Mutation tendency of mutator Plasmodium berghei with proofreading-deficient DNA polymerase δ

Hajime Honma, Mamoru Niikura, Fumie Kobayashi, Toshihiro Horii, Toshihiro Mita, Hiroyoshi Endo,† & Makoto Hirai

In this study, we investigated the mutation tendency of a mutator rodent malaria parasite, Plasmodium berghei, with proofreading-deficient DNA polymerase δ. Wild-type and mutator parasites were maintained in mice for over 24 weeks, and the genome-wide accumulated mutations were determined by high-throughput sequencing. The mutator P. berghei had a significant preference for C/G to A/T substitutions; thus, its genome had a trend towards a higher AT content. The mutation rate was influenced by the sequence context, and mutations were markedly elevated at TCT. Some genes mutated repeatedly in replicate passage lines. In particular, knockout mutations of the AP2-G gene were frequent, which conferred strong growth advantages on parasites during the blood stage but at the cost of losing the ability to form gametocytes. This is the first report to demonstrate a biased mutation tendency in malaria parasites, and its results help to promote our basic understanding of Plasmodium genetics.

Malaria is caused by infection by members of the genus Plasmodium, and during 2013, it was responsible for 197 million malaria cases and 584 thousand deaths. Malaria is still a serious public health concern in tropical and subtropical areas. Treatment for malaria mainly comprises chemotherapy with antimalarial drugs, but the most virulent malaria parasite Plasmodium falciparum has developed resistance to almost all conventional drugs. Artemisinin-based combination therapies are currently recommended as first-line treatments by the World Health Organization, but parasites resistant to artemisinins have been reported recently. These issues make malaria control more complex and demand the development of a new approach to control malaria based on advanced knowledge of the parasites. The recent popularisation of next-generation sequencing (NGS) techniques has made the genomes of several Plasmodium species available, and novel genetic tools have also been developed. These developments have motivated the determination of previously unknown functions of genes to accelerate our understanding of the biology of these parasites. However, most of the existing tools are restricted to applications based on reverse genetics. The piggyBac transposon-mediated insertional mutagenesis method is useful for obtaining knockout mutants, but few forward genetic tools are available for the generation of mutations, such as a mutation conferring drug resistance, via base substitution(s).

In general, the spontaneous mutation rates of eukaryotes are very low due to high nucleotide selectivity and the proofreading functions of DNA polymerase δ (Pol δ) and ε (Pol ε) during nuclear DNA replication as well as DNA repair. However, defects in any of these functions can yield mutator phenotypes with high mutation rates. Mutator phenotypes can rapidly accumulate spontaneous mutations as the sources of both adaptive variation and a deleterious mutational load, which are involved in the emergence of drug resistance and tumourigenesis, respectively. Thus, in a previous study, we developed a new genetic tool to facilitate the efficient

1Department of International Affairs and Tropical Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, Japan. 2Department of Infectious Diseases, Kyorin University School of Medicine, 20-2, Shinkawa 6, Mitaka City, Tokyo, Japan. 3Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Suita, Osaka, Japan. 4Department of Molecular and Cellular Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, Japan. †Present address: Department of Clinical Epidemiology, St. Luke’s International University, 3-6 Tsukiji, Chuo, Tokyo, Japan. Correspondence and requests for materials should be addressed to M.H. (email: m-hirai@juntendo.ac.jp)
generation of new mutants/traits and obtained a mutator malaria parasite (hereafter referred to as PbMut) using a rodent malaria parasite, *P. berghei*, by replacing the intrinsic Pol δ gene with a mutated gene that exhibits a defective 3′ → 5′ proofreading exonuclease activity.

The specific type of mutator has different effects on tumourigenesis in humans and on the emergence of drug resistance in pathogenic bacteria because each mutator allele has a unique mutation spectrum. Thus, we detected an ca. 86- to 90-fold increase in the base substitution rate in PbMut, but its mutation spectrum is unexplained. Therefore, elucidating the mutational trends in PbMut may help us to understand how the parasite acquires genetic variation to facilitate its adaptation to in-host environmental conditions, such as the presence of drugs, thereby allowing the construction and optimisation of the mutant generation system with PbMut. Most previous studies of mutants have been restricted to human cells and major model organisms. The findings obtained from *Plasmodium* species, which are phylogenetically distinct from the previously studied organisms, are also expected to facilitate our understanding of the general characteristics of Pol δ.

To obtain detailed insights into the mutation trends in the mutator malaria parasite, we experimentally evolved PbMut for over 24 weeks via mouse passage, and we identified the genome-wide accumulated mutations by NGS analysis. We demonstrated the existence of mutation bias in PbMut, as found in other Pol δ-mutator organisms. The base substitution rate was influenced by the sequence context, which affected the pattern of amino acid changes. Furthermore, the fitness of the Pol δ-mutator parasite was lower than that of the wild-type parasite, and the emergence of an antimutator allele was observed during the long-term passage of PbMut.

Results

Serial passage of parasites and the following NGS analysis. To analyse the mutation trends in the mutator malaria parasite, the long-term accumulation of mutations followed by NGS analysis were performed with PbMut and its parental strain, *P. berghei ANKA* (clone 2.34) (hereafter referred to as PbWT). In a previous study, we produced one mutation accumulation line of PbMut (Md line in Fig. 1), and we reported mutations in two PbMut clones at the 122nd mouse passage. In the present study, we produced three additional replicate passage lines (Ma, Mb and Mc) for PbMut and three (Wa, Wb, and Wc) for PbWT (Fig. 1). Genomic DNA was extracted from 10 PbMut and three PbWT clones after serial passages for over 24 weeks. The samples were designated with names, such as “Md45A,” where the initial two letters correspond to the passage line, the digits are the number of weeks the PbWT/PbMut parasites were maintained in mice, and “A” or “B” distinguishes clones passed for the same period of weeks. To determine the diversity of the evolved PbMut populations, DNA was also extracted from population samples belonging to the Ma, Mb and Mc lines (Ma25P, Mb25P, and Mc25P in Fig. 1). The extracted DNA was analysed using an Illuma sequencing platform.

Overview of mutations and base substitution rate. In the clones between weeks 28 and 30, we detected only 2–3 base substitutions in PbWT, whereas we detected 30–55 base substitutions in PbMut (Fig. 2, Supplementary Tables S1 and S2). However, the numbers of insertions and deletions (indels) were comparable in the PbMut (1–3 indels) and PbWT (1–2 indels) clones between weeks 28 and 30 (Supplementary Tables S1 and S3). We detected 84–223 base substitutions and 1–9 indels in the Md clones, where the number of mutations increased with the duration of the passage period. These observations suggest that the proofreading activity of *P. berghei* Pol δ contributes mainly to the reduced base substitution rate, which is consistent with previous studies of other organisms. The base substitution rate (mean ± SE) in the nuclear DNA from PbMut (13.5 ± 1.7 × 10⁻⁸) was 36.5-fold higher than that from PbWT (0.37 ± 0.19 × 10⁻⁸) (P = 0.004; Welch’s t-test). This difference is lower than that (86- to 90-fold change) found in our previous study, which was attributed to the fact that the base substitution rate of PbWT was higher than that of PbCtl with wild-type Pol δ (0.14 × 10⁻⁸bp⁻¹day⁻¹) in our previous study. In both studies, PbWT and PbCtl accumulated only several base substitutions, and thus more replicates and/or a longer passage period will be necessary to estimate the accurate base substitution.

![Figure 1](https://www.nature.com/scientificreports/)
rate of the parasite with wild-type Pol δ. The difference in base substitutions between PbMut and PbWT is considered to be several dozen times.

We detected 32–64 base substitutions in the PbMut population samples, and the frequencies of base substitutions in these populations ranged from 2% to 43% (Fig. 2, Supplementary Tables S1 and S2). Common substitutions were observed rarely in the PbMut clones and their derived populations. It is difficult to detect indels based on NGS data derived from populations. Therefore, we checked whether the indels detected in clones were confirmed based on the mapping data for population samples. The frameshift mutation at E352 in AP2-G (PBANKA_143750) was commonly observed in three PbMut population samples (Ma25P, Mb25P, and Mc26P) at a high frequency (Fig. 2 and Supplementary Table S3).

Mutation spectrum of base substitutions. The genome of P. berghei has a high AT content (% AT = 77.3, estimated from the reference genome). In order to determine the mutation spectrum under equal AT and CG contents, the relative rates of the six possible base substitution types were calculated after normalising the number of base substitutions at AT sites, as described previously. We found that the mutation spectrum of PbMut was not uniform (Fig. 3). The proportions of C:G to A:T and C:G to T:A substitutions were significantly higher than the other substitutions (Holm-adjusted P < 0.05; Student’s t-test), and these two patterns accounted for 64.8% of the total. In addition, C:G to G:C transversions were rare, thereby indicating that the base substitutions at CG sites were strongly biased towards AT. At AT sites, the proportion of A:T to T:A transversions appeared to be higher than that of A:T to C:G and A:T to G:C substitutions, but these differences were not significant.

Figure 2. Distribution of mutations detected in PbWT and PbMut parasites. The outermost line shows the 14 chromosomes of P. berghei. The distributions of mutations detected in each sample are represented as follows: base substitutions in intergenic regions (light blue circles), base substitutions in introns (gray squares), synonymous mutations (light blue triangles), missense mutations (orange triangles), nonsense mutations (magenta triangles), indels in intergenic regions (light blue rhombuses), an indel in introns (a light purple rhombus), frameshift mutations (magenta rhombuses), and a codon deletion (a dark purple rhombus). Ma25P and Ma28, Mb29 and Mb25P, and Mc30 and Mc26P are grouped and displayed, where mutations from the population sample are represented by hollow glyphs and those from the clone sample are represented by solid glyphs. Bar charts outside the tracks show the distribution of mutations to indicate the frequencies of mutations detected from population samples. The AP2-G gene (PBANKA_143750) region is highlighted in light blue.
The mutation spectrum of PbMut was highly biased towards C/G to A/T, and thus the AT content was predicted to have increased from the initial value of 77.3%. The expected equilibrium AT content (AT_{eq}) was estimated based on the mutation spectrum. The calculated mean AT_{eq} was 79.9%, which approximated to the current AT content of the *P. falciparum* genome (% AT = 80.6).6.

Sequence context-dependent mutation rate. To determine whether the base substitution rate was influenced by the sequence context, we analysed the context-dependent mutation rate based on the trinucleotide sequence, including the substituted sites and their flanking 3' and 5' bases. We ignored the strand orientation and integrated two complementary sequences into one sequence category, where the central base was A or C (e.g., CAT and ATG were categorised as CAT), thereby yielding 32 sequence categories. The context-dependent mutation rate was calculated for intergenic and genic (exon and intron) regions (Fig. 4). There were significant differences in the context-dependent mutation rates in both regions (intergenic regions, P = 5.2 × 10^{-5}; genic regions,
P = 3.1 × 10⁻⁴ (Kruskal–Wallis test). In particular, the base substitution rates at TCT were 9.0- and 5.8-fold higher for intergenic and genic regions, respectively, compared with the corresponding overall mutation rates (intergenic regions, P = 0.048; genic regions, P = 0.031; Welch’s t-test). There was no significant difference between the mutation rates of C:G to A:T and C:G to T:A substitutions at TCT (P = 0.6508; Welch’s t-test) (Supplementary Fig. S1). Our sample size, however, was limited and a more detailed study with more passage replicates will be necessary to elucidate thoroughly the mutation spectrum of PbMut.

The distribution of context-dependent substitution rates probably affects the trends in the changes of amino acids. We detected 16 nonsense mutations in PbMut, among which 68.8% (11/16) occurred at Glu codons (Table 1). We scanned the codon distribution in P. berghei nuclear DNA and found that 17.2% of the possible Glu codons causing a nonsense mutation with a single base substitution were Glu codons (Supplementary Fig. S2). In a previous study, we also observed a similar observation was made for proofreading-deficient human Pol ε, where the mutation rate was markedly elevated at TCT. Further, it was also shown that Glu codons (GAG and GAA) can form the hotspot motif TCT (AGA) if they are preceded by adenine (AGAG and AGAA), whereas a G to T mutation at the first base in Glu codons generates stop codons (UAG and UAA). The elevated mutation rate at TCT in PbMut is equally likely to contribute to increased nonsense mutations at Glu codons.

Accumulated mutations in parallel passage lines. Previous studies have demonstrated that parallel evolution can occur among replicate lineages of microbes. We detected 289 genes with amino acid changes, among which 14 were shared in parallel passage lines (Table 2). In addition, 9/14 genes were proteins with unknown functions. It should be noted that truncation of the AP2-G gene (PBANKA_143750) due to nonsense or frameshift mutations was detected repeatedly in all of the samples that we analysed. AP2-G is one of the transcription factor AP2 family proteins in Plasmodium species, and it is considered to be a master regulator involved in the development of gametocytogenesis. The emergence of gametocyte non-producers has been reported during the asexual multiplication of P. berghei in mice. In a previous study, we also observed a frameshift mutation at P2298 in AP2-G in two PbMut clones during the 122nd mouse passage (Md122A and Md122B) (Supplementary Fig. S3D), in which we could not detect exflagellation or ookinete formation. In the present study, we detected a shared frameshift mutation at E352 in the AP2-G gene among Ma28, Mb29, and Mc30 (Supplementary Table S3). Sanger sequencing analyses demonstrated that the E352 mutation had already emerged at around the sixth week during each passage (Supplementary Fig. S3A–C), and NGS analyses of Ma25P, Mb25P, and Mc26P samples showed that this mutation was present in 70–95% of each population at the 25th–26th mouse passage (Fig. 2). We could not detect the frameshift mutation based on the NGS data for the founder mutator clone (Mut0), which suggests that the frameshift mutation was already present before serial passages but below the detection limit. It was probably present in less than 1.4% of the population because the

Table 1. Nonsense mutations in P. berghei wild-type and mutator clones.	Gene name	Product (total amino acid length)	AA position	Trinucleotide	Sample
PBANKA_010040	reticulocyte binding protein, putative (613)	E93	AGA	Mb25P	
PBANKA_030830	GAF domain-related protein, putative (1175)	K726	AAA	Md45B	
PBANKA_040060	BIR protein(PIR protein) (312)	E47	TCA	Md164	
PBANKA_050250	serine/threonine protein phosphatase, putative (2095)	G372	CCT	Ma28	
PBANKA_083220	conserved Plasmodium protein, unknown function (300)	E87	AGA	Md122B	
PBANKA_090380	serine/threonine protein kinase, putative (965)	E677	TGA	Md45A, Md45B, Md83A, Md83B, Md122A, Md122B, Md164	
PBANKA_091460	RNA (uracil-5-)methyltransferase, putative (790)	K230	TTT	Ma28	
PBANKA_101150	conserved Plasmodium protein, unknown function (4789)	E4717	AGA	Md83B	
PBANKA_102460	liver-specific protein 1 (3254)	E3077	AGA	Md164	
PBANKA_113490	zinc finger protein, putative (870)	E336	AGA	Md83A, Md83B, Md122A, Md122B, Md164	
PBANKA_122590	conserved Plasmodium protein, unknown function (2057)	E245	AGA	Mc26P	
PBANKA_123360	secreted ookinete protein, putative (205)	E144	TCT	Md122A	
PBANKA_123730	inner membrane complex protein, putative (486)	S465	TCA	Md45A, Md45B, Md83A, Md83B, Md122A, Md122B, Md164	
PBANKA_133510	conserved Plasmodium protein, unknown function (1899)	E1071	TCT	Ma28	
PBANKA_136570	BIR protein (PIR protein) (322)	S220	TCA	Md164	
PBANKA_143750	transcription factor with AP2 domain(s), putative (2339)	G2044	AGG	Wa29	
PBANKA_143750	transcription factor with AP2 domain(s), putative (2339)	E2264	AGA	Ma25P	

The substituted base and its flanking bases are shown.
number of mapped reads at E352 in Mut0 was 72. It is assumed that the frameshift mutation emerged during multiplication in the series of cloning procedures. We also detected another truncation of AP2-G due to a nonsense mutation at E2264 in Ma25P, which was present in 3.5% of the population (Fig. 2 and Supplementary Table S2). Moreover, unique knockout mutations in AP2-G were observed in PbWT clones (G2044 nonsense, K290 frameshift, and K2188 frameshift mutations in Wa29, Wb28, and Wc29, respectively), thereby indicating that these mutations emerged individually in each passage line (Table 2 and Supplementary Tables S2 and S3). Sanger sequencing of Wa25P, Wb25P, and Wc25P showed that these variants accounted for large proportions of the populations (Supplementary Fig. S3E–G). To determine the influence of the accumulated mutations on asexual multiplication, we estimated the maximal growth rates during the course of infection with Mut0, Md45A, WT0, and PbWT (Supplementary Table S2). We used the gcFitModel function in the grofit R package to conduct growth curve fitting and to estimate the maximal growth rate (Fig. 5B). In PbWT, the maximal growth rate (mean ± S.E.) of WT0 was significantly higher than that of Mut0 (Holm-adjusted P = 0.016; Wilcoxon rank sum test), whereas in PbMut, there was no significant difference between those in Mut0 (6.3 ± 1.0% day⁻¹) and Md45A (6.5 ± 0.9% day⁻¹) (Holm-adjusted P = 0.97; Wilcoxon rank sum test). An enhanced growth rate was observed in Wc29, thereby indicating that the knockout of AP2-G yielded increased fitness in the asexual stage. However, there appeared to be no increase in the fitness of Md45A, which accumulated 54 missense, two nonsense, and one frameshift mutations. It should also be noted that the maximal growth rate of WT0 was significantly higher than that of Mut0 (Holm-adjusted P = 0.021; Wilcoxon rank sum test), which suggests that the defective proofreading by Pol δ led to the decline in fitness.

Emergence of an antimutator mutation. We detected the E794K mutation in Pol δ from Ma25P, which accounted for 5% of the population (Supplementary Table S2). Interestingly, this mutation was equivalent to the E800K mutation in yeast Pol δ identified in a study of mutator yeast (Supplementary Fig. S4)33. E800 in yeast Pol δ is adjacent to E802, which is the third metal-binding site related to modulation of the catalytic efficiency34, and the E800K mutation reduced the capacity of mutator yeast to mutate and escape from replication-error-induced extinction33,33. Therefore, the E794K mutation in P. berghei Pol δ appears to be an antimutator substitution.

Detrended correspondence analysis of RNA-Seq data. In total, we detected 584 base substitutions based on the PbMut samples. To visualise the relationships between the mutated genes and their expression patterns during P. berghei development, we downloaded RNA-Seq data (1037cl1cl15cy1 profiles) for the four developmental stages (ring, trophozoite, schizont, and gametocyte) from PlasmoDB (http://plasmodb.org/plasmo)36, which we analysed by detrended correspondence analysis (DCA) (Fig. 6). The distribution of nonsense-mutated

Gene name	Product	Annotated GO function (GO ID)	Mutation (passage line)*
PBANKA_010040	reticulocyte binding protein, putative	null	E293* (Mb), E293K (Mc)
PBANKA_021160	conserved Plasmodium protein, unknown function	null	K68N (Mc), Q151K (Md), I315F (Md)
PBANKA_031160	conserved Plasmodium protein, unknown function	null	I698T (Mb, Mc)
PBANKA_050470	conserved Plasmodium protein, unknown function	null	L328I (Mc), I329F (Md)
PBANKA_083150	conserved Plasmodium protein, unknown function	null	A171T (Md), L3595M (Mc)
PBANKA_091460	RNA (uracil-5-)methyltransferase, putative	RNA methyltransferase activity (GO:0008173)	E19K (Md), K230* (Ma)
PBANKA_100160	SET domain protein, putative	protein binding (GO:0005515)	Q526H (Mc), N307I (Mb)
PBANKA_102460	liver-specific protein 1	null	E978K (Mc), N1948T (Ma), E3077* (Md)
PBANKA_103740	conserved Plasmodium protein, unknown function	electron carrier activity (GO:0009055), oxidoreductase activity (GO:0016491)	F434V (Ma), D2724Y (Mb)
PBANKA_122830	conserved Plasmodium protein, unknown function	null	F78I (Ma), I902F (Mc)
PBANKA_131690	conserved Plasmodium protein, unknown function	null	S1122Y (Mb), Q1487H (Md), N2667H (Md)
PBANKA_134340	conserved Plasmodium protein, unknown function	null	N1064T (Ma), K1072Q (Md), N1510Y (Md)
PBANKA_141960	conserved Plasmodium protein, unknown function	null	K296I (Mb), E352fs (Ma, Mb, Mc), N833Y (Ma), G2044* (Mb), K2188fs (Wc), Q2262K (Ma), E2264* (Ma), P2298fs (Md)

Table 2. Genes with missense, nonsense, and frameshift mutations in parallel passage lines. *Indicates a nonsense mutation, and fs indicates a frameshift mutation.
ε26,41,42. The proofreading-deficient human Pol 5-methyl-cytosine (me5C) produces thymine, which can lead to C:G to T:A transitions39. The extent of DNA damage caused by oxidation and the deamination of bases are the major factors that induce replication errors. 7,8-dihydro-8-oxoguanine is well known to be the product of oxidation damage to guanine, and it can mismatch with adenine, thereby leading to C:G to A:T transversions38. The deamination of DNA replication errors. Thus, a high mutation rate in terms of C:G to T:A transitions was expected to occur at TCT, but there was no significant difference between clones with different letters (Holm-adjusted P < 0.05; Wilcoxon rank-sum test).

Discussion
In this study, we determined the biased mutation spectrum of PbMut, in which the predominant mutation comprised changes from C/G to A/T (Fig. 3). The existing data available across prokaryotes and eukaryotes show that the prevailing mutation bias is generally in the direction of AT24,25, but it is remarkable that a biased mutation trend towards AT was observed in PbMut with a highly AT-biased genome (% AT = 80.6), and an overall mutation trend towards increasing AT richness was demonstrated based on the sequence analysis of 10 genetic loci36. By contrast, the genome sequencing of 25 culture-adapted P. falciparum isolates from Senegal showed that the nucleotide composition was at or near equilibrium37. The AT content of the P. berghei genome is high but lower compared with that of the P. falciparum genome; therefore, the P. berghei genome appears to have sufficient capacity to accommodate C/G to A/T changes. Interestingly, the expected equilibrium AT content calculated from the mutation spectrum of PbMut was 79.9%, which is approximately the current AT content of P. falciparum, thereby implying that an AT content of about 80% might be the limit for Plasmodium genomes.

Changes from C/G to A:T and C/G to T:A were observed at similar frequencies in the PbMut mutation spectrum (Fig. 3). DNA lesions caused by oxidation and the deamination of bases are the major factors that induce DNA replication errors. 7,8-dihydro-8-oxoguanine is well known to be the product of oxidation damage to guanine, and it can mismatch with adenine, thereby leading to C/G to A:T transversions38. The deamination of 5-methyl-cytosine (me5C) produces thymine, which can lead to C/G to T:A transitions39. The extent of DNA damage in the P. berghei genome is unknown, but the high frequency of C/G to A/T changes suggests that replication errors caused by DNA damage may play a major role in the formation and maintenance of the AT-rich P. berghei genome. Ponts et al. reported that Plasmodium parasites possess single functional DNA methyltransferases that mediate cytosine methylation, and 0.67% of the total cytosines are methylated in the P. falciparum genome40. They also demonstrated that the positions surrounding conserved me5C residues exhibit a significant preference for thymine. Interestingly, PbMut exhibited a markedly increased mutation rate at TCT (Fig. 4). The motif in which base substitutions occur frequently is unknown, e.g., TCT and/or AGA, but these observations indicate that the methylation of cytosines surrounded by thymines might be involved in the formation of the hotspot motif TCT. Thus, a high mutation rate in terms of C/G to T:A transitions was expected to occur at TCT, but there was no significant difference in the frequencies of C/G to T:A and C/G to A:T changes (Supplementary Fig. S1). However, our sample size was small and a more detailed analysis with more replicates will be necessary to conclusively elucidate the mutation spectrum at TCT. Interestingly, a markedly elevated mutation rate at TCT has also been reported in cancer genomes with proofreading-deficient Pol ε26,41,42. The proofreading-deficient human Pol ε...
exhibits a preference for TCT to TAT transversions in vitro, and thus the deamination of me5C does not appear to be involved in the elevated mutation rate in tumours. Therefore, the high mutation rate at TCT in PbMut may be attributable to multiple factors, which should be clarified in future research.

The number of accumulated mutations during long-term passages differed greatly between PbWT and PbMut (Fig. 2). When we compared the growth rates of the ancestral clones with those of the evolved clones to evaluate the effects of the accumulated mutations on fitness, we found that the growth rate of Wc29 was significantly higher than that of WT0, whereas there was no difference between Mut0 and Md45A (Fig. 5). Md45A had 87 mutations, but most were weakly deleterious or neutral, and they had little impact on fitness. Wc29 had only two indels, one of which was in an intergenic region and was a neutral mutation. Therefore, the other indel, which was a knockout mutation in the AP2-G gene, must have boosted asexual multiplication of Wc29. These observations suggest that a single, highly effective mutation influences parasite growth rather than many low-impact mutations. An increased growth rate during the asexual stage was also reported in a previous study in which the AP2-G gene of *P. berghei* was artificially disrupted. Nonsense or frameshift mutations in the AP2-G gene occurred in all of the passage lines, thereby indicating that the knockout mutation in the AP2-G gene confers strong growth advantages in the parasites during the blood stage, but at the cost of losing the ability to form gametocytes. The knockout mutation of AP2-G appears to be fixed immediately within the *P. berghei* population during long-term mouse passage in the laboratory, unless it is excluded stochastically from the population.

In the present study, we unexpectedly found that the growth rates of PbMut clones were significantly lower than those of PbWT clones (Fig. 2B). However, we found no differences in the growth rates among PbWT, PbMut, and PbCtl, which was the control *P. berghei* transfected by wild-type Pol δ and human dihydrofolate reductase (hDHFR). We consider that the observations in our previous study are consistent with those in the present study because the PbMut clones (Md122A and Md122B) used in the growth assay in the previous study had a frameshift mutation in AP2-G (Supplementary Table S3), and thus, their growth rates should have been accelerated, as discussed above. Three reasons may explain the decreased growth rate of PbMut: (1) mutated Pol δ has a direct fitness cost; (2) the increased mutation rate generates more deleterious mutations, thereby decreasing fitness indirectly; and (3) the hDHFR gene (*hdhfr*) introduced into the *P. berghei* genome with the mutated Pol δ as a drug selectable marker has a fitness cost. A previous study showed that a recombinant *P. berghei* expressing...
green fluorescent protein and hdhfr genes had similar growth characteristics to the wild-type parasite, which suggests that the fitness cost of hdhfr is negligible. Therefore, we suggest that the decreased growth rate of PbMut was not attributable to hdhfr but instead was a result of the direct or indirect effects of the mutated Pol δ. Pol δ is involved in DNA repair as well as DNA replication, so eliminating the proofreading activity of Pol δ might influence the stability of the genome.

Interestingly, the appearance of the putative antimutator mutation E794K in Pol δ was identified during long-term passages of the Ma line. To the best of our knowledge, this is the first observation of the antimutator mutation in malaria parasites. The analogous mutation (E800K) in yeast Pol δ caused a 33-fold decrease in the rate of mutation in mutator yeast. If the strength of the antimutagenic effect of E794K in P. berghei Pol δ is comparable with that of E800K in yeast Pol δ, the mutation rate of PbMut-E794K may be similar to that of PbWT. These observations of a common antimutator mutation in phylogenetically distinct organisms, such as yeast and a malaria parasite, suggest that the corresponding mutation in eukaryotic Pol δ at E800K in yeast Pol δ may have a universal antimutagenic effect.

Our results, in terms of the decreased growth rate of PbMut and the emergence of the antimutator mutation, have implications for the behavior of Pol δ-mutator parasites in the field. Pol δ-mutator malaria parasites in the field have not been reported previously. Even if the Pol δ-mutator parasite did emerge in the field, the wild-type parasite would outcompete the mutator parasite, making it impossible for the mutator parasite to establish itself at the population level. It has been reported that the mutator is involved in the acquisition of drug resistance in bacteria, but this might not be the case with Pol δ-mutator malaria parasites. A recent study showed that the mutation rates of P. falciparum isolates from Southeast Asia, where drug resistance has emerged repeatedly, were not significantly higher compared with those of isolates from West Africa. However, our knowledge of mutator malaria parasites is still inadequate. Thus, it should be useful to study various mutator phenotypes and the competition between mutator and wild-type parasites under drug pressure.

Finally, we discuss the properties of PbMut in terms of its possible applications as a genetic tool. NGS analyses of PbMut samples after serial passages demonstrated that there were no fixed mutations within the populations except for knockout mutations in AP2-G (Fig. 2), and few mutations were shared between the clone and the population samples (Supplementary Table S2). These results reflect the great number of variants accumulated within populations after long-term passages, most of which were present below detectable levels. In addition, DCA plots using RNA-Seq data showed that missense mutations occurred randomly in genes regardless of their expression trends (Fig. 6), thereby suggesting that we had constructed a parasite library containing various mutants with dozens of missense mutations. We found that gametocyte non-producers were frequently fixed within populations after long-term mouse passages. However, a mouse passage combined with a mosquito passage would be effective for suppressing the loss of the capacity to form gametocytes in future studies. Alternatively, the gametocyte non-producer phenotype appeared to result from AP2-G gene knockout alone, so the ability to form gametocytes can be readily recovered by CRISPR/Cas editing of the AP2-G gene. More importantly, the mutation bias and the biased sequence-context mutation rates are likely to affect the variety of mutants generated from PbMut. In fact, a high occurrence of nonsense mutations at Glu codons was observed in PbMut, which was attributed to the elevated mutation rate at TCT (Supplementary Fig. S2). It has been reported that different mutator E. coli strains can generate distinct fitness distributions for antibiotic-resistant mutants according to their mutation spectra. Therefore, PbMut and other types of mutants distinct from PbMut generated from alternative approaches may be useful for developing a system to generate various mutated phenotypes/traits. The base-substitution bias of PbMut may be disadvantageous in terms of generating more diverse mutants, but we consider that this feature may be advantageous from different perspectives. For example, Shinbrot et al. used observations of strand-specific mutation patterns that emerged from Pol ε mutants to demonstrate the leading-strand-specific replication of human Pol ε. If the hotspot motif of PbMut is completely identified (i.e., TCT or AGA), detailed analyses of mutational hotspots in PbMut will enable us to map the lagging/leading synthesis regions in the P. berghei genome, ultimately leading to the elucidation of the distribution of replication origins that remain unknown in the genomes of Plasmodium parasites.

Materials and Methods
Parasites and mutation accumulation lines. The PbMut used in this study was previously generated from P. berghei ANKA clone 2.34. Briefly, two amino acids critical for the 3′ → 5′ proofreading exonuclease activity in Pol δ were replaced with alanine. We obtained the founder clones WT0, Mut0, and Md0 by recloning with a limiting dilution of P. berghei ANKA clone 2.34 and PbMut prior to conducting the serial mouse passages. We created four (Ma, Mb, Mc, and Md) and three (Wa, Wb, and Wc) mutation accumulation lines for PbMut and PbWT, respectively (Fig. 1). Excluding the Md line, we intravenously injected 10⁶ parasitised red blood cells (pRBCs) into female ddY mice (6–10 weeks old; Japan SLC) every 3 or 4 days to maintain the parasites. The Md line was maintained by weekly passage via intraperitoneal injection of 100 or 1,000 pRBCs into mice. During serial passage, the cloning of parasites by limiting dilution was achieved in the 53rd week of passage for the Md line. All animal research and experimental protocol were approved and conducted in accordance with the guidelines and regulations of the Animal Ethical Committee of the Research Institute for Microbial Diseases, Osaka University, and the Animal Care Committee of Kyorin University School of Medicine. The assigned license numbers are no. 151 (Kyorin University) and no. DOUBI-H20-070-0 (Osaka University), respectively.

DNA extraction and high-throughput genome sequencing. Ten clones from the PbMut parasites and three clones from the PbWT parasites were obtained by limiting dilution (Fig. 1). We intravenously injected 10⁶ infected erythrocytes from each clone and each PbMut population into 20 female ddY mice. On day 4 post infection, blood was collected by cardiac puncture to extract parasite DNA. Infected blood was diluted three
times with HEPES buffered saline (HBS: 140 mM NaCl, 5 mM KCl, and 10 mM HEPES-NaOH at pH 7.2) and filtered twice through Plasmodipur filters (EuroProxima) to deplete the host leukocytes. The filtrate was centrifuged for 5 min at 3,000 rpm, and the supernatant was discarded. The pellet was suspended at 4°C in 0.5% saponin in HBS to lyse the erythrocytes. The lysate was then centrifuged for 15 min at 8,000 rpm and washed four times with HBS. The pellet was subjected to DNA extraction with a QIAamp® DNA Blood Mini Kit (Qiagen), according to the manufacturer’s instructions. The extracted genomic DNA was sequenced using an Illumina HiSeq 2000 or an Illumina Genome Analyzer II, from which we obtained 1.1–1.5 Gb and 4.2–5.0 Gb sequence data from the clone and population samples, respectively (Supplementary Table S1). These sequence data corresponded to >60- and >230-fold redundancy for the clone and population samples, respectively, relative to the reference genome sequence of P. berghei ANKA (18.2 Mb). Low quality reads and reads derived from host DNA were excluded, as described previously.

Read mapping and mutation identification. The paired-end reads were mapped to the reference genome sequence downloaded from the Wellcome Trust Sanger Institute (https://www.sanger.ac.uk/) using BWA version 0.7.5a49, and duplicate sequences were removed using Picard tools version 1.96 (http://sourceforge.net/projects/picard/). Local realignment around indel sites and base quality recalibration were conducted using the Genome Analysis Toolkit (GATK) version 2.7.450. Subsequently, variant calling based on the alignments of clones was performed using two pipelines, i.e., one with VarScan2 version 2.3.651 and the other with GATK. The alignments were converted into mpileup files using SAMtools52. Base substitutions and indels were called from mpileup files with VarScan2 using the following conditions: >10 base coverage; mutation frequency criteria of ≥80% and ≥50% for base substitutions and indels, respectively; and a minimum PHRED quality score of 20. Base substitutions and indels were also called by GATK UnifiedGenotyper using a minimum PHRED quality score of 20. Detected variants were confirmed by visual inspection of mapping data with the Integrated Genome Viewer53. We validated all indels, all base substitutions causing nonsense mutations, and all base substitutions detected using either of the two pipelines by Sanger sequencing (Supplementary Tables S2–S4). We also sequenced the ancestral clones (WT0, Mut0, and Md0) of each passage line to identify only the mutations accumulated during serial passages, and their variants were excluded from the subsequent analysis. The detected variants were annotated using Snpeff version 3.6c54. To summarise the distribution of mutations, a Circos plot was generated using the Circos program.

The detection of base substitutions based on the alignments of populations was performed using LoFreq version 2.0.0 with the default settings56. Visual inspection and annotation of detected base substitutions were performed as described above.

Calculation of the base substitution rate, the relative rates of six possible base substitutions, and the expected equilibrium AT content. The base substitution rate (μbs) was calculated according to the equation:

\[\mu_{bs} = \frac{m}{n(T)} \]

where m is the number of mutations detected, n is the number of nucleotide sites mapped by ≥10 reads, and T corresponds to the number of passage days57. The average base substitution rate was calculated using the data for clones isolated from parallel passage lines; i.e., only data from Ma28, Mb29, Mc30 and Md45A were used for calculating the rate for PbMut. In the same manner, the average sequence context-dependent mutation rate for PbMut was calculated.

We calculated the relative rates of six possible base substitutions according to Hershberg and Petrov (2010)58. Briefly, the numbers of mutations that occurred at A/T sites were normalised by multiplying them by #CO_sties/#AT_sties where #CO_sties and #AT_sties are the total numbers of C/G or A/T sites in the current P. berghei nuclear genome, respectively. In order to calculate the relative rates, the normalised counts of mutations at A/T sites and unaltered counts of mutations at C/G sites were divided by the sum of these counts.

The expected equilibrium AT content (ATeq) was calculated according to Lynch (2007)59 using the following equation:

\[AT_{eq} = r_{CG-AT} f_{CG-AT} + r_{CG-AT} f_{CG-AT} \]

where \(r_{CG-AT} \) is the mutation rate from C/G to A/T, \(r_{CG-AT} \) is that from C/G to A/T, \(r_{CG-AT} \) was calculated using the following equation:

\[r_{CG-AT} = \frac{f_{CG-AT}}{1 - p} \]

where \(f_{CG-AT} \) and \(f_{CG-AT} \) are the observed frequencies of C/G to A/T and A/T to C/G substitutions, respectively, and \(p \) is the current AT content (% AT).

Growth assay for parasites. To assess the difference in growth between the founder and evolved clones, four groups of female BALB/c mice (6 weeks old; Clea Japan, Inc.) each with 10 mice per group were inoculated intravenously with 10⁷ erythrocytes infected with PbMut clone Mut0, PbMut clone Md45A, PbWT clone WT0, or PbWT clone Wc29. Parasitemia was monitored three times each day between days three and seven post-infection. The parasite density was estimated by microscopically counting the number of infected erythrocytes per 3,000 erythrocytes based on Giemsa-stained thin blood smears.

Statistical analysis. All of the statistical tests in this study were conducted in R58. P < 0.05 was considered statistically significant. Graphs were generated using the ggplot2 R package59. DCA was performed using the vegan R package60 based on the expression data for 4,896 protein-coding genes, which we obtained after excluding genes with low expression levels (reads per kilobase of transcript per million mapped reads, RPKM < 1) at all stages.

Data access. The raw sequence reads used in this study are available from the DDBJ Sequence Read Archive (DRA) under accession numbers DRA000656 and DRA004715.
References

1. World Health Organization. World Malaria Report 2014 (2015).
2. Klein, E. Y. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. Int J Antimicrob Agents 41, 311–317, doi: 10.1016/j.ijantimicag.2012.12.007 (2013).
3. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 361, 455–467, doi: 10.1056/NEJMoA0808859 (2009).
4. Phylo, A. P. et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379, 1960–1966, doi: 10.1016/S0140-6736(12)60484-X (2012).
5. Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelli. Nature 419, 512–519, doi: 10.1038/nature01099 (2002).
6. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511, doi: 10.1038/ nature01097 (2002).
7. Carlton, J. M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763, doi: 10.1038/nature07306 (2008).
8. Tachibana, S. et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 44, 1051–1055, doi: 10.1038/ng.2375 (2012).
9. Otto, T. D. et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 12, 86, doi: 10.1186/1471-2180-12-86 (2014).
10. Culleton, R., Martinelli, A., Hunt, P. & Carter, R. Linkage group selection: rapid gene discovery in malaria parasites. Genome Res. 15, 92–97, doi: 10.1101/gr.2866205 (2005).
11. Culleton, R., Martinelli, A., Hunt, P. & Carter, R. Linkage group selection: rapid gene discovery in malaria parasites. Genome Res. 15, 92–97, doi: 10.1101/gr.2866205 (2005).
12. Marnett, L. J. & Plastaras, J. P. Endogenous DNA damage and mutation.
13. Escalante, A. A., Lal, A. A. & Ayala, F. J. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Nature 448, 696–706, doi: 10.1038/jcb.2013.11.007 (2013).
14. Church, D. N. et al. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22, 2820–2828, doi: 10.1038/hmg.2013.131 (2013).
15. Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434, doi: 10.1038/349431a0 (1991).
16. Marnett, L. J. & Plastaras, J. P. Endogenous DNA damage and mutation. Trends Genet 17, 214–221 (2001).
17. Feng, D. Y. et al. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. Cell Host Microbe 14, 696–706, doi: 10.1016/j.chom.2013.11.007 (2013).
18. Arana, M. E. & Kunkel, T. A. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 20, 304–311, doi: 10.1016/j.semcancer.2010.10.003 (2010).
19. Woodfold, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13, 5–18, doi: 10.1111/j.1469-0691.2006.01492.x (2007).
20. Homma, H. et al. Generation of rodent malaria parasites with a high mutation rate by destroying proofreading activity of DNA polymerase β. DNA Res. 21, 439–446, doi: 10.1093/dnares/dsu009 (2014).
21. Albertson, T. M. et al. DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA 106, 17101–17104, doi: 10.1073/pnas.0907147106 (2009).
22. Cracraft, J., Guelzo, I. R. & Blazquez, J. Mutational-spectrum drives the rise of mutator bacteria. PLoS Genet 9, e1003167, doi: 10.1371/journal.pgen.1003167 (2013).
23. Fortune, J. M. et al. Saccharomyces cerevisiae DNA polymerase ε: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280, 29980–29987, doi: 10.1074/jbc.M505236200 (2005).
24. Hershberg, R. & Petrov, D. A. Evidence that mutation is universally biased towards A-T in bacteria. PLoS Genet 6, e1001115, doi: 10.1371/journal.pgen.1001115 (2010).
25. Lynch, M. The Origins of Genome Architecture. (Sinauer Associates Incorporated, 2007).
26. Shinbrot, E. et al. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 24, 1740–1750, doi: 10.1101/gr.174789.114 (2014).
27. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247, doi: 10.1038/nature08480 (2009).
28. Mahajan, R. P. et al. The multiplicity of divergence mechanisms in a single evolving population. Genome Biol 13, R41, doi: 10.1186/gb-2012-13-6-r41 (2012).
29. Kafkash, B. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252, doi: 10.1038/nature12920 (2014).
30. Simon, A. et al. A cascade of DNA-biding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257, doi: 10.1038/nature12970 (2014).
31. Janse, C. J., Ramesar, J., van den Berg, F. M. & Mons, B. Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants. Exp Parasitol. 74, 1–10 (1992).
32. Kahm, M., Hasenbrink, G., Lichtenberg-Fr ate, H., Ludwig, J. & Kischischo, M. grofit: Fitting Biological Growth Curves with R. Journ al of Statistical Software 33, 1–21 (2010).
33. Herr, A. J. et al. Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genet 7, e1002282, doi: 10.1371/journal.pgen.1002282 (2011).
34. Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase β. Nat Struct Mol Biol. 16, 979–986, doi: 10.1038/nxbmb.1663 (2009).
35. Herr, A. J., Williams, L. N. & Preston, B. D. Antimutator variants of DNA polymerases. Crit Rev Biochem Mol Biol. 46, 548–570, doi: 10.3109/10490238.2011.620941 (2011).
36. Escalante, A. A., Lal, A. A. & Ayala, F. J. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149, 189–202 (1998).
37. Chang, H. H. et al. Genomic sequencing of Plasmodium falciparum malaria parasites from Senegal reveals the demographic history of the population. Mol Biol Evol. 29, 3427–3439, doi: 10.1093/molbev/msx161 (2012).
38. Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434, doi: 10.1038/349431a0 (1991).
42. Bacolla, A., Cooper, D. N. & Vasquez, K. M. Mechanisms of base substitution mutagenesis in cancer genomes. *Genes (Basel)* 5, 108–146, doi:10.3390/genes5010108 (2014).

43. Franke-Fayard, B. et al. A *Plasmodium berghei* reference line that constitutively expresses GFP at a high level throughout the complete life cycle. *Mol Biochem Parasitol* 137, 23–33, doi: 10.1016/j.molbiopara.2004.04.007 (2004).

44. Lee, A. H., Syminston, L. S. & Fidock, D. A. DNA repair mechanisms and their biological roles in the malaria parasite *Plasmodium falciparum*. *Microbiol Mol Biol Rev.* 78, 469–486, doi:10.1128/MMBR.00059-13 (2014).

45. Ford, C. B. et al. *Mycobacterium tuberculosis* mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. *Nat Genet* 45, 784–790, doi: 10.1038/ng.2656 (2013).

46. Komp Lindgren, P., Higgins, P. G., Seifert, H. & Cars, O. Prevalence of hypermutators among clinical *Acinetobacter baumannii* isolates. *J Antimicrob Chemother* 71, 661–665, doi: 10.1093/jac/dkv378 (2016).

47. Brown, T. S. et al. *Plasmodium falciparum* field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype. *Infect Genet Evol.* 30, 318–322, doi:10.1016/j.meegid.2014.12.010 (2015).

48. Zhang, C. et al. Efficient editing of malaria parasite genome using the CRISPR/Cas9 system. *MBio* 5, e01414–e01414, doi: 10.1128/MBio.01414-14 (2014).

49. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* 26, 589–595, doi:10.1093/bioinformatics/btp698 (2010).

50. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303, doi: 10.1101/gr.129684.110 (2010).

51. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. *Genome Res.* 22, 568–576, doi: 10.1101/gr.129684.111 (2012).

52. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079, doi:10.1093/bioinformatics/btp352 (2009).

53. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* 14, 178–192, doi:10.1093/bib/bbs017 (2013).

54. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* 6, 80–92, doi: 10.4161/fly.19695 (2012).

55. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. *Genome Res.* 19, 1639–1645, doi: 10.1101/gr.092739.109 (2009).

56. Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic Acids Res.* 40, 11189–11201, doi: 10.1093/nar/gks918 (2012).

57. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the nuclear genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* 6, 80–92, doi: 10.4161/fly.19695 (2012).

58. Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic Acids Res.* 40, 11189–11201, doi: 10.1093/nar/gks918 (2012).

59. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the *Caenorhabditis elegans* nuclear genome. *Nature* 430, 679–682, doi: 10.1038/nature02697 (2004).

60. R. A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2015).

Acknowledgements

This study was supported by JSPS KAKENHI Grant Numbers 24790401, 23590493, 26117706 and 15K19089. This research was also supported by the Research Program on Emerging and Re-emerging Infectious Diseases (16fk0108309h0703) from Japan Agency for Medical Research and development, AMED.

Author Contributions

H.H. and M.H. designed the study. H.H. performed experiments, data analyses, and paper writing. H.H. and M.N. conducted animal experiments. F.K., T.H., T.M., H.E. and M.H. critically reviewed the manuscript. H.H., K.F. and M.H. participated in acquisition of funding.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Homma, H. et al. Mutation tendency of mutator *Plasmodium berghei* with proofreading-deficient DNA polymerase δ. *Sci. Rep.* 6, 36971; doi: 10.1038/srep36971 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.