Hysteresis in myo-inositol utilization by Salmonella Typhimurium

Jessica Hellinckx1 | Thilo M. Fuchs1,2

1Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung ZIEL, Technische Universität München, Freising, Germany
2Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany

Correspondence
Thilo M. Fuchs, Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Germany.
Email: thilo.fuchs@fli.bund.de

Funding information
Deutsche Forschungsgemeinschaft, Grant/Award Number: FU 375/9-1.

Abstract
Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo-inositol (MI) as the sole carbon and energy source is characterized by a bistable phenotype that manifests in a growth phenotype with an extraordinarily long and length-variable lag phase. However, in the presence of hydrogen carbonate, in the absence of IolR that represses the MI degradation pathway, or if cells are already adapted to minimal medium (MM) with MI, the lag phase is drastically shortened, and the bistable phenotype is abolished. We hypothesized that memory development or hysteresis is a further characteristic of MI degradation by S. Typhimurium; therefore, we investigated the transition from a short to a long lag phase in more detail. Growth experiments demonstrated that memory on the population level is successively lost within approximately 8 hr after cells, which had been adapted to MI utilization, were transferred to lysogeny broth (LB) medium. Flow cytometry (FC) analysis using a chromosomal fusion to P_iolE, a promoter controlling the expression of the enzymatic genes iolE and iolG involved in MI degradation, indicated a gradual reversion within a few hours from a population in the "ON" status with respect to iolE transcription to one that is mainly in the "OFF" status. Growth and FC experiments revealed that IolR does not affect hysteresis.

KEYWORDS
hysteresis, metabolism, myo-inositol, Salmonella

1 | INTRODUCTION

Phenotypic variation is widespread among prokaryotes. Its molecular mechanisms include genetic changes such as genomic inversion and strand-slippage mechanisms, epigenetic variations dependent on DNA methylation, and feedback-based bi- or multistability characterized by at least two distinct phenotypes within an isogenic population (Smits, Kuipers, & Veening, 2006). This phenomenon was described for the first time for lactose utilization by Escherichia coli requiring the expression of the lac operon that is negatively regulated by LacI.

Phenotypic heterogeneity that affects the fitness of pathogenic bacteria is of particular interest. For example, the survival of Staphylococcus aureus against antibiotic treatment requires that some cells, called "persisters", enter a condition of reduced growth (Balaban, Merrin, Chait, Kowalik, & Leibler, 2004). Further evidence for a correlation between heterogeneity and virulence properties comes from recent observations with S. enterica serovar Typhimurium (S. Typhimurium), a major cause of food poisoning worldwide. S. Typhimurium infects both animal and human hosts and causes enteric fever, gastroenteritis, bacteremia, and systemic infection. In mice, it evokes a disseminated infection that serves as a model for human typhoid fever. When this pathogen infects the host, a stochastic switch takes place that results in an invasive and therefore self-destructive fraction, and a noninvasive subpopulation that benefits from the dying one, possibly by alleviating competition by commensals (Ackermann et al., 2008). More recently, it was observed that within heterogeneous populations, nondividing Salmonella cells and those that express virulence factors survived best after exposure to antibiotics (Arnoldini et al., 2014; Claudi et al., 2014).

10.1002/mbo3.431

www.MicrobiologyOpen.com | 1 of 6
Growth of *S. Typhimurium* with myo-inositol (MI) as the sole carbon and energy source also exhibits a bistable phenotype (Kröger, Srikumar, Ellwart, & Fuchs, 2011). The *iol* genes of *S. Typhimurium* 14028 located on the genomic island GEI4417/4436 are responsible for MI degradation, which involves five enzymes encoded by this island, resulting in the formation of dihydroxyacetone phosphate, acetyl coenzyme A, and CO$_2$ (Kröger & Fuchs, 2009). The phenotypic heterogeneity correlates with the bistable expression of the promoter P_{iolE}, which controls the production of IolE and IolG that catalyze the first steps in MI degradation. The regulator IolR represses all but one promoter of the *iol* divergent, including that of its own gene and of *iolT1* encoding the predominant MI transporter (Kröger, Stolz, & Fuchs, 2010). An intermediate of MI degradation, 2-deoxy-5-keto-D-gluconic acid 6-phosphate (DKGP), antagonizes IolR binding, thus inducing the expression of *iol* genes (Yoshida, Shibayama, Aoyama, & Fujita, 1999; Yoshida et al., 2008). The *Salmonella*-specific activator ReiD induces the transcription of *iolE*, which is not controlled by IolR, and is assumed to trigger a metabolic response during infection (Rothhardt, Kröger, Broadley, & Fuchs, 2014). A striking feature of *S. Typhimurium* 14028 is its long lag phase in the presence of MI with a high variability under the same experimental conditions. However, length and variability are abolished in the absence of the *iol* gene repressor IolR or by the presence of at least 0.55% CO$_2$ (Kröger et al., 2011). Recently, using fluorescence microscopy and flow cytometry (FC) analysis, we demonstrated that at the single-cell level, the pronounced heterogeneity of an *S. Typhimurium* population during nonadapted growth on solid minimal medium (MM) with MI is correlated with the bistable behavior of at least one *iol* gene promoter, P_{iolE}, and that only a small subpopulation exhibits an induced *iolE* promoter (Kröger et al., 2011).

A common characteristic of bistable systems is hysteresis, defined as a situation in which the transition from one state to another requires a force unequal to that required for the reverse transition (Smits et al., 2006; Veening, Smits, & Kuipers, 2008), or less stringently, a situation within a biological system in which the state is not solely determined by the present conditions, but also depends on its history (Casadesus & D’Ari, 2002; Wolf et al., 2008). In this study, we analyzed quantitative growth and FC data of *S. Typhimurium* and its mutants following a shift from lysogeny broth (LB) medium to MM with MI and vice versa. We observed hysteresis that allows *S. Typhimurium* to rapidly restart growth with MI during a memory phase of approximately 8 hr.

RESULTS AND DISCUSSION

2.1 | Hysteresis in MI utilization

In comparison with cells pre-grown in a rich medium, the lag phase of an *S. Typhimurium* culture adapted to growth with the polyol MI as the sole carbon and energy source is much shorter (Kröger & Fuchs, 2009). Under this experimental condition, the bistable phenotype is abolished as reflected by a homogeneous growth behavior and low variability in the duration of the lag phase, resembling that in rich medium. This preliminary observation prompted us to investigate whether or not a memory effect or hysteresis can be observed during the growth of *S. Typhimurium* with MI. Strain 14028 was streaked out on MI agar plates and cultivated for 2 days. Several colonies were resuspended in MM with MI, and the optical density at 600 nm (OD$_{600}$) was adjusted to 0.8. Aliquots were then diluted 1:500 in LB medium and cultivated without shaking for 4, 6, and 8 hr at 37°C. Aliquots of these LB cultures with 2×10^5 cells were then used to inoculate MM with MI. To assure that each inoculum contained an equal amount of cells, the cfu/ml were determined in preliminary experiments and controlled by plating. Following monitoring of the bacterial growth, we identified the lag phase in MM/MI to end 23, 36, and 44 hr after the incubation of 4, 6, and 8 hr, respectively, in LB medium, in comparison with a lag phase of 20 hr in a control culture whose inoculum had no contact with rich medium (Figure 1). By plating aliquots of cultures in the lag phase, we calculated a division rate in MM/MI of 0.1 hr$^{-1}$ with cells from rich medium, and of 0.3 hr$^{-1}$ with cells preadapted to MI, corresponding well...
to the lengths of the lag phases shown in Figure 1. These data suggest that MI-adapted cells maintain the capability to utilize this substrate even when they are surrounded by a rich medium for several hours. This memory effect or hysteresis gradually decreases with increasing time of incubation in the medium free of MI and is nearly completely abolished after the cells had been in contact with LB medium for at least 8 hr. Thus, the memory effect allows S. Typhimurium to reshift its metabolism to MI utilization, at least during a period of several hours, in case that the better carbon source is not further available.

2.2 Determination of hysteresis on a single-cell level

To investigate the behavior of a S. Typhimurium cell culture upon medium switch, we first performed FC analysis of strain MvP101 P_{iolE-gfp} (Table 1), which carries a chromosomal fusion of the iolE promoter (P_{iolE}) with gfp, during lag phase in MM/MI in correlation with its division rates. We observed an increase in fluorescence intensity by a factor of 37 within 22 hr, whereas less than six cell divisions were calculated during a 36-hr lag phase (Table S2). Thus, the increase in fluorescence activity during the lag phase rather reflects the switch of OFF cells to ON cells than the division of cells that are already in the ON status. We therefore conclude that the cell population in the lag phase in MM/MI harbors a subpopulation of cells that change their metabolism to MI utilization.

According to the observed hysteresis, we assumed that S. Typhimurium continuously downregulates the iol genes after MI was depleted from the medium. To test this hypothesis, we adapted strain MvP101 P_{iolE-gfp} to MI by several passages on MI agar plates. An aliquot of an overnight culture in MI medium was diluted 1:500 in LB medium, and/or by GFP degradation and dilution, a control strain with a gfp-fusion to the promoter of the housekeeping gene rpsM was investigated in the same manner. This gene encodes the ribosomal protein S13 and is described previously for constitutive expression in E. coli (Nikolic, Barner, & Ackermann, 2013). More than half of the population of MvP101 P_{iolE-gfp} cells exhibited fluorescence directly after inoculation in LB. The amount of cells in the ON status with respect to rpsM transcription increased to 80% after 1 hr, and to more than 95% after 5 hr (Table 2). These data suggest that when cells are reinoculated in LB medium, they rapidly shift their metabolism from MI to other carbon sources, and an increasing percentage of cells switches down the transcriptional activity of P_{iolE} upon contact with LB medium.

We then correlated these FC data with the division rates of S. Typhimurium during 8 hr of growth in LB (Table S2). Within the first 2 hr in the absence of MI, the cell numbers and the fluorescence intensity increased, suggesting a proliferation of ON cells. Afterwards, a strong increase in the cell density was observed during exponential phase, whereas the fluorescence intensity and thus the amount of ON cells decreased, indicating that the population of ON cells switches to the OFF status or does not further divide. After 8 hr, the samples still exhibit a low level of fluorescence, an observation that is in line with a weak memory of this cell population in comparison with an overnight LB culture.

2.3 Hysteresis is independent of repressor IolR

The single-cell analysis correlated well with the S. Typhimurium growth curves of Figure 1, suggesting that the amount of cells harboring an

TABLE 1 Strains and plasmids used in this study
Description and relevant features
Bacterial strains
14028
14028 ΔiolR
MvP101
MvP101 ΔiolR
Plasmids
pKD3
pKD4
pKD46
pCP20
pUTs-gfp(Cm⁴⁸)
pUTs-P_{iolE-gfp}
pUTs-P_{rpsM-gfp}
induced ioLE promoter contributes to hysteresis. To test this assumption, we repeated the experiments described above with mutant 14028 ΔiolR, which lacks the repressor IolR and exhibits a constitutive expression of all iol genes (Kröger & Fuchs, 2009). In comparison with parental strain 14028, the lag phases of the mutant were shorter due to a lack of IolR as expected (Figure 3a), and the standard variations of most data points were significantly lower, confirming that IolR reduces the high variability observed for the growth of S. Typhimurium with MI (Kröger & Fuchs, 2009). Surprisingly, the elongation of the lag phase in MM/MI again positively correlated with the incubation time in LB medium, thus resembling the pattern previously observed (Figure 1). As a control, we performed FC with strain MvP101 ΔiolR PioLE::gfp as described above. Within the first 3 hr following the depletion of MI, a reduction in the fluorescence activity was observed (Figure 3b). When the culture subsequently reached the end of the lag phase and entered the exponential phase, the amount of GFP increased, reflecting the derepression of the ioLE promoter in the absence of IolR. These data suggest that loss of memory for MI utilization even takes place when the iol genes are not repressed. Taken together, we conclude that the phenomenon of hysteresis during growth of S. Typhimurium with MI is independent of the repressor IolR and probably also of the IolR-antagonist DKGP.

3 | CONCLUSION

Examples for the experimental demonstration of hysteresis in bacteria are rare. Recently, it was demonstrated with *Caulobacter crescentus* that exposure to a moderate concentration of sodium chloride contributed to the survival at higher concentrations, but in dependence of the time interval between the exposures (Mathis & Ackermann, 2016). Two types of nongenetic memory, the phenotypic and the response memory, revealed to play a role for *E. coli* in the adaptation to fluctuating carbon sources (Lambert, 2014 #777), and the motile state of *Bacillus subtilis* was found to be memoryless in contrast to the sessile state (Norman, 2013 #776). In *S. Typhimurium* the transcriptional heat-shock response...
is characterized by such a memory effect, as a majority of heat shock-induced genes remain upregulated when the stress condition has already ceased (Pin et al., 2012). Here, we show that hysteresis is also a feature of *S. Typhimurium* when it encounters a change from MM with MI to one with a more efficient energy source. The absence of MI results in a gradual loss of hysteresis within a few hours, suggesting *S. Typhimurium* has a low preference for MI, which is present only in a few of the metabolic niches of this pathogen such as the gut or soil with decaying plant matter.

At a first glance, our results suggest that the gradual transition of the genes for MI degradation from induction to silencing constitutes the loss of memory. Surprisingly, the locking of cells into the ON status of *iol* gene transcription does not abolish hysteresis as demonstrated here using a *iolR*-negative mutant. We therefore conclude that *iolR* is not responsible for the hysteresis observed here, and further investigations are required to identify the factors determining the memory of a passed metabolic condition.

ACKNOWLEDGMENTS

Michael Hensel is acknowledged for the gift of MvP101 and Angela Felsl for technical assistance. This work was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) within the priority program SPP1617 (FU 375/9-1), and the Technische Universität München within the funding program Open Access Publishing.
CONFLICT OF INTEREST

None declared.

REFERENCES

Ackermann, M., Stecher, B., Freed, N. E., Songhet, P., Hardt, W. D., & Doebeli, M. (2008). Self-destructive cooperation mediated by phenotypic noise. Nature, 454, 987–990.

Arnoldini, M., Vizcarra, I. A., Pena-Miller, R., Stocker, N., Diard, M., Vogel, V., ..., Ackermann, M. (2014). Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biology, 12, e1001928.

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

Bongaerts, R. J., Hautefort, I., Sidebotham, J. M., & Hinton, J. C. (2002). Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in bacterial cells. Methods in Enzymology, 358, 43–66.

Casadesus, J., & D’Ari, R. (2002). Memory in bacteria and phage. BioEssays, 24, 512–518.

Claudi, B., Sprote, P., Chirkova, A., Personnic, N., Zankl, J., Schurmann, N., ... Bumann, D. (2014). Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 158, 722–733.

Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences U S A, 97, 6640–6645.

Kröger, C., & Fuchs, T. M. (2009). Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 191, 545–554.

Kröger, C., Srikumar, S., Ellwart, J., & Fuchs, T. M. (2011). Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 193, 1427–1435.

Kröger, C., Stolz, J., & Fuchs, T. M. (2010). myo-Inositol transport by Salmonella enterica serovar Typhimurium. Microbiology, 156, 128–138.

Lambert, G., & Kussell, E. (2014). Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet, 10, e1004556.

Mathis, R., & Ackermann, M. (2016). Response of single bacterial cells to stress gives rise to complex history dependence at the population level. Proceedings of the National Academy of Sciences U S A, 113, 4224–4229.

Medina, E., Paglia, P., Nikolaus, T., Muller, A., Hensel, M., & Guzman, C. A. (1999). Pathogenicity island 2 mutants of Salmonella typhimurium are efficient carriers for heterologous antigens and enable modulation of immune responses. Infection and Immunity, 67, 1093–1099.

Nikolic, N., Baner, T., & Ackermann, M. (2013). Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in cloning bacterial populations. BMC microbiology, 13, 258.

Norman, T. M., Lord, N. D., Paulsson, J., & Losick, R. (2013). Memory and modularity in cell-fate decision making. Nature, 503, 481–486.

Pin, C., Hansen, T., Munoz-Cuevas, M., de Jonge, R., Rosenkrantz, J. T., Lofstrom, C., ..., Olsen, J. E. (2012). The transcriptional heat shock response of Salmonella typhimurium shows hysteresis and heated cells show increased resistance to heat and acid stress. PLoS ONE, 7, e51196.

Provence, D. L., & Curtiss, R. 3rd (1994). Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infection and Immunity, 62, 1369–1380.

Rothhardt, J. E., Kröger, C., Broadley, S. P., & Fuchs, T. M. (2014). The orphan regulator ReiD of Salmonella enterica is essential for myo-inositol utilization. Molecular Microbiology, 94, 700–712.

Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. 3rd ed.. Cold Spring Harbor, N. Y: Cold Spring Harbor Laboratory.

Smits, W. K., Kuipers, O. P., & Veening, J. W. (2006). Phenotypic variation in bacteria: The role of feedback regulation. Nature Reviews Microbiology, 4, 259–271.

Starke, M., Richter, M., & Fuchs, T. M. (2013). The insecticidal toxin genes of Yersinia enterocolitica are activated by the thermolabile LTTR-like regulator TcaR2 at low temperatures. Molecular Microbiology, 89, 596–611.

Veening, J. W., Smits, W. K., & Kuipers, O. P. (2008). Bistability, epigenetics, and bet-hedging in bacteria. Annual Review of Microbiology, 62, 193–210.

Wolf, D. M., Fontaine-Bodin, L., Bischofs, I., Price, G., Keasing, J., & Arkin, A. P. (2008). Memory in microbes: Quantifying history-dependent behavior in a bacterium. PLoS ONE, 3, e1700.

Yoshida, K., Shibayama, T., Aoyama, D., & Fujita, Y. (1999). Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. Journal of Molecular Biology, 285, 917–929.

Yoshida, K., Yamaguchi, M., Morinaga, T., Kinehara, M., Ikeuchi, M., Ashida, H., & Fujita, Y. (2008). myo-Inositol catabolism in Bacillus subtilis. Journal of Biological Chemistry, 283, 10415–10424.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Hellinckx, J. and Fuchs, T. M. Hysteresis in myo-inositol utilization by Salmonella Typhimurium. MicrobiologyOpen. 2017;6:e431. https://doi.org/10.1002/mbo3.431