An Optimal and Portable Parsing Method for Romanian, French, and German Large Dictionaries

Neculai Curteanu
Institute of Computer Science, Romanian Academy, Iaşi Branch
ncurteanu@yahoo.com

Alex Moruz
Institute of Computer Science, Romanian Academy; Faculty of Computer Science, “Al. I. Cuza” University, Iaşi
mmoruz@info.uaic.ro

Diana Trandabăţ
Institute for Computer Science, Romanian Academy; Faculty of Computer Science, “Al. I. Cuza” University, Iaşi
dtrandabat@info.uaic.ro

Abstract
This paper presents a cross-linguistic analysis of the largest dictionaries currently existing for Romanian, French, and German, and a new, robust and portable method for Dictionary Entry Parsing (DEP), based on Segmentation-Cohesion-Dependency (SCD) configurations. The SCD configurations are applied successively on each dictionary entry to identify its lexicographic segments (the first SCD configuration), to extract its sense tree (the second configuration), and to parse its atomic sense definitions (the third one). Using previous results on DLR (The Romanian Thesaurus – new format), the present paper adapts and applies the SCD-based technology to other four large and complex thesauri: DAR (The Romanian Thesaurus – old format), TLF (Le Trésor de la Langue Française), DWB (Deutsches Wörterbuch – GRIMM), and GWB (Göthe-Wörterbuch). This experiment is illustrated on significantly large parsed entries of these thesauri, and proved the following features: (1) the SCD-based method is a completely formal grammar-free approach for dictionary parsing, with efficient (weeks-time adaptable) modeling through sense hierarchies and parsing portability for a new dictionary. (2) SCD-configurations separate and run sequentially and independently the processes of lexicographic segment recognition, sense tree extraction, and atomic definition parsing. (3) The whole DEP process with SCD-configurations is optimal. (4) SCD-configurations, through sense marker classes and their dependency hypergraphs, offer an unique instrument of lexicon construction comparison, sense concept design and DEP standardization.

1 Introduction
The general idea behind parsing a large dictionary can be reduced to transforming a raw text entry into an indexable linguistic resource. Thus, for each dictionary entry, a structured representation of its senses has to be created, together with a detailed description of the entry’s form: i.e. morphology, syntax, orthography, phonetics, lexicical semantics, etymology, usage, variants etc.

The aim of this paper is to present an efficient dictionary entry parsing (DEP) method, based on Segmentation-Cohesion-Dependency (SCD) configurations (Curteanu, 2006), applied on a set of five large and complex dictionaries: DLR (The Romanian Thesaurus – new format), DAR (The Romanian Thesaurus – old format), TLF (Le Trésor de la Langue Française), DWB (Deutsches Wörterbuch – GRIMM), and GWB (Göthe-Wörterbuch).

The paper is structured in 8 sections: Section 2 presents the state of the art in DEP, with an emphasis on the comparison between the proposed method and other dictionary parsing strategies, before detailing the SCD-based proposed method in Section 3. The following sections present the application of the proposed method to the five dictionaries. The paper ends with a discussion on
comparative results and development directions concerning optimality, portability, standardization, and dictionary networks.

2 Dictionary Entry Parsing

Natural language text parsing is a complex process whose prerequisite essential stage is a thorough modeling of the linguistic process to be developed, i.e. the structures and relations aimed to constitute the final result of the analysis. Similarly, for DEP, the semantics of the lexical structures, the sense markers, and the hierarchies (dependencies) between sense structures must be specified.

Standard approaches to dictionary entry parsing (referred to from now on as standard DEP), such as the one used by (Neff and Boguraev, 1989), the LexParse system presented in (Hauser and Storrer, 1993; Kammerer, 2000; Lemnitzer and Kunze, 2005), or lexicographic grammars, as those presented in (Curteanu & Amiahesi, 2004; Tufis et al., 1999), recognize the sense / subsense definitions in a strictly sequential manner, along with the incremental building of the entry sense tree. The interleaving of the two running processes is the main source of errors and inefficiency for the whole DEP process.

Both the standard DEP (Figure 1) and our proposed method based on SCD-configurations (Figure 2) involve the following three running cycles and four essential phases for extracting the sense-tree structure from a dictionary:

[A1], [B1] – parsing the lexicographic segments of an entry;

[A2], [B2] – parsing the sense-description segment of the dictionary entry, at the level of explicitly defined senses, until and not including the contents of the atomic definitions / senses; at this stage, the sense-tree of the sense-description segment is built having (sets of) atomic senses / definitions in their leaf-nodes.

[A3], [B3] – parsing the atomic definitions / senses.

Phase_1 := Sense-i Marker Recognition;
Phase_2 := Sense-i Definition Parsing;
Phase_3 := Attach Parsed Sense-i Definition to Node-i;
Phase_4 := Add Node-i to EntrySense-Tree.

The parsing cycles and phases of existing approaches, called standard DEP, are summarized by the pseudo-code in Fig. 1, where Marker-

Number is the number of markers in the dictionary-entry marker sequence and EntrySegment-Number is the number of lexicographic segments of the parsed entry.

[A1]. For s from 1 to EntrySegmentNumber
If(Segment-s = Sense-Segment)

[A2]. For i from 0 to MarkerNumber
Phase_1 Sense-i Marker Recognition;
Phase_2 Sense-i Definition Parsing;
If(Success)
Phase_3 Attach Parsed Sense-i Definition to Node-i;
Phase_4 Add Node-i to EntrySense-Tree;

[A3]. Else Fail and Stop.
EndFor
Output: EntrySenseTree with Parsed Sense Definitions
(only if all sense definitions are parsed).
EndFor

[A1]. Output: Entry parsed segments, including the Sense-Segment (only if all definitions in the Sense-Segment are parsed).

Fig. 1. Standard dictionary entry parsing

The main drawback of the classical, standard DEP, is the embedding of the parsing cycles, [A1] [A2] [A3] ... [/A3] [/A2] [/A1], derived from the intuitive, but highly inefficient parsing strategy based on the general Depth-First searching. After presenting the SCD-based dictionary parsing method, section 3.2. compares the parsing cycles and phases of standard DEP to the ones of SCD-based DEP.

3 Parsing with SCD Configurations

The SCD configuration(s) method is a procedural, recognition-generation computational device, that is distinct from the traditional and cumbersome formal grammars, being able to successfully replace them for several tasks of natural language parsing, including text free parsing (Curteanu, 2006) and thesauri parsing (Curteanu et al., 2008). For SCD-based parsing, the semantics and the linguistic modeling of the text to be analyzed should be clearly specified at each parsing level, and implemented within the following components of each SCD configuration (hereafter, SCD-config):

- A set of marker classes: a marker is a boundary for a specific linguistic category (e.g. A., I., 1., a., etc.). Markers are joined into marker classes, with respect to
their functional similarity (e.g. \{A., B., C., \ldots\}, \{1., 2., 3., \ldots\}, \{a.), b.), \ldots\});

- A hypergraph-like hierarchy that establishes the dependencies among the marker classes;
- A searching (parsing) algorithm.

Once an SCD configuration is defined, parsing with the SCD configuration implies identifying the markers in the text to be parsed, constructing the sequences of markers and categories, recognizing the marked text structures (spans within the bounding markers) corresponding to the SCD configuration semantics, and classifying them according to the marker sequences within the pre-established hierarchy assigned to that SCD configuration. The last step settles the dependencies and correlations among the parsed textual structures. Identifying the lexicographic segments of an entry, the syntactic and semantic structure of each segment, the senses, definitions and their corresponding markers, is the result of an in-depth lexical semantics analysis. Designing the classes and the hypergraph structure of their dependencies are essential cognitive aspects of working with SCD configurations, and need to be pre-established for each dictionary.

Within the parsing process, each SCD configuration, i.e. marker classes, hierarchy, and searching algorithm, is completely commanded by its attached semantics. The semantically-driven parsing process, either for free or specialized texts, consists in a number of SCD configurations applied sequentially (in cascade), each one on a different semantic level. The semantic levels (each one driving an SCD configuration) are subsuming each other in a top-down, monotonic manner, starting with the most general semantics of the largest text span, until the most specific level.

3.1 SCD Configurations for DEP

The SCD-based process for DEP consists in three SCD configurations, applied sequentially on the levels and sublevels of the dictionary entry, where each level should be monotonic at the lexical-semantics subsumption relation.

The task of applying the SCD configurations to DEP requires knowing the semantics of the corresponding classes of sense and definition markers, together with their hierarchical representation.

The first SCD configuration (SCD-config1) is devoted to the task of obtaining the partition of the entry lexicographic segments (Hauser & Storrer, 1993). Since usually there are no dependency relations between lexicographic segments, SCD-config1 is not planned to establish the dependency relations (cycle [A1] in Fig. 1, or cycle [B1] in Fig. 2).

The second important task of DEP is to parse each lexicographic segment according to its specific semantics and linguistic structure. The most prominent lexicographic segment of each entry is the sense-description one, the central operation being the process of extracting the sense tree from the segment. This is the purpose of the second SCD configuration (denoted SCD-config2), corresponding exactly to the DSSD parsing algorithm in (Curteanu et al., 2008), which, for the DLR sense trees, has a precision of 91.18%. In order to refine the lexical-semantics of primary senses, one has to descend, under secondary senses, into the definitions and definition examples, which constitute the text spans situated between two sequentially-related nodes of the parsed sense tree. This SCD configuration is represented as cycle [B2] in Fig. 2.

The third step of DEP parsing (cycle [B3] in Fig. 2) is represented by the configuration SCD-config3, needed to complete the DEP. SCD-config3 consists in a specific set of marker classes for the segmentation at dictionary definitions, the hypergraph-like hierarchy of the classes of markers for these sense definitions, and the parsing algorithm to establish the dependencies among atomic senses / definitions. As a prerequisite groundwork, an adequate modeling of the sense definitions is needed and the segmentation of definitions is implemented as an essential step to establish the dependency-by-subsumption among the sense types of the considered thesaurus. The final result of the entry parsing process should be the sequential application of the SCD-config1, SCD-config2, and SCD-config3 configurations.

3.2 A Structural Analysis: Standard DEP vs. SCD Configurations

A pilot experiment of parsing with SCD configurations was its application to the DLR thesaurus parsing (Curteanu et al., 2008); the process of sense tree building has been completely detached
and extracted from the process of sense definition parsing.

The sense-tree parsing with SCD-based DEP cycles and phases is summarized in pseudo-code in Fig. 2 and comparative Table 1 below.

[B1.]
For s from 1 to $EntrySegmentNumber$
 Segment-s Parsing;
 If(Segment-s = Sense-Segment)
 Standby on Sense-Segment Parsing;
 Else Continue
 EndFor

/B1.]
Output: Entry parsed segments, not including the Sense-Segment;

[B2.]
For i from 0 to $MarkerNumber$
 Phase_1 Sense-i Marker Recognition;
 Assign (Unparsed) Sense-i Definition to Node-i;
 Phase_4 Add Node-i to EntrySenseTree;
 Standby on Sense-i Definition Parsing;
 EndFor

/B2.]
Output: EntrySenseTree (with unparsed sense definitions),
 Node-k = Root(EntrySenseTree);

[B3.]
While not all nodes in EntrySenseTree are visited
 Phase_2 Sense-k Definition Parsing;
 If(Success)
 Phase_3 Attach Parsed Sense-k Definition to Node-k;
 Else Attach Sense-k Parsing Result to Node-k;
 Node-k = getNextDepth
 FirstNode(EntrySenseTree)
 Continue
 EndWhile.

/B3.]
Output: EntrySenseTree (with parsed or unparsed definitions),
Output: Entry parsed segments, including the Sense-Segment.

Fig. 2. SCD-based dictionary entry parsing

Standard DEP	SCD-based DEP
(Phase_1;	(Phase_1;
Phase_2	Phase_4)
(Phase_3;	(Phase_2;
Phase_4)	Phase_3)

Table 1: Dictionary parsing phases in standard DEP and SCD-based DEP

Table 1 presents the ordering of the dictionary parsing phases in the standard DEP strategy (the four phases are embedded) and the SCD-based DEP strategy (the phases are organized in a linearly sequential order).

Since the process of sense tree construction (cycle Phase_1 + Phase_4) has been made completely detachable from the parsing of the (atomic) sense definitions (cycle Phase_2 + Phase_3), the whole SCD-based DEP process is much more efficient and robust. An efficiency feature of the SCD-based parsing technique is that, working exclusively on sense marker sequences, outputs of [B2] and [B3] cycles in Fig. 2 (i.e. sense trees) are obtained either the sense definition parsing process succeeds or not, either correct or not!

These properties of the new parsing method with SCD configurations have been effectively supported by the parsing experiments on large Romanian, French, and German dictionaries.

4 Romanian DLR Parsing

The study of the application of SCD-configuration to DEP started with the analysis of the DLR parsing (Curteanu et al., 2008). Fig. 3 presents the hierarchy of SCD-config2 for DLR sense marker classes,

![Fig. 3. Hierarchy of DLR marker classes](image_url)

The dashed arrows point to the upper or lower levels of DLR sense marker hierarchy, from the literal enumeration layer-embedded level. The continuous-dashed arrows in Fig. 3 point downwards from the higher to the lower priority levels of DLR marker class hypergraph. Because of its special representation characteristics, the literal enumeration is illustrated on a layer attached to the hi-
rarchy level (dashed line) to which it belongs, on each of the sense levels.

A detailed description of the DLR sense tree extraction with SCD-config2 (denoted as DSSD algorithm) is found in (Curteanu et al., 2008).

4.1 DLR Parsing: Problems and Results

The three SCD-configurations establish the dependencies among DLR senses (SCD-config1-2) and definitions (SCD-config3). However, DLR is encoded by default inheritance rules of senses (definitions), acting on all the node levels of the sense / definition trees.

The sense tree parser (output of SCD-config2) was tested on more than 500 dictionary entries of large and medium sizes. The success rate was 91.18%, being computed as a perfect match between the output of the program and the gold standard. Furthermore, it is worth noting that an entry with only one incorrect parse (i.e. one node in the sense tree attached incorrectly) was considered to be erroneously parsed in its entirety, an approach which disregards all the other correctly attached nodes in that entry.

A first source of parsing errors is the non-monotony of the marker values: “A. [B. missing] … C. … “; “2. [instead of 1.] 2. … “; “…a) … b) … c) … b) [instead of d)] “…” Another major source of parsing errors comes from the inherent ambiguity in deciding which is the regent and which is the dependent (sub)sense in marker sequences as “1. a) b) c) [0]…”.

For evaluating SCD-config3, 52 dictionary entries of various sizes were used as a gold standard, totaling a number of approximately 2000 chunks and 22,000 words. The results are given in Table 2. Upon further analysis of the evaluation results, the most frequent errors were found to be due to faulty sigle (abbreviation of the source of examples) segmentation. A detailed analysis of the error types for the DLR dictionary is discussed in (Curteanu et al., 2009).

Correcting the acquisition of sigles leads to a 94.43% f-measure for exact match (the number of correctly identified sense and definition units) and a 98.01% f-measure for overlap (the number of correctly classified words in each entry). To achieve the DLR parsing process completely, the last operation to be executed is to establish the dependency relations between atomic senses / definitions, under all the sense nodes in the computed sense-tree of the entry. Currently, the DLR is parsed almost completely, including at atomic senses / definitions, the lexicographic segments and sense-trees being obtained with a correctness rate above 90% for explicitly marked sense definitions.

5 Romanian DAR Parsing

The structure of the main lexicographical segments in DAR is outlined below:

I. The French Translation segment, denoted FreSeg, contains the French translations of the lemma and the main sense hierarchy of the entry word. The translation of the sense structure into Romanian and the complete description of the sense tree in DAR are in a subsumption relation. In some cases, the French translation may not exist for specific Romanian lemmas.

II. The general description segment (RomSeg) is composed of several paragraphs and contains morphologic, syntactic, semantic, or usage information on the entry word. RomSeg usually starts with the entry word in italics (otherwise, the entry word occurs in the first row of the first paragraph).

III. The third segment of a DAR entry, called SenseSeg, is the lexical-semantic description of the entry word. SenseSeg is the main objective of the lexicographic analysis of the entry parsing in order to obtain its sense tree.

IV. The fourth segment of a DAR, NestSeg, contains one or more “nests”, which are segments of text describing morphological, syntactic, phonological, regional, etc. variants of an entry, sometimes with an attached description of the specific senses. The structure of the DAR nest segment is similar to that of a typical DAR entry, and the recursive nature of DAR entries comes from the sense parsing of nest segments.
V. The fifth segment of DAR entries, denoted EtymSeg, contains etymological descriptions of the entry word and is introduced by an etymology-dash (long dash “—”). Among the five segments of a DAR entry, the only compulsory ones are FreSeg and SenseSeg. The other three segments are optional in the entry description, depending on each entry word.

5.1 DAR Marker Classes and Hierarchy

The priority ordering of DAR marker classes is:

1. Capital letters (LatCapLett_Enum): A., B., ...
2. Capital roman numerals (LatCapNumb_Enum): I., II., ...
3. Arabic numerals (ArabNumb_Enum): 1º., 2º.
 These markers introduce the primary senses, in a similar manner to those in DLR.
4. For introducing secondary senses, DAR uses the same sense markers used in DLR for definitions of type MorDef, RegDef, BoldDef, ItalDef, SpecDef, SpSpecDef, and DefExem, and a set of markers specific to DAR: ||, |, #, †.
5. According to the level of the lexical-semantic description, DAR uses literal enumeration on two levels: (5.a) lowercase Latin letters (LatSmallLett_Enum): a, b, ..., (5.b) a LatSmallLett_Enum can have another enumeration, using lowercase Greek letters (GreSmallLett_Enum): α, β, γ, ...
 The hierarchies for sense markers in DAR are given in Fig. 4.

5.2 Special problems in DAR parsing

A first difficulty for parsing the DAR lexicographic segments is the occurrence of the New_Paragraph (NewPrg). For NewPrg marker recognition we used an implicit level of enumeration, LatSmaNumb_Enum discriminating the cases when NewPrg is (or not) accompanied by another type of DAR sense marker.

The second difficult problem in DAR parsing is the process of refining the NewPrg marker with literal enumerations (LatSmallLett_Enum), which can be in turn refined by an implicit enumeration using NewPrg. This has been solved by interpreting the sense levels for enumerations according to their context.

Using SCD configurations, we have parsed 37 DAR entries of large and medium sizes. The results of the DAR parsing have been evaluated manually, and we estimated the parsing precision as really promising, taking into account the difficult problems raised by DAR. The lack of a gold standard for DAR entries did not allow performing an automatic evaluation at this moment.

DAR Entry Parsing (Excerpt):

```xml
<entry>
  <lexsegm value="FreSeg" class="0">
    <sense value="LARG. A" class="1">
      <definition adj>s, a, şi f. I. 1°. [l]Large, vaste.[/l] 2°. (Fig.) [l]Large, ample, majestueux. Large ment. [l]3°. [l]Au large, à ...[/l]Femme légère, dessalée.[/l]
    </definition>
  </sense>
</lexsegm>
```
6 French TLF Parsing

The French TLF, a very well-organized and structured thesaurus, provides both similarities and distinctive characteristics in comparison to the Romanian DLR. The structure of TLF lexicographic segments, obtained with the SCD-config1, is relatively simple. A TLF entry commences with the sense-description segment, optionally (but very frequently) followed by a package of "final" segments, introduced by specific labels, as in the pattern:

REM. 1. ... 2. ... 3. ...
PRONONC. ET ORTH. – ... Eng.: ...
ÉTYMOL. ET HIST. 1. ... 1. a) ... b) ... 2. ...
3. ... II. ...
STAT. Fréq. abs. littér.: ... Fréq. rel. littér.: ...

DÉR. 1. ... 2. ... 3. a) ... b) ... Rem. a) ... b) ...
BBG. ...

As one may notice, some final segments can enclose particular sense descriptions, similarly to those met in the proper sense-description segment. The sense markers in TLF resemble to those in DLR, but there are also significant differences. The dependency hypergraph of the TLF marker classes is the following:

Cross-linguistic hints involving TLF entry parsing with SCD configurations: (a) A new sense marker (compared to DLR) is "•−" (inheritance- dash), aiming to signal the presence of an inherited sense. (b) When "•−" occurs after another TLF marker, the "•−" role is to inherit a parent sense (either regent or not) from the sense-tree. (c) When "•−" begins at new paragraph (NewPrg), its role is of a intermediary subclass, inheriting the meaning of the regent (sub)sense. (d) Another new TLF marker is "•1., •2., ..." (indexed, small red-ball), defining the new TLF sense concept: Indexed Examples to Definitions for the whole entry (denoted IdxDefExem). (e) The literal enumeration with Latin small letters (LatSmaLett_Enum) is refined with Greek small letters (GreSmaLett_Enum). (f) In TLF, only the filled diamond "◊" marker is present (as secondary sense); the empty diamond "◊" is missing. (g) Some primary senses (“I.”, “A.”) in
TLF receive reversed priorities (Fig. 5) in the marker class hierarchy as compared to DLR.

6.1 TLF Parsing Results

For TLF, we processed 31 significant entries (TLFi, 2010) of medium and large dimensions (entries of 5 pages each, A4 format, in average) with the parser based on SCD configurations. The parsing results have been evaluated manually, the correctness rate being above 90%. One of the reasons of these very promising results for TLF parsing may be the regularity and standardization of the TLF entry texts. An automatic, precise evaluation of the SCD-based parser was not possible since we are missing currently a gold-corpus of TLF entries.

TLF Entry Parsing (Excerpt):

```xml
<entry>
  <lexsegm value="SenseSeg" class="0">
    <sense value="ANNONCER" class="1">
      + definition>
        + sense value="1" class="2">
          + definition>
            + emplois trans.
            + sense value="A" class="3">
              + definition>
                + le sujet désigne une pers.</definition>
                + sense value="1" class="4">
                  + definition>
                    [L'objet désigne un événement] Faire connaître ...
                    + definition>
                    + sense value="a" class="5">
                      + definition>
                        [L'événement concerne la vie quotidienne] ...
                        + definition>
                        + sense value="circle" class="10">
                          + definition>
                            À la mi-novembre, Costals ...
                            + definition>
                            + sense value="circle" class="10">
                              + definition>
                                Électre, fille d'un père puissant, réduite ...
                                + definition>
                                + sense value="circle" class="10">
                                  + definition>
                                    JEUX (de cartes). Faire une annonce ...
                                    + definition>
                                    + sense value="circle" class="10">
                                      + definition>
                                        Celui qui la détient la belote ...
                                        + definition>
                                        + sense value="circle" class="10">
                                          + definition>
                                            ... ...
                                            + definition>
                                            + sense value="b" class="5">
                                              + definition>
                                                JEUX (de cartes). Faire une annonce ...
                                                + definition>
                                                + sense value="circle" class="10">
                                                  + definition>
                                                    "ÉTYMOL. ET HIST.
                                                    + definition>
    <lexsegm value="FinSeg" class="0">
    <sense value="" class="5">
    <definition>
      >(b) BBG.<b> ALLMEN 1956. BRUANT 1901 ...
      + definition>
      + sense>
      + sense>
    </entry>
```

7 Lexicographic Segments and Sense Markers in German DWB and GWB

The German DWB entries comprise a complex structure of the lexicographic segments, which provide a non-uniform and non-unitary composition (Das Woerterbuch-Netz, 2010). One special feature is that DWB and GWB lexicographic segments are composed of two parts: a first (optional) root-sense subsegment, and the segment body, which contain the explicit sense markers, easily recognizable. For DWB, the parsing of lexicographic segments is not at all a comfortable task since they are defined by three distinct means:

(A) After the root-sense of a DWB entry, or after the root-sense of a lexicographic segment, (a list of) italicized-and-spaced key-words are placed to constitute the label of the lexicographic segment that follows. Samples of such key-word labels for DWB lexicographic segments are: “Form, Ausbildung und Ursprung”, “Formen”, “Ableitungen”, “Verwandtschaft”, “Verwandtschaft und Form”, “Formelles und Etymologisches”, “Gebrauch”, “Herkunft”, “Grammatisches”, etc., or, for DWB sense-description segment: “Bedeutung und Gebrauch” (or just “Bedeutung”). In the example below, they are marked in grey.

GRUND, m., dialektisch auch f. gemeingerm. wort; fraglich ist ... poln. russ. slov. nlaus. grunt m. form und herkunft.

1) für das verständnis der vorgeschichte des wortes ist die zwieg sch e l c h t i g e i t ...

H. V. SACHSENHEIM spiegel 177, 30; städtechron. 3, 51, 14. ... drey starcke grund 6, 290. bedeutung. die bedeutungsgeschichte des worzes ...

I. grund bezeichnet die feste untere begrenzung eines dinges.

A. grund von gewässern; seit ältester zeit belegbar: profundum (sc. mare) crunt ahd. gl. 1, 232, 18;
1) am häufigsten vom meer (in übereinstimmung mit dem anord. gebrauch): ...

(B) The second way to specify the DWB current lexicographic segments is to use their labels as key-words immediately after the primary sense markers.

(C) The third (and most frequent) way to identify the lexical description segment(s) of a DWB entry is simply the lack of a segment label at the beginning of the sense description segment. By default, after the entry root-sense segment (which can be reduced to the Latin translation of the German lemma) the sense-description segment comes, without any “Bedeutung” label, introducing explicit sense markers and definitions.

7.1 German DWB and GWB Dependency Hypergraphs. Parsing Results

Without coming into details (see the marker class dependency hypergraphs in Fig.6 and Fig.7), one can say with a good measure of truth that a general resemblance hold between DAR and DWB, and TLF and GWB, respectively. The sense markers in DWB are usual, with the remark that sense refinement by literal enumeration is realized on three levels: LatSmaLett_Enum (a, b, ...), GreSmaLett_Enum (α, β, ...), and GreDoubleSmaLett_Enum (αα, ββ, ...).

A number of 17 very large DWB entries have been parsed only with SCD-config1 and SCD-config2. We appreciate on this small but significant excerpt of DWB entries that parsing of the sense description segment at sense trees is performed with a high precision, but delimitation of the lexicographic (sub-)segments and labels is a more difficult problem. The lack of a DWB entry gold corpus did not allow a precise, automated evaluation of the parser.

8 Directions: Optimal Lexicon Design, Standardization, Lexicon Networks

The special features of parsing with SCD configurations (SCD-configs) are: • SCD-configs is a completely formal grammar-free approach which involves simple, efficient (weeks-time adaptable), thus portable modeling and programs. • In all currently existing DEP methods, the sense tree construction of each entry is, more or less, recursively embedded and mixed within the definition parsing procedures. • SCD-configs provides a lexical-semantics refinement level on each SCD-config. • SCD-configs separate and run sequentially, on independent levels (viz. configurations), the processes of lexicographic segment recognition, sense tree extraction, and atomic definition parsing. • This makes the whole DEP process with SCD-configs to be optimal. • The sense marker classes and their dependency hypergraphs, specific to each thesaurus, offer an unique instrument of lexicon con-
struction comparison, sense concept design and standardization. With the SCD parsing technique, one can easily compare the sense categories, their marking devices, the complexity and recursiveness measure of the sense dependency hypergraphs for each thesaurus.

The cross-linguistic analysis of the five large thesauri showed the necessity of a careful lexical-semantics modeling of each dictionary. Equally important, many semantic and lexico-graphic concepts such as sense markers and definitions, (indexed) examples to definitions, sense and source references etc. can be similar, adaptable, and transferable between corresponding SCD-configurations of different thesauri.

The SCD-configs analysis pointed out the need of a more general and adequate terminology for the lexical-semantics notions. E.g., comparing the Romanian and French thesauri with the German ones, we decided that, while preserving the definition type labels MorDef, DefExem, SpecDef and SpSpecDef, we should change the RegDef into GlossDef, BoldDef into IdiomDef, ItalDef into CollocDef, and add the TLF ldxDef fExem (an indexed DefExem) to the sense concept set.

The future experiments will continue with new thesauri parsing: Russian, Spanish, Italian, but the true challenge shall be oriented towards Chinese / Japanese thesauri. An independent, portable DEP technology based on SCD configurations. A further development would be to align the Romanian thesauri sense and definition types to TEI P5 standards (XCES, 2007), and to design an optimal and cross-linguistic compatible network of Romanian electronic dictionaries, similar to a very good project of dictionary network, i.e. the German Woerterbuch-Netz (with links to TLFi entries too), whose twelve component lexicons include DBW and GWB.

Acknowledgement. The present research was partly financed within the eDTLR grant, PNCDI II Project No. 91_013/18.09.2007.

References

DLR revision committee. (1952). Coding rules for DLR (in Romanian). Romanian Academy, Institute of Philology, Bucharest.

Cristea, D., Rășchip, M., Forăscu, C., Haja, G., Florescu, C., Aldea, B., Dăniliă, E. (2007). The Digital Form of the Thesaurus Dictionary of the Romanian Language. In Proc. of the 4th SpetD 2007.

Curteanu, N., and E. Amihăesei. (2004). Grammar-based Java Parsers for DEX and DTLR Romanian Dictionaries. ECIT-2004, Iasi, Romania.

Curteanu, N. (2006). Local and Global Parsing with Functional (F)X-bar Theory and SCD Linguistic Strategy. (I+I+L), Computer Science Journal of Moldova, Academy of Science of Moldova, Vol. 14 no. 1 (40):74-102; no. 2 (41):155-182.

Curteanu, N., D. Trandabăt, A. M. Moruz. (2008). Extracting Sense Trees from the Romanian Thesaurus by Sense Segmentation & Dependency Parsing, Proceedings of CogAlex Workshop, COLING 2008, ISBN 978-1-905593-56-9., 55-63.

Curteanu, N., Moruz, A., Trandabăt, D., Bolea, C., Spătaru, M., Husarcuie, M. (2009). Sense tree parsing and definition segmentation in eDTLR Thesaurus, in Trandabăt et al. (Eds.), Proc. of the Workshop “Linguistic Resources and Instruments for Romanian Language Processing”, Iasi, Romania, “Al.I.Cuza” University Publishing House, ISSN 1843-911X, pp. 65-74, (in Romanian).

Das Woerterbuch-Netz (2010): http://germazope.uni-trier.de/Projects/WBB/woerterbuecher/

Hauser, R., and A. Storrer. (1993). Dictionary Entry Parsing Using the LexParse System. Lexikographica (9): 174-219.

Kammerer, M. (2000). Wörterbuchparsing Grundsätzliche Überlegungen und ein Kurzbericht über praktische Erfahrungen, http://www.matthias-kammerer.de/content/WBParsing.pdf

Le Trésor de la Langue Française informatisé (2010). http://atilf.atilf.fr/tlf.htm

Lemnitzer, L., and C. Kunze. (2005). Dictionary Entry Parsing, ESSLLI 2005.

Neff, M., and B. Boguraev. (1989). Dictionaries, Dictionary Grammars and Dictionary Entry Parsing, Proc. of the 27th ACL Vancouver, British Columbia, Canada, :91 – 101.

Tufiş, Dan. (2001). From Machine Readable Dictionaries to Lexical Databases, RACAI, Romanian Academy, Bucharest, Romania.

XCES TEI Standard, Variant P5. (2007). http://www.tei-c.org/Guidelines/P5/