Stickiness in Chaos

G. Contopoulos and M. Harsoula
Research Center for Astronomy
Academy of Athens, Soranou Efesiou 4, 11527 Athens

Abstract

We distinguish two types of stickiness in systems of two degrees of freedom (a) stickiness around an island of stability and (b) stickiness in chaos, along the unstable asymptotic curves of unstable periodic orbits. In fact there are asymptotic curves of unstable orbits near the outer boundary of an island that remain close to the island for some time, and then extend to large distances into the surrounding chaotic sea. But later the asymptotic curves return close to the island and contribute to the overall stickiness that produces dark regions around the islands and dark lines extending far from the islands. We studied these effects in the standard map with a rather large nonlinearity $K=5$, and we emphasized the role of the asymptotic curves U, S from the central orbit $O (x=0.5, y=0)$, that surround two large islands O_1 and O'_1, and the asymptotic curves U, U_{\pm}, S_{\pm} from the simplest unstable orbit around the island O_1. This is the orbit $4/9$ that has 9 points around the island O_1 and 9 more points around the symmetric island O'_1. The asymptotic curves produce stickiness in the positive time direction (U, U_{\pm}, U_{\pm}) and in the negative time direction (S, S_{\pm}, S_{\pm}). The asymptotic curves U_{\pm}, S_{\pm} are closer to the island O_1 and make many oscillations before reaching the chaotic sea. The curves U, S are further away from the island O_1 and escape faster. Nevertheless all curves return many times close to O_1 and contribute to the stickiness near this island. The overall stickiness effects of U_{\pm}, U_{\pm} are very similar and the stickiness effects along S_{\pm}, S_{\pm} are also very similar. However the stickiness in the forward time direction, along U_{\pm}, U_{\pm} is very different from the stickiness in the opposite time direction along S_{\pm}, S_{\pm}. We calculated the finite time LCN (Lyapunov characteristic number) $\chi(t)$, which is initially smaller for U_{\pm}, S_{\pm} than for U_{\pm}, S_{\pm}. However after a long time all the values of $\chi(t)$ in the chaotic zone approach the same final value $\text{LCN}=\lim_{t \to \infty} \chi(t)$. The stretching number (LCN for one iteration only) varies along an asymptotic curve going through minima at the turning points of the asymptotic curve. We calculated the escape times (initial stickiness times) for many initial points outside but close to the island O_1. The lines that separate the regions of the fast from the slow escape time follow the shape of the asymptotic curves S_{\pm}, S_{\pm} We explained this phenomenon by noting that lines close to S_{\pm} on its inner side (closer to O_1) approach a point of the orbit $4/9$, say P_1, and then follow the oscillations of the asymptotic curve U_{\pm}, and escape after a rather long time, while the curves outside S_{\pm} after their approach to P_1 follow the shape of the asymptotic curves U_{\pm} and escape fast into the chaotic sea. All these curves return near the original arcs of U_{\pm}, U_{\pm} and contribute to the overall stickiness close to U_{\pm}, U_{\pm}. The isodensity curves follow the shape of the curves U_{\pm}, U_{\pm} and the maxima of density are along U_{\pm}, U_{\pm}. For a rather long time the stickiness effects along U_{\pm}, U_{\pm} are very pronounced. However after much longer times (about 1000 iterations) the overall stickiness effects are reduced and the distribution of points in the chaotic sea outside the islands tends to be uniform. The stickiness along the asymptotic curve U of the orbit O is very similar to the stickiness along the asymptotic curves U_{\pm}, U_{\pm} of the orbit $4/9$. This is related to the fact that the asymptotic curves of O and $4/9$ are connected by heteroclinic orbits. However the main reason for this similarity is the fact that the asymptotic curves U_{\pm}, U_{\pm} cannot intersect but follow each other.
1. Introduction

When we were trying to find the limits of some islands of stability in a dynamical system of two degrees of freedom we found some orbits that stayed for a long time around these islands, but then escaped to the large chaotic sea surrounding the islands (Contopoulos 1971). This was the first example of a stickiness phenomenon. Later similar results were found by many others (Shirts and Reinhardt 1982, Karney 1983, Meiss et al. 1983, Menjuk 1983,1985, etc). This phenomenon was called stickiness by Karney (1983).

It was realized that the stickiness phenomenon was due to the existence of cantori surrounding the sticky zone. Cantori are invariant sets consisting of infinite points, that do not form continuous lines (tori), but leave small gaps everywhere (Aubry 1978, Percival 1979). They are produced by the destruction of invariant tori, as the perturbation increases. When the holes are small they provide a partial barrier for the chaotic orbits inside them. Thus while the invariant curves do not allow any communication between an inner chaotic orbit with the outer chaos, when the last invariant curve (last KAM curve) is destroyed a communication of the inner and the outer chaotic regions is possible. Since that time much further work has been done on stickiness related to cantori (Chirikov and Shepelyansky 1984, Bensimon and Kadanoff 1984, MacKay et al. 1984, Harison et al. 1985, Meiss and Ott 1986, Meiss 1992, Mahon et al. 1995, Contopoulos et al. 1995, 1997, Kandrup et al. 1999, Contopoulos 2004 etc.). The phenomenon of the crossing of cantori was described in detail by Efthymiopoulos et al. (1997).

It is well known that chaos appears first near unstable periodic orbits. It is produced by the homoclinic and heteroclinic intersections of the asymptotic curves of unstable periodic orbits. However, up to now there has been no detailed study of the asymptotic curves that produce the effect of stickiness. It is the purpose of this paper to provide a detailed study of the asymptotic curves in a sticky region and their relation to the chaotic orbits in the large chaotic sea. The importance of such a study is due to the fact that the unstable periodic orbits and their asymptotic curves are different in different dynamical systems. Even completely chaotic systems (Anosov systems) have differences in the structure of their asymptotic curves. Thus the corresponding stickiness phenomena make such systems to look different for some time, even if later on all Anosov systems look similar.

In fact the stickiness effects sometimes last for very long times. E.g. in galactic dynamics they may last longer than the age of the Universe (Contopoulos 2004).

In the present paper we distinguish two types of stickiness:
(a) stickiness around an island of stability, and
(b) stickiness near unstable asymptotic curves in the chaotic sea. This is what we call “stickiness in chaos”.

The stickiness around an island is produced by cantori surrounding this island, that do not allow a fast communication of the region inside a given cantorus with the region outside it. However stickiness appears also at relatively large distances from an island in the form of dark lines among a mostly uniform distribution of points in a chaotic sea (Fig.1). This stickiness is due to concentrations of points close to the unstable asymptotic curves of unstable periodic orbits. In fact the unstable asymptotic curves act as attractors of points outside them. Orbits close to a stable asymptotic curve, approach the unstable periodic orbit but later they deviate from the periodic orbit following closely unstable asymptotic curves. In particular if the eigenvalue \(\lambda \) of the periodic orbit is only slightly above 1 the nonperiodic orbits stay for a long time close to the periodic orbit (Contopoulos et al 1999). In general, the
greater the eigenvalue λ of the periodic orbit, the faster the nonperiodic orbits will deviate from it.

The two types of stickiness are not clearly separated. In fact the sticky zone around an island follows the unstable asymptotic curves of the unstable periodic orbits in this region. These asymptotic curves pass later through the holes of the cantori and enter the large chaotic sea. Thus they produce stickiness of the second type, along particular dark lines that extend far from the islands in the chaotic sea. Such a type of stickiness appears even when the island disappears for a larger perturbation.

Similar stickiness phenomena appear close to the stable asymptotic curves if we change the direction of time. In the inverted time direction the roles of stable and unstable asymptotic curves are inverted. In the following we will use both directions of time in our calculations.

The concentration of points near unstable invariant curves is obvious only for some time. In fact after a long time the points deviate very much from each other and the darkness due to the distribution of points becomes practically everywhere equal to the darkness near the asymptotic curves, which are not conspicuous anymore (see section 6).

In the present paper we study orbits (sets of points) in the standard map

$$x_{i+1} = x_i + y_{i+1} \pmod{1} \quad (1)$$

$$y_{i+1} = y_i + \frac{K}{2\pi} \sin(2\pi x_i)$$

with a time step $\Delta i=1$ (i is a kind of discrete time), for a value of K (K=5) where the stickiness phenomenon is evident. This value is relatively large in the sense that the phase space (x,y) contains very large chaotic domains, nevertheless there are still some important islands of stability. In the present case there are two main islands (O_1 and O'_1) symmetric with respect to the center ($x=y=0.5$), but most of the space around them is chaotic. The main (unstable) periodic orbits in the chaotic domain are the orbits $(0,0)$ and $O(0.5,0)$. The orbit $(0,0)$ is unstable for all $K>0$. For small K ($K>0$) there is chaos practically only close to the asymptotic curves from $(0,0)$. As K increases chaos increases and for $K>0.97$ the last invariant curve separating the chaotic domains close to $y=1$ from those close to $y=0$ is destroyed and chaotic orbits can go all the way from $y=0$ to $y=1$ (see, e.g. Contopoulos 2004).

The periodic orbit $O(0.5,0)$ is stable for $K<4$ and unstable for $K\geq 4$. For K slightly larger than 4 a chaotic domain is generated near O but it does not communicate with the outer chaotic sea, until about $K=4.35$. However, for larger K the large chaotic sea reaches the region close to O and surrounds the islands around O_1 and O'_1. In all cases with $K>4$ the stickiness effects in the chaotic region are mainly regulated by the asymptotic curves of the simple periodic orbit O.

We study, first, a typical case of the asymptotic curves from this periodic orbit for a value of $K=5$ which is larger than $K=4.35$. In such a case the asymptotic curves from O surround the islands O_1, O'_1 and fill the whole chaotic sea outside these islands.

Around the main islands O_1 and O'_1 there are several unstable periodic orbits surrounded by cantori that allow communication with the outer chaotic sea. The simplest periodic orbit around O_1 for $K=5$ is the unstable orbit 4/9 that generates a large degree of stickiness, as we will see later. This orbit is generated from the orbit O_1 when $K=4.8765$ and its 9 points move outwards as K increases. For K slightly above $K=4.8765$ this orbit is inside a set of invariant curves around O_1, but for $K=5$ it is outside all invariant curves and its asymptotic curves reach the large chaotic sea. The last KAM curve that surrounds the orbit 4/9 for $K<5$ is the
one with noble rotation number \([2,3,1,1,…]\) (Efthymiopoulos et al, 1997), which has become a cantorus with large holes for \(K=5\).

The periodic orbits, are found by giving an initial guess and then using a Newton-Raphson iterative method. Then we diagonalize the monodromy matrix

\[
M = \begin{bmatrix}
1 + k \cos(2\pi x) & 1 \\
k \cos(2\pi x) & 1
\end{bmatrix}
\]

(2)

The eigenvalues satisfy the relation \(\lambda_1, \lambda_2 = 1\) and the greater value corresponds to the unstable direction. In order to calculate the asymptotic curves we take a small initial segment of length \(10^{-6}\) to \(10^{-4}\) along the asymptotic vectors from the unstable periodic orbit and then we map a number of initial conditions on this segment forward in time along the unstable asymptotic curves and backward in time along the stable asymptotic curves. In order to produce dense asymptotic curves we vary the number of initial conditions empirically, taking a greater number for larger values of the eigenvalue of the unstable periodic orbit.

In the following sections we study the asymptotic curves of the orbit \(O\) (section 2), the asymptotic curves of the unstable orbit \(4/9\) (section 3), the Lyapunov characteristic numbers and the “stretching numbers” along the asymptotic curves (section 4), the escapes from the neighborhood of the island \(O_1\) (section 5), the overall stickiness around the island \(O_1\) (section 6) and the heteroclinic orbits (section 7). In section 8 we make some general remarks and draw our conclusions.

The asymptotic curves are described in some detail in order to emphasize the topological character of such curves. In other systems the details are different, but the topological features are common. Thus the present example should be considered as representative of much more general dynamical systems.

2. Asymptotic curves of the unstable periodic orbit \(O\)

For \(K=5\) the orbit \(O\) \((x=0.5, y=0)\) of period 1 is unstable, while the period-2 family \((O_1, O'_1)\), that bifurcated from \(O\) when \(K\) was equal to 4, is stable (Fig.2).

The asymptotic curves \(U\) (unstable) and \(S\) (stable) start at the point \(O\) upwards. (There are two more curves, symmetric to the above with respect to the center of the figure \((x=y=0.5)\)).

The unstable asymptotic curve \(U\) after a maximum \(y\), goes to a maximum deviation on the left from \(O_1\) at the region \(U\) (Fig.2). Then it goes downwards to \(y=0\) and beyond (continuing from \(y=1\) because of the modulo 1) to the minimum \(A\). Then it returns through \(y=1(\equiv 0)\) to a maximum \(y\), completing the thin lobe \(A\). After that it forms a deeper lobe \(B\) and terminates at another maximum, larger than the previous one. Then it forms a long lobe \(C\), that continues beyond a minimum \(C\) to the right and upwards. Further lobes are longer and approach closer and closer the original arc of the asymptotic curve \(U\) above \(O\).

The stable asymptotic curve \(S\) is calculated backwards in time. Then we use the map:

\[
x_{i-1} = x_i - y_i \\
y_{i-1} = y_i - \frac{K}{2\pi} \sin 2\pi(x_i - y_i)
\]

(3)

After a first maximum \(y\) the curve \(S\) goes through the region \(S\) on the right of \(O_1\) (Fig.2) then downwards to \(y=0\). The curve \(S\) continues from \(y=1\) to a minimum of the lobe a, and then it goes to a maximum \(y\), completing the thin lobe \(a\). The next lobes are \(b, c, d,\ldots\) each one longer than the previous one. These lobes pass closer and closer to the periodic orbit \(O\), and
to the original arc S. Successive lobes join at the maxima y: a-b, b-c, c-d (Fig.2). Every successive lobe is close to the previous one up to a certain distance, but then it deviates and extends to larger distances.

The asymptotic curves U,S from O (0.5,0) intersect the asymptotic curves of the unstable periodic orbit $4/9$ at infinite heteroclinic points. Thus the curves U,S “guide” the asymptotic curves $S\pm U\pm$ from $4/9$ and lead them into the chaotic sea (section 7).

3. Asymptotic curves of the unstable periodic orbit $4/9$

This periodic orbit is represented by 9 points in Figs. 2 and 3a,b,c: $P_1, P_2,\ldots P_9$. There are 9 more points symmetric to the above with respect to the center (0.5,0.5) thus the orbit is in fact of multiplicity 18. The successive points in the mapping are $P_1, P_6, P_2, P_7, P_3, P_8, P_4, P_9, P_5$ i.e. every 4 points counterclockwise. Between the unstable points there are 9 points corresponding to a stable periodic orbit of period 18 (because there are 9 more stable points around O_1'). In Fig.3a we mark this stable periodic orbit by gray dots (that are surrounded by small islands of stability). We calculate the asymptotic curves: inner stable (slow) S_- (Fig.3a), outer stable (fast) S_- (Fig.3b) and inner unstable (slow) U_- (Fig.3c), from every point P_i.

The calculations of Fig. 3a, b, c are made by plotting 8 successive iterates of 10^4 evenly spread initial points along an eigenvector from every point P_i within a distance 10^{-6} from P_i. We notice that Figs. 3a and 3b are similar, but Fig. 3b has many more points in the chaotic sea. This is due to the fact that particles along the fast stable asymptotic curves (S_-) escape faster in the chaotic sea and populate the chaotic sea for a longer time before returning close to the island O_1. In the same way the fast unstable asymptotic curve (U_-) is similar to U_+, but stays longer in the chaotic sea.

A comparison of the arcs U_+ and S_+ is shown in Fig.4. We see that the arcs U_+ and S_+ around the island $4/9$ are quite different.

We describe now in some detail the various asymptotic curves. The arcs S_+, U_+ (slow) are inwards (towards the center of the island) while S_-, U_- (fast) are outwards (Fig.5a). The point P_1 is at $(x=0.642118, y=0.369344)$. This point is on the left of the islands $9/20, 14/31, 5/11,\ldots$ that are described by Efthymiopoulos et al (1997). The resonance $4/9$ is simpler than the other resonances (it is represented by fewer points). The islands $4/9, 9/20, 14/31$ are in the chaotic zone outside the island O_1, while $5/11$ is inside the last KAM curve surrounding the island O_1. The stable periodic orbit O_1 is further to the right, at $(x=0.68002, y=0.36002)$. The arcs U_-, S_- (Fig.5a) intersect for the first time at a homoclinic point h_1, and define a resonance region R_1, while the arcs S_-, U_- intersect at a homoclinic point h'_1 and define a resonance region R_2. The outer arcs U_- and S_- up to the homoclinic points are longer than the corresponding inner arcs S_- and U_+.

The asymptotic curve S_+

The inner asymptotic curve S_+ starts from P_1 upwards to the right (Fig.5a,b) towards the neighbourhood of P_2. It makes a number of oscillations close to P_2, going through the successive points $S_1, S_2, S_3, S_4, S_5, S_6, S_7$. One of the longest oscillations to the left reaches the minimum S_8 (Fig.5b), continues to the maximum S_9 then to the minimum S_{10}, maximum S_{11} and minimum S_{12}. After that it returns along an almost identical parallel arc, to the maximum S_{13}, minimum S_{14}, maximum S_{15}, minimum S_{16} and then outside the point S_6 upwards and to the right, to the neighborhood of P_3 and beyond it, up to the neighborhood of P_7 (point S_{17} outside the figure). Then the curve S_+ returns to $S_{18}, S_{19}, S_{20}, S_{21}$ and proceeds downwards, all the way to the axis $y=0$ in the large chaotic sea.
After $y=0$ this arc continues, because of the modulo 1, from $y=1$ downwards (point S_{22}). After several further oscillations it comes again close to S_{12}, but to its right, then goes clearly above S_{11} and S_{10}, through a maximum S_{23} and a minimum S_{24} and reaches S_{25} (Fig. 5b). Then it returns, along a close by path, through S_{26} and S_{27} and reaches again the large chaotic sea going below the axis $y=0$ (point S_{28}). Thus a lobe is formed from the chaotic sea to the point S_{25} and back to the chaotic sea. A similar lobe from the chaotic sea reaches the maximum S_{29} (Fig. 5b) and returns to the chaotic sea (point S_{30}). Further lobes are formed above the point S_{29} that fill a region between P_9 and P_1. Such are the lobes C and B of Fig.4. However a little above S_{27} there is an island of stability around one point of the stable periodic orbit $4/9$ that is avoided by the curve S_+. After a longer time the curve S_+ from P_1 comes close to the other periodic points P_i, but it cannot cross the corresponding curves S_{\pm} from these points. In Fig. 3a we give the curves S_+ from all the points P_i.

The area A between and below the lines S_8-S_9 and S_9-S_{10} is open and belongs to the large chaotic sea (Fig. 5b). This open area and the areas inside the lobes reaching the points S_{25} and S_{29} communicate, without any barrier from other arcs S_+, with the large chaotic sea. Therefore if an orbit starts inside the area A, or inside the lobes S_{25}, S_{29} it escapes very fast.

The only uncertainty is what are the inner limits of the region A and of the lobes S_{25}, S_{29} etc. If one calculates the asymptotic curve only up to the point S_{12}, one has the impression that the inner limit of the region A is provided by the arcs S_8-S_9-S_{10}-S_{11}-S_{12}. However after a longer calculation we find that the limit of A is marked by the arcs S_{12}-S_{13}-S_{14}-S_{15}-S_{16} and after an even longer calculation we find that the limit of A is provided by the arcs S_{18}-S_{19}-S_{20}-S_{21} going to S_{22}.

Now, are there further arcs of the asymptotic curve S_+ that restrict even further the area A? One expects the continuation of S_+ to fill the large chaotic sea itself, and this includes the area A and the lobes S_{25}, S_{29}. However this filling takes a very long time.

At any rate the asymptotic curve S_+ is probably ergodic outside the islands of stability, i.e. it probably approaches arbitrarily closely all points of the square $(0,1)$x$(0,1)$ outside the islands.

A numerical argument in favor of this ergodic hypothesis is that the higher order iterations of the original points of the asymptotic curve S_+ are more or less smoothly distributed all over the large chaotic sea outside the islands O_1 and O'_1. This smooth distribution is more clearly seen in the iterates of the initial points along the curve S. (Fig.3b). Even inside the region A defined above there are scattered points (in Fig.3b) representing higher order images of points on the asymptotic curve S_+. Therefore it seems that there are no real empty regions outside the islands that are not reached by the curves S_+ and S_-.

The asymptotic curve S_-

While the asymptotic curve S_- approaches P_2 and makes several oscillations around it, the curve S_- (Fig.5a) goes directly into the large chaotic sea. The original arc S_- from P_1 starts on the right and very close to the arc S_{25}-S_{26} downwards, continuing above the point S_{27} in Fig.5b, and then it goes fast to the axis $y=0$ between the lobes S_{25} and S_{29}, then from $y=1$ the curve S_- goes to a minimum marked as “end S_-“ inside the lobe b of S in Fig.2. Then it returns to $y=1\equiv 0$ and from $y=0$ to a maximum y above $y=0$ and afterwards it goes again to the large chaotic sea. After going to large distances in the large chaotic sea, from time to time the curve S_- comes back close to the periodic points P_1-P_9 (Fig.3b).

The overall distribution of the points of S_- is similar to the distribution of the points of S_+ (Fig.3a). Although there are many differences in the details there are also many similarities. However we notice that the lines that are clearly seen in Fig.3a are approximated by fuzzy lines in Fig.3b because they correspond to higher order arcs where the distances between successive points are larger than during the first iterations. The points in the chaotic sea are
more dense in Fig.3b than in Fig.3a. This means that S. spends more time in the chaotic sea than S+.

The similarity of the overall forms of S. and S+ is due to the fact that these curves cannot cross each other. Thus when the curve S. returns close to the island O1 it has to avoid the various arcs of S+ in this region, therefore it follows to some degree the arcs of S+.

The asymptotic curves U+, U-.

The overall forms of the unstable asymptotic curves U+ (Fig. 3c) and U- are similar to each other, but quite different from the stable asymptotic curves S+, S- (Figs. 3a,b). However the first arcs of U. are rather different from those of U+. The initial arc of U+ from P1 reaches the neighborhood of P0 and makes oscillations near P0 (Fig. 5a and c). After some oscillations of relatively short extent from maxima to minima y, e.g. 5, 6, 7 in Fig. 5c (the minima and maxima 1,2,3,4 are close to P0 and are marked in this figure) it reaches a minimum x (point 8 of Fig. 5c) on the left and after one more oscillation above the point 8 (points 9,10) it reaches a minimum y above P8 (point 11). Then it goes above P1P2P3, a little above the curve U+ and to the right of P4P5P6 downwards to the large chaotic sea close to the axis y=0 (Fig.5c). This happens at the 8th iteration of the original arc of length 10⁻⁶ along U+. Figure 5c giving the structure of the unstable asymptotic curve U+, should be compared with Fig.5b which gives the structure of the stable asymptotic curve S+. We notice that although U+ makes several oscillations before going into the chaotic sea, its form is much simpler than S+ which makes many more oscillations.

Similar lines extending to the large chaotic sea are generated from the other points P1 of the periodic orbit 4/9.

After visiting many areas in the large chaotic sea the curve U+ returns close to the points P1 and forms new lobes, like the two lobes close and below P1 in Fig.3c.

A comparison of the curves U+ and S+ in a region below P1 is given in Fig.4. These curves surround an empty region occupied by an island around the stable orbit 4/9. The curves U+ and S+ have quite different forms and they intersect at an infinity of homoclinic points.

The asymptotic curve U- goes to large distances (Fig.5a) and reaches the large chaotic sea quite fast. In fact the 5th iteration of the original arc of length 10⁻⁶ along U+ from P1 not only reaches the axis y=0 but forms also several lines in the chaotic sea, surrounding the whole island O1 (Fig.5c) and then enters again in the region close to P1.

The overall form of U- is similar to U+ (Fig.3c), but its lines are more fuzzy, because U- stays for a longer time in the large chaotic sea and it returns close to the points P1,P2...P9 later. The similarity of U- and U+ is due to the fact that these lines cannot cross each other, therefore when they return close to the island O1 they form similar arcs around this island.

4. Lyapunov characteristic numbers and stretching numbers

The degree of stickiness is related to the Lyapunov characteristic number (LCN) and in particular with the “local LCN” (or “stretching number” Voglis and Contopoulos 1994) of the orbits

\[\alpha_i = \ln \left| \frac{\xi_{i+1}}{\xi_i} \right| \]

(3)
where ξ_i is the deviation at time i. In general small stretching numbers generate a larger stickiness.

Very near an unstable periodic orbit the stretching number is equal to the logarithm of the larger eigenvalue of the orbit. The eigenvalue of the orbit P_1 is $\lambda_0=1.1546$ for one iteration, i.e. $\lambda=(1.1546)^{18} = 13.298$ after 18 iterations, i.e. one return close to P_1. The Lyapunov characteristic number (LCN) of the periodic orbit P_1 is equal to $\text{LCN}(P_1)=\ln\lambda=2.5876$. We take 10^4 points along S_+, U_+, S_-, U_- with a step 10^{-8} (total length along each arc 10^{-4}). After n 18-ple iterations the length of an initial arc L_0 along U_+, U_- is

$$L_n=L_0\lambda^n \quad (4)$$

After 4 iterations the arcs along S_+, U_+ just reach the neighborhoods of P_2 and P_9 respectively after several oscillations (Fig.5a) while the arcs S_-, U_- extend to longer distances, and at their 3rd iteration they reach the chaotic region near the axis $y=0$. After 5 iterations the initial length 10^{-4} along S_+ reaches approximately the point S_6 of Fig.5b and after 6 iterations it describes all the curves of Figs.5b (including the lobe S_{29}).

The average value of the stretching number is the “finite time LCN”, defined by the relation

$$\chi(t) = \ln(\frac{\xi}{\xi_0})/t = (1/t)\sum_{i=0}^{t} a_i \quad (5)$$

where ξ and ξ_0 are the deviations of two infinitesimally close orbits at times t and 0.

The function $\chi(t)$ for initial conditions close to P_1 along the manifolds U_+, U_-, S_+, S_- is given in Fig. 6a for a relatively short time. After a much longer time the value of $\chi(t)$ tends to the usual “Lyapunov characteristic number” $\text{LCN} = \lim_{t \to \infty} \chi(t)$.

We see that $\chi(t)$ is almost constant up to $t \approx 6$ (Fig.6a), approximately equal to $\alpha=\ln(13.298)=2.588$, i.e. equal to the value of a at P_1. The constancy of a means simply that up to 6 iterations the points remain so close to P_1 that the linear theory is applicable there. After $t=6$ the values of $\chi(t)$ for the various asymptotic curves start to be differentiated. In fact if we take orbits starting in the chaotic sea and arbitrary initial deviation $\xi_0 = (\xi_{x0}^2 + \xi_{y0}^2)^{1/2}$ we find the same limit $\text{LCN} \approx 17.0$ as above. An example is shown as a thick line C in Fig. 6a. The orbit C starts at $(x=0.3, y=0.5$) with infinitesimal deviations ξ_{x0}, ξ_{y0}, and the iterates ξ_{x1}, ξ_{y1} are found from the variational equations corresponding to Eq.(1), but after 18 iterations in order to compare the deviations from this orbit with the deviations along U_+ , S_+.

We notice that the LCN of the chaotic orbits is $\text{LCN} \approx 17.0$ is much larger than the LCN of the periodic orbit P_1 ($\text{LCN}=13.298$ after 18 iterations).

In Fig. 6b we see that the value of the stretching number α along the asymptotic curve U_+ has a characteristic form. It starts at $\alpha = \ln(13.298)$ which is the LCN of the periodic orbit P_1 and decreases to a minimum. Then it goes from this minimum to a maximum and back to another minimum. This behavior is repeated indefinitely. The maxima increase in general
(but not always), reaching values close to $\alpha = 17.0$ after many iterations. Thus we explain why LCN along an asymptotic curve is equal to the value of LCN of a chaotic orbit.

In order to explain the variations of α along the asymptotic curve U_+ we should compare Fig. 6b with the form of the curve U_+ (Fig 5c) where we mark its turning points. We find that the minima α occur at these turning points, which are rather abrupt.

Another quantitative estimate of the effect of stickiness was provided recently by Skokos et al. (2007). As regards the accuracy of our calculations we should note the following. As the eigenvalue of the orbit (after 18 iterations) is $\lambda = 13.3$ the error becomes larger than 1 for $L_0 = 10^{-9}$ after $n = 8$ iterations. Therefore after 8 iterations the details of an orbit cannot be trusted; only its general form may be considered.

On the other hand the accuracy of the lobes described above after 6 iterations are quite accurate. E.g. we found that the detailed descriptions of the asymptotic curves S, U, S_\pm, U_\pm, are the same even if we use single precision calculations. Only very close to the points P_i we need a greater accuracy in our calculations.

5. Escapes

We define the “escape time” along any orbit starting around the island O_1 of stability as the number of iterations required for this orbit to reach the large chaotic sea. In our previous paper (Efthymiopoulos et al 1997) we considered an orbit as escaping if it went outside a given ellipse surrounding the island. In the present paper we consider orbits escaping when they cross the axis $y=0$. In view of the fact that the orbits escape downwards from the neighborhood of the island O_1 the two definitions do not give appreciably different results.

In that paper the escape time was called also “stickiness time”. A more appropriate name is “initial stickiness time” because it refers only to the stickiness until the image of each point escapes to the chaotic sea. However later on images of every point return to the same region and contribute to the overall stickiness there (see section 6).

The escape times of orbits starting in a region on the left of the island O_1 are given in Fig. 7. We mark with different colors orbits escaping after 1-5 iterations (red), 5-10 iterations (yellow), 10-100 iterations (green), 100-1000 iterations (blue) and over 1000 iterations, or not escaping (gray on the right and close to 4/9). The main remark is that the regions of fast escapes are delineated by the stable asymptotic curves. In Fig. 7 we mark the elongated regions A, B, C of Fig. 4. We also mark the stable asymptotic curve S_+ from P_1 with black lines. We observe that the limits of the regions of fast escapes are separated from regions of slower escapes by arcs along the asymptotic curve S_-. The upper left part of Fig. 7 belongs to the large chaotic sea. The right part of the figure (gray) contains regions of very slow escapes, or regions belonging to the island O_1 with no escape at all. Close to the right boundary of the island O_1 we have stickiness around secondary islands (gray). In the lower part of the figure we see also a sticky region of the island 4/9 (gray) surrounding the stable periodic orbit 4/9.

An explanation of the role of the stable manifold S_+ in distinguishing between fast and slow escapes can be provided as follows. In Fig. 8 we give the successive images of two lines, K^+ and K^- very close to S_+ above the point P_1, at distances $\Delta x = \pm 10^{-4}$ to the right and to the left of S_+. The initial lengths of K^+, K^- extend approximately from P_2 to P_1. In the scale of this figure K^+ and K^- practically coincide with S_+ above P_1.

The orbits starting close to the stable asymptotic curve S_+ have their images close to the same asymptotic curve until they reach the neighborhood of the periodic orbit P_1 and then they deviate close and along U_+ or U_-. Namely orbits starting along K^+ inside the curve S_+ (i.e. closer to O_1) deviate along a line close to U_+, (black line, Fig. 8) and points along K^-
outside S_- deviate close to U_- (red line, Fig. 8). Similarly, orbits starting inside S_- deviate close to U_- and orbits starting outside S_- deviate close to U_+ (Fig. 5a).

The curve K^+ approaches for some time the curve $U_+(P_1)$ from P_1 below P_1. In fact the successive points close and below P_1 approach U_+ along lines almost parallel to the stable asymptotic curve S_+ at a rate $1/\lambda$, where $\lambda > 1$ is the larger eigenvalue of P_1. However, further away from P_1 the successive points deviate from U_+. E.g. the curve K^+ makes a few oscillations similar to the oscillations of $U_+(P_1)$ close to P_9 but these oscillations are with smaller amplitude than in U_+. Below P_9 the curve K^+ makes some oscillations close to P_9 and then close to P_7. After K^+ reaches the neighborhood of P_8 it deviates completely from the asymptotic curve $U_+(P_1)$, which does not come very close to P_8. The lowest point of $U_+(P_1)$ above P_8 is marked in Fig. 8.

After reaching the neighborhood of P_7 the curve K^+ returns to the left and upwards from P_8, and makes some oscillations on the left of P_9. In Fig. 8 we mark the end of the 6^{th}, 7^{th} and 8^{th} iterations. After some further oscillations beyond 8, the 9^{th} iteration of K^+ goes upwards, above the line 12-13 of Fig. 5c, and then downwards close to the line 13 of Fig. 5c reaching the large chaotic sea at $y=0$.

Thus we see that the curve K^+ reaches the chaotic sea, but after a large number of oscillations and a relatively long time.

On the other hand if we follow the iterations of a curve K^- above and on the left of S_+ from P_2 to P_1, starting at initial distances $\Delta x=-10^4$ from S_+, this curve approaches the curve U_- near and above P_1 and reaches the chaotic sea very soon (Fig. 8). In fact the curve K^- makes some oscillations near P_2, following the oscillations of U_-, but then it deviates further from U_- and goes to the large chaotic sea near $y=0$ after only 3 iterations.

6. Overall Stickiness

The “escape time” is not sufficient to characterize the overall stickiness of an orbit. The reason is that even if an orbit escapes from the neighborhood of the island O_1 it returns many times close to O_1 and remains for certain intervals of time close to the unstable manifolds of the orbit 4/9. In particular the unstable asymptotic curves, after exploring the large chaotic sea, return close to the original unstable asymptotic curves in the neighbourhood of the boundary of the island O_1, thus contributing to the overall stickiness around O_1. Although the escapes from the region around the island O_1 are governed by the stable manifolds of the orbit 4/9, the overall stickiness is governed by the unstable manifolds of the orbit 4/9 and also by the unstable manifold of the orbit O that surrounds the island O_1.

The stickiness close to the island O_1 can be seen in Fig. 3c, where we have calculated the asymptotic curves $U_+(P_i)$ from the points P_i ($i=1,2,...,9$) starting with initial lengths 10^{-6} for 8 iterations. A very similar figure is provided by the asymptotic curves $U_+(P_i)$. Although the asymptotic curves $U_+(P_i)$ go to the chaotic sea faster than the asymptotic curves $U_+(P_i)$, they return many times close to their original lines and to the lines formed by the asymptotic curves U_+. The only difference between U_+ and U_- as we have seen in section 3, is that the sticky regions are more fuzzy for U_- and the chaotic domain is more dense than in Fig. 3c, because the asymptotic curves $U_+(P_i)$ stay for a longer time in the chaotic sea.

The overall stickiness due to the asymptotic curve U_- from P_1 is seen in Fig. 9a, which gives 15 iterations of 20000 initial points in an interval 10^{-6} along the asymptotic curve $U_+(P_1)$. In this figure we see not only a very dark region around the island O_1, that represents stickiness of the first type, but also dark lines extending to relatively large distances, mainly downwards, to $y=0$, and continuing from $y=1$ downwards, surrounding also the island O_1. Very similar figures are provided if we calculate the asymptotic curve $U_+(P_1)$ for an equal
number of iterations, and also if we calculate all the asymptotic curves $U_+(P_i)$ or $U_-(P_i)$ with $i=1,2,...,9$ for a long time.

If we calculate an equal number of iterates (15) from an equal number of initial points (20000) along an interval 10^{-6} from the periodic orbit $O(0.5,0)$ (Fig. 9b), we find that the iterates do not spread all over the phase space. This is due to the fact that the eigenvalue of the orbit O ($|\lambda|=2.6$) is much smaller absolutely than the eigenvalue of the $4/9$ type orbit P_1 ($|\lambda|=13.6$). Because of this difference of the eigenvalues the effect of the orbit P_1 on the dynamics of the system is much more pronounced than the effect of the orbit O.

In all three cases the higher order iterates along the asymptotic curves $U_+(P_1)$ (Fig. 9a) and $U(O)$ (Fig. 9c) are separated according to the law $ds_n = |\lambda|^n ds_0$, therefore they do not form continuous lines. However it is clear that they fill the same space outside the islands of stability, and they are concentrated along very similar lines close and outside these islands. This is due to the fact that the asymptotic curves from the orbits O and P_1 are united into a common complex set because of their heteroclinic intersections (section 7).

Furthermore we note that Figs. 9a,c are very similar to Fig. 1, which represents 50 images of 10^4 initial conditions along a line of constant y, although this figure does not represent orbits starting on any asymptotic curve. This similarity shows that the overall stickiness affects the whole map in the sense that orbits starting at various distances from the island O_1 have many images that surround closely this island (and to the island O'_1) and also close to the sticky lines produced by the asymptotic curves of the unstable orbits O and $4/9$. Of course orbits starting very close to the island O_1 stay around this island for a longer time before filling more or less smoothly the large chaotic sea.

In order to estimate better quantitatively the overall stickiness around the island O_1 we have calculated, in Fig. 10a, the distribution of 100 iterates of 500000 initial points in the same area of Fig. 7 (which gives the escape times).

If we compare Fig. 10a with Fig. 4 we can see that the maximum density is close to the asymptotic curves U_+, while the density decreases away from these lines. The contrast between Fig. 10a and Fig. 7 is striking. It is clear that the maximum overall stickiness (which is along the lines U_+) is not along lines of large escape time (large “initial stickiness times”, which are defined by the curves S_-).

This difference is striking, because one may think that when the orbits that have escaped into the large chaotic sea come back in the same area (the area of Figs 7 and 10a) outside the island O_1, they should follow the same pattern as that provided by the “initial stickiness times”. In fact if an orbit returns to a particular point of this region its subsequent escape time is defined unambiguously by the color of this point in Fig. 7. However, Fig. 7 implies that we have a homogeneous initial distribution of particles and the density of the particles decreases fast in time in the red regions on the left and less and less fast in the yellow, green, blue and gray regions. This figure does not give the density of particles that return to this area after their escape to the chaotic sea. On the other hand the distribution of the returning particles at any given time is far from homogeneous. The particles return after very different times, and the returning points are concentrated preferably close to the unstable asymptotic curves in that region. Thus, although the new escape times from any point are equal to the original escape times, the density of particles at any given time is maximum near the unstable asymptotic curves U and U_+, U_- in this region, as in Fig. 10a, i.e. very different from the distribution in Fig. 7.

There is one more point to be discussed in this section, namely how long does the overall stickiness last. If we calculate orbits for longer and longer times we see that they tend to populate more and more evenly the whole space of the map $(0,1) \times (0,1)$ outside the islands.

This is true even for orbits starting along the asymptotic curves of the periodic orbits O and $4/9$.

11
The reduction of the stickiness after long times can be seen if we compare Fig.10a, that gives the distribution of the first 100 iterates of the 500000 initial points (in the area of the figure), with Figs 10b and 10c that give the distribution of 100 iterates between $t=400-500$ (Fig.10b) and between $t=1000-1100$ (Fig.10c). We see that the iterates are spread more evenly in Fig.10b and even more evenly in Fig.10c. In Fig.10b we still see stickiness close to the unstable manifold U_+ of the unstable orbit 4/9 but in Fig.10c the stickiness is restricted only close to the boundaries of the island O_1 (right part of the figure) and close to the stable island 4/9 in the lower boundary of the figure.

The overall tendency to smoothness is seen in Fig.11, that contains 20 iterates of the same 2500 initial points of Fig. 9a, but after a time $T=1000$, and distributed in the whole space $(0,1)\times(0,1)$. We see that the density of the points outside the islands is practically constant and no stickiness effect is apparent. This is seen very clearly if we compare Fig.11 with Fig.9a. However very close to the islands there are still some very small stickiness regions due to higher order unstable periodic orbits around the islands.

As a conclusion we find that the stickiness effects around a relatively large neighbourhood of the island O_1 (as seen in Figs.1, 9a,b and 10a,b,c) are important only for some hundreds of iterations. After 1000 iterations only the close neighbourhood of the various islands still shows some stickiness effects. At that time the dark lines that extend far into the chaotic sea (Figs. 1, 9a,b) fade and most of the total area of the map (i.e. $(0,1)\times(0,1)$ outside the islands) tends to be evenly populated by the iterates of the various orbits.

The total number of points after 1000 iterations is $500000\times1000=5\times10^8$. This is consistent with the results of a previous calculation (Contopoulos et al. 1995) where we have found that the distribution of 10^8 iterates of one point in the chaotic sea is almost uniform outside the islands. Thus 10^8 iterates is a rough estimate of the stickiness time.

Outside the last KAM curve around the island O_1 there are many unstable orbits that communicate with the large chaotic sea. The most important among them are the orbits 9/20 and 14/31. These orbits are at the centers of the largest islands close to the outer boundary of the orbit O_1. Their unstable asymptotic curves intersect the stable asymptotic curves of the orbits 4/9 and $O(0.5,0)$ thus they belong to the same complex of orbits. Their stickiness is similar to that of the orbit 4/9 although there are some small differences in the inner parts.

7. Heteroclinic intersections

The stickiness due to the asymptotic curves of various unstable orbits around the island O_1 is similar because these asymptotic curves intersect each other. E.g. the unstable asymptotic curve U of the orbit $O(0.5,0)$ intersects the asymptotic curves S_\pm of the orbit 4/9. Similarly the stable asymptotic curve S of O intersects the unstable asymptotic curves U_\pm of the orbit 4/9.

The intersections are heteroclinic points forming heteroclinic orbits that approach the orbits O and 4/9 asymptotically as the number of iterations in the forward and backward time direction tends to infinity.

An example is shown in Fig.12, where we give a few intersections of the curves U and S. The initial arcs of the curve U of Fig.2 are shown as thick dark lines in Fig.12. This curve starts at O and surrounds the island O_1 (Fig.2). In Fig.12 the curve U comes from above, makes two oscillations on the left, and then it intersects the curve S_-, which starts at the point P_1, at two heteroclinic points H_1 and H_2. The segment H_1H_2 is almost a straight line along S_-, but it forms a lobe to the right of this straight line along U.

The first image of the segment H_1H_2 along S_- (forward in time) is a very small segment $H'_1H'_2$ close to P_1. However the image of the lobe $H_1UH_2S_H_1$ is an extremely long lobe that goes all over the whole square $(0,1)\times(0,1)$. The reason is that one iteration along S_-
corresponds to 18 iterations of the map (1), therefore the arc H_1UH_2 is mapped into a very long arc $H'_1UH'_2$. This arc starts at H'_1 downwards and then to the left, and after a very large number of oscillations it reaches a remote point (outside Fig.12) and then returns to the point H'_2 a little below H'_1. The returning arc is usually very close to the original arc but close to angular points we see double lines that differentiate the original arc from the returning arc. The area of the thin lobe $H'_1UH'_2S$. H'_1 is equal to the area of the original lobe H_1UH_2S. H_1.

If we continue the mapping, the successive points $H_1H'_1H''_1$, ..., and $H_2H'_2H''_2$, ..., come very close to P_1, approaching it asymptotically along S_+. At the same time the images of the arc H_1UH_2 are much longer covering coarsely the whole area of the square $(0,1)x(0,1)$ outside the islands.

The heteroclinic points connecting U with S_- and S_+, and also S with U_- and U_+, anchor the manifolds of the orbits O and $4/9$ to each other and form a joint manifold. There are also heteroclinic intersections between the orbits O, $4/9$ and the orbits $9/20$ and $14/31$. On the other hand the orbit $5/11$ is inside the last KAM curve around the island O_1 and has no heteroclinic intersections with the orbits O, $4/9$ etc. In fact the non existence of heteroclinic points is a proof that the orbit $5/11$ is separated from the orbits O, $4/9$ by a KAM curve. Thus the chaotic regions around the orbit $5/11$ are very different from the chaotic regions around the orbits O and $4/9$.

The form of the joint manifold of the asymptotic curves O and $4/9$ is governed mainly by the lack of intersections between U and U_{\mp}, and between S and S_{\mp}. This lack of intersections forces the unstable manifolds U, U_+ and U_- to follow each other and be very similar in general, despite their differences in the details. Similarly the stable manifolds S, S_+ and S_- are similar to each other. This fact explains the similarity of the stickiness due to the orbits O and $4/9$.

8. General remarks and conclusions

Stickiness is an important characteristic of dynamical systems that have both order and chaos. Sticky orbits stay for a long time in certain regions of phase space producing an uneven distribution of points in the chaotic zone. The stickiness effects may last for very long times, longer than the age of the Universe in certain cases.

Up to now most of the work on stickiness has been restricted to stickiness around islands of stability. Such stickiness is due to the existence of cantori, i.e. destroyed KAM curves surrounding an island of stability. If the holes of such a cantorus are small, chaotic orbits starting inside this cantorus take a relatively long time to cross the cantorus and reach the large chaotic sea outside the cantorus. However there is also a second type of stickiness, namely stickiness along the unstable asymptotic curves, which extend to large distances in the chaotic sea. Thus we see in the chaotic domain not only concentrations of points around the islands of stability, but also dark lines that extend far into the chaotic sea.

The two types of stickiness are connected. In fact the asymptotic curves of the unstable orbits in the sticky zone around an island continue beyond the cantori surrounding these unstable orbits, and form dark lines extending quite far from the island.

In the present paper we studied stickiness in the standard map for a particular value of the perturbation parameter ($K=5$) when we have two main islands of stability, around two stable orbits O_1 and O'_1, that have bifurcated from a central periodic orbit O ($x=0.5$, $y=0$) when K increased beyond $K=4$. The islands of stability are surrounded by several periodic orbits that have bifurcated from O_1 and O'_1.

We considered mainly the unstable periodic orbit $4/9$ that produces an important stickiness domain around the islands O_1, O'_1. However this domain communicates also with the large chaotic sea that covers most of the space $(0,1)x(0,1)$ outside the islands.

The main conclusions of our study are the following:

13
(1) There are two types of stickiness. The first is due to cantori, surrounding islands of
stability. The second is along the unstable asymptotic curves of the unstable periodic
orbits that extend to large distances into the chaotic sea. Both mechanisms are related
since the unstable asymptotic curves determine the path followed by the chaotic orbits
starting close to them, in order to reach the large chaotic sea.

(2) The unstable asymptotic curve U of the main unstable periodic orbit $O (0.5,0)$
surrounds the two main islands O_1 and O'_1, forming lobes into the large chaotic sea
that become longer with time. From time to time it returns close to the islands O_1 and
O'_1 contributing to the stickiness of the first type around these islands. The same
happens for the stable asymptotic curve S of the main orbit O when mapping
backwards in time.

Similar asymptotic curves start at the simplest unstable periodic orbit $4/9$ around
the islands O_1 and O'_1 that has 9 points (P_1, \ldots, P_9) around O_1 and another 9 points
around O'_1. There are two directions of the unstable asymptotic curves (U_+ and U_-)
and of the stable asymptotic curves (S_+ and S_-) from each point P_i. The asymptotic
curves U_+ and S_+ are closer to the last KAM curve of the island O_1 and they are called
slow because they make more oscillations around the island O_1 before escaping to the
large chaotic sea, than the outer curves U_-, S_- which are called fast. The overall
stickiness due to the inner curves is very similar to the stickiness due to the outer
curves; their only difference is that the latter case spend more time in the large
chaotic sea. The sticky regions due to the asymptotic curves $U\pm$ are similar to the
sticky regions due to the asymptotic curve U from O (see figures 9a, b), because the
curves $U\pm$ cannot intersect the curve U. This explains also the fact that the
nonasymptotic orbits of figure 1, that have initial conditions close and outside the last
KAM of O_1 form sticky regions similar to the ones produced by the asymptotic
curves. The same is true for the unstable asymptotic curves of all the periodic orbits
that are located close and outside the last KAM of O_1.

(3) Stickiness is related to the “stretching numbers” a (i.e. the local “Lyapunov
characteristic number” LCN after only one iteration) along the orbits. The average
value of a is the “finite time Lyapunov characteristic number” $\chi(t)$. For relatively
short times t the finite time LCN is initially smaller for $S_+\text{U}_+$ than for $S_+\text{U}_-$. This
explains why the asymptotic orbits along $S_+\text{U}_+$ go faster into the large chaotic sea.
However, all the values of $\chi(t)$ tend to the same “Lyapunov characteristic number” at
t becomes larger and tends to infinity. The stretching number a varies from
successive minima and maxima. The minima correspond to turning points of the
curve U_+, and produce the maximum stickiness.

(4) We define the “escape time” (or “initial stickiness time”) as the time needed by an
orbit initially located near and outside the last KAM of O_1, to reach the large chaotic
sea. We calculated the “escape times” for a uniform grid of initial conditions in a
relatively large region outside the island O_1. We found that the lines that separate the
fast escapers from less fast escapers coincide with various arcs of the stable
asymptotic curves of the unstable periodic orbit $4/9$. In order to understand the role of
the stable asymptotic curves in separating fast and slow escapers we consider orbits
starting along two lines close to an arc of S_+ reaching the point P_1. Orbits starting on
the inner side of S_+ (along a curve K^+, closer to the center of O_1) approach P_1 and then
deviate along and close to the curve U_+ (P_1) from P_1. Later on the curve K^+ reaches
the neighbourhood of the points P_6, P_8, P_7 and then it goes around the island O_1 and
escapes downwards to the large chaotic sea. On the other hand the orbits starting
along a line K^- outside S_+, after reaching the neighbourhood of P_1 go close to U_+ and
after only a few oscillations they escape into the large chaotic sea.
(5) We have calculated quantitatively the overall stickiness around the island O_1 by finding the density of the images of points starting at the same grid of points as in the case of escapes. The maxima of density appear close to the asymptotic curves U_+, U_- and U. Thus the regions of overall stickiness around the island O_1 are very different from the escape regions (regions of initial stickiness) in the same area. The overall sticky regions follow the asymptotic curves U_+ and U_- while the escape regions follow the asymptotic curves S_+ and S_-.

(6) As time progresses the maxima of density due to stickiness become less pronounced. Thus we found that beyond the 1000th iteration the density of the points outside the islands tends to be uniform, and no appreciable stickiness appears any more.

(7) The connection between the asymptotic curves of the unstable orbits O and $4/9$ is due to the existence of heteroclinic intersections of the manifolds from O and $4/9$. However the overall similarity of the asymptotic curves U, U_+ and U_- is due to the fact that these curves cannot intersect themselves or each other. Thus they are forced to follow each other, although they differ in the details.

This new type of stickiness studied in the present paper seems to have useful applications. E.g. in a recent paper Voglis et al. (2006) found an application of this new type of stickiness in the formation of spiral arms in barred galaxies.

Acknowledgements:
We thank Dr. R. Dvorak for useful discussions and Dr. C. Efthymiopoulos for several discussions and a number of calculations. We thank also the referee for several useful suggestions.
REFERENCES

Aubry, S. [1978], in Bishop, A.R and Schneider, T. (eds) “Solitons and Condensed Matter Physics” Springer-Verlag, New York, 264.

Bensimon, D. and Kadanoff, L.P. [1984], “Extended chaos and disappearance of KAM trajectories”, Physica D 13, 82-89.

Chirikov B.V. and Shepelyansky, D.L. [1984], “Correlation properties of dynamical chaos in Hamiltonian systems”, Physica D 13, 395-400.

Contopoulos, G. [1971], “Orbits in Highly Perturbed Dynamical Systems. 111. Nonperiodic Orbits” Astron. J. 76, 147-156.

Contopoulos, G. [2004], “Order and Chaos in Dynamical Astronomy”, Springer Verlag, New York.

Contopoulos, G., Voglis, N., Efthymiopoulos, C. and Grousouzakou, E. [1995] in Hunter, J. H. and Wilson, R. E. (eds), “Waves in Astrophysics”; N.Y. Acad. Sci. Ann. 773, 145-168.

Contopoulos, G., Voglis, N., Efthymiopoulos, C., Froeschle, C., Gonczi, R., Lega, E., Dvorak, R., and Lohinger, E. [1997], “Transition Spectra of Dynamical Systems”, Cel. Mech. Dyn. Astron. 87, 293-317.

Contopoulos, G., Harsoula, M., Voglis, N. and Dvorak, R. [1999], “Destruction of islands of stability”, J. Phys. A 32, 5213-5232.

Efthymiopoulos, C., Contopoulos, G., Voglis, N. and Dvorak, R. [1997], "Stickiness and cantori", J. Phys. A 30, 8167-8186.

Hansen, J.D.,Gary, J.R. and Meiss, J.D. [1985], J. Stat. Phys. 39,327.

Kandrup, H.E., Siopis, C., Contopoulos, G. and Dvorak, R. [1999], “Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems”, Chaos 9, 381-392.

Karney, C.F.F. [1983], "Long-time correlations in the stochastic regime", Physica D8, 360-380.

MacKay, R.S., Meiss, J.D. and Percival, I.C. [1984], "Transport in Hamiltonian systems", Physica D 13, 55-81.

Mahon, M.E., Abernathy, R.A., Bradley, B.O. and Kandrup, H.E. [1995], "Transient ensemble dynamics in time-independent galactic potentials", M.N. Roy. Astr. Soc. 275, 443-453.

Meiss, J.D.,and Ott, E. [1986], "Markov tree model of transport in area-preserving maps", Physica D 20, 387-402.

Meiss, J.D. [1992], "Symplectic maps, variational principles, and transport", Rev. Mod. Phys. 64, 795-848.

Menjuk, C.R. [1983], "Effect of a transition between regular and stochastic electron motion on the evolution of an obliquely propagating Langmuir wave", Phys. Fluids 26, 705-723.

Menjuk, C.R. [1985], "Particle motion in the field of a modulated wave", Phys. Rev.A 31, 3282-3290.

Meiss, J.D., Cary, J.R., Grebogi, C., Crawford, J.D., Kaufman A.N. and Ababarnel, H.D.J. [1983], "Correlations of periodic, area-preserving maps", Physica D 6, 375-384.

Percival, I.C. [1979], In Month, M. and Herrera, J.C. (eds) "Nonlinear Dynamics and the Beam-Beam Interaction", Amer.Inst.Physics, New York, 302.

Shirts, R.B and Reinhardt, W.P.:1982, “Approximate constants of motion for classically chaotic vibrational dynamics - Vague tori, semiclassical quantization, and classical intramolecular energy flow”, J. Chem. Phys. 77, 5204-5217.

Skokos Ch., Bountis T.C., Antonopoulos Ch. [2007], “Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method”, Physica D 231, 30-54.

Voglis N. and Contopoulos G. [1994], “Invariant spectra of orbits in dynamical systems”, J. Phys. A 27, 4899-4909.
Voglis, N., Tsoutsis P. and Eftymiopoulos C. [2006], "Invariant manifolds, phase correlations of chaotic orbits and the spiral structure of galaxies", *M.N. Roy. Astr. Soc.* **373**, 280-294.
Fig. 1 Dark lines in the chaotic sea of the standard map with $K=5$ and 50 iterations of 10^3 initial conditions spaced evenly along $y=0.3565$ with $0.63<x<0.645$.
Fig. 2 The asymptotic curves U and S from the periodic orbit O (x=0.5, y=0) for K=5. The curves U, S form the lobes A, B, C and a, b, c respectively. They surround the islands around O₁ and O'₁. The limit of the island O₁ is near the orbit 4/9 marked by dots.
Fig. 3 The asymptotic curves from the points $P_1, P_2, \ldots P_9$ of the unstable orbit $4/9$ (a) S. (stable, slow); between the points P_i, we mark small islands surrounding the stable periodic orbit $4/9$. (b) S. (stable, fast) (c) U. (unstable, slow)
Fig. 4 A comparison of the arcs of U_+ and S_-. We mark three lobes of S_- (B, C, and S29 from Fig.5b), the open area A of Fig.5b, and the stable island $4/9$.

Fig. 5
(a) Some details of the asymptotic curves $S_-, S_+, U-, U_+$ from P_1. The dashed curve represents approximately the limits of the island around O_1. (b) Successive arcs of the asymptotic curve S_+. (c) The asymptotic curves $U_+(P_1)$ and $U_-(P_1)$, from P_1. The numbers 5, 6, … 13 represent maxima or minima y, or x.

22
Fig. 6 (a) The short time Lyapunov characteristic time $\chi(t)$ as a function of t for orbits along the asymptotic curves U_+, U_-, S_+, S_- (with initial lengths 10^{-9}, the last two backwards in time) and an orbit C (black line) in the chaotic domain with initial conditions ($x=0.3$, $y=0.5$) and initial deviations ($\xi_x=\xi_y=1$). (b) The stretching number α as a function of the distance L from the periodic point P_1 along the asymptotic curve U_+. The curve $\alpha(L)$ is separated into pieces $1,2,\ldots,11$, each terminating at a minimum (the first piece terminates at the second minimum).
Fig. 7 Regions for various escape times: 1-5 (red region A and parallel regions), 5-10 (yellow), 10-100 (green), 100-1000 (blue), >1000 (or non escaping) (gray on the right and close to 4/9). The dark lines represent the stable asymptotic curve S_+ of the orbit 4/9.
The images of two intervals close and parallel to S_+, K^+ (black) inside and K^- (red) outside S_+. The initial interval starts near P_2 and ends near P_1. The curve K^+ continues below P_1 close to U_+ and after several oscillations it goes around the island O_1 into the chaotic sea. The points 6, 7, 8 mark the ends of the corresponding iterations. The curve K^- continues above P_1 close to U_-. Its 3rd iteration surrounds the island O_1 and reaches the chaotic sea.
Fig. 9 Sticky regions produced by 500000 points starting along the asymptotic curves (a) $U_+(P_1)$ (15 iterates of 20000 initial points along a 10^{-6} initial length from P_1) (b) U (15 iterates of 20000 initial points along a 10^{-6} initial length from O) (c) U (25 iterates of the same initial points as in Fig. 9b).
Fig. 10 Regions of equal density of 100 iterates from 500000 initial points (50000 equally spaced points with $0.63 < x < 0.644$ along 10 lines of constant y (0.35, 0.352…0.37)). The number of points in a grid 800x800 in the above area is marked with red lines or dots (1-10 points), green (10 points-20points), blue (>20points) and white (empty). (a) iterates 1-100, (b) iterates 400-500, (c) iterates 1000-1100. We mark the position of the point P_1.
Fig. 11 The distribution of 500000 points (50 iterations of the 10000 initial points of Fig. 13a) along the asymptotic curve U from $O(0.5,0)$ after a time $T=1000$, distributed all over the space $(0,1)x(0,1)$.

Fig. 12 Heteroclinic intersections of the asymptotic curves U and S. ...
