Aminophylline

Joseph A. Stirt, MD,* and Stuart F. Sullivan, MD†

Since its first use in man in 1902 (84), aminophylline (theophylline ethylenediamine) has become a mainstay in the treatment of asthma and bronchospasm. This review of the copious and often conflicting results of research involving aminophylline emphasizes the findings most important to anesthesiologists. It is organized as follows: drug characteristics, mechanism of action, physiologic effects, anesthesia-related use, dosage and administration, metabolism and elimination, toxicity, and summary.

Drug Characteristics

Aminophylline is the ethylenediamine salt of theophylline, one of a group of closely related alkaloids present in plants widely distributed throughout the world. Tea leaves are the source from which theophylline is extracted.

Theophylline, caffeine, and theobromine are closely related methylated xanthines. Xanthine itself is 2,6-dioxopurine, and is structurally related to uric acid. Caffeine is 1,3,7-trimethylxanthine; theophylline is 1,3-dimethylxanthine; and theobromine is 3,7-dimethylxanthine (112). The structural formulas of purine, uric acid, xanthine, and the three pharmacologically important xanthine derivatives are shown in Fig. 1. Studies of the actions of congeners of the methylxanthines have revealed that inhibition of cyclic nucleotide phosphodiesterase, a possible mode of action of the methylxanthines, is associated with small nonpolar substitutions at positions 1 and 3 (7).

The solubility of methylxanthines is quite low; thus compounds combining them with various salts are utilized therapeutically. When theophylline is combined with the salt ethylenediamine to form aminophylline, its solubility increases 20-fold (112). Intravenous preparations of aminophylline contain from 75% to 85% theophylline by weight, depending on their manufacturer (92).

Mechanism of Action

Three major hypotheses currently exist regarding the mechanism of action of theophylline. These center around (a) cyclic adenosine 3',5'-monophosphate (cAMP), (b) catecholamines, and (c) calcium.

CAMP is today considered central to cellular function. Almost all enzyme systems are believed to utilize CAMP as an intermediary, or "second messenger," in effecting cellular functions initiated by various hormones, drugs, and other substrates (138).

In the CAMP system, a hormone or drug acts as the "first messenger," carrying the initial extracellular signal. Once attached to the appropriate (and specific) receptor site, the hormone causes activation of adenylyl cyclase, which has been located in the cell membrane (26). In the presence of magnesium ion (Mg2+), adenylyl cyclase then causes intracellular conversion of adenosine 3',5'-triphosphate (ATP) into CAMP. The breakdown of CAMP has been shown to be governed by a magnesium-dependent phosphodiesterase, which catalyzes CAMP at the 3' position, yielding adenosine 5'-phosphate (138). Inhibition of phosphodiesterase by theophylline, demonstrated in the late 1950s, would...
AMINOPHYLLINE

lead to increased levels of cAMP and resulting physiologic responses (137).

Increases in cAMP by this pathway may become clinically important when viewed against the background of the molecular mechanism of catecholamine action. Catecholamines do not stimulate cellular function directly, but activate adenyl cyclase, causing accumulation of cAMP (136, 152). Thus, increased catechol levels together with theophylline would seem to lead to increased effector activity and possibly synergism if cAMP were indeed a common mediator.

Furthermore, there is evidence that intravenous aminophylline causes significantly increased urinary excretion of the catecholamines epinephrine and norepinephrine in man (4). The increase is considered to be due to stimulation of catecholamine release by the adrenal medulla and extra-adrenal chromaffin tissue (4).

Further work in intact rats has investigated the precise biochemical pathways involved in catecholamine synthesis and how they are affected by theophylline (130). It has been shown that theophylline activates tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, causing significant increases in adrenal dopamine, a precursor of epinephrine. No increase was found in the total amount of epinephrine plus norepinephrine present after theophylline, in spite of apparently increased dopamine synthesis. This was attributed to increased catechol release caused by theophylline (130).

Support for this hypothesis was the finding that bovine adrenal glands perfused in vitro responded to single injections or continuous infusions of aminophylline by increased release of catecholamines (106). Other studies (98) in in vitro cat adrenal glands perfused with theophylline confirmed its efficacy in releasing catecholamines. It has even been suggested that theophylline is of use in treating bronchial asthma because of its epinephrine-releasing effects (9).

The precise role of calcium in theophylline action remains unclear. One study of catecholamine release induced by theophylline, cAMP, and dibutyl cAMP (a molecular form which more easily enters the cell than cAMP and so may mimic the actual effects of cAMP, presumed to be intracellularly based, more accurately than extracellularly applied cAMP) compared effects in the presence and absence of extracellular calcium (98). Exposure to a calcium-free medium for 180 minutes had no effect on adrenal catecholamine secretory responses to either cyclic nucleotides themselves or theophylline. It was concluded that theophylline does not require extracellular calcium in order to release adrenal catecholamines, but may either be independent of calcium or may translocate intracellular bound calcium (98).

Another study (106), however, found that extracellular calcium concentration did indeed seem to parallel the amount of aminophylline-induced catecholamine release. However, this study also found catecholamine release, although slightly depressed from control values, still occurred with a high aminophylline concentration in the absence of calcium. It was proposed that two mechanisms for theophylline-induced catecholamine release were present, one dependent and one independent of extracellular calcium.

Theophylline could simply depolarize the adrenal chromaffin cell, causing increased calcium influx from the surrounding medium, thereby explaining the dependence of theophylline on extracellular calcium concentration (106). Release of intracellular calcium from membrane stores in the sarcoplasmic reticulum

Fig. 1. Structural formulas of purine, uric acid, xanthine, and the three pharmacologically important xanthine derivatives.
would provide a mechanism independent of extracellular calcium (106).

Work on theophylline’s effects on cardiac tissue seems to support the evidence noted above (98, 106), regarding calcium and mechanisms of catechol release. Studies of theophylline in rat papillary and atrial muscle found intensification and prolongation of the active contractile state, leading to the conclusion that methylxanthines exert two effects on excitation-contraction coupling: (a) cell membrane changes leading to increased calcium entry, and (b) inhibition of calcium sequestration by sarcoplasmic reticulum (10).

Other work on cardiac mechanics suggests that, in addition to theophylline-induced increases in myocardial catecholamine release, theophylline may also directly influence calcium kinetics and thereby alter myocardial function (78). Evidence supporting this theory is indirect, at best. Studies measuring calcium transport in cardiac muscle cells and subcellular components such as mitochondria and sarcoplasmic reticulum are needed to verify this hypothesis.

Studies of theophylline and dibutyryl cAMP-induced release of catecholamines in vitro from electrically stimulated sympathetic nerves in the presence and absence of calcium have shown enhanced catechol release in the presence of calcium, although release was also present in calcium-free medium (167). These investigators proposed that cAMP acts as a mediator of theophylline activity, either in parallel with calcium or by mobilizing intracellular, bound calcium as suggested above (167).

There is evidence that theophylline and epinephrine modify internal cardiac Purkinje fiber surface charges, and thus cause voltage shifts which would allow the increased calcium flux proposed above (148). The proposed cause of this change in surface charges is an elevation in intracellular cAMP caused by theophylline or epinephrine (148). Thus, both cAMP and calcium would be involved as mediators of theophylline action.

In summary, the mechanism of action of theophylline, once believed to be simply due to the inhibition of phosphodiesterase (6), no longer appears so straightforward. It seems likely, from studies in a variety of tissues, that phosphodiesterase inhibition with a subsequent increase in cAMP levels is involved, along with theophylline-mediated catecholamine release and subsequent catecholamine-related increases in cAMP. In addition, the action of theophylline appears related to, but not dependent on, extracellular calcium concentration, and theophylline may directly influence calcium kinetics.

Physiologic Effects

The physiologic effects of aminophylline will be considered in four broad groups: respiratory, cardiac and circulatory, cerebral, and miscellaneous.

Respiratory Effects

The first clinical use of theophylline, in 1902 (84), was for the treatment of congestive heart failure. As experience with aminophylline has accumulated over the ensuing eight decades, the majority of its clinical applications have involved some aspect of the cardiopulmonary system. Indeed, in 1981, the primary indication for and most frequent use of aminophylline is in the treatment of respiratory problems.

Successful aminophylline therapy of Cheyne-Stokes respiration in man was first reported in Germany in 1927 (157). Further investigations (79, 161) determined the mechanism of its action in Cheyne-Stokes respiration to be either direct stimulation of the medullary respiratory center or the result of increased sensitivity to CO₂. More recently (28) it has been shown in patients with Cheyne-Stokes respiration that aminophylline decreases the respiratory threshold for CO₂ without altering CO₂ sensitivity.

Several years after these studies, aminophylline was introduced into pediatrics as therapy for neonatal apnea (69). Subsequently its use has become widespread and it is now a mainstay of therapy for this condition (125, 150). Recent work (44) indicates that, in premature infants, aminophylline decreases the threshold of the central chemoreceptor to CO₂ increasing respiratory center output. In conjunction with its observed effects in treating Cheyne-Stokes respiration and neonatal apnea of prematurity, it has recently been shown (70) that aminophylline increases the hypoxic ventilatory response in normal man.

Alveolar hypoxia causes inconsistent changes in pulmonary blood flow distribution in normal man, although preferential lower lung zone vasoconstriction is frequently seen (36). Hypoxic stimulation of the carotid and aortic chemoreceptors, direct adrenergic vasomotor innervation, release of such intrinsic chemical mediators as histamine, prostaglandins, and angiotensin, and direct effects of hypoxia on pulmonary vascular smooth muscle have been postulated as mechanisms of pulmonary vasoconstriction (33). As most gas exchange in man occurs in the lower lung, preferential lower zone vasoconstriction would provide a significant defense against hypoxia.

During an asthmatic episode hypoxemia is commonly present (81). Hypoxemia is characteristically a
feature of chronic obstructive pulmonary disease (COPD) as well. Such hypoxemic patients might tend toward lower zone pulmonary vasoconstriction as self-protection against further hypoxemia. However, the concomitant bronchoconstriction characteristic of asthma would decrease ventilation even to relatively nonhypoxic lung zones. Aminophylline is a bronchodilator, relaxing airway smooth muscle (90). Thus, in asthmatic patients an improvement in arterial oxygenation might well be expected after administration of aminophylline if there were no concomitant alteration in pulmonary blood flow.

Varying results have been obtained in studies of the effect of aminophylline on arterial oxygenation in conscious humans with asthma and other obstructive pulmonary diseases (Table 1) (25, 50, 110, 139, 164, 171). No definite change in arterial oxygenation followed intravenous aminophylline in either group. The seeming efficacy of aminophylline in these conditions seems to result from its ability to decrease P_{aO_2} by mechanical ventilatory improvement through bronchodilation (25, 139, 164, 171).

Many studies of aminophylline in asthmatic patients support this hypothesis (Table 2). In every trial (39, 57, 62, 105, 149, 162) aminophylline produced significant decreases in airway resistance and improvement in ventilatory function.

Reports of asthma therapy contain frequent mention of positive subjective responses to therapy on the part of patients, whether the therapy is placebo, aminophylline, or another drug (39, 110). In few other medical conditions is the psychological background as important in initiating, perpetuating, and resolving the problem. From the data noted above, however, aminophylline would seem to be of definite objective benefit in the treatment of asthma and bronchospasm in man.

Table 1

Reference	Dose	P_{aO_2}	Time after administration	No. of patients	Clinical diagnosis
139	250	(1–5 torr)	30	5	Asthma
139	250	(5–10 torr)	30	5	Asthma
110	500	(4–12 torr)	15	4	Status asthmaticus
110	500	No change	30	10	Status asthmaticus
50	400	(10–12 torr)	40	6	COPD
25	250	(15–20 torr)	20	8	COPD
164	300	No change	30	6	COPD
171	500	(7 torr)	20	1	COPD

* S_{aO_2}

Reference	Dose and route	Serum theophylline	Change in indices (no. of patients)	Type of study
149	600 orally	6–14	$VC (5/6)$	Prospective
57	500 orally	9–12	$VC (6/6)$	Prospective
62	500–1000 orally	8–20	$Specific airway resistance (6/7)$	Prospective, blind
162	6–11/kg orally	7–25	FEV_1, FVC	Prospective, double-blind crossover
39	250 IV	—	$FVC (6/9)$	Prospective, double-blind
120	4.8/kg IV	—	$FEV_1 (21/63)$	Prospective, blind

* Abbreviations used are: VC, vital capacity; FEV_1, forced expiratory volume in 1 second; FVC, forced vital capacity.

† Data from Halmagyi and Cotes (50).

Table 2

Cardiac and Circulatory Effects

Results of studies on the myocardial effects of aminophylline in animals (1, 8, 20, 34, 47, 91, 95, 166) are summarized in Table 3. Aminophylline is a chronotrope in animal hearts. The lack of inotropic response to aminophylline in transplanted canine hearts, along with the positive response in situ, indicates that aminophylline acts on the heart via catecholamine release from intact cardiac adrenergic nerve terminals (95). Aminophylline appears to have no consistent effect on canine coronary blood flow (1, 34, 47, 91).

In man (Table 4), aminophylline consistently exerts a chronotropic effect (35, 96, 97, 107, 109). Increases in heart rate, stroke volume, and cardiac output are accompanied by decreases in systemic vascular resistance, right and left ventricular end-diastolic pres-
TABLE 3
Cardiac Effects of Aminophylline in Anesthetized Animals*

Reference	Effects	Anesthetic	Species	Remarks
20	↑HR	Pentobarbital	Dog	Propanol blocked ↑HR
166	↑HR	Heart-lung preparation	Dog	Reserpine blocked ↑HR
95	HR unchanged↑	Not specified	Dog	Propanol and phenox ybenzamine caused no change in CBF
8	↑HR	Isolated heart	Guinea pig	Theophylline uptake lagged behind, ↑HR
34	CBF unchanged, ↑Coronary A – V̇O₂, ↑myocardial O₂ uptake	Pentobarbital	Dog	
1	↑Posthypoxic CBF	Pentobarbital	Dog	
47	↑Posthypoxic CBF	Pentobarbital	Dog	
91	↑CBF	Chloralose	Dog	

* Abbreviations used are: HR, heart rate; CBF, coronary blood flow; AV, atrioventricular.
† Transplanted hearts.

pressures, pulmonary capillary wedge pressure, and arterial pressure (35, 96, 97, 107, 109, 131, 151). The use of aminophylline in congestive heart failure, common practice in Europe, would therefore seem clinically valid.

Cerebral Effects

Aminophylline is a central nervous system stimulant. Early work (75, 76) showed a striking improvement in neurologic status in unconscious, comatose, and hemiplegic patients given intravenous aminophylline, which produces a global decrease in cerebral blood flow (87); its analeptic effect appeared due to increased blood flow in damaged brain (129). More recently (42), a double-blind prospective trial of intravenous aminophylline in patients with acute cerebral infarction showed significantly greater immediate improvement in patients who received aminophylline than in those receiving placebo (38% vs 15%). However, after 3 weeks there was no difference in neurologic status and residual disability between the aminophylline and placebo groups. The authors concluded that in ischemic stroke aminophylline can bring immediate symptomatic relief without appreciably influencing ultimate recovery.

Miscellaneous Effects

Cerebral metabolic rate increased along with cerebral cAMP concentrations in young mice given aminophylline (144). The same study also found that anoxic survival in vivo was greatly decreased in neonatal mice given therapeutic aminophylline doses compared to those not receiving aminophylline (0% vs 62%). The implications for aminophylline use in human neonates with apnea, currently routine as noted earlier in this section, are obvious.

Aminophylline has been shown to be a direct renal vasodilator in vivo (18). It increases renal blood flow and decreases tubular sodium reabsorption (74, 156). However, increases in tubular sodium reabsorption have also been documented (66). Theophylline increases renal vein renin concentration (156).

Aminophylline has been reported to decrease venous tone in man (160). Decreases in tone have been observed in dogs in vivo, yet in vitro venous distensibility in dogs was not affected by aminophylline (173). Decreased tone may account for the previously
noted decreased vascular resistance induced by aminophylline.

Reduction in pulmonary transvascular filtration due to decreased lung vascular pressures has been reported after administration of aminophylline (37). Histamine-induced pulmonary edema is antagonized by aminophylline, even in the presence of propanolol (100). Thus, the antiedema effect of aminophylline, noted clinically through its efficacy as an adjunct in the therapy of congestive heart failure (see above), does not seem dependent on pulmonary beta-adrenergic receptors.

Aminophylline inhibits platelet aggregation in human plasma (12). Aminophylline also has an inhibitory action on uterine motility in women, perhaps related to increases in cAMP and the subsequent inhibition of uterine motility by cAMP (24). Theophylline increases sensitivity to pain in rats, its effects being proportional to plasma theophylline concentrations (93, 94).

Theophylline stimulates the neuromuscular junction (132). In vitro studies with myasthenia gravis muscle preparations have shown marked augmentation of neuromuscular function (60). In patients with myasthenia gravis refractory to anticholinesterase medication, theophylline increases muscle strength and improves function (14). Antagonism of pancuronium-induced neuromuscular block in the presence of supratherapeutic serum theophylline concentrations has been reported (27).

These studies indicate that aminophylline facilitates neuromuscular transmission, perhaps by increasing cAMP level at the neuromuscular junction through phosphodiesterase inhibition. cAMP at the prejunctional level may cause neurotransmitter release (29).

TABLE 5

Reference	No. of patients	Recommendations	Side effects (no. of patients)	Remarks
21	280	Useful before surgery	None noted	4% asthmatics in total patient population
128	687	Useful before surgery; possibly useful during surgery	None noted	1.2% asthmatics in total patient population; halothane advocated during surgery
48	Not stated	Possibly useful during surgery	None noted	Halothane advocated during surgery
6	89*	Useful before surgery	Cardiac arrhythmias 4/89; 3/4 had preoperative aminophylline + halothane anesthesia	PaCO₂ < 35, PaO₂ > 100 shortly after onset of arrhythmias
113	2	Avoid halothane for 13 hours	Multiform ventricular tachycardia (2/2)	PaCO₂ < 42, PaO₂ > 100 at onset of arrhythmia in each patient
172	Not stated	Perioperative use safe and effective	None noted	Anecdotal comments

* Eighty-nine anesthetics in 67 patients.

Anesthesia-Related Use

Perioperative use of aminophylline is controversial (114, 172), due to its reported arrhythmogenic effects during general anesthesia (6, 113). Surprisingly little objective information exists on the efficacy of aminophylline in the prevention or resolution of asthmatic episodes associated with anesthesia and surgery (Table 5). Generalizations that aminophylline is useful in the preoperative preparation of asthmatic patients fail to cite objective evidence of its efficacy in treating or preventing intraoperative bronchospasm (6, 21, 48, 128, 172).

In two reports of arrhythmogenic effects of aminophylline in conjunction with general anesthesia in man (6, 113), the anesthetic agent used in all patients with arrhythmias was halothane. Halothane is considered the anesthetic of choice for the asthmatic patient (48, 128), so it would most likely be the agent involved in aminophylline-anesthetic interactions.

The first of these reports (6) noted intraoperative cardiac arrhythmias during four of 67 halothane anesthetics administered to asthmatic patients. The arrhythmias consisted of supraventricular tachycardia (one patient), bigeminy (two patients), and multifocal premature ventricular contractions (one patient). Two of the three patients with ventricular arrhythmias had received preoperative aminophylline, as had the patient with supraventricular tachycardia. No information on doses or serum theophylline levels was presented. However, arterial blood gases at the onset of ventricular arrhythmias showed no evidence of hypoxemia or hypercarbia.

Tachycardia during halothane anesthesia after preoperative aminophylline was significantly more fre-
quent than in patients not receiving this combination (6). Nine of 45 patients (20%) given aminophylline and halothane developed heart rates greater than 145 beats per minute; none of the 22 patients having halothane anesthesia without aminophylline had a heart rate greater than 140 beats per minute. Only one of 21 other patients anesthetized with methoxyflurane, ether, fluroxene, or fentanyl had a heart rate greater than 140 beats per minute; this patient had received preoperative aminophylline.

The second report (113) cited two cases of patients who had received preoperative aminophylline and subsequently developed multifocal ventricular tachycardia 5 minutes after induction of halothane anesthesia. Serum theophylline levels were not measured at the time arrhythmias occurred, but in one case a toxic level was almost certainly present during induction. Arterial gases at the onset of arrhythmias again showed no evidence of hypoxemia or hypercarbia.

We performed a prospective study in dogs of intravenous aminophylline administration followed 2 minutes later by the induction of halothane anesthesia (Table 6). After administration of thiopental and succinylcholine, and endotracheal intubation, three groups of six dogs each were given intravenous aminophylline in doses of 10, 25, and 50 mg/kg, respectively. Serum theophylline levels were measured and found to be in the human therapeutic range after 10 mg/kg and in the toxic range after 25 and 50 mg/kg of aminophylline. Two of six dogs given 10 mg/kg of aminophylline developed ventricular arrhythmias (premature ventricular contractions and bigeminy) during induction of halothane anesthesia. One of six dogs given 25 mg/kg of aminophylline developed an arrhythmia (bigeminy), and three of six dogs given 50 mg/kg of aminophylline developed arrhythmias (bigeminy in two and premature ventricular contractions and bigeminy in the third) during induction of halothane anesthesia.

Neither arterial hypoxemia nor hypercarbia was present in any of the animals studied. Serum levels of ionized calcium and potassium were within normal limits. All arrhythmias resulting from the combination of aminophylline followed by halothane occurred 5 minutes or more after induction of halothane anesthesia, and persisted for the duration of the experiments (30 minutes). This time course was quite different from that of arrhythmias seen when aminophylline is administered to dogs during halothane anesthesia (see below).

A number of studies of the effects of aminophylline administered during general anesthesia in dogs (54, 127, 134, 135, 140, 141, 152), have shown that toxic doses of aminophylline consistently cause ventricular arrhythmias when administered during 1% halothane anesthesia (Table 7). However, the majority of the studies (127, 140, 141, 152) did not report arterial blood gas values, serum theophylline levels, or potassium and ionized calcium concentrations before or at the time arrhythmias occurred, and so it is not possible to eliminate conclusively causes other than aminophylline-halothane interaction as possible sources of arrhythmogenicity.

In our study of aminophylline administration during halothane anesthesia in dogs, we reported serum theophylline levels and arterial blood gas tensions (134). We observed no arrhythmias after aminophylline administration which produced serum theophylline levels corresponding to the therapeutic range in conscious man. The only significant changes noted were a 10% increase in heart rate and transient decreases in systemic vascular resistance and pulmonary capillary wedge pressure after aminophylline. No change in arterial oxygenation was noted.

We then studied the arrhythmogenic effects of both therapeutic and toxic aminophylline doses during induction and maintenance of halothane anesthesia in dogs (135). We again found that therapeutic theophylline levels were not arrhythmogenic, but showed that toxic levels produce ventricular arrhythmias in

Table 6

Aminophylline dose mg/kg	Theophylline level mg/L	Ventricular arrhythmias (frequency)	Time of onset of arrhythmias after halothane min	At onset of arrhythmia
10	11	PVCs, bigeminy (2/6)	5/11	P_{O2} 78–97 74–7.45 4.2–4.4 2.09–2.21
25	34	Bigeminy (1/6)	8	P_{CO2} 29–33 7.44–7.45 4.2–4.4 2.09–2.21
50	44–63	PVCs, bigeminy (3/6)	8.5–18	pH 7.51 4.7 2.14
				K⁺ 4.0–4.5 2.14–2.31
				Ca²⁺ 2.14–2.31

*Abbreviation used is: PVCs, premature ventricular contractions.
Intravenous Aminophylline in Anesthetized Dogs

Reference	Dose	Anesthetic	Anesthetic-amino-	Ventricular arrhythmia	Remarks
152	50	Pentobarbital	15 min	PVCs (2/4)	Sinus tachycardia (2/4)
140	50	1% halothane	10 min	PVCs (12/20)	Sinus tachycardia (6/8)
141	50	None	—	PVCs (1/10)	
50	75 min	Pentobarbital	PVCs (2/6)		
50	30 min	3% ether	PVCs (1/6)		
50	10 min	3% halothane	PVCs (0/6)		
50	15 min	1% halothane	PVCs (12/16)		
127	50	1% halothane	30 min	PVCs (2/7), ventricular tachycardia (4/7)	Spontaneous ventilation
54	7	Pentobarbital	Not stated	Direct electrical stimulation to heart to produce arrhythmias	
134	10	1% halothane	90 min	(0/11)	Therapeutic theophylline levels, heart rate
135	10	1% halothane	2 hr	(0/8)	Therapeutic theophylline levels
25	6 hr	1% halothane	PVCs (4/8)		Toxic theophylline levels
50	15 min	1% halothane	Bigeminy (2/6)		Toxic theophylline levels

Dosage and Administration

Since the development of an accurate spectrophotometric assay for theophylline in 1949 (121), numerous other assays have been developed, including high pressure liquid chromatography (142), radioimmunoassay (22), and enzyme immunoassay (49). Thus, obtaining accurate serum theophylline levels has become routine in most major medical centers in the United States.

Aminophylline toxicity continues to be seen and reported (31, 52, 58, 59, 119, 168, 174) even though a well defined therapeutic range (10 to 20 mg/L) for serum theophylline has been established (86). Causes of this problem include failure to appreciate the pharmacokinetics of aminophylline, effects of disease and altered physiologic states on theophylline disposition, and drug interactions.

Theophylline pharmacokinetics can best be described by a two-compartment, open system model (85). Simplified, this means that the drug is distributed initially into the first compartment (plasma) and then gradually disperses into the second compartment (tissues). In man, the half-time for plasma compartment decay is 30 to 45 minutes, whereas the slower decay of theophylline in the tissue compartment is reflected in a half-time of approximately 4.5 hours (92). Con-
siderable variability in the tissue compartment half-time with altered physiologic states may often lead to overdose and toxicity.

Each 1 mg/kg of theophylline administered in a rapidly absorbed form (intravenous, oral solution, or rapid dissolution tablet) results in a 2-mg/L increase in serum theophylline concentration (86). Infusion of theophylline is then necessary to maintain a constant level (86).

Many studies relating clinical effects to serum theophylline concentration have shown a consistent bronchodilator response to serum theophylline levels of 10 to 20 mg/L (39, 57, 62, 105, 120, 162). This has become the accepted therapeutic range (118). Toxicity has usually been associated with levels greater than 20 mg/L (62, 86).

From the information above, it becomes evident that to achieve a serum theophylline level of 10 mg/L, an average 70-kg adult requires 350 mg (5 x 70) of theophylline as a loading dose. Recalling that aminophylline is approximately 80% theophylline, this patient would require 438 mg (1.25 x 350) of aminophylline as a loading dose.

Alterations in physiologic status may produce differences in theophylline disposition and kinetics sufficient to cause toxicity or, in some cases, relative underdosage (Tables 8 and 9). The apparent volume of distribution of theophylline in the steady state averages 0.5 L/kg of body weight in healthy adults (103).

Earlier work (86) established an aminophylline infusion rate of 0.9 mg/kg/hr after a 5.6-mg/kg loading dose to maintain plasma theophylline levels of 10 mg/L in 95% of patients studied. However, rigid adherence to this dose schedule, often without adequate monitoring of serum theophylline levels, has led to overdose and toxicity (see "Toxicity").

As information has accumulated on altered theophylline disposition, new guidelines for safe therapy have been established. Thus, after an initial loading dose of 5.6 mg/kg, theophylline infusion rates designed to achieve and maintain a serum theophylline level of 10 mg/L are: for children 1 to 9 years old, 0.85 mg/kg/hr; for children more than 9 years old and otherwise healthy adult smokers, 0.7 mg/kg/hr; for otherwise healthy nonsmokers, 0.4 mg/kg/hr; in patients with cardiac decompensation or liver dysfunction, 0.2 mg/kg/hr (53). These guidelines must be combined with measurement of serum theophylline levels within 12 hours of starting an infusion in order to individualize the dose to particular patient requirements.

Theophylline interacts with a number of drugs other than halothane, creating the possibility of unwanted or diminished drug action and effects. In addition, there is evidence that chronic theophylline treatment inhibits its own elimination (92).

Theophylline directly stimulates the myocardium and may enhance sensitivity to digitalis as well as increase vulnerability to digitalis toxicity (126). Aminophylline seems to increase the excretion of lithium ions and possibly may impair therapeutic responses to lithium carbonate, necessitating higher lithium doses during aminophylline therapy (143). The antibiotics troleandomycin and erythromycin double expected theophylline levels, although no mechanism for this effect has been determined (68, 163). A recent study (101), however, showed no significant interaction between theophylline and tetracycline, erythromycin, or cephalixin.

Aminophylline may be administered by intravenous, intramuscular, oral, aerosol, or rectal routes. The intravenous route is most reliable and rapid in the acute situation (92). The drug should always be administered via a peripheral vein and never through

TABLE 8

Reference	Pathology	Change in Vd	Effect on serum theophylline	Species
2	Premature neonates	↑	↑	Man
104	Cirrhosis	↑	↓	Man
40	Obesity	↓	↑	Man
65	↓pH	↑	↓	Dog
111	↓pH	↑	↓	Man, multiple drugs

TABLE 9

Reference	Physiologic change	Change in theophylline clearance	Effect on serum theophylline
55	Cigarette smoking	↑	↓
63	Marihuana	↑	↑
108, 156	Acute fever	↑	↑
155	Cor pulmonale	↓	↑
103	Pulmonary edema	↓	↑
52	Hepatic disease	↓	↑
52, 153	Congestive heart failure	↓	↑
40	Obesity	↓	↑
69	Old age	↓	↑
64	Eating charcoal-broiled meats	↑	↓
a central catheter (17, 102) (see “Toxicity”). Aminophylline should be administered over 10 to 20 minutes (102), diluted in 25 to 50 ml of saline, preferably, although not necessarily, with a constant infusion pump (85, 103).

Intramuscular administration is painful and produces low plasma concentrations (123). Oral administration is common but not always reliable. Nausea and vomiting, occasionally seen after toxic doses administered orally, are also seen after rectal and intravenous use, suggesting that gastrointestinal disturbances after aminophylline administration do not arise solely from local irritation of the gastric mucosa, but rather reflect systemic toxicity due to stimulation of central vomiting centers and effects on gastric acid secretion and mucosal tissue concentrations (30, 118, 124, 169). The aerosol route is ineffectual (133). Rectal administration results in variable and unpredictable serum concentrations, and proctitis is frequent (56, 73, 124, 145, 147).

Metabolism and Elimination

Theophylline is rapidly distributed throughout extracellular fluids and body tissues after intravenous administration (92) (see “Dosage and Administration”). It is found not only in plasma and extracellular fluid, but also in erythrocytes (85), saliva (67), and breast milk (170). Theophylline can cross the placenta to produce high fetal concentrations (3). The disposition of theophylline depends primarily on protein binding in serum, metabolism in the liver, and excretion in urine.

Theophylline in plasma is reversibly bound to circulating plasma proteins (92). On the average, approximately 55% of theophylline is protein bound in healthy adults, but in neonates only 36% of theophylline is bound (2, 67). In patients with hepatic cirrhosis, approximately 35% is protein bound (77, 104). As unbound drug in plasma is generally considered to be the pharmacologically active fraction, a more intense pharmacologic response would be expected in the newborn or the patient with liver disease than in a normal adult with the same total serum theophylline concentration.

Theophylline is mainly eliminated from the body by biotransformation in the liver and by urinary excretion (61). Approximately 7% to 15% of a given dose of theophylline is excreted unchanged in the urine (13, 23, 61). Renal clearance is proportional to urine flow (72).

The major metabolites of theophylline (1,3-dimethylxanthine) in man are 3-methylxanthine, 1-methyluric acid, and 1,3-dimethyluric acid (146) (Fig. 2). In one study of theophylline disposition (61), 8% was excreted unchanged in urine, 40% appeared as 1,3-dimethyluric acid, 36% as 3-methylxanthine, and 17% as 1-methyluric acid.

The enzymes responsible for oxidation and demethylation in the liver have not yet been identified, although the microsomal enzyme system is involved and not the mitochondria (92, 146). The system of microsomal enzymes involved contains three main components: cytochrome P-450, a nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent reductase, and phosphatidylcholine. Cytochrome P-450 activity is inducible by phenobarbital, but administration of phenobarbital in man does not lead to increased theophylline clearance (146). Cytochrome P-450 activity is also inducible by polycyclic hydrocarbons (146). This may explain the increase in theophylline clearance associated with cigarette smoking, which increases tissue levels of polycyclic hydrocarbons (55, 146). Increased theophylline clearance in subjects eating a diet high in charcoal-broiled meats (64) can be explained on the same basis.

Premature infants have extremely low plasma theophylline clearance values which increase progressively over several weeks of continuous aminophylline infusion (2, 45), suggesting either maturation of hepatic oxidative enzyme activity or self induction of the biotransformation process (92). Removal of dietary methylxanthine in three normal subjects resulted in more rapid elimination of theophylline and its metabolites (16). Increasing plateau concentrations of theophylline have resulted in correspondingly decreased clearance values with each increase in serum level (92).

In examining the pathways for theophylline deg-
radiation, it is evident that xanthine oxidase, responsible for the production of uric acid from xanthines and fundamental in the pathogenesis of gout, plays a significant role in theophylline metabolism. As noted above, 1-methyluric acid makes up 17% of the end product of theophylline degradation. Because of the lack of complete demethylation, however, no increase in uric acid excretion would be expected after theophylline administration (112). This is indeed the case (92).

Allopurinol, a potent and commonly used clinical inhibitor of xanthine oxidase, did not alter theophylline clearance in five normal volunteers (159). On the basis of the metabolic pathways noted above, however, one would certainly expect a decrease in 1-methyluric acid production and corresponding increases in the other end products of theophylline metabolism after allopurinol administration.

Studies of 3-methylxanthine (99), a major (36%) metabolite of theophylline, showed that it produces respiratory and cardiovascular effects similar to those produced by theophylline, but that it is 1 to 5 times less potent than theophylline. Nevertheless, 3-methylxanthine may contribute to the effects of theophylline during prolonged therapy and, by implication, so may the other metabolites. Thus, results of theophylline therapy in any given patient are likely to depend on the relative dominance of different degradative enzymes leading to formation of various breakdown products.

Another area of importance in theophylline elimination is its distribution into breast milk. On a relative body weight basis, a nursing infant receives as much as 10% to 15% of the mother’s dose (170). Infants who metabolize the drug very slowly could accumulate a significant body store of theophylline, enough to cause toxicity, as has been reported (170). Thus, nursing women needing theophylline should be given the drug just after nursing to avoid peak serum and milk concentrations at the time of feeding.

Placental transfer of maternally administered theophylline resulting in serum concentrations in the therapeutic range (10 to 20 mg/L) in the neonate after delivery has been reported (3). One neonate exhibited irritability, emesis, and tachycardia, evidence of theophylline toxicity, even though the peak neonatal serum level of theophylline was 14 mg/L. This concentration was 3 mg/L higher than peak maternal level, and possibly reflected a “deep” compartment with slow drug entry and elimination relative to the mother, perhaps due to incomplete neonatal development of the cytochrome P-450 monoxygenase system responsible for demethylation (3). Alternatively, reduced protein binding of theophylline noted in full-term infants could have resulted in increased free, pharmacologically active drug at a “safe” total serum concentration, producing toxicity (2).

Toxicity

The first deaths associated with aminophylline were reported in 1943 (83). Since that time numerous other reports of fatalities have appeared in the literature (11, 17, 19, 41, 82). In many of these cases overdose and/or rapid central administration was clearly the likely cause (11, 17, 19, 41). High local concentrations may result in precipitation of free alkaloids when theophylline salts are exposed to the pH of the blood (112). Inadequate distribution due to rapid intravenous administration exposes the heart and other vital organs to excessive drug concentrations (102). This is well documented by a report (17) that 36% of all catastrophic events leading to cardiac arrest in 39 patients in one intensive care unit consisted of aminophylline administration via central venous catheters.

As noted above, aminophylline is most effective when circulating serum theophylline levels range from 10 to 20 mg/L (102). Toxicity in unanesthetized man occurs with levels greater than 20 mg/L (15, 102). The highest level reported in man is 300 mg/L (165). The most prominent symptoms of early toxicity are anorexia, nausea, vomiting, insomnia, restlessness, and irritability (92, 102). Signs of severe toxicity include delirium, tachycardia, dehydration, fever, convulsions, hematemesis, stupor, and coma (82, 92, 102); cardiorespiratory arrest is not uncommon (17). Early and less severe signs of toxicity do not always precede more dangerous ones (58, 116, 168). The only safe way to administer aminophylline is in conjunction with measurement of serum theophylline levels.

Successful therapy of aminophylline-induced cardiac arrhythmias with lidocaine has been reported in both awake and halothane-anesthetized man (32, 113). In dogs, we observed rapid, spontaneous resolution of ventricular arrhythmias which occurred after administration of toxic doses of aminophylline during halothane anesthesia (135).

Seizure activity associated with aminophylline was first described in children in 1954 (117) and in adults in 1959 (5). Since that time numerous reports of seizure activity have appeared (31, 122, 168, 174). One study (174) found a striking correlation of seizure activity with theophylline level: eight patients with grand mal seizures had theophylline levels from 25 to
Aminophylline (theophylline ethylenediamine) has been in clinical use for more than 75 years. Its primary use today is in the treatment of asthma, although it is also a mainstay in the therapy of neonatal apnea and, primarily in Europe, acute cerebrovascular accidents.

The mechanism of action of aminophylline has not yet been precisely characterized, but seems to involve cAMP and phosphodiesterase inhibition. Strong evidence exists for a relationship to calcium flux and concentration. Aminophylline also causes increased synthesis and release of catecholamines by the adrenal medulla.

Use of aminophylline during anesthesia is controversial. Scattered reports of cardiac arrhythmias in man during anesthesia seem to indicate that high theophylline levels predispose to cardiotoxicity; animal studies confirm this. There is evidence that theophylline levels believed safe in conscious man are, in fact, arrhythmogenic when followed by halothane anesthesia induction in dogs.

Intravenous aminophylline will produce a serum theophylline level of approximately 2 mg/L for every 1 mg/kg given as a loading dose. Thus, to achieve a minimum effective blood level of 10 mg/L, a loading dose of aminophylline should be 5 mg/kg. This must be followed by infusion to maintain a therapeutic blood level. Therapeutic serum theophylline levels range from 10 to 20 mg/L. Monitoring of serum theophylline concentration is essential to avoid toxicity, especially in patients who are elderly or have heart or liver disease. Aminophylline should always be administered diluted in 25 to 50 ml of saline over 10 to 20 minutes via peripheral vein, never through a central venous or pulmonary artery catheter.

Toxicity from aminophylline therapy is not uncommon, and is always related to serum theophylline levels greater than 20 mg/L. Toxicity often manifests itself by gastrointestinal symptoms such as nausea and vomiting, and other signs and symptoms include irritability, insomnia, cardiac arrhythmias, convulsions, coma, and cardiorespiratory arrest. Less severe signs of toxicity do not always precede arrhythmias, seizures, and cardiorespiratory arrest.

Treatment of aminophylline toxicity consists first of immediately discontinuing aminophylline when clinical signs noted above appear. In the event of a serum theophylline level greater than 20 mg/L during aminophylline infusion without clinical signs or symptoms of toxicity, the infusion rate should be decreased.
Cardiac arrhythmias caused by aminophylline may be treated with lidocaine; high doses of anticonvulsants may be required to control seizure activity. As long as hemodynamic and pulmonary status is stable, such anticonvulsant therapy should be continued irrespective of dosage until control of seizures is achieved. Muscle relaxants are not indicated as part of the treatment of seizures. Aminophylline appears contraindicated in conjunction with anesthesia in patients susceptible to malignant hyperthermia.

ACKNOWLEDGMENT
The authors thank Patricia A. Herberg for her expert secretarial assistance.

REFERENCES
1. Afonso S, Ansfield TJ, Berndt TB, Rowe GG. Coronary vasodilator response to hypoxia before and after aminophylline. J Physiol 1972;221:389-99.
2. Aranda JV, Sitar DS, Parson WD, Loughnan PM, Neims AH. Pharmacokinetic aspects of theophylline in premature newborns. N Engl J Med 1976;295:413-16.
3. Arwood LL, Dasta JF, Friedman C. Placental transfer of theophylline: two case reports. Pediatrics 1979;63:844-6.
4. Atuk NO, Blaydes C, Westervelt FB, Wood JE. Effect of aminophylline on urinary excretion of epinephrine and norepinephrine in man. Circulation 1967;55:745-53.
5. Baer RL, Cohen HJ, Neidoff AH. Allergic eczematous sensitivity to aminophylline. Arch Dermatol 1959;79:647-8.
6. Barton MD. Anesthetic problems with aspirin-intolerant patients. Anesth Analg 1975;54:376-80.
7. BeavO IA, Rogers NL, Crofford OB, Hardman JG, Sutherland EW, Newman EV. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol 1970;6:597-603.
8. Belleman P, Scholz H. Relationship between theophylline uptake and inotropic effect in the guinea-pig heart. Br J Pharmacol 1974;45:265-74.
9. Berkowitz BA, Spector S. Effect of caffeine and theophylline on peripheral catecholamines. Eur J Pharmacol 1971;13:193-9.
10. Blinks JR, Olson CB, Jewell BR, Braveny P. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Circ Res 1972;30:367-92.
11. Bresnick E, Woodard WK, Sageman CB. Fatal reactions to intravenous administration of aminophylline. JAMA 1948;136:297-8.
12. Brinson K. Effect of aminophylline on blood platelet reactions. Artherosclerosis 1972;16:233-9.
13. Brodie BB, Axelrod J, Reichenthal J. Metabolism of theophylline (1,3-dimethylxanthine) in man. J Pharmacol Exp Ther 1952;194:219-22.
14. Brumlik J, Jacobs R, Karczmer AG. Theophylline compounds and myasthenia gravis. II. Clinical report of nine cases. Clin Pharmacol Ther 1974;14:380-5.
15. Buchanan N. Clinical pharmacology of theophylline. S Afr Med J 1979;56:61-3.
16. Caldwell J, Lancaster R, Monks TJ, Smith RL. The influence of dietary methylxanthines on the metabolism and pharmacokinetics of intravenously administered theophylline. Br J Clin Pharmacol 1977;4:637P-8P.
17. Camarata SJ, Weil MH, Hanashiro PK, Shubin H. Cardiac arrest in the critically ill: a study of predisposing causes in 132 patients. Circulation 1971;44:688-95.
18. Cambar J, Saurel J. Influence de la theophylline sur le calibre de l'arteriole afferente glomerulaire du rat. C R Soc Biol (Paris) 1977;171:759-63.
19. Chaithiraphan S. Fatal complication associated with the intravenous use of aminophylline. J Med Assoc Thai 1976;59:507-9.
20. Chiba S, Hashimoto K. Effect of aminophylline on the SA node of the dog heart in situ. Tohoku J Exp Med 1973;109:203-4.
21. Converse JG, Smotrilla MM. Anesthesia and the asthmatic. Anesth Analg 1961;40:336-42.
22. Cook CE, Twine ME, Myers M, Amerson E, Kepler JA, Taylor GF. Theophylline radioimmunoassay: synthesis of antigen and characterization of antisera. Res Commun Chem Pathol Pharmacol 1976;13:497-505.
23. Cornish HH, Christian AA. A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem 1957;220:315-23.
24. Coutinho EM, Viera Lopes AC. Inhibition of uterine motility by aminophylline. Am J Obstet Gynecol 1971;110:726-9.
25. Day B, Howard P. Effect of intravenous aminophylline on the arterial oxygen saturation in chronic bronchitis. Thorax 1965;20:324-6.
26. Davoren PR, Sutherland EW. Cellular location of adenyl cyclase in the pigeon erythrocyte. J Biol Chem 1963;238:3016-23.
27. Deiss DC, Rosenberg H. Antagonism of neuromuscular blockage by theophylline. Anesthesiol 1979;58:139-40.
28. Dowell AR, Heyman A, Sieker HO, Tripathy K. Effect of aminophylline on respiratory-center sensitivity in Cheyne-Stokes respiration and in pulmonary emphysema. N Engl J Med 1965;273:1447-53.
29. Dretchen KL, Stanfaert FG, Skirboill LR, Morgenthau VH III. Evidence for a prejunctional role of cyclic nucleotides in neuromuscular transmission. Nature 1976;264:79-81.
30. Dworetzky M. The dangers of therapeutic agents used in the treatment of asthma. South Med J 1969;62:649-54.
31. Faden A. Encephalopathy following treatment of chronic pulmonary failure. Neurology 1976;16:337-9.
32. Feitelson A. Another reaction to aminophylline. N Engl J Med 1971;285:1327.
33. Fishman AP. Hypoxxia on the pulmonary circulation. Circ Res 1976;38:221-31.
34. Foltz EL, Rubin A, Steiger WA, Gazes PC. The effects of intravenous aminophylline upon the coronary blood-oxygen exchange. Circulation 1960;2:215-24.
35. Fowell DM, Winslow JA, Sydenstricker VP, Wheeler NC. Circulatory and diuretic effects of theophylline isopropylamine. Arch Intern Med 1949;83:150-7.
36. Fowler KT, Read J. Effect of alveolar hypoxxia on zona1 distribution of pulmonary blood flow. J Appl Physiol 1963;18:244-50.
37. Foy T, Marion J, Brigham KL, Harris TR. Isoproterenol and aminophylline reduce lung capillary filtration during high permeability. J Appl Physiol 1979;46:146-51.
38. Fujii T, Nishimura H. Teratogenic actions of some methylated xanthines in mice. Okajimas Folia Anat Jpn 1969;46:167-75.
39. Fuleihan FJD, Abdel-Baki N, Arslanian A. The effect of intravenous aminophylline on pulmonary function in asthma. Dis Chest 1969;56:481-7.
40. Gal P, Jusko W, Yurchak AM, Franklin BA. Theophylline disposition in obesity. Clin Pharmacol Ther 1978;23:438-44.
41. Gault GF. Theophylline radioimmunoassay: synthesis of antigen and characterization of antisera. Res Commun Chem Pathol Pharmacol 1976;13:497-505.
42. Geismar A, Denef J. Les anomalies digitales: manifestatons teratogeniques de derevex thanies chez le rat. Arch Int Pharmacodyn Ther 1968;172:219-22.
AMINOPHYLLINE

44. Gerhardt T, McCarthy J, Bancalari E. Effect of aminophylline on respiratory center activity and metabolic rate in premature infants with idiopathic apnea. Pediatrics 1979;63:537-42.
45. Giaconia G, Jusko WJ, Menke J, Koup JR. Theophylline pharmacokinetics in premature infants with apnea. J Pediatr 1976;89:829-32.
46. Gilbert EF, Bruyere JH Jr, Ishikawa S, Cheung MO, Hodach RJ. The effects of methylxanthines on catecholamine-stimulated and normal chick embryos. Teratology 1977;16:47-52.
47. Giles RW, Wilcken DEL. Reactive hyperemia in the dog heart: inter-relations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc Res 1977;11:113-21.
48. Gold ML. Anesthesia for the asthmatic patient. Anesth Analg 1970;40:881-8.
49. Gushaw JB, Hu MW, Singh P, Miller JG, Schneider RS. Homogenous enzyme immunoassay for theophylline in serum. Clin Chem 1977;23:1144.
50. Halmagyi DF, Cotes JE. Reduction in systemic blood oxygen as a result of procedures affecting the pulmonary circulation in patients with chronic pulmonary disease. Clin Sci 1959;18:475-89.
51. Hartemann E, Baltassat P, Frederich A, Bory C, Senaneuch C. Lntoxication aqueille accidentelle a la theophylline un nourisson de 18 mois. Ann EM 1970;43:302-17.
52. Hendeles L, Bighley L, Richardson RH, Hepler CD, Carmichael J. Frequent toxicity from IV aminophylline infusions in critically ill patients. Drug Intell Clin Pharma 1977;11:12-8.
53. Hendeles L, Weinberger M. Guidelines for avoiding theophylline toxicity. JAMA 1978;240:530-3.
54. Hunt SN, Jusko WJ, Yurchak AM. Effect of smoking on urinary metabolites of theophylline. JAMA 1978;240:530-3.
55. Hunt SN, Jusko WJ, Yurchak AM. Effect of smoking on urinary metabolites of theophylline. JAMA 1978;240:530-3.
56. Isaksson B, Linholm B. Blood plasma level of different theophylline derivatives following parenteral, oral, and rectal administration. Acta Med Scand 1962;171:33-8.
57. Jackson RH, McHenry JJ, Moreland FB, Raymer WJ, Etter RL. Clinical evaluation of elixophyllin with correlation of pulmonary function studies and theophylline serum levels in acute and chronic asthmatic patients. Dis Chest 1964;45:75-85.
58. Jacobs MH, Senior RM. Theophylline toxicity due to impaired theophylline degradation. Am Rev Respir Dis 1974;110:342-5.
59. Jacobs MH, Senior RM, Kessler G. Clinical experience with theophylline: relationships between dosage, serum concentration, and toxicity. JAMA 1976;235:1983-6.
60. Jacobs R, Karczmar AG, Brumlik J. Theophylline compounds and myasthenia gravis. I. In vitro studies. Clin Pharmacol Ther 1973;14:374-9.
61. Jenne JW, Nagasawa HT, Thompson RD. Relationship of urinary metabolites of theophylline to serum theophylline levels. Clin Pharmacol Ther 1976;19:375-81.
62. Jenne JW, Wyze E, Rood FS, MacDonald FM. Pharmacokinetics of theophylline: application to adjustment of the clinical dose of aminophylline. Clin Pharmacol Ther 1972;13:349-60.
63. Jusko WJ, Schentag JJ, Clark JH, Gardner M, Yurchak AM. Enhanced biotransformation of theophylline in marijuana and tobacco smokers. Clin Pharmacol Ther 1978;24:406-10.
64. Kappas A, Alvare AP, Anderson KE, et al. Effect of charcoal-broiled beef on antipyrine and theophylline metabolism. Clin Pharmacol Ther 1978;23:445-50.
65. Kolbeck RC, Spier WA, Harrison GN, Vainner JN. Influence of respiratory acidosis and alkalosis on volume of distribution of theophylline in dogs. Res Commum Chem Pathol Pharma...
nociceptive stimulation and regional turnover of rat brain 5-HT, noradrenaline, and dopamine. Acta Pharmacol Toxicol 1974;34:157-73.

94. Paalzow LK. Pharmacokinetics of theophylline in relation to increased pain sensitivity in the rat. J Pharmacokinet Biopharm 1975;3:25-38.

95. Paolini HJ, Wilcken DEL. The action of aminophylline on the acutely transplanted dog heart: effect of α- and β-adrenoreceptor blockade. Br J Pharmacol 1975;53:163-71.

96. Parker JO, Ashekian PB, DiGiorgi S, West RO. Hemodynamic effects of aminophylline in chronic obstructive pulmonary disease. Circulation 1967;35:365-72.

97. Persson CGA, Ekman M, Erjefalt I. Vascular anti-permeability effects of /β-receptor agonists and theophylline in the lung. Acta Pharmacol Toxicol 1979;49:216-20.

98. Pfeifer HJ, Greenblatt DJ, Friedman P. Effects of three antibiotics on theophylline kinetics. Clin Pharmacol Ther 1979;26:36-40.

99. Pfafsky KM, Ogilvie RI. Dosage of theophylline in bronchial asthma. N Engl J Med 1975;292:1218-22.

100. Pfafsky KM, Sitar DS, Rangno RE, Ogilvie RI. Theophylline kinetics in acute pulmonary edema. Clin Pharmacol Ther 1977;21:310-6.

101. Pfafsky KM, Sitar DS, Rangno RE, Ogilvie RI. Theophylline disposition in patients with hepatic cirrhosis. N Engl J Med 1977;296:1495-7.

102. Persson CGA, Andersson KE. Respiratory and cardiovascular effects of theophylline, a metabolite of theophylline. Acta Pharmacol Toxicol 1977;40:29:36-39.

103. Persson CGA, Ekman M, Erjefalt I. Vascular anti-permeability effects of β-receptor agonists and theophylline in the lung. Acta Pharmacol Toxicol 1979;49:216-20.

104. Pietsch T, Hech R. The use of aminophylline for correction of haemodynamic repercussions of clamping of the aorta. Can Anaesth Soc J 1977;24:162-74.

105. Powell JR, Voczh S, Hopewell PC, Costello J, Sheiner LB, Riegelman S. Theophylline disposition in acutely ill hospitalized patients. Am Rev Respir Dis 1978;118:229-38.

106. Rees HA, MacDonald HR, Borthwick RG, Muir AL, Donald KW. The circulatory effects of aminophylline in man. Can Anaesth Soc J 1977;21:310-6.

107. Roizen MF, Stevens WC. Arrhythmogenicity of theophylline in induced bronchospasm. Rev Czech Med 1977;23:143-9.

108. Ritchie JM. Central nervous stimulants: the xanthines. In: Goldfrank LR, ed. Medical Toxicology. 5th ed. New York: Macmillan, 1975:367-78.

109. Rosen JP, Danish M, Ragni MC, Sacrar CL, Yaffe SJ, Lecko HL. Theophylline pharmacokinetics in the young infant. Pediatrics 1979;64:240-51.

110. Rounds BJ. Aminophylline poisoning. Pediatrics 1954;14:528-32.

111. Satter LR, Levinson L, Frenk M, Beakey JF. Evaluation of therapeutic substances employed for the relief of bronchospasm. VI. Aminophylline. J Clin Invest 1949;28:1190-5.

112. Segal MS, Weiss FB. Rectal aminophylline (blood levels with concentrated solutions). Ann Allergy 1971;37:135-8.

113. Shannon DC, Gotay FM, Rodgers MC, Todres ID, Moylan FMB, Prevention of apnea and bradycardia in low-birthweight infants. Pediatrics 1975;55:589-94.

114. Shapiro S, Slone D, Lewis GP, Jick H. The epidemiology of digoxin: a study in three Boston hospitals. J Chronic Dis 1969;22:361-71.

115. Sharma PL. Effect of some adrenergic receptor antagonists on aminophylline-induced ventricular arrhythmias in dogs anaesthetized with halothane in oxygen. Indian J Med Res 1969;57:883-92.

116. Shnider SM, Papper EM. Anesthesia for the asthmatic patient. Anesthesiology 1961;22:856-92.

117. Skinhoj E, Paulson OB. The mechanism of action of aminophylline upon cerebral vascular disorders. Acta Neurol Scand 1970;42:129-40.

118. Snider SR, Waldeck B. Increased synthesis of adenylate cyclase and adenosine 3',5'-cyclic monophosphate and theophylline in the absence of extracellular Ca++. Proc Natl Acad Sci USA 1970;66:394-6.

119. Statham HE, Duncan CJ. Dantrolene and the neuromuscular junction: evidence for intracellular calcium stores. Eur J Pharmacol 1976;39:143-52.

120. Steger JA, Berger JM, Ricker SM, Sullivan SF. Arrhythmogenic effects of aminophylline induced bronchospasm. Chest 1979;76:11-6.

121. Stewart BN, Block AJ. A trial of aerosolized theophylline in status asthmaticus. Q J Med 1968;37:541-61.

122. Stewart BN, Block AJ. A trial of aerosolized theophylline in relieving bronchospasm. Chest 1976;69:717-21.

123. Stirt JA, Berger JM, Ricker SM, Sullivan SF. Aminophylline pharmacokinetics and cardiorespiratory effects during halothane anesthesia in experimental animals. Anesth Analg 1980;59:186-91.

124. Stirt JA, Berger JM, Ricker SM, Sullivan SF. Arhythmogenic effects of aminophylline during halothane anesthesia in experimental animals. Anesth Analg 1980;59:410-6.

125. Sutherland EW, Cori CF. Effect of hyperglycemic glycogenolytic factor and epinephrine on liver phosphorylase. J Biol Chem 1951;188:531-43.

126. Sutherland EW, Cori CF. Fractionation and characterization of a cyclic adenosine monophosphate induce aminophylline in vitro. J Biol Chem 1958;232:1077-91.

127. Takaori M, Loehning RW. Ventricular arrhythmias during halothane anaesthesia: effect of isoproterenol, aminophylline,
AMINOPHYLLINE

141. Takao M, Loehning RW. Ventricular arrhythmias induced by aminophylline during halothane anaesthesia in dogs. Can Anaesth Soc J 1965;12:275-80.

142. Thompson RD, Nagasawa HT, Jenne JW. Determination of theophylline and its metabolites in human urine and serum by high pressure liquid chromatography. J Lab Clin Med 1974;84:584-93.

143. Thomsen K, Schou M. Renal lithium excretion in man. Am J Physiol 1968;215:823-7.

144. Thurston JH, Hauhart RE, Dirgo JA. Aminophylline increases cerebral metabolic rate and decreases anoxic survival in young mice. Science 1978;201:649-51.

145. Traverse N, Soule MS. Rectal aminophylline. Ann Allergy 1962;20:182-7.

146. Trembath PW, Boobis SW, Richens A. Theophylline: biochemical pharmacology and pharmacokinetics. J Int Med Res 1979;7(Suppl 1):4-15.

147. Truitt EB Jr, McKusick VA, Krantz JC. Theophylline blood levels after oral, rectal, and intravenous administration, and correlation with diuretic action. J Pharmacol Exp Ther 1950;100:309-15.

148. Tsien RW. Mode of action of chronotropic agents in cardiac Purkinje fibers. J Gen Physiol 1974;64:320-42.

149. Turner-Warwick M. Study of plasma theophylline levels after oral administration of new theophylline compounds. Br Med J 1957;2:65-8.

150. Ueda H, Nakanishi A, Shiba M, et al. The acute effect of aminophylline on left ventricular function in patients with heart failure. Jpn Heart J 1967;8:121-31.

151. Ueda I, Loehning RW, Ueyama H. Relationship between sympathomimetic amines and methylxanthines inducing cardiac arrhythmias. Anesthesiology 1961;22:926-32.

152. Ueda I, Loehning RW, Ueyama H. Relationship between sympathomimetic amines and methylxanthines inducing cardiac arrhythmias. Anesthesiology 1961;22:926-32.

153. Van Dellen RG. Intravenous aminophylline. Chest 1979;76:2-3.

154. Varagic VM, Prostran M, Kentera D. Interaction of halothane and aminophylline on the isolated hemidiaphragm of the rat. Eur J Pharmacol 1980;61:35-45.

155. Vicuna N, McNay JL, Ludden TM, Schwertner H. Impaired theophylline clearance in patients with cor pulmonale. Br J Clin Pharmacol 1979;7:33-7.

156. Viskoper RJ, Maxwell MH, Lupu AN, Rosenfeld S. Renin stimulation by isoproterenol and theophylline in the isolated perfused kidney. Am J Physiol 1977;232:F248-53.

157. Vogl A. Euphylline. Wien Klin Wochenschr 1927;40:105.

158. Vozeh S, Powell JR, Riegelman S, Costello JF, Sheiner LB, Hopewell PC. Changes in theophylline clearance during acute illness. JAMA 1978;240:1882-4.

159. Vozeh S, Upton RA, Riegelman S, Sheiner LB. Bronchodilator therapy. N Engl J Med 1978;298:220.

160. Watson WE. Action of aminophylline on venous distensibility. Clin Sci 1962;22:65-8.

161. Wechsler RL, Kleiss LM, Kety SS. The effects of intravenously administered aminophylline on cerebral circulation and metabolism in man. J Clin Invest 1950;29:28-30.

162. Weinberger MM, Bronsky EA. Evaluation of oral bronchodilator therapy in asthmatic children. J Pediatr 1974;84:421-7.

163. Weinberger M, Hudgel D, Spector S, Chidsey C. Inhibition of theophylline clearance by troleandomycin. J Allergy Clin Immunol 1977;59:228-31.

164. Weissman KL, Schulz HU. Lungenfunktion und Blutspiegel nach Parenteraler Euphyllin-Applikation. Dtsch Med Wochenschr 1977;102:1916-20.

165. Wells DH, Ferlauto JJ. Survival after massive aminophylline overdose in a premature infant. Pediatrics 1979;64:252-3.

166. Westfall DP, Fleming WW. Sensitivity changes in the dog heart to norepinephrine, calcium and aminophylline resulting from pretreatment with reserpine. J Pharmacol Exp Ther 1968;159:98-106.

167. Wooten GF, Toha NB, Kopin JJ, Axelrod J. Enhanced release of dopamine-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3'5'-monophosphate and theophylline. Mol Pharmacol 1973;9:178-83.

168. Yarnell PR, Chu NS. Focal seizures and aminophylline. Neurolgy 1975;25:819-22.

169. Yunginger JW, Shigeta M, Smith I, Green M, Keitel HG. Serum theophylline levels and control of asthma following rectal aminophylline. Ann Allergy 1966;24:69-79.

170. Yurchak AM, Jusko WJ. Theophylline secretion into breast milk. Pediatrics 1976;57:518-20.

171. Zielinski J, Chatterjee SS. Effect of aminophylline on arterial blood gases in patients with exacerbation of chronic respiratory failure. Bull Physio-Pathol Respir 1972;8:797-806.

172. Zimmerman BL. Arrhythmogenicity of theophylline and halothane in combination. Anesth Analg 1979;58:259-60.

173. Zsoter T. The effect of aminophylline and isoproterenol on venous distensibility. Can J Physiol Pharmacol 1968;46:225-8.

174. Zwillich CW, Sutton FD Jr, Neff TA. Theophylline-induced seizures in adults: correlation with serum concentrations. Ann Intern Med 1975;82:784-7.