Neuroregeneration in neurodegenerative disorders

Ana M Enciu¹, Mihnea I Nicolae¹,², Catalin G Manole¹,², Dafin F Mureșanu³, Laurențiu M Popescu¹,² and Bogdan O Popescu²,⁴*

Abstract

Background: Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.

Discussion: Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer’s Disease or Parkinson’s Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a “neuroregenerative reserve”, that could be exploited by growth factors or stem cells-neurorestoration therapies.

Summary: In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer’s Disease and Parkinson’s Disease.

Background

Adult neuroregeneration is a complex concept, beyond the common knowledge of neurogenesis that also comprises endogenous neuroprotection leading to neuroplasticity and neurorestoration - a therapeutical approach of implantation of viable cells (Figure 1). Regeneration in the central nervous system (CNS) implies that new neurons, generated either through proliferation of endogenous stem/progenitor cells or by administration of exogenous stem/precursor cells with potential to substitute for lost tissue, will differentiate, survive, and integrate into existing neural networks [1]. Among the three components of neuroregeneration previously mentioned, neuroplasticity was the first one put forward, by Ramon y Cajal, in 1894: “associations already established among certain groups of cells would be notably reinforced by means of the multiplication of the small terminal branches of the dendritic appendages and axonal collaterals; but, in addition, completely new intercellular connections could be established thanks to the new formation of [axonal] collaterals and dendrites.” [2]. However, Ramon y Cajal discards, in the same paper, the possibility of cell renewal: “it is known that the nerve cells after the embryonic period have lost the property of proliferation”. Adult neurogenesis was proposed by Joseph Altman in the 1960’s, in a series of articles involving tritiated thymidine retaining cells in the rat brain [3-5]. The newly emerged concept was a controversy until the early 1990s, when several reports [6-9] proved beyond doubt the existence of adult neural stem cells.

The concepts of neuroplasticity and neural stem cells led to the idea of neurorestoration as an alternative therapy for neurodegenerative disorders such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD), both characterized by neuronal loss. Our review will attempt to answer the question “Is there any neuroregeneration in neurodegeneration?” taking into account the three concepts mentioned above.

Discussion

Neurogenesis in neurodegenerative diseases

The adult mammalian brain retains a limited capacity of neurogenesis, which manifests in the subventricular zone (SVZ) and subgranular zone of the hippocampal dentate gyrus. The neuronal precursors migrate into the olfactory bulb, the granular cell layer, or, if necessary, to the striatum, CA1 region of hippocampus or cerebral cortex [10].

* Correspondence: bogdan.popescu@jcmm.org
²Laboratory of Molecular Medicine, ‘Victor Babeş’ National Institute of Pathology, 99-101 Splaiul Independenței, sector 5, Bucharest 050096, Romania
Full list of author information is available at the end of the article

© 2011 Enciu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Alzheimer’s Disease animal models

Neurogenesis in AD transgenic mice is usually impaired, but the results may differ from one transgenic strain to another [11]. Haughey et al. reported that proliferation and survival of neural precursor cells (NPC) was reduced in the dentate gyrus of APP mutant mice with already constituted amyloid deposits [12]. Furthermore, the decrement in NPC number was correlated with accumulation of Aβ, even in oligomeric, diffusible form [11]. Although Kolecki et al. confirmed the previous results, they reported that overexpressing APP and Aβ in transgenic mice do not interfere with the mitotic activity of NPC, as assessed by Ki-67 [13].

In vitro, Aβ effects reported on mouse brain-derived neurospheres are different with the type of peptide used: i) Aβ 25-35 induces neuronal differentiation and apoptosis in neural committed cells [14]; ii) Aβ40 promotes neurogenesis in NPCs [15]; iii) Aβ42 stimulates neurosphere formation and increases the number of neuronal precursors [16]; it also has a reported effect of inducing astrocytic differentiation [15].

Evidence of neurogenesis in AD human brain

An overexpression of neurogenesis markers (Doublecortin - DCX, Polysialylated Neural Cell Adhesion Molecule - PSA-NCAM and TUC-4) in hippocampus of AD patients, without a correlated increase in mature neuronal markers (NeuN, Calbinding D28k) is reported by Jin et al. [17]. This expression disjunction sustains the hypothesis of AD as a failed attempt of precursor cells to neuronal differentiation [18], but Boekhoorn et al argue that DCX is a nonspecific marker, increased due to reactive gliosis [19]. Furthermore, Verwer et al. questioned whether DCX+ cells are indeed neuroblasts, presenting arguments for their astrocytic origin [20]. Investigating Musashi immunoreactivity in SVZ of AD patients, Ziabreva et al. also reported impaired neurogenesis, as compared to controls [21]. In turn, although Lovell et al. isolated viable NSC from AD patients’ hippocampi, they obtained decreased viable NPC yields and altered division rates, as compared to controls [22].

In vitro studies using human neurospheres reported, unlike in vitro models using rodent NPCs, that Aβ 1-40 treatment impaired proliferation and differentiation of precursor cells [23].

In order to assess neurogenesis in AD brain, adding to contradictory results in literature, one must further take into account the neurogenesis-stimulating effect of AD medication [24].

Neurogenesis in PD animal models

Adult mice substantia nigra contains bromodeoxyuridine (BrdU) incorporating cells that show dividing and differentiating properties. In vivo, this potential seems to materialize into glial lineage, whereas in vitro, under appropriate growth factors stimulation, neuronal progenitors may be identified [25]. Reports regarding neurogenesis in 6-hydroxydopamine (6-OHDA) models of PD showed increased number of BrdU+ cells and a tendency to migrate towards the lesioned striatal nuclei [26], but without further differentiation on neuronal lineage [27].

Transgenic mice overexpressing human mutated α synuclein exhibited reduced BrdU+ cells and decreased survival of newly generated neurons, as compared to aged-matched controls. Interestingly, the cessation of α synuclein overexpression led to recovered neurogenesis [28].

Neurogenesis in PD human brain

The numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of Parkinson’s Disease patients [29]. However, there are reports of newly generated neuroblasts PSA-NCAM + in substantia nigra of PD patients, without a solid proof of further dopaminergic neuronal differentiation or reintegration in neuronal circuitry [30].

Endogenous neuroprotection and growth factors

Discovery of growth factors and their pro-survival effect led to a closer investigation of specific nervous system
cytokines - Nerve Growth Factor (NGF), Brain-Derived Nerve Factor (BDNF), Glial-Derived Nerve Factor (GDNF) - involvement in the outcome of neurodegenerative diseases. Interestingly, different neuronal subpopulations require different growth factors to thrive, for example NGF protects cholinergic neurons from various insults [31], whereas for dopaminergic neurons, this effect is better sustained by BDNF [32].

Neurotrophins (NGF, BDNF, neurotrophin 3 - NT3 and neurotrophin 4 - NT 4) are most studied for their involvement in normal central nervous system (CNS) development [33-36] and in normal [37] or pathological ageing [38-40]. They exert their effect through tropomyosin-related kinase (Trk) receptors and activation of several signaling cascades: i) IP3-DAG and subsequent release of calcium, leading to synaptic plasticity; ii) PI3K/Akt and transcription of prosurvival genes and iii) MAPK/ERK and activation of differentiation promoting substrates [41]. With low affinity and also in immature form (as proneurotrophins) they interact with p75NTR - a tumor necrosis factor receptor which, in turn, upon activation, leads to apoptosis in neuronal and non-neuronal cells [42]. Glial -Derived Neurotrophic Factor (GDNF) is a growth factor from the transforming growth factor β (TGFβ) superfamily, with documented neuroprotective effects in dopaminergic neurons cell cultures [43], in vivo studies on laboratory animals [44] and in animal models of PD [45,46]. It exerts its effects through Ret receptor tyrosine kinase and GDNF family receptor α1 (GFRα1) complex [47], although the role of Ret signaling is controversial [48,49]. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) and Conserved Dopamine Neurotrophic Factor (CDNF) are members of a novel, evolutionarily conserved neurotrophic family with specific protective properties on dopaminergic neurons, as shown in 6-hydroxydopamine (6-OHDA) animal models of PD [50]. Furthermore, they seem to act more effectively than GDNF and use a different protective mechanism [51].

Neurotrophins and growth factors in neurodegeneration

In both AD and PD human brains, levels of BDNF [52] and its mRNA [53] are low. Furthermore, BDNF serum levels correlate with AD severity [54]. Correlated alteration in TrkB expression in AD is also reported in cortical neurons, but not in glial cells, which, surprisingly, upregulate a truncated form of the receptor [55]. According to Tong et al., BDNF signaling pathway seems also to be negatively affected in AD, by Aβ 1-42 peptide interference with gene transcription. Treatment of rat cortical neurons cultures with sublethal doses of Aβ peptide, interfered with the CREB activation-induced transcription of the BDNF gene and suppressed BDNF-induced activation of selective signaling pathways such as Ras-MAPK/ERK and PI3-K/Akt [56].

The reports regarding NGF mRNA and protein levels in AD brain are contradictory [57-59]. NGF deficiency has been proposed as ethiopathogenic factor in sporadic AD, and the AD11 anti-NGF mice recreate the phenotype and the functional impairment of early AD stages [55]. Also, in early stages, a loss of TrkA has been reported [60], while Cuello et Bruno proposed the existence of a failure of the NGF maturation cascade in AD [61]. Aβ load recreates the same NGF “dismetabolism” in the hippocampus of laboratory rats, as proposed by Cuello et al. [62]. In vitro models showed Aβ peptide as a potent NGF -secretion stimulator in astrocytic rat cultures and, in turn, NGF was shown to increase neurotoxic potency of amyloid peptide in primary rat hippocampal cultures via p75 induction [63].

It is well documented that brains of PD patients express lower GDNF levels [64] and growth factor delivery in brain of PD animal models exerts neuroprotective effects and improves clinical outcome [65,66]. Furthermore, Sun et al. demonstrated in a rat model that GDNF is more efficient than BDNF in protecting striatal neurons from 6-hydroxydopamine (6-OHDA), compared to the control group or BDNF group. Moreover, simultaneous administration of both growth factors showed no benefit over GDNF treatment alone [67]. However, using vector-induced striatal neuron-restricted expression of both GDNF and BDNF genes, Cao et al. reported an improved protein expression as to either approach alone [68].

In human AD studies, there are controversial reports of GDNF protein levels. Straten et al. reported higher CSF concentration than age-matched controls along with decreased serum concentration [69], whereas Marksteiner’s et al. results showed increased plasma levels in AD and mild cognitive impairment (MCI) patients [70]. However, in light of the serious side effects reported after intracerebroventricular infusion of GDNF in parkinsonian patients [71], attention was drown toward MANF and CDNF, which will hopefully make good candidates for novel therapies in PD.

Neuroplasticity in neurodegeneration

Neuroplasticity is a comprehensive term that illustrates the brain’s capacity to adapt, structurally and functionally, to environmental enhancement. According to Thickbroom and Mastaglia, the molecular mechanisms underlying neuroplasticity are both neuronal and non-neuronal and, furthermore, neuronal plasticity may be synaptic or non-synaptic [72]. Neuroplasticity is substrate for learning and memory formation, cognitive abilities progressively lost in AD and in late stages of PD.

Synaptic loss is one of the neurobiological hallmarks of AD, from the first stages of the disease [73]. The synaptic dysfunction is apparently due to soluble Aβ
oligomers, as proven by studies on human AD brains [74] and AD animal models [75]. Soluble Ab oligomers have a proven inhibitory effect on NMDA-R-dependent LTP [76], impairing even further the neuroplasticity, besides their roles in morphological and structural degeneration of the synapse [77].

Synapse alteration is initially compensated by “dynamic synaptic reorganization”, emphasized by a paradoxical initial increase in synaptic markers [78]. The proof of network reorganization is sustained by studies on AD brains showing increased polysialylated neural cell adhesion molecule (PSA-NCAM) in dentate gyrus, as compared to controls [79]. Also investigating NCAM, Jørgensen et al hypothesize that AD brain uses neuroplasticity as a compensatory measure for neuronal loss [80]. Furthermore, inflammatory environment - a constant finding in AD brain - impairs neuronal plasticity by inhibiting both (NMDA-R)-induced and voltage-dependent calcium channel (VDCC)-induced LTP [81].

The other neuropathological hallmark of AD, tau hyperphosphorylation, correlates with low neuronal plasticity and synaptic disorganization, as proven by studies on hibernating animals [82]. Possibly a protective mechanism against neuronal apoptosis in unfavorable conditions, persistent hyperphosphorylation will eventually lead to formation of paired helical filaments and cell destruction.

PD animal models also show impaired neuroplasticity. Studies in mice overexpressing human α-synuclein report both short-term and long-term altered presynaptic plasticity in the corticostratial pathway [83]. Transgenic mice bearing mutated α-synuclein - (A30P) α-synuclein - also showed impaired short-time synaptic plasticity [84] and the (6-OHDA) PD animal models develop defective synaptic plasticity induction [85].

Morphological studies of idiopathic PD brains and PD animal models reported that loss of dopaminergic input on medium spiny neurons of striatum resulted in lowering of dendritic length, dendritic spine density, and total number of dendritic spines [86].

To conclude so far, there is evidence of impaired neural plasticity in both AD [87] and PD [86] brains, which occurs on various molecular levels, from growth factors signaling to synaptic malfunction, disorganization and cytoskeletal rearrangement. However, the brain possesses a latent recovery capacity and in early stages some compensatory mechanisms are triggered (see Table 1). Furthermore, the brain’s capacity to compensate these structural and functional deficits is exploited by neurorestoration attempts in animal models and patients, as discussed below.

Neurorestoration

At the base of initial neurorestoration attempts lies the idea of enhancing the endogenous neuroprotective effect of growth factors in the CNS. At first, genetically modified fibroblasts to produce either BDNF, or NGF have been transplanted in laboratory rats [88,89] and primates [90]. The experiments were successful in rescuing functional and cellular loss. The same type of experiment was conducted, in 2005, on human patients, diagnosed with AD [91]. The delivery system consisted of induced pluripotent stem cells (iPS), generated from the recipient’s fibroblast population and genetically modified into secreting NGF. The authors reported significant progress at 22 months follow-up, quantified by cognitive scales and PET-Scan.

For PD patients, there are reports since the 1980’s of fetal midbrain dopamine cells implants [92]. The clinical

Table 1 Evidences of impaired neuroregeneration in AD and PD
Neurogenesis
Neuroprotection
Neuroplasticity
PD
outcome was improved [93,94] and engraftment of transplanted cells was successful [95,96], although some authors questioned the utility of the procedure in older patients [97]. However, two double-blinded, randomized, controlled trials set back the initial positivism, showing cell transplantation to be less effective than deep brain stimulation [98], in preventing recurrent dyskinesia. It seems however, that reported improvement is due to replacement by graft cells of aged brain cells [99], rather than stimulation of the brain’s own neurorestorative mechanism.

Other restorative models, tested in vitro or in animal models of AD and PD, use stem cells therapy: i) embryonic stem cells [100]; ii) embryonic stem cells-derived neurospheres [101]; iii) transdifferentiated stem cells (stem cells forced to differentiate outside their lineage by special growth media and specific stimuli) (e.g. hematopoietic stem cells), or iv) mesenchimal stem cells induced into secreting increased quantities of growth factors [102]. Apel et al. report neuroprotective effects of dental pulp cells co-cultured with hippocampal and mesencephalic rat neurons, in in vitro AD and PD models [103]. Murell et al. used human olfactory mucosa-derived neuronal progenitors to obtain dopaminergic neurons and transplant them in a rat PD model brain. The outcome was favorable and no difference was noted between transplants received form healthy donors or from Parkinson patients [104].

Summary
As expected, most reports incline towards progressive impairment of neuroregeneration resources in AD and PD brains, as proven on human post-mortem analysis, animal models and in vitro studies. However, due to increased amount of evidence that proper stimulation or supply of growth factors restores some of the cognitive loss and ameliorates behavioral skills, we hypothesize that the brain possesses, at least in early and medium stages of disease, a “neuroregenerative reserve”, that may be and begins to be, targeted as a therapeutic perspective.

List of abbreviations
AD: Alzheimer’s Disease; PD: Parkinson’s Disease; NPCs: neural precursor cells; PSA-NCAM: Polysialylated Neural Cell Adhesion Molecule; BDNF: Brain Derived Nerve Factor; TrkB: tropomyosin-related kinase receptor B; NGF: Nerve Growth Factor; GDNF: Glial Derived Nerve Factor

Acknowledgements
This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/64109 and by the Executive Unit for Financing Higher Education, Research, Development and Innovation - Romania (UEFISCDI), Program 4 (Partnerships in Priority Domains), grant nr. 41-013/2007.

Author details
1Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, School of Medicine, 8 Eroilor Sanitari, sector 5, Bucharest 020474, Romania. 2Laboratory of Molecular Medicine, ‘Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, sector 5, Bucharest 050096, Romania. 3Department of Neurology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 8 Victor Babes, Cluj Napoca 400023, Romania. 4Department of Neurology, University Hospital Bucharest, ‘Carol Davila’ University of Medicine and Pharmacy, 169 Splaiul Independentei, sector 5, Bucharest 050096, Romania.

Authors’ contributions
All authors contributed equally to elaboration of the manuscript, read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 5 March 2011 Accepted: 23 June 2011
Published: 23 June 2011

References
1. Johansson BB: Regeneration and plasticity in the brain and spinal cord. J Cereb Blood Flow Metab 2007, 27:1417-1430.
2. Ramon y Cajal S: The Croonian lecture: La fine structure des centres nerveux. Proc Roy Soc London 1894, 55:444-467.
3. Altman J: Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp Neurol 1962, 5:302-318.
4. Altman J: Are new neurons formed in the brains of adult mammals? Science 1962, 135:1127-1128.
5. Altman J, Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965, 124:319-335.
6. McKay R: Stem cells in the central nervous system. Science 1997, 276:66-71.
7. Monhead CM, Reynolds BA, Craig CG, McMillen MW, Staines WA, Morassutti D, Weiss S, van der Kooy D: Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994, 13:1071-1082.
8. Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255:1707-1710.
9. Shihabuddin LS, Palmer TD, Gage FH: The search for neural progenitor cell prospects for the therapy of neurodegenerative disease. Mol Med Today 1999, 5:474-480.
10. Lee E, Son H: Adult hippocampal neurogenesis and related neurotrophic factors. BioMed Rep 2009, 42:239-244.
11. Chiang TT: Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 2010.
12. Haughey NJ, Nath A, Chan SL, Borochad AC, Rao MS, Matsson MP: Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 2002, 83:1509-1524.
13. Kolecki R, Lafauci G, Rubenstein R, Mazur-Kolecia B, Kazczmarski W, Frackowiak J: The effect of amyloidosis-beta and ageing on proliferation of neuronal progenitor cells in APP-transgenic mouse hippocampus and in culture. Acta Neuropathol 2008, 116:419-424.
14. Calafate M, Battaglia G, Zappero A, Trotta-Salinaro E, Caraci F, Caruso M, Vánchez C, Sortino MA, Nicoletti F, Copani A: Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to beta-amyloid. Neurobiol Aging 2006, 27:606-613.
15. Chen Y, Dong C: Abeta40 promotes neuronal cell fate in neuronal progenitor cells. Cell Death Differ 2009, 16:386-394.
16. Sethi-Bhandari A, Li QX, Thangnipon W, Coulson EJ: Abeta(1-42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging 2009, 30:1975-1985.
17. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henhall DC, Greenberg DA: Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 2004, 101:343-347.
18. Li B, Yamamoto H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iskol K, Grundle-Iskol L: Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 2008, 67:78-94.
19. Boekhoorn K, Joels M, Lucassen PJ: Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 2006, 24:1-14.
20. Verwer RW, Sluter AA, Balasra RA, Baeyen JC, Nisole DP, Drven CM, Wouda J, van Dijk AM, Lucassen PJ, Swaab DF: Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 2007, 130:3321-3335.

21. Ziaie brwa L, Perry E, Perry R, Ninger SL, Bonevski A, Popovski B, Ballard C: Altered neurogenesis in Alzheimer’s disease. J Psychosom Res 2006, 61:311-316.

22. Lovell MA, Geiger H, van Zant GE, Lynn BC, Markesbery WR: Isolation of neural precursor cells from Alzheimer’s disease and aged control postmortem brain. Neurobiol Aging 2006, 27:909-917.

23. Mazur-Kolecka B, Golebski A, Nowicki K, Flory M, Frackowiak J: Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of neurodegeneration. Cell Mol Life Sci 2007, 21:1181-1192.

24. Waldaub B, Shetty AK: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 2006, 65:2372-2384.

25. Liu BF, Gao EJ, Zeng XZ, Ji M, Cai Q, Lu Q, Yang H, Xu QY: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 2006, 65:2372-2384.

26. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH: Progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of neurodegeneration. Cell Mol Life Sci 2007, 21:1181-1192.

27. Bickford PC, Jones KR: Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of neurodegeneration. Cell Mol Life Sci 2007, 21:1181-1192.

28. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Borrernann A, Kuhn W, Zimmermann F, Servedio A, Reiss O: Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 2008, 28:2471-2484.

29. Hoglinger GU, Rik P, Martel MP, Depoeckerts C, Oertel WH, Caille I, Hinch EC: Dopamine depletion impairs progenitor cell proliferation in Parkinson’s disease. Nat Neurosci 2004, 7:726-735.

30. Barta A, Hoglinger GU: Dopamine and adult neurogenesis. J Neurochem 2007, 100:587-595.

31. Auld DS, Meninckx F, Quiron R: Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: differentiation between neuromodulatory and neurotrophic influences. J Neurosci 2001, 21:3375-3382.

32. Baquet ZC, Bickford PC, Jones KR: Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005, 25:6251-6259.

33. Klein R: Role of neurotrophins in mouse neuronal development. FEBS J 1994, 8:578-744.

34. Davies AM, Minichiello L, Klein R: Developmental changes in NT3 signalling via TrkA and TrkB in embryonic neurons. EMBO J 1995, 14:4482-4489.

35. Conover JC, Yancopoulos GD: Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci 1997, 8:13-27.

36. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S: Neuroprotective signaling and the aging brain: take away food and let me run. Brain Res 2000, 886:47-53.

37. Cole GM, Frautschy SA: The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 2007, 42:10-21.

38. Reuter DJ, Proceedings of the Workshop on Neurotrophic factor functions in cultured cortical neurons. Exp Neurol 2009, 213:230-235.

39. Loo TF, Kholodilov N, Burke RE: Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease. Ann Neurol 2004, 56:520-531.

40. Cuello AC, Bruno MA, Allard S, Leon W, Iulita MF: Neuroprotective factor functions in Alzheimer’s Disease. Exp Gerontol 2007, 42:10-21.

41. Reichardt LF: Neurotrophins and proneurotrophins. J Neurosci 2005, 25:1545-1564.

42. Volosin M, Song W, Almeida RD, Kaplan DR, Hempead BL, Friedman WJ: Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci 2006, 26:7756-7766.

43. Pitonin M, Bespalov MV, Enavt D, Matliariou S, Tsidorova YA, Rassiala H, Saarma M, Pintar PT: Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Exp Neurol 2009, 219:499-506.

44. Golabek A, Nowicki K, Flory M, Frackowiak J: Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of neurodegeneration. Cell Mol Life Sci 2007, 21:1181-1192.

45. Bialon-Bleuel A, Revah F, Colin P, Locquet I, Robert JJ, Mallet J, Hellweg R: Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 2004, 24:6799-6809.

46. Hefti F: Evaluation of neurotrophins in the mouse brain. J Neurosci Res 2007, 85:519-524.

47. Mufson EJ, Ikonomovic MD, Styren SD, Counts SE, Wu J, Leurgans S, Bennett DA, Cochran EI, Delkosky ST: Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease. Arch Neurol 2003, 60:1143-1148.

48. O’Byrne SE, Hobson V, Hall JR, Waring SC, Chan W, Massman P, Lasczak M, Cullum CM, Das-Aranta R: Brain-derived neurotrophic factor levels in Alzheimer’s disease: role of axonal transport. Brain Res 2005, 113:237-341.

49. Counts SE, Nadeem M, Wu J, Ginsberg SD, Saragozi HU, Mufson EJ: Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease. Ann Neurol 2004, 56:520-531.

50. Cuello AC, Bruno MA: The failure in NGF maturation and its increased degradation as the probable cause for the vulnerability of cholinergic neurons in Alzheimer’s disease. Neurobiol Res 2007, 32:1041-1045.

51. Cuello AC, Bruno MA, Allard S, Leon W, Litala MF: Cholinergic involvement in Alzheimer’s disease: A link with NGF maturation and degradation. J Mol Neurosci 2010, 40:230-235.

52. Schindowski K, Belarbi K, Buee L: Neurotrophic factor functions in Alzheimer’s disease: role of axonal transport. Gene Brain Behav 2008, 7(Suppl 1):43-56.

53. Lom T, Balazs R, Thornton PL, Cotman CW: Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 2004, 24:6799-6809.

54. Enrico C, Georgievskia B, Lundberg C: Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides means to stimulate the survival of dopaminergic neurons in the substantia nigra. BMC Neurology 2011, 11:75.
neuroprotection in a rat model of Parkinson’s disease. Eur J Neurosci 2005, 22:2755-2764.

67. Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI: Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res 2005, 1052:119-129.

68. Cao H, Zhang GR, Wang X, Kong L, Geller AI: Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles. BMC Neurosci 2008, 9:37.

69. Strieter RM, Eschweiler GW, Maedler W, Laske C, Leyhe T: Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebral spinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J Alzheimers Dis 2009, 18:331-337.

70. Marksteiner J, Kemmler G, Weiss EM, Kraus G, Ullrich C, Mechteriakov S, Oberbauer H, Auffinger S, Hinterhuber H, Hinterhuber J, Humpel C: Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2009, 30:69-73.

71. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD, Simpson RK Jr, Stacy M, Wooten GF: Randomized, double-blind trial of glial cell-line-derived neurotrophic factor (GDNF) in PD. Neurology 2003, 60:S82-88.

72. Thickbroom GW, Mastaglia Fl: Plasticity in neurological disorders and challenges for noninvasive brain stimulation (NBS). J Neuroeng Rehabil 2009, 6:4.

73. Arendt T: Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 2009, 118:167-179.

74. Walsh DM, Selkoe DJ: Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004, 44:181-193.

75. Rowan MJ, Klyubin I, Cullen WK, Anwyl R: The Reversibility of Reversing Long-term Potentiation in Animal Models of Early Alzheimer Disease. Philos Trans R Soc Lond B Biol Sci 2003, 358:821-828.

76. Lacor PN, Buniel MC, Futo PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL: Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 2007, 27:796-807.

77. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Kraft GA, Klein WL: Alzheimer’s disease-affected brain: presence of oligomeric Abeta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 2003, 100:10417-10422.

78. Arendt T, Bruckner MK: Linking cell-cycle dysfunction in Alzheimer’s disease to a failure of synaptic plasticity. Biochim Biophys Acta 2007, 1772:413-421.

79. Miikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R: Glial cell lineage-derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid of patients with early Alzheimer’s disease. Neurobiol Aging 2002, 23:4-9.

80. Jorgensen OS, Brooksbank BW, Balazs R: Neuronal Plasticity and Synaptic Changes in Experimental Parkinsonism: Role of NMDA Receptor Trafficking in PSD. Parkinsonism Relat Disord 2008, 14(Suppl 2):S145-S149.

81. Dagher A, Isacson O: Long-term evaluation of bilateral fetal nigral transplantation in Parkinson’s disease. J Neurosurg 1999, 91:175-181.

82. Mendez I, Sanchez-Pernaute R, Cooper O, Viñuela A, Ferrari D, Bjorklund A, Dagher A, Isacson O: Cell type analysis of functional fetal dopaminergic cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005, 128:1498-1510.

83. Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O: Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 2008, 14:507-509.

84. Fried CR, Greene PE, Breeze RE, Tsai WF, Dumouchel W, Koo R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Edelberg D, Fahn S: Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001, 344:710-719.

85. Geraerts M, Krylyshkina O, Debasyer Z, Baelkenda V: Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 2007, 25:263-270.

86. Barzilay R, Lesy YS, Melamed E, Offen D: Adult stem cells for neuronal repair. In: Med Assoc J 2006, 81:61-66.

87. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, Nelson BL, Webster BJ, Asfour O, Neuenschwander F, Andersen P, Lees AJ, Olanow CW: Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 2008, 26:1815-2162.