Complete genome sequence of *Dehalogenimonas lykanthroporepellens* type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains

Shivakumara Siddaramappa¹, Jean F. Challacombe¹, Susana F. Delano¹, Lance D. Green¹, Hajnalka Daligault¹, David Bruce¹, Chris Detter¹, Roxanne Tapia¹, Shunsheng Han¹, Lynne Goodwin¹, James Han², Tanja Woyke², Sam Putil³, Len Pennacchio², Matt Nolan², Miriam Land³, Yun-Juan Chang³, Nikos C. Kyrpides², Galina Ovchinnikova², Loren Hauser³, Alla Lapidus²⁴, Jun Yan⁵, Kimberly S. Bowman⁵, Milton S. da Costa⁶, Fred A. Rainey⁷, and William M. Moe⁵

¹ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
² DOE Joint Genome Institute, Walnut Creek, California, USA
³ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁴ Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁵ Louisiana State University, Baton Rouge, Louisiana, USA
⁶ Department of Life Sciences, University of Coimbra, Coimbra, Portugal
⁷ University of Alaska Anchorage, Anchorage, Alaska, USA

Corresponding author: William M. Moe

Keywords: reductive dechlorination, groundwater, strictly anaerobic, hydrogen utilization, contamination, *Chloroflexi*

Dehalogenimonas lykanthroporepellens is the type species of the genus *Dehalogenimonas*, which belongs to a deeply branching lineage within the phylum *Chloroflexi*. This strictly anaerobic, mesophilic, non spore-forming, Gram-negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. *D. lykanthroporepellens* was of interest for genome sequencing for two reasons: (a) an unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) a phylogenetic position that is distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9T contains 1,720 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small subunit rRNA (16S) locus.

Introduction

Strain BL-DC-9T (=JCM 15061, =ATCC BAA-1523) is the type strain of the species *Dehalogenimonas lykanthroporepellens*, which is the type species of the genus *Dehalogenimonas* [1]. At the time of publication, *D. lykanthroporepellens* is the only validly named species in this genus. The type strain was isolated from moderately acidic groundwater (pH=5.1) collected at a waste recovery well at the Petro-Processors of Louisiana, Inc. Superfund Site, near Baton Rouge, Louisiana (USA), in an area contaminated by high concentrations of several chlorinated alkanes and alkenes [1-3]. The strain is able to reductively dehalogenate a variety of environmentally important polychlorinated alkanes but not monochlorinated alkanes, chlorinated alkenes, or chlorinated benzenes [1,3]. Quantitative real-time PCR experiments indicate that bacteria closely related or identical to *D. lykanthroporepellens* are present throughout the contaminated site from which strain BL-DC-9T was first isolated [4]. In this report, we present a summary classification and a set of features for *D. lykanthroporepellens* BL-DC-9T together with the description of the complete genomic sequencing and annotation.
Classification and features

At present, *D. lykanthroporepellens* strain BL-DC-9T is phylogenetically isolated within the domain *Bacteria*, with no other species assigned to the genus *Dehalogenimonas*. On the basis of 16S rRNA gene sequences, strain BL-DC-9T clusters within the phylum *Chloroflexi*. Based on 16S rRNA gene sequences, the closest related type strains are *Caldilinea tarbellica* D1-25-10-4T [5] and *Caldilinea aerophila* STL-6-O1T [6], with sequence identities of 81.7\% and 81.5\%, respectively [7]. Aside from the closely related strain BL-DC-8 that was isolated from the same groundwater source as strain BL-DC-9T, the closest previously cultured phylogenetic relatives of strain BL-DC-9T are “*Dehalococcoides*” strains [1,3]. Although some variable regions of the 16S rRNA genes of *D. lykanthroporepellens* and “*Dehalococcoides*” strains are highly homologous [4], the overall identity of these genes is ~90\%, indicating a distant relationship [1].

Figure 1 shows the phylogenetic neighborhood of *D. lykanthroporepellens* strain BL-DC-9T in a 16S rRNA gene based phylogenetic dendrogram. The sequence of the lone 16S rRNA gene copy in the genome differs from the previously published 16S rRNA gene sequence (EU679419) by a single nucleotide position.

The cells of *D. lykanthroporepellens* stain Gram-negative, and are non-sporing, forming irregular cocci with a diameter of 0.3-0.6 \(\mu\mbox{m}\) (Figure 2). Strains of *D. lykanthroporepellens* were isolated in liquid medium using a dilution-to-extinction approach. Growth was not observed on agar plates or on medium solidified with gellan gum, even after long term (2 months) incubation [3]. The temperature range for growth of strain BL-DC-9T is between 20\°C and 37\°C with an optimum between 28\°C and 34\°C [3]. The pH range for growth is 6.0 to 8.0 with an optimum of 7.0 to 7.5 [3]. The organism grows in the presence of 2\% (w/v) NaCl and is resistant to ampicillin and vancomycin at concentrations of 1.0 and 0.1 g/l, respectively [3].

Dehalogenimonas lykanthroporepellens strain BL-DC-9T is a strictly anaerobic chemotroph, coupling utilization of H\(_2\) as an electron donor and several environmentally important polychlorinated aliphatic alkanes as electron acceptors for growth (Table 1). The chlorinated compounds known to be reductively dehalogenated include 1,2,3-trichloropropane, 1,2-dichloroethane, and 1,2-dichloroethene [3]. In all of the reductive dechlorination reactions characterized to date, strain BL-DC-9T appears to exclusively utilize vicinally halogenated alkanes as electron acceptors via dihaloelimination reactions (i.e., simultaneous removal of two chlorine atoms from adjacent carbon atoms with concomitant formation of a carbon-carbon double bond) [1,3]. Strain BL-DC-9T does not utilize 1-chlorobenzene, 1-chloropropane, 2-chloropropane, 1,2-dichlorobenzene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, tetrachloroethene, or vinyl chloride as electron acceptors for growth [1,3]. Growth is not supported by acetate, butyrate, citrate, ethanol, fructose, fumarate, glucose, lactate, lactose, malate, methanol, methyl ethyl ketone, propionate, pyruvate, succinate, or yeast extract in the absence of H\(_2\) [1,3].

Chemotaxonomy

The major cellular fatty acids of strain BL-DC-9T, as identified and quantified with the Sherlock MIS v. 6.0 system (Microbial Identification, Inc.) using the Aerobe (TSBA) and MOORE libraries, are C\(_{18:1}\omega9c\), C\(_{16:1}\omega6c\), C\(_{16:0}\), and C\(_{14:0}\) [1]. The same fatty acids were also present in the closely related strain BL-DC-8 [1]. Cellular fatty acids present in lower proportions include C\(_{18:0}\), C\(_{12:0}\), and the summed features listed in the MIDI Sherlock system as summed feature 5 (C\(_{18:2}\omega6c\) and/or anteiso-C\(_{18:0}\)) and summed feature 3 (one or more of C\(_{16:1}\omega7c\), C\(_{16:1}\omega6c\), iso-C\(_{15:0}\) 3OH) [1].

Genome sequencing and annotation

Genome project history

D. lykanthroporepellens strain BL-DC-9T was selected for sequencing on the basis of its phylogenetic position and the importance of reductive dechlorination in the field of environmental microbiology and bioremediation. A detailed understanding of the metabolic capabilities of chloroalkane-dehalogenating bacteria such as *D. lykanthroporepellens* has the potential to impact decision-making regarding site clean-up at thousands of DOE and non-DOE sites across the USA and around the world. *D. lykanthroporepellens* strain BL-DC-9T genome project is deposited in the Genomes OnLine Database [9] and the complete genome sequence is available from GenBank. Sequencing, finishing, and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.
Figure 1. Phylogenetic tree showing the position of *D. lykanthroporepellens* BL-DC-9T relative to other strains within the phylum Chloroflexi. The tree was inferred from 1,214 aligned nucleotide positions of the 16S rRNA gene sequence using the Neighbor-Joining method within the MEGA v4.0.2 package [8]. Truepera radiovictrix RQ-24\(^T\) is shown as an outgroup and was used to root the tree. Scale bar represents 2 substitutions per 100 nucleotide positions. Numbers at branching points denote support values from 1,000 bootstrap replicates if larger than 70%. Lineages with genome sequencing projects registered in GOLD [9] are shown in blue, published genomes in bold: “*Dehalococcoides*” GT (CP001924), “*Dehalococcoides*” BAV1 (CP000688), “*Dehalococcoides*” CBDD1 (AJ965256), “*Dehalococcoides ethenogenes*” 195 (CP000027), “*Dehalococcoides*” VS (CP001827), *Dehalogenimonas lykanthroporepellens* BL-DC-9\(^T\) (CP002084), *Caldilinea aerophila* STL-6-O1\(^T\) (AB067647), *Bellilinea caldifistulare* GMO1-1\(^T\) (AB243672), *Levilinea saccharolytica* KIBI-1\(^T\) (AB109439), *Longilinea arvoryzae* KOME-1\(^T\) (AB243673), *Leptolinea tardivitalis* YMTK-2\(^T\) (AB109438), *Anaerolinea thermolimosa* IMO-1\(^T\) (AB109437), *Anaerolinea thermophila* UNI-1\(^T\) (AB046413), *Thermogemmatispora foliorum* ONL-5\(^T\) (AB547913), *Thermogemmatispora onikobensis* ONL-1\(^T\) (AB547912), *Thermosporothrix hazakensis* SK20-1\(^T\) (AB500145), *Ktedonobacter racemifer* SOSP1-21\(^T\) (AM180156).
Dehalogenimonas lykanthroporepellens BL-DC-9T

Figure 2. Scanning electron micrograph of cells of D. lykanthroporepellens strain BL-DC-9T

Table 1. Classification and general features of D. lykanthroporepellens strain BL-DC-9T according to the MIGS recommendations [10]

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [11]
	Phylum	Chloroflexi	TAS [12,13]
	Class not reported	TAS [1]	
Classification	Order not reported	TAS [1]	
	Family not reported	TAS [1]	
	Genus	Dehalogenimonas	TAS [1]
	Species	Dehalogenimonas lykanthroporepellens	TAS [1]
	Type strain	BL-DC-9	TAS [1]
	Gram stain	Negative	TAS [3]
	Shape	Coccoid, irregular	TAS [1]
	Motility	Not motile	TAS [1]
	Sporulation	Nonsporulating	TAS [3]
	Temperature range	20-37°C	TAS [3]
	Optimum temperature	28-34°C	TAS [3]
	Salinity	0.1%-2% (optimum ≤1%)	TAS [1,3]
MIGS-22	Oxygen requirement	Obligate anaerobe	TAS [1,3]
	Carbon source	Not reported	TAS [1,3]
	Energy source	Chemotrophic	TAS [1,3]
MIGS-6	Habitat	Groundwater	TAS [1,3,4]
MIGS-15	Biotic relationship	Free-living	NAS
MIGS-14	Pathogenicity	None	NAS
	Biosafety level	1	NAS
	Isolation	Solvent contaminated groundwater	TAS [1,3]
MIGS-4	Geographic location	Louisiana, USA	TAS [1,3,4]
MIGS-5	Sample collection time	2005	IDA
MIGS-4.1	Latitude	30.581	IDA
MIGS-4.2	Longitude	-91.244	IDA
MIGS-4.3	Depth	14 m	IDA
MIGS-4.4	Altitude	16.5 m	IDA

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e. a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e. not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [14]. If the evidence code is IDA, then the property was directly observed for a living isolate by one of the authors or an expert mentioned in the acknowledgements.
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 standard library, one 454 paired end (19.8 kb insert size), and one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	90x Illumina GAii, 80x pyrosequence
MIGS-30	Assemblers	Newbler, Velvet, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
INSDC ID		CP002084, NC-014324
GenBank Date of Release		June 25, 2010
GOLD ID		Gc01367
NCBI project ID		40221
Database: IMG		648028022
MIGS-13	Source material identifier	BL-DC-9 (=JCM 15061 =ATCC BAA-1523)
Projective relevance		Environmental, Tree of Life

Growth conditions and DNA isolation

D. lykanthroporepellens strain BL-DC-9T (=JCM 15061, =ATCC BAA-1523) was cultured in liquid anaerobic basal medium supplemented with 1,1,2-trichloroethane as described previously [1]. Cells were harvested from 2.0 L of culture medium by centrifugation (10,000×g, 10 min, 4°C). Total DNA was extracted from the resulting cell pellet using a combination of lysozyme/SDS/proteinase K treatment, followed by purification using hexadecyltrimethyl ammonium bromide (CTAB) in conjunction with phenol-chloroform-isooamyl alcohol purification, and ethanol precipitation [15].

Genome sequencing and assembly

The genome of *D. lykanthroporepellens* BL-DC-9T was sequenced at the JGI using a combination of Illumina [16] and 454 technologies [17]. An Illumina GAii shotgun library with reads of 152.4 Mb, a 454 Titanium draft library with average read length of 356.7±167 bases, and a paired end 454 library with average insert size of 19,767±4,941 kb were generated for this genome. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI website [18]. Illumina sequencing data was assembled with VELVET [19], and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. Draft assemblies were based on 103.1 Mb 454 standard draft data and all of the 454 paired end data (38,136 reads that were both mapped, non-redundant). Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20.

The initial Newbler assembly contained 64 contigs in 1 scaffold. The initial 454 assembly was converted into a phrap [20] assembly by making fake reads from the consensus, and collecting the read pairs in the 454 paired end library. The Phred/Phrap/Consed software package [18] was used for sequence assembly and quality assessment [21-23] during the finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution [Cliff Han, unpublished], Dupfinisher [24], or sequencing cloned bridging PCR fragments with subcloning (Epicentre Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 296 additional reactions were necessary to close gaps and to raise the quality of the finished sequence.

The error rate of the completed genome sequence is less than 1 in 100 kb. Together, the combination of the Illumina and 454 sequencing platforms provided 170× coverage of the genome. The final assembly contained 36,976 reads.
Dehalogenimonas lykanthroporepellens BL-DC-9T

Genome annotation

Genes were identified using Prodigal [25] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [26]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [27], RNAMMer [28], Rfam [29], TMHMM [30], and signal [31]. Additional gene prediction analysis and manual functional annotation were performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [32].

Genome properties

The genome of *D. lykanthroporepellens* strain BL-DC-9T comprises a single circular chromosome of 1,686,510 bp with 50.04% G+C content (Table 3 and Figure 3). Of the 1,771 genes predicted, 1,720 were protein-coding genes and 51 were RNAs; 61 pseudogenes were also identified. The majority of the protein-coding genes (68.8%) were assigned a putative function and those remaining were annotated as hypothetical proteins. The distribution of the predicted protein coding genes into COG functional categories is presented in Table 4.

Table 3. Genome Statistics
Attribute
Genome size (bp)
DNA coding region (bp)
DNA G+C content (bp)
Number of replicons
Extrachromosomal elements
Total genes
RNA genes
rRNA operons
Protein-coding genes
Pseudo genes
Genes with function prediction
Genes in paralog clusters
Genes assigned to COGs
Genes assigned Pfam domains
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

aThe genome contains a single large subunit rRNA (23S-5S) locus and a single, orphan, small subunit rRNA (16S) locus.
Figure 3. Graphical circular map of the chromosome of *D. lykanthroporepellens* strain BL-DC-9^T. From outside to the center: Genes on the forward strand (color by COG categories), Genes on the reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content (peaks outside the circle indicate above average and peaks inside the circle indicate below average GC content), GC skew [calculated as (G − C) / (G + C); purple indicates values less than 1 and olive indicates values greater than 1]. Numbers outside the map denote nucleotide positions within the chromosome.
Table 4. Number of genes associated with the general COG functional categories

Code	Value	%Age	Description
J	126	9.2	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	73	5.3	Transcription
L	148	10.8	Replication, recombination and repair
B	2	0.2	Chromatin structure and dynamics
D	13	1.0	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	19	1.4	Defense mechanisms
T	84	6.2	Signal transduction mechanisms
M	25	1.8	Cell wall/membrane biogenesis
N	13	1.0	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	30	2.2	Intracellular trafficking, secretion, and vesicular transport
O	64	4.7	Posttranslational modification, protein turnover, chaperones
C	127	9.3	Energy production and conversion
G	45	3.3	Carbohydrate transport and metabolism
E	126	9.2	Amino acid transport and metabolism
F	47	3.4	Nucleotide transport and metabolism
H	84	6.2	Coenzyme transport and metabolism
I	34	2.5	Lipid transport and metabolism
P	56	4.1	Inorganic ion transport and metabolism
Q	11	0.8	Secondary metabolites biosynthesis, transport and catabolism
R	142	10.4	General function prediction only
S	97	7.1	Function unknown
-	514	29.0	Not in COGs

*detailed COG categorization is available at the IMG web site [15].

Insights from the genome sequence

Analysis of the complete genome sequence of strain BL-DC-9T and its comparison with the genomes of “Dehalococcoides” strains sequenced previously provide several insights into the evolution and adaption of the organism to its niche. Transposon-mediated horizontal gene transfer appears to have played a major role in creating the genomic diversity and metabolic versatility in strain BL-DC-9T.

Horizontal gene transfer

Strain BL-DC-9T contains a prophage region (1,604,159 to 1,672,879 bp, ~60% GC), which accounts for ~4% of the chromosome. Of the 76 ORFs identified within this region, 45 have been annotated as encoding hypothetical proteins and a vast majority of these have no homologs in the public databases. In addition to the prophage region, manual curation indicated that ~4.3% of the genome of strain BL-DC-9T (~73,000 bp) is comprised of insertion sequence (IS) elements encoding 74 full-length or truncated transposases. These IS elements are scattered throughout the chromosome and their GC content varies from 47% to 57%. The IS elements of strain BL-DC-9T belong to the families IS256 (29 of 74), IS3/IS911 (14 of 74), IS3/IS600 (10 of 74), IS4/IS5 (7 of 74), IS4/IS5/ISMca7 (5 of 74), IS1182 (4 of 74), IS116/IS110/IS902 (2 of 74), IS204/IS1001/ISL3 (2 of 74), and IS6/ISCpe7 (1 of 74).
tRNAs and Selenocysteine utilization

The chromosome of strain BL-DC-9T contains 47 tRNA genes, including those for all 20 standard amino acids as well as the unusual amino acid selenocysteine. Proteins containing selenocysteine are found in all three domains of life and many organisms contain genes encoding the complex molecular machinery required for the incorporation of this modified amino acid during the translation process [33,34]. Strain BL-DC-9T contains an operon (selCDAB) putatively involved in selenocysteine biosynthesis. selC encodes a selenocysteine-inserting tRNA (tRNAsec), which contains the complementary UCA anticodon for the internal UGA stop codon (Dehly_R0051). A gene that is not part of this operon encodes a seryl-tRNA synthetase (Dehly_0621), which catalyzes the aminoacylation of tRNAsec with serine. selD encodes a selenophosphate synthetase (Dehly_1500), an enzyme that produces monoselenophosphate using selenide and ATP as substrates. seleA encodes a selenocysteine synthase (Dehly_1501), which utilizes monoselenophosphate as the selenium donor during the conversion of serine-acylated tRNAsec into selenocysteine-tRNAsec. seleB encodes a GTP-dependent selenocysteine-specific elongation factor (Dehly_1502), which forms a quaternary complex with selenocysteine-tRNAsec and the selenocysteine inserting sequence (SECIS), which is a hairpin loop found immediately downstream of the UGA codon in the selenoprotein-encoding mRNA molecule [35]. This complex ensures reading through the UGA codon and incorporation of selenocysteine, instead of termination of translation [36]. Consistent with the presence of the genes encoding the synthesis and incorporation of selenocysteine, strain BL-DC-9T also contains a gene encoding a selenocysteine-containing formate dehydrogenase (Dehly_0033). This gene has an internal in-frame UGA stop codon (574 bp from the AUG start codon), which is followed by a 48 bp putative SECIS element.

Strain BL-DC-9T contains a putative IS256 element immediately downstream of the selCDAB operon (Dehly_1503, transposase). Previous phylogenetic analysis has provided evidence for horizontal transfer of these traits [37]. The presence of an IS element adjacent to the sel genes in strain BL-DC-9T suggests horizontal transfer and explains the absence of this locus in “Dehalococcoides” strains sequenced previously [38-40].

Comparative genomics

The chromosome of strain BL-DC-9T is 216,790 bp larger than that of “Dehalococcoides ethenogenes” strain 195, which has the largest genome among “Dehalococcoides” strains sequenced to date. The difference in the size of the chromosomes of strain BL-DC-9T and “Dehalococcoides” strains is partly due to the presence of multiple IS elements and IS element-associated genes in the former. These putative horizontally transferred genes appear to have played a major role in creating genomic diversity and phenotypic variability of strain BL-DC-9T vis-à-vis “Dehalococcoides” strains.

Although the chromosomes of strain BL-DC-9T and “Dehalococcoides” strains contain similar number of tRNA and tRNA encoding genes, they differ in their GC content, gene density, and percentage of sequence that encodes proteins. The lack of synteny between the chromosomes as well as the observed differences in the general features of the genomes of strain BL-DC-9T and “Dehalococcoides” strains insinuate their highly divergent evolutionary paths. This divergent evolutionary past is further supported by a phylogenetic tree constructed based on 432 core orthologous protein encoding genes shared between D. lykanthroporepellens BL-DC-9T and “Dehalococcoides” (meta)genomes [41]. In contrast, the chromosomes of four “Dehalococcoides” strains obtained from diverse geographic regions share a conserved core (1,029 orthologous groups of protein encoding genes) based on 432 core orthologous protein encoding genes shared between D. lykanthroporepellens BL-DC-9T and “Dehalococcoides” (meta)genomes [41].

BLAST comparisons of protein sets of strain BL-DC-9T and “Dehalococcoides ethenogenes” strain 195 revealed that the two strains contain ~950 protein coding genes in common (bidirectional best hits, 20-90% identity at the predicted protein level). Pairwise blast comparisons indicated that strain BL-DC-9T contains ~700 protein-coding genes with no homologs in strain 195. The latter contained ~600 protein-coding genes with no homologs in BL-DC-9T. Genome-specific genes identified in strains BL-DC-9T and 195 encoded transposases, DNA endonucleases/methylases, heterodisulfide reductases, acetyltransferases, kinases, phosphatases, and dehalogenases. Some of these strain-specific genes were found within prophage-like regions or were associated with IS elements.
Biosynthesis and transport of compatible solutes

A number of microorganisms accumulate low molecular weight organic compounds alternately referred to as osmolytes, osmoprotectants, or "compatible solutes" to convey the notion that the compounds help the microorganisms survive osmotic stress but do not interfere with metabolism [42]. Ectoine, glycine-betaine, and proline are compatible solutes of many mesophilic bacteria capable of survival at high salt concentrations [42]. Many thermophilic organisms accumulate compatible solutes, such as mannosylglycerate and di-myo-inositol phosphate, which generally do not occur in mesophilic organisms [43].

Strain BL-DC-9T contains an operon (ectABC) encoding putative homologs of the enzymes involved in ectoine biosynthesis and regulation (Dehly_1306, Dehly_1307, Dehly_1308). The closest homologs of strain BL-DC-9T ectABC are found in Halomonas elongata, Wolinella succinogenes, and Desulfococcus oleovorans (48-75% identity at the predicted protein level). At least two putative transport systems for the compatible solutes proline/glycine-betaine have been identified in strain BL-DC-9T (proVWX and opuABCD). proV, proW, and proX encode an ATPase subunit (Dehly_0377), a permease protein (Dehly_0377), and a periplasmic subunit (Dehly_0376), respectively. opuA, opuB, opuC, and opuD encode a periplasmic substrate-binding protein (Dehly_0909), a permease protein (Dehly_0908), an ATPase subunit (Dehly_0907), and a permease protein (Dehly_0906), respectively. Although the permeases encoded by opuB, opuD, and proW appear to be related to each other (34-40% identity at the predicted protein level), the periplasmic proteins encoded by opuA and proX are unrelated. The closest homologs of proVWX are found in Trichodesmium erythraeum, Marinomonas sp. MED121, and Fulvimarina pelagi (50% identity at the predicted protein level), whereas those of opuABCD are found in Pseudovibrio sp. JE062, Chromohalobacter salexigens DSM 3043, and Denitrovibrio acetophilus DSM 12809 (44-60% identity at the predicted protein level). Strain BL-DC-9T also contains genes involved in the biosynthesis of proline (Dehly_0299, Dehly_0308).

Homologs of a gene encoding a bifunctional mannosylglycerate synthase (mgsD) are found in "Dehalococcoides" strains (e.g., DET1363), an unusual occurrence for mesophilic bacteria [43]. Although the synthesis and accumulation of mannosylglycerate could not be proven to occur in "D. ethenogenes" because of insufficient biomass, the role of the bifunctional mgsD was confirmed by cloning and expression in Saccharomyces cerevisiae [43]. Comparative analysis revealed that BL-DC-9T contains a homologous gene (Dehly_0877, 54% protein identity). This expands the range of species containing genes putatively involved in the biosynthesis of compatible solutes and may offer D. lykanthroporepellens a stress response mechanism that allows growth under conditions of changing osmolarity.

Reductive dehalogenases

Genes encoding the enzymes that are involved in catalyzing the reductive dehalogenation of chlorinated solvents are organized in rdhAB operons encoding two components: a 50-65 kDa protein (RdhA) that functions as a reductive dehalogenase and a ~10 kDa hydrophobic protein with transmembrane helices (RdhB) that is thought to anchor the RdhA to the cytoplasmic membrane [44-53]. Comparative genomic analyses revealed that strain BL-DC-9T contains several loci related to rdhA and/or rdhB genes scattered throughout the chromosome. The multiple rdhA and rdhB ORFs of strain BL-DC-9T have 24-74% and 24-65% identities at the predicted protein level, respectively. The closest homologs of rdhA ORFs are found among "Dehalococcoides" strains (31-78% identity at the predicted protein level). A twin-arginine motif, with the predicted amino acid sequence SRRXFMK followed by a stretch of hydrophobic amino acids, was identified in the N-terminus of a large majority (19 of 25) of predicted RdhA sequences. Consistent with the presence of the twin-arginine sequence in the N-terminus of most of its RdhA sequences, strain BL-DC-9T contains an operon encoding proteins that constitute a putative twin-arginine translocation (TAT) system (Dehly_1346-1349). This specialized system is involved in the secretion of folded proteins across the bacterial inner membrane into the periplasmic space [54,55]. "Dehalococcoides" strains also contain an operon encoding an analogous TAT system that is partially related to the TAT system of strain BL-DC-9T (38 and 64% protein identity).
Two conserved motifs, each containing four cysteine residues, a feature associated with binding iron-sulfur clusters [56], were identified near the C-terminus of 22 of the predicted RdhA sequences of strain BL-DC-9T. The first of these motifs had a consistent number of amino acids between the cysteine residues (CXCXCX3C). In the second motif, there were variable numbers of intervening amino acids after the first and second cysteine residues (CX2-21CX2-7CX3C). If a “full-length” rdhA is predicted to encode a protein containing a twin-arginine sequence in the N-terminus, two iron-sulfur cluster binding motifs in the C-terminus, and an intervening sequence of ~450-500 aa, then strain BL-DC-9T contains 17 such genes. Two rdhA genes (Dehyl_0069 and 1582) appear to be truncated and are predicted to encode proteins lacking the twin-arginine sequences in their N-termini. Five rdhA genes appear to be substantially truncated and are predicted to encode proteins consisting of only the N-terminus (Dehly_0479 and 1520) or the C-terminus (Dehly_0075, 1523, and 1534).

Within strain BL-DC-9T, only six of the rdhA ORFs have a cognate rdhB, and an additional rdhB gene (Dehly_1504) appears to be an orphan with no cognate rdhA ORF nearby. The predicted RdhB sequences of strain BL-DC-9T contain two or three transmembrane helices. Similar features have been observed among the predicted RdhB sequences of “Dehalococcoides” strains [38-40]. Furthermore, the predicted RdhB sequences of strain BL-DC-9T and the “Dehalococcoides” strains share 40-72% identity. In at least seven loci (Dehly_0069, 0075, 0479, 1504, 1530, 1534, and 1541), it appears that transposon insertion has truncated one or both of the rdh genes. Interestingly, genes involved in the regulation of rdhAB operons (e.g., MarR-type or two-component transcriptional regulators) were present only in seven loci (Dehly_0121, 0274, 0479, 1148, 1355, 1530, and 1582). In addition to the genes encoding reductive dehalogenases, the strain BL-DC-9T genome contains two genes encoding putative haloacid dehalogenases (Dehly_0588, Dehly_1126) that have homologs among the “Dehalococcoides” strains (40-44% identity at the predicted protein level).

The presence of IS elements adjacent to some rdhA/rdhB loci in strain BL-DC-9T indicates their acquisition from an unknown host. Previous studies of “Dehalococcoides” strains have also suggested horizontal transfer of reductive dehalogenase genes [41,57]. It remains to be determined if strain BL-DC-9T rdhA genes lacking an rdhB ORF downstream encode functional reductive dehalogenases and whether/how they are membrane-bound. It is possible that an incognate or a non-contiguous rdhB (e.g., the orphan Dehly_1504) could complement one or more of strain BL-DC-9T rdhA genes lacking an rdhB ORF downstream. Alternatively, some of these genes may encode reductive dehalogenases that function by an unknown mechanism. An enzyme involved in the reductive dehalogenation of tetrachloroethene by Dehalospirillum multivorans was found in the cytoplasmic fraction [58], suggesting that some reductive dehalogenases are either loosely membrane-bound or soluble entities. The same may be the case for the majority of reductive dehalogenases of strain BL-DC-9T. Regardless, the repertoire of rdhA/rdhB loci identified by complete genome sequencing sets the stage for future efforts to elucidate the mechanism of reductive dehalogenation by strain BL-DC-9T and other Dehalogenimonas strains.

Acknowledgements

The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge Xiao Ying for assistance with microscopy.

References

1. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductive dehalogenating bacterium isolated from chlorinated solvent contaminated groundwater. Int J Syst Evol Microbiol 2009;59:2692-2697. PubMed http://dx.doi.org/10.1099/ijs.0.011502-0

2. Bowman KS, Moe WM, Rash BA, Bae HS, Rainey FA. Bacterial diversity of an acidic Louisiana groundwater contaminated by DNAPL containing chloroethanes and other solvents. FEMS Microbiol Ecol 2006;58:120-133. PubMed http://dx.doi.org/10.1111/j.1574-6941.2006.00146.x
Dehalogenimonas lykanthroporepellens BL-DC-9T

3. Yan J, Rash BA, Rainey FA, Moe WM. Isolation of novel bacteria within the *Chloroflexi* capable of reductive dechlorination of 1,2,3-trichloropropane. *Environ Microbiol* 2009; 11:833-843. PubMed [http://dx.doi.org/10.1111/j.1462-2920.2008.01804.x]

4. Yan J, Rash BA, Rainey FA, Moe WM. Detection and quantification of *Dehalogenimonas* and “Dehalococcioids” populations via PCR-based protocols targeting 16S RNA genes. *Appl Environ Microbiol* 2009; 75:7560-7564. PubMed [http://dx.doi.org/10.1128/AEM.01938-09]

5. Grégoire P, Bohli M, Cayol JL, Joseph M, Guasco S, Dubourg K, Cambar J, Michotey V, Bonin P, Fardeau ML, Ollivier B. *Caldilinea tarbellica* sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin. *Int J Syst Evol Microbiol* 2011; 61:1436-1441. PubMed [http://dx.doi.org/10.1099/ijsm.0.025676-0]

6. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. *Anaerolinea thermophila* gen. nov., sp. nov. and *Caldilinea aerophila* gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain *Bacteria* at the subphylum level. *Int J Syst Evol Microbiol* 2003; 53:1843-1851. PubMed [http://dx.doi.org/10.1099/ijsm.0.02699-0]

7. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. *Int J Syst Evol Microbiol* 2007; 57:2259-2261. PubMed [http://dx.doi.org/10.1099/ijsm.0.64915-0]

8. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 2007; 24:1596-1599. PubMed [http://dx.doi.org/10.1093/molbev/msm092]

9. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2010; 38:D346-D354. PubMed [http://dx.doi.org/10.1093/nar/gkp848]

10. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Tompson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence” (MIGS) specification. *Natl Biotechnol* 2008; 26:541-547. PubMed [http://dx.doi.org/10.1038/nbt1360]

11. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci USA* 1990; 87:4576-4579. PubMed [http://dx.doi.org/10.1073/pnas.87.12.4576]

12. Garrity GM, Holt JG. *Chloroflexi* phy. nov. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 427-446.

13. Hugenholtz P, Stackebrandt E. Reclassification of *Sphaerobacter thermophilus* from the subclass *Sphaerobacteraeae* in the phylum *Actinobacteria* to the class *Thermomicrobia* (emended description) in the phylum *Chloroflexi* (emended description). *Int J Syst Evol Microbiol* 2004; 54:2049-2051. PubMed [http://dx.doi.org/10.1099/ijsm.0.03028-0]

14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; 25:25-29. PubMed [http://dx.doi.org/10.1038/75556]

15. IMG web site. http://img.jgi.doe.gov/cgi-bin/w/main.cgi?section=TaxonDetail&page=cogs&cat=cat&taxon_oid=648028022

16. Bennett S. Solexa Ltd. *Pharmacogenomics* 2004; 5:433-438. PubMed [http://dx.doi.org/10.1517/14622416.5.4.433]

17. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z. Genome sequencing in microfabricated high-density picolitre reactors. *Nature* 2005; 437:376-380. PubMed

18. DOE Joint Genome Institute. http://www.jgi.doe.gov

19. Zerbin DR, Binney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; 18:821-829. PubMed [http://dx.doi.org/10.1101/gr.074492.107]

20. The Phred/Phrap/Consed software package. http://www.phrap.com

21. Ewing B, Hillier L, Wendel MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res* 1998; 8:175-185. PubMed

22. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res* 1998; 8:186-194. PubMed
23. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. *Genome Res* 1998; 8:195-202. [PubMed](http://dx.doi.org/10.1186/1471-2105-11-119)

24. Han CS, Chain P. Finishing repeat regions automatically with Dupfinisher. In Proceedings of the 2006 international conference on bioinformatics & computational biology. Arabnia HR, Valafar H (eds), CSREA Press. June 26-29, 2006: 141-146.

25. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; 11:119. [PubMed](http://dx.doi.org/10.1038/10.1186/1471-2105-11-119)

26. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *J Mol Biol* 2001; 305:567-580. [PubMed](http://dx.doi.org/10.1006/jmbi.2000.4315)

27. Böck A. Selenium proteins containing selenocysteine. In: Crabtree RH (ed.), *Encyclopedia of inorganic chemistry*. 2006. John Wiley & Sons, Ltd, New York.

28. Lagesen K, Hallin PF, Rødland E, Rødland E, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent annotation of rRNA genes in genomic sequences. *Nucleic Acids Res* 2005; 33:1306-1320. [PubMed](http://dx.doi.org/10.1093/nar/gkj109)

29. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. *Nucleic Acids Res* 2003; 31:418-429. [PubMed](http://dx.doi.org/10.1093/nar/gkq006)

30. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *J Mol Biol* 2001; 305:567-580. [PubMed](http://dx.doi.org/10.1006/jmbi.2000.4315)

31. Böck A. Selenium proteins containing selenocysteine. In: Crabtree RH (ed.), *Encyclopedia of inorganic chemistry*. 2006. John Wiley & Sons, Ltd, New York.

32. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. [PubMed](http://dx.doi.org/10.1093/bioinformatics/btp393)

33. Donovan J, Copeland PR. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins. *BMC Evol Biol* 2009; 9:229. [PubMed](http://dx.doi.org/10.1186/1471-2148-9-229)

34. Hendrickson TL. Easing selenocysteine into proteins. *Nat Struct Mol Biol* 2007; 14:100-101. [PubMed](http://dx.doi.org/10.1038/nsmb0207-100)

35. Santos H, da Costa MS. Compatible solutes in organisms that live in hot saline environments. *Environ Microbiol* 2002; 4:501-509. [PubMed](http://dx.doi.org/10.1046/j.1462-2920.2002.00335.x)

36. Zavacki AM, Mansell JB, Chung M, Klimovitsky B, Harney JW, Berry MJ. Coupled RNA(Sec)-dependent assembly of the selenocysteine decoding apparatus. *Mol Cell* 2003; 11:773-781. [PubMed](http://dx.doi.org/10.1016/S1097-2765(03)00064-9)

37. Romero H, Zhang Y, Gladyshev VN, Salinas G. Evolution of selenium utilization traits. *Genome Biol* 2005; 6:R66. [PubMed](http://dx.doi.org/10.1186/1471-2105-6-8-r66)

38. Santos H, da Costa MS. Compatible solutes in organisms that live in hot saline environments. *Environ Microbiol* 2002; 4:501-509. [PubMed](http://dx.doi.org/10.1046/j.1462-2920.2002.00335.x)

39. Seshadri R, Mehrdad S, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, et al. Genome sequence of the chlorinated compound-respiring bacterium *Dehalococcoides* species strain CBDB1. *Nat Biotechnol* 2005; 23:1269-1273. [PubMed](http://dx.doi.org/10.1038/nbt1131)

40. McMurdie PJ, Behrens SF, Muller JA, Göke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, et al. Genome sequence of the chlorinated compound-respiring bacterium *Dehalococcoides* species strain CBDB1. *Nat Biotechnol* 2005; 23:1269-1273. [PubMed](http://dx.doi.org/10.1038/nbt1131)

41. McMurdie PJ, Behrens SF, Muller JA, Göke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Spormann AM. Localized plasticity in the streamlined genomes of vinyl chloride respiring *Dehalococcoides* species strain CBDB1. *Nat Biotechnol* 2005; 23:1269-1273. [PubMed](http://dx.doi.org/10.1038/nbt1131)

42. Santos H, da Costa MS. Compatible solutes in organisms that live in hot saline environments. *Environ Microbiol* 2002; 4:501-509. [PubMed](http://dx.doi.org/10.1046/j.1462-2920.2002.00335.x)

43. Empadinhas N, Albuquerque L, Costa J, Zinder SH, Santos MA, Santos H, da Costa MS. A gene from the mesophilic bacterium *Dehalococcoides* *ethenogenes* encodes a novel mannosylglycerate
44. Adrian L, Rahnenfuhrer J, Gobom J, Holscher T. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. *Appl Environ Microbiol* 2007; 73:2999-3001. PubMed http://dx.doi.org/10.1128/AEM.69.5.2999-3001.2003

45. Fung JM, Morris RM, Adrian L, Zinder SH. Expression of reductive dehalogenase genes in *Dehalococcoides* ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. *Appl Environ Microbiol* 2007; 73:4439-4445. PubMed http://dx.doi.org/10.1128/AEM.00215-07

46. Hölscher T, Gorisch H, Adrian L. Reductive dehalogenation of chlorobenzene congeners in cell extracts of *Dehalococcoides* sp. strain CBDB1. *Appl Environ Microbiol* 2003; 69:2999-3001. PubMed http://dx.doi.org/10.1128/AEM.69.5.2999-3001.2003

47. Magnuson JK, Romine MF, Burris DR, Kingsley MT. Trichloroethene reductive dehalogenase from *Dehalococcoides* ethenogenes strain 195: sequence of tceA and substrate range characterization. *Appl Environ Microbiol* 2000; 66:5141-5147. PubMed http://dx.doi.org/10.1128/AEM.66.12.5141-5147.2000

48. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. Molecular identification of the catalytic vinyl chloride reductase from *Dehalococcoides* sp. strain VS and its environmental distribution. *Appl Environ Microbiol* 2004; 70:4532-4537. PubMed http://dx.doi.org/10.1128/AEM.70.8.4532-4537.2004

49. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of *Dehalobacter restrictus*. *Appl Environ Microbiol* 2003; 69:4628-4638. PubMed http://dx.doi.org/10.1128/AEM.69.8.4628-4638.2003

50. Neumann A, Wohlfarth G, Diekert G. Tetrachloroethene dehalogenase from *Dehalospirillum multivorans*: cloning, sequencing of the encoding genes, and expression of the pceA gene in *Escherichia coli*. *J Bacteriol* 1998; 180:4140-4145. PubMed

51. Nijenhuis I, Zinder SH. Characterization of hydrogenase and reductive dehalogenase activities of *Dehalococcoides ethenogenes* strain 195. *Appl Environ Microbiol* 2005; 71:1664-1667. PubMed http://dx.doi.org/10.1128/AEM.71.3.1664-1667.2005

52. Suyama A, Yamashita M, Yoshino S, Furukawa K. Molecular characterization of the PceA reductive dehalogenase of *Desulfitobacterium* sp. strain 5Y1. *J Bacteriol* 2002; 184:3419-3425. PubMed http://dx.doi.org/10.1128/AEM.184.13.3419-3425.2002

53. Thibodeau J, Gauthier A, Duguay M, Villemur R, Lepine F, Juteau P, Beaudet R. Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from *Desulfitobacterium frappieri* PCP-1. *Appl Environ Microbiol* 2004; 70:4532-4537. PubMed http://dx.doi.org/10.1128/AEM.70.8.4532-4537.2004

54. Stanley NR, Palmer T, Berks BC. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in *Escherichia coli*. *J Biol Chem* 2000; 275:11591-11596. PubMed http://dx.doi.org/10.1074/jbc.275.16.11591

55. Sargent F, Berks BC, Palmer T. Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. *FEMS Microbiol Lett* 2006; 254:198-207. PubMed http://dx.doi.org/10.1111/j.1574-6968.2005.00049.x

56. Bruschi M, Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. *FEMS Microbiol Rev* 1988; 4:155-175. PubMed

57. Krajmalnik-Brown R, Sung Y, Ritalahti KM, Saunders FM, Löfler FE. Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among *Dehalococcoides*. *FEMS Microbiol Ecol* 2007; 59:206-214. PubMed http://dx.doi.org/10.1111/j.1574-6941.2006.00243.x

58. Miller E, Wohlfarth G, Diekert G. Studies on tetrachloroethene respiration in *Dehalospirillum multivorans*. *Arch Microbiol* 1996; 166:379-387. PubMed http://dx.doi.org/10.1007/BF01682983