Treatment of Prosthetic Joint Infection due to *Listeria Monocytogenes*. A Comprehensive Literature Review and a Case of Total Hip Arthroplasty Infection

Vasileios Athanasiou, MD, PhD, *a*, Leonidia Leonidou, MD, PhD, b, Alexandra Lekkou, MD, PhD, b, Panagiotis Antzoulas, MD, c, Konstantina Solou, MD, c, Georgios Diamantakis, MD, a, John Gliatis, MD, PhD, d

a Consultant Orthopaedic Surgeon, Orthopaedic Department, Patras University Hospital, Patra, Greece
b Consultant in Internal Medicine, Department of Internal Medicine, Patras University Hospital, Patra, Greece
c Resident in Orthopaedic Surgery, Orthopaedic Department, Patras University Hospital, Patra, Greece
d Associate Professor in Orthopaedics, Orthopaedic Department, Patras University Hospital, Patra, Greece

A R T I C L E I N F O

Article history:
Received 16 August 2021
Received in revised form 24 October 2021
Accepted 26 October 2021
Available online xxx

Keywords:
Listeria monocytogenes
Prosthetic joint infection
THA infection due to Listeria
TKA infection due to Listeria

A B S T R A C T

As reported in contemporary literature, prosthetic joint infection (PJI) caused by *Listeria monocytogenes* (LM) is a rare infection affecting mainly immunocompromised patients. It is considered a late complication occurring months or years after the arthroplasty that is treated with, or without, implant retention, in one-stage or two-stage surgical procedures, and long-term administration of antibiotics. We reviewed the published studies in the English language and present a case of a patient who underwent total hip arthroplasty (THA) and had been affected by this infection. Our patient was successfully treated with 3 months of antibiotics (ampicillin and TMP/SMX) and a two-stage surgical procedure. The success rates of conservative treatment and one-stage or two-stage procedures are dependent on appropriate patient selection and chronicity of the infection. Immunocompromised patients are susceptible to PJI caused by LM and should be advised that consumption of unpasteurized dairy products increases the risk of this atypical infection.

© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Listeria monocytogenes (LM) is a Gram-positive facultative aerobic bacterium initially reported in 1926 during an animal disease epidemic. In the 1980s, it was recognized as a food-borne pathogen that can affect humans. Healthy adults can experience a mild to severe gastroenteritis due to ingestion of highly contaminated food containing up to ~10⁹ bacteria. However, in the case of immunocompromised individuals, the elderly, pregnant women, and children, even lower levels of contaminated food containing up to ~10²-10⁴ bacteria can cause infection, sepsis, and complications during pregnancy with mortality rates ranging from 20% to 30% [1].

Of the 17 species of *Listeria* that have been identified, only two species, *Listeria monocytogenes* and *Listeria ivanovi*, are pathogenic for humans [1]. The rate of listeriosis in Europe and in the United States is estimated to be 4.7 cases per million people [2]. Prosthetic joint infection (PJI) caused by *Listeria monocytogenes* (LM) is rare and affects mainly immunocompromised patients [2-15]. In a study by Charlier et al. it was found that this atypical infection primarily involves prosthetic joints and occurs in immunocompromised patients [2]. The first case of PJI due to LM was reported in 1987 [16]. It accounts for approximately 2% of prosthetic hip and knee infections [4,17,18]. However, in recent years, PJI shows an increasing tendency because of an aging population and the increased number of immunocompromised patients undergoing joint replacement
surgery [7,9,19,20]. We reviewed the published studies in the English language and present a case of a patient with total hip arthroplasty who had been affected by Listeria monocytogenes (LM).

The patient and his relatives were informed that data concerning the case would be submitted for publication, and they provided their consent.

Case presentation

An 82-year-old woman was admitted to our hospital with a recent history of a progressive right hip pain. She reported gradually increasing hip pain 4 months before her admission to the hospital. At the time of admission, the patient was afebrile, able to walk but in pain which was located at the groin area and radiated to the thigh. The patient had a total hip arthroplasty (THA) performed 9 years ago due to degenerative hip osteoarthritis. Standard hip radiographs demonstrated no obvious loosening signs of the implant (Fig. 1). She reported transitory fever and diarrhea, and that she had consumed soft cheese produced from unpasteurized milk obtained from her own animals. Nevertheless, the patient has been systematically consuming dairy products from her own animals throughout her life. White blood cells (WBCs) were 4.44K/μl, c-reactive protein (CRP) was 0.21mg/dL and erythrocyte sedimentation rate (ESR) 90 mm/1h. Paracentesis of the hip grew Listeria monocytogenes susceptible to aminopenicillins, meropenem, Sulfamethoxazole/Trimethoprim (SXM/TMP). The patient’s medical history also included type 2 non-insulin dependent diabetes, chronic obstructive disease, hyperthyroidism, and hyperlipidemia.

The patient was scheduled for surgical treatment following a two-stage revision of her THA. During the first stage, we found a purulent collection mostly at the posterior aspect of the stem whereas the cup was stable (Fig. 2a and b). At the first stage, we removed the stem using controlled segmentation of the well-fixed part of the stem according to Megas et al [21]; the mobile part and the screws were removed, and a mobile-bearing spacer (Zimmer-Biomet, Warsaw, Indiana) was used (Fig. 3a and b). The patient received intravenous meropenem plus vancomycin for 2 weeks, de-escalated by intravenous ampicillin for 3 weeks, based on the culture results. She was discharged with a combination regimen of oral ampicillin and TMP/SMX and was followed-up until she underwent the second stage revision 3 months later. Before the second stage ESR was 35mm/h and CRP was <1mg/dL. During the second-stage we removed the mobile-bearing spacer and the cup and, a tantalum cup with a Wagner stem were implanted (Zimmer-Biomet, Warsaw, Indiana). New cultures were negative. Follow-up appointments were scheduled on a monthly basis for the first 6 postoperative months, after a year postoperatively and the last took place 2 years postoperatively. On the last follow-up the patient was asymptomatic (Fig. 4a and b).

Literature review

A literature search of the case reports was performed in PubMed and in Google Scholar. The criteria were “THA infection due to Listeria” and “TKA infection due to Listeria”. The keywords used in our search were “Listeria monocytogenes”, “Prosthetic joint infection”, “THA infection due to Listeria” and “TKA infection due to Listeria”. Search results were limited to articles written in the English-language. There were 33 publications; 31 were found in PubMed and 2 in Google Scholar where 67 cases were reported (the first one was reported in 1987 and the last one was reported in 2020) (Table 1) [2,3,5,20,22-36]. The median age of the patients was 65 y (range, 29-87 y), there were ~60% males and ~40% females, 20 patients (30%) had TKA infection whereas 47 patients (70%) had THA infection including our case. All cases were monoarticular infections except 1 case (1.5%) [30]. In addition, all cases were late infections with a mid-time after the arthroplasty of 6.8 years (range, 2 mo-21 y). Our literature research shows that 86.7% of the cases were immunocompromised, 7 patients (10%) reported no underlying medical condition, and furthermore in 2 patients (2.9%) there was no statement [15,31]. Charlier et al., in 43 consecutive cases reported 41 patients (95%) as being in an immunocompromised state [2]. The most commonly reported underlying medical conditions were rheumatoid arthritis followed by diabetes mellitus,
malignancy and transplantation cases. All cases revealed signs of local inflammatory responses and raised inflammatory markers. All patients were febrile although 20 patients (29.8%) were reported afebrile. Fluid culture positivity was reported in all except 1 case (1.5%) where the culture was reported negative [36]. All cases involved monomicrobial infections whereas 2 cases (2.9%) s aureus and s epidermis were also reported (Tables 2 and 3). The antibiotics used in most cases were ampicillin or amoxicillin (>90%) in combination with gentamicin (50%). Surgical treatment was performed in 62% of the total cases (Table 4).

To the best of our knowledge, the present review has been the first comprehensive review of all PJIs of THA and TKA caused by LM in the English literature.

Discussion

PJI after total joint arthroplasty is a challenging complication for an orthopedic surgeon to address. Musculoskeletal Infection Society (MSIS) convened a workbook in 2011 and defined the criteria of PJI [37]. It occurs approximately at a rate of 1% to 2% of primary and in 4% of revision arthroplasties [38]. Prosthetic joint can be infected via three different pathways: perioperative, hematogenous and directly from nearby infected tissue [39]. As regards the onset time of infection postoperatively, it is classified as acute when <4 weeks (onset) and chronic when >4 weeks after surgery (delayed/low grade). Moreover, in regards to the duration of the symptoms of a hematogenous infection, they are classified as acute when the duration of symptoms is <3 weeks and chronic when the duration is >3 weeks [38,39]. The origin of hematogenous infection is reported at a rate of 32% as unknown whereas 68% as of known origin: 11% the oral cavity, 2% central venous catheters, 13% heart valves, 5% implantable electronic cardiac devices, 1% the lung, 1% the spine, 1% peripheral venous catheters, 7% the gastrointestinal tract, 12% the urinary tract, 1% other joint prostheses and the skin and 15% soft tissue [40]. The most common causative pathogen remains Staphylococcus aureus reported in up to 34% of cases, [38] followed by coagulase-negative staphylococci [13]. Listeriosis, although it is considered as self-limited gastroenteritis, does have the ability to become an invasive organism especially in the case of immunocompromised individuals, the elderly, pregnant women, and children, where even low levels of contaminated food up to \(10^5-10^6\) bacteria can cause infection, sepsis, and complications of pregnancy with mortality rates ranging from 20% to 30% [1].

Epidemic listeriosis associated with the consumption of Mexican-style cheese is a well-reported phenomenon [5,41]. Most recently Paziu et al, published a case with primary total knee arthroplasty infected with LM who had a history of consuming unpasteurized dairy products [36]. Charlier et al in their study found that this atypical infection primarily involves prosthetic joints and occurs in immunocompromised patients [2]. The PJI caused by LM is rare, referred to as less than 2% of all prosthetic joint infections [4,15,17]. In a recent study of 294 hips and knees, infection caused by LM was reported at a rate of 0.7%. We have found 67 cases with PJI caused by LM in English Literature (from 1987 until 2020) [2,3,5,20,22,36] (Table 1). The mid-time from initial surgery to the onset of infection caused by LM in the prior literature was 6.8 years (range, 2 mo-21 y) whereas in this case was 9 years postoperatively (Table 1 and 2). The age (older than 60 years), underlying diabetes and the presence of foreign material (THA) were the risk factors noted to be present in our patient. We successfully treated our patient with antibiotics (ampicillin and TMP/SMX) over a 3-month period, and a two-stage surgical procedure. We opted not to add an aminoglycoside, considering its nephrotoxicity as our patient had borderline renal function and we preferred TMP/SMX for synergy and its bactericidal effect with periodic monitoring of the complete blood count and renal function. A combination of ampicillin and trimethoprim-sulfamethoxazole has been employed to effectively treat severe listerial meningoencephalitis [42] and, in a recent case of prosthetic knee joint infection [6,15].

There are few publications of case reports and reviews of cases of PJIs caused by LM [2,5,11,36]. However, to the best of our knowledge, this is the first comprehensive review of all PJIs of THA and TKA caused by LM in English literature up to the year 2020. Although the diagnostic algorithm for PJIs caused by LM does not require any special consideration, we believe that a strategy is required when it comes to the treatment since it affects mainly immunocompromised patients. The duration of antibiotic therapy in our study ranges from 2 weeks of intravenous up to 6 months of per os (PO) whereas surgical treatment involves debridement, implant removal, and arthrodesis, as well as one and two-stage revision (Table 4). Ampicillin is generally considered the preferred agent, and gentamicin is added frequently for synergy especially when treating life-threatening cases of Listeria. Patients allergic to penicillin may use meropenem or SMX-TMP. Our literature review shows that 19 patients (28%) treated conservatively were reported to have good results over a 5-month to 23-month follow-up period, though one died due to cardiopulmonary arrest [2,8,10,16,18]. All cases were acute but one was chronic [9]. Cone et al. in a review published in 2001 pointed out that the recommended treatment for prosthetic joint infection caused by LM is ampicillin or penicillin alone or in combination with an aminoglycoside and TMP/SMX or vancomycin for patients allergic to penicillin [8]. Kleemann et al reported a recurrent infection 2 years after initial conservative treatment [9]. Of 9 patients (13.2%) treated with debridement 7 were reported to have good results over a 3-month to 20-month follow-up period, but 2 patients had implants removed later [5,6,14,20,24,32,33,36]. All were acute cases. Wollenhaupt et al reported a prolonged high dose antibiotic therapy and/or removal of the prosthesis may be necessary [14]. Paziu et al, recently suggested that the duration of antibiotic therapy should be individualized [36]. In 18 patients (26.8%) one-stage revisions were applied and they were all asymptomatic over a 4-month to 3-year follow-up period with no recurrence [2,7,9,13,20,23,28,31]. All were acute cases, though two cases were chronic [9,23]. Diaz-Dilemnia et al. in a recent publication of a case report and cases review, suggest that one-stage revision surgery can be more effective when compared to other surgical procedures, such as a two-stage revision surgery or debridement,
Table 1
Publications of Listeria PJI s from the first in 1987 up to 2020.

Article/Year/Reference	Cases/Total cases	Age (y)/sex	Underlying Disease	Immunosu/sive Therapy	PJL	Time to infection after arthroplasty	Treatment surgery	Treatment antibiotic	Outcome	
1) 1987 [16]	1 [1]	37/F	RT; Chronic hepatitis	Prednisolone	Hip	13y	No surgery	Iv Amp 10d;	Asymptomatic	
								Anox	10 mo later	
2) 1988 [22]	1 [2]	66/M	None	None	Hip	8mo	Two-stage revision	Iv Amp/Tm 2w;	Asymptomatic 18	
								TMP/SMX 3 mo	mo later	
3) 1989 [23]	1 [3]	70/M	Mitral valve	None	Hip	4y	One-stage revision	Iv Amp/Tm 2w;	Asymptomatic 7	
			replacement					po	mo later	
4) 1989 [24]	1 [4]	69/M	RA; Cirrhosis	None	Knee	4y	Debridement	Iv Amp 3w; po Amp 6	Implant removed 6mo	
								mo;	mo later	
5) 1990 [10]	1 [5]	64/F	RA; Cirrhosis	None	Knee	8y	No surgery	Iv Amp/Cm 6w;	Asymptomatic 18	
								TMP/SMX	mo later	
6) 1990 [25]	1 [6]	71/M	RA	None	None	NS	Iv Amp/Cm 2w;	Iv Amp 1w; po Amp 2-3		
								mo	mo later	
7) 1990 [26]	1 [7]	73/M	None	None	Hip	3y	NS	NS	NS	
8) 1990 [27]	1 [8]	66/M	DM	None	Hip	6y	Iv Amp/Cm 6w;	Iv Amp 1w; po Amp 2-3		
								mo	mo later	
9) 1992 [19]	1 [9]	64/F	None	None	Hip	5mo	Implant removal	Iv Amp 10 d; Amox 1	Asymptomatic 6mo	
								mo	mo later	
10) 1992 [19]	1 [10]	80/F	Colon cancer	None	Knee	9y	Arthrodesis	Iv Cm/Gm 42 d	NS	
11) 1992 [28]	1 [11]	70/M	None	None	Hip	18y	One-stage revision	Iv Amp 9w; po Amp 3-		
								mo; TMP/SMX 5 w	Asymptomatic 3y	
12) 1994 [29]	1 [12]	29/M	RT	Prednisolone	Hip	6y	No surgery	Iv Amp 4w; po	Asymptomatic 2mo	
				(bilateral)				TMP/SMX 10 mo	later	
13) 1995 [18]	1 [13]	81/M	DM	Azathioprine	Hip	14y	No surgery	Iv Amp 6w; po Amp 6-		
				None				mo; TMP/SMX 3 mo	Asymptomatic 16mo	
14) 1996 [30]	1 [14] (AOA)	NS	DM	None	Hip	5y	Two-stage revision	Iv Amp, Piv, TMP/SMX	Asymptomatic 6w	
								later	mo later	
15) 1997 [14]	1 [15]	70/M	RA	Methotrexate	Knee	6y	Debridement;	Iv Amp 3 w; po Amp 6	Asymptomatic 12mo	
				Methotrexate			Arthrodesis 7 w	mo	mo later	
16) 2001 [8]	1 [16]	81/M	RA	Prednisolone	Hip	4y	No surgery	Allergic to Pen;	Died due to	
								Iv TMP/SMX	cardiopulmonary-nary	
								arrest	arrest	
17) 2002 [31]	1 [17] (AOA)	87/F	NS	NS	Hip	10y	One-stage revision	NS	Asymptomatic 12mo	
								later	mo later	
18) 2003 [32]	1 [18]	51/F	RA; SLE (Colonoscopy 2 mo before)	Azathioprine Prednisolone Methotrexate	Knee	2 mo	Debridement;	Pen allergic;	Asymptomatic 12mo	
				Methotrexate			Implant removal	TMP/SMX problems;	NS	
				None			later	Cip.		
19) 2004 [17]	1 [19]	81/M	NR	Prednisolone	Hip	NS/y	No surgery	Iv Amp 2w; po for 3	Asymptomatic 18mo	
				Methotrexate				mo	later	
20) 2006 [33]	1 [20]	67/F	RA	Prednisolone	Knee	5y	Debridement	In Amp/Gen 5 w	Asymptomatic 3mo	
				Methotrexate				later	later	
21) 2007 [34]	1 [21]	79/M	RA	Glucocorticoids	Hip	NS/Y	Debridement	Iv Amp 2 w; Rif/	Asymptomatic 5mo	
				Methotrexate				Gen intolerance;		
				Infliximab				Anox		
				Corticosteroid				Amp		
22) 2008 [11]	1 [22] (2nd 2001)	71/F	RA	NS	Hip	NS	NS	NS	NS	
23) 2008 [35]	1 [23]	73/M	RA	Not on steroids	Hip	NS (LM and S. aureus)	Two-stage revision	Flu 10 d; iv tei/ri 6 w	Asymptomatic mo	
								1st. Amp allergy;	NS later	
24) 2009 [9]	1 [24]	63/F	Leiomysarcoma	None	Knee	5 mo 1st admission 2y 2nd admission	One-stage revision;	Lev/ co-t 2nd Lin 4w, Rif for 3 mo	NS	
			distal femur				2 y after initial	and Co-t 4 mo		
25) 2011 [12]	1 [25]	78/M	None	None	Hip	11y (LM. and Staph. E.)	Two-stage revision	Iv Amp for 4 days;	Asymptomatic 2y	
								po Amp for 3 mo	later	

(continued on next page)
Article/Year/Reference	Cases/Total cases	Age (y)/sex	Underlying Disease	Immunosu/sive Therapy	PJI	Time to infection after arthroplasty	Treatment surgery	Treatment antibiotic	Outcome		
26) 2012 [2]	34 [59] 34/43 (1992-2010 FNRCL)	Age was 72 (range, 16–89)/61% M	79% (NS particularly for Arth/sty)	Hip 26 Knee 8	9y median time	- 12 one-stage revision	- 2 two-stage revision	- 5 removal	- 13 no surgery	- 2 NS	
							Primarily Amox 80% with Ami 48% for median duration 15w		Asymptomatic 5 mo later		
27) 2015 [5]	1 [60]	72/F	Polymyalgia rheumatic	Prednisone	Knee	2y	Debridement	Iv Amp 6w; po Amox 6 mo		Asymptomatic mo later	
28) 2016 [6]	1 [61]	61/M	DM; Cushing syndrome	Prednisolone	Knee	2y	Debridement	Iv Amp/ TMP/SMX 6w; po Amox/ TMP/ SMX 7 w Van prophylaxis (Implant microbiological analysis LM)		Asymptomatic several months later	
29) 2018 [13]	1 [62]	78/F	Rectal cancer	None	Hip 21y	One-stage revision with the diagnosis of aseptic loosening	Iv Amp 6w; po Amp/Rif 13 d; po Lev/Fif for 3 mo		Asymptomatic 6 mo later		
30) 2018 [3]	1[63]	69/M	DM. Anemia, Hypertension	None	Knee	3w	Debridement, mobile parts were replaced	Iv Ampx/2w followed by TMP/SMX/10w		Asymptomatic 1y later	
31) 2019 [20]	1 [64]	50/M	None	None	Hip 9 mo	Debridement, mobile parts were replaced	Iv Amp/Rif 13 d; po Lev/Fif for 3 mo		Asymptomatic 20 mo later		
32) 2019 [7]	1 [65]	77/F	None	None	Knee 5y	One-stage revision	Iv Amp 1w; TMP/SMX 6w po Amox 7w NS		Asymptomatic 2y later		
33) 2019 [15]	2 [66]	67/F	NS DM, Asthma, Psoriatic arthritic	NS Methotrexate 15mg & Methylprednisolone 2mg	1Hip/1Knee TKA	NS	Debridement, mobile parts were replaced	Iv & po Amp/Rif 6w; 2mo TMP/SMX		Asymptomatic 1y later	
34) 2020 [36]	1 [67]	NS	DM, Hyperthyroidism, Hyperlipidemia, Chronic obstructive disease	None	Hip 9y	Two-stage revision	Iv MR/VAN 1w; Iv Amp 3w; po Ampx TMP/SMX		Asymptomatic 2y later		
35) 2021	1 [68] PR	82/F	DM, Hyperthyroidism, Hyperlipidemia	None	Hip 9y	Two-stage revision	Iv MR/VAN 1w; Iv Amp 3w; po Ampx TMP/SMX		Asymptomatic 2y later		

Amox, amoxicillin; Amp, ampicillin; Pen, Penicillin; Piv, Pivacillin; Cef, cefoxitin; Cefa, cefamandole; Gen, gentamicin; Tob, tobramycin; TMP/SMX, trimethoprim/sulfamethoxazole; Rif, rifampicin; Lev, levofloxacin; Ami, aminoglycosides; Cip, ciprofloxacin; Flu, flucloxacin; Tei, teicoplanin; Lin, linezolid; Co-t, co-trimoxazole; Van, vancomycin; MR, meronem; RA, rheumatoid arthritis; N, neoplasmas; DM, diabetes mellitus; RT, renal transplant; CRF, chronic renal failure; THA, total hip arthroplasty; HA, hemiarthroplasty; TKA, total knee arthroplasty; NS, not stated; PR, present report; AOA, abstract only available; FNRCL, French National Reference Center for Listeria.
antibiotics, and implant retention (DAIR) [7]. They mention that key factors for the successful treatment of one-stage revision surgery for chronic PJls in TKA are preoperative diagnosis, known susceptibility of the microorganism, aggressive debridement after a standardized surgical protocol, and the combination of local and systemic antibiotics (ATB) therapy [7]. Our literature review shows no recurrent cases from one-stage revisions. In 7 patients (10%), two-stage revision shows good results over a 5-month to 2-year follow-up period [2,11,12,22,30,35 and our case] (Tables 1 and 4). All cases were chronic though two were acute [2,11]. Nevertheless, it is an additional surgical procedure compared to one-stage revision. In regards to the surgical treatment of our patient, one-stage or two-stage revision of the THA was debatable. On the basis of our study, the one-stage revision of the THA could have been an equally effective treatment.

Of all patients 19 (28%) were treated conservatively and for 7 (10%) there was no statement (Table 4). We think that the success rates of conservative treatment, one-stage or two-stage procedures are dependent on selecting appropriate patients having considered acute and chronic infections, and other individual factors.

Based on our study, although the number of patients is limited, we believe that PJls caused by LM after THA and TKA can be treated with debridement and mobile part replacement if the implant is stable or with one-stage procedures with suitable antibiotics (ATB) and proper time administration.

Conclusions

Although the diagnostic algorithm for PJls caused by LM does not require any special consideration, a strategy is vital when considering prevention and treatment since it affects especially immunocompromised patients. Ampicillin is generally considered the preferred agent in combination with gentamicin. Meropenem or SMX-TMP have been suggested for patients allergic to penicillin. A combination of ampicillin and trimethoprim-sulfamethoxazole seems to be an option for severe infections. The time of antibiotic administration, conservative or surgical treatment, debridement and prosthesis retain or removal in one or two-stage revision remain controversial. Surgical treatment was performed in 42 patients (62%), 19 patients (28%) were treated conservatively and for 7 (10%) there was no statement. Our literature review shows no recurrent cases from one-stage revisions. The present study shows that this type of infection can be treated with debridement, and mobile part replacement if it is stable or one-stage revision with suitable antibiotics and proper time administration. Immunocompromised patients are susceptible to PJls caused by LM and should be advised that consumption unpasteurized dairy products increases the risk of this atypical infection.

Acknowledgment

None

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Patient consent

The patient and his relatives were informed that data concerning the case would be submitted for publication, and they provided their consent.

Informed patient consent

The author(s) confirm that informed consent has been obtained from the involved patient(s) or if appropriate from the parent, guardian, power of attorney of the involved patient(s); and, they have given approval for this information to be published in this case report (series).

References

[1] Radoshevich L, Cossart P. Review. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018;16(1):32.
[2] Charlier C, Leclercq A, Cazenave B, et al. Lecuit M and L monocytogenes Joint and Bone Infections Study Group. Listeria monocytogenes — associated joint and bone infections: a study of 43 consecutive cases. Clin Infect Dis 2012;54(2):240.
[3] Van der Weegen W, Verduin CM, Graumans M, Hoekstra HJ. Successful debridement of a knee joint prosthesis infected with Listeria monocytogenes. Case report and review of current literature. J Bone Jt Infect 2018;3(4):203.
[4] Bader G, Al-Tarawneh M, Myers J. Review of prosthetic joint infection from Listeria monocytogenes. Surg Infect (Larchmt) 2016;17(6):739.
[5] Bush I, Alrifai A, Perez M. L monocytogenes prosthetic joint infections a review a prospect a case report. Infect Dis Clin Pract 2015;23(2):66.
[6] See Y, Noh YS, Wie SH, Chang UC. Prosthetic knee joint infection due to Listeria monocytogenes bacteremia in a diabetic female. Korean J Intern Med 2016;31(3):616.
[7] Díaz-Dímera F, Constantini J, Nikolino TI, Sanchez MLD, Carbo L. Unusual L monocytogenes hematogenous infection in total knee replacement treated with one-stage revision surgery. Arthroplast Today 2019;5(3):296.
[8] Cone L, Fitzmorris A, Hirschberg J. Is L monocytogenes a usual cause of late infection in a prothetic hip joint. J Rheumatol 1990;17:705.
[9] Hons RHC, Brunton WA. L monocytogenes in an hip joint implant. Int Orthop 1992;16(3):235.
[10] Ellis LC, Segreti J, Gitelis S, Huber JF. Joint infections due to L monocytogenes: case report and review. Clin Infect Dis 1995;20(6):1548.
[11] Hansen PS, Schanheyder HC, Pedersen C. Septic infection of hip joint prosthesis with L monocytogenes. Ugeskr Laeger 1996;158(42):5949.
[12] Tabib W, Gufall KP, Lemont CB, Berrada H. Prosthetic hip joint infection caused by Listeria monocytogenes. Acta Orthop Belg 2002;68(2):182.
[13] Cornelius LR, Reddi Jr RN, Carpenter JL. Periprosthetic knee joint infection following colonoscopy. A case report. J Bone Joint Surg Am 2003;85(12):2434.
[14] Gomez Rodriguez N, Baezun R, Gonzalez Perez M. Prosthetic knee joint infection caused by Listeria monocytogenes in a woman with rheumatoid arthritis and Waldenstrom s macroglobulinemia. Am Med Interna 2006;23(6):276.
[15] Restemant T, Yombi JC, Gigi J, Duriez P. Listeria infection associated with infiximab: case reports. Clin Rheumatol 2007;26(12):2173.
[16] Bal AM, Ashcroft G, Gould I, Laing R. Listeria monocytogenes and Staphylococcus aureus confection of a prosthetic joint. Joint Bone Spine 2008;75(5):615.
[17] Paziuk T, Levicoff E, Tan T, Good R. Periprosthetic joint infection with Listeria monocytogenes: a case report. JBJS Case Connect 2020;10(2):e1900489.
[18] Rava A, Bruzzone M, Cottino U, Enrietti E, Rossi R. Hip spacers in two-stage revision for periprosthetic joint infection: a review of literature. Joints 2019;7(2):36.
[19] Izakovicová P, Borens O, Trampuz A. Periprosthetic joint infection: current concepts and outlook. EFORT Open Rev 2019;4(7):482.
[20] Li C, Renz N, Trampuz A. Management of periprosthetic joint infection. Hip Pelvis 2018;30(3):138.
[21] Li C, Renz N, Trampuz A. Oseph-Thies C. Twenty common errors in the diagnosis and treatment of periprosthetic joint infection. Int Orthop 2020;44(1):3.
[22] Linnan MJ, Mascola I, Lou XD, et al. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 1988;319(13):823.
[23] Merle-Melet M, Dossou-Gbete L, Maurer P, et al. Is amoxicillin- otrimoxazole the most appropriate antibiotic regimen for Listeria meningococcal meningitis? Review of 22 cases and the literature. J Infect 1996;33(2):79.