Corrigendum

Corrigendum: Correction for stress-induced optical path length changes in a refractometer cell at variable external pressure (2019 Metrologia 56 015001)

Guido Bartl, Stephanie Glaw, Frank Schmaljohann and René Schödel

PTB, Bundesallee 100, 38116 Braunschweig, Germany

E-mail: guido.bartl@ptb.de

Received 10 April 2019, revised 6 May 2019
Accepted for publication 13 May 2019
Published 3 June 2019

(Some figures may appear in colour only in the online journal)

Corrigendum: 3. Stress-induced optical path length changes

In the derivation of equation (10) a term is missing, which takes into account the replacement of glass material by the gas medium when the refractometer cell is compressed by the external pressure. As a consequence, instead of the change of the optical path length, i.e. the distance between two fixed points independent of the material boundaries, unintentionally only the change of the optical thickness is represented by equation (10). This can be resolved by setting up equation (4) as follows:

\[n_{\text{air}} - 1 = \left[l_{\text{c}, \text{out}} \cdot \left(1 - \frac{k}{3} p_{\text{out}} \right) + \delta l_{\text{c}, \text{bend}} (\delta p_{\text{out}}) \right] \]

\[- \left(\delta l_{\text{w}, \text{out}} - \delta l_{\text{w}, \text{in}} \right) \left[A \otimes \mathcal{V} \right] \]

\[+ \left(\mu_{\text{fs}} - 1 - L_{\text{fs}} \right) \cdot l_{\text{w}, \text{out}} \cdot \frac{k}{3} \delta p_{\text{out}} \]

\[+ \left(\mu_{\text{fs}} - 1 - L_{\text{fs}} \right) \cdot \delta l_{\text{w}, \text{in}} (\delta p_{\text{out}}) \]

\[+ \left(l_{\text{c}, \text{out}} - l_{\text{c}, \text{in}} \right) \cdot \frac{k}{3} \delta p_{\text{out}} \]

\[- 2 \cdot L_{\text{fs}} \cdot \left(l_{\text{w}, \text{out}} - l_{\text{w}, \text{in}} \right) \cdot \frac{k}{3} \delta p_{\text{out}} \]

(2)

which is approximated by

\[n_{\text{air}} - 1 \approx \frac{[A \otimes \mathcal{V}]}{l_{\text{c}, \text{out}} \cdot \left(1 - \frac{2}{3} \delta p_{\text{out}} \right)} \]

\[- \left[\mathcal{V} \otimes \mathcal{V} \right] \]

\[+ \frac{\left(\mu_{\text{fs}} - 1 - L_{\text{fs}} \right) \cdot l_{\text{w}, \text{out}} \cdot \frac{2}{3} \delta p_{\text{out}}}{l_{\text{c}, \text{out}} \cdot \left(1 - \frac{2}{3} \delta p_{\text{out}} \right)} \]

\[+ \frac{\left(\mu_{\text{fs}} - 1 - L_{\text{fs}} \right) \cdot \delta l_{\text{w}, \text{in}} (\delta p_{\text{out}})}{l_{\text{c}, \text{out}} \cdot \left(1 - \frac{2}{3} \delta p_{\text{out}} \right)} \]

(3)

in analogy to the previous equation (13). Note that the factor \(\left(\mu_{\text{fs}} - 1 - L_{\text{fs}} \right) \) now involves a ‘−1’.

However, a comparison with an all-FEM-based approach performed at NIST by Egan et al (see appendix A in [1]) has...
Corrigendum: Appendix. Refractive index changes

Following [2] and [3] we applied the Lorentz–Lorenz relation to calculate the change of the refractive index of fused silica induced by external pressure. Unfortunately, this approach is in conflict with experimental data of Vedam et al [4], Ritland [5], Spinner et al [6] and Waxler et al [7]. These publications provide experimental evidence that the relation between the refractive index and the density of solid materials, in particular of fused silica, is not compatible with the Lorentz–Lorenz relation (i.e. with the assumption of a constant value of the polarizability). Therefore, instead of the previous equation (A.2) the relation between the relative change of the refractive index and the relative density change should be expressed by

\[\frac{dn}{n} = a \cdot \frac{d\rho}{\rho} \]

(similar to [8]) with \(a = 0.226 \pm 0.010 \) being a fit parameter which is determined by linear regression of the experimental results from [4] for fused silica. Consequently, the experimentally-based factor \(\mathcal{L} \) must read

\[\mathcal{L} = a \cdot n. \]

Conclusion

Considering the corrections described above, the partially FEM-based approach from [9] yields the updated figure 6 which shows the dependence between the resulting corrections and the external gas pressure affecting the cell windows of our particular cell geometry. However, as mentioned above, the all-FEM-based approach from Egan et al [1] provides more reliable results and yields the pressure-dependent correction shown in figure 7.

Compared to the previously published correction in [9] its magnitude is decreased so that, for instance, at 1000 hPa

The resulting implications are pointed out below.
the contribution to the air refractivity is of the order of $2.4\text{nm}/420\text{mm} \approx 6 \times 10^{-9}$ which corresponds to a relative effect of approximately 2×10^{-5} at standard conditions.

Acknowledgments

We appreciate a thorough and critical discussion of our previously published results from [9] with J Stone and P Egan from NIST, USA. This interaction has lead to the revealing of the corrections shown in the present corrigendum and the FEM data from P Egan enabled us to improve the accuracy of the correction.

ORCID iDs

René Schödel https://orcid.org/0000-0002-7597-9036

References

[1] Egan P F, Stone J A, Scherschligt J K and Harvey A H 2019 Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry J. Vac. Sci. Technol. A 37 031603
[2] Birch K P, Downs M J and Ferriss D H 1988 Optical path length changes induced in cell windows and solid etalons by evacuation J. Phys. E: Sci. Instrum. 21 690
[3] Bönsch G and Potulski E 1998 Measurement of the refractive index of air and comparison with modified Edlén’s formulae Metrologia 35 133
[4] Vedam K, Schmidt E D D and Roy R 1966 Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars J. Am. Ceram. Soc. 49 531–35
[5] Ritland H N 1955 Relation between refractive index and density of a glass at constant temperature J. Am. Ceram. Soc. 38 86–8
[6] Spinner S and Waxler R M 1966 Relation between refractive index and density of glasses resulting from annealing compared with corresponding relation resulting from compression Appl. Opt. 5 1887–9
[7] Waxler R M and Weir C E 1965 Effect of hydrostatic pressure on the refractive indices of some solids J. Res. Nat. Bur. Stand. 69A 325–33
[8] Shelton D P 1992 Lens induced by stress in optical windows for high-pressure cells Rev. Sci. Instrum. 63 3978–82
[9] Bartl G, Glaw S, Schmaljohann F and Schödel R 2019 Correction for stress-induced optical path length changes in a refractometer cell at variable external pressure Metrologia 56 015001