Generalization of the Secant Method for Nonlinear Equations
(extended version)

Avram Sidi
Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel

e-mail: asidi@cs.technion.ac.il
http://www.cs.technion.ac.il/~asidi

November 2020

Original version appeared in: Applied Mathematics E-Notes, 8:115–123, 2008.
Abstract

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form \(f(x) = 0 \). It is derived via a linear interpolation procedure and employs only values of \(f(x) \) at the approximations to the root of \(f(x) = 0 \), hence it computes \(f(x) \) only once per iteration. In this note, we generalize it by replacing the relevant linear interpolant by a suitable \((k + 1)\)-point polynomial of interpolation, where \(k \) is an integer at least 2. Just as the secant method, this generalization too enjoys the property that it computes \(f(x) \) only once per iteration. We provide its error in closed form and analyze its order of convergence \(s_k \). We show that this order of convergence is greater than that of the secant method, and it increases towards 2 as \(k \to \infty \). (Indeed, \(s_7 = 1.9960 \cdots \), for example.) This is true for the efficiency index of the method too. We also confirm the theory via an illustrative example.
1 Introduction

Let α be the solution to the equation

$$f(x) = 0.$$ \hspace{1cm} (1)

An effective iterative method used for solving (1) that makes direct use of $f(x)$ [but no derivatives of $f(x)$] is the secant method that is discussed in many books on numerical analysis. See, for example, Atkinson [1], Henrici [7], Ralston and Rabinowitz [11], and Stoer and Bulirsch [14]. See also the recent note [12] by the author, in which the treatment of the secant method and those of the Newton–Raphson, regula falsi, and Steffensen methods are presented in a unified manner.

This method is derived by a linear interpolation procedure as follows: Starting with two initial approximations x_0 and x_1 to the solution α of (1), we compute a sequence of approximations $\{x_n\}_{n=0}^{\infty}$, such that the approximation x_{n+1} is determined as the point of intersection (in the x-y plane) of the straight line through the points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$ with the x-axis. Since the equation of this straight line is

$$y = f(x_n) + \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} (x - x_n),$$ \hspace{1cm} (2)

x_{n+1} is given as

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})}.$$ \hspace{1cm} (3)

In terms of divided differences, (3) can be written in the form

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, x_{n-1}]}.$$ \hspace{1cm} (4)

Again, in terms of divided differences, the error in x_{n+1} is given as in

$$x_{n+1} - \alpha = \frac{f[x_n, x_{n-1}, \alpha]}{f[x_n, x_{n-1}]} (x_n - \alpha)(x_{n-1} - \alpha).$$ \hspace{1cm} (5)

Then, provided $f(x)$ is twice continuously differentiable in a closed interval I containing α in its interior, and provided $x_{n-1}, x_n \in I$, (5) becomes

$$x_{n+1} - \alpha = \frac{f''(\xi_n)}{2f'(\eta_n)} (x_n - \alpha)(x_{n-1} - \alpha),$$

$$\xi_n \in \text{int}(x_n, x_{n-1}, \alpha), \quad \eta_n \in \text{int}(x_n, x_{n-1}).$$ \hspace{1cm} (6)

In case, $f'(\alpha) \neq 0$ and x_0 and x_1 are sufficiently close to α, there holds $\lim_{n \to \infty} x_n = \alpha$, and hence

$$\lim_{n \to \infty} \frac{x_{n+1} - \alpha}{(x_n - \alpha)(x_{n-1} - \alpha)} = \frac{f''(\alpha)}{2f'(\alpha)}.$$ \hspace{1cm} (7)

From this, one derives the conclusion that the order of convergence of the secant method is at least $(1 + \sqrt{5})/2$.

1
Another way of obtaining the secant method, of interest to us in the present work, is via a variation of the Newton–Raphson method. Recall that in the Newton–Raphson method, we start with an initial approximation \(x_0 \) and generate a sequence of approximations \(\{x_n\}_{n=0}^{\infty} \) to \(\alpha \) through

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, \ldots.
\]

We also recall that, when \(f(x) \) is twice continuously differentiable in a closed interval \(I \) that includes \(\alpha \), and \(f'(\alpha) \neq 0 \), this method has order 2. As such, the Newton–Raphson method is extremely effective. To avoid computing \(f'(x) \) [note that \(f'(x) \) may not always be available or may be costly to compute], and to preserve the excellent convergence properties of the Newton–Raphson method, we replace \(f'(x) \) in (7) by the approximation

\[
f[x_n, x_{n-1}] = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.
\]

This results in (11), that is, in the secant method. The justification for this approach is as follows: When convergence takes place, that is, when \(\lim_{n \to \infty} x_n = \alpha \), the difference \(x_n - x_{n-1} \) tends to zero, and this implies that, as \(n \) increases, the accuracy of \(f[x_n, x_{n-1}] \) as an approximation to \(f'(x_n) \) increases as well.

In Section 2 of this note, we consider in detail a generalization of the second of the two approaches described above using polynomial interpolation of degree \(k \) with \(k \geq 1 \). The \((k+1)\)-point iterative method that results from this generalization turns out to be very effective. It is of order higher than that of the secant method and requires only one function evaluation per iteration. In Section 3 we analyze this method and determine its order as well. In Section 4 we confirm our theory via a numerical example.

This paper is a slightly extended version of the paper [13]. The original version concerns the case in which \(f^{(k+1)}(\alpha) \neq 0 \), while the extension concerns the special case in which \(f^{(k+1)}(\alpha) = 0 \), which always occurs when \(f(x) \) is a polynomial of degree at most \(k \). In addition, we include a brief discussion of the efficiency index for our method as Section 5.

2 Generalization of secant method

We start by discussing a known generalization of the secant method (see, for example, Traub [13] Chapters 4, 6, and 10). In this generalization, we approximate \(f(x) \) by the polynomial of interpolation \(p_{n,k}(x) \), where \(p_{n,k}(x_i) = f(x_i), i = n, n-1, \ldots, n-k \), assuming that \(x_0, x_1, \ldots, x_n \) have all been computed. Following that, we determine \(x_{n+1} \) as a zero of \(p_{n,k}(x) \), provided a real solution to \(p_{n,k}(x) = 0 \) exists. Thus, \(x_{n+1} \) is the solution to a polynomial equation of degree \(k \). For \(k = 1 \), what we have is nothing but the secant method. For \(k = 2 \), \(x_{n+1} \) is one of the solutions to a quadratic equation, and the resulting method is known as the method of Müller. Clearly, for \(k \geq 3 \), the determination of \(x_{n+1} \) is not easy.

This difficulty prompts us to consider the second approach to the secant method we discussed in Section 1 in which we replaced \(f'(x_n) \) by the slope of the straight line through the points \((x_n, f(x_n))\) and \((x_{n-1}, f(x_{n-1}))\), that is, by the derivative (at \(x_n \)) of the (linear) interpolant to \(f(x) \) at \(x_n \) and \(x_{n-1} \). We generalize this approach by replacing \(f'(x_n) \) by \(p'_{n,k}(x_n) \), the derivative at \(x_n \) of the polynomial \(p_{n,k}(x) \) interpolating \(f(x) \) at the points \(x_{n-i}, i = 0, 1, \ldots, k \), mentioned in the preceding paragraph, with \(k \geq 2 \). Because \(p_{n,k}(x) \) is a better approximation to \(f(x) \) in the neighborhood of \(x_n \), \(p'_{n,k}(x_n) \) is a better approximation to \(f'(x_n) \) when \(k \geq 2 \) than \(f[x_n, x_{n-1}] \) used in the secant method. In addition, just as the
secant method, the new method computes the function \(f(x) \) only once per iteration step, the computation being that of \(f(x_n) \). Thus, the new method is described by the following \((k + 1)\)-point iteration:

\[
x_{n+1} = x_n - \frac{f(x_n)}{p'_{n,k}(x_n)}, \quad n = k, k + 1, \ldots,
\]

with \(x_0, x_1, \ldots, x_k \) as initial approximations to be provided by the user. Of course, with \(k \) fixed, we can start with \(x_0 \) and \(x_1 \), compute \(x_2 \) via the method we have described (with \(k = 1 \), namely via the secant method), compute \(x_3 \) via the method we have described (with \(k = 2 \)), and so on, until we have completed the list \(x_0, x_1, \ldots, x_k \).

We now turn to the computational aspects of this method. What we need is a fast method for computing \(p'_{n,k}(x_n) \). For this, we write \(p_{n,k}(x) \) in Newtonian form as follows:

\[
p_{n,k}(x) = f(x_n) + \sum_{i=1}^{k} f[x_n, x_{n-1}, \ldots, x_{n-i}] \prod_{j=0}^{i-1} (x - x_{n-j}).
\]

Here \(f[x_i, x_{i+1}, \ldots, x_m] \) are divided differences of \(f(x) \), and we recall that they can be defined recursively via

\[
f[x_i] = f(x_i); \quad f[x_i, x_j] = \frac{f[x_i] - f[x_j]}{x_i - x_j}, \quad x_i \neq x_j,
\]

and, for \(m > i + 1 \), via

\[
f[x_i, x_{i+1}, \ldots, x_m] = \frac{f[x_i, x_{i+1}, \ldots, x_m] - f[x_{i+1}, x_{i+2}, \ldots, x_m]}{x_i - x_m}, \quad x_i \neq x_m.
\]

We also recall that \(f[x_i, x_{i+1}, \ldots, x_m] \) is a symmetric function of its arguments, that is, it has the same value under any permutation of \(\{x_i, x_{i+1}, \ldots, x_m\} \). Thus, in (9),

\[
f[x_n, x_{n-1}, \ldots, x_{n-i}] = f[x_{n-i}, x_{n-i+1}, \ldots, x_n].
\]

In addition, when \(f \in \mathbb{C}^m(I) \), where \(I \) is an open interval containing the points \(z_0, z_1, \ldots, z_m \), whether these are distinct or not, there holds

\[
f[z_0, z_1, \ldots, z_m] = \frac{f^{(m)}(\xi)}{m!} \quad \text{for some } \xi \in (\min\{z_i\}, \max\{z_i\}).
\]

Going back to (9), we note that \(p_{n,k}(x) \) there is computed by ordering the \(x_i \) as \(x_n, x_{n-1}, \ldots, x_{n-k} \). This ordering enables us to compute \(p'_{n,k}(x_n) \) easily. Indeed, differentiating \(p_{n,k}(x) \) in (9), and letting \(x = x_n \), we obtain

\[
p'_{n,k}(x_n) = f[x_n, x_{n-1}] + \sum_{i=2}^{k} f[x_n, x_{n-1}, \ldots, x_{n-i}] \prod_{j=1}^{i-1} (x_n - x_{n-j}).
\]

In addition, note that the relevant divided difference table need not be computed anew each iteration; what is needed is adding a new diagonal (from the south-west to north-east) at the bottom of the existing table. To make this point clear, let us look at the following
Table 1: Table of divided differences over \(\{x_0, x_1, \ldots, x_7\} \) for use to compute \(x_8 \) via \(p_{7,3}(x) \) in (8). Note that \(f_{i,i+1,\ldots,m} \) stands for \(f[x_i, x_{i+1}, \ldots, x_m] \) throughout.

\(i \)	\(x_i \)	\(f_i \)
0	\(x_0 \)	\(f_0 \)
1	\(x_1 \)	\(f_1 \)
2	\(x_2 \)	\(f_2 \)
3	\(x_3 \)	\(f_3 \)
4	\(x_4 \)	\(f_4 \)
5	\(x_5 \)	\(f_5 \)
6	\(x_6 \)	\(f_6 \)
7	\(x_7 \)	\(f_7 \)

Example: Suppose \(k = 3 \) and we have computed \(x_i, i = 0, 1, \ldots, 7 \). To compute \(x_8 \), we use the divided difference table in Table 1. Letting \(f_{i,i+1,\ldots,m} \) stand for \(f[x_i, x_{i+1}, \ldots, x_m] \), we have

\[
x_8 = x_7 - \frac{f(x_7)}{p_{7,3}(x_7)} = x_7 - \frac{f_7}{f_{67} + f_{567}(x_7 - x_6) + f_{4567}(x_7 - x_6)(x_7 - x_5)}.
\]

To compute \(x_9 \), we will need the divided differences \(f_8, f_{78}, f_{678}, f_{5678} \). Computing first \(f_8 = f(x_8) \) with the newly computed \(x_8 \), the rest of these divided differences can be computed from the bottom diagonal of Table 1 via the recursion relations

\[
\begin{align*}
 f_{78} &= \frac{f_7 - f_8}{x_7 - x_8}, \\
 f_{678} &= \frac{f_{67} - f_{78}}{x_6 - x_8}, \\
 f_{5678} &= \frac{f_{567} - f_{678}}{x_5 - x_8},
\end{align*}
\]

in this order, and appended to the bottom of Table 1. Actually, we can do even better: Since we need only the bottom diagonal of Table 1 to compute \(x_8 \), we need to save only this diagonal, namely, only the entries \(f_7, f_{67}, f_{567}, f_{4567} \). Once we have computed \(x_8 \) and \(f_8 = f(x_8) \), we can overwrite \(f_7, f_{67}, f_{567}, f_{4567} \) with \(f_8, f_{78}, f_{678}, f_{5678} \). Thus, in general, to be able to compute \(x_{n+1} \) via (8), after \(x_n \) has been determined, we need to store only the entries \(f_n, f_{n-1,n}, \ldots, f_{n-k,n-k+1,\ldots,n-1,n} \) along with \(x_n, x_{n-1}, \ldots, x_{n-k} \).

3 Convergence analysis

We now turn to the analysis of the sequence \(\{x_n\}_{n=0}^\infty \) that is generated via (8). Since we already know everything concerning the case \(k = 1 \), namely, the secant method, we treat
the case $k \geq 2$. The following theorem gives the main convergence result for the generalized secant method.

Theorem 3.1 Let α be the solution to the equation $f(x) = 0$. Assume $f \in C^{k+1}(I)$, where I is an open interval containing α, and assume also that $f'(\alpha) \neq 0$, in addition to $f(\alpha) = 0$. Let x_0, x_1, \ldots, x_k be distinct initial approximations to α, and generate x_n, $n = k+1, k+2, \ldots$, via

$$x_{n+1} = x_n - \frac{f(x_n)}{p'_{n,k}(x_n)}, \quad n = k, k+1, \ldots,$$

(13)

where $p_{n,k}(x)$ is the polynomial of interpolation to $f(x)$ at the points $x_n, x_{n-1}, \ldots, x_{n-k}$. Then, provided x_0, x_1, \ldots, x_k are in I and sufficiently close to α, we have the following cases:

1. If $f^{(k+1)}(\alpha) \neq 0$, the sequence $\{x_n\}$ converges to α, and

$$\lim_{n \to \infty} \frac{\epsilon_{n+1}}{\prod_{i=0}^{n} \epsilon_{n-i}} = \frac{(-1)^{k+1}}{(k+1)!} \frac{f^{(k+1)}(\alpha)}{f'(\alpha)} \equiv L; \quad \epsilon_n = x_n - \alpha \quad \forall n.$$

(14)

The order of convergence is s_k, $1 < s_k < 2$, where s_k is the only positive root of the equation $s^{k+1} = \sum_{i=0}^{k} s^i$ and satisfies

$$2 - 2^{-k-1}e < s_k < 2 - 2^{-k-1} \quad \text{for } k \geq 2; \quad s_k < s_{k+1}; \quad \lim_{k \to \infty} s_k = 2,$$

(15)

where e is the base of natural logarithms, and

$$\lim_{n \to \infty} \frac{|\epsilon_{n+1}|}{|\epsilon_n|_{s_k}} = |L|^{(s_k-1)/k}.$$

(16)

2. If $f(x)$ is a polynomial of degree at most k, the sequence $\{x_n\}$ converges to α, and

$$\lim_{n \to \infty} \frac{\epsilon_{n+1}}{\epsilon_n^2} = \frac{f''(\alpha)}{2f'(\alpha)}; \quad \epsilon_n = x_n - \alpha \quad \forall n.$$

(17)

Thus $\{x_n\}$ converges of order 2 if $f''(\alpha) \neq 0$, and of order greater than 2 if $f''(\alpha) = 0$.

Remark. Note that, in part 1 of Theorem 3.1,

$$s_1 \approx 1.618, \quad s_2 \approx 1.839, \quad s_3 \approx 1.928, \quad s_4 \approx 1.966, \quad s_5 \approx 1.984, \quad s_6 \approx 1.992, \quad s_7 \approx 1.996, \quad \text{etc.}$$

rounded to four significant figures. (Recall that s_1 is the order of the secant method.)

Proof. Below, we shall use the short-hand notation

$$\text{int}(a_1, \ldots, a_m) = (\min\{a_1, \ldots, a_m\}, \max\{a_1, \ldots, a_m\}).$$

We start by deriving a closed-form expression for the error in x_{n+1}. Subtracting α from both sides of (13), and noting that

$$f(x_n) = f(x_n) - f(\alpha) = f[x_n, \alpha] (x_n - \alpha),$$
we have
\[x_{n+1} - \alpha = \left(1 - \frac{f[x_n, \alpha]}{p'_{n,k}(x_n)}\right) (x_n - \alpha) - \frac{p'_{n,k}(x_n) - f[x_n, \alpha]}{p'_{n,k}(x_n)} (x_n - \alpha). \] (18)

We now note that
\[p'_{n,k}(x_n) - f[x_n, \alpha] = \left[p'_{n,k}(x_n) - f'(x_n)\right] + \left[f'(x_n) - f[x_n, \alpha]\right], \]
which, by
\[f'(x_n) - f[x_n, \alpha] = f[x_n, x_n] - f[x_n, \alpha] = f[x_n, x_n, \alpha](x_n - \alpha) = \frac{f^{(2)}(\eta_n)}{2!} (x_n - \alpha) \]
for some \(\eta_n \in \text{int}(x_n, \alpha) \), and
\[f'(x_n) = f[x_n, x_n, x_n-1, \ldots, x_n-k] \prod_{i=1}^{k} (x_n - x_{n-i}) \]
becomes
\[p'_{n,k}(x_n) - f[x_n, \alpha] = -\frac{f^{(k+1)}(\xi_n)}{(k+1)!} \prod_{i=1}^{k} (\epsilon_n - \epsilon_{n-i}) + \frac{f^{(2)}(\eta_n)}{2!} \epsilon_n. \] (20)

Substituting (19) and (20) in (18), and letting
\[\hat{D}_n = -\frac{f^{(k+1)}(\xi_n)}{(k+1)!} \quad \text{and} \quad \hat{E}_n = \frac{f^{(2)}(\eta_n)}{2!}, \] (21)
we finally obtain
\[\epsilon_{n+1} = C_n \epsilon_n; \quad C_n \equiv \frac{p'_{n,k}(x_n) - f[x_n, \alpha]}{p'_{n,k}(x_n)} = \frac{\hat{D}_n \prod_{i=1}^{k} (\epsilon_n - \epsilon_{n-i}) + \hat{E}_n \epsilon_n}{f'(x_n) + \hat{D}_n \prod_{i=1}^{k} (\epsilon_n - \epsilon_{n-i})}. \] (22)

We now prove that convergence takes place. Let \(M_s = \max_{x \in I} |f^{(s)}(x)|/s! \), \(s = 1, 2, \ldots \), and choose the interval \(I = (\alpha - t/2, \alpha + t/2) \) sufficiently small to ensure that \(m_1 = \min_{x \in I} |f'(x)| > 0 \) and \(m_1 > 2M_{k+1} t^k + M_2 t/2 \). This is possible since \(\alpha \in I \) and \(f' (\alpha) \neq 0 \). It can now be shown that, provided \(x_{n-i}, i = 0, 1, \ldots, k, \) are all in \(I \), there holds
\[|C_n| \leq \frac{M_{k+1} \prod_{i=1}^{k} (|\epsilon_n - \epsilon_{n-i}| + M_2 |\epsilon_n|)}{m_1 - M_{k+1} \prod_{i=1}^{k} (|\epsilon_n - \epsilon_{n-i}|)} \leq \frac{M_{k+1} \prod_{i=1}^{k} (|\epsilon_n| + |\epsilon_{n-i}|) + M_2 |\epsilon_n|}{m_1 - M_{k+1} \prod_{i=1}^{k} (|\epsilon_n| + |\epsilon_{n-i}|)} \leq \overline{C}, \]
where \(\overline{C} \).
where
\[C \equiv \frac{M_{k+1}t^k + M_2t/2}{m_1 - M_{k+1}t^k} < 1. \]

Consequently, by (22), \(|\epsilon_{n+1}| < |\epsilon_n|\), which implies that \(x_{n+1} \in I\), just like \(x_{n-i}\), \(i = 0, 1, \ldots, k\). Therefore, if \(x_0, x_1, \ldots, x_k\) are chosen in \(I\), then \(|C_n| \leq C < 1\) for all \(n \geq k\), hence \(\{x_n\} \subset I\) and \(\lim_{n \to \infty} x_n = \alpha\).

As for (14) when \(f^{(k+1)}(\alpha) \neq 0\), we proceed as follows: By the fact that \(\lim_{n \to \infty} x_n = \alpha\), we first note that

\[\lim_{n \to \infty} p'_{n,k}(x_n) = f'(\alpha) = \lim_{n \to \infty} f[x_n, \alpha], \]

and thus \(\lim_{n \to \infty} C_n = 0\). This means that \(\lim_{n \to \infty} (\epsilon_{n+1}/\epsilon_n) = 0\) and, equivalently, that \(\{x_n\}\) converges of order greater than 1. As a result,

\[\lim_{n \to \infty} (\epsilon_n/\epsilon_{n-i}) = 0 \quad \text{for all } i \geq 1, \]

and

\[\epsilon_n/\epsilon_{n-i} = o(\epsilon_n/\epsilon_{n-j}) \quad \text{as } n \to \infty, \quad \text{for } j < i. \]

Consequently, expanding in (22) the product \(\prod_{i=1}^{k} (\epsilon_n - \epsilon_{n-i})\), we have

\[\prod_{i=1}^{k} (\epsilon_n - \epsilon_{n-i}) = \prod_{i=1}^{k} \left(-\epsilon_{n-i}[1 - \epsilon_n/\epsilon_{n-i}] \right) \]

\[= (-1)^k \left(\prod_{i=1}^{k} \epsilon_{n-i} \right) [1 + O(\epsilon_n/\epsilon_{n-1})] \quad \text{as } n \to \infty. \quad (23) \]

Substituting (23) in (22), and defining

\[D_n = \frac{\hat{D}_n}{p'_{n,k}(x_n)}, \quad E_n = \frac{\hat{E}_n}{p'_{n,k}(x_n)}, \quad (24) \]

we obtain

\[\epsilon_{n+1} = (-1)^k D_n \left(\prod_{i=0}^{k} \epsilon_{n-i} \right) [1 + O(\epsilon_n/\epsilon_{n-1})] + E_n\epsilon_n^2 \quad \text{as } n \to \infty. \quad (25) \]

Dividing both sides of (25) by \(\prod_{i=0}^{k} \epsilon_{n-i}\), and defining

\[\sigma_n = \frac{\epsilon_{n+1}}{\prod_{i=0}^{k} \epsilon_{n-i}}, \quad (26) \]

we have

\[\sigma_n = (-1)^k D_n [1 + O(\epsilon_n/\epsilon_{n-1})] + E_n\sigma_{n-1}\epsilon_n\epsilon_{n-1} \quad \text{as } n \to \infty. \quad (27) \]
Now,

\[\lim_{n \to \infty} D_n = -\frac{1}{(k+1)!} f^{(k+1)}(\alpha), \quad \lim_{n \to \infty} E_n = \frac{f^{(2)}(\alpha)}{2f'(\alpha)}. \]

(28)

Because \(\lim_{n \to \infty} D_n \) and \(\lim_{n \to \infty} E_n \) are finite, \(\lim_{n \to \infty} (\epsilon_n/\epsilon_{n-1}) = 0 \), and \(\lim_{n \to \infty} \epsilon_{n-k-1} = 0 \), it follows that there exist a positive integer \(N \) and positive constants \(\beta < 1 \) and \(D \), with \(|E_n\epsilon_{n-k-1}| \leq \beta \) when \(n \geq N \), for which (27) gives

\[|\sigma_n| \leq D + \beta|\sigma_{n-1}| \quad \text{for all } n \geq N. \]

(29)

Using (29), it is easy to show that

\[|\sigma_{N+s}| \leq D \frac{1-\beta^s}{1-\beta} + \beta^s|\sigma_N|, \quad s = 1, 2, \ldots, \]

which, by the fact that \(\beta < 1 \), implies that \(\{\sigma_n\} \) is a bounded sequence. Making use of this fact, we have \(\lim_{n \to \infty} E_n \sigma_{n-1} \epsilon_{n-k-1} = 0 \). Substituting this in (27), and invoking (28), we next obtain \(\lim_{n \to \infty} \sigma_n = (-1)^k \lim_{n \to \infty} D_n = L \), which is precisely (14).

That the order of the method is \(s_k \), as defined in the statement of the theorem, follows from [15, Chapter 3]. A weaker version can be proved by letting \(\sigma_n = L \) for all \(n \) and showing that \(|\epsilon_{n+1}| = Q|\epsilon_n|^{s_k} \) is possible for \(s_k \) a solution to the equation \(s^{k+1} = \sum_{i=0}^{k} s^i \) and \(Q = |L|^{(s_k-1)/k} \). The proof of this is easy and is left to the reader. This completes the proof of part 1 of the theorem.

When \(f(x) \) is a polynomial of degree at most \(k \), we first observe that \(f^{(k+1)}(x) = 0 \) for all \(x \), which implies that \(p_{n,k}(x) = f(x) \) for all \(x \), hence also \(p'_{n,k}(x) = f'(x) \) for all \(x \). Therefore, we have that \(p'_{n,k}(x_n) = f'(x_n) \) in the recursion of (13). Consequently, (13) becomes

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = k, k + 1, \ldots, \]

which is the recursion for the Newton–Raphson method. Thus, (17) follows. This completes the proof of part 2 of the theorem. \(\square \)

4 A numerical example

We apply the method described in Sections 2 and 3 to the solution of the equation \(f(x) = 0 \), where \(f(x) = x^3 - 8 \), whose solution is \(\alpha = 2 \). We take \(k = 2 \) in our method. We also chose \(x_0 = 0 \) and \(x_1 = 6 \), and compute \(x_2 \) via one step of the secant method, namely,

\[x_2 = x_1 - \frac{f(x_1)}{f(x_0, x_1)}. \]

(30)

Following that, we compute \(x_3, x_4, \ldots, \) via

\[x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, x_{n-1}] + f[x_n, x_{n-1}, x_{n-2}](x_n - x_{n-1})}, \quad n = 2, 3, \ldots. \]

(31)

Our computations were done in quadruple-precision arithmetic (approximately 35-decimal-digit accuracy), and they are given in Table 2. Note that in order to verify the
From Theorem 3.1
\[
\lim_{n \to \infty} \frac{\epsilon_{n+1}}{\epsilon_n \epsilon_{n-1} \epsilon_{n-2}} = \frac{-1}{3!} \frac{f^{(3)}(2)}{f'(2)} = -\frac{1}{12} = -0.08333 \ldots
\]
and
\[
\lim_{n \to \infty} \frac{\log |\epsilon_{n+1}/\epsilon_n|}{\log |\epsilon_n/\epsilon_{n-1}|} = s_2 = 1.83928 \ldots,
\]
and these seem to be confirmed in Table 2. Also, \(x_9\) should have a little under 50 correct significant figures, even though we do not see this in Table 2 due to the fact that the arithmetic we have used to generate Table 2 can provide an accuracy of at most 35 digits approximately.

5 Discussion of efficiency index of the method

We recall that, for methods that converge superlinearly, that is, with order strictly greater than 1, a good measure of their effectiveness is the so-called efficiency index, a concept introduced originally by Ostrowski [9]. (See Traub [15, pp. 11–13, 260–264] for more on this subject.) If an iterative method for solving \(f(x) = 0\) that requires \(p\) evaluations of \(f(x)\) (and its derivatives, assuming that their cost is about the same), has order \(s > 1\), the efficiency index \(EI\) of the method is defined as \(EI = s^{1/p}\). Figuratively speaking, \(EI\) measures the order of the method per function evaluation. Thus, we may conclude that, the
larger EI, the more effective the iterative method, \textit{irrespective of its order}. In comparing methods, we should examine their performance after we have done a fixed number of function evaluations, this number being \textit{the same} for all methods. In other words, it makes sense to compare methods that have \textit{equal} costs. The details of this line of thought follow:

Consider two iterative methods M1 and M2 applied to the equation \(f(x) = 0 \), and let \(m_1 \) and \(m_2 \) be the number of function evaluations per iteration for M1 and M2, respectively. Starting with \(x_0^{(1)} = x_0^{(2)} \), let the sequences of approximations \(\{x_n^{(1)}\}_{n=0}^{\infty} \) and \(\{x_n^{(2)}\}_{n=0}^{\infty} \) be generated by M1 and M2, respectively. Then, for each integer \(q = 1, 2, \ldots \), we should compare the approximations \(x_{qm_2}^{(1)} \) and \(x_{qm_1}^{(2)} \). Note that, the computation of \(x_{qm_2}^{(1)} \) starting from \(x_{(q-1)m_2}^{(1)} \) entails \(m_1 m_2 \) function evaluations and so does the computation of \(x_{qm_1}^{(2)} \) starting from \(x_{(q-1)m_1}^{(2)} \).

In a fundamental paper by Kung and Traub \cite{8}, it is conjectured that the order of a multipoint iterative method without memory that uses \(p \) function evaluations may not exceed \(2^{p-1} \). This paper contains two such families that use \(p \) function evaluations and are of order \(2^{p-1} \). Woźniakowski \cite{16} has proved for some classes of multipoint iterative methods without memory that the order \(2^{p-1} \) cannot be exceeded without more information. From this, it is clear that the efficiency index of such methods is at most \(2^{(p-1)/p} = 2^{1-1/p} < 2 \). In view of this discussion, we make a few comments on the efficiency index of our method next.

The efficiency index of the generalized secant method developed in this paper is \(EI_k = s_k \) for each \(k = 1, 2, \ldots \), because \(p = 1 \) for every \(k \). In addition, because \(\lim_{k \to \infty} s_k = 2 \), we have \(\lim_{k \to \infty} k \cdot EI_k = 2 \) as well. Actually, even with very small \(k \), we are able to come quite close to this limit. For example, \(s_7 = 1.9960 \cdots \) and \(s_{10} = 1.9995 \cdots \).

Over the years, many sophisticated iterative methods with and without memory that do not use derivatives of \(f(x) \) and that have high orders have been developed. It is not our purpose here to review these methods; we refer the reader to the papers by Džunić \cite{4}, Džunić and Petković \cite{5}, \cite{6}, Chun and Neta \cite{2},\cite{3}, and to the book by Petković et al. \cite{10}, for example, and to the bibliographies of these publications. We only would like to comment that the many methods that we have studied have efficiency indices that are strictly less than 2 despite their high order. This may suggest that the method of this paper may be as useful a tool for solving nonlinear equations with simple zeros as other methods that have orders much higher than 2.

\textbf{References}

[1] K.E. Atkinson. \textit{An Introduction to Numerical Analysis}. John Wiley & Sons Inc., New York, second edition, 1989.

[2] C. Chun and B. Neta. Comparison of several families of optimal eighth order methods. \textit{Appl. Math. Comput.}, 274:762–773, 2016.

[3] C. Chun and B. Neta. Comparative study of methods of various orders for finding simple roots of nonlinear equations. \textit{J. Appl. Anal. Comput.}, 9:400–427, 2019.

[4] J. Džunić. On efficient two-parameter methods for solving nonlinear equations. \textit{Numer. Algorithms}, 63:549–569, 2013.
[5] J. Džunić and M.S. Petković. On generalized multipoint root-solvers with memory. J. Comp. Appl. Math., 236:2909–2920, 2012.

[6] J. Džunić and M.S. Petković. On generalized biparametric multipoint root finding methods with memory. J. Comp. Appl. Math., 255:362–375, 2014.

[7] P. Henrici. Elements of Numerical Analysis. Wiley, New York, 1964.

[8] H.T. Kung and J.F. Traub. Optimal order of one-point and multipoint iteration. Journal of the ACM, 21:643–651, 1974.

[9] A.M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press, New York, 1960.

[10] M.S. Petković, B. Neta, L.D. Petković, and J. Džunić. Multipoint Methods for Solving Nonlinear Equations. Elsevier, New York, 2013.

[11] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis. McGraw-Hill, New York, second edition, 1978.

[12] A. Sidi. Unified treatment of regula falsi, Newton–Raphson, secant, and Steffensen methods for nonlinear equations. J. Online Math. Appl., 6, 2006.

[13] A. Sidi. Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008.

[14] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, third edition, 2002.

[15] J.F. Traub. Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs, N.J., 1964.

[16] H. Woźniakowski. Maximal order of multipoint iterations using n evaluations. In J.F. Traub, editor, Analytic Computational Complexity, pages 75–107, New York, 1976. Academic Press.