Effect of benzo(a)pyrene on the number of soil microorganisms of the genus *Pseudomonas* and *Rhodococcus*

Emma Voronina¹,², Alevtina Balandina³, Natalia Frolova¹,⁴, Svetlana Dubrovina² and Tatiana Loginova⁴

¹Perm Institute (branch) FSBEI HE "Russian University of Economics G.V. Plekhanova", Russia
²FSBEI HE "Perm State Pharmaceutical Academy of the Ministry of Health of Russia", Russia
³LLC "DiEsTechnologies", Russia
⁴FSBEI HE "Perm State National Research University", Russia

E-mail: voroninaemma403@mail.ru

Abstract. The paper presents the results of a study of the effect of benzo(a)pyrene on the activity of hydrocarbon-oxidizing soil bacteria of the genus *Pseudomonas* and *Rhodococcus*. The objects of research are samples of agrosod-calcareous soil, exposed to oil pollution, located near an oil refinery with an increased concentration of benzo(a)pyrene. Studies carried out over three years from 2017 to 2019 showed that in all soil samples that are exposed to oil pollution, the concentration of benzo(a)pyrene exceeds the MPC. It was found that an increase in the concentration of benzo(a)pyrene in the soil is accompanied by the suppression of the activity of hydrocarbon-oxidizing bacteria of the genus *Rhodococcus* and *Pseudomonas*. The presence of an inverse relationship between the content of benzo(a)pyrene and the number of microorganisms was confirmed by correlation analysis carried out using Spearman's rank correlation coefficients (ρs) and τb-Kendall. The data presented in this work can be used in organizing bioremediation of oil-contaminated agrosod-calcareous soils. In the case of a high level of soil pollution with oil products, for its effective restoration, additional support for the activity of hydrocarbon-oxidizing microorganisms is needed, including by loosening.

1. Introduction

The ecological problem of anthropogenic pollution of soil with oil products does not lose its relevance now. The consequence of this pollution is the violation of the stability of ecosystems and the biosphere in general, and, first, soil degradation. Oil products disrupt the natural ratio of the number of soil microorganisms, reduce the soil's ability to self-purify and contribute to the accumulation of toxic and highly stable compounds in it. We have previously shown that soil pollution with oil products leads to an increase in the concentration of benzo(a)pyrene in it, and is also accompanied by the accumulation of pathogenic micromycetes of the genus *Fusarium, Rhizoctonia, Phytophthora* [1].

One way to solve this problem is the reclamation of oil-contaminated lands. At the same time, a variety of methods are used, such as mechanical cleaning, application of adsorption materials of organic and inorganic nature to soils, the introduction of chemicals and biological preparations, as well as organic components of waste from the logging industry. Bioremediation is an economically profitable, highly specific and environmentally friendly treatment; it has huge potential and competitive advantages, primarily due to environmental safety and low cost. One of the main methods
of bioremediation in situ (at the place of contamination) is the introduction of microorganisms into the place of contamination [2].

In work [3] it is shown that four groups of bacteria are most often found among oil-oxidizing microorganisms: gram-positive coryne-like bacteria (Rhodococcus, Bravobacterium, Arthrobacter, Micrococcus), gram-positive spore-forming bacteria (Bacillium), gram-negative oxidase-positive bacteria (Flavromobacterium, Chromobacterium) and sticks (Acinetobacter).

Currently, preparations containing strains of hydrocarbon-oxidizing bacteria are increasingly used to restore soil. In works [4-14] it is shown that actinobacteria of the genus Rhodococcus promote oxidative biotransformation of petroleum hydrocarbons and xenobiotics. Bacteria of the genus Pseudomonas have a similar activity [9-10].

It is known that the agronomically useful microflora plays a significant role in the processes of cleansing soils from oil; therefore, it is important to determine which components of oil products have a depressing effect on it.

The aim of this work is to study the effect of benzo(a)pyrene on the number of hydrocarbon-oxidizing bacteria Pseudomonas and Rhodococcus.

The danger of accumulation of high concentrations of benzo(a)pyrene in agricultural soils is due to the high stability of this xenobiotic, the possibility of migration into the feedstock for food production, high toxicity, and the ability to have a carcinogenic effect on the human body [8]. Solving the problem of anthropogenic pollution of the environment with benzo(a)pyrene is one of the priority environmental problems.

The objects of research are samples of agrosod-calcareous soil, exposed to oil pollution, located near an oil refinery with an increased concentration of benzo(a)pyrene.

2. Materials and methods
The work was carried out by order of an agricultural enterprise located in the Perm region of the Perm region. The objects of study are seven soil samples, which were taken in the territory adjacent to the oil refinery LLC LUKOIL-Permnefteorgsintez.

Point samples were taken from one or more layers on the trial plot using the envelope method so that each sample was a part of the soil typical of genetic horizons or layers of a given soil type. Spot samples were taken from the holes with a spatula. A pooled sample was obtained by mixing at least 5 incremental samples that were taken from one sample site. Soil samples were packed in polyethylene bags with labeling (accompanying coupons). A pooled soil sample was prepared from spot samples by mixing them. The combined sample mass was at least 1 kg [4-5].

The benz(a)pyrene concentration was determined by high performance liquid chromatography using an Agilent 1100 instrument with a fluorometric detector in accordance with the FR.1.31.2005.01725 method [6]. According to the Russian standard GN 2.1.7.2041-06, the MPC of benzo(a)pyrene in the soil is not more than 0.02 mg / kg in total with the background level [7].

The quantitative content and taxonomic composition of the complex of hydrocarbon-oxidizing microorganisms was determined by a standard method using the method of inoculation from a thousandth dilution in 5 replicates on agarized glucose-peptone-yeast medium and Czapek's medium with the addition of hexadecane. The samples were preliminarily subjected to homogenization using an UZDN-1 ultrasonic disperser (22 kHz; 0.44 A; 2 min). To suppress the development of fungi, nystatin was added to the nutrient medium in an amount of 50 mg per 0.5 L of the medium. The inoculations were incubated at room temperature for 3-7 days and then the growing colonies were counted and microscopic. The total number of microorganisms was determined by a direct microscopic method in a Goryaev chamber using a dye acridine orange [13]. Bacteria were identified based on the study of cultural and micro morphological characteristics [16].

3. Results and discussion
The results of determining the concentration of benzo(a)pyrene and the number of bacteria of the genera Pseudomonas and Rhodococcus in the samples of oil-contaminated soil are shown in table 1.
Table 1. The number of microorganisms (CFU / g) in the 0-20 cm soil layer contaminated with benzo(a)pyrene, 2017 – 2019.

Sample No.	Concentration of benz(a)pyrene, mg/kg ***	Bacteria content, CFU * / g soil					
		Pseudomonas	Rhodococcus	Pseudomonas	Rhodococcus	Pseudomonas	Rhodococcus
1	0.0006	10^6	10^6	10^6	10^6	10^6	10^6
2	0.004	10^2	10^2	10^2	10^2	10^2	10^4
3	0.002	10^2	10^2	10^2	10^2	10^2	10^4
4	0.005	0	0	0	0	10^0	10^2
5	0.003	10^2	10^2	10^2	10^2	10^2	10^2
6	0.004	0	10^2	10^2	10^2	0	0
7	0.001	10^2	10^2	10^2	10^2	10^2	10^2

*colony-forming unit; **not detected; ***MPC of benzo(a)pyrene in soil no more than 0.02 mg/kg [9]

Studies conducted over three years from 2017 to 2019 showed that all soil samples exposed to oil contamination contain benzo(a)pyrene. It is known that this compound belongs to the class of polycyclic aromatic hydrocarbons, is a product of incomplete combustion of organic compounds and is present in the products of coal and oil processing [15].

The lowest concentration of benzo(a)pyrene is found in soil sample no. 1, and has a tendency to decrease over three years. At the same time, the total number of bacteria *Rhodococcus* and *Pseudomonas* is increasing, which indicates the active course of the soil recovery process. A similar pattern is observed in samples no. 2, no. 3 and no. 4.

Thus, we have established that an increase in the concentration of benzo(a)pyrene in the soil leads to a decrease in the number of microorganisms of the genus *Rhodococcus* and *Pseudomonas*.

To confirm the correlation of the declared indicators: the concentration of benzo(a)pyrene and the number of microorganisms, we carried out a correlation analysis of the empirical data presented in table 1. Let X_1 be the content of benzo(a)pyrene, measured in mg/kg of soil; X_2 - the number of microorganisms (CFU/g) in the soil layer 0-20 cm contaminated with benzo(a)pyrene (*Pseudomonas*); X_3 is the number of microorganisms (CFU/g) in the 0-20 cm soil layer contaminated with benzo(a)pyrene (*Rhodococcus*). Since the experimental data contain only seven observations, we have small samples for each variable. In addition, the samples for variables X_2 and X_3 have outliers and related ranks, the data are heterogeneous, and therefore, the use of the Pearson correlation coefficient is inappropriate.

We carried out a correlation analysis using Spearman's rank correlation coefficients (ρ_s) and τ_b-Kendall according to the algorithm described in [11].

1. The correlation coefficients were found separately for years between the content of benzo(a)pyrene (X_1), measured in mg/kg of soil, and the number of microorganisms (CFU/g) in the 0-20 cm soil layer contaminated with benzo(a)pyrene 2017-2019 (respectively X_2, X_3) and checked their significance. Next, the results were interpreted.

2. Found descriptive statistics, such as arithmetic mean and median mean, for each of the 7 passive experiments for 2017-2019 for the variables X_1, X_2, X_3, which are denoted, respectively $\bar{X}_1, \bar{X}_2, \bar{X}_3(i)$ where $i = 1,2,3$.

3. Found the general coefficients of correlation, by summarizing the data for years, using the arithmetic mean and median mean between X_1, X_2, X_3, checked the statistical reliability of the results and given their interpretation. The first and third steps of the algorithm are related to testing the null
hypothesis that the general correlation coefficient of Spearman and Kendall is equal to zero at a significance level of 0.05.

Because of performing 1 step of the algorithm, the following results were obtained (table 2).

Correlation coefficients between X1 and X2	Correlation coefficients between X1 and X3	Correlation coefficients between X2 and X3
ρₘ = -0.88	ρₘ = -0.72	ρₘ = -0.72
τₘ = -0.90	τₘ = -0.81	τₘ = -0.81
Tₚ = 0.63	Tₚ = 0.63	Tₚ = 0.63
Tᵥ = -0.90	Tᵥ = -0.91	Tᵥ = -0.91

According to the results of step 1, it can be seen that all the found Kendall correlation coefficients determine a close inverse relationship between the content of benzo(a)pyrene (X₁), measured in mg/kg of soil, and the number of microorganisms (CFU/g) in the soil layer 0-20 cm, contaminated with benzo(a)pyrene 2017 - 2019 (respectively X₂, X₃), and all correlation coefficients are significant. Thus, the conclusions of the qualitative analysis made by the authors have been fully confirmed.

Another approach to determining the relationship between the features using the Spearman's rank correlation coefficient showed almost the same result, since all the rank correlation coefficients are greater than 0.7, which indicates a noticeable correlation of features. Signs for all coefficients are negative, which once again confirms the inversely proportional relationship between the signs.

To perform step 3 of the algorithm, average values were found that characterize the averaged values for each of the seven experiments over 3 years. For quantitative analysis, two statistics were selected: the arithmetic mean, as well as the median, which in this case is more consistent with the typical mean due to the heterogeneity of the samples (table 3).

Benzopirene arithmetic mean over 3 years	Benzopirene 3-year median	Pseudomonas arithmetic mean over 3 years	Pseudomonas - median 3-year mean	Rhodococcus arithmetic mean over 3 years	Rhodococcus median 3-year mean
0.0003666667	0.0003	340000000	1000000	340000000	1000000
0.0027	0.00276	67	100	3400	100
0.0014566667	0.00122	3400	100	3400	100
0.00361	0.00379	33.66666667	1	33.333333333	0
0.0035	0.00325	66.66666667	100	66.66666667	100
0.0038833333	0.00396	33.33333333	0	33.33333333	0
0.00152	0.00122	100	100	100	100

Further, the rank correlation coefficients were found for the averaged values (table 4).

The rank correlation coefficients found from the averaged values over three years also indicate a close relationship between the studied characters and confirm the conclusions about the inverse relationship between the content of benzo(a)pyrene and the number of bacteria of the genus Rhodococcus and Pseudomonas in the 0-20 cm soil layer contaminated with benzo(a)pyrene in 2017 - 2019.
Table 4. Rank correlation coefficients for median arithmetic mean values.

Correlation coefficients between X_1 and X_2 based on the median values of observations over 3 years	Correlation coefficients between X_1 and X_3 based on the median values of observations over 3 years	Correlation coefficients between X_1 and X_2 based on the arithmetic mean of observations over 3 years	Correlation coefficients between X_1 and X_3 based on the arithmetic mean of observations over 3 years
$\rho_S = -0.74$	$\rho_S = -0.71$	$\rho_S = -0.91$	$\rho_S = -0.77$
$\tau_b = -0.81$	$\tau_b = -0.82$	$\tau_b = -0.9$	$\tau_b = -0.67$

4. Conclusion

Benz(a)pyrene, as one of the representatives of polycyclic aromatic hydrocarbons, is one of the dangerous pollutants due to its toxic, carcinogenic and mutagenic properties, as well as due to their slow decomposition in ecosystems.

Based on the studies carried out, it was found that an increase in the concentration of benz(a)pyrene in the soil leads to a decrease in the number of hydrocarbon-oxidizing bacteria of the genus *Rhodococcus* and *Pseudomonas*.

Most of the areas affected by oil pollution require reclamation work. These works must be scientifically justified, which ensures the quality and cost of their implementation.

The results of our studies can be used in organizing bioremediation of oil-contaminated agrosoddy-carbonate soils [2]. In the case when there is a high level of soil pollution with oil products, in order to increase the efficiency of its restoration, it is necessary to organize additional support for the activity of hydrocarbon-oxidizing microorganisms, including by loosening.

References

[1] Voronina E, Balandina A, Mazunina T and Dubrovina S 2020 Research on the content of pathogenic micromycetes and benz(a)pyrene in soils of urbanized territories of Perm Krai. *E3S Web of Conferences* 176 03013

[2] Balandina A A 2013 *Microbial remediation of oil-contaminated agro-soddy-calcareous soils and technogenic surface formations in the subzone of southern taiga: abstract of thesis* (Perm: Perm State National Research University) 29

[3] Shigapov A M 2016 *Bioremediation of oil-contaminated soils by organic components of waste from the logging industry (on the example of sod-podzolic soils of the Ural Federal District)* (Yekaterinburg: Ural state University of Railways) 228

[4] *GOST 17.4.4.02-2017 Nature Conservation (SSOP). Soils. Methods of sampling and preparation of samples for chemical, bacteriological, helminthological analysis* 2018 (Moscow: Standartinform) 10

[5] *MU 1446-76 Guidelines for the sanitary and microbiological study of soil (with amendments)* 1978 (Moscow: Ministry of Health of the USSR) 29

[6] *Technique for measuring the mass fraction of benzo(a)pyrene in soils, grounds and sewage sludge by high performance liquid chromatography* 2008 (Moscow) 56

[7] *Maximum allowable concentration (MPC) of chemicals in soil: Hygienic standards* 2006 (Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor) 15

[8] *Hygiene Toxicology Sanitation. List of substances of products, production processes, household and natural factors carcinogenic to humans* 1999 (Moscow: Chief Sanitary Doctor) 44

[9] Babaev E R, Mamedova P Sh, Kulieva D M and Movsumzade M E 2009 The choice of an active microorganism - a destructor of hydrocarbons for cleaning oil-contaminated soils of the Balakhan field. *Bashkir Chemical Journal* 16(1) 103-5

[10] Babaev E R 2019 Biodegradation of oil pollution under the influence of hydrocarbon-oxidizing microorganisms. *NefteGazoKhimiya* 1 48-51

[11] Blagoveschensky Yu N 2009 Secrets of correlations in statistics (Moscow: Scientific book: INFRA-M) 158
[12] Delegen Ya A, Vetrova A A, Chernyavskaya M I, Titok M A and Filonov A E 2015 Thermotolerant actinomycetes as agents of remediation of oil-contaminated soils and waters in a hot arid climate. *Bulletin of the Tula State University Natural Sciences* **4S** 248-58

[13] Zvyagintsev D G 1991 Methods of soil microbiology and biochemistry (Moscow: Publishing house of Moscow State University) 304

[14] Ljung T M, Nechaeva I A, Petrikov K V, Puntus I F and Ponamoreva O N 2016 Bacteria-oil destructors of the genus Rhodococcus are potential producers of biosurfactants. *Izvestiya vuzov. Applied Chemistry and Biotechnology* **1(16)** 50-60

[15] Merzlyakova A A, Okolelova A A, Zaikina V N and Pasikova A V Changes in the properties of oil-contaminated soils. *Izvestiya vuzov. Applied chemistry and biotechnology* **7** (2S) 173-80

[16] Howlt J, Krieg N and Snit P 1997 *Bergey’s Keys to Bacteria* (Moscow: Mir) 800