Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System with Confidentiality Guarantees

Mohammad Javad Amiri¹, Boon Thau Loo¹, Divyakant Agrawal², Amr El Abbadi²

¹University of Pennsylvania, ²University of California Santa Barbara
COVID-19 Vaccine Supply Chain

Requirements:

R1. Confidential collaborations across enterprises
R2. Data consistency across collaboration workflows
R3. Confidential data leakage prevention
R4. Scaling multi-shard enterprises
R1. Confidential Collaborations across Enterprises

• A hierarchical data model consisting of a set of data collections

• Operational primitives
 • Write: transactions of d_X write only on the records of d_X
 • Read: transactions of d_X can read the records of d_Y if d_X is order-dependent on d_Y
 • d_X is order-dependent of d_Y if $X \subseteq Y$
Qanaat Blockchain Ledger

• Guarantees two properties
 • Local consistency: enforces a total order on the transactions of each data collection
 • Global consistency: determines the transaction order of d_X considering the state of every data collection d_Y that d_X is order-dependent on ($X \subseteq Y$)

• Transaction ID = $\langle \alpha, \gamma \rangle$
 • local part $\alpha = [X:n]$
 • Optionally, a global part γ:
 • for every order-dependent data collection d_Y, add $Y:m$
R2. Data Consistency across Collaboration Workflows

- An enterprise might be involved in multiple collaboration workflows (instances of Qanaat)
 - A supplier that provides raw materials for both Pfizer and Moderna vaccines
- Qannat creates a single data collection for each enterprise
R3. Confidential Data Leakage Prevention

- Malicious nodes can violate data confidentiality
 - leaking requests, replies, or data stored and processed
- Privacy firewall mechanism
 - Separates ordering node from execution nodes
 - $3f + 1$ ordering nodes and $2g + 1$ execution nodes
 - Assuming f faulty ordering and g faulty execution nodes
 - Adds a privacy firewall in between
 - Consists of a set of $h + 1$ rows of $h + 1$ filters (h faulty node)
 - Network configuration physically restricts communication paths between ordering nodes, filters, and execution nodes
 - A malicious node can either access confidential data or communicate freely with clients but not both

Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
R4. Scaling Multi-Shard Enterprises

• The enterprise data is partitioned into different shards: D_{A1}, D_{A2} and D_{A3}
• Each shard is replicated on a cluster of execution nodes: D_{A1} on a_{11}, a_{12}, a_{13} and a_{14}
• Each cluster maintains a different ledger
• Enterprises use the same sharding schema for each shared data collection

Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
Transaction Processing

• Intra-shard intra-enterprise: \(A_1 \)
• Intra-shard cross-enterprise: \(C_3, D_3 \)
 • On a shared data collection shard \(D_{CD3} \)
• Cross-shard intra-enterprise: \(A_2, A_3 \)
• Cross-shard cross-enterprise: \(C_1, D_1, C_2, D_2 \)
 • Across two shared data collection shards \(D_{CD1} \) and \(D_{CD2} \)
Consensus Protocols

• Intra-shard intra-enterprise consensus
 • Crash failure: **Paxos**
 • Byzantine failure: **PBFT**

• Cross-cluster consensus
 • Coordinator-based
 • Flattened

Qanaat: A Scalable Multi-Enterprise Permissioned Blockchain System
Coordinator-based Consensus Protocol

- Intra-shard cross-enterprise
- Cross-shard intra-enterprise
- Cross-shard cross-enterprise
Flattened Consensus Protocol

- Intra-shard cross-enterprise
- Cross-shard intra-enterprise
- Cross-shard cross-enterprise
Experimental Settings

• Platform: Amazon EC2
• Measuring performance
 • Throughput & Latency
• Systems:
 • Hyperledger Fabric
 • Fabric++
 • FastFabric
 • Qanaat: Crd-C, Crd-B, Crd-B(PF), Flt-C, Flt-B, Flt-B(PF)
Experimental Results

10%, 50%, and 90% Intra-shard cross-enterprise

10%, 50%, and 90% cross-shard intra-enterprise

10%, 50%, and 90% cross-shard cross-enterprise

Scalability over spatial domains
Qanaat Conclusion

- A permissioned blockchain system to support the scalability and confidentiality requirements of multi-enterprise applications.
- Presents a hierarchical data model consisting of a set of data collections for each collaboration workflow to support confidential collaboration.
- To prevent confidential data leakage, utilizes a privacy firewall mechanism.
- To support scalability, each enterprise partitions its data into different shards.
- Presents a suite of consensus protocols is presented to process different types of intra-shard and cross-shard transactions within and across enterprises.
Questions?

Qanaat is a scalable underground network consisting of private channels to transport water from an aquifer to the surface.