A prospective cross-sectional study of tuberculosis in elderly Hispanics reveals that BCG vaccination at birth is protective whereas diabetes is not a risk factor

Julia M. Scordo1,2, Génesis P. Aguillón-Durán3, Doris Ayala4, Ana Paulina Quirino-Cerrillo4, Emina Rodríguez-Reyna3†, Francisco Mora-Guzmán3, Jose A. Caso6,6, Eder Ledezma-Campos3, Larry S. Schlesinger1, Jordi B. Torrelles1, Joanne Turner1, Blanca I. Restrepo4,5,*

1 Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States of America, 2 The University of Texas Health Science Center of San Antonio, San Antonio, TX, United States of America, 3 Secretaria de Salud de Tamaulipas, Reynosa, Matamoros and Ciudad Victoria, Tamaulipas, Mexico, 4 University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX, United States of America, 5 Biology Department, University of Texas Rio Grande Valley, Edinburg, TX, United States of America, 6 School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States of America

† Deceased.
* Blanca.i.restrepo@uth.tmc.edu

Abstract

Background
Aging increases the risk of tuberculosis (TB) and its adverse outcomes, but most studies are based on secondary analyses, and few are in Hispanics. Diabetes is a risk factor for TB in adults, but its contribution in the elderly is unknown. We aimed to identify the role of diabetes and other risk factors for TB in elderly Hispanics.

Methods
Cross-sectional study among newly-diagnosed TB patients, recent contacts (ReC), or community controls (CoC) totaling 646 participants, including 183 elderly (>60 years; 43 TB, 80 ReC, 60 CoC) and 463 adults (18 to 50 years; 80 TB, 301 ReC and 82 CoC). Host characteristics associated with TB and latent Mycobacterium tuberculosis infection (LTBI) were identified in the elderly by univariable and confirmed by multivariable logistic regression.

Results
LTBI was more prevalent among the elderly CoC (55% vs. 23.2% in adults; p<0.001), but not in ReC (elderly 71.3% vs. adult 63.8%); p = 0.213). Risk factors for TB in the elderly included male sex (adj-OR 4.33, 95% CI 1.76, 10.65), smoking (adj-OR 2.55, 95% CI 1.01, 6.45) and low BMI (adj-OR 12.34, 95% CI 4.44, 34.33). Unexpectedly, type 2 diabetes was not associated with TB despite its high prevalence (adj-OR 0.38, 95% CI 0.06, 2.38), and BCG vaccination at birth was protective (adj-OR 0.16, 95% CI 0.06, 0.45).
Conclusions
We report novel distinctions in TB risk factors in the elderly vs. adults, notably in diabetes and BCG vaccination at birth. Further studies are warranted to address disparities in this vulnerable, understudied population.

Introduction
Aging is associated with immune function decline consequent to cellular immunosenescence and inflammaging, and is identified as a risk factor for respiratory tract infections such as tuberculosis (TB) [1, 2]. TB caused an estimated 1.4 million deaths and 10 million new cases in 2019. Approximately one-fourth of the world’s population has latent *Mycobacterium tuberculosis* infection (LTBI) [3]. The relative risk of TB in the elderly is 1.5-fold higher than in adults (21 to 64 years old), and the risk of mortality is ≥ 5-fold higher, with rates ranging from 20 to 30% [4–6]. Elderly patients are difficult to diagnose due to the lack of classical symptoms and to impaired or reduced responses to diagnostics such as the tuberculin skin test. This leads to frequent delays in treatment initiation and in some cases to post-mortem diagnosis [7–9].

Most studies in older people with TB are based on secondary analysis of data [10–12]. These studies have identified risk factors for TB in the elderly, including aging itself, male sex, smoking, and malnutrition, undernutrition or low body mass index (BMI) [11]. Although diabetes increases the risk of TB by 3-fold among adults [13], the link between TB and diabetes in the elderly has not been formally studied. Instead, association studies among all adults suggest a stronger link to diabetes among middle-aged vs. older adults (e.g. ≥ 60 years) [14–17]. Our prior studies among Hispanics in the states of Tamaulipas (Mexico) and Texas (US) identified diabetes as a major contributor to TB, with a 25% population attributable risk fraction [17], but elderly individuals were mostly excluded [18].

Here we sought to identify risk factors for LTBI or TB among the elderly in a Hispanic community across the US-Mexico border [19]. We conducted a cross-sectional study with enrollment of newly-diagnosed TB patients, recent contacts (ReC), and community controls (CoC) among elderly individuals (>60 years), and used adults (18 to 50 years old) as reference. We found shared risk factors for TB between the elderly and adult populations, but most importantly, we identified unique aspects in the elderly, most notably the lack of association between TB and diabetes and a potential protective role of BCG vaccination at birth.

Methods
Ethical statement
This study was approved by the institutional review boards in Mexico (SST/SCAME/DCES/597/2017, Secretaría de Salud de Tamaulipas) and the United States (HSC-SPH-17-0990, University of Texas Health Houston), and all participants signed an informed consent.

Participant enrollment and characteristics
Adults (18 to 50 years) and elderly (>60 years) participants were enrolled at pulmonary and community clinics in South Texas and northern Tamaulipas, Mexico, between 2017 and 2020. Participants included newly-diagnosed active pulmonary TB patients enrolled prior to or within one week of TB treatment (TB), recent TB contacts (ReC), and community controls (CoC) (Fig 1). TB diagnosis was based on isolation of *M. tuberculosis* or positive sputum smear
Fig 1. Enrollment algorithm. Adults (A) and elderly (E) individuals identified in the community (Community controls, CoC), or in pulmonary clinics as newly-diagnosed pulmonary TB patients (TB), or contacts of TB cases with reported exposure ≤6 months before enrollment (Recent contacts, ReC), were invited to participate. TB diagnosis was based on laboratory findings (positive culture and/or acid-fast sputum smear) or clinical criteria based on physician diagnosis and abnormal chest X-ray. LTBI, Latent TB infection. Exclusion based on HIV infection, excessive alcohol use, and drug abuse, with some having more than one of these conditions. Exclusion due to unknown LTBI status, non-tuberculosis mycobacteria (NTM) or pulmonary TB diagnosis ruled out/unclear.

https://doi.org/10.1371/journal.pone.0255194.g001

(laboratory diagnosis), or by clinical symptoms consistent with pulmonary TB and an abnormal chest X-ray (clinical TB) [20]. ReC were defined by exposure for ≥5 h to an active TB case ≤6 months prior to enrollment. CoC were enrolled in the community and reported no previous exposure or a remote exposure >6 months before enrollment (Fig 2). LTBI was assessed by Interferon Gamma Release Assays (IGRA) [QuantiFERON-Gold-in-tube or QuantiFERON-plus (Qiagen, Germantown, MD) or T-SPOT.TB (Oxford Immunotec, Oxford)]. Socio-demographic information was recorded at enrollment as described previously [21].

Fig 2. Definitions for community controls and recent contacts. Community controls were identified in the community (not in pulmonary clinics) and reported no previous exposure or a remote exposure >6 months before enrollment. Recent contacts reported exposure to an active TB case ≤6 months before the time of enrollment. Community controls and recent contacts with at least one positive IGRA assay were classified as LTBI+, and when both negative, then as LTBI-.

https://doi.org/10.1371/journal.pone.0255194.g002
Briefly, macrovascular and microvascular diseases, use of diabetes medications in the past month, or taking non-steroidal anti-inflammatory drugs (NSAIDs) in the past week was based on self-reporting. Excessive alcohol intake was based on a validated questionnaire [22]. Drug abuse was self-reported as daily or weekly use of recreational injectable or non-injectable drugs. Diabetes was based on hyperglycemia (fasting ≥126 mg/dL in most cases, or random ≥200 mg/dL), chronic hyperglycemia (HbA1c ≥6.5%), or self-reported diagnosis [23]. Prediabetes was based on HbA1c between 5.7% and 6.4% or fasting glucose between 110 and 125 mg/dL. HIV infection was based on self-reporting in non-TB cases, or blood test confirmed in TB patients. Total cholesterol, HDL cholesterol and triglycerides were determined using Lipid Panel Test Strips (PTS Diagnostics), and low-density cholesterol (cLDL) was calculated [24].

Data analysis

The study design followed the STROBE guidelines [25]. Data were entered into Microsoft Access and exported into SAS version 9.4 (Cary, NC) for quality control and analysis. Additional analyses were performed using GraphPad Prism version 9.0 (La Jolla, CA). Categorical variables were compared with the Chi-square or Fisher’s exact test. Continuous variables were analyzed for differences in medians using Wilcoxon test or Kruskal-Wallis with Dunn’s multiple comparisons test for > 2 groups. For multivariable logistic regression models, variables were selected based on a p value ≤ 0.099 or biological relevance. Given the low incidence of TB in our study population, we report odds ratios and refer to them as risk factors given their close approximation to risk ratios [17]. Significance was set as p ≤ 0.050 and marginal significance at p ≤ 0.099.

Results

Participant enrollment and characteristics

A total of 744 participants were enrolled (549 adults and 195 elderly). Adults that had a higher prevalence of HIV, excessive alcohol consumption or drug abuse, were excluded given our primary interest in identifying risk factors for TB in the elderly (Fig 1). We further excluded TB suspects with non-tuberculous mycobacteria, unclear or ruled out TB, or ReC with unknown LTBI status. The remaining 646 participants comprised 123 new-diagnosed pulmonary TB (43 elderly and 80 adults), 381 ReC (80 elderly and 301 adults), and 142 CoC (60 elderly and 82 adults; Fig 1). More than half of the participants were females (62.8%) and 72.9% married. Only 39% had an education beyond middle school, 74.8% had health insurance, 71.2% were non-smokers with only 12.6% current smokers. Two-thirds were obese or overweight (66.1%), 71.9% had central obesity, and 28.9% had diabetes (98% type 2 diabetes). Most were BCG vaccinated (88.5%) at birth, and only 2.5% had a history of TB (Table 1).

Age-associated characteristics amongst non-TB or TB participants

We first sought to identify host characteristics that distinguished elderly vs. adult groups, given their higher risk of active TB, or adverse TB outcomes [11, 12, 26]. When analyzing the non-TB groups (CoC and ReC groups), we found that most of the characteristics that distinguished the elderly from adults were similar (S1 Table). Therefore, for most analysis we merged both groups into one ‘non-TB category’. An exception was the analysis related to LTBI given its higher prevalence in the elderly vs. adults among CoCs (E 55.0% vs. A 23.2%; p <0.001), but similarity in ReCs (E 64.1% vs. A 71.3%; p 0.233; S1 Fig; S1 Table).

Among the non-TB participants, the following features distinguished the elderly vs. adults (Table 1; S1 and S2 Figs). Regarding socio-demographics, the elderly had differences in marital
Table 1. Characteristics of the elderly vs. adults, by TB study groups.

	All Adults	Non-TB Adults	Elderly Adults	TB Adults	Elderly Adults	p value	p value
Sociodemographics							
Age, in years	646 43.0 (28.0)	383 38 (14)	140 67 (10.5)	<0.001	80 37.0 (21.0)	43 68.0 (11.0)	<0.001
Male sex	240 37.2%	126 32.9%	38 27.1%	0.209	45 56.3%	31 72.1%	0.008
Marital status	<0.001						
Never married	104 16.1%	68 17.8%	7 5.0%	21 26.3%	8 18.6%		
Ever married *	471 72.9%	306 79.9%	84 60.0%	56 70.0%	25 58.1%		
Widowed	71 11.0%	9 2.3%	49 35.0%	3 3.8%	10 23.3%		
Smoking						0.716	0.099
Never	459 71.2%	284 74.2%	106 75.7%	49 62.0%	20 46.5%		
Past or Current	186 28.8%	99 25.8%	34 24.3%	30 38.0%	23 53.5%		
Smoking—pack per year	644 0.01 (0.40)	383 0 (0.1)	140 0 (0.0)	0.697	79 0.01 (1.50)	42 0.55 (5.10)	0.017
Socioeconomic indicators							
Highest education						<0.001	<0.001
Up to Middle School	394 61.0%	197 51.4%	113 80.7%	46 57.5%	38 88.4%		
High School or College	252 39.0%	186 48.6%	27 19.3%	34 42.5%	5 11.6%		
Health insurance						0.004	0.259
Household family size	566 4.0 (2.0)	331 4.0 (2.0)	119 3.0 (3.0)	<0.001	81 4.0 (2.0)	38 3.0 (4.0)	0.228
Health conditions							
Diabetes (2 categories)	187 28.9%	69 18.0%	66 47.1%	<0.001	31 38.8%	21 48.8%	0.280
Diabetes (3 categories)	<0.001						<0.001
No diabetes	311 48.1%	233 60.8%	32 22.9%	39 48.8%	7 16.3%		
Pre-diabetes	148 22.9%	81 21.1%	42 30.0%	10 12.5%	15 34.9%		
Diabetes	187 28.9%	69 18.0%	66 47.1%	31 38.8%	21 48.8%		
Obesity, BMI	646 27.2 (7.5)	383 28.6 (7.5)	140 27.8 (6.9)	0.266	80 22.2 (7.0)	43 21.7 (5.5)	0.443
Obesity, BMI categories	0.148						0.125
Under/Normal (<24.9)	219 33.9%	86 22.5%	40 28.6%	57 71.3%	36 83.7%		
Over/Obese (≥25)	427 66.1%	297 77.5%	100 71.4%	23 28.8%	7 16.3%		
WHR (M ≥ 0.90; F ≥0.86)	454 71.9%	284 74.2%	111 79.3%	0.399	37 47.4%	22 52.4%	0.078
Macrovascular diseases	153 23.7%	51 13.3%	80 57.1%	<0.001	7 8.4%	15 34.9%	<0.001
Microvascular diseases	169 26.2%	68 17.8%	65 46.4%	<0.001	20 24.1%	18 41.9%	0.040
NSAIDs in past week	128 23.3%	48 12.5%	40 28.6%	<0.001	24 31.2%	16 42.1%	0.247
TB-related conditions							
Past TB	13 2.5%	9 2.3%	4 2.9%	0.742	10 12.1%	4 9.3%	0.642
Latent TB infection **	211 55.1%	212 55.4%	91 65.0%	0.048	N/A	N/A	
BCG vaccine	570 88.5%	341 89.0%	131 93.6%	0.158	70 87.5%	28 65.1%	0.003

Data expressed as column % for categorical variables or median (interquartile range, IQR) for continuous; Normal range values for each parameter shown in parenthesis

* Ever married includes married, cohabitation, divorced or separated; NSAIDs, non-steroidal anti-inflammatory drugs; WHR, waist-hip ratio or Central obesity; M, Male; F, Female; p values ≤ 0.099 shown in bold

** Latent TB infection based on a positive T-Spot.TB or QuantiFERON assay, LTBI only evaluated in non-TB study groups; BMI, Body-mass index

https://doi.org/10.1371/journal.pone.0255194.t001

status (mostly widowed; p <0.001) and socioeconomic indicators [lower education (p <0.001) and smaller family size (p <0.001), but higher frequency of health insurance (p = 0.004)].

Regarding health conditions, the elderly had a higher prevalence of diabetes and pre-diabetes...
Risk factors for TB in the elderly

In order to determine if diabetes or other host characteristics are risk factors for TB in our elderly Hispanic cohort, we compared the elderly who had TB vs. those who did not (S3 Table and S3 Fig). For diabetes and related conditions, the elderly TB participants had lower prevalence of impaired fasting glucose (4.7% vs. 15.7%) or hyperglycemia (20.9% vs. 28.6%; p = 0.058).
Regarding obesity and lipid profiles, the elderly with TB vs. no TB, had a higher prevalence of lower BMI and low central obesity (p < 0.001), lower total cholesterol (p = 0.004), LDL cholesterol (p < 0.001) and triglycerides (p < 0.001). Regarding socio-demographics, the elderly with TB had a higher proportion of males or smoking index (p < 0.001). The elderly TB participants had a lower prevalence of BCG vaccination (p < 0.001) or macrovascular diseases (p = 0.011).

To determine if these host characteristics were independently associated with TB in the elderly, we conducted a multivariable logistic regression analysis. In our initial model 1, we evaluated glycemia as a diabetes-defining variable, together with sex, smoking history, BCG vaccination and BMI (selected from the variables defining obesity and lipid profiles). Our analysis showed that hyperglycemia and impaired fasting glucose were not associated, while male sex, BCG vaccination and BMI remained independently associated with TB, and smoking was associated when modeling ‘past’ vs. ‘current or never’ TB (Table 3; Fig 3). Given the unexpected association with BCG vaccination, in model 2 we removed BMI and dysglycemia since they could be a consequence of TB. However, absence of BCG vaccination remained associated with risk of TB in the elderly, along with male sex and smoking.

Previous studies in adults, including our own, indicated that diabetes is a risk factor for TB, and that BCG vaccination does not confer protection for TB development [17, 29]. To confirm if these findings would hold in our adult cohort, we ran the same multivariable models as described for the elderly. Our findings confirmed that in adults there are higher odds of hyperglycemia (adj-OR 4.37, 95% CI 2.22, 8.58) or impaired fasting glucose (adj-OR 5.84, 95% CI

Table 3. Univariable and multivariable models for odds of TB vs. non-TB patients by host characteristics, in the elderly or adults.

	Elderly: TB vs non-TB	Adults: TB vs non-TB
	OR (95% CI)	Model 1 1\(^a\)
		Model 2 1\(^b\)
		Adj-OR (95% CI)
		Exclude BMI, glycemia
Male vs female sex	6.93 (3.23, 14.87)	3.92 (1.41, 10.88)
		4.33 (1.76, 10.65)
		2.65 (1.61, 4.37)
		2.80 (1.49, 5.25)
Smoking, ’Past’ vs ’current or never’	5.37 (2.46, 11.70)	5.43 (1.627, 18.122)
		2.55 (1.008, 6.449)
		4.71 (2.68, 8.29)
		5.41 (2.57, 11.38)
BCG vaccine, No vs Yes	7.86 (3.13, 19.74)	5.36 (1.68, 17.10)
		6.15 (2.24, 16.92)
		1.17 (0.56, 2.44)
		0.73 (0.30, 1.77)
		0.98 (0.45, 2.16)
Glycemia		
Normoglycemia	1.0	1.0
Impaired Fasting Glucose	0.22 (0.05, 0.99)	0.38 (0.06, 2.38)
	2.11 (0.93, 4.76)	5.84 (2.07, 16.49)
Hyperglycemia	0.54 (0.24, 1.25)	0.52 (0.18, 1.46)
	3.30 (1.92, 5.80)	4.37 (2.22, 8.58)
Diabetes	1.07 (0.54, 2.12)	2.88 (1.71, 4.84)
Obesity		
Underweight/normal	12.99 (5.34, 31.58)	12.34 (4.44, 34.33)
	9.01 (5.26, 15.42)	14.30 (7.48, 27.32)
Overweight/Obese	1.0	1.0
	1.0	1.0

\(^a\) Model-1. Controlled for all variables in the table.
\(^b\) Model-2. Model 1, except for BMI and glycemia; 95% CI with p values ≤ 0.099 shown in bold; In sensitivity analysis, additional models were evaluated: Model 1A. When glycemia was replaced by diabetes (2 categories) in Model 1, diabetes remained associated with TB in adults (adj-OR 4.08, 95% CI 2.13, 7.80), but not in the elderly [adj-OR 1.70 (0.65, 4.45)]. Model 1B. Addition of education or health insurance did not modify the associations already observed in Model 1.

https://doi.org/10.1371/journal.pone.0255194.t003
2.07, 16.49) in TB patients (model 1), and a lack of association between TB and BCG vaccination (models 1 and 2; Table 3 and Fig 3). Past smoking, male sex and lower BMI were also associated with TB in both models (Fig 3).

Host factors associated with BCG vaccination

Given our observed protective effect of BCG vaccination for TB in the elderly (Fig 3), we evaluated if there was another host characteristic associated with BCG vaccination that we had not identified, that could influence TB risk (e.g. a confounding factor; S4 Table). Among all study participants, BCG vaccination was more prevalent in females vs. males (p = 0.014), non-TB vs. TB participants (p < 0.001), individuals with higher education (p = 0.027) and access to health insurance (p = 0.027). After controlling for age, sex and TB, BCG vaccination remained associated with higher education level and access to health insurance. Therefore, we expanded the multivariable analysis shown in Fig 3, by adding education or health insurance to the models. However, neither of these variables affected the associations already noted, i.e. risk of TB and lack of BCG vaccination, and the lack of association with diabetes, among the elderly.

Clinical characteristics of the elderly with TB

Since the diagnosis of TB can be challenging in the elderly [30], we also evaluated whether the elderly differed in their microbiological or clinical presentation of active TB when compared
to adults. Our results showed no significant differences in sputum acid-fast smear results or grade, nor the proportion with positive culture (Table 4). Signs and symptoms were similar for cough, productive cough, hemoptysis, chest pain or weight loss, but other important distinguishing features were observed in the elderly. Namely, elderly participants were less likely to report fever or chills, and had a longer history of cough or weight loss prior to TB diagnosis.

Characteristics of the elderly with LTBI

Among the elderly CoC group, more than half had LTBI (Table 1), which puts them at higher risk for TB reactivation when compared to non-infected elderly [4]. However, we did not find any host factor associated with LTBI status among elderly CoC. Furthermore, among elderly ReC there were few differences when comparing positive vs. negative LTBI (S5 Table).

Discussion

We conducted a cross-sectional study to identify unique aspects of TB and LTBI in elderly Hispanics from the Texas-Mexico border region. TB risk factors such as HIV/AIDS, excess alcohol use and drug abuse were more prevalent in adults, and were excluded from analysis. We found that few host factors were associated with LTBI status. In contrast, the elderly had a higher prevalence of birth cohort characteristics that are known risk factors for active TB in adults, such as diabetes and lower education [31, 32]. Interestingly, despite the high prevalence of diabetes in the elderly population, we found that it was not associated with TB. Instead, being male, smoking and having a low BMI were risk factors for TB in the elderly. An additional unexpected finding was the protective effect of BCG vaccination at birth in the elderly.

Our finding that diabetes is not a risk factor for TB in the elderly contrasts with numerous studies in adults, including our own, where diabetes patients have a 1.5 to 3-fold higher risk of TB [15, 17, 33]. We confirmed that adult diabetes patients have a higher risk of TB, and we
further observed a higher risk of TB in adults with impaired fasting glucose. However, hyperglycemia and impaired fasting glucose were not associated with TB in the elderly. In fact, impaired fasting glucose was protective by univariable analysis. A reduced strength in the association between TB and diabetes has been noted in past studies, but its implications for the elderly population have not been explicitly evaluated in multivariable models [14, 15]. In fact, diabetes continues to be regarded as a risk factor for TB among the elderly [34, 35]. We speculate that in the elderly, the lack of an association between type 2 diabetes and TB is explained by differences in the underlying pathophysiology of diabetes. Type 2 diabetes in the elderly is characterized by a milder hyperglycemia due to delayed responsiveness of pancreatic beta cells to release insulin versus high levels of insulin, insulin resistance and a more severe hyperglycemia in adults. We also cannot rule out a survivor effect of well-controlled diabetes in our elderly cohorts. We are currently evaluating these distinctions.

In experimental models, BCG vaccine can extend the survival of diabetic mice infected with \textit{M.\textit{tb}} through reduced immunopathology, potentially mediated by Th2/M2-mediated mechanisms [36]. Although these studies only evaluated mice for one year, equivalent to mid-life for mice [37], we can perhaps extrapolate that BCG would also afford older diabetic mice protection from TB. Specific studies to address BCG and diabetes in the context of TB have not been performed, but BCG vaccination of old mice [38] and guinea pigs [39] does provide protection against TB. Our findings raise the need to evaluate the occurrence of dysglycemia in old mice, and document its relationship to TB risk. Despite the lack of association between diabetes and TB in the elderly population, we recommend the screening for diabetes in all newly diagnosed elderly TB patients given that management of acute hyperglycemia is important for proper immune function against \textit{M.\textit{tuberculosis}} [40–42]. Furthermore, diabetes may be associated with adverse TB treatment outcomes in the elderly, as is the case for adults [5, 43].

Our findings showed a lack of association between BCG vaccination and TB in adults, which is consistent with the literature [44]. However, a novel observation in our study was that the elderly with history of BCG vaccination were less likely to have TB. BCG may confer protection against LTBI in adults [45], but is mostly known for its protective effect against disseminated TB in children [46]. We are not aware of any other documentation that BCG vaccination at birth will confer protection from TB in elders. A recent meta-analysis concluded that BCG confers protection against TB shortly after vaccination, and hence, its effect is most notable in children but not in adults in high burden settings. Their results in adults do not support our findings, but there is limited data in individuals beyond 60 years of age [47]. Confirmation of our findings in other elderly cohorts would open the possibilities for considering a booster BCG in the elderly. Indeed, BCG induces a non-specific protective effect against other microbial infections in young children through the induction of long-lasting epigenetic changes in the bone marrow myeloid precursor for monocytes, a process known as trained immunity [48]. Evidence for BCG-induced trained immunity in elderly individuals was recently demonstrated by the ACTIVATE trial, in which BCG vaccination of individuals 65 years and older lowered the risk of viral respiratory infections [49], although preliminary analysis of the BCG-PRIME study shows no protection against COVID-19 [50]. We speculate that BCG-induced trained immunity at birth confers a “baseline” protection against active TB development that persists throughout life. This “baseline” protection is most notable when the immune system is still immature in newborns, and when it wanes in the elderly, but not in other age groups where other aspects of the immune system, including adaptive immunity, play a prominent role in \textit{M.\textit{tb}} infection control. Consistent with this possibility, BCG at birth can confer heterologous protection against other respiratory infections, potentially further shaping the pulmonary immune system through adult and elderly life [51].
TB delayed diagnosis or misdiagnosis and high mortality rates in the elderly are attributed to their increased likelihood of absent, altered, or delayed clinical symptoms, presence of age-associated conditions such as cognitive impairment, and clinical symptoms shared by active TB and old age such as fatigue, and weight loss [5, 30, 52, 53]. In our elderly cohort, we found clinical differences such as a lower prevalence of fever and chills, and longer duration of cough and weight loss. In fact, several elderly TB patients died prior to enrollment in our study or TB treatment initiation. There is a need for biomarkers to enhance TB diagnosis and prognosis in this population. Candidates include the higher neutrophil/lymphocyte and monocyte/lymphocyte ratios observed by others and us, associated with more severe TB in adults [54–59].

Study limitations are the small sample size of our elderly cohort, particularly for some sub-analysis. We also defined elderly participants as those 60 years and older, but TB risk increases with age among the elderly, with waning representation in the oldest age groups [4]. Our study could be affected by survival bias, with some TB patients dying prior to enrollment.

In summary, our findings in elderly Hispanics confirm the presence of shared risk factors for TB with adults, such as being male, smoking and low BMI. Importantly, our findings highlight differences between age groups, notably the lack of an association between TB and diabetes, and the potential protective effect of BCG vaccination in the elderly population. Despite its low prevalence in our study population, smoking was another independent risk factor for TB that deserves further evaluation in other elderly cohorts. Our results call for future studies in the elderly population, for tailored identification of risk factors for LTBI, active TB or adverse TB outcomes, in this unique, heterogeneous, vulnerable and understudied population.

Supporting information

S1 Fig. Sociodemographic and health-related conditions by age group and TB status. Percentage of adults (A) and elderly (E) with TB and without TB (No TB) for select sociodemographic factors and health-related conditions. For smoking history, A and E with TB and No TB are shown as smoking pack per year. Student’s t test between age groups (A vs E) among participants with No TB or TB; *p < 0.05. Dotted lines for BMI indicate cut-offs for underweight (<18.5), normal (18.5–24.9), overweight (25–30) and obese (<30); LTBI, latent TB infection; NSAIDs, nonsteroidal anti-inflammatory drugs. (DOCX)

S2 Fig. Lipid and complete blood count and differentials by age group and TB status. Percentage of adults (A) and elderly (E) with TB and without TB (No TB) with high cholesterol, high LDL, low HDL, and high triglycerides (top row). Bottom row shows complete blood counts (x1e3/μL) for immune cell populations and neutrophil: Lymphocyte and monocyte: Lymphocyte ratios by age and TB status (TB and No TB). Student’s t test between age groups (A vs E) among participants with No TB or TB; *p ≤ 0.05; # p between 0.051–0.099. (DOCX)

S3 Fig. Distinguishing characteristics of elderly with TB versus no TB. Percentage of EL with TB and without TB (No TB) for select sociodemographic factors, health-related conditions, and lipids. Student’s t test between elderly (EL) with No TB and EL with TB; *p ≤ 0.05. IFG, Impaired fasting glucose. (DOCX)

S1 Table. Characteristics of the elderly vs. adults, among CoC or ReC groups. (DOCX)
S2 Table. Complete blood counts and differential in elderly vs. adults, by TB status. (DOCX)

S3 Table. Characteristics of TB vs. non-TB patients in the elderly. (DOCX)

S4 Table. Host factors associated with BCG vaccination among all study participants. (DOCX)

S5 Table. Unique characteristics in the elderly recent TB contacts, by LTBI status. (DOCX)

Acknowledgments
We would like to acknowledge Kristen Maynard, Danyelle Garza, Erica de Leon, Marielena Benavidez, Mateo Joya-Ayala and Fabiola Lopez for their technical support. We also thank the health professional at the clinics where participants were identified in South Texas (Hidalgo and Cameron County Department of Health and Human Services and Nuestra Clínica del Valle) and northeastern Mexico [TB clinics from the Secretaría de Salud (SSA) de Tamaulipas in Reynosa and Matamoros, and an adult care center from the Sistema para Desarrollo Integral de la Familia in Matamoros]. We thank the members of the Secretaría de Salud de Tamaulipas, including Q.F.B. Cristela Resendez-Cardoso, Drs. Francisco García-Luna Martínez and Ariel Mercado-Cárdenas (administration) and Mr. Jorge Perez-Navarro (logistics). We dedicate this study to the memory of our team members who were passionate about TB research, and whom we lost to COVID-19 in 2020, Dr. Francisco Mora-Guzmán and R. Eminé Rodríguez-Reyna.

Author Contributions
Conceptualization: Eder Ledezma-Campos, Larry S. Schlesinger, Jordi B. Torrelles, Joanne Turner, Blanca I. Restrepo.
Data curation: Julia M. Scordo, Genésis P. Aguillón-Durán, Doris Ayala, Ana Paulina Quiroño-Cerrillo, Eminé Rodríguez-Reyna, Jose A. Caso.
Formal analysis: Julia M. Scordo, Jose A. Caso, Eder Ledezma-Campos, Blanca I. Restrepo.
Funding acquisition: Julia M. Scordo.
Investigation: Blanca I. Restrepo.
Methodology: Blanca I. Restrepo.
Project administration: Francisco Mora-Guzmán, Eder Ledezma-Campos, Joanne Turner, Blanca I. Restrepo.
Resources: Joanne Turner.
Software: Julia M. Scordo.
Supervision: Blanca I. Restrepo.
Validation: Blanca I. Restrepo.
Writing – original draft: Julia M. Scordo.
Writing – review & editing: Julia M. Scordo, Francisco Mora-Guzmán, Eder Ledezma-Campos, Larry S. Schlesinger, Jordi B. Torrelles, Joanne Turner, Blanca I. Restrepo.
References

1. Vesosky B, Turner J. The influence of age on immunity to infection with Mycobacterium tuberculosis. Immunol Rev. 2005; 205:229–43. https://doi.org/10.1111/j.0105-2896.2005.00257.x PMID: 15882357

2. Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters. Exp Gerontol. 2018; 105:32–9. https://doi.org/10.1016/j.exger.2017.12.021 PMID: 29287772

3. WHO. Global Tuberculosis Report 2020. World Health Organization, 2020.

4. Hochberg NS, Horsburgh CR Jr. Prevention of tuberculosis in older adults in the United States: obstacles and opportunities. Clin Infect Dis. 2013; 56(9):1240–7. https://doi.org/10.1093/cid/cit027 PMID: 23362286

5. Garcia-Goez JF, Velez JD, Mora BL, Parra-Lara LG, Pino-Escobar J, Cayla JA, et al. Tuberculosis in elderly patients in the city of Cali, Colombia: a hospital-based cohort study. J Bras Pneumol. 2020; 46(5):e20200072. https://doi.org/10.1016/j.jbpe.2020.01.007 PMID: 32027469

6. Abdelbary BE, Garcia-Viveros M, Ramirez-Oropesa H, Rahbar MH, Restrepo BI. Predicting treatment failure, death and drug resistance using a computed risk score among newly diagnosed TB patients in Tamaulipas, Mexico. Epidemiol Infect. 2017; 145(14):3020–34. https://doi.org/10.1017/S0950268817001911 PMID: 28903800

7. Rajagopalan S. Tuberculosis and aging: a global health problem. Clin Infect Dis. 2001; 33(7):1034–9. https://doi.org/10.1086/322671 PMID: 11528577

8. Byng-Maddick R, Noursadeghi M. Does tuberculosis threaten our ageing populations? BMC Infectious Diseases. 2016; 16:119. https://doi.org/10.1186/s12879-016-1451-0 PMID: 26968654

9. Abbara A, Collin SM, Kon OM, Buell K, Sullivan A, Barrett J, et al. Time to diagnosis of tuberculosis is greater in older patients: a retrospective cohort review. ERJ Open Res. 2019; 5(4). https://doi.org/10.1183/23120541.00228-2018 PMID: 31720296

10. Benjamini Y, Hochberg Y. A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 1995; 57:289–300.

11. Cheng J, Sun YN, Zhang CY, Yu YL, Tang LH, Peng H, et al. Incidence and risk factors of tuberculosis among the elderly population in China: a prospective cohort study. Infect Dis Poverty. 2020; 9(1):13. https://doi.org/10.1186/s40249-019-0614-9 PMID: 32005290

12. Rajagopalan S. Tuberculosis in Older Adults. Clin Geriatr Med. 2016; 32(3):479–91. https://doi.org/10.1016/j.cger.2016.02.006 PMID: 27394018

13. Bigelow A, Freeland B. Type 2 Diabetes Care in the Elderly. The Journal for Nurse Practitioners. 2017; 13(3):181–6.

14. Ponce-De-Leon A, Garcia-Garcia Md Mde L, Garcia-Sancho MC, Gomez-Perez FJ, Valdespino-Gomez JL, Olaz-Fernandez G, et al. Tuberculosis and diabetes in southern Mexico. Diabetes Care. 2004; 27(7):1584–90. https://doi.org/10.2337/diacare.27.7.1584 PMID: 15220232

15. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008; 5(7):1091–101. https://doi.org/10.1371/journal.pmed.0050152 PMID: 18630984

16. Kim SJ, Hong YP, Lew WJ, Yang SC, Lee EG. Incidence of pulmonary tuberculosis among diabetics. Tub Lung Dis. 1995; 76(5):529–33. https://doi.org/10.1016/0962-8479(95)90529-4 PMID: 8593374

17. Restrepo BI, Camerlin AJ, Rahbar MH, Wang W, Restrepo MA, Zarate I, et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull WHO. 2011; 89(5):352–9. https://doi.org/10.2471/BLT.10.085738 PMID: 21556303

18. Restrepo BI, Schlesinger LS. Host-pathogen interactions in tuberculosis patients with type 2 diabetes mellitus. Tuberculosis (Edinb). 2013; 93(S1):S10–S4. https://doi.org/10.1016/S1472-9792(13)70004-0 PMID: 24388642

19. Fisher-Hoch SP, Rentfro A, Salinas J, Perez A, Brown H, Reininger B, et al. Socioeconomic status and prevalence of obesity and diabetes in a Mexican American community, Cameron County, Texas, 2004–2007. Prev Chronic Dis. 2010; 7(3):1–10.

20. CDC. Diagnosis of Tuberculosis Disease 2016 [Available from: https://www.cdc.gov/tb/publications/factsheets/testing/diagnosis.htm.

21. Restrepo BI, Kleyhans L, Salinas AB, Abdelbary BE, Tshivhula H, Aguillon G, et al. Diabetes screen during tuberculosis contact investigations highlights opportunity for diabetes diagnosis and reveals metabolic differences between ethnic groups. Tuberculosis (Edinb). 2018; 113:10–8. https://doi.org/10.1016/j.tube.2018.08.007 PMID: 30514492

22. Rehm J, Greenfield TK, Walsh G, Xie Y, Robson L, Single E. Assessment methods for alcohol consumption, prevalence of high risk drinking and harm: a sensitivity analysis. Int J Epidemiol. 1999; 28(2):219–24. https://doi.org/10.1093/ije/28.2.219 PMID: 10342682
Tuberculosis in elderly Hispanics

23. American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(Suppl 1):S14–S31. https://doi.org/10.2337/dc20-S002 PMID: 31862745

24. Restrepo BI, Kleynhans L, Salinas AB, Abdelbary B, Tshivhula H, Aguillon-Duran GP, et al. Diabetes screen during tuberculosis contact investigations highlights opportunity for new diabetes diagnosis and reveals metabolic differences between ethnic groups. Tuberculosis (Edinb). 2018; 113:10–8. https://doi.org/10.1016/j.tube.2018.06.007 PMID: 30514492

25. von EE, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandebroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007; 370(9596):1453–7. https://doi.org/10.1016/S0140-6736(07)61602-X PMID: 18064739

26. Behr MA, Edelson PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018; 362:k2738. https://doi.org/10.1136/bmj.k2738 PMID: 30139910

27. Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk Factors for Tuberculosis. Pulmonary Medicine. 2013; 2013:828939. https://doi.org/10.1155/2013/828939 PMID: 23476764

28. Jiamsakul A, Lee MP, Nguyen KV, Merati TP, Cuong DD, Ditangco R, et al. Socio-economic status and risk of tuberculosis: a case-control study of HIV-infected patients in Asia. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2018; 22(2):179–86. https://doi.org/10.1055/s-0038-16834936

29. Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: Why does BCG fail to protect against tuberculosis? Vaccine. 2015; 33(39):5035–41. https://doi.org/10.1016/j.vaccine.2015.08.033 PMID: 26319069

30. Jackson DA, Maller K, Porter KA, Nieremeier RT, Fearey DA, Pope L, et al. Challenges in assessing transmissibility of Mycobacterium tuberculosis in long-term-care facilities. Am J Infect Control. 2017; 45(9):992–6. https://doi.org/10.1016/j.ajic.2015.03.035 PMID: 25952618

31. Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS, et al. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 1: Epidemiology and Clinical Management. Chest. 2017; 152(1):165–73. https://doi.org/10.1016/j.chest.2017.04.155 PMID: 28434936

32. Burusie A, Enques ilassie F, Addissie A, Dessalegn B, Lamaro T. Effect of smoking on tuberculosis treatment outcomes: A systematic review and meta-analysis. PLoS One. 2020; 15(9):e0239333. https://doi.org/10.1371/journal.pone.0239333 PMID: 32941508

33. Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One. 2017; 12(11):e0187967. https://doi.org/10.1371/journal.pone.0187967 PMID: 29161276

34. Komine-Aizawa S, Yamazaki T, Hattori S, Miyamoto Y, Yamamoto N, et al. Influence of advanced age on Mycobacterium bovis BCG vaccination in guinea pigs aerogenically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol. 2010; 17(10):1500–6. https://doi.org/10.1128/CVI.00732-10 PMID: 20689595

35. Lin Y-H, Chen C-P, Huang J-C, Ho C, Weng H-H, et al. Screening for pulmonary tuberculosis in type 2 diabetes elderly: a cross-sectional study in a community hospital. BMC Public Health. 2015; 15(1):3.

36. Radhakrishnan RK, Thandi RS, Tripathi D, Paidipally P, McAllister MK, Mulik S, et al. BCG vaccination reduces the mortality of Mycobacterium tuberculosis-infected type 2 diabetes mellitus mice. JCI Insight. 2020; 5(6). https://doi.org/10.1172/jci.insight.137388 PMID: 32161276

37. Dutta S, Sengupta P. Men and mice: Relating their ages. Life Sci. 2016; 152:244–8. https://doi.org/10.1016/j.lfs.2015.09.025 PMID: 26596563

38. Komine-Aizawa S, Yamazaki T, Hattori S, Miyamoto Y, Yamamoto N, et al. Influence of advanced age on Mycobacterium bovis BCG vaccination in guinea pigs aerogenically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol. 2010; 17(10):1500–6. https://doi.org/10.1128/CVI.00732-10 PMID: 20689595

39. Restrepo BI, Twahirwa M, Jagannath C. Hyperglycemia and dyslipidemia: Reduced HLA-DR expression in monocyte subpopulations from diabetes patients. Hum Immunol. 2020. https://doi.org/10.1016/j.kinum.2020.11.005 PMID: 33303215

40. Restrepo BI, Khan A, Singh VK, Erica d-L, Aguillon-Duran GP, Ledeza Campos E, et al. Human monocyte-derived macrophage responses to M. tuberculosis differ by the host’s tuberculosis, diabetes or obesity status, and are enhanced by rapamycin. Tuberculosis (Edinb). 2020; 126:102047. https://doi.org/10.1016/j.tube.2020.102047 PMID: 33419150

41. Restrepo BI, Khan A, Singh VK, Erica d-L, Aguillon-Duran GP, Ledeza Campos E, et al. Human monocyte-derived macrophage responses to M. tuberculosis differ by the host’s tuberculosis, diabetes or obesity status, and are enhanced by rapamycin. Tuberculosis (Edinb). 2020; 126:102047. https://doi.org/10.1016/j.tube.2020.102047 PMID: 33419150
42. Ronacher K, van Crevel R, Critchley JA, Bremer AA, Schlesinger LS, Kapur A, et al. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms. Chest. 2017; 152(1):174–80. https://doi.org/10.1016/j.chest.2017.02.032 PMID: 28434937

43. Di Gennaro F, Vittozzi P, Gualano G, Musso M, Mosti S, Mencarini P, et al. Active Pulmonary Tuberculosis in Elderly Patients: A 2016–2019 Retrospective Analysis from an Italian Referral Hospital. Antibiotics (Basel). 2020; 9(6). https://doi.org/10.3390/antibiotics9060489 PMID: 32784552

44. Moliva JI, Turner J, Torrellas JB. Immun e Responses to Bacillus Calmette-Guerin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol. 2017; 8:407. https://doi.org/10.3389/fimmu.2017.00407 PMID: 28434937

45. Lin CH, Kuo SC, Hsieh MC, Ho SY, Su IJ, Lin SH, et al. Effect of diabetes mellitus on risk of latent TB infection in a high TB incidence area: a community-based study in Taiwan. BMJ Open. 2019; 9(10):e029948. https://doi.org/10.1136/bmjopen-2019-029948 PMID: 31662365

46. Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Roshan R, Habermann S, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ. 2014; 349:g4643. https://doi.org/10.1136/bmj.g4643 PMID: 25097193

47. Trauer JM, Kawai A, Coussens AK, Datta M, Williams BM, McBryde ES, et al. Timing of Mycobacterium tuberculosis exposure explains variation in BCG effectiveness: a systematic review and meta-analysis. Thorax. 2021. https://doi.org/10.1136/thoraxjn-2020-216794 PMID: 33893231

48. Netea MG, Dominguez-Andres J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020; 20(6):375–88. https://doi.org/10.1038/s41577-020-0285-6 PMID: 32132681

49. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, Dominguez-Andres J, et al. Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell. 2020; 183(2):315–23 e9. https://doi.org/10.1016/j.cell.2020.08.051 PMID: 32941801

50. TB vaccine does not protect vulnerable elderly people against COVID-19. Netherland News Live. 2021 1/18/2021;Sect. Health.

51. de Castro MJ, Pardo-Seco J, Martinon-Torres F. Nonspecific (Heterologous) Protection of Neonatal BCG Vaccination Against Hospitalization Due to Respiratory Infection and Sepsis. Clin Infect Dis. 2015; 60(11):1611–9. https://doi.org/10.1093/cid/civ144 PMID: 25725054

52. Teale C, Goldman JM, Pearson SB. The association of age with the presentation and outcome of tuberculosis: a five-year survey. Age Ageing. 1993; 116(4):961–7. https://doi.org/10.1083/j.1475-7732.1989.116.4.4961 PMID: 10531160

53. Perez-Guzman C, Vargas MH, Torres-Cruz A, Villarreal-Velarde H. Does aging modify pulmonary tuberculosis?: A meta-analytical review. Chest. 1999; 116(4):961–7. https://doi.org/10.1378/chest.116.4.961 PMID: 30802469

54. Russell CD, Parajuli A, Gale HJ, Bultheel NS, Schuetz P, de Jager CPC, et al. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. The Journal of infection. 2019; 78(5):339–48. https://doi.org/10.1016/j.jinf.2019.02.006 PMID: 30802469

55. Stefaniuk P, Szymczyk A, Podhorecka M. The Neutrophil to Lymphocyte and Lymphocyte to Monocyte Ratios as New Prognostic Factors in Hematological Malignancies - A Narrative Review. Cancer Manag Res. 2020; 12:2961–77. https://doi.org/10.2147/CMAR.S245928 PMID: 3245606

56. Wang W, Wang L-f, Liu Y-y, Yang F, Zhu L, Zhang X-h. Value of the Ratio of Monocytes to Lymphocytes for Monitoring Tuberculosis Therapy. Canadian Journal of Infectious Diseases and Medical Microbiology. 2019; 2019:3270393. https://doi.org/10.1155/2019/3270393 PMID: 31263513

57. Jun Wang YY, Wang Xuedong, Pei Hao, Kuai Shougang, Gu Lan, Xing Huiqin, Zhang Yu, Huang Qiusheng, Guo Bin. Ratio of monocytes to lymphocytes in peripheral blood in patients diagnosed with active tuberculosis. Brazilian Journal of Infectious Diseases. 2015; 19(2). https://doi.org/10.1016/j.bjid.2014.10.008 PMID: 25529365

58. Yin Y, Kuai S, Liu J, Zhang Y, Shan Z, Gu L, et al. Pretreatment neutrophil-to-lymphocyte ratio in peripheral blood was associated with pulmonary tuberculosis retreatment. Arch Med Sci. 2017; 13(2):404–11. https://doi.org/10.5114/ams.2016.60822 PMID: 2826195

59. Ault R, Dwivedi V, Koivisto E, Nagy J, Miller K, Nagendran K, et al. Altered monocyte phenotypes but not impaired peripheral T cell immunity may explain susceptibility of the elderly to develop tuberculosis. Exp Gerontol. 2018; 111:35–44. https://doi.org/10.1016/j.exger.2018.06.029 PMID: 29991459