Case Report

Bilateral Lumbar Facet Synovial Cysts as a Cause of Radiculopathy

Pawin Kasempipatchai,1 Verapan Kuansongtham,1 Monchai Ruangchainikom,2 and Khin Myat Myat Lwin1

1Department of Spine, Bumrungrad International Hospital, Bangkok, Thailand
2Department of Orthopaedic Surgery Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand

Correspondence should be addressed to Pawin Kasempipatchai; mattman191@gmail.com

Received 29 January 2022; Revised 27 August 2022; Accepted 19 October 2022; Published 7 November 2022

1. Introduction

Synovial cysts most commonly involve the joints of the extremities. However, they are rarely found in the spinal canal and are uncommon causes of radicular pain [1]. Because of their rarity, synovial cysts are easily misdiagnosed in cases of persistent low back pain and radiculopathy [2]. This article describes a case of bilateral, symptomatic lumbar facet cysts treated with advanced, full-endoscopic surgical techniques. These techniques provide successful outcomes that are comparable to those of conventional open surgery [3, 4]. To the authors’ knowledge, only 1 case of bilateral lumbar facet cysts was previously reported as having been caused by calcium pyrophosphate deposition [5].

2. Case Report

A 59-year-old male presented with right buttock pain radiating down the right posterior thigh to the calf and numbness down to the right big toe for a month. He stated that he felt pain with all body positions. His self-reported pain scores were 2 for the back and 6 for the right leg. Before coming to our spine clinic, he had consulted a doctor at another hospital. Grade 1 spondylolisthesis at L4–L5 and a large synovial facet joint cyst at left L4–L5 were detected on magnetic resonance imaging (MRI). Consequently, the patient was administered a transforaminal epidural steroid injection into the right L4–L5. He said 70% of his pain had been relieved three days after the injection. Physical examination showed a negative straight-leg raising test at the angle of 90 degrees on both sides and no weakness of the lower extremities. Nevertheless, the patient’s pain level did not decrease after 2 months of treatment with medication and physiotherapy. He was advised to have a repeat MRI scan and an X-ray of the lumbosacral spine. The new scan indicated that the size of the left facet cyst at L4–L5 was unchanged (1.1 cm). However, its wall was thicker, and its internal content was clearer than before (Figure 1). There was also left facet hypertrophy and a diffuse bulging disc. Together, these had caused mild central canal stenosis and severe left L5 lateral recess stenosis, with left L5 traversing nerve root compression (Figures 2 and 3).
A persistent, smaller, right facet synovial cyst was also noted. Its size was unchanged at approximately 0.5 cm (Figure 4), causing right lateral recess stenosis with right L5 traversing nerve root compression. There was also a grade 1 spondylolisthesis of L4 over L5 (Figure 5). Upright lateral flexion and extension X-rays of lumbosacral spine showed no further instability of L4 over L5 (Figure 6).

Given the findings, we planned a full-endoscopic decompression of right L4–L5 with cross-decompression to remove the facet cysts. The patient underwent the procedure, with the bilateral cysts at L4–L5 removed via the interlaminar technique (right-side approach). Operative findings revealed a small facet cyst causing severe right L5 compression at the lateral recess. There was a slight adhesion between the nerve and the cyst. On the left L4–L5, a large facet cyst was compressed the thecal sac, but there was no compression of the left L5 nerve. There was more adhesion to the thecal sac on its left side than on its right side (Figures 7(a) and 7(b)). Pathology showed facet cysts, each showing mild, chronic inflammation of the walls.

After surgery, there was neither surgical site pain nor right leg pain. Numbness was improved. The patient recovered well from the surgery and was discharged the next day. The wound was dry and clean without signs of infection. The follow-up for this case was 1 year. During that period, the patient remained free of pain in his back and right leg. Postoperative lumbosacral spine X-ray films and MRI at 1 year showed no further increase in segmental instability (Figure 8) and the absence of bilateral cysts (Figures 9 and 10).

3. Discussion

Synovial and ganglion cysts were first described as juxtafacet cysts by Kao et al. in 1974 [6]. Synovial cysts protrude into the synovial lining through a defect or rupture of a degenerated facet joint. Their pathogenesis is not well understood and remains a topic of debate. The cysts are common in older adults, with patients having an average age of 66 years [7]. In a retrospective review of MRIs from 303 patients, Doyle and Merrilees found a prevalence of 2.3% for anterior spinal cysts and 7.3% for posterior spinal cysts [8]. In the lumbar spine, synovial facet cysts are most commonly found at the L4–L5 level (68.4%). The L4–L5 level is generally regarded as the most mobile of all vertebrae levels and is frequently associated with spondylolisthesis [8, 9]. Bilateral lumbar facet cysts are rare.
The clinical presentation of facet cysts depends on their size, site, and relationship to adjacent structures [10–12]. Patients may present with back pain, radiculopathy, and claudication but rarely cauda equina syndrome. MRI is the modality of choice for diagnosing lumbar facet cysts [13, 14]: it has a 90% sensitivity compared with the 70% for computed tomography [15, 16]. Lumbar facet cysts generate a range of MRI signals depending on the often variable content of the cysts [17]. A typical synovial cyst appears with a low-intensity signal in T1-weighted images and a high-intensity signal in T2-weighted sequences [18]. In our patient, we performed a preoperative lumbar spine MRI (Figures 1–4).

Even though there have been reports of synovial cysts resolving spontaneously, they usually require treatment [19]. However, the optimal treatment remains unclear. Non-surgical treatment can be considered the first option, but its results can be disappointing. In a large European study on 77 patients, the failure rate of conservative treatment reached 60% by 6 months, and patients were eventually treated with surgery [18]. A retrospective analysis of 30 nonsurgically treated patients revealed that only 33% (10) had excellent or good outcomes 6 months after treatment, whereas 47% (14) had to undergo surgery [20, 21]. Epidural injections of corticosteroids or injections into the facet joint may reduce the inflammatory process and resolve symptoms in up to 70% of patients. Unfortunately, the effectiveness of these approaches is only temporary [22].

Surgical treatment is recommended as soon as conservative treatments fail to control symptoms or if neurological deficits develop. The surgical techniques vary. Trummer et al., Lyons et al., and Hellinger and Lewandrowski reported that performing a medial facetectomy or hemilaminectomy alone was associated with an increased incidence of back pain and cyst recurrence, and the literature debates whether these techniques produce spinal instability [2, 7, 23]. Decompression with instrumented fusion appears to be associated with the lowest incidences of cyst recurrence and back pain [18, 24]. Controversy exists about fusion as a first-line treatment. Sabo et al. found no difference in outcomes for patients undergoing fusion compared with those treated with cyst excision alone [25]. Cyst excision alone as first-line treatment seemed sufficient for 88.6% of the treated patients. Thus, spondylolisthesis is not an absolute indication for arthrodesis when operating on synovial cysts [7].

In our reported case, we performed a full-endoscopic decompression and removed the bilateral cysts via the interlaminar technique without fusion. This approach was used because lumbosacral X-ray films showed only a grade 1 spondylolisthesis, and the upright lateral flexion-extension films showed no instability. The major advantage of a full-endoscopic decompression is that it completely removes bilateral cysts with minimum disruption to ligamentous and bony structures. The procedure thereby decreases the risk of progressive instability and the need for fusion. In addition, this technique requires an incision of less than 1 cm, resulting in early ambulation and a short hospital stay [23, 26, 27]. Although full-endoscopic decompression has several tangible benefits, the initial learning curve for this interlaminar procedure is steep [28]. To flatten the curve,
Choi et al. [29] recommended that the first 10 cases be performed under the supervision of an experienced surgeon. Trainees should gain adequate experience by starting with simple cases in which no serious problems are anticipated from the anatomical conditions [30].

The present study shows the results of a full-endoscopic interlaminar operation. The reduced resection of spinal structures achieved with the full-endoscopic technique produces less operation-induced segment instability [31]. In an analysis of 48 patients treated with endoscopic removal of facet cysts, Hellinger and Lewandrowski reported that excellent and good Macnab outcomes were obtained by 77.1% of patients. The remaining patients (22.9%) had fair outcomes that were significantly associated with segmental instability of the involved lumbar facet joint ($P < 0.001$) [23]. With our reported case, sustained benefits were apparent 1 year postoperatively without recurrence of the cysts or further instability of the lumbar spine.

The authors declare that there are no potential conflicts of interest relating to this article's research, authorship, or publication.

4. Conclusions

Unilateral lumbar facet cysts are rare, and bilateral lumbar facet cysts are even more rarely found in the spinal canal.
The authors suggest that an endoscopic interlaminar approach offers several advantages. It might result in less postoperative spinal instability than conventional open surgery, even when bilateral cysts are completely removed, with minimal soft tissue traumatization and bleeding, quick rehabilitation, and a short hospital stay. The authors believe this technique has the potential to provide suitable outcomes and is a safe option compared with both open and microscope-assisted surgery.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by Bumrungrad International Hospital.

References

[1] A. T. Kouyialis, E. J. Boviatis, S. Korfas, and D. E. Sakas, "Lumbar synovial cyst as a cause of low back pain and acute radiculopathy: a case report," Southern Medical Journal, vol. 98, no. 2, pp. 223–225, 2005.

[2] M. Trummer, G. Flaschka, M. Tillich, C. N. Homann, F. Unger, and S. Eustacchio, "Diagnosis and surgical management of intraspinal synovial cysts: report of 19 cases," Journal of Neurology, Neurosurgery & Psychiatry, vol. 70, no. 1, pp. 74–77, 2001.

[3] Y. Ahn, H. K. Oh, H. Kim, S. H. Lee, and H. N. Lee, "Percutaneous endoscopic lumbar foraminotomy: an advanced surgical technique and clinical outcomes," Neurosurgery, vol. 75, no. 2, pp. 124–133, 2014.

[4] S. Ruetten, M. Komp, H. Merk, and G. Godolias, "Full-endoscopic interlaminar and transfornaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study," LWK, vol. 33, no. 9, pp. 931–939, 2008.

[5] A. A. Gadgil, S. M. Eisenstein, A. Darby, and V. Cassar Pullicino, "Bilateral symptomatic synovial cysts of the lumbar spine caused by calcium pyrophosphate deposition disease: a case report," Spine, vol. 27, no. 19, pp. E428–E431, 2002.

[6] C. C. Kao, S. S. Winkler, and J. H. Turner, "Synovial cyst of spinal facet: case report," Journal of neurosurgery, vol. 41, no. 3, pp. 372–376, 1974.

[7] M. K. Lyons, J. L. Atkinson, R. E. Wharen, H. G. Deen, R. S. Zimmerman, and S. M. Lemens, "Surgical evaluation and management of lumbar synovial cysts: the Mayo Clinic experience," Journal of Neurosurgery: Spine, vol. 93, no. 1, pp. 53–57, 2000.

[8] A. J. Doyle and M. Merrilees, "Synovial cysts of the lumbar facet joints in a symptomatic population: prevalence on magnetic resonance imaging," Spine, vol. 29, no. 8, pp. 874–878, 2004.

[9] D. M. Budris, "Intraspinal lumbar synovial cyst," Orthopedics, vol. 14, no. 5, pp. 613–620, 1991.

[10] J. U. Howington, E. S. Connolly, and R. M. Voorhies, "Intraspinal synovial cysts: 10-year experience at the Ochsner Clinic," Journal of Neurosurgery: Spine, vol. 91, no. 2, pp. 193–199, 1999.

[11] P. Rousseaux, J. F. Durot, M. Phiot et al., "Synovial cysts and synovialomas of the lumbar spine. Histopathologic and neuro-surgical aspects apropos of 8 cases," vol. 35, no. 1, pp. 31–39, 1989.

[12] W. L. Yarde, P. M. Arnold, J. J. Kepes, P. L. O’Boynick, S. B. Wilkinson, and S. Batnitzky, "Synovial cysts of the lumbar spine: diagnosis, surgical management, and pathogenesis: report of eight cases," Surgical Neurology, vol. 43, no. 5, pp. 459–465, 1995.

[13] E. Apostolaki, A. M. Davies, N. Evans, and V. N. Cassar-Pullicino, "MR imaging of lumbar facet joint synovial cysts," European Radiology, vol. 10, no. 4, pp. 615–623, 2000.

[14] R. Davis, A. Iliya, C. Roque, and M. Pampati, "The advantage of magnetic resonance imaging in diagnosis of a lumbar synovial cyst," Spine, vol. 15, no. 3, pp. 244-245, 1990.

[15] S. Hemminghytt, D. L. Daniels, A. L. Williams, and V. M. Haughton, "Intraspinal synovial cysts: natural history and diagnosis by CT," Radiology, vol. 145, no. 2, pp. 375-376, 1982.

[16] C. C. Kao et al., "Lumbar intraspinal extradural ganglion cyst," vol. 29, no. 2, pp. 168–172, 1968.

[17] E. F. Oyster and W. R. Scott, "Lumbar synovial cysts: report of eleven cases," Neurosurgery, vol. 24, no. 1, pp. 112–115, 1989.

[18] P. Metellus, S. Fuentes, T. Adetchesii et al., "Retrospective study of 77 patients harbouring lumbar synovial cysts: functional and neurological outcome," Acta neurochirurgica, vol. 148, no. 1, pp. 47–54, 2006.

[19] J. Mercader, J. M. Gomez, and C. J. N. Cardenal, "Intraspinal synovial cyst: diagnosis by CT," Neuroarthritis, vol. 27, no. 4, pp. 346–348, 1985.

[20] C. Parlier-Cuau, M. Wybier, R. Nizard, P. Champsaur, P. Le Hir, and J. D. Laredo, "Symptomatic lumbar facet joint synovial cysts: clinical assessment of facet joint steroid injection after 1 and 6 months and long-term follow-up in 30 patients," Radiology, vol. 210, no. 2, pp. 509–513, 1999.

[21] R. V. Shah and G. E. Lutz, "Lumbar intraspinal synovial cysts: conservative management and review of the world’s literature," The Spine Journal, vol. 3, no. 6, pp. 479–488, 2003.

[22] T. Hagen, H. Daschner, and T. Lensch, "Juxta-facet cysts: magnetic resonance tomography diagnosis," Der Radiologe, vol. 41, no. 12, pp. 1056–1062, 2001.

[23] S. Hellingier and K. U. Lewandrowski, "Clinical outcomes with endoscopic resection of lumbar extradural cysts," Journal of Spine Surgery, vol. 6, Suppl 1, pp. S133–S144, 2020.

[24] R. Xu, M. J. McGirt, S. L. Parker et al., "Factors associated with recurrent back pain and cyst recurrence after surgical resection of one hundred ninety-five spinal synovial cysts: analysis of one hundred sixty-seven consecutive cases," Spine, vol. 35, no. 10, pp. 1044–1053, 2010.

[25] R. A. Sabo, P. T. Tracy, and J. M. Weinger, "A series of 60 juxtafacet cysts: clinical presentation, the role of spinal instability, and treatment," Journal of neurosurgery, vol. 85, no. 4, pp. 560–565, 1996.

[26] D. R. Denis, D. Hirt, S. Shah, D. C. Lu, and L. T. Holly, "Minimally invasive surgery for lumbar synovial cysts with
coexisting degenerative spondylolisthesis,” *International Journal of Spine Surgery*, vol. 10, 2016.

[27] S. A. Habsi, K. A. Ghafari, M. Elsaid, A. A. Subhi, H. A. Kindi, and K. A. Baccouche, “Lumbar facet cyst as a rare cause of L5 radiculopathy: a case report,” *Case Reports in Orthopedic Research*, vol. 3, no. 1, pp. 34–41, 2020.

[28] S. Sharif and A. Afsar, “Learning curve and minimally invasive spine surgery,” *World Neurosurgery*, vol. 119, pp. 472–478, 2018.

[29] G. Choi, S. H. Lee, P. P. Raiturker, S. Lee, and Y. S. Chae, “Percutaneous endoscopic interlaminar discectomy for intracanalicular disc herniations at L5–S1 using a rigid working channel endoscope. Operative,” *Neurosurgery*, vol. 58, suppl_1, pp. ONS-59–ONS-68, 2006.

[30] S. Ruetten, M. Komp, H. Merk, and G. Godolias, “Use of newly developed instruments and endoscopes: full-endoscopic resection of lumbar disc herniations via the interlaminar and lateral transforaminal approach,” *Journal of Neurosurgery: Spine*, vol. 6, no. 6, pp. 521–530, 2007.

[31] P. Kambin, L. F. Cohen, M. Brooks, and J. L. Schaffer, “Development of degenerative spondylosis of the lumbar spine after partial discectomy. Comparison of laminotomy, discectomy, and posterolateral discectomy,” *Spine*, vol. 20, no. 5, pp. 599–607, 1995.