Chronic antiepileptic drug use and functional network efficiency

Citation for published version (APA):
van Veenerdaal, T. M., Iff, D. M., Aldenkamp, A. P., Lazeron, R. H. C., Hofman, P. A. M., de Louw, A. J. A., Backes, W. H., & Jansen, J. F. A. (2017). Chronic antiepileptic drug use and functional network efficiency: a functional magnetic resonance imaging study. World Journal of Radiology, 9(6), 287-294. https://doi.org/10.4329/wjr.v9.i6.287

Document license:
CC BY-NC

DOI:
10.4329/wjr.v9.i6.287

Document status and date:
Published: 28/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Apr. 2021
REVIEW
253 Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of "personalized oncology"
Mahajan A, Deshpande SS, Thakur MH

MINIREVIEWS
269 Revisions to the Tumor, Node, Metastasis staging of lung cancer (8th edition): Rationale, radiologic findings and clinical implications
Kay FU, Kandathil A, Batra K, Saboo SS, Abbara S, Rajiah P

ORIGINAL ARTICLE
280 Cardiac magnetic resonance in patients with acute cardiac injury and unobstructed coronary arteries
Camastra GS, Sharbati S, Danti M, Cacciotti L, Semeraro R, Della Sala SW, Ansalone G

Observational Study
287 Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study
van Veenendaal TM, IJff DM, Aldenkamp AP, Lazeron RHC, Hofman PAM, de Louw AJA, Backes WH, Jansen JFA
World Journal of Radiology (World J Radiol, WJR, online ISSN 1949-8470, DOI: 10.4329) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJR covers topics concerning diagnostic radiology, radiation oncology, radiologic physics, neuroradiology, nuclear radiology, pediatric radiology, vascular/interventional radiology, medical imaging achieved by various modalities and related methods analysis. The current columns of WJR include editorial, frontier, diagnostic advances, therapeutics advances, field of vision, mini-reviews, review, topic highlight, medical ethics, original articles, case report, clinical case conference (clinicopathological conference), and autobiography.

We encourage authors to submit their manuscripts to WJR. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.
Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study

Tamar M van Veenendaal, Dominique M IJff, Albert P Aldenkamp, Richard H C Lazeron, Paul A M Hofman, Anton J A de Louw, Walter H Backes, Jacobus F A Jansen

AIM
To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment.

METHODS
The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of
patients with epilepsy with a different risk profile for developing cognitive side effects were included: A "low risk" category (lamotrigine or levetiracetam, n = 16), an "intermediate risk" category (carbamazepine, oxcarbazepine, phenytoin, or valproate, n = 34) and a "high risk" category (topiramate, n = 5). Brain connectivity was assessed using resting state functional magnetic resonance imaging and graph theoretical network analysis. The Computerized Visual Searching Task was used to measure central information processing speed, a common cognitive side effect of AED treatment.

RESULTS

Central information processing speed was lower in patients taking AEDs from the intermediate and high risk categories, compared with patients from the low risk category. The effect of risk category on global efficiency was significant (P < 0.05, ANCOVA), with a significantly higher global efficiency for patient from the low category compared with the high risk category (P < 0.05, post-hoc test). Risk category had no significant effect on the clustering coefficient (ANCOVA, P > 0.2). Also no significant associations between information processing speed and global efficiency or the clustering coefficient (linear regression analysis, P > 0.15) were observed.

CONCLUSION

Only the four patients taking topiramate show aberrant network measures, suggesting that alterations in functional brain network organization may be only subtle and measurable in patients with more severe cognitive side effects.

Key words: Antiepileptic drugs; Cognitive side effects; Brain networks; Resting state; Functional magnetic resonance imaging; Graph analysis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Slowed information processing is a commonly observed cognitive side-effect of antiepileptic drug (AED) treatment. We aimed to increase our insight in the neuronal mechanisms underlying this side-effect. Therefore, the relation between functional MR-acquired brain network measures, AED use, and cognitive function was investigated. No associations were found between information processing speed and graph measures, and only the four patients taking topiramate (with a high risk on cognitive side effects) showed aberrant network measures. The results suggest that alterations in functional brain network organization may be only subtle and measurable in patients with more severe cognitive side effects.
other AEDs, but did not investigate the relation with cognitive effects\(^{(29)}\). In the current study, we aim to test whether chronic use of AEDs, associated with a high risk for cognitive side-effects, affects functional resting-state network measures differently than long-term use of AEDs associated with milder cognitive side-effects. Furthermore, we will test whether functional resting-state network measures are associated with impaired cognitive functioning.

MATERIALS AND METHODS

Patients

Three groups of patients with epilepsy were compared in this observational, cross-sectional study\(^{(20)}\). These groups were subdivided based on the AEDs that were being used, in accordance with Samarasekera et al\(^{(21)}\). The first group, the low risk category, consisted of patients using lamotrigine or levetiracetam. Patients taking carbamazepine, oxcarbazepine, phenytoin, or valproate were included in the intermediate risk category, while the high risk category comprised patients taking topiramate. Patients on polytherapy took at most two different AEDs and were categorized according to their AED associated with the greatest cognitive risk. By including patients with AEDs from the three risk groups, a range in slowing of information processing speed is realized.

All patients were clinically diagnosed with localization-related epilepsy and aged between 18 and 70 years. The patients were recruited from our tertiary epilepsy referral center. Participants not eligible for MRI, because of metal implants, claustrophobia, or pregnancy, were excluded from this study. Furthermore, patients did not experience seizures at least 12 h prior to MRI. This study was approved by the local Medical Ethical Committee and all participants provided written informed consent.

Neuropsychological investigation

Cognitive functioning was assessed by two neuropsychological tasks. The Computerized Visual Searching Task (CVST) was used to measure visual (complex) information processing speed\(^{(22)}\). Slowing of this central information processing speed is a common side effect of AEDs\(^{(2)}\), and therefore the CVST is considered to be sensitive for treatment effects\(^{(23)}\). With the CVST, a centered grid is shown surrounded by 24 other grid patterns. Participants have to find the (only) grid identical to the centered one as fast as possible.

The Raven Standard Progressive Matrices was administered to assess global cognitive performance. This is a non-verbal reasoning test which gives an indication of fluid intelligence\(^{(24)}\). Previous studies suggested that intelligence stays relatively unaffected by AEDs\(^{(25)}\).

Epilepsy severity

As several epilepsy related characteristics might affect functional brain networks\(^{(25)}\), a score was composed to account for these effects. This epilepsy severity score was assessed in all patients and compared between the different risk categories. Epilepsy severity was characterized using a summarized score between zero and seven, composed by the sum of subscores for seizure type (tonic-clonic: 1, other: 0), previous occurrence of status epilepticus (yes: 1, no: 0), seizure-related injury (yes: 1, no: 0) and seizure frequency (seizure free: 0, yearly: 1, monthly: 2, weekly: 3, daily: 4).

MRI data acquisition

MRI data were acquired on a 3.0T MRI scanner equipped with an 8-channel head coil (Philips Achieva, Philips Medical Systems, Best, The Netherlands). The scanning protocol included resting-state functional MRI and a T1-weighted scan. Functional MRI data were acquired using whole-brain single-shot multi-slice echo planar imaging sequence sensitive to the blood-oxygen-level-dependent (BOLD) effect (195 volumes, 32 slices, in-plane resolution 2 mm x 2 mm, 4 mm thick slices, repetition time 2000 ms, echo time 35 ms, flip angle: 90°, acquisition time: 7 min). A 3D T1-weighted scan was acquired for anatomic reference (voxel size 1 mm x 1 mm x 1 mm, repetition time 8.3 ms, echo time 4.8 ms, inversion time 1022 ms, 180 slices, flip angle 8°, acquisition time 6 min).

Data preprocessing

Preprocessing of the functional images was performed using SPM8 (Wellcome Department of Cognitive Neurology, London, United Kingdom). The functional images were corrected for differences in slice timing and head movement, coregistered to the T1 image and spatially (FWHM 6 mm) and temporally filtered (band pass 0.01-0.1 Hz). The BOLD signal originating from the white matter and ventricles, which is assumed to reflect physiological noise\(^{(26)}\), and the six translation and rotation parameters obtained from the motion correction were deregressed from the BOLD signal.

The T1-weighted scan was parcellated into 82 cortical and subcortical brain regions using FreeSurfer v5.1.0 (The General Hospital Corporation, Boston MA, United States). Subsequently, a connectivity matrix was created by calculating the Pearson’s correlation coefficient between the average (deregressed) BOLD time signal of each combination of two regions. Negative correlations were set to zero. The correlation values were thresholded, based on the average connectivity matrix, to obtain connectivity matrices with only the strongest connections. The number of included connections was varied, with sparsity levels ranging from 0 to 0.9 (0 is fully connected, whereas 1 indicates no connections).

Data analysis

The Brain Connectivity Toolbox\(^{(14)}\) was employed to compute graph measures for each individual connectivity matrix. The clustering coefficient and the characteristic path length are commonly used to characterize the functional segregation and integration, respectively. The
van Veenendaal TM et al. Antiepileptic drugs and functional network efficiency

Table 1 Patient characteristics for the three risk categories

General	Low risk (n = 16)	Intermediate risk (n = 34)	High risk (n = 5)
Male/female	5/11 (31%/69%)	16/18 (47%/53%)	0/5 (0%/100%)
Age (yr)²	39.5 ± 13.4	50.7 ± 12.5	42.4 ± 15.8
Educational level¹	5 (range 2-6)	5 (range 2-7)	5 (range 4-6)
Epilepsy-related			
Symptomatic/non-symptomatic epilepsy	2/14 (13/88%)	15/19 (44/56%)	0/5
Seizure frequency			
Weekly	0	1 (3%)	0
Monthly	4 (25%)	3 (9%)	0
Yearly	2 (13%)	6 (18%)	2 (40%)
Seizure free	10 (63%)	24 (71%)	3 (60%)
Years since epilepsy onset²	22.7 ± 11.7	30.4 ± 13.4	26.8 ± 23.3
Epilepsy severity score³	1.4 ± 0.8	1.2 ± 1.0	1.0 ± 0.7
AED-related			
Mono-/polytherapy	16/0	8/26 (24/77%)⁴	3/2 (60/40%)⁴
Medication type			
CBZ	0	17 (50%)	1 (20%)
LEV	7 (44%)	6 (18%)	0
LTG	9 (56%)	10 (29%)	1 (20%)
OXC	0	4 (12%)	0
PHT	0	16 (47%)	0
TPM	0	5 (100%)	
VPA	0	7 (21%)	1 (20%)
Drug load⁵⁶³	1.3 ± 0.6	1.8 ± 0.7	1.2 ± 1.0

Differences between the risk groups were tested using a Fisher’s exact test (gender, symptomatic epilepsy, number of different AEDs), a Mann-Whitney test (educational level, seizure frequency, epilepsy severity score), or a student’s t test (all remaining variables). ¹Indicates significant differences between the low and intermediate risk category (P < 0.05); ²Indicates differences between the low and high risk category (P < 0.05). ³Low risk: Lamotrigine (LTG), levetiracetam (LEV); Intermediate risk: Valproate (VPA), carbamazepine (CBZ), oxcarbazepine (OXC) and phenytoin (PHT); High risk: Topiramate (TPM); ⁴Mean ± SD; ⁵Median (range). Scores are according to Verhage⁶⁷, range 1 (did not finish primary school) to 7 (Master’s degree); ⁶The drug load is defined as the ratio of the prescribed daily dose to the defined daily dose⁸⁹. AED: Antiepileptic drug.

The clustering coefficient quantifies the fraction of a node’s neighbor that is also connected to each other. The characteristic path length is defined as the average shortest distance (the inverse correlation coefficient) between all pairs of nodes. As, in sparse networks, a single weak connection can result in a large, or even infinite average path lengths, global efficiency was computed instead of characteristic path length, which avoids this effect by using inverse path lengths⁹. Global efficiency was computed instead of characteristic path length, which avoids this effect by using inverse path lengths⁹. One hundred null models of the connectivity matrices were computed by randomizing the connections of the original matrices, while preserving the degree and weight distribution⁹. The graph measures were divided by the mean global efficiency and clustering coefficient of these null models, providing a normalized global efficiency (Eg) and clustering coefficient (γ).

Statistical analysis

To test whether the clustering coefficient and global efficiency differed between the risk categories, an analysis of covariance (ANCOVA) was applied with the graph measures as outcome, cognitive risk category as fixed factor and age as covariate. Associations with cognition were assessed with linear regression analysis, with CVST time as outcome, and Eg or γ, age, and the percentage corrects answers in the Raven test as independent variables. To assess whether these results were affected by confounders, these analyses were repeated with gender, epilepsy severity score, or drug load (ratio of prescribed daily dose to defined daily dose⁹) added to the regression analyses as additional covariates. All statistical analyses were performed in MATLAB (version R2012b). P values lower than 0.05 were considered significant.

RESULTS

Patient characteristics

In total, 58 patients were included in this study. Three of these patients did not finish the procedures due to claustrophobia, resulting in 16 patients taking AEDs from the low risk category, 34 taking AEDs from the intermediate risk category, and 5 taking high risk AEDs. The age and drug load were significantly higher in the intermediate risk category than in the low risk category (Table 1). Also the number of patients on polytherapy was significantly higher in the intermediate risk category compared with the low risk category, while the high and low risk categories significantly differed in number of patients on polytherapy. The risk categories did not differ in gender distribution, educational level, or epilepsy severity.

Neuropsychological assessment

The results of the CVST and the Raven task are summarized in Table 2. The CVST reaction time was slower than in the intermediate and low risk category (Table 3). The results of the CVST and the Raven task are summarized in Table 2. The CVST reaction time was slower...
A significant effect of risk category on CVST reaction time was observed, which remained significant when controlling for age, gender, and global cognitive level ($P = 0.009$, ANCOVA). Post-hoc tests showed significant differences in CVST between the low and intermediate risk category ($P = 0.035$, estimated adjusted mean difference 3.5 s), and between the low and high risk category ($P = 0.004$, adjusted mean difference 7.8 s). No significant differences were found between the percentage correct answers Raven scores of the different risk categories.

Network topology

Of the 55 included patients, seven were excluded from further analysis: One patient was excluded because of excessive head motion (maximum head movement of 8.0 mm, while the maximum head movement was below 1.5 mm in all other patients), one because of a deeper large lesion mass, and five patients were excluded because of a failure to automatically parcellate the cortex, due to cortical abnormalities. The analysis was therefore performed on 48 patients: 15 patients taking AEDs from the low-risk category, 29 patients taking AEDs from the intermediate risk category and 4 patients taking the high risk medication. The maximum head displacement did not differ between the three risk categories.

The functional networks were fully connected and showed small-world characteristics within the sparsity range $0.32-0.66$ (which was defined as γ/λ, significantly larger than one, with γ the normalized clustering coefficient, and λ, the normalized characteristic path length). Only the sparsity levels within this range were considered for further analyses. The ANCOVA test revealed significant effects of risk category on E_g at most sparsities within this sparsity range (Figure 1). Post-hoc tests showed a significantly higher E_g for patients from the low category ($n = 14$) compared with the high risk category ($n = 4$), and for patients from the intermediate category ($n = 29$) compared with the high risk category ($n = 4$). E_g or γ did not differ significantly between patients from the low and intermediate risk categories ($P > 0.2$ at all sparsity levels), and no significant associations were observed between γ or E_g and CVST time ($P > 0.15$ at all sparsity levels).

Gender, epilepsy severity score, or drug load were not significantly associated with the γ, E_g, or CVST reaction time, and the results of these adjusted analyses were consistent with the results of the analyses without these additional covariates (< 10% change in effect size of the variable of interest).

DISCUSSION

The current study investigated whether patients taking AEDs with a different risk for cognitive side-effects have different functional brain topologies. To this end, we included epilepsy patients with chronic AED treatment with different risk profiles, i.e., a low risk category, intermediate-risk, and high risk category. Furthermore, we assessed whether cognitive problems, in terms of a decreased central information processing speed, could be associated with the functional brain organization.

A higher global efficiency was shown in patients taking TPM ($n = 4$, the high risk category), compared with patients taking the low ($n = 14$) and intermediate risk AEDs ($n = 29$). The directionality of this difference is strikingly, as this result seems to contradict the cognitive side effects of TPM. The global efficiency is suggested to be particularly important for more complex cognitive tasks, for which different brain areas are involved$^{[22]}$. The “better” global efficiency in TPM users might however be interpreted as a compensatory mechanism, or could be explained by a “survivor effect”. As patients with side effects are more likely to switch to other AEDs, it is likely that these patients are less vulnerable for cognitive problems. The higher global efficiency in the high-risk group might therefore reflect a lower susceptibility for cognitive side effects of these patients$^{[22,24]}$. However, these patients did have a lower processing speed compared with the other patients, which argues against this explanation and in favor of a compensatory mechanism.

No differences in graph measures were observed between the patients groups taking AEDs from the low and from the intermediate risk category. It is possible that the effects of TPM on brain organization are more pronounced compared with effects of other AEDs, but TPM can also have distinctive effects on brain organization. TPM is suggested to have a unique cognitive profile, with specific effects on verbal fluency. Moreover, it has multiple mechanisms of action, and both these mechanisms and its chemical structure differ from other AEDs$^{[33]}$.

Furthermore, no associations were found between processing speed and graph measures, in contrast to a previous study that showed not only associations between intellectual decline and a lowered clustering coefficient in patients with epilepsy, but also with increasing drug load$^{[17]}$. The latter suggests that the intellectual decline (which was based on intelligence tests) was a side effect of the AED treatment, but
this could also result from differences in epilepsy characteristics. That study included more patients with a high drug load (15% of the patients had a drug load higher than 3) than the current study (no drug loads higher than 3 in the included patients), thus it is possible that the effects on graph measures are only measureable in patients with higher drug loads or AEDs with high risks on cognitive complaints.

The measured information processing speed covered the whole range from normal to a clearly affected processing speed, and patients taking AEDs known to induce cognitive side effects, showed lower processing speeds than patients with lower risk AEDs. These results could therefore not explain the lack of associations between graph measures and information processing speed, or the lack of differences in graph measures between the low and intermediate risk category. Also no trends were shown, while the total number of participants (48), and the number of patients in the low (16) and intermediate risk categories (34) were relatively large, making it unlikely that this lack of findings were due to limited power.

All included patients in the current study were diagnosed with localization-related epilepsy. Epilepsy is associated with a decreased global efficiency and increased clustering coefficient, although some studies showed a decreased clustering coefficient in patients with epilepsy. It is therefore plausible that the functional brain networks of all three groups of patients in this study were already altered compared with healthy participants, irrespective of AED treatment.

This study has several limitations. Although we tried to include comparable patient groups, the risk categories differed in age and drug load, suggesting that our study population is biased. Therefore, the analyses were corrected for these characteristics by including age and drug load as covariates. Besides these characteristics, also other factors could have confounded our results, such as the location of the epileptic focus or effects of AEDs on the neurovascular coupling, which should be assessed in separate studies. Finally, no information is available about changes over time and causality due to the cross-sectional design.

No differences in functional network graph measures could be detected between patients with epilepsy after chronic use of AEDs with a different risks on cognitive side effects. Only the four patients taking TPM, which has a high risk for developing cognitive side effects, showed a more efficient brain network topology, which might be a compensatory mechanism. Also no associations
were found between the graph measures and the measured cognitive impairments, specifically slowing of central information processing. Alterations in functional brain network organization may be only subtle and measurable in patients with more severe cognitive side-effects.

ACKNOWLEDGMENTS

The authors thank Berting R for his assistance with the image acquisition and Geerlings M and Slenter J for continuous hardware and software support.

COMMENTS

Background

A persistent problem in antiepileptic drug (AED) treatment is the occurrence of adverse events among which cognitive side effects are commonly seen. The prevalence and severity of the cognitive side effects varies among different AEDs, but a decreased central information processing speed is commonly observed among the different AEDs to some extent.

Research frontiers

Functional brain network analysis is being applied to study cognitive processes and cognitive problems.

Innovations and breakthroughs

This is the first study that specifically assessed the relation between functional brain network measures and cognitive problems in patients taking different types of AEDs.

Applications

To summarize the practical applications of your research findings, so that readers may understand the perspectives by which this study will affect the field and future research.

Terminology

AED: Antiepileptic drug; Clustering coefficient: Network measure; indication of segregation of a network; Global efficiency: Network measure; indication of integration of a network; CVST: Computerized Visual Searching Task; measures visual (complex) information processing speed.

Peer-review

The manuscript is well written.

REFERENCES

1. Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. *Lancet Neurol* 2012; 11: 792–802 [PMID: 22832500 DOI: 10.1016/s1474-4422(12)70153-9]
2. Ijff DM, Aldenkamp AP. Cognitive side-effects of antiepileptic drugs in children. *Handb Clin Neurol* 2013; 111: 707–718 [PMID: 23622218 DOI: 10.1016/B978-0-444-52891-9.00073-7]
3. Helmstaedter C, Aldenkamp AP, Baker GA, Mazzarati A, Rylvin P, Sankar R. Disentangling the relationship between epilepsy and its behavioral comorbidities - the need for prospective studies in new-onset epilepsies. *Epilepsy Behav* 2014; 31: 43–47 [PMID: 24333577 DOI: 10.1016/j.yebeh.2013.11.010]
4. Bootma HP, Ricker L, Heckter YA, Hulsman J, Lambrecht D, Majoie M, Schelkens A, de Krom M, Aldenkamp AP. The impact of side effects on long-term retention in three new antiepileptic drugs. *Seizure* 2009; 18: 327–331 [PMID: 19110447 DOI: 10.1016/j.seizure.2008.11.006]
5. Kwan P, Brodie MJ. Neuropsychological effects of epilepsy and antiepileptic drugs. *Lancet* 2001; 357: 216–222 [PMID: 11213111 DOI: 10.1016/s0140-6736(00)03600-x]
6. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. *Nat Rev Neurosci* 2004; 5: 553–564 [PMID: 15208697 DOI: 10.1038/nrn1430]
7. van Veenendaal TM, Ijff DM, Aldenkamp AP, Hofman PA, Vlooswijk MC, Roulh RL, de Louw AJ, Backes WH, Jansen JF. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review. *Neurosci Biobehav Rev* 2015; 59: 92–99 [PMID: 26475992 DOI: 10.1016/j.neubiorev.2015.10.004]
8. Li X, Ricci R, Large CH, Anderson B, Nahas Z, Bohning DE, George MS. Interleaved transcranial magnetic stimulation and fMRI suggests that lamotrigine and valproic acid have different effects on corticolimbic activity. *Psychophysiology* (Berl) 2010; 209: 233–244 [PMID: 20195575 DOI: 10.1007/s00213-010-1786-y]
9. Jokeit H, Okujava M, Woermann FG. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study. *BMC Neurol* 2001; 1: 6 [PMID: 11710962 DOI: 10.1186/1471-2377-1-6]
10. Wandschneider S, Stretten J, Sidhu M, Centeno M, Kozák LR, Symms M, Thompson PJ, Duncan JS, Kropp MJ. Levetiracetam reduces abnormal network activations in temporal lobe epilepsy. *Neurology* 2014; 83: 1508–1512 [PMID: 25253743 DOI: 10.1212/WNL.0000000000000910]
11. Jansen JF, Aldenkamp AP, Marian Majoie HJ, Reijs RP, de Krom MC, Hofman PA, Eline Kooi M, Nicolay K, Backes WH. Functional MRI reveals declined prefrontal cortex activation in patients with epilepsy on topiramate therapy. *Epilepsy Behav* 2006; 9: 181–185 [PMID: 16793345 DOI: 10.1016/j.yebeh.2006.05.004]
12. De Cianitis A, Muti M, Piccolini C, Principi M, Di Renzo A, De Cianitis R, Fronzoni D, Iasonou G, Ottaviari A, Iapichino L, Picciri M. A functional MRI study of language disturbances in subjects with migraine headache during treatment with topiramate. *Neurosci Lett* 2008; 29 Suppl 1: S141–S143 [PMID: 18545916 DOI: 10.1016/S0102-0046(08)06-5]
13. Yasuda CL, Centeno M, Vollmar C, Stretten J, Symms M, Cendes F, Mehta MA, Thompson PJ, Duncan JS, Koepp MJ. The effect of topiramate on cognitive fMRI. *Epilepsy Res* 2013; 105: 250–255 [PMID: 23333471 DOI: 10.1016/j.epl.2012.12.007]
14. Rabinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. *Neuroimage* 2010; 52: 1059–1069 [PMID: 19819337 DOI: 10.1016/j.neuroimage.2009.10.003]
15. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE. Efficiency of functional brain networks and intellectual performance. *J Neurosci* 2009; 29: 7619–7624 [PMID: 19515930 DOI: 10.1523/JNEUROSCI.1443.2009]
16. Giessing C, Thiël CM, Alexander-Bloch AF, Patel AX, Bullmore ET. Human brain functional network changes associated with enhanced and impaired attentional task performance. *J Neurosci* 2013; 33: 5903–5914 [PMID: 23554472 DOI: 10.1523/JNEUROSCI.4854-12.2013]
17. Vlooswijk MC, Vlaesens MJ, Jansen JF, de Krom MC, Majoie HJ, Hofman PA, Aldenkamp AP, Backes WH. Loss of network efficiency associated with cognitive decline in chronic epilepsy. *Neurology* 2011; 77: 938–944 [PMID: 21832213 DOI: 10.1212/WNL.0b013e3182e1f217]
18. Bonilha L, Tabesh A, Dahle K, Hsu DA, Stafstrom CE, Hermann BP, Lin JJ. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy. *Hum Brain Mapp* 2014; 35: 3661–3672 [PMID: 24453089 DOI: 10.1002/hbm.22428]
19. Hanecz Z, Levin HS, Chiang S. Brain Graph Topology Changes Associated with Anti-Epileptic Drug Use. *Brain Connect* 2015; 5: 284–291 [PMID: 25492633 DOI: 10.1089/brain.2014.0304]
20. van Veenendaal TM, Ijff DM, Aldenkamp AP, Lazeron RH, Pats NA, Edden RA, Hofman PA, de Louw AJ, Backes WH, Jansen JF. Glutamate concentrations vary with antiepileptic drug use and mental slowing. *Epilepsy Behav* 2016; 64: 200–205 [PMID: 27744245 DOI: 10.1016/j.yebeh.2016.08.027]
21. Samarakseera SR, Helmstaedter C, Reuber M. Cognitive impairment in adults with epilepsy: The relationship between subjective and
van Veenendaal TM et al. Antiepileptic drugs and functional network efficiency

objective assessments of cognition. Epilepsy Behav 2015; 52: 9-13 [PMID: 26398591 DOI: 10.1016/j.yebeh.2015.08.013]

22 Aldenkamp AP, Arends J, de la Parra NM, Migchelbrink EJ. The cognitive impact of epileptiform EEG discharges and short epileptic seizures: relationship to characteristics of the cognitive tasks. Epilepsy Behav 2010; 17: 205-209 [PMID: 20056494 DOI: 10.1016/j.yebeh.2009.11.024]

23 Grevers E, Breuer LE, IJff DM, Aldenkamp AP. Mental slowing in relation to epilepsy and antiepileptic medication. Acta Neurol Scand 2016; 134: 116-122 [PMID: 26918421 DOI: 10.1111/ane.12517]

24 Raven J, Raven JC, Court JH. Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 3: The Standard Progressive Matrices. San Antonio, TX: Harcourt Assessment, 2000

25 van Diessen E, Diederen SJ, Braun KP, Jansen FE, Stam CJ. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 2013; 54: 1855-1865 [PMID: 24032627 DOI: 10.1111/epi.12350]

26 Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. Neuroimage 2013; 80: 349-359 [PMID: 23571418 DOI: 10.1016/j.neuroimage.2013.04.001]

27 Bullmore ET, Basset DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psycho 2011; 7: 113-140 [PMID: 21128784 DOI: 10.1146/annurev-clinpsy-040510-143934]

28 Rubinow M, Sporns O. Weight-conserving characterization of complex functional brain networks. Neuroimage 2011; 56: 2068-2079 [PMID: 21459148 DOI: 10.1016/j.neuroimage.2011.03.069]

29 Lammers MW, Hekster YA, Keyser A, Meinardi H, Renier WO, van Lier H. Monotherapy or polytherapy for epilepsy revisited: a quantitative assessment. Epilepsia 1995; 36: 440-446 [PMID: 7614920 DOI: 10.1111/j.1528-1157.1995.tb00484.x]

30 Verhage F. Intelligente en leeftijd: Onderzoek bij Nederlands van twaalf tot zevenenzeventig jaar: Assen: Van Gorcum, 1964

31 Alpherts W, Aldenkamp A. FePsy: the iron psyche. Heemstede: Instituut voor Epilepsiebestrijding, 1994

32 Giessing C, Thalid CM. Pro-cognitive drug effects modulate functional brain network organization. Front Behav Neurosci 2012; 6: 53 [PMID: 22973209 DOI: 10.3389/fnbeh.2012.00053]

33 Hahn A, Kranz GS, Sladky R, Ganger S, Windischberger C, Kasper S, Lanzemberger R. Individual diversity of functional brain network economy. Brain Connect 2015; 5: 156-165 [PMID: 25411715 DOI: 10.1089/brain.2014.0306]

34 Santarneccchi E, Rossi S, Rossi A. The smarter, the stronger: intelligence level correlates with brain resilience to systematic insults. Cortex 2015; 64: 293-309 [PMID: 25569764 DOI: 10.1016/j.cortex.2014.11.005]

35 Mula M. Topiramate and cognitive impairment: evidence and clinical implications. Ther Adv Drug Saf 2012; 3: 279-289 [PMID: 25083242 DOI: 10.1177/2042098612455357]

36 van Diessen E, Zweiphenning WJ, Jansen FE, Stam CJ, Braun KP, Otte WM. Brain Network Organization in Focal Epilepsy: A Systematic Review and Meta-Analysis. PLoS One 2014; 9: e114606 [PMID: 25493432 DOI: 10.1371/journal.pone.0114606]

37 Kida I, Smith AJ, Blumenfeld H, Behar KL, Hyder F. Lamotrigine suppresses neurophysiological responses to somatosensory stimulation in the rodent. Neuroimage 2006; 29: 216-224 [PMID: 16112588 DOI: 10.1016/j.neuroimage.2005.07.015]

P- Reviewer: Altamura C, Kikiesmez O, Rzek AAKA
S- Editor: Ji FF L- Editor: A E- Editor: Wu HL
