Microscale atmospheric pollution of Pogranichny settlement (Primorsky region, Russia)

Aleksei Kholodov¹, Sergey Ugay¹, Vladimir Drozd¹, Alexander Agoshkov¹ and Kirill Golokhvat¹

¹Far Eastern Federal University, 8, Sukhanova St., Vladivostok 690090 Russia

E-mail: alex.holodov@gmail.com

Abstract. The paper discusses the study of atmospheric particulate matter in the small urban settlement Pogranichny by means of laser granulometry of snow water. The atmosphere of this settlement is polluted with particles under 10 µm (PM₁₀) to a certain extent. We found microparticles potentially hazardous to health in significant quantities (from 176.3% to 24.9%) in 4 sampling points out of 9. Large particles (sized over 400 µm) dominate on the most territory of the settlement reaching 78.1%.

1. Introduction

In Russia the systematic study of the composition and quality of atmospheric particulates is conducted only in select areas, among them are Arctic and Antarctic [1-4], Siberia [5, 6] and the Far East [7-9]. Previously we have studied small settlements of the Amur Region and the Primorsky Region [10]. Microscale atmospheric pollution was found in some small (in terms of the number of population) towns, villages and settlements [11]. Although the percentage of these findings was not big, and the atmosphere of megacities and industrial towns is more vividly contaminated with microparticles, these studies should be continued, because prolonged exposure to particulate matter can cause a variety of diseases in humans [12, 13].

This paper discussed the study of microscale atmospheric pollution of the small urban settlement Pogranichny, located in the Primorsky Region.

2. Materials and methods

Pogranichny is an urban settlement in the South-west of the Primorsky Region, the administrative center of the Pogranichny district. The distance to Vladivostok is 205 km along the highway, and only 15 km to the border with China. As of 2016 the population of the settlement is 10,179 people (Russian Federal State Statistics Service 2016). The climate in Pogranichny is humid continental with cold and dry winters and warm and wet summers. Western winds prevail in the settlement, and the average annual wind speed is 2.9 mps.

There are no major industrial enterprises on the territory of the settlement. One should only note the Grodekovo railway station (cargo traffic of several million tons). The bulk of the enterprises in Pogranichny are engaged in production of crops and livestock products.

The snow sampling points were selected taking into account the main sources of particulate matter emission – close to the railway station, major roads, boiler houses, and a background sampling point on the outskirts of the settlement (Figure 1).
The atmospheric precipitation (snow) for the study of the near-ground atmospheric particulate matter was collected during the snowfall in January 2015. In order to exclude the secondary pollution with anthropogenic aerosols, only the top layer of fresh snow (5-10 cm) from a 1 m² area was collected. It was placed in sterile 2.5-liter plastic containers and transported to the laboratory. After the snow in all containers has melted, each sample amounted to 350-400 milliliters of liquid. The resulting liquid was stirred and a portion 50 ml was taken from each sample for the analysis on the laser particle analyzer Analysette 22 NanoTech plus (Fritsch GmbH, Germany), which can determine the dimensions of the particles and their percentage in a single measurement.

The measurements were carried out using the equipment of the Nanocenter of Far Eastern Federal University (FEFU).

3. Results and Discussion
The sizes of particles and percentage ratio of fractions in samples of particulate matter at all sampling points are presented in Table 1.

Fine-sized particles (under 1 µm) were found in all the samples, however, their content is negligible. The particles under 10 µm were found in all sampling points in Pogranichny settlement. The content of these particles reaches significant values (from 16.3% to 24.9%) in samples collected at four sampling points: near the railway station, along one of main roads and, interestingly, in the background area. It is most probable that the sources of these particles are small heating enterprises operating on coal and, to a lesser degree, automobiles, which is most common in small settlements with no industrial enterprises [14, 15].
The most pronounced particles size class in all the samples studied is over 400 µm, ranging from 13.7% to 42.3% in various areas of the settlement with the exception of sampling point No. 5, where it constitutes only 4.3%. However, this background sampling point is dominated with particles over 400 µm in size – 49.9%. This trend is observed even at the sampling points located in close proximity to railways and automobile roads, which can be the sources of PM$_{10}$ in the atmosphere in significant quantities [16, 17], and that indicates a relatively favorable ecological situation in these areas.

Table 1. Distribution of particle fractions in snow samples in Pogranichny settlement, %

Sampling points	Fraction, µm	Mean diameter, µm	Mode, µm						
	under 1	1–10	10–50	50–100	100–400	400–700	Over 700		
Quantity, %									
1	1.7	7.9	6.8	-	20.9	22.2	40.5	566.46	882.46
2	1.8	16.3	17.9	5.6	29.6	28.3	0.5	240.41	431.87
3	2	12.4	8.2	0.9	21.3	17.7	37.5	514.6	882.46
4	2.1	15	11.2	-	16.8	13.7	41.2	516.77	882.46
5	3.4	24.9	13.5	1	3	4.3	49.9	512.45	911.59
6	0.2	0.5	3.2	1.1	31.3	38.7	25	524.54	446.13
7	2.6	17.4	17.2	-	32.7	29.8	0.3	255.41	418.07
8	2.6	23.3	22.9	-	33.3	17.9	-	191.68	367.13
9	0.2	1.5	3.8	1.5	14.9	42.3	35.8	593.66	702.99

Figure 2. A typical bar graph of particulate matter distribution in the snow water sample collected at Krasnoarmeyskaya Str. (sampling point No.5). The percentage of particles under 10 µm is 24.9%.
Figure 3. A typical bar graph of particulate matter distribution in the snow water sample collected at Shkolnaya Str. (sampling point No. 9). The percentage of particles over 400 µm is 78.1%.

As is seen from the above, the railway station and coal-heating have a certain practical influence on the microscale atmospheric pollution of Pogranichny settlement. The general ecological condition is favorable, as the mean diameter of most particles in the samples is above 500 µm.

4. Conclusion

We can conclude that, judging from the sample analysis, Pogranichny settlement can be considered a settlement with low levels of atmospheric pollution. Only in few snow samples from the settlement micro-sized particles were found in significant proportions. This fact is certainly due to the absence of large enterprises, rather low number of population and, consequently, small quantity of vehicles.

One should note that there should be continuous monitoring of the composition of the atmospheric particulate matter in small settlements such as Pogranichny, as there is a trend of increasing man-caused ecological press on natural territories [18]. This study will provide new data for the global system of monitoring over the environmentally important particles (under 10 µm).

Acknowledgements

The research was conducted using the equipment of the Interdepartmental Center of Analytical Control of the State of Environment FEFU and Nanocenter FEFU.

This work was supported by Grant of the President of the Russian Federation for young doctor of sciences (MD-7737.2016.5)

References

[1] Golubeva Y I, Matishov G G and Burtseva L V 2005 Doklady Akademii Nauk 401(5) 683-686 pp
[2] Shevchenko V P et al 2007 Problemy Arktiki i Antarktiki 75 106–118 pp
[3] Golokhvast K S, Efimova N V, Elfimova T A, Drozd V A and Chaika V V 2015 Bulletin Physiology and Pathology of Respiration 58 71-76 pp
[4] Gilman A et al 2009 AMAP Assessment 2009: Human Health in the Arctic. Arctic Monitoring and Assessment Programme 143–189 pp
[5] Kutsenogiy P K 1994 Óptika Atmosfery i Okeana 7(8) 1055-1058 pp
[6] Belan B D et al 2007 Optika Atmosfery i Okeana 20(5) 428-437 pp
[7] Svinukhov V G 1997 Issledovanie, Modelirovanie i Prognoz Zagyazneniya Atmosfery v Gorode
(Vladivostok: Doctor of Geography Thesis - author's abstract) p 44
[8] Kondratiev I I 2009 Geografia i Prirodnye Resursy 3 31-37 pp
[9] Mukha D E, Kondratiev I I and Mezentseva L I 2012 Geografia i Prirodnye Resursy 2 21-26 pp
[10] Golokhvast K S et al 2015 Oxidative Medicine and Cellular Longevity 2015 p 10
[11] Golokhvast K S 2014 Journal of Immunology Research 2014 141378
[12] Pope C A et al 2004 Circulation 109 71–77 pp
[13] Suwa T et al 2002 J Am Coll Cardiol 39 935–942 pp
[14] Kholodov A S, Ugay S M, Drozd V A and Golokhvast K S 2017 Proceedings: Ekologicheskie Problemy Promyshlennykh Gorodov 225-229 pp
[15] Golokhvast K S, Chayka V V, Kodintsev V V, Kirichenko K Y and Pamirskiy I E 2015 Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 17(5) 263-266 pp
[16] Khristoforova N K 2005 Ekologicheskie problemy regiona: Dalny Vostok – Primorye (Khabarovsk: Khabarovsk Publ.) p 304
[17] Mironov G S 2012 Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 14(1) 233-236 pp
[18] Veselova S S et al 2014 Proceedings of the Samara Scientific Center of the Russian Academy of Sciences 16(1-3) 616-619 pp