Correlação entre a classificação Thyroid Imaging Reporting and Data System [TI-RADS] e punção aspirativa por agulha fina: experiência com 1.000 nódulos

Correlation of Thyroid Imaging Reporting and Data System [TI-RADS] and fine needle aspiration: experience in 1,000 nodules

Antonio Rahal Junior¹, Priscila Mina Falsarella¹, Rafael Dahmer Rocha¹, João Paulo Bacellar Costa Lima¹, Matheus Jorge Iani¹, Fábio Augusto Cardillo Vieira¹, Marcos Roberto Gomes de Queiroz¹, Jairo Tabacow Hidal¹, Miguel José Francisco Neto¹, Rodrigo Gobbo Garcia¹, Marcelo Buarque de Gusmão Funari¹

RESUMO
Objetivo: Apresentar a correlação entre o Thyroid Imaging Reporting and Data System (TI-RADS) e o sistema Bethesda, para relatar citopatologia em 1.000 nódulos tireoidianos. Métodos: Estudo retrospectivo realizado no período de novembro de 2011 a fevereiro de 2014, que avaliou 1.000 nódulos tireoidianos de 906 pacientes submetidos a exame de ultrassonografia e à punção aspirativa por agulha fina. Resultados: Observou-se associação significativa entre o TI-RADS e o resultado da classificação de Bethesda (p<0,001). A maioria dos indivíduos com TI-RADS 2 ou 3 teve resultado citológico Bethesda 2 (95,5% e 92,5%, respectivamente). Entre aqueles classificados TI-RADS 4C e 5, a maioria teve resultado Bethesda 6 (68,2% e 91,3%, respectivamente; p<0,001). A proporção de malignidades em TI-RADS 2 foi 0,8% e em TI-RADS 3 foi 1,7%. Entre TI-RADS 4A, foi de 16,0%, 43,2% em 4B, 72,7% em 4C e em 5 foi de 91,3% (p<0,001), mostrando clara associação entre o TI-RADS e os resultados da biópsia. Conclusão: O TI-RADS é apropriado para avaliar nódulos da tireoide e evitar punção aspirativa por agulha fina desnecessária, além de auxiliar na decisão sobre quando este procedimento deve ser realizado.

Descritores: Nódulo da glândula tireoide/classificação; Biópsia por agulha fina; Glândula tireoide/ultrassonografia; Glândula tireoide/citologia

ABSTRACT
Objective: To correlate the Thyroid Imaging Reporting and Data System (TI-RADS) and the Bethesda system in reporting cytopathology in 1,000 thyroid nodules. Methods: A retrospective study conducted from November 2011 to February 2014 that evaluated 1,000 thyroid nodules of 906 patients who underwent ultrasound exam and fine needle aspiration. Results: A significant association was found between the TI-RADS outcome and Bethesda classification (p<0.001). Most individuals with TI-RADS 2 or 3 had Bethesda 2 result (95.5% and 92.5%, respectively). Among those classified as TI-RADS 4C and 5, most presented Bethesda 6 (68.2% and 91.3%, respectively; p<0.001). The proportion of malignancies among TI-RADS 2 was 0.8%, and TI-RADS 3 was 1.7%. Among those classified as TI-RADS 4A, proportion of malignancies was 16.0%, 43.2% in 4B, 72.7% in 4C and 91.3% among TI-RADS 5 (p<0.001), showing clear association between TI-RADS and biopsy results. Conclusion: The TI-RADS is appropriate to assess thyroid nodules and avoid unnecessary fine needle aspiration, as well as to assist in making decision about when this procedure should be performed.

Keywords: Thyroid nodule/classification; Biopy, fine-needle; Thyroid gland/ultrasonography; Thyroid gland/cytology

INTRODUÇÃO
Os nódulos da tireoide são muito prevalentes – encontrados em aproximadamente 8% da população adulta por meio de palpação, 41% por ultrassom (US) e 50% por exame patológico em autópsia.¹ A malignidade da tireoide é relativamente rara, sendo diagnosticada em cerca de 10% dos nódulos.²-⁴ A indicação adequada de quais nódulos devem passar por punção aspirativa por agulha fina (PAAF) e quais devem ser monitorados é
ainda motivo de discussão. Nas últimas duas décadas, surgiram diversas controvérsias com relação às características malignas, porém, ainda não há uma classificação definitiva.\(^\text{(1,5-7)}\)

Nos últimos 5 anos, algumas publicações tentaram estabelecer diretrizes confiáveis para a avaliação sonográfica de nódulos da tireoide.\(^\text{(3,5,8,9)}\) Com base na já estabelecida Breast Imaging Reporting and Data System\(^\text{(6)}\) (BI-RADS\(^\text{(6)}\)) para avaliação de nódulos da mama,\(^\text{(10)}\) alguns relatos sugeriram um sistema de categorização de características de US em nódulos da tireoide: o Thyroid Imaging Reporting and Data System (TI-RADS). O objetivo do TI-RADS é agrupar os nódulos em diferentes categorias com percentagem similar de malignidade à usada em BI-RADS\(^\text{(6)}\). O sistema é baseado na classificação de nódulos da tireoide, exclusivamente quanto às características de US modo B, para reduzir as variações interobservador e interdispositivo.

OBJETIVO

Apresentar os resultados de nossa experiência inicial na correlação entre os sistemas TI-RADS e Bethesda para laudos citopatológicos em 1.000 nódulos da tireoide em pacientes submetidos à avaliação ultrassonográfica, seguida de punção aspirativa por agulha fina, e classificados segundo o sistema TI-RADS.

MÉTODOS

O Comitê de Ética em Pesquisa aprovou este estudo retrospectivo, e o requerimento para obtenção de Termo de Consentimento Livre e Esclarecido foi dispensado. De novembro de 2011 a fevereiro de 2014, US da glândula tireoide e área do pescoço, bem como PAAF guiada por US de nódulos focais da tireoide, foram realizados por médicos experientes em nosso centro de intervenção. O estudo foi aprovado pelo Comitê de Ética Médica da instituição, CAAE: 41699015.8.0000.0071.

Mil nódulos da tireoide em 906 pacientes foram analisados e classificados de acordo com o TI-RADS, sem conhecimento prévio dos resultados citológicos. Os equipamentos de US utilizados foram ATL HDI 5000 (Absolute Medical Equipment, Wesley Hills, Nova Iorque, Estados Unidos), IU 22 Philips (Philips Healthcare, Andover, Massachusetts, Estados Unidos), Aplio 500 Platinum (Toshiba American Medical Systems, Tustin, Califórnia, Estados Unidos) e My Lab 75 (Esaote, Gênova, Itália), e as imagens adquiridas foram armazenadas no PACS System (Carestream Health, Califórnia, Estados Unidos).

A classificação TI-RADS variou entre 1 (resultados negativos) e 6 (malignidade comprovada) e a categoria 4 foi dividida nas subcategorias 4A (baixa suspeita), 4B (suspeita intermediária) e 4C (suspeita moderada). Quanto mais alto o grau do nódulo, maior o risco de malignidade (Tabela 1 e Figura 1).

Tabela 1. Classificação Thyroid Imaging Reporting and Data System (TI-RADS)

TI-RADS	Definição	Características do ultrassom
1	Negativo	Tireoide normal
2	Benigno	Características benignas
3	Provavelmente benigno	Sem características suspeitas
4A	Pouca suspeita	Uma característica suspeita
4B	Suspeita intermediária	Duas características suspeitas
4C	Suspeita moderada	Três ou quatro características suspeitas
5	Alta suspeita	Cinco características suspeitas
6	Malignidade comprovada e conhecida	Malignidade confirmada

Figura 1. Exemplos de nódulos tireoidianos submetidos ao exame citológico. (A) Nódulo classificado como TI-RADS 2; (B) TI-RADS 3; (C) TI-RADS 4A; (D) TI-RADS 4B; (E) TI-RADS 4C; (F) TI-RADS 5; casos A, B e C foram considerados benignos; casos D, E e F foram considerados malignos pelo sistema Bethesda\(^\text{(11)}\).
As características do US associadas ao risco mais alto de malignidade foram margens irregulares, hipoeocogenicidade, hipoeocogenicidade acentuada (definida como nódulos sólidos, sem realce ou manchas, com áreas de maior hipoeocogenicidade dentro do próprio nódulo, ou em relação a outras áreas hipoeocônicas da tireoide; nesta situação, consideramos os dois pontos), morfologia mais alta do que larga e microcalcificações.

A PAAF foi feita por técnica de mão livre, guiada por US, utilizando-se uma agulha calibre 23 acoplada a seringa de 20cc. Durante a aspiração, a pressão negativa foi mantida até que o sangue aparecesse na ponta da seringa. A anestesia usada foi uma combinação de anestésico local (lidocaína) e gelo. Evitou-se a transfixação de vasos da tireoide para prevenir sangramento local; nos nódulos mistos, optou-se pelas áreas sólidas.

Antes de liberar o paciente após a PAAF, um citologista avaliava as amostras para evitar punções desnecessárias e espécimes insuficientes. Após essa avaliação inicial, patologistas experientes avaliaram todas as amostras, de acordo com o sistema Bethesda (Tabela 2).

Tabela 2. Sistema Bethesda para Laudos Citopatológicos de Tireoide

Categoria	Significado
I	Não diagnóstico ou inadequado
II	Benigno
III	Adiposeio lático de significado indeterminado
IV	Neoplasia lática ou suspeita de neoplasia lática
V	Suspeita de malignidade
VI	Maligno

Fonte: traduzido de Cibas et al. (11)

Tabelas de dupla entrada, e os testes χ^2 e de correlação de Pearson foram usados para avaliar a relação entre TI-RADS e o sistema Bethesda. Considerando-se os resultados da biópsia como malignos ou benignos, para analisar a associação, usamos modelos de regressão logística binária e avaliamos as razões de probabilidade ($odds\ ratio$) de malignidade para cada categoria de TI-RADS. As razões de probabilidade foram expressas com intervalo de confiança de 95% (IC95%). Os testes foram realizados utilizando-se o Statistical Package for Social Science (SPSS) para Windows, versão 17.0, e com nível de significância (α) de 5%.

RESULTADOS

Foram realizados 1.000 exames em 906 pacientes. Dos 1.000 exames, 24 eram Bethesda I e foram excluídos; assim, tínhamos 976 exames completos. Os nódulos com citologia Bethesda IV, V e VI foram considerados suspeitos de malignidade.

Considerando-se todos os nódulos da análise, observamos associação significativa entre a classificação TI-RADS e Bethesda ($p<0,001$), e aqueles com índice 2 ou 3 de TI-RADS tiveram, em sua maioria, resultado de Bethesda 2 (95,5% e 92,5%, respectivamente). Entre aqueles classificados em TI-RADS 4C e 5 (68,2% e 91,3%, respectivamente), a maior parte era Bethesda 6 (Tabela 3).

Tabela 3. Correlação entre Thyroid Imaging Reporting and Data System (TI-RADS) e o sistema Bethesda

Classificação TI-RADS	2 n (%)	3 n (%)	4 n (%)	5 n (%)	6 n (%)	Total n (%)
Todos os nódulos	120 (96)	4 (3,2)	0 (0)	0 (0)	1 (0,8)	125
2	342 (93,3)	23 (5)	0 (0)	0 (0)	8 (1,7)	463
3	192 (71,3)	26 (10,7)	6 (2,3)	1 (0,4)	35 (13,4)	262
4A	35 (43,2)	11 (13,6)	3 (3,7)	1 (1,2)	31 (38,3)	81
4B	3 (13,6)	3 (13,6)	1 (4,5)	0 (0)	15 (58,2)	22
5	1 (4,3)	1 (4,3)	0 (0)	0 (0)	21 (91,3)	23
Total	783 (80,2)	70 (7,2)	10 (1)	2 (0,2)	111 (11,4)	976

Houve um caso de malignidade inesperada em um nódulo que havia sido classificado como TI-RADS 2. Uma revisão retrospectiva das imagens mostrou que o nódulo, na verdade, deveria ter sido classificado como 3 (Figura 2A). É provável que tenha sido um caso de erro de classificação do nódulo, pois a parte sólida foi considerada espongiforme e, na verdade, não tinha focos de coloide. Houve também um nódulo classificado como TI-RADS 5 que era benigno. Era um caso de tireoidite, confirmado em US de seguimento (Figura 2B). Todas as percentagens remanescentes de malignidade em citologia mostraram-se semelhantes ao método BI-RADS®, já amplamente aceito e estabelecido.
Tabela 4. Correlação entre Thyroid Imaging Reporting and Data System (TI-RADS) e risco de malignidade

TI-RADS	Benigno	Maligno	Total	OR IC95%	Valor de p
Todos nódulos					
2	(93,2%)	(0,8%)	(125)	(0,46;0,08-2,7)	0,464
3	(88,3%)	(1,7%)	(463)	Referência	Referência
4A	(84%)	(16%)	(262)	10,86 (5-23,5)	<0,001
3	(56,8%)	(43,2%)	(81)	43,27 (18,9-86,2)	<0,001
4B	(27,3%)	(72,7%)	(22)	151,67 (47,488,88)	<0,001
4C	(8,7%)	(91,3%)	(23)	597,19 (119,3-2987,7)	<0,001
Total	(87,4%)	(12,6%)	(976)		

IC95%: intervalo de confiança de 95%; OR: odds ratio.

DISCUSSÃO

O US de tireoide deve ser realizado na avaliação inicial da glândula. A PAAF é uma ferramenta útil e pouco dispendiosa na detecção de câncer de tireoide, mas é um procedimento invasivo. Portanto, sua recomendação ainda é controversa na conduta de pacientes com nódulos. Na última década, a evolução do US tem surgido como um dos principais métodos usados. No entanto, essa metodologia tem algumas limitações, incluindo a variabilidade inter-observadores e interdispositivos, que é mais significativa no Doppler, em comparação a parâmetros do modo B. Da mesma forma, a análise retrospectiva de imagens mostra-se muito comprometida. Diversas classificações com base em características de US foram propostas na última década, em uma tentativa de facilitar essa seleção. Todavia, não foi estabelecido um consenso, dada a dificuldade de reproduzibilidade das diferentes classificações propostas, ou até mesmo devido à baixa correlação entre laudos de US e resultados de citologia.

Atualmente existe uma tendência de padronizar a avaliação de imagens de diferentes órgãos, com classificações confiáveis e de fácil reprodução. O principal exemplo disso é a já estabelecida classificação BI-RADS para nódulos da mama.

A classificação TI-RADS visa correlacionar características do US e a classificação citológica, graduando cada vez mais a probabilidade de um nódulo ser maligno, de acordo com o número de características presentes no US. Entre as classificações, Horvath et al. propuseram dez padrões de US para serem analisados durante o exame e a classificação de TI-RADS de 2 a 6 (categoria 4 dividida em 4A e 4B) e estimaram um risco de malignidade de 14,1% para TI-RADS 3, 45% para TI-RADS 4, e de 89,6% para TI-RADS 6. Kwak et al. propuseram uma classificação de TI-RADS por meio de uma análise retrospectiva de pacientes submetidos ao US de tireoide e PAAF, considerando os riscos de malignidade e subdivisões similares à classificação BI-RADS (ou seja, com três subdivisões para a categoria 4), usando cinco critérios de US que podem ser incluídos durante a avaliação da tireoide. Esse artigo também descreveu que um risco de malignidade abaixo de 3% é esperado para TI-RADS 3, risco de 3,6 a 91,9% para TI-RADS 4, e de 88,7 a 97,9% para TI-RADS 5.

O presente estudo tem diferenças em relação ao proposto por Horvath et al., como o fato de ser retrospectivo e ter mais uma subdivisão na categoria 4, ao acrescentar a subdivisão 4C. Além disso, nosso propósito era facilitar o processo de classificação, reduzindo de dez para apenas quatro características no US modo B consideradas em nossa classificação. Nosso estudo também diferiu do de Kwak et al. neste ponto, já que esses autores utilizaram cinco características na classificação, uma a mais do que a nossa. Essa diferença dependeu da composição do nódulo, que julgamos passível de erro em alguns casos, pois diversos nódulos mistos poderiam gerar incertezas sobre sua composição exata na avaliação ultrassonográfica. Em vez disso, consideramos dois pontos com hipoeogenicidade acentuada, pois os nódulos com essas características têm maior risco de malignidade em comparação àqueles apenas levemente hipoeicoicos.

Finalmente, nossa classificação, ao contrário de outras propostas, não utiliza a soma de pontos disponível no Doppler. Embora o mapeamento do Doppler ajude na avaliação do US da tireoide, sua reproduzibilidade...
Correlação entre a classificação Thyroid Imaging Reporting and Data System (TI-RADS) e punção aspirativa por agulha fina: experiência com 1.000 nódulos

Conclusão

TI-RADS pode ser considerada uma classificação apropriada na avaliação de nódulos da tireoide, para evitar punção aspirativa por agulha fina desnecessária e auxiliar nas decisões sobre quando deve ser feita. Essa classificação aprimora a comunicação e reduz a confusão entre médicos e pacientes. Nossa experiência demonstrou que a classificação TI-RADS é altamente reproduzível, já que é baseada nas características do modo B dos nódulos, especialmente quando feita por radiologistas experientes, familiarizados com seu uso.

Referências

1. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, Cronan JJ, Doublet PM, Evans DB, Goellner JR, Hay ID, Hertzberg BS, Intenzo CM, Jeffrey RB, Langer JE, Larsen PR, Mandel SJ, Middleton WD, Reading CC, Sherman SI, Tessler FN; Society of Radiologists in Ultrasound. Management of thyroid nodules detected at US: Society of Radiologists in US consensus conference statement. Radiology. 2005;237(3):794-800.

2. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US features of thyroid malignancy: pearls and pitfalls. Radiographics. 2007;27(3):847-60; discussion 861-5. Review.

3. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748-51.

4. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892-9.

5. Chammas MC, Gerhard R, de Oliveira IR, Widman A, de Barros N, Durazzo M, et al. Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg. 2005;132(6):874-82.

6. Russ G, Royer B, Bigorgne C, Rouxel A, Bienvenu-Perrard M, Leenhardt L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol. 2013;168(5):649-55.

7. Park JY, Lee HJ, Jang HW, Kim HK, Yi JH, Lee W, et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid. 2009;19(11):1257-64.

8. Kwak JY. Indications for fine needle aspiration in thyroid nodules. Endocrinol Metab (Seoul). 2013;28(2):81-5. Review.

9. Lagalla R, Caruso G, Romano M, Midiri M, Novara V, Zappasodi F. [Echo-color Doppler in thyroid disease]. Radiol Med. 1993;85(5 Suppl 1):109-13. Italian.

10. American College of Radiology (ACR). ACR BI-RADS®: ultrasound. In: Brest Imaging Reporting and Data System: 2007-2010, 4th ed. Reston (VA); 2003.

11. Cibas ES, Ali SZ. The Bethesda System for Reporting Cytopathology. Thyroid. 2009;19(11):1159-65.

12. Paschke R, Hegedüs L, Alexander E, Valcavi R, Papini E, Gharib H. Thyroid nodule guidelines: agreement, disagreement and need for future research. Nat Rev Endocrinol. 2011;7(6):354-61. Review.

13. Pacini F, Schlumberger M, Drale H, Elisei R, Smit JW, Wiersinga W; European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787-803. Erratum in: Eur J Endocrinol. 2006;155(2):385.

14. American College of Radiology (ACR). Liver imaging reporting and data system [Internet]. Reston (VA): ACR; 2013 [cited 2016 Apr 18]. Available from: www.acr.org/Quality-Safety/Resources/LIRADS

15. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol. 2016;70(1):16-40.

16. Grani G, D’Alessandri M, Carbotta G, Nescia A, Del Sordo M, Alessandrini S, et al. Grey-Scale Analysis Improves the Ultrasonographic Evaluation of Thyroid Nodules. Medicine (Baltimore). 2015;94(27):e1129.

17. Seo H, Na DG, Kim JH, Kim KW, Yoon JW. Ultrasoundonterapia risk stratification for malignancy in thyroid nodules: a four-tier categorization system. Eur Radiol. 2015;25(7):2153-62.

18. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-doppler features. J Clin Endocrinol Metab. 2002;87(5):1941-6.

19. Faria MA, Casulari LA. [Comparison of color Doppler-evaluated thyroid nodule classifications as described by Lagalla and Chammas]. Arq Bras Endocrinol Metabol. 2009;53(7):811-7. Portuguese.