Morse theory for Lagrange multipliers and adiabatic limits

Guangbo Xu
with Stephen Schecter (North Carolina State University)

Department of Mathematics, UC Irvine

Caltech Geometry&Topology Seminar, January 17, 2014
Outline

1. Morse homology
2. Lagrange multiplier
3. Adiabatic limits
I. Morse homology
Let M be a smooth manifold, $f \in C^\infty(M)$. f is a Morse function if df is a transverse section of $T^* M$.
Let M be a smooth manifold, $f \in C^\infty(M)$. f is a **Morse function** if df is a transverse section of $T^* M$.

By **Morse lemma**, near $p \in \text{Crit} f$, there is a coordinate chart (x_1, \ldots, x_n) such that

$$f(x) = f(p) - x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2.$$
Let M be a smooth manifold, $f \in C^\infty(M)$. f is a Morse function if df is a transverse section of T^*M.

By Morse lemma, near $p \in \text{Crit} f$, there is a coordinate chart (x_1, \ldots, x_n) such that

$$f(x) = f(p) - x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_n^2.$$

Morse index: $\text{ind}(p, f) = k$, the number of negative eigenvalues of the Hessian.
For any metric g on M, the metric dual of df is the gradient ∇f of f. The negative gradient flow of f is the ODE

$$x : \mathbb{R} \to M, \ x'(t) + \nabla f(x(t)) = 0.$$
For any metric g on M, the metric dual of df is the gradient ∇f of f. The negative gradient flow of f is the ODE

$$x : \mathbb{R} \to M, \quad x'(t) + \nabla f(x(t)) = 0.$$

The integral of the flow defines a 1-parameter diffeomorphisms group $(\phi_t)_{t \in \mathbb{R}}$ of M, i.e.

$$\phi_t : M \to M, \quad \frac{d}{dt} \phi_t(x) + \nabla f(\phi_t(x)) = 0.$$
For any metric g on M, the metric dual of df is the gradient ∇f of f. The negative gradient flow of f is the ODE

$$x : \mathbb{R} \to M, \ x'(t) + \nabla f(x(t)) = 0.$$

The integral of the flow defines a 1-parameter diffeomorphisms group $(\phi_t)_{t \in \mathbb{R}}$ of M, i.e.

$$\phi_t : M \to M, \ \frac{d}{dt} \phi_t(x) + \nabla f(\phi_t(x)) = 0.$$

unstable/stable manifolds of $p \in \text{Crit} f$:

$$W^u(p) = \left\{ x \in M \mid \lim_{t \to -\infty} \phi_t(x) = p \right\}, \ \text{dim} W^u(p) = \text{ind}(p)$$

$$W^s(p) = \left\{ x \in M \mid \lim_{t \to +\infty} \phi_t(x) = p \right\}, \ \text{dim} W^s(p) = n - \text{ind}(p).$$
The pair \((f, g)\) is Morse-Smale if

\[\forall p_-, p_+ \in \text{Crit}_f, \; W^u(p_-) \cap W^s(p_+) = \emptyset. \]
The pair \((f, g)\) is Morse-Smale if

\[\forall p_-, p_+ \in \text{Crit} f, \ W^u(p_-) \pitchfork W^s(p_+). \]

In this case, the moduli space of solutions to the ODE which are asymptotic to \(p_\pm\) at \(\pm\infty\)

\[\tilde{M}(p_-, p_+) = W^u(p_-) \cap W^s(p_+) \]

\[= \left\{ x : \mathbb{R} \to M \mid x'(t) + \nabla f(x(t)) = 0, \lim_{t \to \pm\infty} x(t) = p_\pm \right\} \]

is a smooth manifold. It has dimension \(\text{ind}(p_-) - \text{ind}(p_+)\).
The pair \((f, g)\) is **Morse-Smale** if

\[
\forall p_-, p_+ \in \text{Crit} f, \ W^u(p_-) \cap W^s(p_+).
\]

In this case, the **moduli space** of solutions to the *ODE* which are asymptotic to \(p\) at \(\pm \infty\)

\[
\tilde{M}(p_-, p_+) = W^u(p_-) \cap W^s(p_+)
\]

\[
= \left\{ x : \mathbb{R} \to M \mid x'(t) + \nabla f(x(t)) = 0, \lim_{t \to \pm \infty} x(t) = p_\pm \right\}
\]

is a smooth manifold. It has dimension \(\text{ind}(p_-) - \text{ind}(p_+)\).

\[
M(p_-, p_+) := \tilde{M}(p_-, p_+)/\mathbb{R}.
\]
(We need Palais-Smale condition in noncompact case):

\[\text{ind}(p_-) - \text{ind}(p_+) = 1 \implies \# M(p_-, p_+) < \infty. \]
(We need Palais-Smale condition in noncompact case):

\[\text{ind}(p_-) - \text{ind}(p_+) = 1 \implies \#\mathcal{M}(p_-, p_+) < \infty. \]

Morse-Smale-Witten complex:

\[CM_k(f; \mathbb{Z}_2) = \bigoplus_{p \in \text{Crit}_k f} \mathbb{Z}_2 \langle p \rangle, \quad \delta_{f,g} : CM_k \rightarrow CM_{k-1}. \]

\[\delta_{f,g}(p) = \sum_{q \in \text{Crit}_{k-1} f} \#\mathcal{M}(p, q) \cdot q. \]
(We need **Palais-Smale condition** in noncompact case):

\[
\text{ind}(p_-) - \text{ind}(p_+) = 1 \implies \# \mathcal{M}(p_-, p_+) < \infty.
\]

Morse-Smale-Witten complex:

\[
CM_k(f; \mathbb{Z}_2) = \bigoplus_{p \in \text{Crit}_k f} \mathbb{Z}_2 \langle p \rangle, \quad \delta_{f, g} : CM_k \to CM_{k-1}.
\]

\[
\delta_{f, g}(p) = \sum_{q \in \text{Crit}_{k-1} f} \# \mathcal{M}(p, q) \cdot q.
\]

Slogan: “Boundary operator defined by the (oriented) counting of isolated trajectories.”
A nontrivial fact is that \((\delta_f,g)^2 = 0\). Then \((CM_*(f;\mathbb{Z}_2),\delta_{f,g})\) is a chain complex, and we define the Morse homology associated to the pair \((f,g)\) by

\[
HM_*(f,g;\mathbb{Z}_2) := H(CM_*(f;\mathbb{Z}_2),\delta_{f,g}).
\]
A nontrivial fact is that \((\delta f, g)^2 = 0\). Then \((CM_*(f; \mathbb{Z}_2), \delta f, g)\) is a chain complex, and we define the Morse homology associated to the pair \((f, g)\) by

\[
HM_*(f, g; \mathbb{Z}_2) := H \left(CM_*(f; \mathbb{Z}_2), \delta f, g \right).
\]

Theorem

A generic pair \((f, g)\) is Morse-Smale. The Morse homology is (canonically) independent of the choice of \(f, g\). For compact \(M\), \(HM_*(f, g; \mathbb{Z}_2)\) is isomorphic to the homology of \(M\).
II. Morse theory for Lagrange multipliers
X: compact manifold
$f, \mu \in C^\infty(X)$
0: regular value of μ
$\overline{X} := \mu^{-1}(0)$.

\[
\text{Lagrange multiplier: } F : X \times \mathbb{R} \to \mathbb{R}
\quad (x, \eta) \mapsto f(x) + \eta \mu(x)
\]
\[
\text{Crit } F = \{ (x, \eta) \mid df(x) + \eta d\mu(x) = 0, \mu(x) = 0 \}
\]
\[
\simeq \text{Crit } (f|_X) =: \{ p_1, p_2, \ldots, p_k \}
\]

In general, we can consider $\mu = (\mu_1, \ldots, \mu_k) : X \to \mathbb{R}^k$ and
\[
F(x, \eta_1, \ldots, \eta_k) = f(x) + \sum \eta_i \mu_i(x).
\]
X: compact manifold

$f, \mu \in C^\infty(X)$

0: regular value of μ

$\overline{X} := \mu^{-1}(0)$.

Lagrange multiplier:

$F : X \times \mathbb{R} \to \mathbb{R}$

$(x, \eta) \mapsto f(x) + \eta \mu(x)$
X: compact manifold
$f, \mu \in C^\infty(X)$
0: regular value of μ
$\overline{X} := \mu^{-1}(0)$.

Lagrange multiplier:

$$F : X \times \mathbb{R} \to \mathbb{R}
\quad (x, \eta) \mapsto f(x) + \eta \mu(x)$$

$\text{Crit}F = \{(x, \eta) \mid df(x) + \eta d\mu(x) = 0, \; \mu(x) = 0\}$

$\simeq \text{Crit}(f|_{\overline{X}}) =: \{p_1, p_2, \ldots, p_k\}$.
\(X\): compact manifold
\(f, \mu \in C^\infty(X)\)
0: regular value of \(\mu\)
\(\overline{X} := \mu^{-1}(0)\).

Lagrange multiplier:

\[F : X \times \mathbb{R} \to \mathbb{R} \\
(x, \eta) \mapsto f(x) + \eta \mu(x) \]

\[\text{Crit}\, F = \{(x, \eta) \mid df(x) + \eta d\mu(x) = 0, \mu(x) = 0\} \]

\(\simeq \text{Crit}\,(f|_{\overline{X}}) =: \{p_1, p_2, \ldots, p_k\}\).

In general, we can consider \(\mu = (\mu_1, \ldots, \mu_k) : X \to \mathbb{R}^k\) and

\[F(x, \eta_1, \ldots, \eta_k) = f(x) + \sum \eta_i \mu_i(x). \]
If $p \in \text{Crit} f|_{\mathcal{X}}$, and locally

$$\mu = x_n, \quad f|_{\mathcal{X}} = -x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_{n-1}^2.$$
If $p \in \text{Crit}_f|_X$, and locally

$$\mu = x_n, \quad f|_X = -x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_{n-1}^2.$$

Then

$$\nabla^2(f + \eta x_n) = \nabla^2 F = \begin{bmatrix} A_{n-1} & * & 0 \\ * & * & 1 \\ 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} A_{n-1} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$
If \(p \in \text{Crit } f|\overline{X} \), and locally

\[
\mu = x_n, \quad f|\overline{X} = -x_1^2 - \cdots - x_k^2 + x_{k+1}^2 + \cdots + x_{n-1}^2.
\]

Then

\[
\nabla^2(f + \eta x_n) = \nabla^2 F = \begin{bmatrix}
A_{n-1} & * & 0 \\
* & * & 1 \\
0 & 1 & 0
\end{bmatrix} \sim \begin{bmatrix}
A_{n-1} & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.
\]

So the two extra direction, \(x_n \) and \(\eta \) give additional one positive and one negative eigenvalues of the Hessian, and

\[
\text{ind } (p, F) = \text{ind } (p, \text{Crit } f|\overline{X}) + 1.
\]
Choose a metric g_X on X, and the standard metric e on \mathbb{R}, we define a family of metrics on $X \times \mathbb{R}$ by

$$g_\lambda = g_X \oplus \lambda^{-2}e, \quad \lambda > 0.$$
Choose a metric g_X on X, and the standard metric e on \mathbb{R}, we define a family of metrics on $X \times \mathbb{R}$ by

$$g_\lambda = g_X \oplus \lambda^{-2} e, \quad \lambda > 0.$$

The negative gradient flow equation is
Choose a metric g_X on X, and the standard metric e on \mathbb{R}, we define a family of metrics on $X \times \mathbb{R}$ by

$$g_\lambda = g_X \oplus \lambda^{-2}e, \quad \lambda > 0.$$

The **negative gradient flow equation** is

$$\begin{cases}
 x'(t) + \nabla f(x(t)) + \eta(t)\nabla \mu(x(t)) &= 0, \\
 \eta'(t) + \lambda^2 \mu(x(t)) &= 0
\end{cases}$$
Choose a metric g_X on X, and the standard metric e on \mathbb{R}, we define a family of metrics on $X \times \mathbb{R}$ by

$$g_{\lambda} = g_X \oplus \lambda^{-2}e, \quad \lambda > 0.$$

The negative gradient flow equation is

$$\begin{cases} x'(t) + \nabla f(x(t)) + \eta(t)\nabla \mu(x(t)) = 0, \\ \eta'(t) + \lambda^2 \mu(x(t)) = 0 \end{cases}$$

Denote by $\mathcal{M}_{\lambda} (p_-, p_+)$ the moduli space of solutions connecting p_- and p_+ modulo time translation. Elements are called λ-trajectories.
Choose a metric g_X on X, and the standard metric e on \mathbb{R}, we define a family of metrics on $X \times \mathbb{R}$ by

$$g_\lambda = g_X \oplus \lambda^{-2}e, \quad \lambda > 0.$$

The negative gradient flow equation is

$$\begin{cases}
 x'(t) + \nabla f(x(t)) + \eta(t) \nabla \mu(x(t)) &= 0, \\
 \eta'(t) + \lambda^2 \mu(x(t)) &= 0
\end{cases}$$

Denote by $\mathcal{M}_\lambda (p_-, p_+)$ the moduli space of solutions connecting p_- and p_+ modulo time translation. Elements are called λ-trajectories.

We try to define the Morse homology for (F, g_λ), denoted by $\text{HM}^\lambda_\ast(F; \mathbb{Z}_2)$, by counting isolated λ-trajectories.
First, $F : X \times \mathbb{R} \to \mathbb{R}$ satisfies Palais-Smale condition.
First, \(F : X \times \mathbb{R} \to \mathbb{R} \) satisfies Palais-Smale condition.

Second, for generic \((f, \mu, g_X)\), there is an isolated set \(\Lambda^{sing} \subset \mathbb{R}^+ \) such that for \(\lambda \in \Lambda^{reg} := \mathbb{R}^+ \setminus \Lambda^{sing} \), \((F, g_\lambda)\) is Morse-Smale. So \(HM^{\lambda}_*(F; \mathbb{Z}_2) \) is defined.
First, $F : X \times \mathbb{R} \to \mathbb{R}$ satisfies Palais-Smale condition.

Second, for generic (f, μ, g_X), there is an isolated set $\Lambda^{\text{sing}} \subset \mathbb{R}^+$ such that for $\lambda \in \Lambda^\text{reg} := \mathbb{R}^+ \setminus \Lambda^{\text{sing}}$, (F, g_λ) is Morse-Smale. So $HM^\lambda_*(F; \mathbb{Z}_2)$ is defined.

Moreover, for $\lambda_1, \lambda_2 \in \Lambda^\text{reg}$, there is a canonical isomorphism (induced from a chain map)

$$\Phi : HM^\lambda_1(F; \mathbb{Z}_2) \simeq HM^\lambda_2(F; \mathbb{Z}_2).$$
First, $F : X \times \mathbb{R} \to \mathbb{R}$ satisfies Palais-Smale condition.

Second, for generic (f, μ, g_X), there is an isolated set $\Lambda^{sing} \subset \mathbb{R}^+$ such that for $\lambda \in \Lambda^{reg} := \mathbb{R}^+ \setminus \Lambda^{sing}$, (F, g_λ) is Morse-Smale. So $HM_\lambda^*(F; \mathbb{Z}_2)$ is defined.

Moreover, for $\lambda_1, \lambda_2 \in \Lambda^{reg}$, there is a canonical isomorphism (induced from a chain map)

$$\Phi : HM_{\lambda_1}^*(F; \mathbb{Z}_2) \simeq HM_{\lambda_2}^*(F; \mathbb{Z}_2).$$

The dynamics are varying with λ, so we are counting different objects for different λ. It yields different chain complexes $CM_\lambda^*(F)$ which have isomorphic homology.
A natural question to ask is

What are the “limits” of $CM^\lambda_*(F)$ as $\lambda \to 0$ and $\lambda \to \infty$?
A natural question to ask is

What are the “limits” of $CM^\lambda_*(F)$ as $\lambda \to 0$ and $\lambda \to \infty$?

More approachable questions:

1. Given a sequence λ_i with $\lim \lambda_i = 0$ or ∞, and a sequence $\gamma_i \in \mathcal{M}_\lambda(p_-, p_+)$. Is there a good limit (up to choosing a subsequence) of γ_i?
A natural question to ask is

What are the “limits” of $CM^\lambda_*(F)$ as $\lambda \to 0$ and $\lambda \to \infty$?

More approachable questions:

1. Given a sequence λ_i with $\lim \lambda_i = 0$ or ∞, and a sequence $\gamma_i \in M_\lambda(p_-, p_+)$. Is there a good limit (up to choosing a subsequence) of γ_i?

2. If we can describe limiting trajectories, do they always arise as limits of λ-trajectories?
A natural question to ask is

What are the “limits” of $CM_*^\lambda(F)$ as $\lambda \to 0$ and $\lambda \to \infty$?

More approachable questions:

1. Given a sequence λ_i with $\lim \lambda_i = 0$ or ∞, and a sequence $\gamma_i \in M^\lambda(p_-, p_+)$. Is there a good limit (up to choosing a subsequence) of γ_i?

2. If we can describe limiting trajectories, do they always arise as limits of λ-trajectories?

3. Does the counting of the limiting trajectories defines a chain complex which has the same homology?
λ → ∞
$\lambda \to \infty$

In general, if $x'(t) + \nabla h(x(t)) = 0$, then the energy of x is

$$\int_{\mathbb{R}} |x'(t)|^2 = h(x(-\infty)) - h(x(+\infty)).$$
\[\lambda \to \infty \]

In general, if \(x'(t) + \nabla h(x(t)) = 0 \), then the energy of \(x \) is

\[
\int_{\mathbb{R}} |x'(t)|^2 = h(x(-\infty)) - h(x(+\infty)).
\]

In the case of \((F, g_\lambda)\), for any solution \((x, \eta) : \mathbb{R} \to X \times \mathbb{R}\),

\[
|\nabla f(x) + \eta \nabla \mu(x)|_{L^2}^2 + \lambda^2 |\mu(x)|_{L^2}^2 = F(p_-) - F(p_+).
\]
\[\lambda \to \infty \]

In general, if \(x'(t) + \nabla h(x(t)) = 0 \), then the energy of \(x \) is

\[
\int_{\mathbb{R}} |x'(t)|^2 = h(x(-\infty)) - h(x(+\infty)).
\]

In the case of \((F, g_{\lambda})\), for any solution \((x, \eta) : \mathbb{R} \to X \times \mathbb{R} \),

\[
|\nabla f(x) + \eta \nabla \mu(x)|_{L^2}^2 + \lambda^2 |\mu(x)|_{L^2}^2 = F(p_-) - F(p_+).
\]

\[\lambda \to \infty \] trajectories converge into \(\overline{X} = \mu^{-1}(0) \).

Indeed, the \(X \)-component of the trajectory converges to (broken) trajectories of \((\overline{f}, \overline{g}) := (f|_{\overline{X}}, g|_{\overline{X}})\). So the limiting dynamical system is well-understood.
Theorem

If \(\lambda_i \to \infty \), and \(\gamma_i : \mathbb{R} \to X \times \mathbb{R} \) is a sequence of \(\lambda_i \)-trajectories connecting \(p_- \) and \(p_+ \), then there is a subsequence of \(\gamma_i \) which converges to a broken trajectory of \(-\nabla F\) connecting \(p_- \) and \(p_+ \).
Theorem

If $\lambda_i \to \infty$, and $\gamma_i : \mathbb{R} \to X \times \mathbb{R}$ is a sequence of λ_i-trajectories connecting p_- and p_+, then there is a subsequence of γ_i which converges to a broken trajectory of $-\nabla f$ connecting p_- and p_+.

Conversely, if $\text{ind} p_- - \text{ind} p_+ = 1$, then there exists $\lambda_0 >> 0$ such that for any trajectory \bar{y} of $-\nabla f$ connecting p_- and p_+, for any $\lambda > \lambda_0$, there exists a unique λ-trajectory (up to time translation) connecting p_- and p_+ which is “close” to \bar{y}.
Theorem

If \(\lambda_i \to \infty \), and \(\gamma_i : \mathbb{R} \to X \times \mathbb{R} \) is a sequence of \(\lambda_i \)-trajectories connecting \(p_- \) and \(p_+ \), then there is a subsequence of \(\gamma_i \) which converges to a broken trajectory of \(-\nabla f \) connecting \(p_- \) and \(p_+ \).

Conversely, if \(\text{ind} p_- - \text{ind} p_+ = 1 \), then there exists \(\lambda_0 >> 0 \) such that for any trajectory \(\bar{y} \) of \(-\nabla f \) connecting \(p_- \) and \(p_+ \), for any \(\lambda > \lambda_0 \), there exists a unique \(\lambda \)-trajectory (up to time translation) connecting \(p_- \) and \(p_+ \) which is “close” to \(\bar{y} \).

Corollary (Folklore)

For \(\lambda \in \Lambda^\text{reg} \), there is an isomorphism

\[
HM^\lambda_*(F; \mathbb{Z}_2)[1] \cong HM_*(\bar{f}; \mathbb{Z}_2) \cong H_*(\bar{X}; \mathbb{Z}_2)
\]
Now we consider the other limit of $CM_\lambda^\lambda(F)$ as $\lambda \to 0$. The equation is

\[
\begin{cases}
 x'(t) + \nabla f(x(t)) + \eta(t)\nabla \mu(x(t)) &= 0, \\
 \eta'(t) + \lambda^2 \mu(x(t)) &= 0
\end{cases}
\]
Now we consider the other limit of $CM_{\ast}^\lambda(F)$ as $\lambda \to 0$. The equation is

\[
\begin{align*}
 x'(t) + \nabla f(x(t)) + \eta(t)\nabla \mu(x(t)) &= 0, \\
 \eta'(t) + \lambda^2 \mu(x(t)) &= 0
\end{align*}
\]

This is a special case of the fast-slow ODE:

\[
\begin{align*}
 x'(t) &= A(x(t), y(t)), \\
 y'(t) &= \epsilon B(x(t), y(t)).
\end{align*}
\]

So in normal scale, the variable η is “freezed”. Then the variable x travels along the flow of $-\nabla(f + \eta \mu)$.
Set $\lambda = 0$. It gives the equation for the fast flow is

$$x'(t) + \nabla f(x(t)) + \eta \nabla \mu(x(t)) = 0, \quad \eta'(t) = 0.$$
Set \(\lambda = 0 \). It gives the equation for the fast flow is

\[
x'(t) + \nabla f(x(t)) + \eta \nabla \mu(x(t)) = 0, \quad \eta'(t) = 0.
\]

On the other hand, in large scale (long time), \(\eta \) can still change at places where \(x \) also changes slowly, i.e., the slow manifold

\[
C_X := \{(x, \eta) \mid \nabla f(x) + \eta \nabla \mu(x) = 0\}.
\]
Set $\lambda = 0$. It gives the equation for the fast flow is

$$x'(t) + \nabla f(x(t)) + \eta \nabla \mu(x(t)) = 0, \quad \eta'(t) = 0.$$

On the other hand, in large scale (long time), η can still change at places where x also changes slowly, i.e., the slow manifold

$$C_X := \{(x, \eta) \mid \nabla f(x) + \eta \nabla \mu(x) = 0\}.$$

So for generic data, C_X is a smooth curve in $X \times \mathbb{R}$. Moreover

$$(x, \eta) \in C_X \implies x \in \text{Crit}(f + \eta \mu), \quad \text{Crit}F = C_X \cap (\overline{X} \times \mathbb{R}).$$
Set $\lambda = 0$. It gives the equation for the fast flow is

$$x'(t) + \nabla f(x(t)) + \eta \nabla \mu(x(t)) = 0, \quad \eta'(t) = 0.$$

On the other hand, in large scale (long time), η can still change at places where x also changes slowly, i.e., the slow manifold

$$C_X := \{(x, \eta) \mid \nabla f(x) + \eta \nabla \mu(x) = 0\}.$$

So for generic data, C_X is a smooth curve in $X \times \mathbb{R}$. Moreover

$$(x, \eta) \in C_X \implies x \in \text{Crit}(f + \eta \mu), \quad \text{Crit}F = C_X \cap (X \times \mathbb{R}).$$

Moreover, in generic case $F|_{C_X}$ is a Morse function, whose negative gradient flow is called the slow flow. CritF is part of the equilibria of the slow flow.
A fast-slow trajectory connecting p_- and p_+ is a finite concatenations

$$
\gamma = (\ldots, \gamma_k^F, \gamma_k^S, \gamma_{k+1}^F, \gamma_{k+1}^S, \ldots)
$$

of trajectories of the fast or slow flow. $\mathcal{M}_{FS}(p_-, p_+)$ is their moduli space.
A fast-slow trajectory connecting \(p_- \) and \(p_+ \) is a finite concatenations

\[
\gamma = (\ldots, \gamma^F_k, \gamma^S_k, \gamma^F_{k+1}, \gamma^S_{k+1}, \ldots)
\]

of trajectories of the fast or slow flow. \(\mathcal{M}_{FS}(p_-, p_+) \) is their moduli space.

Theorem (Schecter-G.X.)

Given \(p_\pm \in \text{Crit}F \), a sequence \(\lambda_i \to 0 \) and a sequence of \(\lambda_i \)-trajectories \(\gamma_i \in \mathcal{M}_{\lambda_i}(p_-, p_+) \), there is a subsequence which converges to a fast-slow trajectory connecting \(p_- \) and \(p_+ \).
A fast-slow trajectory connecting p_- and p_+ is a finite concatenations

$$\gamma = (\ldots, \gamma^F_k, \gamma^S_k, \gamma^F_{k+1}, \gamma^S_{k+1}, \ldots)$$

of trajectories of the fast or slow flow. $\mathcal{M}_{FS}(p_-, p_+)$ is their moduli space.

Theorem (Schecter-G.X.)

*Given $p_\pm \in \text{Crit}F$, a sequence $\lambda_i \to 0$ and a sequence of λ_i-trajectories $\gamma_i \in \mathcal{M}_{\lambda_i}(p_-, p_+)$, there is a subsequence which converges to a fast-slow trajectory connecting p_- and p_+.**

To show that all fast-slow trajectories arise as limits of λ-trajectories, we have to do the “gluing” part. In the study of fast-slow ODE, this story is called geometric singular perturbation theory.
The “gluing part” of the main theorem is

Theorem (Schecter–G.X., 2012)

Suppose \((f, \mu, g_X)\) is generic. Then for any if \(\text{ind} p_- - \text{ind} p_+ = 1\), \(\mathcal{M}_{FS}(p_-, p_+)\) consists of isolated objects. Moreover, there exists a \(\lambda_0 > 0\) such that for every \(\lambda \in (0, \lambda_0)\) and for every \(\gamma \in \mathcal{M}_{FS}(p_-, p_+)\), there exists a unique \(\lambda\)-trajectory \(\gamma_{\lambda} \in \mathcal{M}_\lambda(p_-, p_+)\) which is close to \(\gamma\).
The “gluing part” of the main theorem is

Theorem (Schecter–G.X., 2012)

Suppose \((f, \mu, g_X)\) is generic. Then for any if \(\text{ind} p_- - \text{ind} p_+ = 1\), \(\mathcal{M}_{FS}(p_-, p_+)\) consists of isolated objects. Moreover, there exists a \(\lambda_0 > 0\) such that for every \(\lambda \in (0, \lambda_0)\) and for every \(\gamma \in \mathcal{M}_{FS}(p_-, p_+)\), there exists a unique \(\lambda\)-trajectory \(\gamma_\lambda \in \mathcal{M}_\lambda(p_-, p_+)\) which is close to \(\gamma\).

Corollary

The counting of isolated fast-slow trajectories defines a chain complex \(CM_{FS}(f, \mu; \mathbb{Z}_2)\), whose homology is isomorphic to \(HM^\lambda_*(F; \mathbb{Z}_2)\). So there is an isomorphism

\[
HM^FS_*(f, \mu; \mathbb{Z}_2) \cong HM^\lambda_{big}_*(F; \mathbb{Z}_2) \cong HM^\lambda_{small}_*(F; \mathbb{Z}_2) \cong H_*(\overline{X}; \mathbb{Z}_2)[-1].
\]
To see what we are actually counting in the fast-slow complex, we make a digression into another geometric application of geometric singular perturbation theory.
To see what we are actually counting in the fast-slow complex, we make a digression into another geometric application of geometric singular perturbation theory.

Consider a Morse-Bott function

\[f : X \to \mathbb{R}, \quad \text{Crit} f = S = \bigcup_i S_i. \]
To see what we are actually counting in the fast-slow complex, we make a digression into another geometric application of geometric singular perturbation theory.

Consider a Morse-Bott function

\[f : X \to \mathbb{R}, \quad \text{Crit} f = S = \bigcup_i S_i. \]

Choose a Morse function \(h : S \to \mathbb{R} \). Choose a cut-off function \(\rho \) supported in a tubular neighborhood of \(S \) which is identically 1 near \(S \).
To see what we are actually counting in the fast-slow complex, we make a digression into another geometric application of geometric singular perturbation theory.

Consider a Morse-Bott function

\[f : X \to \mathbb{R}, \ \text{Crit} f = S = \bigcup_i S_i. \]

Choose a Morse function \(h : S \to \mathbb{R} \). Choose a cut-off function \(\rho \) supported in a tubular neighborhood of \(S \) which is identically 1 near \(S \).

Consider the family of perturbations

\[f_\epsilon := f + \epsilon \rho h : X \to \mathbb{R}. \]
To see what we are actually counting in the fast-slow complex, we make a digression into another geometric application of geometric singular perturbation theory.

Consider a Morse-Bott function

\[f : X \rightarrow \mathbb{R}, \text{Crit}f = S = \bigcup_i S_i. \]

Choose a Morse function \(h : S \rightarrow \mathbb{R} \). Choose a cut-off function \(\rho \) supported in a tubular neighborhood of \(S \) which is identically 1 near \(S \).

Consider the family of perturbations

\[f_\epsilon := f + \epsilon \rho h : X \rightarrow \mathbb{R}. \]

We see \(\text{Crit}f_\epsilon = \text{Crit}h \). Then we consider the flow of \(-\nabla f_\epsilon\). In a tubular neighborhood of \(S \), the equation is

\[
\begin{align*}
 v'(t) &= -\nabla f(v(t), s(t)), \\
 s'(t) &= -\epsilon \nabla h(v(t), s(t)).
\end{align*}
\]
The fast flow is just the flow of $-\nabla f$. The slow manifold is S. The slow flow is the flow of $-\nabla h$ inside S.
The fast flow is just the flow of $-\nabla f$. The slow manifold is S. The slow flow is the flow of $-\nabla h$ inside S.

More importantly, the fast flow is normally hyperbolic. This means that the linearization of the term $-\nabla f(v, s)$ in the normal direction of S is nondegenerate.
The fast flow is just the flow of $-\nabla f$. The slow manifold is S. The slow flow is the flow of $-\nabla h$ inside S.

More importantly, the fast flow is normally hyperbolic. This means that the linearization of the term $-\nabla f(v, s)$ in the normal direction of S is nondegenerate.

The fast-slow trajectories in this case are the “cascades”, i.e., a concatenation of flow lines of $-\nabla f$ between two points in two different components of S, and flow lines of $-\nabla h$ inside S.
The fast flow is just the flow of $-\nabla f$. The slow manifold is S. The slow flow is the flow of $-\nabla h$ inside S.

More importantly, the fast flow is normally hyperbolic. This means that the linearization of the term $-\nabla f(v, s)$ in the normal direction of S is nondegenerate.

The fast-slow trajectories in this case are the “cascades”, i.e., a concatenation of flow lines of $-\nabla f$ between two points in two different components of S, and flow lines of $-\nabla h$ inside S.

Theorem (Banyaga-Hurtubise, 2013)

If $\text{ind}(p_-) - \text{ind}(p_+) = 1$, then for any ϵ small enough, there is a one-to-one correspondence between “cascade trajectories” and trajectories of $-\nabla f_\epsilon$ connecting p_- and p_+.
Morse homology
Lagrange multipliers
Adiabatic Limits

\[\lambda \to \infty \]
\[\lambda \to 0 \]
In our fast-slow complex, there are only finitely many “fast tunnels” which can be a component of a fast-slow trajectory connecting p_- and p_+ if they have adjacent indices.

They are the handle-slides, cusp trajectories, and some index 1 trajectories.
In our fast-slow complex, there are only finitely many “fast tunnels” which can be a component of a fast-slow trajectory connecting p_- and p_+ if they have adjacent indices.

They are the handle-slides, cusp trajectories, and some index 1 trajectories.

For the family of functions $f + \eta \mu$, there are finitely many η’s such that $(f + \eta \mu, g_X)$ is not a Morse-Smale pair on X.
In our fast-slow complex, there are only finitely many “fast tunnels” which can be a component of a fast-slow trajectory connecting p_- and p_+ if they have adjacent indices. They are the handle-slides, cusp trajectories, and some index 1 trajectories.

For the family of functions $f + \eta \mu$, there are finitely many η’s such that $(f + \eta \mu, g_X)$ is not a Morse-Smale pair on X.

There may be handle-slides, which are fast trajectories connecting $(x_-, \eta), (x_+, \eta) \in C_X$ with $\text{ind}(x_-, f + \eta \mu) = \text{ind}(x_+, f + \eta \mu)$.
In our fast-slow complex, there are only finitely many “fast tunnels” which can be a component of a fast-slow trajectory connecting p_- and p_+ if they have adjacent indices.

They are the handle-slides, cusp trajectories, and some index 1 trajectories.

For the family of functions $f + \eta \mu$, there are finitely many η’s such that $(f + \eta \mu, g_X)$ is not a Morse-Smale pair on X.

There may be handle-slides, which are fast trajectories connecting $(x_-, \eta), (x_+, \eta) \in C_X$ with $\text{ind}(x_-, f + \eta \mu) = \text{ind}(x_+, f + \eta \mu)$.

There also may be birth-deaths, i.e., for some $(x, \eta) \in C_X$ such that x is a degenerate critical point of $f + \eta \mu$. A cusp trajectory is a type of fast trajectory connecting a birth-death with a non-birth-death point on C_X.
If p_- is a local minimum of the slow flow, then the fast-slow trajectory must start with an index 1 fast trajectory from p_-; if p_+ is a local maximum of the slow flow, then the fast-slow trajectory must end with an index 1 fast trajectory to p_+.

We have then a map of transportation, consists of those "fast tunnels" and the "slow tracks" gives only finitely many possible routes to transport from p_- to p_+. We are actually counting those routes.
If p_- is a local minimum of the slow flow, then the fast-slow trajectory must start with an index 1 fast trajectory from p_-; if p_+ is a local maximum of the slow flow, then the fast-slow trajectory must end with an index 1 fast trajectory to p_+. We have then a map of transportation, consists of those “fast tunnels” and the “slow tracks” gives only finitely many possible routes to transport from p_- to p_+. We are actually counting those routes.
The proof relies on Schecter’s general exchange lemma, which basically gives the local normal form of the system near C_X, even around the birth-deaths.
The proof relies on Schecter’s general exchange lemma, which basically gives the local normal form of the system near \(C_X \), even around the birth-deaths.

A model case: \(f = -\frac{1}{3}x^3, \mu = x + 1, C_X = \{ \eta = x^2 \} \). The origin is a birth-death.

\[
\begin{align*}
z_1 &= x, \\
z_2 &= \eta, \\
\epsilon &= \lambda^2.
\end{align*}
\]
Thank you!