Resolving medulloblastoma cellular architecture by single-cell genomics

Volker Hovestadt1,2,25, Kyle S. Smith1,25, Laure Bihannic3,25, Mariella G. Filbin1,2,4,25, McKenzie L. Shaw1,2,4, Alicia Baumgartner1,2, John C. DeWitt1,2, Andrew Groves4, Lisa Mayr5,6, Hannah R. Weissman1,2, Alyssa R. Richman1,2, Marni E. Shore1,2, Lilianna Goumnerova4, Celeste Rosencrance2, Robert A. Carter4, Timothy N. Phoenix5, Jennifer L. Hadley4, Yiai Tong1, Jim Houston1, Richard A. Ashmun5, Michael DeCuypere6, Tanvi Sharma5,11, Diane Flasch7, Antonina Silkov7, Keith L. Ligon2,11, Scott Lawrence7, Miguel N. Rivera1,2, Orit Rothenblatt-Ronen2,15,16, Jessica M. Rutella11, Robert J. Wechsler-Reya17, Xiao-Nan Li18, Andreas Peryt15,6, Johannes Gojo5,6,19, Dominik Kirchhofer5,6,19, Daniela Lötsch5,6,19, Thomas Czech6,20, Christian Dörfler4,20, Christine Haberreiter6,21, Rene Geyeregger5,22, Angela Hallmann22, Charles Gawad7,8, John Easton1,25, Stefan M. Pfister11,12,23, Aviv Regev2,15,16, Amar Gajjar8, Brent A. Orr24, Irene Slavc5,6, Giles W. Robinson9, Bradley E. Bernstein1,2,26a, Mario L. Suva1,2,26a & Paul A. Northcott3,26a.

Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular subgroups. WNT, SHH and Group 3 tumours comprised subgroup-specific undifferentiated and differentiated neuronal–malignant populations, whereas Group 4 tumours consisted exclusively of differentiated neuronal–neoplastic cells. SHH tumours closely resembled granule neurons of varying differentiation states that correlated with patient age. Group 3 and Group 4 tumours exhibited a developmental trajectory from primitive progenitor–like to more mature neuronal–like cells, the relative proportions of which distinguished these subgroups. Cross-species transcriptomics defined distinct glutamatergic populations as putative cells–of–origin for SHH and Group 4 subtypes. Collectively, these data provide insights into the cellular and developmental states underlying subtype–specific medulloblastoma biology.

Medulloblastoma (MB) comprises a series of molecularly and clinically diverse malignant childhood cerebellar tumours1. While advances in treatment have improved survival, many patients suffer from neurologic sequelae or still succumb to their disease. Genomic studies of bulk patient cohorts have defined four consensus molecular subgroups (WNT, SHH, Group 3 and Group 4)2,3, each characterized by discrete genomic landscapes, patient demographics and clinical phenotypes3,4. The association between genotypes, transcriptional profiles, and patient age at diagnosis suggests that distinct MB subgroups arise from the transformation of different cell types in precise spatiotemporal patterns. Such genotype–to–cell–type associations have been partially investigated for WNT and SHH MBs, which are thought to originate from cells in the extracerebellar lower rhombic lip5 and from cerebellar granule neuron progenitors (GNPs)6,7, respectively. By contrast, cellular origins of Group 3 and Group 4 MB remain unconfirmed. Overlapping transcriptional and epigenetic signatures observed in bulk profiling studies have consistently hampered definitive classification of Group 3 and Group 4 tumours and suggest that they may share common developmental origins8,9. Thus, a better understanding of MB cellular composition and substructure according to subgroup is a critical goal, especially for the poorly characterized Group 3 and Group 4.

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful method to comprehensively characterize cellular states in healthy and diseased tissues12. Whereas in central nervous system malignancies, scRNA-seq has been applied to decipher adult and paediatric gliomas13–16, such approaches have yet to be deployed across MB subgroups. Here we applied full-length scRNA-seq across consensus MB subgroups to infer cellular trajectories, deconvolute bulk MB expression cohorts and nominate developmental origins. We find that WNT, SHH and Group 3 tumours exhibit subgroup–specific cellular trajectories that consist of malignant undifferentiated and differentiated neuronal–like populations, whereas Group 4 tumours recapitulate more differentiated populations of known lineage. Collectively, these data provide insights into the cellular and architectural features of MB.

1Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 2Broad Institute of Harvard and MIT, Cambridge, MA, USA. 3Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA. 4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA. 5Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria. 6Department of Developmental Biology, St Jude Children’s Research Hospital, Memphis, TN, USA. 7Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, USA. 8Department of Flow Cytometry, St Jude Children’s Research Hospital, Memphis, TN, USA. 9Department of Surgery, St Jude Children’s Research Hospital, Memphis, TN, USA. 10Department of Neurosurgery, St Jude Children’s Research Hospital, Memphis, TN, USA. 11Hopp Children’s Cancer Centre at National Centre for Tumour Diseases Heidelberg (KITZ), Heidelberg, Germany. 12Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 13Division of Oncologic Pathology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA, USA. 14Department of Neurology, Harvard Medical School, Boston Children’s Hospital, Boston, MA, USA. 15Kieran Cell Observatory (KCO), Broad Institute of Harvard and MIT, Cambridge, MA, USA. 16Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA. 17Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Research Discovery Institute, La Jolla, CA, USA. 18Texas Children’s Cancer Centre, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA. 19Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria. 20Department of Neurosurgery, Medical University of Vienna, Vienna, Austria. 21Institute of Neurology, Medical University of Vienna, Vienna, Austria. 22Clinical Cell Biology, Children’s Cancer Research Institute (CCRI), St Anna Kinderkrebsforschung, Vienna, Austria. 23Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany. 24Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA. 25These authors contributed equally: Volker Hovestadt, Kyle S. Smith, Laure Bihannic, Mariella G. Filbin. 26These authors jointly supervised this work: Bradley E. Bernstein, Mario L. Suva, Paul A. Northcott.
control, with a median of 4,561 genes detected per cell (Supplementary Table 1a).

To classify single cells into malignant and non-malignant subsets, we used two complementary strategies. First, we inferred genome-wide copy-number variations (CNVs) from the scRNA-seq data as previously described (see Methods). This analysis identified large-scale genomic gains and losses in most (21 out of 25) patient samples, including hallmark alterations such as monosomy 6 (WNT) and isochromosome 17q (Groups 3 and 4; Extended Data Fig. 2a–e). Few cells (n = 36) from these patients lacked discernable CNVs (see Methods). Second, we clustered single cells across all samples according to their transcriptional profiles. A minority of single cells in our cohort clustered with reference immune cells (n = 6) or oligodendrocytes (n = 22) (Extended Data Fig. 3a, b). All cells that lacked CNVs and/or clustered with normal reference populations were deemed as non-malignant and excluded from further analysis (n = 43). Across individual tumours, 96–100% of cells were classified as malignant, consistent with previous estimates of high MB tumour cell fractions based on genome sequencing.20 We further validated these assignments by quantifying genetic mutations identified by bulk tumour DNA sequencing in our scRNA-seq data (1,937 mutant and 1,952 wild-type transcripts detected; see Methods, Extended Data Fig. 3c–f).

To relate MB single-cell profiles to normal developmental hierarchies, we leveraged recently generated scRNA-seq data for mouse cerebellar development spanning 13 embryonic and early postnatal time points21 (total of 78,156 single cells; Fig. 1a, c, Extended Data Fig. 1a–e, Supplementary Table 1c). Canonical correlation analysis (CCA; see Methods) facilitated cross-species comparisons between our mouse cerebellar single-cell, human MB single-cell and bulk expression datasets. SHH MB was highly correlated with GNP populations (cosine distance = 0.54), consistent with literature18,22, supporting GNPAs as the cell-of-origin for this subgroup (Fig. 1d, Extended Data Fig. 4f). Notably, Group 4 MB was highly correlated with unipolar brush cells (UBC; cosine distance = 0.50) and glutamatergic cerebellar nuclei (GluCN; cosine distance = 0.49). By contrast, we did not detect high-confidence correlations between any cerebellar populations and either WNT or Group 3 subgroups.

Malignant trajectories within WNT MB

Children with WNT MB account for about 10% of patients with MB and have an excellent prognosis22. Somatic CTNNB1 mutations or germline APC mutations, both of which drive constitutive WNT signalling, are found in nearly all WNT MBs23,24. Five WNT tumours were included in our dataset. Pairwise correlation analysis revealed multiple distinct transcriptional states that were consistently identified within these tumours (Fig. 2a). Inferring CNVs from our scRNA-seq data identified four cases with monosomy 6, a stereotypic genomic feature of this subgroup (Fig. 2b, Extended Data Fig. 2a). The fifth case (BCH807) exhibited chromosome 19 gain and was negative for nuclear β-catenin by immunohistochemistry (data not shown), both of which are atypical characteristics for this subgroup despite high-confidence molecular classification as WNT MB (Fig. 1b). SJ99 exhibited marked heterogeneity at both a transcriptional and genetic level, with evidence for two distinct subclones. Subclone SJ99-A exhibited monosomy 6 and chromosome 17p loss, whereas subclone SJ99-B exhibited broad gains and losses affecting nearly every chromosome. Investigation of genetically supported single-nucleotide variants (SNVs) confirmed expression of mutant transcripts in 57.2% of cells (including key WNT MB driver genes CTNNB1, DDX3X and TP53; Fig. 2c).

Non-negative matrix factorization (NMF) was applied to define underlying transcriptional programs specific to each tumour (Extended Data Fig. 5a, b, Supplementary Table 2a, see Methods). This analysis revealed highly similar programs in all five WNT MBs, which we grouped accordingly into four metaprograms (WNT-A, WNT-B, WNT-C and WNT-D). To interpret the characteristics of each metaprogram, we evaluated their underlying gene programs. WNT-A contained numerous markers of cell cycle activity (such as TOP2A, CDK1, AR, CDKN1A, cyclin D, and cyclin E) and is associated with high levels of mitotic recombination (Supplementary Table 2b). WNT-B is associated with high expression of WNT pathway genes (such as CTNNB1, CTNNAL1, and WNT5B) and mitotic recombination (Supplementary Table 2b). WNT-C is associated with high expression of genes involved in cell adhesion and motility (such as ITGB1, ITGAV, and VCAM1) and mitotic recombination (Supplementary Table 2b). WNT-D is associated with high expression of genes involved in cell adhesion and motility (such as ITGB1, ITGAV, and VCAM1) and mitotic recombination (Supplementary Table 2b).
Developmental trajectories within SHH MB

As the dominant subgroup in both infants (<3 years old) and adults (≥18 years old)22, SHH MB accounts for about one third of all patients with MB. Outcomes are heterogeneous and associated with underlying genetics, demographics and clinical features24. Our dataset included three patients with SHH MB, ranging in age from 3 to 13 years (Fig. 1b). Pairwise correlation and unsupervised NMF analysis revealed three transcriptional programs (SHH-A, -B and -C) shared among these tumours (Fig. 3a, Extended Data Fig. 6a, b, Supplementary Table 2a, b). SHH-A contained markers of cell cycle activity (for example, TOP2A, CDK1 and RRM2; \(P < 0.001\), Fisher's exact test), suggesting that this subpopulation fuels WNT MB growth (>0.001, Fisher's exact test). SHH-B was enriched for ribosomal genes and translational initiation and elongation factors (EIF3E and EEF1A1; \(P < 0.001\)), and markers of canonical SHH signalling (PTCH1 and BOC; \(P < 0.001\); Fig. 3b). SHH-C was defined by markers of neuronal differentiation (STMN2, MAPIB, TUBB2B and Sema6A; \(P < 0.001\); Fig. 3b). We interpret these programs as reflecting cell cycle activity (SHH-A), undifferentiated progenitors (SHH-B) and more differentiated neuronal-like programs (SHH-C). Scoring each SHH MB cell for these programs defined a putative developmental trajectory, with proliferating cells restricted to undifferentiated progenitors (Fig. 3c). These respective programs were partially recapitulated in SHH subgroup PDX models (Extended Data Fig. 6c, d). To investigate the developmental significance of these findings, we used CCA to compare SHH MB metaprograms to mouse cerebellar populations. SHH-B correlated with undifferentiated UBC–GNP and GNP populations, whereas SHH-C correlated with UBC–GN intermediate and differentiated granule neuron populations (Fig. 3d, Extended Data Fig. 7a–d). To validate these observations in a larger cohort, we implemented a focused analysis of UBC, GNP and granule neuron populations, assessing correlations between these cell types and bulk SHH MB expression profiles (Fig. 3e, Extended Data Fig. 7e). This analysis broadly split SHH MBs into two age-associated categories: infant tumours correlated with intermediate and mature granule neurons (marked by high expression of NEUROD1), whereas adult tumours correlated with GNP and mixed UBC and GN progenitors (marked by high expression of ATOH1; Fig. 3f, Extended Data Fig. 7f–j). Together, our data suggest that infant and adult SHH MBs are enriched for temporally distinct GNP (or UBC) populations and/or have distinct differentiation capacities, further supporting their divergent biology25–27.

Malignant programs within Group 3/4 MB

Group 3 and Group 4 tumours account for about 60% of MB diagnoses and remain the least understood with respect to disease biology and developmental origins7. Group 3 tumours are frequently metastatic at diagnosis and are typified by genomic amplification or overexpression and RRM2; \(P < 0.001\), Fisher's exact test; Supplementary Table 2b). WNT-C was characterized by markers of neurogenesis or neuronal differentiation (such as STMN2, KIF5C and SYT11; \(P < 0.001\); Fig. 2d). WNT-B consisted of ribosomal and metabolic genes (NME2, HK2 and PGM5), and WNT-D contained select WNT-pathway genes (LRP4 and APCCDD1) and immediate early response genes (JUNB and EGR1; Fig. 2d). Cells scoring highest for both WNT-B and WNT-D expressed elevated levels of additional canonical WNT pathway genes (DKK2, AXIN2 and WIFI1) and MYC (Extended Data Fig. 5c, Supplementary Table 2c). We interpret these metaprograms as reflecting cell cycle activity (WNT-A), neuronal-like differentiation (WNT-C) and two WNT-driven states (WNT-B and WNT-D), with WNT-D characterized by elevated protein biosynthesis and metabolism (Fig. 2d). RNA in situ hybridization performed on the same tumours validated the expression of specific metaprogram marker genes in subpopulations of cells (Extended Data Fig. 5d). Moreover, scoring each cell in our cohort for these four metaprograms defined a putative developmental trajectory for WNT MB, with cell cycle activity restricted to cells that were both high in WNT-B and low in WNT-C and WNT-D (Fisher's exact test, \(P < 0.001\)), suggesting that this subpopulation fuels WNT MB growth (Fig. 2e). Notably, each metaprogram was identified in at least four samples (Extended Data Fig. 5a), suggesting that the programs reflect shared features of WNT MB.

and RRM2; \(P < 0.001\), Fisher's exact test; Supplementary Table 2b). WNT-C was characterized by markers of neurogenesis or neuronal differentiation (such as STMN2, KIF5C and SYT11; \(P < 0.001\); Fig. 2d). WNT-B consisted of ribosomal and metabolic genes (NME2, HK2 and PGM5), and WNT-D contained select WNT-pathway genes (LRP4 and APCCDD1) and immediate early response genes (JUNB and EGR1; Fig. 2d). Cells scoring highest for both WNT-B and WNT-D expressed elevated levels of additional canonical WNT pathway genes (DKK2, AXIN2 and WIFI1) and MYC (Extended Data Fig. 5c, Supplementary Table 2c). We interpret these metaprograms as reflecting cell cycle activity (WNT-A), neuronal-like differentiation (WNT-C) and two WNT-driven states (WNT-B and WNT-D), with WNT-D characterized by elevated protein biosynthesis and metabolism (Fig. 2d). RNA in situ hybridization performed on the same tumours validated the expression of specific metaprogram marker genes in subpopulations of cells (Extended Data Fig. 5d). Moreover, scoring each cell in our cohort for these four metaprograms defined a putative developmental trajectory for WNT MB, with cell cycle activity restricted to cells that were both high in WNT-B and low in WNT-C and WNT-D (Fisher's exact test, \(P < 0.001\)), suggesting that this subpopulation fuels WNT MB growth (Fig. 2e). Notably, each metaprogram was identified in at least four samples (Extended Data Fig. 5a), suggesting that the programs reflect shared features of WNT MB.

Developmental trajectories within SHH MB

As the dominant subgroup in both infants (≤3 years old) and adults (≥18 years old)22, SHH MB accounts for about one third of all patients with MB. Outcomes are heterogeneous and associated with underlying genetics, demographics and clinical features24. Our dataset included three patients with SHH MB, ranging in age from 3 to 13 years (Fig. 1b). Pairwise correlation and unsupervised NMF analysis revealed three transcriptional programs (SHH-A, -B and -C) shared among these tumours (Fig. 3a, Extended Data Fig. 6a, b, Supplementary Table 2a, b). SHH-A contained markers of cell cycle activity (for example, TOP2A, CDK1 and RRM2; \(P < 0.001\), Fisher's exact test). SHH-B was enriched for ribosomal genes and translational initiation and elongation factors (EIF3E and EEF1A1; \(P < 0.001\)), and markers of canonical SHH signalling (PTCH1 and BOC; \(P < 0.001\); Fig. 3b). SHH-C was defined by markers of neuronal differentiation (STMN2, MAPIB, TUBB2B and Sema6A; \(P < 0.001\); Fig. 3b). We interpret these programs as reflecting cell cycle activity (SHH-A), undifferentiated progenitors (SHH-B) and more differentiated neuronal-like programs (SHH-C). Scoring each SHH MB cell for these programs defined a putative developmental trajectory, with proliferating cells restricted to undifferentiated progenitors (Fig. 3c). These respective programs were partially recapitulated in SHH subgroup PDX models (Extended Data Fig. 6c, d). To investigate the developmental significance of these findings, we used CCA to compare SHH MB metaprograms to mouse cerebellar populations. SHH-B correlated with undifferentiated UBC–GNP and GNP populations, whereas SHH-C correlated with UBC–GN intermediate and differentiated granule neuron populations (Fig. 3d, Extended Data Fig. 7a–d). To validate these observations in a larger cohort, we implemented a focused analysis of UBC, GNP and granule neuron populations, assessing correlations between these cell types and bulk SHH MB expression profiles (Fig. 3e, Extended Data Fig. 7e). This analysis broadly split SHH MBs into two age-associated categories: infant tumours correlated with intermediate and mature granule neurons (marked by high expression of NEUROD1), whereas adult tumours correlated with GNP and mixed UBC and GN progenitors (marked by high expression of ATOH1; Fig. 3f, Extended Data Fig. 7f–j). Together, our data suggest that infant and adult SHH MBs are enriched for temporally distinct GNP (or UBC) populations and/or have distinct differentiation capacities, further supporting their divergent biology25–27.
of MYC, which is associated with unfavourable outcomes\(^\text{1,28}\). Group 4 tumours are metastatic at diagnosis in approximately one third of patients and harbour recurrent chromatin modifier alterations\(^\text{28-29}\). Recent bulk-profiling studies have demonstrated marked molecular and clinical heterogeneity in Group 3 and Group 4, with a subset of tumours exhibiting overlapping molecular signatures that confound robust classification\(^\text{30,31}\).

On the basis of this prior knowledge, we performed a combined analysis of the scRNA-seq data for all 17 Group 3 and Group 4 tumours. Pairwise correlation analysis of single cells largely discriminated between subgroups, with a subset of ‘intermediate’ tumours exhibiting transcriptional ambiguity (MUV34, BCH825 and SJ625; Fig. 4a). NMF analysis of the combined series identified three distinct transcriptional programs (Group 3/4-A, -B and -C) (Extended Data Fig. 8a–c, Supplementary Table 2a, b). Group 3/4-A contained markers of cell cycle activity (for example, TOP2A, CDK1 and RRM2, \(P < 0.001\), Fisher’s exact test). Group 3/4-B was primarily characterized by ribosomal and translational initiation/elongation genes (EIF3E and EF1A1; \(P < 0.001\); Fig. 4b) as well as by MYC and MYC target genes (for example, HLFX). Group 3/4-C contained well-recognized neuronal lineage markers (STMN2, SOX4, ZIC1 and SYT1; \(P < 0.01\); Fig. 4b). We interpret that these programs reflect cell cycle activity (Group 3/4-A), undifferentiated progenitor-like programs with high MYC activity (Group 3/4-B) and differentiated neuronal-like programs (Group 3/4-C; Fig. 4b).

Fig. 4 | Malignant transcriptional programs within Group 3/4. a. Pairwise correlations between the expression profiles of all Group 3/4 MB cells (\(n = 4,873\)), NM, non-malignant. DNA methylation-based subgroup prediction scores are indicated (top). b. Relative expression of 60 genes representing Group 3/4 MB metaprocesses from SJ17, MUV34 and BCH1031. Cells positive for the cell cycle program (Group 3/4-A) are indicated. c. Scatter plot of the normalized SHH-B and SHH-C metaprocess expression scores for all SHH MB cells. d. CCA coefficients between SHH MB single-cells and mouse glutamatergic cell types. Cells are ordered as in b and e. Patient age (top), expression levels of ATOH1 and NEUROD1 (middle), and CCA coefficients between tumours and mouse glutamatergic cell types (bottom) for bulk SHH MBs\(^n\) (\(n = 100\)). e. Expression of Neurod1 (left) and Atoh1 (right) in the mouse cerebellum. In situ hybridization data were obtained from the Allen Developing Mouse Brain Atlas (© 2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas http://developingmouse.brain-map.org). P4, postnatal day 4.

Scoring each Group 3/4 MB cell for these programs revealed distinct patterns: prototypic Group 3 tumours were dominated (>88% of cells) by the undifferentiated progenitor-like program (Group 3/4-B), whereas the differentiated neuronal-like program (Group 3/4-C) was observed in almost all cells (>95%) from prototypic Group 4 tumours, consistent with their neuronal differentiation phenotype\(^1\,28\) (Fig. 4c, d, Supplementary Table 2d). Group 3 tumours with MYC amplifications (SJ17 and MUV29; Extended Data Fig. 2c) lacked neuronal differentiation altogether (<2% of cells), suggesting that oncogenic MYC expression may potentiate an undifferentiated progenitor-like state. Notably, Group 3/4 intermediate tumours (MUV34, BCH825 and SJ625) comprised a mixture of both malignant cell states, containing 12–20% of cells characterized by the undifferentiated program, with the remainder of cells characterized by the differentiated program. These transcriptional programs were also evident in nine Group 3/4 PDX models (Extended Data Fig. 8d, e). Our results indicate that Group 3/4 MBs contain cells along a common continuum of neuronal differentiation.

The observation that Group 3 and Group 4 MBs both contained cells scoring high for the neuronal-like differentiation program (Group 3/4-C) prompted us to examine whether varying proportions of cells with this shared program could underlie the molecular overlap seen in bulk tumour profiles. Quantifying the Group 3/4-B and C programs in bulk MB gene expression data\(^3\) (\(n = 248\) Group 3/4 MBs) recapitulated observations made in our single-cell cohort (Fig. 5a). Sorting these programs by their relative scores for these programs confirmed that prototypic Group 3 MBs were largely characterized by the undifferentiated progenitor-like program (Group 3/4-B), whereas prototypic Group 4 MBs were dominated by the differentiated neuronal-like program (Group 3/4-C). A considerable fraction of tumours (19.8%) exhibited evidence of both programs (Fig. 5a, Extended Data Fig. 9a). These intermediate tumours were characterized by elevated DNA methylation-based prediction scores (>0.2) for both subgroups (odds ratio = 8.9, \(P < 0.001\), Fisher’s exact test). We validated these results by
performing immunohistochemistry on a series of 22 Group 3/4 MBs, using MYC and TUJ1 (which is encoded by TUBB3) as biomarkers of the Group 3/4-B and Group 3/4-C programs, respectively (Fig. 5b, Extended Data Fig. 9b). Prototypical Group 3 MBs exhibited high expression of MYC and few TUJ1-positive cells, whereas prototypical Group 4 MBs were devoid of MYC-expressing cells and universally positive for TUJ1. Tumours classified as intermediate Group 3/4 MB by DNA methylation contained varying proportions of both MYC-expressing and TUJ1-expressing cells, consistent with our single-cell results.

We next investigated whether recently described DNA methylation-based subtypes of Group 3/4 MB were related to the metaprograms inferred from scRNA-seq. We found that DNA methylation subtypes I and V, both of which contain a mixture of Group 3 and Group 4 MBs, were significantly enriched for tumours with intermediate expression patterns (P < 0.001, Fisher’s exact test; Fig. 5c, Extended Data Fig. 9c). These results suggest that a continuum of cellular states accounts for the molecular substructure seen in Group 3/4 that complicates accurate consensus classification.

Lineage-specific correlates of Group 4 MB

We next sought to compare and interrelate the different subgroup-specific metaprograms. To this effect, we applied all observed metaprograms (n = 10) to all 7,745 malignant cells in our dataset. Pairwise correlation of expression scores confirmed high similarity among cell cycle programs (WNT-A, SHH-A, Group 3/4-A; average r = 0.99) (Fig. 6a). The undifferentiated progenitor-like programs (WNT-B, SHH-B and Group 3/4-B) exhibited low correlations (average r = 0.23), in agreement with their distinct underlying biology. By contrast, the neuronal-like differentiation programs (WNT-C, SHH-C and Group 3/4-C) were highly correlated (average r = 0.77; Fig. 6a, b, Extended Data Fig. 9d), consistent with shared capacity for neuronal differentiation across subgroups. We reasoned that the neuronal-like differentiation programs defined in each subgroup consist of general neuronal differentiation markers, potentially masking markers of specific lineages. To elucidate markers that might inform developmental origins, we compared genes specific to neuronal-like cells in the different subgroups (n = 260; relative to undifferentiated cell populations; see Methods). Half of these genes (52%) were shared between at least two subgroups and included general markers of neuronal differentiation (for example, ENO2, SYT11, TUBB3 and MAP2), while the remainder were exclusive to individual subgroups (13–20%; Fig. 6c, Extended Data Fig. 9e, Supplementary Table 3). Glutamatergic lineage-specific transcription factors EOMES and LMX1A ranked among the most-differentially expressed genes specific to the Group 3/4-C program (Fig. 6c, Supplementary Table 3). In mice, these transcription factors have essential roles in defining neuronal cell fates in the embryonic upper rhombic lip (uRL), including UBCs and GluCN, both of which are born out of the uRL during cerebellar morphogenesis. As our earlier CCA analysis identified both UBCs and GluCN as being highly correlated with Group 4 MB expression datasets (Fig. 1d, Extended Data Fig. 4f), we performed a deeper analysis into these correlations. Discriminatory UBC markers were specifically expressed in Group 4 single cells and bulk tumour profiles, implicating a possible developmental link between UBCs and Group 4 MB (Fig. 6d, e, Extended Data Fig. 9f). Similar results were observed for GluCN, although the highest correlations were limited to a subset of Group 4 tumours (Extended Data Fig. 10a–f). Collectively, these associations further implicate UBCs and GluCN in the embryonic cerebellum as candidate cells-of-origin for Group 4 MB.

Discussion

Despite extensive characterization of MB genomic landscapes, effective subgroup-specific therapies have yet to emerge, suggesting that a deeper understanding of the biological and cellular basis of MB is essential. This is particularly urgent for Group 3 and Group 4 MB, which often bear inferior outcomes. As a first challenge, these subgroups have proven difficult to accurately classify, confounded by transcriptional and epigenetic ambiguity. Our combined single-cell analysis of Group 3/4 MBs confirmed that prototypic Group 3 MBs are dominated by undifferentiated progenitor-like cells, whereas prototypic Group 4 MBs consist almost exclusively of more differentiated neuronal-like cells. Of note, we identified a subset of intermediate tumours characterized by varying proportions of both undifferentiated and more differentiated populations (Extended Data Fig. 10g). These findings offer a novel molecular and cellular explanation for the challenges associated with Group 3 and Group 4 sub-classification and provide a framework for future classifications that incorporate population heterogeneity.

Cellular origins for WNT and SHH MB have been mostly informed from genetically faithful mouse models. Cross-species transcriptional analyses performed here confirmed significant correlations between SHH MB and GNPs of variable differentiation states that were associated with patient age. Moreover, our analyses identified UBCs and GluCN as cellular correlates of Group 4 MB subtypes, building on previous studies that have implicated glutamatergic cellular origins for Group 4. For WNT MB, we failed to identify significant correlation between malignant single-cell programs and cerebellar populations, consistent with an extracerebellar origin for this subgroup. No significant correlations were detected between Group 3 MB and our cerebellar dataset. This observation may be attributed to transformation and cellular reprogramming driven by specific oncogenes (that is, MYC) or may imply that Group 3 MBs have an extracerebellar origin. It is also plausible that our mouse reference atlas was incomplete and lacked plausible that our mouse reference atlas was incomplete and lacked populations pertinent to either WNT or Group 3 MB origins. Technical limitations of comparing single-cell datasets between species should not be underestimated, warranting future studies of the cellular correlates between human cerebellar and MB single cells.

In conclusion, our work provides a cellular atlas of MB across all subgroups and a cross-species comparison of cerebellar development,
highlighting putative subgroup-specific origins. Our analyses also define the cellular states underlying each MB subgroup, disentangling determinants of intra- and intertumoral heterogeneity. These findings will enable future studies to assess translational opportunities and to evaluate the impact of therapeutic approaches on the spectrum of cellular states that drive MB.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1434-6.

Received: 13 September 2018; Accepted: 21 June 2019; Published online 24 July 2019.

1. Gaijar, A. J. & Robinson, G. W. Medulloblastoma-translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol. 11, 714–722 (2014).
2. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).
3. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311–317 (2017).
4. Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).
5. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).
6. Northcott, P. A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).
7. Northcott, P. A. et al. Medulloblastomias: the end of the beginning. Nat. Rev. Cancer 12, 818–834 (2012).
8. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).
9. Yang, Z. L. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).
10. Oliver, T. G. et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132, 2425–2439 (2005).
11. Cho, Y. J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).
12. Tanay, A. & Regew, A. Scaling single-cell genomics from phenomenology to mechanism, Nature 541, 331–338 (2017).
13. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).
14. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq, Science 360, 331–339 (2018).
15. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).
16. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq, Science 355, eaai8478 (2017).
17. Hovestadt, V. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125, 913–916 (2013).
18. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protocols 9, 171–181 (2014).
19. Northcott, P. A. et al. Rapid, reliable, and reproducible molecular subgrouping of clinical medulloblastoma samples. Acta Neuropathol. 123, 615–626 (2012).
20. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).
21. Carter, R. A. et al. A single-cell transcriptional atlas of the developing murine cerebellum. Curr. Biol. 28, 2910–2920 (2018).
22. Kool, M. et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484 (2012).
23. Wessak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018).
24. Shih, D. J. et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).
25. Northcott, P. A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).
26. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405 (2014).
27. Merk, D. J. et al. Opposing effects of CREBBP mutations govern the phenotype of Rubini accompanied–Yrb diabetic syndrome and adult SHH medulloblastoma. Dev. Cell 44, 709–724 (2018).
28. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).
29. Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).
30. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. J. Clin. Oncol. 32, 886–896 (2014).
31. Schlafke, E. et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 18, 958–971 (2017).
32. Sharma, T. et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. https://doi.org/10.1007/s00404-019-02020-0 (2019).
33. Chizhikov, V. V. et al. Lmx1a regulates fate and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc. Natl Acad. Sci. USA 107, 10725–10730 (2010).
34. Englund, C. et al. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J. Neurosci. 26, 9184–9195 (2006).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS

No statistical methods were used to predetermine sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment.

Tissue sample collection and dissection. Human primary tumours. Patients and their parents at Boston Children's Hospital, the Medical University of Vienna and St Jude Children's Research Hospital gave consent preoperatively according to Institutional Review Board guidelines. Fresh tissue and formalin samples were collected at the time of surgery and processed directly. Tumour samples from Boston Children's Hospital and the Medical University of Vienna were mechanically and enzymatically dissociated using a papain-based brain tumour dissociation kit (Miltenyi Biotec). Tumour samples from St Jude Children's Research Hospital were pre-cut and dissociated for 30 min at 37°C in papain solution (10 units/ml, Worthington, LS003126) containing N-acetyl-L-cysteine (160 μg/ml, Sigma-Aldrich, A9165) and DNase I (12 μg/ml, Sigma-Aldrich, DN25), rinsed in Neurobasal medium (Gibco, 21103049) supplemented with B-27 (Gibco, 17504044), N-2 (Gibco, 17502048) and t-glutamine (Gibco, 10378016), and filtered using a 40-μm strainer.

Mouse cerebellum. Mouse cerebellar tissue from Crl:CD1 (ICR) mice at 13 distinct developmental time points was previously isolated. Embryonic tissue samples include each day between E10 to E18 and postnatal time points include P0, P4, P7, and P10. Two biological replicates were included at each time point and three at E14. Cerella were dissociated as previously described.

PDXs. PDXs were acquired from R. Wechsler-Reya (Sanford Burnham Prebys Medical Discovery Institute), X.-N. Li (Baylor College of Medicine) and the Brain Tumour Resource Laboratory (https://www.bril.org). PDXs were injected into the cerebellum of NOD.Cg-Prkdcscid/Il2rgtm1Wjl/SzJ (NSG mice). Mice were observed daily and were euthanized when signs of sickness, including lethargy and neurological abnormalities, appeared. Low passage PDXs (<10) were dissected, pre-cut and dissociated for 30 min at 37°C in papain solution (10 units/ml, Worthington, LS003126) containing N-acetyl-L-cysteine (160 μg/ml, Sigma-Aldrich, A9165) and DNase I (12 μg/ml, Sigma-Aldrich, DN25), rinsed in Neurobasal medium and filtered using a 40-μm strainer. The experiments were conducted in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals and according to the guidelines established by the St Jude Children’s Research Hospital Institutional Animal Care and Use Committee. Procedures in the protocol were approved by the Animal Care and Use Committee (ACUC) of SICRH (Animal Assurance Numbers, A3077-01).

Fluorescence-activated cell sorting. Dissociated tumour cells (from fresh primary tumours and PDXs) were resuspended in cold 1% bovine serum albumin in phosphate-buffered saline (PBS-BSA 1%). Cells were first stained with CD45–Viobluo direct antibody conjugate (Miltenyi Biotec, 130-902-880) in PBS-BSA 1% for 20 min at 4°C, washed and then co-stained with 1 μM calcein AM (Life Technologies, C3100MP) and 0.33 μM TO-PRO-3 iodide (Life Technologies, T3605) in PBS-BSA 1%. Cells were then co-stained with FSC-A and FSC-SSC in the presence of 4 μg/ml Hoechst 33342 (Molecular Probes, H3423). Cell viability was determined using calcein AM dye. Stained viable tumour cells were identified by calcein-positive and Hoechst-negative events. viability was determined using Hoechst dye. Viability was defined as the percentage of Hoechst-negative events. For each processed 96-well plate, we then determined the number of cells in the high and low viability populations.

Generation and processing of DNA methylation data. All single-cell patient and PDX samples were analysed using Illumina Infinium Methylation EPIC BeadChip arrays according to the manufacturer’s instructions. Data were generated from both freshly frozen and formalin-fixed paraffin-embedded (FFPE) tissue samples. Medulloblastoma subgroup predictions were obtained from a web-platform for DNA methylation-based classification of central nervous system tumours (www.medulloblastoma-toolbox.com). The expression of tissue was observed daily and was euthanized when signs of sickness, including lethargy and neurological abnormalities, appeared. Low passage PDXs (<10) were dissected, pre-cut and dissociated for 30 min at 37°C in papain solution (10 units/ml, Worthington, LS003126) containing N-acetyl-L-cysteine (160 μg/ml, Sigma-Aldrich, A9165) and DNase I (12 μg/ml, Sigma-Aldrich, DN25), rinsed in Neurobasal medium and filtered using a 40-μm strainer. The experiments were conducted in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals and according to the guidelines established by the St Jude Children’s Research Hospital Institutional Animal Care and Use Committee. Procedures in the protocol were approved by the Animal Care and Use Committee (ACUC) of SICRH (Animal Assurance Numbers, A3077-01).

Gene expression analysis. Differential expression analysis of transcriptomes was performed using the DESeq package. Identified CNVs were compared to those in the respective other CTNNB1 genome (WNT, SHH, and Group 3/4), we defined relative expression by centering the expression levels, $E_{ij} = E_{ij} - \bar{E}_{i} \forall i, j$. To detect mutant and wild-type transcripts, we required one or more supporting reads. We then filtered variants that were detected as mutant in less than 10% of cells. To detect mutant and wild-type transcripts, we required one or more supporting reads. We then filtered variants that were detected as mutant in less than 10% of cells.
then scored for these NMF programs (as described below, shown in Extended Data Figs. 5a, 6a, 8a). Hierarchical clustering, with one minus Pearson correlation as the distance metric and Ward’s linkage, of the scores for each program revealed four (WNT subgroup) or three (SHH and Group 3/4 subgroups) main correlated sets of programs. The 30 genes with the highest average NMF score within each correlated program set (excluding ribosomal protein genes) were then used to define a total of ten subgroup-specific metaprograms (provided in Supplementary Table 2b).

To interpret the characteristics of each metaprogram, we manually inspected their underlying gene signatures. Additionally, we tested for enrichment of described gene sets (GO biological processes cell cycle and neuron differentiation, KEGG hedgehog signalling pathway, and manually curated ribosomal proteins and translational initiation–elongation factors) in each metaprogram using Fisher’s exact test.

Generation of single-cell program expression scores. Single-cell expression scores were generated in a similar way as described previously45. Given a set of genes (G) reflecting a NMF program or metaprogram, we calculate for each cell i, a score, SC(i), quantifying the relative expression of G_i in cell i, as the average relative expression (Er) of the genes in G, compared to the average relative expression of a control gene set G^control, SC(i) = \frac{\text{average} [\text{Er}(G_i)] - \text{average} [\text{Er}(G^\text{control})]}{\text{average} [\text{Er}(G^\text{control})]}. The control gene set contains 100 genes with the most similar aggregate expression level. In this way, the control gene set has a comparable distribution of expression levels to that of the considered gene set, and the control gene set is 100-fold larger, such that its average expression is analogous to averaging over 100 randomly selected gene sets of the same size as the considered gene set.

Single cells were assigned to different cell populations based on the maximum expression score for their respective subgroup-specific metaprograms, excluding the cycling programs. The fraction of cells per tumour sample assigned to each cell population is provided in Supplementary Table 2d. Scores for the cycling programs were binarized into cycling and non-cycling (larger and smaller than 1, respectively). For illustration of the cellular hierarchies in SHH MB, scores were normalized by minimizing the average minimum difference of all cells per sample to −1 or 1 (shown in Fig. 3c).

For the pan-subgroup analysis of all malignant medulloblastoma cells we re-centred expression scores across the dataset and calculated expression scores for each of the ten metaprograms. The pairwise correlation of expression scores is shown in Fig. 6a.

Determination of cell population–specific genes. For comparison of cell populations in WNT tumours, we calculated the average expression level of all cells per population (log2-transformed, un-centred expression levels were used). For this analysis we excluded cells from BCB807, as it was very different from the other four WNT MBs and represents an atypical case (without cells scoring highest for the WNT-B metaprogram, highly proliferative, negative staining for nuclear β-catenin and lacking monosomy of chromosome 6). We then determined all genes with a difference smaller or larger than 1 between the average log2-transformed expression scores of each cell population, as defined above. We then selected ten amplification steps were performed using instructions and reagents provided in the RNAscope 2.5 HD Duplex Detection Kit. Tissue was counterstained with Gill’s haematoxylin for 25 s at room temperature followed by mounting with VectaMount mounting media (Vector Laboratories).

Immunohistochemistry. Double labelling immunohistochemistry was performed using a 1:8,000 dilution of anti-tubulin (33 clone TUJ1, Biologend) and a 1:25 dilution of anti-MYC (clone Y69, Abcam) diluted in Ventana antibody diluent (Roche Tissue Diagnostic, 251-018) and detected using the UltraView Red (Roche Tissue Diagnostics, 760-501) and UltraView DAB (Roche Tissue Diagnostics, 760-500) detection kits, respectively. Each target was evaluated using a semiquantitative system to construct a H-score, obtained by multiplying the intensity of the stain (0: no staining; 1: weak staining; 2: moderate staining, and 3: strong staining) by the percentage (0 to 100) of cells showing that staining intensity (H-score range, 0 to 300).

Mouse scRNA-seq data generation and processing. Single cells from developing mouse cerebellar tissue were processed using the microfluidics-based 10x Chromium protocol, as previously described22. In brief, single cells were prepared using the Chromium v1 Single Cell 3′ Library and Gel Bead Kit according to the manufacturer’s specifications. Quantification and quality checks for the libraries were performed using an Agilent Technologies DNA 1000 chip. Libraries were sequenced on an Illumina HiSeq 2500 machine. Raw sequencing data have been uploaded to the European Nucleotide Archive (accession PRJEB23051).

Mouse developing cerebellum cells were filtered and normalized using the scannpy Python package23. Genes expressed in less than 50 cells and cells expressing less than 200 genes were removed. Additionally, cells with less than 524 and greater than 3,206 total counts (±3 median absolute deviations) were removed. Furthermore, those cells with greater than 5% of their total counts mapping to mitochondrial genes were removed. Gene expression values were then divided by the total number of transcripts and multiplied by 10,000. Normalized values were calculated by natural-log transforming these values. We calculated scaled expression (± scores for each gene) for downstream analysis.

Identification of cell types in developing mouse cerebellum. The scannpy package implemented in Python was applied to identify cell types among 82,228 cells expressing a total of 16,475 genes. After two rounds of clustering (using the Louvain method), populations predicted to be of non-cerebellar origins were excluded. Removed populations were enriched for haemoglobin, oligodendrocyte, and/or immune associated genes. The remaining 78,156 cells were visualized by t-SNE (using the first 100 principle components as input) and clustered a third time. We then merged clusters if the Mantel Spearman correlation between gene distance matrices (using Manhattan distance) was greater than 0.9 (Fig. 1c, Extended Data Fig. 4c). Resulting clusters, in conjunction with marker genes, were used to identify major cell types in the developing cerebellum.

Integrated analysis of mouse and human datasets. Gene expression matrices for human and mouse datasets were restricted to the 16,919 high-confidence homologous genes with gene order conservation and whole-genome alignment scores greater than 0.8. The remaining 7,823 genes were filtered by the total number of transcripts and multiplied by 10,000. Normalized values were calculated by natural-log transforming these values. We calculated scaled expression (± scores for each gene) for downstream analysis.

For CCA, the first 30 canonical correlation vectors were calculated to project each expression matrix into the maximally correlated subspace, as similarly described previously28. In brief, CCA is implemented as singular value decomposition, by implicitly restarted Lanczos bidiagonalization algorithm, of a distance matrix between two gene expression matrices.

We adopted a correlation of differential expression approach to measure similarity between biological groups in two different studies. Such a procedure has previously been shown to be effective in implicating cellular origins for WNT and SHH medulloblastoma subgroups41. Gene expression for each cell, or centroids for each cluster when at the cluster level, is subtracted by mean gene expression of all other cluster centroids to determine differential expression. Cosine distance is then used to calculate correlations between differential expression vectors between studies as a metric for similarity (Figs. 1d, 3d, e, Extended Data Figs. 4f, 7, 10a, f). Significance is assessed by 10,000 permutations, followed by FDR correction, for cluster labels of interest. Genes driving CCA differential correlations between human and mouse datasets were investigated by identifying genes both differentially expressed in the cell type of interest (Mann–Whitney U-test) and correlated with the CCA correlation (Pearson correlation). Significant genes were those predicted to drive CCA differential correlations.

NMF applied to the centred mouse expression data, with negative values assigned to zero and rank set to two, determined an undifferentiated and differentiated program. Both programs were projected onto a centred dataset of interest, scaled to a range of zero and one, then differentiated programs were subtracted from undifferentiated programs to calculate differentiation scores42 (shown in Extended Data Fig. 4b).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.
Data availability
The scRNA-seq and array-based DNA methylation data of 36 patient and PDX samples described in this study have been deposited in the Gene Expression Omnibus (GEO) with the accession code GSE119926. The scRNA-seq data of the developing mouse cerebellum have been deposited to the European Nucleotide Archive (ENA) with the accession code PRJEB23051.

35. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).
36. Rusch, M. et al. Clinical cancer genomic profiling by three-platform sequencing (LT000596/2016-L). L.B. is supported by a Future Leaders Award from The V.H. is supported by a Human Frontier Science Program long-term fellowship from the NIH Common Fund and National Cancer Institute (DP1CA216873). This research was supported by a Pioneer Award (Quest for Cures), the American Lebanese Syrian Associated Charities (ALSAC), (NextGen Grant for Transformative Cancer Research), The Brain Tumour Charity (R01CA232143-01), American Association for Cancer Research, the Swiss National Science Foundation Sinergia program, and the Center for In Vivo Imaging and Therapeutics. We thank S. Pounds (Department of Biostatistics, St Jude) for valuable discussions and B. Stelter for assistance with artwork.

Author contributions Study design: V.H., K.S.S., L.B., M.G.F., B.E.B., M. L. Suvá and P.A.N. Generation of human transcriptome data: L.B., M.G.F., M. L. Shaw, A.B., J.C.D., A. Groves, L.M., H.R.W., A.R.R, M.E.S., J. H., R.A.A., J.G., D.L., R.G. and A.H. Generation of mouse transcriptome data: L.B., C.R., T.N.P., J.L.H., Y.T. and JE. Analysis of mouse transcriptome data: V.H., K.S.S., R.A.C and C.G. Generation and analysis of genome data: V.H., K.S.S., L.B., T.S., D.F., A.S., S.M.P.A, Gajjar and G.W.R. Immunohistochemistry experiments: L.B. and B.A.O. DNA in situ hybridization: H.R.W. and M.E.S. Procurement of patient and PDX samples: L.B., M.G.F., L.G., J.L.H., M.D., K.L.L., J.M.R., R.J.W.-R., X.-N.L., A.P., T.C., C.D., C.H., A. Gajjar, B.A.O., I.S. and G.W.R. Project support: S.L.P., M.N.R., O.R.-R. and A. R. Manuscript preparation (with feedback from all authors): V.H., K.S.S., L.B., M.G.F. and M. L. Suvá and P.A.N. Study supervision and funding: M.G.F., B.E.B., M. L. Suvá and P.A.N.

Competing interests B.E.B. discloses financial interests in Fulcrum Therapeutics, 1CellBio, HiFiBio, Arsenal Biosciences, Cell Signaling Technologies and Nohla Therapeutics. A.R. is a founder and equity holder of Celsius Therapeutics and an SAB member of Thermost Fisher Scientific and Syros Pharmaceuticals.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1434-6.

Correspondence and requests for materials should be addressed to B.E.B., M.L. Suvá or P.A.N.

Peer review information Nature thanks Xing Fan and the other anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Characteristics of the MB single-cell cohort.

a, Haematoxylin and eosin-stained sections from all St Jude single-cell samples (n = 12). Tumours demonstrated large cell/anaplastic morphology (LCA, top), classic morphology (middle), or desmoplastic/nodular morphology (D/N, bottom). Scale bars, 50 μm.

b, Detailed characterization of the PDX single-cell dataset. Subgroup prediction scores derived by DNA methylation profiling are indicated in the top panel (light shade, low probability; dark shade, high probability). The heat map shows expression levels of previously described subgroup-specific marker genes in 946 PDX-derived single-cells.

c, Heat map shows expression levels of previously described subgroup-specific marker genes in 7,788 tumour-derived single-cells.

d, Heat maps show pairwise correlation of aggregated scRNA-seq data (top) and bulk DNA methylation data (bottom) of all patient (n = 25) and PDX (n = 11) samples. For each PDX sample, the patient sample with the highest correlation coefficient is indicated by a black circle.

e, Scatter plots show expression scores for published subgroup-specific gene sets for all single cells in the patient cohort (n = 7,788). Cells from WNT and SHH subgroups score only for their respective gene set. Some overlap is observed between cells from Group 3 and 4 subgroups and their respective gene sets, warranting the combined analysis of these subgroups in this study.
Extended Data Fig. 2 | Copy-number analysis distinguishes malignant from non-malignant single cells. a–c, Heat maps show scRNA-seq-derived copy-number profiles of every cell in each sample (y axis) along the genome (x axis) for WNT (a), SHH (b), Group 3 (c) and Group 4 (d) patient MBs as well as PDX samples (e). Copy-number profiles derived from array-based DNA methylation profiling from the same sample are shown above. CNVs are observed in 21/25 patient tumour samples (all except MUV34, MUV41, SJ577 and SJ625). Generally, we observe a high concordance between single-cell and DNA methylation array-derived copy-number profiles. Genetic subclones at the level of broad copy-number changes are detected in samples SJ99 and BCH825. Cells without detected CNVs from samples that showed CNVs in the majority of cells are indicated for samples in which at least four non-malignant cells were detected (BCH807 and SJ454). Amplifications of the MYC and MYCN oncogenes detected by DNA methylation array are indicated.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Unsupervised clustering and detection of expressed SNVs in MB single-cells.
a, t-SNE visualization of the entire single-cell dataset (n = 8,924 cells). WNT (blue), SHH (red), Group 3 (yellow) and Group 4 (green) patient samples are indicated. PDX models are shown in pink. Non-neoplastic oligodendrocytes and immune cells are included for comparison. Generally malignant cells are expected to cluster by patient sample, whereas non-malignant cells are expected to cluster by cell type. Only few cells from different samples cluster with oligodendrocytes (n = 22) or immune cells (n = 6) and were classified as non-malignant. No additional clusters of cells from different samples were identified, indicating the absence of additional non-malignant cell populations in our dataset.
b, Identical t-SNE visualization as in a, coloured by copy-number state. CNVs were detected in most single cells, facilitating their classification as malignant. A small number of cells did not show CNVs, even though CNVs were detected in the majority of cells from the respective sample (n = 38). These cells were classified as non-malignant. Most cells with without CNVs clustered with normal oligodendrocytes (n = 21), supporting their initial classification as non-malignant. Remaining cells without CNVs did not form clusters and likely represent poor-quality cells.
c, Identical t-SNE visualization as in a, coloured by detected mutant and wild-type transcripts. Cells classified as non-malignant are depleted for mutant transcripts (P < 0.01, binomial test), supporting their initial classification.
d, Heat map shows detected mutant and wild-type transcripts for 39 variants (columns) in each cell (n = 1,780, rows) of the WNT MB dataset. If both mutant and wild-type transcripts are detected in a single cell, only the mutant transcript is shown. Variants were initially detected by genome sequencing and subsequently quantified in the scRNA-seq data. Sample BCH807 was not subjected to genome sequencing, and the CTNNB1 variant was manually detected by examining scRNA-seq alignments. Mutations are detected almost exclusively in single cells from samples in which they were detected by genome sequencing, illustrating the high specificity of single-cell variant detection.
e, Heat map shows mutant and wild-type transcripts for 15 variants in each cell (n = 1,135, rows) of the SHH MB dataset. Sample SJ454 was not subjected to genome sequencing, and the TP53 mutation was manually identified by examining scRNA-seq alignments.
f, Heat map shows mutant and wild-type transcripts for 28 variants in each cell (n = 3,172, rows) of the Group 3/4 MB samples that were subjected to genome sequencing.
Extended Data Fig. 4 | Single-cell mapping of mouse cerebellar development. a–c, Two-dimensional representation of the cerebellar (CB) scRNA-seq dataset by t-SNE. Each dot represents one cell. In a, colours represent 13 different embryonic and early postnatal time points. In b, colours indicate the differentiation score across the entire dataset. In c, colours indicate cell types identified by Louvain clustering using the top 3,000 overdispersed genes. The main CB lineages were assigned on the basis of published lineage markers. d, Annotation of 18 CB cell types based on the expression of lineage specific marker genes shown as violin plot. Violin plots represent kernel density estimation showing the distribution shape of the data. e, Lineage tree reconstruction using partition-based graph abstraction. The abstracted graph shows all cell types (nodes) as identified in c and d. The size of the nodes is related to the number of cells in the defined cell type. The width of edges connecting cell types reflects the probability of the path. f, Radar plot showing CCA coefficients between each mouse CB cell type and human MB subgroup scRNA-seq.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Characterization of WNT MB single-cell programs. a, Expression scores for individual programs identified by unsupervised NMF analysis in each sample. Cells are ordered as in Fig. 2a ($n = 1,780$). Metaprograms WNT-A, WNT-B, WNT-C, and WNT-D were identified by hierarchical clustering of individual programs. b, Heat maps show pairwise correlation (left), principal component analysis (PCA, centre), and expression scores for NMF-derived metaprograms (right) for 301 cells from WNT MB sample MUV44. The ordering of cells (rows) is maintained between the heat maps. A two-dimensional representation of the same cells using t-SNE is shown on the far right (coloured by expression scores for each metaprogram). This analysis shows that the same programs and cell populations that are identified by the NMF analysis are also supported by PCA and t-SNE clustering. Furthermore, no additional programs and cell populations are identified (starting from PC5, components are less informative). c, Scatter plot shows isometric projection of average gene expression levels for cells with highest expression score for WNT-B (undifferentiated, proliferating), WNT-C (neuron-like), or WNT-D (undifferentiated, post-mitotic). WNT-B metaprogram genes are indicated in red, WNT-C metaprogram genes are indicated in green, and WNT-D metaprogram genes are indicated in blue. Genes that are higher in both undifferentiated cell populations compared to neuron-like cells are indicated in black. d, Images show RNA in situ hybridization experiments of five marker genes representative for the four WNT MB metaprograms in two samples of the single-cell cohort. Results confirm expression of these genes independently of the scRNA-seq experiments.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Characterization of SHH MB single-cell programs. a, Expression scores for individual programs identified by unsupervised NMF analysis in each sample. Cells are ordered as in Fig. 3a (n = 1,135). Metaprograms SHH-A, SHH-B, and SHH-C were identified by hierarchical clustering of individual programs. b, Heat maps show pairwise correlation (left), PCA (centre), and expression scores for NMF-derived metaprograms (right) for 493 cells from SHH MB sample SJ577. The ordering of cells (rows) is maintained between the heat maps. A two-dimensional representation of the same cells using t-SNE is shown on the far right (coloured by expression scores for each metaprogram). This analysis shows that the same programs and cell populations that are identified by the NMF analysis are also supported by PCA and t-SNE clustering. Furthermore, no additional programs and cell populations are identified (starting from PC3, components are less informative). c, Pairwise correlations between the expression profiles of 303 single-cells (rows, columns) from two SHH PDX samples (RCMB18 and RCMB24) (left). Expression scores for each of the NMF-derived metaprograms SHH-A, SHH-B, and SHH-C (columns) (right). Cells are ordered as in the left panel (rows). d, Heat maps show the relative expression of the 60 genes representing the metaprograms SHH-B and SHH-C (rows), across 303 cells for RCMB18 and RCMB24. Cells are sorted by the difference between the two scores. Cells positive for the cell cycle program (SHH-A) are indicated by red bars. Similar cell populations as in the primary samples (undifferentiated GNP-like and differentiated neuron-like cells) are identified in RCMB18. No differentiated cells are identified in RCMB24.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Cross-species mapping of SHH MB origins.

a, Heat map shows average expression levels of 29 GNP-associated genes (rows) in cell types identified in the mouse CB dataset (columns). Genes are ordered by their relative expression in GNPs. b, Left, the relative expression of orthologous genes in a in all cells from the single-cell cohort (n = 7,745; columns). Cells are ordered by increasing GNP CCA cosine correlation coefficients. Cells expressing high levels of GNP-associated genes are predominantly from SHH tumours. Right, the relative expression of the same genes in the bulk microarray cohort (n = 392). c, d, Heat maps as in a and b, but showing 30 genes associated with the UBC/GN intermediate cell type. e, Two-dimensional representation of GNPs/granule neurons from the cerebellar atlas by t-SNE. Each dot represents one cell (n = 35,013). Colours represent the assigned cerebellar cell types (left), as well as the expression of Atoh1 and Neurod1 (middle and right).

f, Box plots of select granule lineage marker genes in the mouse CB cohort (left), MB single-cell cohort (middle) and MB bulk microarray cohort (right). g, Box plot of patient age associated with infant and adult/child subtypes of SHH MB. h, Box plot of the number of coding mutations associated with SHH MB subtypes. The median is shown as a thick line; box limits are 25th and 75th percentiles; whiskers denote 1.5 times the interquartile range. i, Expression of Barhl1 (left) and Pde1c (right) at P4 during CB development. In situ hybridization data were obtained from the Allen Developing Mouse Brain Atlas © 2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas http://developingmouse.brain-map.org). j, Radar plot showing the CCA cosine correlation coefficients between each mouse CB cell type and the MB single-cell cohort from cells scoring highest for metaprograms SHH-B (GNP-like cells) and SHH-C (granule neuron-like cells).
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | Characterization of Group 3/4 MB single-cell programs. a, Top, Group 3/4 subtype prediction scores derived by DNA methylation profiling (light shade, low probability; dark shade, high probability). Expression scores for individual programs identified by unsupervised NMF analysis in each sample are indicated in the bottom. Cells are ordered as in Fig. 4a (n = 4,873). Metaprograms Group 3/4-A, Group 3/4-B, and Group 3/4-D were identified by hierarchical clustering of individual programs. b, Expression scores across 4,873 single cells (columns) for each of the NMF-derived metaprograms Group 3/4-A, Group 3/4-B, and Group 3/4-C (rows). Cells are ordered as in a. c, Heat maps show pairwise correlation (left), PCA (centre) and expression scores for NMF-derived metaprograms (right) for 400 cells from Group 3 MB sample SJ617. The ordering of cells (rows) is maintained between the heat maps. A two-dimensional representation of the same cells using t-SNE is shown on the far right (coloured by expression scores for each metaprogram). This analysis shows that the same programs and cell populations that are identified by the NMF analysis are also supported by PCA and t-SNE clustering. Furthermore, no additional programs and cell populations are identified (starting from PC4 components are less informative). d, Pairwise correlations between the expression profiles of 643 single cells (rows, columns) from nine patient-derived xenograft models (Med114FH, Med2112FH, Med211FH, Med411FH, RCMB20, Icb1299, Icb1572, Med2312FH and DMB006). Left, Group 3/4 subtype prediction scores derived by DNA methylation profiling. Right, expression score for the NMF-derived metaprograms Group 3/4-A, Group 3/4-B and Group 3/4-C (columns). e, Heat maps show the relative expression of the 60 genes representing the metaprograms Group 3/4-A and Group 3/4-C (rows) across 140 cells for RCMB20 and DMB006. Cells are sorted by the difference between the two scores. Cells positive for the cell cycle program (Group 3/4-A) are indicated by red bars. Group 3 PDX samples are predominantly undifferentiated, with the exception of Med2312FH, which is predominantly differentiated (classified by DNA methylation array as an intermediate Group 3/4 sample). This parallels the high frequency of MYC amplifications in our Group 3 PDX cohort (5/8). Group 4 PDX sample DMB006 is also predominantly differentiated. These results are supportive of the cellular compositions detected in primary Group 3/4 samples.
Extended Data Fig. 9 | Analysis of Group 3/4 intermediate samples and pan-subgroup comparison. a, Scatter plot of the metaprogram Group 3/4-C (x axis) and Group 3/4-B (y axis) expression scores for Group 3 and Group 4 bulk MBs (yellow and green dots, respectively; n = 248). Samples that score similarly for both programs are classified as intermediate samples (n = 49). b, Representative MYC and TUJ1 immunohistochemistry images of seven Group 3/4 samples. Four of these samples are shown at higher magnification in Fig. 5b (SJ17, SJ617, SJ625, SJ723). c, Two-dimensional representation of 740 Group 3/4 MB samples analysed by DNA methylation profiling using t-SNE. Eight subtypes are delineated by curved lines. Samples are coloured by their predicted subgroup. d, Heat map showing expression of transcripts coding for ribosomal proteins (n = 75, rows). Cells positive for the cell cycle programs, and cells classified as neuron-like cells are indicated on top. Cells are ordered as in Fig. 6b (n = 7,745). e, Heat map showing relative expression levels of genes that are specific to neuron-like cells and are shared between multiple subgroups (n = 134, rows). Cells are ordered as in d. f, Heat map shows the relative expression of UBC-specific genes in Fig. 6d (n = 30, rows) in the bulk expression array cohort (n = 392; columns). Samples are ordered by increasing CCA cosine correlation coefficient.
Extended Data Fig. 10 | See next page for caption.
Extended Data Fig. 10 | Cross-species mapping of Group 4 MB origins.

a, Top, expression of TBRI and EOMES in bulk Group 4 MB expression array data (n = 149). Middle, Group 3/4 DNA methylation-based subtype annotations for each sample. Bottom, CCA scores from comparison of bulk MB expression data and UBCs and GluCN late populations from the cerebellar single-cell dataset. b, t-SNE visualization shows clustering of glutamatergic populations correlated with Group 4 MBs. c, Box plot of CCA cosine correlation coefficients from comparison of bulk MB expression data and UBCs, according to Group 3/4 subtypes. The median is shown as a thick line; box limits are 25th and 75th percentiles; whiskers denote 1.5 times the interquartile range. d, e, Left, in situ hybridization data for Tbr1 (d) and Eomes (e) in the developing mouse cerebellum at the indicated time point. Data were obtained from the Allen Developing Mouse Brain Atlas (© 2008 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas http://developingmouse.brain-map.org). Right, expression of Tbr1 (d) and Eomes (e) in the mouse single-cell dataset according to the t-SNE structure shown in b. f, Radar plot showing CCA cosine correlation coefficients between each mouse CB cell type and Group 3 MB (top) or Group 4 MB (bottom) cells scoring highest for metaprograms Group 3/4-B or Group 3/4-C. g, Graphical summary of subgroup-specific cellular hierarchies identified in MB.
Paul Northcott
Mario Suva
Corresponding author(s): Bradley Bernstein
Last updated by author(s): Jun 4, 2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- Single cell sequencing data was generated using the Illumina NextSeq 500 system according to the manufacturer’s instructions. DNA methylation data was generated using Illumina Infinium MethylationEPIC arrays according to the manufacturer’s instructions. Human genomic libraries were generated using the SureSelectXT kit specific for the Illumina HiSeq instrument, followed by exome enrichment using the SureSelectXT Human All Exon V5 without UTRs bait set. The resulting exome enriched libraries were then sequenced using paired end 100 cycle sequencing on a NovaSeq 6000 (Illumina) according to manufacturer’s instructions.

Data analysis

- To analyze data we used publicly available open-source software (RSEM, Bowtie, Samtools, GATK). Further analysis was performed using R and Python programming languages and several publicly available packages (NMF, conumee).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data presented in this manuscript has been uploaded to GEO (GSE119926; tumor data) and to ENA (PRJEB23051; mouse cerebellum data).
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size: Sample size was defined by sample availability. There was no sample-size calculation performed.

Data exclusions: Initial tumor diagnosis as medulloblastoma was confirmed by DNA methylation-based classification (www.molecularneuropathology.org).

Replication: NA

Randomization: NA

Blinding: NA

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☐	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology
☑	Animals and other organisms
☐	Human research participants
☑	Clinical data

Methods

n/a	Involved in the study
☑	ChIP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging

Antibodies

Antibodies used: Anti-tubulin beta3 (Clone TUJ1, Biolegend, San Diego, CA), anti-MYC (clone Y69, Abcam, Cambridge, MA)

Validation: The antibodies used for IHC in this study have been validated in numerous publications, referenced on the following product websites:

- Anti-tubulin beta3: https://www.biolegend.com/en-us/products/purified-anti-tubulin-beta-3-tubb3-antibody-11580
- Anti-MYC: https://www.abcam.com/c-myc-antibody-y69-ab32072.html

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals: 10-14 weeks old female NSG mice (The Jackson Laboratory - 005557) were used for PDX experiments.

Wild animals: NA

Field-collected samples: NA

Ethics oversight: The experiments were conducted in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals and according to the guidelines established by the St. Jude Children’s Research Hospital Institutional Animal Care and Use Committee. Procedures in the protocol were approved by the Animal Care and Use Committee (ACUC) of SJCRH (Animal Assurance Number: A3077-01; Protocol IACUC#589-10536).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Human research participants

Policy information about studies involving human research participants

Population characteristics: We prospectively obtained fresh surgical resections from a series of twenty-five MB patients, including 23 diagnostic samples and two recurrences. Samples were obtained as fresh tumour biopsies from three different treating centers, including LeBonheur Children’s Hospital (n=12), Boston Children’s Hospital (n=8), and Vienna General Hospital (n=9). Patients were predominantly male (19 males vs. 6 females) and ages ranged from 3–17 years (median=9 years). Classic (n=16), large-cell/anaplastic (n=6), and desmoplastic/nodular (n=3) histologies were included in our series and there was an abundance of patients with metastatic disease (16/25, 64%).

Recruitment: Participants were recruited based on availability of fresh biopsy material (i.e., tumor material) taken at the time of neurosurgery.

Ethics oversight: Patients and their parents at Boston Children’s Hospital, the Medical University of Vienna and St. Jude Children’s Research Hospital gave consent proactively according to local Institutional Review Boards.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration: NCT01878617

Study protocol: A Clinical and Molecular Risk-Directed Therapy for Newly Diagnosed Medulloblastoma (SIMB12)

Data collection: We prospectively obtained fresh surgical resections from a series of twenty-five MB patients, including 23 diagnostic samples and two recurrences. Samples were obtained as fresh tumour biopsies from three different treating centers, including LeBonheur Children’s Hospital (n=12), Boston Children’s Hospital (n=8), and Vienna General Hospital (n=9). Collection of patient material for this study began in February 2017 and completed in October 2018.

Outcomes: NA

Flow Cytometry

Plots

Confirm that:

☐ The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

☐ The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).

☐ All plots are contour plots with outliers or pseudocolor plots.

☐ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation: Dissociated tumour cells from fresh primary tumours and PDXs were resuspended in cold 1% bovine serum albumin in phosphate-buffered saline (PBS-BSA, 1%). Cells were first stained with CD45-VioBlue direct antibody conjugate (Miltenyi Biotec) in PBS-BSA (1%) for 20 min at 4°C, washed and then costained with 1 μM calcine AM (Life Technologies) and 0.33 μM TO-PRO-3 iodide (Life Technologies) in PBS-BSA1%.

Instrument: Sorting was performed with FACSAria Fusion (Becton Dickinson) using 488 nm (calcine AM, 330/30 filter), 640 nm (TO-PRO-3, 670/30 filter) and 405 nm (VioBlue, 450/50 filter) lasers. Non-stained controls were included with all tumours.

Software: DIVA 8.01

Cell population abundance: FACSAria was performed to select viable tumor cells as described previously (Patel 2014, Tirosch 2016, Venteicher 2017, Filbin 2018). We did not include a figure exemplifying this routine step in our manuscript.

Gating strategy: CD45-positive cells were counterselected for the St. Jude samples only and viable medulloblastoma cells were identified by staining positive with calcine AM but negative for TO-PRO-3. Forward scatter area (FSC-A) versus side scatter width (SSC-W) criteria were used to discriminate doublets and select single cells.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.