Assisted reproductive technologies (ART) in water buffaloes

Pietro S. Baruselli¹,4, Julia G. Soares², Bernardo M. Bayeux¹, Júlio C.B. Silva¹, Rodolfo D. Mingoti¹, Nélcio A.T. Carvalho³

¹Departamento de Reprodução Animal, Universidade de São Paulo, São Paulo, SP, Brazil.
²Centro de Pesquisa em Urologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
³Unidade de Pesquisa e Desenvolvimento de Registro, Centro de Zootecnia Diversificada, Instituto de Zootecnia, Registro, SP, Brazil.

Abstract

Our expanding knowledge of ovarian function during the buffalo estrous cycle has given new approaches for the precise synchronization of follicular development and ovulation to apply consistently assisted reproductive technologies (ART). Recent synchronization protocols are designed to control both luteal and follicular function and permit fixed-time AI with high pregnancy rates during the breeding (autumn-winter) and nonbreeding (spring-summer) seasons. Additionally, allow the initiation of superstimulatory treatments at a self-appointed time and provide opportunities to do fixed-time AI in donors and fixed-time embryo transfer in recipients. However, due the scarce results of in vivo embryo recovery in superovulated buffaloes, the association of ovum pick-up (OPU) with in vitro embryo production (IVEP) represents an alternative method of exploiting the genetics of high yield buffaloes. Nevertheless, several factors appear to be critical to OPU/IVEP efficiency, including antral follicle population, follicular diameter, environment, farm and category of donor. This review discusses a number of key points related to the manipulation of ovarian follicular growth to improve assisted reproductive technologies in buffalo.

Keywords: artificial insemination, embryo transfer, synchronization.

Introduction

The combined use of assisted reproductive technologies (ART), such as, timed-artificial insemination (TAI), superstimulation (SOV), ovum pick-up (OPU), in vitro embryo production (IVEP) and timed-embryo transfer (TET) has a great potential to improve reproductive outcomes and disseminate selected genetics, improving milk and beef production in buffalo herds.

However, the success of ART is closely related to the control of ovarian follicular development and ovulation. Buffalo is a seasonal reproductive species and becomes sexually active in response to a decreasing day length (short-days) in late summer to early autumn (Zicarelli, 1997). During the nonbreeding season, buffalo often exhibit anestrus, which extends the anovulatory period and consequently, reduces reproductive performance (Zicarelli, 2007).

In recent decades, several therapies have been proposed for manipulating ovarian follicle growth and ovulation in buffalo, regardless of reproductive seasonality (Baruselli et al., 2007; Campanile et al., 2010; Carvalho et al., 2016). These hormonal manipulations have been successfully used to optimize the reproductive outcomes following the application of various biotechnologies.

This review aims to elucidate some factors that affect the efficiency of assisted reproductive technologies (ART) in buffalo.

Ovarian physiology in buffalo

The understanding of follicular dynamics in buffalo is necessary for developing new techniques and improving the currently used regimens for the manipulation of the estrous cycle. Ovarian follicular dynamics in buffalo are similar to those in cattle. The 2-wave cycle is the most common in buffalo (63.3%; Fig. 1; Baruselli et al., 1997) and the follicle deviation occurs 2.6 days after ovulation, when the diameters of the dominant and subordinate follicle are 7.2 and 6.4 mm, respectively (Gimenes et al., 2011). As in cattle, the number of waves in a cycle is also associated with the luteal phase and with the estrous cycle length.

However, the number of follicles recruited per follicular wave is lower in buffalo than in cattle (Baruselli et al., 1997; Gimenes et al., 2009; Campanile et al., 2010). The number of primordial cells in buffalo ovaries varies from 10,000 to 12,000 (Danell, 1987), which is about 10-fold lower than in cattle (Manik et al., 2002). Furthermore, it was verified that 92 to 95% of follicles are estrogen inactive/atretic at random stages of the reproductive cycle. Van Ty et al. (1989) also observed the existence of a lesser number of antral follicles in buffalo, when compared to cattle. These authors found that buffalo ovaries have about 20% of the number of antral follicles found in cattle (47.5 ± 23.8 vs. 233.0 ± 95.8; P < 0.002).
Pharmacological control of follicular development and ovulation

Prostaglandin F2α (PGF)

Estrus synchronization with prostaglandin F2α (PGF2α) is an effective and economical tool for induction of luteal regression, improving the estrous detection efficiency and the use of ART in buffaloes. Studies have shown that PGF2α treatment caused 100% luteolysis in buffalo (plasma progesterone <1 ng/ml within 48 h of administration), regardless of the luteal phase (early or late luteal phase: 6-9 or 11-14 days after estrus, respectively, (Porto Filho et al., 2014). Ovulation can occur up to 6 days after PGF2α administration, depending on the responsiveness of the corpus luteum (CL) and the stage of ovarian follicle development at the time of PGF2α treatment (Porto Filho et al., 2014). However, the major limitation of PGF2α in buffalo to apply efficient ART is the poor estrous behavior, and the lack of efficiency in females without a responsive CL (e.g., females within 5-6 days of a previous estrus) or in pre-pubertal heifers and postpartum anestrous cows. These particularities compromise the efficient use of only PGF2α treatment in reproductive programs in buffaloes.

GnRH

The GnRH administration induces the emergence of a new follicular wave after induction of ovulation in cattle (Macmillan and Thatcher, 1991; Twagiramungu et al., 1992a, b,1995; Wolfenson et al., 1994; Schmitt et al., 1996). This information became the basis for subsequent development of programs to control timed ovulation.

In buffalo, 60.6% (20/33) of the cows ovulated after GnRH treatment at random stages of estrous cycle (Baruselli et al., 2013). The responses of GnRH depend on the diameter of the largest follicle at the moment of the treatment (Neglia et al., 2016). Buffalo that ovulated after GnRH treatment presented a larger follicle than animals that did not ovulate (9.5 ± 1.7 vs. 6.7 ± 2.4 mm; P < 0.01). However, no effect of the progesterone (P4) concentrations at the time of GnRH treatment and the GnRH dose (10 vs. 20 µg of buserelin) on the ovulation rate and the time of ovulation were observed. Furthermore, the interval between GnRH treatment and

Figure 1. Standardized diameters of ovarian follicles (dominant follicle, largest and second largest subordinate follicle) in buffalo cows with a) two wave (n = 19) and b) three wave (n = 10) estrous cycles. Adapted from Baruselli et al. (1997).
ovulation was between 28 to 33.0 h (Berber et al., 2002; Baruselli et al., 2003b; Campanile et al., 2008; Jacomini et al., 2014), similar to the interval observed in cattle (Wiltbank and Pursley, 2014).

Extradiol plus progesterone to synchronize wave emergence

The combination of progesterone (P4) and estradiol (E2) treatment induces follicular atresia by suppressing FSH and LH release after the treatment and then synchronous emergence of a new follicular wave in response to the subsequent FSH release in cattle (reviewed by Bô et al., 2003) and buffaloes (reviewed in Baruselli et al., 2007) was observed.

The administration of 1 mg (Bartolomeu, 2003) or 1, 2.5 or 5.0 mg of estradiol benzoate (Moura, 2003) in progestin-treated buffalo results in emergence of a new follicular wave between 3 to 6 days after treatment in more than 90% of buffalo cows. However, a delay in the onset of follicular wave (8.7 ± 0.27 days) was observed after estradiol valerate was administrated (Bartolomeu, 2003). Treatment with P4 + E2 can be used efficiently to synchronize the emergence of a new follicular wave in buffaloes.

Equine chorionic gonadotropin (eCG)

The treatment with equine chorionic gonadotropin (eCG) has been demonstrated as an alternative to increase final follicular development (follicular growth from luteolysis to ovulation) and pregnancy per TAI, mostly in anestrous buffalo during the non-breeding season (Carvalho et al., 2013). In buffalo with insufficient pulsatile release of LH to support the final stages of ovarian follicular development, treatment with eCG can improve the ovulatory response to the synchronization protocol and pregnancy outcome. The use of eCG in the synchronization protocol increases the diameter of the dominant follicle at TAI (13.7 ± 0.4 vs. 12.6 ± 0.6 mm, P = 0.09) and the ovulation rate (66.7 vs. 44.8%, P = 0.05). Moreover, eCG treatment results in increased CL diameter (15.8 ± 0.92 vs. 12.7 ± 0.77 mm, P = 0.03), increased P4 concentrations (0.59 ± 0.08 vs. 0.27 ± 0.05 ng/ml, P = 0.01) at the subsequent diestrus and increased pregnancy rate (52.7 vs. 39.4%, P = 0.03; Carvalho et al., 2013).

After luteolysis, synchronization protocols require the use of inducers of ovulation to achieve a synchronized ovulation. Timed artificial insemination (TAI) protocols generally incorporate gonadotropin releasing hormone (GnRH), luteinizing hormone (LH), human chorionic gonadotropin (hCG) and estradiol esters to synchronize ovulation. The endocrine and follicular responses in buffalo to these different treatments are presented in Table 1.

All treatments for ovulation induction have satisfactory results in buffalo, with only particularities in the endocrine and follicular responses. Plasma P4 concentration at the subsequent diestrous was lower in GnRH (2.94 ± 1.51 ng/ml) than in hCG (4.02 ± 2.34 ng/ml, P < 0.05) treated buffalo for ovulation induction (Carvalho et al., 2007b). Furthermore, there is evidence that EB induces a greater release of LH compared with GnRH (Berber et al., 2007). and pre-exposure to P4 before EB administration anticipated the preovulatory-like LH surge in buffalo cows (Jacomini et al., 2014).

Table 1. Interval between treatment to induce ovulation and peak of LH, time to ovulation and ovulation rate in buffalo.

Treatment	Interval treatment to LH surge (h)	Interval treatment to ovulation (h)	Ovulation rate (%)	Reference
LH	-	24	93	Berber et al., 2002
hCG	-	24	81	Baruselli et al., 2003a; Carvalho et al., 2007a, b
GnRH	1-3	26-28	75-85	Berber et al., 2002, 2007; Baruselli et al., 2003b; Carvalho et al., 2014, 2017; Jacomini et al., 2014
Estradiol Benzoate	23-27	44	78-82	Berber et al., 2007; Jacomini et al., 2014; Carvalho et al., 2017

ART for artificial insemination

Artificial insemination (AI) has proven to be a reliable technology for buffalo producers to improve genetic progress and control venereal diseases in their herds. However, the traditional AI program is impaired by the low estrous detection efficiency due to the poor manifestation of the symptoms of estrus in buffalo and to operational difficulties to detect estrus (Baruselli et al., 2007). Currently, timed artificial insemination (TAI) can be applied routinely in the reproductive programs on farms. TAI protocols are designed to control of both luteal and follicular function, permitting the TAI without estrus detection with satisfactory pregnancy per AI (P/AI), during the breeding and non-breeding season.

Among the hormonal therapies developed for cattle, GnRH plus PGF2α-based TAI protocols (Ovsynch; Pursley et al., 1995) resulted in follicular response with effective synchronization of ovulation in cycling buffaloes during the breeding season (Baruselli et al., 2003b). However, when the Ovsynch protocol was used in anestrous buffaloes (without CL), results...
were inferior to those obtained with cycling buffaloes. Souza et al. (2015b) verified that buffaloes without a CL at the beginning of the Ovsynch protocol responded poorly to the first (42.0 vs. 89.8% ovulation rate) and second (52.0 vs. 87.8% ovulation rate) GnRH treatments, and this resulted in a lower pregnancy rate after TAI (20.0 vs. 65.3%, respectively) compared to the animals with a CL. Results of several other studies revealed a high incidence of anestrus during the nonbreeding season (spring and summer), and lower pregnancy rates after TAI were reported when the Ovsynch protocol was used (7.0-30.0%; Baruselli et al., 1994; Shaw et al., 1999; Sá Filho et al., 2010). Currently, a series of recent studies have demonstrated the potential of in vitro embryo production (IVP) in buffaloes. Studies on the particularities of these biotechnologies in buffaloes will be discussed.

Production of in vivo-derived (IVD) embryos

The multiple ovulation followed by TAI for in vivo embryo production is a technique that generates greater numbers of embryos per donor in cattle (Mapletoft et al., 2002). These techniques, which are associated with ET to recipients, are powerful tools to accelerate the gain in genetic programs (Bó et al., 2002; Baruselli et al., 2011). However, buffalo donors generally have lower embryo recovery rates than bovines. While buffaloes have shown follicular responses after superovulation treatment (mean of 15 follicles >8 mm), only a moderate ovulation rate (approximately 60%) and CL yield at the time of flushing (approximately 9 CL) and low embryo recovery rates (34.8%) have been obtained (Baruselli et al., 2000). The embryo recovery rate in superovulated buffaloes (approximately 20 to 40%) is lower than in cattle (63 to 80%; Boland et al., 1991; Adams, 1994; Vos et al., 1994; Shaw et al., 1995). This divergence in embryo recovery rates was hypothesized to be related to a failure of oocyte capture and/or of oocyte transport along the oviduct (Baruselli et al., 2000). In rabbits, the administration of sequential doses of PGF2α during the periovulatory period stimulated the contraction of oviduct smooth muscles, allowing the activation of the oviduct fimbriae to capture the oocytes (Osada et al., 1999). Based on this observation, our research group (Soares, 2015) performed an experiment that evaluated the use of PGF2α (injectable or using a mini osmotic pump; OP) during the periovulatory period in superovulated buffaloes. However, no differences were found on the total number of recovered structures (G-CONT = 2.1 ± 0.8 vs. GPGF-IM = 2.1 ± 0.6 vs. G-PGF-OP = 1.4 ± 0.4; P = 0.58). The low embryo production per donor impairs the use of this biotechnology by buffalo producers.

In vitro embryo production (IVEP)

Due the scarce results of in vivo embryo recovery in superovulated buffaloes, the association of OPU with IVEP represents an alternative method of exploiting and multiplying genetic for superior merit (Boni et al., 1996; Neglia et al., 2003; Sá Filho et al., 2009). Historically, OPU-IVEP in buffaloes produced lower outcomes (Gasparrini, 2002; Sá Filho et al., 2009; Gimenes et al., 2010) than in bovines (Loneragan and Fair, 2008; Pontes et al., 2011). However, a series of recent studies have demonstrated the commercial potential of these techniques in the buffalo species (Baruselli et al., 2013).

Two main biological problems seem to be related to the low efficiency of the OPU-IVEP technique in buffaloes: 1) low number of follicles on the ovary that results in low oocyte recovery per OPU and; 2) poor oocyte quality retrieved (only 27.3 to 31.3 % of...
oocytes are classified as viable (Campanile et al., 2003).

The first limitation can be related to the lower number of follicles recruited per follicular wave (Baruselli et al., 1997), as observed in studies comparing buffaloes with Bos indicus cattle (Ohashi et al., 1998; Gimenes et al., 2015). Additionally, a higher level of follicular atresia was reported (Danell, 1987; Van Ty et al., 1989) and, consequently, a lower number of total recoverable and viable oocytes. Buffaloes and cattle raised with contemporary nutrition and management were compared post mortem by Ohashi et al. (1998), and in vivo by Gimenes et al. (2015). In both studies, lower number of follicles and viable oocytes were observed in buffaloes than in Bos indicus cattle.

The second limitation can be attributed to a more fragile zona pellucida (Mondadori et al., 2010) and a more fragile bonding between cumulus cells and the oocyte (Ohashi et al., 1998; Gasparrini, 2002) in buffaloes than in cattle.

Thus, to improve oocyte quality and recovery, studies were conducted by our research group to upgrade this biotechnology in buffaloes. Initially, we tested the hypothesis that bST could elevate circulating IGF-1 levels, promoting recruitment of a greater number of follicles and enhancing oocyte quality (Sá Filho et al., 2009). Although bST treatment resulted in greater numbers of aspirated follicles and retrieved oocytes per donor per session, reduced blastocyst production rate was observed (Ferraz et al., 2007, 2015; Sá Filho et al., 2009).

The phase of the estrous cycle is an important factor that directly influences the quantity and quality of oocytes obtained by OPU and, consequently IVF efficiency (Vassena et al., 2003). Thus, in another study buffaloes (Bubalus bubalis), Nelore (Bos indicus) and Holstein (Bos taurus) heifers were synchronized to be submitted to OPU 1, 3 or 5 days after wave emergence. No effects were observed on the OPU-IVF efficiency according to the different phases of the synchronized ovarian follicular wave in all genetic groups. However, the OPU-IVF procedure was less efficient in buffalo and Holstein than in Nelore heifers (Gimenes et al., 2015).

The influence of season (winter; breeding season or summer; nonbreeding season) on oocyte viability (number of viable oocytes and mitochondrial DNA amount) was investigated in nulliparous and multiparous buffaloes (Macabelli et al., 2012). During summer, the amount of mtDNA was lower in oocytes from nulliparous than those from multiparous, but during winter mtDNA amount was greater in oocytes from nulliparous than those from multiparous. The mtDNA analyses do not suggest a negative effect of summer on oocyte viability in buffalo. Therefore, in tropical climates, the season would not appear to adversely affect oocyte quality and fertility. However, other studies carried out in buffalo showed an effect of season on either the number of follicles/viable oocytes or oocyte developmental competence, at different latitudes (Manjunatha et al., 2009; Di Francesco et al., 2011, 2012).

The number of antral follicles in the early follicular phase is directly correlated with the ovarian reserve (Frattarelli et al., 2000). Indeed, the antral follicular population (AFP) directly represents the follicle cohort in the ovaries, which is associated with the number of oocytes retrieved per OPU for IVP.

A large variability of AFP is reported among different females, however AFP count is highly repeatable within animal (Burns et al., 2005; Ireland et al., 2007), and anti-Müllerian hormone (AMH) can be considered a reliable endocrine marker of ovarian reserve (Ireland et al., 2007, 2008; Monniaux et al., 2012). In cattle, circulating AMH concentration can help veterinarians to predict AFP in ovaries (Ireland et al., 2008; Rico et al., 2009; Batista et al., 2014), response to SOV treatments (Rico et al., 2009; Monniaux et al., 2010a, b; Souza et al., 2015a), and more recently as a marker to predict IVP performance of Bos taurus (Guerreiro et al., 2014 Gamarra et al., 2015; Vernunft et al., 2015) and Bos indicus breeds (Guerreiro et al., 2014).

Aiming to determine the relation between AMH and AFP we recently conducted a study in buffalo and cattle (Baldighi et al., 2014; Liang et al., 2016). Despite the high variability in AFP among individuals within each genetic group, the AFP count was greater in Gir (Bos indicus) than in Holstein (Bos taurus) and Murrah (Bubalus bubalis) heifers (P = 0.01). Similarly, AMH concentration was lower (P < 0.01) for Holstein and Murrah heifers than for Gir heifers. In spite of the differences between genetic groups, a positive relationship among AFP and AMH concentration was detected within buffalo. These studies suggest AMH as endocrine marker to predict AFP and IVEP performance in buffalo.

Recently we have studied the relationship between AFP and in vitro embryo production and pregnancy rate in buffalo. The number of oocytes recovered per OPU (analyzed by tertile) had no effect on viable oocyte and blastocyst rates (Table 3). However, the number of blastocysts per OPU was greater when higher number of oocytes were recovered per OPU. Pregnancy rate following ET in buffalo was lower in donors with greater amounts of oocytes retrieved per OPU.

The results demonstrate that the number of oocytes recovered per OPU had a minor effect after ET both on blastocyst rate and pregnancy rates. However as more oocytes are collected, the number of produced blastocysts improves (Fig. 2). These results highlight the relevance to identify donors with greater potential to oocyte recovery per OPU to assure greater IVEP success, especially in buffalo that yield fewer oocytes per OPU than bovine. There was great variation in the number of oocytes retrieved per OPU (from 0 to 30), with a mean of 8.9 ± 5.0 per donor (Fig. 3). Therefore, a holistic approach selecting donors with greater genetic value (through genomics) and oocyte population (through AMH assays or ultrasound for quantify AFP) is highly advisable.

Number of oocytes retrieved per buffalo and its relationship with in vitro embryo production and pregnancy
Table 3. Effect of retrieved numbers of oocytes per OPU from Murrah buffalo (*Bubalus bubalis*) donors on IVEP.

Items	Low	Medium	High	P value
Tertile, n	60	59	60	
Retrieved oocytes, n	4.1 ± 0.14^c	8.2 ± 0.19^b	14.5 ± 0.5^a	<0.0001
Viable oocytes, n	2.1 ± 0.17^c	3.9 ± 0.24^b	7.7 ± 0.37^a	0.0002
Viable oocyte rate, %	51.8	47.8	53.2	0.31
Blastocyst per OPU, n	0.83 ± 0.11^c	1.19 ± 0.13^b	2.17 ± 0.24^a	<0.0001
Blastocyst rate, %	20.3	14.5	14.9	0.15
Pregnancy rate, %	44.2 (22/50)^a	29.6 (21/70)^b	25.3 (33/130)^b	0.05

^aNo. blastocysts/no. retrieved oocytes; Adapted from Soares *et al.* (2018); Centro de Pesquisa em Urologia, Escola Paulista de Medicina, São Paulo, SP, Brazil; unpublished data.

Figure 2. Probability of blastocyst rate (□), pregnancy rate (●) and blastocisty per OPU (△) as a function of numbers of retrieved oocytes per OPU in Murrah buffalo (*Bubalus bubalis*) donors (*n* = 179). Probability_blastocyst_rate = EXP (-0.0375 * Oocytes_retrived - 1.2673) / [1 + EXP (-0.0375 * Oocytes_retrived - 1.2673)]; P = 0.07; r² = 0.02
Probability_pregnancy_rate = EXP (-0.0287 * Oocytes_retrived - 0.5366) / [1 + EXP (-0.0287 * Oocytes_retrived - 0.5366)]; P = 0.41; r² = 0.0025. Probability_blastocyst_per_OPU = EXP (+0.0891 * Oocytes_retrived - 0.7164) / [1 + EXP (+0.0891 * Oocytes_retrived - 0.7164)]; P < 0.001; r² = 0.35.

Figure 3. Distribution of oocytes retrieved per OPU in Murrah buffalo donor (*n* = 179).
Factors affecting OPU/IVF efficiency in buffaloes

Numerous factors may interfere with the efficiency of OPU/IVF in buffaloes. Table 4 shows the effect of farm, category, postpartum period, reproductive status (pregnant or non-pregnant at the OPU) and BCS on IVEP production in buffalo donors (Carvalho et al., 2018; Unidade de Pesquisa e Desenvolvimento de Registro, Instituto de Zootecnia, Registro, SP, Brazil; unpublished data). The HPIMIXED procedure of SAS through the best linear unbiased prediction (BLUP) analysis was utilized to rank sires, farms, category, postpartum period and BCS in terms of oocytes per OPU, number of blastocysts and blastocyst rate. Effects of farm (P = 0.05), category (P = 0.07) and reproductive status (P = 0.02) on the number of retrieved oocytes per OPU were found. Nulliparous and primiparous produced higher number of retrieved oocytes per OPU than multiparous. Furthermore, pregnant buffaloes (30 to 120 days of gestation) produced lower number of retrieved oocytes per OPU than non-pregnant. However, no effects were observed in the number of embryo produced per OPU and embryo rate (Table 4).

There is also a strong effect of the bull on the efficiency of IVF in buffaloes (Fig. 4). It is clear that semen used during in vitro procedures potentially influence IVEP and field fertility results (Watanabe et al., 2017). Top ranking sires yielded outstanding blastocyst rates, while poor sires produced low blastocyst rates.

Table 4. Effect of different variables in the IVEP production in buffalo donors.

Variable	Number of retrieved oocytes	P value	Embryo produced per OPU	P value	Embryo rate (%)	P value
Farm						
A (n = 114)	9.6 ± 0.5	0.05	1.7 ± 0.2	0.75	18.5%	0.54
B (n = 269)	8.9 ± 0.3^{ab}		1.7 ± 0.1		20.0%	
C (n = 38)	6.9 ± 0.9^b		1.5 ± 0.3		26.4%	
Category		0.07		0.48		0.62
Nulliparous (n = 57)	10.2 ± 0.7		1.7 ± 0.2		17.9%	
Primiparous (n = 39)	11.1 ± 0.9		2.0 ± 0.3		21.2%	
Multiparous (n = 245)	8.34 ± 0.4		1.6 ± 0.1		18.4%	
Post partum period		0.92		0.45		0.26
≤117d (n = 68)	9.5 ± 0.8		2.1 ± 0.2		24.4%	
117d to 217d (n = 68)	9.1 ± 0.6		2.2 ± 0.3		17.7%	
>217d (n = 69)	8.5 ± 0.5		1.6 ± 0.2		26.0%	
Reproductive status		0.02		0.80		0.13
Pregnant (n = 52)	7.9 ± 0.6^b		1.7 ± 0.2		23.3%	
Non pregnant (n = 139)	10.0 ± 0.5^a		1.8 ± 0.1		17.5%	
BCS		0.98		0.88		0.44
≤3.0 (n = 25)	9.4 ± 1.3		2.0 ± 0.5		20.3%	
3.0 to 4.0 (n = 42)	9.6 ± 0.9		1.3 ± 0.3		16.8%	
>4.0 (n = 47)	9.8 ± 0.8		2.0 ± 0.3		19.1%	

Figure 4. Blastocyst rate (%) according to sires used (n = 8) during IVEP from buffalo (Bubalus bubalis) donors (n = 379).
Superstimulation with FSH prior to ovum pick-up

Superstimulation with FSH prior to OPU has been used successfully for IVP programs in cattle, resulting in increased total embryo yields per OPU session (Goodhand et al., 1999; Sendag et al., 2008; Vieira et al., 2014), possibly because of the greater follicular diameters of the aspirated follicles. The FSH treatment for superstimulation can promote the growth of a homogeneous follicle population and to recover competent oocytes suitable for IVEP procedures.

In buffalo, superstimulation with FSH prior to OPU increased the proportion of large and medium-sized follicles available for the OPU procedure (Fig. 5). Consequently, the treatment enhanced the proportion of oocytes suitable for culture and resulted in greater blastocyst rates and embryo yield per OPU-IVEP session (Table 5).

These results provide evidence that superstimulation with FSH increased the proportion of medium-sized follicles available for the OPU procedure. Consequently, the treatment also enhanced the proportion of viable oocytes for culture and resulted in greater blastocyst rates and embryo yield per OPU-IVP session in buffalo.

Table 5. Summary of oocyte and embryo production (mean ± SEM) after OPU-IVEP in control and p-FSH-treated buffalo donors (heifers, primiparous and multiparous).

Item	Heifers	Primiparous	Multiparous	P value					
No.	Control	FSH	Control	FSH	Control	FSH	Treat	Cat	Treat*Cat
No. of follicles	18	18	15	15	21	21			
Recovery rate, %	68%	73%	66%	55%	53%	53%	0.92	0.71	0.92
Viable oocyte, n	6.6 ± 1.3	7.8 ± 0.9	5.9 ± 1.5	5.67 ± 1.1	4.3 ± 0.7	5.6 ± 0.9	0.26	0.08	0.72
Viable rate, %	50%	58%	47%	56%	50%	57%	0.03	0.46	0.95
Embryo per OPU	1.8 ± 0.5	3.7 ± 0.7	2.4 ± 0.6	2.7 ± 0.8	2.0 ± 0.5	2.6 ± 0.7	0.07	0.25	0.22
Blastocyst rate, %	17%	34%	27%	28%	24%	32%	0.03	0.89	0.25

Adapted from Soares et al. (2018); Centro de Pesquisa em Urologia, Escola Paulista de Medicina, São Paulo, SP, Brazil; unpublished data.

Figure 5. Proportion of small (<6 mm), medium (6-10 mm), and large follicles (>10 mm) in buffalo donor submitted to OPU with and without FSH superstimulation prior to OPU.

Buffalo calves as oocyte donors

With the advent of genomic technology in association with the traditional genetic evaluation, the use of calves as oocyte donors is an important strategy to accelerate genetic gain by decreasing generation intervals (Armstrong et al., 1992; Lohuis, 1995; Camargo et al., 2005). Several research groups have successfully produced viable embryos from prepubertal heifers (Armstrong et al., 1992; Revel et al., 1995; Fry et al., 1998; et al., 1998; Taneja et al., 2000; Baruselli et al., 2016) in cattle. However, there are some concerns that oocytes from young females have a lower developmental capacity than those from adult donors (Khatir et al., 1996; Presicce et al., 1997; Majerus et al., 1999; Palma et al., 2001). In buffalo, our group compared the embryo production of calves (from 2 to 4 months of age) in relation to prepubertal heifers (from 13 to 15 months of age) and lactating buffalo cows (Silva et al., 2017). The calves received sheep intravaginal P4 device (day 0) and were treated with 140 mg of FSH in 4 decreasing doses at 12h
Baruselli et al. Reproductive biotechnologies in buffalo.

Intervals on day 5 and day 6. Calves were aspirated on day 7 by laparoscopy (LOPU - Laparoscopy Ovum Pick Up) and prepubertal heifers and adult lactating cows by intravaginal follicular aspiration (OPU). Both LOPU and OPU were performed on the same day and the same sire was used for IVF. Data are shown in Table 6.

The calves embryos produced (n = 8) were transferred to synchronized recipients at the São Paulo University Campus and three pregnancies were diagnosed (pregnant/transferred = 38%; 3/8) at the 30 and 60 days of gestation and three healthy calves were born, demonstrating the viability of this biotechnology for buffalo.

Table 6. Number oocytes retrieved and blastocysts produced (mean ± SEM) after LOPU - IVEP in buffalo donor calves and after OPU - IVEP in prepubertal heifers and cows.

Category	Calves	Pre-pubertal heifers	Lactating cows	P value
No.	8	10	10	
Total oocytes retrieved, n	10.9 ± 3.3ab	15.5 ± 2.1a	5.8 ± 1.3b	0.007
Viable oocytes, n	7.6 ± 2.7	6.2 ± 1.6	3.2 ± 0.9	0.11
Viable oocytes rate, %a	63.9b	39.3b	54.1a	0.01
Total oocytes cleaved, n	2.7 ± 0.9	3.1 ± 0.7	2.1 ± 0.4	0.52
Cleavage rate, %b	30.3ab	20.8b	37.6a	0.04
Viable embryos, n	1.0 ± 0.6ab	1.5 ± 0.3a	1.1 ± 0.4ab	0.02
Embryos rate, %c	5.1b	9.3a	15.4a	0.05

Adapted from Silva et al. (2017).

Embryo recipient synchronization

The inefficiency in estrus detection, especially in buffalo, has limited its widespread application and greatly increased the cost of embryo transfer commercial operations. The incorporation of techniques designed to control follicular wave dynamics and ovulation reduces the problem of estrus detection and provides possibilities for the application of efficient FTET programs in buffalo. At unknown days of the estrous cycle (day 0), buffalo recipients were treated with intravaginal progesterone device plus 2 mg of EB (im). Nine days later (day 9), the P4 device was removed and the recipients received PGF and eCG (400 IU). On day 11, recipients were treated with GnRH and on day 17 recipients received a FTET (Saliba et al., 2013; Soares et al., 2015). The results showed similar efficiency for FTET when different categories of recipients (nulliparous, primiparous and multiparous) were used (Soares et al., 2015).

Summary and conclusions

Currently there is technology overall to establish efficient programs for the use of ART in buffalo. The control of follicular wave emergence and ovulation at predetermined times, without estrus detection, has facilitated the AI programs and the donor and recipient management. Synchronization protocols are designed to control both luteal and follicular function and permit fixed-time AI with high pregnancy rates during the breeding (autumn–winter) and nonbreeding (spring and summer) seasons. The OPU/IVEP is showing promising results, and has become an alternative to superovulation for in vivo embryo production. The use of this biotechnology makes possible to promote a rapid enhancement in genetics through both the female and male lineage. Therefore, the ART are being established and can collaborate for genetic improvement and reproductive efficiency, increasing the meat and milk production of the buffalo herds.

Acknowledgements

The authors would like to acknowledge the support from FAPESP, CNPq and CAPES of Brazil. We also would like to thank Otavio Bernardes (Fazenda Paineiras da Ingai) for the great collaboration in the development of these research projects.

References

Adams GP. 1994. Control of ovarian follicular wave dynamics in cattle: implications for synchronization and superstimulation. Theriogenology, 41:19-24.
Ali A, Fahmy S. 2007. Ovarian dynamics and milk progesterone concentrations in cycling and non-cycling buffalo-cows (Bubalus bubalis) during Ovsynch program. Theriogenology, 68:23-28.
Armstrong DT, Holm P, Irvine B, Petersen BA, Stubbings RB, McLean D, Stevens G, Seamark RF. 1992. Pregnancies and live birth from in vitro fertilization of calf oocytes collected by laparoscopic follicular aspiration. Theriogenology, 38:667-678.
Baldrighi J, Sa Filho MF, Batista EO, Lopes RN, Visintin JA, Baruselli PS, Assumpcao ME. 2014. Anti-Mullerian hormone concentration and antral...
ovarian follicle population in Murrah heifers compared to Holstein and Gyr kept under the same management. *Reprod Domest Anim*, 49:1015-1020.

Bartolomeu CC. 2003. Estudo da dinâmica folicular durante o tratamento com CIDR-B e Crestr visando, a inseminação artificial em tempo fixo em fêmeas bubalinas (*Bubalus bubalis*). Thesis. São Paulo, SP: Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo. 149 pp.

Baruselli PS, Mucciolo RG, Visintin JA, Viana WG, Arruda RP, Madeireira EH, Oliveira CA, Molerofilho JR. 1997. Ovarian follicular dynamics during the estrous cycle in buffalo (*Bubalus bubalis*). *Theriogenology*, 47:1531-1547.

Baruselli PS, Madeireira EH, Visintin JA, Barnabe VH, Barnabe RC, Amaral R. 1999. Timed insemination using synchronization of ovulation in buffalo. *Rev Bras Reprod Anim*, 23:360-362.

Baruselli PS, Madeireira EH, Visintin JA, Porto Filho RM, Carvalho NAT, Campanile G, Zicarelli L. 2000. Failure oocyte entry into oviduct in superovulated buffalo. *Theriogenology*, 53:491. (Abstract).

Baruselli PS, Carvalho NAT, Henriquez CHP, Amaral R, Nichi M. 2002. Synchronization of ovulation for timed artificial insemination during the off breeding season in the buffalo. In: Proceedings of the 1st Buffalo Symposium of Americas, 2002, Belém. Belém, PA: Embrapa/CPATU. pp. 418-420.

Baruselli PS, Carvalho NAT, Porto Filho RM, Madureira EH, Visintin JA, Viana JHM, Souza DC, Nichi M, Sales JS, Baruselli PS. 2007. Use of Human chorionic gonadotropin as a predictor of ovarian antral follicular population in *Bos indicus* (Nelore) and *Bos taurus* (Holstein) heifers. *Reprod Domest Anim*, 49:448-452.

Berber RCA, Madeireira EH, Baruselli PS. 2002. Comparison of two Ovsynch protocols (GnRH versus LH) for fixed timed insemination in buffalo (*Bubalus bubalis*). *Theriogenology*, 57:1421-1430.

Berber RCA, Baruselli PS, Barros CM, Nogueira GP. 2007. Avaliação da liberação de LH e da concentração de progesterona em protocolos Ovsynch e Hetsynch em bubalinos (*Bubalus bubalis*). *Braz J Vet Res Anim Sci*, 44:38-45.

Bó GA, Baruselli PS, Moreno D, Cutaia L, Caccia M, Tribulo R, Tribulo H, Mapleton RJ. 2002. The control of follicular wave development for self-appointed embryo transfer programs in cattle. *Theriogenology*, 57:53-72.

Bó GA, Baruselli PS, Martinez MF. 2003. Pattern and manipulation of follicular development in *Bos indicus* cattle. *Anim Reprod Sci*, 78:307-326.

Boland MP, Goulding D, Roche JF. 1991. Alternative gonadotrophins for superovulation in cattle. *Theriogenology*, 35:5-17.

Boni R, Rovillo S, Zicarelli L. 1996. Repeated ovum pick-up in Italian Mediterranean buffalo cows. *Theriogenology*, 46:899-909.

Burns DS, Jimenez-Krassel F, Ireland J LH, Knight PG, Ireland J. 2005. Numbers of antral follicles during follicular waves in cattle: evidence for high variation among animals, very high repeatability in individuals, and an inverse association with serum follicle-stimulating hormone concentrations. *Biol Reprod*, 73:54-62.

Camargo LSA, Viana JHM, Sá WF, Ferreira AM, Vale Filho VR. 2005. Developmental competence of oocytes from prepubertal *Bos indicus* crossbred cattle. *Anim Reprod Sci*, 85:53-59.

Campanile G, Baruselli PS, Carvalho NAT. 2003. Effect of feed restriction on ovarian activity and recovered oocyte in Murrah buffalo heifers. *Bubalus bubalis*, 275-278.

Campanile G, Vecchio D, Neglia G, Di Palo R, Prandi A, D’Occhio MJ. 2008. Progesterone and pregnancy status of buffaloes treated with a GnRH agonist. *Livest Sci*, 115:242-248.

Campanile G, Baruselli PS, Neglia G, Vecchio D, Gasparetti B, Gimenes LU, Zicarelli L, D’Occhio MJ. 2010. Ovarian function in the buffalo and implications for embryo development and assisted reproduction. *Anim Reprod Sci*, 121:1-11.

Carvalho NAT, Nagasaki EM, Vannucci FS, Toledo LM, Baruselli PS. 2007a. Ovulation and conception rate according intravaginal progesterone device and hCG or GnRH to induce ovulation in buffalo during the off breeding season. *Ital J Anim Sci*, 6:646-648.

Carvalho NAT, Nichi M, Henriquez CEP, Oliveira CA, Baruselli PS. 2007b. Use of Human chorionic gonadotropin (hCG) for fixed-time artificial insemination in buffalo (*Bubalus bubalis*). *Anim Reprod*, 4:98-102.

Baruselli et al. Reproductive biotechnologies in buffalo.
Baruselli et al. Reproductive biotechnologies in buffalo.

PS. 2013. Equine chorionic gonadotropin improves the efficacy of a timed artificial insemination protocol in buffalo during the nonbreeding season. Theriogenology, 79:423-428.

Carvalho NAT, Soares JG, Baruselli PS. 2016. Strategies to overcome seasonal anestrus in water buffalo. Theriogenology, 86:200-206.

Carvalho NAT, Soares JG, Souza DC, Maio JRG, Sales JNS, Martins Junior B, Macari RC, D’Occhio MJ, Baruselli PS. 2017. Ovulation synchronization with estradiol benzoate or GnRH in a timed artificial insemination protocol in buffalo cows and heifers during the nonbreeding season. Theriogenology, 87:333-338.

Danell B. 1987. Oestrous behaviour, ovarian morphology and cyclical variation in follicular system and endocrine pattern in water buffalo heifers. Uppsala: Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences. Thesis. 124 pp.

De Rensis F, Ronci G, Guarneri P, Nguyen BX, Presicce GA, Huszenicza G, Scaramuzzi RJ. 2005. Conception rate after fixed time insemination following ovysynch protocol with and without progesterone supplementation in cyclic and non-cyclic Mediterranean Italian buffaloes (Bubalus bubalis). Theriogenology, 63:1824-1831.

Di Francesco S, Boccia L, Campanile G, Di Palo R, Vecchio D, Neglia G, Zicarelli L, Gasparrini B. 2011. The effect of season on oocyte quality and developmental competence in Italian Mediterranean buffaloes (Bubalus bubalis). Anim Reprod Sci, 123:48-53.

Di Francesco S, Novoa MV, Vecchio D, Neglia G, Boccia L, Campanile G, Zicarelli L, Gasparrini B. 2012. Ovum pick-up and in vitro embryo production (OPU-IIVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology, 77:148-154.

Ferraz ML, Gimenes LU, Sa Filho MF, Watanabe YF, Joaquim DC, Accorsi MR, Meirelles FV, Baruselli PS. 2007. Effect of OPU interval and BST treatment on embryo production in buffalo. Ital J Anim Sci, 6(suppl. 2). doi.org/10.4081/ijas.2007.s2.766.

Ferraz ML, Sa Filho MF, Batista EO, Watanabe YF, Watanabe MR, Dayan A, Joaquim DC, Accorsi MR, Gimenes LU, Vieira LM, Baruselli PS. 2015. Paradoxical effects of bovine somatotropin treatment on the ovarian follicular population and in vitro embryo production of lactating buffalo donors submitted to ovum pick-up. Anim Reprod Sci, 154:1-7.

Frattarelli JL, Lauria-Costab DF, Miller BT, Bergh PA, Scott RT. 2000. Basal antral follicle number and mean ovarian diameter predict cycle cancellation and ovarian responsiveness in assisted reproductive technology cycles. Fertil Steril, 74:512-517.

Fry RC, Simpson TL, Squires TJ. 1998. Ultrasonically guided transvaginal oocyte recovery from calves treated with or without GnRH. Theriogenology, 49:1077-1082.

Gamarra G, Ponsart C, Lacaze S, Le Guenne B, Humblet P, Deloche MC, Monniaux D, Ponter AA. 2015. Dietary propylene glycol and in vitro embryo production after ovum pick-up in heifers with different anti-Mullerian hormone profiles. Reprod Fertil Dev, 27:1249-1261.

Gasparrini B. 2002. In vitro embryo production in buffalo species: state of the art. Theriogenology, 57:237-256.

Gimenes LU, Fantinato Neto P, Arango JSP, Ayres H, Baruselli PS. 2009. Follicular dynamics of Bos indicus, Bos taurus and Bubalus bubalis heifers treated with norgestomet ear implant associated or not to injectable progesterone. Anim Reprod, 6:256. (Abstract).

Gimenes LU, Ferraz ML, Araújo A, Fantinato Neto P, Chiarratti MR, Mesquita LG, Arango JSP, Raposo M, Souza DC, Calomeni GD, Cardinal R, Rodriguez CLV, Trinca LA, Meirelles FV, Baruselli PS. 2010. OPU at different times of a synchronized follicular wave did not affect IVP in Bos indicus, Bos taurus and Bubalus bubalis. Reprod Fertil Dev, 22:293-294.

Gimenes LU, Carvalho NAT, Sa Filho MF, Vannucci FS, Torres-Júnior JRS, Ayres H, Ferreira RM, Trinca LA, Sartorelli ES, Barros CM, Beltran MP, Nogueira GP, Mapletoft RJ, Baruselli PS. 2011. Ultrasonographic and endocrine aspects of follicle deviation, and acquisition of ovulatory capacity in buffalo (Bubalus bubalis) heifers. Anim Reprod Sci, 123:175-179.

Gimenes LU, Ferraz ML, Fantinato-Neto P, Chiarratti MR, Mesquita LG, Sa Filho MF, Meirelles FV, Trinca LA, Renno FP, Watanabe YF, Baruselli PS. 2015. The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology, 83:385-393.

Goodhand KL, Watt RG, Staines ME, Hutchinson JSM, Broadbent PJ. 1999. In vivo oocyte recovery and in vitro embryo production from bovine donors aspirated at different frequencies or following FSH treatment. Theriogenology, 51:951-961.

Guerreiro BM, Batista EO, Vieira LM, Sa Filho MF, Rodrigues CA, Castro Netto A, Silveira CR, Bayeux BM, Dias EA, Monteiro FM, Accorsi M, Lopes RN, Baruselli PS. 2014. Plasma anti-mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domest Anim Endocrinol, 49:96-104.

Ireland J, Ward F, Jimenez-Krassel F, Ireland JHL, Smith GW, Lonergan P, Evans ACO. 2007. Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum Reprod, 22:1687-1695.

Ireland J, Scheetz D, Jimenez-Krassel F, Themmen AP, Ward F, Lonergan P, Smith GW, Perez GI, Evans AC, Ireland JJ. 2008. Antrol follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol Reprod, 79:1219-1225.

Jacomini JO, Macedo GG, Carvalho NAT, Sales JN, Baruselli PS. 2014. LH surge in response to the treatment with GnRH analog or estradiol in ovarietomized buffaloes with or without progesterone pre-exposure. Livest Sci, 160:194-198.

Khatir H, Lonergan P, Carolan C, Mermillod P.
1996. Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence. *Mol Reprod Dev*, 45:231-239.

Liang A, Salzano A, D’Esposito M, Comin A, Montillo M, Yang L, Campanile G, Gasparrini B. 2016. Anti-Mullerian hormone (AMH) concentration in follicular fluid and mRNA expression of AMH receptor type II and LH receptor in granulosa cells as predictive markers of good buffalo (*Bubalus bubalis*) donors. *Theriogenology*, 86:963-970.

Lohuis MM. 1995. Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. *Theriogenology*, 43:51-60.

Lonergan P, Fair T. 2008. In vitro-produced bovine embryos: dealing with the warts. *Theriogenology*, 69:17-22.

Macabelli CH, Gimenes L U, Carvalho NAT, Soares JG, Ferraz ML, Watanabe YF, Watanabe O, Ayres H, Meirelles FV, Baruselli PS, Chiarratti MR. 2012. Molecular evaluation of developmental competence of buffalo oocytes collected in vivo during winter and summer. *Anim Reprod*, 9:674. (Abstract).

Macmillan KL, Thatcher WW. 2012. Anti-Mullerian hormone: a predictive marker of embryo production in cattle? *Reprod Fertil Dev*, 24:33-37.

Majerus V, De Roover R, Etienne D, Kaidi S, Massip A, Dessy F, Donnay I. 1999. Embryo production by ovum pick up in unstimulated calves before and after puberty. *Theriogenology*, 52:1169-1179.

Manik RS, Palta P, Singla SK, Sharma V. 2002. Folliculogenesis in buffalo (*Bubalus bubalis*): a review. *Reprod Fertil Dev*, 14:315-325.

Manjunatha BM, Ravindra JP, Gupta PS, Devaraj M, Nandi S. 2009. Effect of breeding season on in vivo oocyte recovery and embryo production in non-descriptive Indian river buffaloes (*Bubalus bubalis*). *Anim Reprod Sci*, 111:376-383.

Mapleton RJ, Bennett Steward K, Adams GP. 2002. Recent advances in the superovulation in cattle. *Reprod Nutr Dev*, 42:601-611.

Mondadori RG, Santin TR, Fidelis AA, Porfirio EP, Bao SN. 2010. Buffalo (*Bubalus bubalis*) pre-antral follicle population and ultrastructural characterization of antral follicle oocyte. *Reprod Domest Anim*, 45:33-37.

Monniaux D, Barbey S, Rico C, Fabre S, Gallard Y, Larroque H. 2010a. Anti-Mullerian hormone: a predictive marker of embryo production in cattle? *Reprod Fertil Dev*, 22:1083-1091.

Monniaux D, Rico C, Larroque H, Dalbies-Tran R, Medigue C, Clement F, Fabre S. 2010b. Anti-Mullerian hormone, an endocrine predictor of the response to ovarian stimulation in the bovine species. *Gynecol Obstet Fertil*, 38:465-470.

Monniaux D, Drouillet L, Rico C, Estienne A, Jarrier P, Touzé J-L, Sapa J, Phocas F, Dupont J, Dalbies-Tran R, Fabre S. 2012. Regulation of anti-Mullerian hormone production in domestic animals. *Reprod Fertil Dev*, 25:1-16.

Monteiro BM, Souza DC, Vasconcellos GSFM, Carvalho NAT, Baruselli PS. 2018. Effect of season on dairy buffalo reproductive performance when using P4/E2/eCG-based fixed-time artificial insemination management. *Theriogenology*, 119:275-284.

Moura AJDR. 2003. Sincronização da ovulação com dispositivo intravaginal de progesterona (CIDR-B®) associado a estrógeno e prostaglandina F2α em búfalas (*Bubalus bubalis*) tratadas em estações reproduutivas distintas. São Paulo, SP: Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo. Thesis. 129 pp.

Neglia G, Gasparrini B, Caracchi di Brienzia V, Di Palo R, Campanile G, Antonio Presicce G, Zicarelli L. 2003. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. *Theriogenology*, 59:1123-1130.

Neglia G, Gasparrini B, Salzano A, Vecchio D, De Carlo E, Cimmino R, Balestrieri A, D’Occhio MJ, Campanile G. 2016. Relationship between the ovarian follicular response at the start of an Ovsynch-TAI program and pregnancy outcome in the Mediterranean river buffalo. *Theriogenology*, 86:2328-2333.

Ohashi OM, Souza JS, Vale WG. 1998. The use of assisted reproduction technology (ART) in buffalo and zebu. In: Proceedings of 4th Follow-up Seminar on Animal Reproduction and Biotechnology for Latin America. Belém, Brazil. Belém, PA. pp.71-79.

Osada H, Kiyoshi Fujii T, Tsunoda I, Takagi K, Satoth K, Kanayama K, Endo T. 1999. Fimbrial capture of the ovum and tubal transport of the ovum in the rabbit, with emphasis on the effects of β(2)-adrenoreceptor stimulant and prostaaglandin F(2)α on the intraluminal pressures of the tubal ampullae. *J Assist Reprod Genet*, 16:373-379.

Palma GA, Tortonese DJ, Sinowatz F. 2001. Developmental capacity in vitro of prepubertal oocytes. *Anat Histol Embryol*, 30:295-300.

Pontes JHJ, Melo Sterza FA, Basso AC, Ferreira CR, Sanches BV, Rubin KCP, Seneda MM. 2011. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (*Bos indicus*) donors. *Theriogenology*, 75:1640-1646.

Porto Filho RM, Gimenes LU, Monteiro BM, Carvalho NAT, Ghuman SPS, Madureira EH, Baruselli PS. 2014. Detection of estrous behavior in buffalo heifers by radiotelemetry following PGF2α administration during the early or late luteal phase. *Anim Reprod Sci*, 144:90-94.

Presicce GA, Jiang S, Simkin M, Zhang L, Looney CR, Godke RA, Yang X. 1997. Age and hormonal independence of acquisition of oocyte competence for embryogenesis in prepubertal calves. *Bio Reprod*, 56:386-392.

Pursley JR, Mee MO, Wittbank MC. 1995. Synchronization of ovulation in dairy cows using PGF2α and GnRH. *Theriogenology*, 44:915-923.

Revel F, Mermillo P, Peynot N, Renard JP, Heyman Y. 1995. Low developmental capacity of in vitro matured and fertilized oocytes from calves compared with that of cows. *J Reprod Fertil*, 103:115-120.

Rico C, Fabre S, Medigue C, di Clemente N, Clement F, Bontoux M, Touze JL, Dupont M, Briant E, Remy B, Beckers JF, Monniaux D. 2009. Anti-
mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. *Biol Reprod*, 80:50-59.

Sá Filho MF, Carvalho NAT, Gimenes LU, Torres-Junior JR, Nasser LFT, Tonhati H, Garcia JM, Gasparrini B, Zicarelli L, Baruselli PS. 2009. Effect of recombinant bovine somatotropin (bST) on follicular presence and on in vitro buffalo embryo production. *Anim Reprod Sci*, 113:51-59.

Saliba WP, Gimenes LU, Drumond R, Bayão H, Alvim M, Baruselli PS, Bastianetto E, Leite R, Gasparrini B. 2013. Efficiency of OPU-IVF-ET of fresh and vitrified embryos in bufaloes. *Buffalo Bull.*, 32:385-388.

Schmitt EJ, Drost M, Diaz T, Roomes C, Thatcher WW. 1996. Effect of a gonadotropin-releasing hormone agonist on follicle recruitment and pregnancy rate in cattle. *J Anim Sci*, 74:154-161.

Sendag S, Cetin Y, Alan M, Hadeler K-G, Niemann WW. 1996. Effect of a gonadotropin-releasing hormone agonist of gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. *Biol Reprod*, 80:50-59.

Taneja M, Bols PEJ, de Velde AV, Ju J-C, Schreiber D, Tripp MW, Levine H, Echelard Y, Riesen J, Yang X. 2000. Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation. *Biol Reprod*, 62:206-213.

Twagirumungu H, Guilbault LA, Proulx J, Villeneuve P, Dufour JJ. 1992b. Influence of an agonist of gonadotropin-releasing hormone (buserelin) on estrus synchronization and fertility in beef cows. *J Anim Sci*, 70:1904-1910.

Twagirumungu H, Guilbault LA, Dufour JJ. 1995. Synchronization of ovarian follicular waves with a gonadotropin-releasing hormone agonist to increase the precision of estrus in cattle: a review. *J Anim Sci*, 73:3141-3151.

Van Ty L, Chupin D, Driancourt MA. 1989. Ovarian follicular populations in buffaloes and cows. *Anim Reprod Sci*, 19:171-178.

Vassena R, Mapletonf RJ, Allodi S, Singh J, Adams GP. 2003. Morphology and developmental competence of bovine oocytes relative to follicular status. *Theriogenology*, 60:923-932.

Vecchio D, Rossi P, Neglia G, Longobardi V, Salzano A, Bifulco GGC. 2013. Comparison of two synchronization protocols for timed artificial insemination in acyclic Italian Mediterranean Buffalo cows out of the breeding season. *Buffalo Bull.*, 32:479. (Abstract).

Vernunft A, Schwerhoff M, Viergutz T, Diederich M, Kuwer A. 2015. Anti-Mullerian hormone levels in plasma of Holstein-Friesian heifers as a predictive parameter for ovum pick-up and embryo production outcomes. *J Reprod Dev*, 61:74-79.

Vieira LM, Rodrigues CA, Castro Netto A, Guerreiro BM, Silveira CRA, Moreira RJC, Sá Filho MF, Bó GA, Mapletonf RJ, Baruselli PS. 2014. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. *Theriogenology*, 82:318-324.

Vos PLAM, van der Schans A, de Wit AAC, Bevers MM, Willemsen AH, Dieleman SJ. 1994. Effects of neutralization of pregnant mares’ serum gonadotrophin (PMSG) shortly before or at the preovulatory LH surge in PMSG-supervoulated heifers on follicular function and development. *J Reprod Fertil*, 100:387-393.

Watanabe YF, Souza AH, Mingoti RD, Ferreira RM, Batista EOS, Dayan A, Watanabe O, Meirelles FV, Nogueira MFG, Ferraz JBS, Baruselli PS. 2017. Number of oocytes retrieved per donor during OPU and its relationship with in vitro embryo production and field fertility following embryo transfer. *Anim Reprod*, 14:635-644.

Wiltbank MC, Pursley JR. 2014. The cow as an induced ovulator: timed AI after synchronization of ovulation. *Theriogenology*, 81:170-185.

Wollenson D, Thatcher WW, Savio JD, Badinga L, Lucy MC. 1994. The effect of a GnRH analogue on the dynamics of follicular development and synchronization of estrus in lactating cyclic dairy cows. *Theriogenology*, 42:633-644.

Zicarelli L. 1997. Reproductive seasonality in buffalo. *Bubalus bubalis*, 4(suppl. 4):29-52.

Zicarelli L. 2007. Can we consider buffalo a non precocious and hypofertile species? *Ital J Anim Sci*, 6:143-154.