Functional yogurt aims to protect against the aflatoxin B1 toxicity in rats

Ahmed M. Abdel-Salam a, Ahmed Noah Badr b,c, *, Ahmed H. Zaghoul a, Abdel Razik H. Farrag c

a Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
b Food Toxicology and Contaminants Department, National Research Centre, Dokki, 12622, Cairo, Egypt
c Pathology Department, National Research Centre, Dokki, Cairo, Egypt

ARTICLE INFO

Keywords:
Aflatoxin
Chicory-root extract
Functional yogurt
Mycoxin
Oxidative stress

ABSTRACT

Recently, the rise of mycotoxin contamination in food materials was found to be due to several factors, including climatic changes’ impact. Therefore, the aim of this study was to provide a novel food product that allows the reduction of aflatoxin impact in animal tissues. Chicory root-extract (CRE) was evaluated for its active components, antioxidant potency, and antimicrobial activity. The CRE was utilized to produce functional yogurt (FY) that was evaluated in-vivo using experimental rats. The CRE showed high antioxidant activity and recorded valuable content of the active components. Results also showed a high antimicrobial effect against toxigenic fungal strains. The results have reflected the efficiency of the FY to suppress aflatoxin impacts in the animal tissues and biochemical parameters of rats-serum. An enhancement was recorded inliver and kidney functions for rats taking FY with the presence of aflatoxin. It was concluded that consumption of the FY assisted in suppression of the oxidative stress in rats-tissues.

1. Introduction

Dairy food is a highly requested product for consumption by humans. Different kinds of milk and their related products are known as comprehensive and nutritive food [1]. Recently, milk was found to play significant functions to support diets with essential nutrients [2]. Dairy products are nutrient-rich food and are necessary to protect the bone [3]. Of those products, yogurt represents easily consumable and preferable food by several ages-. Due to the high consumption, it can be used as a provider of various supplements including probiotics [4], vitamins [3], and omega fatty acids [5]. Utilizing of yogurt supplements, like bioactive sources, refer to dual benefits occurring because of their adding. In this case, it could improve public health and reduce harmful contaminants like aflatoxins (AFs) [7].

Chicory as a bioactive source is as a significant fortifying nutrient. It is considerably rich in many nutrients and soluble fiber. It is a healthy herbal plant, widely grown in the Mediterranean basin by different varieties [8]. Chicory is named Cerise in the Egyptian countryside and consumed commonly as fresh food. Even chicory root extract (CRE) contains high oligosaccharides, mainly the inulin. It does not increase blood sugar and has a considerable value in food ingredients like a fat-replacer [9]. It also improves the food’s contents of soluble dietary fibers that help the digestion process. Inulin of the CRE is a versatile constituent in food processing, assists for mineral intake in the gut tract, and fermentable by probiotic bacteria [10].

Moreover, agro-food and agro-feed products are threatened by aflatoxin, and which is considered a risk factor. These factors give rise to critical problems in the tissue and living systems by the AFs that remain within the intestine tract. Aflatoxin B1 (AFB1) is one of the main risks of cross-contamination in milk. Aflatoxin B1 is metabolized to a reactive epoxide (aflatoxin 8,9-epoxide) primarily by the P450 cytochrome enzyme [11]. This fraction acts as a free radical trigger that may affect the cellular life of oxidative stress [12]. Various impacts of malfunctions and biochemical disorder on living tissues were reported [13].

The ability of several plant-bioactive and antioxidants to reduce AFs-toxicity was reported previously [7,14]. It was possible to utilize the natural extract or the by-product extract [14-16]. Therefore, the aim of this study is to add CRE to functional yogurt (FY) for the enhancing of the in-vivo resistance of aflatoxin toxicity. This will be achieved by the supplementation of the extract-bioactive molecules. The protection against AFs-contamination by fortified routine-food like yogurt will assist in the improvement of public health. Also, the CRE added to yogurt could achieve a nutritive and preserving function, primarily in the food of critical-age groups.
2. Materials and methods

2.1. Chemicals, micro-organisms, and materials

Aflatoxin B$_1$ from A. flavus cat. number 1162-65-8, was purchased from Sigma-Aldrich $^\text{TM}$, the biochemical Kits were purchased from Bio-diagnostics$^\text{TM}$, Cairo.

The Egyptian Chicory roots were obtained from a local market, Giza, Egypt. Fresh buffalo’s milk was purchased from healthy lactating animals of a farm that has a known trade-mark, Egypt.

Bacteria and fungal strains were prepared and reactivated from the lyophilized medium. The bacterial strains used in this study were Bacillus cereus ATCC 10876, Salmonella typhi ATCC 14028, Pseudomonas aeruginosa ATCC 9027, and Escherichia coli ATCC 8739, and they were cultured on tryptic soy agar. The toxigenic fungi used in this study were Aspergillus flavus ITEM 698, Aspergillus ochraceus ITEM 5010, Fusarium culmorum K8946, and Penicillium sp., and they were cultured on potato dextrose agar media.

2.2. Preparation of Chicory root extract

Use warm water, the Chicory root extract (CRE) was prepared according to the method described by Abdel-Salam et al. $^\text{[17]}$ with some modifications. In Brief, The roots were cleaned, cut into little parts, dehydrated in a hot air oven, and milled to a fine powder. They were extracted by a known quantity of distilled water (45 °C) for 1 h, followed by 50 μl of microorganism suspension, bottles were incubated (18 h/ 38 °C) and then cooled and stored at refrigeration (4 °C). The absorbance was measured at a wavelength of 770 nm. Total phenolic content was expressed as mg Gallic acid equivalent (GAE)/L. The same method utilized by Abdel-Salam et al. $^\text{[19]}$. Pasteurized buffalo’s milk was inoculated by yogurt starter containing Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidum (at 10^7 - 10^9 CFU/g), incubated for 4 h / 42 °C for the coagulation step, the curd pH was tested, then it was cooled and stored at refrigeration (4 °C).

2.3. Antimicrobial activity of chicory root extract

2.3.1. Minimum inhibitory concentration

The minimal inhibitory concentration (MIC) was determined as follows: for bacterial strains; nutrient broth were prepared and sterilized in bottles, each containing 5 mL media. Graduated extract amounts were added to the broth media, followed by 50 μl of microorganism suspension, bottles were incubated (18 h/ 38 °C). The assay was carried out in triplicate. Azithromycin was utilized as a positive control antibiotic.

The minimal fungidal concentration (MFC) was determined in the same way, while the applied medium was yeast extract sucrose broth (YES). Incubation conditions were carried out at 25 °C/ 72 h. The values were calculated at an extract concentration that caused non-fungal growth. Nystatin was applied as an antifungal positive-control.

2.3.2. Disk diffusion assay

The potency of the CRE to inhibit the growth of pathogenic bacteria and toxigenic fungi was evaluated using Potato dextrose agar. The extract was applied at a concentration of 100 μL/well, whereas two wells were applied for each plate. Incubation times were determined and recorded in millimeters after incubation (24 h/bacteria & 5 days/fungi). The assay was carried out in replicates. Azithromycin and Nystatin were used as a positive control.

2.4. Determination of the total phenolic content

The total phenolic and flavonoid contents of the extract were determined by the same methodologies utilized by Abdel Razek et al. $^\text{[14]}$. Briefly, root extract (1.0 mL) was added to Folin–Ciocalteu reagent (5.0 mL) to determine the phenolic content. After 6 min, 5.0 mL of sodium carbonate solution (saturated solution) was added. The mixture was mixed thoroughly, then it was incubated for 2 h / 25 °C, and the absorbance was measured at a wavelength of 770 nm. Total phenolic content was expressed as mg Gallic acid equivalent (GAE)/L. The same steps were done for yogurt extract. The absorbance was determined using a UV-VIS Jenway 6850 spectrophotometer against a blank sample as a control. Quantitative determinations were performed based on 5 points standard calibration curve of methanolic solution of Gallic acid (80%). The results were expressed as μg Gallic acid equivalents (GAE)/L of the yogurt.

2.5. Determination of the antioxidant activity

The scavenging activity of samples was estimated using DPPH radical according to the procedure described by Shimada et al. $^\text{[18]}$. In brief, the DPPH solution was added to the extracts prepared from the CRE, yogurt extract, and the FY. The standard antioxidant solution was utilized as a control. Each mixture was kept in the dark (30 min.). The absorbance of each solution was measured at 517 nm against a blank (in triplicates). The results were expressed as μM TE/L.

2.6. Preparation of functional yogurt from buffalo’s milk

Globally, several regions have manufactured the yogurt from buffalo milk as a staple dairy product. It has a strong texture with a copious creamy-face, it tastes sweet and creamy with a mild to moderate acidity than is commonly known in other unsweetened plain yogurt. The functional yogurt (FY) from buffalo’s milk was manufactured as the same method utilized by Abdel-Salam et al. $^\text{[19]}$. Pasteurized buffalo’s milk was inoculated by yogurt starter containing Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidum (at 10^7 - 10^9 CFU/g), incubated for 4 h / 42 °C for the coagulation step, the curd pH was tested, then it was cooled and stored at refrigeration (4 °C).

2.7. Experimental animals

Forty-two male albino rats, of 152.4 ± 2.41 (Mean ± SD), were obtained from the National Research Centre animal-house, Giza, Egypt. The rats were housed in a controlled unit under standard temperature and humidity conditions. The basal diet was utilized to feed rats, according to AIN-93 guidelines, water ad-lib was provided during the experimental $^\text{[20]}$. The balanced diet consisted of protein (21.6 %), maize oil (15 %), maize starch (58.4 %), salt mixture (4 %), and vitamin mixture (1 %). The vitamins that were soluble in oil were administrated weekly to rats and separately from a diet.

2.8. The experimental design

The rats in this study were handled following the ethical committee’s instructions of Egyptian NRC, and conformity to the instruction of the European Union Directive for animal use in scientific research $^\text{[21]}$. Aflatoxin B$_1$ was dissolved in phosphate buffer saline (pH = 7.2) and administered at a concentration of (28 μg/kg BW) $^\text{[14]}$. The CRE was dissolved in the same buffer using the same concentration which had no impact on plain yogurt (Data not shown). Randomly, the rats were divided into 7 groups (6 rats/group) according to the following:

- **Group I**: (negative control) rats were fed on basal diet.
- **Group II**: rats were fed on a basal diet and orally administered by AF$_1$ (28 μg/kg BW).
- **Group III**: Rats were fed on a basal diet and orally administered with 1 mL FY.
- **Group IV**: Rats fed on a basal diet and orally administered with 0.1 mg of the CRE.
- **Group V**: Rats were fed on a basal diet and administered with 1 mL of FY containing 0.1 mg CRE.
- **Group VI**: Rats were fed on a basal diet, and orally administered by AF$_1$, followed by 1 mL of FY.
- **Group VII**: Rats were fed on a basal diet, and administered by AF$_1$, followed by 1 mL of FY containing 0.1 mg CRE.

At the end of the experiment (day 43), the rats were fasted overnight and anesthetized with an anesthesia solution, and blood samples were
collected using blood capillary tubes using retro-orbital puncture. At 4000 RPM/15 min. /5 °C, blood samples were centrifuged. Sera were collected, carefully transferred to clean tubes analyzed for biochemical parameters.

Hematological parameters included Red blood cell count (RBC) white blood cell count (WBC), hemoglobin (Hgb), hematocrit (Hct), platelet count (PLT), and total iron-binding capacity (TIBC) determined by automated hematology analyzer [22]. Total cholesterol was determined according to Watson [23], high-density lipoprotein cholesterol (HDLC) using a method of Demaketer et al. [24], low-density lipoprotein cholesterol (LDL) according to Assmann et al. [25], and triglycerides according to the method of McGowan et al. [26]. Creatinine and urea were determined depending on Larsen [27] as indicators of kidney function.

The activities of aspartate transaminase (AST) and alanine transaminase (ALT) were determined according to Reitman and Frankel [28] with some modification. Briefly, 100 µL of serum was placed in each well of the ELIZA plate followed by 100 µL of the standard kits (AST or ALT, ab234579 Rat ELISA kits, USA), and incubated for one hour, washed by phosphate buffer saline three times, then 100 µL of the development solution was added and incubated for 10 min. Finally, the stop-reaction solution was added at a 100 µL, and the optical density was recorded at 450 nm. Malondialdehyde (MDA) was determined according to Ohkawa et al. [29]. In brief, the MDA level was based on plasma reactions between MDA and TBA by reactive thiobarbituric acid (TBA) reactive substances (TBARS). Together with test samples, a standard MDA (100 N-MOL) solution (5 µL) was used. Then 1 mL of the serum sample, 1.5 mL TBA (0.8 %) were added. After that 0.4 mL of 8.1 % SDS and 1.5 mL of acetic acid were added. Finally, the mixture was made of distilled water up to 5 mL and was placed in a warm water bath at 95 °C/60 min. One milliliter of distilled water and 5 mL n-butanol and pyridine were added after cooling down (15:1, V / v). The mix was vortexed and read using the UV–vis spectrophotometer (Shimadzu) at 532 nm against the Blank after the centrifugation at 4000 Xg/15 min. Catalase activity was assayed according to the method of Beers and Sizer [30]. Superoxide Dismutase (SOD) activity was determined according to the method of Sun et al. [31]. Serum Glutathione-S-Transferase (GST) activity was determined according to Habig et al. [32].

Rats were dissected after blood sampling, and the liver, kidneys, and pancreas were immediately removed from each rat, measured, and then submerged in 10 percent formalin solution for histopathological analysis. This study was conducted in compliance with both the ethics of the National Research Center Committee and the guidelines of the National Institutes of Health for Experimental Animals Care and Use (Publication No. 85–23, revised 1985).

2.9. Histopathological examination

Liver and kidney samples were excised and fixed for 24 h, in formal saline (10 %). The specimens were washed with tap water, dehydrated in ascending graduated ethanol; xylene for clearance, and then was embedded in paraffin. The sections (5 µm) were sliced using the microtome. The sections were then de-paraffinized in xylene and rehydrated in descending ethanol series and flushed with water. Using hematoxylin and eosin, the slides were stained, placed in the DPX, covered-slipped, and investigated through a microscope connected to computer software (Leica, Germany) [33].

2.10. Statistical analysis

Data were statistically analyzed using SPSS software (version 16). Anova One-way was used to examine the significant difference between different means at P = 0.05.

3. Results and discussions

3.1. The antimicrobial properties of the CRE

Antibacterial activities of the CRE were determined against four pathogenic bacterial strains. The MIC value for Salmonella typhi ATCC 14028, Pseudomonas aeruginosa ATCC 9027, and Escherichia coli ATTC 8739 was recorded at a concentration of 70 µg/ mL of the medium, whereas for Bacillus cereus ATCC 10876 the MIC value was recorded at a concentration of 50 µg/mL. The inhibition zone of the CRE extract (100 µL/well) against bacterial growth (B. cereus, S. typhi, P. aeruginosa, and E. coli) ranged between 14.3 ± 1.27 to 27.2 ± 1.41 mm, whereas the standard antibiotic (Azithromycin) showed an inhibition zone of 32.4 ± 1.15 mm.

On the other hand, the MFC evaluated for the CRE against mycotoxicogenic fungal strains (A. flavus, A. ochraceus, F. culmorum, and Penicillium), recorded at a concentration of 70 mg/mL, compared to the standard antifungal (Nystatin) that recorded 16 µg/mL. The inhibition impact of the CRE was evaluated on agar-medium using a well-diffusion assay. The extract was found to inhibit the fungal growth at range between 13 ± 4.2-25.3 ± 2.17 mm, while the diameter of the control recorded 117.1 ± 2.34 mm. Regarding these results, it was confirmed that the CRE had a good antimicrobial impact to limit the contamination by both pathogenic and mycotoxicogenic microorganisms.

3.2. Proximate analysis of the CRE

The proximate analysis of the FY and the CRE were determined, according to the AOAC [34] to characterize the factors that could affect their bioactivity. Data in Table 1 showed that there was no significant differences between the two types of FY (with/ without CRE) for total solids, protein, and ash. The significant differences were recorded for the values of crude fibers, carbohydrates, antioxidant activity, and total phenolic content. These differences could be due to the high oligosaccharides content of the CRE [35].

3.3. Animal experimental results

3.3.1. The influence of CRE

The impact of the AFB1 on the final-weight, feed intake, and body-weight gain were recorded in Table 2. The results showed a significant effect in the presence of AFB1 orally administrated to the rats-group. The use of CRE at a dose of 0.1 mg/rats did not show any feed-refusal behavior in their group. Moreover, the presence of CRE beside AFB1 showed ameliorating effect on feeding, even if the aflatoxin was present in the gastrointestinal tract (GIT).

3.3.2. Biochemical parameters

Aflatoxin contamination could affect the protein content of serum; this influence was recorded for the Albumin content of rats-serum. The Aflatoxin group, and administrated with CRE, showed an enhancement in serum-protein values comparing the group just administrated by AFB1. The data showed in Fig. 1, demonstrates the amelioration resulted from the administration of CRE in the presence and absence of aflatoxin.

The AFB1 treatment led to changes in the lipid profile of rats. Compared to the control; significant changes were noticed with a real decrease in a high-density lipoprotein level, and increases in cholesterol, triglycerides, and low-density lipoprotein levels (Fig. 2). The increment was recorded clear for the LDL level. While the administration of CRE directly or the yogurt-CRE displayed an enhancement closed to the control values. Whereas, the administration of AFB1, the CRE and CRE-Yogurt gave results close to those of the lipid profile recorded for the control. The HDL values were increased to reach its neutral values in the control, with the decreases of LDL, cholesterol, and triglycerides. More or less, the CRE- treatment for rats that were administered AFB1 seems to be able to suppress the lipid-profile changes that could occur due to
The oral administrating of the CRE at a dose of 0.1 mg/ kg could play a pivotal function to limit aflatoxin toxicity. The changes in liver and kidney function parameters were noticed in the serum of rats that were administrated by aflatoxin. The alanine transaminase (ALT) and aspartate transaminase (AST) enzymes represented the liver functions. The kidney functions were represented by urea and creatinine. The alkaline phosphatase (ALP) enzyme activity was reflected the liver malfunctions, where these changes considered as a tumor marker. The oral administrating of the CRE at a dose of 0.1 mg/kg may affect the changes in the liver and kidney enzymes caused by aflatoxin (Table 3). This means that the presence of the CRE in the biological system could play a pivotal function to limit aflatoxin damages in the liver tissues.

The data for the level of enzymes in rat liver-tissues were shown in Table 3. The rats of the aflatoxin-treated group showed differences in the level of tissue-enzymes compared to the negative control group. These changes were enhanced when rats were given an oral dose of 0.1 mg of the CRE after aflatoxin oral-administration. The enhancement was more effective using the CRE compared to the treatment of yoghurt-CRE oral-dose. This could be described by the binding of the active sites of the CRE and its coating by yoghurt components.

3.4. Histopathological investigations

Sections of the liver from normal control rats showed the normal architecture of the hepatic lobule. The central veins lie at the center of the lobules surrounded by cords of hepatocytes. Between the strands of hepatocytes, the hepatic sinusoids clearly were shown (Fig. 4A). In rats of positive control, examination showed congested central veins and central lobular necrosis of the hepatocytes that were associated with inflammatory cell infiltration (Fig. 4B). Also, positive control rats showed portal and perportal lymphocytic infiltration, congestion of the portal vessels, and perportal necrosis of the hepatocytes that surround the portal areas (Fig. 4C). In some rats, focal necrosis of the hepatocytes that were associated with lymphocytic infiltration and dilated hepatic sinusoids was seen (Fig. 4D).

In rats that were given the CRE plus AFB1, the architecture of the hepatic lobule appeared like the normal (Fig. 5D). However, in some rats, macro and micro vacuoles of fatty change were recorded (Fig. 5E).

The liver of rats given only the FY or the CRE showed the normal architecture of hepatic lobules (Fig. 4E, F respectively). In a case of rats given the FY plus AFB1, sections of the liver showed the architecture of the hepatic lobule appeared more or less like normal (Fig. 5A). While in some cases, focal necrosis associated with lymphocytic infiltration and congested blood sinusoids were found (Fig. 5B). In the rats given AFB1, the architecture of the hepatic lobule appeared like a normal (Fig. 5C). But in some rats, micro and macro vacuoles of fatty change were shown (Fig. 5D).

The diversity of AFB1-metabolic pathways were noted in several living organism’s species, where the generality serious reaction is their...
bioactivate to the epoxide fragment. The serious reactive metabolic change is joined to their ability to form DNA-adduct and induce mutations with the protein. The AFB1-residue in liver tissues is influenced by the cytochrome p53 and protein pathways in hepatocellular carcinoma [36, 37]. Moreover, hepatitis diseases and carcinogenic effects, particularly the hepatitis B-virus, are influenced by human exposure to aflatoxins [38, 39].

The present results revealed that CRE-efficiency as anti-aflatoxigenic material was determined. CRE demonstrated antibacterial and antifungal potency, particularly against the mycotoxigenic fungal strains. This potency recommended its application in food for enhancing safety and increasing their functionality. The proximate analysis for the CRE showed high content of the antioxidant activity and its content of total phenolic compounds recorded at a high level. The fortification of the FY using the CRE, significantly changed than those of FY alone, particularly in crude fiber content, carbohydrate content, and antioxidant activity.

The main components of the CRE activity were oligosaccharides, and the majority were reported to the inulin [40, 41].

The bioactivity of the CRE was also evaluated by the in-vivo studies in experimental rats. The results were expressed by the changes in the liver and kidney enzymes. The mechanism of the reduction of aflatoxin is related to the ability of the extract components to enhance the antioxidant level in serum and tissues to avoid aflatoxin harm-impacts. Moreover, the oligosaccharides content of the extract (mainly inulin) was reported to affect aflatoxin toxicity [40, 41]. The chicory extract was examined for their ability to reduce AFB1 hazards, as aflatoxins are known to cause several damages in the liver tissues and are considered a pre-carcinogenic compound [42]. The CRE impacts were evaluated alone and added to the FY. The FY was reported to decrease aflatoxin-toxicity, which could be related to the binding effect of yogurt starters [7]. The results revealed more potency of the CRE by the individual oral administration compared to its implication in the FY.

![Fig. 2. The changes in the lipid profile of aflatoxin-treated rats due to the administrating with chicory extract and yogurt. The column with above different letters are significantly different at (P = 0.05).

Table 3
Liver and Kidney function parameters for Aflatoxin-treated rats administrated by chicory extract.

Treatment	Control	AFB1	Yogurt	CRE	Yg-ABF1	CRE-ABF1	Yg + CRE + AFB1
ALT (U/L)	39.6 ± 1.18 ^a	119.8 ± 2.87 ^f	37.4 ± 1.73 ^a	40.3 ± 1.31 ^a	74 ± 2.39 ^d	49.8 ± 3.41 ^b	64.2 ± 4.25 ^c
AST (U/L)	158.2 ± 3.84 ^a	289.1 ± 7.19 ^f	159.6 ± 5.36 ^a	158.4 ± 3.52 ^a	207.9 ± 4.49 ^d	186.6 ± 2.88 ^b	191.1 ± 4.22 ^c
ALP (U/L)	52.8 ± 0.97 ^a	99.2 ± 1.86 ^f	53.1 ± 0.61 ^a	52.5 ± 0.73 ^a	68.4 ± 1.47 ^d	61.4 ± 1.08 ^b	70.7 ± 1.91 ^c
Urea (mg/dL)	6.91 ± 0.04 ^f	9.71 ± 0.81 ^f	6.97 ± 0.41 ^f	6.99 ± 0.24 ^f	7.94 ± 0.06 ^d	7.13 ± 0.06 ^b	7.24 ± 0.31 ^c
Creatinine (mg/dL)	0.97 ± 0.02 ^f	1.34 ± 0.21 ^f	0.99 ± 0.28 ^f	0.97 ± 0.05 ^f	1.03 ± 0.06 ^d	1.02 ± 0.06 ^b	1.07 ± 0.04 ^c

Data expressed as means ± SD; (n = 6; P = 0.05). (n = 6). The values of each column with superscript different letters had significant differences compared to the control group.

CRE: Rats were administrated by only chicory root extract.
FY: Rats were administrated just by yogurt.
FY-AFB1: Rats were administrated by yogurt plus aflatoxin.
FY-CRE + AFB1: Rats administration with yogurt + chicory root extract + aflatoxin.
FY-CRE: Rats administrated by yogurt with chicory root extract.
This behavior may be demonstrated through the active group of the extract that binds to the yogurt peptides [43,44]. The administration by the CRE for experimental rats reflects amelioration of feed intake, body weight gain, even if the aflatoxin was present in the GIT of rats. The CRE could decrease the harmful effect of aflatoxin on the protein fractions of rat-serum.

The admissance of the AFB1 in rats’ biological systems has existed clear alterations of lipid profile. The hepatic injury associated with dyslipidemia was sourced by the AFB1 existence. These damages were initiated through the alterations of lipid expression and the metabolization of lipoproteins. Aflatoxin was reported occurring gene alteration that increases lipoprotein receptors [45]. The placement of lipid formation and their expression are regulated by gene expressions, leading to lipoprotein types formation. The AFB1 adduct to the DNA could alter the lipoprotein formation process inside the cell, which results in abnormal changes. Where aflatoxin existence also leads to Inflammatory cells in the portal triad and a hepatic cellular-reaction named proliferation of bile duct-like structures. These results also were conjugated by histological liver failure, which congruent to the previous result [15,42].

As aflatoxin was recorded to cause changes in the lipoprotein formation cycle in rats’ biological systems. This leads to changes in the lipids fractions, whereas lipoproteins are considered the principle lipid-receptors. The lipids are transferred or moved through the serum and tissues as lipoprotein form. This finding was emphasized by the ability of AFB1 to induce harmful changes in liver and kidney [46]. The changes were reported in both lipid profiles; tissue lipids and serum lipids. The changes of lipids-profile were considered lower when these rats were administrated by the CRE or the CRE-Yogurt.

The utilization of the CRE as an oral administration in the rats have decreased the toxin behavior that may affect the liver and kidney functions, which was represented as an enhancement in the ALT, AST, and ALP enzyme levels (Table 3). Moreover, the liver-tissue enzymes in the AFB1-treated rats became so close to the negative control rats when administrated by the CRE as oral treatment (Fig. 3).

The histopathological examination of the liver tissues demonstrated partial normality of liver tissues of AFB1-treated rats by CRE administration. While the FY showed an enhancement in liver tissues of the AFB1-treated rats (Fig. 4E), it was so close to the normal liver tissue in the case of CRE-administration (Fig. 4F).

The oxidative stress, which is caused by the presence of aflatoxin e in the living cells, affected their viability and their functionality [40], but a utilizing of active components and natural extracts reported with a good reducing impact for the aflatoxin stress [14,47]. The oligosaccharides content of the CRE, partially inulin, and its fractions, play a major function against the oxidative stress influence of aflatoxins [48,49]. The more efficiency of the CRE as administrative individually than its joining with yogurt. This result had a slight difference of Roller et al. [50] which refer to enhancement activity of the bacterial growth by inulin against aflatoxin. The differences here may be affected by the strain-type of the starter, which is utilized to produce the yogurt. The corrective action of the CRE was indicated by the amelioration in the liver function and kidney function enzymes, also in liver tissue enzymes (Table 3; Fig. 3).

The oxidative stress impact of the AFB1 on the liver cells was clearly shown on the pathogenic examination of liver-tissue (Fig. 4C and D). The administration, of CRE, demonstrated changes in the tissues nearly similar to that of control, (Fig. 5C and D). The ameliorative effect of the CRE is related to fructans and inulin content of the chicory root extract [51,52]. According to the result, the structure of the oligosaccharides (fructans, inulin, etc.) plays an important role in the decreasing effect of aflatoxin influences in the GIT. This could be explained by the behavior of these active components like dietary fibers, which could chelate aflatoxin by their active sites. The histopathological study on rats showed a lesser change in liver tissue of aflatoxin-treated rats due to the CRE administration, which supported this theory as experimental evidence.

AFB1 is bio-produced into a highly reactive intermediate, AFB1–8–9 epoxides, by microsomal cytochrome P450 and attach to nuclear acids to make adducts. These adducts block transcript and translation, which affect the regulation and eventual hepatotoxicity of functional gene expression [53]. AFB1-prompts the hydroxyl-radicals, which interact with, and lead to mutations in DNA and result from the build-up of reactive oxygen species. In human hepatocytes (HepG2) AFB1 also
Fig. 4. A micrograph of sections of the liver from A) normal control rat shows the normal architecture of the hepatic lobule. The central vein (asterisk) lies at the center of the lobule surrounded by cords of hepatocytes (arrow). Between the strands of hepatocytes, the hepatic sinusoids are shown (arrow-head). B) positive control rat (AFB-treated) shows congested central vein (asterisk) and centrilobular necrosis of the hepatocytes (arrowhead) associated with inflammatory cell infiltration (arrow). C) positive control rat (AFB1) shows portal and periportal lymphocytic infiltration (arrow) and congestion of the portal vessels (arrowhead). Notice, the periportal necrosis of the hepatocytes that surround the portal area (asterisk). D) Aflatoxin-treated rat shows focal necrosis of the hepatocytes that are associated with lymphocytic infiltration (arrow). Notice dilated hepatic sinusoids foci of necrotic hepatocytes (arrowheads). E) rat was given yogurt only shows the normal architecture of hepatic lobule (◆). F) rat given chicory root extract only shows the normal architecture of the hepatic lobule (asterisk) (H&E stain, Scale bar: 5 μm).

Fig. 5. A micrograph of sections of liver from B) rat given Yogurt and AFB1 shows the architecture of the hepatic lobule appeared more or less like normal. C) rat given Yogurt and AFB1 shows focal necrosis associated with lymphocytic infiltration and congested blood sinusoids. D) rat given chicory extract and AFB1 shows the architecture of the hepatic lobule appeared more or less like normal. E) rat given chicory extract and AFB1 show micro and macro vacuoles of fatty change (H&E stain, Scale bar: 5 μm).
causes apoptosis, cytotoxicity, and genotoxicity. The chronic aflatoxicosis caused by the exposure to low doses of AFB1 in the diet has been involved in hepatocellular carcinoma over long exposure time [54]. Lipids are molecules possess with a key function in the metabolic pathways; fatty acids, triglycerides, cholesterol, and phospholipids are the lipids of clinical and physiological significance. These lipids are conveyed as lipoproteins in the blood, made of a hydrophobic core with a hydrophilic layer [55]. The AFB1 was been reported to cause alterations in plasma and liver lipid levels. Lu et al. [45] reported that gene expression analysis and metabolite profiling are more sensitive than general toxicity studies for the detection of earlier hepatotoxicity induced by the AFB1. The active components, which presence in the media containing AFB1 was previously showed with reduction impact [36]. The results demonstrate that AFB1 induced hepatic damage with concomitant dyslipidemia, and this may occur in part through the alteration of expression of lipid and lipoprotein metabolizing genes. They also reported an increment in long-chain fatty acid concentrations subsequently to AFB1 treatment in rats. Nevertheless, the changes that occurred due to AFB1-adducts formed by DNA mainly depends on AFB1-oxidative stress in the biological system. These changes appeared in the lipid profile, the cellular tissue shape, serum, and tissue enzymes. The presence of the CRE in the biological system offers an alternative pathway for the AFB1 to obtain its needs both electron (from phenolic compounds) and the antioxidant impact of the extract that stopped the harmful impact. The activity of AFB1 molecules mainly depends on their lactone rings content, which contains unsaturated bonds that tend to react in the biological systems. The physiological impact of the CRE application in the biological systems was explained through its behavior as a functional bioactive extract. The presence of the CRE during the existence of AFB1 in diet recorded a capability for stopping this adduct, subsequently, all the changes connected to it. The impact of the Cerise extract relies upon its enrichment bioactive molecules, including the phenolic compounds and polysaccharides (mainly inulin). The availability of the Cerise extract that contains several biologically active substances helps in a highly effective way to reduce the changes resulting from the presence of aflatoxin in living tissues. The limitation of these changes mainly depends on converting the biological pathway of aflatoxin from its binding to the DNA strand to an ineffective binding form. The suggested mechanism is through suppressing the AFB1 to the epoxide form, which resulted in gene alterations followed by the unbalancing of biological enzymes and hormone systems.

4. Conclusion

The CRE analysis showed a functional impact due to its content of active components. The extract reflected an efficiency as an antioxidant and antimicrobial agent, particularly against toxigenic fungi. The implementation of the CRE in yogurt to produce the FY ameliorated its safety and nutritional potency. The rat experiment declared the ability of the FY to reduce the harmful impact of aflatoxin in liver tissue. Rats fed by the FY with aflatoxin existed as oral administration showed closed similarity to the control. However, the nutritive enhancement of the CRE was recorded. These results lead to the recommendation of the application of the CRE to produce functional products that may be able to ameliorate oxidative stress in live tissues caused by aflatoxins.

Authors’ statement

Ahmed M. Abdel-Salam and Ahmed H. Zaghloil collected the raw materials, prepared the extract, and manufactured the functional yogurt. Ahmed M. Abdel-Salam and Ahmed Noah Badr designed experiments Ahmed Noah Badr performed the analysis, did the antimicrobial evaluation, performed the rat experiment, evaluated the biochemical parameters, statistically analyzed the data and discussed the final results, Abdel Razik H. Farrag performed the histopathological evaluation, discussed the result of histology, and explained the CRE impact. Ahmed Noah Badr wrote the final manuscript, response to the correction and the revise copies. All authors reviewed, accept the manuscript, and approved the final version.

Declaration of Competing Interest

The authors report no declarations of interest.

References

[1] Y. Park. Bioactive Components in Milk and Dairy Products, Vol. 1, John Wiley & Sons, 2009.
[2] F. Visioli, A. Strata, Milk, dairy products, and their functional effects in humans: a narrative review of recent evidence, Adv. Nutr. (Bethesda, Md.) 5 (2) (2014) 131-143.
[3] R. Bizzoli. Dairy products, yogurts, and bone health, Am. J. Clin. Nutr. 99 (5) (2014) 1256S-1262S.
[4] T. He, M. Priebe, Y. Zhong, C. Huang, H. Harmesen, G. Raangs, J. Antoine, G. Welling, R. Vonk, Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects, J. Appl. Microbiol. 104 (2) (2008) 595-604.
[5] O. Ethgen, M. Hiligsmann, N. Burlet, J. Reginster, Cost-effectiveness of personalized supplementation with vitamin D-rich dairy products in the prevention of osteoporotic fractures, Osteoporos. Int. 27 (1) (2016) 301-308.
[6] K. Mc-Coven, P. Ling, E. Decker, D. Djordjevic, R. Roberts, J. Coupland, B. Bistrian. A simple method of supplementation of omega-3 polyunsaturated fatty acids: use of fortified yogurt in healthy volunteers, Nutr. Clin. Pract. 25 (6) (2010) 641-645.
[7] A.N. Badr, M.M. El-Said, T.M. El-Messery, A.G. Abdel-Raeez, Non-traditional oils encapsulation as novel food additive-enhanced yogurt safety against aflatoxins, Pak. J. Biol. Sci. 22 (2) (2019) 51-58.
[8] I. Nwafor, K. Shahe, M. Achilowno, Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement, Sci. World J. 2017 (2017), p. 7343928-7343928.
[9] M. Shoabi, A. Shehaz, M. Omar, A. Rashia, H. Raza, H. Sharif, A. Shakerel, A. Ansari, S. Niazi, Inulin: properties, health benefits, and food applications, Carbohydr. Polym. 147 (2016) 444-454.
[10] C. Iraporda, I. Rubel, G. Manrique, A. Abraham. Influence of inulin rich carbohydrates from Jerusalem artichoke (Helianthus tuberosus L.) tubers on probiotic properties of Lactobacillus curvatus, LWT-Food Sci. Technol. 101 (2019) 738-746.
[11] V. Dohnal, Q. Wu, K. Kuca, Metabolism of aflatoxin: key enzymes and interindividual as well as interspecies differences, Arch. Toxicol. 88 (9) (2014) 1635-1644.
[12] S. Yilmaz, E. Kaya, M. Alii, The effect on oxidative stress of aflatoxin and protective effect of lycopene on aflatoxin damage, in: L.B. Abdurrauf (Ed.), Aflatoxin – Control, Analysis, Detection and Health Risks, IntechOpen Limited Co., London, ECOLSAF, UK, 2017.
[13] G. Ibosa, D. Kitya, A. Lubega, J. Ogwal-Okweng, A. Anokongkho, D. Kyeogome. Review of the biological and health effects of aflatoxins on body organs and body systems, in: M. Razzaghi-Abyaneh (Ed.), Aflatoxins – Recent Advances and Future Prospects, IntechOpen, London, UK, 2013, pp. 229-265.
[14] A.G. Abdel-Raeez, A.N. Badr, T.M. El-Messery, M.M. El-Said, A.M. Hussein. Micro-nano encapsulation of black seed oil ameliorate its characteristics and its mycotoxin inhibition, Biosci. Res. 15 (3) (2018) 2591-2601.
[15] A.N. Badr, M.A. Naeem, Protective efficacy using Cape- golden berry against pre-carcinogenic aflatoxins induced in rats, Toxicol. Rep. 6 (2019) 607-615.
[16] A.N. Badr, M.G. Shehata, A.G. Abdel-Raeez. Antioxidant activities and potential impacts to reduce aflatoxins utilizing jojoba and jatropha oils and extracts, Int. J. Pharmacol. 13 (8) (2017) 1105-1114.
[17] A.M. Abdel-Salam, W.A. Al Humaid, A.A. Affifi, A.I. Oltham, A.R. Farrag, M. M. Zeitoun, Consolidating probiotic with dandelion, coriander, and date palm seeds extracts against mercury neurotoxicity and for maintaining normal testosterone levels in male rats, Toxicol. Rep. 5 (2018) 1069-1077.
[18] K. Shimada, K. Fujikawa, K. Yahara, T.J. Nakamura, F. Chemistry. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion, J. Agric. Food Chem. 49 (6) (1990) 945-948.
[19] A.M. Abdel-Salam, A. Al-Dekhili, A. Bakhr, M. Farahana, H.M. Moua, High fiber probiotic fermented mare’s milk reduces the toxic effects of mercury in rats, North Am. J. Med. Sci. 2 (12) (2010) 569.
[20] P. Reeves, F. Nielsen, G. Fahmy. Reports of the American Institute of Nutrition, adhoc wiling committee on reformulation of the AIN 93, Rodent Diet. J. Nutr. 123 (1993) 1939-1951.
[21] C. Directive, 2010/75/EU of the European Parliament and of the Council. Off. J. Eur. Union L, 2010. 336 p. 17-119.
[22] D.G. Garrett, H.C. Lee, S.-C. Wong, B. Roemer, S.M. Edmondson Jr, Method for determination of nucleated red blood cells and leucocytes in a whole blood sample in an automated hematology analyzer, 2010, Google Patents.
[23] D. Watson, A simple method for the determination of serum cholesterol, Clin. Chim. Acta 5 (5) (1960) 637-643.
[24] P. Demacker, A. Hijmans, H. Vos-Janssen, A. Van’t Laar, A. Jansen. A study of the use of polyethylene glycol in estimating cholesterol in high-density lipoprotein, Clin. Chem. 26 (13) (1980) 1775-1779.
[25] G. Assmann, H. Jabs, U. Kohnert, W. Nolte, H. Schriever, Determination of low density lipoprotein (LDL)-cholesterol, Clin. Chim. Acta 140 (1984) 77–83.

[26] M. Mcgowan, J. Artiss, D. Straindbergh, B. Zak, A peroxidase-coupled method for the colorimetric determination of serum triglycerides, Clin. Chem. 29 (3) (1983) 538–542.

[27] K. Larzin, Creatinine assay by a reaction-kinetic approach, Clin. Chem. Acta 41 (1972) 209–217.

[28] S. Reitman, S. Frankel, Determination of glutamate-pyruvate transaminase (ALT) and aspartate aminotransferase (AST), Clin. Chem. Acta 41 (1972) 133–140.

[29] K. Larsin, Creatinine assay by a reaction-kinetic approach, Clin. Chem. Acta 41 (1972) 133–140.

[30] Y. Sun, L. Oberley, Y. Li, A simple method for clinical assay of superoxide dismutase, Clin. Chem. Acta 34 (3) (1988) 497–500.

[31] W. Habig, M. Pabst, G. Fleischner, Z. Gatmaitan, I. Arias, W. Jakoby, The identity of glutathione S-transferase with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. 71 (10) (1974) 3879–3882.

[32] N. Ali, Aflatoxins in rice: worldwide occurrence and public health perspectives, Churchil Livingstone, New York, 1996.

[33] M.S. Shahat, A.N. Badr, A.I. Hegazy, S. Ramzy, M.A. Samie, Reducing the total sugar content and the average inulin chain length in roots of chicory (Cichorum intybus L.), J. Sci. Food Agric. 76 (1) (1998) 107–110.

[34] M.S. Shahat, A.N. Badr, A.I. Hegazy, S. Ramzy, M.A. Samie, Reducing the histopathological and biochemical toxicity of aflatoxin contaminated soybean using ozone treatment, Ann. Res. Rev. Biol. 15 (3) (2017).

[35] M. Moser, A. Agemans, W. Caers, Production and bioactivity of oligosaccharides from chicory roots, in: M. Moreno, L. Sanz (Eds.), Food Oligosaccharides, 2014, pp. 55–75.

[36] L.Z. Ramalho, L.D. Porta, R.E. Rosim, T.E. Petta, M.J. Augusto, D.M. Silva, F.S. Ramalho, C.F. Oliveira, Aflatoxin B1 residues in human livers, and their relationship with markers of hepatic carcinogenesis in São Paulo, Brazil, Toxicol. Rep. 5 (2018) 777–784.

[37] N. Ali, Aflatoxins in rice: worldwide occurrence and public health perspectives, Toxicol. Rep. 6 (2019) 1188–1197.

[38] M.C. Kew, Synergistic interaction between aflatoxin B1, and hepatitis B virus in hepatocarcinogenesis, Liver Int. 23 (6) (2003) 405–408.

[39] P.C. Turner, M. Mundy, H. Whittle, M. Forruin, A.J. Hall, C.P. Wild, Hepatitis B infection and aflatoxin biomarker levels in Gambian children, Trop. Med. Int. Health 5 (12) (2000) 837–841.

[40] W. Van Den Ende, J.D. Roover, A. Van Laere, In vivo synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan: fructan fructosyl transferase, Physiol. Plant. 97 (2) (1996) 346–352.

[41] C. Van Waes, J. Baert, L. Carlier, E. Van Bockstaele, A rapid determination of the total sugar content and the average inulin chain length in roots of chicory (Cichorum intybus L.), J. Sci. Food Agric. 76 (1) (1998) 107–110.

[42] M.S. Shahat, A.N. Badr, A.I. Hegazy, S. Ramzy, M.A. Samie, Reducing the histopathological and biochemical toxicity of aflatoxin contaminated soybean using ozone treatment, Ann. Res. Rev. Biol. 15 (3) (2017).

[43] D. Clare, H. Swaigood, Bioactive milk peptides: a prospectus, J. Dairy Sci. 83 (6) (2000) 1187–1195.

[44] A.J. Charlton, N.J. Baxter, M.L. Khan, A.J. Moir, E. Haslam, A.P. Davies, M. Williamson, Polyphenol/peptide binding and precipitation, J. Agric. Food Chem. 50 (6) (2002) 1593–1601.

[45] O.A. Rotimi, S.O. Rotimi, C.U. Duru, O.J. Ebebeinwe, A.O. Abiodun, B.O. Oyeniyi, F.A. Faduyile, Acute aflatoxin B1-induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats, Toxicol. Rep. 4 (2017) 408–414, https://doi.org/10.1016/j.toxrep.2017.07.006.

[46] X. Lu, B. Hu, L. Shao, Y. Tian, Y. Jin, Y. Jin, S. Ji, X. Fan, Integrated analysis of transcriptomics and metabolomics profiles in aflatoxin B1-induced hepatotoxicity in rats, Food Chem. Toxicol. 55 (2013) 444–455.

[47] V.S. Mary, M.G. Theumer, S.L. Arias, H.R. Rubinstein, Reactive oxygen species sources, and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells, Toxicology 302 (2) (2012) 299–307.

[48] L. Alspoy, A. Yildirim, G. Agar, The antioxidant effects of vitamin A, C, and E on aflatoxin B1-induced oxidative stress in human lymphocytes, Toxicol. Ind. Health 25 (2) (2009) 121–127.

[49] A. Klindor, A. Forster, G. Caderni, A. Femia, B. Pool-Zobel, Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synergistic combination, Nutr. Cancer 49 (2) (2004) 144–155.

[50] M. Roller, G. Reckkemper, B. Watzl, Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats, J. Nutr. 134 (1) (2004) 153–156.

[51] S. Sevim, G. Topal, M. Tenglimoglu-Metin, B. Sancak, M. Kizil, Effects of inulin and lactic acid bacteria strains on aflatoxin M1 detoxification in yogurt, Food Control 100 (2019) 235–239.

[52] A. Martinez-De-Anda, A. Valdivia, F. Jaramillo-Juarez, J. Reyes, R. Ortiz, T. Quezada, M. De Luna, M. Rodriguez, Effects of aflatoxin chronic intoxication in renal function of laying hens, Poult. Sci. 89 (8) (2010) 1622–1628.

[53] N. Zhang, M. Qi, X. Gao, L. Zhao, J. Liu, C. Gu, W. Song, C. Krumm, L. Sun, D. Qi, Response of the hepatic transcriptome to aflatoxin B1 in ducklings, Toxicon 111 (2016) 69–76.

[54] Y. Gong, S. Watson, M. Routledge, Aflatoxin exposure, and associated human health effects, a review of epidemiological studies, Food Saf. 4 (2016) 14–27.

[55] A. Rolim, R. Henrique-Araújo, E. Ferraz, F. de Araújo Alves Dutra, L. Fernandez, Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences, Genes 554 (2015) 131–139.

[56] M.G. Shehata, A.N. Badr, S.A. El Sohaimy, D. Aker, T.S. Awad, Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives, Ann. Agric. Sci. 64 (1) (2019) 71–78, https://doi.org/10.1016/j.aoas.2019.05.002.