Dynamic Effects of Malaysia’s Government Spending on Environment Quality: Bridging STIRPAT and EKC Hypothesis

Nor Salwati Othman¹*, Hussain Ali Bekhet²

¹College of Business and Accounting, Universiti Tenaga Nasional, Malaysia, ²College of Graduate Studies, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia. *Email: norsalwati@uniten.edu.my

Received: 07 March 2021 Accepted: 22 June 2021 DOI: https://doi.org/10.32479/ijeep.11273

ABSTRACT

This paper investigates how government spending (GSE) affects the environmental quality proxy by CO₂ emissions in Malaysia over the 1978–2020 period. For that purpose, the STIRPAT model in the EKC framework are applied. The F-bounds test is applied to assess the cointegration relationship’s existence. The ARDL model is used to measure the short-run and long-run environmental elasticities, and the VECM Granger causality is used to estimate the direction of the causality relationship. Empirical results show a cointegration relationship among environmental quality, GDP, population, and Malaysia’s GSE. The findings provide strong support for Malaysia’s EKC presence, and the GSE significantly contributes to reducing environmental sustainability. The results show the short-run unidirectional Granger causality running from CO₂ emissions, GDP, and population to GSE at the 1 percent significance levels. Also, this study reveals the long-run unidirectional Granger causality running from CO₂ emissions and population to GSE and GDP at least at 10 percent significance level; and the bidirectional causality between GSE and GDP at least at 10 percent significance level as well. The result implies that the increasing demand for regulatory and protective functions represented by GSE are needed to sustain the increasing level of economic wealth, environment, and communities.

Keywords: Environmental Sustainability, EKC, Government Spending, Dynamic Relationship, Causality, Malaysia

JEL Classifications: O1, O2, Q5

1. INTRODUCTION

Since the early 1990s, economists and environmentalists have extensively investigated economic growth and environmental quality. Several studies (Zhang et al., 2021; Sharif et al., 2020; Suki et al., 2020; Balsalebre-Lorente et al., 2019; Wang et al., 2016; Dogan and Turkekul, 2016; Ozturk and Al-Mulali et al., 2015) reported most of the country’s economic growth achievements lead to the cost of environmental pollution. The Intergovernmental Panel on Climate Change (IPCC) indicates the necessary steps to reduce the amount of Greenhouse Gas (GHG) emissions, particularly CO₂ emissions, by 40–70% compared to a decade ago. At the end of the 21st century, IPCC aimed to reduce GHG emissions to zero percent. The failure to achieve this goal will destroy earth biodiversity and socio-economic systems. Consequently, the world will face various risks (such as heatwaves, droughts, floods, food crises, and damages to human, social and economic systems), making this world far from sustainable¹. Countries in the early stages of development and demonstrating high economic growth rates are often associated with environmental degradation (Chen and Taylor, 2020). For the Malaysian scenario, the time trend of Malaysia’s economic activities and the status of environmental quality represented by CO₂ emissions are pictured in Figure 1.

Figure 1 clearly shows the GDP and CO₂ emissions growth by 5.9% and 6.3%, respectively, for the 1971–2020 period. For

¹ Sustainable development thinking and planning since the late-1980s has assumed an inverse relationship between the level of economic development and the depth of environmental impacts (Chen and Taylor, 2020).
instance, the escalation of GDP is paired with the disruption of environmental pollution represented by CO\textsubscript{2} emissions sequentially becoming a burden to environmental sustainability. Many studies investigated the relationship between GDP and environmental pollution. For example, Bekhet et al. (2020), Begum et al. (2015), Al-Mulali et al. (2015), Ozturk and Al-Mulali (2015) investigate the trade-off between carbon dioxide emissions and GDP in the Environmental Kuznets Curve (EKC) framework. Other studies investigated the role of urbanization in determining the interaction between carbon emission and GDP (Sadorsky, 2014; Martinez-Zarzosa and Maruotti, 2011; He et al., 2017; Ozturk and Al-Mulali, 2015; Bekhet and Othman, 2017). Moreover, Shahzad et al. (2017), Mrabet and Alsamara (2017), Dogan and Ozturk (2017) considered the role of energy consumption and many more.

On the other hand, fiscal policy plays a crucial role in the accumulation and allocation of an economy’s resources (López et al., 2010). In Malaysia, government spending (GSE) comprises 11%–20% of the GDP (Figure 2). The GSE includes all current government expenditures for the purchase of goods and services (including employee compensation), education, R and D, and national defense and security (Ministry of Finance, 2020). The GSE may affect environmental quality in several ways (Hua et al., 2018; Islam and Lopez, 2013; Lopez et al., 2011). First, spending on education tends to raise the share of cleaner human capital. Second, the GSE on research and development (R and D) can result in a higher adoption rate of cleaner technology. Third, the increase in GSE for operating services such as compensation and salary of civil servants could lead to higher demand for environmental products and services. The government has recently pump-up their allocation on GSE (RM20 billion stimulus package) to stabilize the economic activities and support society’s welfare due to the COVID-19 pandemic2 (ISIS, 2020). Many studies successfully verified the function of GSE on GDP (economic activities), but the function of GSE to improve the environmental quality is still limited, mainly for cases in Malaysia. Against this backdrop, this study fills this gap in this area by linking the effect of GSE on environmental quality in Malaysia.

This study inclines to clarify to what extent the GSE influences environmental quality. Also, it contributes to the growing literature on fiscal policy and environmental quality, mainly for cases in Malaysia. The results have significant practical policy implications precisely at the time Malaysia aimed for a sustainable development goal.

The remaining study is structured as follows: Section 2 presents the review of the related theory, earlier empirical work on the nexus between environmental quality and government spending, and hypotheses development; Section 3 explains the formulation of the model, a method used in the study and provides details about the data sources; Section 4 analyzes and discusses the results, and Section 5 concludes the study with policy implications.

2. THEORETICAL BACKGROUND, PAST STUDIES, AND HYPOTHESES

2.1. Theoretical Background
Generally, the Malaysia GSE was allocated for two significant purposes: operation purposes and development purposes (Bekhet and Othman, 2012). The rationale behind this policy was to upgrade and improve productivity and impede long-term economic growth potential. In the 2020 budget, a total of RM297 billion (18.4% of GDP) was allocated, of which RM241 billion (81.1%) for operating expenditure while the balance RM56 billion for development expenditure (Ministry of Finance, 2020). The largest components of operating expenditure are payments, subsidies, supplies, and services. The factor contributing to higher allocation for payments is due to annual salary increments. Supply and services are the second top operation expenditure due to higher outlays for repairs and maintenance and an allocation for professional services. On the other hand, the development expenditure was channeled to promote economic development, upgrade necessary rural infrastructure, and enhance living standards.

Theoretically, government expenditure can affect environmental quality in several ways (Lopez et al., 2011; Lopez and Islam, 2008). The first is through scale effect. The scale effect is when the increase in government spending generates more economic activities and creates more pollution. The second is through the

2 The COVID-19’s intensely damaging effects of the Malaysia macroeconomy and economic welfare of the societies. The government of Malaysia imposed the PRIHATIN package purposely to support income during the moving control order (MCO) and to kick-start the economy after the restrictions are lifted (ISIS, 2020).
composition effect. The composition effect is the consequences of better education level and skill that raise the share of cleaner human capital-intensive activities relative to the share of dirtier physical capital-intensive activities. Third, more fiscal spending on R and D can result in a higher adoption rate of cleaner technology by firms, reducing the pollution-output ratio (a technique effect). Finally, private income raised by public-good expenditures leads to higher demand for a cleaner environment and more stringent regulations (an income effect).

2.2. Past Studies
Existing empirical studies on the effect of GSE on environmental quality/pollution are still limited. Lopez and Palacios (2010) examine whether GSE makes the environmental quality cleaner in Europe. The results conclude that total government expenditure has a negative relationship with air pollution. Whereas Lopez et al. (2011) specify the purpose of GSE, which is the reallocation of GSE towards social and public goods, and revealed both allocations significantly reduce the sulfur dioxide (SO$_2$) emissions. However, increasing the total government size without changing its orientation has a non-positive impact on environmental quality. Halkos and Paizanos (2013) investigated how GSE affected a different kind of pollution and revealed that GSE negatively affects SO$_2$ and a non-linear relationship between government expenditure and CO$_2$ emissions. Precisely, at the low-income level, the increase in GSE scales down the CO$_2$ emissions and scales up at a high-income level. Similar to Halkos and Paizanos (2013), Zhang et al. (2017) investigate the impact of GSE on emissions of three typical pollutants in China. They found that the total effect of GSE on SO$_2$, soot, and chemical oxygen demand (COD) are different. The effect on SO$_2$ is negative, while soot and COD are inverted U-shaped and U-shaped, respectively. Also, the proportion of GSE does not have a significant effect on pollution emissions. Huang (2018) pays attention to SO2 emissions and measures the change in these emissions due to the changes in China’s government spending. This study’s main findings are that SO$_2$ emissions can be effectively reduced by government spending on environmental protection. Xie and Wang (2019) evaluated the efficacy of government spending on air pollution control in Beijing, China, and found that government expenditure has a noticeable influence on the improvement of air quality. Based on the above review, this study can conclude that the interaction between GSE is different according to pollution types.

Furthermore, Adewuyi (2016) examined the impact of GSE on aggregate and sectoral CO$_2$ emissions in world economies during the 1990–2015 period and found the rise in GSE raised the CO$_2$ emission. Halkos and Paizanos (2016) analyzed the effect of fiscal policy on CO$_2$ emissions in the USA and discovered the GSE increase reduces emissions from production and consumption. Hua et al. (2018) investigated if education spending affects air pollution in China. The regional analysis demonstrates that the effects of education spending are relatively pervasive, while the effects of R and D spending are scarcely identified. The environmental return of education spending appears to be the highest in the eastern cities and diminishes as we move towards the inland area. Insofar, most of the studies mentioned above were tested in China, Europe, and the USA. While in Malaysia, the relationship study between these two variables is still at the infant stage. This study intends to contribute to the existing literature by first investigating the existence of a dynamic relationship between CO$_2$ emissions (proxy to environment quality) and GSE. This study’s uniqueness holds due to dynamic analysis by assuming that the effect of GSE on environmental quality is not instantaneous. So, it needs time lags to influence CO$_2$ emissions. Instead of that, the current study is the author’s first attempt to verify the role and the strength of GSE to represent technology (with technological effect).

Based on the background theory, past studies, and to get to the bottom of this study aim, the following hypotheses are formulated:

- **H$_1$:** Significant dynamic relationship exists between environmental quality and its determinants in Malaysia
- **H$_2$:** Environmental quality has a significant inverted U-shaped relationship with economic activities
- **H$_3$:** Environmental quality has a significant relationship with GSE in Malaysia
- **H$_4$:** Significant long-run causality exists between environmental quality and GSE in Malaysia
- **H$_5$:** Significant short-run causality exists between environmental quality and GSE in Malaysia.

3. EMPIRICAL MODEL, METHODOLOGY, AND SOURCE OF DATA

3.1. Development of a Model
Past studies have widely used the Environmental Impacts of Population, Affluence, and Technology (IPAT) identity developed by Ehrlich and Holdren (1971) to capture the impact of human activities on environmental destruction (Bahera and Dash, 2017; Riti et al., 2017; Wang et al., 2013; York et al., 2003; Stern et al., 1996). IPAT identity can be stated in Equation (1)

\[I = PAT \]

(1)

I refer to environmental impact, P, A, T refers to demographic effect (population), economics effect (affluence), and technology effect. However, the model has a generalizability issue as it captures the impartial effect of one factor while keeping other factors constant (Khan et al., 2018; Wang et al., 2013). Dietz and Rosa (1997) addressed the aforementioned econometric issues of the IPAT model. They modified and transformed into a dynamic model known as Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. Equation (2) formalizes the basic STIRPAT model in exponential form.

\[I = \alpha_1 P^{\alpha_2} A^{\alpha_3} T^{\alpha_4} \varepsilon \]

(2)

where the α's [$\alpha_1, \alpha_2, \alpha_3, \alpha_4$] are coefficients. It transformed into a linear form by applying a logarithm1 technique (Zhang and Zhao, 2019), as shown in Equation (3).

3 Data is transformed in logarithmic form as it provides efficient, better and consistent results. Instead of that, the logarithmic form of the data does not only make the data smooth but also overcome the heteroskedasticity issue (Ahmad & Du, 2017).
ln I_t = lnα_1 + α_2 lnP_t + α_3 lnA_t + α_4 lnT_t + ε \quad (3)

Where \(I \) denotes environmental impacts proxy by CO_2 emissions, \(P \) represents the population of a country, \(A \) indicates affluence represented by GDP, \(T \) shows technology represented by GSE. Theoretically, there are many reasons to use the GSE to represent the technology. Its ability to upgrade and improve productivity, impede long-term growth, enhance the standard of living, change human behavior and mentality to adopt environmentally friendly technology, and reduce the pollution-output ratio. The \(\alpha_i \) \([i=1,2,3,4] \) are the elasticities of the explaining variables that also indicate a monotonic positive impact on the CO_2 emissions, vice versa. The larger the elasticity coefficient, the enormous is the impact on CO_2 emissions (Xu et al., 2020). Finally, the \(ε \) is the error term of the model, implying the stochastic process.

Equation [3] does not permit the information on EKC relationship between CO_2 emissions and GDP, but is limited to measure the linear relationship via monotonic effect. Thus, Equation (3) has been altered by adding up \(A^2 \), as shown in Equation (4), and further enable this study to measure the non-monotonic effect of affluence suggested by EKC on the environment issue (Grossman and Krueger, 1995; Riti et al., 2017).

\[\ln I_t = \ln\alpha_1 + \alpha_2 \ln P_t + \alpha_3 \ln A_t + \alpha_4 \ln A_t^2 + \alpha_4 \ln T_t + \varepsilon \quad (4) \]

In Equation [4], the EKC hypothesis via the inverted U-shaped relationship between CO_2 emissions and GDP exists if \(\alpha_1 > 0; \alpha_3 < 0 \). On the contrary, if \(\alpha_1 < 0; \alpha_3 > 0 \), a U-shaped relationship between CO_2 emissions and GDP will be applied.

Furthermore, Figure 3 listed the steps of the study’s estimation procedure.

3.2. Stationary and Cointegration Tests

Various unit root tests are a prerequisite because simple OLS techniques lead to spurious results via biased estimated parameters (Bloch et al., 2015; Chen et al., 2007). This condition could spoil the research outcome because it makes difficult to effectively explain the economic reality (Xu and Lin, 2017; Ewing et al., 2007). In this paper, the Ng-Perron test (Ng and Perron, 2001) is utilized to observe each variable’s stationarity condition before embarking on OLS. According to Shahbaz et al. (2013), this test is suitable for a small sample size with no structural break. The stationarity test could give the researcher an idea of the adequate model in a future phase and signal a shock or structural break in the time series (Bekhet and Othman, 2017; 2018).

Next, the F-bounds test was used to search for a long-term relationship between the study variables. It is consistent with the nature of EKC as a long-run phenomenon, as claimed by Onafowora and Owode (2014) and Dinda (2004). There are several types of tests to run for this purpose; however, this study believes the F-bounds test is the ideal one due to its capacity to remove the disability of other cointegration techniques (i.e. Engle and Granger, 1987, test, Johansen and Juselius, 1990, test). First, the short- and long-run relationship can be estimated simultaneously; second, the dynamic of the model can solve the problem of autocorrelation and endogeneity and avoid the estimation bias; third, the F-bounds test is fitting for small sample sizes (estimated 30 to 80 observations) and is far superior to multivariate cointegration (Farhani et al., 2014; Narayan, 2005). Thus, for the current study, the dynamic relationship among CO_2 emissions and their determinants can be tested as in Equation (5):

\[\Delta \ln I_t = \delta_1 + \alpha_1 \ln I_{t-1} + \alpha_2 \ln P_{t-1} + \alpha_3 \ln A_{t-1} + \alpha_4 \ln A_{t-1}^2 + \alpha_5 \ln T_{t-1} + \sum_{m=1}^{k} \Delta_{m} \ln I_{t-m} + \sum_{m=1}^{k} \Delta_{m} \ln P_{t-m} + \sum_{m=1}^{k} \Delta_{m} \ln A_{t-m} + \sum_{m=1}^{k} \Delta_{m} \ln A_{t-m}^2 + \sum_{m=1}^{k} \Delta_{m} \ln T_{t-m} + \varepsilon \quad (5) \]

Where \(\Delta \) is the first difference operator, \(\delta_1 \) represents the intercept, \(\alpha_{1,2,3,4,5} \) denotes the long-run elasticities of the variables, and \(\theta_{1,5} \) represents the short-run elasticities of the variables. \(\varepsilon \) represents the error term, \(k \) is the maximum lag length, and \(m \) indicates the lag’s optimal number, and this study uses the Akaike information criterion (AIC). The AIC tends to select the maximum relevant lag length, increase the model’s dynamic, and prevent the model from being under-fit (Zhang et al., 2021; Bekhet and Othman, 2017).

For testing the existence of a long-run among variables, the hypotheses are formulated as \(H_0: \alpha_{1,5} = 0 \) (no long-run relationship) against \(H_1: \alpha_{1,5} \neq 0 \) (long-run relationship exist); while for testing the existence of a short-run among variables, the hypotheses are formulated as \(H_0: \theta_{1,5} = 0 \) (no short-run relationship) against \(H_1: \theta_{1,5} \neq 0 \) (short-run relationship exist). The calculated value of F-statistics decides that cointegration exists among the variables of the study or not. If F-statistics value > I (1) critical value, \(H_0 \) for no long-run relationship will be rejected; if F-statistics < I(0) critical value, \(H_0 \) for no long-run relationship will be not rejected; if I(0) ≤ F-statistics ≤ I(1) critical value, the decision is inconclusive (Abassi et al., 2021; Zhang et al., 2021; Bekhet et al., 2017; Pesaran et al., 2001). After validating the dynamic relationship among the variables designated above, the long-run CO_2 elasticity toward the changes in its determinants and EKC hypothesis can be measured (Zhang et al., 2021; Dogan and Turkulul, 2016; Begum et al., 2015).

Later, the \(\varepsilon_{it} \) terms should be diagnosed, and they typically are distributed with zero mean and constant variance, \(\varepsilon_{it} \sim N(0,\sigma^2) \).
homoscedastic, free from autocorrelation problems, and have no multicollinearity. If one of the criteria above is not met, the model could encounter bias in the parameters, become inefficient, and yield an invalid hypothesis. Then the Arch, Breusch–Godfrey, Breusch–Pagán–Godfrey, and RAMSEY tests are employed to ensure that the estimated model is free from the abovementioned problems and is reliable (Abbasi et al., 2021).

Further, to assess the model’s stability, the CUSUM and CUSUMQ tests (Brown et al., 1975) are applied. The model is stable if the CUSUM and CUSUMQ plots are placed inside the 5% significance level (Bekhet and Matar, 2013). If not, there is a possibility of a structural break within the estimation period, or the regression coefficient is not stable (Abid, 2015).

3.3. Causality Relationship

The presence of a long-run relationship is a sign of at least a one-way relationship among the variables. The ARDL approach examines the presence or absence of cointegration between the variables, but it does not test the direction of causality. Remarkably, causality information is essential for policymakers to recognize the variables’ causality directions to regulate suitable policies. This study uses the VECM Granger causality approach to examine the causal relations that are a two-step process. Firstly, the estimation of the error correction model to get the causality in the long-run. Secondly, we estimate the Wald statistic to short-run causality between the variables. If there is no dynamic relationship between variables, then the Granger causality test will be vector autoregressive in the first difference form. If there is confirmation for cointegration, then expand the Granger causality test with a single-period lagged error correction term (ECT). This is the foremost step since Engle and Granger (1987) caution that if the series are integrated of order one, VAR estimation’s cointegration in first differences will be misleading. Thus, equation [6] is formulated to measure long- and short-run causality among the variables of the current study:

\[
\Delta \ln P = \varphi_1 \ln I + \varphi_2 \ln P + \varphi_3 \ln A + \varphi_4 \ln T + \sum_{j=1}^{m} \Delta \varphi_{j+3} \ln P - \sum_{j=1}^{m} \Delta \varphi_{j+4} \ln A - \sum_{j=1}^{m} \Delta \varphi_{j+5} \ln T + \varepsilon_1
\]

Where \(\varepsilon_1 \) is a white noise error term.

Table 1: Variables details

Variables	Proxy	Unit of measurement	Past study
I	CO, Emissions	Thousand kt	Cong et al. (2015)
P	Population (aged 15–65)	Million unit	Yeah and Liao (2017)
A	GDP	Billion RM	Lohwasser et al. (2020)
T	Technology	Billion RM	Lopez and Palacios (2010)

Source of data: World Development Indicators. Notes I: Environmental impact, P: Population, A: Affluence, T: Technology

Table 2: Result of a stationary test

Variable	Level	NP statistic	Critical value	Decision
\(\ln I \)	I(0)	0.11	-13.80	I(1)
\(\ln I \)	I(1)	-8.99	-8.10	I(1)
\(\ln P \)	I(0)	-17.54	-8.10	I(0)
\(\ln P \)	I(1)	10.60	10.60	I(1)
\(\ln A \)	I(0)	1.15	-19.74	I(1)
\(\ln A \)	I(1)	-0.87	-1.59	I(1)
\(\ln T \)	I(0)	0.72	0.72	I(1)

Source: Output of EVIEW package version 10. a, b, c indicate 1%, 5%, and 10% significant level, respectively. Type of test=N-P statistic

Table 3: Result of F-bounds test

Model	F-Stat.	Critical Value	Decision
\(\ln I/ \ln P, \ln A, \ln A^2, \ln T \)	7.073	10	Co-integrated
\(\ln I/ \ln P, \ln A, \ln A^2, \ln T \)	5	2.893	4.000
\(\ln I/ \ln P, \ln A, \ln A^2, \ln T \)	1	3.967	5.455

Source: Output of EVIEW package version 10. a, b, c defined in Table 3

Table 4: Long-run and Short-run Elasticities

Long-run, Case 2: Restricted Constant and No Trend

Variables	Coefficient	t-Statistic	Prob.
\(\Delta \ln A \)	22.666	8.778	0.000
\(\Delta \ln A^2 \)	-1.085	-8.257	0.000
\(\Delta \ln T \)	0.474	2.420	0.023
\(\Delta \ln P \)	0.039	0.081	0.935
C	-109.116	-8.170	0.000

Short-run

Variables	Coefficient	t-Statistic	Prob.
\(\Delta \ln A \)	6.261	0.792	0.435
\(\Delta \ln A^2 \)	-21.842	-2.332	0.028
\(\Delta \ln T \)	0.623	2.372	0.026
\(\Delta \ln P \)	-0.055	-0.651	0.521
C	1.098	2.354	0.027
\(\Delta \ln T \)	0.421	2.296	0.030
\(\Delta \ln P \)	0.378	2.124	0.044
\(\Delta \ln P^2 \)	-3.842	-1.593	0.124
ECT	-1.123	-7.160	0.000

ECT = \(\ln I - (22.666^{*} \ln A - 1.085^{*} \ln A^2 + 0.474^{*} \ln T + 0.039^{*} \ln P - 109.116) \)

a, b, c defined in Table 3.
3.4. Data sources and Description of Variables

This study uses data for Malaysia at a yearly frequency over the 1978–2020 period. The variables included in the ARDL model are CO\textsubscript{2} Emissions (I), government expenditure (T), GDP (A), and population (P). All of the variables are shown as natural logarithms\(^4\). All data are obtained from the World Development Indicator (WDI), issued by the “World Bank.” Table 1 presents the details of the variables.

4 The dynamic approach of ARDL, transformation data, and logarithm could reduce the multicollinearity problem (Gujarati and Porter, 2009). All series were transformed into logarithmic form to eliminate the heteroscedasticity issue (Abassi et al., 2021)

4. RESULT ANALYSIS

To assess the integrated degree of the variables employed, the N-P test is utilized, and the results are presented in Table 2. It shows that all variables are substantially stationary [I(1)] at 1% except for lnP, which is stationary at I(0). These results are consistent with most previous studies that employed financial and macroeconomics variables (Bekhet and Othman, 2011; Othman et al., 2020).

Since the data is relatively stable with the combination of I(0) and I(1) level of stationarity and the sample size being relatively small (n=42), the F-bounds assessment is the most proper method to measure the cointegration relationship. Prior to the F-bounds test, the optimal lag selection is determined by utilizing the “Akaike information criterion (AIC),” and the result shows the best lag extent for this model is 3 (refer to the appendix for details).

Table 3 presents the results of the F-Bounds test. The empirical findings show long-run relationships between all variables at a 1% significant level over the 1978–2020 period and it is consistent with Othman et al. (2020). This is because the calculated F-statistic for each model is higher than the upper bound critical value at a 1% level of significance.

Concerning the above findings, the error correction model has been formulated to confirm the long-run elasticities between CO\textsubscript{2} emissions, GDP, population, and GSE. The results are demonstrated in Table 4. It shows that lnA and quadratic forms of lnA have a significant positive and a negative impact on lnI. It means that the long-run relationship between lnA and lnI is not linear, confirming the EKC theory’s existence. This result could be attributed to Grossman and Krueger (1991), where they found a non-linear relation between CO\textsubscript{2} emissions and economic growth, which is an inverted U-shaped relationship. Also, this result is consistent with Suki et al. (2020) and Bekhet et al. (2020).

Furthermore, the GSE is significantly influenced by the GDP and CO\textsubscript{2} emissions relationship in the long-run at 5 percent and consistent with Adewuyi (2016). Simultaneously, the population’s role is insignificant in influencing the GDP and CO\textsubscript{2} emissions relationship in the long-run. As regards the short-run scenario, none of the variables has a significant impact on lnI. So, it indicates that EKC does not exist in the short run.

Several diagnostic tests, present in Table 5, are used to check the robustness of the model. It demonstrated that the model has
the desired econometric properties. Namely, the residuals are normally distributed, serially uncorrelated, homoscedastic, and have a correct functional form (Abbasi et al., 2021; Law, 2008). Moreover, the cumulative sum (CUSUM) and the cumulative sum of squares of recursive residuals (CUSUMSQ) tests are examined to check the model’s coefficients’ stability. As shown in Figure 4, CUSUM and CUSUMSQ curves remain within the 5% significance level’s critical boundaries. These statistics properties specify the stability of both the long-run and short-run coefficients in the error correction model.

Likewise, Figure 5 summarized the multivariate Granger causality test results. It shows evidence of the short-run unidirectional Granger causality running from CO₂ emissions, GDP, and population to GSE at the 1 percent significance levels; and the short-run unidirectional causality running from population to GDP at the 10 percent significance levels. The unidirectional causality between GSE and GDP is consistent with Lahirushan and Gunasekara (2015), who measure a dynamic analysis for ASEAN’s case. The short-run causality is meaningful for policymakers to create fruitful policy in Malaysia to achieve sustainable development goals and the 12th Malaysia Plan. Furthermore, Engle and Granger (1987) argued that long causal directions between these variables must exist if a cointegration relationship exists among the variables (Bekhet et al., 2020). This study reveals the long-run unidirectional Granger causality running from CO₂ emissions and population to GSE and GDP at least 10 percent significance levels. The bidirectional causality between GSE and GDP at least at a 10 percent significance level. The bidirectional causality between GSE and GDP at least at a 10 percent significance level as well. The long-run bidirectional causality between GSE and GDP is not consistent with Zulkofli et al. (2018) because they revealed a unidirectional causality instead of bidirectional causality. The causality relationship to GSE indicates that the increasing demand for regulatory and protective functions represented by GSE are needed to sustain the increasing level of economic wealth, environment, and communities, and it is consistent with Keynesian and Wagner’s school of thought (Lahirushan and Gunasekara, 2015).

5. CONCLUSION AND POLICY IMPLICATION

Sustainable development is one of the critical issues highlighted by researchers and policymakers worldwide. This study focused on observing the impact of government expenditures on Malaysia’s environmental quality for the 1978–2020 period. So, the stochastic impacts by regression on population, affluence, and technology (STIRPAT) model in the EKC framework are utilized. In terms of methodology, this study employed the F-bounds test, ARDL, and VECM causality to assess the existence of the dynamic relationship, the short-run and long-run environmental elasticities, and the short-run and long-run causality direction, respectively. Empirical results show a long-run relationship between CO₂ emissions, GDP, and Malaysia’s government expenditure (GSE). Furthermore, the results confirmed the significant inverted U-shaped relationship between CO₂ emissions and GDP in the long run with the GSE–CO2 emissions’ significant positive elasticity. With the significant EKC relationship, these results highlight the understanding that Malaysia is currently moving towards environmental sustainability, and the GSE is a function of environmental sustainability. Indeed, the government spending on compensation, education, R and D function has functioned well in transferring knowledge, technology know-how, and stimulating productivity.

In terms of causality relationship, the results show a significant unidirectional short-run causality relationship running from CO₂ emissions, GDP, and population to GSE; unidirectional short-run causality running from population to GDP. Furthermore, for the long-run causality, results show unidirectional long-run causality relationship running from CO₂ emissions, GDP, and population to GSE; unidirectional long-run causality running from population...
to GDP; and bidirectional causality between GDP and GSE. This circumstance indicates how much government spending on Malaysia’s development depends on the environmental, economic, and social agenda. These conditions inlined with sustainable development goals 6, 11, and 13 stated in Table 6. The environmental issue is one reason why the government increases their spending, and these spendings are significant to boost the country’s income.

This study also indicates that GSE does play a significant role in promoting economic growth. This has happened in Malaysia, where the Malaysian government (GOM) has revised its 2020 total expenditure allocation upwards to RM314.7 billion from the initial budget estimate of RM297 billion with the prolonged COVID-19 pandemic crisis (The Edgemarket, 2020). And this strategy is one of the Malaysian government’s positive actions to cushion the impact of the crisis and stimulate GDP growth. Expansionary fiscal policy measures through additional allocation and tax relaxation are crucial to protecting people’s livelihood, supporting businesses, and mitigating the fallout of economic activities from the crisis. However, GOM has narrowed down the operating expenditure to RM241.02 billion, down from RM262.26 billion for 2019, and increased the development expenditure to RM56 billion, up from RM53.7 billion in 2019 (Reuters, 2019).

In conclusion, this study has confirmed the interaction and interdependencies among GSE, GDP, and environmental quality. To achieve Malaysia’s sustainable development, this study recommends policymakers formulate the direction of its operation and development expenditure. Instead of supporting the welfare of the societies, it should consider how the allocation of money (e.g. payments, supplies and services, education/training, housing, and health) benefited environment quality, mainly improving Malaysian attitude and behavior awareness on environmental issues.

The suggestion for future study is to investigate the proper strategy on how Malaysia can solve budget deficits. This is because the theory suggests that persistent and large budget deficits lead to a harmful effect on major macroeconomic fundamentals. The failure to solve this problem could harm Malaysia’s sustainable development in the long run.

6. ACKNOWLEDGMENTS

The authors would like to acknowledge IRMC UNITEN for awarding a BOLD grant for funding this research.

REFERENCES

Abbasi, K.R., Shahbaz, M., Jiao, Z., Tufail, M. (2021), How energy consumption, industrial growth, urbanization, and CO₂ emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach. Energy, 221, 119793.

Abid, M. (2015), The close relationship between informal economic growth and carbon emissions in Tunisia since 1980: The (ir)relevance of structural breaks. Sustainable Cities and Society, 15, 11-21.

Adewuyi, A.O. (2016), Effects of public and private expenditures on environmental pollution: A dynamic heterogeneous panel data analysis. Renewable and Sustainable Energy Reviews, 65, 489-506.

Al-Mulali, U., Saboori, B., Ozturk, I. (2015), Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy, 76, 123-131.

Bahera, S.R., Dash, D.P. (2017), The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renewable and Sustainable Energy Reviews, 70, 96-106.

Balsalobre-Lorente, D., Dríha, O.M., Bekun, F.V., Osundina, O.A. (2019), Do agricultural activities induce carbon emissions? The BRICS experience. Environmental Science and Pollution Research, 26(24), 25218-25234.

Begum, R.A., Sohag, K., Abdullah, S.M.S., Jaafar, M. (2015), CO₂ emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594-601.

Bekhet, H.A., Matar, A. (2013), Co-integration and causality analysis between stock market price and their determinants in Jordan. Economic Modelling, 35, 508-514.

Bekhet, H.A., Othman, N.S. (2012), Examining the role of fiscal policy in Malaysian stock market. International Business Research, 5(12), 59-67.

Bekhet, H.A., Othman, N.S. (2017), Impact of urbanization growth on Malaysia CO₂ emissions: Evidence from the dynamic relationship. Journal of Cleaner Production, 154, 374-388.

Bekhet, H.A., Othman, N.S. (2018), The role of renewable energy to validate dynamic interaction between CO₂ emissions and GDP toward sustainable development in Malaysia. Energy Economics, 72, 47-61.

Bekhet, H.A., Othman, N.S., Yasmin, T. (2020), Interaction between environmental Kuznet curve and urban environment transition hypotheses in Malaysia. International Journal of Energy Economics and Policy, 10(1), 384-402.

Bloch, H., Rafiq, S., Salim, R. (2015), Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution. Economic Modelling, 44, 104-115.

Brown, R., Durbin, J., Evans, J.M. (1975), Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society, 37(2), 149-192.

Chen, Q., Taylor, D. (2020), Economic development and pollution emissions in Singapore: Evidence in support of the environmental Kuznets curve hypothesis and its implications for regional sustainability. Journal of Cleaner Production, 243, 118637.

Chen, S.T., Kuo, H.I., Chen, C.C. (2007), The relationship between GDP and electricity consumption in 10 Asian countries. Energy Policy, 35(4), 2611-2621.

Dietz, T., Rosa, E.A. (1997), Effects of population and affluence on CO₂ emissions. Proceedings of the National Academy of Sciences, 94, 175-179.

Dinda, S. (2004), Environmental Kuznets curve hypothesis: A survey. Ecological Economics, 49(4), 431-455.

Dogan, E., Ozturk, I. (2017), The influence of renewable and non-renewable energy consumption and real income on CO₂ emissions in the USA: Evidence from structural break tests. Environmental Science and Pollution Research, 24(11), 10846-10854.

Dogan, E., Turkekul, B. (2016), CO₂ emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environmental Science and Pollution Research, 23, 1203-1213.

Ehrlich, P.R., Holdren, J.P. (1971), Impact of population growth. Science,
Engle, R.F., Granger, C.W. (1987), Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society, 55(2), 251-276.

Ewing, B.T., Sari, R., Soytaş, U. (2007), Disaggregate energy consumption and industrial output in the United States. Energy Policy, 35(2), 1274-1281.

Farhani, S., Chabib, A., Rault, C. (2014), CO₂ emissions, output, energy consumption, and trade in Tunisia. Economic Modelling, 38, 426-434.

Grossman, G.M., Krueger, A.B. (1991), Environmental Impacts of a North American Free Trade Agreement, NBER Working Paper. Vol. 3914. United States: NBER.

Halkos, G., Paizanos, E. (2013), The effect of government expenditure on the environment: An empirical investigation. Ecological Economics, 91, 48-56.

Halkos, G.E., Paizanos, E.A. (2016), The effects of fiscal policy on CO₂ emissions: Evidence from the USA. Energy Policy, 88, 317-328.

He, Z., Xu, S., Shen, W., Long, R., Chen, H. (2017), Impact of urbanization on energy-related CO₂ emissions at different development levels: Regional difference in China based on panel estimation. Journal of Cleaner Production, 140, 1719-1730.

Hua, Y., Xie, R., Su, Y. (2018), Fiscal spending and air pollution in Chinese cities: Identifying composition and technique effects. China Economic Review, 47, 156-169.

Huang, J.T. (2018), Sulfur dioxide (SO₂) emissions and government spending on China’s environmental protection-evidence from the spatial econometric analysis. Journal of Cleaner Production, 175, 431-441.

Institute of Strategic and International (ISIS) Studies. (2020), Pushed to the Margins: The Unequal Impacts of the COVID-19 Crisis on Marginalised Malaysian Workers. Available from: https://www.isis.org.my/2020/11/30/pushed-to-the-margins-the-unequal-impacts-of-the-covid-19-crisis-on-marginalised-malaysian-workers. [Last accessed on 2020 Sep 16].

Islam, A.M., López, R.E. (2013), Government Spending and Air Pollution in the US.

Ivy-Yap, L.L., Bekhet, H.A. (2016), Modelling the causal linkages among residential electricity consumption, gross domestic product, price of electricity, price of electric appliances, population and foreign direct Investment in Malaysia. International Journal of Energy Technology and Policy, 12(1), 41-59.

Johansen, S., Juselius, K. (1990), Maximum likelihood estimation and inference on co-integration with applications to the demand for money. Oxford Bulletin of Economics and Statistics, 52(2), 169-210.

Khan, A.Q., Saleem, N., Fatima, S.T. (2018), Financial development, income inequality, and CO₂ emissions in Asian countries using STIRPAT model. Environmental Science and Pollution Research, 25(7), 6308-6319.

Lahirusah, K.P.K., Gunasekara, W.G.V. (2015), The impact of government expenditure on economic growth: A study of Asian countries. World Academy of Science Engineering and Technology International Journal of Humanities and Social Sciences, 9(9), 3152-3160.

Law, S.H. (2008), Does a country’s openness to trade and capital accounts lead to financial development: Evidence from Malaysia. Asian Economic Journal, 22(2), 161-177.

López, R., Galinato, G., Islam, A. (2011), Fiscal spending and the environment: Theories and empirical. Journal of Environmental-Economic and Management, 62, 180-198.

López, R., Islam, A. (2008), When Government Spending Serve the Elites. Consequences for Economic Growth in the Context of Market Imperfection. The University of Maryland at College Park. Working Paper No. 8-11.

López, R.E., Palacios, A. (2010), Have Government Spending and Energy Tax Policies Contributed to Make Europe Environmentally Cleaner? López, R.E., Thomas, V., Wang, Y. (2010), The Effect of Fiscal Policies on the Quality of Growth. Evaluation Brief 9. Washington, DC, USA: Independent Evaluation Group, The World Bank.

Martinez-Zarzoso, I., Maruotti, A. (2011), The impact of urbanization on CO₂ emissions: Evidence from developing countries. Ecological Economics, 70, 1344-1353.

Ministry of Finance Malaysia. (2021), Economic Outlook 2021. Available from: https://www.treasury.gov.my. [Last accessed on 2021 Feb 01].

Ministry of Finance. (2020), Fiscal Updates 2019. Available from: https://www.treasury.gov.my/index.php/en/fiscal-economy/fiscal-updates.html.

Ministry of Finance. (2020), Fiscal Updates 2019. Available from: https://www.treasury.gov.my/?lang=en. [Last accessed on 2020 Sep 16].

Mrabet, Z., Alsamara, M. (2017), Testing the Kuznets curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint. Renewable and Sustainable Energy Reviews, 70, 1366-1375.

Narayan, P.K. (2005), The saving and investment nexus for China: Evidence from co-integration tests. Applied Economics, 37(17), 1979-1990.

Ng, S., Perron, P. (2001), Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 1519-1554.

Onafowora, O.A., Owoye, O. (2014), Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Economics, 44, 47-62.

Othman, N.S., Bekhet, H.A., Lojuntin, S.A. (2020), Does government expenditure contribute to Malaysia environmental sustainability? A dynamic analysis. Global Business and Management Research: An International Journal, 12(4), 61-72.

Ozturk, I., Al-Mulali, U. (2015), Investigating the validity of the environment Kuznets curve hypothesis in Cambodia. Ecological Indicator, 57, 324-330.

Pesaran, M.H., Shin, Y., Smith, R.J. (2001), Bounds testing approaches to the analysis of long run relationships. Journal of Applied Econometrics, 16, 289-326.

Reuters. (2019), Malaysia 2020 Budget: Lower Spending, Wider Fiscal Deficit. Available from: https://www.reuters.com/article/us-malaysia-budget-highlights-iduskbn1wq0sw5. [Last accessed on 2021 Feb 01].

Riti, J.S., Song, D., Shu, Y., Kamah, M. (2017), Decoupling CO₂ emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? Journal of Cleaner Production, 166, 1448-1461.

Sadorsky, P. (2014), The effect of urbanization On Co₂ emissions in emerging economies. Energy Economics, 41, 147-153.

Shahbaz, M., Solarin, S.A., Mahmood, H., Arouiri, M. (2013), Does financial development reduce CO₂ emissions in Malaysian economy? A time series analysis. Economic Modelling, 35, 145-152.

Shahzad, S.J.H., Kumar, R.R., Zakaria, M., Hurrh, M. (2017), Carbon emission, energy consumption, trade openness, and financial development in Pakistan: A revisit. Renewable and Sustainable Energy Reviews, 70, 185-192.

Sharif, A., Baris-Tuzemen, O., Uzuner, G., Ozturk, I., Sinha, A. (2020), Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from quantile ARDL approach. Sustainable Cities and Society, 57, 102138.

Stern, D.I., Common, M.S., Barbier, E.B. (1996), Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Development, 24(7), 1151-1160.

Suki, N.A., Sharif, A., Afshan, A., Suki, N.M. (2020), Revisiting the environmental Kuznets curve in Malaysia: The role of globalization.
in sustainable environment. Journal of Cleaner Production, 264, 121669.

The Edge Market. (2020), Govt 2020 Expenditure Allocation Revised to RM314.7b from RM297b. Available from: https://www.theedgemarkets.com/article/govt-2020-expenditure-allocation-revised-rm3147b-rm297b. [Last accessed on 2021 Feb 01].

Wang, P., Wu, W., Zhu, B., Wei, Y. (2013), Examining the impact factors of energy-related Co₂ emissions using the STIRPAT model in Guangdong province, China. Applied Energy, 106, 65-71.

World Bank. (2021), World Development Indicators. Available from: https://www.data.worldbank.org/indicator. [Last accessed on 2021 Feb 01].

Xie, X., Wang, Y. (2019), Evaluating the efficacy of government spending on air pollution control: A case study from Beijing. International Journal of Environmental Research and Public Health, 16(1), 45.

Xu, F., Huang, Q., Yue, H., He, C., Wang, C., Zhang, H. (2020), Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model. Journal of Environmental Management, 273, 111134.

Xu, R., Lin, B. (2017), Why are there large regional differences in Co₂ emissions? Evidence from China’s manufacturing industry. Journal of Cleaner Production, 140, 1330-1343.

York, R., Rosa, E.A., Dietz, T. (2003), STIRPAT, IPAT and IMPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351-365.

Zhang, L., Godil, D.I., Bibi, M., Khan, M.K., Sarwat, S., Anser, M.K. (2021), Caring for the environment: How human capital, natural resources, and economic growth interact with environmental degradation in Pakistan? A dynamic ARDL approach. Science of the Total Environment, 774, 145553.

Zhang, Q., Zhang, S., Ding, Z., Hao, Y. (2017), Does government expenditure affect environmental quality? Empirical evidence using Chinese city-level data. Journal of Cleaner Production, 161, 143-152.

Zhang, S., Zhao, T. (2019), Identifying major influencing factors of Co₂ emissions in China: Regional disparities analysis based on STIRPAT model from 1996-2015. Atmospheric Environment, 207, 136-147.

Zulkofli, A.Z., Nasiruddin, K., Ismail, F.R. (2018), Government expenditure on education and healthcare to the effect on GDP value: A case of Malaysia. International Journal of Accounting and Business Management, 6(1), 95-112.
APPENDIX

Appendix 1
VAR lag order selection criteria
Endogenous variables: LI LEP LA LA2 LGE
Exogenous variables: C
Date: 02/25/21 Time: 11:46
Sample: 1978 2020
Included observations: 40

Lag	LogL	LR	FPE	AIC	SC	HQ
0	183.2009	NA	9.29e-11	–8.910043	–8.698933	–8.833712
1	501.5231	541.1477	4.01e-17	–23.57615	–22.30949*	–23.11817*
2	530.0956	41.43017	3.57e-17	–23.75478	–21.43257	–22.91514
3	564.1883	40.91130*	2.67e-17*	–24.20942*	–20.83166	–22.98813

*Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level). FPE: Final prediction error, AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information criterion

Appendix 2
VECM causality analysis
Estimation method: Least squares
Date: 02/25/21 Time: 13:48
Sample: 1981 2020
Included observations: 40
Total system (balanced) observations 200

Coefficient	Std. Error	t-Statistic	Prob.	
C(1)	0.103746	0.210352	0.493202	0.6226
C(2)	-0.312251	0.233744	-1.335867	0.1838
C(3)	0.076210	0.208985	0.364669	0.7159
C(4)	9.926454	11.44439	0.867364	0.3872
C(5)	-11.25294	13.65233	-0.824251	0.4112
C(6)	0.484009	15.44964	0.031328	0.9751
C(7)	20.21430	14.50499	1.393610	0.1656
C(8)	0.000216	0.767086	0.000282	0.9998
C(9)	-1.021897	0.724489	-1.410507	0.1606
C(10)	0.339207	0.311589	1.088637	0.2782
C(11)	0.228986	0.272177	0.841311	0.4016
C(12)	0.064000	0.176032	0.363573	0.7167
C(13)	-0.014257	0.009735	-1.464616	0.1453
C(14)	0.010923	0.010817	1.009835	0.3143
C(15)	0.009261	0.009671	0.957600	0.3399
C(16)	1.652009	0.529616	3.119259	0.0022
C(17)	-0.080688	0.631793	-0.127712	0.8986
C(18)	-0.668682	0.714968	-0.935262	0.3513
C(19)	-0.295202	0.671252	-0.439778	0.6608
C(20)	0.031907	0.035499	0.898816	0.3703
C(21)	0.014111	0.033527	0.420881	0.6745
C(22)	-0.001938	0.014419	-0.134379	0.8933
C(23)	-0.002692	0.012596	-0.213746	0.8311
C(24)	-0.015594	0.008146	-1.914194	0.0576
C(25)	0.162568	0.085726	1.896363	0.0600
C(26)	0.090433	0.095260	0.949331	0.3441
C(27)	0.118325	0.085169	1.389290	0.1670
C(28)	-4.175577	4.664022	-0.895274	0.3722
C(29)	-1.709982	5.563843	-0.307338	0.7590

(Contd...)
Othman and Bekhet: Dynamic Effects of Malaysia’s Government Spending on Environment Quality: Bridging STIRPAT and EKC Hypothesis

Appendix 2: (Continued)

VECM causality analysis

Estimation method: Least squares

Date: 02/25/21 Time: 13:48

Sample: 1981 2020

Included observations: 40

Total system (balanced) observations 200
Coefficient
C(30)
C(31)
C(32)
C(33)
C(34)
C(35)
C(36)
C(37)
C(38)
C(39)
C(40)
C(41)
C(42)
C(43)
C(44)
C(45)
C(46)
C(47)
C(48)
C(49)
C(50)
C(51)
C(52)
C(53)
C(54)
C(55)
C(56)
C(57)
C(58)
C(59)
C(60)

Determinant residual

2.35E-18

covariance

Equation: D(LI(–1))+C(1)*D(LI(–1)+1/2.94814446087*LEP(–|

1)-27.5835196223*LA(–1)+1.28817374181*LA2(–1)-1.5175666667*

LGE(–1)+93.0417087351)+C(2)*D(LI(–|

1))+C(3)*D(LI(–2))+C(4)*D(LEP(–1))+C(5)*D(LA(–2)))+C(6)*D(LA(–|

1))+C(7)*D(LA(–2))+C(8)*D(LA2(–1))+C(9)*D(LA2(–2))+C(10)*

D(LGE(–1))+C(11)*D(LGE(–2))+C(12) |

Observations: 40

R-squared 0.336646 Mean dependent var 0.504005

Adjusted 0.076043 S.D. dependent var 0.081418

R-squared 0.078261 Sum squared resid 0.171493

Durbin-Watson stat 1.984292

Equation: D(LEP)=C(13)*D(LI(–1)+2.94814446087*LEP(–|

1)-27.5835196223*LA(–1)+1.28817374181*LA2(–1)-1.5175666667*

LGE(–1)+93.0417087351)+C(14)*D(LI(–1))+C(15)*D(LI(–|

2))+C(16)*D(LEP(–1))+C(17)*D(LEP(–2))+C(18)*D(LA(–|

1))+C(19)*D(LA(–2))+C(20)*D(LA2(–1))+C(21)*D(LA2(–|

2))+C(22)*D(LGE(–1))+C(23)*D(LGE(–2))+C(24) |

Observations: 40

R-squared 0.845418 Mean dependent var 0.025767

(Contd...)
VEC Granger Causality/Block Exogeneity Wald Tests
Date: 02/25/21 Time: 12:44
Sample: 1978 2020
Included observations: 40

Dependent variable: D(LI)	Excluded	Chi-sq	df	Prob.
D(LEP)	0.772017	2	0.6798	
D(LA)	2.269767	2	0.3215	
D(LA2)	2.295796	2	0.3173	
D(LGE)	1.546231	2	0.4616	
All	11.46298	8	0.1768	

Dependent variable: D(LEP)	Excluded	Chi-sq	df	Prob.
D(LI)	1.377943	2	0.5021	
D(LA)	1.568751	2	0.4564	
D(LA2)	1.455884	2	0.4829	
D(LGE)	0.053131	2	0.9738	
All	2.775398	8	0.9477	

Dependent variable: D(LA)	Excluded	Chi-sq	df	Prob.
D(LI)	2.106859	2	0.3487	
D(LEP)	5.686107	2	0.0582	
D(LA2)	4.280822	2	0.1176	
D(LGE)	1.053160	2	0.5906	
All	12.78479	8	0.1195	

Dependent variable: D(LA2)	Excluded	Chi-sq	df	Prob.
D(LI)	2.128965	2	0.3449	
D(LEP)	5.607996	2	0.0606	
D(LA)	3.587651	2	0.1663	
D(LGE)	0.979396	2	0.6128	
All	12.19800	8	0.1426	

Dependent variable: D(LGE)	Excluded	Chi-sq	df	Prob.
D(LI)	15.03031	2	0.0005	
D(LEP)	23.88427	2	0.0000	
D(LA)	15.74295	2	0.0004	
D(LA2)	15.82895	2	0.0004	
All	40.97361	8	0.0000	