Pie Generalizations-Locally Closed Sets

HAMARI CHOUÐHI A

Department of Mathematics, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu (India)

Corresponding Author Email: hamarimtnc@gmail.com, http://dx.doi.org/10.22147/jusps-A/301001

Acceptance Date 03rd February, 2018, Online Publication Date 2nd October, 2018

Abstract

The aim of this paper is to continue the study of generalizations of locally closed sets and investigate the classes of \(\pi \text{gl} \)-continuous functions in a topological space.

Key words: \(\pi \text{glc} \), \(\pi g \)-open set, \(\theta \)-locally closed set, \(\pi \text{glc}^* \) and \(\pi \text{glc}^{**} \)

AMS Subject Classification (2010): 54A05

Introduction

The initiation of the study of generalized closed sets was done by Levine\(^6\) in 1970. The notion of \(\pi g \)-closed sets as a weak form of generalized closed sets was introduced by Dontchev and Noiri\(^4\) in 2000. The notion of locally closed sets in a topological space was introduced by Bourbaki\(^3\). Ganster and Reilly\(^5\) further studied the properties of locally closed sets and defined the LC-continuity and LC-irresoluteness. Balachandran \(et \ al.\)^\(^2\) introduced the concepts of generalized locally closed sets and GLC-continuous functions and investigated some of their properties. In 1997, Arockiarani \(et \ al.\)^\(^1\) studied regular generalized locally closed sets and RGL-continuous functions in a topological space.

The aim of this chapter is to continue the study of generalizations of locally closed sets and investigate the classes of \(\pi \text{gl} \)-continuous functions and \(\pi \text{gl} \)-irresolute functions in a topological space.

A set \(A \subseteq (X, \tau) \) is called \(\theta \)-closed \([65]\) if \(A = \text{cl}_\theta(A) \), where \(\text{cl}_\theta(A) = \{ x \in X : \text{cl}(U) \cap A = \emptyset , U \in \tau \) and \(x \in U \} \). The complement of a \(\theta \)-open set is called \(\theta \)-closed. Before entering into our work, we recall the following definitions which are prerequisite for this paper.
Main Results

Definition 2.1
A subset S of (X, τ) is said to be π_g-locally closed (π_{glc}) if $S = G \cap F$ where G is π_g-open and F is π_g-closed in (X, τ).

Definition 2.2
A subset S of (X, τ) is called π_{glc}^* if there exists a π_g-open set G and a π_g-closed set F of (X, τ) such that $S = G \cap F$.

Definition 2.3:
A subset B of (X, τ) is called π_{glc}^{**} if there exists an open set G and a π_g-closed set F of (X, τ) such that $B = G \cap F$.

The collection of all π_g-locally closed (resp. π_{glc}^*, π_{glc}^{**}) sets of a space (X, τ) will be denoted by $\pi_{GLC}(X, \tau)$ (resp. $\pi_{GLC}^*(X, \tau)$, $\pi_{GLC}^{**}(X, \tau)$).

From the above definitions we have the following remark.

Remark 2.4:
1. Every locally closed set is π_{glc}.
2. Every θ-locally closed set is π_{glc}.
3. Every θ_{glc}-set is π_{glc}.
4. Every π_{glc}^*-set or π_{glc}^{**} is π_{glc}.
5. Every glc-set is π_{glc}.
6. Every θ_{lc}-set is π_{glc}^* or π_{glc}^{**}.
7. Every glc*-set is π_{glc}^*.
8. Every θ_{lc}^*-set is π_{glc}^*.
9. Every θ_{lc}^{**}-set is π_{glc}^{**}.
10. Every θ_{glc}^*-set is π_{glc}^*.
11. Every locally closed set is π_{glc}^* and π_{glc}^{**}.

However the converses of the above are not true may be seen by the following Examples.

Example 2.5
Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then locally closed sets are $\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}$ and π_{glc}-sets are $P(X)$. It is clear that $\{a, c\}$ is π_{glc}-set but it is not locally closed.

Example 2.6
In the above Example 2.5, θ-locally closed sets are \emptyset, X and π_{glc}-sets are $P(X)$. It is clear that $\{a, b\}$ is π_{glc}-set but it is not θ-locally closed set.

Example 2.7
In Example 2.5., θ_{glc}-sets are $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}$ and π_{glc}-sets are $P(X)$. It is clear that $\{b, c\}$ is π_{glc}-set but it is not θ_{glc}-set.

Example 2.8
Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{b, e\}, \{c, e\}, \{d, e\}, \{a, b, e\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}, \{b, c, d, e\}$ and π_{glc}-sets are $P(X)$. It is clear that $\{b,
c) is \(\pi \text{g} \text{lc} \)-set but it is not \(\pi \text{g} \text{lc}^* \)-set.

Example 2.9
In Example 2.5, \(\pi \text{g} \text{lc} \)-sets are \(P(X) \) and \(\text{gle} \)-sets are \(\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \). It is clear that \(\{b, c\} \) is \(\pi \text{g} \text{lc} \)-set but it is not \(\text{gle} \)-set.

Example 2.10
In Example 2.5, \(\theta \text{lc} \)-sets are \(\emptyset, X \) and \(\pi \text{g} \text{lc}^* \)-(or) \(\pi \text{g} \text{lc}^{**} \)-sets are \(P(X) \). It is clear that \(\{a, b\} \) is \(\pi \text{g} \text{lc}^{**} \)-set but it is not \(\theta \text{lc} \)-set.

Example 2.11
In Example 2.5, \(\text{gle}^* \)-sets are \(\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\} \) and \(\pi \text{g} \text{lc}^* \)-sets are \(P(X) \). It is clear that \(\{b, c\} \) is \(\pi \text{g} \text{lc}^* \)-set but it is not \(\text{gle}^* \)-set.

Example 2.12
In Example 2.5, \(\theta \text{lc}^* \)-sets are \(\emptyset, X, \{c\}, \{d\}, \{c, d\} \) and \(\pi \text{g} \text{lc}^* \) sets are \(P(X) \). It is clear that \(\{a, d\} \) is \(\pi \text{g} \text{lc}^* \)-set but it is not \(\theta \text{lc}^* \)-set.

Example 2.13
In Example 2.5, \(\theta \text{glc}^* \)-sets are \(\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\} \) and \(\pi \text{g} \text{lc}^* \)-sets are \(P(X) \). It is clear that \(\{b, c\} \) is \(\pi \text{g} \text{lc}^* \)-set but it is not \(\theta \text{glc}^* \)-set.

Example 2.14
In Example 2.5, \(\theta \text{glc}^{**} \)-sets are \(\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\} \) and \(\pi \text{g} \text{lc}^{**} \)-sets are \(P(X) \). It is clear that \(\{a\} \) is \(\pi \text{g} \text{lc}^{**} \)-set but it is not \(\theta \text{glc}^{**} \)-set.

Example 2.15
In Example 2.5, locally closed sets are \(\emptyset, X, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\} \) and \(\pi \text{g} \text{lc}^* \) and \(\pi \text{g} \text{lc}^{**} \)-sets are \(P(X) \). It is clear that \(\{a, c\} \) is both \(\pi \text{g} \text{lc}^* \) and \(\pi \text{g} \text{lc}^{**} \)-set but it is not locally closed set.

Theorem 2.16
For a subset \(S \) of \((X, \tau)\) the following are equivalent:
1. \(S \in \pi \text{G} \text{lc}^* (X, \tau) \).
2. \(S = P \cap \text{cl}(S) \) for some \(\pi \text{g} \)-open set \(P \).
3. \(\text{cl}(S) - S \) is \(\pi \text{g} \)-closed.
4. \(S - (X - \text{cl}(S)) \) is \(\pi \text{g} \)-open.

Proof.

(1) \(\Rightarrow \) (2):
Let \(S \in \pi \text{G} \text{lc}^* (X, \tau) \). Then there exists a \(\pi \text{g} \)-open set \(P \) and a closed set \(F \) such that \(S = P \cap F \). Since \(S \subseteq P \) and \(S \subseteq \text{cl}(S) \) we have \(S \subseteq P \cap \text{cl}(S) \).
Conversely, since \(\text{cl}(S) \subseteq F, P \cap \text{cl}(S) \subseteq P \cap F = S \) which implies that \(S \subseteq P \cap \text{cl}(S) \).

(2) \(\Rightarrow \) (1):
Since \(P \) is \(\pi \text{g} \)-open and \(\text{cl}(S) \) is closed
\(P \cap \text{cl}(S) \in \pi \text{G} \text{lc}^* (X, \tau) \).
Let $F = \text{cl}(S) \setminus S$. Then F is πg-closed by the assumption and $X \setminus F = X \cap (\text{cl}(S) \setminus S) = S \cup (X \setminus \text{cl}(S))$. But $X \setminus F$ is πg-open. This shows that $S \cup (X \setminus \text{cl}(S))$ is πg-open.

Let $U = S \cup (X \setminus \text{cl}(S))$. Then U is πg-open. This implies that $X \setminus U$ is πg-closed and $X \setminus U = X \setminus (S \cup (X \setminus \text{cl}(S))) = \text{cl}(S) \cap (X \setminus S) = \text{cl}(S) \setminus S$. Thus $\text{cl}(S) \setminus S$ is πg-closed.

Let $S = \phi$. Then $S \in \pi GLC^\ast(X, \tau)$. This proves that X is πg-submaximal.

Remark 2.19.
It follows from definitions that if (X, τ) is g-submaximal, then it is πg-submaximal. But the converse is not true as seen by the following Example.

Example 2.20.
In Example 3., dense sets are X, $\{a\}$, $\{b\}$, $\{a, b\}$, $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$. g-open sets are ϕ, X, $\{a\}$, $\{b\}$, $\{a, b\}$, $\{a, b, c\}$, $\{a, b, d\}$ and πg-open sets are $P(X)$. Then it is πg-submaximal but not g-submaximal.

Theorem 2.21
For a subset S of (X, τ) if $S \in \pi GLC^\ast(X, \tau)$ then there exists an open set P such that $S = P \cap \pi g \text{-cl}(S)$ where $\pi g \text{-cl}(S)$ is the πg-closure of S.

Proof.
Let $S \in \pi GLC^{**}(X, \tau)$. Then there exists an open set P and a πg-closed set F such that $S = P \cap F$. Since $S \subseteq P$ and $S \subseteq \pi g$-cl(S), we have $S \subseteq P \cap \pi g$-cl(S). Conversely since πg-cl$(S) \subseteq F$, we have $P \cap \pi g$-cl$(S) \subseteq P \cap F = S$. Thus $S = P \cap \pi g$-cl(S).

Theorem 2.22.
Let A and B be subsets of (X, τ). If $A \in \pi GLC^{*}(X, \tau)$ and $B \in \pi GLC^{*}(X, \tau)$ then $A \cap B \in \pi GLC^{*}(X, \tau)$.

Proof.
Let A and $B \in \pi GLC^{*}(X, \tau)$. Then there exist πg-open sets P and Q such that $A = P \cap \text{cl}(A)$ and $B = Q \cap \text{cl}(B)$. Therefore $A \cap B = P \cap \text{cl}(A) \cap Q \cap \text{cl}(B) = P \cap Q \cap \text{cl}(A) \cap \text{cl}(B)$ where $P \cap Q$ is πg-open and $\text{cl}(A)$ and $\text{cl}(B)$ is closed. This shows that $A \cap B \in \pi GLC^{*}(X, \tau)$.

Theorem 2.23.
If $A \in \pi GLC^{**}(X, \tau)$ and B is open, then $A \cap B \in \pi GLC^{**}(X, \tau)$.

Proof.
Let $A \in \pi GLC^{**}(X, \tau)$. Then there exists an open set G and a πg-closed set F such that $A = G \cap F$. So $A \cap B = G \cap F \cap B = G \cap B \cap F$. This proves that $A \cap B \in \pi GLC^{**}(X, \tau)$.

Theorem 2.24.
If $A \in \pi GLC^{*}(X, \tau)$ and B is πg-open, then $A \cap B \in \pi GLC^{*}(X, \tau)$.

Proof.
Let $A \in \pi GLC^{*}(X, \tau)$. Then $A = G \cap F$ where G is πg-open and F is πg-closed. So $A \cap B = G \cap F \cap B = G \cap B \cap F$. This implies that $A \cap B \in \pi GLC^{*}(X, \tau)$.

Theorem 2.25.
If $A \in \pi GLC^{*}(X, \tau)$ and B is πg-closed π-open subset of X, then $A \cap B \in \pi GLC^{*}(X, \tau)$.

Proof.
Let $A \in \pi GLC^{*}(X, \tau)$. Then $A = G \cap F$ where G is πg-open and F is closed. So $A \cap B = G \cap (F \cap B)$ where G is πg-open and $F \cap B$ is closed. Hence $A \cap B \in \pi GLC^{*}(X, \tau)$.

Theorem 2.26.
Let A and Z be subsets of (X, τ) and let $A \subseteq Z$. If Z is πg-open in (X, τ) and $A \in \pi GLC^{*}(Z, \tau Z)$, then $A \in \pi GLC^{*}(X, \tau)$.

Proof.
Suppose A is πg-glc *-set, then there exists a πg-open set G of $(Z, \tau Z)$ such that $A = G \cap \text{cl}_Z(A)$. But $\text{cl}_Z(A) = Z \cap \text{cl}(A)$. Therefore, $A = G \cap Z \cap \text{cl}(A)$ where $G \cap Z$ is πg-open. Thus $A \in \pi GLC^{*}(X, \tau)$.

Example 2.27
Let $X = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$. Let V
be the collection of all \(\pi g \)-open sets of \((X, \tau)\). Then \(V = \{ \phi, X, \{a\}, \{c\}, \{d\}, \{e\}, \{a, c\}, \{a, d\}, \{a, e\}, \{c, d\}, \{c, e\}, \{d, e\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \{c, d, e\}, \{a, c, d, e\} \}. \) Put \(Z = A = \{a, b, c\} \). Then \(Z \) is not \(\pi g \)-open and \(A \in \pi glc^*(Z, \tau/Z) \).

However \(A \in \pi glc^*(X, \tau) \).

Theorem 2.28.

If \(Z \) is \(\pi g \)-closed, \(\pi g \)-open set in \((X, \tau)\) and \(A \in \pi GLC^*(Z, \tau/Z) \) then \(A \cap \pi GLC^*(X, \tau) \).

Proof.

Let \(A \in \pi GLC^*(Z, \tau/Z) \). Then \(A = G \cap F \) where \(G \) is \(\pi g \)-open and \(F \) is closed in \((Z, \tau/Z) \). Since \(F \) is closed in \((Z, \tau/Z) \), \(F = B \cap Z \) for some closed set \(B \) of \((X, \tau) \). Therefore \(A = G \cap B \cap Z \). Then \(B \cap Z \) is closed. Hence \(A \in \pi GLC^*(X, \tau) \).

Theorem 2.29

If \(Z \) is closed and open in \((X, \tau)\) and \(A \in \pi GLC(Z, \tau/Z) \), then \(A \in \pi GLC(X, \tau) \).

Proof.

Let \(A \in \pi GLC(Z, \tau/Z) \). Then there exists a \(\pi g \)-open set \(G \) and a \(\pi g \)-closed set \(F \) of \((Z, \tau/Z) \) such that \(A = G \cap F \). Then by the above theorem \(A \in \pi GLC(X, \tau) \).

Theorem 2.30

If \(Z \) is \(\pi g \)-closed, \(\pi g \)-open subset of \((X, \tau)\) and \(A \in \pi GLC^*(Z, \tau/Z) \), then \(A \in \pi GLC^*(X, \tau) \).

Proof.

Let \(A \in \pi GLC^*(Z, \tau/Z) \). Then \(A = G \cap F \) where \(G \) is open and \(F \) is \(\pi g \)-closed in \((Z, \tau/Z) \). Since \(Z \) is \(\pi g \)-closed \(\pi g \)-open subset of \((X, \tau)\), then \(F \) is \(\pi g \)-closed in \((X, \tau) \). Therefore \(A \in \pi GLC^*(X, \tau) \).

Theorem 2.31

If \(A \) is \(\pi g \)-open and \(B \) is open, then \(A \cap B \) is \(\pi g \)-open.

Proof.

Let \(A \) be \(\pi g \)-open. Then \(\text{int}(A) \supseteq F \) whenever \(A \supseteq F \) and \(F \) is \(\pi g \)-closed set. Suppose \(A \cap B \supseteq F \), then we prove that \(\text{int}(A \cap B) \supseteq F \). Since \(B \) is open, \(\text{int}(B) = B \supseteq F \). Therefore by assumptions \(\text{int}(A \cap B) = \text{int}(A) \cap \text{int}(B) \supseteq F \). This proves that \(A \cap B \) is \(\pi g \)-open.

Theorem 2.32

Suppose that the collection of all \(\pi g \)-open sets of \((X, \tau)\) is closed under finite unions. Let \(A \in \pi GLC^*(X, \tau) \) and \(B \in \pi GLC^*(X, \tau) \). If \(A \) and \(B \) are separated, then \(A \cap B \in \pi GLC^*(X, \tau) \).

Proof.

Let \(A, B \in \pi GLC^*(X, \tau) \). Then there exist \(\pi g \)-open sets \(G \) and \(S \) of \((X, \tau)\) such that \(A = G \cap \text{cl}(A) \) and \(B = S \cap \text{cl}(B) \). Put \(V = G \cap (X \setminus \text{cl}(B)) \) and \(W = S \cap (X \setminus \text{cl}(A)) \). Then \(V \) and \(W \) are \(\pi g \)-open sets and \(A = V \cap \text{cl}(A) \) and \(B = W \cap \text{cl}(B) \). Also \(V \cap \text{cl}(B) = \phi \) and \(W \cap \text{cl}(A) = \phi \). Hence it follows that \(V \) and \(W \) are \(\pi g \)-open sets of \((X, \tau)\). Therefore \(A \cap B = (V \cap \text{cl}(A)) \cup (W \cap \text{cl}(B)) = V \cup W \cap \text{cl}(A) \cup \text{cl}(B) \).
Here $V \cup W$ is πg-open by assumption. Thus $A \cup B \in \pi GLC^*(X, \tau)$.

Example 2.33

Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then $\{a, b\}$ and $\{a, d\} \in \pi GLC^*(X, \tau)$ but $\{a, b, d\} \notin \pi GLC^*(X, \tau)$, since they are not separated. For we have $\{a, b\} \cap cl(\{a, d\}) = \{a\} = \emptyset$ and $\{a, d\} \cap cl(\{a, b\}) = \{a, d\} = \emptyset$.

References

1. Arockiarani. I, Balachandran. K and Ganster.M, Regular generalized locally closed sets and RGL-continuous functions, Indian J. Pure Appl. Math., 28(5), 661-669 (1997).
2. Balachandran. K, Sundaram. P and Maki. H, Generalized locally closed sets and GLC-continuous functions, Indian J. Pure Appl. Math., 27(3), 235-244 (1996).
3. Bourbaki.N, General Topology. Part I, Addison-Wesley, Reading Mass., (1966).
4. Dontchev.J and Noiri.T, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3), 211-219 (2000).
5. Ganster. M and Reilly. I.L., Locally closed sets and LC- continuous functions, Internat. J. Math. And Math. Sci., 12(3), 417-424 (1989).
6. Levine. N., Generalized closed sets in topology, Rend. Cire. Mat. Palermo., (2)19, 89-96 (1970).