Chronic Mild Hypoxia Protects Heart-derived H9c2 Cells against Acute Hypoxia/Reoxygenation by Regulating Expression of the SUR2A Subunit of the ATP-sensitive K⁺ Channel*

Received for publication, March 25, 2003, and in revised form, June 2, 2003
Published, JBC Papers in Press, June 5, 2003, DOI 10.1074/jbc.M303051200

Russell M. Crawford‡, Sofija Jovanovic‡, Grant R. Budaš*, Anthony M. Davies‡, Harish Lad‡, Roland H. Wengers, Kevin A. Robertson†, Douglas J. Roy‡, Harri J. Rannik‡, and Aleksandar Jovanovic‡

From the §Maternal and Child Health Sciences, Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom, the ‡Carl-Ludwig-Institute of Physiology, University of Leipzig, D-04103 Leipzig, Germany, and the §Scottish Centre for Genomic Technology and Informatics, The University of Edinburgh, Summerhall EH9 1QH, United Kingdom

Chronic exposure to lower oxygen tension may increase cellular resistance to different types of acute metabolic stress. Here, we show that 24-h-long exposure to slightly decreased oxygen tension (partial pressure of oxygen (PO₂) of 100 mm Hg instead of normal 144 mm Hg) confers resistance against acute hypoxia/reoxygenation-induced Ca²⁺ loading in heart-derived H9c2 cells. The number of ATP-sensitive K⁺ (KATP) channels were increased in cells exposed to PO₂ = 100 mm Hg relative to cells exposed to PO₂ = 144 mm Hg. This was due to an increase in transcription of SUR2A, a KATP channel regulatory subunit, but not Kir6.2, a KATP channel pore-forming subunit. PO₂ = 100 mm Hg also increased the SUR2 gene promoter activity. Experiments with wild-type expressing hypoxia-inducible factor (HIF)-α and dominant negative HIF-1β suggested that the HIF-1-signaling pathway did not participate in observed PO₂-mediated regulation of SUR2A expression. On the other hand, NADH inhibited the effect of PO₂ = 100 mm Hg but not the effect of PO₂ = 20 mm Hg. LY 294002 and PD 184 352 prevented PO₂-mediated regulation of KATP channels, whereas rapamycin was without any effect. HMR 1098 inhibited the cytoprotective effect of PO₂ = 100 mm Hg, and a decrease of PO₂ from 144 to 100 mm Hg did not change the expression of any other gene, including those involved in stress and hypoxic response, as revealed by Affymetrix high density oligonucleotide arrays. We conclude that slight hypoxia activates HIF-1α-independent signaling cascade leading to an increase in SUR2A protein, a higher density of KATP channels, and a cellular phenotype more resistant to acute metabolic stress.

A chronic lack of oxygen has been implicated in variety of diseases including atherosclerosis, diabetes, pulmonary fibrosis, neurodegenerative disorders, arthritis, and aging. At the cellular level, hypoxia activates numerous major signaling pathways, resulting in changes in gene expression, which influence the cellular ability to survive or die. These pathways exert their phenotypic influences largely through modulation of transcription factor activities that effect changes in the pattern of gene expression, and some of these pathways are linked to enhanced survival, whereas others are associated with cell death. Severe hypoxia, occurring at partial pressure of oxygen (PO₂) below 20 mm Hg, impairs cellular energy production and ion homeostasis, leading to cell injury and cell death. In contrast, a lower degree of hypoxia, defined as PO₂ between 50 and 100 mm Hg, may activate mechanisms that could produce cellular phenotype more resistant to acute severe oxidative stress (1, 2). This phenomenon was in particular described in the heart, where acute severe oxidative stress is one of the most important components of different forms of ischemic heart diseases, including myocardial infarction. At the single cell level, it has been shown that isolated cardiomyocytes when cultured at lower oxygen tension acquire resistance against acute severe oxidative stress (3). Such single cell reports have been strongly supported by clinical studies showing that the incidence of myocardial infarction complications and the mortality rate are much lower in populations living at lower PO₂ than those of the rest of the world (4, 5).

How moderate hypoxia induces increased cellular resistance to acute severe oxidative stress is yet unknown. In this regard, the present study was undertaken to address this question and to define the molecular basis of chronic mild hypoxia regulation of cellular resistance to acute metabolic challenges. To achieve this, we applied a set of different techniques on heart-derived H9c2 cells, cells that have been previously successfully implemented to study mechanisms of cellular and cardiac protection (6, 7). Using this approach we found that chronic minimal hypoxia up-regulates SUR2A subunit of the ATP-sensitive K⁺ channel without affecting expression of any other gene. This effect is not associated with activation of HIF-1α-dependent signaling pathway, whereas changes in the NAD/NADH ratio and activation of phosphatidylinositol (PI) 3-kinase and extracellular signal-regulated kinases (ERKs) seem to be crucial for

* This work was supported by the Biotechnology and Biological Sciences Research Council, the British Heart Foundation, the National Heart Research Fund, TENDOVUS, and the Wellcome Trust. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Tayside Inst. of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK. Tel.: 44-0-1382-496-269; Fax: 44-0-1382-632-597; E-mail: a.jovanovic@dundee.ac.uk.

‡ The abbreviations used are: PO₂, partial pressure of oxygen; GFP, green fluorescent protein; HIF, hypoxia-inducible factor; HPLC, high performance liquid chromatography; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; MEK1, mitogen-activated protein kinase kinase; PI 3-kinase, phosphatidylinositol 3-kinase; RT, reverse transcription; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; C/EBP, CCAAT/enhancer binding protein; AP-1, activator protein-1; mTOR, mammalian target of rapamycin.

This paper is available on line at http://www.jbc.org

31444
Mild Hypoxia and Acute Hypoxia/Reoxygenation

The cytoprotective effect of chronic mild hypoxia. A sole increase in SUR2A protein is sufficient to generate more sarcolemmal ATP-sensitive K⁺ (KATP) channels and create a cellular phenotype resistant to acute severe oxidative stress.

MATERIALS AND METHODS

Heart H9c2 Cells and Gene Transfection—Rat embryonic heart H9c2 cells (ECACC, Salisbury, UK) were cultured in a tissue flask (at 5% CO₂) containing Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum and 2 mM glutamine. For some experiments in culture media NADH (20 mM), NAD (20 mM), PD 184352 (10 μM), or rapamycin (1 μM) or LY294002 (50 μM) would be added. For electrophysiological and imaging experiments G-Sephose beads containing 35 × 10⁻⁵-60 × 15-mm culture dishes containing 12- or 25-mm glass coverslips. The cells were cultured in incubators (Galaxy, oxygen control model, RS Biotech, Irvine, UK) where PO₂ was either 144 mm Hg or 100 mm Hg, respectively, whereas promoter-transfected cells were cultured under 140 mm Hg. For hypoxia the solution was continuously bubbled with 100% O₂, whereas promoter-transfected cells were cultured under 144 mm Hg and PO₂ was confirmed by DNA sequencing. These conditions were set based on the array by 20 perfectly matched oligonucleotides and 20 mismatched sequences; for the 387-base-long product for rat Kir6.2 (primer 1), sense, 5’-ATGCGCAAGACCACCAGC-3’; antisense, 5’-GAACCAGACACGACCAGC-3’; and antisense, 5’-GGGCTGACGACCGTATGG-3’; for the 255-base-long product for rat Kir6.2 (primer 2), sense, 5’-CATCACCATCTTCCAGGAGCGA-3’; and antisense, 5’-AGAGAACGAGACACTTGG-3’; for the 255-base-long product for rat SUR2A (primer 1), sense, 5’-TCAGGCGGAGCACTTGCAC-3’; and antisense, 5’-AGAAGACGACACTTGG-3’; and for the 251-base-long product for rat SUR2A (primer 2), sense, 5’-GAGTGTGACACCTGCTTCC-3’; and antisense, 5’-GTCGTCATGAGAGATGG-3’. The levels of GAPDH mRNA was also tested using human GAPDH-primers: sense, 5’-GCTGCTCAGCAGGATTGGTCTC-3’; and antisense, 5’-GAGTGTGACACCTGCTTCC-3’. Two different sets of primers were used to verify any found differences. The primers had the following sequences; for the 387-base-long product for rat Kir6.2 (primer 1), sense, 5’-ATGCGCAAGACCACCAGC-3’; and antisense, 5’-TGCGGCGGACACCGAC-3’; for the 255-base-long product for rat Kir6.2 (primer 2), sense, 5’-GCAACATTGTCCGTCGCTC-3’; and antisense, 5’-CGGGCTGATCGACGGCTGTG-3’. For the 251-base-long product for rat SUR2A (primer 1), sense, 5’-TCAGGCGGAGCACTTGCAC-3’; and antisense, 5’-ATGCGCAAGACCACCAGC-3’. The levels of GAPDH mRNA was also tested using human GAPDH-primers: sense, 5’-GCTGCTCAGCAGGATTGGTCTC-3’; and antisense, 5’-GTCGTCATGAGAGATGG-3’; the levels of the GAPDH were normalized to 341 bp). There were no significant differences in intensity of GAPDH levels between experimental groups. The nature of the PCR product was confirmed by DNA sequencing. These conditions were set based on our preliminary studies that have demonstrated that under these conditions intensity of the PCR product bend is ~50% of its maximum. The PCR product band intensities were analyzed using Quantsiscan software.

DNA Microarray Analysis—Total RNA was isolated from cells cultured at PO₂ = 144 mm Hg and PO₂ = 100 mm Hg as described for the use of Affymetrix microarrays (8). Target RNA was prepared by converting 1 μg of RNA into double-stranded cDNA (Superscript Choice System RT, GIBCO/BRL, 500 U, 15 min at 42 °C; 5 μg of RNA polymerase promoter. Biotin-labeled cRNA was synthesized from cDNA by using a RNA transcript labeling kit (Enzo Biochem). After complementary RNA had been fragmented to sizes ranging from 35 to 200 bases by heating (35 min at 95 °C), 10 μg of RNA fragments were hybridized (16 h at 45 °C) to a Rat Genome U34A array (Affymetrix, Santa Clara, CA). After hybridization, the arrays were washed and stained with streptavidin-phycocyanin by using a fluids system. The chips were scanned with a Hewlett Packard GeneArray Scanner. The Affymetrix RG-U34A array contained ~7,000 rat genes and expressed ~1,000 sequence tags from UniGene, GenBankTM, and the Institute for Genomic Research data bases. Each gene was presented in the array by 20 perfectly matched oligonucleotides. All experiments were run on control probes that contain a single central-base mismatch. Fluorescence intensity was read for each nucleotide to calculate the average signal intensity for each gene by subtracting the intensities of ~20 perfectly matched oligonucleotides from the intensity of the mis-
matched nucleotides. All of the calculations were performed using Affymetrix MAS 4.0 algorithm, i.e. all of the arrays were scaled to an overall target intensity of 100 prior to comparative analysis. Groups (PO$_2$ = 144 mm Hg and PO$_2$ = 100 mm Hg) were compared with each other by pair-wise comparison. Using this method, genes that were present and changed in expression by at least 1.4-fold were meant to be identified.

High Performance Liquid Chromatography—The cells were rapidly frozen, and 0.73 M trichloroacetic acid was added. The solution was then homogenized and centrifuged. The supernatant was removed and placed in tri-$
\alpha$- octylamine and FREON (50:50, v/v), vortex-mixed, and centrifuged. The supernatant was taken and used for HPLC. A Nova-Pak (Reading, UK) C$_{18}$ 4-μm spherical radii bead, dimension 300 × 3.9 mm inner diameter column was used. A mobile phase consisting of 12% methanol, 1.47 mM tetrabutylammonium phosphate, 73.5 mM KH$_2$PO$_4$, adjusted to pH 4.0. The flow rate was 1.0 ml/min. NADH and NAD were detected at 254 nm (under these conditions retention times were 9.3 min for NAD and 24.0 min for NADH) using a Varian ProStar HPLC work station (Kinesis, Epping, UK).

Cloning, Subcloning, and Use of Human SUR2 Gene Promoter—For the human SUR2 promoter analysis, a fragment extending 1200 bases downwards from the translation initiation triplet was cloned from human genomic DNA (Promega). The sense primer was 5'-GACCTTT-GCTCATCTCCCATC-3', and the antisense primer was 5'-TTTCTTCT-
were then incubated for 24 h at 37 °C protocol (see above), the cells plasmids were transiently transfected into H9c2 cells using Qiagen fragment was blunt end-ligated into TOPO vector (Invitrogen). The extension of 70 °C using the internal SUR2 promoter PCR product was fragmented by restriction digestion to such an insult (Fig. 1, and 3). Under control conditions (cells cultured at PO2 = 140 mm Hg), hypoxia/reoxygenation-induced Ca2+ loading in all cells tested, suggesting that this cellular phenotype is sensitive to such an insult (Fig. 1, A and C). In contrast, the same insult produced intracellular Ca2+ loading only in 8.3% of cells chronically exposed to PO2 = 100 mm Hg (Fig. 1, B and C).

Chronic Mild Hypoxia Increased the Number of KATP Channels in Plasma Membrane by Regulating Expression of SUR2A Subunit—It has been previously shown that the density of KATP channels may regulate cellular resistance to oxidative stress (7, 9). To assess the relative number of functional KATP channels composed of Kir6.2 and SUR2A subunits (7, 10) that are present in plasmalemma, H9c2 membrane fraction was immunoprecipitated with anti-Kir6.2 antibody and probed with the anti-SUR2A antibody and vice versa (immunoprecipitated with anti-SUR2A antibody and probed with anti-Kir6.2 antibody; using this approach only those subunits physically associated with each other were measured) (7, 9). This strategy revealed more than 2-fold higher levels of Kir6.2 and SUR2A proteins in cells cultured at mild hypoxia compared with those cultured at normoxia (Fig. 2; band density, for Kir6.2 and SUR2A 18 ± 3 and 19 ± 2 under control conditions and hypoxia, respectively, and for SUR2A 18 ± 2 and 35 ± 5 under control conditions and hypoxia, respectively; p < 0.01 in both cases; n = 5 for each).

RESULTS

Chronic Mild Hypoxia Confers Resistance to Acute Hypoxia Reoxygenation-induced Ca2+ Loading in H9c2 Cells—Intracellular Ca2+ loading is a reliable on-line parameter of a metabolic condition in mammalian cells, including heart-derived H9c2 cells (7). Under control conditions (cells cultured at PO2 = 140 mm Hg), hypoxia/reoxygenation-induced Ca2+ loading in all cells tested, suggesting that this cellular phenotype is sensitive to such an insult (Fig. 1, A and C). In contrast, the same insult produced intracellular Ca2+ loading only in 8.3% of cells chronically exposed to PO2 = 100 mm Hg (Fig. 1, B and C).

Chronic Mild Hypoxia Increased the Number of KATP Channels in Plasma Membrane by Regulating Expression of SUR2A Subunit—It has been previously shown that the density of KATP channels may regulate cellular resistance to oxidative stress (7, 9). To assess the relative number of functional KATP channels composed of Kir6.2 and SUR2A subunits (7, 10) that are present in plasmalemma, H9c2 membrane fraction was immunoprecipitated with anti-Kir6.2 antibody and probed with the anti-SUR2A antibody and vice versa (immunoprecipitated with anti-SUR2A antibody and probed with anti-Kir6.2 antibody; using this approach only those subunits physically associated with each other were measured) (7, 9). This strategy revealed more than 2-fold higher levels of Kir6.2 and SUR2A proteins in cells cultured at mild hypoxia compared with those cultured at normoxia (Fig. 2; band density, for Kir6.2 and SUR2A 18 ± 3 and 19 ± 2 under control conditions and hypoxia, respectively, and for SUR2A 18 ± 2 and 35 ± 5 under control conditions and hypoxia, respectively; p < 0.01 in both cases; n = 5 for each).
although at the same time no significant changes were observed in amounts of secondary antibody heavy chain (for Kir6.2 21.6 ± 2.5 and 20.6 ± 3.2 under control conditions and hypoxia, respectively, and for SUR2A 16.2 ± 1.1 and 16.8 ± 1 under control conditions and hypoxia, respectively; p = 0.59 and 0.37 for Kir6.2 and SUR2A, respectively; n = 5 for each). To determine whether changes in the transcriptional activity of Kir6.2 and SUR2 genes underlie changes in number of plasmaemmal K_{ATP} channels, we measured Kir6.2 and SUR2A mRNAs using RT-PCR. We designed two separate sets of primers (see the methods), and we tested whether the primers that we designed and RT-PCR could detect differences in mRNA levels. Therefore, we applied RT-PCR with two sets of Kir6.2 and SUR2A primers on slightly different amounts of DNA template using the same number of cycles. These experiments have demonstrated that the primers and conditions we used are capable of detecting less then 2-fold differences in mRNA (Fig. 3) and that >30 amplification cycles used in this study would not lose difference in initial message. Thus, RT-PCR analysis with two different sets of primers for each subunit demonstrated that levels of Kir6.2 mRNA did not change by mild hypoxia (Fig. 4, B and D). In contrast, >2-fold higher levels of SUR2A mRNA in cells exposed to PO₂ = 100 mm Hg relative to those exposed to PO₂ = 144 mm Hg were found (Fig. 4, A and C). The applied degree of hypoxia did not affect levels of GAPDH mRNA (Fig. 4 E).

SUR2 Gene Promoter Is Regulated by Chronic Mild Hypoxia—To examine whether a slight decrease of PO₂ would activate transcription of SUR2A, we cloned the putative human SUR2 gene promoter and measured the promoter-driven expression of a reporter gene (GFP). H9c2 cells were transfected with the 1200-bp fragment of the putative human SUR2 promoter subcloned into the GFP promoterless vector. Under these conditions the transcription of GFP was directly dependent upon activity of SUR2 promoter. RT-PCR analysis demonstrated a >2-fold higher level of GFP mRNA in cells cultured at PO₂ = 100 mm Hg compared with those cultured at PO₂ = 144 mm Hg (Fig. 5, A and B). No difference was observed between

Figure 3. RT-PCR detects relatively small initial Kir6.2 and SUR2A mRNA differences. Shown are the RT-PCR products obtained with two different, independent sets of Kir6.2- and SUR2A-specific primers on H9c2 cells using different dilutions of the same cDNA pool (left panels) and corresponding graphs (right panels) showing amount-bend intensity relationship.
A and KATP channels is solely mediated by increase in SUR2A channel
PO2
B with two different sets of Kir6.2-specific (subunit.
GAPDH levels in transfected cells irrespective of PO2 (Fig. 5
obtained with GAPDH-specific primers from H9c2 cells cultured at
D (Fig. 5
). The obtained RT-PCR results with promoter were further confirmed at the level of expressed GFP protein. In H9c2 cells transfected with GFP promoterless vector, no signal for GFP on a Western blot using anti-GFP antibody was visualized (Fig. 5E). On the other hand, when constructs containing a 1200- or 380-bp putative promoter fragment were introduced into H9c2 cells, GFP was detected in total protein extract (Fig. 5E). Exposure to mild hypoxia increased the level of expressed GFP regardless of whether cells were transfected with the 1200- or 380-bp putative promoter fragment (Fig. 5E).

Chronic Mild Hypoxia-induced Increase in Number of Sarcolemmal KATP Channels Is Independent on HIF-1α—It is well established that chronic hypoxia regulates genes expression primarily via HIF-1 (11). To determine whether HIF-1 mediates mild hypoxia-induced increase in the number of KATP channels, we employed patch clamp electrophysiology on untransfected and transfected H9c2 cells exposed to different oxygen tensions. Pinacidil, a prototype KATP channel opener, induces whole cell K+ current proportionally to the number of KATP channels in membrane (7, 9, 12). Pinacidil-sensitive component of current was approximately two times higher in cells cultured at PO2 = 100 mm Hg compared with those at PO2 = 144 mm Hg (Fig. 6). It has been reported that overexpression of HIF-1α/HIF-1β activates HIF-1-mediated signaling even under normoxic conditions (13). In cells cotransfected with HIF-1α/ HIF-1β and cultured in normoxia (PO2 = 144 mm Hg), the pinacidil-sensitive component of the whole cell K+ current did not differ when compared with untransfected cells exposed to the same PO2 (Fig. 7A). In addition, transfection of the HIF-1β dominant negative mutant did not interfere with increase in pinacidil-sensitive K+ current component induced by PO2 = 100 mm Hg (Fig. 7A). Cadmium, in low concentrations, triggers a redox/proteasome-dependent degradation of HIF-1α protein, reducing HIF-1 activity and suppressing the hypoxic induction of hypoxia-inducible genes (14). The addition of cadmium (5 μM) did not change the effect of PO2 = 100 mm Hg on SUR2A mRNA levels (Fig. 7B).

Chronic Mild Hypoxia-mediated Increase in Number of KATP Channels Depends on NADH/NAD Ratio and MKK1 Signaling Pathway—One of the main features of cells exposed to mild hypoxia was the ~3-fold increase in the NADH/NAD ratio as revealed by HPLC (data not shown). The addition of 20 mM NADH in cell culture inhibited hypoxia-mediated increase in sarcolemmal KATP channel proteins (Fig. 8A). The inhibitory effect of NADH was not observed in cells kept at higher grade of hypoxia (PO2 = 20 mm Hg) (Fig 8A). Adding 20 mM NAD to culture media increased the level of sarcolemmal KATP channel proteins in cells cultured under normoxic conditions (Fig. 8A). To assess the involvement of major cytoprotective pathways signaling in mild hypoxia-mediated effects, we tested the involvement of PI 3-kinase, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) (15–17). Rapamycin (1 μM), a selective inhibitor of mTOR (18), did not affect the PO2-mediated regulation of KATP channels (Fig. 8B). In contrast, LY 294002 (50 μM) and PD 184 352 (10 μM), inhibitors of PI 3-kinase and MAPK-kinase (MKK1) (18), prevented an increase in SUR2A subunit induced by chronic exposure of H9c2 cells to PO2 = 100 mm Hg (Fig. 8B).

Chronic Mild Hypoxia-mediated Increase in Cellular Resistance to Acute Hypoxia/Reoxygenation Seems to Be Mediated Solely by Increase in Sarcolemmal KATP Channel Levels—If the increased resistance toward acute hypoxia/reoxygenation is primarily due to an increased number in sarcolemmal KATP channels, an antagonist of these channels opening should inhibit mild hypoxia-induced cytoprotection. We tested the effect of HMR 1098, a compound that specifically targets KATP channel subunits expressed in sarcolemma (7, 19). In the presence of HMR 1098 (100 μM), 84% of cells chronically exposed to

Fig. 4. Chronic mild hypoxia-induced increase in sarcolemmal KATP channels is solely mediated by increase in SUR2A channel subunit. A–D, RT-PCR products and corresponding graphs obtained with two different sets of Kir6.2-specific (B and D) and SUR2A-specific (A and C) primers from H9c2 cells cultured at PO2 = 144 mm Hg and PO2 = 100 mm Hg. E, RT-PCR products and corresponding graph obtained with GAPDH-specific primers from H9c2 cells cultured at PO2 = 144 mm Hg and PO2 = 100 mm Hg. Each bar represents the mean ± S.E. (n = 2–4). *, p < 0.05.

GAPDH levels in transfected cells irrespective of PO2 (Fig. 5C).
A computer-assisted search using putative human SUR2 gene promoter sequence revealed the presence of binding sites for CCAAT/enhancer binding protein (C/EBP) and activator protein-1 (AP-1) transcription factors. Mild hypoxia increased phosphorylation of AP-1 transcription factors and in particular c-Jun, whereas phosphorylation of C/EBP was not increased (Fig. 5D). The obtained RT-PCR results with promoter were further confirmed at the level of expressed GFP protein. In H9c2 cells transfected with GFP promoterless vector, no signal for GFP on a Western blot using anti-GFP antibody was visualized (Fig. 5E). On the other hand, when constructs containing a 1200- or 380-bp putative promoter fragment were introduced into H9c2 cells, GFP was detected in total protein extract (Fig. 5E). Exposure to mild hypoxia increased the level of expressed GFP regardless of whether cells were transfected with the 1200- or 380-bp putative promoter fragment (Fig. 5E).

Chronic Mild Hypoxia-induced Increase in Number of Sarcolemmal KATP Channels Is Independent on HIF-1α—It is well established that chronic hypoxia regulates genes expression primarily via HIF-1 (11). To determine whether HIF-1 mediates mild hypoxia-induced increase in the number of KATP channels, we employed patch clamp electrophysiology on untransfected and transfected H9c2 cells exposed to different oxygen tensions. Pinacidil, a prototype KATP channel opener, induces whole cell K+ current proportionally to the number of KATP channels in membrane (7, 9, 12). Pinacidil-sensitive component of current was approximately two times higher in cells cultured at PO2 = 100 mm Hg compared with those at PO2 = 144 mm Hg (Fig. 6). It has been reported that overexpression of HIF-1α/HIF-1β activates HIF-1-mediated signaling even under normoxic conditions (13). In cells cotransfected with HIF-1α/ HIF-1β and cultured in normoxia (PO2 = 144 mm Hg), the pinacidil-sensitive component of the whole cell K+ current did not differ when compared with untransfected cells exposed to the same PO2 (Fig. 7A). In addition, transfection of the HIF-1β dominant negative mutant did not interfere with increase in pinacidil-sensitive K+ current component induced by PO2 = 100 mm Hg (Fig. 7A). Cadmium, in low concentrations, triggers a redox/proteasome-dependent degradation of HIF-1α protein, reducing HIF-1 activity and suppressing the hypoxic induction of hypoxia-inducible genes (14). The addition of cadmium (5 μM) did not change the effect of PO2 = 100 mm Hg on SUR2A mRNA levels (Fig. 7B).

Chronic Mild Hypoxia-mediated Increase in Number of KATP Channels Depends on NADH/NAD Ratio and MKK1 Signaling Pathway—One of the main features of cells exposed to mild hypoxia was the ~3-fold increase in the NADH/NAD ratio as revealed by HPLC (data not shown). The addition of 20 mM NADH in cell culture inhibited hypoxia-mediated increase in sarcolemmal KATP channel proteins (Fig. 8A). The inhibitory effect of NADH was not observed in cells kept at higher grade of hypoxia (PO2 = 20 mm Hg) (Fig 8A). Adding 20 mM NAD to culture media increased the level of sarcolemmal KATP channel proteins in cells cultured under normoxic conditions (Fig. 8A). To assess the involvement of major cytoprotective pathways signaling in mild hypoxia-mediated effects, we tested the involvement of PI 3-kinase, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) (15–17). Rapamycin (1 μM), a selective inhibitor of mTOR (18), did not affect the PO2-mediated regulation of KATP channels (Fig. 8B). In contrast, LY 294002 (50 μM) and PD 184 352 (10 μM), inhibitors of PI 3-kinase and MAPK-kinase (MKK1) (18), prevented an increase in SUR2A subunit induced by chronic exposure of H9c2 cells to PO2 = 100 mm Hg (Fig. 8B).

Chronic Mild Hypoxia-mediated Increase in Cellular Resistance to Acute Hypoxia/Reoxygenation Seems to Be Mediated Solely by Increase in Sarcolemmal KATP Channel Levels—If the increased resistance toward acute hypoxia/reoxygenation is primarily due to an increased number in sarcolemmal KATP channels, an antagonist of these channels opening should inhibit mild hypoxia-induced cytoprotection. We tested the effect of HMR 1098, a compound that specifically targets KATP channel subunits expressed in sarcolemma (7, 19). In the presence of HMR 1098 (100 μM), 84% of cells chronically exposed to
normoxia responded to acute hypoxia/reoxygenation with intracellular Ca\(^{2+}\) loading (Fig. 9, A and C). This was not significantly different from cells maintained under mild hypoxia and exposed to the same acute challenge in the presence of HMR 1098 (p < 0.41; hypoxia/reoxygenation induced Ca\(^{2+}\) loading in 65% of these cells; Fig. 9, B and C). At the same time, the presence of 100 \(\mu M\) HMR 1098 abolished the cytoprotective effect of chronic mild hypoxia (from only 8 to 65% of cells affected by hypoxia/reoxygenation in the absence and presence of HMR 1098, respectively; p = 0.009; see Figs. 1 and 9). To test whether expression of other genes, apart of SUR2A, is affected by mild hypoxia, we performed DNA microarray analysis using Affymetrix microarrays (8). Comparison of hybridization patterns from the cells exposed to \(PO_2 = 144\) mm Hg and \(PO_2 = 100\) mm Hg did not reveal any differences in gene expression between the two groups, including differences in genes known to participate in cellular stress response and/or cardio/cytoprotection (data not shown).

DISCUSSION

The present study demonstrates that a mild decrease in \(PO_2\) confers resistance in heart-derived H9c2 cells against severe oxidative stress by activating an HIF-1\(\alpha\)-independent but PI 3-kinase- and MKK1-dependent pathway, leading to the phosphorylation of c-Jun/AP-1, which up-regulates SUR2A subunit without affecting the expression of any other stress-responsive gene. A sole increase of SUR2A subunit protein is sufficient to increase the number of K\(_{ATP}\) channels in sarcolemma, generating a phenotype more resistant to metabolic injury.

Both in clinical and basic science reports, it has been suggested that chronic exposure to mildly decreased \(PO_2\) stimulates cardiac resistance to severe oxidative stress (3–5). To reproduce this phenomenon at the single cell level, we chronically exposed H9c2 cells to mild hypoxia and tested their resistance to acute hypoxia/reoxygenation. H9c2 cells are derived from embryonic mouse heart and are generally accepted to be a good model for cardiomyocytes (6, 7). Studies in both cardio-

FIG. 5. Chronic mild hypoxia regulates activity of human SUR2 promoter. A and B, RT-PCR products and corresponding graphs obtained with GFP-specific primers from H9c2 cells transfected with SUR2 promoter-GFP gene using different amounts of cDNA (A and A1) or with GFP-specific primers from untransfected H9c2 cells and cells transfected with SUR2 promoter-GFP gene cultured at \(PO_2 = 144\) mm Hg and \(PO_2 = 100\) mm Hg (B and B1). Each bar/point represents the mean ± S.E. (n = 2–3). *, p < 0.05. C, RT-PCR products obtained with GAPDH-specific primers from transfected H9c2 cells cultured at \(PO_2 = 144\) mm Hg and \(PO_2 = 100\) mm Hg. D, Western blots with general anti-phospho-AP-1 (AP-1), anti-phospho-c-jun (c-Jun), and anti-phospho-C/EBP (C/EBP) antibodies of total proteins from H9c2 cells cultured at \(PO_2 = 144\) mm Hg and \(PO_2 = 100\) mm Hg. E, Western blots with anti-GFP antibody of total proteins from H9c2 cells transfected with promoterless TOPO-Glow vector (No promoter) TOPO-Glow vector containing 1200 (Promoter (1200 bp)) and 380 (Promoter (380 bp)) bases cultured at \(PO_2 = 144\) mm Hg and \(PO_2 = 100\) mm Hg.
myocytes and H9c2 cells have established that hypoxia/reoxygenation induces intracellular Ca\(^{2+}\) loading, which represents a major indicator of the degree of cell injury (7, 9). In the present study, cells maintained at PO\(_2\) = 100 mm Hg acquired resistance to hypoxia/reoxygenation, suggesting that mild hypoxia created a phenotype resistant to severe oxidative stress independently of neuronal, vascular, and hormonal outside-of-cell influences.

It has been previously shown that the opening of K\(_{\text{ATP}}\) channels protects H9c2 cells/cardiomyocytes against severe metabolic stress (20–22). In sarcolemma, Kir6.2, a pore-forming K\(_{\text{ATP}}\) channel subunit, and SUR2A, a regulatory subunit, physically associate to form K\(_{\text{ATP}}\) channels (10, 23, 24). We hypothesize that chronic mild hypoxia may affect the levels of K\(_{\text{ATP}}\) channel subunits. To secure measuring of only those subunits forming the channel, we immunoprecipitated from a membrane fraction using anti-Kir6.2 antibody and probed the precipitate with anti-SUR2A antibody and vice versa. Both Kir6.2 and SUR2A subunits were found in significantly higher levels in membrane fraction from mild hypoxia-cultured than from normoxia-cultured cells, suggesting that a slight decrease in PO\(_2\) increases the density of K\(_{\text{ATP}}\) channels in the sarcolemma of H9c2 cells.

RT-PCR with two independent sets of primers demonstrated that PO\(_2\) = 100 mm Hg increased the levels of SUR2A mRNA but not Kir6.2 mRNA. Both in adult cardiomyocytes and H9c2

Fig. 6. Chronic mild hypoxia increases pinacidil-induced whole cell membrane current. A, membrane currents evoked by identical families of 400-ms voltage pulses in cells that were first maintained under control conditions and then exposed to 100 \(\mu\)M pinacidil for 2 min and in cells cultured at PO\(_2\) = 144 mm Hg and PO\(_2\) = 100 mm Hg. A1 and A2, current-voltage relationships for conditions in A (graphs are aligned with corresponding experiments above). The pinacidil-sensitive component of current (B) for cells in A and current density (C) at 80 mV. Each bar represents the mean ± S.E. (n = 7 for each). * p < 0.05. The arrowheads indicate zero current levels.
cells, the level of Kir6.2 is in excess over the level of SUR2A subunit (7, 9, 12). The biological consequence of this disproportion is that the number of sarcolemmal KATP channels is primarily controlled by the levels of SUR2A (7, 9, 12). RT-PCR results suggested that transcriptional control of SUR2A is associated with a mild hypoxia-induced increase in the density of KATP channels. To further test this hypothesis, we cloned the human SUR2 gene promoter to test whether mild hypoxia would affect its activity. The obtained results showed that chronic exposure to $PO_2 = 100$ mm Hg does increase the activity of SUR2 gene promoter, suggesting transcriptional regulation of SUR2 gene by mild hypoxia. Examination of the sequence of 1200 bp of the 5'-flanking putative SUR2 promoter region showed that there are binding sites for AP-1 and C/EBP, transcription factors known to be involved in intracellular signaling in the heart (25). The AP-1 family of transcription factors, consisting of Jun, Fos, ATF, and Maf as well as Nrl proteins, are important regulators of immediate-early signals.

Fig. 7. Chronic mild hypoxia-mediated increase in K$_{ATP}$ channels is not mediated by HIF-1. A, membrane currents evoked by identical families of 400-ms voltage pulses in cells that were first maintained under control conditions and then exposed to 100 μM pinacidil for 2 min, in cells transfected with HIF-1/\textalpha/ HIF-1/\textbeta and cultured at $PO_2 = 144$ mm Hg, and in cells transfected with dominant negative HIF-1/\beta cultured at $PO_2 = 100$ mm Hg. A1 and A2, current density at 80 mV of pinacidil-sensitive component of current for cells in A (graphs are aligned with corresponding experiments above). Each bar represents the mean ± S.E. ($n = 7$ for each). The arrowheads indicate zero current levels. B, RT-PCR products obtained with SUR2A-specific primers from H9c2 cells cultured at $PO_2 = 144$ mm Hg and $PO_2 = 100$ mm Hg in the absence (C lanes) and presence of 5 μM cadmium (Cd lanes). B1, graph corresponding to RT-PCR products depicted in B. Each bar represents the mean ± S.E. ($n = 3$).
directing cellular proliferation, survival, differentiation, and environmental stress response (26). The proto-oncogene c-jun encodes a major component of AP-1 transcription factors, and it has been previously shown to be activated during low oxygen conditions in different cell types including cardiomyocytes (27, 28). On the other hand, C/EBP has been also recently implicated in hypoxia-mediated regulation of gene expression (29).

Because the phosphorylation state of c-jun and C/EBP is the primary determinant of their activity, we used phospho-specific antibodies against these transcription factors. The obtained results, that mild hypoxia activated c-jun/AP-1 but not C/EBP, suggest that the increase in SUR2A mRNA is due to activation of SUR2 promoter by c-jun/AP-1, which provides further evidence that transcriptional regulation of SUR2 gene underlies increase in number of sarcolemmal KATP channels.

It is well established that the HIF-1 signaling system transduces chronic hypoxia-mediated regulation of gene expression (30). In addition, it has been recently reported that the response of c-jun/AP-1 to chronic hypoxia is HIF-1α-dependent (28), and this, as well as the nature of the challenge itself, prompted us to consider the involvement of HIF-1α-mediated signaling in the effect of mild hypoxia. We have previously shown that an increase in sarcolemmal KATP channels density results in an increase in whole cell K+ current induced by pinacidil, a KATP channel opener (7, 9, 12). In the present study, the magnitude of the response to pinacidil was increased in cells cultured at PO2 = 100 mm Hg compared with those cultured on PO2 = 144 mm Hg, further confirming that mild hypoxia increases the density of KATP channels in H9c2 cell. Our findings that overexpression of HIF-1α/HIF-1β did not change the number of KATP channels in cells in normoxia and that dominant negative HIF-1β as well as cadmium, an agent that induces degradation of HIF-1α protein (14), did not change the effect of mild hypoxia suggest that a HIF-1 signaling pathway was not involved in the effect of mild hypoxia. It should be also noted that GAPDH, an enzyme known to be up-regulated by hypoxia and HIF-1α (31), was not affected by a small decrease in PO2 in our study. This suggests that hypoxia-responsive elements were not activated by mild hypoxia, and this would be in accord with the recent report demonstrating that decrease in PO2 for more then 80 mm Hg is required to activate HIF-1 signaling in the heart (32).

Even under mild hypoxia, we found that intracellular NAD/NADH ratio increased 3-fold, confirming that this parameter may serve as very sensitive oxygen sensor (see also Ref. 33). Taking together that both NADH/NAD and KATP channels levels are changed with slight decrease in PO2, we hypothesize that changes in the NADH/NAD ratio may be a part of the signaling transduction pathway controlling the expression of the SUR2A subunit. There is evidence that NAD and NADH may cross the membranes and alter the NAD/NADH ratio (34–36). Indeed, the addition of NADH prevented a mild hypoxia-induced increase in KATP channels density, whereas NAD alone mimicked the effect of mild hypoxia, suggesting that the NAD/NADH ratio is crucial for the regulation of SUR2A expression. It should also be noted that the increase of KATP channels induced by a higher degree of hypoxia was not inhibited by NADH, implying that NAD/NADH is particularly important to activate the signaling cascade that specifically senses slight/mild changes in PO2. It has been recently proposed that signaling pathways involving protein kinases such as the MAPK family members, may be activated by NADH/NAD (37, 38). At the same time, among the protein kinases that target c-jun/AP-1 in vivo, the MAPK, stress-activated protein kinases/c-Jun N-terminal kinases, and ERKs are activated by hypoxia (39). Here, experiments with selective inhibitors of different
Mild Hypoxia and Acute Hypoxia/Reoxygenation

Fig. 9. Chronic mild hypoxia protects H9c2 cells against acute hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism. Shown are epifluorescent digital images of cells cultured at PO2 = 144 mm Hg (A) and PO2 = 100 mm Hg (B) loaded with Fura-2 prior (control) and following hypoxia/reoxygenation in the presence of HMR 1098 (control), and following hypoxia/reoxygenation by KATP channel-dependent mechanism.
5. Hutchison, S. J., and Litch, J. A. (1997) J. Am. Med. Assoc. 278, 1661–1662
6. Ektlaer, D., Lin, Z., Landberg, M. S., Crow, M. T., Brosius, F. C., and Nunez, G. (1999) *Circ. Res.* 85, e70–e77
7. Ranki, H. J., Budas, G. R., Crawford, R. M., Davies, A. M., and Jovanović, A. (2002) *J. Am. Coll. Cardiol.* 38, 367–374
8. Lee, C. K., Klopp, R. G., Weindruch, R., and Prolla, T. A. (1999) *Science* 285, 1390–1393
9. Ranki, H. J., Budas, G. R., Crawford, R. M., and Jovanović, A. (2001) *J. Am. Coll. Cardiol.* 38, 906–915
10. Inagaki, N., Gomi, T., Clement, J. P., Wang, C. Z., Aguilar-Bryan, L., Bryan, J., and Seino, S. (1998) *Neuron* 16, 1011–1017
11. Wang, G. L., and Semenza, G. L. (1993) *Genes Dev.* 7, 1026–1035
12. Ranki, H. J., Budas, G. R., Crawford, R. M., and Jovanović, A. (2002) *Mech. Ageing Dev.* 123, 695–705
13. Rolfs, A., Kvietickova, I., Gassmann, M., and Werner, R. H. (1997) *J. Biol. Chem.* 272, 20655–20662
14. Chiu, Y. S., Choi, E., Kim, G. T., Choi, H., Kim, C. H., Lee, M. J., Kim, M. S., and Park, J. W. (2000) *Eur. J. Biochem.* 267, 4198–4204
15. Calhoun, C. F., Muller, C., and Leutz, A. (2000) *Genes Dev.* 14, 1920–1922
16. Hu, J., Roy, S. K., Shapiro, P. S., Rodig, S. R., Reddy, S. P., Platania, L. C., Schreiber, R. D., and Kalvakolanu, D. V. (2001) *J. Biol. Chem.* 276, 287–297
17. Takeda, K., Ichiki, T., Tokunou, T., Ino, N., and Takeshita, A. (2001) *J. Biol. Chem.* 276, 48950–48955
18. Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000) *Biochem. J.* 351, 95–105
19. Engler, H. C., Gerlach, U., Geegelen, H., Hartung, J., Heitsch, H., Mania, D., and Scheidler, S. (2001) *J. Med. Chem.* 44, 1085–1098
20. Jovanović, A., Jovanović, S., Lorenz, E., and Terzic, A. (1998) *Circulation* 98, 1548–1553
21. Jovanović, S., and Jovanović, A. (2001) *Int. J. Mol. Med.* 7, 639–643
22. Crawford, R. M., Budas, G. R., Jovanović, S., Ranki, H. J., Wilson, T. J., Davies, A. M., and Jovanović, A. (2002) *EMBO J.* 21, 3936–3948
23. Lorenz, E., and Terzic, A. (1999) *J. Mol. Cell Cardiol.* 31, 425–434
24. Crawford, R. M., Ranki, H. J., Booting, C. H., Budas, G. R., and Jovanović, A. (2002) *FASEB J.* 16, 102–104
25. Chandrasekar, B., Mitchell, D. H., Colston, J. T., and Freeman, G. L. (1999) *Circulation* 99, 427–433
26. Karin, M., Liu, Z., and Zandi, E. (1997) *Curr. Opin. Cell Biol.* 9, 240–246
27. Webster, K. A., Diederich, D. J., and Bishopric, N. H. (1993) *J. Biol. Chem.* 268, 16852–16858
28. Laderoute, K. R., Calaogarian, J. M., Gustafson-Brown, C., Knapp, A. M., Li, G. C., Mendonea, H. L., Ryan, H. E., Wang, Z., and Johnson, R. S. (2002) *Mol. Cell. Biol.* 22, 2578–2583
29. Teng, X., Li, D., Catravas, J. D., and Johns, R. A. (2002) *Circ. Res.* 90, 125–127
30. Semenza, G. (2002) *Biochem. Pharmacol.* 64, 993–998
31. Graven, K. K., Yu, Q., Pan, D., Roncarati, J. S., and Farber, H. W. (1999) *Biochem. Biophys. Acta* 1447, 208–218
32. Straka, D. M., Burkhart, T., Deshailets, I., Werner, R. H., Neil, D. A., Bauer, C., Gassmann, M., and Candinas, D. (2001) *FASEB J.* 15, 2445–2453
33. White, R. L., and Wittenberg, B. A. (1993) *Biophys. J.* 65, 196–204
34. Van Veldhoven, P., Debeer, L. J., and Mannerts, P. G. (1983) *Biochem. J.* 210, 685–693
35. Rustin, P., Parfait, B., Chretien, D., Bourgeron, T., Djouadi, F., Bastin, J., Rotig, A., and Munnich, A. (1996) *J. Biol. Chem.* 271, 14785–14790
36. Brzuszone, S., Guida, L., Zocchi, E., Franco, L., and de Flora, A. (2001) *FASEB J.* 15, 10–12
37. Tanaka, K., Honda, M., and Takabatake, T. (2001) *J. Am. Coll. Cardiol.* 37, 676–685
38. Oeckler, R. A., Kaminski, P. M., and Welin, M. S. (2003) *Circ. Res.* 92, 23–31
39. Seta, K. A., Spicer, Z., Yuan, Y., Lu, G., and Millhorn, D. E. (2002) *Sci. STKE* 146, RE11
40. Humar, R., Kerfr, F. N., Berns, H., Resnik, T. J., and Battegay, E. J. (2002) *FASEB J.* 16, 771–780
41. Kaluz, S., Kaluzova, M., Christina, A., Olive, P. L., Pastorekova, S., Pastorek, J., Lerman, M. I., and Stanbridge, E. J. (2002) *Cancer Res.* 62, 4469–4477
42. Mehrhof, F. B., Muller, F. U., Bergmann, M. W., Li, P., Wang, Y., Schmitz, W., Dietz, R., and von Harssdorff, R. (2001) *Circulation* 104, 2088–2094
43. Clerk, A., Kemp, T. J., Harrison, J. G., Mullen, A. J., Barton, P. J., and Sugden, P. H. (2002) *Biochem. J.* 368, 101–110
44. Austad, S. N. (1996) *Exp. Gerontol.* 31, 453–463
45. Jovanović, S., and Jovanović, A. (2001) *Biochem. Biophys. Res. Commun.* 282, 1098–1102
46. Jovanović, S., Crawford, R. M., Ranki, H. J., and Jovanović, A. (2003) *Am. J. Respir. Cell Mol. Biol.* 28, 363–372
47. Suzuki, M., Sasaki, N., Miki, T., Sakamoto, M., Ohmoto-Seike, Y., Tamagawa, M., Seino, S., Marban, E., and Nakaya, H. (2002) *J. Clin. Invest.* 109, 509–516
Chronic Mild Hypoxia Protects Heart-derived H9c2 Cells against Acute Hypoxia/Reoxygenation by Regulating Expression of the SUR2A Subunit of the ATP-sensitive K+ Channel

Russell M. Crawford, Sofija Jovanovic, Grant R. Budas, Anthony M. Davies, Harish Lad, Roland H. Wenger, Kevin A. Robertson, Douglas J. Roy, Harri J. Ranki and Aleksandar Jovanovic

J. Biol. Chem. 2003, 278:31444-31455, doi: 10.1074/jbc.M303051200 originally published online June 5, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M303051200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 47 references, 17 of which can be accessed free at http://www.jbc.org/content/278/33/31444.full.html#ref-list-1