Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway*

Received for publication, February 22, 2012, and in revised form, May 16, 2012. Published, JBC Papers in Press, May 31, 2012, DOI 10.1074/jbc.M112.354779

Nadine D. Younan1, Rebecca C. Nadal1, Paul Davies5, David R. Brown5, and John H. Viles2

From the 1School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS and the 5Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom

Oxidative stress and misfolding of the prion protein (PrPSc) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPSc. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPSc by as much as 9 kJ/mol.1H−15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, NAD, 8-anilinonaphthalene-1-sulfonate; bis-ANS, 4,4′-dianilino-1,1′-binaphthyl-5,5′-ANS; FT, Fourier transform.

Background: Oxidation and protein misfolding are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPSc. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPSc by as much as 9 kJ/mol.1H−15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its tertiary structure. Copper-catalyzed oxidation of PrPSc causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended β-strand structures that lack a cooperative fold. This transition from the helical molten globule to β-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrPSc, facilitating the transition to PrPSc. This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates.

Results: Oxidation generates a monomeric, helical, and molten globule followed by a β-conformation that lacks a cooperative fold.

Conclusion: Oxidation of the prion protein destabilizes its native fold and shares a common misfolding pathway to amyloid fibers.

Significance: The misfolding may explain the high levels of oxidized methionine in scrapie isolates.

Central to transmissible spongiform encephalopathies is the misfolding of the largely α-helical cellular prion protein (PrP(C))3 into an oligomeric infectious scrapie prion protein isoform, PrPSc (1). Prion diseases are also characterized by oxidative stress (2, 3). For example, levels of oxidative stress markers are reported as being significantly increased in the brains of scrapie-infected mice (4, 5) and in the brains of patients suffering from Creutzfeldt-Jakob disease (6, 7). In addition, scrapie-infected cells and animals are more sensitive to oxidative stress (8–12).

Early research noted methionine oxidation in PrPSc, although this was dismissed as an artifact caused by isolation of PrPSc from brain homogenates (13). However, more recently Canello et al. (14) have shown that a large fraction of the methionine residues from ex vivo PrPSc brain extracts contains methionine sulfoxides (MetOx), whereas for PrP(C), the methionine residues remained unoxidized. The study went on to show that the MetOx formation was not an artifact of PrPSc isolation as believed previously (14). It has yet to be established whether the methionine oxidation is a cause of the cascade of events that leads to PrPSc misfolding and the formation of toxic oligomers and amyloid plaques. Hypotheses on the role played by oxidative modification might include the destabilization of PrP(C), the promotion PrPSc formation, or the inhibition of PrPSc clearance. Oxidative stress has been observed in early preclinical stages of mouse scrapie (5); therefore, the oxidative process might represent a risk factor in sporadic prion diseases (15). Copper-catalyzed oxidation has been shown to provoke aggregation in the protein (15) and PK resistance (16), both features of prion diseases. It has also been shown that the pathogenic mutant E200K, which is linked to the most common form of familial Creutzfeldt-Jakob disease, may spontaneously undergo oxidation (16). Using analogs of methionine residues, the aggregation propensities of PrP(C) have been correlated with the degree of methionine oxidation (17). Indeed metal-catalyzed oxidation can generate oligomeric species, 10–40 nm in diameter that correspond to 25–100 PrPSc molecules in size (18). Oligomeric and aggregated species may be favored over fiber formation (19), however, formation of amorphous aggregates, fibrils, or oligomers is very dependent on the particular experimental conditions in vitro (20).

Methionine oxidation of PrP in vitro has previously been characterized using mass spectrometry (15, 17, 21, 22). In addi-
tion, the effect of Cu$_{2+}$-catalyzed oxidative damage has been reported for PrP (15, 18, 23). The Fenton and the Haber-Weiss reactions of copper ions, in the presence of a physiological reductant such as ascorbate, is a significant source of protein oxidation in vivo, generating highly reactive and damaging hydroxyl radicals and other reactive oxygen species (ROS) such as H$_2$O$_2$ (25, 26). For PrP$_{23-231}$, Cu$_{2+}$/Cu$_{+}$ redox reactions in the presence of H$_2$O$_2$ will cause oxidation of both histidine residues to 2-oxo-His and also Met residues within PrP$_{23-231}$; however, the oxidant H$_2$O$_2$ will readily cause the oxidation of methionine to methionine sulfoxide while the histidine residues remain unaffected (15, 21, 23, 27). The structures of methionine sulfoxide and 2-oxo-His are shown in supplemental Fig. S1. Copper redox-generated ROS can also mediate β-cleavage of the prion protein main chain, typically at residue-112 (28, 29), and this can seed aggregation (29) and dimerization of PrP (30).

Mammalian prion proteins have a high homology at the sequence and structural level (31–33). Mammalian PrP$_{C}$ consists of two structurally distinct domains (34). The C-terminal domain (residues 126–231) is predominantly helical, containing three α-helices as well as two short anti-parallel β-strands. Most of the nine methionines in PrP (mouse sequence) are in the structured domain, including Met-128, Met-133, Met-137, Met-153, Met-204, Met-205, and Met-212, whereas Met-23 and Met-37 are in the unstructured N-terminal domain. The N-terminal domain (residues 23–120) is highly disordered (35, 36) and is notable for its ability to bind as many as six Cu$_{2+}$ ions (37–45) in a redox active form (23, 46). The role of redox active metal ions in protein misfolding diseases has recently been reviewed (47).

Critical to understanding the molecular mechanisms involved in amyloid formation is the characteristics of the misfolding pathway and the role of folding intermediates in this process. In vitro, amyloid fibers of PrP can be generated at neutral pH in the presence of denaturants (48). In addition, a soluble oligomeric form of PrP$_{C}$, with extended β-structure has been identified as the so-called β-oligomer, favored at low pH (~3.5–4.0) with high salt content (48–52). Initial studies suggested that at low pH, PrP$_{C}$ would not generate amyloid fibers (48); however, it is now clear these low pH conditions are also capable of producing fibers (53, 54). Characterization of this species by NMR suggested the N-terminal residues (23–118) are unstructured and highly flexible, whereas the C-terminal residues formed a molten globule or oligomeric species (55). Subsequent studies suggest a transition from a molten globule, monomeric, α-helical species at pH 4.1 to an oligomeric species with β-strand content at pH 3.5 (56, 57). This pH 4 folding intermediate is of particular interest because it is on the pathway to fiber formation under physiologically attainable conditions; nonphysiological denaturants such as urea or guanidine HCl are not required (54). Similarly, the influence of oxidation of side chains from PrP$_{C}$, on the folding and stability, has physiological relevance; here, we show oxidized PrP$_{C}$ misfolding has striking similarities to the folding of PrP at pH 4–3.5. This suggests that PrP might share aspects of a misfolding pathway, even under very different conditions.

We aim to understand how the structure and folding properties of PrP$_{C}$ are perturbed by oxidation of the methionine and histidine residues, produced by hydrogen peroxide and copper-catalyzed oxidation. Using 1H-15N NMR, FT-IR, and UV-CD, we aim to characterize the effects of oxidized Met and His side chains on the main chain conformation of PrP$_{C}$. We also determine the effect of PrP oxidation on the thermodynamic stability of the native fold of the protein. Here, we show that methionine oxidation of PrP$_{C}$ perturbs the hydrophobic core of the protein that causes a significant loss in its folding stability. Furthermore, Cu$_{2+}$-catalyzed oxidation generates a monomeric molten globule structure with high helical content; more extensive oxidation generates an unstable structure with extended β-strand-like conformation. These studies represent a thermodynamic and structural rationale for the observation that PrP$_{Sc}$ isolates contain predominantly oxidized methionine side chains, and oxidative stress markers are a significant feature of prion diseases.

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant mPrP(23–231) and mPrP(113–231)—The coding region of the full-length mouse PrP(23–231) was cloned into a pET-23 vector to produce a tag-free protein as described previously (55). We also studied the PrP(113–231) fragment because it has been shown that the Cu$_{2+}$ redox system can cause amide cleavage of PrP at residue 112 (28, 29); thus, PrP(113–231) represents a cleaved fragment of PrP$_{C}$. PrP(113–231) predominantly contains the structured C-terminal domain of PrP. To generate His-tagged PrP(113–231), codons for amino acid residues 23–112 were deleted by mutation of the sequence to include an Ndel site prior to the codon for residue 113. This fragment retains a methionine residue prior to residue 113 and an N-terminal His tag. The proteins were expressed in 2-liter flasks of *Escherichia coli* BL21(DE3) cells in 15N-labeled minimal medium containing (1 g/liter) 15NH$_4$Cl (Cambridge Isotope Laboratories, Inc.) as the sole nitrogen source. The proteins (both tag-free full-length PrP or His-tagged PrP(113–231)) were purified using a nickel-charged metal affinity column made from chelating Sepharose (Amersham Biosciences).

Oxidation of PrP Treatment—Ultra high quality water (10^{-18} megohms $^{-1}$ cm$^{-1}$ resistivity) was used throughout. Protein concentrations were determined using an extinction coefficient at 280 nm. This gave an extinction coefficient of 62,280 M$^{-1}$ cm$^{-1}$ at 280 nm for full-length mPrP(23–231). The pH was measured before and after acquiring each spectrum.

PrP samples were oxidized by incubation with H$_2$O$_2$ or a mixture of H$_2$O$_2$ and Cu$_{2+}$ ions. Samples were oxidized under four sets of conditions as shown in Table 1. These conditions are designated as follows: H$_2$O$_2$ oxidized both “mild” and “harsh” and also copper-catalyzed oxidation (Cu$_{3+}$ + H$_2$O$_2$) also mild and harsh. For the mild conditions, relatively concentrated PrP$_{C}$ was used, 130 μM, but only 10 mM H$_2$O$_2$. For the more harshly oxidizing conditions, more dilute PrP was used; 4 μM, with 10 mM H$_2$O$_2$. Thus, the ratio of H$_2$O$_2$ to protein was 30 times higher, causing considerably more oxidation of PrP.

For copper-catalyzed oxidation, 0.1 mol eq of Cu$_{2+}$ (relative to PrP) was used in all experiments together with the same concentrations of PrP and H$_2$O$_2$ for the mild and harsh conditions. For some biophysical measurements, including CD and
ANS binding, samples were oxidized at both PrP concentrations, 130 and 4 μM, for typically 16 h, and then the samples were diluted to 4 μM to record spectra. The details of these oxidizing conditions are summarized in Table 1. After 10 h of incubation, for three-dimensional NMR experiments only, 10 μM catalase (purchased from Sigma) was added to stop further oxidation.

Hydrogen peroxide is highly oxidizing but will not generate hydroxyl radicals. Hydroxyl radicals can be generated by redox cycling of Cu^{2+} ions by addition of a reducing agent, such as ascorbate, under aerobic conditions. Alternatively, a mixture of H_2O_2 with Cu^{2+} ions will also undergo Fenton and Harber-Weiss reactions to generate the highly reactive hydroxyl radical. We used the H_2O_2 plus Cu^{2+} conditions to avoid reductants such as ascorbate that will absorb light in the far-UV region and interfere with CD measurements. The ability of this reaction mixture, under these conditions (Table 1), to generate appreciable hydroxyl radicals was confirmed by a hydroxyl radical detection assay (supplemental Fig. S12).

The oxidizing effects of H_2O_2 (15, 17, 21–23) and copper-catalyzed oxidation (15, 18, 23) is well documented for PrP. In particular, H_2O_2, principally responsible for Met oxidation and Cu^{2+} plus H_2O_2 mixture will oxidize more widely, in particular His residues (see supplemental Fig. S1). We have used NMR to confirm the oxidative effects of H_2O_2 alone, and H_2O_2 with Cu^{2+} mixtures over time with our experimental conditions (see supplemental Fig. S13).

NMR Spectroscopy—NMR spectra were acquired at 37 °C on a Bruker Avance spectrometer operating at 600 or 700 MHz for 1H nuclei using a 5-mm inverse detection triple-resonance z-gradient probe or cryoprobe. Phase-sensitive two-dimensional 1H-15N HSQC spectra were acquired using Echo-anti-Echo gradient selection. 1H acquisition parameters were 0.122-s acquisition time, 1-s fixed delay, and 2048 complex (Fourier transformation. 32 transients were recorded for each 1H-15N NMR chemical shift of each amide resonance was presented as a standard weighted sum according to Equation 1 (59).

\[
\text{CSP} = \left(\frac{(\delta\Delta N)^2 + (\delta\Delta H)^2}{2}\right)^{1/2} \quad (\text{Eq} \ 1)
\]

CSP were mapped onto the structure of mouse PrP^C (Protein Data Bank code 1XYX) (31, 32) using PyMOL.

Circular Dichroism (CD)—CD spectra were recorded on an Applied Photophysics Chirascan instrument, as described previously (60). The direct CD measurements (θ, in millidegrees) were converted to molar ellipticity, Δε (M^{-1} cm^{-1}), using the relationship Δε = θ/33,000-cm-length, where c is concentration, and l is path length.

Urea Denaturation Studies—PrP(23–231) samples were incubated at 130 μM under oxidative conditions H_2O_2 or Cu^{2+} plus H_2O_2 for 10 h at 37 °C in 10 mM sodium acetate buffer at pH 5.5. Mild and harsher oxidizing conditions were used to mimic the NMR and CD experiments; 0.1 mol eq of Cu^{2+} were used and 10 or 300 mM H_2O_2. Samples were then diluted to 4.3 μM PrP(23–231) for the urea denaturation. Titrations were performed by combining stoichiometric PrP solutions, one in 10 M urea or in just water, to avoid any dilution of protein concentration with addition of urea. CD measurements for the urea unfolding studies were recorded at 225 nm along with a measurement at 260 nm to account for any base-line offset. All urea denaturation experiments carried out at 25 °C (after incubation under the oxidizing conditions).

The folding/unfolding transition for PrP^C is rapid, within milliseconds (61). In the presence of urea, equilibrium was reached rapidly, as judged by identical repeat CD scans recorded over time.

PrP unfolding was treated as essentially a simple two-stage unfolding, and so the denaturation curves were fitted to a modified Hill equation (Equation 2),

\[
y = y_{\text{min}} + \frac{(a[D])^n}{([D])^{n0} + [D]^n)} \quad (\text{Eq} \ 2)
\]

where y is CD signal; a is y_{max} - y_{min}; [D] is concentration of urea; [D]^{n0} concentration of urea at the midpoint of the folding transition, and n is the Hill coefficient (62).

The equilibrium constant (K) for unfolding at each urea concentration was calculated from the denaturation curve using Equation 3.

\[
K = \frac{[\text{fraction of unfolded PrP}]}{[\text{fraction of folded PrP}]} = \frac{U}{U_f} \quad (\text{Eq} \ 3)
\]

The Gibbs free energy of unfolding at a particular urea concentration is then given by ΔG = -RT ln(K). Where R is the gas constant, (8.314 J K^{-1} mol^{-1}), and T is the temperature, 298 K. A plot of ΔG versus [urea] reveals a linear relationship; extrapolation of the line to where urea is at 0 concentration gives us the free energy of unfolding in the absence of urea (ΔG_{u}^{H2O}), and gradient of the line (m) is a measure of the cooperativity of the folding transition.

The difference in stability of unoxidized PrP(23–231) and oxidized PrP (ΔΔG_{u}^{H2O}) is given by Equation 4, using mean value of m (63).

\[
(\Delta\Delta G_{u}^{H2O}) = <m>([D]_{50}\%_{PrP}^{unox} - [D]_{50}\%_{PrP}^{ox}) \quad (\text{Eq} \ 4)
\]
ANS and bis-ANS Fluorescence—PrP samples were incubated with H₂O₂ and H₂O₂ with Cu²⁺ ions under the four different oxidizing conditions described in Table 1. PrP(23–231) samples were then diluted down to 4 μM. Aliquots of ANS and bis-ANS (Sigma) were added to make 8 mol eq of ANS and 4 mol eq of bis-ANS relative to PrP(23–231). Fluorescence emission spectra were obtained using a Hitachi F-2500 fluorescence spectrophotometer in a 1-cm quartz cuvette (Hellma), using an excitation wavelength of 380 nm for ANS and 365 nm for bis-ANS. Fluorescence emission was recorded between 400 and 600 nm.

ANS and the larger bis-ANS are dyes that bind to exposed hydrophobic regions of partially folded proteins such as the molten globule state (64). Partially unfolded molten globule proteins tend to exhibit a significant increase in fluorescence signal, although fully unfolded proteins typically do not exhibit an appreciable increase in fluorescence.

FT-IR—Spectra were obtained using a Bruker IFS 66/s FT-IR spectrometer, as described previously (40). Typically, 5 μl was aliquoted onto the attenuated total reflectance crystal (ZnSe prism) where it was purged with dry nitrogen to generate a protein film.

Size-exclusion Chromatography—The Tricorn Superdex 75 (10/300) and Superdex 200 (10/300) analytical gel filtration chromatography columns (GE Healthcare) were used, with an AKTA-FPLC system (GE Healthcare) at 4 °C. An aqueous buffer of 10 mM sodium acetate with 500 mM NaCl, pH 5.5, was used at a flow rate of 0.5 ml min⁻¹. Sample injection of 0.5 ml, 0.1 mg/ml PrP was used.

RESULTS

Core Hydrophobic Packing within PrP Is Perturbed by Oxidation of Methionines—As oxidative stress is observed in the early preclinical stage of scrapie infection (5) and a high proportion of methionines within scrapie isolates are oxidized (14), we were interested in the effects of oxidation on the structure and stability of PrP⁰. We have determined the effect of oxidation over time by monitoring changes in the main chain amide NMR chemical shifts of PrP⁰ by recording ¹H-¹⁵N HSQC spectra. These amide CSP can be used to monitor changes in structure on a per residue basis.

We used H₂O₂ to oxidize PrP⁰, and it has been shown that H₂O₂ will readily oxidize methionine side chains to sulfoxide, although other amino acid side chains remain unaffected. The effects of H₂O₂ oxidation for both the C-terminal fragment PrP(113–231) and full-length PrP(23–231) are very similar, as indicated by selected regions of the ¹H-¹⁵N HSQC spectra shown in Fig. 1a and supplemental Figs. S2 and S3. Under these relatively mild oxidizing conditions (10 mM H₂O₂ with no Cu²⁺ ions) the changes in the spectra are largely complete by 9 h; as

![Figure 1](image-url)
there is little difference between spectra recorded at 9 h to that recorded at 20 h. Separate sets of signals were observed for the oxidized and unoxidized PrP^C. This would be expected as the oxidized PrP is a covalently altered species; rapid exchange between these species does not take place. For those residues that are perturbed by oxidation, the intensity of the unoxidized signals is completely lost in less than 9 h, whereas the new set of signals of the oxidized PrP have a comparable intensity to the unoxidized signals. Furthermore, there is no significant increase in ¹H NMR line width between unoxidized and oxidized PrP, and this suggests that the oxidized forms of prion protein are predominantly monomeric. This is in agreement with size-exclusion chromatograph that indicates PrP^C oxidized by H₂O₂ remains monomeric (supplemental Fig. S4). We see from the ¹H-¹⁵N HSQC that for some of the perturbed amide resonances multiple new resonance are observed for the oxidized form with similar chemical shifts (Fig. 1a and supplemental Fig. S3). These variations in chemical shift must be attributed to variation in the local conformation of side chain packing for these residues. This might be expected as there may be multiple forms of the oxidized PrP with different combinations of the seven methionine residues oxidized, as has been observed by mass spectrometry (21).

From a total of 110 resolved amide residues, in PrP_{113–231}, most are only mildly perturbed in terms of the amide main chain ¹H-¹⁵N chemical shifts (CSP values) as shown in Fig. 1b. Specifically, 86 amino acids have changes in their chemical shift by less than 0.04 ppm. This indicates the basic fold of PrP is unaffected under these conditions. However, there are 24 amide main chain resonances that do have significant changes in their ¹H and ¹⁵N shifts (>0.04 ppm). As might be expected, these include methionine residues. Perturbations are not restricted to these residues, and indeed, the most perturbed resonances are not from the methionine main chain amides. The amide resonances that show the most significant perturbations are highlighted in Fig. 1b and on the structure of PrP^C in Fig. 1c.

Perturbed residues are concentrated at specific regions; in particular, residues in extended region Val-160, Asn-158, and Tyr-156 pack against methionine residues Met-205 and Met-212 together with Val-209 in helix-C (Fig. 1c). It seems clear that these hydrophobic residues (Val-160, Tyr-156, Val-209, Met-205, and Met-212) stabilize the core structure of PrP^C and are perturbed upon oxidation of the methionines. A second group of residues that have significant chemical shift perturbations include hydrophobic residues Ile-138 and Phe-140 (Fig. 1c). These residues form close contacts with each other and a methionine residue, Met-137. In addition, residues in Asn-152 and Tyr-154 in helix-A on either side of another methionine, Met-153, have some chemical shift perturbations, as do residues Gly-130, Met-281, and Met-133, which are adjacent to Val-160 and Asn-158 and form part of a short anti-parallel β-sheet within PrP^C.

Oxidation of methionine to methionine sulfoxide causes an increase in the size and hydrophilicity of the side chain, which can trigger changes in secondary structure (65). Consequently, upon oxidation, the change in methionine side chain will cause rearrangements of the hydrophobic packing of neighboring side chains. As is clear from Fig. 1c, residues that are in close contact with the oxidized methionine side chains have their conformation perturbed; this in turn perturbs the environment of the main chain amides. We note that oxidation of the ε5 at the end of the methionine side chain will not necessarily significantly perturb the amide resonance from the same methionine, as in the case of the solvent-exposed Met-153. The oxidation of Met-205 and Met-212 in the hydrophobic core of PrP^C appears to be a key methionine perturbing the structure. The NMR data suggests that although Met-205 and Met-212 are substantially buried in the structure, H₂O₂ will readily oxidize these residues.

We have carried out the same treatment on full-length PrP and the same oxidation occurs, as the same set of new resonances for the oxidation of PrP appears in the two-dimensional ¹H-¹⁵N HSQC spectrum (see supplemental Fig. 2). This indicates that H₂O₂ oxidation affects the structured domain of PrP and similarly in full-length PrP^C, and the unstructured N-terminal domain does not significantly influence the H₂O₂-induced oxidation in the structured domain.

Methionine Oxidation of PrP^C Destabilizes the Native Fold of PrP^C—It is clear from the two-dimensional ¹H-¹⁵N HSQC data presented in Fig. 1 that the hydrophobic core of PrP^C is perturbed by methionine oxidation but the fold of PrP^C remains intact. Next, we wanted to determine whether the oxidation of PrP^C has thermodynamically destabilized its native fold. Urea denaturation folding curves were generated for PrP_{23–231} under various oxidizing conditions and were compared with unoxidized PrP_{23–231}. PrP exhibits a rapid unfolding and was treated as essentially a two-step process. The CD signal at 225 nm was used to monitor PrP^C folding over a range of urea concentrations (Fig. 2). The urea concentration at the midpoint of unfolding, [D]^{50%}, for PrP_{23–231} is 5.2 (± 0.1) M at pH 5.5.

PrP_{23–231} was oxidized by incubation with H₂O₂ under two sets of conditions (see “Experimental Procedures” and Table 1) as follows: mild conditions, similar to those used for...
the NMR experiments, and harsher conditions with higher ratio of H$_2$O$_2$ to PrP. PrP samples were incubated for 10 h under the H$_2$O$_2$-oxidizing conditions prior to urea unfolding studies. Under both sets of conditions, oxidation of PrPC caused significant destabilization of the native fold of PrPC. The mid-point of misfolding, $[D]_{50\%}$, drops from 5.2 M urea in unoxidized PrPC to 4.2 M urea for H$_2$O$_2$-oxidized PrP. The oxidation generated under the harsher conditions causes significantly more destabilization of the native fold of PrPC (Fig. 2). H$_2$O$_2$ oxidation reduced $[D]_{50\%}$ from 5.2 to 2.2 M urea.

The thermodynamic parameters of folding stability are summarized in Table 2. The difference in the free energy of unfolding at the mid-point of the folding transition between oxidized and unoxidized, ΔG_{U}^{m}, is 2.7 kJ/mol when the sample undergoes oxidation by H$_2$O$_2$ using the same condition used to obtain the NMR data. Higher ratios of H$_2$O$_2$ to PrPC cause even more destabilization and increase the difference in free energy of unfolding to ΔG_{U}^{m} = 8.9 (± 0.6) kJ/mol.

The transition between folded and unfolded is less defined for the more mild oxidizing conditions (Fig. 2). This is reflected in the folding cooperativity value (m), which is 3.1 kJ/mol/M for native PrPC and 2.3 kJ/mol/M for H$_2$O$_2$ oxidized PrP. This might reflect a mixture of oxidized species for the mildly oxidizing conditions. At higher ratios of H$_2$O$_2$ to PrP, the cooperativity of unfolding is quite similar for unoxidized and oxidized PrP, 3.1 and 3.4 (± 0.2) kJ/mol/M, respectively. It is clear that the oxidation of the methionine residues significantly destabilizes the native fold, and the extent of destabilization increases with oxidation.

Like unoxidized PrPC, urea unfolding of oxidized PrP is reversible as shown in supplemental Fig. S5. We also investigated the thermal unfolding of oxidized compared with unoxidized PrP. Again oxidation destabilizes the PrP fold; however, thermal unfolding is not reversible, and these data have not been analyzed any further.

Table 1	Oxidizing conditions
Harsh Cu$^{2+}$ and H$_2$O$_2$	**Mild Cu$^{2+}$ and H$_2$O$_2$**
4 μM PrP(23–231)	13 μM PrP(23–231)
0.4 μM Cu$^{2+}$ ions	10 mM H$_2$O$_2$
10 mM H$_2$O$_2$	(PrP: H$_2$O$_2$: 1:2,500)

Table 2	Urea unfolding stabilities
The mean (m) value = 3.1 ± 0.3 kJ/mol/M.	

PrPC	$[D]_{50\%}$	ΔG_{U}^{m}	m	ΔG_{U}^{m}	ΔG_{D}^{m}
Un-oxidized	5.2 ± 1.0	16.7 ± 0.4	3.1 ± 0.1	7.3 ± 0.6	2.7 ± 0.4
Un-oxidized, 0.1 mol eq Cu$^{2+}$	5.4 ± 1.0	17.1 ± 1.5	3.1 ± 0.3	7.9 ± 0.6	3.0 ± 0.6
H$_2$O$_2$-oxidized, mild condition	4.3 ± 0.1	9.4 ± 0.4	2.3 ± 0.1	7.3 ± 0.6	2.7 ± 0.4
H$_2$O$_2$-oxidized, mild condition	4.2 ± 0.1	9.5 ± 0.5	1.8 ± 0.1	9.8 ± 0.6	3.0 ± 0.6
H$_2$O$_2$-oxidized, harsh condition	2.2 ± 0.1	7.8 ± 0.4	3.4 ± 0.2	8.9 ± 0.6	8.9 ± 0.4

This harsh oxidizing condition causes a loss of a cooperative fold.

**Cu$^{2+}$-catalyzed Oxidation Destabilizes PrPC and Generates a Monomeric Molten Globule Conformation—Cu$^{2+}$ binds to PrPC in vivo (37), and copper redox cycling is a key source of ROS; generating hydroxyl radicals that will oxidize PrPC more widely than H$_2$O$_2$ alone (15, 23). Next, we aimed to investigate the effects of Cu$^{2+}$-catalyzed oxidation of PrPC using NMR spectroscopy. First, we confirmed any changes in the two-dimensional 1H-15N HSQC spectra were not simply due to the paramagnetic line-broadening effect of the Cu$^{2+}$ ions. Comparison of the two-dimensional 1H-15N HSQC spectra of PrP(23–231) with and without 0.1 mol eq Cu$^{2+}$ ions showed little difference in the amide signals (supplemental Fig. S6). This level of Cu$^{2+}$ was sufficiently low to not broaden the amide signals directly. Upon addition of H$_2$O$_2$ (at pH 5.5) to PrP(23–231) with Cu$^{2+}$ present (0.1 mol eq), there is a significant change in the appearance of the two-dimensional 1H-15N HSQC spectra. Two-dimensional 1H-15N HSQC spectra were recorded every hour for 32 h, as PrPC underwent copper-catalyzed oxidation. In marked contrast to H$_2$O$_2$ oxidation alone within 4 h, a third of the amide signals were lost (Fig. 3b). Typically, amide signals that were lost were from residues within the structured region of PrPC. Interestingly, a number of residues from helix-C specifically (Thr-200, Met-205, Arg-207, Gln-211, Gln-222, Ala-223, and Gly-227) retain their chemical shift values, 1H line width, and their intensity, whereas most signals from helix-A and -B are lost (Fig. 3b and supplemental Fig. S7). These changes suggest that the topology of the PrP fold is to some degree retained during copper-catalyzed oxidation under these conditions. After 16 h, approximately a third (~65) of the amide signals are still retained (Fig. 3c), and these signals have little chemical shift dispersion and are assigned to the unfolded N-terminal domain of PrP, residues 23–118.

The loss of NMR intensity for two-thirds of the amide signals can be attributed to considerable line-broadening. The increase in line width can be due to the formation of a high molecular weight oligomeric species; alternatively, the formation of a molten globule fold can cause significant line-broadening of NMR signals due to slow milli-microsecond conformational exchange dynamics of the main chain. We note that paramagnetic broadening by the Cu$^{2+}$ ions has been ruled out (supplemental Fig. S6).

We used size-exclusion chromatography to establish if the Cu$^{2+}$-catalyzed oxidation of PrP generated an oligomeric or a monomeric molten globule species. Copper-catalyzed oxidation of PrP(23–231) was monitored over time by recording a chromatogram every 90 min (Fig. 4). Unoxidized PrP gave a single main elution band with a retention volume appropriate

28268 JOURNAL OF BIOLOGICAL CHEMISTRY

VOLUME 287 • NUMBER 34 • AUGUST 17, 2012
for monomeric PrP(23–321). Incubation of PrP with Cu$^{2+}$ and H$_2$O$_2$ also generated a single elution band but with a slightly faster retention time. This band indicates a molecular size only slightly larger than a monomer but not large enough to be a dimer. The retention volume suggests a partially unfolded monomer of PrP after copper-catalyzed oxidation. We note that molten globule proteins elute from size-exclusion columns slightly faster than their molecular mass would indicate because they are less compact. A very minor additional band (less than 5% total protein) was also observed, assigned to tetrameric PrP oligomers. After 3 h of incubation with Cu$^{2+}$ and H$_2$O$_2$, a very small band eluted in the void volume indicating the presence of a larger oligomer. After 9 h of oxidation, the intensity of the elution bands indicates that most of the PrP present is still detected eluting from the column as a monomer. Even after 20 h of incubation, the main band eluting from the column is monomeric. It is only at 27 h of incubation that we observe fragmentation of PrP with an elution band at ~13 kDa. It is well documented that copper-catalyzed oxidation can cause peptide cleavage at reside 113 of PrP to generate a 13- and 10-kDa fragment (28, 29).

Size-exclusion chromatography suggests that the broadening in the 1H-15N HSQC spectra is due to the formation of a monomeric molten globule rather than oligomerization of PrP. This is supported by the NMR data, as a number of peaks from the structured portion of PrP15 that do not have any additional flexibility remain intense, and their line widths are unaffected. In particular, six residues from helix-C that exhibit the largest line width in native PrP15 retain their intensity, line width, and native chemical shift values, indicating that a large oligomeric species, with the associated increased line width, has not been formed.

Next, we used ANS and bis-ANS binding to probe the nature of the Cu$^{2+}$-catalyzed oxidized species under the mild oxidizing conditions used for the NMR experiments (see Table 1 and under “Experimental Procedures”). These molecules have been shown to have significant fluorescence when exposed to hydrophobic residues in the partially folded protein and have been widely used to characterize molten globule conformations. Fig. 5 shows that both that ANS and bis-ANS have a marked increase in fluorescence for the Cu$^{2+}$-oxidized species, with a 4-fold increase in fluorescence upon ANS binding. We note that native PrP15 is known to generate some fluorescence when bound to ANS and bis-ANS; this is due to the exposed hydrophobic nature in its native conformation (66).

The ANS and bis-ANS fluorescence observed supports the NMR data (Fig. 3) that suggest a molten globule has been generated. Interestingly, mildly oxidized PrP generated with H$_2$O$_2$ only, where the hydrophobic core is destabilized, also yields a strong increase in ANS and bis-ANS fluorescence. This sug-
Structure and Stability of Oxidized Prion Protein

FIGURE 5. ANS (a) and bis-ANS (b) fluorescence for oxidized H2O2 and copper-oxidized PrP. 130 μM PrP(23–231) was oxidized by incubation with 10 mM H2O2 (black line) or with 10 mM H2O2 plus 0.1 mol eq Cu2+ ions (gray line). Samples were incubated for 22 h at 37 °C, before being diluted to 4 μM for fluorescence assay. Unoxidized PrP(23–231) is also shown. Under this relatively mild oxidizing condition, both H2O2 and copper-catalyzed oxidations caused increased fluorescence relative to unoxidized PrP(23–231) for both ANS and bis-ANS binding suggesting a molten globule folding intermediate had formed.

gests that the H2O2-oxidized PrP also has some molten globule-like properties. The HSQC data (Fig. 1) indicate the hydrophobic core of PrPc is disrupted under these conditions, although the amide signals do not exhibit exchange-broadening motions often observed for molten globule proteins.

Further support for the generation of a less compact molten globule fold is derived from UV-CD spectra of PrP(23–231) oxidized under the same mild copper-catalyzed conditions. It is clear from the CD spectra (Fig. 6a), there is almost no change in secondary structure after 4 h of oxidation even though the 1H-15N HSQC spectra (Fig. 3, b and c) exhibits profound changes in appearance. Substantial helical content was retained even after 18 h of incubation, suggesting a molten globule had formed in which the basic helical topology remained unchanged but in a less compact form.

Next, we studied the thermodynamic folding stability of PrP after undergoing copper-catalyzed oxidation by monitoring unfolding in the presence of urea (Fig. 7). Relatively mild Cu2+-catalyzed oxidation (which generates a helical molten globule) causes destabilization of PrPc. In particular, the urea mid-point of unfolding is reduced from 5.2 ± 0.1 to 4.2 ± 0.4 M urea. This equates to a difference in the free energy of unfolding of ΔΔG298 3.0 ± 0.6 kJ/mol (Table 2).

Further Cu2+-catalyzed Oxidation Promotes Extended β-Strand-like Conformations in PrPc with Little Stability—It is clear that under the relatively mild oxidizing conditions used for the NMR experiments (used for data in Figs. 1 and 3), there are quite profound perturbations in the 1H-15N HSQC spectra and reduced stability of the native fold. However, there is very little change in total secondary structure, as indicated by CD spectra for both the H2O2-oxidized and copper-catalyzed oxidation (Fig. 6, a and b, and supplemental Fig. 8).

Next, we wanted to probe the structure of PrP under harsher oxidizing conditions (see Table 1 and see under “Experimental Procedures”) using FT-IR and UV-CD. We incubated PrPc in the presence of H2O2 or a mixture of H2O2 and Cu2+ ions and recorded UV-CD spectra every 2 h. Fig. 6 shows the effect of oxidation on both the C-terminal structured domain, PrP(113–231) (Fig. 6, c and d), and the full-length PrP(23–231) (Fig. 6, e and f). With harsher oxidizing conditions over 10 h of incubation, Cu2+ with H2O2 will cause a loss of the α-helix signal, as indicated by a loss in intensity of bands at 222, 208, and 190 nm and an increase in extended β-sheet structure, as indicated by the appearance of a minimum at 217 nm. Fig. 6, c and e, insets, shows the change in the helical CD signal at 225 nm over time. Most of the changes occur in the first 10 h of incubation, and after this there is little change in the spectra.

Under these harsher copper-catalyzed oxidizing conditions, there is a large reduction in the CD signal at 225 nm even in the absence of urea, and indeed, the CD spectra are more indicative of β-sheet. The urea unfolding curve is shown in Fig. 7. The CD signal has been monitored at 225 nm, and both α-helical and β-sheet secondary structure will produce significant CD signals.
JOURNAL OF BIOLOGICAL CHEMISTRY

AUGUST 17, 2012•VOLUME 287•NUMBER 34

Structure and Stability of Oxidized Prion Protein

FIGURE 7. Urea unfolding of Cu²⁺-catalyzed oxidized PrP(23–231). CD data at 225 nm with increasing [urea] of unoxidized PrP(23–231) (triangles), PrP(23–231) with 0.1 mol eq of Cu²⁺ (filled triangles), Cu²⁺-catalyzed oxidized PrP(23–231) under the mild conditions (circles), and Cu²⁺-catalyzed oxidized PrP(23–231) under harsher conditions (squares) are shown. All PrP samples (130 μM) were incubated with 0.1 mol eq Cu²⁺ and 10 or 300 mM H₂O₂ for 8 h before urea titration. The protein concentration was diluted to 4.3 μM, pH 5.5, using 10 mM sodium acetate buffer.

at this wavelength. It is clear from the appearance of the urea unfolding curve (Fig. 7) that this form of the protein with the extended β-strand conformation has very little stability, and addition of very small amounts of urea (0.1 M) immediately causes further loss in the fold, suggesting the apparent structure formed under these conditions does not possess a cooperative fold. For this reason a [D]₅₀% value was not determined.

We note that CD spectra may not readily distinguish between regular stable β-sheets and extended main chain conformation that may not have formed a regular hydrogen-bonding network. The urea unfolding measurement indicates that the extended β-strand like conformation indicated by CD was too unstable to be from highly ordered β-sheets, typically found in amyloids.

Incubation with H₂O₂ alone under harsher conditions also causes a loss of α-helical signal, although less β-sheet-like CD signal was generated, as the negative band at 217 nm is less apparent (Fig. 6, d and f). Urea unfolding measurements under these conditions show substantially reduced stability, but they still reveal that the corporative fold is maintained (Fig. 7). To confirm the changes in the CD were due to oxidation of PrP, unoxidized PrPᵣ shows no change in the UV-CD spectra when recorded over a 20-h period. Similarly, addition of small stoichiometric amounts of Cu²⁺ ions (0.1 mol eq) to PrPᵣ (in the absence of H₂O₂) causes no change in the CD spectrum as recorded over a 20-h period (supplemental Fig. S9).

We considered the possibility that the reduction of the helical signal in the CD spectrum was simply due to some precipitation of PrP and consequently to a loss of signal. However, UV absorption spectra recorded after 20 h indicates some light scattering due to aggregation but only a relatively small reduction in the absorption band at 280 nm. FT-IR has the advantage that interpretations of secondary structural proportions are not so influenced by a loss of signal due to precipitation. The FT-IR data (Fig. 8) confirms that there is gain in β-sheet content for PrP(23–231) incubated with Cu²⁺ and H₂O₂ and also to a lesser extent by H₂O₂ oxidation alone. In particular, Fig. 8a shows the FT-IR spectra of Cu²⁺-catalyzed oxidation of PrP(23–231) compared with unoxidized PrPᵣ. The frequency of the amide-I band is very diagnostic of secondary structure. The band at 1650 cm⁻¹ is typical of a protein rich in α-helical content and some irregular structure as would be expected for PrP(23–231). After incubation (using the same harsh oxidizing conditions as the CD experiments, see Table 1) with H₂O₂ plus Cu²⁺ for 20 h, a significant shoulder on the amide-I band appeared at 1630 cm⁻¹, and this is characteristic of β-sheet formation. Figure 8b shows the effect of oxidation of PrP(23–231) by H₂O₂ only. After oxidation, a slight shoulder appears at ~1630 cm⁻¹ indicative of β-strand conformation. Cu²⁺ ions were also incubated with PrPᵣ in the absence of H₂O₂ to confirm the effects were not due to Cu²⁺ binding to PrP alone (supplemental Fig. S9b). It appears that oxidation of PrPᵣ under these harsher conditions will cause a loss in α-helical content and an increase in extended β-strand character, particularly for the Cu²⁺-catalyzed oxidation.

We also investigated ANS and bis-ANS fluorescence binding using these more harshly oxidizing conditions. These data are shown and discussed in supplemental Fig. S10. For these more harshly oxidized species, a molten globule is not suggested as ANS and bis-ANS fluorescence are similar to native unoxidized PrPᵣ.

Protease K (PK) resistance is a hallmark of scrapie PrP. We have therefore performed a PK digest of PrP(23–231), with H₂O₂ oxidized under the harsh conditions. Interestingly, the oxidized PrP is clearly protease-resistant, and an ~16-kDa fragment was observed, although unoxidized PrP generates much smaller fragments after treatment with protease K. This is shown in supplemental Fig. S11.

Copper-catalyzed Oxidation of PrP to Molten Globules Has Clear Similarities with the Low pH Folding Intermediates—It is clear from NMR and CD that ANS binding and size-exclusion chromatography experiments of copper-catalyzed oxidation

FIGURE 8. FT-IR spectra of full-length PrPC oxidized. a, copper-catalyzed; b, H₂O₂ only. Amide-I band of unoxidized PrP(23–231) (black line) and oxidized PrP(23–231) (gray line). Oxidized PrP was generated by incubating for 20 h under conditions described in Fig. 6, e and f. The oxidized PrP(23–231) contains an amide-I band at 1630 cm⁻¹ diagnostic of an increase in β-sheet content, particularly apparent for the Cu²⁺-catalyzed oxidized PrP.
under mild conditions will generate a monomeric, helical, and molten globule conformation, within the C-terminal domain of PrPC. Interestingly, a folding intermediate of PrPC generated at low pH and high salt content has some clear similarities. 1H-15N HSQC spectra of PrP(23–231) at pH 3.6 as shown in Fig. 9 is overlaid with the copper-catalyzed oxidized PrP(23–231) spectra after 16 h. The two spectra of PrP generated under quite different conditions exhibit almost the same set of peaks that have been previously assigned to residues 23–118 of the N terminus, using three-dimensional HSQC-NOESY and TOCSY data (55). Although, the spectra have been recorded at different pH values (pH 3.6 and 5.5), there are only very minor differences between the two spectra. In particular, histidine amide resonances from the octa-repeats and adjacent amides have slight differences in chemical shift.

Like the copper-catalyzed species at pH 4.1, PrP C will also form a monomeric α-helical molten globule (55, 56). This work is also based on NMR, ANS binding, CD, and size-exclusion chromatography, and the comparisons are highlighted in Table 3 and Fig. 10.

DISCUSSION

Oxidative stress is a key feature of the pathogenesis of prion disease (2–12); notably markers of oxidation are observed in the early preclinical stages of scrapie infection (5). Significantly, a large fraction of PrP Sc isolates contain oxidized methionine residues (14). In vivo it is not clear if the significant oxidation of the methionine residues within PrP causes the cascade of events leading to PrP misfolding, mis-assembly, and disease.

Our structural studies characterize the effect of PrP C oxidation on a per residue basis. We have shown methionine oxidation to methionine sulfoxide substantially destabilizes the PrP C fold by as much as 9 kJ/mol. In particular, our data show that hydrophobic residues Val-209, Val-160, and Tyr-156 that pack against Met-212 and Met-205 are key residues perturbed upon methionine oxidation. Thermodynamically, the misfolding of PrP C to PrP Sc might be favored by destabilizing the cellular form. In support of this, Met-212 and Met-205 in helix-C have been highlighted as key residues that are oxidized preceding the formation of PK-resistant PrP Sc (16). In addition, molecular dynamic simulations have suggested the oxidation of Met-212 (Met-213 in the human sequence) destabilizes PrP C (67).

It is well established that Cu2+ ions bind to PrP in vivo (37). PrP C is concentrated at the synapse (68) where fluxes of Cu2+ are released during neuronal depolarization and may reach 15–250 μM levels (37, 69, 70). Cu2+ binds to PrP C in a redox active form that will readily generate hydroxyl radicals, H2O2, and other ROS in the presence of a reductant. Over time, small amounts of Cu2+ will catalytically generate appreciable levels of ROS. Like H2O2, copper-catalyzed oxidation will oxidize methionines to methionine sulfoxide but will also oxidize PrP more widely, in particular, the histidine side chains become oxidized to 2-oxo-His (15, 17, 18, 21–23). It is clear that binding of even small amounts of Cu2+ to PrP C (0.1 mol eq, 1 μM in these experiments) in the presence of physiological levels of reductant will profoundly destabilize the PrP C fold giving rise to a molten globule structure in the C-terminal half of the protein.

Interestingly, the molten globule species generated by copper-catalyzed oxidation, as shown here, has some very close parallels with the misfolded form of PrP generated under acid conditions, pH 3.5–4.1 (55). This form of PrP, referred to as the low pH intermediate, also forms a molten globule in the C-terminal domain (55). There is a transition from a molten globule, monomeric, α-helical rich species at pH 4.1 to an oligomeric species with a β-strand-like content at pH 3.5, which also causes a strong fluorescence signal with ANS binding (56, 57).
Recent studies have shown this low pH form of PrP will generate amyloid fibers over time (53, 54). A similar behavior is observed for copper-catalyzed oxidized forms of PrP (highlighted in Fig. 10 and Table 3). Milder oxidizing conditions generate a monomeric molten globule form of PrP with native levels of α-helix. Further oxidation generates a β-sheet like content that has been shown by others to be oligomeric, i.e. 25–100 PrPc molecules in size (18). Our urea unfolding studies suggest this extended conformation has not formed a stable cooperative fold. It appears that although the conditions under which PrPc is destabilized (oxidation or low pH) are very different, the misfolding pathway may be shared. These observations add credence to the possibility that fiber formation under a variety of conditions will share a generic folding pathway (highlighted in Fig. 10).

It is believed that proteins with solvent accessible methionine residues can serve as a first defense against oxidative damage, scavenging ROS before they react with other cellular components (71). It has been suggested that a function of PrPc might be to act as a sacrificial quencher of ROS at the synapse generated by Cu2+-catalyzed oxidation (23). A role as an antioxidant for PrPc is highlighted by the increased oxidative stress observed in PrPc knock-out mice (72, 73). It is well established that methionine oxidation is a general feature of aging (26, 74). Furthermore, the performance of the repair enzyme, methionine sulfoxide reductase (Msr) (75), is compromised at older age and is known to determine stress resistance and life span in mammals (76, 77). One might expect the methionine repair enzyme Msr to have a protective effect in prion diseases; however, MsrA knock-out mice show incubation times similar to controls when inoculated with scrapie (78). Msr is only effective for surface-exposed methionine residues, and indeed it has been shown that Msr is ineffective at repairing methionine sulfoxide in amyloid fibers (79). This might explain why MsrA knock-out mice are no more susceptible to scrapie infection than wild-type mice (16).

Oxidative stress is a feature of a number of protein misfolding diseases. For example, oxidized methionine residues have been found at high levels in amyloid-β plaques in Alzheimer disease patients (80). Metal-associated oxidation of α-synuclein of Parkinson disease promotes fibril formation (81) and also has implications for amyotrophic lateral sclerosis (82). Furthermore, it has recently been shown that methionine oxidation of Sup35 protein in yeast induces yeast prions (83).

Our studies have shown that methionines are readily oxidized within the core of PrPc and profoundly destabilize PrPc fold. Small amounts of Cu2+ will catalyze the oxidation of PrPc more widely generating a molten globule fold within the structured domain of PrPc, thought to be a key step in protein misfolding. Our studies support the suggestion that PrP oxidation may constitute an early (5) and important step in prion disease and would explain the occurrence of methionine sulfoxide in scrapie isolates (14). It has been suggested that oxidative stress, due to impaired Cu2+ homeostasis for example, may be a risk factor in the development of sporadic prion diseases (15). Indeed, it has been shown that antioxidant treatments can be protective against prion disease progression (84). Furthermore, copper-chelating therapy has shown some efficacy in scrapie-infected mice (24).

Acknowledgments—We thank Harold Toms (Queen Mary, University of London) and the National Institute of Medical Research for NMR support.

REFERENCES
1. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. U.S.A. 95, 13363–13383
2. Milhavet, O., and Lehmann, S. (2002) Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res. Brain Res. Rev. 38, 328–339
3. Kim, J. I., Choi, S. I., Kim, N. H., Jin, J. K., Choi, E. K., Carp, R. I., and Kim, Y. S. (2001) Oxidative stress and neurodegeneration in prion diseases. Ann. N.Y. Acad. Sci. 928, 182–186
4. Martin, S. F., Burón, I., Espinosa, J. C., Castilla, I., Villalba, J. M., and Torres, J. M. (2007) Coenzyme Q and protein/lipid oxidation in a BSE-infected transgenic mouse model. Free Radic. Biol. Med. 42, 1723–1729
5. Yun, S. W., Gerlach, M., Riederer, P., and Klein, M. A. (2006) Oxidative stress in the brain at early preclinical stages of mouse scrapie. Exp. Neurol. 201, 90–98
6. Pamplona, R., Naudi, A., Gavín, R., Pastrana, M. A., Sajnani, G., Ilieva, E. V., Del Río, J. A., Portero-Otín, M., Ferrer, I., and Requena, J. R. (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic. Biol. Med. 45, 1159–1166
7. Freixes, M., Rodríguez, A., Dalfó, E., and Ferrer, I. (2006) Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol. Aging 27, 1807–1815
8. Milhavet, O., McMahon, H. E., Rachidi, W., Nishida, N., Katamine, S., Mangé, A., Arlotto, M., Casanova, D., Riondel, J., Favier, A., and Lehmann, S. (2000) Prion infection impairs the cellular response to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 97, 13937–13942
9. Fernaeus, S., Reis, K., Bedecs, K., and Land, T. (2005) Increased susceptibility to oxidative stress in scrapie-infected neuroblastoma cells is associated with intracellular iron status. Neurosci. Lett. 389, 133–136
10. Brown, D. R. (2005) Neurodegeneration and oxidative stress. Prion disease results from loss of antioxidant defence. Folia Neuropathol. 43, 229–243
11. Lee, D. W., Sohn, H. O., Lim, H. B., Lee, Y. G., Kim, Y. S., Carp, R. I., and...
Structure and Stability of Oxidized Prion Protein

Wisniewski, H. M. (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic. Res. 30, 499–507

Wong, B. S., Pan, T., Liu, T., Li, R., Petersen, R. B., Jones, I. M., Gambetti, P., Brown, D. R., and Sy, M. S. (2000) Prion disease. A loss of antioxidant function? Biochem. Biophys. Res. Commun. 275, 249–252

Stahl, N., Baldwin, M. A., Teplow, D. B., Hood, L., Gibson, B. W., Burlingame, A. L., and Prusiner, S. B. (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002

Canello, T., Engelstein, R., Moshel, O., Xanthopoulos, K., Juárez, M. E., Langeveld, J., Sklaviadis, T., Gasset, M., and Gabizon, R. (2008) Methionine sulfones on PrPSc. A prion-specific covalent signature. Biochemistry 47, 8866–8873

Requena, J. R., Groth, D., Meeker, H. C., Prelli, F., Frangione, B., and Wisniewski, T. (2003) Copper and the mechanism of prion protein in the cellular response to oxidative stress. J. Biol. Chem. 278, 1288–1292

Nadal, R. C., Rigby, S. E., and Viles, J. H. (2008) Amyloid structure and stability of oxidized prion protein. Biochemistry 47, 8866–8873

Vils, J. H., Donne, D., Kroon, G., Prusiner, S. B., Cohen, E. F., Dyson, H. J. (1997) Structure of the recombinant full-length hamster prion protein PrP(29–231). The N terminus is highly flexible. Proc. Natl. Acad. Sci. U.S.A. 94, 13452–13457

Wüthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182

Riek, R., Wider, G., Billette, M., Hornemann, S., Glockshuber, R., and Wüthrich, K. (1999) Prion protein NMR structure and familial human spongiform encephalopathies. Proc. Natl. Acad. Sci. U.S.A. 96, 11667–11672

Wüthrich, K., and Riek, R. (2001) Three-dimensional structures of prion proteins. Adv. Protein Chem. 57, 55–82

Donne, D. G., Viles, J. H., Groth, D., Mehlhorn, I., James, T. L., Cohen, F. E., Prusiner, S. B., Wright, P. E., and Dyson, H. J. (2007) Structure of the recombinant full-length hamster prion protein PrP(29–231). The N terminus is highly flexible. Proc. Natl. Acad. Sci. U.S.A. 94, 13452–13457

Vils, J. H., Donne, D., Kroon, G., Prusiner, S. B., Cohen, E. F., Dyson, H. J., and Wright, P. E. (2001) Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40, 2743–2753

O’Sullivan, D. B., Jones, C. E., Abdelraheim, S. R., Brazier, M. W., Toms, H., Brown, D. R., and Viles, J. H. (2009) Dynamics of a truncated prion protein, PrP(113–231), from 13N NMR relaxation. Order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Sci. 18, 410–423

Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R., Fraser, P. E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D., and Kretzschmar, H. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687

Klepwtapinond, M., Davies, P., Brown, D. R., and Viles, J. H. (2008) Deconvoluting the Cu2+-binding modes of full-length prion protein. J. Biol. Chem. 283, 1870–1881

Nadal, R. C., Davies, P., Brown, D. R., and Viles, J. H. (2009) Evaluation of Cu2+ affinities for the prion protein. Biochemistry 48, 8929–8931

Younan, N. D., Klepwtapinond, M., Davies, P., Ruban, A. V., Brown, D. R., and Viles, J. H. (2011) Copper(II)-induced secondary structure changes and reduced folding stability of the prion protein. J. Mol. Biol. 410, 369–382

Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Copper binding to the prion protein. Structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. U.S.A. 96, 2042–2047

Cohen, F. E., Klepwtapinond, M., Abdelraheim, S. R., Brown, D. R., and Viles, J. H. (2005) Probing Cu2+-binding to the prion protein using diamagnetic Ni2+ and H1NMR. The unstructured N terminus facilitates the coordination of six Cu2+ ions at physiological concentrations. J. Mol. Biol. 346, 1393–1407

Klepwtapinond, M., and Viles, J. H. (2007) Fragment length influences affinity for Cu2+ and Ni2+ binding to His-96 or His-111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochem. J. 404, 393–402

Mollerhauser, G. L. (2004) Copper binding in the prion protein. Acc. Chem. Res. 37, 79–85

Viles, J. H., Klepwtapinond, M., and Nadal, R. C. (2008) Copper and the structural biology of the prion protein. Biochim. Biophys. Acta. 36, 1288–1292

Liu, L., Jiang, D., McDonald, A., Hao, Y., Mullhauser, G. L., and Zhou, F. (2011) Copper redox cycling in the prion protein depends critically on binding mode. J. Am. Chem. Soc. 133, 12229–12237

Viles, J. H. (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc, and iron in Alzheimer, Parkinson, and prion diseases. Coord. Chem. Rev., in press

Baskakov, I. V., Legname, G., Prusiner, S. B., and Cohen, F. E. (2001) Amyloid beta-like conformation is under kinetic control. J. Biol. Chem. 276, 19687–19690

Swienticki, W., Morillas, M., Chen, S. G., Gambetti, P., and Surediwicz, W. K. (2000) Aggregation and fibrilization of the recombinant human prion protein huPrP(90–231). Biochemistry 39, 424–431

Morillas, M., Vanik, D. L., and Surediwicz, W. K. (2001) On the mechanism of α-helix to β-sheet transition in the recombinant prion protein. Biochemistry 40, 6982–6987

Hornemann, S., and Glockshuber, R. (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic
pH. Proc. Natl. Acad. Sci. U.S.A. 95, 6010–6014
52. Swietnicki, W., Petersen, R., Gambetti, P., and Sureauwicz, W. K. (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J. Biol. Chem. 272, 27517–27520
53. Bjornsdal, T. C., Zhou, G. P., Liu, X., Perez-Pineiro, R., Semenchenko, V., Saleem, F., Acharya, S., Bujold, A., Sosbev, C. A., and Wishart, D. S. (2011) Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry 50, 1162–1173
54. Cobb, N. J., Apetri, A. C., and Sureauwicz, W. K. (2008) Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal α-helical domain. J. Biol. Chem. 283, 34704–34711
55. O’Sullivan, D. B., Jones, C. E., Abdelrahim, S. R., Thompsett, A. R., Braizer, M. W., Tomos, H., Brown, D. R., and Viles, J. H. (2007) NMR characterization of the pH 4.8–intermediate of the prion protein. The N-terminal half of the protein remains unstructured and retains a high degree of flexibility. Biochem. J. 401, 533–540
56. Gerber, R., Tahiri-Alaoui, A., Hore, P. J., and James, W. (2007) Oligomerization of the human prion protein proceeds via a molten globule intermediate. J. Biol. Chem. 282, 6300–6307
57. Gerber, R., Tahiri-Alaoui, A., Hore, P. J., and James, W. (2008) Conformational pH dependence of intermediate states during oligomerization of the human prion protein. Protein Sci. 17, 537–544
58. Kay, L., Keifer, P., and Saarinen, T. (1992) Pure adsorption gradient-enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665
59. Garrett, D. S., Seok, Y. J., Peterkofsky, A., Clore, G. M., and Gronenborn, A. M. (1997) Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPt on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry 36, 4393–4398
60. Kewpatinond, M., and Viles, J. H. (2007) Empirical rules for rationalizing visible circular dichroism of Cu(II) and Ni(II) histidine complexes. Applications to the prion proteins. FEBS Lett. 581, 1430–1434
61. Wildegger, G., Lienmann, S., and Globshuber, R. (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat. Struct. Biol. 6, 550–553
62. Crowhurst, K. A., Tollinger, M., and Forman-Kay, J. D. (2002) Cooperative interactions and a non-native buried Trp in the unfolded state of an SH3 domain. J. Mol. Biol. 322, 163–178
63. Clarke, J., and Fersht, A. R. (1993) Engineered disulfide bonds as probes of the folding pathway of barnase. Increasing the stability of proteins against the rate of denaturation. Biochemistry 32, 4322–4329
64. Hawe, A., Sutter, M., and Jiskoot, W. (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 25, 1487–1499
65. Schenck, H. L., Dado, G. P., and Gellman, S. H. (1996) Redox-triggered secondary structure changes in the aggregated states of a designed methionine-rich peptide. J. Am. Chem. Soc. 118, 12487–12494
66. Martins, S. M., Chapeaurouge, A., and Ferreira, S. T. (2003) Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature. J. Biol. Chem. 278, 50449–50455
67. Colombo, G., Meli, M., Morra, G., Gabizon, R., and Gasset, M. (2009) Methionine sulfoxides on prion protein helix-3 switch on the α- fold destabilization required for conversion. PLoS One 4, e4296
68. Herms, J., Tings T., Gall, S., Madlung, A., Giese, A., Siebert, H., Schürmann, P., Windl, O., Brose, N., and Kretzschmar, H. (1999) Evidence of presynaptic location and function of the prion protein. J. Neurosci. 19, 8866–8875
69. Hartter, D. E., and Barnea, A. (1988) Evidence for release of copper in the brain. Depolarization-induced release of newly taken-up 67Cu. Synapse 2, 412–415
70. Kardos, J., Kovács, I., Hajós, F., Kálmán, M., and Simony, M. (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci. Lett. 103, 139–144
71. Levine, R. L., Mosoni, L., Berlett, B. S., and Stadtman, E. R. (1996) Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 15036–15040
72. Klamt, F., Dal-Pizzolo, F., Conte de Frata, M. L., Jr., Walz, R., Andrades, M. E., da Silva, E. G., Brentani, R. R., Izquierdo, I., and Fonseca Moreira, J. C. (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic. Biol. Med. 30, 1137–1144
73. Wong, B. S., Liu, T., Li, R., Pan, T., Petersen, R. B., Smith, M. A., Gambetti, P., Perry, G., Manson, J. C., Brown, D. R., and Sy, M. S. (2001) Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. J. Neurochem. 76, 565–572
74. Stadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B., and Levine, R. L. (2005) Methionine oxidation and aging. Biochim. Biophys. Acta 1703, 135–140
75. Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S. H., Lowther, W. T., Matthews, B., St John, G., Nathan, C., and Brot, N. (2002) Peptide methionine sulfoxide reductase. Structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397, 172–178
76. Petropoulos, I., and Friguet, B. (2005) Protein maintenance in aging and replicative senescence. A role for the peptide methionine sulfoxide reductases. Biochem. Biophys. Acta 1703, 261–266
77. Cabreiro, F., Picot, C. R., Friguet, B., and Petropoulos, I. (2006) Methionine sulfoxide reductases. Relevance to aging and protection against oxidative stress. Ann. N.Y. Acad. Sci. 1067, 34–44
78. Tamgine, G., Giles, K., Gladlen, D. V., Lessard, P., Wille, H., Tremblay, P., Groth, D. F., Yehiel, F., Korth, C., Moore, R. C., Tatzelt, J., Rubinstein, E., Boucheix, C., Yang, X., Stanley, P., Lissanti, M. P., Dewk, R. A., Rudd, P. M., Moskovitz, J., Epstein, C. I., Cruz, T. D., Kuziel, W. A., Maeda, N., Sap, J., Ashe, K. H., Carlson, G. A., Tesser, I., Wyss-Coray, T., Mucke, L., Weisgraber, K. H., Mahley, R. W., Cohen, F. E., and Prusiner, S. B. (2008) Genes contributing to prion pathogenesis. J. Gen. Virol. 89, 1777–1788
79. Binger, K. J., Griffin, M. D., Heinemann, S. H., and Howlett, G. J. (2010) Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2. Biochemistry 49, 2981–2983
80. Dong, J., Atwood, C. S., Anderson, V. E., Siedlak, S. L., Smith, M. A., Perry, G., and Carey, P. R. (2003) Metal binding and oxidation of amyloid-β within isolated senile plaque cores. Raman microscopic evidence. Biochemistry 42, 2768–2773
81. Yamin, G., Glaser, C. B., Uversky, V. N., and Fink, A. L. (2003) Certain metals trigger fibrillation of methionine-oxidized α-synuclein. J. Biol. Chem. 278, 27630–27635
82. Rakhit, R., Cunningham, P., Furtos-Matei, A., Dahan, S., Xi, Q. F., Crow, J. P., Cashman, N. R., Kondejewski, L. H., and Chakrabartty, A. (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J. Biol. Chem. 277, 47551–47556
83. Sideri, T. C., Koloteva-Levine, N., Tuutte, M. F., and Grant, C. M. (2011) Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J. Biol. Chem. 286, 38924–38931
84. Brazier, M. W., Doctrow, S. R., Masters, C. L., and Collins, S. J. (2008) A manganese-superoxide dismutase catalase mimetic extends survival in a mouse model of human prion disease. Free Radic. Biol. Med. 45, 184–192