Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SARS-CoV-2 and Cancer

LBA8 Vaccination against SARS-CoV-2 in patients receiving chemotherapy, immunotherapy, or chemo-immunotherapy for solid tumors

S. Oosting1, A.A.M. Van der Veldt1, C.H. GeurtsvanKessel2, R.S.N. Fehrmann3, R.S. van Binnendijk4, A-M.C. Dingemans6, E.F.F. Smit5, T.J.N. Hiltermann8, G. den Hartog5, M. Jalving1, T. Westphal9, A. Battacharya1, M. van der Heiden10, C.U. Blank11, M.P. Koopmans3, C.A. van Els9, N.Y. Rots12, D. van Baarle13, J.B.A.G. Haanen14, E.G. de Vries1

1Medical Oncology Department, UMCG - University Medical Center Groningen, Groningen, Netherlands; 2Medical Oncology, Erasmus University Medical Center, Rotterdam, Netherlands; 3Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; 4Department of Medical Oncology, University Hospital Groningen (UMCG), Groningen, Netherlands; 5Centrum voor Immunologie van Infectieziekten en Vectors, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands; 6Medical Oncology Department, Erasmus MC - University Medical Center, Rotterdam, Netherlands; 7Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands; 8Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; 9Clinical Trials, IKNL, Utrecht, Netherlands; 10Medical Microbiology and Infection Prevention, UMCG - University Medical Center Groningen, Groningen, Netherlands; 11Medical Oncology Dept, NKI-AVL - Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; 12Infectious Disease Control, RIVM: Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, Netherlands; 13Pulmonology Department, Erasmus MC - University Medical Center, Rotterdam, Netherlands; 14Department of Medical Oncology, University Hospital Groningen (UMCG), Groningen, Netherlands; 15Medical Oncology Dept, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, Netherlands

Background: Patients with cancer have an increased risk of complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Vaccination is recommended, but the impact of chemotherapy and immunotherapy on immunogenicity and safety is still unclear.

Methods: This prospective multicenter non-inferiority trial comprises four cohorts: individuals without cancer (A) and patients with solid tumors who were treated with chemotherapy (C) or chemo-immunotherapy (D). Participants received two mRNA-1273 vaccinations 28 days apart. The primary endpoint was SARS-CoV-2 Spike S1-specific IgG serum antibody response, defined as >10 binding antibody units (BAU)/mL 28 days after the second vaccination. We also assessed the virus neutralizing capacity of these antibodies, SARS-CoV-2 Spike-specific interferon-gamma T cell response, and adverse events.

Results: Of the 791 participants enrolled, 743 were evaluable for the primary endpoint in cohort A (n=240), B (n=131), C (n=229) and D (n=143). A SARS-CoV-2-binding antibody response was found in 100%, 99.3%, 97.4%, and 100% of the participants in cohorts A, B, C, and D, respectively. To discriminate between suboptimal and adequate responders, we defined a cut-off level at 300 BAU/mL, based on neutralizing capacity. The antibody response was considered adequate after the first vaccination in 66.0%, 37.1%, 32.5%, and 33.3% of the participants in cohorts A, B, C, and D, respectively. This raised 28 days after the second vaccination to 99.6%, 93.1%, 83.8%, and 88.8% in cohorts A, B, C, and D. Spike-specific T cell responses were detected in 64.7% of suboptimal and non-responders. No new safety signals were observed.

Conclusions: mRNA-1273 vaccination is safe in the patient populations studied. For each cohort, the proportion of patients with a SARS-CoV-2-binding antibody response after two vaccinations is non-inferior compared to individuals without cancer. However, a significant minority lacks an adequate response. Most patients have an antibody concentration increase after the second vaccination. Therefore, an additional booster may turn inadequate into adequate responders.

Clinical trial identification: NCT04715438.

Legal entity responsible for the study: University Medical Center Groningen, the Netherlands.

Funding: ZonMw, The Netherlands Organisation for Health Research and Development.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2021.08.2140

LBA60 Prospective data of >20,000 hospitalised patients with cancer and COVID-19 derived from the International Severe Acute Respiratory and Emerging Infections Consortium WHO Coronavirus Clinical Characterisation Consortium: CCP-CANCER UK

C. Palmieri1, L. Turtle1, T. Drake1, E. Harrison1, A. Docherty1, B. Greenhalf1, P. Opendash1, J.K. Baillie2, M.M.G. Semple3

1Cancer Medicine Department, NHS Liverpool Clinical Laboratories - Royal Liverpool University Hospital NHS Trust, Liverpool, UK; 2Tropical Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; 3Dept of Clinical Surgery, University of Edinburgh, Edinburgh, UK; 4Usher Institute, University of Edinburgh, Edinburgh, UK; 5Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK; 6National Heart and Lung Division, Imperial College London, London, UK; 7Roslin Institute, University of Edinburgh, Edinburgh, UK; 8NIHR Health Protection Unit in Emerging and Zoonotic Infections and Centre for Excellence in Infectious Disease Research, University of Liverpool, Liverpool, UK

Background: The International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol (CCP) UK has collected complete data from 195,000 COVID-19 patients in the UK as of 12th August 2021. Within this consortium CCP-CANCER-UK has been established to study the effects of COVID-19 in hospitalised patients with cancer.

Methods: Patients admitted with proven SARS-CoV-2 infection and registered on CCP-UK from 17th January onwards in 258 healthcare facilities in the UK. Case report forms were used to identify patients with a history of malignant neoplasm or on active treatment for cancer. Analysis is restricted to outcome of patients who were admitted >14 days before data extraction. Patients with a history of cancer and on active treatments were compared to those patients with no history of cancer.

Results: As of 12th August 2021 of the 195,492 participants 15,250 (7.8%) had a history of cancer (Hx Ca) and 5,357 (2.7%) were on active cancer treatment (Act Tx).

Patients with cancer were less likely to receive critical care: Hx Ca adjusted odds ratio (aOR) 0.83, 95%CI 0.72 to 0.95, p < 0.001. Act Tx aHR 1.57, 95%CI 1.48 to 1.66, p < 0.001. In hospital mortality 23.6% no cancer. 38.9% Hx Ca and 37.6% (aHR Hx Ca: 1.18, 95% CI 1.10 to 1.27, p < 0.001, Act Tx: aHR 1.57, 95%CI 1.48 to 1.66, p < 0.001).

Younger cancer patients, particularly on Act Tx, were more likely to die than similar aged no Ca patients (Act Tx < 50 yrs aHR 5.22, 95% CI 4.19 to 6.52, p < 0.001).

Conclusions: Europe’s largest prospective hospitalised COVID-19 dataset continues to demonstrate that cancer is independently associated with mortality with younger patients remaining at increased relative risk. Cancer patients face unique risks from the SARS-CoV-2 pandemic. Ongoing vaccination/mitigation studies need to recruit cancer patients to understand the degree of protection afforded in this at risk population.

Clinical trial identification: ISRCTN66726260.

Legal entity responsible for the study: University of Oxford.

Funding: Has not received any funding.

Disclosure: C. Palmieri: Financial Interests, Personal, Invited Speaker, Advisory boards, conference attendance and research funding: Pfizer, Roche, Eis Lilly, Novartis, Daiichi Sankyo, Seattle Genetics. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2021.08.2141