PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, *Penaeus monodon*, Promoted White Spot Syndrome Virus Replication

Tipachai Vatanavicharn¹, Adisak Prapavorarat², Phattarunda Jaree², Kunlaya Somboonwiwat², Anchalee Tassanakajon²*

１Applied Analytical Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand, ２Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Abstract

Suppression subtractive hybridization of *Penaeus monodon* hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive protein, *PmVRP15*, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410-fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that *PmVRP15* transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of *PmVRP15* transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of *PmVRP15* encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the *PmVRP15* protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of *PmVRP15* in *P. monodon* significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following *PmVRP15* knockdown was observed. These results suggest that *PmVRP15* is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.

Citation: Vatanavicharn T, Prapavorarat A, Jaree P, Somboonwiwat K, Tassanakajon A (2014) *PmVRP15, a Novel Viral Responsive Protein from the Black Tiger Shrimp, Penaeus monodon, Promoted White Spot Syndrome Virus Replication.* PLoS ONE 9(3): e91930. doi:10.1371/journal.pone.0091930

Editor: Irene Söderhäll, Uppsala University, Sweden

Received October 29, 2013; **Accepted** February 18, 2014; **Published** March 17, 2014

Copyright: © 2014 Vatanavicharn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by research grants from the Thailand Research Fund (TRF Senior Scholar number RTA5580008), TRF and Chulalongkorn University (TRF Research Career Development Grant number RSA5580024). This research was also partially supported by International Foundation for Science (IFS), Stockholm, Sweden, through a grant to KS and from project “Development of Aquaculture Technology for Food Security and Food Safety in the Next Generation” under JST-JICA joint program “Science and Technology Research Partnership for Sustainable Development, SATREPS. A Ph.D. student fellowship granted to PJ by the Royal Golden Jubilee Ph.D. Program, Thailand Research Fund is greatly appreciated. The authors also thank Chulalongkorn University for the support under the Ratchadaphisek Somphot Endowment to the Center of Excellence for Molecular Biology and Genomics of Shrimp. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anchalee.ki@chula.ac.th

Introduction

White spot syndrome, caused by the white spot syndrome virus (WSSV), is the most serious viral disease in penaeid shrimps causing 100% mortality post infection [1]. In the last two decades outbreaks of this virus in commercial shrimp aquaculture farms have been reported in Asia and America [1–7]. WSSV has bacilliform, enveloped, non-occluded virions containing a double stranded (ds)DNA genome [8–10]. The virus has a wide host range, where more than 93 species of arthropods have been reported as hosts or carriers of WSSV [11]. The mechanism of WSSV infection and propagation in the host cell remains unknown in spite of its severe impact on the shrimp farming and that understanding of the virus-host interaction is likely to be the key point in developing strategies to prevention of this disease outbreak.

The invasion of WSSV into the penaeid shrimps affects their immune defense responses. The molecular changes associated at the gene transcript and protein expression levels in the shrimp immune system have been investigated using expressed sequenced tag (EST) [12–13], DNA microarray [14–18] and proteomic [19–20] analyses. The up-regulated gene transcripts or proteins have been further characterized for their potential role in both the cellular and humoral immunity (defense responses) of shrimp in response to WSSV infection. These were found to include the antimicrobial peptides, prophenol oxidase (proPO) system, oxidative stress, proteinase and proteinase inhibitors [21]. Moreover, three of the major immune responses (phagocytosis, apoptosis and the proPO cascade) have been compared to study their role in the antiviral defense system [22].

The novel proteins that are up-regulated in shrimps following WSSV infection are typically viewed as interesting molecules to characterize their function in the shrimp immune system. For example, the novel viral responsive protein, hemocyte homeostasis-associated protein (HHAP), was found to be highly up-regulated at both the transcript and protein levels in WSSV-infected shrimp hemocytes. Silencing of this gene in *Penaeus monodon* (PmHHAP) by dsRNA-interference (RNAi) caused damage to shrimp hemocytes and a severe decrease in their numbers, suggesting the important role of PmHHAP in hemocyte homeo-
Rapid Amplification of cDNA End (5′ RACE) was used to examine RNAi-mediated gene silencing. Fluorescence-labeling along with confocal laser scanning microscopy (CLSM) was used to examine the localization of PmVRP15 in shrimp hemocytes. Overall, the likely importance of this novel protein in promoting viral propagation was suggested.

Materials and Methods

Animal cultivation

Specific pathogen free black tiger shrimps, *P. monodon*, of about 20- and 3-g body weight, were obtained from a commercial shrimp farm in Nakhon Si Thammarat Province, Thailand. The animals were reared in laboratory tanks at ambient temperature (28±4°C), and maintained in aerated water with a salinity of 20 ppt for at least 7 d before use.

Identification of a full-length cDNA of PmVRP15 using 5′ Rapid Amplification of cDNA End (5′ RACE)

The partial sequence of the PmVRP15 cDNA was initially obtained from the SSH library of WSSV-challenged *P. monodon* hemocytes and then extended by 5′ RACE. The hemolymph of ~20 g body weight shrimps was drawn from the ventral sinus using a sterile 1-mL syringe with 150 μL of 10% (w/v) sodium citrate solution. The hemolymph was immediately centrifuged at 5000 xg for 5 minutes at 4 °C to separate the hemocytes (pellet) from the plasma (supernatant). Total RNA was isolated from the hemocytes using the TRI Reagent (Molecular Research Center) according to the manufacturer’s protocol. A full-length cDNA of PmVRP15 was determined using The SMART RACE cDNA Amplification Kit (Clontech) and the GSP-RACE primer (Table 1), according to the manufacturer’s instruction. The RACE product was purified using a NucleoSpin Extract II kit (Clontech) according to manufacturer’s protocol, and cloned into the RBC T&A Cloning Vector (RBC Biosience). Then, the recombinant plasmid was transformed into *E. coli* DH5α competent cells (RBC Bioscience). The positive clones were commercially sequenced by Macrogen INC., South Korea. The nucleotide sequences of SSH clone and RACE fragment were then assembled and searched against the NCBI database.

Analysis of PmVRP15 transcript expression in shrimp tissues

PmVRP15 transcript expression levels in different tissues were qualitatively assayed by reverse transcriptase-PCR (RT-PCR). The different tissues of ~20 g body weight shrimps such as antennal gland, epipodite, eye stalk, gill, heart, hemocytes, hepatopancreas, intestine and lymphoid, were collected from uninfected shrimps, and then total RNA was extracted from each tissue using the TRI Reagent (Molecular Research Center). After DNase I (Fermentas) treatment, the total RNA (1 μg) was first converted to single-stranded (ss)DNA with the ImPromp-II reverse transcription system (Promega) according to the manufacturer’s instruction. Then, in the second stage, PmVRP15 transcript levels in each tissue were identified by PCR using 1 μL of the cDNA as a template with the PmVRP15F/R primers (Table 1). The EF-1α gene fragment was amplified using the EF-1α/F/R primers (Table 1) as an internal control. The PCR thermal cycling conditions consisted of 94°C for 3 min, followed by 35 (for PmVRP15) or 27 (for EF-1α) cycles of 95°C for 30 s, 58°C for 30 s and 72°C for 30 s, and then a final extension at 72°C for 5 min. The PCR product was resolved by 1.5% (w/v) agarose-TBE gel electrophoresis and visualized by un-transillumination following staining with ethidium bromide.

PmVRP15 mRNA expression in unchallenged- and WSSV-challenged shrimp hemocytes

WSSV was prepared from the gills of WSSV-challenged *P. monodon* as previously described [24], and then diluted in lobster hemolymph medium (LHM). Then 100 μL of the diluted WSSV suspension (~80 viral copies/μL) was injected into each shrimp (~20 g body weight), a viral dose that had been previously determined as that which would induce a cumulative mortality of ~50% within 3 d post-infection. Control shrimps were likewise injected but with 100 μL of virus-free LHM. Hemocytes of shrimps (three individuals each) were collected at 24, 48 and 72 h post-infection (hpi) as above. PmVRP15 transcript levels were then assayed by quantitative real time RT-PCR (qRT-PCR) as follows. Total RNA was then extracted from the hemocytes and used to synthesize ssDNA as above, whilst the qRT-PCR was performed with an equal amount of cDNAs as in an iCycler IQ Real-Time Detection system using an IQ SYBR Green Supermix (Bio-Rad) and the PmVRP15-RTF/R and β-actin-F/R primers (Table 1). Thermal cycling was performed as 95°C for 9 min, 40 cycles of 95°C for 30 s, 60°C for 30 s and 72°C for 45 s. The results are presented as the average relative expression ratio of PmVRP15 transcript levels in the hemocytes of the sample (WSSV-challenged) shrimp versus the control (unchallenged) shrimp, after normalization to the transcript levels of the reference gene, β-actin. These relative expression ratios of PmVRP15 gene were calculated as previously described [25].

Production of recombinant (r)PmVRP15 (as a r(His)6-PmVRP15 chimera) in E. coli

The cDNA encoding for PmVRP15 was PCR amplified from the *P. monodon* hemocyte cDNA as above using the gene specific primers PmVRP15-NoI/XhoI primers (Table 1) that contain 5′ flanking sequences with a NoI and XhoI restriction site, respectively. The PCR product was double digested with NoI and XhoI (New England Biolabs) and cloned in frame into the likewise double digested pET22-b. The ligation mixture was transformed into *E. coli* stain XL-1-blue. A single ampicillin resistant clone was selected, cultured and the recombinant plasmid was extracted and retransformed into the expression host, *E. coli* stain BL21(DE3). The recombinant plasmid was sequenced to confirm the correctness of the sequences. Then a selected recombinant clone in the expression host was cultured and induced with 1 mM IPTG for 4 h to over-produce the r(His)6-PmVRP15. The cell pellet was collected by centrifugation at 8000 xg for 10 min, resuspended in phosphate buffered saline (PBS pH 7.4) and sonicated with a Branson 32 (Bandalen) for 4 min. Inclusion bodies were collected by centrifugation at 10,000 rpm for 20 min to remove the supernatant. The inclusion body pellet was then dissolved in 8 M urea in PBS. The r(His)6-PmVRP15 protein was purified using a Nickel-NTA column (GE healthcare), as per the manufacturer’s protocol, and the resulting chelate dialyzed against distilled water. The protein was analyzed using SDS-PAGE, with the protein concentration determined using the Bradford method [26].
Table 1. Nucleotide sequences of the PCR primers used in this study.

Primer name	Sequence (5’→3’)
GSP-RACE	CGCCGTCGACGTCTTCTTCTTGACAC
PmVRP15F	CGATACACACTCTCTGTTTCT
PmVRP15R	GTACTAACAGGAAACCATC
PmVRP15-RTF	GTCTTCAAGGAGCTCTTACA
PmVRP15-RTR	ACGAGAATCTAGTTTCTACGA
EF-1-F	GGTGCTGACAAAGTGAAGG
EF-1-R	GCCTCCTGATCTGCTTGT
β-actin-F	GAACCTCTGCTGACAGG
β-actin-R	GAAGCTGCTGACAGG
rPmVRP15-NcoI-F	ATCCCCATGGGATATGGAAGGAGCT
rPmVRP15-XhoI-R	ATCGCTGAGATCTCTACTGACATGTTG
GFP-F	ATGGTGAGCAAGGGGAGGA
GFP-R	TTAATCTCTGCTGACAGT
GFP-F7	GATATCGACACTCTAGATTGGAAG
GFP-R7	GATATCGACACTCTAGATTG
PmVRP15- T7-F	GCAGTCTGAGATCTCTACTGACATG
PmVRP15- T7-R	GCAGTCTGAGATCTCTACTGAG
VP28-qrt-F	GGAAAGATTCAGAAGT
VP28-qrt-R	GATATCGACACTCTAGATTG
ε1-qrt-F	AGCAATGAGAGTGAAG
ε1-qrt-R	AGCAATGAGAGTGAAG
477-qrt-F	GCCAACTGAGATGAGT
477-qrt-R	GCCAACTGAGATGAGT

Primer name	Sequence (5’→3’)
PmVRP15-F T7-F	GGATCCTAATACGACTCACTATAGGGT
PmVRP15-R T7-R	GGATCCTAATACGACTCACTATAGGGT
PmVRP15-F T7-F	GGATCCTAATACGACTCACTATAGGGT
PmVRP15-R T7-R	GGATCCTAATACGACTCACTATAGGGT
VP28-qrt-F	GGAAAGATTCAGAAGT
VP28-qrt-R	GATATCGACACTCTAGATTG
ε1-qrt-F	AGCAATGAGAGTGAAG
ε1-qrt-R	AGCAATGAGAGTGAAG
477-qrt-F	GCCAACTGAGATGAGT
477-qrt-R	GCCAACTGAGATGAGT

Primer name	Sequence (5’→3’)
PmVRP15-F T7-F	GGATCCTAATACGACTCACTATAGGGT
PmVRP15-R T7-R	GGATCCTAATACGACTCACTATAGGGT
VP28-qrt-F	GGAAAGATTCAGAAGT
VP28-qrt-R	GATATCGACACTCTAGATTG
ε1-qrt-F	AGCAATGAGAGTGAAG
ε1-qrt-R	AGCAATGAGAGTGAAG
477-qrt-F	GCCAACTGAGATGAGT
477-qrt-R	GCCAACTGAGATGAGT

Rabbit serum and anti-PmVRP15 immune serum

Rabbit polyclonal antiserum against the purified r(His)6-PmVRP15 protein (2 mg) was prepared commercially by the Biomedical Technology Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand.

Western-blot analysis of PmVRP15 protein in control and WSSV-infected P. monodon hemocytes

Hemocytes were collected from 48 hpi saline- or WSSV-injected shrimps as above. The hemocytes were homogenated in PBS and centrifuged to collect the supernatant. The protein concentration of the hemocyte lysate (HLS) was measured by the Bradford method [26]. Seventy μg of HLS protein (per lane) was subjected to SDS-PAGE (12% (w/v) acrylamide resolving gel) resolution, transferred to nitrocellulose membrane and then the PmVRP15 and β-actin protein was detected by Western-blot analysis using purified rabbit polyclonal anti-rPmVRP15 and mouse anti-actin (Millipore) antibodies. The positive band was detected by secondary antibodies conjugated with horseradish peroxidase (brown color) for mouse antibody or alkaline phosphatase (purple color) for rabbit antibody.

Immunolocalization of PmVRP15 protein in P. monodon hemocytes

The hemolymph was collected from control and WSSV-injected shrimps at 6, 24 and 48 hpi, as well as from moribund shrimps, and immediately fixed by incubation in 4% (w/v) paraformaldehyde at room temperature for 10 min. The fixed hemocytes were washed in PBS (centrifugation stage at 800 x g at 4 °C for 10 min) and resuspended in PBS. About 10^6 hemocytes were attached onto each SuperFrost microscope slide by centrifugation at 1000 x g for 10 min. Slides were blocked in 10% (v/v) fetal bovine serum in PBS at room temperature for 1 h and then probed with purified rabbit polyclonal antibody specific to PmVRP15 and purified mouse monoclonal antibody specific to VP28 (WSSV capsid protein) for 1 h at room temperature and washed three times in 0.05% (v/v) Tween-20 in PBS to remove non-specific binding. The Alexa 488-conjugated goat anti-rabbit IgG and Alexa 568-conjugated goat anti-mouse IgG secondary antibodies (Invitrogen) were applied to the slides and incubated at room temperature for 1 h. The slides were then washed three times as above, incubated with TO-PRO-3 iodide (Molecular Probes) to stain the nuclear DNA and then washed once with PBS. Mounting medium, ProLong Gold antifade (Molecular Probes), was applied and the slides were examined by CLSM (Olympus). Bright field and fluorescence images were collected for the analyses.

Production of PmVRP15 and GFP dsRNA

The dsRNA specific to the PmVRP15 gene transcript was prepared using the PmVRP15-recombinant plasmid as a template for producing the sense and anti-sense DNA templates by in vitro transcription. DNA templates containing the T7 promoter sequence at the 5’-end were generated by PCR using the T7 promoter sequence at the 5’-end.
oligonucleotide primers PmVRP15-T7-F and PmVRP15-R (Table 1) for the sense strand template, and PmVRP15-F and PmVRP15-T7-R (Table 1) for the antisense strand template. In addition, dsRNA of the green fluorescent protein (GFP), the negative control, was prepared from the pEGFP-1 vector (Clontech) as the PCR template using the GFP-FT7 and GFP-R primers (Table 1) for the sense strand template, and the GFP-F and GFP-R-T7 primers (Table 1) for the antisense strand template. The PCR was performed at 94°C for 3 min, followed by 30 cycles of 94°C for 30 s, 58°C for 30 s and 72°C for 30 s, and then a final extension at 72°C for 5 min. Each template was in vitro transcribed using the T7 Ribomax Express RNAi System (Promega), according to the manufacturer’s instruction, to produce the two complementary sRNAs. Then, equal amounts of each of the complementary sRNAs were mixed together and incubated at 70°C for 10 min, and then slowly cooled down at room temperature to allow annealing to form dsRNA. The respective PmVRP15 or GFP dsRNA solution was treated with 2 units (U) of RQ1 RNase-free DNase (Promega) at 37°C for 30 min, and then purified by standard phenol-chloroform extraction.

PmVRP15 gene knockdown in hemocyte of WSSV-infected shrimp

P. monodon shrimps of approximately 3 g body weight were divided into two groups of three individuals each. The first (control) group was injected with 10 μg/g shrimp of GFP-dsRNA, whilst the second group (PmVRP15 knockdown) was injected with 10 μg/g shrimp PmVRP15-dsRNA. After 24 h, 10 μg/g shrimp PmVRP15-dsRNA or dsGFP was mixed with 30 μl of the 10,000-fold diluted WSSV solution (a dose that causes 100% mortality of shrimp in 3 dpi) and injected into the respective groups of shrimps. Hemocytes of individual shrimps were collected at 24 hpi, and total RNA was extracted as above and treated with 1 U of RQ1 RNase-free DNase (Promega) to remove any residual DNA contamination. An equal amount of DNA-free total RNA from three shrimps was pooled and from this 1 μg of total RNA was used for the first stage RT-PCR cDNA synthesis using the RevertAid First Strand cDNA Synthesis kit (Thermo Scientific).

To confirm the PmVRP15 gene transcript knockdown, RT-PCR was performed. The PmVRP15-F/R primers (Table 1) were used (100 nM) along with the EF-1α gene as an internal control using the EF-1-F/R primer pair (Table 1). The PCR conditions were 94°C for 1 min, followed by 27 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 30 s, and then a final extension at 72°C for 5 min. The PCR products were analyzed by 1.5% agarose gel electrophoresis. The hemocyte of WSSV-infected PmVRP15 gene knockdown shrimp and of the control was collected from 3 individuals. After protein extraction, protein lysate from each individual were pooled. PmVRP15 protein expression after PmVRP15 gene knockdown was checked using SDS-PAGE (15% w/v acrylamide resolving gel) and western blot analysis.

WSSV gene expression analysis of PmVRP15 knockdown P. monodon hemocytes infected with WSSV

WSSV-infected shrimp hemocyte after PmVRP15 gene knock- down or GFP gene knockdown was prepared as above. The expression level of representative WSSV gene transcripts of the immediate-early, early and late viral infection phases was then evaluated in the hemocytes by qRT-PCR.

The qRT-PCR was then performed on the BioRad CFX96 Real-Time PCR system to evaluate the degree of the respective gene transcripts. Reactions were prepared in a total volume of 15 μL containing 7.5 μl SsoFast EvaGreen Supermix (Bio-Rad) and 1 μl cDNA template and 100 nM (for WSSV genes) or 400 nM (for EF-1α gene) forward and reverse primers.

For the expression level of the three WSSV transcripts (ie-1, 477-qrt and VP28-qrt), the qRT-PCR was performed using the specific primer pairs ie-1-qrt-F/R, 477-qrt-F/R and VP28-qrt-F/R, respectively (Table 1), along with the EF-1α gene as a reference gene using the EF-1-F/R primers. The PCR conditions were 95°C for 5 min, followed by 40 cycles of 95°C for 30 s, 60°C for all WSSV genes) or 58°C (for EF-1α) for 30 s and 72°C for 30 s. Three replicate qRT-PCR reactions were performed per sample. The 2-ΔΔCt method was used to calculate the relative expression ratio [25]. All samples were normalized relative to the reference EF-1α transcript levels in the same cDNA sample.

Effect of PmVRP15 gene silencing on cumulative mortality of WSSV-infected shrimp

To study the involvement of PmVRP15 gene in WSSV infection in shrimp, the percentage of cumulative mortality of WSSV-infected PmVRP15 knockdown shrimp was compared with WSSV-infected GFP knockdown shrimp, control group. Ten P. monodon shrimps of approximately 3 g body weight per group were injected with PmVRP15 dsRNA or GFP dsRNA as above. The dosage of WSSV used in this experiment causes 100% mortality of shrimps in 4 dpi. The shrimp mortality was observed every 3 h after WSSV infection. This experiment was done in triplicate. Moreover, after WSSV infection, shrimp hemocyte was collected at 24, 36, 48 and 60 hpi. Total RNA was extracted. After DNase treatment and cDNA synthesis, PmVRP15 gene expression was investigated by RT-PCR in order to determine PmVRP15 gene recovery.

Data analysis

Data were analyzed using the SPSS statistics 17.0 software (Chicago, USA) and are presented as the mean ± standard deviation (SD). Statistical significance of differences between means was calculated by the paired-samples t-test, where significance was accepted at the P<0.05 level.

Results

The full-length cDNA of PmVRP15 and sequence analysis

A partial sequence of the PmVRP15 cDNA was initially obtained from the SSSH library of WSSV-challenged P. monodon hemocytes. The full-length cDNA of PmVRP15 was then obtained using 5’ RACE (GenBank accession code KF683338), and was found to contain 722 base pairs with a deduced complete open reading frame encoding for a predicted 137 amino acids whose predicted molecular mass of 15.036 kDa (Fig. 1). The size of the deduced PmVRP15 cDNA was confirmed by Northern blot analysis where the detected mRNA had a corresponding size of about 722 base pairs (data not shown). The BLAST homology search of the GenBank database using blastP program indicated that the putative predicted protein sequence of PmVRP15 has the highest similarity to a hypothetical protein AGAP000432-PA (XP_310667.1) from mosquito Aedes aegypti, and PREDICTED protein C19orf12 homolog (XP_004536446.1) from Ceratitis capitata, was also found with the E
value range from 10^{-8} to 10^{-5}. Protein-structural analysis revealed a likely transmembrane helix of 23 amino acids (TMHMM Server v. 2.0, available on-line) [27] but with no predicted signaling domain (Simple Modular Architecture Research Tool (SMART), available on-line) [28].

PmVRP15 gene expression in *P. monodon* tissues

The tissue distribution of *PmVRP15* transcripts in normal shrimps was examined by RT-PCR, where *PmVRP15* transcripts were found in all tested tissues but was highly expressed in hemocytes followed by lymphoid tissue and then with moderate to low levels in the heart, gill, hepatopancreas and intestine, and low levels in the antennal gland, epipodite and eye stalk (Fig. 2).

Up-regulation of *PmVRP15* in response to WSSV infection in *P. monodon* hemocytes

Our previous results from SSH and microarray analyses (unpublished data) of WSSV-challenged *P. monodon* hemocytes revealed that *PmVRP15* is one of the most highly up-regulated genes in the acute phase of WSSV-infected hemocytes. Herein, *PmVRP15* transcript levels in *P. monodon* hemocytes were evaluated by qRT-PCR. The results clearly confirmed that *PmVRP15* transcripts were highly up-regulated in the shrimp hemocytes after WSSV challenge, increasing by about 3.6-, 9410- and 1351-fold at 24, 48 and 72 hpi, respectively, compared to that in unchallenged shrimp hemocytes (Fig. 3). Furthermore, the *PmVRP15* protein level was up-regulated in WSSV-infected shrimp hemocytes, as determined by Western blot analysis using the polyclonal rabbit anti-VPVRP15 antibody (Fig. 4), where the detected 15 kDa protein band corresponded to the predicted size of *PmVRP15* protein. These results are consistent with a role for *PmVRP15* in response to WSSV infection.

Localization of *PmVRP15* and VP28 in uninfected and WSSV-infected *P. monodon* hemocytes

The location of *PmVRP15* and VP28 proteins in hemocytes and the potential cell type(s) that produce the protein was examined by CLSM using the antibodies specific to *PmVRP15* and the WSSV late protein VP28 coupled with different fluorescence-conjugated secondary antibodies. Since *PmVRP15* and VP28 were detected as...
green and red fluorescence, respectively, the accepted fraction of the emission spectra of TO-PRO-3, used to stain the nuclear DNA, was adjusted to show as blue. Three types of hemocytes (hyaline, semigranular and granular cells) were visible in the bright field image (Fig. 5A). In the uninfected (control) shrimp hemocytes, all three types of hemocytes were weakly positive for \(\text{Pm} \) VRP15, and the protein was localized in the cytoplasm near to the nuclear membrane (Fig. 5B). In the WSSV-infected shrimp, the \(\text{Pm} \) VRP15 protein expression level was hardly detected at 6 hpi but significantly up-regulated at 24 hpi (not shown) and 48 hpi (Fig. 5) and in the moribund shrimp (not shown). Interestingly, \(\text{Pm} \) VRP15 and VP28 protein expression were found in the same hemocytes at the late infection phase (48 hpi) and the moribund stage of viral infection (Fig. 5 and not shown, respectively). Thus, the expression of \(\text{Pm} \) VRP15 in \(\text{P. monodon} \) hemocytes appears to be linked to a response to the acute phase of WSSV infection.

Effect of \(\text{Pm} \) VRP15 gene knockdown on viral propagation in \(\text{P. monodon} \) hemocytes

Since \(\text{Pm} \) VRP15 transcripts and protein were found to be highly up-regulated in the hemocytes of WSSV-infected shrimp, then the potential importance of \(\text{Pm} \) VRP15 in the shrimp’s response to WSSV infection was evaluated using RNAi-mediated gene knockdown by injection of \(\text{Pm} \) VRP15 dsRNA. Injection of dsRNA \(\text{Pm} \) VRP15 specifically suppressed the \(\text{Pm} \) VRP15 transcription levels in shrimp hemocytes at 24 hpi whereas the injection with GFP dsRNA had no effect on \(\text{Pm} \) VRP15 mRNA expression levels (Fig. 6A). The suppression of \(\text{Pm} \) VRP15 expression at the translational level was also confirmed. Twenty-four hour after knocking-down \(\text{Pm} \) VRP15 gene in WSSV-infected shrimp, \(\text{Pm} \) VRP15 protein expression level in the shrimp hemocyte lysate was compared with that of the control WSSV-infected shrimp with GFP dsRNA injection. The result showed that \(\text{Pm} \) VRP15 protein expression level in WSSV-challenge shrimp was significantly decreased after \(\text{Pm} \) VRP15 gene silencing (Fig. 6B).

The transcript expression level of representative WSSV genes for the three stages of WSSV infection; namely \(\text{w} \)-1 (very early stage), \(\text{w} \)-477 (early stage) and \(\text{vp} \)-28 (late stage), was determined after \(\text{Pm} \) VRP15 knockdown in WSSV-infected shrimp by qRT-PCR. The transcript expression level of all three viral genes tested was considerably decreased in the \(\text{Pm} \) VRP15 knockdown shrimp (by 83.5%, 85.5% and 94.0% for \(\text{w} \)-1, \(\text{w} \)-477 and \(\text{vp} \)-28, respectively) compared to the control shrimp (Fig. 7). The decrease in WSSV transcript levels suggested that \(\text{Pm} \) VRP15 might participate in the WSSV propagation process.

Cumulative mortality of \(\text{P. monodon} \) shrimp after \(\text{Pm} \) VRP15 gene knockdown

As stated above, after \(\text{Pm} \) VRP15 gene knockdown in WSSV-infected shrimp, the expression level of representative WSSV genes was significantly decreased suggesting the involvement of \(\text{Pm} \) VRP15 in the WSSV propagation. \(\text{Pm} \) VRP15 gene was silenced in WSSV-infected \(\text{P. monodon} \) and the mortality of shrimp was observed in parallel to those silenced with GFP dsRNA. The cumulative mortality result showed that, after 66–102 hours post-WSSV infection, mortality rate of \(\text{Pm} \) VRP15 knockdown group was 50% lower than that of control group (The shrimp mortality reached 100% at 90 hpi) (Fig. 8A). However, after 102 hpi, the cumulative mortality of \(\text{Pm} \) VRP15 knockdown shrimp was gradually increased and reached 100% at 144 hpi (6 dpi). Due to the fact that \(\text{Pm} \) VRP15 gene is highly up-regulated after WSSV infection, here, the \(\text{Pm} \) VRP15 gene recovery after \(\text{Pm} \) VRP15 dsRNA and WSSV injection was determined. Figure 8B showed that \(\text{Pm} \) VRP15 gene was recovered for about 50% at 36 hpi and to the same level as in the control at 60 hpi. According to the results, we confirmed that the absence of \(\text{Pm} \) VRP15 gene in shrimp affected the mortality of WSSV-infected shrimp.

Discussion

To study the mechanism of WSSV infection and propagation, an understanding of the immune response of shrimps is an important key. \(\text{Pm} \) VRP15 transcripts were found in all tissues examined of uninfected \(\text{P. monodon} \) shrimps, but were mainly expressed in the hemocytes. Hemocytes are the major immune cells of shrimps and play an essential role in both the cellular and humoral immune responses. Three different types of hemocytes (granular, semigranular and hyaline cells) have been classified in shrimp hemolymph [29–30]. In crustaceans, specific (but partially overlapping) functions have been attributed to the different hemocyte types, such as phagocytosis in hyaline cells, encapsulation, phagocytosis, ProPO system and cytotoxicity in semigranular cells, and the ProPO system and cytotoxicity in granular cells [31]. In contrast, the \(\text{Pm} \) VRP15 protein was located in all three types of hemocytes, suggesting that \(\text{Pm} \) VRP15 may have a more constitutive or broad immune based function. Upon WSSV infection, the expression of \(\text{Pm} \) VRP15 transcripts and protein were both up-regulated in \(\text{P. monodon} \) hemocytes, exclusively within WSSV-infected ones.

From the SSH analysis (our unpublished data), \(\text{Pm} \) VRP15 transcripts appeared to be highly expressed in the acute phase of WSSV-infected \(\text{P. monodon} \) hemocyte; however, the function of its gene product have not been characterized. Interestingly, several hemocyte proteins were found to be significantly altered in their expression levels in the different stages of virus infection, including both well-characterized proteins and those of currently unknown function [21]. Several cognate immunity proteins involved in viral defense responses have been found to be up-regulated in the early phase of viral infection, such as the antimicrobial peptides ALF\(\text{Pm} \)β3, Peneditin5 and hemocyanin [21,32–34]. During the acute phase of WSSV infection, the host immune responses and mechanism(s) used are not yet fully understood, but several host proteins have previously been identified that show altered expression levels, including the scavenger receptor [35] and...
transglutaminase [36] amongst others. Recently, the unknown function PmHHAP, which is highly up-regulated in viral infected shrimps, was identified and characterized as a novel responsive protein that plays an important role in hemocyte homeostasis [23].

Nuclear membrane proteins have been reported in many vertebrates to act as a path of infection for viruses, such as influenza virus [37] and herpes virus [38–39]. However, such protein functions remain unknown in invertebrates. Herein, we found that the expression of PmVRP15 was mainly located at the nuclear membrane of P. monodon hemocytes. Moreover, hemocytes that were infected with WSSV also expressed PmVRP15 at high levels. It would be interesting to study how a severe WSSV infection can stimulate PmVRP15 expression. In addition, the data presented here may represent the first report linking a correlative relationship between a potential P. monodon nuclear membrane protein (PmVRP15) and WSSV infection. However, an actual direct causative role, and the mechanism of such, remains to yet be established.

In the acute viral infection phase, the host cells not only express defensive molecules that play a role in protecting the host cell against the virus, but the virus uses the host machinery to express viral proteins for propagation, including the immediate early, early and late genes [40]. At this stage the host cell loses the ability to regulate gene expression and is seconded to perform virus multiplication. Although cell death by apoptosis is one last line of host defense, whereby the infected cell is self-signaled for destruction to prevent viral replication and so to protect against viral spread to other cells, some viral proteins can inhibit the apoptosis system, including in WSSV the anti-apoptosis protein-1, AAP-1 [41] and WSSV222 [42]. The high expression level of PmVRP15 found here in WSSV-infected P. monodon hemocytes is in agreement with (but not conclusive for) that PmVRP15 is up-regulated to mediate viral propagation in the acute phase of infection, since PmVRP15 gene knockdown resulted in a significant decrease in viral gene expression, as observed for ie-1 (an immediate early gene), wsv477 (an early gene) and vp28 (a late gene) transcripts and in the delay of shrimp death upon WSSV infection. Additionally, PmVRP15 protein was found to be localized near the nuclear membrane in the cytoplasm of WSSV-infected hemocytes which coupled with the predicted presence of transmembrane domain, suggests it may function at least in part as a nuclear membrane (or proximally related membrane) protein. If so, this is in accord with the notion that the host machinery was used to transport the viral components in the

![Figure 5. CFLM-derived images of the uninfected (control) and WSSV-infected hemocytes at 48 hpi with WSSV.](https://doi.org/10.1371/journal.pone.0091930.g005)

Rabbit anti-VP28 primary antibodies were detected with corresponding Alexa488 and Alexa568 secondary antibodies revealing PmVRP15 (green color) and VP28 (red color), respectively. Scale bars represent (A) 5 μm and (B) 2 μm. Nucleus was stained with TO-PRO-3 iodide and color was adjusted to blue. The bright field image showed hyaline cell (HC), semigranular cell (SGC) and granular cell (GC).
host cell, as found in the transmembrane protein PmRab7 [43].

The interaction of viral and host proteins is a potentially important key to answer the function of PmVRP15 in WSSV-infected cells, and could initially be addressed by, for example, using co-immunoprecipitation or the yeast two-hybrid screening assays. Nevertheless, the mechanism of control of expression (transcriptional control) of the PmVRP15 gene would also be interesting to elucidate, including characterization of the promoter. These aspects are now under investigation in an attempt to reveal the mechanism and regulation of PmVRP15 in WSSV propagation in P. monodon hemocytes.

Conclusion

The cDNA of a novel viral responsive gene from the black tiger shrimp (P. monodon), PmVRP15, was cloned and sequenced to acquire the full-length cDNA coding sequence. Expression analysis showed PmVRP15 transcripts were mainly found in hemocytes and along with the PmVRP15 protein were highly up-regulated in WSSV-infected hemocytes. PmVRP15 protein was localized at or near the nuclear membrane of uninfected and WSSV-infected shrimp hemocytes. After RNAi-mediated PmVRP15 suppression, WSSV propagation and shrimp mortality were markedly decreased. The function of PmVRP15 is unknown but it possibly plays a role in WSSV propagation in shrimp hemocyte.

Figure 6. The PmVRP15 gene silencing in P. monodon hemocytes. (A) Transcriptional level of PmVRP15 transcripts after 24 h post-WSSV infection and -PmVRP15 gene knockdown in the P. monodon hemocytes was determined by RT-PCR using gene specific primers. The control was shrimp that was injected with GFP dsRNA. Three individuals were used for each group and each experiment was performed in triplicate. (B) Protein expression level of PmVRP15 was detected in both groups to confirm the success of PmVRP15 knockdown. Hemocytes were collected at 24 h after PmVRP15 gene knockdown in WSSV-infected shrimp, 70 μg of total HLS protein was analyzed by SDS-PAGE and western blot analysis using antibody specific to PmVRP15 and β-actin protein, an internal control. doi:10.1371/journal.pone.0091930.g006

Figure 7. The effect of PmVRP15 gene silencing on WSSV propagation in P. monodon hemocytes. Transcript expression level of the WSSV genes: ie-1, wsv477 and vp28, in PmVRP15 gene-silenced P. monodon hemocytes were determined by qRT-PCR. Data are shown as the mean ± 1 SD of three replicates and as the fold change of ie-1, wsv477 and vp28 after normalization to the EF-1α transcript levels (grey bar). The control group (GFP-dsRNA injected) are shown in the black bars. doi:10.1371/journal.pone.0091930.g007
Author Contributions

Conceived and designed the experiments: TV AP PJ KS AT. Performed the experiments: TV AP PJ. Analyzed the data: TV AP PJ KS AT. Wrote the paper: TV AP PJ KS AT.

References

1. Lightner DV (1996) Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Rev Sci Tech 15: 579–603.
2. Chou HY, Huang CY, Wang CH, Chiang HC, Lo CF (1995) Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Organ 23: 163–173.
3. Zhan WB, Wang YH, Fryes JL, Yu KK, Fukuda H, et al. (1998) White Spot Syndrome Virus Infection of Cultured Shrimp in China. J Aquat Anim Health 10: 405–410.
4. Inouye K, Miwa S, Oseko N, Nakano H, Kimura T, et al. (1994) Mass Mortalities of Cultured Kuruma Shrimp Penaeus japonicus in Japan in 1993: Electron Microscopic Evidence of the Causative Virus. Fish Pathol 29: 149–156.
5. Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, et al. (1996) White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Organ 27: 215–225.
6. Karunasagar I, Otta SK, Karunasagar I (1997) Histopathological and bacteriological study of white spot syndrome of Penaeus monodon along the west coast of India. Aquaculture 153: 9–13.
7. Flegel TW (1997) Major viral diseases of the black tiger prawn Penaeus monodon in Thailand. World J Microbiol Biot 13: 433–442.
8. Wang CH, Lo CF, Leu JH, Chou CM, Yeh PY, et al. (1995) Purification and genomic analysis of baculovirus associated with white spot syndrome (WSSV) of Penaeus monodon. Dis Aquat Organ 23: 239–242.
9. Wongterasuathay C, Vickers JE, Sirintratana S, Ash GL, Akarajamorn A, et al. (1995) A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon. Dis Aquat Organ 21: 69–77.
10. Durand S, Lightner DV, Redman RM, Bonanni JR (1997) Ultrastructure and morphogenesis of White Spot Syndrome Baculovirus (WSSV). Dis Aquat Organ 29: 205–211.
11. Sanchez-Paz A (2010) White spot syndrome virus: an overview on an emergent concern. Vet Res 41:43.
12. Tassanakajon A, Klinbunga S, Paunglarp N, Kinphanitchayakit V, Udornkit A, et al. (2006) Penaeus monodon gene discovery project: the generation of an EST collection and establishment of a database. Gene 384: 104–112.
13. Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, et al. (2007) Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8: 120.
14. Dhar AK, Dettori A, Roux MM, Klimpel KR, Read B (2003) Identification of differentially expressed genes in shrimp Penaeus stylirostris infected with White spot syndrome virus by cDNA microarrays. Arch Virol 148: 2381–2396.
15. Wongpanya R, Aoki T, Hirono I, Yasuike M, Tassanakajon A (2007) Analysis of Gene Expression in Haemocytes of Shrimp Penaeus monodon Infected with White spot syndrome virus by cDNA Microarray. Sci Asia 33: 163–174.
16. Aoki T, Wang HC, Unajak S, Santas MD, Kondo H, et al. (2011) Microarray analyses of shrimp immune responses. Mar Biotechnol (NY) 13: 629–638.
17. Wang B, Li F, Dong B, Zhang X, Zhang C, et al. (2006) Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol (NY) 8: 491–500.

Figure 8. The involvement of knockdown PmVRP15 gene in WSSV infection in shrimp. (A) Cumulative mortality of WSSV-infected PmVRP15 gene knockdown shrimp (black line) was compared with that of the control, WSSV-infected GFP gene knockdown shrimp (Grey line). Data are shown as the mean ±1 S.D. and are derived from three independent repeats. (B) After knockdown PmVRP15 gene in WSSV-infected shrimp, PmVRP15 gene recovery was observed after WSSV infection at 24, 36, 48 and 60 hpi. doi:10.1371/journal.pone.0091930.g008

18. PmVRP15 Promoted Shrimp Viral Replication

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e91930
18. Pongsomboon S, Tang S, Boonda S, Aoki T, Hirono I, et al. (2011) A cDNA microarray approach for analyzing transcriptional changes in *Penaeus monodon* after infection by pathogens. Fish Shellfish Immunol 30: 439–446.
19. Wang HC, Wang HC, Kou GH, Lo CF, Huang WP (2007) Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Dis Aquat Organ 74: 179–189.
20. Chai YM, Zhu Q, Yu SS, Zhao XF, Wang JX (2012) A novel protein with a fibrinogen-like domain involved in the innate immune response of *Marsupenaeus japonicus*. Fish Shellfish Immunol 32: 307–315.
21. Tassanakajon A, Somboonwirat K, Supungul P, Tang S (2013) Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol 34: 934–946.
22. Wang W, Zhang X (2008) Comparison of antiviral efficiency of immune responses in shrimp. Fish Shellfish Immunol 25: 522–527.
23. Prapavorarat A, Vatanavicharn T, Soderhall K, Tassanakajon A (2010) A novel viral responsive protein is involved in hemocyte homeostasis in the black tiger shrimp, *Penaeus monodon*. J Biol Chem 285: 21467–21477.
24. Du H, Fu L, Xu Y, Kil Z, Xu Z (2007) Improvement in a simple method for isolating white spot syndrome virus (WSSV) from the crayfish *Procambarus clarkii*. Aquaculture 262: 532–534.
25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
26. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding. Analyt Biochem 72: 248–254.
27. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580.
28. Schlau-Cohen J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95: 5857–5864.
29. Martin GG, Graves BL (1985) Fine structure and classification of shrimp hemocytes. J Morphol 185: 339–348.
30. Sung H-H, Wu P-Y, Song Y-L (1999) Characterisation of monoclonal antibodies to haemocyte subpopulations of tiger shrimp (*Penaeus monodon*): immunochemical differentiation of three major haemocyte types. Fish Shellfish Immunol 9: 167–179.
31. Johansson MW, Keyser P, Siritunyakulka K, Soderhall K (2000) Crustacean haemocytes and haematoopoiesis. Aquaculture 191: 45–52.
32. Pomprateep S, Thamrtada S, Somboonwirat K, Tassanakajon A (2012) Gene silencing reveals a crucial role for anti-lipopolysaccharide factors from *Penaeus monodon* in the protection against microbial infections. Fish Shellfish Immunol 32: 26–34.
33. Woramongkolchai N, Supungul P, Tassanakajon A (2011) The possible role of penaeidin5 from the black tiger shrimp, *Penaeus monodon*, in protection against viral infection. Dev Comp Immunol 35: 530–536.
34. Lei K, Li F, Zhang M, Yang H, Luo T, et al. (2008) Difference between hemocyanin subunits from shrimp *Penaeus japonicus* in anti-WSSV defense. Dev Comp Immunol 32: 808–813.
35. Mekata T, Okagawa S, Inada M, Yoshimine M, Nishi J, et al. (2011) Class B scavenger receptor, Croquemort from kuruma shrimp *Marsupenaeus japonicus*: Molecular cloning and characterization. Mol Cell Probe 25: 94–100.
36. Maungas MBB, Konde H, Hirono I, Saito-Toki T, Aoki T (2008) Essential function of transglutaminase and clotting protein in shrimp immunity. Mol Immunol 45: 1269–1275.
37. Hutchinson EC, Fodor E (2012) Nuclear import of the influenza A virus transcriptional machinery. Vaccine 30: 7353–7358.
38. Lee CP, Chen MR (2010) Escape of herpesviruses from the nucleus. Rev Med Virol 20: 214–230.
39. Bjorke SL, Roller RJ (2006) Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347: 261–276.
40. Liu WJ, Chang Y-S, Wang C-H, Kou G-H, Lo C-F (2005) Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334: 327–341.
41. Wang Z, Hu L, Yi G, Xu H, Qi Y, et al. (2004) ORF390 of white spot syndrome virus genome is identified as a novel anti-apoptosis gene. Biochem Bioph Res Commun 325: 899–907.
42. He F, Feunen BJ, Godwin AK, Kwang J (2006) White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. J Virol 80: 3884–3892.
43. Sritunyakulka K, Wannapapho W, Lo CF, Flegel TW (2006) PmRab7 is a VPS26-binding protein involved in white spot syndrome virus infection in shrimp. J Virol 80: 10734–10742.