ARTICLE
Translational Therapeutics

The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer

Liesa-Marie Schreiber1,2, Carles Urbiola1,2, Krishna Das1,2, Bart Spiesschaert1,2,3, Janine Kimpel1, Fabian Heinemann4, Birgit Stierstorfer4, Philipp Müller4, Monika Petersson5, Patrik Erlnann5, Dorothee von Laer1 and Guido Wollmann1,2

BACKGROUND: Oncolytic virotherapy is thought to result in direct virus-induced lytic tumour killing and simultaneous activation of innate and tumour-specific adaptive immune responses. Using a chimeric vesicular stomatitis virus variant VSV-GP, we addressed the direct oncolytic effects and the role of anti-tumour immune induction in the syngeneic mouse lung cancer model LLC1.

METHODS: To study a tumour system with limited antiviral effects, we generated interferon receptor-deficient cells (LLC1-IFNAR1−/−). Therapeutic efficacy of VSV-GP was assessed in vivo in syngeneic C57BL/6 and athymic nude mice bearing subcutaneous tumours. VSV-GP treatment effects were analysed using bioluminescent imaging (BLI), immunohistochemistry, ELISpot, flow cytometry, multiplex ELISA and Nanostring® assays.

RESULTS: Interferon insensitivity correlated with VSV-GP replication and therapeutic outcome. BLI revealed tumour-to-tumour spread of viral progeny in bilateral tumours. Histological and gene expression analysis confirmed widespread and rapid infection and cell killing within the tumour with activation of innate and adaptive immune-response markers. However, treatment outcome was increased in the absence of CD8+ T cells and surviving mice showed little protection from tumour re-challenge, indicating limited therapeutic contribution by the activated immune system.

CONCLUSION: These studies present a case for a predominantly lytic treatment effect of VSV-GP in a syngeneic mouse lung cancer model.

British Journal of Cancer (2019) 121:647–658; https://doi.org/10.1038/s41416-019-0574-7

BACKGROUND
The development of oncolytic virotherapy has gained significant momentum in recent years with the clinical approval of the Western hemisphere1 and its enhanced therapeutic effect oncolytic virus (Talimogene laherparepvec; Imlygic™). The development of oncolytic virotherapy has gained significant momentum in recent years with the clinical approval of the Western hemisphere1 and its enhanced therapeutic effect.

1Division of Virology, Medical University of Innsbruck, Innsbruck, Austria; 2Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Innsbruck, Austria; 3ViraTherapeutics GmbH, Innsbruck, Austria and 4Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
Correspondence: Guido Wollmann (guido.wollmann@i-med.ac.at)

Received: 30 January 2019 Revised: 30 July 2019 Accepted: 19 August 2019
Published online: 18 September 2019

© The Author(s) 2019 Published by Springer Nature on behalf of Cancer Research UK
and prolonged intratumoural virus activity in vivo, which resulted in complete remission of established subcutaneous tumours both in immune-competent and -deficient hosts. However, despite significant activation of innate and adaptive immune responses by VSV-GP, their contribution to the overall therapeutic effect was ineffectual in this particular tumour setting. We believe this model can inform on studies of potentially rare clinical instances in which a tumour response to virotherapy is lytic-dominant with little contribution of anti-tumour immunity.

METHODS

Cell lines and viruses
LLC1 cells were obtained from ATCC (American Type Culture Collection, Manassas, VA, USA; #CRL-1642) and maintained in high glucose DMEM (Lonza, Basel, Switzerland) supplemented with 10% heat inactivated FCS, 4mM L-Glutamine (Gibco, Carlsbad, California, USA), 100 units/ml penicillin and 0.1 mg/ml streptomycin (Gibco) at 37 °C/5% CO2. VSV-GP, VSV-GP-GFP, VSV-GP-Luciferase and VSV-GP-Δ luciferase were purchased from GeneCopoeia (Maryland, USA). The following TALEN sequences targeting the murine heterodimeric interferon alpha/beta receptor (IFNAR1) were provided by the manufacturer and previously described in ref.14,15. Viruses were propagated and titred on BHK-21 cells (ATCC).

Generation of IFNAR1−/− LLC1 cells
Plasmids encoding Transcription Activator-Like Effector Nucleases (TALEN) sequences targeting the murine heterodimeric interferon type I receptor complex Ifnar1 gene (NM_010508.2) were purchased from Genecopoeia (Maryland, USA). The following pairwise target sites were chosen: (1) R: TCCTGAGAATATAACGTC – L: TGCTCGACATTTGAAGCTTG; (2) R: TGCTGGAATGTCAACATAC – L: TGCCTGAATGTCAACATAC; (3) R: TGTGTCCAGTAAAGAGAAT – L: TCTTCGTGGAATGAGGTTG; (4) R: TGTCGAGAATATAACGTC – L: TGCTGGAATGTCAACATAC. LLC1 cells were transected with three TALEN pairs (0.6 μg each) using Trans-IT (Mirus, Madison, Wisconsin, USA) following manufacturer’s instructions.

Flow cytometry and single cell sorting
Cell suspensions were stained for flow cytometry analysis using the following specific antibodies: anti-IFNAR1 mouse (1:250, MAR1–5A3, BioLegend, San Diego, California, USA); APC-conjugated anti-mouse-lgG1 from goat (1:100, Jackson ImmunoResearch, Suffolk, UK) and sorted into single cell clones using FACS Aria (BD Biosciences, Schwechat, Austria). For quantification of cell surface IFNAR1, selected clones were incubated using the same antibodies and analysed using FACS Canto II (BD Biosciences).

Microscopic analysis
5 × 104 cells/well were seeded in 24-well plates and treated with 500 U/mL of universal IFN-α A/D (PBL, Piscataway, New Jersey, USA) for 16 h or left untreated. Cultures were infected with VSV-GP-GFP at MOI 0.1 for 24 h before assessing fluorescence expression.

Cell viability and IFN-I resistance assay
2 × 104 cells/well were plated in 96-well plates and treated with universal IFN-α A/D (PBL) at different concentrations for 16 h prior virus infection with various VSV-GP concentrations. Seventy-two hours later MTT viability assay was performed as described previously.16

In vivo studies
The studies were performed in compliance with the Austrian experimentation law (animal trial permission granted by the Federal Ministry of Science, Research and Economy BMWFJ-66.011/0012-WF/V/3b/2016 and BMWFJ-66.011/0041-WF/V/3b/2016). Six to eight-week-old female athymic Rj/NMRI-Foxn1nu/nu mice or C57BL/6Jrj mice weighing 16–20 g were obtained from Janvier (Le Genest St Isle, France). A health status certificate was supplied with every mouse delivery. Tumours were implanted by subcutaneous injection of 100 μl of 1 × 105 LLC1-IFNAR1−/− or 5 × 105 LLC1 cells in the flank of syngeneic C57BL/6Jrj or athymic Rj/NMRI-Foxn1nu/nu mice. Tumour size was measured twice a week with a calipper and volume was calculated using the formula: length × width2 × 0.4. Treatment commenced when tumours reached a size of 0.05 to 0.07 cm3. PBS-based solutions containing 108 TCID50 of virus were used for intratumoural (30 μl) or intravenous (100 μl) injection. Mice were sacrificed when tumour size reached 0.8 cm3 or tumours showed signs of ulcerations. Animals were euthanised by CO2 asphyxiation and cervical dislocation or via short-term isoflurane anaesthesia followed by cervical dislocation. For bilateral tumours 3 × 105 LLC1-IFNAR1−/− cells were injected into the flanks of C57BL/6Jrj and Rj/NMRI-Foxn1nu/nu mice. Luciferase imaging, Lumina system was used (IVIS Lumina II, Perkin Elmer, Waltham, Massachusetts, USA) as described in ref.16. For CD8+ T cell depletion, mice were intraperitoneally injected with 100 μg anti-mouse CD8 (clone YTS 169.4, Hölzel Diagnostika GmbH, Köln, Germany) or anti-lgG2a-kIgL (clone LT-2, Hölzel Diagnostika GmbH) antibody. Depletion was repeated on days 0, 2, 6 and 10 post virus treatment. Mice were treated intravenously with 108 TCID50 VSV-GP on days 0, 4 and 8. CD8+ T cell depletion was confirmed by staining against CD3 (PE-Cy7, Clone 17A2, 1:200, BD Biosciences), CD8 (Pacific Blue, Clone 53–6.7, 1:750, BD Biosciences) and CD43 (FITC, Clone 1B11, 1:100, BioLegend). The studies were designed in compliance with ARRIVE guidelines. Detailed additional information is provided in supplementary methods (Methods S1).

Isolation of splenocytes and tumour infiltrating immune cells
Splenocytes were isolated via 40 μm cell strainer. Erythrocytes were lysed, and PBS-washed cells were resuspended in appropriate buffer for flow cytometry or IFNy ELISpot. LLC1-IFNAR1−/− tumours were processed using the mouse tumour dissociation kit (Miltenyi Biotec Bergisch Gladbach, Germany) and the GentleMACS dissociator (Miltenyi Biotec) according to manufacturer’s instructions. Single cell suspension was filtered through 70 μm cell strainer, washed with medium and centrifuged for 10 min at 1600rpm. Approximately 5 × 106 cells were layered on top of Lympholyte-M solution (Cedarlane Burlington, Ontario, Canada). After density gradient centrifugation, cells were removed from the interphase and washed using PBS. FC receptors were blocked by incubating cells for 20 min at 4 °C with FACS buffer containing FCR block CD16/32 (BD Pharmingen) and rat and hamster serum (Jackson Immunoresearch, Ely, United Kingdom). Cells were subsequently stained for flow cytometry as described below.

Detection of VSV-GP specific CD8+ T cells by flow cytometry
Cells were stained with the H-2Kb VSV-NP-PE-tetramer (BioMedica) followed by staining for surface markers using the following antibodies: CD45.2-PerCP-Cy5.5 (Clone 104, BioLegend), CD90.2-.AF488 (Clone 30-H12, BioLegend), CD8-BV510 (Clone 53–6.7, BioLegend), CD14-APC-Cy7 (Clone Sa14–2, BioLegend), CD19-APC-Cy7 (Clone 6D5, BioLegend) and CD4-APC-Cy7 (Clone GK1.5, BioLegend). Non-viable cells were stained using LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (ThermoFisher). Samples were analysed using FACS Canto II (BD Biosciences) and data analysis was performed using the FlowJo software (FlowJo LLC, Oregon, USA).

IFNy ELISpot
IFNy secretion of splenocytes was investigated using the IFNy ELISpotPLUS kit (MabTech Nacka Strand, Sweden). Briefly, 2.5 × 106 splenocytes were incubated overnight at 37 °C with 5 × 104 LLC1-IFNAR1−/− cells or 1 μg/mL mSuvirin peptides (mSuvirin 20–26: ATFKWNPFL, mSuvirin 57–64: CFFCFKEL or mSuvirin 97–104: TVSEFKL, gift from R. Amann) or VSV-NP peptide (VSV-NP 52–59: RGYVYQGL, GeneScript Piscataway, NJ, USA) in IFNy capture antibody precoated plates. Development of spots was performed as advised by the manufacturer and enumerated using the ImmunoSpot S6 reader (CTL, Bonn, Germany).
Immunohistochemical analysis

Resected tumours were cut in two halves; one was stored in RNA later (Thermo Fisher Scientific, Waltham, MA USA) at 4 °C for NanoString analysis (see below), one was fixed in 4% paraformaldehyde prior to paraffin embedding (FFPE).

Micron tissue sections were de-waxed with xylene, rehydrated in a graded ethanol series and blocked with 3% hydrogen peroxide. Antigen retrieval was performed for all primary antibodies except VSV-N (no pre-treatment) by heating the sections in Tris-EDTA buffer (95 °C; pH 9.0) for 20 min. Sections were incubated for 1 h at room temperature with the following primary antibodies: VSV-N (1:250; Kerafast, Boston, MA, USA; #EB0009), CLEaved Caspase 3 (1:250; Cell Signalling technology, Frankfurt, Germany; #9667), CD8 (1:100; eBioscience, Waltham, MA, USA; #14-0080), PD-L1 (1:100, R&D Systems, Minneapolis, MN, USA; #AF1019). A biotinylated or HRP-conjugated antibody followed by DAB or Refine Red chromogen was used for detection.

Haematoxylin (BondTM Polymer Refine Detection, #37072; Leica Biosystems) was applied for counterstaining. Staining was performed on the automated Leica IHC Bond-III™ platform (Leica Biosystems). Microscopy was conducted with a Zeiss Axiolmager M2 microscope (Zeiss, Oberkochen, Germany), slide scans were obtained using a Zeiss Axioscan Z1 scanner. Density of IHC stain positive cells was quantified with the image analysis software Halo 2.1 (IndicaLab, Corrales, New Mexico, USA) using the Cytonuclear IHC analysis module.

NanoString analysis

Tumours were homogenised with the SpeedMill PLUS (Analytik Jena, Jena, Germany) and RNA was extracted using Phenol: Chloroform:isoamyl Alcohol (25:24:1) (Sigma–Aldrich, USA) and MagMAX-96 Total RNA Isolation Kit (Thermo Fisher) following manufacturer’s instructions. Extracted RNA was analysed for differential expression by means of the nCounter PanCancer Immune Profiling Panel and the nCounter FLEX Analysis System (NanoString Technologies, Seattle, WA, USA). Profiled data were pre-processed following the manufacturer’s recommendations.26 Heatmaps of NanoString data were generated using TreeView.30

Intratumoural cytokine levels

Resected tumours were snap frozen and homogenised using the SpeedMill PLUS (Analytik Jena) in 500 μl Procartaplex cell lysis buffer (Thermo Fisher) per 100 mg tissue. Homogenate was centrifuged at 6000 × g for 20 min. Lysates were analysed using the Procartaplex Cytokine & Chemokine 26-Plex Mouse Panel 1 on a Luminex MAGPIX fluorescence imager (Thermo Fisher Scientific) and LEGENDplexTM Mouse Anti-Virus Response Panel (13-plex) (BioLegend) followed by flow cytometry analysis. Cytokine concentrations were normalised to total protein concentration in the lysate measured using the Pierce BCA protein assay (Thermo Fisher Scientific).

Statistical analysis

GraphPad Prism software (Version 7, GraphPad Software, La Jolla, California, USA) was used for statistical analysis. ANOVA test was applied to assess significance levels. Kaplan–Meier survival curves were compared using the Log-rank (Mantel-Cox) test. Data are presented as mean ± SEM or SD as noted. Statistically significant differences were encoded as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

RESULTS

Interferon sensitivity limits VSV-GP activity on murine lung cancer cell line LLC1 in vitro

While various aberrations in the type I interferon signalling pathway are described for many human tumour cell lines,11,32 interferon insensitivity is often lacking in murine models of cancer.14,17,33 To generate a tumour system with limited antiviral effect of type I interferon signalling that more closely mimics the condition found in many human cancers, the subunit 1 of the heterodimeric interferon type I receptor complex (IFNAR1) was knockout-ed in murine LLC1 lung cancer cells. Consequently, surface expression of IFNAR1 was absent in LLC1-IFNAR1−/− cells compared to parental LLC1 cells (Fig. 1a). In contrast to LLC1 cells, expression of the virally encoded reporter gene GFP was not affected by pre-incubation with IFN-α in LLC1-IFNAR1−/− cells (Fig. 1b). We next assessed the outcome of VSV-GP infection in LLC1 cells after pre-incubation with various IFN-α concentrations using an MTT-based viability assay. Parental LLC1 cells showed near complete protection from VSV-GP infection in contrast to IFNAR1-deficient LLC1 cells that were highly sensitive to VSV-GP infection and killing (Fig. 1c).

The in vivo efficacy of VSV-GP in the syngeneic LLC1 lung cancer model is dose dependent and correlates with tumour interferon sensitivity

Efficacy of VSV virotherapy in syngeneic mouse tumour models has been described both in tumours highly susceptible for VSV infection34 as well as in models with limited viral replication within the tumour tissue.25 To address whether the interferon response of LLC1 cells correlates with oncolytic VSV-GP efficacy in vivo, we compared the treatment outcome in subcutaneous LLC1 and LLC1-IFNAR1−/− tumours in syngeneic C57BL/6J mice. Single intratumoural or systemic VSV-GP injections of 10^6 TCID50 showed no treatment effect on LLC1 tumours (Fig. 2a). In contrast, both systemic and intratumoural virus treatment of IFNAR1−/− tumours induced strong tumour remission (***p<0.0001 between day 9–20) (Fig. 2b). Although most tumours started to relapse around day twenty to thirty, median survival was significantly (**p < 0.001) increased from 9 days post treatment in PBS-treated mice to 26 days in VSV-GP i.t. and 37 days in VSV-GP i.v. treated mice. The VSV-GP treatment effect showed a dose dependency in both time-to-progression as well as in overall survival (Fig. 2c). Compared to the highest virus dose (10^8 TCID50), tumours treated with 10^7 TCID50 VSV-GP relapsed earlier (day 10–20) while a low dose of 10^6 TCID50 showed only a partial response and rapid relapse. Median survival increased from 18 days (10^6 TCID50) to 25 (10^5 TCID50) and 42 days (10^4 TCID50) days, respectively, compared to control at 11 days. To address if virus replication is required for the therapeutic effect we treated LLC1-IFNAR1−/− tumours with a replication-deficient VSV-GP variant (VSV-ΔG-GP) via intratumoral or systemic application. These tumours were completely resistant to replication-incompetent VSV-ΔG-GP therapy with no objective response or survival benefit compared to control (Fig. 2d).

Therapeutic effect of VSV-GP on LLC1-IFNAR1−/− tumours is independent of anti-tumour immune activation

We next addressed whether the adaptive immune status of the host affects the outcome of the VSV-GP treatment in LLC1 or LLC1-IFNAR1−/− tumours. As in immune-competent hosts, subcutaneous LLC1 tumours grown in athymic NMRU-mice were resistant to intratumoural VSV-GP treatment (Fig. S1A). In contrast, LLC1-IFNAR1−/− tumours showed complete and lasting remission after VSV-GP treatment (Fig. S1B). This suggests that the adaptive immune system is a negligible factor for lack of a therapeutic effect of VSV-GP in parental LLC1 tumours. To test whether a CD8+ T cell mediated anti-tumour component contributes to the overall therapeutic effect of VSV-GP in the permissive LLC1-IFNAR1−/− tumour, CD8+ T cells were depleted using a monoclonal antibody. Depletion resulted in an almost complete elimination (>95%) of the CD8+ cells (Fig. S2). Intravenous treatment with a single or triple injection (days 0, 4, 6) of 10^7 TCID50 VSV-GP resulted in 100% remission (Fig. 3a). Triple treatment showed a trend for survival benefit compared to single dose therapy (39 vs. 27 days median survival; n.s.). Importantly, depletion of CD8+ T cells did not result in reduced efficacy (overall survival 3/7 compared to 2/7 in the non-depleted treatment group; n.s.).
To assess a potential memory response for long-term tumour control, mice cured from LLC1-IFNAR1−/− tumours by VSV-GP therapy (survival >80 days) were re-challenged via contralateral subcutaneous injection of parental or IFNAR1-decient LLC1 cells and monitored for tumour outgrowth. Naïve, age-matched animals developed LLC1 wt or IFNAR1−/− tumours within 8 days. In LLC1-IFNAR1−/− tumour-cured mice, challenge with parental LLC1 tumours resulted in tumour growth equal to naïve mice (Fig. 3b). For IFNAR1−/− tumour challenge, grafting rate was 100% with 6/9 tumours growing with similar kinetics as in naïve mice (Fig. 3b), indicating only a partial and non-robust immunological anti-tumour memory response.

To assess the antiviral versus the antitumour immune response during active VSV-GP treatment, splenocytes from mice bearing LLC1-IFNAR1−/− tumours were harvested 7 days after systemic virus treatment and analysed using an IFNγ ELISpot assay. LLC1 tumours highly express the tumour-associated antigen, survivin, which has been successfully targeted by various immunotherapeutic approaches. We confirmed survivin expression in LLC1-IFNAR1−/− cells (Fig. S3) and hypothesised a potential induction of anti-tumour T cells due to VSV-GP therapy would include a population of survivin-specific T cells. However, stimulation of splenocytes with synthetic peptides representing previously described survivin epitopes or with LLC1-IFNAR1−/− cells did not result in enhanced IFNγ secretion by T cells in any of the treatment groups indicating lack of high frequency of T cells reactive to survivin or other antigens expressed by LLC1-IFNAR1−/− (Fig. 3c). As expected, a strong IFNγ response resulted from recognition of the immunodominant epitope of VSV-GP (VSV-NP52–59) by the splenocytes of VSV-GP treated mice, which was absent in mock treated or tumour-free naïve mice (Fig. 3c). Of note, VSV-GP can result in higher unspecific IFNγ secretion by splenocytes even in absence of peptide stimulation (data not shown) and therefore background activation was corrected. Specific IFNγ response was absent in splenocytes from VSV-GP treated mice when CD8+ T cells were depleted, suggesting that IFNγ secreting cells were indeed VSV-specific cytotoxic T lymphocytes (Fig. 3c, d). Flow Cytometry using peptide-MHC multimers confirmed approximately 23% of CD8+CD90+ cytotoxic T cells in blood and spleen were directed against the highly immunogenic...
sensitivity. Tumours were implanted in C57BL/6J mice by subcutaneously injecting 5 × 10^5 LLC1 wt (Fig. 3e). Together, these results suggest a predominantly lytic mode of action underlying the observed anti-tumour effects of VSV-GP in (Fig. 3e). In immune-competent syngeneic hosts, intratumoral injection of 10^8 TCID50 VSV-GP-Luc resulted in comparable tumour-selective activity independent of the IFNAR status in the tumour. However, little to no signal could be detected at later time points in parental LLC1, whereas the bioluminescence signal in VSV-GP-Luc treated LLC1-IFNAR1–/– tumours increased over several days before starting to decline after 5 days (Fig. 4a, b) indicating active viral replication in interferon insensitive tumours (Δradiance IFNAR1–/– vs wt LLC1 greater than 2 logs). The same dynamic pattern was observed in athymic nude mice (Fig. 4d). However, virus activity was significantly prolonged in VSV-GP-Luc treated LLC1-IFNAR1–/– tumours (Fig. 4e) compared to the duration of virus replication in C57BL/6J mice, supporting the earlier findings of relapse-free long-term therapeutic outcome of VSV-GP treatment in immune-compromised hosts. In terms of therapeutic tumour control, VSV-GP-Luc was found to be as effective as VSV-GP on LLC1-IFNAR1–/– tumours leading to rapid tumour remission in syngeneic C57BL/6J as well as NMRI-nu mouse model (Fig. 4c, f). Remarkably, even in fully immunocompetent C57BL/6J mice unilateral VSV-GP-Luc injection generated a successful secondary virus infection in the contralateral tumour with a 7-day latency (Fig. 4f).
The lytic activity of VSV-GP treatment dominates the therapeutic effects... L.-M. Schreiber et al.

Fig. 3 VSV-GP treatment effect on LLC1-IFNAR1−/− tumours is independent of adaptive immune activation. a To selectively address the contribution of cytotoxic T cells to VSV-GP treatment, C57BL/6J mice bearing LLC1-IFNAR1−/− tumours were depleted for CD8+ T cells using a monoclonal antibody at days -2, 0, 2, 6 and 10 respective to single systemic virus (10^6 TCID50) treatment. Individual tumour volume graphs and Kaplan–Meier survival curve are shown (*p < 0.05; **p < 0.01; ***p < 0.001). b Mice from two separate experiments that showed LLC1-IFNAR1−/− tumour long-term remission after VSV-GP treatment were re-challenged subcutaneously with 1 × 10^6 of either parental or IFNAR1−/− LLC1 cells into the left flank and monitored for tumour outgrowth. c Reactivity of splenocytes isolated from mock, VSV-GP or VSV-GP + CD8a depletion—treated or completely naive mice against three different survivin epitopes, VSV-NP peptide as well as LLC1-IFNAR1−/− tumour cells are depicted as number of IFN-γ spots per 2.5 × 10^6 cells. Numbers of spots of three animals per treatment group are presented as mean of three technical replicates, after subtraction of background signal (medium only). TNTC = spots too numerous to count. d Flow cytometry was used to quantify overall and VSV-GP specific CD8+ T cell response in whole blood and spleen on days 6 and 7 post virus treatment, respectively. After gating out non-viable cells, monocytes, myeloid cells and B cells percentages of CD8+ T cells labelled by VSV-NP tetramer are shown from blood and spleen samples.

Widespread lytic activity of VSV-GP on LLC1-IFNAR1−/− tumours is associated with T cell infiltration and immune activation.

Finally, we were interested in the effect of VSV-GP treatment on the tumour microenvironment and host immune activation. LLC1-IFNAR1−/− tumours were resected three and seven days post intravenous VSV-GP treatment. Immunohistochemical analysis confirmed extensive virus infiltration of and replication in tumour tissue and increased induction of apoptosis compared to mock...
Interferon insensitivity and CD8+ T cell deficiency correlate with enhanced and prolonged intratumoural virus replication. Unilateral LLC1 wt or IFNAR1−/− mouse lung tumours were grown in syngeneic C57BL/6 J mice (a–c) or athymic NMRI-nu/nu mice (d–f) and treated intratumourally with a single dose of 10^8 TCID₅₀ VSV-GP-Luciferase. Tumours were monitored every second day post treatment using the in vivo bioluminescence imaging (BLI) system IVIS. Representative BLI pictures of treated mice (a, d) and quantification of the average radiance in the tumour area (b, e) are shown (mean ± SD). Tumour growth after VSV-GP-Luciferase treatment is depicted with aligned time axis as mean ± SD in C57BL/6 J (c) and NMRI-nu/nu mice (f). Colour scale displays luminescence as photons/second/cm²/steradian (p/s/cm²/sr).

Changes of intratumoural cytokine profile after VSV-GP treatment

Systemic VSV-GP treatment resulted in significant intratumoural induction of proinflammatory factors IFN-γ, IL-17a, IL-22, MIP-1α (CCL3), RANTES (CCL5), and IP-10 (CXCL10) and anti-inflammatory cytokines IL-4, IL-10 and IL-13 3 and 7 days post treatment (Fig. S6A). GM-CSF concentration in the tumour was not affected by VSV-GP treatment (data not shown). A separate experiment confirmed the dose- and replication-dependent effect of VSV-GP treatment on intratumoural cytokine levels 7 days post treatment (Fig. S6B). Replication-inefficient VSV-ΔG-GP treatment failed to elicit any cytokine response in tumour tissue.

Transcriptome analysis of VSV-GP treated LLC1-IFNAR1−/− tumours

Tumours were also processed for NanoString analysis to assess changes in the transcription of over 700 inflammatory, immune response and viral genes. Corroborating the histological analysis, the expression of immune cell type–specific genes, specifically of CD8+ cells, cytotoxic cells and T cells, was strongly upregulated over time after VSV-GP administration (Fig. 6c). This confirms the strong infiltration of T cells seen microscopically (Fig. 5a) and additionally suggests a pronounced immune cell activation. A more comprehensive analysis of the immune signature revealed a differentiated immune response over time in the treated tumours. Despite the knockout of the interferon receptor in these tumours, a strong innate immune response could be observed, increasing up to day 7 post infection (Fig. 6d, Table S1). The adaptive immune signature also presented a differentiated upregulation that progressed at least up to day 7 post infection (Fig. 6d, Table S2). These data suggest that intratumoural VSV-GP activity results in a significant and broad upregulation of adaptive immune responses.

DISCUSSION

In the present study we generated and characterised a syngeneic mouse tumour model system that is highly permissive for...
oncolytic VSV-GP replication after local as well as systemic application. Although the tumour-specific infection and replication induced strong innate and adaptive immune responses, the therapeutic anti-tumour effect appears to be largely independent from the observed immune activation.

Many oncolytic viruses display a particular sensitivity towards innate antiviral immunity and utilise defects in these antiviral mechanisms to target cancer cells. Opposed to various human cancer models, which have been reported to commonly exhibit a reduced antiviral protection, most mouse tumour cell lines are sensitive to antiviral response mediators, such as type I IFNs. We therefore generated an IFNAR1 knockout mouse tumour cell line with disrupted IFN type 1 response. We chose to target IFNAR due to its upstream position in the innate antiviral response. However, reduced IFN receptor expression has also been linked to limited responsiveness of human cancers to interferon therapies. As expected, the resulting LLC1-IFNAR1−/− cells were insensitive to

Fig. 5 Lytic activity of VSV-GP on LLC1-IFNAR1−/− tumours associated with T cell infiltration and immune activation. Established LLC1-IFNAR1−/− tumours were treated with a single intravenous dose of 10⁸ TCID₅₀ of VSV-GP and resected after 3 or 7 days, respectively. Immunostaining against VSV-N, activated caspase 3 (aCas3), CD8a, CD4 and PD-L1 was performed on fixed microsections. a The panel depicts representative pictures of a group size of six animals each. Scale bar 3 mm. The density of IHC positive cells in sections was analysed 3 days (b) and 7 days (c) post treatment and revealed significant immune activation at the latter time point. Data are shown as mean ± SEM (n = 6). d VSV-specific CD8⁺ T cells in spleen and tumour of the same animal were measured 7 days post treatment in flow cytometry using VSV-NP-MHC multimer. Frequencies of VSV-specific CD8⁺ T cell among CD90⁺ CD8⁺ T cells are depicted in a graph (left panel) and as dot plots (right panel).
interferon-mediated antiviral protection and highly susceptible to VSV-GP infection in vitro. Rendering the cells type 1 IFN-insensitive also translated to a significantly enhanced treatment response in vivo in this otherwise VSV-GP-resistant tumour model. A similar dichotomy in VSV treatment response was previously described for another murine cancer cell line, CT26. Here, the (random) insertion of a reporter gene (CT26LacZ) resulted in a derivative highly permissive for vaccinia, VSV, and other viruses. In contrast to our system, no single gene defect explains the reduced antiviral phenotype in CT26LacZ cells but
The lytic activity of VSV-GP treatment dominates the therapeutic effects. Established LLC1-IFNAR1−/− tumours were treated with a single intravenous dose of 10^7 TCID_{50} of VSV-GP and resected after 3 or 7 days, respectively. For quantification of cytolytic activities, tumour lysates were assayed using Lumixen multiplex technology to detect proinflammatory (a) and immune-suppressive cytokines (b). Data presented as mean ± SEM (n = 3) (*p < 0.05; **p < 0.01). RNA from tumour homogenates was used for transcriptome analysis via NanoString technology. A hierarchical cluster analysis (Euclidean distance; average linkage) for sample data were signature genes from treated vs untreated tumours at 3 and 7 days post treatment. Genes were selected based on the cell type—a panel gene list. Genes are ordered according to the cell type annotation.

Cancer vaccine approaches against survivin have been described, though due to its self-antigen nature, responses are of low affinity. Other cancer vaccine studies largely reverted to the model antigen chicken ovalbumin (OVA) expressing LLC-OVA tumour cells. It is conceivable that the lack of immune-dominant antigens in LLC tumours further drives the shift of the VSV-GP treatment-induced CD8+ T cell response towards a predominant antiviral rather than anti-tumour immunity.

LLC1 tumours showed a downregulation of inflammatory cytokines such as IL-12, IL-5, IL-10 and TNF-α after a cell-based Reovirus vaccine treatment. In contrast, we detected a significant induction of predominantly inflammatory cytokines IFN-γ, IL-17a, IL-22, MP-1α, RANTES and IP10. This is in line with reports of VSV treatment on B16 tumours with rapid induction of cytokines with anti-tumour activity. However, in our setting with LLC1-IFNAR1−/− tumours these proinflammatory signals are likely facilitators of the dominating antiviral immune response.

That the treatment effect of VSV-GP on LLC1-IFNAR1−/− tumours is predominantly due to the direct oncolytic activity is further supported by the correlation in magnitude and duration between tumour response and intratumoural virus activity, reported via bioluminescence imaging. In non-responsive LLC1 wt tumours, virus activity could only be detected for the first 24 h post injection of VSV-GP, followed by a sharp drop. Of note, the continued bioluminescence signal in the responsive LLC1-IFNAR1−/− tumours was increased in athymic nude mice compared to C57BL/6J. Although the decreased magnitude of luciferase signal in immune-competent black mice compared to athymic nude mice could in principle be partially explained by differences in skin absorption, the kinetic of the luciferase signal was profoundly prolonged in athymic nude mice. This further supports the view that antiviral T cells can actively curb VSV-GP virotherapy.

The bioluminescence approach also revealed that VSV-GP can travel via secondary viremia to distant non-injected tumour sites in a syngeneic tumour model with intact immune surveillance. Previously, tumour-to-tumour spread has preclinically been shown predominantly in the xenograft setting using immune-compromised hosts. In syngeneic hosts, the systemic effect on non-injected tumour lesions has predominantly been described as and attributed to immune-mediated anamnestic effects.

For virotherapy settings in cases with induction of strong anti-tumour immunity, continued viral replication and spread is often found to be dispensable. Naturally, the therapeutic effect in these immune-driven therapeutic responses is often diminished in athymic mice, even though the virus replicates to higher levels. A treatment effect that heavily depends on the lytic interaction between virus and tumour is rather the exception in syngeneic tumour models. In our setting, we see a complete abrogation of both efficacy as well as the proinflammatory intratumoural cytokine activation when we apply replication-incompetent VSVΔΔG-GP directly into the tumour, further highlighting the dominance of the lytic effect. We previously demonstrated the strong oncolytic potential of VSV-GP in immune-deficient xenograft models using a number of different human cancer models and show here, for the first time, a strong lysis-dominant treatment effect in an
immune-competent host. This disconnect between the clearly oncolysis-driven therapeutic effect and the apparently non-contributing immune activation may be relevant for tumours with a very limited repertoire of tumour-associated antigens in which immune-activating interventions may show limited promise. We are aware of a number of model-related limitations and future studies will have to corroborate the relevance of the proposed shift from anti-tumour to antiviral activities. These could include for example testing other tumour derivations such as the well-studied B16 with IFNAR1−/−knockout or the use of oncolytic viruses other than VSV-GP. Together, our results suggest that successful oncolysis does not serve as scientific and technological advancements, we appreciate the efforts of our colleagues and collaborators in this field.

ACKNOWLEDGEMENTS

We thank E. Richter, M. Salvatore, J. Schoergenhuber and E. Mueller for excellent technical assistance, S. Sopper for facilitating the LCC1-IFNAR1−/− sorting and R. Amann for providing survivin peptides. We thank S. Sopper, Z. Trajanowski and H. Zwiervina for helpful discussions.

AUTHOR CONTRIBUTIONS

L.M.S.: generated modified cells, performed experiments and data analysis and wrote the manuscript; C.U.: participated in in vivo studies, performed cytokine assays; K.D.: designed, performed and analysed immunological studies; B.S.P.: performed NanoString data analysis; J.K.: generated viruses; F.H., B.St. and M.P.: performed tumour histology; P.M.: coordinated and performed NanoString analysis; P.E.: designed studies; D.V.L.: designed the study; G.W.: designed the study, performed in vivo procedures and wrote the manuscript.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/s41416-019-0574-7.

Competing interests: D.V.L. is inventor on a patent related to VSV-GP. D.V.L. and G.W. serve as scientific advisors for Boehringer Ingelheim GmbH. F.H., B.S. and M.P. are employees of Boehringer Ingelheim Pharma GmbH. B.S.P., M.P. and P.E. are employees of ViTherapeutics GmbH. The remaining authors declare no competing interests.

Ethics approval and consent to participate: The studies were performed in compliance with the Austrian experimentation law. Animal trial permission was granted by the national authorities (BMVFW-66.011/0012-WF/V/3b/2016 and BMWFu-W66.011/0041-WF/V/3b/2016).

Funding: This study was supported by a grant from the Christian Doppler Research Association (L.M.S., C.U., B.S., G.W.).

Data availability: All pertinent data to support this study are included in the manuscript and supplementary files. Further data supporting the findings are available upon request.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer. 4, 53 (2016).

2. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

3. Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R. H. L., Michielin, O. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170, 1109–11 e10 (2017).

4. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

5. Koks, C. A., Garg, A. D., Ehrhardt, M., Riva, M., Vandenberk, L., Boon, L. et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int. J. Cancer. 136, E131–E1325 (2015).

6. Yin, J., Markert, J. M. & Leavenworth, J. W. Modulation of the intratumoral immune landscape by oncolytic herpes simplex virus virotherapy. Front. Oncol. 7, 136 (2017).

7. Hastie, E. & Grzdelishvili, V. Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol. 93(PT 12), 2529–2545 (2012).

8. Stojilj, D. F., Lichy, B., Knowles, S., Marius, R., Atkins, H., Sonenberg, N. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825 (2000).

9. Melzer, M. K., Lopez-Martinez, A. & Altomonte, J. Oncolytic vesicular stomatitis virus as a viro-immunotherapeutic: defeating cancer with a “hammer” and “anvil”. Biomedicines. 5, E8 (2017).

10. Lyles, D. S., Rupprecht, C. E. Rhabdoviridae. In fields virology 5th edn. (eds. Knipe, D. M. H.P, Griffin, D. E., Lamb, R. A., Stauss, S. E., Martin, M. A., Roizman, B.J.) (Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, 2007).

11. Bishnoi, S., Tiwari, R., Gupta, S., Byrareddy, S. N. & Nayak, D. Oncotargeting by vesicular stomatitis virus (VSV): advances in cancer therapy. Viruses 10, E90 (2018).

12. Critchley-Thorne, R. J., Simons, D. L., Yan, N., Miyahira, A. K., Dirbas, F. M., Johnson, D. L. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009).

13. Katsoulidis, E., Kaur, S. & Platnias, L. C. Deregulation of interferon signaling in malignant cells. Pharmaceticalca 3, 406–418 (2010).

14. Dold, C., Rodriguez Urbio, C., Wollmann, G., Egerer, L., Muik, A., Bellmann, L. et al. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol. Ther. Oncolytics. 3, 16021 (2016).

15. Muik, A., Stubbert, L. J., Jahedi, R. Z., Geibeta, Y., Kimpel, J., Dold, C. et al. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res. 74, 3567–3578 (2014).

16. Urbioa, C., Santer, F. R., Petersson, M., van der Pluijm, G., Horninger, W., Erllman, P. et al. Oncolytic activity of the rhabdovirus VSV-GP against prostate cancer. Int. J. Cancer. 143, 1786–1796 (2018).

17. Kimpel, J., Urbioa, C., Koske, I., Tober, R., Banki, Z., Wollmann, G. et al. The oncolytic virus VSV-GP is effective against malignant melanoma. Viruses. 10, E108 (2018).

18. Tober, R., Banki, Z., Egerer, L., Muik, A., Behmuller, S., Kreppel, F. et al. VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications. J. Virol. 88, 4897–4907 (2014).

19. Russell, S. J., Federispie, M. J., Peng, K. W., Tong, C., Dingli, D., Morice, W. G. et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 89, 926–933 (2014).

20. Marelli, G., Howells, A., Lemoine, N. R. & Wang, Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front. Immunol. 9, 866 (2018).

21. Prestwich, R. J., Errington, F., Diaz, R. M., Pandha, H. S., Harrington, K. J., Melcher, A. A. et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum. Gene Ther. 20, 1119–1132 (2009).

22. Speranza, M. C., Kasai, K. & Lawler, S. E. Preclinical mouse models for analysis of the therapeutic potential of engineered oncolytic herpes viruses. ILAR J. 57, 63–72 (2016).

23. Ungerechts, G., Springfeld, C., Frenzek, M. E., Lampe, J., Parker, W. B., Sorscher, E. J. et al. An immunocompetent murine model for oncolysis with an armed and targeted measles virus. Mol. Ther. 15, 1991–1997 (2007).

24. Falls, T., Roy, D. G., Bell, J. C. & Bourgeois-Daigneault, M. C. Murine tumor models for oncolytic rhabdo-virotherapy. ILAR J. 57, 73–85 (2016).

25. Galvão, F., Diaz, R. M., Wongthida, P., Thompson, J., Kottke, T., Barber, G. et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther. 17, 158–170 (2010).

26. Patel, M. R., Jacobson, B. A., Ji, Y., Drees, J., Tang, S., Xiong, K. et al. Vesicular stomatitis virus expressing interferon-beta is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget 6, 33165–33177 (2015).
The lytic activity of VSV-GP treatment dominates the therapeutic effects...

L.-M. Schreiber et al.

27. Durham, N. M., Mulgrew, K., McGlinchey, K., Monks, N. R., Ji, H., Herbst, R. et al. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol. Ther. 25, 1917–1932 (2017).

28. Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

29. Kulkarni, M. M. Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr. Protoc. Mol. Biol. 94, 258.10.1–258.10.17 (2011).

30. Page, R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996).

31. Stojdl, D. F., Lichty, B. D., tenOever, B. R., Paterson, J. M., Power, A. T., Knowles, S. et al. Oncolytic virotherapy enhances the efficacy of anti-PD-1/L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

32. Noser, J. A., Mael, A. A., Sakuma, R., Ohmine, S., Marcato, P., Lee, P. W. et al. The RAS/RAf/1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol. Ther. 15, 1531–1536 (2007).

33. Ruotsalainen, J. J., Kaikkonen, M. U., Niittykoski, M., Martikainen, M. W., Lemay, C. G., Cox, J. et al. Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Ther. 22, 65–75 (2015).

34. Zhang, L., Steele, M. B., Jenks, N., Grel, J., Behrens, M., Nace, R. et al. Robust oncolytic virotherapy induces tumor lysis syndrome and associated toxicities in the MPC-11 plasmacytoma model. Mol. Ther. 24, 2109–2117 (2016).

35. Huang, T. T., Lan, Y. W., Chen, C. M., Ko, Y. F., Ojcius, D. M., Martel, J. et al. Antrodi cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Sci. Rep. 9, 5145 (2019).

36. Srivastava, A. K., Sharma, R. K., Yolcu, E. S., Ulier, V., MacLeod, K., Dinc, G. et al. Prime-boost vaccination with SA-1–188L costimulatory molecule and survivin eradicates lung cancer in CD8+ T and NK cell dependent manner. PLoS ONE 7, e48463 (2012).

37. Hofmann, U. B., Voigt, H., Andersen, M. H., Stratén, P. T., Becker, J. C. & Eggert, A. O. Identification and characterization of survivin-derived H-2Kb-restricted CTL epitopes. Eur. J. Immunol. 39, 1419–1424 (2009).

38. Lladser, A., Ljungberg, K., Tufvesson, H., Tazzari, M., Roos, A. K., Martel, J. et al. Antrodi cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Cancer Immunol. Immunother. 59, 81–92 (2010).

39. Van Bleek, G. M. & Nathenson, S. G. Isolation of an endogenously processed interferon receptor alpha/beta is associated with improved survival after adjuvant therapy in resected pancreatic cancer. HPB 9, 289–294 (2007).

40. Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

41. Noser, J. A., Mael, A. A., Sakuma, R., Ohmine, S., Marcato, P., Lee, P. W. et al. The RAS/RAf/1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol. Ther. 15, 1531–1536 (2007).

42. Lechner, M. G., Karimi, S. S., Barry-Holson, K., Angell, T. E., Murphy, K. A., Church, C. H. et al. Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J. Immunother. 36, 477–489 (2013).

43. Yokouchi, H., Chamoto, K., Wakita, D., Yamazaki, K., Shirato, T., Hakeshima, T. et al. Combination tumor immunotherapy with radiotherapy and Th1 cell therapy against murine lung carcinoma. Clin. Exp. Metastasis 24, 533–540 (2007).

44. Campion, C. A., Sodern, D. & Forde, P. F. Antitumour responses induced by a cell-based Reovirus vaccine in murine lung and melanoma models. BMC Cancer 16, 462 (2016).

45. Curtis, A., Calabro, K., Galanneau, J. R., Bigio, I. J. & Kruecker, T. Temporal variations in skin pigmentation in C57BL/6 mice affect optical bioluminescence quantitation. Mol. Imaging Biol. 13, 1114–1123 (2011).

46. Choi, A. H., O'Leary, M. P., Chaurasiya, S., Lu, J., Kim, S. I., Fong, Y. et al. Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery 163, 336–342 (2018).

47. Zamarin, D., Holmgard, R. B., Subudhi, S. K., Park, J. S., Mansour, M., Palese, P. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 6, 226ra32 (2014).

48. Kaufman, H. L., Amatruda, T., Reid, T., Gonzalez, R., Glassy, J., Whittam, E. et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J. Immunother. Cancer. 4, 12 (2016).

49. Lemay, C. G., Rintoul, J. L., Kus, A., Paterson, J. M., Garcia, V., Falls, T. J. et al. Harnessing oncolytic virus-mediated antitumor immunity in an infected cell vaccine. Mol. Ther. 20, 1791–1799 (2012).

50. Oseledchyk, A., Ricca, J. M., Gigoux, M., Ko, B., Redelman-Sidi, G., Walther, T. et al. Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget 9, 28702–28716 (2018).

51. Leddon, J. L., Chen, C. Y., Currier, M. A., Wang, P. Y., Jung, F. A., Denton, N. L. et al. Oncolytic HSV virotherapy in mouse sarcomas differentially triggers an antitumor T-cell response in the absence of virus permissivity. Mol. Ther. Oncolytics 1, 14010 (2015).