Pharmacological and immunochemical characterization of α2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

Paul WHITEAKER1,*, Jennifer A WILKING2, Robert WB BROWN2, Robert J BRENNAN3, Allan C COLLINS2, Jon M LINDSTROM4, Jim BOULTER3

1Division of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA; 2Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA; 3Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA; 4Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA

Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions.

Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions.

Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol·mg⁻¹ protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered).

Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits.

Keywords: nicotinic acetylcholine receptors; receptor subtypes; radioligand assay; immunoprecipitation

Acta Pharmacologica Sinica (2009) 30: 795–804; doi: 10.1038/aps.2009.68

Introduction

nAChRs mediate the physiological effects of exogenous nicotine. They also play critical physiological roles throughout the brain and body by mediating cholinergic excitatory neurotransmission, modulating the release of neurotransmitters, and having longer-term effects on, for example, gene expression and cellular connections[1]. Mammalian nAChR subunits are derived from a family of sixteen different genes (α1-α7, α9-α10, β1-β4, γ, δ, and ε) which have distinctive distributions, and assemble into pentameric receptors. Importantly, the combinations and orders of nAChR subunits within functional pentamers dictate nAChR subtype properties[2]. The properties include pharmacology and functional features, such as channel kinetics. This is in part because, although homologous, subunit proteins and the interfaces between them are structurally (sometimes subtly) unique.

The α2 subunit was among the first non-muscle nAChR subunits to be cloned and heterologously expressed in a functional subtype, with the β2 subunit[3–5]. However, studies into α2 subunit containing (α2*) nAChRs were soon overtaken in number by those into other subtypes. Possible reasons include the highly-restricted expression of α2* nAChRs in commonly used rodent models[6–8], the pharmacological similarity of α2* nAChRs to much more prevalent α4* nAChRs[9], which makes α2* nAChRs hard to identify pharmacologically (although DHβE may provide a useful pharmacological probe[10, 11]), and even the lack of specific pharmacological probes and/or, until extremely recently[12], antibodies for α2* nAChRs.
However, more-recent evidence suggests that α2* nAChRs may deserve more attention. An mRNA in situ hybridization study in the primate Macaca mulatta demonstrated that α2 mRNA expression is much more prevalent in this primate model, with the implication that this may be the case in other primates, including humans. This finding was recently reinforced by an immunological study demonstrating that approximately 10% of human temporal cortex nAChRs contain α2 subunits, and α2* nAChRs do seem to have important physiological roles. In humans, a mutant (I279N) α2 subunit has been identified, which forms nAChRs with increased agonist sensitivity and causes a form of familial epilepsy, and a single nucleotide polymorphism study has provided preliminary evidence of a link to overweight/obesity in humans. Further, an α2 subunit-null mouse model has been used to demonstrate a role for α2* nAChRs in nicotine-induced modulation of long-term potentiation in the mouse hippocampal CA1 region, which may underlie some of the cognitive effects of nicotine.

Earlier work demonstrated that α2β2 and α2β4 nAChRs have widely-divergent pharmacological properties, and a single nucleotide polymorphism study has provided preliminary evidence of a link to overweight/obesity in humans. Despite the renewed interest in α2* nAChR investigations, little is known about the relative contributions of β2 and β4 subunit partners in native α2* nAChR subtypes. This study employs the α2 subunit-null mouse model, in combination with pharmacological and immunoprecipitation studies, to address this question.

Materials and methods

Animals Wild-type C57BL/6 mice, and lines engineered to contain a null mutation in the α2, β2, and β4 nAChR subunit genes were bred at the Institute for Behavioral Genetics, and housed five per cage. All mutant mouse lines were backcrossed onto the C57BL/6 background (minimum of six generations). The vivarium was maintained on a 12 h light/dark cycle (lights on 0700 to 1900 h), and mice were given free access to food and water. Male mice were used throughout this study. All procedures used in this study were approved by the Animal Care and Utilization Committee of the University of Colorado, Boulder (CO, USA).

Materials [125I]Epibatidine (specific activity, 2200 Ci/mmoll) was obtained from PerkinElmer Lifesciences (Boston, MA). (-)-Nicotine bitartrate was bought from BDH Chemicals (Poole, UK). A85380 was supplied by Research Biochemicals (Natick, MA). All other supplies were purchased from Sigma (St Louis, MO), unless specifically noted.

Membrane preparation Each mouse was euthanized by cervical dislocation. The brain was removed from the skull and placed on an ice-cold platform. Regions of interest were dissected then homogenized in ice-cold hypotonic buffer (mmol/L: NaCl, 14.4; KCl, 0.2; CaCl2, 0.2; MgSO4, 0.1; HEPES; pH = 7.5) using a glass-PTFE tissue grinder. Particulate fractions were obtained by centrifugation at 25 000×g (15 min, 4 °C). The pellets were resuspended in fresh homogenization buffer, incubated at 22 °C for 10 min, then harvested by centrifugation as before. Each pellet was washed twice more by resuspension/centrifugation, then stored (in pellet form under homogenization buffer) at -80 °C until used.

[125I]Epibatidine saturation binding to membranes

Binding of [125I]-epibatidine was quantified as previously described. Incubations were performed in 96-well polystyrene plates, in 30 µL of binding buffer (mmol/L: NaCl, 144; KCl, 1.5; CaCl2, 2; MgSO4, 1; HEPES, 20; pH = 7.5). Plates were covered to minimize evaporation during incubation, and all incubations progressed for 2 h at 22 °C. Saturating binding experiments were performed for membrane preparations from each brain region, using ligand concentrations ranging between approximately 5–200 pmol/L. Binding reactions were terminated by filtration of samples onto a single thickness of polylethyleneimine-soaked (0.5% w/v in binding buffer) GF/F glass fiber filters (Gelman Sciences, Ann Arbor, MI, USA) using an Inotech Cell Harvester (Inotech, Rockville, MD, USA). Samples were subsequently washed six times with ice-cold binding buffer. Total and non-specific [in the presence of 1 mmol/L (-)-nicotine tartrate] binding were determined in triplicate for each [125I]epibatidine concentration. Bound ligand was quantified by gamma counting at 85% efficiency. At the lower concentrations, a significant proportion (up to 20%) of ligand bound to the tissue. Free [125I]epibatidine concentrations were estimated by correcting for the amount of ligand bound to tissue, and these corrected concentrations were used to calculate Kd values for [125I]epibatidine binding in each brain region.

Inhibition of [125I]-epibatidine binding to membranes

Inhibition binding experiments were performed using 200 pmol/L [125I]epibatidine, in the same assay format as described for saturation binding. The amount of membrane protein added was chosen to produce maximum binding of ligand to the tissue of approximately 40 Bq/well (less than 10% of total ligand added, minimizing the effects of ligand depletion). Various concentrations of competing drugs were included in duplicate wells. Non-specific binding was determined in the presence of 1 mmol/L (-)-nicotine tartrate for each experiment.
Immunoprecipitation of nAChR subunits Immunoprecipitation of \[^{125}\text{I} \]epibatidine sites with nAChR subunit specific monoclonal antibodies (mAbs) was performed as previously described\(^{[20]}\). Olfactory bulbs and IPNs from single mice were homogenized using a glass-PTFE hand homogenizer, in assay buffer (50 mmol/L NaCl, 50 mmol/L sodium phosphate, 2 mmol/L EDTA, 2 mmol/L EGTA, and 2 mmol/L phenylmethylsulfonylfluoride; pH 7.4), and centrifuged for 12 min at 20000\( \times g \). Pellets were resuspended and solubilized in assay buffer supplemented with 10 µg/mL each of leupeptin, pepstatin A, and aprotinin with 2% Triton X-100 for 60 min at room temperature (1 mL per sample). This was followed by centrifugation for 15 min at 25000\( \times g \) and collection of the supernatant.

Protein determination Protein was determined using the method of Lowry\(^{[21]}\), with bovine serum albumin as standard.

Data analysis Radioactive counts were calculated by subtracting blank samples containing no mAb and normalizing to protein concentration. All values are expressed as the mean±SEM of the indicated number of animals. Statistical comparisons of data shown in the figures were performed using ANOVA with post hoc testing.

Results

\[^{125}\text{I} \]Epibatidine saturation filtration binding, effects of a2-null mutation Previous publications indicated that, in mice, a2 nAChR subunit mRNA is most-concentrated in the olfactory bulbs and dorsal interpeduncular nucleus\(^{[7,8]}\). Accordingly, we compared nAChR expression in these two brain regions between a2\(^{+/+}\) and a2\(^{-/-}\) mice, using the general nAChR radioligand \[^{125}\text{I} \]epibatidine. Saturation binding assays consistently demonstrated that fewer \[^{125}\text{I} \]epibatidine binding sites were expressed in IPN and olfactory bulb membranes from a2\(^{-/-}\), compared to a2\(^{+/+}\), mice (Figure 1). Specific binding was saturable, and was well described by a single site Hill fit, in both regions. The amount of specific binding in olfactory bulbs was much less than that in IPN samples, and K\(_D\) values for \[^{125}\text{I} \]epibatidine saturation binding were similar in both regions, as previously demonstrated\(^{[19]}\). Loss of a2 subunit expression did not significantly alter measured \[^{125}\text{I} \]epibatidine K\(_D\) values in either region. In both regions, a2-dependent sites were in a minority compared to a2-independent sites.

\[^{125}\text{I} \]Epibatidine A85380 inhibition binding, effects of a2-null mutation Having established that a2-dependent nAChR populations exist in both mouse IPN and olfactory bulb samples, and could be labeled with \[^{125}\text{I} \]epibatidine, we next attempted to identify whether these sites were predominantly a2β2\(^*\) or a2β4\(^*\). The sensitivity of IPN and olfactory bulb \[^{125}\text{I} \]epibatidine binding sites to the β2\(^*\)-selective agonist A85380 was tested in \[^{125}\text{I} \]epibatidine inhibition binding assays (Figure 2). In IPN, a2-null mutant mice expressed significantly-fewer A85380-resistant (putative β4\(^*\)) nAChRs than their wild-type counterparts. There was also a strong trend to losing A85380-sensitive (putative β2\(^*\)) sites following a2 nAChR subunit deletion. In olfactory bulbs samples, a2 nAChR subunit-null mutation resulted in a trend towards...
lower expression of both A85380-sensitive and -resistant \(^{[125]}\text{I}\)epibatidine binding, but neither effect was statistically significant. We wish to emphasize that, in our usage, the terms “A85380-sensitive” and “A85380-resistant” are relative. \(^{[125]}\text{I}\)Epibatidine binding at “A85380-resistant,” (β4*) sites is not immune to inhibition by A85380, merely very much less sensitive (approximately 1000-fold\(^{[19]}\)) than that at “A85380-sensitive” (β2*) sites.

**Efficacy and potency of β2- and β4-directed mAbs**

The A85380 inhibition binding experiments were not able to provide a clear picture of how mouse IPN and olfactory bulb nAChRs were divided between α2β2* and α2β4* subtypes. In order to further probe the composition of α2* nAChRs in these two regions, we employed an immunoprecipitation strategy, using both a β2-directed antibody (mAb 295) and a β4-directed antibody (mAb 337). Titration experiments were first performed to determine the efficacy and potency of these two antibodies against their intended target nAChRs. For mAb 295, the ability of a range of antibody concentrations to immunoprecipitate \(^{[125]}\text{I}\)epibatidine (200 pmol/L) binding sites from whole mouse brain was assessed.
For these experiments, β4<sup>−/−</sup> tissue was used, ensuring that all specific [<sup>125</sup>I]epibatidine binding observed would occur at β2* sites. As shown in Figure 3A, mAb 295 was able to immunoprecipitate > 90% of the available [<sup>125</sup>I]epibatidine binding sites at concentrations >1 µg/mL. For mAb 337, a similar set of titration experiments were performed. In the case of this β4 subunit-directed mAb, inferior colliculus, IPN, medial habenula, and olfactory bulb tissues were collected from β2<sup>−/−</sup> mice, and pooled. These regions were chosen since they are known to contain relatively high amounts of

![Figure 3](image-url)

**Figure 3.** Efficacy, potency, and specificity of β2- and β4-directed mAbs. Triton X-100 (2%) extracted nAChR-antibody complexes were captured on protein G CPG magnetic beads. Supernatant receptors were recovered using PEG-8000 (20% w/v). nAChR contents were determined for both bead-bound and supernatant fractions using [<sup>125</sup>I]epibatidine (200 pmol/L) in a filtration binding format. \( n=4 \) for each point. Panel A). For mAb 295, potency and efficacy were determined by titration, using whole-brain extracts from β4 subunit-null mice. Panel B). For mAb 337, potency and efficacy were determined by titration, using extracts from pooled inferior colliculus, IPN, medial habenula, and olfactory bulb regions of β4 subunit-null mice. Panel C). Specificity of mAb 295 (10 µg/mL; maximally effective concentration) immunoprecipitation was determined in triton extracts from fifteen β2<sup>−/−</sup> mouse brain regions, which together represent the whole brain. As determined by one-way ANOVA, no significant immunoprecipitation of [<sup>125</sup>I]epibatidine binding sites was seen in any region in the absence of the target β2 subunit, demonstrating the specificity of mAb 295 immunoprecipitation under these conditions. Panel D). Specificity of mAb 337 (10 µg/mL; maximally effective concentration) immunoprecipitation was determined in Triton extracts from the same fifteen mouse brain regions, this time from β4<sup>−/−</sup> mice. Again, as determined by one-way ANOVA, no significant immunoprecipitation of [<sup>125</sup>I]epibatidine binding sites was seen in any region in the absence of the target β4 subunit, demonstrating the specificity of mAb 295 immunoprecipitation under these conditions.
β4⁺ nAChRs [22]. β2⁻/⁻ tissue was used to ensure that, for this set of experiments, all of the specific [¹²⁵I]epibatidine binding observed would occur at β4⁺ sites. mAb 337 was highly potent, producing maximal immunoprecipitation at concentrations >0.3 µg/mL (Figure 3B). However, it was not quite as efficacious as mAb 295, precipitating about 80% of the sites available to it. This observation mirrors similar results obtained for mAb 337 when it was first characterized [23].

Specificity of β2- and β4-directed mAbs On the basis of the titration experiments, maximally-effective concentrations of mAbs 295 and 337 were chosen (10 µg/mL for both). The specificity of each antibody at the chosen concentration was assessed by performing immunoprecipitation reactions in fifteen regions across the mouse brain, using tissue from mice lacking expression of the target subunit (ie, β2⁻/⁻ tissue for mAb 295, β4⁻/⁻ tissue for mAb 337). Together, these regions represent the whole mouse brain. As shown in Figure 3, Panels C and D, no significant immunoprecipitation was observed in any region lacking the target subunit, for either antibody. This strongly suggests that both antibodies are specific for their intended targets when used in the immunoprecipitation protocols described here.

β2-immunoprecipitation, effects of a2-null mutation
Using mAb 295, β2⁺ nAChRs were collected from detergent extracts of IPN and olfactory bulb membranes. Both captured and supernatant nAChRs were quantified using [¹²⁵I]epibatidine (200 pmol/L) in a filtration binding format. In both regions, the great majority of nAChRs captured by mAb 295 were A85380-sensitive, as would be expected for β2⁺ nAChRs (Figure 4). However, particularly in IPN, no other assay parameters were significantly affected by α2 genotype.

Figure 4. β2-immunoprecipitation and effects of a2-null mutation. Triton X-100 (2%) extracted nAChR-mAb 295 (10 µg/mL) complexes were captured on protein G CPG magnetic beads. Supernatant receptors were collected as before. Both captured and supernatant nAChRs were quantified using [¹²⁵I]epibatidine (200 pmol/L) in a filtration binding format, and inhibition of [¹²⁵I]epibatidine binding by the β2⁺ nAChR-selective compound A85380 was determined. n=4 for each point. Panels A and B: IPN extracts from α2 +/+ and α2 –/– mice, respectively. Panels C and D: olfactory bulb extracts from α2 +/+ and α2 –/– mice, respectively. For each region, and for both immunoprecipitated (β2⁺ nAChRs, solid points) and supernatant (predominantly non-β2⁺ nAChRs, hollow points) binding was fit to a two-site logistic inhibition model, with Bmax and IC₅₀ values determined for both high-affinity and low-affinity A85380-binding sites, for samples from α2 +/+ and α2 –/– mice. In IPN, a significant difference was observed in the density of high-affinity A85380-binding sites immunoprecipitated by the β2-specific mAb 295 (α2 +/+, Bmax=224±11 fmol/mg protein; α2 –/–, Bmax=165±19 fmol/mg protein; P<0.05 by Student’s t-test). In OB, the IC₅₀ of A85380 inhibition at low A85380-affinity, supernatant (predominantly non-β2⁺) nAChRs was significantly affected in the absence of α2 expression (α2 +/+, IC₅₀=142±32 nmol/L; α2 –/–, IC₅₀=43.1±32 nmol/L; P<0.05 by Student’s t-test). No other assay parameters were significantly affected by α2 genotype.
a small proportion of the binding sites precipitated using mAb 295 were A85380-resistant. Given that earlier experiments had demonstrated the specificity of mAb 295 for β2* nAChRs, it is unlikely that these sites were captured nonspecifically. Instead, they may represent a small proportion of nAChRs that contain both β2 and β4 subunits in the same complex. In IPN, β2* nAChR expression was significantly reduced by α2-null mutation (Figure 4, panels A, B). No other significant effects were seen on the sizes, or A85380 sensitivities, of the nAChR populations in IPN. However, in the olfactory bulb from nAChR α2 subunit-null mice, there was no significant effect on the expression of A85380-sensitive or -resistant nAChRs, either in the precipitated or supernatant populations. On the other hand, the IC_{50} for A85380 inhibition of low A85380 affinity, supernatant (predominantly non-β2*) nAChRs from the olfactory bulb was significantly affected in the absence of α2 subunit expression.

**β4-immunoprecipitation in β2-depleted samples, effects of α2-null mutation** The supernatant samples (now depleted of β2* nAChRs) from the preceding experiment were next used in β4 immunoprecipitation experiments. In line with mAb 337’s less-than-complete efficacy, about 75% of nAChRs were captured (Figure 5). In IPN, no significant differences were seen between α2+/+ and α2–/– samples, in terms of the affinities or numbers of A85380-sensitive and -resistant [^{125}I]epibatidine binding sites (Figure 5A, 5B).
However, in OB, the A85380-resistant population immunoprecipitated by mAb 337 was significantly reduced by a2-null mutation (Figure 5C, 5D).

Discussion

Saturation binding assays illustrated a modest, but measurable, a2 dependence for high-affinity $^{[125]}$Iepibatidine binding in both IPN and olfactory bulbs of mice. This finding is compatible with previous mRNA in situ hybridization studies that indicated a particularly high concentration of a2 mRNA expression in these two nuclei$^{[7,8]}$. Although a2* nAChRs are a minority population within both of these nuclei, their expression within extremely tightly-defined sub-regions (dorsal IPN, internal plexiform layer of the olfactory bulbs) means that a2 nAChRs may play significant roles, despite their low overall expression levels. Certainly, recent evidence that hippocampal a2* nAChRs can powerfully modulate nicotine’s effects on long-term potentiation in the hippocampal CA1 region$^{[17]}$ demonstrates that numerically under-represented nAChR populations can have important physiological effects.

Even within the IPN and olfactory bulbs, expression levels were low enough to make ligand binding assays difficult. Reflecting these difficulties, $^{[125]}$Iepibatidine inhibition binding assays using the β2* nAChR subtype-selective agonist A85380 were inconclusive, perhaps suggesting complex association of α2 with both β2 and β4 subunits in the mouse IPN and olfactory bulb. The problems with the assays using IPN and olfactory bulb preparations suggest that investigations of a2* populations in other mouse brain regions will require alternative approaches. In particular, studies in mouse hippocampus would be of interest, given the recently-discovered role of a2* nAChRs in modulating LTP in murine CA1$^{[17]}$.

The association of a2 nAChR subunits with β2 and β4 subunits was further investigated using an immunoprecipitation strategy. Preliminary experiments were performed to ascertain the potency, efficacy, and specificity of mAbs 295 (vs β2 subunits) and 337 (vs β4 subunits). These pilot experiments used β2 and β4 subunit-null tissue as negative controls, similar to several previous studies$^{[20, 24, 25]}$, further extending the application of this useful approach. Both mAb 295 and 337 showed high potency and complete specificity for their targets (β2 and β4 nAChR subunits, respectively). Interestingly, although both mAbs were highly efficacious, mAb 337 immunoprecipitation was consistently slightly incomplete even at very high antibody concentrations. This result is similar to that reported when mAb 337 was first characterized$^{[26]}$. The original explanation for this observation was that a small proportion of the β4 epitope recognized by mAb 337 is likely in either “the wrong conformation, obscured by another protein, or is consistently proteolyzed.” Whichever is the correct explanation, a similar factor appears to be present in this set of (mouse brain) studies as in the (cell line) studies previously described.

The immunoprecipitation experiments allowed for the β2* and β4* nAChR populations to be effectively separated from each other before pharmacological analysis was applied. This allowed more-definitive conclusions to be drawn regarding the β-subunit composition of a2* nAChRs in mouse IPN and olfactory bulbs. In the IPN, a2 subunit-null mutation was predominantly associated with changes in nAChRs precipitated by mAb 295 (against the β2 subunit). In particular, A85380-sensitive sites captured by mAb 295 were significantly reduced in a2–/– IPN samples, compared to wild-type controls. In contrast, a2 deletion is associated with changed A85380 binding affinity in olfactory bulb, non-b2* nAChRs (not precipitated by mAb 295). Furthermore, fewer olfactory bulb nAChRs were able to be precipitated by mAb 337 (against the β4 subunit) in a2–/– samples, compared to wild-type controls. It also appears that the IPN, in particular, expresses a substantial proportion of β4β2* nAChRs, given the quite substantial proportion of A85380-resistant $^{[125]}$Iepibatidine binding sites captured by mAb 295 immunoprecipitation in this region. Together these findings imply that, in IPN, a2 predominantly, but not exclusively, partners with β2 subunits. In OB, however, a2 subunits are largely partnered with β4 nAChR subunits. The current IPN observation broadly agrees with the very recent findings of Grady et al, who also noted that IPN α2* nAChRs were of the a2β2* subtype$^{[12]}$. Interestingly, these authors did not identify any a2 component in the IPN β4* nAChR complement, while the present study did suggest a small amount of a2β4* expression may occur in IPN. This slight discrepancy may reflect the relative efficacies of the antibodies and immunoprecipitation protocols employed in the two studies. In any case, the general finding that at least a large majority of IPN a2 nAChR subunits are partnered with β2* subunits is confirmed.

In conclusion, this study demonstrates that mouse brain a2 nAChRs are sufficiently prevalent in mouse IPN and olfactory bulb to be detected with ligand binding and immunoprecipitation approaches. In the IPN, a2β2* nAChRs are likely the predominant subtype of a2 nAChRs, although some may also contain β4 subunits in the same receptor complex. In the olfactory bulbs, a2 nAChR subunits predominantly assemble into a2β4* nAChRs. These findings indicate that a2* nAChR pharmacology is likely to be comp-
plex, a finding that may have particularly important implications if, as may be the case, $\alpha_2^*$ nAChRs are more prevalent in primate (including human) than rodent brain[13].

Acknowledgements

Project was supported by NIH grants DA019655 (to Paul WHITEAKER), DA015663 (to Allan C COLLINS), NS11323 (to Jon M LINDSTROM), and DA11836 (to Jim BOULTER), a Tobacco Related Disease Research Program grant (10RT-0136 to Jim BOULTER), and a UCLA Stein Oppenheimer Endowment Award (to Jim BOULTER).

Author contribution

Paul WHITEAKER designed experiments, wrote the paper, and performed and directed research; Jennifer A WILKING, Robert WB BROWN and Robert J BRENNAN performed research; Allan C COLLINS assisted with experimental design; Jon M LINDSTROM contributed reagents and assisted with experimental design; Jim BOULTER contributed subunit-null mice and assisted with experimental design.

References

1 Jensen AA, Frolund B, Lijefors T, Krosggaard-Larsen P. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005; 48: 4705–45.
2 Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJK, Berg DK, et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999; 51: 397–401.
3 Nef P, Oneyser C, Allioud C, Couturier S, Ballivet M. Genes expressed in the brain define 3 distinct neuronal nicotinic acetylcholine-receptors. Embo J 1988; 7: 595–601.
4 Nef P, Oneyser C, Ballivet M. Structure of nicotinic acetylcholine-receptor genes and their variants. Ann NY Acad Sci 1987; 505: 747–9.
5 Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, et al. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine-receptor. Science 1988; 240: 330–4.
6 Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, et al. Distribution of $\alpha_2$-, $\alpha_3$-, $\alpha_4$-, and $\beta_2$-neuronal nicotinic receptor subunit messenger-RNAs in the central nervous system — a hybridization histochemical-study in the rat. J Comp Neurol 1989; 284: 314–35.
7 Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermansborgmeyer I, Heinemann SF, et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 1992; 12: 2765–84.
8 Ishii K, Wong JK, Sumikawa K. Comparison of alpha 2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J Comp Neur 2005; 493: 241–60.
9 Luetje CW, Patrick J. Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine-receptors. J Neurosci 1991; 11: 837–45.
10 Khioug SS, Khioug L, Yakel JL. Rat nicotinic acetylcholine receptor alpha 2 beta 2 channels: comparison of functional properties with alpha 4 beta 2 channels in Xenopus oocytes. Neuroscience 2004; 124: 817–22.
11 Xiao YY, Kellar KJ. The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 2004; 310: 98–107.
12 Grady SR, Moretti M, Zoli M, Marks MJ, Zanardi A, Pucci L, et al. Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nachr subtypes, but only the {alpha}3{beta}4 and {alpha}3{beta}3{beta}4 subtypes mediate acetylcholine release. J Neurosci 2009; 29: 2272–82.
13 Han ZY, Le Novere N, Zoli M, Hill JA, Champtiaux N, Changeux JP. Localization of nAChr subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 2000; 12: 3664–74.
14 Gotti C, Moretti M, Bohr I, Ziaubrea I, Vailati S, Longhi R, et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis 2006; 23: 481–9.
15 Aridon P, Marini C, Di Resta C, Brilli E, De Fusco M, Politi F, et al. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and icctal fear. Am J Human Genetics 2006; 79: 342–50.
16 Kim J. Association of CHRNA2 polymorphisms with overweight/obesity and clinical characteristics in a Korean population. Clin Chem Laboratory Med 2008; 46: 1085–9.
17 Nakauchi S, Brennan RJ, Boulter J, Sumikawa K. Nicotine gates long-term potentiation in the hippocampal CA1 region via the activation of alpha 2*nicotinic ACh receptors. Eur J Neurosci 2007; 25: 2666–81.
18 Marks MJ, Smith KW, Collins AC. Differential agonist inhibition identifies multiple epitabidine binding sites in mouse brain. J Pharmacol Exp Ther 1998; 285: 377–86.
19 Whiteaker P, Jimenez M, McIntosh JM, Collins AC, Marks MJ. Identification of a novel nicotinic binding site in mouse brain using $[^{125}\text{I}]$-epibatidine. Br J Pharmacol 2000; 131: 729–39.
20 Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindstrom JM, Fan H, et al. Long-term nicotine treatment decreases striatal alpha 6 nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 2005; 67: 1639–47.
21 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–75.
22 Whiteaker P, Peterson CG, Xu W, McIntosh JM, Paylor R, Beaudet AL, et al. Involvement of the alpha 3 subunit in central nicotinic binding populations. J Neurosci 2002; 22: 2522–9.
23 Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J. Alternate stoichiometries of alpha 4 beta 2 nicotinic acetylcholine receptors. Mol Pharmacol 2003; 63: 332–41.
24 Brown RWB, Collins AC, Lindstrom JM, Whiteaker P. Nicotinic
alpha 5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem 2007; 103: 204–15.

25 Moser N, Mechawar N, Jones I, Gochberg-Sarver A, Orr-Urtreger A, Plomann M, et al. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem 2007; 102: 479–92.

26 Nelson ME, Wang F, Kuryatov A, Choi CH, Gerzanich V, Lindstrom J. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha 3 beta 4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol 2001; 118: 563–82.