NON-ISOGENOUS SUPERELLIPTIC JACOBIANS

YURI G. ZARHIN

Abstract. Let \(\ell \) be an odd prime. Let \(K \) be a field of characteristic zero with algebraic closure \(K_a \). Let \(n, m \geq 4 \) be integers that are not divisible by \(\ell \). Let \(f(x), h(x) \in K[x] \) be irreducible separable polynomials of degree \(n \) and \(m \) respectively. Suppose that the Galois group \(\text{Gal}(f) \) of \(f \) acts doubly transitively on the set \(\mathfrak{R}_f \) of roots of \(f \) and that \(\text{Gal}(h) \) acts doubly transitively on \(\mathfrak{R}_h \) as well. Let \(J(C_{f,\ell}) \) and \(J(C_{h,\ell}) \) be the Jacobians of the superelliptic curves \(C_{f,\ell} : y^\ell = f(x) \) and \(C_{h,\ell} : y^\ell = h(x) \) respectively. We prove that \(J(C_{f,\ell}) \) and \(J(C_{h,\ell}) \) are not isogenous over \(K_a \) if the splitting fields of \(f \) and \(h \) are linearly disjoint over \(K(\zeta_\ell) \).

1. Definitions, Notations, Statements

Let \(K \) be a field. Let us fix its algebraic closure \(K_a \) and denote by \(\text{Gal}(K) \) the absolute Galois group \(\text{Aut}(K_a/K) \) of \(K \). If \(L \supset K \) is an overfield of \(K \) and \(L_a \) contains \(K_a \) (i.e., \(K_a \) is the algebraic closure of \(K \) in \(L_a \)) then \(K_a \) is \(\text{Aut}(L_a/L) \)-stable and we write

\[
\text{res}(L, K) : \text{Gal}(L) = \text{Aut}(L_a/L) \to \text{Aut}(K_a/K) = \text{Gal}(K)
\]

for the corresponding restriction map. If \(X \) is an abelian variety over \(K_a \) then we write \(\text{End}(X) \) for the ring of all its \(K_a \)-endomorphisms; \(1_X \) stands for the identity automorphism of \(X \). If \(Y \) is an abelian variety over \(K_a \) then we write \(\text{Hom}(X, Y) \) for the (free commutative) group of all \(K_a \)-homomorphisms from \(X \) to \(Y \). It is well-known that \(\text{Hom}(X, Y) = 0 \) if and only if \(\text{Hom}(Y, X) = 0 \). If \(X \) is defined over \(K \) then \(X(K_a) \) carries a natural structure of \(\text{Gal}(K) \)-module. One may also view \(X \) as an abelian variety over \(L \); the subgroup \(X(K_a) \subset X(L_a) \) is \(\text{Gal}(L) \)-stable and the corresponding homomorphism \(\text{Gal}(L) \to \text{Aut}(X(K_a)) \) is the composition of \(\text{res}(L, K) : \text{Gal}(L) \to \text{Gal}(K) \) and the structure homomorphism \(\text{Gal}(K) \to \text{Aut}(X(K_a)) \).

Let \(f(x) \in K[x] \) be a polynomial of degree \(n \geq 4 \) without multiple roots. We write \(\mathfrak{R}_f \subset K_a \) for the set of its roots, \(K(\mathfrak{R}_f) \subset K_a \) for the splitting field of \(f \) and \(\text{Gal}(f) = \text{Aut}(K(\mathfrak{R}_f)/K) = \text{Gal}(K(\mathfrak{R}_f)/K) \) for the Galois group of \(f \). Then \(\mathfrak{R}_f \) consists of \(n = \deg(f) \) elements. The group \(\text{Gal}(f) \) permutes elements of \(\mathfrak{R}_f \) and therefore can be identified with a certain subgroup of the group \(\text{Perm}(\mathfrak{R}_f) \) of all permutations of \(\mathfrak{R}_f \). Clearly, every ordering of \(\mathfrak{R}_f \) provides an isomorphism between \(\text{Perm}(\mathfrak{R}_f) \) and the full symmetric group \(S_n \) which makes \(\text{Gal}(f) \) a certain subgroup of \(S_n \). (This permutation subgroup is transitive if and only if \(f \) is irreducible over \(K_a \).)

Let \(\ell \) be an odd prime. We write \(\mathbb{Z}[\zeta_\ell] \) for the ring of all integers in the \(\ell \)th cyclotomic ring \(\mathbb{Q}(\zeta_\ell) \).

Let us assume that \(\text{char}(K) \neq \ell \) and consider the superelliptic curve

\[
C_{f,\ell} : y^\ell = f(x),
\]
defined over K. Its genus $g = g(C_{f,\ell})$ equals $(n - 1)(\ell - 1)/2$ if ℓ does not divide n and $(n - 2)(\ell - 1)/2$ if $\ell \mid n$. Let $J(C_{f,\ell})$ be the Jacobian of C_f; it is a g-dimensional abelian variety over K_a that is defined over K. Then $\text{End}(J(C_{f,\ell}))$ contains a certain subring isomorphic to $\mathbb{Z}[\zeta]/(\zeta^2)$ (see Sect. 3.2).

The main result of the present paper is the following statement.

Theorem 1.1 (Main Theorem). Suppose that K is a field of characteristic different from ℓ that contains a primitive ℓth root of unity. Let $f(x), h(x) \in K[x]$ be separable irreducible polynomials of degree $n \geq 4$ and $m \geq 4$ respectively. Suppose that the splitting fields of f and h are linearly disjoint over K.

Suppose that the following conditions hold:

(i) The group $\text{Gal}(f)$ acts doubly transitively on \mathcal{R}_f; if ℓ divides n then this action is 3-transitive.

(ii) The group $\text{Gal}(h)$ acts doubly transitively on \mathcal{R}_h; if ℓ divides n then this action is 3-transitive.

Then either

$$\text{Hom}(J(C_{f,\ell}), J(C_{h,\ell})) = 0, \quad \text{Hom}(J(C_{h,\ell}), J(C_{f,\ell})) = 0$$

or $p := \text{char}(K) > 0$ and there exists an abelian variety Z defined over an algebraic closure \overline{F}_p of F_p such that both $J(C_{f,\ell})$ and $J(C_{h,\ell})$ are isogenous over K_a to self-products of Z.

Remark 1.2. The case $\ell = 2$ (of hyperelliptic Jacobians) was treated in [26] [27]. See [11] for the list of known doubly transitive permutation groups.

The paper is organized as follows. In Sections 2 and 3 we study pairs of abelian varieties with homomorphism groups of big rank. We prove Theorem 1.1 in 41 Sections 5 and 6 contain the proof of some auxiliary results.

I am grateful to the referee, whose comments helped to improve the exposition.

2. Homomorphisms of abelian varieties: statements

First, we need to introduce some notions from the theory of abelian varieties. Let K be a field and d be a positive integer that is not divisible by $\text{char}(K)$. Let X be an abelian variety of positive dimension defined over K. We write X_d for the kernel of multiplication by d in $X(K_a)$. The commutative group X_d is a free $\mathbb{Z}/d\mathbb{Z}$-module of rank $2\dim(X)$ [11]. Clearly, X_d is a Galois submodule in $X(K_a)$.

We write

$$\tilde{\rho}_{d,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}/d\mathbb{Z}}(X_d) \cong \text{GL}(2\dim(X), \mathbb{Z}/d\mathbb{Z})$$

for the corresponding (continuous) homomorphism defining the Galois action on X_d. Let us put

$$\tilde{G}_{d,X} = \tilde{\rho}_{d,X}(\text{Gal}(K)) \subset \text{Aut}_{\mathbb{Z}/d\mathbb{Z}}(X_d).$$

Clearly, $\tilde{G}_{d,X}$ coincides with the Galois group of the field extension $K(X_d)/K$ where $K(X_d)$ is the field of definition of all points of order dividing d on X. In particular, if $\ell \neq \text{char}(K)$ is a prime then X_{ℓ} is a $2\dim(X)$-dimensional vector space over the prime field $F_\ell = \mathbb{Z}/\ell\mathbb{Z}$ and the inclusion $\tilde{G}_{\ell,X} \subset \text{Aut}_{F_\ell}(X_{\ell})$ defines a faithful linear representation of the group $\tilde{G}_{\ell,X}$ in the vector space X_{ℓ}.
We write \(\text{End}_K(X) \subset \text{End}(X) \) for the (sub)ring of all \(K \)-endomorphisms of \(X \) and \(\text{End}_K^{0}(X) \subset \text{End}^{0}(X) \) for the corresponding \(\mathbb{Q} \)-(sub)algebra of all \(K \)-endomorphisms of \(X \). If \(Y \) is an abelian variety over \(K \) then we write \(\text{Hom}^{0}(X,Y) \) for the \(\mathbb{Q} \)-vector space \(\text{Hom}(X,Y) \otimes \mathbb{Q} \).

Let \(E \) be a number field and \(\mathcal{O} \subset E \) be the ring of all its algebraic integers. Let \((X, i)\) be a pair consisting of an abelian variety \(X \) over \(K_\alpha \) and an embedding

\[
i : E \hookrightarrow \text{End}^{0}(X)
\]

such that \(i(1) = 1_X \). The degree \([E : \mathbb{Q}]\) divides \(2\dim(X) \) (see [27]).

If \(r \) is a positive integer then we write \(i^{(r)} \) for the composition

\[
E \hookrightarrow \text{End}^{0}(X) \subset \text{End}^{0}(X^r)
\]

of \(i \) and the diagonal inclusion \(\text{End}^{0}(X) \subset \text{End}^{0}(X^r) \).

If \((Y, j)\) is a pair consisting of an abelian variety \(Y \) over \(K_\alpha \) and an embedding \(j : E \hookrightarrow \text{End}^{0}(Y) \) with \(j(1) = 1_Y \) then we write

\[
\text{Hom}^{0}((X, i), (Y, j)) = \{ u \in \text{Hom}^{0}(X,Y) \mid ui(e) = j(e)u \quad \forall u \in E \}.
\]

Clearly, \(\text{Hom}^{0}((X, i), (Y, j)) \) carries a natural structure of finite-dimensional \(E \)-vector space. Notice that the \(\mathbb{Q} \)-vector space \(\text{Hom}^{0}(X,Y) \) carries a natural structure of \(E \otimes \mathbb{Q} \) \(E \)-module defined by the formula

\[
(e_1 \otimes e_2) \phi = j(e_1) \phi i(e_2) \quad \forall e_1, e_2 \in E, \phi \in \text{Hom}^{0}(X,Y).
\]

Remark 2.1. It is well-known that if the field extension \(E/\mathbb{Q} \) is normal then for each automorphism \(\sigma \in \text{Aut}(E) = \text{Gal}(E/\mathbb{Q}) \) there is a surjective \(E \)-algebra homomorphism

\[
\text{pr}_\sigma : E \otimes \mathbb{Q} E \twoheadrightarrow E, \quad e_1 \otimes e_2 \mapsto e_1 \sigma(e_2).
\]

(Here the structure of \(E \)-algebra on \(E \otimes \mathbb{Q} E \) is defined by

\[
e(e_1 \otimes e_2) = ee_1 \otimes e_2 \quad \forall e, e_1, e_2 \in E.
\]

The well-known \(E \)-linear independence of all \(\sigma : E \to E \) implies that the direct sum of all \(\text{pr}_\sigma \)'s is an isomorphism

\[
\bigoplus_{\sigma \in \text{Gal}(E/\mathbb{Q})} \text{pr}_\sigma : E \otimes \mathbb{Q} E \cong \bigoplus_{\sigma \in \text{Gal}(E/\mathbb{Q})} E.
\]

This allows us to view \(\text{pr}_\sigma \) as mutually orthogonal projection maps \(\text{pr}_\sigma : E \otimes \mathbb{Q} E \to E \otimes \mathbb{Q} E \), whose sum is the identity map. Also, the annihilator of \(\sigma(e) \otimes 1 - 1 \otimes e \) in \(E \otimes \mathbb{Q} E \) coincides with the image \(\text{pr}_\sigma : E \otimes \mathbb{Q} E \) of \(\text{pr}_\sigma \).

This implies easily that

\[
\text{Hom}^{0}((X,i), (Y,j)) = \text{pr}_\sigma(\text{Hom}^{0}(X,Y))
\]

and

\[
\text{Hom}^{0}(X, Y) = \bigoplus_{\sigma \in \text{Gal}(E/\mathbb{Q})} \text{Hom}^{0}((X,i), (Y,j)) \quad (1)
\]

where \(i : E \hookrightarrow \text{End}^{0}(X) \) is the composition of the automorphism \(\sigma : E \to E \) and \(i : E \hookrightarrow \text{End}^{0}(X) \).

Let us denote by \(\text{End}^{0}(X, i) \) the centralizer of \(i(E) \) in \(\text{End}^{0}(X) \). Clearly, \(\text{End}^{0}(X, i) = \text{Hom}^{0}((X,i), (X,i)) \) and \(i(E) \) lies in the center of the finite-dimensional \(\mathbb{Q} \)-algebra \(\text{End}^{0}(X, i) \). It follows that \(\text{End}^{0}(X, i) \) carries a natural structure of finite-dimensional \(E \)-algebra. One may easily check [27, Remark 4.1] that \(\text{End}^{0}(X, i) \) is a semisimple
Remark 2.5. For all positive integers \(r \)

Lemma 2.6. \(\dim_E(\text{End}^0((X, i))) \leq \frac{4 \cdot \dim(X)^2}{[E : \mathbb{Q}]^2} \).

Theorem 2.3. Suppose that

\[
\dim_E(\text{End}^0((X, i))) = \frac{4 \cdot \dim(X)^2}{[E : \mathbb{Q}]^2}.
\]

Then:

(i) \(\text{End}^0((X, i)) \) is a central simple \(E \)-algebra.

(ii) There exists an absolutely simple abelian variety \(B \) of CM-type over \(K_a \) such that \(X \) is isogenous to a self-product of \(B \).

(iii) If \(\text{char}(K) = 0 \) then \([E : \mathbb{Q}] \) is even and there exist a \([E : \mathbb{Q}]/2 \)-dimensional abelian variety \(Z \) over \(K_a \), an isogeny \(\psi : Z^r \to X \) and an embedding \(k : E \to \text{End}^0(Z) \) that send 1 to 1_{Z} and such that \(\psi \in \text{Hom}^0((Z^r, k^{(r)}), (X, i)) \).

Remark 2.4. Suppose that

\[
\dim_E(\text{End}^0((X, i))) = \frac{4 \cdot \dim(X)^2}{[E : \mathbb{Q}]^2}
\]

and \(\text{char}(K) > 0 \). In notations of Theorem 4.2, it follows from a theorem of Grothendieck [28 Th. 1.1] that \(B \) is isogenous to an abelian variety defined over a finite field. This implies that \(X \) is also isogenous to an abelian variety defined over a finite field.

If \(i(\mathcal{O}) \subset \text{End}(X) \) and \(j(\mathcal{O}) \subset \text{End}(Y) \) then we put

\[
\text{Hom}((X, i), (Y, j)) = \{ u \in \text{Hom}(X, Y) \mid ui(e) = j(e)u \quad \forall u \in E \}.
\]

Clearly,

\[
\text{Hom}^0((X, i), (Y, j)) = \text{Hom}((X, i), (Y, j)) \otimes \mathbb{Q},
\]

\[
\text{Hom}((X, i), (Y, j)) = \text{Hom}^0((X, i), (Y, j)) \cap \text{Hom}(X, Y),
\]

which is an \(\mathcal{O} \)-lattice in the \(E \)-vector space \(\text{Hom}^0((X, i), (Y, j)) \).

Remark 2.5. There are canonical isomorphisms of \(E \)-vector spaces

\[
\text{Hom}^0((X^r, i^{(r)}), (Y, j)) = (\text{Hom}^0((X, i), (Y, j)))^r = \text{Hom}^0((X^r, i), (Y, j^{(r)}))
\]

where \((\text{Hom}^0((X, i), (Y, j)))^r \) is a direct sum of \(r \) copies of \(\text{Hom}^0((X, i), (Y, j)) \). It follows easily that there is a canonical isomorphism of \(E \)-vector spaces

\[
\text{Hom}^0((X^r, i^{(r)}), (Y, j^{(m)})) = (\text{Hom}^0((X, i), (Y, j)))^{rm}
\]

for all positive integers \(r \) and \(m \).

Lemma 2.6. (i) \(\dim_E(\text{Hom}^0((X, i), (Y, j))) \leq \frac{4 \cdot \dim(X) \dim(Y)}{[E : \mathbb{Q}]^2} \);

(ii) If \(\dim(X) = \dim(Y) \) and

\[
\dim_E(\text{Hom}^0((X, i), (Y, j))) = \frac{4 \cdot \dim(X) \dim(Y)}{[E : \mathbb{Q}]^2}
\]

then \(\text{Hom}^0((X, i), (Y, j)) \) contains an isogeny \(\phi : X \to Y \). In particular, \(\text{Hom}^0((X, i), (Y, j)) = \phi \cdot \text{End}^0(X, i) \), \(\text{End}^0(Y, j) = \phi \text{End}^0(X, i) \phi^{-1} \).
and
\[\dim_E \text{End}^0(Y,j) = \dim_E \text{End}^0(X,i) = \dim_E \text{Hom}^0((X,i),(Y,j)) = \frac{4\dim(X)^2}{[E : \mathbb{Q}]^2} = \frac{4\dim(Y)^2}{[E : \mathbb{Q}]^2}. \]
of Lemma \[2.6\] Let us fix a prime \(\ell \neq \text{char}(K) \). Let us put
\[E_\ell := E \otimes_\mathbb{Q} \mathbb{Q}_\ell. \]
Clearly, \(E_\ell \) is a direct sum of finitely many \(\ell \)-adic fields.
Let \(T_\ell(X) \) be the \(\mathbb{Z}_\ell \)-Tate module of \(X \) \[11\]. Recall that \(T_\ell(X) \) is a free \(\mathbb{Z}_\ell \)-module of rank \(2\dim(X) \). Let us put
\[V_\ell(X) = T_\ell(X) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell; \]
it is a \(2\dim(X) \)-dimensional \(\mathbb{Q}_\ell \)-vector space. There are natural embeddings\n\[\text{End}^0(X) \otimes_\mathbb{Q} \mathbb{Q}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell} V_\ell(X), \quad \text{End}^0(Y) \otimes_\mathbb{Q} \mathbb{Q}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell} V_\ell(Y), \]
\[\text{Hom}^0(X,Y) \otimes_\mathbb{Q} \mathbb{Q}_\ell \hookrightarrow \text{Hom}_{\mathbb{Q}_\ell}(V_\ell(X), V_\ell(Y)). \]
Now the injections \(i \) and \(j \) give rise to the injections
\[E_\ell \hookrightarrow \text{End}^0(X) \otimes_\mathbb{Q} \mathbb{Q}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell} V_\ell(X), \quad E_\ell \hookrightarrow \text{End}^0(Y) \otimes_\mathbb{Q} \mathbb{Q}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell} V_\ell(Y). \]
These injections provide \(V_\ell(X) \) and \(V_\ell(Y) \) with the natural structure of free \(E_\ell \)-modules of rank \(\frac{2\dim(X)}{[E : \mathbb{Q}]} \) and \(\frac{2\dim(Y)}{[E : \mathbb{Q}]} \) respectively \[14\]. Clearly, the image of
\[\text{Hom}^0((X,i),(Y,j)) \otimes_\mathbb{Q} \mathbb{Q}_\ell \subset \text{Hom}^0(X,Y) \otimes_\mathbb{Q} \mathbb{Q}_\ell \]
in \(\text{Hom}_{\mathbb{Q}_\ell}(V_\ell(X), V_\ell(Y)) \) lies in \(\text{Hom}_{E_\ell}(V_\ell(X), V_\ell(Y)) \); in fact, it is a free \(E_\ell \)-submodule of \(\text{Hom}_{E_\ell}(V_\ell(X), V_\ell(Y)) \) of rank \(\dim_E(\text{Hom}^0((X,i),(Y,j))) \). The rank of the free \(E_\ell \)-module \(\text{Hom}_{E_\ell}(V_\ell(X), V_\ell(Y)) \) equals the product of the ranks of \(V_\ell(X) \) and \(V_\ell(Y) \), i.e. equals
\[\frac{2\dim(X)}{[E : \mathbb{Q}]} \cdot \frac{2\dim(Y)}{[E : \mathbb{Q}]} \]
We conclude that
\[\dim_E(\text{Hom}^0((X,i),(Y,j))) \leq \frac{2\dim(X)}{[E : \mathbb{Q}]} \cdot \frac{2\dim(Y)}{[E : \mathbb{Q}]} \]
Clearly, the equality holds if and only if
\[\text{Hom}_{E_\ell}(V_\ell(X), V_\ell(Y)) = \text{Hom}^0((X,i),(Y,j)) \otimes_\mathbb{Q} \mathbb{Q}_\ell. \]
Suppose that the equality holds and assume, in addition, that \(\dim(X) = \dim(Y) \).
Then the ranks of \(V_\ell(X) \) and \(V_\ell(Y) \) do coincide and there exists an isomorphism
\(u : V_\ell(X) \cong V_\ell(Y) \) of \(E_\ell \)-modules. Since \(\mathbb{Q} \) is everywhere dense in \(\mathbb{Q}_\ell \) in the \(\ell \)-adic topology, there exists \(u' \in \text{Hom}^0((X,i),(Y,j)) \) that is also an isomorphism between \(V_\ell(X) \) and \(V_\ell(Y) \). Replacing \(u' \) by \(Nu' \) for suitable positive integer \(N \), we may assume that \(u' \in \text{Hom}(X,Y) \). Then \(u' \) must be an isogeny. \[\square \]

Theorem 2.7. Suppose that \(E \) is a number field, \(X \) and \(Y \) are abelian varieties of positive dimension over an algebraically closed field \(K_a \),
\[i : E \leftrightarrow \text{End}^0(X), \quad j : E \leftrightarrow \text{End}^0(Y) \]
are embeddings that send 1 to the identity automorphisms of \(X \) and \(Y \) respectively. Let us put
\[
r_X := \frac{2\dim(X)}{[E : \mathbb{Q}]}, \quad r_Y := \frac{2\dim(Y)}{[E : \mathbb{Q}]},
\]
Let us assume that
\[
\dim_E \text{Hom}^0((X, i), (Y, j)) = r_X \cdot r_Y.
\]
Then both \(\text{End}^0(X, i) \) and \(\text{End}^0(Y, j) \) are central simple \(E \)-algebras and
\[
\dim_E \text{End}^0(X, i) = r_X^2, \quad \dim_E \text{End}^0(Y, j) = r_Y^2.
\]
In addition, both \(X \) and \(Y \) are isogenous to self-products of a certain absolutely simple abelian variety \(B \) of CM-type.

of Theorem 2.7. Clearly,
\[
\dim(X^r_Y) = \frac{2\dim(X)\dim(Y)}{[E : \mathbb{Q}]} = \dim(Y^r_X).
\]
It follows from Remark 2.5 that
\[
\dim_E(\text{Hom}^0((X^r_Y, i^{(r_Y)}), (Y^r_X, j^{(r_X)}))) = \frac{4\dim(X^r_Y)\dim(Y^r_X)}{[E : \mathbb{Q}]}.
\]
By Lemma 2.6 there exists an isogeny \(\phi : X^r_Y \to Y^r_X \) that lies in \(\text{Hom}^0((X^r_Y, i^{(r_Y)}), (Y^r_X, j^{(r_X)})) \).
In addition, \(\text{End}^0(X, i) \) and \(\text{End}^0(Y, j) \) are central simple \(E \)-algebras and
\[
\dim_E \text{End}^0(X^r_Y, i^{(r_Y)}) = \left(\frac{2\dim(X^r_Y)}{[E : \mathbb{Q}]^2} \right) = (r_X r_Y)^2.
\]
Similarly,
\[
\dim_E \text{End}^0(Y^r_X, j^{(r_X)}) = (r_Y r_X)^2.
\]
This implies the first claim.

Applying Theorem 2.7 to both \((X, i)\) and \((Y, j)\), we conclude that there exist absolutely simple abelian varieties \(B \) and say, \(B' \) of CM-type such that \(X \) is isogenous to a self-product of \(B \) and \(Y \) is isogenous to a self-product of \(B' \). Since \(\text{Hom}^0((X, i), (Y, j)) \neq 0 \), we conclude that \(\text{Hom}(X, Y) \neq 0 \) and therefore \(\text{Hom}(B, B') \neq 0 \). This implies that \(B \) and \(B' \) are isogenous and therefore \(Y \) is isogenous to a self-product of \(B \).

Suppose that \(X \) is defined over \(K \) and \(i(\mathcal{O}) \subset \text{End}_K(X) \). Then we may view elements of \(\mathcal{O} \) as \(K \)-endomorphisms of \(X \).

Let \(\lambda \) be a maximal ideal in \(\mathcal{O} \). We write \(k(\lambda) \) for the corresponding (finite) residue field. Let us put
\[
X_\lambda = X_{\lambda,i} := \{ x \in X(K_\lambda) \mid i(e)x = 0 \quad \forall e \in \lambda \}.
\]
Clearly, if \(\text{char}(k(\lambda)) = \ell \) then \(\lambda \supset \ell \cdot \mathcal{O} \) and therefore \(X_\lambda \subset X_\ell \). Moreover, \(X_\lambda \) is a Galois submodule of \(X_\ell \) and \(X_\lambda \) carries a natural structure of \(\mathcal{O}/\lambda = k(\lambda) \)-vector space. It is known [14] that if \(\ell \neq \text{char}(K) \) then
\[
\dim_{k(\lambda)} X_\lambda = \frac{2\dim(X)}{[E : \mathbb{Q}]}.
\]
We write
\[\tilde{\rho}_{\lambda,X} = \tilde{\rho}_{\lambda,X,K} : \text{Gal}(K) \to \text{Aut}_{k(\lambda)}(X_\lambda) \cong \text{GL}(d_{X,E}, k(\lambda)) \]
for the corresponding (continuous) homomorphism defining the Galois action on \(X_\lambda \). Let us put
\[\tilde{G}_{\lambda,X} = \tilde{G}_{\lambda,i,X} := \tilde{\rho}_{\lambda,X}(\text{Gal}(K)) \subset \text{Aut}_{k(\lambda)}(X_\lambda). \]
Clearly, \(\tilde{G}_{\lambda,X} \) coincides with the Galois group of the field extension \(K(X_\lambda)/K \) where \(K(X_\lambda) = K(X_{\lambda,i}) \) is the field of definition of all points in \(X_\lambda \).

In order to describe \(\tilde{\rho}_{\lambda,X,K} \) explicitly, let us assume for the sake of simplicity that \(\lambda \) is the only maximal ideal of \(\mathcal{O} \) dividing \(\ell \), i.e., \(\ell \cdot \mathcal{O} = \lambda b \) where the positive integer \(b \) satisfies \([E : \mathbb{Q}] = b \cdot \dim_{\mathbb{F}_\ell} k(\lambda) \). Then \(\mathcal{O} \otimes \mathbb{Z}_\ell = \mathcal{O}_\lambda \) where \(\mathcal{O}_\lambda \) is the completion of \(\mathcal{O} \) with respect to \(\lambda \)-adic topology. Let us choose an element \(c \in \lambda \) that does not lie in \(\lambda^2 \). One may easily check [28, §3] that
\[X_\lambda = \{ x \in X_\ell \mid cx = 0 \} \subset X_\ell. \]

Let \(T_\ell(X) \) be the \(\mathbb{Z}_\ell \)-Tate module of \(X \). Recall that \(T_\ell(X) \) is a free \(\mathbb{Z}_\ell \)-module of rank \(2 \dim(X) \) provided with the continuous action
\[\rho_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}_\ell}(T_\ell(X)) \]
and the natural embedding
\[\text{End}_K(X) \otimes \mathbb{Z}_\ell \hookrightarrow \text{End}_{\mathbb{Z}_\ell}(T_\ell(X)), \]
whose image commutes with \(\rho_{\ell,X}(\text{Gal}(K)) \). In particular, \(T_\ell(X) \) carries the natural structure of \(\mathcal{O} \otimes \mathbb{Z}_\ell = \mathcal{O}_\lambda \)-module; it is known [14] that the \(\mathcal{O}_\lambda \)-module \(T_\ell(X) \) is free of rank \(d_{X,E} \). There is also the natural isomorphism of Galois modules
\[X_\ell = T_\ell(X)/\ell T_\ell(X), \]
which is also an isomorphism of \(\text{End}_K(X) \supset \mathcal{O} \)-modules. One may easily check [28, §3] that the \(\mathcal{O}[\text{Gal}(K)] \)-module
\[X_\lambda = T_\ell(X)/(\lambda \mathcal{O}_\lambda)T_\ell(X) = T_\ell(X) \otimes_{\mathcal{O}_\lambda} k(\lambda). \]

Remark 2.8. Let \(\sigma \) be an automorphism of \(E \). Clearly, \(\sigma(\mathcal{O}) = \mathcal{O} \) and \(\sigma(\lambda) = \lambda \) (since \(\lambda \) is the only maximal ideal dividing \(\ell \)). However, \(\sigma \) may induce a non-trivial automorphism of \(k(\lambda) \) (if \(k(\lambda) \neq \mathbb{F}_\ell \)). Let us consider the composition
\[t := i \circ \sigma : E \hookrightarrow \text{End}^0_k(X). \]
Clearly, \(t(0) = i(0) \subset \text{End}_K(X) \). It is also clear that
\[X_\lambda = X_{\lambda,i} = X_{\lambda,t}, \quad K(X_\lambda) = K(X_{\lambda,i}) = K(X_{\lambda,t}), \quad \tilde{G}_{\lambda,X} = \tilde{G}_{\lambda,i,X} = \tilde{G}_{\lambda,t,X}. \]
However, the structure of the \(k(\lambda) \)-vector space on \(X_{\lambda,t} \) is the twist via \(\sigma \) of the structure of the \(k(\lambda) \)-vector space on \(X_{\lambda,i} \). This means that multiplication by any \(a \in k(\lambda) \) in \(X_{\lambda,t} \) coincides with multiplication by \(\sigma(a) \) in \(X_{\lambda,i} \). However, this twist does not change the algebra of linear operators, i.e.
\[\text{End}_{k(\lambda)}(X_{\lambda,i}) = \text{End}_{k(\lambda)}(X_{\lambda,t}), \quad \text{Aut}_{k(\lambda)}(X_{\lambda,i}) = \text{Aut}_{k(\lambda)}(X_{\lambda,t}). \]
This implies that the centralizers of \(\tilde{G}_{\lambda,X} \) in \(\text{End}_{k(\lambda)}(X_{\lambda,i}) \) and \(\text{End}_{k(\lambda)}(X_{\lambda}) \) do coincide. In particular, if the centralizer \(\text{End}_{k(\lambda)}(X_{\lambda,i}) \) is \(k(\lambda) \) (resp. a field) then the centralizer \(\text{End}_{k(\lambda)}(X_{\lambda,i}) \) is also \(k(\lambda) \) (resp. a field).
Remark 2.9. Suppose that L is an overfield of K and K_λ is the algebraic closure of K in L_α. Then one may view X as an abelian variety over L and $i(\cal O) \subset \mathrm{End}_L(X)$. The base change (from K to L) does not change the groups X_α and X_λ. One may easily check that $\tilde{\rho}_{\lambda,X,L} : \mathrm{Gal}(L) \to \mathrm{Aut}_{k(\lambda)}(X_\lambda)$ coincides with the composition of $\mathrm{res}(L,K) : \mathrm{Gal}(L) \to \mathrm{Gal}(K)$ and $\tilde{\rho}_{\lambda,X,K} : \mathrm{Gal}(K) \to \mathrm{Aut}_{k(\lambda)}(X_\lambda)$.

3. DISJOINT ABELIAN VARIETIES

Throughout this Section E is a number field with the ring of integers $\cal O$ and λ is a maximal ideal in $\cal O$, whose residue field $k(\lambda) = \cal O/\lambda$ has characteristic ℓ. We assume that λ is the only maximal ideal of $\cal O$ dividing ℓ. Let K a field of characteristic different from ℓ. Let X and Y are abelian varieties of positive dimension over K provided with embeddings

$$i : E \to \mathrm{End}^0_K(X) \subset \mathrm{End}^0(X), \hspace{1em} j : E \to \mathrm{End}^0_K(Y) \subset \mathrm{End}^0(Y)$$

such that

$$1_X = i(1) \in i(\cal O) \subset \mathrm{End}_K(X), \hspace{1em} 1_Y = j(1) \in j(\cal O) \subset \mathrm{End}_K(Y).$$

Let us consider the $k(\lambda)$-vector space

$$S(X,Y)_\lambda := \mathrm{Hom}_{k(\lambda)}(X_\lambda,Y_\lambda)$$

provided with the natural structure of $\mathrm{Gal}(K)$-module. Let

$$A(X,Y,\lambda,K) := \mathrm{End}_{\mathrm{Gal}(K)}(S(X,Y)_\lambda)$$

be the centralizer of $\mathrm{Gal}(K)$ in $\mathrm{End}_{k(\lambda)}(S(X,Y)_\lambda)$. Clearly, $A(X,Y,\lambda,K)$ is a finite-dimensional $k(\lambda)$-algebra containing the scalars $k(\lambda)$.

Remark 3.1. Suppose that L is an overfield of K and K_α is the algebraic closure of K in L_α. Let us consider X and Y as abelian varieties over L. It follows from Remark 2.9 that $\mathrm{Gal}(L) \to \mathrm{Aut}_{k(\lambda)}(S(X,Y)_\lambda)$ coincides with the composition of $\mathrm{res}(L,K) : \mathrm{Gal}(L) \to \mathrm{Gal}(K)$ and $\mathrm{Gal}(K) \to \mathrm{Aut}_{k(\lambda)}(S(X,Y)_\lambda)$. In particular, the image of $\mathrm{Gal}(L) \to \mathrm{Aut}_{k(\lambda)}(S(X,Y)_\lambda)$ lies in the image of $\mathrm{Gal}(K) \to \mathrm{Aut}_{k(\lambda)}(S(X,Y)_\lambda)$. It follows that

$$A(X,Y,\lambda,K) \subset A(X,Y,\lambda,L) \subset \mathrm{End}_{k(\lambda)}(S(X,Y)_\lambda).$$

Clearly, if $A(X,Y,\lambda,L)$ is a field then its every $k(\lambda)$-subalgebra is also a field, because $A(X,Y,\lambda,L)$ is finite-dimensional; in particular, $A(X,Y,\lambda,K)$ is also a field.

Definition 3.2. (X,i) and (Y,j) are disjoint at λ over K if $A(X,Y,\lambda,K)$ is a field.

Remark 3.3. It follows from Remark 3.1 that if (X,i) and (Y,j) are disjoint at λ over $L \supset K$ then they are also disjoint over K.

Theorem 3.4. Suppose that the following conditions hold:

(i) The field extensions $K(X_\lambda)$ and $K(Y_\lambda)$ are linearly disjoint over K.

(ii) Consider the centralizer $k_1 := \mathrm{End}_{G_{\lambda,X}}(X_\lambda)$ of $G_{\lambda,X}$ in $\mathrm{End}_{k(\lambda)}(X_\lambda)$ and the centralizer $k_2 := \mathrm{End}_{G_{\lambda,Y}}(Y_\lambda)$ of $G_{\lambda,Y}$ in $\mathrm{End}_{k(\lambda)}(Y_\lambda)$. Then the $k(\lambda)$-algebras k_1 and k_2 are fields that are linearly disjoint over $k(\lambda)$.

Then (X,i) and (Y,j) are disjoint at λ over K.

Theorem 3.5. If (X,i) and (Y,j) are disjoint at λ over K then one of the following two conditions holds:
We will prove Theorems 3.4 and 3.5 in §6. We will deduce Theorem 1.1 from the following statement.

Corollary 3.6. We keep all notations and assumptions of Theorem 3.4. Assume in addition that \(E \) is normal over \(\mathbb{Q} \). Then one of the following two conditions holds:

(i) \(\text{Hom}(X,Y) = 0, \text{Hom}(Y,X) = 0 \).

(ii) Both \(X \) and \(Y \) are isogenous over \(K_n \) to self-products of a certain absolutely simple abelian variety \(B \) of CM-type; in addition, \(\text{End}^0(X,i) \) is a \(r_X^2 \)-dimensional central simple \(E \)-algebra and \(\text{End}^0(Y,i) \) is a \(r_Y^2 \)-dimensional central simple \(E \)-algebra.

of Corollary 3.6 Applying Theorems 3.4 and 3.5 to \((X,i),(Y,j) \) for all \(\sigma \in \text{Gal}(E/\mathbb{Q}) \), we conclude that either the assertion (ii) holds (and we are done) or all \(\text{Hom}^0((X,i),(Y,j)) = 0 \).

In the latter case, it follows from Remark 2.1 that \(\text{Hom}^0(X,Y) = 0 \) and therefore \(\text{Hom}(X,Y) = 0 \), which, in turn, implies that \(\text{Hom}(Y,X) = 0 \). □

4. Proof of Main Theorem

Throughout this section \(\ell \) is an odd prime, \(K \) a field of characteristic different from \(\ell \) and \(K_n \) its algebraic closure,

\[
E := \mathbb{Q}(\zeta_{\ell}) \supset \mathcal{O} := \mathbb{Z}[\zeta_{\ell}] \supset \lambda := (1 - \zeta_{\ell}) \cdot \mathbb{Z}[\zeta_{\ell}], \quad k(\lambda) = \mathbb{F}_\ell.
\]

Clearly, \([E : \mathbb{Q}] = \ell - 1 \).

Let \(f(x) \in K[x] \) be a separable polynomial of degree \(n \geq 4 \).

Let \(\mathcal{R} = \mathcal{R}_f = \{a_1, \ldots, a_n\} \subset K_n \) be the set of all roots of \(f \). We may view the full symmetric group \(S_n \) as the group of all permutations of \(\mathcal{R} \). The Galois group \(G = \text{Gal}(f) \) of \(f \) permutes the roots and therefore becomes a subgroup of \(S_n \). The action of \(G \) on \(\mathcal{R} \) defines the standard permutational representation in the \(n \)-dimensional \(\mathbb{F}_\ell \)-vector space \(\mathbb{F}_p^\mathcal{R} \) of all functions \(\psi : \mathcal{R} \to \mathbb{F}_\ell \). This representation is not irreducible. Indeed, the "line" of constant functions \(\mathbb{F}_\ell \cdot 1 \) and the hyperplane \((\mathbb{F}_p^\mathcal{R})^0 := \{\psi \mid \sum_{i=1}^n \psi(a_i) = 0\} \) are \(G \)-invariant subspaces in \(\mathbb{F}_p^\mathcal{R} \).

Then we define the *heart* \((\mathbb{F}_\ell^\mathcal{R})^0 \) of the permutational action of \(G = \text{Gal}(f) \) on \(\mathcal{R} = \mathcal{R}_f \) over \(\mathbb{F}_\ell \) as follows \(\{100, 223\} \). If \(n \) is not divisible by \(\ell \) then we put

\[
(\mathbb{F}_\ell^\mathcal{R})^0 = (\mathbb{F}_\ell^\mathcal{R})^0 := (\mathbb{F}_\ell^\mathcal{R})^0.
\]

If \(n \) is divisible by \(\ell \) then \((\mathbb{F}_\ell^\mathcal{R})^0 \) contains \(\mathbb{F}_\ell \cdot 1 \) and we obtain the natural representation of \(G = \text{Gal}(f) \) in the \((n-2) \)-dimensional \(\mathbb{F}_\ell \)-vector quotient-space \((\mathbb{F}_\ell^\mathcal{R})^0/(\mathbb{F}_\ell \cdot 1) \). In this case we put

\[
(\mathbb{F}_\ell^\mathcal{R})^0 = (\mathbb{F}_\ell^\mathcal{R})^0 := (\mathbb{F}_\ell^\mathcal{R})^0/(\mathbb{F}_p \cdot 1).
\]

In both cases it is known that the \(\text{Gal}(f) \)-module \((\mathbb{F}_\ell^\mathcal{R})^0 \) is faithful (recall that \(n \geq 4 \) and \(\ell > 2 \)).
Remark 4.1. It is known \[\text{Sat} 4a\] (see also \[23\] Lemma 2.4) that if either \(n = \deg(f)\) is not divisible by \(\ell\) and \(\text{Gal}(f)\) is doubly transitive or \(n\) is divisible by \(\ell\) and \(\text{Gal}(f)\) is 3-transitive then the centralizer \(\text{End}_{\text{Gal}(f)}((\mathbb{F}_{\ell^m})^{00}) = \mathbb{F}_\ell\). (Conversely, one may easily check \[\text{Sat} 4a\] that if \(n\) is not divisible by \(\ell\) and \(H \subset \text{Perm}(\mathfrak{R})\) is a permutation group with \(\text{End}_{\mathfrak{H}}((\mathbb{F}_{\ell^m})^{00}) = \mathbb{F}_\ell\) then \(H\) is doubly transitive.)

Remark 4.2. Let us assume that \(K\) contains a primitive \(\ell\)-th root of unity \(\zeta\). Then the map

\[(x, y) \mapsto (x, \zeta y)\]

gives rise to a birational periodic automorphism \(\delta_\ell\) of \(C_{f, \ell}\) with exact period \(\ell\). By functoriality, \(\delta_\ell\) induces an automorphism of \(J(C_{f, \ell})\) which we still denote by \(\delta_\ell\).

It is known \[13, 15\] (see also \[23\]) that \(\delta_\ell\) satisfies the \(\ell\)-th cyclotomic equation in \(\text{End}_K(J(C_{f, \ell}))\). This gives rise to the embeddings

\[i_f : \mathbb{O} = \mathbb{Z}[\zeta_\ell] \rightarrow \text{End}_K(J(C_{f, \ell})), \ E = \mathbb{Q}[\zeta_\ell] \rightarrow \text{End}_K(J(C_{f, \ell}))\]

with \(i_f(1) = 1_{J(C_{f, \ell})}\) and \(i_f(\zeta_\ell) = \delta_\ell\).

Notice that \(\lambda = (1 - \zeta_\ell) \cdot \mathbb{Z}[\zeta_\ell]\) is the only maximal ideal dividing \(\ell\) in \(\mathbb{Z}[\zeta_\ell]\) and the corresponding residue field \(k(\lambda) = \mathbb{F}_\ell\). The finite Galois module \(J(C_{f, \ell})_\lambda\) admits the following description. The canonical surjection \(\text{Gal}(K) \rightarrow \text{Gal}(f)\) defines on the \(\mathbb{F}_\ell(\text{Gal}(K))-\)module \((\mathbb{F}_{\ell^m})^{00}\) the natural structure of \(\text{Gal}(K)\)-module. Then the \(\mathbb{F}_\ell(\text{Gal}(K))-\)modules \((\mathbb{F}_{\ell^m})^{00}\) and \(J(C_{f, \ell})_\lambda\) are canonically isomorphic \[13, 15\]. In particular, this implies that

\[K(J(C_{f, \ell})_\lambda) = K(\mathfrak{R}_f),\]

(recall that the the \(\text{Gal}(f)\)-module \((\mathbb{F}_{\ell^m})^{00}\) is faithful).

Theorem \[14.1\] now clearly is an immediate corollary of Remark \[14.1\] and the following result.

Theorem 4.3. Suppose that \(K\) is a field of characteristic different from \(\ell\) that contains a primitive \(\ell\)-th root of unity. Let \(f(x), h(x) \in K[x]\) be separable polynomials of degree \(n \geq 4\) and \(m \geq 4\) respectively. Suppose that the splitting fields of \(f\) and \(h\) are linearly disjoint over \(K\). Suppose that

\[\text{End}_{\text{Gal}(f)}((\mathbb{F}_{\ell^m})^{00}) = \mathbb{F}_\ell, \ \text{End}_{\text{Gal}(h)}((\mathbb{F}_{\ell^m})^{00}) = \mathbb{F}_\ell.\]

Then one the two following conditions hold:

(i) \(\text{Hom}(J(C_{f, \ell}), J(C_{h, \ell})) = 0\) and \(\text{Hom}(J(C_{h, \ell}), J(C_{f, \ell})) = 0\).

(ii) \(p := \text{char}(K) > 0\) and there exists an absolutely simple abelian variety \(Z\) defined over an algebraic closure \(\mathbb{F}_p\) of \(\mathbb{F}_p\) such that both \(J(C_{f, \ell})\) and \(J(C_{h, \ell})\) are abelian varieties of CM-type isogenous over \(K_a\) to self-products of \(Z\). In addition, the centralizer of \(\mathbb{Q}[\delta_\ell] \cong \mathbb{Q}(\zeta_\ell)\) in \(\text{End}^0(J(C_{f, \ell}))\) is a central simple \(\mathbb{Q}(\zeta_\ell)\)-algebra of dimension \(\left(\frac{2\dim(J(C_{f, \ell})))}{\ell-1}\right)^2\) and the centralizer of \(\mathbb{Q}[\delta_\ell] \cong \mathbb{Q}(\zeta_\ell)\) in \(\text{End}^0(J(C_{h, \ell}))\) is a central simple \(\mathbb{Q}(\zeta_\ell)\)-algebra of dimension \(\left(\frac{2\dim(J(C_{h, \ell})))}{\ell-1}\right)^2\).

of Theorem \[4.3\] By the assumption and Remark \[4.2\] \(K(J(C_{f, \ell})_\lambda)\) and \(K(J(C_{h, \ell})_\lambda)\) are linearly disjoint over \(K\).
Applying Corollary 5.6 (with $k_1 = F_\ell = k_2$, $X = J(C_{f,\ell}), Y = J(C_{h,\ell})$), we conclude that either
\[\text{Hom}(J(C_{f,\ell}), J(C_{h,\ell})) = 0, \quad \text{Hom}(J(C_{h,\ell}), J(C_{f,\ell})) = 0 \]
(i.e. the case (i) holds) or both $J(C_{f,\ell})$ and $J(C_{h,\ell})$ are isogenous over K_a to self-products of a certain absolutely simple abelian variety B of CM-type; in addition, the centralizer of $Q(\zeta_\ell)$ in $\text{End}^0(J(C_{f,\ell}))$ is a $\left(\frac{2\dim(J(C_{f,\ell})))}{\ell-1} \right)$-dimensional central simple $Q(\zeta_\ell)$-algebra. By [23, Theorem 3.6], the last property cannot take place in characteristic zero and therefore $p := \text{char}(K_a) = \text{char}(K) > 0$. In order to check that the case (ii) holds, one has only to recall that in characteristic p every absolutely simple abelian variety of CM-type is isogenous to an abelian variety over F_p (a theorem of Grothendieck [12]). By the same token, we get the desired results for $J(C_{h,\ell})$. □

Remark 4.4. Theorem 4.3 suggests that it may be interesting to classify subgroups $G = \text{Gal}(f) \subset \text{Perm}(R)$ such that $n = \#(R)$ is divisible by ℓ and $\text{End}_G((F_\ell)_{00}) = F_\ell$ (or a field). According to [8, Satz 11], if G is transitive (i.e. $f(x)$ is irreducible) then such G must be doubly transitive (if $n \geq 4$ and ℓ is odd). The (almost) complete classification of known doubly transitive G with (absolutely) irreducible $(F_\ell)_{00}$ is given in [10] (see also [11]). Of course, in the irreducible case the centralizer is a field (and even F_ℓ in the absolutely irreducible case).

Theorem 4.5. Suppose that K is a field of prime characteristic different from ℓ that contains a primitive ℓth root of unity. Let $f(x), h(x) \in K[x]$ be separable polynomials of degree $n \geq 9$ and $m \geq 4$ respectively. Suppose that the splitting fields of f and h are linearly disjoint over K. Suppose that ℓ divides n and $\text{Gal}(f)$ coincides either with full symmetric group S_n or with the alternating group A_n. Suppose that
\[\text{End}_{\text{Gal}(h)}((F_\ell^0)_{00}) = F_\ell \]
(e.g., ℓ does not divide m and $\text{Gal}(h)$ is doubly transitive.) Then
\[\text{Hom}(J(C_{f,\ell}), J(C_{h,\ell})) = 0, \quad \text{Hom}(J(C_{h,\ell}), J(C_{f,\ell})) = 0. \]

Proof. Clearly, $\text{Gal}(f)$ is 3-transitive and, thanks to Remark 4.1
\[\text{End}_{\text{Gal}(f)}((F_\ell^0)_{00}) = F_\ell. \]
Therefore we may apply Theorem 4.3. Assume that the assertion (ii) holds true.
In particular, the centralizer of $Q[\delta_\ell] \cong Q(\zeta_\ell)$ in $\text{End}^0(J(C_{f,\ell}))$ is a central simple $\left(\frac{2\dim(J(C_{f,\ell})))}{\ell-1} \right)$-dimensional $Q(\zeta_\ell)$-algebra. Recall that $r := \frac{2\dim(J(C_{f,\ell})))}{\ell} = n - 1$ or $n - 2$; in both cases we have $r > 1$ and therefore the r^2-dimensional centralizer of $Q[\delta_\ell]$ contains an overfield $E' \supset Q[\delta_\ell]$ that does not coincide with $Q[\delta_\ell]$. However, it follows from Theorem 0.1 of [23] that $Q[\delta_\ell]$ is a maximal commutative Q-subalgebra in $\text{End}^0(J(C_{f,\ell}))$. This gives us a desired contradiction. □

5. Representation theory

This Section contains auxiliary results that will be used in Section 6.

Lemma 5.1. Let F be a field. Let H_1 and H_2 be groups. Let $\tau_i : H_i \rightarrow \text{Aut}_F(W_i)$ ($i = 1, 2$) be linear finite-dimensional representation of H_i over F and $F_i := \text{End}_{H_i}(W_i)$. Let $W_1^* = \text{Hom}_F(W_1, F)$ be the dual of W_1 and $\tau_i^* : H_i \rightarrow \text{Aut}_F(W_i^*)$
the dual of \(\tau_1 \). Let us assume that the \(F \)-algebras \(F_1 \) and \(F_2 \) are fields that are linearly disjoint over \(F \).

Let us consider the natural linear representation

\[
\tau^*_1 \otimes \tau^*_2 : H_1 \times H_2 \to \text{Aut}_F(\text{Hom}_F(W_1, W_2))
\]

of the group \(H := H_1 \times H_2 \) in the \(F \)-vector space \(S := \text{Hom}_F(W_1, W_2) \). Then \(\text{End}_H(S) \) is a field.

Proof. One may easily check that the centralizer of \(H_1 \) in \(\text{End}_F(W^*_1) \) still coincides with \(F_1 \). Let \(A_1 \) be the \(F \)-subalgebra of \(\text{End}_F(W^*_1) \) generated by \(\tau_1^*(H_1) \); clearly, the centralizer of \(A_1 \) in \(\text{End}_F(W^*_1) \) also coincides with \(F_1 \). Similarly, if \(A_2 \) is the \(F \)-subalgebra of \(\text{End}_F(W_2) \) generated by \(\tau_2(H_2) \) then the centralizer of \(A_2 \) in \(\text{End}_F(W_2) \) coincides with \(F_2 \). Clearly, the \(F \)-subalgebra of \(\text{End}_F(W^*_1 \otimes_F W_2) \) generated by \(\tau^*_1 \otimes \tau_2(H_1 \times H_2) \) coincides with

\[
A_1 \otimes_F A_2 \subset \text{End}_F(W^*_1) \otimes_F \text{End}_F(W_2) = \text{End}_F(W^*_1 \otimes_F W_2).
\]

It follows from Lemma (10.37) on p. 252 of \(\mathbb{G} \) that the centralizer of \(A_1 \otimes_F A_2 \) in \(\text{End}_F(W^*_1 \otimes_F W_2) \) coincides with \(F_1 \otimes_F F_2 \) and therefore is a field, thanks to the linear disjointness of \(F_1 \) and \(F_2 \). This implies that the centralizer of \(H_1 \times H_2 \) in \(\text{End}_F(W^*_1 \otimes_F W_2) \) is the field \(F_1 \otimes_F F_2 \). Since the \(H \)-modules \(W^*_1 \otimes F W_2 \) and \(\text{Hom}_F(W_1, W_2) \) are canonically isomorphic, the centralizer of \(H \) in \(\text{End}_F(\text{Hom}_F(W_1, W_2)) \) is also a field. \(\square \)

Lemma 5.2. Let \(L \) be a complete discrete valuation field with discrete valuation ring \(O_L \) its maximal ideal \(m = O_L/\mathfrak{m} \). Let \(V \) be a finite-dimensional vector space over \(L \), \(\tau : G \to \text{Aut}_L(V) \) a completely reducible linear representation of a group \(G \) in \(V \). Let \(T \) be a \(G \)-stable \(O_L \)-lattice in \(V \). Consider the finite-dimensional \(k \)-vector space \(\bar{V} = T \otimes_{O_L} k \) provided with a natural linear representation \(\bar{\tau} : G \to \text{Aut}_k(\bar{V}) \) that is the reduction of \(\tau \) modulo \(\mathfrak{m} \). If the centralizer of \(G \) in \(\text{End}_k(\bar{V}) \) is a field then \(\tau \) is irreducible.

Proof. Suppose that \(\tau \) is not irreducible. Since it is completely reducible, there exist non-zero \(u_1, u_2 \in \text{End}_O(V) \) with \(u_1 u_2 = 0 \). Multiplying (if necessary) both \(u_1 \) and \(u_2 \) by suitable powers of an uniformizer, we may assume that \(u_1(T) \subset T, u_2(T) \subset T \) but neither \(u_1 \) nor \(u_2 \) lies in \(m \cdot \text{End}_{O_L}(T) \). It follows that the images \(\bar{u}_1, \bar{u}_2 \) of \(u_1 \) and \(u_2 \) with respect to the reduction map \(\text{End}_{O_L}(T) \to \text{End}_k(\bar{V}) \) satisfy

\[
\bar{u}_1 \neq 0, \bar{u}_2 \neq 0, \bar{u}_1 \bar{u}_2 = 0.
\]

Since both \(\bar{u}_1, \bar{u}_2 \) obviously lie in the centralizer of \(G \) in \(\text{End}_k(\bar{V}) \), we get a contradiction. \(\square \)

Lemma 5.3. Let \(V \) be a finite-dimensional vector space over a field \(Q \) of characteristic zero, \(G \) a group, \(\tau : G \to \text{Aut}_Q(V) \) a completely reducible \(Q \)-linear representation in \(V \). Let \(L \) be an overfield of \(Q \) and \(i : L \hookrightarrow \text{End}_Q(V) \) is an embedding of \(Q \)-algebras that sends 1 to the identity automorphism of \(V \). Suppose that the image \(i(L) \) commutes with \(G \). Then the natural \(L \)-linear representation of \(G \) in \(V \) is also completely reducible.

Proof. Let \(A \subset \text{End}_Q(V) \) be the image of the natural \(Q \)-algebra homomorphism \(Q[G] \to \text{End}_Q(V) \). The complete reducibility of \(\tau \) means that \(A \) is a (finite-dimensional) semisimple \(Q \)-algebra. Therefore \(A_L := A \otimes_Q L \) is a semisimple
L-algebra. Clearly, $A \subset \text{End}_L(V)$. This implies that the image of the natural L-algebra homomorphism

$$L[G] \to \text{End}_L(V) \subset \text{End}_Q(V)$$

is isomorphic to a quotient of A_L and therefore is also a semisimple L-algebra. But this means that the natural L-linear representation of G in V is also completely reducible.

\[\square \]

6. HOMOMORPHISMS OF ABELIAN VARIETIES: PROOFS

of Theorem 6.4 We need to prove that the centralizer $A(X,Y,\lambda,K) = \text{End}_{\text{Gal}(K)}(S(X,Y)_\lambda) = \text{End}_{\text{Gal}(K)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda))$ of the natural representation

$$\text{Gal}(K) \to \text{Aut}_{k(\lambda)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda))$$

is a field. Denote this representation by τ and let us put

$$F = k(\lambda), H_1 = \tilde{G}_{\lambda,X}, W_1 = X\lambda, H_2 = \tilde{G}_{\lambda,Y}, W_2 = Y_\lambda.$$

Denote by

$$\tau_1 : H_1 = \tilde{G}_{\lambda,X} \subset \text{Aut}_{k(\lambda)}(X\lambda) = \text{Aut}_{k(\lambda)}(W_1)$$

and

$$\tau_2 : H_2 = \tilde{G}_{\lambda,Y} \subset \text{Aut}_{k(\lambda)}(Y_\lambda) = \text{Aut}_{k(\lambda)}(W_2)$$

the corresponding inclusion maps.

It follows from Lemma 5.3 that the centralizer of the linear representation

$$\tau_1^* \otimes \tau_2 : \text{Gal}(K(X\lambda)/K) \times \text{Gal}(K(Y_\lambda)/K) \to \text{Aut}_{k(\lambda)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda))$$

is a field.

One may easily check that τ, which defines the structure of $\text{Gal}(K)$-module on $\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda)$, coincides with the composition of the natural surjection $\text{Gal}(K) \twoheadrightarrow \text{Gal}(K(X\lambda,Y_\lambda)/K)$, the natural embedding

$$\text{Gal}(K(X\lambda,Y_\lambda)/K) \hookrightarrow \text{Gal}(K(X\lambda)/K) \times \text{Gal}(K(Y_\lambda)/K)$$

and

$$\tau_1^* \otimes \tau_2 : \text{Gal}(K(X\lambda)/K) \times \text{Gal}(K(Y_\lambda)/K) \to \text{Aut}_{k(\lambda)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda)).$$

Here $K(X\lambda,Y_\lambda)$ is the compositum of the fields $K(X\lambda)$ and $K(Y_\lambda)$. The linear disjointness of $K(X\lambda)$ and $K(Y_\lambda)$ means that

$$\text{Gal}(K(X\lambda,Y_\lambda)/K) = \text{Gal}(K(X\lambda)/K) \times \text{Gal}(K(Y_\lambda)/K).$$

This implies that τ is the composition of the surjection

$$\text{Gal}(K) \to \text{Gal}(K(X\lambda)/K) \times \text{Gal}(K(Y_\lambda)/K)$$

and $\tau_1^* \otimes \tau_2$. Since the centralizer of the representation

$$\tau_1^* \otimes \tau_2 : \text{Gal}(K(Y_\lambda)/K) \times \text{Gal}(K(X\lambda)/K) \to \text{Aut}_{k(\lambda)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda))$$

is a field, the centralizer of the representation

$$\tau : \text{Gal}(K) \to \text{Aut}_{k(\lambda)}(\text{Hom}_{k(\lambda)}(X\lambda,Y_\lambda))$$

is the same field.

\[\square \]
allow us to consider $\text{Hom}_{\mathbb{Q}}(X)$ and $\text{Hom}_{\mathbb{Q}}(Y)$ of abelian varieties X and Y. Recall that $T_\ell(X)$ and $T_\ell(Y)$ are free O_λ-modules provided with the continuous actions of $\text{Gal}(K)$ and one may view $\tilde{\rho}_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{O_\lambda}(X_\lambda)$ as the reduction of $\rho_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{O_\lambda}(T_\ell(X))$ modulo λ and $\tilde{\rho}_{\lambda,Y} : \text{Gal}(K) \to \text{Aut}_{O_\lambda}(Y_\lambda)$ as the reduction of $\rho_{\ell,Y} : \text{Gal}(K) \to \text{Aut}_{O_\lambda}(T_\ell(Y))$ modulo λ.

It is known [14] that the Tate \mathbb{Q}_ℓ-modules $V_\ell(X) = T_\ell(X) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$ and $V_\ell(Y) = T_\ell(Y) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$ are $O_\lambda \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell = E_\lambda$-vector spaces of dimension $\frac{2 \dim(X)}{\ell - 2}$ and $\frac{2 \dim(Y)}{\ell - 2}$ respectively. (Here $E_\lambda = E \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ is the completion of E with respect to the λ-adic topology.) The groups $T_\ell(X)$ and $T_\ell(Y)$ are naturally identified with the O_λ-lattices in $V_\ell(X)$ and $V_\ell(Y)$ respectively and the inclusions

$$\text{Aut}_{O_\lambda}(T_\ell(X)) \subset \text{Aut}_{E_\lambda}(V_\ell(X)), \quad \text{Aut}_{O_\lambda}(T_\ell(Y)) \subset \text{Aut}_{E_\lambda}(V_\ell(Y))$$

allow us to consider $V_\ell(X)$ and $V_\ell(Y)$ as representations of $\text{Gal}(K)$ over E_λ.

Our task now is to prove that the natural representation of $\text{Gal}(K)$ in

$$V_1 := \text{Hom}_{E_\lambda}(V_\ell(Y), V_\ell(X))$$

over E_λ is irreducible. For this, we may and will assume that K is finitely generated over its prime subfield (replacing K by a suitable subfield and using Remark [18]). Then the conjecture of Tate [20] (proven by the author in characteristic > 2 [21,22], Faltings in characteristic zero [15,6] and Mori in characteristic 2 [9]) asserts that the natural representation of $\text{Gal}(K)$ in $V_\ell(Z)$ over \mathbb{Q}_ℓ is completely reducible for any abelian variety Z over K. In particular, the natural representations of $\text{Gal}(K)$ in $V_\ell(X)$ and $V_\ell(Y)$ over \mathbb{Q}_ℓ are completely reducible. It follows from Lemma 5.5 that the natural representations of $\text{Gal}(K)$ in $V_\ell(X)$ and $V_\ell(Y)$ over E_λ are also completely reducible.

It follows easily that the dual Galois representation in $\text{Hom}_{\mathbb{Q}_\ell}(V_\ell(X), E_\lambda)$ is also completely reducible. Since E_λ has characteristic zero, it follows from a theorem of Chevalley [11, p. 88] that the Galois representation in the tensor product $\text{Hom}_{E_\lambda}(V_\ell(X), E_\lambda) \otimes_{E_\lambda} V_\ell(Y) = \text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y)) = V_1$ is completely reducible.

Second, I claim that the natural representation of $\text{Gal}(K)$ in V_1 over E_λ is irreducible. Indeed, the O_λ-module $\text{Hom}_{O_\lambda}(T_\ell(X), T_\ell(Y))$ is a $\text{Gal}(K)$-invariant O_λ-lattice in $\text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y)) = V_1$. On the other hand, the reduction of this lattice modulo λ coincides with

$$\text{Hom}_{O_\lambda}(T_\ell(X), T_\ell(Y)) \otimes_{O_\lambda} k(\lambda) = \text{Hom}_{k(\lambda)}(X_\lambda, Y_\lambda).$$

Now the desired irreducibility follows from Lemma 5.2.

Third, recall that there is a natural embedding [11, Sect. 19]

$$\text{Hom}^0(X,Y) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell \subset \text{Hom}_{\mathbb{Q}_\ell}(V_\ell(X), V_\ell(Y)),$$

whose image is a $\text{Gal}(K)$-invariant \mathbb{Q}_ℓ-vector subspace. Clearly, the image of $\text{Hom}^0((X,i),(Y,j)) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ under this embedding lies in $\text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y))$ and this image is a $\text{Gal}(K)$-invariant $E \otimes_{\mathbb{Q}} \mathbb{Q}_\ell = E_\lambda$-vector subspace of $\text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y))$. The irreducibility of $\text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y))$ implies that either

$$\text{Hom}^0((X,i),(Y,j)) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell = \text{Hom}_{E_\lambda}(V_\ell(X), V_\ell(Y))$$

or $\text{Hom}^0((X,i),(Y,j)) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell = 0$. Since $\text{Hom}^0((X,i),(Y,j))$ is an E-vector space, either $\text{Hom}^0((X,i),(Y,j)) = 0$ or $\dim_E(\text{Hom}^0((X,i),(Y,j))) = \frac{4 \cdot \dim(X) \cdot \dim(Y)}{|E:Q|}$.
In the first case we are done. In the second case the result follows from Theorem □

REFERENCES

[1] Chevalley C.: Théorie des groupes de Lie, tome III. Hermann, Paris, 1954.
[2] Curtis, Ch. W., Reiner, I.: Methods of Representation Theory, Vol. I. John Wiley & Sons, New York Chichester Brisbane Toronto, 1981.
[3] Dixon J. D., Mortimer B., Permutation Groups. Springer-Verlag, New York Berlin Heidelberg, 1996.
[4] Faltings G.: Endlichkeitssätze für abelsche Varietäten über Zählkörpern. Invent. Math. 73, 349–366 (1983).
[5] Faltings G.: Complements to Mordell. In: in: Faltings G., Wustholz G. et al. (ed.) Rational points, Chapter VI. Third edition. Aspects of Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig, 1992.
[6] Herstein, I. N.: Noncommutative rings. Mathematical Association of America, Washington, DC, 1968.
[7] Ivanov, A. A., Praeger, Ch. E.: On finite affine 2-Arc transitive graphs. Europ. J. Combinatorics 14, 421–444 (1993).
[8] Klemm, M.: Über die Reduktion von Permutationsmoduln. Math. Z. 143, 113–117 (1975).
[9] Moret-Bailly, L.: Pinceaux de variétés abéliennes. Astérisque 129 (1985).
[10] Mortimer, B.: The modular permutation representations of the known doubly transitive groups. Proc. London Math. Soc. (3) 41, 1–20 (1980).
[11] Mumford, D.: Abelian varieties, Second edition. Oxford University Press, London, 1974.
[12] Oort, F.: The isogeny class of a CM-abelian variety is defined over a finite extension of the prime field. J. Pure Applied Algebra 3, 399–408 (1973).
[13] Poonen, B., Schaefer, E.: Explicit descent for Jacobians of cyclic covers of the projective line. J. reine angew. Math. 488, 141–188 (1997).
[14] Ribet, K.: Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math. 98, 751–804 (1976).
[15] Schaefer, E.: Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310, 447–471 (1998).
[16] Schur, I.: Gleichungen ohne Affect. Sitz. Preuss. Akad. Wiss., Physik-Math. Klasse 443–449 (1930) (= Ges. Abh. III, 191–197).
[17] Serre, J.-P.: Lectures on the Mordell-Weil Theorem, 2nd edition, Friedr. Vieweg & Sons, Braunschweig/Wiesbaden, 1990.
[18] Serre, J.-P.: Topics in Galois Theory, Jones and Bartlett Publishers, Boston-London, 1992.
[19] Serre, J.-P.: Réprésentations linéaires des groupes finis, Troisième édition. Hermann, Paris, 1978.
[20] Tate, J. Endomorphisms of Abelian varieties over finite fields, Invent. Math. 2, 134–144 (1966).
[21] Zarhin, Yu. G.: Endomorphisms of Abelian varieties over fields of finite characteristic. Izv. Akad. Nauk SSSR ser. matem. 39, 272–277 (1975); Math. USSR Izv. 9, 255 - 260 (1975).
[22] Zarhin, Yu. G.: Abelian varieties in characteristic P. Mat. Zametki 19, 393–400 (1976); Mathematical Notes 19, 240–244 (1976).
[23] Zarhin, Yu. G.: Cyclic covers, their Jacobians and endomorphisms. J. reine angew. Math. 544, 91–110 (2002).
[24] Zarhin, Yu. G.: The endomorphism rings of Jacobians of cyclic covers of the projective line. Math. Proc. Cambridge Philos. Soc. 136, 257–267 (2004).
[25] Zarhin, Yu. G.: Endomorphism rings of certain Jacobians in finite characteristic. Matem. Sbornik 193, issue 8, 39–48 (2002); Sbornik Math. 193 (8), 1139-1149 (2002).
[26] Zarhin, Yu. G.: Homomorphisms of hyperelliptic Jacobians. In: Number Theory, Algebra and Algebraic Geometry (Shafarevich Festschrift). Trudy Mat. Inst. Steklov 241, 90–104 (2003); Proc. Steklov Inst. Math. 241, 79–92 (2003).
[27] Zarhin, Yu. G.: Homomorphisms of abelian varieties. In: Y. Aubry, G. Lachaude (ed.) Arithmetic, Geometry and Coding Theory (AGCT 2003), Séminaires et Congrès 11, 189-215 (2005).
[28] Zarhin, Yu. G.: Endomorphism algebras of superelliptic Jacobians. In: F. Bogomolov, Yu. Tschinkel (ed.) Geometric methods in Algebra and Number Theory, Progress in Math. 235, 339–362, Birkhäuser, Boston Basel Berlin, 2005.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802, USA

E-mail address: zarhin@math.psu.edu