Prospective Comprehensive Genomic Profiling of Primary and Metastatic Prostate Tumors

Jon H. Chung, PhD; Ninad Dewal, PhD; Ethan Sokol, PhD; Paul Mathew, MD; Robert Whitehead, MD; Sherri Z. Millis, PhD; Garrett M. Frazier, PhD; Gennady Bratslavsky, MD; Sumanta K. Pal, MD; Richard J. Lee, MD, PhD; Andrea Necchi, MD; Jeffrey P. Gregg, MD; Primo Lara Jr, MD; Emmanuel S. Antonarakis, MD; Vincent A. Miller, MD; Jeffrey S. Ross, MD; Siraj M. Ali, MD, PhD; and Neeraj Agarwal, MD

PURPOSE
Comprehensive genomic profiling (CGP) is increasingly used for routine clinical management of prostate cancer. To inform targeted treatment strategies, 3,476 clinically advanced prostate tumors were analyzed by CGP for genomic alterations (GAs) and signatures of genomic instability.

METHODS
Prostate cancer samples (1,660 primary site and 1,816 metastatic site tumors from unmatched patients) were prospectively analyzed by CGP (FoundationOne Assay; Foundation Medicine, Cambridge, MA) for GAs and genomic signatures (genome-wide loss of heterozygosity [gLOH], microsatellite instability [MSI], tumor mutational burden [TMB]).

RESULTS
Frequently altered genes were TP53 (44%), PTEN (32%), TMPRSS2-ERG (31%), and AR (23%). Potentially targetable GAs were frequently identified in DNA repair, phosphatidylinositol 3-kinase, and RAS/RAF/MEK pathways. DNA repair pathway GAs included homologous recombination repair (23%), Fanconi anemia (5%), and mismatch repair (4%) GAs. BRCA1/2, ATR, and FANCA GAs were associated with high gLOH, whereas CDK12-altered tumors were infrequently gLOH high. Median TMB was low (2.6 mutations/Mb). A subset of cases (3%) had high TMB, of which 71% also had high MSI. Metastatic site tumors were enriched for the 11q13 amplicon and MSI/TMB signatures could further inform selection of poly (ADP-ribose) polymerase inhibitors and immunotherapies, respectively. Correlation of DNA repair GAs with gLOH targets therapies in 57% of cases. gLOH and MSI/TMB signatures could further inform selection of poly (ADP-ribose) polymerase inhibitors and immunotherapies, respectively. Correlation of DNA repair GAs with gLOH identified genes associated with homologous recombination repair deficiency. GAs enriched in metastatic site tumors suggest therapeutic strategies for metastatic prostate cancer. Lack of clinical outcome correlation was a limitation of this study.

CONCLUSION
Routine clinical CGP in the real-world setting identified GAs that are investigational biomarkers for targeted therapies in 57% of cases. gLOH and MSI/TMB signatures could further inform selection of poly (ADP-ribose) polymerase inhibitors and immunotherapies, respectively. Correlation of DNA repair GAs with gLOH identified genes associated with homologous recombination repair deficiency. GAs enriched in metastatic site tumors suggest therapeutic strategies for metastatic prostate cancer. Lack of clinical outcome correlation was a limitation of this study.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology
We evaluated the landscape of GAs in prostate cancer and identified those that are enriched in metastatic site tumors. Approximately 3% of cases had high microsatellite instability and/or high tumor mutational burden status. Specific DNA damage response alterations were associated with genome-wide loss of heterozygosity.

Key Objective
In this study, we use real-world data from routine prospective clinical genomic profiling to evaluate genomic alterations (GAs) and genomic signatures in primary and metastatic prostate cancer.

Context
Fifty-seven percent of cases harbored a GA associated with targeted therapy approaches. GAs enriched in metastatic site tumors suggest therapeutic strategies for metastatic prostate cancer. Genomic signatures, including microsatellite instability, tumor mutational burden, and genome-wide loss of heterozygosity, may further refine biomarker development for poly (ADP-ribose) polymerase inhibitors and immunotherapies.

Results
Patient Characteristics
CGP was performed in the course of routine clinical care on tissue samples from 3,476 unique patients with prostate cancer (median age, 66 years; range, 34 to 94 years), including 1,660 samples from the prostate primary site and 1,816 samples from metastatic sites of unmatched patients (Appendix Fig A1).

GAs in Primary and Metastatic Site Tumors
Overall, there was an average of 4.5 GAs per tumor (primary, 3.5 GAs; metastatic, 5.5 GAs). Frequently altered genes were TP53 (43.5%), PTEN (32.2%), TMMRPRSS2-ERG (31.2%), AR (22.5%), MYC (12.3%), BRCA2 (9.8%), RB1 (9.7%), APC (9.3%), MLL3/KMT2C (7.8%), SP0P (7.7%), PIK3CA (6.0%), and CDK12 (5.6%; Fig 1A). ETS fusions were observed in 35.5% of cases. Activating RAF or RAF1 fusions/rearrangements were observed in 1.2% of cases (35 BRAF and seven RAF1; Appendix Fig A2).

The PI3K/RAF1/MEK pathway was frequently altered (40.8%; Figs 1B and 1C). As expected, PTEN GAs were frequent, and we observed activating mutations and amplifications in PIK3CA, PIK3CB, AKT1/2/3, mTOR, and RICTOR and loss-of-function alterations in PIK3R1/2 and TSC1/2. The G1/S-cell cycle pathway was altered in 23.4% of cases, most frequently RB1 loss-of-function alterations (9.7%), as well as copy number alterations (CNAs) in CDK4/6, CCND1/2/3, CCNE1, CDKN2A/B/C, and CDKN1B (Figs 1B and 1D). The WNT pathway was altered in 16.2% of cases (Figs 1B and 1E). RAS/RAF/MEK pathway alterations (5.7%; Figs 1B and 1F) included oncogenic BRAF mutations (Appendix Fig A2), BRAF/RAF1 rearrangements, activating mutations in RAF1/ARAF, KRAS/HRAS/HRAS and MAP2K1/2, and NF1 loss-of-function alterations. Homologous recombination repair (HRR)–related pathway alterations were observed in 23.4% of cases (Fig 1B), and other DNA repair pathway alterations included Fanconi anemia/interstrand crosslink repair (FAN1/ICR1 genes (4.8%), CDK12 (5.6%), mismatch repair (MMR) genes (4.3%), and the DNA polymerase gene POLE (0.1%; Fig 1B).

Overall, 57% of cases harbored GAs that are investigational biomarkers for targeted therapies with varying levels of supporting clinical evidence (Appendix Table A2), including candidate biomarkers for targeted therapies in advanced phases of development in prostate cancer (eg, PTEN, AKT1, BRCA1/2, ATM) and those that have been successfully targeted in other tumor types, such as activating BRAF and ERBB2 GAs.

Distinct genomic subsets of prostate cancer have been described, including those defined by ETS fusions, SPOP mutations, IDH1 mutations, and CDK12 GAs. Consistent with distinct subsets, ETS fusions were mutually exclusive with SPOP/CUL3 GAs (P < .001; Fisher’s exact test, two-tailed).
A

- Short variant: missense or inframe indel
- Short variant: truncation
- Amplification
- Homozygous deletion
- Rearrangement/fusion

B

- ETS fusion
- BRAF fusion or mutation
- SPOP/CUL3 mutation
- CDK12 GA
- IDH1/2 mutation
- AR GA
- PI3K pathway
- Homologous recombination
- G1/S-cell cycle
- WNT pathway
- Fanconi anemia/ICL repair pathway
- Other RAS/RAF/MEK pathway
-Mismatch repair

C

- PI3K/AKT/mTOR pathway alteration in 41% (1,417 of 3,476) of cases

D

- G1/S-cell cycle pathway alteration in 23% (813 of 3,476) of cases

E

- WNT pathway alteration in 16% (564 of 3,476) of cases

F

- RAS/RAF/MEK pathway alteration in 5.7% (199 of 3,476) of cases

G

Primary Site Frequency (%)

Metastatic Site Frequency (%)
CDK12 GA (P < .001), and BRAF rearrangements/mutations (P < .001; Fig 1B).

To compare primary and metastatic site tumors, we assessed relative enrichment in GAs (Fig 1G; Appendix Table A3). GAs enriched by 2% or more in metastatic site tumors included AR (36.0% enrichment), MYC (11.2%), PTEN (10.9%), TP53 (7.1%), RB1 (6.3%), the 11q13 amplicon (CCND1 [3.8%], FGFR1 [3.7%], FGFR3 [3.3%], FGFR4 [3.3%]), LYN (3.6%), CTNNB1 (3.0%), MLL3 (2.9%), APC (2.6%), NCOA1 (2.3%), BRCA2 (2.2%), FAS (2.1%), PIK3CB (2.0%), and CDKN2A (2.0%; all P < .05). Of these, 10 were enriched in metastatic site tumors by twofold or more (all P < .001), including AR (10.6-fold), LYN (3.6-fold), 11q13 (CCND1 [2.5-fold], FGFR1 [3.0-fold], FGFR3 [2.8-fold], FGFR4 [2.9-fold]), MYC (2.7-fold), NCOA1 (2.1-fold), PIK3CB (2.7-fold), and RB1 (2.0-fold overall, 1.8-fold for homozygous deletions, 2.5-fold for mutations). The fraction of tumor suppressor gene mutations predicted to result in biallelic inactivation was not higher in primary site tumors, which suggests that metastatic enrichments were functionally relevant (Appendix Fig A3A). Collectively, G1/S-cell cycle genes were altered in 30.7% of metastatic site versus 15.4% of primary site tumors (Appendix Fig A3B). The only gene enriched in primary site tumors was SPOP (2.0%; 1.3-fold enrichment; P = .03).

DNA Repair Pathway GAs

HRR and FA/ICL pathway GAs have been associated with responses to PARP inhibitors in prostate cancer, and CDK12 has been implicated in HRR in preclinical studies but also has distinct functions associated with DNA replication-related repair. Collectively, these genes were altered in 31.0% of cases (Figs 1B and 2A), and genes altered in more than 1% of cases included BRCA2 (9.8%), CDK12 (5.6%), ATM (5.2%), CHEK2 (1.8%), BRCA1 (1.4%), FANCA (1.3%), and ATR (1.1%). MMR pathway GAs or POLE V411L, which have been associated with increased TMB and responses to immunotherapy, were observed in 4.3% and 0.1% of cases, respectively (Fig 2B).

Germline/somatic status predictions were made to estimate the prevalence of germline DNA repair mutations; 933 of 1,261 of DNA repair mutations (74%) yielded an available germline/somatic call of which 35.7% were germline (Fig 2C). Predicted germline mutations were identified in 57.8% of BRCA2-, 25.0% of BRCA1-, 35.8% of ATM-, 80.0% of CHEK2-, 52.2% of FANCA-, 42.3% of MSH2-, 20.0% of MSH6-, 25.0% of MLH1-, and 44.4% of PMS2-mutated cases; only 9.2% of CDK12-mutated cases harbored a predicted germline mutation (Fig 2C).

Genomic Signatures: gLOH

In addition to GAs in individual DNA repair genes, genomic signatures represent the phenotypic readout of deleterious DNA repair and are potential predictive biomarkers. For example, gLOH is a measure of homologous recombination deficiency (HRD) and is associated with PARP inhibitor clinical benefit in BRCA1/2 wild-type ovarian cancer. We assessed the association between genomic signatures and DNA repair GAs.

Percent gLOH was assessable for 2,624 cases, and the median gLOH score was 8.5% (interquartile range, 5.8%-12.2%). Overall, 447 of 2,624 cases (17%) were gLOH high (gLOH-H; Fig 2D), of which 35.9% harbored an HRR or FA/ICL pathway GA (Appendix Fig A4A). We evaluated the association between gLOH and DNA repair GAs (Fig 2D). Consistent with the established relationship between BRCA1/2 and HRD, BRCA1/2-altered cases (both predicted germline and somatic mutations) were more frequently gLOH-H compared with the overall data set (Fig 2D).

To evaluate the potential relevance of non-BRCA1/2 DNA repair genes as biomarkers for PARP inhibition, we assessed their association with gLOH-H, which was comparable between the overall data set and cases with non-BRCA1/2 DNA repair GAs, although cases with homozygous deletions in non-BRCA1/2 HRR pathway or FA/ICL pathway GAs were more frequently gLOH-H (Appendix Fig A4B). While considering each gene individually, cases with ATR or FANCA mutations (particularly FANCA homozygous deletion) were more frequently gLOH-H, whereas CDK12- or NBN-altered cases were significantly less frequently gLOH-H (Fig 2D).

Genomic Signatures: TMB and MSI

MSI-H and TMB-H genomic signatures are biomarkers of sensitivity to immunotherapies, therefore, we evaluated the association between MSI/TMB and MMR/polymerase

FIG 1. Genomic characterization of primary and metastatic site prostate tumors. (A) The frequency of genomic alterations (GAs) identified in tumors from 3,476 patients with prostate cancer. Genes altered in ≥2% or more of cases are shown. (B) Frequency of major pathway alterations, including ETSfusions, BRAF rearrangements/mutations, SP0CYC3 mutations, CDK12 GAs, IDH1/2 mutations, AR GAs, phosphatidylinositol 3-kinase (PI3K) pathway GAs, homologous recombination GAs, G1/S-cell cycle GAs, WNT pathway GAs, Fanconi anemia/interstrand crosslink repair (FA/ICL) pathway GAs, RAS/RAF/MEK pathway GAs (other than BRAF), mismatch repair GAs, and POLE mutations (see Figs 1C to 1F for details). Each column represents a single patient sample, and samples that harbored an alteration in each pathway are indicated in black. (C to F) GAs identified in each pathway, including the (C) PI3K/AKT/mammalian target of rapamycin (mTOR) pathway, (D) G1/S-cell cycle pathway, (E) WNT pathway, and (F) RAS/RAF/MEK pathway (NF1 mutation, rearrangement, or copy number loss; BRAF or RAF1 mutations or rearrangements; ARAF, K/N/H-RAS, or MAP2K1/2 mutations were included); percent of altered cases is indicated. (G) Comparison of alteration frequencies for each gene in primary site samples versus metastatic site samples. The dotted line represents a 1:1 relationship. Genes that were enriched (difference between primary site v metastatic site frequency) by at least 2% are indicated (all P < .05 by Fisher’s exact test [two-tailed]), with genes enriched at least twofold indicated in red (all P < .001 by Fisher’s exact test [two-tailed]). Details are listed in Appendix Table A3. indel, insertion/deletion.
A DNA repair genomic alterations (GAs) and association with genomic signatures. GAs identified in the (A) homologous recombination repair (HRR) pathway, Fanconi anemia/interstrand crosslink repair (FA/ICL) repair pathway, and CDK12 or (B) mismatch repair (MMR; MSH2, MSH6, MLH1, PMS2) or CGP of Primary and Metastatic Prostate Tumors.

FIG 2. DNA repair genomic alterations (GAs) and association with genomic signatures. GAs identified in the (A) homologous recombination repair (HRR) pathway, Fanconi anemia/interstrand crosslink repair (FA/ICL) repair pathway, and CDK12 or (B) mismatch repair (MMR; MSH2, MSH6, MLH1, PMS2) or CGP of Primary and Metastatic Prostate Tumors.
pathway GAs. MSI status was assessable for 3,326 cases, and overall, 87 of 3,326 cases (2.6%) were MSI-H (2.0% primary site, 3.1% metastatic site tumors). MSI-H status significantly co-occurred with MMR GA, with 78.2% MSI-H cases also harboring a GA in the MMR pathway. For cases with an MMR GA, 48.6% were MSI-H; for the subset of MMR mutations resulting in biallelic inactivation, 69.5% were MSI-H (Appendix Fig A5A).

Deleterious MMR or POLE GAs can cause an accumulation of mutations that can be quantitatively measured by TMB. Median TMB was low overall (2.6 mutations/Mb) and low for primary site and metastatic site tumors; a subset of cases (3.3%) was TMB-H (≥ 20 mutations/Mb), including 2.5% of primary site and 4.0% of metastatic site tumors (Appendix Fig A5B). At a lower TMB threshold, 5.1% of cases overall had 10 mutations/Mb or more (Appendix Fig A5B). TMB was significantly increased for cases with MMR GA (median, 24.4 mutations/Mb) and MSI-H (median, 37.4 mutations/Mb); median TMB for POLE V411L–mutated cases was 285 mutations/Mb (Fig 2E). As expected, median TMB was low for cases with GA in other DNA repair pathways (Fig 2E). For cases with an HRR GA, the frequency of TMB-H was higher (9.3%) than the overall data set (3.3%); however, homozygous deletions in HRR pathway genes and gLOH-H score were not associated with TMB-H, which suggests that HRD is likely not causal for the TMB-H phenotype.

For 111 TMB-H cases with assessable MSI status, the TMB-H phenotype was explained by concurrent MSI-H status for 71.2% of cases and by TMB-H phenotype for 28.8% of cases (Appendix Fig A5C). For the remaining cases, TMB-H phenotype was not attributed to MSI-H or POLE.

Landscape of ETS Fusions and AR GAs

In total, 1,236 ETS fusions were detected (one sample harbored two ETS fusions; Fig 1B). TMPRSS2-ERG comprised the majority (87.7%) of ETS fusions (Fig 3A), with the remaining consisting of ETVI (8.5%), ETV4 (2.6%), and ETV5 (1.2%) with diverse fusion partners, including several not previously described (Fig 3B). Consistent with previous studies, breakpoints were most frequently in ERG intron 3 \(^{26} \) (Fig 3C). We also identified breakpoints that juxtaposed TMPRSS2 with the intergenic region upstream of ERG (0.1 to 75 kb upstream; Fig 3C); similar upstream intergenic breakpoints were observed for TMPRSS2 fusions with ETV4 (10 of 32 cases) and ETV5 (two of 15 cases).

AR GAs are associated with castration-resistant disease and were most enriched in metastatic site tumors (39.7% of metastatic site and 3.7% of primary site tumors; Fig 1G). In total, 905 AR GAs were observed in 783 cases (557 CNAs, 303 mutations, and 45 rearrangements; Fig 4A). CNAs were observed in 16.0% of cases (2.4% primary site and 28.5% metastatic site). Five hundred fifty-five of 557 CNAs were amplifications (median copy number, 24; range, six to 366); two homozygous deletions that encompass exons 5 to 7 or exons 5 to 8 are likely activating.\(^{27} \) AR missense mutations were observed in 6.9% of cases (1.3% primary site and 11.9% metastatic site), and most were ligand-binding domain antiandrogen resistance mutations (Fig 4B).\(^{28} \) Finally, AR rearrangements were observed in 1.3% of cases (0.4% primary site and 2.2% metastatic site); however, because the sequencing strategy was not explicitly designed to detect AR rearrangements and does not fully cover AR intronic regions, the true frequency of AR rearrangements is difficult to establish. The 45 rearrangements included 18 duplications, 17 deletions, six inversions, and four translocations that were predicted to result in a truncated AR gene retaining exons 1 to 3 that encode the DNA binding domain (Fig 4C); such alterations are likely activating.\(^{27,29} \)

DISCUSSION

CGP of 3,476 prostate tumors identified frequent GAs in the PI3K, cell cycle, HRR, and WNT pathways and diverse GAs that are investigational biomarkers for targeted therapies in 57% of cases (Appendix Table A2). GAs that co-occur with targetable GAs (Fig 1B) and their impact on response to therapy warrant consideration in biomarker-driven trials. MSI-H and TMB-H have been associated with immunotherapy benefit,\(^{10,24,25} \) and gLOH-H has been associated with PARP inhibitor benefit;\(^{31} \) therefore, assessment of signatures of genomic instability potentially expands the population of patients addressable with immunotherapy or targeted therapy.

We identified a subset of TMPRSS2 rearrangements fused to upstream intergenic regions of ERG, ETV4, or ETV5 as well as novel ETS fusion partners. However, the assay is

FIG 2. (Continued). polymerase (POLQ) V411L genes. (C) Mutations in DNA repair genes were assessed for germline or somatic status. For each gene, the number of cases with a germline mutation or somatic-only mutation is shown. (D) Genome-wide loss of heterozygosity (gLOH) score was evaluated for the overall data set (blue) and for association with each DNA repair gene altered at 0.5% or greater frequency. The frequency of cases with a gLOH-high score for each subset is shown. The term “all GAs” represents the association with any reportable GA (short variant mutation, homozygous deletion or rearrangement) in the specified gene. Homozygous deletions (homdel) were individually assessed for BRCA1/2, ATM, and FANCA. Germline (g) and somatic (s) mutations were individually assessed for BRCA1/2 and ATM. Each subset was individually compared with the overall data set, and unadjusted \(P \) values are shown (Fisher’s exact test [two-tailed]). (E) Tumor mutational burden (TMB) was evaluated for the overall data set and compared with various genomic subsets, including those harboring an HRR pathway GA, an FA/ICL pathway GA, a CDK12 GA, an MMR GA, a microsatellite instability-high (MSI-H) genomic signature, or a POLE V411L mutation. Box and whisker plots: Boxes span first and third quartiles, the median is denoted by the horizontal line in the box, and whiskers indicate maximum and minimum values within 1.5x the interquartile range.
limited to common breakpoints and may incompletely identify rare ETS fusions with novel breakpoints. Consistent with distinct molecular subsets of prostate cancer,1,8 ETS fusions were mutually exclusive with SPOP/CUL3, CDK12 mutations, or BRAF rearrangements/mutations that may potentially comprise a clinically relevant genomic subset.30,31 Diverse AR GAs can mediate androgen axis inhibitor resistance28,29 and were strongly enriched in metastatic site tumors. AR rearrangements that disrupted the ligand-binding domain can mediate resistance to current AR inhibitors.29 Development of novel AR inhibitors that target the diverse spectrum of AR alterations is needed. AR GAs commonly co-occurred with alterations in other targetable pathways (Fig 1B); such concurrent alterations may present an opportunity for targeted therapy in androgen axis inhibitor-resistant tumors.

In addition to metastatic enrichment in AR GAs, we identified first that CCND1/FGF3/FGF4/FGF19 (11q13) amplifications

FIG 3. TMPRSS2-ERG and other ETS fusions. (A) Distribution of 1,236 ETS fusions in this study. (B) The 5' partner genes are identified. (C) Distribution of breakpoints identified in the ERG gene. Numbered boxes represent exons. Triangles represent observed breakpoints. (*) Fusion partners that have been previously described. bp, base pair; kbp, kilobase pair.
were enriched in metastatic sites. Of note, 11q13 amplification is associated with endocrine resistance in breast cancer and potentially targetable by fibroblast growth factor receptor inhibitors and, therefore, warrants investigation in prostate cancer. Second, CDKN2A GAs were enriched in metastatic site tumors (1.9-fold), and although not previously described in primary versus metastatic studies, acquired CDKN2A alterations were described in enzalutamide-resistant tumors. Metastatic enrichment of cell cycle GAs suggests that CDK4/6 inhibitors could be explored. Third, NCOR1 GAs were enriched in metastatic site tumors. Downregulation of NCOR1, which encodes a negative regulator of AR, is associated with androgen axis inhibitor resistance. Finally, we independently confirmed metastatic site enrichment of MYC, PTEN, TP53, RB1, CTNNB1, MLL3, APC, BRCA2, and PIK3CB and primary site enrichment of SPOP.

DNA repair pathway GAs are associated with responses to PARP inhibitors or immunotherapy in many solid tumor types. Collectively, HRR, FA/ICL, CDK12, or MMR/DNA polymerase genes were altered in 32.6% of cases. On the basis of a germline/somatic prediction algorithm, we estimate that 35.7% of DNA repair gene mutations were germline. Current guidelines (National Comprehensive Cancer Network version 4.2018) recommend testing for

FIG 4. Landscape of AR alterations. (A) AR genomic alterations (GAs) were identified in 721 cases, including amplification (red), mutation (green), and rearrangements (purple). (B) Graph that represents the number of cases with each AR GA. The percentages indicate the frequency of AR mutations at each codon as a fraction of all AR mutations. Letters denote amino acid abbreviations as recommended by the International Union of Pure and Applied Chemistry. (C) Map of AR rearrangements that describe breakpoints for translocations and deleted, duplicated, or inverted regions.
certain HRR genes, MMR genes, or MSI status; identification of such DNA repair GA by tumor sequencing warrants follow-up germline testing and genetic counseling. A limitation of tumor-only sequencing is that germline/somatic calls are not definitive and require confirmation by dedicated germline testing. However, compared with a recent study, we identify similar relative proportions of germline/somatic mutations for frequently mutated HRR genes (BRCA2, ATM, CHEK2). Furthermore, another study of prostate cancer similarly identified germline mutations for many of the DNA repair genes evaluated here.

Although preclinical studies have identified non-BRCA1/2 HRR genes, their association with HRD phenotype in clinical samples is unclear. As expected, BRCA1/2 was associated with gLOH-H. Beyond BRCA1/2, associations with gLOH-H were observed for ATM and FANCA. CDK12 is a candidate biomarker for PARP inhibition on the basis of preclinical studies, however, gLOH-H was significantly less frequent for CDK12-altered cases; this finding is consistent with recent studies suggesting that CDK12 GAs are associated with a focal tandem duplication phenotype that is distinct from HRD. In trials for metastatic prostate cancer, germline or somatic BRCA1/2 alterations were associated with response to PARP inhibitor monotherapy. In contrast, non-BRCA HRR genes have been less consistent in predicting response and require further refinement in clinical trials.

The evaluation of both individual GAs and genomic signatures together may be important when exploring predictive biomarkers. Identification of gLOH-H cases lacking DNA repair GAs (Appendix Fig A4A) may have clinical value, but further investigation in PARP inhibitor trials is required to assess the clinical utility of gLOH as a biomarker in prostate cancer. Similarly, DNA repair GAs were associated with MSI-H or TMB-H genomic signatures that are associated with benefit from immunotherapy. A subset of MSI/TMB-H cases do not harbor corresponding DNA repair GAs potentially because GAs may occur in genes involved in DNA repair that have not yet been discovered, complex rearrangements with intronic breakpoints may be challenging to detect, or genomic instability can occur through mechanisms such as gene silencing or extrinsic DNA damage.

Limitations of this study should be acknowledged. First, limited access to patient-level clinical data prevented further subclassification of primary and metastatic samples by castration resistance status. Furthermore, because samples were collected for routine clinical testing, primary samples in this cohort may be biased toward patients who have received prior treatment or developed metastatic disease that resulted in a distinct genomic landscape from untreated primary tumors. In contrast, metastatic samples may not all represent castration-resistant disease. Therefore, sensitivity to identify genomic associations with primary/aggressive disease may be reduced. However, many findings in this study recapitulated those described in previous studies of smaller cohorts with better clinical annotation that compared metastatic castration-resistant tumors with noncastrate primary site tumors. Particularly, the low AR GA frequency in primary site samples is consistent with mostly noncastrate disease, and the high AR GA frequency in metastatic site samples is consistent with mostly castration-resistant disease. Second, in contrast to whole-exome sequencing studies of prostate cancer, this study uses an assay that is used in routine clinical practice and was therefore limited to the 395 genes assessed.

In this study, routine CGP for prostate cancer identified frequent alterations in genes and pathways as well as in genomic signatures. These findings may suggest routes to targeted therapy or immunotherapy for patient’s refractory to current therapies.

AFFILIATIONS
1 Foundation Medicine, Cambridge, MA
2 Tufts Medical Center, Boston, MA
3 Cancer Treatment Centers of America, Goodyear, AZ
4 Upstate Medical University, Syracuse, NY
5 City of Hope Comprehensive Cancer Center, Duarte, CA
6 Massachusetts General Hospital, Boston, MA
7 Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy
8 University of California, Davis, Medical Center, Sacramento, CA
9 Johns Hopkins University School of Medicine, Baltimore, MD
10 University of Utah, Salt Lake City, UT

CORRESPONDING AUTHOR
Jon H. Chung, PhD, Foundation Medicine, 150 Second St, Cambridge, MA 02141; Twitter: @neerajaiims, @huntsmancancer, @montypal, @andreaneccchi, @PCF_science, @foundationACTG, @ProstateCancerC, @Prostatepedia, @primolarMD, @SWOG; e-mail: jchung@foundationmedicine.com.

EQUAL CONTRIBUTION
J.H.C. and N.D. contributed equally to this work.

AUTHOR CONTRIBUTIONS
Conception and design: Jon H. Chung, Ninad Dewal, Gennady Bratslavsky, Sumanta K. Pal, Jeffrey S. Ross, Siraj M. Ali, Neeraj Agarwal
Financial support: Jeffrey P. Gregg
Administrative support: Vincent A. Miller
Provision of study material or patients: Primo Lara Jr
Collection and assembly of data: Jon H. Chung, Robert Whitehead, Garrett M. Frapton, Gennady Bratslavsky, Sumanta K. Pal, Jeffrey P. Gregg, Jeffrey S. Ross, Siraj M. Ali
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/authorcenter.

Jon H. Chung
Employment: Foundation Medicine

Ninad Dewal
Employment: Foundation Medicine

Stock and Other Ownership Interests: Foundation Medicine

Ethan Sokol
Employment: Foundation Medicine

Paul Mathew
Honorary: Exelixis

Patents, Royalties, Other Intellectual Property: Patent pending on new therapeutic invention

Travel, Accommodations, Expenses: Exelixis

Robert Whitehead
Employment: UnitedHealthcare, Cancer Treatment Centers of America

Sherri Z. Millis
Employment: Foundation Medicine

Garrett M. Frampton
Employment: Foundation Medicine

Stock and Other Ownership Interests: Foundation Medicine

Sumanta K. Pal
Honorary: Novartis, Medivation, Astellas Pharma

Consulting or Advisory Role: Pfizer, Novartis, Aveo, Myriad Pharmaceuticals, Genentech, Exelixis, Bristol-Myers Squibb, Astellas Pharma, Ipsen, Eisai

Research Funding: Medivation

Richard J. Lee
Consulting or Advisory Role: Janssen Pharmaceuticals, Exelixis

Research Funding: Janssen Pharmaceuticals

Andrea Necchi
Employment: Bayer AG (I)

Stock and Other Ownership Interests: Bayer AG (I)

Honorary: Roche, Merck, AstraZeneca, Janssen Pharmaceuticals, Foundation Medicine

Consulting or Advisory Role: Merck Sharp & Dohme, Roche, Bayer AG, AstraZeneca, Clovis Oncology, Janssen Pharmaceuticals, Incyte, Seattle Genetics, Astellas Pharma, Bristol-Myers Squibb, Rainier Therapeutics

Research Funding: Merck Sharp & Dohme (Inst), AstraZeneca (Inst)

Travel, Accommodations, Expenses: Roche, Merck Sharp & Dohme, AstraZeneca, Janssen Pharmaceuticals

Other Relationship: Bayer AG (I)

Jeffrey P. Gregg
Consulting or Advisory Role: AstraZeneca, Bristol-Myers Squibb, Roche, Foundation Medicine

Speakers’ Bureau: AstraZeneca, Foundation Medicine, Bristol-Myers Squibb

Primo Lara Jr
Honorary: Pfizer

Consulting or Advisory Role: Exelixis, Pfizer, AstraZeneca, Bayer AG, Genentech, Roche, Janssen Pharmaceuticals, Bristol-Myers Squibb, AbbVie, Turnstone Bio, Foundation Medicine, Merck, CellMax Life, Nektar

Research Funding: Millennium Pharmaceuticals (Inst), Polaris (Inst), GlaxoSmithKline (Inst), Genentech (Inst), Aragon Pharmaceuticals (Inst), Janssen Pharmaceuticals (Inst), Heat Biologics (Inst), TRACON Pharma (Inst), Merck (Inst), Pharmacyscics (Inst), Incyte (Inst)

Emmanuel S. Antonarakis
Honorary: Sanofi, Dendreon, Medivation, Janssen Pharmaceuticals, ESSA, Astellas Pharma, Merck, AstraZeneca, Clovis Oncology

Consulting or Advisory Role: Sanofi, Dendreon, Medivation, Janssen Pharmaceuticals, ESSA, Astellas Pharma, Merck, AstraZeneca, Clovis Oncology

Research Funding: Janssen Pharmaceuticals (Inst), Johnson & Johnson (Inst), Sanofi (Inst), Dendreon (Inst), Aragon Pharmaceuticals (Inst), Exelixis (Inst), Millennium Pharmaceuticals (Inst), Genentech (Inst), Novartis (Inst), Astellas Pharma (Inst), Tokai Pharmaceuticals (Inst), Merck (Inst), AstraZeneca (Inst), Clovis Oncology (Inst), Constellation Pharmaceuticals (Inst)

Patents, Royalties, Other Intellectual Property: Co-inventor of a biomarker technology that has been licensed to QIAGEN

Travel, Accommodations, Expenses: Sanofi, Dendreon, Medivation

Vincent A. Miller
Employment: Foundation Medicine

Leadership: Foundation Medicine

Stock and Other Ownership Interests: Foundation Medicine

Consulting or Advisory Role: Revolution Medicines

Patents, Royalties, Other Intellectual Property: Receive periodic royalties related to T790M patent awarded to Memorial Sloan Kettering Cancer Center

Jeffrey S. Ross
Employment: Foundation Medicine

Leadership: Foundation Medicine

Stock and Other Ownership Interests: Foundation Medicine

Research Funding: Foundation Medicine

Siraj M. Ali
Employment: Foundation Medicine

Leadership: Incysus

Stock and Other Ownership Interests: Exelixis, Blueprint Medicines, Agios, Genocea Biosciences

Consulting or Advisory Role: Revolution Medicines, Azitra (I), Princepx Tx (I)

Patents, Royalties, Other Intellectual Property: Patents through Foundation Medicine, patents through Seres Health on microbiome studies in non-neoplastic disease (I)

Neeraj Agarwal
Consulting or Advisory Role: Pfizer, Exelixis, Medivation, Astellas Pharma, Eisai, Merck, Novartis, EMD Serono, Clovis Oncology, Genentech, Roche, Bristol-Myers Squibb, AstraZeneca, Nektar, Eli Lilly, Bayer AG, Foundation Medicine, Argos Therapeutics
REFERENCES

1. Abeshouse A, Ahn J, Akbari R, et al: The molecular taxonomy of primary prostate cancer. Cell 163:1011-1025, 2015
2. Armenia J, Wankowicz SAM, Liu D, et al: The long tail of oncogenic drivers in prostate cancer. Nat Genet 50:645-651, 2018
3. Abida W, Armenia J, Gopal A, et al: Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol doi:10.1200/PO.19.00308
4. Mateo J, Carreira S, Sandhu S, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697-1708, 2015
5. de Bonj DS, De Giorgi U, Massard C, et al: PTEN loss as a predictive biomarker for the Akt inhibitor ipatasertib combined with abiraterone acetate in patients with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 27:7180, 2016
6. Hyman DM, Smyth LM, Donoghue MTA, et al: AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol 35:2251-2259, 2017
7. Mateo J, Ganji G, Lemench C, et al: A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin Cancer Res 23:5981-5992, 2017
8. Wu Y-M, Cieslik M, Lonigro RJ, et al: Inactivation of CDK12 delineates a distinct immunogenic class of prostate cancer. Cell 173:1770-1782.e14, 2018
9. Lee L, Ali S, Genega E, et al: Aggressive-variant microsatellite-stable POLE mutant prostate cancer with high mutation burden and durable response to immune checkpoint inhibitor therapy. J Precis Oncol doi:10.1200/PO.19.00308
10. Le DT, Durham JN, Smith KN, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409-413, 2017
11. Robinson DR, Wu Y-M, Lonigro RJ, et al: Integrative clinical genomics of metastatic cancer. Nature 548:297-303, 2017
12. Wedge DC, Gondem G, Mitchell T, et al: Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet 50:682-692, 2018
13. Robinson D, Van Allen EM, Wu Y-M, et al: Integrative clinical genomics of advanced prostate cancer. Cell 161:1215-1228, 2015 (Erratum: Cell 162:454, 2015)
14. Joseph JD, Lu N, Qian J, et al: A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enalaprilamide and ARN-509. Cancer Discov 3:1020-1029, 2013
15. Han GC, Hwang J, Wankowicz SAM, et al: Germline resistance patterns to second-generation androgen blockade in paired tumor biopsies of metastatic prostate cancer. JCO Precis Oncol doi:10.1200/PO.19.00308
16. Frampton GM, Fichtenholtz A, Otto GA, et al: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023-1031, 2013
17. Sun JX, He Y, Sanford E, et al: A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Comput Biol 14:e1005965, 2018
18. Mateo J, Chakravarty D, Dienstmann R, et al: A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 29:1895-1902, 2018
19. Bajrami I, Frankum JR, Konde A, et al: Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1 inhibition sensitivity. Cancer Res 74:287-294, 2014
20. Blazek D, Kohoutek J, Bartholomeeusen K, et al: The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25:2158-2172, 2011
21. Swisher EM, Lin KK, Oza AM, et al: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75-87, 2017
22. Coleman RL, Oza AM, Lorusso D, et al: Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949-1961, 2017
23. Carbone DP, Reck M, Paz-Ares L, et al: First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376:2415-2426, 2017
24. Goodman AM, Kato S, Bazhenova L, et al: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2958-2968, 2017
25. Hellmann MD, Ciuleanu T-E, Pluzanski A, et al: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 376:2093-2104, 2018
26. Adamo P, Ladomey MR: The oncogene ERG: A key factor in prostate cancer. Oncogene 35:403-414, 2016
27. Nyquist MD, Li Y, Hwang TH, et al: TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A 110:17492-17497, 2013
28. Lalouss N, Volik SV, Awey S, et al: Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10, 2016
29. Henzler C, Li Y, Yang R, et al: Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat Commun 7:13668, 2016
30. Richtig G, Hoeller C, Kaschofer K, et al: Beyond the BRAF^{V600E} hotspot: Biology and clinical implications of rare BRAF gene mutations in melanoma patients. Br J Dermatol 177:936-944, 2017
31. Ross JS, Wang K, Chmielacki J, et al: The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer 138:881-890, 2016
32. Gillhame JM, Hutchinson KE, Stricker TP, et al: Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci Transl Med 9:eaai7993, 2017
33. Luen SJ, Asher R, Lee CK, et al: Association of somatic driver alterations with prognosis in postmenopausal, hormone receptor-positive, HER2-negative early breast cancer: A secondary analysis of the BIG 1-98 randomized clinical trial. JAMA Oncol 4:1335-1343, 2018
34. Soria J-C, DeBraud F, Bahleda R, et al: Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol 25:2244-2251, 2014 [Erratum: Ann Oncol 26:445, 2015]
35. Lopez SM, Agoulnik AI, Zhang M, et al: Nuclear receptor corepressor 1 expression and output declines with prostate cancer progression. Clin Cancer Res 22:3937-3949, 2016
36. National Comprehensive Cancer Network: Guidelines version 4.2018. https://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf
37. Pritchard CC, Mateo J, Walsh MF, et al: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443-453, 2016
38. Annala M, Struss WJ, Warner EW, et al: Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 72:34-42, 2017
39. Brovina OI, Shigapova L, Chudakova DA, et al: The ethnic-specific spectrum of germline nucleotide variants in DNA damage response and repair genes in hereditary breast and ovarian cancer patients of Tatar descent. Front Oncol 8:421, 2018
40. Lek M, Karczewski KJ, Minikel EV, et al: Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285-291, 2016
41. Popova T, Manić E, Boeva V, et al: Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res 76:1882-1891, 2016
42. Viswanathan SR, Ha G, Hoff AM, et al: Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174:433-447.e19, 2018
43. Abida W, Bryce AH, Vogelzang NJ, et al: Preliminary results from TRITON2: A phase II study of rucaparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination repair (HRR) gene alterations. Ann Oncol 29, 2018 (suppl; abstr 793PD)
44. Clarke N, Wiechno P, Alekseev B, et al: Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19:975-986, 2018
APPENDIX

Methods

Approval for this study, including a waiver of informed consent and Health Insurance Portability and Accountability Act waiver of authorization, was obtained from the Western Institutional Review Board (protocol 20152817). Comprehensive genomic profiling (CGP) results were reported clinically by prospective sequencing of tissue samples from 3,476 unique patients with prostate cancer (August 2014 to February 2018) using a validated hybrid capture-based CGP assay (FoundationOne [baitset version 17 was used during this period]) in a Clinical Laboratory Improvement Amendments–certified, College of American Pathologists–accredited, New York State–approved laboratory (Foundation Medicine, Cambridge, MA). For patients with multiple submitted samples, only a single sample was included, and the sample with the highest sequencing quality metrics was included. Age and site of specimen collection were abstracted from the accompanying pathology reports, clinical notes, and requisition forms submitted by the treating physician. Specimens included 1,660 primary site tumors and 1,816 metastatic site tumors (Appendix Fig A1). The pathologic diagnosis of each case was confirmed on routine hematoxylin and eosin–stained slides, and all samples forwarded for DNA extraction contained a minimum of 20% tumor nuclei. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a median coverage depth of 743 × for 395 cancer-related genes plus select introns from 31 genes frequently rearranged in cancer (Appendix Table A1). For ETS fusions, targeted regions were TMPRSS2 (introns 1 to 3), ERG (all exons), ETV1 (introns 3 to 4), ETV4 (intron 8), and ETV5 (introns 6 to 7).

Results were analyzed for base substitutions, short insertions/deletions, rearrangements, and copy number alterations (amplification and homozygous deletion). Custom filtering was applied to remove benign germline events as previously described (Hartmaier et al: Cancer Res 77:2464-2475, 2017). Genomic alterations (GAs) were called as reportable if the specific variant was present in the Catalog of Somatic Mutations in Cancer database (Forbes et al: Nucleic Acids Res 45:D777-D783, 2017), if the variant has been characterized as pathogenic, or if the variant had likely functional status (disruptive alterations in tumor suppressor genes); all other variants were classified as variants of unknown significance.

To compare relative enrichments in primary site and metastatic site tumors, genes altered at a 2% or greater frequency were assessed for enrichment. Enrichment was defined as the difference in frequency of gene alteration between metastatic site and primary site samples.

To determine microsatellite instability status, 114 intronic homopolymer repeat loci on the FoundationOne panel were analyzed for length variability and compiled into an overall microsatellite instability score through principal components analysis (Chalmers et al: Genome Med 9:34, 2017). Tumor mutational burden was calculated as the number of somatic base substitutions or insertions/deletions per megabase of the coding region target territory of the test (1.1 Mb) after filtering to remove known somatic and deleterious mutations and extrapolating that value to the exome or genome as a whole (Chalmers et al: Genome Med 9:34, 2017). Tumor mutational burden was categorized as low (fewer than six mutations/Mb), intermediate (six to 20 mutations/Mb), or high (20 mutations/Mb or more; Chalmers et al: Genome Med 9:34, 2017). Germline, somatic, and zygosity statuses for mutations were determined without matched normal tissue as previously described; in validation testing of 480 germline/somatic calls from tumor-only sequencing with matched normal reference samples, accuracy was 95% for somatic calls and 99% for germline calls. Biallelic inactivation was defined as mutations under loss of heterozygosity (LOH) as determined by zygosity status. Percent genome-wide LOH (gLOH) was used as a marker of homologous recombination deficiency and calculated as described, and a gLOH score of 14% or greater was defined as gLOH-high. Potentially targetable GAs were defined as those that have been associated with response to targeted therapy in prostate cancer, homologous recombination repair GAs that have been associated with responses to poly (ADP-ribose) polymerase inhibitors, or GAs associated with response to targeted therapy in multiple other tumor types and were ranked according to modified European Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets criteria.

![Diagram A](image1.png)

FIG A1. (A) Distribution of sites of sample collection (prostate, 47.8%; distant lymph node [LN (D)], 12.4%; regional LN [LN (R)], 3.7%; unspecified LN [LN (unk)], 0.3%; liver, 13.2%; bone, 10.0%; lung, 2.7%; other metastatic, 9.9%). (B) Distribution of prostate histologic types.
Exonic Capture (395 genes), HUGO Symbol
ABL1
ABL2
ACVR1B
AKT1
AKT2
AKT3
ALK
ALOX12B
AMER1 (FAM123B)
APC
APCDD1
AR
ARAF
ARFRP1
ARID1A
ARID1B
ARID2
ASXL1
ATM
ATR
ATRX
AURKA
AURKB
AXIN1
AXL
BACH1
BAP1
BARD1
BCL2
BCL2A1
BCL2L1
BCL2L2
BCL6
BCOR
BCOVL1
BLM
BMPR1A
BRAF
BRCA1

(Continued on following page)
TABLE A1. Genes Sequenced Using the FoundationOne Assay (Version T7) (Continued)

Exonic Capture (395 genes), HUGO Symbol									
BRCA2	CRKL	FANCE	GID4 (C17orf39)	KAT6A (MYST3)	MSH6	PDK1	RARA	SUFU	
Select Intronic Capture for Rearrangement Analysis (31 genes), HUGO Symbol									
ALK	BRCA1	EGFR	ETV5	FGFR1	KIT	MYB	NTRK1	RAF1	ROS1
BCL2	BRCA2	ETV1	ETV6	FGFR2	KMT2A (MLL)	MYC	NTRK2	RARA	RSPO2
BCR	BRD4	ETV4	EWSR1	FGFR3	MSH2	NOTCH2	PDGFRα	RET	TMPRSS2
BRAF									

Abbreviation: HUGO, Human Genome Organisation.
FIG A2. Details of the BRAF rearrangements, RAF1 rearrangements, and BRAF short variant mutations. The diagram illustrates BRAF (top) and RAF1 (bottom) rearrangements, including fusions, N-terminal deletions, and kinase domain duplications. Exons are numbered. For fusion, exons (e) are annotated with the last exon included in the 5′ partner and the first exon included in the 3′ partner. In addition, BRAF rearrangements at intron 9 (n = 6) and intron 7 (n = 1) and RAF1 rearrangement at intron 7 with no clear fusion partner were identified (data not shown). The table lists the 43 BRAF mutations identified.
FIG A3. (A) For metastasis-enriched tumor suppressor genes (see Fig 1G), short variant mutations were assessed for loss of heterozygosity. Frequency of short variant mutations under loss of heterozygosity (biallelic) is shown. (B) Frequency of genomic alterations for individual genes in G1/S-cell cycle pathway in primary versus metastatic site samples. Fold change is indicated.

FIG A4. (A) Genome-wide loss of heterozygosity (gLOH) score was assessable for 2,624 cases, and cases with 14% or more gLOH were designated LOH-high (LOH-H). All other cases were LOH-low (LOH-L). LOH-H cases were assessed for the presence (green) or absence (yellow) of a genomic alteration (GA) in the homologous recombination repair (HRR) or Fanconi anemia/interstrand crosslink repair (FA/ICL) pathway. (B) Genes were grouped together into HRR pathway (excluding non-BRCA1/2) or FA/ICL pathway (FANC); genes were categorized as in Figure 2A. All GAs or only homozygous deletions (homdel) were assessed for LOH-H and compared with the overall data set (green). Each subset was individually compared with the overall data set, and unadjusted P values are shown (Fisher’s exact test [two-tailed]).
FIG A5. (A) Microsatellite instability (MSI) status was assessable for 3,326 cases, and each case was designated as MSI-high (MSI-H), MSI-low (MSI-L), or microsatellite stable (MSS). MSI-H cases were assessed for the presence or absence of mismatch repair (MMR) genomic alterations (GAs). MSI-H or MMR GA-positive samples are indicated with a plus sign, and negative samples are indicated with a minus sign. Of the cases where both MSI status and MMR GA zygosity status could be determined, 82 cases had MMR GA that resulted in loss of function of both alleles (microsatellite status in this subset listed in table). (B) Tumor mutational burden (TMB) was evaluated for primary site and metastatic site cases. Box and whisker plots: Boxes span first and third quartiles, the median is denoted by the horizontal line in the box, and whiskers indicate maximum and minimum values with 1.5x the interquartile range. The percent TMB-high (TMB-H) or TMB of 10 or more mutations (mut)/Mb cases in primary site and metastatic site tumors is indicated. (C) TMB-H samples were assessed for whether they were MSI-H or MSS/MSI-L. TMB-H cases that were not MSI-H also were assessed for POLE V411L pathogenic mutations.
Gene	Type	Frequency, % (No.)	Targeted Therapy	Cancer Type With Clinical Evidence for Response	First Author	Level of Evidence*	
PTEN	Homozygous deletion	32.2 (1,119)	AKT inhibitor	Prostate	de Bono	2A	
	Mutation						
	Rearrangement						
BRCA2	Homozygous deletion	9.8 (342)	PARP inhibitor	Prostate	Mateo	2B	
	Mutation						
	Rearrangement						
CDK12	Homozygous deletion	5.6 (194)	Immune checkpoint inhibitor	Prostate	Wu	4A	
	Mutation						
	Rearrangement						
ATM	Homozygous deletion	5.2 (182)	PARP inhibitor	Prostate	Mateo	2B	
	Mutation						
	Rearrangement						
PIK3CB	Amplification	2.2 (76 [amplifications, 53; mutations, 23])	PI3K-β inhibitor	Prostate	de bono J S: AACR Annual Meeting, Philadelphia, PA, April 18-22, 2015 (abstr CT328)		4A
	Activating mutation						
AKT1	Mutation (E17K)	1.5 (51)	AKT inhibitor	Prostate	Hyman	2B	
BRCA1	Homozygous deletion	1.4 (50)	PARP inhibitor	Prostate	Mateo	2B	
	Mutation						
	Rearrangement						
PALB2	Homozygous deletion	0.7 (25)	PARP inhibitor	Prostate	Mateo	3B	
	Mutation						
	Rearrangement						
POLE	Exonuclease domain mutation	0.1 (4)	Immune checkpoint inhibitor	Prostate	Lee	4A	
BRIP1	Homozygous deletion	0.6 (20)	PARP inhibitor	Ovarian	Swisher	3B	
	Mutation						
	Rearrangement						
RAD51C	Homozygous deletion	0.1 (5)	PARP inhibitor	Ovarian	Swisher	3B	
	Mutation						
	Rearrangement						

(Continued on following page)
TABLE A2. Recurrent GAs/Genomic Signatures Identified in Prostate Cancer That Have Been Associated With Responses to Targeted Therapy in Prostate and Other Types of Cancer (Continued)

Gene	Type	Frequency, % (No.)	Targeted Therapy	Cancer Type With Clinical Evidence for Response	First Author	Level of Evidence*
RAD51D	Homozygous deletion	0.1 (3)	PARP inhibitor	Ovarian	Swisher	3B
	Mutation					
	Rearrangement					
PIK3CA	Activating mutation	4.9 (171)	PI3K inhibitor	Breast, lung	Juric	3A
	Mutation (V600E and non-V600 kinase activating)				Richtig	3A
BRAF	Fusion	2.0 (68 [fusion, 35; mutation, 33])	MEK inhibitor	Melanoma, glioma	Ross	3A
					Fangusaro	
	Mutation (V600E and non-V600 kinase activating)				Richtig	
FGFR1	Amplification	1.8 (62)	FGFR inhibitor	Lung, endometrial, breast	Voss	4A
					Nogova	
					Pearson	
CDK6	Amplification	1.5 (53)	CDK4/6 inhibitor	Unknown primary, ovarian	Peguero	4A
					Konecny	
CDK4	Amplification	0.9 (31)	CDK4/6 inhibitor	Sarcoma, liposarcoma	Peguero	4A
					Dickson	
ERBB2	Activating mutation	0.6 (21 [amplification, 17; mutation, 4])	HER2 inhibitor	Breast, colorectal, bladder, lung, biliary, and salivary gland	Hainsworth	3A
					Hyman	
	Amplification				Choudhury	3A

(Continued on following page)
Gene	Type	Frequency, % (No.)	Targeted Therapy	Cancer Type With Clinical Evidence for Response	First Author	Level of Evidence
PTCH1	Homozygous deletion	0.5 (16)	SMO inhibitor	Unknown primary, skin, salivary gland, medulloblastoma, and urothelial	Hainsworth JD: J Clin Oncol 36: 536-542, 2018	4A
	Mutation				Robinson GW: J Clin Oncol 33: 2646-2654, 2015	
	Rearrangement					
TSC1	Homozygous deletion	0.4 (12)	mTOR inhibitor	Bladder, kidney	Iyer G: Science 338:221, 2012	4A
	Mutation				Voss MH: Clin Cancer Res 20: 1955-1964, 2014	
	Rearrangement				Ali SM: Eur Urol 68:341-343, 2015	
TSC2	Homozygous deletion	0.4 (14)	mTOR inhibitor	Thyroid	Wagle N: N Engl J Med 371: 1426-1433, 2014	4A
	Mutation				Kwiatkowski DJ: Clin Cancer Res 22:2445-2452, 2016	
	Rearrangement					
MET	Amplification	0.4 (13)	MET inhibitor	Lung, kidney	Choueiri TK: J Clin Oncol 35: 2993-3001, 2017	3A
					Schrock AB: J Thorac Oncol 11: 1493-1502, 2016	
FGFR2	Amplification	0.2 (7 [amplification, 5; mutation, 2])	FGFR inhibitor	Endometrial, cholangiocarcinoma, colorectal, lung, and gastric	Pearson A: Cancer Discov 6: 838-851, 2016	4A
					Liao RG: Cancer Res 73: 5195-5205, 2013	
					Voss MH: J Clin Oncol 35,2017 (suppl: abst r 2500)	
CD274/PDCD1LG2	Amplification	0.2 (6)	Immune checkpoint inhibitor	Glioblastoma, HNSCC, basal cell carcinoma, and urothelial	Goodman AM: JAMA Oncol 4: 1237-1344, 2018	4A
MAP2K1	Activating mutation	0.2 (6)	MEK inhibitor	Ovarian, histiocytosis	Grisham RN: J Clin Oncol 33: 4099-4105, 2015	4A
					Papapanagiotou M: JCO Precision Oncology 10.1200/ P0.16.00070	
EGFR	Activating mutation	0.1 (4)	EGFR inhibitor	Lung, breast, urethral	Ali SM: Clin Breast Cancer 14: e14-e16, 2014	3A
					Hainsworth JD: J Clin Oncol 36: 536-542, 2018	

(Continued on following page)
Gene	Type	Frequency, % (No.)	Targeted Therapy	Cancer Type With Clinical Evidence for Response	First Author	Level of Evidence*
ERBB3	Activating mutation	< 0.1 (2)	HER2 inhibitor	Urothelial, breast	Choudhury NJ: J Clin Oncol 34: 2165-2171, 2016	4A
					Bidard FC: Ann Oncol 26: 1704-1709, 2015	
FGFR3	Fusion	< 0.1 (2)	FGFR inhibitor	Glioma, bladder	Di Stefano AL: Clin Cancer Res 21: 3307-3317, 2015	4A
					Voss MH: J Clin Oncol 35,2017 (suppl; abstr 2500)	
KIT	Activating mutation	< 0.1 (2)	KIT inhibitors	GIST, melanoma	Blay JY: Lancet Oncol. 16: 550-560, 2015; Caravajal RD: JAMA 305: 2327-2334, 2011	3A
	Total unique cases with actionable GA					57.1 (1,986)

NOTE. Targetable GAs included in the analysis were those associated with response to targeted therapy in prostate cancer, homologous recombination repair GAs that have been associated with responses to PARP inhibitors, and GAs associated with response to targeted therapy in multiple tumor types.

Abbreviations: EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; GA, genomic alteration; GIST, GI stromal tumor; HER2, human epidermal growth factor receptor 2; HNSSC, head and neck squamous cell carcinoma; mTOR, mammalian target of rapamycin; PARP, poly (ADP-ribose) polymerase; PI3K, phosphatidylinositol 3-kinase.

*Levels of evidence were ranked according to the European Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets criteria with one modification that level 3B/4A alterations required reported clinical responses in addition to the criteria outlined in the European Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets.
TABLE A3. Relative Enrichment of Genomic Alterations Between Primary Site and Metastatic Site Tumors

Gene	Short Variant Mutations	Copy Number Alteration	Rearrangements	All Genomic Alterations	Enrichment	Fold Change	P*				
	Case Frequency, %										
Primary	**Metastasis**	**Primary**	**Metastasis**	**Primary**	**Metastasis**	**Enrichment**	**Fold Change**	**P***			
TP53	36.7	42.2	1.9	3.3	1.6	1.6	39.8	46.9	7.1	1.2	< .001
PTEN	7.6	8.1	17.7	28.6	1.7	1.5	26.5	37.4	10.9	1.4	< .001
AR	1.3	11.9	2.4	28.5	0.4	2.1	3.7	39.7	36.0	10.6	< .001
MYC	0.1	0.0	6.1	17.3	0.2	0.3	6.4	17.6	11.2	2.7	< .001
BRCA2	6.4	7.1	2.0	3.2	0.6	1.0	8.7	10.9	2.2	1.3	.0302
RB1	2.5	6.1	3.1	5.7	0.8	0.9	6.4	12.7	6.3	2.0	< .001
APC	7.0	9.3	0.5	0.9	0.6	0.8	8.0	10.6	2.6	1.3	.0085
MLL3	5.2	8.2	0.0	0.0	1.1	1.1	6.3	9.2	2.9	1.5	.0015
APC	8.8	6.8	0.0	0.0	0.0	0.0	8.8	6.8	-2.0	1.3	.026
CTNNB1	3.7	6.4	0.0	0.0	0.1	0.4	3.7	6.8	0.0	1.8	< .001
CCND1	0.1	0.0	2.5	6.3	0.0	0.0	2.5	6.3	3.8	2.5	< .001
FAS	0.2	0.2	2.7	5.0	0.2	0.1	3.1	5.2	2.1	1.7	.0021
FGF19	0.0	0.0	1.9	5.6	0.0	0.0	1.9	5.6	3.7	3.0	< .001
FGF3	0.1	0.1	1.7	5.1	0.0	0.0	1.9	5.2	3.3	2.8	< .001
FGF4	0.0	0.0	1.7	5.1	0.0	0.0	1.7	5.1	3.3	2.9	< .001
NCOR1	1.6	3.1	0.1	0.6	0.4	0.9	2.0	4.4	2.3	2.1	< .001
LYN	0.0	0.0	1.4	5.0	0.0	0.0	1.4	5.0	3.6	3.6	< .001
CDKN2A	0.9	0.9	1.1	3.1	0.1	0.1	2.1	4.1	2.0	1.9	< .001
PIK3CB	0.6	0.7	0.5	2.4	0.0	0.0	1.1	3.1	2.0	2.7	< .001

All primary site versus metastatic site genomic alterations by Fisher's exact test (two-tailed).