [arXiv:1008.1861[hep-th]].

[54] B. Estienne, V. Pasquier, R. Santachiara, and D. Serban, “Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model,” Nucl. Phys. B 860, 377–420 (2012), [arXiv:1110.1101[hep-th]].

[55] H. Zhang and Y. Matsuo, “Selberg Integral and $SU(N)$ AGT Conjecture,” JHEP 12, 106 (2011), [arXiv:1110.5255[hep-th]].

[56] S. Mironov, And. Morozov, and Y. Zenkevich, “Generalized Jack polynomials and the AGT relations for the $SU(3)$ group,” JETP Lett. 99, 109–113 (2014), [arXiv:1312.5732[hep-th]].

[57] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from Four-dimensional Gauge Theories,” Lett. Math. Phys. 91, 167–197 (2010), [arXiv:0906.3219[hep-th]].

[58] N. Wyllard, “A_{N-1} conformal Toda field theory correlation functions from conformal $\mathcal{N} = 2$ $SU(N)$ quiver gauge theories,” JHEP 11, 002 (2009), [arXiv:0907.2189[hep-th]].

[59] A. Mironov and A. Morozov, “On AGT relation in the case of $U(3)$,” Nucl. Phys. B 825, 1–37 (2010), [arXiv:0908.2569[hep-th]].

[60] H. Itoyama and R. Yoshioka, “Developments of theory of effective prepotential from extended Seiberg-Witten system and matrix models,” PTEP 2015(11), 11B103 (2015), [arXiv:1507.00260[hep-th]].

[61] A. Marshakov, A. Mironov, and A. Morozov, “Generalized matrix models as conformal field theories: Discrete case,” Phys. Lett. B 265, 99–107 (1991).

[62] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and S. Pakuliak, “Conformal matrix models as an alternative to conventional multimatrix models,” Nucl. Phys. B 404, 717–750 (1993), [arXiv:hep-th/9208044].

[63] I. K. Kostov, “Gauge invariant matrix model for the A-D-E closed strings,” Phys. Lett. B 297, 74–81 (1992), [arXiv:hep-th/9208053].
[64] I. K. Kostov, “Solvable statistical models on a random lattice,” Nucl. Phys. Proc. Suppl. 45A, 13–28 (1996), [arXiv:hep-th/9509124].

[65] H. Itoyama, K. Maruyoshi, and T. Oota, “The Quiver Matrix Model and 2d-4d Conformal Connection,” Prog. Theor. Phys. 123, 957–987 (2010), [arXiv:0911.4244[hep-th]].

[66] E. Witten, “Solutions of four-dimensional field theories via M theory,” Nucl. Phys. B 500, 3–42 (1997), [arXiv:hep-th/9703166].

[67] D. Gaiotto, “N = 2 dualities,” JHEP 08, 034 (2012), [arXiv:0904.2715[hep-th]].

[68] H. Itoyama and T. Oota, “A_{n}^{(1)} Affine Quiver Matrix Model,” Nucl. Phys. B 852, 336–351 (2011), [arXiv:1106.1539[hep-th]].

[69] F. David, “Loop Equations and Nonperturbative Effects in Two-dimensional Quantum Gravity,” Mod. Phys. Lett. A 5, 1019–1030 (1990).

[70] A. Mironov and A. Morozov, “On the origin of Virasoro constraints in matrix models: Lagrangian approach,” Phys. Lett. B 252, 47–52 (1990).

[71] H. Itoyama and Y. Matsuo, “Noncritical Virasoro algebra of d < 1 matrix model and quantized string field,” Phys. Lett. B 255, 202–208 (1991).

[72] H. Itoyama and Y. Matsuo, “\mathcal{W}_{1+\infty} type constraints in matrix models at finite N,” Phys. Lett. B 262, 233–239 (1991).

[73] H. Itoyama, “Matrix models at finite N,” in Strings and Symmetries 1991 Stony Brook, New York, May 20-25, 1991, pages 268–279 (1991), [arXiv:hep-th/9111039].