On distance in total variation between image measures

Youri Davydov
Université Lille 1, Laboratoire Paul Painlevé
and
Saint Petersbourg State university

Abstract
We are interested in the estimation of the distance in total variation
\[\Delta := \| P_f(x) - P_g(x) \|_{var} \]
between distributions of random variables \(f(X) \) and \(g(X) \) in terms of pro-
ximity of \(f \) and \(g \). We propose a simple general method of estimating \(\Delta \). For
Gaussian and trigonometrical polynomials it gives an asymptotically optimal
result (when the degree tends to \(\infty \)).

MSC
Primary 60E05
secondary 60E15, 60A10

Keywords: Total variation distance, Image-measures, Gaussian polyno-
mials, Nikol’ski-Besov class.

1 Introduction

Let \(X \) be a random vector with values in \(\mathbb{R}^d \) having an absolutely continuous
distribution \(P \), and \(f, g \) be two measurable functions from \(\mathbb{R}^d \) to \(\mathbb{R}^1 \). We are
interested in the estimation of the distance in total variation
\[\Delta(f, g) := \| P_{f(X)} - P_{g(X)} \|_{var} \]
between distributions of random variables $f(X)$ and $g(X)$ in terms of proximity of f and g. This problem has applications in different fields of probability theory. The most interesting example may be is the case where $d = 1$, X is a Gaussian r.v. with mean a and variance σ^2, and f, g are two polynomials of degree m:

$$f(x) = \sum_{0}^{m} a_k x^{m-k}, \quad g(x) = \sum_{0}^{m} b_k x^{m-k},$$

$a_k \neq 0$.

The result by Yu. Davydov and G. Martynova (1987) says that there exists a constant C depending only on m, a, σ such that

$$\Delta \leq C |a_0|^{-\frac{1}{m}} \delta^\frac{1}{m},$$

(1)

where $\delta = \max_{0 \leq k \leq m} |a_k - b_k|$.

The importance of this case is explained by strong relations with the estimation of total variation distance between distributions of multiple Wiener integrals. Namely, from (1) it follows (for details see (4))

$$\Delta(I_m(f), I_m(g)) \leq C \|f - g\|_{\mathcal{L}_2(T)}^{\frac{1}{m}},$$

(2)

where $I_m(f), I_m(g)$ are two m-multiple Wiener-Ito integrals; the constant C depends only on m and f.

Below, in section 3.1, we propose some explanation of how the estimate (2) could be deduced from (1).

In work (7) an attempt to obtain an estimate for $\Delta(I_m(f), I_m(g))$ by means of methods of stochastic analysis has been made, but it gives an order $\frac{1}{2m}$, which is significantly weaker.

When our article had been already sent for the press, we have learned about a preprint (1) which contains a number of the deep results connected with this problem. In particular, it is shown that the density of distribution of any non-constant Gaussian polynomial of degree m always belongs to the Nikol’ski-Besov class $B_{1m}^{\frac{1}{m}}(\mathbb{R}^1)$, and in the one-dimensional case the estimate (1) is proved with logarithmic factor.

The aim of the present work is to propose a simple general method of estimating $\Delta(f, g)$. For completely different reasons we independently arrived to the use of condition type (3) and showed (see Th. 1) that having this condition (in arbitrary dimension) with the exponent α, we obtain for
\(\Delta(f, g) \) the order \(\frac{\alpha}{\alpha + 1} \). In combination with the aforementioned result from (I) it follows from our Th.1 that for Gaussian polynomials in any dimension

\[
\Delta(f, g) = O \left(\| f - g \sqnorm{\frac{1}{m+1}}_{L^2(T)} \right),
\]

which will still be asymptotically optimal (when the degree \(m \) tends to \(\infty \)).

As a second example we consider the case where \(f \) and \(g \) are trigonometrical polynomials. Here also our method gives an asymptotically optimal estimate.

2 Results

We use the notation \(P \) for the distribution of \(X \) and \(\| \cdot \|_1 \) for the norm in the space \(L^1(dP) \) of integrable functions with respect to the measure \(P \).

Recall that for a signed measure \(\mu \) its total variation is defined by

\[
\| \mu \|_{\text{var}} = \sup (A_i) \sum_i |\mu(A_i)|,
\]

where the supremum is taken over all finite measurable partitions \((A_i) \) of the space. If \(\mu \) has a density \(m \) with respect to some non-negative measure \(\nu \) then

\[
\| \mu \|_{\text{var}} = \int |m| d\nu.
\]

Theorem 1

Suppose that for some \(\alpha > 0 \)

\[
\| P_{f(X)} - P_{f(X)+u} \|_{\text{var}} \leq C_f |u|^\alpha, \tag{3}
\]

and

\[
\| P_{g(X)} - P_{g(X)+u} \|_{\text{var}} \leq C_g |u|^\alpha. \tag{4}
\]

Then

\[
\| P_{f(X)} - P_{g(X)} \|_{\text{var}} \leq C \| f - g \|_{\sqrt{\pi}^\frac{\alpha}{\alpha + 1}}, \tag{5}
\]

where \(C = (C_f + C_g)^\frac{\alpha}{\alpha + 1}(E|\nu|^\alpha + \sqrt{\frac{\pi}{2}}) \), and \(\nu \) is a standard Gaussian r.v.

Remark 1

It is known that \(E|\nu|^\alpha = \frac{2\pi^{\frac{\alpha}{2}}}{\Gamma\left(\frac{\alpha+1}{2}\right)} \), where \(\Gamma \) is the Gamma function.
Remark 2. As we always have $\|P_f(X) - P_g(X)\|_{\text{var}} \leq 2$, one can replace the expression in the right part of (5) by $\min\{2, C\|f - g\|_{1+\alpha}\}$.

Remark 3. In the case when $P_f(X)$ has a density p with respect to the Lebesgue measure the condition (3) means that p belongs to the so-called Nikol’ski-Besov space $B_1^\alpha(\mathbb{R}^1)$ (for details see (1)).

Proof. Let ν be a standard Gaussian r.v. independent of X and $\xi = \sigma \nu$ where σ is a positive number, its exact value will be chosen later.

We have

$$\|P_f(X) - P_g(X)\|_{\text{var}} \leq \delta_1 + \delta_2 + \delta_3,$$

where

$$\delta_1 = \|P_f(X) - P_f(X) + \xi\|_{\text{var}},$$

$$\delta_2 = \|P_g(X) - P_g(X) + \xi\|_{\text{var}},$$

$$\delta_3 = \|P_f(X) + \xi - P_g(X) + \xi\|_{\text{var}}.$$

We find using (3)

$$\delta_1 = \|P_f(X) - P_f(X) + \xi\|_{\text{var}} = \int_{\mathbb{R}} \|P_f(x) - P_f(x) + u\|_{\text{var}} P_\xi(du) \leq$$

$$\leq C_f \int_{\mathbb{R}} |u|^\alpha P_\xi(du) = C_f E|\xi|^\alpha = C_f \sigma^\alpha E|\nu|^\alpha. \quad (6)$$

Similarly

$$\delta_2 \leq C_g \sigma^\alpha E|\nu|^\alpha. \quad (7)$$

Consider now δ_3. Denoting \tilde{P}, \tilde{Q} distributions in \mathbb{R}^2 of random vectors $(X, f(X) + \xi)$ and $(X, g(X) + \xi)$, we remark that

$$P_{f(X) + \xi} = \tilde{P} h^{-1}, \quad P_{g(X) + \xi} = \tilde{Q} h^{-1},$$

where $h : \mathbb{R}^2 \to \mathbb{R}, \quad h(x, y) = y$. Therefore,

$$\delta_3 = \|P_{f(X) + \xi} - P_{g(X) + \xi}\|_{\text{var}} \leq \|\tilde{P} - \tilde{Q}\|_{\text{var}}.$$

It is easy to see that

$$\|\tilde{P} - \tilde{Q}\|_{\text{var}} \leq \int_{\mathbb{R}} \|P_{f(x) + \xi} - P_{g(x) + \xi}\|_{\text{var}} P_X(dx). \quad (8)$$
As the distributions $P_{f(x)+\xi}$ and $P_{g(x)+\xi}$ are Gaussian with the same variance σ^2 and with mean values differing by $|f(x) - g(x)|$, we have

$$\|P_{f(x)+\xi} - P_{g(x)+\xi}\|_{\text{var}} \leq \frac{2}{\sigma \sqrt{2\pi}} |f(x) - g(x)|.$$

Hence, it follows from (8) that

$$\|\hat{P} - \hat{Q}\|_{\text{var}} \leq \frac{2}{\sigma \sqrt{2\pi}} \|f - g\|_{1}. \quad (9)$$

Gathering estimates (6), (7) and (9), we get

$$\|P_{f(X)} - P_{g(X)}\|_{\text{var}} \leq (C_f + C_g)\sigma^\alpha E|\nu|^\alpha + \frac{2}{\sigma \sqrt{2\pi}} \|f - g\|_{1}.$$

Taking $\sigma = \{(C_f + C_g)\|f - g\|_{1}\}^{\frac{1}{1+\alpha}}$, we find the final result.

Suppose now that the dimension $d = 1$ and consider some sufficient conditions for the relations of type (3). Remarking that using the notation $f_u(t)$ for $f(t-u)$, and \mathcal{P} for the distribution of X, we can rewrite the value $\delta(u) = \|P_{f(X)} - P_{f(X)+u}\|_{\text{var}}$ in the equivalent form:

$$\delta(u) = \|\mathcal{P}f^{-1} - \mathcal{P}f_u^{-1}\|_{\text{var}}.$$

Below we will also use this notation in the case where \mathcal{P} is finite but not necessarily a probability measure.

Proposition 1. Let f be a convex strictly increasing function defined on the interval $[a, b]$ and such that for some $m > 0$, $K > 0$,

$$f(x) - f(a) \sim K(x - a)^m, \ x \downarrow a. \quad (10)$$

Let $\mathcal{P} = \lambda$, λ being Lebesgue measure.

Then

$$\delta(u) \leq 2C_f u^{\frac{1}{m}}, \ u \geq 0, \quad (11)$$

where

$$C_f = K^{-\frac{1}{m}} \sup_{f(a) < x < f(b)} \left\{ \left| \frac{f^{-1}(x) - a}{(x - f(a))^\frac{1}{m}} \right| \right\}. \quad (12)$$
Remark 4. It is clear that similar estimates (with evident changes) are available if we replace "convex" by "concave" and (or) "increasing" by "decreasing".

Proof. First of all remark that by (10),
\[f^{-1}(f(a) + u) - a \sim K^{-\frac{1}{m}}u^\frac{1}{m}, \]
when \(u \to 0 \), which shows that the constant \(C_f \) is finite. As \(f'(t) > 0 \) for all \(t \), the measure \(\lambda f^{-1} \) has a density
\[h(t) = \frac{1}{f'(f^{-1}(t))}1_{[f(a),f(b)]}(t) \]
which is decreasing.
Therefore for \(u \in [f(a),f(b)] \)
\[\delta(u) = 2 \int_{f(a)}^{f(a)+u} h(t) dt = 2(f^{-1}(f(a) + u) - a). \]
(The first equality will be evident if we consider the epigraphs of the functions \(f(t) \) and \(f(t-u) \).) Again by (10), \(f^{-1}(f(a) + u) - a \sim K^{-\frac{1}{m}}u^\frac{1}{m} \), which gives (11). \(\square \)

A more general and more useful result is given by the following proposition.

Proposition 2. Let \(f \) be a convex strictly increasing function defined on \([a,b]\) and such that for some \(m > 0 \), \(K > 0 \),
\[f(x) - f(a) \sim K(x-a)^m, \quad x \downarrow a. \]
(13)
Let \(\mathcal{P} \) be a finite measure on \([a,b]\) having a density \(p \) which satisfies the Lipschitz condition:
\[|p(x) - p(y)| \leq L|x - y|, \quad \forall \ x, y \in [a,b]. \]
Let \(A = \sup_{x \in [a,b]} p(x) \). Then
\[\delta(u) = \| \mathcal{P} f^{-1} - \mathcal{P} f^{-1} \| \text{var} \leq [3A + L(b - a)]C_f u^\frac{1}{m}, \quad u \geq 0, \]
(14)
where \(C_f \) is given by (12).
Proof. The measure $\mathcal{P} f^{-1}$ is absolutely continuous and its density is equal to
\begin{equation}
q(t) = h(t)p(f^{-1}(t)),
\end{equation}
where $h(t) = \frac{1}{f(f^{-1}(t))} 1_{[f(a), f(b)]}(t)$ is the density of λf^{-1}. Hence
\[
\delta(u) = \int_{f(a)}^{f(b)+u} |q(t) - q(t-u)|dt = I_1 + I_2 + I_3,
\]
where
\[
I_1 = \int_{f(a)}^{f(a)+u} |q(t) - q(t-u)|dt,
\]
\[
I_2 = \int_{f(a)+u}^{f(b)} |q(t) - q(t-u)|dt,
\]
\[
I_3 = \int_{f(b)}^{f(b)+u} |q(t) - q(t-u)|dt.
\]
Consider I_1. Since p is bounded and $q(t-u) = 0$ for $t \leq u$, we have as before
\[
I_1 \leq A \int_{f(a)}^{f(a)+u} h(t)dt = A\lambda([a, f^{-1}(f(a)+u)]) \leq AC_f u^{\frac{1}{m}}.
\]
Since h is decreasing, we get similarly
\[
I_3 \leq A \int_{f(b)}^{f(b)+u} h(t)dt \leq A \int_{f(a)}^{f(a)+u} h(t)dt \leq AC_f u^{\frac{1}{m}}.
\]
By the triangle inequality
\[
I_2 \leq J_1 + J_2,
\]
where
\[
J_1 = \int_{f(a)}^{f(b)} h(t)|p(f^{-1}(t)) - p(f^{-1}(t-u))|dt,
\]
\[
J_2 = \int_{f(a)+u}^{f(b)} |p(f^{-1}(t))| h(t) - h(t-u)|dt.
\]
Since p is Lipschitz,

$$J_1 \leq L \int_{f(a)+u}^{f(b)} h(t)\left|f^{-1}(t) - f^{-1}(t-u)\right|dt.$$

As f is convex and increasing, f^{-1} is concave and increasing. Therefore

$$\left|f^{-1}(t) - f^{-1}(t-u)\right| \leq \left|f^{-1}(f(a)+u) - a\right|.$$

Hence, using that $\int_{f(a)+u}^{f(b)} h(t)dt \leq b-a$, we get

$$J_1 \leq L(b-a)C_fu^\frac{1}{m}.$$

It is clear that

$$J_2 \leq A \int_{f(a)}^{f(b)} |h(t) - h(t-u)|,$$

which is less than or equal to $AC_fu^\frac{1}{m}$ by Proposition 1.

Finally, gathering all previous estimations, we have

$$\delta(u) \leq [3A + L(b-a)]C_fu^\frac{1}{m}.$$

\[\square\]

3 Gaussian polynomials

As a first example of application we consider the case where f, g are two polynomials of degree m of d variables and P is a standard Gaussian measure in \mathbb{R}^d.

Let $\|\nabla f\|_*^2 = \sup_e \int_{\mathbb{R}^d} |\partial_e f|^2 dP$, where $\partial_e f$ is the derivative of f in the direction $e \in S_{d-1}$.

Theorem 2. If f, g are non-constant, then there exists a constant $C > 0$ depending only on $m, \|\nabla f\|_*, \|\nabla g\|_*$, such that

$$\Delta(f, g) \leq C\|f-g\|_1^{\frac{1}{m+1}}.$$

(16)
Proof. From Th. 5.7 of [1] it follows that the conditions (3), (4) are fulfilled with $\alpha = \frac{1}{m}$. Therefore by Th. 1 we get (16). □

Let us consider the one-dimensional case. Then

$$f(x) = \sum_{0}^{m} a_k x^{m-k}, \quad g(x) = \sum_{0}^{m} b_k x^{m-k},$$

$a_k \neq 0$, and from (16) we deduce the estimation

$$\Delta(f, g) \leq C \delta^{ \frac{1}{m+1} },$$

where $\delta = \max_{0 \leq k \leq m} |a_k - b_k|$.

The order $\frac{1}{m+1}$ is worse than one in (11) but asymptotically (when $m \to \infty$) they are equal.

Due to the importance of condition type (3) it seems reasonable to present here its elementary proof.

Let x_1, x_2, \ldots, x_n, be the ordered set of all the roots of the derivatives f' and $f^{(2)}$. It is clear that $n \leq 2m - 3$. On each segment $\Delta_k = [x_k, x_{k+1}]$ the function f is convex or concave and f' can be equal to zero not more than in one of the ends of the segment. It means that f on Δ_k satisfies condition (12) for some $m_k \leq m$. Denote $P_k = P_{\Delta_k}$ the restriction of P on Δ_k. Then, by Proposition 2,

$$\delta_k(u) = \|P_k f^{-1} - P_k f_u^{-1}\|_{\text{var}} \leq (3A_k + L_k(x_{k+1} - x_k)) C_{f,k} u \frac{1}{m},$$

where $A_k = \sup_{x \in \Delta_k} p(x)$, $L_k = \sup_{x \in \Delta_k} p'(x)$, and $C_{f,k}$ is defined by (12) with $a = x_k, b = x_{k+1}$ and d depending on Δ_k.

Summing these estimates, we find

$$\rho_0(u) := \|P_{[x_0,x_n]} f^{-1} - P_{[x_0,x_n]} f_u^{-1}\|_{\text{var}} \leq C_1 u \frac{1}{m},$$

where

$$C_1 = \sum_{k=0}^{n-1} (3A_k + L_k(x_{k+1} - x_k)) C_{f,k}.$$

To estimate

$$\rho_+(u) := \|P_{[x_n,\infty)} f^{-1} - P_{[x_n,\infty)} f_u^{-1}\|_{\text{var}}$$
we represent \([x_n, \infty)\) as the union of segments:
\([x_n, \infty) = \bigcup_{j=0}^{\infty} \Delta_j, [x_n + j, x_n + j + 1]\). Similarly to before, we get

\[\rho_+(u) \leq C_2 u^{\frac{1}{m}}, \tag{19}\]

where now

\[C_2 = \sum_{k=0}^{\infty} [3A_k + L_k] C_{f,k}.\]

Since \(f\) is convex on \([x_n, \infty)\), \(C_{f,k} \leq C_{f,0}\). The series \(\sum_{k=0}^{\infty} [3A_k + L_k]\) is convergent because \(p\) is Gaussian density. Therefore the constant \(C_2\) is finite.

Applying similar arguments to the estimation of

\[\rho_-(u) := \|P_{(-\infty, x_0]} f^{-1} - P_{(-\infty, x_0]} f_u^{-1}\|_{\text{var}},\]

we see that

\[\rho_-(u) \leq C_3 u^{\frac{1}{m}}\]

for some \(C_3 < \infty\). This inequality together with (18) and (19) gives the final result: the condition (3) is fulfilled for \(f\) with \(\alpha = \frac{1}{m}\).

3.1 Multiple integrals

Let \(W\) be random Gaussian orthogonal measure corresponding to the Lebesgue measure \(\lambda\) on \(\mathbb{R}^1\), \(EW(A) = 0, EW(A)W(B) = \lambda(A \cap B)\). Let \(H_n\) be the space of functions \(f: \mathbb{R}^n \rightarrow \mathbb{R}^1\) which are square integrable with respect to \(\lambda^n\) and are invariant under all permutations of coordinates. For such a function the multiple integral

\[I_n(f) = \int_{\mathbb{R}^n} f(x_1, \ldots, x_n) W(dx_1) \ldots W(dx_n)\]

is well defined (see for details [6], [3]).

Let \(P\) be the distribution of \(W\) in the space \(S = (\mathbb{R}^A, \mathcal{B}^A)\), where \(A = \{A \in \mathcal{B}^1 \mid \lambda(A) < \infty\}\).

The measure \(P\) is Gaussian and its admissible shifts \(\nu = \nu_h\) are exactly the measures which are absolutely continuous with respect to \(\lambda\) (see Prop. 2, [3]) and such that \(\nu_h(A) = \int_A h d\lambda, \quad h \in L^2(d\lambda)\). If \(\Gamma\) is a partition of \(S\) composed by the lines \(\{l_\kappa = \kappa + c\nu, \quad c \in \mathbb{R}^1\}\) parallel to \(\nu_h\), then the conditional distributions \((P_\nu)\) for \(P\) on these lines will be Gaussian with the
mean value $a_h = -\|h\|_{H_1}^2 \int h d\kappa$ and the variance $\sigma_h^2 = \|h\|_{H_1}^{-2}$ (see Prop. 3, [3]).

The integral $I_n(f)$ can be considered as a measurable functional

$$I_n(f) = F(\kappa) = \int f d\kappa$$

and its restriction onto l_κ is a polynomial of the degree n:

$$F_{\kappa}(c) = F(\kappa + c\nu_h) = c^n \int f d\nu_h + \sum_{m=0}^{n-1} \xi_m c^m,$$

where ξ_m are some functions on κ and ν_h. In [3] it is shown that we can choose ν_h in such a way that $\int f d\nu_h \neq 0$. Hence F_{κ} is a polynomial of the degree n and the measure $P_{I_n(f)}$ can be represented as a mixture of distributions of one-dimensional Gaussian polynomials

$$P_{I_n(f)} = \int_{S/\Gamma} P_{\kappa} F_{\kappa}^{-1} P_{\Gamma}(d\kappa),$$

where P_Γ is the factor-measure.

Similarly,

$$P_{I_n(g)} = \int_{S/\Gamma} P_{\kappa} G_{\kappa}^{-1} P_{\Gamma}(d\kappa),$$

where G_{κ} is the restriction of $I_n(g)$ onto l_κ.

Therefore

$$\|P_{I_n(f)} - P_{I_n(g)}\| \leq \int_{S/\Gamma} \|P_{\kappa} F_{\kappa}^{-1} - P_{\kappa} G_{\kappa}^{-1}\| P_{\Gamma}(d\kappa). \quad (20)$$

Without loss of generality we can suppose additionally that h is continuous. Then we can identify the factor-space S/Γ with the subspace $\{\kappa \in S \mid \int h d\kappa = 0\}$. At the same time conditional measures P_{κ} will be Gaussian with parameters $(0, \sigma_\kappa^2)$ which don’t depend on κ. Hence from (20) and one-dimensional estimate (11) we directly deduce (2).

4 Trigonometrical polynomials

As a second example we consider the case where f and g are two trigonometrical polynomials:

$$f = \sum_{k=0}^{n} (a_k \cos kx + b_k \sin kx), \quad g = \sum_{k=0}^{n} (c_k \cos kx + d_k \sin kx).$$
Like before, we suppose that P is a standard Gaussian distribution.

It is clear that the exponent α in (3) depends on the number κ of zero derivatives at fixed points of the function f. Let us show that in general that number cannot be more than $2n - 1$.

Consider the polynomial f. Without loss of generality we can and do suppose that $a_0 = 0$ and $x = 0$. The assertion $f^{(l)}(0) = 0$ for $l = 1, \ldots, 2m$ is equivalent to the statement that the system of $2m$ linear equations (with respect to unknowns a_k and b_k, $k = 1, \ldots, n$)

\[
\begin{align*}
\sum_1^n k b_k &= 0 \\
\sum_1^n k^3 b_k &= 0 \\
&\vdots \\
\sum_1^n k^{2m-1} b_k &= 0
\end{align*}
\begin{align*}
\sum_1^n k^2 a_k &= 0 \\
\sum_1^n k^4 a_k &= 0 \\
&\vdots \\
\sum_1^n k^{2m} a_k &= 0
\end{align*}
\]

has a non-trivial solution.

For $m = n$ the determinant Δ of this system satisfies the following relation

\[
\Delta = (n!)^3 W^2(1, 2^2, 3^2, \ldots, n^2),
\]

where $W(x_1, \ldots, x_n)$ is the Vandermonde determinant.

Hence $\Delta \neq 0$ and therefore our system can have non-trivial solution only if $2m \leq 2n - 1$. It means that in general $\kappa \leq 2n - 1$. The case m is odd gives the same born. Now, arguments similar to ones used in the previous section show that the conditions (3), (4) hold with $\alpha = \frac{1}{2n}$. By Th. 1 we get in this case the following estimation

\[
\|P \var f^{-1} - P \var g^{-1}\|_{\text{var}} \leq C \|f - g\|_{\text{var}}^{\frac{1}{2n+1}}.
\]

5 Concluding remarks

1. In multi-dimensional setting in the class of all polynomials the order $\frac{1}{m+1}$ in the estimate (16) is asymptotically the best possible. At the same time the example of the polynomial $f(x_1, \ldots, x_d) = (x_1^2 + \cdots + x_d^2)^m$ shows that (16) is fulfilled with the exponent $\min\{1, \frac{d}{m}\}$. It would be interesting to describe precisely the sub classes of polynomials which provide intermediate orders.

2. The proof of (1) in (4) is strongly based on the particular properties of usual polynomials and cannot be applied even in the case of trigonometrical
polynomials. It would be interesting to find a general approach which allows to reach optimal estimates.

3. It would be also interesting to find sufficient conditions for the application of our Th. 1 to analytic functions \(f \) and \(g \).

Acknowledgments

I am very grateful to the anonymous referee for the reference to important work [1] and for the competent remarks which have allowed to improve significantly our article.

6 References

1. Bogachev V. I., Kosov E. D. and Zelenov G. I., 2016. Fractional smoothness of distributions of polynomials and a fractional analog of Hardy-Landau-Littlewood inequality. preprint [arXiv:1602.05207]

2. Davydov Yu., Lifshits M. A. and Smorodina N. V., 1998. Local properties of distributions of stochastic functionals. New-York: AMS eds., 184p.

3. Davydov Yu., 1990. On distributions of Wiener-Ito multiple stochastic integrals. Theor. Probab. Appl., v. 35, 1, 27-37.

4. Davydov Y. A., Martynova G. V., 1987. Limit behaviour of multiple stochastic integral. Statistics and control of random process. Preila, Nauka, Moscow, 55–57 (in Russian).

5. Martynova G. V., 1987. PhD thesis, Saint Petersburg state university.

6. Major P., Multiple Wiener-Ito Integrals. Lect. Notes Math., 1981. B. 849, S. 127.

7. Nourdin I., Poly G., 2013. Convergence in total variation on Wiener chaos. Stoch. Proc. Appl. 123, 651–674.