Long-term effects of ambient PM2.5 on hypertension in multi-ethnic population from Sichuan province, China: a study based on 2013 and 2018 health service surveys

Jiayue Xu
Sichuan University West China School of Public Health

Yuqin Zhang
Sun Yat-Sen University

Minghong Yao
Sichuan University West China School of Public Health

Gonghua Wu
Sichuan University West China School of Public Health

Zhanqi Duan
Big Data Center of Sichuan Province

Xing Zhao
Sichuan University West China School of Public Health

Zhang Juying (✉️ juying109@163.com)
https://orcid.org/0000-0001-8726-142X

Research

Keywords: Fine particulate matter, long-term exposure, hypertension, ethnicity, comorbidity

DOI: https://doi.org/10.21203/rs.3.rs-36790/v1

License: ©️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Hypertension, a major risk factor of many severe chronic diseases and leading cause of global disease burden, is reported associated with exposure to PM$_{2.5}$. China's high PM$_{2.5}$ pollution level has become a major public health issue. However, existing studies from China on the effect of PM$_{2.5}$ exposure on hypertension have got inconsistent results with very limited investigation into the multi-ethnic people. This study adds multi-ethnic evidence from Sichuan Province, southwestern China, and assesses ethnic differences of PM$_{2.5}$ exposure effect on hypertension.

Methods

We pooled large cross-sectional data from two surveys conducted in Sichuan province in 2013 and 2018 to exam the effect of long-term exposure to PM$_{2.5}$ on prevalence of hypertension in adults aged 30 years old and above. Community-specified annual PM$_{2.5}$ concentration was estimated using satellite data. Logistic regression was applied to examine the association between long-term exposure to PM$_{2.5}$ and hypertension prevalence in the whole population, specific ethnic populations and population (including Han and ethnic minority people) living in same areas.

Results

31462 participants with an average age of 56 years old were included. The average exposure concentration was 32.8 µg/m3. The proportions of the Han, the Tibetan, the Yi, and other ethnic people were 89.2%, 7.3%, 3.2%, and 0.3%, respectively. The adjusted odds ratio (OR) was 1.08 (95% CI, 1.04–1.12) for a 10 µg/m3 PM$_{2.5}$ concentration increment for the whole population. The adjusted ORs for the Han, the Tibetan, and the Yi were 1.08 (95% CI, 1.04–1.12), 0.03 (95% CI, 0.00-0.27), and 1.75 (95% CI, 1.28–2.38) for a 10 µg/m3 PM$_{2.5}$ concentration increment, respectively. Stratification analysis found stronger associations in participants with chronic diseases and Yi minority population.

Conclusion

Long-term exposure to PM$_{2.5}$ may increase the risk of hypertension prevalence in Chinese multi-ethnic adults. Stronger associations were found in people with chronic disease and Yi minority group.

Introduction

High blood pressure and hypertension are recognized as the risk factors for many severe non-communicable diseases including cardiovascular disease, stroke, kidney cancer, etc.1. In 2017, high
systolic blood pressure (SBP) was reported to be the first leading cause of global disease burden, accounting for 11.4 million deaths and 218 million DALYs\(^2\). The prevalence of hypertension in China has increased with the development of economy and aging of the population\(^3\). In parallel, poor ambient air quality in China has become a serious public health issue. Previous studies have found that both short-term and long-term exposure to PM\(_{2.5}\) are associated with elevations in blood pressure. Compared with short-term exposure, long-term exposure seems to have stronger effects on high blood pressure and hypertension\(^4\)–\(^{10}\).

However, the evidence from epidemiology study on the long-term effect of PM\(_{2.5}\) on hypertension remains inconsistent. Several recent studies suggested that long-term exposure of higher PM\(_{2.5}\) concentration was related to increased prevalence of hypertension\(^6\)–\(^{10}\) and that improvement of PM\(_{2.5}\) exposure was associated with a decreased incidence of hypertension\(^{11}\), while other studies reported no significant association between long exposure of PM\(_{2.5}\) and hypertension\(^{12,13}\). Variations in subject characteristics, geographical settings, pollutant sources and compositions, measurement of exposure etc. may be responsible for the inconsistency. Thus, further study on diverse population is needed.

Striking ethnic/racial differences in abnormal blood pressure or other related adverse cardiovascular outcomes attributed to PM\(_{2.5}\) exposure have been reported, but the results were inconclusive. A study of 132224 adults based on the USA 1995–2005 National Health Interview Survey showed that PM\(_{2.5}\) was positively associated with prevalent self-reported hypertension (OR of 1.05 for a 10 µg/m\(^3\) increase). This association varied from different race/ethnicity which was statistically significant in the White but not the Black or the Hispanic\(^{14}\). But another American multi-ethnic (MESA) cohort study found that the Black showed stronger association than the White even after adjustment for SES\(^{15}\).

Ethnicity/race is a synthetic index which can reflect accumulative information of multiple social and health related factors. Researchers note that examining the cumulative effects of numerous factors is vital when investigating vulnerability to environmental health issues\(^{16}\). Ethnicity/race could be treated as a surrogate of a cluster of unmeasured confounders including genetic heterogeneity and cultural or religious differences. However, the relationship among long-term exposure, Ethnicity/race and hypertension is complicated. Ethnicity/race has interaction with many social, psychosocial and environmental factors. In the US and Europe, minority neighborhood tends to be exposed to heavier air pollution, indicating that ethnic/racial difference may result from residential segregation\(^{15,17,18}\). Meanwhile, racial segregations are often lower-income communities where minority groups are often with lower SES and suffer related noise, poverty and other stressors. This cluster of social, psychosocial and environmental disadvantages would lead to poor health outcomes\(^{19}\). As a result, it is particularly important to disentangle the combined effect of Ethnicity/race, other social/psychosocial factors and environmental exposure, and identify modifiable exposures so as to understand how to best protect susceptible populations and improve overall population health\(^{19}\).
Although studies based on Chinese population were conducted, the evidence from multi-ethnic population was limited. Most related studies conducted in China didn’t consider the ethnicity of subjects, or loosely divided subject into Han and non-Han groups. However, different ethnic groups have their own customs, culture, living habits, and geographic contexts. If combining all the minority groups together, the accuracy of study results would surely be lowered. Health inequality in relation to China’s disproportionate air pollution distribution has started to draw academic attention, and their studies reported that socioeconomic factors such as urbanization, health recourse, and house consumption could have impacts on both the health inequality and disproportionate air pollution distribution. Those studies were based on provincial level rather than individual level, so their results could be quite limited when exploring how social and environmental factors are related to ethnic/racial disparity from an individual perspective. Different from western countries, China’s ethnic/racial minority groups generally live in low PM$_{2.5}$ pollution areas but some of the groups are with high prevalence of hypertension. In western China, the Tibetan and the Yi are two major ethnic minority groups. Compared with Han group, most of Tibetan and Yi group live in rural areas and tend to be of lower education attainment and poorer economic level. In addition, the main domestic fuel of rural areas is solid fuel including coal and biomass, which could create serious indoor air pollution and expose people to high health risks.

From the above discussion, this study aims to (1) evaluate the association between long-term exposure of PM$_{2.5}$ and hypertension in an multi-ethnic population; (2) evaluate whether the association between PM$_{2.5}$ exposure and hypertension are modified by social and psychosocial determinants of health, including ethnicity, SES (education, income), and health related factors (comorbidity, anxiety/depression); (3) detect the potential cause of ethnic differences by exploring the interaction of ethnicity and other social and environmental factors. The results may shed clues on the ethnic disparity of long-term PM$_{2.5}$ exposure effect on hypertension and provide knowledge for identifying vulnerable populations and targeting intervention measurements from an ethnic perspective.

Methods

Setting

Sichuan province is located in Southwest China ranging from 26°30' to 34°190'N and from 97°300' to 108°310'E. 73.56% of its area is covered with mountains of which an average height is over 5000 m above the sea level. This is a province surrounded by highlands and mountains, including Tibetan Plateau, Yunnan-Guizhou Plateau, Daba Mountains, and Wu Mountains. Its complex and unique geographic characteristics block pollutant diffusion, which leads to a gradient spatial PM$_{2.5}$ distribution with the maximum in Sichuan Basin and the minimum in its northwest region. Sichuan Basin, the eastern part of Sichuan province, is one of the highest PM$_{2.5}$-concentration regions in China. The annual average PM$_{2.5}$ concentrations in Sichuan Basin during 2004 and 2013 are generally ≥ 85 µg/m3. Because of the severe PM$_{2.5}$ pollution, the government has taken a series of measures to prevent and
control PM$_{2.5}$ and its precursors30. Nevertheless, PM$_{2.5}$ remains the major pollutant which plays a
dominant role in Sichuan region31.

Sichuan is the home for about 5 million ethnic minority population32. Yi (2.6 million), Tibetan
(1.5 million) and Qiang (0.3 million) ethnic groups account for the majority33. Their SESs, lifestyles and
living conditions vary greatly. Sichuan is also a province with unbalanced social and economic
developments. There is not only a megacity (the capital of Sichuan province, Chengdu), but also remote
rural areas with three minority autonomous prefectures (Liangshan Yi Autonomous Prefecture, Aba
Tibetan Autonomous Prefecture, and Ganzi Tibetan Autonomous Prefecture). These conditions may exert
a non-negligible effect on the association between PM$_{2.5}$ exposure and hypertension prevalence, but
related evidence from Sichuan province and southwest China is hardly sufficient.

Data

The research data comes from the Fifth and Sixth Health Services Surveys (HSSs) conducted in Sichuan
Province in 2013 and 2018 which are part of National Health Services Surveys (NHSSs). NHSS is a
regular survey implemented by national and local governments every five years. The purpose of NHSS is
to understand the health status of the population, their needs and demands for healthcare services, and
the utilization and costs of healthcare services in a systematic fashion. A multi-stage stratified random
cluster sampling method has been adopted to draw 14 urban districts/ rural counties randomly in
Sichuan Province. In each district/county, 5 subdistricts/townships were randomly selected. In each
subdistrict/township, 2 communities/villages were randomly selected. And in each community/village,
60 households were randomly selected. The sampling designs of the Fifth and Sixth HSS were the same,
but Litang was replaced by Danba in 2018. Therefore, 15 districts/counties were included in this study.

Among the 15 districts/counties, there were 3 ethnic minority counties according to Chinese Government’s
categorization34: two Tibetan counties (Litang and Daba) and one Yi county (Yanyuan). The rest 12 were
Han districts/counties.

The Fifth and Sixth HSS participants totaled 22795 and 21047. This study combined both survey data for
analysis to detect the effect differences among Han, Tibetan, and Yi ethnic groups. Subjects aged
30 years and older were included.

Hypertension

Participants with at least one of the following characteristics were considered to be of hypertension: 1)
being physician-diagnosed with hypertension within 6 months prior to the survey; 2) being physician-
diagnosed with hypertension over 6 months prior to survey and having taken measures to control blood
pressure within 6 months prior to survey.

Air Pollution
Outdoor PM$_{2.5}$ concentrations from 2008 to 2016 were estimated with the Geographically Weighted Regression (GWR) model developed by van Donkelaar et al (2016)35. This model combined satellite-derived aerosol optical depth (AOD) data and surface monitor data, and conducted simulations with GEOS-Chem chemical transport model to provide a long-term average ambient PM$_{2.5}$ concentration at around 10km × 10 km resolution with R^2 of 81%.

Outdoor PM$_{2.5}$ concentrations in 2017 were estimated with Bayesian Spatial Model developed by Zhang et al (the article is being submitted). Based on satellite-derived aerosol optical depth (AOD) data and surface monitor data, this model conducted simulations with hierarchical Bayesian approaches to estimate PM$_{2.5}$ at 1km × 1 km resolution. R^2 and root mean squared error (RMSE) of 10-fold cross validation for the model were 87% and 1.167.

Community/village locations were geocoded with Google Earth. Estimated annual ambient PM$_{2.5}$ concentrations were mapped to participants in the corresponding communities/villages.

The annual average PM$_{2.5}$ concentrations for each location from 2008 to 2012 (the Fifth HSS) and from 2013 to 2017 (the Sixth HSS) were used as the estimated surrogate of exposure.

Covariates

Face-to-face interviews with paper (used in 2013) or electronic (used in 2018) questionnaires were applied to collect participants’ demographic, socioeconomic and lifestyle information, such as age, sex, ethnicity, residence, marital status, education, annual household income, body mass index (BMI), smoking status, drinking status, physical activity, etc. Questionnaire structures of the Fifth HSS and the Sixth HSS were basically the same, but some items have been modified or deleted. The item about ethnicity in 2013 national questionnaires didn’t include the option of “Yi” as 2018 did. “Yi” was included into the option of “Others” in 2013. However, 2018 data showed that over 94% (675/717) of the people who chose “Others” belonged to the Yi minority group. On-site investigation experience also verified that the Yi accounted for most of the “Others”. Thus, “Others” in ethnic options from the 2013 questionnaire was coarsely treated as “Yi” in this study. The item about domestic fuel type was deleted in the questionnaire of 2018.

In this study, ethnicity options were organized into four categories: Han, Tibetan, Yi and Others.

BMI was divided into four categories: underweight (< 19.5 kg/m2), normal weight (19.5 ~ 24.0 kg/m2), overweight (24.0 ~ 28.0 kg/m2), and obesity (≥ 28.0 kg/m2) according to China’s weight criteria36. EQ-5D-3L was used to collect information about health-related quality of life. Anxiety/depression symptom and visual analogue scale (VAS) were part of EQ-5D-3L. Anxiety/depression symptoms were divided into 3 levels as “not at all”, “moderate” and “severe”. VAS ranged continuously from 0 to 100. Comorbidity was examined by a dyadic measure (“having other chronic diseases except hypertension” or “having no other chronic diseases except hypertension”).
Education status was categorized as “no formal education”, “primary school”, “middle school” and “high school or above”.

Average annual salt sales volume of each district/county for 5 years preceding the survey and the population of each district/county were collected from Sichuan Provincial Statistics Yearbook, and then per capital annual salt sales volume was calculated by averaging annual salt sales volume per person in kg.

Statistical Analysis

After univariate variable analyses, multivariate logistic regression models were fit to control potential confounding factors, including basic characteristics (age, sex, and ethnicity), health-related factors (BMI, anxiety/depression, comorbidity VAS and per capital annual salt sales of each district/county), SES index (education status, per capital annual household income). The missing data was excluded as less than 5%.

Stratified analyses were conducted to examine whether the association between long term exposure of PM$_{2.5}$ and hypertension prevalence could be modified by age(< 60 and ≥ 60), sex (male and female), BMI (normal, overweight and obesity), comorbidity (yes and no), and ethnicity (Han, Tibetan, Yi).

Based on the results of stratified analyses by ethnicity, the potential cause of ethnic disparity was further explored. In this study, the 12 Han districts/counties together were regarded as Han area, 2 Tibetan counties as Tibetan area and 1 Yi county as Yi area. It was assumed that environmental/social characteristics of the Han and minority groups who live in same area were similar. To control unobserved environmental/social factors, the different effects on the Han and minority groups were analyzed based on population who reside in the same Han, Tibetan and Yi area respectively. As few minority people reside in Han area, only population in Tibetan area and Yi area were taken into analysis in terms of ethnicity. In our sampled sites, Yi area had only one county (Yanyuan County) where the range of PM$_{2.5}$ concentration is too narrow to test any association. As survey results indicated that except those from Yanyuan County, around 90% of the rest Yi people were from Xi District, this district close to Yanyuan County and with a large number of Yi people, was included into the original Yi area.

Furthermore, previous studies suggested that domestic fuel type could modify the effect. Since clean domestic fuel was disproportionately distributed by ethnicity, it can be one of important factors in relation to ethnic differences. For no domestic fuel type data was collected in 2018, the synergy effect of ambient PM$_{2.5}$ exposure and indoor fuel type was examined only based on the data of 2013.

Sensitivity analyses were performed. First, the association was tested using different measures of exposure, average PM$_{2.5}$ concentrations for 1–4 years before the survey. Second, the association was tested after adjustment of residence location (urban or rural area) and survey year. Third, the association was tested by using the Fifth and Sixth HSS data separately.

Data analyses were conducted using R 3.5.3. P value < 0.05 to determine statistical significance.
Results

A total of 31462 participants were included with hypertension prevalence of 15.7%. 28050 participants were Han, 2288 participants were Tibetan, 1013 participants were Yi, and 111 participants belonged to other ethnic groups. The average age of participants was 55.6 years old with an annual mean PM$_{2.5}$ exposure concentration of 32.8 µg/m3. The distributions of PM$_{2.5}$ concentration in 2013 and 2018 were similar as shown in Fig. 1. Detailed PM$_{2.5}$ exposure concentrations were listed in Table S1. Qingyang District, one the five main urban districts of the capital of Sichuan Province, was the most polluted area with average PM$_{2.5}$ concentration of 55.3 µg/m3, which was also with highest hypertension prevalence of 23.7%. A low level of PM$_{2.5}$ concentration was observed in minority sample sites. The average exposure concentration in Yanyuan County of Yi Autonomous Prefecture was 9.8 µg/m3. The concentrations of those two Tibetan counties were even lower. In Tibetan area, the concentrations of Danba and Litang were 5.3 µg/m3 and 2.4 µg/m3, respectively. The prevalence of hypertension in those three minority counties was also relatively low (Yanyuan County: 5.6%; Danba County: 13.8%; Litang County: 15.9%). In general, PM$_{2.5}$ concentration and hypertension prevalence of each sample district/county was positively related with a correlation coefficient of 0.54 ($P=0.04$). PM$_{2.5}$ exposure and hypertension prevalence distribution at a district/county level was shown in Fig. 2.

Figure 1 The Distribution of PM$_{2.5}$ Concentration

Figure 2 The PM$_{2.5}$ Concentration and Prevalence of Sample Districts/Counties

Grouped by hypertension and non-hypertension, basic characteristics of participants were presented in Table 1. The hypertension participants were older than the non-hypertension participants (65.4 years versus 53.7 years) and they were exposed to higher ambient PM$_{2.5}$ (34.5 µg/m3 versus 32.5 µg/m3). Compared with the referent group, the urban residents and the Han population accounted for a higher proportion in both hypertension and non-hypertension groups. The hypertension patients were more likely to be overweight (32.21% versus 23.46%) and obese (10.09% versus 4.89%), and they were more likely to have symptoms of anxiety/depression (19.31% versus 12.25% for moderate; 2.00% versus 1.17% for severe). Among hypertension patients, 59.9% took health checkup in the previous year, far exceeding non-hypertension people (45.6%). As for health-related behaviors, hypertension participants were less likely to brush teeth every day (81.20% versus 85.60%), smoke (20.86% versus 29.24%) and drink alcohol (18.33% versus 26.15%); on the contrast, they were more likely to do physical activities (41.97% versus 31.88%). The hypertension patients had a higher income than non-hypertension subjects (45.67% versus 42.35% for income $>$ quantile 60).
Table 1
Comparison of Sociodemographic and Major Risk Factors Between Hypertension and Non-hypertension Participants

Variables	Referent group (n = 26516)	HP group (n = 4946)	P value
Age (years); mean(s.d.)	53.7(13.4)	65.4(11.1)	< 0.001
PM$_{2.5}$ (µg/m3); mean(s.d.)	32.5(14.1)	34.5(13.4)	< 0.001
Sex; n(%)			
Male	12956(48.9)	2282(46.1)	0.001
Female	13560(51.1)	2664(53.9)	
Marital status; n(%)			
Single	3653(13.8)	789(16.0)	0.004
Married	15969(60.2)	2903(58.7)	
Others	6894(26.0)	1254(25.4)	
Ethnicity; n(%)			
Han	23491(88.6)	4559(92.2)	< 0.001
Tibetan	1956(7.4)	332(6.7)	
Yi	969(3.7)	44(0.9)	
Others	100(0.4)	11(0.2)	
Residence; n(%)			
Urban area	13166(49.7)	2662(53.8)	< 0.001
Rural area	13350(50.4)	2284(46.2)	
Education; n(%)			
No formal education	2767(10.4)	708(14.3)	< 0.001
Primary school	16047(60.5)	2733(55.3)	
Middle school	4874(18.4)	1086(22.0)	

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter ≤ 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.
Variables	Referent group (n = 26516)	HP group (n = 4946)	P value
High school or above employment; n(%)	2828(10.7)	419(8.5)	
employed	18836(71.0)	2359(47.7)	< 0.001
retired	2626(9.9)	1213(24.5)	
Other	5054(19.1)	1374(27.8)	
Per capital Household income; n(%)			
Q1	4790(18.1)	938(19.0)	< 0.001
Q2	5113(19.3)	904(18.3)	
Q3	5379(20.3)	844(17.1)	
Q4	5469(20.6)	960(19.4)	
Q5	5757(21.7)	1298(26.3)	
missing	8(-)	2(-)	
BMI; n(%)			
Underweight	2776(10.5)	401(8.1)	< 0.001
Normal weight	16222(61.2)	2453(49.6)	
Overweight	6220(23.5)	1593(32.2)	
Obese	1297(4.9)	499(10.1)	
missing	1(-)	-	
Smoking; n(%)	7500(29.2)	972(20.9)	< 0.001
Alcohol consumption; n(%)	6912(26.2)	904(18.3)	< 0.001
Physical activity; n(%)	8453(31.9)	2076(42.0)	< 0.001

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter \leq 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.
Variables	Referent group (n = 26516)	HP group (n = 4946)	P value
Health check; n(%)	12088(45.6)	2963(59.9)	< 0.001
Brush teeth every day; n(%)	22698(85.6)	4016(81.2)	< 0.001
anxiety/depression; n(%)			
not at all	22960(86.6)	3892(78.7)	< 0.001
moderate	3247(12.3)	955(19.3)	
severe	309(1.2)	99(2.0)	
VAS; mean(s.d.)	74.4(16.6)	66.0(17.9)	< 0.001
comorbidity; n(%)	7882(29.7)	2441(49.4)	< 0.001

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter ≤ 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.

Table 1 Comparison of Sociodemographic and Major Risk Factors Between Hypertension and Non-hypertension Participants

Table 2 showed the results of comparison of sociodemographic and major risk factors among different ethnicities. The average annual PM$_{2.5}$ concentrations of the Han, Yi and Tibetan people were 35.9µg/m3, 11.9 µg/m3, and 3.9 µg/m3, respectively (P < 0.0001). Distribution of PM$_{2.5}$ concentrations for different ethnic-group was shown in Fig. 3. SES of the Han were higher than the other two minority groups. Yi minority group was of lowest SES among the three ethnic groups. Over 80% of Yi people had only primary school education attainment and per capital household income of over 50% Yi participants ranked below the 40th percentile of all participants. Besides, Yi minority group had a relatively higher proportion with adverse health-related behaviors like smoking, while a lower proportion with beneficial health-related behaviors like physical activities and health check.
Table 2
Comparison of Sociodemographic and Major Risk Factors by Ethnicity

Variables	Han (n = 28050)	Tibetan (n = 2288)	Yi (n = 1013)	P value
	Mean/n	Mean/n		
HP; n(%)	4559(16.3)	332(14.5)	44(4.3)	< 0.001
Age (years); mean(s.d.)	56.3(13.6)	49.7(13.4)	48.4(12.6)	< 0.001
PM$_{2.5}$ (µg/m3); mean(s.d.)	35.9(11.1)	3.9(2.5)	11.9(7.3)	< 0.001
Sex; n(%)				
Male	13649(48.7)	1064(46.5)	482(47.6)	0.119
Female	14401(51.3)	1224(53.5)	531(52.4)	
Marital status; n(%)				
Single	3129(11.2)	1023(44.7)	283(27.9)	< 0.001
Married	17085(60.6)	1101(48.1)	609(60.1)	
Others	7836(27.9)	164(7.2)	121(12.0)	
Residence; n(%)				
Urban area	15659(55.8)	5(0.2)	114(11.3)	< 0.001
Rural area	12391(44.2)	2283(99.8)	899(89.7)	
Education; n(%)				
No formal education	2746(9.8)	442(19.3)	268(26.5)	< 0.001
Primary school	17407(62.1)	701(30.6)	620(61.2)	
Middle school	5481(19.5)	359(15.7)	99(9.8)	
High school or above	2416(8.6)	786(34.4)	26(2.5)	
employment; n(%)				
employed	18482(65.9)	1802(78.8)	832(82.1)	< 0.001

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter ≤ 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.
Variables	Han (n = 28050)	Tibetan (n = 2288)	Yi (n = 1013)	P value
retired	3793(13.5)	12(0.5)	16(1.6)	
Other	5775(20.6)	474(20.7)	165(16.3)	
Per capita Household income; n(%)				
Q1	4498(16.0)	861(37.6)	357(35.1)	< 0.001
Q2	5017(17.9)	758(33.1)	228(22.5)	
Q3	5609(20.0)	407(17.8)	179(17.7)	
Q4	6051(21.6)	189(8.3)	169(16.7)	
Q5	6865(24.5)	73(3.2)	81(8.0)	
missing	10(-)	-	-	
BMI; n(%)				
Underweight	2827(10.1)	149(6.5)	192(19.0)	< 0.001
Normal weight	16584(59.1)	1376(60.2)	652(64.4)	
Overweight	7019(25.0)	632(27.6)	132(13.0)	
Obese	1620(5.8)	130(5.7)	37(3.6)	
missing	-	1(-)	-	
Smoking; n(%)	7705(28.6)	353(15.7)	395(39.5)	< 0.001
Alcohol consumption; n(%)	7320(26.2)	225(10.0)	241(23.9)	< 0.001
Physical activity; n(%)	9448(33.7)	889(38.9)	141(13.9)	< 0.001
Health check; n(%)	13344(47.6)	1290(56.4)	366(36.1)	< 0.001
Brush teeth every day; n(%)	24433(87.1)	1457(63.7)	719(71.0)	< 0.001
anxiety/depression; n(%)				

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter ≤ 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.
Variables	Han (n = 28050)	Tibetan (n = 2288)	Yi (n = 1013)	P value
not at all	23743(84.6)	2103(91.9)	914(90.2)	< 0.001
moderate	3918(14.0)	174(7.6)	93(9.2)	
severe	389(1.4)	11(0.5)	6(0.6)	
VAS; mean(s.d.)	72.8(17.3)	77.3(15.1)	73.4(14.4)	< 0.001
comorbidity; n(%)	9563(34.1)	471(20.6)	246(24.3)	< 0.001

HP: hypertension; PM$_{2.5}$: particulate matter with an aerodynamic diameter ≤ 2.5 µm; BMI: body mass index.; VAS: visual analogue scale.

Figure 3 Distribution of PM$_{2.5}$ Concentrations for the Han, Yi and Tibetan People

Table 2 Comparison of Sociodemographic and Major Risk Factors by Ethnicity

Table 3 showed the results of associations between PM$_{2.5}$ and hypertension. In crude model, higher PM$_{2.5}$ concentration was associated with increasing risk of hypertension with a crude odds ratio (OR) of 1.11 (95% CI, 1.09–1.14) for a PM$_{2.5}$ increment of 10 µg/m3. After fully adjusted for covariates (Model 4 in Table 3), the positive association remained statistically significant (OR: 1.08; 95% CI, 1.04–1.12). Results of the fully adjusted model was listed in Table S2.
Table 3
The Results of Logistic Regression Analysis of Hypertension, PM$_{2.5}$ and Covariates for 2013 and 2018

Variables	\(\hat{\beta} \)	S. E.	OR	95% CI
Crude Model	0.11	0.01	1.11	1.09 ~ 1.14
Model 1	0.05	0.02	1.06	1.02 ~ 1.09
Model 2	0.07	0.02	1.08	1.04 ~ 1.11
Model 3	0.06	0.02	1.06	1.02 ~ 1.10
Model 4	0.08	0.02	1.08	1.04 ~ 1.12

OR: odds ration; CI: confidence interval.

Model 1: adjusted for age, sex and ethnicity;
Model 2: model 1 + adjusted for BMI, comorbidity, anxiety/depression and VAS;
Model 3: model 2 + adjusted for education and per capital household income;
Model 4: model 3 + adjusted for per capital annual salt sales volume of each county/district.

The results of stratified analyses were shown in Fig. 4. The ORs of hypertension with a 10 µg/m3 increment were significantly higher among comorbid participants (OR: 1.18; 95% CI, 1.12–1.25) and Yi minority group (OR: 1.75; 95% CI, 1.28–2.38). The associations between PM$_{2.5}$ exposure and hypertension stratified by sex, age, BMI, ethnicity, and comorbidity were showed in Table S3.

Figure 4 The Results of Estimated ORs of Exposure to PM$_{2.5}$ and Hypertension Based on Stratified Analysis

Based on the above analysis results, Yi minority people were exposed to lower PM$_{2.5}$ concentrations (Han: 35.9 µg/m3, Yi: 11.9 µg/m3) but suffered a stronger adverse effect on hypertension (OR for Han: 1.08, OR for Yi: 1.75) when compared to Han people. To detect whether the differences between Han and Yi populations were attributed to their heterogeneous responses to PM$_{2.5}$ exposure or other socioeconomic/environmental factors, corresponding analysis was conducted based on 4571 participants (including 3581 Han people and 990 Yi people) in Yi area. Positive association between PM$_{2.5}$ exposure and hypertension persisted and the interaction term between PM$_{2.5}$ exposure and Yi minority group was not statistically significant. The results were shown in Table 4.
Table 4
Estimated ORs of Exposure to PM$_{2.5}$ and Hypertension in Yi Area

Variables	$\hat{\beta}$	S. E.	P value	Odds ratio	95% CI
Crude model					
PM$_{2.5}$	0.77	0.06	< 0.001	2.17	1.93 ~ 2.43
Adjusted model a					
PM$_{2.5}$	0.35	0.07	< 0.001	1.42	1.23 ~ 1.65
Interaction termb	0.31	0.23	0.170	-	-

OR: odds ratio; PM$_{2.5}$: particulate matter with an aerodynamic diameter \leq 2.5 µm; CI: confidence interval.

a: Adjusted for age, sex, ethnicity (Han and Yi), BMI, comorbidity, anxiety/depression, VAS, education, per capital household income, per capital annual salt sales volume of each county/district and interaction between PM$_{2.5}$ and Yi minority group.

b: Interaction between PM$_{2.5}$ and Yi minority group

Table 4 Estimated ORs of Exposure to PM$_{2.5}$ and Hypertension in Yi Area

To further explore potential factors related to ethnic disparity, whether domestic fuel type had synergy effect on ambient PM$_{2.5}$ exposure was tested using the data of 2013. Yi people were more likely to use unclean fuel type than their Han counterpart (76.1% versus 43.7%, $P < 0.001$) as shown in Table 5. The interaction term between ambient PM$_{2.5}$ exposure and clean fuel type was not statistically significant. But the addition of interaction term tremendously changed the coefficient of PM$_{2.5}$ exposure. The results were showed in Table 6.

Table 5
Comparison of Domestic Fuel Type between Han and Yi Minority Group in 2013

Variables	Han	Yi	P value
Fuel type; n(%)			
unclean	6092(43.7)	404(76.1)	< 0.001
clean	7847(56.3)	127(23.9)	
Table 6
Estimated ORs of Exposure to PM$_{2.5}$ and Hypertension after Adjustment of Domestic Fuel Type in 2013

Variables	$\hat{\beta}$	S. E.	P value	Odds ratio	95% CI
Crude model					
PM$_{2.5}$	0.08	0.03	0.003	1.09	1.03 ~ 1.15
Model 1a					
PM$_{2.5}$	0.07	0.03	0.022	1.07	1.01 ~ 1.13
Model 2b					
PM$_{2.5}$	0.14	0.05	0.005	1.15	1.04 ~ 1.27
Interaction termc	-0.10	0.05	0.063		

OR: odds ratio; PM$_{2.5}$: particulate matter with an aerodynamic diameter \leq 2.5 µm; CI: confidence interval.

a: Adjusted for age, sex, ethnicity, BMI, comorbidity, anxiety/depression, VAS, education, per capital household income per capital annual salt sales volume of each county/district and domestic fuel type.

b: Adjusted for age, sex, ethnicity, BMI, comorbidity, anxiety/depression, VAS, education, per capital household income, per capital annual salt sales volume of each county/district, domestic fuel type and interaction between PM$_{2.5}$ and domestic fuel type.

c: Interaction between PM$_{2.5}$ and clean domestic fuel

Table 5 Comparison of Domestic Fuel Type between Han and Yi Minority Group in 2013

Table 6 Estimated ORs of PM$_{2.5}$ Exposure and Hypertension after Adjustment of Domestic Fuel Type in 2013

Sensitivity analyses generated similar results that increasing PM$_{2.5}$-concentration exposure was related to higher risk of hypertension. The results of sensitivity analyses were shown in Table S4.

Discussion

As it is acknowledged, in China, differences in health effects of long-term air pollution exposure among subgroups defined by race/ethnicity have not been examined, nor have potential synergies of ethnicity clustered social, psychosocial and environmental factors been disentangled. This is the first study to examine the different effects of long-term exposure of PM$_{2.5}$ and prevalence of hypertension among Han,
Tibetan and Yi population in China. It is found that higher long-term exposure of PM$_{2.5}$ was associated with increased risk of hypertension in multi-ethnic population. Comorbidity and ethnicity would modify the effect of long-term PM$_{2.5}$ exposure on prevalence of hypertension. Comorbidity would intensify the effect. Compared with Han population, the association is stronger in Yi population.

This study focuses on the relationship between long-term exposure of PM$_{2.5}$ and prevalence of hypertension. Five-year average PM$_{2.5}$ concentrations are used to measure the long-term exposure because the NHSS is conducted every five years. Hypertension is a chronic disease caused by long-term effects of environmental and genetic factors. Sensitivity analyses obtain similar results when using different exposure windows, which is consistent with the findings of Lin et al. Effects of short-term exposure on blood pressure is minor and can be easily reversed as the exposure is removed. Additionally, there also exist many other factors that can sway blood pressure. Therefore, hypertension is more stable, and the effects of exposure is relatively certain.

The possible biological mechanism how PM$_{2.5}$ exposure affects hypertension involves systemic inflammation, oxidative responses. PM$_{2.5}$ could elicit systemic oxidative stress and inflammation, thus increasing circulation of activated immune cells and inflammatory cytokines. Consequently, vascular endothelial dysfunction could lead to an imbalance in vascular homeostatic responses. PM$_{2.5}$ also affects blood pressure by altering autonomic nervous system balance and activating hypothalamus-pituitary-adrenal axis.

Positive associations between the long-term exposure of PM$_{2.5}$ and hypertension are inconsistent from existing epidemiologic studies. In this study, positive associations are obtained, which is consistent with several previous studies. A Canadian population-based cohort demonstrated a 3% increase of incident hypertension associated with 2.1 µg/m3 increase in PM$_{2.5}$ 8. An observational study of older Americans found that 3.91 µg/m3 increase in PM$_{2.5}$ was strongly associated with increased prevalence of hypertension with POR of 1.24. A China PAR cohort study reported that a PM$_{2.5}$ concentration increment of 10 µg/m3 could increase 11% risk of hypertension. Another Chinese cross-sectional study among older adults reported that OR of hypertension was 1.14 with PM$_{2.5}$ concentration increments of 10 µg/m3. A Chinese nationwide cross-sectional study of middle-aged and elderly people reported a weaker association that 41.7 µg/m3 increase in PM$_{2.5}$ was associated with higher prevalence of hypertension with OR of 1.11. However, American Multi-Ethnic cohort study found no association between long-term exposure PM$_{2.5}$ and blood pressure. And a recent Chinese cross-sectional study also found the association non-significant. The inconsistency may be partially illustrated by heterogeneity of study design, study setting, constituents of particle matter, exposure assessment, population characteristics, and covariates included in models.

Ethnicity shows complicated modification effect on the association between long-term PM$_{2.5}$ exposure and hypertension. The association in the Tibetan group is negative, which is mostly due to its low
exposure level, very close to the lower bound of theoretical threshold of ambient PM$_{2.5}$ concentration (2.4 ~ 5.9 µg/m3). Meanwhile, the Tibetans are reported to be of high hypertension prevalence24. High salt diet, high altitude residence, and related genetic adaptation are recognized as major risks$^{24,42-44}$ which may outweigh the effect of air pollution.

Stronger association is observed in Yi population. Analysis in Yi area showed that the interaction of PM$_{2.5}$ exposure and ethnicity was no longer statistically significant, indicating that the ethnic differences are mainly caused by socioeconomic and environmental factors. Although the average age of Yi participants tends to be younger than the Han, their education attainment and income level are likely to be lower than Han people. Compared with Han people, Yi minority people are less likely to have symptoms of anxiety/depression and comorbidity. Meanwhile, health-related behaviors of Yi minority people are poorer than Han counterpart. Yi people are more likely to smoke and less likely to do physical activities and to brush their teeth every day. Except the individual factors, the Yi area is less developed than Han area both in economy and healthcare services33. Findings in this study are consistent with a few studies15,45. Erqou et al. found a 45% higher risk of cardiovascular events among blacks when compared to whites, which was partly because of black people's higher chronic exposure to PM$_{2.5}$. However, the association between cardiovascular events and race was no longer statistically significant after further adjustments for measures of SES (i.e., income and education)45. Hicken et al. reported that racial/ethnic differences could be partly adjusted by markers of socioeconomic, psychosocial and environmental factors15.

Existing studies suggested that unclean domestic fuel could enhance the health risk of PM$_{2.5}$ exposure7,46. Over 76% of Yi people uses solid fuel to cook, including coal and forestry biomass in 2013. The proportion was dramatically higher than that of the Han people. Exposure to household air pollution from indoor unclean fuel is an important environmental health problem in low and middle-income countries47. Previous studies found that unclean household fuel usage would elevate women's blood pressure48,49. Studies based on Indian cohort indicated that indoor solid fuel would enhance the effect of PM$_{2.5}$ exposure on insulin resistance46, but the enhanced effect was not significant on SBP elevation due to insufficient statistical power50. In another nationwide cross-sectional study in China, stronger associations between higher levels of ambient PM$_{2.5}$ and higher SBP were observed in participants who use solid fuel for cooking. However, the modification effect was not significant on hypertension7. In this study, with 2018 data not collected, only data of domestic fuel from 2013 was used to test the modification effect of fuel type. It is insufficient to test the interaction of PM$_{2.5}$ exposure and domestic fuel type for the hypertension prevalence in Yi minority group. Even though the interaction of PM$_{2.5}$ exposure and domestic fuel type is not significant, unclean fuel type would greatly increase the OR of PM$_{2.5}$ exposure. The disproportionate distribution of unclean fuel by ethnicity would be an important cause of ethnic disparity. Recently, Chinese government is committed to health poverty alleviation51. As an universal access to clean energy for household can contribute to Sustainable Development Goals (SDGs) for health and energy, measures should be taken to the promote the usage of clean household fuel52.
Other chronic diseases would enhance the effect of long-term PM$_{2.5}$ exposure on hypertension. There are studies with the findings that participants with chronic diseases like hypertension and diabetes are more susceptible to long-term PM$_{2.5}$ exposure20,53,54. Besides, patients’ pre-existing coronary heart diseases, chronic lung diseases, or heart failure were also recognized as susceptible population55. Age and BMI were also found possible to modify the effect of long-term PM$_{2.5}$ exposure6,7. In this study, stronger associations are found in the elderly (aged 60 and above), but the interaction term is non-significant. Besides, modification effect of BMI is not observed, which may be the result of that BMIs of participants are relatively low with a mean of 22.5 kg/m2. This finding is similar to that of another study13.

This study has several strengths. It is based on representative large survey data of Sichuan Province with ethnically diverse population. Additionally, individual information is collected including specific individual ethnicity, which makes it possible to adjust wide range of possible covariates and capture susceptibility. And high-resolution satellite-based approach allows allocating individual exposure of ambient PM$_{2.5}$ precisely.

Despite of those strengths, this study also has several limitations. First, its data come from cross-sectional surveys, which makes it hard to inference causal relationship between the long-term exposure PM$_{2.5}$ and hypertension. Second, the surveys lacks dietary information which is an important modifier of the associations between long-term exposure of PM$_{2.5}$ and hypertension. Third, self-reported physician-diagnosed hypertension is used to define whether participants are with hypertension rather than blood pressure measurements.

Conclusion

This study provides evidence that long-term exposure to PM$_{2.5}$ is associated with higher risk of hypertension from an ethnically diverse population. A stronger association is noticed in Yi minority people. The effect differences among multi-ethnic people are mainly due to socioeconomic and environmental factors, of which unclean domestic fuel type is an important contributor.

Abbreviations

CI, confidence interval; OR, odds ratio; PM$_{2.5}$, particulate matter with an aerodynamic diameter ≤ 2.5 µm; SBP, systolic blood pressure; DALYs, disability adjusted of life years; HSS, health service survey; NHSS, national health service survey; HP, hypertension; BMI: body mass index.; VAS:visual analogue scale.

Declarations

Acknowledgements

We would like to thank Professor Xiaohui Ren of School of Public Health, Sichuan University who provided valuable suggestions to the study. We also thank all the participant, coordinators, and
administrators for their supports in this study.

Funding

Special fund for the 5th and 6th National Health Service Survey in Sichuan Province, supported by Health Commission of Sichuan Province. The funder had no role in the study design, data collection and analysis, interpretation of data, or writing the manuscript.

Authorship contribution statement

Jiayue Xu, Minghong Yao and Gonghua Wu participated the sixth National Health Service Survey in Sichuan Province, conducted data analysis and drafted the first-version draft. Yuqin Zhang simulated the PM$_{2.5}$ concentration in 2017. Zhanqi Duan, Xing Zhao and Juying Zhang contributed to analysis and design and provided important comments while developing the manuscript. Jiayue Xu is substantively responsible to revise manuscript. The author(s) read and approved the final manuscript.

Ethics approval and consent to participate

The NHSS is a national survey organized by the National Health and Family Planning Commission of China. The 2013 and 2018 National Health Services Surveys were all legal surveys approved and kept a record by the National Statistical Bureau. Oral consent of participate was obtained before the household survey.

Consent for publication

Not applicable

Conflicts of Interest

The authors declare that they have no conflicts of interests.

References

1. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. *Circulation*. Mar 5 2019;139(10):e56-e528.

2. Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *The Lancet*. 2018;392(10159):1923–1994.

3. Wang Z, Chen Z, Zhang L, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012–2015. *Circulation*. 02/15 2018;137:CIRCULATIONAHA.117.032380.

4. Yang B-Y, Qian Z, Howard SW, et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. *Environmental Pollution*. 2018/04/01/
5. Huang W, Wang L, Li J, et al. Short-Term Blood Pressure Responses to Ambient Fine Particulate Matter Exposures at the Extremes of Global Air Pollution Concentrations. *Am J Hypertens.* Apr 13 2018;31(5):590–599.

6. Lin HL, Guo YF, Zheng Y, et al. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults. *Hypertension.* May 2017;69(5):806–813.

7. Liu C, Chen RJ, Zhao YH, et al. Associations between ambient fine particulate air pollution and hypertension: A nationwide cross-sectional study in China. *Science of the Total Environment.* Apr 15 2017;584:869–874.

8. Bai L, Chen H, Hatzopoulou M, et al. Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes. *Epidemiology.* May 2018;29(3):323–332.

9. Honda T, Pun VC, Manjourides J, Suh H. Associations of long-term fine particulate matter exposure with prevalent hypertension and increased blood pressure in older Americans. *Environ Res.* Jul 2018;164:1–8.

10. Huang K, Yang X, Liang F, et al. Long-Term Exposure to Fine Particulate Matter and Hypertension Incidence in China. *Hypertension.* Jun 2019;73(6):1195–1201.

11. Sigaux J, Biton J, Andre E, Semerano L, Boissier MC. Air pollution as a determinant of rheumatoid arthritis. *Joint Bone Spine.* Jan 2019;86(1):37–42.

12. Adar SD, Chen YH, D’Souza JC, et al. Longitudinal Analysis of Long-Term Air Pollution Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis. *Environ Health Perspect.* Oct 2018;126(10):107003.

13. Zhang Z, Dong B, Li S, et al. Exposure to ambient particulate matter air pollution, blood pressure and hypertension in children and adolescents: A national cross-sectional study in China. *Environ Int.* Jul 2019;128:103–108.

14. Johnson D, Parker JD. Air pollution exposure and self-reported cardiovascular disease. *Environ Res.* Jul 2009;109(5):582–589.

15. Hicken MT, Adar SD, Hajat A, et al. Air Pollution, Cardiovascular Outcomes, and Social Disadvantage: The Multi-ethnic Study of Atherosclerosis. *Epidemiology.* Jan 2016;27(1):42–50.

16. Hicken M, Gragg R, Hu H. ANALYSIS & COMMENTARY How Cumulative Risks Warrant A Shift In Our Approach To Racial Health Disparities: The Case Of Lead, Stress, And Hypertension. *Health Affairs.* Oct 2011;30(10):1895–1901.

17. Jones MR, Diez-Roux AV, O’Neill MS, et al. Ambient air pollution and racial/ethnic differences in carotid intima-media thickness in the Multi-Ethnic Study of Atherosclerosis (MESA). *Journal of Epidemiology and Community Health.* Dec 2015;69(12):1191–1198.

18. Fairburn J, Schule SA, Dreger S, Karla Hilz L, Bolte G. Social Inequalities in Exposure to Ambient Air Pollution: A Systematic Review in the WHO European Region. *Int J Environ Res Public Health.* Aug 28 2019;16(17).
19. Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. *Environ Health Perspect.* Sep 2009;117(9):1351–1358.

20. Zhang Z, Guo C, Lau AKH, et al. Long-Term Exposure to Fine Particulate Matter, Blood Pressure, and Incident Hypertension in Taiwanese Adults. *Environ Health Perspect.* Jan 18 2018;126(1):017008.

21. Yang BY, Qian ZM, Vaughn MG, et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. *Environ Pollut.* Oct 2017;229:696–704.

22. Azimi M, Feng F, Zhou C. Air pollution inequality and health inequality in China: An empirical study. *Environ Sci Pollut Res Int.* Apr 2019;26(12):11962–11974.

23. Zhao H, Geng G, Zhang Q, et al. Inequality of household consumption and air pollution-related deaths in China. *Nat Commun.* Sep 25 2019;10(1):4337.

24. Yan Suijun LH. Review of hypertension prevalence in Chinese minorities. *Chinese Journal of Clinicians.* 2017;11.

25. Morales DX. Geographic inequality and ethnic stratification in China, 2000 to 2010. *International Journal of Sociology and Social Policy.* Aug 22 2019;39(7–8):535–549.

26. Kuang F, Liu X, Zhu B, et al. Wet and dry nitrogen deposition in the central Sichuan Basin of China. *Atmospheric Environment.* 2016/10/01/ 2016;143:39–50.

27. Yearbook S Geographic Feature. The People's Government of Sichuan Province network; 2018.

28. Xiong J, Ye C, Zhou T, Cheng W. Health Risk and Resilience Assessment with Respect to the Main Air Pollutants in Sichuan. *Int J Environ Res Public Health.* Aug 6 2019;16(15).

29. Ma Z, Hu X, Sayer AM, et al. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013. 2016;124(2):184–192.

30. Li W *Controlling PM2.5 in Chengdu: Analysis and Recommendations from the China, U.S. and California Experience:* Environmental Management, University of San Francisco; 2014.

31. Feng Y, Ning M, Lei Y, Sun Y, Liu W, Wang J. Defending blue sky in China: Effectiveness of the "Air Pollution Prevention and Control Action Plan" on air quality improvements from 2013 to 2017. *J Environ Manage.* Oct 3 2019;252:109603.

32. Statistics PcoutscaDoPaE. Tabulation on the 2010 population census of the People's Republic of China. Beijing: China Statistics Press; 2012.

33. Zhang J, Mou Y, Liao J, et al. Uptake of maternal care and childhood immunization among ethnic minority and Han populations in Sichuan province: a study based on the 2003, 2008 and 2013 health service surveys. *BMC Pregnancy and Childbirth.* 2019/07/16 2019;19(1):250.

34. Statistics NBo. *China statistical yearbook 2018.* Beijing: China Statistics Press.

35. van Donkelaar A, Martin RV, Brauer M, et al. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. *Environmental Science & Technology.* 2016;50(7):3762–3772.
36. National Health and Family Planning Commission P. BMI Industry standard of the people's Republic of China WS/T 428–2013: criteria of weight for adults (ed. National Health and Family Planning Commission, PRC.). Beijing; 2013.

37. Wu X, Lintelmann J, Klingbeil S, et al. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers. 2017;22(6):525–536.

38. Brook RD, Urch B, Dvonch JT, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. Sep 2009;54(3):659–667.

39. Zhang Z, Hoek G, Chang LY, et al. Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. Int J Hyg Environ Health. Jan 2018;221(1):41–47.

40. Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens. Sep-Oct 2009;3(5):332–350.

41. Kodavanti UP. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta. Dec 2016;1860(12):2880–2890.

42. Shaopeng X. Investigation of prevalence of hypertension and risk factors in Changdu district of Tibet, Tianjin Medical University; 2010.

43. Zhou D, Udpa N, Ronen R, et al. Whole-Genome Sequencing Uncovers the Genetic Basis of Chronic Mountain Sickness in Andean Highlanders. American Journal of Human Genetics. Sep 5 2013;93(3):452–462.

44. Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension. Sep 2018;72(3):567–578.

45. Erqou S, Clougherty JE, Olafiranye O, et al. Particulate Matter Air Pollution and Racial Differences in Cardiovascular Disease Risk. Arterioscler Thromb Vasc Biol Apr 2018;38(4):935–42.

46. Salvi D, Lane KJ, Balakrishnan K, Thanikachalam S, Thanikachalam M. Associations between Ambient and Indoor PM2.5 Exposure and Cooking Fuel on Insulin Resistance in the PURSE-HIS Cohort. Paper presented at: ISEE Conference Abstracts, 2018.

47. Shupler M, Godwin W, Frostad J, Gustafson P, Arku RE, Brauer M. Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ Int. Nov 2018;120:354–363.

48. Alexander D, Northcross A, Wilson N, et al. Randomized Controlled Ethanol Cookstove Intervention and Blood Pressure in Pregnant Nigerian Women. Am J Respir Crit Care Med. Jun 15 2017;195(12):1629–1639.

49. Donee A, Amanda, et al. Randomized Controlled Ethanol Cookstove Intervention and Blood Pressure in Pregnant Nigerian Women. 2017.

50. Curto A, Wellenius GA, Mila C, et al. Ambient Particulate Air Pollution and Blood Pressure in Peri-urban India. Epidemiology. Jul 2019;30(4):492–500.
51. Chen C, Pan J. The effect of the health poverty alleviation project on financial risk protection for rural residents: evidence from Chishui City, China. *Int J Equity Health.* May 31 2019;18(1):79.

52. Rosenthal J, Quinn A, Grieshop AP, Pillarisetti A, Glass RI. Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals. *Energy Sustain Dev.* Feb 2018;42:152–159.

53. Chen SY, Wu CF, Lee JH, et al. Associations between Long-Term Air Pollutant Exposures and Blood Pressure in Elderly Residents of Taipei City: A Cross-Sectional Study. 2015.

54. Zhang Y, Li T, Ma R, et al. Long-term exposure to ambient fine particulate matter and fasting blood glucose level in a Chinese elderly cohort. *Sci Total Environ.* May 15 2020;717:137191.

55. Brook RD, Rajagopalan S, Pope CA, Brook JR, Kaufman JDJC. Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association. 2010;121(21):2331–2378.

Figures

![Figure 1](image)

Fig.4 The results of estimated ORs of exposure to PM$_{2.5}$ and hypertension based on stratified analysis

Figure 1

The Results of Estimated ORs of Exposure to PM2.5 and Hypertension Based on Stratified Analysis
Figure 2

Distribution of PM2.5 Concentrations for the Han, Yi and Tibetan People

Fig.3 Distribution of PM$_{2.5}$ concentrations for the Han, Yi and Tibetan people
Figure 3

The PM2.5 Concentration and Prevalence of Sample Districts/Counties. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 4

The Distribution of PM2.5 Concentration

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementEH.docx