SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDY OF VANGA BHASMA PREPARED WITH SPECIAL REFERENCE TO RASATARANGINI

Raman Belge1*, Rameshwar Pandey2, Prakash Itankar3

*1Ph.D. Scholar, 2Guide, Dept. of Rasashastra & Bhaishajya Kalpana, Shri Ayurved Mahavidyalaya, Nagpur. 3Co-Guide, Dept. of Pharmaceutical Sciences, RTMNU, Nagpur, India.

ABSTRACT

Vanga Bhasma which has been prepared with Parada and Haratala or even without Parada and Haratala is widely used for a broad spectrum of diseases. It is also said to possess Jantughna Prabhava (Antimicrobial activity). Hence it was decided to synthesize, analyse and study the antimicrobial activity of Vanga Bhasma prepared with special reference to Rasatarangini 18/25-28. The present study deals with the preparation of Vanga Bhasma with reference to Rasatarangini 18/25-28. The synthesized Bhasma samples were characterized by various analytical techniques. The antimicrobial effects of these Bhasma samples were studied. The samples were characterized with the contemporary parameters like XRD, SEM and EDX to find out the nature of the Vanga Bhasma samples. These samples were further tested against certain Gram +ve, Gram-ve and fungal organisms, so as to find out the anti-microbial efficacy of the Vanga Bhasma samples. The adopted method for preparation of Vanga Bhasma (Ref. Rasatarangini 18/25-28) was able to produce a Bhasma compatible to organoleptic parameters mentioned in the ancient texts. Formation of the small sized particles as small as a nano-particle was confirmed by SEM study. Average 14 Putas are required to prepare Vanga Bhasma and XRD study confirms that Tin oxide is the major compound. Vanga Bhasma showed antimicrobial activity in inhibiting the growth of Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia, Escherichia coli and Candida albicans with a concentration of 100mg/ml. This outcome further supports the Krumintha and Jantughna properties (anti-microbial activity) of Vanga Bhasma.

KEYWORDS: Analytical, Anti-microbial, Maran, Shodhan, Vanga bhasma, Rasatarangini.

INTRODUCTION

Bhasma, a unique dosage form, mentioned in the ancient Ayurveda texts is an incinerated metal or mineral prepared after certain rounds of processing like Shodhana, Marana, Amritikarana etc. The Bhasmas are known to offer miraculous results in clinical practice[1]. Quality of a drug depends upon its raw material selection, processing and applications with standard guidelines. It is essential to apply certain standards for manufacture of drugs so that the genuineness of the drug is not compromised. There have been concerns regarding the safety and efficacy of Ayurvedic drugs mainly the Bhasma with special reference to the heavy metal toxicity[2]. Keeping this fact in mind, the Vanga Bhasma, was prepared for the present study and analyzed for quality control checks, on the parameters described in the Ayurvedic texts as well as modern technology like SEM, EDX and XRD. These Bhasmas should exhibit efficacy against the disease inducing microbes. Hence, it was tested against certain Gram +ve, Gram-ve and fungal organisms, so as to find out the anti-microbial efficacy of the Vanga Bhasma samples.

MATERIALS AND METHODS

The different materials used for the preparation of Vanga Bhasma; raw Vanga (Tin)[3], Parad[4], Haratala[5], Tila[6] Taila (Sesame oil), Takra[7] (Butter milk), Gomutra[8] (Cow’s urine), Rasonal[9], powder of Ashwatha[10] Twak (Ficus religiosa), Rajika[11], Saindhava[12], Tandula[13], Vamshapatra[14], Shunthi[15], Hingul[16], Harida[17], Masha[18] and Jeeraka[19] were procured from local retailers. The Kanji[20] (Sour gruel), Kulattha Kwath[21] (Decoction of Dolichos biflorus Linn.), Churnodaka[22] (Lime water) and Arkapatra Swaras[23] (Expressed juice of leaves of Calotropis procera) were prepared in the departmental laboratory. All medicinal plants used in the study were authenticated at Department of Botany. The preparation of Vanga Bhasma consists of steps such as Shodhan[24] (Samanya and Vishesha), Bhavana[25] and Maran[26].
Shodhan of Vanga

Ashuddha Vanga was subjected to Samanya and Vishesha Shodhan.

The Samanya Shodhan of Vanga was done by quenching the molten Vanga subsequently into Tila Taila, Takra, Gomutra, Kanji and Kulattha Kwath 7 times each. Then this Samanya Shodhit Vanga was subjected to Vishesha Shodhan. Here Samnya Shodhit Vanga was melted and further quenched into lime water for 7 times. Each quenching was done in a fresh media.

Table 1: Observation regarding Weight of Vanga before and after Samanya Shodhan

Weight (g)	Batch 1	Batch 2	Batch 3
Initial	500	500	500
Final (dried weight)	437	433.15	434.31
% change in weight	12.6	13.37	13.13

Table 2: Observation regarding Weight of Vanga before and after Vishesha Shodhan

Weight (g)	Batch 1	Batch 2	Batch 3
Initial	432	428.15	429.31
Final (dried weight)	416.72	414.16	415.72
Weight loss(g)	15.28	13.99	13.59
% change in weight	3.53	3.26	3.16

Preparation of Vanga Bhasma- (Batch A3, B3, C3)- Shuddha Vanga + Ashwattha Twak Churna + Shuddha Parada + Shuddha Haratala

Table 3: Batch wise observation regarding Maran ingredients of Vanga

Batch No.	Shuddha Vanga (g)	Shuddha Parad (1/4th of Vanga) (g)	Total quantity of amalgam Formation (g)	Wt. decrease in %	Shuddha Hartal (g)	Total wt.=Shuddha Vanga + Shuddha Parada + Shuddha Haratala (g)
Batch A3	138.90	34.72	157.39	9.34	69.45	226.84
Batch B3	138.05	34.51	156.11	9.53	69.02	225.13
Batch C3	138.57	34.64	157.75	8.92	69.28	227.03

Table 4: Observation Regarding Vanga Bhasma- Batch A3

Puta	Shuddha Vanga + Shuddha Parada + Shuddha Haratala	Bhavana Drava-Arkapatra Swaras (ml)	Wt. of Chakrikas Before Puta (Dry Chakrikas-g)	Wt. of Chakrikas After Puta (g)	Cow Dung Cakes (No.)	Cow Dung Cakes (Wt.) Kg	Max. Temp. (°C)	Time reqd. to attain the Max. Temp. (minutes)	Colour of Chakrikas after Puta	Hardness/Softness of Chakrikas	Hardness	% Wt. loss
1st	226.84	90	240.4	224.28	10	5	773	18	Yellowish	Hard	2.56	1.12
2nd	224.28	90	239.48	221.8	10	5	758	20	Light yellowish	Hard	2.48	1.10
3rd	221.8	90	237.2	219.17	10	5	690	18	Dark Greyish	Hard	2.63	1.18
4th	219.17	80	232.65	217.95	10	5	705	15	Dark Greyish	Hard	2.79	1.27
5th	217.95	80	231.4	214.33	10	5	680	12	Dark Greyish	Hard	3.62	1.66
6th	214.33	80	229.18	210.34	9	4.5	664	10	Dark Greyish	Soft	3.99	1.86
7th	210.34	80	226.87	207.79	9	4.5	622	12	Dark Greyish	Soft	2.55	1.21
8th	207.79	80	224.02	204.46	8	4.0	596	11	Dark Greyish	Soft	3.33	1.60
9th	204.46	80	219.02	201.34	8	4.0	542	9	Dark Greyish	Soft	3.12	1.47
10th	201.34	70	216.76	198.6	6	3.0	498	12	Dark Greyish	Soft	2.74	1.36
11th	198.6	70	214.06	195.39	6	3.0	475	10	Dark Greyish	Soft	3.21	1.55
12th	195.39	60	209.62	193.57	4	2.0	320	5	Dark Greyish	Soft	3.7	1.89
13th	193.57	60	208.13	196.85	4	2.0	312	8	Dark Greyish	Soft	3.28	1.69
Table 5: Observation regarding Vanga Bhasma- Batch B3

Puta	Shuddha Vanga + Shuddha Parada + Shuddha Haratala (g)	Bhavana Drava-Arkapatra Swaras (ml)	Wt. of Chakrikas Before Puta (Dry Chakrikas-g)	Wt. of Chakrikas After Puta (g)	Cow Dung Cakes (No.)	Cow Dung Cakes (Wt.) Kg	Max. Temp. (°C)	Time reqd. to attain the Max. Temp. (minutes)	Colour of Chakrikas after Puta	Hardness/Softness of Chakrikas	Wt. loss after Puta (g)	% Wt. loss
1st	225.13	90	240.53	227.48	10	5	693	19	Yellowish	Hard	2.35	1.00
2nd	227.48	90	246.04	230.01	10	5	762	20	Light yellowish	Hard	2.53	1.09
3rd	230.01	90	245.76	227.24	10	5	693	16	Dark Greyish	Hard	2.77	1.20
4th	224.24	80	242.5	224.55	10	5	625	14	Dark Greyish	Hard	2.69	1.19
5th	224.55	80	243.44	221.96	10	5	686	12	Dark Greyish	Hard	2.59	1.15
6th	221.96	80	240.67	218.85	9	4.5	652	10	Dark Greyish	Soft	3.11	1.40
7th	218.85	80	235.71	216.04	9	4.5	635	12	Dark Greyish	Soft	2.81	1.28
8th	216.04	80	232.6	213.46	8	4.0	585	10	Dark Greyish	Soft	2.58	1.19
9th	213.46	70	231.32	210.73	8	4.0	492	10	Dark Greyish	Soft	2.73	1.28
10th	210.73	70	226.18	207.4	8	4.0	586	8	Dark Greyish	Soft	3.33	1.58
11th	207.4	70	224.18	205.26	6	3.0	492	8	Dark Greyish	Soft	2.14	1.03
12th	205.26	60	222.74	201.89	6	3.0	384	5	Dark Greyish	Soft	3.37	1.64
13th	201.89	60	216.79	199.73	4	2.0	356	4	Dark Greyish	Soft	2.16	1.07
14th	199.73	60	214.58	197.73	4	2.0	342	4	Dark Greyish	Soft	2	1.00

Table 6: Observation regarding Vanga Bhasma- Batch C3

Puta	Shuddha Vanga + Shuddha Parada + Shuddha Haratala(g)	Bhavana Drava-Arkapatra Swaras (ml)	Wt. of Chakrikas Before Puta (Dry Chakrikas-g)	Wt. of Chakrikas After Puta (g)	Cow Dung Cakes (No.)	Cow Dung Cakes (Wt.) Kg	Max. Temp. (°C)	Time reqd. to attain the Max. Temp. (minutes)	Colour of Chakrikas after Puta	Hardness/Softness of Chakrikas	Wt. loss after Puta (g)	% Wt. loss
1st	227.03	90	241.29	224.45	10	5	705	19	Yellowish	Hard	2.58	1.09
2nd	224.45	90	239.68	221.79	10	5	735	20	Light yellowish	Hard	2.66	1.13
3rd	221.79	90	238.24	219.28	10	5	685	18	Dark Greyish	Hard	2.51	1.08
4th	219.28	80	235.14	216.84	10	5	624	15	Dark Greyish	Hard	2.44	1.06
5th	216.84	80	237.18	214.45	9	4.5	658	12	Dark Greyish	Hard	2.39	1.05
6th	214.45	80	229.65	211.78	9	4.5	660	10	Dark Greyish	Soft	2.67	1.19
7th	211.78	80	226.66	208.66	9	4.5	632	9	Dark Greyish	Soft	3.12	1.4
8th	208.66	80	222.52	206.19	8	4.0	583	10	Dark Greyish	Soft	2.47	1.13
9th	206.19	70	219.81	203.48	8	4.0	550	10	Dark Greyish	Soft	2.71	1.25
10th	203.48	70	216.37	200.41	8	4.0	480	8	Dark Greyish	Soft	3.07	1.44
11th	200.41	70	215.10	198.72	6	3.0	456	8	Dark Greyish	Soft	1.69	0.8
Table 7: Organoleptic Characters[27]

Parameter	Vanga Bhasma No. 3
Shabda	Anupasthita
Sparsha	Soft, nocorase Particles
Rupa	Dark grayish
Susnidhatva	Alpa snigda
Nischandratva	No metallic luster
Rekhapurnatva	Upasthita
Varitaratva	Upasthita
Unama	Upasthita
Rasa	Tasteless
Gandha	Not specific

Table 8: Analysis Details[28]

Sr. No.	Name of Sample of Vanga Bhasma	Ash Content	Acid Insoluble Matter	Water Soluble Extractives	Alcohol Soluble Extractives	pH
1	A3	98.76%	94.43%	0.33%	0.642%	7.90
2	B3	98.18%	94.19%	0.58%	0.73%	8.75
3	C3	99.36%	93.79%	0.27%	0.72%	8.75

Analytical Study

X-Ray Diffraction Study[29]

Batch A3

Batch B3
Batch C3

![XRD pattern of Vanga Bhasma (Batch C3)](image)

Identified Patterns List[^30^]

Visible	Ref. Code	Score	Compound Name	Displacement [°2Th.]	Scale Factor	Chemical Formula
*	98-009-0609	87	Cassiterite	0.000	0.960	O2 Sn0.912
*	98-009-7513	4	Tin(IV) Sulfide	0.000	0.439	S3 Sn2
*	98-063-9165	3	Mercury Sulfide (1/1)	0.000	0.516	Hg1 S1

Plot of Identified Phases

RESULTS

Batch A3
1. Totally 16 peaks were identified in *Vanga Bhasma* (Batch A3) at different angles (2 Theta) from 26.5681° to 90.8571°.
2. 3 strong peaks were chosen as strong with their relative intensity and compared to standard X-ray powder diffraction file.
3. 1st, 3rd, 6th peak with relative intensity of 100%, 78.24%, 49.52%, were considered as significant at 26.5681°, 33.8633°, & 51.7593° having 3.35, 2.80 & 1.76 d space value respectively.

Batch B3
1. Totally 25 peaks were identified in *Vanga Bhasma* (Batch B1) at different angles (2 Theta) from 14.9732° to 95.9566°.
2. 3 strong peaks were chosen as strong with their relative intensity and compared to standard X-ray powder diffraction file.
3. 2nd, 5th, & 11th peak with relative intensity of 100%, 80.17% & 55.93% were considered as significant at 26.5469°, 33.8378° & 51.7206°, having 3.35, 2.64 & 1.76 d space value respectively.

Batch C3
1. Totally 21 peaks were identified in *Vanga Bhasma* (Batch B1) at different angles (2 Theta) from 26.5725° to 95.9920°.
2. 3 strong peaks were chosen as strong with their relative intensity and compared to standard X-ray powder diffraction file.
3. 2nd, 4th, 7th peak with relative intensity of 100%, 76.79%, 55.26% were considered as significant at, 26.5840°, 33.8766°, 51.7761° having 3.35, 2.64, 1.76 d space value respectively.

Batch A3, B3 & C3

1. *Vanga Bhasma* (Batch A3, B3 & C3) peaks are compared with standard 3 theta values with ref. No.98-009-0609 confirmed the presence of Tin Oxide (Cassiterite SnO2) with hydroxide in tetragonal structure.

2. Also peaks compared with standard 2 theta values with ref.No.98-009-7513 confirmed presence of Tin Sulphide (SnS3) with orthorhombic structure.

3. Also peaks compared with standard 2 theta values with ref.No.98-063-9165 confirmed presence of Mercury Sulphide (HgS) with hexagonal structure.

Scanning Electron Microscopy[31]

SEM Batch A3, B3, C3
Sample A3 has a particle size of 1.22 µm - 2.79 µm. Sample B3 has a particle size of 744 nm - 953 nm while sample C3 has a particle size ranging from 9.37 µm - 38.5 µm.

Energy Dispersive X-Ray Analysis [32]
EDS Batch A3
Element	Series	wt.%	at.%		
Sn	50 L-series	50.95	73.34	32.30	1.52
O	8 K-series	13.47	19.39	63.34	1.61
Pt	78 L-series	1.87	2.69	0.72	0.08
Hg	80 L-series	1.64	2.25	0.61	0.07
K	19 K-series	0.80	1.15	1.54	0.05
Fe	26 K-series	0.38	0.55	0.52	0.04
Si	14 K-series	0.35	0.51	0.94	0.04
S	16 K-series	0.01	0.12	0.03	0.03
Al	13 K-series	0.00	0.00	0.00	0.00
Mg	12 K-series	0.00	0.00	0.00	0.00
Na	11 K-series	0.00	0.00	0.00	0.00

Total: 69.46 100.00 100.00

EDS Batch B3

![EDS Image]

Available online at: http://ijapr.in
El AN Series unn. C norm. C Atom. Error(1Sigma) wt.\%[wt.\%][at.\%] [wt.\%]

Element	L-series	50	61.10	70.60	27.72	1.85
Sn	8 K-series	17.89	20.67	60.23	2.18	
K	19 K-series	2.67	3.09	3.35	0.11	
N	7 K-series	1.64	0.75	6.31	0.32	
Pt	78 M-series	1.18	1.37	0.33	0.07	
Fe	26 K-series	1.06	1.22	1.02	0.06	
Hg	80 M-series	0.72	1.85	0.19	0.05	
Si	14 K-series	0.27	0.31	0.52	0.04	
S	16 K-series	0.16	0.14	0.33	0.03	
Al	13 K-series	0.00	0.00	0.00	0.00	
Mg	12 K-series	0.00	0.00	0.00	0.00	

Total: 86.69 100.00100.00

EDS Batch C3

Date:3/4/2020 12:54:14 PM Image size:1000 x 750
Mag:1000x HV:25.0kV
EDS studies confirm the presence of 'Sn' as a major ingredient. 'O' was found as a second major ingredient in all the samples. However presence of 'O' was remarkably higher in VB. Since Parada was an ingredient of VB, its presence was confirmed with all the samples. Fe, Pt, K, S and Si were found in all the Bhasma samples;

Antimicrobial Activity[33]

1. **Preparation of test Solutions/Stock solution:**
 The Suspensions of Vanga Bhasma samples A, B & C were prepared with the help of following method:
 Vanga Bhasma sample: 100mg
 Tween 80: 1g Distilled water: 10ml
 So, the final concentration of the test solution obtained was- 10 mg/ml.

2. **Standards used in study**
 Positive Control: Cepfodoxime 10mcg (Himedia Labs, Mumbai, India) was used as standard or positive control for bacteria while Flucanozol 25mcg (Himedia Labs, Mumbai, India) was used as standard or positive control for fungi in this study.
 Negative Control: Distilled water + Tween 80

3. **Microorganisms:**
 a. Staphylococcus aureus[34]
 b. Bacillus subtilis[35,36]
 c. Klebsiella pneumonia[37]
 d. E.coli[38]
 e. Candida albicans[39]

Determination of Minimum inhibitory concentration Microdilution assay[40]

The minimum inhibitory concentration was defined as the lowest concentration of the compound to inhibit the growth of microorganisms (Kumar, G.S. et al., 2007)[41]. The minimum inhibitory concentration values were determined by broth dilution assay of micro dilution assay. Varying concentrations of the solutions of Bhasma (10mg/ml, 50mg/ml, 100mg/ml) were prepared. 0.1ml of standardized test organism of Controls was equally setup by using solvents and test organisms without extract. The tube with least concentration of extract without growth after incubation was taken and recorded as the minimum inhibitory concentration.

Table 10: Zone of Inhibition of Vanga Bhasma against organisms

Sr.No	Name of Organism	Zone of Inhibition in mm								
		Sample A3	Sample B3	Sample C3						
		10Mg/ml	50Mg/ml	100Mg/ml	10Mg/ml	50Mg/ml	100Mg/ml			
1	Staphylococcus aureus	11	15	18	10	14	17	10	12	17
2	Bacillus subtilis	9	13	15	10	13	18	9	11	14
3	Klebsiella pneumonia	11	14	18	12	14	19	10	13	18
4	E.coli	10	12	17	12	14	17	10	13	16
5	Candida albicans	12	15	18	13	15	19	12	14	19

Available online at: http://ijapr.in
Table 11: Zone of Inhibition of control drug against organisms

Sr. No	Name of Organism	Distilled Water + Tween80	Cepfodoxime 10 mcg	Fluconazole 25 mcg
1	Staphylococcus aureus	0	24	-
2	Bacillus subtilis	0	25	-
3	Klebsiella pneumonia	0	30	-
4	E.coli	0	17	-
5	Candida albicans	0	-	28

Statistical Study

ZoI of VB against Staphylococcus Aureus

In a ZoI of VB against Staphylococcus Aureus, at 95% Confidence Interval (CI), there is significant difference in the means of three different sample strengths. The sample with strength of 100mg/ml, having 17.33mm, as a mean zone of inhibition is more effective.

ZoI of VB against Bacillus Subtilis

In a ZoI of VB against Bacillus Subtilis, the sample with strength of 100mg/ml, having 15.66mm, as a mean zone of inhibition is more effective.

ZoI of VB against Klebsiella Pneumoniae

The sample with strength of 100mg/ml, having 18.33mm, as a mean zone of inhibition is more effective.

ZoI of VB against E. Coli

The sample with strength of 100mg/ml, having 16.66mm, as a mean zone of inhibition is more effective.

ZoI of VB against Candida Albicans

The sample with strength of 100mg/ml, having 18.66mm, as a mean zone of inhibition is more effective.

The findings indicate that Vanga Bhasma prepared with the stated reference possesses Antimicrobial property against Candida Albicans, Klebsiella Pneumoniae, Staphylococcus Aureus, E.Coli and Bacillus Subtilis in their decreasing order with a concentration of 100mg/ml.

As compared to the Cefpodoxime and Fluconazole, the VB preparations were found having less antimicrobial activity against all the pathogens. However, it is worth noting that this preparation showed antifungal activity also.

This outcome further supports the Krumighna and Jantughna properties (Anti-microbial activity) of Vanga Bhasma (Ref. Rasatarangini 18/25-28).

CONCLUSION

The adopted methods for preparation of Vanga Bhasma, (Ref. Rasatarangini 18/25-28) was able to produce a Bhasma compatible to organoleptic parameters mentioned in the ancient texts. Formation of the small sized particles as small as a nano-particle was confirmed by SEM study.

The colour variation could be due to heat offered during the processes as well as the quality of the raw material.

1. XRD study confirms that Tin oxide is the major compound found in all the Vanga Bhasma samples.
2. VB (Ref. Rasatarangini 18/25-28) is an antimicrobial drug and is useful in inhibiting the growth of Candida Albicans, Klebsiella Pneumoniae, Staphylococcus Aureus, E.Coli and Bacillus Subtilis in their decreasing order with a concentration of 100mg/ml. This outcome further supports the Krumighna and Jantughna properties (Anti-microbial activity) of Vanga Bhasma.

REFERENCES

1. Pranacharya Shrisadananda Sharma; Rasatarangini; 18/25-28; edited by Pandit Kashinath Shastri; Motilal Banarasidas publication Delhi; 2000; p-440.
2. Saper RB, Kales SN, Paquin J, et al. Heavy Metal Content of Ayurvedic Herbal Medicine Products. JAMA. 2004; 292 (23): 2868–2873.
3. Shri Bhavamishra; Rasa Ratna Samuchchaya; Ch-
5/153-154; New Delhi: Meherchand Lachmandas Publications; Reprint 1998; p123

4. Shri Bhavamishra; Rasa Ratna Samucchaya; ch-11/20; Vol-I; Delhi: Meherchand Lachmandas Publications; Reprint 2010; p-207.

5. Pranacharya Shrisadananda Sharmana; Rasatarangini; edited by Shastri P.K; Ch 11/1-3; Delhi: Motilal Banarasidas; Reprint 2014; p244.

6. Dr.K Rama Chandra Reddy; Bhaishaja Kalpana Vijyanam; Pathya Kalpana; Varanasi: Chaukhamba Sanskrit Bhavan; 2nd edition. 2001; p369, p457-461.

7. Maharishi Sushruta; Sushruta Samhita; Sutra Sthana; 45/85; Edited by Kaviraj Dr. Ambikadutta Shastri; Chaukhamba Sanskrit Sansthan; 2011; p.227.

8. Acharya Sushruta; Sushrut Samhita; Varanasi: Chaukhamba Sanskrit Sansthan; 11th edition; 1997; 145p, 186p, 47p, 79p, 134p.

9. Prof. Deshpande A.P., Dravyaguna Vgyan, Part I & II, Anmol Prakashan, Pune, 2004, p619.

10. Dr.J.L.N. Shastri; Dravyaguna Vijana; vol 2; Chaukhamba Orientalia; Reprint edition 2014; p944.

11. Vd. Gogte V.M., Dravyaguna Vigyan, Vaidya Mitra Prakashan, Pune, 2008, p599.

12. Sharma Priyavrata; Dravyauna Vigyan; Part I, Chaukhamba Bharati Academy; Varanasi; 1995; p70.

13. Jose M, Raj RD, Vinitha MR, et al. The Prehistoric Indian Ayurvedic Rice Shashthika is an Extant Early Domesticate With a Distinct Selection History. Front Plant Sci. 2018; 9: 1203. Published 2018 Aug 14. doi:10.3389/fpls.2018.01203

14. Dr.J.L.N.Shastri; Dravyaguna Vijana; vol 2; Chaukhamba Orientalia; Reprint edition 2014; p.101.

15. Prof. Deshpande A.P., Dravyaguna Vgyan, Part I & II, Anmol Prakashan, Pune, 2004, p611.

16. Dr.J.L.N. Shastri; Dravyaguna Vijana; vol 2; Chaukhamba Orientalia; Reprint edition 2014; p254.

17. Vd. Gogte V.M., Dravyaguna Vigyan, Vaidya Mitra Prakashan, Pune, 2008, p686.

18. Sharma Priyavrata; Dravyauna Vigyan; Part II, Chaukhamba Bharati Academy; Varanasi; 1995; p363.

19. Dr.J.L.N. Shastri; Dravyaguna Vijana; vol 2; Chaukhamba Orientalia; Reprint edition 2014; p272.

20. Pandit Shyamsundaracharya Vaishya; Rasayansara; 1/1-16; Shyamsundar Rasayanshala Prakashana Gayghat Varanasi; Sanskaran 5; p59

21. Dr.J.L.N. Shastri; Dravyaguna Vijana; vol 2; Chaukhamba Orientalia; Reprint edition 2014; p736.

22. Pranacharya Shrisadananda Sharmana; Rasatarangini; Ch-18/8-9; Varanasi: Motilal Banarasidas; 1976; p437.

23. Vd. Gogte V.M., Dravyaguna Vigyan, Vaidya Mitra Prakashan, Pune, 2008, p239.

24. Shri vaidyaapatisinha gupta Sunuvaga bhattacharya; Rasataranga samucchaya; 5/13; edited by Prof. Dattatreya Anata Kulkarni; Meharachanda Lachmandas publication New Delhi; 2006; p-93.

25. Vd.Raman Belge, Dr.Rameshwar Pandey, Dr.Prashtak Itankar. Critical Review of Bhavana Processes with special reference to its Utility in Ayurvedic Pharmaceutics. J Ayurveda Integr Med Sci 2019;3:126-131.

26. Pandey Rameshwar; Yogatrnakar; Ch-1/1209; Chaukhamba Vishva Bharati; Varanasi; 2019, p.129.

27. Siddiqui A, Hakim MA. Format for the pharmacopeial analytical standards of compound formulation, workshop on standardization of Unani drugs, (appendix), New Delhi: Central council for research in Unani medicine;1995. p. 25.

28. Anonymous. The Ayurvedic Pharmacopoeia of India; Volume 6. Government of India. P277-p 279.

29. Klug, H. P., and L. E. Alexander. 1974. X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed. Wiley, New York.

30. https://www.researchgate.net/post/How_to_check_the_XRD_pattern_of_any_sample_with_the_reference_from_JCPSD_dt-9/4/2021.

31. Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries: Seifollah Nasrazadani, Shokrollah Hassani, in Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, 2016

32. Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries: Seifollah Nasrazadani, Shokrollah Hassani, in Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, 2016

33. Balouiri M, Sadiki M, Ilnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016 Apr; 6(2):71-79. doi: 10.1016/j.jpha.2015.11.005. Epub 2015 Dec 2. PMID: 29403965; PMCID: PMC5762448.

34. Ananthanarayan, Paniker; Microbiology; ch-29; 9th edition; edited by Arti Kapil; Universities press India Pvt. ltd; 2013; p208-209.

Available online at: http://ijapr.in
35. US EPA, Attachment I-Final Risk Assessment of Bacillus Subtilis; February 1997. https://www.epa.gov/sites/production/files/2015-09/documents/fra009.pdf
36. https://en.wikipedia.org/wiki/Bacillus_subtilis dt-9/4/2021.
37. Ananthanarayan, Paniker; Microbiology; ch-21; 9th edition; edited by ArtiKapil; Universities press India Pvt. Ltd; 2013; p 199-207
38. Ibid; ch-29; p 274-280
39. Sagararyal; online microbiology notes https://microbenotes.com/candida-albicans/
40. Bauer, A. W., W. Kirby, J. Sherris, and M. Turck, 1966. Antibiotic susceptibility testing by a standardized disc method. Am.J.Clin.Pathol.45: 493-496.
41. GS Kumar et al, Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria, Tropical Journal of Pharmaceutical Research, June 2007; 6 (2): 717-723 http://www.tjpr.org
42. Cefpodoxime, Free Acid Susceptibility and Minimum Inhibitory Concentration (MIC) Data, https://en.wikipedia.org/wiki/Cefpodoxime#cite_ref-
43. Xu, Yi; Wang, Yan; Yan, Lan; Liang, Rong-Mei; Dai, Bao-Di; Tang, Ren-Jie; Gao, Ping-Hui; Jiang, Yuan-Ying (2009). Proteomic Analysis Reveals a Synergistic Mechanism of Fluconazole and Berberine against Fluconazole- Resistant Candida albicans: Endogenous ROS Augmentation. Journal of Proteome Research. 8 (11): 5296–5304.

Cite this article as:
Raman Belge, Rameshwar Pandey, Prakash Itankar. Synthesis, Characterization and Antimicrobial Study of Vanga Bhasma Prepared with Special Reference to Rasatarangini. International Journal of Ayurveda and Pharma Research. 2021;9(4):1-16.

Source of support: Nil, Conflict of interest: None Declared

*Address for correspondence
Dr. Raman Belge
Ph.D. Scholar,
Dept. of Rasashastra & Bhaishajya Kalpana,
Shri Ayurved Mahavidyalaya, Nagpur.
Email: ramanbelge@gmail.com

Disclaimer: IJAPR is solely owned by Mahadev Publications - dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IJAPR cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of IJAPR editor or editorial board members.
Vanga Bhasma Nirmana

Ashuddha Vanga

Vanga cut into small pieces.

Melting of Vanga.

Vanga taken into iron pan.

This melted Ashuddha Vanga was quenched into five different liquid media with seven times each. This procedure called as Samanya Shodhana.

Preparation of Amalgam.

1 Part of Shuddha Vanga

1/4th Part of Shuddha Paraada.

Amalgam formation was done after triturating.
Marana of Vanga (VangaBhasma No.3)

1 Part Amalgam (Shuddha Vanga & Parada).

Shuddha Hartala (1/2nd Part of Shuddha Vanga)

Arkapatra Swarasama

After puta

This process was repeated, until to obtain appropriate Bhasma.

Arkapatra Swarasama was added & trituration was done.

Puta was given.

Sharava samputa was done.

After equal trituration, chakrika formation was done.
Anti-microbial Study

Sr. no.	Micro-organism	Zone of inhibition of Vanga bhasma
1	Staphylococcus aureus	![Image of inhibition zones](image1)
2	E. coli	![Image of inhibition zones](image2)
3	Bacillus subtilis	![Image of inhibition zones](image3)
4	Klebsiella pneumonia	![Image of inhibition zones](image4)
5	Candida albicans	![Image of inhibition zones](image5)