In Vitro Shoot Proliferation of Apple Rootstocks ‘B.9’, ‘G.30’, and ‘G.41’ Grown under Red and Blue Light

Fang Geng1,2 and Renae Moran
School of Food and Agriculture, University of Maine, 5722 Deering Hall, Orono, ME 04469

Michael Day
School of Forest Resources, University of Maine, Orono, ME 04469

William Halteman
Department of Mathematics and Statistics, University of Maine, Orono, ME 04469

Donglin Zhang
Department of Horticulture, University of Georgia, Athens, GA 30602

Abstract. The influence of red and blue light wavelengths was tested to improve the initial in vitro multiplication of apple (Malus × domestica) rootstock cultivars Budagovsky 9 (B.9), Geneva 30 (G.30), and Geneva 41 (G.41). Single-node segments were established in semisolid Murashige and Skoog media and then transferred to proliferation media and cultured 40 days under white, red, or blue light irradiance. In a second experiment, G.30 was cultured under red, blue, or white light with and without gibberellic acid (GA3). The three rootstocks responded similarly under white light in terms of shoot number, length of the longest shoot, and the number of elongated shoots. Red light increased the number of shoots, length of the longest shoot, and the number of elongated shoots of B.9 and G.30 when compared with white or blue light. Red light increased the number of elongated B.9 and G.30 shoots to five per explant compared with one per explant under white light. In contrast, shoot growth of G.41 showed no difference under the three light quality treatments, and the number of elongated shoots per explant was less than one. When compared with an absence of GA3, a concentration of GA3 at 0.5 mg·L−1 promoted in vitro shoot growth of G.30 under red and blue light.

Micropropagation, a technique used to rapidly increase available stock of new cultivars, can be used for propagation of apple rootstocks (Webster and Jones, 1989). Micropropagation is also useful for production of stock plants with improved rooting ability (Quamme and Hogue, 1994; Webster and Jones, 1991). For apple, micropropagation is inefficient in the proliferation stage (Aklan (Quamme and Hogue, 1994; Webster and Jones, 1991). For example, poor shoot proliferation are necessary to decrease the time for rapid propagation of newly released cultivars.

Axillary shoot proliferation and elongation can be enhanced by altering the spectral light quality of in vitro plantlets (Chee and Pool, 1989; Economou and Read, 1987). Compared with white light, blue light increases in vitro shoot number in Amelanchier (Behrouz and Lineberger, 1981) and plum (Baraldi et al., 1988), but decreases shoot number and shoot length in Spiraea and apple (Norton et al., 1988a, 1988b). Red light increases the length of axillary shoots in apple (Muleo and Morini, 2006, 2008), plum (Muleo and Thomas, 1997), Azorina vidalii (Moreira da Silva and Debergh, 1997), and Vaccinium corymbosum (Noe et al., 1998), but not in grape (Chee and Pool, 1989). The inconsistent responses may be the result of variation in physiology among taxa or in conditions among experiments (Baraldi et al., 1988; Economou and Read, 1987; Norton et al., 1988a). At low intensity, blue light has little effect on shoot growth of tobacco, but at higher intensity, it enhances shoot growth compared with red or yellow light (Seibert et al., 1975). At low intensity, red light produces the greatest proliferation rate, but under higher intensity, red light does not differ from white or blue light in its effect on shoot proliferation (Baraldi et al., 1988). Altering light quality can be an efficient method for improving shoot proliferation, because it does not increase the duration of the propagation cycle, unlike prolonged subculturing (Webster and Jones, 1991).

Few studies have measured variation in response to light quality among apple rootstock cultivars. In MM.106 apple, culturing under red or blue light reduces in vitro shoot number compared with white or green light, but red light increases shoot length (Muleo and Morini, 2006). In contrast, shoot number and shoot length of the M.9 apple are increased by red light relative to blue, yellow, green, white, or far-red light (Muleo and Morini, 2008).

GA3, added to proliferation media in combination with cytokinin and auxin, improves shoot proliferation in apple (Pua et al., 1983), but responses may vary with explant condition (Elliot, 1972). Light quality can affect phytohormone balance in developing shoots, with red and blue light altering endogenous auxin and gibberellins (Baraldi et al., 1995). We hypothesized that light quality may alter responses of apple rootstocks to exogenous GA3.

The purpose of this study was to test the effect of blue and red light on in vitro shoot growth of three apple rootstocks, B.9, G.30, and G.41, which vary in their ease of propagation. Additionally, we tested the effect of blue and red light in combination with GA3 on in vitro shoot growth of G.30.

Materials and Methods

Plant material. Three apple rootstock cultivars, B.9, G.30, and G.41, were used in this study. Propagation research on protected Geneva® rootstock material was conducted with consent from the lead breeder. One-year-old trees were stored at 1 °C for ≈1 month and then transferred to a heated,
glass-glazed greenhouse at the University of Maine (Orono, ME) at the end of February in both 2012 and 2013. The rootstocks were planted into 3.8-L plastic containers filled with MetroMix 560 (Scotts-Sierra Horticultural Products Company, Marysville, OH) in 2012 and Fafard 3B Mix (Sungro, Agawam, MA) in 2013 and watered as needed. Testing with Agdia kits revealed no virus infections of the sprouts (Agdia, Inc., Elkhart, IN). After 2 months in the greenhouse, young softwood shoots were cut off in the early morning to provide the raw explants for aseptic establishment of shoots in vitro.

Aseptic culture establishment. Collected shoots were immediately placed in a beaker containing distilled water and transferred to a tissue culture laboratory. To reduce transpiration, collected shoots were defoliated and trimmed to 1 to 1.5 cm with one or two nodes. The nodal cuttings were surface-disinfested for 30 s in 70% ethanol and soaked for 10 min in a solution containing 0.6% sodium hypochlorite and several drops of Tween 20 (Agdia Inc.). All nodal cuttings were rinsed three to five times under a laminar hood using sterilized, distilled water.

MS basic medium with 30 g L−1 sucrose and 8 g L−1 agar (Sigma Chemical Co., St. Louis, MO) was used in all experiments. The pH of all media was adjusted to 5.8 ± 0.2 with 1 mol L−1 NaOH or 1 mol L−1 HCl solution after adding agar. An aliquot of 10 mL of the medium was pipetted into glass tubes, capped, and autoclaved at 121 °C for 30 min.

Each nodal cutting was vertically inserted into 60-mL disposable culture tubes (borosilicate glass, 25 × 150 mm) containing 10 mL MS culture media. Tubes with explants were set in tube racks and sealed in a plastic bag. Cultures were arranged randomly on shelves under cool-white fluorescent lamps (Philips 60-Watt 4 FT T8 type; Somerset, NJ) and incubated at a temperature of 27.2 ± 1.9 °C with a 16-h photoperiod. Photosynthetic photon flux of normal white light was 25 μmol m−2 s−1 as measured using a LQM 70-10 quantum light meter (Apogee Instruments Inc., Logan, UT). The relative humidity in the culture room was 70% ± 5%. After 40 d of culture, newly sprouted shoots were used to test the effect of light quality on shoot elongation and shoot multiplication.

Expt. I: Effects of light quality on in vitro shoot growth of B.9, G.30, and G.41. The established cultures were dissected and transferred into MagentaTM square vessels containing 50 mL MS medium supplemented with 1.0 mg L−1 6-BA and 0.1 mg L−1 IBA. Media in half the cultures contained no GA3, whereas media in the other half contained 0.5 mg L−1 GA3 added after autoclaving. Shoots were cultured under white, red, or blue light in the same culture room as in Expt. I.

Data collection. After culturing for 40 d, the number of microshoots per explant, the length of the longest microshoot per explant, and the number of elongated microshoots (defined as microshoots 1.5 cm or greater) were measured. Shoots were characterized as elongated (score of 1) or non-elongated (score of 0). For each treatment combination, multiplication rate was calculated as the percentage of explants with two or more shoots, and elongation rate was calculated as the percentage of microshoots with a shoot length of 1.5 cm or longer.

Experimental design and statistical analysis. In both experiments, we used a completely randomized design with at least four replicates per treatment per rootstock and eight explants per replicate. All data were analyzed using Statistical Analysis Systems (Version 9.3; SAS Institute Inc., Cary, NC). Analysis of variance was used to test for variation in the maximum in vitro shoot length. The multiplication rate and elongation rate were analyzed as binomial data, and the number of microshoots and elongated microshoots was analyzed as negative binomial data. Means separation was carried out using Fischer’s least significant difference (LSD) test at α = 0.05.

Results and Discussion

Expt. I. Light quality affected the number of shoots per explant, although the effects varied by cultivar (Table 1). For G.41, light quality had no effect on the number of shoots per explant, number of elongated shoots per explant, or length of the longest shoot (Fig. 1). Blue light decreased shoot number of B.9 compared with white light and slightly, but non-significantly, decreased shoot number for G.30. In contrast, the red light treatment enhanced shoot number for both B.9 and G.30 and increased both the number of elongated shoots and length of the longest shoot (Figs. 1 and 2). Similar results occurred for the multiplication rate (data not shown).

Table 1. Analysis of variance P values for the effect of light quality on microshoot growth of B.9, G.30, and G.41 apple rootstock cultivars.

Source	No. of shoots/explant	No. of elongated shoots/explant	Length of longest shoot
Light			
Blue	0.0002	0.0005	<0.0001
Red	0.0002	<0.0001	<0.0001
White	0.0016	NSy	<0.0001

Elongation is defined as a minimum shoot length of 1.5 cm. NSy = nonsignificant at alpha = 0.05.

Expt. II: Effects of gibberellic acid and light quality on in vitro shoot growth of G.30. The established G.30 in vitro shoots were dissected and transferred into MagentaTM square vessels containing 50 mL MS medium supplemented with 1.0 mg L−1 6-BA and 0.1 mg L−1 IBA. Media in half the cultures contained no GA3, whereas media in the other half contained 0.5 mg L−1 GA3 added after autoclaving. Shoots were cultured under blue, red, or white light according to the experimental design and statistical analysis. In both experiments, we used a completely randomized design with at least four replicates per treatment per rootstock and eight explants per replicate. All data were analyzed using Statistical Analysis Systems (Version 9.3; SAS Institute Inc., Cary, NC). Analysis of variance was used to test for variation in the maximum in vitro shoot length. The multiplication rate and elongation rate were analyzed as binomial data, and the number of microshoots and elongated microshoots was analyzed as negative binomial data. Means separation was carried out using Fischer’s least significant difference method with an alpha of 0.05.
The red light treatment produced greater shoot multiplication and elongation for some rootstocks despite a light intensity that was 25% lower than that of the white light treatments, suggesting that light quality, instead of intensity or photon flux, was the primary driver of the observed differences in shoot number, elongation, and length of the longest shoot. Red light promotes axillary shoot elongation at low light intensities that occur in culture rooms, whereas blue light does not effectively promote axillary bud development at low light intensity (Baraldi et al., 1988; Muleo and Morini, 2003). Because Rosolux red light filters transmit a substantial component of far-red wavelengths, the developmental differences among treatments may have resulted from red to far-red light ratios detected by the phytochrome system in existing foliage. The red light filter allowed transmission of both red and far-red light, but cool-white fluorescent lights produce only ≈1% far-red output (Chee and Pool, 1989).

Although far-red light promotes internode elongation of apple shoots, Muleo and Morini (2008) found that total shoot length is not increased because fewer nodes are formed. We could not determine conclusively whether the increased shoot elongation observed in our study was the result of red or far-red light, because they co-occurred in the red treatment and the number of nodes per shoot was not counted. The use of light-emitting diode lighting could change the results as a result of differences in far-red output, higher light intensity, and lower radiant temperatures compared with cool-white fluorescent lights (Kim et al., 2004; Morrow, 2008).

The overall decrease in growth that resulted from the blue light treatment compared with white light likely resulted from the lower light intensity in the blue treatment in our study. However, the poor performance of cultivar G.41 in the blue light treatment (Fig. 1) despite the four times greater irradiance under the white lights suggests either that the low light level under the blue treatment was sufficient to saturate light requirements of explants of that cultivar or that factors other than quantum flux are regulating the developmental process.

Expt. II. Both GA3 and light quality affected in vitro microshoot proliferation of G.30 rootstock after 40 d of culturing in the proliferation stage with no interaction between GA3 and light quality (Table 2). GA3 significantly increased the number of shoots per explant and the length of the longest shoot, but not the number of elongated shoots. Light quality had a significant effect on microshoot growth, including the number of shoots per explant, the length of the longest shoot, and the number of elongated shoots. Blue and red light increased the number of shoots per explant compared with white light (Fig. 3). Red light increased the number of elongated shoots compared with white and blue light. Red light also increased the length of the longest shoot compared with blue and red light.

Previous studies showed an average in vitro multiplication rate for apple of six to seven shoots per explant (Druart, 2003). However, the length of time of culture in our study was much shorter and involved the initial subculture after the establishment phase. Although the multiplication rate of rootstocks under blue and white light was typical for the first subculture, red light produced rates of multiplication exceeding those achieved in previous studies (Sun et al., 2014; Webster and Jones, 1991). However, this was not true of the G.41 rootstocks, which failed to proliferate and did not respond to light quality. Additional rounds of subculturings may increase the multiplication rate of apple rootstock cultivars (Grant and Hammatt, 1999; Webster and Jones, 1991), a practice that could be investigated for its effect on proliferation of G.41.

The effect of red light on G.30 was more pronounced in Expt.1 than in Expt. II, despite the similar media and culture room conditions. Different stock plants were used in each experiment, and conditions in the greenhouse varied as well. It is not clear how growing conditions for stock plants affect responses of explants in vitro, but differences in growth persisting with subculturing have been demonstrated among rootstocks of M.9 (Grant and Hammatt, 1999; Webster and Jones, 1989).

Conclusions

The influence of light environment and GA3 on growth of apple rootstocks in culture is highly variable by cultivar. Culturing under red light increased the length of shoots, maximum shoot length, and number of elongated shoots for B.9 and G.30 but not G.41. For these same cultivars, addition of GA3 enhanced the increase in shoot number under blue light and the increase in elongated shoots under red light. Under white light, the addition of GA3 did not influence shoot growth meaningfully. The effects of GA3 concentration and phenological age of the explants (Elliott, 1972) on shoot proliferation of apple rootstocks should be investigated to further enhance multiplication rates during micropropagation.

Table 2. Analysis of variance P values for the effect of light quality and gibberellic acid (GA3) on microshoot growth of G.30 apple rootstock.

Source	No. of shoots/explant	No. of elongated shoots/explant	Length of the longest shoot
GA3	0.0344	NS	0.0059
Light	0.0326	<0.0001	0.0004
GA3 × light	NS	NS	NS

*Elongation is defined as a minimum shoot length of 1.5 cm.

*ns = nonsignificant at alpha = 0.05.

Fig. 2. Microshoot growth of G.30 apple rootstock under (A) blue, (B) red, or (C) white light.

Fig. 3. Microshoot growth of G.30 apple rootstock after 40 d of proliferation culture on media with and without gibberellic acid (GA3) and under blue, red, or white light. Means followed by the same letter are not significantly different by Fisher’s least significant difference (LSD) test at α = 0.05.
Literature Cited

Aklan, K., S. Çentiner, Y. Aka-Kacar, and Y. Yalcin-Mendi. 1997. *In vitro* multiplication of clonal apple rootstocks M-9, M-26 and MM106 by meristem culture. Acta Hortic. 441:325–327.

Baraldi, R., F. Ross, and B. Lercari. 1988. *In vitro* shoot development of *Prunus* GF655-2: Interaction between light and benzyladenine. Physiol. Plant. 74:440–443.

Behrouz, M. and R.D. Lineberger. 1981. Influence of light quality on *in vitro* shoot multiplication of *Amelanchier laevis*. HorticScience 16:406 (abstr).

Chee, R. and R.M. Pool. 1989. Morphogenic responses to propagule trimming, spectral irradiance, and photoperiod of grapevine shoots recultured *in vitro*. J. Amer. Soc. Hortic. Sci. 114:350–354.

Dobránszki, J. and J. Teixeira da Silva. 2010. *In vitro* shoot development of *Prunus* GF655-2: Interaction between light and benzyladenine. Physiol. Plant. 74:440–443.

Economou, A.S. and P.E. Read. 1987. Light treatments to improve efficiency of *in vitro* propagation system. HorticScience 22:751–754.

Elliot, R.F. 1972. Axenic culture of shoot apices of apple. N.Z. J. Bot. 10:254–258.

Geng, F., R.E. Moran, and D. Zhang. 2012. Chilling duration affected the microshoot elongation of G.30 apple rootstock. HorticScience 47:98 (abstr).

Grant, N.J. and N. Hammatt. 1999. Increased shoot and root production during micropropagation of cherry and apple rootstocks: Effect of subculture frequency. Tree Physiol. 19:899–903.

Isutsa, D.K., M.P. Pritts, and K.W. Mudge. 1998. A protocol for rooting and growing apple rootstock microshoots. Fruit Var. J. 52:107–116.

Kim, S., E. Hahn, J. Heo, and K. Park. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of *shiragsan* plantlets *in vitro*. Sci. Hortic. 101:143–151.

Lane, W.D. and J.M. McDougald. 1982. Shoot tissue culture of apple: Comparative response of five cultivars to cytokinin and auxin. Can. J. Plant Sci. 62:689–694.

Moreira da Silva, M.H. and P.C. Deborgh. 1997. The effect of light quality on the morphogenesis of *in vitro* culture of *Azorina vidalii*. Plant Cell Tiss. Org. Cult. 51:187–193.

Morrow, R.C. 2008. LED lighting in horticulture. HorticScience 43:1947–1950.

Muleo, R. and S. Morini. 2003. Effects of light quality on micro-propagation of woody species. Kluwer Academic Publishers, Boston, MA, p. 3–35.

Muleo, R. and S. Morini. 2006. Light quality regulates shoot cluster growth and development of MM.106 apple genotype in *in vitro* culture. Sci. Hortic. 108:364–370.

Muleo, R. and S. Morini. 2008. Physiological dissection of blue and red light regulation of apical dominance and branching of M.9 apple rootstock growing *in vitro*. J. Plant Physiol. 165:1838–1846.

Muleo, R. and B. Thomas. 1997. Effect of light quality on shoot proliferation of *Prunus cerasifera* are the result of differential effects on bud induction and apical dominance. J. Hortic. Sci. 72:483–491.

Naik, S., S. Pattnaik, and P.K. Chand. 1999. *In vitro* propagation of pomegranate (*Punica granatum* L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci. Hortic. 79:175–183.

Nelson, S.H. 1976. Propagation of Ottawa apple rootstocks by softwood cuttings. Can. J. Plant Sci. 56:511–515.

Noé, N., T. Eccher, E. Del Signore, and A. Montoldi. 1998. Growth and proliferation *in vitro* of * Vaccinium corymbosum* under different irradiance and radiation spectral composition. Biol. Plant. 41:161–167.

Norton, C.R., M.E. Norton, and T. Herrington. 1988a. Light quality and the control of shoot length in woody ornamental plants grown *in vitro*. Acta Hortic. 227:453–456.

Norton, C.R., M.E. Norton, T. Herrington, and D. Phillips. 1988b. Light quality and light pipe in the micropropagation of woody ornamental plants. Acta Hortic. 226:413–416.

Pun, E.-C., C. Chong, and G.L. Rousselle. 1983. A protocol for rooting and growing apple rootstock. Can. J. Plant Sci. 63:183–188.

Quamme, H.A. and E.J. Hogue. 1994. Improved rooting of Ottawa 3 apple rootstock by soft wood cuttings using micropropagated plants as a cutting source. Fruit Var. J. 48:170–173.

Robinson, T.L., S.A. Hoyer, and G. Fazio. 2011. Performance of Geneva rootstocks in on-farm trials in New York State. Acta Hortic. 903:249–255.

Seibert, M., P.J. Wetherbee, and D.D. Job. 1975. The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus. Plant Physiol. 56:130–139.

Sun, R., H.Y. Sun, R.L. Bell, G. Li, J.H. Tao, and Q. Li. 2014. Optimisation of the media for *in vitro* shoot proliferation and root induction in three new cold-hardy and dwarfing or semi-dwarfing clonal apple rootstocks. J. Hortic. Sci. Biotechnol. 89:381–388.

Tao, R. and A. Sugiyama. 1992. Micropropagation of Japanese persimmon (* Diospyros kaki* L.). Biotechnol. Agr. For. 18:424–440.

Webster, C.A. and O.P. Jones. 1989. Micropropagation of apple rootstock M.9: Effect of sustained subculture on apparent rejuvenation *in vitro*. J. Hortic. Sci. 64:421–428.

Webster, C.A. and O.P. Jones. 1991. Micropropagation of some cold-hardy dwarfing rootstocks for apple. J. Hortic. Sci. 66:1–6.