Universal S-matrix correlations for complex scattering of many-body wavepackets: theory, simulation and experiment

Andreas Bereczuk, 1 Barbara Dietz, 2 Jiongning Che, 2 Jack Kuipers, 3 Juan-Diego Urbina, 1 and Klaus Richter 1

1 Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
2 School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 Gansu, China
3 Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland

We present an in-depth study of the universal correlations of scattering-matrix entries required in the framework of non-stationary many-body scattering where the incoming states are localized wavepackets. Contrary to the stationary case the emergence of universal signatures of chaotic dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function based simulations and numerical averaging over random-matrix ensembles to calculate such correlations and compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations show that the universality of the correlators survives the extreme limit of few open channels relevant for electron quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large class of semiclassical diagrams.

I. INTRODUCTION

Two major achievements in the field of quantum transport are the realization that non-interacting stationary transport can be described in terms of single-particle scattering, the Landauer-Büttiker approach [1-2], and that scattering through potentials supporting classical chaotic dynamics imprints universal signatures to quantum mechanical observables alluded to in the Bohigas-Giannoni-Schmidt conjecture [3-6]. The combination of these two ideas allows for an extremely powerful description of interference phenomena in the conductance properties of chaotic and weakly disordered quantum systems that focus on the emergence of universal, robust and observable manifestations of quantum coherence [7-8]. The key object of study is then the single-particle, energy-dependent scattering (S) - matrix giving the amplitudes of the process where a particle with energy E is injected through the incoming channels and scattered into the outgoing ones. It is the dependence of the S-matrix on the energy of the incoming flux $S(E)$ and the statistical correlations among its entries, that in turn are directly connected with observables like conductance, shot noise, etc. [6].

During the last decades, two complementary and rigorously equivalent analytical approaches to describe these universal effects have emerged. On one side, one has the machinery of Random Matrix Theory (RMT) in its two possible formulations, the so-called Heidelberg approach where the internal dynamics of the chaotic scattering potential is modelled independently of the random couplings to the leads [9], and the Circular Ensembles approach where one directly constructs random S matrices constrained to respect the fundamental properties of unitarity and the microscopic symmetries of the system [10-11]. On the other side, we have the semiclassical approximation based on sums over interfering amplitudes associated to classical trajectories joining the incoming and outgoing modes [12-14].

During the last years, as the interest in many-body interference exploded, driven by the realization that non-interacting scattering of bosonic states with large number of particles is a promising candidate to show quantum supremacy [15-17], the RMT/semiclassical approach to single-particle complex scattering entered the arena of many-body scattering [18-19]. The relevant observable in this context is the distribution of scattered particles as measured in the outgoing channels when the incoming state is a localized wavepacket [18-19]. In such scenario we depart from the stationary scattering at fixed energy and the microscopic input of the theory requires connecting the S-matrix at different energies.

In this article we present an extensive study of the S-matrix cross-correlations at different energies required within the study of universal features on complex scattering of many-body wavepackets. Our study covers all aspects of the problem, by presenting the RMT description using large ensembles of random matrices, the semiclassical approach by summing over a very large number of diagrams made of interfering classical paths, simulations based on a numerically exact tight-binding approach, all showing excellent agreement with experimental measurements in microwave graphs.

A major motivation of our work is the recent interest in the universal properties of many-body scattering in systems of non-interacting, identical particles, and specially their mesoscopic effects within the arena of electron quantum optics. The combination of these two physical regimes comes with two new features. First, the focus on a particular set of S-matrix correlations with an energy dependence and a combination of entry indices that has not been addressed before, while it is very characteristic of the many-body context. Second, the need to
push the asymptotic limit of large number \(N \gg 1 \) of open channels, so typical of both RMT and semiclassical treatments, into the regime of \(N = O(1) \). We observe that, in fact, the \(1/N \) expansion efficiently captures the dependence of the correlators on the control parameters in most cases, giving full confidence to the delicate semiclassical treatment. Remarkably, we also find that the cases where the semiclassical expansion depends on large cancellation effects that drastically slow down the speed of convergence, actually are also the cases where the signal/noise ratio of the experimental signal is the worst within the whole set of measurements.

The paper is organized as follows: First we link the four-point S-matrix correlations of interest to the non-stationary many-body wave packet scattering in Section II. In Section III the semiclassical approach for the S-matrix is introduced (Subsection IIIA) and followed by a possible application of that approach: an expansion of a two-point S-matrix correlator to first order in \(1/N \) called the diagonal approximation. The principle proceeding to evaluate the energy dependent four-point correlators semiclassically is explained in Subsection IIIB. In Section IV, we link quantum chaos to quantum graphs and the experimentally realized microwave setup (IVA), which is described in IVB. The two numerical approaches in use, the tight-binding method and the Heidelberg approach, are depicted in Section V. The resulting energy dependent four-point correlator data of the experiment, numerical approaches and semiclassical analysis are condensed in Section VI. Finally, the conclusions are drawn in VII.

II. S-MATRIX CORRELATIONS FOR THE SCATTERING OF MANY-BODY WAVEPACKETS

Within the standard approach to mesoscopic many-body scattering, described in Fig. I, incoming particles \((i=1,\ldots,n) \) with positions \((x_i,y_i) \) occupy single-particle states represented by normalized wavepackets

\[
\phi_i(x_i, y_i) \propto e^{-i(k_{ch}(E_i) + z_i)}X_{n}(x_i - z_i)\chi_{a_i}(y_i)
\]

marking a difference with the stationary picture where one considers the limit of incoming states that are fully delocalized in position and approach asymptotically eigenstates of the momentum.

Along the longitudinal direction, the single-particle wavepacket \(X_n(x_i - z_i) \) occupied by the \(i \)th particle is described by three parameters. First, its variance \(s_i^2 \), second its mean initial position \(z_i \gg s_i \), and third the mean momentum \(h k_{ch} = m v_i > 0 \) with which it approaches the cavity. For the corresponding transverse wavefunction in the incoming channel \(a_i \in \{a^{(1)},\ldots,a^{(N/2)}\} \) we have the eigenstate of the transversal confinement, denoted by \(\chi_{a_i}(y_i) \) with energy \(E_{a_i} \).

For simplicity we assume that, except for their relative positions parametrized by \(z_{ij} = z_i - z_j \), the wavepackets and initial transversal modes are identical: \(s_i = s \), \(h k_{ch} = h k = m v \), and \(E_{a_i} = E_{ch} \) for all \(i \). It is important to remark that, however, a more general treatment is possible.

The key observable we are interested in is the joint probability to find the \(n \) particles, entering the cavity through channels \(b = (b_1, \ldots, b_n) \) with energies \(E = (E_1, \ldots, E_n) \), in channels \(a = (a_1, \ldots, a_n) \). Following the standard theory, this probability is given in terms of the \(E \)-dependent \(n \)-particle amplitude \([20,21]\)

\[
A_{a,b}(E) = \frac{1}{N!} \int e^{-i(k_{ch}(E) + z_i)}X(k - k_{ch}(E_i))S_{b,a}(E_i)\mathrm{d}x
\]

as

\[
P_{a,b}(E_{ch}) = |A_{a,b}(E)|^2,
\]

where Eq. (2) formally defines the single-particle S-matrix \(S_{b,a}(E) \) connecting the incoming and outgoing channels \(a \) and \(b \) at energy \(E \). We also have \(h k_{ch}(E) = m v_{ch}(E) = \sqrt{2 m E - E_{ch}} \) and \(X(k) = (1/\sqrt{2\pi}) \int e^{-i k x}X(x)\mathrm{d}x \).

If the particles are identical, quantum indistinguishability demands their joint state to be (anti-)symmetrized \([22]\). Denoting with \(\epsilon = -1 \) (\(+1\)) for fermions (bosons), a symmetrized amplitude is obtained by summing over the \(n! \) elements \(P \) of the permutation group,

\[
A^{(\epsilon)}_{a,b}(E) = \sum_{P} e^{\epsilon P}A_{a,P b}(P E)
\]

to get a many-body transition probability that is naturally separated into an incoherent contribution

\[
P_{a,b}^{\text{inc}}(E) = \sum_{P} |A_{a,P b}(P E)|^2,
\]

and a many-body term sensitive to interference between different distinguishable configurations

\[
P_{a,b}^{\text{int}}(E) = 2n! \Re \sum_{P \neq \text{id}} e^{\epsilon P}A_{a,P b}(P E)A^{*}_{a,b}(E).
\]

We see that, while the transition probability for distinguishable particles, \(P_{a,b}^{\text{inc}} \), is insensitive to the relative positions of the incoming wavepackets \(z_{ij} \), for the indistinguishable situation it depends on the offsets \(z_{ij} \) through...
its coherent contribution. This allows for an effective
tuning of interference through dephasing, and thereby
can be heuristically understood as sensitive to the de-
gree of indistinguishability itself [18, 23, 25]. This type
of effect is amplified by a further integration over the
energies to obtain the transition probabilities in channel
space. In bosonic systems, the dependence of this re-
duced probability on the offsets is the celebrated Hong-
Ou-Mandel profile [20] and its generalizations for \(n > 2 \),
while for fermions it is responsible for the Pauli dip, both
experimentally accessible signatures of quantum indistin-
guishability.

The emergence of universal features in the complex
scattering of many-body wavepackets is made explicit by
introducing small energy windows to smooth the highly-
oscillatory energy dependence of the transition probabili-
ties. This smoothing affects mainly the energy depen-
dence of the functions with strongest oscillatory depen-
dence on the energies, that in chaotic systems is carried
by the S-matrix. We conclude, therefore, that averages of
many-body transition probabilities have universal signa-
tures originating from that of the energy correlations of
S matrices with certain combinations of energy differences
and channels, as required by Eqs. \(\ref{eq:3}, \ref{eq:4} \).

Let us consider as an example the case \(n = 2 \), corre-
sponding to the standard Hong-Ou-Mandel (HOM) type
of setup routinely used to verify the many-body coher-
ence in quantum-optics scenarios. However, the setting
considered here, cavity scattering, is much more complex
than the use of a semi-transparent mirror in the origi-

nal HOM proposal. Here, we have \(E = (E_1, E_2) \)
and the group of permutations has only two elements id, \(\mathcal{P} \).
Making explicit the products in Eqs \(\ref{eq:5} \), \(\ref{eq:6} \), we end up with expressions involving the combinations

\[
|S_{b,a}(E_1)|^2 |S_{d,c}(E_2)|^2 \tag{7}
\]

for the incoherent contribution, and

\[
S_{b,a}(E_1)S_{d,c}(E_2)S_{d,a}^*(E_2)S_{b,c}^*(E_1) \tag{8}
\]

for the interference one. Under energy smoothing, to
be defined in \[\text{III} \], these oscillating products are trans-
formed into smooth correlation functions, that will carry
their universal behavior for chaotic cavities over to the
many-body transition probabilities. For reasons of com-
pleteness we will also study

\[
S_{b,a}(E_1)S_{d,c}(E_1)S_{d,a}^*(E_2)S_{b,c}^*(E_2) \tag{9}
\]

which has been addressed before in \[\ref{eq:27}, \ref{eq:28} \] in the con-
text of cross-correlation functions. The study of such
correlators is the subject of this paper.

III. THE SEMICLASSICAL APPROACH

A. Semiclassical approach of quantum transport

In the Landauer-Büttiker formalism \[\text{II} \ [29, 30] \] the S-
matrix elements \(S_{b,a}(E) \) are the probability amplitudes
for a particle to elastically scatter from the incoming
mode \(a \) into the outgoing mode \(b \), both at energy \(E \). The
size of the \(N \times N \) matrix \(S_{b,a} \) is given by the sum over
open modes \(N_i \) in the \(m \) channels: \(N = \sum_{i=1}^m N_i \). In the
semiclassical limit, at large \(N \) or when the system size is
large compared to the Fermi wavelength, the asymptotic
analysis of the Green function starting with the Feynman
path integral \[\text{II} \ [31-33] \] gives an approximation of the S-matrix

\[
S_{b,a}(E) \approx \sum_{\beta} A_\beta \exp \left(\frac{i}{\hbar} S_{\beta} \right) \tag{10}
\]

in terms of a sum over all classical trajectories \(\beta \) linking
mode \(a \) and \(b \) at fixed energy \(E \). The stability am-
titude \(A_\beta \) together with the phase factor depending on
the classical action \(S_{\beta} = \int_{\beta} p \cdot dq \) build up the contribu-
tion to \(S_{b,a} \) of each classical trajectory \(\beta \). For time-
reversal symmetric systems with \(T^2 = 1 \), such as the sys-
tems discussed here, the S-matrix is further symmetric:

\[
S_{b,a}(E) = S_{a,b}(E) \tag{11}
\]

and therefore belongs to the Circular Orthogonal Ensemble (COE).

B. Diagonal approximation

In a chaotic system, a quantity like

\[
\langle S_{b,a}(E)S_{b,a}^*(E) \rangle = \left\{ \sum_{\alpha=\rightarrow a, \beta=\rightarrow b} A_\alpha A_\beta^* \exp \left((S_{b,a} - S_{\beta}) \right) \right\} \tag{12}
\]

with an energy average \(\langle \ldots \rangle \), will appear in a uni-
versal, system independent, form in accordance with
the Bohigas-Gianonni-Schmit conjecture [5]. For
\(S_{\alpha} - S_{\beta} \rightarrow 0 \), the highly oscillating phase results in a van-
ishing contribution when averaging. In case of an action
difference \(S_{\alpha} - S_{\beta} \neq 0 \) and therefore \(\alpha = \beta \) (excluding sys-
tems with exact discrete symmetries [34]), the so-called
diagonal approximation gives the leading contribution in
orders of \(1/N \) \[\text{II} \ [35, 37] \]:

\[
\langle S_{b,a}(E)S_{b,a}^*(E) \rangle = \frac{1}{N} + O \left(\frac{1}{N^2} \right). \tag{13}
\]

Higher orders of this correlator, like the contribution by
the Richter/Sieber pairs depicted in Fig. \[\text{II} \ (a) \], will be
discussed later.

C. Semiclassical calculation of energy dependent
correlators

The correlators of interest,

\[
C^n(\Delta) := \langle |S_{b,a}(E_\nu)|^2 |S_{d,c}(E_\nu)|^2 \rangle \tag{14}
\]

\[
D^n(\Delta) := \langle S_{b,a}(E_\nu)S_{d,c}(E_\nu)S_{d,a}^*(E_\nu)S_{b,c}^*(E_\nu) \rangle \tag{15}
\]

\[
B^n(\Delta) := \langle S_{b,a}(E_\nu)S_{d,c}(E_\nu)S_{b,a}^*(E_\nu)S_{d,c}^*(E_\nu) \rangle \tag{16}
\]
with distinct modes a, b, c and d are depending, due to the average, only on the energy difference Δ defined by $E_k = \bar{E} \pm \Delta - \bar{E} \pm \frac{\Delta}{2D}$, where we introduced the dwell time τ_D. For example, coherent contributions to D^\times can be made explicit when inserting Eq. (10) in Eq. (14)

$$D^\times(\Delta) = \left\{ \sum_{\alpha \alpha \to \beta \beta \to \gamma \gamma \to \delta \delta} A_{\alpha \beta} A_{\beta \gamma} A_{\gamma \delta} e^\pm i\Delta S \right\}.$$

(16)

with $\Delta S := S_\alpha(E_\alpha) - S_\beta(E_\beta) + S_\gamma(E_\gamma) - S_\delta(E_\delta)$. For ΔS of order \hbar, the contribution to D^\times for this quadruplet $(\alpha, \beta, \gamma, \delta)$ can be identified by a diagrammatic rule. Each quadruplet can be generated by following the recipe: The periodic orbit pairs A and B as depicted in Fig. 2 (b) and (c) are building the basis. Removing one 2-encounter (thick lines in Fig. 2) of all periodic orbit pairs, all relevant quadruplets contributing to the correlators are generated. Depending on the correlator, the removed 2-encounter has to be either parallel in A and B (in case of D^\times) or antiparallel in A and B (in case of C^\times and B^\times as shown in Fig. 2 (b) and (c)). For $\Delta = 0$, the correlators are known:

$$D^\times(\Delta = 0) = -\frac{1}{N(N+1)(N+3)}.$$

$$B^\times(\Delta = 0) = C^\times(\Delta = 0) = \frac{N + 2}{N(N+1)(N+3)}.$$

Besides cutting the periodic orbit pairs just once as illustrated in Fig. 2 (a), the same steps are needed to evaluate the two-point correlator semiclassically.

$$C_2(\Delta) := \langle S_{b,a}(E_+) S^*_{b,a}(E_-) \rangle$$

$$= \frac{1}{N(1-\eta)} - \frac{1 - 2i\eta}{N^2(1-\eta)^3}$$

$$+ \frac{i + 4\eta - 8\eta^2}{N^3(1+\eta)^5} + \frac{i + 6\eta - 12\eta^2 - 48\eta^3}{N^4(1+\eta)^7} + \mathcal{O}\left(\frac{1}{N^5} \right).$$

(18)

Using this powerful method for energy-independent transport moments the Bohigas-Gianonni-Schmit conjecture was proven in Refs. [38, 40].

A. Quantum graphs as model systems for quantum chaos

Quantum graphs [41–44] have been used for two decades to study the features of quantum chaos [45, 46] in closed and open quantum systems. They exhibit several properties which make them most suitable for studies within the field of quantum chaos. (i) The spectral properties of closed quantum graphs with incommensurable bond lengths were proven in Ref. [47] to coincide with those of random matrices from the Gaussian ensemble [38] of the same universality class [47], in accordance with the Bohigas-Gianonni-Schmit conjecture for chaotic systems [3]. (ii) The semiclassical trace formula, which expresses the fluctuating part of the spectral density in terms of a sum over the classical periodic orbits, is exact [42]. (iii) It was demonstrated in Refs. [49, 51] that the correlation functions of the S-matrix elements of open quantum graphs with a classically chaotic scattering dynamics coincide with the corresponding RMT results. It is also worth to mention that quantum graphs belonging to the orthogonal, the unitary and the symplectic universality class have been realized experimentally with microwave networks consisting of coaxial cables connected by joints [52, 57].

B. Setup for energy dependent correlations

We constructed a microwave network preserving time-reversal invariance and, thus, belonging to the orthogonal universality class, which consists of 19 coaxial cables and 14 T joints corresponding to the bonds and vertices of valency 3 in the associated quantum graph, respectively. Five additional networks were generated by interchanging two bonds which are connected to distinct vertices. Here, the lengths of the bonds were chosen incommensurable to attain a ‘chaotic’ quantum graph. Antennas, i.e., leads, were attached to four of them and the 4×4 S-matrix was measured [57]. Thus, the number of open channels equals $N = 4$ in an ideal microwave network. The experimental correlation functions were obtained by averaging over 30 correlation functions obtained for the 6 realizations in five frequency ranges of about 0.5 GHz in the interval $f \in [10, 11.6]$ GHz. A part of a measured transmission spectrum is shown in Fig. 3. To check, whether the experimental data comply with chaotic scattering with perfect coupling to the continuum we first analyzed the distribution of the modulus and phase of the measured S_{ab}. The modulus is bivariate Gaussian and the phases are uniformly distributed, as is expected in the Ericson region [38, 51]. This is illustrated in Fig. 4.

Note, that absorption is unavoidable in the experiments, that is, realization of an ideal microwave network is unfeasible. This leads to a further opening of the system which may be accounted for, e.g., by introducing...
and Eq. (18) was obtained for light. Best agreement between the experimental results introducing a fit parameter \(\tau \) and resonance spacing \(\epsilon \) was restricted to 0.9 ≤ \(\tau_{\text{QG}} \) ≤ 1.1, to account for a possible error in the determination of the total optical length \(L \) of the network and thus of the average resonance spacing \(D = c/(2\mathcal{L}) \), where \(c \) denotes the velocity of light. Best agreement between the experimental results and Eq. (18) was obtained for \(N \approx 9 - 10 \) open channels and \(\tau_{\text{QG}} \approx 0.91 \tau_D \), shown in Fig. 5.

![FIG. 3. Modulus of the S-matrix element \(S_{12} \) in the frequency interval \(f \in [10, 11.6] \) GHz where the correlation functions were analyzed.](image1)

![FIG. 4. Distribution of the experimental S-matrix element \(S_{12} \) (red curves). As expected in the Ericson region of strongly overlapping resonances, the distributions of the modulus (left) and phase (right) are bivariate Gaussian (black curve) and uniform, as predicted by RMT (black line).](image2)

![FIG. 5. Experimental results (black dots) for the real (left) and imaginary (right) parts of the two-point correlation function. Adjusting Eq. (18) to the curve (black lines) yields \(N \approx 9 - 10 \) open channels and \(\tau_{\text{QG}} \approx 0.91 \tau_D \). The dimensionless quantity \(\epsilon = \Delta/D \) represents energy rescaled by the resonance spacing \(D \) of the microwave graph.](image3)

![FIG. 6. Desymmetrized cavity for chaotic scattering. The boundary of the tight-binding setup is undulatory. Inside, the circular obstacle improves ergodic behaviour. The two metallic contacts, with a total number of open modes \(N = 10 \) or \(N = 4 \), are shown in red.](image4)

V. NUMERICAL APPROACHES

A. Tight-binding model

The tight-binding model, implemented with the Kwant code [60] and the Hamiltonian \(\hat{H} = \frac{\hbar^2}{2m_e} \mathbf{k}^2 \) with the free electron mass \(m_e \). The two-dimensional system is connected to two metallic contacts. The scattering problem between these two channels is solved based on the wave function approach [60]. To introduce chaotic scattering into the system, a billiard-shaped setup seems to be reasonable. Reaching true ergodic scattering in this setup is strikingly difficult. The system’s shape, which nearly exhibits ergodicity, is illustrated in Fig. 6 with the two leads marked red. The elliptical system requires an additional disk-like obstacle and uncorrelated weak disorder. The mean free path \(l_{\text{el}} \) resulting from scattering at the disorder is fulfilling the conditions of weak disorder (\(k_F l_{\text{el}} \gg 1 \)), ballistic scattering (\(\lambda_F < L < l_{\text{el}} \)) and of the non-localized regime (\(L < N l_{\text{el}} \approx \xi_{\text{loc}} \)) with \(L \) the typical system length. In the following this setup is investigated for total number of open modes \(N = 10 \) and \(N = 4 \). With the area \(A \), total width of all leads \(\mathcal{C} \) and group velocity \(v_g \), the classical dwell time is given by \(\tau_d = \frac{\pi A}{v_g} \) and the mean level distance by \(d = \frac{\hbar^2}{m_e A} \). For the two adjustments we expect a dwell time of around \(\tau_d/v_g = 52 \) (for \(N = 10 \)) and \(\tau_d/v_g = 156 \) (for \(N = 4 \)). The statistics of \(|S_{b,a}(E)| \), \(\arg(S_{b,a}(E)) \) are bivariate Gaussian, respectively, uniformly distributed. Adapting the two-point correlator \(C_2(\Delta) \) of Eq. (18) to the simulation with \(N = 10 \) by fitting the dwell times \(\tau_D \) and a prefactor, indicates the desired chaotic scattering as shown in Fig. 7. To this end, averages over disorder configurations, sets of channel combinations \((a,b,c,d)\) and mean energies \(\bar{E} \) are necessary.
The agreement of the fitted dwell time τ_D with the classical one, $\tau_{cl}/v_g = 52$, is clearly observable.

B. Quantum graph with absorption

In order to quantify the effect of absorption on the S-matrix correlations, we analyzed the properties of the corresponding quantum graph with and without absorption, where we chose Neumann boundary conditions at the vertices [12]. The $N \times N$ dimensional S-matrix of a quantum graph with N attached leads can be written in the form [42]

$$ S_{b,a}(f) = \delta_{b,a} - 2\pi i \left[\hat{W}^\dagger \left(\hat{H}(k) + i\pi \hat{W} \hat{W}^\dagger \right)^{-1} \hat{W} \right]_{b,a}, $$

$$ a, b = 1, \ldots, N $$

with the wave number k being related to frequency via $k = 2\pi f/c$. Furthermore, $\hat{H}(k)$ is the Hamiltonian of the closed quantum graph and \hat{W} is a rectangular matrix of dimension $V \times N$ accounting for the coupling of the leads to the V vertices, i.e., W_{ij}, $i = 1, \ldots, V$, $j = 1, \ldots, N$ equals unity if lead j is coupled to vertex i and zero otherwise. We accounted for absorption by adding a small imaginary part to the wavenumber k. These numerical computations essentially confirmed our experimental results. We furthermore performed RMT simulations for quantum chaotic scattering systems using the Heidelberg approach [3][61].

C. The Heidelberg approach within RMT

In the Heidelberg approach the graph Hamiltonian $\hat{H}(k)$ is replaced by $\hat{H}(k) = k\mathbb{1} - \hat{\mathcal{H}}$, where $\hat{\mathcal{H}}$ is a $M \times M$-dimensional random matrix from the Gaussian orthogonal ensemble in our case, and \hat{W} is replaced by a matrix with real, Gaussian distributed entries with zero mean. This is only possible when restricting the length of the frequency intervals such that the average resonance parameters are approximately constant [44][61]. The average of the S matrix over frequency is diagonal, $\langle S_{b,a} \rangle = \langle S_{a,b} \rangle \delta_{a,b}$, implying [9] that $
abla_{\mu=1}^M W_{c\mu} W_{e\mu} = M v_e^2 \delta_{e,c}$. The parameter v_e^2 measures the average strength of the coupling of the modes excited in the coaxial cables to the lead e. Generally, it is related to the transmission coefficients $T_e = 1 - |\langle S_{e,e} \rangle|^2$ via $T_e = \frac{4\pi v_e^2 D}{(1 + \pi v_e^2 D)^2}$ with $D = \sqrt{\frac{2M}{H_{\mu\mu}^2} \pi M}$ denoting the mean resonance spacing. We verified that coupling to the antennas is perfect in the experiments, that is $T_e \approx 1$ for $e = 1, \ldots, N$ by comparing the distributions of the S-matrix elements to the RMT predictions [Fig. 1]. The RMT simulations were performed for (200 \times 200)-dimensional random matrices and an ensemble of 300 S-matrices was generated. In order to model absorption we added scattering channels to the four open channels, where the transmission coefficients were set equal to unity. We also chose $N = 4$ and simulated absorption by $\Lambda = 50$ fictitious channels [61] with equal transmission coefficients $T_f \ll 1$.

VI. RESULTS AND DISCUSSION

The semiclassical analysis described in Section III C for the energy dependent four-point correlators can be written in orders of $1/N$. The simplest quadruplet accounting for the real correlator D^R is illustrated in Fig. 2 (b). Taking more complex quadruplets into account results in

$$ D^R(\Delta) = -\frac{1}{N^4(1 + \eta^2)^2} + \frac{2\eta^4 + 10\eta^2 + 4}{N^4(1 + \eta^2)^3} $$

$$ - \frac{8\eta^8 + 30\eta^6 + 145\eta^4 + 56\eta^2 + 13}{N^5(1 + \eta^2)^5} + \frac{28\eta^{12} + 190\eta^{10}}{N^6(1 + \eta^2)^7} $$

$$ + \frac{196\eta^8 + 2832\eta^6 + 392\eta^4 + 258\eta^2 + 40}{N^6(1 + \eta^2)^7} - O\left(\frac{1}{N^7}\right). $$

Equivalent thereto, cutting the trajectory pairs of Fig. 2 (c) at the thick markers, the trajectory pairs yield the first order of the real correlator C^R and the complex correlator B^R correlator. Following this procedure we obtain the contributions

$$ C^R(\Delta) = \frac{1}{(N + 1)^2} \frac{2}{N^2(1 + \eta^2)^2} - \frac{6\eta^4 + 24\eta^2 + 10}{N^3(1 + \eta^2)^3} $$

$$ + \frac{22\eta^8 + 96\eta^6 + 354\eta^4 + 156\eta^2 + 36}{N^6(1 + \eta^2)^5} + O\left(\frac{1}{N^7}\right) $$

and

$$ B^R(\Delta) = -\frac{1}{N^2(1 + \eta^2)^2} - \frac{4\eta^2}{N^3(1 + \eta^2)^4} - \frac{32\eta^4 + 20\eta^2 + 5}{N^4(1 + \eta^2)^6} $$

$$ + \frac{2(152\eta^8 - 99\eta^6 - 42\eta^4 + 7)}{N^5(1 + \eta^2)^8} + O\left(\frac{1}{N^8}\right). $$

This semiclassical approach of the correlators is valid for $N \gg 1$. The alternating sign of the η-dependent factors for D^R and C^R leads to a slow convergence of the polynomials with increasing order N^{-1} for low number of open modes N. Instead, B^R shows a faster convergence for low number of open modes. In principle the

FIG. 7. The system with $N = 10$ (black dots) exhibits the form of the real (left panel) and imaginary (right) part of the two-point correlator $C^R(\Delta)$ given in Eq. (13) (black lines). The agreement of the fitted dwell time τ_D with the classical one, $\tau_{cl}/v_g = 52$, is clearly observable.
low N-limit brings the semiclassical approximation to its limitation. The universality of the correlators relative to the chosen channels (a,b,c,d) enables in the tight-binding model to average, aside from disorder configurations and E, also over distinct channel combinations. This guaranties the agreement of the four-point correlators with the expectation from Eqs. (20)- (22) for $N=10$. In Fig. [8] the theoretically expected forms are adapted to the numerical results by fitting the dwell time τ_D and a global multiplicative factor. For all four-point correlators, the resulting dwell time τ_D agrees with the classical one τ_{cl} by more than 84%. When reducing the number of open modes to $N=4$, as mentioned above the semiclassical polynomials in Eqs. (20)-(22) oscillate about the limiting curve for large N. The formulas adapted to the simulation are shown in Fig. 9 for different truncations of the $1/N$ sums. Here, D^s and B^s, both having alternating signs, show drastic oscillations [Fig. 9(a)] in comparison with B^c in Fig. 9(c) and (d). For the simulations enormous E-averages ensure reliable universal correlators.

FIG. 8. Four-point correlators: Semiclassics versus numerics. For $N=10$ the numerical simulation of the four-point correlators D^s, C^s and B^c (black dots) coincide with fits of Eqs. (20)-(22) (red lines). Almost no changes appear when taking higher orders in $1/N$ into account.

FIG. 9. Slow convergence of semiclassics for D^s for $N=4$, (a) (lines), due to large cancellations in Eq. (20). Accordingly, C^s of Eq. (21) (red line) oscillates, however in (b) just order N^{-6} is shown. The agreement to numerics (black dots) is partly still present. In comparison, Eq. (22) of the B^c correlator (lines) converges faster and coincides with simulations (black dots) for all orders (c), (d).

Compared to that, for the experimental results in Fig. 10 less averaging is necessary: They were obtained by averaging over 30 correlation functions obtained from 6 measurements for each antenna combination in a frequency range of about 0.5 GHz in the frequency interval $f \in [10,11.6]$ GHz to ensure a sufficient number of resonances. Since there is absorption which is unavoidable in the experiments, the curves only agree qualitatively with the predictions. In order to quantify its effect on the S-matrix correlations, we analyzed the properties of the corresponding quantum graph without and with absorption, which was introduced by adding a small imaginary part to the wavenumber k [42]; see Sect. VII B. These numerical simulations confirmed our assumption that deviations from the analytical results Eqs. (20)–(22) indeed may be attributed to its presence. We furthermore performed RMT simulations using the Heidelberg approach described in Sect. VII C [61]. Here we added up to 6 scattering channels to model absorption [61], i.e., we considered $N = 4 - 10$ open channels, where the transmission coefficients were set equal to unity. We found best agreement between the experimental and RMT correlation functions for $N=9-10$. We also simulated absorption by $\Lambda = 50$ fictitious channels [61] with equal transmission coefficients T_f and obtained best results for $\frac{2\pi}{D} \Gamma_{abs} = \Delta T_f \approx 5$, according to the Weisskopf formula [62]. Furthermore, Γ_{abs} denotes the contribution of absorption to the resonance widths.

We found that, except for a possible vertical shift of the correlation function, which generally is eliminated by dividing a correlation function by its value at $\epsilon = 0$, the experimental results agree well with the numerical ones for the corresponding quantum graph with absorption. Similar results are obtained for the RMT simulations with $N = 4$ open channels plus absorption and with $N = 9$ open channels. These studies corroborate that deviations from the predictions may be attributed to absorption. A fit of the analytical results, Eqs. (20)-(22), with N and τ_{QG} as fit parameter yielded best agreement for $N = 9-10$ open channels and $\tau_{QG} = 0.9 \tau_D$; see Fig. 10.

For the D^s and the C^s correlators we had to introduce a prefactor as an additional fit parameter in order to obtain a good description of the amplitudes.

VII. CONCLUSIONS

We have presented a comprehensive study of the S-matrix correlations required in the theoretical description of many-body scattering of non-interacting wavepackets
universal features in the many-body transition probabilities. In a first stage, we used two-point correlators as a probe for the identification of fully chaotic dynamics. This was achieved by comparing the expected universal results of the semiclassical analysis based on interfering paths, Random Matrix Theory simulations, and numerically exact tight-binding results, that are confirmed to exquisite detail by experimental measurements on microwave graphs.

Once the set of parameters leading to chaotic dynamics is identified, we addressed the universality of the four-point cross-energy correlations required in the study of universal many-body scattering, confirming again the exactness of the semiclassical diagramatic approach by its excellent comparison with numerical simulations and delicate measurements. Of particular importance is our combined study, again using all approaches available, of the convergence properties of the diagramatic semiclassical expansion in the regime of low number of open channels, showing that the asymptotic methods can be indeed pushed into such a regime, a conclusion of importance when addressing the universality aspects of many-body scattering in the framework of electron quantum optics of much present interest.

Acknowledgements. A.B., J.D.U. and K.R. acknowledge support from Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) within Project-ID 314695032—SFB 1277 (project A07). B.D. thanks the National Natural Science Foundation of China for financial support through Grants Nos. 11775100 and 11961131009. J.C. performed the experiments.

[1] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Cambridge University Press, 1995).
[2] Y. Imry, Introduction to mesoscopic physics (Oxford University Press, 2002).
[3] M. V. Berry, Structural Stability in Physics, edited by W. Güttinger and H. Eikemeier (Springer Berlin Heidelberg, Berlin, Heidelberg, 1979) pp. 51–53.
[4] G. Casati, F. Valz-Gris, and I. Guarneri, Lettere al Nuovo Cimento 28, 279 (1980).
[5] O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).
[6] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[7] K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems (Springer, Berlin, 1999).
[8] G. Casati, I. Guarneri, and U. Smilansky, New directions in quantum chaos, Vol. 143 (IOS Press, 2000).
[9] C. Mahaux and H. Weidenmuller, Physics Letters 23, 100 (1966).
[10] M. L. Mehta, Random matrices (Elsevier, 2004).
[11] T. Guhr, A. Müller-Grohling, and H. Weidenmüller, Phys. Rep 299, 190 (1998).
[12] R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev. Lett. 65, 2442 (1990).
[13] D. Waltner, Semiclassical approach to mesoscopic systems: classical trajectory correlations and wave interference, Vol. 245 (Springer, Berlin, 2012).
[14] K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 (2002).
[15] M. Tillmann, B. Đakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Nature photonics 7, 540 (2013).
[16] H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, and J. Qiu, Nature Photonics 11, 361 (2017).
[17] S. Aaronson and A. Arkhipov, in Proceedings of the forty-third annual ACM symposium on Theory of computing (2011) pp. 333–342.
[18] J.-D. Urubina, J. Kuipers, S. Matsumoto, O. Hummel, and K. Richter, Phys. Rev. Lett. 116, 100401 (2016).
[19] L. H. Oliveira and M. Novaes, arXiv preprint arXiv:2002.08112 (2020).
[20] S. Weinberg, The quantum theory of fields, Vol. 2 (Cambridge university press, 1995).
[21] R. G. Newton, Scattering theory of waves and particles (Springer Science & Business Media, 2013).
[22] J. J. Sakurai and E. D. Commins, American Journal of Physics 63, 93 (1995).
[23] M. C. Tichy, K. Mayer, A. Buchleitner, and K. Mølmer, Phys. Rev. Lett. 113, 020502 (2014).
[24] Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, Proceedings of the National Academy of Sciences 110, 1227 (2013).
[25] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Science 339, 794 (2013).
[26] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[27] E. Davis and D. Boosé, Z. Phys. A 332, 427 (1989).
[28] B. Dietz, H. Harney, A. Richter, F. Schäfer, and H. Weidenmüller, Physics Letters B 685, 263 (2010).
[29] R. Landauer, Philosophical magazine 21, 863 (1970).
[30] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Science 339, 794 (2013).
[31] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[32] E. Davis and D. Boosé, Z. Phys. A 332, 427 (1989).
[33] B. Dietz, H. Harney, A. Richter, F. Schäfer, and H. Weidenmüller, Physics Letters B 685, 263 (2010).
[34] R. Landauer, Philosophical magazine 21, 863 (1970).
[35] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Science 339, 794 (2013).
[36] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).