NMR Studies of 3He Films on Boron Nitride

Y. Tang, N. S. Sullivan
Department of Physics, University of Florida, Gainesville, Fl 32611, USA
E-mail: sullivan@phys.ufl.edu

Abstract. We report the results of NMR studies of the dynamics of 3He adsorbed on hexagonal boron nitride. These studies can identify the phase transitions of the 2D films as a function of temperature. A thermally activated temperature dependence is observed for $2.6 < T < 8$ K compared to a linear temperature dependence for $0.7 < T < 2.6$ K. This linear dependence is consistent with that expected for thermal diffusion in a fluid for coverages of 0.4 - 0.6 of a monolayer.

1. Introduction
Helium-three monolayer and submonolayer films are of great interest because the different phases and microscopic dynamics that occur are dominated by quantum effects that lead to new phenomena in reduced dimensions at low temperatures[1, 2]. In addition the films are ideal for testing our understanding of the quantum dynamics and spin ordering in two dimensions from first principles[3]. At low temperatures it had been postulated that the large quantum mechanical zero-point kinetic energy of the 3He atoms could be sufficient to prevent the system from condensing as a 2D liquid in some scenarios[4], leading to a unique quantum gas at extremely low temperatures. Experimental studies by Bhattacharyya and Gasparini [5, 6] offered evidence for such a phase but the majority of experiments [7–9] and the most recent theoretical treatments[10–12] do not support the existence of a low temperature gas phase. Recent thermodynamic measurements by Sato et al. [13, 14], however, for 3He adsorbed on bare graphite (and on 4He plated graphite), have provided new evidence in support of a self-bound state for very low coverages at very low temperatures. We have carried out NMR studies at much higher coverages of 0.41 and 0.62 of a full monolayer and at higher temperatures to determine the microscopic dynamics of the 3He atoms and the mechanisms of diffusion at coverages near the fluid-solid phase transition region[12, 15]. At these coverages NMR studies by Crane and colleagues[16] for 3He on BN showed evidence of a mixed coverage of fluid and solid components with the solid melting near 1.6K to form a dense fluid state with appreciable orientational order imposed by the substrate. We have carried out studies using a much higher NMR frequency which should help distinguish between the fluid and solid components.

In addition to measuring the diffusion in the fluid phase, NMR studies can be used to determine the spin exchange rates in the solid phases. Below monolayer coverage, the 3He monolayer forms a commensurate $\sqrt{3} \times \sqrt{3}$ solid structure that provides a unique testing ground for the multi-particle exchange model [17, 18] invoked to explain the magnetic properties of bulk 3He and 3He films [15, 19, 20]. For example, coverages less than the ideal commensurate structure lead to a reduced probability of 3-particle exchange compared to the 2-particle exchange and
this results in a much higher effective magnitude for the overall tunneling rate that can be seen in the 3He nuclear spin lattice relaxation times[21].

2. Experimental considerations

We used powdered hexagonal boron nitride (h-BN)[22] as the substrate for the helium film[23]. h-BN has similar structure and dimensions to graphite but is an insulator rather than a semimetal and has a smaller magnetic susceptibility (-4.8×10^{-7} emu/g)[24] than graphite (-170×10^{-7} emu/g)[25]. The electron micrograph of Fig. 1 shows that the substrate material consists of an assembly of small platelets of sizes in the $0.5 - 2.0 \mu$m range and thicknesses of $0.05 - 0.10 \mu$m. The samples were prepared by baking under vacuum[26, 27] before being introduced to the sample chamber which contained a brush of fine copper wires that penetrated the powdered h-BN to ensure thermal contact with a rod extending from a dilution refrigerator. A precise amount of 3He gas was introduced to the sample to produce the desired coverage which was inferred from previous adsorption isotherm studies used to characterize the same material[26].

Pulsed NMR techniques were used to measure the 3He nuclear spin-spin and spin-lattice relaxation times. The NMR setup shown in Fig. 2 uses a tuned system matched at low temperatures to close to 50 Ω. A $3\lambda/2$ 50Ω cable was used to connect the tuned circuit to a hybrid-tee bridge at room temperature that had a second fine tuning stage. The latter stage was important to correct for the small shift in tuning as the sample cell was cooled. A high magnetic field, corresponding to a Larmor frequency $\omega_L/(2\pi) = 200$ MHz, was chosen so that ω_L was much larger than the typical motional frequencies[28] of the 3He atoms. For this choice the relaxation times of the solid component are expected to be much higher than the fluid component as the exchange induced relaxation time in the solid grows exponentially with Larmor frequency[28]. This choice therefore simplifies the analysis of the relaxation data. (Crane et al.[16] used Larmor frequencies of 2.7 and 4.5 MHz.) The relaxation times were measured using standard $90^\circ - \tau - 90^\circ$ and $90^\circ - \tau - 180^\circ$ pulse sequences followed by signal averaging (50 - 5000 times) to obtain adequate signal/noise ratios.

3. Results

The decay of the NMR echoes following repeated pulse sequences as a function of repeat time τ_r show two distinct components, a fast component with a relatively large amplitude and a
slow component with a much smaller amplitude. A typical decay for the echo amplitude $E(\tau_r)$ is shown in Fig. 3 for $x = 0.62$ at $T = 1.9$K. These two components are expected from the results of Crane[16] for this temperature range if the 3He forms a mixed state of fluid and solid. The surprising result from this study is the relatively small amount of solid component for temperatures $T > 0.7$K. From the flat geometry of the BN platelets we would expect an adsorbed solid component at the edges (where there are much stronger adsorption sites) to correspond to $\sim 5\%$ of the total area. This “edge” component would appear to account for an appreciable fraction of the long relaxation time component.

![Figure 3. Typical decay observed for the NMR echo amplitudes for $x = 0.62$ at 1.9 K with $E(\infty) - E(\tau_r) = 121e^{-\tau_r/1.57} + 29e^{-\tau_r/11}$ shown by the solid line. The fast decay is attributed to a fluid component and the slower decay to a solid component.](image)

The observed temperature dependence of the nuclear spin-lattice relaxation times for the fast decay component of the relaxation is shown in Fig. 4 for two different coverages, 0.62 and 0.41 of a full monolayer. Three different temperature regimes are observed. In the high temperature regime, $2.6 < T < 8$ K, there is a clear thermal activation with an energy $E_A = 31 \pm 2$ K, corresponding to the binding of the 3He atoms to the surface and in good agreement with other studies[29]. The sharp minimum for the 0.62 coverage is a standard BPP minimum[30] given by $T_{1(\text{min})} \approx \omega_L/M_2$ where $M_2 = 1.8 \times 10^9$ s$^{-2}$ is the calculated NMR second moment for a full monolayer of 3He in BN (and includes the 3He-B and 3He-N nuclear spin-spin interactions).

The most interesting and unexpected region is for intermediate temperatures, $0.7 < T < 2.6$ K, for which a linear dependence on temperature is observed, and most remarkably there is very little variation in the magnitude of T_1 for an appreciable change in the amount of 3He added to the total surface coverage. These two features support a model where the surface is covered with patches of fluid of constant areal density but varying in overall size and co-existing with solid patches. Following Crane[16] the patches are believed to be nucleated at specific sites and grow continuously as the temperature decreases. If this region consisted of continuous fluid covering all the surface area of the h-BN platelets one would expect a very strong change in the absolute value of T_1 with 3He coverage since the NMR second moment M_2 scales as $\sum_{\text{pairs}(ij)} R_{ij}^6$. These studies show that the fluid component is close to constant in density but it is distinct from the dense self-bound liquid state observed by Sato et al.[13] for very low coverages. At low temperatures, $T < 0.7$ K, the solid component begins to dominate the relaxation, and we observe the onset of a stronger temperature dependence (shown by the dotted line in Fig. 4) which is attributed to the relaxation determined by the solid 3He to substrate interactions.

4. Discussion

The nuclear spin-lattice relaxation time T_1 is given by[31]

$$\frac{1}{T_1} = \frac{2}{3} M_2 \sum_n n^2 J_n(n\omega_L)$$
where the $J_n(\omega)$ are the normalized spectral densities of the fluctuations of the 3He-3He dipole-dipole interactions at frequency ω. (Note that for the spectral densities we neglect the contributions of unlike spin-spin interactions such as 3He-14N because, (i) they are reduced relative to the 3He-3He contribution by $[\gamma(14N)/\gamma(3He)]^2 \sim 10^{-2}$ and $[\gamma(11B)/\gamma(3He)]^2 \sim 10^{-1}$, and (ii) as a result of their long relaxation times in the solid platelet, their spin magnetization would be saturated and thus ineffective[32] as far as the 3He relaxation is concerned. If J_n can be characterized by a simple correlation time, τ, then we have a simple Lorentzian $J(\omega) = \tau/[1 + (\omega \tau)^2]$. We have analyzed the data in terms of a sum of three relaxation rates $T_1^{-1} = T_{1H}^{-1} + T_{1I}^{-1} + T_{1L}^{-1}$ for the high, intermediate and low temperature regions, respectively. For the high temperature gas-like region we used a Lorentzian form with $\tau_H = 6.8 \times 10^{-8} \exp(31/T)$ which leads to the BPP minimum at 7.1 K. For temperatures below the minimum we can take $\omega_L \tau > 1$ and analyze the lower temperature data in terms of $T_1^{-1} = (4M_2/3\omega_L^2)(\tau_L^{-1} + \tau_I^{-1})$.

The best fit to the data for the intermediate temperature range is shown by the solid lines in Fig. 4. For this fit $\tau_I = (1.7 \pm 0.5)T^{-1}10^{-9}$ s (red line of Fig. 4) for coverage $x_1 = 0.62$, and $(1.4 \pm 0.5)T^{-1}10^{-9}$ s (blue line of Fig. 4) for coverage $x_2 = 0.41$. The linear temperature dependence is consistent with that reported by Crane (Fig. 7.2.2.14 of Ref. [16]) and interpreted in terms of a fluid component. The low temperature data had poor signal/noise and was fit empirically to $\tau_L = 2.1 \times 10^{-10}T^3$.

The most recent calculation of the spin diffusion for a fluid Fermi system in two dimensions has been given by Bruun[33] who finds a diffusion constant $D = k_BT/(4\pi^2 n h I_D)$ where n is the areal density and $I_D = 2/[\ln(E_B/k_BT) - 0.42]^2 + \pi^2] \sim 0.22$. The characteristic time $\tau_c = r_n^2/D$ where r_n is the mean separation of the 3He atoms. We find from Bruun’s theory $\tau_c = 2.4 T^{-1}10^{-9}$ s in reasonable agreement with the experimental results for τ_I. The important point in this analysis is that both τ_I and M_2 are independent of the fractional coverage if the fluid forms patches (or puddles) of liquid. If the 3He were to spread uniformly across the platelets in this temperature regime there would be a much stronger concentration dependence which is not observed.

5. Conclusion
The linear temperature dependence and very weak variation of the nuclear spin-lattice relaxation times at intermediate temperatures with the number of 3He atoms adsorbed for monolayer films with fractional coverages $x = 0.41$ and $x = 0.62$ on hexagonal boron nitride support the interpretation that this phase consists of patches of liquid 3He at very close to constant areal density, with a small fraction of solid that becomes complete at 0.7K. Although the fluid density appears to be constant in this region there is no evidence that this is an incompressible liquid
state such as reported for much lower coverages and at lower temperatures by Sato et al.[13].

Acknowledgments
We thank Efstratios Manousakis, Brian Cowan and Aldo Migone for many useful discussions. Support from the National Science foundation through the award DMR-1303599 is also gratefully acknowledged.

References
[1] Böhm H M, Krotchesek E, Panholzer M, Godfrin H, Lauter H J and Meschke M 2010 J. Low Temp. Phys. 158 194–200
[2] Nava M, Motta A, Galli D E, Vitali E and Moroni S 2012 Phys. Rev. B 85(18) 184401
[3] Misguich G, Lhuillier C, Bernu B and Waldtmann C 1999 Phys. Rev. B 60(2) 1064–1074
[4] Andreev A F and Kompaneets D A 1973 Zh. Eksp. Teor. Fiz. Pis’ma Red. 17 376
[5] Bhattacharyya B K and Gasparini F M 1985 Phys. Rev. B 31 2719
[6] Greywall D S 1990 Phys. Rev. B 41 1842–1862
[7] Schick M 1980 Theory of helium monolayers Phase Transitions in Surface Films ed Dash J G and Ruvalds J (New York: Plenum) p 68
[8] Godfrin H 1991 Adsorbed quantum gases Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids ed Wyatt A G F and Lauter H J (New York: Plenum) p 445
[9] Grau V, Boronat J and Casulleras J 2002 Phys. Rev. Lett. 89 045301(1)–045301(4)
[10] Um C, Kahng J, Kim Y, George T F and Pandey L N 1997 J. Low Temp. Phys. 107 283–303
[11] Abraham F F and Broughton J Q 1987 Phys. Rev. Lett. 59 64–67
[12] Sato D, Naruse K, Matsiui T and Fukuyama H 2012 Phys. Rev. lett. 109 235306(1)–235306(4)
[13] Sato D, Tsuj D, Takayoshi S, Obata K, Matsu T and Fukuyama H 2010 J. Low Temp. Phys. 158(1) 201–206
[14] Fukuyama H 2008 J. Phys. Soc. Jpn 77 111013(1)–111013(12)
[15] Crane T P 1998 An NMR study of Helium-3 adsorbed on hexagonal boron nitride. Ph.D. thesis Royal Holloway University of London
[16] Roger M, Bauerle C M, Bunkov Y M, Chen A S and Godfrin H 1998 Phys.Rev. Lett 80 1308–1311
[17] Godfrin H 1986 Can. J. Phys. 65 1430–1434
[18] Elbs J, Winkelmann C, Bunkov Y M, Collin E and Godfrin H 2008 J. Low Temp. Phys. 148 749–753
[19] Bäuerle C, Bunkov Y M, Chen A S, Cousins D J, Godfrin H, Roger M and Triqueneaux S 2000 Physica B 280 95–99
[20] Parks C, Stachowiak P and Sullivan N S 2000 J. Low Temp. Phys. 121 489–494
[21] Shreshtha P, Alkhafaji M, Lokowicz M, Yang G and Migone A 1994 Langmuir 10 3244–3246
[22] Zupan J, Komac M and Kolar D 1970 J. Appl. Phys. 41 5337–5338
[23] Ganguli N and Krsihnan K S 1941 Proc. Roy. Soc. A (Lm) 177 168–182
[24] Evans M D, Patel N and Sullivan N S 1992 J. Low Temp. Phys. 89 653–657
[25] Crane T P and Cowan B P 2000 Phys. Rev. B 62 11359–11362
[26] Guyer R A, Richardson R C and Zane L I 1971 Rev. Mod. Phys. 43 532
[27] Crane T P and Cowan B P 2000 Physica B 284-288 230–231
[28] Bloembergen N, Purcell E M and Pound R V 1948 Phys. Rev. 73 679–716
[29] Cowan B P 1997 Nuclear Magnetic Resonance and Relaxation (Cambridge, UK: Cambridge University Press)
[30] Abragam A 1961 Principles of Nuclear Magnetism (Oxford, UK: Clarendon Press)
[31] Brun G M 2012 Phys. Rev. A 85 1–5