How learn the branching ratio $X(3872) \rightarrow D^{*0}\bar{D}^{0} + c.c.$

N.N. Achasova and E.V. Rogozinaa,b

aLaboratory of Theoretical Physics, Sobolev Institute for Mathematics, 630090, Novosibirsk, Russia

bNovosibirsk State University, 630090, Novosibirsk, Russia

(Dated: November 26, 2013)

Abstract

Enfant terrible of charmonium spectroscopy, the resonance $X(3872)$, generated a stream of interpretations and ushered in a new exotic XYZ spectroscopy. In the meantime, many (if not all) characteristics of $X(3872)$ are rather ambiguous. We construct spectra of decays of the resonance $X(3872)$ with good analytical and unitary properties which allows to define the branching ratio of the $X(3872) \rightarrow D^{*0}\bar{D}^{0} + c.c.$ decay studying only one more decay, for example, the $X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi(1S)$ decay. We show that our spectra are effective means of selection of models of the resonance $X(3872)$. In addition, we define the range of values of the coupling constant of the $X(7872)$ resonance with the $D^{*0}\bar{D}^{0}$ system.

PACS numbers: 13.75.Lb, 11.15.Pg, 11.80.Et, 12.39.Fe
Discovery of the $X(3872)$ resonance became the first in discovery of the resonant structures XYZ ($X(3872)$, $Y(4260)$, $Z_b^+(10610)$, $Z_b^+(10650)$, $Z_c^+(3900)$), the resonant interpretations of which assumes existence in them at least pair of heavy and pair of light quarks in this or that form. Thousand articles on this subject already were published in spite of the fact that many properties of new resonant structures are not defined yet and not all possible mechanisms of dynamic generation of these structures are studied, in particular, the role of the anomalous Landau thresholds is not studied.

Below we suggest an approach which allows to define the branching ratio of the $X(3872) \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$ decay studying only one more decay of $X(3872)$ into a non-$D^{*0}\bar{D}^0$ channel and discard lame models the $X(3872)$ resonance.

The mass spectrum $\pi^+\pi^- J/\psi(1S)$ in the $X(3872) \rightarrow \pi^+\pi^- J/\psi(1S)$ decay looks as the ideal Breit-Wigner one, see Fig. 1a.

![Fig. 1a](image1.png)

FIG. 1: a) The Belle data [1] on the invariant $\pi^+\pi^- J/\psi(1S)$ mass (m) distribution. The solid line is our theoretical one with taking into account the Belle energy resolution. The dotted line is second-order polynomial for the incoherent background. b) Our undressed theoretical line.

The mass spectrum $\pi^+\pi^- \pi^0 J/\psi(1S)$ in the $X(3872) \rightarrow \pi^+\pi^- \pi^0 J/\psi(1S)$ decay looks in a similar way [2, 3].

The mass spectrum $D^{*0}\bar{D}^0 + \text{c.c.}$ in the $X(3872) \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$ decay [4] looks as the typical resonance threshold enhancement, see Fig. 2.
FIG. 2: The Belle data on the invariant $D^0\bar{D}^0 + c.c.$ mass (m) distribution. The solid line is our theoretical one with taking into account the Belle energy resolution. The dotted line is a square root function for the incoherent background. a) $D^{*0} \to D^0\pi^0$. b) $D^{*0} \to D^0\gamma$.

If structures in the above channels are manifestation of the same resonance, it is possible to define the branching ratio $X(3872) \to D^{*0}\bar{D}^0 + c.c., BR(X(3872) \to D^{*0}\bar{D}^0 + c.c.)$ treating data only about once more decay channel.

We believe that the $X(3872)$ is the axial vector, 1$^{++}$[6, 7]. In this case the S wave dominates in the $X(3872) \to D^{*0}\bar{D}^0 + c.c.$ decay and hence is described by the effective Lagrangian

$$L_{XD^{*0}\bar{D}^0}(x) = g_A X^\mu (D^{0\mu}(x)\bar{D}^0(x) + \bar{D}^{0\mu}(x)D^0(x)).$$

The width of the $X \to D^{*0}\bar{D}^0 + c.c.$ decay

$$\Gamma(X \to D^{*0}\bar{D}^0 + c.c., m) = \frac{g_A^2 \rho(m)}{8\pi} \left(1 + \frac{k^2}{3m_{D^{*0}}^2}\right),$$

where k is momenta of D^{*0} (or \bar{D}^0) in the $D^{*0}\bar{D}^0$ center mass system, m is the invariant mass of the $D^{*0}\bar{D}^0$ pair,

$$\rho(m) = \frac{2|k|}{m} = \frac{\sqrt{(m^2 - m_+^2)(m^2 - m_-^2)}}{m^2}, \quad m_\pm = m_{D^{*0}} \pm m_{D^0}.$$

The second term in the right side of Eq. (2) is very small in our energy region and can be neglected. This gives us the opportunity to construct the mass spectra for the $X(3872)$ decays with the good analytical and unitary properties as in the scalar meson case [8, 9].
The mass spectrum in the $D^{*0}D^0 + c.c.$ channel

$$\frac{dBR(X \to D^{*0}\bar{D}^0 + c.c., m)}{dm} = 4 \frac{1}{\pi} m^2 \Gamma(X \to D^{*0}\bar{D}^0, m) |D_X(m)|^2.$$ \hspace{1cm} (4)

The branching ratio of $X(3872) \to D^{*0}\bar{D}^0 + c.c.$

$$BR(X \to D^{*0}\bar{D}^0 + c.c.) = 4 \frac{1}{\pi} \int_{m_+}^{\infty} m^2 \Gamma(X \to D^{*0}\bar{D}^0, m) |D_X(m)|^2 dm.$$ \hspace{1cm} (5)

In others \{i\} (non-$D^{*0}\bar{D}^0$) channels the $X(3872)$ state is seen as a narrow resonance that is why we write the mass spectrum in the i channel in the form

$$\frac{dBR(X \to i, m)}{dm} = 2 \frac{1}{\pi} m^2 \Gamma_i |D_X(m)|^2 ,$$ \hspace{1cm} (6)

where Γ_i is the width of the $X(3872) \to i$ decay.

The branching ratio of $X(3872) \to i$

$$BR(X \to i) = 2 \frac{1}{\pi} \int_{m_0}^{\infty} m^2 \Gamma_i |D_X(m)|^2 dm ,$$ \hspace{1cm} (7)

where m_0 is the threshold of the i state.

$$D_X(m) = m_X^2 - m^2 + Re(\Pi_X^{D^{*0}\bar{D}^0}(m_X)) - \Pi_X^{D^{*0}\bar{D}^0}(m) - m_X \Gamma ,$$ \hspace{1cm} (8)

where $\Gamma = \Sigma \Gamma_i$ is the total width of the $X(3872)$ decay into all non-$D^{*0}\bar{D}^0$ channels.

When $m_+ \leq m$,

$$\Pi_X^{D^{*0}\bar{D}^0}(m) = \frac{9}{8\pi^2} \left\{ \left(\frac{m^2 - m_+^2}{m^2} \right) m_+ \ln \frac{m_{D^{*0}}}{m_{D^0}} + \rho(m) \left[\pi + \ln \frac{\sqrt{m^2 - m_+^2} - \sqrt{m^2 - m_+^2}}{\sqrt{m^2 - m_-^2} + \sqrt{m^2 - m_+^2}} \right] \right\} .$$ \hspace{1cm} (9)

When $m_- \leq m \leq m_+$,

$$\Pi_X^{D^{*0}\bar{D}^0}(m) = \frac{9}{8\pi^2} \left\{ \left(\frac{m^2 - m_+^2}{m^2} \right) m_+ \ln \frac{m_{D^{*0}}}{m_{D^0}} - 2|\rho(m)| \ln \frac{\sqrt{m^2 - m_-^2}}{\sqrt{m_+^2 - m_-^2}} \right\} ,$$ \hspace{1cm} (10)

where $|\rho(m)| = \sqrt{(m_+^2 - m^2)(m^2 - m_+^2)/m^2}$.

When $m \leq m_-$ and $m^2 \leq 0$,

$$\Pi_X^{D^{*0}\bar{D}^0}(m) = \frac{9}{8\pi^2} \left\{ \left(\frac{m^2 - m_+^2}{m^2} \right) m_+ \ln \frac{m_{D^{*0}}}{m_{D^0}} - \rho(m) \ln \frac{\sqrt{m_+^2 - m_-^2} - \sqrt{m_-^2 - m_+^2}}{\sqrt{m_+^2 - m_-^2} + \sqrt{m_-^2 - m_+^2}} \right\} .$$ \hspace{1cm} (11)

Our branching ratios satisfy unitarity

$$1 = BR(X \to D^{*0}\bar{D}^0 + c.c.) + \sum_i BR(X \to i) .$$ \hspace{1cm} (12)
Fitting the Belle data [1, 4], we take into account the Belle [1] results that \(m_X = 3871.84 \text{ MeV} = m_{D^{*0}} + m_{D^0} = m_+ \) and \(\Gamma_{X(3872)} < 1.2 \text{ MeV} \) 90%CL that corresponds to \(\Gamma < 1.2 \text{ MeV} \), which controls the width of the \(X(2872) \) signal in the \(\pi^+\pi^- J/\psi(1S) \) channel and in every non-\(D^{*0}\bar{D}^0 \) channel, see Fig. 1b.

The results of our fit are in the Table I. The current statistics is not sufficient for serious conclusions.

TABLE I. Results of the analysis of the Belle data [1, 4].

\(\Gamma \)	\(g_A^2/8\pi \)	\(\chi^2/Ndf \)	\(BR_{\text{seen}} \)	\(BR \)	\(BR(\text{Oth})_{\text{seen}} \)
1.2 \(_{0.467}^{0.190} \)	0.857 \(_{0.481}^{0.614} \)	43.74/42	0.486 \(_{0.29}^{0.061} \)	0.795 \(_{0.224}^{0.19} \)	0.191 \(_{0.179}^{0.223} \)

Nevertheless, one can state that our results are consist with experiment. Really, in view of \(BR(B \to X(3872)K) \times BR(X(3872) \to D^{*0}\bar{D}^0) = (0.80 \pm 0.20 \pm 0.1) \times 10^{-4} \) [4], \(BR(B^+ \to X(3872)K^+) \times BR(X(3872) \to \pi^+\pi^- J/\psi(1S)) = (8.61 \pm 0.82 \pm 0.52) \times 10^{-6} \) [1], \(BR(B^+ \to X(3872)K^+) \times BR(X(3872) \to \pi^+\pi^- 0 J/\psi(1S)) = (0.6 \pm 0.2 \pm 0.1) \times 10^{-5} \) [3], and \(BR(B^+ \to X(3872)K^+) \times BR(X(3872) \to \gamma J/\psi(1S)) = (1.78 \pm 0.48 \pm 0.12) \times 10^{-6} \) [10], it follows that \(BR(X \to D^{*0}\bar{D}^0 + c.c.; m \leq 3892 \text{ MeV}) \) is a few times as large as the sum of all non-\(D^{*0}\bar{D}^0 \) known branching ratios.

So, when fitting the \(X(3872) \to D^{*0}\bar{D}^0 \) data and data for any \(X(3872) \) decay into non-\(D^{*0}\bar{D}^0 \) state, \(X(3872) \to i \), we find \(\Gamma \) and \(g_A^2/4\pi \), which define \(BR(X(3872) \to D^{*0}\bar{D}^0 + c.c.) \).

Efficacy of our approach is shown by the following example. In Ref. [11] the authors considered \(m_X = 3871.68, \Gamma = 1.2 \text{ MeV} \) and \(g_{XDD^*} = g_A\sqrt{2} = 2.5 \text{ GeV} \), that is, \(g_A^2/8\pi = 0.1 \). In this case \(BR(X \to D^{*0}\bar{D}^0 + c.c.; m \leq 3891.84 \text{ MeV}) = 0.15 \), that is, unknown decays \(X(3872) \) into non-\(D^{*0}\bar{D}^0 \) states are dominant. It is hardly possible. For details see Table II.

TABLE II. Branching ratios for the model from Ref. [11].

\(M_X \)	\(\Gamma \)	\(g_A^2/8\pi \)	\(BR_{\text{seen}} \)	\(BR \)	\(BR(\text{Oth})_{\text{seen}} \)
3871.68	1.2	0.1	0.152	0.189	0.792
As seen from Table I the sizeable part (near 40%) accounts for the tail of the $X(3872)$ resonance ($m \geq 3891.84$ MeV). This gives an idea to take into account the $X(3872) \rightarrow D^{*+}D^- + \text{c.c.}$ decays \cite{12} on the $X(3872)$ tail. Since $X(3872)$ is an isoscalar, the effective Lagrangian has the form

$$L(x) = g_A X^\mu \left(D^0_\mu(x)\bar{D}^0(x) + \bar{D}^0_\mu(x)D^0(x) + D^{x+}(x)D^-(x) + D^{x+}_\mu(x)D^-(x) \right). \quad (13)$$

Eq. (8) is replaced by

$$D_X(m) = m_X^2 - m^2 + \text{Re}(\Pi_X(m_X)) - \Pi_X(m) - m_X\Gamma, \quad (14)$$

where

$$\Pi_X(m) = \Pi^{D^*_0\bar{D}^0}_X(m) + \Pi^{D^*_+D^-}_X(m). \quad (15)$$

$\Pi^{D^*_+D^-}_X(m)$ is obtained from $\Pi^{D^*_0\bar{D}^0}_X(m)$, see Eqs. (9), (10) and (11) by replacement of m_{D^0} and m_{D^+} by $m_{D^{*+}}$ and m_{D^+}, respectively.

The unitarity condition, Eq. (12) takes the form

$$1 = BR(X \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}) + BR(X \rightarrow D^{*+}\bar{D}^- + \text{c.c.}) + \sum_i BR(X \rightarrow i). \quad (16)$$

The results of our fit are in the Table III.

TABLE III

Γ	1.2 \pm 0.42	mode	$X \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$	$X \rightarrow D^{*+}D^- + \text{c.c.}$	$X \rightarrow \text{Others}$
$g_A^2/8\pi$	$1.36^{+0.48}_{-0.09}$	BR	$0.586^{+0.025}_{-0.101}$	$0.315^{+0.132}_{-0.16}$	$0.098^{+0.261}_{-0.096}$
χ^2/Ndf	45.49/42	BR_{seen}	$0.285^{+0.121}_{-0.188}$	$0.028^{+0.004}_{-0.019}$	$0.091^{+0.255}_{-0.084}$

The results in Tables I and III are compatible within the errors. The corresponding curves are similar to ones in Figs. 1 and 2. Of course, one should take into account the $X(3872) \rightarrow D^{*+}D^- + \text{c.c.}$ channel in the case of the good statistics.

As for our new results for the model from Ref. \cite{11}, see Table IV, they agrees with the ones in Table II with accuracy up to ten percent since $g_A^2/8\pi$ is small.

TABLE IV. Branching ratios for the model from Ref. \cite{11}

M_X	3871.68	mode	$X \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$	$X \rightarrow D^{*+}D^- + \text{c.c.}$	$X \rightarrow \text{Others}$
Γ	1.2	BR	0.176	0.045	0.779
$g_A^2/8\pi$	0.1	BR_{seen}	0.14	0.011	0.761
We are grateful to T.A.-Kh. Aushev and G.V. Pakhlova for the consultation. This work was supported in part by RFBR, Grant No 13-02-00039, and Interdisciplinary project No 102 of Siberian division of RAS.

[1] S.K. Choi et al. (Belle Collaboration), Phys. Rev. D 84, 052004 (2011).
[2] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/0505037.
[3] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D(R) 82, 011101 (2010).
[4] T. Aushev et al. (Belle Collaboration), Phys. Rev. D 81, 031103 (2010).
[5] An interference between the $D^0\bar{D}^{*0}$ and \bar{D}^0D^{*0} channels is negligible for the narrowness of the D^{*0} and \bar{D}^{*0} states. Using the isotopical invariance of the $DD^*\pi$ interaction and the experimental information about the $D^{*+} \to D^0\pi^+$ and $D^{*+} \to D^+\pi^0$ decays, one can find $\Gamma_{D^{*0}} = 70$ KeV.
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 222001 (2013).
[7] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
[8] N.N. Achasov, S.A. Devyanin, and G.N. Shestakov, Yad. Fiz. 32, 1098 (1980) [Sov. J. Nucl. Phys. 32 566 (1980)].
[9] N.N. Achasov and A.V. Kiselev, Phys. Rev. D 70, 111901(R) (2004).
[10] V. Bhardwaj et al. (Belle Collaboration), Phys. Rev. Lett. 107, 9 (2011).
[11] L. Maiani et al., Phys. Rev. D 87, 111102(R) (2013).
[12] The comment [5] relates completely to the $D^{*+}D^-$ and $\bar{D}^{*-}D^+$ channel, $\Gamma_{D^{*+}} = 96$ KeV.