EVALUATION OF ANALGESIC, ANTICONVULSANT AND LOCOMOTOR ACTIVITIES OF ALCOHOLIC EXTRACT OF ACHYRANTHES BIDENTATA BLUME IN MICE

Vetrichelvan T., and Jegadeesan M.1
Adhiparashthi college of pharmacy, Melmaruvathur-603 319,
1Department of siddha medicine, Faculty of sciences, Tamil University, Thanjavur.

Received:6.3.2001 Accepted: 12.7.2002

ABSTRACT: The alcoholic extract of Achyranthes bidentata (AAB) has been studied for analgesic, anticonvulsant and CNS depressant activities in animal models. Analgesic activity was studied using acetic acid-induced writing test for assessing peripheral analgesic effect and tail immersion test for central analgesic effect. Anticonvulsant activity was performed by maximal electroshock induced convulsions; while the locomotor activity was evaluated using actophotometer. AAB (250-500 mg/kg) significantly reduced the number of wriths induced by acetic acid and elevated pain threshold in hot water test. The extract (500mg/kg) exhibited anticonvulsant activity significantly (P<0.001) against tonic seizures induced by MES. The results of locomotor activity showed the significant (P<0.01) CNS depressant effect at the three doses (250,375 and mg/kg) employed. The results suggest that AAB exhibited analgesic, anticonvulsant and CNS depressant activity in a dose dependent pattern.

Key words: Achyranthes bidentata: Writhing; Tail-flick; Tonic extensor; Locomotor.

INTRODUCTION

Achyranthes bidentata (Amaranthaceae) is an erect, annual herb or a shrub distributed in hilly (400ft. sea level) districts of India, china, Java and Japan1,2. The Plant is used in indigenous system of medicine as emenagogue, antifertility, laxative, ecloric, abortifacient, antihelminthic, antiviral, anticoagulant and antitumour. Also useful to treat cough renal dropsy fistula skin rash, nasal infection, fever asthma, amenorrhoea, piles and snake bits3-9. Phytochemical studies revealed that is contains rutin, saponins, achyranthine, caffeic acid, oleanolic acid, inokosterone, ecdynosterone, rubrosterone, physcion and amino acids10-14. Antinociceptive effect of Lingha chendooram and anticonvulsant activity of cardiospermum halicacabum were reported from this laboratory 15-16. In folklore practice, A. Bidentata has been reported to be useful in arthritis, abdominal cramp, chest pain and as antispasmodic17-19. To substantiate this claim the present study was undertaken to evaluate the analgesic, anticonvulsant and locomotor activity of this potential alcoholic extract in various dose levels.

EXPERIMENTAL

Plant Material
Whole parts of A. bidentata was collected from the hilly regions of Acharapakkam, Kanchipuram District of Tamil Nadu, India. The botanical identity was confirmed by a qualified botanist in the Department of Siddha medicine, Faculty of Sciences, Tamil University, Thanjavur. A voucher specimen (HAD-003) has been kept in our laboratory for future references.
Preparation of Plant extract:

The plant material was reduced to small pieces, dried under shade, powdered in a pulveriser and passed through a 80 mesh sieve. The powdered plant was packed into a Soxhlet apparatus (350g) and extracted with benzene or dewaxing as well as to remove chlorophyll. Then the powder was subjected to hot continuous percolation using alcohol (50% V/V) for 32h. After completion of extraction, filtered and the solvents were removed by distillation under reduced pressure. The extract was dried in a vacuum desiccator (yield 16.01% W/W). Part of the extract was subjected to preliminary phytochemical screening.

Animals

Swiss adult albino mice of body weights ranging from 25-30 g supplied by The King Institute of Preventive Medicine, Guindy, Chennai were used for the determination of analgesic, anticonvulsant and CNS depressant activity. They were housed in standard microlon boxes and were given standard laboratory diet (Amrut lab animal feed, Sangli -416 436) and water ad libitum.

ANALGESIC ACTIVITY

a) Acetic acid-induced writhing test (Chemical stimulus)

Male albino mice were divided into six groups of 8 mice each. Groupwise, the animals received various doses of AAB i.p. (125,250,375 and 500 mg/kg)22. Control group received normal saline and the reference group received 400 mg/kg aspirin. Drug pre-treatment was given one hour before i.p. injection of 0.06% V/V acetic acid (10ml/kg). The severity of pain response (writhing) was assessed by counting number of wriths (construction of abdomen, turning of trunk and extension of hind legs) in mice. Number of writh per animal was counted during a 15 min series beginning 5 min after the injection of acetic acid.

Analgesic activity was calculated as % maximum possible effect (MPE) using the following relation

\[
\% \text{ MPE} = \frac{100 \times (\text{Mean of wriths in control group} - \text{Mean of wriths in treated groups})}{\text{Mean of wriths in control group}}
\]

b) Tail immersion method (Thermal stimulus)

All the mice were screened by exposure to the thermal stimulation. Those showing positive response were divided into groups of six animals each. Normal saline (control), 125,250,375 and 500 mg/kg AAB, and 1 mg/kg fortral (pentazocine) were administered i.p. The tail (up to 5cm) was then dipped in a water bath at 55 ±0.7°C. The time taken to withdraw the tail clearly out of water was considered as the reaction time with the cut-off time being 60 seconds. The reading was taken immediately after administration of the test drugs, and 60 min later.

Effect of AAB in electrical seizures

Application of electrical – shock (50m A for 0.2 sec) through corneal electrodes produced convulsions and those showing positive response were divided into six group of 8 animals each. AAB (125,250,375 and 500 mg/kg i.p) was administered in four different groups, control and reference groups were received normal saline and phenytoin sodium (25mg/kg) respectively.
Drug pre-treatment was given 30 min prior to the electroshock and animals were observed for the duration of tonic flexion, tonic extensor, clonus, stupor and death/recovery.

LOCOMOTOR ACTIVITY

Albino mice of either sex were divided into five groups of 6 animals each. All the mice were placed individually in a activity cage (INCO) for 10 min. The basal activity score of the animals were noted. 125,250,375 and 500 mg/kg AB was administered i.p to groups of animals; while the animals in the reference group received 3 mg/kg chlorpromazine. After 30 min re-tested each mouse for activity scores for 10 min. Difference between the score before and after drug administration were noted and calculated the percentage decrease in motor activity.

STATISTICAL ANALYSIS

Values are expressed as mean ± SEM and the significance of data obtained was evaluated statistically using the Student’s t-test.

RESULTS:

The preliminary phytochemical analysis showed the presence of alkaloids, amino acids, flavonoids and terpenoids in AAB. Alkaloids, amino acids, flavonoids and terpenoids have earlier been elucidated for their structures. A dose–dependent and significant analgesic activity was exhibited in the acetic acid-induced writhing assay by AAB. AAB (125 to 500 mg/kg) produced a significant (P<0.001) reduction in writhing at the four doses employed; AAB (125 mg/kg), however had very little antinociceptive effect (Table 1). The ED 50 of AAB was works out to 224 mg/kg

DISCUSSION

Prostaglandin (PGs) and Leucotriens (LTs) are the most universally distributed eicosanoids in every cell and tissue. PGs and LTs are synthesized locally by release of arachidonic acid form membrane lipids by phospholipase A2 in response to chemical and mechanical and lipoxygenase are required for the conversion of arachidonic acid to PGs and LTs. PGs elicit pain by direct stimulation of sensory nerve endings and also sensitize sensory nerve endings to other provoking stimuli. LTs also produces hyperalgesia. Inhibition of cyclooxygenase, the enzyme responsible for the biosynthesis of PGs and certain related autocoid is
generally thought be a major facet of the mechanism of action of aspirin \(^{27,28}\). Hence, the mechanism of analgesic action of \textit{A. bidentata} may be due to its inhibitory effect on the synthesis of PGs and LTs.

The maximal electroshock-induced convulsions in animals represents grandmal type of epilepsy. The tonic extensor phase is selectively abolished by the drugs effective in generalized tonic-clonic seizure. The most outstanding action of phenytoin showed abolition of tonic extensor phase of MES seizure. Gamma amino butyric acid is produced from glutamic acid by decarboxylation in brain. It acts as a normal regulator of neuronal activity as an inhibitor of neural transmission. The glutamic acid present in the AAB may increases the brain GABA level and thereby it act as anticonvulsive. Analgesic, anticonvulsant and CNS depressant activity of alcoholic extract of plants have earlier been reported due to the presence of alkaloids, flavonoids, rotenoids and triterpenses \(^{29,30}\). Since it is well known that alkaloids, flavonoids and triterpenes have shown to possess analgesic, anticonvulsant and CNS depressant effects, it may be concluded that the activity of AAB now reported is due to the presence of achyranthine, glutamic acid, oleanolic acid and rutin in \textit{Achyranthes bidentata}.

ACKNOWLEDGEMENT

The authors are grateful to Dr. Jayanta Kumar Gupta, Reader in pharmaceutical Technology, Jadavpur University, Calcutta and Dr. S. Kavimani, Division of Pharmacy, Mother Theras Institute of Health sciences, Pondicherry, for their valuable suggestions.

REFERENCES

1. The wealth of India, “Raw Materials “, Publication and Information Directorate, CSIR, New Delhi, 1, 57(1985).

2. Chopra R.N. “Indigenours Drugs of India” Art Press, Calcutta, 457-462 (1958).

3. Chandra, K. and Pandey, H., Collection of plants around agora-Dodital in Uttarkashi district, at U.P., Medicinal value and folklore claim, INT.J. Crude Drug Res, 21,21,-28 (1983)

4. Kong, Y.C., Hu, SY., Lau, F.K., and Che, C.T., Potential anti-fertility plants from Chinese Medicine, Amer. J. Chinese Herbal Med. 4, 105-126 (1976).

5. Li, C.P., Chinese herbal Medicine, Health , Education and welfare, (NIH), Washington, 75-732 (1974).

6. Kosuge, T., Ishida, H., and Yamazaki, K., Studies on active substances in the herbs used for Oketsu, blood coagulation in Chinese medicine, Yakugaku Zasshi, 104,1050-1053 (1984).

7. Yu, S.C., and Zhang, Y.Z., Effect of achyranthes bidentata polysaccharides on antitumour activity and immune function of S-180 bearing mice, Zhongguo Zhongyao Zasshi, 17, 275-278 (1995).
8. Kosuge, T., Yokoto, M., and Sugiyama, K., studies on antitumour activities and antitumour principles of Chinese herbs, Yakugaku Zasshi, 105,791-795 (1985)

9. Emmanuel selvanagygam, Z., and gnanavendan, S.G., Antisnake venom botanicals from Ethnomedicine, J.Herbs. Spices and Med Plants 2(4), 45-100 (1994).

10. Nguyen T., Nikolov, S., and Nguyen, T.D., Chemical research of the aerial parts of achyranthes bidentata Blume Tap. Chi Duoc. Hoc., 6,17-18 (1995)

11. Yip, T.T. Fung S.C., and Kong Y.C., uteronic activity of Achyanthes bidentata saponins Asian symp. Med Plants spices, 9,63 (1980).

12. Takemoto, T., and Ogawa, S., Constituents of Achyranthes Radix, Yakugahu Zasshi, 88, 1293 – 1297 (1968).

13. Bishit, G., and Sandhu, H., Chemical constituents and antimicrobial activity of achyranthes bidentata, Indian J. Chem.Soc., 67,1002-1003 (1990).

14. Ratra, P.S. Alkaloids in two species of Achyranthes at different stages of their growth, Curr trends life Sci., 4,81-85 (1979).

15. Anoop Austin, Jegadeesan, M. and Subramnnian, S., Pharmacological studies on Lingha chendooram, No.1, A Siddha Drug, Indian Drugs, 36, 285-287 (1999).

16. Vetrichelvan, T., Lakshminarasimhan, C. and Venkatramani, R., Anticonvulsant action of petroleum ether fraction of Cardiospernum halicacabum against electroshock induced convulsions in rats, Ancient science of Life, 19,174-175 (1999).

17. Kirtikar, K.R., and Basu, B.D., “Indian Med. Plants” Bishen Singh Mahendra Pl Singh, Dehradun, 3, 2006-2008 (1995).

18. Duke, J.A., and Ayensu, E.S., “Medicinal Plants of China”. Algonac, Michigan, 52-361 (1985).

19. Bishit, G., Sandhu, H., and Verma, S., Constituents of Achyranthes bidentata, Fitoterapia, 64, 85 (1993).

20. Wasfi, I.A., Bashir, A.K., and Abdulla, A.A., Anti-inflammatory assay of some medicinal plants of the United Arab Emirates, Inter.J. Pharmacog., 33,124-128 (1995).

21. Jong, T.T., and Hwang, C.C., Some rare isoflavones from celosia argentea Planta Medica, 61,584-585 (1995).

22. Yoshizaki, F., Komatsu, T., and Inoue, K., Survey of crude Drugs effective in eliminating superoxides in blood plasma of mice, Inter. J. Pharmacog., 34,277-282 (1996).
23. Koster, R., Anderson, M., and Dee Beer, E.J., Fed Proc., 18 412 (1959).

24. Awe, S.O., Olajida, J.O., and Adeboye, J.O., Some Pharmacological studies on Morinda Iucida, Indian J. Pharmacol., 30,38-42 (1998).

25. Gupta, M., and Kulkarni, S.K., Studies on anticonvulsant actions of L-deprenyl, Indian J. Expt. Biol. 38,332-337 (2000).

26. Kulkarni, S.K., “Hand Book of Exp. Pharmacology”, 3rd edn. Vallabh Prakashan, Delhi, 117-119 (1999).

27. Roth, G.R., and Siok C.J., Acetylation of the amino terminal serine of prostaglandins synthetase by aspirin, J. Biol, Chem., 253,3782-3784 (1978).

28. Cambell, W.B., Lipid-derived autocoids: Eicosanoids and platelet activating factor. In: Gilman A.G., Rall, T.W., Neis, A.S., Taylor, P., Goodman and Therapeutics, 8th edn., New York, Pergamon Press, 607-608 (1991).

29. Pourgholami, M.H., Majzoob, S., and Pimpinella anisum exerts anticonvulsant effects in mice, J. Ethnopharmacol., 18-211-215 (1999).

30. Gupta, M., Mazumdar, U.K. and Bhawal, S.R., CNS activity; of Vitex negundo Linn in mice, Indian J. Expt, Biol., 37, 143-146 (1999).

TABLE -1 EFFECT OF AAB ON ACETIC ACID-INDUCED WRITHINGS

Treatment	Dose (mg/kg)i.p	Mean No. of Wriths ± SEM (15 Min)	Percent Inhibition of Wriths
Saline	5 ml	43.2 ± 1.9	----
Aspirin	400	10.7 ± 0.9	75.23***
AAB	125	29.1 ± 1.3	32.64
AAB	250	22.6 ± 1.2	47.69***
AAB	375	14.7 ± 0.7	65.97***
AAB	500	11.8 ± 0.9	72.69***

***P<0.001 vs Control
Number of animals used + 8 in each group
TABLE -2. EFFECT OF AAB ON LOCOMOTOR ACTIVITY

Treatment	Dose (mg/kg)	Locomotor activity (Scores) in 10 min	% Decreases in activity	
		Before Treatment	After Treatment	
Chlorpromazine	3	127.8 ± 18.4	60.2 ± 8.7	52.89**
AAB	125	143.9 ± 21.3	71.2 ± 10.5	50.52*
AAB	250	155.4 ± 20.2	75.1 ± 9.5	51.67**
AAB	375	166.1 ± 22.3	76.02 ± 9.4	54.23**
AAB	500	161.7 ± 21.8	67.6 ± 8.9	58.19**

*p<0.05; ** p<0.01 vs Control
Number of animals used =6 in each group
Figure 1. EFFECT OF ACHYRANTHES BIDENTATA ON ACETIC ACID-INDUCED WRITHINGS

ED$_{50}$ LOG DOSE = 2.35
DOSE = 224 mg/kg
Figure 2. DOSE RELATED CHANGES PRODUCED BY AAB ON PAIN
THRESHOLD IN THERMAL-INDUCED PAIN

P < 0.01; *P < 0.001 Student's t-test compared with control (n=6)**
Figure 3. Dose related changes produced by AAB on the duration of tonic extensor phase in MES-induced convulsions.

* p < 0.05; ** p < 0.01; *** p < 0.001. Student's t-test compared with control (n=8).