THE TWO-DISTANCE SETS IN DIMENSION FOUR

FERENC SZÖLLÖSI

1. Introduction and Main Results

Let \(d \geq 1 \) be an integer, and let \(\mathbb{R}^d \) denote the \(d \)-dimensional Euclidean space equipped with the standard inner product \((\,,\,)\) and norm induced metric \(\mu \). Following the terminology of \([10]\), a Euclidean representation of a simple graph \(\Gamma \) on \(n \geq 1 \) vertices is an embedding \(f \) (with real parameters \(\alpha_2 > \alpha_1 > 0 \)) of the vertex set of \(\Gamma \) into \(\mathbb{R}^d \) such that for different vertices \(u \neq v \) we have \(\mu(f(u), f(v)) = \alpha_1 \) if and only if \(\{u, v\} \) is an edge of \(\Gamma \), and \(\mu(f(u), f(v)) = \alpha_2 \) otherwise. The smallest \(d \) for which such a representation exists is denoted by \(\dim_2 \Gamma \). If \(\Gamma \) is neither complete, nor empty, then its image under \(f \) is called an \(n \)-element 2-distance set \([2], [4], [6], [7], [11], [10]\). The representation, as well as the 2-distance set is called spherical, if the image of \(f \) lies on the \((d-1)\)-sphere of radius 1 in \(\mathbb{R}^d \) \([8], [9]\). A spherical representation is called J-spherical \([10]\ Definition 4.1), if \(\alpha_1 = \sqrt{2} \). Graphs on \(n \geq d + 2 \) vertices having a J-spherical representation in \(\mathbb{R}^d \) are in a certain sense extremal \([13]\). We remark that other authors relax the condition \(\alpha_2 > \alpha_1 \) thus essentially identifying the same 2-distance set with a graph \(\Gamma \) and its complement \(\overline{\Gamma} \) \([12], [14]\).

Motivated by a recent problem posed in \([10], Section 4.3\), we continue the computer-aided generation and classification of 2-distance sets in Euclidean spaces \([15]\), a program initiated originally in \([7]\). In particular, we describe the 2-distance sets in \(\mathbb{R}^4 \), that is, we determine all simple graphs \(\Gamma \) with \(\dim_2 \Gamma = 4 \). Since all such graphs are known on at most 6 vertices \([4], [10]\), and it is known that there are no such graphs on more than 10 vertices \([7]\), the aim of this note is to close this gap by classifying the graphs in the remaining cases. The main result is the following.

Theorem 1. The number of \(n \)-element 2-distance sets in \(\mathbb{R}^4 \) for \(n \in \{7, 8, 9\} \) is 33, 20, and 5 up to isometry.

The proof is in part computational, and easily follows from the theory developed earlier in \([15]\), which we briefly outline here for completeness as follows. Assume that \(\Gamma \) is a graph with vertices \(v_1, \ldots, v_n \). Let \(a \) and \(b \) be indeterminates, and associate to \(\Gamma \) a “candidate Gram matrix” \(G(a, b) := aA(\Gamma) + bA(\overline{\Gamma}) + I \), where \(A(\Gamma) \) is the graph adjacency matrix, and \(I \) is the identity matrix of order \(n \). Now let \(f \) be a spherical representation of \(\Gamma \) (with parameters \(\alpha_2 > \alpha_1 > 0 \) as usual) in \(\mathbb{R}^d \). Then the Gram matrix of the representation can be written as \(\langle (f(v_i), f(v_j))_{i,j=1}^n = G(1 - \alpha_1^2/2, 1 - \alpha_2^2/2) \). This correspondence allows us to construct a representation based on solely \(A(\Gamma) \) by exploiting that the rank of \(G(1 - \alpha_1^2/2, 1 - \alpha_2^2/2) \) is at most \(d \). Indeed, if we are given a candidate Gram matrix \(G(a,b) \), then those values \(a^*, b^* \in \mathbb{C} \) for which \(G(a^*, b^*) \) has a certain rank can be found by considering the set of \((d+1) \times (d+1)\) minors of \(G(a,b) \) which should all be vanishing. The arising system of polynomial equations can be analyzed by a standard Gröbner basis computation \([11], [3]\), as detailed in \([15]\). In particular, if no common solutions are found, then the candidate Gram matrix (as well as both \(\Gamma \) and its complement) should be discarded as it cannot correspond to a spherical-2-distance set in \(\mathbb{R}^d \). On the other hand, if some solutions are found, then the candidate Gram matrix survives the test, and one should further ascertain that \(G(a^*, b^*) \) is a positive semidefinite matrix. This can be done by investigating the signs of the coefficients of its characteristic polynomial \([4] Corollary 7.2.4\).

The general case (i.e., when \(f \) is not necessarily spherical) is analogous, but slightly more technical as the image of \(f \) should be translated to the origin first, and then the Gram matrix of this shifted set (which is sometimes called Menger’s matrix) should be considered \([7] Section 7.1\), \([15] Section 4\). In particular, we have

\[
(f(v_i) - f(v_n), f(v_j) - f(v_n)) = (G(\alpha_1^2, \alpha_2^2),_{i,n} + G(\alpha_1^2, \alpha_2^2),_{j,n} - G(\alpha_1^2, \alpha_2^2),_{i,j} + I_{ij})/2, \quad i, j \in \{1, \ldots, n-1\}.
\]

The right hand side describes the entries of a positive semidefinite matrix of rank at most \(d \), which depends on \(A(\Gamma) \) only. This rank condition can be treated in a similar way as discussed previously. In Table \([1]\) we summarize the number of surviving candidate Gram matrices found by a simple backtrack search, and the number of corresponding 2-distance sets. The entry marked by an asterisk indicates that 6 out of the 42 cases are actually the maximum 2-distance sets in \(\mathbb{R}^3 \), see \([3] Section 10\). The proof of Theorem \([1]\) can be obtained by setting \(d = 4 \) and then analyzing one by one the surviving candidate Gram matrices and the corresponding graphs on \(n \in \{7, 8, 9\} \) vertices.

It is known that the maximum cardinality of a 2-distance set in \(\mathbb{R}^4 \) is exactly 10, and the unique configuration realizing this corresponds to the triangular graph \(T(5) \), see \([7]\). We have verified this result independently. Indeed,

June 21, 2018, preprint. This research was supported in part by the Academy of Finland, Grant #289002.

1
our computer program identified a single 10×10 candidate Gram matrix, which cannot be extended any further, and whose spherical representation is shown in Table 2. While the subgraphs of $T(5)$ are obviously spherical 2-distance sets embedded in \mathbb{R}^4, there are several additional examples as follows.

Proposition 2. The number of 9-point 2-distance sets in \mathbb{R}^4 is 5, out of which 2 are spherical.

Proof. Our computer program generated 4 candidate Gram matrices in the general case, and 2 in the spherical case, see Table 1. The two spherical cases correspond to the 9-vertex subgraph of $T(5)$, and to the Paley-graph, see Table 2. The remaining two candidate Gram matrices correspond to three nonspherical 2-distance sets, see Table 6.

Proposition 3. The number of 8-point 2-distance sets in \mathbb{R}^4 is 20, out of which 7 are spherical.

Proof. Our computer program generated 13 candidate Gram matrices in the general case, and 6 in the spherical case, see Table 1. In the spherical case five out of the six candidate Gram matrices yielded one spherical 2-distance set, while one resulted in two, see Table 2. The remaining 7 candidate Gram matrices correspond to two nonspherical 2-distance sets each, except for the one which is self-complementary. See Table 6 for some details.

n	$G(n, b)$	$G(n, 0)$	(a^*, b^*)	Remark
10	aaaaaaaa	$\Gamma_{10, A}$	$(1, 6, -2/3)$	$T(5)$, dim$_2(\Gamma_{10, A}) = 5$
9	aaaaaaaa	Γ_B	$(1, 6, -2/3)$	$\Gamma_B \sim T_{10, A} \setminus \{\ast\}$, dim$_2(\Gamma_B) = 5$
9	aaaaaaaa	Γ_{D2}	$(1, 4, -1/2)$	Paley, self-complementary
8	aaaaaaaa	Γ_A	$(0, -1)$	16-cell, spherical, dim$_2(\Gamma_A) = 7$
8	aaaaaaaa	Γ_{K4}	$(1 \pm 4\sqrt{2}/9, 1/4, 1/2)$	
7	aaaaaaaa	Γ_{K3}	$(1, 6, -2/3)$	dim$_2(\Gamma_{K3}) = 5$
7	aaaaaaaa	Γ_{K1}	$(1/3, 3/5)$	dim$_2(\Gamma_{K1}) = 6$
6	aaaaaaaa	Γ_{E}	$(1, 6, -2/3)$	$\Gamma_{K3} \sim T_{10, A} \setminus \{\ast\}$, dim$_2(\Gamma_{E}) = 5$
5	aaaaaaaa	Γ_{F}	$(1, 4, -1/2)$	$\Gamma_{D2} \sim T_{10, A} \setminus \{\ast\}$, self-complementary

Table 2. Spherical 2-distance sets on $n \in \{8, 9, 10\}$ points in \mathbb{R}^4.

In the tables the vectorization (i.e., row-wise concatenation) of the lower triangular part of a graph adjacency matrix of order n is denoted by a string of letters a and b of length $n(n - 1)/2$, where letter a indicates adjacent vertices.

Proposition 4. The number of 7-point 2-distance sets in \mathbb{R}^4 is 33, out of which 23 are spherical.

Proof. Our computer program generated 22 candidate Gram matrices in the general case, and 17 in the spherical case, see Table 1. In the spherical case there was a single matrix which did not correspond to any 2-distance sets as it turned out to be indefinite. All the other candidate Gram matrices yielded at least one spherical 2-distance set, see Table 3. The remaining 5 candidate Gram matrices correspond to two nonspherical 2-distance sets each, see Table 6.

n	$G(n, b)$	$G(n, 0)$	(a^*, b^*)	Remark		
7	aaaaaaaa	$\Gamma_{12, A}$	$(0, -1)$	J-spherical, dim$_2(\Gamma_{12, A}) = 6$		
7	aaaaaaaa	$\Gamma_{12, B}$	$(1 \pm 4\sqrt{2}/9, 1/4, 1/2)$			
7	aaaaaaaa	$\Gamma_{12, C}$	$(1 \pm 4\sqrt{2}/9, 1/4, 1/2)$	dim$_2(\Gamma_{12, C}) = 5$		
7	aaaaaaaa	$\Gamma_{12, D}$	$(1, 6, -2/3)$	dim$_2(\Gamma_{12, D}) = 5$		
7	aaaaaaaa	$\Gamma_{16, D}$	$(1, 4, -1/2)$	dim$_2(\Gamma_{16, D}) = 5$		
7	aaaaaaaa	$\Gamma_{16, E}$	$(1/3, 3/5)$	dim$_2(\Gamma_{16, E}) = 6$		
6	aaaaaaaa	$\Gamma_{20, K}$	$(-1 - \sqrt{7}/8, 3(-1 + \sqrt{7})/8)$	dim$_2(\Gamma_{20, K}) = 5$		
6	aaaaaaaa	$\Gamma_{20, L}$	$(1, 6, -2/3)$	dim$_2(\Gamma_{20, L}) = 5$		
5	aaaaaaaa	$\Gamma_{20, M}$	$(1 \pm 4\sqrt{2}/9, 1/4, 1/2)$	dim$_2(\Gamma_{20, M}) = 5$		
5	aaaaaaaa	$\Gamma_{20, N}$	$(-5/12, 7/24)$	dim$_2(\Gamma_{20, N}) = 5$		
5	aaaaaaaa	$\Gamma_{24, D}$	$(-1 \pm 3)/8, (1 \mp 3)/8, (1 \mp 3)/8$	$8n^2 + 32n + 10n - 1 = 0,	n^2	\leq 1$

Table 3. Spherical 2-distance sets on $n = 7$ points in \mathbb{R}^4.

Proposition 5 (cf. [4, p. 494], [10 Section 4.3]). The number of 6-point 2-distance sets in \mathbb{R}^4 is 145. The number of 6-point spherical 2-distance sets in \mathbb{R}^4 is 42, out of which 6 are in fact the maximum 2-distance sets in \mathbb{R}^3.
Proof. It is known, see [3, 10], that a graph on 6 vertices can be represented in \(\mathbb{R}^4 \) unless it is a disjoint union of cliques. Since the total number of simple graphs on 6 vertices is 156, out of which 11 are disjoint union of cliques, we find that 145 graphs can be represented in \(\mathbb{R}^4 \). Our computer program generated 30 candidate Gram matrices in the spherical case, see Table 1. There were two indefinite matrices, and the remaining 28 resulted in at least one spherical 2-distance set each. Amongst these, we found the 6 maximum 2-distance sets in \(\mathbb{R}^3 \), denoted by \(\Gamma_{6K}, \Gamma_{6Q}, \Gamma_{6O}, \Gamma_{6B}, \Gamma_{6R}, \Gamma_{6Y} \), see Table 4.

Finally, there are 7 graphs \(\Gamma \) on 5 vertices for which \(\dim_2 \Gamma = 4 \). One particular spherical representation is given of these in Table 5. The number of corresponding nonsymmetric 2-distance sets in \(\mathbb{R}^4 \) in these cases is infinite.

Table 4. Spherical 2-distance sets on \(n = 6 \) points in \(\mathbb{R}^4 \)

\(n \)	\(G(n, 6) \)	\(G(1, 6) \)	\((a^*, b^*) \)	Remark
6	\(\Gamma_{6A} \)	\((0, 1) \)	J-spherical, \(\dim_2(\Gamma_{6A}) = 5 \)	
6	\(\Gamma_{6B} \)	\((1 \pm \sqrt{5})/4, 1/2 \)	J-spherical, \(\dim_2(\Gamma_{6B}) = 5 \)	
6	\(\Gamma_{6C} \)	\((1/6, 1/3, 3) \)	J-spherical, \(\dim_2(\Gamma_{6C}) = 4 \)	
6	\(\Gamma_{6D} \)	\((1/6, 2/3) \)	J-spherical, \(\dim_2(\Gamma_{6D}) = 4 \)	
6	\(\Gamma_{6E} \)	\((1 \pm \sqrt{5})/4, 1/2 \)	J-spherical, \(\dim_2(\Gamma_{6E}) = 4 \)	
6	\(\Gamma_{6F} \)	\((1/1, 1/2) \)	J-spherical, \(\dim_2(\Gamma_{6F}) = 4 \)	
6	\(\Gamma_{6G} \)	\((1, 1/3) \)	J-spherical, \(\dim_2(\Gamma_{6G}) = 4 \)	

Table 5. Spherical 2-distance sets on \(n = 5 \) points in \(\mathbb{R}^4 \)

\(n \)	\(G(n, 5) \)	\(G(1, 5) \)	\((a^*, b^*) \)	Remark
5	\(\Gamma_{5A} \)	\(a^* = -1/4 \)	regular 5-cell, \(\dim_2(\Gamma_{5A}) = 4 \)	1-distance set
5	\(\Gamma_{5B} \)	\((1 \pm \sqrt{5})/6, 0 \)	J-spherical, \(\dim_2(\Gamma_{5B}) = 3 \)	
5	\(\Gamma_{5C} \)	\((0, -1/2) \)	J-spherical, \(\dim_2(\Gamma_{5C}) = 3 \)	
5	\(\Gamma_{5D} \)	\((0, -1/2) \)	J-spherical, \(\dim_2(\Gamma_{5D}) = 3 \)	
5	\(\Gamma_{5E} \)	\((1 \pm \sqrt{5})/6, 0 \)	J-spherical, \(\dim_2(\Gamma_{5E}) = 3 \)	

Table 6. General (nonsymmetric) 2-distance sets on \(n \in \{7, 8, 9\} \) points in \(\mathbb{R}^4 \)

\(n \)	\(G(n, 6) \)	\(G(1, 6) \)	\((a^*, b^*) \)	Remark
7	\(\Gamma_{7A} \)	\((1, 3 \pm \sqrt{5})/2 \)	J-spherical, \(\dim_2(\Gamma_{7A}) = 3 \)	
7	\(\Gamma_{7B} \)	\((1, 3 \pm \sqrt{5})/2 \)	J-spherical, \(\dim_2(\Gamma_{7B}) = 3 \)	
7	\(\Gamma_{7C} \)	\((1, 3 \pm \sqrt{5})/2 \)	J-spherical, \(\dim_2(\Gamma_{7C}) = 3 \)	
7	\(\Gamma_{7D} \)	\((1, 3 \pm \sqrt{5})/2 \)	J-spherical, \(\dim_2(\Gamma_{7D}) = 3 \)	

Corollary 6. The number of graphs \(\Gamma \) for which \(\dim_2 \Gamma = 4 \) is 211.

Proof. This follows from earlier results in [4, 7], and Theorem 11 the number of such graphs on \(n \in \{5, 6, 7, 8, 9, 10\} \) vertices is 7, 145, 33, 20, 5, and 1, respectively, and there are no such graphs on \(n < 5 \) or \(n > 10 \) vertices.

We conclude this manuscript with the following remark: the classification of the maximum 3-distance sets in \(\mathbb{R}^4 \) has recently been carried out in [15], and therefore data on the (not necessarily largest) candidate Gram matrices is readily available for that case too (see [15, Table 5 and 7]). However, the individual analysis and ultimately the presentation of those tens of thousands of matrices would require considerably more efforts.

Finally, we introduce \(\Gamma \) on 6 vertices for which \(\dim_2 \Gamma = 4 \). One particular spherical representation is given of these in Table 5. The number of corresponding nonsymmetric 2-distance sets in \(\mathbb{R}^4 \) in these cases is infinite.
References

[1] J. Abbott, A.M. Bigatti: CoCoALib: a C++ library for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/cocoalib ver. 0.99560 (2018)
[2] E. Bannai, E. Bannai, D. Stanton: An upper bound for the cardinality of an s-distance subset in real Euclidean space, II, Combinatorica, 3 147–152 (1983)
[3] T. Becker, V. Weispfenning: Gröbner Bases, Springer–Verlag, New York (1993)
[4] S.J. Einhorn, I.J. Schoenberg: On Euclidean sets having only two distances between points I–II, Indag. Math., 69 489–504 (1966)
[5] P. Erdős, P. Fishburn: Maximum planar sets that determine k distances, Discrete Math., 160 115–125 (1996)
[6] R.A. Horn, C.R. Johnson: Matrix Analysis, second ed., Cambridge University Press, Cambridge (2013)
[7] P. Lisoněk: New maximal two-distance sets, J. Combin. Theory Ser. A, 77 318–338 (1997)
[8] O.R. Musin: Graphs and spherical two-distance sets, preprint [arXiv:1608.03392v4] [math.MG] (2018)
[9] O.R. Musin: Spherical two-distance sets, J. Combin. Theory Ser. A, 116 988–995 (2009)
[10] O.R. Musin: Towards a proof of the 24-cell conjecture, Acta Math. Hungar., 155 184–199 (2018)
[11] A. Neumaier: Distance matrices, dimension, and conference graphs, Indag. Math., 84 385–391 (1981)
[12] H. Nozaki, M. Shinohara: A geometrical characterization of strongly regular graphs, Linear Algebra Appl., 437 2587–2600 (2012)
[13] R.A. Rankin: The closest packing of spherical caps in n dimensions, Glasgow. Math. J., 2 139–144 (1955)
[14] A. Roy: Minimal Euclidean representation of graphs, Discrete Math., 310 727–733 (2010)
[15] F. Szöllősi, P.R.J. Östergård: Constructions of maximum few-distance sets in Euclidean spaces, preprint [arXiv:1801.06040] [math.MG] (2018)
[16] W. Lan, X. Wei: Classification of seven-point four-distance sets in the plane, Math. Notes, 93 510–522 (2013)

F. Sz.: Department of Communications and Networking, Aalto University School of Electrical Engineering, P.O. Box 15400, 00076 Aalto, Finland
E-mail address: szoferi@gmail.com