Population attributable fractions for ovarian cancer in Swedish women by morphological type

C Granström*, 1, J Sundquist1,2 and K Hemminki1,3
1Department of Neurobiology, Caring Sciences and Society, Center for Family and Community Medicine, Karolinska Institute, Alfred Nobels allé 12, Huddinge 141 83, Sweden; 2Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, California, USA; 3Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Using the Swedish Family-Cancer Database, among a total of 1,030,806 women followed from 1993 through 2004, invasive and borderline epithelial ovarian cancer was identified in 3,306 and 822 women respectively, with data on family history, reproductive variables, residential region and socioeconomic status. Relative risks and population-attributable fractions (PAFs) were estimated by Poisson regression. The overall PAFs of invasive epithelial ovarian cancer for family history and for reproductive factors were 2.6 and 22.3%, respectively, for serous/seropapillary cystadenocarcinoma (3.0 and 19.1%), endometrioid carcinoma (2.6 and 26.6%), mucinous cystadenocarcinoma (0.5 and 23.9%) and clear-cell carcinoma (2.6 and 73.9%). The corresponding PAFs of borderline tumours due to family history were lower, but higher due to reproductive factors. Family history, low parity and young age at first birth were associated with elevated risks. The risks for women with a family history were among the highest, but these women accounted for the smallest proportion of the cases, giving the lowest PAFs.

British Journal of Cancer (2008) 98, 199 – 205. doi:10.1038/sj.bjc.6604135 www.bjcancer.com
Published online 11 December 2007 © 2008 Cancer Research UK

Keywords: parity; family history; population-attributable fraction; relative risk; morphological types

Most cases of invasive epithelial ovarian cancer (EOC), which constitute 80–90% of all ovarian malignancies, are detected at an advanced stage after age 40 years (Holmschner and Berek, 2000). Invasive EOC can be further subdivided into serous (75–80%), mucinous (10%), endometrioid (10%), clear-cell and other morphological types (Holmschner and Berek, 2000). Most studies suggest that apart from mucinous tumours, all the major morphologies tend to share a common aetiology (Whiteman et al, 2000; Purdie et al, 2003; Tung et al, 2003; Parazzini et al, 2004; Chiaffarino et al, 2007). There is strong evidence that multiparity and oral contraceptive use are protective factors (Adami et al, 1994; La Vecchia, 2006), as well as tubal ligation and hysterectomy (Green et al, 1997; Kjaer et al, 2004). Breastfeeding has shown a weaker inverse association, but not all studies have observed this (Riman et al, 2002; Chiaffarino et al, 2005). Additional risk factors include nulliparity and infertility (Banks et al, 1997), but the findings on the use of hormone replacement therapy are inconsistent (Riman et al, 2002; Kurian et al, 2005). Another well-established risk factor is a family history of EOC (Hemminki and Granston, 2003). The strongest association has been observed for the non-mucinous morphologies, whereas in one study the mucinous type was not associated with a family history (Purdie et al, 2001).

We use here the year 2006 update of the nation-wide Swedish Family-Cancer Database to determine relative risks (RRs) and population-attributable fractions (PAFs) of invasive and borderline EOC for reproductive, familial, socioeconomic and residential factors.

MATERIALS AND METHODS

Statistics Sweden created a family database, ‘Second Generation Register’ in 1995. After a few expansions, it covered offspring born after 1931 with their parents, renamed ‘Multigeneration Register’, to indicate that the number of generations was more than two. We have linked this Register to the Swedish Cancer Registry (1958–2004) to make the Family-Cancer Database (MigMed2) in year 2006 for the seventh time. This now contains data on all immigrants, whereas previous versions only included those who had had children in Sweden. All data are organised in child–mother–father triplets; the parents have been registered at the time of birth of the child, allowing tracking of biological parents. The database includes all persons resident in Sweden after 1931 with their biological parents, totalling over 11.5 million individuals. The present study included Swedish-born as well as immigrant women born between years 1932 and 1953, that is, those whose minimal age at the beginning of the follow-up ranged from 40 to 61 years.

The completeness of cancer registration in the 1970s has been estimated to be over 95%, and is now considered close to 100%. The percentage of cytologically or histologically verified cases of EOC has been close to 100% (Center for Epidemiology, 2007).
The Swedish Cancer Registry is based on compulsory notification of cases (Center for Epidemiology, 2007). A four-digit diagnosis code according to the International Classification of Diseases, seventh revision was combined with morphology codes according to the International Classification of Diseases for Oncology, World Health Organization (WHO) and the Systematized Nomenclature of Medicine (SNOMED) used since 1993. The ICD-7 code 175 was used to identify EOC cases, and a Swedish version of SNOMED was used to classify the morphological subtypes.

Follow-up was started at immigration or January 1, 1993, whichever came latest, and terminated on diagnosis of first cancer, death, emigration or the closing date of the study, December 31, 2004. A Poisson regression analysis was performed to model overdispersed EOC incidence using the Poisson regression models with the variables classified dichotomously (exposed/unexposed). The population belonging to the lowest level of the variables in the initial Poisson regression models was defined as unexposed and the other levels were aggregated into the exposed group. The population-attributional fraction was calculated according to the formula \((RR - 1)/RR \) × the proportion of cases in the exposed population, where \(RR \) was the risk in the exposed population (Miettinen, 1974). For joint PAFs, defining the unexposed population as those unexposed to all risk factors simultaneously, we used the formula \(\left(\frac{inc_{all} - inc_{ref}}{inc_{all}} \right) \times 100 \), where \(inc_{all} \) denotes the overall incidence and \(inc_{ref} \) denotes that in the unexposed population. The incidence was age-standardised according to the Swedish census of year 2000. Confidence intervals for PAFs were estimated by bootstrapping with 1000 simulations (Greenland, 2004).

RESULTS

A total of 1,030,806 women, with 11,091,139 person-years at risk were included, were followed from 1993 through 2004. Invasive and borderline EOC were identified in 3306 and 822 women, respectively, with data on family history, reproductive variables, socioeconomic status and residential area. Variables included in the Poisson regression models were age at diagnosis, family history, parity, age at first child birth, all of which had a significant or borderline significant effect on the risk of EOC; additionally, the effect of socioeconomic status and residential area were tested. The result of the Poisson analysis is shown in Table 1. A family history through a mother proband increased the risk of overall invasive EOC to 2.54, and through a sister to 2.76 relative to women with no family history. Nulliparity showed the highest RR, with an overall RR of 2.12 relative to those who had at least three children. Low parity increased RRs, as well as younger ages at first childbirth. There were small or no risks associated with residential region and socioeconomic status in the overall invasive EOC, but, for completeness, these variables were still included in the model although their exclusion did not alter risks associated with the other variables.

The invasive cases comprised 45% serous/seropapillary cystadenocarcinomas, 15% endometrioid, 8% mucinous cystadenocarcinoma and 5% clear-cell cystadenocarcinomas. Poisson regression analysis for these are being shown in Table 1. As in the overall EOC, these types showed positive associations with family history through a mother or sister proband (serous: 2.93 and 2.57, respectively; endometrioid: 2.22 and 3.65, respectively; clear cell: 2.63 and 2.40, respectively), except in mucinous cystadenocarcinoma of which there were very few cases. There was a clear trend for decreasing RRs with increasing parity in all morphologies, except mucinous tumours, which showed no trend. A similar trend for decreasing RRs with increasing age at first child birth was observed in the serous group, but with clear cell morphology this was reversed. No clear trend was observed for age at first child birth in the mucinous and endometrioid morphologies. Nulliparity showed the highest RRs in clear-cell carcinoma, with an overall significant RR of 6.73 relative to those who had at least three children, whereas serous/seropapillary and endometrioid cystadenocarcinomas had significant RRs of 1.86 and 2.77 respectively. In general, low parity had the highest impact on clear cell carcinoma. Unlike the other morphologies, mucinous cystadenocarcinoma was not positively associated with nulliparity. Residential region had significant or borderline significant moderately elevated risks, ranging from 1.11 to 1.35, with the reference groups north or south in all morphologies except from mucinous. The highest RRs were found in the clear cell morphology. There was a negative, but insignificant, association with high socioeconomic status and endometrioid, mucinous and clear-cell tumours as opposed to the serous morphology where the results were harder to interpret as all the defined socioeconomic groups had increased but very similar RRs.

The corresponding result for all epithelial borderline tumours is shown in Table 1. Here, family history refers to family history of invasive disease. The association with a mother history was weaker compared with the corresponding invasive analysis, but these RRs were not significant. A trend for decreasing RRs with increasing parity and also a similar trend for decreasing RRs with increasing age at first child birth was observed. Low parity showed higher RRs compared with the corresponding invasive model. Residential region had no elevated risk, but there was a negative association with high socioeconomic status.

For calculation of PAF, the individual variables in Table 1 were classified dichotomously into one group, the reference or unexposed group, and into the other, the exposed group (Table 2). As nulliparous women have no age at first birth, parity and age at first birth were merged into one variable. In order to calculate a joint PAF, all the unexposed groups of the individual variables were combined simultaneously to form the joint reference group. Socioeconomic status was excluded in this analysis due to the limited number of cases in the joint reference group, but this did not alter the other individual PAFs. The joint PAFs in all invasive EOC and mucinous carcinoma were similar, 26.5 and 29.6%, respectively, which was equal to the individual PAFs due to reproductive factors. Serous/seropapillary cystadenocarcinoma and endometrioid carcinomas had large joint PAFs of 49.4 and 48.5%, respectively, explaining half of all cases. Clear-cell carcinoma showed a notable large PAF of 66.0%, most likely due to only one case in the joint reference group. The joint PAF for rets/seropapillary cystadenocarcinoma and endometrioid carcinomas exceeded the sum of the individual PAFs, whereas in all EOC, mucinous cystadenocarcoma and clear-cell carcinomas the corresponding sum exceeded the joint PAF, perhaps because some risk factors cancel each other out. The corresponding joint PAF for the borderline tumours was equal.

DISCUSSION

The major strength of this study is the large number of women from the nation-wide Swedish Family-Cancer Database and the
Table I RRs in ovarian cancer according to the Poisson model

Variable	All epithelial	Serous/seropapillary cystadenocarcinoma	Endometrioid carcinoma	Mucinous cystadenocarcinoma	Clear-cell carcinoma	All epithelial borderline malignancy
	Cases RR (95% CI)					
Family history						
Family history	140 2.60(2.20–3.08)	68 2.83 (2.22–3.61)	21 2.61 (1.68–4.03)	6 1.32 (0.59–2.98)	8 2.57 (1.27–5.22)	21 1.51 (0.98–2.33)
Mother	99 2.54 (2.08–3.11)	51 2.93 (2.22–3.88)	13 2.22 (1.28–3.85)	3 0.92 (0.29–2.86)	6 2.63 (1.17–5.94)	12 1.18 (0.67–2.09)
Sister	41 2.76 (2.03–3.76)	17 2.57 (1.59–4.14)	8 3.65 (1.81–7.34)	3 2.39 (0.77–7.46)	2 2.40 (0.60–9.69)	9 2.38 (1.23–4.59)
No history	3166 1	1419 1	472 1	266 1	182 1	801 1
Parity						
0	586 2.12 (1.81–2.48)	236 1.86 (1.47–2.37)	107 2.77 (1.85–4.16)	28 0.97 (0.54–1.72)	59 6.73 (3.38–13.42)	114 2.09 (1.50–2.92)
1	643 1.60 (1.43–1.79)	272 1.46 (1.24–1.73)	100 1.75 (1.31–2.33)	58 1.46 (1.01–2.10)	43 3.34 (1.97–5.67)	169 1.96 (1.57–2.45)
2	1329 1.21 (1.10–1.32)	630 1.23 (1.07–1.40)	180 1.16 (0.90–1.48)	113 1.05 (0.78–1.42)	65 1.85 (1.14–3.01)	371 1.49 (1.24–1.80)
3+	748 1	349 1	106 1	73 1	23 1	168 1
Age at first birth						
13–20	637 1.13 (0.98–1.30)	293 1.17 (0.95–1.43)	99 1.31 (0.91–1.88)	58 1.03 (0.65–1.64)	25 1.03 (0.55–1.93)	176 1.48 (1.12–1.95)
21–24	925 1.08 (0.95–1.23)	444 1.15 (0.95–1.39)	119 1.04 (0.74–1.47)	79 0.96 (0.63–1.48)	40 1.04 (0.59–1.84)	246 1.30 (1.00–1.69)
25–29	814 1.06 (0.93–1.20)	361 1.02 (0.84–1.24)	119 1.15 (0.82–1.61)	75 1.05 (0.69–1.60)	47 1.28 (0.74–2.21)	205 1.18 (0.91–1.54)
30+	344 1	153 1	49 1	32 1	19 1	81 1
Socioeconomic status						
Manual worker	1246 1.10 (1.01–1.19)	557 1.28 (1.06–1.56)	171 1.06 (0.78–1.42)	102 1.17 (0.77–1.78)	62 1.19 (0.72–1.95)	311 1.35 (1.05–1.73)
Professional	415 1.03 (0.92–1.15)	193 1.29 (1.03–1.62)	61 1.06 (0.74–1.53)	29 1.05 (0.61–1.79)	18 1.14 (0.78–1.66)	346 1.30 (1.02–1.66)
Other	350 1.02 (0.90–1.15)	129 1	63 1.24 (0.87–1.77)	37 1.49 (0.91–2.43)	29 1.64 (0.94–2.86)	85 1.29 (0.95–1.75)
Blue collar	1295 1	608 1.26	198 1.02	104 1.09	77 1.11	346 1.30
Residential region						
Big city	1189 1.09 (0.99–1.20)	543 1.23 (1.06–1.42)	200 1.25 (1.02–1.53)	82 1	76 1.35 (0.89–2.05)	283 1
South	1449 1.11 (1.01–1.21)	673 1.27 (1.10–1.46)	187	124 1.23 (0.93–1.63)	82 1.31 (0.87–1.97)	361 1.03 (0.88–1.21)
North	668 1	271 1	106 1.11 (0.88–1.41)	66 1.29 (0.93–1.79)	32 1	178 1.01 (0.83–1.21)
All	3306 1	1487	493	272	190	822

Abbreviations: CI = confidence interval; RR = relative risk. Period of follow-up, 1993–2004.
Morphology/variable	Cases	RR (95% CI)	Prop (%)	PAF (%) (95% CI)	Morphology/variable	Cases	RR (95% CI)	Prop (%)	PAF (%) (95% CI)
Invasive									
All epithelial invasive	140	2.60 (2.20–3.08)	4.23	2.6 (2.4–2.8)	All epithelial borderline malignancy	21	1.51 (0.98–2.33)	2.55	0.9 (0.5–1.1)
Family history	3166	1	95.77			801	1	97.45	
No history	2830	1.35 (1.23–1.49)	85.60	22.3 (20.3–24.0)		729	1.76 (1.42–2.18)	88.69	38.3 (34.8–41.5)
Parity and age at first birth	476	1	14.40			93	1	11.31	
Other 3+: 21+	2638	1.10 (1.01–1.20)	79.79	7.2 (5.3–8.9)	Other residential region	539	1.04 (0.90–1.20)	65.57	2.7 (0.3–5.3)
North	668	1	20.21			283	1	34.43	
Other	3208	1	97.04	26.5 (22.0–34.5)		787	1	95.74	24.8 (17.9–33.1)
All	98	2.96	1			35	4.22	1	
Serous/seropapillary cystadenocarcinoma									
Family history	68	2.83 (2.22–3.61)	4.57	3.0 (2.6–3.2)					
No history	1419	1	95.43						
Parity and age at first birth	1263	1.29 (1.12–1.49)	84.94	19.1 (16.3–21.7)		224	1	15.06	
Other 3+: 21+	1216	1.25 (1.10–1.43)	81.78	16.5 (13.9–19.3)	Other residential region	271	1	18.22	
North	1454	1	97.78	49.4 (44.6–55.0)		33	2.22	1	
All	33	2.22	1						
Endometrioid carcinoma									
Family history	21	2.61 (1.68–4.04)	4.26	2.6 (2.1–3.1)					
No history	472	1	95.74						
Parity and age at first birth	427	1.44 (1.11–1.87)	86.61	26.6 (21.8–31.3)		66	1	13.39	
Other 3+: 21+	306	1.23 (1.02–1.47)	62.07	11.5 (8.7–14.3)	Other residential region	187	1	37.93	
North	469	1	95.13	48.5 (43.0–55.3)		24	4.87	1	
All	662	1	95.74						

Table 2: PAFs in EOC

Population attributable fractions
C Granstrom et al

British Journal of Cancer (2008) 98(1), 199 – 205
Morphology/variable	Cases	RR	(95% CI)	Prop (%)	PAF (%)	(95% CI)	Morphology/variable	Cases	RR	(95% CI)	Prop (%)	PAF (%)	(95% CI)
Mucinous cystadenocarcinoma													
Family history													
	6	1.33	(0.59–2.98)	2.21	0.5	(0.1–0.9)							
	266	1		97.79									
No history													
Parity and age at first birth													
Other	240	1.37	(0.95–1.98)	88.24	23.9	(17.7–31.3)							
	32	1		11.76									
Residential region													
Other	190	1.27	(0.98–1.64)	69.85	14.7	(10.4–18.9)							
	82	1		30.15									
All													
Other	262	1		96.32	29.6	(20.3–45.7)							
	10			3.68									
Clear cell carcinoma													
Family history													
	8	2.57	(1.27–5.21)	4.21	2.6	(1.8–3.2)							
	182	1		95.79									
Parity and age at first birth													
Other	185	4.15	(1.71–10.09)	97.37	73.9	(70.2–82.4)							
	5	1		2.63									
Residential region													
Other	158	1.35	(0.92–1.97)	83.16	21.3	(15.2–28.8)							
	32	1		16.84									
All													
Other	189	1		99.47	66.0	(58.4–100)							
	1			0.53									

Abbreviations: CI = confidence interval; EOC = epithelial ovarian cancer; PAF = population-attributable fraction; RR = relative risk. Period of follow-up, 1993–2004.
registered and unbiased information on all variables. One limitation of the data source is the lack of information on known or potential risk/protective factors such as oral contraceptive use (Franceschi et al., 1991; Kumle et al., 2004), hormone replacement therapy (Mills et al., 2005; Danforth et al., 2007), breast feeding (Riman et al., 2002; Chiaffarino et al., 2005), menstrual history (Zogros et al., 2004; Riman et al., 2004b), dietary habits (Bosetti et al., 2001; Larsson et al., 2004) and obesity (Riman et al., 2004a; Olsen et al., 2007).

In this study family history of disease, low parity and young age at first birth increased the risk of both non-mucinous invasive and borderline EOC. Due to very few cases, no clear conclusions could be drawn regarding the risk of family history in the mucinous morphology. Low socioeconomic status seemed to be associated with borderline tumours as opposed to residential region.

Population-attributable fraction is the proportion of disease cases in a population that is attributable to a particular exposure or ‘the fraction of all cases (exposed and unexposed) that would not have occurred if exposure had not occurred (Miettinen, 1974; Rothman and Greenland, 1998; dos Santos Silva, 1999)’. Assuming exposure to be causal and removable, PAF could be used to estimate the potential impact of public health interventions. In this study however, exposures are not removable and PAF is used as an aetiological measure. The joint PAF of more than one exposure can analogously be defined as the fraction of cases that would not have occurred if all the exposures were avoided. Large PAFs indicate that a large proportion of the aetiology is understood at the level of the defined variable. Since PAF here is defined as the product of the expression ((RR – 1)/RR) and the proportion of cases in the exposed population, large PAFs can only result from a high RR and relatively common exposure or from a moderate RR and common exposure.

No study has previously estimated morphology-specific PAFs for EOC, and few studies have estimated general PAFs (Parazzini et al., 2000; Hemminki and Granstrom, 2003). Our findings showed similar PAFs throughout all morphologies, with the exception of clear-cell carcinoma, regarding family history and reproductive factors. In these morphologies, family history accounted for the smallest PAFs (between 0.5 and 3.0%) due to the small proportion of exposed women, although these women had the highest RRs. A previous study estimated PAF due to family history of breast or ovarian cancer to 4% (Parazzini et al., 2000). The broad definition of exposure due to parity and age at first child birth resulted in very large (more than 80%) exposed groups, with resulting PAFs between 19.1 and 26.6%, although the corresponding RRs were low. An exception to this could be observed in clear-cell carcinoma where a high RR and an exceptionally small exposed group resulted in a reproduction-related PAF of 75.9%. The moderate to high PAFs due to being a resident in high-risk geographical areas seen in the specific morphologies are a possible result of potential risk/protective factors correlating with these areas, such as different use of oral contraceptives, hormone replacement therapy, obesity and dietary habits. These results could also be explained by different pathology classification criteria across medical regions. In two of the models, the serous/seropapillary and endometrioid morphologies, the sum of the individual PAFs was less than the corresponding joint PAF. According to these models, PAFs of 49.4 and 48.5% suggest that the three variables explain half of all cases. For specific morphological types, the interpretation is not clear as the residential region probably hides other factors contributing to the disease.

Also in the borderline model, family history accounted for the smallest individual PAF and reproductive factors for the highest PAFs. The borderline PAF was smaller than the corresponding invasive one due to family history, but larger due to reproductive factors, whereas the joint invasive and borderline PAFs were equal.

ACKNOWLEDGEMENTS

The Family-Cancer Database was created by linking registers maintained at Statistics Sweden and the Swedish Cancer Registry. The study was supported by Deutsche Krebshilfe, the Swedish Cancer Society, the Swedish Council for Working Life and Social Research and the EU LSHTC-CT-2004-503465 Fund.

REFERENCES

Adami HO, Hsieh CC, Lambe M, Trichopolous D, Leon D, Persson I, Ekborn A, Janson PO (1994) Parity, age at first childbirth, and risk of ovarian cancer. Lancet 344: 1250 – 1254
Banks E, Beral V, Reeves G (1997) The epidemiology of epithelial ovarian cancer: a review. Int J Gynecol Cancer 7: 425 – 438
Bosetti C, Negri E, Franceschi S, Pelucchi C, Talamini R, Montella M, Conti E, La Vecchia C (2001) Diet and ovarian cancer risk: a case-control study in Italy. Int J Cancer 93: 911 – 915
Chiaffarino F, Parazzini F, Bosetti C, Franceschi S, Talamini R, Canzoneri V, Montella M, Ramazzotti V, Franceschi S, La Vecchia C (2007) Risk factors for ovarian cancer histotypes. Eur J Cancer 43: 1208 – 1213
Chiaffarino F, Pelucchi C, Negri E, Parazzini F, Franceschi S, Talamini R, Montella M, Ramazzotti V, La Vecchia C (2008) Breastfeeding and the risk of epithelial ovarian cancer in an Italian population. Gynecol Oncol 98: 304 – 308
Clayton D, Schifflers E (1987a) Models for temporal variation in cancer rates: I. age-period and age-cohort models. Stat Med 6: 449 – 467
Clayton D, Schifflers E (1987b) Models for temporal variation in cancer rates. II. age-period–cohort models. Stat Med 6: 469 – 481
Danforth KN, Tworoger SS, Hecht JL, Rosner BA, Colditz GA, Hankinson SE (2007) A prospective study of postmenopausal hormone use and ovarian cancer risk. Br J Cancer 96: 151 – 156
dos Santos Silva I (1999) Cancer Epidemiology: Principles and Methods. Lyon: IARC
Franceschi S, Parazzini F, Negri E, Booth M, La Vecchia C, Beral V, Tzonou A, Trichopoulous D (1991) Pooled analysis of 3 European case-control studies of epithelial ovarian cancer: III. Oral contraceptive use. Int J Cancer 49: 61 – 65
Green A, Purdie D, Bain C, Siskind V, Russell P, Quinn M, Ward B (1997) Tubal sterilisation, hysterectomy and decreased risk of ovarian cancer. Survey of Women’s Health Study Group. Int J Cancer 71: 948 – 951
Greenland S (2004) Interval estimation by simulation as an alternative to and extension of confidence intervals. Int J Epidemiol 33: 1389 – 1397
Hemminki K, Granstrom C (2003) Familial invasive and borderline ovarian tumors by proband status, age and histology. Int J Cancer 105: 701 – 705
Holschneider CH, Berek JS (2000) Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol 19: 3 – 10
Kjaer SK, Møllemkjær L, Brinton LA, Jøhansen C, Gridley G, Olsen JH (2004) Tubal sterilization and risk of ovarian, endometrial and cervical cancer. A Danish population-based follow-up study of more than 65 000 sterilized women. Int J Epidemiol 33: 596 – 602
Kumle M, Weiderpass E, Braaten T, Adami HO, Lund E (2004) Risk for invasive and borderline epithelial ovarian neoplasias following use of hormonal contraceptives: the Norwegian–Swedish Women’s Lifestyle and Health Cohort Study. Br J Cancer 90: 1386 – 1391
Kurian AW, Balise RR, McGuire V, Whitemore AS (2005) Histologic types of epithelial ovarian cancer: have they different risk factors? Gynecol Oncol 96: 520 – 530
La Vecchia C (2006) Oral contraceptives and ovarian cancer: an update, 1998 – 2004. Eur J Cancer Prev 15: 117 – 124
Miettinen OS (1974) Proportion of disease caused or prevented by a given exposure, trait or intervention. *Am J Epidemiol* **99**: 325–332

Mills PK, Riordan DG, Cress RD, Goldsmith DF (2005) Hormone replacement therapy and invasive and borderline epithelial ovarian cancer risk. *Cancer Detect Prev* **29**: 124–132

Olsen CM, Green AC, Whiteman DC, Sadeghi S, Kolahdooz F, Webb PM (2007) Obesity and the risk of epithelial ovarian cancer: a systematic review and meta-analysis. *Eur J Cancer* **43**: 690–709

Parazzini F, Chatenoud L, Chiantera V, Benzi G, Surace M, La Vecchia C (2000) Population attributable risk for ovarian cancer. *Eur J Cancer* **36**: 520–524

Parazzini F, Chiaffarino F, Negri E, Surace M, Benzi G, Franceschi S, Fedele L, La Vecchia C (2004) Risk factors for different histological types of ovarian cancer. *Int J Gynecol Cancer* **14**: 431–436

Purdie DM, Siskind V, Bain CJ, Webb PM, Green AC (2001) Reproduction-related risk factors for mucinous and nonmucinous epithelial ovarian cancer. *Am J Epidemiol* **153**: 860–864

Purdie DM, Webb PM, Siskind V, Bain CJ, Green AC (2003) The different etiologies of mucinous and nonmucinous epithelial ovarian cancers. *Gynecol Oncol* **88**: S145–S148

Riman T, Dickman PW, Nilsson S, Correia N, Nordlinger H, Magnusson CM, Persson IR (2002) Risk factors for invasive epithelial ovarian cancer: results from a Swedish case–control study. *Am J Epidemiol* **156**: 363–373

Riman T, Dickman PW, Nilsson S, Nordlinger H, Magnusson CM, Persson IR (2004a) Some life-style factors and the risk of invasive epithelial ovarian cancer in Swedish women. *Eur J Epidemiol* **19**: 1011–1019

Riman T, Nilsson S, Persson IR (2004b) Review of epidemiological evidence for reproductive and hormonal factors in relation to the risk of epithelial ovarian malignancies. *Acta Obstet Gynecol Scand* **83**: 783–795

Rothman K, Greenland S (1998) Modern epidemiology, 2nd edn, Philadelphia: Lippincott-Raven

Tung KH, Goodman MT, Wu AH, McDuffie K, Wilkens LR, Kolonel LN, Nomura AM, Terada KY, Carney ME, Sobin LH (2003) Reproductive factors and epithelial ovarian cancer risk by histologic type: a multietnic case–control study. *Am J Epidemiol* **158**: 629–638

Whiteman DC, Murphy MF, Cook LS, Cramer DW, Hartge P, Marchbanks PA, Nasca PC, Ness RB, Purdie DM, Risch HA (2000) Multiple births and risk of epithelial ovarian cancer. *J Natl Cancer Inst* **92**: 1172–1177

Zografos GC, Panou M, Panou N (2004) Common risk factors of breast and ovarian cancer: recent view. *Int J Gynecol Cancer* **14**: 721–740