A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization

Miguel Molina-Romero¹,² | Pedro A. Gómez¹,² | Jonathan I. Sperl² |
Michael Czisch³ | Philipp G. Sämann³ | Derek K. Jones⁴,⁵ | Marion I. Menzel² | Bjoern H. Menze¹,⁶

¹Department of Computer Science, Technical University of Munich, Garching, Germany
²GE Global Research Europe, Garching, Germany
³Max Planck Institute of Psychiatry, Munich, Germany
⁴CUBRIC, Cardiff University, Cardiff, UK
⁵School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
⁶Institute for Advanced Study, Technical University of Munich, Garching, Germany

Correspondence
Miguel Molina Romero, Computer Science, Technical University Munich, Boltzmannstr 11, 85748 Garching, Germany.
Email: miguel.molina@tum.de; Twitter: @mimolimero

Funding information
German Excellence Initiative; European Commission, Grant/Award Number: 605162; New Investigator Award from the Wellcome Trust, Grant/Award Number: 096646/Z/11/Z; Wellcome Trust Strategic Award (104943/Z/14/Z)

Purpose: The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component.

Theory and Methods: Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization.

Results: Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters.

Conclusion: Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination.

KEYWORDS
blind source separation, brain microstructure, diffusion MRI, free-water elimination, MR relaxometry, non-negative matrix factorization
1 | INTRODUCTION

More than 50 years have passed since Stejskal and Tanner published their early research on pulsed gradient spin-echo.\(^1\) Thereafter, diffusion weighted imaging became an essential tool for nondestructive tissue microstructure characterization. The pioneering studies on ex vivo tissue and simulations of Krüger,\(^2\) Latour et al.,\(^3\) Szafer et al.,\(^4\) and Stanisz et al.\(^5\) established the theoretical basis of the compartmental model of neural tissue.

These early contributions were later translated to target specific biomarkers for in vivo human studies. White matter (WM) anisotropy became fiber orientation with the introduction of diffusion tensor imaging (DTI).\(^6\) The composite hindered and restricted model of diffusion MR imaging (CHARMED)\(^7\) extended DTI to two compartments with restricted and hindered diffusion behavior. Using the same principles, the neurite orientation dispersion and density imaging (NODDI) model\(^8\) introduced fiber orientation dispersion metrics and added an isotropic compartment. Additionally, axon diameter was addressed by AxCaliber\(^9\) and ActiveAx.\(^10\) These and other approaches rely on diffusion signal representations or a variety of geometric biophysical assumptions about the underlying tissue compartments, producing a wide range of possible configurations.\(^11\)

In parallel with the development of multicomponent diffusion tissue models, relaxometry addressed the compartmental nature of tissue microstructure from a different perspective.\(^12\) Multi-echo spin echo (SE) experiments combined with regularized inverse Laplace transforms (ILTs) for multi-exponential fitting showed the presence of multiple water compartments in the tissue. Nonnegative least squares (NNLS)\(^13\) is the current gold standard for computing a regularized discrete ILTs for several components.\(^14,15\) Alternatively, the exponential analysis via system identification using Steiglitz-McBride (EASI-SM) for multicomponent estimation was introduced by Stoika et al.\(^16,17\) Additionally, mcDESPOT,\(^18\) used a spoiled gradient-recalled echo and a balanced steady-state free precession to yield relaxation, volume fraction, and water exchange parameters for three compartments.

Nevertheless, the paths of diffusion MRI and MR relaxometry have become entangled over the years. Studies on ex vivo nerves with a diffusion-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence\(^19,20\) showed the relationship that existed between compartmental T_2 decay and diffusivity. However, diffusion-weighted CPMG experiments need long acquisition times and high specific absorption rates, which makes them unsuitable for human in vivo studies. Typically, two-dimensional ILTs were used to fit the data, but this approach is highly ill-posed and requires large amounts of data for stabilization. Recently, Benjamini et al.\(^21\) introduced the marginal distributions constrained optimization (MADCO), a nonCPMG compressed-sensing based solution that reduced the amount of data necessary for NMR diffusion–relaxation correlation experiments. Kim et al. translated diffusion–relaxation correlation spectroscopy (DR-COSY)\(^22,23\) into imaging (DR-CSI)\(^24\) using spatial regularization to reduce the amount of necessary data and stabilize the ILTs. However, they require specific diffusion protocols with increasing b-values along a unique diffusion direction and repeated echoes or inversion times. Other alternatives combine diffusion models with multicompartamental relaxation. For instance, inversion recovery diffusion weighted imaging has been used to identify fiber populations,\(^25,26\) and WM integrity has been characterized using the axonal stick model and multiple echo times (TE).\(^27\)

Compartmental analysis of the diffusion signal is intimately related to a recurring issue: cerebrospinal fluid (CSF) or free-water contamination.\(^28,29\) All the existing contributions agree on using a bi-tensor signal model: parenchyma and CSF. However, this is an ill-posed problem for a single-shell and ill-conditioned for multiple-shell acquisitions.\(^30\) Spatial regularization was proposed by Pasternak et al.,\(^31\) relying on the local smoothness of the diffusion tensor. Later, a protocol optimization for multiple shells was presented by Hoy et al.,\(^32\) eliminating such a constraint. Other solutions regularize the problem by adding priors\(^33\) or finding the best fit to the model.\(^34\) Nevertheless, the CSF contribution to the diffusion signal depends on the TE. Thus, disentangling the tissue CSF volume fraction requires an approach that includes T_2 compartmental dependencies.\(^33,35,36\)

We propose a general framework for studying diffusion and relaxation characteristics in tissue microstructures. We call it general because it does not model the compartmental diffusion behavior. It replaces the ILTs by a blind source separation (BSS) technique, reducing the minimum number of distinct echo times required to the number of compartments in the tissue, less than for ILTs-based methods. Other than the requirement to measure at more than one echo time, this framework is diffusion protocol-agnostic, and can be used in combination with any protocol of interest. Our approach quantifies proton density, compartmental volume fractions, and transverse relaxation times. Importantly, it handles diffusion signals from each compartment independently, allowing for individual analyses, and thus performs CSF partial volume correction as a direct application.

2 | THEORY

Following the Bloch–Torrey equation, we describe the diffusion signal as a weighted sum of the signals from the compartments comprising the tissue
FIGURE 1 Factorization of measurements, X, into the sources, S, and mixing matrix, A. Example of a BSS operation for two mono-exponential sources ($M = 2$) and two TE measurements ($N = 2$). In this illustration, the measurements, X, show a bi-exponential decay profile. BSS is capable of separating these two independent exponential source functions, S, and calculating their mixing matrix, A. The parameters that determine the degree of mixing (T_2, T_1, and f), and the scaling factor, S_0, were estimated as described in Equations 3 and 4. We showed an exponential case for simplicity, but BSS is not limited to this choice; any signal can be processed in the same manner.

$$X(TE, b, g) = S_0 \sum_{i=1}^{M} f_i e^{-\frac{TE}{T_i}} S_i(b, g).$$ \hspace{1cm} (1)

Where b summarizes the gradient effects1,37 and g defines the gradient directions. Here, the compartmental diffusion sources $S_i(b, g)$ are weighted by their volume fraction, f_i, TE, and T_i. The exponent (the ratio between TE and T_i) scales the contribution of each compartment to the acquired signal. Therefore, measuring at different TEs produces distinct diffusion signals38 with different weights from the compartmental signal sources.

As a result, the signal of a single voxel measured with a protocol that accounts for multiple echoes can be formulated as

$$
\begin{bmatrix}
X_1(TE_1, b, g) \\
\vdots \\
X_N(TE_N, b, g)
\end{bmatrix}
= S_0 \begin{bmatrix}
f_1 e^{-\frac{TE_1}{T_1}} & \ldots & f_M e^{-\frac{TE_1}{T_M}} \\
\vdots & \ddots & \vdots \\
f_1 e^{-\frac{TE_N}{T_1}} & \ldots & f_M e^{-\frac{TE_N}{T_M}}
\end{bmatrix}
\begin{bmatrix}
S_1(b, g) \\
\vdots \\
S_M(b, g)
\end{bmatrix},$$

where $X_j (j \in [1, N])$ are the diffusion signals acquired for the N TEs. f_i and T_i ($i \in [1, M]$) are the volume fraction and T_2 decay for the ith compartment, respectively, and M is the number of compartments.

Equation 2 can be expressed in matrix form as $X = AS$. This is a matrix factorization of the measurements, $X \in \mathbb{R}_{\geq 0}^{N \times N}$, into two new matrices: the mixing matrix, $A \in \mathbb{R}^{\times M}_{\geq 0}$, which is defined by the experimental TEs, the compartmental volume fractions f_i and T_2 decays; and the sources matrix, $S \in \mathbb{R}_{\geq 0}^{M \times N}$, representing the diffusion sources in each sub-voxel compartment. Interestingly, we noticed from the definition of A that the ratio between the experimental TEs and T_2 determines the direction (or slope for $N = 2$) of the ith column vector of the mixing matrix. Therefore:

$$T_2 = \frac{TE_k - TE_i}{\log \left(\frac{a_{kl}}{a_{ik}} \right)},$$ \hspace{1cm} (3)

where $TE_k < TE_i$, and a_{kl} and a_{ik} are the kth and lth elements of the ith column of the mixing matrix, respectively.

Additionally, diffusion is an attenuation contrast and as such, $S(b=0) = 1$, allowing Equation 2 to be rewritten as

$$
\begin{bmatrix}
X_1(TE_1, b=0, g) \\
\vdots \\
X_N(TE_N, b=0, g)
\end{bmatrix}
= S_0 \begin{bmatrix}
f_1 e^{-\frac{TE_1}{T_1}} & \ldots & f_M e^{-\frac{TE_1}{T_M}} \\
\vdots & \ddots & \vdots \\
f_1 e^{-\frac{TE_N}{T_1}} & \ldots & f_M e^{-\frac{TE_N}{T_M}}
\end{bmatrix}
\begin{bmatrix}
S_1(b, g) \\
\vdots \\
S_M(b, g)
\end{bmatrix},$$

which, together with $\sum_{i=1}^{M} f_i = 1$, allows us to solve for the volume fractions and proton density (f_i and S_0) when the number of measurements matches the number of compartments ($M = N$). Contrary, when there are more compartments than measurements ($M > N$), Equation 4 is undetermined and f_i and S_0 cannot be estimated.

Factorizing X into A and S is known as BSS39 of mixed measurements into their generating sources (Figure 1). For BSS to identify these sources, they have to be distinct: $S_i \neq S_j \forall i \neq j$. Therefore, based on previous work,19,20 we assumed them to be different.
There are four main approaches to BSS: principal component analysis,40 independent component analysis,41 nonnegative matrix factorization (NMF),42 and sparse component analysis.43 Principal component analysis is not an applicable solution for this problem because the diffusion sources are not orthogonal. Independent component analysis assumes, as prior knowledge, that the signal sources are statistically independent and have non-Gaussian distributions. However, diffusion MRI signals are correlated with the tissue structure and temperature and they present non-Gaussian distributions only in restricted compartments, meaning that independent component analysis is not suitable either. We previously explored sparse component analysis44 and found that even though the results for simulations and real data for specific diffusion protocols were encouraging, finding a sparse and disjoint domain to meet the method’s requirements was not always possible for arbitrary protocols. We observed the same issue for a version of NMF that enforces sparsity similarly.36

In the present work, we took a BSS approach based on NMF (assuming X, A, and S are nonnegative). Instead of depending on sparsity, we used a popular NMF solver: the alternating least squares algorithm (ALS).42,45,46 We chose ALS instead of the multiplicative update algorithm47 due to its faster convergence.48 We extended ALS to account for physically plausible limitations, resulting in Algorithm 1, which we refer to as constrained ALS (cALS). Compartmental T_2 values available from the literature15 allowed us to limit the solution space of the columns of A (Equation 3). Additionally, for in vivo data, the diffusion behavior of CSF is known to be approximately isotropic with 3×10^{-3} mm2/s diffusivity,28 adding extra prior information. These constraints and priors make cALS converge toward physically realistic solutions (Figure 1).

Constrained ALS initializes the column vectors of A at the central T_2 of their given constraints, avoiding random initializations in regions that are not physically feasible and increasing the stability. After each iteration, cALS verifies that the resulting T_2 of each column vector is between its boundaries, and sets it back to the center of its constrained solution space otherwise.

Following the factorization of A, we estimated T_2 and f for each compartment, (Equations 3 and 4), and recalculated the real A. This is important since the column norms of the factorized A do not tell us about the volume fractions. Then, $S = A^{-1}X$ is calculated.

An iterative algorithm like cALS inverts A repeatedly, requiring it to be nonsingular and introducing a new condition. From Equation 2, A is nonsingular when $T_2 \neq T_2 \forall i \neq j$. Hence, in accordance with the literature,19,20 we assumed that the transverse relaxation times for each compartment were distinct.

An open source implementation can be found in https://github.com/mmromero/dwybss.

3 | METHODS

3.1 | Simulations

NMF is known for converging to local minima.45 Thus, it is necessary to assess the impact of the constraints. We ran
simulations with Rician noise for signal-to-noise ratio (SNR) levels of 50, 100, and 150 at the nondiffusion weighted volume and minimum TE. We accounted for T_2 values, volume fractions, and diffusivities supported by literature.15,28

3.2 | Two compartments

Two compartments were simulated mimicking intra/extra-axonal (IE) and CSF water. The diffusion protocol included one nondiffusion weighted volume and 30 directions. We modeled diffusion as a Gaussian process (see Supporting Information Figure S4). For all the simulations we used $T_{2\text{CSF}} = 2000$ ms, and varied $T_{2\text{IE}}$ from 50 to 150 ms in 30 increments.15 Values of $f_{\text{IE}} = 0.25$, 0.5 and, 0.75 were used. We fixed $T_{E1} = 60$ ms, and explored T_{E2} from 70 to 150 ms in 31 increments. We defined $\Delta T_E = T_{E2} - T_{E1}$. The performance of the cALS algorithm was tested under the following conditions:

1. **Overlapped T_2 constraints**: $T_{2\text{IE}}$ and $T_{2\text{CSF}}$ were bounded from 0–1000 and 0–3000 ms, respectively, and no assumption on S_{CSF} was made (Figure 2 and Supporting Information Figure S5).

2. **Overlapped T_2 constraints and prior S_{CSF}**: $T_{2\text{IE}}$ and $T_{2\text{CSF}}$ were bounded from 0–1000 and 0–3000 ms, respectively. CSF diffusivity was assumed to be isotropic with value 3×10^{-3} mm2/s (Supporting Information Figure S10).

3. **Separated T_2 constraints**: $T_{2\text{IE}}$ and $T_{2\text{CSF}}$ were bounded from 0–300 and 300–3000 ms, respectively, and no assumption on S_{CSF} was made (Supporting Information Figure S11).

4. **Separated T_2 and prior S_{CSF}**: $T_{2\text{IE}}$ and $T_{2\text{CSF}}$ were bounded from 0–300 and 300–3000 ms, respectively. CSF diffusivity was assumed to be isotropic with value 3×10^{-3} mm2/s (Supporting Information Figure S13).

5. **Fixed $T_{2\text{CSF}}$**: $T_{2\text{IE}}$ was bounded from 0 to 300 ms. $T_{2\text{CSF}}$ was fixed to 2000 ms. No assumption on S_{CSF} was made (Supporting Information Figure S12).

6. **Fixed $T_{2\text{CSF}}$ and prior S_{CSF}**: $T_{2\text{IE}}$ was bounded from 0 to 300 ms. $T_{2\text{CSF}}$ was fixed to 2000 ms. CSF diffusivity was assumed to be isotropic with value 3×10^{-3} mm2/s (Figure 3 and Supporting Information Figure S6).

We repeated the last simulation for values of $f_{\text{IE}} = 0$ and 1, accounting only for IE or CSF (Figure 4 and Supporting Information Figure S7).

Finally, intra-cellular (IC) and extra-cellular (EC) T_2 values are similar.15 We assessed the potential of BSS to separate them. Two diffusion signals were generated (see Supporting Information Figure S14). We used $f_{\text{EC}} = 0.25$, 0.5, and 0.75. The $T_{2\text{EC}}$ values ranged from 50 to 90 ms in 30 increments, and $T_{2\text{EC}} = 100$ ms. T_{E1} was fixed to 60 ms and T_{E2} was varied between 70 and 150 ms in 31 increments. No assumption was made on the diffusion signals, and T_2 constraints were defined between 0–150 and 0–200 ms for IC and EC, respectively (Figure 5 and Supporting Information Figure S8).

We simulated 1000 times each combination of parameters, and reported the mean value of the absolute error of f, the relative error of T_2, and their standard errors (SEM).

3.3 | Three compartments: Searching for myelin

We incorporated a fast decaying component to model myelin, and fixed the T_2 of myelin ($T_{2\text{m}}$) to 15 ms.15 $T_{2\text{IE}}$ was varied from 50 to 150 ms in 30 increments, and $T_{2\text{CSF}} = 2000$ ms. To account for short T2 components we needed to reduce the minimum TE of our simulations (see phantom experiments in the supporting information). Therefore, we fixed $T_{E1} = 10$ ms, $T_{E3} = 150$ ms, and varied T_{E2} from 20 to 140 ms in 31 increments. We defined $\Delta T_E = T_{E2} - T_{E1}$. Three cases were explored: (1) $f_{\text{M}} = 0.1$, $f_{\text{IE}} = 0.6$; (2) $f_{\text{M}} = 0.2$, $f_{\text{IE}} = 0.5$; and (3) $f_{\text{M}} = 0.3$, $f_{\text{IE}} = 0.4$; keeping $f_{\text{CSF}} = 0.3$ for all of them. Simulations were run for two cases:

1. **Overlapped T_2 constraints**: $T_{2\text{M}}$, $T_{2\text{IE}}$, and $T_{2\text{CSF}}$ were bounded from 0–40, 0–300, and 0–3000 ms, respectively. No assumption on S_{CSF} was made.

2. **Separated T_2 constraints, fixed $T_{2\text{CSF}}$ and prior S_{CSF}**: $T_{2\text{M}}$ and $T_{2\text{IE}}$ were bounded from 0–40 and 41–300 ms, respectively, while $T_{2\text{CSF}} = 2000$ ms. CSF diffusivity was assumed to be isotropic with value 3×10^{-3} mm2/s (Figure 6 and Supporting Information Figure S9).

Each combination of parameters was simulated 1000 times. The mean value of the absolute error of f, the relative error of T_2, and their SEM were reported.

3.4 | In vivo clinical data: Free-water elimination

We aim to show that BSS has potential applications in clinical settings. To this end, we ran an experiment to analyze its performance for estimating tissue parameters and correcting for CSF contamination.

3.5 | Data acquisition

Two volunteers, a male (age 28 years) and a female (age 24 years) were scanned in a 3.0 T GE MR750w (GE Healthcare, Milwaukee, WI). The in vivo study protocol was approved by our institutional review board and prior informed consent was obtained. We acquired seven diffusion pulsed gradient
spin-echo with echo planar imaging volumes for TE values from 75.1 to 135.1 ms in 10 ms increments. The following parameters were constant: FOV = 240 mm; 4 mm slice thickness; TR = 6000 ms; 96 × 96 matrix size; ASSET = 2; and 30 directions. Additionally, we measured fluid-attenuated inversion recovery (FLAIR) SE echo planar imaging for 17 equally-spaced TEs ranging from 20 to 260 ms. The same imaging parameters were used as for the diffusion experiments but with no acceleration (ASSET = 0).

3.6 | Data analysis

Diffusion data for all TEs were first registered with FSL FLIRT to the shortest TE volume. We then processed them with BSS in pairs (M=N=2) with a fixed short TE of 75.1 ms. The long TE was increased from 85.1 to 135.1 ms for a total ΔTE of 60 ms (Figures 7 and 8). We used literature CSF values (T2_CSF = 2 s and D_CSF = 3×10^{-3} mm²/s) as the prior knowledge, and constrained the
possible values of $T_{2\text{IE}}$ between 0 and 200 ms.15,28 We report maps of the BSS relative factorization error (Figure 7A,B,G), CSF volume fraction (Figure 7C,H), proton density (Figure 7D,I), $T_{2\text{IE}}$ (Figure 7E,J), and number of compartments (Figure 7F,K).

For reference, FLAIR multi-echo echo planar imaging data were also registered with FLIRT to the shortest TE non-diffusion weighted volume. The signal decay for each voxel was then matched to a dictionary of mono-exponential decays from 0 to 300 ms with a grid of 1 ms. We compared this map against the BSS $T_{2\text{IE}}$ map (Figure 8).

We defined the relative error of the matrix factorization for the in vivo data as follows:

$$\epsilon = \frac{|X - S_0 AS|}{|X|_2}. \quad (5)$$

FIGURE 3 Convergence for two compartments (IE and CSF) with nonoverlapping T_2 constraints and S_{CSF} prior (SNR = 50). The mean of f_{IE} absolute error and its standard error (SEM) (A, B), and the mean of $T_{2\text{IE}}$ (C) and $T_{2\text{CSF}}$ (E) relative error per unit (p.u.), and their standard errors (D, F). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of f_{IE}, $T_{2\text{IE}}$, and ΔT_E. $T_{2\text{IE}}$ and $T_{2\text{CSF}}$ were bounded between 0–300 ms and 2000 ms, respectively, and S_{CSF} was set to have isotropic diffusivity with value 3×10^{-3} mm2/s. We defined the convergence area as the one with error lower than 0.1 for f_{IE} and $T_{2\text{IE}}$. This area is larger than for Figure 2 stressing the importance of priors. See Supporting Information Figure S6 for more SNR levels.
This is a measure of the performance of BSS for each voxel. Given that we calculated $S = A^{-1}X$, this error formulation is sensitive to: (1) breaches of the BSS conditions due to artifacts, and (2) numerical instabilities due to the condition of A. Point one is the result of B_0 drift, subject motion, flow, and eddy currents. These effects produce a violation of the BSS condition, making the signal sources different between TE measurements. The second point is the error amplification factor. A high ϵ denotes that the factorization could not find a solution within the constrained space and thus, results might not be trustworthy.

Finally, BSS does not model the compartmental diffusion signal. However, to demonstrate a simple way to perform compartment-independent analysis and correct for CSF contamination, we fitted the disentangled signals to the DTI model. We further fitted the measured diffusion volumes at

FIGURE 4 Convergence for two compartments (IE and CSF) with nonoverlapping T_2 constraints and S_{CSF} prior when only one is actually present in the tissue (SNR = 50). The mean of f_{IE} absolute error and its standard error (SEM) (A, B), and the mean of T_{2IE} (C) and T_{2CSF} (E) relative error per unit (p.u.), and their standard errors (D, F). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of f_{IE}, T_{2IE}, and ΔTE. T_{2IE} and T_{2CSF} were bounded between 0–300 ms and 2000 ms, respectively, and S_{CSF} was set to have isotropic diffusivity with value 3×10^{-3} mm2/s. We defined the convergence area as the one with error lower than 0.1 for f_{IE} and T_{2IE}. Estimates of f_{IE} are reliable for $\Delta TE > 45$ ms (A, B). Estimates of T_{2IE} and T_{2CSF} are accurate for each case. See Supporting Information Figure S7 for more SNR levels.
the shortest TE, and the BSS separated signals for the IE and CSF compartments to a mono-exponential model using standard linear regression (FSL FDT Toolbox (http://www.fmrib.ox.ac.uk/fsl)). For comparison, bi-exponential models using Pasternak’s and Collier’s methods were used (Figures 9–10, Supporting Information Figure S15). Fractional anisotropy (FA) and mean diffusivity (MD) maps were derived for each fit.

FIGURE 5 Convergence for two compartments (IC and EC) with overlapping T_2 constraints and no other priors (SNR = 50). The mean of f_{IC} absolute error and its standard error (SEM) (A, B), and the mean of T_2_{IC} (C) and T_2_{CSF} (E) relative error per unit (p.u.), and their standard errors (D, F). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of f_{IC}, T_2_{IC}, and T_2_{EC}. T_2 estimates show a narrow band of convergence limited by the lack of prior knowledge (see Figure 2, Supporting Information Figures S5, S10) and the condition of A when the T_2 values are similar. See Supporting Information Figure S8 for more SNR levels.

RESULTS

4.1 Simulations

4.1.1 Two compartments

The convergence area is the region where the mean relative error of T_2_{IC} is lower than 0.1 per unit (p.u.). Its shape for all the
simulations (Figures 2–5, Supporting Information Figures S5, S6, S7, S8, S10, S11, S12, and S13) follows two effects. First, the condition number of the mixing matrix limits the lower bound of D_{TE}: similar TE values produce more linearly dependent column vectors of A. And second, the SNR plays a double role, it increases the error regions where A is bad-conditioned (small D_{TE}), and limits the maximum D_{TE} due to the T_2 decay of the signals. Thus, when the SNR increases the convergence area grows and the region of minimum SEM, denoting an improvement on the stability of the algorithm. The convergence area also depends on the IE volume fraction. The larger is the contribution of IE, the better is the T_2^IE estimate.

Adding priors on S_{CSF} improves the T_2^IE estimate, even at SNR = 50 (Supporting Information Figure S10). Bounding
the solution space into nonoverlapping regions also improves the results of $T_{2_{CSF}}$ (Supporting Information Figure S11), although less than combining it with CSF prior knowledge (Supporting Information Figure S13). The $T_{2_{CSF}}$ estimate shows a 0.17 p.u. due to the small variation of S_{CSF} along the acquired TEs (4.4%). This is corrected when relaxometry prior is incorporated (Figure 3 and Supporting Information Figure S12). The comparison between Figures 2 and 3, show the benefit of including prior knowledge into the factorization algorithm, specially at low SNR. Then, the accuracy of the estimates will be influenced by the selection of ΔT_E, the T_2 boundaries, the S_{CSF} prior, and the expected $T_{2_{CSF}}$ and f_{IE} values. We used literature values for $T_{2_{CSF}}$, $T_{2_{CSF}}^{15}$ and S_{CSF}^{28}. According to Figure 3A,B one needs a minimum ΔT_E of 26 ms for an accurate f_{IE} estimate. Interestingly, f_{IE} is a reliable parameter that tell us about the bias of $T_{2_{CSF}}$, the larger f_{IE} is, the more accurate $T_{2_{CSF}}$ becomes (Figure 3A,C).

For one tissue compartment BSS is able to precisely (SEM < 0.01) estimate the volume fraction with mean absolute error below 0.1 when $\Delta T_E > 35$ ms (Figure 4A,B). When $f_{IE} = 1$ the area of mean convergence of the $T_{2_{CSF}}$ estimate is almost independent from ΔT_E (Figure 4C,D). We found an equivalent result for the mean relative error of $T_{2_{CSF}}$ when $f_{IE} = 0$ (Figure 4E,F), although in this case it comes from the $T_{2_{CSF}}$ prior. Notice the large error and instability of $T_{2_{CSF}}$ and $T_{2_{CSF}}$ in the opposite cases, $f_{IE} = 0$ and $f_{IE} = 1$, respectively (Figure 4C,E). This results when BSS tries to find a component that is not in the tissue and thus, cannot be estimated.

For two components with similar T_2 values and little priors (IC and EC) cALS losses efficiency. The volume fraction estimates are biased (Figure 5A), and $T_{2_{EC}}$ shows a narrow convergence region that is almost independent of ΔT_E. The lower bound of this region is limited by the proximity of $T_{2_{EC}}$ and $T_{2_{CSF}}$ that worsens the condition of A. The upper bound results of the lack of prior on the signal of one of the compartments, in contrast with the S_{CSF} prior used before (compare Figure 2 and Supporting Information Figure S10) that increased the convergence area toward lower T_2 values.

4.1.2 Three compartments: Searching for myelin

The convergence area is the one where the errors of f_M, f_{IE}, T_{2_M}, and $T_{2_{CSF}}$ are lower than 0.1 in absolute value for the volume fractions and per unit for T_2. Figure 6A, C, E, G shows and optimal $\Delta T_E = 36$ ms. Notice that when ΔT_E increases the error of the myelin parameters grows due to the reduction of the myelin contribution to the second TE, worsening the SNR of that component (Figure 6A,E). Since all the volume fractions add up to one, errors on f_{M} increase the error on f_{IE} (Figure 6A,C). The estimate of $T_{2_{CSF}}$ is dependent on SNR and its volume fraction, compounding its calculation for SNR < 50 and $f_{IE} < 0.4$ (Supporting Information Figure S9G lower left corner).

One should notice that including a third compartment increases the condition number of A, rising the instability of the factorization (Figure 6F). See the phantom experiments in the Supporting Information.

4.2 In vivo clinical data: Free-water elimination

We observed that the mean relative error for the whole brain ($\langle \epsilon \rangle$) decreased as ΔT_E increased (Figure 7A,B,G), in agreement with phantom findings (see supporting information) and the results of the simulations for two compartments. Interestingly, for the maximum ΔT_E, we can see that the number of compartments is two in regions next to the ventricles and the cortex, but one inside the ventricles and in
some deep WM areas (Figure 7K). It is also noteworthy that the pure CSF areas (eg, the ventricles) have been removed from the T2IE map (Figure 7E,J), while the opposite is observed in the CSF volume fraction (Figure 7C,H), indicating a successful disentangling effect.

We compared the BSS-estimated T2IE maps for increasing DTE values with the reference map obtained from the FLAIR multi-echo SE data. We noted how the structural similarity index increased and the mean relative error decreased as DTE grew (Figure 8A,B). Additionally, the histograms for both subjects tended toward the reference as the difference between the short and long TEs grew. This reflects an underestimation of T2IE for small DTE values that can be explained by Equation 3 and Supporting Information Figure S1C. Moreover, the FLAIR T2 map showed high values in the ventricles, possibly indicating imperfect CSF suppression and, thus, slightly increased reference values (Figure 8A,C,D).

FA and MD maps and histograms were calculated from the BSS IE and CSF disentangled signals for both subjects (Figures 9–10, Supporting Information Figure S15). These maps displayed an overestimation of the CSF volume fraction for low DTE values (the low FA peak in Figure 9B and Supporting Information Figure S15B was removed). This resulted in a compensation effect for the previously shown underestimation of T2IE. Additionally, the FA histograms (Figure 9B and Supporting Information Figure S15B) showed a tendency toward higher FA values and a reduction of the low FA peak associated with free-water. At long DTE values, FA seems to tend toward a stable distribution. We also observed an enlargement of the corpus callosum and a general recovery of peripheral WM tracts and the fornix in the colored FA maps (Figure 9A and Supporting Information Figure S15A).

Additionally, on the MD histograms for IE water (Figure 9D and Supporting Information Figure S15D) we found a reduced number of voxels with diffusivities greater than 1×10^-3 mm^2/s. In contrast, the main peak at 0.7×10^-3 mm^2/s, associated with the parenchyma, remained in its original position, indicating that IE water represents a non-CSF tissue. This MD reduction was also visible in the maps (Figure 9C and Supporting Information Figure S15C). Finally, the MD histograms for CSF water (Figure 10) showed a tendency toward 3×10^-3 mm^2/s as DTE increased, in agreement with the literature. All these findings agreed with a disentangling of IE and CSF signals and thus, a correction of the free-water partial volume effect in the diffusion signal.

5 | DISCUSSION

5.1 | Stability

Four main approaches exist for the BSS problem (independent component analysis, principal component analysis, NMF, and sparse component analysis). Choosing the appropriate method depends on the prior knowledge of the signal sources. In our experiments, we relied on NMF, using a constrained version of the ALS algorithm (cALS). Others explored these algorithms before. Pauca et al. used low-rank and sparsity constraints to distinguish semantic features in text mining, and later smoothness regularization to identify space objects from spectral data. Gao and Church also employed sparseness for cancer class discovery through gene clustering, which was later extended by Kim and Park improving the balance between accuracy and sparseness.
through regularization. They also introduced a variation based on the active set method55 and low-rank approximation.56 Liu et al.57 incorporated label information to create a semi-supervised matrix decomposition method. Sun and Févotte58 introduced a version based on the alternating direction method of multipliers59 (ADMM), that was further stabilized by Zhang et al.60

Supported by previous work, we presented a biophysical inspired solution to constrain the diffusion-relaxometry NMF compartmental problem. Essentially, our cALS algorithm imposes two constraints: (1) the rows of A must follow exponential relationships (relaxometry); and (2) when the analytical expression of one component is known (ie, CSF) the corresponding row in S is fixed (diffusion). The stability of cALS is linked to the condition of A and SNR; an ill-conditioned mixing matrix will lead to error propagation due to numerical instability. We optimized the experimental TEs to reduce the condition number of A for literature values of T_2. However, further research based on ADMM might yield better results.

We ran extensive simulations for two compartments at clinical TE values with different priors, and three compartments at lower TEs. These simulations highlighted the importance of choosing literature supported priors to improve the convergence, especially at low SNR. Constrained ALS converges when the number of compartments in tissue is equal or lower than the expected, but it looses performance for species with similar T_2.

Phantom experiments (see supporting information) agreed with simulation results, validating that BSS was able
to accurately estimate T_2 for one compartment and separate diffusion signal sources and estimate T_2 and f for two compartments. However, they also showed that scaling the cALS algorithm to three compartments, including fast T_2 decaying species, is unstable in the range of the clinically available TE values.

Finally, repeatability and reproducibility analyses (see supporting information) show that cALS yield consistent results across repetitions and subjects, highlighting its stability.

5.2 | Relaxation time and volume fraction estimates

BSS provides the means to estimate T_2 relaxation values and volume fractions. Interestingly, only a number of TE repetitions equal to the number of compartments that are assumed to be in the tissue is necessary. This results of the substitution of the ILTs by BSS, in comparison to other techniques. Recently Collier et al. included TE dependence in their bi-exponential diffusion tensor model to regularize the fitting problem. However, they fitted the bi-exponential DTI model directly. Contrary, our solution does not assume any particular diffusion model, we instead separated the signal from each compartment, allowing more flexible and independent study. In this regard, analysis of the signal associated with the CSF compartment can be seen as a disentanglement quality assurance metric (Figures 9–10, Supporting Information Figure S15), or in brain tissue applications, a general indicator of the goodness-of-fit for IE and CSF.

We fitted our data to Collier’s model without reaching convergence, which resulted due to our single-shelled dataset. Comparison of BSS with Pasternak’s free-water elimination method is show in Figure 9 and Supporting Information Figure S15. We observed a good agreement between BSS for $\Delta T_E = 60$ ms and Pasternak’s free-water elimination for FAs between 0.2 and 0.8. In the middle FA range both methods disagree, BSS shows an homogeneous correction, while Pasternak’s results follow the standard DTI fit from 0.2 to 0.4 and shows a correcting effect from 0.4 to 1 (Figure 9A,B, Supporting Information Figures S15A and S15B). It is impossible to determine which method is better (no ground-truth). However, there are two indicators that BSS might be performing better: (1) the BSS FA curve runs in parallel to the standard DTI fit from 0.2 to 0.8, denoting a stable correction without favoring any FA range; and (2) Pasternak’s MD is spatially over-regularized (Figure 9C, Supporting Information Figures S15C and S15D), while BSS’s MD keeps its maximum at 0.7 mm2/s, the reference for parenchyma.

Long ΔT_E values benefit our framework, which is not surprising and agrees with the findings of Collier et al. This is not only due to the relationship between A and T_2 (Equation 3 and Supporting Information Figure S1C) but also because longer differences between TEs produce more distinct levels of mixing and thus better codification of the information from each source. That is to say, the short TE contains more information about the fast-relaxing species, while the long TE is dominated by CSF.

5.3 | Myelin detection

Simulations proved that our method has the potential to disentangle three compartments by reducing the minimum TE in diffusion experiments. As a result, myelin water could be incorporated into the model (Figure 6). However, we are prevented from conducting such experiments by gradient performance on clinical scanners.

5.4 | Disentangling the diffusion sources and free water elimination

Unlike other multicompartiment diffusion models or more recent contributions, our approach does not model compartmental diffusion. Our framework instead relies on three assumptions: (1) microstructural water compartments have distinct T_2 relaxation times; (2) each have different diffusion characteristics; and (3) the effects of the water exchange are negligible on the timescale of our experiments. Furthermore, our solution is diffusion protocol-agnostic (only two TEs and one nondiffusion weighted volume are necessary), allowing for flexibility in the design of the acquisition protocol, which might include any number of diffusion directions and b-values. This gives it an advantage over diffusion–relaxation correlation techniques based on regularized ILTs.

A promising application of the protocol-agnostic nature of our framework is correcting for free water contamination. We have introduced for the first time a BSS framework for expressing the relationships between diffusion signals acquired at different TEs. This new approach does not rely on diffusion modeling or the ILT. Our results show that,
with the current hardware, blind source separation allows for disentangling the diffusion signal sources generated by each sub-voxel compartment up to two compartments, making it a suitable tool for free-water elimination. Moreover, it simultaneously estimates proton density, volume fractions, relaxation times and the number of compartments in the underlying microstructure, paving the way for tissue microstructure characterization when the hardware constraints are relieved.

ACKNOWLEDGMENTS
The authors want to thank Dr. Ofer Pasternak for his support in the comparison of the methods. This work was supported by the TUM Institute of Advanced Study, funded by the German Excellence Initiative, and the European Commission (Grant Agreement Number 605162). DKJ was supported by a Wellcome Trust Investigator Award (096646/Z/11/Z) and a Wellcome Trust Strategic Award (104943/Z/14/Z).

CONFLICT OF INTEREST
Miguel Molina Romero and Pedro A. Gómez receive research support by GE Global Research. Dr. Jonathan I. Sperl was GE Global Research employee during the process of this work and currently is Siemens Healthcare employee. Dr. Marion I. Menzel is GE Healthcare employee.

ORCID
Miguel Molina-Romero 🔗 http://orcid.org/0000-0001-8054-0426
Pedro A. Gómez 🔗 https://orcid.org/0000-0003-3709-3557
Jonathan I. Sperl 🔗 http://orcid.org/0000-0003-4528-1507
Derek K. Jones 🔗 https://orcid.org/0000-0003-4409-8049
Marion I. Menzel 🔗 https://orcid.org/0000-0003-0087-9134
Bjoern H. Menze 🔗 https://orcid.org/0000-0003-4136-5690

REFERENCES
[1] Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288-292.
[2] Kärger J. Der Einfluss der Zweibereichsdiffusion auf die Spin-echoempfindung unter Berücksichtigung der Relaxation bei Messungen mit der Methode der gepulsten Feldgradienten. Annalen der Physik. 1971;7:107-109.
[3] Latour LL, Svoboda K, Mitra PP, Sotak CH. Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA. 1994;91:1229-1233.
[4] Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995;33:697-712.
[5] Stanisz GJ, Szafer A, Wright GA, Henkelman RM. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med. 1997;37:103-111.
[6] Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267.
[7] Assaf Y, Basser P. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage. 2005;27:48-58.
[8] Zhang H, Schneider T, Wheeler-Kingshott CAM, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000-1016.
[9] Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med. 2008;59:1347-1354.
[10] Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage. 2010;52:1374-1389.
[11] Fierz U, Schneider T, Panagiotaki E, et al. A ranking of diffusion MRI compartment models with in vivo human brain data. Magn Reson Med. 2014;72:1785-1792.
[12] Kimmich R. NMR. Tomography, Diffusometry, Relaxometry. Berlin: Springer; 1997.
[13] Lawson CL, Hanson RJ. Solving Least Squares Problems (Classics in Applied Mathematics). Philadelphia, PA: SIAM; 1987.
[14] Whitall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med. 1997;37:34-43.
[15] MacKay AL, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B. Insights into brain microstructure from the T2 distribution. Magn Reson Med. 2006;24:515-525.
[16] Stoica P, Babu P. Parameter estimation of exponential signals: a system identification approach. Digit Signal Process. 2013;23:1565-1577.
[17] Björk M, Stoica P. New approach to phase correction in multiecho T2 relaxometry. J Magn Reson. 2014;249:100-107.
[18] Deoni SCL, Rutt BK, Arun T, Pierpaoli C, Jones DK. Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magn Reson Med. 2008;60:1372-1387.
[19] Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA. Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn Reson Med. 1999;42:911-918.
[20] Does MD, Gore JC. Compartamental study of diffusion and relaxation measured in vivo in normal and ischemic rat brain and trigeminal nerve. Magn Reson Med. 2000;43:837-844.
[21] Benjamini D, Basser PJ. Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry. J Magn Reson. 2016;271:40-45.
[22] Callaghan PT, Arns CH, Galvosas P, Hunter MW, Qiao Y, Washburn KE. Recent Fourier and Laplace perspectives for multidimensional NMR in porous media. Magn Reson Imaging. 2007;25:441-444.
[23] Hurlimann MD, Venkataramanan L, Flaua C. The diffusion-spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media. J Chem Phys. 2002;117:10223-10232.
[24] Kim D, Doyle EK, Wisnowski JL, Kim JH, Haldar JP. Diffusion-relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure. Magn Reson Med. 2017;78:2236-2249.
[25] De Santis S, Barazany D, Jones DK, Assaf Y. Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions. *Magn Reson Med.* 2016;75:372-380.

[26] De Santis S, Assaf Y, Jeurissen B, Jones DK, Roebroeck A. T1 relaxometry of crossing fibres in the human brain. *NeuroImage.* 2016;141:133-142.

[27] Veraart J, Fieremans E, Novikov DS. Quantifying neuronal microstructure integrity with TE dependent Diffusion Imaging (TEDDI). In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, 2017. p. 0836.

[28] Pierpaoli C, Jones DK. Removing CSF contamination in brain DT-MRIs by using a two-compartment tensor model. In Proceedings of the 25th Annual Meeting of ISMRM, Kyoto, Japan, 2004. p. 1215.

[29] Metzler-Baddeley C, O'Sullivan MJ, Bells S, Pasternak O, Jones DK. How and how not to correct for CSF-contamination in diffusion MRI. *NeuroImage.* 2012;59:1394-1403.

[30] Bergmann O, Westin CF, Pasternak O. Challenges in solving the two-compartment free-water diffusion MRI model. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 0793.

[31] Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. *Magn Reson Med.* 2009;73:717-730.

[32] Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. *NeuroImage.* 2014;103:323-333.

[33] Vallée E, Douaud G, Monsch AU, et al. Modelling free water in diffusion MRI. In Proceedings of the 24th Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 0474.

[34] Henriques RN, Bergmann Ø, Rokem A, Pasternak O, Correia MM. Exploring the potentials and limitations of improved free-water elimination DTI techniques. In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, 2017. p. 1787.

[35] Collier Q, Veraart J, Dekker AJD, Vanhevel F, Parizel PM, Sijbers J. Solving the free water elimination estimation problem by incorporating T_2 relaxation properties. In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, 2017. p. 1783.

[36] Molina-Romero M, Gómez PA, Sperl JI, et al. Theory, validation and application of blind source separation to diffusion MRI for tissue characterisation and partial volume correction. In Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, HI, 2017. p. 3462.

[37] Bjihan DL, Breton E. Imagerie de diffusion in-vivo par résonance magnétique nucléaire. *C R Acad Sci.* 1985;93:27-34.

[38] De Santis S, Assaf Y, Jones DK. The influence of T_2 relaxation in measuring the restricted volume fraction in diffusion MRI. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 1998.

[39] Yu X, Hu D, Jindong X. *Blind Source Separation: Theory and Applications.* Singapore: Science Press; 2014.

[40] Jolliffe I. *Principal Component Analysis.* New York: Springer; 2002.

[41] Hyvärinen A, Oja E. Independent component analysis: a tutorial. *Neural Netw.* 1999;1:1-30.

[42] Paatero P, Tapper U. Positive matrix factorization - a nonnegative factor model with optimal utilization of error-estimates of data values. *Environmetrics.* 1994;5:111-126.

[43] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations. *Signal Process.* 2001;81:2353-2362.

[44] Molina-Romero M, Gómez PA, Sperl JI, Jones DK, Menzel MI, Menze BH. Tissue microstructure characterisation through relaxometry and diffusion MRI using sparse component analysis. In Workshop on Breaking the Barriers of Diffusion MRI, Lisbon; 2016. p. 17.

[45] Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ. Algorithms and applications for approximate nonnegative matrix factorization. *Comput Stat Data Anal.* 2007;52:155-173.

[46] Lin CJ. Projected gradient methods for nonnegative matrix factorization. *Neural Comput.* 2007;19:2756-2779.

[47] Lee D, Seung H. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 1, 2001. p. 556-562.

[48] Lin CJ. On the convergence of multiplicative update algorithms for nonnegative matrix factorization. *IEEE Trans Neural Networks.* 2007;18:1589-1596.

[49] Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. *Med Image Anal.* 2001;5:143-156.

[50] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. *IEEE Trans Image Process.* 2004;13:600-612.

[51] Pauca V, Shahnaz F, Berry M, Plemmons R. Text mining using non-negative matrix factorizations. In Proceedings of the SIAM International Conference on Data Mining, 2004. p. 452-456.

[52] Pauca VP, Piper J, Plemmons RJ. Nonnegative matrix factorization for spectral data analysis. *Linear Algebra Appl.* 2006;416:29-47.

[53] Gao Y, Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. *Bioinformatics.* 2005;21:3970-3975.

[54] Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. *Bioinformatics.* 2007;23:1495-1502.

[55] Nocedal J, Wright SJ. *Numerical Optimization.* New York: Springer, 2006. https://doi.org/10.1007/978-0-387-40065-5. NIHMS150003.

[56] Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. *SIAM J Matrix Anal Appl.* 2008;30:713-730.

[57] Liu H, Wu Z, Li X, Cai D, Huang TS. Constrained nonnegative matrix factorization via alternating non-negativity-constrained least squares and active set method. *SIAM J Matrix Anal Appl.* 2008;30:713-730.

[58] Min J, Wu Z, Li X, Cai D, Huang TS. Constrained nonnegative matrix factorization via alternating non-negativity-constrained least squares and active set method. *SIAM J Matrix Anal Appl.* 2008;30:713-730.

[59] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Found Trends Mach Learn.* 2011;3:1-122.
Additional Supporting Information may be found online in the supporting information tab for this article.

FIGURE S1 Evolution of the relative error in the T_2 estimate with $\Delta T E$ for one compartment. The mean relative error of T_2 estimated using BSS is shown in (a) for NNLS and in (b) for EASI-SM references. $\Delta T E$ goes from 5 ms (darker colors) to 50 ms (lighter colors). The dependence of T_2 on the direction (slope) of the columns of A (Equation 3) is shown in (c), where it can be seen how increasing $\Delta T E$ improves the dynamic range of the slope of A, resulting in a better estimate for T_2. Except for ROI$_1$ and ROI$_{11}$, the remaining ones reduce the T_2 mean relative error as $\Delta T E$ increases (a and b, lighter colors are closer to zero), in agreement with plot c.

FIGURE S2 Separation of two compartments and parameter estimation for the phantom data. The signal sources of the simulated dataset are plotted in (a), and the measured data generated from the sources in (b). The resulting mixtures for both datasets are shown in (c). We use the subscripts M and S to refer to estimates for the measured and simulated datasets, respectively. Measurement errors are highlighted by the differences between the measured and simulated signals, shown in (c). BSS disentangled the original sources for both datasets, as shown in (d). We chose a $\Delta T E$ of 50 ms to minimize the condition of A (shown in (e)) and increase the numerical stability of the framework. Finally, the relative errors in the estimated parameters, \hat{T}_{2ROI} and \hat{f}_{ROI}, are plotted in (f) for all possible values of $\Delta T E$. We observed good agreement between the reference signals and those disentangled with BSS.

FIGURE S3 Separation of three compartments and parameter estimation for the phantom data. The simulated dataset was generated from the signal sources in (a). The measured datasets were calculated from the measured signals for ROI$_5$ (b), ROI$_6$ (c), and ROI$_{11}$ (d). The mixed signals for both datasets (shown in (e)) show a mismatch due to measurement errors. They were disentangled with BSS, as shown in (f). We fixed $TE_1 = 77.5$ ms and $TE_2 = 127.5$ ms, and varied TE_2 to minimize the condition number of A (shown in (g)). The relative errors of the estimated parameters are plotted for different values of the TE_2 in (b).

FIGURE S4 Simulated diffusion signals for IE and CSF. Synthetically generated diffusion signals for 30 directions ($b = 1000$ s/mm2) and one non-diffusion weighted measurement. We modeled diffusion as a Gaussian process with MD of IE and CSF equal to 0.7×10^{-3} and 3×10^{-3} mm2/s respectively, and standard deviations of 0.3×10^{-3} and 0.1×10^{-3} mm2/s respectively to distinguish between hindered anisotropic (IE) and free isotropic (CSF) diffusivity.

FIGURE S5 Convergence for two compartments (IE and CSF) with overlapping T_2 constraints and no S_{CSF} prior. This figure extends the analysis of Figure 2 for SNR = 100 and 150. The stability for f_{IE} increases with SNR (a and b) and with f_{IE} for T_{2ie} (c and d).

FIGURE S6 Convergence for two compartments (IE and CSF) with non-overlapping T_2 constraints and S_{CSF} prior. This figure extends the analysis of Figure 3 for SNR = 100 and 150. The size and stability of the convergence area for f_{IE} and T_{2ie} increase with SNR.

FIGURE S7 Convergence for two compartments (IE and CSF) with non-overlapping T_2 constraints and S_{CSF} prior when only one is actually present in the tissue. This figure extends the analysis of Figure 4 for SNR = 100 and 150. The SNR does not play an important role in the definition of the convergence area.

FIGURE S8 Convergence for two compartments (IC and EC) with overlapping T_2 constraints and no other priors. This figure extends the analysis of Figure 5 for SNR = 100 and 150. The influence of SNR on f and T_{2ie} is small.

FIGURE S9 Convergence for three compartments (myelin, IE, and CSF) with non-overlapping T_2 constraints and S_{CSF} prior. This Figure extends the analysis of Figure 6 for SNR = 100 and 150.

FIGURE S10 Convergence for two compartments (IE and CSF) with overlapping T_2 constraints and S_{CSF} prior. The mean and the standard error of f_{IE} absolute error (a and b), and the mean and the standard error of T_{2ie} (c and d), and T_{2CSF} (e and f) relative error per unit (p.u.). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR, f_{IE}, T_{2ie}, and $\Delta T E$. T_{2ie} and T_{2CSF} were bound between 0−1000 ms and 0−3000 ms respectively. S_{CSF} was set to have isotropic diffusivity with value 3×10^{-3} mm2/s. We defined the convergence area as the one with error lower than 0.1 for f_{IE} and T_{2ie}. Notice the growth of the converge area compared to the lack of priors (Figures 2 and S5).

FIGURE S11 Convergence for two compartments (IE and CSF) with non-overlapping T_2 constrained and no S_{CSF} prior. The mean and the standard error of f_{IE} absolute error (a and b), and the mean and the standard error of T_{2ie} (c and d), and T_{2CSF} (e and f) relative error per unit (p.u.). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR, f_{IE}, T_{2ie}, and $\Delta T E$. T_{2ie} and T_{2CSF} were bound between 0−300 ms and 300−3000 ms respectively. No prior was imposed on S_{CSF}. We defined the...
convergence area as the one with error lower than 0.1 for f_{IE} and T_{2ie}. Non-overlapping T_2 bounds stabilize the factorization, compared to Figures 2 and S5, although not as much as using priors on the signal sources (Figure S10).

FIGURE S12 Convergence for two compartments (IE and CSF) with fixed T_{2csf} and no S_{CSF} prior. The mean and the standard error of f_{IE} absolute error (a and b), and the mean and the standard error of T_{2ie} (c and d), and T_{2csf} (e and f) relative error per unit (p.u.). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR, f_{IE}, T_{2ie}, and ΔTE. T_{2ie} was bound between 0–300 and T_{2csf} fixed to 2000 ms. No prior was imposed on S_{CSF}. We defined the convergence area as the one with error lower than 0.1 for f_{IE} and T_{2ie}. Fixing the value of T_{2csf} does not have any effect on the size of the convergence area, while bounding T_{2ie} does it (see Figure S11).

FIGURE S13 Convergence for two compartments (IE and CSF) with non-overlapping T_2 constraints and S_{CSF} prior. The mean and standard error of f_{IE} absolute error (a and b), and mean and standard error of T_{2ie} (c and d), and T_{2csf} (e and f) relative error per unit (p.u.). Red and white lines mark the 0.2 and 0.1 contour respectively. One thousand simulations were run for each combination of SNR, f_{IE}, T_{2ie}, and ΔTE. T_{2ie} and T_{2csf} were bound between 0–300 ms and 300–3000 ms respectively. S_{CSF} was set to have isotropic diffusivity with value 3×10^{-3} mm2/s. We defined the convergence area as the one with error lower than 0.1 for f_{IE} and T_{2ie}. Incorporating prior knowledge on the behavior of the signal sources (as CSF) improves convergence and stability more than bounding T_2 (Compare with Figures S10 and S11).

FIGURE S14 Simulated diffusion signals for intra and extra-cellular water compartments. Synthetically generated diffusion signals for 30 directions ($b = 1000$ s/mm2) and one non-diffusion weighted measurement. We modeled diffusion as a Gaussian process with MD of intra-cellular (IC) and extra-cellular (EC) equal to 0.6×10^{-3} and 0.8×10^{-3} mm2/s respectively (to keep the MD of parenchyma equals to 0.7×10^{-3} mm2/s28 and standard deviations of 0.3×10^{-3} and 0.1×10^{-3} mm2/s respectively to distinguish between a more (IC) and less (EC) hindered anisotropic diffusivity.

FIGURE S15 FA and MD of the BSS-disentangled IE signal against the standard DTI and Pasternak’s free-water elimination (FWE) for subject one. Comparisons of the FA (b) and MD (d) histograms calculated from the separated IE signals are plotted against the standard DTI fit and Pasternak’s method for the short TE measured data. MD (c) and colored FA (a) maps are also included for comparison. We observed a CSF correction effect in the long ΔTE BSS for FA in agreement with Pasternak’s FWE. However, both method disagree for MD, where Pasternak’s introduces spatial over-regularization. See Figure 9 for subject two.

FIGURE S16 Repeatability analysis showing intra-subject variability. A healthy volunteer was scanned six times. The FA (a) and MD (b) histograms for standard DTI, BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods were computed. Statistical t-tests were run per sector to determine the level of significance of the differences between BSS and Pasternak’s results (d and e). BSS and FLAIR T_{2ie} histograms (c) showed good agreement. Their peak and the full width half maximum (FWHM) were used for t-test comparison between BSS and FLAIR (f) highlighting the concordance.

FIGURE S17 Reproducibility analysis showing inter-subject variability. Twenty healthy volunteers were scanned. The FA (a) and MD (b) histograms for standard DTI, BSS and Pasternak’s method are shown. These histograms were fragmented in sectors and the relative changes in number of voxels per sector and repetition for BSS and Pasternak’s methods were computed. Statistical t-tests were run per sector to determine the level of significance of the differences between BSS and Pasternak’s results (d and e). Notice that the inter-subject variability is larger than intra-subject (Figure S16). BSS and FLAIR T_{2ie} histograms (c) were depicted. Their peak and the full width half maximum (FWHM) were used for t-test comparison between BSS and FLAIR (f).

Table S1 Phantom reference values and BSS estimates. The ROIs in the phantom experiment was built using the concentrations of agar and sucrose shown here. Signal decays along the diffusion dimension were compared to each other to ensure that they were all different, as required by BSS (see supplementary Figure S18). For reference, the T_2 values were characterized using an NNLS fit. Confidence intervals were taken at the half maxima of the NNLS spectral peaks. In addition, a second method, EASI-SM,17 was used to confirm the validity of the fits. Finally, the T_{2rss} values were estimated for ΔTE = 50 ms and compared with the NNLS and EASI-SM references (where ϵ refers to the relative error).

How to cite this article: Molina-Romero M, Gómez PA, Sperl JI, et al. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization. *Magn Reson Med*. 2018;80:2155–2172. https://doi.org/10.1002/mrm.27181