Available online 5 November 2017

Abstract

Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor or receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The biofilm mode of growth is greatly preferred by most bacterial strains and species [1,2]. The sequence of events leading to biofilm formation is generally considered to commence with bacterial transport by convective-diffusion (Fig. 1A) from a liquid suspension to a substratum surface or impingement from aerosols (Fig. 1B). Initially, bacterial adhesion is reversible, but production of EPS can rapidly lead to an irreversible state and subsequent growth of a bacterial (sub)monolayer into a multi-layered biofilm (Fig. 1C). Bacterial transmission is a less common means of bacterial transport, but equally if not more prevalent than adhesion in many biomedical, domestic, natural and industrial environments. Although many parameters are influential upon bacterial transmission, including temperature, humidity, type of contact pressure (shear or compression) and duration, physico-chemically it is important to distinguish between transmission from a donor surface contaminated with a (sub)monolayer of adhering bacteria (Fig. 2A) or from a donor fully covered with a multi-layered bacterial biofilm (Fig. 2B). In the latter case, transmission from a donor surface can occur either through cohesive failure in the biofilm or interfacial failure at the donor-biofilm interface (see also Fig. 2B). Mechanistically different from bacterial adhesion, transmission involves detachment from a donor surface and adhesion to a receiver surface [3,4].

The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission and reveal their respective merits in explaining bacterial transmission phenomena. Furthermore, the impact of the viscoelastic EPS matrix on biofilm structure after transmission is discussed. Since often low numbers of bacteria are involved in transmission, advantages and disadvantages of different methods to study bacterial transmission are compared and methods considered appropriate are highlighted.

2. The importance of bacterial transmission

Before embarking on the physico-chemical differences between bacterial adhesion and transmission, the general importance of transmission in different environments will first be briefly highlighted.

2.1. Bacterial transmission in biomedical environments

Bacterial transmission frequently occurs in hospital environments and nursing homes among hands of healthcare workers [5] and patients [6], including biomaterial implants or devices and environmental surfaces in hospitals. Bacterial transmission between patients with an indwelling urinary catheter for instance, was three times higher when nursed in the same room than when nursed in separate rooms [7], while patients admitted to rooms previously occupied by patients with methicillin resistant *Staphylococcus aureus* (MRSA), vancomycin resistant *Enterococcus* (VRE) or *Acinetobacter baumannii* had a 73% increased risk of acquiring the same pathogen from environmental surfaces [8]. The World Health Organization reported that on average 8.7% of hospitalized patients acquired nosocomial infections due to bacterial transmission [9], which is a particular risk for immunocompromised patients [10] or patients with biomaterial implants or devices [11]. Bacterial transmission also occurs during insertion of indwelling urinary [12] or vascular catheters [13], either from the peri-urethral area or subcutaneous layers of the skin [14], respectively. Similarly, endoscopes become contaminated with bacteria during use [15], bacteria become transmitted to other surfaces in radiography machines [16], computer equipment acts as fomites for bacterial transmission equally as gloves [17], light handles [18] and surgical appliances in the operating theater [19]. Transmission of microorganisms from contaminated lens cases to contact lenses followed by transmission to the cornea is a well-known cause of microbial keratitis, posing a general...
healthcare threat due to the large number of people wearing contact lenses [20]. Toothbrushes are mentioned more and more as a source for microbial transmission [21].

2.2. Bacterial transmission in domestic environments

Bacterial transmission in domestic environments is inevitable, but usually involves less pathogenic microorganisms than present in biomedical environments [22]. Bacterially contaminated fabrics have the potential to contaminate laundry in washing machines [23], as well as washing machines themselves, which can lead to contamination of subsequent loads of laundry [23,24]. Microorganisms in fresh, unprepared food can transmit to kitchen surfaces [25] and onto household members through handling devices during preparation [22]. Telephone receivers are an intermediate for transmission of bacteria from one user to the next [26]. Money is frequently contaminated by pathogens from the intestinal and respiratory tract [27] and adhering bacteria on bank notes and coins can be transmitted from hand to hand, sometimes ongoing to food [28].

2.3. Bacterial transmission in natural and industrial environments

Bacterial transmission also occurs in natural and industrial environments, including slaughterhouses, agricultural, forest and sea-water environments. Particularly in food processing, bacterial transmission can lead to a rapid spread of potential pathogens. In slaughter houses, Campylobacter has been found colonizing employees boots and clothes [29], which may lead to bacterial transmission to carcasses (and vice versa) [30]. Knives are subsequently notorious sources of bacterial transmission from contaminated meat to uncompromised meat of other animals, that may proceed to household kitchen appliances and consumers [31]. In forest areas, bacteria shed by wild animals can persist in seeds, water, manure or feed, and spread to agriculture areas and contaminate farmers and their livestock [32]. Also, contaminated seeds can transmit bacteria to non-contaminated plants [33]. In seawater, bacteria shed by infected fish can survive for some time and transmit to other susceptible fish [34] onto the food chain.

3. Mechanism of bacterial transmission

Bacterial transmission depends critically on the relative affinity of adhering bacteria for the donor and receiver surfaces, or for other biofilm inhabitants. Conceptually, bacterial affinity can be specified in many ways [35]. In order to oppose bacterial adhesion and transmission, we will here describe bacterial transmission in terms of common physico-chemical mechanisms described for bacterial adhesion to surfaces [36], i.e. a surface thermodynamic approach and an analysis based on adhesion forces.

3.1. Surface thermodynamics of bacterial transmission

In a surface thermodynamic approach, bacterial adhesion to surfaces is considered favorable when the interfacial free energy of adhesion $\Delta G_{ad} < 0$. ΔG_{ad} can be calculated from the interfacial free energies γ_{lv}, γ_{sv} and γ_{sb}, as outlined in Fig. 3A [37]. The interfacial free energies can be calculated from measured contact angles θ with fluids possessing different polarities on substratum surfaces and macroscopic lawns of organisms prepared on membrane filters [38,39], while the polarities of different liquid and their surface tension can be taken from the literature [40]. There are various ways to calculate the interfacial free energies from measured contact angles with liquids that we consider outside the scope of this review to compare [39]. One of the most common approaches however, is the Lifshitz-Van der Waals/acid-base approach [41]:

$$\cos \theta = -1 + \frac{2\sqrt{\gamma_{lv}^{\text{LV}} \gamma_{sv}^{\text{LV}}}}{\gamma_{lv} \gamma_{sv}} + \frac{2\sqrt{\gamma_{lv} \gamma_{sb}^{\text{LV}}}}{\gamma_{lv} \gamma_{sb}}$$

(1)

in which γ_{sv}^{LV}, γ_{lv}^{LV}, and γ_{sb}^{LV} denote the Lifshitz–Van der Waals component of the surface free energy of the substratum surface, the bacterial cell surface or the liquid phase, respectively. γ_{sv}, is the surface free energy of the liquid–vapor interface. The acid–base components of the surface free energies are accordingly indicated as γ_{lv}^{ab} and can be separated into an electron-donating (γ^{-}) and electron-accepting (γ^{+}) parameter according to

$$\gamma_{lv}^{ab} = 2 \sqrt{\gamma^{-} \gamma^{+}}$$

(2)
Since Eq. (1) contains three unknowns when a new surface is to be analyzed for its surface free energy parameters and components, it requires contact angle measurements with three distinctly different liquids to solve Eq. (1) for γ_{LW}, γ_{-}, and γ_{+}. Drawback of the use of surface thermodynamics to bacterial adhesion is that very often bacterial adhesion does not meet the thermodynamic requirement of being reversible, because bacterial adhesion becomes already irreversible after several seconds to minutes [42]. Furthermore, not seldom the interface between a bacterium and a substratum surface is highly dynamic over time, as bacterial surface appendages collapse during adhesion to a surface and the gradual bond-maturation to an irreversible state [42–44]. Nevertheless, cases in which $\Delta G_{\text{adh}} < 0$, have been found to be associated with less reversible adhesion than when $\Delta G_{\text{adh}} > 0$ [45–47].

The concept of interfacial free energy of adhesion can be readily applied to derive an interfacial free energy of transmission to determine whether transmission from contaminating bacterial (sub)monolayers (see Fig. 3B) is thermodynamically favorable ($\Delta G_{\text{tr}} < 0$), according to [48]

$$\Delta G_{\text{tr}} = (\Delta G_{\text{adh}})_{\text{receiver}} - (\Delta G_{\text{adh}})_{\text{donor}}$$

in which ΔG_{tr} is the interfacial free energy of transmission between a donor and receiver surface for which the interfacial free energies of adhesion equal $(\Delta G_{\text{adh}})_{\text{donor}}$ and $(\Delta G_{\text{adh}})_{\text{receiver}}$, respectively. For transmission of bacteria adhering in multi-layered biofilms (compare Fig. 3B and C), equations are more complex than in case of transmission from a...
(sub)monolayer of contaminating bacteria. In a multi-layered biofilm, bacteria are embedded in an EPS matrix that prevents direct contact between bacteria. Moreover, although entire biofilms might theoretically be transmitted from a donor to a receiver surface, most studies have shown that donor surfaces remain fully covered with biofilm after transmission, while the receiver surface can become either partly or fully covered by transmitted biofilm as well [49,50]. This has yielded the conclusion that bacterial transmission from a biofilm occurs mainly through cohesive failure in the biofilm and not through interfacial failure at the donor-biofilm interface (Fig. 3C1). Thermodynamically, whether or not cohesive or interfacial transmission occurs, depends on the relative magnitudes of the interfacial free energies of transmission for both situations, depicted in Fig. 3C1.

Whereas in naturally grown biofilms the distance between bacteria has been estimated to range between 1 and 3 μm, far beyond the reach of physico-chemical interaction forces [51], contact pressures are exerted during transmission that increase the volumetric density of bacteria in a biofilm and therewith decrease the distances between inhabiting bacteria. This compression may yield the scenario depicted in Fig. 3C2 in which biofilm inhabitants are actually in direct contact with each other, although this yields essentially similar equations for the interfacial free energy of transmission as the scenario in which bacteria are transmitted from an uncompressed biofilm. Nevertheless, there are major differences between the surface free energy of single bacteria, deposited in a bacterial lawn [46,48] as occurring in the equations governing transmission from contaminating (sub)monolayers and the surface free energy of a biofilm of the same strain [52].

The implications of these thermodynamic considerations are summarized in Table 1B for transmission from bacterial (sub)monolayers, using input data of hypothetical substrata and bacteria used, as summarized in Table 1A. Hydrophobic and hydrophilic bacteria have been given properties roughly representative for both types of physico-chemically different types, based on a reference guide of 142 different bacterial strains [53].

Table 1B firstly shows that bacterial adhesion between identical donor and receiver surfaces is not accompanied by any thermodynamic preference. Hydrophobic bacteria do not like to be transmitted from hydrophobic surfaces to hydrophilic ones, but oppositely are eager to transmit from a hydrophilic donor to a hydrophobic receiver. The hypothetical, hydrophilic bacterium basically shows the same trends as the hydrophobic bacterium but with less extreme thermodynamic preferences. The appearance of positive values of the interfacial free energy of the hydrophobic bacterium on a hydrophilic surface may at first seem puzzling, but indicates that water has a bigger preference for that surface than the hydrophilic organisms. In case a more hydrophilic bacterium would have been chosen, results would have been different. Moreover, it should be noted that bacteria usually adhere also in case of unfavorable thermodynamic conditions as a result of the dynamic behavior of bacterial cell surface components that may differ in different environments, e.g. during contact angles measurements and when interfacing a substratum surface [54]. However, detachment tendencies of adhering bacteria have been demonstrated to be in accordance with predictions based on interfacial free energies of adhesion [47,55,56] and the same will be true for bacterial detachment from the donor during bacterial transmission. The exact role of surface thermodynamics in bacterial adhesion to a receiver surface during transmission [42,44] is relatively uncertain. Oppositely, the role of interfacial free energies of adhesion in bacterial detachment from a donor surface during transmission [47,55,57] is more established. This is in line with a previous conclusion that donor surface free energies are more influential on bacterial transmission than receiver ones, as bacteria have to detach from the donor and adhere to the receiver surface [48]. Also hydrophobic Listeria monocytogenes adhered more strongly to hydrophobic surfaces than hydrophilic ones, leading to less transmission [58]. Indeed, favorable thermodynamic conditions for bacterial transmission (ΔG < 0) have been shown to be accompanied by higher transmission probabilities, also as calculated from force analyses using atomic force microscopy (AFM) [48] (see Section 3.2 and Fig. 4).

3.2. Adhesion force analysis of bacterial transmission

In an adhesion force analysis, bacterial transmission between surfaces is considered favorable when the adhesion force of the bacteria to the receiver surface is larger than the adhesion force to the donor surface. Bacterial adhesion forces to substratum surfaces [59,60] but also between two different bacteria [61,62] or a bacterium and an existing biofilm [63], can be measured using single bacterial probe AFM [64, 65]. However, AFM has shown that for many bacterial strains and

![Fig. 4. Weibull-distribution for adhesion forces](image-url)

Weibull-distribution for adhesion forces between bacterial donor and receiver surfaces. The median adhesion force is determined as the force at which 50% of bacterial adhesion events occur. The Weibull-distribution is used to model the probability of adhesion force values on a receptor surface, where the median force is taken as the Weibull-probability that the median force by which the bacteria adhere to the receiver is able to detach a bacterium from the donor surface, according to the Weibull-distribution for the donor.
species, whole cell adhesion forces to different negatively-charged sub-
stratum surfaces group rather closely together [66,67], with some stud-
ies indicating that in general, bacterial strains may adhere more strongly
to hydrophobic surfaces [68–70]. Bacterial adhesion forces to polymer-
brush coated substratum surfaces have been described throughout the
literature as being lowest [71,72], while extremely strong adhesion
forces were measured on positively-charged surfaces [73,74]. With the
exception of extreme values as on polymer-brush coatings and
positively-charged surfaces, the wide variations observed in bacterial
adhesion forces often makes statistically significant comparisons of ad-
hesion forces on donor and receiver surfaces difficult.

However, large variations not only occur in microscopic fracture anal-
ysis, which is in essence what bacterial adhesion force measurements in
AFM represent, but also in macroscopic failure analysis of larger struc-
tures [75]. Weibull analysis takes advantage of these large standard devi-
ations to calculate a failure probability [76] and can also be applied to
bacterial adhesion forces [48]. As a first step in Weibull analysis, all adhe-
sion forces \(N \) in a given data set are ranked in ascending order to calculate the
probability \(P_F \) of a force value \(F \) to occur according to

\[
P_F = \frac{n}{N+1}
\]

where \(n \) is the rank number. Then, \(P_F \) is fitted to the Weibull-equation

\[
P_F = 1 - \exp \left(-\frac{F-F_0}{F_m} \right)^m
\]

in which constant \(F_0 \) is the lowest level of force at which \(P_0 \) approaches
zero. The constant \(F_m \) is generally referred to as a normalizing parameter.
The constant \(m \) is the dependability of the bond (“Weibull-modulus”)
[48,56].

Comparison of the Weibull-distribution of bacterial adhesion forces
observed in AFM for donor and receiver surfaces, can next be used to
calculate a transmission probability (see also Fig. 4). This transmission
probability is taken as the probability that an adhering bacterium will
detach from a donor surface by a force, similar to the median adhesion
force exerted by the receiver surface.

Interestingly, trends in bacterial transmission probabilities calculat-
ed from Weibull-distributions of bacterial adhesion forces on donor
and receiver surfaces coincided with predictions based on surface
thermodynamic analyses of the donor, receiver and bacterial cell surface
free energies involved (see Fig. 5), although the linear correlation
\(R^2 \) (0.53) was low [48].

Attractive Lifshitz-Van der Waals forces are attenuated in water and
higher bacterial transmission is obtained between moist or wetted sur-
faces in a humid environment than between dry surfaces, such as from
dried or moist hands [77] or wetted or dried, bacterially contaminated
gloves [17] to test surfaces. This can be fully explained by the Weibull
analysis of adhesion forces schematically outlined in Fig. 4, showing
that a higher prevalence of weaker donor adhesion forces as under
moist or wetted conditions, will yield a higher transmission probability
under the influence of a higher, median adhesion force arising from a re-
ceiver surface.

4. Structural changes in biofilms during bacterial transmission

Apart from the impact of bacterial cell surface free energy, there is
not enough literature available to conclude that specific bacterial strains
and species are transmitted more or less than others. In fact, the multi-
tude of different adhesion mechanisms bacteria have at their disposal
[64], enables them to transmit themselves to almost any surface, though
mostly in small numbers [77], and due to their rapid growth become
causative to large problems.

Major difference between effects of transmission on biofilm struc-
ture have been described however, between EPS producing and non-
EPS producing bacteria especially for biofilms left-behind on donor sur-
faces after transmission, that are best illustrated in a three-point trans-
mission model [50], outlined in Fig. 6. The undisturbed biofilm on a donor surface usually has a low vol-
metric bacterial density. Distances between biofilm inhabitants have
been reported to range between 1 and 3 \(\mu \)m [79], while bacterial volume densities have been estimated to be between 0.2 and 0.4 \(\mu \)m\(^{-3} \) [50,80, 81]. For comparison, the closest hexagonal packing of a 1 \(\mu \)m diameter
sphere yields a density of 1.5 \(\mu \)m\(^{-3} \). The low bacterial density in undis-

turbed biofilms leaves ample voids for compression of biofilm between
a donor and receiver surface by an external contact pressure. Water,
along with dissolved EPS components will flow out first, as it has the
lowest viscosity, followed by more viscous EPS and finally bacteria
will redistribute themselves slowly to new, energetically favorable posi-
tions. As a net result, bacteria will come closer together and the biofilm
will become more compact [50]. There are no experimental methods
available to directly measure bacterial densities in a compacted biofilm
between a donor and receiver plate [50], but stress-strain diagrams for
oral streptococci showed a limited linear elastic trajectory up to a strain
of around 0.3, after which the stress required to further compact the bio-
film increased exponentially [82].

Separation and detachment occur relatively fast. Biofilms left-
behind of non-EPS-producing strains on donor surfaces have been
found [50] to possess almost two-fold higher volumetric bacterial den-
sities, while biofilm with a viscoelastic EPS matrix restored their density
during relaxation to their pre-transmission density due to back-flow of
water and EPS (see also Fig. 6). Restoration may however not solely be
due to back-flow of water and EPS, but also by a phenomenon called
“pressure-induced” EPS production. EPS-producing bacteria transmit-
ted from (sub)monolayers on nanostructured donor surfaces have
been found surrounded in EPS patches [4]. Since EPS-production is reg-
ulated in part by external forces operating on bacteria [83,84], it was
suggested that high local pressures on the bacterial cell membrane trig-
gers opening of efflux pumps resulting in increased EPS production [85, 86] during the compression phase of transmission. More extremely, it
has been suggested that high local pressures on bacterial cell mem-
branes may compromise the membrane barrier function to cause cell
death [87], and this too has been observed during adhesion [88] and
transmission [4], especially when involving nanostructured surfaces.

Biofilms grown from drinking water systems only relaxed partly to
their original thickness after high strain by stresses up to 100 kPa [89].
However, biofilms of \(P. \) aeruginosu [90] and \(S. \) aureus [91], demonstrat-
ing visco-elastic behavior in stress-strain diagrams, fully relaxed to
their original thickness after stress relieve. This supports that EPS

![Fig. 5. Bacterial transmission probabilities according to a comparison of the Weibull distributions for bacterial adhesion forces as a function of the interfacial free energies of transmission \(\Delta G \), between the donor and receiver surface (Reproduced with permission from Elsevier Inc.). Data pertain to transmission of \(P. \) aeruginosu, \(S. \) aureus, and \(P. \) aeruginosu strains from contact lens cases (CL) to soft and hard contact lenses (CL) and from contact lenses to the cornea [48].](image-url)
plays a role in biofilm relaxation after stress application during transmission to its original thickness.

5. The measurement of bacterial transmission

The most distinguishing feature between bacterial adhesion and transmission is the compression of bacteria between two surfaces under an applied contact pressure [3]. Contact pressure applied during experiments has a tremendous influence on the compaction of biofilms left-behind on donor surfaces (see Section 4 of this review). Accordingly during measurement of bacterial transmission, contact pressures should be chosen in accordance with the pressure exerted in the applications aimed for. For reference, holding a coffee cup or using a door handle requires an estimated force of 0.5 kg [92], which roughly corresponds with 5 kPa.

Quantification of bacterial transmission using microscopic means is hampered by the low numbers of bacteria generally transmitted. Culture methods are easier to apply for low bacterial numbers, as particularly occurring during transmission from (sub)monolayers, but culturing only accounts for live bacteria. In addition, if agar culturing is applied, bacteria have to be detached from donor and receiver surfaces, which can be done by scraping or sonication. However, incomplete detachment or bacterial killing during sonication may affect the results and can be avoided by culturing low numbers of bacteria adhering to donor or receiver surfaces in PetriFilm® systems. In a PetriFilm® system, bacteria on a surface are confined between a transparent film containing nutrients and a staining agent and allowed to grow after which colony forming units can be directly counted [93,94]. Transmission of bacteria from multi-layered biofilms can also be studied using culturing methods after detachment and dispersal of biofilms [95,96], but 3D confocal laser scanning microscopy (CLSM) is frequently used as well [97,98]. Different than culturing methods only applicable to live bacteria, 3D-CLSM allows to distinguish between live and dead bacteria after appropriate staining. As a drawback, the relatively small field of view of CLSM makes it difficult to obtain user-independent and statistically significant results. This is particularly troublesome in transmission studies, because the reproducibility of transmission experiments is usually only half of the one that can be achieved in adhesion studies, as transmission involves two processes both possessing large variations, i.e. detachment and adhesion. Optical coherence tomography (OCT) is an emerging method in biofilm analysis and enables reliable measurement of biofilm thickness over a large field of few of several square centimeters [99], but does not allow differentiation of live and dead bacteria [100]. Combination of OCT biofilm thickness measurements with the measurement of bacterial numbers in biofilms (dead and alive) after dispersal, uniquely enables calculation of bacterial volume densities in a biofilm [99,101].

Reproducibility in transmission experiments can be increased by performing a series of consecutive transmissions from the same contaminated donor to different clean receiver surfaces prior to enumeration [92,102]. Since in general low numbers of bacteria are transmitted compared to the total number of bacteria on the donor surface in a single step, the transmission rate Tr, defined as the fraction of bacteria that is transmitted from the donor to the receiver in each step, can be assumed to be constant [92]. Accordingly, when constant, the cumulative number of bacteria transferred to the receiver N_R(t) can be calculated as

\[
\frac{dN_R(t)}{dt} = Tr \cdot N_D(t)
\]

(6)

in which N_D(t) is the number of bacteria on the donor left after a total transmission time t, i.e. the total time involved in consecutive transmissions. Assuming that transmission is accompanied by a negligible loss in numbers of bacteria

\[
N_D(t) = N_{D0} - N_{R}(t)
\]

(7)

with N_{D0} the initial number of bacteria on the donor and N_R(t) is the number of bacteria on the receiver after a transmission time t. Eq. (6) can be solved to yield

\[
N_D(t) = N_{D0}(1 - \exp(-Tr \cdot t))
\]

(8)

Eq. (8) can be used to calculated transmission rates Tr based on the cumulative number of bacteria transmitted over time, with a higher reproducibility than can be obtained in single step transmission experiments.

6. Summary of case studies on bacterial transmission between different materials

In Table 2 an overview is presented of studies carried out on bacterial transmission between surfaces, as confined to studies containing detail

Fig. 6. Three-point transmission model for non-EPS (panel A) and EPS producing bacteria (panel B). Starting with an undisturbed biofilm, the model comprises compaction of the biofilm between the donor (D) and receiver (R) surface, accompanied by EPS outflow when present, followed by and finally relaxation, during which a back-flow of EPS may restore biofilm structure to its pre-transmission state [78].
regarding the hydrophobicity of the donor, receiver and bacterial cell surface, or adhesion forces between them.

Considering that bacterial contamination by bacterial (sub-)monolayers or multi-layered biofilms is inevitable, the overview provided in Table 2 points to two possible pathways for the design of surfaces to which bacteria are less transmitted:

1. polymer-brush coated donor surfaces yield an increased transmission probability, but by the same token can be expected to yield receiver surfaces with less transmission due to their preference to be in a fully hydrated state;
2. nanostructured surfaces present less surface area to bacteria and therewith smaller adhesion forces than corresponding smooth surfaces. Therewith transmission probabilities to nanostructured receivers become smaller.

Both pathways have not been sufficiently explored however, for practical applications and require further development, e.g. with respect to durability of the surface properties required.

7. Conclusions

Opposing bacterial adhesion and transmission has yielded a better understanding of the physico-chemistry of bacterial transmission. The complexity and experimental problems associated with the study of bacterial transmission between surfaces however, may have discouraged many researchers from doing basic research into transmission phenomena. Yet, in order to develop effective preventive surfaces to prevent bacterial contamination of surfaces through transmission, such studies are direly needed because transmission is fundamentally different from adhesion while yet more occurring in real-life than adhesion. Such a development first of all may require more accurate determination of the adhesion forces and surface energetics that constitute the balance which controls transmission, along with more accurate determination of bacterial transmission itself. Notwithstanding the importance of bacterial transmission in other fields of application, low transmission surfaces, coatings or paints are most direly needed in food industry and in healthcare environments, such as hospitals and nursing homes where transmission of multi-drug resistant pathogens forms a growing problem.

Acknowledgements

This research has been funded with support from the European Commission through LOTUS III Erasmus grant. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. HJB is also director of a consulting company SASA BV. Opinions and assertions contained herein are those of the authors and are not construed as necessarily representing views of the funding organization or their respective employer(s).

References

[1] Hall-Stoodley L, Costerton J, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2:95–108. https://doi.org/10.1038/nrmicro821.
[2] Bjarngård T, Allède M, Allède M, Eickhardt-Sørensen SR, Moser C, Kühl M, et al. The in vivo biofilm. Trends Microbiol 2013;21:465–74. https://doi.org/10.1016/j.tim.2013.06.002.
[3] Pérez-Rodríguez F, Valero A, Carrasco E, García RM, Zúñiga G. Understanding and modelling bacterial transfer to foods: a review. Trends Food Sci Technol 2008;19:131–44. https://doi.org/10.1016/j.tifs.2007.08.003.
[4] Hizal F, Choi C-H, Buscher HJ, Van der Mei HC. Staphylococcal adhesion, detachment and transmission on nanopatterned surfaces. ACS Appl Mater Interfaces 2016;8:30430–9. https://doi.org/10.1021/acsami.6b09437.
[5] Shuman EK, Chenoweth CE. Recognition and prevention of healthcare-associated urinary tract infections in the intensive care unit. Crit Care Med 2010;38:5373–9. https://doi.org/10.1097/CCM.0b013e3181e6e6ff.
[6] Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis 2008;8:289–301. https://doi.org/10.1016/S1473-3099(08)70097-5.
[7] Fjisklund B, Håegman S, Burnam LG. Transmission of urinary bacterial strains between patients with indwelling catheters—nursing in the same room and in separate rooms compared. J Hosp Infect 1997;36:147–53. https://doi.org/10.1016/S0195-6701(97)90121-3.
[8] Dancer SJ. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 2014;27:665–90. https://doi.org/10.1128/CMR.00020-14.
[9] World Health Organization. Prevention of hospital-acquired infections: a practical guide. WHO 2002:1–64. doi: [WHO/CDS/CIR/PH/2002.12].
[10] Vincent J-L. Nosocomial infections in adult intensive-care units. Lancet 2003;361:2068–77. https://doi.org/10.1016/S0140-6736(03)13644-6.
[11] Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004;350:1422–9. https://doi.org/10.1056/NEJMoa035415.
[12] Nicholle LE. Catheter associated urinary tract infections. Antimicrob Resist Infect Control 2014;3:1–8. https://doi.org/10.1186/s40749-014-0003-2.
[13] Safdar N, Maki DG. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 2004;30:62–7. https://doi.org/10.1007/s00134-003-2045-z.
[14] Maki DG. In vitro studies of a novel antimicrobial luer-activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis 2010;50:1380–7. https://doi.org/10.1086/525764.
[15] Kovaleva J. Infectional complications in gastrointestinal endoscopy and their prevention. Best Pract Res Clin Gastroenterol 2016;30:689–704. https://doi.org/10.1016/j.bpg.2016.05.008.
[16] Levin PD, Shatz O, Svirid S, Moriah D, Or-Barbash A, Sprung CL, et al. Contamination of portable radiographic equipment with resistant bacteria in the ICU. Chest 2009;136:426–32. https://doi.org/10.1378/chest.09-0049.
[17] Fukada T, Iwasaki H, Ozaki M. Anaesthetists’ role in computer keyboard contamination in an operating room. J Hosp Infect 2006;67:148–52. https://doi.org/10.1016/j.jhin.2006.05.023.
[18] Assadian O, Kramer A, Ouriel K, Suchonel M, McAlaws M-L, Rottman M, et al. Suppression of surgeons’ bacterial hand flora during surgical procedures with a
[72] Perera-Costa D, Buraque JM, González-Martín ML, Gómez-García AC, Vadiello-Rodríguez V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 2014;30:4633–41. https://doi.org/10.1021/la400105y.

[73] McNamee CE, Pyo N, Higashitani K. Atomic force microscopy study of the specific adhesion between a colloidal particle and a living melanoma cell: effect of the charge and the hydrophobicity of the particle surface. Biophys J 2006;91:1960–9. https://doi.org/10.1529/biophysj.106.082420.

[74] Terada A, Yuasa A, Kushimoto T, Tisneda S, Katakai A, Tamada M. Bacterial adhesion to and viability on positively charged polymer surfaces. Microbiology 2006;152:3575–83. https://doi.org/10.1099/mic.0.29861-0.

[75] Quinn JB, Quinn GD. A practical and systematc review of Weibull statistics for reporting strengths of dental materials. Dent Mater 2010;26:135–47. https://doi.org/10.1016/j.dental.2009.09.006.

[76] Burrow MF, Thomas D, Swain MV, Tyas MJ. Analysis of tensile bond strengths of toothpastes. J Oral Rehabil 2001;90:962–9. https://doi.org/10.1034/j.1365-2044.2001.900706.x.

[77] Petterson BW, Busscher HJ, Sharma PK, Van der Mei HC. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms. Microsc Microanal 2004;10:7638–42. https://doi.org/10.1017/S1431927604003611.

[78] Drescher C, Wexler AD, Drusová S, Overdijk T, Zwijnenburg A, Flemming H-C, et al. Role of nanostructured gold surfaces on monocyte activation and integrity of S. aureus transmission routes regarding hands and contact surfaces. PLoS One 2016;11:e0156390. https://doi.org/10.1371/journal.pone.0156390.

[79] Van de Lagemaat M, Grootenhuis A, Van de Belt-Gritter B, Roest S, TJA Loontjens, Busscher HJ, et al. Comparison of methods to evaluate bacterial contact-killing materials. Acta Biomater 2017;59:139–47 (doi:10.1016/j.actbio.2017.06.042).

[80] Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging bacterial transmission from contact lenses to porcine corneas: an ex vivo study. Invest Ophthalmol Vis Sci 2005;46(6):2042. https://doi.org/10.1167/ios04-1401.

[81] Wang L, Fan D, Chen W, Terentjev EM. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep 2015;5:15159. https://doi.org/10.1038/srep15159.

[82] Wagner M, Taherzadeh D, Haich S, Horn H. Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol Bioeng 2010;107:844–53. https://doi.org/10.1002/bit.22864.

[83] Vorst KL, Todd ECD, Ryser ET. Transfer of bacteria from turkey meat to stainless steel in a linear shear gradient. Microb Ecol 1990;19:78. https://doi.org/10.1007/BF02017171.

[84] Mittelman MW, Niven DE, Low C, White DC. Differential adhesion, activity, and carboxylate: protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient. Microb Ecol 1990;19:269–78. https://doi.org/10.1007/BF02171717.

[85] Arinder P, Johannesson P, Karlsson I, Borch E. Transfer and decontamination of S. aureus in transmission routes regarding hands and contact surfaces. Appl Environ Microbiol 2005;71:2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

[86] Vermeltfoort PBJ, Van Kooten TG, Bruinsma GM, Hooymans AMM, Van der Mei HC, Busscher HJ. Bacterial transmission from contact lenses to porcine corneas: an ex vivo study. Invest Ophthalmol Vis Sci 2005;46(6):2042. https://doi.org/10.1167/ios-04-1401.

[87] Wang L, Fan D, Chen W, Terentjev EM. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep 2015;5:15159. https://doi.org/10.1038/srep15159.

[88] Wagner M, Taherzadeh D, Haich S, Horn H. Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol Bioeng 2010;107:844–53. https://doi.org/10.1002/bit.22864.

[89] Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biolmms at single-cell resolution. Proc Natl Acad Sci U S A 2014;111:912–5. https://doi.org/10.1073/pnas.1402898111.

[90] Körstgens V, Flemming H-C, Wingender J, Borchard W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods 2001;46:9–17. https://doi.org/10.1016/S0167-7012(01)00248-2.

[91] Rupp CJ, Fux CA, Stoodley P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 2005;71:2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

[92] Arinder P, Johannesson P, Karlsson I, Borch E. Transfer and decontamination of S. aureus in transmission routes regarding hands and contact surfaces. Appl Environ Microbiol 2005;71:2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

[93] Arinder P, Johannesson P, Karlsson I, Borch E. Transfer and decontamination of S. aureus in transmission routes regarding hands and contact surfaces. Appl Environ Microbiol 2005;71:2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

[94] Neu TR, Lawrence JR. Innovative techniques, sensors, and approaches for imaging biolmms at single-cell resolution. Proc Natl Acad Sci U S A 2014;111:912–5. https://doi.org/10.1073/pnas.1402898111.

[95] Körstgens V, Flemming H-C, Wingender J, Borchard W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods 2001;46:9–17. https://doi.org/10.1016/S0167-7012(01)00248-2.

[96] Rupp CJ, Fux CA, Stoodley P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 2005;71:2175–8. https://doi.org/10.1128/AEM.71.4.2175-2178.2005.

[97] Yamamoto H, Yamaoka M, Hasegawa A, Hasegawa Y, Hasegawa A, Hasegawa Y, et al. Effect of surface topography on bacterial adhesion to silicone rubber. J Microbiol Biotechnol 2017;10:7638–46. https://doi.org/10.1017/S1431927617005841.

[98] Liu Y, Strauss J, Camesano TA. Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins. Biomaterials 2008;29:4374–82. https://doi.org/10.1016/j.biomaterials.2008.07.044.

[99] Svensson S, Forsberg M, Hulander M, Vazifzadeh H, Almquist A, Lausmaa J, et al. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation. Int J Nanomedicine 2014;9:775–84. https://doi.org/10.2147/IJN.S451465.

[100] Drescher C, Wexler AD, Drusová S, Overdijk T, Zwijnenburg A, Flemming H-C, et al. In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change. Water Res 2014;67:243–54. https://doi.org/10.1016/j.watres.2014.09.006.