Reynolds number effect on the dissipation function in wall-bounded flows

F. Laadhari

Laboratoire de Mécanique des Fluides et d’Acoustique
Université de Lyon; Université Lyon 1; École Centrale de Lyon; INSA de Lyon;
CNRS, UMR 5509.
36 Avenue Guy de Collongue, F-69134 Ecully, France
(Dated:

The evolution with Reynolds number of the dissipation function, normalized by wall variables, is investigated using direct numerical simulation databases for incompressible turbulent Poiseuille flow in a plane channel, at friction Reynolds numbers up to \(Re_\tau = 2000 \). DNS results show that the mean part, directly dissipated by the mean flow, reaches a constant value while the turbulent part, converted into turbulent kinetic energy before being dissipated, follows a logarithmic law. This result shows that the logarithmic law of friction can be obtained without any assumption on the mean velocity distribution. The proposed law is in good agreement with experimental results in plane-channel and boundary layer flows.

Despite extensive study, there remain significant questions about Reynolds number effects on wall-bounded flows. Earlier surveys of data\(^{1,2}\) indicated that Reynolds number effects are present in the near-wall region over a wide range of Reynolds number. The major difficulty in drawing firm conclusions is the accuracy of the measurements, which invariably are affected by spatial resolution and other near-wall measurement issues.

Direct numerical simulations (DNS) of turbulent flows provide detailed turbulence data that are free from such experimental ambiguities. During the past two decades, the investigations of wall bounded turbulent flows by DNS have provided considerable insights into both the statistical and structural characteristics of wall bounded turbulence. One of the most well-studied turbulent flows is the flow in a plane channel, which was simulated by Kim et al.\(^3\) and by many others since.\(^4-6\) Moderately high Reynolds number simulations have been recently performed and the results made available.\(^7,8\)

The aim of the present study is to investigate the Reynolds number dependence of the energy dissipation function in a turbulent plane channel flow using the results of both available DNS databases and our own simulations conducted here in order to obtain a wider and more complete range of Reynolds number. The simulation parameters of DNS cases considered are given in Table I.

The present numerical simulations are based on a pseudo-spectral code using the Chebychev-tau formulation in the wall-normal direction \((x_2)\) and Fourier expansion in the streamwise \((x_1)\) and spanwise \((x_3)\) directions where periodic boundary conditions are applied.\(^9\) The number of Fourier/Chebychev modes was selected so that the energy spectra are at sufficiently small values at large wave numbers, particularly near the wall. The flow was driven by a constant streamwise pressure-gradient \(\partial \Pi / \partial x_1 \).

The mean energy dissipation rate per unit volume \(\phi \), for incompressible flow, is given by:\(^10\)

\[
\phi = 2 \mu \bar{D}_{ij} \bar{D}_{ij} + 2 \mu \bar{d}_{ij} \bar{d}_{ij}
\]

Table I: Parameters of the turbulent plane channel DNS datasets used. Reynolds numbers: \(Re_b = U_b h / \nu \), \(Re_\tau = u_\tau h / \nu \).

Symbols	\(Re_b \)	\(Re_\tau \)
Present study	1015	72
	1300	90
	1800	120
	2480	160
	2830	180
	3830	235
	11000	590
	20100	1000
	30600	1450
Moser et al. (Ref. 4)	2800	178
	6880	392
	10950	587
Hoyas and Jimenez (Ref. 8)	10060	547
	18520	934
	43600	2003
Iwamoto et al. (Ref. 6)	1610	109
	2290	150
	5020	298
	6960	396
	12140	643
Tanahashi et al. (Ref. 21)	7030	400
	17390	792

using standard Cartesian tensor notation and summation on repeated indices. \(\mu \) is the dynamic viscosity, \(\bar{D}_{ij} \) and \(\bar{d}_{ij} \) are respectively the mean and fluctuating part of the velocity deformation tensor. The first term on the right-hand side represents the part directly dissipated by the mean flow \(\phi_M \), and the second, \(\phi_T \), the turbulent part. The two terms are usually decomposed as the sum of homogeneous and inhomogeneous parts as follows:
\[\phi_M = \mu \frac{\partial U_i}{\partial x_j} \frac{\partial U_j}{\partial x_i} + \mu \frac{\partial^2 U_i U_j}{\partial x_i \partial x_j} , \]

and

\[\phi_T = \mu \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} + \mu \frac{\partial^2 u_i u_j}{\partial x_i \partial x_j} . \]

For fully turbulent flow in a plane channel, the variation of mean values in the streamwise and spanwise directions are zero. The mean velocity reduces to the streamwise component \(U_1 \) which, like the Reynolds stresses, depends only on the wall-normal position \(x_2 \). Since the gradient of the Reynolds stresses is zero at the channel walls, located at \(x_2 = \pm h \), the dissipation function \(\Phi \), defined as the integral over the channel cross-section of the mean energy dissipation rate, is given by

\[\Phi = \int_{-h}^{+h} \left[\mu \left(\frac{\partial U_1}{\partial x_2} \right)^2 + \mu \frac{\partial^2 U_1}{\partial x_2 \partial x_i} \frac{\partial U_1}{\partial x_i} \right] dx_2 . \]

For the same reason, the turbulent kinetic energy equation (Ref. 11, Eq. 5) integrated across the channel, shows that the turbulent contribution to the dissipation function is equal to the integral of the turbulent kinetic energy production:

\[\Phi_T = \int_{-h}^{+h} \mu \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} dx_2 = \int_{-h}^{+h} \rho \mu u_2 \frac{\partial U_1}{\partial x_2} dx_2 , \]

where \(\rho \) is the fluid density and \(\mu u_2 \) the Reynolds shear stress, and finally

\[\Phi = \int_{-h}^{+h} \left[\mu \left(\frac{\partial U_1}{\partial x_2} \right)^2 - \rho \mu u_2 \frac{\partial U_1}{\partial x_2} \right] dx_2 . \]

Using the integrated streamwise mean momentum equation:

\[\mu \frac{\partial U_1}{\partial x_2} - \rho \mu u_2 = -\tau_w \frac{x_2}{h} , \]

where \(\tau_w \) is the mean wall-shear stress, the dissipation function can now be easily evaluated:

\[\Phi = \int_{-h}^{+h} -\tau_w \frac{x_2}{h} \frac{dU_1}{dx_2} dx_2 . \]

The integration by parts with the no-slip conditions at the walls leads to

\[\Phi = \frac{\tau_w}{h} \int_{-h}^{+h} \frac{dU_1}{dx_2} dx_2 = 2\tau_w U_b \]

where \(U_b \) is the bulk velocity. This is the classical relation for the loss of power in a duct, which is equal to the product of the mean pressure gradient \(-\partial P/\partial x_1 = \tau_w/h\) by the flow rate \(2hU_b \).

Note that an identical relation can be obtained for the turbulent flow in a circular pipe (see for example Ref. 12), while for the turbulent boundary layer on a flat plate, the dissipation function is related to the streamwise variation of the mean and turbulent kinetic energy (see Eq. 3.15 in Ref. 13).

In a dimensionless form, the dissipation function is now given by

\[\Phi^+ = \int_{-h}^{+h} \left[\left(\frac{dU_1^+}{dx_2^+} \right)^2 - \frac{\mu u_2^+}{\rho} \frac{dU_1^+}{dx_2^+} \right] dx_2^+ = 2U_b^+ , \]

where the superscript \(^+\) denotes normalization by the friction velocity \(u_\tau = \sqrt{\tau_w/\rho} \) and the kinematic viscosity \(\nu \).

Figure 1 shows, in a semilogarithmic plot, the evolution with the friction Reynolds number \(R_\tau \), of the mean shear \(\Phi_M^+ \) (open symbols) and turbulent \(\Phi_T^+ \) (filled symbols) contributions to the nondimensionalized dissipation function. ———, [Eq. (0.1)]. Symbols in Table I.

These results are not too surprising according to the profiles of the squared mean velocity gradient and the mean production for \(R_\tau > 500 \) shown in figure 2. In the region \(y^+ = h^+ - |x_2^+| \leq 30 \) the profiles exhibit universal behavior. Above this position, the square of the mean velocity gradient decreases faster than \(y^{+2} \), giving a negligible contribution to the integral, while the mean

![FIG. 1: Evolution with the friction Reynolds number R_τ of the mean shear Φ_M^+ (open symbols) and turbulent Φ_T^+ (filled symbols) contributions to the nondimensionalized dissipation function. ———, [Eq. (0.1)]. Symbols in Table I.](image-url)
production decay is close to y^{+1} in a region whose extent increases with Reynolds number.

The skin friction coefficient C_f, based on the bulk velocity is given by:

$$U_b^+ = \sqrt{\frac{2}{C_f}} = 2.6 \ln R_e + 2.05$$ \hspace{1cm} (0.2)$$

and might be extrapolated to arbitrarily large Reynolds numbers. This logarithmic law is compared in Fig. 3 to the channel-flow experimental data of Zanoun et al.\(^\text{14}\); Bakken et al.\(^\text{15}\); DNS results of Spalart\(^\text{20}\); and the defect law

$$\overline{U_c^+} - \overline{U_1^+} = -\frac{1}{\kappa} \ln \frac{y}{R_e} + B,$$

where $\overline{U_c}$ is the mean centerline velocity. The logarithmic skin friction law is obtained by assuming very large Reynolds number and combining the two equations (see Ref. 18, page 573):

$$U_b^+ = \frac{1}{\kappa} \ln R_e + A - \frac{1}{\kappa},$$

Hence, the factor 2.6 in relation (0.2) corresponds to a von Kármán constant $\kappa = 0.385$ which is close to the experimental value of 0.38 obtained by Österlund\(^\text{19}\) in a zero pressure-gradient turbulent boundary layer. However, a small discrepancy with experiment is found for the value of the additive constant A since relation (0.2) leads to $A = 4.65$ while Österlund\(^\text{19}\) obtained $A = 4.1$.

Another noteworthy feature is the good agreement of the skin-friction law obtained from Eq. (0.2) with the boundary layer skin-friction coefficient based on $U_b = (1 - \delta_1/\delta) U_\infty$, where U_∞, δ and δ_1 are respectively the free-stream velocity, the boundary-layer thickness and the displacement thickness. This is obvious from Fig. 4 where the experimental data of Österlund et al.\(^\text{19}\).
and the DNS results of Spalart are compared to the present relation. This finding requires further analysis since the skin-friction coefficient in this flow is given by the streamwise mean-momentum variation.

To summarize, the logarithmic law of friction for plane channel flow is the direct consequence of the logarithmic evolution of the dissipation function and more precisely of the turbulent part. The proposed law of friction is found to be in good accordance with boundary layer results. A more detailed study including numerical and accurate measurements would be useful, particularly for Poiseuille pipe flow.

Acknowledgments

The computations were performed on the IBM SP4 parallel supercomputers at the CINES (Centre Informatique National de l’Enseignement Supérieur). We acknowledge the support of CINES for providing the computational resources.

Electronic address: faouzi.laadhari@univ-lyon1.fr

1. M. Gad-el-Hak and P. R. Bandyopadhyay, “Reynolds number effects in wall-bounded turbulent flows,” Appl. Mech. Rev. 47, 307–365 (1994).
2. H. H. Fernholz and P. J. Finley, “The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data,” Prog. Aerospace Sci. 32, 245–311 (1996).
3. J. Kim, P. Moin, and R. D. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds Number,” J. Fluid Mech. 177, 133 (1987).
4. R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Reτ = 590,” Phys. Fluids 11, 943–945 (1999).
5. F. Laadhari, “On the evolution of maximum turbulent kinetic energy production in a channel flow,” Phys. Fluids 14, L65–L68 (2002).
6. K. Iwamoto, Y. Suzuki, and N. Kasagi, “Reynolds number effect on wall turbulence: toward effective feedback control,” Int. J. Heat and Fluid Flow 23, 678 (2002).
7. H. Abe, H. Kawamura, and Y. Matsuo, “Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1020 with Pr=0.025 and 0.71,” Int. J. Heat and Fluid Flow 25, 404–419 (2004).
8. S. Hoyas and J. Jiménez, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,” Phys. Fluids 18, 011702 1–4 (2006).
9. F. S. Godeferd and L. Lollini, “Direct numerical simulations of turbulence with confinement and rotation,” J. Fluid Mech. 393, 257–308 (1999).
10. S. Corrsin, “Interpretation of viscous terms in the turbulent energy equation,” J. Aeronautical Sciences. 20, 853–854 (1953).
11. T. Von Kármán, “The Fundamentals of the Statistical Theory of Turbulence,” J. Aeronaut. Sci. 4, 131–138 (1937).
12. J. Laufer, “The structure of turbulence in fully developed pipe flow,” Technical Note 2954, NACA (1953).
13. J. Rotta, “On the theory of the turbulent boundary layer,” TM 1344, NACA (1953).
14. E.-S. Zanoun, F. Durst, and H. Nagib, “Evaluating the law of the wall in two-dimensionnel fully developed turbulent channel flows,” Phys. Fluids 15, 3079–3089 (2003).
15. O. M. Bakken, P. Krogstad, A. Ashrafian, and H. I. Andersson, “Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls,” Phys. Fluids 17, 065101 (2005).
16. T. Von Kármán, “Turbulence and skin friction,” J. Aeronaut. Sci. 1, 1–20 (1934).
17. C. B. Millikan, “A critical discussion of turbulent flows in channels and circular tubes,” In Fifth International Congress of Applied Mechanics, (1938).
18. H. Schlichting, Boundary-Layer Theory, 7th ed. (McGraw-Hill, New York, 1979).
19. J. M. Österlund, A. V. Johansson, H. M. Nagib, and M. H. Hites, “A note on the overlap region in turbulent boundary layers,” Phys. Fluids 12, 1–4 (2000).
20. P. R. Spalart, “Direct simulation of the turbulent boundary layer up to Reτ=1410,” J. Fluid Mech. 187, 61–98 (1988).
21. M. Tanahashi, S.-J. Kangand, T. Miyamoto, S. Shiokawa, and T. Miyauchi, “Scaling Law of Fine Scale Eddies in Turbulent Channel Flows up to Reτ=800,” Int. J. Heat and Fluid Flow 25, 331–340 (2004).