Supplement of

Evaluation of CH4MOD_{wetland} and Terrestrial Ecosystem Model (TEM) used to estimate global CH₄ emissions from natural wetlands

Tingting Li et al.

Correspondence to: Yanyu Lu (ahqxlyy@163.com) and Lingfei Yu (yulf@ibcas.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supplementary material S1 Model calibration of CH4MOD\textsubscript{wetland}

We used the independent datasets from the literature and the field measurements for model calibration. The vascular plants provide an effective mechanism by which CH\textsubscript{4} can be transported to the atmosphere (Chanton et al., 1992; Schimel, 1995; Shannon et al., 1996). According to previous study (Walter et al., 1996; Zhang et al., 2002), grasses and sedges are good gas transporters, but shrubs and trees are poor ones. \(T_{\text{reg}}\) ranges from 0 (plants without aerenchyma) to 1 (plants with well-developed aerenchyma). For herbaceous plants and woody plants, \(f_1\) was the average value of several observed proportion of BNPP to the total NPP derived from the data sets compiled from the amount of literatures (Gill and Jackson, 2000; White et al., 2002). \(F_N\) was calculated by the initial concentrations of nitrogen and lignin (g kg\(^{-1}\)) in the plant litter (Li et al., 2010). The nitrogen and lignin concentration of the above-ground and below-ground litter for grass and forest were from the global data set developed by the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) (White et al., 2002; Gordon and Jackson., 2003). \(VI\) and \(P_{\text{at}}\) are calibrated using the CH\textsubscript{4} measurements from three wetland sites (Table 1). CH\textsubscript{4} measurements from the Sanjiang Plain, China in year 2002 (Hao, 2006; Song et al., 2009; Yang et al., 2006) and from the Wuliangsu lake, China in year 2003 (Duan et al., 2005) were used to make calibration for the wetland dominated by the herbaceous plants. CH\textsubscript{4} measurements from Sarawak, Malaysia (Table 1) (Melling et al., 2005) in year 2002 were used to make calibration for the wetland dominated by the woody plants. The calibration was done by running CH4MOD\textsubscript{wetland} for the observation period driven with the local climate, soil and vegetation data at each site. By setting the increment of 0.1 for \(VI\) and \(P_{\text{at}}\), the model was run for all combinations of \(VI\) within the range of 0.5-3.0 and \(P_{\text{at}}\) within the range of 0.1-1 until the root-mean-square error (RMSE) between the daily simulated and observed CH\textsubscript{4} fluxes was minimized. After setting \(VI\) and \(P_{\text{at}}\), the empirical constant of the salinity influence (\(\alpha\)) is calibrated as -0.025 by minimizing the RMSE between observed fluxes and simulated fluxes at the coastal wetland in Chongming island, China in year 1997 (Li et al., 2016). Table 2 shows the main parameter values for different wetland types. Site-level parameters were extrapolated to the 0.5°×0.5° pixel of the global natural wetland map.

Supplementary material S2 Model calibration of TEM

Supplementary material S2 Model calibration of TEM

In this study, the vegetation and soil data sets were used to assign vegetation- and soil-specific parameters to each grid cell globally. The methane emission in wetland simulated in TEM was mainly
controlled by the following parameters, which include the ecosystem-specific maximum potential \(\text{CH}_4 \) production rate \((M_{\text{go}}) \), the dynamic \(Q_{10} \) coefficient indicating the dependency of \(\text{CH}_4 \) production to soil temperature \((D_{Q_{10}}) \), the reference temperature used in the \(Q_{10} \) function for simulating the effects of soil temperature on methanogenesis \((T_{\text{REF}}) \), and maximum daily NPP for a particular ecosystem \((\text{MaxFresh}) \). These parameters are calibrated using the \(\text{CH}_4 \) measurements from 5 sites (Table 1). \(\text{CH}_4 \) measurements from Toolik Lake, USA in year of 1992 and 1993 (Schimel et al., 1994; 1995), from Saskatchewan, Canada, in year of 1995 (Sellers et al., 1997), from the Sanjiang Plain, China in year 2002 (Hao, 2006; Song et al., 2009; Yang et al., 2006), from Sarawak, Malaysia (Melling et al., 2005) in year 2002, from the coastal wetland in Chongming island, China in year 1997 (Li et al., 2016) was used to calibrate parameters for tundra, peatland, marsh, swamp and coastal wetland. We used the Monte-carlo approach to calibrate parameters for each wetland type (Zhuang et al., 2004). Specifically, the intervals of each parameter were firstly determined according to the former studies (Lu and Zhuang, 2012; Zhu et al., 2013; Zhuang et al., 2004). Then, the parameters were randomly sampled within the intervals based on uniform distribution. Consequently, the \(\text{CH}_4 \) emission simulated by TEM with these parameters was compared with the observed by using the coefficient of determination and RMSE. These steps were repeated 5000 times to obtain the set of optimized parameters which made the model simulation closest to the observation. (Table S2 described the main parameter values of TEM model)

Supplementary material S3: Equations used to calculate the statistics

The RMSE was used to measure the coincidence between the measured and the modeled values.

The RMD was calculated to evaluate the model for any systematic bias (Brisson et al., 2002). A positive EF value indicates that the simulated values describe the trend in the measured data better than the mean of the observations, while a negative value indicates that the simulated values describe the data less well than the mean of the observations (Smith et al., 1997) The CD is a measure of the proportion of the total variance in the observed data that is explained by the predicted data (Smith et al., 1997).

We first calculated RMSE as follows:

\[
\text{RMSE} = \frac{100}{\delta} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}
\]

(1)
where \bar{O} represents the average value of the observations. P_i and O_i represent the simulated and observed values, respectively. n represents the number of observations.

We then decomposed the RMSE into three components:

$$\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2 = (\bar{P} - \bar{O})^2 + (S_P - rS_O)^2 + (1 - r^2)S_O^2$$

(2)

where \bar{P} is the mean modeled value, and

$$S_P^2 = \frac{1}{n} \sum_{i=1}^{n} (P_i - \bar{P})^2$$

(3)

$$S_O^2 = \frac{1}{n} \sum_{i=1}^{n} (O_i - \bar{O})^2$$

(4)

$$r = \frac{\sum_{i=1}^{n} (P_i - \bar{P})(O_i - \bar{O})}{\left(\sum_{i=1}^{n} (P_i - \bar{P})^2 \sum_{i=1}^{n} (O_i - \bar{O})^2 \right)^{1/2}}$$

(5)

The first component, $(\bar{P} - \bar{O})^2$, measures the bias in the simulation procedure. In this study, if the simulation consistently overestimates or underestimates the CH$_4$ fluxes, this component will have a large value. If the value of the second component, $(S_P - rS_O)^2$, is zero, the regression between the simulated and observed CH$_4$ fluxes has a slope of 1. This component often occurs in subjective forms of simulation where the simulations are biased upward if the observed CH$_4$ fluxes are low but are biased downward when the observed CH$_4$ fluxes are high. The third component, $(1 - r^2)S_O^2$, can be considered to be a measure of the error due to random disturbances.

Finally, we normalized the above components by dividing each component by $\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2$.

The ultimate proportions of the errors were thus defined as:

$$U_M = \frac{(\bar{P} - \bar{O})^2}{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$

(6)

$$U_R = \frac{(S_P - rS_O)^2}{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$

(7)

$$U_E = \frac{(1 - r^2)S_O^2}{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$

(8)

And hence

$$U_M + U_R + U_E = 1$$

(9)
RMD, EF and CD were calculated as follows:

\[RMD = \frac{100}{n} \sum_{i=1}^{n} \frac{P_i - \bar{O}_i}{\bar{O}_i} \]

(10)

\[EF = 1 - \frac{\sum_{i=1}^{n} (P_i - \bar{O}_i)^2}{\sum_{i=1}^{n} (\bar{O} - \bar{O}_i)^2} \]

(11)

\[CD = \frac{\sum_{i=1}^{n} (O_i - \bar{O})^2}{\sum_{i=1}^{n} (P_i - \bar{O})^2} \]

(12)

Supplementary material S4 Spatial pattern of annual mean CH$_4$ fluxes

The simulated latitudinal contributions of CH$_4$ fluxes were consistent between the two models (Fig. 5a and 5b). Large fluxes were modeled in tropical regions. CH4MOD wetland simulated a peak flux of 30.18 g m$^{-2}$ yr$^{-1}$ in the 10°S–0° latitudinal band, followed by fluxes over 20 g m$^{-2}$ yr$^{-1}$ in the 20°–10°S latitudinal band and 0°–20°N latitudinal band (Fig. 5a). A peak flux of 30.61 g m$^{-2}$ yr$^{-1}$ was simulated in the 0°–10°N latitudinal band, followed by fluxes over 20 g m$^{-2}$ yr$^{-1}$ in the 20°S–0° latitudinal band and 10°–20°N latitudinal band (Fig. 5b). Lower fluxes under 15 g m$^{-2}$ yr$^{-1}$ were modeled in the 40°–80°N latitudinal band by CH4MOD wetland and in the 50°N–80°N latitudinal band by the TEM (Fig. 5a and 5b).

The simulation of meridional annual mean CH$_4$ fluxes showed the largest peak at approximately 60°–80°W and a secondary large peak at approximately 20°–30°E (Fig. 5a and 5b).
ID	Annual mean temperature (℃)	Annual Precipitation (mm)	Water table depth (cm)	Salinity	CH₄ emissions (g m⁻² yr⁻¹)	Measurement method	Reference
1	-13.6	319	-10.0	--	2.64, 3.15	Chamber & EC	Wille et al., 2008; Wagner et al., 2003
2	-13.4	200	No data	--	1.26	Chamber	Nakano et al., 2000
3	-12.4	200	11.8	--	8.40	Chamber	Nakano et al., 2000
4	-10.5	220	2.0–15.0	--	2.63, 2.27, 1.42	EC	Parmentier et al., 2011
5	-10.3	223	-45.0–4.0	--	9.55, 6.70, 9.07	Chamber	Christensen et al., 2000; Joabsson and Christensen, 2001
6	-0.2	263	-35.0–3.0	--	0.45	Chamber	Svensson et al., 1999
7	-2.2	397	-3.6–7.0	--	5.50	EC	Aurela et al., 2002
8	2.3	600	5.3	--	28.10, 53.20, 55.00	Chamber	Song et al., 2008; Song et al., 2009
9	7.3	650	0.9	--	11.65	Chamber	Wang et al., 2002
10	17.7	188	46.0	--	63.30	Chamber	Kang et al., 2016; Duan et al., 2005
11	12.3	490	14.3	--	15.20	Chamber	Song et al., 2015; Hirotta et al., 2004
12	12.7	625	27.0	--	30.20	Chamber	Huang et al., 2011
13	10.9	625	18.0	7.2	3.81	Chamber	Huang et al., 2005
14	18.1	1004	7.0	6.9	6.52, 8.29, 5.05	Chamber	Gao et al., 2010; Li et al., 2014
15	22.8	1582	15.7	12.5	25.37	Chamber	Kang et al., 2008
16	24.5	1670	0.0	15.2	0.91	Chamber	Ye et al., 2000
17	27.4	2015	-44.0	--	0.01	Chamber	Melling et al., 2005
18	25.5	2528	-80.0–20.0	--	1.36	Chamber	Jauhiainen et al., 2005
19	20	1500	-20.0–40.0	--	32.00	Chamber	Coyne et al., 2005; Tathy et al., 1992
20	20	1500	-20.0–40.0	--	16.00	Chamber	Tathy et al., 1992; Coyne et al., 2005
21	No data	No data	No data	--	49.00	Chamber	Alvalá and Kirchhoff, 2000; Melack et al., 2004
22	No data	No data	No data	--	69.00	Chamber	Crill et al., 1988
23	No data	No data	No data	--	40.00	Chamber	Devol et al., 1988
24	No data	No data	0.0–130.0	--	29.20	Chamber	Belger et al., 2011
25	-1.4	406	No data	--	3.70	Chamber	Bartlett et al., 1992
26	-1.4	406	No data	--	0.49	EC	Fan et al., 1992
---	---	---	---	---	---	---	
27	No data	No data	No data	--	11.20	Chamber	Sebacher et al., 1986
28	No data	No data	-10.0 – 15.0	--	3.50, 5.10, 4.80	Chamber	Whalen and Reeburgh, 1992
29	12.8°	3240°	No data	--	21.70	EC	Suyker et al., 1996; Sellers et al., 1997
30	No data	No data	No data	--	37.00, 37.00, 55.00	Chamber	Shannon et al., 1996
31	15.1°	126°	No data	--	3.35	Chamber	Christensen, 1993; Schimel et al., 1994; 1995
32	10.8κ	479κ	-35.0 – 100.0	--	4.57	Chamber	Moore et al., 1994
33	No data	No data	-80.0 – 20.0	--	7.18	Chamber	Moore et al., 1990
34	No data	No data	4.0 – 25.0	--	47.7, 38.8	Chamber	Koh et al., 2009
35	15.1	335	-80.0 – -50.0	--	4.4	EC	Hatala et al., 2012
36	3.7	584	-14.0 – -24.0	--	15.73, 16.00	EC	Olson et al., 2013
37	6.0 ± 0.8	943	-65.0 – -28.0	--	8.00	EC	Moore et al., 2011
38	No data	No data	15.0 – 20.0	--	3.24	EC	Harazono et al., 2006
39	No data	No data	No data	--	8.10	EC	Harazono et al., 2006
40	3.0	344	-15.0 – 20.0	--	13.04, 9.26, 12.13	EC	Hanis et al., 2013
41	No data	No data	-13.0 – 10.0	--	1.48	EC	Zona et al., 2009
42	2.1	504	-62.0 – -38.0	--	3.20	EC	Long et al., 2010
43	16.6	1330	-50 – 60.0	--	3.47	EC	Morse et al., 2012

* May to October
° Summer period
κ June to October
| Parameter | Description | A | B | C | References |
|-------------|--|-----|-----|-----|--|
| VI | Vegetation index | 2.4 | 1 | 1 | This study |
| T_{veg} | The fraction of plant mediated transport was available | 1 | 1 | 0.1 | Walter and Heimann, 2000 |
| P_{ox} | The fraction of CH$_4$ oxidized during plant mediated transport | 0.5 | 0.9 | 0.9 | This study |
| f_{c} | Proportion of below-ground NPP to the total NPP | 0.5 | 0.5 | 0.45| Gill and Jackson, 2000; White et al., 2002 |
| F_{N_shoot} | Fraction of nonstructural component in above-ground litter | 0.8 | 0.8 | 0.3 | White et al., 2002; Gordon and Jackson., 2003 |
| F_{N_root} | Fraction of nonstructural component in below-ground litter | 0.5 | 0.5 | 0.2 | White et al., 2002 |

A for the wetland dominated by herbaceous plant calibrated by CH$_4$ measurements from the Sanjiang plain, China, year 2002.
B for the wetland dominated by herbaceous plant with high productivity (annual aboveground biomass >1000 g m$^{-2}$ yr$^{-1}$), calibrated by CH$_4$ measurements from the Wuliangsu lake, China.
C for the wetland dominated by woody plant, calibrated by CH$_4$ measurements from Sarawak, Malaysia.
Parameter	Description	Prior interval	Optimized value	Unit
MGO	Maximum potential CH₄ production rate	[0, 2]	1.45 1.03 0.8 0.10 0.48	μmol L⁻¹ h⁻¹
DQ₁₀	Dependency of CH₄ production on soil temperature	[1, 6]	1.11 1.07 2.82 1.60 1.45	unitless
TREF	Reference temperature in Q₁₀ function	[-6, 2]	-3.13 1.98 1.55 0.72 -3.41	°C
MaxFresh	Maximum daily NPP for a particular ecosystem	[2, 20]	12.03 8.70 8.83 4.97 11.73	g C m⁻² day⁻¹
Fig. S1 Simulated seasonal patterns of CH₄ emissions by CH4MOD_wetland (a) and TEM (b) based on the average monthly CH₄ emissions from 2000–2010.
References
Alvála, P. C., and Kirchhoff, V. W. J. H.: Methane fluxes from the Pantanal floodplain in Brazil: seasonal variation, in: Non-CO₂ Greenhouse Gases: Scientific understanding, control and implementation: Proceedings of the Second International Symposium, Noordwijkerhout, The Netherlands, 8–10 September 1999, edited by: van Ham, J. B., Baede, A. P. M., Meyer, L. A., and Ybema, R., Springer Netherlands, Dordrecht, 95-99, 2000.
Aurela, M., Laurila, T., and Tuovinen, J. P.: Annual CO₂ balance of a subarctic fen in northern Europe: importance of the wintertime efflux, J. Geophys. Res., 107(D21), 4607 doi:10.1029/2002JD002055, 2002.
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B.: Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska, J. Geophys. Res., 97, 16645-16660, 10.1029/91JD00610, 1992.
Belger, L., Forsberg, B. R., and Melack, J. M.: Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil, Biogeochemistry, 105, 171-183, 10.1007/s10533-010-9536-0, 2011.
Brisson, N., Ruget, F., Gate, P., Lorgeou, J., Nicoulau, B., Tayot, X., Plenet, D., Jeuffroy, M.H., Bouthier, A., and Ripoche, D.: STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize, Agronomie, 22, 69-92, 2002.
Chanton, J. P., Martens, C. S., Kelley, C. A., Crill, P. M., and Showers, W. J.: Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake, J. Geophys. Res., 97, 16681-16688, 10.1029/90jd1542, 1992.
Christensen, T., Friis, T., Sommerkorn, M., Kaplan, J., Illeris, L., Soegaard, H., Nordstroem, C., and Jonasson, S.: Trace gas exchange in a high-Arctic valley: 1. Variations in CO₂ and CH₄ flux between tundra vegetation types, Global Biogeochem. Cycles, 14, 701-713, 2000.
Christensen, T. R.: Methane emission from Arctic tundra, Biogeochemistry, 21, 117-139, 1993.
Coyne, A., Seyler, P., Etchebe, H., Meybeck, M., and Orange, D.: Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River, Global Biogeochem. Cycles, 19, 10.1029/2004GB002335, 2005.
Crill, P. M., Bartlett, K. B., Wilson, J. O., Sebacher, D. I., Harriss, R. C., Melack, J. M., Maclntyre, S., Lesack, L., and Smith-Morrill, L.: Tropospheric methane from an Amazonian floodplain lake, J. Geophys. Res., 93, 1564-1570, 10.1029/JD093iD02p01564, 1988.
Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., and Martinell, L. A.: Methane emissions to the troposphere from the Amazon floodplain, J. Geophys. Res., 93, 1583-1592, 1988.
Duan, X., Wang, X., Mu, Y., and Ouyang, Z.: Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China, Atmos. Environ., 39, 4479-4487, 2005.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., Anderson, S. M., Keibabian, P. L., McManus, J. B., Kolb, C. E., and Fitzjarrald, D. R.: Micrometeorological measurements of CH₄ and CO₂ exchange between the atmosphere and subarctic tundra, J. Geophys. Res., 97, 16627-16643, 10.1029/91jd02531, 1992.
Gao, Y., Mao, L., Miao, C.Y., Zhou, P., Cao, J.J., Zhi, Y.E., and Shi, W.J.: Spatial characteristics of soil enzyme activities and microbial community structure under different land uses in Chongming Island, China: Geostatistical modelling and PCR-RAPD method, Sci. Total Environ., 408, 3251-3260, 10.1016/j.scitotenv.2010.04.007, 2010.
Gill, R. A., and Jackson, R. B.: Global patterns of root turnover for terrestrial ecosystems, New Phytologist, 147, 13-31, 2000.
Gordon, W. S., and Jackson, R. B.: Global distribution of root nutrient concentrations in terrestrial ecosystems. Data Set (Available on-line (http://www.daac.ornl.gov) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.) http://dx.doi.org/10.3334/ORNLDAAC/659., 2003.
Hanis, K., Tenuta, M., Amiro, B., and Papakyriakou, T.: Seasonal dynamics of methane emissions from a subarctic fen in the Hudson Bay Lowlands, Biogeoosciences Discuss., 10, 2013.
Hao, Q. J.: Effect of land-use change on greenhouse gases emissions in freshwater marshes in the Sanjiang Plain, Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 2006.
Harazono, Y., Mano, M., Miyata, A., Yoshimoto, M., Zulueta, R., Vourlitis, G., Kwon, H., and Oechel, W.: Temporal and spatial differences of methane flux at arctic tundra in Alaska, Mem. Natl. Inst. Polar Res., 59, 2006.
Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and Baldocchi, D. D.: Greenhouse gas (CO₂, CH₄, H₂O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta, Agricultural. Ecosys. Environ., 150, 1-18, 2012.
Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Cao, G., and Mariko, S.: Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland, Soil Biol. Biochem., 36, 737-748, 2004.

Huang, G., Li, X., Hu, Y., Shi, Y., and Xiao, D.: Methane (CH₄) emission from a natural wetland of northern China, J. Environ. Sci. Health, 40, 1227-1238, 2005.

Huang, P. Y., Yu, H. X., Chai, L. H., Chai, F. Y., and Zhang, W. F.: Methane emission flux of Zhalong Phragmites australis wetlands in growth season., Chin. J. Appl. Ecol., 22, 1219-1224, 2011.

Jauhiainen, J., Takahashi, H., Heikkinen, J. E., Martikainen, P. J., and Vasander, H.: Carbon fluxes from a tropical peat swamp forest floor., Global Change Biol., 11, 1788-1797, 2005.

Joabsson, A., and Christensen, T. R.: Methane emissions from wetlands and their relationship with vascular plants: an Arctic example, Global Change Biol., 7, 919-932, 10.1046/j.1354-1013.2001.00044.x, 2001.

Kang, J., Lu, J. Q., Wang, G., Wang, Z. G., and Yang, J. W.: Analysis of characteristics of Wuliangsuhai nearly 50 years of climate change, Water Conservancy Science and Technology and Economy, 22, 1-8, 2016.

Kang, W. X., Zhao, Z. H., Tian, D. L., He, J. N., and Deng, X. W.: CO₂ exchanges between mangrove-and shoal wetland ecosystems and atmosphere in Guangzhou, Chin. J. Appl. Ecol., 19, 2605-2610, 2008.

Koh, H.S., Ochs, C., and Yu, K.: Hydrologic gradient and vegetation controls on CH₄ and CO₂ fluxes in a spring-fed forested wetland, Hydrobiologia, 630, 271-286, 10.1007/s11001-009-9821-x, 2009.

Li, T., Huang, Y., Zhang, W., and Song, C.: CH4MODwetland: A biogeochemical model for simulating methane emissions from natural wetlands, Ecol. Model., 221, 666-680, 2010.

Li, T., Xie, B., Wang, G., Zhang, W., Zhang, Q., Vesala, T., and Raivonen, M.: Field-scale simulation of methane emissions from coastal wetlands in China using an improved version of CH4MODwetlands, Sci Total Environ., 559, 256-267, http://dx.doi.org/10.1016/j.scitotenv.2016.03.186, 2016.

Li, Y. J., Cheng, Z. L., Wang, D. Q., Hu, H., and Wang, C.: Methane emission in the process of wetland and vegetation succession in salt marsh of Yangtze River estuary, Acta Sci. Circumst., 34, 2035-2402, 2014.

Long, K. D., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance, Global Change Bio., 16, 2420-2435, 10.1111/j.1365-2486.2009.02083.x, 2010.

Lu, X., and Zhuang, Q.: Modeling methane emissions from the Alaskan Yukon River basin, 1986–2005, by coupling a large-scale hydrological model and a process-based methane model, J. Geophys. Res.: Biogeosci., 117, doi:10.1029/2011JG001843, 2012.

Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Novo, E. M. L. M.: Regionalization of methane emissions in the Amazon Basin with microwave remote sensing, Global Change Biol., 10, 530-544, 10.1111/j.1365-2486.2004.00763.x, 2004.

Melling, L., Hatanoh, R., and Gohc, K. J.: Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia, Soil Biol. Biochem., 37, 1445-1453, 2005.

Moore, T., Roulet, N., and Knowles, R.: Spatial and temporal variations of methane flux from subarctic/northern Boreal fens, Global Biogeochem. Cycles, 4, 29-46, 10.1029/GB004i001p00029, 1990.

Moore, T., Heyes, A., and Roulet, N.: Methane emissions from wetlands, southern Hudson Bay Lowland, J. Geophys. Res., 99, 10.1029/93JD02457, 1994.

Moore, T., Young, A., Bubier, J., Humphreys, E., Lafleur, P., and Roulet, N.: A Multi-year record of methane flux at the Mer Bleue Bog, Southern Canada, Ecosystems, 14, 646-657, 10.1007/s10021-011-9435-9, 2011.

Morse, J. L., Ardón, M., and Bernhardt, E. S.: Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses, Ecological Applications, 22, 264-280, 10.1890/11-0527.1, 2012.

Nakano, T., Kuniyoshi, S., and Fukuda, M.: Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia, Atmos. Environ., 34, 1205-1213, 10.1016/S1352-2310(99)00373-8, 2000.

Olson, D., Griffis, T., Nookrmos, A., Kolka, R., and Chen, J.: Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland, J. Geophys. Res.: Biogeosci., 118, 226-238, 2013.

Parmentier, F. J. W., van Huisssten, J., van der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. A., Maximov, T. C., and Dolman, A. J.: Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, J. Geophys. Res.: Biogeosci., 116, 10.1029/2010jg001637, 2011.

Schimel, J., Nadelhoffer, K., Shaver, G., Giblin, A., Rastetter, E.: Methane and carbon dioxide emissions were monitored in control, greenhouse, and nitrogen and phosphorus fertilized plots of three different plant communities Arctic LTER experimental plots, Toolik Field Station, 1992. Environmental Data
Schimel, J. P. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183–200, 1995.

Sebacher, D., Harriss, R., Bartlett, K., Sebacher, S., and Grice, S. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh, Tellus B, 38B, 1–10, 10.1111/j.1600-0889.1986.tb0083.x, 1986.

Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A., Baldocchi, D., Berry, J., Ryan, M., Ranson, K. J., Crill, P. M., and Lettenmaier, D. P. BOREAS in 1997: Experiment overview, scientific results, and future directions, J. Geophys. Res., 102, 28731-28769, 1997.

Svensson, B., Christensen, T., Johansson, E., and Öquist, M. Interdecadal changes in CO2 and CH4 fluxes of a subarctic mire: Stordalen revisited after 20 years, Oikos, 22-30, 1999.

Shannon, R. D., White, J. R., Lawson, J. E., and Gilmour, B. S. Methane efflux from emergent vegetation in peatlands, J. Ecol., 239-246, 1996.

Smith, P., Smith, J. U., Powison, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frohling, S., Jenkins, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., and Whitmore, A. P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 81, 153-225, http://dx.doi.org/10.1016/S0016-7061(97)00087-6, 1997.

Song, C., Zhang, J., Wang, Y., Wang, Y., and Zhao, Z.: Emission of CO2 and CH4 and N2O from freshwater marsh in northeast of China, J. Environ. Manag., 88, 428-436, https://doi.org/10.1016/j.jenvman.2007.03.030, 2008.

Song, C., Xu, X., Tian, H., and Wang, Y.: Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China, Global Change Biol., 15, 692-705, 2009.

Song, W., Wang, H., Wang, G., Chen, L., Jin, Z., Zhuang, Q., and He, J. S.: Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season, J. Geophys. Res.: Biogeosci., 120, 1475-1490, 10.1002/2015JG001304, 2015.

Suyker, A. E., Verma, S. B., Clement, R. J., and Billesbach, D. P.: Methane flux in a boreal fen: Season-long measurement by eddy correlation, J. Geophys. Res.: Atmos., 101, 28637-28647, 1996.

Tathy, J., Cros, B., Delmas, R., Marenco, A., Servant, J., and Labat, M.: CH4 emission from flooded forest in Central Africa, J. Geophys. Res., 97, 6159-6168, 10.1029/90JD02555, 1992.

Wagner, D., Kobabe, S., Pfeiffer, E. M., and Hubberten, H. W.: Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia, Permafrost and Piediplacial Processes, 14, 173-185, 2003.

Walter, B. P., Heimann, M., Shannon, R. D., and White, J. R.: A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 3731-3734, 1996.

Walter, B. P., and Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, 14, 745-765, 2000.

Wang, D., Lv, X., Ding, W., Cai, Z., Gao, J., and Yang, F.: Methane emission from marshes in Zoige Plateau, Adv. Earth Sci., 17, 877-880, 2002.

Whalen, S. C., and Reeburgh, W. S.: Interannual variations in tundra methane emission: A 4-year time series at fixed sites, Global Biogeochem. Cycles, 6, 139-159, 1992.

White, M. A., Thornton, P. E., and Running, S. W., Nemani, R.R.: Literature-derived Parameters for the BIOME-BGC Terrestrial Ecosystem Model. Data Set (Available on-line (http://www.daac.ornl.gov) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.) http://dx.doi.org/10.3334/ORNLDAAC/652., 2002.

Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E. M.: Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling, Global Change Biol., 14, 1395-1408, 2008.

Yang, W., Song, C., and Zhang, J.: Dynamics of methane emissions from a freshwater marsh of northeast China, Sci. Total Environ., 371, 286-292, 2006.

Ye, Y., Lu, C., and Lin, P.: CH4 dynamics in sediments of Bruguierra sexangula mangrove at Hegang Estuary, Soil and Environmental Sciences, 9, 91-95, 2000.

Zhang, Y., Li, C., Trettin, C. C., and Li, H.: An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems, Global Biogeochem. Cycles, 16, 1061-1078, 2002.
Zhu, X., Zhuang, Q., Gao, X., Sokolov, A., and Schlosser, C. A.: Pan-Arctic land–atmospheric fluxes of methane and carbon dioxide in response to climate change over the 21st century, Environ. Res. Lett., 8, 045003, doi:10.1088/1748-9326/8/4/045003, 2013.
Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochem. Cycles, 18, GB3010, 10.1029/2004gb002239, 2004.
Zona, D., Oechel, W., Kochendorfer, J., Paw U, K., Salyuk, A., Olivas, P., Oberbauer, S., and Lipson, D.: Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra, Global Biogeochem. Cycles, 23, GB2013, 10.1029/2009GB003487, 2009.