Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Article

Video and In-Person Palliative Care Delivery Challenges before and during the COVID-19 Pandemic

Isaac S. Chua, MD, MPH, Molly Olmsted, MS, Rachel Plotke, BA, Yael Turk, BA, Chardria Trotter, MPH, MBA, Simone Rinaldi, MSN, ANP-BC, ACHPN, Mihir Kamdar, MD, Vicki A. Jackson, MD, MPH, Emily R. Gallagher-Medeiros, RN, Areej El-Jawahri, MD, Jennifer S. Temel, MD, and Joseph A. Greer, PhD
Division of General Internal Medicine and Primary Care, Department of Medicine (I.S.C.), Brigham and Women’s Hospital, Boston, Massachusetts, USA; Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute (I.S.C.), Boston, Massachusetts, USA; Harvard Medical School (I.S.C., S.R., M.K., V.A.J., A.E.J., J.S.T., J.A.G.), Boston, Massachusetts, USA; University of Massachusetts Medical School (M.O.), Worcester, Massachusetts, USA; Massachusetts General Hospital (R.P., Y.T., C.T., S.R., M.K., V.A.J., E.R.G.M., A.E.J., J.S.T., J.A.G.), Boston, Massachusetts, USA

Abstract

Context. Palliative care (PC) clinicians faced many challenges delivering outpatient care during the coronavirus-19 (COVID-19) pandemic.

Objectives. We described trends for in-person and video visit PC delivery challenges before and during the COVID-19 pandemic in the U.S.

Methods. We performed a secondary data analysis of patient characteristics and PC clinician surveys from a multisite randomized controlled trial at 20 academic cancer centers. Patients newly diagnosed with advanced lung cancer (N = 653) were randomly assigned to receive either early in-person or telehealth PC and had at least monthly PC clinician visits. PC clinicians completed surveys documenting PC delivery challenges after each encounter. We categorized patients into 3 subgroups according to their PC visit dates relative to the onset of the COVID-19 pandemic in the U.S.—pre-COVID-19 (all visits before March 1, 2020), pre/post-COVID-19 (≥1 visit before and after March 1, 2020), and post-COVID-19 (all visits after March 1, 2020). We performed Pearson’s chi-squared, Fisher’s exact, and Kruskal-Wallis tests to examine associations.

Results. We analyzed 2329 surveys for video visits and 2176 surveys for in-person visits. For video visits, the pre-COVID-19 subgroup (25.8% [46/178]) had the most technical difficulties followed by the pre/post-COVID-19 subgroup (17.2% [307/1784]) and then the post-COVID-19 subgroup (11.4% [42/367]) (P = 0.0001). For in-person visits, challenges related to absent patients’ family members occurred most often in the post-COVID-19 subgroup (16.2% [16/99]) followed by the pre/post-COVID-19 subgroup (5.6% [15/266]) and then the pre-COVID-19 subgroup (0% [0/106]) (P = 0.02).

Conclusion. Technical difficulties related to PC video visits improved, whereas in-person visit challenges related to absent patients’ family members worsened during the pandemic. J Pain Symptom Manage 2022;64:577–587. © 2022 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

Key Words
COVID-19, coronavirus-19, telehealth, telemedicine, palliative care

Key message
Technical difficulties, especially difficulty with connectivity, were the most commonly reported challenges with PC video visits. However, video visit challenges due to technical difficulties improved, whereas challenges related to family members being unable to attend in-person visits worsened during the COVID-19 pandemic.

Address correspondence to: Isaac Chua, MD, MPH, Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, 1620 Tremont St, Suite OBC-03-2HH, Boston, MA 02120, USA. E-mail: ichua@bwh.harvard.edu

Accepted for publication: 9 August 2022.

© 2022 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Introduction

The coronavirus-19 (COVID-19) pandemic altered the provision of in-person ambulatory services by catalyzing the rapid adoption of telehealth to minimize risk of COVID-19 transmission to patients and clinicians. Palliative care (PC) clinics were not excluded from this impact, and many clinics converted in-person visits to telehealth visits. Studies conducted before and during the pandemic demonstrated the acceptability and feasibility of PC telehealth delivery. However, increased telehealth adoption during the pandemic could not fully bridge the care gap for some PC patients who lost access to ambulatory care services.

The COVID-19 pandemic’s impact on the provision of PC services has been well described in inpatient and home care settings. However, little is known about PC delivery challenges in the outpatient clinic during this period for in-person and telehealth visits. A few studies documented PC telehealth delivery challenges during the pandemic, but they had small sample sizes and were conducted within a single health system. To our knowledge, no studies have explored challenges related to in-person visits in outpatient PC clinics during the pandemic.

Since 2018, we have been collecting data on PC clinician-reported challenges for in-person and video visits as part of an ongoing multisite randomized controlled trial of early integrated PC for patients with advanced lung cancer. Here, we conducted a post hoc analysis of this data to describe trends in PC clinician-reported challenges for in-person and video visits before and during the COVID-19 pandemic across multiple U.S. cancer centers.

Methods

Study Design and Procedures

We have been prospectively collecting data on PC clinician-reported challenges related to video visits and in-person visits as part of a multicenter randomized comparative effectiveness trial of early integrated telehealth versus in-person PC for adults with newly diagnosed advanced non-small cell lung cancer (NSCLC) (ClinicalTrials.gov ID # NCT03375489). In this study, we analyzed PC clinician-reported challenges before and after the onset of the COVID-19 pandemic in the U.S. We defined the COVID-19 pandemic onset as March 1, 2020, since all 50 states had reported cases of COVID-19 by mid-March 2020.

The trial’s study protocol has been described in detail elsewhere. In brief, we recruited patients and caregivers through 20 Palliative Care Research Cooperative (PCRC) designated institutions across the U.S., most of which represent academic cancer centers. The primary outcome of this trial is patient-reported quality of life (QOL) at 24 weeks. Secondary outcomes include patient-clinician communication about end-of-life preferences, patient length of stay in hospice, caregiver participation in PC visits, patient and caregiver satisfaction with care, and patient-reported QOL at 48 weeks. The target sample size is 1250 patients and up to 1250 caregivers. The Dana-Farber/Harvard Cancer Center Internal Review Board (IRB), along with the other 18 participating sites’ IRBs, reviewed and approved the study protocol. Enrolled patients and caregivers at each site were randomized to receive either early integrated telehealth PC (via video visit) or in-person PC.

The initial PC visit in both groups was required to be in person within four weeks of enrollment to help patients and PC clinicians establish rapport. However, during the COVID-19 pandemic, clinicians could conduct the initial PC visit either in person or via video due to social distancing restrictions. Subsequent follow-up visits occurred at least every four weeks either via video or in person, depending on patient randomization. For both study groups, sites prioritized longitudinal follow-up with the same PC clinician to the extent possible, though the protocol allowed for scheduling enrolled patients with a different clinician if needed. In-person PC visits were scheduled on the same day as oncology visits unless the patient was agreeable to scheduling the PC visit on a different day and could occur at various locations within the outpatient setting (e.g., PC or oncology clinic, infusion suite, or radiation oncology clinic).

Patients who survived >18 months were permitted to decrease PC visit frequency per their preference. If participants in either group missed their scheduled visit, and it could not be rescheduled within four weeks of their prior visit, the PC clinician was required to conduct a telephone visit within seven days of the missed visit. PC clinicians had up to four weeks to complete an electronic survey after each patient visit that documents the topics they addressed. Clinicians who conducted PC visits and completed post-visit surveys were licensed physicians or advanced practice providers. All participating PC clinicians received training on “Webside Manner” (i.e., how to communicate effectively and maintain rapport and human connection during virtual video visits) via a train-the-trainer methodology. Lead site investigators attended a two-day training seminar on study procedures, early integrated PC implementation, and “Webside Manner” and were responsible for training PC clinicians at their respective sites.

Participants and COVID-19 Timeline

Eligible participants included patients being diagnosed within 12 weeks with advanced NSCLC, receiving treatment with non-curative intent, ≥18 years old, and not already receiving outpatient PC services. We reported study eligibility and screening procedures
This analysis included data from patients who enrolled and had their data entered into the study database between June 14, 2018 and March 22, 2021 and had ≥1 PC clinician survey completed for visits between July 3, 2018, and March 12, 2021. We subsequently divided eligible patients into three subgroups based on their PC visit dates relative to the COVID-19 pandemic’s onset in the U.S.: patients who had all PC visits before March 1, 2020 were categorized as pre-COVID-19; patients who had all PC visits after March 1, 2020 were categorized as post-COVID-19; and patients who had ≥1 visit before and after March 1, 2020 were categorized as pre/post-COVID-19. We excluded patients with PC telephone visits only and missing enrollment or randomization data. We also excluded individuals who had not yet had their initial PC visit; died or withdrew before participating in a PC visit; or attended a PC visit but the PC clinician did not complete the post-visit survey.

Measures and Data Collection

Clinician post-visit survey. The investigative team developed a post-visit survey specifically for this trial that PC clinicians completed via Research Electronic Data Capture (REDCap) to document visit modality (in-person vs. video vs. telephone), topics addressed, and challenges they experienced during the visit. We added the option “telephone visit due to inability to connect with video” 10 months into the study to distinguish between telephone visits due to video visit difficulties vs. planned telephone visits in both study groups. We included PC post-visit surveys completed for in-person visits, video visits, and telephone visits due to inability to connect with video that occurred between July 3, 2018 and March 12, 2021. We excluded surveys for planned telephone visits because these surveys did not include questions about video or in-person visit challenges.

The post-visit survey domains correspond to those in the early PC treatment guide to allow the PC clinician to document the content areas addressed during the visit, whether a caregiver was present, and any referrals or medications prescribed. This component of the survey has been used in prior studies evaluating early integrated PC. Questions addressing in-person and telehealth challenges were formulated specifically for this study. In-person implementation questions about challenges were based on the study team’s extensive experience designing and implementing in-person early integrated PC clinical trials. Video visit questions about challenges were generated after consulting with telehealth experts within Mass General Brigham, who have extensive experience with telehealth implementation.

For video visit challenges, PC clinicians could select ≥1 from the following: delayed video visit; technical difficulties (i.e., connectivity, sound, and/or video); difficulty establishing rapport; difficulty addressing uncomfortable topics over video; distracted patient/family; inability to perform a physical exam; “other” challenge (which clinicians would specify via free text); or none. For in-person visit challenges, PC clinicians could select ≥1 from the following: delayed clinic visit; difficulty engaging a tired patient after oncology visit/treatment; lack of privacy in the infusion room; inability for family to be present; inability to see a patient/family in their home environment; “other” challenge (which clinicians would specify via free text); or none.

Patient demographic and clinical characteristics. Participants reported demographic characteristics at baseline. The study team extracted additional clinical information (e.g., the patients’ Eastern Cooperative Oncology Group [ECOG] performance status) from the electronic health record (EHR).

Qualitative Analysis

We derived this dataset by conducting a content analysis of the free text comments associated with “other” challenges for both in-person and telehealth challenges. Two investigators (I.S.C. and M.O.) reviewed all free text comments, and each independently developed a preliminary thematic and coding scheme (i.e., level 1 coding). Both investigators met weekly until they achieved consensus regarding the thematic and coding scheme and confirmed that thematic saturation had been reached (i.e., levels 2 and 3 coding). If any coding disagreements occurred, a third investigator (J.A.G.) adjudicated until consensus was achieved by all three investigators. The multidisciplinary investigative team reviewed and finalized the coding scheme. Coding was performed using Microsoft Excel.

Statistical Analysis

We performed statistical analyses using SAS version 9.4 (SAS Institute, Inc, Cary, NC). We analyzed frequencies, medians, and interquartile ranges of patient characteristics and PC clinician-reported video and in-person visit challenges using descriptive statistics. For categorical variables, we reported percentages (numbers) and used Pearson’s chi-squared test, or Fisher’s exact test (if cell ≤ 5), to examine associations between COVID-19 subgroups and patient and visit characteristics, video visit challenges, and in-person visit challenges. We reported continuous variables as medians (interquartile ranges [IQRs]) and used Kruskal-Wallis test to assess for associations between COVID-19 subgroups and patient age and time differences between scheduled and actual video visit start times. A 2-sided P-value < 0.05 was considered statistically significant. Among video visit challenges that were statistically significant across subgroups, we examined the
distribution of the number of PC clinician-reported video visit challenges per unique patient to determine what proportion of video visit challenges consisted of patients with recurrent challenges.

Results

Patient and PC Visit Characteristics Across COVID-19 Subgroups

Between June 14, 2018 and March 22, 2021, 741 unique patients (59.3% [741/1250] of the trial’s target sample size) were enrolled and had their data entered into the database. We excluded 12 patients due to missing enrollment or randomization data and 11 patients who only had PC telephone visits. We also excluded 65 patients who had not yet had their initial PC visit; died or withdrew before participating in a PC visit; or attended a PC visit but the PC clinician did not complete the post-visit survey. Among 653 unique patients included in the analysis, the largest subgroup consisted of pre/post-COVID-19 (43.4% [287/653]) followed by pre-COVID-19 (30.3% [198/653]) and then post-COVID-19 subgroups (25.7% [168/653]). Differences in patient characteristics were limited to a smaller proportion of females and greater proportion of individuals with poorer functional status (i.e., ECOG ≥2) in the pre-COVID-19 subgroup versus the other two subgroups (Table 1). Otherwise, patient characteristics between the three subgroups did not significantly differ from one another, including frequency of digital technology use (i.e., most patients reported daily computer, tablet, or smartphone use; email use; or internet use).

PC clinicians completed 6245 post-visit surveys for visits that occurred between July 3, 2018 and March 12, 2021. We excluded 1740 post-visit surveys for planned telephone visits from both study groups. We analyzed 4505 post-visit surveys, of which 48.3% (2176/4505) were in-person; 46.3% (2085/4505) were video visits; and 5.4% (244/4505) were telephone visits due to inability to connect by video. PC clinicians completed post-visit surveys for 92.2% (2176/2361) of in-person visits and 88.6% (2085/2352) of video visits. The most common visit modality for the pre-COVID-19 subgroup was in-person visits (75.3% [543/721]), whereas video visits accounted for the most common visit modality in the pre/post-COVID-19 (50.5% [1596/3158]) and post-COVID-19 subgroups (52.9% [331/626]) (P < 0.0001) (Fig. 1).

Video Visit Challenges

We analyzed 2329 PC clinician post-visit surveys for video visits and telephone visits converted from video visits due to the inability to connect with video. Video visits in the pre-COVID-19 subgroup had the highest percentage of technical difficulties (25.8% [46/178]) followed by the pre/post-COVID-19 subgroup (17.2% [307/1784]) and then the post-COVID-19 subgroup (11.4% [42/367]) (P = 0.0001) (Table 2). Among surveys reporting technical difficulties, the most common challenge was difficulty with connectivity, which occurred most often in the pre-COVID-19 subgroup (20.2% [36/178]) followed by the pre/post-COVID-19 subgroup (12.8% [228/1784]) and then the post-COVID-19 subgroup (6.0% [22/367]) (P < 0.0001).

The highest percentage of PC clinician-reported “other” free text video visit challenges occurred in the pre-COVID-19 subgroup (12.4% [22/178]) followed by the pre/post-COVID-19 subgroup (6.6% [118/1784]) and then the post-COVID-19 subgroup (5.5% [20/367]) (P = 0.008). PC clinicians most often reported no challenges with video visits in the post-COVID-19 subgroup (77.9% [286/367]) followed by the pre/post-COVID-19 subgroup (69.1% [1232/1784]) and then the post-COVID-19 subgroup (45.5% [81/178]) (P < 0.0001). The median number of PC clinician surveys reporting technical, “other,” or overall video visit challenges (i.e., negative response to “no challenges”) per unique patient were as follows: reporting technical challenges was two surveys per patient (IQR 1-3); reporting other challenges was one survey per patient (IQR 1-1); and reporting overall challenges was two surveys per patient (IQR 1-4) (Supplementary Fig. 1).

Across all COVID-19 subgroups, PC clinicians rarely reported difficulties establishing rapport with patients addressing topics that felt uncomfortable or performing a physical exam necessary to provide optimal care over video (Table 2). Additionally, PC clinician reporting of delayed video visits was not statistically significant across subgroups, but analysis of the time difference between scheduled and actual video visit start times showed that pre-COVID-19 visits started later [two minutes (IQR 0-10)] compared to pre/post-COVID-19 [0 minutes (IQR 0-5)] and post-COVID-19 [0 minutes (IQR 0-5)] subgroups (P = 0.005).

In-Person Visit Challenges

We analyzed 2176 PC clinician post-visit surveys for in-person visits. The subgroup with the highest percentage of PC clinician-reported difficulty engaging patients due to fatigue following an oncology visit or treatment was in the pre-COVID-19 subgroup (4.2% [23/543]) followed by the pre/post-COVID-19 subgroup (2.3% [31/1374]) and then the post-COVID-19 subgroup (1.9% [5/259]) (P = 0.05) (Table 3). The post-COVID-19 subgroup (6.2% [16/259]) had the highest percentage of PC clinician-reported challenges related to absent family members during in-person visits followed by the pre/post-COVID-19 subgroup (3.6% [50/1374]) and then the pre-COVID-19 subgroup (2.2% [12/543]) (P = 0.02). Additionally, PC clinicians reported that the pre-COVID-19 subgroup (74.8%
Characteristics	Pre-COVID-19 (n = 198)	Pre/Post-COVID-19 (n = 287)	Post-COVID-19 (n = 168)	P-value
Age at enrollment, median (IQR)	67.0 (59.8 − 74.2)	64.6 (57.4 − 72.5)	66.2 (60.0 − 72.8)	0.08
Gender				
Female	81 (40.9)	156 (54.4)	97 (57.7)	0.002
Race				
White	168 (84.9)	226 (78.8)	135 (79.2)	0.21
Black	22 (11.1)	39 (13.6)	14 (8.3)	0.23
Asian	7 (3.5)	13 (4.5)	10 (6.0)	0.54
Native American or American Indian	0 (0)	3 (1.1)	0 (0)	0.26
Native Hawaiian or Pacific Islander	0 (0)	1 (0.4)	0 (0)	1.0
Other	3 (1.5)	7 (2.4)	9 (5.4)	0.10
Ethnicity				
Hispanic	5 (2.5)	12 (4.3)	9 (5.5)	0.37
Primary language				
English	196 (99.0)	284 (99.0)	168 (100)	0.53
Relationship status				
Single	10 (5.1)	15 (5.2)	12 (7.2)	0.62
Married or partnership	135 (68.5)	210 (73.2)	111 (66.5)	
Divorced, separated, or other	31 (15.7)	37 (12.9)	22 (13.2)	
Widowed	21 (10.7)	25 (8.7)	22 (13.2)	
Education				
High school or less	66 (33.7)	77 (28.6)	62 (37.4)	0.18
Some or completed college	99 (50.5)	154 (53.7)	77 (46.4)	
Graduate school	31 (15.8)	56 (19.5)	27 (16.3)	
Income				
Less than $25k	36 (19.7)	61 (22.9)	40 (25.5)	0.25
$25k − $49,999	39 (21.3)	43 (16.1)	35 (22.3)	
$50k − $99,999	58 (31.7)	69 (25.9)	41 (26.1)	
$100k − $149,999	28 (15.3)	43 (16.1)	20 (12.7)	
>$150k	22 (12.0)	51 (19.1)	21 (13.4)	
ECOG performance status				
0	34 (17.2)	87 (30.3)	43 (25.6)	<0.0001
1	108 (54.6)	159 (55.4)	102 (60.7)	
≥ 2	56 (28.3)	41 (14.3)	23 (13.7)	
Living environment				
Lives alone	48 (24.3)	52 (18.1)	30 (17.9)	0.19
Lives with a partner	128 (64.7)	201 (70.0)	109 (64.9)	0.36
Lives with a roommate	6 (3.0)	7 (2.4)	4 (2.4)	0.90
Lives with kids <18 yrs old	16 (8.1)	29 (10.1)	16 (9.5)	0.75
Lives with kids >18 yrs old	25 (12.6)	49 (17.1)	24 (20.2)	0.14
Lives in a nursing home	2 (1.0)	1 (0.4)	0 (0)	0.47
Lives with a parent	5 (2.5)	7 (2.4)	1 (0.6)	0.34
Other living	9 (4.6)	12 (4.2)	10 (6.0)	0.68
Frequency of computer, tablet, or smartphone use				
Daily	135 (68.6)	210 (73.7)	124 (73.8)	0.69
Several times a week	29 (15.0)	31 (10.9)	17 (10.1)	
Once a week	11 (5.7)	20 (7.0)	12 (7.1)	
Never	21 (10.8)	24 (8.4)	15 (8.9)	
Frequency of email use				
Daily	106 (54.1)	169 (59.7)	94 (56.0)	0.85
Several times a week	30 (15.3)	38 (13.4)	26 (15.5)	
Once a week	27 (13.8)	37 (13.1)	26 (15.5)	
Never	33 (16.8)	39 (13.8)	22 (13.1)	
Frequency of internet use				
Daily	115 (58.7)	189 (66.5)	108 (64.3)	0.60
Several times a week	34 (17.4)	40 (14.0)	29 (17.3)	
Once a week	22 (11.2)	22 (7.7)	12 (7.1)	
Never	25 (12.8)	34 (11.9)	19 (11.3)	
Randomization				
In-person	96 (48.0)	147 (51.2)	79 (47.0)	0.64
Teledicine	105 (52.0)	140 (48.8)	89 (53.0)	

Abbreviations: ECOG = Eastern Cooperative Oncology Group.

*Data are expressed as No. (%) unless otherwise indicated.

Univariable comparison using Pearson’s chi-squared test or Fisher’s exact test for categorical variables and Kruskal-Wallis test for continuous variables.

*Missing 10 observations.

*Missing 2 observations.

*Missing 4 observations.

*Missing 46 observations.

*Missing 12 observations.

*Missing 6 observations.
most often had another person present during the visit followed by the pre/post-COVID-19 subgroup (60.6% [833/1374]) and then the post-COVID-19 subgroup (46.7% [121/259]) (P < 0.0001).

Finally, the percentage of PC clinicians reporting no overall challenges with in-person visits was highest in the pre/post-COVID-19 subgroup (70.0% [962/1374]) followed by the post-COVID-19 subgroup (67.6% [286/429])

Fig. 1. Distribution of palliative care (PC) visit modalities across COVID-19 patient subgroups. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

Table 2
Palliative Care Clinician-Reported Challenges and Relevant Visit Characteristics during Video Visits

Challenges or Relevant Visit Characteristics	Pre-COVID-19 (n=178)	Pre/Post-COVID-19 (n=1784)	Post-COVID-19 (n=367)	p-value
Video visit was delayed	14 (7.9)	103 (5.8)	17 (4.6)	0.32
Time difference in minutes between scheduled and actual video visit start times, median (IQR)	2 (0-10)c	0 (0-5)d	0 (0-5)e	0.005
Notable technical difficulties with visit	46 (25.8)	307 (17.2)	42 (11.4)	0.0001
Difficulty with connectivity	36 (20.2)	228 (12.8)	22 (6.0)	<0.0001
Difficulty with sound	12 (6.7)	87 (4.9)	15 (4.1)	0.40
Difficulty with video	15 (8.4)	97 (5.4)	17 (4.6)	0.18
Difficulty establishing rapport with patient over video	4 (2.3)	25 (1.4)	4 (1.1)	0.51
Difficulty addressing topics that felt uncomfortable discussing over video	3 (1.7)	18 (1.0)	3 (0.8)	0.57
Patient/family seemed distracted	5 (2.8)	32 (1.8)	2 (0.5)	0.08
Unable to perform physical exam necessary to provide optimal care	8 (4.5)	44 (2.5)	6 (1.6)	0.13
Other video visit challenges	22 (12.4)	118 (6.6)	20 (5.5)	0.008
None	81 (45.5)	1232 (69.1)	286 (77.9)	<0.0001

aData are expressed as No. (%) unless otherwise indicated.

bUnivariable comparison using Pearson’s chi-squared test or Fisher’s exact test for categorical variables and Kruskal Wallis test for continuous variables.

cMissing 21 observations.

dMissing 189 observations.

eMissing 37 observations.

[406/543])
In our study, we observed several longitudinal trends regarding PC delivery challenges in both video and in-person visits. The proportion of video visit challenges related to technical difficulties and “other” free text challenges were significantly less in the post-COVID-19 subgroup compared to the pre-COVID-19 and pre/post-COVID-19 subgroups. Moreover, patients with recurrent video visit challenges did not constitute the majority of PC clinician reported video visit challenges. For in-person visits, a greater proportion of PC clinicians reported challenges related to patients’ family members being absent during clinical encounters in the post-COVID-19 subgroup compared to the other two subgroups. Conversely, a lower proportion of PC clinicians reported difficulty engaging patients due to fatigue in the post-COVID-19 subgroup compared to the other two subgroups.

Decreased technical difficulties during video visits over time may be attributed to increased clinician and institutional experience conducting and supporting video visit implementation. Many sites sought to minimize patient exposure to COVID-19 during the pandemic, which is largely why video visits accounted for the most common visit modality in the pre/post-COVID-19 and post-COVID-19 subgroups (Fig. 1). This increased utilization of video visits during the pandemic, as well as technical difficulties (especially related to connectivity) as the most commonly cited challenge, is consistent with prior studies. Greater familiarity with the video visit platform over time likely enabled clinicians and patients to prevent and troubleshoot technical difficulties more effectively. Moreover, this finding may reflect individual institutional efforts to support video visit delivery during the pandemic (e.g., increasing information technology support, improving patient education, and improving EHR integration or utilizing alternative audio-visual platforms). Notably, more telephone visits due to poor video visit connectivity occurred in pre/post-COVID-19 and post-COVID-19 subgroups, but this finding likely reflects the delayed implementation of this survey item in our study, leading to higher reporting compared to the pre-COVID-19 subgroup.

The themes that emerged from our qualitative analysis of “other” free text video visit challenges may partially explain why the percentage of “other” challenges was lowest in the post-COVID-19 subgroup compared to the other two. Many of these challenges were technical difficulties identical to those cited above, and similarly, increased institutional support and user experience with video visits likely mitigated these challenges over time. This increased collective experience with video visits over time may have also reduced some of the end-user difficulties (e.g., forgetting log-in information or setting up video visit equipment incorrectly).
Throughout the study, PC clinicians rarely reported difficulties establishing rapport with patients, addressing topics that felt uncomfortable, or performing a physical exam necessary to provide optimal care over video. Although rapport building was not an issue in our study, others have highlighted the difficulties of establishing rapport during PC video visits.35 Requiring in-person encounters for the initial visit and “Website

Major Themes (Number of Free Text Comments)a	Subthemes	Supporting Quotation(s)
Video visits (n=73)	Patient	“Patient does not have good internet connection and is not technologically sophisticated and wants to do visit by phone.”
	Frquenting log-in information, or tablet	“Need for interpreter; this was done via 3-way telephone call and interpreter was disconnected halfway thru visit.”
	Vulnerable populations	“Patient became teary eyed during the visit. My gut instinct was to lean in, reach out, and to provide a Kleenex...I could not do that. I felt a bit hindered in my ability to care for him. I was also surprised at how different it felt for me to not be able to touch him in order to console him.”
	Difficulty setting up video visit	“Privacy issues. Patient did not want family to overhear conversation so he had to leave house and conduct phone call.”
	Limited access to technology	“Difficult to get to a room in a timely manner to use telehealth equipment as I don’t have ability to do this in my office.”
	Preference for non-video visit	“Her wifi is slow? The video was glitchy and the voice skipped. It made it difficult for us to really hear each other.”
	Too sick to participate	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”
	Clinician	“Unable to conduct telehealth visit as patient was out of state.”
	Forgetting log-in information	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”
	Perceived limitations regarding care delivery	“Unable to conduct telehealth visit as patient was out of state.”
Home or clinical environment (n=18)	Lack of privacy	“Patient’s password expired so had to substitute telephone call to video.”
	Background distractions / interruptions	“Her wifi is slow? The video was glitchy and the voice skipped. It made it difficult for us to really hear each other.”
	Sub-optimal clinic setup for video visits	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”
Technical challenges (n=74)	Log-in difficulties	“Patient’s password expired so had to substitute telephone call to video.”
	Poor connectivity	“Her wifi is slow? The video was glitchy and the voice skipped. It made it difficult for us to really hear each other.”
	Poor audio quality	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”
	Poor video quality	“Unable to conduct telehealth visit as patient was out of state.”
	App-specific issues	“Unable to conduct telehealth visit as patient was out of state.”
	Efforts to work around tech issues	“Unable to conduct telehealth visit as patient was out of state.”
	Difficulty including family members	“Unable to conduct telehealth visit as patient was out of state.”
Scheduling (n=7)	Visit timing	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”
	Difficulty including family members	“Unable to conduct telehealth visit as patient was out of state.”
Miscellaneous challenges (n=5)	—	“Visit unexpectedly short as patient was leaving for her mother’s funeral.”

Table 4

| Thematic Description of Other Free Text Video Visit and In-Person Challenges |

Abbreviations: PC, palliative care

a The subtotal for each major theme may contain duplicate free text comments since some comments contained ≥2 codes that could have been classified under separate subthemes.
Manner” training may have helped PC clinicians establish and maintain rapport with patients more effectively. Our findings are also consistent with prior studies that demonstrate the acceptability of PC video visits to discuss sensitive topics. To our knowledge, no other studies have examined challenges related to performing a physical exam in the context of PC video visits. The low reporting of challenges related to the physical exam suggests that most symptoms can be adequately assessed and managed by history, visual inspection, and/or with the help of the patient and caregiver, at least as perceived by the PC clinician.

Post-visit surveys indicated that other persons (including family members) accompanied patients less often for in-person visits during the pandemic, which likely reflects the restrictive visitation policies implemented during this time. Most hospitals implemented “no visitor” restrictions, which prevented friends and family members from accompanying patients during visits. Consequently, PC clinicians may have experienced more challenges conducting in-person visits during the pandemic due to absent family members or caregivers, especially since caregivers of patients with cancer are often active participants during clinical encounters. Interestingly, post-visit surveys following in-person visits indicated that fatigue-related challenges were highest in the pre-COVID-19 subgroup compared to the others. This finding may be attributed to the larger distribution of patients with moderate-to-poor performance status in the pre-COVID-19 subgroup since patients with poorer performance status have less physiologic reserve to engage effectively during interpersonal encounters.

Our study has several limitations. First, we amended our study protocol due to social distancing restrictions to allow either in-person or video visits when conducting initial PC consultations. Despite this alteration, most initial visits were conducted in person across COVID-19 subgroups (Supplementary Table 2). Second, we are unable to report study procedure adherence by randomized study group since we will be reporting these findings in the primary outcome paper. Third, our analysis of post-visit surveys did not account for intra-clinician variation because our study lacked data on PC clinician characteristics, and we have over 90 palliative care clinicians serving as study interventionists, with varying numbers of observations per clinician. By analyzing our post-visit survey data at the patient level and dividing the data into time-based subcategories, we were able to yield the most interpretable results.

Fourth, the post-visit survey questions addressing in-person and video visit challenges were formulated ad hoc, which limits their validity. Fifth, our results may be biased towards fewer reported challenges encountered with video visits due to PC clinician training on communication skills involving video visits. Sixth, most of the study’s patient sample was familiar with technology, reporting daily use of a computer, tablet, smartphone, internet, or email, which could also bias findings towards the null. Seventh, clinical research coordinators (CRCs) were available to assist patients with setting up video visits and to help troubleshoot technical issues. Finally, the study mitigated inequities in digital health access by providing a tablet to patients randomized to the video visit group who did not possess a smartphone, tablet, or computer. Healthcare institutions rarely provide navigators and digital devices for patients with low technology literacy and/or limited access to technology in a non-research context, respectively. That said, the availability of tablets and CRC support allowed us to have greater sample diversity.

In summary, PC clinician-reporting on technical difficulties related to video visits improved, whereas in-person challenges related to absent patients’ family members worsened during the pandemic. Decreased PC video visit challenges over time possibly reflects increased clinician and institutional experience implementing this modality, and increased challenges related to absent family members during in-person visits likely reflects restrictive institutional visitation policies during the pandemic. More research is needed to understand how to optimize delivery of both in-person and video PC visits to ensure that all patients with advanced cancer have equitable access to early integrated PC.

Disclosures and Acknowledgments

Research reported in this publication was funded through the Patient-Centered Outcomes Research Institute (PCORI) Award (PLC-1609-35995) and was supported by the Palliative Care Research Cooperative Group, which is funded by the National Institute of Nursing Research of the National Institutes of Health under award number U2CNR014637. All statements in this publication are solely the responsibility of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI), its Board of Governors, or Methodology Committee. No competing financial interests exist.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.jpainsymman.2022.08.005.

References

1. Koonin LM, Hoots B, Tsang CA, et al. Trends in the use of telehealth during the emergence of the COVID-19 pandemic - United States, January-March 2020. MMWR Morb Mortal Wkly Rep 2020;69:1595-1599.
2. Patel SY, Mehrotra A, Huskamp HA, et al. Trends in outpatient care delivery and telemedicine during the COVID-19 pandemic in the US. JAMA Intern Med 2021;181:388–391.

3. Patel SY, Mehrotra A, Huskamp HA, et al. Variation in telemedicine use and outpatient care during the COVID-19 pandemic in the United States. Health Aff (Millwood) 2021;40:349–358.

4. Lally K, Kematick BS, Gorman D, Tulsky J. Rapid conversion of a palliative care outpatient clinic to telehealth. JCO Oncol Pract 2021;17:e62–e67.

5. Mehta AK, Smith TJ. Palliative care for patients with cancer in the COVID-19 era. JAMA Oncol 2020;6:1525–1528.

6. Eastman P, Dowd A, White J, Carter J, Ely M. Telehealth: rapid adoption in community palliative care due to COVID-19: patient and professional evaluation. BMJ Support Palliat Care 2021. https://doi.org/10.1136/bmjspcare-2021-002987. Published online 23 June 2021.

7. Reddy A, Arthur J, Dalal S, et al. Rapid transition to virtual care during the COVID-19 epidemic: experience of a supportive care clinic at a tertiary care cancer center. J Palliat Med 2021;24:1467–1473.

8. Cook DJ, Takaoka A, Hoad N, et al. Clinician perspectives on caring for dying patients during the pandemic: a mixed-methods study. Ann Intern Med 2021;174:493–500.

9. Mercadante S, Adile C, Ferrera P, et al. Palliative care in the time of COVID-19. J Pain Symptom Manage 2020;60:e79–e80.

10. Kunitz JG, Kavalieratos D, Esper GJ, et al. Feasibility and acceptability of inpatient palliative care E-Family meetings during COVID-19 pandemic. J Pain Symptom Manage 2020;60:e28–e32.

11. Calton B, Abedini N, Fratkin M. Telemedicine in the time of coronavirus. J Pain Symptom Manage 2020;60:e12–e14.

12. Gordon B, Mason B, Smith SLH. Leveraging telehealth for delivery of palliative care to remote communities: a rapid review. J Palliat Care 2021;38:550–551.

13. Perri GA, Abdel-Malek N, Bandali A, Grosbein H, Gardiner S. Early integration of palliative care in a long-term care home: a telemedicine feasibility pilot study. Palliat Support Care 2020;18:460–467.

14. Read Paul L, Salmon C, Sinarajah A, Spice R. Web-based videoconferencing for rural palliative care consultation with elderly patients at home. Support Care Cancer 2019;27:3321–3330.

15. Slavin-Stewart C, Phillips A, Horton R. A feasibility study of home-based palliative care telemedicine in rural Nova Scotia. J Palliat Med 2020;23:548–551.

16. Steindal SA, Nes AAG, Godskesen TE, et al. Patients’ experiences of telehealth in palliative home care: scoping review. J Med Internet Res 2020;22:e16218.

17. van Gurn J, van Selm M, Vissers K, van Leeuwen E, Hesse-laar J. How outpatient palliative care teleconsultation facilitates empathetic patient-professional relationships: a qualitative study. PLoS One 2015;10:e0124387.

18. Macchi ZA, Ayele R, Dini M, et al. Lessons from the COVID-19 pandemic for improving outpatient neuropalliative care: a qualitative study of patient and caregiver perspectives. Palliat Med 2021;35:1258–1266.

19. Fausto J, Hirano L, Lam D, et al. Creating a palliative care inpatient response plan for COVID-19: The UW medicine experience. J Pain Symptom Manage 2020;60:e21–e26.

20. Haydar A, Lo KB, Goyal A, et al. Palliative care utilization among patients with COVID-19 in an underserved population: a single-center retrospective study. J Pain Symptom Manage 2020;60:e18–e21.

21. Moriyama D, Scherer JS, Sullivan R, Lowy J, Berger JT. The impact of COVID-19 surge on clinical palliative care: a descriptive study from a New York hospital system. J Pain Symptom Manage 2021;61:e1–e5.

22. Spacey A, Porter S, Board M, Scammell J. Impact of the COVID-19 pandemic on end of life care delivery in care homes: a mixed method systematic review. Palliat Med 2021;35:1468–1479.

23. Chávarri-Guerra Y, Ramos-López WA, Covarrubias-Gómez A, et al. Providing supportive and palliative care using telemedicine for patients with advanced cancer during the COVID-19 pandemic in Mexico. Oncologist 2021;26:e512–e515.

24. Chua IS, Zachariah F, Dale W, et al. Early integrated telehealth versus in-person palliative care for patients with advanced lung cancer: a study protocol. J Palliat Med 2020;22:157–159.

25. Geographical differences in COVID-19 cases, deaths, and incidence - United States, February 12-April 7, 2020. MMWR Morb Mortal Wkly Rep 2020;69:465–471.

26. Chua IS, Jackson V, Kamdar M. Webside manner during the COVID-19 pandemic: maintaining human connection during virtual visits. J Palliat Med 2020;23:1507–1509.

27. Yoong J, Park ER, Greer JA, et al. Early palliative care in advanced lung cancer: a qualitative study. JAMA Intern Med 2013;173:283–290.

28. Temel JS, Greer JA, El-Jawahri A, et al. Effects of early integrated palliative care in patients with lung and GI cancer: a randomized clinical trial. J Clin Oncol 2017;35:834–841.

29. Hoerger M, Greer JA, Jackson VA, et al. Defining the elements of early palliative care that are associated with patient-reported outcomes and the delivery of end-of-life care. J Clin Oncol 2018;36:1096–1102.

30. Temel JS, Sloan J, Zemla T, et al. Multisite, randomized trial of early integrated palliative and oncology care in patients with advanced lung and gastrointestinal cancer: alliance A221303. J Palliat Med 2020;23:922–929.

31. Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 2010;363:733–742.

32. Schwamm LH, Estrada J, Erskine A, Licurse A. Virtual care: new models of caring for our patients and workforce. Lancet Digit Health 2020;2:e282–e285.

33. Breton M, Sullivan EE, Deville-Stoeltz N, et al. Telehealth challenges during COVID-19 as reported by primary healthcare physicians in Quebec and Massachusetts. BMC Fam Pract 2021;22:192.

34. Smith WR, Atala AJ, Terlecki RP, Kelly EE, Matthews CA. Implementation guide for rapid integration of an outpatient telemedicine program during the COVID-19 pandemic. J Am Coll Surg 2020;231:216–222.e2.
35. Calton B, Shibley WP, Cohen E, et al. Patient and caregiver experience with outpatient palliative care telemedicine visits. Palliat Med Rep 2020;1:339–346.

36. Jaswaney R, Davis A, Cadigan RJ, et al. Hospital policies during COVID-19: an analysis of visitor restrictions. J Public Health Manag Pract 2022;28:E299–E306.

37. Street RI, Gordon HS. Companion participation in cancer consultations. Psychooncology 2008;17:244–251.

38. Eggly S, Penner LA, Greene M, et al. Information seeking during “bad news” oncology interactions: question asking by patients and their companions. Soc Sci Med 2006;63:2974–2985.