A minimal classical sequent calculus free of structural rules

DOMINIC HUGHES
Stanford University*

April 22, 2009

Gentzen’s classical sequent calculus LK has explicit structural rules for contraction and weakening. They can be absorbed (in a right-sided formulation) by replacing the axiom $P, \neg P$ by $\Gamma, P, \neg P$ for any context Γ, and replacing the original disjunction rule with Γ, A, B implies $\Gamma, A \lor B$.

This paper presents a classical sequent calculus which is also free of contraction and weakening, but more symmetrically: both contraction and weakening are absorbed into conjunction, leaving the axiom rule intact. It uses a blended conjunction rule, combining the standard context-sharing and context-splitting rules: Γ, Δ, A and Γ, Σ, B implies $\Gamma, \Delta, \Sigma, A \land B$. We refer to this system \mathbf{M} as minimal sequent calculus.

We prove a minimality theorem for the propositional fragment \mathbf{M}_p: any propositional sequent calculus S (within a standard class of right-sided calculi) is complete if and only if S contains \mathbf{M}_p (that is, each rule of \mathbf{M}_p is derivable in S). Thus one can view \mathbf{M} as a minimal complete core of Gentzen’s LK.

1 Introduction

The following Gentzen-Schütte-Tait [Gen39, Sch50, Tai68] system, denoted $\mathbf{GS1p}$ in [TS96], is a standard right-sided formulation of the propositional fragment of Gentzen’s classical sequent calculus \mathbf{LK}:

$$\begin{array}{c}
\frac{\Gamma, A}{\Gamma, A \land B} & \frac{\Gamma, B}{\Gamma, A \land B} & \frac{\Gamma, A_i}{\Gamma, A_1 \lor A_2} \\
\frac{P, \neg P}{\Gamma, A \land B} & \frac{\Gamma, A \lor A_2}{\Gamma, A \land B} & \frac{\Gamma, A_i}{\Gamma, A \land B} \\
\frac{\Gamma}{\Gamma, A} & \frac{\Gamma, A, A}{\Gamma, A} & \frac{\Gamma, A, A}{\Gamma, A}
\end{array}$$

Here P ranges over propositional variables, A, A_i, B range over formulas, Γ ranges over disjoint unions of formulas, and comma denotes disjoint union \sqcup. By defining a sequent as a disjoint union of formulas, rather than an ordered list, we avoid an exchange/permutation

*Visiting Scholar, Concurrency Group, Computer Science Department, Stanford University. I gratefully acknowledge my host, Vaughan Pratt.

1We label the conjunction and disjunction rules with $\&$ and \oplus for reasons which will become apparent later.
rule (cf. [TS96, §1.1]). Negation is primitive on propositional variables P, and extends to compound formulas by de Morgan duality.

The structural rules, weakening W and contraction C, are absorbed in the following variant, a right-sided formulation of the propositional part of the calculus of [Ket44], called GS3p in [TS96].

System GS3p

\[
\begin{align*}
\Gamma, P, \neg P & \quad \rightarrow \quad \Gamma, A \land \Gamma, B & \land & \Gamma, A, B \rightarrow \ \gamma
\end{align*}
\]

The new axiom $\Gamma, P, \neg P$ amounts to the original axiom $P, \neg P$ followed immediately by weakenings. This paper presents a propositional classical sequent calculus Mp which is also free of structural rules:

System Mp

\[
\begin{align*}
P, \neg P & \quad \rightarrow \quad \Gamma, \Delta, A \land \Gamma, \Sigma, B & \land & \Gamma, A, B \rightarrow \ \gamma
\end{align*}
\]

A distinguishing feature of Mp is the \textit{blended conjunction rule}:

\[
\begin{align*}
\Gamma, \Delta, A & \land \Gamma, \Sigma, B & \land & \Gamma, A, B \rightarrow \ \gamma
\end{align*}
\]

which combines the standard context-sharing and context-splitting conjunction rules:

\[
\begin{align*}
\Gamma, A & \land \Gamma, B & \land & \Delta, A \land \Delta, \Sigma, A \land B
\end{align*}
\]

We refer to Mp as (cut-free propositional) \textit{minimal sequent calculus}. In contrast to GS3p, contraction and weakening are absorbed symmetrically: both are absorbed into the conjunction rule, leaving the axiom rule intact.

Mp is evidently sound, since each of its rules can be derived (encoded) in GS1p. Theorem 1 (page 4) is completeness for formulas: a formula is valid iff it is derivable in Mp.

2. $\neg(A \lor B) = (\neg A) \land (\neg B)$ and $\neg(A \land B) = (\neg A) \lor (\neg B)$.

3. We label the disjunction rule as γ to distinguish it from the disjunction rule \oplus of GS1p. The notation is derived from linear logic [Gir87].

4. By analogy with GS3 and GS3p in [TS96], we reserve the symbol M for a full system with quantifiers, and use Mp to denote the propositional system. Following [TS96], we treat cut separately. To maximise emphasis on the blended conjunction rule, we omit quantifiers and cut in this paper.

5. Completeness here refers specifically to formulas, not to sequents. Section 6 discusses completeness for sequents.
1.1 Minimality

The blended conjunction rule \land is critical for the liberation from structural rules: Proposition\(^2\) (page 6) shows that relaxing it to the union of the the two standard conjunction rules $\&$ and \otimes breaks completeness.\(^6\) The main theorem of the paper (page 7) formalises the sense in which Mp is a minimal complete core of classical sequent calculus:

Theorem 2: Minimality

A standard sequent calculus S is complete iff $S \sqsubseteq Mp$.

Here $S \sqsubseteq T$ ("S contains T") iff every rule of T is derivable in S, and a standard sequent calculus is any propositional sequent calculus with the axiom $P, \neg P$ and any subset of the following standard rules:

$\Gamma, A \quad \Gamma, B$ \quad $\Gamma, A \land B$ & Γ, A, B \quad $\Gamma, A \lor B$ \quad Γ, A

$\Delta, A \quad \Sigma, B$ \quad $\Delta, \Sigma, A \land B$ \quad $\Gamma, A_1 \quad \Gamma, A_i$ \quad $\Gamma, A_1 \lor A_2$ \quad Γ, A

\otimes \quad \oplus_i \quad \oplus

2 Notation and terminology

Formulas are built from literals (propositional variables P, Q, R . . . and their formal complements $\overline{P}, \overline{Q}, \overline{R}$. . .) by the binary connectives and \land and or \lor. Define negation or not \neg as an operation on formulas (rather than as a connective): $\neg P = \overline{P}$ and $\neg \overline{P} = P$ for all propositional variables P, with $\neg (A \land B) = (\neg A) \lor (\neg B)$ and $\neg (A \lor B) = (\neg A) \land (\neg B)$.

We identify a formula with its parse tree, a tree labelled with literals at the leaves and connectives at the internal vertices. A sequent is a non-empty disjoint union of formulas.\(^7\) Commas denote disjoint union. Throughout the document, $P, Q, . . .$ range over propositional variables, $A, B, . . .$ over formulas, and $\Gamma, \Delta, . . .$ over (possibly empty) disjoint unions of formulas.

A formula A is valid if it evaluates to 1 under all possible 0/1-assignments of its propositional variables (with the usual interpretation of \land and \lor on $\{0, 1\}$). A sequent $A_1, . . . , A_n$ is valid iff the formula $A_1 \lor (A_2 \lor (\ldots \lor (A_{n-1} \lor A_n) \ldots))$ is valid. A sub sequent of a sequent Γ is any result of deleting zero or more formulas from Γ; if at least one formula is deleted, the result is a proper sub sequent.

\(^6\)In other words, if we remove the \land rule and add both the $\&$ and the \otimes rules, the resulting system fails to be complete. The formula $((P \land Q) \lor (\overline{Q} \land P)) \lor \overline{P}$ becomes underivable (see the proof of Proposition\(^2\) page 6).

\(^7\)Thus a sequent is a particular kind of labelled forest. This foundational treatment of formulas and sequents as labelled trees and forests sidesteps the common problem of “formulas” versus “formula occurrences”: disjoint unions of graphs are well understood in graph theory \cite{Bol02}.
3 Completeness

THEOREM 1 (COMPLETENESS) Every valid formula is derivable in Mp.

The proof is via the following auxiliary definitions and lemmas.

A sequent is minimally valid, or simply minimal, if it is valid while no proper subsequent is valid. For example, the sequents $P, \neg P$ and $P \land Q, \neg Q \land P, \neg P$ are minimal, while $P, \neg P, Q$ is not.

LEMMA 1 Every valid sequent contains a minimal subsequent.

Proof. Immediate from the definition of minimality. □

LEMMA 2 Suppose a sequent Γ is a disjoint union of literals (i.e., Γ contains no \land or \lor). Then Γ is minimal iff $\Gamma = P, \neg P$ for some propositional variable P.

Proof. By definition of validity in terms of valuations, Γ is valid iff it contains a complementary pair of literals, i.e., iff $\Gamma = P, \neg P, \Delta$ with Δ a disjoint union of zero or more literals. Since $P, \neg P$ is valid, Γ is minimal iff Δ is empty. □

Suppose Γ and Δ are each disjoint unions of formulas (so each is either a sequent or empty). Write $\Gamma \subseteq \Delta$ if Γ results from deleting zero or more formulas from Δ.

LEMMA 3 Suppose $\Gamma, A_1 \land A_2$ is minimal. Choose $\Gamma_1 \subseteq \Gamma$ and $\Gamma_2 \subseteq \Gamma$ such that Γ_1, A_1 and Γ_2, A_2 are minimal (existing by Lemma 1 since Γ, A_1 and Γ, A_2 are valid). Then every formula of Γ is in at least one of the Γ_i.

Proof. Suppose the formula B of Γ is in neither Γ_i. Let Γ' be the result of deleting B from Γ. Then $\Gamma', A_1 \land A_2$ is a valid proper subsequent of $\Gamma, A_1 \land A_2$, contradicting minimality. (The sequent $\Gamma', A_1 \land A_2$ is valid since Γ_1, A_1 and Γ_2, A_2 are valid.) □

LEMMA 4 Suppose $\Gamma, A \lor B$ is minimal and Γ, A is valid. Then Γ, A is minimal.

Proof. If not, some proper subsequence Δ of Γ, A is valid. If Δ does not contain A, then it is also a proper subsequence of $\Gamma, A \lor B$, contradicting minimality. Otherwise let Δ' be the result of replacing A in Δ by $A \lor B$. Since Δ is valid, so also is Δ'. Thus Δ' is a valid proper subsequence of $\Gamma, A \lor B$, contradicting minimality. □

LEMMA 5 Suppose $\Gamma, A \lor B$ is minimal and neither Γ, A nor Γ, B is valid. Then Γ, A, B is minimal.

Proof. Suppose Γ, A, B had a valid proper subsequence Δ. Since neither Γ, A nor Γ, B is valid, Δ must contain both A and B. Let Δ' result from replacing A, B by $A \lor B$ in Δ. Then Δ' is a valid proper subsequence of $\Gamma, A \lor B$, contradicting minimality. □

Since a formula (viewed as a singleton sequent) is a minimal sequent, the Completeness Theorem (Theorem 1) is a special case of:
Proposition 1 Every minimal sequent is derivable in \(\text{Mp} \).

Proof. Suppose \(\Gamma \) is a minimal sequent. We proceed by induction on the number of connectives in \(\Gamma \).

- **Induction base (no connective).** Since \(\Gamma \) is minimal, Lemma 2 implies \(\Gamma = P, \neg P \), the conclusion of the axiom rule \(\frac{P, \neg P}{\top} \).

- **Induction step (at least one connective).**
 1. **Case:** \(\Gamma = \Delta, A_1 \land A_2 \). By Lemma 3, \(\Gamma = \Sigma, \Delta_1, \Delta_2, A_1 \land A_2 \) for \(\Sigma, \Delta_1, A_1 \) and \(\Sigma, \Delta_2, A_2 \) minimal. Write down the conjunction rule
 \[
 \frac{
 \Sigma, \Delta_1, A_1 \quad \Sigma, \Delta_2, A_2
 }{
 \Sigma, \Delta_1, \Delta_2, A_1 \land A_2 \quad \land
 }
 \]
 and appeal to induction with the two hypothesis sequents.
 2. **Case:** \(\Gamma = \Delta, A_1 \lor A_2 \).
 (a) **Case:** \(\Delta, A_i \) is valid for some \(i \in \{1, 2\} \). Write down the disjunction rule
 \[
 \frac{
 \Delta, A_i
 }{
 \Delta, A_1 \lor A_2 \quad \oplus_i
 }
 \]
 then appeal to induction with \(\Delta, A_i \), which is minimal by Lemma 4.
 (b) **Case:** \(\Delta, A_i \) is not valid for each \(i \in \{1, 2\} \). Thus \(\Delta, A_1, A_2 \) is minimal, by Lemma 5. Write down the disjunction rule
 \[
 \frac{
 \Delta, A_1, A_2
 }{
 \Delta, A_1 \lor A_2 \quad \lor
 }
 \]
 then appeal to induction with \(\Delta, A_1, A_2 \).

(\(\Gamma \) may match both 1 and 2 in the inductive step, permitting some choice in the construction of the derivation. There is choice in case 2(a) if both \(\Delta, A_1 \) and \(\Delta, A_2 \) are valid.) \qed

Note that completeness does not hold for arbitrary valid sequents. For example, the sequent \(P, \neg P, Q \) is valid but not derivable in \(\text{Mp} \). A sequent is valid iff some some subsequent is derivable in \(\text{Mp} \). Thus \(\text{Mp} \) is complete for sequents modulo final weakenings. In this sense, \(\text{Mp} \) is akin to system \(\text{GS5p} \) of [TS96, §7.4] (related to resolution). (See also Section 6.)

4 The Minimality Theorem

Relaxing blended conjunction to the pair of standard conjunction rules (context-sharing \& and context-splitting \(\otimes \)) breaks completeness. Let \(\text{Mp}^- \) be the following subsystem of \(\text{Mp} \)\footnote{This precursor of \(\text{Mp} \) is (cut-free) multiplicative-additive linear logic [Gir87] with tensor \(\otimes \) and with \& collapsed to \(\land \), and plus \(\oplus \) and par \(\forall \) collapsed to \(\lor \).}
System Mp⁻

\[
\begin{array}{ccc}
\Gamma, A & \Gamma, B & \Gamma, A \& B \\
\Gamma, A \land B & \Gamma, A \lor B & \Gamma, A \& B \\
\Delta, A & \Sigma, B & \Delta, \Sigma, A \land B \\
\Delta, \Sigma, A \land B & \Gamma, A_i & \Gamma, A_1 \lor A_2 \\
\end{array}
\]

Proposition 2 System Mp⁻ is incomplete.

Proof. We show that the valid formula \(A = ((P \land Q) \lor (\overline{Q} \land P)) \lor \overline{P} \) is not derivable in Mp⁻. The placement of the two outermost \(\lor \) connectives forces the last two rules of a potential derivation to be disjunction rules. Since \(P \land Q, \overline{Q} \land P, \overline{P} \) is minimal (no proper subsequent is valid), the two disjunction rules must be \(\land \) rather than \(\oplus \):

\[
\begin{array}{c}
P, Q \land P, \overline{P} \\
(P \land Q) \lor (\overline{Q} \land P), \overline{P} \\
((P \land Q) \lor (\overline{Q} \land P)) \lor \overline{P}
\end{array}
\]

It remains to show that \(P \land Q, \overline{Q} \land P, \overline{P} \) is not derivable in Mp⁻. There are only two connectives, both \(\land \), so the last rule must be a conjunction.

1. **Case: the last rule is a context-sharing \(\& \)-rule.**
 (a) **Case: The last rule introduces \(P \land Q \).**

\[
P, \overline{Q} \land P, \overline{P} \quad Q, \overline{Q} \land P, \overline{P} \\
P \land Q, \overline{Q} \land P, \overline{P} \quad \land
\]

The left hypothesis \(P, \overline{Q} \land P, \overline{P} \) cannot be derived in Mp⁻, since there is no \(Q \) to match the \(\overline{Q} \) (and no weakening).

(b) **Case: The last rule introduces \(\overline{Q} \land P \).** The same as the previous case, by symmetry, and exchanging \(Q \leftrightarrow \overline{Q} \).

2. **Case: the last rule is a context-splitting \(\otimes \)-rule.**
 (a) **Case: The last rule introduces \(P \land Q \).**

\[
P, \Gamma \quad Q, \Delta \\
P \land Q, \overline{Q} \land P, \overline{P} \quad \otimes
\]

We must allocate each of \(\overline{Q} \land P \) and \(\overline{P} \) either to \(\Gamma \) or to \(\Delta \). If \(\overline{Q} \land P \) is in \(\Gamma \), then \(P, \Gamma \) is not derivable in Mp⁻, since it contains no \(Q \) to match the \(\overline{Q} \). So \(\overline{Q} \land P \) is in \(\Delta \). But then the \(\overline{P} \) is required in both \(\Gamma \) and \(\Delta \).
(b) Case: The last rule introduces $\overline{Q} \land P$. The same as the previous case, by symmetry, and exchanging $Q \leftrightarrow \overline{Q}$.

□

A **standard system** is any propositional sequent calculus containing the axiom $P, \neg P$ and any of the following **standard rules**:

\[
\begin{align*}
\Gamma, A & \quad \Gamma, B \\
\Gamma, A \land B & \\
\Gamma, A \lor B & \quad \nabla
\end{align*}
\]

\[
\begin{align*}
\Delta, A & \quad \Sigma, B \\
\Delta, \Sigma, A \land B & \quad \otimes
\end{align*}
\]

\[
\begin{align*}
\Gamma, A, B & \quad \nabla
\end{align*}
\]

\[
\begin{align*}
\Gamma, A_i & \quad \oplus_i
\end{align*}
\]

\[
\begin{align*}
\Gamma, A, A & \quad C
\end{align*}
\]

Thus there are $2^6 = 64$ such systems (many of which will not be complete).

System S **contains** system T, denoted $S \supseteq T$, if each rule of T is a derived rule of S. For example, system GS1p (page 1) contains Mp since the blended conjunction rule \land and the disjunction rule ∇ of Mp can be derived in GS1p:

\[
\begin{align*}
\Gamma, \Delta, A \quad \Gamma, \Sigma, B & \quad \nabla \\
\Gamma, \Delta, \Sigma, A \land B & \quad \leftarrow
\end{align*}
\]

\[
\begin{align*}
\Gamma, \Delta, A \quad \Gamma, \Sigma, B & \quad W^* \\
\Gamma, \Delta, \Sigma, A \quad \Gamma, \Delta, \Sigma, A \land B & \quad \otimes_i
\end{align*}
\]

\[
\begin{align*}
\Gamma, A, B & \quad \nabla
\end{align*}
\]

\[
\begin{align*}
\Gamma, A_i & \quad \oplus_i
\end{align*}
\]

\[
\begin{align*}
\Gamma, A, A & \quad C
\end{align*}
\]

where W^* denotes a sequence of zero or more weakenings.

Theorem 2 (Minimality Theorem) A standard system is **complete** iff it contains Mp.

4.1 Proof of the Minimality Theorem

Two systems are **equivalent** if each contains the other. For example, it is well known that GS1p (page 1) is equivalent to 9

\[
\begin{align*}
P, \neg P & \quad \Delta, A \quad \Sigma, B \quad \otimes \\
\Delta, \Sigma, A \land B & \quad \nabla
\end{align*}
\]

\[
\begin{align*}
\Gamma, A_1, A_2 & \quad \nabla
\end{align*}
\]

\[
\begin{align*}
\Gamma, A & \quad W
\end{align*}
\]

\[
\begin{align*}
\Gamma, A, A & \quad C
\end{align*}
\]

\[\text{9} \text{This system is multiplicative linear logic [Gir87] plus contraction and weakening (with the connectives denoted } \land \text{ and } \lor \text{ instead of } \otimes \text{ and } \nabla).}\]
via the following rule derivations:

\[
\frac{\Delta, A}{\Delta, \Sigma, A \land B} \otimes \quad \frac{\Delta, A \land B}{\Delta, \Sigma, A \land B}
\]

\[
\frac{\Gamma, A_i}{\Gamma, A_1 \lor A_2} \oplus_i \quad \frac{\Gamma, A_1 \lor A_2}{\Gamma, A_i}
\]

\[
\frac{\Gamma, A, B}{\Gamma, A \lor B} \otimes \quad \frac{\Gamma, A \lor B}{\Gamma, A, A \lor B}
\]

\[
\frac{\Gamma, A \land B}{\Gamma, A \lor B} \otimes \quad \frac{\Gamma, A \lor B}{\Gamma, \Gamma, A \land B}
\]

We shall abbreviate these four rule derivations as follows, and write analogous abbreviations for other rule derivations.

\[
\otimes \leftarrow \& W \quad \& \leftarrow \otimes C
\]

\[
\oplus \leftarrow \otimes W \quad \otimes \leftarrow \oplus C
\]

4.1.1 The three complete standard systems

As a stepping stone towards the Minimality Theorem, we shall prove that, up to equivalence, there are only three complete standard systems.

We abbreviate a system by listing its non-axiom rules. For example, \(\text{GS1p} = (\&, \oplus, W, C) \) and \(\text{Mp} = (\land, \oplus, \otimes) \). Besides \(\text{GS1p} \), we shall pay particular attention to the systems

\[
\begin{align*}
\text{Pp} &= (\otimes, \oplus, C) \quad \text{Positive calculus} \\
\text{Np} &= (\&, \otimes, W) \quad \text{Negative calculus}
\end{align*}
\]

(Our terminology comes from polarity of connectives in linear logic [Gir87]: tensor \(\otimes \) and plus \(\oplus \) are positive, and with \(\& \) and par \(\otimes \) are negative.)
PROPOSITION 3 Up to equivalence:

1. $\text{GS1p} = (\&, \oplus, C, W)$ is the only complete standard system with both contraction C and weakening W;

2. $\text{Pp} = (\otimes, \oplus, C)$ is the only complete standard system without weakening W;

3. $\text{Np} = (\&, \&y, W)$ is the only complete standard system without contraction C.

The proof is via the following lemmas.

Lemma 6 $\text{Mp} = (\&y, \oplus) \leq \text{Pp} = (\otimes, \oplus, C), \text{Np} = (\&, \&y, W)$ and $\text{GS1p} = (\&, \oplus, C, W)$.

Proof. Pp contains Mp since $\&y \leftarrow C \otimes.

\[
\begin{array}{ccc}
\Gamma, \Delta, A & \Gamma, \Sigma, B \\
\hline
\Gamma, \Delta, \Sigma, A \& B
\end{array}
\]

\otimes \leftarrow

\[
\begin{array}{ccc}
\Gamma, \Delta, A & \Gamma, \Sigma, B \\
\hline
\Gamma, \Delta, \Sigma, A \& B
\end{array}
\]

(where C^\ast denotes zero or more consecutive contractions) and $\&y \leftarrow \oplus C$:

\[
\begin{array}{ccc}
\Gamma, A, B \\
\hline
\Gamma, A \vee B
\end{array}
\]

\oplus_1 \leftarrow

\[
\begin{array}{ccc}
\Gamma, A, A \vee B \\
\hline
\Gamma, A \vee B
\end{array}
\]

\oplus_2 \leftarrow

\[
\begin{array}{ccc}
\Gamma, A, A \vee B \\
\hline
\Gamma, A \vee B
\end{array}
\]

Np contains Mp since $\&y \leftarrow W \&y$, and $\oplus \leftarrow W \&y$ (see page 8). $\text{GS1p} = (\&, \oplus, C, W)$ is equivalent to $(\otimes, \&, \oplus, \&y, C, W)$ since \otimes and $\&y$ are derivable. Thus GS1p contains Pp (and Np), hence Mp. □

Lemma 7 $\text{Pp} = (C, \otimes, \oplus)$ and $\text{Np} = (\&, \&y, W)$ are complete.\[11\]

Proof. Each contains Mp by Lemma 6 which is complete (Theorem I). □

Lemma 8 Up to equivalence, system $\text{GS1p} = (\&, \oplus, C, W)$ is the only complete standard system with both contraction C and weakening W.

Proof. GS1p is complete (see e.g. [TS96], or by the fact that GS1p contains Mp which is complete). Any complete system must have a conjunction rule (\otimes or $\&$) and a disjunction rule (\oplus or $\&y$). In the presence of C and W, the two conjunctions are derivable from one other, as are the two disjunctions (see page 8). □

Lemma 9 A complete standard system without weakening W must contain $\text{Pp} = (\otimes, \oplus, C)$.

\[11\text{Recall that completeness refers to formulas, not sequents in general.}\]
Proof. System $\mathsf{Mp}^- = (\otimes, \oplus, \&, \wedge)$, with both conjunction rules and both disjunction rules, is incomplete (Proposition 2 page 6), therefore we must have contraction C.

Without the \oplus rule, the valid formula $(P \lor \overline{P}) \lor \overline{Q}$ is not derivable: the last rule must be \neg, leaving us to derive $P \lor \overline{P}, Q$, which is impossible without weakening W (i.e., with at most $\neg, \&,$ and \otimes available), since, after a necessary axiom P, \overline{P} at the top of the derivation, there is no way to introduce the formula Q.

Without the context-splitting \otimes rule, the valid formula $P \lor (Q \lor (P \land \overline{Q}))$ is not derivable. The last two rules must be \neg, for if we use a \oplus we will not be able to match complementary literals in the axioms at the top of the derivation. Thus we are left to derive $P, Q, \overline{P} \land \overline{Q}$, using $\&$ and C. The derivation must contain an axiom rule P, \overline{P}. The next rule can only be a $\&$ (since P, \overline{P} cannot be the hypothesis sequent of a contraction C rule). Since the only \land-formula in the final concluding sequent $P, Q, \overline{P} \land \overline{Q}$ is $P \land Q$, and the $\&$ rule is context sharing, the $\&$-rule must be

$$
\begin{array}{c}
\vdots \\
P, \overline{P} \\
\hline \\
P, \overline{P} \land \overline{Q}
\end{array}
\&$$

but P, \overline{Q} is not derivable. □

Lemma 10 Up to equivalence, $\mathsf{Pp} = (\otimes, \oplus, C)$ is the only complete standard system without weakening W.

Proof. By Lemma 7 Pp is complete. By Lemma 9 every W-free complete standard system contains Pp. All other W-free standard systems containing Pp are equivalent to Pp, since the standard rule derivations $\& \leftarrow \otimes C$ and $\neg \leftarrow \oplus C$ yield $\&$ and \neg (see page 8). □

Lemma 11 A complete standard system without contraction C must contain $\mathsf{Np} = (\&, \neg, W)$.

Proof. System $\mathsf{Mp}^- = (\otimes, \oplus, \&, \neg)$, with both conjunction rules and both disjunction rules, is incomplete (Proposition 2 page 6), therefore we must have weakening W.

Without the \neg rule, the valid formula $P \lor (\overline{P} \land \overline{P})$ would not be derivable. The last rule must be a \neg (rather than a \oplus, otherwise we lack either P or \overline{P}), so we are left to derive $P, \overline{P} \land \overline{P}$. The last rule cannot be a \otimes or \oplus, as the only connective is \land. It cannot be W, or else we lack either P or \overline{P}. It cannot be \otimes, as one of the two hypotheses will be the single formula \overline{P}. □

Lemma 12 Up to equivalence, $\mathsf{Np} = (\&, \neg, W)$ is the only complete standard system without contraction C.

Proof. By Lemma 7 Np is complete. By Lemma 11 every C-free complete standard system contains Np. All other C-free standard systems containing Np are equivalent to Np, since the standard rule derivations $\otimes \leftarrow \& W$ and $\oplus \leftarrow \neg W$ yield \otimes and \oplus (see page 8). □

Proof of Proposition 8 Parts (1), (2) and (3) are Lemmas 8, 10 and 12 respectively. □
Lemma 13 Every standard complete system has contraction C or weakening W.

Proof. Otherwise it is contained in \(\text{Mp}^- = (\otimes, \oplus, \& \&, \#) \), which is incomplete (Prop. [2]). □

Theorem 3 Up to equivalence, there are only three complete standard systems:

1. The Gentzen-Schütte-Tait system \(\text{GS1p} = (\& \&, \oplus, C, W) \).
2. Positive calculus \(\text{Pp} = (\otimes, \oplus, C) \).
3. Negative calculus \(\text{Np} = (\& \&, \# \#, W) \).

Proof. Proposition [3] and Lemma [13]. □

Proof of Minimality Theorem (Theorem [2]). Each of the three complete standard systems contains \(\text{Mp} \) (Lemma [5]). □

The three inequivalent complete standard systems \(\text{GS1p}, \text{Pp} \) and \(\text{Np} \), together with propositional minimal sequent calculus \(\text{Mp} \), sit in the following Hasse diagram of containments:

Contains of complete inequivalent systems
Propositional right-sided LK \((\& \&, \oplus, W, C) \)
Propositional Positive Seq. Calc. \((\otimes, \oplus, C) \)
\(\text{GS1p} \)
Propositional Negative Seq. Calc. \((\& \&, \# \#, W) \)
\(\text{Pp} \)
Propositional Min. Seq. Calc. \((\& \&, \oplus, \# \#) \)
\(\text{Np} \)
\(\text{Mp} \)

Thus we can view propositional minimal sequent calculus \(\text{Mp} \) as a minimal complete core of \(\text{GS1p} \), hence of (propositional) Gentzen’s LK.

5 Extended Minimality Theorem

Define an extended system as one containing the axiom rule \(\overline{P, \overline{P}} \) and any of the following rules. (We have extended the definition of standard system by making blended conjunction available.)
The Minimality Theorem (Theorem 2, page 7) extends as follows.

Theorem 4 (Extended Minimality Theorem) An extended system is complete iff it contains propositional minimal sequent calculus Mp.

To prove this theorem, we require two lemmas.

Lemma 14 Suppose S is a complete extended system with the blended conjunction rule \land, and with at least one of contraction C or weakening W. Then S is equivalent to a standard system.

Proof. If S has weakening W, let S' be the result of replacing the blended conjunction rule \land in S by context-sharing conjunction $\&$; otherwise S has contraction, and let S' result from replacing \land by context-splitting \otimes. Then S' is equivalent to S, since $\land \leftarrow \otimes C$ (page 9) and $\land \leftarrow \& W$ (page 7). □

Lemma 15 Suppose S is a complete extended system with neither contraction C nor weakening W. Then S is equivalent to propositional minimal sequent calculus Mp.

Proof. Since $\text{Mp}^- = (\otimes, \& , \oplus, \land)$ is incomplete (Proposition 2, page 6), S must have the blended conjunction rule \land either directly or as a derived rule. Since S is complete, it must have a disjunction rule, therefore it could only fail to be equivalent to $\text{Mp} = (\land, \oplus, \land)$ if (a) it has \oplus and \land is not derivable, i.e., S is equivalent to (\land, \oplus), or (b) it has \land and \oplus is not derivable, i.e., S is equivalent to (\land, \land). In case (a), the valid formula $P \lor \overline{P}$ would not be derivable, and in case (b) the valid formula $(P \lor \overline{P}) \lor Q$ would not be derivable, either way contradicting the completeness of S. □

Proof of the Extended Minimality Theorem (Theorem 4). Suppose S is a complete extended system. If S has contraction C or weakening W then it is equivalent to a standard system by
Lemma 14, hence contains M_p by the original Minimality Theorem. Otherwise S is equivalent to M_p by Lemma 15 hence in particular contains M_p.

Conversely, suppose S is an extended system containing M_p. Then S is complete since M_p is complete. □

We also have the following extension of Theorem 3 (page 11), which stated that, up to equivalence, there are only three complete standard systems, $GS1p$, Pp and Np.

Theorem 5 Up to equivalence, there are only four complete extended systems:

1. The Gentzen-Schütte-Tait system $GS1p = (\&, \oplus, C, W)$.
2. Positive calculus $Pp = (\otimes, \oplus, C)$.
3. Negative calculus $Np = (\&, \exists, W)$.
4. Propositional minimal sequent calculus $M_p = (\land, \oplus, \exists)$.

Proof. Theorem 3 together with Lemmas 14 and 15 □

6 Degrees of completeness

We defined a system as *complete* if every valid formula (singleton sequent) is derivable. To avoid ambiguity with forthcoming definitions, let us refer to this default notion of completeness as *formula-completeness*. Define a system as *minimal-complete* if every minimal sequent is derivable, and *sequent-complete* if every valid sequent is derivable. (Thus *sequent-complete* implies *minimal-complete* implies *formula-complete*.)

For a minimal-complete system S, a sequent Γ is valid iff a subsequent of Γ is derivable in S. Thus a minimal-complete system S can be viewed as sequent-complete, modulo final weakenings. (Cf. system $GS5p$ of [TS96, §7.4] (related to resolution).)

Proposition 4 $Pp = (\otimes, \oplus, C)$ and $M_p = (\land, \oplus, \exists)$ are formula-complete and minimal-complete, but not sequent-complete.

Proof. We have already proved that M_p (hence also Pp, by containment) is minimal-complete (Proposition 1).

We show that the valid (non-minimal) sequent P, \overline{P}, Q is not derivable in Pp (hence also in M_p). A derivation must contain an axiom rule P, \overline{P}. This cannot be followed by a \otimes or \oplus rule, otherwise we introduce a connective \land or \lor which cannot subsequently be removed by any other rule before the concluding sequent P, \overline{P}, Q. Neither can it be followed by contraction C, since there is nothing to contract. □

Proposition 5 $Np = (\&, \exists, W)$ is formula-, minimal- and sequent-complete.

12 Recall that a valid sequent is minimal if no proper subsequent is valid.
Proof. \(\text{Np} \) is minimal-complete since it contains \(\text{Mp} \). Suppose \(\Gamma \) is a valid but not minimal sequent. Choose a minimal subsequent \(\Delta \) of \(\Gamma \) (see Lemma [1] page 4). By minimal-completeness, \(\Delta \) has a derivation. Follow this with weakenings to obtain \(\Gamma \). □

Below we have annotated our Hasse diagram with completeness strengths.

7 Possible future work

1. **Cut.** Chapter 4 of [TS96] gives a detailed analysis of cut for Gentzen systems. One could pursue an analogous analysis of cut for minimal sequent calculus. Aside from context-splitting and context-sharing cut rules

 \[
 \Delta, A \quad \Sigma, \neg A \\
 \frac{}{\Delta, \Sigma} \quad \text{cut}_\oplus \\
 \Gamma, A \quad \Gamma, \neg A \\
 \frac{}{\Gamma} \quad \text{cut}_\&
 \]

 one might also investigate a blended cut rule:

 \[
 \frac{}{\Gamma, \Delta, A} \\
 \frac{\Gamma, \Sigma, \neg A}{\Gamma, \Delta, \Sigma} \quad \text{cut}
 \]

2. **Quantifiers.** Explore the various ways of adding quantifiers to \(\text{Mp} \), for a full first-order system \(\text{M} \).

3. **Mix (nullary multicut).** Gentzen’s multicut rule
\[
\Delta, A_1, \ldots, A_m, \Sigma, \neg A_1, \ldots, \neg A_n \quad \frac{}{\Delta, \Sigma}
\]

in the nullary case \(m = n = 0\) has been of particular interest to linear logicians [Gir87], who call it the mix rule. One could investigate context-splitting, context-sharing and blended incarnations:

\[
\begin{align*}
\Delta & \quad \Sigma & \quad \text{mix}_\otimes \\
\Delta, \Sigma & \quad \Gamma, \Gamma & \quad \text{mix}_\& \\
\Gamma & \quad \Gamma, \Delta, \Sigma & \quad \text{mix}_\boxtimes
\end{align*}
\]

References

[Bol02] B. Bollobás. Modern Graph Theory. Springer-Verlag, 2002.

[Gen39] G. Gentzen. Untersuchungen über das logische Schließen I, II. Mathematische Zeitschrift, 39:176–210 405–431, 1939. Translation in [Gen69] 68–131.

[Gen69] G. Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland, 1969. Edited and introduced by M.E. Szabo.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Ket44] J. Ketonen. Untersuchungen zum Prädikatenkalkül. Annales Academiae Scientiarum Fennicae, ser. A, I. Mathematica-physica, 23, 1944.

[Sch50] K. Schütte. Schlußweisen-Kalküle der Prädikatenlogik. Mathematische Annalen, 123:166–186 405–431, 1950.

[Tai68] W. W. Tait. Normal derivability in classical logic. In The Syntax and Semantics of Infinitary Languages, volume 72 of Lecture Notes in Computer Science, pages 204–236. Springer-Verlag, 1968.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK, 1996.

[Urb00] C. Urban. Classical Logic and Computation. Ph.D. thesis, University of Cambridge, 2000.

[UB01] C. Urban and G. Bierman. Strong Normalisation of Cut-Elimination in Classical Logic. Fundamenta Informaticae, 45:123–155, 2001.