Intact Vitronectin Induces Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinases-2 Expression and Enhanced Cellular Invasion by Melanoma Cells*

(Received for publication, October 11, 1996, and in revised form, September 25, 1997)

Lisa M. Bafetti‡, Timothy N. Young§, Yoshifumi Itoh‡, and M. Sharon Stack‡¶

From the Departments of ‡Obstetrics & Gynecology and §Cell & Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611 and ¶Washington University School of Medicine, St. Louis, Missouri 63110

The initial site of melanoma cell metastasis is frequently the regional lymph nodes, and the appearance of lymph node metastasis correlates with poor prognosis. Lymph node adhesion is mediated by an interaction between the tumor cell integrin αvβ3 and lymph node vitronectin. In this study, we explored the relationship between adhesion and proteolysis by examining the direct effect of vitronectin receptor ligation on matrix metalloproteinase-2 (MMP-2) production by B16F1 and B16F10 melanoma cells. We report a dose-dependent increase in secretion of both MMP-2 and tissue inhibitor of metalloproteinases-2 (TIMP-2) in response to vitronectin. Cellular invasiveness was also enhanced by vitronectin, as shown by the increased ability of vitronectin-treated cells to invade a synthetic basement membrane (Matrigel). Both the vitronectin-induced MMP-2 production and vitronectin-enhanced invasion were blocked by the peptide ligand Arg-Gly-Asp-Ser (RGDS). Furthermore, neither plasmin-degraded vitronectin nor the peptide ligand RGDS stimulated MMP-2 secretion or invasiveness, indicating that a multivalent ligand-receptor interaction rather than simple receptor occupancy was required for MMP-2 induction. MMP-2 and MMP-2/TIMP-2 interaction with the plasma membrane of melanoma cells resulted in enhanced catalytic activity against 14C-labeled gelatin, suggesting that membrane association may function in posttranslational regulation of MMP-2 activity. This is supported by data showing increased cellular invasion by cells containing membrane-bound MMP-2. Binding of proMMP-2 and proMMP-2/TIMP-2 to melanoma cells was not inhibited by RGDS, and melanoma cell adhesion to vitronectin was unaffected by pro- or active MMP-2, indicating that MMP-2 did not interact with the murine vitronectin receptor. Together, these data provide evidence for a functional link between adhesion and proteolysis and suggest a potential mechanism whereby adhesion of an invasive cell to the extracellular matrix regulates subsequent invasive behavior.

Adhesion of tumor cells to specific extracellular matrix macromolecules is an initial component of the metastatic process (reviewed in Refs. 1 and 2). In metastatic melanoma, tumor cell adhesion to the regional lymph nodes, which correlates with poor prognosis, is mediated via interaction of specific integrins on the melanoma cell surface with lymph node vitronectin (3). Previous data have demonstrated a relationship between elevated levels of vitronectin-binding integrins and increased melanoma cell invasiveness (4–6). Furthermore, ligation of the αvβ3 integrin on melanoma cells by anti-αvβ3 antibodies enhances secretion of matrix metalloproteinase-2 (MMP-2, gelatinase A, 72-kDa type IV collagenase), resulting in increased cellular invasiveness (7). Together, these data suggest that integrin-mediated binding of tumor cells to a specific matrix-associated protein, such as vitronectin, can promote tumor cell invasion by increasing the levels of a matrix-degrading proteinase.

The majority of integrins recognize multiple extracellular matrix ligands (1, 2), and precise biologic responses may be regulated by differential integrin ligation with distinct extracellular matrix proteins. In this study, we have explored the direct effect of the matrix-associated ligand vitronectin on production of MMP-2 by melanoma cells. We report a dose-dependent increase in secretion of both MMP-2 and tissue inhibitor of metalloproteinases-2 (TIMP-2), as well as enhanced cellular invasiveness, in response to vitronectin. Intact vitronectin is required for MMP-2 induction because neither plasmin-treated vitronectin nor a peptide ligand (Arg-Gly-Asp-Ser (RGDS)) alters MMP-2 secretion, indicating the requirement for a multivalent ligand-receptor interaction. Furthermore, MMP-2 interacts with the plasma membranes of melanoma cells, exhibits enhanced catalytic activity relative to the solution phase enzyme, and increases cellular invasive activity. Membrane binding of MMP-2 is unaffected by RGDS, and melanoma cell adhesion to vitronectin is not inhibited by MMP-2, indicating that MMP-2 does not bind the vitronectin receptor on murine melanoma cells. These data suggest a potential physiologic mechanism whereby the relative integrity of the adhesive substratum may differentially regulate secretion and activity of a matrix-degrading proteinase and subsequent cellular invasive behavior.

EXPERIMENTAL PROCEDURES

Cell Culture—The murine B16F10 and B16F1 melanoma cell lines were obtained from Dr. I. J. Fidler (The University of Texas M. D. Anderson Hospital) and were cultured in Eagle's minimal essential medium supplemented with 5% fetal calf serum, nonessential amino acids, l-glutamine, and vitamins. Prior to each experiment, cells were washed with calcium and magnesium-free Dulbecco's phosphate-buffered saline (PBS) and incubated for 2 min at 25 °C with 1 mM EDTA in serum-free Eagle's minimal essential medium to release cells from the culture flask. Cells were seeded in 1 ml of serum-free Eagle's minimal essential medium at a density of 1 × 10⁶ cells/ml and incubated 18 h at

*This work was supported by Research Grant CA 58900 from the NCI, National Institutes of Health (to M. S. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†To whom correspondence should be addressed: Northwestern University Medical School, 303 East Chicago Ave., Tarra 4-751, Chicago, IL 60611. Tel.: 312-908-8216; Fax: 312-908-8773; E-mail: mss130@anima.nums.nwu.edu.

The abbreviations used are: MMP-2, matrix metalloproteinase-2; TIMP, tissue inhibitor of metalloproteinases; PBS, phosphate-buffered saline; APMA, amino-phenylmercuric acetate.
Vitronectin Induction of Matrix Metalloproteinase-2

37 °C in the presence of vitronectin, peptide, or both as described below. In some experiments, colchicine (0.2 μM) was included for inhibition of secretion. Conditioned media were removed and concentrated 4-fold at 4 °C using a Centricron 10 (Amicon) concentrator and analyzed immediately as described below.

Protein and Antibodies—Native vitronectin was purified from pooled human plasma according to the procedure of Dahlback and Podack (8). Briefly, pooled plasma was subjected to salt fractionation followed by ion exchange, dye affinity, and gel filtration chromatography. Presence and purity of vitronectin in each fraction was assessed by both dot blot and electrophoretic analysis on 5–15% gradient SDS-polyacrylamide gels. ProMMP-2 and proMMP-2/TIMP-2 were purified as described previously (9, 10). Pooled human plasma was used to affinity chromatography on L-lysine-Sepharose and polyacrylamide gels. ProMMP-2 and proMMP-2/TIMP-2 were both dot blot and electrophoretic analysis on 5–15% gradient SDS-polyacrylamide gels containing co-polymerized gelatin as described previously (13). Reverse zymography for detection of TIMPs was performed as described previously (17). Cell lysates were treated with soybean trypsin inhibitor (20 μg/ml), leupeptin (25 μg/ml), elastatinal (25 μg/ml), 3,4-dichloroisouccinam (0.05 mM), and trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64, 0.01 mM) to prevent proteolysis of membrane proteins. B16F1 and B16F10 plasma membranes were incubated (2 h, 37 °C) with purified proMMP-2/TIMP-2 or proMMP-2 (100 nM) in 20 mM Tris, 5 mM CaCl₂, 25 mM sucrose, pH 7.4 (Tris-Ca-sucrose). Control samples contained buffer alone. The membranes were recovered by centrifugation (50,000 × g for 30 min), supernatants were discarded, and pellets were washed twice in Tris-Ca-sucrose. Membrane extracts were prepared by incubating aliquots of membrane fractions with 1% Triton X-100 at 4 °C for 16 h followed by clarification by centrifugation (50,000 × g for 30 min) as described previously (17). After resuspension in Tris-Ca-sucrose, aliquots of membranes were analyzed for bound activity by gelatin zymography and by 125I-gelatin degradation (17, 18). 125I-Gelatin was incubated for 22 h at 37 °C with treated membrane aliquots in Tris-Ca-sucrose containing 50 mM NaCl and 0.5 mM APMA. Parallel experiments contained 1 mM o-phenanthroline. Reactions were stopped by trichloroacetic acid precipitation, and soluble radioactivity was determined by scintillation counting. Gelatin degradation by membrane-associated proteinase was determined relative to membrane-free controls. The effect of membrane association on the gelatinolytic activity of pre-activated MMP-2 was also determined as described previously (17).

RESULTS

It has been previously reported that treatment of A375M melanoma cells with antibodies directed against the vitronectin-binding integrin αvβ3 enhanced MMP-2 secretion and stimulated cellular invasion through Matrigel (7). To analyze the direct effect of vitronectin on melanoma MMP-2 secretion, B16F1 and B16F10 cells were incubated with increasing concentrations of vitronectin, and secretion of gelatinase B1 was analyzed by zymography. A dose-dependent increase in secretion of a gelatinolytic metalloproteinase was observed in the conditioned medium of vitronectin-treated B16F1 cells (Fig. 1) and B16F10 cells (Fig. 2A). The gelatinolytic enzyme was activated by treatment with APMA, inhibited by the zinc chelator o-phenanthroline (data not shown), and co-activated with authentic MMP-2, suggesting its identity as MMP-2. MMP-2 secretion was not detectable by zymography in untreated B16F1 or B16F10 cells (Fig. 1, lane 1, and Fig. 2, lane 1), but it was observed in cells treated with as little as 10 μg/ml vitronectin. Addition of vitronectin in the presence of RGDs peptide inhibited the vitronectin-induced MMP-2 secretion, demonstrating that direct interaction of vitronectin with its cellular receptor is required for MMP-2 induction (Fig. 1). Furthermore, vitronectin-induced MMP-2 secretion was inhib-
Vitronectin Induction of Matrix Metalloproteinase-2

Fig. 1. Zymogram depicting MMP-2 activity in B16F1-conditioned medium. B16F1 cells (1 × 10⁶) were cultured for 18 h in serum-free medium containing increasing amounts of vitronectin (0–200 μg/ml), and conditioned media were analyzed for MMP activity by gelatin zymography on 9% SDS-polyacrylamide gels. The lane designated 100+ contained conditioned medium from cells cultured in the presence of 100 μg/ml of vitronectin and 500 μg/ml of RGDS.

Fig. 2. MMP and TIMP activity in B16F10-conditioned medium. B16F10 cells (1 × 10⁶) were cultured for 18 h in serum-free medium containing 0 (lane 1), 100 (lane 2), 200 (lane 3), or 300 (lane 4) μg/ml vitronectin, and conditioned media were analyzed for MMP activity by gelatin zymography on 9% SDS-polyacrylamide gels (A) and for TIMP activity by reverse zymography on 15% SDS-polyacrylamide gels (B and C). Samples in C were subjected to reductive carboxymethylation to inactivate TIMPs as described under “Experimental Procedures.” Following incubation for either 8 (B16F10) or 17 (B16F1) h, membranes were removed and stained, and the invading cells were enumerated. Open bars, untreated cells; hatched bar, vitronectin; solid bars, B16F1 (designated F1(−)) or B16F10 (designated F10(−)); solid bars, B16F1 (designated F1(+) or B16F10 (designated F10(+)) in the presence of 100 μg/ml vitronectin. Hatched bar (designated F1(+)), B16F1 cells in the presence of 100 μg/ml V8-degraded vitronectin. Experiments were performed in triplicate, and error bars represent S.D.

Fig. 3. Effect of vitronectin on Matrigel invasion. B16F1 or B16F10 cells (1 × 10⁶) were added to 8-μm pore size polycarbonate filters coated with Matrigel basement membrane extract as described under “Experimental Procedures.” Following incubation for either 8 (B16F10) or 17 (B16F1) h, membranes were removed and stained, and the invading cells were enumerated. Open bars, untreated cells; hatched bar, vitronectin; solid bars, B16F1 (designated F1(−)) or B16F10 (designated F10(−)); solid bars, B16F1 (designated F1(+) or B16F10 (designated F10(+)) in the presence of 100 μg/ml vitronectin. Hatched bar (designated F1(+)), B16F1 cells in the presence of 100 μg/ml V8-degraded vitronectin. Experiments were performed in triplicate, and error bars represent S.D.

Fig. 4. Limited proteolysis of vitronectin. Vitronectin (200 μg) was subjected to limited proteolysis with plasmin (A and C) or endoprotease V8 (B and D) and incubated with B16F10 cells (1 × 10⁶) in serum-free medium (1 ml) for 18 h. Conditioned media were analyzed for MMP activity by gelatin zymography on 9% SDS-polyacrylamide gels. A, lane 1, cells only; lane 2, cells + intact vitronectin; lane 3, cells + plasmin-degraded vitronectin; lane 4, MMP-2 standard. B, lane 1, cells only; lane 2, cells + intact vitronectin; lane 3, cells + endoprotease V8-degraded vitronectin; lane 4, MMP-2 standard. Panel C, control showing limited proteolysis of vitronectin. Vitronectin was incubated with plasmin (37 °C for 30 min) (lane 2) or endoprotease V8 (37 °C for 2 h) (lane 4) as described under “Experimental Procedures,” and reaction products were analyzed by electrophoresis on 5–15% gradient SDS-polyacrylamide gels and stained with Coomassie Blue. Lanes 1 and 3, intact vitronectin; lane 2, plasmin-degraded vitronectin; lane 4, endoprotease V8-degraded vitronectin. D, effect of MMP-2 on vitronectin. Vitronectin (20 μg) was incubated with purified APMA-activated MMP-2 (1 μg) for 18 h at 37 °C. Reaction products were analyzed by electrophoresis on 5–15% gradient gels and stained with Coomassie Blue. Lane 1, vitronectin; lane 2, vitronectin + MMP-2.

In addition to metalloproteinases, B16 melanoma cells also secrete the serine proteinase tissue-type plasminogen activator, which converts the plasma zymogen plasminogen to the active proteinase plasmin (13). Plasmin is a broad spectrum serine proteinase that degrades numerous extracellular matrix proteins, including vitronectin (19). To determine the effect of...
Vitronectin Induction of Matrix Metalloproteinase-2

Table I

Effect of RGDS on adhesion of B16F1 and B16F10 cells to vitronectin

Increasing concentrations of RGDS were added to melanoma cells, and adhesion to vitronectin-coated wells was quantitated as described under “Experimental Procedures.” Results are expressed relative to wells containing no RGDS.

RGDS µg/ml	B16F1	B16F10
0	21 ± 3.5	18 ± 9.0
50	44 ± 1.7	40 ± 11.9
200	89 ± 0.6	72 ± 16.0

Table II

Effect of RGDS on binding of proMMP-2 and proMMP-2/TIMP-2 to B16F10 cells

125I-labeled proMMP-2 or proMMP-2/TIMP-2 (100 nM) was added to wells containing 5 x 10^4 B16F10 cells in the presence of increasing concentrations of RGDS or RGES peptide. Bound ligand was determined as described under “Experimental Procedures.” Results are expressed as % bound relative to control wells containing no added peptide (designated 100%). ProMMP-2 binding was analyzed in triplicate, whereas proMMP-2/TIMP-2 data are the average of duplicate experiments.

[Peptide]	ProMMP-2 bound	ProMMP-2/TIMP-2 bound
RGDS µg/ml	%	%
0	100.0 ± 2.9	100.0 ± 2.9
1	92.4 ± 0.8	94.5 ± 2.1
10	91.5 ± 9.4	95.1 ± 3.3
100	91.8 ± 11.1	94.5 ± 4.9
1000	94.5 ± 6.2	91.5 ± 0.5

Table III

Effect of MMP-2 on melanoma cell adhesion to vitronectin

B16F10 cells (1.5 x 10^5) were added to 24-well culture plates coated with vitronectin in the presence or absence of pro- or active MMP-2, as indicated. After incubation for 40 min at 37°C, plates were washed with PBS and fixed, and bound cells were enumerated using an ocular micrometer. Experiments were performed in triplicate, and S.D. is indicated.

Treatment	Concentration µg/ml	No. of cells/field
Control	70.6 ± 17.5	70.6 ± 17.5
ProMMP-2	84.2 ± 8.2	84.2 ± 8.2
Active MMP-2	76.0 ± 9.4	76.0 ± 9.4

Because recent data indicate that MMP activity may be regulated posttranslationally by interaction with the cell surface (17, 22–27), the ability of MMP-2 to associate with the plasma membrane of B16F1 or B16F10 cells was determined. Analysis of MMP-2 binding to the membranes of intact melanoma cells was assessed using 125I-labeled proMMP-2 or proMMP-2/TIMP-2. Attempts to determine an equilibrium dissociation constant for binding of either proMMP-2 or proMMP-2/TIMP-2 to intact cells was unsuccessful because saturation of binding sites was not achieved in the presence of 125I-labeled ligand concentrations up to 500 nM (data not shown). These data suggest that proMMP-2 and/or proMMP-2/TIMP-2 interacts with a prevalent cell-associated protein such as collagen or fibronectin (25–26) or that binding is mediated by a receptor present in low abundance such that specific binding is obscured by nonspecific interactions. To determine whether proMMP-2 or proMMP-2/TIMP-2 may associate with vitronectin binding integrins, binding experiments were performed in the presence of RGDS. No significant change in the amount of bound proMMP-2 or proMMP-2/TIMP-2 was observed in the presence of RGDS.
Vitronectin Induction of Matrix Metalloproteinase-2

B16F1 cells were incubated for 90 min in serum-free medium with 3% BSA containing 50 nM proMMP-2 and washed twice with PBS to remove unbound proMMP-2, and cells (1 x 10^6) were added to 8 μm pore size polycarbonate filters coated with Matrigel. Following incubation for 17 h, membranes were removed and stained, and invading cells were enumerated.

FIG. 6. MMP-2 association with melanoma cell plasma membranes. A, B16F1 (2 x 10^5) and B16F10 (4 x 10^5) cells were fractionated as described under “Experimental Procedures,” and plasma membranes (P.M.) were incubated for 2 h at 37 °C in the absence (control) or presence (+MMP-2) of purified proMMP-2/TIMP-2 (100 nM). Membranes were washed to remove unbound complex, treated with APMA, and analyzed by gelatin zymography to detect bound enzyme. B, plasma membranes (mem) from B16F1 or B16F10 cells were incubated in the presence (+) or absence (−) of proMMP-2/TIMP-2 as indicated, and bound enzyme was analyzed by incubating membrane aliquots with 14C-gelatin in Tris-Ca-sucrose containing 50 mM NaCl and 0.5 mM APMA in the presence (solid bars) or absence (hatched bars) of 1 mM o-phenanthroline. Reactions were terminated by trichloroacetic acid precipitation, and soluble radioactivity was determined by scintillation counting. Experiments were performed in quadruplicate, and error bars represent S.D. C, effect of membrane association on MMP-2 catalytic activity. 14C-gelatin cleavage by APMA-activated MMP-2/TIMP-2 (10 nM) was determined in the absence of membranes or in the presence of B16 plasma membranes (1 μg) (open bars) or Triton X-100 detergent extracts (100 ng) (hatched bars). Data are presented as the percent increase in gelatin hydrolysis relative to the activity of control MMP-2/TIMP-2 determined in the absence of membranes. Experiments were performed in triplicate, and error bars represent S.D. In additional controls, the membrane preparations were incubated with the gelatin substrate in the absence of enzyme (data not shown).

DISCUSSION

The initial site of melanoma cell metastasis in vivo is frequently the regional lymph nodes, and the appearance of lymph node metastases is correlated with poor prognosis (3). Studies of experimental metastasis using B16F1 and B16F10 cells demonstrated similar incidence of lymph node metastases, although animals injected with B16F10 cells were more likely to develop pulmonary metastases (28). Expression of the vitronectin-binding integrin αvβ3 is enhanced in metastatic melanoma cells relative to parental nonmetastatic variants and recent
experiments have demonstrated that adhesion of metastatic melanoma cells to lymph node sections is blocked by either anti-αvβ3 or RGD-containing peptides (3). In related experiments, ligation of melanoma cell αvβ3 using an anti-integrin antibody was shown to enhance cellular invasiveness in vitro, and conditioned medium from cells treated with anti-αvβ3 displayed increased MMP-2 activity (7). This is particularly interesting in light of previous data that indicate that MMP-2 expression by melanoma cells correlates with increased invasiveness, and it provides a biochemical mechanism whereby invasion may be enhanced (29–31).

These observations are supported by data from the present study that demonstrate a direct dose-dependent increase in MMP-2 secretion in vitronectin-treated B16F1 and B16F10 melanoma cells. As a functional consequence of increased MMP-2 levels, cellular invasiveness is also enhanced. The vitronectin-induced increase in MMP-2 secretion and invasive activity was abolished by RGDS peptide, providing evidence that vitronectin interaction with cellular integrins regulates invasive behavior. Concomitant with MMP-2 secretion, levels of TIMP-2 were also increased by vitronectin treatment. Previous studies have shown that MMP-2 is secreted as a proenzyme in complex with TIMP-2 by melanoma cells and other cell types, and additional reports suggest that the presence of TIMP-2 in this proenzyme-inhibitor complex is required for cellular activation of the MMP-2 zymogen by membrane-type MMPs (24, 32–36).

Recent evidence indicates that cell surface association may function as a mechanism for posttranslational regulation of MMP activity (17, 21–26). The present data demonstrate that MMP-2/TIMP-2 associates with the plasma membrane fraction of murine melanoma cells and exhibits enhanced catalytic activity against macromolecular substrates relative to the solution phase enzyme supporting the role of membrane association in MMP regulation. The mechanism of interaction of proMMP-2 and proMMP-2/TIMP-2 with B16F1 and B16F10 cells is currently unknown. However, it has recently been reported that recombinant chick MMP-2 binds to hamster melanoma cells transfected with the β3 integrin subunit via a direct interaction with αvβ3, which is inhibited by RGD peptides, as well as to purified αvβ3 immobilized on microtiter wells (37). This is in contrast to the results of the present study, which show that binding of human proMMP-2 and proMMP-2/TIMP-2 to intact murine melanoma cells is not RGD-mediated. This is supported by the observation that MMP-2 secretion by vitronectin-treated cells was inhibited by colchicine, demonstrating that the enhanced proteinase levels observed were not due simply to displacement of MMP-2 by vitronectin from a common cell surface receptor. Furthermore, neither the peptide RGDS nor endoproteinase V8-treated vitronectin, both of which bind the cellular vitronectin receptor, increased the level of MMP-2 in conditioned medium. In addition, neither pro- nor active MMP-2 inhibited cell adhesion to vitronectin. The discrepancy between results reported in the current study and those of Brooks et al. (37) may reflect differences in the distinct model systems employed. Alternatively, differences in the activation state of the enzymes may also influence cellular association because proteolytic activity may alter (or confer) cell binding ability.

The complex array of functions attributed to integrins, including cell-matrix adhesion, cytoskeletal organization, and signal transduction, results from a cellular ability to discrimi- nate functionally between transmembrane signals induced by simple ligand occupancy, receptor aggregation, or simultaneous occupancy and aggregation (34). In the present study MMP-2 secretion was induced by intact vitronectin in both B16F1 and B16F10 cells; however, limited proteolysis of vitronectin removed the stimulatory effect, regardless of whether the RGD site was disrupted (plasmin) or remained intact (endoproteinase V8). Furthermore, simple ligation of the vitronectin receptor with the peptide RGDS also failed to induce MMP-2 activity at concentrations well in excess of that required for inhibition of cell adhesion. However, antibody ligation of melanoma cell αvβ3, which can induce receptor aggregation, stimulated MMP-2 production (7). Together, these data indicate that a multivalent ligand-receptor interaction, rather than simple ligand occupancy, is required for induction of MMP-2. In light of these results, it is interesting to consider recent biophysical data that demonstrate that under physiologic conditions, vitronectin can exist in both monomeric and multimeric forms (39). Vitronectin in extravascular sites (i.e., matrix and tissue-associated) is predominantly in the multimeric form, suggesting that multivalent ligand-receptor interactions may prevail in vitro (39, 40). Furthermore, the current data suggest a biologic control mechanism whereby the stimulus for MMP-2 induction, i.e. intact vitronectin, may be removed. It is interesting to speculate that vitronectin-adherent melanoma cells, which also catalyze tissue-type plasminogen activator-mediated plasmin generation (13), may initiate plasmin-dependent proteolysis of vitronectin, thereby disrupting the multivalent signal necessary for MMP-2 induction.

Acknowledgments—We thank Dr. C. N. Rao (Department of Dermatology, Northwestern University) for assistance in the in vitro invasion assay.

REFERENCES
1. Ruoslahti, E., and Giancotti, F. G. (1989) Cancer Cells 1, 119–126
2. Hynes, R. O. (1992) Cell 69, 11–25
3. Nip, J., Shibata, H. R., Loskutoff, D. J., Cheresh, D. A., and Brodt, P. (1992) J. Clin. Invest. 90, 1406–1413
4. Albeida, S. M., Mette, S. A., Elder, D. E., Stewart, R., Damjanovich, L., Herlyn, M., and Buck, C. A. (1990) Cancer Res. 50, 6757–6764
5. Sanders, L. C., Felding-Habermann, B., Mueller, B. M., and Cheresh, D. A. (1992) Cold Spring Harbor Symp. Quant. Biol. 57, 233–240
6. Nip, J., and Brodt, P. (1995) Cancer Metastasis Rev. 14, 241–252
7. Seftor, R. E. B., Seftor, E. A., Gehlsen, K. R., Stetler-Stevenson, W. G., Brown, P. D., Ruoslahti, E., and Hendrix, M. J. C. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 1557–1561
8. Dahlback, B., and Podack, E. R. (1985) Biochemistry 24, 2368–2374
9. Young, T. N., Rodriguez, G. C., Moser, T. L., Bost, R. C., Jr., Pizzo, S. V., and Stack, M. S. (1994) Annu. Rev. Biochem. 63, 1285–1296
10. Itoh, Y., Binner, S., and Nagase, H. (1995) Biochem. J. 308, 645–651
11. Gonzalez-Gronow, M., and Robbins, K. C. (1984) Biochemistry 23, 190–197
12. Felding-Habermann, B., and Cheresh, D. A. (1995) Curr. Opin. Cell Biol. 5, 364–368
13. Stack, M. S., Gray, R. D., and Pizzo, S. V. (1993) Cancer Res. 53, 2030–2034
14. Salvesen, G. S., and Nagase, H. (1989) in Proteolytic Enzymes: A Practical Approach (Beynon, R. J., and Bond, J. S., eds), pp. 83–104, IRL Press, Oxford
15. Moser, T. L., Pizzo, S. V., Bafetti, L. M., Fishman, D. A., and Stack, M. S. (1996) Int. J. Cancer 67, 695–701
16. Pierschbacher, M. D., and Ruoslahti, E. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 5985–5988
17. Young, T. N., Pizzo, S. V., and Stack, M. S. (1995) J. Biol. Chem. 270, 999–1002
18. Harris, E. D., and Krane, S. M. (1972) J. Biol. Chem. 247, 7437–7481
19. Houmard, J., and Drapeau, G. R. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 306–309
20. Ward, R. V., Atkinson, R. J., Reynolds, J. R., and Murphy, G. (1994) Biochem. J. 304, 263–269
21. Emmond, H. P., Remacle, A. G., Noel, A. C., Grimaud, J. A., Stetler-Stevenson, W. G., and Foidart, J. M. (1992) Cancer Res. 52, 5845–5848
22. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994) Nature 370, 61–65
23. Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., and Goldberg, G. I. (1995) J. Biol. Chem. 270, 5331–5338
24. Toth, M., Gervasi, D. C., and Fridman, R. (1997) Cancer Res. 57, 3159–3167
25. Wnt et al., C. M. (1997) J. Biol. Chem. 272, 7437–7481
26. Allan, J. A., Docherty, A. J. P., Barker, P. J., Huxsoll, N. S., Reynolds, J. J., and Murphy, G. (1995) Biochem. J. 309, 299–306
27. Nathanson, S. D., Haas, G. F., Mead, M. J., and Lee, M. (1986) J. Surg. Oncol. 34, 41–45
28. Turpeenniemi-Hujanen, T., Thorgeirsson, U. P., Hart, I. R., Grant, S. S., and Liotta, L. A. (1985) J. Natl. Cancer Inst. 57, 99–103
29. Liotta, L., Rai, C. N., and Wexer, U. M. (1986) Annu. Rev. Biochem. 55,
31. Stetler-Stevenson, W. G. (1990) Cancer Metastasis Rev. 9, 289–303
32. Stetler-Stevenson, W. G., Krutzsch, H. C., Wacher, M. P., Margulies, I. M. K., and Liotta, L. A. (1989) J. Biol. Chem. 264, 1353–1356
33. Goldberg, G. I., Marner, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S, and He, C. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 8207–8211
34. Cockett, M. I., Birch, M. L., Murphy, G., Hart, I. R., and Docherty, A. J. P. (1994) Biochem. Soc. Trans. 22, 55–57
35. Emmert-Buck, M. R., Emonard, H. P., Corcoran, M. L., Krutzsch, H. C., Foidart, J. M., and Stetler-Stevenson, W. G. (1995) FEBS Lett. 364, 28–32
36. Nagase, H., Suzuki, K., Itoh, Y., Kan, C.-C., Gehring, M. R., Huang, W., and Brew, K. (1996) in Intracellular Protein Catabolism (Suzuki, K., and Bond, J., eds), pp.23–31, Plenum Press, New York
37. Brooks, P. C., Stromhild, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P., and Cheresh, D. A. (1996) Cell 85, 683–693
38. Miyamoto, S., Akiyama, S. K., and Yamada, K. M. (1995) Science 267, 883–885
39. Zhuang, P., Blackburn, M. N., and Peterson, C. B. (1996) J. Biol. Chem. 271, 14323–14332
40. Preissner, K. T., Grulich-Henn, J., Ehrlich, H. J., Declerck, P., Justus, C., Collen, D., Pannekoc, H., and Muller-Berghaus, G. (1990) J. Biol. Chem. 265, 18490–18498