A novel small RNA is important for biofilm formation and pathogenicity in *Pseudomonas aeruginosa*

Patrick K. Taylor¹, Antonius T. M. Van Kessel¹, Antonio Colavita², Robert E. W. Hancock³, Thien-Fah Mah¹*

¹ Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada, ² Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, ³ Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada

*tmah@uottawa.ca

Abstract

The regulation of biofilm development requires multiple mechanisms and pathways, but it is not fully understood how these are integrated. Small RNA post-transcriptional regulators are a strong candidate as a regulatory mechanism of biofilm formation. More than 200 small RNAs in the *P. aeruginosa* genome have been characterized in the literature to date; however, little is known about their biological roles in the cell. Here we describe the identification of the novel regulatory small RNA, SrbA. This locus was up-regulated 45-fold in *P. aeruginosa* strain PA14 biofilm cultures. Loss of SrbA expression in a deletion strain resulted in a 66% reduction in biofilm mass. Furthermore, the mortality rate over 72 hours in *C. elegans* infections was reduced to 39% when infected with the *srbA* deletion strain compared to 78% mortality when infected with the parental wild-type *P. aeruginosa* strain. There was no significant effect on culture growth or adherence to surfaces with loss of SrbA expression. Also loss of SrbA expression had no effect on antibiotic resistance to ciprofloxacin, gentamicin, and tobramycin. We conclude that SrbA is important for biofilm formation and full pathogenicity of *P. aeruginosa*.

Introduction

Bacterial biofilms are aggregated communities of cells that are embedded within a self-produced extracellular matrix [1,2]. The matrix can contain various biopolymers including polysaccharides, DNA, and protein [3–7]; it enables structured association of cells within the biofilm, mediates tight adhesion to surfaces, and promotes the mechanical stability of biofilms. The matrix also helps to maintain an internal environment and entrap extracellular degradative enzymes [8]. While biofilm colonies undergo dispersal to spread cells into the environment, they are intrinsically resilient and difficult to disrupt [9,10]. The resilience and resistance to treatment of biofilms poses a continual challenge in clinical settings when treating bacterial infections and decontaminating equipment [11]. Biofilm infections are significantly more
adaptively resistant to antibiotics due primarily to their altered gene expression patterns and in part due to the protection provided by the extracellular matrix [12–14]. In addition, biofilms contaminating surfaces are difficult to fully sterilize or remove mechanically, creating reservoirs of pathogenic bacteria in hospitals [15,16].

P. aeruginosa is a Gram-negative γ-Proteobacteria and is a significant opportunistic pathogen in individuals with compromised immune systems and natural barriers. Individuals with the genetic condition cystic fibrosis are highly susceptible to having their airways colonized by environmental sources of *P. aeruginosa* [17]. *P. aeruginosa* is highly adaptable to the host environment and is capable of altering regulatory networks to enable survival during chronic infections.

It has become increasingly appreciated that complex regulatory mechanisms govern biofilm development and enable both major and subtle responses that are dependent on cues from the external environment. Recent studies on pathogenic bacteria have demonstrated that non-coding, small RNA (sRNA) transcripts have important effects on biofilm formation and virulence in a host [18–21]. Recent studies into the transcriptome of *P. aeruginosa* uncovered novel sRNAs that are expressed under conditions that replicate aspects of the host environment during infections and biofilm development [22–24]. Many studies have catalogued novel sRNAs, however, there have been few studies that characterize their biological roles and determine the importance of sRNA-mediated regulation in complex adaptive modes of growth such as biofilm formation.

A particular category of sRNAs, called trans-sRNAs, are encoded as independent genes and usually do not form part of an operon [25]. These are often around 50–400 nucleotides in length [26,27] and act as post-transcriptional regulators of protein synthesis acting through short stretches (5–7 nucleotides) of base-pairing complementarity with target mRNAs to either promote or inhibit translation [27]. Trans-sRNAs are of particular interest when studying regulation of complex activities like biofilm formation, because such trans-sRNAs can have a high number of mRNA interaction targets throughout the genome, leading to broad post-transcriptional regulation. Typically these sRNAs interact at or near the ribosomal binding site (RBS) of an mRNA transcript [27]. Through interaction with the target mRNA, an sRNA may have a negative regulatory effect by blocking the ribosome or a positive regulatory effect by altering secondary structures through binding to the target mRNA and making the RBS available [25,27]. Trans-sRNAs can also exert their regulation through affecting mRNA stability. An sRNA can bind to its target and recruit RNases that will degrade an mRNA target [25]. Regulation by sRNAs can affect highly complex and diverse expression networks as well as providing cross-talk between signalling networks.

Having a better understanding of the biofilm lifestyle and regulation is of significant importance to developing new treatments for bacterial biofilm infections that comprise two thirds of all infections. Here we describe the novel sRNA regulator of biofilms *A*, SrbA that is important for biofilm formation and pathogenesis in *P. aeruginosa*. Biofilms grown under laboratory conditions were significantly diminished in an srbA deletion strain. Using a *Caenorhabditis elegans* model of infection, it was also found that the srbA deletion strain displayed a significant reduction in pathogenicity.

Materials and methods

Bacterial strain generation and growth conditions

Strains and plasmids used in this study are listed in Table 1. All primers used in this study are listed in S1 Table. In the wild-type strain of *P. aeruginosa* UCBPP-PA14, a chromosomal deletion mutant of the sRNA gene locus was generated by allelic exchange [28]. Two 1 kb
The two flanking fragments were digested with BamHI and ligated. The ligated 2 kbp deletion fragment and pEX18Gm suicide vector were digested with EcoRI and SalI before being ligated together to generate the pEXΔsrbA construct. The deletion construct was first introduced into Escherichia coli by heat-shock. P. aeruginosa UCBPP-PA14 was transformed with the deletion construct through incubation with the conjugative transfer strain S17-1. Transconjugants were isolated by growth on LB agar plates containing 15 μg/ml gentamicin to select for PA14 cells carrying the pEXΔsrbA plasmid and 30 μg/ml nalidixic acid to eliminate E. coli S17-1 cells. Strains containing the chromosomal deletion were confirmed by PCR as well as by sequencing at the StemCore facility of the Ottawa Hospital Research Institute.

To enable complementation by srbA expression, the entire 239 bp region was cloned into the expression plasmid pUCP18. PA14 was transformed by electroporation as described previously using 5 ms pulses at 2.5 kV in 0.2 cm electroporation cuvettes [36]. PA14 transformants carrying the pUCsrbA construct were selected on LB agar with 100 μg/ml carbenicillin. Successful transformation of the plasmid was confirmed by restriction enzyme digestion and visualization on an agarose gel. For most experiments, cultures were first grown overnight in LB medium at 37˚C. For growth assays (described below) 1% tryptone and M63 minimal media were used in addition to LB. When used, M63 basal medium at pH 7 consisted of final concentrations of 1x M63 salts (22 mM KH₂PO₄, 40 mM K₂HPO₄, 15 mM (NH₄)₂SO₄), 0.4% (w/v) L-arginine, and 1 mM MgSO₄.

RNA isolation and quantitative PCR

Whole cell RNA was isolated from biofilm and planktonic cultures. Colony biofilms were grown by spotting multiples of 5 μl of overnight cultures onto M63 agar plates. Inoculated

Table 1. Strains and plasmids used in this study.

Strains	Description	Source
UCBPP-PA14	*P. aeruginosa* PA14 wild-type strain	[29]
ΔsrbA	UCBPP-PA14 containing a chromosomal deletion of srbA	This study
srbA⁺	ΔsrbA background complemented with pUCsrbA, CbR²	This study
PA14 srbA⁺	UCBPP-PA14 background complemented with pUCsrbA, CbR²	This study
DH5α	*E. coli* λ, φ80lacZΔM15, F⁻, Δ(lacZYA-argF)U169, endA1, gyrA96, hsdR17 (rK-, mK-), phoA, recA1, relA1, supE44, thi-1	[30]
S17-1	*E. coli* λpir, RP4-Tc::Mu Km::Tn7, hsdR², hsdM⁺, pro, recA, thi, SmR, TpR²	[31]
OP50	*E. coli* uracil auxotroph, SmR²	[32], [33]
Plasmids		
pEX18Gm	Gene replacement vector, oriT⁺, sacB⁺, MCS from pUC18, GmR²	[34]
pEXΔsrbA	pEX18Gm carrying a 2kb insertion in the MCS consisting of flanking regions but lacking srbA, GmR²	This study
pUCP18	Cloning and expression vector for use in *E. coli* and *P. aeruginosa*, MCS from pUC18, colE1⁺, ori1600⁺, ApR(E. coli)/CbR(P. aeruginosa)	[35]
pUCsrbA	pUCP18 with insertion of srbA in the MCS, CbR²	This study

a. Abbreviations: ApR², ampicillin resistance; CbR², carbenicillin resistance; GmR², gentamicin resistance; SmR², streptomycin resistance; TpR², trimethoprim resistance; MCS, multiple cloning site.

https://doi.org/10.1371/journal.pone.0182582.t001
plates were incubated at 37˚C for 24 h plus an additional 24 h at room temperature before harvesting. Planktonic cultures were grown by inoculating a 1/100 dilution of overnight cultures into 3 ml M63 medium and incubating at 37˚C with shaking for 4 h or until an OD$_{600}$ of between 0.3–0.5 was reached. RNA isolation was performed by pelleting re-suspended biofilm colonies or planktonic cultures and incubating cells in 1 ml of TRIzol™ from Thermo Fisher Scientific, Inc. for 5 min with regular pipetting to homogenize the samples. RNA was then purified using the PureLink™ RNA Minikit according to instructions from Thermo Fisher Scientific, Inc. with an additional DNase digestion step before the final isolation of RNA. RNA was tested for DNA contamination by PCR. cDNA was generated using the iScript™ kit from Bio-Rad Laboratories, Inc. For each sample, 0.7 μg of RNA was used to synthesis cDNA. Quantitative PCR (RT-qPCR) was performed using the MyIQ™ system from Bio-Rad Laboratories, Inc. and fold-changes in expression were calculated by the $\Delta\Delta$Ct method using rpoD as a reference gene. Primers used in this study are listed in S1 Table.

Crystal violet staining assays

Static biofilms were grown according to previously established protocols in 96-well microtitre plates [37]. Overnight cultures were diluted 1/100 into fresh LB containing a final concentration of 100 μg/ml carbenicillin and 100 μl aliquoted into each well with several aliquots tested for each strain and biological replicate. Static biofilms were grown for 24 h at 37˚C, after which the microtitre plates were washed twice and each well was loaded with 100 μl of 0.1% (w/v) crystal violet. Plates were incubated at room temperature for 20 minutes before washing twice. Biofilm formation was quantified by solubilizing the crystal violet stain in 110 μl per well of 70% (v/v) ethanol. Absorbance was read at 595 nm to measure relative differences in biofilm biomass.

Growth curves

Growth studies were performed by inoculating 100 ml of fresh medium in an Erlenmeyer flask with overnight cultures at a 1/100 dilution. Inoculated flasks were then placed on a shaker at 140 rpm. Samples were taken immediately after inoculation and every 30 min to assess optical density at 600 nm (OD$_{600}$).

Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBC) for planktonic cultures

Assaying for MICs was performed by serial dilution in a microtitre plate as described previously [38]. Two-fold serial dilutions of ciprofloxacin, gentamicin, and tobramycin were prepared and innoculated with overnight cultures of P. aeruginosa strains and MICs were taken after incubating at 37˚C for 18 hours. The MIC was taken as the first well in the microtitre plate to have no observable growth. The MBCs for planktonic cultures- were assayed by spotting 5 μl of culture from MIC assay microtitre plates starting at the MIC followed by increasing concentrations onto LB agar plates with no antibiotic added. The MBC was taken as the first spotted culture to have no colonies growing.

Slow killing model in C. elegans

Slow killing plates were prepared using sterile nematode growth medium as described previously [32,39,40] and consisted of 0.2% (w/v) bacto-agar, 0.25% (w/v) peptone, 50 mM NaCl, 25 mM KH$_2$PO$_4$, 1 mM CaCl$_2$, 1 mM MgSO$_4$, and adjusted to pH 6. A volume of 100 μl of overnight cultures of P. aeruginosa strains or E. coli OP50 were spread on plates and grown as a lawn overnight at 37˚C. Two technical replicates were performed for each biological replicate.
and a total of 3 biological replicates were performed. For each technical replicate, a total of 30 synchronized L4 stage *C. elegans* were picked and seeded onto plates containing *P. aeruginosa* or *E. coli* and left at room temperature for 72 hours. Counts of dead worms were taken every 24 hours. A worm was considered dead if unresponsive to touch.

Bioinformatic analyses

Sequence complementarity searches and alignments were performed using the BLASTn and TargetRNA2 servers [41–43]. The SrbA transcript sequence was queried limiting the searches to the UCBPP-PA14 genome. Alignments returned were then manually checked to determine if the SrbA transcript does have a complementary alignment to the expressed mRNA transcript of the potential interaction sequence. Regulator motif searches and database comparisons were carried out using the PRODORIC database [44]. Searches for protein coding regions were performed using ExPASy [45]. Multiple sequence alignments were performed using Clustal Omega [46].

Results

The sRNA SrbA was highly up-regulated in *P. aeruginosa* biofilms

SrbA was previously identified in independent published studies characterizing the *P. aeruginosa* transcriptome using second-generation sequencing methods [22–24]. These previous studies referred to SrbA as PA2633.1 [22], pant235 [23], and PA14sr_067 [24]. Using transcriptomic data available through the *Pseudomonas* Genome Database [37] and the *Pseudomonas* Browser [24], we determined that the gene *srbA* was encoded in an intergenic region on the reverse strand of the UCBPP-PA14 genome. *srbA* is 239 bp in length and encoded from nucleotides 2,604,298 through to 2,604,536 in an intergenic region with no presence of operons between isocitrate lyase *aceA* and an uncharacterized gene [22–24,46] (Fig 1A). There are no rho-independent terminators present in *srbA*. The *Pseudomonas* Genome Database, in addition to BLASTn searches, indicated that the sequence of *srbA* was conserved in all sequenced strains of *P. aeruginosa* [42,47].

Expression of SrbA in biofilm and planktonic cultures was assessed by RT-qPCR. SrbA was found to be up-regulated by 45-fold during biofilm growth compared to planktonic exponential growth phase cultures (Fig 1B). Furthermore, SrbA was 4-fold up-regulated in planktonic stationary phase growth cultures relative to exponential phase growth cultures (Fig 1B).

Given the possibility that sRNAs might express short peptides that are biologically active, it was important to check if there was any recognizable peptide coding sequence within SrbA. The gene lacked a recognizable Shine-Delgarno sequence upstream of any potential start codon found in the sequence and indeed in silico translation of the SrbA transcript did not reveal any prospective expressed peptide sequences in any reading frame on either strand [24,45].

The srbA deletion strain had a significantly reduced ability to form biofilms

A *srbA* deletion mutant strain was constructed in order to carry out phenotypic analysis of the mutant. Deletion of *srbA* was confirmed through sequencing, PCR amplification of the gene locus on the chromosome (S1 Fig), and loss of expression of SrbA through use of RT-qPCR (S2 Fig). It was also determined that there were no polar effects on expression of *aceA*, the gene immediately downstream of *srbA* (S3 Fig). Since SrbA was highly up-regulated under biofilm conditions, the ability of a strain carrying a deletion of *srbA* to form biofilms was tested by
using a static biofilm formation model. The deletion mutant strain produced only 34% the amount of biofilm (p < 0.05) compared to the wild-type strain (Fig 2A).

Rapid attachment assays were performed to determine if there was a deficiency in the ability of ΔsrbA to adhere to surfaces [48–50]. In contrast to its deficiency in biofilm formation, ΔsrbA demonstrated no significant reduction in its ability to adhere to surfaces (Fig 2B).

Complementing the mutant by expressing SrbA from the pUCsrbA plasmid restored wild-type levels of biofilm formation (Fig 2A) and had no added effect on rapid attachment (Fig 2B). Additionally, the wild-type strain overexpressing SrbA from the pUCsrbA plasmid displayed no alteration in biofilm phenotype.

Deletion of srbA had no impact on growth or antibiotic resistance in *P. aeruginosa*

To determine if the biofilm deficiency was due to generally depressed cell health as a result of mutagenesis, growth and antibiotic resistance of the srbA deletion mutant were assayed. ΔsrbA
had no growth deficiency in defined minimal medium and rich medium when compared to
the wild-type strain (Fig 3). Furthermore, the susceptibility phenotype to three clinically rele-
svant antibiotics (ciprofloxacin, gentamicin, and tobramycin) was tested. The srbA deletion

Fig 2. Effect of srbA on biofilm formation. A) Static biofilms were grown for 24 h in microtitre plates for the
parental PA14 (WT), ΔsrbA strain (Δ), SrbA complementation strain carrying the pUCsrbA plasmid (+), and
PA14 transformed with pUCsrbA (WT+). After 24 h biofilm cultures stained with 0.1% crystal violet and
absorbanee at 595 nm was taken. A student’s t test was performed to determine significance. * represents
p < 0.05. B) An assessment of rapid attachment for early biofilm formation was performed by incubating mid-
log phase cultures for 30 min at room temperature in a microtitre plate before staining with crystal violet for
cells attached to wells. WT and ΔsrbA were transformed with empty pUCP18 plasmid and all strains were
grown in 100 μg/ml carbenicillin. A one-way ANOVA was performed to determine no significance (ns). Both
graphs represent the results of 4 biological replicates and error bars represent the standard error.

https://doi.org/10.1371/journal.pone.0182582.g002
strain showed no significant change in resistance to any of these antibiotics compared to the wild-type strain (Table 2).

The srbA deletion strain was attenuated in a C. elegans slow killing model

The ability to form biofilms can contribute to the ability of a pathogen to persist within its host. Thus, it was hypothesized that the biofilm deficiency observed in the srbA deletion strain would result in reduced virulence and persistence in an animal host. We used a slow-killing model system to assay the ability of P. aeruginosa to persist in C. elegans that is considered a biofilm infection model of Pseudomonas [32,50,51]. After 72 hours, C. elegans infected with the srbA deletion strain displayed a 39% mortality rate that was significantly reduced compared to the 78% mortality rate observed in worms infected with the wild-type strain (Fig 4).

Table 2. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentration in planktonic cultures (MBCs) to antibiotics.

Antibiotic	MIC (μg/ml)	MBC (μg/ml)		
	WT^a	ΔsrbA^b	WT^b	ΔsrbA^b
Ciprofloxacin	0.1	0.05	0.8	0.8
Gentamicin	2	2	16	16
Tobramycin	2	2	16	16

^a Data listed are the mode of 5 biological replicates.

^b “WT” represents UCBPP-PA14 parental strain and “ΔsrbA” is the srbA deletion strain.
The srbA has complementarity with sixty-one putative mRNA targets

The reduced biofilm phenotype of the srbA deletion strain could be due to multiple factors being affected by loss of srbA. Trans-sRNAs often have large numbers of targets on which they exert their effects [26,27]. sRNAs typically act on their targets through short stretches of complementarity to mRNA transcripts either resulting in an inhibition or enhancement of translation through mechanisms including altering the availability of the RBS or affecting mRNA stability via recruitment of RNase E [25,26,27,52]. A search was performed using the entire SrbA transcript sequence to query against the entire P. aeruginosa PA14 genome using both TargetRNA2 and BLASTn. TargetRNA2 specifically searches for complementarity of the 5’ UTR of a putative target. Putative targets manually selected using BLAST searches were chosen on the basis that interactions with targets can occur outside of the 5’ UTR for sRNA mechanisms affecting mRNA stability. A multiple sequence alignment of these putative targets was also generated (Fig 5). To determine whether the loss of srbA had any effect, the expression of the 61 putative mRNA targets was assessed by RT-qPCR. It was found that the transcript levels of 26 of the putative mRNA targets were increased (2 by ≥4-fold, 7 more by ≥2-fold) or decreased (12 by ≥4-fold and 5 more by 2-fold) by greater than two-fold in the srbA deletion strain compared to the parental PA14 wildtype grown as biofilms (Table 3).

Discussion

This study aimed to characterize the biological role of the novel sRNA SrbA. This sRNA was found to be highly upregulated relative to other sRNAs under biofilm conditions in P. aeruginosa (Fig 1B). It was determined that ΔsrbA was highly reduced in its ability to develop as a biofilm compared to the wild-type strain and restoring expression of SrbA from a plasmid was
sufficient to restore wild-type levels of biofilm formation (Fig 2A). It was also found that this biofilm deficiency is not due to the srbA deletion strain having an inability to adhere to surfaces and establish biofilms (Fig 2B) or any growth deficiency of the mutant strain (Fig 3). Additionally, no effect on antibiotic resistance was observed in the srbA deletion strain (Table 2). Taken together, these data demonstrate that the SrbA has an important role for the biofilm mode of growth beyond the attachment step.

Use of the C. elegans slow-killing model demonstrated that there is greater survival of C. elegans when infected with the srbA deletion strain compared to the wild-type strain. During an infection with P. aeruginosa, the host mounts an innate immune response through neutrophil activity that is of particular interest due to the tissue damage that occurs through inflammation [53]. C. elegans possesses an ancestral analogue of our innate immune system and is an applicable model to study host-pathogen interactions in P. aeruginosa infections [32]. This slow killing model assesses the ability of P. aeruginosa to develop and persist as a biofilm being the major contributor to pathogenesis [32,51,54]. It is therefore reasonable to conclude that the attenuated phenotype of the srbA deletion strain is due to its reduced ability to develop a biofilm.

Through use of TargetRNA2 and BLAST searches, 61 putative targets in the genome were identified that were within open reading frames and where the sequence complementarity was evident between the sRNA and mRNA transcripts (Table 3). The alignment of the complementary regions of putative targets with SrbA demonstrates that there is a region of SrbA within the span of nucleotides 120–150 where there is greater complementarity (24 of 61 putative targets) than in any other region of SrbA (Fig 5). Such a primary seed region for complementarity is common for sRNAs. However, the putative targets with complementarity in this region did

![Fig 5. Multiple sequence alignment of SrbA with stretches of complementarity in mRNA transcripts. Clustal Omega was utilized to generate an alignment in FASTA format that is presented here in a linear layout. Transcript length is indicated by the numbers in the top row. The 5' to 3' orientation of sequences are provided. The bracketed numbers indicate where the 5' end of the complementary sequence is relative to the translational start site of the putative mRNA target. If no gene name exists the PA14 gene designation is provided.](https://doi.org/10.1371/journal.pone.0182582.g005)
Table 3. Genes from the *P. aeruginosa* UCBPP-PA14 genome that have short sequence complementarity with SrbA and that were tested for transcript levels in the *srbA* mutant.

Gene Annotation	Gene Name	Gene Function	Fold Change Difference
Metabolism			
PA14_00110	tag	DNA-3-methyladenine glycosidase I	-1.81 ± 0.21
PA14_06670	nirJ	Heme d1 biosynthesis	+6.64 ± 0.56
PA14_11000	hpaA	4-Hydroxyphenylacetate 3-monoxygenase large chain	+2.17 ± 1.56
PA14_21750		Putative acetyltransferase	-1.38 ± 0.33
PA14_23090		Putative 2-Keto-3-deoxy-6-phosphogluconate aldolase	-1.90 ± 0.09
PA14_23270	serC	3-Phosphoserine aminotransferase	-2.16 ± 0.09
PA14_25400	hpaA	4-Hydroxyphenylacetate 3-monoxygenase large chain	+2.17 ± 1.56
PA14_23270		Putative acetyltransferase	-1.38 ± 0.33
PA14_23090		Putative 2-Keto-3-deoxy-6-phosphogluconate aldolase	-1.90 ± 0.09
PA14_23270		Putative acetyltransferase	-1.38 ± 0.33
PA14_23090		Putative 2-Keto-3-deoxy-6-phosphogluconate aldolase	-1.90 ± 0.09
PA14_37960		Cyanate hydratase	+1.06 ± 0.33
PA14_38090		Putative pseudouridylate synthase	+1.33 ± 0.71
PA14_47100		Threonine dehydratase	+1.83 ± 0.88
PA14_47670		Cobalamin biosynthesis	+2.58 ± 1.85
PA14_48010		Putative semialdehyde dehydrogenase	+2.82 ± 2.69
PA14_51350		Anthranilate synthase component II	-1.39 ± 0.22
PA14_52800		Acetyl-coenzyme A synthetase	+1.52 ± 0.60
PA14_54040		Putative amino acid permease	+1.08 ± 0.58
PA14_55580		Heme oxygenase	-8.94 ± 0.02
PA14_60100		Deoxyctydine triphosphate deaminase	-1.82 ± 0.24
PA14_68670		Putative carboxypeptidase	-2.03 ± 0.35
PA14_71630		Alcohol dehydrogenase	-3.64 ± 0.11
Transport and Secretion			
PA14_02900	pcaK	4-Hydroxybenzoate transporter	-1.17 ± 0.66
PA14_08695	secE	Protein secretion across cytoplasmic membrane	+7.82 ± 5.74
PA14_11790		Putative amino acid transporter	-1.90 ± 0.27
PA14_12920		Putative taurine ABC transporter periplasmic protein	+1.00 ± 0.59
PA14_16870		Probable ATP-binding component of ABC transporter	-1.46 ± 0.45
PA14_18250	fruI	Phosphotransferase system transporter	-3.11 ± 0.16
PA14_25020		Probable ATP-binding component of ABC transporter	-1.23 ± 0.21
PA14_31030		Putative cation efflux system protein	-1.43 ± 0.29
PA14_40390	modA	Molybdate binding precursor	+1.75 ± 1.38
PA14_53780		Probable major facilitator superfamily transporter	-2.29 ± 0.37
PA14_55440	hxcR	Type II secretion system protein	-5.72 ± 0.13
PA14_64280		Probable permease of ABC transporter	-5.37 ± 0.17
PA14_66380		Putative potassium/proton antiporter	-4.19 ± 0.12
Virulence Associated Factors			
PA14_16250	lasB	Metalloproteinase	+2.99 ± 2.29
PA14_35600	pslL	Exopolysaccharide synthesis	-1.29 ± 0.09
PA14_42660	pscU	Translocation protein in type III secretion	-1.82 ± 0.38
PA14_45830	fliK	Flagellar hook-length control	-1.19 ± 1.63
PA14_50380	flgJ	Flagellar structural component	+1.18 ± 1.13
Antibiotic Resistance Associated Factors			
PA14_18780	mexQ	RND efflux transporter	-1.95 ± 0.47
PA14_57100	ampG	Permease signal transducer involved in β-lactam resistance	-2.74 ± 0.18
Regulation and Signaling			
PA14_26810		Putative two-component sensor	-1.10 ± 0.49
PA14_29260		Probable transcriptional regulator	+1.02 ± 0.15

(Continued)
Of the 61 putative mRNA targets of SrbA, there were 26 putative targets that displayed changes greater than 2-fold in transcript levels (Table 3). While sRNAs tend to affect their target gene expression at the level of protein stability, they are also known to exert effects on mRNA transcript stability [25,27]. Binding of an sRNA to its mRNA target can act to promote stability of a transcript or it may encourage degradation through recruitment of RNase E. Therefore, it is likely that the significant changes observed in 26 of the putative mRNA targets of SrbA in the \textit{srbA} deletion strain are due to a loss of SrbA affecting regulation of stability and degradation. Additionally, of these 26 putative targets there are 9 genes (PA14_03560, \textit{hpaA}, PA14_26810, PA14_32750, \textit{ilvA2}, PA14_48010, \textit{nemO}, PA14_59030, and \textit{adhA}) that have complementarity in the region of nucleotides 120–150 where there was found to be a greater concentration of alignment of targets with SrbA (Fig 5). Future work with purified transcripts and RNase E could be performed to validate this.

The remaining 35 putative mRNA targets that did not display any significant change in transcript levels are likely under SrbA regulation through another mechanism such as affecting availability of the RBS. Future work could investigate the involvement of sRNAs like SrbA in regulating biofilm components such as polysaccharide secretion, regulation of pili and flagella, as well as regulatory effects on metabolic pathways represented in the list of putative mRNA targets. sRNA regulation might have a significant role in these complex responses that are not share any other known features such as gene function, interaction site in the 5' UTR, biological role, region of the genome, etc.

Table 3. (Continued)

Gene Annotation	Gene Name	Gene Function	Fold Change Differencea
PA14_03560	Probable transcriptional regulator	+1.54 ± 0.75	
PA14_43710	Putative methyl-accepting chemotaxis transducer	+1.56 ± 0.43	
PA14_66510	Putative MFS transporter	-1.60 ± 0.57	
PA14_16220	\textit{recJ}	Single-stranded DNA specific exonuclease	-2.06 ± 0.14
PA14_20290	Putative DNA binding protein	+2.03 ± 0.48	
PA14_55690	\textit{recC}	Exodeoxyribonuclease V gamma chain	-4.31 ± 0.12

Genetic Maintenance and Repair

Gene Annotation	Gene Name	Gene Function	Fold Change Differencea
PA14_03560	\textit{recJ}	Single-stranded DNA specific exonuclease	-4.52 ± 0.13
PA14_08310	Putative DNA binding protein	+1.07 ± 0.31	
PA14_12940	Putative DNA binding protein	1.08 ± 0.45	
PA14_12910	Exodeoxyribonuclease V gamma chain	-1.67 ± 0.38	
PA14_17650	Exodeoxyribonuclease V gamma chain	-1.75 ± 0.38	
PA14_28300	Exodeoxyribonuclease V gamma chain	-1.47 ± 0.03	
PA14_29230	-4.85 ± 0.11		
PA14_29230	-10.63 ± 0.07		
PA14_33190	-1.13 ± 0.66		
PA14_38290	+1.29 ± 1.09		
PA14_46530	+2.38 ± 1.17		
PA14_59010	-1.79 ± 0.26		
PA14_61990	-16.80 ± 0.04		
PA14_64530	+1.01 ± 0.67		

Unknown Function, Hypothetical Protein

Gene Annotation	Gene Name	Gene Function	Fold Change Differencea
PA14_03560	\textit{recJ}	Single-stranded DNA specific exonuclease	-1.60 ± 0.57
PA14_08310	Putative DNA binding protein	+2.03 ± 0.48	
PA14_12940	Putative DNA binding protein	1.08 ± 0.45	
PA14_12910	Exodeoxyribonuclease V gamma chain	-1.67 ± 0.38	
PA14_17650	Exodeoxyribonuclease V gamma chain	-1.75 ± 0.38	
PA14_28300	Exodeoxyribonuclease V gamma chain	-1.47 ± 0.03	
PA14_29230	-4.85 ± 0.11		
PA14_29230	-10.63 ± 0.07		
PA14_33190	-1.13 ± 0.66		
PA14_38290	+1.29 ± 1.09		
PA14_46530	+2.38 ± 1.17		
PA14_59010	-1.79 ± 0.26		
PA14_61990	-16.80 ± 0.04		
PA14_64530	+1.01 ± 0.67		

a Results from RT-qPCR are presented as the linear fold-change difference of transcript levels in the \textit{srbA} deletion strain compared to the parental PA14 wildtype grown as biofilms. Values are the mean of 3 biological repeats and the standard error of the mean.

https://doi.org/10.1371/journal.pone.0182582.t003
regulated by subtle changes in environmental conditions. Indeed, sRNA regulation has already been shown to be involved in pathways important for regulating biofilms in *P. aeruginosa* [55,56,57]. Taken together these putative target searches assist in guiding future work to investigate the specific regulatory involvement this sRNA has and how that contributes to the phenotypes observed in the *srbA* deletion.

Conclusions

Transcriptomic data and deep-sequencing have provided a vastly greater resolution of expression profiles in pathogens. These technologies have also provided new perspectives on previously underappreciated regulatory mechanisms such as sRNAs. However, determining how sRNAs fit into regulatory networks and what roles they have in the cell is still poorly understood. In this work, we demonstrated that the SrbA is important for biofilm growth in *P. aeruginosa*. We also determined that the expression of SrbA has a role in *P. aeruginosa* having full pathogenicity when infecting *C. elegans*. It is possible that SrbA is interacting with multiple targets that result in the phenotypic effects observed based on the 61 putative mRNA targets found here and that trans-sRNAs are characterized by having a large number of diverse mRNA targets [25,26]. It is important that continued work builds on recent transcriptomic studies to characterize the functional roles of novel, regulatory sRNAs found in *P. aeruginosa*. This will help us to not only gain a better understanding of basic biology of bacteria but also infectious states of pathogenic bacteria where nuances of regulation contribute to continued difficulty in treating infections due to biofilm adaptation to the stress of the host environment.

Supporting information

S1 Fig. PCR amplification of the chromosomal locus of srbA. A region of 1 kilobase pairs (kbp) in length containing the *srbA* gene was amplified. Wildtype strains (WT and WT2) gave a 1 kbp amplification product while respective *srbA* deletion strains (Δ and Δ2) produced a product 600 bp in length reflecting the 300 bp chromosomal deletion of *srbA*. WT and Δ were used for the entirety of this study. NTC stands for “non-template control”. The values for the 1 kbp ladder are base pair lengths.

(TIF)

S2 Fig. Expression of SrbA is restored in a complementation strain. Through use of RT-qPCR, SrbA expression was confirmed to be lost in the deletion strain (Δ) for biofilm cultures. Re-introduction of SrbA expression from a plasmid in a complementation strain (+) restored wildtype levels of expression (WT). Three biological replicates are represented in the graph and error bars are the standard error of the mean.

(TIF)

S3 Fig. No polar effects were observed in expression of the gene aceA comparing the srbA deletion strain to the wild-type strain. RT-qPCR was used to demonstrate there was no change greater than 2-fold in gene expression of *aceA* when comparing the SrbA mutant and wild-type *P. aeruginosa*. This indicates that deletion of *srbA* does not have a major effect on the expression of *aceA* downstream. Results presented are from 3 biological replicates and error bars are the standard error of the mean.

(TIF)

S1 Table. Primers used in this study. Gene names or PA14 gene designations are provided.

(DOCX)
Acknowledgments

This work was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) and Cystic Fibrosis Canada (CFC) held by TFM. REWH holds a Canada Research Chair in Health and Genomics, a UBC Killam Professorship, and a grant from the Canadian Institutes of Health Research (CIHR). PKT was supported by a Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST). We are appreciative for training and preparation for working with C. elegans provided by Tony Roenspies. We would like to thank Clayton W. Hall for reading and providing input on this manuscript.

Author Contributions

Conceptualization: Patrick K. Taylor, Robert E. W. Hancock, Thien-Fah Mah.

Data curation: Patrick K. Taylor, Thien-Fah Mah.

Formal analysis: Patrick K. Taylor, Thien-Fah Mah.

Funding acquisition: Thien-Fah Mah.

Investigation: Thien-Fah Mah.

Methodology: Patrick K. Taylor, Antonius T. M. Van Kessel.

Project administration: Thien-Fah Mah.

Resources: Antonio Colavita, Thien-Fah Mah.

Supervision: Thien-Fah Mah.

Writing – original draft: Patrick K. Taylor.

Writing – review & editing: Patrick K. Taylor, Antonius T. M. Van Kessel, Antonio Colavita, Robert E. W. Hancock, Thien-Fah Mah.

References

1. Costerton JW, Lewandowski DR, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431 PMID: 8561477

2. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008; 6: 199–210. https://doi.org/10.1038/nrmicro1838 PMID: 18264116

3. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006; 59: 1114–1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x PMID: 16430688

4. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012; 14: 1913–1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x PMID: 22176658

5. Friedman L, Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol. 2004; 51: 675–690. https://doi.org/10.1046/j.1365-2958.2003.03877.x PMID: 14731271

6. Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007; 10: 644–648. https://doi.org/10.1016/j.mib.2007.09.010 PMID: 17981485

7. Toyofuku M, Roschitzki B, Riedel K, Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res. 2012; 11: 4906–4915. https://doi.org/10.1021/pr300385j PMID: 22909304

8. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002; 46: 202–258. https://doi.org/10.1016/S0065-2911(02)46005-5 PMID: 12073654

9. Petrova OE, Sauer K. Escaping the biofilm in more than one way: Desorption, detachment or dispersion. Curr Opin Microbiol. 2016; 30: 67–78. https://doi.org/10.1016/j.mib.2016.01.004 PMID: 26826978
10. Whiteley CG, Lee DJ. Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv. Elsevier Inc.; 2015; 33: 124–141. https://doi.org/10.1016/j.biotechadv.2014.11.010 PMID: 2549693

11. Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009; 44: 547–558. https://doi.org/10.1002/ppul.21011 PMID: 19418571

12. Helby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010; 35: 322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011 PMID: 20149602

13. Mah T-F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012; 7: 1061–1072. https://doi.org/10.2217/fmb.12.76 PMID: 22953707

14. Mulcathy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa Biofilms in Disease. Microb Ecol. 2014; 68: 1–12. https://doi.org/10.1007/s00248-013-0297-x PMID: 24096885

15. Camins BC. Prevention and treatment of hemodialysis-related bloodstream infections. Semin Dial. 2013; 26: 476–481. https://doi.org/10.1111/sdi.12117 PMID: 23859190

16. Chenoweth C, Saint S. Preventing Catheter-Associated Urinary Tract Infections in the Intensive Care Unit. Crit Care Clin. 2013; 29: 19–32. https://doi.org/10.1016/j.ccc.2012.10.005 PMID: 23182525

17. Kerr KG, Snelling AM. Pseudomonas aeruginosa: A formidable and ever-present adversary. J Hosp Infect. 2009; 73: 338–344. https://doi.org/10.1016/j.jhin.2009.04.020 PMID: 19699552

18. Fernández L, Breidenstein EBM, Taylor PK, Bains M. Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa. Sci Rep. 2016; 6:26881. https://doi.org/10.1038/srep26881 PMID: 27229557

19. Michaux C, Vermeulen N, Hartke A, Giard J-C. Physiological roles of small RNA molecules. Microbiology. 2014; 160: 1007–1019. https://doi.org/10.1099/mic.0.076208-0 PMID: 24694375

20. Petrova OE, Sauer K. The novel two-component regulatory system BfiSR regulates biofilm formation by controlling the small RNA rsmZ through CfaA. J Bacteriol. 2010; 192: 5275–5288. https://doi.org/10.1128/JB.00387-10 PMID: 20656909

21. Pusic P, Tata M, Wolfinger MT, Sonnleitner E, Häussler S, Bläsi U, et al. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Sci Rep. 2016; 6: 39621. https://doi.org/10.1038/srep39621 PMID: 27253370

22. Gill EE, Chan LS, Winsor GL, Dobson N, Lo R, Ho Sui SJ, et al. High-throughput detection of RNA processing in bacteria. bioRxiv. 2016. https://doi.org/10.1101/073791

23. Gómez-Lozano M, Marvig RL, Molin S, Long KS. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa. Environ Microbiol. 2012; 14: 2006–2016. https://doi.org/10.1111/j.1462-2920.2012.02759.x PMID: 22533370

24. Wurtzel O, Yoder-Himes DR, Han K, Dandekar AA, Edelheit S, Greenberg EP, et al. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog. 2012; 8: e1002945. https://doi.org/10.1371/journal.ppat.1002945 PMID: 23028334

25. Richards GR, Vanderpool CK. Molecular cell and response: The physiology of bacterial small RNAs. Biochim Biophys Acta. 2011; 1809: 525–531. https://doi.org/10.1016/j.bbapap.2011.07.013 PMID: 21843668

26. Sonnleitner E, Haas D. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol. 2011; 91: 63–79. https://doi.org/10.1007/s00253-011-3332-1 PMID: 21607656

27. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: Expanding frontiers. Mol Cell. 2011; 43: 880–891. https://doi.org/10.1016/j.molcel.2011.08.022 PMID: 21925377

28. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc. 2015; 10: 1820–1841. https://doi.org/10.1038/nprot.2015.115 PMID: 26492139

29. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006; 103: 2833–2838. https://doi.org/10.1073/pnas.0511100103 PMID: 16477005

30. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166: 557–580. https://doi.org/10.1016/S0022-2836(83)80284-8 PMID: 6345791

31. Simon R, Priefur U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Biotechnol. 1983; 1: 784–791. https://doi.org/10.1038/nbt1183-784
32. Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A. 1999; 96: 715–20. https://doi.org/10.1073/pnas.96.2.715 PMID: 9892699

33. The Caenorhabditis Genetics Center (CGC). Available from: http://cbs.umn.edu/cgc/home.

34. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range F1p-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998; 212: 77–86. https://doi.org/10.1016/S0378-1119(98)00130-9 PMID: 9661666

35. Schweizer HP. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene. 1991; 97: 109–112. https://doi.org/10.1016/0378-1119(91)90016-5 PMID: 1899844

36. Smith AW, Iglewski BH. Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res. 1989; 17: 10509. PMID: 2513561

37. Overhage J, Lewenza S, Marr AK, Hancock REW. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol. 2007; 189: 2164–2169. https://doi.org/10.1128/JB.01623-06 PMID: 17158671

38. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3: 163–175. https://doi.org/10.1038/nprot.2007.521 PMID: 18274517

39. Kirienko, Natalia V., Cezairliyan, Brent O., Ausubel, Frederick M., Powell JR. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Pseudomonas Methods and Protocols. 2014. pp. 653–669. https://doi.org/10.1007/978-1-4939-0473-0_50 PMID: 24818940

40. Powell JR, Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol. 2008; 415: 403–427. https://doi.org/10.1007/978-1-59745-570-1_24 PMID: 18370168

41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215: 403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

42. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015; 44: D7–19. https://doi.org/10.1093/nar/gkv1290 PMID: 26615191

43. Kiniker, Natalia V., Cezairliyan, Brent O., Ausubel, Frederick M., Powell JR. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Pseudomonas Methods and Protocols. 2014. pp. 653–669. https://doi.org/10.1007/978-1-4939-0473-0_50 PMID: 24818940

44. Powell JR, Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol. 2008; 415: 403–427. https://doi.org/10.1007/978-1-59745-570-1_24 PMID: 18370168

45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215: 403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

46. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015; 44: D7–19. https://doi.org/10.1093/nar/gkv1290 PMID: 26615191

47. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016; 44: D646–653. https://doi.org/10.1093/nar/gkw988 PMID: 26615191

48. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2008; 10: 2331–2343. https://doi.org/10.1111/j.1462-2920.2008.01658.x PMID: 18485000

49. Giltner CL, Van Schaik EJ, Audette GF, Kao D, Hodges RS, Hassett DJ, et al. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol. 2006; 59: 1083–1096. https://doi.org/10.1111/j.1365-2958.2005.05002.x PMID: 16430686

50. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998; 30: 295–304. https://doi.org/10.1046/j.1365-2958.1998.00162.x PMID: 9791175

51. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011; 55: 2655–2661. https://doi.org/10.1128/AAC.00045-11 PMID: 21422204
52. Gottesman S, Storz G. Bacterial small RNA regulators: Versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. 2011; 3. https://doi.org/10.1101/cshperspect.a003798 PMID: 20980440

53. Jensen PØ, Givskov M, Bjarnsholt T, Moser C. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol. 2010; 59: 292–305. https://doi.org/10.1111/j.1574-695X.2010.00706.x PMID: 20579098

54. Edwards S, Kjellerup BV. Exploring the applications of invertebrate host-pathogen models for in vivo biofilm infections. FEMS Immunol Med Microbiol. 2012; 65: 205–214. https://doi.org/10.1111/j.1574-695X.2012.00975.x PMID: 22533965

55. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A signaling network reciprocally regulates genes associated with acute infection and chronic persistance in Pseudomonas aeruginosa. Dev Cell. 2004; 7: 745–754. https://doi.org/10.1016/j.devcel.2004.08.020 PMID: 15525535

56. Mikkelsen H, Bond NJ, Skinersoe ME, Givskov M, Lilley KS, Welch M. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. Microbiol. 2009; 155: 687–698. https://doi.org/10.1099/mic.0.025551–0

57. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A. 2006; 103: 171–176. https://doi.org/10.1073/pnas.0507407103 PMID: 16373506