THE BRAUER GROUP OF $\mathcal{M}_{1,1}$ OVER ALGEBRAICALLY CLOSED FIELDS OF CHARACTERISTIC 2

MINSEON SHIN

Abstract. We prove that the Brauer group of the moduli stack of elliptic curves $\mathcal{M}_{1,1,k}$ over an algebraically closed field k of characteristic 2 is isomorphic to $\mathbb{Z}/(2)$. We also compute the Brauer group of $\mathcal{M}_{1,1,k}$ where k is a finite field of characteristic 2.

1. Introduction

Let $\mathcal{M}_{1,1,Z}$ denote the moduli stack of elliptic curves over \mathbb{Z}. For any scheme S, we denote by $\mathcal{M}_{1,1,S} := S \times_{Z} \mathcal{M}_{1,1,Z}$ the restriction of $\mathcal{M}_{1,1,Z}$ to the category of schemes over S.

Antieau and Meier [AM16, 11.2] computed the Brauer group $\text{Br} \mathcal{M}_{1,1,S}$ for various base schemes S, and in particular proved that for any algebraically closed field k of characteristic not 2 the Brauer group $\text{Br} \mathcal{M}_{1,1,k}$ is trivial. The purpose of this note is to compute $\text{Br} \mathcal{M}_{1,1,k}$ in the characteristic 2 case. This then completes the calculation of $\text{Br} \mathcal{M}_{1,1,k}$ over algebraically closed fields k. We summarize the result in the following theorem.

Theorem 1.1 ([AM16, 11.2] in char $k \neq 2$). Let k be an algebraically closed field. Then $\text{Br} \mathcal{M}_{1,1,k}$ is 0 unless char $k = 2$, in which case $\text{Br} \mathcal{M}_{1,1,k} = \mathbb{Z}/(2)$.

To prove the theorem, we calculate the cohomology groups $H^2_{\text{ét}}(\mathcal{M}_{1,1,k}, \mu_n)$ for varying n. There are essentially two ways to approach this calculation: (1) using the coarse moduli space; (2) using a presentation of $\mathcal{M}_{1,1,k}$ as a quotient stack. In this paper we give a new proof of the Antieau-Meier result using approach (1), and calculate in characteristic 2 using approach (2).

We also compute the Brauer group of $\mathcal{M}_{1,1,k}$ where k is a finite field of characteristic 2:

Theorem 1.2. Let k be a finite field of characteristic 2. Then

$$\text{Br} \mathcal{M}_{1,1,k} = \begin{cases} \mathbb{Z}/(12) \oplus \mathbb{Z}/(2) & \text{if } x^2 + x + 1 \text{ has a root in } k \\ \mathbb{Z}/(24) & \text{otherwise.} \end{cases}$$

An outline of the paper is as follows.

In Section 2 we state definitions and recall general facts about the Brauer group of algebraic stacks.

In Section 3 we record some general remarks regarding $\text{Br} \mathcal{M}_{1,1,S}$. We show that if S is a quasi-compact scheme admitting an ample line bundle and if at least one prime is invertible on S, then $\text{Br} \mathcal{M}_{1,1,S} \simeq \text{Br} \mathcal{M}_{1,1,S}$. The restriction of $\mathcal{M}_{1,1,Z}$ to the dense open substack of elliptic curves E/S with j-invariant $j(E) \in \Gamma(S, \mathcal{O}_S)$ for which $j(E)$ and $j(E) - 1728$ are invertible is a trivial $\mathbb{Z}/(2)$-gerbe over the coarse space $\mathbb{A}^1_Z \setminus \{0, 1728\}$, and we use this fact.

Date: February 28, 2018.
to conclude that Br $\mathcal{M}_{1,1,k}$ is a subgroup of $\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$ for an algebraically closed field k of arbitrary characteristic.

In Section 4 we give a second proof of Antieau and Meier’s result above (that Br $\mathcal{M}_{1,1,k} = 0$ if $k = \overline{k}$ and char $k \neq 2$). Using a dévissage argument, we study the relationship between the cohomology of μ_n on the stack $\mathcal{M}_{1,1,k}$ and on \mathbb{A}^1_k, in terms of the stabilizer groups of elliptic curves with j-invariant $0, 1728 \in \mathbb{A}^1_k$. This may be of independent interest for computing the Brauer groups of other separated Deligne-Mumford stacks whose coarse moduli space is a smooth curve over an algebraically closed field with vanishing Picard group.

In Section 5 we prove Theorem 1.1 and Theorem 1.2. Antieau and Meier suggest in [AM16, 11.3] that the characteristic 2 case can be settled using the GL smooth curve over an algebraically closed field with vanishing Picard group.

1.3 (Acknowledgements). I thank my advisor Martin Olsson for suggesting this research topic and for his generosity in sharing his ideas. I am also grateful to Benjamin Antieau, Siddharth Mathur, and Lennart Meier for helpful discussions. During this project, I received support from the Raymond H. Sciobereti Fellowship.

2. The Brauer group of algebraic stacks

Let (X, \mathcal{O}_X) be a locally ringed site [Gir71, V, §4], [Sta18 04EU]. For any quasi-coherent \mathcal{O}_X-module \mathcal{E}, we set $\text{GL}(\mathcal{E}) := \text{Aut}_{\mathcal{O}_X}^{\mathcal{mod}}(\mathcal{E})$ and let $\text{PGL}(\mathcal{E})$ be the sheaf quotient of $\text{GL}(\mathcal{E})$ by $\mathbb{G}_{m,X}$ via the diagonal embedding. We denote $\text{GL}_n(\mathcal{O}_X) := \text{GL}(\mathcal{O}_X^{\oplus n})$ and $\text{PGL}_n(\mathcal{O}_X) := \text{PGL}(\mathcal{O}_X^{\oplus n})$. A basic fact about these groups is the Skolem-Noether theorem, which states that the morphism

$$\text{PGL}_n(\mathcal{O}_X) \to \text{Aut}_{\mathcal{O}_X}^{\mathcal{alg}}(\text{Mat}_{n \times n}(\mathcal{O}_X))$$

is an isomorphism (see [Gir71 V.4.1]).

Definition 2.1 (Azumaya algebras). [Gro68a §2], [Gir71 V, §4] Let (X, \mathcal{O}_X) be a locally ringed site. An Azumaya \mathcal{O}_X-algebra is a quasi-coherent (non-commutative, unital) \mathcal{O}_X-algebra \mathcal{A} such that there exists a covering $\{X_i \to X\}_{i \in I}$, positive integers n_i, and \mathcal{O}_X-algebra isomorphisms $\mathcal{A}|_{X_i} \simeq \text{Mat}_{n_i \times n_i}(\mathcal{O}_{X_i})$.

Two Azumaya algebras \mathcal{A}_1 and \mathcal{A}_2 are Morita equivalent if there exist finite type locally free \mathcal{O}_X-modules \mathcal{E}_1 and \mathcal{E}_2, everywhere of positive rank, and an isomorphism

$$\mathcal{A}_1 \otimes_{\mathcal{O}_X} \text{End}_{\mathcal{O}_X}^{\mathcal{mod}}(\mathcal{E}_1) \simeq \mathcal{A}_2 \otimes_{\mathcal{O}_X} \text{End}_{\mathcal{O}_X}^{\mathcal{mod}}(\mathcal{E}_2)$$

of \mathcal{O}_X-algebras. Under tensor product of Azumaya algebras, Morita equivalence classes of Azumaya algebras form an abelian group $\text{Br}(X)$ called the (Azumaya) Brauer group of X in which $[\mathcal{A}]^{-1} = [\mathcal{A}^{\text{op}}]$ and the identity element is the class of trivial Azumaya algebras $[\text{End}_{\mathcal{O}_X}^{\mathcal{mod}}(\mathcal{E})]$.
Definition 2.2 (Gerbe of trivializations). [Gir71 IV, §4.2], [Ols16 12.3.5] There is a natural way to associate, to every Azumaya \(O_X \)-algebra \(\mathcal{A} \), a \(\mathbb{G}_m \times_X \)-gerbe \(\mathcal{G}_\mathcal{A} \) called the *gerbe of trivializations of \(\mathcal{A} \).* An object of \(\mathcal{G}_\mathcal{A} \) is a triple
\[
(U, \mathcal{E}, \sigma)
\]
consisting of an object \(U \in X \), a finite type locally free \(O_U \)-module \(\mathcal{E} \) (necessarily everywhere positive rank), and an isomorphism \(\sigma : \text{End}_{O_U \text{-mod}}(\mathcal{E}) \to \mathcal{A}|_U \) of \(O_U \)-algebras. A morphism \((f, f^\sharp) : (U_1, \mathcal{E}_1, \sigma_1) \to (U_2, \mathcal{E}_2, \sigma_2)\) consists of a morphism \(f \in \text{Mor}_X(U_1, U_2) \) and an isomorphism \(f^\sharp : f^* \mathcal{E}_2 \to \mathcal{E}_1 \) of \(O_{U_1} \)-modules such that \(\sigma_2 = \sigma_1 \circ \rho_f^\sharp \) where \(\rho_f^\sharp \) denotes conjugation by \(f^\sharp \). For any object \((U, \mathcal{E}, \sigma) \in \mathcal{G}_\mathcal{A}\), there is a canonical injection \(\iota(U, \mathcal{E}, \sigma) : \mathbb{G}_m, U \to \text{Aut}_{(U, \mathcal{E}, \sigma)} \) of sheaves on \(X/U \), sending \(u \mapsto (\text{id}_U, u) \); this is in fact an isomorphism, since if \((\text{id}_U, f^\sharp) \in \text{Aut}_{\mathcal{G}_\mathcal{A}(U)}((U, \mathcal{E}, \sigma))\) then \(f^\sharp \in Z(\text{End}_{O_U \text{-mod}}(\mathcal{E})) \), which coincides with \(O_U \) since \(Z(\text{Mat}_{n \times n}(A)) = A \) for any commutative, unital ring \(A \).

By the Skolem-Noether theorem, any two local trivializations of \(\mathcal{A} \) are locally related by an automorphism of the trivializing vector bundle \(\mathcal{E} \), i.e. any two objects of \(\mathcal{G}_\mathcal{A} \) are locally isomorphic. Furthermore, according to the definition, an Azumaya algebra is locally trivial, i.e. for any \(U \in X \) there exists a covering \(\{ U_i \to U \} \) such that the fiber category \(\mathcal{G}_\mathcal{A}(U_i) \) is nonempty. These considerations show that \(\mathcal{G}_\mathcal{A} \) is a \(\mathbb{G}_m \times_X \)-gerbe.

The assignment \(\mathcal{A} \mapsto \mathcal{G}_\mathcal{A} \) induces a group homomorphism
\[
\alpha'_X : \text{Br} X \to H^2(X, \mathbb{G}_m, X)
\]
which is injective since a \(\mathbb{G}_m \times_X \)-gerbe \(\mathcal{G} \) is trivial if and only if \(\mathcal{G}(X) \) is nonempty.

For a morphism \((f, f^\sharp) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)\) of locally ringed sites, the diagram
\[
\begin{array}{ccc}
\text{Br} X & \xrightarrow{\alpha'_X} & H^2(X, \mathbb{G}_m, X) \\
\uparrow f^* & & \uparrow f^* \\
\text{Br} Y & \xrightarrow{\alpha'_Y} & H^2(Y, \mathbb{G}_m, Y)
\end{array}
\]
is commutative.

Lemma 2.3. Let \(\mathcal{X} \) be a \(\mathbb{G}_m \times_X \)-gerbe over a locally ringed site \(X \). The class \([\mathcal{X}] \in H^2(X, \mathbb{G}_m, X)\) is in the image of \(\alpha'_X \) if and only if \(\mathcal{X} \) admits a 1-twisted finite locally free sheaf of everywhere positive rank.

The usual proof (c.f. [dJ03 2.14], [Lie08 3.1.2.1], [Ols16 12.3.11]) of Lemma 2.3 applies more generally to the case of \(\mathbb{G}_m \)-gerbes over an arbitrary locally ringed site.

We will only consider locally ringed sites \((X, \mathcal{O}_X)\) whose underlying site \(X \) is quasi-compact [Sta18 090G]. For such \(X \), the Brauer group \(\text{Br} X \) is a torsion group.
Definition 2.4. The torsion subgroup of $\text{H}^2(X, \mathbb{G}_m, X)$, denoted $\text{Br}' X$, is called the cohomological Brauer group and the restriction

\begin{equation}
\alpha_X : \text{Br} X \to \text{Br}' X
\end{equation}

of α'_X to $\text{Br}' X$ is called the Brauer map.

We will consider algebraic stacks using the étale topology except in Section 5 (the case of characteristic 2) in which we will require the flat topology.

Surjectivity of the Brauer map may be checked on a finite flat surjective covering (c.f. [Gab78 II, Lemma 4], [dJ03 2.15], [Lie08 3.1.3.5]):

Proposition 2.5. Let $f : X \to Y$ be a finitely presented, finite, flat, surjective morphism of algebraic stacks. A class $\beta \in \text{H}^2(Y, \mathbb{G}_m, Y)$ is in the image of α'_Y if and only if its pullback $f^* \beta \in \text{H}^2(X, \mathbb{G}_m, X)$ is in the image of α'_X.

Proof. Let \mathcal{Y} be the \mathbb{G}_m,Y-gerbe corresponding to β. Set $\mathcal{X} := X \times_Y \mathcal{Y}$ and let $F : \mathcal{X} \to \mathcal{Y}$ be the induced morphism of algebra stacks. If \mathcal{X} is in the image of α'_X, then there exists a 1-twisted finite locally free \mathcal{O}_X-module \mathcal{E} of everywhere positive rank. The pushforward $F_* \mathcal{E}$ is a 1-twisted, finite locally free \mathcal{O}_Y-module of everywhere positive rank. Hence \mathcal{Y} is in the image of α'_Y.

The other direction follows from commutativity of the diagram (2.2.2) \qed

Corollary 2.6. Let $f : X \to Y$ be a finitely presented, finite, flat, surjective morphism of algebraic stacks. If α_X is an isomorphism, then α_Y is an isomorphism.

Corollary 2.7. Let X be a smooth separated generically tame Deligne-Mumford stack over a field k with quasi-projective coarse moduli space. Then the Brauer map α_X is surjective.

Proof. By Kresch-Vistoli [KV04 2.1.2.2], such X has a finite flat surjection $Z \to X$ where Z is a quasi-projective k-scheme. By Gabber’s theorem (see [dJ03 1.1]), the Brauer map is surjective for Z. Thus the Brauer map is surjective for X by Proposition 2.5 \qed

Remark 2.8. If $\text{char} k \neq 2$, the stack $\mathcal{M}_{1,1}$ is generically tame and so [Corollary 2.7] implies surjectivity of the Brauer map $\alpha_{\mathcal{M}_{1,1}}$. For the case $\text{char} k = 2$, see [Lemma 3.1].

3. Preliminary observations

The purpose of this section is to prove [Lemma 3.1] below. Let us start, however, with a few preliminary observations about the stack $\mathcal{M}_{1,1}$ and its Brauer group.

The stack $\mathcal{M}_{1,1}$ is a Deligne-Mumford stack smooth and separated over \mathbb{Z} [Ols16 13.1.2]; hence if S is a regular Noetherian scheme then $\mathcal{M}_{1,1,S}$ is a regular Noetherian stack. For any locally Noetherian scheme S, the morphism

$$\pi : \mathcal{M}_{1,1,S} \to \mathbb{A}^1_S$$

sending an elliptic curve to its j-invariant identifies \mathbb{A}^1_S with the coarse moduli space of $\mathcal{M}_{1,1,S}$ [FO10 4.4].

In general, if \mathcal{X} is a separated Deligne-Mumford stack and $\pi : \mathcal{X} \to X$ is its coarse moduli space, then π is initial among maps from \mathcal{X} to an algebraic space, so the map $X(G) \to \mathcal{X}(G)$ is an isomorphism for any group scheme G; moreover if $U \to X$ is an étale morphism, then $\pi_U :$
$\mathcal{X} \times_X U \to U$ is a coarse moduli space. Applying these observations to $\mathcal{G} = \mathbb{G}_a, \mathbb{G}_m, \mu_n$ implies that the canonical maps $\mathcal{O}_X \to \pi_\ast \mathcal{O}_X, \mathcal{G}_{m,X} \to \pi_\ast \mathcal{G}_{m,X}, \mu_{n,X} \to \pi_\ast \mu_{n,X}$ are isomorphisms; thus we will omit subscripts and denote μ_n, \mathbb{G}_m for the corresponding sheaves on either $\mathcal{M}_{1,1,S}$ or \mathbb{A}^1_S.

Lemma 3.1. Let S be a quasi-compact scheme admitting an ample line bundle, and suppose that at least one prime p is invertible in S. Then the Brauer map $\alpha_{\mathcal{M}_{1,1,S}} : \text{Br} \mathcal{M}_{1,1,S} \to \text{Br}' \mathcal{M}_{1,1,S}$ is an isomorphism.

Proof. By [KM85, 4.7.2], for $N \geq 3$ the moduli stack of full level N structures is representable by an affine $\mathbb{Z}[\frac{1}{N}]$-scheme $Y(N)$. Set $Y(N)_S := Y(N) \times_{\mathbb{Z}[\frac{1}{N}]} S$; the projection $Y(N)_S \to S$ is an affine morphism, hence $Y(N)_S$ is quasi-compact and admits an ample line bundle, hence the Brauer map $\alpha_{Y(N)_S}$ is surjective by Gabber’s theorem (see [dJ03]), and, since the map $Y(N)_S \to \mathcal{M}_{1,1,S}$ is finite locally free, we have by Corollary 2.6 that $\alpha_{\mathcal{M}_{1,1,S}}$ is surjective. \square

Lemma 3.2. Let $U := \text{Spec} \mathbb{Z}[t, (t(t - 1728))^{-1}] \subset \mathbb{A}^1_\mathbb{Z}$ and let $\mathcal{M}_{0,1,Z} := U \times_{\mathbb{A}^1_\mathbb{Z}} \mathcal{M}_{1,1,Z}$. Then the restriction $\pi^0 : \mathcal{M}_{0,1,Z} \to U$ of π to U is a trivial $\mathbb{Z}/(2)$-gerbe, i.e. $\mathcal{M}_{0,1,Z} \simeq \mathcal{B}(\mathbb{Z}/(2))_U$.

Proof. Let S be a scheme and let E_1, E_2 be two elliptic curves over S. If $j(E_1) = j(E_2) \in \Gamma(S, \mathcal{O}_S)$ and $j(E_1), j(E_2) \neq 1728$ are units of $\Gamma(S, \mathcal{O}_S)$, then by [Del75, 5.3] one can find a finite étale cover $S' \to S$ such that there is an isomorphism $S' \times_S E_1 \simeq S' \times_S E_2$ of elliptic curves over S'. For any connected scheme S and an elliptic curve E/S for which $j(E)$ and $j(E) - 1728$ are invertible, we have $\text{Aut}(E/S) \simeq \mathbb{Z}/(2)$ by [KM85, (8.4.2)]. It suffices now to show that there is an elliptic curve E_U over U with j-invariant t. For this we may take the elliptic curve E_U defined by the Weierstrass equation

$$Y^2 Z + X Y Z = X^3 - \frac{36}{t - 1728} X Z^2 - \frac{1}{t - 1728} Z^3$$

which satisfies $\Delta(E_U) = \frac{t^2}{(t - 1728)^3}$ and $j(E_U) = t$ (see [Sil09, Proposition III.1.4(c)]). \square

Lemma 3.3. Let k be an algebraically closed field and let U be a smooth curve over k. If $\text{Pic}(U) = 0$, then $\text{Br}' \mathcal{B}(\mathbb{Z}/(2))_U \simeq (\mathbb{G}_m(U))/(2)$.

Proof. The cohomological descent spectral sequence associated to the cover $U \to \mathcal{B}(\mathbb{Z}/(2))_U$ is of the form

$$E_2^{p,q} = H^p(\mathbb{Z}/(2), H^q_{\text{ét}}(U, \mathbb{G}_m)) \implies H^{p+q}_{\text{ét}}(\mathcal{B}(\mathbb{Z}/(2))_U, \mathbb{G}_m)$$

with differentials $E_2^{p,q} \to E_2^{p+2, q-1}$. We have by [Mil80, III.2.22 (d)] that $H^q_{\text{ét}}(U, \mathbb{G}_m) = 0$ for all $q \geq 2$. Moreover, we have $H^0_{\text{ét}}(U, \mathbb{G}_m) = \text{Pic}(U) = 0$ by assumption. Thus the only row of the E_2-page of (3.3.1) containing nonzero entries is $q = 0$, which gives an isomorphism

$$H^0_{\text{ét}}(\mathcal{B}(\mathbb{Z}/(2))_U, \mathbb{G}_m) \simeq H^2(\mathbb{Z}/(2), H^0_{\text{ét}}(U, \mathbb{G}_m)) \simeq (\mathbb{G}_m(U))/(2)$$

of abelian groups. \square

Lemma 3.4. Let k be an algebraically closed field. If $\text{char } k \neq 2, 3$, then $\text{Br}' \mathcal{M}_{1,1,k}$ is a subgroup of $\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$. If $\text{char } k$ is 2 or 3, then $\text{Br}' \mathcal{M}_{1,1,k}$ is a subgroup of $\mathbb{Z}/(2)$.

Proof. We have that $\mathcal{M}_{1,1,k}$ is regular Noetherian and that $\mathcal{M}_{1,1,k} := \mathcal{M}_{1,1,Z} \times_Z k$ is a dense open substack; thus by [AM16, 2.5(iv)] the map $\text{Br}' \mathcal{M}_{1,1,k} \to \text{Br}' \mathcal{M}_{1,1,k}$
induced by restriction is an injection. Here \([\text{Lemma 3.2}]\) implies \(\text{Br}'\mathcal{M}_{1,1,k} = \text{Br}'\mathbb{B}(\mathbb{Z}/(2))_U\) for \(U = \text{Spec} k[t, (t(t - 1728))^{-1}]\), and \([\text{Lemma 3.3}]\) implies \(\text{Br}'\mathbb{B}(\mathbb{Z}/(2))_U\) is \(\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)\) if \(\text{char } k \neq 2, 3\) and \(\mathbb{Z}/(2)\) otherwise (here we use that \(k^\times = (k^\times)^2\) since \(k\) is algebraically closed).

\[\square\]

4. The case \(\text{char } k\) is not 2

Antieau and Meier [AM16] compute the Brauer group \(\text{Br}\mathcal{M}_{1,1,S}\) for various base schemes \(S\), including algebraically closed fields \(k\) of odd characteristic [AM16, 11.2] (the case \(\text{char } k \neq 2\) in Theorem 1.1). In this section we give a proof via a dévissage argument, using the fact that the coarse moduli space morphism \(\pi : \mathcal{M} \to \mathbb{A}^1_k\) is a trivial \(\mathbb{Z}/(2)\)-gerbe away from \(0, 1728 \in \mathbb{A}^1_k\) (see \([\text{Lemma 3.2}]\)). Our proof is divided into two cases, depending on whether \(\text{char } k = 3\) or \(\text{char } k \neq 3\) (this will determine whether we puncture \(\mathbb{A}^1_k\) at one or two points, respectively). We first fix notation and record some observations that apply to both cases.

4.1. We abbreviate \(\mathcal{M} := \mathcal{M}_{1,1,k}\). By \([\text{Lemma 3.1}]\) the Brauer map \(\alpha_{\mathcal{M}} : \text{Br}\mathcal{M} \to \text{Br}'\mathcal{M}\) is an isomorphism. By \([\text{Lemma 3.4}]\) the main task is to show that the 2-torsion in \(\text{Br}\mathcal{M}\) is 0.

For any integer \(n \geq 1\), the étale Kummer sequence

\[1 \to \mu_{2^n} \to \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m \to 1\]

gives an exact sequence

\[0 \to (\text{Pic }\mathcal{M})/(2^n) \to H^2(\mathcal{M}, \mu_{2^n}) \to H^2(\mathcal{M}, \mathbb{G}_m)[2^n] \to 0\]

of abelian groups. Since we have \(\text{Pic }\mathcal{M} \simeq \mathbb{Z}/(12)\) by [FO10], we wish to compute \(H^2(\mathcal{M}, \mu_{2^n})\).

Set

\[U := \text{Spec } k[t, (t(t - 1728))^{-1}] = \mathbb{A}^1_k \setminus \{0, 1728\}\]

with inclusion \(j : U \to \mathbb{A}^1_k\) and let \(i : Z \to \mathbb{A}^1_k\) be the complement with reduced induced closed subscheme structure. (Thus, if \(\text{char } k = 2\) or \(3\) then \(Z \simeq \text{Spec } k\), otherwise \(Z \simeq \text{Spec } k \amalg \text{Spec } k\).) Set

\[\mathcal{M}^\circ := U \times_{\mathbb{A}^1_k} \mathcal{M}\]

\[\mathcal{M}_Z := Z \times_{\mathbb{A}^1_k} \mathcal{M}\]

with projections \(\pi^\circ : \mathcal{M}^\circ \to U\) and \(\pi_Z : \mathcal{M}_Z \to Z\). We have a commutative diagram

\[\begin{array}{ccc}
\mathcal{M}^\circ & \longrightarrow & \mathcal{M} \\
\pi^\circ \downarrow & & \pi \downarrow \\
U & \longrightarrow & \mathbb{A}^1_k \\
\end{array}\]

with cartesian squares.

We have a distinguished triangle

\[j_* j^* \mathbb{R}\pi_* \mu_{2^n} \to \mathbb{R}\pi_* \mu_{2^n} \to i_* i^* \mathbb{R}\pi_* \mu_{2^n} \underset{+1}{\to}\]

\[\end{array}\]
in the derived category of bounded-below complexes of abelian sheaves on the étale site of \mathbb{A}_{k}^{1}, whose associated long exact sequence has the form

$$\begin{align*}
H^0(\mathbb{A}^1_k, j_! R\pi_* \mu_{2n}) &\to H^0(\mathcal{M}, \mu_{2n}) \to H^0(Z, i^* R\pi_* \mu_{2n}) \\
H^1(\mathbb{A}^1_k, j_! R\pi_* \mu_{2n}) &\to H^1(\mathcal{M}, \mu_{2n}) \to H^1(Z, i^* R\pi_* \mu_{2n}) \\
H^2(\mathbb{A}^1_k, j_! R\pi_* \mu_{2n}) &\to H^2(\mathcal{M}, \mu_{2n}) \to H^2(Z, i^* R\pi_* \mu_{2n})
\end{align*}$$

(4.1.4)

since $j^* R\pi_* \mu_{2n} \cong R\pi_* \mu_{2n}$ and

$$\begin{align*}
H^s(\mathbb{A}^1_k, R\pi_* \mu_{2n}) &\cong H^s(\mathcal{M}, \mu_{2n}) \\
H^s(\mathbb{A}^1_k, i_* i^* R\pi_* \mu_{2n}) &\cong H^s(Z, i^* R\pi_* \mu_{2n})
\end{align*}$$

for all s. We will first compute the groups $H^s(\mathbb{A}^1_k, j_! j^* R\pi_* \mu_{2n})$ in the left column of (4.1.4).

Lemma 4.2. Let k be an algebraically closed field, let $x_1, \ldots, x_r \in \mathbb{A}^1_k$ be r distinct k-points, set

$$Z := \text{Spec } k(x_1) \amalg \cdots \amalg \text{Spec } k(x_r)$$

and let $U = \mathbb{A}^1_k \setminus Z$ be the complement with inclusion $j : U \to \mathbb{A}^1_k$. For any positive integer ℓ invertible in k, we have

$$H^s(\mathbb{A}^1_k, j_! \mu_{\ell}) = \begin{cases} 0 & s \neq 1 \\ \langle \mu(\ell(k)) \rangle & s = 1 \end{cases}.$$

Proof. Let $i : Z \to \mathbb{A}^1_k$ be the inclusion. We have a distinguished triangle

$$j_! \mu_{\ell}|_U \to \mu_{\ell} \to i_* i^* \mu_{\ell} \xrightarrow{+1}$$

in the derived category of bounded-below complexes of abelian sheaves on the big étale site of \mathbb{A}^1_k, which gives a long exact sequence

$$\begin{align*}
H^0(\mathbb{A}^1_k, j_! \mu_{\ell}|_U) &\to H^0(\mathbb{A}^1_k, \mu_{\ell}) \to H^0(Z, \mu_{\ell}) \\
H^1(\mathbb{A}^1_k, j_! \mu_{\ell}|_U) &\to H^1(\mathbb{A}^1_k, \mu_{\ell}) \to H^1(Z, \mu_{\ell}) \\
H^2(\mathbb{A}^1_k, j_! \mu_{\ell}|_U) &\to H^2(\mathbb{A}^1_k, \mu_{\ell}) \to H^2(Z, \mu_{\ell}) \\
H^3(\mathbb{A}^1_k, j_! \mu_{\ell}|_U) &\to \cdots
\end{align*}$$

in cohomology. The map $H^0(\mathbb{A}^1_k, \mu_{\ell}) \to H^0(Z, \mu_{\ell})$ is identified with the diagonal map $\mu_{\ell}(k) \to (\mu_{\ell}(k))^s$. Since k is algebraically closed, the étale site of Z is trivial, hence $H^s(Z, \mu_{\ell}) = 0$ for $s \geq 1$. By [De77, Exp. 1, III, (3.6)] we have $H^s(\mathbb{A}^1_k, \mu_{\ell}) = 0$ for $s \geq 2$. We have $\mathbb{G}_m(\mathbb{A}^1_k) \cong \mathbb{G}_m(k)$ and the multiplication-by-ℓ map $\times \ell : \mathbb{G}_m(k) \to \mathbb{G}_m(k)$ is surjective; thus $H^1(\mathbb{A}^1_k, \mu_{\ell}) = H^1(\mathbb{A}^1_k, \mathbb{G}_m) \langle \ell \rangle = (\text{Pic } \mathbb{A}^1_k) \langle \ell \rangle = 0$ by the Kummer sequence.
Lemma 4.3. In the setup of Lemma 4.2, let \(n \) be any positive integer and let \(\pi^\circ : B(\mathbb{Z}/(n))_U \to U \) be the trivial \(\mathbb{Z}/(n) \)-gerbe over \(U \). Then

\[
H^s(A^1_k, j_! R\pi^\circ_* \mu_\ell) = \begin{cases}
0 & \text{if } s = 0, \\
(\mu_\ell(k))^{(r-1)} & \text{if } s = 1, \\
(\mu_{\gcd(n, \ell)}(k))^{(r-1)} & \text{if } s = 2.
\end{cases}
\]

Proof. We set

\[
C := j_! R\pi^\circ_* \mu_\ell
\]

for convenience. We will compute the groups \(H^s(A^1_k, C) \) using the fact that the canonical truncations \(\tau_{\leq s} C \) satisfy

\[(4.3.1) \quad H^s(A^1_k, \tau_{\leq t} C) \simeq H^s(A^1_k, C)\]

for \(s \leq t \). For any \(s \in \mathbb{Z} \), the distinguished triangle

\[(4.3.2) \quad \tau_{\leq s-1} C \to \tau_{\leq s} C \to (h^s C)[s] \xrightarrow{+1}\]

gives a long exact sequence

\[(4.3.3) \quad \begin{array}{ccc}
H^0(A^1_k, \tau_{\leq s-1} C) & \longrightarrow & H^0(A^1_k, \tau_{\leq s} C) \\
\longrightarrow & H^1(A^1_k, \tau_{\leq s-1} C) & \longrightarrow H^1(A^1_k, \tau_{\leq s} C) \\
\longrightarrow & H^2(A^1_k, \tau_{\leq s-1} C) & \longrightarrow H^2(A^1_k, \tau_{\leq s} C)
\end{array}\]

where

\[
h^s C \simeq j_! R^s \pi^\circ_* \mu_\ell
\]

since \(j_! \) is exact.

Since \(\pi^\circ : B(\mathbb{Z}/(n))_U \to U \) is a trivial \(\mathbb{Z}/(n) \)-gerbe, by Lemma B.1, we have

\[(4.3.4) \quad R^s \pi^\circ_* \mu_\ell \simeq \begin{cases}
\mu_\ell & s = 0 \\
\mu_\ell[n] & s = 1, 3, 5, \ldots \\
\mu_\ell/(n) & s = 2, 4, 6, \ldots
\end{cases}\]

where \(\mu_\ell[n] \) and \(\mu_\ell/(n) \) are defined by the exact sequence

\[
1 \to \mu_\ell[n] \to \mu_\ell \times n \mu_\ell \to \mu_\ell/(n) \to 1
\]

of abelian sheaves. Since \(k \) is algebraically closed of characteristic prime to \(\ell \), the sheaves \(\mu_\ell[n] \) and \(\mu_\ell/(n) \) are both isomorphic to \(\mu_{\gcd(n, \ell)} \), but for us the difference is important for reasons of functoriality (as \(\ell \) is allowed to vary). More precisely, if \(\ell_1 \) divides \(\ell_2 \), then the inclusion \(\mu_{\ell_1} \to \mu_{\ell_2} \) induces an inclusion

\[
\mu_{\ell_1}[n] \to \mu_{\ell_2}[n]
\]

whereas

\[(4.3.5) \quad \mu_{\ell_1}/(n) \to \mu_{\ell_2}/(n)\]
is not necessarily injective since an element \(x \in \mu_{\ell_1} \) which is not an \(n \)th power of any \(y_1 \in \mu_{\ell_1} \) may be an \(n \)th power of some \(y_2 \in \mu_{\ell_2} \) (in particular, if \(\ell_2 = n\ell_1 \), then \([4.3.5]\) is the zero morphism).

We have

\[\tau_{\leq 0} \mathcal{C} \simeq h^0 \mathcal{C} \simeq j_! \mathbf{R}^0 \tau_{\leq 0} \mathcal{C} \simeq j_! \mathbb{R}^0 \pi_{s*} \mathcal{C} \simeq j_! \mathbb{R}^0 \pi_{s*} \mathcal{M} \simeq j_! \mu_{\ell} \]

since \(\pi^{\circ} \) is a coarse moduli space morphism and \(\mathbf{R}^1 \pi_{s*} \mathcal{M} \simeq \mu_{\text{gcd}(n,\ell)} \) by \([4.3.4]\). Applying \(\text{Lemma 4.2} \) to the case \(s = 1 \) in \([4.3.3]\) implies \(H^0(\mathbb{A}^1_k, \tau_{\leq 1} \mathcal{C}) = 0 \) and gives isomorphisms \(H^1(\mathbb{A}^1_k, j_! \mu_{\ell}) \simeq H^1(\mathbb{A}^1_k, \tau_{\leq 1} \mathcal{C}) \) and \(H^2(\mathbb{A}^1_k, \tau_{\leq 1} \mathcal{C}) \simeq H^1(\mathbb{A}^1_k, j_! \mu_{\text{gcd}(n,\ell)}) \).

Since \(\mathbf{R}^2 \pi_{s*} \mathcal{M} \simeq \mu_{\text{gcd}(n,\ell)} \) by \([4.3.4]\) and \(H^s(\mathbb{A}^1_k, j_! \mu_{\text{gcd}(n,\ell)}) = 0 \) for \(s = -2, -1, 0 \), the case \(s = 2 \) in \([4.3.3]\) gives isomorphisms \(H^s(\mathbb{A}^1_k, \tau_{\leq 1} \mathcal{C}) \simeq H^s(\mathbb{A}^1_k, \tau_{\leq 2} \mathcal{C}) \) for \(s = 0, 1, 2 \), which implies the desired result. \(\square \)

4.4 (Proof of Theorem 1.1 for char \(k = 3 \)). If char \(k = 3 \), then \(Z \) consists of one point, so taking \(r = 1 \) in \(\text{Lemma 4.3} \) implies

\[H^s(\mathbb{A}^1_k, j_! \mathbf{R}^s \pi_{s*} \mu_{2^n}) = 0 \]

for \(s = 0, 1, 2 \). Therefore, to compute \(H^2(\mathcal{M}, \mu_{2^n}) \), it now remains to compute \(H^2(\mathbb{Z}, i^* \mathbf{R} \pi_{s*} \mu_{2^n}) \) in \([4.4.1]\). The stabilizer of any object of \(\mathcal{M} \) of lying over \(i : Z \rightarrow \mathbb{A}^1_k \) is the automorphism group of an elliptic curve with \(j \)-invariant 0, which is the semidirect product \(\Gamma = \mathbb{Z}/(3) \rtimes \mathbb{Z}/(4) \) since \(k \) has characteristic 3. The underlying reduced stack \((\mathcal{M}/Z)_{\text{red}} \) is the residual gerbe associated to the unique point of \(|\mathcal{M}/Z| \) and is isomorphic to the classifying stack \(B\Gamma_k \). We have natural isomorphisms

\[H^2(Z, i^* \mathbf{R} \pi_{s*} \mu_{2^n}) \simeq i^* \mathbf{R}^2 \pi_{s*} \mu_{2^n} \simeq H^2(\mathcal{M}/Z, \mu_{2^n}) \simeq H^2(B\Gamma_k, \mu_{2^n}) \simeq H^2(\Gamma, \mu_{2^n}(k)) \]

where isomorphism 1 follows from proper base change \([\text{Ols05, 1.3}]\), isomorphism 2 is by invariance of étale site for nilpotent thickenings and the fact that \(2^n \) is invertible on \(\mathcal{M}/Z \), and isomorphism 3 is by the cohomological descent spectral sequence for the covering \(\text{Spec} k \rightarrow \text{Spec} \mathbb{Q} \) (and the fact that \(H^i(\text{Spec} k, \mu_{2^n}) = 0 \) for \(i > 0 \) since \(k \) is algebraically closed). The Hochschild-Serre spectral sequence for the exact sequence

\[1 \rightarrow \mathbb{Z}/(3) \rightarrow \Gamma \rightarrow \mathbb{Z}/(4) \rightarrow 1 \]

gives an isomorphism

\[H^2(\Gamma, \mu_{2^n}(k)) \simeq H^2(\mathbb{Z}/(4), \mu_{2^n}(k)) \simeq \mu_{2^n}(k)/4 \]

where \(H^i(\mathbb{Z}/(3), \mu_{2^n}(k)) = 0 \) for \(i > 0 \) since 3 is coprime to the order of \(\mu_{2^n}(k) \). Since the first term in the last row of the diagram \([4.4.1]\) is zero by \([4.4.1]\), the above observations imply that we have natural inclusions

\[H^2(\mathcal{M}, \mu_{2^n}) \rightarrow \mu_{2^n}(k)/4 \]

compatible with the inclusions \(\mu_{2^n} \subset \mu_{2^{n+1}} \) for all \(n \). The inclusion \(\mu_{2^n} \subset \mu_{2^{n+2}} \) induces the zero map \(\mu_{2^n}(k)/4 \rightarrow \mu_{2^{n+2}}(k)/4 \), so \(H^2(\mathcal{M}, \mu_{2^n}) \rightarrow H^2(\mathcal{M}, \mu_{2^{n+2}}) \) is the zero map as well, hence

\[\lim_{\rightarrow n \in \mathbb{N}} H^2(\mathcal{M}, \mu_{2^n}) = 0 \]

which by \([4.4.1]\) gives \(H^2(\mathcal{M}, \mathbb{G}_m)[2^n] = 0 \) for all \(n \).
4.5 (Proof of Theorem 1.1 for char \(k \neq 2, 3 \)). We describe the terms in (4.1.4). For the right column, we have

\[
H^s(Z, i^* R\pi_* \mu_{2^n}) \simeq H^s(Z/(4), \mu_{2^n}(k)) \oplus H^s(Z/(6), \mu_{2^n}(k))
\]

by [ACV03, A.0.7]. For the middle column, we have

\[
H^0(\mathcal{M}, \mu_{2^n}) \simeq H^0(\mathbb{A}^1_k, \mu_{2^n}) \simeq \mu_{2^n}(k)
\]

since \(\mathbb{A}^1_k \) is the coarse moduli space of \(\mathcal{M} \), and we have

\[
H^1(\mathcal{M}, \mu_{2^n}) \overset{1}{\simeq} H^1(\mathcal{M}, \mathbb{G}_m)[2^n] \overset{2}{\simeq} (Z/(12))[2^n] \overset{3}{\simeq} Z/(4)
\]

where isomorphism 1 follows since \(k^\times = (k^\times)^{2^n} \), isomorphism 2 is by [Mum65], and isomorphism 3 holds for \(n \gg 0 \). For the left column, we have

\[
H^s(\tau \leq 1 j! R\pi_* \mu_{2^n}) = \begin{cases}
0 & s = 0 \\
\mu_{2^n} & s = 1 \\
\mu_2 & s = 2
\end{cases}
\]

by Lemma 4.3.

To summarize, (4.1.4) simplifies to

\[
\begin{array}{c}
0 \\
\mu_{2^n} \\
\mu_2
\end{array} \longrightarrow
\begin{array}{c}
\mu_{2^n} \\
\mathbb{Z}/(4) \\
\mathbb{H}^2(\mathcal{M}, \mu_{2^n})
\end{array} \longrightarrow
\begin{array}{c}
\mu_{2^n} \oplus \mu_{2^n} \\
\mu_4 \oplus \mu_2 \\
\mu_{2^n}/(4) \oplus \mu_{2^n}/(6)
\end{array}
\]

(4.5.1)

for \(n \gg 0 \), and counting the number of elements in each group in (4.5.1) implies that the last morphism

\[
H^2(\mathcal{M}, \mu_{2^n}) \rightarrow \mu_{2^n}/(4) \oplus \mu_{2^n}/(6)
\]

is injective. Furthermore, the inclusion

\[
\mu_{2^n} \subset \mu_{2^{n+2}}
\]

induces the zero map

\[
\mu_{2^n}/(4) \oplus \mu_{2^n}/(6) \rightarrow \mu_{2^{n+2}}/(4) \oplus \mu_{2^{n+2}}/(6)
\]

so the map \(H^2(\mathcal{M}, \mu_{2^n}) \rightarrow H^2(\mathcal{M}, \mu_{2^{n+2}}) \) is the zero map as well, hence

\[
\lim_{\rightarrow n \in \mathbb{N}} H^2(\mathcal{M}, \mu_{2^n}) = 0
\]

which by (4.1.1) gives \(H^2(\mathcal{M}, \mathbb{G}_m)[2^n] = 0 \) for all \(n \).
5. THE CASE char $k = 2$

In this section we prove \[\text{Theorem 1.1}\] (in case char $k = 2$) and \[\text{Theorem 1.2}\]. For convenience, we denote $GL_{n,p} := GL_n(\mathbb{Z}/(p))$ and $SL_{n,p} := SL_n(\mathbb{Z}/(p))$. We denote by e the identity element of $GL_{n,p}$.

5.1 (Hesse presentation of $\mathcal{M}_{1,1,k}$. By [FO10, 6.2] (and explained in more detail in A.6), there is a left action of $GL_{2,3}$ on the $\mathbb{Z}[\frac{1}{3}]$-algebra

$$A_H := \mathbb{Z}[\frac{1}{3}, \mu, \omega, \frac{1}{\mu-1}]/(\omega^2 + \omega + 1)$$

sending

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \ast (\mu, \omega) = (\mu, \omega^2)$$
$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \ast (\mu, \omega) = (\omega \mu, \omega)$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \ast (\mu, \omega) = (\frac{\mu + 2}{\mu - 1}, \omega)$$

for which the corresponding right action of $GL_{2,3}$ on the $\mathbb{Z}[\frac{1}{3}]$-scheme $S_H := \text{Spec } A_H$

gives a presentation

$$\mathcal{M}_{1,1,\mathbb{Z}[\frac{1}{3}]} \simeq [S_H/ GL_{2,3}]$$

of $\mathcal{M}_{1,1,\mathbb{Z}[\frac{1}{3}]}$ as a global quotient stack. The morphism

$$S_H \to \mathcal{M}_{1,1,\mathbb{Z}[\frac{1}{3}]}$$

is given by the elliptic curve

$$X^3 + Y^3 + Z^3 = 3\mu XYZ$$

over S_H.

5.2 (Cohomological descent). Let k be an algebraically closed field of characteristic 2. The Brauer map $\alpha: \mathcal{M}_{1,1,k} \to \text{Br} \mathcal{M}_{1,1,k}$ is an isomorphism by \[\text{Lemma 3.1}\]. By \[\text{Lemma 3.4}\] there is only 2-torsion in $\text{Br} \mathcal{M}_{1,1,k}$. By Grothendieck’s fpf-etale comparison theorem for smooth commutative group schemes [Gro68b, (11.7)], it suffices to compute the 2-torsion in $H^2_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mathbb{G}_m)$. Since Spec k is a reduced scheme, we have

$$H^1_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mathbb{G}_m) = \text{Pic}(\mathcal{M}_{1,1,k}) = \mathbb{Z}/(12)$$

by [FO10, 1.1]. Thus, for any integer n, the fpf Kummer sequence

$$1 \to \mu_2 \to \mathbb{G}_m \xrightarrow{\times^2} \mathbb{G}_m \to 1$$

gives an exact sequence

$$1 \to \mathbb{Z}/(2) \xrightarrow{\partial} H^2_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mu_2) \to H^2_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mathbb{G}_m)[2] \to 1$$

of abelian groups. It remains to compute the middle term $H^2_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mu_2)$.

The cohomological descent spectral sequence associated to the cover \((5.1.3)\) is of the form
\[
E_2^{p,q} = H^p(\text{GL}_{2,3}; H_{\text{fppf}}^q(S_{H,k}, \mu_2)) \implies H_{\text{fppf}}^{p+q}(\mathcal{M}_{1,1,k}, \mu_2)
\]
with differentials \(E_2^{p,q} \to E_2^{p+2,q-1}\).

Let \(\xi \in k\) be a fixed primitive 3rd root of unity. By the Chinese Remainder Theorem, there is a \(k\)-algebra isomorphism
\[
A_{H,k} = k[\mu, \omega, \frac{1}{\mu^3-1}]/(\omega^2 + \omega + 1) \to k[\nu_1, \frac{1}{\nu_1-1}] \times k[\nu_2, \frac{1}{\nu_2-1}]
\]
sending \(\mu \mapsto (\nu_1, \nu_2)\) and \(\omega \mapsto (\xi, \xi^2)\). Since \(S_{H,k}\) is a smooth curve over an algebraically closed field, we have by \([\text{Mil80}, \text{III.2.22 (d)}]\) that \(H_{\text{et}}^q(S_{H,k}, \mathbb{G}_m) = 0\) for all \(q \geq 2\); since \(S_{H,k}\) is a disjoint union of two copies of a distinguished affine open subset of \(\mathbb{A}^1_k\), we have \(H^1_{\text{et}}(S_{H,k}, \mathbb{G}_m) = \text{Pic}(S_{H,k}) = 0\). By \([\text{Gro85}, (11.7)]\) we have \(H_{\text{fppf}}^q(S_{H,k}, \mathbb{G}_m) = H_{\text{et}}^q(S_{H,k}, \mathbb{G}_m)\) for all \(q \geq 0\); thus the fppf Kummer sequence implies \(H_{\text{fppf}}^q(S_{H,k}, \mu_2) = 0\) for all \(q \geq 2\). Furthermore, we have \(H_{\text{fppf}}^0(S_{H,k}, \mu_2) = 0\) since \(S_{H,k}\) is the product of two integral domains of characteristic 2. Thus the only nonzero terms on the \(E_2\)-page of \((5.2.3)\) occur on the \(q = 1\) row, so we have an isomorphism
\[
H_{\text{fppf}}^{p+1}(\mathcal{M}_{1,1,k}, \mu_2) \simeq H^p(\text{GL}_{2,3}; H_{\text{fppf}}^1(S_{H,k}, \mu_2))
\]
for all \(p \geq 0\). We are interested in the case \(p = 1\).

5.3 (Description of the \(\text{GL}_{2,3}\)-action on \(H_{\text{fppf}}^1(S_{H,k}, \mu_2)\)). We describe the abelian group
\[
M := H_{\text{fppf}}^1(S_{H,k}, \mu_2)
\]
and the left \(\text{GL}_{2,3}\)-module structure it inherits from \((5.1.1)\). Since \(k[\mu, (\mu^3-1)^{-1}]\) is a principal localization of the polynomial ring \(k[\mu]\) by a polynomial \((\mu^3-1) = (\mu-1)(\mu-\xi)(\mu-\xi^2)\) splitting into three distinct irreducible factors, we have an isomorphism
\[
(k[\mu, \frac{1}{\mu^3-1}])^\times \simeq k^\times \cdot (\mu-1)^\mathbb{Z} \cdot (\mu-\xi)^\mathbb{Z} \cdot (\mu-\xi^2)^\mathbb{Z}
\]
of abelian groups. Thus \((5.2.4)\) and the Kummer sequence \((5.2.1)\) gives an isomorphism
\[
M \simeq (\mathbb{Z}/(2))^{\oplus 6}
\]
of abelian groups, with generators given by the classes of \(\nu_i - \xi^j\) for \(i = 1, 2\) and \(j = 0, 1, 2\).

The isomorphism \((5.2.4)\) is given by the map
\[
s_1(\mu)\omega + s_0(\mu) \mapsto (s_1(\nu_1)\xi + s_0(\nu_1), s_1(\nu_2)\xi^2 + s_0(\nu_2))
\]
for \(s_0, s_1 \in k[\mu, \frac{1}{\mu^3-1}]\). The inverse of \((5.2.4)\) is given by the map
\[
(f_1(\nu_1), f_2(\nu_2)) \mapsto f_1(\mu) \left(\frac{\omega}{\xi - \xi^2} + \frac{\xi}{\xi - 1}\right) + f_2(\mu) \left(\frac{-\omega}{\xi - \xi^2} + \frac{-1}{\xi - 1}\right)
\]
where \(f_i(\nu_i) \in k[\nu_i, \frac{1}{\nu_i^3-1}]\). (Note that, if we set \(A_1(t) := \frac{t}{\xi - \xi^2} + \frac{\xi}{\xi - 1}\) and \(A_2(t) := \frac{-t}{\xi - \xi^2} + \frac{-1}{\xi - 1}\), then \(A_i(\xi^j)\) is the Kronecker delta function.)
A computation with \((5.1.1)\) shows that the action of \(GL_{2,3}\) on the right hand side of \((5.2.4)\) is given by
\[
\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} * (f_1(\nu_1), f_2(\nu_2)) = (f_2(\nu_1), f_1(\nu_2))
\]
\[(5.3.5)\]
\[
\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} * (f_1(\nu_1), f_2(\nu_2)) = (f_1(\xi \nu_1), f_2(\xi^2 \nu_2))
\]
\[
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} * (f_1(\nu_1), f_2(\nu_2)) = (f_1(\frac{\nu_1 + 2}{\nu_1 - 1}), f_2(\frac{\nu_2 + 2}{\nu_2 - 1}))
\]
for \(f_i(\nu_i) \in k[\nu_i, \frac{1}{\nu_i - 1}]\). A computation with \((5.3.5)\) (and using that char \(k = 2\)) shows that the action of \(GL_{2,3}\) on \((5.3.2)\) is given by \((5.3.6)\) where every element is considered up to multiplication by \(k^\times\).

\[
M_1 := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]
\[
M_2 := \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
\]
\[
i := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]
\[(5.3.6)\]

\[
\begin{array}{cccccc}
\nu_1 - 1 & \nu_1 - \xi & \nu_1 - \xi^2 & \nu_2 - 1 & \nu_2 - \xi & \nu_2 - \xi^2 \\
\nu_2 - 1 & \nu_2 - \xi & \nu_2 - \xi^2 & \nu_1 - 1 & \nu_1 - \xi & \nu_1 - \xi^2 \\
\nu_1 - \xi^2 & \nu_1 & \nu_1 - \xi & \nu_2 - \xi & \nu_2 - \xi^2 & \nu_2 - 1 \\
\nu_1 - \xi & \nu_1 - 1 & \nu_1 - \xi & \nu_2 - \xi & \nu_2 - \xi^2 & \nu_2 - 1 \\
\nu_1 - \xi^2 & \nu_1 - 1 & \nu_1 - \xi & 1 & \nu_2 - \xi^2 & \nu_2 - \xi \\
\nu_1 - 1 & \nu_1 - 1 & \nu_1 - 1 & \nu_2 - 1 & \nu_2 - 1 & \nu_2 - 1 \\
\end{array}
\]

5.4. We compute \(H^1(GL_{2,3}, M)\). (In Appendix C we provide MAGMA code that can be used to verify this computation.) We have a filtration of groups
\[(5.4.1)\]
\[
Q_8 \triangleleft SL_{2,3} \triangleleft GL_{2,3}
\]
where each is a normal subgroup of the next. Here \(Q_8\) denotes the quaternion group
\[
Q_8 = \{ \pm e, \pm i, \pm j, \pm k : \ ijk = i^2 = j^2 = k^2 = -e \}
\]
and is identified with the subgroup of \(GL_{2,3}\) as follows:
\[
i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]
\[
j = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}
\]
\[
k = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}
\]
The quotient \(GL_{2,3} / SL_{2,3}\) is cyclic of order 2 and is generated by \(M_1\) in \((5.3.6)\). The quotient \(SL_{2,3} / Q_8\) is cyclic of order 3 and is generated by \(M_2\) in \((5.3.6)\). For \(i = 1, 2\), let \(\langle M_i \rangle\) denote the subgroup of \(GL_{2,3}\) generated by \(M_i\). We note that \(SL_{2,3}\) is generated by \(i\) and \(M_2\).

Let
\[
F : (\mathbb{Z}[GL_{2,3}] - \text{Mod}) \to (\mathbb{Z}[SL_{2,3}] - \text{Mod})
\]
be the forgetful functor. An inspection of \((5.3.6)\) implies that \(F(M)\) is the direct sum \(N_1 \oplus N_2\) where \(N_i\) is the \(SL_{2,3}\)-submodule of \(F(M)\) generated by the classes of \(\nu_i - 1, \nu_i - \xi, \nu_i - \xi^2\), and moreover \(M_1\) switches the summands \(N_1\) and \(N_2\). Under the adjunction
\[
\text{Hom}_{SL_{2,3}}(F(M), N_1) \simeq \text{Hom}_{GL_{2,3}}(M, \text{Ind}^{GL_{2,3}}_{SL_{2,3}}(N_1))
\]
the projection map \(F(M) \simeq N_1 \oplus N_2 \to N_1\) onto the first factor corresponds to a morphism
\[(5.4.2)\]
\[
M \to \text{Ind}^{GL_{2,3}}_{SL_{2,3}}(N_1)
\]
of \(GL_{2,3}\)-modules. Given \(m \in M\), write \(m = n_1 + n_2\) for \(n_i \in N_i\); then the image of \(m\) under \((5.4.2)\) is the function \(\varphi_m \in \text{Hom}_{\mathbb{Z}[\text{SL}_{2,3}]}(\mathbb{Z}[\text{GL}_{2,3}], N_1)\) such that \(\varphi_m([e]) = n_1\) and \(\varphi_m([M]) = M_1 \cdot n_2\); thus \((5.4.2)\) is an isomorphism.

A computation using \((5.3.6)\) and the identities

\[
\begin{align*}
 k &= M_2^{-1} \cdot i \cdot M_2 \\
 i &= M_2^{-1} \cdot j \cdot M_2 \\
 j &= M_2^{-1} \cdot k \cdot M_2
\end{align*}
\]

shows that the action of an element \(g \in \text{SL}_{2,3}\) on \(N_i\) is by left multiplication by the matrix \(T_g\) as in \((5.4.4)\) with elements of \(N_1\) being viewed as vertical vectors. We note \(T_{-e} = T^2_i = T^2_j = T^2_k = \text{id}_{N_1}\), i.e. \(-e\) acts trivially on \(N_1\).

\[
\begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0 \\
\end{bmatrix}
\]

Since \(M\) is an induced module, the restriction map

\[
(5.4.5) \quad H^1(\text{GL}_{2,3}, M) \to H^1(\text{SL}_{2,3}, N_1)
\]

is an isomorphism so we reduce to computing \(H^1(\text{SL}_{2,3}, N_1)\).

The Hochschild-Serre spectral sequence for the inclusion \(Q_8 \leq \text{SL}_{2,3}\) degenerates on the \(E_2\) page since the order of the quotient group \(\langle M_2 \rangle\) is coprime to the order of \(N_1\). In particular the restriction map

\[
(5.4.6) \quad H^1(\text{SL}_{2,3}, N_1) \to H^0(\langle M_2 \rangle, H^1(Q_8, N_1))
\]

is an isomorphism.

Let \(C^i(Q_8, N_1) := \text{Fun}((Q_8)^i, N_1)\) denote the group of inhomogeneous \(i\)-cochains. By Remark 5.5, the group \(\text{SL}_{2,3}\) has a natural left action on \(C^i(Q_8, N_1)\) (by entrywise conjugation on the source \((Q_8)^i\) and by its usual action on \(N_1\)) such that the differentials in the inhomogeneous cochain complex

\[
C^0(Q_8, N_1) \xrightarrow{d_0} C^1(Q_8, N_1) \xrightarrow{d_1} C^2(Q_8, N_1) \to \cdots
\]

are \(\text{SL}_{2,3}\)-linear. Since the order of the subgroup \(\langle M_2 \rangle\) is coprime to the orders of \(C^i(Q_8, N_1)\), we have that \(H^0(\langle M_2 \rangle, H^1(Q_8, N_1)) \simeq (H^1(Q_8, N_1))_{M_2}\) is isomorphic to the middle cohomology of the sequence

\[
(C^0(Q_8, N_1))_{M_2} \xrightarrow{(d_0)_{M_2}} (C^1(Q_8, N_1))_{M_2} \xrightarrow{(d_1)_{M_2}} (C^2(Q_8, N_1))_{M_2}
\]

i.e. cohomology commutes with taking \(M_2\)-invariants.

We now describe \(\ker(\langle d_1 \rangle_{M_2})\) and \(\text{im}(\langle d_0 \rangle_{M_2})\).

An element \(f \in (C^1(Q_8, N_1))_{M_2}\) is a function \(f : Q_8 \to N_1\) satisfying

\[
(5.4.7) \quad f(\mathbf{g}) = M_2 \cdot f(M_2^{-1} g M_2)
\]

for all \(\mathbf{g} \in Q_8\). We have that \(f \in \ker d_1\) if

\[
(5.4.8) \quad f(\mathbf{g}_1 \cdot \mathbf{g}_2) = \mathbf{g}_1 \cdot f(\mathbf{g}_2) + f(\mathbf{g}_1)
\]
for all \(g_1, g_2 \in Q_8 \).

Suppose \(f \in \ker ((d_1)^{M_2}) = (\ker d_1) \cap (C^1(Q_8, N_1))^M_2 \); taking \((g_1, g_2) = (e, e)\) in (5.4.8) implies \(f(e) = 0 \); taking \(g = -e \) in (5.4.7) implies that
\[f(-e) = (s, s, s) \]
for some \(s \in \mathbb{Z}/(2) \); taking \((g_1, g_2) = (-e, -e)\) in (5.4.8) and using the fact that \(-e\) acts trivially on \(N_1 \) implies that \(2f(-e) = 0 \), which imposes no condition on \(s \). We note that
\[g \cdot f(-e) = f(-e) \]
for any \(g \in \text{SL}_{2,3} \).

Setting \(g = i, j, k \) in (5.4.7) and using (5.4.3) gives
\[f(i) = M_2 \cdot f(k) \]
\[f(j) = M_2 \cdot f(i) \]
\[f(k) = M_2 \cdot f(j) \]
respectively; thus we have
\[f(i) = (s_1, s_2, s_3) \]
\[f(j) = (s_2, s_3, s_1) \]
\[f(k) = (s_3, s_1, s_2) \]
for some \(s_1, s_2, s_3 \in \mathbb{Z}/(2) \).

Setting either \(g_1 = -e \) or \(g_2 = -e \) in (5.4.8) implies
\[f(-g) = f(g) + f(-e) \]
for any \(g \in Q_8 \).

Setting \((g_1, g_2) = (\pm i, \pm j), (\pm j, \pm k), (\pm k, \pm i)\) in (5.4.8) (where the signs can vary independently of each other) all impose the condition
\[s_2 = 0 \] (5.4.11)
for \(s, s_2 \) (check the case \((g_1, g_2) = (i, j)\), then use (5.4.10) to show that changing the signs don’t give new relations, then use (5.4.9) to show that one can permute using left multiplication by \(M_2 \)).

Setting \((g_1, g_2) = (\pm i, \pm j), (\pm j, \pm k), (\pm i, \pm k)\) in (5.4.8) (where the signs can vary independently of each other) all impose the condition
\[s = s_3 \] (5.4.12)
for \(s, s_3 \) (check the case \((g_1, g_2) = (j, i)\), then use (5.4.10) to show that changing the signs don’t give new relations, then use (5.4.9) to show that one can permute using left multiplication by \(M_2 \)).

Setting \((g_1, g_2) = (\pm g, \pm g)\) for \(g = i, j, k \) (where the signs can vary independently of each other) all impose the condition
\[s = s_2 + s_3 \] (5.4.13)
on \(s, s_2, s_3 \) (check the case \(g = i \), then use (5.4.10) to show that changing the signs don’t give new relations, then use (5.4.9) to show that one can permute using left multiplication by \(M_2 \)), but (5.4.13) is implied by (5.4.11) and (5.4.12).
These are the only relations satisfied by the \(s, s_1, s_2, s_3\). Thus we have
\[
\ker((d_1)^{M_2}) \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(2)
\]
since there are no relations on \(s, s_1 \in \mathbb{Z}/(2)\).

An element of \((C^0(Q_8, N_1))^{M_2}\) corresponds to an element \((t, t, t) \in N_1\); since every element of \(\text{SL}_{2,3}\) fixes elements of this form (see (5.4.4)), the image of \((t, t, t)\) under \((d_0)^{M_2}\) corresponds to the function \(f : Q_8 \to N_1\) sending every element to \((0, 0, 0)\), in other words
\[
\text{im}((d_1)^{M_2}) = 0
\]
which implies
\[
(5.4.14) \quad H^0((M_2), H^1(Q_8, N_1)) \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(2)
\]
and so
\[
(5.4.15) \quad \text{Br.} \mathcal{M}_{1,1,k} = H^2_{\text{fppf}}(\mathcal{M}_{1,1,k}, \mathbb{G}_m)[2] = \mathbb{Z}/(2)
\]
by combining (5.4.14) with (5.4.6), (5.4.5), (5.2.5), and (5.2.2). □

Remark 5.5 (The inhomogeneous cochain complex admits a left \(G\)-action). Let \(G\) be a group, let \(H \leq G\) be a normal subgroup, and let \(M\) be a left \(G\)-module. Set \(P_i := \mathbb{Z}[H^{i+1}]\); we denote by \([h_0, \ldots, h_i]\) the canonical \(\mathbb{Z}\)-basis of \(P_i\). We view \(P_i\) as a left \(H\)-module via the diagonal action \(h \cdot [h_0, \ldots, h_i] = [hh_0, \ldots, hh_i]\); then \(P_i\) is a free left \(\mathbb{Z}[H]\)-module with basis consisting of elements of the form \([e, h_1, \ldots, h_i]\). Applying the functor \(\text{Hom}_H(-, M)\) to the bar resolution
\[
\cdots \to P_2 \to P_1 \to P_0 \to 0
\]
gives the usual homogeneous cochain complex
\[
\text{Hom}_{\mathbb{Z}[H]}(P_0, M) \xrightarrow{\delta_1} \text{Hom}_{\mathbb{Z}[H]}(P_1, M) \xrightarrow{\delta_2} \text{Hom}_{\mathbb{Z}[H]}(P_2, M) \to \cdots
\]
whose cohomology gives \(H^i(H, M)\).

We note that there is a natural left \(G\)-action on \(\text{Hom}_{\mathbb{Z}[H]}(P_i, M)\) for which the differential \(\delta_i : \text{Hom}_{\mathbb{Z}[H]}(P_i, M) \to \text{Hom}_{\mathbb{Z}[H]}(P_{i+1}, M)\) is \(G\)-linear. Namely, the action of \(g \in G\) on \(\varphi_i \in \text{Hom}_{\mathbb{Z}[H]}(P_i, M)\) is described by
\[
(g \varphi_i)([h_0, \ldots, h_i]) := g \cdot (\varphi_i([g^{-1}h_0g, \ldots, g^{-1}h_ig]))
\]
for all \(h_0, \ldots, h_i \in H\). Let
\[
C^i(H, M) := \text{Fun}(H^i, M)
\]
denote the abelian group of functions \(H^i \to M\). Via the usual abelian group isomorphism
\[
\text{Hom}_{\mathbb{Z}[H]}(P_i, M) \simeq C^i(H, M)
\]
sending \(\varphi_i \mapsto \{(h_1, \ldots, h_i) \mapsto \varphi_i(e, h_1, h_1h_2, \ldots, h_1 \cdots h_i)\}\), the abelian group \(C^i(H, M)\) inherits a left action of \(G\) described by
\[
(5.5.1) \quad (gf_i)(h_1, \ldots, h_i) = g \cdot (f_i(g^{-1}h_1g, \ldots, g^{-1}h_ig))
\]
for \(g \in G\) and \(f_i \in C^i(H, M)\). The inhomogeneous cochain complex
\[
C^0(H, M) \xrightarrow{d_0} C^1(H, M) \xrightarrow{d_1} C^2(H, M) \to \cdots
\]
is \(G\)-linear as well.

For \(f_0 \in C^0(H, M)\), we have \((d_0f_0)(h_1) = h_1 \cdot f_0(e) - f_0(e)\).
For \(f_1 \in C^1(H, M) \), we have \((d_1 f_1)(h_1, h_2) = h_1 \cdot f_1(h_2) - f_1(h_1 h_2) + f_1(h_1)\).

Let \(\Sigma := G/H \) be the quotient; then there is an induced left action of \(\Sigma \) on the cohomology \(H^1(C^*(H, M)) \). In case \(G \to \Sigma \) has a section, in which case \(G \) is the semi-direct product \(G \simeq H \rtimes \Sigma \), then this \(\Sigma \)-action coincides with the one obtained by restricting the \(G \)-action on \(C^*(H, M) \) to \(\Sigma \).

Remark 5.6. The arguments used in 5.3 and 5.4 are similar to those of Mathew and Stojanoska [MS16, Appendix B], who show \(H^1(GL_{2,3}, (TMF(3)_0)^\times) = \mathbb{Z}/(12) \) where \(GL_{2,3} \) acts on

\[
TMF(3)_0 = \mathbb{Z}[\frac{1}{3}, \zeta, \frac{1}{t}, \frac{1}{1-t}, \frac{1}{1+\zeta t}] / (\zeta^2 + \zeta + 1)
\]

as in [Sto14] §4.3.

Note 5.7 (Explicit description of inhomogeneous 1-cocycles). We describe the 1-cocycles \(GL_{2,3} \to M \) obtained via the compositions \((5.4.6)\) and \((5.4.5)\). By our computation in 5.4, the 1-cocycles

\[
f_{Q_8} : Q_8 \to N_1
\]

are of the form

\[
e \mapsto (0, 0, 0) \quad -e \mapsto (s, s, s) \\
i \mapsto (s_1, 0, s) \quad -i \mapsto (s_1 + s, s, 0) \\
j \mapsto (0, s, s_1) \quad -j \mapsto (s, 0, s_1 + s) \\
k \mapsto (s, s_1, 0) \quad -k \mapsto (0, s_1 + s, s)
\]

for some \(s, s_1 \in \mathbb{Z}/(2) \). Suppose

\[
f_{SL_{2,3}} : SL_{2,3} \to N_1
\]

is a 1-cocycle such that \(f_{SL_{2,3}} \) is fixed by the action of \(M_2 \) (see \((5.5.1)\)) and which satisfies \(f_{SL_{2,3}}(g) = f_{Q_8}(g) \) for \(g \in Q_8 \). We have

\[
M_2 \cdot f_{SL_{2,3}}(M_2^{-1} \cdot g \cdot M_2) = f_{SL_{2,3}}(g)
\]

for all \(g \in SL_{2,3} \); taking \(g = M_2 \) gives \(M_2 \cdot f_{SL_{2,3}}(M_2) = f_{SL_{2,3}}(M_2) \). Taking \(g_1 = g_2 = M_2 \) in the 1-cocycle condition \((5.4.8)\) then gives \(f_{SL_{2,3}}(M_2) = 0 \). Thus we have

\[
f_{SL_{2,3}}(g \cdot M_2) = f_{SL_{2,3}}(g)
\]

for any \(g \in SL_{2,3} \), again by \((5.4.8)\).

By Shapiro’s lemma \((5.4.5)\), there is a 1-cocycle

\[
f_{GL_{2,3}} : GL_{2,3} \to Ind_{SL_{2,3}}^{GL_{2,3}}(N_1)
\]

such that precomposing with the inclusion \(SL_{2,3} \subset GL_{2,3} \) and postcomposing with the projection \(Ind_{SL_{2,3}}^{GL_{2,3}}(N_1) \to N_1 \) gives \(f_{SL_{2,3}} \). After altering \(f_{GL_{2,3}} \) by a 1-coboundary, we may assume by \Note 5.8 that \(f_{GL_{2,3}} \) is given by the formula \((5.8.1)\), namely

\[
f_{GL_{2,3}}(g \cdot M_i^j) := f_{SL_{2,3}}(M_i^j \cdot g \cdot M_i^{-j})
\]

for any \(i, j \in \{0, 1\} \) and \(g \in SL_{2,3} \). Any element \(g \in GL_{2,3} \) may be expressed in the form

\[
h \cdot M_2^j \cdot M_1^i
\]
where \(i_1 \in \{0, 1\} \) and \(i_2 \in \{0, 1, 2\} \) and \(h \in Q_8 \). We have formulas
\[
M_1 \cdot M_2^{-1} \cdot M_1 = M_2^{-1} \\
M_1 \cdot i \cdot M_1^{-1} = -i \\
M_1 \cdot j \cdot M_1^{-1} = -k \\
M_1 \cdot k \cdot M_1^{-1} = -j
\]
and so
\[
f_{GL_{2,3}}(h \cdot M_2^{i_2} \cdot M_1^{i_1})([M_2^j]) \overset{1}{=} f_{SL_{2,3}}(M_1^j \cdot h \cdot M_2^{i_2} \cdot M_1^{-j}) \\
= f_{SL_{2,3}}((M_1^j \cdot h \cdot M_1^{-j}) \cdot (M_1^i \cdot M_2^{i_2} \cdot M_1^{-j})) \\
\overset{2}{=} f_{SL_{2,3}}(M_1^j \cdot h \cdot M_1^{-j}) \\
\overset{3}{=} f_{Q_8}(M_1^j \cdot h \cdot M_1^{-j})
\]
where equality 1 is by \((5.7.2)\) and equality 2 is by \((5.7.1)\) and \((5.7.3)\) and equality 3 is since \(M_1^j \cdot h \cdot M_1^{-j} \in Q_8\) (see \((5.7.3)\)). This is summarized in \((5.7.4)\) below.
\[
f_{GL_{2,3}}(e) = (f_{Q_8}(e), f_{Q_8}(e)) = ((0, 0, 0), (0, 0, 0)) \\
f_{GL_{2,3}}(i) = (f_{Q_8}(i), f_{Q_8}(-i)) = ((s_1, 0, s), (s_1 + s, s, 0)) \\
f_{GL_{2,3}}(j) = (f_{Q_8}(j), f_{Q_8}(-k)) = ((0, s, s_1), (0, s_1 + s, s)) \\
f_{GL_{2,3}}(k) = (f_{Q_8}(k), f_{Q_8}(-j)) = ((s, s_1, 0), (s, 0, s_1 + s))
\]

Note 5.8 (The Shapiro isomorphism and inhomogeneous 1-cocycles). \[\] Let \(G \) be a group, let \(H \subseteq G \) be a normal subgroup of finite index such that the projection \(G \to G/H \) has a section \(G/H \to G \) whose image corresponds to a subgroup \(\Sigma \) of \(G \). Let \(N \) be a left \(H \)-module and let \(\text{Ind}^G_H N := \text{Hom}_{Z[H]}(Z[G], N) \) denote the associated induced left \(G \)-module. We recall that the left \(G \)-action on \(\text{Ind}^G_H N \) sends \(\varphi \mapsto g \varphi \) where \((g \varphi)(x) = \varphi(xg)\).

We describe the inverse of the Shapiro isomorphism \(H^1(G, \text{Ind}_H^G N) \to H^1(H, N) \) in terms of inhomogeneous cochains. Suppose given a function
\[
f : H \to N
\]
which satisfies
\[
f(h_1 h_2) = h_1 \cdot f(h_2) + f(h_1)
\]
for all \(h_1, h_2 \in H \). We construct a 1-cocycle
\[
s : G \to \text{Ind}^G_H(N)
\]
which restricts to \(f \), i.e. satisfies \(s(h)(1 \cdot [e]) = f(h) \) for all \(h \in H \). Note that every element of \(g \in G \) may be written uniquely in the form
\[
g = h \sigma
\]
for \(h \in H \) and \(\sigma \in \Sigma \), hence the collection \(\{[\sigma]\}_{\sigma \in \Sigma} \) forms a basis for \(Z[G] \) as a left \(Z[H] \)-module. We set
\[
s(h \sigma)([\xi]) := f(\xi h \xi^{-1})
\]
\[\text{Ehud Meir’s MathOverflow post [Mei16] was helpful in working out the details of this section.}\]
for \(h \in H \) and \(\sigma, \xi \in \Sigma \) and extend \(\mathbb{Z}[H] \)-linearly. Given \(g_1, g_2 \in G \) where \(g_i = h_i \sigma_i \) with \(h_i \in H \) and \(\sigma_i \in \Sigma \), for any \(\xi \in \Sigma \) we have

\[
s(g_1g_2)([\xi]) = s(h_1 \sigma_1 h_2 \sigma_2)([\xi])
\]

\[
= s(h_1(\sigma_1 h_2 \sigma_1^{-1}) \sigma_2)([\xi])
\]

\[
= f(\xi h_1(\sigma_1 h_2 \sigma_1^{-1}) \xi^{-1})
\]

and

\[
(g_1 \cdot s(g_2))([\xi]) = s(h_2 \sigma_2)([\xi h_1 \sigma_1])
\]

\[
= s(h_2 \sigma_2)([\xi h_1 \xi^{-1} \sigma_1])
\]

\[
= (\xi h_1 \xi^{-1}) \cdot s(h_2 \sigma_2)([\xi \sigma_1])
\]

\[
= (\xi h_1 \xi^{-1}) \cdot f((\xi \sigma_1) h_2 (\xi \sigma_1)^{-1})
\]

and

\[
s(g_1)([\xi]) = s(h_1 \sigma_1)([\xi]) = f(\xi h_1 \xi^{-1})
\]

which implies

\[
s(g_1g_2) = g_1 \cdot s(g_2) + s(g_1)
\]

by \(\mathbb{Z}[H] \)-linearity and since \(f \) is a 1-cocycle; hence \(s \) is a 1-cocycle. \(\square \)

5.9 (Proof of Theorem 1.2). Let \(k^{\text{sep}} \) be a fixed separable closure of \(k \) and let \(G_k := \text{Gal}(k^{\text{sep}}/k) \simeq \hat{\mathbb{Z}} \) be the absolute Galois group. Set \(\mathcal{M} := \mathcal{M}_{1,1,k} \) and \(\mathcal{M}^{\text{sep}} := \mathcal{M}_{1,1,k^{\text{sep}}} \). We have \(\text{Br.}\mathcal{M} = \text{Br.}\mathcal{M}^{\text{sep}} \) by Lemma 3.1. The Leray spectral sequence for the map \(\mathcal{M} \to \text{Spec} k \) is of the form

\[
E_2^{p,q} = H^p(G_k, H^q_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m)) \implies H^{p+q}_{\text{et}}(\mathcal{M}, \mathbb{G}_m)
\]

with differentials \(E_2^{p,q} \to E_2^{p+2,q-1} \). Here we have \(\Gamma(\mathcal{M}^{\text{sep}}, \mathbb{G}_m) = \Gamma(\mathcal{A}^{\text{sep}}_{k^{\text{sep}}}, \mathbb{G}_m) = (k^{\text{sep}})^{\times} \) since \(\mathcal{M}^{\text{sep}} \to \mathcal{A}^{\text{sep}}_{k^{\text{sep}}} \) is the coarse moduli space map. Since \(k \) is a finite field, we have that \(H^0_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m) \) is a torsion group. Moreover \(H^1_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m) \simeq \text{Pic}(\mathcal{M}^{\text{sep}}) \simeq \mathbb{Z}/(12) \) is a torsion group by [FO10]. Thus by e.g. [Fu11 4.3.7] or [GS06 6.1.3] we have \(E_2^{0,q} = 0 \) for \((p,q) \in \mathbb{Z}_{\geq 2} \times \{0,1\} \). This means there is an exact sequence

\[
0 \to E_2^{1,1} \to H^1_{\text{et}}(\mathcal{M}, \mathbb{G}_m) \to E_2^{0,2} \to 0
\]

of abelian groups.

By [FO10], we have that \(\text{Pic}(\mathcal{M}^{\text{sep}}) \simeq \mathbb{Z}/(12) \) is generated by the class of the Hodge bundle; since \(G_k \) acts trivially on invariant differentials of elliptic curves \(E \to S \) where \(S \) is a \(k \)-scheme, the action of \(G_k \) on \(\text{Pic}(\mathcal{M}^{\text{sep}}) \) is trivial. Hence we have

\[
E_2^{1,1} = H^1(G_k, H^1_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m)) \overset{1}{=} \text{Hom}_{\text{cont}}(G_k, \text{Pic}(\mathcal{M}^{\text{sep}})) \overset{2}{=} \mathbb{Z}/(12)
\]

where equality 1 is by [Fu11 4.3.7] and equality 2 is since \(G_k \simeq \hat{\mathbb{Z}} \). We have

\[
E_2^{0,2} = H^0(G_k, H^2_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m)) \overset{1}{=} (\mathbb{Z}/(2))^{G_k} \overset{2}{=} \mathbb{Z}/(2)
\]

where equality 1 is by the computation for an algebraically closed field ([Theorem 1.1] and also the fact that \(H^2_{\text{et}}(\mathcal{M}^{\text{sep}}, \mathbb{G}_m) \) is a torsion group (see [AM16 Proposition 2.5 (iii)]) and

\[\text{Br.}\mathcal{M}_{1,1,k} = \mathbb{Z}/(2) \text{ FOR } k = \mathbb{F} \text{ AND char } k = 2\]
equality 2 is because any group action on the group of order 2 is necessarily trivial. Thus (5.9.1) reduces to a natural extension
\[(5.9.2) \quad 0 \to \mathbb{Z}/(12) \to \text{Br} \mathcal{M} \to \mathbb{Z}/(2) \to 0\]
and it remains to see whether (5.9.2) is split. It suffices to compute the size of \((\text{Br} \mathcal{M})[2]\), since \((\text{Br} \mathcal{M})[2]\) has 4 or 2 elements depending on whether (5.9.2) is split or not, respectively.

As in (5.2), the fppf Kummer sequence
\[(5.9.3) \quad 1 \to \mu_2 \to \mathbb{G}_m \xrightarrow{\times 2} \mathbb{G}_m \to 1\]
gives an exact sequence of abelian groups. We compute \(H^2_{\text{fppf}}(\mathcal{M}, \mu_2)\) using the Leray spectral sequence which is of the form
\[E_2^{p,q} = H^p(G_k, H^q_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)) \Rightarrow H^{p+q}_{\text{fppf}}(\mathcal{M}, \mu_2)\]
with differentials \(E_2^{p,q} \to E_2^{p+2,q-1}\). We have
\[H^p_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2) = \begin{cases} 0 & \text{if } p = 0 \\ \mathbb{Z}/(2) & \text{if } p = 1 \\ \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) & \text{if } p = 2 \end{cases}\]
from the fppf Kummer sequence on \(\mathcal{M}_{\text{sep}}\), where the \(p = 0\) case follows since we are in characteristic 2 and \(\Gamma(\mathcal{M}_{\text{sep}}, \mathbb{G}_m) = \Gamma(k_{\text{sep}}^1, \mathbb{G}_m) = (k_{\text{sep}}^x)\), the \(p = 1\) case is since the multiplication-by-2 map on \(\Gamma(\mathcal{M}_{\text{sep}}, \mathbb{G}_m) = (k_{\text{sep}}^x)\) is an isomorphism, and the \(p = 2\) case is by the computation in the algebraically closed case (combine (5.2.5), (5.4.5), (5.4.6), (5.4.14)).

Since \(k\) has characteristic 2, the 2-cohomological dimension of \(k\) satisfies \(\text{cd}_2(k) \leq 1\) by e.g. [GS06, 6.1.9]; hence \(E_2^{p,q} = 0\) for \(p \geq 2\) and any \(q\). Hence there is an exact sequence
\[(5.9.5) \quad 0 \to H^1(G_k, H^1_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)) \to H^2_{\text{fppf}}(\mathcal{M}, \mu_2) \to H^0(G_k, H^2_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)) \to 0\]
of abelian groups. As above, the \(G_k\)-action on \(H^1_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)\) is necessarily trivial so we have an isomorphism \(H^1(G_k, H^1_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)) \simeq \text{Hom}_{\text{cont}}(G_k, \mathbb{Z}/(2)) \simeq \mathbb{Z}/(2)\).

To describe \(H^0(G_k, H^2_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2))\), we describe the \(G_k\)-action on \(H^2_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)\). Let \(\xi \in k_{\text{sep}}\) be a fixed root of \(x^2 + x + 1\) (i.e. a primitive 3rd root of unity).

If \(\xi \in k\), then \(G_k\) acts trivially on \(H^2_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2)\); hence \(H^0(G_k, H^2_{\text{fppf}}(\mathcal{M}_{\text{sep}}, \mu_2))\) has 4 elements, hence \(H^2_{\text{fppf}}(\mathcal{M}, \mu_2)\) has 8 elements by (5.9.5), hence \((\text{Br} \mathcal{M})[2]\) has 4 elements by (5.9.4), hence \(\text{Br} \mathcal{M} \simeq \mathbb{Z}/(2) \oplus \mathbb{Z}/(12)\).

Suppose \(\xi \notin k\). The \(k\)-algebra map
\[k[\mu, \omega, \frac{1}{\mu^3-1}]/(\omega^2 + \omega + 1) \to k_{\text{sep}}[\nu_1, \frac{1}{\nu_1^2-1}] \times k_{\text{sep}}[\nu_2, \frac{1}{\nu_2^2-1}]\]
sending \(\mu \mapsto (\nu_1, \nu_2)\) and \(\omega \mapsto (\xi, \xi^2)\) induces an isomorphism
\[(5.9.6) \quad k[\mu, \omega, \frac{1}{\mu^3-1}]/(\omega^2 + \omega + 1) \otimes_k k_{\text{sep}} \to k_{\text{sep}}[\nu_1, \frac{1}{\nu_1^2-1}] \times k_{\text{sep}}[\nu_2, \frac{1}{\nu_2^2-1}]\]
of \(k^{\text{sep}} \)-algebras. The inverse to (5.9.6) sends
\[
(f_1(\nu_1), f_2(\nu_2)) \mapsto f_1(\mu) \left(\omega \otimes \frac{1}{\xi - \xi^2} + 1 \otimes \frac{\xi}{\xi - 1} \right) + f_2(\mu) \left((-\omega) \otimes \frac{1}{\xi - \xi^2} + (-1) \otimes \frac{1}{\xi - 1} \right)
\]
for \(f_i(\nu_i) \in k[\nu_i, \frac{1}{\nu_i - 1}] \).

Let
\[
\lambda \in G_k
\]
be an automorphism of \(k^{\text{sep}} \) such that \(\lambda(\xi) = \xi^2 \). Then the \(k \)-algebra automorphism of \(k^{\text{sep}}[\nu_1, \frac{1}{\nu_1 - 1}] \times k^{\text{sep}}[\nu_2, \frac{1}{\nu_2 - 1}] \) induced by (5.9.6) sends \((\nu_1, 0) \mapsto (0, \nu_2)\) and \((\nu_1, 0) \mapsto (\nu_1, 0)\) and \((\xi, 0) \mapsto (0, \xi^2)\) and \((\xi, 0) \mapsto (\xi^2, 0)\). We see that the action of \(\lambda \) on \(M \) (see (5.3.2)) is given by (5.9.7)
\[
(5.9.7) \quad \begin{pmatrix} \nu_1 - 1 & \nu_1 - \xi \\ \nu_2 - \xi & \nu_2 - 1 \end{pmatrix} \lambda \begin{pmatrix} \nu_1 - 1 & \nu_1 - \xi \\ \nu_2 - \xi & \nu_2 - 1 \end{pmatrix} = \begin{pmatrix} \nu_2 - 1 & \nu_2 - \xi \\ \nu_1 - \xi & \nu_1 - 1 \end{pmatrix}
\]
A computation with (5.9.7) and (5.3.6) shows that
\[
\lambda g \lambda^{-1} \cdot m = g \cdot m
\]
for any \(m \in M \) and \(g \in \text{GL}_{2,3} \).

Let \(f_{\text{GL}_{2,3}} : \text{GL}_{2,3} \to M \) be an inhomogeneous 1-cocycle as in Note 5.7. Multiplying the 1-cocycle condition (5.4.8) on the left by \(\lambda \) gives
\[
\lambda \cdot f_{\text{GL}_{2,3}}(g_1 \cdot g_2) = \lambda g_1 \cdot f_{\text{GL}_{2,3}}(g_2) + \lambda \cdot f_{\text{GL}_{2,3}}(g_1)
\]
where equality 1 follows from (5.9.8) Hence the function \(\lambda \cdot f_{\text{GL}_{2,3}} : \text{GL}_{2,3} \to M \) sending \(g \mapsto \lambda \cdot f_{\text{GL}_{2,3}}(g) \) is a 1-cocycle as well. Using (5.9.7) and (5.7.4) we have that
\[
(5.9.9) \quad \begin{align*}
(\lambda \cdot f_{\text{GL}_{2,3}})(e) &= ((0, 0, 0), (0, 0, 0)) \\
(\lambda \cdot f_{\text{GL}_{2,3}})(i) &= ((s_1 + s, 0, s), (s_1, s, 0)) \\
(\lambda \cdot f_{\text{GL}_{2,3}})(j) &= ((0, s, s_1 + s), (0, s_1, s)) \\
(\lambda \cdot f_{\text{GL}_{2,3}})(k) &= ((s, s_1 + s, 0), (s, 0, s_1))
\end{align*}
\]
and so
\[
(5.9.10) \quad \begin{align*}
f_{\text{GL}_{2,3}}(e) - (\lambda \cdot f_{\text{GL}_{2,3}})(e) &= ((0, 0, 0), (0, 0, 0)) \\
f_{\text{GL}_{2,3}}(i) - (\lambda \cdot f_{\text{GL}_{2,3}})(i) &= ((s, 0, 0), (s, 0, 0)) \\
f_{\text{GL}_{2,3}}(j) - (\lambda \cdot f_{\text{GL}_{2,3}})(j) &= ((0, 0, s), (0, s, 0)) \\
f_{\text{GL}_{2,3}}(k) - (\lambda \cdot f_{\text{GL}_{2,3}})(k) &= ((0, s, 0), (0, 0, s))
\end{align*}
\]
for the same \(s, s_1 \in \mathbb{Z}/(2) \) as in (5.7.4)

Suppose \(f_{\text{GL}_{2,3}} \) and \(\lambda \cdot f_{\text{GL}_{2,3}} \) differ by a 1-coboundary, in other words there exists an element
\[
m := ((m_1^1, m_2^1, m_3^1), (m_1^2, m_2^2, m_3^2)) \in M
\]
such that
\[
(5.9.11) \quad f_{\text{GL}_{2,3}}(g) - (\lambda \cdot f_{\text{GL}_{2,3}})(g) = g \cdot m - m
\]
for all \(g \in \text{GL}_2 \). By (5.9.10) taking \(g = M_2 \) in (5.9.11) gives \(m^i = m_1^i = m_2^i = m_3^i \) for \(i = 1, 2 \); then taking \(g = M_1 \) gives \(m^1 = m_2^1 \); then taking \(g = i \) gives \(m = 0 \). We see that \(f_{\text{GL}_2} \) and \(\lambda \cdot f_{\text{GL}_2} \) differ by a 1-coboundary if and only if \(s = 0 \).

Hence we have that \(H^0(\text{Gr}, H^2_{\text{fppf}}(\mathcal{M}^\text{sep}, \mu_2)) \simeq \mathbb{Z}/(2) \), hence \(H^2_{\text{fppf}}(\mathcal{M}, \mu_2) \) has 4 elements by (5.9.5) hence (Br \(\mathcal{M} \))[2] has 2 elements by (5.9.4) hence \(\text{Br} \mathcal{M} \simeq \mathbb{Z}/(24) \). □

Appendix A. The Weierstrass and Hesse presentations of \([\Gamma(3)]\)

The purpose of this section is to prove [Proposition A.4] below, which we could not find proved in the literature. For completeness of exposition, we first recall the definition of a full level \(N \) structure on an elliptic curve \(E/S \).

A.1 (Full level \(N \) structure). [KM85, Ch. 3] Let \(N \) be a positive integer. We define \([\Gamma(N)]\) to be the category of pairs

\[
(\mathcal{E}/\mathcal{S}, \xi)
\]

where

\[
\mathcal{E}/\mathcal{S} = (f: \mathcal{E} \to \mathcal{S}, e: \mathcal{S} \to \mathcal{E})
\]

is an elliptic curve and

\[
\xi: (\mathbb{Z}/(N))_S^2 \to \mathcal{E}
\]

is a morphism of \(S \)-group schemes inducing an isomorphism \((\mathbb{Z}/(N))_S^2 \simeq \mathcal{E}[N]\). A morphism

\[
(\mathcal{E}_1/\mathcal{S}_1, \xi_1) \to (\mathcal{E}_2/\mathcal{S}_2, \xi_2)
\]

is a pair

\[
(\alpha: \mathcal{E}_1 \to \mathcal{E}_2, \beta: \mathcal{S}_1 \to \mathcal{S}_2)
\]

of morphisms of schemes such that the diagram

\[
\begin{array}{ccc}
(\mathbb{Z}/(N))_S^2 & \xrightarrow{(\mathbb{Z}/(3))_S^2} & (\mathbb{Z}/(N))_{S_1}^2 \\
\downarrow \alpha \downarrow & \xrightarrow{\text{id} \times \beta} & \downarrow f_1 \downarrow \\
S_1 & \xrightarrow{f_2} & S_2
\end{array}
\]

(A.1.1)

commutes, where the morphism \(\text{id} \times \beta \) is the one induced by the identity on \((\mathbb{Z}/(3))_{S_1}^2\) and \(\beta \), and such that \(\alpha \) induces an isomorphism of \(S_1 \)-group schemes \(\mathcal{E}_1 \simeq S_1 \times_{\beta, S_2} \mathcal{E}_2 \).

There is a functor

\[
[\Gamma(N)] \to \mathcal{M}_{1,1,\mathbb{Z}}
\]

sending \((\mathcal{E}/\mathcal{S}, \xi) \mapsto E/S\) on objects and \((\alpha, \beta) \mapsto (\alpha, \beta)\) on morphisms. If \(E/S \) admits a full level \(N \) structure, then \(N \) is invertible on \(S \) by [KM85 2.3.2], hence the above functor factors through \(\mathcal{M}_{1,1,\mathbb{Z}}[1] \). If \(N \geq 3 \), then for any scheme \(\mathcal{S} \) the fiber category \([\Gamma(N)](\mathcal{S})\) is equivalent to a set by [KM85 2.7.2], so \([\Gamma(N)]\) is fibered in sets over the category of schemes.
A.2 (The $\text{GL}_2(\mathbb{Z}/(N))$-action on $[\Gamma(N)]$). Fix a scheme S. For any element
\[
\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}
\]
in $\text{GL}_2(\mathbb{Z}/(N))$, let
\[
\varphi_\sigma : (\mathbb{Z}/(N))^2_S \to (\mathbb{Z}/(N))^2_S
\]
be the S-group scheme automorphism of $(\mathbb{Z}/(N))^2_S$ corresponding to the abelian group homomorphism $(\mathbb{Z}/(N))^2 \to (\mathbb{Z}/(N))^2$ defined by
\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \sigma_{11}x_1 + \sigma_{12}x_2 \\ \sigma_{21}x_1 + \sigma_{22}x_2 \end{bmatrix}
\]
for $x_1, x_2 \in \mathbb{Z}/(N)$, i.e. acting by multiplication on the left on $(\mathbb{Z}/(N))^2$ viewed as vertical vectors. We have
\[
\varphi_{\sigma_1}\varphi_{\sigma_2} = \varphi_{\sigma_1\sigma_2}
\]
for $\sigma_1, \sigma_2 \in \text{GL}_2(\mathbb{Z}/(N))$.

Fix an object $(E/S, \xi) \in [\Gamma(N)](E/S)$; then $(E/S, \xi \circ \varphi_\sigma)$ is another object of $[\Gamma(N)](E/S)$, i.e. corresponds to another full level N structure on E/S. This implies that there is a natural action of $\text{GL}_2(\mathbb{Z}/(N))$ on each fiber category $[\Gamma(N)](E/S)$; the action is a right action since it is defined by precomposition.

Theorem A.3. [KM85, 4.7.2] If $N \geq 3$, the category $[\Gamma(N)]$ is representable by a smooth affine curve $Y(N)$ over $\mathbb{Z}[\frac{1}{N}]$.

We are primarily interested in the case $N = 3$. The 3-torsion points of an elliptic curve correspond to its inflection points (also “flex points”). In [KM85 (2.2.11)] it is shown that $Y(3) \simeq \text{Spec } A_W$ where
\[
A_W := \mathbb{Z}[\frac{1}{3}, B, C, \frac{1}{C}, \frac{1}{a_3}, \frac{1}{a_3^2 - 27a_3}]/(B^3 - (B + C)^3)
\]
and the universal elliptic curve over A_W with full level 3 structure is the pair
\[
\begin{aligned}
E_W := \text{Proj } A_W[X, Y, Z]/(Y^2Z + a_1XYZ + a_3YZ^2 = X^3) \\
[0 : 0 : 1], [C : B + C : 1]
\end{aligned}
\]
where
\[
\begin{aligned}
a_1 &= 3C - 1 \\
a_3 &= -3C^2 - B - 3BC
\end{aligned}
\]
The formulas \((A.3.2)\) and \((A.3.3)\) are obtained by imposing the condition that the line $Y = X + BZ$ is a flex tangent to E_W at $[C : B + C : 1]$. The ring A_W is isomorphic to $\text{TMF}(3)_0$ \((5.6.1)\) with mutually inverse ring isomorphisms $\text{TMF}(3)_0 \to A_W$ and $A_W \to \text{TMF}(3)_0$ given by $(\zeta, t) \mapsto (\frac{B}{3C}, \frac{1}{3C})$ and $(B, C) \mapsto (\frac{1}{3(\zeta - 1)^2}, \frac{1}{3})$ respectively.

In this paper, however, we use the “Hesse presentation” of $Y(3)$ as in [FO10, 5.1]. The following is claimed without proof in the Introduction to [DR73] and [Har11 5.2.30].
Proposition A.4. There is an isomorphism $Y(3) \cong \text{Spec } A_H$ where
$$A_H := \mathbb{Z}[\frac{1}{3}, \mu, \omega, \frac{1}{\mu-1}]/(\omega^2 + \omega + 1)$$
and the universal elliptic curve over A_H with full level 3 structure is the pair
$$\begin{align*}
E_H := & \text{Proj } A_H[X, Y, Z]/(X^3 + Y^3 + Z^3 = 3\mu XYZ) \\
& [-1 : 0 : 1], [1 : -\omega : 0]
\end{align*}$$
with identity section $[1 : -1 : 0]$.

The explicit $\mathbb{Z}[\frac{1}{3}]$-algebra isomorphisms $A_H \to A_W$ and $A_W \to A_H$ are given in (A.8.7) and (A.8.8) respectively.

A.5. By [Sma01, §4], the group law of an elliptic curve $E = \text{Proj } A[X, Y, Z]/(X^3 + Y^3 + Z^3 = 3\mu XYZ)$ in Hessian form over a ring A is as follows. If $P = [x : y : z]$, then $2P = [x' : y' : z']$ where
$$\begin{align*}
x' &= y(z^3 - x^3) \\
y' &= x(y^3 - z^3) \\
z' &= z(x^3 - y^3)
\end{align*}$$
and if $P_i = [x_i : y_i : z_i]$ are points of E_H for $i = 1, 2, 3$ satisfying $P_1 + P_2 = P_3$, then
$$\begin{align*}
x_3 &= x_2y_1^2z_2 - x_1y_2^2z_1 \\
y_3 &= x_1y_2^2z_2 - x_2y_1^2z_1 \\
z_3 &= x_2y_2z_1^2 - x_1y_1z_2^2
\end{align*}$$
which only makes sense if $P_1 \neq P_2$.

Using the above formulas, we may check that the full level 3 structure $\xi_H : (\mathbb{Z}/(3))^2_{A_H} \to E_H$ is given by the table (A.5.1)
$$\begin{align*}
\xi_H & \left(\begin{array}{ccc}(0, 0) & (1, 0) & (2, 0) \\
(0, 1) & (1, 1) & (2, 1) \\
(0, 2) & (1, 2) & (2, 2) \end{array} \right) = \left(\begin{array}{ccc}[1 : -1 : 0] & [1 : 0 : 1] & [0 : 1 : -1] \\
[1 : -\omega : 0] & [-\omega : 0 : 1] & [0 : 1 : -\omega] \\
[1 : -\omega^2 : 0] & [-\omega^2 : 0 : 1] & [0 : 1 : -\omega^2] \end{array} \right)
\end{align*}$$

The Hesse presentation (A.4.1) is sometimes easier to work with than the Weierstrass presentation (A.3.1) since the equation of the universal elliptic curve is symmetric in X, Y, Z, which means that there is also considerable symmetry in the 3-torsion points (A.5.1).

A.6. We describe the $\text{GL}_2(\mathbb{Z}/(3))$-action on E_H/A_H. Set $S_H := \text{Spec } A_H$. The functor $[\Gamma(3)]$ being representable by S_H means explicitly that for any $\mathbb{Z}[\frac{1}{3}]$-scheme T and object $(E/T, \xi) \in ([\Gamma(3)])(T)$, there exists a unique pair (α, β) of morphisms of schemes $\alpha : E \to E_H$ and $\beta : T \to S_H$ such that the diagram
commutes and induces an isomorphism of T-group schemes $E \simeq T \times_{\beta} S_H E_H$ as in \cite{A.1.1}.

As in \cite{A.2}, for every $\sigma \in \text{GL}_2(\mathbb{Z}/(3))$, let φ_σ be the S_H-automorphism of $(\mathbb{Z}/(3))^2_{S_H}$ induced by σ; then precomposition $\xi_H \varphi_\sigma$ defines another full level 3 structure on E_H/S_H. Taking $T = S_H$ and $\xi = \xi_H \varphi_\sigma$ above, there is a unique pair $(\alpha_\sigma, \beta_\sigma)$ of morphisms of schemes $\alpha_\sigma : E_H \to E_H$ and $\beta_\sigma : S_H \to S_H$ such that the diagram

\[
\begin{array}{c}
E & \xrightarrow{\alpha} & E_H \\
\downarrow{\xi} & & \downarrow{\xi_H} \\
(\mathbb{Z}/(3))^2_T & \xrightarrow{id \times \beta} & (\mathbb{Z}/(3))^2_{S_H} \\
\downarrow{f_T} & & \downarrow{f_{S_H}} \\
T & \xrightarrow{\beta} & S_H \\
\end{array}
\]

commutes and induces an isomorphism of S_H-group schemes $E_H \simeq S_H \times_{\beta_\sigma} S_H E_H$. Given two elements $\sigma_1, \sigma_2 \in \text{GL}_2(\mathbb{Z}/(3))$, we have a commutative diagram

\[
\begin{array}{c}
E_H & \xrightarrow{\alpha_{\sigma_1}} & E_H & \xrightarrow{\alpha_{\sigma_2}} & E_H \\
\downarrow{\xi_H \varphi_{\sigma_1} \varphi_{\sigma_2}} & & \downarrow{\xi_H} & & \downarrow{f_{S_H}} \\
(\mathbb{Z}/(3))^2_{S_H} & \xrightarrow{id \times \beta_{\sigma_1}} & (\mathbb{Z}/(3))^2_{S_H} & \xrightarrow{id \times \beta_{\sigma_2}} & (\mathbb{Z}/(3))^2_{S_H} \\
\downarrow{f_{S_H}} & & \downarrow{f_{S_H}} & & \downarrow{f_{S_H}} \\
S_H & \xrightarrow{\beta_{\sigma_1}} & S_H & \xrightarrow{\beta_{\sigma_2}} & S_H \\
\end{array}
\]

which implies

$$\beta_{\sigma_2} \beta_{\sigma_1} = \beta_{\sigma_1} \sigma_2$$

since $\varphi_{\sigma_1} \sigma_2 = \varphi_{\sigma_1} \varphi_{\sigma_2}$ (see \cite{A.2}). Thus the assignment

(A.6.1) \hspace{1cm} \sigma \mapsto \beta_\sigma

defines a right action of $\text{GL}_2(\mathbb{Z}/(3))$ on the scheme S_H.
In terms of the generators

\[M_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \]

of \(\text{GL}_2(\mathbb{Z}/(3)) \), the action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on \(E_H/A_H \) is as follows. (We refer to (A.5.1) for the additive structure on \(E_H[3] \).)

1. For \(\sigma = M_1 \), the new level 3 structure \(\xi_{H\varphi_{M_1}} \) is

\[\left[[-1 : 0 : 1] \ [1 : -\omega : 0] \right] \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \left[[-1 : 0 : 1] \ [1 : -\omega^2 : 0] \right] \]

and the scheme morphisms \(\alpha_{M_1} : E_H \to E_H \) and \(\beta_{M_1} : S_H \to S_H \) correspond to the ring homomorphisms sending

\[
\begin{cases}
(X, Y, Z) & \mapsto (X, Y, Z) \\
(\mu, \omega^2) & \mapsto (\mu, \omega)
\end{cases}
\]

respectively.

2. For \(\sigma = M_2 \), the new level 3 structure \(\xi_{H\varphi_{M_2}} \) is

\[\left[[-1 : 0 : 1] \ [1 : -\omega : 0] \right] \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \left[[-\omega^2 : 0 : 1] \ [1 : -\omega : 0] \right] \]

and the scheme morphisms \(\alpha_{M_2} : E_H \to E_H \) and \(\beta_{M_2} : S_H \to S_H \) correspond to the ring homomorphisms sending

\[
\begin{cases}
(X, Y, \omega^2 Z) & \mapsto (X, Y, Z) \\
(\omega \mu, \omega) & \mapsto (\mu, \omega)
\end{cases}
\]

respectively.

3. For \(\sigma = i \), the new level 3 structure \(\xi_{H\varphi_i} \) is

\[\left[[-1 : 0 : 1] \ [1 : -\omega : 0] \right] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \left[[1 : -\omega : 0] \ [0 : 1 : -1] \right] \]

and the scheme morphisms \(\alpha_i : E_H \to E_H \) and \(\beta_i : S_H \to S_H \) correspond to the ring homomorphisms sending

\[
\begin{cases}
(\omega X + \omega^2 Y + Z, \omega^2 X + \omega Y + Z, X + Y + Z) & \mapsto (X, Y, Z) \\
(\mu + 2 \mu^2, \omega) & \mapsto (\mu, \omega)
\end{cases}
\]

respectively.

Remark A.7. According to our convention, the action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on the fiber category \([\Gamma(3)](E_H/\text{Spec } A_H) \) is by precomposition, hence the action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on pairs of points on the right hand side of (A.5.1) is a right action; thus the induced action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on the scheme \(\text{Spec } A_H \) is a right action (as described in (A.6.1)) and the corresponding action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on the coordinate ring \(A_H \) is a left action.
A.8 (Proof of Proposition A.4). In fact, it turns out that the identities
\[(A.8.1) \quad a_1^3 - 27a_3 = (3C + 9B - 1)^3\]
\[(A.8.2) \quad a_3 = B(6C + 9B - 1)\]
hold in \(A_W\) which yields a simpler description
\[A_W \simeq \mathbb{Z}[\frac{1}{3}, B, C, \frac{1}{\mathfrak{c}C + 9B - 1}, \frac{1}{6C + 9B - 1}]/(C^2 + 3CB + 3B^2)\]
of \(A_W\). (For (A.8.1) write out \(a_3^3 - 27a_3\) in terms of \(B, C\) and notice that it is of the form \(9C + 27B - 1\) plus higher order terms; then check that the naive guess works. To see (A.8.2) substitute \(C^2 = -3CB - 3B^2\) into (A.8.3).)

We follow the argument of [AD09, 2.1]; see also [Con96, §1.4.1, §1.4.2]. Working “generically”, we will assume that \(a_1\) is a unit to obtain the coordinate change formula (A.8.9) then observe that it applies also to the case when \(a_1\) is not a unit. Starting with
\[(A.8.3) \quad Y_1Z_1(Y_1 + a_1X_1 + a_3Z_1) = X_1^3\]
we define \(X_2, Y_2, Z_2\) by the system
\[
\begin{bmatrix}
X_1 \\
Y_1 \\
Z_1
\end{bmatrix} =
\begin{bmatrix}
1 & u^2 & u^3 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix}
\]
where \(u = a_1/3\) and substitute into (A.8.3) to get
\[(A.8.4) \quad Y_2Z_2(Y_2 + 3X_2 + \frac{27a_3}{a_1}Z_2) = X_2^3.\]
We define \(X_3, Y_3, Z_3\) by the system
\[
\begin{bmatrix}
1 & 1 & \frac{27a_3}{a_1} \\
1 & 1 & \frac{27a_3}{a_1}
\end{bmatrix}
\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2
\end{bmatrix} =
\begin{bmatrix}
\omega & \omega^2 & \omega^3 \\
\omega^2 & \omega & 1
\end{bmatrix}
\begin{bmatrix}
X_3 \\
Y_3 \\
Z_3
\end{bmatrix}
\]
where \(\omega = \frac{C + B}{B}\) and substitute into (A.8.4) to get
\[
(\omega X_3 + \omega^2 Y_3 - Z_3)(\omega^2 X_3 + \omega Y_3 - Z_3)(-X_3 - Y_3 + Z_3) = \frac{27a_3}{a_1}Z_3^3
\]
or equivalently
\[(A.8.5) \quad X_3^3 + Y_3^3 + \frac{27a_3}{a_1}Z_3^3 = -3X_3Y_3Z_3.\]
We know that the coefficient of \(Z_3^3\) in (A.8.5) is a cube (A.8.1) so we normalize by defining \(X_4, Y_4, Z_4\) by the system
\[
\begin{bmatrix}
X_3 \\
Y_3 \\
Z_3
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & -a_1 \\
& & \frac{-a_1}{3C + 9B - 1}
\end{bmatrix}
\begin{bmatrix}
X_4 \\
Y_4 \\
Z_4
\end{bmatrix}
\]
and substitute into (A.8.5) to get
\[(A.8.6) \quad X_4^3 + Y_4^3 + Z_4^3 = 3\frac{a_1}{3C + 9B - 1}X_4Y_4Z_4.\]

\(^2\)Since 3 is invertible, if \(x\) is a root of the polynomial \(T^2 + 3T + 3\) then \(x + 1\) is a root of the polynomial \(T^2 + T + 1\), thus it is natural to take \(\frac{C + B}{B}\) as our \(\omega\).
To summarize the above, there is a ring homomorphism \(\varphi_{21} : A_H \to A_W \) sending
\[
\begin{align*}
\mu &\mapsto \frac{3C - 1}{3C + 9B - 1} \\
\omega &\mapsto \frac{C + B}{B}
\end{align*}
\] (A.8.7)
and solving for \(B, C \) in terms of \(\mu, \omega \) implies that the inverse \(\varphi_{12} : A_W \to A_H \) sends
\[
\begin{align*}
B &\mapsto \frac{\mu - 1}{3(\omega + 2)(\mu - \omega)} \\
C &\mapsto \frac{1}{3}(\omega - 1)(\mu - 1)
\end{align*}
\] (A.8.8)
where \(\omega + 2 \) is a unit of \(A_H \) since \((\omega + 2)(\omega - 1) = -3 \) and \(\mu - \omega \) is a unit of \(A_H \) since \(\mu^3 - 1 = (\mu - 1)(\mu - \omega)(\mu - \omega^2) \). We may check that the product
\[
\begin{bmatrix}
u^2 \\ u^3 \\ 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & \frac{27a_3}{a_1^2} \\
1 & \frac{\omega^2}{a_3} & \frac{\omega}{a_3} \\
1 & \frac{\omega^2}{a_3} & \frac{\omega}{a_3}
\end{bmatrix}^{-1}
\begin{bmatrix}
\omega & \omega^2 \\ \omega & 1 \\ \frac{1}{3} - \frac{a_1}{3C + 9B - 1}
\end{bmatrix}
\] is “projectively equivalent” to the matrix
\[
X :=
\begin{bmatrix}
0 & 0 & -\frac{3}{3C + 9B - 1} \\
\omega & \omega^2 & \frac{3a}{3C + 9B - 1} \\
\frac{\omega^2}{a_3} & \frac{\omega}{a_3} & \frac{3a}{a_3(3C + 9B - 1)}
\end{bmatrix}
\] (A.8.9)
whose determinant is a unit of \(A_W \). Given a section \([s_X : s_Y : s_Z]\) of (A.8.3), the corresponding section of (A.8.6) is \(X^{-1} \cdot [s_X : s_Y : s_Z]^T \) where
\[
X^{-1} =
\begin{bmatrix}
-\frac{a_1}{3} & B & -\frac{9CB - 18B^2 - C}{3} \\
-\frac{a_1}{3} & \frac{-B}{C + 3B} & -\frac{9CB - 9B^2 + C + 3B}{3} \\
-\frac{3C - 9B + 1}{3} & 0 & \frac{3}{3}
\end{bmatrix}
\]
The above implies that the sections
\[
[0 : 1 : 0], [0 : 0 : 1], [C : B + C : 1]
\] of (A.8.3) (i.e. the identity section and ordered basis for the 3-torsion) correspond to the sections
(A.8.10) \([1 : -\omega : 0], [1 : -\omega^2 : 0], [-1 : 0 : 1]\)
of (A.8.6). We may apply an automorphism of the pair \((A_H, E_H/A_H) \in \mathcal{M}_{1,1,Z}\) of the form (A.6(2)) (for \(Y \) instead of \(Z \)) to (A.8.10) to get
(A.8.11) \([1 : -1 : 0], [1 : -\omega : 0], [-1 : 0 : 1]\)
and using the fact that there is a simply transitive action of \(\text{GL}_2(\mathbb{Z}/(3)) \) on the set of ordered bases of the 3-torsion in \(E_H/A_H \), we may switch the second and third sections of (A.8.11) to obtain
(A.8.12) \([1 : -1 : 0], [-1 : 0 : 1], [1 : -\omega : 0]\)
as desired. \(\square\)
Remark A.9. For (A.8.1) see also Stojanoska’s derivation [Sto14, §4.1].

Remark A.10. There are coordinate change formulas in [Sma01, §3] transforming a Weierstrass equation into Hesse normal form, but there it is assumed that the base ring is a finite field \mathbb{F}_q where $q \equiv 2 \pmod{3}$, in order to take cube roots of $a_1^3 - 27a_3$, but from this description it is not clear that the cube root is an algebraic function. As shown in (A.8.1) it turns out that in fact $a_1^3 - 27a_3$ is a cube in the ring A_W. One suspects that this is the case after tracing through the proof of [AD09, 2.1] and arriving at the equation $x^3 + y^3 + 27a_3 - a_1^3 z^3 = 3xyz$, in which case we know that $\frac{27a_3 - a_1^3}{a_1^3}$ is a cube by Lemma A.11.

Lemma A.11. Let k be a field of characteristic not 3, and let

\begin{align*}
(A.11.1) \quad & x^3 + y^3 + \beta = 3xy \\
(A.11.2) \quad & ax + by + c = 0
\end{align*}

be a curve in \mathbb{A}_k^2. Suppose that

\begin{align*}
(A.11.2) & ax + by + c = 0
\end{align*}

is the tangent line to a flex point of E and suppose that $a^3 \neq b^3$. Then β is a cube in k.

Proof. If $a = 0$, then $b \neq 0$ and substituting $y = -\frac{c}{b}$ into (A.11.1) and rearranging gives $x^3 + \frac{3}{b}x - \left(\frac{c}{b}\right)^3 + \beta = 0$ which by assumption is of the form $(x + \ell)^3$ for some $\ell \in k$. Comparing coefficients, we have $\ell = 0$ and so $\beta = \left(\frac{c}{b}\right)^3$.

By symmetry we may assume that $a, b \neq 0$. By scaling (A.11.2) we may assume that $b = -1$. Substituting $y = ax + c$ into E gives

\begin{align*}
(a^3 + 1)x^3 + 3(a)(ac - 1)x^2 + 3(c)(ac - 1)x + (c^3 + \beta)
\end{align*}

and dividing by the leading coefficient gives

\begin{align*}
x^3 + 3\left(\frac{a(ac - 1)}{a^3 + 1}\right)x^2 + 3\left(\frac{c(ac - 1)}{a^3 + 1}\right)x + \left(\frac{c^3 + \beta}{a^3 + 1}\right)
\end{align*}

and comparing this to

\begin{align*}
x^3 + 3\ell x^2 + 3\ell^2 x + \ell^3
\end{align*}

gives either $ac - 1 = 0$ in which case $c^3 + \beta = 0$ as well (so that $\beta = (-1/a)^3 = (-c)^3$), otherwise if $ac - 1 \neq 0$ then

\begin{align*}
\frac{c}{a} &= a \left(\frac{ac - 1}{a^3 + 1}\right)
\end{align*}

which implies $c = -a^2$ so that the original equation of the tangent line is $y = ax - a^2$. Substituting this back into E gives $\beta = (-a)^3$. \hfill \square

APPENDIX B. HIGHER DIRECT IMAGES OF SHEAVES ON CLASSIFYING STACKS OF DISCRETE GROUPS

The material in this section is standard and we claim no originality.

For a category C, we denote by $\text{PSh}(C)$ (resp. $\text{PAb}(C)$) the category of presheaves (resp. abelian presheaves) on C. If C is a site, we denote by $\text{Sh}(C)$ (resp. $\text{Ab}(C)$) the category of sheaves (resp. abelian sheaves) on C.
Let \(C \) be a site, let \(G \) be a finite (discrete) group, let \(B G_C \) be the classifying stack associated to \(G \) over \(C \). Let
\[
\pi : B G_C \to C
\]
be the projection and let
\[
\varphi : C \to B G_C
\]
be the canonical section of \(\pi \). We view any fibered category \(p : \mathcal{F} \to C \) as a site via the Grothendieck topology inherited from \(C \) via \(p \).

Lemma B.1. In the setup above, for any abelian sheaf \(\mathcal{F} \in \text{Ab}(B G_C) \) the higher pushforward \(R^i \pi_* \mathcal{F} \) is naturally isomorphic to the sheaf associated to the presheaf whose value on an object \(U \in C \) is \(H^i(G, \Gamma(U, \varphi^* \mathcal{F})) \).

Proof. Let \(PG_C \) denote the category whose objects are the objects of \(C \) and where a morphism \(X_1 \to X_2 \) in \(PG_C \) is a pair \((\varphi, g)\) where \(\varphi \in \text{Mor}_C(X_1, X_2) \) and \(g \in G \). (In other words, there is an equivalence of categories \(PG_C \simeq C \times [*/G] \) where \([*/G]\) is the category with one object \(*\) and where \(\text{Hom}_{[*/G]}(*, *) \) is isomorphic to \(G \).) The fibered category \(PG_C \) is a (separated) prestack whose associated stack is \(B G_C \), and the inclusion \(PG_C \to B G_C \) induces an equivalence of topoi \(\text{Sh}(PG_C) \simeq \text{Sh}(B G_C) \). Hence in the statement of the lemma we may replace \(B G_C \) by \(PG_C \) where by abuse of notation we also denote
\[
\pi : PG_C \to C
\]
the projection morphism. Since sheafification is an exact functor, the diagram
\[
\begin{array}{ccc}
\text{PAb}(PG_C) & \xrightarrow{\pi^\text{pre}} & \text{PAb}(C) \\
\text{sh} \downarrow & & \downarrow \text{sh} \\
\text{Ab}(PG_C) & \xrightarrow{\pi_*} & \text{Ab}(C)
\end{array}
\]
is (2-)commutative. For the same reason, we have a natural isomorphism
\[
(R \pi^\text{pre}_*(\mathcal{F}))^\text{sh} \simeq R \pi_*(\mathcal{F}^\text{sh})
\]
in \(\text{D}^+(\text{Ab}(C)) \) for any abelian presheaf \(\mathcal{F} \in \text{PAb}(PG_C) \). Presheaves on \(PG_C \) correspond to presheaves \(\mathcal{F} \) on \(C \) equipped with a \(G \)-action, and under this identification \(\pi^\text{pre}_*(\mathcal{F}) = \mathcal{F}^G \) where \(\Gamma(U, \mathcal{F}^G) := (\Gamma(U, \mathcal{F}))^G \) for all \(U \in C \). Let \(\mathcal{F} \in \text{Ab}(PG_C) \) be an abelian sheaf, and let
\[
\mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \mathcal{I}^2 \to \cdots
\]
be a resolution of \(\mathcal{F} \) by injective abelian presheaves \(\mathcal{I}^i \in \text{PAb}(PG_C) \). Then \(R \pi^\text{pre}_*(\mathcal{F}) \) is isomorphic to
\[
(\mathcal{I}^\bullet)^G = \{ (\mathcal{I}^0)^G \to (\mathcal{I}^1)^G \to (\mathcal{I}^2)^G \to \cdots \}
\]
in \(\text{D}^+(\text{PAb}(C)) \), and \(\Gamma(U, R \pi^\text{pre}_*(\mathcal{F})) \) is isomorphic to
\[
\Gamma(U, (\mathcal{I}^\bullet)^G) = \{ (\Gamma(U, \mathcal{I}^0))^G \to (\Gamma(U, \mathcal{I}^1))^G \to (\Gamma(U, \mathcal{I}^2))^G \to \cdots \}
\]
in \(\text{D}^+(\text{PAb}(C)) \). Furthermore \(\Gamma(U, \mathcal{I}^i) \simeq (i_U)^* \mathcal{I}^i \) is an injective \(G \)-module for all \(i \) by Lemma B.2, thus we have an isomorphism
\[
h^i(\Gamma(U, (\mathcal{I}^\bullet)^G)) \simeq H^i(G, \Gamma(U, \mathcal{F}))
\]
Lemma B.2. Let C be a category, let $U \in C$ be an object, let $A_{C,U}$ denote the full subcategory of C containing exactly U, and let $i_U : A_{C,U} \to C$ denote the inclusion. The inverse image functor $(i_U)^* : \text{PAb}(C) \to \text{PAb}(A_{C,U})$ preserves injectives.

Proof. The functor $(i_U)^* : \text{PAb}(PG_C) \to \text{PAb}(A_{C,U})$ has an exact left adjoint, namely the “extension by zero” functor $i_U \cdot : \text{PAb}(A_{C,U}) \to \text{PAb}(PG_C)$ which sends $M \in \text{PAb}(A_{C,U})$ to the abelian presheaf $i_U \cdot (M)$ where $\Gamma(V, i_U \cdot (M)) = M$ if $V = U$ and 0 otherwise (with the only nontrivial restriction morphisms being those corresponding to the endomorphisms of U).

Appendix C. Computation using Magma

We compute $H^1(\text{GL}_2(\mathbb{Z}/(3)), M)$ in 5.4 using MAGMA [BCP97]. Here G is defined as the subgroup of $\text{GL}_2(\mathbb{Z}/(3))$ generated by the matrices in (5.3.6), but the specified matrices constitute a generating set so in fact $G = \text{GL}_2(\mathbb{Z}/(3))$. The group G acts on the abelian group $M = (\mathbb{Z}/2) \oplus 6$ by the three specified elements of $\text{Mat}_{6 \times 6}(\mathbb{Z})$, where each $x \in M$ is viewed as a horizontal vector and each 6×6 matrix A acts on M by right multiplication $x \mapsto x \cdot A$. The last line computes $H^1(G, (\mathbb{Z}/(2)) \oplus 6)$.

G := MatrixGroup< 2, FiniteField(3) | [1,0 , -1,1] , [0,-1 , 1,0] , [1,0 , 0,-1] >;

mats := [
 Matrix(Integers(), 6 , 6 , [
 0, 0, 1, 0, 0, 0,
 1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 1,
 0, 0, 0, 1, 0, 0]),
 Matrix(Integers(), 6 , 6 , [
 1, 0, 0, 0, 0, 0,
 1, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0,
 0, 0, 0, 1, 0, 1,
 0, 0, 0, 1, 1, 0]),
 Matrix(Integers(), 6 , 6 , [
 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 1,
 1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0,
 0, 0, 1, 0, 0, 0])];

CM := CohomologyModule(G,[2,2,2,2,2],mats);
CohomologyGroup(CM,1);
References

[ACV03] D. Abramovich, A. Corti, and A. Vistoli. Twisted bundles and admissible covers. Communications in Algebra, 31(8):3547–3618, 2003.

[AD09] M. Artebani and I. V. Dolgachev. The Hesse pencil of plane cubic curves. LEnseignement Mathématique, 55(3):235–273, 2009. https://arxiv.org/abs/math/0611590

[AM16] Benjamin Antieau and Lennart Meier. The Brauer group of the moduli stack of elliptic curves. arXiv, 2016. preprint, http://arxiv.org/abs/1608.00851

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System I: The User Language. Journal of Symbolic Computation, 24(34):235 – 265, 1997.

[Con96] I. Connell. Elliptic Curve Handbook. on-line notes, McGill University, 2 edition, 1996. available at http://www.math.mcgill.ca/connell/public/ECH1/

[Del75] P. Deligne. Courbes elliptiques: formulaire d’apres J. Tate. In Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), volume 476 of Springer Lecture Notes in Mathematics, pages 53–73, 1975.

[Del77] P. Deligne. Cohomologie étale, Seminaire de Géométrie Algébrique du Bois-Marie (SGA 4 1/2), avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. Lecture Notes in Mathematics, 569, 1977.

[dJ03] A. J. de Jong. A result of Gabber. preprint, http://www.math.columbia.edu/~dejong/papers/2-gabber.pdf, 2003.

[DR73] Pierre Deligne and Michael Rapoport. Les schémas de modules de courbes elliptiques. In Modular functions of one variable, II, pages 143–316, Springer, 1973.

[FO10] William Fulton and Martin Olsson. The Picard group of $\mathcal{M}_{1,1}$. Algebra & Number Theory, 4(1):87–104, 2010.

[Fu11] Lei Fu. Etale Cohomology Theory, volume 13 of Nankai Tracts in Mathematics. World Scientific Publishing, 2011.

[Gab78] Ofer Gabber. Some theorems on Azumaya algebras. PhD thesis, Harvard, 1978. published in Groupes de Brauer, Lecture Notes in Math., vol. 844, Springer-Verlag, Berlin and New York, 1981, pp. 129-209.

[Gir71] Jean Giraud. Cohomologie non abélienne, volume 179 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1971.

[Gro68a] A. Grothendieck. Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses. In A. Grothendieck and N. H. Kuiper, editors, Dix Exposés sur la Cohomologie des Schémas, volume 3 of Advanced Studies in Pure Mathematics, chapter IV, pages 46–66. North-Holland Publishing, Amsterdam, 1968.

[Gro68b] A. Grothendieck. Le groupe de Brauer. III. Exemples et compléments. In A. Grothendieck and N. H. Kuiper, editors, Dix Exposés sur la Cohomologie des Schémas, volume 3 of Advanced Studies in Pure Mathematics, chapter VI, pages 88–188. North-Holland Publishing, Amsterdam, 1968.

[GS06] Phillipe Gille and Tamás Szamuely. Central Simple Algebras and Galois Cohomology, volume 101 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006.

[Har11] G. Harder. Lectures on Algebraic Geometry I. Vieweg+ Teubner. Heidelberg, Germany, 2011.

[KM85] N. M. Katz and B. Mazur. Arithmetic Moduli of Elliptic Curves. Princeton University Press, Princeton, NJ, 1985.

[KV04] A. Kresch and A. Vistoli. On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map. Bulletin of the London Mathematical Society, 36(02):188–192, 2004.

[Lie08] Max Lieblich. Twisted sheaves and the period-index problem. Compositio Mathematica, 144(01):1–31, 2008.

[Mei16] Ehud Meir. Shapiro’s lemma in the language of group extensions. MathOverflow, 2016. URL http://mathoverflow.net/q/256208 (version: 2016-12-02).

[Mil80] J. S. Milne. Etale Cohomology. Princeton University Press, Princeton, New Jersey, 1980.

[MS16] A. Mathew and V. Stojanoska. The Picard group of topological modular forms via descent theory. Geometry & Topology, 20(6):3133–3217, 2016.

[Mum65] D. Mumford. Picard groups of moduli problems. In Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pages 33–81, 1965.
Br. \(\mathcal{M}_{1,k} = \mathbb{Z}/(2) \) FOR \(k = \overline{\mathbb{F}} \) AND char \(k = 2 \)

[Ols05] M. Olsson. On proper coverings of Artin stacks. *Advances in Mathematics*, 198(1):93–106, 2005.

[Ols16] M. Olsson. *Algebraic Spaces and Stacks*, volume 62 of *Colloquium Publications*. American Mathematical Society, 2016. http://bookstore.ams.org/coll-62/

[Sil09] J. H. Silverman. *The Arithmetic of Elliptic Curves*, volume 106 of *Graduate Texts in Mathematics*. Springer, 2 edition, 2009.

[Sma01] N. P. Smart. The Hessian Form of an Elliptic Curve. In *International Workshop on Cryptographic Hardware and Embedded Systems*, pages 118–125. Springer, 2001.

[Sta18] The Stacks Project Authors. *Stacks Project*. http://stacks.math.columbia.edu, 2018.

[Sto14] V. Stojanoska. Calculating descent for 2-primary topological modular forms. *An Alpine Expedition through Algebraic Topology*, 617:241, 2014.

E-mail address: shinms@math.berkeley.edu

URL: http://math.berkeley.edu/~shinms