THE URYSOHN UNIVERSAL METRIC SPACE IS HOMEOMORPHIC TO A HILBERT SPACE

VLADIMIR USPENSKIJ

Abstract. The Urysohn universal metric space U is characterized up to isometry by the following properties: (1) U is complete and separable; (2) U contains an isometric copy of every separable metric space; (3) every isometry between two finite subsets of U can be extended to an isometry of U onto itself. We show that U is homeomorphic to the Hilbert space l_2 (or to the countable power of the real line).

1. Introduction

The Urysohn universal metric space U is characterized up to isometry by the following properties: (1) U is complete and separable; (2) U contains an isometric copy of every separable metric space; (3) every isometry between two finite subsets of U can be extended to an isometry of U onto itself. (An isometry is a distance-preserving bijection; an isometric embedding is a distance-preserving injection.) The aim of the present paper is to show that the Urysohn space U is homeomorphic to a Hilbert space (equivalently, to the countable power of the real line). This answers a question raised by Bogatyi, Pestov and Vershik.

There is another characterization of U. Let us say that a metric space M is injective with respect to finite spaces, or finitely injective for short, if for every finite metric space L, every subspace $K \subset L$ and every isometric embedding $f : K \to M$ there exists an isometric embedding $\bar{f} : L \to M$ which extends f. Define compactly injective metric spaces similarly, considering compact (rather than finite) spaces K and L. If a metric space M contains an isometric copy of every finite metric space and satisfies the condition (3) above, then M is finitely injective. Indeed, given finite metric spaces $K \subset L$ and an isometric embedding $f : K \to M$, we find an isometric embedding $g : L \to M$ and extend the isometry $gf^{-1} : f(K) \to g(K)$ to an isometry h of M onto itself. Then $h^{-1}g : L \to M$ is an isometric embedding of L which extends f. Conversely, let M be a finitely injective metric space. Then every countable metric space admits an isometric embedding into M (use induction). If M is also complete, it follows that M contains an isometric copy of every separable metric space. Assume now that M is also separable, and let $f : K \to L$ be an isometry between two finite subsets of M. Enumerating points of a dense countable subset of M and using the back-and-forth method we can extend f to an isometry between two dense countable subsets of M and then to an isometry of M onto itself. The same argument shows

\textit{Date:} 3 September 2003.

\textit{Key words and phrases.} Toruńczyk's criterion, absolute retract, discrete approximation property, homotopically trivial, Polish space.

\textit{2000 Mathematical Subject Classification:} Primary 54F65. Secondary 54C55, 54D70, 54E35, 54E50.
that any two complete separable finitely injective metric spaces are isometric. Thus the Urysohn space U is the unique (up to isometry) metric space which is complete, separable and finitely injective.

The existence of U was proved by Urysohn [8, 9]. An easier construction was found some 50 years later by Katetov [2], who also gave an example of a non-complete separable metric space satisfying the conditions (2) and (3) above, thus answering a question of Urysohn. Katetov’s construction was used in [10, 11, 12] to prove that the topological group $\text{Is}(U)$ of all isometries of U is universal, in the sense that it contains an isomorphic copy of every topological group with a countable base. A deep result concerning the group $G = \text{Is}(U)$ was established by V.Pestov: the group G is extremely amenable, i.e., every compact space with a continuous action of G has a G-fixed point [6, 3].

A.M.Vershik showed that the space U can be obtained as the completion of a countable metric space equipped with a metric which is either “random” or generic in the sense of Baire category [13, 14, 15].

Bogaty˘ı [1] proved that any isometry between two compact subsets of U can be extended to an isometry of U onto itself. It follows by the same argument that we used above for finitely injective spaces that U is compactly injective (and is the unique complete separable compactly injective metric space). Using this, we deduce our Main Theorem from Toruńczyk’s Criterion [4, Theorem 5.2.12]: a complete separable metric space M is homeomorphic to the Hilbert space l_2 if and only if M is AR (= absolute retract) and has the discrete approximation property (this notion is defined below). Recall that all infinite-dimensional separable Banach spaces are homeomorphic to each other and to the countable power of the real line.

Given an open cover \mathcal{U} of a space X, two points $x, y \in X$ are said to be \mathcal{U}-close if there exists $U \in \mathcal{U}$ such that $x, y \in U$. A family of subsets of a space X is discrete if every point in X has a neighbourhood which meets at most one member of the family. A metric space M has the discrete approximation property if for every sequence K_1, K_2, \ldots of compact subspaces of M and every open cover \mathcal{U} of M there exists a sequence of maps $f_i : K_i \to M$ such that for every i and every $x \in K_i$ the points x and $f_i(x)$ are \mathcal{U}-close and the sequence $(f_i(K_i))$ is discrete. Equivalently [7], a metric space (M, d) has the discrete approximation property if and only if for every sequence K_1, K_2, \ldots of compact subspaces of M and every continuous function h on M with values > 0 there exists a sequence of maps $f_i : K_i \to M$ such that $d(x, f_i(x)) \leq h(x)$ for every i and every $x \in K_i$, and the sequence $(f_i(K_i))$ is discrete.

Let us reformulate Toruńczyk’s Criterion in the form that is convenient for our purposes. We say that a topological space X is homotopically trivial if X has trivial homotopy groups, that is, every map of the n-sphere $S^n = \partial B^{n+1}$ to X admits an extension over the $(n + 1)$-ball B^{n+1} ($n = 0, 1, \ldots$). (The term weakly homotopically trivial might be more appropriate.) Every contractible space is homotopically trivial; the converse in general is not true. The empty space is homotopically trivial. If a metric space M has a base \mathcal{B} such that for every non-empty finite subfamily $\mathcal{F} \subset \mathcal{B}$ the intersection $\cap \mathcal{F}$ is homotopically trivial, then M is ANR [4, Theorem 5.2.12]. A metric space is AR if and only if it is homotopically trivial and ANR [4, Theorem 5.2.15]. Thus Toruńczyk’s Criterion can be reformulated as follows:
Theorem 1.1 (Toruńczyk’s Criterion). A complete separable metric space \(M \) is homeomorphic to a Hilbert space if and only if the following conditions hold:

(i) there is a base \(\mathcal{B} \) for \(M \) such that \(U, V \in \mathcal{B} \) implies \(U \cap V \in \mathcal{B} \), and every \(U \in \mathcal{B} \) is homotopically trivial;

(ii) \(M \) is homotopically trivial;

(iii) \(M \) has the discrete approximation property.

In the next section we show that the space \(U \) satisfies the conditions of this criterion.

2. Proof of the main theorem

Theorem 2.1 (Main Theorem). The Urysohn universal space \(U \) is homeomorphic to a Hilbert space.

Proof. We check the three conditions of Toruńczyk’s criterion.

(a) Let \(\mathcal{B} \) be the base for \(U \) consisting of all open balls \(O(a, r) = \{ x \in U : d(x, a) < r \} \) and their finite intersections. We claim that every member \(V = \bigcap_{i=1}^{k} O(a_i, r_i) \) of \(\mathcal{B} \) is homotopically trivial. Let a map \(f : S^n \to V \) be given. We must construct an extension \(\bar{f} : B^{n+1} \to V \).

Every metric space admits an isometric embedding into a normed linear space. Thus we may consider \(U \) as a subspace of a Banach space \(B \). Let \(V' = \bigcap_{i=1}^{k} O'(a_i, r_i) \), where \(O'(a, r) \) is the open ball centered at \(a \) of radius \(r \) in the space \(B \). Then \(V = V' \cap U \).

(b) Let \(\bar{f} \) be a continuous function \(\bar{f} : \bigcap_{i=1}^{k} O(a_i, r_i) \to G \) such that \(\bar{f} \) is contained in \(V' \), since for every \(x \in B^{n+1} \) and \(i = 1, \ldots, k \) we have \(d(f(x), a_i) = d(h(g(x)), h(a_i)) = d(g(x), a_i) < r_i \) (note that \(h(a_i) = a_i \), since \(a_i \in K \) and \(h \) fixes all points in \(K \)).

(c) The space \(U \) is homotopically trivial. The proof is the same as above but easier, since we do not have to care about points \(a_1, \ldots, a_k \).

We prove that \(U \) has the discrete approximation property. Let \(K_1, \ldots, K_n, \ldots \) be a sequence of non-empty compact subsets of \(U \), and let \(h \) be a continuous function on \(U \) with values \(> 0 \). We must construct a discrete sequence \((L_n) \) of compact subsets of \(U \) and a sequence of maps \(f_n : K_n \to L_n \) such that \(d(f_n(x), x) \leq h(x) \) for every \(n \geq 1 \) and \(x \in K_n \).

We’ll need the notion of union of two metric spaces with a subspace amalgamated. Suppose that \(M_1, M_2, A \) are metric spaces, \(A \neq \emptyset \), and isometric embeddings \(f_i : A \to M_i, i = 1, 2 \), are given. The union \(M \) of \(M_1 \) and \(M_2 \) with the subspace \(A \) amalgamated is characterized by the following properties: there exist isometric embeddings \(h_i : M_i \to M \) such that \(M = h_1(M_1) \cup h_2(M_2) \), \(h_1f_1 = h_2f_2 \), and for every \(x \in M_1 \setminus f_1(A) \), \(y \in M_2 \setminus f_2(A) \)

\[
d(h_1(x), h_2(y)) = \inf\{d_1(x, f_1(z)) + d_2(f_2(z), y) : z \in A\},
\]

where \(d, d_1, d_2 \) are the metrics on \(M \), \(M_1 \), \(M_2 \), respectively. It is easy to see that such a space \(M \) exists and in the obvious sense is unique.
Let $N_i \subset K_i \times \mathbb{R}$ be the union of $K_i \times \{0\}$ and the graph of the restriction of h on K_i. Equip $K_i \times \mathbb{R}$ with the metric ρ defined by

$$\rho((x,t), (y,s)) = d(x,y) + |s-t|,$$

and consider the induced metric on N_i.

We now construct a sequence (L_n) of compact subsets of U by induction. Suppose the sets L_i have been defined for $i < n$. We define L_n. Consider two compact metric spaces: $K_n \cup \bigcup_{i<n} L_i$ and N_n. Since K_n lies in the first space and has a natural embedding into the second one (we mean the embedding $x \mapsto (x,0)$), we can construct their union with the subspace N_n amalgamated. Write this union as $P = \bigcup_{i<n} L_i \cup K_n \cup \Gamma_n$, where $\Gamma_n = \{(x,h(x)) : x \in K_n\}$ is the graph of $h \upharpoonright K_n$. Since U is compactly injective, there exists an isometric embedding $\phi : P \to U$ which is identity on each L_i ($i < n$) and on K_n. Let $L_n = \phi(\Gamma_n)$. Let $f_n : K_n \to L_n$ be the composition of the map $x \mapsto (x,h(x))$ from K_n onto Γ_n and ϕ. For every $x \in K_n$ the distance from $(x,0)$ to $(x,h(x))$ in N_n is equal to $h(x)$, hence the distance from x to $(x,h(x))$ in P and the distance from x to $f_n(x)$ in U also are equal to $h(x)$. Thus f_n moves every $x \in K_n$ by $h(x)$.

Note that for every $x \in K_n$ and $y \in \bigcup_{i<n} L_i$ the distance from $f_n(x)$ to y is $\geq h(x)$. Indeed, by our construction this distance is equal to the distance from $(x,h(x)) \in \Gamma_n$ to y in P and thus also to

$$\inf\{d(y,z) + \rho((z,0), (x,h(x))) : z \in K_n\} = \inf\{d(y,z) + d(z,x) + h(x) : z \in K_n\} = d(y,x) + h(x) \geq h(x).$$

To conclude the proof, we must show that the sequence (L_n) is discrete. Assume the contrary. Since the sequence (L_n) is disjoint, there exists an infinite set A of positive integers and points $y_i \in L_i$ ($i \in A$) such that the sequence $\{y_i : i \in A\}$ converges to some $p \in U$. Write $y_i = f_i(x_i)$, where $x_i \in K_i$. The distance from y_n to $\{y_i : i < n, i \in A\} \subset \bigcup_{i<n} L_i$ tends to zero as $n \in A$ tends to infinity. On the other hand, we saw in the preceding paragraph that this distance is $\geq h(x_n)$. Therefore the sequence $\{h(x_n) : n \in A\}$ tends to zero. Since $d(x_n,y_n) = d(x_n,f_n(x_n)) = h(x_n) \to 0$ and $y_n \to p$, it follows that $x_n \to p$. But this contradicts the continuity of h at p: we have $h(p) > 0$, $x_n \to p$ and $h(x_n) \to 0$.

\begin{thebibliography}{9}
\bibitem{1} S.A. Bogatyǐ, \textit{Metrically homogeneous spaces} (Russian), Uspekhi Mat. Nauk 57 (2002), no. 2(344), 3–22; translation in Russian Math. Surveys 57 (2002), no. 2, 221–240.
\bibitem{2} M. Katětov, \textit{On universal metric spaces}, in book: \textit{General Topology and its Relations to Modern Analysis and Algebra VI: Proceedings of the Sixth Prague Topological Symposium 1986}, Z. Frolik (editor), Berlin: Heldermann Verlag, 1988, pp. 323–330.
\bibitem{3} A.S. Kechris, V.G. Pestov, and S. Todorcevic, \textit{Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups}, arXiv: \texttt{math.LO/0305241}.
\bibitem{4} J. van Mill, \textit{Infinite-dimensional topology: Prerequisites and Introduction}, North-Holland, 1989.
\bibitem{5} M. Bestvina, P. Bowers, J. Mogilski, J. Walsh, \textit{Characterization of Hilbert space manifolds revisited}, Topol. Appl. 24 (1986), 53–69.
\bibitem{6} V. Pestov, \textit{Ramsey – Milman phenomenon, Urysohn metric spaces, and extremely amenable groups}, Israel J. Math. 127 (2002), 317–357; arXiv: \texttt{math.FA/0004010}.
\bibitem{7} H. Toruńczyk, \textit{Characterizing Hilbert space topology}, Fund. Math. 111 (1981), no. 3, 247–262.
\bibitem{8} P. Urysohn, \textit{Sur un espace métrique universel}, C. R. Acad. Sci. Paris 180 (1925), 803–806.
\end{thebibliography}
[9] P. Urysohn, *Sur un espace métrique universel*, Bull. Sci. Math. 51 (1927), 43–64 and 74–90.
[10] V. Uspenskij, *On the group of isometries of the Urysohn universal metric space*, Comment. Math. Univ. Carolinae 31 (1990), no. 1, 181–182.
[11] V. Uspenskij, *On subgroups of minimal topological groups*, arXiv: math.GN/0004119
[12] V. Uspenskij, *Compactifications of topological groups*, Proceedings of the Ninth Prague Topological Symposium (Prague, August 19–25, 2001). Edited by Petr Simon. Published April 2002 by Topology Atlas (electronic publication). Pp. 331-346; arXiv: math.GN/0204144
[13] A.M. Vershik, *The universal Urysohn space, Gromov's metric triples, and random metrics on the series of natural numbers*, Uspekhi Matem. Nauk 53 (1998), no. (5), pp. 57-64. English translation: Russian Math. Surveys 53 (1998), no. (5), pp. 921-928; Correction: Uspekhi Mat. Nauk 56 (2001), no. 5, p. 207; translation in Russian Math. Surveys 56 (2001), no. 5, p. 1015.
[14] A.M. Vershik, *Random metric spaces and the universal Urysohn space*, Fundamental Mathematics Today. 10th anniversary of the Independent Moscow University. MCCME Publ., 2002.
[15] A.M. Vershik, *Random metric space is universal Urysohn space*, Doklady RAN, 2002, 386, no. 6, to appear.

321 MORTON HALL, DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701, USA
E-mail address: uspensk@math.ohiou.edu