Separation analysis of lipoprotein classes have various methods, including ultracentrifugation, electrophoresis, and gel permeation chromatography (GPC). All major lipoprotein classes can be separated via ultracentrifugation, but performing the analysis takes a long time. Low-density lipoprotein (LDL), intermediate-density lipoprotein (IDL), and very low-density lipoprotein (VLDL) in patient samples cannot be sufficiently separated via electrophoresis or GPC. Thus, we established a new method [anion-exchange high-performance liquid chromatography (AEX-HPLC)] by using HPLC with an AEX column containing nonporous gel and an eluent containing chaotropic ions. AEX-HPLC can separate five lipoprotein fractions of high-density lipoprotein (HDL), LDL, IDL, VLDL, and others in human serum, which can be used in substitution for ultracentrifugation method. The method was also approved for clinical use in the public health-care insurance in Japan in 2014. Furthermore, we developed an additional method to measure cholesterol levels of the four leading lipoprotein fractions and two subsequent fractions (i.e., chylomicron and lipoprotein(a)). We evaluated the clinical usefulness of AEX-HPLC in patients with coronary heart disease (CHD), diabetes, and kidney disease and in healthy volunteers. Results indicate that the cholesterol levels in IDL and VLDL measured by AEX-HPLC may be useful risk markers of CHD or diabetes. Furthermore, we developed another new method for the determination of alpha-tocopherol (AT) in lipoprotein classes, and this method is composed of AEX-HPLC for the separation of lipoprotein classes and reverse-phase chromatography to separate AT in each lipoprotein class. The AT levels in LDL were significantly correlated with the lag time to copper ion-induced LDL oxidation, which is an index of oxidation resistance. The application of AEX-HPLC to measure various substances in lipoproteins will be clinically expected in the future.

Key words: Lipoprotein, Anion-exchange chromatography, Alpha-tocopherol

Introduction

The initially discovered lipoprotein was chylomicron. In 1924, Gage and Fish showed particles with approximately 1 µm diameter in blood taken from humans after a fatty meal, and they named such particles as chylomicrons. Pouletier de la Salle, a French doctor and chemist, first identified solid-form cholesterol from gallstones in 1769, and the compound was named “cholesterine” by Dr. Michel Eugène Chevreul in 1815. Cholesterol is present in lipoproteins, which are measured by a variety of methods. In 1946, Cohn et al. isolated a variety of proteins from human plasma and fractionated five major protein families using gradual changes in pH, ionic strength, and ethanol concentration. Fractions III and IV contained lipids. In 1950, Oncley et al. isolated β-lipoprotein from fraction III via flotation at a density of 1.035 g/mL with ultracentrifugation, and high-density α-lipoprotein was found in fraction IV.

In 1963, Lees and Hatch separated four lipoprotein classes, namely, chylomicron, β-lipoprotein [low-density lipoprotein (LDL); density: 1.006–1.063 g/mL], pre-β-lipoprotein [very low-density lipoprotein (VLDL); density: <1.006 g/mL], and α-lipoprotein [high-density lipoprotein (HDL), density >1.063 g/mL], using paper electrophoresis. In 1965, Fredrickson and Lees reported a system for phenotyping hyperlipoproteinemia with paper electrophoresis, and the classification was later adopted by the World...
Table 1. Types of hyperlipoproteinemia by Fredrickson classification

Type	Plasma	Mainly increased lipids	Increased lipoprotein
I	Creamy top layer	Triglyceride	Chylomicron
IIA	Clear	Cholesterol	β-lipoprotein (LDL)
IIB	Cloudy	Cholesterol, triglyceride	β-lipoprotein (LDL), pre-β-lipoprotein (VLDL)
III	Cloudy	Cholesterol, triglyceride	Intermediate-density lipoprotein (IDL), Floating β-lipoproteins (VLDL remnant, chylomicron remnant)
IV	Cloudy	Triglyceride	Pre-β-lipoprotein (VLDL)
V	Creamy top layer and cloudy bottom	Triglyceride	Chylomicron, pre-β-lipoprotein (VLDL)

This figure is referred in part to Reference #7.

Fig. 1. Computer graphics of density gradient ultracentrifugation method for the quantification of cholesterol in lipoproteins with Gaussian distribution

This figure is referred to Reference #11.

Health Organization\(^7\). Table 1 shows the six types of hyperlipoproteinemia in accordance with the Fredrickson classification\(^7\).

In 1949, Gofman et al. reported a density gradient ultracentrifugation method for the analysis of lipoprotein classes\(^8\) and showed that LDL was positively associated with cardiovascular disease (CVD)\(^9\). In 1981, Chung et al. developed a density gradient ultracentrifugation method with a vertical rotor\(^10\), and the cholesterol levels in six lipoprotein classes, namely, very high-density lipoprotein (VHDL), HDL, medium-density lipoprotein, like lipoprotein(a) (Lp(a)) with intermediate-density between HDL and LDL, LDL, IDL, and VLDL, can be measured by assuming lipoprotein peaks as Gaussian distribution (Fig. 1)\(^11\). In 1955, Havel et al. established a sequential flotation ultracentrifugation and separated three major lipoprotein classes, namely, density < 1.019 g/mL (VLDL and IDL), density of 1.019–1.063 g/mL (LDL), and density > 1.063 (HDL), from 43 healthy human sera\(^12\). In 1960, Baxter, Goodman, and Havel isolated density < 1.006 g/mL (VLDL) and density 1.006–1.019 g/mL (IDL) from the sera of 44 patients with nephrotic syndrome\(^13\).

Epidemiologic studies play an important role in elucidating the risk factor of coronary heart disease (CHD). The Framingham Heart Study (FHS) was started in 1948 under the direction of the National Heart, Lung, and Blood Institute. In the town of Framingham, Massachusetts, 5,209 people (male/female: 45%/55%), who were aged 30–62 years and had not yet developed overt symptoms of CVD or suffered a heart attack or stroke, were recruited for an original cohort. In FHS, CHD risk factors included hypertension, hypercholesterolemia, and diabetes mellitus\(^14\), and LDL cholesterol (LDL-C) was a predictive factor of the progression of CHD\(^15\). In 1977, Gordon et al. reported an inverse relationship between HDL cholesterol (HDL-C) and CHD incidence, in contrast to the positive association between LDL-C and CHD risk\(^16\). FHS group also reported that the increased VLDL cholesterol (VLDL-C), measured by an ultracentrifugation method, is a predictive factor of CHD independently of LDL-C\(^17\).

The ultracentrifugation methods have a high ability for the separation of lipoprotein classes but takes a long time without convenience. At present, homogeneous methods are used for the measurement of lipoprotein classes in clinical practice, but they are only applied for the determination of HDL-C and LDL-C. Therefore, we sought to establish a convenient method for the separation of lipoprotein classes as a substitute for the ultracentrifugation method. We
have invented a new convenience method (anion-exchange high-performance liquid chromatography: AEX-HPLC) by using AEX chromatography with a column composed of nonporous gel and eluent containing chaotropic ions. We applied for a patent in the Japan Patent Office in 2002. We started to evaluate the clinical usefulness of AEX-HPLC with blood samples of patients with CHD, diabetes, and kidney disease and of healthy volunteers. In this review article, we show the principle of the new method to measure lipoprotein cholesterol concentrations using AEX-HPLC and the overview of several clinical study results reported so far.

Principle of Analysis Method for the Lipoprotein Classes by AEX-HPLC

A separation analysis of lipoprotein classes by GPC and HPLC was initiated in the 1960s. Foldin and Killander reported that human serum proteins were separated into three major peaks in accordance with the molecular size by using a dextran gel (Sephadex G-200), with the absorbance detection at 280 nm, and the first peak contained LDL18. Franzini carried out the separation of lipoproteins in human serum by Sephadex G-200 via cholesterol monitoring. Two peaks of lipoprotein cholesterol were detected, and the first and second peaks were LDL and HDL, respectively. Sata et al. reported that lipoproteins in human plasma were separated by a column composed of 2% agarose gel (Bio-Gel A), and two VLDL peaks in addition to LDL and HDL were detected. One VLDL peak was detected in the void volume of the gel. In 1980, Okazaki et al. reported an application of high-performance aqueous GPC where VLDL, LDL, HDL, and albumin were separated by a column of hydroxylated methacrylate gel (TSKgel G5000PW)21, or the lipoproteins in serum were separated into chylomicron, VLDL, LDL, HDL2, and HDL3 by two columns of silica gel (TSKgel G4000SW+TSKgel G3000SW), and the cholesterol level in lipoproteins were measured by post-column reaction. Then, they showed that cholesterol levels in VLDL, LDL, HDL2, and HDL3 measured by the two columns correlated well with those by ultracentrifugation method (correlation coefficient = 0.835–0.997)23. In 1990s, the separation method for three lipoprotein classes, namely, VLDL, LDL, and HDL, with a column of agarose gel (Superose 6B), and post-column derivatization of an enzymatic cholesterol reagent was reported. In 2002, Usui et al. showed the chromatograms of human serum lipoproteins detected by columns of TSKgel LipopropakXL (hydroxylated methacrylate gel) or Superose 6HR (agarose gel) with post-column dual enzymatic reactions for cholesterol and triglyceride (TG)20. In the chromatogram of TSKgel LipopropakXL and Superose 6HR, four lipoprotein peaks (chylomicron, VLDL, LDL, and HDL) and three lipoprotein peaks (chylomicron + VLDL, LDL, and HDL) appeared, respectively. The chylomicron peak in the chromatogram of TSKgel LipopropakXL and the chylomicron + VLDL peak in the chromatogram of Superose 6HR seemed to be eluted in the void volume of each column. In 2005, Okazaki et al. reported a method for the measurement of cholesterol levels in four major lipoproteins and the subclasses by using TSKgel LipopropakXL and Gaussian curve fitting for resolving the overlapping peaks (Fig. 2).

The improvement of the separation of lipoproteins with GPC has been required to make large-sized exclusion limit of the gel for separating all lipoproteins and increase the column size for separating lipoproteins, such as IDL, which has difficulty in separation. However, increasing size exclusion limit weakens the gel strength, and a large-sized column extends analysis time. Therefore, we started a study of a new separation method for lipoprotein classes by using AEX-HPLC because lipoproteins are negatively charged in neutral pH. The diameter of LDL is smaller than that of VLDL, and the eluted time of LDL is later than that of VLDL in GPC. The charge of VLDL is more negative than that of LDL, and the eluted time of VLDL may be later than that of LDL in AEX-HPLC with the eluent of neutral pH. We decided to use the AEX column composed of the nonporous gel. We also thought that the hydrophobic interaction between the column gel surface and lipoproteins may be a cause for the decreased separation ability, and then we decided to use eluent with sodium perchlorate. Chaotropic ions, such as perchlorate and thiocyanate, are known to disrupt and decrease hydrophobic band.

First, we tried the separation of lipoprotein classes in human serum by AEX-HPLC with a linear gradient and identified the peaks in the chromatogram by analyzing the lipoprotein samples separated by a sequential flotation ultracentrifugation method29. We found out two HDL peaks, a broad LDL peak, an IDL peak, and a broad VLDL peak (Fig. 3A). Second, we tried the separation of four major lipoprotein classes with a step gradient, and the chromatogram represented four sharp peaks of HDL, LDL, IDL, and VLDL (Fig. 3B). These linear and step gradient methods are similar to density gradient and sequential flotation methods with ultracentrifugation, respectively. The last peak contained chylomicrons, including chylomicron remnant, and Lp(a). Fig. 4 shows the chromatogram of serum from an untreated patient with type III dyslipidemia. The level of IDL-C was
CVD

In FHS, a risk score was established to estimate a 10-year individual risk of developing CHD. The FHS risk score was calculated by data on gender, age, blood pressure, diabetes, smoking, LDL-C or total cholesterol, and HDL-C. We compared lipoprotein profiles measured by AEX-HPLC to FHS risk scores in 487 Japanese men, enrolled from subjects who underwent medical check-ups, and patients with drug therapy for hypertension, diabetes, and dyslipidemia also were included. IDL-C was positively correlated with FHS risk score in multiple stepwise regression analysis ($p < 0.0005$). After FHS began, various epidemiological studies in many places were performed. The Hisayama Study started in Hisayama, a country town in Fukuoka, Japan, in 1961. Hisayama risk score was established to estimate a 10-year individual risk of developing CVD (stroke and CHD) and was calculated by data of gender, age, blood pressure, diabetes, and dyslipidemia. The Suita Study started in Suita, an urban town in Osaka, Japan, in 1989. The Suita score was established to estimate a 10-year individual risk of developing CHD and was calculated by data of gender, age, blood pressure, diabetes, smoking, LDL-C, HDL-C, and the stage classification of dyslipidemia.
Non-HDL-C, a good marker for CVD risk, is composed of the sum of cholesterol of atherogenic lipoproteins (LDL, Lp(a), IDL, VLDL, and chylomicron remnant) and chylomicron. Lipid Research Clinics Program Follow-up study for an average of 19 years with 2,406 men and 2,056 women at entry showed that non-HDL-C was a better predictor of CVD mortality than LDL-C. Therefore, the determination of non-HDL-C is useful for CVD risk assessment.
was also highly correlated with non-HDL-C and chylomicron-C in healthy men (p<0.005) \(^{39}\). These results suggest that non-HDL-C and TG-rich lipoproteins are considered second lipid targets next to LDL-C for the management of CVD risk presumably because of their significant associations with the FHS and Suita scores.

In 1981, Tatami et al. reported that the increased IDL-C was associated with the severity of CAD \(^{43}\). The severity of coronary atherosclerosis was estimated by the sum of coronary lesion scores based on stenosis rates and lesion numbers determined by coronary angiographic data. The coronary atherosclerosis severity was correlated with IDL-C (P<0.01). Liu et al. reported that non-HDL-C was a stronger predictor of CHD risk than LDL-C, and VLDL-C was an independent predictor of CHD risk after adjusting for LDL-C in the FHS \(^{17}\). We estimated lipoprotein profiles of CHD patients by AEX-HPLC \(^{30}\). IDL-C and VLDL-C of patients with CHD were higher than those of healthy subjects.

Nordestgaard showed that the elevated level of
TG-rich lipoprotein cholesterol estimated as “total cholesterol minus LDL-C and HDL-C” is causally associated with CVD and inflammation, and the calculated value is mainly VLDL-C and IDL-C44, 45. In the subendothelial space of artery, macrophages take up oxidized LDL via scavenger receptors. However, TG-rich lipoproteins (beta-VLDL, IDL, or chylomicron remnants) are mainly taken up by macrophages via LDL receptor and others to the lesser extent without modification46-48. These lipoproteins uptake by macrophages results in the formation of foam cells. Therefore, these lipoproteins are thought to be atherogenic. Two- to threefold increases of large VLDL in patients with insulin resistance cause the generation of small, dense LDL. A large amount of circulating oxidized LDL are present in small, dense LDL fraction48. Scheffer et al. reported an inverse relationship between LDL size and circulating oxidized LDL in patients with type 2 diabetes (T2DM)49. We also reported that LDL particles from T2DM patients are small-sized phenotypes and more susceptible to oxidation50. However, small, dense LDL cannot be separated by AEX-HPLC, but oxidized LDL can be separated51. As such, AEX-HPLC should be partially improved to separate small, dense LDL.

In a substudy of the JUPITER, VLDL-C and VLDL subfractions of patients on statin medication were evaluated by 400 MHz proton nuclear magnetic resonance spectroscopy, and this substudy investigated its relationships with CVD incidents52. The incrementally greater reduction of VLDL-C and small VLDL were associated with lower CVD risk, but reductions in TG and large VLDL were not associated53. Small VLDL is richer in cholesterol and protein than large VLDL52. Redgrave et al. estimated the changes of VLDL concentrations by density gradient preparative ultracentrifugation using plasma of normo- and hypertriglyceremic subjects in the fasting state and after a fatty meal53. The increases of TG concentration of VLDL 6 hours after a fatty meal in these subjects were 141% and 126%0. However, changes of VLDL-C concentrations in these subjects were 102% and 103%, respectively.

Therefore, cholesterol levels of IDL and VLDL measured by AEX-HPLC will be useful in clinical practice because they are risk makers for CVD, and postprandial changes of these lipoprotein cholesterol levels are relatively minor in contrast to TG levels.

Diabetes

The risk of CHD is markedly increased in patients with T2DM. Diabetes mellitus is included in the factors for estimated CHD risk scores35, 38. Patients with T2DM frequently present with dyslipidemia, which are characterized by increased TG, decreased HDL-C, and slightly increased LDL-C. In addition, large VLDL (VLDL1) and small, dense LDL are increased, and apolipoproteins are glycated54. Obesity and overweight are defined as an abnormal body fat accumulation and cause metabolic disorders, such as T2DM. Adiponectin is released by adipose tissue, and the plasma levels inversely correlate with body mass index (BMI)55. Adiponectin also exerts anti-inflammatory functions56 and downregulates adhesion molecule expression in endothelial cells57. Therefore, adiponectin is thought to protect against atherosclerosis. Many studies on the relevance of plasma or serum adiponectin levels to CHD risk have been conducted worldwide58-60. However, Kanhai et al. indicated that plasma adiponectin was not related to CHD risk in a meta-analysis study61. We estimated correlations between lipoprotein profiles and serum adiponectin levels in patients with T2DM62. The adiponectin levels were inversely correlated with VLDL-C but were uncorrelated with HDL-C, LDL-C, and IDL-C. We also estimated the effects of aerobic exercise training (60 min/day, 2 or 3 times/week) on serum levels of lipids and adiponectin in moderate dyslipidemic patients without diabetes63. The results indicated that levels of LDL-C, IDL-C, and VLDL-C were significantly decreased after 8 and 16 weeks (p<0.05, p<0.001, and p<0.001, respectively). The adiponectin levels were not changed after 8 weeks but were significantly increased after 16 weeks (p<0.001).

RLPs, which increase in the impaired lipoprotein metabolism, are associated with the progression of atherosclerosis and CAD64, 65. A high RLP-C (≥0.12 mmol/L) is a significant risk factor for CAD in Japanese patients with T2DM66. RLPs include chylomicron remnant and VLDL remnant (IDL)64, 65. RLP-C is significantly correlated with IDL-C and VLDL-C measured by AEX-HPLC, and VLDL ratio estimated by agarose gel electrophoresis (AGE) with lipid staining in patients with T2DM (p<0.0001)67. LDL and VLDL peaks in all sera could be separated by AEX-HPLC, but those in 8 out of 194 sera could not be separated by AGE. Fig. 5 indicates AEX-HPLC chromatograms and AGE patterns of a healthy serum and a diabetic patient’s serum. LDL and VLDL cannot be separated by AGE in a diabetic patient’s serum. Another electrophoresis for the analysis of lipoprotein profile [polyacrylamide gel electrophoresis (PAGE) with lipid staining] shows that a mid-band appeared at a position between LDL and VLDL in a part of patients with familial dyslipidemia and dyslipidemic diabetes, and the mid-band lipoproteins promote atherosclerosis68, 69. In a previous study, an independent
VLDL2 peak was observed between peaks of VLDL1 and LDL on PAGE of hyperlipoproteinemic serum\(^70\). Another study indicated retardation factors (Rfs) of 0.2–0.45, 0.45–0.7, 0.7–0.85, and 0.85–1.0 for VLDL1 (Sf 60-400), VLDL2 (Sf 20-60), IDL, and LDL, respectively, on PAGE\(^71\). VLDL2 secretion from the liver depends on cholesterol synthesis, cholesterol ester availability, and microsomal transfer protein activity, is enhanced in hypercholesterolemia, and the cholesterol content of VLDL2 is high\(^72\). Mid-band lipoproteins may include IDL and VLDL2. The levels of mid-band lipoproteins are significantly correlated with cholesterol levels of IDL and VLDL in AEX-HPLC in 34 patients with T2DM (r=0.866, p<0.0001 and r=0.842, p<0.0005, respectively).

Fig. 5 indicates AEX-HPLC chromatograms and PAGE patterns of a healthy serum and a diabetic patient's serum. Mid-band findings between LDL and VLDL appeared in the PAGE pattern of a diabetic patient's serum.

Lp(a) is one of the atherogenic lipoproteins and a target of therapy to lower CVD risk\(^73-75\). As indicated in many studies, an increased Lp(a) mass measured by enzyme-linked immunosorbent assay or latex agglutination assay is associated with CHD risk\(^76-79\), and the risk of diabetes was increased by twofold\(^80\). However, Mora et al. showed that increased Lp(a) mass was inversely associated with incident T2DM risk in subjects without CVD\(^81\). A previous report indicated that high concentration of insulin suppressed apolipoprotein(a) synthesis in monkey hepatocytes\(^82\). An elevated Lp(a) level is known to be associated with the presence of CHD, and the Lp(a) contains small-molecular-weight apolipoprotein(a)\(^83\). However, low Lp(a) levels alone seem to not be causally associated with T2DM, but a causal association for large lipoprotein(a) isoform size cannot be excluded\(^84\). Niacin and PCSK9 inhibitors lower Lp(a), whereas niacin is associated with insulin resistance, but the relevance of therapy with PCSK9 inhibitors to increased incident T2DM has not been reported\(^85\).
Kidney Disease

CVD is the most common cause of mortality in patients with CKD. Dyslipidemia is linked to an increased CVD risk in patients with CKD. In patients with CKD and proteinuria, a loss of apolipoprotein C-II, an activator of lipoprotein lipase (LPL), into urine impairs catabolism of VLDL. In patients with CKD and reduced GFR, hepatic VLDL production is not elevated, and the catabolism of VLDL is impaired. Serum levels of apolipoprotein C-III, an inhibitor of LPL, is increased, and hepatic TG lipase activity is reduced. Therefore, serum IDL concentrations increase in the patients with CKD.

Shoji et al. reported that IDL-C and VLDL-C were elevated and HDL-C was reduced in patients with diabetic nephropathy or hemodialysis (HD). They used an ultracentrifugation method for the separation analysis of lipoprotein classes. We examined the lipoprotein profiles measured by AEX-HPLC in patients undergoing HD or continuous ambulatory peritoneal dialysis (CAPD). We also indicated decreased HDL-C and increased levels of IDL-C and VLDL-C in HD patients as compared with healthy subjects. Moreover, IDL-C only was consistently elevated regardless of CAPD duration. We also indicated that the earlier-eluting subfraction among two HDL subfractions was lower in HD patient’s serum. The earlier-eluting HDL subfraction contains HDL3. The decreased HDL3 might be responsible for the HDL dysfunction of cholesterol efflux in HD patients.

Healthy Volunteer

To determine the recent serum lipid data in the general Japanese population, a survey was conducted in 36 districts of Japan in 2000. The mean HDL-C was 59 mg/dL; 55 mg/dL in men and 65 mg/dL in women. HDL-C slightly decreased with increase of age. The mean LDL-C was 118 mg/dL: 121 mg/dL in men and 115 mg/dL in women. LDL-C slightly increased with advancing age. We studied lipoprotein profiles in 161 healthy men without medications. The mean cholesterol levels of HDL and LDL in every age
were comparable to those of Japanese people in 2000 (Fig. 6) \(^{39}\). In addition, the lower eGFR was significantly correlated with higher levels of LDL-C \((p<0.005)\), IDL-C \((p<0.001)\), and VLDL-C \((p<0.0001)\), and only VLDL-C was significantly correlated with eGFR independently of BMI \((p<0.0005)\). Thus, the increased VLDL-C might be a good marker to predict renal dysfunction in healthy subjects.

Future Perspectives

The new method by using AEX-HPLC has a high capability to separate lipoprotein classes, which can be used in substitution for ultracentrifugation methods. We developed a new method for measurement of alpha-tocopherol (AT) in lipoprotein classes, which contains AEX-HPLC, for the separation of lipoprotein classes and reverse-phase chromatography to separate AT in each lipoprotein class\(^{95}\). The new automated method can measure AT concentrations of HDL, LDL, and VLDL in human plasma. AT is thought to be an antioxidant for lipoproteins\(^{96, 97}\). Oxidized LDL can promote the foam cell formation of macrophages, and the foam cell contributes to the development of atherosclerosis\(^{98-100}\). An index of the resistance to LDL oxidation is expressed as the lag time to copper ion-induced LDL oxidation\(^{50, 101, 102}\). The LDL lag time to oxidation is significantly correlated with the AT level in LDL\(^{50, 95, 97}\). The other antioxidant in lipoproteins is known to be beta carotene\(^{102, 103}\). We are going to develop another new method for the measurement of beta carotene in lipoprotein classes.

HDL is known to be an antiatherogenic lipoprotein, and low HDL-C is a risk factor of CVD. Some new assays for HDL function, e.g., cholesterol efflux, anti-inflammation, and antioxidative action, were recently developed\(^{104}\). Rohatgi et al. reported that HDL-mediated cholesterol efflux capacity has an inverse association with incident CVD, independently of HDL-C levels\(^{105}\). Some subfractions are found in HDL, and the functions of each HDL subfraction are different\(^{106, 107}\). We found two broad asymmetric HDL peaks in a chromatogram of AEX-HPLC with a linear gradient of chaotropic ion concentration (Fig. 3A). Now, we intend to study a separation method for HDL subfractions by AEX-HPLC.

Conclusions

We have developed the new method to separate lipoprotein classes by using AEX-HPLC. A column containing nonporous gel and a chaotropic ion-containing eluent were used to increase the performance of lipoprotein separation in AEX-HPLC. The clinical usefulness of AEX-HPLC was evaluated in samples of patient with CVD, diabetes, and CKD and of healthy volunteers. The diagnostic system with AEX-HPLC was approved for clinical use in the public health-care insurance in Japan in 2014. Furthermore, we applied AEX-HPLC to another new method for the measurement of AT in lipoprotein classes. The AEX-HPLC application for methods to measure various substances in lipoproteins will be expected in the future.

Acknowledgments

We would like to thank Norio Tada MD, PhD, Hideo Kurosawa BS, and Daisuke Manita PhD for their helpful coordination and encouragements to our study. This review work was supported in part by the Jikei University Research Fund from the Jikei University School of Medicine; the Non-limiting Research Funds from Tosoh Corporation; Grants-in-Aid for Scientific Research (number 17K09560) from Japan Ministry of Education, Culture, Sports, Science, and Technology (Hiroshi Yoshida); and the research funding from Saitama Prefectural University and Tosoh Corporation (Yuji Hirowatari).

Conflicts of Interest

Professor Hiroshi Yoshida received honoraria for speaking activities from Astellas, Amgen, Bayer, Denka Seiken, Kowa, Mochida, MSD, and Takeda, but these were not related to this study. Yuji Hirowatari PhD has no potential conflict of interest to disclose. The research funds from Tosoh Corporation to Drs. Hiroshi Yoshida and Yuji Hirowatari were less than the lower limit of the stipulated range that should be disclosed in accordance with Japan Atherosclerosis Society Guidelines for conflicts of interest.

References

1) Gage SA, Fish PA: Fat digestion, absorption, and assimilation in man and animals as determined by the dark-field microscope and a fat-soluble dye. Am J Anat, 1924; 34: 1-85
2) Dam H: Historical introduction to cholesterol. In: Chemistry, Biochemistry and Pathology, ed by Cook RP, pp1-14, Academic Press, New York, 1958
3) Cohn EJ, Strong LE, Hughes WC, Mulford DJ, Ashworth JN, Melin M, Taylor HL: Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the proteins and lipoprotein components of biological tissues and fluids. J Am Chem Soc, 1946; 68: 459-475
4) Oncley JL, Gurd FRN, Melin M: Preparation and Prop-
20) Sata T, Estrich DL, Wood DS, Kinsell LW: Evaluation of
18) Foldin P, Killander J: Fractionation of human-serum
16) Gordon T, Castelli WP, Hjortland MC, Kannel WB,
15) Kannel WB, Castelli WP, Gordon T, McNamara PM:
14) Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes
12) Havel RJ, Eder HA, Bragdon JH: The distribution and
11) Cone JT, Segrest JP, Chung BH, Ragland JB, Sabesin
10) Chung BH, Segrest JP, Cone JT, Pfau J, Geer JC, Dun-
9) Golfman JW, Jones HB, Lindgren FT, Elliott H: Ultracentrifug
8) Gofman JW, Lindgren FT, Lyon TR, Elliott HA, Strisower B: Blood lipids and human atherosclerosis. Circulation, 1950; 2: 161-178
10) Chung BH, Segrest JP, Cone JT, Pfau J, Geer JC, Duncan LA: High resolution plasma lipoprotein cholesterol profiles by a rapid, high volume semi-automated method. J Lipid Res, 1981; 22: 1003-1014
11) Cone JT, Segrest JP, Chung BH, Ragland JB, Sabesin SM, Glasscock A: Computerized rapid high resolution quantitative analysis of plasma lipoproteins based upon single vertical spin centrifugation. J Lipid Res, 1982; 23: 923-935
12) Havel RJ, Eder HA, Bragdon JH: The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest, 1955; 34: 1345-1353
13) Baxter JH, Goodman HC, Havel RJ: Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest, 1960; 39: 455-465
14) Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd: Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med, 1961; 55: 33-50
15) Kannel WB, Castelli WP, Gordon T, McNamara PM: Serum cholesterol, lipoproteins, and the risk of coronary heart disease; the Framingham study. Ann Intern Med, 1971; 74: 1-12
16) Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR: High density lipoprotein as a protective factor against coronary heart disease. Am J Med, 1977; 62: 707-714
17) Liu J, Sempo CT, Donahue RP, Dorn J, Trevisan M, Grundy SM: Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol, 2006; 98: 1363-1368
18) Foldin P, Killander J: Fractionation of human-serum proteins by gel filtration. Biochim Biophys Acta, 1962; 63: 403-410
19) Franz C: Gel filtration behavior of human serum lipoproteins. Clin Chim Acta, 1966; 14: 573-578
20) Sata T, Estrich DL, Wood DS, Kinsell LW: Evaluation of gel chromatography for plasma lipoprotein fractionation. J Lipid Res, 1970; 11: 331-340
21) Okazaki M, Ohno Y, Hara I: High-performance aqueous gel permeation chromatography of human serum lipoproteins. J Chromatogr, 1980; 221: 257-264
22) Okazaki M, Hagiwara N, Hara I: High-performance liquid chromatography of human serum lipoproteins. J Chromatogr, 1982; 231: 13-23
23) Okazaki M, Itakura H, Shiraishi K, Hara I: Serum lipoprotein measurement—liquid chromatography and sequential flotation (ultracentrifugation) compared. Clin Chem, 1983; 29: 768-773
24) Kieft KA, Bocan TMA, Krause BR: Rapid on-line determination of cholesterol distribution among plasma lipoproteins after high-performance gel filtration chromatography. J Lipid Res, 1991; 32: 859-866
25) März W, Siekmeier R, Scharnagl H, Seifert UB, Gross W: Fast lipoprotein chromatography: new method of analysis for plasma lipoproteins. Clin Chem, 1993; 39: 2276-2281
26) Usui S, Hara Y, Hosaki S, Okazaki M: A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res, 2002; 43: 805-814
27) Okazaki M, Usui S, Ishigami M, Sakai N, Nakamura T, Matsuzawa Y, Yamashita S: Identification of unique lipoprotein subclasses for visceral obesity by component analysis of cholesterol profile in high-performance liquid chromatography. Arterioscler Thromb Vasc Biol, 2005; 25: 578-584
28) Hatefi, Y., and W. G. Hanstein: Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci USA, 1969; 62: 1129-1136
29) Hirowatari Y, Tada N, Yoshida H, Kurosawa H: A novel HPLC method for analysis of major lipoprotein classes. Homepage of the INTERNATIONAL ATHEROSCLEROSIS SOCIETY Commentaries: 2003: 10
30) Hirowatari Y, Yoshida H, Kurosawa H, Doumitu KI, Tada N: Measurement of cholesterol of major serum lipoprotein classes by anion-exchange HPLC with perchlorate ion-containing eluent. J Lipid Res, 2003; 44: 1404-1412
31) Hirowatari Y, Yanai H, Yoshida H: Measurement of cholesterol levels of lipoprotein classes by using anion-exchange chromatography. In: High-Performance Liquid Chromatography (HPLC): Principles, Practices and procedures, ed by Yuegang Zuo, pp129-160, Nova Science Publishers, Inc, New York, USA, 2014
32) Hirowatari Y, Yoshida H, Kurosawa H, Shimura Y, Yanai H, Tada N: Analysis of cholesterol levels in lipoprotein(a) with anion-exchange chromatography. J Lipid Res, 2010; 51: 1237-1243
33) Hirowatari Y, Tsuchiya Y, Ogura Y, Homma Y: Analyzing of high-density lipoprotein subfractions and low-density lipoprotein subfractions in human serum with anion-exchange chromatography. Atherosclerosis, 2009; 204: e52-e57
34) Manita D, Hirowatari Y, Yoshida H: A rapid anion-exchange chromatography for measurement of cholesterol levels in five lipoprotein classes and estimation of lipoprotein profiles in male volunteers without overt diseases. Ann Clin Biochem, 2015; 52: 638-646
35) Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB: Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation, 1998; 97: 1837-1847
36) Ito K, Yoshida H, Yanai H, Kurosawa H, Sato R, Manita D, Hirowatari Y, Tada N: Relevance of intermediate-density lipoprotein cholesterol to Framingham risk score of coronary heart disease in middle-age men with non-HDL cholesterol. Int J Cardiol, 2013; 168: 3853-3858
37) Arima H, Yonemoto K, Doi Y, Ninomiya T, Hata J, Tanizaki Y, Fukuhara M, Matsunura K, Iida M, Kiyohara Y: Development and validation of a cardiovascular risk prediction model for Japanese: the Hisayama study. Hypertens Res, 2009; 32: 1119-1122
38) Nishimura K, Okamura T, Watanabe M, Nakai M, Takegami M, Higashiyama A, Kokubo Y, Okayama A, Miyamoto Y: Predicting Coronary Heart Disease Using Risk Factor Categories for a Japanese Urban Population, and Comparison with the Framingham Risk Score: The Suita Study. J Atheroscler Thromb, 2014; 21: 784-798
39) Manita D, Yoshida H, Hirowatari Y: Cholesterol Levels of Six Fractionated Serum Lipoproteins and its Relevance to Coronary Heart Disease Risk Scores. J Atheroscler Thromb, 2017; 24: 928-939
40) Cui Y, Blumenthal RS, Flaws JA, Whitman MK, Langenberg P, Bachorik PS, Bush TL: Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med, 2001; 161: 1413-1419
41) Bittner V, Hardison R, Kelsey SF, Weiner BH, Jacobs AK, Sopko G: Bypass Angioplasty Revascularization Investigation. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Circulation, 2002; 106: 2537-2542
42) Shiiba M, Zhang B, Miura SI, Ike A, Nose D, Kuwano K, Takegami H, Ueda K, Ueda R, Haba T, Kametani T, Ito S, Koizumi J, Ohta M, Miyamoto S, Yamashita S, Funahashi T, Matsuzawa Y: Novel intermediate-density lipoprotein subpopulations. Arterioscler Thromb Vasc Biol, 1997; 17: 1438-1446
43) Redgrave TG, Carlson LA: Changes in plasma very low density and low density lipoprotein content, composition, and size after a fatty meal in normo- and hypertriglyceridemic man. J Lipid Res, 1979; 20: 217-229
44) Verges B: Pathophysiology of diabetic dyslipidemia: where are we? Diabetologia, 2015; 58: 886-899
45) Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, Ouichi N: Role of Adipokines in Cardiovascular Disease. Circ J, 2017; 81: 920-928
46) Fujio Y, Ishikawa Y: Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb, 2009; 16: 145-154
47) Fujio Y, Cooper AD, Fong LG: Multiple processes are involved in the uptake of chylomicron remnants by mouse peritoneal macrophages. J Lipid Res, 1998; 39: 2339-2349
48) Sevanian A, Hwang J, Hodis H, Cazzolato G, Avogaro P, Bittolo-Bon G: Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol, 1996; 16: 784-793
49) Scheffer PG, Bos G, Volwater HG, Dekker JM, Heine RJ, Teerlink T: Associations of LDL size with in vitro oxidizability and plasma levels of in vivo oxidized LDL in Type 2 diabetic patients. Diabet Med, 2003; 20: 563-567
50) Yoshida H, Ishikawa T, Nakamura H: Vitamin E/lipid peroxide ratio and susceptibility of LDL to oxidative modification in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol, 1997; 17: 1438-1446
51) Lawler PR, Akinkuolie AO, Harada P, Glynn RJ, Chasman DI, Ridker PM, Mora S: Residual Risk of Atherosclerotic Cardiovascular Events in Relation to Reductions in Very-Low-Density Lipoproteins. J Am Heart Assoc, 2017; 6: e007402
52) Bittolo Bon G, Cazzolato G, Zago S, Avogaro P: Concentration, composition and apolipoprotein B species of very low density lipoprotein subfractions from normo-lipidemic and hypertriglyceridemic humans. Ric Clin Lab, 1985; 15: 233-240
53) Arima H, Yonemoto K, Doi Y, Ninomiya T, Hata J, Tanizaki Y, Fukuhara M, Matsunura K, Iida M, Kiyohara Y: Development and validation of a cardiovascular risk prediction model for Japanese: the Hisayama study. Hypertens Res, 2009; 32: 1119-1122
54) Verges B: Pathophysiology of diabetic dyslipidemia: where are we? Diabetologia, 2015; 58: 886-899
55) Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, Ouichi N: Role of Adipokines in Cardiovascular Disease. Circ J, 2017; 81: 920-928
56) Ouichi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Murauchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a CAMP-dependent pathway. Circulation, 2000; 102: 1296-1301
57) Ouichi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation, 1999; 100: 2473-2476
58) Zhang H, Mo X, Hao Y, Huang J, Lu X, Cao J, Gu D: Adiponectin levels and risk of coronary heart disease: a meta-analysis of prospective studies. Am J Med Sci, 2013; 345: 455-461
59) Kanaya AM, Wessal Fyr C, Vittinghoff E, Havel PJ, Cesari M, Nicklas B, Harris T, Newman AB, Satterfield S, Cummings SR: Serum adiponectin and coronary heart disease risk in older Black and White Americans. J Clin Endocrinol Metab, 2006; 91: 5044-5050
60) Laughlin GA, Barrett-Connor E, May S, Langenberg C: Association of adiponectin with coronary heart disease and mortality: the Rancho Bernardo study. Am J Epidemiol, 2007; 165: 164-174
61) Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation, 1999; 100: 2473-2476
62) Zhang H, Mo X, Hao Y, Huang J, Lu X, Cao J, Gu D: Adiponectin levels and risk of coronary heart disease: a meta-analysis of prospective studies. Am J Med Sci, 2013; 345: 455-461
63) Kanaya AM, Wessal Fyr C, Vittinghoff E, Havel PJ, Cesari M, Nicklas B, Harris T, Newman AB, Satterfield S, Cummings SR: Serum adiponectin and coronary heart disease risk in older Black and White Americans. J Clin Endocrinol Metab, 2006; 91: 5044-5050
64) Laughlin GA, Barrett-Connor E, May S, Langenberg C: Association of adiponectin with coronary heart disease and mortality: the Rancho Bernardo study. Am J Epidemiol, 2007; 165: 164-174
dent coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes Rev, 2013; 14: 555-567
62) Yoshida H, Hirowatari Y, Kurosawa H, Tada N: Implications of decreased serum adiponectin for type IIb hyperlipidaemia and increased cholesterol levels of very-low-density lipoprotein in type II diabetic patients. Clin Sci (Lond), 2005; 109: 297-302
63) Yoshida H, Ishikawa T, Suto M, Kurosawa H, Hirowatari Y, Ito K, Yanai H, Tada N, Suzuki M: Effects of supervised aerobic exercise training on serum adiponectin and parameters of lipid and glucose metabolism in subjects with moderate dyslipidemia. J Atheroscler Thromb, 2010; 17: 1160-1166
64) Havel JR: Determination and clinical significance of triglyceride-rich lipoprotein remnants. In Handbook of Lipoprotein Testing Second Edition. Rifai N, Warnick GR, Dominiczak MH, editors. The American Association for Clinical Chemistry, Inc. Press, Washington, D.C. 2000; 565-580
65) Masuda D, Yamashita S: Postprandial Hyperlipidemia and Remnant Lipoproteins. J Atheroscler Thromb, 2017; 24: 95-109
66) Fukushima H, Sugiyama S, Honda O, Koide S, Nakamura S, Sakamoto T, Yoshimura M, Ogawa H, Fujioka D, Kugiyama K: Prognostic value of remnant-like lipoprotein particle levels in patients with coronary artery disease and type II diabetes mellitus. J Am Coll Cardiol, 2004; 43: 2219-2224
67) Yoshida H, Hirowatari Y, Kurosawa H, Manita D, Yanai H, Ito K, Tada N: Estimation of lipoprotein profile in patients with type II diabetes and its relevance to remnant lipoprotein cholesterol levels. Atherosclerosis, 2012; 222: 541-544
68) Taira K, Bujo H, Kobayashi J, Takahashi K, Miyazaki A, Saito Y: Positive family history for coronary heart disease and 'mid-band lipoproteins' are potential risk factors of carotid atherosclerosis in familial hypercholesterolemia. Atherosclerosis, 2002; 160: 391-397
69) Yanagi K, Yamashita S, Kihara S, Nakamura T, Nozaki S, Nagai Y, Funahashi T, Kameda-Takemura K, Ueyama Y, Jiao S, Kubo M, Tokunaga K, Matsuzawa Y: Characteristics of coronary artery disease and lipoprotein abnormalities in patients with heterozygous familial hypercholesterolemia associated with diabetes mellitus or impaired glucose tolerance. Atherosclerosis, 1997; 132: 43-51
70) Zhao SP, Bastiaanse EM, Hau MF, Smelt AH, Gevers MOL, van der Laarse A, Vant Hooft FM: Separation of VLDL subfractions by density gradient ultracentrifugation. J Lab Clin Med, 1995; 125: 641-649
71) Blom DJ, Byrnes P, Jones S, Marais AD: Non-denaturing polyacrylamide gradient gel electrophoresis for the diagnosis of dysbeta-lipoproteinemia. J Lipid Res, 2003; 44: 212-227
72) Berneis KK, Krauss RM: Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res, 2002; 43: 1363-1379
73) Tsimikas S: Lipoprotein(a): novel target and emergence of novel therapies to lower cardiovascular disease risk. Curr Opin Endocrinol Diabetes Obes, 2016; 23: 157-164
74) Yoshida H: Clinical Impact and Significance of Serum lipoprotein (a) levels on cardiovascular risk in patients with coronary artery disease. Circ J, 2019; 83: 967-968
75) Shitara J, Kasai T, Konishi H, Endo H, Wada H, Doi S, Naito R, Tsuboi S, Ogita M, Dohi T, Okazaki S, Miyazaki K, Daida H: Impact of Lipoprotein (a) Levels on Long-Term Outcomes in Patients With Coronary Artery Disease and Left Ventricular Systolic Dysfunction. Circ J, 2019; 83: 1047-1053
76) Wild SH, Fortmann SP, Marcovina SM: A prospective case-control study of lipoprotein(a) levels and apo(a) size and risk of coronary heart disease in Stanford Five-City Project participants. Arterioscler Thromb Vasc Biol, 1997; 17: 239-245
77) Suk Danik J, Rifai N, Buring JE, Ridker PM: Lipoprotein(a), measured with an assay independent of apolipoprotein(a) isoform size, and risk of future cardiovascular events among initially healthy women. JAMA, 2006; 296: 1363-1370
78) Lamon-Fava S, Marcovina SM, Albers JJ, Kennedy H, Deluca C, White CC, Cupples LA, McNamara JR, Seman LJ, Bongard V, Schaefer EJ: Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study. J Lipid Res, 2011; 52: 1181-1187
79) Kelly E, Hemphill L: Lipoprotein(a): A Lipoprotein Whose Time Has Come. Curr Treat Options Cardiovasc Med, 2017; 19: 48
80) Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. JAMA Cardiol, 2019; 4: 163-173
81) Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM: Lipoprotein(a) and risk of type 2 diabetes. Clin Chem, 2010; 56: 1252-1260
82) Neele DM, de Wit EC, Princen HM: Insulin suppresses apolipoprotein(a) synthesis by primary cultures of cynomolgus monkey hepatocytes. Diabetologia, 1999; 42: 41-44
83) Kraft HG, Lingenhel A, Köch S, Hopphichler F, Kronenberg F, Abe A, Mühlberger V, Schönitzer D, Utermann G: Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol, 1996; 16: 713-719
84) Kamstrup PR, Nordestgaard BG: Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol, 2013; 1: 220-227
85) Tsimikas S: In search of a physiological function of lipoprotein(a): causality of elevated Lp(a) levels and reduced incidence of type 2 diabetes. J Lipid Res, 2018; 59: 741-744
86) Hirowatari Y, Manita D, Kamachi K, Tanaka A: Effect of dietary modification by calorie restriction on cholesterol levels in lipoprotein(a) and other lipoprotein classes. Ann Clin Biochem, 2017; 54: 567-576
87) Pandya V, Rao A, Chaudhary K: Lipid abnormalities in kidney disease and management strategies. World J Nephrol, 2015; 4: 83-91
88) Shoji T, Abe T, Matsuo H, Egusa G, Yamashita Y, Kashihara N, Shirai K, Kashiwagi A; Committee of Renal and
Peripheral Arteries, Japan Atherosclerosis Society: Chronic kidney disease, dyslipidemia, and atherosclerosis. J Atheroscler Thromb, 2012; 19: 299-315

89) Shoji T, Emoto M, Kawagishi T, Kimoto E, Yamada A, Tabata T, Ishimura E, Inaba M, Okuno Y, Nishizawa Y: Atherogenic lipoprotein changes in diabetic nephropathy. Atherosclerosis, 2001; 156: 425-433

90) Shoji T, Nishizawa Y, Kawagishi T, Kawasaki K, Taniwaki H, Tabata T, Inoue T, Morii H: Intermediate-density lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients. J Am Soc Nephrol, 1998; 9: 1277-1284

91) Hirowatari Y, Yoshida H, Fueki Y, Ito M, Ogura Y, Sakurai N, Miida T: Measurement of cholesterol concentrations of major serum lipoprotein classes in haemodialysis patients by anion-exchange chromatography. Ann Clin Biochem, 2008; 45(Pt 6): 571-574

92) Kon M, Hirayama S, Horiiuchi Y, Ueno T, Idei M, Fueki Y, Seino U, Goto S, Maruyama H, Iino N, Fukushima Y, Ohmura H, Hirowatari Y, Miida T: Profiles of inflammatory markers and lipoprotein subclasses in patients undergoing continuous ambulatory peritoneal dialysis. Clin Chim Acta, 2010; 411(21-22): 1723-1727

93) Hirowatari Y, Homma Y, Yoshizawa J, Homma K: Increase of electronegative-LDL-fraction ratio and LDL-cholesterol in chronic kidney disease patients with hemodialysis treatment. Lipids Health Dis, 2012; 11: 111

94) Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, Teramoto T, Sasaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Kita T: Serum lipid survey and its recent trend in the general Japanese population in 2000. J Atheroscler Thromb, 2005; 12: 98-106

95) Hirowatari Y, Yoshida H, Kurosawa H, Manita D, Tada N: Automated measurement method for the determination of vitamin E in plasma lipoprotein classes. Sci Rep, 2014; 4: 4086

96) Belcher JD, Balla J, Balla G, Jacobs DR Jr, Gross M, Jacob HS, Vercellotti GM: Vitamin E, LDL, and endothelium. Brief oral vitamin supplementation prevents oxidized LDL-mediated vascular injury in vitro. Arterioscler Thromb, 1993; 13: 1779-1789

97) Li D, Devaraj S, Fuller C, Bucala R, Jialal I: Effect of alpha-tocopherol on LDL oxidation and glycation: in vitro and in vivo studies. J Lipid Res, 1996; 37: 1978-1986

98) Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogeneity. N Engl J Med, 1989; 320: 915-924

99) Moore KJ, Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell, 2011; 145: 341-355

100) Kavurma MM, Rayner KJ, Karunakaran D: The walking dead: macrophage inflammation and death in atherosclerosis. Curr Opin Lipidol, 2017; 28: 91-98

101) Parthasarathy S, Augé N, Santanam N: Implications of lag time concept in the oxidation of LDL. Free Radic Res, 1998; 28: 583-591

102) Yoshida H, Kisugi R: Mechanisms of LDL oxidation. Clin Chim Acta, 2010; 411(21-22): 196-210

103) Kon M, Hirayama S, Horiiuchi Y, Ueno T, Idei M, Fueki Y, Seino U, Goto S, Maruyama H, Iino N, Fukushima Y, Ohmura H, Hirowatari Y, Miida T: Profiles of inflammatory markers and lipoprotein subclasses in patients undergoing continuous ambulatory peritoneal dialysis. Clin Chim Acta, 2010; 411(21-22): 1723-1727

104) Hirowatari Y, Homma Y, Yoshizawa J, Homma K: Increase of electronegative-LDL-fraction ratio and LDL-cholesterol in chronic kidney disease patients with hemodialysis treatment. Lipids Health Dis, 2012; 11: 111

105) Hirowatari Y, Yoshida H, Kurosawa H, Manita D, Tada N: Automated measurement method for the determination of vitamin E in plasma lipoprotein classes. Sci Rep, 2014; 4: 4086

106) Belcher JD, Balla J, Balla G, Jacobs DR Jr, Gross M, Jacob HS, Vercellotti GM: Vitamin E, LDL, and endothelium. Brief oral vitamin supplementation prevents oxidized LDL-mediated vascular injury in vitro. Arterioscler Thromb, 1993; 13: 1779-1789

107) Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ: Atherogenic lipoprotein changes in diabetic nephropathy. Atherosclerosis, 2001; 156: 425-433