Novel and accurate solitary wave solutions of the conformable fractional nonlinear Schrödinger equation

Dexu Zhao¹, Dianchen Lu¹, Samir A Salama², Piyaphong Yongphet³,⁴ and Mostafa MA Khater¹,⁵

Abstract
In this paper, the Khater II analytical technique is used to examine novel soliton structures for the fractional nonlinear third-order Schrödinger (3-FNLS) problem. The 3-FNLS equation explains the dynamical behavior of a system’s quantum aspects and ultra-short optical fiber pulses. Additionally, it determines the wave function of a quantum mechanical system in which atomic particles behave similarly to waves. For example, electrons, like light waves, exhibit diffraction patterns when passing through a double slit. As a result, it was fair to suppose that a wave equation could adequately describe atomic particle behavior. The correctness of the solutions is determined by comparing the analytical answers obtained with the numerical solutions and determining the absolute error. The trigonometric Quintic B-spline numerical (TQBS) technique is used based on the computed required criteria. Analytical and numerical solutions are represented in a variety of graphs. The strength and efficacy of the approaches used are evaluated.

Keywords
Quantum mechanical system, Computational and numerical solutions, Soliton waves, Ultra-short optical fiber

AMS classification: 35J10; 35D30; 35R10; 65N15; 35Q51

Introduction
Numerous academics in diverse fields, including engineering and applied sciences, have recently concentrated their efforts on the physical interpretation of optical fibers.¹ Organic artificial materials used in the manufacturing of optical fibers include the well-known silica (drawing glass) and polymers with a thickness less than a human hair.² This procedure transforms the fiber into a translucent one with increased flexibility.³ This kind of fiber is often used to transfer light down a long rope of optical fiber, which is a critical step in fiber-optic communications.³ This fiber transfers data over a greater distance and at a higher bandwidth than electrical wires.³ Transmission procedures occur without a single signal being lost or with far less signal loss than metal lines do because fibers are resistant to electromagnetic interference.⁶ Illumination and imaging are regarded to be the second critical function of optical fiber.⁷ Where this occurs, the material is often wrapped in bundles to bring light into, or pictures out in small areas.⁸ Fiber scopes, fiber optic sensors, and fiber lasers are all examples of this approach.⁹

¹Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang, China
²Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia
³Research and Development Institute, Valaya Alongkorn Rajabhat University under The Royal Patronage, Pathum Thani, Thailand
⁴School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China
⁵Department of Basic Science, Obour High Institute for Engineering and Technology, Cairo, Egypt

Corresponding author:
Mostafa MA Khater, Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang, 212013, China; and Department of Basic Science, Obour High Institute for Engineering and Technology, Cairo, Egypt.

Email: mostafa.khater2024@yahoo.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Applications

Here, the analytical and approximate solutions of the conformable fractional NLS equation are investigated by employing the suggested schemes. This study’s goal is to construct novel solutions’ structures and check their accuracy by calculating the absolute value of error between analytical and approximate solutions (Figures 1–10).
Figure 1. Graphical representations of equation (8) for the real, imaginary, and absolute values of the $Q_{11}(x,t)$.

Figure 2. Graphical representations of equation (9) for the real, imaginary, and absolute values of the $Q_{12}(x,t)$.
Figure 3. Graphical representations of equation (10) for the real, imaginary, and absolute values of the $Q_{II,1}(x, t)$

Figure 4. Graphical representations of equation (11) for the real, imaginary, and absolute values of the $Q_{II,2}(x, t)$
Figure 5. Graphical representations of equation (12) for the real, imaginary, and absolute values of the $Q_{III,1}(x,t)$

Figure 6. Graphical representations of equation (13) for the real, imaginary, and absolute values of the $Q_{III,2}(x,t)$
Applying the Khater II method to the considered model for investigating the soliton wave solutions, gets the following values of the above-shown parameters: Set I

\[
a_0 \rightarrow 0, a_1 \rightarrow \frac{\sqrt{6}q_1}{\sqrt{-l_1 - 2l_3}}, b_1 \rightarrow 0, p_1 \rightarrow i\frac{\sqrt{q_2 - 2\delta q_1}}{\sqrt{3}q_1}.
\]

(5)
set II

\[a_0 \rightarrow 0, \quad a_1 \rightarrow \frac{\sqrt{ab_1}}{\sqrt{\delta}}, \quad l_i \rightarrow \frac{-4ab_1^2l_3 - 3\delta q_1^2}{2ab_1^2}, \quad p_1 \rightarrow \frac{\sqrt{\delta q_1^2 - 2q_2^2}}{\sqrt{6\sqrt{q_1}}}. \]

(6)

set III

\[a_0 \rightarrow 0, \quad a_1 \rightarrow 0, \quad l_i \rightarrow -\frac{2(ab_1^2l_3 + 3\delta q_1^2)}{ab_1^2}, \quad p_1 \rightarrow \frac{\sqrt{-\delta q_1^2 - q_2^2}}{\sqrt{3\sqrt{q_1}}}. \]

(7)

thus, the traveling wave solutions of the conformable fractional nonlinear NLS equation are structured as follows

For \(\delta \neq 0 \), we obtain

\[Q_{i,1}(x, t) = \frac{-\sqrt{6\sqrt{\delta q_1}e^{(p_1^2 + p_1^2 + p_1)l_3}}}{\sqrt{-l_1 - 2l_3}} \tan \left(\sqrt{\delta} \left(q_1x - \frac{q_2^2}{\gamma} \right) \right), \]

(8)
\[\mathcal{Q}_{I,1}(x,t) = \frac{\sqrt{6} \sqrt{\delta q_1 e^{ip_2 t + p_3 x + p_4}}}{\sqrt{-l_1 - 2l_2}} \cot \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right), \]

(9)

\[\mathcal{Q}_{II,1}(x,t) = b_1 e^{ip_2 t + p_3 x + p_4} \left(\sec \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right) - \sqrt{\alpha} \tan \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right) \right), \]

(10)

\[\mathcal{Q}_{II,2}(x,t) = b_1 e^{ip_2 t + p_3 x + p_4} \left(\sqrt{\alpha} \cot \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right) + \csc \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right) \right), \]

(11)

\[\mathcal{Q}_{III,1}(x,t) = b_1 e^{ip_2 t + p_3 x + p_4} \sec \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right), \]

(12)

\[\mathcal{Q}_{III,2}(x,t) = b_1 e^{ip_2 t + p_3 x + p_4} \csc \left(\sqrt{\delta} \left(q_1 x - \frac{q_2 t}{\gamma} \right) \right). \]

(13)
Approximate solutions

Investigating the above-obtained solutions’ accuracy by calculating the absolute error between analytical and numerical solutions. Checking the following solutions equations (8), (10), (12) when \(\delta = -1, l_1 = -7, l_3 = 2, p_1 = 2, p_3 = 4, p_2 = 6, q_1 = -1, q_2 = 3 & b_1 = 0.5, \delta = -4, q_1 = 0.1, q_2 = -0.2 & b_1 = 2, \delta = -9, q_1 = 6, q_2 = 4 \) to evaluate the initial and boundary conditions of the studied model, gets

\[
Q(x,t) = \begin{cases}
\sqrt{2}\tanh(3t + x), \\
n(\tanh(2(0.2t + 0.1x)) + \sech(2(0.2t + 0.1x))), \\
3\sech(4t - 2x)
\end{cases}
\]

(14)

using these conditions in the suggested numerical scheme’s framework demonstrates the matching between analytical and approximate solutions through the following Tables 1–3.

Value of \(x \)	Computational	Numerical	Error
0	0.5	0.5	0
0.03125	0.503115193844475	0.501937305889842	0.00117788795463303
0.0625	0.50621661454248	0.503257774697122	0.00295283984535843
0.09375	0.509286023769424	0.504758545778733	0.00524747799969053
0.125	0.512341187163975	0.506233282790194	0.00610790437383153
0.15625	0.515375874399654	0.507744877966136	0.00763099643351772
0.1875	0.518389859254452	0.509284219977527	0.00910563927692487
0.21875	0.521382919678445	0.510861728140095	0.0105211915383552
0.25	0.524354837859385	0.512482845660283	0.0118719281991012
0.28125	0.527305400286126	0.514154650904803	0.0131507493812224
0.3125	0.530334397810024	0.515884127303917	0.0143502705051067
0.34375	0.533141625704094	0.517687673029703	0.0154629526743865
0.375	0.536026883719795	0.519546013571158	0.0164808701481863
0.40625	0.538889976142713	0.521494278349788	0.0173956797922497
0.4375	0.5417307118432	0.523532037888795	0.0181986740540151
0.46875	0.544548904327377	0.525668356009301	0.0188805483190754
0.5	0.547344371789091	0.527912845019664	0.0194315267694269
0.53125	0.550116937456142	0.530275724958807	0.01984121286053
0.5625	0.552866428090777	0.532767889999535	0.0200985380932416
0.59375	0.555592667713748	0.53540981167391	0.0201919658526351
0.625	0.558295521623361	0.538187466332522	0.0201080552998389
0.65625	0.560974803814055	0.541140730888795	0.0198340730331669
0.6875	0.56330370869359	0.544275170785648	0.019355200837102
0.71875	0.566262074907929	0.547606325171496	0.0186557497364332
0.75	0.568869773029139	0.551150920528514	0.0177188525006257
0.78125	0.571453327339189	0.554927303141453	0.016526024197736
0.8125	0.574012604974758	0.558954502662785	0.0150581021311973
0.84375	0.576547487124174	0.563256483612032	0.0133905945121422
0.875	0.579057824046117	0.567847150349095	0.0112106736070223
0.90625	0.581543525085849	0.572787237420961	0.0087562876648867
0.9375	0.584004468688968	0.57797327044526	0.0060311914444221
0.96875	0.586440547412716	0.583526785320522	0.00251476209219426
1	0.588851658934815	0.588851658934815	0.0
Results and discussion

This part explores the paper’s findings and innovation by exhibiting the benefits of the analytical and numerical techniques utilized, the acquired results, and their comparison to previously published solutions, ultimately proving the correctness of the found solutions. Finally, we will analyze the physical meaning of the numbers presented. Mostafa M. A. Khater discovered the Khater II technique for the first time. He created this extended technique in order to get innovative structures for explicit wave solutions to a class of nonlinear evolution equations. The efficacy and potency of this technique have been established. The TQBS scheme has been employed to find the numerical solutions of the investigated model based on the obtained solutions (8), (10), (12). The analytical solutions have been explained through some different graphs (1, 2, 3, 4, 5, 6). While the matching between both solutions is explained through some distinct plots (7, 8, 9). Comparing our solutions to show the solutions’ accuracy leads to verify our obtained solutions and superiority of equation (8) over other constructed solutions.

Conclusion

The 3-FNLS model was effectively studied in this research work using the Khater II approach. Numerous separate precise solutions for moving and isolated waves have been discovered. These solutions have been illustrated using a variety of drawings that demonstrate additional and unexpected aspects of the fractional models under consideration. Our acquired answers have been discussed in terms of their correctness and uniqueness. Additionally, the potency and usefulness of the approaches utilized are discussed and validated.

Acknowledgment

We greatly thank Taif University for providing fund for this work through Taif University Researchers Supporting Project number (TURSP-2020/52), Taif University, Taif, Saudi Arabia.

Authors’ contribution

Dexu Zhao and Mostafa Khater have revised the conceptualization, data curation, and methodology. Dianchen Lu and Mostafa Khater have revised Data curation, Investigation, and Software. Samir Salama and Piayphong Yongphe have revised the physical meaning of the obtained solutions and raised the given graphs resolutions. All authors have read and agreed to the published version of the manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We greatly thank Taif University for providing fund for this work through Taif University Researchers Supporting Project number (TURSP-2020/52), Taif University, Taif, Saudi Arabia.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The used code of this study is available from the corresponding author upon reasonable request.

ORCID iD

Mostafa MA Khater https://orcid.org/0000-0001-8466-168X

References

1. Sglavo VM, Pugliese D, Sartori F, et al. Mechanical properties of resorbable calcium-phosphate glass optical fiber and capillaries. J Alloys Compd 2019; 778: 410–417.
2. Dragic PD, Cavillon M, Ballato A, et al. A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. material additivity models and basic glass properties. Int J Appl Glass Sci 2018; 9(2): 278–287.
3. Rajan G, Shouha P, Ellakwa A, et al. Evaluation of the physical properties of dental resin composites using optical fiber sensing technology. *Dental Mat* 2016; 32(9): 1113–1123.

4. Ghazanfari A, Li W, Leu MC, et al. Advanced ceramic components with embedded sapphire optical fiber sensors for high temperature applications. *Mat Des* 2016; 112: 197–206.

5. Hudnut AW, Babaei B, Liu S, et al. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry. *Biomed Opt Express* 2017; 8(10): 4663–4670.

6. Ito K, Katagiri T, and Matsuura Y. Analysis of transmission properties of terahertz hollow-core optical fiber by using time-domain spectroscopy and application for remote spectroscopy. *JOSA B* 2017; 34(1): 60–65.

7. Barozzi M, Manicardi A, Vannucci A, et al. Optical fiber sensors for label-free DNA detection. *J Lightwave Technol* 2016; 35(16): 3461–3472.

8. Zhao Y, Li X-g, Zhou X, et al. Review on the graphene based optical fiber chemical and biological sensors. *Sens Actuators B* 2016; 231: 324–340.

9. Jia B, Lu P, Zhang J, et al. Influence of ring structures on optical properties of trivalent bismuth in bi-doped silica optical fiber. *J Cluster Sci* 2018; 29(5): 861–865.

10. Coelho L, Viegas D, Santos JL, et al. Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties. *Sens Actuators B* 2016; 223: 45–51.

11. Khazaeinezhad R, Kassani SH, Paulson B, et al. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser. *Sci Rep* 2017; 7: 41480.

12. Leal-Junior A, Frizera A, Marques C, et al. Mechanical properties characterization of polymethyl methacrylate polymer optical fibers after thermal and chemical treatments. *Opt Fiber Technol* 2018; 43: 106–111.

13. Azad S, Sadeghi E, Parvizi R, et al. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter. *Opt Laser Technol* 2017; 90: 96–101.

14. Marques C, Webb D, and Andre P. Polymer optical fiber sensors in human life safety. *Opt Fiber Technol* 2017; 36: 144–154.

15. Sun S, Jia B, Hu H, et al. Geometric and optical properties of cluster model of yt-doped silica optical fiber. *J Cluster Sci* 2019; 30(5): 1205–1210.

16. Attia RA, Lu D, Ak T, et al. Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-kerr nonlinear term via modified khater method. *Mod Phys Lett B* 2020; 34(05): 2050044.

17. Rezazadeh H, Korkmaz A, Khater MM, et al. New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method. *Mod Phys Lett B* 2019; 33(28): 1950338.

18. Khater M, Attia RA, and Lu D. Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. *The Euro Phys J Plus* 2021; 136(10): 1–19.

19. Khater M, Akinryemi L, Elagan SK, et al. Bright–dark soliton waves’ dynamics in pseudo spherical surfaces through the nonlinear Kaup–Kupershmidt equation. *Symmetry* 2021; 13(6): 963.

20. Khater M, Elagan S, El-Shorbagy M, et al. Abundant kink novel accurate analytical and semi-analytical solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. *Commun Theor Phys* 2021.

21. Li W, Akinryemi L, Lu D, et al. Abundant traveling wave and numerical solutions of weakly dispersive long waves model. *Symmetry* 2021; 13(6): 1085.

22. Khater MM, Ahmed AE-S, Alfalqi S, et al. Diverse novel computational wave solutions of the time fractional Kolmogorov–Petrovskii-Piskunov and the (2+1)-dimensional Zoomeron equations. *Physica Scripta* 2021; 96(7): 075207.

23. Khater MM and Lu D. Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation. *Mod Phys Lett B* 2021; 35(19): 2150324.

24. Khater M and Alabdali AM. Multiple novels and accurate traveling wave and numerical solutions of the (2+1) dimensional Fisher–Kolmogorov-Petrovskii-Piskunov equation. *Mathematics* 2021; 9(12): 1440.

25. Lei Z-Q, Liu J-G, Rezazadeh H, et al. Research of lump dynamics on the (3+1)-dimensional b-type Kadomtsev–Petviashvili–Boussinesq equation. *Mod Phys Lett B* 2021; 35(31): 2150474.

26. Khater MM. New traveling solutions of the fractional nonlinear KdV and ZKBBM equations with ABR fractional operator. *Int J Mod Phys B* 2021; 35(22): 2150232.

27. Akram G and Mahak N. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with kerr law nonlinearity. *The Euro Phys J Plus* 2018; 133(6): 212.

28. Esfandi M. Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. *Appl Math Comput* 2016; 285: 141–148.

29. Hosseini K, Kumar D, Kaplan M, et al. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. *Commun Theor Phys* 2017; 68(6): 761.
30. Kudryashov NA. Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic nonlinearity. *Optik* 2019; 188: 27–35.
31. Srivastava HM, Günerhan H, and Ghanbari B. Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. *Math Met Appl Sci* 2019; 42(18): 7210–7221.
32. Khater MM, Abdel-Aty A-H, Lu D, et al. Effective computational schemes for a mathematical model of relativistic electrons arising in the laser thermonuclear fusion. Advances in Difference Equations (Submitted) 2020, 2020.
33. Khater MM, Shaalan M, Attia RA, et al. Novel computational solutions of the fractional biological population (BP) model through the Atangana - Baleanu derivative operator. *Physica Scripta* 2020; 95(5): 055206.
34. Seadawy AR, Arshad M, and Lu D. The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrödinger equation and its applications. *Waves in Random Complex Media* 2020. In press.
35. Khater MM and Salama SA. Novel analytical simulations of the complex nonlinear Davey–Stewartson equations in the gravity–capillarity surface wave packets. *J Ocean Eng Sci* 2021. In press.