Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens

Caillan Crowe-McAuliffe1,7, Victoriia Murina2,3,7, Kathryn Jane Turnbull2,3, Marje Kasari4, Merianne Mohamad5, Christine Polte1, Hiraku Takada2,3, Karolis Vaitkevicius2,3, Jörgen Johansson2,3, Zoya Ignatova1, Gemma C. Atkinson2, Alex J. O’Neill5, Vasili Hauryliuk2,3,4,6✉ & Daniel N. Wilson1✉

Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.
The bacterial ribosome is a major antibiotic target. Despite the large size of the ribosome, and the chemical diversity of ribosome-targeting small compounds, only a few sites on the ribosome are known to be bound by clinically used antibiotics. On the 50S large ribosomal subunit, two of the major antibiotic-binding sites are the peptidyl transferase centre (PTC) and the nascent peptide exit tunnel. The PTC is targeted by pleuromutilin, lincosamide and streptogramin A (PLSₐ) antibiotics, as well as phenicols and oxazolidinones. Representatives of macrolide and streptogramin B classes bind at adjacent sites at the beginning of the nascent peptide exit tunnel. In contrast to the macrolides and streptogramin B antibiotics that predominantly inhibit translation during elongation, the PLSₐ antibiotics overlap with the amino acids attached to theCCA-ends of the A- and/or P-site tRNAs and trap ribosomes during or directly after initiation. This is highlighted by the recent usage of the pleuromutilin rapamycin to identify translation initiation sites in Ribo-Seq experiments.

Many mechanisms have evolved to overcome growth inhibition by such antibiotics in bacteria, among them target protection mediated by a subset of ABC family of proteins. ATP-binding cassette (ABC) ATPases are a ubiquitous superfamily of proteins found in all domains of life, best-known as components of membrane transporters. A typical ABC transporter contains two nucleotide-binding domains (NBDs), each of which contribute one of two faces to an ATP-binding pocket, as well as transmembrane domains. Some sub-groups of ABC proteins, however, lack membrane-spanning regions and have alternative cytoplasmic functions, such as being involved in translation. For example, in eukaryotes Rli1/ABCE1 is a ribosome splitting factor involved in recycling after translation termination, and the fungal eEF3 proteins bind the ribosome to facilitate late steps of translocation and E-site tRNA release. The F-type subfamily of ABC proteins, which are present in bacteria and eukaryotes, contain at least two NBDs separated by an α-helical interdomain linker and notably lack transmembrane regions.

One group of bacterial ABCFs, which are termed antibiotic resistance (ARE) ABCFs, confer resistance to antibiotics that bind to the 50S subunit of the bacterial ribosome. Characterized ARE-ABCFs are found predominantly in Gram-positive bacteria, including human and animal pathogens, typically have a restricted host specificity, and can be further divided into eight subfamilies. Although initially thought to act as part of efflux systems, these proteins were subsequently shown instead to bind the ribosome, oppose antibiotic binding, and to reverse antibiotic-mediated inhibition of translation in vitro.

Phylogenetic analyses indicate that ARE-ABCFs may have arisen multiple times through convergent evolution, and that antibiotic specificity can be divergent within a related subgroup. Classified by the spectrum of conferred antibiotic resistance, ARE-ABCFs can be categorized into eight subfamilies with three different resistance spectra.

1. A highly polyphyletic group of ARE-ABCFs that confer resistance to the PTC-binding PLSₐ antibiotics (ARE1, ARE2, ARE3, ARE5 and ARE6 subfamilies). The most well-studied representatives are VmIR, VgaA, Sala, LmrC and LsaA. Additionally, a lincomycin-resistance ABCF that belongs to this group, termed Lmo0919, has been reported in .

2. ARE-ABCFs that confer resistance to antibiotics that bind within the nascent peptide exit channel (a subset of the ARE1 subfamily, and ARE4). The most well-studied representatives are Macrolide and streptogramin B resistance (Msr) proteins.

3. Poorly experimentally characterized ARE-ABCF proteins belonging to subfamilies ARE7 (such as OptrA) and ARE8 (PoxA). These resistance factors confer resistance to phenicols and oxazolidinones that bind in the PTC overlapping with the PLSₐ-binding sites and are spreading rapidly throughout bacteria in humans and livestock by horizontal gene transfer.

Additionally, several largely unexplored groups of predicted novel ARE-ABCFs are found in high-GC Gram-positive bacteria associated with antibiotic production.

So far, two structures of ARE-ABCFs bound to the 70S ribosome have been determined. In each instance, the ARE-ABCF interdomain linker extends from the E-site-bound NBDs into the relevant antibiotic-binding site in the ribosome, distorting the P-site tRNA into a non-canonical state located between the P and E sites. The tip of the interdomain linker—termed the antibiotic resistance determinant (ARD) in ARE-ABCFs—is not well conserved among (and sometimes not even within) subfamilies, and mutations in this region can abolish activity as well as change antibiotic specificity. Mutagenesis indicates that both steric overlap between the ARD and the antibiotic, as well as indirect reconfiguration of the RNA and the antibiotic-binding site, may contribute to antibiotic resistance.

Non-ARE ribosome-associated ABCFs that do not confer resistance to antibiotics—such as EttA—tend to have relatively short interdomain linkers that contact and stabilize the P-site tRNA. ARE-ABCFs that confer resistance to PLSₐ antibiotics (such as VmIR) have extensions in the interdomain linker that allow them to reach into the antibiotic-binding site in the PTC. The longest interdomain linkers belong to ARE-ABCFs that confer resistance to macrolides and streptogramin B antibiotics (e.g. MsrE), and such linkers can extend past the PTC into the nascent peptide exit tunnel. The length of the bacterial ABCF ARD generally correlates with the spectrum of conferred antibiotic resistance. Notable exceptions to this pattern are OptrA and PoxA ARE-ABCFs which have short interdomain linkers, yet still confer resistance to some PTC-binding antibiotics, while typically PTC-protecting ARE-ABCFs such as VmIR, LsaA and VgaA typically have comparatively long interdomain linkers.

The available ARE-ABCF-ribosome structures were generated by in vitro reconstitution. and , which confers resistance to tunnel-binding macrolides and streptogramin B antibiotics (that inhibit translation elongation) was analysed bound to a heterologous Thermus thermophilus initiation complex. , VmIR, which confers resistance to PLSₐ antibiotics that bind in the PTC (which stall translation at initiation), was analysed in complex with a B. subtilis 70S ribosome arrested during elongation by the presence of a macrolide antibiotic. Structures of native physiological complexes (such as those generated using pull-down approaches from the native host) are currently lacking.

In this work, we systematically characterize the antibiotic resistance specificity and determine the structure of three in vivo formed ARE-ABCF-70S ribosome complexes using affinity chromatography and cryo-electron microscopy (cryo-EM). Our study focusses on ARE-ABCFs that confer resistance to PLSₐ antibiotics in clinically relevant Gram-positive pathogens, namely, the ARE3 representative Enterococcus faecalis LsaA as well as the ARE1 representatives Listeria monocytogenes Lmo0919 (refs. ——) which we have termed VgaL—and the well-characterized VgaAₐC protein, initially isolated from and Enterococcus are commensal organisms that are prevalent in diverse healthcare-associated infections, and antibiotic resistance is...
spreading through these species.51–54 \textit{L. monocytogenes} is a foodborne pathogen that poses a particular risk to pregnant women and immunocompromised patients.55 Our structures, supported by extensive mutagenesis experiments, provide insight into the mechanism by which these distinct ARE-ABCFs displace antibiotics from their binding site on the ribosome to confer antibiotic resistance.

Results

Cryo-EM structures of in vivo formed ARE-ABCF-70S complexes. To obtain in vivo formed ARE-ABCF-70S complexes, we expressed C-terminally FLAG\(_3\)-tagged ATPase-deficient EQ\(_2\) variants of \textit{E. faecalis} LsaA, \textit{S. aureus} Vga\(_{\text{ALC}}\) and \textit{L. monocytogenes} VgaL in their corresponding native host bacterial species. The FLAG\(_3\) tag was used for affinity purification of each protein locked onto their respective ribosomal target. The ARE-ABCFs co-migrated with the 70S fraction through sucrose gradients—with the complex further stabilized in the presence of ATP in the case of LsaA and Vga\(_{\text{ALC}}\)—and co-eluted with ribosomal proteins after affinity purification (Supplementary Figs. 1–3).

The resulting in vivo formed complexes were characterized by single-particle cryo-EM (see ‘Methods’), yielding ARE-70S complexes with average resolutions of 2.9 Å for \textit{E. faecalis} LsaA, 3.1 Å for \textit{S. aureus} Vga\(_{\text{ALC}}\) and 2.9 Å for \textit{L. monocytogenes} VgaL (Fig. 1a–c, Supplementary Table 4 and Supplementary Figs. 4–6). In each instance, the globular NBDs of the ARE-ABCF were bound in the E-site, and the α-helical interdomain linker, consisting of two α-helices (α\(_1\) and α\(_2\)) and the ARD loop, extended towards the PTC (Fig. 1a–c). Additionally, a distorted tRNA occupied the P-site (Fig. 1a–c), similarly to what was observed previously for \textit{P. aeruginosa} MsfE and \textit{B. subtilis} Vmr\(_\alpha\).38,45 For the LsaA and VgaL samples, occupancy of the factor on the ribosome was high, with >95% and ∼70% of picked ribosomal particles containing LsaA and VgaL, respectively (Supplementary Figs. 4 and 6). By contrast, Vga\(_{\text{ALC}}\) had lower occupancy (∼60%), implying that the factor dissociated after purification and/or during grid preparation (Supplementary Fig. 5). In silico 3D classification revealed that the major class not containing Vga\(_{\text{ALC}}\) in the dataset was a 70S ribosome with P-tRNA, which could also be refined to an average resolution of 3.1 Å (Supplementary Fig. 5). Generally, the 50S ribosomal subunit and ARE-ABCF interdomain linkers were well-resolved (Fig. 1d–f and Supplementary Figs. 4–6). While ARE-ABCF NBDs, occupying the E-site, had a lower resolution—especially in the regions that contact the ribosomal L1 stalk and the 30S subunit—the density was nonetheless sufficient to dock and adjust homology models in each instance (Fig. 1d–f and Supplementary Figs. 4–6). Densities corresponding to the 30S subunits were of lower quality, indicating flexibility in this region, but, with multibody refinement, were nonetheless sufficient to build near-complete models of each ribosome. Density between NBD1 and NBD2 of each ARE was most consistent with the presence of two molecules of ATP (or another NTP) and a cation, which we tentatively assigned as ATP-1, ATP-2 and magnesium, respectively. Nonetheless, the density in this region was not sufficiently detailed to model this region de novo and caution is warranted in interpreting exact geometries from the model (Fig. 1d–f and Supplementary Fig. 7). Interestingly, the density for the nucleobase of ATP-1 bound in the peripheral nucleotide-binding site of each ARE-ABCF was particularly poor (Supplementary Fig. 7), consistent with the relaxed nucleotide specificity of these proteins, i.e., the ability of ARE-ABCFs to hydrolyze other nucleotides, such as CTP, UTP and GTP.56

By comparison to structures of other ABC proteins, the NBDs adopted a closed conformation bound tightly to each nucleotide (Supplementary Fig. 8). In each ARE-bound 70S structure, the ribosomal small subunit was in a semi-rotated state, although this varied between AREs, with the LsaA- and VgaL-bound ribosomes more rotated than Vga\(_{\text{ALC}}\)-bound 70S (Supplementary Fig. 9a–d).
In each ARE-ABCF-70S map, the P-site tRNA was distorted compared to a classic P-site tRNA, resulting in a substantial shift of the acceptor stem away from the PTC (Supplementary Fig. 9e–h), as observed previously for MsrE and VmlR. In each case, the distorted P-site tRNA was rotated compared to a classic P-site tRNA (21–29°), possibly due to a defined interaction of the tRNA elbow with the NBD2 of the ARE (Supplementary Fig. 9i–k). The CCA 3′ end was particularly disordered, precluding any additional density corresponding to an amino acid or nascent chain from being modelled, although the approximate path could be traced in low-pass-filtered maps (Fig. 1a–c and Supplementary Figs. 4–6). We have used our high-resolution maps to present a model of the ribosome from the Gram-positive pathogen L. monocytogenes and update the model of the S. aureus ribosome. Our models of the E. faecalis and S. aureus ribosomes are in good agreement with those recently described.

LsaA, VgaA\textsubscript{LC} and VgaL bind to translation initiation states. In each cryo-EM map, the P-site tRNA body was sufficiently well-resolved to unambiguously assign the density to initiator tRNA\textsubscript{Met} on the basis of (i) general fit between sequence and density, (ii) the well-resolved codon–anticodon interaction and (iii) a characteristic stretch of G:C base pairs found in the anticodon stem loop of tRNA\textsubscript{Met} (Fig. 2a–c). Additionally, in the small subunit mRNA exit tunnel, density corresponding to a putative Shine-Dalgarno–anti-Shine-Dalgarno helix was observed, consistent with the ARE-ABCF binding to an initiation complex containing tRNA\textsubscript{Met} (Fig. 2d). LsaA–E. faecalis 70S samples were further analysed with a custom tRNA microarray, which confirmed tRNA\textsubscript{Met} was the dominant species found in the sample (Fig. 2e). Collectively, these observations indicate that in our structures the majority of the ARE-ABCFs are bound to 70S translation initiation complexes. While the initiation state is also the state that would result from PLS\textsubscript{A} inhibition, we note that our complexes were formed in the absence of an antibiotic. Thus, in our experimental set-up it is likely that the use of the EQ2 mutants traps the ARE-ABCFs on initiation complexes due to the availability of the E-site.

Further examination of the LsaA-70S volume revealed weak density in the ribosomal A-site (Supplementary Fig. 4f), suggesting that some complexes had entered the elongation cycle. This was unexpected, as the distorted P-site tRNA is predicted to overlap with an accommodated A-site tRNA, although as noted would be compatible with a pre-accommodated A/T-tRNA. A mask around the A-site was used for partial signal subtraction, and focused 3D classification was used to further sub-sort the LsaA-70S volume. One class, containing approximately one-third of the particles, was shown to indeed contain a tRNA in the A-site (Supplementary Figs. 4 and 10a). This tRNA was poorly resolved, suggesting flexibility, and was slightly rotated compared to a canonical, fully accommodated A-site tRNA, and, as for the P-site tRNA, the acceptor stem was significantly disordered and displaced (Supplementary Fig. 10b, c). This state likely reflects an incomplete or late-intermediate accommodation event, as observed previously when translation is inhibited by PTC-binding antibiotics hygromycin A or A201A, both of which were shown to sterically exclude the acceptor stem of a canonical A-site tRNA. A very weak density corresponding to an A-site tRNA was also observed in VgaA\textsubscript{LC} and VgaL volumes, but sub-classification was unsuccessful for these datasets.

VgaA\textsubscript{LC} and VgaL, both of which belong to the ARE1 subfamily—although not LsaA, which belongs to the ARE3 subfamily—contain a short C-terminal extension (CTE) predicted to form two α-helices. Although not conserved among all AREs, deletion of the C-terminal extension (CTE) abolished antibiotic resistance in VmlR and reduced antibiotic resistance in VgaA, implying that this extension is necessary for function in some ARE-ABCFs. Density for this region, which emanates from NBD2 and was located between ribosomal proteins uS7 and uS11, was present in the VgaA\textsubscript{LC}-70S and VgaL-70S maps and was essentially consistent with the position of the VmlR CTE, although not sufficiently resolved to create a model for this region. Although bound close to the mRNA exit channel, the CTEs of VgaA\textsubscript{LC} and VgaL did not contact the Shine-Dalgarno–anti-Shine-Dalgarno helix of the initiation complexes, indicating they are not critical for substrate recognition in these ARE-ABCFs (Supplementary Fig. 10d–f).
The location and conformation of short and long ARDs on the ribosome. The ARD loop, positioned between the two long α-helices that link the NBDs, is a critical determinant of antibiotic resistance. Despite sharing a similar antibiotic specificity profile, the ARDs of LsaA, VgaA_{LC}, VgaL and MsrE are divergent in both amino acid composition and length, which is consistent with the polyphyletic nature of this group but precludes confident sequence alignment of this region (Fig. 3a). Despite such sequence divergence, the position of the ARDs on the ribosome is broadly similar in each instance (Fig. 3b–g). By comparison to tiamulin, which overlaps with the α-aminoacyl moieties of A- and P-tRNAs in the PTC²⁰, VmlR, LsaA, VgaA_{LC} and VgaL are all positioned similarly on the ribosome, with the ARD backbone adjacent to the antibiotic-binding site (Fig. 3b–f). Compared to VmlR⁴⁰, the additional residues in the ARDs of LsaA, VgaA_{LC} and VgaL extend away from the antibiotic-binding site, towards the CCA 3′ end of the tRNA. By contrast, MsrE, which confers resistance to tunnel-binding antibiotics deeper in the ribosome, has a longer ARD that extends both past the PTC to approach the macrolide/streptogramin A-binding site, as well as towards the distant P-tRNA (Fig. 3a, g)²⁸. Thus, the length of the ARD does not necessarily provide insights into the extent to which the ARD will penetrate into the ribosomal tunnel and thus one cannot easily predict whether long ARDs will confer resistance to macrolide antibiotics.

Position of the ARDs with respect to PLS_A antibiotic-binding site. We next made a careful comparison of the LsaA, VgaA_{LC} and VgaL ARDs with the binding sites of relevant antibiotics within the PTC (Fig. 4a, b)^{2,5,6,61}. For LsaA, the side chain of Phe257 overlapped with the binding sites of tiamulin, virginiamycin M and lincomycin, but was not close to erythromycin (Fig. 4a–c), consistent with the spectrum of antibiotic resistance conferred by this protein (Supplementary Table 1). In the VgaA_{LC} ARD, Val219 was situated close to tiamulin and virginiamycin M, and had a modest predicted overlap with lincomycin (Fig. 4d).

Notably, in the closely related variant VgaA, which has a similar specificity with modestly higher resistance to tiamulin and virginiamycin M, residue 219 is a glycine, which we predict would not overlap with the PLS_A-binding site⁴⁹. Thus, VgaA_{LC} confers resistance to virginiamycin M and tiamulin despite the lack of overlap between the ARE-ABCF and the antibiotic-binding site (Supplementary Table 2). For VgaL, the closest residue to the PLS_A-binding site was Ala216, which had no predicted overlap with tiamulin, virginiamycin M or lincomycin (Fig. 4e). VgaL therefore confers resistance to lincomycin, virginiamycin M and tiamulin without directly overlapping the binding sites of these antibiotics. In summary, there was no general pattern of overlap or non-overlap with the PLS_A-binding sites among LsaA, VgaA_{LC} and VgaL, and our structural evidence is not consistent with a steric overlap model of antibiotic egress.

Mutational analysis of LsaA and VgaA_{LC} ARDs. Our models of the ARD loops allowed us to design and test mutants for capacity to confer antibiotic resistance. Because genetic manipulation in Enterococcus faecalis is difficult, and LsaA complements the B. subtilis ΔvmlR strain (Supplementary Fig. 11), we performed the mutational analysis of LsaA in the B. subtilis ΔvmlR background. When LsaA Phe257, which directly overlaps the PLS_A-binding site (Fig. 4c), was mutated to alanine, no change in resistance was observed (Supplementary Fig. 11). By contrast, mutation of Lys244, which is not situated close to the PLS_A-binding sites but forms a hydrogen bond with 23S rRNA G2251 and G2252 (Escherichia coli numbering is used for 23S rRNA nucleotides) of the P-loop (Supplementary Fig. 11), nearly abolished antibiotic resistance activity (Supplementary Fig. 12). Taken together, these observations indicate that LsaA does not confer resistance via simple steric occlusion, and that interactions with the P-loop may be required for positioning the LsaA ARD.

For VgaA_{LC}, extensive alanine mutations within the ARD were explored (Supplementary Table 2). As expected from the above analyses and natural variants, mutating Val219—the only residue in VgaA_{LC} that sterically overlaps the PLS_A-binding site—did not...
affect the antibiotic resistance profile. Three residues at the beginning of a2, directly after the ARD loop, were required for resistance: Tyr223, which stacks with U2585 (part of the pleuromutilin-binding site); Phe224, which stacks with A2602 held in the centre of the ARD; and Lys218, which sits adjacent to U2506 and C2507 (Supplementary Table 2). These residues do not overlap with the PLSA-binding site, but may be required to position the ARD in the PTC to impede antibiotic binding, or for the folding of the ARD itself (Supplementary Fig. S12d–f). In the naturally variable VgaALC ARD loop, mutation of Ser213, which sits adjacent to U2506 and C2507 (Supplementary Fig. S12e), to alanine similarly reduced antibiotic resistance (Supplementary Table 2). Of note, mutating the most conserved residue among VgaA variants in this region, Lys218, did not substantially affect resistance (Supplementary Table 2). Extensive alanine substitutions in the surrounding residues that contact the 23S rRNA (Supplementary Fig. 12d–f) either did not affect, or had only a mild influence on, the antibiotic resistance conferred by this protein (Supplementary Table 2). In summary, mutation of VgaALC residues that interact with 23S rRNA nucleotides that form part of the PLSA-binding pocket affected antibiotic-resistance activity.

Modulation of the ribosomal antibiotic-binding site by ARE-ABCFS. We next sought to explore how the ARDs of LsaA, VgaA_{LC} and VgaL affect the conformation of the ribosomal PTC. The 23S rRNA A2602, which is flexible in the absence of tRNAs and positioned between the P- and A-tRNAs during peptidyl transfer, is bound and stabilized by all structurally characterized ARE-ABCFS. In LsaA and VmlR, a tryptophan stacks and stabilizes A2602 in a flipped position (Supplementary Fig. 13)⁴⁵, reminiscent of the stacking interaction between the equivalent rRNA nucleotide and Tyr346 of the yeast ABCF protein Arb1 observed in a structure of a ribosome-associated quality control complex⁶⁵. In VgaA_{LC}, VgaL, and MsrE, A2602 is instead positioned within the ARD loop, interacting with multiple residues from the ARE (Supplementary Fig. 13)⁴⁵.

We have designated four regions within domain V of the 23S rRNA (Fig. 5a) as PTC loops 1–4 (PL1–4) that comprise the binding site for the A- and P-site tRNA (Fig. 5b), are close to the ARD of the ARE-ABCFSs (Fig. 5c) and form the binding pocket for the PLS_A antibiotics (Fig. 5d–f). There is a significant overlap between nucleotides that form the PLS_A-binding pockets and nucleotides that are shifted when LsaA, VgaA_{LC} or VgaL are bound to the ribosome (Fig. 5a). While the ARE-ABCFS come close to PL1, they do not interact directly and the conformation of nucleotides within PL1 do not appear to be altered when comparing the ARE-ABCFS and PLS_A conformations (Fig. 5g–i and Supplementary Fig. 14). An exception was a slight rotation of the A2062 nucleobase (Supplementary Fig. 14), which is most likely a consequence of drug binding rather than ARE engagement. By contrast, multiple rearrangements were evident in PL2 that appear to arise due to direct contact between the ARD loop of the ARE-ABCFS and the backbone of 23S rRNA nucleotides A2451–A2452 within PL2 (Fig. 6a–d and Supplementary Fig. 15). Displacement of the backbone was largest (3.3–4.4 Å) upon LsaA binding, intermediate (3.1 Å) for VgaA_{LC}, and smallest (1.0 Å) for VgaL, and resulted in corresponding shifts in the position of the nucleobases that comprise the PLS_A-binding pocket (Fig. 6a–d and Supplementary Fig. 15).
Unexpectedly, large changes were also observed in PL3, around nucleotides U2504–U2506, in the ARE-bound structures, despite the lack of contact between this region and the ARDs (Fig. 6e–h and Supplementary Fig. 16). Such shifts are likely a consequence of disturbances in PL2 since nucleotides within PL2 are in direct contact with nucleotides in PL3 (Fig. 6i). Specifically, the 23S rRNA nucleotides G2505 and U2506 in PL2 were shifted by 2.8-3.0 Å when comparing each ARE-bound 70S to the drug-bound states (Fig. 6e–h and Supplementary Fig. 17). Additionally, in the LsaA-bound 70S, U2504 was shifted such that it directly overlaps with the PLS_\text{A}^-\text{binding site} (Fig. 6f). The rearrangement of U2504 appears to arise because of a cascade of changes in PL2 due to LsaA binding, namely, A2453 of PL2 is shifted slightly away from the PTC and pairs with G2499 (instead of U2500), allowing C2452 (which normally pairs with U2504 and forms part of the PLS_\text{A}^-\text{binding pocket}) to instead hydrogen bond with U2500. The relocation of C2452 frees U2504, and PL3 more generally, allowing it to reposition into the PLS_\text{A}^-\text{binding pocket} upon LsaA binding (Fig. 6i, j).

U2585, which is part of PL4, forms part of the tiamulin (Fig. 6k) and virginiamycin M-binding site, but not that of ARE-ABCF binding induces conformational changes at the PTC. a Secondary structure of peptidyl transferase ring within domain V of the 23S rRNA, highlighting residues within PTC loops 1–4 (PL1–4) that comprise the binding site of PLS_\text{A}^-\text{antibiotics (blue) and/or undergo conformational changes upon ARE-ABCF binding (grey).} b View of the PTC in the pre-peptidyl transfer state (PDB 1VY4)^{103} with tRNAs and PLs 1–4 from a labelled. c Same view as b, except with the Vg\text{ALC} structure shown. For reference, lincomycin is also included (PDB 5HKV)^{16}. Residues coloured yellow had no effect on resistance when mutated to alanine. For residues coloured blue, antibiotic resistance was significantly affected when mutated to alanine. d–f Binding site of d tiamulin (Tia, magenta, PDB 1XBP, 3.5 Å)^{2}, e virginiamycin M (VgM, green, PDB 4U25, 2.9 Å)^{61} and f lincomycin (Lnc, tan, PDB 5HKV, 3.7 Å)^{30} on the ribosome. g–i Comparison of conformations of rRNA nucleotides comprising the g Tia, h VgM and i Lnc binding site (shown as grey cartoon ladder representation), with RNA conformations when LsaA (green), Vg\text{ALC} (magenta) or Vg\text{AL} (yellow) are bound.
lincomycin (Supplementary Fig. 17). While the density for U2585 is not well-resolved in the LsaA- and VgaL-bound 70S structures, it appears nevertheless to adopt distinct conformations in the ARE-ABCFs compared to the drug-bound structures (Supplementary Fig. 17). In LsaA and VgaALC, the changes to the drug-binding site are substantial, while for VgaL the changes are rather subtle, as observed in other instances of antibiotic resistance (Fig. 7b). We observed subpopulations of ARE-ABCF-bound complexes containing A-tRNA, suggesting that an incoming ternary complex can still be delivered to the A-site, despite the distortion of the P-tRNA (Fig. 7c). However, we note that our complexes were stalled with EQ2-variant AREs, and in a natural context the ARE may bind and dissociate prior to an A-tRNA accommodation attempt. We propose that upon dissociation of the ARE-ABCF from the ribosome, the 3' end of the A- and P-tRNAs can re-accommodate at the PTC (Fig. 7d). The trigger for nucleotide hydrolysis and exit of the ARE-ABCF from the E-site is unknown. In our model, rapid peptidyl transfer then creates a short nascent chain that overlaps with the antibiotic-binding site, thus preventing re-binding of the PLSA drug until the next round of translation (Fig. 7d). We cannot exclude the possibility that an A-tRNA may also partially accommodate on the stalled initiation complex prior to ARE-ABCF binding, and become distorted as part of a ‘knock-on’ effect of P-tRNA disruption, consistent with the ability of ARE-ABCFs to ‘reset’ the P-tRNA independently of additional accommodation events. In this model, potentially only one round of ATP hydrolysis per translation cycle is required to generate antibiotic resistance.

Discussion

Model of antibiotic resistance mediated by LsaA, VgaALC, and VgaL. Based on our findings and the available literature on ARE-ABCFs, we propose a model for how the ARE-ABCFs LsaA, VgaALC, and VgaL confer antibiotic resistance to their respective host organism (Fig. 7). PLSA antibiotics have binding sites overlapping with the nascent polypeptide chain, and inhibit translation at, or soon after, initiation (Fig. 7a). As observed in our and previously reported structures, the incoming ARE-ABCFs bind in the E-site, triggering closure of the L1 stalk and inducing a distorted conformation of the P-tRNA. The ARD extends into the antibiotic-binding pocket at the PTC causing drug release. In LsaA and VgaALC, the changes to the drug-binding site are substantial, while for VgaL the changes are rather subtle, as observed in other instances of antibiotic resistance (Fig. 7b). We observed subpopulations of ARE-ABCF-bound complexes containing A-tRNA, suggesting that an incoming ternary complex can still be delivered to the A-site, despite the distortion of the P-tRNA (Fig. 7c). However, we note that our complexes were stalled with EQ2-variant AREs, and in a natural context the ARE may bind and dissociate prior to an A-tRNA accommodation attempt. We propose that upon dissociation of the ARE-ABCF from the ribosome, the 3' end of the A- and P-tRNAs can re-accommodate at the PTC (Fig. 7d). The trigger for nucleotide hydrolysis and exit of the ARE-ABCF from the E-site is unknown. In our model, rapid peptidyl transfer then creates a short nascent chain that overlaps with the antibiotic-binding site, thus preventing re-binding of the PLSA drug until the next round of translation (Fig. 7d). We cannot exclude the possibility that an A-tRNA may also partially accommodate on the stalled initiation complex prior to ARE-ABCF binding, and become distorted as part of a ‘knock-on’ effect of P-tRNA disruption, consistent with the ability of ARE-ABCFs to ‘reset’ the P-tRNA independently of additional accommodation events. In this model, potentially only one round of ATP hydrolysis per translation cycle is required to generate antibiotic resistance.

Discussion

Model of antibiotic resistance mediated by LsaA, VgaALC, and VgaL. Based on our findings and the available literature on ARE-ABCFs, we propose a model for how the ARE-ABCFs LsaA, VgaALC, and VgaL confer antibiotic resistance to their respective host organism (Fig. 7). PLSA antibiotics have binding sites overlapping with the nascent polypeptide chain, and inhibit translation at, or soon after, initiation (Fig. 7a). As observed in our and previously reported structures, the incoming ARE-ABCFs bind in the E-site, triggering closure of the L1 stalk and inducing a distorted conformation of the P-tRNA. The ARD extends into the antibiotic-binding pocket at the PTC causing drug release. In LsaA and VgaALC, the changes to the drug-binding site are substantial, while for VgaL the changes are rather subtle, as observed in other instances of antibiotic resistance (Fig. 7b). We observed subpopulations of ARE-ABCF-bound complexes containing A-tRNA, suggesting that an incoming ternary complex can still be delivered to the A-site, despite the distortion of the P-tRNA (Fig. 7c). However, we note that our complexes were stalled with EQ2-variant AREs, and in a natural context the ARE may bind and dissociate prior to an A-tRNA accommodation attempt. We propose that upon dissociation of the ARE-ABCF from the ribosome, the 3' end of the A- and P-tRNAs can re-accommodate at the PTC (Fig. 7d). The trigger for nucleotide hydrolysis and exit of the ARE-ABCF from the E-site is unknown. In our model, rapid peptidyl transfer then creates a short nascent chain that overlaps with the antibiotic-binding site, thus preventing re-binding of the PLSA drug until the next round of translation (Fig. 7d). We cannot exclude the possibility that an A-tRNA may also partially accommodate on the stalled initiation complex prior to ARE-ABCF binding, and become distorted as part of a ‘knock-on’ effect of P-tRNA disruption, consistent with the ability of ARE-ABCFs to ‘reset’ the P-tRNA independently of additional accommodation events. In this model, potentially only one round of ATP hydrolysis per translation cycle is required to generate antibiotic resistance.
are recognized by the ARE-ABCFS such as VmlR, LsaA, VgaALC and VgaL, which bind to the E-site of the ribosome with a closed ATP-bound conformation. The ARD induces conformational changes within the 23S rRNA at the PTC that promotes dissociation of the drug from its binding site (shown as dashed lines). Aminoacyl-tRNAs can still bind to the ARE-ABCFS-bound ribosomal complex, but cannot accommodate at the PTC due to the presence of the ABCF and shifted P-site tRNA conformation. Hydrolysis of ATP to ADP leads to dissociation of ARE-ABCFS from the ribosome, which may allow the peptidyl-tRNA as well as the incoming aminoacyl-tRNA to simultaneously accommodate at the PTC. Peptide bond formation can then ensue, converting the ribosome from an initiation to an elongation (pre-translocation) state, which is resistant to the action of initiation inhibitors, such as PLSA antibiotics.

Fig. 7 Model for ribosome protection by ARE-ABCFS VmlR, LsaA, VgaALC and VgaL. a PL3A-stalled ribosomes containing an initiator tRNA in the P-site are recognized by the ARE-ABCFS such as VmlR, LsaA, VgaALC and VgaL, which bind to the E-site of the ribosome with a closed ATP-bound conformation. b Binding of the ARE-ABCFS induces a shifted P-site tRNA conformation in the ribosome allowing the ARD of the ARE-ABCFS to access the peptidyl transferase centre (PTC). c Aminoacyl-tRNAs can still bind to the ARE-ABCFS-bound ribosomal complex, but cannot accommodate at the PTC due to the presence of the ABCF and shifted P-site tRNA conformation. d Hydrolysis of ATP to ADP leads to dissociation of ARE-ABCFS from the ribosome, which may allow the peptidyl-tRNA as well as the incoming aminoacyl-tRNA to simultaneously accommodate at the PTC. Peptide bond formation can then ensue, converting the ribosome from an initiation to an elongation (pre-translocation) state, which is resistant to the action of initiation inhibitors, such as PLSA antibiotics.

necessary to confer resistance. We can also not exclude that the P-tRNA dissociates following release of the ARE-ABCFS and/or that other factors are involved in recycling of the post-antibiotic release complexes.

ARE-ABCFS such as LsaA, VgaALC, VgaL and VmlR confer resistance to PLSA antibiotics but not phenicols or oxazolidinones. This observation has been puzzling, as both groups of antibiotics have overlapping binding sites. However, phenicols and oxazolidinones inhibit translation during elongation at specific motifs, while PLSA antibiotics instead inhibit translation at the initiation stage. This suggests that ARE-ABCFS such as LsaA, VgaALC, VgaL and VmlR are likely to be specific for initiation complexes, whereas ARE-ABCFS such as OptrA and PoxtA may have an additional specificity for drug-stalled elongation complexes. It will be interesting in the future to see how OptrA and PoxtA remove phenicols and oxazolidinones from the ribosome given the short ARD is not predicted to be able to reach into the PTC.

Another question is whether the EQ2-substituted ATPase-deficient variants of ARE-ABCFS, like the ones used in this study, bind the ribosome in the pre- or post-antibiotic-release state? Although direct evidence is lacking, three reasons lead us to propose that these proteins are bound in the post-antibiotic-release state:

1. In the case of LsaA, VgaALC and VmlR the position of the ARD directly overlaps with the antibiotic-binding site. Although the side chain of the overlapping amino acid is not critical for antibiotic resistance in most instances, the overlap nonetheless implies mutually exclusive binding.

2. MsrE-EQ2 stimulates dissociation of azithromycin from the ribosome.

3. Our attempts to form complexes containing both antibiotic and ARE-ABCFS have been unsuccessful, resulting in exclusive binding of either the ARE-ABCFS or the antibiotic, similarly to what we observed for TetrM, a tetracycline-resistance ribosome protection protein.

How does the ARE-ABCFS ARD mediate antibiotic resistance (Fig. 7b, c)? In one model, by analogy to the TetM tetracycline-resistance protein, the ARD may induce antibiotic dissociation by a direct steric overlap with the antibiotic. In the case of VmlR, substitutions of the Phe237 residue that overlaps the binding site of PLSA antibiotics affect resistance to one of three relevant antibiotics, indicating that both direct steric overlap and an indirect mechanism—for example, modulation of the antibiotic-binding site—can contribute to resistance. In the case of MsrE substitution of Leu242, which overlaps with the erythromycin binding site, as well as adjacent residues abolished or severely reduced the antibiotic resistance activity of this protein. In both cases, a mixture of direct steric overlap and indirect long-distance effects is consistent with the available data. The ARDs of LsaA, VgaALC and VgaL either do not directly overlap with the PLSA-binding site, or where there is an overlap, as with LsaA Phe257 and VgaALC Val219, the side chains are not essential for resistance, implicating an indirect mechanism for these proteins (Figs. 4–6, Supplementary Figs. 14–16 and Supplementary Table 2). Alanine mutagenesis instead indicates that the side chains of residues surrounding the amino acid closest to the antibiotic-binding pocket, as well as those that contact the 23S rRNA, are necessary for resistance (Fig. 5c, Supplementary Figs. 11 and 12 and Supplementary Table 2). These residues may position the ARD in the PTC. No single set of 23S rRNA rearrangements was identical among LsaA, VgaALC and VgaL, although displacement of PTC loops PL2 and PL3, especially residue U2504, was ultimately observed in each ARE-ABCFS-70S structure (Fig. 6). Broadly, changes to the PTC were similar between the VgaALC- and VgaL-bound 70S structures (Fig. 5g–i and Supplementary Figs. 14–16), consistent with the grouping of these proteins together in the ARE1 subfamily. While structures of the same or similar antibiotic bound to ribosomes from different species are generally similar, we cannot completely exclude that some differences in nucleotide conformations arise because of comparing our ARE-ABCFS-bound PTC conformations with antibiotic-ribosome structures from different species, for example, E. coli for VgM and D. radiodurans for tiamulin. Similarly, some conformational variability can also arise due to limitations in resolution of some of the antibiotic structures, such as the tiamulin-50S structure that was reported at 3.5 Å and the S. aureus lincomycin-50S structure at 3.7 Å. A future goal could be to determine higher resolution structures of the antibiotic-stalled ribosomal complexes prior to ARE-ABCFS binding and from the same organisms as the ARE-ABCFS.
rationalization for the specificity of LsaA, VgaALC, and VgaL for PLS\textsubscript{A} antibiotics. Each ARE-ABC protein binds the 70S similarly as observed for other bacterial ABCF proteins, but alters the geometry of the PTC distinctively, consistent with the convergent evolution—and divergent sequences—of this class of ABCF proteins.

Methods

Strains and plasmids

All strains and plasmids used in this work are listed in Table S5. Primers are listed in Table S6.

S. haemolyticus.

vga\(_{\text{L}}\) gene was PCR-amplified from a S. haemolyticus isolate kept in the O'Neil strain collection at the University of Leeds, using oligonucleotide primers vga\(_{\text{L}}\)-F (5′-GTTGGTTGATCAAGAATCAAGAAATTGGCGT-3′) and vga\(_{\text{L}}\)-R (5′-ATGATGATGGCCGCCACTAAATTGCT-3′) (engineered restriction sites shown underlined). The protein encoded by this gene is identical to that previously reported\(^{29}\) (accession number DQ823382). The fragment was digested with Km_II and EcoRI and ligated into the tetracycline-inducible expression vector pRM2 (ref. \(^{7} \)). Constructs encoding the Vga\(_{\text{L}}\) protein fused with a C-terminal FLAG3 tag were obtained by synthesis (Genewiz, with cE\(_{\text{L}}\)Q, cE\(_{\text{L}}\)Q and Eq\(_{\text{L}}\)Eq\(_{\text{L}}\) mutants subsequently created by site-directed mutagenesis. Generation of other point mutants of untagged Vga\(_{\text{L}}\) gene was performed by chemical synthesis to generate the original vga\(_{\text{L}}\) template, followed by site-directed mutagenesis.

L. monocytogenes.

VgaL (Lmo0919). In order to construct L. monocytogenes EGD\(_{e}\):Δmo0919, regions corresponding to the upstream and downstream flanking regions of lmo0919, present on the EGD\(_{e}\) genome were amplified with primer pairs VHTK35 (5′-GGGGGATCCATCAGCAAATCAACAAC-AAC-3′) and VHTK36 (5′-GGGGGATCCATCAGCAAATCAACAAC-AAC-3′), respectively. These were used as PCR fragments in cloning into the pBAD vector using the Nco\(_I\) and Nde\(_I\) restriction enzyme sites resulting in the resultant electrocompetent cells.

Bacterial transformation.

E. faecalis. Electroporated cells were prepared as per Bharadwaj et al.\(^{73}\). In short, an overnight culture grown in the presence of appropriate antibiotics was diluted to O\(_{\text{D}600}\) of 0.05 in 50 ml of BHI media (supplemented with 2 mg/mL kanamycin in case of TK3532), grown to O\(_{\text{D}600}\) of 0.6–0.7 at 37 °C with moderate shaking (160 rpm). Biosafety level 2 culture was transferred to 300 mL of reagent-grade water. Cells were resuspended in 0.5 mL of sterile lysozyme buffer (10 mM Tris-HCl pH 8; 50 mM NaCl, 10 mM EDTA, 35 μg/mL lysozyme), transferred to 1.5 mL Eppendorf tube and incubated at 37 °C for 30 min. Cells were pelleted at 8000 × g at 4 °C for 10 min and washed three times with 1.5 mL of ice-cold electroporation buffer (0.5 M sucrose, 10% glycerol). The bacterial suspension was washed twice with 200 μL of electroporation buffer and aliquoted and stored at −80 °C. For electroporation 35 μL of electrocompetent cells were supplemented with 1 μg of plasmid DNA, transferred to ice-cold 1 mm electroporation cuvette and electroporated at 1.8 kV. Immediately after electroporation 1 mL of ice-cold BHI was added to the cells, the content of the cuvette was transferred to 1.5 mL Eppendorf tubes and the cells were recovered at 37 °C for 2.5 h and plated onto BHI plates containing appropriate antibiotics (10 μg/mL chloramphenicol and 2 μg/mL kanamycin).

Antibiotic susceptibility testing.

Minimum inhibitory concentrations (MICs) were determined based on the guidelines from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org/ant_of_bacteria/mic_determination/).

E. faecalis.

Bacteria were grown in BHI media supplemented with 2 mg/mL kanamycin (to prevent lsa reverts), 0.1 mg/mL spectinomycin (to maintain the pC1E\(_{\text{spec}}\) plasmid), 100 ng/mL of cef10 peptide (to induce expression of LsaA.

Table S5. Primers are listed in Table S6.
protein) as well as increasing concentrations of antibiotics was inoculated with 5 × 10^9 CFU/mL (OD₉₀₀ of approximately 0.0005) of E. faecalis ΔsaloA (Isa-Kan) strain TX333 with or without empty pCIEpvec or with pCIEpvec encoding LsaA. After 16–20 h at 37 °C without shaking, the presence or absence of bacterial growth was scored by eye.

S. aureus. Bacteria were grown in cation-adjusted Mueller-Hinton Broth (MHB) at 37 °C with vigorous aeration, supplemented with 10 mg/L chloramphenicol to maintain the pRM2 plasmid. Upon reaching an absorbance of OD₉₀₀ of 0.6, anhydrotetracycline (ATC) (Sigma-Aldrich, UK) was added at a final concentration of 100 ng/mL to induce expression from pRMC2, and incubated for a further 3 h. Cultures were then diluted to 5 × 10^⁸ CFU/mL using MHB supplemented with ATC (100 ng/mL) and used in MIC determinations essentially as described above (though cultures were shaken).

L. monocytogenes. Bacteria were grown in BHI media supplemented with 50 µg/mL kanamycin (to prevent loss of the integrated pMK3 plasmid), 1 mM of IPTG (to induce expression of Vgal protein) as well as increasing concentrations of antibiotics was inoculated with 5 × 10^⁸ CFU/mL (OD₉₀₀ of approximately 0.0003) of L. monocytogenes EGD-e wild-type strain or EGD-eΔAlmo0919 strain transformed either with empty pMK3 plasmid or with pMK3 encoding Vgal variants. After 16–20 h at 37 °C without shaking, the presence or absence of bacterial growth was scored by eye.

B. subtilis (for LsaA mutants). B. subtilis strains were pre-grown on LB plates supplemented with 1 mM IPTG overnight at 30 °C. Fresh individual colonies were used to inoculate filtered LB medium in the presence of 1 mM IPTG, and OD₉₀₀ adjusted to 0.01. The cultures were seeded on a 100-well honeycomb plate (Oy Growth Curves AB Ltd, Helsinki, Finland), and plates incubated in a Bioscreen C (Labsystems, Helsinki, Finland) at 37 °C with continuous medium shaking. After 90 min (OD₉₀₀ ≈ 0.1), antibiotics were added and growth was followed for an additional 6 h.

Preparation of bacterial lysates

Preparation of bacterial biomass. E. faecalis: E. faecalis TX333 transformed with pCIE plasmids (either empty vector and expressing either wild type or EQ2 variants of C-terminally HTF-tagged LsaA) were grown overnight from single colony in pre-warmed LB medium in the presence of 1 mM IPTG, and OD₉₀₀ adjusted to 0.05. The cultures were seeded on a 100-well honeycomb plate (Oy Growth Curves AB Ltd, Helsinki, Finland), and plates incubated in a Bioscreen C (Labsystems, Helsinki, Finland) at 37 °C with continuous medium shaking. After 90 min (OD₉₀₀ = 0.1), antibiotics were added and growth was followed for an additional 6 h.

Affinity purification on anti-FLAG M2 affinity gel. One hundred microlitres of well mixed anti-FLAG M2 Affinity Gel aliquots were loaded on columns (Micro Bio-Spin Columns, Bio-Rad) and washed twice with 1 mL of cell lysate buffer by gravity flow. All incubations, washings and elutions were done on ice. The total protein concentration of each lysate was adjusted to 1 mg/mL with cell lysis buffer and 1 mL of each lysate was loaded on columns and incubated for 2 h with end-over-end mixing for binding. The columns were washed five times by 1 mL of cell lysis buffer by gravity flow. For elution of FLAG-tagged proteins and their complexes 100–300 µL of 0.1 mg/mL FLAG peptide (Sigma) was added to the samples, the solutions were incubated at 4 °C for 20 min with end-over-end mixing. Elutions were collected by centrifugation at 2000 × g for 2 min at 4 °C.

Microtitre-plate- aliquots of collected samples (flow-through, washes and elutions) were mixed with 5 µL of 5× SDS loading buffer and heated up at 95 °C for 15 min. The beads remaining in the column were washed twice with 1 mL of 1× SDS loading buffer and transferred to a polyacrylamide gel lane. Microarrays were resolved on 12%–15% SDS-PAGE. SDS-gels were stained by Blue-Silver Coomassie Staining and washed with water for 6 h or overnight before imaging with LAS 4000 (GE Healthcare).

tRNA microarrays. To fully deacylate tRNAs, eluates and input lystate samples from two biological replicates were mixed with 80 µL of 50 mM Tris-Cl, pH 9.0, 10 µL of 0.2 M EDTA, 10 µL of 1% SDS, and incubated for 45 min, and neutralized with 200 µL 1 M NaOAc, pH 5.5, before mixing 1:1 with acidic phenol/chloroform alcohol 5:1. The supernatant was precipitated with ethanol and dissolved in ddH₂O.

tRNA microarrays were performed as described briefly. Brieﬂy, using the unique invariant single-stranded 3′-NCCA-ends of intact tRNA a Cy3-labeled or Amo647-labeled tRNA hybrid oligonucleotide was ligated to the tRNA extracted from the ARE-immunoprecipitated samples and total E. faecalis tRNA (from the lystate), respectively. Labelled tRNA was purified by phenol/chloroform extraction and loaded on a microarray containing 24 replicates of full-length tDNA probes recognizing E. faecalis tRNA isoacceptors. Fluorescence signals were normalized to four in vitro-transcribed human mature tRNAs, spiked into each sample. Microarrays were statistically analysed with in-house scripts written in Python 3.7.0. Data are available at the Gene Expression Omnibus under accession GSE162168.

Grid preparation, cryo-electron microscopy and single-particle reconstruction

Preparation of cryo-EM grids and data collection. Elutions from LsaA and Vgal pull-downs were loaded on grids within 2 h after obtaining them without freezing. Samples were kept on ice. The VgalA_L:o sample was frozen in liquid nitrogen after pull-down, defrosted and loaded later. After glow-discharging of grids, 3.5 µL of sample was loaded on grids in Vitrobot (FEI) in conditions of 100% humidity at 4 °C, blotted for 5 s and vitrified by plunge-freezing in liquid ethane. Samples were...
Received: 4 February 2021; Accepted: 11 May 2021; Published online: 11 June 2021

References

1. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

2. Schlüter, F., Pyetan, E., Poynter, Y., Yonath, A. & Harms, J. Inhibition of peptide bond formation by pleuromutilins: the structure of the 30S ribosomal subunit from Demococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54, 1287–1294 (2004).

3. Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. Structures of MLSag antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270 (2005).

4. Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect RNA processing. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

5. Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 17152–17157 (2010).

6. Matzov, D. et al. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Res. 45, 10284–10292 (2017).

7. Vázquez-Laslop, N. & Mankin, A. S. How macrolide antibiotics work. Trends Biochem. Sci. 43, 668–684 (2018).

8. Meydan, S. et al. Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome. Mol. Cell 74, 481–493 (2019).

9. Orell, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agent Chemother. 57, 5994–6004 (2013).

10. Dornhelm, P. & Högenauer, G. The effects of tiamulin, a semisynthetic pleuromutilin derivative, on bacterial polypeptide chain initiation. Eur. J. Biochem. 91, 465–473 (1978).

11. Wilson, D. N., Hauruluk, V., Atkinson, G. C. & O’Neill, A. J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 18, 637–648 (2020).

12. Storey, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to evolutionary reprogramming and nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res. 48, 10045–10073 (2020).

13. Thomas, C. & Tampé, R. Structural and mechanistic principles of ABC transporters. Ann. Rev. Biochem. 89, 605–636 (2020).

14. Fossett, C. R. et al. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett. 595, 675–706 (2021).

15. Gerovac, M. & Tampé, R. Control of mRNA translation by versatile ATP-driven machines. Trends Biochem. Sci. 44, 167–180 (2019).

16. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008).

17. Anderssen, C. B. F. et al. Structure of EEF3 and the mechanism of transfer RNA release from the E-site. Nature 443, 663–668 (2006).

18. Ranjan, N. et al. Yeast translation elongation factor eEF3 promotes late stages of tRNA translation. EMBO J. 40, e106449 (2021).

19. Murina, V. et al. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J. Mol. Biol. 431, 3588–3590 (2019).

20. Oussalem, F., Singh, S., Chesneau, O., Hunt, J. F. & Boel, G. ABC-F proteins in mRNA translation and antibiotic resistance. Res. Microbiol. 170, 435–447 (2019).

21. Boel, G. et al. The ABC-F protein EtaA gates ribosome entry into the translation elongation cycle. Nat. Struct. Mol. Biol. 21, 143–151 (2014).

22. Dorrian, J. & Kerr, I. Can ABC Proteins Confer Drug Resistance in Microorganisms Without Being Export Pumps? (Caister Academic Press, 2009).

23. Erö, R., Kumar, V. S., Su, W. & Gao, Y. G. Ribosome protection by ABC-F proteins—molecular mechanism and potential drug design. Protein Sci. 28, 684–693 (2019).

24. Sharkey, L. K. & O’Neill, A. J. Antibiotic resistance ABC-F proteins: bringing target protection into the limelight. ACS Infect. Dis. 4, 239–246 (2018).

25. Allgöwer, N., Loncle, V., Fischer, S. & Sohle, N. Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like antibiotics. Gene 117, 45–51 (1992).

26. Ross, J. L., Farrell, A. M., Eady, E. A., Cove, J. H. & Cunliffe, W. J. Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. J. Antimicrob. Chemother. 24, 851–862 (1989).
28. Ross, J. I. et al. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. *Mol. Microbiol.* **12**, 1207–1214 (2005).

29. Sharkey, L. K., Edwards, T. A. & O’Neill, A. J. ABC-F proteins mediate antibiotic resistance through ribosomal protection. *MBio* **7**, e01975 (2016).

30. Singh, K. V., Weinstock, G. M. & Murray, B. E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and other rRNA methyltransferase antibiotics. *Antimicrob. Agents Chemother.* **46**, 1845–1850 (2002).

31. Hot, C., Berthet, N. & Chesneau, O. Characterization of sol(A), a novel gene responsible for lincomamide and streptogramin A resistance in *Staphylococcus scavi*. *Antimicrob. Agents Chemother.* **58**, 3335–3341 (2014).

32. Koberska, M. et al. Beyond self-resistance: ABC-F proteins mediate antibiotic resistance through ribosomal protection. *Proc. Natl Acad. Sci. USA* **113**, 13359–13364 (2016).

33. Chesneau, O., Ligret, H., Hosan-Aghaie, N., Morvan, A. & Dassa, E. Molecular analysis of resistance to streptogramin A compounds conferred by the Vga proteins of *Staphylococci*. *Antimicrob. Agents Chemother.* **49**, 973–980 (2005).

34. Reynolds, E. D. & Cove, J. H. Resistance to telithromycin is conferred by msr (A), msrC and msrD in *Staphylococcus aureus*. *J. Antimicrob. Chemother.* **56**, 1179–1180 (2005).

35. Su, W. et al. Ribosome protection by antibiotic resistance ATP-binding cassette protein, Vga(A), confers transferable resistance to *Staphylococcus sciuri* isolates from healthy pigs in China. *J. Glob. Antimicrob. Res.* **2**, 679–699 (2020).

36. Freitas, A. R. et al. Detection of optrA in the African continent (Tunisia) within a mosaic *Enterococcus faecalis* and *Enterococcus faecium* of human and animal origin. *J. Antimicrob. Chemother.* **71**, 2182–2190 (2015).

37. Zhang, C. et al. Capsular serotypes, antimicrobial susceptibility, and the presence of transferable oxazolidinone resistance genes in *Streptococcus suis* isolated from healthy pigs in China. *Vet. Microbiol.* **247**, 108750 (2020).

38. Antonelli, A. et al. Characterization of pXO1, a novel plasmid from *Staphylococcus aureus* resistant to linezolid and teicoplanin. *Antimicrob. Agents Chemother.* **61**, 936–940 (2017).

39. Wang, Y. et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in *Enterococcus faecalis* and *Enterococcus faecium* of human and animal origin. *J. Antimicrob. Chemother.* **70**, 2182–2190 (2015).

40. Sadowy, E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. *Plasmid* **99**, 89–98 (2018).

41. Crowe-McAlulife, C. et al. Structural basis for antibiotic resistance mediated by the *Bacillus subtilis* ABCF ATPase VmrR. *Proc. Natl Acad. Sci. USA* **115**, 8978–8982 (2018).

42. Leonard, J., Vasekar, V., Vesela, L., Janata, J. & Novotna, G. B. Detailed mutational analysis of Vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. *Antimicrob. Agents Chemother.* **59**, 1360–1364 (2015).

43. Chen, B. et al. Etta regulates translation by binding the ribosomal E site and restricting ribosome–rRNA dynamics. *Nat. Struct. Mol. Biol.* **21**, 152–159 (2014).

44. Singh, K. V., Malathum, K. & Murray, B. E. Disruption of an *Enterococcus faecium* species-specific gene, a homolog of acquired macrolide resistance genes of *staphylococci*, is associated with an increase in macrolide susceptibility. *Antimicrob. Agents Chemother.* **45**, 263–266 (2001).

45. Sivakumar, E. et al. ATP hydrolysis and primingycin A inhibition of the *Staphylococcus aureus* Vga(A), a dual ABC protein involved in streptogramin A resistance. *J. Biol. Chem.* **283**, 25332–25339 (2008).

46. Novotna, G. & Janata, J. A new evolutionary variant of the streptogramin A resistance protein, Vga(A), of *Staphylococcus haemolyticus* with shifted substrate specificity towards lincomacins. *Antimicrob. Agents Chemother.* **50**, 4070–4076 (2006).

47. Mendes, R. E. et al. Low prevalence of Gram-positive isolates showing elevated lefamulin MIC results during the SENTRY Surveillance Program for 2015–2016 and characterization of resistance mechanisms. *Antimicrob. Agents Chemother.* **63**, e02158–02118 (2019).

48. Bhalekar, D., Bhat, S. P. & Katakkhond, S. Microbiological profile and antibiotic susceptibility pattern of Gram-positive isolates at a tertiary care hospital. *J. Lab Physicians* **11**, 144–148 (2019).

49. Chen, B. et al. EttA regulates translation by binding the ribosomal E site and restricting ribosome–rRNA dynamics. *Nat. Struct. Mol. Biol.* **21**, 152–159 (2014).

50. Singh, K. V., Malathum, K. & Murray, B. E. Disruption of an *Enterococcus faecium* species-specific gene, a homolog of acquired macrolide resistance genes of *staphylococci*, is associated with an increase in macrolide susceptibility. *Antimicrob. Agents Chemother.* **45**, 263–266 (2001).

51. Sivakumar, E. et al. ATP hydrolysis and primingycin A inhibition of the *Staphylococcus aureus* Vga(A), a dual ABC protein involved in streptogramin A resistance. *J. Biol. Chem.* **283**, 25332–25339 (2008).

52. Novotna, G. & Janata, J. A new evolutionary variant of the streptogramin A resistance protein, Vga(A), of *Staphylococcus haemolyticus* with shifted substrate specificity towards lincomacins. *Antimicrob. Agents Chemother.* **50**, 4070–4076 (2006).

53. Mendes, R. E. et al. Low prevalence of Gram-positive isolates showing elevated lefamulin MIC results during the SENTRY Surveillance Program for 2015–2016 and characterization of resistance mechanisms. *Antimicrob. Agents Chemother.* **63**, e02158–02118 (2019).

54. Bhalekar, D., Bhat, S. P. & Katakkhond, S. Microbiological profile and antibiotic susceptibility pattern of Gram-positive isolates at a tertiary care hospital. *J. Lab Physicians* **11**, 144–148 (2019).
Acknowledgements

We are grateful to Barbara E. Murray for sharing *E. faecalis* ΔlsA (lac-Kan) strain TX5332 (ref. 30) and Jose A. Lemos for sharing the pCIE plasmid vector69. We thank Michael Hall for help with cryo-EM data collection. We would also like to thank the reviewers for their comments that improved the manuscript. The electron microscopy data were collected at the Umeå Core Facility for Electron Microscopy, a node of the Cryo-EM Swedish National Facility, funded by the Knut and Alice Wallenberg, Family Erling Persson and Kempe Foundations, SciLifeLab, Stockholm University and Umeå University; This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (grant WSe288/8-1 to D.N.W.), the Swedish Research Council (Vetenskapsrådet) grants (2017-03783 to V.H. and 2019-01085 to G.C.A.), Ragnar Söderbergs Stiftelse (to V.H.), postdoctoral grant from the Umeå Centre for Microbial Research, UCMR (to H.T.), the European Union from the European Regional Development Fund through the Centre of Excellence in Molecular Cell Engineering (2014-2020.4.01.15-0013 to V.H.), and the Estonian Research Council (PRG335 to V.H.), D.N.W. and V.H. groups are also supported by the Deutsche Zentrum für Luft- und Raumfahrt (DLR) (K1820 to D.N.W.) and the Swedish Research Council (2018-00956 to V.H.) within the RIBOTARGET consortium under the framework of JPIAMR.

Author contributions

C.C.-M. processed the microscopy data, generated and refined the molecular models and made the structure figures. V.M., K.J.T. and M.K. cloned the ARE constructs, performed genetic manipulations of *E. faecalis* and *L. monocytogenes*, performed polysome fractionations and immunoblotting as well as performed MICs and immunoprecipitations. K.J.T. and V.M. prepared cryo-EM grids. K.V. and J.J. assisted genetic manipulations of *L. monocytogenes*. V.M. collected cryo-EM datasets. H.T. performed genetic manipulations of *B. subtilis* as well as MICs for LsaA variants in *B. subtilis*. M.M. and A.J.O. performed genetic manipulation of *S. aureus* and the generation/characterization of VgAAlc variants. G.C.A. performed sequence conservation analyses. C.P. and Z.I. performed microarray experiments. C.C.-M. and D.N.W. wrote the manuscript with input from all authors. D.N.W. and V.H. conceived and supervised the project.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23753-1.

Peer review information Nature Communications thanks the anonymous reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021