Weak Essential Fuzzy Submodules Of Fuzzy Modules

Hassan K. Marhon
Ministry of Education, Rusafa1
hassanmath316@gmail.com

Hatam Y. Khalaf
Department of Mathematics, College of Education for pure Sciences, Ibn-Al-Haitham , Baghdad University, E-mail: dr.hatamyahya@yahoo.com

Article history: Received 27 November 2019, Accepted 16 December 2020, Published in October 2020
Doi: 10.30526/33.4.2510

Abstract

Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also, we study the homomorphic image and inverse image of weak essential F-submodules.

Keywords: Semi-prime F-submodules, essential F-submodules.

1.Introduction

Let $S \neq \emptyset$. Zadeh [1] defined F-subset X of S as a mapping $X: S \rightarrow [0,1]$. Negoita and Ralescu [2] introduced the concept of F-modules. Mashinchi and Zahedi [3] introduced the notion of F-submodules.

Mona [4] introduced and studied the concept of weak essential submodules, where a submodule H of \mathcal{M} is called a weak essential, if $H \cap L \neq (0)$, for each non-zero semiprime submodule L of \mathcal{M}. In this paper, we introduce the notion weak essential F-submodule of F-module. We investigate some basic results about weak essential submodules.

Next, throughout this paper \mathcal{R} is a commutative ring with identity, \mathcal{M} is an \mathcal{R}-module and X is a F-module of an \mathcal{R}-module \mathcal{M}.

Finally, (shortly fuzzy set, fuzzy submodule and fuzzy module is F-set, F-submodule and F-module).

S.1 Preliminaries

In this section, we shall give the concepts of F-sets and operations on F-sets, with some important properties of them, which are used in this paper.
Definition 1.1 [1]:

Let S be a non-empty set and let I be a closed interval $[0,1]$ of the real line (real number). A F-set X in S (a fuzzy subset X of S) is characterized by a membership function $X : S \rightarrow I$.

Definition 1.2 [2]:

Let $x_t : S \rightarrow I$, be a F-set in S, where $x \in S$, $t \in I$, defined by:

$$x_t = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

Then x_t a said F-singleton.

If $x = 0$ and $t = 1$ then:

$$0_t(y) = \begin{cases} 1 & \text{if } y = 0 \\ 0 & \text{if } y \neq 0 \end{cases}$$

We shall call such F-singleton the F-zero singleton.

Proposition 1.3 [3]:

Let a_t, b_k be two F-singletons of a set S. If $a_t = b_k$, then $a = b$ and $t = k$, where $t, k \in I$.

Definition 1.4 [5]:

Let A_1, A_2 are F-sets in S, then:

1. $A_1 = A_2$ if and only if $A_1(x) = A_2(x)$, $\forall x \in S$.
2. $A_1 \subseteq A_2$ if and only if $A_1(x) \leq A_2(x)$, $\forall x \in S$.

If $A_1 \subseteq A_2$ and there exists $x \in S$ such that $A_1(x) < A_2(x)$, then A_1 is called a proper F-subset of A_2.

3. $x_t \subseteq A$ if and only $x_t(y) \leq A(y)$, $\forall y \in S$ and if $t > 0$ then $A(x) \geq t$. Thus $x_t \subseteq A(x \in A_t)$, (that is $x \in A_t$ if and only if $x_t \subseteq A$)

Definition 1.5 [5]:

Let A_1, A_2 are F-sets in S, then:

1. $(A_1 \cup A_2)(x) = \max\{A_1(x), A_2(x)\}$, $\forall x \in S$.
2. $(A_1 \cap A_2)(x) = \min\{A_1(x), A_2(x)\}$, $\forall x \in S$.

$A_1 \cup A_2$ and $A_1 \cap A_2$ are F-sets in S.

In general if $\{A_\alpha, \alpha \in \Lambda \}$, is a family of F-sets in S, then:

$$\bigcap_{\alpha \in \Lambda} A_\alpha (x) = \inf\{A_\alpha(x), \alpha \in \Lambda\}, \text{for all } x \in S.$$

$$\bigcup_{\alpha \in \Lambda} A_\alpha (x) = \sup\{A_\alpha(x), \alpha \in \Lambda\}, \text{for all } x \in S.$$

Now, we give the definition of level subset, which is a set between F-set and ordinary set.

Definition 1.6 [6]:

Let A be a F-set in S. For $t \in I$, the set $A_t = \{x \in S, A(x) \geq t\}$ is called level subset of X.

The following are some properties of the level subset:

Remark 1.7 [1]:

Let A, B are F-subsets of S, $t \in I$, then:

1. $(A \cap B)_t = A_t \cap B_t$.
2. $(A \cup B)_t = A_t \cup B_t$.
3. $A = B$ if and only if $A_t = B_t$, for all $t [0,1]$.
Definition 1.8 [7]:
Let \(f \) be a mapping from a set \(\mathcal{M}_1 \) into a set \(\mathcal{M}_2 \), let \(A \) be a F-set in \(\mathcal{M}_1 \) and \(B \) be a F-set in \(\mathcal{M}_2 \). The image of \(A \) denoted by \(f(A) \) is the F-set in \(\mathcal{M}_2 \) defined by:
\[
f(A)(y) = \begin{cases} \sup \{ A(z) | z \in f^{-1}(y) \} & \text{if } f^{-1}(y) \neq \emptyset, \text{ for each } y \in \mathcal{M}_2 \\ 0 & \text{o.w.} \end{cases}
\]
where \(f^{-1}(y) = \{ x : f(x) = y \} \).
And the inverse of \(B(x) \), denoted by \(f^{-1}(B) \) is the F-set in \(\mathcal{M}_1 \) defined by:
\[
f^{-1}(B) = B \left(f \left(\mathcal{M}_1 \right) \right), \text{ for all } x \in \mathcal{M}_1.
\]

Definition 1.9 [8]:
Let \(f \) be a function from a set \(\mathcal{M}_1 \) into a set \(\mathcal{M}_2 \). A F-subset \(A \) of \(\mathcal{M}_1 \) is said \(f \)-invariant if \(A(x) = A(y) \), whenever \(f(x) = f(y) \), where \(x, y \in \mathcal{M}_1 \).

Proposition 1.10 [8]:
If \(f \) is a function defined on a set \(\mathcal{M} \), \(A_1 \) and \(A_2 \) are F-subsets of \(\mathcal{M} \), \(B_1 \) and \(B_2 \) are F-subset of \(f(\mathcal{M}) \). The followings are true:
1. \(A_1 \subseteq f^{-1}(f(A_1)) \).
2. \(A_1 = f^{-1}(f(A_1)) \), whenever \(A_1 \) is \(f \)-invariant.
3. \(f(f^{-1}(B_1)) = B_1 \).
4. If \(A_1 \subseteq A_2 \), then \(f(A_1) \subseteq f(A_2) \).
5. If \(B_1 \subseteq B_2 \), then \(f^{-1}(B_1) \subseteq f^{-1}(B_2) \).
6. Let \(f \) be a function from a set \(\mathcal{M} \) into \(\mathcal{N} \). If \(B_1 \) and \(B_2 \) are F-subsets of \(\mathcal{N} \), then \(f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2) \) [9].

Definition 1.11 [2]:
A said F-set \(X \) is F-module of an \(\mathcal{R} \)-module \(\mathcal{M} \) if:
1. \(X(v - \mu) \geq \min \{ X(v), X(\mu) \} \), \(\forall v, \mu \in \mathcal{M} \).
2. \(X(rv) \geq X(v) \), \(\forall v \in \mathcal{M} \) and \(r \in \mathcal{R} \).
3. \(X(0) = 1 \) (0 is the zero element of \(\mathcal{M} \)).

Definition 1.12 [3]:
Let \(X_1, X_2 \) are F-modules of an \(\mathcal{R} \)-module \(\mathcal{M} \). \(X_2 \) is a said F-submodule of \(X_1 \) if \(X_2 \subseteq X_1 \)."

Definition 1.15 [3]:
Let \(A \) be a F-set in \(\mathcal{M}_1 \), then we define:
1. \(A^* = \{ x \in \mathcal{M}_1 : A(x) > 0 \} \) is called support of \(A \), also \(A^* = \bigcup A_t, t \in (0,1] \).
2. \(A_* = \{ x \in \mathcal{M}_1 : A(x) = 1 = A(0_{\mathcal{M}_1}) \} \).
Definition 1.16 [12]:
A F-submodule A of a F-module X is called an essential (briefly $A \leq_e X$), if $A \cap B \neq 0$, for any non-trivial F-submodule B of X.

2. Weak Essential Fuzzy Submodules

Mona in [4] introduced the concept of weak essential submodule, where a submodule H of \mathcal{M} is a said weak essential, if $H \cap L \neq (0)$, for each non-zero semiprime submodule L of \mathcal{M}, where a submodule N of an \mathcal{R}-module \mathcal{M} is called semiprime if for each $r \in \mathcal{R}$ and $m \in \mathcal{M}$, if $r^2x \in N$, then $rx \in N$ [13]. We shall fuzzify this concept.

Definition 2.1 [14]:
Let A be F-submodule of F-module X is a said a semiprime \mathcal{F}-submodule if $r_t^k a_s \subseteq A$, for F-singleton r_t of \mathcal{R}, $a_s \subseteq X$, $k \in \mathbb{Z}_+$, then $r_t a_s \subseteq A$. Equivalently, A is semiprime F-submodule if $r_t^2 a_s \subseteq A$ for $a_s \subseteq X$ and r_t a F-singleton of \mathcal{R}, then $r_t a_s \subseteq A$.

Definition 2.2:
Let A_1 be F-submodule of F-module X. A_1 is a said weak essential F-submodule if $A_1 \cap S \neq 0$, for each non-trivial semiprime F-submodules of X. Equivalently F-submodule A of a F-module X is called weak essential F-submodule if $A \cap S = 0$, then $S = 0$, for every semiprime F-submodule of X.

Next, proposition is a characterization of a weak essential F-submodule.

Proposition 2.3:
Let X be a F-module and A a non-trivial F-submodule of X is a weak essential F-submodule if and only if for each non-trivial semiprime F-submodule S of X, there exists $x_t \subseteq S$ and r_t of \mathcal{R}, such that $x_t r_t \subseteq A$, $\forall t \in (0,1]$.

Proof:
Suppose that non-trivial semiprime F-submodule S of X, there exists $x_t \subseteq S$ and r_t of \mathcal{R}, such that $0_1 \neq x_t r_t \subseteq A$. Note that $x_t r_t \subseteq S$.

Conversely, A is weak essential F-submodule, then $A \cap S \neq 0$, for each non-trivial semiprime F-submodule S of X. Thus, there exists $0_1 \neq x_t \subseteq A \cap S$, implying that $x_t \subseteq A$ and hence $0_1 \neq x_t r_t \subseteq A$, $\forall t \in (0,1]$.

Now, we give the following Lemma, which we will need in proving the next result.

Lemma 2.4:
Let A be a F-submodule of a F-module X if A_t weak essential submodule of X_t, $\forall t \in I$. Then A is weak essential F-submodule in X.

Proof:
Assume B a semiprime F-submodule of X such that $B \neq 0_1$, since B semiprime F-submodule of X, hence B_t semiprime submodule of X_t, $\forall t \in (0,1]$, see [14, Theorem(2.4)], which implies $A_t \cap B_t \neq (0)$, since A_t is weak essential submodule and $A_t \cap B_t = (A \cap B)_t \neq (0)$, hence $A \cap B \neq 0_1$ by Remark (1.7)(3). Thus, A is a weak essential F-submodule of X.

Remark 2.5:
Every essential F-submodule is weak essential F-submodule. But the converse is not true in general, for example:

Example:
Let $\mathcal{M} = Z_{36}$ as Z-module. Define $X : \mathcal{M} \rightarrow I$, by:
X(a) = 1, for all \(a \in Z_{36} \)

Let \(A: \mathcal{M} \to I \), define by:
\[
A(x) = \begin{cases}
1 & \text{if } x = 0 \\
1/2 & \text{if } x \in (\bar{9}) - (0) \\
0 & \text{otherwise}
\end{cases}
\]

It is clear that \(A \) F-submodule of \(X \), \(A_1 = (\bar{9}) \) is weak essential by [4, Remarks(1.5)], then \(A \) is weak essential F-submodule by Lemma(2.4). Let

\[
B: \mathcal{M} \to I, \text{ as defined by: } B(x) = \begin{cases}
1 & \text{if } x = 0 \\
1/2 & \text{if } x \in (\bar{4}) - (0) \\
0 & \text{otherwise}
\end{cases}
\]

It is clear that \(B \) F-submodule of \(X \). \(A \) is not essential, since

\[
A \cap B(x) = \begin{cases}
1 & \text{if } x = 0 \\
0 & \text{otherwise}
\end{cases}
\]

\(A \cap B = 0_1 \) and \(B \neq 0_1 \); therefore \(A \) is not essential F-submodule.

Remark 2.6:

The converse of Lemma (2.4) is not true in general.

Example 2.7:

Let \(\mathcal{M} = Z_6 \) as Z-module. Define \(X: \mathcal{M} \to I \), \(A: \mathcal{M} \to I \) by:
\[
X(a) = \begin{cases}
1 & \text{if } a = 0 \\
1/2 & \text{if } a = 2, 4 \\
0 & \text{otherwise}
\end{cases}
\]

, \(A(a) = \begin{cases}
1 & \text{if } a = 0 \\
1/3 & \text{if } a = 2, 4 \\
0 & \text{otherwise}
\end{cases}
\]

A is an essential F-submodule, then \(A \) is weak essential by Remark (2.5), but \(A_1 = (0) \) is not essential see [15, Remark (2.1)]. Also \(A_1 \) is not weak essential, since \(A_1 \cap S = (0) \), where \(S \) any semiprime submodule. Therefore \(A_1 \) is not weak essential of \(X_1 \).

Proposition 2.8:

Let \(A \) be a F-submodule of a F-module \(X \), then \(A \) is weak essential in \(X \) iff \(A_* \) is weak essential submodule in \(X_* \).

Proof:

Let \(A_* \) is a weak essential submodule in \(X_* \). To show \(A \) is weak essential F-submodule in \(X \).

Assume that \(S \) is semiprime F-submodule of \(X \) and \(A \cap S = 0_1 \), then \((A \cap S)_* = (0)\), implies that \(A_* \cap S_* = (0) \). But \(S \) is semiprime F-submodule, then \(S_* \) is semiprime see [14, Theorem (2.4)], so \(S_* \) is semiprime, hence \(S_* = (0) \), so \(S = 0_1 \). Thus, \(A \) is weak essential F-submodule in \(X \).

Conversely, let \(A \) is a weak essential F-submodule in \(X \), we have to show that \(A_* \) is weak essential submodule in \(X_* \).

Let \(N \) is semiprime submodule of \(X_* \), and \(A_* \cap N = (0) \), we must prove \(N = (0) \).

Define \(B: \mathcal{M} \to I \) by:
\[
B(x) = \begin{cases}
1 & \text{if } x \in N \\
0 & \text{otherwise}
\end{cases}
\]

It is clear that \(B \) F-submodule of \(X \), \(B_* = N \), so \(A_* \cap B_* = (0) \), then \((A \cap B)_* = (0)\), hence by Remark(1.7)(3), \(A \cap B = 0_1 \) and \(B = 0_1 \), since \(A \) is weak essential F-submodule in \(X \), so \(B_* = (0) \); therefore
N = (0). Thus \(A \) is weak essential submodule in \(X \).

Remarks 2.9:

1. Let \(A, B \) are \(F \)-submodules of \(X \) such that \(A \subseteq B \) and \(B \) is weak essential \(F \)-submodule of \(X \), then \(A \) need not be weak essential \(F \)-submodule for example:

 Let \(\mathcal{M} \) be as \(Z \)-module \(Z_{36} \). Let \(X : \mathcal{M} \rightarrow I \), define by:
 \[X(a) = 1, \quad \text{for all} \quad a \in Z_{36}. \]

 Define \(A : \mathcal{M} \rightarrow I \), \(B : \mathcal{M} \rightarrow I \) by:
 \[A(x) = \begin{cases} 1 & \text{if } x \in \overline{18} \\ 0 & \text{otherwise} \end{cases}, \quad B(x) = \begin{cases} 1 & \text{if } x \in \overline{2} \\ 0 & \text{otherwise} \end{cases} \]

 It is clear that \(X_t = Z_{36} \) and \(A, B \) are \(F \)-submodules of \(X \).

 \(B_t \) a weak essential submodule in \(X_t \) see [4, Remarks(1.5)]. Thus \(B \) is weak essential \(F \)-submodule of \(X \) by Lemma (2.4). Let \(C : \mathcal{M} \rightarrow I \), as defined by:
 \[C(x) = \begin{cases} 1 & \text{if } x \in \overline{12} \\ 0 & \text{otherwise} \end{cases}, \quad \text{where } C \text{ semiprime } F \text{-submodule} \]

 \(C_t = \overline{12} \), is semiprime submodule of \(X_t \) (\(\forall t > 0 \)). But \(A \cap C = 0_t \), therefore \(A \) is not weak essential \(F \)-submodule of \(X \).

2. Let \(A, B \) are \(F \)-submodule such that \(A \subseteq B \). If \(A \) is weak essential \(F \)-submodule in \(X \) implying \(B \) is a weak essential \(F \)-submodule of \(X \).

 Proof:
 Assume that \(B \cap S = 0_t \), for some semi-prime \(F \)-submodule \(S \) of \(X \), then \(A \cap S = 0_t \). But \(A \) is weak essential \(F \)-submodule, hence \(S = 0_t \). That is \(B \) is weak essential \(F \)-submodule of \(X \).

3. Let \(A, B \) be are \(F \)-submodules of \(F \)-module \(X \) if \(A \cap B \) a weak essential \(F \)-submodule of \(X \), then both of \(A \) and \(B \) are weak essential \(F \)-submodules of \(X \).

 Proof:
 It is clear by (2).

 Note that, the converse is not true in general, for example:

Example:

Let \(\mathcal{M} \) be \(Z_{36} \) as \(Z \)-module. Define \(X : \mathcal{M} \rightarrow I \) by:
\[X(a) = 1, \quad \text{for all} \quad a \in Z_{36}. \]

Let \(A : \mathcal{M} \rightarrow I \), \(B : \mathcal{M} \rightarrow I \), define by:
\[A(x) = \begin{cases} 1 & \text{if } x \in \overline{12} \\ 0 & \text{otherwise} \end{cases}, \quad B(x) = \begin{cases} 1 & \text{if } x \in \overline{18} \\ 0 & \text{otherwise} \end{cases} \]

Clearly \(A, B \) are \(F \)-submodules of \(X \), \(A_t = \overline{12} \), \(B_t = \overline{18} \), \(\forall t \in (0,1] \) are weak essential submodules of \(X_t \) by [4, Remark(1.5)]. Hence \(A, B \) are weak essential \(F \)-submodules of \(X \); see Lemma(2.4). But \(A \cap B = 0_t \); that is \(A \cap B \) is not weak essential \(F \)-submodule of \(X \).

Under some conditions the converse (3) will be true as in the following proposition.

Proposition 2.10:

Let \(A, B \) are \(F \)-submodules of \(F \)-module \(X \) such that \(A \) is an essential \(F \)-submodule, \(B \) weak essential \(F \)-submodule, then \(A \cap B \) is a weak essential \(F \)-submodule of \(X \).

Proof:
Suppose S is a non-trivial semiprime F-submodule of X, but B is weak essential F-submodule of X, hence $B \cap S \neq 0$. So A is an essential F-submodule of X and we have $A \cap (B \cap S) = (A \cap B) \cap S \neq 0_1$,
Hence, $A \cap B$ is weak essential F-submodule of X.

Lemma 2.11:
If S is a semiprime F-submodule of F-module X, B be a F-submodule of X such that $B \not\subseteq S$, then $S \cap B$ is a semiprime F-submodule in B.

Proof:
Let S be a semiprime F-submodule of X, then by \[14,\text{Theorem(2.4)}\], S is a semiprime submodule and B is a submodule of X; see Proposition (1.14) such that $B \not\subseteq X_t$, then by \[13,\text{Proposition(1.11)}\], $S_t \cap B_t = (S \cap B)_t$; see Proposition (1.7)(1) is a semiprime submodule in B_t, therefore $S \cap B$ is a semiprime F-submodule in B; see \[14, \text{Theorem(2.4)}\].

In the following proposition, we prove the transitive property for non-trivial F-submodule.

Proposition 2.12:
Let A, B be a non-trivial F-submodules of F-module X such that $A \subseteq B$. If A is a weak essential F-submodule in B and B is a weak essential F-submodule in X implying A is a weak essential F-submodule in X.

Proof:
Assume that S is a semiprime F-submodule in X, such that $A \cap S = 0_1$. Note that $0_1 = A \cap S = (A \cap S) \cap B = A \cap (S \cap B)$. But S is a semi-prime F-submodule of X, so we have two cases. If $B \subseteq S$, then $0_1 = A \cap (S \cap B) = A \cap B$. Hence, $A \cap B = 0_1$, but $A \subseteq B$ so $A \cap B = A$ implies $A = 0_1$ which is a contradiction with our assumption. Thus $B \not\subseteq S$ and by Lemma (2.11), $S \cap B$ is a semiprime F-submodule in B. Since A is a weak essential F-submodule in B, therefore $S \cap B = 0_2$ and since B is a weak essential F-submodule in X, then $S = 0_1$, then A is a weak essential F-submodule in X.

Now, we study a homomorphic image of a weak essential F-submodule.

Proposition 2.13:
Let X_1, X_2 be F-modules of an \mathcal{R}-module \mathcal{M}_1 and \mathcal{M}_2 resp. and $f : X_1 \rightarrow X_2$ be F-epimorphism. If A_1 is a weak essential F-submodule of X_1 such that A_1 is f-invariant, then $f(A_1)$ is a weak essential F-submodule of X_2.

Proof:
To show $f(A_1)$ is a weak essential F-submodule of X_2, since A_1 is a F-submodule of X_1, then $f(A_1)$ is a F-submodule of X_2 by Proposition (1.13)(1). Now suppose that S semiprime F-submodule of X_2 such that $f(A_1) \cap S = 0_1$; therefore $f^{-1}(f(A_1) \cap S) = f^{-1}(0_1)$, then $f^{-1}(f(A_1)) \cap f^{-1}(S) = 0_1$, see Proposition (1.10)(2). But A_1 is f-invariant implying that $A_1 \cap f^{-1}(S) = 0_1$, and $f^{-1}(S) = 0_1$, since A_1 is weak essential F-submodule and $f^{-1}(S)$ is F-submodule of X_1 by Proposition (1.13)(2). $f(f^{-1}(S)) = f(0_1)$, then $S = 0_1$, by Proposition (1.10)(3). That is $f(A_1)$ is a weak essential F-submodule.

Now, we consider the inverse image of a weak F-submodule.
Proposition 2.14:

Let X_1, X_2 are F-modules of an \mathcal{R}-module \mathcal{M}_1 and \mathcal{M}_2 resp. and $f : X_1 \rightarrow X_2$ be F-epimorphism. If A_2 is weak essential F-submodule of X_2, then $f^{-1}(A_2)$ is a weak essential F-submodule of X_1.

Proof:

Since A_2 F-submodule of X_2, then $f^{-1}(A_2)$ is F-submodule of X see Proposition(1.13)(2). Now suppose S is semiprime F-submodule of X_1, such that $f^{-1}(A_2) \cap S = 0_1$, hence $f(f^{-1}(A_2) \cap S) = f(0_1)$, implies that $f(f^{-1}(A_2)) \cap f(S) = f(0_1)$ see Proposition (1.10)(6). $A_2 \cap f(S) = 0_1$ (since A_2 is f-invariant and f is epimorphism), then $f^{-1}(f(S)) = f^{-1}(0_1)$, implies that $S = 0_1$, since every F-submodule of X_1 is f-invariant, implies $f^{-1}(A_2)$ is weak essential F-submodule of X_1.

Reference

1. Zadeh, L.A. Fuzzy Sets. Information and Control. 1965, 8, 338-353.
2. Negoita, C. V.; Ralescu, D. A. Applications of fuzzy sets and System Analysis. (Birkhous Basel), 1975.
3. Mashinchi, M. ; Zahedi, M. M. On L-Fuzzy Primary Submodule. Fuzzy Sets and Systems. 1992, 49, 231-236.
4. Mona, A. A. weak Essential Submodules. Um-Salama, J. 2009, 6,1, 214-221.
5. Zahedi, M. M. On L-Fuzzy Residual Quotient Module and P. Primary Submodule. Fuzzy Sets and Systems. 1992, 51,333-344.
6. Martinez, L. Fuzzy Module Over Fuzzy Rings in Connection with Fuzzy Ideals of Rings. J. Fuzzy Math. 1996, 4,843-857.
7. Yue Z. Prime L-Fuzzy Ideals and Primary L-Fuzzy Ideals. Fuzzy Sets and Systems. 1988, 27, 345-350.
8. Kumar R. Fuzzy Semi-primary Ideals of Rings. Fuzzy Sets and Systems. 1991, 42, 263-272.
9. Maysoun, A. H. F-regular Fuzzy Modules. M.Sc. Thesis, University of Baghdad, 2002.
10. Kumar R., S. K.; Bhamir, Kumar P. Fuzzy Submodule of Some Analogous and Deviation. Fuzzy Sets and Systems. 1995, 70,125-130.
11. Mukhejee, T. K.; Sen, M. K.; Roy D. On Submodule and their Radicals. J. Fuzzy Math. 1996, 4,549-558.
12. Rabi, H. J. Prime Fuzzy Submodules and Prime Fuzzy Modules. M. Sc. Thesis, University of Baghdad, 2001.
13. Athab, E. A. Prime and Semi-prime submodules. M. SC. Thesis, University of Baghdad, 1996.
14. Hadi, I. M. A Semi-Prime Fuzzy Submodules of Fuzzy Modules. Ibn-Haitham J. for Pure and Appl. Sci. 2004, 17,3, 112-123.
15. Hassan, K. M. ; Hatam, Y. K. Essential fuzzy Submodules and Closed Fuzzy submodules. Iraq . J. of Science, 2020, 61, 4, 890-897.