Minimal TSP Tour is coNP–Complete

Marzio De Biasi
marziodebiasi [at] gmail [dot] com

Abstract

The problem of deciding if a Traveling Salesman Problem (TSP) tour is minimal was proved to be coNP–complete by Papadimitriou and Steiglitz. We give an alternative proof based on a polynomial time reduction from 3SAT. Like the original proof, our reduction also shows that given a graph G and an Hamiltonian path of G, it is NP–complete to check if G contains an Hamiltonian cycle (Restricted Hamiltonian Cycle problem).

1 Introduction

The Traveling Salesman Problem (TSP) is a well–known problem from graph theory [6],[4]: we are given n cities and a nonnegative integer distance d_{ij} between any two cities i and j (assume that the distances are symmetric, i.e. for all $i,j,d_{ij} = d_{ji}$). We are asked to find the shortest tour of the cities, that is a permutation π of $[1..n]$ such that $\sum_{i=1}^{n} d_{\pi(i),\pi(i+1)}$ (where $\pi(n+1) = \pi(n)$) is as small as possible. Its decision version is the following:

TSPDecision: If a nonnegative integer bound B (the traveling salesman’s “budget”) is given along with the distances, does there exist a tour of all the cities having total length no more than B?

TSPDecision is NP–complete (we assume that the reader is familiar with the theory of NP–completeness, for a good introduction see [4] or [3]). In [6] two other problems are introduced:

TSPExact: Given the distances d_{ij} among the n cities and an non-negative integer B, is the length of the shortest tour equal to B; and

TSPCost: Given the distances d_{ij} among the n cities calculate the length of the shortest tour.

TSPExact is DP–complete (a language L is in the class DP if and only if there are two languages $L_1 \in \text{NP}$ and $L_2 \in \text{coNP}$ and $L = L_1 \cap L_2$); TSPCost and TSP are both FP^{NP}–complete (FP^{NP} is the class of all functions from strings to strings that can be computed by a polynomial–time Turing machine with a SAT oracle) [6].

Recently a post by Jean Francois Puget: “No, The TSP Isn’t NP Complete” and the subsequent reply by Lance Fortnow: “Is Traveling Salesman NP-Complete?” [3] (re–)raised the question of the correct interpretation of the statement “TSP is NP–complete”; indeed, if we are given a tour, checking that
it is the shortest tour seems not to be in \(\mathbf{NP} \). A question about the complexity of the following problem:

\[
\text{TSPMinDecision: Given a set of } n \text{ cities, the distance between all city pairs and a tour } T, \text{ is } T \text{ visiting each city exactly once and is } T \text{ of minimal length?}
\]

was posted on cstheory.stackexchange.com, a question and answer site for professional researchers in theoretical computer science and related fields [2].

We gave an answer with a first sketch of the proof that TSPMinDecision is \(\mathbf{coNP} \)-complete, but after formalising and publishing it on arXiv, we discovered that the result is not new and it originally appeared in [5] (see also Section 19.9 in [7]). The proof given by Papadimitriou and Steiglitz is different: they prove that the Restricted Hamiltonian Cycle (RHC) problem is \(\mathbf{NP} \)-complete starting from an instance of the Hamiltonian cycle problem \(G \) and modifying \(G \) into a new graph \(G' \) that contains an Hamiltonian path, and has an Hamiltonian cycle if and only if the original \(G \) has an Hamiltonian cycle. Our alternative proof is a chain of reductions from 3SAT to the problem of finding a tour shorter than a given one, and it may be interesting in and of itself, so we decided not to withdraw the paper.

2 Minimal TSP tour is \(\mathbf{coNP} \)-complete

Proving that TSPMinDecision is \(\mathbf{coNP} \)-complete is equivalent to proving the \(\mathbf{NP} \)-completeness of the following:

Definition 2.1 (TSPAnotherTour problem).

Instance: A complete graph \(G = (V, E) \) with positive integer distances \(d_{ij} \) between the nodes, and a simple cycle \(C \) that visits all the nodes of \(G \).

Question: Is there a simple cycle \(D \) that visits all the nodes of \(G \) such the total length of the tour \(D \) in \(G \) is strictly less than the total of the tour \(C \) in \(G \)?

Theorem 2.2. TSPAnotherTour is \(\mathbf{NP} \)-complete.

Proof. It is easy to see that a valid solution to the problem can be verified in polynomial time: just check if the tour \(D \) visits all the cities and if its length is strictly less than the length of the given tour \(C \), so the problem is in \(\mathbf{NP} \). To prove its hardness we give a polynomial time reduction from 3SAT; given a 3CNF formula \(\varphi \) with \(n \) variables \(x_1, \ldots, x_n \) and \(m \) clauses \(C_1, \ldots, C_m \); we introduce a new dummy variable \(z \) and add it to every clause: \((x_i \lor x_j \lor \neg x_k \lor z) \). We obtain a 4CNF formula \(\varphi' \) that has at least one satisfying assignment (just set \(u = \text{true} \)). Note that every satisfying assignment of \(\varphi' \) in which \(z = \text{false} \) is also a satisfying assignment of \(\varphi \).

From \(\varphi' \) we generate an undirected graph \(G = (V, E) \) following the same standard transformation used to prove that the Hamiltonian cycle problem is \(\mathbf{NP} \)-complete: for every clause we add a node \(c_j \), for every variable \(x_i \) we add a diamond-like component, and we add a directed edge from one of the nodes of the diamond to the node \(c_j \) if \(x_i \) appears in \(C_j \) as a positive literal; a directed edge from \(c_j \) to one of the nodes of the diamond if \(x_i \) appears in \(C_j \) as a negative literal. Starting from the top we can choose to traverse the diamonds
corresponding to variables $x_1, x_2, ..., x_n, u$ from left to right (i.e. set x_i to $true$) or from right to left (i.e. set x_i to $false$). The resulting directed graph G has an Hamiltonian cycle if and only if the original formula is satisfiable. For the details of the construction see [8] or [1].

We focus on the diamond corresponding to the dummy variable z; let e_z be the edge that must be traversed if we assign to u the value of $true$ (see Figure 1).

We can transform G to an undirected graph $G' = \{V', E'\}$ replacing each node $u \in V$ with three linked nodes $u_1, u_2, u_3 \in V'$ and modify the edges according to the standard reduction used to prove the NP-completeness of UNDIRECTED HAMILTONIAN CYCLE from DIRECTED HAMILTONIAN CYCLE [8]: we use u_3 for the incoming edges of u, and u_3 for the outgoing edges, i.e. we replace every directed edge $(u \rightarrow v) \in E$ with $(u_3 \rightarrow v_1) \in E'$. We have G' has an Hamiltonian cycle if and only if G has an Hamiltonian cycle if and only if φ^z is satisfiable.

Finally we transform G' into an instance of TSP_AnotherTour assigning length 1 to all edges except edge e_z which has length 2; and we complete the graph adding the missing edges and setting their length to 3.

The dummy variable z guarantees that we can easily find a tour T: just travel the diamonds from left to right without worrying of the clause nodes; when we reach the diamond corresponding to z, traverse it from left to right (i.e. assign to z the value of $true$), and include all the c_js. By construction the total length of the tour T is exactly $|V'| + 1$: all edges have length 1 except e_u that has length 2.
Another tour \(D \) can have a length strictly less than \(|V'| + 1 \) only if it doesn’t use the edge \(e_z \); so if it exists we can derive a valid satisfying assignment for the original formula \(\varphi \), indeed by construction \(\varphi \) is satisfiable if and only if there exists a satisfying assignment for \(\varphi^z \) in which \(z = \text{false} \). In the opposite direction if there exists a valid satisfying assignment for \(\varphi \) we can easily find a tour \(D \) of length \(|V'| \): just traverse the diamonds according to the truth values of the variables \(x_i \) and traverse the diamond corresponding to \(z \) from right to left.

So there is another tour \(D \) of total length strictly less than \(T \) if and only if the original 3SAT formula \(\varphi \) is satisfiable.

Hence we have:

Corollary 2.3. TSPMinDecision is coNP-complete.

The reduction used to prove Theorem 2.2 “embeds” the NP-completeness proof of the Restricted Hamiltonian Cycle problem (RHC) [7]:

Theorem 2.4. Given a graph \(G \) and an Hamiltonian path in it, it is NP-complete to decide if \(G \) contains an Hamiltonian cycle as well.

Proof. In the reduction above, after the creation of the undirected graph \(G' \), if we remove the edge \(e_z \), we are sure that an Hamiltonian path exists from one endpoint of \(e_z \) to the other (just delete \(e_z \) from the Hamiltonian cycle that can be constructed setting \(z = \text{true} \)). An Hamiltonian cycle in \(E \setminus \{e_z\} \) must use the edge corresponding to \(z = \text{false} \), so it exists if and only if the original 3SAT formula \(\varphi \) is satisfiable.

\[\square \]

3 Conclusion

We are optimist: if someone – out there – shouts: “TSP is NP-complete” we are confident that he really means: “The decision version of TSP is NP-complete”; and we hope that, soon or later, someone – out there – will shout “We already know that there is [not] a polynomial time algorithm that solves TSP because \(P \) is [not] equal to \(\text{NP} \)” :-)

Acknowledgements

Thanks to Pálvölgyi Dömötör for the nice hint about Theorem 2.4 and to Marcus Ritt for pointing out the original Papadimitriou and Steiglitz’s paper.

References

[1] Sanjeev Arora and Boaz Barak. *Computational Complexity - A Modern Approach*. Cambridge University Press, 2009.

[2] Lance Fortnow. Co-NP-completeness of minimal TSP tour? Theoretical Computer Science – StackExchange, January 2014. http://cstheory.stackexchange.com/q/26538/3247
[3] Lance Fortnow. Is Traveling Salesman NP–Complete? Computational Complexity blog, January 2014. http://blog.computationalcomplexity.org/2014/01/is-traveling-salesman-np-complete.html

[4] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[5] C. Papadimitriou and K. Steiglitz. On the complexity of local search for the traveling salesman problem. SIAM Journal on Computing, 6(1):76–83, 1977.

[6] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.

[7] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[8] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996.