Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish

Rocío Simón, Félix Docando, Noelia Nuñez-Ortiz, Carolina Tafalla and Patricia Díaz-Rosales*

Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain

Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.

Keywords: probiotics, pathogen resistance, interference mechanisms, immunomodulatory effect, teleosts

HISTORY AND DEFINITION OF PROBIOTICS IN AQUACULTURE

The term “probiotic” comes from the Latin word “pro” (for) and the Greek word “bios” (life) meaning “for life” (1) and it refers to microbial feed additives which confer a health benefit to the host organism through the modulation of intestinal microbiota. This first definition provided the basis of differentiating probiotics from antibiotics. The term “probiotics” was first proposed by Lilly and Stillwell (2) as “substances secreted by a micro-organism that stimulate the growth of another organism”, being substances microbially produced “factors”. Later on, Parker (3) was the first who defined probiotics as “organisms and substances which contribute to intestinal microbial balance”. As new findings emerged, the definition of “probiotic” was modified over the years. In 1989, Fuller defined probiotics as “live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance” (4), where the use of live microorganisms is emphasized, and the use of the word “substances” is removed, avoiding confusion. To accommodate the immunostimulatory effect of probiotics, Naidu et al. (5) modified the concept of probiotics as “microbial dietary adjuvants that beneficially affect the host physiology by modulating mucosal and systemic immunity, as well as improving nutritional and microbial balance in the intestinal tract”. Since then, many variations to the definition have still been proposed (6). The Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) integrated all these...
definitions and stated that probiotics are “live microorganisms, which when administered in adequate amounts confer a health benefit on the host” (7).

The first reported use of probiotics in aquaculture was in 1986 by Kosaza who evaluated the use of Bacillus toyoi spores as feed additives to increase the growth rate of yellowtail, Seriola quinquemaculata (8). But it was not until the late 1990s that research on probiotics became prominent in aquaculture. Given the fact that the aquatic animals constantly interact with their surrounding water environment, Moriarty (9) widened the definition of probiotics, also considering them as microbial “water additives”. Later on, Verschuere et al. (10) put forward the concept of aquaculture probiotics, proposing a broader application of the term as “live microbial adjuncts which have a beneficial effect on the host by modifying the host-associated or ambient microbial community by ensuring improved use of the feed or enhancing its nutritional value, by enhancing the host response towards diseases, or by improving the quality of its environment”. This definition allowed a wider application of the term “probiotic” by involving the aquatic environment.

The utmost desired goal of a probiotic is to have a positive effect on the general health status of the fish, thus increasing its resistance to pathogens. This can be achieved through different mechanisms, reviewed in the current paper, that cover direct interference with pathogens as well as effects on the host. Additionally, we have summarized those probiotics that have been shown to confer resistance against different types of pathogens, including bacteria, viruses and parasites.

SOURCE AND SELECTION CRITERIA OF PROBIOTICS IN AQUACULTURE

In the last decades, several microorganisms have been experimentally identified, characterized and applied in aquacultured species as probiotics. Probiotics tested for these species include a wide range of bacteria (Gram-negative or Gram-positive), yeasts, microalgae and bacteriophages which have been added to the water or included as feed supplements (11–17). Nevertheless, the list of probiotics commercially available for use in aquaculture is much more limited (18).

The source from where the probiotic microorganism is obtained varies greatly, including for example, the intestine of healthy fish, water of rearing environment, sediments of culture tanks, other animals or fermented food products (19). Because the main principle of a probiotic is to establish a relation with beneficial and harmful bacteria usually present in fish intestine, the gastrointestinal tract (20, 21) and the mucus (22) of aquatic animals are usually the most common sources to isolate microorganisms which can be used as potential probiotics. Although the probiotics could also have an origin outside the host, host-derived microorganisms are preferred given that microbiota living in healthy hosts can be considered part of the natural defense system, being beneficial to the host in multiple ways (23, 24). Furthermore, probiotics indigenous to the environment are able to survive spontaneously and function physiologically at their optimum level (21). It has to be taken into account, that, in contrast to terrestrial animals, the gastrointestinal microbiota of aquatic species is strongly dependent on the external environment due to the continuous water flow through the digestive tract. Hence, most of bacteria that colonize the tract are transient and could vary if the environmental conditions change (25).

In recent years, a large number of scientific works have been published regarding the screening, selection and characterization of fish probiotic bacterial strains (26–35). Potential candidates isolated from different sources are subjected to screening through multiple steps in order to assess their potential as ideal probiotics. Their safety (10) and lack of pathogenicity (36) have to be demonstrated as an essential first step. Thereafter, a successful probiotic candidate should meet certain criteria. Merrifield et al. (37) proposed an extended list of criteria, classifying them as either essential or favorable. As new findings emerged over the last decades, additional criteria have been added (12, 14). Taking all of this into account, the essential criteria to consider a microorganism as a suitable probiotic are the following: not being pathogenic, not only with regards to the host species, but also with regards to aquatic animals in general and human consumers; being free of plasmid-encoded antibiotic resistance genes; having the ability to tolerate a wide range of pH (low acidic to high alkaline) and high concentration (>2.5%) of bile salts. On the other hand, the merely favorable characteristics include: being able to adhere to and/or grow well within the intestinal mucus; being able to colonize the intestinal epithelial surface; being registered for use as a feed additive; displaying advantageous growth characteristics (e.g. short lag period, short doubling time and/or growth at host rearing temperatures); exhibiting a broad spectrum of antagonistic activity against one or more key pathogens; producing relevant extracellular digestive enzymes or vitamins; being indigenous to the host or the rearing environment; remaining viable under normal storage conditions and being robust enough to survive industrial processes; having good sensorial properties, fermentative action, tolerance towards freeze-drying and viability in feed during packaging and storing process; having a beneficial effect on the growth, stimulation of immunity and protection of fish against various pathogenic bacteria. Although it is unlikely to find a candidate that will fulfill all of these characteristics, the more of these characteristics are fulfilled, the more likely it will be a promising probiotic. However, the main driver to select potential probiotics among different candidates has been their inhibitory activity against target pathogens in vitro (10, 28, 30, 38–40) or in vivo (11, 14, 15, 21, 41).

MECHANISMS OF INTERFERENCE OF PROBIOTICS WITH PATHOGENS

Production of Inhibitory Substances

The antagonistic action or the inhibition of a variety of pathogens is one of the most important sought properties for potential probiotics. Probiotic microorganisms often have the
capacity to produce substances which have bacteriostatic or bactericidal impact on pathogenic microbes, such as lysozymes, proteases, siderophores, hydrogen peroxide or bacteriocins (9, 42–50). For example, a compound named indole (2,3-benzopyrrole) with potent inhibitory activity against bacteria and fungus has been identified in some probiotic bacteria (51, 52). Similarly, some microorganisms produce volatile fatty acids (acetic, butyric, lactic and propionic acid) and organic acid, decreasing the gastrointestinal lumen’s pH, thereby preventing the proliferation of opportunistic pathogens (10, 47, 53–55).

In aquaculture, some candidate probiotics have been shown to produce antibacterial substances that inhibit the growth of harmful microbes and maintain intestinal microecological balance (43, 49). Thus, several probiotics used in aquaculture have been documented to exert direct antibacterial activities against known pathogens (14, 17). On the other hand, while knowledge on antiviral activity of probiotics has increased in recent years (14, 17), the exact mechanism of action through which these probiotic bacteria produce their antiviral effects remains still unknown. Yet, some studies performed in vitro revealed that the inhibition of viruses can occur through the action of extracellular enzymes secreted by the bacteria (14, 17). Finally, only a few studies have been reported the antifungal properties of fish probiotics (14, 17).

Competition for Nutrients and Available Energy

All organisms, including bacteria, require a continuous source of nutrients for survival, growth and proliferation. Probiotics consume the available nutrients, thus, competition for nutrients is one of the mechanisms through which probiotics can inhibit pathogens (56). In fact, the survival of a microorganism will mainly depend on its potential to compete for nutrients and energy with other microorganisms in the same environment (10).

Among nutrients, iron is recognized to be the most important element, as it is an essential cofactor for important cellular processes, being required for DNA replication, oxygen transport, protection against oxidative stress, enzyme activity and energy generation (57). Thus, the majority of bacteria need iron for their growth, but the amount of iron available in animal tissues and body fluids is very limited. As a consequence, the competition for this nutrient between pathogenic bacteria and the host is a very well-known process (58). Siderophores are ferric ion specific chelators that are able to dissolve precipitated iron or extract it from iron complexes under iron-stressed conditions, making it available for bacterial growth (59). Siderophores are produced by several bacteria and fungus (59). Thus, the ability to produce siderophores is a favorable characteristic of a microorganism to be considered as a potential probiotic, in an iron-limited environment, as the probiotic would sequester ferric ion making it unavailable for the growth of pathogenic bacteria (60).

Siderophore production of fish probiotic strains has been investigated to some extent (61). Thus, for example, Smith and Davey (62) and Gram et al. (63) reported the inhibition of the growth of *Aeromonas salmonicida* and *Vibrio anguillarum*, respectively, under iron-limited conditions by *Pseudomonas fluorescens*. Similarly, Lazado et al. (64) showed the capacity of two bacterial isolates (GP21 *Pseudomonas sp.*; GP12 *Psychrobacter sp.*) obtained from the intestinal tract of Atlantic cod (*Gadus morhua*) to release siderophores, showing antagonistic activity against *V. anguillarum* and *A. salmonicida*. Also, the probiotic effect of a strain of *Vibrio* sp. has been associated with its capacity to compete for iron with a pathogenic strain of *Vibrio* sp. in seabass larvae (*Dicentrarchus labrax*) (65).

Competition for Colonization of Mucosal Surfaces

The mucosal surface of fish is continuously interacting with the microbiota and the external media in an aquatic environment. In this context, pathogens invade the host through these mucosal surfaces, colonizing them and eventually spreading throughout the host and causing disease (66). Thus, most pathogenic bacteria need to attach to the mucosal layer of the host gastrointestinal tract (or other mucosal tissues) to exert a harmful effect and develop an infection (67).

In this sense, the ability of a microorganism to colonize and adhere to the epithelial surface, interfering with the pathogen’s adhesion is a favorable characteristic for the selection of candidate probiotics (37). In fact, competition for adhesion receptors with pathogens can be considered as an essential probiotic characteristic (68). Probiotics occupy the binding sites of the intestinal mucosa, forming a physical barrier, preventing the attachment of pathogenic microorganisms. Attachment of probiotics may be non-specific, based on physicochemical agents, or specific, based on the interaction of surface receptors on the adherent bacteria to receptor molecules on epithelial cells (19, 69). The mechanism through which a probiotic competes for adhesion sites is referred to as “competitive exclusion” (17).

Various authors have reported the ability of candidate fish probiotics to adhere to the host gastrointestinal tract and to interfere with pathogenic bacteria (66, 70–72). The interference of four potential probiotics (members of Vibrionaceae and Pseudomonadaceae families, as well as Micrococcus genus) with the pathogens *Listonella anguillarum* and *Vibrio harveyi* through competition for adhesion to the skin, gill and intestinal mucus of gilthead seabream (*Sparus aurata*) and Senegalese sole (*Solea senegalensis*) was demonstrated in vitro by Chabrilhon et al. (73, 74). Furthermore, the in vivo probiotic potential of one of the selected candidates (Pdp11, Vibrionaceae) was assessed by oral administration and its ability to reduce the mortality after a challenge in gilthead seabream and sole against *L. anguillarum* and *V. harveyi* demonstrated, highlighting the relevance of this probiotic capacity. Another in vitro study investigated the potential of two candidate probiotic bacteria (GP21 and GP12) to adhere to primary cultures of epithelial cells obtained from different segments of the intestine and to interfere with the adhesion of two pathogens, *V. anguillarum* and *A. salmonicida* subsp. *salmonicida* in Atlantic cod. The study concluded that the adhesion of probiotics is segment-specific and the interference with the pathogen adhesion is dependent on both the source of epithelial cells and the mechanism through which the probiotic
adheres to the epithelial cells (70). Through an in vivo study, Divya et al. (75) also confirmed the ability of three probiotic strains (Bacillus coagulans, Bacillus mesentericus and Bifidobacterium infantis) to colonize the gut of rosy barb (Puntius conchonius). This probiotic administration significantly changed the proportion of the gut microflora, decreasing the level of pathogenic strains. Vine et al. (72) reported the in vitro suppression of bacterial pathogen growth (Aeromonas hydrophila and Vibrio alginolyticus) as a consequence of their displacement by different probiotic candidate isolates that adhered to the intestinal mucus of spotted grunter (Pomadasys commersonii). Similarly, the capacity of endogenous microbiota, e.g. Lactobacilli, to compete with pathogens for adhesion sites on the intestinal surface has also been established (76).

From a practical point of view, whether the applied probiotic is able to colonize the gut and for how long is a key issue to establish its administration regime (administration route, concentration and time of administration) and to provide farmers with a specific protocol with beneficial effects on fish health.

Disruption of Quorum Sensing

Quorum sensing (QS) is the regulation of gene expression in response to fluctuations in cell-population density (77). QS is a regulatory mechanism by which the majority of bacteria communicate with each other and respond collectively. To this end, bacteria synthesize and secrete small chemical signal molecules called auto-inducers whose concentration can be recognized by other bacteria, and in this way, perceive the surrounding cell density. Gram-negative bacteria secrete acyl-homoserine lactones (AHLs) as auto-inducers, while Gram-positive bacteria use oligopeptides. Both Gram-negative and Gram-positive bacteria can produce autoinducer-2 (AI-2). When a critical threshold concentration is achieved, the QS induces or represses the expression of genes involved in specific physiological functions (77, 78), including luminescence, virulence, motility, sporulation and biofilm formation (79–83).

As pathogenicity is controlled by QS, inhibiting this mechanism is a good strategy to control microbial pathogens. Thus, the disruption of QS is considered a potential anti-infective strategy in aquaculture (17, 84, 85). Quorum quenching (QQ), the disruption of QS, can be performed by molecule antagonists (86) or degrading enzymes (87). Thus, the QQ microorganisms can be used as potential quenchers of quorum-sensing-regulated functions in pathogenic bacteria (88, 89), acting as an alternative to antibiotics in the control of infections in aquatic systems. In aquaculture, QQ has also been demonstrated as an alternative to antibiotic control of infections (90, 91). In this context, probiotic bacteria with QQ capacities would be on one hand efficacious to control antibiotic-resistant pathogens while having other beneficial effects on the host (92). Along this line, searching for probiotics isolated from the intestinal microbiota of olive flounder (Paralichthys olivaceus), Zhang et al. (93) identified AHL lactonase (FiaL) in the genome of Flaviramusulus ichthyoenteri. This FiaL degraded some signals used by different fish pathogens such as A. hydrophila, Edwardsiella tarda, Vibrio salmonicida and V. anguillarum; revealing a great potential of F. ichthyoenteri as a fish probiotic. Other studies reported the ability of some microorganisms to produce QS antagonists, such as halogenated furanones, which are produced by the marine red alga Delisea pulchra (94). These compounds were reported to protect Brachionus, Artemia, and rainbow trout (Oncorhynchus mykiss) from the negative effects of pathogenic Vibrio species (95, 96).

Other probiotic bacteria such as Lactobacillus, Bifidobacterium and Bacillus cereus strains degrade the signal molecules of pathogenic bacteria by enzymatic secretion or production of autoinducer antagonists (76). Thus, Bacillus sp. QSI-1 has been shown to significantly reduced the pathogenicity of A. hydrophila in Carassius auratus gibelio (84), zebrafish (Danio rerio) (79) and goldfish (Carassius aurata) (97) by degrading AHLs. Likewise, Ren et al. (98) reported the inhibition of growth and virulence of A. hydrophila by Bacillus subtilis involving QS. Another Bacillus species, Bacillus licheniformis, protects against A. hydrophila in zebrafish through QQ (99). In rainbow trout, Delshad et al. (100) established the QQ activity of different isolates (B. cereus, Bacillus thuringiensis, Stenotrophomonas maltophilia, Enterobacter hormaechei subsp. hormaechei and Citrobacter gillenii), regulating the virulence of Yersinia ruckeri.

A recent publication focused on the isolation of autochthonous AHL degrading bacteria from the gastrointestinal tract of different fish species. Thus, Ghanei-Motlagh et al. (101) isolated several strains with beneficial QQ AHL-degrading and probiotic activities for the first time in Asian seabass (Lates calcarifer). Vadassery and Pillay (92) also focused at isolating AHL degrading bacteria from the gastrointestinal tract of Nile tilapia (Oreochromis niloticus). Among the isolated strains, Enterococcus faecium contained an autoinducer inactivation homolog gene with the ability to degrade N-AHL (N-acyl homoserine lactone) produced by the fish pathogen A. hydrophila.

IMMUNOMODULATORY EFFECTS OF PROBIOTICS

Probiotics have been shown to have the capacity to increase innate and adaptive immunity of fish, being the effects exerted on the fish innate immune system the main desirable characteristics of candidate probiotics (102). Probiotics can influence both the systemic and the local immunity of the host when they are administered i) orally or through the rearing water, or ii) as live or as dead cells (102). In some studies, the immunomodulatory effect of probiotics was attributed to the release of cytokines, key regulators in orchestrating the immune response in fish, which include interleukins (ILs), tumor necrosis factors (TNFs), interferons (IFNs), transforming growth factors (TGFs) and chemokines from immune cells such as lymphocytes, granulocytes, macrophages, mast cells, epithelial cells, and dendritic cells (DCs) (103, 104). In this review, we report some of the immunomodulatory effects that probiotics have been shown to exert on the mucosal immune system.

As mentioned above, fish are constantly interacting with their surrounding water environment. In this sense, mucosal tissues are strategically located in areas where environmental pathogens enter the body. Thus, the mucosal immune system has a pivotal...
role in the defense mechanism against pathogens and thus considered as a very active immunological site (105). The mucosal surfaces of the fish include the epithelia and the mucosa-associated lymphoid tissues (MALTs). The main MALTs in teleost fish include: GALT (gut-associated lymphoid tissue), SALT (skin-associated lymphoid tissue), GIALT (gill-associated lymphoid tissue) and NALT (nasopharynx-associated lymphoid tissue). All teleost MALTs have common features: i) the presence of a mucus layer, that envelops the majority of the epithelia and consisting mainly of high molecular weight glycoproteins called mucins secreted by the epithelial goblet cells. This mucus layer acts as a physical and chemical barrier preventing the entry of pathogens; ii) the presence of innate and adaptive immune components, such as cytokines or immunoglobulins (Igs), among many others; iii) the transport pathways that affect the production of both pro- and anti-inflammatory cytokines. Despite the capacity to induce both types of cytokines, the overall balance is generally anti-inflammatory. Hence, although the reason for this discrepancy between the effects that probiotics have on inflammation in fish and mammals is currently unknown, it seems obvious that the immunomodulatory properties of a given probiotic are not only dependent on the inherent features of the microorganism used but also on the complexity of the immune system of the host.

Regarding *Bacillus* spp., numerous investigations have demonstrated their efficacy and potency as probiotics in aquaculture (109). In an overview, *Bacillus* probiotics have been shown to have the capacity to modulate some innate immune responses such as phagocytic and lysozyme activity, respiratory burst, antiprotease and peroxidase, superoxide dismutase and myeloperoxidase through effects on different some immunocompetent cell populations. These probiotics have also been shown to generate changes in the physiology of immune cells, for example, increasing of neutrophil adherence capacity, neutrophil migration and plasma bactericidal activity that in the end can result in the improvement of immune effector functions such as enhancement in complement activity, Ig production and cell cytotoxicity (119–121). All these immune-stimulatory effects exerted by *Bacillus* occur in the GALT, although further research work is needed to understand the detailed mechanisms.

The mucus is a key element of mucosal immunity, thus, some studies have focused on determining how probiotics affect the mucus layer in different ways. Hence, for example, Cerezuella and collaborators extensively studied the effects of diets enriched with two different probiotics, *Shewanella putrefaciens* and *Bacillus* sp. on the skin mucus of gilthead seabream (122). Both probiotics were shown to significantly alter the carbohydrate composition of the mucus, its IgM content and its enzymatic activity, with some differences depending on the probiotic used. In the case of Nile tilapia, feed supplementation with *Lactobacillus plantarum* (123) or *Bacillus licheniformis* (124) was shown to increase the enzymatic activity of the skin mucus, whereas diets containing different *Bacillus* strains significantly augmented its nitric oxide (NO) and IgM content, and lysozyme and alkaline phosphatase activity (125). The protein profile of the skin mucus was also altered in Crucian carp (*Carassius auratus gibelio*) fed *Bacillus cereus* (126) or *Lactobacillus acidophilus* (127). Despite their relevance, the number of studies that have investigated the effects
of probiotics on the intestinal mucus is much more reduced. In this sense, some studies have reported a significant increase in the number of goblet cells in the intestinal mucosa (125, 128) or an increased IgM content of the intestinal mucus (128) in response to a prolonged administration of probiotics.

Finally, it has to be mentioned that many other studies have addressed the systemic immune effects of fish probiotics, but due to length restrictions of this review, we will not refer to them in depth. Most of these studies have been focused on describing increased serum IgM levels (129), increased humoral innate immune parameters or transcriptional changes in systemic immune tissues (reviewed in 129–131) upon probiotic treatment.

ADDITIONAL EFFECTS OF PROBIOTICS ON FISH

Production of Beneficial Substances

Probiotics can also produce some substances with beneficial effects, which are useful to the host for feed conversion, growth performance and immunity. Thus, the capability of a microorganism to produce extracellular enzymes, such as proteases, amylases, cellulases, phytases, chitinases, lipases, etc., is also a desirable characteristic of a probiotic candidate. Fish produce a wide range of endogenous enzymes such as those listed above (132–135), however, their quantity and activity are not adequate for a complete metabolism of the ingested materials from feed. Thus, enzymes secreted by permanent gut endosymbionts and potential probiotics are essential from a nutritional perspective (136), contributing to the digestive process of the host. In recent years, the capacity of several fish probiotic strains to produce extracellular enzymes has been extensively investigated (12, 16). For example, Dawood et al. (137) reported that *Lactobacillus plantarum* significantly enhanced amylase, lipase and protease activity of Nile tilapia. Supplementation of olive flour with this probiotic (*L. plantarum*) as well as with *Bacillus* sp. increased several enzyme activities such as amylase, trypsin and lipase (138). Significant increase of these enzymes, together with proteases was also reported in carp (*Cyprinus carpio*) after the administration of *Lactobacillus casei* in combination with β-glucan and mannan oligosaccharide (139). Other LAB, *Lactobacillus bulgaricus* and *Lactobacillus acidophilus*, together with *Citrobacter* were reported to increase amylase, trypsin and alkaline phosphatase in rainbow trout (140). Tarkhani et al. (141) described the increase of intestinal digestive enzyme activities of Caspian roach (*Rutilus caspicus*) after the administration of *E. faecium*. Despite of the reported results, the actual contribution of these enzymes to the fish metabolism is still not well understood.

In general, fish do not produce any vitamins and endosymbionts/probiotics are the primary producers of vitamins, making them available to the host. Thus, many probiotics have been shown to supply vitamins, fatty acids and essential amino acids to the host (45, 111, 142, 143). Besides bacterial probiotics, many strains of yeast have been used as dietary supplements in a number of fish species (144). Interestingly, yeasts can produce polyamines, which enhance intestinal maturation (145). Therefore, considering the provision of vital nutrients such as fatty acids, biotin and vitamins, probiotics might be also considered as a complementary food source (10).

Promotion of Growth Performance

As probiotics contribute to improve the feed consumption and nutrient’s uptake, they also have positive effects on the host growth rate (146). Thus, probiotics often lead to an enhanced growth performance, as well as an increased survival rate.

Lactobacillus is the most studied genus of bacteria regarding its effects on growth performance. Dietary administration of *L. plantarum* enhanced growth parameters of several fish species (carp, Nile tilapia, brown trout, *Salmo trutta caspius*; 123, 137, 147–150). Furthermore, the combination of *L. plantarum* with other probiotics and natural immunostimulants was also shown to increase of growth rate in different fish. Thus, Alishahi et al. (151) reported an increase in the weight gain of carp after dietary administration of a combination of *L. plantarum* with *L. bulgaricus*. The growth performance of Nile tilapia was increased after administration of *L. plantarum* together with the fungus *Cordyceps militaris* (152), and the catfish (*Pangasius bocourti*) with artichoke (153) or with *Bacillus velezensis* (154). *L. lactis* is another probiotic whose positive effect on growth performance has been reported in several farmed fish species, when administered alone (155–158); in combination with immunostimulants, such as β-glucan and mannan oligosaccharide (139); or other *Lactobacillus* (117). The ability to increase the growth rate has been demonstrated for other species of *Lactobacillus*, such as *Lactobacillus delbrueckii* (159), *L. rhamnosus* (117, 160), *L. bulgaricus*, *L. acidophilus* (138), and for other bacteria species, such as *Citrobacter* in combination with *L. bulgaricus* and *L. acidophilus* (140), *Pedicoccus* (161, 162) and *Enterococcus* (141, 163). For example, Asian seabass increased its growth after the administration of a commercial probiotic consisting in *Lactobacillus* spp., *E. faecium*, *B. subtilis* and *Saccharomyces cerevisiae*. Streptococcus faecium in combination with *L. acidophilus* and *S. cerevisiae* was also reported to act as a growth promoter for Nile tilapia (164, 165).

The role of *Bacillus* probiotics as growth promoters has been reported in several farmed fish species. Thus, dietary administration of *B. subtilis* enhances growth of Nile tilapia (164, 166), carp (167) and grass carp, *Ctenopharyngodon idella* (168). *B. subtilis* has been administered in combination with *L. lactis* and increase the growth of rohu, *Labeo rohita* (169), as well as *Pediococcus acidilactici* in rainbow trout (170). Growth of catfish was increased due to the administration of *Bacillus amyloliquefaciens* and *Bacillus pumilus* (171). Similarly, *B. coagulans* enhanced the growth of carp (172) and *B. licheniformis* functioned as a growth promoter in tilapia (173).

ESTABLISHED EFFECTS OF PROBIOTICS ON PATHOGEN RESISTANCE

The use of probiotics in aquaculture is still faced with a lot of controversies and skepticism. However, the capacity of probiotics to improve feed conversion and growth performance led many researchers to explore their possible anti-pathogenic activity. Probiotics can affect the intestinal microbiota of fish, which can help to protect the host against pathogens (173).
to increase the resistance of fish against different types of pathogens, including bacteria, viruses and parasites, has been widely demonstrated experimentally by higher survival rates upon pathogen challenge in probiotic-treated fish when compared to controls (15, 56, 108). Thus, in this section, we briefly review all the published data concerning increased resistance of aquacultured fish to bacteria, viruses or parasites upon probiotic treatment. The main information regarding these studies has been also summarized in Table 1 (bacteria), Table 2 (viruses) and Table 3 (parasites).

Probiotics Providing Resistance to Bacterial Pathogens

Most of the investigations in the literature that have studied pathogen resistance conferred by probiotics have studied it in relation to bacterial pathogens.

As mentioned above, the most commonly used probiotic species in aquaculture include genera Lactobacillus and Bacillus (108, 260). In all the studies summarized in Table 1, apart from these probiotic species, there are other Gram-positive bacteria frequently used that include genera Carnobacterium, Lactococcus, Leuconostoc, Pediococcus, Enterococcus, Clostridium, Micrococcus, Rhodococcus and Kocuria. Regarding the Gram-negative bacteria, Pseudomonas, Aeromonas, Shewanella, Enterobacter, Citrobacter, Roseobacter, Vibrio and Flavobacterium have also been tested with positive effects. Regarding yeast, the genera Saccharomyces is the most commonly used. Interestingly, in numerous investigations the mixture of different probiotic candidates, mainly LAB or Bacillus spp. together or with other species (see Table 1) resulted in higher disease resistance against bacteria (also reviewed in 108). Indeed, as mentioned throughout the review, the combination of different probiotics and other immunostimulants resulted in higher positive effects on the host, not only regarding pathogen resistance but also on growth performance or in the immune response.

In almost all studies described in Table 1, the probiotic candidates were administered along with the diet. Lactobacillus spp. constitutes one of the probiotics for which antibacterial activity has been more frequently shown. Thus, the dietary supplementation of L. rhamnosus increased disease resistance of rainbow trout against A. salmonicida (31); Nile tilapia against E. tarda (224) and, in combination with L. lactis, also increased disease resistance of Nile tilapia against Streptococcus agalactiae (117). In case of dietary inclusion of L. plantarum, it has also been shown that significantly increased disease resistance of common carp and L. rohita against A. hydrophila (14B, 196); rainbow trout against Lactococcus garvieae (261); Epinephelus coioides against Streptococcus sp. (186) and Nile tilapia against Aeromonas sobria (234). Other bacteria species of genera Lactobacillus, such as L. pentosus, L. acidophilus, L. fermentum, L. delbrueckii or L. casei have also been studied as probiotic candidates improving disease resistance against a variety of bacterial pathogens, when administered with the diet alone or in combinations (see Table 1). Regarding Lactococcus spp., it has been shown that diet supplementation of these probiotic species also led to the improvement disease resistance of common carp against A. hydrophila (155); Chromileptes altivelis against V. harveyi (158); rainbow trout against A. salmonicida (38); olive flounder against E. tarda (241), S. iniae (239, 240) and also against Streptococcus parauberis (156); Nile tilapia against Staphylococcus aureus (233); Oreochromis mossambicus against A. hydrophila (48) and brown trout against A. salmonicida (244). In many other studies, Carnobacterium spp. were the selected microorganisms to be investigated as probiotic candidates and dietary administration of these bacteria species resulted in enhanced disease resistance of Atlantic cod against V. anguillarum (189, 190); and rainbow trout against Y. ruckeri and/or A. salmonicida (203, 209). Also, in some investigations, the mixture of these bacteria together with A. hydrophila and Vibrio spp., resulted in increased resistance of rainbow trout against A. salmonicida (203, 206, 262). Similar results were also revealed in numerous investigations where Bacillus spp. appears as the selected probiotic agent to study the control of fish disease (Table 1). For example, dietary supplementation of B. subtilis and B. licheniformis significantly increased disease resistance of rainbow trout against Y. ruckeri (207). Likewise, rainbow trout fed Bacillus spp. and A. sobria showed enhanced disease resistance against S. iniae (210), and L. rohita fed B. subtilis showed enhanced disease protection against E. tarda (193) and A. hydrophila (194, 197). In case of fish-fed with Aeromonas spp., increased disease resistance against S. iniae and A. salmonicida were shown (206, 208, 210, 262). Another study worth mentioning is that of Gong et al. (182), that isolated a new Pediococcus pentosaceus strain (SL001) which exhibited a wide antimicrobial spectrum against fish pathogens, including A. hydrophila, Aeromonas veronii, A. sobria, E. tarda, L. garvieae, and Plesiomonas shigelloideae. Less frequent are the studies that used yeasts as probiotic agents; however, we found a few of them in the literature in which dietary supplementation with S. cerevisiae significantly increased the disease resistance of Ephinephelus spp. against streptococcosis (188) or Nile tilapia against A. hydrophila (225); in the same way, fish-fed Debaryomyces hansenii presented increased disease resistance against A. hydrophila (201). The effect of dietary inclusion of other selected probiotics, such as Clostridium butyricum or Enterobacter cloacae, to control fish disease against a variety of bacterial pathogens, such as vibriosis or yersiniosis, respectively, are also summarized in Table 1.

Probiotics Providing Resistance to Viral Pathogens

Some studies searching for bacteria with antiviral activity have been carried out in fish, especially during the 80s and 90s (Table 2). In 1988, Kamei et al. performed a plaque reduction assay to screen the antiviral activity of bacteria isolated from fresh water salmonid hatcheries against infectious hematopoietic necrosis virus (IHNV). The results showed that different Pseudomonas spp. and Aeromonas spp. strains produced a 90% plaque reduction (263). In 1997, Maeda et al. performed a natural infection of the yellow jack (Caranxoides bartholomaei) larvae with Sima-aji Neuro Necrosis Virus (SJNNV), reporting that the bacterial strain Pseudoalteromonas undina VKM-124 showed an inhibitory activity towards SJNNV (250),
Fish species	Probiotic	Probiotic administration route	Pathogen	Pathogen administration route	Reference
A. anguilla	E. faecium and B. toyoi	Diet	E. tarda	Anal	(174)
A. japonica	L. pentosus	Diet	E. tarda	i.p.	(175)
C. auratus and	Lactobacillus sp., Bacillus sp. and commercial	Diet	P. fluorescens	IMM	(176)
X. helleri	aquaculture probiotic (GA probiotic)	Diet	A. hydrophila	i.p.	(177)
C. auratus gibelio	Bacillus sp.	Diet	A. hydrophila	i.p.	(178)
C. macrocephalus x C. gariepinus (hybrid)	B. sianensis	Diet	A. hydrophila	i.p.	(179)
C. gariepinus	L. acidophilus	Diet	S. xylosus, A. hydrophila and S. agalactiae		
C. catla	B. circulans	Diet	A. hydrophila	IMM	(180)
C. atilaevis	L. lactis	Diet	V. harveyi	i.p.	(181)
C. ideus	S. xenamensis and A. veroni	Diet	A. hydrophila	i.p.	(182)
C. ideella	P. pentosaceus	Diet	A. hydrophila	i.p.	(183)
C. carpio	A. veroni, V. lentus and F. sasangense	Diet	A. hydrophila	i.p.	(184)
C. carpio	L. planterum	Diet	A. hydrophila	i.p.	(185)
C. carpio	L. delbruecki	Diet	A. hydrophila	i.p.	(186)
C. carpio	L. lactis	Diet	V. anguillarum	i.p.	(187)
D. labrax	V. fluvialis	Diet	V. anguillarum	IMM	(188)
D. labrax	E. gallinarum	Diet	V. anguillarum	IMM	(189)
E. coioide	L. planterum	Diet	Streptococcus sp.	i.m.	(190)
E. coioide	P. pentosaceus	Diet	V. anguillarum	i.p.	(191)
Epinephelus spp.	S. cerevisiae	Diet	Streptococcus sp.	i.m.	(192)
G. morhua	C. divergens	Diet	V. anguillarum	IMM	(193)
G. morhua	C. divergens	Diet	V. anguillarum	IMM	(194)
G. morhua	P. gallaeensi	IMM	V. anguillarum	IMM	(195)
L. rohita	B. subtilis	Diet	A. hydrophila	i.p.	(196)
L. rohita	B. subtilis	Diet	E. tarda	i.p.	(197)
L. rohita	B. subtilis	Diet	A. hydrophila	i.p.	(198)
L. rohita	P. aeruginosa	Diet	A. hydrophila	i.p.	(199)
L. rohita	L. planterum	Diet	A. hydrophila	i.p.	(200)
L. rohita	Bacillus spp.	Diet	V. harveyi	i.p.	(201)
L. crocea	B. subtilis	Diet	A. hydrophila	i.p.	(202)
L. calcanfer	L. casei, L. planterum, L. pentosus, L. fermentum, E. faecium and B. subtilis	Diet	V. anguillarum and A. hydrophila		
M. miiuy	C. butyricum	Diet	V. anguillarum	i.p.	(38)
M. rosacea	D. hansenii	Diet	A. hydrophila	i.p.	(39)
O. mykiss	C. butyricum	Oral	V. anguillarum	i.p.	(40)
O. mykiss	P. fluorescens	IMM	V. anguillarum	IMM	(41)
O. mykiss	Carnobacterium sp.	Diet	A. salmonicida	CO	(42)
O. mykiss	L. rhamnosus	Diet	A. salmonicida	CO	(43)
O. mykiss	Pseudomonas spp. and Carnobacterium spp.	IMM	V. anguillarum	IMM	(44)
O. mykiss	A. hydrophila, Vibrio spp., Carnobacterium spp. and an unidentified Gram-positive coccus	Diet	A. salmonicida	CO, i.m., i.p.	(45)
O. mykiss	A. hydrophila, V. fluvialis, Carnobacterium spp. and an unidentified Gram-positive coccus	Diet	A. salmonicida	CO	(46)
O. mykiss	B. subtilis and B. licheniformis	Diet	Y. ruckeri	i.p.	(47)
O. mykiss	A. sobria	Diet	S. iniae	i.p.	(48)
O. mykiss	C. maltaromaticum and C. divergens	Diet	Y. ruckeri and A. salmonicida		
O. mykiss	L. lactis and L. mesenteroides	Diet	A. salmonicida	CO (asymptomatic carrier)	(49)
O. mykiss	Bacillus spp. and A. sobria	Diet	A. salmonicida, L. garvieae, S. iniae, V. anguillarum,		

(Continued)
Fish species	Probiotic	Probiotic administration route	Pathogen	Pathogen administration route	Reference
O. mykiss	B. subtilis	Diet	V. ordalii and Y. ruckeri	Diet	(211)
O. mykiss	A. sobria and B. thermosphaeta	Diet	Aeromonas sp. i.p.	Diet	(212)
O. mykiss	L. mesenteroides and L. plantarum	Diet	L. garvieae CO	Diet	(196)
O. mykiss	E. cloacae and B. mojavensis	Diet	Y. ruckeri IMM	Diet	(213)
O. mykiss	E. faecalis	Diet	V. anguillarum i.p.	Diet	(214)
O. mykiss	Kocuria	Diet	V. anguillarum i.p.	Diet	(215)
O. mykiss	Kocuria	Diet	V. anguillarum and V. ordalii	Diet	(216)
O. mykiss	Enterobacter sp. and E. amnigenus	Diet	F. psychrophilum i.m.	Diet	(217)
O. mykiss	Pseudomonas sp.	Diet	F. psychrophilum i.m.	Diet	(218)
O. mykiss	Kocuria and Rhodococcus	Diet	V. anguillarum i.p.	Diet	(219)
O. mykiss	E. faecalis	Diet	A. salmonicida i.p.	Diet	(220)
O. mykiss	Enterobacter sp.	Diet	F. psychrophilum i.p.	Diet	(221)
O. mykiss	E. casseilatus	Diet	S. iniae i.p.	Diet	(222)
O. mykiss	E. faecalis	Diet	L. garvieae i.p.	Diet	(163)
O. mykiss	L. delbrueki subsp. bulgaricus, L. acidophilus and C. farmeri	Diet	L. garvieae i.p.	Diet	(116)
O. fasciatus	L. sakei	Diet	E. tarda i.p.	Diet	(223)
O. mossambicus	Lactic acid bacteria	Diet	A. hydrophila IMM	Diet	(419)
O. niiloticus	L. rhamnosus	Diet	E. tarda i.p.	Diet	(224)
O. niiloticus	S. cerevisiae	Diet	A. hydrophila i.p.	Diet	(225)
O. niiloticus	B. subtilis and L. acidophilus	Diet	A. hydrophila, i.p.	Diet	(226)
O. niiloticus	B. pumilus	Diet	A. hydrophila i.p.	Diet	(227)
O. niiloticus	M. luteus and Pseudomonas spp.	Diet	A. hydrophila i.p.	Diet	(228)
O. niiloticus	L. brevis and L. acidophilus	Diet	A. hydrophila i.p.	Diet	(229)
O. niiloticus	B. licheniformis	Diet	S. iniae i.p.	Diet	(230)
O. niiloticus	B. amyloquellaficiens	Diet	Y. ruckeri and i.p.	Diet	(231)
O. niiloticus	B. subtilis	Diet	C. parformingens	Diet	(232)
O. niiloticus	B. pumilus	Diet	S. agalactiae i.p.	Diet	(166)
O. niiloticus	L. garrieae	Diet	S. agalactiae i.m.	Diet	(233)
O. niiloticus	L. plantarum and B. velezensis	Diet	S. aureus i.p.	Diet	(154)
O. niiloticus	L. rhamnosus and L. lactis subsp. lactis	Diet	S. agalactiae i.p.	Diet	(117)
O. niiloticus	L. plantarum	Diet	A. sobria i.p.	Diet	(234)
O. niiloticus	L. plantarum	Diet	S. agalactiae i.p.	Diet	(235)
O. niiloticus	L. plantarum	Diet	S. agalactiae i.p.	Diet	(129)
Oreochromis sp.	B. subtilis, B. licheniformis, Bacillus sp. and Pedicoccus sp. B. amyloliquefaciens and B. pumilus	Diet	S. agalactiae CO	Diet	(236)
P. hypophilthmus	B. amyloliquefaciens and B. pumilus	Diet	E. ictaluri i.p.	Diet	(171)
P. bocourti	B. aerius	Diet	A. hydrophila i.p.	Diet	(237)
P. olivaceus	B. licheniformis	Diet	S. iniae IMM	Diet	(238)
P. olivaceus	L. lactis	Diet	S. iniae CO	Diet	(239)
P. olivaceus	L. lactis and L. plantarum	Diet	S. iniae i.p.	Diet	(240)
P. olivaceus	L. lactis	Diet	E. tarda i.p.	Diet	(241)
P. olivaceus	L. lactis	Diet	S. parauberis Oral	Diet	(156)
P. fluvials	P. chlororaphis	Diet	A. sobria IMM	Diet	(242)
R. canadum	B. subtilis	Diet	V. harveyi i.p.	Diet	(243)
S. trutta	L. lactis and L. mesenteroides	Diet	A. salmonicida Asymptomatic carrier	Diet	(244)
S. salar	P. fluorescens	IMM	A. salmonicida CO	IMM	(62)
S. maximus	Roseobacter spp.	IMM	V. anguillarum IMM	IMM	(245)
consequently increasing the survival rate of the yellow jack larvae. In another study, carried out by Son et al., the dietary administration of the probiotic L. plantarum enhanced disease resistance of the grouper E. coioides against grouper iridovirus (GIV). Interestingly, fish fed L. plantarum also showed enhanced growth and innate immune responses, such as respiratory burst or plasma lysozyme activity among other effects (186). In a similar way, Chiu et al., found that the dietary administration of the yeast probiotic, S. cerevisiae P13 isolated from fermented peaches, enhanced disease resistance of E. coioides against GIV (188). Two years later, Liu et al., observed a similar effect in fish supplemented with B. subtilis E20 isolated from fermented boiled soybeans and then infected with GIV (252). Decreased fish mortality and increased survival rate were observed. In both studies, the administered probiotics also enhanced the innate immune responses (respiratory burst, plasma lysozyme activity, phagocytosis activity and alternative complement activity).

Also, dietary supplementation with commercial probiotic named Lactobacil, individually or mixed with Sporolac, in olive flounder naturally infected with lymphocystis disease virus (LCDV) enhanced disease resistance (256). In another study, hulong grouper fed B. subtilis 7k were significantly strengthened in innate immune functions when compared with those fed with control diets. Moreover, B. subtilis 7k supplementation inhibited infection by Singapore grouper iridovirus (SGIV) (253).

In other cases, probiotic strains have been used as vectors to administer viral antigens to the host. Through this strategy, probiotics would exert all their beneficial effects and be at the same time vaccine vectors. Along this line, a study carried out by Min et al. with rainbow trout orally immunized with Lactobacillus-expressing the VP2 and VP3 protein of the infectious pancreatic necrosis virus (IPNV) resulted in reduced viral loads, as analyzed by real-time RT-PCR after IPNV challenge (254). Likewise, oral immunization of rainbow trout

TABLE 1 | Continued

Fish species	Probiotic	Probiotic administration route	Pathogen	Pathogen administration route	Reference
S. maximus L.	Roseobacter sp.	Diet (bioencapsulated in rotifers)	V. anguillarum	Diet (bioencapsulated in rotifers)	(246)
S. maximus	Bacillus spp.	Diet	V. anguillarum	i.p.	(247)
S. schlegeli	P. acidilactis	Diet	E. tarata	i.p.	(162)
S. senegalensis	S. putrefaciens and S. baltica	Diet	P. damselae subsp. piscicida	i.p.	(248)
S. senegalensis	S. putrefaciens	Diet	P. damselae subsp. piscicida	i.p.	(249)
S. aurata	Micrococcus and Vibrionaceae	Diet	L. anguillarum	i.p.	(29)

i.p., intraperitoneal injection; i.m., intramuscular injection; IMM, immersion; CO, cohabitation.

TABLE 2 | Probiotics assayed in vivo in aquacultured species which have shown to confer significant resistance against viral pathogens.

Fish species	Probiotic	Probiotic administration route	Pathogen	Pathogen administration route	Reference
C. bartholomei	P. undina	IMM	SJNNV	n.d.	(250)
C. carpio	L. plantarum (expressing G protein from SVCV)	Oral	Spring Viremia of Carp Virus (SVCV)	Injection (n.d.)	(251)
E. coioides	L. plantarum	Diet	Grouper Iridovirus (GIV)	i.p.	(186)
E. coioides	S. cerevisiae	Diet	Grouper Iridovirus (GIV)	i.m., i.p.	(188)
E. coioides	B. subtilis	Diet	Iridovirus (GIV)	i.p.	(252)
E. fuscoguttatus	B. subtilis	Diet	Singapore grouper iridovirus (SGIV)	IMM	(253)
E. lanceolatus	(hybrid)				
O. mykiss	L. casei (expressing VP2 & VP3 from IPNV)	Oral	Infectious Pancreatic Necrosis Virus (IPNV)	i.p.	(254)
O. mykiss	L. lactis and L. lactis (expressing G protein from VHSV)	Diet	Viral haemorrhagic septicemia virus (VHSV)	i.p.	(255)
O. mykiss	L. casei (expressing AHA1-CK6 and VP2 from IPNV)	Diet	Infectious Pancreatic Necrosis Virus (IPNV)	i.p.	(246)
P. olivaceus	Commercial probiotics: Lactobacil and Sporolac (Inter Care Ltd, Mehsana, Gujarat)	Diet	Lymphocystis disease virus (LCDV)	Natural infection	(256)

i.p., intraperitoneal injection; i.m., intramuscular injection; IMM, immersion; n.d., not determined.
The use of probiotics in aquaculture is a promising approach to increase fish health status and reduce the impact of infectious diseases. Reports in the past years have broadly established that there is a wide range of probiotic microorganisms that can produce beneficial effects to the host, including immunostimulatory effects, increased resistance to pathogens, stimulation of growth, increased digestion or even improved water quality. Despite all these studies, the use of probiotics in aquaculture is not as extended as would be expected taking into account the effort that has been devoted to this research field in the past years. In this sense, we thought of importance to gather in a specific review all direct evidence of increased protection to pathogens conferred by probiotic administration. As visualized in this review, most of the efforts have been directed to establish how probiotics can protect against bacterial infections, but much less is known regarding their antiviral or antiparasitic effects. Nevertheless, probiotic application is a dynamic research field in the sense that there is a continuous search for new probiotic candidates that have even more beneficial effects. Despite the numerous reports on fish probiotics, the mechanisms through which these probiotics exert their effects has not yet been clarified in many cases. Other practical and safety issues also need to be addressed to convince farmers that probiotics are safe and eco-friendly alternatives to chemotherapy. Thus, for each probiotic candidate, the best administration regime should be established, determining for how long these probiotics should be administered to colonize the mucosal surfaces and obtain optimal results. Finally, the safety of each candidate has to be established beyond doubt, including a determination of the antibiotic resistance and a confirmation that any resistance will not be transferred to surrounding microorganisms. Hopefully, all these studies focused on providing insights on the mechanisms of action of probiotics, practical administration issues and safety will contribute to stimulate the regular use of probiotics in aquaculture.

GENERAL CONCLUSIONS

The use of probiotics in aquaculture is a promising approach to increase fish health status and reduce the impact of infectious diseases. Reports in the past years have broadly established that there is a wide range of probiotic microorganisms that can produce beneficial effects to the host, including immunostimulatory effects, increased resistance to pathogens, stimulation of growth, increased digestion or even improved water quality. Despite all these studies, the use of probiotics in aquaculture is not as extended as would be expected taking into account the effort that has been devoted to this research field in the past years. In this sense, we thought of importance to gather in a specific review all direct evidence of increased protection to pathogens conferred by probiotic administration. As visualized in this review, most of the efforts have been directed to establish how probiotics can protect against bacterial infections, but much less is known regarding their antiviral or antiparasitic effects. Nevertheless, probiotic application is a dynamic research field in the sense that there is a continuous search for new probiotic candidates that have even more beneficial effects. Despite the numerous reports on fish probiotics, the mechanisms through which these probiotics exert their effects has not yet been clarified in many cases. Other practical and safety issues also need to be addressed to convince farmers that probiotics are safe and eco-friendly alternatives to chemotherapy. Thus, for each probiotic candidate, the best administration regime should be established, determining for how long these probiotics should be administered to colonize the mucosal surfaces and obtain optimal results. Finally, the safety of each candidate has to be established beyond doubt, including a determination of the antibiotic resistance and a confirmation that any resistance will not be transferred to surrounding microorganisms. Hopefully, all these studies focused on providing insights on the mechanisms of action of probiotics, practical administration issues and safety will contribute to stimulate the regular use of probiotics in aquaculture.

FUNDING

This work was supported by the European Research Council (ERC Consolidator Grant 2016 725061 TEMUBLYM), by the Spanish Ministry of Science, Innovation and Universities (project AGL2017-85494-C2-1-R) and by the Comunidad de Madrid (grant 2016-T1/BIO-1672).

TABLE 3 | Probiotics assayed in vivo in aquacultured species which have shown to confer significant resistance against parasites.

Fish species	Probiotic	Probiotic administration route	Pathogen	Pathogen administration route	Reference
C. idellus	B. subtilis	Diet	C. sinensis	CO	(257)
C. carpio	Bacillus spp., Lactobacillus sp. and Nitrosomonas sp.	IMM	Myxobolus sp.	Natural infection	(258)
O. mykiss	A. sobria and B. thermosphacta	Diet	I. multifili	IMM	(212)
P. hypophthalmus	L. plantarum	IMM	S. parasitica	IMM	(259)

IMM, immersion; CO, cohabitation.

with recombinant L. lactis NZ3900 expressing the G gene of viral hemorrhagic septicemia virus (VHSV) resulted in a significant reduction of viral loads and decreased fish mortality after viral challenge (255). Increased resistance to IPNV was also detected in rainbow trout orally immunized with recombinant L. casei expressing the viral antigens (264). Similar results were observed in common carp orally immunized with recombinant L. plantarum expressing the G protein of spring viremia of carp virus (SVCV).

Probiotics Providing Resistance to Parasites

Although parasitic infections often provoke lower mortalities than viral and bacterial pathogens, they adversely affect animal health, with an enormous impact on aquaculture from an economic point of view. Despite this, not many studies have investigated the capacity of probiotics to confer resistance against different types of parasites (Table 3). In one of these studies, Pieters et al. demonstrated that the oral administration of A. sobria GC2 and Brochothrix thermosphacta BA211 to rainbow trout conferred increased resistance against Ichthyophthirius multifiliis (Ich), with the A. sobria GC2 strain being more effective in its protecting role (212). In a similar study, dietary supplementation with B. subtilis spores expressing Clonorchis sinensis pararnyosin protected grass carp from cercaria infection (257). In another study, catfish exposed to L. plantarum showed a reduced infection with Saprolegnia parasitica (259). Finally, in Yanuhar et al. (258), probiotic formulations containing a mixture of Bacillus spp., Lactobacillus sp. and Nitrosomonas sp., were administered at different doses to Koi carp and resulted in increased disease protection against Myxobolus sp., in terms of gill tissue damage reduction. Further investigations are needed in fish to explore additional effects of probiotic treatment on the resistance to parasitic infections.

AUTHOR CONTRIBUTIONS

RS, CT, and PD-R collected information and wrote the manuscript with help and contributions from FD and NN-O. All authors contributed to the article and approved the submitted version.
REFERENCES

1. Zivkovic R. Probiotics or microbes against microbes. Acta Med Croatica (1999) 53(1):23–8.
2. Lilly DM, Stillwell RH. Probiotics: growth-promoting factors produced by microorganisms. Science (1965) 147(3659):747–8. doi: 10.1126/science.147.3659.747
3. Parker R. Probiotics, the other half of the antibiotic story. Anim Nutr Health (1974) 29:4–8.
4. Fuller R. Probiotics in man and animals. J Appl Bacteriol (1999) 86(5):365–78. doi: 10.1111/j.1365-2679.1999.tb05105.x
5. Naidu A, Bidack W, Clemens R. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr (1999) 39(13):1–126. doi: 10.1080/01448199991279187
6. Gram L, Ringo E. Prospects of fish probiotics. In Biology of Growing Animals, vol. 2. pp. 379–417. Amsterdam, The Netherlands: Elsevier. (2005). p. 3–504.
7. Food and Agricultural Organization (FAO), World Health Organization (WHO). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. A joint FAO/WHO expert consultation. Cordoba, Argentina. Rome, Italy: FAO and WHO (2001). Available at: https://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html.
8. Takács M, Tayooyoon (Bacillus toyoi) as growth promoter for animal feeding. Microbiol-Aliments-Nutr (1986) 4:121–35.
9. Moriarty D. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture (1998) 164(1–4):351–8. doi: 10.1016/S0044-8486(98)00199-9
10. Verschueren L, Rombaut G, Sorgeloos P, Verstreeta W. Probiotic bacteria as biological control agents in aquaculture. Microb Mol Biol Rev (2000) 64(4):655–71. doi: 10.1128/mbbr.64.4.655-671.2000
11. Amenoyege C, Chen G, Wang Z, Huang J, Huang B, Li H. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquas Int (2020) 28:1017–41. doi: 10.1016/j.aquaculture.2020.106886
12. Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci (2017) 115:66–77. doi: 10.1016/j.resv.2017.01.016
13. Caipang C, Suhraman I, Avillanosa A, Bargoyo V. Host-derived Probiotics for Finfish Aquaculture. In: IOP Conf Ser: Earth Environ Sci. Bristol, UK: IOP Publishing (2020). 430:012026. doi: 10.1088/1755-1315/430/1/012026
14. Chauhan A, Singh R. Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis (2019) 77(2):99–113. doi: 10.1007/s13199-018-0580-y
15. Hoseinifar SH, Sun Y-Z, Wang A, Zhou Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol (2018) 9:2429. doi: 10.3389/fmicb.2018.02429
16. Ringo E, Doan HV, Lee S, Song SK. Lactic acid bacteria in shellfish farming industries. Int Res J Microbiol (2016) 36(4):228–39. doi: 10.1007/s10482-016-9703-5
17. Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, et al. Interference of Listonella anguillarum with potential probiotic microorganisms isolated from farmed gilt-head seabream (Sparus aurata, L.). Aquac Res (2006) 37(1):78–86. doi: 10.1111/j.1365-2109.2005.01400.x
18. Gatesoupe FJ. The use of probiotics in aquaculture. Aquaculture (1999) 180(1–2):147–65. doi: 10.1016/S0044-8486(99)00187-8
19. Nikosekdaen S, Ouwahand A, Salimmen S, Bylund G. Prevention of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture (1998) 198(3–4):229–36. doi: 10.1016/S0044-8486(01)00593-2
20. Muthukumar P, Kandeepan C, Isolation, identification and characterization of probiotic organisms from intestine of fresh water fishes. Int J Corn Microbiol Appl Sci (2015) 6:467–16. doi: 10.1016/j.ijcmas.2015.03.007
21. Sica MG, Brugnoni LL, Marucci PL, Cubito MA. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek (2010) 12(1):13–26. doi: 10.1007/s10482-012-9703-5
22. Thankappan B, Ramesh D, Ramkumar S, Natarajanasevan K, Anbarasu K. Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens. App Biochem Biotechnol (2015) 175(1):530–53. doi: 10.1007/s12010-014-1270-y
23. Hai NV. The use of probiotics in aquaculture. J Appl Microbiol (2015) 119(4):917–35. doi: 10.1111/jam.12886
42. Chen D-D, Yao Y-Y, Cui Z-W, Zhang X-Y, Guo X, Zhou Y-Y, et al. Comparative study of the immunoprotective effect of two grass carp-sourced *Bacillus subtilis* spore-based vaccines against grass carp reovirus. *Aquaculture* (2019) 504:88–95. doi: 10.1016/j.aquaculture.2019.01.055

43. Gao X-Y, Liu Y, Miao L-L, Li E-W, Hou T-T, Liu Z-P. Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2 and characterization of the active substance. *AMB Express* (2017) 7(1):23. doi: 10.1186/s13568-017-0323-3

44. Muñoz-Atienza E, Gómez-Sala B, Arasio C, Campanero C, del Campo R, Hernández PE, et al. Anti microbial activity, antibacterial susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. *BMC Microbiol* (2013) 13(1):15. doi: 10.1186/2046-6024-2013-15

45. Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria: an in vitro colonization study. *J Nutr Biochem* (2019) 67:20–7. doi: 10.1016/j.jnutbio.2019.01.010

46. Sugita H, Mizuki H, Ito S. Diversity of sidetrophic-producing bacteria isolated from the intestinal tracts of fish along the Japanese coast. *Aquac Res* (2011) 43:481–8. doi: 10.1111/j.1365-2109.2011.02851.x

47. Smith P, Davey S. Evidence for the competitive exclusion of *Aeromonas salmonicida* from fish with stress-inducible furunculosis by a fluorescent pseudomonad. *J Fish Dis* (1993) 16(5):521–4. doi: 10.1111/j.1365-2761.1993.tb01888.x

48. Gram L, Melchior F, Spanggaard B, Huber I, Nielsen TF. Inhibition of *Vibrio anguillarum* by *Pseudomonas fluorescens* AH2, a possible probiotic treatment of fish. *Enviro Microbiol* (1999) 65(3):969–73. doi: 10.1128/AEM.65.3.969-973.1999

49. Lázaro C, Caipang CM, Rajan B, Brinchmann M, Kiron V. Characterization of *GP2* and *GP2*: two potential probiotic bacteria isolated from the gastrointestinal tract of Atlantic cod. *Probiotics Antimicrob Proteins* (2010) 2:126–34. doi: 10.1007/s12291-010-0904-8

50. Gatesoupe F-J, Infantino J-LZ, Cahu C, Quazquez P. Early weaning of seabass larvae. *Dinacreus labrax*: the effect on microbiota, with particular attention to iron supply and oxoenzymes. *Aquaculture* (1997) 158(1):117–27. doi: 10.1016/S0044-8486(97)00179-8

51. Li M, Xi B, Qin T, Chen K, Xie J. Isolation and characterization of AHL-degrading bacteria from fish and pond sediment. *J Oceanol Limnol* (2019) 37(4):1460–7. doi: 10.1007/s00343-019-8137-6

52. Adams CA. The probiotic paradox: live and dead cells. *Food Res Int* (2010) 43(1):37–46. doi: 10.1016/j.foodres.2009.07.042

53. Lategan MJ, Booth W, Shimmon R, Gibson LF. An inhibitory substance produced by *Apostichopus japonicus* against *Listeria monocytogenes* and its effect on the gut microbiota. *J Anim Vet Adv* (2015) 22(2):219. doi: 10.17295/jaav.2015.22.2.219

54. Ma Y-X, Li L-Y, Li M, Chen W, Bao P-Y, Yu Z-C, et al. Effects of dietary supplement of probiotics in the larviculture food chain. *Mar Biotechnol* (2008) 10(1):1–12. doi: 10.1007/s10126-007-9054-9

55. Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P. Effects of *Lactobacillus casei* Nippon 2006 on growth, survival and performance of Oreochromis niloticus. *J Anim Vet Adv* (2004) 28(4):405–40. doi: 10.1016/j.femsre.2004.01.003

56. Tinh NT, Dierckx K, Sorgeloos P, Bossier P. A review of the functionality of probiotics in the larviculture food chain. *Mar Biotechnol* (NY) (2008) 10(1):1–31. doi: 10.1016/s1089-2122(07)10025-3

57. Vijayabaskar P, Somasundaram ST. Isolation of bacteriocin producing lactic acid bacteria from shrimp gut and probiotic activity against common fresh water fish pathogen *Aeromonas hydrophila*. *Biotechnol* (2008) 7(1):124–48. doi: 10.3923/biotech.2008.124-128

58. Pan X, Wu T, Zhang L, Wang H, Zhao Z. In vitro evaluation of adherence and antimicrobial properties of a candidate probiotic *Clostridium butyricum* CB2 for farmed fish. *J Appl Microbiol* (2008) 105(5):1623–9. doi: 10.1111/j.1365-2672.2008.03885.x

59. Lategan MJ, Booth W, Shimmon R, Gibson LF. An inhibitory substance produced by *Apostichopus japonicus* A199, an aquatic probiotic. *Aquaculture* (2006) 254(1–4):115–24. doi: 10.1016/j.aquaculture.2005.11.019

60. Faramarzi M, Kialvandi S, Iranshahi F. The effect of probiotics on growth performance and body composition of common carp (*Cyprinus carpio*). *J Anim Vet Adv* (2011) 10:2048–13. doi: 10.3923/jaav.2011.2048.2143

61. Ma Y-X, Li L-Y, Li M, Chen W, Bao P-Y, Yu Z-C, et al. Effects of dietary probiotic yeast on growth parameters in juvenile sea cucumber, *Apostichopus japonicus*. *Aquaculture* (2019) 499:203–11. doi: 10.1016/j.aquaculture.2019.04.043

62. Rengpipat S, Phianphak W, Phayatiritivorakul S, Menasveta P. Effects of a probiotic bacterium on black tiger shrimp *Penaeus monodon* survival and growth. *Aquaculture* (1998) 167(3–4):301–13. doi: 10.1016/S0044-8486(98)00305-6

63. Ringo E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? *Aquac Nutr* (2016) 22(2):189–202. doi: 10.1111/anu.12346

64. Cairo G, Bernuzzi F, Recalcati S. A precious metal: iron, an essential nutrient for all cells. *Genes Nutr* (2006) 1(1):25–40. doi: 10.1007/BF02829934

65. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. *Plos Pathog* (2010) 6(8):e1000949. doi: 10.1371/journal.ppat.1000949

66. Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator – Siderophore: a review. *Microbiol Res* (2018) 212:213–103. doi: 10.1016/j.micres.2017.10.012

67. Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A. A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria: an in vitro colonization study. *J Nutr Biochem* (2019) 67:20–7. doi: 10.1016/j.jnutbio.2019.01.010

68. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum sensing in Gram-negative bacteria. *FEMS Microbiol Rev* (2001) 25(4):365–404. doi: 10.1111/j.1574-6976.2001.tb00583.x
83. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, et al. Multiple N-acetyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA (1995) 92(20):9427–31. doi: 10.1073/pnas.92.20.9427

84. Kalia VC. Quorum sensing inhibitors: an overview. J Appl Microbiol (2011) 110(1):202–8. doi: 10.1111/j.1365-2672.2010.04872.x

85. Defoirdt T, Boon N, Bossier P, Verstraete W. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture (2004) 240(1-4):69–88. doi: 10.1016/j.aquaculture.2004.06.031

86. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol (1996) 178(22):6618–22. doi: 10.1128/jb.178.22.6618-6622.1996

87. Roy V, Adams BL, Bentley WE. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol (2011) 49(2):113–23. doi: 10.1016/j.enzmtec.2011.06.001

88. Dong Y-H, Wang L-H, Zhang L-H. Quorum-quenching microbial signal from its receptor protein. J Enzyme Inhib Med Chem (2010) 25(1):283–91. doi: 10.1007/s10872-010-9599-8

89. Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P. Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol (2006) 72(9):6419–23. doi: 10.1128/AEM.01364-05

90. Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, et al. Evidence that halogenated furanones from Fischerella mackiei QQ12 isolated from gastrointestinal tract of Carassius auratus inhibit acylated N-acyl homoserine lactones. Enzyme Microb Technol (2007) 42(2):57–62. doi: 10.1016/j.enzmictec.2006.09.005

91. Delshad S, Soltanian S, Sharifiyazdi H, Haghlkah M, Bossier P. Identification of N-acetyl homoserine lactone-degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss). J Appl Microbiol (2018) 125(2):356–69. doi: 10.1111/jam.13891

92. Ghanime-Motlagh R, Mohammadian T, Gharbi D, Manenteau-Ledouble S, Mahmoudi E, Khosravi M, et al. Quorum quenching properties and probiotic potentials of intestinal associated bacteria in Asian sea bass Lates calcarifer. Mar Drugs (2020) 18(1):23. doi: 10.3390/md18010023

93. Lazado CC, Caipang CM. Mucosal immunity and probiotics in fish. Fish Shellfish Immunol (2014) 39(1):78–89. doi: 10.1016/j.fsi.2014.04.015

94. Zhou S, Zhang Y-A, Yin H, Chu W, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol (2011) 35(12):1346–55. doi: 10.1016/j.dci.2011.11.009

95. Rombout JHM, Abelli L, Picciotti S, Scapigliati G, Kiron V. Teleost intestinal immunity. Fish Shellfish Immunol (2011) 31(5):616–26. doi: 10.1016/j.fsi.2010.09.010

96. Salinas I, Parra D. Fish mucosal immunity: intestine. In: Mucosal Health in Aquaculture. Cambridge, Massachusetts (USA): Academic Press (2015). p. 135–70. doi: 10.1016/B978-0-12-417186-2.00006-6

97. Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, et al. Probiotic, lactic acid bacteria and bacillus: interesting supplementation for aquaculture. J Appl Microbiol (2020) 129(1):116–36. doi: 10.1111/jam.15128

98. Soltanian S, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, et al. Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac (2019) 27(3):331–79. doi: 10.1080/23308249.2019.1597010

99. Pirarat N, Pinpimai K, Endo M, Katagiri T, Popornpisit A, Chansue N, et al. Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus planasus GG. Res Vet Sci (2011) 91(3):92–7. doi: 10.1016/j.rvsc.2011.02.014

100. Balcazar JL, Vendrell D, de Blas J, Ruiz-Zarzuela I, Girone O, Muzzil AQ. Immune modulation by probiotic strains: Quantiﬁcation of phagocytosis of Aeromonas salmonicida by leukocytes isolated from gut of rainbow trout (Oncorhynchus mykiss) using a radiolabelling assay. Comp Immunol Microbiol Infect Dis (2006) 29(5):335–43. doi: 10.1016/j.cimid.2006.09.004

101. Picchiotti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Muleró V, et al. Effects of administration of probiotic strains on GALT of larval gilthead seabream: Immunohistochemical and ultrastructural studies. Fish Shellfish Immunol (2007) 22(1):57–67. doi: 10.1016/j.fsi.2006.03.009

102. Picchiotti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, et al. Early treatment with Bacillus subtilis debruechi strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol (2009) 26(3):368–76. doi: 10.1016/j.fsi.2008.10.008

103. Salinas I, Abelli L, Bertoni F, Picciotti S, Roque A, Furonos D, et al. Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol (2008) 25(1):114–23. doi: 10.1016/j.fsi.2008.03.011

104. Shabirah A, Rosidah R, Mulyani Y, Lili W. Effect of types isolated lactic acid bacteria on hematocrit and differential leukocytes fingerling common carp (Cyprinus carpio L.) infected with Aeromonas hydrophila bacteria. World News Nat Sci (2019) 24:22–35.

105. Mohammadian T, Nasirpour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS. Administrations of autochthonious probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol (2019) 86:269–79. doi: 10.1016/j.fsi.2018.11.052

106. Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, et al. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM8505 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol (2018) 76:368–79. doi: 10.1016/j.fsi.2018.03.020
Lescheid DW. Probiotics as regulators of inflammation: a review. *Funct Food Health Dis* (2014) 4(7):299–311. doi: 10.31989/fhd.v4i7.2

Di J, Chu Z, Zhang S, Huang J, Du H, Wei Q. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeon grown on growth performance, serum immunity and disease resistance of *Actinopener dabryanus*. Fish Shellfish Immunol (2019) 93:711–9. doi: 10.1016/j.fsi.2019.08.020

Li J, Wu Z-B, Zhang Z, Zha J-W, Qu S-Y, Qi X-Z, et al. Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (*Epinephelus lanceolatus* × *E. fuscoguttatus*†). Fish Shellfish Immunol (2019) 93:1047–55. doi: 10.1016/j.fsi.2019.08.047

Soltani M, Kanne A, Taheri-Mirghaed A, Pakzad K, Hosseini-Shakerabari P. Effect of the probiotic, *Lactobacillus plantarum* on growth performance and haematological indices of rainbow trout (*Oncorhyncus mykiss*) immunized with bivalent streptococcosis/lactococcosis vaccine. *Iran J Fish Sci* (2019) 18(2):283–95. doi: 10.22092/ijfs.2018.117757

Cerezza R, Guardiola FA, Cuesta A, Esteban MA. Enrichment of gillhead seabream (*Sparus aurata* L.) diet with palm fruit extract andn probiotics: effects on skin mucosal immunity. *Fish Shellfish Immunol* (2016) 49:100–9. doi: 10.1016/j.fsi.2015.12.028

Van Doan H, Hoseinifar SH, Tapingkae W, Seel-Audom M, Jaturasitha S, Van Doan H, Hoseinifar SH, Tapingkae W, Seel-Audom M, Jaturasitha S, *et al.* Boosted growth performance, mucosal and serum immunity, and disease resistance Nile tilapia (*Oreochromis niloticus*) fingerlings using corncob-derived xylooligosaccharide and *Lactobacillus plantarum* CR1T. *Probiotics Antimicrob Proteins* (2020) 12(2):400–11. doi: 10.1007/s12602-019-09554-5

Gobi N, Vaseeharan B, Chen J-C, Rekha R, Vijayakumar M, Anjugam M, *et al.* Dietary supplementation of probiotic *Bacillus licheniformis* Dahl1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against *Aeromonas hydrophila* in tilapia *Oreochromis mossambicus*. *Fish Shellfish Immunol* (2018) 74:501–8. doi: 10.1016/j.fsi.2017.12.066

Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi MW, Li Y, *et al.* Effects of three host-associated *Bacillus* species on mucosal immunity and gut health of Nile tilapia, *Oreochromis niloticus* and its resistance against *Aeromonas hydrophila* infection. *Fish Shellfish Immunol* (2020) 97:83–95. doi: 10.1016/j.fsi.2019.12.046

Jiang Y, Zhou S, Chu W. The effects of dietary *Bacillus cereus* QSL-1 on skin mucus proteins profile and immune response in Crucian Carp (*Carassius auratus*). *Fish Shellfish Immunol* (2019) 89:319–25. doi: 10.1016/j.fsi.2019.04.014

Hosseini M, Miandare HK, Hoseinifar SH, Yarahmadi P. Dietary *Lactobacillus acidophilus* modulated skin mucus protein profile, immune and appetite genes expression in gold fish (*Carassius auratus gibelio*). *Fish Shellfish Immunol* (2016) 59:149–54. doi: 10.1016/j.fsi.2016.10.026

Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, *et al.* Effect of *Bacillus velezensis* on *Aeromonas veronii*-induced intestinal mucosal barrier function damage and inflammation in crucian carp (*Carassius auratus*). *Front Microbiol* (2019) 15:2663(10). doi: 10.3389/fmicb.2019.02663

Nayak SK. Probiotics and immunity: a fish perspective. *Fish Shellfish Immunol* (2010) 29(1):12–14. doi: 10.1016/j.fsi.2010.02.017

Gómez GD, Balcazar JL. A review on the interactions between gut microbiota and innate immunity of fish. *EMS Immun Med Microbiol* (2009) 52(2):145–54. doi: 10.1111/j.1574-695X.2007.00343.x

Dawood MA, Abd Ely, Alshabib M, Mirghaed AT, Hosseini-Shakerabari P. Growth performance, immune-physiological variables and disease resistance of common carp (*Cyprinus carpio* L) and rainbow trout (*Oncorhyncus mykiss*) orally subjected to different concentrations of *Lactobacillus plantarum* FPTL3 isolated from freshwater fish. *J Food Sci Technol* (2013) 50(1):17–25. doi: 10.1007/s13197-011-0240-4

Tarkhani R, Imani A, Hoseinifar SH, Moghanlou KS, Manaffar R. The effects of host-associated *Enterococcus faecium* CGMCC1.2136 on serum immune parameters, digestive enzymes activity and growth performance of the Caspian roach (*Rutilus rutilus caspicus*). *Funct Food Immunol* (2019) 511:634. doi: 10.1016/j.fsi.2019.06.011

Mohammadian T, Pasnour M, Tabandeh MR, Heidary AA, Ghanei-Motlagh R, Hosseini SS. Administrations of autochthonous probiotics altered juvenile rainbow trout *Oncorhyncus mykiss* health status, growth performance and resistance to *Lactococcus garvieae*, an experimental infection. *Fish Shellfish Immunol* (2019) 92:719–27. doi: 10.1016/j.fsi.2019.06.056

Hamdan AM, El-Sayed AFM, Mahmoud MM. Effects of β-glucan, mannan oligosaccharide and *Lactobacillus casei* on growth performance, digestive enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, *Cyprinus carpio*: an experimental infection with *Aeromonas hydrophila*. *Aquaculture* (2019) 511:634–47. doi: 10.1016/j.aquaculture.2019.06.011

Navarrete P, Tovar-Ramírez D. Use of yeasts as probiotics in fish aquaculture. In: MP Hernandez-Vergara and CI Perez-Castro, editors. *Sustainable Aquaculture Techniques I*. London, UK: IntechOpen (2014). p. 135–72. doi: 10.5772/57196

Wang X, Li H, Zhang X, Li Y, Ji W, Xu H. Microbial flora in the digestive tract of adult penaeid shrimp (*Penaeus chinensis*). *J Ocean Univ Qingdao* (2000) 30:493–8.

Nath S, Motozzo V, Bhandari D, Faggio C. Growth and liver histology of *Channa punctatus* exposed to a common biofertilizer. *Nat Prod Res* (2019) 33(11):1591–8. doi: 10.1080/14786419.2018.1428586

Hamdan AM, El-Sayed AFM, Mahmoud MM. Effects of a novel marine probiotic, *Lactobacillus plantarum* AH 78, on growth performance and immune response of Nile tilapia (*Oreochromis niloticus*). *J Appl Microbiol* (2016) 120(4):1061–73. doi: 10.1111/jam.13081

Soltani M, Abdy E, Alshabib M, Mirghaed AT, Hosseini-Shakerabari P. Growth performance, immune-physiological variables and disease resistance of common carp (*Cyprinus carpio*) orally subjected to different concentrations of *Lactobacillus plantarum*. *Aeromonas* (2017) 120(4):1061–73. doi: 10.1111/jam.13081

Lu Y, Zhao Q, Zhu J, Zhang C, Li T, Liu X, *et al.* Dietary *Lactobacillus plantarum* supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. *Ecotoxicol Environ Saf* (2017) 143:307–14. doi: 10.1016/j.ecoenv.2017.05.023

Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W. Dietary *Lactobacillus plantarum* supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (*Oreochromis niloticus*). *Aquac Res* (2017) 48(9):599–103. doi: 10.1111/arc.13326

Alishahi M, Tulabuy Dezfuly Z, Mohammadian T, Mesbab M. Effects of two probiotics, *Lactobacillus plantarum* and *Lactobacillus bulgaricus* on growth.
performance and intestinal lactic acid bacteria of Cyprinus Carpio. Iran J Vet Med (2018) 12(3):207–18. doi: 10.22059/ijvmp.v12i3.1044816

Van Doan H, Hoseinifar SH, Dawood MAO, Chitmanat C, Tayyamath K. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol (2017) 70:87–94. doi: 10.1016/j.fsi.2018.03.019

153. Van Doan H, Doolgindachba porn S, Suksri A. Effect of Lactobacillus plantarum and Jerusalem artichoke (Helianthus tuberosus) on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Aquac Nutr (2016) 22(2):444–56. doi: 10.1111/anu.12263

154. Van Doan H, Hoseinifar SH, Khanongnuch C, Unban K, Sriraiyoi S. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture (2018) 491:94–100. doi: 10.1016/j.aquaaculture.2018.03.019

155. Feng J, Chang X, Zhang Y, Yan X, Zhang J, Nie G. Effects of dietary supplementation with a multi-strain probiotic on growth performance and health status in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem (2015) 41(1):119–28. doi: 10.1007/s10694-014-0100-0

156. Nguyen TL, Park C-I, Kim D-H. Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactobacillus rhamnosus WL12 isolated from wild marine fish. Aquaculture (2017) 471:113–20. doi: 10.1016/j.aquaculture.2017.01.008

157. Nguyen TL, Chun W-K, Kim A, Kim N, Roh HJ, Lee Y, et al. Dietary probiotic effect of Lactococcus lactis WLFL12 on low-molecular-weight metabolites and growth of olive flounder (Paralichthys olivaceus). Front Microbiol (2018) 9:2059. doi: 10.3389/fmicb.2018.02059

158. Sun Y, He M, Cao Z, Xie Z, Liu C, Wang S, et al. Effects of dietary administration of Lactococcus lactis on immune response, and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol (2019) 93:73–81. doi: 10.1016/j.fsi.2019.07.028

159. Zhang C-N, Zhang J-L, Guan W-C, Zhang X-F, Guan S-H, Zeng Q-H, et al. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio carpio var. Huanghe var. Fish Shellfish Immunol (2017) 68:84–91. doi: 10.1016/j.fsi.2017.07.012

160. Sotoudeh E, et al. Combined effects of dietary low molecular weight sodium alginate on immune response, and protection against Aeromonas veronii in juvenile Nile tilapia (Oreochromis niloticus). Aquac Nutr (2015) 43(2):196–204. doi: 10.1111/anu.12197

161. Girgole M, Lemos-Filho S, Santos J, Arruda M, et al. Effects of Enterococcus faecalis UGRA10 and the enterocin 47B on growth, innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol (2016) 491:94–100. doi: 10.1016/j.fsi.2016.03.017

162. Abarf M, Amast A. Characterization and evaluation of probiotic fish feed. Int J Pure Appl Zool (2015) 3(2):148–53.

163. Giannenas I, Karamaligas I, Margaroni M, Pappas I, Mayer E, Encarnação P, et al. Effect of dietary incorporation of a multi-strain probiotic on growth performance and health status in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem (2015) 41(1):119–28. doi: 10.1007/s10694-014-0100-0

164. Han B, Long W-Q, He J-Y, Liu Y-J, Si Y-Q, Tian L-X. Effects of dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 5A4, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Paraschizodon hypophthalmus). Fish Shellfish Immunol (2017) 60:391–9. doi: 10.1016/j.fsi.2016.11.016

165. Lin S, Mao S, Guan Y, Luo L, Luo L, Pan Y. Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio). Aquaculture (2012) 342:36–41. doi: 10.1016/j.aquaculture.2012.02.009

166. Han B, Long W-Q, He J-Y, Liu Y-J, Si Y-Q, Tian L-X. Effects of dietary supplementation of Bacillus licheniformis in cultured European eel, Anguilla anguilla. J Gen Appl Microbiol (2016) 60(3):196. doi: 10.3390/jgam.2016.12.002

167. Lee JS, Cheng H, Damte D, Lee SJ, Kim JC, Rhee MH, et al. Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immunity and antioxidative system of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish Shellfish Immunol (2013) 34(3):756–61. doi: 10.1016/j.fsi.2012.11.028

168. Abraham TJ, Mondal S, Babu CS. Effect of commercial aquaculture probiotic and fish gut antagonistic bacterial flora on the growth and disease resistance of ornamental fishes Carassius auratus and Xiphophorus helleri. J Fish Aquat Sci (2008) 25(1):27–30.

169. Zhou S, Xia Y, Zhu C, Chu W. Isolation of marine Bacillus sp. with antagonistic and organic-substances-degrading activities and its potential application as a fish probiotic. Mar Drugs (2018) 16(6):196. doi: 10.3390/ md16060196

170. Meidong R, Doolgindachba porn S, Jamjan W, Sakai K, Tashiro Y, Okugawa Y, et al. A novel probiotic Bacillus siamensis B4v isolated from Thai pickled vegetables (Pak-dong) for potential use as a feed supplement in aquaculture. J Gen Appl Microbiol (2017) 63(4):246–53. doi: 10.2323/jgam.2016.12.002

171. Al-Dohail MA, Hashim R, Aliyu-Paiko M. Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquac Res (2011) 42(2):196–209. doi: 10.1111/j.1365-2109.2010.02606.x

172. Bandypadhyay M, Mohapatra PKD. Effect of a probiotic bacterium Bacillus circulans PB5 in the formulated diets on growth, nutritional quality and immunity of Catla catla (Ham.) Fish Physiol Biochem (2009) 35(4):467–78. doi: 10.1007/s10695-008-9272-7

173. Wu ZZ, Jiang C, Ling F, Wang GX. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease
resistance of grass carp (Chenopharyngodon idella). Aquaculture (2015) 438:105–14. doi: 10.1016/j.aquaculture.2014.12.041

182. Gong L, He H, Li D, Cao X, Han TA, Li Y, et al. A new isolate of Pedicoccus pentosaceus (SL011) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carp. Front Microbiol (2019) 10:1384. doi: 10.3389/fmicb.2019.01384

183. Chi C, Jiang B, Xu XB, Liu TQ, Xia L, Wang GX. Effects of three strains of intestinal autochthonous bacteria and their extracellular products on the immune response and disease resistance of common carp, Cyprinus carpio. Fish Shellfish Immunol (2014) 36(1):9–18. doi: 10.1016/j.ffi.2013.10.003

180. Gildberg A, Mikkelsen H. Effect of supplementing the diet to Atlantic cod (Gadus morhua) with Bacillus subtilis (BioPlus2B) on growth, immunity, and disease resistance in Chinese drum, Micropogonias furnieri. Front Immunol (2017) 60:474–82. doi: 10.3389/fimmu.2016.11.026

189. Lin HL, Shiu YL, Chiu CS, Huang SL, Liu CH. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol (2017) 60:474–82. doi: 10.1016/j.fsi.2016.11.026

191. Pan X, Wu T, Song Z, Tang H, Zhao Z. Immune responses and enhanced disease resistance in Chinese drum, Micropogonias furnieri (Basilewsky), after oral administration of live or dead cells of Clostridium butyricum CB2. J Fish Dis (2008) 31(9):679–86. doi: 10.1111/j.1365-2671.2008.00955.x

184. Sorroza L, Padilla D, Acosta F, Roma L, De et al. Effect of dietary probiotic strain Bacillus subtilis on performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture (2011) 317 (4–5):155–61. doi: 10.1016/j.aquaculture.2011.09.036

192. Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum), by oral administration of Clostridium butyricum bacterin. J Fish Dis (1995) 18 (2):187–90. doi: 10.1111/j.1365-2671.1995.tb00276.x

185. Sorroza L, Real F, Acosta F, Ascencio-Valle F, Civera-Cerecedo R, Gracia-Lopez V, Barbosa-Solomieu V, et al. Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard gourami Mycteroperca rosea infected with Aeromonas hydrophila. Aquac Res (2011) 42(11):1676–86. doi: 10.1111/j.1365-2109.2010.02762.x

190. Capkin E, Altinok I. Effects of dietary probiotic supplementations on growth performance, survival, non-specific immune response and disease resistance of common carp, Cyprinus carpio. Aquaculture (2014) 36(1):9–18. doi: 10.1016/j.ffi.2013.10.003

186. Sharifuzzaman SM, Austin B. In Centropomus undecimalis against Aeromonas hydrophila infection. Fish Shellfish Immunol (2017) 60:474–82. doi: 10.1016/j.fsi.2016.11.026.

181. Robertson PAW, O’Dowd C, Burrells C, Williams K, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture (2000) 185:235–43. doi: 10.1016/S0044-8486(99)00349-X

187. Brunt J, Newaj-Fyzul A, Austin B. The development of probiotics for the control of tropical fish pathogens and disease resistance in the Indian microflora of rainbow trout. Environ Microb (2001) 3:755–65. doi: 10.1111/j.1365-2920.2001.00240.x

188. Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis (2002) 25(6):333–42. doi: 10.1046/j.1365-2672.2002.00375.x

189. Raida MK, Larsen JL, Nielsen ME, Buchmann K. Enhanced resistance of Asian seabass, Lates calcarifer against vibriosis by oral administration of Clostridium butyricum bacterin. J Fish Dis (2013) 36(5):507–14. doi: 10.1111/j.1365-2671.2013.00414.x

193. Capkin E, Altinok I. Effects of dietary probiotic supplementations on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture (2011) 317 (4–5):155–61. doi: 10.1016/j.aquaculture.2011.09.036

194. Lin HL, Shiu YL, Chiu CS, Huang SL, Liu CH. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol (2017) 60:474–82. doi: 10.1016/j.fsi.2016.11.026
229. Liu W, Austin B. Kocuria SM1 controls vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol (2010) 108(6):1162–90. doi: 10.1111/j.1365-2672.2009.04618.x

227. Bushank DR, Shah DH, LaPatra SE, Fernshell G, Cain KD. Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish Shellfish Immunol (2011) 32(3-4):185–90. doi: 10.1016/j.fsi.2011.09.004

228. Korkea-Aho TL, Heikkinen J, Thompson KD, Von Wright A, Austin B. Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol (2011) 111(2):266–77. doi: 10.1111/j.1365-2672.2011.05044.x

229. Sharifuzzaman SM, Hebbes S, Tinsley JW, Austin B. Subcellular components of probiotics Kocuria SM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) against Vibrio anguillarum. Fish Shellfish Immunol (2011) 30(1):347–53. doi: 10.1016/j.fsi.2011.05.005

220. Rodriguez-Estrada U, Satoh S, Haga Y, Fusahime H, Sweetman J. Effects of inactivated Enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity, and disease protection in rainbow trout. N Am J Aquac (2013) 7(3):416–28. doi: 10.1080/15222055.2013.799620

221. LaPatra SE, Fehringer TR, Cain KD. A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture (2014) 433:161–6. doi: 10.1016/j.aquaculture.2014.06.022

222. Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M. Host-derived probiotics Enterococcus casseli/lavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol (2011) 30(1):347–53. doi: 10.1016/j.fsi.2011.05.005

223. Harikrishnan R, Kim MC, Kim JS, Balasundaram C, Heo MS. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Nile tilapia, Oreochromis niloticus. J Appl Microbiol (2011) 111(2):266–77. doi: 10.1111/j.1365-2672.2011.05044.x

224. Burbank DR, Shah DH, LaPatra SE, Fornshell G, Cain KD. Enhanced coldwater disease resistance of Tilapia nilotica (Oreochromis niloticus) to Vibrio anguillarum challenge infections. Fish Shellfish Immunol (2015) 44(2):496–503. doi: 10.1016/j.fsi.2015.03.004

225. Abdelfatah EN, Mahboub HHH. Studies on the effect of Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus) laboratory and on-farm trials. Fish Shellfish Immunol (2017) 67:199–210. doi: 10.1016/j.fsi.2017.06.018

226. Abdelatif EN, Mahboub HHH. Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). Int J Vet Sci Med (2016) 8(2):201–7. doi: 10.1186/s40186-2016-0018-3

227. Van Doan H, Hooseinifar SH, Narababédí M, Jaharshá D, Tongsoín S, Chimenat C, et al. Dietary inclusion of orange peels derived pectin and Lactobacillus plantarum for Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc systems. Aquaculture (2019) 508:98–105. doi: 10.1016/j.aquaculture.2019.03.067

228. Ng WK, Kim YC, Romano N, Koh CR, Yang SY. Effects of dietary probiotics on the growth and feeding efficiency of red hybrid tilapia, Oreochromis sp., and subsequent resistance to Streptococcus agalactiae. J Appl Aquac (2014) 26(1):22–31. doi: 10.1080/15222055.2013.874961

229. Meidong R, Khotchankaeha K, Doolgindachaporn S, Nagasawa T, Nakao M, Sakai K, et al. Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Plaice (Pleuronectes flesus) L. Fish Shellfish Immunol (2018) 73:1–10. doi: 10.1016/j.fsi.2017.11.032

230. Cha JH, Rahimnejad S, Yang SY, Kim KW, Lee KJ. Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture (2013) 402:50–7. doi: 10.1016/j.aquaculture.2013.03.030

231. Kim D, Beck BR, Heo SB, Kim J, Kim HD, Lee SM, et al. Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish Shellfish Immunol (2013) 35(5):1585–90. doi: 10.1016/j.fsi.2013.09.008

232. Beck BR, Kim D, Jeon J, Lee SM, Kim HK, Kim OJ, et al. The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol (2015) 42(1):177–83. doi: 10.1016/j.fsi.2014.10.035

233. Beck BR, Lee SH, Kim D, Park JH, Lee HK, Kwon SS, et al. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines. Fish Shellfish Immunol (2017) 68:19–28. doi: 10.1016/j.fsi.2017.07.004

234. Gobelli S, Goldschmidt-Clermont E, Frey J, Burr SE. Pseudomonas chlorophuras strain JF3835 reduces mortality of juvenile perch, Perca fluviatilis L., caused by Aeromonas sobria. J Fish Dis (2009) 32(7):597–602. doi: 10.1111/j.1365-2761.2009.01021.x

235. Geng X, Dong XH, Chi SY, Liu HY, et al. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol (2011) 31(3):400–6. doi: 10.1016/j.fsi.2011.06.006

236. Balcázar JL, Vendrell D, Blas ID, Ruiz-Zarruella I, Múezquía JL. Effect of Lactococcus lactis CLFP 196 and Leucosanocot mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (Salmo trutta). J Mol Microbiol Biotechnol (2009) 17:153–7. doi: 10.1159/000226588

237. Hjelm M, Bergh O, Riza A, Nielsen J, Melchior J, Jensen S, et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst Appl Microbiol (2004) 27:360–71. doi: 10.1016/j.ejpm.2020-00256

238. Planas M, Pérez-Moreno M, Hjelm M, Gram L, Fiksdal IU, Bergh Ø, et al. Probiotic effect on vivo of Roseobacter strain 274-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus) L. larvae. Aquaculture (2005) 255(1-4):323–33. doi: 10.1016/j.aquaculture.2005.11.039

239. Chen Y, Li J, Xiao P, Li GY, Yue S, Huang J, et al. Isolation and characterization of Bacillus spp. M 001 for potential application in turbot
248. Diaz-Rosales P, Ario S, Chabrillo M, Alarcón FJ, Tapia-Paniagua ST, Martínez-Manzanares E, et al. Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. *Aquaculture* (2009) 293(1-2):16–21. doi: 10.1016/j.aquaculture.2009.03.050

249. De la Banda I, Lobo C, Chabrillo M, León-Rubio JM, Ario S, Pazos G, et al. Influence of dietary administration of a probiotic strain *Shewanella putrefaciens* on Senegalese sole (Solea senegalensis, Kaup 1858) growth, body composition and resistance to *Photobacterium damselae subsp. piscicida*. *Aquac Res* (2012) 43(5):662–9. doi: 10.1111/j.1365-2109.2011.02871.x

250. Maeda M, Nogami K, Kanematsu M, Hirayama K. The concept of biological control methods in aquaculture. *Hydrobiologia* (1997) 358:285–90. doi: 10.1023/A:1003126129709

251. Jia S, Zhou K, Pan RH, Wei J, Liu ZM, Xu YG. Oral immunization of carps with chitosan-alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection. *Fish Shellfish Immunol* (2020) 105:327–9. doi: 10.1016/j.fsi.2020.07.052

252. Liu M, Zhao LL, Ge JW, Qiao XY, Li YJ, Liu DQ. Immunogenicity of *Lactobacillus* expressing VP2 and VP3 of the infectious pancreatic necrosis virus (IPNV) in rainbow trout. *Fish Shellfish Immunol* (2012) 32(1):196–203. doi: 10.1016/j.fsi.2011.11.015

253. Zhou S, Song DL, Zhou XF, Mao XL, Zhou XF, Wang SL, et al. Characterization of *Bacillus subtilis* from gastrointestinal tract of hybrid Hulung grouper (*Epinephelus fasciatus* x *Lanceolatus*) and its effects as probiotic additives. *Fish Shellfish Immunol* (2019) 84:1115–24. doi: 10.1016/j.fsi.2018.10.058

254. Min L, Li-Li Z, Jun-Wei G, Xin-Yuan Q, Yi-Jing L, Di-Qiu L. Immunogenicity of *Lactobacillus* expressing VP2 and VP3 of the infectious pancreatic necrosis virus (IPNV) in rainbow trout. *Fish Shellfish Immunol* (2012) 32(1):196–203. doi: 10.1016/j.fsi.2011.11.015

255. Naderi-Samani M, Soltani M, Dadar M, Taheri-Mirghaed A, Zargar A, Ahmadvand S, et al. Oral immunization of trout fry with recombinant *Lactococcus lactis* NZ3900 expressing G gene of viral hemorrhagic septicemia virus (VHSV). *Fish Shellfish Immunol* (2020) 105:62–70. doi: 10.1016/j.fsi.2020.07.007

256. Haririkrishnan R, Balasundaram C, Heo MS. Effect of probiotics enriched diet on *Paralichthys olivaceous* infected with lymphocystis disease virus (LCDV). *Fish Shellfish Immunol* (2010) 29(5):868–74. doi: 10.1016/j.fsi.2010.07.031

257. Sun H, Shang M, Tang Z, Jiang H, Dong H, Zhou X, et al. Oral delivery of *Bacillus subtilis* spores expressing *Chloronema sinensis* paramyosin protects grass carp from cercaria infection. *Appl Microbiol Biotechnol* (2020) 104(4):1633–46. doi: 10.1007/s00253-019-10316-0

258. Yanuhar U, Junirahma NS, Sulislowati K, Caesar NR, Musa M. Effects of probiotic treatment on histopathology of Koi carp (*Cyprinus carpio*) infected by *Myxobolus sp.* *J Phys: Conf Ser* (2019) 1374:12051. doi: 10.1088/1742-6596/1374/1/012051

259. Nurhajati J, Atira, Aryantha INP, Kadek Indah DG. The curative action of *Lactobacillus plantarum* FNCC 226 to *Saprolegnia parasitica* A3 on catfish (*Pangasius hypophthalmus* Sauvage). *Int Food Res J* (2012) 19:1723–7.

260. Kuebuntomye FKA, Abarizek ED, Lu Y. A review on the application of *Bacillus* as probiotics in aquaculture. *Fish Shellfish Immunol* (2019) 87:820–8. doi: 10.1016/j.fsi.2019.02.010

261. Vendrell D, Balcázar JL, de Blas I, Ruiz-Zarzuella I, Gironés O, Múzquiz JL. Protection of rainbow trout (*Oncorhynchus mykiss*) from lactococcosis by probiotic bacteria. *Comp Immunol Microb* (2008) 31:337–45. doi: 10.1016/j.cimid.2007.04.002

262. Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, *Oncorhynchus mykiss* (Walbaum). *J Fish Dis* (2002) 25:333–42. doi: 10.1046/j.1365-2761.2002.00375.x

263. Kamei Y, Yoshimizu M, Ezura Y, Kimura T. Screening of bacteria with potential control methods in aquaculture. *Hydrobiologia* (1997) 358:285–90. doi: 10.1023/A:1003126129709

264. Chen Y, Hua X, Ren X, Duan K, Gao S, Sun J, et al. Oral immunization with recombinant *Lactobacillus casei* displayed HAA1–CK6 and VP2 induces protection against infectious pancreatic necrosis in rainbow trout (*Oncorhynchus mykiss*). *Fish Shellfish Immunol* (2020) 100:18–26. doi: 10.1016/j.fsi.2020.03.001

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Simón, Docando, Noizet-Ortiz, Tafalla and Diaz-Rosales. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.