RELAXANT ACTIONS OF PGE$_2$ AND ITS DERIVATIVE (YPG-209) ON CANINE TRACHEAL SMOOTH MUSCLE AND THEIR ENHANCEMENT OF Ca$^{++}$ UPTAKE BY THE MICROSONAL FRACTION

Kenichi TOMIOKA, Michio TERAI and Hiroo MAENO
Department of Pharmacology and Biochemistry, Central Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., Itabashi-ku, Tokyo 174, Japan

Accepted February 10, 1982

Abstract—The spasmogenic action of tetraethylammonium on canine tracheal smooth muscle was dependent on the extracellular Ca$^{++}$ concentration. Acetylcholine, on the contrary, produced partial contraction for a certain period of time after removal of extracellular Ca$^{++}$, suggesting the release of Ca$^{++}$ from intracellular Ca$^{++}$ stores into the cytosol. PGE$_2$, 16(S)-methyl-20-methoxy-PGE$_2$ (YPG-209), verapamil, and dibutyryl cyclic AMP relaxed the acetylcholine-induced contraction of the trachea. Pretreatment with prostaglandins or dibutyryl cyclic AMP more efficiently suppressed acetylcholine-induced contraction, whereas verapamil blocked the spasmogenic action of tetraethylammonium in a relatively selective manner. The prostaglandins and dibutyryl cyclic AMP also inhibited the spasmogenic action of acetylcholine in a Ca$^{++}$-free medium. Influx of 45Ca into tracheal smooth muscle which was produced by 83 mM KCl plus 20 mM tetraethylammonium was not significantly affected by prostaglandins as measured by the lanthanum method. In addition, PGE$_2$ increased ATP-dependent Ca$^{++}$ uptake by the microsomes from tracheal smooth muscle. These results suggest that prostaglandins induce relaxation of the airway smooth muscle mainly through affecting the intracellular Ca$^{++}$ movement such as by enhancement of sequestration of Ca$^{++}$ to the microsomes.

It is now well-known that prostaglandin Es are able to relax airway smooth muscle (1–4) and to antagonize bronchoconstriction which is caused by several chemical mediators (3–5). Furthermore, prostaglandins can inhibit release of the chemical mediator from mast cells (6, 7). However, the cellular mechanism for relaxation of airway smooth muscle by the prostaglandins is yet poorly understood. Contraction by tetraethylammonium of the airway smooth muscle such as that of bovine trachea requires extracellular Ca$^{++}$, whereas a contractile response to acetylcholine depends on both intracellular and extracellular Ca$^{++}$ (8). Thus, the prostaglandin-induced relaxation is presumably caused either by decreasing the membrane permeability to Ca$^{++}$, by reducing the cytosolic release of intracellularly sequestered Ca$^{++}$, or by stimulating its sequestration.

We now report the effects of prostaglandins on tetraethylammonium- and acetylcholine-induced contraction of canine tracheal smooth muscle, cellular 45Ca influx, and microsomal 45Ca uptake in comparison with the effects of
verapamil and cyclic nucleotides.

MATERIALS AND METHODS

Materials: PGE2, 16(S)-methyl-20-methoxy-PGE2 (YPG-209) (9), and nicardipine hydrochloride (10) were synthesized in our laboratories. EGTA and ATP were purchased from Sigma. Dibutryryl cyclic AMP, cyclic AMP, and cyclic AMP phosphodiesterase were obtained from Boehringer-Mannheim/Yamanouchi. The following materials were also commercially obtained: 45CaCl2 (New England Nuclear), acetylcholine chloride (Daiichi), tetraethylammonium chloride (Wako Junyaku), isoproterenol hydrochloride (Nikken Kagaku), verapamil hydrochloride (Eisai), and lanthanum chloride (Koso Chemicals). PGE2 and YPG-209 were dissolved in 1 ml of 99.5% ethyl alcohol and then diluted with 0.9% saline to give a final concentration of 3 mg/ml in 10% ethyl alcohol. This prostaglandin stock solution was kept frozen at -20°C in sealed ampoules until use, and at the time of the experiments, the stock was appropriately diluted with 0.9% saline. Other materials were dissolved in 0.9% saline.

Tracheal preparations: Mongrel dogs of either sex weighing 15 to 30 kg were anesthetized with an intravenous injection of sodium pentobarbital (30 mg/kg) and were killed by bleeding from the common carotid artery. The trachea was rapidly excised and placed in a Tyrode solution (pH 7.8) of the following composition in mM: NaCl 137, KCl 2.7, MgCl2 1.1, CaCl2 1.8, NaH2PO4 0.42, NaHCO3 11.9, and glucose 5.5. During the bubbling of 95% O2 and 5% CO2, the pH of the Tyrode solution changed and was stabilized at pH 7.4. In some experiments involving lanthanum which forms insoluble precipitates with phosphate and bicarbonate in normal Tyrode solution, the trachea was placed in a pH 7.4 Tris-buffered physiological solution aerated with 100% O2 of the following composition in mM: NaCl 140.2, KCl 5.8, MgCl2 1.2, CaCl2 2.5, glucose 11.1, and Tris HCl 5.0. A single ring was cut off from the trachea, and then connective tissues, mucous membranes, and most of the cartilages were removed before attaching threads to the small pieces of cartilage remaining at each end of the tracheal muscle. Thereafter, tracheal strips were suspended with a tension of 1 g in an organ bath containing 10 ml of Tyrode solution aerated with a mixture of 95% O2 and 5% CO2 at 37°C. While the tracheal smooth muscle was incubated for 3–4 hr in the bath before addition of drugs, the Tyrode solution was replaced every 15 min and the tension was repeatedly readjusted to 1 g. The tracheal response was isometrically measured with a strain gauge (SB-1T Nihon Kohden) and recorded on a Recticorder (RJG-3006, Nihon Kohden).

Contractile response to tetraethylammonium or acetylcholine: After the contractile response was recorded in Tyrode solution containing pharmacologically equivalent concentrations of tetraethylammonium (5×10^-3 M) or acetylcholine (1.7×10^-7 M), the muscle preparations were fully relaxed by washing three times with normal Tyrode solution. The medium was then replaced by Ca2+-free Tyrode solution containing 100 μM EGTA. After 10 min (11), tetraethylammonium or acetylcholine was added to the bath. In order to determine if the contractility of the tissue could still be restored to the predrug-level, 1.8 mM Ca2+ was added at the end of the incubation.

Relaxation induced by prostaglandins and some other drugs: After a constant tone level was obtained by addition of 1.7×10^-7 M acetylcholine to the bath fluid, the tracheal strips were exposed to various concentrations of the test compounds for 5 min. Relaxation was expressed as a percentage of acetylcholine-induced tension.
Effects of prostaglandins and some other drugs on contraction induced by tetraethylammonium or acetylcholine: Tracheal responses were recorded to 5×10^{-3} M tetraethylammonium or 1.7×10^{-7} M acetylcholine in Tyrode solution in the absence and then the presence of various concentrations of PGE$_2$, YPG-209, verapamil, or dibutyryl cyclic AMP. The tissue was incubated for 10 min with the compounds. The percentage inhibition was calculated by comparing the responses before and after addition of the test compounds. Influences of prostaglandins and dibutyryl cyclic AMP on the contraction induced by 1.7×10^{-7} M acetylcholine in the Ca$^{2+}$-free Tyrode solution were also determined. In these cases, the tissues were incubated for 10 min (11) with the test compounds.

Isolation of tracheal smooth muscle: Trachea was placed in cold modified Tyrode solution (pH 7.4) of the following composition in mM: NaCl 137, KCl 2.7, MgCl$_2$ 1.1, CaCl$_2$ 1.0, NaH$_2$PO$_4$ 0.42, NaHCO$_3$ 11.9, and glucose 9.1. The dorsal tracheal smooth muscle layer was carefully separated from cartilages, connective tissues, and mucous membranes.

Determination of cellular 45Ca uptake: Cellular 45Ca uptake was determined by the lanthanum method (12) with some modification (13). Cleaned tracheal smooth muscle was cut transversely into blocks weighing about 50 mg. Following equilibration in HEPES-buffer A (140 mM NaCl, 2.68 mM KCl, 1.25 mM CaCl$_2$, 1 mM MgCl$_2$, 10 mM glucose, and 5 mM HEPES-Tris buffer, pH 7.4) at 37°C for 60 min, the preparations were preincubated with PGE$_2$, YPG-209, or verapamil for 10 min. The 45Ca uptake was then initiated by transferring the tissue preparations to fresh HEPES-buffer A or HEPES-buffer B (40 mM NaCl, 83 mM KCl, 20 mM tetraethylammonium, 1 mM MgCl$_2$, 10 mM glucose, and 5 mM HEPES-Tris buffer, pH 7.4) containing 1.25 mM CaCl$_2$ with 0.2 μCi45Ca/ml and continued for 30 min under various conditions. The uptake was terminated by addition of 15 mM lanthanum, and the preparations were exposed to the lanthanum for 5 min to completely block 45Ca exchange between the inside and outside of the cells. The preparations were then transferred into HEPES-buffer A in which CaCl$_2$ was replaced by 15 mM lanthanum, and incubated further at 37°C for 60 min to expel the extracellularly bound 45Ca. Throughout the experiments up to this stage of the incubation, all mixtures including the tracheal smooth muscles were continuously oxygenated with 100% O_2. The preparations were then blotted, weighed, and solubilized with 1 ml Soluene 350 (Packard) at 50°C for 3 or more hr in a shaking water bath. The radioactivity of 45Ca was determined by a Packard Tri-Carb liquid scintillation spectrometer.

Microsomal preparation: The tracheal smooth muscle was homogenized with a Polytron homogenizer (Kinematica) in 9 volumes of 0.25 M sucrose containing 50 mM Tris-Maleate buffer, pH 7.4, and centrifuged at 10,000xg for 20 min. The supernatant fluid was further centrifuged at 77,000xg for 90 min, and the pellet was used as the microsomal fraction after resuspension in 50 mM Tris-Maleate buffer, pH 7.4. This preparation also contained plasma membranes and no more than 10% of the total mitochondria. Protein was determined by the method of Lowry et al. (14) with bovine serum albumin as a standard.

Standard assay for microsomal Ca$^{2+}$ uptake: Microsomal Ca$^{2+}$ uptake was assayed by the method of Nishikori et al. (15) with a slight modification. The final reaction mixture contained 50 mM Tris-Maleate buffer, pH 7.4, 80 mM KCl, 2.5 mM Tris-oxalate, 0.2 mM ATP, 0.8 mM MgCl$_2$, 3 mM phosphoenolpyruvate, 1 unit of
pyruvate kinase (5 μg protein), 0.125 mM CaCl₂ with 1 μCi ⁴⁵Ca, 0.156 mM EGTA, and microsomes (100–200 μg protein) in a total volume of 0.2 ml. The concentration of free Ca²⁺ in the reaction mixture was calculated to be 6 μM from the affinity constant of 5×10⁻⁵ M (16) between EGTA and Ca²⁺ at pH 7.4. After preincubation for 1 min at 25°C, Ca²⁺ uptake was started by addition of 30 μl ⁴⁵CaCl₂-EGTA buffer, pH 7.4, containing 50 mM Tris-Maleate, 0.83 mM CaCl₂ with 33.3 μCi ⁴⁵Ca/ml, and 1.04 mM EGTA and the reaction was carried out for 1 min. Thereafter, 2 ml of Ca²⁺-free buffer containing 50 mM Tris-Maleate buffer, pH 7.4, 80 mM KCl, 2.5 mM Tris-oxalate, 1.5 mM MgCl₂, and 1 mM EGTA was added to the reaction mixture, and then the mixture was filtered through a HA Millipore filter disc (pore size 0.45 μm, Millipore Japan). The disk was quickly washed with the ice-cold Ca²⁺-free buffer. The radioactivity on the filter disc was counted with a Packard Tri-carb liquid scintillation spectrometer. Blank values of the Ca²⁺ uptake were determined by using 2 min-boiled microsomes.

Statistics: The EC₅₀ values were calculated by the Probit method. Statistical significance of the data was estimated using the Student's t-test.

RESULTS

Relaxation by prostaglandins and some relaxants: As shown in Fig. 1, PGE₂ and its derivative YPG-209 relaxed in a dose-dependent fashion the acetylcholine contracted canine trachea with EC₅₀ values (median effective concentrations required to result in 50% relaxation) of (1.6±0.9)×10⁻⁶ M and (4.7±1.8)×10⁻⁶ M, respectively. Verapamil, a calcium antagonist, also exhibited similar dose-dependent relaxation of acetylcholine-contracted trachea with an EC₅₀ of (3.5±0.6)×10⁻⁶ M. Isoproterenol, a stimulant of β-adrenergic receptors, also relaxed the contracted trachea with an EC₅₀ value of (4.0±2.0)×10⁻⁶ M (not illustrated), similar to that for the prostaglandins. Of the drugs tested, dibutyryl cyclic AMP was found to be the least potent with an EC₅₀ of (1.3±0.6)×10⁻³ M.

Effects of prostaglandins on contraction induced by tetraethylammonium or acetylcholine in Tyrode solution: In order to determine whether relaxation of the tracheal smooth muscle by prostaglandins is caused by reducing a Ca²⁺ influx or by affecting the intracellular Ca²⁺ movement, we first investigated possible modes for the actions of tetraethylammonium and acetylcholine on the contraction of trachea in the presence and absence of Ca²⁺ in the incubation medium.

As shown in Fig. 2A, 5×10⁻³ M tetraethylammonium produced contraction of the tracheal smooth muscle in Tyrode solution after a short lag period (a few minutes). Following removal of tetraethylammonium, the tracheal smooth muscle was exposed to Ca²⁺-free Tyrode solution. Under the
Fig. 2. Spasmogenic action of tetraethylammonium (TEA) on canine tracheal smooth muscle in Tyrode solution in the presence and absence of Ca²⁺ (A). The developed tension (mean±S.E. of 40 experiments) produced by 5×10⁻³ M tetraethylammonium in Tyrode solution was 1.53±0.08 g. W indicates 3 times washing with Tyrode solution. Spasmogenic action of tetraethylammonium on canine tracheal smooth muscle in the Tris-buffered physiological solution in the presence and absence of lanthanum (La³⁺) (B). W indicates 3 times washing with the Tris-buffered physiological solution.

Ca²⁺-free conditions, tetraethylammonium failed to produce contraction. However, the addition of 1.8 mM Ca²⁺ restored the contractile response to tetraethylammonium. The spasmogonic action of tetraethylammonium in the Tris-buffered physiological solution was completely blocked after a 20 min incubation with 5 mM lanthanum (Fig. 2B), an inhibitor of the transmembrane flux of Ca²⁺ (12), as in the case of bovine tracheal smooth muscle (8). These results indicate that the spasmogenic action of tetraethylammonium is dependent upon the presence of extracellular Ca²⁺.

When 1.7×10⁻⁷ M acetylcholine was used, the response of tracheal smooth muscle in Ca²⁺-free Tyrode solution was rather different from that to tetraethylammonium (Fig. 3A). The contractile response to acetylcholine 10 min after removal of Ca²⁺ was reduced to 38.6±2.3% of the control. However, the full amplitude of contraction was restored after addition of 1.8 mM Ca²⁺ to the incubation medium. It was of interest that, in contrast to tetraethylammonium, acetylcholine still produced a partial contraction (22.2%) even in the presence of 5 mM lanthanum in the Tris-
Fig. 3. Spasmogenic action of acetylcholine (ACh) on canine tracheal smooth muscle in Tyrode solution in the presence and absence of Ca²⁺ (A). The developed tension (mean±S.E. of 40 experiments) produced by 1.7 × 10⁻⁷ M acetylcholine in Tyrode solution was 1.55±0.09 g. W indicates 3 times washing with the Tyrode solution. Spasmogenic action of acetylcholine on canine tracheal smooth muscle in the Tris-buffered physiological solution in the presence and absence of lanthanum (La⁺⁺⁺) (B). W indicates 3 times washing with the Tris-buffered physiological solution.

buffered physiological solution (Fig. 3B) as in the case of bovine tracheal smooth muscle (8). These results suggest that the contraction of canine tracheal smooth muscle by acetylcholine is regulated by not only intracellular but also extracellular Ca²⁺.

Based on these data, the effect of pretreatment with prostaglandins was studied to see which agent-induced contraction was more altered by the prostaglandins. As shown in Fig. 4A and B, both PGE₂ and YPG-209 showed considerable selective inhibition of the spasmogenic action of acetylcholine in the presence of extracellular Ca²⁺. Dibutyryl cyclic AMP also inhibited the action of acetylcholine in a slightly more selective manner (Fig. 4D). On the contrary, verapamil (Fig. 4C), an inhibitor of Ca²⁺ influx (17), more specifically blocked the spasmogenic action of tetraethylammonium.

Effects of prostaglandins on acetylcholine-induced contraction in Ca²⁺-free Tyrode solution: Ten minutes after removal of Ca²⁺, 1.7 × 10⁻⁷ M acetylcholine produced contraction of the tracheal tissue by as much as 38.6±2.3% of the control response in normal Tyrode solution as mentioned above. This contraction in the absence of Ca²⁺ was blocked by prostaglandins in a dose-dependent fashion between 10⁻⁸ M and 10⁻⁴ M as depicted in Table 1. Dibutryl cyclic AMP also inhibited the acetylcholine-induced contraction at concentrations above 10⁻⁴ M. The median effective concentrations required to result in 50% inhibition (EC₅₀) were 1.2 × 10⁻⁶ M, 1.9 × 10⁻⁶ M, and 5.1 × 10⁻⁴ M for PGE₂, YPG-209, and dibutryl cyclic AMP, respectively.

Effects of prostaglandins on cellular ⁴⁵Ca uptake: Since the pharmacological data shown above suggested that PGE₂ results in tracheal relaxation at least partly through an intracellular Ca²⁺ movement, an experiment was attempted to see the effect of PGE₂ on ⁴⁵Ca influx by the tissue. ⁴⁵Ca uptakes by canine tracheal smooth muscle in HEPES-buffer A and B were about 100 and 135 nmol/g wet tissue, respectively, during a 30 min incubation. The addition of 15 mM lanthanum markedly reduced ⁴⁵Ca uptake to a level of 40 nmol/g wet tissue in either HEPES-buffer A or B. As shown in Table 2, the increase in ⁴⁵Ca influx by 83 mM KCl plus 20 mM tetraethylammonium (83 mM KCl plus 20 mM tetraethylammonium was used to produce a full depolarization) (8) was completely abolished by 10⁻⁵ M verapamil and inhibited by about 50% by 10⁻⁷ M verapamil (data is not shown), whereas ⁴⁵Ca uptake in the presence of 2.68 mM KCl was not significantly altered as reported with rabbit aorta (13, 18). In
Fig. 4. Inhibitory effects of PGE2, YPG-209, verapamil, and dibutyryl cyclic AMP (DibcAMP) on the spasmogenic action of 5×10^{-3} M tetraethylammonium (TEA) or 1.7×10^{-7} M acetylcholine (ACh). Tracheal responses were recorded in Tyrode solution in the absence and then the presence of various concentrations of the test compounds. The tissue was incubated for 10 min with the test compounds. The results represent the means±S.E. of 5 experiments and are expressed as the percent inhibition of the control response to each agonist.

In contrast to verapamil, 10^{-5} M PGE2 and 10^{-4} M YPG-209 were unable to affect significantly the cellular ^{45}Ca uptake in either HEPES-buffer A or B.

Effects of PGE2 and cyclic AMP on microsomal Ca$^{++}$ uptake: Microsomal Ca$^{++}$ uptake was increased linearly up to at least 250 μg of protein, and the reaction proceeded linearly for at least 1 min. In the absence of ATP and its regenerating system, Ca$^{++}$ uptake was about 1.6% of that at the maximal effective dose of ATP (1.6 mM), indicating that the microsomal Ca$^{++}$ uptake completely depends on ATP under these conditions (Fig. 5). The apparent Km value for ATP (the concentration required to produce half-maximal activation) was about 0.25 mM, and the maximum velocity (Vmax) of Ca$^{++}$ uptake was about 1.4 nmol/mg protein/min.

Figure 6 shows the time course of microsomal Ca$^{++}$ uptake in the presence and absence of 3×10^{-5} M PGE2 or 3×10^{-6} M cyclic AMP. PGE2 increased by about two-fold the Ca$^{++}$ uptake, whereas stimulation of
Ca$^{++}$ uptake by cyclic AMP was about 50% during the linear phase of the reaction. However, the stimulatory effect of PGE$_2$ and cyclic AMP were strictly dependent upon the concentration of ATP as shown in Table 3. An increase in the concentration of ATP from 0.2 mM to 0.8 mM reduced markedly the stimulation of Ca$^{++}$ uptake by

Table 1. Dose-dependent effects of PGE$_2$, YPG-209, and dibutyryl cyclic AMP (DibcAMP) on the spasmogenic action induced by acetylcholine in Ca$^{++}$-free Tyrode solution

Drug	Concentration (M)	n	Contraction (%)	Inhibition (%)
Control	—	5	38.6±2.3	—
PGE$_2$	10$^{-8}$	4	29.2±2.9*	22.5
	10$^{-7}$	5	26.0±1.8**	32.6
	10$^{-6}$	5	16.5±1.7**	57.6
	10$^{-5}$	5	14.8±0.5**	61.7
	10$^{-4}$	5	10.8±1.0**	72.0
YPG-209	10$^{-6}$	4	30.3±1.4*	21.5
	10$^{-7}$	5	25.0±1.4**	35.2
	10$^{-6}$	4	22.0±0.9**	43.0
	10$^{-5}$	5	14.5±0.3**	62.4
	10$^{-4}$	5	10.0±1.2**	72.0
DibcAMP	10$^{-4}$	5	27.9±2.1*	27.7
	10$^{-3}$	5	20.1±4.7**	47.9
	10$^{-2}$	5	1.8±0.5**	95.3

* Drugs were added at the time of change from normal to Ca$^{++}$-free Tyrode solution. After 10 min, acetylcholine was added.

b Contraction was expressed as the percent contraction of the control response in normal Tyrode solution.

* Significantly lower than the control (P<0.05).

** Significantly lower than the control (P<0.01).

Table 2. Effects of PGE$_2$, YPG-209, and verapamil on cellular 45Ca uptake

Drug	Concentration (M)	45Ca uptake (nmol/g wet tissue/30 min)	
		2.68 mM KCl	83 mM KCl plus 20 mM TEA
Control	—	61.2±5.1 (6)	93.2±2.7 (6)
PGE$_2$	10$^{-5}$	56.3±3.7 (4)	79.3±8.5 (4)
YPG-209	10$^{-4}$	69.9±11.5 (4)	82.8±6.1 (4)
Verapamil	10$^{-5}$	62.4±6.8 (4)	46.8±2.3 (6)*

After tracheal smooth muscle preparations were preincubated for 10 min with PGE$_2$, YPG-209, or verapamil, 45Ca uptake was initiated by transferring the tissue preparations to the fresh buffers containing 1.25 mM CaCl$_2$ with 0.2 μCi 45Ca/ml and continued for 30 min under the various conditions. The uptake reaction was terminated by addition of 15 mM lanthanum and extracellularly bound 45Ca was expelled in 15 mM lanthanum-containing Ca$^{++}$-free buffer for 60 min. Cellular 45Ca uptake was defined as the difference in 45Ca uptake between in the absence and presence of 15 mM lanthanum. The results represent the means±S.E. of several experiments as indicated in the parenthesis.

*Significantly lower than the control (P<0.05).
either PGE$_2$ or cyclic AMP. Table 4 shows the effect of various concentrations of PGE$_2$ and cyclic AMP on the Ca$^{++}$ uptake under the standard conditions. Both PGE$_2$ and cyclic AMP increased the Ca$^{++}$ uptake in a dose-dependent fashion. PGE$_2$ increased basal Ca$^{++}$ uptake at most two-fold with a Ka value (concentration required for half-maximal stimulation) of 6x10$^{-7}$ M. Addition of cyclic AMP did not result in further increase in the Ca$^{++}$ uptake in the presence of 3x10$^{-6}$ M PGE$_2$. Cyclic AMP increased basal Ca$^{++}$ uptake at most 1.5 fold with a Ka value of about 10$^{-6}$ M. Addition of 3x10$^{-5}$ M nicardipine hydrochloride, a cyclic AMP phosphodiesterase inhibitor with an inhibition constant (Ki) of about 2x10$^{-6}$ M (19), was unable to further increase the Ca$^{++}$ uptake in the presence of 3x10$^{-5}$ M cyclic AMP. As shown in Table 5, the addition

![Graph showing effect of ATP on microsomal Ca$^{++}$ uptake.](image)

Fig. 5. Effect of ATP on microsomal Ca$^{++}$ uptake. Freshly prepared microsomes (160 µg of protein) were added to the incubation medium containing 50 mM Tris-Maleate, pH 7.4, 80 mM KCl, 2.5 mM Tris-oxalate, 3 mM phosphoenolpyruvate, 1 unit of pyruvate kinase, and 6 µM Ca$^{++}$ (45Ca/EGTA buffer containing 125 µM CaCl$_2$) with a constant molar ratio of MgCl$_2$ to ATP (4 to 1). Incubations were carried out for 1 min at 25°C. The results represent the means±S.E. of 4 experiments. The blank value of Ca$^{++}$ uptake was 0.14±0.02 nmol/mg protein.

![Graph showing microsomal Ca$^{++}$ uptake in the absence and presence of PGE$_2$ or cyclic AMP.](image)

Fig. 6. Microsomal Ca$^{++}$ uptake in the absence (---) and presence of 3x10$^{-5}$ PGE$_2$ (---O--) or 3x10$^{-5}$ M cyclic AMP (---A--). Incubations were carried out with 150 µg microsomal protein under the standard conditions with 0.2 mM ATP and its regenerating system, except for varying the incubation time. The results represent the means±S.E. of 6 experiments.

Table 3. Effect of ATP on stimulation of microsomal Ca$^{++}$ uptake by PGE$_2$ and cyclic AMP

Drug	Concentration (M)	Ca$^{++}$ uptake (nmol/min/mg protein)	
		ATP 0.2 mM	ATP 0.8 mM
Control		0.57±0.06	1.21±0.30
PGE$_2$	3x10$^{-6}$	1.05±0.14*	1.34±0.32
Cyclic AMP	3x10$^{-6}$	0.82±0.08*	1.37±0.28

Incubations were carried out with 160 µg microsomal protein under the standard conditions except for varying ATP concentration and the presence of indicated drugs. The results represent the means±S.E. of 4 experiments.

*Significantly higher than the control (P<0.05).
Table 4. Effects of PGE₂ and cyclic AMP on microsomal Ca²⁺ uptake

Drug	Concentration (M)	Ca²⁺ uptake (percent of control)
Control	---	100.0±4.3*
PGE₂	3×10⁻⁷	132.1±11.5*
	3×10⁻⁶	179.4±17.4**
	3×10⁻⁵	197.6±19.1*
PGE₂ + Cyclic AMP	3×10⁻⁵	192.0±23.4*
Cyclic AMP	3×10⁻⁷	115.5±6.8
	3×10⁻⁶	131.4±6.7*
	3×10⁻⁵	148.2±13.7*
Cyclic AMP + Nicardipine⁹	3×10⁻⁵	148.7±12.4*

Incubations were carried out with 160 µg microsomal protein under the standard conditions except for the presence of indicated drugs. The results represent the means±S.E. of four experiments.

* Significantly higher than the control (P<0.05).
** Significantly higher than the control (P<0.01).

Nicardipine was formally referred to as YC-93 (10, 19).

Table 5. Effect of cyclic AMP phosphodiesterase on stimulation of microsomal Ca²⁺ uptake by PGE₂ and cyclic AMP

Drug	Concentration (M)	Ca²⁺ uptake (nmol/min/mg protein)	
		Phosphodiesterase Absence	Presence
Control	---	0.58±0.06	0.40±0.09
PGE₂	3×10⁻⁵	1.12±0.17*	0.82±0.09*
Cyclic AMP	3×10⁻⁵	0.83±0.07*	0.41±0.06

Beef heart cyclic AMP phosphodiesterase (300 µg protein) was added to the reaction mixture containing microsomes (240 µg protein) 30 sec before preincubation at 25°C. The preincubation was started by addition of ATP and its regenerating system. Other conditions were as described under "Methods". The results represent the means±S.E. of four experiments.

*Significantly higher than the control (P<0.05).

DISCUSSION

In the present experiments, tetraethylammonium-induced contraction of canine tracheal smooth muscle is completely abolished either by removal of Ca²⁺ from the incubation medium or by the addition of cyclic AMP phosphodiesterase to the reaction mixtures completely eliminated stimulation of the microsomal Ca²⁺ uptake by 3×10⁻⁵ M cyclic AMP, whereas the stimulation by 3×10⁻⁵ M PGE₂ was only slightly decreased, suggesting that a cyclic AMP-related mechanism is not apparently involved in the stimulation of Ca²⁺ uptake by PGE₂.
lantanum, suggesting that the contraction is dependent upon extracellular Ca\(^{2+}\), as in the case of bovine tracheal smooth muscle (8). On the other hand, acetylcholine is able to produce a partial contraction either in a Ca\(^{2+}\)-free solution or in the presence of lanthanum, suggesting that acetylcholine is able to mobilize Ca\(^{2+}\) from the intracellularly sequestered Ca\(^{2+}\) store. Thus, acetylcholine may induce contraction by concomitantly using both intracellular and extracellular Ca\(^{2+}\) as already suggested by Kirkpatrick (8).

Pretreatment with the prostaglandins or dibutyryl cyclic AMP resulted in more efficient suppression of the acetylcholine-induced contraction. This suggests that prostaglandins- and dibutyryl cyclic AMP-induced suppressions do not result from the inhibition of Ca\(^{2+}\) influx across the membrane but from the inhibition of the intracellular Ca\(^{2+}\) movement, since the contractile response to acetylcholine is inhibited only slightly by verapamil in concentrations sufficient to cause marked attenuation of contraction induced by tetraethylammonium. This is consistent with the biochemical data which demonstrate that the influx of \(^{45}\)Ca in canine tracheal smooth muscle as measured by the lanthanum method (12) is not affected by prostaglandins. Van Breemen (20) has reported that RO 20–1724, a phosphodiesterase inhibitor, reduces the development of the tension by high K\(^+\) without affecting the high K\(^+\)-induced net Ca\(^{2+}\) flux across the cell membrane in rabbit aorta. These results are consistent with the interpretation that Ca\(^{2+}\) entering the cells by high K\(^+\) stimulation is partly sequestered by the sarcoplasmic reticulum and mitochondria before it reaches the active sites on the myofilament. Thus it is likely that attenuation of the contractile response to tetraethylammonium by high concentrations of prostaglandins result from the stimulation of microsomal Ca\(^{2+}\) uptake. The prostaglandins and dibutyryl cyclic AMP inhibit the spasmogenic action of acetylcholine in a Ca\(^{2+}\)-free medium. This may be attributable to the stimulation of microsomal Ca\(^{2+}\) uptake. It must be emphasized, however, that stimulation of microsomal Ca\(^{2+}\) uptake by PGE\(_2\) and cyclic AMP requires the optimal concentration of ATP (Table 3). It has been already reported that maximal stimulation of microsomal Ca\(^{2+}\) uptake by cyclic AMP occurs at ATP concentrations of 0.25 mM and 0.3 mM in rat uterus (15) and rabbit colon (21), respectively. Since the microsomal preparation contained adenylate cyclase activity, cyclic AMP endogenously formed when a higher concentration of ATP was added may mask its stimulating effect.

A role of the prostaglandins appears to increase the affinity for ATP. The lack of cyclic AMP-induced stimulation of microsomal Ca\(^{2+}\) uptake in the trachea reported by Sands et al. (22, 23) may be attributed to utilization of 5 mM ATP in the incubation mixture. The present data suggest an at least partial involvement of a cyclic AMP system in the mechanism by which the prostaglandins relax airway smooth muscle. However, some data against cyclic AMP involvement are obtained in the prostaglandin action. For instance, cyclic AMP phosphodiesterase completely eliminates stimulation by cyclic AMP of microsomal Ca\(^{2+}\) uptake, but only slightly reduces the stimulation by PGE\(_2\). Moreover, stimulation of Ca\(^{2+}\) uptake by PGE\(_2\) is much greater than that by cyclic AMP.

Although theophylline has been believed to relax the airway smooth muscle through its ability to raise the intracellular level of cyclic AMP, Kolbeck et al. (24) have demonstrated recently that theophylline increases the sequestration of Ca\(^{2+}\) to the mitochondria of guinea-pig tracheal smooth muscle without affecting cyclic AMP and total tissue Ca\(^{2+}\) levels. Therefore, they suggest that cyclic AMP is not involved in
the relaxing effect of theophylline on airway smooth muscle.

In summary, PGE$_2$ and YPG-209 induce the relaxation of airway smooth muscle mainly through affecting the intracellular Ca$^{2+}$ movement such as by enhancement of sequestration of Ca$^{2+}$ to the microsomes.

Acknowledgments: We are grateful to Drs. K. Takahashi and N. Inukai for their invaluable advice, to Miss T. Hanazato for her technical assistance, and to Miss Y. Miyata for preparing our manuscript.

REFERENCES

1) Main, I.H.M.: The inhibitory actions of prostaglandins on respiratory smooth muscle. Brit. J. Pharmacol. 22, 511–519 (1964)
2) Törek, R.K. and Khairallah, P.A.: Prostaglandin E$_1$ action on canine isolated tracheal muscle. J. Pharm. Pharmacol. 21, 498–501 (1969)
3) Tomioka, K., Terai, M. and Maeno, H.: Oral bronchodilator effect of 16(S)-methyl-20-methoxy-PGE$_2$ (YPG-209) in guinea-pigs. Archs int. Pharmacodyn. Thér. 226, 224–234 (1977)
4) Tomioka, K. and Maeno, H.: Bronchodilator effects of 16(S)-methyl-20-methoxy-PGE$_2$ (YPG-209) in some animals. Int. J. Tiss. Reac. 1, 125–132 (1979)
5) Herxheimer, H.: Prostaglandin E$_1$ and E$_2$ prevent bronchoconstriction in the guinea-pig. Brit. J. Pharmacol. 50, 314–315 (1974)
6) Perper, R.J., Oronsky, A.L. and Blancuzzi, V.: An analysis of the specificity in pharmacological inhibition of the passive cutaneous reaction in mice and rats. J. Pharmacol. exp. Ther. 193, 594–602 (1975)
7) Tomioka, K. and Maeno H.: Inhibition of hyper-sensitivity reactions by 16(S)-methyl-20-methoxy-PGE$_2$ (YPG-209) in animals. Archs int. Pharmacodyn. Thér. 244, 157–166 (1980)
8) Kirkpatrick, C.T.: Excitation and contraction in bovine tracheal smooth muscle. J. Physiol. 244, 263–281 (1975)
9) Iwamoto, H., Inukai, N., Yanagisawa, I., Ishii, Y., Tamura T., Shiozaki, T., Takagi, T., Tomioka, K. and Murakami, M.: Studies on prostaglandins. VI. Synthesis of 16(S)-methyl-20-methoxy-PGE$_2$ (YPG-209) having oral bronchodilator activity and its analogs. Chem. Pharm. Bull. 28, 1422–1431 (1980)
10) Iwanami, M., Shibunuma, T., Fujimoto, M., Kawai, R., Tamazawa, K., Takenaka, T., Takahashi, K. and Murakami, M.: Synthesis of new water-soluble dihydropyridine vasodilators. Chem. Pharm. Bull. 27, 1426–1440 (1979)
11) Deth, R. and Van Breemen, C.: Relative contributions of Ca$^{2+}$ influx and cellular Ca$^{2+}$ release during drug induced activation of the rabbit aorta. Pflügers Arch. 348, 13–22 (1974)
12) Van Breemen, C., Farinas, B.R., Gerba, P. and McNaughton, E. D.: Excitation-contraction coupling in the rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ. Res. 30, 44–54 (1972)
13) Terai, M., Takenaka, T. and Maeno, H.: Inhibition of calcium influx in rabbit aorta by nicardipine hydrochloride (YC-93). Biochem. Pharmacol. 30, 375–378 (1981)
14) Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)
15) Nishikori, K., Takenaka, T. and Maeno, H.: Stimulation of microsomal calcium uptake and protein phosphorylation by adenosin cyclic 3',5'-monophosphate in rat uterus. Mol. Pharmacol. 13, 671–678 (1977)
16) Godfrained, T., Sturbois, X. and Verbeke, N.: Calcium incorporation by smooth muscle microsomes. Biochim. Biophys. Acts 455, 254–268 (1976)
17) Fleckenstein, A., Tritthart, H., Fleckenstein, B., Herbst, A. and Gruen, G.: Selektive Hemmung der Myokard-Contractilität durch kompetitive Ca$^{2+}$-antagonisten (Iproveratril, D600, Prenylamin). Naunyn-Schmiedeberg’s Arch. Pharmacol. 264, 227–228 (1969)
18) Kreye, V.A.W., Baron, G.D., Luth, J.B. and Schmidt-Gayk, H.: Mode of action of sodium nitroprusside on vascular smooth muscle. Naunyn-Schmiedeberg’s Arch. Pharmacol. 288, 381–402 (1975)
19) Sakamoto, N., Terai, M., Takenaka, T. and Maeno, H.: Inhibition of cyclic AMP phosphodiesterase by 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-[(2-(N-benzyl-N-methylamino)) ethyl ester 5-methyl ester hydrochloride (YC-93), a potent vasodilator. Biochem. Pharmacol. 27, 1269–1274 (1978)
20) Van Breemen, C.: Calcium activation of intact aortic smooth muscle. J. Physiol. 272, 317–329 (1977)
21) Nilsson, K.B., Andersson, R.G.G., Mohme-Lundholm, E. and Lundholm, L.: Cyclic AMP and Ca-binding in microsomal fractions isolated from rabbit colon smooth muscle. Acta Phar-
Macol. Toxicol. 41, 53–64 (1977)

22) Sands, H., Mascali, J. and Paietta, E.: Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Biochim. Biophys. Acta 500, 223–234 (1977)

23) Sands, H. and Mascali, J.: Effects of cyclic AMP and protein kinase of the calcium uptake by various tracheal smooth muscle organelles. Archs int. Pharmacodyn. Thér. 236, 180–191 (1978)

24) Kolbeck, R.C., Speir, W.A., Jr., Carrier, G.O. and Bransome, E.D., Jr.: Apparent irrelevance of cyclic nucleotides to the relaxation of tracheal smooth muscle induced by theophylline. Lung 156, 173–183 (1979)