Cryptography based on neural networks - analytical results

Michal Rosen-Zvi1, Ido Kanter1 and Wolfgang Kinzel2

1 Minerva Center and Department of Physics,
Bar-Ilan University, Ramat-Gan, 52900 Israel
2 Institut für Theoretische Physik, Universität Würzburg,
Am Hubland 97074 Würzburg, Germany

The study of neural networks was originally driven by its potential as a powerful learning and memory machine. Statistical mechanics methods have been used to analyze the network’s ability and explore its limitations \[1, 3\]. In a recent paper \[3\], the bridge between the theory of neural networks and cryptography was established. It was shown numerically that two randomly initialized neural networks with one layer of hidden units (so called Parity Machines (PMs)) learning from each other, are able to synchronize. The two parties have common inputs and they exchange information about their output. In the case of disagreement, the two PMs are trained by the Hebbian learning rule on their mutual outputs and they develop a full synchronized state of their synaptic weights. This synchronization procedure can be used to construct an ephemeral key exchange protocol for the secure transmission of secret data. An attacker, who knows the architecture of the two parties, the common inputs, and observes the mutual exchange of information, finds it difficult to imitate the moves of the parties and to reveal the common parameters after synchronization. All parties have secret informations which are not known neither to other members nor to possible attackers: Their initial weights and the current state of their hidden units, which we are noted as internal representations (IRs)

During the last decade, the analysis of learning from examples performed by feed-forward multi-layered networks was exhaustively examined using statistical mechanics methods \[1, 3\]. An interesting network belonging to this class is the PM which is characterized by a superior capacity, as was found by replica calculations \[3\]. The study of the generalization ability of such networks was based on a set of training examples generated by a static teacher network. Here we discuss a case where two or several multilayer networks are trained by their mutual outputs. This scenario has been solved only for perceptrons and only for continuous ones \[3\]. Here we present an analytic solution for PMs with continuous as well as with discrete weights.

In our cryptosystem, each party in the secure channel is represented by a feed-forward network consisting of KN random input elements $x_{ji} \in \{\pm 1\}$, $j = 1, \ldots, N$, K binary hidden units $\tau_i \in \{\pm 1\}$, $i = 1, \ldots, K$ and one binary output unit $\sigma = \Pi_i \tau_i$. For the simplicity of the calculations presented below we concentrate only on the case of a tree PM with 3 binary hidden units feeding a binary output $\sigma = \tau_1 \tau_2 \tau_3$. The hidden units are determined via Boolean functions $\tau_i = \text{sgn}(\sum_j W_{ji} x_{ji})$ through three disjointed sets of inputs $X_i = x_{1i}, \ldots, x_{N_i}$. The weights are either discrete or continuous, and the analytical results are derived for $N \gg 1$.

In this Letter we present: (a) An analytical solution of the mutual learning of two PMs whose weight vectors are updated according to the mismatch between their mutual information - their outputs. Synchronization is achieved in the case of discrete weights, $W_{ji} = 0, \pm 1, \ldots, \pm L$, as well as for continuous weights confined to a sphere, $\sum_{j=1}^N W_{ji}^2 = N$. (b) Analysis of online adaptation of discrete weights, in which each change of a component is not infinitesimally small, demands different methods than the standard ones \[3\], and this is at the center of the discussion below. Surprisingly, synchronization is achieved for the discrete weights at a finite number of steps. (c) Dynamical evolution of the discrete networks cannot be characterized by the time evolution of the standard order parameters, since the overlaps between the weight-vectors are not self averaging \[3\] even for large networks. The analytical solution is based on calculation of the evolution of the distribution of order parameters as a function of the initial set of the weights. (d) The analysis is extended to include a possible attacker.

For simplicity of presentation, we first describe the analytical methods developed for the discrete case where detailed results are presented for particular examined cases.
At the end of this Letter results for the continuous case are also briefly summarized.

The definition of the updating procedure between the two parties, A and B, that are trying to synchronize their weights, is as follows. In each time step, output of the two parties is calculated for a random common input. Only weights belonging to the one (or three) hidden units which are equal to their output unit are updated, in each one of the two parties. The updating is done according to the following Hebbian learning rule,

\[W_{ji}^A = W_{ji}^A + K(W_{ji}, x_j, \sigma^A)x_j \sigma^B \theta(\sigma^A \tau_i^A) \theta(-\sigma^A \sigma^B), \]

\[W_{ji}^B = W_{ji}^B + K(W_{ji}, x_j, \sigma^A)x_j \sigma^A \theta(\sigma^B \tau_i^B) \theta(-\sigma^A \sigma^B), \]

where \(K(y) = 1 - \delta_{L,y} \) and \(\delta \) represents the Kronecker function. The purpose of the operator \(K(y) \) is to prevent the increment (decrement) of the strength of the weights on the boundary value \(L(-L) \).

Two important simulation results are crucial for the analytical description of the mutual dynamics. The first observation is that the synchronization time is finite \([3]\). The second is that different runs (set of random inputs) of the above dynamics, but with fixed initial conditions for the two parties, result in different sets of IRs. As a result of these two observations, we realized that the variance of the overlaps between the two parties is finite and does not shrink to zero even in the thermodynamic limit. This unusual scenario of on-line mutual learning is taken into consideration in the analytical equations, by the selection of random IRs following the freedom given by the current analytical overlaps. We find an iterative discrete set of equations for the mutual overlaps between the parties, whose evolution depend on some random but correlated inputs - the current IRs, \(\{\tau_i^A\}, \{\tau_i^B\} \) (see Eq. [3]).

In each time step, \(\mu \), the mutual state of the two parties is defined by a \((2L + 1) \times (2L + 1)\) matrix, \(F^\mu \), where \(\tau_i \) represents the hidden unit. The element \(f^i_{qr} \) of the matrix stands for the fraction of components in the \(i \)-th weight vector which are equal to \(q(r) \) in the first (second) party, where \(q, r = 0, \pm 1, ..., \pm L \). The overlap of the weights belonging to the \(i \)-th hidden unit in the two parties, \(R_{AB}^{B} = W_i^A \cdot W_i^B / N \), as well as their norms, \(Q_i = W_i \cdot W_i / N \), are given by the matrix elements

\[R_{i}^{AB} = \sum_{q,r} q^2 f_{qr}^i, \quad Q_i^A = \sum_{q,r} q^2 f_{qr}^i, \quad Q_i^B = \sum_{q,r} r^2 f_{qr}^i. \]

These overlaps and norms fixed the probabilities of deriving the same IR via the normalized overlap, \(\rho_i^{AB} = R_{i}^{AB} / \sqrt{Q_i^A Q_i^B} \). More precisely, the probability of having different results in the \(i \)-th hidden unit of the two parties is given by the well known generalization error for the perceptron \(\epsilon_i = \cos^{-1} \rho_i / \pi \) \([1, 2]\).

Each of the PM consists of a tree architecture and for random inputs each of the 8 IRs appears with equal probability. The joint probability distribution of the 64 different pairs of IRs in both parties is correlated, and can be explicitly expressed using \(\{\epsilon_i\} \).

The development of the elements of the matrix \(F^\mu \) are calculated directly from Eq. [1] where one has to average over the inputs \(x_{ji} \). We use auxiliary random variables in order to choose one of the possible IRs following their probabilities given by \(\{\epsilon_i\} \). In each step we choose two sets of random numbers which are taken from a flat distribution between 0 and 1: Set I: In the event that the number is smaller than \(\epsilon_i \) we deduce that the two hidden units disagree, otherwise we assume an agreement. Set II: All eight IRs are equally probable in the first party, since the architecture consists of a tree PM. We choose one among the eight using the second set of auxiliary variables \(p_r \), and the corresponding IR for the second network according to the first set.

To exemplify derivation of the iterative equations for \(f_{qr}^i \), let us concentrate on the case where the result of the first random set is that all three hidden units are in disagreement. In two possibilities out of the eight IRs all three hidden units are updated, whereas in the other six possibilities only one is updated (we then have to choose at random one among the three). After taking into account all possible internal scenarios, and accordingly the updates, one can show that the iterative equations for \(f_{qr}^i \) from the boundary, \(q, r \neq \pm L \), are given by

\[f_{qr}^i = \theta(\frac{1}{4} - p_r) (\frac{1}{2} f_{q+1,r-1}^i + \frac{1}{2} f_{q-1,r+1}^i) + \theta(p_r - \frac{1}{4}) (\frac{1}{2} f_{q+1,r-1}^i + \frac{1}{2} f_{q-1,r+1}^i). \]

On the boundary, similar equations can be derived as well as for other internal scenarios. Taking into account all possible scenarios and the inversion symmetry of our PMs, one has to solve iteratively only 4 classes of equations in a manner similar to the abovementioned \([8]\). Note that the time evolution of the \(f_{qr}^i \) and the overlaps depends on time dependent random variables.

Different runs for updating of the equations result in different trajectories of the order parameters. In the inset of Fig. [1] we present the average overlap \(\overline{\rho} = \sum_{i=1}^{3} \rho_i / 3 \), and its standard deviation, obtained from 500 different runs of the analytical equations with \(L = 1 \). Results of the averaged overlap (with the same standard deviation) obtained in 500 runs of simulations with \(N = 10^4 \) are denoted by circles.

An important quantity is the number of steps required to achieve full synchronization, \(t_{\text{synch}} \), since it can be used by the parties to encrypt/decrypt the information using the known output bit. In simulations the synchronization time is well defined - the first step in which all weight vectors of the parties are in an anti-parallel state. In contrast, in the analytical solution the average overlap of the hidden units tends to zero exponentially with the number of steps. In order to compare
analytical results to simulations we need to find a criterion which determines synchronization. We chose the criterion $\mathcal{T} \leq -c_l = -1 + 0.1/(NL)$ to define full synchronization, since c_l is much greater than the maximal possible overlap just before synchronization.

The exponential decay of the overlaps with the number of steps and the claim that synchronization is achieved at a finite number of steps even for $N \gg 1$ has to be clarified. Our synchronization process is mainly characterized by two regimes: The first t_a steps which are characterized by different IRs (in some of the steps) for the two parties. Note that t_a is fluctuating from sample to sample. The second is the asymptotic regime, last t_b steps, where the IRs of the parties are always the same, and the weights are converging to an anti-parallel state similarly to three perceptrons, $t_b \propto \log(N)$. Roughly speaking, the two regimes are characterized by $\epsilon^P_i > 1/t_a$ and $\epsilon^P_i < 1/t_b$, respectively. Our analytical results as well as simulations indicate that t_a is independent of N. Hence as long as $t_a > t_b$, the log(N) dependent is invisible. For $L = 3$, for instance, $t_{\text{synch}} \sim 400$, $t_a \sim 300$, and t_b is expected to be equal to t_a only for $N \sim e^{200}$.

In Fig. 1, we present the histogram of the number of steps required to achieve t_{synch}, $P(t_{\text{synch}})$, in simulations with $N = 10^4$ and $L = 1$ and the initial weights were chosen such that $\rho_{A,B} = 0$. This distribution is in a fairly good agreement with the results obtained by the runs of the iterative equations for f_{qr}.

Let us now examine a possible attack of a third player, an attacker a, that tries to imitate one of the parties (let us say A). We assume that the attacker uses the same algorithm as one of the partners. The attacker updates its own weight-vectors only when an updating step is taken by the parties. The natural move of an attacker in such an event is to follow the rule of the parties

$$W^\omega_j = W^\omega_j + K(W^\omega_j x_j \sigma^B) x_j \sigma^B \theta(\sigma^A \sigma^B) \theta(\sigma^A \sigma^B),$$

indicating that only weight-vectors belonging to the hidden units which are in agreement with the output of party A are updated, (more advanced attacks will be discussed elsewhere). The evolution of the overlap of an attacker depends on the evolution of 6 matrices; three matrices describing the overlaps between the parties and similarly, three matrices describing the overlaps between the attacker and the first party. Note that the dynamics of the attacker depends on moves of the parties which depend on their overlaps. Hence, the time evolution of six matrices gives the full description of the overlaps between the attacker and the first party and between the parties themselves. The mutual dynamics of the three networks, two parties and the attacker, depends on the joint probability distribution of $8 \times 8 \times 8$ IRs, and upon the corresponding updates of the six matrices. The full description of the discrete time evolution of the matrices and the overlaps will be given elsewhere.

The analytical solution of the dynamics of the attacker indicates that a full learning is achieved in a finite number of steps, t_{learn}, where a full learning is defined such that $\mathcal{T}_{\text{learn}} > c_l$. In Table t_{learn} and t_{synch} are compared for various L.

L	t_{synch}	t_{learn}	r
1	61 ± 10	$1.1 \cdot 10^2 \pm 0.2 \cdot 10^2$	1.8 ± 0.6
2	188 ± 26	$1.5 \cdot 10^3 \pm 0.5 \cdot 10^3$	8.0 ± 2.9
3	376 ± 51	$4.5 \cdot 10^4 \pm 1.3 \cdot 10^4$	120 ± 51
4	673 ± 93	$6.9 \cdot 10^5 \pm 5.7 \cdot 10^5$	$1.04 \cdot 10^7 \pm 1.02 \cdot 10^7$

TABLE I: The average synchronization time, t_{synch}, the average learning time t_{learn}, their standard deviation and the ratio $t_{\text{learn}}/t_{\text{synch}}$ averaged over 2000 different runs of the iterative equations with the halting criterion $c_l = 1 - 10^{-5}$.

For $L = 1$ the average learning time is about twice the synchronization time, and one may reach the wrong conclusion that the synchronization process always terminates before the learning process. In Fig. 1 we present the histogram of the synchronization and the learning processes, and a fairly good fit between analytical and simulation results is apparent. The two distributions, $P(t_{\text{synch}})$, $P(t_{\text{learn}})$ have a finite overlap, indicating that in a finite fraction of the runs the learning process terminates before the achievement of synchronization (which was indeed observed in a finite fraction of the runs of the simulations). Hence the construction with $L = 1$ is not a good candidate to build a secure channel.
a mismatch between the two hidden units, $P_i^1 = P(\sigma^A \neq \sigma^B | \tau_i^A \neq \tau_i^B) = c_i^A c_i^B \rho + (1 - c_i^A) (1 - c_i^B)$ and similarly $P_i^2 = P(\sigma^A \neq \sigma^B | \tau_i^A = \tau_i^B) = 1 - P_i^1$. One can map the mutual process onto that of perceptrons, where the updating of the first party, for instance, is given by

$$W_i^{A+} = (W_i^A + \frac{\eta}{N} X_i \tau^B \Delta^A_i | W_i^A + \frac{\eta}{N} X_i \tau^B \Delta^A_i)$$

and similarly for the second party, where $\Delta^A_i = \theta(-\tau_i^A - \tau_i^B) \theta(P_i^1 - p_a) + \theta(\tau_i^A - \tau_i^B) \theta(P_i^2 - p_b)$. We use auxiliary variables p_a, p_b, p_c to specify each run.

The next step consists of the averages over the following two quantities. (a) Averaging over the joint probability distributions of the local fields of the two parties. (b) Average over the auxiliary variables, which is unique to the case of mutual learning. The normalized overlap, ρ, between weight vectors belonging to each pair of hidden units is found to obey the equation, $d\rho/d\alpha = \eta \rho \sqrt{C^2 (1 - C)} (1 - \rho)/(\sqrt{\pi} - \eta \rho C/2) (1 - 2 \rho^2)$. The fixed point of this equation is $\rho_{fc} \approx 0.79$ and is independent of η, indicating that perfect learning is not achievable. Analytical results derived from the last two equations in the case of $\eta = 3$ are presented in the inset of Fig. 3 and are in agreement with simulations with $N = 5000$ and 20 runs.

I.K. acknowledges the support from the Israel Academy of Science.

[1] J. Hertz, A. Krogh and R. G. Palmer, *Introduction to the Theory of Neural Computation* (Redwood City, CA: Addison-Wesley, 1991)

[2] A. Engel and C. Van den Broeck, *Statistical Mechanics of Learning* (Cambridge University Press, Cambridge, 2001).

[3] I. Kanter, W. Kinzel and E. Kanter, Europhys. Lett. 57, 141 (2002).

[4] E. Barkai, D. Hansel and I. Kanter, Phys. Rev. Lett. 65, 2312 (1990); M. Oppen, Phys. Rev. E, 51, 3613, (1995); R. Simonetti and N.J. Caticha, J. Phys. A 29, 4859, (1996).

[5] R. Metzler, W. Kinzel and I. Kanter, Phys. Rev. E 62, 2555 (2000), J. Phys. A 33, L141 (2000).

[6] W. Kinzel and P. Rujan, Europhys. Lett. 13, 473 (1990); O. Kimouchi and N. Caticha, J. Phys. A 25, 6243 (1992); C. Van den Broeck and M. Bouten, Europhys. Lett. 22, 223, (1993).

[7] G. Reents and R. Urbanczik, Phys. Rev. Lett., 80, 5445, (1998).

[8] M. Rosen-Zvi, I. Kanter and W. Kinzel (in preparation).