Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2

Arthur Veyrat
IFW Leibniz Institute https://orcid.org/0000-0002-4778-2594

Valentin Labracherie
IFW Leibniz Institute

Rohith Acharya
IFW Leibniz Institute

Dima Bashlakov
B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine
https://orcid.org/0000-0001-8642-9702

Federico Caglieris
Consiglio Nazionale delle Ricerche CNR-SPIN https://orcid.org/0000-0002-9054-580X

Jorge Facio
Leibniz IFW Dresden, Helmholtzstr. 20, D-01069 Dresden https://orcid.org/0000-0002-8506-2512

G. Shipunov
Institute for Solid State Research, IFW Dresden

Lukas Graf
IFW Leibniz Institute

Johannes Schoop
Leibniz Institute for Solid State and Materials Research

Yuri Naidyuk
B. Verkin Institute for Low Temperature Physics and Engineering

Romain Giraud
IFW Leibniz Institute

Jeroen van den Brink
IFW Dresden, Helmholtzstr. 20, 01069 Dresden https://orcid.org/0000-0001-6594-9610

Bernd Buechner
IFW Dresden

Christian Hess
IFW Leibniz Institute

Saicharan Aswartham
IFW Dresden https://orcid.org/0000-0001-9006-9797

Joseph Dufouleur (✉️ j.dufouleur@ifw-dresden.de)
IFW Leibniz Institute https://orcid.org/0000-0003-4580-1920
Article

Keywords: Weyl semimetals, superconductivity, low dimensionality, Berezinskii-Kosterlitz-Thouless transition

Posted Date: February 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-184874/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Bereziskii-Kosterlitz-Thouless transition in the Weyl system

PtBi$_2$

Arthur Veyrat1, Valentin Labracherie1, Rohith Acharya1, Dima L. Bashlakov2, Federico Caglieris1,3, Jorge I. Facio1, Grigory Shipunov1, Lukas Graf1, Johannes Schoop1,4, Yurii Naidyuk2, Romain Giraud1,5, Jeroen van den Brink1,4, Bernd Büchner1,4, Christian Hess1,6,7, Saicharan Aswartham1 & Joseph Dufouleur1,6,*

1Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany

2B. Verkin Institute for Low Temperature Physics and Engineering, NASU, 47 Nauky Ave., 61103 Kharkiv, Ukraine

3CNR-SPIN, Corso Perrone 24, 16152 Genova, Italy

4Department of Physics, TU Dresden, D-01062 Dresden, Germany

5Université Grenoble Alpes, CNRS, CEA, Grenoble-INP, Spintec, F-38000 Grenoble, France

6Center for Transport and Devices, TU Dresden, D-01069 Dresden, Germany

7Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi$_2$ lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin films. Transport measurements show that high-quality PtBi$_2$ crystals are three-dimensional superconductors ($T_c \approx 600$ mK) with an isotropic critical field ($B_c \approx 50$ mT). Remarkably, we evidence in a rather thick flake (60 nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature $T_c \approx 370$ mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with $T_{BKT} \approx 310$ mK and with a broadening of T_c due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ in PtBi$_2$, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making PtBi$_2$ an ideal platform to study low dimensional superconductivity in a topological semimetal.

Keywords: Weyl semimetals, superconductivity, low dimensionality, Berezinskii-Kosterlitz-Thouless transition
Introduction

Two-dimensional (2D) superconductivity has attracted a lot of attention for more than eighty years since the discovery of the superconducting properties of Pb and Sn thin films. In two dimensions, low energy fluctuations prevent the spontaneous breaking of continuous symmetries at any finite temperature. Nevertheless, a quasi-long range correlation of an order parameter can develop at low temperature. Such an ordered phase remains very fragile and can be easily destroyed by the presence of topological point defects like vortices. The transition between the quasi-long range ordered phase and the disordered phase is called the Bereziskii-Kosterlitz-Thouless (BKT) transition. Below the critical temperature T_{BKT}, pairing between vortex and antivortex allows a quasi-long range order. At higher temperature, the larger entropy of unbound topological defects prevails and the dissociation of vortex-antivortex pairs leads to a disordered phase. Such a transition should take place in a 2D superconductor, i.e. when the superconducting phase coherence length ξ becomes larger than the thickness d of the superconducting film ($\xi > d$).

The experimental evidence of a BKT transition remains generally very challenging due to the sensitivity of the ordered phase to any structural disorder. Nevertheless, BKT transitions in 2D superconductors have been identified in different samples such as in low disordered evaporated thin films or thin films grown by molecular beam epitaxy, exfoliated superconductors, oxide heterostructures, field effect transistors and more recently in encapsulated structures based on one or several exfoliated monolayers of van der Waals materials, which are not superconducting in their bulk form.
superconductivity and BKT transitions are of particular interest when they take place in materials with broken inversion symmetry (I) and strong spin-orbit coupling, where the electron spin degeneracy of Bloch states is lifted. This may lead to unconventional superconducting states, such as a mixed singlet and triplet superconductivity$^{35-37}$, or a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) finite momentum pairing$^{38-43}$. It can also enable the realization of a Weyl semimetal phase, which, coupled to superconductivity, constitutes an ideal platform to study unconventional superconducting states or topological superconductivity$^{44-51}$.

In this context, PtBi$_2$ is of particular interest. Beyond its very large magnetoresistance measured in the hexagonal52 and pyrite53 crystal structures, the spin-orbit coupling together with the broken I are responsible for a variety of interesting electronic properties including a strong Rashba-like spin splitting54, triply degenerated points55, sixfold fermion near the Fermi level56 and non-trivial topology in the monolayer limit57. In this work, in addition to the unveiling of Weyl points at 48 meV above the Fermi energy, we characterize the superconducting transition of a macrosopic crystal of trigonal PtBi$_2$, from which we infer a long coherence length of 55 nm. Remarkably, we show that the superconductivity persists in a 60 nm thin exfoliated sample in which its 2D nature is evidenced and for which a Berezinsky-Kosterlitz-Thouless (BKT) transition takes place. To our knowledge, and excluding the case of effective 2D layered superconductors58,59, the flake is five times thicker than any superconducting films exhibiting a BKT transition reported so far60, making PtBi$_2$ a prime candidate to study low dimensional superconductivity. Among the few Weyl semimetals showing a superconducting transition under ambient pressure$^{61-65}$, PtBi$_2$ is, together with MoTe$_2$66, the only one exhibiting such a 2D superconductivity.
Results

Band structure. We studied the electronic structure of trigonal PtBi$_2$ in the space group P31m (Figure 1.a) based on the crystal structure reported in Ref. 67 and focused on the consequences of broken J. We performed fully-relativistic density-functional calculations treating the spin-orbit coupling in the four-component formalism, as implemented in Ref. 68. The energy bands along the path indicated in Figure 1.b is presented in Figure 1.c. Similar to previous works55,67, the band structure indicates a semimetallic character with several bands crossing the Fermi energy, generating various electron and hole pockets. Broken J opens up the possibility of accidental crossing of bands at isolated points (Weyl nodes). A search for Weyl nodes between bands N and $N + 1$, where N is the number of valence electrons per unit cell, yields the existence of twelve Weyl nodes, lying 48 meV above the Fermi energy. Six of the nodes are related by combinations of the three-fold rotation and reflection symmetries, while the remaining six nodes are connected to the former by time-reversal symmetry (Figure 1.b).

Usually, Weyl nodes in the bulk electronic structure induce open Fermi arcs in the surface electronic structure. A calculation based on a semi-infinite slab along the 0001 direction shows that the surface Fermi energy contours in PtBi$_2$ present a strong sensitivity to the surface termination (see S1). In particular, while the Weyl nodes place within the projection of the bulk Fermi surface, clear spectral weight connecting opposite chirality Weyl nodes can be observed, which is more intense for a Bi$_2$-terminated surface.

Magnetoresistance. To investigate the properties of PtBi$_2$, high quality single crystals of trigonal PtBi$_2$ were grown via self-flux method as described in details in Ref. 67. We first
contacted bulk single crystals of PtBi$_2$ in a four-probe configuration using silver wires and epoxy. A crystal was mounted on a piezo driven rotator and measured under magnetic field down to liquid helium temperature. When cooled down, the resistance decreases such that the residual resistance ratio reaches about 130 (see S2). At low temperature, we measured the magnetoresistance for different angles of the magnetic field ranging between -30° and 120° with 0° corresponding to an out-of-plane field and 90° to an in-plane field.

A strong anisotropy of the magnetoresistance is measured when tilting the magnetic field with respect to the orthogonal orientation and a maximum is reached for a tilt angle $\theta \sim \pm 20^\circ$. Close to these angles, the magnetoresistance reaches 3000% at $B = 15$ T (Figure 1.d and Figure 1.e), one order of magnitude smaller than the magnetoresistance reported in Ref. 55, but larger than what is reported in Ref. 69. For such angles, the magnetoresistance is almost linear and large Shubnikov-de Haas oscillations appear at low temperature. They rapidly disappear when the angle deviates from optimized values, as reported for stoichiometric PtBi$_2$55.

Figure 1.f shows the fast Fourier transform (FFT) of the oscillations measured at 2.5 K. A single sharp peak emerges at a magnetic frequency of 345 T, in very good agreement with the main peak measured in Ref. 55. These oscillations are therefore attributed to a single pocket, the cross section of which is 3.3 nm$^{-2}$ large, in the direction perpendicular to the magnetic field ($\theta = 20^\circ$). This corresponds to a typical wave vector $k \sim 1.03$ nm$^{-1}$.

Bulk superconductivity. When cooled down to very low temperature in a dilution fridge, the resistance decreases down to $T \sim 15$ K and remains nearly constant down to the superconducting transition at a critical temperature $T_c \sim 600$ mK (see Figure 2.a and
methods for the definition of the critical temperature, current and field). At $T = 100$ mK, the zero-resistance state is destroyed by the application of a 60 mT large in-plane magnetic field, corresponding to the low temperature in-plane critical field. In macroscopic structures, the critical field is found to be almost isotropic (see S3). Point contact measurements (see Methods) indicate that T_c increases likely due to local pressure similar to MoTe$_2$ (see inset of Figure 2.a and S4): the differential resistance (dV/dI) of bulk samples shows a zero-bias drop of almost 50% at 1.55 K, at about $2.5 \times T_c$. The drop, is still visible at temperatures up to 2.9 K, corresponding to an almost fourfold increase from zero-pressure measurements.

To further characterize the superconducting state, we measured the temperature dependency of the critical field B_c. In the absence of any confinement, the Ginzburg-Landau theory in three dimensions (3D) predicts a linear temperature dependence of B_c for T close to T_c,

$$B_c(T) = \frac{\Phi_0}{2\pi \xi^2} \left(1 - \frac{T}{T_c}\right),$$

with $\Phi_0 = h/2e$ the superconducting flux quantum (h is the Planck constant and e the electronic charge) and ξ the superconducting coherence length at $T = 0$. The result is plotted in Figure 2.b where a linear dependence of the in-plane critical field with temperature is measured over a wide range of temperature below T_c. A linear fit in the temperature range allowed us to extract a large coherence length in PtBi$_2$, with $\xi = 56$ nm.

Two-dimensional superconductivity. The long ξ measured in a macroscopic crystal and the 2D van der Waals layered nature of PtBi$_2$ open the way to a mechanical exfoliation
down to thicknesses lower than \(\xi \) in order to observe a transition from 3D to 2D superconductivity. To this end, a 57 nm thick and few tens of micron large exfoliated flake was contacted and measured down to 100 mK (see Methods).

Like the bulk samples, it exhibits a superconducting transition, with a drop in the resistance to zero at \(T_c = 370 \) mK, almost a factor two lower than the critical temperature of the parent macroscopic crystal. To further characterize the superconducting state, we measured the differential resistance (dV/dI) as a function of a DC-current and for different temperatures below and above \(T_c \) (Figure 3.a, S8 and in S6 for different contact pairs). For \(T \gg T_c \), dV/dI remains constant and equal to the equilibrium normal state resistance \(R_N \).

For \(T \ll T_c \), the superconducting transition takes place and a gap opens up leading to a vanishing dV/dI at zero bias. At high DC currents, dV/dI recovers its value of the normal state \(R_N \). The transition occurs at a critical current \(I_c \sim 22 \mu A \). The value of \(I_c \) is almost temperature independent well below the critical temperature and it slowly vanishes when the temperature approaches \(T_c \) (see Figure 3.a and S8). The critical current depends linearly on the magnetic field for both an in-plane and an out-of-plane magnetic field (see S7).

The critical field \(B_c \) is found to be strongly reduced for a perpendicular field (along the c-axis). In this direction, \(B_c \) is about one order of magnitude smaller than the value measured in the macrostructure (\(B_{c,\perp} \sim 6 \) mT). The temperature dependence of \(B_{c,\perp} \) is linear (Figure 3.b in blue), like in the case of the macroscopic crystal. This was expected since there is no confinement effect in the \(ab \) plane. Nevertheless, we measured two different linear behaviors of \(B_{c,\perp} \), crossing each other at about 335 mK (see also S9 for different set of contacts). The low temperature linear dependence corresponds to \(\xi = 180 \) nm and a \(T_c \) of 392 mK, substantially larger than the \(T_c \simeq 360 \) mK measured. The high temperature
behavior corresponds to $T_c = 360$ mK, in good agreement with the measured value, and to $\xi = 120$ nm. An explanation of this unexpected crossover is still lacking so far.

When tilting the magnetic field by 90°, we can extract the temperature dependence of $B_{c,\parallel}$ (within a 1.1° misalignment as shown below). Two important differences can be noticed with respect to the 3D case. Firstly, the amplitude of the critical field is about 30 times larger when pointing into the plane than perpendicularly to it. Taking the full angular dependence into account, so as to correct the misalignment, the ratio between in-plane and out-of-plane critical fields amounts up to 57. The in-plane critical field reaches 240 mT, four times larger than the B_c of a macroscopic structure. This value remains below the Pauli paramagnetic limit $B_p \approx 1.84 T_c \approx 660$ mT. Secondly, the temperature dependence of $B_{c,\parallel}$ is not linear. Rather, it follows the 2D phenomenological Ginzburg-Landau theory valid for $\xi > d$ where d is the thickness of the superconductor:

$$B_{c,\parallel}(T) = \frac{\Phi_0 \sqrt{12}}{2\pi \xi(0) d} \sqrt{1 - \frac{T}{T_c}}, \quad (2)$$

Considering a misalignment of 1.1°, it is possible to fit the temperature dependence of $B_{c,\parallel}$ (see S11). A very good agreement between the fit and the experimental data is obtained (Figure 3.b) and yields the values for $T_c = 363$ mK, $\xi = 90$ nm and $d = 52$ nm. The thickness is in very good agreement with the value measured by atomic force microscopy $d_{AFM} = 57$ nm, indicating that superconductivity cannot be attributed to surface states but rather to bulk states. Indubitably, this temperature dependence points to the 2D nature of the superconductivity. The value of ξ is between the value found in macroscopic structure and that given by the temperature dependence of $B_{c,\perp}$. The discrepancy between the values
of ξ extracted from $B_{c,\perp}(T)$ and from $B_{c,\parallel}(T)$ are reasonable and might result from in-plane anisotropy as already measured in MoTe$_2$.

The angular dependence $B_c(\theta)$ with θ being the angle between the magnetic field and the perpendicular axis of the flake, can give further evidence of the low dimensionality of the superconducting state. As shown by the Tinkham model, and contrary to the 3D anisotropic mass model derived from the Ginzburg-Landau theory, the 2D nature of the superconductivity is indicated by a cusp-like peak in $B_c(\theta)$ at $\theta = 90^\circ$ (corresponding to an in-plane field). The 3D and 2D angular dependences are respectively given by

$$\left(\frac{B_c(\theta)\cos(\theta - \theta_0)}{B_{c,\perp}}\right)^2 + \left(\frac{B_c(\theta)\sin(\theta - \theta_0)}{B_{c,\parallel}}\right)^2 = 1, \text{ and}$$

$$\left|\frac{B_c(\theta)\cos(\theta - \theta_0)}{B_{c,\perp}}\right| + \left(\frac{B_c(\theta)\sin(\theta - \theta_0)}{B_{c,\parallel}}\right)^2 = 1,$$

where θ_0 stands for the misalignment angle. In Figure 3.c, a very sharp peak of B_c is measured at $\theta \approx 90^\circ$ with a ratio between the largest and the smallest critical field that can be as large as 57. As it can be seen in the inset in the Figure 3.c, the sharpness of the peak allows us to measure very precisely θ_0 and we found $\theta_0 = 1.1^\circ$ in our sample. Due to the very strong anisotropy measured in the sample, such a minimal misalignment induces a reduction of about 25% of B_c at $\theta = 0^\circ$ and the misalignment has to be considered as mentioned above. Importantly, a cusp-like angular dependence can be evidenced in the inset in Figure 3.c, which also presents 2D (red) and 3D (blue) fits of $B_c(\theta)$. Whereas the 2D model fits very well the experimental data, a clear departure from the 3D model can be seen in the inset.
BKT Transition. Despite the large thickness of our sample, the angular and temperature dependences of B_c give clear evidence of 2D superconductivity, opening the way to the observation of a BKT transition. The signatures of such a phase transition can be measured in $V(I)$ characteristics at different temperatures and in the temperature dependence of the resistance $R(T)$.

As shown in Figure 4.a, due to the finite critical current, the $V(I)$ characteristics become non-linear at low bias and low temperature, with a temperature-dependent power law as:

$$V \propto I^{a(T)} \text{ with } a(T) = 1 + \pi J_S(T)/T,$$

where J_S is the superfluid density and the exponent a is equal to 1 at $T \gtrsim T_c$, as well as at high current bias ($I \gg I_c$) for $T \lesssim T_c$. In a BKT transition, $a(T)$ at $I \sim I_c$ slowly increases when T decreases below T_c and it largely exceeds 1 at temperatures much below the BKT temperature $T_{BKT} < T_c$. At the BKT transition, $\pi J_S(T_{BKT})/T_{BKT} = 2$ so that $a(T_{BKT}) = 3$.

Considering the $V(I)$ characteristics measured in our flake above and below T_c, we observe a non-ohmicity ($a(T) > 1$) when $T \lesssim T_c$ (see Figure 4.a and Figure 4.b). In a logarithmic plot, the $V(I)$ shows a cubic power law for $T_{BKT} \approx 310$ mK (Figure 4.a). A confirmation of the BKT transition temperature can be done by plotting $a(T) = d\log V/d\log I$ as a function of the bias DC-current as shown in Figure 4.b where $a(T)$ reaches 3 for $T = T_{BKT} \approx 310$ mK.

In order to evidence that a BKT transition occurs in our sample, we focused on the temperature dependence of the resistance of our exfoliated thin film. Following Halperin and Nelson theory, Benfatto et al. took, in absence of inhomogeneities and size effect, a temperature dependence of the resistance for $T \gtrsim T_{BKT}$ given by $R(T)/R_N = 1/[1 + (\Delta \sigma/\sigma_N)]$ with.
\[
\frac{\Delta \sigma}{\sigma_N} = \frac{4}{A^2} \left[\sinh \left(2\alpha \frac{T_c - T_{BKT}}{T - T_{BKT}} \right) \right]^2
\]

where \(A \) is a number of the order of unity and \(\alpha \) is the scale of the vortex-core energy, which may deviate from its regular value \(\alpha = 1 \). The fit of the experimental data can reproduce the temperature dependence but gives \(T_{BKT} \approx 200 \text{ mK} \), much below the value given by the \(V(I) \) characteristics. Fixing \(T_{BKT} \) to 310 mK, as given by \(V(I) \) measurements, no reasonable fit could be obtained (see the red dashed line in Figure 4.c for the best fit).

A model that accounts for spatial inhomogeneities was proposed in Ref. 73, where a Gaussian distribution of the critical current, or equivalently, of \(T_{BKT} \), is introduced in the Halperin-Nelson model. We have now

\[
\frac{R(T)}{R_N} = \frac{1}{\sqrt{2\pi}\delta} \int \exp \left(-\frac{(t - T_{BKT})^2}{2\delta^2} \right) \times \left(1 + \frac{4}{A^2} \left[\sinh \left(b \frac{t}{T - t} \right) \right]^2 \right) ^{-1} dt
\]

with \(b \approx 2\alpha\sqrt{T_{BKT}/(T_c - T_{BKT})} \). This model fits very well the experimental data even for \(T_{BKT} \) fixed at 310 mK, the value given by the \(V(I) \) characteristics (see Figure 4.c) and we found \(\delta \approx 24 \text{ mK} \), a minimal spread of the transition temperature. The parameter \(b \) and \(A \) are respectively 1.1 and 13, some typical values expected from the theory73. From the value of \(b \), one can calculate the superconducting (BCS) transition temperature \(T_c \), assuming that the vortex-core energy takes its conventional value \((\alpha = 1) \). We found \(T_c = T_{BKT} \times (1 + 4/b^2) = 410 \text{ mK} \) which corresponds to about 70% of the macroscopic crystal value, a reasonable decrease of \(T_c \) for an exfoliated flake.

Discussion

The role of inhomogeneities in the BKT transition can be seen in both the $V(I)$ characteristics as well as in the $R(T)$ dependence. In the latter, as discussed above, the tail of $R(T)$ can be very well fitted by a Gaussian distribution of the BKT transition temperature resulting from spatial inhomogeneities of the superconducting flake. The fit gives reasonable values of the different physical parameters. A consequence of inhomogeneities is the lack of universal jump of the superfluid density $J(T)$ and of $a(T)$ when $T \to T_{\text{BKT}}$. In an ideal homogeneous sample, the coefficient $a(T)$ should jump discontinuously at T_{BKT} from 1 for $T > T_{\text{BKT}}$ to 3 for $T \leq T_{\text{BKT}}$. Inhomogeneities smooth out the temperature dependence of $a(T)$. This is indeed what we measured in our sample where the value of $a(T)$ slowly increases when the system goes through the BKT transition and no discontinuity of a could be evidenced (Figure 4.b). Importantly, the fit of $R(T)$ gives $\delta = 24$ mK, a value that compares very well with the spatial distribution of T_{BKT} measured in different sets of contact pairs with $T_{\text{BKT}} = 310 - 340$ mK (see S10).

We also note that the ratio $B_{c,\parallel}/B_{c,\perp}$ is found to be very large, up to 57, which is unusual for such thick superconducting nanostructures ($d \approx 60$ nm). This large ratio can be attributed first to the very long coherence length measured in our nanostructures ($\xi > d$) and second to the change of slope measured in $B_{c,\perp}(T)$ with a discontinuity of $dB_{c,\perp}/dT$ at $T \approx 335$ mK. Such a discontinuity is present for all the contact pairs measured in this nanostructure. The very large ratio measured and more particularly the large value of $B_{c,\parallel}$ (as compared to $k_B T_c$) for such a large thickness makes exfoliated flakes of single crystal a very promising candidate to study the 2D superconductivity beyond the Pauli limit70,71, provided that the
thickness is reduced further in order to weaken or suppress any orbital depairing effect on the superconductivity.

The discovery of both the non-trivial topology of the band structure and the low dimensional superconductivity sheds new light on PtBi$_2$, a material that was previously known for its very large linear magnetoresistance, its large spin-orbit coupling and the prediction of triply degenerate points in its band structure. Together with MoTe$_2^{66}$, appears to be the only semimetal exhibiting Weyl physics and 2D superconductivity. Beyond topological superconductivity, the very strong spin-orbit coupling coupled to the superconducting transition is of particular interest in the search for unconventional pairing in superconductors and might favor, for instance, the presence of FFLO superconducting states.

The evidence of a BKT transition in a 60 nm thick flake makes of PtBi$_2$ a remarkable system. This very large thickness is highly unusual for the observation of 2D superconductivity. To our knowledge and excluding the case of layered superconductors, our flake is 5 times thicker than the thickest 2D superconductor reported so far60. The origin of the reduced dimensionality cannot be attributed to any surface effect or to any layered nature of since we established the 3D nature of the superconductivity in macroscopic single crystals and since the effective superconducting thickness given by the fit of $B_{c,\parallel}(T)$ compares very well with the geometrical thickness measured by AFM. Apart from promising properties of 2D superconductor that might be observed in thinner structures, such as the increase of $B_{c,\parallel}$ well beyond the Pauli limit, the large thickness is also an indication of a very robust signature of the usually fragile 2D superconducting state. PtBi$_2$ might be therefore a simple and privileged platform for studying 2D superconductivity and the BKT transition.
Methods

DFT calculation. The calculation of the Weyl nodes and of the surface Fermi surface were performed based on a tightbinding model obtained by constructing Wannier functions with the projective technique implemented in the FPLO code. The model includes the orbitals Bi 6p, Pt 6s and Pt 5d.

To evaluate the robustness of the Weyl nodes, we performed calculations for the trigonal crystal structure reported in Ref. 74. These confirm the presence of Weyl nodes albeit, in this case, they are found at higher energy, 96 meV. Noteworthy, between these two crystal structures, the values of a and c differ in less than 0.1% while differences in the Bi coordinates lead to a van der Waals gap (zvdW) 3% smaller in our refinement. A third calculation based on an artificially enlarged zvdW in our structural model yields the Weyl nodes at 79 meV indicating that, in fact, zvdW controls to a large extent the Weyl node energy.

Point-contact measurements. The contacts were made by mechanical contact between the edge of the sample and a wire of a noble metal. The differential resistance (dV/dI) of the contacts was measured with a lock-in technique in a quasi four probe configuration.

Measurements techniques. Superconductivity in macroscopic crystals was measured using dc sources operated in a delta mode, a method that is particularly adapted to the measurement of low resistances. The measurements of nanostructures were done using standard lock-in amplifier techniques at low frequency ($f < 200$ Hz).
Nanostructure fabrication. The exfoliation was made on Si/SiO\textsubscript{2} substrates, with a 290 nm oxide thickness, so as to enhance optical contrast. The exfoliated structures were then contacted by standard electron-beam lithography and metal lift-off to obtain ohmic CrAu contacts. The main structure studied in this work, shown in the supplementary information, has a thickness of 60 nm and a lateral size of about 10\textmu m. Four other thin flakes were prepared and gave similar results.

Definition of the critical parameters. The critical temperature T_c, the critical field B_c and the critical current I_c are defined as $R(T_c, B_c, I_c) = R_N/2$, where R_N is the resistance normal state.

References

1. Shalnikov, A. Superconducting Thin Films. *Nature* **142**, 74 (1938).

2. Mermin, N. D. & Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. *PRL* **17**, 1133–1136 (1966).

3. Hohenberg, P. C. Existence of Long-Range Order in One and Two Dimensions. *Phys. Rev.* **158**, 383–386 (1967).

4. Mermin, N. D. Absence of Ordering in Certain Classical Systems. *J. Math. Phys.* **8**, 1061–1064 (1967).

5. Mermin, N. D. Crystalline Order in Two Dimensions. *Phys. Rev.* **176**, 250–254 (1968).

6. Coleman, S. There are no Goldstone bosons in two dimensions. *Commun. Math. Phys.* **31**, 259–264 (1973).
7. Berezinskii, V. L. Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems. *Sov. J. Exp. Theor. Phys.* **34**, 610 (1972).

8. Kosterlitz, J. M. & Thouless, D. J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). *J. Phys. C Solid State Phys.* **5**, L124--L126 (1972).

9. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. *J. Phys. C Solid State Phys.* **6**, 1181–1203 (1973).

10. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. *Rev. Mod. Phys.* **59**, 1001–1066 (1987).

11. Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. *J. Low Temp. Phys.* **36**, 599–616 (1979).

12. Doniach, S. & Huberman, B. A. Topological Excitations in Two-Dimensional Superconductors. *Phys. Rev. Lett.* **42**, 1169–1172 (1979).

13. Brun, C. *et al.* Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. *Nat. Phys.* **10**, 444–450 (2014).

14. Brun, C., Cren, T. & Roditchev, D. Review of 2D superconductivity: the ultimate case of epitaxial monolayers. *Supercond. Sci. Technol.* **30**, 13003 (2016).

15. Hebard, A. F. & Fiory, A. T. Critical-Exponent Measurements of a Two-Dimensional Superconductor. *Phys. Rev. Lett.* **50**, 1603–1606 (1983).
16. Hsu, J. W. P. & Kapitulnik, A. Superconducting transition, fluctuation, and vortex motion in a two-dimensional single-crystal Nb film. *PRB* **45**, 4819–4835 (1992).

17. Qin, S., Kim, J., Niu, Q. & Shih, C.-K. Superconductivity at the Two-Dimensional Limit. *Science (80-.).* **324**, 1314–1317 (2009).

18. Zhang, T. *et al.* Superconductivity in one-atomic-layer metal films grown on Si(111). *Nat. Phys.* **6**, 104–108 (2010).

19. Zhao, W. *et al.* Evidence for Berezinskii–Kosterlitz–Thouless transition in atomically flat two-dimensional Pb superconducting films. *Solid State Commun.* **165**, 59–63 (2013).

20. Zhang, H.-M. *et al.* Detection of a Superconducting Phase in a Two-Atom Layer of Hexagonal Ga Film Grown on Semiconducting GaN(0001). *Phys. Rev. Lett.* **114**, 107003 (2015).

21. Matetskiy, A. V *et al.* Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111). *PRL* **115**, 147003 (2015).

22. Ge, J.-F. *et al.* Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. *Nat. Mater.* **14**, 285–289 (2015).

23. Hetel, I., Lemberger, T. R. & Randeria, M. Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin copper oxide films. *Nat. Phys.* **3**, 700–702 (2007).

24. Staley, N. E. *et al.* Electric field effect on superconductivity in atomically thin flakes of NbSe2. *Phys. Rev. B* **80**, 184505 (2009).
25. Jiang, D. et al. High-Tc superconductivity in ultrathin Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ down to half-unit-cell thickness by protection with graphene. *Nat. Commun.* **5**, 5708 (2014).

26. Cao, Y. et al. Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. *Nano Lett.* **15**, 4914–4921 (2015).

27. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe$_2$. *Nat. Nanotechnol.* **10**, 765–769 (2015).

28. Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. *Science (80-.).* **317**, 1196 (2007).

29. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. *Nat. Mater.* **7**, 855–858 (2008).

30. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. *Nat. Mater.* **9**, 125–128 (2010).

31. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. *Nature* **556**, 43 (2018).

32. Miller, J. L. Unconventional superconductivity discovered in graphene bilayers. *Phys. Today* **71**, 15–19 (2018).

33. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. *Science (80-.).* **362**, 926–929 (2018).

34. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. *Science (80-.).* **362**, 922–925 (2018).
35. Edel'shtein, V. M. Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems. *Sov. Phys. - JETP (English Transl.* **68**, 1244–1249 (1989).

36. Gor'kov, L. P. & Rashba, E. I. Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-Triplet State. *PRL* **87**, 37004 (2001).

37. Kozii, V. & Fu, L. Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-Coupled Systems. *Phys. Rev. Lett.* **115**, 207002 (2015).

38. Fulde, P. & Ferrell, R. A. Superconductivity in a Strong Spin-Exchange Field. *Phys. Rev.* **135**, A550--A563 (1964).

39. Larkin, A. I. & Ovchinnikov, I. U. N. Inhomogeneous state of superconductors(Production of superconducting state in ferromagnet with Fermi surfaces, examining Green function). *Sov. Physics-JETP* **20**, 762–769 (1965).

40. Michaeli, K., Potter, A. C. & Lee, P. A. Superconducting and Ferromagnetic Phases in SrTiO$_3$/LaAlO$_3$ Oxide Interface Structures: Possibility of Finite Momentum Pairing. *Phys. Rev. Lett.* **108**, 117003 (2012).

41. Mayaffre, H. *et al.* Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)$_2$Cu(NCS)$_2$. *Nat. Phys.* **10**, 928 (2014).

42. Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde-Ferrell-Larkin-Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. *Reports Prog. Phys.* **81**, 46401 (2018).

43. Song, K. W. & Koshelev, A. E. Quantum FFLO State in Clean Layered Superconductors.
Phys. Rev. X 9, 21025 (2019).

44. Cho, G. Y., Bardarson, J. H., Lu, Y.-M. & Moore, J. E. Superconductivity of doped Weyl semimetals: Finite-momentum pairing and electronic analog of the 3He-A phase. Phys. Rev. B 86, 214514 (2012).

45. Wei, H., Chao, S.-P. & Aji, V. Odd-parity superconductivity in Weyl semimetals. Phys. Rev. B 89, 14506 (2014).

46. Hosur, P., Dai, X., Fang, Z. & Qi, X.-L. Time-reversal-invariant topological superconductivity in doped Weyl semimetals. Phys. Rev. B 90, 45130 (2014).

47. Bednik, G., Zyuzin, A. A. & Burkov, A. A. Superconductivity in Weyl metals. Phys. Rev. B 92, 35153 (2015).

48. Kim, Y., Park, M. J. & Gilbert, M. J. Probing unconventional superconductivity in inversion-symmetric doped Weyl semimetal. Phys. Rev. B 93, 214511 (2016).

49. Zhou, T., Gao, Y. & Wang, Z. D. Superconductivity in doped inversion-symmetric Weyl semimetals. Phys. Rev. B 93, 94517 (2016).

50. Hao, L., Wang, R., Hosur, P. & Ting, C. S. Larkin-Ovchinnikov state of superconducting Weyl metals: Fundamental differences between restricted and extended pairings in k-space. Phys. Rev. B 96, 94530 (2017).

51. Zhou, T., Gao, Y. & Wang, Z. D. Resolving different pairing states in Weyl superconductors through the single-particle spectrum. Phys. Rev. B 98, 24515 (2018).

52. Yang, X. et al. Giant linear magneto-resistance in nonmagnetic PtBi$_2$. Appl. Phys. Lett.
53. Gao, W. et al. Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi₂. *Phys. Rev. Lett.* **118**, 256601 (2017).

54. Feng, Y. et al. Rashba-like spin splitting along three momentum directions in trigonal layered PtBi₂. *Nat. Commun.* **10**, 4765 (2019).

55. Gao, W. et al. A possible candidate for triply degenerate point fermions in trigonal layered PtBi₂. *Nat. Commun.* **9**, 3249 (2018).

56. Thirupathaiah, S. et al. Sixfold fermion near the Fermi level in cubic PtBi₂. *arXiv e-prints* arXiv:2006.08642 (2020).

57. Nie, X.-A. et al. Robust Hot Electron and Multiple Topological Insulator States in PtBi₂. *ACS Nano* (2020) doi:10.1021/acsnano.9b09564.

58. Baity, P. G., Shi, X., Shi, Z., Benfatto, L. & Popović, D. Effective two-dimensional thickness for the Berezinskii-Kosterlitz-Thouless-like transition in a highly underdoped La$_{2-x}$Sr$_x$CuO$_4$. *Phys. Rev. B* **93**, 24519 (2016).

59. Guo, J. G. et al. Quasi-two-dimensional superconductivity from dimerization of atomically ordered AuTe$_2$Se$_{4/3}$ cubes. *Nat. Commun.* **8**, 871 (2017).

60. Mondal, M. et al. Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN. *Phys. Rev. Lett.* **107**, 217003 (2011).

61. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe₂. *Nat. Commun.* **7**, 11038 (2016).
62. Li, Y. et al. Nontrivial superconductivity in topological MoTe$_{2-x}$S$_x$ crystals. Proc. Natl. Acad. Sci. U. S. A. **115**, 9503–9508 (2018).

63. Xing, Y. et al. Surface superconductivity in the type II Weyl semimetal TaIrTe$_4$. Natl Sci Rev **7**, 579–587 (2019).

64. Baenitz, M., Schmidt, M., Suess, V., Felser, C. & Lüders, K. Superconductivity in Weyl Semimetal NbP: Bulk vs. Surface. J. Phys. Conf. Ser. **1293**, 12002 (2019).

65. van Delft, M. R. et al. Two- and Three-Dimensional Superconducting Phases in the Weyl Semimetal TaP at Ambient Pressure. Crystals **10**, (2020).

66. Cui, J. et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe$_2$. Nat. Commun. **10**, 2044 (2019).

67. Shipunov, G. et al. Polymorphic PtBi$_2$: Growth, structure, and superconducting properties. Phys. Rev. Mater. **4**, 124202 (2020).

68. Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B **59**, 1743–1757 (1999).

69. Xing, L., Chapai, R., Nepal, R. & Jin, R. Topological behavior and Zeeman splitting in trigonal PtBi$_{2-x}$ single crystals. npj Quantum Mater. **5**, 10 (2020).

70. Clogston, A. M. Upper Limit for the Critical Field in Hard Superconductors. PRL **9**, 266–267 (1962).

71. Chandrasekhar, B. S. A note on the maximum critical field of high field superconductors. Appl. Phys. Lett. **1**, 7–8 (1962).
72. Tinkham, M. *Introduction to superconductivity*. (McGraw-Hill, 1975).

73. Benfatto, L., Castellani, C. & Giamarchi, T. Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects. *PRB* **80**, 214506 (2009).

74. Kaiser, M., Baranov, A. I. & Ruck, M. Bi$_2$Pt(hP9) by Low-Temperature Reduction of Bi$_{13}$Pt$_3$I$_7$: Reinvestigation of the Crystal Structure and Chemical Bonding Analysis. *Z. anorg. allg. Chem.* **640**, 2742–2746 (2014).

Acknowledgements

DLB and YuGN acknowledge funding by Volkswagen Foundation and are grateful for support by the National Academy of Sciences of Ukraine under project Φ4-19. JIF acknowledges the support from the Alexander von Humboldt Foundation. S.A. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) through the grant AS 523/4-1. J.D. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) through the SPP 1666 Topological Insulators program (Project DU 1376/2-2) and the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter - ct.qmat (EXC 2147, project-id 0392019). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement No 647276-MARS-ERC-2014-CoG).
Author contributions

A.V. fabricated the nanostructure with input from L.G. and J. S., J. I. F. did the band structure calculations and G. S. and S. A. grew the crystals. A.V., V.L., F.C. and J.D. carried out the transport measurements with inputs from R.A. and D. L. B. performed the point contact measurements. A. V. and J. D. analyzed the data. Y. N., R. G., J. v. B., B. B. and C. H. contributed to scientific discussions. J.D. wrote the manuscript with input from A.V., J. I. F. and D. L. B and with suggestions and comments by all the co-authors. J.D. conceived and supervised the project.

Competing Interests statement

The authors declare no competing financial interests.
Figure 1 (a) Crystal structure of trigonal PtBi$_2$. (b) Brillouin zone. Green (light blue) points correspond to Weyl nodes of positive (negative) chirality. (c) Bandstructure along the path indicated in panel (b), which includes one of the Weyl nodes located at 48meV above the Fermi energy. (d) Magnetoresistance of a single crystal for different tilted angles θ of the field, θ being the angle between the magnetic field and the out-of-plane direction. (e) Angular dependence of the magnetoresistance at $B = 15$ T. (f) Fast Fourier Transform of the Shubnikov-de Haas oscillations in (d), for $T = 5$ K and $\theta = 20^\circ$.
Figure 2 (a) The temperature dependence of the resistance of a single crystal for $T \leq 46$ K with a superconducting transition measured at $T_c \approx 600$ mK. The inset shows the differential resistance dV/dI as a function of the DC voltage in point contact measurements at different temperatures between 1.55 K and 3.1 K, indicating the onset of the superconductivity at about 2.5 K under point contact. (b) the temperature dependence of B_c (grey points) with the linear fit from equation (1) leading to $\xi = 56$ nm at very low temperature.
Figure 3 (a) Differential resistance dV/dI of the nanostructure as a function of the DC current at temperatures ranging regularly from 100 mK to 400 mK (the curves are shifted for better visibility). I_c was found to be about 20 µA. (b) temperature dependencies of the perpendicular ($B_{c,\perp}$) and planar ($B_{c,\parallel}$) critical fields with their fit to the 2D theoretical model, including the misalignment measured in (c). (c) the angular dependence of the critical field at $T = 100$ mK shows a sharp peak with a maximum corresponding to $\theta = 91.1^\circ$, indicating a 1.1° misalignment. Due to the sharpness of the peak, the $\theta = 0^\circ$ is reduced by about 25% with respect to the true parallel critical field. Inset: the experimental data points (grey circles) of $B_c(\theta)$ at $T = 100$ mK are fitted with the 3D Ginzburg-Landau model (blue line) and the 2D Tinkham model (red line). A better agreement is found for the 2D model.
Figure 4 (a) $V(I)$ characteristics for different temperatures below T_{BKT} and above T_c in a logarithmic scale. The dashed line stands for $V \propto I^3$. (b) the same experimental data are plotted as $d \log V / d \log I(I) = a = 1 + \pi J_s / T$ and the dashed line indicate the limit for which $a(T_{BKT}) = 3$. Both inset indicate that $T_{BKT} \approx 310$ mK. (c) the temperaure dependence of the resistance of a PtBi$_2$ from the normal regime ($T \approx 500$ mK) down to $T = 250$ mK $< T_{BKT}$. The Halperin-Nelson theory (red dashed line) with $T_{BKT} = 310$ mK is not able to fit the experimental data. Accounting for inhomogeneities, the fit with Benfatto's fomulae is in very good agreement with the experimental data for $T_{BKT} = 310$ mK as found from the out-of-equilibrium measurements. The fit leads to $T_c = 412$ mK and $\delta T_{BKT} = 23$ mK. We note that we do not fit $R(T)/R_N$ here, rather the equivalent quantity $R(T)/R(500mK) = R(T)/R_N \times R_N/R(500mK)$.

Figure 1

(see Manuscript file for Figure caption)
Figure 2

(see Manuscript file for Figure caption)
Figure 3

(see Manuscript file for Figure caption)
Figure 4
(see Manuscript file for Figure caption)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- VeyratNatCommSI.docx