Enhanced Photovoltage Response of Hematite-X-Ferrite Interfaces (X = Cr, Mn, Co, or Ni)

Liang Bian1,2,3*, Hai-long Li2,3*, Yu-jin Li3, Jia-nan Nie3, Fa-qin Dong2, Hai-liang Dong4, Mian-xin Song2, Li-sheng Wang1, Tian-liang Zhou1, Xiao-yan Zhang2,3, Xin-xi Li5 and Lei Xie5

Abstract

High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+–O2− orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/−72.63~−32.43 meV). These (Fe2O3)–O–O–(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3–FeFe2O4 17.23 × 10−31 kg; Fe2O3–CoFe2O4 3.93 × 10−31 kg; Fe2O3–NiFe2O4 11.59 × 10−31 kg; Fe2O3–CrFe2O4 −4.2 × 10−31 kg; Fe2O3–MnFe2O4 −11.73 × 10−31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.

Keywords: Heterostructure, Fluorescence enhancement, Quantum dots, Shewanella oneidensis MR-1

Background

As a n-type semiconductor, hematite (Fe2O3) is an important semiconductor in the fields of photoluminescence and electron paramagnetic imaging due to its chemical stability and band gap (2 eV) [1]. However, poor minority charge carrier mobility (0.2 cm2 V−1 s−1) and ultrafast recombination of photogenerated carriers (~10 ps) limit its application as a high-photostability fluorescent material [2]. Recently, an interesting option is the conjugation of Fe2O3 with a p-type ferrite (band gaps 1.9~2.7 eV) with a lower but similar conduction band level and an appropriate valence band level [3]. It has two advantages, e.g., unpaired-paired spin change and electron-hole recombination [4]. For example, Sun et al. [5] confirmed that the electrons flow through the energy barrier between the Fe2O3 and Fe3O4 phases, according to spin-dependent tunneling mode. Higher void fraction of cubic Fe3O4 provides more transfer channels for tetrahedral ion diffusion and charge transfer. To enhance separation rate of photoinduced charge carriers, Shen et al. [6] used Mg to modify the surface photovoltage of Fe3O4/Fe2O3 heterostructured hollow nanospheres. A remarkable surface photovoltage response in UV and visible spectral region (320~570 nm) was attributed to the 2p(O2−)→3d(Fe3+) charge transfer and Fe3+(3d5) crystal field transitions of the MgFe2O4 and Fe2O3 interface. Therefore, the incorporation of the magnetic nanocrystals associated with heavy metal ion (X)-modified Fe3O4 on the Fe2O3 surface can not only improve fluorescence intensity but also recycle the fluorescence by magnetic separation under modest magnetic fields [7].

In the present work, we designed a facile approach to reduce the effect of lattice mismatch of the components, for coating directly p-ferrite on the n-hematite using Shewanella oneidensis MR-1 [8]. Therein, the cytochromes (OmcA, MtrC, and MtrB) and periplasmic [Fe] hydrogenases of the extracellular matrix represent the bio-reactions as follows: lactate− + 4Fe2+ + 2H2O → acetat− + HCO− + 4Fe3+ + 5H+ [9]; X2+ + 2Fe(OH)3
anaerobically cultured cells were incubated for 45 days. Until the end of the experiment. All treatments with All treatment tubes were incubated in the dark at 30 °C in the medium had a final concentration of 90 mM [12].

Figure 1a confirms that X-modified Fe₃O₄ and Fe₂O₃ are coexisting, because the 500-nm rice-like Fe₃O₄ particles are attached onto the 3.5-μm Fe₂O₃ surfaces. And total mass ratios of Fe, O, and X are 26.66~57.98 wt.%, 43.61~46.65 wt.%, and 8.36~11.89 wt.%, respectively.

To verify the crystalline structure of the as-synthesized sample, typical power XRD patterns are shown in Fig. 1b. The clear diffraction peaks at 2θ angles (approximately 27°, 35.5°, 47°, 30.5°, 39°, 53.5°, 57.5°) can be assigned to the (012), (311), and (110) characteristic reflections of Fe₂O₃ (JCPDS 89-5892) and the (311), (222), (422), and (511) characteristic reflections of the cubic structure of magnetite XFe₂O₄ (JCPDS 19-0629) [21, 22]. The narrow and sharp peaks suggest that the obtained XFe₂O₄ and Fe₂O₃ are highly crystalline in nature, with average crystallite sizes approximately 41.32~44.21 nm and 28.78~32.79 nm at the Fe₂O₃–(012) and XFO–(311) planes, respectively.

To further identify the interactions of iron oxides, we used lines in Fig. 1c to depict the typical Raman spectrum of Fe₂O₃–XFe₂O₄ heterostructures. The Raman band at the F₂g, E₂g, and E_{2g} modes reflect translational movement of the tetrahedron, symmetric bending of oxygen with respect to the metal ion, and asymmetric stretching of Fe(X) and O, respectively. These bands reflect that Fe₂O₃ comprises hexagonal close-packed layers of O²⁻ and that Fe^{3+} ions fill two thirds of the octahedral voids, forming a FeO₆ octahedral layer. XFe₂O₄ is a normal spinel, with X^{2+} ions at tetrahedral sites and Fe^{3+} ions at octahedral sites. On another side, we can see that a broad asymmetric D peak at 915~970 cm⁻¹ as the phonon scattering near the Brillouin zone boundary is transform to give an insight into the electron transfer process at the atomic level and to contribute to the interpretation of experimental results from techniques such as DRS, KPFM-AFM, or PL, based on the generalized gradient-corrected Perdew-Burke-Ernzerhof functional + U (GGA-PBE) (Castep, Materials studio, Accelrys, USA) [19], where the Coulomb and screened exchange parameters (U, J) were set 5 and 1 eV, respectively. A kinetic energy cutoff of 300 eV for the electrons was used, well within the convergence of a total-energy calculation. A 2 × 2 × 2 super cell was introduced for the interstitial plane-wave, and a 5 × 5 × 5 k-point mesh for integration over the Brillouin zone.

Results and Discussion

Structural Characterization

In Burns’ opinion [20], the reduced Fe²⁺ precipitates tend to accumulate on the extracellular polymeric surface cytochrome and [Fe] hydrogenases of S. oneidensis MR-1, forming the Fe₂O₃ phase. And H⁺ ions as the electron donors at pH 6 can mediate the electron transfer between Fe²⁺ and X²⁺ to modify the Fe₃O₄ surface.

The size of the laser spot was less than 2 μm, and the acquisition time for all spectra was 20 s. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were performed on a Cu plate with a Hitachi S-4800 field emission machine with an accelerating voltage of 5 KeV [13]. The X-ray diffraction data were collected for all Fe₂O₃–XFe₂O₄ heterostructures using an X-ray diffractometer (Bryke D8-Advance, Germany, Cu Kα radiation, λ = 0.154 nm, 40 kV, 40 mA) [14]. Raman scattering measurements (Labram HR evolution, Horiba Scientific, France) were conducted at room temperature under a backscattering geometric configuration using a WITec-Alpha confocal micro-Raman system [15]. The light absorption properties of the heterostructures were tested by UV-Vis diffuse reflectance spectroscopy (DRS) (Evolution 220, USA) [16]. Atomic force microscope (AFM) and Kelvin probe force microscopy (KPFM) measurements were performed on an atomic force microscope (Asylum Research MFP-3D, USA) [17]. Photoluminescence (PL) emission at room temperature was obtained at 420~900 nm with an excitation wavelength at 400 nm. The slit widths for both the excitation and emission were 5.0 nm. A fiber-based fluorescence spectrometer (USB 4000, Ocean Optics, USA) was used to record the in situ PL spectra [18].

Besides, we simulated the effective masses of electron-hole pairs, dielectric functions (ε), and spin-partial densities of states (spin-PDOSs) via Kramers-Kronig structural characterization.
attributed to the long-range \((\text{Fe}_2\text{O}_3)–\text{O}–\text{O}–(\text{XFe}_2\text{O}_4)\) interface. These results confirm that the surface \(\text{Fe}_2\text{O}_3\) has been successfully reduced as a \(\text{XFe}_2\text{O}_4\) and that they are bonded to each other with the shared oxygen atoms of the octahedron-tetrahedron.

Unpaired-Paired Spin Change in the Lattice
In the literature [3], the enhanced photovoltage response performances can be attributed to intra- or inter-electronic transition in the UV and visible region. The origin of electron transfer enhancement of \(\text{Fe}_2\text{O}_3–\text{XFe}_2\text{O}_4\) can be summarized by (i) unpaired-paired spin change in the lattice and (ii) electron-hole recombination in the interface. Figure 2a verifies that the \(X\) ions enhance the average fluorescence intensities by 3.13–6.35 multiples than that of \(\text{Fe}_2\text{O}_3–\text{Fe}_3\text{O}_4\), where the band gap differences in Fig. 2b are close to the Fermi point, providing high electron transfer ratios. In the octahedral \(\text{Fe}^{3+}–\text{O}^{2−}\) orbital at an intrinsic main fluorescence emission peak of 390 nm, the absorption bands can be attributed to two charge transfers as the oxygen-to-metal \(2p(\text{O}^{2−})\rightarrow3d(\text{Fe}^{3+})\) (left region: \(\text{Fe}_2\text{O}_3\); and middle region: \(\text{XFe}_2\text{O}_4\)) intra-atomic transitions, reflecting the non-degeneracy \(t_{2g}\)→three orbital degeneracy \(t_{2g}\) inter-atomic transition [23]. This corresponds to the \(T_{2g}–T_{2g}\) orbital degeneracy, as shown in Fig. 2c.

On another side, the spin parity of the iron pairs can remain the same in the excited state, showing the spin-down PDOSs. To modify the electron transfer behaviors in tetrahedral \(\text{Fe}^{2+}–\text{O}^{2−}\) orbitals at two broad blue fluorescence emission peaks at 450 and 473 nm, we used \(X^{2+}\) as an acceptor to occupy the tetrahedral sites at the bottom of the conduction band, and thus, the electronic transitions implying \(\text{Fe}^{2+}–\text{X}^{2+}–\text{O}^{2−}\) orbitals are known to be only at the origin of charge transfers between the bottom of the conduction band and the top of the valence band. The unpaired spin orbitals change into paired spin orbitals; therefore, the paired spin orbitals enhance the spin quantum number \(S\) to 1, changing the multiplicity of the excited state \(M = 2S + 1\) into 3. This unpaired-paired spin change provides more active electron gas in the \(\text{Fe}_2\text{O}_3–\text{XFe}_2\text{O}_4\) interface to enhance the average luminous intensities as 3.31–8.18 multiples than that of \(\text{Fe}_2\text{O}_3–\text{Fe}_3\text{O}_4\) by the excitation of 488 nm, as presented in Fig. 3a. The accelerated electron-hole recombination [24] at the near-infrared photoresponse region is beneficial for transferring long-range electrons to separate the photovoltage response signal.

Electron-Hole Recombination in the Interface
Ultimately, we found that \(\text{Fe}_3\text{O}_4\) has a significant photovoltage response red shifted to 257.7 meV from
those of Fe$_2$O$_3$ in Fig. 3b, which allows for the efficient separation of electron-hole pairs at the Fe$_2$O$_3$–Fe$_3$O$_4$ interface, which will be higher than that (200 meV) of the reported Fe$_2$O$_3$–ZnFe$_2$O$_4$ interface [25–27]. The origin of the high/low photovoltage response region (theoretical difference data ~200 meV; experimental difference data 45~160 meV) is attributed to the surface potential difference (270 meV/3~70 meV) of Fe$_2$O$_3$ and XFe$_2$O$_4$, according to the theoretical potential images (see Fig. 3c). The photovoltage response signal in the low photovoltage response region is modified via the X–Fe–O orbital degeneracy.

To our knowledge, the crystal field theory indicates that the Fe–d orbital will split into the doubly degenerate e$_g$ orbital (d$_{x^2}$ and d$_{y^2}$) and triple degenerate t$_{2g}$ orbital (d$_{xy}$, d$_{yz}$, and d$_{xz}$) [28]. On the one hand, the high-energy Fe–d$_{x^2}$–d$_{y^2}$ orbital (work function 4.5 eV) can be modified by the X–d$_{x^2}$–y$_2$ orbital with the higher work functions (Co 4.7 eV and Ni 4.6 eV) [29]. The X ions reduce both octahedral and tetrahedral surface potentials (~0.7 and 10 meV); because of that, the down-spin Co$^{2+}$ (or Ni$^{2+}$)–Fe$^{3+}$ interfacial coupling degenerates with the down-spin d$_{x^2}$–y$_2$ orbital of Fe$^{2+}$–3d64s2 (Fig. 2c) at the high-energy e$_{1g}$ orbital. It not only enhances the positive potential direction (polarization angle 5~15° → 60~100°) but also accelerates the electron-hole recombination to create a highly effective mass hole (Fe$_2$O$_3$–FeFe$_2$O$_4$ 17.23 × 10$^{-31}$ kg; Fe$_2$O$_3$–CoFe$_2$O$_4$ 3.93 × 10$^{-31}$ kg; Fe$_2$O$_3$–NiFe$_2$O$_4$ 11.59 × 10$^{-31}$ kg) (see Fig. 3d). A responsibility of the intrinsic main fluorescence emission peak blue shifts to 785 nm.

On the other hand, the Fe–O d$_{z^2}$–p$_{z^2}$ orbital is being modified by the X-d$_{z^2}$ orbital with lower work functions (Cr 4.41 eV and Mn 4.1 eV). The data curve showed that the d$_{z^2}$–d$_{z^2}$–p$_{z^2}$ orbital degeneracy creates a weak quantum well of oxygen vacancy for long-range electronic transition at the low-energy doubly degenerate e$_{Lg}$ orbital. A part of O–2p4 electron is trapped in the oxygen vacancy with the deep holes present in the valence band, according to the enhanced electron effective mass (Fe$_2$O$_3$–CrFe$_2$O$_4$ ~4.2 × 10$^{-31}$ kg; Fe$_2$O$_3$–MnFe$_2$O$_4$ ~11.73 × 10$^{-31}$ kg). The down-spin p$_{z^2}$ orbital changes its direction to become an up-spin orbital, showing the negative photovoltage response signal (Cr ~32.43 meV; Mn ~72.63 meV). Consequently, the different photovoltage response behaviors above can be used for the design of high-mobility electronic devices and fluorescent probes for different heavy metal ion imaging, oxygen evolution catalysts [30], and biomolecules [31], etc.
Conclusions

In summary, a novel bio-induced phase transition method for the growth of XFe₂O₄ embedded in Fe₂O₃ is proposed here using *S. oneidensis* MR-1. We explained the mechanism of surface photovoltage response and high-photostability fluorescence. The present work demonstrates that the calculated unpaired-paired spin X²⁺–Fe²⁺–O₂⁻ orbitals verify the enhanced photovoltage response signal (theoretical data ~200 meV; experimental data 45~160 meV) and separate the high/low surface potential regions (270 meV/3~70 meV) based on the calculated electron-hole effective masses. As a consequence, our works provide a reference for designing new photoluminescence and electron paramagnetic imaging biosensors. Further investigation will be focused on the electron transfer process between interfaces and heavy metal ions in an aquatic environment to garner a better understanding of the selective fluorescence probe application.

Acknowledgements

The authors acknowledge the financial supports by the 973 project (2014CB8460003), the One-Thousand-Talents Scheme in Sichuan Province, Xinjiang Science Fund of Outstanding Young Scholars (qn2015sy034), Hebei outstanding young scholars, Science and Technology Program of Hebei Province (D2016403064 and 16044601Z), and Hebei Science and Technology Support Program (15211112).
hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

3. Pajähré N, Wattiaux A, Gaudon M, Demourgues A (2008) Correlation between structural features and vis–NIR spectra of α-Fe₂O₃ hematite and αFe₂O₃ spinel oxides (A = Mg, Zn). J Solid State Chem 181:1040–1047

4. Ren Y, Wang J, Huang X, Ding J (2016) Enhanced lithium-ion storage performance by structural phase transition from two-dimensional rhombohedral Fe₃O₄ to cubic Fe₂O₃. Electrochim Acta 198:22–31

5. Sun AC, Kuo PC, Chou CY, Chen SC, Lie CT, Lin MH, Chen JW, Huang HL, (2004) Magnetoresistance of sintered (FeOₓ)ₙ₋₀.₅(Fe₃O₄)ₓ ferrites. J Magnetism Magnetic Mater 272–276:1776–1777

6. Shen Y, Zhao Q, Li X, Hou Y, Chen G (2012) Surface photovoltage property of magnesium ferrite/hematite heterostructured hollow nanospheres prepared with one-pot strategy. Colloid Surf A: Physicochem Engin Aspects 403:35–40

7. Yang L, Jin R, Liang Y, Wang F, Yin P, Yi C (2015) Preparation and magnetic properties of NiFe₂O₄–Fe₃O₄@SnO₂ heterostructures. Mater Lett 153:55–58

8. Lower SR, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between shewanella and α-Fe₂O₃. Chem Soc 292:1360–1363

9. Ma S, Banfield JF (2011) Microon-scale Fe⁺⁺/Fe⁺⁺⁺ intermediate sulfur species and O₂ gradients across the biofilm-solution-sediment interface control biofilm organization. Geochim Cosmochim Acta 75:3568–3580

10. Burgos WD, McDonough JT, Senko JM, Zhang G, Dohnalkova AC, Kelly SO, Gorby YA, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72:4901–4915

11. Zhang G, Burgos WD, Senko JM, Bishop ME, Dong H, Boyanov MI, Kemner KM (2011) Microbial reduction of chloride and uranium followed by air oxidation. Chem Geol 283:242–250

12. Bian L, Li H, Dong H, Dong F, Song M, Wang L, Zhou T, Li W, Hou W, Zhang X, Lu X, Li X, Xie L (2017) Fluorescence enhancement of bio-synthesized X-Zn-ferrite-bismuth ferrite (X=Mg, Mn or Ni) membranes: experiment and theory. Appl Surf Sci 396:1177–1186

13. Bamonini A, Moshtael-Arani N (2015) Nano-Fe₃O₄ encapsulated-silica supported boron trifluoride as a novel heterogeneous solid acid for solvent-free synthesis of arylazo-1-naphthol derivatives. RSC Adv 5:16911–16920

14. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X (2015) Hyaluronic acid-modified Fe₃O₄@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomater 35:3309–3318

15. Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, Janga ES (2014) NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorods/SiO₂ nanocomposites. Biomater 35:3309–3318

16. Bian L, Dong H, Dong F, Song M, Li H, Hou W, Zhang X, Lu X, Li X, Xie L (2016) Mechanism of fluorescence enhancement of bio-synthesized XFe₂O₃@BiFe₂O₅ (X = Cr, Mn, Co or Ni) membranes. Nanoscale Res Lett 11:543–550

17. Zhao P, Bian L, Wang L, Xu J, Chang A (2014) Enhanced open voltage of BiFeO₃ polycrystalline film by surface modification of organolead halide perovskite. Appl Phys Lett 105:013901–013903

18. Li J, Huang Z, Wu D, Yin G, Liao X, Gu J, Han D (2010) Preparation and protein detection of Zn–Ferrite film with magnetic and photoluminescence properties. J Phys Chem C 114:15186–15192

19. Bian L, Xu J, Song M, Dong H, Dong F (2013) Effects of halogen substitutes on the electronic and magnetic properties of BiFeO₃. RSC Adv 3:25129–25135

20. Bums JL, Green BR, Bates DJ, Dublin SN, Taylor JV, Apkarian RP, Arévalo-García S, Neal AL, D'Christina TJ (2010) Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(III) oxides. Environ Sci Technol 44:68–73

21. Sa T, Wu G, Qin N, Bao D (2012) Solution processed highly sensitive visible-light photodetectors based on α-Fe₂O₃/p-Si heterojunctions. Sen Act B: Chem 173:414–418

22. Horák D, Shagotova T, Mitina N, Trchová M, Babič M, Stoika R, Kryuchkova O, Holler P, Zachaenko A (2011) Surface-initiated polymerization of 2-hydroxyethyl methacrylate from heterolethic oligo-peroxide-coated γ-Fe₂O₃ nanoparticles and their engulfment by mammalian cells. Chem Mater 23:2637–2649

23. Todol JL, Mermut JM (2006) Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS. Spectrochim Acta B 61:259–283