Quantum Metric of Classic Physics

Eugene Machusky
National Technical University of Ukraine “Kyiv Polytechnic Institute”
sivera@ukr.net

Abstract. By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers Pi and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.

1. Introduction

New SI measurement system will be introduced at the end of the year 2018 and will be based on constants derived from nature only [1]. So far, the main problem with regards to defining constants is finding the coordinated values of basic quantum units [2]. We show below that this problem can be solved not only without use of artifacts (meter, kilogram, second) but without any measurements at all. Comparison of analytically obtained units with their recommended by CODATA values is presented below:

Table 1. Comparison of measured and analytically obtained units

Unit	Measured (conventional)	Analytical
Speed of light	299792458	299792457.86759134
Background temperature	2.725	2.7252543275634558
Relative molar mass	0.012	0.011999777505492
Kelvin	2.7316	2.7315999984590452
Fine structure	0.0072973525664(17)	0.0072973525205056
Avogadro	6.022140857(74)	6.0221410564201849*10^23
Boltzmann	1.38064857(74)	1.380648450231000*10^-23
Planck	6.626070040(81)	6.626070011158522*10^-34
Elementary charge	1.6021766208(98)	1.6021766150248797*10^-19
Newtonian gravitational	6.67408(31)	6.6740529112548490*10^-11
All analytically derived values lie within measurement accuracy considering the conventionally established values of speed of light and molar mass.

2. Analytic base of quantum physics

It is shown below that only five equations determine the analytic base of quantum physics. Two equations constitute basis of electrodynamics of Maxwell-Gauss:

\[C = (R + 4\pi C/10^{18})^{64}10^7 = 299792457.867591338433684, \]
\[R = \text{Integer}[10^8*(C/10^7)^{(1/64)}]/10^8 = 1.05456978. \]

The number \(C \) is the value of rotational speed of radius-vector. The number \(R \) is the harmonic value of the inverse squared radius. The value \(4\pi \) is solid 3D-angle in radians. The value \(4\pi 10^{-7} \) is the Magnetic constant. The value \(4\pi C10^{-7} \) is the Impedance of free space. The value \(1/(4\pi 10^{-7})C^2 \) is the Electric constant. The number \(C \) is the Speed of light in physics, but arithmetically it is simply the number of turns around a ball with radius \(4\pi 10^{18} \) per unit of time. The value \(1/10^8 \) is a natural limit of accuracy of calculations of an inverse squared radius due to finite numerical length of rotational speed.

Three equations constitute basis of thermodynamics of Kelvin-Avogadro:

\[K = E + AS + BS = 2.7315999984590452, \]
\[AS = 1/100/\text{Sum}\{[(137 + (137 - 100) *n)/10^3*(3*n + 2)] = 0.00729 = 1/100/(1.11111111111…)^3, \]
\[BS = \text{Sum}[602214183/10^3*(3*n + 8)] = 0.00602817 = 0.0060281699999…999999397183. \]

The number \(K \) is an upper limit of inverse temperature (used in SI for calibration of the triple point of water as \(100*K = 273.16 \)). The number \(E \) is the base of natural logarithm in mathematics but in physics it is a lower limit of inverse temperature. The word "temperature" means literally "rating of tempo" or, in other words, rating of a speed of vibrations. Instant value of translational velocity oscillates between the values of rotational and vibrational speeds [3]. The digital sequences \(AS = 0.00729 \) and \(BS = 0.00602817 \) have linked the alphabet (0...1) and the alphabet (0...9) because 1 = 0.999999..., and 10 = 9.99999... The digital sequence \(B = 602214183 \) is the Avogadro’s integer. \(NB = B/(1+4\pi 10^8)/10^11 \) binds numbers \(B \) and \(PI \). The sequence \(E = 2.7182818284590452 = (1+1/n)^n \) exponentially connects 1 and infinity (by the hyperbola 1/n). The sequence \(PI = 3.1415962535897932 = \text{Sum from}(-1) \text{to} (+1) \text{of}[dx/sqrt(1-x^2)] \text{links} \text{1 and infinity} \text{(by the parabola} x^2). \) Digital sequence \(A = 136.997250372498 \) connects \(PI \) and \(E \) because \(E^A = PI*10^59 \). Numbers \(PI \) and \(E \) are the absolute units of Space and Time.

3. Inverse geometry

The mutual bonds of geometrical parameters of pulsing sphere can be described by the following expression:

\[[G] = 2\pi [R][1 + [A]], \]

where \([R]\) is a matrix of relative inverse radii, \([A]\) is a matrix of relative inverse eccentricities, \(2\pi[R] = [P]\) is a matrix of relative inverse perimeters. The instant values of radius \(Ri \) and eccentricity \(Ai \) are linked to each other by the parameter \(\sqrt{2\pi E} \) of Gaussian function of normal distribution [4; 5]:

\[Ri = 1 + 2/100*[E + Ai*(1 + \sqrt{2\pi E}/100)], \]
\[Ai = [100*(Ri - 1)/2 - E]/[1 + \sqrt{2\pi E}/100]. \]
The values of inverse eccentricities are concentrated near reciprocal value of squared sum of mean values (root mean square, arithmetical mean, geometrical mean and harmonic mean) of numbers PI and E:

\[
\frac{1}{\sqrt{\frac{\text{PI}^2 + \text{E}^2}{2}} + \frac{\text{PI} + \text{E}}{2} + \sqrt{\text{PI} \times \text{E}} + 2 \times \text{PI} \times \text{E} \div (\text{PI} + \text{E})} ^2 = \frac{1}{136.9938985020083597}.
\]

The bond exponential of PI and E was illustrated by the expression \(\text{PI} \times 10^{59} = \text{E}^{136.9972503724980956}\).

Averages of inverse values of these digital sequences begin to differ from each other starting from the 12-th decimal place [6–8]. This is the natural limit of accuracy of inverse eccentricity calculations in polar coordinates.

3.1. Calibrating Fields

There are three fields of calibration of wave fronts. Fields of rotational and vibrational speeds are generating the field of translational velocity.

Matrix of rotational speed \([\text{CN}] = (R + N \times \text{PI} \times [\text{CN}] / 10^{18}) ^64 \times 10^7\) where \(N = 0, 1, 2, 4\).

TABLE 2. Field of rotational speed

Notation	Value	Description
C4	2.9979245786759134*10^8	3D-speed (sphere)
C2	2.9979242359656663*10^8	2D-speed (circle)
C1	2.9979240646119366*10^8	1D-speed (diameter)
C0	2.9979238932573362*10^8	0D-speed (point)

TABLE 3. Field of vibrational speed

Notation	Value	Description
TE	2.9979245625727419*10^8	\((R+1/E/10^8)^{64}*10^7\)
T	2.9979245608618159*10^8	Harmonic temperature (median of two medians)
TA	2.9979245607825451*10^8	\([R+1/(E+AS)/10^8]^{64}*10^7\)
TK	2.9979245593094320*10^8	\([R+1/(E+AS+BS)/10^8]^{64}*10^7\)

TABLE 4. Field of translational velocity

Notation	Value	Description
C	2.9979245786759134*10^8	Harmonic rotational speed (3D-speed)
	2.9979245697688650*10^8	Root mean square
	2.9979245697688646*10^8	Arithmetical mean
V	2.9979245697688647*10^8	Harmonic translational velocity (median)
	2.9979245697688646*10^8	Geometrical mean
	2.9979245697688647*10^8	Harmonic mean
T	2.9979245608618159*10^8	Harmonic vibrational speed (temperature)
An arithmetical mean above is less than harmonic mean. This is impossible in classic analysis. This fact shows information entropy of discrete analysis and gives the key to calibration of mathematical 2D-image of 3D-motion of wave front.

3.2. Fields of Geometrical Parameters
The inverse eccentricities are concentrated near the number $A_1 = 1/137 = 0.007299270072992700729927...$. The unique endless decimal fraction $A_1 = \text{Sum}[729927/10^{8n}]$ has a mirror symmetry with period 10^8 and in pair with $A_S = 1/\text{Sum}[(137 + (137 - 100) *n)/10^{3n}] = 0.00729$ determines the limits [9] of the field of inverse geometrical parameters compressed around the central value $A_0 = (\pi E/100)^2 = 0.0072927060593902$. The corresponding radii are as follows:

Notation	Value	Description
R1	1.0545719538152265	$1 + 2/100(1 + \sqrt{2\pi E/100})$
R01	1.0545718610477836	Median (R0; R1)
RP	1.054571955420578	Median of two medians (harmonic Planck’s radius)
R0S	1.054571300363340	Median (R0; RS)
RS	1.0545716917923240	$1 + 2/100(1 + A_S(1 + \sqrt{2\pi E/100}))$

Values of radius RP and perimeter PP have been identified as the harmonic Planck’s units.

Notation	Value	Description
RC	1.0545697837673031	$(C/10^7)^{(1/64)}$
RV	1.0545697837183468	Median (RT; RC)
RE	1.0545697836787944	R + 1/E/10^8
RAE	1.0545697836738746	Median (RA; RE)
RT	1.0545697836693905	Median (RAK; RAE)
RA	1.0545697836689549	R + 1/ (E + AS)/10^8
RAK	1.0545697836649065	Median (RA; RK)
RK	1.0545697836608581	R + 1/ (E + AS + BS)/10^8

Background temperature:

Median (E+AS; K) = 2.7285850810946404. It is upper limit of TBG.

Median of medians = 2.7252543275634558 = TBG. It is harmonic background temperature.

Median (E+AS; E) = 2.7219256081809304. It is lower limit of TBG.

Limits of gauge eccentricity:

Lower limit A(RT) = 0.0072224927756108 = AT.
Upper limit $A(RC) = 0.0072224962396475 = AC$.

Molar amplitude of translational velocity:

Upper limit $= 0.01199927775072243892$.
Union limit $= 0.0119927775054923709 = MM$. It is harmonic molar mass unit.

Lower limit $= 0.01199927775037603525$.

Molar phase of translational velocity:

1.3806484502840000.
$\cos [12 - (AT; AC)/10] - \sin [12 - (AT; AC)/10] = 1.3806484502310000 = KB$. It is harmonic Boltzmann’s unit.

1.3806484501770000.

TABLE 7. Internal radial field

Notation	Value	Description
RS	1.0545716917923240	$R(AS); AS = 0.00729$
	1.0545707377551196	Median ($RV; RS$)
RV	1.0545697837183468	$(V/10^7)^{(1/64)}$
	1.0545670092049269	Median ($RV; RX$)
RX	1.0545642346951568	$R(AX); AX = 5/X - 1$

Median of two above medians $1.0545688734791990 = RM$ is the harmonic value of internal radius.
$X = \sqrt[X*E^X]{(E^X - 1) = 5}$ is parameter of expression for Wien wavelength displacement.

Fine structure constant is determined as the eccentricity AF connecting numbers 137 and π:

$AF = 1000/ \text{Integer} \left(\sqrt{(137^2 + \pi^2)} *1000\right) = 0.0072973525205056$.

Orbital radius:

$RF = 1.0545718996147182$.
Median (RF, RP) $= 1.0545718475783874 = RQ$. It is harmonic value of orbital radius.
$RP = 1.0545717955420578$.

Orbital density of velocity field:

1.6021766174049711.
$\sqrt[AF*RP/(T; C)] = 1.6021766150248797 = Q$. It is the Elementary charge unit.
1.602176612644788.

Harmonic median density of velocity field:

6.6744109106473266.
$2*\pi*(RM; RQ)*[1 + (AM; AQ)] = 6.67440529112548490 = G$. It is the Newtonian gravitational unit.
6.6736948926580828.

Entropy of calculations of geometrical parameters has been determined using the expressions connecting product $\pi*E$ and ratio $1/137$:

115x340: AF = 1000/ Integer [sqrt (137^2 + PI^2) *1000] = 0.0072973525205056.
\[[\text{Ni}] = 100^*\{\sqrt{8*\pi*E/ (137^2 + 8*\pi*E)}\}/ (1 + 2*[\text{Ai}]/1000) - 5/10^8 \].

\[P1 – P0 = 4*\pi*10^8*[2*\pi*/ (\pi + E) – \cos(\pi/6) *10^{-4} – \tan(\pi/4) *10^{-7} + \sin(\pi/6) *10^{-9}] \].

TABLE 8. Entropy of eccentricities

Eccentricity	Value	Description
AA	0.0073189621138002	(\pi*E/100)^2 + 4*[1/137 - (\pi*E/100)^2]
	0.0073188455271700	Median (AD; AA)
AD	0.0073187289405399	1/(16*\pi*E)
AN	0.0073158881634932	Median of two medians
	0.0073129313978999	Median (AD; AL)
AL	0.0073071361524362	1/[\ln(E) + 59*\ln(10)]

Harmonic entropy unit:

\[NB = 6.0221410732354338 = B/ (1 + 4*\pi/10^8)/10^8. \]

Median [NB; N(AN)] = 6.0221410564201849 = NA. It is harmonic Avogadro’s unit.

N(AN) = 6.0221410396049361.

3.3. Decimal Orders of Quantum Constants

The decimal orders of the quantum constants are determined from the equations of standard physical model using exponential bond expression \(E^{137} = 100*\pi*10^{57} \). For NA it is \(10^+23 \). For KB it is \(10^-23 \). For RP and PP it is \(10^-34 \). For Q it is \(10^-19 \). For G it is \(10^+11 \). More information could be found in references [10 - 12].

3.4. Harmonic Symmetry of Quantum Physics

All quantum units are the parameters of density of the field of progressive velocity. Velocity is the relative quantity. The number C is the upper limit of progressive velocity. The harmonic velocity \(V \) was determined as the ratio of units of relative space and relative time. All quantum constants are relative units due to relativity of space and time. Harmonic symmetry of quantum physics is illustrated by Table 9.

TABLE 9. Quanta of energy

Energy quanta	Description
m*v^2/2*[1 + v^2/(T…C)^2]	From (m*v^2/2) to (m*C^2) when v approaches C; (Newton, Einstein)
h*f*[1 + v^2/(T…C)^2]	From (h*f) to (h*f*2) when v approaches C; (Kotelnikov, Nyquist)
k*T/[1 + v^2/(T…C)^2]	From (k*T) to (k*T/2) when v approaches C; (Boltzmann, Shannon)
q*U/[1 + v^2/(T…C)^2]	From (q*U) to (U*q/2) when v approaches C; (Dirac, Kaufmann)

where m, v, T, h, f, k, q, U are the instant values of mass, velocity, temperature, action, frequency, phase, electric charge and voltage.

4. Conclusions

Quantum Physics is Differential metric of pulsing spherical spiral.

Quantum Physics is digital bridge between Discrete and Continual Mathematics.

Quantum Physics is Absolute calculus of Wave motion.

5. References

[1] Proposed redefinition of SI base units/ en.wikipedia.org/.
[2] On the future revision of the SI/ www.bipm.org/.
[3] Equation of motion/ en.wikipedia.org/.

[4] Machusky E.A. Logarithmetics of quantum physics/ 16-th Int. Scientific M.Kravchuk Conf., May 14-15, 2015, Kyiv: Conf.materials. Vol. 2. Algebra. Geometry. Analysis. – K.: NTUU “KPI”, 2015. – pp.26 – 29.

[5] Мачуський Євген. Альфа-ПІ-Е гармонія природи/ ISSN 1819-7329. “Світогляд”, 2015, №2 (52), р.3.

[6] Zhivkov A.P. On some numerical properties of the fine structure constant/ A.P.Zhivkov, E.A.Machusky, A.V.Frolov/ Математика в сучасному технічному університеті: матеріали ІІІ Міжнар. наук.-практ. конф. (Київ, 25 – 26 груд. 2014 р.). - Київ: НТУУ «КПІ», 2015. – ss. 5 – 7.

[7] Мачуський Є.А. Mystery of 137 prime or simplex quantum theory/ Інформаційна безпека України: Зб. наук. доп. та тез наук.-техн. конф. м.Київ, 12 - 13 березня 2015 р., Київський національний університет імені Тараса Шевченка/ Редкол.: Анісімов (голова) та ін.. – К.: Київський національний університет імені Тараса Шевченка, 2015. – ss. 16 – 18.

[8] Machusky E.A. Stairsing of 137 prime as a star sing of nature/ the same conference/, pp. 62 – 63.

[9] Machusky E.A. Means’ subordination breaking by the means of means of Alpha-trinity/ E.A. Machusky, S.S. Mikadze/ Математика в сучасному технічному університеті: матеріали IV Міжнар. наук.-практ. конф. (Київ, 24 – 25 груд. 2015 р.). – Київ: НТУУ «КПІ», 2016. – P.10 – 12.

[10] Machusky E. Information security as base of General Safety and Security/ Information Security – International Training Workshop: Kyiv, Editor V. Korsun. – Kyiv: NTUU “КПІ”, 2014 – pp. 25 – 33.

[11] Мачуський Є.А. Диференціальна альфа-система числення в обернених кільцях/ Тези доп. V Міжнар. наук. -практ. конф. «Методи та засоби кодування, захисту й ущільнення інформації» м.Вінниця, 19 – 21 квітня 2016 р. – Вінниця: ТОВ «Нілан – ЛТД», 2016. – ss. 143 – 145.

[12] Мачуський Є. «Електрон»: науково-популярне видання/ ISBN 978-966-622-572-9. - Мачуський Є., - К.: НТУУ «КПІ», 2013. -32c.