Literature Study on Review Emergency Generator Usage on Landing Craft Tank

Danny Faturachman¹, Muhamad Padil De Manan², Karina A. Sulaeman³

¹Department of Marine Engineering, Darma Persada University, Indonesia
²Alumni of Department of Marine Engineering, Darma Persada University, Indonesia
³Department of English Language and Culture, Darma Persada University, Indonesia

Received: 03 May 2021;
Received in revised form: 01 Jun 2021;
Accepted: 11 Jun 2021;
Available online: 24 Jun 2021
©2021 The Author(s). Published by AI Publication. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Keywords — BKI Regulation, Emergency Generator Package Set, LCT 415 GT

Abstract — The Landing Craft Tank (LCT) is a type of attack landing craft to vessel tanks on the waterfront. In general, LCT 415 Gross Tonnage (GT) ships are not ready to sail using emergency generators. According to Indonesia Classification Bureau or Biro Klasifikasi Indonesia (BKI) rules, only ships with more than 500 GT are required to have an emergency generator package. However, for the LCT 415 GT to gain higher level of safety, the ship is equipped with an emergency generator package installation. This generator is used as an electric power source used by the ship's compass in off condition. The purpose of this study is to learn the electrical power requirements on the LCT 415 GT to determine the required emergency generator package specifications and provide an overview of the generator's placement on the main deck. Emergency generator packages are arranged to improve ship safety, crew and cargo. In emergency condition, LCT 415 GT ships required a total power of 29,940 kW. The basic package of emergency generator set selection is based on the total emergency power following BKI regulations as well as the generator safety engine package set when extreme weather conditions occurs.

I. INTRODUCTION

Generator is auxiliary machine used to supply all electrical need in ship. Generator set is one of the machine that can convert heat energy (combustion result) to be mechanical energy (motion). The fuel is solar (low rate oil). To burn that oil, high pressured air is used. To generate electricity, diesel machine uses diesel power motion - based on generator. In a ship, generator set is used as main source of electrical devices like lamp, navigation equipment, pump, etc.

Black out condition in ship appeared when complete failure of electrical power brings the ship into a standstill. Main source of electrical fails to be operated. If this happens, emergency generator is needed to supply electrical power to vital equipments of the ship. According to BKI regulation Vol. IV Section 3, a ship with 500 GT is required to install emergency generator for emergency condition. Actually, LCT 415 GT is not required to install emergency generator set. Yet it is allowed for safety reason. System in emergency generator has to be set automatically active to avoid long blackout to occur.

II. LITERATURE STUDY

2.1 Engine Combustion System

Based on classification, it is divided into four, they are:

a. Based on utility

The engine is categorized based on where it is used, like for ship propulsion and as assisting tool for the ship, for generator, compressor and pump in industry. On
international scale engine combustion system to generate power will be adapted for high level automotive industry producer, traction and maritime engine.

b. Based on speed
This classification is generally used due to its tocranshaft axis rotation at its base that determines weight and size of engine related to the output.

c. Based on design.
Engine can be sub classified with related to its design feature that is:

a. Work cycle: four-strokes or two-strokes
b. Piston: action/piston connection
c. Cylinder: The way the air is put into cylinder (on ambient or high pressure)
 The way the air is put into cylinder (either in ambient or or high pressure)
d. Based on size
Classification based on size is related to many factors like cylinder dimension, cylinder number, speed and average of effective pressure.

2.2 Work cycle
The combustion can be by self igniting or by indirectly. Ignition compression and engine sparks can be arranged in one of those two cycles. In diagram, this can be explained in Figure 1 and Figure 2; along with appropriate indicator diagram depicting what is occurring in engine cylinder in every cycle. In four strokes, fuel ignition happens in every other crank shaft axis revolution engine that this cycle works from its fuel during one stroke in four strokes (Figure 2). Strokes work in once every two cycles. On the other hand two stroke engine has excellent motion in every crank shaft axis rotation (Figure 2). Yet two stroke engine generally is lighter and smaller than four stroke engine with same output.

Because two stroke engine has twice power, so four stroke engine produces twice power as well down stroke two stroke engine combines power & exhaustion of steam. During port intake and exhaust is cleaned by piston, fresh air and burnt gas is mixed. Not all gas is totally burnt, that prevent bigger fresh air to be inducted into cylinder. That’s why stroke load produced has fewer pushing power.

In four stroke engine almost all burnt gas will be forced to exit burning area by upward moving piston. This will make almost air-fuel mixture fulled to enter cylinder due to piston stoke, because piston stroke is specialized for mixture induction. Therefore, power stroke produces relatively more power than two-cycle counterpart.

2.3 Generator
Generator is electrical device that converts motive power (mechanical energy) into electrical energy by applying magnetic induction principle. Type of generators are AC generator and DC generator.

a. Generator AC
Magnetic induction principle is a conductor that is moved in magnetic field so that it cuts magnetic flux to create voltage. This condition generates electricity in cycle: +0 -0 (AC) or called alternator. It is a device to convert mechanical energy into electrical energy with magnetic field induction as intermediary. Basic principle of
AC generator is Faraday Law stating that if circuits conductor is in alternating magnetic field, electricity movement will reformed. AC Electricity is generated from electromagnetic induction, a wire close to permanent magnetic pole rotating at its axis so electrical voltage at the edge of the circuit will appear shown by Volt meter, Volt meter indicator will move right to left showing positive or negative polarity. This changing energy occurs due to changing magnetic field in coil, location of voltage in generator. Field coil in AC generator is at its rotor; coil jacket is at stator. Shown in following picture:

![Generator AC](image1)

Fig.3. Generator AC with Rotor to produce electrical voltage

Generator of one axis with diesel motor, usually uses alternator to generate power. This Generator has high capacity, its magnetic field is rotating because it is located at rotor. Next is construction of AC generator:

1. Stator frame
2. Stator
3. Rotor
4. Sliding ring
5. Strengthening generator

Poles will generate rotating magnetic field. This Generator is called internal pole generator, shown in Figure 4.

![Construction of Magnetic pole generator](image2)

Fig.4. Construction of Magnetic pole generator

b. DC Generator

DC Generator is a mechanical energy converting device that is rotation to be direct current electrical energy. Mechanical energy is used to rotate coil in magnetic field. Usually ship using AC generator or called alternator shown in following picture:

![DC generator with Rotor to generate voltage and coil as electrical conductor](image3)

Fig.5: DC generator with Rotor to generate voltage and coil as electrical conductor

2.4 Similarities and Differences of AC and DC Generators

Both have basic construction that is conductor to produce voltage and part that produces magnetic field. Every generator has rotor and stator to represent both. Rotor is rotating and stator is static. In DC generator rotor generates voltage, while in AC generator AC generator both, rotor and stator generates voltage.

AC generator with rotor to generate voltage, construction is almost similar with DC generator, but produced voltage is not in direct with commutator but to slip ring and electric current is flowing to stator. This type of Generator usually is used for not so big electrical supply. For AC generator to produce voltage, current is flowing to rotor until rotating field occurs in rotor. Advantage of this system is produced voltage can be combined with electrical load and also to reduce short circuit due to not using slip ring or charcoal brush as conductor because both are difficult for isolation.

Generator Set

Generator set is to convert mechanical energy to electrical energy, therefore generator rotor needs to be rotated. Mechanical energy source can be water turbine, steam turbine, motor diesel. Integration of generator and its mechanical energy is called generator set.

Black Out/Emergency condition in ship

Black Out is when electrical supply is interrupted due to oversupply, under supply or electrical current is too high or too big, for example main genset and controlling system
a panel are damaged, short circuit happens, etc.

2.6 Regulation of Biro Klasifikasi Indonesia (BKI)/
Indonesian Classification Bureau

Biro Klasifikasi Indonesia (BKI) is a national classification agency that is to make classification of commercial ship and foreign ship operating regularly in Indonesia. BKI was established to set up technical standard in ship’s design and construction and maritime survey related to floating facility including ship and offshore facility. BKI conducts classification based on engine hull construction and electrical installation in order to evaluate ship’s ability to sail/operate.

III. RESEARCH METHODOLOGY

The research uses descriptive method based on:

1. Data Gathering.
 By requesting data to ship owner of Trijaya Bravo 415 GT.

2. Data analysis

Acquired data is used as reference to conduct ship design literature study. Then data will be processed in Excel to obtain electrical load calculation for LCT 415 GT. This data is used to choose appropriate generator package set.

IV. RESEARCH AND DISCUSSION

4.1 Data of ship

Data for final assignment is gathered from owner of the ship:

1. Ship Name: LCT. TRIJAYA BRAVO
2. Ship Type: Ships for the Carriage of Craft tank
3. Length Over All: 56,15 M
4. Length Water Line: 52,00 M
5. Length Between P.: 50,50 M
6. Breadth Moulded: 9,40 M
7. Depth Moulded: 2.85 M
8. Gross Tonage: 415 Ton
9. Main Generator: 2 Units gensets operated, AC 380V/220V, 3Ph, 50Hz 4 Wire 100 Kw, 125KVA, 190A

4.2 Result of Load Need Calculation Analysis in Emergency Condition

No.	Equipment	Load (kw)	Number	Total Load (kw)	Brand	Type
1	Radio equipment	0,5	1	0.500	JRC	JSS-2500
2	Giro compass and pilot	0,05	1	0.050	JRC	APLHATRON
3	Echo Sounder	0,3	1	0.300	Furono	LS 6100
4	General Alarm	0,05	1	0.050	Aqua larm	
5	Integrated Communication	0,06	1	0.060	JRC	Aplha connect 48
6	Radar	4	1	4.000	JMA	JMA-1032
7	AIS and motor horn	0,05	1	0.050	JRC	JHS-183
	Navigation Devices			5.010		
1	Mast Head Light	0,04	1	0.040	WISKA	AS-760-WH-24-PB
2	Anchor Light	0,01	1	0.010	EVAL	
3	Port Side Light (red)	0,0008	1	0.008	OSCULATI	
---	-------	-----	-----	--------	--------	
4	Stern Light	0.13	1	0.130	WISKA DAS-760-WH-230/230-PB	
5	Star Board Side Light (green)	0.025	1	0.025	VETUS SB55VN	
6	Morse Light	0.01	1	0.010	PERKO	
7	Search Light	1	1	1.000	HALOGEN PSHR-1K	
8	Emergency Lightning	0.048	20	0.960	KHI Ex-KSF481200	
	Navigation Lightning			2.175		
9	Fire and smoke detector	0.0035	10	0.035	Squashni	
10	Fire alarm system	0.37	1	0.370	Minerva	
	Alarm & Detector			0.405		
11	Exhaust Blower Fan	1.5	2	3.000	Hi-Sea CWL-180G	
12	Supply Blower Fan	2.2	2	4.400	Hi-Sea CWL-200G	
	Ventilation Engine Room			7.400		
13	Exhaust Blower Fan	0.06	1	0.060	Hi-Sea CWL-100D	
14	Supply Blower Fan	0.09	1	0.090	Hi-Sea CWL-100G	
	Ventilation For Galley			0.150		
15	Exhaust Blower Fan	0.12	1	0.120	Hi-Sea CWL-160D	
16	Supply Blower Fan	0.37	1	0.370	Hi-Sea CWL-180D	
	Ventilation Steering Room			0.500		
17	Transfer Fuel Pump	1.5	1	1.500	Azcue CA-80/7A	
18	Oily Water Separator	0.8	1	0.800	RWP-VEOLIA 0.1	
19	Public Utility & Fire Pump	4	3	12.000	Azcue CA-50/5A	

TOTAL 14,300

TOTAL 29,940 kW

4.3 Choosing of Emergency Generator Set

Emergency generator set is assisting device to convert mechanical energy into electrical energy in emergency condition. Basic consideration to choose emergency generator set is because total voltage of ship needed during emergency based on BKI Volume IV Section is 3 29,940 kW Power Supply Installation, total voltage needed of LCT 415 GT during emergency is 29,940 kW. Perkins emergency generator set has specification voltage of 30
kW in 3-phase system. This indicates that this generator to be emergency generator package set for ship LCT 415 GT. This machine has casing to ensure safety of generator machine in extreme weather. Below is specification of Perkins generator package set.

![Fig.6. Perkins Emergency Generator Set](image)

Table 2. Perkins Specification of Emergency Generator Set

Engine Maker	Perkins	
Model	1103A-33G	
Engine Speed	RPM	
	1800	
Engine Power Output at rated rpm	kWm	36.5
	HP	
	48.9	
Cooling	Radiator Cooled	
Aspiration	Natural	
Total Displaceme nt	Liter	3.3
No. of Cylinders andBuild	3-inline	
Bore and Stroke	mm x mm	105 x 127
Compression Ratio	19 : 25 : 1	
Governor	Mechanical	
Fuel	Full Load	
	8.6	
Consumpti on(L/hr)	75% Load	6.6
	50 % Load	
	4.9	
Fuel Tank Capacity (Non-UL)	Liter	130 Open / 180 SAE
Oil Capacity	Liter	
	8.3	
Coolant Capacity	Liter	10.2
Radiator Cooling Air	m³/min	70

General Arrangement

General arrangement is planning of room/space based on its function and equipment facility. For example cargo space, accomodation room, machine room, etc. Besides, this planning covers location of room and its access. According to Ship Design and Construction, it is divided into four:

a. Decision of main room location

b. Decision of its boundary

c. Decision to choose exact equipment

d. Decision of its access.

Based on acquired data, LCT 415 GT has design of general arrangement shown in Figure 7. This design represents ship prior to using generator set.

![Fig.7: General Rearrangement of LCT. 415 GT](image)

Source: P.T. Indoliziz Marine
Based on planning, generator package set will be put in main deck. Main deck is open area for easy access to operate generator in emergency condition. Below is modification of generator arrangement of LCT 415 GT after the installment of generator package set.

Fig.8: Modification of General Arrangement of LCT. 415 GT

Source: PT Indoliziz Marine

V. CONCLUSION

Ship of LCT 415 GT needs total emergency power of 29,940 kW. There is modification of LCT 415 one line diagram due to emergency generator package set installment. Reason of emergency generator package set is based on total emergency power according to BKI regulation and the safety of generator engine package set in extreme weather. Emergency generator package set for this pLCT 415 GT is put at open deck that is in line with BKI regulation so it can be accessed if there is fire or other incident.

REFERENCES

[1] Alfith. (2017). TDR based-ATS Optimization (Automatic Transfer Switch) on Genset (Generator Set) 2800 Watt. National Seminar on role of science beyond future (pp. 226-232). Padang: Institute Technology of Padang.

[2] American National Standard Institute. (1966). Electrical and Electronics Diagrams. New York: The American Society of Mechanical Engineers.

[3] BKI. (2019). Rules. Jakarta: Biro Klasifikasi Indonesia.

[4] Bunga, P. M. (2015). Design of long distance load control using Smart Relay. E-Journal of Electrical Engineering dan Komputer science, 4(5).

[5] Chen, K. W. (2004). The Electrical Engineering Handbook. Chicago:ElSevier Academic Press.

[6] Goh, H. H. (2017, October). Types of Circuit Breaker and its Applicationin Substation Protection. Indonesian Journal of Electrical Engineering and Computer Science. doi:10.1159/IJEECS vol. 8.i1. pp 213-220

[7] Hidayah, A. (2007). Design of Genset installation unit in di PT Aichi TexIndonesia. State Polytechnic of Bandung.

[8] Mahon, L. L. (1992). Diesel Generator Handbook. Oxford: Elsevier Butterworth, Heinemann.

[9] Putra, H. P. (2015). Analysis of Emergency Generator Performance Decline on Blackout of Ship MV. SHANTI INDAH. Poly technic of marine science, ship’s machine and maintenance major, diploma IV.

[10] Sakura, A. (2017). Design and making of Generator as Nino hydro Electrical Energy Resource. Faculty of pure science (math and natural science), University of Lampung, Bandar Lampung.

[11] Sheldrake, L. A. (2003). Handbook of Electrical Engineering. Chichester, England: Wiley.