Enhancement of unsteady frequency responses of electro-thermal resonance MEMS cantilever sensors

Andi Setiono¹², Wilson Ombati Nyang’au¹³, Michael Fahrbach¹, Jiushuai Xu¹, Maik Bertke¹, Hutomo Suryo Wasisto¹, Erwin Peiner¹

¹ Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, D-38106 Braunschweig, Germany.

² Research Centre for Physics, Indonesia Institute of Sciences (LIPI), 15314 Tangerang Selatan, Indonesia

³ Department of Metrology, Kenya Bureau of Standards (KEBS), 00200 Nairobi, Kenya

a.setiono@tu-braunschweig.de

Abstract. Unsteady frequency response of in-plane electro-thermal MEMS-based cantilever sensors can cause up-/down-shifting of the resonance phase, which becomes an inhibitive factor in resonance locking using a phase-locked loop setup. Moreover, the inconsistency of resonance phase during real-time measurement potentially causes inaccuracy in resonant-frequency locking. In this work, reference parameters are differentially subtracted from the sensor output signals to enhance the characteristic of frequency response. As a calculation result, a constant resonance phase can be successfully achieved by adjusting the reference parameters close to the sensor baseline, both in sensor amplitude and phase.

1. Introduction

Micro-electro-mechanical systems (MEMS) are today already an indispensable part of our daily life. In recent years, silicon MEMS-based sensors have shown a capability to measure in a high resolution some numbers of particles and agglomerations [1–5]. Silicon micro-machined sensors have good characteristics of small size, lightweight, high precision, and good stability [6, 7]. An electro-thermal silicon piezoresistive cantilever sensor is one kind of these devices, to which measured various target analytes making regular changes in natural frequency of the resonant beam. The excitation part is a key component of a resonant sensor, where electro-thermal excitation is having certain advantages, e.g., simple fabrication. We fabricated this type of sensor using bulk silicon wafers and a bulk micromachining technique that leads to lower cost of materials and fabrication processes with respect to surface micromachining [8]. This MEMS-cantilever sensor comprises two main parts, i.e., a heating resistor (HR) and a U-shaped full Wheatstone bridge (WB) configuration, which act as mechanical actuation and electrical sensing, respectively [9–11]. Both are realized in the form of diffused p-type silicon resistors as illustrated in figure 1.
Thermally actuated compliant mechanisms are those onto which thermal loading is applied in order to deform a structure. A typical way of obtaining a thermal load is to apply a current through a resistive material, which is subsequently converted into heat by the Joule heating effect. The resulting temperature gradient yields a bending deformation, which is then detected by the sensing component. However, small distance between actuation part (HR) and sensing part (WB) can cause a direct thermal crosstalk between HR and WB that leads to asymmetry and reversed shape of resonance amplitude and phase characteristic, respectively [12, 13]. Moreover, a phase delay between the signal induced by the cantilever deflection and the direct thermal parasitic is expected, which may have an impact on the occurrence of up-/down-shifting of the phase in the sensor output signal. Therefore, this report deals with an improvement of the frequency response of electro-thermal silicon piezoresistive cantilever sensors, especially on removing instabilities of the resonance phase \(\theta_R \) during online measurement of an analyte. A steady phase response becomes an important requirement to establish real-time resonant-frequency tracking using a phase-locked loop (PLL) setup.

2. Frequency responses of electro-thermal resonance cantilever sensor

Frequency responses are amplitude and phase responses that are measured in the frequency domain. Frequency response of cantilever sensor can be acquired using a lock-in amplifier instrument that can extract a signal on a known carrier wave by operating a multiplication of its input with a reference signal (carrier) and then applying a low-pass filter to the result. Figure 2 shows how a lock-in amplifier works out resulting amplitude \(R \) and phase responses \(\theta \). The input signal from the WB of the cantilever is split and separately multiplied with the reference signal and its 90° phase-shifted copy. The outputs of the mixers pass through low-pass filters, resulting in the two outputs \(X \) and \(Y \), termed the in-phase and quadrature components, respectively. A low pass filter picks out the part of the signal that is correlated with the reference essentially by averaging the output of the mixer. Furthermore, the amplitude \(R \) and the phase \(\theta \) are easily derived from \(X \) and \(Y \) by a transformation from Cartesian coordinates into polar coordinates using the relations:

\[
R = \sqrt{X^2 + Y^2} \tag{1}
\]

\[
\theta = \text{atan2}(Y, X) \tag{2}
\]

where \text{atan2} is an extension of the inverse angle function arctangent and is used to have an output range for the phase angle that covers all four quadrants, i.e., \((-\pi, \pi)\).
Figure 2. Schematic of the lock-in amplification: the input signal is multiplied by the reference signal and a 90° phase-shifted version of the signal source. The mixer outputs are low-pass filtered to reject the noise and the 2ω component, and finally converted into polar coordinates, i.e., amplitude R and phase θ.

We use an MFLI lock-in amplifier from Zurich Instrument to characterize the frequency responses of the resonance cantilever sensor. A sinusoidal signal with $2\, V_{\text{pk-pk}}$ and $+5\, \text{VDC}$ offset were generated to actuate the cantilever beam through the heating resistor (HR). Due to the Joule effect, there is a bending deformation around HR which subsequently actuates the cantilever beam into lateral deflection. The induced bending strain is sensed by the WB and converted into an electrical signal. The WB output signals were amplified by an instrumentation amplifier AD8429 at $G = 61$. In addition, the silicon substrate (n-type) was connected to the ground pole of the supply of WB (V_{WB}) and HR, which was purposed to avoid a current leaking along the piezoresistors and HR.

A resonance cantilever sensor experiences a resonant-frequency shift Δf_R induced by the added mass of a certain analyte target that descends and sticks on its surface. We functionalized a cantilever beam with $\sim 2\, \mu\text{m}$ sized polymethyl methacrylate (PMMA) particles (from Sigma-Aldrich Inc.) to increase its capability for collecting target analytes in cigarette smoke. The characteristics of PMMA, which has carbon atom on the backbone chain and has low hydrophobicity, are desired to foster collecting of carbon and hydrogen-based molecules comprised in the smoke. A frequency-sweep method was used to exhibit the frequency responses and deliver its Q-factor before and after smoke exposure. Sinusoidal signals generated by the MFLI in a certain bandwidth of frequency were then fed into the actuation part (the HR) and subsequently the amplitude R and phase response θ were measured. Figure 3 delineate the frequency responses at the two different conditions showing a frequency shift $\Delta f_R = \sim 40.45\, \text{Hz}$. On the other hand, the Q-factor decreased from 2666.5 to 2105.1.

Figure 3. Measured frequency response in (a) amplitude R and (b) phase of an electro-thermal MEMS cantilever sensor. Resonant-frequency shift Δf_R due to smoke exposure is accompanied by an increase of resonance amplitude and a decrease of resonance phase from θ_{R1} to θ_{R2}.
However, unsteady frequency response causes a decrease of resonance phase from θ_{R1} to θ_{R2}. A steady resonance phase is necessary, however, if we intend to track the resonant-frequency in real-time using a PLL-based system. In a PLL setup, frequencies are controlled based on a phase error that refers to the resonance phase at a set-point. Therefore, θ_k should be constantly standing for precise measurement of analyte exposure.

3. Reference parameter subtraction

In this study, a reference parameter is investigated to improve the frequency response to yield a steady resonance phase. Basically, a reference parameter is a constant value near the baseline values of amplitude R and phase θ, which are differentially subtracted from the sensor responses using Eqs. (3) to (5):

$$x_1 = R_s \cos \theta_s; \quad y_1 = R_s \sin \theta_s; \quad x_2 = R_r \cos \theta_r; \quad y_2 = R_r \sin \theta_r,$$

$$\Delta x = x_1 - x_2; \quad \Delta y = y_1 - y_2,$$

$$R_{opt} = \sqrt{\Delta x^2 + \Delta y^2}; \quad \theta_{opt} = \text{atan2}(\Delta x, \Delta y),$$

where R_s, R_r, and R_{opt} are amplitudes of sensor, reference and optimized response, while θ_s, θ_r, θ_{opt} are phases of sensor, reference, and optimized response, respectively.

Figure 4 illustrates how the reference parameters are configured relative to the sensor baseline, both on the amplitude R and the phase θ. At the first condition (i.e., without smoke), the reference parameters are adjusted to 1.3 V and -7.2° for amplitude and phase, respectively. While after being exposed with smoke, the reference parameters are re-adjusted to the new values, i.e., 1.39 V for amplitude and -10.5° for phase. As shown in figure 5, the implementation of the reference parameter dramatically improves the frequency response, especially for resonance phase θ_k that is kept constant at $\sim -12.2^\circ$.

![Figure 4](image.png)

Figure 4. Measured frequency response in (a) amplitude R (black plus line) and (b) phase (blue crossline) of an electro-thermal MEMS cantilever at different conditions (without and with smoke), with constant reference parameters shown in black open circle and blue open square line for reference amplitude and reference phase, respectively.
Figure 5. Calculated frequency response in (a) amplitude R (black full line) and (b) phase (red dash line) of an electro-thermal MEMS cantilever sensor showing a steady spectral phase response with a constant resonance phase of $\sim -12.2^\circ$.

However, it is challenging for determining reference values simultaneously with the changing of sensor response during a real-time measurement. Reference parameters should be kept at an optimum value in order to yield the desired resonance phase. To realize it, the implementation of a prediction algorithm will be further investigated. This prediction algorithm will be incorporated in the digital-PLL program and thus result in accurate resonant-frequency locking in real time.

4. Conclusion
Unsteady phase responses occurring with the electro-thermal cantilever sensors can be improved by implementing reference parameters involving a differential calculation method. This method can provide monotonic phase responses that are suitable for an implementation in a digital phase-locked-loop (PLL) system for tracking the resonant frequency of the sensor at changing conditions of analyte exposure (e.g., smoke). A method for involving adaptive reference parameters, however, is still necessary to be developed in the next further works.

Acknowledgements
A. Setiono would like to thank the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI) for the PhD scholarship of RISET-Pro under no. 343/RISET-Pro/FGS/VIII/2016 (World Bank Loan No. 8245-ID) which is revised by no. 37/RISET-Pro/FGS/III/2019 and Indonesian-German Center for Nano and Quantum Technologies (IG-Nano) for the support. This work received funding from the European Union’s Horizon 2020 research and innovation programme under no. 17IND05 MicroProbes. W.O. Nyang’au and J. Xu acknowledge doctoral scholarships from the German Federal Ministry for Economic Cooperation and Development (BMZ) within the Braunschweig International Graduate School of Metrology (B-IGSM) and the China Scholarship Council (CSC) under the Grant CSC No. 201506300019, respectively. M. Bertke and H.S. Wasisto are grateful for support from the “Niedersächsisches Vorab”, Germany, through the “Quantum-and Nanometrology (QUANOMET)” initiative within the project of “NP 2-2” and “LENA-OptoSense”, respectively. We are also grateful to Angelika Schmidt, Juliane Breitfelder, Aileen Michalski, Karl-Heinz Lachmund, Ratna Indrawijaya and Chandra Risdian for their assistance during preparation of research tools as well as many fruitful discussions.

References
[1] H. S. Wasisto, S. Merzsch, E. Uhde, A. Waag, and E. Peiner, “Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever,” Microelectronic Engineering, vol. 145, pp. 96–103, 2015.
[2] H. S. Wasisto, S. Merzsch, E. Uhde, A. Waag, and E. Peiner, “Partially integrated cantilever-based airborne nanoparticle detector for continuous carbon aerosol mass concentration monitoring,” J. Sens. Sens. Syst., vol. 4, no. 1, pp. 111–123, 2015.

[3] J. Toledo et al., “Piezoelectric MEMS Resonators for Cigarette Particle Detection,” (eng), Micromachines, vol. 10, no. 2, 2019.

[4] M. Bertke et al., “Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection,” (eng), Sensors (Basel, Switzerland), vol. 19, no. 4, 2019.

[5] M. Bertke et al., “Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors,” J. Phys.: Conf. Ser., vol. 757, p. 12006, 2016.

[6] A. L. Herrera-May, L. A. Aguilera-Cortés, P. J. Garcia-Ramírez, and E. Manjarrez, “Resonant Magnetic Field Sensors Based On MEMS Technology,” (eng), Sensors (Basel, Switzerland), vol. 9, no. 10, pp. 7785–7813, 2009.

[7] D. Xia, C. Yu, and L. Kong, “The development of micromachined gyroscope structure and circuitry technology,” (eng), Sensors (Basel, Switzerland), vol. 14, no. 1, pp. 1394–1473, 2014.

[8] C.-H. Lin, “Bulk Micromachining,” in Encyclopedia of Microfluidics and Nanofluidics, D. Li, Ed., Boston, MA: Springer US, 2008, pp. 164–173.

[9] J. Xu, M. Bertke, H. S. Wasisto, and E. Peiner, “Piezoresistive microcantilevers for humidity sensing,” J. Micromech. Microeng., vol. 29, no. 5, p. 53003, 2019.

[10] M. Bertke et al., “Analysis of asymmetric resonance response of thermally excited silicon microcantilevers for mass-sensitive nanoparticle detection,” J. Micromech. Microeng., vol. 27, no. 6, p. 64001, 2017.

[11] H. S. Wasisto, E. Uhde, and E. Peiner, “Enhanced performance of pocket-sized nanoparticle exposure monitor for healthy indoor environment,” Building and Environment, vol. 95, pp. 13–20, 2016.

[12] A. Setiono et al., “Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors,” J. Sens. Sens. Syst., vol. 8, no. 1, pp. 37–48, 2019.

[13] A. Setiono et al., “Real-Time Frequency Tracking of an Electro-Thermal Piezoresistive Cantilever Resonator with ZnO Nanorods for Chemical Sensing,” Chemosensors, vol. 7, no. 1, p. 2, 2019.