Testing non-inferiority of blended versus face-to-face Cognitive Behavioural Therapy for severe fatigue in patients with Multiple Sclerosis and the effectiveness of blended booster sessions aimed at improving long term outcome following both therapies: – study protocol for two observer-blinded randomized clinical trials

CURRENT STATUS: ACCEPTED

Marieke Houniet-de Gier
Amsterdam UMC

m.degier1@amsterdamumc.nl Corresponding Author
ORCiD: https://orcid.org/0000-0001-5214-4258

Heleen Beckerman
Amsterdam Universitair Medische Centra

Kimberley van Vliet
Amsterdam Universitair Medische Centra

Hans Knoop
Amsterdam Universitair Medische Centra

Vincent de Groot
Amsterdam Universitair Medische Centra

DOI:
10.21203/rs.2.12515/v1

SUBJECT AREAS
Internal Medicine Integrative & Complementary Medicine

KEYWORDS
Multiple Sclerosis, Fatigue, Cognitive behavioural therapy, long-term effectiveness, Booster sessions, Blended care, Internet, Study protocol, Randomised clinical trial, Non-inferiority trial
Abstract
Background Cognitive behavioural therapy (CBT) has been found effective in reducing fatigue severity in MS patients directly following treatment. However, long-term effects are inconsistent leaving room for improvement. In addition, individual face-to-face CBT draws heavily on limited treatment capacity, and the travel distance to the treatment centre can be burdensome for patients. Therefore, we developed “MS Fit”, a blended CBT for MS-related fatigue, based on a face-to-face CBT protocol found effective in a previous study, and “MS Stay Fit”, internet-based booster sessions to improve long term effectiveness of CBT for MS-related fatigue. This paper presents the protocol of two Randomised Clinical Trials (RCTs) conducted within one study investigating 1) the non-inferiority of MS Fit compared to evidence-based face-to-face CBT for MS-related fatigue, and 2) the effectiveness of MS Stay Fit on the long-term outcome of fatigue compared to no booster sessions. Methods/design The first part of this study is an observer-blinded non-inferiority multicentre RCT, in which 166 severely fatigued MS patients will be randomized (1:1 ratio, computer-generated sequence) to either face-to-face CBT or blended CBT (MS Fit) for fatigue. The primary endpoint is at 20 weeks after baseline. After this post-treatment assessment, patients will be randomized again (1:1 ratio, computer generated sequence) to either MS Stay Fit consisting of 2 booster sessions at 2 and 4 months after end of treatment, or no booster sessions. The primary endpoint of the second study is 52 weeks after baseline. Primary outcome measure in both studies is fatigue severity assessed with the fatigue severity subscale of the Checklist Individual Strength (CIS20r). Outcomes will be assessed at baseline (T0), end of treatment (T20), after 39 and 52 weeks (T39 and T52). Discussion If MS Fit is found to be non-inferior to face-to-face CBT it will improve the accessibility of this treatment. In addition, the study aims to test if it is possible to improve long-term effectiveness of CBT for MS-related fatigue with MS Stay Fit.

Background
Multiple Sclerosis (MS) is a neurodegenerative disease characterized by demyelinisation, axonal loss and inflammation of the central nervous system that usually appears between the age of 20 and 40. MS can cause a variety of symptoms such as motor weakness, sensory deficits, impaired balance,
fatigue, depression and pain. Fatigue is with 75–90% one of the most often reported symptoms in MS [1–4], and half of the MS patients even report it to be one of the most burdensome symptoms affecting their daily functioning and worsening other MS symptoms [5].

The etiology of MS-related fatigue is not clear and likely to be multifactorial. In a cognitive-behavioural model Van Kessel and Moss-Morris proposed that where disease-related factors, such as inflammation and neurodegeneration, may initially cause fatigue, psychological mechanisms play an important role in perpetuating and increasing fatigue [6]. These mechanisms consist of cognitive, emotional and behavioural responses to fatigue, for example catastrophizing cognitions, depression, helplessness, all-or-nothing behaviour, avoidance, and sleep problems. Based on this model a cognitive behavioural therapy was developed, aimed at decreasing fatigue, in which patients learn to change unhelpful beliefs and behaviours regarding fatigue [7, 8].

Although in clinical practice treatments for MS-related fatigue often include energy conservation management, exercise therapy, and multidisciplinary interventions, recent systematic reviews and meta-analyses of RCTs have shown cognitive behavioural therapy (CBT) to be an effective treatment for reducing fatigue. There is no evidence for effectiveness of pharmaceuticals or multidisciplinary rehabilitation treatment [9–12]. In the recent TREFAMS-ACE programme, TREFAMS being an acronym for TReating FAtnigue in Multiple Sclerosis, three RCTs were conducted studying the effectiveness of respectively Aerobic Exercise Training (TREFAMS-AT), Cognitive Behavioural Therapy (TREFAMS-CBT) and individual Energy Conservation Management (TREFAMS-ECM), compared to MS nurse consultations on fatigue [13]. Results showed that aerobic exercise training and energy conservation management did not lead to a significant or clinically relevant reduction of fatigue [14, 15], whereas the TREFAMS-CBT trial, in contrast, showed that MS-related fatigue can be reduced significantly with individual face-to-face CBT carried out by trained psychologists [16], although one-year follow-up measurements showed that the effect of CBT had worn off over time. More studies have shown that fatigue in MS can be treated effectively with CBT [8, 17–19]. However, CBT was applied in different forms and protocols (individual and group formats, internet-based or face-to-face), and long-term effects differed between studies [20]. Analysis of cognitive-behavioural variables mediating the
Fatigue relapse in the TREFAMS-CBT study showed that increased daytime sleepiness, more problems in staying physically active and an increase of subjective cognitive problems (i.e. concentration) mediated the fatigue relapse after one year [7]. However, in these analyses only a limited number of possible mediating factors were included. More research is needed to determine which other factors are responsible for the long-term effectiveness.

Face-to-face CBT draws heavily on limited treatment capacity and requires patients to travel and schedule appointments which is burdensome for fatigued patients. Therefore, blended CBT, in which online treatment is combined with limited face-to-face contacts or video consultations with the CBT-therapist, might be an attractive treatment option for severely fatigued patients with MS. Several studies have been conducted on the effectiveness of internet-based CBT for MS-related fatigue, showing positive results [17, 18, 21]. However, it remains unclear whether the effectiveness of blended-CBT is comparable to that of face-to-face CBT in treating primary MS-related fatigue.

In the proposed study two RCTs will be conducted to answer the following two research questions:

1. Is blended CBT (MS Fit) non-inferior with respect to its effect on fatigue severity compared to evidence-based face-to-face CBT in severely fatigued patients with MS?

2. Do blended CBT booster sessions (MS Stay Fit) improve long-term outcome with respect to fatigue severity at 1-year follow-up compared to no booster sessions?

To this purpose “MS Fit” was developed, an internet-based version of the CBT intervention used in the TREFAMS study. In the MS Fit study group, patients will receive two face-to-face sessions with a CBT-therapist, and will be supported during their online treatment by video-consultations and email contact. The online sessions of MS Fit are also based on the previously found effective online CBT used for treating severe fatigue in patients with Type 1 Diabetes Mellitus [22], breast cancer survivors [23] and patients with chronic fatigue syndrome [24]

In addition, “MS Stay Fit” has been developed, a blended booster programme consisting of several optional online booster modules and 2 video-consultations with the therapist 2 and 4 months after finishing the initial CBT. To our knowledge this will be the first study testing the effectiveness of
booster sessions in sustaining the effects of CBT for chronic fatigue.

Method/design

The first part of the study is an observer-blinded non-inferiority multicentre RCT, in which patients who are eligible to participate will be randomly allocated to either the face-to-face CBT intervention, or MS Fit [25, 26]. Both groups will receive CBT for 20 weeks, and after a post-treatment assessment, patients who completed the second assessment will be randomized to MS Stay Fit or receiving no booster sessions. Patients who dropped-out of the initial treatment or study will not be randomized for the second part of the trial. All patients will be assessed at baseline (T0), post-treatment (T20), after 9 months (T39) and after one year (T52) (see Figure 1).

Randomisation

Randomisation with concealed treatment allocation will be carried out using a web-based randomisation facility. The randomisation scheme is computer-generated with stratification for treatment centre, and using random variable block sizes (range 2–6). Using the same software, patients will be randomized again (R2) at the end of the initial treatment, either to MS Stay Fit or no booster sessions. Patients will be stratified according to previous CBT study group (Figure 1). Randomisation will be done by one of the project members (HB) who is not involved in the enrolment process, treatments, or assessments.

Participants

The 166 patients required will have to meet the same inclusion criteria as in the TREFAMS-CBT study [13, 25, 26]: (a) definitive diagnosis of MS, (b) severely fatigued, (c) aged between 18 and 70 (d) ambulatory; (e) no evident signs of an exacerbation and no corticosteroid treatment in the past three months; (f) no current infections; (g) no anaemia; (h) a normal thyroid function. The exclusion criteria are (a) depression; (b) primary sleep disorders; (c) other severe somatic or psychiatric co-morbidity; (d) current pregnancy or having given birth in the past three months; (e) pharmacological treatment for fatigue that was started in the past three months; (f) non-pharmacological therapies for fatigue that took place in the last three months (g) having received CBT in the TREFAMS trial. This last exclusion criterion is added for this study. See Table 1 for the operationalization of the inclusion and
exclusion criteria.

As effectiveness of the booster programme can only be measured if patients have completed the initial treatment, the following additional inclusion criteria were defined for the second part of the study testing the effectiveness of MS Stay Fit: (a) having started treatment, i.e. formulated treatment goals after the first session of CBT or MS Fit; (b) having finished the initial treatment period with a face-to-face session and assessment at T20.

Sample size calculation

Non-inferiority trial: If there is truly no difference between the face-to-face CBT and blended CBT, then 150 patients are required to be 80% sure that the lower limit of a one-sided 95% confidence interval will be above the non-inferiority margin of –5.3 points on the Checklist Individual Strength (CIS20r) fatigue severity subscale. Adjusting for a drop-out of 10%, 166 participants need to be included (2 groups of 83) [25–27]. The non-inferiority margin was defined on the basis of statistical reasoning (i.e. by using the TREFAMS-CBT results), and clinical judgment [16]. In the TREFAMS-CBT trial the difference in the change score between CBT and MS nurse consultations for fatigue was 6.67 points (95% CI: 2.70 - 10.68) on the CIS20r fatigue [16]. In accordance with the recommendations of the Food and Drug Administration [25], the mean effect 6.67 was used as criterion - 50% of the lower limit (i.e. 2.7) of the 95% CI of the TREFAMS-CBT effect at week 16, that is 6.67-1.35 = 5.32, and the 1.35 point is considered as a clinically acceptable loss in effectiveness of blended CBT compared to TREFAMS-CBT [16]. Tummers et al. [27] derived the same non-inferiority margin of 5.3 points on the CIS20r fatigue severity subscale through post hoc analysis of the course in the waiting list of an RCT testing the efficacy of CBT in patients with chronic fatigue syndrome. The margin of 5.3 points reflects the largest loss of effect in the blended CBT group that would be clinically acceptable.

Booster trial: This part of the study concerns a superiority between-group comparison at 1-year follow-up of MS Stay Fit, i.e. web-based booster sessions combined with email contact and video-consultations vs. no booster sessions. Treatment effects on fatigue are assumed to be maintained with additional booster sessions but to gradually wear off to the fatigue level at baseline in the study group without additional booster therapy sessions. In the TREFAMS-CBT study the treatment effects
gradually wore off directly post-treatment until 1 year after the start of treatment [16]. At one-year follow-up, fatigue levels in the CBT group were comparable with level of fatigue at baseline. A between-group difference of 6.7 points on CIS20r fatigue is expected. Two-sided significance testing with an α of 5%, two study groups of 75 participants at 1-year, will result in a power of 98%. Therefore, the total number of enrolled patients (2 groups of 83, i.e. 75 patients plus a 10% attrition rate) yields sufficient power to address the second research question.

Recruitment strategy

Patients will be recruited in 11 participating rehabilitation centres and hospitals in the Netherlands and 1 in Belgium (Table 2). More treatment sites can be added during the study if not enough eligible patients are available. Rehabilitation physicians will hand over the information letter to patients who are eligible for the study. When interested, patients will be contacted by phone by the research assistant, to further inform them about the study. When willing to participate, they will be sent the Informed Consent Form (ICF) in two-fold to their home address, and asked to return the signed ICF. Subsequently patients are invited by email, sent by the research assistant, to complete the subscale fatigue of the CIS20r and the Beck Depression Inventory-Primary Care version (BDI-PC) online, after which all in- and exclusion criteria will be assessed in a phone-call with the patient by the researcher. If patients contact the researcher directly and not via the rehabilitation physician, e.g. after reading about the study online, they will be referred for screening to a rehabilitation physician participating in this study before final inclusion and referral can take place.

Interventions

Face-to-face cognitive behavioural therapy (CBT)

In the face-to-face-CBT study arm, patients receive twelve individual, face-to-face, 45-minute therapy sessions distributed over a 20-weeks period according to the protocol tested in the TREFAMS-CBT study [16]. CBT will be provided by certified health care psychologists, most of them licensed cognitive behavioural therapists who will be trained to deliver (blended) CBT for MS-related fatigue and receive supervision every two-weeks.

Patient-tailoring of (blended) CBT
CBT for MS-related fatigue is directed at the fatigue maintaining behaviours and beliefs of the patient. The general aim of the CBT is to lessen the fatigue by changing fatigue-maintaining cognitions and behaviours and improve daily functioning. As the individual differences in the maintaining factors are substantial, first the relevant fatigue-maintaining factors for the individual patient are assessed using specific screening instruments (see Table 3). The patient is treated with the CBT modules aimed at the factors maintaining the fatigue of the individual patient. There are ten treatment modules: (1) formulation and attainment of treatment goals; (2) sleep and rest; (3) unhelpful beliefs about MS; (4) beliefs about fatigue; (5) focusing on fatigue; (6) physical activity regulation; (7) regulation of social activity; (8) regulation of mental activity; (9) social support; (10) unhelpful beliefs about pain.

Therapists will get the results of the assessment to determine which CBT treatment modules are indicated for the individual patient. The following instruments are used for tailoring the CBT-modules: Impact of Event Scale [28], Illness Cognition Questionnaire [29], Cognitive-Behavioural Responses to Symptoms [30, 31], Beck Depression Inventory—primary care version [32], Fear of Disease Progression-Short Form [33, 34], Self-Efficacy Scale [35], Jacobsen Fatigue Catastrophizing Scale [36], Illness Management Questionnaire [37], Social Support List (SSI & SSL D) [38] and Pain Catastrophizing Scale [39].

MS Fit

Blended CBT (MS Fit): consists of 2 face-to-face contacts, respectively one at the beginning and one at the end of the initial 20-week treatment period, 3 video-consultations, and 7 web-based therapy sessions with information and assignments delivered via an internet portal and supported by email contact with the therapist who provides feedback on the progress made by the patient. The blended CBT will also be patient-tailored based on the same 10 treatment modules as described earlier (Table 3). The therapists who deliver the face-to-face CBT will also deliver MS Fit and the treatments are supervised once every two weeks.

Development of MS Fit and usability testing

The information and assignments provided in the internet portal are developed by experts on CBT for MS-related fatigue and are based on “Dia-Fit”, an evidence based blended CBT intervention for
severely fatigued patients with Diabetes type 1 [22] and “On the road to recovery”, an evidence-based intervention for cancer related fatigue in breast cancer survivors [23]. The interventions were adapted for MS. Comparable treatment modules are formulation of treatment goals, sleep and rest, beliefs about fatigue, focusing on fatigue, and regulation of activity (table 3). Two specific modules about MS namely unhelpful beliefs about MS, and pain were developed by experts on chronic fatigue and MS. Two patients with MS, who already had received face-to-face CBT for fatigue, and one patient with MS who participated in the Steering Committee on behalf of the Dutch patient organisation MSVN, were asked for usability testing of the portal. Their feedback was used to improve parts of the intervention.

MS Stay Fit
The booster programme MS Stay Fit consists of two patient-therapist booster consults with the same therapist who delivered the first part of the intervention, scheduled at 2 and 4 months following end of initial treatment. Booster sessions will be delivered via the internet via a secured video connection and combined with email contact and web-based CBT assignments on prevention of fatigue relapses. Five optional “booster modules” are aimed at the factors that mediated the relapse in fatigue following the intervention in the original trial: sleep-wake pattern and activity regulation (both physical and mental) [7], but also at cognitions about fatigue, coping with “normal fatigue” and continuing reaching the set goals.

Therapist training and supervision
All involved therapists received a 3-day training course in the face-to-face CBT protocol for MS-related fatigue, and a 1-day training course in delivering the e-health intervention. The CBT training course consists of training the content and indication of each treatment module, and practicing the intervention techniques in role-playing, with help of professional actors who simulate patients. The e-health training course consists of an introduction to the online platform, practicing in delivering MS Fit, and skills in writing e-mails. All therapists will provide both face-to-face and blended CBT, to make sure that any between-group differences found are not contributable to specific therapist-factors or treatment centres.
Concomitant care

Patients are asked not to follow or use any other therapies or medication aimed at fatigue during the one-year study period. Rehabilitation treatments aimed at other health problems should be phased before or after the 20-week CBT intervention. All other interventions are allowed.

Outcome measures

Outcome measures consist of validated self-reported questionnaires, which will be assessed at baseline (T0), end of treatment (T20), 39 and 52 weeks after randomization (T39 and T52), see figure 2 for measurements at all time points. Patients can complete these questionnaires online from their home. At all these time points patients will be asked to keep an online sleep log during one week, which is sent to them daily by email.

Primary outcome measure

In both trials the same primary outcome measure is used as in the TREFAMS-CBT trial, i.e. the subscale fatigue severity of the CIS20r. The CIS20r is a 20-item self-reported questionnaire consisting of 4 subscales: (a) fatigue severity (8 items); (b) reduction in motivation (4 items); (c) reduction in physical activity (3 items) and (d) concentration problems (5 items) [45, 46]. Items are answered on a 7-point scale. The sum score of the fatigue severity subscale can vary between 8 and 56 points. The CIS20r is found to be a reliable and valid instrument for measuring fatigue in various study populations [47]. A cut-off score of 35 or higher is used to discriminate between severe fatigue and fatigue levels within the normal range.

Secondary outcome measures

Clinical significant improvement assessed with the CIS20r is a secondary outcome measure. As the CIS20r is also used as a screening stool thereby limiting the variance in the outcome measure, we decided to use the following additional fatigue measures as secondary outcome measures. The Fatigue Severity Scale (FSS) is used to measure the severity and impact of fatigue in patients with MS [48]. Also, the PROMIS-Fatigue Short Form 8a [49] is used to measure fatigue in addition to the CIS20r.

The Sickness Impact Profile (SIP) [40, 41] will be used to measure limitations of daily functioning in 8
different domains of functioning. The eight subscale scores are summed to provide one weighted score of disability (SIP8 total score). The SIP was used in several intervention studies with chronically fatigued patients. The Work and Social Adjustment Scale (WSAS) [50] is used to measure restrictions in participation. Health-related quality of life will be assessed by the SF36 [44].

Demographic and disease characteristics

The demographic characteristics that will be assessed are age, gender, ethnicity, level of education and employment. Disease-related determinants which are assessed include type of MS, date of diagnosis, date of onset of MS, use of disease modifying drugs, score on the Expanded Disability Status Scale (EDSS) [51], and comorbidities using the Cumulative Illness Rating Scale (CIRS) [52].

Moderators and mediators

Since various factors may play a moderating or perpetuating role in fatigue and since CBT consists of multiple modules which intervene on different aspects of fatigue, it is interesting to measure variables that 1) may moderate the effect of blended CBT in comparison to face-to-face CBT and/or 2) moderate or mediate the effects of the booster sessions of CBT on long term outcome [7, 31]. In addition to the measurement instruments used to tailor the CBT modules, the following factors will be assessed at several time points for the analysis of moderation and mediation. Psychological distress will be assessed using the total score on the Symptom Check List (SCL–90) [53, 54]. Daytime sleepiness will be assessed by the Epworth Sleepiness Scale [55]. Sleep dysfunction is assessed by the Pittsburg Sleep Quality Index [56]. A sleep log of 1 week will be used to assess sleep parameters. Self-management will be measured with The Multiple Sclerosis Self-Management Scale [57].

Attentional and Interpretative Bias

To measure the tendency of patients to direct their attention to illness-related information, a Visual Probe Task (VPT) is used. This task was developed by Hughes et al [58] to measure an attentional bias for illness-related information in patients who are chronically fatigued. As this computer task is programmed using e-Prime, it needs to be performed on a computer under controlled conditions. Therefore, only participants living in the Amsterdam area will be asked to complete this task. The VPT will be assessed prior to the first and last treatment session at the treatment centre by a research assistant.
assistant. Furthermore, an interpretive bias task will be used to assess the tendency of patients to interpret bodily sensations in a negative, threatening way [58]. We aim to assess patients before and after treatment and to determine if a change in the tendency of patients to focus on symptoms is related to the reduction in fatigue brought on by CBT.

Treatment preference, outcome expectation and treatment satisfaction

Patient-therapist factors will be taken into account by assessing treatment preference at baseline (online vs face-to-face CBT), Treatment Outcome Expectations Questionnaire (TOEQ) [59], the Working Alliance Inventory (WAI-SR) [60, 61], Patients satisfaction with treatment, and Satisfaction of patients with the platform with the System Usability Scale (SUS) [62, 63].

Serious adverse events

CBT, both face-to-face and blended, are expected to be safe treatment methods. However, all serious adverse events (SAEs) will be reported. An SAE is defined as any untoward medical occurrence or effect that is lethal and/or life threatening, requires hospitalisation or prolongation of existing inpatients’ hospitalization, results in persistent or significant disability or incapacity.

Treatment fidelity and compliance

After the first therapy session, each therapist registers which modules are indicated based on the patient-reported questionnaires, and which modules are indicated based on their interview. With regard to the process, they will register each provided therapy session or patient contact (face-to-face, video, phone, email), the duration of the contact and which of the indicated treatment modules were delivered in that session. Patient therapy adherence in MS Fit will be assessed via log data provided by the online platform.

All therapists will be supervised bi-weekly by an experienced clinical psychologist (HK or MH) to ensure patient-specific treatment integrity.

Blinding of outcome measurements and data analysis

In this study, mainly patient-reported outcomes will be gathered. Patients and therapists cannot be blinded for the type of treatment. A research assistant, who will be blinded with respect to treatment
allocation, will send out the internet questionnaires and will monitor the timely completion of filling in the questionnaires. The statistical analyses will be carried out by an independent researcher on an encrypted data file, blinded for treatment allocation.

Statistical analyses

Non-inferiority of blended CBT compared to face-to-face CBT at 20 weeks

Primary analyses will be on the basis of intention-to-treat (ITT) and per protocol using Mixed Model Analysis, in order to reduce the risk of falsely claiming non-inferiority of blended CBT [25, 26], with the CIS20r fatigue severity score as dependent and study group (blended vs f2f CBT) as fixed factor. A graph showing CIS20r fatigue confidence intervals and margins of non-inferiority will be used, see figure 3 [25, 26]. When blended care is found non-inferior, a sensitivity analysis will be performed on the basis of different assumptions about the values of missing data.

To compare the effect of blended care and face-to-face CBT on the secondary outcome measures the ITT. mixed model analysis will be repeated with the secondary outcomes as dependent variable and study group as fixed factor.

Effectiveness of CBT booster sessions at 52 weeks

Primary analysis of long-term effects of additional booster sessions will be based on ITT using Mixed Model Analysis with CIS20r fatigue severity as dependent measure and condition (booster session vs no booster sessions) as fixed factor. In case of a large attrition rate, a per protocol analysis will be added. When statistical significant differences are found, a sensitivity analysis will be performed on the basis of different assumptions about the values of missing data.

In a separate analysis we will additionally investigate the differential effect of the booster sessions in patients who are no longer severely fatigue at T20 compared to those who are still fatigued at T20. Analyses of factors mediating long-term effectiveness will be conducted. In addition, analyses will be done to identify possible moderators of the response to the booster sessions and response to face-to-face or blended CBT.

Discussion
A study protocol was presented of two RCTs combined in one study testing respectively non-inferiority with respect to the effect of MS Fit (blended CBT) on fatigue severity compared to face-to-face CBT in severely fatigued patients with MS [13, 16], and the effectiveness of MS Stay Fit, i.e. additional internet-based booster sessions following MS Fit or face-to-face CBT, compared to no booster sessions on fatigue severity up to one year after randomisation.

By combining two RCTs this study is able to address two important research questions. The non-inferiority trial aims to give more insight in whether the CBT protocol applied in a blended form is non-inferior as to when applied face-to-face. If MS Fit is indeed non-inferior to face-to-face CBT, it probably will be a more time-efficient but also a more accessible treatment option, enhancing implementation of this intervention. Since long-term effects of CBT vary between studies with some showing considerable fatigue relapse [20], and little is known about the underlying mechanisms of fatigue relapses after successful treatment [7], testing the effect of booster sessions, and testing possible mediators and moderators of the response to treatment, may contribute to better understanding of these mechanisms and most importantly improving long-term effects. To our knowledge, this is the first study testing the effectiveness of booster sessions in treating chronic severe fatigue. In addition, by training psychologists of 12 participating rehabilitation centres and hospitals, this study aids in implementation of CBT for MS-related fatigue in the Netherlands and Belgium, making effective fatigue treatment more accessible to MS patients.

In this trial inclusion criteria and the face-to-face CBT protocol used are similar as in the TREFAMS-CBT study. However, in our study more rehabilitation centres are including and treating patients, and, even with the same set of enrolment criteria, this may lead to a more varied patient sample. Considering the number of therapists (currently 20 therapists are involved) in the study, it is also plausible that there is more variance in therapist-related factors, for example familiarity with providing e-health interventions such as blended CBT. Providing an extensive manual, intensive training and supervision of all therapies, intends to limit these variance and optimize treatment integrity as much as possible [64], respecting the consistency rules of non-inferiority trials [25, 26]. Taking this into account, these aspects may also well increase generalizability of the results of this
pragmatic trial to clinical practice. In addition, in this trial, treatment duration is set at 20 weeks
instead of 16 weeks, since this is expected to increase opportunity for patients to reach treatment
goals and cognitive and behavioural changes.
Non-inferiority of blended-CBT is measured by means of fatigue severity as the primary outcome
measure, but benefits of treatment may regard other aspects as well, for example accessibility, time-
efficiency or adherence. Being effective, but having a high drop-out rate for example, can also have
implications for implementation. These factors will be measured and might help in interpreting the
primary trial results.
Even though the content of treatment is similar in both treatments, differences in form of treatment
may affect several factors possibly influencing effectiveness. It is known that factors in the therapy
relationship, e.g. outcome expectations and working-alliance, can contribute to treatment outcome in
general [65], but also more specific in treating fatigue [59]. In general, working-alliance is found to be
related to self-efficacy, outcome expectancies, treatment adherence and satisfaction [66]. Since in
the blended-CBT group therapist contact is more distant and less frequent, this might influence
treatment adherence, satisfaction and outcome effects. For that reason, patients’ evaluation of the
working-alliance, treatment satisfaction and usability of the platform will be taken into account in
secondary trial analyses. Outcome expectations are also measured at baseline, but at time of
measurement, patients will not be randomized yet, so these expectations will not apply to the form of
treatment that they will adhere. It could be argued that treatment expectations may be higher in the
present study than in the TREFAMS-CBT study, since CBT for MS-related fatigue is proven effective
now.
In conclusion, this paper presents the study protocol of two combined RCTs testing non-inferiority of
blended CBT compared to face-to-face CBT for MS-related fatigue, and the effect of booster sessions
on long-term outcome. This study aims to provide more insight in effectiveness of CBT in various
applied forms, and in possibilities for improving long-term effectiveness of the treatment. In addition,
by conducting the study and training of psychologists in 12 rehabilitation centres in the Netherlands
and Belgium, this study is a first step in implementation of CBT in clinical practice.
Trials’ status
Patient recruitment started in April 2018 and is expected to end in March 2021. At time of submission 49 patients have been randomized. The trial is being conducted according to the protocol version 7, dated 4-7-2019.

Declarations

Ethical approval and consent to participate
This study has been reviewed and approved by the Medical Ethical Committee of the Amsterdam University Medical Centers, location VU University Medical Center (registration number 2017.538, NL62622.029.17), and by the local ethical committees of the participating hospitals and rehabilitation centres. The study is registered in the Dutch Trial Register (NTR6966). Written informed consent will be obtained from all participants.

Abbreviations
AT: Aerobic Training; BDI-PC: Beck Depression Inventory-Primary Care; CBT: Cognitive Behavioural Therapy; CI: confidence interval; CIRS: Cumulative Illness rating Scale; CIS20r: Checklist Individual Strength; ECM: Energy Conservation Management; EDSS: Expanded Disability Status Scale; MS: Multiple Sclerosis; RCT: Randomized Clinical Trial; SAE: Serious Adverse Event; TREFAMS: TReating FAtigue in MS; VPT: Visual Probe Task

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Availability of data and material
Not applicable.

Author’s contributions
Principal investigator: VG, HK, HB
Design study: HB, VG, HK, MH
Design interventions: HK and MH
Recruitment of participating centers: VG and MH
Training and supervising therapists: HK and MH
Recruitment and inclusion of patients: MH and KV
Drafting manuscript: MH, HB, KV, HK, VG
Overall project coordination: HB and MH

Acknowledgements
We thank all participating centers.

Funding
The study is funded by the Dutch MS Research Foundation (16–937 MS). The funder has no role in the design or conduct of the study or writing of the manuscript.

References
1. Lerdal A, Celius EG, Krupp L, Dahl AA: A prospective study of patterns of fatigue in multiple sclerosis. Eur J Neurol 2007, 14:1338–1343.
2. Minden SL, Frankel D, Hadden L, Perloff J, Srinath KP, Hoaglin DC: The Sonya Slifka Longitudinal Multiple Sclerosis Study: methods and sample characteristics. Mult Scler 2006, 12:24–38.
3. Weiland Tj, Jelinek GA, Marck CH, Hadgkiss EJ, van der Meer DM, Pereira NG, Taylor KL: Clinically significant fatigue: prevalence and associated factors in an international sample of adults with multiple sclerosis recruited via the internet. PLoS One 2015, 10:e0115541.
4. Kister I, Bacon TE, Chamot E, Salter AR, Cutter GR, Kalina JT, Herbert J: Natural history of multiple sclerosis symptoms. Int J MS Care 2013, 15:146–158.
5. Fisk JD, Pontefract A, Ritvo PG, Archibald CJ, Murray TJ: The impact of fatigue on patients with multiple sclerosis. Can J Neurol Sci 1994, 21:9–14.
6. van Kessel K, Moss-Morris R: Understanding multiple sclerosis fatigue: a synthesis of biological and psychological factors. J Psychosom Res 2006, 61:583–585.
7. van den Akker LE, Beckerman H, Collette EH, Knoop H, Bleijenberg G, Twisk JW, Dekker J, de Groot V, group T-As: Cognitive behavioural therapy for MS-related fatigue explained: A longitudinal mediation analysis. J Psychosom Res 2018, 106:13–24.
8. van Kessel K, Moss-Morris R, Willoughby E, Chalder T, Johnson MH, Robinson E: A randomized controlled trial of cognitive behavior therapy for multiple sclerosis fatigue. Psychosom Med 2008, 70:205-213.

9. Asano M, Finlayson ML: Meta-analysis of three different types of fatigue management interventions for people with multiple sclerosis: exercise, education, and medication. Mult Scler Int 2014, 2014:798285.

10. Brenner P, Piehl F: Fatigue and depression in multiple sclerosis: pharmacological and non-pharmacological interventions. Acta Neurol Scand 2016, 134 Suppl 200:47-54.

11. Kos D, Duportail M, D’Hooghe M, Nagels G, Kerckhofs E: Multidisciplinary fatigue management programme in multiple sclerosis: a randomized clinical trial. Mult Scler 2007, 13:996-1003.

12. Rietberg MB, van Wegen EE, Eyssen IC, Kwakkel G, group MSs: Effects of multidisciplinary rehabilitation on chronic fatigue in multiple sclerosis: a randomized controlled trial. PLoS One 2014, 9:e107710.

13. Beckerman H, Blikman LJ, Heine M, Malekzadeh A, Teunissen CE, Bussmann JB, Kwakkel G, van Meeteren J, de Groot V, group T-As: The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme. Trials 2013, 14:250.

14. Blikman LJ, van Meeteren J, Twisk JW, de Laat FA, de Groot V, Beckerman H, Stam HJ, Bussmann JB, group T-As: Effectiveness of energy conservation management on fatigue and participation in multiple sclerosis: A randomized controlled trial. Mult Scler 2017, 23:1527-1541.

15. Heine M, Verschuren O, Hoogervorst EL, van Munster E, Hacking HG, Visser-Meily A, Twisk JW, Beckerman H, de Groot V, Kwakkel G, group T-As: Does aerobic training alleviate fatigue and improve societal participation in patients with multiple sclerosis? A randomized controlled trial. Mult Scler 2017, 23:1517-1526.

16. van den Akker LE, Beckerman H, Collette EH, Twisk JW, Bleijenberg G, Dekker J, Knoop H, de Groot V, Group T-AS: Cognitive behavioral therapy positively affects fatigue in patients with multiple sclerosis: Results of a randomized controlled trial. Mult Scler 2017, 23:1542-1553.
17. Moss-Morris R, McCrone P, Yardley L, van Kessel K, Wills G, Dennison L: A pilot randomised controlled trial of an Internet-based cognitive behavioural therapy self-management programme (MS Invigor8) for multiple sclerosis fatigue. Behav Res Ther 2012, 50:415–421.

18. Pöttgen J, Moss-Morris R, Wendebourg JM, Feddersen L, Lau S, Kopke S, Meyer B, Friede T, Penner IK, Heesen C, Gold SM: Randomised controlled trial of a self-guided online fatigue intervention in multiple sclerosis. J Neurol Neurosurg Psychiatry 2018, 89:970–976.

19. Thomas S, Thomas PW, Kersten P, Jones R, Green C, Nock A, Slingsby V, Smith AD, Baker R, Galvin KT, Hillier C: A pragmatic parallel arm multi-centre randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based fatigue management programme (FACETS) for people with multiple sclerosis. J Neurol Neurosurg Psychiatry 2013, 84:1092–1099.

20. van den Akker LE, Beckerman H, Collette EH, Eijssen IC, Dekker J, de Groot V: Effectiveness of cognitive behavioral therapy for the treatment of fatigue in patients with multiple sclerosis: A systematic review and meta-analysis. J Psychosom Res 2016, 90:33–42.

21. van Kessel K, Wouldes T, Moss-Morris R: A New Zealand pilot randomized controlled trial of a web-based interactive self-management programme (MSInvigor8) with and without email support for the treatment of multiple sclerosis fatigue. Clin Rehabil 2016, 30:454–462.

22. Menting J, Tack CJ, van Bon AC, Jansen HJ, van den Bergh JP, Mol M, Goedendorp MM, Donders R, Knoop H: Web-based cognitive behavioural therapy blended with face-to-face sessions for chronic fatigue in type 1 diabetes: a multicentre randomised controlled trial. Lancet Diabetes Endocrinol 2017, 5:448–456.

23. Abrahams HJG, Gielissen MFM, Donders RRT, Goedendorp MM, van der Wouw AJ, Verhagen C, Knoop H: The efficacy of Internet-based cognitive behavioral therapy for severely fatigued survivors of breast cancer compared with care as usual: A randomized controlled trial. Cancer 2017, 123:3825–3834.

24. Janse A, Worm-Smeitink M, Bleijenberg G, Donders R, Knoop H: Efficacy of web-based cognitive-behavioural therapy for chronic fatigue syndrome: randomised controlled trial. Br J Psychiatry 2018, 212:112-118.
25. Food and Drugs Administration: *Guidance for industry: non-inferiority clinical trials. US Department of Health and Human Services and US Food and Drug Administration, Washington, DC 2010.*

26. Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG, Group C: *Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement.* JAMA 2012, 308:2594-2604.

27. Tummers M, Knoop H, Bleijenberg G: *Effectiveness of stepped care for chronic fatigue syndrome: a randomized noninferiority trial.* J Consult Clin Psychol 2010, 78:724–731.

28. van der Ploeg E, Mooren TT, Kleber RJ, van der Velden PG, Brom D: *Construct validation of the Dutch version of the impact of event scale.* Psychol Assess 2004, 16:16–26.

29. Evers AW, Kraaimaat FW, van Lankveld W, Jongen PJ, Jacobs JW, Bijlsma JW: *Beyond unfavorable thinking: the illness cognition questionnaire for chronic diseases.* J Consult Clin Psychol 2001, 69:1026–1036.

30. Dennison L, Moss-Morris R, Silber E, Galea I, Chalder T: *Cognitive and behavioural correlates of different domains of psychological adjustment in early-stage multiple sclerosis.* J Psychosom Res 2010, 69:353–361.

31. Knoop H, van Kessel K, Moss-Morris R: *Which cognitions and behaviours mediate the positive effect of cognitive behavioural therapy on fatigue in patients with multiple sclerosis?* Psychol Med 2012, 42:205–213.

32. Beck AT, Guth D, Steer RA, Ball R: *Screening for major depression disorders in medical inpatients with the Beck Depression Inventory for Primary Care.* Behav Res Ther 1997, 35:785–791.

33. Herschbach P, Berg P, Dankert A, Duran G, Engst-Hastreiter U, Waadt S, Keller M, Ukat R, Henrich G: *Fear of progression in chronic diseases: psychometric properties of the Fear of Progression Questionnaire.* J Psychosom Res 2005, 58:505-511.

34. Kwakkenbos L, van den Hoogen FH, Custers J, Prins J, Vonk MC, van Lankveld WG, Becker ES, van den Ende CH: *Validity of the Fear of Progression Questionnaire-Short Form in patients with systemic sclerosis.* Arthritis Care Res (Hoboken) 2012, 64:930–934.

35. Prins JB, Bleijenberg G, Bazelmans E, Elving LD, de Boo TM, Severens JL, van der Wilt GJ, Spinhoven
P, van der Meer JW: *Cognitive behaviour therapy for chronic fatigue syndrome: a multicentre randomised controlled trial*. Lancet 2001, 357:841–847.

36. Jacobsen PB, Andrykowski MA, Thors CL: *Relationship of catastrophizing to fatigue among women receiving treatment for breast cancer*. J Consult Clin Psychol 2004, 72:355–361.

37. Ray C, Weir W, Stewart D, Miller P, Hyde G: *Ways of coping with chronic fatigue syndrome: development of an illness management questionnaire*. Soc Sci Med 1993, 37:385–391.

38. van Sonderen E: *Sociale Steun Lijst–Interacties (SSL-I) en Sociale Steun Lijst-Discrepanties (SSL-D)*. 1993.

39. Sullivan MJ, Bishop SR, Pivik J: *The pain catastrophizing scale: development and validation*. Psychological assessment 1995, 7:524.

40. Bergner M, Bobbitt RA, Carter WB, Gilson BS: *The Sickness Impact Profile: development and final revision of a health status measure*. Med Care 1981, 19:787–805.

41. Jacobs HM, Luttik A, Touw-Otten FW, de Melker RA: [*The sickness impact profile; results of an evaluation study of the Dutch version*]. Ned Tijdschr Geneeskd 1990, 134:1950–1954.

42. Skerrett TN, Moss-Morris R: *Fatigue and social impairment in multiple sclerosis: the role of patients’ cognitive and behavioral responses to their symptoms*. J Psychosom Res 2006, 61:587–593.

43. Strober LB, Arnett PA: *An examination of four models predicting fatigue in multiple sclerosis*. Arch Clin Neuropsychol 2005, 20:631–646.

44. Aaronson NK, Muller M, Cohen PD, Essink-Bot ML, Fekkes M, Sanderman R, Sprangers MA, te Velde A, Verrips E: *Translation, validation, and norming of the Dutch language version of the SF–36 Health Survey in community and chronic disease populations*. J Clin Epidemiol 1998, 51:1055–1068.

45. Vercoulen JH, Bazelmans E, Swanink CM, Fennis JF, Galama JM, Jongen PJ, Hommes O, Van der Meer JW, Bleijenberg G: *Physical activity in chronic fatigue syndrome: assessment and its role in fatigue*. J Psychiatr Res 1997, 31:661–673.

46. Vercoulen J, Alberts M, Bleijenberg G: *De checklist individuele spankracht (CIS)*. Gedragstherapie 1999, 32:6.

47. Worm-Smeitink M, Gielissen M, Bloot L, van Laarhoven HWM, van Engelen BGM, van Riel P,
Bleijenberg G, Nikolaus S, Knoop H: The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength. J Psychosom Res 2017, 98:40–46.

48. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD: The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989, 46:1121–1123.

49. Cook KF, Bamer AM, Roddey TS, Kraft GH, Kim J, Amtmann D: A PROMIS fatigue short form for use by individuals who have multiple sclerosis. Qual Life Res 2012, 21:1021–1030.

50. Thandi G, Fear NT, Chalder T: A comparison of the Work and Social Adjustment Scale (WSAS) across different patient populations using Rasch analysis and exploratory factor analysis. J Psychosom Res 2017, 92:45–48.

51. Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol 2014, 14:58.

52. Parmelee PA, Thuras PD, Katz IR, Lawton MP: Validation of the Cumulative Illness Rating Scale in a geriatric residential population. J Am Geriatr Soc 1995, 43:130–137.

53. Arrindell WA, Ettema J: SCL–90: Handleiding bij een multidimensionele psychopathologie-indicator. Swets test publishers; 1986.

54. Derogatis LR: SCL–90-R: Administration, scoring and procedures manual for the R (revised) version and other instruments of the psychopathology rating scale series. Clinical Psychometric Research; 1992.

55. Johns MW: A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991, 14:540–545.

56. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A: The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med Rev 2016, 25:52–73.

57. Bishop M, Frain MP: The Multiple Sclerosis Self-Management Scale: revision and psychometric analysis. Rehabil Psychol 2011, 56:150–159.

58. Hughes AM, Chalder T, Hirsch CR, Moss-Morris R: An attention and interpretation bias for illness-
specific information in chronic fatigue syndrome. Psychol Med 2017, 47:853–865.

59. Heins MJ, Knoop H, Bleijenberg G: The role of the therapeutic relationship in cognitive behaviour therapy for chronic fatigue syndrome. Behav Res Ther 2013, 51:368–376.

60. Hatcher RL, Gillaspy JA: Development and validation of a revised short version of the Working Alliance Inventory. Psychotherapy Research 2006, 16:12–25.

61. Munder T, Wilmers F, Leonhart R, Linster HW, Barth J: Working Alliance Inventory-Short Revised (WAI-SR): psychometric properties in outpatients and inpatients. Clin Psychol Psychother 2010, 17:231–239.

62. Bangor A, Kortum PT, Miller JT: An empirical evaluation of the system usability scale. Intl Journal of Human–Computer Interaction 2008, 24:574–594.

63. Brooke J: SUS-A quick and dirty usability scale. Usability evaluation in industry 189, 194 (1996), 4–7. 1996.

64. Pereplechikova F, Kazdin AE: Treatment integrity and therapeutic change: Issues and research recommendations. Clinical Psychology: Science and Practice 2005, 12:365–383.

65. Di Blasi Z, Harkness E, Ernst E, Georgiou A, Kleijnen J: Influence of context effects on health outcomes: a systematic review. Lancet 2001, 357:757–762.

66. Fuertes JN, Toporovsky A, Reyes M, Osborne JB: The physician-patient working alliance: Theory, research, and future possibilities. Patient Educ Couns 2017, 100:610–615.

Tables
Table 1. Inclusion and exclusion criteria
Inclusion criteria	Exclusion criteria
a. Definitive diagnosis of MS confirmed by a neurologist | a. Depression (BDI > 4 and meeting criteria of depression as assessed by M.I.N.I.)
b. Severely fatigued (CIS20r-fatigue ≥ 35) | b. Primary sleep disorders (anamnesis)
c. Aged between 18 and 70 | c. Severe co-morbidity (CIRS item ≥ 3)
d. Ambulatory patients (EDSS ≤ 6) | d. Current pregnancy or having given birth in the past three months
e. No evident signs of an exacerbation, or corticosteroid treatment in the past three months | e. Pharmacological treatment for fatigue that was started in the past three months
f. No current infections (anamnesis) | f. Non-pharmacological therapies for fatigue that took place in the last three months
g. No anaemia (anamnesis) | g. Receiving CBT in the TREFAMS-CBT trial
h. A normal thyroid function (anamnesis)

Table 2. Participating treatment centres.

- Amsterdam University Medical Centers, location VU University Medical Center in Amsterdam
- Expert Center for Chronic Fatigue, Amsterdam University Medical Centers
- Maasstad Hospital in Rotterdam
- Rijndam rehabilitation center in Rotterdam
- Basalt rehabilitation center in Leiden
- Sint Maartenskliniek in Nijmegen
- Roessingh rehabilitation center in Enschede
- Klimmendaal rehabilitation center in Zutphen
- Canisius Wilhelmina hospital in Nijmegen
- Rehabilitation center Friesland in Sneek
- National MS center in Melsbroek (Belgium)
- Bravis hospital in Roosendaal and Bergen op Zoom

Table 3. CBT modules and assessment tools used for patient tailoring of fatigue treatment
1. **Treatment goals.**
Positive and concrete goals of the fatigue treatment are formulated by each patient. The goals consist of activities they would do when no longer severely fatigued.

2. **Sleep and rest.**
The importance of a regular sleep-wake cycle and a good sleep hygiene are discussed, and instructions are given how to improve this.

3. **Uncertainty about the consequences of MS as threatening.**
 In case of non-accepting cognitions of having MS and extreme fear of the future, the patient will be helped to gather realistic information about MS, to develop helping cognitions about MS and the personal future and to develop and maintain a more accepting attitude towards the illness and its consequences.

4. **Fatigue-related cognitions.**
 Sense of control over fatigue symptoms (self-efficacy), fatigue catastrophizing, somatic attributions and other dysfunctional thoughts are assessed. Patients are helped to change these cognitions in daily life.

5. **Focusing on fatigue.**
 Information about and consequences of focusing on fatigue will be discussed. Patients will practice with redirecting the focus of attention (away from the fatigue toward activity and other sensations).

6. **Physical activity regulation.**
 Depending on the activity pattern patients will learn to spread activities more evenly, sometimes to lower activities and followed by a systematical increase of regular physical activity. After patients have increased their physical activity level they increase other activities in order to reach the goals step by step.

7. **Regulation of social activity.**
 The relationship with reduction in social activities as well as the cognitions about these activities and fatigue will be assessed in relation to the set goals. Suggestions how to increase social activities and how to handle the problems that are experienced during social interactions (as a consequence of cognitive impairments or intolerance of noise) are given.

8. **Regulation of mental activity.**
 Patients are supported with regards to practicing and expanding mental activities such as computer use of reading. They learn how to deal with possible cognitive deficits such as concentration and memory problems.

9. **Social support.**
 Goal of this module is to support emotional independence of others, as far as fatigue is concerned. Unrealistic expectations of others and expressing boundaries are discussed.

10. **Unhelpful thoughts about pain.**
 Dysfunctional pain cognitions are challenged and more helpful pain cognitions will be installed.

Questionnaires and instruments

- All patients: Sickness Impact Profile subscale sleep and rest (≥ 60) [40, 41]
 Sleep log during one week
- Impact Event Scale (IES ≥ 20) [28], subscale Acceptance of the Illness Cognition Questionnaire (ICQ-acceptance ≤ 12) [29], Beck Depression Inventory-PC (>4) [32], Fear of Disease progression Questionnaire–short form (FoP-Q-SF ≥ 34) [33, 34], The Cognitive behavioural Responses to Symptoms Questionnaire (CBRSQ) [30, 31]:
 - Resting behaviour >14.3,
 - all-or-nothing behaviour >12.9,
 - symptom focusing >15.5,
 - Embarrassment >16.4,
 - Damage >20.5,
 - Fear avoidance >15.3
- modified Self Efficacy Scale for fatigue (≤ 19), Jacobson-Fatigue Catastrophizing Scale (≥ 16) [36]
- Illness Management Questionnaire (≥ 4) [37]
- Activity Pattern Interview
- Sickness Impact Profile (≥ 100) [41], subscale social functioning of the SF36 (≤ 65) [44]
- CIS20r-concentration subscale (score ≥ 18) [45]
- The Sonderen Social Support Inventory: subscale discrepancy (score ≥ 50), subscale negative interactions (score ≥ 14) [38]
- SF36 bodily pain subscale (score ≤ 40)
 Pain Catastrophizing Scale (score ≥ 16) [39]

Figures
Figure 1

Study design

TIMEPOINT**	Enrolment	Allocation	Time-points		
-t₁	0	T₀	t₂₀	t₃₉	T_{S2}

ENROLMENT:
- Eligibility screen X
- Informed consent X
- Allocation X

INTERVENTIONS:
- Face-to-face CBT
- Blended CBT
- Booster sessions
| ASSESSMENTS: |
|--------------|
| **Primary Outcome** |
| Fatigue: CIS20r subscale fatigue | X X X X |
| **Secondary Outcome** |
| CIS20r subscales, Motivation, Physical activity, Concentration problems | X X X X |
| PROMIS fatigue 8a | X X X X |
| Fatigue Severity Scale (FSS) | X X X X |
| Sickness Impact Profile (SIP8) | X X X X |
| Work and Social Adjustment Scale (WSAS) | X X X X |
| SF36 | X X X X |
| Other determinants |
| Symptom Checklist (SCL-90) | X X X X | | | |
| Multiple Sclerosis Self-management Scale | X X X X |
| Pittsburg Sleep Quality Index (PSQI) | X X X X |
| Sleeplog | X X X X |
| Epworth Sleepiness Scale (ESS) | X X X X |
| Interpretive bias task | X |
| Visual Probe Task | X |
| Treatment Preference | X |
| Treatment Outcome Expectations Questionnaire (TOEQ) | X |
| Working Alliance | X | X | X | X |
Instrument/Scale	T0	T20	T39	T52
Working Alliance Inventory (WAI-SR)			X	
Treatment Satisfaction			X	X
System Usability Scale (SUS)			X	X
Impact of Event Scale (IES)				X
Fear of disease progression-short form (FoPQ-SF)				X
Cognitive Behavioral Responses to Symptoms (CBRSQ)			X	X
Jacobson Fatigue Catastrophizing Scale			X	X
Pain Catastrophizing Scale (PCS)			X	
Illness Cognitions Questionnaire (ICQ)			X	X
Social Support List (SSL)			X	
Self-Efficacy Scale (SES-28)			X	X
Illness Management Questionnaire (IMQ)			X	X

TO = baseline; T20 = end of initial treatment; T39 = 39 weeks after start treatment; T52 = 52 w start treatment = Allocation to boosters or no boosters

Figure 2

Time points of all measurements
Figure 3

Illustration of a possible result of the non-inferiority trial

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SPIRIT_checklist.doc