On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators.

S.M. Zagorodnyuk

Introduction.
Complex symmetric, skew-symmetric and orthogonal matrices are classical objects of the finite-dimensional linear analysis [1]. In particular, the canonical spectral forms are known for them. Certainly, they have a more complicated structures as for Hermitian matrices. However, in a certain sense complex symmetric matrices are more universal. Namely, an arbitrary square complex matrix is similar to a symmetric matrix. If one introduces a J-form and write conditions for a symmetric, skew-symmetric and orthogonal matrix (continued by zeros to the right and to the bottom to obtain a semi-infinite matrix) in its terms, one arrives to the well-known J-symmetric, J-skew-symmetric and J-isometric operators.

A general definition of a J-symmetric operator was given by I.M. Glazman in his paper [2]. A study of these operators had been continued in papers of N.A. Zhyhar and A. Galindo (see the references in a monograph [3]). Later, an investigation of these operators had been performed by A.D. Makarova, L.A. Kamerina, V.P. Li, T.B. Kalinina, A.N. Kochubey, B.G. Mironov (a seria of papers by these authors appeared in 70-th, 80-th of the 20-th century in Ulyanovskiy sbornik "Funkcionalniy analiz"), L.M. Rayh, E.R. Tsekanovskiy and others. Most of these papers were devoted to the questions of extensions of J-symmetric operators to J-self-adjoint operators and to a description of all such extensions. At the present time, J-self-adjoint operators are studied by S.R. Garcia, M. Putinar, E. Prodan (see the paper [4] and References therein).

A definition of a bounded J-skew-symmetric operator was given by Sh. Asadi and I.E. Lutsenko in the paper [5]. A general definition appeared in a paper of T.B. Kalinina [6], she continued to study these operators in papers [7], [8]. J-symmetric and J-skew-symmetric operators also appeared in a book [9] in a study of Volterra operators context.

In papers of L.A. Kamerina J-isometric and quasi-unitary operators and a notion of quasi-unitary equivalence were introduced [10], [11].

Consider a separable Hilbert space H. Recall that a conjugation (involution) in H is an operator J, defined on the whole H and satisfying the following properties [12], [13]

$$J^2 = E, \quad (Jx, Jy) = \overline{(x, y)}, \quad x, y \in H,$$

(1)
where E is the identity operator in H, and (\cdot, \cdot) is a scalar product in H.

For each conjugation there exists an orthonormal basis $\mathcal{F} = \{f_k\}_{k \in \mathbb{Z}_+}$ in H such that
\[Jx = \sum_{k=0}^{\infty} \overline{x_k} f_k, \quad x = \sum_{k=0}^{\infty} x_k f_k \in H. \] (2)

This basis is not uniquely determined, it is determined up to a unitary transformation which commutes with J (J-real). An arbitrary such a basis \mathcal{F} we shall call **corresponding** to the involution J. Define the following linear with respect to the both arguments functional (J-form):
\[[x, y]_J := (x, Jy), \quad x, y \in H. \] (3)

A linear operator A in H is said to be J-symmetric, if
\[[Ax, y]_J = [x, Ay]_J, \quad x, y \in D(A), \] (4)

and is said to be J-skew-symmetric if
\[[Ax, y]_J = -[x, Ay]_J, \quad x, y \in D(A). \] (5)

If the following condition is true:
\[[Ax, Ay]_J = [x, y]_J, \quad x, y \in D(A), \] (6)

then the operator is said to be J-isometric.

Let the domain of A is dense in H. The operator A is said to be J-self-adjoint if
\[A = JA^* J, \] (7)

and is said to be J-skew-self-adjoint if
\[A = -JA^* J. \] (8)

If
\[A^{-1} = JA^* J, \] (9)

then the operator A we shall call a J-unitary. Notice that the operator $A^T = JA^* J$ in [12] was called **transposed** (later, in some papers it was also called J-adjoint, but we shall use the latter word for the operator $\tilde{A} = JAJ$).

For non-densely defined operators, one can also introduce a notion of J-symmetric and J-skew-symmetric linear relations, see, e.g., [14].

Let A be a linear bounded operator in H. In this case, conditions (4),(5), (6) mean that the matrix of the operator in an arbitrary basis \mathcal{F}, which is...
coresponding to J, will be symmetric, skew-symmetric and orthogonal, respectively. This remark and some properties of the J-form allow to obtain some simple properties of eigenvalues and eigenvectors of such matrices.

In this work we obtain a J-polar decomposition for bounded operators (under some conditions). This decomposition is analogous to the polar decomposition of a bounded operator and to the J-polar decomposition in J-spaces [15]. Also, we obtain other decompositions which are analogous to decompositions for finite-dimensional matrices in [1]. A possibility of the matrix representation for J-symmetric and J-skew-symmetric operators and its properties are studied. A structure of the following null set

$$H_{J,0} = \{ x \in H : [x, x]_J = 0 \},$$

is studied, as well.

Notations. As usual, we denote by $\mathbb{R}, \mathbb{C}, \mathbb{N}, \mathbb{Z}, \mathbb{Z}^+$ the sets of real numbers, complex numbers, positive integers, non-negative integers and the real plane, respectively. Everywhere in this paper, all Hilbert spaces are assumed to be separable, (\cdot, \cdot) and $\| \cdot \|$ denote the scalar product and the norm in a Hilbert space, respectively.

For a set M in a Hilbert space H, by \overline{M} we mean a closure of M in the norm $\| \cdot \|$. For $\{x_k\}_{k \in \mathbb{Z}^+}$, $x_k \in H$, we write $\text{Lin} \{x_k\}_{k \in \mathbb{Z}^+} := \{ y \in H : y = \sum_{j=0}^{n} \alpha_j x_j, \alpha_j \in \mathbb{C}, n \in \mathbb{Z}_+ \}$; $\text{span} \{x_k\}_{k \in \mathbb{Z}^+} := \overline{\text{Lin} \{x_k\}_{k \in \mathbb{Z}^+}}$.

The identity operator in a Hilbert space H is denoted by E. For an arbitrary linear operator A in H, the operators $A^*, \overline{A}, A^{-1}$ mean its adjoint operator, its closure and its inverse (if they exist). By $D(A)$ and $R(A)$ we mean the domain and the range of the operator A, and by $\text{Ker} A$ we mean the kernel of the operator A. By $\sigma(A)$, $\rho(A)$ we denote the spectrum of A and the resolvent set of A, respectively. The resolvent function of A we denote by $R_A(\lambda), \lambda \in \rho(A)$. Also, we denote $\Delta_A(\lambda) = (A - \lambda E)D(A)$. The norm of a bounded operator A is denoted by $\|A\|$.

By l_2 we denote the space of complex sequences $x = (x_0, x_1, x_2, ...)^T, x_k \in \mathbb{C}, k \in \mathbb{Z}_+$, with a finite norm $\|x\| = (\sum_{k=0}^{\infty} |x_k|^2)^{\frac{1}{2}}$ (the superscript T stands for the transposition).

1 **Properties of eigenvalues and eigenvectors.**

We shall begin with some simple properties of J-symmetric, J-skew-symmetric and J-orthogonal operators which, in particular, lead to some new properties of finite-dimensional complex symmetric, skew-symmetric and orthogonal matrices. Let J be a conjugation in a Hilbert space H.

Vectors x and y are said to be **J-orthogonal**, if $[x, y]_J = 0$. The following proposition is true (concerning statement (i) of the Proposition see. The-
Proposition 1.1 Let A be a J-symmetric operator in a Hilbert space H. The following statements are true:
(i) Eigenvectors of the operator A which correspond to different eigenvalues are J-orthogonal;
(ii) If vectors x and Jx, $x \in D(A)$, are eigenvectors of the operator A, then they correspond to the same eigenvalue.

Proof. In fact, we can write
\[\lambda_x [x, y]_J = [Ax, y]_J = [x, Ay]_J = \lambda_y [x, y]_J, \]
and therefore
\[(\lambda_x - \lambda_y) [x, y]_J = 0. \] (10)
Suppose that $x, \overline{x} := Jx \in D(A)$ are eigenvectors of the operator A, which correspond to eigenvalues λ_x and $\lambda_{\overline{x}}$, respectively. Write (10) with $y = \overline{x}, \lambda_y = \lambda_{\overline{x}}$:
\[(\lambda_x - \lambda_{\overline{x}}) [x, \overline{x}]_J = 0. \]
Since $[x, \overline{x}]_J = \|x\|^2 > 0$, we get $\lambda_x = \lambda_{\overline{x}}$. \square

Define the following set:
\[H_{J,0} := \{ x \in H : [x, x]_J = 0 \}. \] (11)

In a similar to the latter proof manner the validity of the following two propositions is established.

Proposition 1.2 If A is a J-skew-symmetric operator in a Hilbert space H, then the following is true:
(i) Eigenvectors of the operator A, which correspond to non-zero eigenvalues, belong to the set $H_{J,0}$;
(ii) If λ_x, λ_y are eigenvalues of the operator A such that $\lambda_x \neq -\lambda_y$, then the corresponding to them eigenvectors are J-orthogonal;
(iii) Suppose that $x, \overline{x} := Jx \in D(A)$ are eigenvectors of the operator A, corresponding to the eigenvalues λ_x and $\lambda_{\overline{x}}$, respectively. Then $\lambda_x = -\lambda_{\overline{x}}$.

Proposition 1.3 Let A be a J-isometric operator in a Hilbert space H. Then the following statements are true:
(i) Eigenvectors of the operator A, which correspond to different from ± 1 eigenvalues belong to the set $H_{J,0}$;
(ii) If \(\lambda_x, \lambda_y \) are eigenvalues of the operator \(A \) such that \(\lambda_x \neq \frac{1}{\lambda_y} \), then the corresponding to them eigenvectors are \(J \)-orthogonal;

(iii) Suppose that \(x, \overline{x} := Jx \in D(A) \) are eigenvectors of the operator \(A \), corresponding to the eigenvalues \(\lambda_x \) and \(\lambda_{\overline{x}} \), respectively. Then \(\lambda_x = \frac{1}{\overline{\lambda_x}} \).

It is interesting to notice that in the finite-dimensional case the point 0 for a skew-symmetric matrix and points \(\pm 1 \) for an orthogonal matrix are distinguished in a special manner in the spectrum, as well.

In the case of a unitary space \(U^n \) with a dimension \(n, n \in \mathbb{Z}_+ \), in an analogous manner, a conjugation \(J \), a \(J \)-form, and \(J \)-orthogonality are defined. So, the latter statements are true for complex symmetric, skew-symmetric and orthogonal matrices.

Example 1.1. Consider a numerical matrix \(A = \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix} \). Its eigenvalues are \(\lambda_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i \), \(\lambda_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i \), and the corresponding to them normed eigenvectors are \(f_1 = \frac{1}{\sqrt{2}} \left(\sqrt{3} - i \right) \), \(f_2 = \frac{1}{\sqrt{2}} \left(-\sqrt{3} - i \right) \). Vectors \(f_1, f_2 \) are not orthogonal. However, they are \(J \)-orthogonal.

Let \(J \) be a conjugation in a Hilbert space \(H \) and \(A \) be a bounded linear operator in \(H \). The norm of \(A \), as it can be easily seen from the properties of the involution, can be calculated by the following formula

\[
\|A\| = \sup_{x,y \in H: \|x\| = \|y\| = 1} |[Ax, y]_J|.
\]

The following statement is true:

Proposition 1.4 If \(A \) is a bounded \(J \)-symmetric operator in a Hilbert space \(H \), then its norm can be calculated as

\[
\|A\| = \sup_{x \in H: \|x\| = 1} |[Ax, x]_J|.
\]

Proof. Consider an operator \(A \) such as in the statement of the Proposition. Set \(C := \sup_{x \in H: \|x\| = 1} |[Ax, x]_J| \). For arbitrary elements \(x, y \in H : x \neq \pm y \) we can write

\[
[A(x + y), x + y]_J - [A(x - y), x - y]_J = 4[Ax, y]_J;
\]

\[
|[Ax, y]_J| \leq \frac{1}{4} (|[A(x + y), x + y]_J| + |[A(x - y), x - y]_J|) =
\]

\[
= \frac{1}{4} \left(\left| A\left(\frac{x + y}{\|x + y\|} \right), \frac{x + y}{\|x + y\|} \right|_J \right) \|x + y\|^2 + \left| A\left(\frac{x - y}{\|x - y\|} \right), \frac{x - y}{\|x - y\|} \right|_J \right)^*.
\]

5
\[\|x - y\|^2 \leq \frac{1}{4} C (\|x + y\|^2 + \|x - y\|^2) = \frac{1}{2} C (\|x\|^2 + \|y\|^2). \tag{14} \]

Thus, by using (12) and (14) we get
\[\|A\| = \sup_{x, y \in H: \|x\| = \|y\| = 1} |\langle Ax, y \rangle_J| \leq C. \]

On the other hand, we can write
\[C = \sup_{x, y \in H: \|x\| = 1} \|Ax\| \leq \sup_{x, y \in H: \|x\| = \|y\| = 1} \|Ax, y\|_J = \|A\|. \]

Therefore \(C = \|A\| \). \(\Box \)

For a J-skew-symmetric operator \(A \), its norm can not be calculated by the formula (13). Moreover, the following characteristic property of J-skew-symmetric operators is true.

Proposition 1.5 A linear operator \(A \) in a Hilbert space \(H \) is J-skew-symmetric if and only if the following equality is true
\[\langle Ax, x \rangle_J = 0, \quad x \in D(A). \tag{15} \]

Proof. We first notice that from the properties of an involution it follows that \(\langle x, y \rangle_J = \langle y, x \rangle_J, \quad x, y \in H \). Let us check the necessity. From relation (5) it follows that
\[\langle Ax, x \rangle_J = -\langle x, Ax \rangle_J = -\langle Ax, x \rangle_J, \]
and therefore (15) holds true.

Let us check the sufficiency. By using (15) we write
\[0 = \langle A(x + y), x + y \rangle_J = \langle Ax, x \rangle_J + \langle Ax, y \rangle_J + \langle Ay, x \rangle_J + \langle Ay, y \rangle_J = \]
\[= \langle Ax, y \rangle_J + \langle Ay, x \rangle_J, \quad x, y \in D(A). \]

From this relation we obtain that \(\langle Ax, y \rangle_J = -\langle Ay, x \rangle_J = -\langle x, Ay \rangle_J \). \(\Box \)

Let \(J \) be a conjugation in a Hilbert space \(H \) and \(A \) be an arbitrary linear operator in \(H \). The operator \(\tilde{A} := (A)_J := JAJ \) we shall call J-adjoint to the operator \(A \). We first note that \(\tilde{A} = A \) and the following easy to check lemma is true.

Lemma 1.1 For a linear operator \(A \) in a Hilbert space \(H \), equalities \(\overline{D(A)} = H \) and \(D(\tilde{A}) = H \) are true or false simultaneously. The same can be said about equalities \(\overline{R(A)} = H \) and \(\overline{R(\tilde{A})} = H \).
An operation of the construction of the J-adjoint operator commutes with basic operations on operators. Let us formulate the necessary for us properties as propositions.

Proposition 1.6 Let A be a linear operator in a Hilbert space H such that $D(A) = H$ and J be a conjugation in H. Then the following relation is true

$$\tilde{A}^* = (\tilde{A})^*.$$ (16)

Proof. Choose an arbitrary element $g \in D((\tilde{A})^*)$. On one hand, it is true

$$(\tilde{A}x, g) = (x, (\tilde{A})^*g) = (JJx, J(\tilde{A})^*g) = (Jx, J(\tilde{A})^*g) =$$

$$= (J(\tilde{A})^*g, Jx), \quad x \in D(\tilde{A}).$$

On the other hand, we can write

$$(\tilde{A}x, g) = (JAJx, JJg) = (AJx, Jg) = (Jg, AJx), \quad x \in D(\tilde{A}).$$

Comparing right hand sides we obtain that

$$(AJx, Jg) = (Jx, J(\tilde{A})^*g),$$

and therefore $Jg \in D(A^*), A^*Jg = J(\tilde{A})^*g$. Multiplying by J both sides of the latter equality we get $\tilde{A}^*g = (\hat{A})^*g$. Therefore

$$(\hat{A})^* \subseteq \tilde{A}^*.$$ (17)

In order to obtain the inverse inclusion one should write the inclusion (17) with the operator \hat{A}, and then to take J-adjoint operators for the both sides (the inclusion under the last operation will stay true). \square

Proposition 1.7 Let A be a linear operator in a Hilbert space H and J be a conjugation in H. Suppose that operators A and \tilde{A} admit closures. Then the following equality is true

$$\tilde{A} = \widehat{\tilde{A}}.$$ (18)

Proof. Choose an arbitrary element $g \in D(\tilde{A})$. Then there exists a sequence $x_n \in D(\tilde{A}), n \in \mathbb{Z}_+$, such that $x_n \rightarrow x, \tilde{A}x_n = JAJx_n \rightarrow \tilde{A}x$ when $n \rightarrow \infty$. By continuity of the operator J from this it follows that

$$Jx_n \rightarrow Jx, \quad AJx_n \rightarrow J\tilde{A}x.$$
Consequently, we obtain, that \(Jx \in D(\overline{A}) \) \(\overline{A}x = JAx. \) Therefore \(x \in D(\overline{A}) \) and \(\overline{A}x = Ax. \) From this relation we conclude that
\[
\overline{A} \subseteq \overline{A}.
\] (19)

In order to obtain the inverse inclusion, we write the inclusion \[19\] for the operator \(\overline{A}, \) and then to take J-adjoint operators for the both sides. □

Proposition 1.8 Let \(A \) be a linear invertible operator in a Hilbert space \(H \) and \(J \) be a conjugation in \(H. \) Then the operator \(\overline{A} \) is also invertible and the following equality is true
\[
\overline{A}^{-1} = (\overline{A})^{-1}.
\] (20)

Proof. Since \(\overline{A}^{-1}\overline{A} = E|_{D(\overline{A})}, \) and \(D(\overline{A}^{-1}) = JD(\overline{A}^{-1}) = JR(A) = R(\overline{A}), \) the operator \(\overline{A} \) is invertible and relation \[20\] is true. □

Notice that a condition of a \(J \)-symmetric operator \[4\] with the help of J-adjoint operator will be written as follows:
\[
(Ax, y) = (x, \tilde{A}y), \quad x \in D(A), \ y \in D(\tilde{A}).
\] (21)

Conditions of a \(J \)-skew-symmetric operator \[5\] and \(J \)-isometric operator \[6\] will be written as
\[
(Ax, y) = - (x, \tilde{A}y), \quad x \in D(A), \ y \in D(\tilde{A}),
\] (22)
and
\[
(Ax, \tilde{A}y) = (x, y), \quad x \in D(A), \ y \in D(\tilde{A}),
\] (23)
respectively.

Now we shall assume that the operator \(A \) is densely defined in \(H. \) Notice that in this case from condition \[23\] it follows that the operator \(A \) is invertible. In fact, equality \(Ax = 0 \) implies the equality \((x, y) = 0 \) on a dense in \(H \) set \(D(\tilde{A}). \) Thus, a densely defined \(J \)-isometric operator is always invertible.

Note that in the case of a densely defined operator \(A, \) conditions \[21, 22, 23\] are equivalent to the following conditions
\[
A \subseteq (\tilde{A})^*,
\] (24)
\[
A \subseteq -(\tilde{A})^*,
\] (25)
and
\[
A^{-1} \subseteq (\tilde{A})^*,
\] (26)
respectively. From these relations, in particular, it immediately follows that densely defined J-symmetric and J-skew-symmetric operators admit closures. As it is seen from relations (1)–(5), their closures will also be J-symmetric or J-skew-symmetric operators, respectively. For a densely defined J-isometric operator one can only state that its inverse operator admits a closure. However, from relation (6) it is easily seen that the inverse operator to a J-isometric is also J-isometric. Consequently, if the range of the original J-isometric operator (the domain of the inverse operator) is also dense, then it admits a closure. In this case, also from the relation (6), it is seen that this closure will be a J-isometric operator.

Note that the operation of the construction of a J-adjoint operator does not change the defined above by us types of operators. Namely, the following proposition is true:

Proposition 1.9 Let A be a linear operator in a Hilbert space H and J be a conjugation in H. If the operator A is J-symmetric, J-skew-symmetric or J-isometric, then the same is the operator $\tilde{A} = JAJ$, as well.

Proof. The statement about a J-symmetric (J-skew-symmetric, J-isometric) operator follows from relation (21) (22), (23), respectively, taking into account that $A = \tilde{A}$. □

For an element $x \in H$ and a set $M \subseteq H$ we write $x \perp_J M$, if $x \perp_J y$, for all $y \in M$. For a set $M \subseteq H$ we denote $M^\perp_J = \{ x \in H : x \perp_J y, y \in M \}$.

It is known that the residual spectrum of a J-self-adjoint operator is empty. It follows from the theorem below.

Theorem 1.1 ([16, Theorem 4, p.87]) Let A be a J-self-adjoint operator in a Hilbert space H. A complex number λ is an eigenvalue of A if and only if

$$\Delta_A(\lambda) \neq H.$$ \hspace{1cm} (27)

In this case, $(\Delta_A(\lambda))^\perp_J$ will be an eigen-subspace which corresponds to λ.

We shall obtain analogous results for J-skew-symmetric and J-isometric operators. The following theorem is true:

Theorem 1.2 Let A be a J-skew-self-adjoint operator in a Hilbert space H. A complex value λ is an eigenvalue of A if and only if

$$\Delta_A(-\lambda) \neq H.$$ \hspace{1cm} (28)

In this case, $(\Delta_A(-\lambda))^\perp_J$ will be an eigen-subspace which corresponds to λ.

9
Proof. Necessity. Let x be an arbitrary eigenvector of the operator A which corresponds to an eigenvalue λ. Since A, in particular, is skew-symmetric, then we can write for an arbitrary $y \in D(A)$

$$0 = [(A - \lambda E)x, y]_J = -[x, (A + \lambda E)y]_J.$$ \hspace{1cm} (29)

Therefore $x \perp_J \Delta_A(-\lambda)$ and by the continuity of $[,]_J$ we get

$$x \perp_J \overline{\Delta_A(-\lambda)}.$$ \hspace{1cm} (30)

Since $[x, Jx] = \|x\|^2 > 0$, then $Jx \notin \Delta_A(-\lambda)$ and therefore $\Delta_A(\lambda) \neq H$.

Sufficiency. Suppose that equality (28) is true. Then there exists $0 \neq y \in H$ such that

$$(z, y) = 0, \quad z \in \Delta_A(-\lambda).$$ \hspace{1cm} (31)

Therefore $((A + \lambda E)x, y) = 0$, and from this relation we get $(Ax, y) = (x, (\overline{-\lambda})y)$, $x \in D(A)$. Thus, we have $y \in D(A^*)$ and

$$A^*y = -\overline{\lambda}y.$$ \hspace{1cm} (32)

But since A is J-skew-self-adjoint, then $A^* = -\overline{A}$, and we obtain

$$\overline{A}y = \overline{\lambda}y.$$ \hspace{1cm} (32)

From this relation it follows that $Jy \neq 0$ is an eigenvector of the operator A with an eigenvalue λ.

Let us show that the following set

$$V(\lambda) := (\Delta_A(-\lambda))^\perp \setminus \{0\},$$ \hspace{1cm} (33)

is a set of eigenvectors of the operator A, corresponding to a eigenvalue λ. Denote the latter set by $S(\lambda)$. By the proven property (30), the inclusion $S(\lambda) \subseteq V(\lambda)$ is true. On the other hand, if $x \in V(\lambda)$, then for $y := Jx$ relation (31) is true. Repeating arguments which follow after this formula we come to a conclusion that x is an eigenvector of the operator A, corresponding to λ. Thus, the inverse inclusion is also true.

Finally, since $A = (\overline{A})^*$, then A is closed. Therefore $(\Delta_A(-\lambda))^\perp_J$ is an eigen-subspace of the operator A, which corresponds to λ. \qed

Corollary 1.1 The point 0 can not belong to the residual spectrum of a J-skew-self-adjoint operator.

In an analogous manner, the following result for J-unitary operators is established.
Theorem 1.3 Let \(A \) be a J-unitary operator in a Hilbert space \(H \). A complex number \(\lambda \) is an eigenvalue of \(A \) if and only if
\[
\Delta_A \left(\frac{1}{\lambda} \right) \neq H.
\]
In this case, \(\left(\Delta_A \left(\frac{1}{\lambda} \right) \right)^\perp \) is an eigen-subspace, which corresponds to \(\lambda \).

Corollary 1.2 Points \(\pm 1 \) can not belong to the residual spectrum of a J-unitary operator.

From relations (21),(22) it is seen that a defined in the whole \(H \) J-symmetric (J-skew-symmetric) operator is a bounded J-self-adjoint (respectively J-skew-self-adjoint) operator. The following statements are also true.

Proposition 1.10 Let \(A \) be a linear densely defined operator in a Hilbert space \(H \), which is J-symmetric (J-skew-symmetric). Suppose that \(R(A) = H \). Then the operator \(A \) is a J-self-adjoint (respectively J-skew-self-adjoint) operator.

Proposition 1.11 Let \(A \) be a linear densely defined operator in a Hilbert space \(H \), which is J-symmetric (J-skew-symmetric). Suppose that \(R(A) = H \). Then the operator \(A \) is invertible and the operator \(A^{-1} \) is also a J-symmetric (respectively J-skew-symmetric) operator.

Proof. In a view of analogous considerations, we shall check the validity of this Proposition only for the case of a J-skew-symmetric operator \(A \). Notice that \(\text{Ker} A^* = H \ominus \overline{R(A)} = \{0\} \). Thus, the operator \(A^* \) is invertible. Since \(A \) is J-skew-symmetric, the following inclusion is true \(\tilde{A} \subseteq -A^* \) and therefore \(\tilde{A} \) is invertible, as well. By Proposition 1.8 we conclude that the operator \(A \) has an inverse operator. From the inclusion \(\tilde{A} \subseteq -A^* \) it follows the following inclusion
\[
(\tilde{A})^{-1} \subseteq -(A^*)^{-1}.
\]
Notice that \(\overline{D(A^{-1})} = \overline{R(A)} = H \). Thus, we can state that \((A^*)^{-1} = (A^{-1})^* \). Using this equality and using Proposition 1.8 from relation (35) we obtain the following inclusion
\[
\tilde{A}^{-1} \subseteq -(A^{-1})^*.
\]
And this means that the operator \(A^{-1} \) is J-skew-symmetric. □
Proposition 1.12 Let A be a J-self-adjoint (J-skew-self-adjoint) operator in a Hilbert space H. Suppose that $\overline{R(A)} = H$. Then the operator A is invertible and the operator A^{-1} is also J-self-adjoint (respectively J-skew-self-adjoint) operator.

Proof. In view of analogous considerations, we shall give the proof only for the case of J-self-adjoint operator A. By Proposition 1.11 the operator A is invertible. By Proposition 1.8 the operator \tilde{A} is invertible, as well. From Lemma 1.1 it follows that $R(\tilde{A}) = H$, $D(\tilde{A}) = H$. Thus, we have $D((A)^{-1}) = H$. Consequently, the following equality is true $((\tilde{A})^*)^{-1} = ((A)^{-1})^*$. Since the operator A is J-self-adjoint, the last equality can be written as $A^{-1} = ((\tilde{A})^{-1})^*$. Using Proposition 1.8 we obtain the following equality $A^{-1} = (A^{-1})^*$, which shows that the operator A^{-1} is J-self-adjoint. □

2 A J-polar decomposition of bounded operators.

We shall extend in the case of J-symmetric, J-skew-symmetric and J-isometric operators a seria of properties of finite-dimensional complex symmetric, skew-symmetric and orthogonal matrices (see [1]).

The following lemma is true:

Lemma 2.1 Let A be a bounded self-adjoint and J-isometric operator in a Hilbert space H. Then the operator A admits the following representation:

$$A = Ie^{iK},$$

(36)

where I is a bounded self-adjoint J-real involutory ($I^2 = E$) operator in H, and K is a commuting with I bounded skew-self-adjoint J-real operator in H.

If additionally it is known that the operator A is positive, $A \geq 0$, then one can choose $I = E$.

Proof. Consider an operator A such as in the statement of the Lemma. Since the operator A is J-isometric and bounded, then from (6) we obtain $A^*JA = J$, or $A^*\tilde{A} = E$. Since A is self-adjoint, then

$$A\tilde{A} = E.$$

(37)

For the operator A we can write the following representation

$$A = S + iT,$$

(38)
where \(S = \frac{1}{2}(A + \tilde{A}) \), \(T = \frac{1}{2i}(A - \tilde{A}) \). By this, operators \(S \) and \(T \) are \(J \)-real, the operator \(S \) is self-adjoint and \(J \)-self-adjoint, and the operator \(T \) is skew-self-adjoint and \(J \)-skew-self-adjoint. Since \(\tilde{A} = S - iT \), then from relation (37) we get

\[
E = A\tilde{A} = (S + iT)(S - iT) = S^2 + T^2 + i(TS - ST).
\]

From this relation it follows that operators \(T \) and \(S \) commute and

\[
S^2 + T^2 = E. \tag{39}
\]

Since operators \(S \) and \(iT \) are commuting bounded self-adjoint operators, then they admit spectral representations

\[
S = \int_L \lambda dE_\lambda, \quad iT = \int_L z dF_z, \tag{40}
\]

where \(E_\lambda, F_z \) are commuting resolutions of unity of the operators, and \(L = (l_1, l_2), l_1, l_2 \in \mathbb{R} \), is a finite interval of the real line which contains the spectra of operators. From equality (39), by using spectral resolutions we get

\[
\int_L \int_L (\lambda^2 - z^2 - 1)dE_\lambda dF_z = 0, \tag{41}
\]

where the integral means a limit in the norm of \(H \) of the corresponding Riemann-Stieltjes type sums (in the plane).

A point \((\lambda_0, z_0) \in \mathbb{R}^2 \) we call a point of increase for the measure \(dE_\lambda dF_z \), if for an arbitrary number \(\varepsilon > 0 \), there exists an element \(x \in H \) such that

\[
(E_{\lambda_0 + \varepsilon} - E_{\lambda_0 - \varepsilon})(F_{z_0 + \varepsilon} - F_{z_0 - \varepsilon})x \neq 0, \tag{42}
\]

or, equivalently,

\[
((E_{\lambda_0 + \varepsilon} - E_{\lambda_0 - \varepsilon})(F_{z_0 + \varepsilon} - F_{z_0 - \varepsilon})x, x) > 0. \tag{43}
\]

For an arbitrary point of increase \((\lambda_0, z_0) \in \mathbb{R}^2 \) of the measure \(dE_\lambda dF_z \) it is true

\[
\lambda_0^2 - z_0^2 - 1 = 0. \tag{44}
\]

In fact, if the latter equality is not true for a point of increase \(u_0 = (\lambda_0, z_0) \in \mathbb{R}^2 \), then \(|\lambda^2 - z^2 - 1| \geq a, a > 0, \) in a neighborhood \(U = U(\lambda_0, z_0; \varepsilon) = \{(\lambda, z) \in \mathbb{R}^2 : \lambda_0 - \varepsilon < \lambda < \lambda_0 + \varepsilon, z_0 - \varepsilon < z < z_0 + \varepsilon, \varepsilon > 0, \) of the point
For this number \(\varepsilon \), there exists an element \(x \in H \) such that (43) is true. But

\[
0 = \| \int_L \int_L (\lambda^2 - z^2 - 1) dE_\lambda dF_z x \|^2 = \int_L \int_L |\lambda^2 - z^2 - 1|^2 (dE_\lambda dF_z x, x) \geq \int \int_U |\lambda^2 - z^2 - 1|^2 (dE_\lambda dF_z x, x) \geq a^2 ((E_{\lambda_0 + \varepsilon} - E_{\lambda_0 - \varepsilon})(E_{z_0 + \varepsilon} - E_{z_0 - \varepsilon}) x, x) > 0.
\]

If two continuous functions \(\varphi(\lambda, z) \) \(\hat{\varphi}(\lambda, z) \) on \(L^2 = \{(\lambda, z) \in \mathbb{R}^2 : \lambda, z \in L\} \) coincide in the points of increase of the measure \(dE_\lambda dF_z \), then

\[
\int_L \int_L \varphi(\lambda, z) dE_\lambda dF_z = \int_L \int_L \hat{\varphi}(\lambda, z) dE_\lambda dF_z. \quad (45)
\]

In fact,

\[
\| \int_L \int_L (\varphi(\lambda, z) - \hat{\varphi}(\lambda, z)) dE_\lambda dF_z x \|^2 = \int_L \int_L |\varphi(\lambda, z) - \hat{\varphi}(\lambda, z)|^2 (dE_\lambda dF_z x, x),
\]

and it remains to notice that \((dE_\lambda dF_z x, x) \) is a positive measure on \(L^2 \), and the function under the integral is equal to zero in all points of increase of this measure.

Consider a set \(\Gamma \subset \mathbb{R}^2 \), which consists of points \((\lambda, z) \in \mathbb{R}^2 \), such that

\[
\lambda^2 - z^2 - 1 = 0. \quad (46)
\]

From (46) it follows that for all points of the set \(\Gamma \) it is true \(|\lambda| = \sqrt{1 + z^2} \) (where we mean the arithmetic value of the root). Hence, for all points of \(\Gamma \)

\[
\lambda = \text{sgn}(\lambda) \sqrt{1 + z^2}, \quad (47)
\]

where

\[
\text{sgn}(\lambda) = \begin{cases}
1, & \lambda > 0, \\
-1, & \lambda \leq 0
\end{cases} \quad (48)
\]

By the identity \(z = \text{sh } \text{arcsh } z \), the equality (47) can be rewritten in the following form

\[
\lambda = \text{sgn}(\lambda) \sqrt{\text{ch}^2(\text{arcsh } z)} = \text{sgn}(\lambda) \text{ch}(\text{arcsh } z), \quad (49)
\]

in a view of positivity of the hyperbolic cosine function. By this representation we can write

\[
A = S + iT = \int_L \int_L (\lambda + z) dE_\lambda dF_z = \int_L \int_L (\text{sgn}(\lambda) \text{ch}(\text{arcsh } z) + z) dE_\lambda dF_z =
\]
\[
\int_{L} \int_{L_{+}} e^{\text{arcsh} z} dE dF_z + \int_{L} \int_{L_{-}} (-e^{-\text{arcsh} z}) dE dF_z, \quad (50)
\]
where \(L_{+} = (0, \infty) \cap L, \ L_{-} = (-\infty, 0] \cap L. \)

Define the following operator

\[
V = \int_{L} \int_{L} \text{sgn}(\lambda) \text{arcsh} z dE dF_z = \int_{L} \text{sgn}(\lambda) dE \int_{L} \text{arcsh} z dF_z. \quad (51)
\]

The operator \(V \) is bounded self-adjoint and J-imaginary. In fact, since the operator \(S \) is J-real, then its resolution of unity \(E_\lambda \) commutes with \(J \) (see [13]). Therefore the operator

\[
I := \int_{L} \text{sgn}(\lambda) dE_\lambda, \quad (52)
\]
is a bounded J-real self-adjoint involutory operator. On the other hand, \(\text{arcsh}(iT) = \sum_{k=0}^{\infty} a_{2k+1}(iT)^{2k+1}, \ a_{2k+1} \in \mathbb{R}, \) is a J-imaginary, as a limit of J-imaginary operators (here the convergence is understood in the norm of \(H \)).

From relations (50), (51), (52) we conclude that

\[
A = I e^V.
\]

Set \(K = -iV, \) and we obtain the required representation (36).

If it is additionally known that the operator \(A \) is positive, \(A \geq 0, \) then

\[
I = A e^{-V} = (e^{-\frac{V}{2}})^* A e^{-\frac{V}{2}},
\]
is positive, as well. Therefore \(I \) is a positive square root of \(E. \) By the uniqueness of such a root we conclude that \(I = E. \) \(\Box \)

The following theorem is true.

Theorem 2.1 Let \(A \) be a bounded J-unitary operator in a Hilbert space \(H. \)

The operator \(A \) admits the following representation:

\[
A = R e^{iK}, \quad (53)
\]

where \(R \) is J-real unitary operator in \(H, \) and \(K \) is a bounded J-real skew-self-adjoint operator in \(H. \)

Proof. Consider an operator \(A \) such as in the statement of the Theorem. Suppose that representation (53) is true. Then

\[
A^* A = e^{iK} R^* R e^{iK} = e^{2iK}.
\]

15
Now we shall do not assume an existence of representation \((53)\) and notice that the operator \(G := A^* A\) is positive self-adjoint and \(J\)-unitary. In fact, since the operator \(A\) is bounded by assumption and \(J\)-unitary, then \(A^*\) is also bounded and \(J\)-unitary. A product of bounded \(J\)-unitary operators is a bounded \(J\)-unitary operator, this is verified directly by the definition. By Lemma 2.1 we find a bounded \(J\)-real skew-self-adjoint operator \(K\) such that

\[
G = e^{2iK}. \tag{54}
\]

Now set by definition

\[
R = Ae^{-iK}. \tag{55}
\]

By equality \((54)\) we can write

\[
R^* R = e^{-iK} A^* A e^{-iK} = E,
\]

and, hence, the operator \(R\) is unitary. Now notice that

\[
J e^{-iK} J = J (\cos(iK) - i \sin(iK)) J = \cos(iK) + i \sin(iK),
\]

since the operator \(iK\) is \(J\)-real and therefore its resolution of unity commutes with \(J\). Consequently, we have

\[
J e^{-iK} J = e^{iK} = (e^{-iK})^{-1}, \tag{56}
\]

and the operator \(e^{-iK}\) is \(J\)-unitary. By \((55), (56)\) and using that the operator \(A\) is \(J\)-unitary we conclude that

\[
R^{-1} = e^{iK} A^{-1} = J e^{-iK} J A^* J = J (A e^{-iK})^* J = (\tilde{R}^*),
\]

and therefore the operator \(R\) is \(J\)-unitary. Then \(R^{-1} = R^* = J R^* J\), and therefore \(R^*\) is a \(J\)-real operator. Using matrix representations of operators \(R^*\) and \(R\) in an arbitrary basis, which corresponds to the involution \(J\), we conclude that the operator \(R\) is \(J\)-real. \(\Box\)

Lemma 2.2 Let \(A\) be a \(J\)-self-adjoint and unitary operator in a Hilbert space \(H\). The operator \(A\) admits the following representation:

\[
A = e^{iS}, \tag{57}
\]

where \(S\) is a bounded \(J\)-real self-adjoint operator in \(H\).
Proof. Consider an operator A such as in the statement of the Lemma. For the J-self-adjoint operator A it is true $A^* = \tilde{A}$, and we can write the following representation

$$A = S + iT,$$

(58)

where $S = \frac{1}{2}(A + \tilde{A}) = \frac{1}{2}(A + A^*)$, $T = \frac{1}{2i}(A - \tilde{A}) = \frac{1}{2i}(A - A^*)$. Here operators S and T are J-real and self-adjoint. Since the operator A is unitary, then

$$E = A^*A = (S - iT)(S + iT) = S^2 + T^2 + i(ST - TS).$$

From this relation it follows that operators T and S commute and

$$S^2 + T^2 = E.$$

(59)

Since operators S and T are commuting bounded self-adjoint operators, then they admit the following spectral resolutions

$$S = \int_L \lambda dE_\lambda, \quad T = \int_L z dF_z,$$

(60)

where E_λ, F_z are commuting resolutions of unity of operators, and $L = (l_1, l_2]$, $l_1, l_2 \in \mathbb{R}$, is a finite interval of the real line, which contains the spectra of operators. Moreover, since operators S and T are J-real, then their resolutions of unity commute with J. By equality (59) and using spectral resolutions we get

$$\int_L \int_L (\lambda^2 + z^2 - 1) dE_\lambda dF_z = 0,$$

(61)

where the integral means a limit in the norm of H of the corresponding Riemann-Stieltjes type sums. Thus, in all points of increase of the measure $dE_\lambda dF_z$ the following relation is true

$$\lambda^2 + z^2 - 1 = 0.$$

(62)

A circle (62) in the plane \mathbb{R}^2 we denote by Γ. For all points of the circle Γ it is true $|z| = \sqrt{1 - \lambda^2}$ (where we mean the arithmetic value of the root). Therefore for all points of Γ

$$z = \text{sgn}(z) \sqrt{1 - \lambda^2},$$

(63)

where $\text{sgn}(\cdot)$ is from (48). By the identity $\lambda = \cos \arccos \lambda$, $\lambda \in [-1, 1]$, the equality (63) can be rewritten in the following form

$$z = \text{sgn}(z) \sqrt{\sin^2(\arccos \lambda)} = \text{sgn}(z) \sin(\arccos \lambda),$$

(64)
where we have used the positivity of sine function on $[0, \pi]$. By this representation we can write

$$A = S + iT = \int_L \int_L (\lambda + iz) dE_{\lambda} dF_z = \int_L \int_L (\cos \arccos \lambda + i \text{sgn}(z) * \sin(\arccos \lambda)) dE_{\lambda} dF_z$$

\hspace{1cm}

$$\text{sgn}(\lambda) dE_{\lambda} dF_z = \int_L \int_L e^{i \arccos \lambda} dE_{\lambda} dF_z + \int_L \int_L e^{-i \arccos \lambda} dE_{\lambda} dF_z,$$

where $L_+ = (0, \infty) \cap L$, $L_- = (-\infty, 0] \cap L$. Define the following operator

$$S := \int_L \int_L \text{sgn}(z) \arccos \lambda dE_{\lambda} dF_z = \int_L \text{sgn}(z) dF_z \int_L \arccos \lambda dE_{\lambda}.$$

(66)

It is obvious that S is a J-real self-adjoint operator. From relation (65) it is seen that (57) is true. \[\square \]

Using the proven lemma we shall establish the following theorem.

Theorem 2.2 Let A be a unitary operator in a Hilbert space H. The operator A admits the following representation:

$$A = Re^{iS},$$

(67)

where R is J-real unitary operator in H, and S is a bounded J-real self-adjoint operator in H.

Proof. Consider an operator A such as in the statement of the Theorem. Suppose that representation (67) is true. Then $A^* = e^{-iS} R^*$

$$\hat{A}^* = e^{-iS} R^* = J (\cos S - i \sin S) J R^* = (\cos S + i \sin S) R^* = e^{iS} R^*,$$

since S and R are J-real. Since R is unitary, we can write

$$\hat{A}^* A = e^{iS} R^* R e^{iS} = e^{2iS}. \hspace{1cm} (68)$$

Now we shall not suppose that representation (67) holds true. Since the operator A is unitary, then operators $A^{-1} = A^*$, $JA^* J$ and $G := \hat{A}^* A$ are unitary, as well. The operator G is J-self-adjoint since $G^* = A^* \hat{A} = JA^* AJ = \hat{G}$. Applying to this operator Lemma 2.2 we find J-real self-adjoint operator S such that

$$G = e^{2iS}.$$

(69)

Now we set by definition

$$R = Ae^{-iS}. \hspace{1cm} (70)$$

18
The operator R is unitary as a product of two unitary operators. Then we can write $R^* = Je^{iS}A^*J = e^{-iS}A^*$, and therefore
\[
\tilde{R}^* R = e^{-iS}A^*e^{-iS} = e^{-iS}Ge^{-iS} = E.
\]
Since the range of a unitary operator R is the whole H, then by the latter equality we get $R^* = R^{-1}$. Thus, the operator R is J-unitary. Since the operator R is unitary and J-unitary, it is J-real. From (70) it follows the representation (67). □

Let A be a linear bounded operator in a Hilbert space H and J be a conjugation in H. It is easy to verify that operators $A^T A = JA^*JA$, $AA^T = AJA^*J$ are bounded J-self-adjoint operators. If $A^T A = AA^T$, then the operator A we shall call J-normal. It is clear that bounded J-self-adjoint, J-skew-self-adjoint and J-unitary operators are J-normal. The following theorem is true:

Theorem 2.3 Let A be a linear bounded operator in a Hilbert space H and $0 \notin \sigma(A)$. Let J be a conjugation in H. Suppose that the spectrum of the operator AA^T has an empty intersection with a radial ray $L_\varphi = \{ z \in \mathbb{C} : z = xe^{i\varphi}, \ x \geq 0 \}$ ($\varphi \in [0, 2\pi]$) in the complex plane. Then the operator A admits a representation
\[
A = SU, \quad (71)
\]
where S is a bounded J-self-adjoint operator in H, and U is a bounded J-unitary operator in H. Here
\[
S = \sqrt{AA^T}, \quad (72)
\]
where the square root is understood according to the Riss calculus. Operators U and S commute if and only if the operator A is J-normal. Moreover, the operator A admits a representation
\[
A = U_1S_1, \quad (73)
\]
where U_1 is a bounded J-unitary operator in H, and $S_1 = \sqrt{A^TA}$ is a bounded J-self-adjoint operator in H. Operators U_1 and S_1 commute if and only if A is J-normal.

In particular, representations (71) and (73) are true for operators
\[
A = E + K, \quad (74)
\]
where K is a compact operator in H, $\|K\| < 1$.

19
Proof. Consider an operator A such as in the statement of the Theorem. We set by definition

$$S = \sqrt{AA^T} = \int_\Gamma \sqrt{\lambda} R_\lambda(AA^T) \, d\lambda. \quad (75)$$

A contour Γ is constructed in the following way. Let $T_R = \{ z \in \mathbb{C} : |z| = R \}$ be a circle, which contains $\sigma(AA^T)$ inside, $R > 0$. Let $d > 0$ be a distance between a closed set $\sigma(AA^T)$ and a segment $[0, Re^{i\varphi}]$, where φ is from the statement of the Theorem. Consider parallel segments on the distance $\frac{d}{2}$ of the above segment, join them by a half of a circle in a neighborhood of zero and completing the contour with a part of big circle T_R, it is not hard to construct a contour Γ, which contains the spectrum of the operator AA^T inside, but do not contain the ray L_φ inside. We choose and fix an arbitrary analytic branch of the root in $\mathbb{C}\setminus L_\varphi$.

A bounded operator $B := AA^T$ is J-self-adjoint, as it was noticed above. Consequently, its resolvent is also a J-self-adjoint operator. In fact, we can write

$$R_\lambda^*(B) = ((B - \lambda E)^{-1})^* = (B^* - \overline{\lambda}E)^{-1} = (\overline{B} - \overline{\lambda}E)^{-1} = (J(B - \lambda E)J)^{-1} = J(B - \lambda E)^{-1}J = JR_\lambda(B)J, \quad \lambda \in \rho(B).$$

The operator S is J-self-adjoint, as a limit of J-self-adjoint integral sums. Moreover, there exists an inverse operator S^{-1}, which is also J-self-adjoint. Set

$$U = S^{-1}A, \quad (76)$$

and notice that $U^{-1} = A^{-1}S$ (recall that $0 \notin \sigma(A)$). Then

$$U\tilde{U}^* = S^{-1}AA^*(S^{-1})^* = S^{-1}S^2S^{-1} = E.$$

Multiplying the latter equality from the left side by U^{-1} we get

$$\tilde{U}^* = U^{-1}.$$

Thus, the operator U is J-unitary.

Suppose now that in representation (71) operators U and S commute. Then

$$AA^T = SU(\tilde{U}^*)(S^*) = S^2,$$

$$A^TA = (\tilde{U}^*)SSU = S^2.$$
Conversely, if operators \(A \) and \(A^T \) commute, then using last relations (without the latter equality) we write:

\[
S^2 = (U^*) S^2 U = U^{-1} S^2 U, \\
US^2 = S^2 U.
\] (77)

Since \(U \) commutes with \(S^2 \), then it commutes with an arbitrary function of this operator. In particular, \(U \) commutes with \(S \).

We shall now establish a possibility of resolution (73) for the operator \(A \). First of all we notice that for an arbitrary linear bounded operator \(D \) in \(H \) we can write

\[
JR^*_\lambda(D)J = J(D^* - \overline{\lambda}E)^{-1}J = (JD^*J - \lambda E)^{-1} = R_\lambda(D^T), \quad \lambda \in \rho(D).
\]

Therefore

\[
\rho(D) = \rho(D^T),
\] (78)

for an arbitrary linear bounded operator \(D \) in \(H \). Using this equality for operators \(A \) and \(AA^T \) we conclude that \(0 \notin \sigma(A^T) \) and the ray \(L_\phi \) does not intersect with the spectrum of the operator \(A^T A \). Applying the proven part of the Theorem with the operator \(A^T \), we shall get a resolution \(A^T = SU \), where \(S = \sqrt{A^T} \) is a bounded \(J \)-self-adjoint operator, \(U \) is a bounded \(J \)-unitary operator. Therefore

\[
A = \bar{U}^* \tilde{S}^* = U^{-1} S,
\]

and it remains to notice that \(U^{-1} \) is a bounded \(J \)-unitary operator.

If the operator \(A \) has the form (74), then \(0 \notin \sigma(A) \) and

\[
AA^T = (E + K)J(E + K^*)J = E + C, \quad \text{(79)}
\]

where \(C := K + JK^*J + KJK^*J \). Notice that the operator \(C \) is compact as a sum of compact operators. The operator \(J(E + K^*)^{-1}J(E + K)^{-1} \), as it is easy to see, is the inverse operator for the operator \(AA^T \). Therefore \(0 \notin \sigma(AA^T) \). Since the spectrum of a compact operator \(C \) is discrete, having a unique point of concentration \(0 \), one can find a ray which is required in the statement of the Theorem. □

3 Matrix representations of \(J \)-symmetric and \(J \)-skew-symmetric operators.

We shall now turn to a study of matrix representations of \(J \)-symmetric and \(J \)-skew-symmetric operators. Properties which are analogous to the properties
of symmetric operators are valid here. Let J be a conjugation in a Hilbert space H and $\mathcal{F} = \{f_k\}_{k \in \mathbb{Z}^+}$ be an orthonormal basis in H, which corresponds to J. Let A be a linear operator in H, which is J-symmetric (J-skew-symmetric) and such that $\mathcal{F} \subset D(A)$.

Define a matrix of the operator A in the basis \mathcal{F}: $A_M := (a_{i,j})_{i,j \in \mathbb{Z}^+}$, $a_{i,j} = (Af_f, f_i)$. It is not hard to verify that this matrix is complex symmetric (skew-symmetric) in the case of J-symmetric (respectively J-skew-symmetric) operator A. Notice that the columns of this matrix are square summable, i.e. belong to l^2.

It is known that for an arbitrary linear operator A in a Hilbert space H, in the case when the set $D(A) \cap D(A^*)$ is dense in H, the action of the operator A is given by a matrix multiplication [13]. In particular, it is true for symmetric operators. As far as we know, for other classes of operators a possibility to describe the action of the operator as a matrix multiplication was not established earlier. This property possess J-symmetric and J-skew-symmetric operators, as it shows the following theorem.

Theorem 3.1 Let J be a conjugation in a Hilbert space H and $\mathcal{F} = \{f_k\}_{k \in \mathbb{Z}^+}$ be an orthonormal basis in H, which corresponds to J. Let A be a linear operator in H, which is J-symmetric (J-skew-symmetric) and such that $\mathcal{F} \subset D(A)$. Let $A_M = (a_{i,j})_{i,j \in \mathbb{Z}^+}$ be a matrix of the operator A in the basis \mathcal{F}. Then

\[Ag = \sum_{i=0}^{\infty} y_i f_i, \quad y_i = \sum_{k=0}^{\infty} a_{i,k} g_k, \quad g = \sum_{k=0}^{\infty} g_k f_k \in D(A). \quad (80) \]

Proof. Let us verify the validity of the statement of the Theorem for J-skew-symmetric operator. For the case of J-symmetric operator the proof is analogous. Choose an arbitrary element $g = \sum_{k=0}^{\infty} g_k f_k \in D(A)$. Using that the matrix A_M is skew-symmetric and using relation [13] we write

\[y_i = (Ag, Jf_i) = -(Af_i, Jg) = -\left(\sum_{k=0}^{\infty} (Af_i, f_k) f_k, \sum_{l=0}^{\infty} g_l f_l\right) = \]

\[= -\sum_{k=0}^{\infty} (Af_i, f_k) g_k = -\sum_{k=0}^{\infty} a_{i,k} g_k = \sum_{k=0}^{\infty} a_{i,k} g_k. \]

\[\square \]

Let us find out, how strong the matrix A_M of the operator A (considered above) determines the operator A. Since J-symmetric and J-skew-symmetric
operators admit closures, which are also J-symmetric (respectively J-skew-
symmetric) operators, we shall already suppose that the operator \(A \) is closed.

By the matrix \(A_M \) one can define, as a matrix multiplication, an operator
\(T \) on \(L := \text{Lin} \mathcal{F} \). It is easy to check that this operator is J-symmetric (J-
skew-symmetric) in the case of J-symmetric (respectively J-skew-symmetric)
operator \(A \). This operator admits a closure \(\overline{T} \), which is also a J-symmetric
(J-skew-symmetric) operator. If \(A = \overline{T} \), then the basis \(\mathcal{F} \) we shall call
a basis of the matrix representation of the operator \(A \).

A question appears: If for every complex symmetric (skew-symmetric)
semi-infinite matrix \(B \) with square summable columns there exists a J-
symmetric (respectively J-skew-symmetric) operator \(A \) such that the
matrix \(B \) will be a matrix of the operator in a corresponding to \(J \) basis \(\mathcal{F} \), and
also \(\mathcal{F} \) will be a basis of the matrix representation for the operator \(A \)? The
answer on this question is affirmative.

Theorem 3.2 Let an arbitrary complex semi-infinite symmetric (skew-symmetric)
matrix \(M = (m_{i,j})_{i,j \in \mathbb{Z}^+} \) with columns in \(l^2 \) is given. Then there exist a
Hilbert space \(H \), a conjugation \(J \) in \(H \), a J-symmetric (respectively J-skew-
symmetric) operator in \(H \), a corresponding to \(J \) orthonormal basis \(\mathcal{F} \) in \(H \),
\(\mathcal{F} \subset D(\tilde{A}) \), such that the matrix \(M \) is a matrix of the operator \(A \) in the
basis \(\mathcal{F} \) and \(\mathcal{F} \) is a basis of the matrix representation for \(A \).

Proof. For an arbitrary complex semi-infinite symmetric (skew-symmetric)
matrix \(M \) with columns in \(l^2 \) it is enough to choose an arbitrary Hilbert
space \(H \), an arbitrary orthonormal basis \(\mathcal{F} \) in it and to define a conjugation
in \(H \) by formula (2). Then, by using the described above procedure, one
constructs an operator \(\overline{T} \), which is the required operator. \(\square \)

Notice that, if \(\mathcal{F} \) is a basis of the matrix representation for a closed
J-symmetric (J-skew-symmetric) operator \(A \), then \(\mathcal{F} \) will be a basis of the
matrix representation for the J-adjoint operator \(\tilde{A} = JA J \), as well. In
fact, the operator \(\tilde{A} \) is J-symmetric (respectively J-skew-symmetric) by
Proposition [1.9]. From the continuity of the operator \(J \) it follows that
\(\tilde{A} \) is closed. Then if we choose an arbitrary element \(x \in D(\tilde{A}) \), then
\(Jx \in D(A) \) and there exists a sequence \(\tilde{x}_n \in L := \text{Lin}\{f_k\}_{k \in \mathbb{Z}^+}, \ n \in \mathbb{Z}^+: \)
\(\tilde{x}_n \rightarrow Jx, A\tilde{x}_n \rightarrow AJx, \ n \rightarrow \infty \). But then we have
\(J\tilde{x}_n \in L, J\tilde{x}_n \rightarrow x, \)
\(JA\tilde{x}_n \rightarrow \tilde{A}Jx = \tilde{A}x, n \rightarrow \infty \).

The following theorem is true:

Theorem 3.3 Let \(J \) be a conjugation in a Hilbert space \(H \) and \(\mathcal{F} = \{f_k\}_{k \in \mathbb{Z}^+} \)
is a corresponding to \(J \) orthonormal basis in \(H \). Suppose that \(A \) is a closed J-
symmetric (J-skew-symmetric) operator in \(H \), \(\mathcal{F} \subset D(A) \), and \(\mathcal{F} \) is a basis of
the matrix representation for the operator A. Let $a_{i,j} = (Af_j, f_i), \ i, j \in \mathbb{Z}_+$. Define an operator B in the following way:

$$Bg = \sum_{i=0}^{\infty} y_i f_i, \ y_i = \sum_{k=0}^{\infty} a_{i,k} g_k, \ g = \sum_{k=0}^{\infty} g_k f_k \in DB, \quad (81)$$

on a set $DB = \{g = \sum_{k=0}^{\infty} g_k f_k \in H : \sum_{i=0}^{\infty} |\sum_{k=0}^{\infty} a_{i,k} g_k|^2 < \infty\}$. Then $A \subseteq A^T = B$ (respectively $A \subseteq -A^T = B$).

Without conditions that A is closed and F is a basis of the matrix representation for A, one can only state that $A \subseteq A^T \subseteq B$ (respectively $A \subseteq -A^T \subseteq B$).

Proof. The proof will be given in the case of J-skew-self-adjoint operator A. The case of J-symmetric operator is considered analogously. We first show that $-A^T = -(A)^* \subseteq B$. Choose an arbitrary $g \in D(-(A)^*)$ and set $-(A)^* g = g^*$. Let $g = \sum_{k=0}^{\infty} g_k f_k$, $g^* = \sum_{i=0}^{\infty} \tilde{y}_i f_i$. We can write

$$\tilde{y}_i = (g^*, f_i) = (-\tilde{A}^* g, f_i) = -(g, \tilde{A} f_i) = -(\sum_{k=0}^{\infty} g_k f_k, \sum_{j=0}^{\infty} (\tilde{A} f_i, f_j) f_j) =$$

$$= -\sum_{k=0}^{\infty} g_k (A f_i, f_k) = -\sum_{k=0}^{\infty} a_{i,k} g_k = \sum_{k=0}^{\infty} a_{i,k} g_k, \ i \in \mathbb{Z}_+.$$

Therefore $\sum_{i=0}^{\infty} |\sum_{k=0}^{\infty} a_{i,k} g_k|^2 < \infty$ and, hence, we get $g \in DB$. Also we have $-(A)^* g = g^* = Bg$. Thus, we obtain an inclusion $-(A)^* \subseteq B$. Here we did not use that A is closed and that F is a basis of the matrix representation for A. The inclusion $A \subseteq -(A)^*$ is obvious.

Let us prove the inclusion $B \subseteq -A^T$. As it was shown above, the operator \tilde{A} is closed and F is a basis of the matrix representation for \tilde{A}, as well. Choose an arbitrary $g \in DB, \ g = \sum_{k=0}^{\infty} g_k f_k$. Using the fact that the matrix of the operator A is skew-symmetric, we write

$$(\tilde{A} f_i, g) = (\sum_{j=0}^{\infty} (\tilde{A} f_i, f_j) f_j, \sum_{k=0}^{\infty} g_k f_k) = \sum_{k=0}^{\infty} (\tilde{A} f_i, f_k) \overline{g_k} =$$

$$= \sum_{k=0}^{\infty} a_{i,k} g_k = -\sum_{k=0}^{\infty} a_{i,k} g_k = -\sum_{k=0}^{\infty} a_{i,k} g_k = -y_i, \ i \in \mathbb{Z}_+;$$

$$(Bg, f_i) = y_i, \ i \in \mathbb{Z}_+.$$
Therefore
\[-(\widetilde{A}f_i, g) = (Bg, f_i) = (f_i, Bg),\]
and
\[-(\widetilde{A}f, g) = (f, Bg), \quad f \in \text{Lin}\{f_k\}_{k \in \mathbb{Z}_+} =: L.\]
For an arbitrary \(f \in D(\widetilde{A})\) there exists a sequence \(\{f_k\}_{k \in \mathbb{Z}_+}, f_k \in L: f_k \to f, \ \widetilde{A}f_k \to \widetilde{A}f, \text{ as } k \to \infty.\) Passing to the limit as \(k \to \infty\) in the equality
\[-(\widetilde{A}f_k, g) = (f_k, Bg)\]
and using the continuity of the scalar product, we obtain
\[-(\widetilde{A}f, g) = (f, Bg), \quad f \in D(\widetilde{A}).\]
Thus, we have \(g \in D((\widetilde{A})^*) = (\widetilde{A})^* g = -Bg.\) Therefore we get an inclusion \(B \subseteq -(\widetilde{A})^*. \)

Let \(J\) be a conjugation in a Hilbert space \(H\) and \(F = \{f_k\}_{k \in \mathbb{Z}_+}\) be a corresponding to \(J\) orthonormal basis in \(H\). Let \(A\) be a closed \(J\)-symmetric (\(J\)-skew-symmetric) operator in \(H\) and \(\mathcal{F} \subset D(A).\) Set \(a_{i,j} = (Af_j, f_i), \ i, j \in \mathbb{Z}_+,\) and define an operator \(B\) by formula (81). Is the operator \(B\) \(J\)-symmetric (\(J\)-skew-symmetric)? We first notice that the domain of an operator \(\widetilde{B} = JB\) is a set
\[D(\widetilde{B}) = \{h = \sum_{k=0}^{\infty} h_k f_k \in H : \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} |a_{i,k} h_k|^2 < \infty\}.\]
If \(h = \sum_{k=0}^{\infty} h_k f_k \in D(\widetilde{B}), \) then
\[\widetilde{B}h = \sum_{i=0}^{\infty} \left(\sum_{k=0}^{\infty} a_{i,k} h_k\right) f_i.\]
Choose an arbitrary elements \(g = \sum_{k=0}^{\infty} g_k f_k \in D_B, \ h = \sum_{k=0}^{\infty} h_k f_k \in D(\widetilde{B}).\) Using relations (21), (22) it is easy to check that the operator \(B\) is \(J\)-symmetric (\(J\)-skew-symmetric), if the following equalities are true (for all \(g \in D_B, h \in D(\widetilde{B})\))
\[\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} a_{i,k} g_k h_i = \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} a_{i,k} g_k h_i.\]
In the latter case, the last theorem can be applied with the operator \(B\) to obtain that the operator \(B\) is \(J\)-self-adjoint (\(J\)-skew-self-adjoint).
A question appears about existence of a basis of the matrix representation for a closed J-symmetric (J-skew-symmetric) operator. For an arbitrary closed operator there exists an orthonormal basis in which the operator is a closure of its values on the linear span of the basis (see the proof for symmetric operators in [12], which is valid in the general case, as well). A difficulty in the case of J-symmetric (J-skew-symmetric) operators is that this new basis can be a basis which does not correspond to the conjugation J. So, this question remains open.

4 A structure of the null set.

Consider an arbitrary Hilbert space H. Let J be a conjugation in H and $\mathcal{F} = \{f_k\}_{k \in \mathbb{Z}_+}$ be a corresponding to J orthonormal basis in H. Let us study the set $H_{J,0}$, which we defined above ($H_{J,0} = \{x \in H : [x, x]^J = 0\}$).

Set

$$H_R := \{x \in H : (x, f_k) \in \mathbb{R}, \ k \in \mathbb{Z}_+\}. \quad (82)$$

Notice that for an arbitrary element $x \in H$ we can write a resolution:

$$x = x_R + ix_I, \quad x_R, x_I \in H_R. \quad (83)$$

Namely, if $x = \sum_{k=0}^{\infty} x_k f_k$, we set $x_R := \sum_{k=0}^{\infty} \text{Re} x_k f_k$, $x_I := \sum_{k=0}^{\infty} \text{Im} x_k f_k$.

It is easy to see that representation (83) is unique.

Define the following vectors:

$$f_{k,l}^+ := \frac{1}{\sqrt{2}}(f_k + if_l), \quad f_{k,l}^- := \frac{1}{\sqrt{2}}(f_k - if_l), \quad k, l \in \mathbb{Z}_+. \quad (84)$$

The following theorem holds true.

Theorem 4.1 Let H be a Hilbert space and J be a conjugation in H. Let $\mathcal{F} = \{f_k\}_{k=0}^{\infty}$ be a corresponding to J orthonormal basis in H. The set $H_{J,0}$ has the following properties:

1. The set $H_{J,0}$ is closed;
2. $x \in H_{J,0} \Rightarrow Jx \in H_{J,0}, \ \alpha x \in H_{J,0}, \ \alpha \in \mathbb{C};$
3. $x, y \in H_{J,0} : x \perp_J y \Rightarrow \alpha x + \beta y \in H_{J,0}, \ \alpha, \beta \in \mathbb{C};$
4. $H_{J,0} = \{x \in H : x = x_R + ix_I, \ x_R, x_I \in H_R, \ |x_R| = |x_I|, (x_R, x_I) = 0\};$
5. The set $H_{J,0}$ has no inner points;
6. $\text{span} H_{J,0} = H;$
7. A set $\{f_{2k,2k+1}^+, f_{2k+1,2k}^-, f_{2k,2k+1}^-, f_{2k+1,2k}^+\}_{k \in \mathbb{Z}_+}$ is an orthonormal basis in H which elements belong to $H_{J,0}$.

26
Proof. The 1-st statement of the Theorem follows from the continuity of the operator \(J \) and from the continuity of the scalar product in \(H \).

The second and third statements follows from the linearity of the J-form and from the properties of the conjugation \(J \).

The 4-th statement is directly verified.

Suppose that the set \(H_{J;0} \) has an inner point \(x_0 \) such that
\[
x \in H, \quad \|x - x_0\| < \varepsilon \Rightarrow x \in H_{J;0},
\]
for a number \(\varepsilon > 0 \). Let us write for \(x_0 \) the resolution \((83) \):
\[
x_0 = x_{0,R} + ix_{0,I}, \quad x_{0,R}, x_{0,I} \in H_R.
\]

(86)

Suppose first that \(x_{0,I} \neq 0 \). Set
\[
x_\varepsilon := x_0 + \frac{i \varepsilon}{2\|x_{0,I}\|} x_{0,I} = x_{0,R} + ix_{0,I} \left(1 + \frac{\varepsilon}{2\|x_{0,I}\|} \right).
\]

(87)

Notice that \(\|x_\varepsilon - x_0\| = \frac{\varepsilon}{2} < \varepsilon \), and, thus, by \((83) \), we obtain that \(x_\varepsilon \in H_{J;0} \).

Using the proven fourth statement of the Theorem for points \(x_0 \) and \(x_\varepsilon \), we get
\[
\|x_{0,R}\| = \|x_{0,I}\|
\]
and
\[
\|x_{0,R}\| = \|x_{0,I}\| \left(1 + \frac{\varepsilon}{2\|x_{0,I}\|} \right) \| = \|x_{0,I}\| + \frac{\varepsilon}{2} > \|x_{0,I}\|
\]
respectively. The obtained contradiction proves statement 5 for the case \(x_{0,I} \neq 0 \).

If \(x_{0,I} = 0 \), then by the fourth statement of the Theorem the relation \((83) \) is true and therefore \(x_0 = 0 \). But if zero is an inner point of the set \(H_{J;0} \), then by the proven second statement of the Theorem we get \(H_{J;0} = H \). But it is a nonsense, since, for example, elements of the basis \(F \) do not belong to the set \(H_{J;0} \).

Let us prove the seventh statement of the Theorem. Using orthonormality of elements \(f_k, k \in \mathbb{Z}_+ \), it is directly verified that elements of the set \(\{f_{2k,2k+1}^+, f_{2k,2k+1}^-\}_{k \in \mathbb{Z}_+} \), are orthonormal. Notice that
\[
f_{2k} = \frac{1}{\sqrt{2}}(f_{2k,2k+1}^+ + f_{2k,2k+1}^-), \quad f_{2k+1} = \frac{1}{\sqrt{2i}}(f_{2k,2k+1}^+ - f_{2k,2k+1}^-),
\]
\[
k \in \mathbb{Z}_+.
\]

(89)

Therefore \(\text{span}\{f_{2k,2k+1}^+, f_{2k,2k+1}^-\}_{k \in \mathbb{Z}_+} = H \) and a set \(\{f_{2k,2k+1}^+, f_{2k,2k+1}^-\}_{k \in \mathbb{Z}_+} \) is an orthonormal basis in \(H \). It remains to notice that
\[
[f_{2k,2k+1}^\pm]_J = \frac{1}{2}[f_{2k} \pm if_{2k+1}, f_{2k} \pm if_{2k+1}]_J = 0,
\]

[27]
and therefore \(f_{2k,2k+1}^\pm \in H_{J,0}, \ k \in \mathbb{Z}_+ \).

The sixth statement of the Theorem follows from the proven seventh statement. \(\square \)

References

[1] F.R. Gantmaher, Theory of matrices. "Nauka", Moscow, 1967 (Russian).

[2] I.M. Glazman, On an analog of the theory of extensions of Hermitian operators and a non-symmetric one-dimensional boundary problem on a semi-axis// DAN SSSR 115 (1957), 2, 214-216 (Russian).

[3] I.M. Glazman, Direct methods of qualititative spectral analysis of singular differential operators. Gos. izdat. fiz.-mat. liter., Moscow, 1963 (Russian).

[4] S.R. Garcia, M. Putinar, Complex symmetric operators and applications II// Transactions of the AMS 359 (2007), 8, 3913-3931.

[5] Sh. Asadi, I.E. Lutsenko, Skew-unitary transformations of linear operators// Vestnik Kharkovskogo universiteta, Mehanika i matematika 37 (1972), 83, 21-27 (Russian).

[6] T.B. Kalinina, On extensions of an operator in a Hilbert space with a skew-unitary transformation// Funkcionalniy analiz (Ulyanovsk) 17 (1981), 68-75 (Russian).

[7] T.B. Kalinina, One extension of an operator in a Hilbert space with a skew-unitary transformation// Funkcionalniy analiz (Ulyanovsk) 18 (1982), 63-71 (Russian).

[8] T.B. Kalinina, Generalized resolvents of an operator which is skew-symmetric with respect to an antilinear transformation of a Hilbert space// Funkcionalniy analiz (Ulyanovsk) 20 (1983), 60-72 (Russian).

[9] I.T. Gohberg, M.G. Krein, Theory of Volterra operators in a Hilbert space and its applications. "Nauka", Moscow, 1967 (Russian).

[10] L.A. Kamerina, Unitary equivalence of operators of the class \(K_y \)// Funkcionalniy analiz (Ulyanovsk) 5 (1975), 72-78 (Russian).

[11] L.A. Kamerina, Quasi-unitary equivalence of operators in spaces with an involution// Funkcionalniy analiz (Ulyanovsk) 27 (1987), 72-78 (Russian).
On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators.

S.M. Zagorodnyuk

In this work a possibility of a decomposition of a bounded operator which acts in a Hilbert space H as a product of a J-unitary and a J-self-adjoint operators is studied, J is a conjugation (an antilinear involution). Decompositions of J-unitary and unitary operators which are analogous to decompositions in the finite-dimensional case are obtained. A possibility of a matrix representation for J-symmetric, J-skew-symmetric operators is studied. Also, some simple properties of J-symmetric, J-antisymmetric, J-isometric operators are obtained, a structure of a null set for a J-form is studied.

Key words and phrases: polar decomposition, matrix of an operator, conjugation, J-symmetric operator.

MSC 2000: 47B99