Continuous dimethyl carbonate synthesis from CO₂ and methanol over BiₓCe₁−ₓO₈ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway

Yongdong Chen¹ (✉), Yue Li¹, Wei Chen¹, Wen Wu Xu² (✉), Zhong-kang Han³, Ammara Waheed⁴, Zhongbin Ye¹, Gao Li⁴ (✉), and Alfons Baiker⁵ (✉)

¹ College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
² School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
³ Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
⁴ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
⁵ ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Hönggerberg, HCI, CH-8093 Zurich, Switzerland

© The Author(s) 2021
Received: 19 March 2021 / Revised: 17 May 2021 / Accepted: 9 June 2021

ABSTRACT

We evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the absence of a dehydrating agent. BiₓCe₁−ₓO₈ nanocomposites of various compositions (x = 0.06–0.24) were coated on a ceramic honeycomb and their structural and catalytic properties were examined. The incorporation of Bi species into the CeO₂ lattice facilitated controlling of the surface population of oxygen vacancies, which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts. The DMC production rate of the BiₓCe₁−ₓO₈ catalysts was found to be strongly enhanced with increasing Oᵥ concentration. The concentration of oxygen vacancies exhibited a maximum for Bi₀.₁₂Ce₀.₈₈O₇, which afforded the highest DMC production rate. Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140 °C and a gas-hourly space velocity of 2,880 mL·g⁻¹·h⁻¹. In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy (-OCH₃) species. The activation of CO₂ to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.

KEYWORDS
dimethyl carbonate synthesis, bismuth-cerium oxides, monolithic catalyst, oxygen vacancies, reaction mechanism

1 Introduction

Carbon dioxide (CO₂) is a major greenhouse gas, contributing to climate change and global warming [1, 2]. The growing awareness of the detrimental influence of CO₂ in the atmosphere has spurred research on its capture and utilization as a sustainable C₁ feedstock for organic syntheses of high-value-added chemicals [3]. Prominent examples include the syntheses of methanol [4–7], dimethyl ether (DME) [4, 8], and dimethyl carbonate (DMC) [4, 9–11]. DMC has low toxicity and is non-corrosive, facilitating its safe handling. It is versatile chemical, which is used for various purposes, such as aprotic polar solvent, methylation and carbonylation agent, intermediate in polycarbonate synthesis, building block in the syntheses of pharmaceuticals, and alternative fuel or oxygenated additive for diesel/gasoline [12–14]. Various methods have been applied for DMC synthesis [9], including transesterification, oxidative carbonylation of methanol, methanolsysis of phosgene, and the direct synthesis of DMC from CO₂ and methanol (CO₂ + 2CH₃OH → CH₃OC(=O)CH₃ + H₂O). Among these synthetic methods the latter one is considered as an environmentally benign and sustainable green process, as water is the major byproduct [15]. However, inherent problems of this synthetic pathway are the limitation imposed by thermodynamics and the activation of methanol and CO₂. The thermodynamic limitation can be alleviated by applying high CO₂ pressure and most efficiently by rapid removal of the produced water. Consequently, various methods have been explored for the in-situ water removal [16], including the use of traps [17], dehydrating agents [18, 19], and membrane reactors [20].

Various types of catalyst have been evaluated for the direct synthesis of DMC from methanol and CO₂ [16], including transition metal oxides and ionic liquids. Among the transition metal oxides ceria-based nanomaterials and mixed oxides have gained particular interest and have shown some potential for the direct DMC synthesis [16, 18, 21–23]. However, the
methanol conversion achieved was mostly below about 13% [24] if no provisions for rapid water removal were taken. The strong beneficial effect of in-situ removal of water from the reaction mixture has recently been demonstrated for a ceria catalyst, a high methanol conversion of 95% with ~ 99% DMC selectivity was achieved using a continuous fixed-bed reactor and 2-cyanopyridine as a dehydrating agent [18]. However, the use of a dehydrating agent, such as 2-cyanopyridine, adds considerable complexity to DMC production, because the dehydrating agent has to be recycled and its interaction with reaction components can lead to undesired side reactions. Thus, there remain still two big challenges: the search for highly active and stable catalysts, and efficient practical concepts for the removal of water.

In the present study, we have evaluated various bismuth doped ceria monolithic catalysts, which were coated on a honeycomb ceramic support. To the best of our knowledge Bi-doped ceria has so far not been evaluated as potential catalyst for the direct DMC synthesis [16]. The use of honeycomb-type catalysts could offer several advantages compared to fixed-beds of related particulate catalysts [24–26]. Monolithic catalysts exhibit good interphase mass and heat transfer, low pressure drop at relatively large surface area, and could facilitate more efficient removal of the formed by-product (water), which unfavorably affects the thermodynamic equilibrium and limits the catalytic efficiency of the DMC synthesis [27]. Bismuth trioxide has a cubic fluorite structure like cerium dioxide, and it has been proven that the solid solution of cerium-bismuth could be well formed when the bismuth dopant is present in an appropriate proportion [28]. We synthesized a series of Bi$_x$Ce$_{1-x}$O$_{2+δ}$ (x = 0.06 to 0.24) nanocomposites with an average particle size in the range of 5.5–7.8 nm and coated them on a ceramic honeycomb. A strong correlation of oxygen vacancies and catalytic performance was observed. Among these monolithic catalysts those based on Bi$_{12}$Ce$_{68}$O$_{97}$ nanocomposite exhibited the best performance in the DMC synthesis, i.e., a promising 20.8% methanol conversion when the bismuth dopant was present in an appropriate proportion [28]. The Bi$_x$Ce$_{1-x}$O$_{2+δ}$ nanocomposites were: 6 wt.%, 12 wt.%, 18 wt.%, 24 wt.%, and 24 wt.%, respectively.

X-ray photoelectron spectroscopy (XPS) was performed using a Kratos XSAM-800 (UK) spectrometer and Mg Kα radiation at 13 kV and 20 mA. The binding energies were calibrated using the C 1s level (284.8 eV) as an internal reference.

Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker ESP 300e spectrometer. All the samples of 50 mg were pretreated with N$_2$ (40 mL·min$^{-1}$) at 150 °C for 30 min, and then exposed to a flow of argon for 2 h. After pretreatment, the tubular reactor was sealed and transferred to a glove box, where catalysts were loaded into the EPR tubes (Wilmad-LabGlass). EPR spectra were recorded in the X-band (9.7 GHz) at room temperature using a microwave power of 20 mW, amplitude modulation of 5 G, and frequency modulation of 100 kHz.

2.3 Characterization

Powder X-ray diffraction (XRD) patterns were recorded on an X’Pert PRO diffractometer (PANalytical) using Cu-Kα radiation of 0.15406 nm at 40 kV and 40 mA to analyze the phase structure of the samples. The XRD data was recorded in the 2θ range of 20° to 80° with a step size of 0.0334° and a counting time of 47 s per step. The results were processed using the Jade-6 software. Raman spectra were recorded at room temperature using a Renishaw inVia spectrometer with a resolution of 2 cm$^{-1}$. A solid laser beam at 532 nm was used as the exciting source.

N$_2$ adsorption-desorption isotherms were measured at liquid nitrogen temperature (~196 °C) using an ASAP 2000 instrument (Micromeritics). Before the measurement, the samples were degassed at 300 °C for 3 h. The surface area was determined by multipoint Brunauer-Emmett-Teller analysis of the N$_2$-adsorption isotherms.

Transmission electron microscopy (TEM) images were recorded on a Philips FEI Tecnai G2 Spirit microscope operated at an accelerating voltage of 120 kV equipped for energy-dispersive X-ray spectroscopy (EDX) analysis. The specimens were prepared by ultrasonically dispersing the sample in ethanol, depositing droplets of the suspensions on a carbon-coated Cu grid, and drying in air.

The Bi-content of the samples was analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using an Agilent 720ES instrument. The samples of 0.05–0.06 g were dissolved in a 5 mL aqua regia solution with the addition of 30 wt.% H$_2$O$_2$. The as-determined bismuth loadings of the Bi$_x$Ce$_{1-x}$O$_{2+δ}$ nanocomposites were: 6 wt.%, 12 wt.%, 18 wt.%, and 24 wt.%, respectively.

Figure 1: Photograph of ceramic honeycomb monolithic catalysts (left) and SEM image of the cross-sections of the channels of the Bi$_x$Ce$_{1-x}$O$_{2+δ}$ monolithic catalysts (right).

\[L = 25 \text{ mm}, \] and the excess slurry was blown off. Finally, the coated cordierite honeycomb was dried at 100 °C and calcined at 400 °C to yield the monolithic catalysts (Fig. 1).

2 Experimental

2.1 Chemicals

All chemicals were used as received. Ammonium ceric nitrate (99.5%, Aladdin), bismuth nitrate (99%, Aladdin), urea (99%, Kelong), glacial acetic acid (99.5%, Kelong), methanol (99.9%, Adams), CO$_2$ (99.999%, Jinnengda).

2.2 Preparation of monolithic Bi$_x$Ce$_{1-x}$O$_{2+δ}$ catalysts

The Bi$_x$Ce$_{1-x}$O$_{2+δ}$ (0.06 ≤ x ≤ 0.24) bimetalllic oxides were prepared by an aqueous-phase co-precipitation method [19]. Typically, 15 g (NH$_4$)$_2$Ce(NO$_3$)$_6$ and 1.475 g Bi(NO$_3$)$_3$·5H$_2$O were dissolved in water (500 mL), and 70 g urea in 100 mL aqueous solution was added. This mixture was gradually heated to 90 °C under mechanical stirring (600 rpm) and the formed solution was kept at this temperature for 5 h. Afterward the precipitates were separated by filtration, washed thoroughly with hot water, dried at 80 °C for 12 h, and calcined at 400 °C for another 4 h. The as-prepared Bi-doped cerium oxide powders were then ball-milled with distilled water to form a slurry, which was coated on a cordierite honeycomb (64 cell·cm$^{-2}$, Φ = 10 mm, \(L = 25 \text{ mm} \), and the excess slurry was blown off. Finally, the coated cordierite honeycomb was dried at 100 °C and calcined at 400 °C to yield the monolithic catalysts (Fig. 1).
Temperature programmed desorption (TPD) of CH₃OH, CO₂, and NH₃ (CH₃OH–, CO₂–, and NH₃–TPD) was performed on a Micromeritics Autochem II Chemisorption Analyzer, connected to a mass spectrometer or a TCD analyzer. 100 mg of catalysts were fixed in a quartz reactor and heated under a He flow of 40 mL·min⁻¹ at 300 °C for 4 hours to remove the adsorbates. Then the sample was cooled to room temperature, saturated with methanol or CO₂, and swept by flowing He overnight. In the TPD measurements the temperature of the samples was ramped to 400 °C at a heating rate of 10 °C·min⁻¹, and the desorbed species were monitored in situ by mass spectrometry (MS) at m/z = 31 for the detection of CH₃OH species and at m/z = 44 for CO₂ species.

The acidity of the Bi-Ce oxide samples was analyzed by NH₃–TPD. Before measurements the oxides were pretreated at 600 °C in an Ar flow for 1 h and then cooled to room temperature. Subsequently, the sample was exposed to a flow (30 mL·min⁻¹) of 20 vol.% NH₃ balanced with Ar for 0.5 h, followed by exposure to an argon flow until no NH₃ species could be detected anymore. The reactor temperature was programmed to increase at a ramp rate of 10 °C·min⁻¹, and the amount of NH₃ in the effluent was recorded as function of temperature.

2.4 Catalytic test
A pressurized flow-type reaction apparatus with a stainless steel reactor of ~ 11 mm inner diameter was used for the catalytic tests (Scheme S1 in the ESM). The BiₓCe₁₋ₓOₓ and bare CeO₂ monolithic catalysts were evaluated in the DMC synthesis from CH₃OH and CO₂ at 140 °C and 2.4 MPa. Typically, 500 mg of catalysts was coated onto the honeycomb ceramics (2.5 mL) to produce the monolithic catalysts (Fig. 1). Prior to catalytic tests, the reactor was sealed and purged by CO₂ flow for 5 min to remove the air. Then, a mixed gas flow, consisting of a 2:1 molar ratio of CH₃OH (0.145 mL·min⁻¹) and CO₂ (40 mL·min⁻¹) was introduced with a gas hourly space velocity (GHSV) of 2,880 mL·g⁻¹·h⁻¹. The product gas mixture was analyzed employing a GC-7890B equipped with a flame ionization detector (FID) through a ten-way valve. The CH₃OH conversion (XCH₃OH) and DMC selectivity (SDMC) were analyzed when the reactions were at a steady-state. XCH₃OH and SDMC was calculated as:

\[
X_{\text{CH}_3\text{OH}} = \frac{2C_{\text{DMC}} + C_{\text{HCHO}} + 2C_{\text{DME}}}{C_{\text{CH}_3\text{OH}} + 2C_{\text{DME}} + C_{\text{HCHO}} + 2C_{\text{DMC}}} \times 100\%
\]

\[
S_{\text{DMC}} = \frac{C_{\text{DMC}}}{C_{\text{DMC}} + C_{\text{HCHO}} + C_{\text{DME}} + C_{\text{CO}}} \times 100\%\]

Where, C represents the corresponding component concentration.

2.5 In situ infrared spectroscopy investigation
Diffuse reflection infrared Fourier transform (DRIFT) spectra were recorded on a Vertex 70v spectrometer (Bruker) equipped with a liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector (ID316, ZnSe Window) and an optical fiber (F321). Spectra were recorded at 4 cm⁻¹ spectral resolution and 60 kHz scanning velocity.

Modulation-excitation spectroscopy [29, 30] was carried out by periodically switching between two different gases: (CO₂ → He) and (CH₃OH + CO₂ → He) in two different experiments at 140 and 25 °C. The last five cycles were averaged into one cycle to enhance the S/N ratio and time resolution. Phase-sensitive detection [30] was used to further remove the noise and to obtain kinetic information of responding surface species. The phase-domain spectra were obtained via a mathematical treatment of the time-domain spectra according to the following equation:

\[
A_{\phi}(\bar{\nu})\cos(\psi_{\phi} + \varphi_{\delta}^{\phi} + \bar{\nu}) = \frac{2}{T} \int_{0}^{T} A(t, \bar{\nu})\sin(k\omega t + \varphi_{\phi}) dt
\]

where, T is the length of a cycle, ω is the demodulation frequency, \(\varphi_{\phi}\) is the demodulation phase angle, \(k\) is the demodulation index (\(k = 1\) in this study), and \(A(t, \bar{\nu})\) and \(A(\bar{\nu})\) are the active species responses in the time and phasedomains, respectively.

2.6 First-principle calculations
First-principles calculations were carried out using spin-polarized density functional theory (DFT) with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in VASP code [31, 32]. The DFT+U methodology with a value of \(U = 5.0\) eV was used in this work, which has been extensively utilized for ceria in the literature [33, 34]. The van der Waals states were expanded in the basis of plane waves with the core-valence interaction represented using the projector augmented wave (PAW) approach and a cutoff of 400 eV [32]. To model the CeO₂(111) surface, a periodic slab with a (5×5) surface unit cell was considered, containing nine atomic layers and a vacuum layer of 15 Å. The bottom three atomic layers of ceria substrate were fixed to mimic the bulk structure, whereas the other layers were allowed to relax during geometry optimizations. Due to the large supercell, k-point sampling was restricted to Γ point. (2×2×1) k-points were also used to validate our results. The climbing image nudged elastic band (CI-NEB) method was used for the transition state calculations [35]. The Gibbs adsorption free energy (ΔG) was calculated according to \(\Delta G = \Delta E + \Delta ZPE - T\Delta S\), and the zero point energy (ZPE) for the adsorbed species by using the finite-displacement method with the fixed substrate. The entropy corrections for the adsorbates on the surface were considered zero, since the main contribution to the entropy is due to the translational entropy.

3 Results and discussion
3.1 Characterization of BiₓCe₁₋ₓOₓ nanocomposites
XRD patterns of the series of BiₓCe₁₋ₓOₓ (\(x = 0.06\) to 0.24) nanocomposites prepared by the described coprecipitation method are shown in Fig. 2(a). The pure CeO₂: particles exhibit intense diffraction peaks at 28.4°, 33.0°, 47.4°, and 56.3° for the (111), (200), (220), and (311) faces of the cubic fluorite structure of CeO₂ (PDF#43-1002), respectively. Notably, no diffraction line indicative of isolated Bi₂O₃ oxide was observed, implying that the Bi species were well-dispersed in the lattice.
of CeO₂. Compared with the diffraction pattern of pure CeO₂, the intensity of the Bi_{0.12}Ce_{0.88}O₃ reflections gradually weakened with increasing concentration of Bi species and the reflection angle of the (111) facet shifted from 28.58° (for CeO₂) to 28.78° (Bi_{0.12}Ce_{0.88}O₃). Correspondingly, the lattice parameter gradually increased from 0.5418 nm (in CeO₂) to 0.5441 nm (Bi_{0.12}Ce_{0.88}O₃), corroborating that the Bi species were successfully incorporated into the CeO₂ lattice forming a solid solution.

Structural properties of the Bi_xCe_{1–x}O₃ nanocomposites are summarized in Table 1. Figure 2(b) shows the N₂-adsorption-desorption isotherms of the Bi_xCe_{1–x}O₃ samples. All samples showed Type IV isotherms. The N₂-uptake increased with higher Bi content of the nanocomposites, as also reflected by the increasing BET surface areas (Table 1). The surface properties of the Bi_xCe_{1–x}O₃ nanocomposites were investigated by Raman spectroscopy, EPR, TEM, EDX, XPS, and TPD of CO₂, CH₃OH, and NH₃.

The concentration of oxygen vacancies (Oᵥ) was analysed using Raman spectroscopy, EPR, and XPS. Figure 3(a) shows the Raman spectra of the different nanocomposites. Two distinct Raman bands appeared at 465 and 600 cm⁻¹. The band at 465 cm⁻¹ represents the symmetrical stretching F_{2g} mode of Ce-O [36]. The F_{2g} band was broaden and slightly shifted to higher wave numbers when the Bi³⁺ species were incorporated into the ceria lattice forming Bi_xCe_{1–x}O₃bimetallic oxides. The Oᵥ concentrations derived by evaluating the Raman spectra are presented in the ESM.

Figure 3(b) depicts the EPR spectra of CeO₂ and the Bi_xCe_{1–x}O₃ nanocomposite, typical for the Bi³⁺ species, such as hydroxyl groups (OH), respectively [39–42]. The oxygen vacancy (Oᵥ) concentrations estimated from these spectra are listed in Table 1. The concentration of Oᵥ in ceria (23.2%) increased strongly with incorporation of Bi³⁺ into the ceria lattice and reached a maximum of 37.3% in Bi_{0.12}Ce_{0.88}O₃, in accord with the strong EPR signal observed with this sample (Fig. 3(b)).

3.2 Catalytic performance in DMC synthesis
The catalytic performance of the Bi_xCe_{1–x}O₃ catalysts, coated on the honeycomb ceramics, were evaluated for the DMC synthesis. The reactions were carried out at a pressure of 2.4 MPa [24–26]. The results of the catalytic tests are presented in Fig. 7. Note that beside the main reaction (DMC synthesis), the formation of DME 2CH₃OH → CH₃OCH₃ + H₂O, formaldehyde CH₂OH + CO₂ → HCHO + CO + H₂O, and methanol decomposition CH₃OH + 2CO₂ → 3CO + 2H₂O were observed [15]. The catalytic performance over the best catalyst, Bi_{0.12}Ce_{0.88}O₃, was evaluated at different reaction temperatures from 100 to 180 °C. Figure 7(a) shows that the methanol conversion reached a maximum at around 160 °C, while the selectivity to DMC decreased monotonically with increasing temperature in the investigated temperature range. The optimal reaction temperature for the production of DMC was around 140 °C, taking into account both methanol conversion and DMC selectivity. In Fig. 7(b) the catalytic performances of the Bi_xCe_{1–x}O₃ catalysts with different Bi-content (x) are compared.

The curve of CH₂OH conversion shows a distinct maximum for the Bi_{0.12}Ce_{0.88}O₃ catalyst (dashed black line). This nanocomposite exhibited the highest activity (~ 21% conversion of CH₂OH), while, the DMC selectivity gradually decreased from 89% to 72% with increasing concentration of incorporated bismuth. Taken all together, the Bi_{0.12}Ce_{0.88}O₃ afforded the

Table 1 Structural and chemical properties of Bi_xCe_{1–x}O₃ nanocomposites

Oxides	(111) plane	Lattice parameter (nm)^a	Average crystal size (nm)^b	Acidity NH₃ uptake (cm³·NH₃·gcat.–¹·h⁻¹)^c	Conc. of Ce³⁺ (%)^d	Conc. of Oᵥ (%)^d		
Bare CeO₂		28.510	0.3128	0.5418	10.3	64.7	16.1	23.2
Bi_{0.24}Ce_{0.76}O₃	28.644	0.3135	0.5438	6.3	57.4	19.1	32.1	
Bi_{0.12}Ce_{0.88}O₃	28.786	0.3142	0.5441	6.1	52.9	17.7	30.1	

^aLattice parameter calculated according to Vegard's law; ^bCrystal size of the oxide nanocomposites determined by TEM; ^cDetermined by NH₃-TPD. ^dConcentration of Ce³⁺ and Oᵥ estimated from XPS data. The Oᵥ concentrations were estimated from the integrated peak areas, where A_{OL}, A_{OV} and A_{OH} represent the photoelectron peak areas of O₋, Oᵥ and Oₓ, respectively (Eq. (3)): |Oᵥ| % = \(\frac{A_{OV}}{A_{OV} + A_{OL} + A_{OH}} \times 100\% \).
best catalytic performance (highest yield of DMC), including CH₃OH conversion and DMC selectivity, which is mainly due to its surface properties (vide infra). The cordierite support without Bi-Ce oxide coating was inactive for the DMC synthesis under identical reaction conditions, corroborating that the catalytic active sites are associated with the Bi-Ce oxides.

Further, we examined the relationship between the catalytic activity and concentration of oxygen vacancies. Figure 7(c) shows that the DMC productivity of the BiₓCe₁₋ₓOₐ nanocatalysts is strongly enhanced with increasing Oᵥ concentration. Although the exact determination of the Oᵥ concentration by XPS may be subject to some uncertainty, there is no doubt that higher Oᵥ concentrations result in higher DMC productivity, as Raman and EPR investigations further substantiated. These results clearly indicate that oxygen vacancies play a crucial role in the catalytic process.

In DMC synthesis often deactivation of catalysts caused by the accumulation of carbonate species (e.g., CO₃²⁻) on the catalyst surface has been reported [8]. Therefore, we also investigated the long-term behavior of the best performing catalyst, Bi₀.₁₂Ce₀.₈₈Oₐ, under identical reaction conditions. As shown in Fig. 8, the CH₃OH conversion and selectivity to DMC remained stable at 20.₆±0.₃% and 85.₁±1.₁%, respectively, over the test duration of 45 h on stream. The DMC formation rate on Bi₀.₁₂Ce₀.₈₈Oₐ reached up to ~ 40 mmol DMC·g cat⁻¹·h⁻¹. Thus, the Bi-doped cerium oxide monolithic catalyst exhibited excellent stability in the continuous DMC synthesis, which is mainly due to the robust nature of the Bi-doped cerium oxides, as evidenced by the XRD and TEM analyses of the spent Bi₀.₁₂Ce₀.₈₈Oₐ catalyst after the long-term tests, Figs. S₄ and S₅ in the ESM.

3.3 CO₂- and CH₃OH-TPD

TPD was applied to study the adsorption properties of the Bi₀.₁₂Ce₀.₈₈Oₐ nanocomposite for methanol and carbon dioxide [39, 4₃]. As shown in Fig. 9(a), a broad desorption peak ranging from ~ 7₀ to ~ 2₀₀ °C was observed in the CO₂-TPD, which is attributed to the removal of bidentate carbonate species on the oxide surface [₄₄].

Note that the intensity of the desorption peak of the Bi₀.₁₂Ce₀.₈₈Oₐ nanocomposite is much higher than that of bare CeO₂, indicating that CO₂ adsorption is enhanced on Bi₀.₁₂Ce₀.₈₈Oₐ, which exhibits a much higher concentration of oxygen vacancies than bare ceria (cf. Table 1). The CH₃OH desorption profiles in (Fig. 9(b)) show two peaks centered at ~ 1₀₀ and 3₀₀ °C, which are assigned to associative and dissociative adsorption (CH₃O⁻) of CH₃OH, respectively [39]. Interestingly, the intensity of the latter peaks is similar, implying that the stability of methanol chemisorbed on Bi₀.₁₂Ce₀.₈₈Oₐ and bare CeO₂ is similar. The TPD results indicate that the Bi-doping strongly enhances the CO₂ adsorption uptake of ceria and that the activation of carbon dioxide plays a crucial role in the dimethyl carbonate synthesis from CO₂ and CH₃OH (vide infra).

The NH₃-TPD analyses showed that the acidic properties
Figure 8 Long-term stability of Bi$_{0.12}$Ce$_{0.88}$O$_{\delta}$ monolithic catalyst over ~45 h on-stream. Reaction conditions: 500 mg catalysts, GHSV of 2,880 mL·g$_{\text{cat}}$·h$^{-1}$, stoichiometric ratio of CH$_3$OH: CO$_2$ is 2:1 (mol/mol), 2.4 MPa, at 140 °C. (c) DMC productivity over the Bi$_{x}$Ce$_{1-x}$O$_{\delta}$ catalysts as a function of the concentration of oxygen vacancies (O$_v$).

Figure 9 (a) Temperature programmed desorption (TPD) of CO$_2$ (m/z 44) and (b) CH$_3$OH (m/z 31) on Bi$_{0.12}$Ce$_{0.88}$O$_{\delta}$ composite and CeO$_2$. Sample mass, 100 mg; heating rate, 10 °C·min$^{-1}$.

Figure 10 Phase-domain DRIFT spectra during: (a) CO$_2$ adsorption (switching between CO$_2$→He at 25 °C, and (b) (CH$_3$OH + CO$_2$)→He at 140 °C) over Bi$_{0.12}$Ce$_{0.88}$O$_{\delta}$. The formed and consumed species emerge as positive and negative IR bands, respectively.
product DMC, as the observation of a drastic decrease of reacted with the activated methoxy species to yield the final oxygen vacancy. CO2 is prone to adsorb perpendicular to the surface can facilitate the adsorption of CH3OH, as corroborated

Figure 11 Average oxygen vacancy (O\textsubscript{v}) formation energies. Only the top three atomic layers are shown for clear demonstration. Cerium, surface oxygen, subsurface oxygen, and Bi atoms are in white, red, pink, and blue, respectively.

Figure 12 Proposed reaction pathways at Bi doped reduced ceria surfaces. Only the top three atomic layers are shown for clear demonstration. Cerium, surface oxygen, subsurface oxygen, Bi, C, and H atoms are in white, red, pink, blue, grey, and green, respectively. \(E \) represents the energy barrier.

4 Conclusions

Bismuth doped Bi\textsubscript{1−x}Ce\textsubscript{x}O\textsubscript{2} nanocomposites with different Bi content were coated on a ceramic honeycomb and their catalytic properties were evaluated in the continuous synthesis of DMC from CO\textsubscript{2} and CH\textsubscript{3}OH in the absence of any dehydrating agent. The Bi\textsubscript{1−x}Ce\textsubscript{x}O\textsubscript{2} nanocomposites were synthesized by an aqueous-phase co-precipitation method and characterized by XRD, TEM, EDX, EPR, XPS, TPD, and DRIFTS. The population of oxygen vacancies in the Bi\textsubscript{1−x}Ce\textsubscript{x}O\textsubscript{2} nanocomposites was found to depend on the concentration of the Bi dopant and proved to be crucial for this reaction. The DMC production rate over the Bi\textsubscript{1−x}Ce\textsubscript{x}O\textsubscript{2} nanocomposites increased with higher oxygen vacancies (O\textsubscript{v}) concentration, reaching a maximum for Bi\textsubscript{12}Ce\textsubscript{8}O\textsubscript{24}. In-situ DRIFTS combined with modulation excitation spectroscopy and first-principle calculations suggest that DMC is formed via coupling of bidentate carbonate species with the activated methoxy species on the surface of these catalysts. The catalytic performance of Bi\textsubscript{12}Ce\textsubscript{8}O\textsubscript{24} is among the best achieved so far with ceria-based catalysts in the absence of a dehydrating agent. The performance of the Bi\textsubscript{12}Ce\textsubscript{8}O\textsubscript{24} catalyst was stable in long-term tests over 45 h on-stream. However, as with other catalysts, economic production of DMC can only be achieved if the thermodynamic limitation is overcome by in-situ removal of the water formed as by-product.
Acknowledgements

We acknowledged the financial supported by the National Natural Science Foundation of China (Nos. 21773189 and 11974195) and Department of Science and Technology of Sichuan Province (19ZDZX0113) and Liaoning Revitalization Talents Program (XLYC1807121).

Electronic Supplementary Material: Supplementary material (schematic diagram of reactor module, TEM images, element mapping, Bi 4f XPS spectra of Bi2O3, CeO2, nanoparticles, NH3-TPD, and Raman spectroscopy data) is available in the online version of this article at https://doi.org/10.1007/s12274-021-3669-4.

Funding note: Open access funding provided by Swiss Federal Institute of Technology Zurich.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] Souza, L. F. S.; Ferreira, P. R. R.; de Medeiros, J. L.; Alves, R. M. B.; Araújo, O. Q. F. Production of DMC from CO2 via indirect route: Technical-economical-environmental assessment and analysis. ACS Sustain. Chem. Eng. 2014, 2, 62–69.
[2] Albrecht, M.; Rodemerk, U.; Schneider, M.; Bröring, M.; Baabe, D.; Kondratenko, E. V. Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Appl. Catal. B: Environ. 2017, 204, 119–126.
[3] Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem. 2020, 22, 4002–4033.
[4] Wu, J. J.; Zhou, X. D. Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions. Chin. J. Catal. 2016, 37, 999–1015.
[5] Kuan, C.; Wang, T. F.; Chen, J. G. Hydrogenation of CO2 to methanol over Cu2CeTiO4 catalysts. Appl. Catal. B: Environ. 2017, 206, 704–711.
[6] Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, L.; Xiong, X. L.; Tang, B. et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.
[7] Zhang, Y. J.; Li, D. B.; Zhang, Y.; Cao, Y.; Zhang, S. J.; Wang, K. J.; Ding, F.; Wu, J. V-modified CuO-ZnO-ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation. Catal. Commun. 2014, 55, 49–52.
[8] Owen, R. E.; Puchinski, P.; Mattia, D.; Torrente-Murciano, L.; Ting, V. P.; Jones, M. D. Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. J. CO2 Util. 2016, 16, 97–103.
[9] Keller, N.; Rebmann, G.; Keller, V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. J. Mol. Catal A: Chem. 2010, 317, 1–18.
[10] Marin, C. M.; Li, A.; Bhalkikar, L.; Doyle, J. E.; Zeng, X. C.; Cheung, C. L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J. Catal. 2016, 340, 295–301.
[11] Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res. 2002, 35, 706–716.
[12] Schiffer, I.; González, U.; González-Macias, C. Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel 2016, 183, 253–261.
[13] Zhang, G. D.; Liu, H.; Xia, X. X.; Zhang, W. G.; Fang, J. H. Effects of dimethyl carbonate fuel additive on diesel engine performances. Proc. Inst. Mach. Eng. Part D 2005, 219, 897–903.
[14] Liu, Q.; Wu, L. P.; Jakstrell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.
[15] Chang, K.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613–631.
[16] Zhang, M.; Xu, Y. H.; Williams, B. L.; Xiao, M.; Wang, S. J.; Han, D. M.; Sun, L. Y.; Meng, Y. Z. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean Prod. 2020, 279, 123344.
[17] Santos, B. A. V.; Silva, V. M. T. M.; Rodrigues, A. E. Adsorption of H2O2 and dimethyl carbonate at high pressure over zeolite 3A in fixed bed column. Ind. Eng. Chem. Res. 2014, 53, 2473–2483.
[18] Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal. 2014, 4, 3877–3880.
[19] Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95–107.
[20] Li, C. F.; Zhong, S. H. Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO3 catalyst. Catal. Today 2003, 82, 83–90.
[21] Aresta, M.; Dibenedetto, A.; Pastore, C.; Cuooci, C.; Aresta, B.; Cometa, S.; de Giglio, E. Cerium(IV)oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carbonylation. Catal. Today 2008, 137, 125–131.
[22] Saada, R.; Kellici, S.; Heil T.; Morgan, T.; Saha, B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/graphene nanocomposite catalyst. Appl. Catal. B: Environ. 2015, 168–169, 353–362.
[23] Shi, Q. Q.; Ping, G. C.; Wang, X. J.; Xu, H.; Li, J. M.; Cui, J. Q.; Abroshan, H.; Ding, H. J.; Li, G. CuO/TiO2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate. J. Mater. Chem. A 2019, 7, 2253–2260.
[24] Chen, Y. D.; Tang, Q.; Ye, Z. B.; Li, Y.; Yang, Y.; Pu, H. Y.; Li, G. Monolithic ZnCe1–xO; catalysts for catalytic synthesis of dimethyl carbonate from CO2 and methanol. New J. Chem. 2020, 44, 12522–12530.
[25] Chen, Y. D.; Wang, H.; Qin, Z. X.; Tian, S. L.; Ye, Z. B.; Ye, L.; Abroshan, H.; Li, G. Ti, Ce1–xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem. 2019, 21, 4642–4649.
[26] Chen, Y. D.; Yang, Y.; Tian, S. L.; Ye, Z. B.; Tang, Q.; Ye, L.; Li, G. Highly effective synthesis of dimethyl carbonate over CuNi alloy nanoparticles @porous organic polymers composite. Appl. Catal. A: Gen. 2019, 587, 117275.
[27] Tomasić, V.; Jović, F. State-of-the-art in the monolithic catalysts/reactors. Appl. Catal. A: Gen. 2006, 311, 112–121.
[28] Jiang, D.; Wang, W. Z.; Gao, E. P.; Zhang, L.; Sun, S. M. Bismuth-induced integration of solar energy conversion with synergistic low-temperature catalysis in Ce1–xBi2O3-3 nanorods. J. Phys. Chem. C 2013, 117, 24242–24249.
[29] Andanson, J. M.; Baiker, A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem. Soc. Rev. 2010, 39, 4571–4584.
[30] Urakawa, A.; Bürgi, T.; Baiker, A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis. Chem. Eng. Sci. 2008, 63, 4902–4909.
[31] Blöchl, P. E. Projector Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979.
[32] Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set. Phys. Rev. B 1996, 54, 11169–11186.
[33] Ganduglia-Pirovano, M. V.; da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO$_2$(111). Phys. Rev. Lett. 2009, 102, 026101.
[34] Li, H. Y.; Wang, H. F.; Gong, X. Q.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Hu, P. Multiple configurations of the two excess 4f electrons on defective CeO$_2$(111): Origin and implications. Phys. Rev. B 2009, 79, 193401.
[35] Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
[36] Chen, A. L.; Zhou, Y.; Ta, N.; Li, Y.; Shen, W. J. Redox properties and catalytic performance of ceria-zirconia nanorods. Catal. Sci. Technol. 2015, 5, 4184–4192.
[37] Wang, Z. Q.; Zhang, M. J.; Hu, X. B.; Dravid, V. P.; Xu, Z. N.; Guo, G. C. CeO$_2$	extsubscript{x} quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. Chem. Commun. 2020, 56, 403–406.
[38] Santra, C.; Auroux, A.; Chowdhury, B. Bi doped CeO$_2$ oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC Adv. 2016, 6, 45330–45342.
[39] Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TeO$_2$-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.
[40] Zheng, J. H.; Jiang, Q.; Lian, J. S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011, 257, 5083–5087.
[41] Zhang, X. Y.; Qin, J. Q.; Xue, Y. N.; Yu, P. F.; Zhang, B.; Wang, L. M.; Liu, R. P. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596.
[42] Li, M. M.; Wang, P. F.; Ji, Z. Z.; Zhou, Z. R.; Xia, Y. G.; Li, Y.; Zhan, S. H. Efficient photocatalytic oxygen activation by oxygen-vacancy-rich CeO$_2$-based heterojunctions: Synergistic effect of photoexcited electrons transfer and oxygen chemisorption. Appl. Catal. B: Environ. 2021, 289, 120020.
[43] Shi, Y. Y.; Tian, S. L.; Shi, Q. Q.; Zhang, Y. F.; Waheed, A.; Cao, Y.; Li, G. Cascade aldol condensation of an aldehyde via the aerobic oxidation of ethanol over an Au/NiO composite. Nanoscale Adv. 2019, 1, 3654–3659.
[44] Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO$_2$ and methanol over Zr-doped CeO$_2$ nanorods. ACS Catal. 2018, 8, 10446–10456.
[45] Turek, A. M.; Wachs, I. E.; DeCanio, E. Acidic properties of alumina-supported metal oxide catalysts: An infrared spectroscopy study. J. Phys. Chem. 1992, 96, 5000–5007.
[46] di Cosimo, J. I.; Diez, V. K.; Xu, M.; Iglesia, E.; Apesteguía, C. R. Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 1998, 178, 499–510.
[47] Baumgarten, E.; Zachos. A. Infrared spectroscopical investigations on the adsorption of CO$_2$ on aluminas and silica aluminas at elevated temperatures. Spectrochim. Acta A 1981, 37, 93–98.
[48] Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO$_2$ methanation over Ru-based catalysts. Appl. Catal. B: Environ. 2017, 219, 715–726.
[49] Jung, K. T.; Bell, A. T. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. J. Catal. 2001, 204, 339–347.