SYSTEMATIC REVIEW

Second and third trimester estimation of gestational age using ultrasound or maternal symphysis-fundal height measurements: A systematic review

Alice Self1 | Lama Daher1 | Michael Schlussel2 | Nia Roberts3 | Christos Ioannou1 | Aris T. Papageorghiou1,4

Abstract

Background: Accurate assessment of gestational age (GA) is important for managing pregnancies at an individual level and monitoring preterm birth rates at a population level.

Objectives: As many women first seek antenatal care in late pregnancy, our aim was to assess the methodology of studies reporting equations for estimating GA after 20 weeks’ gestation using ultrasound or symphysis-fundal height (SFH) measurements.

Search strategy: Six electronic databases were searched for studies published from January 1970 to April 2021.

Selection criteria: Studies were included if they contained a formula using SFH or ultrasound-measured biometry to estimate GA after 20 weeks in healthy singleton pregnancies.

Data collection and analysis: Two reviewers and a statistician reviewed study design, statistical methods, and reporting methods using 29 criteria. Each article was awarded an overall quality score, predefined as the percentage of the 29 criteria scored at low risk of bias. 95% prediction intervals were calculated for studies that used recommended first trimester dating to confirm true GA.

Main results: The search yielded 4209 results. Ninety-seven full-text articles were included in the analysis. The mean quality score was 32% (range 7%–97%). Only 10 articles scored low risk in 18 or more criteria. Their formulas estimated GA using one or more ultrasound-measured biometry parameters and SFH measurements. Twenty-three articles used recommended first trimester dating. A single-parameter formula using transcerebellar diameter (TCD) gave the lowest 95% prediction interval.

Conclusions: There is considerable methodological heterogeneity in studies developing equations for estimating GA. Formulas using ultrasound-based measurements more accurately estimated GA after 20 weeks than formulas using SFH measurement.

Linked article: This article is commented on by Philip J. Steer, pp. 1459 in this issue. To view this minicommentary visit https://doi.org/10.1111/1471-0528.17127.
1 | INTRODUCTION

Accurate assessment of gestational age (GA) is important at an individual level to manage pregnancy care appropriately and at the population level to monitor rates of GA-dependent outcomes such as the proportion of preterm births and small-for-GA neonates. Although a woman’s last menstrual period (LMP) is usually used to estimate GA when ultrasound assessments are unavailable, relying on this method is problematic. For example, up to 45% of women attending antenatal care are uncertain of their menstrual dates,1 and LMP dating has a 95% prediction interval of ±4.65 weeks.2 All usual methods of GA estimation start with the fundamentally flawed assumption of equating fetal size with GA. This is practicably acceptable in the first trimester but, even then, it has been suggested that growth restriction can be observed as early as 5–10 weeks’ gestation.3

Nevertheless, in pregnancies conceived naturally, measurement of fetal crown-rump length (CRL) before 14 weeks is considered the gold standard for dating pregnancies. A CRL measurement up to 84 mm is accurate to within ±5 days in 95% of cases.4,5 When the CRL is greater than 84 mm, consensus on how to estimate GA is less clear. Although head circumference (HC) is commonly used,6 multi-parameter formulas may be more accurate than a single parameter in the second and third trimesters.4

Dating pregnancies after 14 weeks is particularly relevant for low- and middle-income countries, where many women first seek antenatal care after 20 weeks of pregnancy. In South Africa, 53% of women receive no first trimester antenatal care7 and up to 80% of women attend their first antenatal visit after 20 weeks in some regions.8 Similarly, the median age for first seeking antenatal care in Uganda is >20 weeks and only 29% receive antenatal care before their fourth month of pregnancy.9 This pattern of late first antenatal appointments and limited access to ultrasound10 hinders both optimal management of pregnant women and accurate estimates of preterm birth and small-for-GA neonates in regions with the highest burden.11

Although policy development should focus on encouraging first trimester engagement with antenatal care, statistics from high-income countries suggest that there will always be a significant proportion of women who do not access antenatal care until later in gestation. Although early engagement with antenatal care and first trimester ultrasound screening are well-established in England, over 35 000 (5.9%) of pregnancies ‘book’ after 20 weeks’ gestation.12 These women are more likely to come from minority ethnic groups and vulnerable groups, such as those with more complex psychosocial needs.13 In many such women, GA will often be estimated by ‘reversing’ an HC growth chart intended to describe fetal size at a given GA, which is incorrect.

At present the most methodologically robust and clinically accurate means for estimating late GA are not known. Our review aimed to close this knowledge gap by examining all studies using ultrasound or maternal symphysis-fundal height (SFH) for estimating GA after the first trimester. We assessed these studies’ methodological quality to identify those at the lowest risk of bias and therefore most likely to develop an accurate equation for estimating GA. We also compared the accuracy of the equations developed in those studies that compared predictions with first trimester GA estimated with recommended methods.

2 | METHODS

2.1 | Search strategy

This systematic review of observational studies was based on study protocols previously used in our group.14,15 It was prospectively registered in the PROSPERO international register of systematic reviews (registration number: CRD4201913776).

We conducted an electronic search of six electronic databases for the period January 1970 to 12 April 2021 to identify studies that used SFH or ultrasound-measured biometry to estimate GA after 20 weeks’ gestation: MEDLINE (OvidSP), Embase (OvidSP), the Cochrane Database of Systematic Reviews (Cochrane Library, Wiley), Cochrane Central Register of Controlled Trials (Cochrane Library, Wiley), Science Citation Index (Web of Science Core Collection) and Conference Proceedings Citation Index (Web of Science Core Collection). We also examined the reference lists of all retrieved full-text articles for relevant citations.
The search strategy was developed by a professional information specialist (NR) and performed with free-text terms and medical subject headings related to GA, ultrasound, fetal development, and second and third trimesters of pregnancy (Appendix S1). Animal studies were excluded but no further limits were applied to the search. The results were imported into Endnote X9 for de-duplication of records before screening.

2.2 | Study selection

Two reviewers (AS and LD) screened all titles and abstracts identified to select potentially eligible studies. Consensus on any disagreements was reached by discussion with a third reviewer (AP). The two reviewers independently assessed the full texts of the selected articles to identify those that should be included. Articles were included if they contained an original formula for estimating GA in healthy singleton pregnancies calculated from fetal biometry or maternal SFH after 20 completed weeks of gestation. As our aim was to estimate GA in the late second and third trimesters; articles were excluded if formulas did not extend beyond 20 weeks. Authors were contacted for clarification if the reported formulas were not clear. Articles assessing GA in specific subgroups of fetuses, such as those with congenital abnormalities or growth aberrations, were excluded. Full-text inclusion was limited to English, French, German and Chinese.

2.3 | Data extraction and quality assessment

We assessed the quality of the included studies using a tool adapted from QUADAS and our previous work.14,15 We assessed 29 quality criteria for ultrasound studies and 28 criteria for SFH studies, covering three domains: study design, statistical methods and reporting (Table S1). All study details were entered into an Excel spreadsheet (Microsoft Office 365). Each criterion was scored as having high or low risk of bias by two assessors (AS and LD). Statistical methodology was also reviewed by a statistician (MS). Any discrepancies were resolved by consultation, or with another reviewer (AP or CI). The overall quality score for an article was defined as the percentage of methodological quality criteria scored as low risk of bias.

2.4 | Assessment of the accuracy of GA prediction

We did not exclude studies from the methodological quality assessment that did not undertake first trimester ultrasound as the gold standard for estimating due date. Instead, we performed a sub-analysis including only those studies that compared predictions with a ‘true’ GA calculated from a GA dated before 14 weeks by CRL, LMP corroborated by CRL, or IVF. This sub-analysis compared the accuracy of the formulas that each study developed to assess GA. If a study reported several formulas, we included only the recommended formula or the formula with the lowest prediction interval.

We calculated 95% prediction intervals, in days, relative to the gold standard GA assessment using the equation of the standard deviation (SD) reported in each of the articles. Biometry measurements reported by the study, at three GA time points of clinical relevance (20, 28 and 34 weeks), were used to calculate the 95% prediction intervals using ±1.96 × SD. If an article did not report the formula that they used to calculate SD, we used their reported SDs and limits of agreement. The analysis was done using IBM SPSS Statistics for Windows, version 28 (IBM Corp.).

This review was reported following the PRISMA reporting guideline statement.16

3 | RESULTS

The search yielded 4209 articles, of which 403 were considered for inclusion and had a full-text review, of which 80 were included. Another 41 articles were considered from other sources, of which 17 were included. The final analysis included 97 full-text articles2,17–111 published between 1974 and 2021 (Figure 1, Table S2). Most excluded studies (309 articles, including 18 conference abstracts) did not report an equation to estimate mean or median GA from given measurements or tested an existing formula rather than reporting a new formula (Figure 1).

The included studies reported data from over 100000 women in 29 countries (median sample size 400 women, range 14–24026, interquartile range 777).

Sixty-nine of the 97 included articles used cross-sectional design and analysis. Fifty-seven of the 69 clearly stated this study design. Four of the 69 appeared to describe cross-sectional designs but it was unclear how many times each fetus was included in the analysis. It was clear from the reporting in the other 65 articles that each fetus was only scanned or included once. Seventeen of the 97 articles used longitudinal designs and seven used mixed designs, with some women having repeat scans and others a single scan. Of these mixed and longitudinal studies, 42% (10/24) described an analysis that accounted for repeated measures. The study design for the final four articles was not clearly stated and could not be determined from the reported methods.

Sixteen of the 97 (16%) articles collected prospective data specifically for research purposes. Six reported retrospective data collection from an existing database. It was unclear whether the remaining 75 (77%) articles acquired measurements prospectively or retrospectively or whether data were collected as part of routine care or specifically for research purposes.

We identified 284 formulas for estimating GA based on 25 biometric measurements across the 97 articles (Figure S1). There were also three methods for measuring
biparietal diameter (BPD). Seventy-seven articles reported single-parameter formulas, eight articles reported multiple-parameter formulas, and 12 articles reported both single- and multiple-parameter formulas. Only 12 (12%) reported a formula to calculate the SD of GA as the dependent variable.
The methods for defining the baseline GA (Table 1) were categorised in nine ways: LMP was the most common method (36%), followed by CRL or LMP confirmed by CRL (22%), and LMP confirmed by other ultrasound parameters but not exclusively CRL (16%).

We could assess the risk of bias in all 97 articles. The results for each domain and criterion are presented in Figures 2A-C. Table S3 lists each study’s detailed scores for each quality criterion. The mean quality score was 32% (range 7–97%), with 12 articles scoring more than 50% and 38 less than 25%.

Quality criteria most at risk of bias were neonatal outcomes, truncation of data, inclusion and exclusion criteria (each only described in three articles), and presence of systematic ultrasound quality control measures (fully described in two articles). Although 32 articles reported more than one sonographer or clinician taking measurements, only nine (9%) described any standardisation exercises and only two described a full set of quality control measures. Figure S2 shows the proportion of articles that reported using each possible quality control measure.

Many articles did not fully describe maternal characteristics and criteria for inclusion and exclusion. Only three articles described a complete set of recommended exclusion criteria. Forty-three articles reported exclusions that risked introducing bias, such as removing cases based on birthweight or outside the 10–90th centiles of measurements. Six articles clearly reported appropriate methods for excluding outliers, such as those more than 5 SD from the mean.

We identified 10 articles at low risk of bias for 18 or more criteria (≥62%). Table 2 lists their formula for calculating GA, which used one or more of abdominal circumference, BPD, HC, femur length, TCD and SFH. Of these, only the Altman and Johnsen studies did not use CRL dating to confirm the GA.

To assess GA estimation prediction intervals, we undertook a sub-analysis of the studies that compared their formulas’ predictions to recommended first trimester GA estimates (n = 23). These articles had quality scores ranging from 17% to 97%. Seven articles did not report any measure of variation. An equation for the SD could only be obtained for five papers, one of which was excluded from the sub-analysis because we were unable to recreate the GA estimation from the formulas given. Another seven articles reported measures of variation that could not be converted to a prediction interval with the data provided. Table 3 shows the results of this analysis. The half-width 95% prediction interval was 8–21 days at 20 weeks, 11–25 days at 28 weeks, and 12–28 days at 34 weeks.

4 | DISCUSSION

4.1 | Main findings

In this review, we addressed the two key attributes that must be considered when identifying the best equations for estimating GA: the methodological rigour of the study developing the equation and the accuracy of the developed equation. We followed the approach of two previous reviews to assess the methodological quality of 97 studies reporting equations for estimating GA beyond 20 weeks of gestation. We assessed the self-reported accuracy of equations developed by studies that used optimal methods to calculate the baseline ‘ground truth’ GA using CRL or IVF dates.

At 11–14 weeks’ gestation, CRL measurements have a half-width 95% prediction interval of around 5 days; the true GA will be within ±5 days of the estimated GA 95% of the time. At all sampled GA time points, ultrasound formulas more accurately estimated GA than SFH formulas. At 20 weeks’ gestation, the multiple-parameter formulas from Papageorghiou et al. and Skupski et al. gave half-width 95% prediction intervals of 8–9 days, which increased with increasing GA (Table 3). A single-parameter formula using TCD had the lowest 95% prediction intervals.

4.2 | Interpretation

Our review highlights the considerable methodological heterogeneity of studies proposing equations for assessing GA after 20 weeks’ gestation. Only a few studies were comprehensively and rigorously reported. Our group has previously described the importance of appropriately selected populations for growth and dating studies.

Researchers should carefully consider their inclusion and exclusion criteria and selection of study participants to ensure that women and their fetuses are at low risk for growth aberrations. Once such selection is made at baseline, further exclusions should only be made for severe conditions, such as maternal or fetal death or subsequent diagnosis of a major fetal anomaly. Only three studies used a comprehensive list of factors known to affect fetal growth in their maternal inclusion and exclusion criteria.

Many of the included studies excluded outer percentiles of ultrasound measurements; however, it is inappropriate to...
exclude fetuses or neonates on size parameters such as being below the 5th or 10th centiles, above the 90th or 95th centiles, or weighing less than a specified weight at birth. Such exclusions artificially reduce the 95% prediction interval and overestimate precision, as natural variation is not fully represented.

FIGURE 2 Risk of bias scores by subdomain: (A) study design, (B) statistical methods, (C) reporting methods
LATE PREGNANCY DATING

Only two articles rigorously used quality control measures to reduce bias. 81,96 Having all scans performed by a single operator mitigates against inter-operator variability but does not represent the clinical situation of numerous operators performing ultrasound scans. Standardised scanning procedures improve the consistency of data measurements112 and should be accompanied by intra- and inter-operator variability assessments of the collected data. Clear protocols for saving, reviewing and scoring scans are also required.

When a woman presents after 14 weeks’ gestation, the fetal HC is commonly used to estimate GA. A widely used method involves manually or computationally plotting the HC measurement along the 50th centile of an HC growth chart and identifying the corresponding GA for that HC measurement. Several authors113,114 have explained why it is inappropriate to estimate GA from growth charts, rather than using a formula specifically designed to estimate GA from HC. Under half of the articles reviewed included scatter plots with GA as the dependent variable, implying that this concept is not well understood.

Table 2: Formulas and quality scores of top 10 scoring articles from lowest to highest risk of bias

Author	Formula	Quality score (%)
Papageorghiou et al. 2016	exp\((0.03243 \times (\log HC)^2 + (0.001644 \times FL \times \log HC) + 3.813)\) + (0.05970 \times (\log HC)^2 + (0.00000000649 \times HC) + 3.3258)	97
Papageorghiou et al. 2016	6.585838-(2.7072585 \times SFH^{0.5}) + (1.295291 \times SFH)	89
Rodriguez-Sibaja et al. 2021	3.957113 + 8.154074 \times (TCD/10) - 0.076187 \times (TCD/10)	79
Skupski et al. 2017	10.6 - (0.168 \times BPD) + (0.045 \times HC) + (0.03 \times AC) + (0.058 \times FL) + (0.002 \times BPD2) + (0.002 \times FL2) + (0.0005 \times BPD \times AC) - (0.005 \times BPD \times FL) - (0.0002 \times HC \times AC) + (0.0005 \times AC \times FL)	66
Altman et al. 1997	exp\((0.044653 \times BPDo0) - (0.060089 \times BPDo0) \times \log BPDo0 + 1.961)\)	66
Rodriguez-Sibaja et al. 2021	24.83392 + (1.886759 \times BPD) + (0.1168198 \times BPD^2) + (0.0025451 \times BPD^3)	66
Skupski et al. 2017	24.53281 + (9.017666 \times HC) - (1.579865 \times HC^2) + (0.5223578 \times HC^3) + 25.31365 + (5.06337 \times AC) + 1922266 \times AC^2 - (0.2513399 \times AC^3) + 0.321422 + (0.2158713 \times FL)-(0.0039493 \times FL^2)-(0.0001861 \times FL^3)	66
Johnsen et al. 2005	8.6245 + (1.3950 \times FL^{0.5}) + (0.00395 \times FL^2)	66
AMANHI 2020	exp\((0.382502(\ln TCD) + 0.3321277(\ln FL) + 2.63416)\)	66
Johnsen et al. 2004	exp\((2.5077 - (1.333 \times BPD^{0.5}) + (0.0139 \times BPD))\)	62
Leung et al. 2008	exp\((1.544 \times (0.886 \times HC^{1.5}) + (0.1103 \times HC^{0.5}))\)	62

Truncation involves excluding values outside a given window from regression analysis in post-hoc data refinement. If biometry measurements are taken within a fixed GA range but are not further restricted before inclusion in the regression analysis, the average GA may be overestimated at the lowest extreme measurements and underestimated at the upper extremes. 22 However, only three articles reported using truncation.

Of the 23 articles with appropriate first trimester dating, only eight were eligible for inclusion in our sub-analysis based on correct modelling of the SD across GA (Figure 1). Most of the included articles did not adequately report the precision of their GA equations. The extent of heterogeneity in reporting precision made it difficult to compare precision across studies. Articles reported SD, standard errors (SE), confidence intervals, prediction intervals and limits of agreement. Some articles erroneously assumed that SD or SE were constant throughout gestation, even though variability in fetal growth parameters increases with gestation and simple methods are available for modelling data variability and goodness of fit. 115
4.3 | Strengths and limitations

Although it is widely accepted that the gold standard for dating a pregnancy is in the first trimester by a CRL measurement, LMP confirmed by a CRL measurement or IVF-assigned dates, most of the analysed studies failed to include this requirement in their study design. Although some of the stronger arguments to stop dating pregnancies using the LMP were made in the 1990s, it was often years before national recommendations introduced a first-trimester scan to provide optimal dating.

We had originally planned to include only articles with optimal dating to avoid a circular argument whereby the same biometry measurements are used to date a pregnancy and estimate the GA. However, we would then have excluded most studies before the mid-1990s and from low- and middle-income countries, where first trimester scanning is less common. This change increased the number of articles and formulas included. We did not change how we assessed methodological quality or precision, and we performed a sub-analysis of studies that only used appropriately dated pregnancies.

Although we did not place any language restrictions on the search strategy, we were only able fully to translate articles written in Chinese, French, German, Italian and Spanish. Six studies were therefore excluded. We do not anticipate this exclusion to have significantly affected our findings because this is a review of methodology and not a meta-analysis of a treatment effect.

Sonographers should be blinded to their measurements and GA to remove observer bias; however, most studies did not report using such blinding. Ultrasound systems routinely display a measurement and estimated GA from the biometric plane of interest, which could introduce bias when constructing fetal growth charts or methods for assessing GA. Blinding the sonographer is conceptually similar to blinding the operator to the maternal SFH measurement during pregnancy assessment.

As some articles provided very limited method sections, many categories were scored at high risk of bias simply because key information was not given. We believe, however, that in most cases low-quality reporting correlates with low-quality methodology.

Two of the articles reporting equations with the lowest half-width 95% prediction intervals came from our group, and so their quality scores benefit from a greater awareness of the reporting criteria that our group has.
previously published.14,15 Although this may bias the quality score results, it does not impact on the self-reported accuracy of \textit{GA} estimation.

This review has a number of strengths. The approach used to assess methodological quality has been previously tested and used.14,15 The risk assessment criteria enabled an objective, quantitative assessment that allows studies to be compared, can easily be replicated by other groups, and can serve as a guide for designing future fetal ultrasound studies.

We did not limit this review by date of publication, as it was possible that an old formula could provide the most precise estimate of \textit{GA}. However, statistical methodology in the field has advanced over time and older studies may be considered less methodologically rigorous by today’s standards. The rigour of the statistical methodology used was assessed during methodological quality assessment and is therefore reflected in the risk of bias score. Appraisal of statistical analyses was supervised by an experienced statistician.

4.4 Practical and clinical implications

We were able to identify the highest scoring studies with the lowest risk of bias. We analysed those that used the gold-standard first trimester dating as their reference for estimating \textit{GA} and calculated 95\% prediction intervals to identify the most precise formulas. This work can inform clinical practice, and focus future prospective testing of formulas for estimating \textit{GA} using an external dataset to best assess precision.

All \textit{GA} estimates were more uncertain when based on SFH measurements than on ultrasound measurements. It is reasonable to assume that the best formula for estimating \textit{GA} will come from a study with good methodology and the lowest self-reported prediction interval. In our view, the combination of the most robust methods and lowest prediction intervals are the TCD formula by Rodriguez-Sibaja87 and the multiple-parameter formulas by Papageorghiou et al.,81 Skupski et al.86 and the AMANHI (WHO Alliance for Maternal and Newborn Health Improvement) Late Pregnancy Dating Study Group69 if a TCD measurement is not available.

Our findings of greater inaccuracy using SFH than ultrasound are of particular significance to low- and middle-income countries, where the proportion of women seeking antenatal care late in pregnancy, and the burden of small-for-gestational age and preterm birth are highest. Many articles in our analysis included ultrasound in pregnant women from under-served regions, and we therefore believe that the findings are generalisable worldwide. In settings where ultrasound resources are limited, it is even more important that early engagement with antenatal care is promoted, to optimise benefits from recommended ultrasound119 and minimise inaccuracies of late ultrasound-based \textit{GA} assessment. It can be argued that it is fundamentally erroneous to equate \textit{GA} to ultrasonographic estimation of fetal size. However, when \textit{GA} is unknown, there are currently no alternative methods of \textit{GA} estimation ready for widespread clinical use. The vast number of formulas found in the international literature suggest the field has been exhaustively explored and that ultrasound-measurement-based methods have reached a plateau of possible accuracy. We propose that other methods should be explored, such as those based on machine-learning methods120,121 or other biomarkers, either alone or in combination with ultrasound. Nevertheless, until there are better alternatives available for use in resource poor settings, there remains a significant benefit to knowing the most accurate equations with which to estimate \textit{GA} from easily measurable fetal biometric parameters.

5 Conclusion

While the clinical priority should remain promoting early engagement with antenatal care including first trimester ultrasound dating, a proportion of pregnant women will always access antenatal care later in pregnancy. This systematic review has highlighted considerable methodological heterogeneity among studies creating formulas to estimate fetal \textit{GA} in late pregnancy. We identified the formulas most likely to accurately estimate \textit{GA} after 20 weeks69,81,88,96 using ultrasound-derived biometry of the fetal cerebellum or multiple parameters. We also show that they are superior to dating by SFH measurement. Unified standards for \textit{GA} and subsequent growth assessment should be used clinically.

ACKNOWLEDGEMENTS

We would like to thank Dr Jennifer de Beyer of the Centre for Statistics in Medicine, University of Oxford, for her careful reading and crucial comments in editing our transcript.

A.T.P. is supported by the Oxford Partnership Comprehensive Biomedical Research Centre with funding from NIHR Biomedical Research Centre (BRC) funding scheme.

CONFLICT OF INTERESTS

Completed disclosure of interest forms are available to view online as supporting information.

AUTHOR CONTRIBUTIONS

AS: Conceptualisation, Methodology, Data extraction and analysis, Writing – original draft, review and editing; LD: Data extraction and analysis, Writing – review and editing, MS: Methodology, Data extraction, Writing – review and editing; NR: Literature review, Writing – methods and review, CI: Conceptualisation, Methodology, Consensus in data extraction, Writing – review and editing, Supervision; AP: Conceptualisation, Methodology, Consensus in data extraction, Writing – review and editing, Supervision.

ETHICS APPROVAL

There was no patient or public involvement in the development of this review.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES

1. Campbell S, Warsof SL, Little D, Cooper DJ. Routine ultrasound screening for the prediction of gestational age. Obstet Gynecol. 1985;65(5):613–20.

2. Lee ACC, Whelan R, Bably NN, Schaeffer LE, Rahman S, Ahmed S, et al. Prediction of gestational age with symphysis-fundal height and estimated uterine volume in a pregnancy cohort in Silhet, Bangladesh. BMJ Open. 2020;10(3):e034942.

3. Mukri F, Bourne T, Bottomley C, Schoe C, Kirk E, Papageorghiou AT. Evidence of early first-trimester growth restriction in pregnancies that subsequently end in miscarriage. BJOG. 2008;115(10):1273–8.

4. Butt K, Lim KL. Guideline no. 388-determination of gestational age by ultrasound. J Obstet Gynaecol Can. 2019;41(10):1497–507.

5. Salomon LJ, Alfivirez Z, Bilardo CM, Chalouhi GE, Ghi T, Kagan KO, et al. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2013;41(1):102–13.

6. National Collaborating Centre for Women's and Children's Health. London: RCOG Press Copyright © 2008, National Collaborating Centre for Women's and Children's Health; 2008.

7. Statistics South Africa Maternal health indicators media release. 2020. Available from: http://www.stats.gov.za/?p=13100&g=Centre for Women's and Children's Health; 2008.

8. Kaswa R, Rupasinghe GDF, Longo-Mbenza B. Exploring the pregnant women's perspective of late booking of antenatal care services at Mbekweni Health Centre in Eastern Cape, South Africa. Afr J Prim Health Care Fam Med. 2018;10(1):e1–9.

9. Uganda Bureau of Statistics (UBOS) and ICF. Uganda demographic and health survey. Kampala, Uganda and Rockville, Maryland, USA: UBOS and ICF2018; 2016.p. 150.

10. Aliyu LD, Kurjak A, Wataganara T, de Sá RA, Pooh R, Sen C, et al. Prediction of gestational age with symphysis-fundal height in normal pregnancy and correlation with gestational age. Am J Obstet Gynecol. 2004;191(5):343–45.

11. Blencowe H, Cousens S, St Geme J, et al. Systematic review of charts. BJOG. 2014;121(5):56: 65.

12. NHS Digital. Hospital episode statistics provider level analysis of pregnancies that subsequently end in miscarriage. BJOG. 2008;115(10):1273–8.

13. Alard AH, Alshami H, Alkhudri H, et al. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

14. Briceno F, Restrepo H, Paredes R, Cifuentes R. Charts for fetal age assessment based on fetal sonographic biometry in a population from Cali, Colombia. J Ultrasound Med. 2013;32(12):2135–43.

15. Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Three-dimensional ultrasound in the assessment of fetal cerebellar transverse and anteroposterior diameters. Ultrasound Med Biol. 2000;26(2):175–82.

16. Chang CH, Chang FM, Yu CH, Yao BL, Ko HC. Fetal head circumference in normal pregnancy: remodeling by Altman's method. J Med Ultrasound. 1998;6(2):61–7.

17. Chang CH, Chang FM, Yu CH, Yao BL, Liang RI, Ko HC. Re-analysis of fetal biparietal diameter during gestation in Taiwanese by Altman's method. J Med Ultrasound. 1996;4(4):162–8.

18. Chang CH, Chang FM, Yu CH, Yao BL, Liang RI, Ko HC, et al. Fetal occipito-frontal diameter in normal pregnancy: reappraisal by Altman's model. J Med Ultrasound. 1997;5(1):5–11.

19. Chang FM, Ko HC, Chang CH, Yu CH, Liang RI, Yao BL, et al. Fetal tibia length assessment by prenatal ultrasound: part I. Using absolute residuals for constructing age-related reference percentiles. J Med Ultrasound. 1997;5(2):49–56.

20. Chang FM, Ko HC, Chang CH, Yu CH, Yao BL. Ultrasound assessment of fetal fibula growth. J Med Ultrasound. 1997;5(4):135–43.

21. Chavez MR, Ananth CV, Smulian JC, Yeo L, Oyelese Y, Vinzileos AM. Fetal transcerebellar diameter measurement with particular emphasis in the third trimester: a reliable predictor of gestational age. Am J Obstet Gynecol. 2004;191(3):979–84.

22. Chervenak FA, Skupski DW, Romero R, Myers MK, Smith-Levitin M, Rosenwaks Z, et al. How accurate is fetal biometry in the assessment of fetal age? Am J Obstet Gynecol. 1998;178(4):678–87.

23. Dare FO, Smith NC, Smith P. Ultrasonic measurement of biparietal diameter and femur in foetal age determination. West Afr J Med. 2004;23(1):24–6.

24. Briceno F, Restrepo H, Paredes R, Cifuentes R. Charts for fetal age assessment based on fetal sonographic biometry in a population from Cali, Colombia. J Ultrasound Med. 2013;32(12):2135–43.

25. Al Hindawi ZM. Ultrasonographic assessment of duration of pregnancy by utilizing fetus kidney length in second and third trimester. Int J Pharm Res. 2020;12(4):1850–6.

26. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

27. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

28. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

29. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

30. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

31. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

32. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

33. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.

34. Al Hindawi ZM. Fetal gestational age determination using ultrasound placental thickness. J Med Ultrasound. 2020;28(1):17–23.
LATE PREGNANCY DATING

42. Gilani SA, Latif R, Nadeem F, Anjum N, Sarwar Z. Sonographic estima-
tion of gestational age by umbilical cord diameter and its relationship
with bi-parietal diameter and femur length in second and third trimest-
er in Lahore, Pakistan. Pakistan J Medical Health Sci. 2018;12(2):514–6.

43. Gupta D, Gupta H, Zaidi Z, Saxena D, Gupta R. Accuracy in esti-
mation of gestational age in third trimester by fetal kidney length in
Indian women. Indian J Clin Pract. 2013;24(5):459–63.

44. Hadlock FP, Deter RL, Harrist RB, Park SK. Fetal head cir-
cumference: relation to menstrual age. AJR Am J Roentgenol. 1982;138(4):469–53.

45. Hadlock FP, Deter RL, Harrist RB, Park SK. Fetal biparietal diam-
eter: a critical re-evaluation of the relation to menstrual age by means
of real-time ultrasound. J Ultrasound Med. 1982;1(3):97–104.

46. Hadlock FP, Deter RL, Harrist RB, Park SK. Fetal abdominal cir-
cumference as a predictor of menstrual age. AJR Am J Roentgenol.
1982;139(2):367–70.

47. Hadlock FP, Harrist RB, Deter RL, Park SK. Fetal femur length as
a predictor of menstrual age: sonographically measured. AJR Am J
Roentgenol. 1982;138(5):875–8.

48. Hadlock FP, Deter RL, Harrist RB, Park SK. Computer assisted
analysis of fetal age in the third trimester using multiple fetal growth
parameters. J Clin Ultrasound. 1983;11(6):313–6.

49. Hadlock FP, Deter RL, Harrist RB, Park SK. Estimating fetal age:
computer-assisted analysis of multiple fetal growth parameters.
Radiology. 1984;152(2):497–501.

50. Hanoon DN, Akram DW. The use of abdominal aorta length in the
fetuses’ after 34 weeks of gestation for calculating gestation age among
primigravida healthy women. Eur J Mol Clin Med. 2020;7(5):139–49.

51. Hebbar S, Khuraijam T. Intrauterine growth charts for fetal bipari-
etal diameter and femur length in second and third trimester. Acta Obstet
Gynecol Scand. 2005;84(8):725–33.

52. Hegab M, Midan MF, Taha T, Bibas M, Wakeel KHE, Amer H, et al.
Fetal biometric charts and reference equations for pregnant women
living in Port Said and Ismailia Governorsates in Egypt. Open Access
Maced J Med Sci. 2018;6(5):751–6.

53. Hemraj S, Abraham SM, Acharya D, Ravichandra G, Vinayaka US.
Sonographic correlation of gestational age with fetal kidney length.
Int J Infertil Fetal Med. 2016;7(2):37–41.

54. Hemraj S, Acharya DK, Abraham SM, Vinayaka US, Ravichandra
G. Fetal foot length and its sonographic correlation with gestational age.
Donald Sch J Ultrasound Obstet Gynecol. 2017;11(2):141–5.

55. Hill LM, Guzick D, Fries J, Hixson J, Rivello D. The transverse cer-
ebellar diameter in estimating gestational age in the large for gesta-
tional age fetus. Obstet Gynecol. 1990;75(6):981–5.

56. Holanda-Filho JA, Souza AI, Souza AS, Figueiroa JN, Ferreira AL,
Cabrál-Filho JE. Fetal transverse cerebellar diameter measured by
ultrasound does not differ between genders. Arch Gynecol Obstet.
2011;284(2):299–302.

57. Honarvar M, Allahyari M, Dehshahi S. Assessment of gestational age
based on ultrasonic femur length after the first trimester: a simple mathematical correlation between gestational age (GA) and femur length (FL). Int J Gynaecol Obstet. 2000;70(3):335–40.

58. Jiang X, Zhang YH, Li Y, Ma X, Zhu YS, Shang L. Reference charts and
equations of fetal biometry for normal singleton newborn pregnancies in
Shaanxi, China. Clin Exp Obstet Gynecol. 2013;40(3):393–8.

59. Johnsen SL, Rasmussen S, Sollren B, Kiserud T. Fetal age assessment
based on ultrasonic head biometry and the effect of maternal and fetal
factors. Acta Obstet Gynecol Scand. 2004;83(8):716–23.

60. Johnsen SL, Rasmussen S, Sollren B, Kiserud T. Fetal age assessment
based on femur length at 10-25 weeks of gestation, and reference
ranges for femur length to head circumference ratios. Acta Obstet
Gynecol Scand. 2005;84(8):725–33.

61. Kapoor A, Dudhat MD. Sonographic evaluation of placental thick-
ness – An indicator of gestational age. J Evid Based Med Healthcare.
2016;3(1):305–10.

62. Karabulut AK, Koyluoglu B, Uysal I. Human foetal sacral length
measurement for the assessment of foetal growth and development by
ultrasoundography and dissection. Anat Histol Embryol Vet Med.
2001;30(3):141–6.

63. Kaul I, Menia V, Anand AK, Gupta R. Role of fetal kidney length in
estimation of gestational age. JK Sci. 2011;14(2):65–9.

64. Konje JC, Abrams KR, Bell SC, Taylor DJ. Determination of gesta-
tional age after the 24th week of gestation from fetal kidney length
measurements. Ultrasound Obstet Gynecol. 2002;19(6):592–7.

65. Leung TN, Pang MW, Daljit SS, Leung TY, Poon CF, Wong SM, et al.
Fetal biometry in ethnic Chinese: biparietal diameter, head circum-
ference, abdominal circumference and femur length. Ultrasound
Obstet Gynecol. 2008;31(3):321–7.

66. Mahale NA, Devi A, Mahale A, Ullal S, Fernandes M, Prabhoo S.
Ultrasound assessment of gestational age by measurement of fetal kid-
ney length in third trimester. G Ital Ostet Ginecol. 2019;41(1):10–3.

67. Mahmoud MZ, Mahmoud O, Abdulla A. Fetal transverse cerebellar
diameter measurement for prediction of gestational age in pregnant
Sudanese ladies. Int J Life Sci Med Res. 2013;3:89–93.

68. Marinho AO, Bamgoye EA. Assessment of foetal femur length by
ultrasound in a normal Nigerian obstetric population. Afr J Med
Sci. 1987;16(2):47–52.

69. AMANHI. Performance of late pregnancy biometry for gestational age
dating in low-income and middle-income countries: a pro-
pective, multicountry, population-based cohort study from the
WHO Alliance for Maternal and Newborn Health Improvement
(AMANHI) Study Group. Lancet Glob Health. 2020;8(4):e545–54.

70. Mercer BM, Sklar S, Shariatmadar A, Gillieson MS, D’Alton ME.
Fetal foot length as a predictor of gestational age. Am J Obstet
Gynecol. 1987;156(2):350–5.

71. Mongelli M, Chew S, Yuxin NG, Biswas A. Third-trimester ultra-
sound dating algorithms derived from pregnancies conceived with
artificial reproductive techniques. Ultrasound Obstet Gynecol.
2005;26(2):129–31.

72. Nwadike UI, Aigwu KK, Eze CU, Okpala OC, Onu AO. Sonographic
biometry of fetal interorbital distance as a predictor of gestational age
in Endugu, Southeast Nigeria, West Indian Med J. 2016;65(1):128–33.

73. Ohagwu C, Abu D, Uduoh B. Placental thickness: a sonographic indi-
cator of gestational age in normal singleton pregnancies in Nigerian
women. Internet J Medical Update. 2009;4(2):9–14.

74. Orji MO, Adeyekun AA. Ultrasound estimation of foetal gesta-
tional age by transcerebellar diameter in healthy pregnant Nigerian
women. West Afr J Med. 2014;33(1):61–7.

75. Osinusi BO, Oguseynide O. Ultrasonic foetal abdominal circum-
diameter as a means of assessing gestational age in Nigerians. Afr J
Med Sci. 1989;18(2):101–4.

76. Osinusi BO, Okubanjo OA. Ultrasonic foetal head circumference as
a means of assessing gestational age in Nigerians. Afr J Med
Sci. 1990;9(1):22–5.

77. Ott WJ. Accurate gestational dating: revised. Am J Perinatol.
1994;11(6):404–8.

78. Ozat M, Kanat-Pektas M, Gungor T, Gurlek B, Caglar M. The sig-
nificance of fetal sacral length in the ultrasonographic assessment of
gestational age. Arch Gynecol Obstet. 2011;283(5):999–1004.

79. Papageorghiou AT, Ohuma EO, Gravett MG, Hirst J, da Silveira
Maced J Med Sci. 2018;6(5):751–6.

80. Purwar M, et al. Ultrasound- based gestational age estimation in
Veteran Affairs Medical Centers. J Reprod Med. 2016;61(7):585–90.

81. Papageorghiou AT, Kemp B, Stones W, Ohuma EO, Kennedy SH,
Purwar M, et al. Ultrasound-based gestational-age estimation in late
pregnancy. Ultrasound Obstet Gynecol. 2016;48(6):719–26.

82. Papageorghiou AT, Ohuma EO, Gravett MG, Hirst J, da Silveira
MF, Lambert A, et al. International standards for symphysis-
fundal height based on serial measurements from the Fetal Growth
Longitudinal Study of the INTERGROWTH-21st Project: prospec-
tive cohort study in eight countries. BJOG. 2016;123(5):656–62.

83. Persson PH, Wdeltner BM. Reliability of ultrasound fetometry in
estimating gestational age in the second trimester. Acta Obstet
Gynecol Scand. 1986;65(7):759–61.
