DEVELOPMENT OF AN APPROACH FOR OPERATIVE CONTROL OVER RAILWAY TRANSPORT TECHNOLOGICAL SAFETY BASED ON THE IDENTIFICATION OF RISKS IN THE INDICATORS OF ITS OPERATION (p. 6-14)

Valerii Samsonkin
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-1521-2263

Oleksii Goretzkyi
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-2566-6120

Viacheslav Matisuk
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0003-2355-2564

Viktor Myronenko
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-5888-3867

Anatoliy Boinik
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-7773-9055

Viktor Merkulov
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-3898-6445

The paper addresses the mechanism of ensuring and management of traffic safety in railway traffic. It uses the actual statistics on the cases of violations of traffic safety along the railways of Ukraine over recent years. We have selected three departments for empirical research and along the railways of Ukraine over recent years. We have actual statistics on the cases of violations of traffic safety management of traffic safety in railway traffic. It uses the

Transport Technological Safety Based

Abstract and References. Control processes

DOI: 10.15587/1729-4061.2019.184162

of measures to prevent escalation into an emergency. We defined a risk as the most significant prerequisite for traffic accidents. Prerequisites are in the plane of ensuring of a transportation process, and they are systemic in nature.

The developed algorithm for operative management of technological safety and a procedure for support of making operative management decisions reduce the impact of risks. The algorithm is formalized and ready for automation. Automation involves application of 4.0 digital technologies. Application of the proposed approach will help to reduce an impact of the human factor, to increase efficiency and objectivity of management decisions for ensuring of safety, and to make safety financing targeted and effective. It is possible to apply the proposed approach to other modes of transportation.

Keywords: systematic approach, technological safety, management decision, detection of statistical pattern.

References

1. Festag, A. (2014). Cooperative intelligent transport systems standards in europe. IEEE Communications Magazine, 52 (12), 166–172. doi: https://doi.org/10.1109/mcom.2014.6979970

2. Sjoberg, K., Andres, P., Buburuzan, T., Brakemeier, A. (2017). Cooperative Intelligent Transport Systems in Europe: Current Deployment Status and Outlook. IEEE Vehicular Technology Magazine, 12 (2), 89–97. doi: https://doi.org/10.1109/mvt.2017.2670018

3. Li, Z., Dao, H., Patel, H., Liu, Y., Zhou, B. (2017). Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis. PROMET - Traffic&Transportation, 29 (2), 143–153. doi: https://doi.org/10.7307/ptt.v29i2.2041

4. Young, W., Sobhani, A., Lenné, M. G., Sarvi, M. (2014). Simulation of safety: A review of the state of the art in road safety simulation modelling. Accident Analysis & Prevention, 66, 89–103. doi: https://doi.org/10.1016/j.aap.2014.01.008

5. Astarita, V., Giofré, V. P. (2019). From traffic conflict simulation to traffic crash simulation: Introducing traffic safety indicators based on the explicit simulation of potential driver errors. Simulation Modelling Practice and Theory, 94, 215–236. doi: https://doi.org/10.1016/j.simpat.2019.03.003

6. Pešić, D., Vujanić, M., Lipovac, K., Antić, B. (2013). New method for benchmarking traffic safety level for the territory. Transport, 28 (1), 69–80. doi: https://doi.org/10.3846/16484142.2013.781539

7. Johnsson, C., Lareshyn, A., De Ceenynck, T. (2018). In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators. Transport Reviews, 38 (6), 765–785. doi: https://doi.org/10.1080/01446477.2018.1442888

8. Kamaluddin, N. A., Andersen, C. S., Larsen, M. K., Melt- ofte, K. R., Várhelyi, A. (2018). Self-reporting traffic crashes – a systematic literature review. European Trans-
9. Sokolovskij, E., Prentkovskis, O. (2013). Investigating traffic accidents: the interaction between a motor vehicle and a pedestrian. **Transport**, 28 (3), 302–312. doi: https://doi.org/10.3846/16484142.2013.831771

10. Clitan, A.-F. (2014). Sustainable Transport in Romania vs. European Union. Analysis of Road Transport System from the Sustainable Transport Perspective. Romanian Perspective. Transport Infrastructure, 3 (2), 37–45. doi: https://doi.org/10.1515/rjti-2015-0026

11. Bureika, G., Gaidamauskas, E., Kupinas, J., Bogdevičius, M., Steišiūnas, S. (2016). Modelling the assessment of traffic risk at level crossings of lithuanian railways. **Transport**, 32 (3), 282–290. doi: https://doi.org/10.3846/16484142.2016.1244114

12. Dezhkam, B., Mehrdad Eslami, S. (2017). A review of methods for highway-railway crossings safety management process. International electronic journal of mathematics education, 12 (3), 561–568.

13. Sever, D. (1970). New Approach to Determining Visibility Length on Protected Level Railroad Crossings. **PROMET - Traffic&Transportation**, 24 (6), 479–486. doi: https://doi.org/10.7307/ptt.v24i6.1203

14. Matsiuk, V. (2017). A study of the technological reliability of railway stations by an example of transit trains processing. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 18–24. doi: https://doi.org/10.15587/1729-4061.2017.91074

15. Santarremigia, F. E., Molero, G. D., Poveda-Reyes, S., Aguilar-Herrando, J. (2018). Railway safety by designing the layout of inland terminals with dangerous goods connected with the rail transport system. **Safety Science**, 110, 206–216. doi: https://doi.org/10.1016/j.ssci.2018.03.001

16. Mironenko, V. K., Kacman, M. D., Macuyk, V. I. (2016). Creation pre-conditions of decision support system on of consequences liquidation of railway emergency on the basis of network-centric control methods. Systemy obrobky informatsiyi: zbirnyk naukovykh prats, 5 (142), 182–188.

17. Katman, M. D., Myronenko, V. K., Matsiuk, V. I. (2015). Mathematical models of ecologically hazardous rail traffic accidents. Reliability: theory & applications, 10 (1), 28–39.

18. Chruzik, K., Wiśniewska, K., Fellner, R. (2017). Analysis of internal sources of hazards in civil air operations. **Scientific Journal of University of Technology. Series Transport**, 94, 27–35. doi: https://doi.org/10.20858/jsjutst.2017.94.3

19. Di Gravio, G., Patriarca, R., Costantino, F., Sikora, I. (2017). Safety Assessment for an ATM System Change: A Methodology for the ANSPs. **PROMET - Traffic&Transportation**, 29 (1), 99–107. doi: https://doi.org/10.7307/ptt.v29i1.2121

20. Skorupski, J. (2011). Dynamic methods of air traffic flow management. **Transport Problems**, 6 (1), 21–28.

21. Rios Insua, D., Alfaro, C., Gomez, J., Hernandez-Coronado, P., Bernal, F. (2019). Forecasting and assessing consequences of aviation safety occurrences. **Safety Science**, 111, 243–252. doi: https://doi.org/10.1016/j.ssci.2018.07.018

22. Corrigan, S., Kay, A., Ryan, M., Ward, M. E., Brazil, B. (2019). Human factors and safety culture: Challenges and opportunities for the port environment. **Safety Science**, 119, 252–265. doi: https://doi.org/10.1016/j.ssci.2018.03.008

23. Velychko, O., Gordiyenko, T. (2018). A comparative analysis of the assessment results of the competence of technical experts by methods of analytic hierarchy process and with using the Rasch model. Eastern-European Journal of Enterprise Technologies, 3 (3 (93)), 14–21. doi: https://doi.org/10.15587/1729-4061.2018.131459

24. Bochkovskii, A., Gogunskii, V. (2018). Development of the method for the optimal management of occupational risks. Eastern-European Journal of Enterprise Technologies, 3 (3 (93)), 6–13. doi: https://doi.org/10.15587/1729-4061.2018.132596

25. The European Parliament. Directive 2004/49/EU (Railway Safety Directive) (2004). European Union: Official Journal of the European Union, 24.

26. Polozhennia pro Systemu upravlinnia bezpekoю ruku poiz-div u Derzhavniy administratsi vyalizynchnoho transportu (2011). Zbirnyk normatyvnykh aktiv z bezpeky ruku ha zaliznychnomu transportu. Kyiv: DAZTU. 32–130.

27. International Electrotechnical Commission. IEC 61508-1: 2010. Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 1: General requirements (2010). International Electrotechnical Commission, 132.

28. Zoeteman, A., van Zelm, R. (2001). Developing a Cost-Effective Renewal Strategy for Railway Track on Conventional Networks. A practical example of a policy revision at Netherlands Railways. Proceedings of the 5-th World conference on Railway Research. Cologne.

29. Butko, T. V., Prokhorov, V. M., Chekhunov, D. M. (2018). Intelligent control of marshalling yards at transportation of dangerous goods based on multiobjective optimization. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5, 41–52. doi: https://doi.org/10.15802/stp2018/145470

30. Butko, T., Prokhorov, V., Chekhunov, D. (2017). Devising a method for the automated calculation of train formation plan by employing genetic algorithms. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 55–61. doi: https://doi.org/10.15587/1729-4061.2017.93276

31. Analiz stanu bezpeky ruku, polovit, sudnoplavstva v Ukraïni za 2012 rik (2013). Ministerstvo infrastruktury Ukraïni. Kyiv: Ministerstvo infrastruktury Ukraïni, 52. Available at: https://mtu.gov.ua/files/Avar_analiz_2012.Pdf

32. Analiz stanu bezpeky ruku, polovit, sudnoplavstva v Ukraïni za 2013 rik (2014). Ministerstvo infrastruktury Ukraïni. Kyiv: Ministerstvo infrastruktury Ukraïni, 117. Available at: https://mtu.gov.ua/files/Avar_analiz_2013.Pdf

33. Analiz stanu bezpeky ruku, polovit, sudnoplavstva ta avaryinyosti na transporti v Ukraïni za 2014 rik (2015). Deparment bezpeky na transporti Ministerstva infrastruktury Ukraïni. Kyiv: Ministerstvo infrastruktury Ukraïni, 124. Available at: https://mtu.gov.ua/files/AHALIPI%20a%202014%20pix.pdf
34. Analiz stanu bezpeky ruku, polotiv, sudnoplavstva ta avariynosti na transporti v Ukraini za 2015 rik (2015). Kyiv: Ministerstvo infrastruktury Ukrainy, 150. Available at: https://mtu.gov.ua/files/AAAA11%20-0%202015.pdf
35. Analiz stanu bezpeky ruku, sudnoplavstva ta avariynosti na transporti v Ukraini za 2016 rik. Available at: http://dsbt.gov.ua/sites/default/files/imce/Bezpeka_DTP/analiz_2017/analiz_averiynosti_2016.pdf
36. Analiz stanu bezpeky ruku, sudnoplavstva ta avariynosti na transporti v Ukraini za 2017 rik. Available at: http://dsbt.gov.ua/sites/default/files/imce/Bezpeka_DTP/2018/analiz_averiynosti_2017compressed.pdf
37. Dovidnyk основних показників роботи Регіональних філій PAT «Українська залізниця» (2005–2015 роки) (2016). Українська залізниця, Управління статистики. Kyiv: VTs «Придніпровія», 60.
38. Samsonkin, V. M., Martynshko, A. M. (2015). Praktichne zastosuvannia vyznachennia «vuzkykh mists» v ubezpecheni ruku na pidprijemstvakh zaliznychoho transportu dlia profilaktiky transportnykh podii. Zaliznychnyi transport Ukrainy, 1, 3–10.
39. Samsonkin, V., Druz’, V., Feldman, A. (2018). Applying of activities management based on self-learning. EUREKA: Physics and Engineering, 1, 29–38. doi: https://doi.org/10.21303/2461-4262.2018.00530

DOI: 10.15387/1729-4061.2019.185319
IMPROVEMENT OF THE ANTI-COLLISION METHOD “VELOCITY OBSTACLE” BY TAKING INTO CONSIDERATION THE DYNAMICS OF AN OPERATING VESSEL (p. 14-19)

Andriy Aleksishin
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-7629-9411

Aleksandr Vagushchenko
LLC Nordic Hamburg Shipmanagement Ltd., Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-2389-4305

Oleksandr Vagushchenko
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-0776-8595

Yevgeniy Kalinichenko
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-2898-7313

This paper has proposed an algorithm that accounts for the dynamics of an operating vessel within the Velocity Obstacle collision prevention method. This algorithm provides the basis for selecting joint maneuvers by course and speed with the assigned start for divergence with multiple “targets” by determining, applying a sorting method, a representative set of acceptable maneuver options. In order to employ the method of sorting, we have selected the ranges of change in the maneuver parameters (course and speed) and performed their sampling at a small enough step. One finds, for all pairs of discrete values of change in the course and speed, taking into consideration the dynamics of an operating vessel, a trajectory and duration of a maneuver, with determining, at the time it ends, the location of an operating vessel and “targets”, as well as it is to be established if it is accompanied by the intersection of “target” danger domains. If none of these domains is crossed, the maneuver option is considered acceptable. The totality of such joint changes in course and speed, derived from sorting, creates a set of permissible maneuver options. When finding this set, the dynamics of an operating vessel is taken into consideration simplistically. It is believed that the turns are performed at a constant angular speed, a change in the linear speed at braking can be represented by a power polynomial of second order, and changes in course and speed in the joint maneuver are independent. The “targets” involve circular danger domains whose center is shifted, from a “target”’s center of mass to the stern, by 1/3 of the domain’s radius. This radius has been amended to include the size of a “target” and an operating vessel.

To test the resulting algorithm, the software has been developed in the Borland Delphi programming language. Employing it for calculations has confirmed the operability of the algorithm. That enables the derivation, in real time, of a set of velocity vectors for divergence taking into consideration the dynamics of own vessel, which makes it possible to improve the accuracy of forecasting and the safety of calculated maneuvers. The use of displaced circular danger domains for “targets” makes it possible to take into account the unequal degree of risk when crossing their course along the bow and stern.

Keywords: collision prevention, sorting method, set of valid options, dynamics accounting algorithm.

References
1. Statheros, T., Howells, G., Maier, K. M. (2007). Autonomous Ship Collision Avoidance Navigation Concepts, Technologies and Techniques. Journal of Navigation, 61 (1), 129–142. doi: https://doi.org/10.1017/s037346330700447x
2. Kuwata, Y., Wolf, M. T., Zarzhitsky, D., Huntsberger, T. L. (2014). Safe Maritime Autonomous Navigation With COLREGS, Using Velocity Obstacles. IEEE Journal of Oceanic Engineering, 39 (1), 110–119. doi: https://doi.org/10.1109/joe.2013.2254214
3. Dasmas, B., Santos-Victor, J. (2009). Avoiding moving obstacles: the forbidden velocity map. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/rios.2009.5354210
4. Wilkie, D., van den Berg, J., Manocha, D. (2009). Generalized velocity obstacles. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: https://doi.org/10.1109/rios.2009.5354175
5. Pietrzynkowski, Z., Borkowski, P., Wołejza, P. (2012). NAVDEC - navigational decision support system on a sea-going vessel. Maritime University of Szczecin, 30 (102), 102–108.
6. Yong, X., Yixiong, H., Liwen, H. (2015). Multi-ship automatic collision avoidance control method based on speed obstacle. China maritime, 38 (3), 144–153.
This paper proposes a Boolean mathematical model of integer linear programming, which takes into consideration the structural features of containers, of a vessel, as well as rules for placing hazardous cargoes according to the IMDG Code (International Maritime Dangerous Cargoes Code), as well as a modified additive algorithm for solving a problem on compiling a load plan for a containership. To validate the mathematical model, we have chosen a classic algorithm that relies on the ideas from the general method of branches and boundaries. Given that the derived mathematical model for a problem on loading a containership by dangerous cargoes has a specific form, this algorithm was complemented with tests, which make it possible to reject some solutions without direct check.

The paper gives an example of solving the problem on placing cargoes in the hold taking into consideration the structural constraints for containers and the rules for placing dangerous cargoes in accordance with the IMDG Code, which was obtained through the modified additive algorithm.

Keywords: containerships, load plan, Boolean mathematical model, dangerous cargoes, additive algorithm.

Reference

1. Galierikova, A., Sosedova, J. (2018). Intermodalni prijevoz opasnih tereta. Naše More, 65 (3), 8–11. doi: https://doi.org/10.17818/nm/2018/3.8
2. Krupneyshie vladel’tsy “megamaksov” v mire. Available at: https://ports.com.ua/articles/krupneyshie-vladeltsy-megamaksov-v-mire
3. Ambrosino, D., Sciomachen, A., Tanfani, E. (2004). Stowing a containership: the master bay plan problem. Transportation Research Part A: Policy and Practice, 38 (2), 81–99. doi: https://doi.org/10.1016/j.tra.2003.09.002
4. Wang, L., Ni, M., Gao, J., Shen, Q., Jia, Y., Yao, C. (2019). The Loading Optimization: A Novel Integer Linear Programming Model. Enterprise Information Systems, 13 (10), 1471–1482. doi: https://doi.org/10.1080/17517575.2019.1631964
5. Parreño-Torres, C., Alvarez-Valdes, R., Parreño, F. (2019). Solution Strategies for a Multiport Container Ship Stowage Problem. Mathematical Problems in Engineering, 2019, 1–12. doi: https://doi.org/10.1155/2019/9029267
6. Kebedow, K. G., Oppen, J. (2018). Including Containers with Dangerous Goods in the Multi-Port Master Bay Planning Problem. MENDEL, 24 (2). doi: https://doi.org/10.13164/mendel.2018.2.023
7. Zeng, M., Low, M. Y. H., Hsu, W. J., Huang, S. Y., Liu, F., Win, C. A. (2010). Automated stowage planning for large containerships with improved safety and stability. Proceedings of the 2010 Winter Simulation Conference. doi: https://doi.org/10.1109/wsc.2010.5678873
8. Ambrosino, D., Sciomachen, A. (2015). Using a Bin Packing Approach for Stowing Hazardous Containers into Containerships. Springer Optimization and Its Applications, 1–18. doi: https://doi.org/10.1007/978-3-319-18899-7_1
9. Kamieniev, K. I., Kamienieva, A. V. (2018). Vykopystannia adytyvnoho alhopytmu dlia rozmishchennia nebezpechnykh

CONSTRUCTION OF A MATHEMATICAL MODEL AND A METHOD FOR ARRANGING HAZARDOUS CARGOES ON A CONTAINERSHIP

(p. 20-27)

Kyrylo Kamieniev
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-9200-9496

Alla Kamienieva
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-9970-9081

Mykola Tsybmal
National University “Odessa Maritime Academy”, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-1398-9279

Compiling a load plan for a containership, which takes into account the maximum number of factors, requires consideration of the structural constraints for containers and a vessel, restrictions on placement, as well as segregation rules for cases of dangerous cargoes.

Accounting for restrictions on placing containers with hazardous cargoes, the so-called IMO containers (IMO – International Maritime Organization), appears important given the current tendency towards the increased volumes of hazardous cargo transportation.

The proposed approach for solving the task on automating the compilation of a load plan aboard a containership implies dividing the task into two stages. At the first stage, one calculates the permissible arrangement of containers taking into consideration the structural limitations and compatibility of dangerous cargoes, at the second stage – one calculates safety parameters (stability, durability, etc.).
Abstract and References. Control processes

81

One of the essential, yet insufficiently studied, issues related to the implementation of onboard capacitive energy accumulators in the subway is determining their rational parameters (power and energy intensity). We have analyzed existing methods and approaches to choosing the parameters for onboard capacitive energy accumulators. Disadvantages for each method and approach have been defined. We have substantiated the need to devise an approach that would make it possible to fully account for the factors influencing actual conditions of a subway train operation. Existing methods and approaches to selecting rational parameters have deficiencies and do not take into consideration the factors of real operating conditions of a subway train. This paper has proposed a comprehensive approach that takes into account the specified factors of influence and makes it possible to choose rational parameters for an onboard capacitive energy accumulator based on two indicators: the weight and cost of an accumulation system. We have determined the rational parameters for an onboard capacitive energy accumulator for the predefined operating conditions of a subway train using a comprehensive approach. The amount of saved electric power due to the implementation of an onboard accumulator with rational parameters has been calculated. The research results could be used when designing, constructing, and introducing the subway rolling stock with an onboard capacitive energy accumulator, as well as during an expert estimation of the amount of energy saved.

Keywords: onboard capacitive energy accumulator, subway train, regenerative braking, accumulation system.

References

1. Sablin, O. (2014). Study of the efficiency of the electric energy recovery process in the subway. Eastern-European Journal of Enterprise Technologies, 6 (8 (72)), 9–13. doi: https://doi.org/10.15587/1729-4061.2014.30483
2. Zhemerov, G. G., Ilyina, N. O., Tugay, D. V. (2014). Reduction of energy losses in subway rolling-stock energy supply systems using energy-consuming storages. Tekhnichna elektrodynamika, 5, 137–138.
3. Shevlyugin, M. V., Zheltov, K. S. (2008). On reduction of electric power consumption in Moscow underground by application of capacitive energy storage devices. Nauka i tehnika transporta, 1, 15–20.
4. Ciccarelli, F., Iannuzzi, D., Tricoli, P. (2012). Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transportation Research Part C: Emerging Technologies, 24, 36–49. doi: https://doi.org/10.1016/j.trc.2012.02.001
5. Allegre, A.-L., Bouscayrol, A., Delarue, P., Barrade, P., Chatot, E., El-Fassi, S. (2010). Energy Storage System With Supercapacitor for an Innovative Subway. IEEE Transactions on Industrial Electronics, 57 (12), 4001–4012. doi: https://doi.org/10.1109/tie.2010.2044124
6. Ciccarelli, F. (2014). Energy management and control strategies for the use of supercapacitors storage technologies in urban railway traction systems. PHD School in Industrial Engineering, 330.
7. Sznásy, I. (2009). New energy management of capacitive energy storage in metro railcar by simulation. Acta Technica Jaurinensis, 2 (1), 117–131.
8. Mensah-Darkwa, K., Zequine, C., Kahol, P., Gupta, R. (2019). Supercapacitor Energy Storage Device Using Biowastes:
A Sustainable Approach to Green Energy. Sustainability, 11 (2), 414. doi: https://doi.org/10.3390/su11020414

9. Limansky, S. S. (2010). Pat. No. RU 2436690 C2 RF. Sposob dvizheniya elektricheskogo transportnogo sredstva na rekuperiruyanomy elektroenergii i ustrusstvo dlya ego osushchestvleniya. MPK B60L 7/12. No. 2010104636/11; declared: 11.02.2010; published: 20.12.2011. Bul. No. 35, 18.

10. Eliseev, A. D., Fursov, S. A. (2015). Superkondensatory Nesscap povyshayut energoeffektivnost’ elektropriprovodov. Elektromy komponenty, 2, 80–83.

11. Kossov, E. E., Nikipely, S. O. (2010). Primenenie nakopitelya maloy energoemkosti v silovoy tseni teplovoza. Visnyk Skhidnoukrainskogo nats. un-tu im. V. Dalia, 5 (147), 246–248.

12. Shchuruv, N. I., Shcheglov, K. V., Shtang, A. A. (2008). Primenenie nakopiteley energii v sistemah elektricheskiy tyagi. SBornik nauchnyh trudov NGTU, 1 (51), 99–104.

13. Riabov, E. S. (2015). Defining the parameters of an energy storage for an electrorolling stock with asynchronous traction drive under the limited current in the traction network. Visnyk Nacionalnoho technichnoho universytetu «Kharkivskyi politekhchnychnyi instytut», 6 (1115), 132–137.

14. Rybalko, A. Ya., Dybrin, S. V. (2008). Vybor emkosti nakopitelya energii dlya obespecheniya snizheniya maksimum potreblyaemoy moshchnosti. Gorniy informatsionno-analiticheskii byulleten’ (nauchno- tehnicheskiy zhurnal), 8, 356–361.

15. Kostin, N. A., Nikitenko, A. V. (2014). Avtonomnost’ rekuperativnogo tormozheniya – osnova nalezhanoy energoeffektivnogo rekuperatsii na elektropodvizhnom sostave postoyannogo toka. Zaliznychnyi transport Ukrainy, 3, 15–23.

16. Sulym, A. O., Fomin, O. V., Khozia, P. O., Mastepan, A. G. (2018). Theoretical and practical determination of parameters on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Nacionalnoho Hirnychoho Universytetu, 5, 79–87. doi: https://doi.org/10.29202/nvung/2018-5/8

17. Mukha, A. M., Kostin, M. O., Kurylenko, O. Y., Tsyplia, H. V. (2017). Enhancing the operational efficiency of direct current drive based on use of supercondenser power storage units. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (71), 48–60. doi: https://doi.org/10.15802/stp2017/114624

18. Gorobchenko, O., Fomin, O., Kovalenko, V. (2018). Study of the influence of electric transmission parameters on the efficiency of freight rolling stock of direct current. Eastern-European Journal of Enterprise Technologies, 1 (3 (91)), 60–67. doi: https://doi.org/10.15587/1729-4061.2018.121713

19. Myatezh, A. V., Yaroslavtsev, M. V. (2013). Oprodelenie energoemkosti bortovogo bufernogo kondensatornogo nakopitelya energii dlya gorodskogo elektricheskogo transporta. Transport Rossiyiskoy Federatsii, 4 (47), 62–65.

20. Fomin, O., Sulym, A., Kuloitvskyi, I., Khozia, P., Ishchenko, V. (2018). Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 63–71. doi: https://doi.org/10.15587/1729-4061.2018.126080

21. Bayryyeva, L. S., Prokopovich, A. V. (2004). Teoriya elektricheskoy tyagi. Moscow: Izdatel’stro MEI, 40.

22. Rozenfel’d, V. E., Isaev, I. P., Sidorov, N. N., Ozerov, M. I.; Isaev, I. P. (Ed.) (1995). Teoriya elektricheskoy tyagi. Moscow: Transport, 294.

23. Sulim, A. A. (2015). Povyshenie effektivnosti energoobespecheniya podvizhnogo sostava metropolitena s sistemami rekuperatsii putem primeneniya emkostnykh nakopiteley energii. Kyiv, 188.

24. SOU MPP 45.060-253:2008. Vahony metropolitena. Zahteli tekhnichni vymohy (2008). Kyiv: Ministerstvo promyslovoi polityky Ukrainy, 29.

25. Tkachenko, V., Sapronova, S., Kulbovskiy, I., Fomin, O. (2017). Research into resistance to the motion of railroad undercarriages related to directing the wheelsets by a rail track. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 65–72. doi: https://doi.org/10.15587/1729-4061.2017.109791

DOI: 10.15587/1729-4061.2019.183422

COSTEFFECTIVENESS IN MATHEMATICAL MODELLING OF THE POWER UNIT CONTROL
(p. 39–48)

Oleksandr Popov
Kharkiv State Academy of Physical Culture,
Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-0550-7890

Nataliia Shmatko
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-4969-252X

Pavlo Budanov
Ukrainian Engineering Pedagogics Academy, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-1542-9390

Iryna Pantielieieva
Ukrainian Engineering Pedagogies Academy, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-2960-2358

Kostiantyn Brovko
Kharkiv Petro Vasyleenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-9669-9316

The authors of the study have analysed the criteria for increasing cost-effectiveness in the operation of power-generating equipment of power units at TPPs and NPPs. The existing methods of calculating the cost-effectiveness generating equipment of power units at TPPs and NPPs. The existing methods of calculating the cost-effectiveness generating equipment of power units at TPPs and NPPs.
plant is the compulsory checking to detect a low level of information reliability. It is proved that reliability of the power unit technological equipment substantially depends on the effectiveness of emergency automated control when an unpermitted shutdown of a power unit occurs due to false positives. It is shown that the cause of false positives is low reliability of the data on the power unit technological process parameters. It is revealed that unforeseen unpermitted shutdown of a power unit and a decrease in the energy consumer load leads to significant economic and material losses, and, consequently, to a decrease in economic efficiency of automated control of a power unit. It is shown that the existing economic models do not take into account the financial and material costs that occur due to unpermitted shutdown of the power unit and decrease in the energy consumer load in case of false positives in real time. The authors of the study have devised a unified integrated economic and mathematical model, which allows calculating the economic effect taking into account changes in the reliability of the technological equipment, due to the timely prompt detection of false positives and low-reliability data. The proposed emergency modular unit coupled with modules for detecting and control of false alarms, which takes into account static and operational economic components, allows calculating the economic effect based on the devised unified integrated economic and mathematical model. The authors of the study give practical recommendations for applying the economic module in the hardware and software complex of the power unit, which allows calculating the economic effect on the basis of static data coming from the data memory and current data from the power unit.

Keywords: power unit abnormal mode, efficiency criteria, methods for calculating the economic effect.

References

1. Duel', M. A., Duel', A. L. (2007). Avtomatizatsiya analiza tehniko-ekonomicheskikh pokazateley (TEP) energooborudovaniya TES. Energetika i elektrifikatsiya, 12, 35–41.
2. Duel', M. A., Shchur, Yu. A. (2009). Kriterii optimall’nogo upravleniya energoblokom TES v nestatsionarnykh rezhimah. Enerhetyka ta elektryfikatsiya, 4, 3–8.
3. Duel, M. O., Kanjuk, G. I., Fursova, T. N., Bliznitshenko, E. N. (2013). Automation of determination of energy features of energy equipment. Energosberezhenie. Energetika. Energosaudit, 2, 13–19.
4. Duel', M. A. (2009). Kriterii efektivnosti sistem avtomatizirovannogo upravleniya energobloki TES i AES. Enerhetyka ta elektryfikatsiya, 12, 45–51.
5. Budanov, P. F., Brovko, K. Yu., Vasuchenko, P. V. (2016). Improve the reliability of power facilities functioning based on improvements software and hardware complex automated subsystem of emergency and preventative protection. Zhurnal naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, 3 (48), 161–167.
6. Stoppato, A., Mirandola, A., Meneghetti, G., Lo Casto, E. (2012). On the operation strategy of steam power plants working at variable load: Technical and economic issues. Energy, 37 (1), 228–236. doi: https://doi.org/10.1016/j.energy.2011.11.042
7. Le Duy, T. D., Vasseur, D. (2018). A practical methodology for modeling and estimation of common cause failure parameters in multi-unit nuclear PSA model. Reliability Engineering & System Safety, 170, 159–174. doi: https://doi.org/10.1016/j.ress.2017.10.018
8. Budanov, P. F., Brovko, K. Yu. (2016). Improving the reliability of process control of power facilities emergency way to identify features in non-standard modes functioning on the basis of fractal method of detection. Information Processing Systems, 7 (144), 175–180.
9. Kuchorenskova, A. N. (2015). Economic efficiency calculation procedure for the automatic water-level regulating invariant system in the boiler shell. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskikh obedineniy SNG, 6, 62–73.
10. Duel', M. A., Kanyuk, G. I. (2011). Automation process and its impact on efficiency and CHP power generation nuclear power plant. Eastern-European Journal of Enterprise Technologies 5 (8 (53)), 15–22. Available at: http://journals.uran.ua/ecej/article/view/1272/1173
11. Tendel, I. A., Foros, J., Kilskar, S. S., Hokstad, P. Jaatun, M. G. (2018). Interdependencies and reliability in the combined ICT and power system: An overview of current research. Applied Computing and Informatics, 14 (1), 17–27. doi: https://doi.org/10.1016/j.aci.2017.01.001
12. AlOthaim, A., Mertens, N., Starklof, R., Lanz, T., Heinze, C., Epble, B. (2017). Progress in dynamic simulation of thermal power plants. Progress in Energy and Combustion Science, 59, 79–162. doi: https://doi.org/10.1016/j.pecs.2016.11.001
13. Wahllström, B. (2018). Systemic thinking in support of safety management in nuclear power plants. Safety Science, 109, 201–218. doi: https://doi.org/10.1016/j.ssci.2018.06.001
14. Kulakov, G. T., Kravchenko, V. V., Makosko, Yu. V. (2013). Methodology for calculation of economic efficiency in implementation of TPP automatic control innovation systems (Part 2). Nauka i tehnika, 2, 77–82.
15. Aslanyan, A. Sh., Arakalyan, E. K., Pan’ko, M. A. (2009). K otsenke tehniko-ekonomicheskoy effektivnosti razrabotki i vnedeniya ASU TES, realizovannyh na baze programmno-tehnickich kompleksov Vestnik MEI, 1, 99–106.
16. Bortoni, E. C., Bastos, G. S., Souza, L. E. (2007). Optimal load distribution between units in a power plant. ISA Transactions, 46 (4), 533–539. doi: https://doi.org/10.1016/j.isatra.2007.03.003
17. Bao, T., Liu, S. (2016). Quality evaluation and analysis for domain software: Application to management information system of power plant. Information and Software Technology, 78, 33–65. doi: https://doi.org/10.1016/j.infsof.2016.05.007
18. De Oliveira-De Jesus, P. M., Antunes, C. H. (2018). Economic valuation of smart grid investments on electricity markets. Sustainable Energy, Grids and Networks, 16, 70–90. doi: https://doi.org/10.1016/j.segan.2018.05.003
DEVELOPMENT OF A METHOD FOR DETERMINATION OF SHIP’S LOADING TIME DISTRIBUTION UNDER IRREGULAR CARGO ARRIVAL (p. 49-56)

Mykhaylo Postan
Odessa National Maritime University, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-4891-3063

Iryna Saveleva
Odessa National Maritime University, Odessa, Ukraine
ORCID: http://orcid.org/0000-0002-6492-2130

Victoria Stadnik
Odessa National Maritime University, Odessa, Ukraine
ORCID: http://orcid.org/0000-0003-2930-6532

A method for determining the time distribution function of ship berthing under loading under the direct option of loading operations (i.e., without the warehouse) in conditions of irregular cargo delivery by rail is developed. In order to take into account uncertainty and risk factors (random arrivals of loaded cars at the terminal and loading volume of cars), it is proposed to use linear Markov processes that describe the dynamics of train arrival and cargo loading on the ship. It is assumed that the intervals between adjacent arrivals of loaded cars at the terminal are exponential random variables. Cargo transshipment from cars on the ship is carried out at a constant rate. The cases when the volume of cargo in cars is a random or constant variable are considered in detail. To find the probability densities and state probabilities of the corresponding Markov process, a system of linear differential equations is derived. A solution to this system of equations in terms of the Laplace transform is found, in particular, the distribution function of the ship berthing time, taking into account possible interruptions while waiting for cargo delivery by cars. For the case of a constant volume of cargo on cars, the corresponding distribution function of the ship berthing time and its asymptotics for a large deadweight tonnage are also found using the central limit theorem. Based on the results obtained, the problem of finding a criterion of expediency of insuring the risk of exceeding the laytime (contractual) of the ship is formulated. It is proved that the results obtained are important for the theory, as well as for the practice of the port operator and shipping companies, since they can reduce the risk of exceeding the ship berthing time under loading operations. A numerical illustration of the proposed method is given.

Keywords: port terminal, ship, loaded cars, laytime exceeding risk, risk insurance.

References
1. Postan, M. Ya., Korniyets, T. E., Moskaluk, L. V. (2013). On some of the port logistics problems related to optimization of spare parts supply for handling equipment stock. Vestnik Astrahanskogo gosudarstvennogo tehnicheeskogo universiteta. Seriya: Morskaya tehnika i tehnologiya, 2, 174–183.
2. Postan, M., Kushnir, L. (2016). A method of determination of port terminal capacity under irregular cargo delivery and pickup. Eastern-European Journal of Enterprise Technologies, 4 (3 (82)), 30–37. doi: https://doi.org/10.15587/1729-4061.2016.76285
3. Mathisen, T. A., Hanssen, T.-E. S. (2014). The Academic Literature on Intermodal Freight Transport. Transportation Research Procedia, 3, 611–620. doi: https://doi.org/10.1016/j.trpro.2014.10.040
4. SteadieSeifi, M., Dellaert, N. P., Nuijten, W., Van Woensel, T., Raoufi, R. (2014). Multimodal freight transportation planning: A literature review. European Journal of Operational Research, 233 (1), 1–15. doi: https://doi.org/10.1016/j.ejor.2013.06.055
5. Kruk, Y., Postan, M. (2016). Development and analysis of dynamic optimization model of transport flows interaction at port terminal. Eastern-European Journal of Enterprise Technologies, 1 (3 (79)), 19–23. doi: https://doi.org/10.15587/1729-4061.2016.61154
6. Rodrigues, R., Rangel, J. J. de A. (2016). Analysis of ship arrival functions in discrete event simulation models of an iron ore export terminal. Pesquisa Operacional, 36 (1), 45–66. doi: https://doi.org/10.1590/0101-7438.2016.036.01.0045
7. Wanke, P. (2011). Ship-berth link and demurrage costs: evaluating different allocation policies and queue priorities via simulation. Pesquisa Operacional, 31 (1), 113–134. doi: https://doi.org/10.1590/s0101-74382011000100008
8. Gasnikov, A. V., Klepov, S. L., Nurminskiy, E. A., Holodov, Ya. A., Shamray, N. B. (2010). Vvedenie v modelirovanie transportnykh potokov. Moscow: Izd-vo MFTI, 363.
9. Gnedenko, B. V., Kovalenko, I. N. (2005). Vedenie v teoriyu massovogo obsluzhivaniya. Moscow: KomKniga, 400.
10. Feller, W. (1984). Vvedenie v teoriyu veroatnostey i ee prilozheniya. Vol. 2. Moscow: Mir, 738.
11. Shiff, J. L. (1999). The Laplace Transform. Springer, 236. doi: https://doi.org/10.1007/978-0-387-22757-3

DOI: 10.15587/1729-4061.2019.184508

ESTABLISHING PATTERNS OF CHANGE IN THE INDICATORS OF USING MILK PROCESSING SHOPS AT A COMMUNITY TERRITORY
(p. 57-65)

Anatoliy Tryhuba
Lviv National Agrarian University, Dublyany, Ukraine
ORCID: http://orcid.org/0000-0001-8014-5661

Mykola Rudynets
Lviv National Technical University, Lutsk, Ukraine
ORCID: http://orcid.org/0000-0002-0793-5963
It was established that there are two periods of milk processing – intensive one (from day 119 to day 301 within a calendar year) and non-intensive one (from day 1 to day 118 and from day 302 to day 365 within a calendar year) based on forecasting daily volumes of milk supplied for processing from communities’ farms over a calendar year. It is necessary to organize operation of shops in two shifts during the intensive period of milk processing, and in one shift during the non-intensive one. It was established that the laws of Weibull distribution describe daily volumes of milk processing. Their statistical characteristics during the intensive and non-intensive periods are: coefficient of variation is 0.65 and 0.62; shape parameter is 1.56 and 1.64, respectively. The confidence interval is within 509...6,995 liters.

We studied changing production conditions and identified trends in changes in the parameters of using milk processing shops at community territories. They underlie the determination of cost indicators. The results of this study will be useful for the identification of a configuration of projects to create milk production shops at a community territory.

Keywords: functioning, shop, milk processing, efficiency, planning, modeling, stochasticity, production conditions.

References

1. Tryhuba, A., Boyarchuk, V., Tryhuba, I., Boyarchuk, O., Ftoma, O. (2019). Evaluation of Risk Value of Investors of Projects for the Creation of Crop Protection of Family Dairy Farms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67 (5), 1357–1367. doi: https://doi.org/10.1016/j.actaun.2019.06.037
2. Liotta, G., Stecca, G., Kaihara, T. (2015). Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, 351–365. doi: https://doi.org/10.1016/j.ijpe.2014.12.016
3. Petraška, A., Čižiūnienė, K., Prentkovskis, O., Jarašiūnienė, A. (2018). Methodology of Selection of Heavy and Oversized Freight Transportation System. Transport and Telecommunication Journal, 19 (1), 45–58. doi: https://doi.org/10.2478/ttj-2018-0005
4. Petraška, A., Čižiūnienė, K., Prentkovskis, O., Jarašiūnienė, A. (2013). Optimal road route selection criteria system for oversized goods transportation. The Baltic Journal of Road and Bridge Engineering, 8 (1), 19–24. doi: https://doi.org/10.3846/bjrbe.2013.03
5. Bula, G. A., Prodhon, C., Gonzalez, F. A., Añsar, H. M., Velasco, N. (2017). Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation. Journal of Hazardous Materials, 324, 472–480. doi: https://doi.org/10.1016/j.jhazmat.2016.11.015
6. Doumiati, M., Erhart, S., Martinez, J., Senaye, O., Dugard, L. (2014). Adaptive control scheme for road profile estimation: application to vehicle dynamics. IFAC Proceedings Volumes, 47 (3), 8445–8450. doi: https://doi.org/10.3182/20140824-6-za-1003.00986
8. Gardziejczyk, W., Zabicki, P. (2017). Normalization and variant assessment methods in selection of road alignment variants – case study. Journal of civil engineering and management, 23 (4), 510–523. doi: https://doi.org/10.3846/13923730.2016.1210223

9. Tryhuba, A., Ftoma, O., Tryhuba, I., Boyarchuk, O. (2019). Method of quantitative evaluation of the risk of benefits for investors of fodder-producing cooperatives. 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 55–58.

10. Ratushny, R., Tryhuba, A., Bashynsky, O., Ptashnyk, V. (2019). Development and Usage of a Computer Model of Evaluating the Scenarios of Projects for the Creation of Fire Fighting Systems of Rural Communities. 2019 Xth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT). doi: https://doi.org/10.1109/elit.2019.8892320

11. Andrès, L., Padilla, E. (2015). Energy intensity in road freight transport of heavy goods vehicles in Spain. Energy Policy, 85, 309–321. doi: https://doi.org/10.1016/j.enpol.2015.06.018

12. Ratushnyi, R., Khmel, P., Tryhuba, A., Martyn, E., Prydatko, O. (2019). Substantiating the effectiveness of projects for the construction of dual systems of fire suppression. Eastern-European Journal of Enterprise Technologies, 4 (3 (100)), 46–53. doi: https://doi.org/10.15587/1729-4061.2019.175275

13. Tryhuba, A., Pavlikha, N., Rudynets, M., Tryhuba, I., Grabovets, V., Skalyga, M. et. al. (2019). Studying the influence of production conditions on the content of operations in logistic systems of milk collection. Eastern-European Journal of Enterprise Technologies, 3 (3 (99)), 50–63. doi: https://doi.org/10.15587/1729-4061.2019.171052

14. Benekos, I., Diamantidis, D. (2017). On risk assessment and risk acceptance of dangerous goods transportation through road tunnels in Greece. Safety Science, 91, 1–10. doi: https://doi.org/10.1016/j.ssci.2016.07.013

15. Newnam, S., Goode, N., Salmon, P., Stevenson, M. (2017). Reforming the road freight transportation system using systems thinking: An investigation of Coronial inquests in Australia. Accident Analysis & Prevention, 101, 28–36. doi: https://doi.org/10.1016/j.aap.2017.01.016

16. Tryhuba, A., Zachko, O., Grabovets, V., Berladyn, O., Pavlova, I., Rudynets, M. (2018). Examining the effect of production conditions at territorial logistic systems of milk harvesting on the parameters of a fleet of specialized road tanks. Eastern-European Journal of Enterprise Technologies, 5 (3 (95)), 59–70. doi: https://doi.org/10.15587/1729-4061.2018.142227

17. Park, S.-W. (2004). Modeling of deformational characteristics in unbound granular geomaterials. KSCE Journal of Civil Engineering, 8 (3), 281–285. doi: https://doi.org/10.1007/bf02836010

18. Pauer, G. (2017). Development Potentials and Strategic Objectives of Intelligent Transport Systems Improving Road Safety. Transport and Telecommunication Journal, 18 (1), 15–24. doi: https://doi.org/10.15115/ttj-2017-0002

19. Petraška, A., Čižúnienė, K., Jarašúnienė, A., Maruschak, P., Prentkovskis, O. (2017). Algorithm for the assessment of heavyweight and oversize cargo transportation routes. Journal of Business Economics and Management, 18 (6), 1098–1114. doi: https://doi.org/10.3846/16111699.2017.1334229

20. Tryhuba, A., Bashynsky, O. (2019). Coordination of dairy workshops projects on the community territory and their project environment. 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 51–54.

21. Bartuška, L., Bíba, V., Jeřábek, K. (2016). Verification of Methodical Procedure for Determining the Traffic Volumes Using Short-term Traffic Surveys. Procedia Engineering, 161, 275–281. doi: https://doi.org/10.1016/j.proeng.2016.08.553

22. Maitah, M., Hodrab, R., Malec, K., Shanab, S. A. (2015). Exploring the Determinants of Consumer Behavior in West Bank, Towards Domestic and Imported Dairy Products. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (1), 355–368. doi: https://doi.org/10.11118/actaun201563010355

23. Barlowska, J., Litwińczuk, Z., Kowal, M. (2014). Influence of Production Season and Lactation Stage on the Technological Suitability of Milk from Cows of Various Breeds Fed in the TMR System. Annals of Animal Science, 14 (3), 649–661. doi: https://doi.org/10.2478/aoas-2014-0039

24. Bandyopadhyay, P., Khamrui, K. (2007). Technological advancement on traditional indian desicated and heat-acid coagulated dairy products. Australian Journal of Dairy Technology, 62 (2), 4–10.

DOI: 10.15587/1729-4061.2019.184376

DEVELOPMENT OF A COMPUTER MODEL FOR EVALUATING THE ALTERNATIVE OPTIONS OF AN INVESTMENT AND CONSTRUCTION PROJECT UNDER CONDITIONS OF UNCERTAINTY AND RISK (p. 66-76)

Natalia Sizova
Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-8950-8200

Olha Starkova
Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-9034-8830

Ganna Solodovnik
Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-6323-5083

Natalya Dolgova
Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-8950-8200
The paper reports the proposed method of quantitative analysis of risks in investment construction projects, which uses a probabilistic approach. The specific feature of this approach is a multistage evaluation process and complex accounting of indicators for decision making regarding the investment attractiveness of sites under conditions of uncertainty.

Based on this approach, an automated computer model for evaluating investment attractiveness of construction projects was developed. The indicators of investment efficiency and risks for various options of construction project implementation were explored, the alternative for a project development was selected and the best investment project was determined with the use of the computer model.

The reliability of the results was proved by studying the stability of decisions and by their errors.

The results were obtained in order to improve the efficiency of managerial decisions in the sector of investment in construction sector of economy. The developed computer model makes it possible, based on statistical data of demand for residential real estate, to perform a quantitative analysis of risks of investment in construction projects, to make a choice of a construction project by profitability and risk indicators, as well as by the criteria of decision making under conditions of risk and uncertainty.

Numerical experiments with a computer model showed the need to invest in additional research in order to clarify the environmental parameters and to invest in the construction of a multi-storey building.

The obtained results are relevant due to a high degree of turbulence in the environment in the construction sector, as well as in connection with the importance of attracting investments from the position of competitiveness. The computer model developed in the process of research is universal regarding the type of a residential real estate construction object.

Keywords: quantitative analysis of risks, decision tree, investment project, decision making under conditions of risk.

References

1. Vitlinskyi, V. V. (2004). Ryzykolohiya v ekonomitsi ta pidpryjemstvstvi. Kyiv: KNEU, 480.
2. Vitlinskyi, V. V., Verchenko, P. S. et al. (2000). Ekonomichni ryzyk. Kyiv: KNEU, 120.
3. Yaremkо, I. Y. (2005). Metody otsinky budivelnykh kontraktiv v umovakh ekonomichnoi integratsiyi. Naukovyi zapisky, 8, 34–39.
4. Bartashevska, Yu. M. (2014). Otsinka ryzyku investytisynykh proektiv pidpryiemstva v protsesi ikh realizatsiyi. Yevropeyskiy vektor modernizatsiyi: kreatyvist, prozorist ta stalyi rozvytok, 2, 15–21.
5. Koshechkin, S. A. Kontseptsiya riska investitsionnogo proekta. Korporativnyy menedzhment. Available at: http://www.zfin.ru/finanalysis/koshechkin.shtml
6. Kazak, A. Yu., Slepushina, Yu. E. (2013). Sovremennye metody otsenki proektovhix riskov: traditsii i innovatsii. Vestnik UrFU, Seryia ekonomika i upravlenie, 2, 13–36.
7. Doroshenko, M. (2012). Peculiarities of investment project risk calculation. Visnyk Kyivskogo natsionalnoho torhovello-konomichnoho universytetu, 5, 66–75.
8. Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22 (1), 23–36. doi: https://doi.org/10.3233/rda-150115
9. Molins, J., Vives, E. (2016). Model risk on credit risk. Risk and Decision Analysis, 6 (1), 65–78. doi: https://doi.org/10.3233/rda-160112
10. Guégan, D., Hassani, B., Li, K. (2017). Measuring risks in the tail: The extreme VaR and its confidence interval. Risk and Decision Analysis, 6 (3), 213–224. doi: https://doi.org/10.3233/rda-170128
11. Osadchaya, N. A., Murzin A. M., Torgayan, E. E. (2017). Assessment of Risks of Investment and Construction Activities: Russian Practice. Journal of advanced research in law and economics, 8 (2), 529–544.
12. Shelepov, A. (2018). MDBs’ Approaches to Mobilizing Private Investment for SDGs: Opportunities and Risks. International Organisations Research Journal, 13 (4), 144–159. doi: https://doi.org/10.17323/1996-7845-2018-04-07
13. Olikhov, V. (2017). Quantitative description of financial transactions and risks. ACRN Oxford Journal of Finance and Risk Perspectives, 6 (2), 41–54.
14. Mohamed Ihab, K. I. R. A. (2017). Pricing implications of assessing risk of relative wealth outcomes. ACRN Oxford Journal of Finance and Risk Perspectives, 6 (2), 55–76.
15. Garnier, J., Papanicolaou, G., Yang, T.-W. (2017). A risk analysis for a system stabilized by a central agent. Risk and Decision Analysis, 6 (2), 97–120. doi: https://doi.org/10.3233/rda-160117
16. Belas, J., Vojtovič, S., Ključnikov, A. (2016). Microenterprises and Significant Risk Factors in Loan Process. Economics & Sociology, 9 (1), 43–59. doi: https://doi.org/10.14254/2071-789x.2016/9-1/3
17. Aliu, F., Pavelkova, D., Dehning, B. (2017). Portfolio risk-return analysis: The case of the automotive industry in the Czech Republic. Journal of International Studies, 10 (4), 72–83. doi: https://doi.org/10.14254/2071-8330.2017/10-4/5
18. Karas, M., Srbová, P. (2019). Predicting bankruptcy in construction business: Traditional model validation and formulation of a new model. Journal of International Studies, 12 (1), 283–296. doi: https://doi.org/10.14254/2071-8330.2019/12-1/19
19. Solodovnyk, H. V. (2018). Modeliuvannia pryiniattia bahaetoapnych rishen. Європейський вектор модернізації: кратувшин, прозорист та сталý rovytok, 207–220.
20. Novozhylova, M. V., Solodovnyk, H. V. (2016). Modeliuvannia upravlinnia komertsnyym ryzykom. Khrkiv: KnіUBA, 81.
21. Rynok pervichnogo zhil'ya Har'kova v 2018 godu. Available at: http://idcmproject.com.ua/novostrojki_itogi_2018/
22. Vitlinskyi, V. V. (2010). Quantitative measurement of the level of economic risk. Visnyk ZhDTU. Seriya: Ekonomichni nauky, 1 (51), 159–162. Available at: http://ven.ztu.edu.ua/article/view/69230/64976
23. Vysochina, M. V. (2009). Analiz metodiv otsiniuvannia efektyvnosti upravlinnia diyalnistiu pidpryiemstva. Kul'tura narodov Prichernomor'ya, 161, 86–89.
24. Sizova, N. D., Solodovnik, G. V., Perun, M. U. (2016). Analysis of the methods of assessment of investment appeal of construction objects in term of uncertainty and risk. Young Scientist, 10 (37), 417–420.
25. Labsker, L. G., Yanovskaya, E. V. (2002). Obshchaya metodika konstruirovaniya kriteriev optimal'nosti resheniy v usloviyah riska i neopredelennosti. Finansovy menedzhment, 5, 58–74.
26. Brunnik, R., Klebanova, T., Guryanova, L., Kavun, S., Trydid, O. (2014). Simulation of Territorial Development Based on Fiscal Policy Tools. Mathematical Problems in Engineering, 2014, 1–14. doi: https://doi.org/10.1155/2014/843976
27. Sizova, N. D., Petrova, O. O., Solodovnik, G. V., Perun, M. U. (2017). Evaluation of investment attractiveness using information system. Young Scientist, 4, 90–93.
28. Guryanova, L., Klebanova, T., Trunova, T. (2017). Modeling the financial strategy of the enterprise in an unstable environment. Economic Studies journal, 3, 91–109.
29. Guryanova, L. S., Klebanova, T. S., Gvozdytskiy, V. S. (2015). Econometric modelling of the financial regulation mechanism in regional development. Actual Problems of Economics, 11, 408–421.
30. Piskun, O. I., Klebanova, T. S. (2014). Analysis of current organizational forms of integrated structures. Actual Problems of Economics, 2, 201–210.
31. Daradkeh, Y., Guryanova, L., Kavun, S., Klebanova, T. (2012). Forecasting the cyclical dynamics of the development territories: Conceptual approaches, models, experiments. European Journal of Scientific Research, 74 (1), 5–20.