Impact of patient characteristics and treatment procedures on hospitalization cost and length of stay in Japanese patients with influenza: A structural equation modelling approach

Rosarin Sruamsiri1,2 | Sameh Ferchichi3 | Aurélien Jamotte3 | Mondher Toumi4 | Hiroshi Kubo5 | Jörg Mahlich1,6

1Health Economics, Janssen Pharmaceutical KK, Tokyo, Japan
2Center of Pharmaceutical Outcomes Research, Naresuan University, Phitsanulok, Thailand
3Cretiv-Ceutical, Paris, France
4Public Health Department, Aix-Marseille University, Marseille, France
5Research & Development Department, Janssen Pharmaceutical KK, Tokyo, Japan
6Düsseldorf Institute for Competition Economics (DICE), University of Düsseldorf, Düsseldorf, Germany

Correspondence
Jörg Mahlich, PhD, Health Economics, Janssen Pharmaceutical KK, Tokyo, Japan.
Email: jmahlich@ITS.JNJ.com

Funding information
This work was supported by Janssen Pharmaceutical KK.

Objectives: Little is known about the economic burden of influenza-related hospitalizations in Japan. This study sought to identify the factors that contribute to the total healthcare costs (THCs) associated with hospitalizations due to influenza in the Japanese population.

Study design: A retrospective cross-sectional database analysis study.

Methods: A structural equation modelling approach was used to analyse a nationwide Japanese hospital claims data. This study included inpatients with at least 1 confirmed diagnosis of influenza and with a hospital stay of at least 2 days, who were admitted between April 2014 and March 2015.

Results: A total of 5261 Japanese inpatients with a diagnosis of influenza were included in the final analysis. The elderly (≥65 years) and the young (≤15 years) comprised more than 85% of patients. The average length of stay (LOS) was 12.5 days, and the mean THC was 5402 US dollars (US$) per hospitalization. One additional hospital day increased the THC by 314 US$. Intensive care unit hospitalizations were linked to higher costs (+4957 US$) compared to regular hospitalizations. The biggest procedure-related cost drivers, which were also impacted by LOS, were blood transfusions (+6477 US$), tube feedings (+3501 US$) and dialysis (+2992 US$).

Conclusions: In Japan, the economic burden due to influenza-related hospitalizations for both children and the elderly is considerable and is further impacted by associated comorbidities, diagnostic tests and procedures that prolong the LOS.

Keywords: economic burden, healthcare costs, hospitalizations, Influenza, Japan, structural equation modelling

1 | INTRODUCTION

Influenza is a contagious respiratory illness caused by a highly infectious viral pathogen. The illness ranges from mild to severe and can lead to numerous complications such as superimposed infections, exacerbation of cardiovascular conditions and asthma. Most of the fatal cases occur in the elderly over 65 years old1 and in high-risk populations including children younger than 2 years old,2 pregnant women,3 healthcare workers4 and patients with associated comorbidities such as asthma, chronic lung disease, kidney disorders and blood disorders.5,6

Annual epidemics of influenza result in approximately 250 000 to 500 000 deaths worldwide.7 Cases of influenza also have a substantial...
socioeconomic impact in terms of medical care, healthcare utilization (eg increase in consultations, hospitalizations and length of stay [LOS]) and work absenteeism. In Europe, influenza is responsible for approximately 10% of sickness-related workplace absence. As influenza is an epidemic disease, it may disturb the healthcare services by acute overload during the epidemic.

Elderly patients comprise the group with the highest burden of influenza-related complications. Patients aged ≥85 years are 6 times more likely to be hospitalized and 16 times more likely to die compared with patients aged 65-69 years.10,11

The costs associated with influenza and its complications can be substantial. In the United States, a study based on the 2003 population estimated that the annual burden of influenza was 3.1 million hospital days and 31.4 million outpatient visits. From a societal perspective, the total economic burden of influenza (direct costs and indirect costs, including loss of earnings and loss of life) has been estimated to be 87.1 billion US$ annually, with direct costs accounting for more than 10 billion US$, of which 40% is spent on the treatment of patients older than 65 years of age.12

In the United States, the mean total cost of hospitalization for influenza-related illness for children was 13 159 US$ (39 792 US$ for patients admitted to an intensive care unit [ICU] and 7030 US$ for patients cared for exclusively on the wards). High-risk patients had a higher mean total cost than low-risk patients (15 269 vs 9107 US$, respectively).13

In Japan, it is estimated that 5%-10% of the population develops influenza annually, resulting in approximately 1000 to 2000 deaths from influenza alone and an additional 5000 deaths due to complications such as pneumonia.14 Approximately 20% to 25% of elderly Japanese patients with influenza develop pneumonia, 5% of whom die.14 From 1988 to 1991, 14.0% of all admissions to paediatric hospitals during the winter season in Japan were due to influenza viral infections, while respiratory syncytial virus accounted for 17.5% of admissions.15 Despite these statistics, there is limited information available about the extent of the disease burden due to influenza-related illness in Japan. Therefore, the aim of this study was to identify factors that impact hospitalization costs for patients with influenza in Japan utilizing a Japanese administrative database.

2 METHODS

2.1 Patient selection

We utilized a commercially available hospital claims database from Medical Data Vision Co., Ltd (MDV, Tokyo, Japan). This is an administrative database including approximately 4 400 000 patients, which represents approximately 3% of the total Japanese population.16 The MDV database has been used to investigate a wide range of conditions in Japan such as rheumatoid arthritis,17,18 schizophrenia,19 infectious diseases,20 multiple sclerosis21 and hypertension.22 We considered the inpatient claims from patients who were admitted between 1 April 2014 and 31 March 2015 with at least 1 confirmed diagnosis of influenza [International Classification of Diseases 10th Revision (ICD-10) codes: J10.1, J11.1 and J11.8] and a minimum hospital stay of 2 days (defined by at least 1 night was spent in the hospital).

2.2 Hospitalization cost calculation

Total healthcare costs (THCs) comprised all costs of healthcare services incurred during each hospitalization. These included basic management fees, examination, procedures and medication. Both Diagnosis Procedure Combination cost (DPC cost, which is a case-mix reimbursement cost) and total actual health care cost were calculated. All costs were converted from Japanese yen to US$ based on the average exchange rate during April 2014-March 2015 (Financial Market Department, Bank of Japan; 1 US$ = 109.33 yen).23

2.3 Statistical analysis

Descriptive analyses were performed on baseline characteristics as well as resource use, LOS and THC. As LOS is usually an important driver of the total hospitalization costs,24,25 we considered a structural equation modelling (SEM) approach to assess the relationship between the patients’ characteristics, procedures, LOS and hospitalization costs by considering LOS as an intermediate effect. Indeed, SEM is a flexible multivariate statistical framework that can be used to model complex relationships between variables.26 The SEM framework allows evaluating relationships among variables by combining the strengths of factor analysis and multiple regression in a single model that can be tested statistically.27 More specifically, in this study, a path analysis was conducted, which is a special case of the SEM framework that allows an exploration of the causal links (direct and indirect effects) between exogenous variables and 1 or more endogenous variables. In this framework, the total effects of a covariate on the main dependent variable can be decomposed into 2 categories of effects: (i) the indirect effects, consisting of the effect of the covariate on 1 or more intermediary endogenous variables, which in turn translates into an effect on the main variable; and (ii) the direct effect, which is the remaining effect of the covariate on the main variable while controlling for their indirect effects.28 In our case, the main endogenous variable of interest in the analysis was the total hospitalization cost expressed in Japanese yen, while we assumed that independent variables would have both a direct effect on total hospitalization costs and indirect effects through the LOS. Figure 1 depicts the underlying path diagram showing the relationship between each variable. We also conducted subgroup analyses of the children (≤15 years), the elderly (≥65 years) populations and the infants and toddlers (children ≤2 years old), 3 groups that are particularly susceptible to influenza complications and hospitalization. Statistical analyses were performed using STATA 15.0.29

3 RESULTS

A total of 5261 Japanese inpatients with influenza were included in the final analysis. We excluded 15 rehospitalized admissions due to the limited number of patients (Figure 2).
Table 1 shows patient baseline characteristics for all patients and each subgroup. The elderly (≥65 years) and children (≤15 years) were 61.8% and 26.1% of the patients, respectively. Overall, the average length of hospital stay was 12.5 days, and the mean THC was 5402 US$. 4.5% of the patients were admitted to an ICU, and 4.7% of the patients died in the hospital. The most prominent comorbidities were diabetes (14.9%), congestive heart failure (13.1%) and pneumonia (13.1%). A computerized tomography (CT) scan was used as a diagnostic aid in 49.9% of patients, 44.0% of patients received oxygen therapy, approximately 5.5% of patients received a blood transfusion during their hospitalization, 5.6% received tube feeding and 4.1% required mechanical ventilation.

The results of the SEM method are reported in Table 2. Results of the SEM analysis showed that hospitalizations where influenza was the primary diagnosis were 1994 US$ less costly than those with another medical diagnosis. One additional hospital day increased the THC by 314 US$. Not surprisingly, ICU stays were significantly more costly (+4957 US$) than regular stays. Among comorbidities, ischaemic heart disease, malignant neoplasm and Parkinson’s disease significantly increased the THC by 851 US$, 1462 US$ and 1626 US$, respectively.

Overall, patients who were transferred from other hospitals incurred higher total costs; however, the opposite was found for toddlers under the age of 2. Patients who were referred from nursing
Characteristics N (%)	Total N (%)	Children (≤15 y) N (%)	Adults (16-64 y) N (%)	Elderly (≥65 y and older) N (%)	Subgroup: Infants and toddlers (≤2 y) N (%)
Number of patients	5261	1375 (26)	637 (12)	3249 (62)	654 (12)
Demographics					
Gender					
Female	2559 (49)	567 (41)	303 (47)	1689 (52)	276 (42)
Age					
Mean ± SD (median [Q1; Q3])	57.5 ± 34.9	4.0 ± 3.8	45.6 ± 14.6	82.5 ± 8.0	0.8 ± 0.8
Hospitalization features					
Influenza as diagnosis incurring most resources	1867 (35)	884 (64)	130 (20)	853 (26)	436 (67)
Influenza as primary medical diagnosis	2343 (44)	924 (67)	169 (26)	1250 (38)	445 (68)
Nature of hospitalization					
Regular	3033 (58)	1196 (87)	385 (61)	1452 (45)	566 (87)
Emergency	1990 (38)	161 (12)	205 (32)	1250 (38)	79 (12)
ICU	238 (4)	18 (1)	47 (7)	173 (5)	9 (1)
Origin of patient before hospitalization					
Hospitalized from home	4708 (89)	1355 (98)	612 (94)	2714 (84)	643 (98)
Transfer	91 (2)	10 (1)	8 (1)	73 (2)	6 (1)
Nursing home or welfare facilities	436 (8)	0 (0)	11 (2)	425 (13)	0 (0)
Missing	26 (1)	10 (1)	6 (1)	10 (1)	5 (1)
Destination/outcome after discharge					
Home	4208 (80)	1357 (99)	595 (93)	2256 (70)	647 (99)
Transfer	349 (7)	5 (0)	18 (3)	326 (10)	2 (0)
Long-term care facilities	414 (8)	0 (0)	12 (2)	402 (12)	0 (0)
Death	248 (5)	1 (0)	8 (1)	239 (7)	1 (0)
Missing	42 (0)	12 (1)	4 (1)	26 (1)	4 (1)
Associated conditions					
Congestive heart failure	690 (13)	9 (1)	41 (6)	640 (80)	7 (1)
Atrial fibrillation	305 (6)	0 (0)	8 (1)	297 (9)	0 (0)
Acute respiratory failure	535 (10)	67 (5)	40 (6)	428 (13)	29 (4)
Acute renal failure	65 (1)	3 (0)	14 (2)	48 (1)	1 (0)
Pneumonia	689 (13)	114 (8)	43 (7)	532 (16)	59 (9)
Asthma	562 (11)	265 (19)	59 (9)	238 (7)	121 (10)
COPD	285 (5)	1 (0)	21 (3)	263 (8)	0 (0)
Chronic renal failure	196 (4)	1 (0)	26 (4)	169 (5)	1 (0)
Diabetes mellitus	785 (15)	0 (0)	97 (15)	688 (21)	0 (0)
Disease involving the immune mechanism	11 (0)	3 (0)	4 (1)	4 (0)	0 (0)
Parkinson's disease	82 (2)	2 (0)	3 (0)	77 (2)	0 (0)
Ischaemic heart disease	405 (8)	1 (0)	33 (5)	371 (11)	0 (0)
Malignant neoplasm (cancer)	503 (10)	7 (1)	78 (12)	418 (13)	1 (0)

(Continues)
home or welfare facilities are less costly than those who were hospitalized from home.

The majority of additional procedures were significantly associated with higher THC both directly and due to an increase in the LOS. Among surgeries and interventions, the largest cost drivers were blood transfusions (+6477 US$), tube feedings (+3501 US$) and dialysis (+2992 US$). Bronchoscopy and echocardiography were the imaging procedures that increased the THC most significantly (+3482 and +1511 US$, respectively). Overall, the effects on DPC costs compared with total costs were similar (Data S1).

Subgroup analyses of children (≤15 years) (Table 3), the elderly (≥65 years) (Table 4) and the infants and toddlers (≤2 years old) (Table 5) showed similar results, although the magnitude of the effect was higher in children for most of the surgeries and interventions.
TABLE 2 Direct, indirect and total effects of the factors on THC using a structure equation model

Variable	Direct effect (USD$)	Indirect effect (USD$)	Total effects (USD$)
	Coeff. 95% CI	Coeff. 95% CI	Coeff. 95% CI
	→THC	→LOS→THC	→THC + (→LOS→THC)
LOS (day)	314 297 330	314 297 330	
Gender (reference: male)			
Female	−176 −307 −45	259 94 424	82 −125 291
Age (reference: 16-64 y)			
≤15 y	457 196 719	−484 −753 −216	−26 −429 375
16-64 y	Reference	Reference	Reference
65 y and older	−473 −764 −182	854 580 1127	381 −33 795
Hospitalization characteristics			
Influenza as primary medical diagnosis	−415 −543 −287	−1579 −1767 −1390	−1994 −2195 −1793
Nature of hospitalization			
Regular			
Emergency	459 326 593	−261 −462 −61	197 −33 429
ICU	4760 3915 5623	188 −384 762	4957 3832 6083
Patient origin			
From home			
Transfer	−330 −906 246	763 −120 1647	433 −423 1290
Nursing home or welfare facilities	−685 −898 −472	209 −151 569	−476 −853 −98
Associated conditions			
Congestive heart failure	−139 −446 167	218 −108 544	78 −347 505
Atrial fibrillation	−246 −651 157	28 −407 464	−218 −758 322
Acute respiratory failure	−64 −315 186	−314 −639 10	−379 −769 11
Acute renal failure	1001 −713 2716	−881 −1777 13	119 −1849 2088
Pneumonia	−405 −597 −213	−41 −306 223	−446 −748 −144
Asthma	−177 −406 52	97 −148 343	−79 −428 269
COPD	−330 −590 −71	288 −143 720	−42 −500 414
Chronic renal failure	−1042 −1728 −357	141 −495 779	−900 −1782 −19
Diabetes mellitus	141 −114 398	110 −161 383	252 −111 617
Disease involving the immune mechanism	1499 −2046 5046	−1379 −2709 −49	120 −4389 4630
Parkinson’s disease	−128 −533 277	1755 799 2710	1626 680 2573
Ischaemic heart disease	516 99 934	334 −50 720	851 339 1363
Malignant neoplasm (cancer)	464 124 804	997 597 1397	1462 904 2019
DISCUSSION

Using an administrative database of hospitalized Japanese patients with influenza, we found that influenza-related hospitalizations mostly consisted of elderly and young patients, confirming that these 2 age groups are at high risk of influenza complications.

4.1 Impact of comorbidities on THC

It is not surprising that healthcare costs significantly increase when influenza strikes in association with other medical disorders. Our data revealed that Parkinson’s disease had the highest impact on cost although it represented only 1.6% of the population, followed by cancer and ischaemic heart disease, which were 9.6% and 7.7% of the cases, respectively. The increased healthcare cost is most likely a reflection of the high incidence of influenza-related complications that occur with these comorbidities.

Despite the low incidence of neurologic disorders associated with influenza viral infection, patients have a high risk of developing complications. In addition, Parkinson’s disease has been reported to be a clinical manifestation of influenza, and parkinsonian-like symptoms such as tremors have also been described in severe influenza cases. Of note, influenza A is one of several viruses that have been implicated in the pathogenesis of Parkinson’s disease. Although a causal link has been difficult to establish in humans, a reduction in neuropsychiatric reactions in influenza patients treated with the antiviral oseltamivir suggests that the influenza virus may play a role in the pathogenesis of certain neurologic symptoms.

Cancer patients are susceptible to infections such as influenza because of either treatment-associated immunosuppression or the

TABLE 2 (Continued)

Variable	Direct effect (USD)	Indirect effect (USD)	Total effects (USD)
	→THC Coeff. 95% CI	→LOS→THC Coeff. 95% CI	→THC + (→LOS→THC) Coeff. 95% CI
Procedures (patients with at least 1 procedure charged)			
Surgery and interventions			
Blood transfusion	3557 2846 4268	2919 2231 3608	6477 5379 7575
Cardiac catheterization	24 −242 292	1744 1388 2101	1769 1348 2191
Dialysis	2453 1109 3797	539 −483 1561	2992 1311 4673
Mechanical ventilation	2435 1618 3252	−718 −1355 −80	1717 678 2756
Oxygen therapy	301 83 519	199 −68 468	501 149 853
Tube feeding	881 240 1522	2619 2028 3210	3501 2639 4362
Tests/imaging			
Biochemical testing	56 −178 291	−304 −619 9	−248 −656 160
Bronchoscopy/pulmonary function test	2032 1045 3020	1449 717 2181	3482 2218 4746
Chest X-ray	282 114 450	109 −90 309	391 117 666
Colour Doppler ultrasound/echocardiography	538 338 739	972 690 1254	1511 1174 1848
Computerized tomography	19 −130 170	588 392 785	608 362 853
Immunology test	−64 −261 132	420 218 622	355 31 680
Oxygen saturation test	−67 −262 127	235 −2 474	168 −137 474
Sputum test	−90 −242 60	529 358 700	438 207 669

Statistical significance at P-value < 0.05 in bold. Coeff., unstandardized coefficient; USD, US$; LOS, length of stay; THC, total healthcare cost; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit.

*Exchange rate: 1 USD = 109.33 Japanese yen.
These patients are also at high risk of developing influenza-related complications. A German study that included 203 patients who had influenza along with haematologic and solid tumours reported a high rate of pneumonia and bacterial or fungal superinfections. Influenza also appears to have a detrimental impact on the outcome of cancer treatment by delaying the initiation of anticancer therapy. Chronic heart disease is one of the highest predictors of influenza-related hospitalizations and complications. Epidemiologic studies have long reported an association between influenza epidemics and cardiovascular disease (CVD). For instance, acute myocardial infarctions (AMI) have their highest incidence in the winter months and are often preceded by an upper respiratory tract infection. In addition to the influenza-related increase in hospitalizations for CVD,

Table 3 Direct, indirect and total effects of the factors on THC in children (≤15 y old) using a structure equation model

Variable	Direct effect (USD)	Indirect effect (USD)	Total effects (USD)
	Coeff. 95% CI	Coeff. 95% CI	Coeff. 95% CI
LOS (day)	549 485 612		549 485 612
Gender (reference: male)			
Female	-44 -140 52	1 -240 243	-42 -292 207
Hospitalization characteristics			
Influenza as primary medical diagnosis	81 -37 199	-980 -1295 -665	-899 -1208 -589
Nature of hospitalization			
Regular	336 230 443	-73 -517 370	263 -165 692
Emergency	336 230 443	-73 -517 370	263 -165 692
ICU	2688 979 4398	140 -5917 6198	2829 -4505 10 164
Patient origin			
From home	-203 -581 173	-126 -731 478	-330 -791 130
Nursing home or welfare facilities	Omitted	Omitted	Omitted
Procedures (patients with at least 1 procedure charged)			
Surgery and interventions			
Blood transfusion	3865 37 7692	13 070 2433 23 707	16 935 3624 30 246
Cardiac catheterization	764 -2491 4020	5278 -4391 14 948	6043 -5899 17 986
Mechanical ventilation	848 -320 2018	2003 -1088 5094	2851 -973 6677
Oxygen therapy	-104 -267 59	860 373 1347	756 259 1254
Tube feeding	914 -453 2282	-2856 -7346 1634	-1941 -7233 3350
Tests/imaging			
Biochemical testing	145 -37 329	-348 -718 22	-202 -552 147
Bronchoscopy/pulmonary function test	755 -1534 3046	-378 -2282 1526	377 -3249 4005
Chest X-ray	-9 -137 117	306 22 589	296 16 576
Colour Doppler ultrasound/echocardiography	391 -116 899	2068 770 3366	2460 998 3922
Computerized tomography	323 148 498	61 -314 436	384 -14 784
Immunology test	45 -80 171	40 -291 371	85 -249 420
Oxygen saturation test	88 -25 202	-179 -379 20	-91 -302 120
Sputum test	1 -88 91	319 49 588	320 52 588

Statistical significance at P-value < 0.05 in bold. Coeff., unstandardized coefficient; USD, US$; LOS, length of stay; THC, total healthcare cost.

*Exchange rate: 1 USD = 109.33 Japanese yen.
Variable	Direct effect (USD)	Indirect effect (USD)	Total effects (USD)
	Coeff. 95% CI	Coeff. 95% CI	Coeff. 95% CI
LOS (day)	293 279 307		293 279 307
Gender (reference: male)			
Female	-201 -385 -17	471 238 703	269 -28 567
Hospitalization characteristics			
Influenza as primary medical diagnosis	-526 -690 -361	-1920 -2160 -1680	-2446 -2716 -2176
Nature of hospitalization			
Regular Reference			
Emergency	443 283 603	-265 -556 673	177 -109 464
ICU	4943 3966 5920	58 -556 673	5002 3732 6272
Patient origin			
From home			
Transfer	-332 -929 265	815 -179 1810	482 -515 1481
Nursing home or welfare facilities	-662 -875 -448	124 -221 470	-537 -922 -152
Associated conditions			
Congestive heart failure	-216 -514 81	156 -171 484	-60 -493 373
Atrial fibrillation	-198 -589 192	48 -368 465	-150 -687 387
Acute respiratory failure	-33 -289 222	-345 -712 22	-379 -799 41
Acute renal failure	1093 -958 3145	-715 -1679 248	377 -1967 2723
Pneumonia	-406 -645 -168	-41 -358 274	-448 -824 -72
Asthma	-48 -518 422	26 -423 475	-21 -699 656
COPD	-316 -601 -30	287 -159 733	-28 -542 484
Chronic renal failure	-1009 -1516 -502	58 -595 713	-950 -1693 -207
Diabetes mellitus	182 -82 448	73 -207 355	256 -132 645
Disease involving the immune mechanism	5115 -3837 14 067	-874 -3519 1770	4240 -7000 15 481
Parkinson’s disease	11 -386 409	1574 643 2505	1586 585 2586
Ischaemic heart disease	271 -132 675	336 -53 726	608 82 1134
Malignant neoplasm (cancer)	259 -83 603	723 333 1112	982 453 1512
Procedures (patients with at least 1 procedure charged)			
Surgery and interventions			
Blood transfusion	3354 2608 4099	2583 1936 3231	5938 4882 6993
Cardiac catheterization	70 -196 338	1516 1171 1862	1587 1167 2008
Dialysis	2123 1232 3014	659 -524 1842	2782 1288 4276
Mechanical ventilation	2519 1590 3448	-630 -1316 55	1888 741 3035
Oxygen therapy	241 -53 536	150 -204 505	392 -86 870
Tube feeding	1014 366 1662	2563 1956 3169	3578 2691 4464
Tests/imaging			
Biochemical testing	114 -357 586	-460 -1313 392	-345 -1318 627
Bronchoscopy/pulmonary function test	2222 1123 3322	1636 766 2506	3859 2407 5311
Chest X-ray	248 -124 621	733 249 1218	982 374 1590
Colour Doppler ultrasound/ echocardiography	553 338 768	753 455 1051	1306 947 1665
Computerized tomography	-20 -213 172	533 292 774	513 204 821
Immunology test	37 -324 399	1166 711 1620	1203 619 1788
Oxygen saturation test	-51 -334 231	258 -83 600	207 -246 660
Sputum test	-212 -431 6	474 241 708	262 -58 582

Statistical significance at P-value < 0.05 in bold. Coeff., unstandardized coefficient; USD, US$; LOS, length of stay; THC, total healthcare cost; COPD, chronic obstructive pulmonary disease.

Exchange rate: 1 USD = 109.33 Japanese yen.
influenza is also linked to both increases in AMI\(^43\) and AMI-related deaths.\(^{44,45}\) Influenza infection has also been associated with damage to the heart muscle leading to cardiomyopathy and myocarditis.\(^{46}\) Taken together, these observations are consistent with our findings that patients with heart disease comprised a significant share of influenza-related hospitalizations, and heart disease was an important driver of the increase in THC.

4.2 | Role of patient origin

It was found that patients who were referred from nursing home or welfare facilities incurred less cost than those who were hospitalized from home. One possible interpretation of this interesting finding is that institutions such as nursing homes or welfare facilities do monitor their clients well and send them to the hospital even in case of a
mild form of the disease. Elderly who live at home, on the other hand, might miss the right timing to seek medical advice.

4.3 Impact of procedures and ER and ICU admissions on THC

The most significant cost drivers among procedures were blood transfusions and tube feedings, which increased the THC by 380,000 Japanese yen (approximately 3450 US$).

Our findings of a high cost burden associated with ICU or ER admissions when compared with routine hospitalizations are consistent with other reports. In European countries, for instance, the daily cost of ICU admissions ranged from €1168 to €2025 (1240 to 2150 US$),47 while in the United States the estimated additional cost was 2190 US$ per day.48 These statistics underscore the importance of avoiding ICU or ER admissions whenever possible.

4.4 A role of vaccinations and antiviral treatment

The potential policy implication of our findings is that vaccination programmes should be promoted to avoid influenza-related hospitalizations. From 1977 to 1987, there was already a vaccination programme for Japanese schoolchildren that achieved between 50% and 85% annual coverage in children aged 3-15 years. It was shown that this vaccination programme was associated with a decrease in the overall number of influenza-related excess deaths and that excess deaths increased once the programme was discontinued.49 Furthermore, because the vaccination of schoolchildren can reduce influenza-related morbidity and mortality among non-immunized contacts as well as the elderly, it was estimated that the vaccination programme could also save 1000 elderly lives per year.50

For those patients still requiring hospitalization, medical treatment may be an option to reduce hospital LOS and healthcare costs. A recent study in the United States that included 1,557,437 cases of influenza from 4 influenza seasons found an overall 11% reduction in the risk of complications in oseltamivir-treated patients (an 81% reduction in those treated <2 days after the diagnosis).51 Antiviral treatment also decreased the risk of hospitalizations and emergency room visits by 29% and 24%, respectively. A recent cost-effectiveness analysis in the Japanese healthcare context, for instance, demonstrated that treatment with oseltamivir was highly cost-effective with an incremental cost-effectiveness ratio (ICER) of 398,571 Japanese yen (3645 US$) per quality-adjusted life year from a health insurance perspective.52 With the inclusion of productivity costs, the ICER for oseltamivir turned negative, meaning that medical treatment with oseltamivir was both cost-saving and more effective.51

4.5 Limitations

There are several limitations to our study. First, this analysis is based on a 1-year database. Thus, we could not capture the potential changes due to prescribing behaviour changes and the change of treatment guideline over time. Second, due to the limitations of the database, potentially useful information that might explain costs was lacking. For instance, we could not retrieve hospital ID numbers, which could have been used to identify heterogeneity between hospitals as well as patient characteristics such as region, social and professional status and clinical severity of their disease. Nevertheless, our analysis examined all available patient characteristics (such as age, gender and relevant comorbidities) that could be retrieved from the database. Third, bias may have resulted from the current DPC system that allows hospitals to choose the diagnosis that is incurring the most medical resource utilization as the main diagnosis. In general, patients with comorbidities will receive a higher reimbursement if hospitals choose comorbidities as the primary diagnosis. Finally, a major limitation of this study is that influenza-related hospitalizations can be difficult to identify because influenza is not always detected as the primary cause of the hospitalization, especially in severe cases.10 As a result, this study may underestimate the true burden of influenza as well as the cost of influenza-related hospitalizations because of the coding incentive. Only hospitalizations with influenza diagnosis, which are less costly, were included.10

ACKNOWLEDGEMENTS

We thank Margueritte Mabry White M.D. for editing and proofreading the manuscript.

ETHICAL APPROVAL

The study was in line with the guidelines provided by Johnson & Johnson and was approved by the Janssen Approval Committee.

CONFLICT OF INTEREST

JM, KH and RS are affiliated with Janssen Pharmaceutical KK, a pharmaceutical company. SF and AJ are employees of Creativ-Ceutical, which received funding from Janssen Pharmaceutical KK to perform the study.

ORCID

Hiroshi Kubo http://orcid.org/0000-0001-6097-4542
Jörg Mahlich http://orcid.org/0000-0003-1110-2793

REFERENCES

1. Ambrose CS, Levin MJ. The rationale for quadrivalent influenza vaccines. Hum Vaccin Immunother. 2012;8:81-88.
2. Paget WJ, Balderston C, Casas I, et al. Assessing the burden of paediatric influenza in Europe: the European Paediatric Influenza Analysis (EPIA) project. Eur J Pediatr. 2010;169:997-1008.
3. Mak TK, Mangtani P, Leese J, Watson JM, Pfeiffer D. Influenza vaccination in pregnancy: current evidence and selected national policies. Lancet Infect Dis. 2008;8:44-52.
4. Kuster SP, Shah PS, Coleman BL, et al. Incidence of influenza in healthy adults and healthcare workers: a systematic review and meta-analysis. PLoS One. 2011;6:e26239.
series study in England and Wales and Hong Kong. J Infect Dis. 2011;203:1710-1718.

46. Ruf BR, Szucs T. Reducing the burden of influenza-associated complications with antiviral therapy. Infection. 2009;37:186-196.

47. Tan SS, Bakker J, Hoogendoorn ME, et al. Direct cost analysis of intensive care unit stay in four European countries: applying a standardized costing methodology. Value Health. 2012;15:81-86.

48. Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33:1266-1271.

49. Reichert TA, Sugaya N, Fedson DS, Glezen WP, Simonsen L, Tashiro M. The Japanese experience with vaccinating schoolchildren against influenza. N Engl J Med. 2001;344:889-896.

50. Charu V, Viboud C, Simonsen L, et al. Influenza-related mortality trends in Japanese and American seniors: evidence for the indirect mortality benefits of vaccinating schoolchildren. PLoS One. 2011;6:e26282.

51. Nagase H, Moriwaki K, Kamae M, Yanagisawa S, Kamae I. Cost-effectiveness analysis of oseltamivir for influenza treatment considering the virus emerging resistant to the drug in Japan. Value Health. 2009;12(Suppl 3):S62-S65.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Sruamsiri R, Ferchichi S, Jamotte A, Toumi M, Kubo H, Mahlich J. Impact of patient characteristics and treatment procedures on hospitalization cost and length of stay in Japanese patients with influenza: A structural equation modelling approach. Influenza Other Respi Viruses. 2017;11:543–555. https://doi.org/10.1111/irv.12505