Moving the needle towards the democratization of echocardiography: a case report

Jonathan dos Santos 1,2*, Patrícia Borges Fernandes 2,3, Francisco Rocha Gonçalves 2, and Alexandra Gonçalves 2

1ACeS Baixo Tâmega, UCSP Celorico de Basto, Assento, Britelo, 4890-221 Celorico de Basto, Portugal; 2Department of Medicine, Faculty of Medicine of Porto University, Alameda Prof. Hernãni Monteiro, 4200-319 Porto, Portugal; and 3USF São Miguel Arcanjo, ACeS Vale do Sousa Sul, Rua, Marquês de Pombal, 682, 4560-682 Penafiel, Portugal

Received 8 January 2019; first decision 6 March 2019; accepted 25 September 2019; online publish-ahead-of-print 22 October 2019

Background
Echocardiography has been traditionally performed in echo labs, but in the latest years, it has been expanded to other environments, such as hospital urgent care. The advantages of the use of echocardiography by primary care physicians (PCPs) is unexplored, although PCPs are in the front line evaluation of most of the patients. We present a case where POCUS (point-of-care ultrasound) was used as a complement of physical examination by a family doctor, allowing a prompt clinical decision in a heart failure (HF) patient.

Case summary
An 85-year-old woman, living independently, asks her family doctor for a home consultation due to increasing dyspnoea. On examination, severe dyspnoea and bilateral ankle oedema was noted and a point-of-care echocardiogram was performed by the primary care physician, who observed: severely compromised left ventricular systolic function, moderate mitral and tricuspid regurgitation, and severe dilation of the inferior vena cava. As a result, the diagnosis of HF with decreased ejection fraction was formed supporting the therapeutic decision.

Discussion
This case represents an elderly patient with dyspnoea, without previous HF diagnosis. The primary care physician, used portable ultrasound as a complement of physical examination, which confirmed a HF diagnosis, allowing a prompt decision-making on therapy. POCUS, can be a powerful tool to expedite treatment in different settings, including the home consultations by PCPs.

Keywords
Point-of-care ultrasound • Pocket ultrasound • Heart failure • Primary care physician • Case report

Learning points
• Point-of-care ultrasound, when used by primary care physicians with training, allows detection of important functional and structural cardiac abnormalities.
• A pocket ultrasound can be used as a physical examination complement, supporting the differential diagnosis of dyspnoea and efficient decision-making process.

Introduction
Echocardiography has been traditionally performed in echo labs, but in the latest years, it has been expanded to other environments, such as hospital urgent care. The advantages of the use of echocardiography by primary care physicians (PCPs) is unexplored, although PCPs are in the front line evaluation of most of the patients. We present a case report of a patient with heart failure (HF) where echocardiography was instrumental for comprehensive
patient evaluation and clinical decision, illustrating a significant improvement in the efficiency of primary healthcare.

Timeline

Time	Event
4 years prior to presentation	No prior history of heart failure at presentation
At presentation	85-year-old woman requests family doctor home consultation due to progressive dyspnoea
	Dyspnoea [New York Heart Association (NYHA) Class III–IV], orthopnoea, pulmonary rales, and bilateral ankle oedema
	Point-of-care ultrasound with pocket echo by family doctor: severely compromised left ventricular systolic function, severe dilation of the inferior vena cava
	Treatment: spironolactone 25 mg daily; increased furosemide 40 mg 3 times daily
1 month later	Dyspnoea (NYHA Class II–III)
	Conventional echocardiography: reduced ejection fraction (30%)
	Replaces ramipril to sacubitril/valsartan
2 months later	Heart failure symptoms relief
	Titrate sacubitril/valsartan dose

Case presentation

We present a case of an 85-year-old woman with medical history of arterial hypertension, obesity, and atrial fibrillation, living independently in her own house. Her regular medication included ramipril 10 mg od acenocoumarol, bisoprolol 5 mg od, pantoprazole 20 mg od and furosemide 40 mg od. We speculate patient had been advised by a different healthcare provider on this high diuretic dose due to swollen legs or other signs of congestion.

The patient requests her family doctor for a home consultation by aggravated dyspnoea. She was found with fatigue, tiredness, orthopnoea and dyspnoeic at rest. Physical examination revealed a blood pressure of 100/60 mmHg, heart rate of 98 b.p.m., elevated jugular venous pressure, third heart sound, pulmonary rales in the lower third of both lungs, and bilateral ankle oedema. Her medical records showed a glomerular filtration rate of 55 mL/min and an echocardiogram performed 4 years prior showed normal biventricular function without signs of pulmonary artery hypertension and mild mitral regurgitation. In regard to the severity of the symptoms, the patient was suggested to pursue further evaluation and treatment at the local hospital, but she refused to leave her house. On-site, the PCP with echocardiography training (certified online course and a practical training in an echocardiography lab for 6 months) performed a point-of-care ultrasound (POCUS) Lumify. The study showed: severely compromised left ventricular (LV) systolic function (Figure 1, Supplementary material online, Video S4), moderate mitral (Figure 2), and tricuspid regurgitation (Figure 3), severe dilation of the inferior vena cava (Figure 4), severely dilated left atrium (52 mm in long-axis view), dilated right atrium (minor axis of 49 mm in four-chamber view), normal LV size (47 mm in diastole parasternal long-axis view), normal right ventricular (RV) size (basal and mid diameter of 39 and 29 mm), and normal RV function (tricuspid annular plane systolic excursion of 19 mm). Ultrasound B-lines were not assessed at this time. The study was shared live using a real-time programme (REACTS) with a cardiologist who confirms the findings. As a result, the diagnosis of HF with decreased ejection fraction (EF) was performed supporting the therapeutic decision: furosemide 40 mg was increased to three times daily and spironolactone 25 mg was introduced once

![Figure 1](image-url) A four-chamber view with end-diastolic and systolic volumes. Reduced ejection fraction of 38% (Supplementary material online, Video S4).
daily. The patient had weekly visits from the community nurse and one month later, a conventional echocardiogram confirmed the POCUS findings, quantifying left ventricular ejection fraction in 30% and pulmonary artery pressure in 44 mmHg. At this time, ramipril was replaced by sacubitril/valsartan 24 mg/26 mg td. The patient refused additional studies or hospital referral, which limited our ability to study the cause of HF. At two months, follow-up the patient was tolerating treatment and presented in Class II of New York Heart Association and the sacubitril/valsartan was titrated accordingly.

Discussion

Heart failure prevalence has been increasing in the last decades, alongside with population aging, especially in developed countries. However, the diagnosis of HF, as a clinical syndrome can be challenging, particularly in elderly patients, being the information provided by ultrasound fundamental for diagnosis and therapeutic management.

This case represents an 85-year-old female patient with dyspnoea, without previous HF diagnosis, refusing to leave her home, to whom the PCP successfully used portable ultrasound as a physical examination complement. The comprehensive evaluation allowed a confident diagnosis of HF at patient’s home and a timely and targeted therapy avoiding hospital admission, showing that the use of ultrasound by a trained primary care physician increases the efficiency of medical care for the diagnosis and treatment of HF. The available studies are very limited and no cost-effectiveness studies have been done to prove the use POCUS as a toll by PCPs, however, this technique has been proven to be a useful, reliable and fast tool in emergency department and as a bedside physical examination complement.

In addition to HF recognition, HF should be monitored and medication optimized periodically. PCPs can play a critical role in this regard, in close collaboration with cardiologists, evaluating elderly
patients who require home visits. In fact, a randomized clinical trial in patients with HF with optimal medical therapy showed no differences in death and hospital admissions between patients followed by cardiologists with those followed by referral PCP.7

Conclusions

In summary, the crescent ageing population presents new demands to the healthcare system and chronic diseases such as HF are more commonly being diagnosed and treated by PCPs, who by using portable ultrasounds, as ‘fifth pillar to bedside physical examination’ will significant improve patient care.2

Lead author biography

Jonathan dos Santos was born in Paris in 1987 and grew up in Amarante (Portugal). He’s a family physician who believes that primary health care are on the mainstay of any healthcare system. He’s a point-of-care ultrasound (POCUS) user so that physical examination has for him an extra value. In 2012, Jonathan has completed the master of medicine at Coimbra Medical School (FMUC). He has been enrolled in 2016 in the PhD program of medicine at the Porto Medical School (FMUP); In 2018 he has completed the family and general medicine fellowship at ‘USF Terras de Souza’ in ‘ACES Vale de Sousa Sul’; from February 2019 he’s a clinician at “UCSP Celorio de Basto” in “ACeS Baixo Tâmega”.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The author/s confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: Pocket ultrasound of this study is an investigation grant support from Philips; Alexandra Goncalves, MD, PhD, MMSc is a Philips employee.
References
1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Rutten LM, Ruschitzka F, Rutten FH, van der Meer JP. Authors/Task Force Members; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129–2200.
2. Narula J, Chandrashekhar Y, Braunwald E. Time to add a fifth pillar to bedside physical examination: inspection, palpation, percussion, auscultation, and insonation. JAMA Cardiol 2018;3:346–350.
3. Bobbia X, Pradeilles C, Claret PG, Soulier C, Wagner P, Bodin Y, Roger C, Cayla G, Muller L, de La Coussaye JE. Does physician experience influence the interpretability of focused echocardiography images performed by a pocket device? Scand J Trauma Resusc Emerg Med 2015;23:52.
4. Kimura BJ. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside. Heart 2017;103:987–994.
5. Laursen CB, Slots E, Lassen AT, Christensen R, Lambrechtsen J, Madsen PH, Henriksen DP, Davidsen JR, Rasmussen F. Point-of-care ultrasonography in patients admitted with respiratory symptoms: a single-blind, randomised controlled trial. Lancet Respir Med 2014;2:638–646.
6. Zanobetti M, Scorpiniti M, Gigli C, Nazerian P, Vanni S, Innocenti F, Stefanone VT, Savinelli C, Coppa A, Bigarini S, Caldi F, Tassinari I, Conti A, Grifoni S, Pini R. Point-of-care ultrasonography for evaluation of acute dyspnoea in the ED. Chest 2017;151:1295–1301.
7. Schou M, Gustafsson F, Videbaek L, Tuxen C, Keller N, Handberg J, Sejr Knudsen A, Espeersen G, Markenward J, Egstrup K, Ulinksen H, Hildebrandt PR, NorthStar Investigators, all members of The Danish Heart Failure Clinics Network. Extended heart failure clinic follow-up in low-risk patients: a randomized clinical trial (NorthStar). Eur Heart J 2013;34:432–442.