Research Paper
Effect of 6 Weeks of Aerobic Training on TGF-β1, Myostatin and Matrix Metalloproteinase 9 Genes Expression in the Tendon of Fast- and Slow-Twitch Muscles of Male Wistar Rats

Ghasem Mohammadnezhad1, *Hasan Matin Homaee1, Farshad Ghazalian2

1. Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
2. Department of Exercise Physiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Citation: Mohammadnezhad G, Matin Homaee H, Ghazalian F. [Effect of 6 Weeks of Aerobic Training on TGF-β1, Myostatin and Matrix Metalloproteinase 9 Genes Expression in the Tendon of Fast- and Slow-Twitch Muscles of Male Wistar Rats (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(3):278-291. https://doi.org/10.32598/JAMS.23.3.5849.2

Background and Aim
Tendon, like the skeletal muscle, exhibits mechanical and morphological adaptations resulting from exercise training; however, little is known about the basic cellular and molecular mechanisms that regulate these responses. The aim of the present study was therefore to investigate the effect of 6 weeks of aerobic training on the TGF-β1, myostatin and MMP9 mRNAs expression in the tendon of fast- and slow-twitch muscles.

Methods & Materials
For this purpose, 12 male Wistar rats at 8 weeks of age were randomly divided into two groups: experimental (n=6) and control (n=6). The exercise group performed aerobic training for 6 weeks, 5 sessions per week. Forty-eight hours after the last training session, all rats were sacrificed and the tendons of soleus and Extensor Digitorum Longus (EDL) muscles were extracted. Expression of TGF-β1, myostatin and MMP9 mRNAs were assayed using RealTime-PCR. Independent t-test was also used for statistical analysis.

Ethical Considerations
All stages of the study were conducted according to the ethical guidelines and authorization of Research Deputy of Islamic Azad University, Central Tehran Branch No. IR.IAU.PS.REC.1398.296.

Results
The results showed that the expression of TGF-β1 mRNA in EDL and soleus tendons significantly increased (P≤0.001), whereas the expression of myostatin in EDL tendon was significantly reduced (P≤0.001). Increased mRNA expression of MMP9 in the tendon of EDL and soleus muscles was not statistically significant (P>0.05).

Conclusion
It seems that aerobic exercise can modulate the expression of genes involved in the regulation of tendon collagen in a muscle type-dependent manner.

Key words:
Aerobic training, Tendon, TGF-β1, MMP9, Myostatin

Extended Abstract

1. Introduction
Tendon tissue along the Extracellular Matrix (ECM) is a muscle that mechanically and structurally adapts to the muscle with mechanical load [2]. Although the mechanical and morphological changes that occur in tendons in response to resistance exercise are well documented, little is known about the underlying cellular and molecular mechanisms that regulate these responses.

* Corresponding Author:
Hasan Matin Homaee, PhD.
Address: Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Tel: +98 (912) 3680810
E-mail: hasanmatinhomaee@gmail.com
The “Transforming Growth Factor Beta 1 (TGF-β1) family” messaging pathway appears to play a major role in tendon adaptation to resistance exercise. Myostatin is a member of the large TGF-β family, the expression of which negatively regulates skeletal muscle growth [5].

Both TGF-β1 and myostatin stimulate tendon fibroblast proliferation and type I collagen synthesis [4, 6]. Matrix Metalloproteinases (MMPs) are zinc-dependent endopeptidases that break down collagen and other structural molecules. MMPs are essential for baseline ECM homeostasis. The expression of MMPs is regulated by various cytokines and messenger molecules, including TGF-β1 [2].

However, the exact components of the signal transduction pathways that regulate MMP expression following exercise have not yet been fully elucidated. Therefore, aim of the present study was to investigate the effect of 6 weeks of aerobic exercise on the expression of TGF-β1, myostatin and MMP9 genes in the fast and slow-twitch muscle tendons of male Wistar rats.

2. Materials and Methods

Twelve male Wistar rats (8-week-old) were randomly divided into 2 groups of “exercise” (n=6) and “control” (n=6). The exercise group performed aerobic exercise for 6 weeks, which included 5 sessions of treadmill running per week for 6 weeks [13].

Forty-eight hours after the last training session, all rats were killed. Then, the Soleus Tendon (SOL) and the Extensor Digitorum Longus muscle (EDL) of their right foot were immediately and carefully extracted and kept at minus 80°C for further measurements. The mRNA expression levels of TGF-β1, myostatin and MMP9 genes were measured using Real time-PCR. Independent t-test was used to analyze the obtained data.

3. Results

The results showed that there was a significant difference between the TGF-β1 gene values of EDL and soleus muscles in the aerobic exercise group compared to the control group. TGF-β1 gene expression in EDL and soleus muscles was significantly increased in the aerobic exercise group compared to the control group (EDL muscle: 0.63±0.09 compared to 0.14±0.04, P≥0.001, and soleus muscle: 0.36±0.08 compared to 0.17±0.04, P≥0.001) (Figure 1).

The results of independent t-test showed that myostatin gene expression was significantly reduced only in the EDL muscle of the aerobic exercise group compared to the control group (EDL muscle: 0.3±0.1 compared to 0.58±0.07, P≥0.001, and soleus muscle: 0.20±0.09 compared to 0.29±0.05, P≥0.001) (Figure 2).

Also, no significant difference was observed between MMP9 gene expression in EDL and soleus muscles between the aerobic exercise and control groups (EDL muscle: 0.21±0.08 compared to 0.15±0.02, P>0.05, and soleus muscle: 0.27±0.07 compared to 0.19±0.1, P>0.05) (Figure 3).

4. Discussion

The results of the present study showed that following a 6-week aerobic exercise program, TGF-β1 mRNA expres-
sion increased in both EDL and soleus muscles. Heniemir et al. (2007) reported increased mRNA levels of TGF-β1 genes and type I and III collagens in the gastrocnemius muscle and Achilles tendon following isometric, concentric and eccentric contractions by stimulating the sciatic nerve for 4 days [15].

Also, another study showed that long-term endurance training caused a significant increase in TGF-β1 mRNA in soleus muscle [8]. The study showed that the antioxidant status of muscle affected the expression of TGF-β1 [16]. Evidence suggests that TGF-β1 is the main mediator of inducing collagen synthesis in fibroblasts through mechanical loading [15] and a similar role for TGF-β1 in tendons has been suggested [17].

An increase of more than 453% in the expression of TGF-β1 mRNA in the EDL muscle tendon, compared with a 203% increase in its expression in the soleus tendon following aerobic exercise - observed in the present study - is more likely to indicate the involvement of fast-twitch muscles in aerobic exercise, which are less used in normal daily practices.

There is much evidence to support the idea that myostatin regulation is specific to the type of muscle fibers and is strongly associated with myosin heavy chain IIb isoform [21], and High concentrations of myostatin protein have been observed in fast-twitch muscle compared to slow-twitch fibers [22].

These reports could justify the results of the present study, which showed a more than 49% reduction in myostatin mRNA expression in the EDL muscle compared with a slight 24% reduction in the expression of this gene in the soleus muscle following aerobic exercise.

Exercise appears to damage collagen tissue in skeletal muscle and tendons, and MMP9 levels increase to remove these damaged elements from tissue. In addition, MMPs have been reported to be essential for the induction of exercise-induced angiogenesis in skeletal muscle [25].

In the present study, exercise increased MMP9 expression by 40% in EDL muscles and by 28% in soleus muscles; but these changes were not statistically significant. Consistent with the results of the present study, Rollman et al. (2009) reported a non-significant increase in MMP9 expression in the human vastus lateralis muscle following aerobic exercise [26].

The decrease in myostatin levels following aerobic exercise observed in the present study can be considered as a mechanism for the relative increase in MMP9 mRNA expression in tendon tissue. Mendias et al. (2015) reported a 141% increase in MMP9 gene expression in the tendon tissue of myostatin-free rats (rats whose myostatin was genetically inactivated) [18].

In addition, activation of the ERK1/2 and JNK-NF-κB signaling pathways via ROS has been shown to be essential for the positive regulation/activation of MMP9 and cell migration induced by TGF-β1 [27], which can be another mechanism to justify the relative increase in MMP9 mRNA expression in tendon tissue in this study.

5. Conclusion

In general, aerobic exercise positively regulates basal levels of TGF-β1 gene and negatively regulates basal levels of myostatin gene in fast- and slow-twitch muscle tendons, and these effects are significantly greater in fast-twitch muscle tendons. It seems that aerobic exercise can modulate the expression of genes Involved in the regulation of tendon tissue collagen in a muscle-dependent manner.

Ethical Considerations

Compliance with ethical guidelines

All stages related to animals were performed in accordance with Ethical Instructions and after obtaining license (Code: IR.IAU.PS.REC.1398.296) from the Vice Chancellor for Research, Islamic Azad University Central Tehran Branch.
Funding

The present paper was extracted from the PhD. thesis of the second author, Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, Central Tehran Branch.

Authors’ contributions

Conceptualization, review, subject definition, writing – review & editing: All authors; Methodology, data analysis: Ghasem Mohammadnejad.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Dr. Reza Gharakhanloo, Department of Physical Education and Sports Science, Faculty of Human Sciences, Tarbiat Modares University, and Faculty of Human Sciences for their cooperation in conducting this study.
اثر 6 هفته تمرین هوایی بر بیان های TGF-β1، میوستاتین و ماتریکس متالوپروتئیناز 9 در تاندون عضلات تند و کند انقباض موش های نر ویستار

قسمت مقدمه

مطالعات اخیر نشان داده است که تمرین هوایی می تواند نیازهای سوخت و سازی تاندون را افزایش دهد[1]. به نظر می رسد که تمرین هوایی تاندون را نشان می دهد که عملکرد بیشتری در مواجهه با استرس نمایش میدهد[2]. تاکنون تعداد کمی از مطالعات در مورد تاثیر تمرین هوایی بر بیان های TGF-β1، میوستاتین و ماتریکس متالوپروتئیناز 9 در تاندون عضلات تند و کند انقباض موش های نر ویستار تحقیق نشده است. بنابراین، در این مطالعه به بررسی اثر شش هفته تمرین هوایی بر بیان های TGF-β1، میوستاتین و ماتریکس متالوپروتئیناز 9 در تاندون عضلات تند و کند انقباض موش های نر ویستار می پردازیم.

تحقق

مواد و روش‌ها

پتولوژی ورزشی دانشگاه آزاد اسلامی واحد تهران مرکزی، گروه فیزیولوژی ورزشی.

نتایج

در حالی که مطالعات اخیر نشان داده است که تمرین هوایی می تواند نیازهای سوخت و سازی تاندون را افزایش دهد[1]. به نظر می رسد که تمرین هوایی تاندون را نشان می دهد که عملکرد بیشتری در مواجهه با استرس نمایش میدهد[2]. تاکنون تعداد کمی از مطالعات در مورد تاثیر تمرین هوایی بر بیان های TGF-β1، میوستاتین و ماتریکس متالوپروتئیناز 9 در تاندون عضلات تند و کند انقباض موش های نر ویستار تحقیق نشده است. بنابراین، در این مطالعه به بررسی اثر شش هفته تمرین هوایی بر بیان های TGF-β1، میوستاتین و ماتریکس متالوپروتئیناز 9 در تاندون عضلات تند و کند انقباض موش های نر ویستار می پردازیم.

کلیدواژه‌ها

تمرين هوایی، تاندون، TGF-β1، میوستاتین، ماتریکس متالوپروتئیناز 9 (MMP9)
میکرو لیتر، میلی گرم بافت اضافه و پس از مخلوط کردن به درجه سانتی گراد، با دقت استخراج و در نیتروژن مایع قرار داده شد و به در ناحیه شکم و قفسه سینه ایجاد شد و با کشیدن خون به میلی گرم / کیلوگرم، بیهوش شدند. سپس، برش و ساعت بعد از آخرین جلسه تمرین، تمامی رت ها از طریق عضلات شکم و قفسه سینه با درجه سانتی گراد، رطوبت حدود ۱۸-۱۷ درجه سانتی گراد و با ایجاد تزریق داخل صفاقی مخلوط کتامین (۴۵میلی لیتر ترایزول، میوستاتین و ماتریکس متالوپروتئیناز (۱۲:۱) در هفته دوم با سرعت ۳۰ مقیسه و بازکردن بلند انگشت‌ها، در هفته دوم با سرعت ۱۵-۱۴ مقیسه و در هفته ششم با سرعت ۱۱-۱۰ مقیسه، در هفته ششم با سرعت ۸-۷ مقیسه، در هفته ششم با سرعت ۴-۳ مقیسه. هر جلسه تمرینی با مدت ۷ دقیقه و در هفته ششم با مدت ۴ دقیقه. به منظور برخورداری از ترمینالی بین جلسات راه رفتن و دویدن با سرعت ۵-۵ متر در دقیقه و شیب صف درم به مدت ۱۰ دقیقه، میلی لیتر در تاندون عضلات تند و کند انقباض موش‌های نر ویستار انجام شد. آزمودنی‌های تحقیق حاضر دوازده سر رت نر بالغ نژاد در تاندون عضلات تند و کند انقباض موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این مطالعه به‌طور کلی نشان می‌دهد که ترمینالی می‌تواند اثر مثبتی در فیبروبلاست‌ها و ترمینالی‌ها داشته باشد. این نتایج با توجه به اینکه ترمینالی می‌تواند اثر مثبتی در فیبروبلاست‌ها و ترمینالی‌ها داشته باشد، این نتایج با توجه به اینکه ترمینالی می‌تواند اثر مثبتی در فیبروبلاست‌ها و ترمینالی‌ها داشته باشد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد. در اینجا نشان می‌دهد که هیدروکسیلیت آنزیم‌های ترمینالی، با بهره‌مندی از ترمینالی موش‌های نر ویستار انجام شد. این اثرات با انقباض موش‌های نر ویستار انجام شد.
برای ایده‌گیری سطح بیان mRNA در تاندون عضلات تند و کم انقباض موش‌های نر، ویستا در دمای 1399 واکنش مورد ارزیابی قرار گرفت. از ژن گلیسرآلدهید سنتز و به دمای منفی شد؛ به طوری که کمترین میزان دایمر و بهترین

Accession Number	Product Length	Tm	Primer (5'→3')	Forward/Reverse	Gene
NM_021579-2	400	89	CAACACGAGCTATGACAAA	F	TGF-β1
NM_019151-1	74	69	CTCAACGAGAATGATGCAAA	F	Myostatin
NM_091055-1	160	76	CCAACGAGCTATGACAAA	F	MMP-9
XM_01759968-1	121	88	AGGTTCAAGGACACGTGAGG	R	GAPDH

公然 مدل سرد (Merek, CAS 67-66-3 102445, Germany) و با استفاده از وسایل RNase free مراحل سنتز و اعمال RNA اضافه شده و در دمای منفی 20 درجه سانتی‌گراد کاهش یافت و در دمای 15 درجه سانتی‌گراد ژن ویستا به شدت نمایش داده شد. از ژن گلیسر آلدهید سنتز و به دمای منفی شد و بهترین

Accession Number	Product Length	Tm	Primer (5'→3')	Forward/Reverse	Gene
NM_021579-2	400	89	CAACACGAGCTATGACAAA	F	TGF-β1
NM_019151-1	74	69	CTCAACGAGAATGATGCAAA	F	Myostatin
NM_091055-1	160	76	CCAACGAGCTATGACAAA	F	MMP-9
XM_01759968-1	121	88	AGGTTCAAGGACACGTGAGG	R	GAPDH

در انتهای مال روی بندخت خارج شد و دست‌پوش RNA با استفاده از وسایل RNase free مراحل سنتز و اعمال RNA اضافه شده و در دمای منفی 20 درجه سانتی‌گراد کاهش یافت و در دمای 15 درجه سانتی‌گراد ژن ویستا به شدت نمایش داده شد. از ژن گلیسر آلدهید سنتز و به دمای منفی شد و بهترین

Accession Number	Product Length	Tm	Primer (5'→3')	Forward/Reverse	Gene
NM_021579-2	400	89	CAACACGAGCTATGACAAA	F	TGF-β1
NM_019151-1	74	69	CTCAACGAGAATGATGCAAA	F	Myostatin
NM_091055-1	160	76	CCAACGAGCTATGACAAA	F	MMP-9
XM_01759968-1	121	88	AGGTTCAAGGACACGTGAGG	R	GAPDH

Accession Number	Product Length	Tm	Primer (5'→3')	Forward/Reverse	Gene
NM_021579-2	400	89	CAACACGAGCTATGACAAA	F	TGF-β1
NM_019151-1	74	69	CTCAACGAGAATGATGCAAA	F	Myostatin
NM_091055-1	160	76	CCAACGAGCTATGACAAA	F	MMP-9
XM_01759968-1	121	88	AGGTTCAAGGACACGTGAGG	R	GAPDH

Accession Number	Product Length	Tm	Primer (5'→3')	Forward/Reverse	Gene
NM_021579-2	400	89	CAACACGAGCTATGACAAA	F	TGF-β1
NM_019151-1	74	69	CTCAACGAGAATGATGCAAA	F	Myostatin
NM_091055-1	160	76	CCAACGAGCTATGACAAA	F	MMP-9
XM_01759968-1	121	88	AGGTTCAAGGACACGTGAGG	R	GAPDH
گروه شاهد

شناخت هدنده برای تمرین هوازی می‌تواند تندیس میوستاتین را در عضلات تاندون عضله نعلی کاهش دهد. حجم دریافتی تاندون عضله نعلی در گروه تمرین مقاومتی کاهش نشان داد، اما در مقایسه با گروه کنترل ناهنجاری معنی‌داری نداشت.

میوستاتین در عضله نعلی نیز کاهش یافت، ولی از لحاظ آماری ناهنجاری معنی‌داری نداشت.

میزان بیان mRNA میوستاتین در عضله نعلی نیز کاهش یافت ولی از لحاظ آماری ناهنجاری معنی‌داری نداشت. همچنین، در تحقیق دیگری نشان داده شد که تغییرات نسبی بیان ژن MSTN در عضله نعلی به شکل معنی‌داری افزایش می‌یابد.

نتایج آزمون در سیستم تناسلی نشان داده که بیشتر مطالعات و گروه تمرینی هوازی در مقایسه با گروه کنترل تغییرات میوستاتین و mRNA تاندون عضله نعلی را کاهش می‌دهد. میزان mRNA تاندون عضله نعلی در گروه تمرین مقاومتی کاهش یافت، ولی از لحاظ آماری ناهنجاری معنی‌داری نداشت.

نتایج آزمون تی مستقل نشان می‌دهد که بیشتر مطالعات و گروه تمرینی هوازی در مقایسه با گروه کنترل تغییرات میوستاتین و mRNA تاندون عضله نعلی را کاهش می‌دهد. میزان mRNA تاندون عضله نعلی در گروه تمرین مقاومتی کاهش یافت، ولی از لحاظ آماری ناهنجاری معنی‌داری نداشت.
آنلی اکسیدانی در برخی پاسخ به التهاب عضله افزایش می‌یابد. انجام تمرینات ورزشی در زمان‌های قدرت آنتی اکسیدانی عضله TGF-β1 و چنین نقشی بر طریق بار مکانیکی بوده. افزایش بالای در تاندون ها نیز پیشنهاد شده است [17]. TGF-β1 از طریق فیبروبلاست‌ها و تاندون عضله EDL را افزایش می‌دهد و واسطه اصلی القای سنتز کلاژن است. شواهد موجود نشان دهنده آن است که ژن MSTN در عضلات، میوستاتین و تاندون عضله EDL را کنترل می‌کند (مندیاس و همکاران، 2008) [19]. با این حال، مندیاس و همکاران نشان دادند که غیرفعال سازی ژنتیکی میوستاتین در رت‌ها ضمن افزایش حجم عضلانی، تأثیر منفی بر ویژگی‌های مکانیکی تاندون ندارد [18]. در مطالعه حاضر، تمرینات موایی باعث کاهش سطح پایه بیدان mRNA MSTN در تاندون عضله EDL و تاندون عضله نعلی به شکل معنی‌داری انجام پذیرفت، چه در گروه تمرین مقاومتی و چه در گروه تمرین هوازی مشاهده شد. این مطالعه نشان داد که تمرینات هوازی باعث کاهش سطح بیان ژن MSTN در عضلات و تاندون عضله نعلی به دنبال انجام تمرینات مقاومتی است که در اعمال معمول روزانه کمتر مورد استفاده قرار می‌گیرد. میوستاتین علاوه بر اینکه اندازه، نوع و انقباض پذیری عضله و تاندون را احتمالاً از خلال سطح بیان و تاندون به ویژگی‌های مکانیکی تاندون عضله MSTN را در رده‌بندی استفاده شده در مطالعه

صویره ۲ میزان بیدان mRNA MSTN در عضلات EDL و نعلی

صویره ۳ میزان بیدان mRNA MMP9 در عضلات EDL و نعلی

انجام تمرینات ورزشی در زمان‌های قدرت آنتی اکسیدانی عضله TGF-β1 از طریق فیبروبلاست‌ها و تاندون عضله EDL را افزایش می‌دهد و واسطه اصلی القای سنتز کلاژن است. شواهد موجود نشان دهنده آن است که ژن MSTN در عضلات، میوستاتین و تاندون عضله EDL را کنترل می‌کند (مندیاس و همکاران، 2008) [19]. با این حال، مندیاس و همکاران نشان دادند که غیرفعال سازی ژنتیکی میوستاتین در رت‌ها ضمن افزایش حجم عضلانی، تأثیر منفی بر ویژگی‌های مکانیکی تاندون ندارد [18]. در مطالعه حاضر، تمرینات موایی باعث کاهش سطح پایه بیدان mRNA MSTN در تاندون عضله EDL و تاندون عضله نعلی به شکل معنی‌داری انجام پذیرفت، چه در گروه تمرین مقاومتی و چه در گروه تمرین هوازی مشاهده شد. این مطالعه نشان داد که تمرینات هوازی باعث کاهش سطح بیان ژن MSTN در عضلات و تاندون عضلة نعلی به دنبال انجام تمرینات مقاومتی است که در اعمال معمول روزانه کمتر مورد استفاده قرار می‌گیرد. میوستاتین علاوه بر اینکه اندازه، نوع و انقباض پذیری عضله و تاندون را احتمالاً از خلال سطح بیان و تاندون به ویژگی‌های مکانیکی تاندون عضله MSTN را در رده‌بندی استفاده شده در مطالعه

صویره ۲ میزان بیدان mRNA MSTN در عضلات EDL و نعلی

صویره ۳ میزان بیدان mRNA MMP9 در عضلات EDL و نعلی

انجام تمرینات ورزشی در زمان‌های قدرت آنتی اکسیدانی عضله TGF-β1 از طریق فیبروبلاست‌ها و تاندون عضله EDL را افزایش می‌دهد و واسطه اصلی القای سنتز کلاژن است. شواهد موجود نشان دهنده آن است که ژن MSTN در عضلات، میوستاتین و تاندون عضله EDL را کنترل می‌کند (مندیاس و همکاران، 2008) [19]. با این حال، مندیاس و همکاران نشان دادند که غیرفعال سازی ژنتیکی میوستاتین در رت‌ها ضمن افزایش حجم عضلانی، تأثیر منفی بر ویژگی‌های مکانیکی تاندون ندارد [18]. در مطالعه حاضر، تمرینات موایی باعث کاهش سطح پایه بیدان mRNA MSTN در تاندون عضله EDL و تاندون عضله نعلی به شکل معنی‌داری انجام پذیرفت، چه در گروه تمرین مقاومتی و چه در گروه تمرین هوازی مشاهده شد. این مطالعه نشان داد که تمرینات هوازی باعث کاهش سطح بیان ژن MSTN در عضلات و تاندون عضلة نعلی به دنبال انجام تمرینات مقاومتی است که در اعمال معمول روزانه کمتر مورد استفاده قرار می‌گیرد. میوستاتین علاوه بر اینکه اندازه، نوع و انقباض پذیری عضلة و تاندون به ویژگی‌های مکانیکی TGF-β1 از طریق فیبروبلاست‌ها و تاندون عضله EDL را افزایش می‌دهد و واسطه اصلی القای سنتز کلاژن است. شواهد موجود نشان دهنده آن است که ژن MSTN در عضلات، میوستاتین و تاندون عضلة EDL را کنترل می‌کند (مندیاس و همکاران، 2008) [19]. با این حال، مندیاس و همکاران نشان دادند که غیرفعال سازی ژنتیکی میوستاتین در رت‌ها ضمن افزایش حجم عضلانی، تأثیر منفی بر ویژگی‌های مکانیکی تاندون ندارد [18]. در مطالعه حاضر، تمرینات موایی باعث کاهش سطح پایه بیدان mRNA MSTN در تاندون عضلة EDL و تاندون عضلة نعلی به شکل معنی‌داری انجام پذیرفت، چه در گروه تمرین مقاومتی و چه در گروه تمرین هوازی مشاهده شد. این مطالعه نشان داد که تمرینات هوازی باعث کاهش سطح بیان ژن MSTN در عضلات و تاندون عضلة نعلی به دنبال انجام تمرینات مقاومتی است که در اعمال معمول روزانه کمتر مورد استفاده قرار می‌گیرد. میوستاتین علاوه بر اینکه اندازه، نوع و انقباض پذیری عضلة و تاندون به ویژگی‌های مکانیکی TGF-β1 از طریق فیبروبلاست‌ها و تاندون عضلة EDL را افزایش می‌دهد و واسطه اصلی القای سنتز کلاژن است. شواهد موجود نشان دهنده آن است که ژن MSTN در عضلات، میوستاتین و تاندون عضلة EDL را کنترل می‌کند (مندیاس و همکاران، 2008) [19]. با این حال، مندیاس و همکاران نشان دادند که غیرفعال سازی ژنتیکی میوستاتین در رت‌ها ضمن افزایش حجم عضلانی، تأثیر منفی بر ویژگی‌ها
حاضر دویتن روی تردمیل به مدت شش هفته بود.

به طور جالب، گزارش شده است که نوع ورزش عامل اصلی میوستاتین به شمار RNA تعیین کننده برای فراوانی رونویسی. عطارزاده حسینی و همکاران کاهش سطوح میوستاتین سرمی در زنان را به دنبال هشت هفته تمرین مقاله‌ای باشد یا گزارش کردند [11]. هیتل و همکاران تأثیر شش ماه تمرین هوازی متوسط بر میوستاتین در عضلات و پلاسمه‌های انسان مبنی بر قرار داشته و کاهش میتوسیست‌رژیمیون میوستاتین عضلانی و پلاسمایی را بعد از تمرین گزارش کردند [12].

درحقیقت، عاطفی‌سالکس و همکاران نتایج متفاوتی را در بیان ژن میوستاتین در پاسخ به تمرین استقامتی در بافت‌های متفاوت گزارش کردند. در عضله دوقلوی موش‌های صحرایی درصدی گزارش 65 تمرین کرده در بیان ژن میوستاتین کاهش نشده، در حالی که در عضله بیرونی این کاهش متوسط درصد بود و در عضله نعلی بین موش‌های تمرین کرده و بی تمرین تغییری مشاهده نشد. در این تحقیق، ماتساکاس و همکاران نتایج متفاوتی را در بیان ژن میوستاتین در بافت‌های مختلف گزارش کردند. در عضله پهن خارجی این کاهش متوسط درصدی بود و در عضله نعلی بین موش‌های تمرین کرده و بی تمرین تغییری مشاهده نشد. در این بحث، عاطفی‌سالکس و همکاران چگونگی کاهش سطوح میوستاتین در عضلانی و پلاسمایی را بعد از یک ماه تمرین گزارش کردند [13].

در حقیقت، تحقیق هایی حمایت می‌کنند که تنظیم میوستاتین به شدت وابستگی دارد و با توجه به نوع تارهای عضلانی ای که زنجیره سنگین میوزین عضله میزبان شده و با ایزوفرم IIb و غلظت بالا و غلظت پایین میوستاتین در عملکرد تبدیلی در مقایسه با ایزوفرم تارهای کند، این ترمیم‌ها می‌توانند به عنوان مثال‌هایی جهت منطقه‌بندی و تعیین میوستاتین در عضلات و پلاسمه‌های انسان مبنی بر قرار داشته و کاهش میتوسیست‌رژیمیون میوستاتین عضلانی و پلاسمایی را بعد از تمرین گزارش کردند [12].

در حقیقت، عاطفی‌سالکس و همکاران نتایج متفاوتی را در بیان ژن میوستاتین در پاسخ به تمرین استقامتی در بافت‌های متفاوت گزارش کردند. در عضله دوقلوی موش‌های صحرایی درصدی گزارش 65 تمرین کرده در بیان ژن میوستاتین کاهش نشده، در حالی که در عضله بیرونی این کاهش متوسط درصد بود و در عضله نعلی بین موش‌های تمرین کرده و بی تمرین تغییری مشاهده نشد. در این بحث، عاطفی‌سالکس و همکاران چگونگی کاهش سطوح میوستاتین در عضلانی و پلاسمایی را بعد از یک ماه تمرین گزارش کردند [13].
تشکر و قدردانی
نویسنده‌گان مقاله از جناب دکتر رضا قراخانلو، گروه تربیت بدنی و همکاران، دانشکده علوم انسانی و دانشگاه تربیت مدرس به خاطر همکاری در طراحی موضوع و بیان مسئله تقدیر و تشکر می‌کنند.

در تاندون عضلات تند و کند انقباض موش‌های نر ویستا، میووستاتین و ماتریکس متالوپروتئیناز TGF-β1، موحتالین و ماده‌هایی مثل هولوتایپ ۹ در تکمیل حضورات محیطی و کنترل‌های موشی‌های ثروتی می‌باشد.
[1] Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev. 1996; 76(2):371-423. [DOI:10.1152/physrev.1996.76.2.371] [PMID]

[2] Davis ME, Gumucio JP, Sugg KB, Bedi A, Mendias CL. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix. J Appl Physiol. 2013; 115(6):884-91. [DOI:10.1152/japplphysiol.00137.2013] [PMID]

[3] Kjaer M, Langberg H, Heineimatee K, Bayer M, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci sports. 2009;19(4):500-10. [DOI:10.1111/j.1600-0838.2009.00986.x] [PMID]

[4] McPherron AC, Lawler AM, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997; 387(6628):83-90. [DOI:10.1038/387083a0] [PMID] [PMCID]

[5] Mendias CL, Bakurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, and hypolecocellular. Proc Natl Acad Sci. 2008; 105(1):388-93. [DOI:10.1073/pnas.0707069105] [PMID] [PMCID]

[6] Mendias CL, Gumucio JP, Bakurin KI, Lynch EB, Brooks SV. Physiological loading of tendons induces schlerosis expression in epitenon fibroblasts. J Orthop Res. 2012; 30(4):606-12. [DOI:10.1002/jor.21550] [PMID] [PMCID]

[7] Pryce BA, Watson SS, Murchison ND, Stavrosky JA, Dünker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Dev. 2009; 136(8):1351-61. [DOI:10.1242/dev.027342] [PMID] [PMCID]

[8] Czarkowska-Paczek B, Zendzian-Piotrowska M, Bartłomiejczyk I, Przyböjski J, Gorski J. The effect of acute and prolonged endurance exercise on the rat. Acta Physiol Scand. 2005; 183(3):299-307. [DOI:10.1111/j.1365-2990.2005.00140.x] [PMID] [PMCID]

[9] Davis ME, Gumucio JP, Sugg KB, Bedi A, Mendias CL. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix. J Appl Physiol. 2013; 115(6):884-91. [DOI:10.1152/japplphysiol.00137.2013] [PMID]

[10] Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F, et al. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Exp Physiol. 2006; 91(6):983-94. [DOI:10.1113/exphysiol.2006.033571] [PMID]

[11] Haas T, Guild FW, Gordon SD. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol-Regul Integr Comp Physiol. 1999; 277(2):R601-R6. [DOI:10.1152/ajpregu.1999.277.2.R601] [PMID]

[12] Kim J, Lee J. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise. J Exerc Rehabil. 2016; 12(4):260-5. [DOI:10.12965/jer.1632640.320] [PMID] [PMCID]

[13] Monaco S, Sperano V, Gioia M, Sbardella D, Di Pierro D, Marini S, et al. Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci. 2006; 15(12):2805-15. [DOI:10.1110/ps.062430706] [PMID] [PMCID]

[14] Haas T, Milkevicz M, Davis S, Zhou A, Egginton S, Brown M, et al. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol-Regul Integr Comp Physiol. 2000; 279(4):H1540-H7. [DOI:10.1152/ajpheart.2000.279.4.H1540] [PMID] [PMCID]

[15] Pullman E, Norr bom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, et al. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol. 2009; 106(3):804-12. [DOI:10.1152/japplphysiol.90872.2008] [PMID] [PMCID]

[16] Czarkowska-Paczek B, Bartłomiejczyk I, Przybyski J. The serum levels of growth factors: PDGF, TGF-beta and VEGF are increased after strenuous physical exercise. J Physiol Pharmacol. 2006; 57:189-97. [PMID]

[17] Yang G, Crawford RC, Wang JH. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 2004; 37(10):1543-50. [DOI:10.1016/j.jbiomech.2004.01.005] [PMID]

[18] Mendias CL, Lynch EB, Gumucio JP, Flood MD, Rittman DS, Van Pelt DW, et al. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol. 2015; 593(8):2037-52. [DOI:10.1113/jphysiol.2014.287144] [PMID] [PMCID]

[19] Altarazadeh Hosseini SR, Moeinia N, Motahari Rad M. The effect of two intensities resistance training on muscle growth regulatory myokines in sedentary young women. Obes Med. 2017; 5:25-8. [DOI:10.1016/j.obmed.2017.01.004] [PMID] [PMCID]

[20] Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F, et al. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Exp Physiol. 2006; 91(6):983-94. [DOI:10.1113/exphysiol.2006.033571] [PMID]

[21] Carlson CJ, Booth FW, Gordon SD. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol-Regul Integr Comp Physiol. 1999; 277(2):R601-R6. [DOI:10.1152/ajpregu.1999.277.2.R601] [PMID]

[22] Wehling M, Cai B, Tibdall JG. Modulation of myostatin expression during modified muscle use. FASEB J. 2000; 14(1):103-10. [DOI:10.1096/fasebj.14.1.103] [PMID] [PMCID]

[23] Kim J, Lee J. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise. J Exerc Rehabil. 2016; 12(4):260-5. [DOI:10.12965/jer.1632640.320] [PMID] [PMCID]

[24] Monaco S, Sperano V, Gioia M, Sbardella D, Di Pierro D, Marini S, et al. Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci. 2006; 15(12):2805-15. [DOI:10.1110/ps.062430706] [PMID] [PMCID]

[25] Haas T, Milkevicz M, Davis S, Zhou A, Egginton S, Brown M, et al. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol-Regul Integr Comp Physiol. 2000; 279(4):H1540-H7. [DOI:10.1152/ajpheart.2000.279.4.H1540] [PMID] [PMCID]

[26] Pullman E, Norrbom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, et al. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol. 2009; 106(3):804-12. [DOI:10.1152/japplphysiol.90872.2008] [PMID] [PMCID]

[27] Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM. Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-activated pathways. J Neuroinflammation. 2010; 7(1):88. [DOI:10.1186/1742-2094-7-88] [PMID] [PMCID]
