Nucleosome assembly and genome integrity
The fork is the link

Félix Prado* and Marta Clemente-Ruiz
Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER); Consejo Superior de Investigaciones Científicas (CSIC); Seville, Spain

Keywords: nucleosome assembly, replication fork, homologous recombination, genetic instability, Okazaki fragment, H3K56 acetylation, Adf1, Rad27

Abbreviations: GCRs, gross chromosomal rearrangements; H3K56ac, acetylated lysine 56 of histone H3; HU, hydroxyurea; DSB, double-strand break; MMS, methyl methanesulfonate; CPT, camptothecin; BIR, break-induced replication; FEN-1, flap endonuclease 1

Submitted: 02/01/12
Revised: 02/13/12
Accepted: 02/13/12
http://dx.doi.org/10.4161/bioa.19737
*Correspondence to: Félix Prado; Email: felix.prado@cabimer.es

Commentary to: Clemente-Ruiz M, González-Prieto R, Prado F. Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet 2011; 7:e1002376; PMID: 22102830; http://dx.doi.org/10.1371/journal.pgen.1002376

Introduction

Maintaining the stability of the replication forks is one of the main tasks of the DNA damage response. Specifically, checkpoint mechanisms detect stressed forks and prevent their collapse. In the published report reviewed here we have shown that defective chromatin assembly in cells lacking either H3K56 acetylation or the chromatin assembly factors CAF1 and Rtt106 affects the integrity of advancing replication forks, despite the presence of functional checkpoints. This loss of replication intermediates is exacerbating in the absence of Rad52, suggesting that collapsed forks are rescued by homologous recombination and providing an explanation for the accumulation of recombinogenic DNA damage displayed by these mutants. These phenotypes mimic those obtained by a partial reduction in the pool of available histones and are consistent with a model in which defective histone deposition uncouples DNA synthesis and nucleosome assembly, thus making the fork more susceptible to collapse. Here, we review these findings and discuss the possibility that defects in the lagging strand represent a major source of fork instability in chromatin assembly mutants.

The DNA damage response functions as a barrier that prevents genetic instability, a hallmark of cancer development. The integrity of the replication fork is a central component of this response, and mutations that affect the mechanisms involved in the detection, stabilization and repair of stressed forks cause genome instability. So far, however, the analyses of these mechanisms have not really taken into account the fact that the advancing fork is rapidly assembled into chromatin through a cell cycle-regulated process that involves genetic and physical interactions between components of the replisome and chromatin assembly factors. This tight connection is required to coordinate the correct supply of histones at the fork in response to cellular and environmental changes. However, it is still largely unknown how the processes of nucleosome assembly, and in connection with DNA synthesis, influence replication fork stability and consequently genome integrity.

A first approach to this problem came some years ago with the finding that cells, from yeast to humans, accumulate genetic instability when they are defective in chromatin assembly, as determined by increased frequencies of recombination and gross chromosomal rearrangements (GCRs) in these cells. However, the fact that chromatin assembly is also associated with DNA replication–independent processes known to influence genome integrity, such as DNA repair and transcription, leaves open the question of how genetic instability is linked to problems in histone deposition. In fact, a general phenotype of cells with mutations in chromatin assembly factors is that they are highly sensitive to DNA damaging agents.

Nucleosome Assembly Maintains Replication Fork Stability

To directly address the impact that defective chromatin assembly has on replication fork stability, we followed the fate of
replication intermediates from the early replication origin ARS305 by 2D gel analysis in yeast cells partially depleted of histone H4 (t::HHF2 cells). In these cells, the demand for a huge amount of histones during replication impairs chromatin assembly. This is rapidly followed by defects in the replisome integrity and a loss of replication intermediates, despite the presence of functional replication initiation and checkpoint activation. Taken together, these results highlight the importance that a fine-tuned regulation of the available pool of histones has on maintaining genome integrity, and suggest that the process of histone deposition plays an essential role in assuring the integrity of replication forks.

To validate this hypothesis, we took advantage of some important findings about the mechanism of histone deposition mediated by the acetylation of newly synthesized histone H3 at lysine 56. This modification (H3K56ac) is catalyzed by the histone acetyltransferase Rtt109 upon presentation of the H3/H4 heterodimer by the histone chaperone Asf1. In a seminal work, Zhang, Vertveld and colleagues showed that H3K56ac promotes nucleosome assembly at the fork by increasing the affinity of H3 for two chromatin assembly factors, CAF1 and Rtt106, with redundant functions in histone deposition. We have shown that cells lacking either H3K56 acetylation (af/Δ, rtt109Δ and H3K56R) or CAF1 and Rtt106 (that is, cac1Δ rtt106Δ, but not cac1Δ or rtt106Δ single mutants) displayed a similar loss of replication intermediates. In these mutants the chromatin structure of ARS305 was not altered (our unpublished results), and the origin was properly activated. Besides, they were proficient in checkpoint activation. In fact, mutations that impaired the replicative checkpoint delayed progression through S phase in af/Δ cells, suggesting that they affect DNA replication by different mechanisms. Therefore, the loss of replication intermediates in chromatin assembly mutants is not due to defective replication initiation or checkpoint activation. Of note, cac1Δ rtt106Δ cells are proficient in H3K56 acetylation, and the loss of fork integrity in the triple mutant af/Δ cac1Δ rtt106Δ was similar to that displayed by af/Δ and cac1Δ rtt106Δ. Thus, the loss of fork integrity was not due to the lack of H3K56 acetylation per se but rather to defective nucleosome assembly.

Previous CPM analyses have shown that cells defective in H3K56 acetylation lose their replisome integrity in the presence of hydroxyurea (HU). Since this drug causes fork stalling by depleting dNTPs, this result suggested a role for H3K56 acetylation in keeping the stability of stalled forks. We confirmed this loss of fork integrity by 2D gel analysis and extended it to cells lacking CAF1 and Rtt106. Remarkably, the loss of replication intermediates was higher in the presence than in the absence of HU except for nucleosome assembly mutants lacking the recombinational repair protein Rad52, which is involved in the rescue of the collapsed replication forks. This suggests that the HU does not increase fork instability but rather prevents the restart of collapsed forks. In agreement with this, af/Δ and cac1Δ rtt106Δ cells were not affected in resuming DNA replication upon HU arrest (our unpublished results) or following a normal cell cycle, with a normal checkpoint recovery. In summary, the chromatin assembly mutants lacking functional histone deposition pathways provide redundant mechanisms for stabilizing advancing, but not stalled, replication forks.

Genome Integrity in Chromatin Assembly Mutants

Defective histone deposition causes the collapse and likely the breakage of the fork (Fig. 1). Indeed, H3K56 acetylation mutants accumulated GCCRs, as well as breaks and contractions at CAG/CTG tracts that are mediated by the double-strand break (DSB) repair mechanism of non-homologous end joining (NHEJ). Importantly, the frequency of GCCRs in the absence of Rad52, suggesting that most DSBs are properly processed by homologous recombination with the sister chromatid. Consequently, chromatin assembly mutants that lack Rad52 displayed a higher loss of replication intermediates. Along this line, the loss of replication intermediates in t::HHF2 and af/Δ mutants was associated with an accumulation of Holliday junctions in the presence of HU, which inhibits DNA synthesis and thereby the restart of the rescued fork (Fig. 1). Likewise, H3K56 acetylation mutants can repair DSBs by both ectopic and sister-chromatid recombination and spontaneously accumulate sister-chromatid recombination products. Altogether, these results suggest that the accumulation of recombinogenic DNA damage in histone deposition mutants is associated with the repair of broken replication forks.

Chromatin assembly mutants progress properly through S phase, despite the strong drop in replication intermediates (for ARS305, this is approximately 50% of the wild type), indicating that repair by recombination is highly efficient. Indeed, t::HHF2 and af/Δ mutants are very sick in the absence of Rad52. The repair of the fork might occur by a two-ended DSB repair process upon arrival of the oncoming fork, although the kinetic analysis of replication intermediates suggests that the fork is rescued by break-induced replication (BIR), using the on-ended DSB generated by the breakage to invade the sister chromatid and to prime new DNA synthesis (Fig. 1). Remarkably, Rad52 is not essential for viability, suggesting that additional mechanisms may participate in the rescue of the broken forks. Indeed, cells lacking Aaf1 undergo repeat expansions at the rDNA that require the BIR-specific replication factor Pol32 but that, unexpectedly, are independent of the recombination proteins Rad51 and Rad52. These results can be explained by fork breakage at the lagging-strand template with the subsequent annealing to the lagging-strand template of another replication fork through a microhomology-mediated BIR mechanism.

In contrast to af/Δ and rtt109Δ, cac1Δ rtt106Δ displays low sensitivity to drugs that interfere with the advance of the replication fork, such as the alkylating agent methyl methanesulfonate (MMS) or the topoisomerase I inhibitor camptothecin (CPT). This suggests that H3K56 acetylation plays a role in tolerating replicative DNA damage that is
independent of its role in histone deposition. Accordingly, a H3 mutant containing glutamic acid rather than lysine at position 56 was able to bind to CAF1 and Rtt106 and still displayed sensitivity to MMS and CPT.35 Thus, H3K56 acetylation has a role in DNA repair that is subsequent to its deposition in chromatin. In this regard, it has been shown that H3K56 acetylation is required for the recombinational repair of DNA damage generated by MMS and CPT through its recruitment of the Rtt101 ubiquitin ligase complex.32,33,36

Fork Instability in Nucleosome Assembly Mutants: A Matter of Lagging-Strand Synthesis?

How defective H3K56ac/CAF1/Rtt106-mediated histone deposition causes fork instability is still unknown, but the fact that H3K56 acetylation is a mark of newly synthesized histones that is removed at the end of S phase suggests that the problem lies in the deposition of histones synthesized de novo rather than in recycling the parental histones. Additionally, problems specifically associated with the H3K56ac deposition pathways can be ruled out, since a partial reduction in the pool of available histones displays similar phenotypes of fork integrity and recombination. One possibility to explore is that a defect in the supply of histones uncouples DNA synthesis and histone deposition, thus exposing unassembled and unstable DNA fragments behind the fork that might directly break or form nuclelease-processed DNA structures. Although fork breakage and its repair by recombination can occur at both the leading and lagging strands, the later appears to be more susceptible to problems during DNA replication.37 Along this line, several reports suggest that the lagging strand is unstable under conditions of defective nucleosome assembly. The first is related to the accumulation of breaks and CAG/CTG contractions in \(a\)T\(\lambda \) and \(r\)t\(10/\delta \)A, but not \(r\)t\(101/\lambda \)A cells.31 These contractions are associated with hairpin-like DNA structures, which are more likely to be formed at the lagging-strand template, as they require single-stranded DNA regions. Another piece of evidence comes from the aforementioned analysis of repeat instability at the rDNA that supports a mechanism initiated by breakage at the lagging strand template.34 Finally, \(a\)T\(\lambda \)A cells accumulate Pol\(\alpha \) at stalled forks and are highly sensitive to mutations in this polymerase.26,28

While the leading strand is synthesized as a continuous DNA fragment, the lagging strand is synthesized in short (150–200 nt) DNA sequences called Okazaki fragments. Each one is synthesized by the DNA polymerase Pol\(d \) from a primer formed by 7–14 ribonucleotides followed by 10–20 deoxyribonucleotides. Consequently, the synthesis of the complete lagging strand requires that the RNA primers are removed and the DNA fragments are subsequently joined. This maturation step is performed primarily by the nuclease FEN-1 (Rad27 in \textit{Saccharomyces cerevisiae}) that cleaves the 5' single-stranded flap structure generated upon displacement of the RNA primer by the upstream lagging DNA synthesis.38 Therefore, defective Okazaki fragments maturation is expected to generate an accumulation of...
nicks that might lead to template strand breakage and fork collapse. Indeed, rad27Δ cells accumulate high rates of homologous recombination and GCRs and display a unique duplication mutator phenotype thought to occur by DNA repair upon incorrect Okazaki fragments maturation.30-32 Consistent with this idea, rad27Δ displays replication defects and, importantly, these defects are epistatic over those displayed by afd1Δ (our unpublished results), suggesting that Rad27 and Afd1 prevent the loss of replication intermediates through the same mechanism.

In this frame, nucleosome assembly might facilitate the maturation of the Okazaki fragments. This is a conceivable possibility, since nucleosome assembly occurs as soon as there is sufficient DNA behind the fork,33-35 and since antirecombinational Okazaki fragments are associated with pre-nucleosomal particles.36 Indeed, human FEN-1 and ligase I can efficiently process DNA flap structures assembled into nucleosomes in vitro.37 Notably, the cleavage activity of hFEN-1 on nucleosome substrate requires nucleosomal DNA but not nucleosomal histones;38 thus, dual mobility could be provided by H3K56 acetylation, as this modification breaks a histone-DNA interaction that modulates chromatin compaction.39 Along these lines, replication fork collapse in nucleosome assembly mutants might be due to defective Okazaki fragment maturation and the accumulation of unstable single-stranded DNA regions.

Future Perspectives

Although promising, a relationship between nucleosome assembly and Okazaki fragment maturation remains speculative and requires in-depth study of lagging-strand DNA replication as well as a detailed analysis of nucleosome positioning at the fork under conditions of defective nucleosome assembly. Besides, we cannot rule out other scenarios like a loss of physical tension in the replicative architecture as a source of fork instability. The observation that chromatin assembly mutants complete DNA replication despite the loss of replication intermediates could be due to the formation of non-canonical replication forks. Alternative possibilities include altered programs of replication initiation and elongation, and this should be analyzed on a genome-wide scale. These studies may also provide information about the existence of chromosome regions that are more susceptible to replication problems due to defective nucleosome assembly. Finally, several observations have linked nucleosome assembly with cancer progression, such as the accumulation in breast cancer of the Asf1 isofrom required for proliferation,40 and the association of chromatin assembly genes with chromosome regions deleted in some tumors.41 This link is further strengthened by the observation that defective H3K56 acetylation accelerates aging in yeast cells.42

Note

A work that demonstrates a interconnection between lagging-strand synthesis and chromatin assembly was published while this manuscript was in press.43

Acknowledgments

We thank J. C. Reyes and R. E. Wellinger for critical reading of the manuscript. The research was funded by the Spanish Ministry of Science (BFU2009-09306).

References

1. Halazonetis TD, Gruevski VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008; 319:1335-9; PMID:18316446; http://dx.doi.org/10.1126/science.1140763.

2. Tercero JA, Longhese MP, Diffley JFX. A central role for topoisomerase II in canonical replication forks. Nat Rev Mol Cell Biol 2003; 4:552-7; PMID:12142524; http://dx.doi.org/10.1038/nrm1079.

3. Kolodner RD, Putnam CD, Myung K. Maintenance of genomic stability in S. cerevisiae through histone supply and demand. Science 2007; 315:649-52; PMID:17320445; http://dx.doi.org/10.1016/j.molcel.2007.02.006.

4. Driscoll R, Hudson A, Jackson SP. Yeast Rtt109 phosphorylation is critical for DNA repair and is linked to fork collapse in nucleosome assembly mutants. EMBO Rep 2006; 7:1928-31; PMID:17072757; http://dx.doi.org/10.1038/sj.embor.7400318.

5. Gunjan A, Verreault AA. A Rad53 kinase-dependent checkpoint pathway is required for the repair upon incorrect Okazaki fragments maturation. Mol Cell 2005; 19:763-9; PMID:16015338; http://dx.doi.org/10.1016/j.molcel.2005.08.013.

6. Groth A, Ray-Gallet D, Quivy J-P, Lukas J, Bartek J, Adams PD. Defective S phase chromatin assembly causes DNA damage, activation of the p38 kinase pathway, and S phase arrest. Mol Cell 2003; 11:341-51; PMID:12633223; http://dx.doi.org/10.1016/S0092-8674(03)00037-6.

7. Almouzni G. Human Asf1 regulates the flow of S phase chromatin assembly. Cell 2003; 115:537-49; PMID:12620223; http://dx.doi.org/10.1016/S0092-8674(03)00896-1.

8. Puda P, Ayala M. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 2005; 25:1526-36; PMID:15844410; http://dx.doi.org/10.1128/MCB.25.4.1526-1536.2005.

9. Puda P, Carvajal-Esteban F, Ayala M. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sine chromosome exchange. EMBO Rep 2004; 5:497-502; PMID:15357496; http://dx.doi.org/10.1038/sj.embor.7400218.

10. Rogina B, Zhao H, Hsieh S, Zhang Z. A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 2010; 37:469-80; PMID:20386844; http://dx.doi.org/10.1016/j.molcel.2010.01.028.

11. Hsieh S, Zhao H, Hammonds R, Zhang Z. Histone H4 acetylation in the DNA damage response. Nature 2005; 436:294-8; PMID:16015338; http://dx.doi.org/10.1038/nature03714.

12. Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya K, Kanaya Y. A role for histone H4 acetylation in accumulation of unstable single-stranded DNA regions. EMBO Rep 2004; 5:183-95; PMID:15141846; http://dx.doi.org/10.1038/sj.embor.7450188.
26. Ramey CJ, Howar S, Adkins M, Linger J, Spicer J,

25. Hu F, Alcasabas AA, Elledge SJ. Asf1 links Rad53 to

23. Clemente-Ruiz M, González-Prieto R, Prado F.

22. Clemente-Ruiz M, Prado F. Chromatin assembly

21. Qin S, Parthun MR. Histone H3 and the histone

20. Choy JS, Kron SJ. NuA4 subunit Yng2 function in

28. Franco AA, Lam WM, Burgers PM, Kaufman PD.

Checkpoints functions are required for normal S-phase

10313-10327. 2004

15542840; http://dx.doi.org/10.1128/MCB.24.23.

15. Tyler JK. Activation of the DNA damage checkpoint

11:790-6; PMID:19465889; http://dx.doi.org/10.

10:790-6; PMID:19465889; http://dx.doi.org/10.

1038/embor.2009.67

30. Collins SR, Miller KM, Mao NL, Rugaro A, Fillipovich J, Chi CS, et al. Functional direction of proteins involved in yeast chromosome biology using a genetic interaction map. Yeast 2007, 24:866-80; PMID:17314980; http://dx.doi.org/10.1080/09518920600638655

31. Yang, JH, Freundlich CM. The Brr1p histone acetyltransferase hinders error-free replication to prevent CAG/CTG expansion. DNA Repair (Amst) 2010; 9:619-26; PMID:20985452; http://dx.doi.org/10.1016/j.dnarep.2009.12.022

32. Duru E, Vaziri NA, Brown GW, Breitman M. Building your Mms22 and Mps1: regulating homologous recombination induced by replication blockage. DNA Repair (Amst) 2008; 7:611-8; PMID:18312796; http://dx.doi.org/10.1016/j.dnarep.2008.03.007

33. Wurtz H, Kaiser CS, Baud J, Se-Huila E, Lee H-K, Tsao S, et al. Histone H3 Lys56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 2013; 33:1141-72; PMID:23205179; http://dx.doi.org/10.1128/MCB.01453-15

34. Houseley J, Tollervey D. Repeat expansion in the budding yeast chromosome can occur independently of the canonical homologous recombination machinery. Nucleic Acids Res 2011; 39:8778-91; PMID:21768125; http://dx.doi.org/10.1093/nar/gkr589

35. Eriksson JA, Kaznowski PD, A. regularly, negatively, stabilize in vivo, histone H3K56, support dynamic, normally, active epigenetic, but not potentially utile minichromatin. DNA Repair (Basel) 2008; 7:157-70; PMID 18075965; http://dx.doi.org/10.1016/j.dnarep.2008.04.004

36. Roberts TM, Zabb IW, Vaziri NA, Peter M, Brown GW. Regulation of mitotic chromosome stability at chromatin assembly factor A. Mol Cell 2009; 34:197-8; PMID:19493849; http://dx.doi.org/10.1016/j.molcel.2009.08.015

37. Cui H, Redinbo MR. Flap endonuclease 1: an essential DNA repair protein. EMBO J 2000; 19:171-8; PMID:10707499; http://dx.doi.org/10.1093/emboj/20.2.171

38. Zheng L, Shen B. Okazaki fragment maturation: DNA synthesis to chromatin assembly. Nature 2007; 448:434-8; PMID:17578899; http://dx.doi.org/10.1038/nature06016

39. Tishkoff DX, Filosi N, Gaida GM, Kolodner RD. A novel mutation avoidance mechanism dependent on CAF-I-defective mutants. Proc Natl Acad Sci U S A 2002; 99:147-52; PMID:11827408; http://dx.doi.org/10.1073/pnas.013487499

40. Chou C, Kamakaka RT, Kadonaga JT. The RCAF complex regulates by ASF1 is required for replisome integrity. J Biol Chem 2012; 287:154-72; PMID:22025679; http://dx.doi.org/10.1074/jbc.M112.390581

41. Sessions JG, Stodd H, Kolbe T, Kopp R. Structures of replicating human versus Drosophila melanogaster. The replication fork, core histone fragments and termini structures. J Mol Biol 1986; 189:599-616; PMID:2816306

42. Okazaki fragments and replication forks. EMBO J 2001; 20:792-802; PMID:11743005; http://dx.doi.org/10.1093/emboj/20.24.7294

43. Aoyagi S, Henricksen LA, Berger F, Lemaître C, et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2011; 30:480-93; PMID:21492253; http://dx.doi.org/10.1038/emboj.2010.241

44. Huggins CF, Chakravarthy VR, Avendi A, Henredon LA, Bambha RA, Hayes JF. T lyr1 nucleosomes: I efficiently destroy base excision repair and DNA replication interference interaction assembled into nucleosomes. Mol Cell 2002; 10:121-61; PMID:12453423; http://dx.doi.org/10.1016/S0092-8674(00)81846-2

45. Jagannathan I, Pepenella S, Hayes JJ. Activity of PSEN1 progranulin, progranulin deficiency in progranulin deficient, non-synonymous, non-synonymous base, is predictive of outcome in breast cancer. EMBO J 2011; 30:480-93; PMID:21492253; http://dx.doi.org/10.1038/emboj.2010.241

46. Carrozzo A, Chen SY, Trefflich J, Longitude A, Burger J, Lemaitre C, et al. Asf1, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2011; 30:480-93; PMID:21492253; http://dx.doi.org/10.1038/emboj.2010.241

47. Freije J, Tijero M, Deloue C, Canero J, Kell J, Hartl J. Unwinding histone expression promotes life span extension. Mol Cell 2010; 39:774-85; PMID:20407274; http://dx.doi.org/10.1016/j.molcel.2010.08.015

48. Dickson CS, Whitley I. Isometric coupling of lagging- strand synthesis to chromatin assembly. Nature 2002; 418:634-8; PMID:12243517; http://dx.doi.org/10.1038/18995