COMPARISON BETWEEN RADIOGRAPHIC METHODS OF MEASURING FLEXIBILITY IN SCOLIOSIS

ABSTRACT
Objective: To determine the preoperative radiographic method for measuring the Cobb angle that is closest to the postoperative result in patients with scoliotic deformity. Method: Retrospective cohort study of radiographic spinal evaluation (preoperative posteroanterior (PA), bending, traction, traction under anesthesia and immediate postoperative posteroanterior (PO)) of 26 patients treated surgically for scoliotic deformities during the period from January 2017 to September 2019. The final mean Cobb angle and its decrease in relation to the PA value were evaluated in the three curves in patients with idiopathic (IS) and non-idiopathic scoliosis. Results: All the mean curve values were statistically significant, except for bending in non-idiopathic scoliosis (non-IS). The mean traction under anesthesia values were closer to the PO values. Regarding the delta (decrease) of the maneuvers in relation to the PA, no statistical significance was observed in the non-IS group. The traction under anesthesia maneuver had a greater delta in all curves. Conclusion: The traction under anesthesia maneuver in patients with idiopathic scoliosis is the method with the greatest flexibility and which best predicts the postoperative result. Level of evidence III; Diagnostic study.

Keywords: Scoliosis; Radiography; Arthrodesis; Traction; Spine.

RESUMO
Objetivo: Determinar o método radiográfico pré-operatório para aferição do ângulo de Cobb que mais se aproxima dos resultados pós-operatórios em pacientes com deformidade escoliótica. Métodos: Estudo de coorte retrospectivo de avaliação radiográfica da coluna vertebral (posteroanterior pré-operatória [PA], inclinações, tração, tração com anestesia e posteroanterior pós-operatória imediata [PO]) de 26 pacientes com deformidades escolióticas no período de Janeiro de 2017 a Setembro de 2019 tratados com cirurgia. Avaliou-se a média final do ângulo de Cobb e a sua diminuição com relação ao PA nas três curvas em pacientes com escoliose idiopática (EI) e não idiopática. Resultados: Todas as médias das curvas têm significância estatística, exceto a inclinação na escoliose não idiopática (não EI). A tração com anestesia apresenta média de valores mais próximos ao PO. Com relação ao delta (diminuição) das manobras referentes ao PA, foi observado que não houve significância estatística nas não EI. A manobra de tração com anestesia tem delta maior em todas as curvas. Conclusões: A manobra de tração com anestesia em pacientes com escoliose idiopática configura-se como o método com maior flexibilidade e que melhor prediz o resultado pós-operatório. Nível de evidência III; Estudo diagnóstico.

Descritores: Escoliose; Radiografia; Artrodese; Tração; Coluna Vertebral.

RESUMEN
Objetivo: Determinar el método radiográfico preoperatorio para medición del ángulo de Cobb que más se aproxima a los resultados pós-operatorios en pacientes con deformidad escoliótica. Métodos: Estudio de cohorte retrospectivo de evaluación radiográfica de la columna vertebral (posteroanterior preoperatoria [PA], inclinaciones, tracción, tracción con anestesia y posteroanterior pós-operatoria inmediata [PO]) de 26 pacientes con deformidades escolióticas en el período de enero de 2017 a septiembre de 2019 tratados con cirugía. Se evaluó el promedio final del ángulo de Cobb y su disminución con relación al PA en las tres curvas en pacientes con escoliosis idiopática (EI) y no idiopática. Resultados: Todos los promedios de las curvas tienen significancia estadística, excepto la inclinación en la escoliosis no idiopática (no EI). La tracción con anestesia presenta promedio de valores más próximos al PO. Con relación al delta (disminución) de las maniobras referentes al PA, se observó que no hubo significancia estadística en las no EI. La maniobra de tracción con anestesia tiene un delta mayor en todas las curvas. Conclusiones: La maniobra de tracción con anestesia en pacientes con escoliosis idiopática se configura como el método con mayor flexibilidad y que mejor predice el resultado postoperatorio. Nivel de evidencia III; Estudio diagnóstico.

Descritores: Escoliosis; Radiografía; Artrodesis; Tracción; Columna Vertebral.
INTRODUCTION

Scoliosis is the most common spinal deformity in children and adolescents. It is defined as a three-dimensional deformity with curvature greater than 10 degrees in the coronal plane, associated with rotation of the vertebral bodies and it can be classified into two large groups: idiopathic and non-idiopathic. The Cobb angle is the main method used to measure the curve, its progression and to define the treatment. In their classifications, King and Lenke highlighted the importance of the flexibility of the curves in the radiographical examination, formulating the concept of curve structurality and defining it as one of the most important parameters for surgical planning, responsible for the choice of arthrodesis levels and the number of corrective osteotomies. Flexibility can be analyzed by several methods: bending in the standing or dorsal horizontal decubitus positions, fulcrum bending, traction, traction under general anesthesia, among others. Currently, bending radiographs are considered the gold standard for flexibility assessment, because they are easy to perform and are one of the parameters included in the classifications. It is known that in curves greater than 60 degrees traction is better than the other methods. More recently, flexibility has begun to be assessed using the traction under anesthesia method. Some studies have demonstrated equivalence with the bending positions, with better correction due to muscle relaxation. However, the fact that it is performed right before surgery is characterized as a disadvantage, not leaving sufficient time for good surgical planning. Nonetheless, there are still no studies that prove which curve flexibility assessment method is closest to the postoperative result.

This study proposes measuring the Cobb angle in standing, bending, traction and traction under anesthesia positions for a comparative analysis of coronal plane flexibility in order to predict the method that most closely matches the postoperative results of patients with scoliosis.

METHODS

This is a retrospective cohort study (level of evidence III). After approval by the Institutional Review Board (C.A.A.E. 25975119.3.0000.5505), which agreed with all the examinations proposed for conducting the project, we reviewed 26 patients (24 females and 2 males) with a mean age of 14.8 years (ranging from 10 to 19 years of age) who underwent surgery to treat scoliotic spi- nal deformities (20 IS and 6 non-IS). The patients were classified using Lenke (40% of the cases were Lenke I and 35% were Lenke III) and King (half of the cases were classified as King 2, followed by 20% as King 3) and they underwent posterior approach arthrodesis (40% of the cases were Lenke I and 35% were Lenke III) and King (half of the cases were classified as King 2, followed by 20% as King 3) and they underwent posterior approach arthrodesis (performed in 42.3% of the patients from T4 to L4, and in 06 with arthrodesis that did not include the lumbar curve), as shown in Table 1. The mean values of the initial TP, T and L curves were evaluated in the bending, traction, and traction under anesthesia maneuvers and PO as shown in Tables 2, 3 and 4. All had statistical significance except bending in the non-IS group. We noticed that all the radiographs in traction under anesthesia have lower mean values than the other two maneuvers, except in the lumbar region in non-IS cases. The delta (simple mathematical) of the maneuvers in relation to the PA in all the curves were evaluated. It was observed that there was no significant difference in the non-IS group. And the delta of correction of the traction under anesthesia maneuver was greater in all curves, as shown in Tables 5, 6 and 7.

RESULTS

Twenty-six patients were selected (24 females and 2 males), with a mean age of 14.8 years, with non-congenital scoliotic deformities (20 IS and 6 non-IS). The patients were classified using Lenke (40% of the cases were Lenke I and 35% were Lenke III) and King (half of the cases were classified as King 2, followed by 20% as King 3) and they underwent posterior approach arthrodesis (performed in 42.3% of the patients from T4 to L4, and in 06 with arthrodesis that did not include the lumbar curve), as shown in Table 1. The mean values of the initial TP, T and L curves were evaluated in the bending, traction, and traction under anesthesia maneuvers and PO as shown in Tables 2, 3 and 4. All had statistical significance except bending in the non-IS group. We noticed that all the radiographs in traction under anesthesia have lower mean values than the other two maneuvers, except in the lumbar region in non-IS cases. The delta (simple mathematical) of the maneuvers in relation to the PA in all the curves were evaluated. It was observed that there was no significant difference in the non-IS group. And the delta of correction of the traction under anesthesia maneuver was greater in all curves, as shown in Tables 5, 6 and 7.

DISCUSSION

The evaluation of the flexibility of a curve in patients with AIS is essential prior to surgery to determine whether the curve is structured and to select the approach, the surgical technique and the arthrodesis levels. Many methods have been described for curve flexibility evaluation, among them supine lateral bending, lateral fulcrum bending, traction and traction under general anesthesia. The degree of correction, however, does not depend only on the technique used, but also on various factors, such as age, magnitude of the curve, type of curve and location of the apical vertebra. Due to these factors we observed differences in the flexibility of the same curve depending on the technique used, which can interfere with surgical planning. There is still discussion about which is the best method for predicting postoperative results.

Today, supine lateral bending radiography is considered the gold standard for determining flexibility since it is easy to perform and promoting the maximum active lateral spinal flexion possible. The radiographs under traction and traction with anesthesia were performed using a method similar to that proposed by Davis et al., in which the patient is in the supine position and one assistant applies a leg traction around the ankles and the other applies underarm traction. The radiograph of traction under anesthesia was performed with the patient in the supine position immediately after general anesthesia, before positioning the patient in the prone position. During the radiograph under anesthesia, evoked potential was performed with no disturbance in neuromonitoring.

The Cobb angle values for the 3 curves (proximal thoracic (TP), main thoracic (T) and thoracolumbar/lumbar (L)) were evaluated in all radiographical incidences. The study was divided into 3 groups (the IS group (idiopathic scoliosis), the non-IS group (non-idiopathic) and all patients together) and the mean and absolute values of the curves in all incidences were calculated. The distribution into 3 groups was proposed so we could have both overall and curve-specific analyses. The 3 maneuvers (bending, traction and anesthetized traction) were compared using the non-parametric Wilcoxon with the PO value, evaluating the maneuver closest to the PO result. Finally, the delta of PA (simple mathematical difference) for each maneuver was calculated and then we compared the 3 maneuvers in each of the 3 curve groups using the Friedman test, to determine the maneuver that presented the greatest mean decrease in value.

P values less than 0.05 were considered statistically significant, with a confidence interval of 95%.
and used for AIS classification. However, recent studies have shown that this technique may not correctly predict the degree of postoperative correction, in addition to being dependent on the patient and on the radiology technique for its execution.

Radiographs with traction are less commonly used for preoperative planning. Vaughan et al., Poly and Sturm demonstrated in their studies that traction is superior to bending when curves are greater than 60 degrees. In our study, we did not observe a statistical difference between the curves of the idiopathic scoliosis group (mean main curve: 71.2°) and the whole group (mean main curve: 72.5°). We noticed that the mean curves with maneuvers, both in the TP (IS: bending 16°, traction 15.9°; All: bending 16.6°, traction 17.1°) and T (IS: bending 47°, traction 47°; All: bending 51.2°, traction 50.5°), had very similar values. These data go against the study of Moe et al., who emphasized the importance of traction as a method for determining the degree of postoperative correction in wide curves. They also differ from the study by White and Panjabi, which showed traction to be inferior for curves less than 53° and superior for larger curves. However, in all these studies, including this one, the only variable analyzed was the Cobb angle. As regards the L curve, we noted that bending presented lower values than traction, (Table 3) a finding similar to the
Table 4. Comparison of Maneuvers with PA in the L Curve.

Curve L	Mean	Median	Standard Deviation	Q1	Q3	N	CI	P-value
IS								
PO	7.2	5	7.1	12	20	3.1	x	
Bending	19.4	13	18.3	5	34	8.0	0.012	
Traction	29.3	30	16.3	17	41	7.2	<0.001	
Traction under Anesthesia	18.1	16	11.1	10	26	4.9	<0.001	
Non IS								
PO	13.0	12	8.7	7	20	6.9	x	
Bending	29.5	28	13.5	20	42	10.8	0.046	
Traction	37.0	28	22.2	21	51	17.8	0.028	
Traction under Anesthesia	33.0	26	22.0	18	53	17.6	0.028	
All								
PO	8.5	8	7.7	2	14	3.0	x	
Bending	21.7	16	17.6	6	36	26.6	0.001	
Traction	31.0	30	17.7	17	43	26.6	<0.001	
Traction under Anesthesia	21.5	18	16.2	11	30	26.9	<0.001	

Table 5. Comparison of Delta of Maneuvers in Relation to PA in the TP Curve.

TP Curve	Mean	Median	Standard Deviation	Q1	Q3	N	CI	P-value
IS								
Bending	12.0	10	8.3	6	16	20.3	0.001	
Traction	12.4	10	8.1	8	20	20.3	0.001	
Traction under Anesthesia	17.0	16	10.4	9	24	20.4	0.186	
Non IS								
Bending	12.0	12	2.6	10	14	6.1	0.186	
Traction	9.7	10	5.6	7	14	6.4	0.001	
Traction under Anesthesia	13.0	13	4.9	12	15	6.3	0.001	
All								
Bending	12.0	11	7.3	7	16	26.2	0.001	
Traction	11.8	10	7.6	7	18	26.2		
Traction under Anesthesia	16.0	15	9.5	9	22	26.3		

Table 6. Comparison of Delta of Maneuvers in Relation to PA in the T Curve.

T Curve	Mean	Median	Standard Deviation	Q1	Q3	N	CI	P-value
IS								
Bending	21.9	22	10.2	16	28	20.4	<0.001	
Traction	21.9	22	10.5	14	25	20.4	<0.001	
Traction under Anesthesia	34.5	34	13.1	28	39	20.5	0.311	
Non IS								
Bending	19.5	15	13.6	11	22	6.10	0.311	
Traction	22.2	20	16.2	11	26	6.13	<0.001	
Traction under Anesthesia	37.3	43	18.8	36	44	6.95	<0.001	
All								
Bending	21.3	21	10.8	14	27	26.4	0.411	
Traction	22.0	22	11.7	13	26	26.4		
Traction under Anesthesia	35.1	34	12.7	29	43	26.4		

Table 7. Comparison of Delta of Maneuvers in Relation to PA in the L Curve.

L Curve	Mean	Median	Standard Deviation	Q1	Q3	N	CI	P-value
IS								
Bending	28.1	28	8.9	24	33	20	0.001	<0.001
Traction	18.2	16	10.3	11	26	20	0.001	<0.001
Traction under Anesthesia	29.4	31	11.3	24	33	20	0.001	<0.001
Non IS								
Bending	25.0	25	7.8	19	32	6.3	0.186	
Traction	17.5	16	13.1	7	28	6.3	0.186	
Traction under Anesthesia	21.5	18	15.7	16	31	6.1	0.186	
All								
Bending	27.3	28	8.6	22	33	26	0.001	<0.001
Traction	18.0	16	10.8	10	27	26	0.001	<0.001
Traction under Anesthesia	27.5	30	12.6	17	33	26	0.001	<0.001

mean curve, coinciding with Davis et al. and Hamzaoglu et al.,10 (Tables 1, 2 and 3) being always less than bending and traction and closer to the postoperative values.

Gotfried et al. conducted a study in which they evaluated the lateral bending maneuver as a predictive factor for surgical correction in adolescent idiopathic scoliosis. They found that it is possible to predict the percentage of surgical correction of the main thoracic curve. Our study demonstrated that in the patient with the traction under anesthesia maneuver there was both a greater correction delta and a more accurate estimation of the postoperative value. However, there are still no studies that evaluate traction under anesthesia as a predictive factor for scoliotic curve correction.

The literature lacks good studies that evaluate flexibility of non-idiopathic curves. In our study, we had no statistical results in its evaluation due to the small number of patients. Other studies should be conducted to evaluate it.

Our study has some limitations, such as not using the fulcrum bending maneuver, which would offer another point of comparison, as demonstrated in the systematic review published by Khodaei et al.,5 as the most accurate method for estimating the postoperative Cobb angle. The use of Ponte osteotomies to flexibilize the curve for better postoperative correction due to the high degree of the curves may be a bias. As patient follow-up was only conducted until the immediate postoperative period, it was not possible to assess the spontaneous correction of non-instrumented curves. In addition, we did not compare the density of curve instrumentation with their degree of correction and thus did not identify whether higher-density curves present better correction as compared to the lower density curves.

However, this study will serve as the basis to stimulate further research in an attempt to identify the maneuver that can best predict the immediate postoperative result in the correction of scoliotic deformity.

CONCLUSION

In this study we concluded that traction under anesthesia in patients with idiopathic scoliosis is the method with the most flexibility and the one that best predicts postoperative results. More prospective studies with a greater number of patients, particularly, non-idiopathic patients, should be conducted to validate the findings.

All authors declare no potential conflict of interest related to this article.

CONTRIBUTION OF THE AUTHORS: Each author made significant individual contributions to the manuscript. ASG: intellectual concept, writing, data analysis, review, performing the surgeries and preparation of the entire research project. FAV: intellectual concept, writing, data analysis, review, performing the surgeries and preparation of the entire research project. JTPK: Intellectual concept and review. RHSU: performing the surgeries, intellectual concept and review. EBP: intellectual concept and review.

Coluna/Columna 2021;20(2):84-8
REFERENCES

1. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3-9. doi: 10.1007/s11832-012-0457-4.

2. Wills BP, Auerbach JD, Zhu X, Card MS, Horn BD, Flynn JM, et al. Comparison of Cobb angle measurement of scoliosis radiographs with preselected end vertebrae: traditional versus digital acquisition. Spine (Phila Pa 1976). 2007;32(1):98-105. doi: 10.1097/BRS.0b013e3180a3b420.

3. Luk KD, Don AS, Cheng CS, Wong YY, Chung KM. Selection of fusion levels in adolescent idiopathic scoliosis using fulcrum bending prediction: a prospective study. Spine (Phila Pa 1976). 2008;33(20):2192-8. doi: 10.1097/BRS.0b013e31816b9b8a.

4. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83(8):1169-81.

5. Khodaei M, Pachêco-Pereira C, Trac S, Chan A, Le LH, Lou E. Radiographic Methods to Estimate Surgical Out-comes based on Spinal Flexibility Assessment in Patients who have Adolescent Idiopathic Scoliosis: A Systematic Review. Spine J. 2018;18(11):2128-39. doi: 10.1016/j.spinee.2018.06.344.

6. Davis BJ, Gadgil A, Trivedi J, Ahmed el-NB. Traction radiography performed under general anesthetic: a new technique for assessing idiopathic scoliosis curves. Spine (Phila Pa 1976). 2004;29(21):2466-70. doi: 10.1097/01.BRS.0000143109.45744.12.

7. Kong QJ, Sun XF, Wang Y, Sun JC, Chen ZQ, Yang Y, et al. Evaluating the rotation correction of the main thoracic curve in severe adolescent idiopathic scoliosis: bending and traction vs. fulcrum - a preliminary report. Med Sci Monit. 2017;23:4981-8. doi: 10.1269/SMM.170897.

8. Rodrigues LM, Ueno FH, Gotfryd AO, Pattar T, Fujiw EN, Milani C. Comparison between different radiographic methods for evaluating the flexibility of scoliosis curves. J Spinal Disord Tech. 2010;21(6):E97-101. doi: 10.1097/BSD.0b013e3181f0d5ea.

9. Hasler CC, Hefti F, Büchler P. Coronal plane segmental flexibility in thoracic adolescent idiopathic scoliosis assessed by fulcrum-bending radiographs. Eur Spine J. 2010;19(6):732-8. doi: 10.1007/s00586-010-1320-2.

10. Hamrazi-Anglu A, Talu U, Teker M, Mızranci Ç, Domanic U, Goksun SB. Assessment of curve flexibility in adolescent idiopathic scoliosis. Spine (Phila 1976). 2005;30(14):1637-42. doi: 10.1097/01.BRS.0000170580.92177.d2.

11. Liu RW, Teng AL, Armstrong DG, Poo-Kochert C, Son-Hing JP, Thompson GH. Comparison of supine bending, push-prone, and traction under general anesthesia radiographs in predicting curve flexibility and postoperative correction in adolescent idiopathic scoliosis. Spine (Phila 1976). 2010;35(4):416-22. doi: 10.1097/BRS.0b013e318163564a.

12. Gotfryd AO, Franzin FJ, Poletto PR, Laura AS, Silva LC. Radiographicas em inclinação lateral como fator preditivo da correção cirúrgica na escoliose idiopática do adolescente. Rev Bras Ortop. 2011;46(5):572-6. doi: 10.1590/S0102-36162011000500015.

13. Li J, Hwang S, Wang F, Chen Z, Wu H, Li B, et al. An innovative fulcrum-bending radiographic technique to assess curve flexibility in patients with adolescent idiopathic scoliosis. Spine (Phila 1976). 2013;38(24):E1527-32. doi: 10.1097/BRS.0b013e3182e5e89.

14. Lamarré ME, Parent S, Labelle H, Aubin CE, Joncas J, Cabral A, et al. Assessment of spinal flexibility in adolescent idiopathic scoliosis: suspension versus side-bending radiography. Spine (Phila 1976). 2009;34(6):591-7. doi: 10.1097/BRS.0b013e318193a23d.

15. Watanabe K, Kawaikami N, Nishiwaki Y, Goto M, Tsuji T, Obara T, et al. Tracton versus supine side-bending radiographs in determining flexibility: what factors influence these techniques? Spine (Phila 1976). 2007;32(3):2604-9. doi: 10.1097/BRS.0b013e3181585bcb.

16. Moe JH, Byrd JA. Idiopathic scoliosis. In: Lonstein JE, Winter RB, Bradford DS RB, Oghvji JW, editors. Moe’s textbook of scoliosis and other spinal deformities. 2nd ed. Philadelphia: Saunders; 1987. p.191-232.

17. Keppsl SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine (Phila 1976). 2001;26(5):E74-9. doi: 10.1097/00007632-200103010-00002.

18. Vedantam R, Lenke LG, Bridwell KH, Linville DL. Comparison of push-prone and lateral-bending radiographs for predicting postoperative coronal alignment in thoracolumbar and lumbar scoliotic curves. Spine (Phila 1976). 2000;25(1):76-81. doi: 10.1097/00007632-200001010-00014.

19. Cheung KM, Luk KD. Prediction of correction of scoliosis with use of the fulcrum bending radiograph. J Bone Joint Surg Am. 1997;79(8):1144-50. doi: 10.2106/JBJS.H.01831.

20. Hay D, Izzat MT, Adam CJ, Labrom RD, Askin GN. The use of fulcrum bending radiographs in anterior thoracic scoliosis correction: a consecutive series of 90 patients. Spine (Phila 1976). 2008;33(9):999-1005. doi: 10.1097/BRS.0b013e31816c8343.

21. Polly DW Jr, Sturm PF. Traction versus supine side bending. Which technique best determines curve flexibility? Spine (Phila 1976). 1998;23(7):804-8. doi: 10.1097/00007632-199804010-00013.

22. Vaughan JJ, Winter RB, Lonstein JE. Comparison of the use of supine bending and traction radiographs in the selection of the fusion area in adolescent idiopathic scoliosis. Spine (Phila 1976). 1996;21(21):2469-73. doi: 10.1097/00007632-199611010-00012.

23. Clamp JA, Andrew JR, Grevitt MP. A study of the radiologic predictors of curve flexibility in adolescent idiopathic scoliosis. J Spinal Disord Tech. 2008;21(3):213-5. doi: 10.1097/BSD.0b013e3181379f19.

24. Cheh G, Lenke LG, Lehman RA Jr, Altekruse R, Bridwell KH. The reliability of preoperative supine radiographs to predict the amount of curves flexibility in adolescent idiopathic scoliosis. Spine (Phila 1976). 2007;32(24):2668-72.

25. Lenke LG, Kuklo TR, Ondra S, Polly DW Jr. Rationalene behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine (Phila 1976). 2008;33(10):1051-4. doi: 10.1097/BRS.0b013e31812f2865.

26. Aronsson DD, Stokes IA, Ronchetti PJ, Richards BS. Surgical correction of vertebral axial rotation in adolescent idiopathic scoliosis: prediction by lateral bending films. J Spinal Disord. 1996;9(3):214-9.

27. Cheung KM, Natarajan D, Samartzis D, Wong YW, Cheung WY, Luk KD. Predictability of the fulcrum bending radiograph in thoracic adolescent idiopathic scoliosis: correction by neutral bending films. J Bone Joint Surg Am. 2010;92(1):169-76. doi: 10.2106/JBJS.H.01831.

28. Moe JH. Methods of correction and surgical techniques in scoliosis. Orthop Clin North Am. 1972;3(1):17-48.

29. White AA, Panjabi MM. The clinical biomechanics of scoliosis. Clin Orthop Relat Res. 1976;(118):100-12.

30. White AA, Panjabi MM. Practical biomechanics of scoliosis and kyphosis. In: White AA, Panjabi MM, editors. Clinical Biomechanics of the Spine, 2nd ed. Philadelphia: JB Lippincott; 1990. p.138-43.