Collapse and revivals for systems of short-range phase coherence

K W Mahmud\(^1\), L Jiang\(^1\), P R Johnson\(^2\) and E Tiesinga\(^1\)

\(^1\)Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Mail Stop 8423, Gaithersburg, Maryland 20899, USA
\(^2\)Department of Physics, American University, Washington, DC 20016, USA
E-mail: kmahmud@umd.edu

Received 12 May 2014, revised 14 August 2014
Accepted for publication 16 September 2014
Published 7 October 2014

Abstract
We predict the existence of novel collapse and revival oscillations that are a distinctive signature of the short-range off-diagonal coherence. Starting with an atomic Mott state in a one-dimensional optical lattice, suddenly raising the lattice depth freezes particle–hole pairs in place and induces phase oscillations. The peak of the quasi-momentum distribution, revealed through time-of-flight interference, oscillates between a maximum occupation at zero quasi-momentum (the \(\Gamma\) point) and the edge of the Brillouin zone. We show that the population enhancements at the edge of the Brillouin zone are due to short-range coherence due to particle–hole pairs, and we find similar effects for fermions and Bose–Fermi mixtures in a lattice. Our results open a new dynamic probe for strongly correlated many-body states with short-range phase coherence that is distinct from the matter–wave collapse and revivals previously observed in the long-range coherent superfluid regime.

Keywords: collapse and revivals, many-body dynamics, optical lattices

1. Introduction

Ultracold atoms in optical lattices are a versatile tool for creating strongly correlated quantum many-body states [1, 2]. Prominent examples include atomic Mott insulator (MI) states of
bosons and fermions [3–5]. Starting from a superfluid (SF) with long-range phase coherence, adiabatically increasing the ratio of atom–atom interaction U to tunneling strength J by increasing the optical lattice depth gives rise to a MI with short-range coherence [3]. An infinitely deep lattice with $J = 0$ gives a perfect Mott insulator state as depicted in figure 1(a), denoted in Fock space notation as $|11..11\rangle$ for unit occupancy. For finite tunneling but still in the MI regime, the many-body wavefunction includes correlated (paired) double and zero occupied sites on top of the perfect MI (see figures 1(b) and (c)). These particle–hole pairs, also known as doublons and holons and denoted as $|201..1\rangle$, $|210..1\rangle$, etc., behave as quasi-particle excitations. Particle–hole pairs play an important role in Mott insulator physics [6–8] and other condensed matter phenomena [9, 10], and have recently been observed by in situ imaging in a one-dimensional (1D) chain of bosonic atoms [11].

Ultracold atoms in optical lattices are also a versatile tool for studying many-body quantum dynamics [12, 13]. A common technique involves quenching a system by suddenly changing its parameters [12, 14, 15]. One approach, starting from a larger U/J and quenching to a smaller U/J, has been used to study thermalization [16, 17], the Kibble–Zurek mechanism [18, 19], and light-cone spreading of correlations [20–22]. The opposite approach, starting in a SF regime with small U/J and quenching to large U/J gives the collapse and revival (CR) oscillations of matter–wave phase coherence observed in [23–25]. Matter–wave CR has found applications in the study of higher-body interactions [25, 26], fermion impurities [27], and coherent-state squeezing [25, 28]. To date, CR has been viewed as a characteristic behavior of quenched systems with long-range phase coherence such as superfluids.

In this paper, we show that detectable collapse and revival oscillations also occur for many-body states with short-range phase coherence such as in quenched MI states, for both lattice bosons and fermions. For a 1D optical lattice, the quasi-momentum distribution oscillates between maximum occupations (revivals) at quasi-momentum $\pi k = 0$ and at the edge of the Brillouin zone. (Here $\hbar = h/(2\pi)$ and h is Planck’s constant.) In fact, the normalized difference in the two populations, which is conventionally defined as the ‘visibility’ of the condensate, becomes negative, in sharp contrast to the behavior of quenched superfluids. We also find that the visibility of the quenched MI state is a sinusoidal function of time, in contrast to the

![Image](https://example.com/figure1.png)

Figure 1. A schematic of the Mott insulator state and quench. (a) A perfect Mott state with zero tunneling ($J = 0$). For small tunneling $J \neq 0$, there exist nearest-neighbor and next-nearest-neighbor particle–hole pairs, as seen in (b) and (c), respectively. A sudden raising of the lattice depth freezes the atoms in place, and induces phase evolution of the on-site wavefunctions as schematically depicted in (d).
exponential functional form seen for quenched superfluids. This difference provides another approach for distinguishing between systems with short- and long-range coherence.

For a quenched MI, the condensate fraction oscillations also show novel kinks associated with oscillations between symmetric and antisymmetric natural orbitals of the single-particle density matrix (SPDM). The distinctive behavior of MI CR oscillations are due to the presence of correlated particle–hole pairs, frozen in place when the lattice depth is suddenly increased, leading to phase dynamics as schematically illustrated in figure 1(d).

Furthermore, we find that fermions in a lattice at half-filling, and Bose–Fermi mixtures when the total occupation of bosons plus fermions is an integer, exhibit similar dynamics as a result of their short-ranged phase coherence. Finally, we show that this physics is robust under realistic dephasing mechanisms, and should be within experimental reach.

Our results reveal a new regime in collapse and revival oscillations for strongly correlated states of short-range phase coherence where particle–hole pairs play the crucial role. CR experiments in this regime have not been performed. A detection of the effects described in the paper will provide a dynamic probe of the particle–hole composition of the many-body state, and extend the collapse and revivals phenomenon beyond the superfluid regime.

2. Lattice bosons

Ultracold bosons in an optical lattice can be described by the Bose–Hubbard Hamiltonian

\[H^B_j = -J \sum_{j,j'} (b_j^\dagger b_{j'} + \text{h.c.}) + \frac{U_j}{2} \sum_j n_j(n_j - 1), \]

where \(j, j' \) are indices to lattice sites, only nearest-neighbor tunneling is assumed, and \(n_j = b_j^\dagger b_j \). The subscript \(i \) denotes parameter values before the quench. The total number of particles is \(N = \sum_j (b_j^\dagger b_j) \), and \(\bar{n} = N/L \) is the mean occupation per site where \(L \) is the number of sites. For non-integer occupation per site, the ground state is superfluid. At integer occupation, the system exhibits a quantum phase transition, going from a SF to MI state above a critical value of \(\eta_c = U J_{\text{c}} \). At unit occupation, \(\eta_c \approx 3.3 \) in 1D [29–31].

The system is quenched by suddenly increasing the depth of the optical lattice such that tunneling is suppressed (\(J_f \to 0 \)) [23]. The Hamiltonian governing the post-quench dynamics is \(H_f = (U_f/2) \sum_j n_j(n_j - 1) \), where \(U_f \) is the final interaction strength. After a hold-time \(t \), the lattice is turned off and the atoms are allowed to freely expand. Imaging the atoms after the time-of-flight expansion, the atomic spatial density corresponds to the quasi-momentum distribution \(\rho_k(t) = \sum_j e^{ik(j-j')} \rho_{jj'}(t) \) at the moment of release, where \(\rho_{jj'}(t) = \langle b_j^\dagger b_{j'} \rangle \) is the SPDM and \(k \) is the lattice wavevector. In a 1D lattice with a period of unit length, the edge of the Brillouin zone is at wavevector \(k = \pi \). In addition, we examine the visibility \(\mathcal{V}(t) = [n_{k=0}(t) - n_{k=\pi}(t)]/[n_{k=0}(t) + n_{k=\pi}(t)] \) [6], and the condensate fraction \(f_c(t) = \lambda_c(t)/N \), where \(\lambda_c(t) \) is the largest eigenvalue of the SPDM [32, 33].

In previous CR studies the initial state is a superfluid. Here, our initial state is a one-dimensional MI with integer \(\bar{n} \) and \(U_f/J_f > \eta_c \). Due to the presence of particle–hole pairs, after the quench this state is not an eigenstate of \(H_f \) and undergoes nonequilibrium evolution until the moment of release from the lattice. Much of the MI quench dynamics can be understood from an analysis of correlations in the initial state. It is convenient to define the off-diagonal coherence \(\xi_{ij}(t) = \langle b_j^\dagger b_{j+d} \rangle \), which is independent of \(j \) as the SPDM \(\rho_{jj'} \) only depends on
l_j - j'$ for a homogeneous system with periodic boundary conditions. It follows that $n_{k=0}(t) = \bar{n} + 2\sum_{d>0} (1 - d/L)|\zeta_d(t)|$ and $n_{k=\pi}(t) = \bar{n} + 2\sum_{d>0} (1 - d/L)|\zeta_d(t)|$.

We are able to obtain explicit analytic approximations for the evolution of the off-diagonal coherence and quasimomentum populations for bosons in a 1D lattice using the strong-coupling expansion [34] up to second-order in the tunneling Hamiltonian. The full derivation is given in the appendix. Briefly, to zeroth-order the ground-state wavefunction is the Mott state $|0\rangle = |\bar{n}, \bar{n}, ..., \bar{n}\rangle$ with \bar{n} atoms in each of the L sites. Corrections are due to states containing a 'hole', $\bar{n} - 1$ atoms in one of the sites, and a 'particle', $\bar{n} + 1$ atoms in another. We can express these particle–hole pair states as $|e_d\rangle \propto \sum_{j=1}^{L} (b_j^+ b_{j+d} + b_j^+ b_d)|0\rangle$, where $d > 0$ is the lattice distance between particle and hole. The improved ground state becomes $|g\rangle = |0\rangle + \sum_{d>0} \epsilon_d |e_d\rangle$ with $\epsilon_d \propto (J_i/U_i)^d \ll 1$, from which it follows that initially $\zeta_d(t=0) \propto (J_i/U_i)^d$. This corresponds to an exponential decay of the off-diagonal coherence with distance d (see also [35]).

Deep in the MI regime the time evolution of the $k = 0$ and $k = \pi$ populations are therefore, to good approximation, $n_{k=0}(t) \approx 1 + 2(1 - 1/L)|\zeta_1(t)|$ and $n_{k=\pi}(t) \approx 1 - 2(1 - 1/L)|\zeta_1(t)|$, respectively. Consequently, when $|\zeta_1(t)|$ is positive (negative) the population $n_{k=0}(t)$ is larger (smaller) than $n_{k=\pi}(t)$. In fact, it is shown in the appendix that $|\zeta_1(t)| \approx (J_i/U_i) \cos(U_{ft}/\hbar)$ with period $T = \hbar/U_f$. Hence, $n_{k=\pi}(t)$ is larger than $n_{k=0}(t)$ for $T/2 < t < 3T/2$. This implies that $\mathcal{V}(t) = n_{k=0}(t) - n_{k=\pi}(t) < 0$ for these hold times.

In contrast, for a SF with $U_f/J_i < \eta_c$ (and non-integer \bar{n}), the mean-field ground-state wavefunction is site separable, i.e. of the form $\prod_j |S_j\rangle$, with $|S_j\rangle = \sum_n c_n^{(j)} |n\rangle$. Consequently, the SPMD is also separable with $\zeta_d = \langle b_j^+ \rangle \langle b_{j+d} \rangle$. For a homogeneous lattice $\zeta_d = \langle b \rangle^2$ is independent of d and there is no decay of correlation with particle–hole distance d. As all ζ_d are positive we find $n_{k=0}(t) \geq n_{k=\pi}(t)$ for all t. This implies that $\mathcal{V}(t) > 0$. This conclusion also holds for a fully correlated description of SF when SPDM is not constant but decays with distance d, algebraically in 1D and to a constant value at large distances in 2D and 3D. Due to a slower than exponential decay, all the terms in the expression of $n_k(t)$ contribute and consequently $n_{k=0}(t) \geq n_{k=\pi}(t)$.

In the appendix we also derive the quasi-momentum and visibility in the MI regime and the thermodynamic limit. They are given by

$$n_k(t) \approx \bar{n} + 4\bar{n}(\bar{n} + 1) \frac{J_i}{U_i} \cos\left(\frac{U_{ft}}{\hbar}\right) \cos(k) + 2\bar{n}(\bar{n} + 1)(2\bar{n} + 1) \frac{J_i^2}{U_i^2} \left[1 + 2 \cos\left(\frac{U_{ft}}{\hbar}\right) \right] \cos(2k),$$

and

$$\mathcal{V}(t) \approx 4(\bar{n} + 1) \frac{J_i}{U_i} \cos\left(\frac{U_{ft}}{\hbar}\right).$$

In contrast, in the superfluid regime with a homogeneous pre-quench state that is separable, $n_{k=0}(t) = (L - 1)\nu(t) + \bar{n}$ and $\mathcal{V}(t) = \nu(t)/(\nu(t) + 2[\bar{n} - \nu(t)]/L)$, where $\nu(t) = (|b(t)|^2)^2$.

For a coherent state $|\beta\rangle$ at each lattice site
\[\nu(t) = |\langle b(t) \rangle|^2 = \bar{n} e^{2 \beta} \left[\cos \left(\frac{U_j t}{\hbar} \right) - 1 \right], \]

where \(\bar{n} = |\beta|^2 \) and \(b_j(t) = e^{iH_j t/\hbar} \). For both the MI and SF quench the time evolution is periodic with period \(T = \hbar/U_j \). The oscillations, however, are sinusoidal for the MI quench and ‘exponential’ for the SF quench.

We next perform numerical i-TEBD simulations \([36]\) to extend our analysis to all values of \(U_j/J_j \) and validate the SCE analysis in the MI regime. We calculate the SPDM for \(L = 32 \) and use periodic boundary conditions. Figure 2(a) shows the quasi-momentum \(n_k(t) \) for a Mott state with \(U_j/J_j = 10 \) at hold times \(t = 0, T/4, \) and \(T/2 \). At \(t = 0 \) the momentum distribution is peaked around \(k = 0 \), while at \(t = T/2 \) it is peaked around \(k = \pi \), corresponding to a ‘revival’ at the edge of the Brillouin zone and to a new kind of nonequilibrium state. This \(n_{k=\pi}(t) \) revival is a distinctive signature of the presence of nearest-neighbor particle–hole pairs in the MI state.

To highlight the difference between MI and superfluid quenches, figure 2(b) shows the \(n_k(t) \) dynamics for a superfluid with \(U_j/J_j = 1 \) and \(\bar{n} = 1.5 \). Here, at \(t = 0 \) the quasimomentum distribution is again peaked around \(k = 0 \), but is much narrower than the MI case due to the long-range coherence of the SF. During the collapse at \(t = T/2 \), the atoms are equally spread over all quasi-momenta with no enhancement or revival of the \(k = \pi \) population. Note that \(n_{k=\pi}(t) \) revivals have also been predicted for supersolid quenches in a system with (long-range)
nearest-neighbor interactions [37]. Those revivals, however, are associated with long-range coherences and not particle–hole pairs.

Figures 2(c) and (d) show the time evolution of \(n_{k=0}(t) \) and \(\mathcal{V}(t) \) for different values of \(U_i/J_i \) and \(\bar{n} = 1 \), one in the SF regime and three in the MI regime. For \(U_i/J_i = 1 \), the time trace exhibits superfluid CR oscillations consistent with equation (4) and the visibility is positive. Based on our numerical results, we conjecture that for \(U_i/J_i > \eta_c \) there will always exist time intervals where the visibility is negative. We show an example for \(U_i/J_i = 4 \) in figure 2(d). For larger \(U_i/J_i \) the oscillations in \(n_{k=0}(t) \) and \(\mathcal{V}(t) \) become more sinusoidal, consistent with equations (2) and (3). Examples are given for \(U_i/J_i = 10 \) and 100.

In figure 2(e) we compare analytic predictions for \(\mathcal{V}(t) \) in equation (3) with our numerical simulations. The analytic approximation gives excellent agreement for \(\eta > U_i/J_i \). The regime of validity for the analytic theory can be extended to smaller \(U_i/J_i \) by performing higher-order calculations and keeping high occupancy terms, e.g. terms such as \(\langle \ldots |0 \rangle \) and \(\langle \ldots |2 \rangle \) for unit occupancy (\(\bar{n} = 1 \)).

Figure 2(f) shows the condensate fraction \(f_c(t) = \lambda_c(t)/N \) as a function of time. For \(U_i/J_i \) in the MI regime \(f_c(t) \) has kinks at times \(t = T_i/4 \) and \(3T_i/4 \), which occur when the eigenfunction or natural orbital of the SPDM associated with the largest eigenvalue changes between a symmetric state \((1,1,\ldots,1,1)\) and an anti-symmetric state \((-1,-1,\ldots,-1,-1)\). This behavior is consistent with our SCE calculations, which give

\[
\lambda_c(t) = \bar{n} + 4\bar{n}(\bar{n} + 1) \frac{J_i}{U_i} \left[\cos\left(\frac{U_i t}{\hbar} \right) \right] \\
+ 2\bar{n}(\bar{n} + 1)(2\bar{n} + 1) \frac{J_i^2}{U_i^2} \left[1 + 2 \cos\left(\frac{U_i t}{\hbar} \right) \right],
\]

and where the second term leads to the kinks. Within the SCE approximation the kinks occur when the nearest neighbor coherence \(\zeta_{d=1} \) goes to zero. For \(U_i/J_i = 1 \) in the SF regime the fraction performs smooth oscillations reaching one. (The full range is not shown in the graph.) The numerical result is consistent with \(f_c(t) = v(t)/\bar{n} + (\bar{n} - v(t))/N \), based on the mean-field approximation [33].

3. Lattice fermions

Fermions in an optical lattice are described by the Fermi–Hubbard Hamiltonian

\[
H_f^F = -J_f^F \sum_{\langle i,j \rangle, \sigma} \left(f_{i\sigma}^+ f_{j\sigma} + \text{h.c.} \right) + U_f^F \sum_{j} n_{j\uparrow} n_{j\downarrow},
\]

where \(\sigma = \uparrow, \downarrow \) denotes two spin states and \(n_{j\sigma} = f_{j\sigma}^+ f_{j\sigma} \). Its phase diagram contains metallic, Mott insulator and anti-ferromagnetic phases [38]. After the quench the Hamiltonian becomes \(H_f^F = U_f^F \sum_{j} n_{j\uparrow} n_{j\downarrow} \). Figure 3 illustrates the quench dynamics, computed using a four site lattice and exact diagonalization. We first consider the half-filled case with \(\langle n_{j\uparrow} \rangle = \langle n_{j\downarrow} \rangle = 1/2 \). Figure 3(a) shows the momentum distribution \(n_{k=1} \) at times \(t = 0 \) and \(T_F/2 \), where \(T_F = \hbar/U_f^F \). At \(t = 0 \) the momentum distribution has peaked around \(k = 0 \), while at \(t = T_F/2 \) the peak occurs at the edge of the Brillouin zone, an effect similar to the bosonic MI case. The \(k = \pi \) revivals are again due to correlated doublons and holons in the initial state which has short-range phase
coherence. Visibility oscillations of the spin-up state, shown in figure 3(b), reach negative values for any U_{ji} and become more sinusoidal for larger values of U_{ji}. In contrast, figures 3(c) and (d) show that a metallic state with $\langle n_{\uparrow} \rangle = 1/2$ and $\langle n_{\downarrow} \rangle = 1/4$ exhibits the familiar SF-type CR, where all quasi-momenta are uniformly occupied during collapse at $t = T^{F}/2$.

4. Lattice Bose–Fermi mixtures

For Bose–Fermi mixtures in a lattice, the post-quench Hamiltonian is

$$H^{BF}_f = \frac{U^{BB}_f}{2} \sum_j n^B_j \left(n^B_j - 1\right) + U^{BF}_f \sum_j n^B_j n^F_j,$$

where U^{BB}_f and U^{BF}_f are Bose–Bose and Bose–Fermi interaction strengths, respectively, assuming fermions are in a single spin state. For the pre-quench Hamiltonian, the usual hopping terms are also present [39]. Bose–Fermi mixtures give rise to a plethora of phases and phenomena [39, 40], depending on the relative interaction strengths and fermion filling. CR of a Bose–Fermi mixture with long-range phase coherence has been observed in [27]. When the total occupation per site of fermions plus bosons is one, the ground state phase diagram has a MI state [41]. The quench dynamics, computed with a four-site lattice, is shown in figures 4(a) and (b). Here again we see the CR characteristics of a short-ranged system: $k = \pi$ revivals of the bosonic momentum distribution n_k and the sinusoidal behavior of the bosonic visibility, with modifications due to the Bose–Fermi interaction. In contrast, for non-unit occupation, the dynamics gives the SF-like CR shown in figures 4(c) and (d).
5. Experimental prospects and conclusion

Our analysis in figure 2 shows that the predicted visibility of the $k = \pi$ revival should be of the same order of magnitude as the $k = 0$ peak observed for an equilibrium MI [6], and hence a detection of the dynamics should be possible. The Mott visibility signal increases inside the Mott lobe such as when going from $U/J = U_f^{\text{II}} = 4$ to 10 as depicted in figure 2(d), but decreases as we go deeper in the Mott regime such as at $U/J = 20$ and 100. Experiments should get an optimal signal just inside the Mott lobe not too far from the SF–MI phase boundary. Our current estimate for the optimal signal for $n = 1$ MI with a finite size of 32 lattice sites is $\approx U_f^{\text{II}} = 8$.

These effects are robust under several dephasing mechanisms. First, figure 5(a) shows that for small post-quench tunneling J_f the characteristic negative \mathcal{V} survives, but is destroyed for larger J_f/U_f. Second, we find that effective multi-body interactions [25, 42, 43] do not

![Figure 4](image4.png)

Figure 4. Lattice Bose–Fermi mixtures. (a) n_k^B as a function of k at times $t = 0$ and $T_B^2/2$, with $T_B^2 = h/U_f^{\text{BF}}$ and $U_f^{\text{BF}}/U_f^{\text{BB}} = 0.5$, and a combined unit occupation of bosons and fermions. A maximum in the $k = \pi$ occupation occurs when the $k = 0$ occupation is near zero (collapses). (b) The bosonic visibility shows MI-like sinusoidal features. In contrast, a state with non-integer combined occupation gives SF-like CR dynamics in n_k^B (c) and bosonic visibility (d).

![Figure 5](image5.png)

Figure 5. Effects of residual tunneling and initial harmonic confinement on bosonic MI dynamics. (a) Visibility dynamics for three values of J_f. Other parameters as in figure 2(a). (b) Visibility dynamics for an initially trapped system for $W_{pl} = 0, 0.6$, and 1, where W_{pl} is the ratio of the width of SF regions to the Mott plateau. Inset shows the initial density profile as a function of lattice site.
significantly influence the dynamics deep in the $\bar{n} = 1$ MI regime (e.g. $U_i/J_i > 10$). Third, by adding $V_{\ell j} \sum_j (j - L/2)^2 n_j$ in equation (1), harmonically trapped systems give a MI core with SF regions at the two edges. Assuming $V_{\ell j} = 0$ after the quench, figure 5(b) shows that the SF regions modify $V(t)$, but do not completely wash out the distinctive MI signature for a sufficiently large Mott plateau. Dephasing due to post-quench harmonic trapping $V_{\ell j} \neq 0$ for SF revivals has been quantified in [33, 44].

We have shown that bosons and fermions in 1D periodic potentials with short-range coherence will manifest a new type of collapse and revival oscillation due to particle–hole pair correlations. We expect qualitatively similar effects in 2D and 3D. Our results open up the possibility that the underlying correlations of a wide class of strongly correlated matter with short-range phase coherence can now be revealed through coherence dynamics.

Acknowledgements

We acknowledge support from the US Army Research Office under Contract No. 60661PH.

Appendix

We derive analytic results for quench dynamics of a one-dimensional Mott insulator using the strong-coupling expansion [34]. Bosons in an optical lattice are described by the Hubbard Hamiltonian of equation (1). We assume a homogeneous system with $L = 2M + 1$ sites, periodic boundary conditions, and atom number $N = nL$, where M and n are positive integers.

We prepare the Mott insulator ground state assuming a non-zero tunneling energy J_i that is small compared to the atom–atom interaction strength U_i. Following [34] we perform perturbation theory in the tunneling operator or kinetic energy. To zeroth-order the ground state wavefunction is the Mott state $|0\rangle = |\bar{n}, \bar{n}, ..., \bar{n}\rangle$ with \bar{n} atoms in each of the L sites. The correction to this wavefunction is due to states containing a single hole with $-\bar{n}$ atoms in one of the sites and a single ‘particle’ with $\bar{n} + 1$ atoms in another. We classify these (normalized) particle–hole pair states as

$$|e_d\rangle = \frac{1}{\sqrt{2L}} (|\bar{n} - 1, ..., \bar{n} + 1, \bar{n} + 1, ..., \bar{n} - 1, ..., \bar{n} - 1\rangle + ...$$

where $d = 1, ..., M$ is the number of sites that separates the hole and particle. The dots in a set indicate sites with \bar{n} atoms and the sum is over all states with the same particle and hole separation. The hole is either to the left or right of the particle. (Periodic boundary conditions imply that the largest separation is M.) The Hubbard Hamiltonian within the space spanned by $\{|0\rangle, |e_1\rangle, ..., |e_M\rangle\}$ is given by

$$H = \begin{bmatrix} E_0 & A^T \\ A & K \end{bmatrix},$$

where $E_0 = U_i/Ln(\bar{n} - 1)/2$ is the diagonal matrix element for state $|0\rangle$, $A^T = (-\sqrt{2Ln(\bar{n} + 1)}J_i, 0, 0, 0, ...)$ with M elements describes the coupling between $|e_d\rangle$ and
and
\[
K = \begin{bmatrix}
E_0 + U_i & -(\bar{n} + 1)J_i & 0 & \ldots \\
-(\bar{n} + 1)J_i & E_0 + U_i & -(\bar{n} + 1)J_i & \ldots \\
0 & -(\bar{n} + 1)J_i & E_0 + U_i & \ldots \\
& & & & \ddots & \ddots & \ddots & \ddots
\end{bmatrix}
\]
is a $M \times M$ tridiagonal (diagonal-constant) matrix that describes the couplings among the $|e_d\rangle$.

All diagonal elements of K are the same, and we must first diagonalize K in order to perform perturbation theory. Its eigenenergies and functions are
\[
E_k = E_0 + U_i - 2(\bar{n} + 1)J_i \cos\left(\frac{\pi k}{M + 1}\right)
\]
and
\[
|\tilde{e}_k\rangle = \sqrt{\frac{2}{M + 1}} \sum_{j=1}^{M} \sin\left(\frac{\pi jk}{M + 1}\right) |e_d\rangle.
\]

Performing perturbation theory with respect to the non-degenerate states $|\tilde{e}_k\rangle$, the correction to the ground state wavefunction is
\[
|g\rangle = \left(1 - L\bar{n}(\bar{n} + 1)\frac{J_i^2}{U_i^2}\right) |0\rangle + \sqrt{2L\bar{n}(\bar{n} + 1)} \frac{J_i}{U_i} |e_1\rangle
\]
\[
+ (2\bar{n} + 1) \sqrt{2L\bar{n}(\bar{n} + 1)} \frac{J_i^2}{U_i^2} |e_2\rangle + O\left[(J_i/U_i)^3\right]
\]
in terms of the original particle–hole basis.

We now quench the system by suddenly setting the tunneling to zero and change $U_i \rightarrow U_f$. The subsequent time evolution is then given by
\[
|g(t)\rangle = \left(1 - L\bar{n}(\bar{n} + 1)\frac{J_i^2}{U_i^2}\right) |0\rangle
\]
\[
+ \sqrt{2L\bar{n}(\bar{n} + 1)} \frac{J_i}{U_i} |e_1\rangle e^{-iU_f t/\hbar}
\]
\[
+ (2\bar{n} + 1) \sqrt{2L\bar{n}(\bar{n} + 1)} \frac{J_i^2}{U_i^2} |e_2\rangle e^{-iU_f t/\hbar}
\]
(A.1)
as the states $|0\rangle$ and $|e_d\rangle$ are eigenstates of the quenched Hamiltonian. In fact, the $|e_d\rangle$ are degenerate with an energy U_f relative to the state $|0\rangle$.

Our experimental observables are the quasi-momentum distribution at the Γ point and the edge of the Brillouin zone, defined as $n_{k=0}(t) = \langle g(t) | b_k^\dagger b_k | g(t) \rangle = \sum_{jj'} \rho_{jj'}(t)/L$, and $n_{k=\pi}(t) = \sum_{jj'} (-1)^{j-j'} \rho_{jj'}(t)/L$, respectively. Here $\rho_{jj'}(t) = \langle g(t) | b_j^\dagger b_{j'} | g(t) \rangle$ is the $L \times L$ single-particle density matrix. Finally, the visibility is defined by
\[\mathcal{V}(t) = \frac{n_{k=0}(t) - n_{k=\pi}(t)}{n_{k=0}(t) + n_{k=\pi}(t)}. \]

The single-particle density matrix can be evaluated using equation (A.1) and leads to

\[
\rho_{jj'}(t) = \left(1 - 2L\tilde{n}(\tilde{n} + 1) \frac{J^2_i}{U^2_i} \right) \langle 0 | b^+_j b_{j'} | 0 \rangle
\]
\[+ \sqrt{2L\tilde{n}(\tilde{n} + 1)} \frac{J_i}{U_i} \left(\langle 0 | b^+_j b_{j'} | e_1 \rangle e^{-iU_j t/\hbar} \right. \]
\[+ \langle e_1 | b^+_j b_{j'} | 0 \rangle e^{iU_j t/\hbar} \]
\[+ (2\tilde{n} + 1) \sqrt{2L\tilde{n}(\tilde{n} + 1)} \frac{J^2_i}{U^2_i} \]
\[\times \left(\langle 0 | b^+_j b_{j'} | e_2 \rangle e^{-iU_j t/\hbar} + \langle e_2 | b^+_j b_{j'} | 0 \rangle e^{iU_j t/\hbar} \right) \]
\[+ 2L\tilde{n}(\tilde{n} + 1) \frac{J^2_i}{U^2_i} \langle e_1 | b^+_j b_{j'} | e_1 \rangle, \]

to second order in \(J_i/U_i \). Further analysis shows that \(\rho_{jj'}(t) = \zeta_{j-j'}(t) \) is a positive-definite pentadiagonal matrix with diagonal-constant coefficients given by \(\zeta_0(t) = n, \zeta_1(t) = 2\tilde{n}(\tilde{n} + 1)(J_i/U_i) \cos (U_f t/\hbar), \zeta_2(t) = \tilde{n}(\tilde{n} + 1)(2\tilde{n} + 1)(J^2_i/U^2_i) (1 + 2 \cos (U_f t/\hbar)) \), and zero otherwise. In the thermodynamic limit, the quasi-momentum dynamics is given by

\[
n_k(t) = \tilde{n} + 4\tilde{n}(\tilde{n} + 1) \frac{J_i}{U_i} \cos \left(\frac{U_f t}{\hbar} \right) \cos (k) \]
\[+ 2\tilde{n}(\tilde{n} + 1)(2\tilde{n} + 1) \frac{J^2_i}{U^2_i} \left[1 + 2 \cos \left(\frac{U_f t}{\hbar} \right) \right] \cos (2k), \]
and the visibility is

\[
\mathcal{V}(t) = \frac{4\tilde{n}(\tilde{n} + 1) \frac{J_i}{U_i} \cos \left(\frac{U_f t}{\hbar} \right)}{\tilde{n} + 2\tilde{n}(\tilde{n} + 1)(2\tilde{n} + 1) \frac{J^2_i}{U^2_i} \left[1 + 2 \cos U_f t/\hbar \right]} \approx 4(\tilde{n} + 1) \frac{J_i}{U_i} \cos \left(\frac{U_f t}{\hbar} \right). \]

We find that it is also useful to define \(\lambda_c(t) \), the largest eigenvalue of the single-particle density matrix at time \(t \). As \(\rho_{jj'}(t) \) is a real symmetric matrix, we can use perturbation theory to find its largest eigenvalue. We define \(\rho(t) = \rho^{(0)}(t) + \delta \rho(t) \) with tri-diagonal matrix \(\rho^{(0)}(t) \) given by the diagonal and sub- and super-diagonal of \(\rho(t) \). The matrix \(\rho^{(0)}(t) \) can be diagonalized analytically and its largest eigenvalue is
\begin{equation}
\lambda_c^{(0)}(t) = \bar{n} + 4\bar{n}(\bar{n} + 1) \frac{J_l}{U_l} \left| \cos \left(\frac{U_f t}{\hbar} \right) \right| \cos \left(\frac{\pi}{L + 1} \right),
\end{equation}

with corresponding eigenvector \vec{v} and elements

\begin{align*}
v_j &= \sqrt{\frac{2}{L + 1}} \sin \left(\frac{\pi j}{L + 1} \right) \\
v_j &= \sqrt{\frac{2}{L + 1}} (-1)^j \sin \left(\frac{\pi j}{L + 1} \right),
\end{align*}

when $U_f t/\hbar \in (-\pi/2 + 2\pi m, \pi/2 + 2\pi m)$, and

\begin{align*}
v_j &= \sqrt{\frac{2}{L + 1}} \sin \left(\frac{\pi j}{L + 1} \right) \\
v_j &= \sqrt{\frac{2}{L + 1}} (-1)^j \sin \left(\frac{\pi j}{L + 1} \right),
\end{align*}

when $U_f t/\hbar \in (\pi/2 + 2\pi m, 3\pi/2 + 2\pi m)$. Here m is any integer and index $j = 1, ..., L$.

Finally, the matrix $\delta \rho(t)$ corrects the largest eigenvalue and we have

\begin{align*}
\lambda_c(t) &= \lambda_c^{(0)}(t) + \vec{v}^T \cdot \delta \rho(t) \cdot \vec{v} \\
&= \bar{n} + 4\bar{n}(\bar{n} + 1) \frac{J_l}{U_l} \left| \cos \left(\frac{U_f t}{\hbar} \right) \right| \\
&\quad + 2\bar{n}(\bar{n} + 1)(2\bar{n} + 1) \frac{J_l^2}{U_l^2} \left[1 + 2 \cos \left(\frac{U_f t}{\hbar} \right) \right],
\end{align*}

to first order in $\delta \rho(t)$.

References

[1] Duchon E, Loh Y L and Trivedi N 2013 (arXiv:1311.0543)
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885–964
[3] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 415 39
[4] Jordens R, Strohmaier N, Gnter K, Moritz H and Esslinger T 2008 Nature 455 7210
[5] Schneider U, Hackermuller L, Will S, Best Th, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520
[6] Gerbier F, Widera A, Foelling S, Mandel O, Gericke T and Bloch I 2005 Phys. Rev. Lett. 95 050404
[7] Gerbier F, Widera A, Foelling S, Mandel O, Gericke T and Bloch I 2005 Phys. Rev. A 72 053606
[8] Bakr W S, Gillen J I, Peng A, Foelling S and Greiner M 2009 Nature 462 74
[9] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Foelling S, Pollet L and Greiner M 2010 Science 329 547
[10] Girvin S M 1984 Phys. Rev. B 29 6012(R)
[11] Endres M et al 2011 Science 334 200
[12] Kennett M P 2013 ISRN Condensed Matter Physics 2013 393616
[13] Dziarmaga J 2010 Adv. Phys. 59 1063
[14] Schutzhold R, Uhrmann M, Xu Y and Fischer U R 2006 Phys. Rev. Lett. 97 200601
[15] Kollath C, Laeuuchli A M and Altman E 2007 Phys. Rev. Lett. 98 180601
[16] Altman E and Auerbach A 2002 Phys. Rev. Lett. 89 250404
[17] Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854
[18] Zurek W H, Dorner U and Zoller P 2005 Phys. Rev. Lett. 95 105701
[19] Chen D, White M, Borries C and DeMarco B 2011 Phys. Rev. Lett. 106 235304
[20] Cheneau M, Barmettler P, Poletti D, Endres M, Schauss P, Fukuhara T, Gross C, Bloch I, Kollath C, Kuhr S et al 2012 Nature 481 484
[21] Barmettler P, Poletti D, Cheneau M and Kollath C 2012 Phys. Rev. A 85 053625
[22] Natu S S and Mueller E J 2013 Phys. Rev. A 87 063616
[23] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 415 51
[24] Sebby-Strabley J, Brown B L, Anderlini M, Lee P J, Phillips W D, Porto J V and Johnson P R 2007 Phys. Rev. Lett. 98 200405
[25] Will S, Best T, Schneider U, Hackermüller L, Lühmann D-S and Bloch I 2010 Nature 465 197
[26] Mahmud K W and Tiesinga E 2013 Phys. Rev. A 88 023602
[27] Will S, Best T, Braun S, Schneider U and Bloch I 2011 Phys. Rev. Lett. 106 115305
[28] Tiesinga E and Johnson P R 2011 Phys. Rev. A 83 063609
[29] Scalettar R T, Batrouni G G and Zimanyi G T 1991 Phys. Rev. Lett. 66 3144
[30] Zakrzewski J and Delande D 2008 AIP Conf. Proc. 1076 292
[31] Carrasquilla J, Mammana S R and Rigol M 2013 Phys. Rev. A 87 043606
[32] Penrose O and Onsager L 1956 Phys. Rev. 104 576
[33] Buchhold M, Bissbort U, Will S and Hofstetter W 2011 Phys. Rev. A 84 023631
[34] Freericks J K and Monien H 1996 Phys. Rev. B 53 2691
[35] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405–66
[36] Vidal G 2007 Phys. Rev. Lett. 98 070201
[37] Fischer U R and Xiong B 2012 Europhys. Lett. 99 66003
[38] Lee P A and Wen X-G 2006 Rev. Mod. Phys. 78 17
[39] Albus A, Illuminati F and Eisert J 2003 Phys. Rev. A 68 023606
[40] Anders P, Werner P, Troyer M, Sigrist M and Pollet L 2012 Phys. Rev. Lett. 109 206401
[41] Altman E, Demler E and Rosch A 2012 Phys. Rev. Lett. 109 235304
[42] Johnson P R, Tiesinga E, Porto J V and Williams C J 2009 New J. Phys. 11 093022
[43] Johnson P R, Blume D, Yin X Y, Flynn W F and Tiesinga E 2012 New J. Phys. 14 053037
[44] Mahmud K W, Jiang L, Tiesinga E and Johnson P R 2014 Phys. Rev. A 89 023606