High-Temperature Superconductivity in Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$

H. S. Jeevan, 1 Z. Hossain, 2 Deepa Kasinathan, 3 H. Rosner, 3 C. Geibel, 3 and P. Gegenwart 1

1 I. Physik. Institut, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
2 Department of Physics, Indian Institute of Technology, Kanpur 208016, India
3 Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

(Dated: August 6, 2008)

Subsequent to our recent report of SDW type transition at 190 K and antiferromagnetic order below 20 K in EuFe$_2$As$_2$, we have studied the effect of K-doping on the SDW transition at high temperature and AF order at low temperature. 50% K doping suppresses the SDW transition and in turn gives rise to high-temperature superconductivity below $T_c = 32$ K, as observed in the electrical resistivity, AC susceptibility as well as magnetization. A well defined anomaly in the specific heat provides additional evidence for bulk superconductivity.

PACS numbers: 74.70.Dd, 74.10.+v, 71.20.Eh, 75.20.Hr

I. INTRODUCTION

Intense research for the past few months have lead to the discovery of several new superconductors with T_c as high as 52 K in the iron arsenide compounds 1,2,3,4,5,6,7,8. Most intriguing among these superconductors is the fact that superconductivity occurs close to the magnetic-nonmagnetic borderline probably indicating an unconventional (non-phononic) pairing mechanism. While the debate about the mechanism and the conventional versus unconventional nature continues, we try to explore more materials with the aim to assist in sorting out this debate through more experiments on related compounds. Recently, we have shown that EuFe$_2$As$_2$ shows a spin-density-wave (SDW) type transition at 190 K similar to that of SrFe$_2$As$_2$. One may thus expect that appropriate doping or application of pressure suppresses the SDW, leading to superconductivity at the magnetic-nonmagnetic borderline. Taking clue from the results of K-doped SrFe$_2$As$_2$ we may expect that 50% K doped EuFe$_2$As$_2$ shows superconductivity. We have prepared 50% K doped EuFe$_2$As$_2$ and measured its low-temperature electrical resistivity, magnetic susceptibility and specific heat. We indeed find compelling experimental evidence for bulk superconductivity in K-doped EuFe$_2$As$_2$. Details of the experimental procedures and results are discussed below.

II. METHODS

A. Experimental

Polycrystalline samples of Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ were synthesized by solid state reaction method. Stoichiometric amounts of the starting elements Eu (99.99%), K (99.9%), Fe (99.9%) and As (99.999%) were taken in an Al$_2$O$_3$ crucible which was then sealed in a Ta-crucible under Argon atmosphere. The sealed Ta-crucibles were slowly heated to 900°C and sintered for 24 hours. After first heat treatment, the samples were thoroughly grounded and pressed into pellets and subjected to a second heat treatment. The sample preparation and handling was carried out inside a glove box (O < 1 ppm, H$_2$O < 1 ppm). Electrical resistivity and specific heat were measured using a Physical Properties Measurement System (PPMS, Quantum Design, USA). The AC-Susceptibility was measured using home-made system while for the dc magnetic susceptibility a Quantum Design MPMS was used.

B. Theory

In order to understand the influence of the K doping in EuFe$_2$As$_2$, we have performed density functional band structure calculations using a full potential code FPLO within the local (spin) density approximation (L(S)DA). Additionally, we have included the strong Coulomb repulsion in the Eu 4f orbitals on a mean field level using the LSDA+U approximation applying the atomic-limit double counting scheme. We applied the Perdew-Wang flavor of the exchange correlation potential, self-consistency was reached on a well converged k- mesh. The structural parameters and the value of $U = 8 \text{ eV}$ for the Eu 4f states were kept identical to our previous work on the undoped system throughout all calculations.

III. RESULTS AND DISCUSSION

A. Experiment

The single-phase nature of the sample is confirmed using powder x-ray diffraction. Impurity phases amount to less than 5%. The sample crystallizes in the ThCr$_2$Si$_2$ type tetragonal structure with lattice parameters $a = 3.8671(3)\AA$ and $c = 13.091(3)\AA$. The lattice parameter values as expected, are in between those of EuFe$_2$As$_2$ and KFe$_2$As$_2$. EDAX analysis reveals, that the composition of the sample is close to the expected 0.5: 0.5: 2: 2. Fig. 1 shows the temperature dependence of the elec-
transition is observed at 32 K. The lower inset shows the electrical resistivity data in temperature range between 20 and 60 K, the red line indicates the linear decrease between 60 and 32 K.

FIG. 1: Temperature dependence of the electrical resistivity of polycrystalline EuFe$_2$As$_2$ and Eu$_0.5$K$_{0.5}$Fe$_2$As$_2$. The arrows indicate anomalies at $T_{SDW} = 190$ K and $T_c = 30$ K. The lower inset shows the electrical resistivity data in temperature range between 20 and 60 K, the red line indicates the linear decrease between 60 and 32 K.

Further confirmation of the superconducting transition at 32 K comes from AC magnetic susceptibility (Fig. 2) which shows a clear diamagnetic signal. DC magnetic susceptibility measured under zero-field-cooled (ZFC) and field-cooled (FC) conditions also confirm superconductivity. The ZFC diamagnetic signal below the superconducting transition is of the size expected for perfect diamagnetism of Pb. FC measurements also exhibit diamagnetism, the diamagnetic signal being 10% of the ZFC signal. The hysteresis between the ZFC and FC susceptibility in the superconducting state is characteristic for type-II superconductors. We also observe a signature for magnetic ordering of the Eu-moments in the magnetic susceptibility below about 10 K.

Since even 10 - 20% superconducting volume fraction could provide zero resistivity as well as a diamagnetic signal similar to that of a pure superconductor, low-temperature specific heat measurements were carried out to establish the bulk nature of superconductivity, as well as to probe the magnetism of the Eu$^{2+}$ ions. The main part of Fig. 3 shows the temperature dependence of the specific heat plotted as C/T vs T in the temperature range 2 - 40 K. We observe a small but well defined anomaly associated with the superconducting transition providing clear evidence for the bulk nature of superconductivity. It is even more pronounced in C/T vs T^2 shown in the inset. From this plot, one can estimate a step $\Delta C/Tc \approx 50$ mJ/mol K2 in the specific heat at T_c. Unfortunately because of the presence of the magnetic contribution from Eu-moments, it is difficult to correctly estimate the true normal-state γ value. Since γ of SrFe$_2$As$_2$ is reported as 10 mJ/mol K2 we believe the true gamma value of EuFe$_2$As$_2$ will be of the same order of magnitude, considering the fact that Eu is divalent in the absence of charge fluctuations and/or Kondo effect. Compared to this γ value, the size of $\Delta C/Tc$ we found in Eu$_0.5$K$_{0.5}$Fe$_2$As$_2$ is quite large, suggesting a strong coupling scenario. Even though the mechanism for the superconductivity is not yet settled, the well defined specific heat anomaly of
this magnitude provides confidence about the bulk nature of superconductivity in Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$. This is so far the best evidence of the bulk nature of superconductivity in FeAs-family of superconductors. Such anomaly was absent in LaO$_{1-x}$Fe$_x$As compounds14,15 and only a weak anomaly was observed in superconducting SmO$_{1-x}$Fe$_x$FeAs2. At low temperatures only a very broad bump suggesting a suppressed and broadened kind of magnetic order of Eu-moments very likely only a short range one, was observed below 10 K in contrast to a very pronounced lambda-type anomaly at 20 K in EuFe$_2$As$_2$.20

B. Theory

To study the changes in the electronic structure of EuFe$_2$As$_2$ due to a 50% doping of K on the Eu site, we constructed supercells of the undoped system and replaced half of the Eu ions with K ions. To account for the strong Coulomb repulsion within the Eu 4f orbitals a typical U value (according to XAS and photoemission experiments) of $U = 8$ eV has been chosen for the LSDA+U calculations. A variation of U within the physically reasonable range of 6...10 eV does not change our conclusions since this variation has negligible influence on the states at the Fermi level that are relevant for the superconductivity.

The calculated total density of states (DOS) of Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ is shown in Fig. 4 in comparison to that of Sr$_{0.5}$K$_{0.5}$Fe$_2$As$_2$. Except for the localized Eu 4f states at around -2.4 eV, the DOS of both these systems are quite similar.19 As in the undoped EuFe$_2$As$_2$, the Eu ions are in a stable 2$^+$ state with a half filled 4f shell, and the position of the localized 4f level remains basically unchanged.2

Our previous work9 on the undoped system indicates that the Eu and Fe sublattices are quite decoupled and the ordering of the Fe sublattice at 190 K does not influence the ordering of the Eu moments at 20 K. Thus, the ordering of the Eu spin moments is mainly due to Eu-Eu interaction. In our Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ supercell, every other Eu site is replaced by a non-magnetic K$^{2+}$ ion. Although the influence of disorder can not be accessed this way, we try to get a rough estimate for the reduction of the effective coupling comparing calculated total energies for different Eu spin arrangements (aligned and anti-aligned Eu spins). The difference in energy from these calculations are then mapped to an Heisenberg model to obtain the value of the effective exchange constant (J_{eff}). The value of the J_{eff} for the undoped and the 50% K doped EuFe$_2$As$_2$ systems are 2 K and 0.3 K, respectively. Thus, replacing every other magnetic Eu$^{2+}$ ion with a non-magnetic K$^{2+}$ ion reduces the effective Eu-Eu exchange strongly. However, even without this strong reduction of the effective exchange, the random filling of the square with only 50% magnetic Eu ions should be sufficient to suppress long range magnetic order by itself.

![FIG. 4: (Color online) Comparison of the total DOS for Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ (LSDA+U, with non-magnetic Fe sites) and Sr$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ (LDA). The spin-up and spin-down DOS with non-magnetic Fe sites for the Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ has been added together to make the comparison with the Sr analogue easier. The large peak at -2.4 eV belongs to the spin-up Eu 4f states. The unfilled spin-down Eu 4f states are pushed to around 9.5 eV above the Fermi level.](image)

IV. CONCLUSION

To summarize, we have been successful in making a single phase sample of 50% K doped EuFe$_2$As$_2$. Our comprehensive investigation of the electrical resistivity, AC and DC magnetic susceptibility and specific heat shows the suppression of the SDW transition and evidence for bulk type-II superconductivity below $T_c = 32$ K. Removal of 50% of Eu however has substantially broadened the Eu order which is then very likely only a short range one; and shifted the latter to below 10 K. Further experiments are planned to probe the magnetism of Eu-ions as well as to investigate the interplay of Eu-magnetism with superconductivity.

The authors would like to thank K. Winzer for help with the AC-susceptibility measurements. We acknowledge financial support by the DFG Research Unit 960 and BRNS (grant no. 2007/37/28).

* Electronic address: Jeevan.Hirale@phys.uni-goettingen.de

1 H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano,
and H. Hosono, Nature 453, 376 (2008).

2 X.H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D.F. Fang, Nature 453, 761 (2008).

3 G.F. Chen, Z. Li, G. Li, W.Z. Hu, J. Dong, X.D. Zhang, P. Zheng, N.L. Wang and J.L. Luo, arXiv:0806.1209v1 (2008).

4 M. Rotter, M. Tegel and D. Johrendt, arXiv:0805.3630v1 (2008).

5 L. Ding, C. He, J.K. Dong, T. Wu, R. H. Liu, X.H. Chen and S.Y. Li, Phys. Rev. B 77, 180510(R) (2008).

6 G. Wu, R.H. Liu, Y.J. Yan, T. Wu, Y.L. Xie, J.J. Ying, X.F. Wang, D.F. Fang, X.H. Chen, arXiv:0806.1459v1 (2008).

7 A. S. Sefat, A. Huq, A. Michael, McGuire, R Jin, Brian C. Sales, D Mandrus, arXiv:0807.0823v1 (2008).

8 L. Li, Y. Li, Z. Ren, X. Lin, Y. Luo, Z. Zhu, M. He, X. Xu, G. Cao, and Z. Xu, arXiv:0806.1675v1 (2008).

9 H.S. Jeevan, Z. Hossain, Deepa Kasinathan, H. Rosner, C. Geibel, P. Gegenwart, arXiv:0806.2876 (2008), Phys. Rev. B, to be published.

10 C. Krellner, N. Caroca-Canales, A. Jesche, H. Rosner, A. Ormeci, and C. Geibel, arXiv:0806.1030v1 (2008).

11 H. Raffius, E. Moersen, B.D. Moesel, W. Mueller-Warmuth, W. Jeitschko, L. Terbucht and T. Vomhof, J. Phys. Chem. Solids 54, 135 (1993).

12 Zhi Ren, Zengwei Zhu, Shuai Jiang, Xiangfan Xu, Qian Tao, Cao Wang, Chunmu Feng, Guanghan Cao, Zhu’an Xu, arXiv:0806.2591v1 (2008).

13 M. Tegel, M. Rotter, V. Weiss, F.M. Schappacher, R. Potthoff, and D. Johrendt, arXiv:0806.4782v1 (2008).

14 G. Mu, X. Zhu, L. Fang, L. Shan, C. Ren, Hai-Hu Wen, arXiv:0803.0928v1 (2008).

15 Athena S. Sefat, Michael A. McGuire, Brian C. Sales, Rongying Jin, Jane Y. Howe, David Mandrus, arXiv:0803.2528v1 (2008).

16 K. Koepernik, and H. Eschrig, Phys. Rev. B 59, 1743 (1999); I. Ophale, K. Koepernik, and H. Eschrig, Phys. Rev. B 60, 14035 (1999); http://www.fplo.de

17 M. T. Czyżyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

18 J. P. Perdew, and Y. Wang, Phys. Rev. B 45, 13244 (1992).

19 In order to compute the non-magnetic electronic structure of Eu$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ relevant for the superconducting ground state, we stabilized a selfconsistent solution with negligible polarization at the Fe sites by setting the initial spin split of Fe to zero. Both spin channels have been added afterwards for the comparison with the unpolarized calculation in the case of Sr$_{0.5}$K$_{0.5}$Fe$_2$As$_2$.