Monte Carlo Eikonal Scattering

W. R. Gibbs
New Mexico State University, Las Cruces, NM 88003

Jean-Pierre Dedonder
Laboratoire de Physique Nucléaire et Hautes Énergies
Universités Pierre et Marie Curie et Paris-Diderot, IN2P3 et CNRS
4, place Jussieu, 75252 Paris cedex 05, France

(Dated: May 5, 2014)

Background The eikonal approximation is commonly used to calculate heavy-ion elastic scattering. However, the full evaluation has only been done (without the use of Monte Carlo techniques or additional approximations) for $\alpha - \alpha$ scattering.

Purpose Develop, improve and test the Monte Carlo eikonal method for elastic scattering over a wide range of nuclei, energies and angles.

Method Monte Carlo evaluation is used to calculate heavy-ion elastic scattering including the center-of-mass correction and the Coulomb interaction.

Results Angular distributions are presented for a number of nuclear pairs over a wide energy range using nucleon-nucleon scattering parameters taken from phase-shift analyses and densities from independent sources. A technique for the efficient expansion of the Glauber amplitude in partial waves is developed.

Conclusion The center-of-mass and Coulomb corrections are essential. Angular distributions can be predicted only up to certain angles which vary with the nuclear pairs but all correspond to a momentum transfer near 1 fm$^{-1}$.

PACS numbers: 25.70.Bc, 25.55.Ci

I. INTRODUCTION

Monte Carlo (MC) methods are very valuable for performing multi-dimensional integrals, especially in quantum applications. Recently, calculations of nuclear structure using MC have been performed, both for light nuclei and with the nuclear shell model. In the present article we study the use of this technique for the evaluation of multi-dimensional integrals in the calculation of elastic scattering of heavy ions in the eikonal approximation.

Monte Carlo techniques have been used for classical simulations of nuclear reactions for many years (see e.g. Ref. and references within). In that case (highly inelastic reactions), the assumption that phase information is unimportant appears to be valid, at least under certain conditions. This technique can reveal properties of nuclear reactions for inelastic reactions where many channels are open. Much less use has been made of the MC method for elastic (or nearly elastic) reactions. The reason for this might be that integrals performed with Monte Carlo are deemed not to be suitable to produce the highly oscillating amplitudes because of the growth in errors that typically occurs in this case. As we shall see shortly the evaluation of the Glauber elastic scattering amplitude does not suffer from this problem. We now review some of the literature on this problem.

A. Review

1. The use of the Glauber approximation for nucleus-nucleus scattering

Before discussing the use of Monte Carlo for eikonal calculations, we briefly mention the applications of the Glauber scattering method to heavy ion scattering more generally.

Franco and Yin and Yin et al. were the first to evaluate the full sum for the $\alpha - \alpha$ scattering amplitude which appears to be the largest case for which the full scattering amplitude can be evaluated without further approximation and without the use of Monte Carlo. Their method relies on the use of a Gaussian approximation for the nuclear density. Abu-Ibrahim et al. evaluated the full Glauber multiple-scattering amplitude for proton-4He scattering.

Al-Khalili, Thompson and Tostevin studied the 11Li halo structure using eikonal methods, Al-Khalili and Tostevin studied the relation of reaction cross section to radii in the Glauber model. They also studied proton helium halo nuclei citealkhalili1 with Glauber scattering.
and in Ref. [12], with Brooke, they treated 11B-12C scattering with non-eikonal corrections, modifying the trajectory at lower energies. El-Gogary [13] treated cluster nuclei to evaluate the Glauber formula. El-Gogary et al. [14] used an approximate center-of-mass correction with a double Gaussian form for the density. Franco and Varma [15] treated the center-of-mass effects to several orders and compared (primarily) with total cross sections. El-Gogary et al. [16] did calculations with an approximate center-of-mass correction and noted that a simplified treatment of center-of-mass effects is problematic. Horinichi et al. [17] did a systematic study of reaction cross sections using an improved expansion of the Glauber formula. Zhong [18] calculated nucleus-nucleus scattering in an α-cluster model with double Gaussian forms for the density. Charagi and Gupta [19] calculated 16O scattering from several nuclei using the Optical Limit Approximation (OLA). Abu-Ibrahim and Suzuki [20] used the OLA and a phenomenological profile function to treat a large number of nuclei. Abu-Ibrahim et al. [21] calculated halo nucleus scattering in the Glauber model. Abu-Ibrahim and Suzuki [22] calculated nucleus-nucleus scattering at intermediate energies using corrections to the OLA. Abu-Ibrahim and Suzuki [23] studied the profile function in heavy ion scattering. Franco and Nutt [24] treated short-range correlations in heavy ion scattering. Lenzi et al. [25, 26] did a systematic treatment of heavy ion scattering in an OLA treatment of eikonal scattering.

The Monte Carlo method has been used to evaluate the eikonal amplitude on several occasions. A. M. Zadorozhnyj, V. V. Uzhinsky and S. Y. Shmakov [27] did perhaps the first application of eikonal Monte Carlo but no details are given. Merino, Novikov and Shabelski [28] very recently compared methods for radius extraction. One of the methods is exact with Monte Carlo using the Metropolis algorithm [29]. Alkhazov and Lobodenka [30] calculated reaction cross sections for halo nuclei using the Monte Carlo method. Shmakov, Uzhinskii and Zadorozhny [31] used Monte Carlo techniques for the generation of inelastic diagrams. Kripic and Shabelski [32] used the Metropolis algorithm to calculate elastic and inelastic scattering from several nuclei using a diagrammatic expansion. They neglected the center-of-mass correction. Abu-Ibrahim and Suzuki [33] studied low-energy 6He-12C scattering using the optical eikonal potential evaluated with Monte Carlo.

Recently Varga et al. [34] have combined the Monte Carlo Green’s Function method of solution of few-body problems with Glauber theory to calculate $\alpha-\alpha$ and halo-nuclei scattering with no approximation beyond those inherent in the basic eikonal theory. No doubt this method should be used in any case that an exact calculation of the nuclear structure is available but a much more common case is the scattering of heavier nuclei where such a solution is still for the future. In this case less ambitious approximations to the nuclear densities need to be used. We later will show calculations comparing the two methods and it would seem that the details (short-range correlations) make little difference.

3. Center of Mass

Of the above methods only that of Varga et al. [34] includes the center-of-mass correction exactly. We will see that this correction is very important, even for heavier nuclei.

Chauhan and Khan [35] treated 12C-12C elastic scattering and found that center-of-mass effects play an important role. They use an expansion of the profile function. Liu et al. [36] calculated α scattering from several nuclei at 1.37 GeV. They used an overall factor for the center-of-mass correction and varied the phase of the nucleon-nucleon interaction.

Franco and Tekou [37] calculated the optical model version up to 5th order. They included corrections for the center of mass. Shukla [38] included the center-of-mass and Coulomb effects to investigate reaction cross sections.

4. Coulomb

The basic Glauber method does not include the Coulomb interaction and a correction (often very important) must be made for it after the calculation.

Kondratyuk and Kopeliovich [39] argued that it would be a good approximation to simply add the strong and Coulomb phases. Glauber and Matthiae [40] and Czyz, Lesniak and Wolek [41] used mainly this approximation. The corrections to this approximation were developed using various techniques but most often based on an optical potential. See Ref. [42] for a recent treatment and references to the previous work for the application to pion-nucleon scattering. Fäldt and Pilkuhn [43] used a semi-classical method with the Glauber model to correct for the Coulomb modification of the trajectories. This technique has the advantage that an optical model fit does not have to be made to the data to find the correction factors. While they developed the method for pion-nucleus scattering it is currently being applied to heavy-ion elastic scattering. These two methods will be treated shortly is some detail. Charagi and Gupta [44] treated low-energy heavy-ion scattering in the Coulomb
modified optical limit in two papers. Cha [45] introduced the deviation of the orbit in Glauber from the nuclear potential as well as the Coulomb potential. Charagi [46] commented on the Coulomb correction to the Glauber model introduced by Cha [45] saying that it failed to reproduce known reaction cross sections. Alvi et al. [47] calculated \(^{12}\text{C} - ^{12}\text{C} \) elastic scattering using the first two terms of an expansion in a Coulomb modified Glauber calculation.

B. Organization

The paper is organized as follows. In section II the method is described showing how to satisfy the center-of-mass condition with the Monte Carlo sampling. In particular, the technique for determining an auxiliary density which results in a desired center-of-mass single-particle density is developed. In this section the method for making the Coulomb correction is also presented.

In section III the calculations are compared with data for 20 nuclear pairs/energies. The parameters for the auxiliary functions are given. In section IV the results are summarized and conclusions are drawn. In the appendices we present a method for the rapid partial-wave projection of the Glauber amplitude and explain how the variation calculation for the \(^{4}\text{He} \) density was done.

II. MONTE CARLO EIKONAL NUCLEUS-NUCLEUS SCATTERING

A. The Glauber Method

The eikonal theory of elastic scattering as expressed by Glauber [49] and elaborated and studied by others [44, 54] is believed to be an accurate representation of scattering at high energies and forward angles. It can be applied to calculate the multiple scattering of a simple projectile on a nucleus or collisions between nuclei, taking into account all of the scatterings possible in this theory.

There are two major difficulties in applying this technique: 1) as the atomic number of the scatterers increases the number of scatterings becomes very large and 2) the representation of the wave function (density) of the two scattering conglomerates raises the problem of the center of mass. The use of Monte Carlo techniques is well suited to solve both of these problems.

For the scattering of \(^{4}\text{He} \) particles on \(^{4}\text{He} \) (the largest case treated to date for the full scattering series without using Monte Carlo) there are 16 possible scatterings. Taking into account all of the possible orders there are \(2^{16} - 1 = 65535 \) terms in the multiple scattering expansion. They are not all independent however and, by dividing them into classes, the calculation can be reduced to 37 different types, each characterized by a \(4 \times 4 \) matrix of zeros and ones to be calculated and included with different weights. There remains a 24 dimensional integral to be done for each term. By using a Gaussian representation of the wave function of \(^{4}\text{He} \), Franco and Yin [6] and Yin et al. [7] were able to provide expressions for these integrals and calculate the full sum.

In the present paper the Glauber expression for the multiple scattering is used directly as a product of factors in Eq. I without expanding into separate terms and the integral over the many-body nuclear density is done with Monte Carlo techniques, either with direct sampling or with the Metropolis algorithm. Normally one would be reluctant to use a Monte Carlo method to obtain a rapidly oscillating function as the amplitude for scattering, but in this case Monte Carlo can be used to calculate the profile function (which is a smooth function since it consists of a sum of analytic functions) and then a standard numerical technique can be applied to perform the last (one-dimensional) integral. The explicit development of the method is given in Section III.

The exact wave function for a nucleus at rest as a function of the coordinates of the nucleons (we are ignoring spin for the present) would necessarily be translationally invariant in the absence of external interaction. In order to calculate the scattering between the two nuclei one would simply translate the wave function to place the center of mass at the origin. Of course one rarely has the exact wave function available but it is possible to introduce an approximate density which is, indeed, translationally invariant where one can carry out this procedure. For \(^{4}\text{He} \) the four-body problem can be solved using Monte Carlo methods [2, 3]. In the first instance a variational wave function can be used to find the minimum in energy by varying the parameters in the trial function. The trial wave function should be translationally invariant. The square of the wave function (the density, which is all that is needed for the Glauber scattering calculation) is represented by a collection of Metropolis walkers.

What has more commonly been done in practice is to start with an approximation to the density which is obtained empirically from a probe which is sensitive to the single-particle density relative to the center of mass, most often electron scattering. One then applies some transformation to assure that the center of mass of the nucleus is at the origin. Franco and Yin [6] gave a prescription and showed that, using this formula, one could calculate with the fixed well assumption (for a harmonic oscillator potential) and then apply an exact correction. To illustrate the importance of this correction we point out that the factor by which the amplitude is multiplied for \(\alpha - \alpha \)
scattering at \(-t = 3\) (GeV/c)^2 is 3.6 \times 10^7. Clearly, a careful treatment of the center-of-mass correction is important. This problem is discussed at length in Section II E and the MC method is applied the evaluation of the Glauber amplitude for \(\alpha - \alpha\) scattering in Section II A.

It is important to define what one means by a measure of the center-of-mass correction, that is, we need to define the “zero effect” condition. It is common in both the double folding model and the OLA to take the density from electron scattering (corrected for the charge distribution of the proton) to form a product density. Often the center-of-mass requirement is ignored in these calculations (see however Franco and Varma [12] for a first order treatment). We will take this product density as our “no effect” model and compare the scattering from this case with scattering from a density with the proper center-of-mass properties. We will see that ignoring the center-of-mass effect, even for fairly heavy nuclei is ill advised.

B. Basic technique

The expressions for the Glauber amplitude are available many places, see e.g. Franco and Yin [6].

The nuclear profile function, \(G(b)\) is the central function in the theory and is given by

\[
G(b) = \int \prod_{i=1}^{A} \prod_{j=1}^{B} ds_i \phi^2(s) \psi^2(s') G(b, \{s\}, \{s'\}). \tag{1}
\]

In Eq. (1) the notation \(\{s\}\) represents the collection of all the coordinates of the projectile or target and \(\phi(\{s\})\) denotes the projectile ground-state wave function and \(\psi(\{s\})\) the target ground-state wave function.

\[
G(b, \{s\}, \{s'\}) \equiv 1 - \prod_{i=1}^{A} \prod_{j=1}^{B} [1 - \Gamma_{ij}(b + s_i - s_j)]. \tag{2}
\]

The scattering amplitude is given by the two dimensional Fourier transform of \(G(b)\) and, since there is no direction defined for the nuclear wave function, it is just the Hankel transform of \(G(b)\),

\[
F(q) = \frac{ik}{2\pi} \int d^2 b e^{ib \cdot q} G(b) = ik \int_0^\infty b db J_0(qb) G(b). \tag{3}
\]

In Eq. (2) \(\Gamma_{ij}(b + s_i - s_j)\) denotes the two-dimensional Fourier transform of the elementary nucleon-nucleon amplitude \(f(q)\), i.e.,

\[
\Gamma_{ij}(b) = \frac{1}{2\pi ik} \int d^2 q e^{-ib \cdot q} f_{ij}(q) = ge^{-b^2/2a}. \tag{4}
\]

where the nucleon-nucleon amplitude has been approximated by

\[
f_{ij}(q) = \frac{ik\sigma(1 - i\rho)}{4\pi} q^2; \quad \sigma = a_R + ia_I, \quad \rho = \frac{a_I}{a_R} \tag{5}
\]

where \(\sigma\) is the nucleon-nucleon total cross section and \(\rho\) is the ratio of the real to imaginary part of the forward amplitude. For a discussion of the imaginary part of \(a, a_I\) see Ref. [52].

We have assumed a Gaussian approximation as a function of momentum transfer for the nucleon-nucleon amplitude. The scattering parameters needed can be extracted from nucleon-nucleon (NN) scattering data [56] and such a set is shown in Fig. 1 as a function of energy (see Refs [57] and [58] for tables of other determinations of these amplitudes. Of course, one might expect that these amplitudes may well be modified in the nuclear medium (see e.g. Refs [59] and [60] but it may be useful to make calculations with free values to see how large the corrections are likely to be. We take the free values used in the calculations in this paper from the partial-wave parametrization of Arndt et al. [58]. A plot of the free values used is shown in Fig. 1. For more details on the representation of the amplitudes, see the following section.

C. Nucleon-nucleon amplitude

For NN free-space scattering there are essentially 4 incoherent beams in the free (and unpolarized) case according to the 4 possible orientations of the spins of the two colliding nucleons. The imaginary parts of the forward elastic scattering amplitudes give the total cross section for each of these beams. The interference with the Coulomb in the forward direction can give the real parts of these amplitudes averaged with equal weighting. This combined amplitude is given by

\[
A = \frac{1}{4} [M_{++++} + M_{++-} + M_{+-+} + M_{-++}] = \frac{1}{2} [M_a + M_o] \tag{6}
\]

with all amplitudes weighted equally. Here the amplitudes are labeled by “aligned” (subscript “a”) and “opposed” (subscript “o”). In the case of nucleus-nucleus scattering the amplitude would still consist of these two amplitudes if spin flip is neglected. Single spin flip amplitudes are very small in the forward direction, so are often neglected. Since we are considering the scattering of two spin-zero nuclei, a single spin flip is not possible.
and this small amplitude must enter twice in the calculation so that some other (correlated) nucleon can have its spin flipped in the opposite sense such that the total projection is again zero. These two constraints lead one to consider that the neglect of spin flip is a reasonable approximation.

However, even in the forward direction there is an amplitude M_{++-+} which does not vanish at zero degrees so a priori might be expected to contribute. However, we see that this amplitude must flip the spin of one nucleon in each of the nuclei. The resulting spin projection must be reduced to zero again by a second spin flip in each nucleus. This amplitude arises primarily from one-pion exchange. The average over spin (and isospin) removes this amplitude from consideration, at least in first order and we neglect it and consider only the amplitude coming from Eq. 6.

The total cross sections which correspond to the two terms in Eq. 6 have been studied experimentally and their difference shows a rapid variation [62] sometimes attributed to a dibaryon (see e.g. [63]). If some mechanism could be found to change the equal weighting of the aligned and opposite amplitudes in Eq. 6 then a change in the energy dependence of the nucleon parameters could be expected. However, the spin projections come from two different nuclei so it is difficult to see how such a correlation might come about. The amplitude in Eq. 6 does not correspond to any directly measurable differential cross section as a function of angle. Any attempt to extract the parameters directly from a measured differential cross section will lead to parameters not suitable for calculations using the Glauber expressions; the amplitude is a theoretical construct. Each of the terms in Eq. 6 can be well represented in the approximate form of Eq. 5 (see Fig. 2).

Listed in Table I are values of the parameters used in the calculations presented in this paper. Also given are the maximum values of the center-of-mass angle and $-t$.

FIG. 1: Nucleon-nucleon parameters taken from the work of Arndt et al. [56]. Also shown for the average NN cross section is the recent parametrization of ref. [61] (dashed line).

FIG. 2: Angular distribution of the nucleon-nucleon amplitudes taken from the phase-shift analysis of Arndt et al. [56]. Also shown is the Gaussian approximation (dashed line) as used in Eq. 5 with parameters chosen to match the value and slope in the forward direction. The “aligned” amplitudes are shown in the upper panels and the “opposite” amplitudes in the lower panels.
D. Nuclear profile function

Another advantage of the method is that the nuclear profile function (NPF), \(G(b) \), is available for study (see Fig. 3). This function contains all of the information for the scattering since it is, essentially, the Hankel transform of the amplitude (we are dealing only with spin-zero on spin-zero scattering so there is only one amplitude). Clearly the NPF is strongly dependent on the single-particle density and the general shape reflects this.

It is natural to ask how other characteristics of the nucleon distribution, such as short-, medium- and long-range correlations. They must manifest themselves in some manner but how? One can get some feeling for this effect by considering the “anatomy” of the calculation. We see in Eq. 2 that the NPF is expressed as one minus a product. When this product goes to zero the phase reaches \(\pi \), since \(\text{Real} \ G \) is of the order of 0.25-0.8, no one factor can drive the product to zero, it will take a combination of several factors. This will require that several nucleons be located close together and the probability of this occurring is sensitive to the correlations. Just how close together the nucleons have to be (in the 2-dimensional space) is governed by \(\sqrt{a_R} \). Typical values of \(\sqrt{a_R} \) are in the range of 1 fm. Repulsive correlations pushing the nucleons outside of this range would lead to greater transparency. Correlations shorter than this range can be expected to have little effect.

At the same time that the modulus of the product is decreasing it is developing a phase. Under the conditions just outlined the phase of each factor has the same sign so the phase grows monotonically as each factor is included. Thus the behavior of the NPF depends on the relative sizes of the phase and the modulus of the product. If the phase reaches \(\pi \) while the modulus of the product is

Case	\(T_{Lab} [\text{Ref.}] \)	\(T_{Lab}/A (\text{MeV}) \)	\(\sigma (\text{mb}) \)	\(\rho \)	\(a_R \)	\(a_I \)	\(\theta_{\text{Max}}^{c.m.} (\text{deg}) \)	\(A_{\text{Max}} [(\text{GeV/c})^2] \)
\(^{6}\text{He-}^{12}\text{C} \)	0.230 GeV [64]	38.3	163.5	0.680	14.6	-8.06	20	0.139
\(^{6}\text{He-}^{12}\text{C} \)	0.250 GeV [65]	41.6	159.7	0.737	16.0	-7.91	10	0.038
\(^{16}\text{O} \)	0.240 GeV [66]	60	103.2	0.953	20.8	-6.65	12	0.051
\(^{16}\text{O} \)	1.120 GeV [67, 68]	70	86.4	1.049	23.0	-5.87	22	1.224
\(^{208}\text{Pb} \)	0.288 GeV [69]	72	83.0	1.069	29.2	-4.85	33	0.700
\(^{208}\text{Pb} \)	0.340 GeV [69]	85	65.0	1.169	25.7	-4.85	30	0.686
\(^{12}\text{C} \)	1.016 GeV [70]	85	65.0	1.169	25.7	-4.85	18	0.560
\(^{16}\text{O} \)	1.503 GeV [71]	94	60.5	1.185	26.3	-4.56	6	0.254
\(^{16}\text{O} \)	1.503 GeV [71]	94	60.5	1.185	26.3	-4.56	15	0.565
\(^{16}\text{O} \)	0.400 GeV [72]	100	57.5	1.196	26.7	-4.36	37	0.800
\(^{208}\text{Pb} \)	0.480 GeV [69]	120	47.4	1.233	28.1	-3.70	20	0.443
\(^{12}\text{C} \)	1.449 GeV [73]	120	47.4	1.233	28.1	-3.70	12	0.356
\(^{12}\text{C} \)	1.620 GeV [74]	135	43.1	1.212	28.6	-3.84	12	0.398
\(^{208}\text{Pb} \)	0.699 GeV [69]	175	36.2	1.095	29.2	-5.05	12	0.240
\(^{12}\text{C} \)	2.400 GeV [75]	200	34.3	0.991	28.7	-6.42	10	0.410
\(^{40}\text{Ca} \)	1.37 GeV [76]	343	29.7	0.435	20.5	-12.6	12	0.414
\(^{12}\text{C} \)	1.37 GeV [76]	343	29.7	0.435	20.6	-12.6	20	0.799
\(^{4}\text{He} \)	2.554 GeV [77]	638	38.9	0.010	10.5	-8.10	23	0.765
\(^{8}\text{He} \)	4.20 GeV [78]	1050	42.5	-0.303	8.06	-3.25	13	0.400
\(^{12}\text{C} \)	4.20 GeV [79, 80]	1050	42.5	-0.303	8.06	-3.25	11	0.716

TABLE I: Parameters used in the calculations based on the nucleon-nucleon partial-wave amplitude analysis of Ref. 56.
still sizable then the NPF will increase before becoming unity as seen in Fig. 3 with the CNC included. Further changes leading to the average modulus becoming larger (with only modification of the phase) could even lead to oscillations.

In an effort to get a feeling for the effective number factors (thus the number of times that the correction is being applied) we calculated the profile function for values of b in the crucial range of the surface as a function of the number of factors (see Fig. 4). As we progress from large to small values of b more factors are important. For large b the profile function can be expressed as a sum of first-order terms and the dependence on the number of factors becomes linear. Of course in this limit there is no CMC since only first order in the density is involved.

E. Center-of-mass treatment

The scattering between two composite objects is treated in terms of the coordinate connecting their centers of mass so that the particles making up the nuclei must be centered appropriately. This is the problem of center of mass which must be appropriately addressed. The Monte Carlo method can provide the solution. Consider two methods of treating the c.m. motion. Each one provides a density in which the sum of all of the position vectors is zero but they are not (in general) equivalent. The first method relies on Gaussian densities and provides a correction factor to a scattering calculation made with an auxiliary density centered about a fixed origin.

Franco and Yin [6] used this first method, developed by Czyz and Maximon [81] (see also Ref. [82]) which works only when using Gaussian densities because the center-of-mass can be expressed as a factor in this case.

To implement this method, a model is made assuming a product of densities which are invariant under translation and using the algebraic identity:

$$e^{-A\alpha^2R^2}e^{-\alpha^2(r_1-R)^2}e^{-\alpha^2(r_2-R)^2}e^{-\alpha^2(r_3-R)^2}\cdots$$

$$= e^{-\alpha^2r_1^2}e^{-\alpha^2r_2^2}e^{-\alpha^2r_3^2}\cdots = \rho_a(r_1)\rho_a(r_2)\rho_a(r_3)\cdots \quad (7)$$
where \(\mathbf{R} \equiv (\sum r_i)/A \) is the center-of-mass coordinate and \(\rho_a(r) \) is an auxiliary density with reference to a fixed origin. The expectation value in Eq. 11 can be taken over the auxiliary density (a calculation which is much easier) and the expectation value of the translationally invariant density obtained by dividing by the expectation value of the first factor on the left.

For the density used by Franco and Yin with \(\rho_a(s_i) \equiv \phi^2(s_i) \)

\[
\begin{align*}
|\chi(\{s\})|^2 &= N \delta \left(\frac{1}{A} \sum s_j \right) \prod_{i=1}^{A} \rho_a(s_i) \\
&= \frac{N}{(2\pi)^3} \int d\mathbf{Q} \ e^{i \sum_j Q s_j / A} \prod_{i=1}^{A} \rho_a(s_i)
\tag{8}
\end{align*}
\]

where \(N \) is a normalization factor. The single particle density relative to the center of mass, such as that obtained from electron scattering (see Refs. 83–86 for corrections), for example, will be obtained, integrating over all but one of the coordinates, as

\[
\rho_s(s_1) \equiv \int ds_2 ds_3 \ldots |\chi(\{s\})|^2
\]

\[
= \frac{N}{(2\pi)^3} \int d\mathbf{Q} \ e^{i \sum_j Q s_j / A} \rho^A_{s-1}(\mathbf{Q}/A)
\tag{9}
\]

The Fourier transform of the single particle density (in the c.m.) will be

\[
\rho_s(q) \equiv \int ds_1 e^{i q s_1} \rho_s(s_1)
\]

\[
= \frac{N}{(2\pi)^3} \int d\mathbf{Q} \ \rho_s(q + \mathbf{Q}/A) \rho^A_{s-1}(\mathbf{Q}/A)
\]

\[
= \frac{A^3 N}{(2\pi)^3} \int d\mathbf{Q} \ \rho_s(q + \mathbf{Q}) \rho^A_{s-1}(\mathbf{Q})
\tag{10}
\]

Normalizing, we have

\[
\rho_s(q) = \frac{\int d\mathbf{Q} \ \rho_s(q + \mathbf{Q}) \rho^A_{s-1}(\mathbf{Q})}{\int d\mathbf{Q} \ \rho^A_{s}(\mathbf{Q})}
\tag{11}
\]

For a Gaussian form in momentum space as Franco and Yin assumed

\[
\rho_a(p) = e^{-p^2/4\alpha^2}
\tag{12}
\]

we can perform the integral on \(\mathbf{Q} \) to find

\[
\rho_s(q) = e^{- (A-1)p^2/4A\alpha^2}
\tag{13}
\]

so that the auxiliary density has the same (Gaussian) form as the single-particle density but with a larger rms radius: \(r^2_a = \alpha^2/(A-1) \).

We can also calculate the transform of the full density (Eq. 8) in the general case as

\[
\rho_s(\{q\}) \equiv \int ds_1 ds_2 \ldots ds_A e^{i(\mathbf{q}_1 \cdot s_1 + \mathbf{q}_2 \cdot s_2 + \ldots + \mathbf{q}_A \cdot s_A)} |\chi(\{s\})|^2
\]

\[
= \frac{N}{(2\pi)^3} \int d\mathbf{Q} \prod_{i=1}^{A} \rho_a(q_i + \mathbf{Q}/A)
\]

\[
= \int d\mathbf{Q} \prod_{i=1}^{A} \rho_a(q_i + \mathbf{Q})/\int d\mathbf{Q} \rho^A_{a}(\mathbf{Q})
\tag{14}
\]

Evaluating with a Gaussian form we have

\[
\rho_s(\{q\}) = e^{- \left[\sum \mathbf{q}_i^2 - \frac{A}{4 \alpha^2} \right]/4 \alpha^2}
\tag{15}
\]

In the Monte Carlo method the algorithm leading to a density in the center-of-mass frame is to first select the \(A \) coordinates, \(\mathbf{u}_i \), according to \(A \) independent auxiliary densities, \(\eta_a(u) \), (assumed to be isotropic). The functions \(\eta_a(u) \) have chosen forms and the principal aim of this section is to develop a method to pick the functions \(\eta_a(u) \) such that they result in a specified single particle density relative to the center of mass. The coordinates to be used in the integration are obtained from the set of vectors \(\mathbf{u}_i \) by

\[
\mathbf{s}_i = \mathbf{u}_i - \frac{1}{A} \sum \mathbf{u}_j
\tag{16}
\]

which means that the Monte Carlo densities that result from this transformation produce (by construction) functions which have the sum of their vector coordinates zero.

To summarize, the procedure is to choose (isotropic) distributions according the density \(\eta_a(u) \) for all of the nucleons in a given nuclear configuration. The center-of-mass vector is then computed and subtracted from each of the \(\mathbf{u}_i \) to give the coordinates to be used in the evaluation of \(G(\mathbf{b}, \{s\}, \{s'\}) \).

In order to choose an auxiliary function that gives a particular center-of-mass density it is very useful to have explicit expressions for the two functions that we need to connect. The Fourier transform of the single particle density relative to the center of mass will be given by

\[
\eta_s(q) = \int d\mathbf{u}_1 d\mathbf{u}_2 \ldots d\mathbf{u}_A \times
\]
To get the particle in the center of mass (and neutrons) the Fourier transform of the proton auxiliary function then the corresponding functions for the neutrons will be related. If the number of neutrons is not equal and the neutrons and protons have different density shapes a different form holds. If \(\alpha = \beta \) gives the same result as the method used by Franco and Yin. For the full Fourier transform we have

\[
\eta_a(\{q\}) = \int du_1 du_2 \ldots du_A \times e^{i \sum_{i=1}^{A} q_i \cdot (u_i - \frac{1}{A} \sum_{j=1}^{A} u_j)} \eta_a(u_1) \eta_a(u_2) \ldots \eta_a(u_A)
\]

\[
e^{i \sum_{i=1}^{A} u_i \cdot (q - \frac{1}{A} \sum_{j=1}^{A} q_j)} \eta_a(u_1) \eta_a(u_2) \ldots \eta_a(u_A)
\]

\[
e^{- \frac{1}{4} \frac{A^2}{\beta^2} \sum_{i=1}^{A} q_i^2} \frac{A}{A-1} \prod_{i=1}^{A} \eta_a \left(q_i \right) - \frac{1}{A} \sum_{j=1}^{A} q_j
\]

(19)

If we take the Gaussian form again we have

\[
\eta_a(\{q\}) = e^{- \frac{1}{4} \frac{A^2}{\beta^2} \sum_{i=1}^{A} q_i^2} \frac{A}{A-1} \prod_{i=1}^{A} \eta_a \left(q_i \right)
\]

(20)

which, with \(\alpha = \beta \) again, is the same result as found previously. So we see that for Gaussian functions the two methods give identical results.

Eq. [17] is general assuming all nucleons have the same density. For the case where the number of protons and neutrons is not equal and the neutrons and protons have different density shapes a different form holds. If \(\zeta_a(q) \) is the Fourier transform of the proton auxiliary function and \(\zeta_s(q) \) is the Fourier transform of the proton single particle in the center of mass and \(\eta_a(q) \) and \(\eta_s(a) \) are the corresponding functions for the neutrons then the functions will be related by

\[
\zeta_s(q) = \zeta_a \left(\frac{A-1}{A} q \right) \eta_a^{-1} \left(\frac{q}{A} \right) \eta_s^{A} \left(\frac{q}{A} \right)
\]

(21)

If the auxiliary functions for the protons and neutrons have rms radii \(R_{pa} \) and \(R_{na} \) respectively the corresponding radii for the center-of-mass densities will be related by

\[
R_{pc}^2 = \left\{ [(A-1)^2 + (Z-1)] R_{pa}^2 + NR_{na}^2 \right\} / A^2
\]

(23)

\[
R_{nc}^2 = \left\{ [(A-1)^2 + (N-1)] R_{na}^2 + ZR_{pa}^2 \right\} / A^2
\]

(24)

For the case of a given form chosen for the single-particle density, we need to find an auxiliary density which satisfies Eq. [17] or

\[
\eta_a(q) \eta_a^{-1} \left(\frac{q}{A-1} \right) = \eta_s \left(\frac{Aq}{A-1} \right)
\]

(25)

One can find a solution to this equation for small \(q \), by first expanding both \(\eta_a(q) \) (assumed to be known) and \(\eta_s(q) \) for small \(q \).

\[
\eta_a(q) = 1 - \mu q^2 \ldots \quad \eta_s(q) = 1 - \nu q^2 \ldots
\]

(26)

Then we have to first order in \(q^2 \)

\[
(1 - \mu q^2)(1 - \mu q^2)/(A-1)^2 = (1 - \nu q^2)/(A-1)
\]

\[
1 - \mu q^2 \frac{A}{A-1} = 1 - \nu q^2 \frac{A^2}{(A-1)^2}
\]

(27)

so that

\[
\mu = \frac{\nu A}{A-1}
\]

(28)

and the same relation holds between the rms radii in the general (Monte Carlo) case as for the Gaussian case.

We could (in principle) solve Eq. [25] numerically on a mesh by constructing the first few elements on the mesh (3 of them) with the expansion. Then we can continue to calculate the remaining values on the mesh by evaluating the \(i \)th point on the mesh with

\[
\eta_a(q_i) = \eta_s \left(\frac{Aq_i}{A-1} \right) / \eta_s^{-1} \left(\frac{q_i}{A-1} \right)
\]

(29)

where the value of \(\eta_s \) in the denominator is obtained by interpolation from previously calculated values on the mesh. These values would always be available since the argument is much smaller. This process works well for a
Gaussian form but is not stable when there is a zero in the form factor. In practice, we choose parametrized forms for \(\eta_a(q) \) and vary the parameters using Eq. 17 to fit an (assumed known) function, \(\eta_s(q) \). For convenience we choose functions to represent \(\eta_a(r) \) which can be readily sampled directly (see e.g. Ref. [87]).

The density with the center-of-mass effect is distinguished from the product density with the same single particle radial distribution by the fact that the distances between members of any pair of particles is greater than it would be for a simple product density. We can see this as follows.

For a single-particle density with independent particles the average of square of the distance between particles is given by

\[
\langle (r_1 - r_2)^2 \rangle = 2 < r^2 > - 2 < r_1 \cdot r_2 >= 2 < r^2 >
\] (30)

since the average over the independent particles gives a cross term of zero. If we include a center-of-mass condition

\[
\sum_{i=1}^{A} r_i = 0
\]

then, replacing \(r_2 \) in the cross product

\[
\langle r_1 \cdot r_2 \rangle = - < r^2 > - \sum_{i=3}^{A} < r_1 \cdot r_i >
\]

\[
= - < r^2 > - (A - 2) < r_1 \cdot r_2 >= - < r^2 > \frac{A}{A-1}
\]

(32)

Thus, with center-of-mass correlations

\[
\langle (r_1 - r_2)^2 \rangle = 2 < r^2 > \frac{A}{A-1}
\]

(33)

For individual nuclear configurations we have

\[
\sum_{i \neq j} (r_i - r_j)^2 \frac{A}{A-1} \frac{2A}{A-1} \frac{\sum_k r_k^2}{A}
\]

(34)

Thus we see that there is a correlation among pair of nucleons arising from the c.m. corrections. This condition is realized explicitly in the present method since the auxiliary density has a squared radius which is a factor of \(A/(A-1) \) larger than the single particle density in the center of mass and, since the positions are independently chosen, Eq. 30 holds with the larger square radius. Since the displacement of the density to satisfy the center-of-mass condition does not change the distance between nucleons, this larger inter-particle distance is preserved while the distance of individual particles from the center of the nucleus is reduced.

With the procedure used here there is an initial density constructed in a Monte Carlo sense and then each realization is shifted by an amount to put the center of mass at the origin. In a spherical density with each particle thrown independently of the others, the rms distance between any pair of particles is \(\sqrt{2} \) times the rms radius of the nucleus. Since the shift of the entire nucleus does not change the distance between pairs and the initial (auxiliary) density has a larger extent than the final density relative to the c.m. then the relative distance between pairs in the final density will be larger than the one which would be associated with a density constructed from independently thrown nucleons with the shape of the center-of-mass density. As the mass number, \(A \), goes up this effect will become smaller with the relationship for the inter-particle radius squared being

\[
R_{CMC}^2 = A/(A-1) \times R_{No CMC}^2
\]

Hence one might assume that the center-of-mass effect goes to zero as \(A \) increases.

While it is true that the basic effect is becoming smaller, the calculation of a given observable may not. In the case that we are treating, of multiple scattering, the number of scatterings increases with \(A \). Each scattering among the nucleons depends on the relative distance between nucleons and, while this distance is approaching that which would come from an independent particle density, the smaller effect is applied more times (there are more scatterings) so it is a numerical question as to
whether the effect decreases or perhaps even increases with A. If the fundamental scattering interaction is weak so that only the low order scatterings are important then one can expect that the effect decreases with A. However, for the strong NN interaction it is possible that the importance of the CMC to multiple scattering does not decrease with A at all. Consider, for instance, the case of the scattering of a nucleus with A nucleons on its twin. In this case the number of scatterings goes as A^2 although there will be other factors which will limit the effective number of scatterings.

\[r = \frac{\ln \prod_{i=1}^{n+1} X_i}{b}\]

(36)

where the set, X_i, are independent random numbers uniformly distributed between 0 and 1.

\[f(\theta) = \frac{1}{2\sqrt{k}} \sum_{\ell=0}^{\infty} (2\ell + 1)(S_{\ell} - 1)P_{\ell}(\cos \theta)\]

(37)

G. Coulomb correction

If the full amplitude with Coulomb is

\[f_0(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1)(S^0_{\ell} - 1)P_{\ell}(\theta),\]

(38)

then we can write the factor between the two S-matrix elements as

\[C_{\ell} = S_{\ell} e^{-2i\sigma_{\ell}} / S^0_{\ell},\]

(39)

(see Ref. [12] and references therein). The inner Coulomb correction can be calculated with the use of an optical model. The procedure is to calculate C_{ℓ} from Eq. (39) using for S_{ℓ} the result of an optical model fit with full Coulomb and for S^0_{ℓ}, the value from the same optical model without the Coulomb interaction. The quantity C_{ℓ} is then used as a correction factor with S^0_{ℓ} coming from a partial wave expansion of the Glauber amplitude and S_{ℓ} being the Coulomb-corrected result.

Another way of getting the inner correction was given by Fälldt and Pilkuhn [13] as a simple shift in the value used in the integral over the profile function.

\[F(q) = ik \int_0^\infty db dJ_0(qb)G(b')\]

(40)

where

\[b' = \sqrt{b^2 + \eta^2/k^2 + \eta/k},\]

(41)
η is the Coulomb parameter \(\eta = ZZ'\alpha c/v \) and \(k \) is the center-of-mass momentum. The Coulomb corrected S-matrix element will be given by

\[
S_\ell = e^{2i\delta_\ell} = S_\ell^{FP} e^{2i\sigma_\ell}
\]

where \(S_\ell^{FP} \) is the matrix element coming from the expansion of Eq. (40) in partial waves. For a similar method of treating the Coulomb correction see Vitturi and Zardi [88].

In order to carry out either of these corrections it is necessary to have the amplitude expressed as a partial wave sum. Since the eikonal calculation gives the amplitude as a function of momentum transfer or angle the projection of the amplitude onto partial waves is needed. The projection was not made directly but by using Eq. (3) we can write

\[
S_\ell - 1 = -k^2 \int_{-1}^{1} dx \int_{0}^{\infty} db P_\ell(x)J_0(q(x)b)G(b).
\]

The integral over \(x \) of \(P_\ell(x)J_0(q(x)b) \) can be carried out first very efficiently (see appendix A). The result was then integrated over \(b \) with \(b G(b) \). As a check the amplitude was then reconstructed from the S-matrix elements and compared with the original calculation. With the method given in Appendix A agreement was found within 0.1%.

For the case of \(^{16}\text{O}-^{16}\text{O}\) scattering at 1.12 GeV we compared the two methods. Figure 5 compares the two methods of making the inner correction for \(^{16}\text{O}-^{16}\text{O}\) (see Sec. III for details). It displays the ratio of the fully corrected amplitude to that with only the outer correction. It is remarkable how well the two methods agree. The disagreement beyond 16 degrees is due mainly to the fact that the optical model is calculated with a finite charge distribution and the method of Fälld and Pilkuhn assumes a point charge distribution. For other treatments of the Coulomb correction, see Refs [88] and [92].

III. APPLICATION OF THE MONTE CARLO METHOD: RESULTS

In this section we carry out calculations using the full Glauber formalism with values of the parameters taken from fits to the nucleon-nucleon amplitudes [56]. In some cases we will vary those parameters to investigate the sensitivity to their values. Table I summarizes the cases treated, the data sources and the free-space parameters used.

\[
\begin{array}{c|c|c}
\text{Ratio} & \text{MC/Exact} & \text{Exact} \\
\hline
\alpha & 10^8 \text{ evaluations} & 10^8 \text{ evaluations} \\
\hline
\text{Dashed:} & 10^8 \text{ evaluations} & 10^8 \text{ evaluations} \\
\text{Dash-dot}: & 10^7 \text{ evaluations} & 10^7 \text{ evaluations} \\
\text{Solid:} & 10^5 \text{ evaluations} & 10^5 \text{ evaluations} \\
\end{array}
\]

FIG. 6: Ratio of calculations for \(\alpha - \alpha \) scattering for different numbers of Monte Carlo evaluations showing the degree of calculational precision obtained. The \(\alpha \)-particle density used is the same one used by Franco and Yin [6].

A. \(\alpha - \alpha \) scattering

There are some interesting points for the \(\alpha - \alpha \) scattering calculation. Notice that there is no separate center-of-mass correction factor as there was in the formulation of Franco and Yin [6]. The Monte Carlo method calculates directly with the many-body density with the method outlined above. As a test of the method we repeat the calculation of Franco and Yin [6] using their technique and the Monte Carlo method using Gaussian densities. From the previous discussion on the center-of-mass correction we should expect to find the same result aside from Monte Carlo statistical errors. Figure 6 shows the ratios of the calculations done in the two ways. It is seen that the results are the same to about 2% even though the absolute magnitude of the cross section changes by almost 10 orders of magnitude over the angular range considered. The difference between the two calculations is invisible on a log scale. For \(10^8 \) Monte Carlo evaluations the calculation took 10 hours on a standard 2.5 GHz PC.

The nucleon density of \(^4\text{He}\) has been somewhat of a puzzle. The fits to electron scattering [91] with the method of a sum of Gaussians (SOG) show a large depression in the center of the nucleus that the Monte Carlo Green’s Function calculations do not find [8]. However, the \(\chi^2 \) per data point is considerably less than unity showing that perhaps an over-fit was present in the SOG fit. Using other forms to represent the density, acceptable fits with a significantly smaller depression can be found. We have made a fit to the electron-scattering data [91] with a density in which we constrained the ratio of the density at the origin to that at the peak to be 0.4 in order to have
a density similar to that found in Ref. [91] but with a less severe depression. That density is shown in Fig. 7 as the dashed line. We fit this density to find an auxiliary density given by
\[
\rho_\text{MSW}(r) = (1 - \alpha) N_1 \left(e^{-a_e r} - e^{-b_e r} \right)^{10} \\
+ \alpha \left(0.95 N_2 e^{-(r-r_0)^2/a_0^2} + 0.05 N_3 e^{-(r-r_1)^2/a_1^2} \right)
\] (44)
where \(\alpha = 0.43 \) and
\[
a_e = 0.51 \text{fm}^{-1}; \ b_e = 0.61 \text{fm}^{-1}; \\
r_0 = 1.28 \text{ fm}; \ r_1 = 1.8 \text{ fm}; \\
a_0 = 0.1 \text{ fm}; \ a_1 = 0.3 \text{ fm}
\] (45)

\(N_1, N_2 \) and \(N_3 \) are chosen to normalize each of the individual probability densities. The calculations of Pudliner et al. [3] give perhaps the best estimate of the \(^4\text{He} \) density and show only a slight depression in the central region. Also shown in Fig. 7 is a fit to the Monte Carlo density of Pudliner et al. [3] (large dots) from reading the points from the graph. The auxiliary density for this fit is given by
\[
r^2 \rho_\text{Pud}(r) = \lambda_0 r^{15} e^{-dr}/14! + (1 - \lambda_4) f^9 r^8 e^{-fr}/8!
\] (46)
where \(\lambda_4 = 0.835 \) and the resulting density is shown in Fig. 7 (dotted line). In order to have a density with short range correlations included we have carried out our own variational calculation (See Appendix B).

To test for the relative importance of the short-range correlations and the center-of-mass correlations, we performed the calculation as outlined in the previous section starting from the single-particle density resulting from a density derived from a binning of the variational result. The c.m. density from that calculation is also shown in Fig. 7 (solid line).

The auxiliary density, \(\eta_a(r) \), as fit to the variational

FIG. 7: Comparison of three densities used for the \(\alpha \) particle in the calculations. The reference MSW is to McCarthy, Sick and Whitney [91]. The points were read from Fig. 15 in Pudliner et al. [3].

FIG. 8: Calculations of \(\alpha - \alpha \) scattering showing the effect of the center-of-mass correlations. The dash-dot curve uses the same Metropolis density as the solid curve but each nucleon is drawn from a different (random) realization of the nucleus. Thus it has the same single particle density but the effect of the CMC is missing. The data are from Berger et al. [77].

FIG. 9: \(\alpha - \alpha \) scattering at \(T_{\text{Lab}} = 4.2 \) GeV showing the dependence on the density used. The notation MSW refers to the fit to the electron scattering fit by McCarty, Sick and Whitney [91] as described in the text. The partial wave analysis (PWA) is that of Ref. [56]. The data are from Satta et al. [78].
density can be expressed as

\[r^2 \eta_{\alpha\alpha}(r) = (1 - \alpha)g_1(r) + \alpha g_2(r) \]

(47)

where

\[g_1(r) = N_g r^2 e^{-a_g r^2}; \quad g_2 = N_e (e^{-a_e r} - e^{-b_e r})^2 \]

\[\alpha = 0.505, \quad a_g = 0.56 \text{ fm}^{-2}, \]

\[a_e = 0.779 \text{ fm}^{-1}, \quad b_e = 1.345 \text{ fm}^{-1} \]

(48)

where \(N_g \) and \(N_e \) were chosen to normalize \(g_1 \) and \(g_2 \) individually. Note that the volume element, \(r^2 \), is included in each case. Since the wave function has an asymptotic limit of the form \(e^{-\kappa r}/r \) then, with the volume element included the tail should behave as an exponential.

Figure 10: \(\alpha - \alpha \) scattering at 4.2 GeV showing the variation with the parameter \(\rho \). The data are from Satta et al. \cite{78}. PWA means the partial wave analysis from Ref. \cite{56}.

Figure 8 shows a test of the importance of short-range correlations and center-of-mass correlations. For this illustration only, the parameters have been chosen to give a reasonable representation of the data, unlike most other figures presented which use the free parameters determined from amplitude analyses \cite{56}. The solid curve shows the calculation with the full variational wave function and the dashed curve shows the results obtained with the auxiliary density used to correct for the center of mass. The dash-dot curve shows the result of choosing each nucleon from a different configuration of the nucleus. In this case the single particle density will be identical to the other two cases but there is no CMC among the nucleons. The principal difference between the two is that the solid curve does not have the short-range correlations that are in the variational wave function. Hence, at least for the variational calculation performed here (see Appendix B), they are not important in agreement with Ullo and Feshbach \cite{93}.

Figure 11: The top panel shows the fit to the \(^{12}\text{C} \) charge density using the auxiliary density in Eq. 49. The electron-scattering data are from Ref. \cite{92}. The lower panel shows the point density along with the auxiliary density. Also shown in the lower panel are the points obtained from binning the radius values in the Monte Carlo calculation, the open circles corresponding to the auxiliary density and the solid circle to the center-of-mass density.

Figure 9 shows the dependence on the density used. It is seen that the sensitivity is very small and reasonable variations would not seem to be able to significantly improve the agreement with the data.

Figure 10 shows a comparison of the calculation at 4.2 GeV beam energy with the data of Satta et al. \cite{78}. Also shown are the results of a variation with the \(\rho \) parameter. This parameter is the least well determined experimentally of the nucleon-nucleon parameters. It is seen that the prediction is rather poor when compared with the data and that moderate variations of \(\rho \) are unlikely to improve the agreement.

B. \(\alpha - ^{12}\text{C} \) scattering

The carbon auxiliary density was obtained from the modified harmonic oscillator fit of charge density obtained from electron scattering data \cite{92}. The form found
for the auxiliary density is
\[r^2 \eta_{12}(r) = 0.90916 h_1(r) + 0.09084 h_2(r) \] (49)
where
\[h_1(r) = M_1 r^{10} e^{-d_{12} r}; \quad h_2(r) = M_2 (e^{-a_{12} r} - e^{-b_{12} r})^2 \] (50)
and \(d_{12} = 0.7311 \text{ fm}^{-1}, \quad a_{12} = 1.7488 \text{ fm}^{-1}, \quad b_{12} = 0.6429 \text{ fm}^{-1} \). \(M_1 \) and \(M_2 \) are chosen to normalize \(h_1 \) and \(h_2 \) separately.

Figure 11 shows the auxiliary density and the center-of-mass body and charge densities which result. For the light nuclei the auxiliary density is normally quite different from the center-of-mass density.

C. \(\alpha-\text{O scattering} \)

The auxiliary function for \(^{16}\text{O} \) was taken to have the form:
\[r^2 \eta_{16}(r) = 0.8646 v_1(r) + 0.1354 v_2(r) \] (51)
with
\[v_1(r) = M_1 r^{10} e^{-d_{16} r}; \quad v_2(r) = M_2 (e^{-a_{16} r} - e^{-b_{16} r})^2 \] (52)
and
\[a_{16} = 2.738 \text{ fm}^{-1}, \quad b_{16} = 0.2976 \text{ fm}^{-1}, \quad d_{16} = 4.174 \text{ fm}^{-1} \] (53)
C. \(\alpha^{16}\text{O} \) scattering

Figure 15 shows the results of the calculation \(\alpha^{16}\text{O} \) compared with the data of Wakasa et al. [72] at 400 MeV. Here the agreement at forward angles is satisfactory. Figure 15 compares the calculation at 240 MeV with the data of Lui et al. [66] here the agreement is fairly good (aside from a slight normalization problem) up to about 7 degrees. After that there is a considerable difference. The Coulomb correction is substantial, especially at larger angles.

D. \(\alpha^{40}\text{Ca} \) scattering

The auxiliary density for Ca was obtained from a point density extracted from pion scattering [94] which is very similar to that obtained from electron scattering [95]. The form is

\[
 r^2 \eta_{40}(r) = 0.740072 \, v_1(r) + 0.259928 \, v_2(r) \tag{54}
\]

with

\[
 v_1(r) = M_1 r^{10} e^{-d_{40}r}; \quad v_2(r) = M_2 (e^{-a_{40}r} - e^{-b_{40}r})^2 \tag{55}
\]

and

\[
 a_{40} = 0.641 \, \text{fm}^{-1}; \quad b_{40} = 0.443 \, \text{fm}^{-1}; \quad d_{40} = 3.597 \, \text{fm}^{-1} \tag{56}
\]

with \(M_1 \) and \(M_2 \) chosen to normalize \(v_1 \) and \(v_2 \).

The results of a calculation for \(\alpha^{40}\text{Ca} \) scattering at 1.37 GeV are shown in Fig. 16 and compared to the data of Alkhazov et al. [75]. The Coulomb correction plays a very large role. There would be no agreement at all without it. While the agreement is far from perfect, it is satisfactory for no adjustable parameters at least for the angles less than 8 degrees (with the exception of the two forward data point which have large errors). For other treatments of \(\alpha^{40}\text{Ca} \) scattering see Refs. [96] and [97].

E. \(\alpha^{208}\text{Pb} \) Scattering

The auxiliary density for \(^{208}\text{Pb} \) was fit to the charge density of \(^{208}\text{Pb} \) so corresponds to the proton density. It is believed that the neutron density is different from the proton density but a study of the effect of a different neutron density, interesting though it might be, is beyond the scope of the present work. Since the lead nucleus is much larger than the other nuclei considered so far, with a significant flat portion inside the surface, the forms of the auxiliary density used for the lighter nuclei are not appropriate for this case. Because of the large number of nucleons, the difference between the auxiliary density and the center-of-mass density is not very great. For these reasons a Woods-Saxon (WS) density was used, fit to the charge density [98]. The volume element must be included as well in the sampling as has been done in
previous cases. While the WS density can be directly sampled, it is the form

$$r_2 = a \ln \left\{ \frac{1}{b(1 + 1/b)^F - 1} \right\}$$

which is needed. This sampling was done by the method of selection of variables [57]. A comparison was made between variables from two samples. First, r_1 is chosen according to a linear distribution from 0 to R_0 then a second value, r_2 was obtained from the WS distribution with

where F is a random number uniformly distributed between 0 and 1 and $b = e^{-r/a}$. If r_2 is greater than r_1 it returned as the desired value of r. Otherwise the process is repeated. The α particle density used was the one fit to Pudliner et al. [3] as discussed earlier.

Figure 17 shows the results of calculations at energies of 288, 340, 480 and 699 MeV compared with the data of Bonin et al. [69]. The Coulomb correction plays a very large role in determining the cross section as might be expected. The agreement is rather good in the forward direction but worsens rapidly beyond a certain angle, different for each energy.
F. $^{12}\text{C}-^{12}\text{C}$ Scattering

A comparison with the data at 1.016 GeV [70] and 1.45 and 2.4 GeV [73] has been made by several groups [14, 16, 20, 22, 23, 25, 26, 48, 99–101] using various methods. See also the phase-shift analysis by Mermaz et al. [102]. We can use the ^{12}C densities found in section III.B to calculate the scattering of ^{12}C from ^{12}C.

We have carried out a test of the size of the center-of-mass effect in much the same way as was done for the variational wave function in $\alpha-\alpha$ scattering earlier. The $^{12}\text{C}-^{12}\text{C}$ scattering calculations just presented were made by repeating the realization (in a Monte Carlo loop) of two carbon nuclei and then carrying out the evaluation of the necessary equations. The calculation can also be done by first constructing a pool of nuclei, each properly centered about the center of mass (one million were used in the current calculation) and then drawing complete nuclei randomly from this pool for each carbon nucleus. These two methods give the same result.

One can now modify the calculation, in the same manner as before, so as to choose the 12 different vector coordinates for each carbon nucleus from 12 different realizations in the pool. In this way one is guaranteed to have the same single particle density but with uncorrelated particles. The result of a calculation for this energy with a spherical density for ^{12}C is shown in Fig. 18 where it is seen that both the Coulomb and center-of-mass corrections play a large role. The agreement is good up to an angle of about 5 degrees ($t \approx -0.045 (\text{GeV}/c)^2$) but poorer after that.

The result without center-of-mass corrections is shown as the dashed curve. While this curve is shown as the ratio to Rutherford as a function of angle and Fig. 8 for helium gives the absolute cross section as a function of t, one can see that the effect is very similar in the two cases. Thus, at least for this very limited sample of two cases, the center-of-mass effect does not decrease.

Figure 3 shows the profile function for ^{12}C for the cases with and without CMC. One can understand the behavior to some extent. For small values of b the many factors in the product in Eq. 2 (144 for the case of $^{12}\text{C}-^{12}\text{C}$ scattering), a large fraction of which have magnitude less that unity, will cause it to be very small. This very small correction to unity leaves the profile function at essentially one in this region of b, hence is insensitive to the CMC.

On the other hand, for large b one can expand the product in terms of single, double, triple etc. scatterings. Since a double scattering will have two factors of the Gaussian function, the triple scattering will have three factors etc., the single scattering will dominate for large b. Since we are holding the single particle density in the c.m. fixed, the CMC will have no effect in this region. Because the large b values dominate the forward scattering we must expect the small angle cross section to be insensitive to the CMC as is observed.

Thus, it is only in a relatively small region of values of b that the effect will be influential. From Fig. 4 this is for $3.5 < b < 5.5 \text{ fm}$. Since, as one decreases b from the external region the sensitivity to the CMC will become greater as the number of scatterings goes up until this number gets to be so large that the product becomes very small in magnitude.

It is generally believed that carbon has a strong oblate deformation. Lesniak and Lesniak [102] included this effect in proton-carbon scattering using Glauber theory. While they developed the proper, fully quantum, theory, in the end they used a semi-classical approximation simply averaging the amplitude over rotated densities (see also Ref. [104]). Some recent studies (of fission and reactions [102]) have treated the problem in the same way. As pointed out in Ref. [102], the electron scattering (at least in the single interaction approximation) should not depend on the deformation so the average density remains the same as before. We assume a form for the density symmetric about the z-axis and with a distribution in the polar angle given by

$$\rho(r, \theta) \propto \rho_0(r) \sin^n \theta.$$ (58)
This simple form is inspired by considerations from Ref. [106] (page 62). The paper of Svenne and Mackintosh [107] presented arguments why 12C was known to be deformed in response to the paper by Friar and Negele [108] who pointed out that, with the usual form of the deformed density, the existence of a deformation for 12C was contrary to the electron scattering measurements since the fall off of the density in the surface region was strongly affected. The form of Eq. (58) does not suffer from this problem as can be seen by taking the example of $n = 2$. In this case we have

$$\rho(r, \theta) \propto \rho_0(r) \sin^2 \theta. \propto \frac{2}{3} \rho_0(r)[1 - P_2(\cos \theta)]$$

$$\rho(\theta) = \frac{3}{4} \sin^2 \theta$$

where the Legendre polynomial has been expanded in terms of angles relative to a fixed axis. Here (θ_p, ϕ_p) are angles of a given nucleon in the nucleus with respect to a fixed axis and the angles (θ_a, ϕ_a) are those of the body symmetry axis relative to the same fixed axis. With a one-body operator the second term will give a $j_2(qr)$ transform of the density but when the average over the direction of the body axis of the carbon nucleus is taken it will vanish. Hence a one-body operator probes only the “spherical part” of the density.

For $n = 2$ the probability in θ is given by

$$\frac{2}{3} = \frac{8\pi}{15} \sum_m Y_m^m(\theta_p, \phi_p) Y_m^m(\theta_a, \phi_a)$$

FIG. 19: Comparison of three deformations of the carbon nucleus at four energies. The dashed curves correspond to a spherical nucleus ($n=0$), the solid curve to a ratio of 1.14 ($N=2$) and the dash-dot curve to a ratio of 1.73 ($n=4$). The data are from Buenerd et al. [70], Hostachy et al. [73] and Ichihara et al. [74].
which leads to
\[
\langle z^2 \rangle = \frac{1}{5} \langle r^2 \rangle \\
\langle x^2 \rangle = \langle y^2 \rangle = \frac{2}{5} \langle r^2 \rangle \\
\langle x^2 \rangle / \langle z^2 \rangle = 2
\] (61)

For \(n = 4 \) the probability in \(\theta \) is given by
\[
\rho(\theta) = \frac{15}{16} \sin^4 \theta
\] (62)

\[
\langle z^2 \rangle = \frac{1}{7} \langle r^2 \rangle; \quad \langle x^2 \rangle = \langle y^2 \rangle = \frac{3}{7} \langle r^2 \rangle \\
\langle x^2 \rangle / \langle z^2 \rangle = 3
\] (63)

These densities look more like donuts than ellipsoids of revolution (assuming that this density is applied to all the nucleons and not just the p shell). We note that \(\alpha \) cluster models would also lead to densities with zero at the center. We can estimate the \(\beta^2 \) parameter describing deformation by using prescriptions given by Hagino \[109\] based on the rms radii.

We take
\[
\gamma = \frac{\langle x^2 \rangle^2}{\langle z^2 \rangle^2} = \frac{1 - \frac{1}{2} \beta^2 \sqrt{\frac{5}{4\pi}}}{1 + \frac{1}{2} \beta^2 \sqrt{\frac{5}{4\pi}}}
\] (64)

so that
\[
\beta^2 = \frac{1 - \gamma}{\frac{1}{2} + \gamma \sqrt{\frac{4\pi}{5}}}
\] (65)

For \(n = 2 \) we have \(\beta^2 = -0.34 \) and for \(n = 4 \) \(\beta^2 = -0.52 \). Svenne and Mackintosh \[107\] gave a survey of values obtained for \(\beta^2 \). From their list we see that the Nilson model gives \(\beta^2 = -0.64 \) and the \(\alpha \) cluster model \(\beta = -0.41 \). A little later Vermeer et al. \[110\] measured the quadrupole moment of the \(2^+ \) state from which one can infer a quadrupole moment for the ground state of \(-22 \pm 10 \) \(e \text{ fm}^2 \) implying a value of \(\beta^2 = -0.57 \) with a 50% error. In a recent calculation of \(^{12}\text{C}^{12}\text{C} \) fusion \[103\] the value \(\beta^2 = -0.4 \) was used (along with a hexadecapole term) so these forms lead to reasonable values of the deformation.

The results for \(n = 2 \) and \(n = 4 \) are shown in Fig. 19 and compared with data. Again it is seen that agreement with data is good in the forward direction but deteriorates rapidly at larger angles. The deformation plays a significant role at larger angles.

\[\text{FIG. 20: The } ^{16}\text{O}^{12}\text{C} \text{scattering cross section showing the effect of the Coulomb and center-of-mass corrections. The data are from Roussel-Chomaz et al. [71].}\]

G. \(^{16}\text{O}^{16}\text{O} \text{ Scattering} \)

The scattering of Oxygen on Carbon is shown in Fig. 20. The effect of the correction for the Coulomb interaction is quite large. For the same scattering the effect of the correction for the center of mass is also shown. It is seen that the agreement a very forward angles is very good with the Coulomb correction playing a substantial role. While it cannot be said that the agreement with data is good at larger angles, the calculation follows the trend of the data quite well which is not true if either the Coulomb or center-of-mass correction is not included.

H. \(^{16}\text{O}^{16}\text{O} \text{ Scattering} \)

Using the density found earlier we now calculate Oxygen scattering from Oxygen at 1.120 GeV. The comparison with the data of Nuoffer et al. \[67\] is shown in Fig. 21. For angles beyond 5 degrees there is a considerable discrepancy (more after the Coulomb correction) but inside of that angle the agreement is quite good.

In order to test the inner Coulomb correction we made an optical-model fit to the data \[67\]. A simple form was
FIG. 21: 16O-16O scattering at 1.12 GeV. The data are from Nuoffer et al. [67], and Khoa et al. [68].

The fit parameters were $V_0 = 150.4$ MeV, $r_R^0 = 0.784$ fm, $a_R = 0.897$ fm, $W_0 = 44.4$ MeV, $r_I^0 = 1.005$ fm, and $a_I = 0.745$ fm. By calculating with and without the Coulomb interaction, a Coulomb correction can be obtained by the method shown in Eq. 39. Alternatively, we can make the correction with the method Fältd and Pilkuhn [43] by modifying the integral over the profile function. As seen in Fig. 5, the results are nearly identical over most of the angular range.

I. 16O-40Ca Scattering

The result of the 16O-40Ca scattering is shown in Fig. 22 and compared with data of Roussel-Chomaz et al. [71]. Again one sees the importance of the center-of-mass and Coulomb corrections. The agreement at forward angles is moderately good but is considerably worse at larger angles. For another treatment of this reaction at this energy see Ref. [111].

J. 40Ca-40Ca scattering

Figure 23 shows the cross section for 40Ca-40Ca scattering at a kinetic energy of 3.387 GeV. There is no data to compare with and if there were they would be dominated by pure Coulomb. In this case there are 1600 factors in the product in Eq. 49 which, if expanded in...
multiple scattering as was done in the paper by Franco and Yin [6] would give $2^{1600} \approx 4 \times 10^{481}$ terms. The calculation is shown to illustrate the fact that, even for these medium-heavy nuclei, the center-of-mass correction remains important. We see that the effect of the CMC is not very different from the carbon-carbon scattering and is as large as a factor of 5. Since the basic CMC effect is the order of 1/40 in this case it is important to understand how many times it enters in to the calculation. For b small the profile function is unity and only a relatively few factors are needed to achieve this result.

K. 6He-12C scattering

The Pudliner density for 6He [3] was represented by two auxiliary functions (one for protons and one for neutrons following Eqs. 21 and 22. The proton auxiliary density was given by

$$r^2 \rho_p(r) = 0.273776 \frac{r^{15} b_{p}^{16} e^{-b_{p} r}}{15!} + 0.726224 \frac{r^{8} c_{p}^{9} e^{-c_{p} r}}{8!}$$ \hspace{1cm} (67)$$

with

$$b_{p} = 14.3466 \text{ fm}^{-1} \text{ and } c_{p} = 4.7125 \text{ fm}^{-1}$$ \hspace{1cm} (68)$$

and the neutron auxiliary density by

$$r^2 \rho_n(r) = 0.208969 \frac{r^{14} e_n^{15} e^{-e_n r}}{14!} + 0.791031 \frac{r^{2} f_{n}^{3} e^{-f_{n} r}}{2!}$$ \hspace{1cm} (69)$$

FIG. 24: 6He-12C scattering at 38.3 MeV/A using the 6He density from Pudliner et al. [3]. The data are from Lapoux et al. [64]. The experimental determination of the proton radius is from Ref. [112].

The “shell model” correlation was (optionally) included by coupling two $j = \frac{3}{2}$ neutrons to zero total angular momentum which results in a factor in the density of

$$\frac{1}{2} (1 + \cos^2 \theta_R)$$ \hspace{1cm} (71)$$

where

$$e_{n} = 5.72753 \text{ fm}^{-1} \text{ and } f_{n} = 1.65566 \text{ fm}^{-1}.$$ \hspace{1cm} (70)$$

A “shell model” correlation was (optionally) included by coupling two $j = \frac{3}{2}$ neutrons to zero total angular momentum which results in a factor in the density of

where θ_R is the relative angle between the two valence neutrons. This factor was carried as a weight in the Monte Carlo calculation so the calculations with and without the factor can be done in the same run. Figures 24 and 25 show the results for the calculation of 6He-12C scattering. It is seen that the effect of the shell-model correlation is very small. The Coulomb correction plays a significant role even for these low-Z nuclei. Perhaps a part of the reason for this is that the correlation is only among two of the six particles.

IV. DISCUSSION

The Glauber approximation can fail for a number of reasons not necessarily associated with the basic assumptions. These reasons include:

- At low energies the Fermi motion may cause significant corrections to the fixed-nucleon approximation.
The double spin flip in the nucleon-nucleon interaction which has been neglected may require a significant correction if the isospin constraints are not sufficient to eliminate it.

The single spin flip (occurring an even number of times) may become important for sufficiently large angles.

At high energies the coherent production of mesons constitutes an additional inelastic channel which is beyond the Glauber approximation.

At small impact parameters there should be significant corrections to the nucleon-nucleon interactions because of the higher nuclear densities.

Correlations from the shell model are of the same range as those from the center of mass and may play a role as the nuclear penetration becomes greater.

In looking over the comparisons with data presented in the paper it is seen that often there is a forward region where the prediction is moderately good (sometimes quite good) followed by a more-or-less sudden transition to a poor agreement. Perhaps the best example of this is the scattering of α-particles from ^{208}Pb (see Fig. 17). The transition is seen to take place at 8° at 288 MeV, 7° at 340 MeV, 5° at 480 MeV and 4.5° at 699 MeV. These angles and the corresponding momentum transfer and values of -t are shown in Table II. All of the transition points are seen to correspond to a momentum transfer of about 1 fm^{-1} \[[-t=0.04 \text{ (GeV/c)}^2]. \] For the $^{16}\text{O}-^{12}\text{C}$ scattering (see Fig. 20) the transition angle is about 4° which corresponds to a momentum transfer of 1.01 fm^{-1}. For the $^{16}\text{O}-^{16}\text{O}$ scattering (Fig. 21) the transition angle is around 5°, corresponding to a momentum transfer of 1.28 fm^{-1}. For the $^{16}\text{O}-^{40}\text{Ca}$ scattering (Fig. 22) the transition angle is about 2.5° which corresponds to a momentum transfer of 1.06 fm^{-1}. The remainder of the cases studied are shown in Table II as well and show a similar effect.

Figure 26 shows that at $q_c = 1 \text{ fm}^{-1}$ for the momentum transfer the interior of the nucleus is sampled. So $q_c = 1 \text{ fm}^{-1}$ does not seem to correspond to the onset of the nuclear matter being probed.

Acknowledgments

We thank Dr. H. G. Bohlen for providing tables of the $^{16}\text{O}-^{16}\text{O}$ data and Dr. V. Lapoux for communicating to us the $^6\text{He}-^{12}\text{C}$ data at 38.2 MeV. WRG thanks the Laboratoire de Physique Nucléaire et de Hautes Énergies for support during visits when part of this work was done.

Appendix A: Partial-wave projection

We make the partial wave projection from the formula

$$
\frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1)(S_{\ell} - 1)P_{\ell}(\cos \theta) = ik \int_0^{\infty} bdbJ_0(qb)G(b).
$$

(A1)

where $q^2 = 2k^2(1 - \cos \theta)$. In order to make this projection it is useful to have the expansion

$$
J_0(qb) = \sum_{\ell=0}^{\infty} h_{\ell}(kb)P_{\ell}(\cos \theta).
$$

(A2)

From Ref [113] 9.1.79 we have

$$
J_0(qb) = J_0^2(kb) + 2 \sum_{n=1}^{\infty} J_n^2(kb) \cos n\theta.
$$

(A3)

In order to get the desired expression we need the expansion

$$
\cos n\theta = \sum_{\ell=0}^{\infty} a_{n,\ell} P_{\ell}(\cos \theta),
$$

(A4)
Table II: Critical values of the angles and their equivalents in momentum transfer. Also given is the energy in the center of mass available for coherent meson production. The last four cases have no critical values listed because all data points available have a momentum transfer greater than 1 fm⁻¹.

The ⁶He-¹²C cases have not been included since it is not possible to claim agreement in the forward direction without absolute data.

which actually cuts off at \(\ell = n \) as we shall see. With the use of DeMoivre’s theorem on can see

\[
\cos n\theta = \frac{1}{2} \sum_{m=0}^{n} \binom{m}{n} [i^{m} + (-i)^{m}] \sin^{m} \theta \cos^{n-m} \theta
\]

(A5)

where \(\binom{m}{n} \) is the binomial coefficient. With \(k = m/2 \)

\[
= \sum_{k=0}^{\frac{n}{2}} \binom{2k}{n} (-1)^{k} \sin^{m} \theta \cos^{n-2k} \theta
\]

\[
= \sum_{k=0}^{\frac{n}{2}} \binom{2k}{n} (-1)^{k}(\sin^{2} \theta)^{k} \cos^{n-2k} \theta
\]

\[
= \sum_{k=0}^{\frac{n}{2}} \binom{2k}{n} (-1)^{k}(1 - \cos^{2} \theta)^{k} \cos^{n-2k} \theta
\]

\[
= \sum_{k=0}^{\frac{n}{2}} \sum_{j=0}^{k} \binom{2k}{n} (-1)^{k}(-1)^{j} \binom{j}{k} \cos^{n-2k+2j} \theta.
\]

With \(m = n - 2k + 2j \) so that \(m = n - 2, n - 4, \ldots \)

\[
= \sum \binom{n-m-2j}{n} (-1)^{n-m} \binom{j}{\frac{n-m-2j}{2}} \cos^{m} \theta
\]

= \(c_{n,m} \cos^{m} \theta \).

Thus we see that \(\cos n\theta \) can be expanded in powers of \(\cos \theta \) with powers of the same parity as \(n \) with maximum power \(m \). We can now use the integral of a Legendre polynomial over a power of \(x \) (Ref. 113, 8.14.15)

\[
\int_{-1}^{1} P_{\ell}(x)x^{m} \, dx = \frac{\pi^{\frac{1}{2}}2^{-m}\Gamma(1+m)}{\Gamma(1+\frac{1}{2}m-\frac{1}{2}\ell)\Gamma(\frac{1}{2}\ell+\frac{1}{2}m+\frac{1}{2})} = d_{m,\ell}.
\]

(A6)

Note that this integral is zero if \(\ell \) and \(m \) are not of the same parity or if \(\ell > m \).

We can write the expression for the \(a_{n,\ell} \) as

\[
a_{n,\ell} = (\ell + \frac{1}{2}) \sum_{\ell \leq m \leq n, m - n \text{ even}} c_{n,m}d_{m,\ell}.
\]

(A7)

This expression was coded and the coefficients calculated in this way; it works but the terms for different values of \(m \) are not usually equal.
powers of $\cos \theta$ get very large and cancel in the sum so, even with double precision, one is limited to n of the order of 35 for small values of ℓ which is not enough for our problem. The values for $n = \ell$ and other values of ℓ close to n are always calculated correctly. A useful check is

$$\sum_{\ell=0}^{n} a_{n,\ell} = 1 \quad (A8)$$

which follows from Eq. [A4] with $\theta = 0$.

However, there is a much easier way to get the coefficients needed. Using the trigonometric identity

$$\cos n\theta = 2\cos(n-1)\theta \cos \theta - \cos(n-2)\theta \quad (A9)$$

and the recursion relation for the Legendre polynomials

$$nP_x(x) = \ell P_{\ell-1}(x) + (\ell + 1)P_{\ell+1}(x) \quad (A10)$$

we find

$$\int_{0}^{\pi} \cos n\theta P_\ell(\cos \theta) \sin \theta d\theta \equiv b_{n,\ell}$$

which is not enough for our problem. The values for $J_{\ell}^{(1)}$ and other values of ℓ are not of the same parity or if $\ell > n$. All values of these coefficients can be quickly calculated using the recursion relation [A12] without any numerical problem. Using these values then

$$h_0(kb) = J_0^2(kb) + 2 \sum_{n=1}^{\infty} J_n^2(kb)a_{n,0} \quad (A15)$$

$$h_\ell(kb) = 2 \sum_{n=\ell}^{\infty} J_n^2(kb)a_{n,\ell}; \quad \ell > 0 \quad (A16)$$

$J_0(x)$ and $J_1(x)$ are calculated to one part in 10^7 and the recursion relation for Bessel functions is used for fixed b to obtain the higher values of n. Just beyond $n = bk$, the magnitude of $J_n(x)$ decreases rapidly and the recursion relation fails shortly thereafter. The recursion is cut off when $J_n^2(x)$ is less than 10^{-6}.

The functions $h_\ell(kb)$ have some interesting and potentially useful properties. For example starting from Eq. [A2] with

$$\int_{0}^{\infty} J_0(qb)J_0(q'b)b db = \delta^{(2)}(q - q')$$

$$= \frac{\delta(q - q')}{q} = 2\delta(q^2 - q'^2) = \frac{1}{k^2}\delta(x - x') \quad (A17)$$

one can show that

$$\int_{0}^{\infty} h_\ell(y)h_\ell'(y)dy = \frac{2\ell + 1}{2}\delta_{\ell,\ell'} \quad (A18)$$

Once the functions $h_\ell(kb)$ have been found, the process can be reversed, i.e. we can find the nuclear profile function for any given set of matrix elements. First from the inverse Hankel transform we have:

$$G(b) = \frac{1}{ik} \int_{0}^{\infty} F(q)J_0(qb)q dq \quad (A19)$$

Since the amplitude is assumed to fall off rapidly we can replace the upper limit with a finite, but large, one, namely $2k$ so that

$$G(b) \approx \frac{1}{ik} \int_{0}^{2k} F(q)J_0(qb)q dq \quad (A20)$$

Changing the integration variable to $u \equiv q^2$ we have

$$G(b) \approx \frac{1}{2ik} \int_{0}^{4k^2} F(\sqrt{u})J_0(qb)du \quad (A21)$$

Now changing the integration variable to $x = \cos \theta$ we have

$$G(b) \approx \frac{2k^2}{2ik} \int_{-1}^{1} A(x)J_0(qx)b dx \quad (A22)$$

where $A(x) = F[q(x)]$ and

$$A(x) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1)(S_{\ell} - 1)P_{\ell}(x) \quad (A23)$$

Using Eq. [A2] we have

$$G(b) \approx -\sum_{\ell=0}^{\infty} (S_{\ell} - 1)h_\ell(kb) \quad (A24)$$
Appendix B: Variational density for 4He

One can solve for the 4He wave function by Monte Carlo Green’s Function methods [2, 3]. In this case the walkers either represent a probability proportional to the wave function itself (hence the walkers do not give the density needed for our scattering problem) or, if one uses importance sampling then the walkers represent the product of the trial wave function and the true wave function and thus is more suitable for representing the density. In the work here we will use a variational trial wave function where the walkers represent directly the density to calculate $\alpha - \alpha$ scattering.

Varga et al. [34] performed Monte Carlo calculations using a Metropolis sampling of a 4He wave function obtained with Green’s Function Monte Carlo Methods. We will make a comparison between the method given previously and a simplified version of this type of calculation based on the variational algorithm.

The variational method operates with the estimator of the energy given by

$$ E_T = \frac{\int dR \psi_T^*(R)(T + V)\psi_T(R)}{\int dR \psi_T^*(R)\psi_T(R)} = \frac{\int dR \rho(R)(\psi_T^*(R) + V)}{\int dR \rho(R)} $$

(B1)

$$ \sum_{i=1}^{4} \nabla_i^2 \psi(r_1, r_2, r_3, r_4)/\psi(r_1, r_2, r_3, r_4) = 2 \sum_{j>i} \left(\frac{f''(r_{ij})}{f(r_{ij})} + 2 \frac{f'(r_{ij})}{r_{ij} f(r_{ij})} \right) + 2 \sum_{[i,j,k]} r_{ij} \cdot r_{ik} \frac{f'(r_{ij}) f'(r_{ik})}{r_{ij} r_{ik} f(r_{ij}) f(r_{ik})} $$

(B3)

The values of the three indices in the last sum are: [123], [124], [134], [213], [214], [234], [312], [314], [324], [412], [413] and [423]. They can be obtained with nested loops

$$ \{ i = 1, 4; j = 1, 3; j \neq i, k = j + 1, 4; k \neq i \} $$

(B4)

With such a form it is relatively easy to calculate the kinetic energy since one only needs to be able to calculate the function, f, and its first and second derivatives. The derivatives can be calculated numerically if need be.

We took for the form of f

$$ f(r) = (1 - e^{-cr}) \frac{e^{-ar}}{b + r} $$

(B5)

The first factor vanishes at the origin and provides the effect of a (very mild) repulsive correlation. The rest of the function has the proper asymptotic form with the constant b avoiding the singularity at the origin.

where R represents the set of coordinates which describe the system. Using the Metropolis algorithm to represent the density, it is automatically normalized. The trial wave function is assumed to depend on some number of parameters and, upon varying these parameters the minimum energy achieved is guaranteed to be greater than or equal to the true ground state energy of the system. The trial wave function normally is expected to give a good representation of the true wave function but there is no guarantee of that.

In order to calculate with a realistic wave function we use a trial wave function which results from the following variational calculation for 4He. Since the true wave function must be translationally invariant it can depend only on the six relative coordinates, $r_{ij} = r_i - r_j$.

We choose the form

$$ \psi(r_1, r_2, r_3, r_4) = \prod_{j>i} f(r_{ij}) $$

(B2)

where $r_{ij} = |r_{ij}|$ and the function, $f(r)$ is arbitrary at this point. It will be chosen with a number of parameters to be selected to minimize the energy. We can evaluate the kinetic energy needed as

We used a modified version [53] of the Malfliet-Tjon [114] potentials since we are neglecting spin in this calculation. The variational calculation over-binds 4He by about 7 MeV (35 MeV instead of 28 MeV) so we increased the strength of the repulsive part of the modified Malfliet-Tjon potentials (by 6%) in order to have a more realistic binding.

The variational calculation for the energy was carried out using 100,000 walkers. It was found that the energy was not very sensitive to the parameter b so it was fixed at 1.0 fm. Then, for various fixed values of c, the energy was calculated as a function of a. For the fixed values of b and c the rms radius is a unique function of a. We used $a = 0.203$ fm$^{-1}$ and $c = 1.0$ fm$^{-1}$. The rms radius is a crucial parameter in the scattering and we obtained a value of 1.44 fm. The calculation was repeated 10 times to give a collection of one million walkers to use in the scattering calculations involving the α particle.
The coordinates needed for the scattering calculation were taken from the Metropolis algorithm every 2000 steps to be certain that each realization was independent. One million realizations of the helium density were calculated and written out to files. When the scattering was calculated, the coordinates of each nucleus were drawn from a nuclear representation chosen randomly from the pool of one million possible nuclear realizations.

[1] D. M. Ceperley and M. H. Kalos in Applications of the Monte Carlo Methods in Statistical Physics Ed. K. Binder (Springer-Verlag, Berlin, 1984)
[2] J. Carlson, Phys. Rev. C 36, 2026 (1987), "Green's function Monte Carlo study of light nuclei", Phys. Rev. C 38, 1879 (1988)
[3] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Piper and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997), "Quantum Monte Carlo calculations of nuclei with A ≤ 7"
[4] C. W. Johnson, S. E. Koonin, G. H. Lang, and W. E. Ormand, Phys. Rev. Lett. 69, 3157 (1992), "Monte Carlo methods for the nuclear shell model"
[5] J.-P. Dedonder and W. R. Gibbs, Phys. Rev. C 69, 054611 (2004), "Pion charge exchange on deuterium"
[6] V. Franco and Y. Yin, Phys. Rev. Lett. 55, 1059 (1985), "Elastic Scattering of α Particles and the Phase of the Nucleon-Nucleon Scattering Amplitude"; Phys. Rev. C 34, 608 (1986), "Elastic collisions between light nuclei and the phase variation of the nucleon-nucleon scattering amplitude"
[7] Y. Yin, Z. Tan, and K. Chen, Nucl. Phys. A440, 685 (1985), "Method for calculating the complete expansion of the Glauber amplitude for nucleon-nucleus scattering"
[8] B. Abu-Ibrahim, K. Fujimura and Y. Suzuki, Nucl. Phys. A657, 391 (1999), "Calculation of the complete Glauber amplitude for p+4He scattering"
[9] J. S. Al-Khalili, I. J. Thompson and J. A. Tostevin, Nucl. Phys. A581, 331 (1994), "Evaluation of an eikonal model for 11Li-nucleus elastic scattering"
[10] J. S. Al-Khalili and J. A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996), "Matter Radii of Light Halo Nuclei"
[11] J. S. Al-Khalili and J. A. Tostevin, Phys. Rev. C 57, 1846 (1998), "Few-body calculations of proton-5,8He scattering"
[12] J. S. Al-Khalili, J. A. Tostevin and J. M. Brooke, Phys. Rev. C 55, R1018, (1997), "Beyond the eikonal model for few-body systems"
[13] M. M. H. El-Gogary, Phys. Rev. C 68, 054609 (2003), "Integral formula for calculating rigorously the full Glauber series of the elastic scattering between two cluster nuclei"
[14] M. M. H. El-Gogary, A. S. Shalaby, M. Y. M. Hassan, and A. M. Hegazy Phys. Rev. C 61, 044604 (2000), "Full Glauber series analysis for elastic scattering with consistent center-of-mass correlations"
[15] V. Franco and G. K. Varma, Phys. Rev. C 18, 349 (1978), "Collisions between composite particles at medium and high energies"
[16] M. M. H. El-Gogary, A. S. Shalaby, and M. Y. M. Hassan Phys. Rev. C 58, 3513 (1998), "Elastic scattering between two cluster nuclei (A, B ≥ 4) at medium and high energies"
clei within the Glauber Approach”
[31] S. Yu. Shmakov, V. V. Uzhinskii and Zadorozhny, Comp. Phys. Commun. 54, 125 (1989), “DIAGEN - generator of inelastic nucleus-nucleus interaction diagrams
[32] D. Krpic and Yu. M. Shabelski, Z. Phys. C48, 483 (1990), " Monte-Carlo simulation of elastic and quasi-elastic nucleus-nucleus scattering”
[33] B. Abu-Ibrahim and Y. Suzuki, Nucl. Phys. A728, 118 (2003), "The optical potential of 6He in the eikonal approximation ”
[34] K. Varga, S. C. Pieper, Y. Suzuki and R. B. Wiringa, Phys. Rev. C 66, 034622 (2002), "Monte Carlo integration in Glauber model analysis of reactions of halo nuclei ”
[35] Deeksha Chauhan and Z. A. Khan, Phys. Rev. C 80, 054601 (2009), "Glauber model for α-nucleus total reaction cross section”
[36] J. Liu, Y Zhang, C. Yang, J. Shen and B. A. Robinson, Phys. Rev. C 54, 2509 (1996), "Elastic and inelastic scattering of L.37 GeV α particles from 12C and 40,42,44,48Ca ”
[37] V. Franco and A. Tekou, Phys. Rev. C 37, 1097 (1988), "Optical model for medium and high energy hadron-nucleus collisions”
[38] P. Shukla, Phys. Rev. C 67, 054607(2003), "Glauber model and the heavy ion reaction cross section”
[39] L. A. Kondratyuk and V. B. Kopeliovich, ZhETF Pis. B19, 62 (1990), "Monte-Carlo simulation of elastic and quasi-elastic nucleus-nucleus scattering”
[40] R. J. Glauber and G. Matthiae, Nucl. Phys. B21, 135 (1970), "High-energy scattering of protons by nuclei”
[41] W. Czyz, L. Lesniak and H. Wolek, Nucl. Phys. B19, 125 (1970), "The role of Coulomb interaction in elastic and almost elastic scattering of hadrons from nuclei”
[42] W. R. Gibbs and R. Arceo, Phys. Rev. C 72, 065205 (2005), "Minimal electromagnetic and mass difference corrections in N scattering”
[43] G. Fäldt and H. Pilkuhn, Phys. Lett. B46, 337 (1973), "Inner Coulomb corrections to pion-nucleus scattering" and G. Fäldt and H. Pilkuhn, Phys. Lett. B40, 613 (1972), "Coulomb "flux corrections" and total cross sections for pion-nucleus interactions in the Δ-resonance region”
[44] S. K. Charagi and S. K. Gupta, Phys. Rev. C 41, 1610 (1990), "Coulomb-modified Glauber model description of heavy-ion reaction cross sections”; Phys. Rev. C 46, 1982 (1992), "Coulomb-modified Glauber model description of heavy-ion elastic scattering at low energies”
[45] M. H. Cha, Phys. Rev. C 46, 1026 (1992), "Modified Glauber model II description for heavy-ion elastic scattering”
[46] S. K. Charagi, Phys. Rev. C 51, 3521 (1995), “Comment on Modified Glauber model II description for heavy-ion scattering”
[47] M. A. Alvi, J. H. Madani and A. M. Hakmi, Phys. Rev. C 75, 064609 (2007), "Analysis of elastic α-nucleus scattering data at 240 MeV”
[48] I. Ahmad, M. A. Abdulmomen, and M. S. Al-Enazi, Phys. Rev. C 65, 054607 (2002), "12C-12C elastic scattering at intermediate energies”
[49] R. J. Glauber, “High Energy Collision theory, in Lectures in Theoretical Physics”, Vol. I 315 (1959) Inter- science Publishers, Inc. New York
[50] S. J. Wallace, Ann. Phys (N. Y.) 78, 190 (1973) and Phys. Rev. Lett. 27, 622 (1971), "Eikonal Expansion”
[51] D. R. Harrington Phys. Rev. 184, 1745 (1969), "Multiple Scattering, the Glauber Approximation, and the Off-Shell Eikonal Approximation”
[52] R. D. Amado, J.-P. Dedonder and F. Lenz, Phys. Rev. C 21, 647 (1979), "Explicit formula for hadron-nucleus elastic scattering in the eikonal approximation”
[53] A.G. Sitenko, Ukr. Fiz. Zh. 4, 152 (1959), "On the theory of nuclear reactions involving composite particles”
[54] M.E. Brandan, H. Chemine and K. W. McVoy, Phys. Rev C 55, 1353 (1997), "Limits to the validity of the Glauber approximation for heavy-ion scattering, and a possible assessment of in-medium N-N Pauli blocking”
[55] J.-P. Dedonder, W. R. Gibbs and M. Nuseirat, Phys. Rev. C 77, 044003 (2008), "Phase variation of hadronic amplitudes”
[56] SAID program at [http://gwdac.phys.gwu.edu] R. A. Arndt, I. I Strakovsky and R. L. Workman, Phys. Rev. C 62, 034005(2000), "Nucleon-nucleon elastic scattering to 3 GeV”
[57] S. Wallace, Advances in Nuclear Physics, edited by J. W. Negele and E. Vogt (Plenum, New York, 1981), Vol. 12, p. 135, Tables III and IV.
[58] W.-M. Yao et al., Journal of Physics G 33, 1 (2006); Journal of Physics G 37, 1 (2010), "Review of Particle Physics”
[59] F. Sammarruca and L. White, PRC 83, 064602 (2011), "Probing the sensitivity of the total nucleus-nucleus reaction cross section at intermediate energies to medium effects and isospin asymmetries”
[60] T. Furumoto, Y. Sakuragi and Y. Yamamoto, Phys. Rev. C 80 044614 (2009), "Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering”
[61] C. A. Bertulani and C. De Conti, Phys. Rev. C 81, 064603 (2010), "Pauli blocking and medium effects in nucleon knockout reactions”
[62] W. P. Madigan, D. A. Bell, J. A. Buchanan, M. M. Cakin, J. M. Clement, M. Copel, M. D. Corcoran, K. A. Johns, J. D. Lesikar, H. E. Miettinen, G. S. Mutchler, C. J. Naudet, G. P. Pepin, G. C. Phillips, J. B. Roberts, and S. E. Turpin, Phys. Rev. D 31, 966 (1985), "Transverse-spin dependence of the p-p total cross section ΔT from 0.8 to 2.5 GeV/c”
[63] P. J. Mulders, A. T. Aerts, and J. J. de Swart, Phys. Rev. D 21, 2653 (1980), "Multiquark states. III. Q6 dibaryon resonances”
[64] V. Lapoux, N. Alamanos, F. Auger, V. Fkou-Youmbi, A. Gillibert, F. Marie, S. Ottini-Hustache, J-L. Sida, D. T. Khoa, Y. Blumenfeld, F. Marchal, J-A. Scarpace, T. Suomijrvi, J. H. Kelley, J.-M. Casandjian, M. Chartier, M. D. Cortina-Gil, M. Mac Cormick, M. Mittig, F. de Oliveira Santos, A. N. Ostrowski, P. Roussel-Chomaz, K. W. Kemper, N. Orr, and J. S. Winfield, Phys. Rev.
C 66, 034608 (2002), "Coupling effects in the elastic scattering of \(^{6}\)He on \(^{12}\)C"

[J.S. Al-Khalili, M.D. Cortina-Gil, P. Roussel-Chomaz, N. Alamanos, J. Barrette, W. Mittig, F. Auger, Y. Blumenfeld, J.M. Casandjian, M. Chartier, V. Fekou-Yombi, B. Fernandez, N. Frascariea, A. Gilibert, C. H. Laurent, A. Lepine-Sily, N.A. Orr, V. Pascalon, J.A. Scarpaci, J.L. Sida, and T. Soumilajurie, Phys. Lett B378, 45 (1996), "Elastic scattering of \(^{6}\)He and its analysis within a four-body eikonal model"

[Y.-W. Lui, H. L. Clark and D. H. Youngblood, Phys. Rev. C 64,064308 (2001), "GIant resonances in \(^{16}\)O"

[F. Nuoffer, G. Bartnitzky, H. Clement, A. Blazevic, H. G. Bohlen, B. Gebauer, W. von Oertzen, T. Wilpert, T. Wilpert, A. Lepine-Sily, W. Mittig, A. N. Ostrowski and P. Roussel-Chomaz, Nuovo Cimento A 111, 971 (1998), "The equation of state for cold nuclear matter as seen from nucleus-nucleus scattering"

[D. T. Khoa, H.G. Bohlen, W. von Oertzen, G. Bartnitzky, A. Blazevic, F. Nuoffer, B. Gebauer, W. Mittig, P. Roussel-Chomaz, Nucl. Phys. A759, 3 (2005) "Study of refractive structure in the inelastic \(^{16}\)O + \(^{16}\)O scattering at the incident energies of 250 to 1120 MeV"; D. T. Khoa, W. von Oertzen, H.G. Bohlen and F. Nuoffer, Nucl. Phys. A674, 387 (2000), "Study of diffractive and refractive structure in the elastic \(^{16}\)O + \(^{16}\)O scattering at incident energies ranging from 124 MeV to 1120 MeV"

[B. Bonin, N. Alamanos, B. Berthier, G. Brueh, H. Faraggi, et al. Nucl. Phys. A445, 381 (1985), "Alphas-Nucleon Elastic Scattering at Intermediate Energies"

[M. Buenerd, A. Lounis, J. Chauvin, D. Lebrun, P. Martin, G. Duhamel, J. C. Gondrand and P. De Saintignon, Nucl. Phys. A424, 313 (1984), "Elastic and inelastic scattering of carbon ions at intermediate energies"; M. Buenerd, P. Martin, R. Bertholet, C. Guet, M. Maurel et al., Phys. Rev. C 26, 1299 (1982), "Observation of rainbow scattering in the \(^{12}\)C + \(^{12}\)C system at Ec.m.=508 MeV"

[P. Roussel-Chomaz, N. Alamanos, F. Auger, J. Barrette, B. Berthier, B. Fernandez, L. Papineau, H. Droube and W. Mittig, Nucl. Phys. A477, 345 (1988), "\(^{16}\)O elastic scattering at Elab = 94 MeV/nucleon"

[T. Wakasa, E. Ibara, K. Fujita, Y. Funaki, K. Hatanaka et al., Phys. Lett. B653, (2007), "New candidate for an alpha cluster condensed state in \(^{16}\)O(\(\alpha, \alpha\)' at 400 MeV"

[J. Y. Hostachy, M. Buenerd, J. Chauvin, D. Lebrun, Ph. Martin, J. C. Lugol, L. Papineau, P. Roussel, N. Alamanos, J. Arvieux and C. Cerruti, Nucl. Phys. A490, 441 (1988), "Elastic and inelastic scattering of \(^{12}\)C ions at intermediate energies"

[T. Ichihara, T. Niihaki, H. Okamura, H. Ohnuma, H. Sakai et al., Nucl. Phys. A569 287c (1994), "Spin-Isospin Resonances Observed in the (d,\(^{2}\)He) and (\(^{12}\)C,\(^{12}\)N) Reactions at E/A=135 MeV "

[G. D. Alkhazov, T. Bauer, R. Bertini, L. Bimbot, O. Bing, A. Boudard, G. Brueh, H. Catz, A. Chaumeaux, P. Couvert, J. M. Fontaine, F. Hibou, G. J. Igo, J. C. Lugol and M. Matoba, Nucl. Phys. A280, 365 (1977), "Elastic and inelastic scattering of 1.37 GeV \(\alpha\)-particles from \(^{40}\)Ca,\(^{42}\)Ca,\(^{44}\)Ca,\(^{48}\)Ca"

[A. Chaumeaux, G. Brueh, T. Bauer, R. Bertini, A. Boudard, H. Catz, P. Couvert, H. H. Duhm, J. M. Fontaine, D. Garreta and L. C. Lugol, Nucl. Phys A267, 413 (1976), "Scattering of 1.37 GeV \(\alpha\)-particles by \(^{12}\)C"

[J. Berger, J. Duflo, L. Goldzah, J. Oostens, F. Plouin, et al., Nucl. Phys. A338, 421 (1980), "\(\alpha - \alpha\) elastic scattering at 4.32 A and 5.07 GeV/c"

[L. Satta, J. Duflo, F. Plouin, P. Picozza, L. Goldzah, J Banaigs, R. Frascaria, F. L. Fabbri, A. Codino, J. Berger, M. Boivin and P. Berthet, Phys. Lett. 139B, 263 (1984), "Elastic scattering of \(\alpha\) particles on light nuclei at P\(\alpha\) = 7 GeV/c"

[H.P. Morsch, W. Spang and P. Decowski, Phys. Rev. C 67, 064001 (2003), "Folding model study of \(\alpha - p\) scattering: Systematics of elastic scattering, effective interaction and inelastic excitation of \(N^*\) resonances"

[H. P. Morsch et al., Zeit. Phys. A 350, 167 (1994), "Study of \(\alpha\) scattering from \(^2\)H and \(^{12}\)C at \(E_\alpha = 4.2\) GeV"

[W. Czyz and L. C. Maximon, Ann. Phys. (USA) 52, 59(1969), "High Energy, Small Angle Elastic Scattering of Strongly Interacting Composite Particles; " Ann. Phys. (USA) 60, 484(1970), "Coulomb Effects in High Energy \(^4\)He-\(^4\)He Elastic Scattering"

[S. Gartenhaus and C. Schwartz, Phys. Rev. 108, 482 (1957), "Center-of-Mass Motion in Many-Particle Systems"

[W. Bertolzi, J. Friar, J. Heisenberg and J. W. Negele, Phys. Lett. 41B, 408 (1972), "Contributions of neutrons to elastic electron scattering from nuclei"

[C. R. Ottermann, G. Kobschall, K. Maurer, K. Rohrich, Ch. Schmitt and V. H. Walther, Nucl. Phys. A436, 688 (1985), "Elastic electron scattering from \(^3\)He and \(^4\)He"

[A. von Gunten, Ph.D. Thesis, Technische Hochschule Darmstadt, 1982 (unpublished)

[H. Chandra and G. Sauer, Phys. Rev. C 13, 245 (1976), "Relativistic corrections to the elastic electron scattering from \(^{208}\)Pb"

[W. R. Gibbs, "Computation in Modern Physics", World Scientific Press, Singapore, ISBN 9810220448

[A. Vitturi and F. Zardi, Phys. Rev. C. 36, 1404 (1987), "Modified Glauber model for the description of elastic scattering between heavy ions"

[C. A. Bertulani and P. G. Hansen, Phys. Rev. C. 70, 034609 (2004), "Momentum distributions in stripping reactions of radioactive projectiles at intermediate energies"

[C. A. Bertulani and A. Gade, Comp. Phys. Comm. 175, 372 (2006), "MOMDIS: a Glauber model computer code for knockout reactions"

[J. S. McCarthy, I. Sick and R. R. Whitney, Phys. Rev. C 15, 1396 (1977), "Electromagnetic structure of the helium isotopes"

[I. Sick and J. S. McCarthy, Nucl. Phys. A150, 631 (1970), "Elastic electron scattering from \(^{12}\)C and \(^{16}\)O"

[J. J. Ullo and H. Feshbach, Ann. Phys. 82, 156 (1974), "On the high energy scattering of protons by nuclei and
triple correlations”

[94] W. R. Gibbs and J.-P. Dedonder, Phys. Rev. C 46, 1825 (1992), "Neutron radii of the calcium isotopes”

[95] I. Sick, J. B. Bellicard, J. M. Cavedon, B. Frois, M. Huet, P. Leconte, P. X. Ho and S. Platchkov, Phys. Lett. B 88, 245 (1979), "Charge density of 40Ca”

[96] M. Y. M. Hassan and Z. Metawei, Acta Physica Slovaca 52, 23 (2002), "First and second order corrections to the eikonal phase shifts for the interaction of α-particle with 12C and Ca isotopes”

[97] I. Ahmad, J. Phys G 6, 947 (1980), "Elastic scattering of high energy α particles on nuclei”

[98] C. W. De Jager, H. De Vries and C. De Vries. Atomic Data and Nuclear Data Tables 14, 479 (1974) (Table I, 208Pb, 2pF)

[99] H. M. M. Mansour and Z. Metawei, Ukr. J. Phys. 53, 1143 (2008)

[100] D. Chauhan and Z. A. Khan, Phys. Rev. C 75, 054614 (2007), "12C,12C elastic scattering at 1.016, 1.449, and 2.4 GeV and the NN amplitude”

[101] M. A. Hassanain, A. A. Ibraheem and M. El-Azab Farid, Phys. Rev. C 77, 034601 (2008), "Double folding cluster potential for 12C + 12C elastic scattering”

[102] M. C. Mermaz, B. Bonin, M. Buenard and J. Y Hostachy, Phys. Rev. C 34, 1988 (1986), "Phase shift analysis of 12C ion elastic scattering measured at very high energy”

[103] H. Lesniak and L. Lesniak, Nucl. Phys. B 25, 525 (1971), "Elastic scattering of high-energy hadrons from deformed 12C nucleus”

[104] C. Clofi Degli Atti and R. Guardiola, Phys. Lett. 36B, 287 (1971), "High-energy electron and proton scattering and deformation of 12C nucleus”

[105] V. Yu. Denisov and N. A. Pilipenko, Phys. Rev. C 81, 025805 (2010), "Fusion of deformed nuclei: 12C+ 12C”

[106] G. E. Brown, "Unified Theory of Nuclear Models and Forces”, North-Holland Publishing Company- Amsterdam, 1967

[107] J. P. Svenne and R. S. Mackintosh, Phys. Rev. C 18, 983 (1978), "Spin-orbit force and the deformation of 12C”

[108] J. L. Friar and J. W. Negele, Nucl. Phys. A 240, 301 (1975), "The determination of the nuclear charge distribution of 12C from electron scattering”

[109] K. Hagino, N. W. Lwin, and M. Yamagami, Phys. Rev. C 74, 017310 (2006), "Deformation parameter for diffuse density”

[110] W. J. Vermeer, M. T. Esat, J. A. Kuehner, R. H. Spear, A. M. Baxter and S. Hinds, Phys. Lett. 122B, 23 (1983), "Electric quadrupole moment of the first excited state of 12C”

[111] M. H. Cha and Y. J. Kim, J. Phys G 17, L95 (1991), "Semi-classical phase shift analysis for 16O ion elastic scattering at $E_{lab} = 1503$ MeV”

[112] L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greenel, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, Phys. Rev. Lett. 93, 142501 (2004), "Laser spectroscopic determination of the 6He nuclear charge radius”

[113] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series, 55

[114] R. A. Malfliet and J. A. Tjon, Nucl. Phys. A 127, 161 (1969), "Solution of the Faddeev equations for the triton problem using local two-particle interactions”