REINSTATING THE M31 X-RAY SYSTEM RX J0042.3+4115 AS A BLACK HOLE X-RAY-binary AND COMPELLING EVIDENCE FOR AN EXTENDED CORONA

R. Barnard 1, M. R. Garcia 1, and S. S. Murray 2

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
2 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland, MD 21218, USA

Received 2011 August 22; accepted 2011 November 4; published 2011 December 2

ABSTRACT
The M31 X-ray source RX J0042.3+4115 was originally identified as a black hole (BH) binary because it displayed characteristic low-state variability at conspicuously high luminosities; unfortunately, this variability was later found to be artificial. However, analysis of 84 Chandra ACIS observations, a Hubble Space Telescope Advanced Camera for Surveys (ACS)/WFC observation, and a 60 ks XMM-Newton observation has supplied new evidence that RX J0042.3+4115 is indeed a BH binary. The brightest optical star within 3 σ of the position of RXJ0042.3+4115 had a F435W (~B) magnitude of 25.4 ± 0.2; M B > −0.4, hence we find a low-mass donor likely. RX J0042.3+4115 was persistently bright over ~12 years. Spectral fits revealed characteristic BH binary states: a low/hard state at 2.08 ± 0.08 × 10 38 erg s −1 and a steep power-law state at 2.41 ± 0.05 × 10 38 erg s −1 (0.3–10 keV). The high-luminosity low state suggests a ~20 M⊙ primary; this is high, but within the range of known stellar BH masses. The inner disk temperature during the steep power-law state was 2.24 ± 0.15 keV, high but strikingly similar to that of GRS 1915+105, the only known Galactic BH binary with a low-mass donor to be persistently bright. Therefore, RX J0042.3+4115 may be an analog for GRS 1915+105; however, other mechanisms may account for its behavior. We find compelling evidence for an extended corona during the steep power-law state, because compact corona models where the seed photons for Comptonization are tied to the inner disk temperature are rejected.

Key words: black hole physics – X-rays: binaries – X-rays: general

Online-only material: color figures

In this paper, we present our analysis of 84 Chandra ACIS observations of RX J0042.3+4115 over ~12 years, and our serendipitous Hubble Space Telescope (HST) observation, along with our re-analysis of the 60 ks 2002 XMM-Newton observation. We use the HST data to place RX J0042.3+4115 in M31 and argue for a low-mass donor. We use long-term and short-term variability, and also emission spectra, to reinstate RX J0042.3+4115 as a BH candidate. We discuss the observations and data analysis in the next section, followed by our results in Section 3, and a discussion in Section 4.

1. INTRODUCTION

The M31 X-ray source RX J0042.3+4115, named following Supper et al. (1997), was originally identified as a black hole (BH) X-ray binary by Barnard et al. (2003), after analyzing four XMM-Newton observations from 2000 to 2002. It apparently exhibited power density spectra (PDS) that were well described by a broken power law, with spectral index α changing from ~0 to ~1 at some break frequency; such a PDS is consistent with the low/hard states observed in all X-ray binaries, whether the accretor is a neutron star or a BH (see, e.g., van der Klis 1994; Wijnands & van der Klis 1999). Neutron star X-ray binaries tend to exhibit such behavior at luminosities around 10 36–10 37 erg s −1, yet RX J0042.3+4115 exhibited this variability at 0.3–10 keV luminosities of ~1–3 × 10 38 erg s −1. Barnard et al. (2003) concluded that RX J0042.3+4115 contained a BH.

However, it was later discovered that these PDS and those reported by other groups were contaminated by artifacts caused by the XMM-Newton data reduction software (Barnard et al. 2007). The problem arose because all XMM-Newton light curves start at the arrival time of the first photon by default; hence, source and background light curves, and light curves from the three EPIC detectors—MOS1, MOS2, and pn—are asynchronous by default. Combining these light curves (e.g., combining instruments or background subtraction) often resulted in PDS with artificial broken power-law shapes.

Therefore, we make no use of the PDS and instead rely on our well-established method of using low-state emission spectra (power-law emission with photon index 1.4–1.7 and little to no thermal emission, McClintock & Remillard 2006) at conspicuously high luminosities to identify BH candidates (Barnard et al. 2008, 2011; Barnard & Kolb 2009). We present the most detailed justification of our selection criteria in Barnard et al. (2011).

2. OBSERVATIONS AND ANALYSIS

We analyzed 84 Chandra ACIS observations of the central region of M31, spaced over ~12 years, using CIAO version 4.3. For each observation, we extracted 0.3–7.0 keV source and background spectra from circular regions with 10″ radius; the background region was close to the source region and source free. Corresponding response matrices and ancillary response files were also made. We obtained 0.3–10 keV luminosities from each observation using XSPEC version 12.6.0.

Observations with >200 net source counts were freely fitted with absorbed power-law models; spectra were grouped to give at least 20 counts bin −1. For observations with <200 net source counts we assumed an absorbed power-law model with N H = 1.0 × 10 21 atom cm −2 and Γ = 1.5, and found the 0.3–10 keV luminosity equivalent to 1 count s −1, then multiplied this conversion factor by the intensity; we chose this model because it approximates the best fit to our deepest Chandra observation of RX J0042.3+4115 in its low state. Luminosity uncertainties for freely fitted spectra are estimated by XSPEC by calculating a range of fluxes obtained by varying the emission parameters; the uncertainties for the faint spectra are derived directly from intensity uncertainties.
Additionally, we analyzed the 60 ks 2002 January XMM-Newton observation of M31 (Rev 381) with SAS version 10.0.0. We extracted 0.3–10 keV EPIC-pn light curves and spectra from circular source and background regions with 15′′ radius. The background region was on the same CCD as the source region and at a similar off-axis angle. The spectra were grouped to ensure a minimum of 50 counts bin$^{-1}$.

RX J0042.3+4115 was serendipitously observed in one of our HST ACS/WFC observations of M31 transients. Observation j9ud17010 was made on 2009 August 25, with the F435W filter for 4360 s. We registered a combined Chandra 0.3–7.0 keV image with the same position as RX J0042.3+4115 in the HST image, superposed with the ACS/WFC image and the brightest stars in the field. We determined the best X-ray position from circular source and background regions with 15′′ radius. The background region was on the same CCD as the source region and at a similar off-axis angle. The spectra were grouped to ensure a minimum of 50 counts bin$^{-1}$.

The position of RX J0042.3+4115 created from the 84 ACIS observations; hence the variable component was probably internal to the system. Since the donor is unlikely to suffer this extra absorption, we assume $N_H = 1.0 \times 10^{21}$ atom cm$^{-2}$ (see below) and $A_B = 0.7$. Therefore $M_B \gtrsim -0.4$.

The known counterparts of high-mass X-ray binaries (HMXBs) in the Small Magellanic Cloud have apparent V magnitudes in the range $13 \lesssim m_V \lesssim 18$ and $B - V$ in the range $-0.32 \leq B - V \leq 0.06$ (see, e.g., Coe et al. 2005; Antoniou et al. 2009). For a distance of ~ 60 kpc, this equates to $-6 \lesssim M_B \lesssim -1$, all brighter than our threshold of $M_B \gtrsim -0.4$.

The three known BH HMXBs are Cygnus X-1, LMC X-1, and LMC X-3. Cygnus X-1 has a counterpart with $M_B = -6.5$ (Walborn 1972) and $B - V = 0.8$ (Hiltner 1956). The counterpart to LMC X-1 has magnitude $V = 14.60 \pm 0.02$ and $B - V = 0.17 \pm 0.08$ (Orosz et al. 2009); hence $M_B \sim -4.2$ for a distance of 50 kpc. LMC X-3 has a $B \sim 17$ counterpart (see, e.g., Brocksopp et al. 2001) and $M_B \sim -1.5$; this is $\sim 8\sigma$ brighter than the brightest star within the ellipse.

RX J0042.3+4115 cannot be associated with a late-type star in our Galaxy. We conclude that it is located in M31.

3. RESULTS

3.1. The Search for an Optical Counterpart

The centroid of the X-ray emission from RX J0042.3+4115 was located at R.A. = 00:42:22.954, decl. = 41:15:35.23, with 1σ uncertainties of $0^\prime.009$ in R.A. and $0^\prime.007$ in decl. Combining this with the rms uncertainties in registration yields X-ray positional uncertainties of $0^\prime.09$ in R.A. and $0^\prime.19$ in decl.

Figure 1 shows a detail of our HST image, superposed with an ellipse representing the 3σ uncertainties in the position of RX J0042.3+4115. There are several stars within the ellipse, the brightest of which has a Vega B magnitude of 25.4 ± 0.2. We therefore constrain the B-band magnitude to $\gtrsim 24.8$. We see no evidence for a background galaxy; the region is relatively uncrowded, as it is $\sim 4^\prime$ from the M31 bulge, and the detection limit is $B < 28$. There is no evidence for a counterpart in the 2MASS All Sky Catalog (Skrutskie et al. 2006); hence RX J0042.3+4115 cannot be associated with a late-type star in our Galaxy. We conclude that it is located in M31.
RX J0042.3+4115 appears to be persistently bright. By contrast, most Galactic BH LMXBs are transient. One exception is GRS 1915+105; a 7 year RXTE/ASM light curve of GRS 1915+105 showed it to be persistently bright (McClintock & Remillard 2006). Another possible exception is GRS 1758−258; it is thought to be a Galactic LMXB, but its true nature is not confirmed due to the high degree of absorption (see, e.g., Muñoz-Arjona et al. 2010, and references within).

We also examined the short-term variability of RX J0042.3+4115 during the long XMM-Newton observation. We present the 0.3–10 keV EPIC-pn intensity light curve for RX J0042.3+4115 in Figure 3, along with the background light curve in gray for comparison. The intensity varies by a factor of two (4σ deviation) in <10 ks; hence the emission is dominated by a single source. The probability of RX J0042.3+4115 consisting of multiple bright variables is very low, especially since it is not associated with any globular cluster.

3.3. Spectral Analysis

3.3.1. Chandra observation OBSID1575

The longest ACIS observation of RX J0042.3+4115 was OBSID1575, an ACIS-S observation with a ~40 ks exposure time; the net source spectrum contained 7690 photons. An on-axis source with this intensity would be in danger of pile-up; however, RX J0042.3+4115 was ~4′ off-axis, and the photons were spread over a large number of pixels (>100). Each incoming photon is assessed by its impact on a 3 × 3 array of ACIS pixels; “good” photons are detected in only two of the nine pixels, while cosmic rays, etc., are detected in three or more (Davis 2001). We therefore estimated the probability of pile-up from the brightest pair of pixels; this pair accumulated 807 photons over ~38 ks or one photon every ~14 frames. Hence, we conclude that pile-up is unlikely to have been significant.

The 0.3–7.0 keV spectrum of RX J0042.3+4115 during observation OBSID1575 is well described by an absorbed power law, with line-of-sight absorption $N_H = 1.0 \pm 0.2 \times 10^{21}$ atom cm$^{-2}$ and photon index $\Gamma = 1.46 \pm 0.05$; χ^2/dof = 211/204. The 0.3–10 keV luminosity was $2.08 \pm 0.08 \times 10^{38}$ erg s$^{-1}$. Uncertainties are quoted at a 90% confidence level. Figure 4 shows the unfolded 0.3–7.0 keV spectrum multiplied by the channel energy, assuming the best-fit absorbed power-law model.

When a disk blackbody component was added to the power-law emission, XSPEC set the inner disk temperature to 8.2 × 10$^{-4}$ keV, with $N_H = 1.0 \pm 0.2 \times 10^{21}$ atom cm$^{-2}$ and $\Gamma = 1.46 \pm 0.05$; χ^2/dof = 211/204. Hence, there is no trace of a disk component in the 0.3–7.0 keV spectrum. We therefore conclude that RX J0042.3+4115 was in its low state during this observation; since the theoretical upper luminosity limit for low states in neutron star X-ray binaries is $\sim 3 \times 10^{37}$ erg s$^{-1}$, RX J0042.3+4115 is a likely BH candidate (see, e.g., Barnard et al. 2011, and references within).

3.3.2. XMM-Newton Rev 381

The 0.3–10 keV EPIC-pn spectrum of RX J0042.3+4115 contained 21,765 net source photons over ~55 ks of live time or ~0.4 count s$^{-1}$. The detector was operated in full frame mode, with 73.4 ms frame time; hence, pile-up was negligible.

An absorbed power-law model failed to fit the spectrum; the best-fit model yielded $N_H \sim 1.5 \times 10^{21}$ atom cm$^{-2}$ and $\Gamma \sim 1.7$, but χ^2/dof = 412/348, with a null hypothesis probability of 0.011.

We also tried an absorbed disk blackbody model, since this is characteristic of the thermal high state identified in BH binaries (e.g., McClintock & Remillard 2006). The best-fit column density was a factor of ~3 lower than the Galactic line-of-sight density (6.7×10^{20} atom cm$^{-2}$); hence we fixed it to this value. This resulted in an inner disk temperature of 1.5 keV, but χ^2/dof = 765/349 and a null hypothesis probability of 3 × 10$^{-33}$. Hence, RX J0042.3+4115 was clearly not in the thermal high state.

A disk blackbody + power-law model described the spectrum very well, with $N_H = 2.4 \pm 0.06 \times 10^{21}$ atom cm$^{-2}$, inner disk temperature $kT_{in} = 2.24 \pm 0.15$ keV, $\Gamma = 3.0 \pm 0.6$, and χ^2/dof = 343/346. Figure 5 shows the unfolded spectrum multiplied by channel energy, assuming the best-fit model. The 0.3–10 keV luminosity was $2.41 \pm 0.05 \times 10^{38}$ erg s$^{-1}$, with the power-law component contributing ~45%. Such a spectrum is
consistent with the steep power-law BH binary state described by McClintock & Remillard (2006). The disk temperature is rather higher than usual, but consistent with the Galactic BH binary system GRS 1915+105; McClintock & Remillard (2006) provide a sample spectral fit for GRS 1915+105 with $kT_{\text{in}} = 2.19 \pm 0.04$ keV and $\Gamma = 3.46 \pm 0.02$.

Some authors have claimed that such a model is unphysical, because the power-law component exceeds the thermal component at low energies; they argue that the observed soft excess is an artifact of the two-component model (see, e.g., Roberts et al. 2005; Goncalves & Soria 2006). These arguments assume a compact corona that can only access photons from the inner disk. However, there is substantial evidence for extended coronae in X-ray binaries at high luminosities; the ingress times of photoelectric absorption dips in high-inclination binaries indicate coronae with diameters of $\sim 20,000$–$700,000$ km (Church 2001; Church & Balucinska-Church 2004), while broadened emission lines in Chandra observations of Cygnus X-2 suggest a hot dense corona of up to $\sim 10^5$ km (Schulz et al. 2009). Such coronae would have access to the soft photons from the outer regions of the disk as well as the hot photons from the inner disk.

Indeed, fitting the spectrum with a more physically motivated model (diskbb + comptt in XSPEC) yielded the same values for N_H and kT_{in} as the disk blackbody + power-law model, along with a seed photon temperature of ~ 0.02 keV, an electron temperature of ~ 40 keV, and an optical depth ~ 0.2; χ^2/dof = 343/344; the electron temperature was unconstrained, and good fits were obtained for electron temperatures of 100 keV and 300 keV also, typical for the BH low state. Tying the seed photon temperature to kT_{in} resulted in an unacceptable fit: χ^2/dof \geq 453/346 (null hypothesis probability $< 1 \times 10^{-7}$). These results are entirely consistent with an extended, optically thin corona, and reject a compact corona that only sees the innermost region of the disk.

Figure 5. Unfolded spectrum for the 60 ks XMM-Newton observation Rev 381, multiplied by energy. It is well described by a disk blackbody (dashed) + power-law (dotted) emission model, suffering line-of-sight absorption. $N_H = 2.4 \pm 0.6 \times 10^{21}$ atom cm$^{-2}$, $kT_{\text{in}} = 2.24 \pm 0.15$ keV, and $\Gamma = 3.0 \pm 0.6$; χ^2/dof = 343/346. Such a spectrum is characteristic of the steep power-law state seen in black hole binaries; the temperature is higher than is generally observed for Galactic black hole binaries, but is consistent with GRS 1915+105 (McClintock & Remillard 2006).

(A color version of this figure is available in the online journal.)

4. DISCUSSION

Although the original evidence for RX J0042.3+4115 being a BH binary was contaminated by artifacts in the XMM-Newton data reduction software, we now have new evidence that it is indeed a BH candidate.

Our constraint on the B magnitude ($B > 24.8$ at the 3σ level) is extremely useful for interpreting the system. RX J0042.3+4115 is clearly not located in our galaxy, and there is no background galaxy with $B \lesssim 28$; hence we locate RX J0042.3+4115 in M31. The 3σ upper limit to $M_B = -0.4$, meaning that a low-mass donor is most likely.

We have observed two distinct spectral states from this system, consistent with the low/hard and steep power-law BH states. The low state was observed at a 0.3–10 keV luminosity of $2.08 \pm 0.08 \times 10^{38}$ erg s$^{-1}$, while the steep power-law state was observed at $2.41 \pm 0.05 \times 10^{38}$ erg s$^{-1}$. Since transitions from the low state occur at $L \lesssim 0.1 L_{\text{Edd}}$ in the 0.01–1000 keV band for neutron star systems (Gladstone et al. 2007), and in the 15–50 keV band for neutron star and BH systems (Tang et al. 2011), we suggest that RX J0042.3+4115 was near 0.1 L_{Edd} during Chandra observation 1575. Such a system would require a $\sim 20 M_\odot$ BH; this is larger than for any Galactic BH binary, but smaller than the dynamically confirmed BH in IC10 X-1, which has a best-mass estimate of $32.7 \pm 2.6 M_\odot$, and a lower limit of $23.1 \pm 2.1 M_\odot$ (Silverman & Filippenko 2008).

RX J0042.3+4115 has been persistently bright for the last ~ 12 years; this is quite unlike the transient behavior of most Galactic BH LMXBs. The only known persistently bright BH LMXB is GRS 1915+105, which has remained bright since its discovery in 1992 (McClintock et al. 2006). The X-ray behavior of GRS 1915+105 is unmatched by any Galactic BH binary and may be explained by the primary spinning in the same direction as the accretion disk at extreme speeds (>98% of the maximum, McClintock et al. 2006). Such prograde spinning allows the last stable orbit to be significantly closer to the BH than for a non-spinning BH, resulting in a higher disk luminosity and also a higher kT_{in} (Zhang et al. 1997).

The inner disk temperature for RX J0042.3+4115 in the steep power-law state (2.24 ± 0.15 keV) was remarkably similar to that of GRS 1915+105 (2.19 ± 0.04 keV for an example spectrum, McClintock & Remillard 2006). Hence, the persistent X-ray emission from RX J0042.3+4115 may also be due to extreme prograde spin. However, we note that five out of the six BH candidates that we have associated with M31 globular clusters are also persistent (Barnard et al. 2008, 2011; Barnard & Kolb 2009); such systems are consistent with theoretical predictions for tidal capture of main-sequence donor stars (Kalogera et al. 2004) or ultra-compact systems with degenerate donors (Ivanova et al. 2010). Therefore, several mechanisms can promote persistently bright BH binaries.

Finally, we note that compact corona models where the seed photon energy is tied to the inner disk temperature were all rejected by the XMM-Newton Rev 381 spectrum of RX J0042.3+4115. However, free fitting of the seed photon energy yielded a good fit at 0.02 keV; this result gives strong support for an extended corona in the intermediate/steep power-law state, which is able to access the cooler photons in the outer disk. We drew the same conclusions for the confirmed black hole + Wolf–Rayet binary IC10 X-1 (Barnard 2010).

We thank the anonymous referee for thoughtful comments that significantly improved this paper. We also thank Z. Li for
providing the merged ACIS image. This research has made use of data obtained from the *Chandra* data archive and software provided by the *Chandra* X-ray Center (CXC). This work also used an observation from *XMM-Newton*, an ESA science mission with instruments and contributions directly funded by ESA member states and the US (NASA). Furthermore, this work has used data from the Hubble Legacy Archive. R.B. is funded by *Chandra* grant GO9-0100X and *HST* grant GO-11013. M.R.G. and S.S.M. are both partially supported by NASA grant NAS8-03060.

Facilities: CXO (ACIS) HST (ACS) XMM (EPIC-pn).

REFERENCES

Antoniou, V., Hatzidimitriou, D., Zezas, A., & Reig, P. 2009, *ApJ*, 707, 1080
Barnard, R. 2010, *MNRAS*, 404, 42
Barnard, R., Garcia, M., Li, Z., Primini, F., & Murray, S. S. 2011, *ApJ*, 734, 79
Barnard, R., & Kolb, U. 2009, *MNRAS*, 397, L92
Barnard, R., Osborne, J. P., Kolb, U., & Borozdin, K. N. 2003, *A&A*, 405, 505
Barnard, R., Stele, H., Hatzidimitriou, D., et al. 2008, *ApJ*, 689, 1215
Barnard, R., Trudolyubov, S., Kolb, U. C., et al. 2007, *A&A*, 469, 875
Brocksopp, C., Groot, P. J., & Wilms, J. 2001, *MNRAS*, 328, 139
Church, M. J. 2001, *Adv. Space Res.*, 28, 323
Church, M. J., & Bałucińska-Church, M. 2004, *MNRAS*, 348, 955

Coe, M. J., Edge, W. R. T., Galache, J. L., & McBride, V. A. 2005, *MNRAS*, 356, 502
Davis, J. E. 2001, *ApJ*, 562, 575
Gladstone, J., Done, C., & Gierliński, M. 2007, *MNRAS*, 378, 13
Gonçalves, A. C., & Soria, R. 2006, *MNRAS*, 371, 673
Hiltner, W. A. 1956, *ApJS*, 2, 389
Ivanova, N., Chaichenets, S., Fregence, J., et al. 2010, *ApJ*, 717, 948
Kalogera, V., King, A. R., & Rasio, F. A. 2004, *ApJ*, 601, L171
Massey, P., Olsen, K. A. G., Hodge, P. W., et al. 2006, *AJ*, 131, 2478
McClintock, J. E., & Remillard, R. A. 2006, in Black Hole Binaries, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 157
McClintock, J. E., Shafee, R., Narayan, R., et al. 2006, *ApJ*, 652, 518
Muñoz-Arjonilla, A. J., Martí, J., Luque-Escamilla, P. L., et al. 2010, *A&A*, 519, A15
Orosz, J. A., Steeghs, D., McClintock, J. E., et al. 2009, *ApJ*, 697, 573
Predehl, P., & Schmidt, J. H. M. M. 1995, *A&A*, 293, 889
Roberts, T. P., Warwick, R. S., Ward, M. J., Goad, M. R., & Jenkins, L. P. 2005, *MNRAS*, 357, 1363
Schulz, N. S., Huenemoerder, D. P., Ji, L., et al. 2009, *ApJ*, 692, L80
Silverman, J. M., & Filippenko, A. V. 2008, *ApJ*, 678, L17
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, *AJ*, 131, 1163
Supper, R., Hasinger, G., Pietsch, W., et al. 1997, *A&A*, 317, 328
Tang, J., Yu, W.-F., & Yan, Z. 2011, *Res. Astron. Astrophys.*, 11, 434
van der Klis, M. 1994, *ApJS*, 92, 511
Walborn, N. R. 1972, *AJ*, 77, 312
Wijnands, R., & van der Klis, M. 1999, *ApJ*, 514, 939
Zhang, S. N., Cui, W., & Chen, W. 1997, *ApJ*, 482, L155