In vitro antibacterial activity of dried extract from Anredera vesicaria rhizomes

Abstract

Anredera vesicaria is known by the common name of “yucahiedra”. The ethanolic maceration of their rhizomes is used as anti-inflammatory in traditional medicine and contains mucilages, saponins, phenolic compounds and flavonoids. There are no reports of possible antibacterial activity. To evaluate the antibacterial activity in vitro of the ethanolic extract from A. vesicaria rhizomes, plant rhizomes were collected and disinfected, dried and pulverized. The biomass was treated with 70% ethanol under ultrasound. The extract obtained was concentrated to dryness and subjected to an in vitro antibacterial study by the Bauer-Kirby and broth micro-dilution methods.

The ethanolic extract of A. vesicaria rhizomes showed antibacterial activity in vitro against P. aeruginosa, S. aureus, S. typhimurium and E. coli. In all cases inhibition halos were obtained above 9mm. The best results were obtained against S. typhimurium and S. aureus with minimal inhibitory concentrations of 46.87 and 46.93μg/mL respectively.

Keywords: Anredera vesicaria, ultrasound assisted extraction, phenolic compounds, antibacterial test

Abbreviations: ATCC, americantypeculturecollection; DMSO, dimethylsulfoxide; MIC, minimum inhibitory concentration; ID, diameter of the inhibition

Introduction

After the pharmaceutical industry was devoted exclusively to the manufacture of synthetic drugs leaving behind the old medicines based on plant extracts, today there is a qualitative change in the industrial programs dedicated to the search for new medicines of herbal origin.1 Plants are one of the largest reservoirs of medicinal wealth in nature and the benefits to health, as well as their economic value have motivated a growing attention in recent decades. Anredera vesicaria, known by the common name yucahiedra is a perennial herbaceous plant belonging to the Basellaceae family. The maceration in ethanol of its rhizomes is used in eastern Cuba for the treatment of wounds, blows, fractures and bruises.2 Polyphenols are related to the anti microbial and antioxidant activities of many plants,3,4 and the rhizomes of A. vesicaria have a high content of phenolic compounds and flavonoids,4 however, no reports of the antibacterial activity of this plant have been observed. In this work we describe a preliminary study of the antibacterial activity of the ethanolic extracts obtained from rhizomes of A. vesicaria.

Materials and methods

The plant material was collected on June 18, 2017 in Palmas Altas, community belonging to the municipality of Manzanillo, Granma province, Cuba (20° 19’54.588” N -77° 4’19.128” E) at 8:10 a.m., at a temperature of 31.4 °C with a relative humidity of 73%. The experimental work was developed in the Natural Products Laboratory of the Center for Applied Chemistry Studies of the University of Granma. A sample of rhizomes of A. vesicaria was dried for a week in the shade on perforated cardboard sheets, stirring the material twice a day; this action was completed in a stove with air circulation at 40°C for 4h. It was then pulverized until obtaining a particle size of 0.5mm in diameter, and it was subjected to an ultrasound extraction process using 70% ethanol as Solvent. The extract obtained was concentrated in a rotary evaporator. The Phytochemical analysis of extractwas carried out by using following standard methods.5-10 The reagents and solvents used were of “pure” or “analytical” quality from Merck. The antibacterial activity of the extract was evaluated by the method of diffusion method in agar by Bauer-Kirby12 surface disc dissemination and by the method of micro dilution in broth13 against a battery composed of strains of Pseudomonas aeruginosa (wild), Staphylococcus aureus (wild), Escherichia coli (wild) and Salmonella typhimurium (ATCC 14028). 4 treatments were applied with 3 replications in each applied method, using as a negative control dimethyl sulfoxide (DMSO) that also served as solvent for the dry extract, and as a positive control disks of the commercial antibiotic chloramphenicol of 30μg/disc (Sensi-DiscTM, France).14 The variables measured were:

a. Diameter of the inhibition halo (ID) (mm) whose results were expressed as the average diameter of the inhibition halos in each treatment, and
b. Minimum inhibitory concentration (MIC), which was expressed as the minimum concentration of the extract that completely inhibited bacterial growth in each treatment with the naked eye in a range of concentration of the extract between 2-1500μg/mL.

Results and discussion

Considering that the population uses the ethanolic extract of rhizomes of A. Vesicaria (Figure 1) for medicinal purposes, an extract was obtained in 70% ethanol that was treated until obtaining a dry extract which was preserved for the microbiological study.
In vitro antibacterial activity of dried extract from *Anredera vesicaria* rhizomes

Copyright: © 2018 Rodríguez et al.

Citation: Rodríguez ET, Frías MC, Galardis MB, et al. In vitro antibacterial activity of dried extract from *Anredera vesicaria* rhizomes. *Adv Plants Agric Res.* 2018;8(3):237–239. DOI: 10.15406/apar.2018.08.00320

Phytochemical analysis

A phytochemical analysis was performed from the ethanolic extract; the results are shown in Table 1. The chemical composition of the ethanolic extract of rhizomes matches with those reported by de la Cruz et al. The presence of alkaloids and abundance of phenols and flavonoids give the plant antibacterial potential activity. These results agree with those reported for other species from anrederagenus.

Anti bacterial activity in vitro

Four bacterial strains of pathogenic and investigative interest were evaluated. The results obtained are shown in Table 2.

Minimum inhibitory concentration

Table 3 shows the MIC values obtained in the evaluation of the dry extract of the rhizomes of *A. Vesicaria* against a gram-positive strain (*S. aureus*) and 3 gram-negative strains (*E. coli*, *P. aeruginosa* and *S. typhimurium*).

The zone of inhibition in the experiment was conceived as the area formed around the antibiotic discs, here bacterial growth was completely inhibited (Figure 1). The result of each trial (Table 1) was reported as a halo of inhibition. The ethanolic extract of rhizomes showed anti bacterial action against Gram-positive and Gram-negative strains. In all cases, halos of inhibition greater than 9mm were observed, highlighting the effect against *S. aureus* and *P. Aeruginosa* with halos of inhibition of 15 and 18 mm respectively. These results are encouraging because it is not common to observe halos of inhibitions pronounced in plant extracts. The MIC values for *S. aureus* and *S. Triphtmumurium* were very close to each other, however, in the *E. Coli* test a higher concentration of the extract (187.5) was needed to inhibit bacterial growth (Table 3). This could be due to the fact that *E. Coli* is a gram-negative bacterium whose cell wall has two membranes in the form of lipoprotein matrices with intermediate inclusions of peptidoglycans that can hinder the diffusion of certain molecules.

A highly acylated lipopolysaccharide located in the external leaflet has been detected of the outer membrane of gram-negative bacteria at hatis essential to maintain the barrier function that prevents the passive diffusion of hydrophobic solutes such as antibiotics and detergents inside the cell. The strain of *E. Coli* use dis wildly, therefore, it is more resistant to the action of antibacterials. The result so obtained constitute the first report of *in vitro* antibacterial activity of *A. vesicaria* and may contribute to justify the medicinal properties attributed to this plant.

Table 1 Phytochemical analysis of rhizomes of *Anredera vesicaria*

Metabolite	Ethanolic extract
Carbohydrates	+
Phenols	++
Flavonoids	++
Alkaloids (Mayer)	+
Alkaloids (Wagner)	+
Triterpenes and steroids	+
Saponins	++
Mucilages	++

Legend: (-) absent, (+) present, (++) abundant

Table 2 Antibacterial activity of the dry extract of *A. vesicaria* rhizomes

Product	Halos of inhibition (X mm)			
	S. typhimurium (ATCC 14028)	E. coli (Salvaje)	S. aureus (Salvaje)	P. Aeruginosa (Salvaje)
Ethanol extract of rhizomes	10	11	15	18
DMSO	-	-	-	-
Chloramphenicol	16	20	21	17

Table 3 Minimum inhibitory concentration of dry extract of *A. vesicaria* rhizomes

Extract	Minimum inhibitory concentration (X μg/mL)			
Ethanolic extract (rhizomes)	S. typhimurium (ATCC 14028)	E. coli (Wild)	S. aureus (Wild)	P. aeruginosa (Wild)
	46.87	187.5	46.93	93.75

Figure 1 Foliage and rhizomes from *A. vesicaria*.
Conclusion

The ethanolic extract of *A. vesicaria* rhizomes presented remarkable *in vitro* antibacterial activity against gram-positive and gram-negative strains. The metabolites responsible for the antibacterial activity could be the phenolic compounds, flavonoids and alkaloids.

Acknowledgements

None.

Conflict of interest

This research was completely financed by the University of Granma and there are not conflicts of interests among the involved parts.

References

1. Ruiz J, Roque M. Actividad Antimicrobiana De Cuatro Plantas Del Nor-Oriente Peruano. Cienc e Investig 2009;12(1):41–47.
2. Roig Mesa JT. Diccionario botánico de nombres vulgares cubanos. Vol 2; 2nd ed. Editorial Científico-Técnica. La Habana.1988; 1142 p.
3. Quideau S, Deffieux D, Douat-Casassus C, et al. Plant Polyphenols: Chemical Properties, Biological Activities and Synthesis. Angew Chem Int Ed Engl. 2011;50(3):586–621.
4. Katalinic V, Mozina SS, Generalic I, et al. Phenolic profile, anti oxidant capacity, and anti microbial activity of leaf extracts from six Vitis vinifera L. varieties. Int J Food Prop. 2013;16(1):45–60.
5. Silva JC, Rodrigues S, Feás X, et al. Anti microbial activity, phenolic profile and role in the inflammation of propolis. Food Chem Toxicol. 2012;50(5):1790–1795.
6. de la Cruz Frías M, Torres Rodríguez E, Morales León JA, et al. Identificación de metabolitos secundarios de Anredera vesicaria (Yucahiedra). Rev Cub Plant Med. 2016;21(2):215–222.
7. Cuba. Ministerio de Salud Pública, NRSP 309. Medicamentos de origen vegetal: droga cruda. Métodos de ensayos. 1st ed. MINSAP, La Habana; 1992; 10 p.
8. Torres E, Guillén S, Hermosilla R. Empleo de ultrasonido en la extracción de curcumina a partir de sufrente natural. Rev Cub Plant Med. 2014;19(1):1–7.
9. Sołowra A. Medicinal Plants And traditional Medicine in Africa. Spectrum Books Ltd., Ibadan, Nigeria; 1993;191–289.
10. Tease GE Evans WC. Pharmacognosy, 11th ed. Bailliere Tindall, London; 1987; p. 45–50.
11. Harborne JB. Phytochemicals Methods. Chapman and Hall Ltd., London; 1973;49–188.
12. Bauer AW, Kirby WMM, Sherris JC, et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–496.
13. Soto E, Halliday-Simmons I, Francis S, et al. Improved Broth Micro dilution Method for Antimicrobial Susceptibility Testing of Francissella Noatunens is Orientalis. J Aquat Anim Health. 2016;28(3):199–207.
14. BBLTM Sensi-Disc TM Antimicrobial Susceptibility Test Discs.
15. Ratna Djamil, Wiwi Winarti, Sarah Zaidan, et al. Antidiabetic Activity of Flavonoid from Binahong Leaves (Anredera cordifolia) Extract in AlloxanInduced Mice. J Pharmocogn Nat Prod. 2017;3(2):1–4.
16. Sri MurniAstuti, Mimi Sakinah AM, Retno Andayani BM, et al. Determination of Saponin Compound from Anredera cordifolia (Ten) Stuein Plant (Binahong) to Potential Treatment for Several Diseases. Journal of Agricultural. 2011;3(4):224–232.
17. Manta Saxena, Jyoti Saxena, Rajeev Nema, et al. Phytochemistry of Medicinal Plants. Journal of Pharmacognosy and Phytochemistry. 2013;1(6):168–182.
18. Rodríguez Saucedo EN. Uso de agentes antimicrobianos naturalesenlaconservación de frutas y hortalizas. Ra Xinhat. 2011;7(1):153–70.
19. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308–316.
20. Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–39.
21. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbio. 2013;16(6):779–785.
22. Raivio TL, Leblanc SKD, Price NL. The Escherichia coli Cpx Envelope Stress Response Regulates Genes of Diverse FunctionThatImpactAntibioticResistance and Membrane Integrity. J Bacteriol. 2013;195(12):2755–2767.