The green, blue and grey water footprint of crops and derived crop products

M. M. Mekonnen and A. Y. Hoekstra
Twente Water Centre, University of Twente, Enschede, The Netherlands

Received: 3 January 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 20 January 2011
Revised: 31 March 2011 – Accepted: 18 May 2011 – Published: 25 May 2011

Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton$^{-1}$), vegetables (300 m3 ton$^{-1}$), roots and tubers (400 m3 ton$^{-1}$), fruits (1000 m3 ton$^{-1}$), cereals (1600 m3 ton$^{-1}$), oil crops (2400 m3 ton$^{-1}$) to pulses (4000 m3 ton$^{-1}$). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ$^{-1}$) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ$^{-1}$, while this is 121 m3 GJ$^{-1}$ for maize.

The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr$^{-1}$), rice (992 Gm3 yr$^{-1}$) and maize (770 Gm3 yr$^{-1}$). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr$^{-1}$), China (967 Gm3 yr$^{-1}$) and the USA (826 Gm3 yr$^{-1}$). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr$^{-1}$) and the Ganges river basin (108 Gm3 yr$^{-1}$). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr$^{-1}$ (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr$^{-1}$ (48% green, 40% blue, 12% grey).

1 Introduction

Global freshwater withdrawal has increased nearly seven-fold in the past century (Gleick, 2000). With a growing population, coupled with changing diet preferences, water withdrawals are expected to continue to increase in the coming decades (Rosegrant and Ringler, 2000; Liu et al., 2008). With increasing withdrawals, also consumptive water use is likely to increase. Consumptive water use in a certain period in a certain river basin refers to water that after use is no longer available for other purposes, because it evaporated (Perry, 2007). Currently, the agricultural sector accounts for about 85% of global blue water consumption (Shiklomanov, 2000).
The aim of this study is to estimate the green, blue and grey water footprint of crops and crop products in a spatially-explicit way. We quantify the green, blue and grey water footprint of crop production by using a grid-based dynamic water balance model that takes into account local climate and soil conditions and nitrogen fertilizer application rates and calculates the crop water requirements, actual crop water use and yields and finally the green, blue and grey water footprint at grid level. The model has been applied at a spatial resolution of 5 by 5 arc minute. The model’s conceptual framework is based on the CROPWAT approach (Allen et al., 1998).

The concept of “water footprint” introduced by Hoekstra (2003) and subsequently elaborated by Hoekstra and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain et al. (2006). Including the grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain et al. (2006). Including the grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

The water footprint is an indicator of direct and indirect appropriation of freshwater resources. The term “freshwater appropriation” includes both consumptive water use (the green and blue water footprint) and the water required to assimilate pollution (the grey water footprint). The grey water footprint, expressed as a dilution water requirement, has been recognised earlier by for example Postel et al. (1996) and Chapagain (2008) provides a framework to analyse the link between human consumption and the appropriation of the globe’s freshwater. The water footprint of a product (alternatively known as “virtual water content”) expressed in water volume per unit of product (usually m3 ton$^{-1}$) is the sum of the water footprints of the process steps taken to produce the product. The water footprint within a geographically delineated area (e.g. a province, nation, catchment area or river basin) is equal to the sum of the water footprints of all processes taking place in that area (Hoekstra et al., 2011). The blue water footprint refers to the volume of surface and groundwater consumed (evaporated) as a result of the production of a good; the green water footprint refers to the rainwater consumed. The grey water footprint of a product refers to the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.
al. (1998) for the case of crop growth under non-optimal conditions. The grid-based dynamic water balance model used in this study computes a daily soil water balance and calculates crop water requirements, actual crop water use (both green and blue) and actual yields. The model is applied at a global scale using a resolution of 5 by 5 arc minute (Mekonnen and Hoekstra, 2010). We estimated the water footprint of 146 primary crops and more than two hundred derived products. The grid-based water balance model was used to estimate the crop water use for 126 primary crops; for the other 20 crops, which are grown in only few countries, the CROPWAT 8.0 model was used.

The actual crop evapotranspiration (ET_a, mm day$^{-1}$) depends on climate parameters (which determine potential evapotranspiration), crop characteristics and soil water availability (Allen et al., 1998):

$$ET_a[t] = K_c[t] \times K_s[t] \times ET_o[t]$$ (1)

where K_c is the crop coefficient, $K_s[t]$ a dimensionless transpiration reduction factor dependent on available soil water with a value between zero and one and $ET_o[t]$ the reference evapotranspiration (mm day$^{-1}$). The crop coefficient varies in time, as a function of the plant growth stage. During the initial and mid-season stages, K_c is a constant and equals K_c,ini and K_c,mid respectively. During the crop development stage, K_c is assumed to linearly increase from K_c,ini to K_c,mid. In the late season stage, K_c is assumed to decrease linearly from K_c,mid to K_c,fin. Crop coefficients (K_c‘s) were obtained from Chapagain and Hoekstra (2004).

Crop planting dates and lengths of cropping seasons were obtained from Chapagain and Hoekstra (2004). Crop planting dates and lengths of cropping seasons were obtained from FAO (2008d), Sacks et al. (2010), Portmann et al. (2010) and USDA (1994). For some crops, values from Chapagain and Hoekstra (2004) were used. We have not considered multi-cropping practices. Monthly long-term average reference evapotranspiration data at 10 by 10 arc minute resolution were obtained from FAO (2008c). The 10 by 10 arc minute data were converted to 5 by 5 arc minute resolution by assigning the 10 by 10 minute data to each of the four 5 by 5 minute grid cells. Following the CROPWAT approach, the monthly average data were converted to daily values by curve fitting to the monthly average through polynomial interpolation.

The value of K_s is calculated on a daily basis as a function of the maximum and actual available soil moisture in the root zone.

$$K_s[t] = \begin{cases} \frac{S[t]}{(1-p)\times S_{\text{max}}[t]} & \text{if } S[t] < (1-p)\times S_{\text{max}}[t] \\ 1 & \text{Otherwise} \end{cases}$$ (2)

where $S[t]$ is the actual available soil moisture at time t (in mm); $S_{\text{max}}[t]$ the maximum available soil water in the root zone, i.e., the available soil water in the root zone when soil water content is at field capacity (mm); and p the fraction of S_{max} that a crop can extract from the root zone without suffering water stress (dimensionless).

Grid-based data on total available water capacity of the soil (TAWC) at a 5 by 5 arc minute resolution were taken from ISRIC-WISE (Batjes, 2006). An average value of TAWC of the five soil layers was used in the model.

In the case of rain-fed crop production, blue crop water use is zero and green crop water use (m3 ha$^{-1}$) is calculated by summing up the daily values of ET_a (mm day$^{-1}$) over the length of the growing period. In the case of irrigated crop production, the green and blue water use is calculated by performing two different soil water balance scenarios as proposed in Hoekstra et al. (2011) and also applied by FAO (2005), Siebert and Döll (2010) and Liu and Yang (2010). The first soil water balance scenario is carried out based on the assumption that the soil does not receive any irrigation, but using crop parameters of irrigated crops (such as rooting depth as under irrigation conditions). The second soil water balance scenario is carried out with the assumption that the amount of actual irrigation is sufficient to meet the irrigation requirement, applying the same crop parameters as in the first scenario. The green crop water use of irrigated crops is assumed to be equal to the actual crop evapotranspiration as was calculated in the first scenario. The blue crop water use is then equal to the crop water use over the growing period as simulated in the second scenario minus the green crop water use as estimated in the first scenario.

Crop growth and yield are affected by water stress. To account for the effect of water stress, a linear relationship between yield and crop evapotranspiration was proposed by Doorenbos and Kassam (1979):

$$\left(1 - \frac{Y_a}{Y_m}\right) = K_y \left(1 - \frac{\sum ET_a[t]}{\sum CWR[t]}\right)$$ (3)

where K_y is a yield response factor (water stress coefficient), Y_a the actual harvested yield (kg ha$^{-1}$), Y_m the maximum yield (kg ha$^{-1}$), ET_a the actual crop evapotranspiration in mm/period and CWR the crop water requirement in mm period$^{-1}$ (which is equal to $K_c \times ET_0$). K_y values for individual periods and the complete growing period are given in Doorenbos and Kassam (1979). The maximum yield values for each crop were obtained by multiplying the corresponding national average yield values by a factor of 1.2 (Reynolds et al., 2000). The actual yields, which are calculated per grid cell, are averaged over the nation and compared with the national average yield data (for the period 1996–2005) obtained from FAO (2008a). The calculated yield values are scaled to fit the national average FAO yield data.

The green and blue water footprints of primary crops (m3 ton$^{-1}$) are calculated by dividing the total volume of green and blue water use (m3 yr$^{-1}$) respectively, by the quantity of the production (ton yr$^{-1}$).

The grey water footprint is calculated by quantifying the volume of water needed to assimilate the nutrients that reach ground- or surface water. Nutrients leaching from agricultural fields are a main cause of non-point source pollution

www.hydrol-earth-syst-sci.net/15/1577/2011/
of surface and subsurface water bodies. In this study we have quantified the grey water footprint related to nitrogen use only. The grey component of the water footprint (m3 ton$^{-1}$) is calculated by multiplying the fraction of nitrogen that leaches or runs off by the nitrogen application rate (kg ha$^{-1}$) and dividing this by the difference between the maximum acceptable concentration of nitrogen (kg m$^{-3}$) and the natural concentration of nitrogen in the receiving water body (kg m$^{-3}$) and by the actual crop yield (ton ha$^{-1}$).

Country-specific nitrogen fertilizer application rates by crop have been estimated based on Heffer (2009), FAO (2006, 2009) and IFA (2009). Since grid-based fertilizer application rates are not available, we have assumed that crops receive the same amount of nitrogen fertilizer per hectare in all grid cells in a country. We have further assumed that on average 10% of the applied nitrogen fertilizer is lost through leaching, following Chapagain et al. (2006). The recommended maximum value of nitrate in surface and groundwater by the World Health Organization and the European Union is 50 mg nitrate (NO$_3$) per litre and the maximum value recommended by US-EPA is 10 mg per litre measured as nitrate-nitrogen (NO$_3$-N). In this study we have used the standard of 10 mg per litre of nitrate-nitrogen (NO$_3$-N), following again Chapagain et al. (2006). Because of lack of data, the natural nitrogen concentrations were assumed to be zero.

The water footprints of crops as harvested have been used as a basis to calculate the water footprints of derived crop products based on product and value fractions and water footprints of processing steps following the method as in Hoekstra et al. (2011). For the calculation of the water footprints of derived crop products we used product and value fraction. Most of these fractions have been taken from FAO (2003) and Chapagain and Hoekstra (2004). The product fraction of a product is defined as the quantity of output product obtained per quantity of the primary input product. The value fraction of a product is the ratio of the market value of the product to the aggregated market value of all the products obtained from the input product (Hoekstra et al., 2011). Products and by-products have both a product fraction and value fraction. On the other hand, residues (e.g. bran of crops) have only a product fraction and we have assumed their value fraction to be close to zero.

The water footprint per unit of energy for ethanol and biodiesel producing crops was calculated following the method as applied in Gerbens-Leenes et al. (2009). Data on the dry mass of crops, the carbohydrate content of ethanol providing crops, the fat content of biodiesel providing crops and the higher heating value of ethanol and biodiesel were taken from Gerbens-Leenes et al. (2008a, b) and summarized in Table 1.

Monthly values for precipitation, number of wet days and minimum and maximum temperature for the period 1996–2002 with a spatial resolution of 30 by 30 arc minute were obtained from CRU-TS-2.1 (Mitchell and Jones, 2005). The 30 by 30 arc minute data were assigned to each of the thirty-six 5 by 5 arc minute grid cells contained in the 30 by 30 arc minute grid cell. Daily precipitation values were generated from the monthly average values using the CRU-dGen daily weather generator model (Schuol and Abbaspour, 2007).

Crop growing areas on a 5 by 5 arc minute grid cell resolution were obtained from Monfreda et al. (2008). For countries missing grid data in Monfreda et al. (2008), the MICRA2000 grid database as described in Portmann et al. (2010) was used to fill the gap. The harvested crop areas as available in grid format were aggregated to a national level and scaled to fit national average crop harvest areas for the period 1996–2005 obtained from FAO (2008a).

Grid data on the irrigated fraction of harvested crop areas for 24 major crops were obtained from the MICRA2000 database (Portmann et al., 2010). For the other 102 crops considered in the current study, we used the data for “other perennial” and “other annual crops” as in the MICRA2000 database, depending on whether the crop is categorised under “perennial” or “annual” crops.

3 Results

3.1 The global picture

The global water footprint of crop production in the period 1996–2005 was 7404 Gm3 yr$^{-1}$ (78% green, 12% blue, and 10% grey). Wheat takes the largest share in this total volume; it consumed 1087 Gm3 yr$^{-1}$ (70% green, 19% blue, 11% grey). The other crops with a large total water footprint are rice (992 Gm3 yr$^{-1}$) and maize (770 Gm3 yr$^{-1}$). The contribution of the major crops to the global water footprint related to crop production is presented in Fig. 1. The global average green water footprint related to crop production was 5771 Gm3 yr$^{-1}$, of which rain-fed crops use 4701 Gm3 yr$^{-1}$ and irrigated crops use 1070 Gm3 yr$^{-1}$. For most of the crops, the contribution of green water footprint toward the total consumptive water footprint (green and blue) is more than 80%. Among the major crops, the contribution of green water toward the total consumptive water footprint is lowest for date palm (43%) and cotton (64%). The global average blue water footprint related to crop production was 899 Gm3 yr$^{-1}$. Wheat (204 Gm3 yr$^{-1}$) and rice (202 Gm3 yr$^{-1}$) have large blue water footprint together accounting for 45% of the global blue water footprint. The grey water footprint related to the use of nitrogen fertilizer in crops cultivation was 733 Gm3 yr$^{-1}$. Wheat (123 Gm3 yr$^{-1}$), maize (122 Gm3 yr$^{-1}$) and rice (111 Gm3 yr$^{-1}$) have large grey water footprint together accounting for about 56% of the global grey water footprint.

The green, blue, grey and total water footprints of crop production per grid cell are shown in Fig. 2. Large water footprints per grid cell (>400 mm yr$^{-1}$) are found in the Ganges and Indus river basins (India, Pakistan and Bangladesh), in eastern China and in the Mississippi river.
Table 1. Characteristics of ten ethanol providing and seven biodiesel providing crops.

Sugar and starch crops	Dry mass fraction (%)	Fraction of carbohydrates in dry mass (g g\(^{-1}\))	Ethanol per unit of carbohydrate (g g\(^{-1}\))	Energy yield\(^{*}\) (GJ ton\(^{-1}\))	Bioethanol yield\(^{**}\) (l ton\(^{-1}\))
Barley	85 %	0.76	0.53	10.2	434
Cassava	38 %	0.87	0.53	5.20	222
Maize	85 %	0.75	0.53	10.0	428
Potatoes	25 %	0.78	0.53	3.07	131
Rice, paddy	85 %	0.76	0.53	10.2	434
Rye	85 %	0.76	0.53	10.2	434
Sorghum	85 %	0.76	0.53	10.2	434
Sugar beet	21 %	0.82	0.51	2.61	111
Sugar cane	27 %	0.57	0.51	2.33	99
Wheat	85 %	0.76	0.53	10.17	434

Oil crops	Dry mass fraction (%)	Fraction of fat in dry mass (g g\(^{-1}\))	Biodiesel per unit of fat (g g\(^{-1}\))	Energy yield\(^{*}\) (GJ ton\(^{-1}\))	Biodiesel yield\(^{**}\) (l ton\(^{-1}\))
Coconuts	50 %	0.03	1	0.57	17
Groundnuts, with shell	95 %	0.39	1	14.0	421
Oil palm fruit	85 %	0.22	1	7.05	213
Rapeseed	74 %	0.42	1	11.7	353
Seed cotton	85 %	0.23	1	7.37	222
Soybeans	92 %	0.18	1	6.24	188
Sunflower seed	85 %	0.22	1	7.05	213

\(^{*}\) Based on a higher heating value of 29.7 kJ g\(^{-1}\) for ethanol and 37.7 kJ g\(^{-1}\) for biodiesel. \(^{**}\) Based on a density of 0.789 kg l\(^{-1}\) for ethanol and 0.88 kg l\(^{-1}\) for biodiesel (Alptekin and Canakci, 2008).

Fig. 1. Contribution of different crops to the total water footprint of crop production. Period: 1996–2005.
The average water footprint for cereal crops is.
For fruits we find a similar variation in water footprints:
Sugar obtained from sugar beet has a smaller water footprint than sugar from sugar cane. Besides, the blue component in the total water footprint of beet sugar (20%) is smaller than for cane sugar (27%).

3.2 The water footprint of primary crops and derived crop products per ton

The average water footprint per ton of primary crop differs significantly among crops and across production regions. Crops with a high yield or large fraction of crop biomass that is harvested generally have a smaller water footprint per ton than crops with a low yield or small fraction of crop biomass harvested. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres (Table 2). For food crops, the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton$^{-1}$), vegetables (~300 m3 ton$^{-1}$), roots and tubers (~400 m3 ton$^{-1}$), fruits (~1000 m3 ton$^{-1}$), cereals (~1600 m3 ton$^{-1}$), oil crops (~2400 m3 ton$^{-1}$), pulses (~4000 m3 ton$^{-1}$), spices (~7000 m3 ton$^{-1}$) to nuts (~9000 m3 ton$^{-1}$). The water footprint varies, however, across different crops per crop category. Besides, if one considers the water footprint per kcal, the picture changes as well. Vegetables and fruits, which have a relatively small water footprint per kg but a low caloric content, have a relatively large water footprint per kcal.

Globally, 86.5% of the water consumed in crop production is green water. Even in irrigated agriculture, green water often has a very significant contribution to total water consumption. The share of the blue water footprint in total water consumption (green plus blue water footprint) is shown in Fig. 3. The share of the blue water footprint is largest in arid and semi-arid regions. Regions with a large blue water proportion are located, for example, in the western part of the USA, in a relatively narrow strip of land along the west coast of South America (Peru–Chile), in southern Europe, North Africa, the Arabian peninsula, Central Asia, Pakistan and northern India, northeast China and parts of Australia.

basin (USA). These locations are the same locations as where the harvested crop area takes a relative large share in the total area (Monfreda et al., 2008).

Fig. 2. The green, blue, grey and total water footprint of crop production estimated at a 5 by 5 arc minute resolution. The data are shown in mm yr$^{-1}$ and have been calculated as the aggregated water footprint per grid cell (in m3 yr$^{-1}$) divided by the area of the grid cell. Period: 1996–2005.
Fig. 3. Contribution of the blue water footprint to the total consumptive (green and blue) water footprint of crop production. Period: 1996–2005.

- For alcoholic beverages we find: a water footprint of 300 m3 ton$^{-1}$ for beer and 870 m3 ton$^{-1}$ for wine.
- The water footprints of juices vary from tomato juice (270 m3 ton$^{-1}$), grapefruit juice (675 m3 ton$^{-1}$), orange juice (1000 m3 ton$^{-1}$) and apple juice (1100 m3 ton$^{-1}$) to pineapple juice (1300 m3 ton$^{-1}$).
- The water footprint of coffee (1301 cup$^{-1}$, based on use of 7 gram of roasted coffee per cup) is much larger than the water footprint of tea (271 cup$^{-1}$, based on use of 3 gram of black tea per cup).
- The water footprint of cotton fibres is substantially larger than the water footprints of sisal and flax fibres, which are again larger than the water footprints of jute and hemp fibres.

One should be careful in drawing conclusions from the above product comparisons. Although the global average water footprint of one product may be larger than the global average water footprint of another product, the comparison may turn out quite differently for specific regions.

The water footprints of crops vary across countries and regions as well. This is mainly due to differences in crop yields, as shown in Table 4 for the case of cereal crops. Relatively small water footprints per ton of cereal crops were calculated for Northern Europe (637 m3 ton$^{-1}$) and Western Europe (654 m3 ton$^{-1}$). On the other hand, with the exception of Southern Africa, the water footprints of cereal crops are quite large in most parts of Africa. While the average crop water requirement in Europe was only 11% lower to that observed in Africa, the average water footprint of cereal crops in Europe was about three times smaller than in Africa, which can mainly be explained by the higher average yield in Europe (3.4 ton ha$^{-1}$) compared to that observed in Africa (1.3 ton ha$^{-1}$). A similar observation can be made for other regions as well: while crop water requirements in America, on average, are higher than in Asia, due to a higher yield, the average water footprint of cereals in America is smaller compared to the value calculated for Asia. Figure 4
Table 2. Global average water footprint of 14 primary crop categories. Period: 1996–2005.

Primary crop category	Water footprint (m3 ton$^{-1}$)	Caloric value* (kcal kg$^{-1}$)	Water footprint (l kcal$^{-1}$)			
	Green	Blue	Grey	Total		
Sugar crops	130	52	15	197	290	0.68
Fodder crops	207	27	20	253	–	–
Vegetables	194	43	85	322	240	1.34
Roots and tubers	327	16	43	387	830	0.47
Fruits	727	147	93	967	460	2.10
Cereals	1232	228	184	1644	3200	0.51
Oil crops	2023	220	121	2364	2900	0.81
Tobacco	2021	205	700	2925	–	–
Fibres, vegetal origin	3375	163	300	3837	–	–
Pulses	3180	141	734	4055	3400	1.19
Spices	5872	744	432	7048	3000	2.35
Nuts	7016	1367	680	9063	2500	3.63
Rubber, gums, waxes	12964	361	422	13748	–	–
Stimulants	13731	252	460	14443	880	16.4

* Source: FAO (2008a).

shows the relationship between cereal yield and water footprint, where the dots represent country averages. From the figure we can observe a general trend between the water footprint and yield of cereals which follows a logarithmic function. This suggests that the water footprint of a crop, to a large extent, is influenced by agricultural management rather than by the agro-climate under which the crop is grown and that cannot be influenced by the farmer. This provides an opportunity to improve water productivity, i.e., to produce more food per unit of water consumption. According to Rockström et al. (2003), this opportunity is particularly large in the range of low crop yields, due to the current large losses in non-productive green water evaporation.

3.3 The water footprint of biofuels per GJ and per litre

The water footprint of biofuel varies across both crops and countries. The variation is due to differences in crop yields across countries and crops, differences in energy yields across crops and differences in climate and agricultural practices across countries. Table 5 shows the global average water footprint of biofuel for a number of crops providing ethanol and some other crops providing biodiesel. Among the crops providing ethanol, sorghum has the largest water footprint, with 7000 l of water per litre of ethanol, which is equivalent to 300 m3 GJ$^{-1}$. Bio-ethanol based on sugar beet has the smallest global average water footprint, with 1200 l of water per litre of ethanol, equivalent to 50 m3 GJ$^{-1}$. In general, biodiesel has a larger water footprint per unit of energy obtained than bio-ethanol, a finding that is consistent with Gerbens-Leenes et al. (2009). Among the crops studied here, biodiesel from coconuts has the largest water footprint: 4750 m3 GJ$^{-1}$. Biodiesels from oil palm, rapeseed and groundnuts are more efficient, with water footprints in the range 150–200 m3 GJ$^{-1}$. The largest blue water footprint is observed for biodiesel from cotton: 177 m3 GJ$^{-1}$ (32% of the total water footprint).

3.4 The total water footprint of crop production at national and sub-national level

At the country level, the largest total water footprints were estimated for India, China, the USA, Brazil, Russia and Indonesia. These six countries together account for about half of the global total water footprint related to crop production. The largest green water footprints are also found in these six countries: India, China, the USA, Brazil and Indonesia. Data per country are shown in Table 6 for the largest producers. At sub-national level (state or province level), the largest green water footprints can be found in Uttar Pradesh (88 Gm3 yr$^{-1}$), Maharashtra (86 Gm3 yr$^{-1}$), Karnataka (65 Gm3 yr$^{-1}$), Andhra Pradesh (61 Gm3 yr$^{-1}$), and Madhya Pradesh (60 Gm3 yr$^{-1}$), all in India. The largest blue water footprints were calculated for India, China, the USA and Pakistan. At sub-national level, the largest blue water footprints were found in: Uttar Pradesh (59 Gm3 yr$^{-1}$) and Madhya Pradesh (24 Gm3 yr$^{-1}$) in India; Punjab (50 Gm3 yr$^{-1}$) in Pakistan; and California (20 Gm3 yr$^{-1}$) in the USA. Large grey water footprints were estimated for China, the USA and India.
Table 3. Global average water footprint of primary crops and derived crop products. Period: 1996–2005.

FAOSTAT crop code	Product description	Global average water footprint (m3 ton$^{-1}$)			
		Green	Blue	Grey	Total
15	Wheat	1277	342	207	1827
	Wheat flour	1292	347	210	1849
	Wheat bread	1124	301	183	1608
	Dry pasta	1292	347	210	1849
	Wheat pellets	1423	382	231	2036
	Wheat, starch	1004	269	163	1436
	Wheat gluten	2928	785	476	4189
27	Rice, paddy	1146	341	187	1673
	Rice, husked (brown)	1488	443	242	2172
	Rice, broken	1710	509	278	2497
	Rice flour	1800	535	293	2628
	Rice groats and meal	1527	454	249	2230
44	Barley	1213	79	131	1423
	Barley, rolled or flaked grains	1685	110	182	1977
	Malt, not roasted	1662	108	180	1950
	Malt, roasted	2078	135	225	2437
	Beer made from malt	254	16	27	298
56	Maize (corn)	947	81	194	1222
	Maize (corn) flour	971	83	199	1253
	Maize (corn) groats and meal	837	72	171	1081
	Maize (corn), hulled, pearled, sliced or kibbled	1018	87	209	1314
	Maize (corn) starch	1295	111	265	1671
	Maize (corn) oil	1996	171	409	2575
71	Rye	1419	25	99	1544
	Rye flour	1774	32	124	1930
75	Oats	1479	181	128	1788
	Oat groats and meal	2098	257	182	2536
	Oats, rolled or flaked grains	1998	245	173	2416
79	Millet	4306	57	115	4478
83	Sorghum	2857	103	87	3048
89	Buckwheat	2769	144	229	3142
116	Potatoes	191	33	63	287
	Tapioca of potatoes	955	165	317	1436
	Potato flour and meal	955	165	317	1436
	Potato flakes	694	120	230	1044
	Potato starch	1005	173	333	1512
122	Sweet potatoes	324	5	53	383
125	Manioc (cassava)	550	0	13	564
	Tapioca of cassava	2750	1	66	2818
	Flour of cassava	1833	1	44	1878
	Dried cassava	1571	1	38	1610
	Manioc (cassava) starch	2200	1	53	2254
136	Taro (coco yam)	587	3	15	606
137	Yams	341	0	1	343
Table 3. Continued.

FAOSTAT crop code	Product description	Green (m3 ton$^{-1}$)	Blue (m3 ton$^{-1}$)	Grey (m3 ton$^{-1}$)	Total (m3 ton$^{-1}$)
156	Sugar cane	139	57	13	210
	Raw sugar, cane	1107	455	104	1666
	Refined sugar	1184	487	111	1782
	Fructose, chemically pure	1184	487	111	1782
	Cane molasses	350	144	33	527
157	Sugar beet	82	26	25	132
	Raw sugar, beet	535	167	162	865
176	Beans, dry	3945	125	983	5053
181	Broad beans, horse beans, dry	1317	205	496	2018
187	Peas, dry	1453	33	493	1979
191	Chick peas	2972	224	981	4177
195	Cow peas, dry	6841	10	55	6906
197	Pigeon peas	4739	72	683	5494
201	Lentils	4324	489	1060	5874
217	Cashew nuts	12853	921	444	14218
220	Chestnuts	2432	174	144	2750
221	Almonds, with shell	4632	1908	1507	8047
	Almonds, shelled or peeled	9264	3816	3015	16095
222	Walnuts, with shell	2805	1299	814	4918
	Walnuts, shelled or peeled	5293	2451	1536	9280
223	Pistachios	3095	7602	666	11363
224	Kola nuts	23345	26	19	23391
225	Hazelnuts, with shell	3813	1090	354	5258
	Hazelnuts, shelled or peeled	7627	2180	709	10515
226	Areca nuts	10621	139	406	11165
236	Soya beans	2037	70	37	2145
	Soya sauce	582	20	11	613
	Soya paste	543	19	10	572
	Soya curd	2397	83	44	2523
	Soy milk	3574	123	65	3763
	Soya bean flour and meals	2397	83	44	2523
	Soybean oil, refined	3980	137	73	4190
	Soybean oilcake	1690	58	31	1779
242	Groundnuts in shell	2469	150	163	2782
	Groundnuts shelled	3526	214	234	3974
	Groundnut oil, refined	6681	405	442	7529
	Groundnut oilcake	1317	80	87	1484
Table 3. Continued.

FAOSTAT crop code	Product description	Global average water footprint (m³ ton⁻¹)			
		Green	Blue	Grey	Total
249	Coconuts	2669	2	16	2687
	Copra	2079	1	12	2093
	Coconut (husked)	1247	1	7	1256
	Coconut (copra) oil, refined	4461	3	27	4490
	Coconut/copra oilcake	829	1	5	834
	Coconut (coir) fibre, processed	2433	2	15	2449
254	Oil palm	1057	0	40	1098
	Palm nuts and kernels	2762	1	105	2868
	Palm oil, refined	4787	1	182	4971
	Palm kernel/babassu oil, refined	5202	1	198	5401
	Palm nut/kernel oilcake	802	0	31	833
260	Olives	2470	499	45	3015
	Olive oil, virgin	11 826	2388	217	14 431
	Olive oil, refined	12 067	2437	221	14 726
265	Castor oil seeds	8423	1175	298	9896
	Castor oil	21 058	2938	744	24 740
267	Sunflower seeds	3017	148	201	3366
	Sunflower seed oil, refined	6088	299	405	6792
	Sunflower seed oilcake	1215	60	81	1356
270	Rapseseed	1703	231	336	2271
	Rape oil, refined	3226	438	636	4301
	Rape seed oilcake	837	114	165	1115
280	Safflower seeds	6000	938	283	7221
289	Sesame seed	8460	509	403	9371
	Sesame oil	19 674	1183	936	21 793
292	Mustard seeds	2463	1	345	2809
296	Poppy seeds	1723	0	464	2188
299	Melon seeds	5087	56	41	5184
328	Seed cotton	2282	1306	440	4029
	Cotton seeds	755	432	146	1332
	Cotton lint	5163	2955	996	9113
	Cotton linters	1474	844	284	2602
	Cotton-seed oil, refined	2242	1283	432	3957
	Cotton seed oilcake	487	279	94	860
	Cotton, not carded or combed	5163	2955	996	9113
	Cotton yarn waste (including thread waste)	950	544	183	1677
	Garneted stock of cotton	1426	816	275	2517
	Cotton, carded or combed	5359	3067	1034	9460
	Cotton fabric, finished textile	5384	3253	1344	9982
333	Linseed	4730	268	170	5168
	Linseed oil, refined	8618	488	310	9415
	Linseed oilcake	2816	160	101	3077
336	Hempseed	3257	12	417	3685
358	Cabbages and other brassicas	181	26	73	280
Table 3. Continued.

FAOSTAT crop code	Product description	Global average water footprint (m³ ton⁻¹)	Green	Blue	Grey	Total
366	Artichokes	478	242	98	818	
367	Asparagus	1524	119	507	2150	
372	Lettuce	133	28	77	237	
373	Spinach	118	14	160	292	
388	Tomatoes	108	63	43	214	
	Tomato juice unfermented & not spirited	135	79	53	267	
	Tomato juice, concentrated	539	316	213	1069	
	Tomato paste	431	253	171	855	
	Tomato ketchup	270	158	107	534	
	Tomato puree	360	211	142	713	
	Peeled tomatoes	135	79	53	267	
	Tomato, dried	2157	1265	853	4276	
393	Cauliflowers and broccoli	189	21	75	285	
	Brussels sprouts	189	21	75	285	
394	Pumpkins, squash and gourds	228	24	84	336	
397	Cucumbers and gherkins	206	42	105	353	
399	Eggplants (aubergines)	234	33	95	362	
401	Chillies and peppers, green	240	42	97	379	
402	Onions (incl. shallots), green	176	44	51	272	
403	Onions, dry	192	88	65	345	
406	Garlic	337	81	170	589	
	Garlic powder	1297	313	655	2265	
414	Beans, green	320	54	188	561	
417	Peas, green	382	63	150	595	
423	String beans	301	104	143	547	
426	Carrots and turnips	106	28	61	195	
430	Okra	474	36	65	576	
446	Maize, green	455	157	88	700	
461	Carobs	4557	334	703	5594	
486	Bananas	660	97	33	790	
489	Plantains	1570	27	6	1602	
490	Oranges	401	110	49	560	
	Orange juice	729	199	90	1018	
495	Tangerines, mandarins, clement	479	118	152	748	
497	Lemons and limes	432	152	58	642	
507	Grapefruit	367	85	54	506	
Table 3. Continued.

FAOSTAT crop code	Product description	Global average water footprint (m3 ton$^{-1}$)			
		Green	Blue	Grey	Total
515	Apples, fresh	561	133	127	822
	Apples, dried	4678	1111	1058	6847
	Apple juice unfermented & not spirited	780	185	176	1141
521	Pears	645	94	183	922
526	Apricots	694	502	92	1287
530	Sour cherries	1098	213	99	1411
531	Cherries	961	531	112	1604
534	Peaches and nectarines	583	188	139	910
536	Plums and sloes	1570	188	422	2180
544	Strawberries	201	109	37	347
547	Raspberries	293	53	67	413
549	Gooseberries	487	8	31	526
550	Currants	457	19	23	499
552	Blueberries	341	334	170	845
554	Cranberries	91	108	77	276
560	Grapes	425	97	87	608
	Grapes, dried	1700	386	347	2433
	Grapefruit juice	490	114	71	675
	Grape wines, sparkling	607	138	124	869
567	Watermelons	147	25	63	235
569	Figs	1527	1595	228	3350
571	Mangoes, mangosteens, guavas	1314	362	124	1800
572	Avocados	849	283	849	1981
574	Pineapples	215	9	31	255
	Pineapple juice	1075	45	153	1273
577	Dates	930	1250	98	2277
591	Cashew apple	3638	34	121	3793
592	Kiwi fruit	307	168	38	514
600	Papayas	399	40	21	460
656	Coffee, green	15249	116	532	15897
	Coffee, roasted	18153	139	633	18925
661	Cocoa beans	19745	4	179	19928
	Cocoa paste	24015	5	218	24238
	Cocoa butter, fat and oil	33626	7	305	33938
	Cocoa powder	15492	3	141	15636
	Chocolate	16805	198	193	17196
667	Green and black tea	7232	898	726	8856
Table 3. Continued.

FAOSTAT crop code	Product description	Global average water footprint (m3 ton$^{-1}$)			
		Green	Blue	Grey	Total
677	Hop cones	2382	269	1414	4065
	Hop extract	9528	1077	5654	16 259
687	Pepper of the genus Piper	6540	467	604	7611
689	Chillies and peppers, dry	5869	1125	371	7365
692	Vanilla beans	86392	39048	1065	12 6505
693	Cinnamon (canella)	14 853	41	632	15 526
698	Cloves	59834	30	1341	61 205
702	Nutmeg, mace and cardamoms	30683	2623	1014	34 319
711	Anise, badian, fennel, coriander	5369	1865	1046	8280
	Coriander seeds	5369	1865	1046	8280
720	Ginger	1525	40	92	1657
748	Peppermint	206	63	19	288
773	Flax fibre and tow	2637	443	401	3481
	Flax fibre, otherwise processed but not spun	2866	481	436	3783
	Flax tow and waste	581	98	88	767
777	Hemp fibre and tow	1824	–	624	2447
	True hemp fibre processed but not spun	2026	–	693	2719
780	Jute and other textile bast fibres	2356	33	217	2605
788	Ramie	3712	201	595	4507
789	Sisal	6112	708	222	7041
	Sisal textile fibres processed but not spun	6791	787	246	7824
800	Agave fibres	6434	9	106	6549
809	Manila fibre (Abaca)	19376	246	766	20 388
	Abaca fibre, processed but not spun	21 529	273	851	22 654
826	Tobacco, unmanufactured	2021	205	700	2925
836	Natural rubber	12 964	361	422	13 748

3.5 The total water footprint of crop production at river basin level

At the river basin level, large water footprints were calculated for the Mississippi, Ganges, Yangtze, Indus and Parana river basins (Table 7). These five river basins together account for 23% of the global water footprint related to crop production. The largest green water footprint was calculated for the Mississippi river basin (424 Gm3 yr$^{-1}$). The largest blue water footprints were found in the basins of the Indus (117 Gm3 yr$^{-1}$) and Ganges (108 Gm3 yr$^{-1}$). These two river basins together account for 25% of the global blue water footprint. Both basins are under severe water stress (Alcamo et al., 2007).

3.6 The water footprint in irrigated versus rain-fed agriculture

For most of the crops, the global average consumptive water footprint (blue plus green water footprint) per ton of crop was lower for irrigated crops than for rain-fed crops (Table 8). This is because, on average, irrigated yields are larger than rain-fed yields. For wheat, the water footprint per ton in irrigated and rain-fed agriculture are very similar at the global
Fig. 4. The relationship between average cereal yield and water footprint per ton of cereal. Period: 1996–2005. The dots represent average country data.

Table 4. Crop water requirement, production, area, yield and water footprint per ton per region for cereal crops (1996–2005).

Region	Crop water requirement (mm period\(^{-1}\))	Total production (10\(^6\) ton yr\(^{-1}\))	% irrigated production	Total area (10\(^6\) ha yr\(^{-1}\))	% irrigated area	Yield (ton ha\(^{-1}\))	Water footprint (m\(^3\) ton\(^{-1}\))		
Africa	527	122	23	94	7	1.08	4.25	1.30	3044 243 101 3388
Central Africa	448	5	2	6	1	0.84	1.72	0.84	4616 25 17 4658
Eastern Africa	561	30	13	24	7	1.20	2.21	1.27	3572 118 56 3746
Northern Africa	602	35	62	21	19	0.80	5.36	1.68	1897 672 242 2811
Southern Africa	614	13	13	5	8	2.21	3.68	2.32	1727 80 119 1926
Western Africa	465	39	3	38	1	1.02	2.82	1.03	3846 40 17 3903

scale. For soybean, sugarcane and rapeseed, the water footprints per ton were substantially smaller in rain-fed production. The reason is that, although yields are higher under irrigation for soybean and sugarcane, there is more water available to meet crop water requirements, leading to an actual evapotranspiration that will approach or equal potential evapotranspiration. Under rain-fed conditions, the actual evapotranspiration over the growing period is generally lower than the potential evapotranspiration. In the case of rapeseed, the global average rain-fed yield is larger than global average
Table 5. Global average water footprint of biofuel for ten crops providing ethanol and seven crops providing biodiesel. Period: 1996–2005.

Crop	Water footprint per unit of energy	Water footprint per litre of biofuel				
	Green (m³ per GJ)	Blue (litres/litre)	Grey (litres/litre)	Green (litres/litre)	Blue (litres/litre)	Grey (litres/litre)
Barley	119	8	13	2796	182	302
Cassava	106	0	3	2477	1	60
Maize	94	8	19	2212	190	453
Potatoes	62	11	21	1458	251	483
Rice, paddy	113	34	18	2640	785	430
Rye	140	2	10	3271	58	229
Sorghum	281	10	9	6585	237	201
Sugar beet	31	10	10	736	229	223
Sugar cane	60	25	6	1400	575	132
Wheat	126	34	20	2943	789	478

Crops for biodiesel m³ per GJ biodiesel | litres water per litre biodiesel

Coconuts	4720	3	28	15685	97	935
Groundnuts	177	11	12	5863	356	388
Oil palm	150	0	6	4975	1	190
Rapeseed	145	20	29	4823	655	951
Seed cotton	310	177	60	10274	5879	1981
Soybeans	326	11	6	10825	374	198
Sunflower	428	21	28	14200	696	945

Table 6. The water footprint of crop production in selected countries (1996–2005).

Country	Water footprint of crop production (Gm³ yr⁻¹)			
	Green	Blue	Grey	Total
India	716.0	231.4	99.4	1047
China	623.9	118.9	223.8	967
USA	612.0	95.9	118.2	826
Brazil	303.7	8.9	16.0	329
Russia	304.8	10.4	11.6	327
Indonesia	285.5	11.5	20.9	318
Nigeria	190.6	1.1	0.6	192
Argentina	157.6	4.3	5.0	167
Canada	120.3	1.6	18.2	140
Pakistan	40.6	74.3	21.8	137
World	5771	899	733	7404

Table 7. The water footprint of crop production in selected river basins (1996–2005).

River basin*	Water footprint of crop production (Gm³ yr⁻¹)			
	Green	Blue	Grey	Total
Mississippi	424	40	70	534
Ganges	260	108	39	408
Yangtze (Chang Jiang)	177	18	61	256
Indus	102	117	34	253
Parana	237	3.2	9.4	250
Niger	186	1.7	0.5	188
Nile	131	29	6.9	167
Huang He (Yellow River)	80	21	31	132
Nelson	108	1.5	18	128
Danube	106	1.8	11	119
Krishna	89	21	8.7	118
Volga	101	3.4	3.9	108
Ob	92	1.8	1.8	95
World	5771	899	733	7404

* River basins grid data from Global Runoff Data Centre (2007).

Irrigated yield which results in a smaller water footprint under rain-fed compared to irrigated crops. The reason for this is that those countries with a high yield happen to be countries with a large share of rain-fed harvested crop area. For example, a high crop yield is observed for rapeseed in most parts of Western Europe, where rapeseed is almost completely rain-fed. On the other hand, in countries such as Algeria, Pakistan and India, where the share of irrigated crop is high, the irrigated yield is quite low compared to the rain-fed...
yield in Western Europe. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr$^{-1}$ (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr$^{-1}$ (48 % green, 40 % blue, 12 % grey).

4 Discussion

In order to compare our estimates with previous studies, we have selected those studies which estimated the water footprint in global crop production and made an explicit distinction between green and blue water (Table 9). The study by Chapagain and Hoekstra (2004) did not take a grid-based approach and also did not make the green-blue distinction per crop and per country, unlike the current study and the studies by Rost et al. (2008), Liu and Yang (2010), Siebert and Döll (2010) and Hanasaki et al. (2010).

A comparison of our estimates with earlier studies shows that the order of magnitude is similar in all studies. The estimate of the total water footprint related to crop production by Hanasaki et al. (2010) is 6 % higher than our estimate, while the estimate of Liu and Yang (2010) is 11 % lower. Our study is at the high side regarding the estimation of the global green water footprint and at the low side regarding the blue water footprint. Although there are major differences in applied models and assumptions, the models agree on the dominant role of green water in global crop production. The study by Rost et al. (2008) gives a higher green water footprint than the other studies, but this can be explained by the fact that evapotranspiration from croplands is estimated here over the whole year, instead of over the growing periods of the crops. The estimate of the total water footprint related to crop production by Fader et al. (2011) is only 4 % higher than our estimate. The differences in the outcomes of the various studies can be due to a variety of causes, including: type of model, spatial resolution, period considered and data regarding cultivated and irrigated areas, growing periods, crop parameters, soil and climate.

Chapagain and Hoekstra (2004) have estimated the global water footprint of crop production distinguishing between green and blue only at the global level, not per country and per crop. Our estimate of the total (green plus blue) water footprint is 4 % higher than that of Chapagain and Hoekstra (2004). The total water footprint per country estimated in the current study compares reasonably well with the estimates by Chapagain and Hoekstra (2004), with an r^2 value of 0.96 (Fig. 5a). The trend line almost fits the 1:1 line. The close agreement between the two studies and the slightly higher estimate in the current study is surprising. Due to limited data availability at the time, Chapagain and Hoekstra (2004) estimated crop water consumption based on the assumption of no water stress, so that actual equals potential evapotranspiration and their estimate is expected to be at the high side. There could be a number of reasons for the lower estimate in Chapagain and Hoekstra (2004). Some of the differences are observed in the larger countries such as the USA, Russia, China and Brazil. Chapagain and Hoekstra (2004) have taken national average climatic data to calculate crop evapotranspiration, which in particular for the large countries mentioned above has led to a different estimate compared to the current study. There are also differences between the two studies in the planting and harvesting dates and thus the length of growing period for the different crops considered.

The estimate of the total water footprint by Liu and Yang (2010) is 11 % lower than our estimate. The reason for the difference probably lies in the number of crops explicitly considered in the two studies: in the current study we have considered 146 crops explicitly while Liu and Yang (2010) have considered 20 crops and grouped the rest into 2 broad crop categories. In Fig. 5b, the total (green plus blue) water footprints by country as estimated in the current study are plotted against the results from Liu and Yang (2010). There is a close agreement between the two studies with an r^2 value of 0.96. The differences between the two studies can be partially explained by differences in the method used to estimate reference evapotranspiration. The blue water footprint per country as computed in this study compares to the result from Liu and Yang (2010) as shown in Fig. 6a. The correlation is reasonably well, with an r^2 value of 0.78.

The computed total (green plus blue) water footprint is almost the same as the value found by Siebert and Döll (2010). However, the green water footprint estimated by Siebert and Döll (2010) is 4.6 % lower than in the current study, while their blue water footprint estimate is 31 % higher. At country level, the blue water footprint estimates in the two studies correlate well, with an r^2 value of 0.99, but our estimates are consistently lower (Fig. 6b). For most crops there is a good agreement between the current estimate of the total blue water footprint and the one by Siebert and Döll (2010). However, their total blue water footprint estimate for rice (307 Gm3 yr$^{-1}$) is 52 % higher than our estimate (202 Gm3 yr$^{-1}$). The reason for the difference could be differences in the planting and harvesting dates and thus the length of the growing period in the two studies.

The national blue water footprints estimated in the current study were further compared with statistics on agricultural water withdrawals per country as available from AQUASTAT (FAO, 2008b). Since water withdrawals are higher than actual blue water consumption, we first estimated the latter by multiplying the water withdrawal per country by the irrigation efficiency. Overall irrigation efficiency data per country were obtained from Rohwer et al. (2007), whereby irrigation efficiency refers here to the fraction of water diverted from the water source that is available for beneficial crop evapotranspiration. The blue water footprint per country computed in the current study generally compares well with the derived values based on AQUASTAT and Rohwer et al. (2007), with an r^2 value of 0.94 (Fig. 7a). Compared to the AQUASTAT values, our estimates are slightly lower (6 %). A reason may be that water withdrawals in agriculture do not refer
Table 8. The water footprint of rain-fed and irrigated agriculture for selected crops (1996–2005).

Crop	Farming system	Yield (ton ha\(^{-1}\))	Total water footprint related to crop production (Gm\(^3\) yr\(^{-1}\))	Water footprint per ton of crop (m\(^3\) ton\(^{-1}\))												
			Green	Blue	Grey	Total	Green	Blue	Grey	Total						
			Rain-fed				Irrigated					Global				
			2.48	610	0	65	676	1629	0	175	1805					
			3.31	150	204	58	411	679	926	263	1868					
			2.74	760	204	123	1087	1278	342	208	1828					
			4.07	493	0	85	579	1082	0	187	1269					
			6.01	104	51	37	192	595	294	212	1101					
			4.47	597	51	122	770	947	81	194	1222					
			2.69	301	0	30	331	1912	0	190	2102					
			4.67	378	202	81	661	869	464	185	1519					
			3.90	679	202	111	992	1146	341	187	1673					
			8.93	24	0	6	30	717	0	167	883					
			15.91	8	8	2	18	343	321	71	734					
			10.92	33	8	7	48	561	133	127	822					
			2.22	328	0	5	333	2079	0	33	2112					
			2.48	24	12	1	37	1590	926	85	2600					
			2.24	351	12	6	370	2037	70	37	2145					
			58.70	95	0	7	102	164	0	13	176					
			71.17	85	74	10	169	120	104	14	238					
			64.96	180	74	17	271	139	57	13	210					
			0.68	106	0	4	110	15251	0	523	15774					
			0.98	1	1	0	2	8666	4974	329	13971					
			0.69	108	1	4	112	15249	116	532	15897					
			1.63	62	0	12	74	1783	0	356	2138					
			1.23	4	9	1	14	1062	2150	181	3394					
			1.57	66	9	13	88	1703	231	336	2271					
			1.35	90	0	13	103	3790	0	532	4321					
			2.16	41	75	13	129	1221	2227	376	3824					
			1.73	132	75	25	233	2282	1306	440	4029					
			–	4701	0	472	5173	–	–	–	–					
			–	1070	899	261	2230	–	–	–	–					
			–	5771	899	733	7404	–	–	–	–					

The calculated national blue water footprints were further compared to the irrigation water requirements for 90 developing countries as estimated by FAO (2005) for the year 2000. As can be seen in Fig. 8, the calculated national blue water footprints are consistently lower than the national irrigation requirements from FAO (2005), which can be explained by the use of different land use data and differences in methodological approaches.

Our estimated blue water footprints at federal state level correlate well with the statistical data, at least for states with high irrigation water use. The blue water footprints at the state level obtained in the current study, however, are generally lower than the values obtained from the statistics (Fig. 7b).
Table 9. Comparison between the results from the current study and the results from previous studies.

Study	Period	Global water footprint related to crop production (Gm^3 yr^{-1})		
		Green	Blue	Total
Chapagain and Hoekstra (2004),	1997–2001	5330	1060	6390
Hoekstra and Chapagain (2007),				
Hoekstra and Chapagain (2008)	1997–2001	5505	1180	6685
Rost et al. (2008)	1971–2000	7250*	600–1258	7850–8508*
Liu and Yang (2010)	1998–2002	4987	951	5938
Siebert and Döll (2010)	1998–2002	5550	1530	7080
Hanasaki et al. (2010)	1985–1999	550		
Fader et al. (2011)	1998–2002	6000	923	6923
Current study, green & blue only	1996–2005	5771	899	6670

* Unlike the other values, this value includes the evapotranspiration from cropland outside the growing period.

Fig. 5. Comparison of national (green plus blue) water footprints related to crop production as estimated in the current study with results from (a) Chapagain and Hoekstra (2004), and (b) Liu and Yang (2010).

in model set-up in the two studies. In the current study, the soil water balance was made on a daily basis while in FAO (2005) the soil water balance was done with a monthly time step. Besides, for rice irrigation water requirements, FAO (2005) added an additional 250 mm of water to flood the paddy fields.

The water footprint per ton of crop has been compared with results from Chapagain and Hoekstra (2004) and Siebert and Döll (2010). The global average water footprint per ton of crop correlates well with Chapagain and Hoekstra (2004), with an r^2 value of 0.97 (Fig. 9a). The comparison with Siebert and Döll (2010) also shows a good agreement, with an r^2 value of 0.995 (Fig. 9b). Out of the 22 crops compared, for 13 crops (including wheat, rice, maize, barley and sugar cane) the difference is within ±10%. Large differences (±20%) were observed for rye, cassava and millet. The reason for the larger differences probably lies in the average yield used in the two studies. We used national average yield data from FAOSTAT, which apparently differ from the yield data from Monfreda et al. (2008) which were used by Siebert and Döll (2010).

Since all studies depend on a large set of assumptions with respect to modelling structure, parameter values and datasets used, as it was already pointed out by Mekonnen and Hoekstra (2010), it is difficult to attribute differences in estimates from the various studies to specific factors; also it is difficult to assess the quality of our new estimates relative to the quality of earlier estimates. The quality of data used defines the accuracy of the model output. All studies suffer the same sorts of limitations in terms of data availability and quality and deal with that in different ways. In future studies it would be useful to spend more effort in studying the sensitivity of the model outcomes to assumptions and parameters and assessing the uncertainties in the final outcome.

5 Conclusions

The study shows that the global water footprint of crop production for the period 1996–2005 was 7404 Gm^3 yr^{-1}. The large fraction of green water (78%) confirms the importance of green water in global food production. The fraction of blue water is smaller (12%), but as the spatial analysis shows, the
regions where blue water footprints are large are often arid and semi-arid regions where water scarcity is high. The share of the grey water footprint is relatively small as well (10%), but this is a conservative estimate, because we have analysed the required assimilation volume for leached nitrogen fertilizers only, leaving out relevant pollutants such as phosphorus and pesticides.

The finding in this study agrees with earlier studies that green water plays a prominent role in the global crop production. As shown by Rockström et al. (2009), most countries in theory have a green water based self-sufficiency potential and are in a position to produce their entire food requirement locally. Rockström et al. (2003) showed that there is great opportunity to improve water productivity through improving yield levels as much as four folds within the available water balance in rain-fed agriculture. This offers a good opportunity to increase food production from rain-fed agriculture by raising water productivity without requiring additional blue water resources (Critchely and Siegert, 1991; Rockström and Barron, 2007; Rockström et al., 2003, 2007a, b). However, the marginal benefit of additional blue water in semi-arid and arid regions is quite large in terms of raising productivity. Globally, the current cereal production would be significantly lower if no blue water is applied (Hoff et al., 2010; Rost et al., 2009; Siebert and Döll, 2010). Therefore, a carefully balanced green-blue water use strategy would be required to address the issue of increasing water demand in a world of limited freshwater resources. For further research it is important to assess the spatiotemporal variability of blue water availability and how much blue water can sustainably be used in a certain catchment without adversely affecting the ecosystem.

There are a number of uncertainties in the estimation of the green, blue and grey water footprints. In particular, the uncertainties related to the input data used in the model are high. A number of assumptions were made due to a lack of data. The uncertainties include:

- Crop-specific irrigation maps are available only for a limited number of crops. Irrigation maps for the other crops were derived from the MICRA2000 database through the simple assumption that all crops in a country belonging to a certain crop category (annuals/perennials) would have the same fraction of irrigated area out of the total harvested area. This assumption will lead to an underestimation of the irrigated area and thus the blue water footprint of crops which are most...
likely to be irrigated and an overestimation of the blue water footprint for those minor crops which are actually not irrigated.

- The planting and harvesting dates and thus the length of the growing period used in the study are available only at country level, thus do not reflect possible variation within a country and across varieties of the same crop. Crop planting and harvesting dates are provided in the literature as a range of dates (FAO, 2008d; USDA, 1994). The choice of the planting and harvesting dates out of these ranges obviously influences the final crop water footprint estimate.

- The rooting depth for both rain-fed and irrigated crops are defined based on the crop characteristics. However, such assumption neglects the fact that actual rooting depth depends also on the soil type.

- The soil water holding capacity is derived based on the dominant soil type. However, farmers may plant in the parts of the grid cell with better soils, which may have a different water holding capacity to that defined for the dominant soil type.

- For irrigated agriculture, the irrigation is assumed to be sufficient to meet the irrigation requirement. However, farmers may decide to supply irrigation water below the level of optimal yield, in particular in those regions where water is scarce. The assumption of sufficient irrigation may lead to an overestimation of the blue water footprint.

- Fertilizer application rates per crop per country are not available for most crops. The rates used in this study are based on different sources and a number of assumptions. All grid cells of the same crop in a country are...
assumed to receive the same fertilizer application rate. However, irrigated crops generally receive more fertilizer than rain-fed ones. Besides, most small subsistence farmers likely use no or less fertilizer.

- The grey water footprint is estimated based on a simplified approach, which gives a rough estimate; it leaves out local factors that influence the precise leaching and runoff rates, such as rainfall intensity, soil property, slopes and the amount of already mineralized nitrogen in the upper soil layer. Systematic comparison of the estimate from such simplified approach with other regression models (De Willigen, 2000; Roy et al., 2003; Liu et al., 2010) might be required to test the uncertainties and limitation of our approach. Liu et al. (2010) estimated, for the first time, global nitrogen flows of 6 nitrogen inputs and 5 nitrogen outputs including nitrogen leaching at high resolution (5 by 5 arc minute grid). Their approach is very innovative and could be useful to conduct in-depth grey water assessment in the future.

- The model used to estimate the yield at grid level is a simplified linear model which accounts for the effect of water deficit on yield reduction only, leaving out other factors, such as fertilizer application rate, soil salinity and crop growing characteristics.

- Although intercropping and multi-cropping are practiced in most part of the world, we have not considered those practices explicitly.

In a global study like this one, because of lack of data, several assumptions and expert guesses were made. At this stage it seems difficult to reduce the uncertainties. Therefore, the water footprint values at a smaller spatial scale, in particular at the grid cell level, should be interpreted with care.

Edited by: J. Liu

References

Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes, Hydrolog. Sci. J., 52(2), 247–275, 2007.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO Drainage and Irrigation Paper 56, Food and Agriculture Organization, Rome, 1998.

Alptekin, E. and Canakci, M.: Determination of the density and the viscosities of biodiesel-diesel fuel blends, Renew. Energ., 33(12), 2623–2630, 2008.

Batjes, N. H.: ISRIC-WISE derived soil properties on a 5 by 5 arcminute global grid, Report 2006/02, ISRIC – World Soil Information, Wageningen, The Netherlands, available at: www.isric.org, 2006.

Chapagain, A. K. and Hoekstra, A. Y.: Water footprints of nations, Value of Water Research Report Series No. 16, UNESCO-IHE, Delft, The Netherlands, 2004.

Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., and Gautam, R.: The water footprint of cotton consumption: an assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries, Ecol. Econ., 60(1), 186–203, 2006.

Crichtley, W. and Siegert, K.: Water harvesting: A manual for the design and construction of water harvesting schemes for plant production, Food and Agriculture Organization, Rome, 1991.

De Willigen, P.: An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach, Plant Research International, Wageningen, The Netherlands, 2000.

Döll, P. and Siebert, S.: Global modelling of irrigation water requirements. Water Resour. Res., 38(4), 1037, doi:10.1029/2001WR000355, 2002.

Doorenbos, J. and Kassam, A. H.: Yield response to water, FAO Drainage and Irrigation Paper 33, FAO, Rome, 1979.

Döll, P., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrol. Earth Syst. Sci. Discuss., 8, 483–527, doi:10.5194/hessd-8-483-2011, 2011.

FAO: Technical conversion factors for agricultural commodities, Food and Agriculture Organization, Rome, 2003.

FAO: Review of agricultural water use per country, Food and Agriculture Organization, Rome, available at: www.fao.org/nr/water/aquastat/water_use_agr/index.stm, 2005.

FAO: Fertilizer use by crop, FAO Fertilizer and Plant Nutrition Bulletin 17, Food and Agriculture Organization, Rome, 2006.

FAO: FAOSTAT on-line database, Food and Agriculture Organization, Rome, http://faostat.fao.org, last access: 10 October 2008a.

FAO: AQUASTAT on-line database, Food and Agriculture Organization, Rome, http://aquistat.fao.org last access: 10 October 2008b.

FAO: Global map of monthly reference evapotranspiration – 10 arc minutes, GeoNetwork: grid database, Food and Agriculture Organization, Rome, http://www.fao.org/geonetwork/srv/en/resources.get?id=7416, &name=ref_evap_fao_10min.zip, &access=private, last access: 15 October 2008c.

FAO: Global Information and Early Warning System (GIEWS) – Crop calendar tool, Food and Agriculture Organization, Rome, http://lprapp08.fao.org/fenix-portal last access: 15 October 2008d.

FAO: FertStat – Fertilizer use statistics. Food and Agriculture Organization, Rome, www.fao.org/ag/agl/fertstat/, last access: 10 February 2009.

Gerbens-Leenes, P. W., Hoekstra, A. Y., and Van der Meer, T. H.: The water footprint of bio-energy: Global water use for bioethanol, bio-diesel, heat and electricity, Value of Water Research Report Series No. 29, UNESCO-IHE, Delft, The Netherlands, 2008a.

Gerbens-Leenes, P. W., Hoekstra, A. Y., and Van der Meer, T.H.: Water footprint of bio-energy and other primary energy carriers, Value of Water Research Report Series No. 34, UNESCO-IHE, Delft, The Netherlands, 2008b.

Gerbens-Leenes, W., Hoekstra, A. Y., and Van der Meer, T. H.: The water footprint of bioenergy, P. Natl. Acad. Sci. USA, 106(25), 2009.
M. M. Mekonnen and A. Y. Hoekstra: The green, blue and grey water footprint of crops

10219–10223, 2009.

Gleick, P. H. (Ed.): Water in crisis: A guide to the world’s fresh water resources, Oxford University Press, Oxford, UK, 1993.

Gleick, P. H.: The changing water paradigm: a look at twenty-first century water resources development, Water Inter., 25(1), 127–138, 2000.

Global Runoff Data Centre Major River Basins of the World, Global Runoff Data Centre, Koblenz, Federal Institute of Hydrology (BIg), Germany, 2007.

Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, 2010.

Heffer, P.: Assessment of Fertilizer Use by Crop at the Global Level 2006/2007-2007/2008. International Fertilizer Industry Association, Paris, 2009.

Hoekstra, A. Y. (Ed.): Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12–13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands, 2003.

Hoekstra, A. Y. and Chapagain, A. K.: Water footprints of nations: water use by people as a function of their consumption pattern, Water Resour. Manag., 21(1), 35–48, 2007.

Hoekstra, A. Y. and Chapagain, A. K.: Globalization of water: Sharing the planet’s freshwater resources, Blackwell Publishing, Oxford, UK, 2008.

Hoekstra, A. Y. and Hung, P. Q.: Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11, UNESCO-IHE, Delft, The Netherlands, 2002.

Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., and Mekonnen, M. M.: The water footprint assessment manual: Setting the global standard, Earthscan, London, UK, 2011.

Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., and Rockström, J.: Greening the global water system, J. Hydrol., 384, 177–186, 2010.

Hutson, S. S., Barber, N. L., Kenny, J. F., Linsey, K. S., Lumia, D. S., and Maupin, M. A.: Estimated Use of Water in the United States in 2000, USGS Circular 1268, US Geological Survey, Reston, USA, available at: http://water.usgs.gov/watuse, last access: 15 February 2010, 2004.

IFA: International Fertilizer Industry Association Databank, www.fertilizer.org/ifa/ifaresults, last access: 24 September 2009.

L’vovich, M. I., White, G. F., and Turner, B. L.: Use and transformation of terrestrial water systems, in: The earth as transformed by human action: Global and regional changes in the biosphere over the past 300 years edited by: Turner II, B. L., Clark, W. C, Kates, R. W., Richards, J. F., Mathews, J. T., and Meyer, W. B., Cambridge University Press, New York, 235–252, 1990.

Liu, J. and Yang, H.: Spatially explicit assessment of global consumptive water uses in cropland: green and blue water, J. Hydrol., 384, 187–197, 2010.

Liu, J., Yang, H., and Savenije, H. H. G.: China’s move to higher-meat diet hits water security, Nature, 454, p. 397, 2008.

Liu, J., Zehnder, A. J. B., and Yang, H.: Global consumptive water use for crop production: The importance of green water and virtual water, Water Resour. Res., 45, W05428, doi:10.1029/2007WR006051, 2009.

Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., and Yang, H.: A high-resolution assessment on global nitrogen flows in cropland, P. Natl. Acad. Sci. USA, 107(17), 8035–8040, 2010.

Mekonnen, M. M. and Hoekstra, A. Y.: A global and high-resolution assessment of the green, blue and grey water footprint of wheat, Hydrol. Earth Syst. Sci., 14, 12590–1276, doi:10.5194/hess-14-12590-2010, 2010.

Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, available at: http://crue.csi.cgiar.org/continent_selection.asp, last access: 3 October 2008, 2005.

Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cy., 22, GB1022, doi:10.1029/2007GB002947, available at: www.geog.mcgill.ca/landuse/pub/Data/175crops2000/, last access: 18 September 2008.

Perry, C.: Efficient irrigation: inefficient communication; flawed recommendations, Irrig. and Drain., 56, 367–378, doi:10.1002/ird.323, 2007.

Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T., Tariche, S., Schreck, J., and Alpert, S.: Water resources: Agriculture, the environment, and society, BioScience, 47(2), 97–106, 1997.

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., and Nadgopaul, S.: Water resources: Agricultural and environmental issues, BioScience, 54(10), 909–918, 2004.

Portmann, F. T., Siebert, S., and Döll, P.: Mirca2000 – global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modelling, Global Biogeochem. Cy., 24(1), GB1011, doi:10.1029/2008GB003435, available at: http://www.geo.uni-frankfurt.de/igp/ag/dlf/forschung/MIRCA/data_download/index.html, last access: 15 October 2009, 2010.

Postel, S. L., Daily, G. C., and Ehrlich, P. R.: Human appropriation of renewable freshwater, Science, 271(5250), 785–788, 1996.

Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., and Petersen, M. S.: Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data, Int. J. Remote Sens., 21(18), 3487–3508, 2000.

Rockström, J. and Barron, J.: Water productivity in rainfed systems: overview of challenges and analysis of opportunities in water scarcity prone savannas, Irrigation Sci., 25(3), 299–311, 2007.

Rockström, J. and Gordon, L.: Assessment of green water flows to sustain major biomes of the world: Implications for future ecohydrological landscape management, Phys. Chem. Earth Pt. B, 26(11–12), 843–851, 2001.

Rockström, J., Gordon, L., Falkenmark, M., Folke, C., and Engvall, M.: Linkages among water vapor flows, food production, and terrestrial ecosystem services, Conserv. Ecol., 3(2), 5, available at: http://www.consecol.org/vol3iss2/art5/, 1999.

Rockström, J., Barron, J., and Fox, P.: Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems, in: Water produc-
tivity in agriculture: limits and opportunities for improvement, edited by: Kijne, J. W., CAB International, Wallingford, 315–352, 2003.

Rockström, J., Hatibu, N., Oweis, T. Y., Wani, S., Barron, J., Bruggeman, A., Farahani, J., Karlberg, L., and Qiang, Z.: Managing water in rainfed agriculture, in: Water for food, water for life: A comprehensive assessment of water management in agriculture, edited by: Molden, D., Earthscan, London, 315–352, 2007a.

Rockström, J., Lannerstad, M., and Falkenmark, M.: Assessing the water challenge of a new green revolution in developing countries, P. Natl. Acad. Sci. USA, 104(15), 6253–6260, 2007b.

Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.: Future water availability for global food production: the potential of green water for increasing resilience to global change, Water Resour. Res., 45, W00A12, doi:10.1029/2007WR006767, 2009.

Rohwer, J., Gerten, D., and Lucht, W.: Development of functional types of irrigation for improved global crop modelling, Potsdam Institute for Climate Impact Research, Potsdam, Germany, 2007.

Rosegrant, M. W. and Ringler, C.: Impact on food security and rural development of transferring water out of agriculture, Water Policy, 1(6), 567–586, 2000.

Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09405, doi:10.1029/2007WR006331, 2008.

Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockström, J.: Global potential to increase crop production through water management in rainfed agriculture, Environ. Res. Lett., 4, doi:10.1088/1748-9326/4/4/044002, 2009.

Roy, R. N., Misra, R. V, Lesschen, J. P., and Smaling, E. M. A.: Assessment of Soil Nutrient Balance. Approaches and Methodologies, FAO Fertilizer and Plant Nutrition Bulletin, 14, FAO, Rome, 2003.

Sacks, W. J., Deryn, D. G., Foley, J. A., and Ramankutty, N.: Crop planting dates: An analysis of global patterns, Global Ecol. Biogeogr., 19(5), 607–620, doi:10.1111/j.1466-8238.2010.00551.x, available at: http://www.sage.wisc.edu/download/sacks/ARCINFO5min.html, last access: 9 September 2009, 2010.

Schuol, J. and Abbaspour, K. C.: Using monthly weather statistics to generate daily data in a SWAT model application to West Africa, Ecol. Model., 201, 301–311, 2007.

Seckler, D., Amarasinghe, U., Molden, D. J., de Silva, R., and Barker, R.: World water demand and supply, 1990–2025: Scenarios and issues, IWMI Research Report 19, IWMI, Colombo, Sri Lanka, 1998.

Siebert, S. and Döll, P.: The global crop water model (GCWM): Documentation and first results for irrigated crops. Frankfurt Hydrology Paper 07, Institute of Physical Geography, University of Frankfurt, Frankfurt am Main, Germany, available at: http://www.geo.uni-frankfurt.de/ag/dl/f_publikationen/2008/FHP_07_Siebert_and_Doell_2008.pdf, 2008.

Siebert, S. and Döll, P.: Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation, J. Hydrol., 384, 198–207, 2010.

Shiklomanov, I. A.: World fresh water resources, in: Water in crisis: A guide to the world’s fresh water resources, edited by: Gleick, P. H., Oxford University Press, Oxford, UK, 13–24, 1993.

Shiklomanov, I. A.: Appraisal and Assessment of World Water Resources, Water Int., 25(1), 11–32, 2000.

Shiklomanov, I. A. and Rodda, J. C. (Eds.): World water resources at the beginning of the twenty-first century, Cambridge University Press, Cambridge, UK, 2003.

Solley, W. B., Pierce, R. R., and Perlman, H. A.: Estimated Use of Water in the United States in 1995, USGS Circular 1200, US Geological Survey, Reston, USA, available at: http://water.usgs.gov/watuse, 1998.

UNDP: Beyond scarcity: power, poverty and the global water crisis, Human Development Report 2006, United Nation Development Program, 2006.

UNEP GEMS/Water Programme: Water Quality for Ecosystem and Human Health, 2nd Edn, UNEP GEMS/Water Programme, 2008.

USDA: The major world crop areas and climatic profiles, Agricultural Handbook No. 664, World Agricultural Outlook Board, United States Department of Agriculture, available at: www.usda.gov/oe/weather/pubs/Other/MWCACP/MajorWorldCropAreas.pdf, 1994.

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river biodiversity, Nature, 467(7315), 555–561, 2010.