THE RICCATI SYSTEM AND A DIFFUSION-TYPE EQUATION

ERWIN SUAZO, SERGEI K. SUSLOV, AND JOSÉ M. VEGA-GUZMÁN

Abstract. We discuss a method of constructing solution of the initial value problem for diffusion-type equations in terms of solutions of certain Riccati and Ermakov-type systems. A nonautonomous Burgers-type equation is also considered.

1. Introduction

A goal of this note, complementary to our recent paper [37], is to elaborate on the Cauchy initial value problem for a class of nonautonomous and inhomogeneous diffusion-type equations on \mathbb{R}. A corresponding nonautonomous Burgers-type equation is also analyzed as a by-product. Here, we use explicit transformations to the standard forms and emphasize natural relations with certain Riccati and Ermakov-type systems, which seem are missing in the available literature. Similar methods are applied to the corresponding Schrödinger equation (see, for example, [6], [7], [8], [9], [11], [24], [25], [26], [27], [36], [38], [39] and references therein). A group theoretical approach to a similar class of partial differential equations is discussed in Refs. [15], [28] and [34].

For an introduction to fundamental solutions for parabolic equations, see chapter one of the book by Friedman [14]. Among numerous applications, we only elaborate here on an important role of fundamental solutions in probability theory [10], [21]. Consider an Itô diffusion $X = \{X_t : t \geq 0\}$ which satisfies the stochastic differential equation

$$dX_t = b(X_t, t) \ dt + \sigma(X_t, t) \ dW_t, \quad X_0 = x, \quad (1.1)$$

in which $W = \{W_t : t \geq 0\}$ is a standard Wiener process. The existence and uniqueness of solutions of (1.1) depends on the coefficients b and σ. (See Ref. [21] for conditions of unique strong solution to (1.1).) If the equation (1.1) has a unique solution, then the expectations

$$u(x, t) = E_x[\phi(X_t)] = E[\phi(X_t) | X_0 = x] \quad (1.2)$$

are solutions of the Cauchy problem

$$u_t = \frac{1}{2} \sigma^2(x, t) \ u_{xx} + b(x, t) \ u_x, \quad u(x, 0) = \phi(x). \quad (1.3)$$

This PDE is known as Kolmogorov forward equation [10], [21]. Thus if $p(x, y, t)$ is the appropriate fundamental solution of (1.3), then one can compute the given expectations according to

$$E_x[\phi(X_t)] = \int_{\Omega} p(x, y, t) \phi(y) \ dy. \quad (1.4)$$

Date: January 12, 2013.

1991 Mathematics Subject Classification. Primary 35C05, 35K15, 42A38. Secondary 35A08, 80A99.

Key words and phrases. Diffusion-type equations, Green’s function, fundamental solution, autonomous and nonautonomous Burgers equations, Fokker–Planck equation, Riccati equation and Riccati-type system, Ermakov-type system and Pinney-type solution.
In this context, the fundamental solution is known as the probability transition density for the process and
\[\int_{\Omega} p(x, y, t) \, dy = 1. \] (1.5)

See also Refs. [1] and [20] for applications to stochastic differential equations related to Fokker–Planck and Burgers equations.

2. Transformation to the Standard Form

We present the following result.

Lemma 1. The nonautonomous and inhomogeneous diffusion-type equation
\[\frac{\partial u}{\partial t} = a(t) \frac{\partial^2 u}{\partial x^2} - (g(t) - c(t) x) \frac{\partial u}{\partial x} + (d(t) + f(t) x - b(t) x^2) u, \] (2.1)
where \(a, b, c, d, f, g \) are suitable functions of time \(t \) only, can be reduced to the standard autonomous form
\[\frac{\partial v}{\partial \tau} = \frac{\partial^2 v}{\partial \xi^2}, \] (2.2)
with the help of the following substitution:
\[u(x, t) = \frac{1}{\sqrt{\mu(t)}} e^{\alpha(t)x^2 + \delta(t)x + \kappa(t)} v(\xi, \tau), \] (2.3)
\[\xi = \beta(t) x + \epsilon(t), \quad \tau = \gamma(t). \]

Here, \(\mu, \alpha, \beta, \gamma, \delta, \epsilon, \kappa \) are functions of \(t \) that satisfy
\[\frac{\mu''}{2\mu} + 2\alpha \alpha + d = 0 \] (2.4)
and
\[\begin{align*}
\frac{d\alpha}{dt} + b - 2c\alpha - 4a\alpha^2 &= 0, \\
\frac{d\beta}{dt} - (c + 4a\alpha) \beta &= 0, \\
\frac{d\gamma}{dt} - a\beta^2 &= 0, \\
\frac{d\delta}{dt} - (c + 4a\alpha) \delta &= f - 2\alpha g, \\
\frac{d\epsilon}{dt} + (g - 2a\delta) \beta &= 0, \\
\frac{d\kappa}{dt} + g\delta - a\delta^2 &= 0.
\end{align*} \] (2.5)

Equation (2.5) is called the Riccati nonlinear differential equation [32], [40], [42] and we shall refer to the system (2.5)–(2.10) as a Riccati-type system.

The substitution (2.4) reduces the nonlinear Riccati equation (2.5) to the second order linear equation
\[\mu'' - \tau(t) \mu' - 4\sigma(t) \mu = 0, \] (2.11)
where
\[\tau (t) = \frac{a'}{a} + 2c - 4d, \quad \sigma (t) = ab + cd - d^2 + \frac{d}{2} \left(\frac{a'}{a} - \frac{d'}{d} \right), \] (2.12)
which shall be referred to as a characteristic equation [37].

It is also known [37] that the diffusion-type equation (2.1) has a particular solution of the form
\[u = \frac{1}{\sqrt{\mu(t)}} e^{\alpha(t)x^2 + \beta(t)xy + \gamma(t)y^2 + \delta(t)x + \varepsilon(t)y + \kappa(t)}, \] (2.13)
provided that the time dependent functions \(\mu, \alpha, \beta, \gamma, \delta, \varepsilon, \kappa \) satisfy the Riccati-type system (2.4)–(2.10).

A group theoretical approach to a similar class of partial differential equations is discussed in Refs. [15], [28] and [34].

3. Fundamental Solution

By the superposition principle one can solve (formally) the Cauchy initial value problem for the diffusion-type equation (2.1) subject to initial data \(u(x,0) = \varphi(x) \) on the entire real line \(-\infty < x < \infty \) in an integral form
\[u(x,t) = \int_{-\infty}^{\infty} K_0(x,y,t) \varphi(y) \, dy \] (3.1)
with the fundamental solution (heat kernel) [37]:
\[K_0(x,y,t) = \frac{1}{\sqrt{2\pi \mu_0(t)}} e^{\alpha_0(t)x^2 + \beta_0(t)xy + \gamma_0(t)y^2 + \delta_0(t)x + \varepsilon_0(t)y + \kappa_0(t)}, \] (3.2)
where a particular solution of the Riccati-type system (2.9)–(2.10) is given by
\[\alpha_0(t) = -\frac{1}{4a(t)} \frac{\mu_0'(t)}{\mu_0(t)} - \frac{d(t)}{2a(t)}, \] (3.3)
\[\beta_0(t) = \frac{h(t)}{\mu_0(t)}, \quad h(t) = \exp \left(\int_0^t (c(s) - 2d(s)) \, ds \right), \] (3.4)
\[\gamma_0(t) = \frac{d(0)}{2a(0)} - \frac{a(t) h^2(t)}{\mu_0(t) \mu_0'(t)} - 4 \int_0^t \frac{a(s) \sigma(s) h(s)}{(\mu_0'(s))^2} \, ds \] (3.5)
\[= \frac{d(0)}{2a(0)} - \frac{1}{2} \frac{\mu_1(t)}{\mu_0(t)}, \] (3.6)
\[\delta_0(t) = \frac{h(t)}{\mu_0(t)} \int_0^t \left[\left(f(s) + \frac{d(s)}{a(s)} g(s) \right) \mu_0(s) + \frac{g(s)}{2a(s)} \mu_0'(s) \right] \frac{ds}{h(s)}, \] (3.7)
\[\varepsilon_0(t) = -2a(t) \frac{h(t)}{\mu_0'(t)} \delta_0(t) - 8 \int_0^t \frac{a(s) \sigma(s) h(s)}{(\mu_0'(s))^2} (\mu_0(s) \delta_0(s)) \, ds \] (3.8)
\[+ 2 \int_0^t \frac{a(s) h(s)}{\mu_0'(s)} \left(f(s) + \frac{d(s)}{a(s)} g(s) \right) \, ds, \]
\[
\kappa_0(t) = -\frac{a(t)\mu_0(t)}{\mu'_0(t)}\delta_0(t) - 4\int_0^t a(s)\sigma(s)\left(\frac{\mu_0(s)}{\mu'_0(s)}\right)^2(\mu_0(s)\delta_0(s))^2\,ds + 2\int_0^t a(s)\mu_0(s)\delta_0(s) \left[f(s) + \frac{d(s)}{a(s)}g(s) \right] \,ds
\] (3.9)

with \(\delta(0) = g(0)/(2a(0))\), \(\varepsilon(0) = -\delta(0)\), \(\kappa(0) = 0\). Here, \(\mu_0\) and \(\mu_1\) are the so-called standard solutions of the characteristic equation (2.11) subject to the following initial data:

\[
\mu_0(0) = 0, \quad \mu_0'(0) = 2a(0) \neq 0, \quad \mu_1(0) \neq 0, \quad \mu_1'(0) = 0. \quad (3.10)
\]

Solution (3.3)–(3.9) shall be referred to as a fundamental solution of the Riccati-type system (2.5)–(2.10); see (3.27)–(3.31) and (3.32) for the corresponding asymptotics.

Lemma 2. The Riccati-type system (2.4)–(2.10) has the following (general) solution:

\[
\mu(t) = -2\mu(0)\mu_0(t)(\alpha(0) + \gamma_0(t)), \quad (3.11)
\]

\[
\alpha(t) = \alpha_0(t) - \frac{\beta_0^2(t)}{4(\alpha(0) + \gamma_0(t))}, \quad (3.12)
\]

\[
\beta(t) = -\frac{\beta(0)\beta_0(t)}{2(\alpha(0) + \gamma_0(t))}, \quad (3.13)
\]

\[
\gamma(t) = \gamma(0) - \frac{\beta_0^2(0)}{4(\alpha(0) + \gamma_0(t))}, \quad (3.14)
\]

and

\[
\delta(t) = \delta_0(t) - \frac{\beta_0(t)(\delta(0) + \varepsilon_0(t))}{2(\alpha(0) + \gamma_0(t))}, \quad (3.15)
\]

\[
\varepsilon(t) = \varepsilon(0) - \frac{\beta(0)(\delta(0) + \varepsilon_0(t))}{2(\alpha(0) + \gamma_0(t))}, \quad (3.16)
\]

\[
\kappa(t) = \kappa(0) + \kappa_0(t) - \frac{(\delta(0) + \varepsilon_0(t))^2}{4(\alpha(0) + \gamma_0(t))}, \quad (3.17)
\]

in terms of the fundamental solution (3.3)–(3.9) subject to arbitrary initial data \(\mu(0), \alpha(0), \beta(0), \gamma(0), \delta(0), \varepsilon(0), \kappa(0)\).

Proof. Use (2.13)–(3.2), uniqueness of the solution and the elementary integral:

\[
\int_{-\infty}^{\infty} e^{-ay^2 + 2by} \, dy = \sqrt{\frac{\pi}{a}} e^{b^2/a}, \quad a > 0. \quad (3.18)
\]

Computational details are left to the reader. \(\Box\)

Remark 1. It is worth noting that our transformation (2.3), combined with the standard heat kernel (20),

\[
K_0(\xi, \eta, \tau) = \frac{1}{\sqrt{4\pi(\tau - \tau_0)}} \exp\left[-\frac{(\xi - \eta)^2}{4(\tau - \tau_0)} \right] \quad (3.19)
\]

for the diffusion equation (2.2) and (3.11)–(3.17), allows one to derive the fundamental solution (3.2) of the diffusion-type equation (2.1) from a new perspective.
Lemma 3. Solution (3.11)–(3.17) implies:

\[\mu_0 = \frac{2\mu}{\mu(0)\beta^2(0)}(\gamma - \gamma(0)), \]
\[\alpha_0 = \alpha_0(t) - \frac{\beta}{4(\gamma - \gamma(0))}, \]
\[\beta_0 = \frac{\beta(0)\beta}{2(\gamma - \gamma(0))}, \]
\[\gamma_0 = -\alpha(0) - \frac{\beta^2(0)}{4(\gamma - \gamma(0))}, \]

and

\[\delta_0 = \delta - \frac{\beta(\varepsilon - \varepsilon(0))}{2(\gamma - \gamma(0))}, \]
\[\varepsilon_0 = -\delta(0) + \frac{\beta(0)(\varepsilon - \varepsilon(0))}{2(\gamma - \gamma(0))}, \]
\[\kappa_0 = \kappa - \kappa(0) - \frac{(\varepsilon - \varepsilon(0))^2}{4(\gamma - \gamma(0))}, \]

which gives the following asymptotics

\[\alpha_0(t) = -\frac{1}{4a(0)t} - \frac{c(0)}{4a(0)} + \frac{a'(0)}{8a^2(0)} + O(t), \]
\[\beta_0(t) = \frac{1}{2a(0)t} - \frac{a'(0)}{4a^2(0)} + O(t), \]
\[\gamma_0(t) = -\frac{1}{4a(0)t} + \frac{c(0)}{4a(0)} + \frac{a'(0)}{8a^2(0)} + O(t), \]
\[\delta_0(t) = \frac{g(0)}{2a(0)} + O(t), \]
\[\varepsilon_0(t) = -\frac{g(0)}{2a(0)} + O(t), \]
\[\kappa_0(t) = O(t) \]

as \(t \to 0^+ \).

(The proof is left to the reader.)

These formulas allows to establish a required asymptotic of the fundamental solution (3.2):

\[K_0(x, y, t) \sim \frac{1}{\sqrt{4\pi a(0)t}} \exp \left[-\frac{(x - y)^2}{4a(0)t} \right] \]
\[\times \exp \left[\frac{a'(0)}{8a^2(0)}(x - y)^2 - \frac{c(0)}{4a(0)}(x^2 - y^2) \right] \exp \left[\frac{g(0)}{2a(0)}(x - y) \right]. \]

(Here, \(f \sim g \) as \(t \to 0^+ \), if \(\lim_{t \to 0^+} (f/g) = 1 \). The proof is left to the reader.)

By a direct substitution one can verify that the right hand sides of (3.11)–(3.17) satisfy the Riccati-type system (2.4)–(2.10) and that the asymptotics (3.27)–(3.31) result in the continuity
with respect to initial data:
\[
\lim_{t \to 0^+} \mu (t) = \mu (0), \quad \lim_{t \to 0^+} \alpha (t) = \alpha (0), \quad \text{etc.}
\] (3.33)

The transformation property (3.11)–(3.17) allows one to find solution of the initial value problem in terms of the fundamental solution (3.3)–(3.9) and may be referred to as a nonlinear superposition principle for the Riccati-type system.

4. Eigenfunction Expansion and Ermakov-type System

With the help of transformation (2.3) one can reduce the diffusion equation (2.1) to another convenient form
\[
\frac{\partial v}{\partial \tau} = \frac{\partial^2 v}{\partial \xi^2} + \xi^2 v, \quad (4.1)
\]
which allows to find solution of the Cauchy initial value problem in terms of an eigenfunction expansion similar to the case of the corresponding Schrödinger in Refs. [24] and [38]. This method requires an extension the Riccati-type system (2.5)–(2.10) to a more general Ermakov-type system [24], which is integrable in quadratures once again in terms of solutions of the characteristic equation (2.11). Further details are left to the reader.

5. Nonautonomous Burgers Equation

The nonlinear equation
\[
\frac{\partial v}{\partial t} + a (t) \left(v \frac{\partial v}{\partial x} - \frac{\partial^2 v}{\partial x^2} \right) - c (t) \left(x \frac{\partial v}{\partial x} + v \right) + g (t) \frac{\partial v}{\partial x} = 2 \left(2 b (t) x - f (t) \right),
\] (5.1)
when \(a = 1 \) and \(b = c = f = g = 0 \), is known as Burgers’ equation [2], [3], [5], [17], [19], [35], [41] and we shall refer to (5.1) as a nonautonomous Burgers-type equation.

Lemma 4. The following identity holds
\[
v_t + a (v v_x - v_{xx}) + (g - c x) v_x - c v + 2 (f - 2 b x) = -2 \left(\frac{u_t - Qu}{u} \right)_x, \quad (5.2)
\]
if
\[
v = -2 \frac{u_x}{u} \quad \text{(The Cole–Hopf transformation)} \quad (5.3)
\]
and
\[
Qu = a u_{xx} - (g - c x) u_x + (d + f x - b x^2) u \quad (5.4)
\]
\((a, b, c, d, f, g \text{ are functions of } t \text{ only}).

(This can be verified by a direct substitution.)

The substitution (5.3) turns the nonlinear Burgers-type equation (5.1) into the diffusion-type equation (2.1). Then solution of the corresponding Cauchy initial value problem can be represented as
\[
v (x, t) = -2 \frac{\partial}{\partial x} \ln \left[\int_{-\infty}^{\infty} K_0 (x, y, t) \exp \left(-\frac{1}{2} \int_0^y v (z, 0) \, dz \right) \, dy \right], \quad (5.5)
\]
where the heat kernel is given by (3.2), for suitable initial data \(v(z,0) \) on \(\mathbb{R} \).

6. Traveling Wave Solutions of Burgers-type Equation

Looking for solutions of our equation (5.1) in the form
\[
v = \beta(t) F(\beta(t)x + \gamma(t)) = \beta F(z), \quad z = \beta x + \gamma
\]
(\(\beta \) and \(\gamma \) are functions of \(t \) only), one gets
\[
F'' = (c_0 + c_1) F' + FF' + 2c_2 z + c_3
\]
provided that
\[
\beta' = c\beta, \quad \gamma' = c_0 a\beta^2, \quad g = c_1 a\beta, \quad b = -\frac{1}{2} c_2 a\beta^4,
\]
\[
f = \frac{1}{2} a\beta^3 (2c_2 \gamma + c_3)
\]
(\(c_0, c_1, c_2, c_3 \) are constants). From (6.2):
\[
F' = (c_0 + c_1) F + \frac{1}{2} F^2 + c_2 z^2 + c_3 z + c_4,
\]
where \(c_4 \) is a constant of integration. The substitution
\[
F = -2 \frac{\mu'}{\mu}
\]
transforms the Riccati equation (6.6) into a special case of generalized equation of hypergeometric type:
\[
\mu'' - (c_0 + c_1) \mu' + \frac{1}{2} (c_2 z^2 + c_3 z + c_4) \mu = 0,
\]
which can be solved in general by methods of Ref. [30]. Elementary solutions are discussed, for example, in [22] and [23].

7. Some Examples

Now we consider from a united viewpoint several elementary diffusion and Burgers equations that are important in applications.

Example 1 For the standard diffusion equation on \(\mathbb{R} \):
\[
\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}, \quad a = \text{constant} > 0
\]
the heat kernel is given by
\[
K(x, y, t) = \frac{1}{\sqrt{4\pi at}} \exp \left[-\frac{(x - y)^2}{4at} \right], \quad t > 0.
\]
(See [4], [29] and references therein for a detailed investigation of the classical one-dimensional heat equation.)
Example 2 In mathematical description of the nerve cell a dendritic branch is typically modeled by using cylindrical cable equation [18]:

\[
\tau \frac{\partial u}{\partial t} = \lambda \frac{\partial^2 u}{\partial x^2} + u, \quad \tau = \text{constant} > 0.
\]

(7.3)

The fundamental solution on \(\mathbb{R} \) is given by

\[
K_0 (x, y, t) = \frac{\sqrt{\tau} e^{t/\tau}}{\sqrt{4\pi \lambda^2 t}} \exp \left[-\frac{\tau (x - y)^2}{4 \lambda^2 t}\right], \quad t > 0.
\]

(7.4)

(See also [16] and references therein.)

Example 3 The fundamental solution of the Fokker-Planck equation [33], [43]:

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial x} + u
\]

(7.5)

on \(\mathbb{R} \) is given by [37]:

\[
K_0 (x, y, t) = \frac{1}{\sqrt{2\pi} (1 - e^{-2t})} \exp \left[-\frac{(x - e^{-t}y)^2}{2 (1 - e^{-2t})}\right], \quad t > 0.
\]

(7.6)

Here,

\[
\lim_{t \to \infty} K_0 (x, y, t) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}, \quad y = \text{constant}.
\]

(7.7)

Example 4 Equation

\[
\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + (g - kx) \frac{\partial u}{\partial x}, \quad a, k > 0, \quad g \geq 0
\]

(7.8)

corresponds to the heat equation with linear drift when \(g = 0 \) [28]. In stochastic differential equations this equation corresponds the Kolmogorov forward equation for the regular Ornstein–Uhlenbech process [10]. The fundamental solution is given by

\[
K_0 (x, y, t) = \frac{\sqrt{k e^{kt/2}}}{\sqrt{4\pi a \sinh (kt)}} \exp \left[-\frac{\left(k \left(xe^{-kt/2} - ye^{kt/2}\right) + 2g \sinh (kt/2)\right)^2}{4ak \sinh (kt)}\right], \quad t > 0.
\]

(7.9)

(See Refs. [10] and [37] for more details.)

Example 5 The viscous Burgers equation [2], [3], [19], [23], [41]:

\[
\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = a \frac{\partial^2 v}{\partial x^2}, \quad a = \text{constant} > 0
\]

(7.10)

can be linearized by the Cole–Hopf substitution [5], [17]:

\[
v = -\frac{2a}{u} \frac{\partial u}{\partial x}.
\]

(7.11)
which turns it into the diffusion equation (7.1). Solution of the initial value problem has the form:

\[v(x, t) = -\frac{a}{\sqrt{\pi at}} \frac{\partial}{\partial x} \ln \left[\int_{-\infty}^{\infty} \exp \left(-\frac{(x - y)^2}{4at} - \frac{1}{2a} \int_0^y v(z, 0) \, dz \right) \, dy \right] \]

(7.12)

for \(t > 0 \) and suitable initial data on \(\mathbb{R} \).

Example 6 Equation (7.10) possesses a solution of the form:

\[v = F(x + V t), \quad V = \text{constant} \]

(7.13)

(we follow the original Bateman paper [2] with slightly different notations), if

\[VF' + FF'' = aF'' \]

(7.14)

or

\[(F + V)^2 \pm A^2 = 2aF' \]

(7.15)

where \(A \) is a positive constant. The solution is thus either

\[v + V = A \tan \left(\frac{A(x + V t - c)}{2a} \right) \]

(7.16)

or

\[\frac{A - v - V}{A + v + V} = \exp \left[\frac{A}{a} (x + V t - c) \right], \]

(7.17)

according as the + or − sign is taken. In the first case there is no definite value of \(v \) when \(a \) tends to zero, while in the second case the limiting value of \(v \) is either \(A - V \) or \(A + V \) according as \(x + V t \) is less or greater than \(c \). The limiting form of the solution is thus discontinuous [2].

Further examples can be found in Refs. [10], [23], [26], [28] and [37].

8. **Conclusion**

In this note, we have discussed connections of certain nonautonomous and inhomogeneous diffusion-type equation and Burgers equation with solutions of the Riccati and Ermakov-type systems that seem are missing in the available literature. Traveling wave solutions of the Burgers-type equations are also discussed.

Acknowledgments. We thank Professor Carlos Castillo-Chávez and Professor Carl Gardner for support, valuable discussions and encouragement.

References

[1] S. Albeverio and O. Rozanova, *Suppression of unbounded gradients in an SDE associated with Burgers equation*, Trans. Amer. Math. Soc. **138** (2010) #1, 241–251.

[2] H. Bateman, *Some recent researches on the motion of fluids*, Monthly Weather Review **43** (1915) #4, 163–170.

[3] J. M. Burgers, *A mathematical model illustrating the theory of turbulence*, Adv. Appl. Mech. **1** (1948), 171–199.

[4] J. R. Cannon, *The One-Dimensional Heat Equation*, Encyclopedia of Mathematics and Its Applications, Vol. 32, Addison–Wesley Publishing Company, Reading etc, 1984.

[5] J. D. Cole, *On a quasi-linear parabolic equation occurring in aerodynamics*, Quart. Appl. Math. **9** (1951) #3, 225–236.

[6] R. Cordero-Soto, R. M. Lopez, E. Suazo and S. K. Suslov, *Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields*, Lett. Math. Phys. **84** (2008) #2–3, 159–178.
G. S. Kambarbaeva, Some explicit formulas for calculation of conditional mathematical expectations of random nonlinear waves.

B. B. Kadomtsev and V. I. Karpman, Higher Transcendental Functions.

I. Karatzas and S. Shreve, Fundamental solutions, transition densities and the integration of Lie symmetries.

M. Craddock, A note on “New abundant solutions for the Burgers equation”.

N. A. Kudryashov and D. I. Sinelshchikov, Methods of Nonlinear Mathematical Physics.

N. A. Kudryashov, Dynamical invariants for variable quadratic Hamiltonians.

Cauchy problem for Schrödinger equation with variable quadratic Hamiltonians.

E. Suazo and S. K. Suslov, The degenerate parametric oscillator and Ince’s equation.

R. Cordero-Soto, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Exact wave functions for generalized harmonic oscillators.

R. Cordero-Soto and S. K. Suslov, The time-dependent Schrödinger equation, Riccati equation and Airy functions.

R. Cordero-Soto and S. K. Suslov, The Cauchy problem for a forced harmonic oscillator.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Models of damped oscillators in quantum mechanics.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantitative integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.

R. Cordero-Soto and S. K. Suslov, Quantum integrals of motion for variable quadratic Hamiltonians.

R. Cordero-Soto and S. K. Suslov, Time reversal for modified oscillators.
[39] S. K. Suslov, *On integrability of nonautonomous nonlinear Schrödinger equations*, arXiv:1012.3661v1 [math-ph] 16 Dec 2010.

[40] G. N. Watson, *A Treatise on the Theory of Bessel Functions*, Second Edition, Cambridge University Press, Cambridge, 1944.

[41] G. B. Whitham, *Linear and Nonlinear Waves*, Wiley, John & Sons, New York, 1999.

[42] E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, Fourth Edition, Cambridge University Press, Cambridge, 1927.

[43] S. Yau, *Computation of Fokker–Planck equation*, Quart. Appl. Math. 62 (2004) #4, 643–650.

Department of Mathematical Sciences, University of Puerto Rico, Mayaguez, Call Box 9000, Puerto Rico 00681–9000.

E-mail address: erwin.suazo@upr.edu

School of Mathematical and Statistical Sciences & Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287–1804, U.S.A.

E-mail address: sks@asu.edu

URL: http://hahn.la.asu.edu/~suslov/index.html

Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287–1904, U.S.A.

E-mail address: jmvega@asu.edu