Noise-Induced Performance Enhancement of Variability-Aware Memristor Networks

Vasileios Ntinas, Iosif-Angelos Fyrigos, Georgios Ch. Sirakoulis, Antonio Rubio, Javier Martín-Martínez, Rosana Rodríguez, Montserrat Nafría

This work is part of a project that has received funding from the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 691178.

IEEE International Conference on Electronics Circuits and Systems

November 29th 2019, Genova, Italy
Towards the implementation of more robust resistive switching systems

Performance Enhancement
“Based on Stochastic Resonance”

Programming Signal

Nonlinear System

NOISE

IN

OUT

Memristor and/or Memristive system

Stochastic Resonance Peak

Noise magnitude
Memristor Devices and Applications

Memristor-based Cell and Memristor Crossbar

Variability in Memristor Crossbar

Stochastic Resonance on Memristance Enhancement

Noise-induced Bit-Error-Rate Reduction

Conclusions
Memristor Devices and Applications

Wide range of devices

Wider range of Applications

Memory

Computing

Both

In-Memory Computing

Memristor-based logic
(IMPLY, MAGIC, MRL)
Memristor ANNs

[Meijer, G.I., Science 319(5870) (mar 2008) 1625–1626]
[Intel Corporation: Revolutionizing Memory and Storage]
[Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C., IEEE TCAS:II (2014)]
[E. Lehtonen, J. H. Poikonen, and M. Laiho, IEEE ISCAS, Seoul, South Korea, May 2012]
[Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G., CNNA 2012]
Metal Oxide: Bipolar Filament

Metric	Value	Quality
Scalability	$F_{\text{min}} < 10\text{nm}$	✅✅
MLC	Possible	✅
3D integration	Feasible	✅✅
Fabrication cost	Low	✅✅
Retention	Long (>10yrs)	✅✅
Latency	Medium (0.3-10us)	✅
Power	Medium	✅
Demonstrated Write Endurance	Medium ($\leq 1\text{E}10$ cycles)	✅
Variability	Problematic	❌

[Table BC2.7 in the International Roadmap for Devices and Systems. “Beyond CMOS,” 2018.]
Stanford-PKU Metal-Oxide Memristor Model

Conductive Filament Evolution

Conductive Filament Dynamics

Conductive Filament Construction

Conductive Filament Disruption

Conductive Filament Variability

Do not forget the Temperature

Currents through the Device

Device Parasitics

[Li, H., Jiang, Z., Huang, P., Wu, Y., Chen, H. Y., Gao, B., Liu, X. Y., Kang, J. F. & Wong, H. S., DATE 2015]
1T1R Configuration for Memristor Crossbar

1T1R ReRAM-based Memory Cell

SET and RESET Processes of the ReRAM Cell

Diagram showing the schematic of a 1T1R ReRAM-based memory cell and the voltage-time graphs for SET and RESET processes.
ReRAM Crossbar Configuration

ReRAM crossbar array with the read/write peripheral circuitry.

Writing (long pulses) and Reading (short pulses) of words in the crossbar array.
SET and RESET variations in the Crossbar Array

Device-to-Device

DAC Output under variations

Both Device-to-Device Cycle-toCycle
Stochastic Resonance
(from the perspective of Engineers):

“An *increase* to the input noise can result in an *improvement* in the output signal-to-noise ratio (SNR)”

Where to find Stochastic Resonance?
- Earth’s climate changes
- Electronic circuits
- Differential equations
- Lasers
- Neural models
- Physiological neural populations and networks
- Chemical reactions
- Ion channels
- SQUIDs (superconducting quantum interference devices)
- Ecological models
- Cell biology
- Financial models
- Psychophysics
- Carbon nanotube transistors
- Nanomechanical oscillators
- Organic semiconductor chemistry
- Social systems

Stochastic Resonance requires:
(a) A form of Threshold
(b) A driving signal
(c) A source of noise (inherent or external)

Performance(noise+nonlinearity) > Performance(nonlinearity)

[Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (1998). Reviews of modern physics, 70(1), 223.]
[McDonnell, M. D., & Abbott, D. (2009). PLoS computational biology, 5(5)]
Stochastic Resonance on Memristance Enhancement

SR through intrinsic Noise

SR by external noise excitation

[Ntinas, V., Rubio, A., Sirakoulis, G. Ch., Cotofana, S. ISCAS 2019]

[Stotland, A., & Di Ventra, M. (2012). Physical Review E, 85(1)]

[Ntinas, V., Rubio, A., Sirakoulis, G. Ch., Rodriguez, R., Nafria, M. NANOARCH 2019]
SR-based Performance Enhancement

Noisy Write Signal Applied to Each Row

SR vs Cycle-to-Cycle Variability

SR vs Device-to-Device Variability

SR vs Both kinds of Variability
Conclusions

• High levels of **fabricated memristor’s variability** postpones the scaling of memristor-based memories

• A **noisy disturbance** delivers **reduced Bit-Error-Rate** by assisting the writing process of the devices in the Memristor Crossbar Array.

Future Work

• A **transistorless** Memristor Crossbar configuration will be investigated

• **Experimental** demonstration of SR-based Performance Enhancement using externally applied **white noise**
Thank you for your attention