Genome-Wide Analysis of Experimentally Evolved *Candida auris* Reveals Multiple Novel Mechanisms of Multidrug Resistance

Hans Carolus,a,b Siebe Pierson,b José F. Muñoz,c Ana Subotić,a,b Rita B. Cruz,b Christina A. Cuomo,c Patrick Van Dijck,a,b

aVIB Center for Microbiology, Leuven, Belgium
bDepartment of Biology, KU Leuven, Leuven, Belgium
cBroad Institute of MIT and Harvard, Cambridge, Massachusetts, USA

ABSTRACT *Candida auris* is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in *C. auris* obtained through serial *in vitro* exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in *FKS1* hot spot 1 and a substitution in *FKS1* "novel" hot spot 3. Mutations in *ERG3* and *CIS2" further increased the echinocandin MIC. Decreasedazole susceptibility was linked to a mutation in transcription factor *TAC1b* and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing *ERG11*, and a whole chromosome 5 duplication, which contains *TAC1b*. The latter was associated with increased expression of *ERG11*, *TAC1b*, and *CDR2* but not *CDR1*. The simultaneous emergence of nonsense mutations in *ERG3* and *ERG11* was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in *MEC3*, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in *C. auris*, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.

IMPORTANCE *Candida auris* is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, *C. auris* has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in *C. auris* is monitored *in vitro*. Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a *C. auris* clade II isolate. Additionally, this study shows that *in vitro* experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.

KEYWORDS *Candida auris*, multidrug resistance, microevolution, whole-genome sequencing, amphotericin B, antifungal agents, caspofungin, drug resistance evolution, experimental evolution, fluconazole, genome analysis

Over the course of a decade since its discovery (1), *Candida auris* has emerged in at least 39 countries in every inhabited continent (2), occasionally causing health care-associated outbreaks of lethal candidiasis (3). *C. auris* is substantially different from any other *Candida* species studied so far, as it behaves like a true multidrug-resistant fungus, with the ability to develop resistance to all classes of antifungal drugs. This has led to an alarming potential for the emergence of drug-resistant *C. auris* strains, which could pose a significant threat to public health. The genome-wide analysis presented in this study sheds light on the molecular mechanisms underlying the development of multidrug resistance in *C. auris*. The authors used serial *in vitro* exposure to azoles, polyenes, and echinocandins to obtain evolutional samples of *C. auris*. They observed the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by specific mutations in *FKS1* hot spot 1 and a substitution in a novel hot spot 3. Mutations in *ERG3* and *CIS2* further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in *TAC1b* and overexpression of the drug efflux pump Cdr1. A segmental duplication of chromosome 1 containing *ERG11* and a whole chromosome 5 duplication, which contains *TAC1b*, was also observed. The authors found that the simultaneous emergence of nonsense mutations in *ERG3* and *ERG11* decreased amphotericin B susceptibility, accompanied with fluconazole cross-resistance. Additionally, a mutation in *MEC3* was identified, which is mainly known for its role in DNA damage homeostasis. Overall, this study highlights the alarming potential for and diversity of MDR development in *C. auris*, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urgency for future research.
resistant (MDR) nosocomial pathogen (cf. methicillin-resistant *Staphylococcus aureus*, MRSA) (3). This was illustrated by the U.S. Centers for Disease Control and Prevention (CDC) in 2019 when they listed *C. auris* as the first fungus among urgent antimicrobial resistance threats (4). *C. auris* can become resistant to each drug and each combination of drugs from the three major antifungal drug classes, the azoles (e.g., fluconazole), echinocandins (e.g., caspofungin), and polyenes (e.g., amphotericin B).

Various clinical isolate screening reports indicate fluconazole resistance in over 80% (5–9) and amphotericin B resistance in up to 30% of the isolates tested (6, 7). Echinocandin resistance is less common, found in 2 to 10% in some screenings (6–8, 10), but it is alarmingly on the rise (11, 12). Overall, about 90% of the *C. auris* isolates are estimated to have acquired resistance to at least one drug, while 30 to 41% are resistant to two drugs, and roughly 4% are pan-resistant (resistance to the three major antifungal drug classes) (4, 7). These numbers show an unprecedented potential to acquire MDR, unlike any other pathogenic *Candida* species (3, 12, 13). The molecular mechanisms of antifungal drug resistance in *C. auris*, especially for amphotericin B resistance and MDR, are still poorly understood. Hundreds of resistant *C. auris* strains have been sequenced, and their decreased drug susceptibility for azoles and echinocandins has been associated with a few mutations in genes known to be involved in drug resistance. Still, the high levels of resistance and extensive MDR in some strains cannot be explained through the limited number of resistance-conferring mutations described so far (3, 7).

Azole resistance has been linked to three single nucleotide polymorphisms (SNPs) (7–9, 14) and an increased copy number (9, 15) of *ERG11*, the gene encoding the fluconazole target lanosterol 14-α-demethylase. The ATP binding cassette (ABC) transporter Cdr1 was proven to act as an efflux pump of azoles in *C. auris* (16–18), and another study suggests that gain of function (GOF) mutations in TAC1b can underly this mode of action (16). A recent study suggests that azole resistance can be the result of a duplication of chromosome V, which contains several genes involved in drug resistance and ergosterol biosynthesis (19). Reduced echinocandin susceptibility in *C. auris* was previously only linked to SNPs substituting amino acids S639 (9, 12, 20) and F635 (21) and a deletion of F635 (22) in Fks1, which is the echinocandin target, β(1,3) d-glucan synthase. The polyene amphotericin B works by sequestering ergosterol and induction of oxidative stress (23), rather than inhibiting a specific enzyme, and therefore, amphotericin B resistance is among the least understood drug resistance mechanisms in *C. auris* and *Candida* spp. in general (12, 23). So far, only an increased expression of genes involved in ergosterol biosynthesis (i.e., *ERG1, ERG2, ERG6*, and *ERG16*) (15) and SNPs in *ERG2* (24), *FLO8*, and an unnamed membrane transporter-encoding gene (25) have been linked to amphotericin B resistance in *C. auris* (12, 20).

Overall, few studies have actually been able to validate the proposed drug resistance mechanisms in *C. auris* (16, 18, 26, 27), presumably because of the lack of an optimized gene-editing system. Here, we apply a strategy of serial transfer-based experimental evolution with the ability to trace back the emergence—and validate the cumulative effect—of single mutations or copy number changes throughout the evolutionary process. By designing allele-specific PCR primers, the presence or absence of specific mutations could easily be screened for by PCR on multiple single clones in the daily evolving populations. Doing so, we tracked down the emergence of 10 nonsynonymous mutations in 8 genes, evolved in 5 separate evolutionary lineages. In this study, we investigated MDR evolution in a clade II *C. auris* strain, which is understudied compared to other clades (28) and has been suggested to be less prone to drug resistance development (28, 29). Previously, five different clades (clades I to V, i.e., the South Asian, East Asian, African, South American, and Iranian clades, respectively) of *C. auris* were identified, each phylogenetically separated by thousands of SNPs (7, 30) and often associated with clade-specific virulence and/or drug resistance tendencies (9, 28, 29). This study shows that clade II *C. auris* can rapidly acquire MDR *in vitro*, and its mechanisms of resistance provide fundamental new insights on how resistance can be
acquired by \textit{C. auris}. Finally, our study presents both the power and challenges of using \textit{in vitro} experimental evolution to discover molecular mechanisms of (multi)drug resistance.

\section*{RESULTS}

\textbf{\textit{C. auris} clade II can acquire multidrug resistance rapidly \textit{in vitro}.} A single colony of \textit{C. auris} strain B11220, the original type strain described by Satoh et al. (1) from Japan in 2009, was subjected to an \textit{in vitro} experimental microevolution assay as depicted and described in Fig. 1A and Materials and Methods, respectively. This parental progenitor (further referred to as the wild type \[\text{wt}\]) proved to be pan-susceptible (determined by MIC or MIC\textsubscript{50}, see Materials and Methods) to fluconazole (MIC\textsubscript{50}, 1 μg/ml), caspofungin (MIC\textsubscript{50}, 0.125 μg/ml), and amphotericin B (MIC\textsubscript{50}, 0.5 μg/ml). Based on these MIC\textsubscript{50} values, the wild type strain was exposed (in triplicate) to three concentrations of each drug as follows: 2 \times MIC\textsubscript{50}, 1 \times MIC\textsubscript{50}, and 0.5 \times MIC\textsubscript{50} (shown here) of the particular starting strain. Daily, the culture is rediluted (1/10) in fresh RPMI-MOPS medium (2\% glucose) with a concentration of drug based on the OD\textsubscript{600} of the control culture (see Materials and Methods). All strains were evolved in triplicate. Daily aliquots of evolving populations were stored in RPMI-MOPS medium containing 25\% glycerol at -80°C for later analysis. (B) Ancestry of the five evolved strains that were sequenced. WGS was performed on a single colony. The name of each strain represents the experimental treatment (letter) and day of isolation (number), respectively.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Schematic overview of the \textit{in vitro} experimental evolution assay. (A) A single colony is cultured in RPMI-MOPS medium (2\% glucose) for 24 h at 37°C after which a standardized inoculum (10\(^6\) cells) is resuspended in medium containing no drug (control), the drug at a concentration of 2 \times MIC\textsubscript{50}, 1 \times MIC\textsubscript{50}, and 0.5 \times MIC\textsubscript{50} (shown here) of the particular starting strain. Daily, the culture is rediluted (1/10) in fresh RPMI-MOPS medium (2\% glucose) with a concentration of drug based on the OD\textsubscript{600} of the control culture (see Materials and Methods). All strains were evolved in triplicate. Daily aliquots of evolving populations were stored in RPMI-MOPS medium containing 25\% glycerol at -80°C for later analysis. (B) Ancestry of the five evolved strains that were sequenced. WGS was performed on a single colony. The name of each strain represents the experimental treatment (letter) and day of isolation (number), respectively.}
\end{figure}
FIG 2 Resistance profiles of endpoint and intermediate evolved strains. (A) Summary of MIC\(_{50}\) values and associated mutations/CNVs for each endpoint strain and divergent intermediate strain. (B to D) Growth profiles of evolved strains relative to the wild-type strain (wt) in a broth dilution assay (BDA) of fluconazole (B), caspofungin (C), and amphotericin B (D). The percentage of growth was calculated from growth without drug and based on OD\(_{600}\) measurements after 48 h of incubation at 37°C. Each data point and its standard deviation is calculated from 3 biological repeats, each represented by the mean of 2 technical repeats. Pdup: partial duplication, dup: duplication. Resistance profiles of endpoint evolved strains for all drugs are found in supplemental material Fig. S1.
The length of the evolution experiment ranged from 16 (CF-lineage) to 30 days (F-lineage), although later it was shown that resistant clones emerged quite early (e.g., after 3 days in C-lineage; see Fig. 2).

Allele-specific PCR is an effective method for tracing back the emergence of mutations during evolution in serial isolates. After microevolution, whole-genome sequencing of the wild type, F30, C20, A29, FC17, and CF16 strains showed the acquisition of 10 nonsynonymous mutations (listed in Table 1) and two different aneuploidies (shown in Fig. 3 and Fig. S3). All mutations except the deletion of F635 in FKS1 (see below) were novel to C. auris based on literature review and comparison with a set of 304 globally distributed C. auris isolate sequences representing clades I, II, III, and IV (9). The impact and/or cumulative effect of individual mutations and copy number variations (CNVs) will be discussed in the following paragraphs. To validate the effect of single mutations or aneuploidies in strains that harbored more than one mutation, we applied a screening strategy on evolving serial isolates using allele-specific PCR (AS-PCR). AS-PCR primers were designed as described by Liu et al. (31), implementing a specific mismatch at the third position of the 3’ end of the allele-specific primer to increase specificity. An overview of the universal and allele-specific primers used to perform AS-PCR, is given in Table S1. The specificity and sensitivity of all AS-PCR primers was assessed by performing temperature gradient PCRs on serial dilutions of the reference DNA template (for one example, see Fig. S2). Cells were recultured from the –80°C collection of daily stored aliquots (serial isolates or “populations”), and AS-PCR was performed on genomic DNA (gDNA) extracted from a maximum of 30 single clones of each population. After confirmation of the emergence of a mutation of interest, alleles were verified by sequencing a ±1,000-bp region spanning the allele of interest. Primers used for PCR and sequencing are given in Table S1. Next, the effect of single mutations on the drug susceptibility was analyzed by comparing MIC values of the serial isolates through broth dilution assays (BDA; see “Antifungal Susceptibility Testing” in Materials and Methods). Figure 2 shows the impact of each individual mutation on the MIC for the drug of interest for each lineage evolved, except for the A-lineage (i.e., amphotericin B resistance evolution), in which the mutations in ERG3 and ERG11 (Table 1) were either present or absent simultaneously in all colonies that were checked.

Table 1: All Nonsynonymous Mutations Identified in the Endpoint Evolved Strains

Strain	Change	Type of change	Gene ID (B11220)	Gene ID (B8441)	Ortholog	
A29	tgG/tgA/W182*	Nonsense	CJI96_002270	B9J08_003737	ERG3	
Gag/Taq/E429*	Nonsense	CJI96_001197	B9J08_001448	ERG11		
Cag/Taq/Q384*	Nonsense	CJI96_001121	B9J08_000401	FLO8		
gG/gTg/A272V	Missense	CJI96_001637	B9J08_003102	MEC3		
F30	ttcagt/agt	Codon deletion	CJI96_004335	B9J08_004820	TAC1b	
FC17	ttcagt/agt	Codon deletion	CJI96_004335	B9J08_004820	TAC1b	
	ttcagt/ttcagt	Codon deletion	CJI96_001351	B9J08_000964	FKS1	
gAt/gTt/D367V	Missense	CJI96_001286	B9J08_001356	PEA2		
Gca/Aca/A277T	Missense	CJI96_001769	B9J08_003232	CIS2		
C20	atG/atA	M690I	Missense	CJI96_001351	B9J08_000964	FKS1
	ttcagt/ttcagt	Codon deletion	CJI96_001351	B9J08_000964	FKS1	
	Cta/Ata/L207I	Missense	CJI96_002270	B9J08_003737	ERG3	
CF16	atG/atA	M690I	Missense	CJI96_001351	B9J08_000964	FKS1
	ttcagt/ttcagt	Codon deletion	CJI96_001351	B9J08_000964	FKS1	
	Cta/Ata/L207I	Missense	CJI96_002270	B9J08_003737	ERG3	

* Nucleotide and amino acid changes compared to the reference parent strain genome (wild type) are displayed. Genes were identified based on orthologues annotated in the C. auris B8441 genome sequence as provided at http://www.candidagenome.org/.
High-level echinocandin resistance without fitness discrepancies evolved through mutations in \textit{FKS1} and \textit{ERG3}. Caspofungin resistance was evolved twice in this study, once as monoresistance in the C-lineage and once in the context of multi-drug resistance in the FC-lineage, derived from the fluconazole-resistant strain F30 (Fig. 2). The susceptibility to caspofungin decreased drastically in both strain C20 and FC17 (MIC$_{50}$ 64 mg/ml) (Fig. 2). Whole-genome sequencing revealed three mutations in the C20 strain, a missense mutation (atG/atA M690I) and codon deletion (ttcttg/ttg FL635L) in \textit{FKS1} (B9J08_000964; Table 1), the gene encoding the catalytic subunit of the echinocandin drug target \((1,3)\) D-glucan synthase, and one missense mutation (Cta/Ata L207I) in \textit{ERG3} (B9J08_003737; Table 1). The exact same codon deletion (ttcttg/ttg FL635L) in \textit{FKS1} emerged independently during caspofungin resistance evolution in the FC-lineage (Table 1). Two additional mutations emerged during the evolution of strain FC17, namely, a missense mutation (gAt/gTt D367V) in the \textit{PEA2} gene, encoding a subunit of the polarisome (B9J08_001356; Table 1), and a missense mutation (Gca/Aca A27T) in the \textit{CIS2} gene, encoding a \(\gamma\)-glutamylcysteine synthetase (B9J08_003232; Table 1). Tracing back the emergence of these mutations shows that the \textit{FKS1} mutation FL635L was accompanied by a 500-fold increase in MIC$_{50}$ from 0.125 mg/ml to 64 mg/ml (Fig. 2). The emergence of mutations in \textit{CIS2} (emerged in FC16) and \textit{ERG3} (present in C20) is associated with the further increase of the caspofungin MIC$_{50}$ exceeding 64 mg/ml (Fig. 2). Acquired echinocandin resistance in fungi has been associated with several specific mutations in three defined “hot spot” regions (HS) in the \textit{FKS1} gene (32). Figure 4 shows an amino acid sequence alignment of the \textit{FKS1} gene HS1, HS2, and HS3 regions, constructed to compare the mutations found in this study to those known to confer echinocandin resistance in \textit{C. auris} and other fungi as described in the literature. This literature review shows that the codon deletion at position 635 as found in this study also has been reported to...
confer decreased echinocandin susceptibility in *Candida glabrata* (32) and recently in a *C. auris* clade I strain (22). The same amino acid was substituted (not deleted as in the *C*-lineage here) in echinocandin-resistant *C. auris* strains reported prior (21). The *FKS1* mutation M690I is located in hot spot region 3 without comparable mutations in pathogenic fungi (Fig. 4) and seems to have no direct impact on the drug susceptibility to caspofungin as measured in the *C*-lineage (Fig. 2).

The mutations in the essential *FKS1* gene do not seem to have a significant effect on the fitness of the strains as shown in growth (Fig. 5), stress tolerance (Fig. S4), and cytotoxicity assays (Fig. S5). Interestingly, strain FC17 (mutations in *FKS1* and *CIS2*, see Fig. 2) shows an increased cytotoxicity toward HeLa cells compared to all other strains (Fig. S5).

The high febrile temperature mimicking condition (growth at 42°C, see Fig. S4A) is the only condition for which strain C20 seems to slightly differ from the wt strain. This phenotype is also present in strain CF16, of which strain C20 is the progenitor (Fig. 1B). Remarkably, the growth curve of strain C20 shows higher optical density (OD600) values measured after 36 h in RPMI-MOPS medium supplemented with 2% glucose compared to the wt strain (Fig. 5B). Superior growth of C20 is not observed under the physiological condition of RPMI-MOPS medium supplemented with 0.2% glucose (Fig. 5A). Overall, the fitness assessment shows no significance trade-offs associated with the mutations in *FKS1* and *ERG3* of strain C20.

FIG 4 Hot spot (HS) region mutations of the *FKS* genes that confer echinocandin resistance. Amino acid sequence of hot spots 1, 2, and 3 (HS1 to -3, respectively) of *C. auris* and other fungi are aligned along with all mutations found to decrease echinocandin susceptibility as described in the literature (references are given between brackets). Species-specific polymorphisms of HS are indicated in gray, and the mutations found to confer echinocandin resistance in this study are indicated by a grid. △, deletion; *, nonsense mutation; a, mutations R647G and P649L were exclusively heterozygous; b, *FKS2* and *FKS1* are functionally redundant in *C. glabrata* and both mutated in echinocandin-resistant isolates; c, the naturally occurring alanine at position 660 allows intrinsic reduced echinocandin susceptibility in *C. parapsilosis*.
Cross-resistance to amphotericin B and fluconazole was established after mutagenesis of ERG3, ERG11, FLO8, and MEC3 and seems to be accompanied with fitness trade-offs. During microevolution, the MIC of amphotericin B increased 8-fold in the A-lineage, from an MIC\(_{50}\) of 0.5 \(\mu g/ml\) (wt strain) to an MIC\(_{50}\) of 4 \(\mu g/ml\) (strain A29; Fig. 2). Simultaneously, cross-resistance to fluconazole emerged, with an MIC increase from 1 \(\mu g/ml\) to over 64 \(\mu g/ml\) (Fig. 2). Two nonsense mutations in genes involved in the ergosterol biosynthesis pathway were discovered (Table 1), namely, the \texttt{tgG/tgA}_W182* mutation in the \textit{ERG3} gene and the \texttt{gag/tag}_E429* mutation in the \textit{ERG11} gene, encoding lanosterol 14-alpha-demethylase (B9J08_001448; Table 1). The \textit{ERG11} mutation of strain A29 lies within a region of \textit{ERG11} that corresponds to a frequently mutated (“hot spot”) region of \textit{ERG11} in azole-resistant \textit{C. albicans} (33, 34). It is, however, distinct from the three SNPs of \textit{ERG11} (namely, Y132F, K143R, and F126L) that have been linked to drug (azole) resistance in \textit{C. auris} so far (7–9, 14) and are situated in another hot spot region of \textit{ERG11} (33, 34).

Additionally, a nonsense mutation (\texttt{cag/tag}_Q384*) was found in the transcription factor encoding the \textit{FLO8} gene (B9J08_000401; Table 1), and a missense mutation (\texttt{gcg/tgA}_A272V) emerged in the \textit{MEC3} gene which encodes a subunit of the Rad17p-Mec3p-Ddc1p sliding clamp (B9J08_003102; Table 1). Remarkably, the mutation in \textit{MEC3} is accompanied by a 2-fold decrease in amphotericin B susceptibility (from an MIC\(_{50}\) of 2 \(\mu g/ml\) in strain A21 to an MIC\(_{50}\) of 4 \(\mu g/ml\) in strain A27; see Fig. 2). The mutation in \textit{FLO8} did not seem to alter the drug susceptibility for fluconazole or amphotericin B for the concentrations tested. Additionally, strain A29 was found to significantly overexpress \textit{TAC1b} and \textit{ERG11}, as shown by reverse transcriptase quantitative PCR (RT-qPCR), depicted in Fig. 6. Characterization of the growth (Fig. 5), stress tolerance (Fig. S4), and cytotoxicity (Fig. S5) of strain A29 and the wt strain shows, however, that fitness trade-offs accompany the accumulation of the four above-mentioned mutations. Strain A29 shows a lower growth rate in exponential phase and a lower density at stationary phase than the wt strain (Fig. 5), especially in glucose-limiting conditions (Fig. 5A). This growth defect might explain the significantly reduced cytotoxicity towards HeLa cells in this strain (Fig. S5). The spot assays displayed in Fig. S4 show that this strain shows a reduced tolerance to high temperature (Fig. S4.A), membrane stress (Fig. S4.C), osmotic stress (Fig. S4.D), and low pH (Fig. S4.E).

Fluconazole resistance is linked to two aneuploidies and a mutation in transcription factor \textit{TAC1b}. In strain F13, a codon deletion (\texttt{ttc/_F15}) in the \textit{TAC1b} gene was identified (B9J08_004820; Table 1) that corresponds to a 32-fold increase in the MIC\(_{50}\) of fluconazole (Fig. 2). Tac1b is a transcription factor that positively regulates the expression of the ATP binding cassette (ABC) transporter Cdr1, known to be involved inazole efflux and azole resistance in \textit{C. auris} (16, 26). Gene expression analysis of strain F12 (no \textit{TAC1b} mutation) and strain F13 (\textit{TAC1b} mutation obtained) confirms that the acquisition of this mutation corresponds to a significantly increased...
The expression of CDR1 (B9J08_000164), as shown in Fig. 6. The overexpression of CDR1 is maintained in strain F30 and in the multidrug-resistant strain FC17, as shown in Fig. 6. Although the mutation in strain F13 is novel to C. auris, it is located in a region of TAC1b that is known to harbor gain-of-function mutations in fluconazole-resistant clinical isolates of C. auris, as shown by Rybak et al. (16).

Two aneuploidies independently emerged during fluconazole resistance evolution. Read coverage of whole-genome sequencing was used to analyze copy number variation (CNV) by calculating the normalized depth read coverage per 5 kb window (see Materials and Methods). A visual representation of this normalized coverage for each chromosome in all endpoint sequenced strains is displayed in Fig. 3. This reveals that a segmental and whole-chromosome duplication emerged in the F- and CF-lineages, respectively.

The 191-kb segmental duplication of Chr1 in the F30 strain contained 75 protein-encoding genes (based on the B11220 reference genome annotation; GenBank accession numbers CP043531 to CP043537), including ERG11. During further evolution to caspofungin resistance in the FC-lineage (see Fig. 1B), this segmental duplication was maintained but decreased in size to 161 kb containing 67 protein-encoding genes (still including ERG11). The segmental Chr1 duplication is the only genetic difference between strain F13 and strain F30 that can be attributed to the increase in MIC50 of 32 μg/ml (in strain F13) to a MIC50 of >64 μg/ml (in strain F30), as shown in Fig. 2.

Expression analysis showed that the duplication in strain F30 is accompanied by an increased expression of ERG11, not present in strain F13 (Fig. 6). Strain F30 was also
marked by a slight decrease in amphotericin B susceptibility, retained in the FC17 strain (Fig. 2). This is possibly due to ERG11 overexpression.

The whole chromosome 5 (Chr5) duplication in the CF16 strain contained a region of 933 kb encompassing 405 protein-encoding genes, including TAC1b. This aneuploidy marks the only genetic difference between strain C20 and strain CF16 and is therefore suggested to confer the 32-fold decrease in fluconazole susceptibility between those strains (Fig. 2).

Expression analysis showed that the duplication of Chr5 correlates with a significant overexpression of TAC1b and CDR2 (B9JO08_002451), but not CDR1 in strain CF16 (Fig. 6).

The mutation in TAC1b and segmental duplication of Chr1 did not seem to have any major effect on the growth (Fig. 5), stress tolerance (Fig. 54), and cytotoxicity (Fig. S5) of strain F30 compared to the wt strain. The chromosome 5 duplication might, however, drive the slight reduction in growth at stationary phase (Fig. 5) and tolerance toward certain stressors in strain CF16 compared to its progenitor (C20) and the wt strain (Fig. S4).

DISCUSSION

This study shows the evolution of multiple mechanisms known to be involved in drug resistance in fungi, albeit new to C. auris. In the largest screening of C. auris clade II strains, 62.3% of a total of 61 isolates proved to be fluconazole resistant, although only 3 isolates harbored a known azole-conferring mutation in ERG11 (K143R) (35). This indicates that other mechanisms of azole resistance play a role in C. auris clade II (35). Here, we suggest that at least four molecular mechanisms, none of which include the most common mutations in ERG11, might underlie the decreased fluconazole susceptibility in clade II C. auris. Previous reports show that many GOF mutations in TAC1 or homologues of this transcription factor can confer azole resistance in Candida species (36–38), including C. auris (16), through an overexpression of the drug efflux pump Cdr1. Many GOF mutations are found in the region encoding the putative transcriptional activation domain of TAC1, situated in the C-terminal portion of the protein in Candida (39). Rybak et al. report one mutation in this region (codon deletion at position F862) to be associated with fluconazole resistance in C. auris, although all other reported resistance-associated mutations lie between the DNA binding, transcription factor, and activation domain of TAC1b (16). One such mutation (F214S), discovered in an experimentally evolved strain of C. auris (16), lies in the proximity of the codon deletion at position 191 as we discover here. Based on these reports and our findings, we therefore hypothesize that F191D is a new potential gain of function mutation of C. auris TAC1b, conferring azole resistance through CDR1 overexpression. Nevertheless, previous reports have shown that Tac1b might function in other, Cdr1-independent ways to decrease azole susceptibility in C. auris (16, 26). Another genetic adaptation linked to reduced azole susceptibility in this study involves aneuploidies. In C. albicans, both TAC1 and ERG11 are located on Chr5, and the duplication of this region by forming an isochromosome [i(5L)] has been reported to confer azole resistance in vitro and in vivo (40). Based on this, and other reports on azole resistance in C. auris due to CNVs and/or overexpression of ERG11 (9, 15, 41), we hypothesize that a similar mode of action is at play in strain F30. Moreover, comparing drug susceptibility between strain F13 and F30, the overexpression of ERG11 in strain F30 more than doubles the fluconazole MIC50 compared to—the already resistant—strain F13, while it decreases the susceptibility for amphotericin B (Fig. 2). Recently, azole resistance in an experimentally evolved C. auris clade I strain was linked to the duplication of chromosome 5 and consequent upregulation of ERG11 (Chr1) and TAC1b but not CDR1 (Chr5) (19). In this study, the duplication of C. auris Chr5 is the only genomic alteration that distinguishes strain CF16 from strain C20, and therefore, we propose that this duplication is, here too, responsible for azole resistance. Expression analysis shows that the duplication and subsequent overexpression of TAC1b (Fig. 6) does not correspond to an increased expression of CDR1, making our findings consistent with the report of Bing et al. (19). TAC1b may play a CDR1-independent role in azole resistance of C. auris,
as suggested by Mayr et al. (26), and since CDR2 is significantly upregulated in strain CF16, its function in azole resistance should be further investigated.

The acquisition of resistance to polyenes is among the least understood of all antifungal drugs and has been linked to mutations in genes involved in the ergosterol biosynthesis pathway in Candida spp., including alterations in ERG2 (42), ERG6 (43), ERG11 (44), and ERG3 (45). Cross-resistance to azoles and amphotericin B has often been associated with the abrogation of two ERG genes simultaneously (46). One such example is the combination of the loss of function (LOF) of ERG11 and ERG3 in C. tropicalis (47, 48). Upon the abrogation of ERG11, due to a LOF mutation or the action of azoles, a toxic 3,6-diol derivative is produced through the action of the sterol Δ5,6 desaturase, encoded by ERG3 (49). Simultaneous disruption of the function of both ERG3 and ERG11 can prevent this detrimental effect (46). Here, we hypothesize that such a mechanism of cross-resistance might be established also in C. auris. The fact that all clones tested (over 60) between generation A20 and A21 had either both or no nonsense mutations can be explained by simultaneous emergence or an epistatic effect (i.e., the effect of a mutation in one gene depends on a mutation in another gene) of ERG3 and ERG11 LOF mutations in strain A21 (Fig. 2). In the latter scenario, the AmB conferring nonsense mutation in ERG11 was only possible in an ERG3-LOF background and both emerged in a quick and dependent fashion.

Target alteration is the most commonly observed and most studied mechanism of echinocandin resistance in Candida species (50). In C. auris, most echinocandin resistance-conferring FKS1 mutations occur at position S639 (12, 20). Most recently, however, a SNP (21) and codon deletion (22) of FKS1 F635, the same codon deleted in strain C3 in this study, was linked to reduced echinocandin susceptibility of C. auris in the clinic. In general, mutations in echinocandin-resistant Candida species lie within two small, strictly defined hot spot regions of FKS1 (50). However, the codon substitution at position 690 that emerged in strain C15, occurs in the elusive hot spot 3, a third potent hot spot region discovered by site-directed mutagenesis of FKS1 in Saccharomyces cerevisiae (32). This mutation occurred after the codon deletion at position 635 (in HS1) in the C-lineage but did not affect the echinocandin MIC50, possibly indicating functional compensation of the altered Fks1 protein. A third mutation of strain C20 occurred in ERG3. One report shows that a mutation in ERG3 in a clinical Candida parapsilosis strain conferred resistance to both azoles and echinocandins (17). Here, we observe a slight increase, rather than a decrease, in fluconazole susceptibility upon the emergence of the ERG3 mutation in strain C20 (Fig. 2). Most interestingly this mutation further increases the MIC50 for caspofungin in strain C20 compared to strain C15, which only harbored FKS1 mutations (Fig. 2). Overall, the caspofungin-resistant strains (FC17, C20) obtained in this study show echinocandin MIC values (>64 μg/ml) that significantly exceed any previously reported MIC values for echinocandins in C. auris (8, 51–53). As these mutations evolved rapidly (Fig. 2) and do not seem to greatly impact the overall fitness of these strains (see Fig. 5 and Fig. S4 and S5), they might impose a significant clinical threat. We therefore suggest that the clinical significance of the reported mutations, including the role of ERG3, should be further investigated.

Four genes were mutated that were previously not or vaguely associated with drug resistance in fungi. FLO8, mutated in the amphotericin B-resistant strain A29, encodes a transcription factor known to be essential for filamentation in C. albicans (54). This filamentation was shown to decrease the rate of programmed cell death in C. albicans when exposed to amphotericin B (55). Flo8 has multiple downstream effects, one of which is the positive regulation of ERG11 expression, shown in S. cerevisiae (56), and thus potentially playing a role in azole and amphotericin B resistance. In a recent study of clinical C. auris isolates from South America, a nonsynonymous mutation in the FLO8 gene significantly correlated with amphotericin B resistance (25). In a follow-up study on the structure of Flo8, the authors suggest a potential role of Flo8 in C. auris virulence and drug resistance, arguing that the FLO8 mutation found before (25) could be a gain of function mutation (57). In our study, however, we see a nonsense mutation, abrogating Flo8 at amino acid 100 and thus assumed to be disruptive to its
function. Earlier, a LOF of FLO8 was found to play a role in azole resistance, with a FLO8 deletion correlated to increased TAC1, CDR1, and CDR2 expression, while FLO8 overexpression led to decreased CDR1 expression (58). Although these reports strengthen the suspicion of a role of Flo8 in drug resistance, we cannot further explain the influence of the FLO8 mutation on the resistance phenotype observed here. Further research on Flo8 in drug resistance is therefore highly desirable.

The fourth gene mutated during amphotericin B resistance evolution is an ortholog of MEC3, encoding a DNA damage checkpoint protein as part of the Rad17p-Mec3p-Ddc1p sliding clamp, primarily involved in DNA damage recognition and repair in S. cerevisiae (59). No clear reports of a function for MEC3 in antifungal drug resistance were found, although two studies mention the upregulation of MEC3 upon the acquisition of azole resistance in an experimentally evolved C. glabrata strain (38, 60). Our results show that the mutation in MEC3 has a significant influence on susceptibility to amphotericin B (Fig. 2). The mechanism behind increased amphotericin B resistance upon acquiring a mutation in MEC3 remains unclear, although an altered DNA damage recognition response might prevent apoptosis upon exposure to amphotericin B. Multiple reports concerning the mode of action of polyenes suggest that, besides a pore-forming and sterol adsorption effect, polyenes such as amphotericin B are cytotoxic through oxidative damage, which includes protein carbonylation, lipid peroxidation, and DNA damage (23, 61–65). The latter is recognized by DNA damage checkpoint mechanisms and can lead to apoptosis (66), possibly explaining the phenomenon we observe here. Other reports show that defects in DNA damage recognition might drive the emergence of drug resistance in fungi, as they can increase mutation rates (67–69). Notably, a recent report of resistant C. auris in a hospital in India, shows that all (n = 9) sequenced isolates harbored a nonsense mutation in MSH2, a DNA mismatch repair gene (24).

Strain FC17 harbored a mutation in CIS2. The S. cerevisiae ortholog (ECM38) of CIS2 encodes a γ-glutamyltranspeptidase, involved in glutathione degradation (70), detoxification of xenobiotics (71), and cell wall biogenesis (72). The role that CIS2 plays in the latter, regarding echinocandin resistance, remains unclear, but a study from Maras and colleagues (73) illustrated that fluconazole and micafungin resistance were accompanied by altered levels of glutathione in C. albicans, hypothesized to counteract oxidative stress caused by these antifungal drugs. Interestingly, strain FC17 shows an oxidative stress tolerance similar to the wt and mono-resistant strains and higher than the other MDR strains (strains A29 and CF16; see Fig. S4B). Additionally, the cytotoxicity assessment shows that strain FC17 has a significantly higher cytotoxic effect than the wt and other strains after 72 h (Fig. S5B). This might be linked to the mutation in CIS2 and an increased oxidative stress tolerance. Nevertheless, in the study by Maras and colleagues (73), the increased levels of glutathione were accompanied by the overexpression of γ-glutamylcysteine synthetase (73). A role for CIS2 and glutathione catabolism in drug resistance, mediated by an altered redox metabolism remains to be elucidated.

The fourth mutation in the FC-lineage lies within a gene predicted to encode PEA2, a subunit of the polarisome, involved in polarized growth and morphogenesis in S. cerevisiae (74). This mutation has, however, no significant effect on the drug resistance profile and might thus be the result of random genetic drift.

Experimental evolution can be a powerful tool to research resistance, although it has limitations. Due to recent advances in next-generation sequencing technology, genome-wide studies of drug resistance have become more common (75, 76). The classic approach of sequencing drug-resistant clinical isolates directly from patients (75) has many limitations, including the frequent unavailability of the original drug-susceptible genotype and the difficulty in resolving mutations associated with drug resistance from those that have accumulated due to host-pathogen interactions and random genetic drift. In vitro experimental evolution copes with most of these problems (75, 77), is highly repeatable, and allows controlled long-term monitoring of different strains and conditions. Moreover, the ability to isolate and investigate each generation
Experimental Evolution of Multidrug Resistance in C. auris

separately allows monitoring of both the speed and the stepwise progression of drug resistance development. Nevertheless, in vitro experimental evolution has its own limitations, such as the homogeneity of the selective pressure in the absence of metabolism of the drug, tissue-specific exposure, and host-pathogen interactions. However, studies of drug resistance by in vitro evolution often resemble acquired resistance found in clinical isolates (13, 16, 75, 77, 78). In regard to our results, a comparative analysis of mutations reported in the literature and reanalysis of variants predicted in 304 sequenced clinical isolates of C. auris (9) show that most mutations reported here are novel to this species. Although the in vitro context in which these mutations evolved might explain this, one must be careful by regarding these findings to be nonrelevant to the in vivo setting or clinical environment. Reports on resistance mutations (providing whole-genome analysis) are still scarce and the database of 304 sequenced clinical isolates of C. auris (9) is limited, with only 23% of isolates reported being multidrug-resistant and only 7 clinical isolates belonging to clade II (6 isolates pan-susceptible, 1 isolate fluconazole-resistant) (9). This study and other studies of bacteria (79) and fungi (13, 77, 80) show that in vitro experimental evolution can be a powerful tool, especially if combined with an effective approach to trace the full evolutionary history of mutation events, as we did here using allele-specific PCR. Nevertheless, we need to point out that the preferred way of validating molecular mechanisms for resistance should rely on gene-editing the evolved mutations in the parental (wild type) background and/or editing mutant alleles to the wild type form in evolved strains. For this, a CRISPR-based gene editing system would be ideal. So far, no scarless allele-specific CRISPR gene editing system in C. auris has been optimized or reported, although alleles have been deleted, replaced, and complemented with an inducible promoter (16, 18, 27). The CRISPR system reported by Kim et al. (18), based on a system for C. albicans (81), could be used for allele editing in C. auris, but it makes use of the stable integration of the CRISPR cassette into the ENO1 locus (81). Disruption of the ENO1 locus in C. albicans has been reported to alter growth, virulence, and drug susceptibility (82). If the same phenotypes would apply to C. auris, it would complicate the interpretation of the effect that introduced mutations have in the GMO strain. Moreover, constitutive cas9 expression can have off-target effects (83), including an effect on the fitness of the transformed cells, as reported for C. glabrata (84). In conclusion, neutral gene editing, which preferably relies on transient expression of cas9, is a highly desired tool for future molecular research in C. auris and should be regarded as a priority in the field.

MATERIALS AND METHODS

Strains and growth conditions. All experiments were performed with C. auris strain B11220 (CBS10913) from the Westerdijk Fungal Biodiversity Center (wi.knaw.nl/). Strains were grown on yeast extract-peptone-dextrose (YPD) agar (2% glucose) at 37°C and enriched in RPMI 1640 (Thermo Fisher Scientific)-MOPS (morpholinepropanesulfonic acid) liquid medium containing 2% glucose at 37°C in a shaking incubator overnight. All strains, including daily aliquots of serially transferred populations in the microevolution assay, were stored at −80°C in RPMI-MOPS medium containing 25% glycerol.

Antifungal susceptibility testing. The MIC was determined using a broth dilution assay (BDA) based on Clinical and Laboratory Standards Institute (CLSI) guidelines (85). In short, a dilution of 64 μg/ml to 0.06 μg/ml of each drug was prepared in RPMI-MOPS medium in a 96-well polystyrene microtiter plate. A standardized amount of 100 to 500 cells was dissolved in a 5 ml volume of RPMI-MOPS medium (2% glucose) containing no drug (control) or a drug at a concentration of 0.5 × MIC50, 1 × MIC50 or 2 × MIC50. All conditions were performed in triplicate (3 evolving populations per condition). After 24 h of incubation at 37°C in a shaking incubator, growth of each population was compared to the average growth of 3 controls (no drug) by spectrophotometric quantification of the OD600 (average control). Next, 500 μl of each population was transferred to 4,500 μl of fresh medium with a concentration of drug equal to the previous culture when OD600 (evolving population) ≤ OD600 (average control) or double compared to the previous culture when OD600 (evolving population) > OD600 (average control). The experiment was terminated after 30 days or if the MIC50 exceeded the resistance breakpoint value, as

March/April 2021 Volume 12 Issue 2 e03333-20 mbio.asm.org
evaluated by intermediate MIC testing (using BDA). At the end of each evolution experiment, a single colony was picked as the progenitor for a consecutive evolution experiment.

Analysis of growth. Growth was assessed by spectrophotometric observation (OD_{600}) over time in a Multiskan GO (Thermo Scientific) automated plate reader using flat-bottom 96-well plates and intermittent (30 min interval) pulsed shaking (medium strength, 5 min). Cultures were diluted in RPMI-MOPS medium containing 0.2% or 2% glucose, to a final volume of 10^4 cells per well. Growth was measured for 72 h at 37°C. Growth curves were plotted as an average value of 3 biological repeats with 3 technical repeats per biological repeat.

Analysis of stress tolerance. The survival of *C. auris* cells in various degrees of temperature-, oxidative-, membrane-, osmotic- and pH-induced stress was assessed using spot assays. *C. auris* cells were resuspended in phosphate-buffered saline (PBS) at concentrations of 10^5, 10^6, 10^7, and 10^8 cells/ml and 1 μl of each dilution was spotted on YPD agar containing 2% glucose. Plates were incubated for 48 h at 37°C or 11.3°C, 37°C and 42°C for the evaluation of temperature stress. Oxidative stress was evaluated on agar containing 6, 8, or 10 mM H_2O_2 (Sigma-Aldrich). Membrane stress was evaluated on agar containing 0.005, 0.05, or 0.2% sodium dodecyl sulphate (SDS; Sigma-Aldrich). Osmotic stress was evaluated on agar containing 1, 1.75, or 2.5 M NaCl (Sigma-Aldrich). pH stress was evaluated on agar adjusted to pH 4, 5, 6, or 7 by supplementing the agar with HCl or KOH. Agar adjusted to pH 4 and 5 was buffered with 50 mM citrate buffer, while agar adjusted to pH 6 was buffered with 50 mM morpholinethanesulfonic acid (MES) buffer, and agar adjusted to pH 7 was buffered with 100 mM MOPS buffer. All spot assays were performed on 3 biological repeats with 3 technical repeats per biological repeat, of which one example is shown.

Analysis of relative cytotoxicity. HeLa cells (Thermo Fisher Scientific) were cultured in complete Dulbecco’s modified Eagle medium (DMEM) at 37°C and 5% CO_2, using 25-cm² polystyrene culture flasks. Upon reaching 80% confluence, cells were washed twice with PBS, trypsinized using 0.5% trypsin EDTA (Gibco), and replensed to allow cell adhesion to polystyrene 96-well plates as a 100-fold dilution. Growth curves were plotted as an average value of 3 biological repeats with 3 technical repeats per biological repeat.

DNA extraction. Genomic DNA for whole-genome sequencing was extracted using the MasterPure yeast DNA purification kit (Lucigen, USA) following the manufacturer’s protocol. For (AS-)PCR and Sanger sequencing, DNA was isolated from the cells through phenol chloroform isopropanol alcohol (PCI) extraction. Cells were dissolved in 300 μl Tris EDTA (TE) buffer with 300 μl PCI solution (phenol pH 6.7, chloroform, and isomylalcohol at 25:24:1) and lysed by microbead shearing in a FastPrep-24™ Classic lysis system (20 sec, 6m/sec) (MP Biomedicals). After cell lysis, DNA was isolated and purified using ethanol precipitation. The resulting DNA was diluted to a concentration of 200 ng/μl in MilliQ H_2O, based on the DNA concentration measured through absorbance at 260 nm with a NanoDrop spectrophotometer (Isogen).

Whole-genome sequencing and analysis. Genomic libraries were created using the NEBNext Ultra DNA library prep kit for Illumina sequencing (New England Biolabs, USA), and genomes were sequenced on an Illumina MiSeq v2 500 instrument (Illumina, USA), obtaining a coverage of at least 50×. Standard quality control was performed using FastQC v0.11.7 (86). Paired-end reads were aligned using the Burrows-Wheeler Aligner MEM algorithm BWA-MEM v0.7.17 (87) to the annotated genome assemblies of strain B8441 (clade I; GenBank accession number GCA_002759435.2 [15]) and B11220 (clade II; GenBank accession number CP043531 to CP043537 [29]). For SNP and indel identification, the assembly alignment to the annotated genome of strain B8441 (clade I) was used, while CNV analysis was performed using the assembly alignment to reference genome B11220 (clade II), respectively. The genome sequences of all endpoint experimentally evolved strains were deposited in the NCBI Sequence Read Archive (SRA) under BioProject PRJNA664007. Variants were identified and filtered using GATK v4.1.2.1 (88, 89), with the haploid mode, including GATK tools HaplotypeCaller and variant filtration using “QD < 2.0 || FS > 60.0 || MQ > 40.0.” In addition, variants were filtered if they had a minimum genotype (GT) quality of <50, alternate allele frequency of <0.8, or allelic depth (DP) of <10. The final variant call format (VCF) was annotated using Snpeff v4.3T (90). CNVs were identified using CNVnator v0.3 (91), selecting for 1 kb genomic windows of significant (P < 0.01) variation in normalized coverage. The average depth per 5 kb window was normalized to the coverage of the whole-genome sequence for each isolate and plotted in R (92). Candidate variants were compared with a set of 304 globally distributed *C. auris* isolates representing clades I, II, III, and IV (9).
the Candida genome database (candidagenome.org). Sequencing primers were designed to include a \(\geq 1,000 \)-bp region of interest (spanning the region with the mutation of interest). All primers are given in Table S1.

Amplification of regions of interest was achieved through PCR using QS high-fidelity DNA polymerase (New England Biolabs, Inc.). The total reaction volume of 50 \(\mu l \) consisted of 200 ng/\(\mu l \) DNA extract, 5 \(\mu l \) deoxynucleoside triphosphate (dNTP) (0.2 mM), 10 \(\mu l \) Q5 buffer, 0.5 \(\mu l \) Q5 polymerase (2 units), milliQ, and 0.4 \(\mu l \) of both forward and reverse primer (1 \(\mu M \)). The PCR program consisted of initial denaturation at 98°C for 2 sec, 30 cycles of 98°C for 15 sec, 56°C for 25 sec, 72°C for 2 min, and a final elongation step at 72°C for 2 min in a Labcycler Basic thermocycler (Bioké). Correct amplification was verified by performing electrophoresis on a 1% agarose gel at 135 V for 25 min. After verification, the sequencing primers (10 \(\mu M \)) were added to PCR amplicons, and the DNA was sequenced using Sanger sequencing by Eurofins (GATC, Germany).

Allele-specific PCR (AS-PCR). The emergence of SNPs and indels was traced back in whole populations and a maximum of 30 single clones (colonies) per population using a rapid sequencing-free method: allele-specific SNP-PCR. Two primer pairs for gene of interest were designed according to Liu et al. (31), consisting of one universal primer and/or one mutant-allele primer or wild-type allele primer, respectively. Primers consist of an allele-specific region at the 3’ terminal nucleotide of the mutant or wild-type allele-specific primer. Additionally, a mismatch at the 3’ nucleotide from the 3’ terminal was included to increase annealing specificity at a wider temperature range (31). All primers used for AS-PCR are listed in Table S1.

To validate primer specificity, a temperature gradient PCR was performed in which the annealing temperature varied between 60°C and 70°C. AS-PCR sensitivity was assessed by performing PCR on serial dilution of the reference DNA template. All PCRs were performed in a total reaction volume of 20 \(\mu l \) consisting of 1 \(\mu l \) of 1/10 dilution of the pure PCI DNA extract, 5 \(\mu l \) dNTP (0.2 mM), 10 \(\mu l \) TaqE buffer, 0.5 \(\mu l \) TaqE polymerase (2 units), milliQ, and 0.4 \(\mu l \) of both forward and reverse primer (1 \(\mu M \)). The PCR program consisted of initial denaturation at 98°C for 3 sec, 30 cycles of 98°C for 15 sec, 25 sec annealing at 61°C (for primers of CIS2, PEA2, TAC1b, FKS1FL635L, ERG3W182, and ERG11) or at 63°C (for primers of ERG3L207I, FKS1M690I, FLO8, and MEC3), 72°C for 2 min, and a final elongation step at 72°C for 2 min in a Labcycler Basic thermocycler (Bioké). Amplification and thus the presence or absence of a mutation were verified by performing electrophoresis on a 1% agarose gel at 135 V for 25 min.

Gene expression and copy number variation analysis. *C. auris* cells from a single colony grown overnight on YPD agar (2% glucose) were enriched in RPMI-MOPS (2% glucose) medium and incubated for 8 h at 37°C in a shaking incubator to ensure the harvested cells were growing in the exponential growth phase. Next, cells were harvested by centrifugation, washing in ice-cold PBS, and snap-freezing in liquid nitrogen to store at –80°C.

For gene expression analysis (RNA extraction and RT-qPCR), cells were resuspended in 1 ml TRIzol (Thermo Fisher Scientific) and lysed by microbead shearing in FastPrep-24™ Classic lysis system (20 sec, 6 m/sec) (MP Biomedicals). Nucleotides were extracted by washing the lysate supernatant with chloroform (360 \(\mu l \)) and isopropanol (350 \(\mu l \)) and precipitated by washing three times with 70% ethanol. Nucleotide concentrations and purity were measured spectrophotometrically using a NanoDrop ND-1000 instrument (Isogen Life Science). Extracts were diluted to 1 \(\mu g \) pure nucleotide concentration and purified by DNase treatment (New England Biolabs). cDNA was synthesized from RNA by using the iScript cDNA synthesis kit (Bio-Rad) according to the manufacturer’s recommendations. Real-time qPCR was performed using GoTaq polymerase (Promega) and the StepOnePlus real-time PCR thermocycler (Thermo Fisher) as follows: activation at 95°C for 2 min, 40 cycles of denaturation at 95°C for 15 sec, 25 sec annealing at 60°C for 25 sec, 72°C for 2 min, and a final elongation step at 72°C for 2 min in a Labcycler Basic thermocycler (Bioké). Amplification and thus the presence or absence of a mutation were verified by performing electrophoresis on a 1% agarose gel at 135 V for 25 min.

ALLELE SPECIFIC SNP-PCR. The emergence of SNPs and indels was traced back in whole populations and a maximum of 30 single clones (colonies) per population using a rapid sequencing-free method: allele-specific SNP-PCR. Two primer pairs for gene of interest were designed according to Liu et al. (31), consisting of one universal primer and/or one mutant-allele primer or wild-type allele primer, respectively. Primers consist of an allele-specific region at the 3’ terminal nucleotide of the mutant or wild-type allele-specific primer. Additionally, a mismatch at the 3’ nucleotide from the 3’ terminal was included to increase annealing specificity at a wider temperature range (31). All primers used for AS-PCR are listed in Table S1.

To validate primer specificity, a temperature gradient PCR was performed in which the annealing temperature varied between 60°C and 70°C. AS-PCR sensitivity was assessed by performing PCR on serial dilution of the reference DNA template. All PCRs were performed in a total reaction volume of 20 \(\mu l \) consisting of 1 \(\mu l \) of 1/10 dilution of the pure PCI DNA extract, 5 \(\mu l \) dNTP (0.2 mM), 10 \(\mu l \) TaqE buffer, 0.5 \(\mu l \) TaqE polymerase (2 units), milliQ, and 0.4 \(\mu l \) of both forward and reverse primer (1 \(\mu M \)). The PCR program consisted of initial denaturation at 98°C for 3 sec, 30 cycles of 98°C for 15 sec, 25 sec annealing at 61°C (for primers of CIS2, PEA2, TAC1b, FKS1FL635L, ERG3W182, and ERG11) or at 63°C (for primers of ERG3L207I, FKS1M690I, FLO8, and MEC3), 72°C for 2 min, and a final elongation step at 72°C for 2 min in a Labcycler Basic thermocycler (Bioké). Amplification and thus the presence or absence of a mutation were verified by performing electrophoresis on a 1% agarose gel at 135 V for 25 min.

Gene expression and copy number variation analysis. *C. auris* cells from a single colony grown overnight on YPD agar (2% glucose) were enriched in RPMI-MOPS (2% glucose) medium for 16 h. These cultures were diluted to 10⁷ cells in a volume of 50 ml fresh RPMI-MOPS (2% glucose) medium and incubated for 8 h at 37°C in a shaking incubator to ensure the harvested cells were growing in the exponential growth phase. Next, cells were harvested by centrifugation, washing in ice-cold PBS, and snap-freezing in liquid nitrogen to store at –80°C.

For gene expression analysis (RNA extraction and RT-qPCR), cells were resuspended in 1 ml TRIzol (Thermo Fisher Scientific) and lysed by microbead shearing in FastPrep-24™ Classic lysis system (20 sec, 6 m/sec) (MP Biomedicals). Nucleotides were extracted by washing the lysate supernatant with chloroform (360 \(\mu l \)) and isopropanol (350 \(\mu l \)) and precipitated by washing three times with 70% ethanol. Nucleotide concentrations and purity were measured spectrophotometrically using a NanoDrop ND-1000 instrument (Isogen Life Science). Extracts were diluted to 1 \(\mu g \) pure nucleotide concentration and purified by DNase treatment (New England Biolabs). cDNA was synthesized from RNA by using the iScript cDNA synthesis kit (Bio-Rad) according to the manufacturer’s recommendations. Real-time qPCR was performed using GoTaq polymerase (Promega) and the StepOnePlus real-time PCR thermocycler (Thermo Fisher) as follows: activation at 95°C for 2 min, 40 cycles of denaturation at 95°C for 15 sec, and annealing/extension at 60°C for 30 sec. Primers used for qPCR were designed with the PrimerQuest tool of IDT and are listed in Table S1. A total of 8 housekeeping genes involved in various cellular processes were assessed, of which the 3 most stable candidates were used in the analysis (i.e., ACT1, LSC2, UBC4). Gene expression analysis was performed using qBasePlus software. Fold change (with standard deviation [SD]) was plotted from log₂(Y) transformed data and compared statistically (using a one-way ANOVA with multiple comparisons in respect to wt) with GraphPad Prism. Expression analysis in each strain was performed using 3 biological repeats each represented by the average of 2 technical repeats.

For copy number variation analysis, qDNA was extracted as described in “DNA Extraction,” above, and standardized concentrations of 0.5 ng/\(\mu l \) of qDNA were used to quantify target markers (TAC1b and ERG11) by qPCR using the same protocol and analysis as described above.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

FIG S1, TIF file, 0.1 MB.

FIG S2, TIF file, 0.1 MB.

FIG S3, TIF file, 0.02 MB.

FIG S4, TIF file, 1 MB.

FIG S5, TIF file, 0.03 MB.

TABLE S1, DOCX file, 0.02 MB.
ACKNOWLEDGMENTS

This work was supported by FWO personal research grant no. 11D7620N awarded to H.C. A travel grant awarded by FWO, grant no. K204920N, allowed a fruitful research stay of H.C. at Broad Institute (Cambridge, MA, USA). C.A.C. and J.F.M. were supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under award U19AI110818 to the Broad Institute.

We thank the Steenackers group (KU Leuven) for their advice on experimental evolution.

REFERENCES

1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 53:41–44. https://doi.org/10.1111/j.1348-0421.2008.0083.x.

2. Kean R, Brown J, Gulmez D, Ware A, Ramage G. 2020. *Candida auris*: a decade of understanding of an enigmatic pathogenic yeast. J Fungi (Basel) 6:30. https://doi.org/10.3390/jof6010030.

3. Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson BR, Chiller T, Vallabhanneni S. 2019. *Candida auris*: the recent emergence of a multidrug-resistant fungal pathogen. Med Mycol 57:1–12. https://doi.org/10.1093/mmy/mmy054.

4. CDC. 2019. Antibiotic Resistance Threats in the United States, 2019. www.cdc.gov/DrugResistance/Biggest-Threats.html.

5. Magobo RE, Corcoran C, Seetharam S, Govender NP. 2014. *Candida auris*-associated candidemia, South Africa. Emerg Infect Dis 20:1250–1251. https://doi.org/10.3201/eid2007.131765.

6. CDC. 2020. *Candida auris*: antifungal susceptibility testing and interpretation. https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html. Accessed 26 March 2020.

7. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calbo V, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF. 2021. Simultaneous emergence of multidrug-resistant *Candida auris* on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140. https://doi.org/10.1093/cid/ciw691.

8. Chowdary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, Tarai B, Singh A, Upadhyaya G, Upadhyay S, Yadav P, Singh PK, Khillan V, Schadueva N, Perlin DS, Meis JF. 2018. A multicentre study of antifungal susceptibility patterns among 350 *Candida auris* isolates from 13 countries. J Fungi (Basel) 6:321. https://doi.org/10.3390/jof6040321.

9. Chow NA, Muñoz JF, Gade L, Berkow EL, Armstrong P, Lockhart SR, Gade L, Palmer GE, White TC, Kelly SL, Cuomo CA, Rogers PD. 2020. Mutations in *TAC1B*: a novel genetic determinant of clinical fluconazole resistance in *Candida auris*. mBio 11:e00365-20. https://doi.org/10.1128/mBio.00365-20.

10. Pescador LA, Villalobos N, Salcedo S, Berrio I, Varon C, Espinosa-Bode A, Martin R, Baguena F, Graf A, Jequier L, Coste AT. 2019. Review on antifungal resistance mechanisms in the emerging pathogen *Candida auris*. Front Microbiol 10:2788. https://doi.org/10.3389/fmicb.2019.02788.

11. Healey KR, Kordalewska M, Jimenez Ortigosa C, Singh A, Berrio I, Chowdhary A, Perlin DS. 2018. Limited *ERG11* mutations identified in isolates of *Candida auris* directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother 62:e01427-18. https://doi.org/10.1128/AAC.01427-18.

12. Kim SH, Iyer KR, Pardeshi L, Munoz JF, Robbins N, Cuomo CA, Wong KH, Cowen LE. 2019. Genetic analysis of *Candida auris* implicates *Hspo1* in morphogenesis and azole tolerance and *Cdr1* in azole resistance. mBio 10:e02529-18. https://doi.org/10.1128/mBio.02529-18.

13. Bing J, Hu T, Zheng Q, Muñoz JF, Cuomo CA, Huang G. 2020. Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in *Candida auris*. Antimicrob Agents Chemother 65: e01466-20. https://doi.org/10.1128/AAC.01466-20.

14. Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, Lockhart SR, Gade L, Palmer GE, White TC, Kelly SL, Cuomo CA, Rogers PD. 2017. Loss of C-S sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of *Candida parapsilosis*. Antimicrob Agents Chemother 61:e00651-17. https://doi.org/10.1128/AAC.00651-17.

15. Carrol H, Pierscionek BS, Vougatsoglou N, Palomares-Velasco R, Negrín A, Almendral M, Rodriguez-Valera F, Fuentes-Davila M, de los Rios A, Antolin S, Paulino A. 2020. *Candida auris* and infection prevention and control for cases of *Candida auris* infection. BMJ Infection Prevention and Control 9:1-12. https://doi.org/10.1136/infection-prevention-control-2020-001299.

16. Wang Y, Wang X, Lam E, Gao W, Hu Y, Zhang Q, Lu J, Cao L, Wang S, Ma J. 2020. *Candida auris* resistance mechanisms in the emerging pathogen *Candida auris*. Front Microbiol 10:2788. https://doi.org/10.3389/fmicb.2019.02788.

17. Athawale AS, Athawale VS, Bhatia BK, Jaiswal A, Jaiswal R. 2018. Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in *Candida auris*. Antimicrob Agents Chemother 65: e01466-20. https://doi.org/10.1128/AAC.01466-20.

18. Aliza S, Aliza Z, Aliza D, Aliza F, Aliza G, Aliza H, Aliza I, Aliza J, Aliza K, Aliza L, Aliza M, Aliza N, Aliza O, Aliza P, Aliza Q, Aliza R, Aliza S, Aliza T, Aliza U, Aliza V, Aliza W, Aliza X, Aliza Y, Aliza Z. 2020. *Candida auris* resistance mechanisms in the emerging pathogen *Candida auris*. Front Microbiol 10:2788. https://doi.org/10.3389/fmicb.2019.02788.

19. Almendral M, Rodriguez-Valera F, Palomares-Velasco R, Negrín A, Paulino A, Antolin S, Fuentes-Davila M, de los Rios A, Pierscionek BS, Vougatsoglou N. 2020. *Candida auris* resistance mechanisms in the emerging pathogen *Candida auris*. Front Microbiol 10:2788. https://doi.org/10.3389/fmicb.2019.02788.

20. Chabane F, Graf A, Jequier L, Coste AT. 2019. Review on antifungal resistance mechanisms in the emerging pathogen *Candida auris*. Fungal Genet Biol 131:103243. https://doi.org/10.1016/j.fgb.2019.103243.

21. Sharma D, Paul RA, Khartabarti A, Bhattacharya S, Soman R, Shankamaryan SA, Chavan D, Das P, Kaur H, Ghosh A. 2020. Aspergillus fumigatus resistance in *Candida auris* due to mutations in *FKS1* with adjunctive role of chitin and key cell wall stress response pathway genes. BioRxiv https://doi.org/10.1101/2020.07.09.196600.

22. Alizadeh A, Ahmad S, Dhar R, Asadzadeh M, Almendral M, Abdolmaleki H, Joseph L, de Groot T, Aliwal Q, Khan Z, Meis JF, Al-Rashidi MR. 2020. Molecular epidemiology of *Candida auris* outbreak in a major secondary-care hospital in Kuwait. J Fungi (Basel) 6:307. https://doi.org/10.3390/jof6040307.

23. Carolus H, Pierscionek BS, Vougatsoglou N, Van Dijck P. 2019. *Candida auris* resistance mechanisms in the emerging pathogen *Candida auris*. Front Microbiol 10:2788. https://doi.org/10.3389/fmicb.2019.02788.

24. Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, Rivera M, Esnazon E, Portela A, Ferrer A, Vila C, Pardo C, Villalobos N, Salcedo S, Berrio I, Varon C, Espinosa-Bode A, Lockhart SR, Jackson BR, Litvintseva AP, Beltran M, Chiller TM. 2019. Molecular epidemiology of *Candida auris* in Colombia reveals a highly related, countrywide colonization with regional patterns in...
Experimental Evolution of Multidrug Resistance in *C. auris*

March/April 2021 Volume 12 Issue 2 e03333-20

mbio.asm.org 17
61. Cao Y, Zhu Z, Chen X, Yao X, Zhao L, Wang H, Yan L, Wu H, Chai Y, Jiang Y. 2013. Effect of amphotericin B on the metabolic profiles of Candida albicans. J Proteome Res 12:2921–2932. https://doi.org/10.1021/pr4002178.

62. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD. 2005. Genome-wide expression profiling of the response to azole, polye, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236. https://doi.org/10.1128/AAC.49.6.2226-2236.2005.

63. Sangalli-Leite F, Scorzoni L, Mesa-Arango AC, Casas C, Herrero E, Gianinni MJSM, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O. 2011. Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect 13:457–467. https://doi.org/10.1016/j.micinf.2011.01.015.

64. Sokol-Anderson M, Sligh JE, Jr, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. 1988. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 32:702–705. https://doi.org/10.1128/ac5.3.702.

65. Sokol-Anderson ML, Brajtburg J, Medoff G. 1986. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83. https://doi.org/10.1093/infdis/154.1.76.

66. Burhans WC, Weinberger M, Marchetti MA, Ramachandran L, D’Urso G, Huberman JA. 2003. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat Res 532:227–243. https://doi.org/10.1016/S0165-7992(02)00299-7.

67. Healey KR, Jimenez Ortigosa C, Shor E, Perlin DS. 2016. Genetic drivers of microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal drug resistance. Annu Rev Microbiol 71:753–775. https://doi.org/10.1146/annurev-microb-030117-020345.

68. Sanglard D. 2019. Finding the needle in a haystack: mapping antifungal drug resistance evolution. Curr Opin Biotechnol 49:46–90. https://doi.org/10.1016/j.copbio.2017.02.013.
susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699. https://doi.org/10.1128/AAC.00443-09.

98. Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison LH, Chiller T, Lockhart SR. 2010. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 54:5042–5047. https://doi.org/10.1128/AAC.00836-10.

99. Prigent G, Aït-Ammar N, Levesque E, Fekkar A, Costa J-M, El Anbassi S, Foulet F, Duvoux C, Merle J-C, Dannouzi E, Botterel F. 2017. Echinocandin resistance in Candida species isolates from liver transplant recipients. Antimicrob Agents Chemother 61:e01229-16. https://doi.org/10.1128/AAC.01229-16.

100. Park S, Kelly R, Kahn JN, Robles J, Hsu M-J, Register E, Li W, Vyas V, Fan H, Abruzzo G, Flatteny A, Gill C, Chrebet G, Parent SA, Kurtz M, Tepleier H, Douglas CM, Perlin DS. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273. https://doi.org/10.1128/AAC.49.8.3264-3273.2005.

101. Martí-Carrizosa M, Sánchez-Reus F, March F, Cantón E, Coll P. 2015. Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility. Antimicrob Agents Chemother 59:3570–3573. https://doi.org/10.1128/AAC.04922-14.

102. Jiménez-Ortigosa C, Moore C, Denning DW, Perlin DS. 2017. Emergence of echinocandin resistance due to a point mutation in the FKS1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob Agents Chemother 61:e01277-17. https://doi.org/10.1128/AAC.01277-17.