Cellular Automata

Janet Wiles
Division of Complex and Intelligent Systems
School of Information Technology and Electrical Engineering
The University of Queensland

Emergence
• Simple rules give rise to complex designs

Examples from nature
• Many physical systems show complex emergent behaviours

Patterns in art
• Repetitive designs can give rise to very complex patterns

Shell patterns can be explained by simple growing rules

http://www.erin.utoronto.ca/~w3bio315/virtual%20lab%20I%20chemotaxis_frameset.htm
Dictyostelium discoidium

- Lives in the soil as single cell amoebae feeding on bacteria
- When there is no food individuals aggregate into a single mass
- Eventually form a slug-like pseudoplasmodium
- Culminates as a fruiting body consisting of live spores (the next generation) and dead, supporting stalk cells
- Positive chemotaxis towards cyclic AMP

Reductionist vs Emergent Science

- Reductionism breaks systems into their component parts. It looks for regularities in the complexity. It was generally assumed that simple arrangements give rise to simple behaviours, and complex arrangements give rise to complex behaviours.
- Emergent science builds patterns out of components parts without using a central controller. Different types of patterns are observed:
 - Simple patterns do give rise to simple behaviours but they also give rise to complex ones.
 - Complex patterns do give rise to complex behaviours, but in some cases the complexity collapses and their support stable simple behaviours.

Generative mechanisms

- Emergent science (as opposed to reductionist science) is based on generative mechanisms.
 - That is, simple rules can be viewed as simple programs, and the phenomena they generate can be viewed as computations.
- In linguistics and computer science, the grammar of a language has long been distinguished from the set of all possible sentences that can be generated.
 - The grammar is finite, the language is infinite. In computer science, the most interesting example of generative power is universal computation, in which a small number of states and an infinite memory can perform any possible computation.
- Among theoretical computer scientists, it has long been known that universal computation can be achieved with very simple rules but nobody really made a fuss about it.
 - In logic tables and electrical circuits, the operator NAND is sufficient to duplicate the behaviours of all other operators. It was just a fact we knew.

Emergence cont.

- Emergent science asks questions like:
 - Where does the complexity come from?
 - How easy is it to get?
 - What are the key differences between simple systems and complex systems?

What sorts of models are useful for thinking about emergence?

- Neural networks
- Evolutionary computation
- Cellular automata

Cellular Automata

- Grid-based, agent-based system
- Simple rules and simple initial conditions can give rise to the most computationally complex behaviour.
- Insights can be gained by studying the space of behaviours of very simple systems.
Cellular automata visualisation

- Imagine a page of graph paper in which each small square can be coloured black or white.
- Cellular automata are simple rules that tell a square what colour it should be.
- The simplest cellular automata start with a single black square at the top centre of the page.
 - Each row moving down the page looks at the colours of the row above and uses the same rule set to decide its colours.
 - If each square considers just three squares in the previous row - the square above and its right and left neighbours, there are 256 possible rule sets.
 - Each one is given a number from 0 to 255, which when written in binary specifies exactly the rule set.

What behaviours emerge?

- From the rules themselves, it is difficult to envisage what patterns they will generate when iterated down the pages.
- Wolfram explored the patterns by trying them out. He discovered that the patterns generated fall into a small number of classes.
 1. The simplest are uniform patterns (e.g., rule 0 turns all squares white and rule 255 turns them all black) and repetitive patterns (e.g., rule 50 generates checkerboards).
 2. More interesting are nested patterns (e.g., rule 90 generates intricate patterns of nested triangles).
 3. However, patterns are not restricted to repetitive designs. Some cellular automata produce essentially random patterns (e.g., rule 128 when run on grids of squares below the initial black square does not repeat itself, and in fact passes statistical tests for randomness).
 4. The most interesting patterns are neither completely regular nor random (e.g., rule 30 takes 2780 steps to settle into a genuine pattern 568 steps long, and shows areas of local order interacting with more random areas). Wolfram changes figure and ground to seeing complex behaviours as part and parcel of the space of typical programs.

Traditional science has focussed on analysing simple behaviours against a sea of complexity. Wolfram changes figure and ground to seeing complex behaviours as part and parcel of the space of typical programs.
Turing Machine emulation by Rule 110

Sensitivity to initial conditions: Differences in handling information

The four classes of CAs have characteristic properties that they share, such as similar sensitivities to initial conditions:

1. Information about initial conditions is forgotten:
 - The effects of the changes die out and exactly the same changes are reached (e.g. Rule 160)
2. Information about initial conditions is retained to the final configuration, but is not communication to other parts of the system
 - The effects of the changes may persist but are localised to a small region (e.g. Rule 108)
3. Long range communication:
 - The effects spread at a uniform rate, eventually affecting every part of the system
4. Intermediate between localised and long range:
 - In class 4 changes can also spread but only in a specific way. In principle information cannot be communicated, but only does so if it affects one of the localised structures that moves across the system.

What sorts of results can be established?

- Simple programs can produce universal computation
- Simple rule systems are ubiquitous, hence universal computation is ubiquitous

- Take home msgs
 - The take home message of Wolfram’s NKS is that among the space of programs, simple programs that produce complex behaviours are not rare.
 - The same basic forms of behaviour occur in many different contexts in both real and artificial worlds, leading to the possibility of universal principles to determine overall behaviour.

The Game of Life

- The game board is a rectangular cell array, with each cell either empty or filled.
- At each tick of the clock, the next generation is created by the following rules:
 - if a cell is empty,
 - fill it if 3 of its neighbors are filled (otherwise leave it empty)
 - if a cell is filled, it
 - dies of loneliness if it has 1 or fewer neighbors
 - continues to live if it has 2 or 3 neighbors
 - dies of overcrowding if it has more than 3 neighbors
- Neighbors include the cells on the diagonals.

Still Lifes (Point Attractors)

- Block
- Beehive
- Boat
- Ship

Oscillators (Limit Cycle)

- Blinker
- Toad
- Glider
Take home messages from Life

- Some robust behaviours emerge that are simple, but emerge from complex underlying rules
 - Eg. Random initial starting positions almost always produce gliders.
- Behaviours emerge at a more complex level that are inherently unpredictable at the lower level except by simulating the full model:
 - Eg. whether a particular starting pattern will stop (formally analogous to the Halting problem with Turing machines)

Cellular Automata in Games

- CA proposed as a solution to static environments in games\(^2\)
- More dynamic / realistic behaviour of scripted elements – fire, water, explosions, smoke, heat
- We are conducting research into using CA in games for environmental modelling
 - Environment, objects and agents

EmerGEnT\(^3\)

- 3D game world – models environmental systems using cellular automata
- CA rules based on thermodynamics and physics
- Models heat exchange, pressure and fluid – giving rise to explosions, fires and floods
- Includes different terrain types (e.g. grass, woods), objects (e.g. buildings) and agents (e.g. villagers) – demo 1

References for this lecture

- Wolfram, S. (2002). *A New Kind of Science*, Wolfram Media Inc. Champaign, Ill.
 - Wolfram starts with a pictorial introduction to cellular automata and the idea that there are four classes of behaviour produced by simple rule systems: simple, nested, random and “complex”
 - The basic definitions of the 1-dimensional cellular automata and the four classes of behaviour they produce
 - pages 23-41 (from chapter 2)
 - The full range of behaviours for all 256 simple cellular automata
 - pages 51-80 (from chapter 5)
 - Sensitivity of cellular automata to initial conditions
 - pages 223-230 (from chapter 5)
 - How information is transmitted through the different classes of cellular automata
 - 250-264 (from chapter 5)

\(^2\)Forsyth, T. (2002). Cellular Automata for Physical Modelling. In D. Trogla (Ed.), *Game Programming Gems 3*. Hingham, MA: Charles River Media, Inc.

\(^3\)Sweetser, P. (PhD Thesis) An Emergent Approach to Game Design – Development and Play. http://www.itee.uq.edu.au/~penny

Influence Propagation

- Top-left: Game state
- Top-right: Propagation
- Lower-left: Influence values
- Lower-right: Influence grey scale

\(^1\)Sweetser, P. (2004) Strategic Decision-Making with Neural Networks and Influence Maps. In S. Rabin (Ed.), *AI Game Programming Wisdom 2*. Hingham, MA: Charles River Media, Inc., pp. 439-446.