The microstructure and magnetic properties of rapidly solidified Ag_{52}Cu_{23.2}La_{4.8}Fe_{20} (at.%) alloy, which was designed as the combination of Ag-rich Ag_{65}Cu_{29}La_{6} alloy with high glass forming ability (GFA) and Fe, was investigated. An amorphous phase formation was observed in melt-spun ribbon of ternary Ag_{65}Cu_{29}La_{6} alloy. The composite of Ag-Cu-based polycrystalline matrix and BCC-Fe globules was obtained in Ag_{52}Cu_{23.2}La_{4.8}Fe_{20} alloy. The size of BCC-Fe globules embedded in Ag-Cu based polycrystalline matrix was the order of 50 nano-meter. The Fe addition deteriorated the GFA in Ag-rich Ag-Cu-La alloys. The combination of liquid phase separation and stabilization of thermal melt for an amorphous phase formation during rapid cooling leads to the formation of the particular solidification microstructure in Ag-rich Ag-Cu-La-Fe alloy. The melt-spun ribbon shows the typical ferromagnetic magnetic properties due to the 50 nano-meter ordered BCC-Fe globules.

Key words: Amorphous alloy, Liquid phase separation, Solidification, Microstructure

Ag-rich Ag-Cu-La-Fe 液体分離合金の凝固組織と磁気的性質

永瀬丈嗣* 寺井 智之** 掛下 知行*** 森田 健太****

Solidification Microstructure and Magnetic Properties of Ag-rich Ag-Cu-La-Fe Immiscible Alloys

by

Takeshi NAGASE*, Tomoyuki TERAI**, Tomoyuki KAKESHITA*** and Kenta MORITA****

The microstructure and magnetic properties of rapidly solidified Ag_{52}Cu_{23.2}La_{4.8}Fe_{20} (at.%) alloy, which was designed as the combination of Ag-rich Ag_{65}Cu_{29}La_{6} alloy with high glass forming ability (GFA) and Fe, was investigated. An amorphous phase formation was observed in melt-spun ribbon of ternary Ag_{65}Cu_{29}La_{6} alloy. The composite of Ag-Cu-based polycrystalline matrix and BCC-Fe globules was obtained in Ag_{52}Cu_{23.2}La_{4.8}Fe_{20} alloy. The size of BCC-Fe globules embedded in Ag-Cu based polycrystalline matrix was the order of 50 nano-meter. The Fe addition deteriorated the GFA in Ag-rich Ag-Cu-La alloys. The combination of liquid phase separation and stabilization of thermal melt for an amorphous phase formation during rapid cooling leads to the formation of the particular solidification microstructure in Ag-rich Ag-Cu-La-Fe alloy. The melt-spun ribbon shows the typical ferromagnetic magnetic properties due to the 50 nano-meter ordered BCC-Fe globules.

Key words: Amorphous alloy, Liquid phase separation, Solidification, Microstructure

1. 緒言

液体分離現象は一般に元素間の混合エンタルピーが大きな正の値を示す組み合わせを持つ合金で発現することが知られている。一方、アモルファス相は、一般に元素間の混合エンタルピーが大きく負の値を示す組み合わせを持つ合金で形成される傾向がある。液体分離現象（ここではスピノーダル分解のような、固相状態や凍結液体におけるナノスケール相分離は含まない）と、アモルファス相形成現象をともに発現するような合金では、(1)複相アモルファス合金、(2)アモルファス相と結晶相からなる複相材料、(3)アモルファス相と結晶の混相からなる合金など、アモルファス相中に球状微細結晶が分散した複合組織や、結晶マトリックス中に微細なアモルファス相が分散した組織など、液体分離現象を示すことが知られている。しかし、平衡状態図においても準安定な液体分離が観察される場合、単一液相は形成されない、典型的な非混和合金である。このFe-Ag合金系においても、液体分離現象を示す合金の作製が可能であることが見いだされている。

Fe-Cu合金系において、液体分離現象を示す合金の作製が可能であることが見いだされている。Fe-Cu系およびFe-Ag系合金において、これらに分類できる。Fe-Cu系およびFe-Ag系合金において、これまで報告された、液体分離発現とアモルファス相形成をともに発現する合金の一覧を示す。
Cu系およびFe-Ag系では、複相アモルファス合金の形成は、これまで報告例がなかった。また、Ag基アモルファスマトリックスを主相としFe-rich結晶相がマトリックスとして分散する場合についても、これまで報告例がない。

Table 1 An amorphous phase formation in Fe-Cu based and Fe-Ag-based immiscible alloys with liquid phase separation.

(a) Fe-rich amorphous matrix and minor Cu-based phases,
(b) Fe-based amorphous matrix and minor Ag-based phases,
(c) Cu-based amorphous matrix and minor Fe-based phases.

RWA, ME and MSP denote Rotating-Water-Atomizing process, Melt-Extraction process, and Melt-Spinning process, respectively.

Alloys [at.%]	Process	Ref.
Fe_{32.5}Cu_{20}Si_{10}B_{15.5}	RWA	3
	ME	10
	MSP	11
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	12, 13
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	4, 14
Fe_{52.5}Cu_{31}Zr_{4}B_{6}	MSP	4, 14, 15
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	4
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	4
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	16
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	5
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	17
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	18
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	18
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	19
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	20, 21
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	20, 21
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	22
Fe_{65}Cu_{31}Zr_{4}B_{6}	MSP	23

Alloys [at.%]	Process	Ref.
Fe_{32.5}Si_{10}Ag_{30}	MSP	7, 8, 9

Alloys [at.%]	Process	Ref.
Cu_{69.5}Ag_{30}La_{5.5}Fe_{2}	MSP	24
Cu_{68}Ag_{32}La_{3}Fe_{10}	MSP	24
Cu_{68}Ag_{32}La_{3}Fe_{10}	MSP	24
液相のほうがマイナー相となる場合を考えると、場合も報告されているイナー相が金系つ合金

Table 1

Temp. [K]	Cu [at.%]	Ag [at.%]	La [at.%]	Fe [at.%]
500	29.2	65.4	5.4	0.0
1000	29.1	65.7	5.0	0.1
1500	28.5	65.7	4.9	0.9
2000	27.2	64.8	4.8	3.2

約20g秤量した後、アーク溶解により作製した。液体急凝固リボンは、母合金インゴットから、汎用の単ロール液体急冷装置を用いて作製した。単ロール装置用に関しては、ジェイミルズを用い、高周波誘導加熱により試料を溶解後、42ms\(^1\)の周波数を有するCuロールに溶湯を噴射して、メルトスパリン製を作製した。メルトスパリン製におけるアモルファス相の形成の有無は、X-ray diffraction (XRD)およびTransmission Electron Microscopy (TEM)により評価した。TEMおよびScanning Transmission Electron Microscopy (STEM)試料は、イオンミリング法により作製した。一部の合金は、TEMおよびSTEMにより微細組織の観察を行った。試料の磁気的性質は、Physical Properties Measurement System (PPMS)のVibrating Sample Magnetometer (VSM)オプションを用いて測定した。熱力学計算は、FactSage (ver6.4)\(^2\)とSGTE2007データベースをもとに実施した。

Table 2

Temp. [K]	Cu [at.%]	Ag [at.%]	La [at.%]	Fe [at.%]
500	29.2	65.4	5.4	0.0
1000	29.1	65.7	5.0	0.1
1500	28.5	65.7	4.9	0.9
2000	27.2	64.8	4.8	3.2

Fig. 1 Thermodynamic calculation of the Gibbs free energy of liquid phases and the calculated phase diagram focusing on the liquid phase separation in \((Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x\) (x=0−100) alloys. (a) Gibbs free energy of single liquid (broken black lines) and the mixture of the separated liquids (solid red lines), (b) the calculated phase diagram focusing on the liquid phase separation, and the inset is the magnified image at the Ag-rich side.

Fig. 2 The OM picture of the cross section of the arc-melted ingot in \((Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x\) (x=20) alloy.

Fig. 3 結果

Fig. 1 に、\((Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x\)合金における液相の自由エネルギー(Fig. 1a)と、miscibility gap(Fig. 1b)の熱力学計算結果を示す。なお、SGTE2007データベースにおけるAg, Cu, La, Fe元素からなる二元系状態図において、Ag-La系状態図のみアセスメントされているなかった。(Fig. 1a)において、黑色・破線で示す1液相の自由エネルギーは、いずれの温度においても赤色・実線で示す2液相のそれよりも高い。これは、\((Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x\)合金における強い液相分離の発現傾向を示唆している。Fig. 1bに、自由エネルギー曲線より計算したmiscibility gapを示す。(Ag\(_{0.65}Cu_{0.29}La_{0.06}\)Fe\(_x\))合金は、2000Kにおいて、1液相よりも、Cu-Ag-La-rich液相とFe-rich液相分離のほかが安定であることが示唆された。Insetで示す低Fe濃度側のmiscibility gapは、Ag-rich液体中のFe溶解量は、Cu-rich (Cu\(_{100-x}\)(Ag\(_{0.65}Cu_{0.29}La_{0.06}\)Fe\(_x\))合金に比べてCu-rich液体のそれには比べて小さい事を示している。Table 2に、液相分離により形成される、主相となる分離液体の組成に関する熱力学計算結果を示す。主相となる分離液はAg-richであり、その組成は、Cu-Ag-La系合金でAg-richアモルファス相が形成されるAg\(_{65}Cu\(_{35}\)La\(_{5}\)Fe\(_x\)合金に近く、またFeの溶解量は極めて小さいことが分かる。以上の熱力学計算結果は、(Ag\(_{65}Cu\(_{35}\)La\(_{5}\)Fe\(_x\))合金では、液相分離の発現とAg-richアモルファス相形成可能性があることを示唆している。

Fig. 2 に、\((Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x\)合金インプロットの断面図を示す。Ag-rich相の左側内面に、Fe-rich領域の存在が確認できる。Fe-rich領域の形状はだ円状に近い、Fe-richとAg-rich領域の境界は極めてスムーズである。本研究で用いたアーク溶解法における冷却速度は、約2000Ks\(^{-1}\)のオーダーであることがAl-Cuの二次ディライトアーム間隔を明らかになっている\(^3\)。この結果、x=20合金では、アーク溶解速度の冷却速度にによっても、液体分離が発現することを示している。Fig. 3
領域においてCu元素が濃化し合金急速凝固リボンにおいて超常磁性と考えられる相の分散形態が程度かループCu70結晶相の周辺にはXRDパターンは、ホモクラスターを含まない(Fig. 3b)のいずれにおいても連続リボンが形成された。この結果は、Ag-rich Cu-Ag-LaおよびCu-Ag-La-Fe合金、Cu-rich Cu-Ag-LaおよびCu-Ag-La-Fe合金24)と同様に、高いリボン形成能を有することができる。

Fig. 4 XRD patterns of the rapidly solidified melt-spun ribbons in the $(Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x (x = 0, 20)$ alloys. XRD patterns were obtained from the wheel-contacted side.

Fig. 5 TEM microstructures of the rapidly solidified melt-spun ribbons in the $(Ag_{0.65}Cu_{0.29}La_{0.06})_{100-x}Fe_x (x = 20)$ alloy. (a) BF image, (b) SAED pattern. The indexes A and B indicates the typical example of spherical-shaped phase and rhomboid-shaped phase, respectively.

いずれの合金においても、自由表面とホイール接触面から得られたXRDパターンに有意な違いは認められなかった。Feを含まない$x=0$合金では、ブロードなピークに重畳してFCC相として指数付け可能なシャープなピークが重畳したパターンを示した。FCC相のピーク位置は、FCC-Agのそれに近いと考えられた。この結果は、$x=0$合金においてアモルファス相とFCC相の混相組織が形成されたことを示唆している。Feを添加した$x=20$合金は、$x=0$合金と比べ、超常磁性を示すブロードなピークが重畳したパターンを示した。

Ag-La-Feを添加したFe先端面から取得したデータを示している。なお、合金急速凝固リボンの組織を、XRDパターンにおいて、ストーブ冷却、ZFC）およびその差し込み図は、磁壁のピンニングによるものであると考えられた。一般的に、磁性金属ナノ粒子は超常磁性の特徴は認められなかった。以上の結果は、磁化の値はマイナー相としてのBCC-rich core + Cu-rich shell, Cu-rich Cu-Ag-Laおよびその凝固による球状Fe-rich核心を形成されたと考えられる。特に、合金Fe-rich Feの微結晶を囲むように球状Fe-rich Cu-Ag-La-Feが形作られた。この結果は、Fe元素の含有量は少なく、La元素のみが濃化する傾向が見られた。この観察結果およびXRDの結果より、TEM-BFおよびSTEM-BF像で自立コントラスト、STEM-HAADF像で黒
Ag-rich Ag-Cu-La-Fe液体分離合金の凝固組織と磁気的性質

Fig. 6 STEM microstructures and EDS elemental mapping of the rapidly solidified melt-sputtered ribbons in the (Ag0.65Cu0.29La0.06)100-xFe (x = 20) alloy. (a1)(b1) BF images, (a2)(b2) HAADF images, respectively.

色コントラストを示す球状相は、球状 BCC-Fe 結晶相であると考えられた。球状 BCC-Fe 結晶相の周辺には Cu 元素が濃化し、その周辺に Ag-rich 領域が存在し、Ag-rich 領域の境界に Cu と La が濃化する傾向が見られた。この結果は、Ag-Cu-La-rich 領域において、Ag、Cu および La 元素の分布は不均一であることを示している。Fig. 6b に、球状 BCC-Fe 相に注目した magnified-STEM 像およびマッピング像を示す。STEM-HAADF 像にて黒いコントラストを示す球状結晶に Fe 元素が濃化し、その周辺に Cu-rich 領域が存在し、この Fe-rich core + Cu-rich shell を取り囲むように Ag-rich 領域が存在することがわかる。Ag-Cu-La-rich マトリックス相に球状の Fe-rich 領域が存在する組織の形成メカニズムは明らかでないが、球状 BCC-Fe 相の大きさが約 50nm 程度であること、球状 BCC-Fe 相の分散形態が、Cu-rich (Cu0.45Ag0.40La0.06)100-xFe 合金 24)に極めて類似していることなどから、球状 BCC-Fe 相は、液体分離の現象によって特化相としての Fe-rich 領域の形成、液体分離により形成された主相としての Ag-Cu-La-rich 液相中への分散、およびその凝固によって形成されたと考えられた。

Fig. 7 に、(Ag0.65Cu0.29La0.06)100-xFe (x = 20) 合金急速凝固リボンの磁気的性質を示す。M-H ループ (Fig. 7a) およびその差し込み図は、Ag-rich Ag-Cu-La-Fe 合金の急速凝固リボンが、(Cu0.45Ag0.40La0.06)100-xFe 合金 24) と同様、典型的な強磁性を有することを示している。その保磁力は、およそ 1000 Oe オーダーであった。約 7000 Oe 以上の磁場において磁化率の減少が見られたが、これは Ag アあるいは Cu などの影響を受ける反磁性の影響であると考えられた。零磁場冷却 (Zero-Field Cooling, ZFC) および磁場中冷却 (Field Cooling, FC) (Fig. 7b)の磁化の値は、およそ 240 K 程度から増していった。これは、磁場のビンノニングによるものであると考えられた。一般的に、磁性金属ナノ粒子は超常磁性を示すことが知られているが、Ag-rich Ag-Cu-La-Fe 合金急速凝固リボンにおいて超常磁性と考えられる磁気的性質の特徴は認められなかった。以上の結果は、Ag-Cu-La-rich 多結晶マトリックスに分散する 50 nm オ
ーダの BCC-Fe ナノ粒子は、超常磁性を示さず、一般的なバルク材 BCC-Fe 相としての性質を有することを示している。

4 考察

(Ag0.65Cu0.29La0.06)100-xFe (x = 20) 合金の急速凝固リボンにおいて、球状 BCC-Fe 結晶相が、Ag-Cu-La-rich 多結晶相マトリックス中へ分散した組織の形成が確認された。Fig. 2 に示す計算状態図は、liquid miscibility gap の存在により、x = 20 合金では 200K 以上の高温でも単一液体相形成されないと判断された。液体相により Ag-Cu-La-rich メイン液体と Fe-rich マイナーリボン相が形成されることを示している。この計算結果は、急速凝固リボンに作製プロセスにおける球状 BCC-Fe 結晶相の存在は、Ag-Cu-La-rich 多相系から、Fe-rich 相の核生成・成長よりも、Ag-Cu-La-rich メイン液体と Fe-rich マイナーリボン相の分離相相からの冷却速度において、Ag-Cu-La-rich メイン液体はアモルファス液体相を形成し、一方でマイナーステラリボン相は BCC-Fe 結晶として凝固し、結晶化したため形成されるものと考えられる。SEM 観察により、BCC-Fe 球状結晶相は、Fe-rich 領域に囲まれるような一一種の球状 BCC-Fe ナノレベルのシェル構造の形成が明らかとなっ

4 結言

高いガラス形成能を示す Ag-Cu-La 合金 20 と Fe を組み合わせた。Ag-rich Cu-Ag-La-Fe 液体分離合金におけるアモルファス形成の有無、凝固組織および磁気的性質について調査された。得られた結果は、以下のとおりである。

(1) (Ag0.65Cu0.29La0.06)100-xFe (x = 0, 10, 20) 合金において、Fe を含まない合金ではアモルファス相が形成されるが、Fe を含む合金では SFD および TEM 観察結果から、アモルファス相形成が確認されていないと考えられた。Ag-rich Cu-Ag-La 合金のガラス形成能は、Fe の添加により急激に低下した。Ag-rich (Ag0.65Cu0.29La0.06)100-xFe (x = 10, 20) 合金のガラス形成能は、Cu-rich (Cu0.65Ag0.35La0.06)100-xFe (x = 10, 20) 合金 20 により低かった。

(2) (Ag0.65Cu0.29La0.06)100-xFe (x = 20) 合金では、球状 Fe 結晶相が Ag-Cu-La-rich 多結晶相に分散した組織が形成された。球状 BCC-Fe 結晶相の形成は、液体分離現象によるものと考えられた。急速凝固リボンにおいてアモルファス相の形成確認とはならなかったが、アモルファス形成組織に近い分離液体が形成されることで、合金の大過冷が実現され、結果として微細な球状 BCC-Fe 結晶相を含む、特異な凝固組織を示す合金が得られたと考えられた。

(3) (Ag0.65Cu0.29La0.06)100-xFe (x = 20) 合金は、典型的な強磁性を示し、これは、バルク材的な性質を示す球状 BCC-Fe 結晶に起因するものと考えられた。

本研究の一部は、関西エネルギー・リサイクル科学研究所の設立を支援するための研究振興財団第 34 回研究助成金の支援により実施されました。FactSage を用いた熱力学計算は、大阪大学大学院工学研究科 鈴木賢紀博士、田中敏宏博士のご協力のもと実施いたしました。走査透過電子顕微鏡観察は、神戸大学研究振興財団の研究振興基金内に設置された走査透過電子顕微鏡用装置を用いて、神戸大学工学部金属材料学講座の田中敏宏博士のご協力のもと実施いたしました。ここに謝意の意を表します。

参考文献

1) Q. Cheng and Z. P. Jin, "The Fe-Cu system: A thermodynamic evaluation, Metall. Trans. A, Vol.26,
パターンにおいて優位な違いは認められなかった。これにより、長手方向の不均一は確認されなかった。

ボンの長手方向の不均一性に関して詳細に検討した報告は、成相や凝固組織の不均一性が生じる可能性があるが、り形成された急速凝固リボンでは、リボン長手方向の液体の射出により形成された急速凝固リボンの。

り形成された特異な凝固組織であると考えられる。つ凝固組織が形成される理由は明らかとなっていない。

システム、合金組成、Cu球状結晶相は、ため形成されたと考えられる。

らの冷却過程において、Laイン液体と、は形成されないこと。バルク材

Fe系、合金組成、Cu合金など。

この計算結果は、急速凝固リボン作製プロセ

分離液体の射出により形成された急速凝固リボンの。

を示した。これは、バルク材的な性質を示す球状

加により急激に低下した結果から、

み合わせた研究振興財団第

究振興財団第

実施いたしました。と実施いたしました。

XRDリボ

分離

rich (Cu

La

100

La

Cu

100

La

Cu

100

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)

-0.40

100

(111)