Rubella virus-associated uveitis: The essentiality of aqueous humor virological analysis

Julien Provost¹, Marc Labetoulle², Elise Bouthry³, Oscar Haigh⁴, Igor Leleu⁵, Alfred Kobal⁵, Frédéric Mouriaux⁶, Emmanuel Barreau¹, Christelle Vauloup-Fellous³,* and Antoine Rousseau²,*

Abstract
Aims / background: Rubella virus-associated uveitis (RVAU) classically presents with the clinical features of Fuchs uveitis syndrome (FUS). We report a series RVAU, and discuss the relevance of available diagnostic strategies, and how vaccination could potentially prevent disease.

Methods: We retrospectively included patients with RV-positive aqueous humor (AH) with RT-PCR and/or intraocular RV-IgG production, between January 2014 and December 2019. RV-IgG titers from AH and serum were compared with other virus-specific IgG titers (VZV and/or CMV and/or HSV-1), to determine the derived Goldmann-Witmer coefficient (GWC'). Clinical findings at presentation and during follow-up are reported, as well as the anti-RV vaccination status.

Results: All 13 included patients demonstrated intraocular synthesis of RV-IgG (median GWC': 9.5; 3.2–100). RV-RNA was detected in one patient while PCR results were negative for other HSV1, VZV and CMV. The mean delay in diagnosis was 13 ± 12.6 years, with an initial presentation of FUS in only 3 patients (23%). Only four patients had been vaccinated, but all after the recommended age.

Conclusion: As RVAU is a pleomorphic entity, virological analysis (RV RT-PCR and GWC') of aqueous humor is essential to improve the diagnosis and management of this entity. Improper vaccination against RV appears to be implicated in RVAU.

Introduction
Rubella virus (RV) is a strictly human pathogen transmitted via aerosols to infect the respiratory tract.¹ RV infections of unimmunized children or adults are usually benign but when it occurs during embryogenesis it can cause congenital rubella syndrome (CRS),² which typically includes cataracts, cardiac abnormalities and sensorineural deafness.³,⁴ Rubella and CRS are close to being eliminated in many countries due to implemented immunization programmes. However, since the early 2000's, RV has been associated with the occurrence of chronic uveitis.⁵–⁷ The clinical picture of RV-associated uveitis (RVAU) is somewhat comparable with the so-called Fuchs uveitis syndrome (FUS) in a significant proportion of cases. This clinical entity is characterized by low grade, typically unilateral inflammation of the anterior segment associated with peculiar iris heterochromia and nodules, diffuse
keratic precipitates (KPs), a predisposition to develop cataracts and glaucoma and a mild vitritis. FUS has been linked to infection with RV, Herpes simplex virus type 1 (HSV-1) and cytomegalovirus (CMV). The latter is common in Asian patients, with an onset of disease between the third to fifth decade, while RV predominates in Europeans and occur usually in the second to third decade of life. Groen-Hakan recently reported a large series of RVAU with none of the patients being vaccinated against RV, which was compelling for the still-debated role of RV in causing uveitis.

Visual prognosis associated with FUS and more generally with RVAU, is considered good. However, diagnosis can be very challenging in various situations. In children, the disease may present initially with an incomplete clinical picture. Whereas clinical FUS landmarks (heterochromia) can be missed in adult, especially those with dark irides, or with bilateral diseases. Furthermore, corticosteroids are ineffective and deleterious, hastening the occurrence of cataract and glaucoma. Thus, FUS and RVAU misdiagnoses lead to inappropriate management and iatrogenic complications.

Virological analysis of aqueous humor (AH) is of major importance, by influencing the prevention of useless corticosteroids or antiviral therapy and ultimate iatrogenic complications. However, virological diagnosis is not yet standardized. Two virological techniques are currently available: reverse transcriptase polymerase chain reaction (RT-PCR) to detect RV RNA in AH, or an immunoassay to detect intraocular anti-RV IgG.

In this study, we report a series of proven RVAU and discuss the relevance of available diagnostic strategies, to improve patient management and how vaccination could potentially prevent disease.

Patients and methods

Patients with RT-PCR confirmed RV-positive AH and/or intraocular RV-IgG production, between January 2014 and December 2019 in the Department of Virology, Paul Brousse hospital were considered for inclusion. Patients for whom clinical data were missing were excluded from analysis.

Data collected from patient files included: sex, ethnicity, age at onset of symptoms, age at diagnosis of RVAU (date of positive AH analysis and considered as the date of inclusion) and rubella vaccination history. In France, 2 rubella immunizations are recommended for all children from 12 months, since 1986. Rubella vaccination history was available for all patients born after 1986. Patients born before 1986 or born in a country lacking a national rubella vaccination programme, were considered unimmunized unless proven otherwise. The diagnostic delay defined time between first ophthalmic symptoms and a positive AH rubella test.

Virological analysis

RV RT-PCR and anti-RV IgG testing was performed on the AH of all patients. One eye only was tested in cases of bilateral disease.

RNA extraction and RV RT-PCR

Viral RNA was extracted from 200 µL AH using NucliSens® easyMag® (bioMérieux, Craponne, France), and eluted in 50 µL. For RV, real-time PCR was performed using RV98F/RV251R primers (5′ GGC AGT TGG GTA AGA GAC CA 3′/5′ CGT GGA GTG CTG GGT GAT 3′) and NSP-probe (5′ FAM-ACA TCG CGC ACT TCC CAC G- BHQ1 3′), targeting the RV E1 gene region. All assays included a heterologous amplification system (internal positive control) to identify possible RT-PCR inhibition and to confirm assay integrity. Positive controls were provided by CDC, USA. One-step PCR cycling commenced at 50 °C for 15 min followed by 95 °C for 2 min and 50 cycles of 95 °C for 15 s, 60 °C for 40 s were performed using an Applied Biosystems ViiA7 instrument (Applied Biosystems, ThermoFisher, Waltham – Massachusetts, USA). For HSV-1, varicella-zoster virus (VZV) and cytomegalovirus (CMV), real-time PCR were performed using Argene® HSV1-2 VZV R-gene and Argene® CMV R-gene (bioMérieux, Craponne, France) following manufacturer’s instructions. PCR cycling commenced at 95 °C for 15 min, and 45 cycles of 95 °C for 10 s, 60 °C for 40 s were performed using an Applied Biosystems ViiA7 instrument (Applied Biosystems, ThermoFisher, Waltham – MA, USA). The lower limit of detection for the RV RT-PCR was 20 copies/ml.

Antibody detection and derived goldmann-witmer coefficient calculation

Immune status of the patients was assessed for RV, CMV, HSV-1 and VZV, for which seroprevalences in France are 90%, 50%, 70% and 95% respectively. Patients seronegative for at least two viruses (excluding RV) were not considered for inclusion in the study. Measuring specific IgG in AH was only performed if the patient was seropositive. IgG antibody titers were determined using Enzygnost specific IgG enzyme-linked immunosorbert assay kits (Siemens, Marburg, Germany) for RV, HSV-1, VZV and CMV, according to manufacturer’s instructions. AH and blood serum were paired for analysis in the same analytical run. The volume used for measuring IgG in AH was the
same for each virus (20 μL). Optical density was evaluated as arbitrary concentration units (AU), by reference to a standard curve. RV-IgG titers from AH and serum were compared with other virus-specific IgG titers (VZV and/or CMV and/or HSV-1), to determine the Goldmann-Witmer coefficient\(^{21,22}\) (GWC’):
\[
GWC’ = (AH RV-IgG \times \text{serum other virus-IgG}) / (\text{serum RV-IgG} \times AH \text{other virus-IgG})
\]
The test was considered positive only if two or three ratios (when three ratios were available) were greater than 3.

Ophthalmological data and clinical presentation

Ophthalmological data included best-corrected visual acuity (BCVA) and slit-lamp findings. Patients were categorized into two groups based on the clinical presentation. Group 1 included typical FUS patients,\(^7\) with all criteria required for diagnosis (including: i) chronic low-grade anterior segment inflammation, ii) diffuse stellate KPs, iii) iris heterochromia, iv) lack of posterior synechia and v) cataract (Figure 1)). Group 2 included patients not fulfilling typical FUS criteria, or with additional clinical presentations such as: predominant posterior segment involvement, or retinal vasculitis. Complications experienced were also collected at virological diagnosis and during the follow-up and included: i) ocular hypertension (OHT) (defined by intraocular pressure > 21mmHg without glaucomatous optic neuropathy), ii) glaucoma (i.e. typical glaucomatous optic nerve head and visual field alterations) and iii) surgical procedures.

The study adhered to the tenets of the Declaration of Helsinki and was approved by the Ethics Committee of the French Society of Ophthalmology (IRB 00008855 Société Française d’Ophthalmologie IRB#1). Informed consent was obtained for all the participants (or from a parent for participants under 18).

Results

Demographics and rubella vaccination status

Between January 2014 and December 2019, 38 patients tested positive for rubella by either RV RT-PCR and/or GWC’. The complete medical files of 13 patients were retrieved (6 women, 7 men), aged 49.6 ± 22.2 (7–86) years at inclusion (Table 1). The delay in diagnosis was 13 ± 12.6 years (0–42). Most patients (9/13) were not immunized against rubella, while the remaining (4/13) were immunized after the recommended age (between 6 and 28 years) (Table 1). Most patients were Caucasian and born in France (10/13), while 2 originated from Asia, where they were born (case #10 from India and case #13 from Vietnam) and one was born in Africa (from African descent) (case #11).

Virological data. RV RT-PCR as well as HSV-1, VZV and CMV PCR were performed in 11 cases and RV-RNA was detected in the AH of one patient (case #12). PCR results for other viruses were all negative.

All patients were seropositive for RV, HSV-1 and VZV. Additionally, ten patients were also seropositive for CMV. Therefore, GWC’ could be calculated for all patients using two other viruses, and for ten patients, three other viruses. AH anti-RV-IgG was demonstrated in all cases, with a median GWC’ of 9.5 (range 3.2–100) (Table 2). GWC’ was negative for all other viruses in all patients.

Ophthalmological data and clinical presentation. Three patients were classified into Group 1, fulfilling all FUS criteria, and 10 were classified in Group 2. Patient’s initial complaints were vision loss (n = 11, 85%) and floaters (n = 3, 23%). At presentation, mean BCVA of the affected eyes was 0.6. Ten patients had cataract in the affected eyes (3 in group 1 and 7 in group 2) and 7 patients had either OHT or glaucoma (1 in group 1 and 6 in group 2). Low grade inflammation of the anterior segment was present diffuse KPs were present in 8 patients (3 in group 1 and 5 in group 2 for both). Iris atrophy, heterochromia, or nodules were noted in 6, 3 and 3 patients, respectively (Table 3). Vitreous involvement was present in 10 eyes (9 patients) and retinal vasculitis in 5 eyes (4 patients). One patient (case #10) had bilateral disease.

At follow-up of 96 ± 103 months (2–306), BCVA was similar (0.6) (p = 0.61). Cataract was detected in one additional eye; surgery was required in 10 eyes (9 patients). Glaucoma occurred in 3 additional eyes and surgical procedures were required in 6 eyes of 6 patients. The mean delay between onset of symptoms and virological diagnosis was 157.6 ± 153 months.

Among the 8 eyes (8 patients) with OHT or glaucoma during follow-up, 7/8 initially had a positive history for Possner-Schlossman phenotype, with OHT peaks concomitant with inflammation flare-ups. In these cases, IOP elevation was not caused by steroid eye drops instillation. Six out of this seven cases ended with chronic IOP elevation with associated glaucomatous optic neuropathy. The last case (case #13), who had no obvious clinical signs of FUS (aqueous sampling was performed during glaucoma surgery as part of an exhaustive check-up for severe unilateral glaucoma), had elevated IOP at diagnosis, and no history of IOP peaks.

Among the 5 patients who underwent fluorescein angiography, sectorial peripheral non-occlusive capillaropathy and vasculitis was observed in 4 cases (cases #4, 5, 7, 10) (Figure 2A, 2D). In one patient, a concomitant focal staining on a large vein was noted (Case #4, Figure 2A). Disc hyperfluorescence was observed in 3/5 cases (Figure 2C). OCT did not show macular edema (Figure 2B). Indocyanin green angiography was performed in 4 patients
Figure 1. Clinical features of Fuchs uveitis syndrome in patients with rubella positive aqueous humor. A & B) Iris heterochromia (case #4). Left affected eye (B) is clearer and smoother than unaffected right eye (A). C) Iris nodules on the collarette (Koeppe's nodules) (case #10). D) Diffuse keratic precipitates (case #12).

Table 1. Demographics and rubella vaccination status. M = male, F = Female, C = Caucasian, Af = African descent, A = Asiatic descent, NA = not applicable.

Case #	Gender / Age at inclusion	Ethnic background	Rubella Vaccination	Age at vaccination (years)	Age at onset of ophthalmic symptoms	Diagnostic delay
1	M / 34	C	-	6	29	5
2	M / 42	C	-	NA	37	5
3	F / 63	C	-	NA	59	4
4	M / 48	C	-	NA	30	17
5	F / 29	C	+	7	29	1
6	F / 86	C	-	NA	75	11
7	M / 7	C	+	6	6	1
8	F / 84	C	-	NA	84	0
9	M / 49	C	-	NA	33	15
10	F / 36	A	-	NA	23	14
11	M / 61	Af	-	NA	18	42
12	M / 40	C	-	NA	18	22
13	F / 66	A	+	28	36	30
and did not reveal significant abnormalities. We did not observe retinal scars in affected eyes included in our series.

Discussion

The clinical spectrum of RVAU

RVAU appears to be a pleomorphic entity. As in previous studies,7 our cohort had a minority of patients fulfilling FUS criteria (3/13 patients). In group 2, some patients had completely atypical pictures where retinal vasculitis and posterior segment features were predominant, while other had “incomplete” FUS that could be explained by individual particularities or the moment in the course of the disease where clinical examination was performed. Diagnosis of heterochromia depends on the initial amount of iris pigment and the degree of atrophy. Therefore, it is often absent in dark-colored irides and during the first years of diseases,12,14 and present in approximately 1/4 of RVAU patients.23 The common clinical denominator of RVAU in the previous series and in our study, however, was the absence of posterior synechiae and macular edema.7 These clinical findings are not specific for RVAU, and overlap with CMV anterior uveitis24 and some HSV-1- and VZV-related uveitis.9–11

In most cases of our series, elevated IOP and glaucoma were part of the spectrum of rubella uveitis, rather than steroid induced. In the series by Groen-Hakan et al. 50% of patients with RVAU had OHT or glaucoma while half of them did not receive steroids.7

We acknowledge that fluorescein angiography was not performed in all patients, and this could lead to underdiagnosis of posterior segment subclinical features. In RVAU, posterior segment findings could be either secondary to vitreous inflammation or primitive. In a case series, Bouchenaki and Herbot reported disc hyperfluorescence in 98% of FUS patients (43/44) who underwent fluorescein angiography, but it was not clear whether these patients had cataract surgery before FA was performed.23 These authors also reported peripheral retinal vascular leaking in 14% of patients.25 Vasculitis involving large vessels and retinitis have been reported in isolated case reports of RVAU.26,27 Retinal scars, most often of small size (< 1 papillary diameter), that may be found both in central and peripheral retina, have also been reported in RVAU.7

The essential role of virological Ah analysis

Altogether, there is weakness in clinical diagnosis alone, while virological assays contribute significantly to correctly managing patients with uveitis. Accurate diagnosis can improve management, by avoiding unnecessary corticosteroids or antiviral treatments if Herpesviridae is suspected. In contrast, some FUS may be caused by CMV or HSV-1 and thus require specific antiviral treatments.10,28 Furthermore, some patients may be co-infected with RV and HSV-1.11

It is difficult to diagnose RVAU with RV-RNA detection alone and combining immunological and molecular assays may improve the diagnosis of infectious uveitis.29–31 RVAU diagnosis relies on RV-IgG-positive AH and/or presence of RV-RNA.5 While all our patients were GWC’ positive, only one was positive by RT-PCR. Thus, RT-PCR diagnosis alone would have missed 90% of cases. Our results are consistent with previous studies, where 10 to 20% of suspected cases were positive by RT-PCR, whereas 97 to 100% of AH samples were RV-IgG-positive.6,7,11 Low viral loads and the small volumes of AH fluid contribute to the low sensitivity of RV RT-PCR, which also contain inhibitory compounds.32 In order to improve detection, viral culture could have been attempted in order to amplify viral load before PCR.

Table 2. Virological data. AH = Aqueous humor; P = positive, N = negative, GWC’ = derived Goldmann-Witmer coefficient, PCR = Polymerase chain reaction, NA = not available.

Case #	HSV-IgG in serum/AH	VZV-IgG in serum/AH	CMV-IgG in serum/AH	RV-IgG in serum/AH	GWC’ RV/HSV	GWC’ RV/CMV	GWC’ RV/VZV	PCR in AH
1	++	++	+	++	10	5	8.8	-
2	++	++	+	++	100	33	25	NA
3	++	++	+	++	3.2	3.7	3.5	-
4	++	++	+	+	8	NA	10.2	-
5	++	++	+	+	3.5	NA	4	NA
6	++	++	+	+	3.5	5.7	4.8	-
7	++	++	+	+	4.9	6.7	3.3	-
8	++	++	-	+	13.3	NA	14.1	-
9	++	++	+	+	12.8	9.8	10.2	-
10	++	++	+	+	45	68.1	57	-
11	++	++	+	+	7.2	12.3	12.5	-
12	++	++	+	+	11.1	33.3	14.7	+
13	+	+	+	+	5.6	8.4	9.2	-
Table 3. Ophthalmological findings. OD = right eye, OS = left, OU = both eyes, BCVA = best corrected visual acuity, KPs = keratic precipitates, OHT = ocular hypertension, NA = not applicable, G = glaucoma. * visual loss secondary to corneal edema caused by pseudophakic endothelial decompensation (not directly linked with RVAU).

Case #	Laterality	Presenting symptoms	BCVA at first visit (dec.)	Diffuse KPs	Low grade anterior segment inflammation / posterior synechiae	Iris atrophy / heterochromia / nodules	Vitritis	Retinal vasculitis	Cataract at presentation / during follow-up	Cataract Surgery / age	Glaucoma surgery / age	Glaucoma Follow-up (mths)	BCVA at last visit (dec.)
1	OD	Floaters + vision loss	0.3 + -/- +/+- + - 2 +/+ NA -/- NA 18 0.4										
2	OD	Vision loss	0.5 + +/- +/- +/- + - 1 +/+ 43 +/- NA 28 1										
3	OS	Vision loss	0.6 + +/- +/- +/- + - 2 +/- +/ 52 +/- NA 101 0.2*										
4	OS	Vision loss	0.1 + +/- +/- +/- + - 1 +/- +/ 33 OHT/OHT NA 38 0.8										
5	OS	Floaters + Visual Loss + pain	0.7 - -/										
However, this technique would have required the entire AH sample. Besides, the delay and uncertainty of results with this process (due to difficulties in standardization of these techniques) is not suitable for clinical management. In the future, deep sequencing has the potential to detect any foreign genomic sequence in small clinical samples (20–50 μL) and could greatly improve the diagnosis of infectious uveitis.

Pathophysiology of ocular infections with Rv

Detection of RV-RNA from AH in some patients and anti-RV IgG in all, demonstrates that RVAU can be caused by intraocular infection and possibly persistent viral replication associated with an immune-mediated inflammation triggered by systemic RV infection. Thus, the seric anti-RV IgG indicates a necessity for RV viremia, whether postnatal or in utero. Winchester et al. reported high titre of anti-RV IgG and RV RT-PCR-positive AH in a CRS patient with bilateral FUS in his third decade. None of patients in our series had history or signs of CRS but as we did not conduct in depth investigations, CRS cannot be excluded.

Also consistent with results of previous studies is the absence of Rubella vaccination in RVAU patients. Meanwhile, recent epidemiological studies demonstrate a decline in FUS incidence since the introduction of mass rubella vaccination and this trend was not observed in an unimmunized control group.

Why Rv still occurs in immunized patients?

In France, vaccination against rubella is recommended since 1986, and the double-dose regime given between 12 and 18 months of age is mandatory since 2018. Stunf et al. reported that 4/11 anti-RV-positive AH RVAU patients were immunized. However, RV infection occurring before vaccination cannot be ruled out. Indeed, in our study, 4/13 RVAU patients reported incomplete vaccination. Three were immunized late during childhood, between ages 6 and 7, leaving them exposed to rubella prior to vaccination, in the early 80’s, a period where RV was highly prevalent in France. Our third ‘partially immunized’ case was born in Vietnam when rubella vaccination were unavailable, and was subsequently immunized at the age of 28, in France, after the birth of
To our knowledge, there are no specific therapeutic guidelines for RVAU. However, therapeutic guidelines for FUS may be applicable in most cases. As recently reminded by Sun & Ji, anti-inflammatory treatment is not indicated as these patients are usually resistant to corticosteroid therapy. An occasional and short course of corticosteroids may be indicated if a symptomatic exacerbation occurs, whereas long-term steroids are not indicated in FUS.

In summary, RVAU is a pleiomorphic entity for which clinical diagnosis can be easily undermined. AH analysis combining RV RT-PCR and detection of intraocular specific anti-RV IgG are essential in the management of patients with compatible clinical findings. Detection of other pathogens should also be performed. Overall, it seems that improper vaccination against RV is implicated in RVAU.

Author’s contributions
J.P., M.L., C.V.F., A.R. designed the study, analyzed the data and drafted the manuscript. E.B., O.H., I.L., A.K., F.M., E.B. analyzed the data and drafted the manuscript. All authors reviewed the manuscript.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References
1. Chen R, Mukhopadhyay S, Merits A, et al. ICTV virus taxonomy profile: togaviridae. J Gen Virol 2018; 99: 761–762.
2. Eizke E and Ang JY. Pediatric rubella clinical presentation, https://emedicine.medscape.com/article/968523-clinical (2017, accessed 2020/04/26 2020).
3. Bouthry E, Picone O, Hamdi G, et al. Rubella and pregnancy: diagnosis, management and outcomes. Prenat Diagn 2014; 34: 1246–1253.
4. Yazigi A, De Pecoulas AE, Vauloup-Fellous C, et al. Fetal and neonatal abnormalities due to congenital rubella syndrome: a review of literature. J Matern Fetal Neonatal Med 2017; 30: 274–278.
5. de Groot-Mijnes JD, de Visser L, Rothova A, et al. Rubella virus is associated with Fuchs heterochromic iridocyclitis. Am J Ophthalmol 2006; 141: 212–214.
6. Quentin CD and Reiber H. Fuchs Heterochronic cyclitis: rubella virus antibodies and genome in aqueous humor. Am J Ophthalmol 2004; 138: 46–54.
7. Groen-Hakan F, van de Laar S, van der Eijk-Baltissen AA, et al. Clinical manifestations, prognosis, and vaccination status of patients with rubella virus-associated uveitis. Am J Ophthalmol 2019; 202: 37–46.
8. Sun Y and Ji Y. A literature review on Fuchs uveitis syndrome: an update. Surv Ophthalmol 2020; 65: 133–143.
9. Barequet IS, Li Q, Wang Y, et al. Herpes simplex virus DNA identification from aqueous fluid in Fuchs heterochromic iridocyclitis. Am J Ophthalmol 2000; 129: 672–673.
10. Chee SP and Jap A. Presumed fuchs heterochromic iridocyclitis and Posner-Schlossman syndrome: comparison of cytomegalovirus-positive and negative eyes. Am J Ophthalmol 2008; 146: 883–889.e881.
11. Ruokonen PC, Metzner S, Ucer A, et al. Intraocular antibody synthesis against rubella virus and other microorganisms in Fuchs’ heterochromic cyclitis. Graefes Arch Clin Exp Ophthalmol 2010; 248: 565–571.
12. Chan NS and Chee SP. Demystifying viral anterior uveitis: a review. Clin Exp Ophthalmol 2019; 47: 320–333.
13. Accorinti M, Spinucci G, Pirraglia MP, et al. Fuchs’ heterochronic iridocyclitis in an Italian Tertiary Referral Centre: epidemiology, clinical features, and prognosis. J Ophthalmol 2016; 2016: 1458624.
14. Tappeiner C, Dreusch B, Roesel M, et al. Clinical manifestation of Fuchs uveitis syndrome in childhood. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1169–1174.
15. Arrellanes-Garcia R, Del Carmen Preciado-Delgadillo M and Recillas-Gispert C. Fuchs’ heterochromic iridocyclitis: clinical manifestations in dark-eyed Mexican patients. Ocul Immunol Inflamm 2002; 10: 125–131.
16. Tabbut BR, Tessler HH and Williams D. Fuchs’ heterochromic iridocyclitis in blacks. Arch Ophthalmol 1988; 106: 1688–1690.
17. Zarei M, Darabeigi S, Mehrpour M, et al. Fuchs’ uveitis in Iranian patients: a review of 89 eyes. Ocul Immunol Inflamm 2019; 27: 1077–1085.
18. Carnahan MC and Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. *Curr Opin Ophthalmol* 2000; 11: 478–483.

19. Vauloup-Fellous C. Standardization of rubella immunoassays. *J Clin Virol* 2018; 102: 34–38.

20. Goldmann H and Witmer R. [Antibodies in the aqueous humor]. *Ophthalmologica* 1954; 127: 323–330.

21. de Boer JH, Luyendijk L, Rothova A, et al. Analysis of ocular fluids for local antibody production in uveitis. *Br J Ophthalmol* 1995; 79: 610–616.

22. Chen SH, Lin YW, Griffiths A, et al. Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co-infection of mouse trigeminal ganglia. *J Gen Virol* 2006; 87: 3495–3502.

23. Wensing B, Relvas LM, Caspers LE, et al. Comparison of rubella virus- and herpes virus-associated anterior uveitis: clinical manifestations and visual prognosis. *Ophthalmology* 2011; 118: 1905–1910.

24. Chan NS, Chee SP, Caspers L, et al. Clinical features of CMV-associated anterior uveitis. *Ocul Immunol Inflamm* 2018; 26: 107–115.

25. Bouchenaki N and Herbort CP. Fluorescein angiographic findings and clinical features in Fuchs’ uveitis. *Int Ophthalmol* 2010; 30: 511–519.

26. Damasceno N, Damasceno E and Souza E. Acquired unilateral rubella retinopathy in adult. *Clin Ophthalmol* 2010; 5: –4.

27. Riikonen RS. Retinal vasculitis caused by rubella. *Neuropediatrics* 1995; 26: 174–176.

28. Babu K, Adiga M, Govekar SR, et al. Associations of Fuchs heterochromic iridocyclitis in a South Indian patient population. *J Ophthalmic Inflamm Infect* 2013; 3: 14.

29. Errera MH, Goldschmidt P, Batellier L, et al. Findings in detection of Herpesviridae by polymerase chain reaction and intraocular antibody production in a case series of anterior uveitis. *Ocul Immunol Inflamm* 2013; 21: 61–68.

30. Westeneng AC, Rothova A, de Boer JH, et al. Infectious uveitis in immunocompromised patients and the diagnostic value of polymerase chain reaction and Goldmann-Witmer coefficient in aqueous analysis. *Am J Ophthalmol* 2007; 144: 781–785.

31. Errera MH, Goldschmidt P, Batellier L, et al. Real-time polymerase chain reaction and intraocular antibody production for the diagnosis of viral versus toxoplastic infectious posterior uveitis. *Graefes Arch Clin Exp Ophthalmol* 2011; 249: 1837–1846.

32. Wiedbrauk DL, Werner JC and Drevon AM. Inhibition of PCR by aqueous and vitreous fluids. *J Clin Microbiol* 1995; 33: 2643–2646.

33. Gonzales JA, Hinterwirth A, Shantha J, et al. Association of ocular inflammation and rubella virus persistence. *JAMA Ophthalmol* 2019; 137: 435–438.

34. Kreps EO, Derveaux T, De Keyser F, et al. Fuchs’ uveitis syndrome: no longer a syndrome? *Ocul Immunol Inflamm* 2016; 24: 348–357.

35. Winchester SA, Varga Z, Parmar D, et al. Persistent intraocular rubella infection in a patient with Fuchs’ uveitis and congenital rubella syndrome. *J Clin Microbiol* 2013; 51: 1622–1624.

36. Suzuki K, Suzuki Y, Matsumoto M, et al. Expression profile of intravitreous cytokines, chemokines and growth factors in patients with Fuchs heterochromic iridocyclitis. *Case Rep Ophthalmol* 2010; 1: 5–13. 2010/08/26. DOI: 10.1159/000313842.

37. Birmbaum AD, Tessler HH, Schultz KL, et al. Epidemiologic relationship between Fuchs heterochromic iridocyclitis and the United States rubella vaccination program. *Am J Ophthalmol* 2007; 144: 424–428.

38. Rubéole. https://vaccination-info-service.fr/Les-maladies-et-vaccins/Rubeole (2019, accessed 2020/05/22 2020).

39. Stunf S, Petrovec M, Zgles M, et al. Human herpesvirus type herpes simplex virus during co-infection of mouse trigeminal ganglia. *J Clin Virol* 2018; 102: 3483–3487.

40. Kleeman KT, Kiefer DJ and Halbert SP. Rubella antibodies detected by several commercial immunoassays in hemagglutination inhibition-negative sera. *J Clin Microbiol* 1983; 18: 1131–1137.

41. Heath G, Depledge DP, Brown JR, et al. Acute retinal necrosis caused by the zoster vaccine virus. *Clin Infect Dis* 2017; 65: 2122–2125.

42. Abernathy E, Peairs RR, Chen MH, et al. Genomic characterization of a persistent rubella virus from a case of Fuch’s uveitis syndrome in a 73 year old man. *J Clin Virol* 2015; 69: 104–109.