Abstract
X-ray stress measurement is widely used as one of the most powerful nondestructive tools to measure residual stresses in polycrystalline solids. In most cases, the sin^2φ method has been used to determine the stress. In recent years, however, the cosα method has attracted engineers as a new method to measure the stress using two-dimensional detectors, such as imaging plates. The present article is the review of the state of the art of the cosα method. For biaxial stress cases, the cosα method utilizes the whole Debye-Scherrer ring recorded on a two-dimensional detector taken by single exposure of X-rays, and normal and shear stresses are determined simultaneously. The accuracy of the stress measurement of the cosα method has been confirmed to be equivalent to that of the sin^2φ method for various metals. The simple optical system of the cosα method makes stress analyzers smaller, lighter and more convenient to use for on-site or field measurements. A recent portable stress analyzer adopting the cosα method shortens the measurement time to 60 s. The method has been further developed to analyze triaxial residual stresses. Various advantages of the cosα method are highlighted in comparison with the other methods of X-ray stress determination. Applications of the cosα method to machines and engineering structures are presented, together with future perspectives of the method.

Keywords: X-ray stress measurement, The cosα method, Two-dimensional detector, Imaging plate, Residual stress, Debye-Scherrer ring, X-ray single exposure, Triaxial stress

1. Introduction
Residual stresses have been playing an important role in fatigue and fracture accidents of machines and engineering structures, and also in their dimensional stability. Almost all machines and structures have residual stresses and their unexpected failure or distortion have often been ascribed to residual stresses. The prediction of residual stresses is sometimes very difficult and the development of measurement techniques is highly demanded.

The X-ray diffraction method is known as one of the most powerful nondestructive tools to measure residual stresses in polycrystalline materials and have been widely used in service as well as in laboratory researches (Noyan and Cohen, 1987, Tanaka et al., 2006). The fundamental principle of X-ray stress measurement is based on the diffraction of X-rays by crystals. The stress is determined from the lattice strain measured by X-ray diffraction using the theory of elasticity. In the measurement of residual stresses in polycrystals, the sin^2φ method has been commonly used (Macherauch and Müller, 1961). The stress is obtained from the slope of the relation of the diffraction angle or lattice strain plotted against sin^2φ, where the diffraction angle is measured at several tilt angles φ of X-ray incidence. In order to meet the demand of on-site measurements, several commercial stress analyzers have been produced, making them smaller, lighter, handier and quicker to obtain the stress. X-ray detectors used in these analyzers based on the sin^2φ method are zero-dimensional detectors such as scintillation counters, or one-dimensional detectors such as position sensitive proportional counters (PSPCs) (Tanaka et al., 2006).

In the past two decades, two-dimensional detectors such as imaging plates (IPs), semiconductor detectors or 2D-PSPCs have been gradually used in commercial X-ray stress analyzers. One of them uses IPs and adopts the cosα method.
for stress determination. The principle of the cosα method was first proposed by Taira, Tanaka, and Yamasaki (1978) for in-plane biaxial stress analysis. The method utilizes the whole Debye-Scherrer ring (D-S ring) recorded on a two-dimensional detector taken by single exposure of X-rays, and normal and shear stresses are obtained simultaneously. Using X-ray films as detectors, they applied the method to evaluate the local stress near fatigue crack tips. In 1980s, IPs were produced by Fuji Photo Film Co., Ltd. as a new X-ray detector. In 1990s, Yoshioka et al. (1992) introduced IPs for stress measurement by the cosα method. Sasaki and Hirose (1995b) extended the method to triaxial stress analysis. In 2012, a first commercial stress analyzer based on the cosα method was produced by Pulstec Industrial Co., Ltd. The simple optical system of the cosα method makes stress analyzers portable, smaller, lighter and more convenient to use for on-site and field measurements. With the use of a recent cosα-based analyzer, the time required for one stress measurement is shortened to 60 s. The cosα method is a genuinely Japanese original product in the sense that both software (fundamental theory) and hardware (IP and equipment) were born in Japan. In recent years, the method has attracted engineers as a new method of X-ray stress measurement abroad (Ling and Lee, 2015, Robinson and Redington, 2015, Ramitec-Rico et al., 2016) as well as in Japan (Tanaka, 2017), and applications of the method have been spreading to various engineering fields.

In this article, recent developments of stress measurement by the cosα method using IPs are reviewed. The fundamentals of X-ray stress measurement are first described, and then a recommended procedure of experimental measurements of the cosα method is summarized. Various advantages of the cosα method are highlighted in comparison with the other methods of X-ray stress determination. Finally, applications of the cosα method to the parts of machines and engineering structures are presented, together with future perspectives of the cosα method.

2. Fundamentals of X-ray stress measurement

2.1 Strain measured by X-rays

Strain measurement by X-rays is based on Bragg diffraction by crystals. When a monochromatic X-ray beam is incident on polycrystals as shown in Fig. 1, the diffraction by crystals takes place at the angles satisfying

$$\lambda = 2d \sin \theta$$ \hspace{1cm} (1)

where \(\lambda\) is the wavelength, \(d\) is the spacing of diffraction planes, and \(\theta\) is the diffraction angle. Under stress, the lattice spacing changes from the stress-free value, \(d_0\), to \(d_0 + \Delta d\). Since the wavelength \(\lambda\) is constant, the strain in the direction of the normal of the diffraction plane is obtained from the change of the diffraction angle as

$$\varepsilon = \frac{\Delta d}{d_0} = -\cot \theta_0 \left(\theta - \theta_0 \right)$$ \hspace{1cm} (2)

where \(\theta_0\) is the diffraction angle of stress-free crystals and \(\theta\) is that for strained crystals. When the diffraction comes from many grains with random crystal orientation, the lattice strain measured by X-ray diffraction corresponds to macroscopic elastic strain and is related to the stress by isotropic elasticity.

![Incident X-rays](image)

Incident X-rays

Fig. 1 Strain measurement by X-ray diffraction.
Figure 2 shows the direction, OP, of the normal strain measured by X-ray diffraction in the x-y-z coordinates where the x-y coordinates are on the specimen surface and the z-axis is the surface normal. The diffraction vector, \(\mathbf{n} = (n_1, n_2, n_3) \), of the plane normal for the case of the tilt angle \(\psi \) and the rotation angle \(\phi \) is given by

\[
\begin{align*}
\mathbf{n}_1 & = \sin \psi \cos \phi, \\
\mathbf{n}_2 & = \sin \psi \sin \phi, \\
\mathbf{n}_3 & = \cos \psi
\end{align*}
\]

(3)

The strain \(\varepsilon_{\phi \psi} \) is related to the strain components in the x-y-z coordinates as follows:

\[
\varepsilon_{\phi \psi} = \varepsilon_x n_1^2 + \varepsilon_y n_2^2 + \varepsilon_z n_3^2 + \gamma_{xy} n_1 n_2 + \gamma_{xz} n_1 n_3 + \gamma_{yz} n_2 n_3
\]

(4)

where \(\varepsilon_x, \varepsilon_y, \varepsilon_z \) are normal strains and \(\gamma_{xy}, \gamma_{xz}, \gamma_{yz} \) are shear strains. By using Hooke’s law of isotropic elasticity, the equation is expressed in terms of normal stresses, \(\sigma_x, \sigma_y, \sigma_z \), and shear stresses, \(\tau_{xy}, \tau_{xz}, \tau_{yz} \), as

\[
\varepsilon_{\phi \psi} = \frac{1 + \nu}{E} \left(\sigma_x n_1^2 + \sigma_y n_2^2 + \sigma_z n_3^2 + 2\tau_{xy} n_1 n_2 + 2\tau_{xz} n_1 n_3 + 2\tau_{yz} n_2 n_3 \right) - \frac{\nu}{E} \left(\sigma_x + \sigma_y + \sigma_z \right)
\]

(5)

where \(E \) is Young’s modulus and \(\nu \) is Poisson’s ratio. The above equation is the fundamental of X-ray stress measurement by the \(\cos \alpha \) method as well as the \(\sin^2 \psi \) method. Using Eq. (5), the stress is determined from measured strains \(\varepsilon_{\phi \psi} \) in some different directions of \(\phi \) and \(\psi \). In the \(\sin^2 \psi \) method, strains are determined from peak positions of diffraction profiles recorded at several tilt angles \(\psi \) with zero- and one-dimensional detectors.

In the \(\cos \alpha \) method, two-dimensional detectors are used to detect X-ray diffraction. Figure 3 shows an experimental set-up for recording a D-S ring when the X-ray beam is incident on the specimen surface at the tilt angle \(\psi_0 \) and the rotation angle \(\phi_0 \). The diffraction vector of the plane normal for the azimuthal angle \(\alpha \) taken clockwise from the \(-\eta\) direction of the D-S ring on the IP is expressed as follows (Taira et al., 1978, Sasaki and Hirose, 1995b):

\[
\begin{align*}
\mathbf{n}_1 & = \cos \eta \sin \psi \cos \phi - \sin \eta \cos \psi \cos \phi \sin \alpha - \sin \eta \sin \phi \sin \alpha, \\
\mathbf{n}_2 & = \cos \eta \sin \psi \sin \phi - \sin \eta \cos \psi \sin \phi \cos \alpha + \sin \eta \cos \phi \sin \alpha, \\
\mathbf{n}_3 & = \cos \eta \cos \psi \phi + \sin \eta \sin \psi \phi \cos \alpha
\end{align*}
\]

(6)

where \(2\eta \) is the complimentary angle of \(2\theta \). In the \(\cos \alpha \) method, the strain \(\varepsilon_{\phi \psi} \) measured by X-ray diffraction is expressed by \(\varepsilon_\alpha \) because \(\alpha \) specifies the direction of the measured strain.

The strain is determined from the radius of D-S rings recorded on an IP. (Hereafter, IP is used as a representative of two-dimensional detectors). Figure 4 illustrates the D-S ring obtained by the X-ray beam impinging at the tilt angle \(\psi_0 \), where the IP is placed perpendicular to incident X-ray beam. The diffraction angle \(\theta \) is obtained from the ring radius \(r_\theta \) as follows:

\[
2\theta = \pi - \tan^{-1} \left(\frac{r_\theta}{L} \right)
\]

(7)

where \(L \) is the distance between the IP and the specimen. From Eqs. (2) and (7), the strain \(\varepsilon_\alpha \) at the azimuthal angle \(\alpha \) is

Fig. 2 Normal strain in the x-y-z coordinates of specimen measured by X-ray diffraction.

Fig. 3 Debye-Scherrer ring recorded on a two-dimensional detector by a single-exposure of X-rays.
expressed as
\[\varepsilon_a = \frac{\cos^2 2\theta_0}{2L \tan \theta_0} (r_a - r_0) \]
where \(r_a \) is the radius of the D-S ring at angle \(\alpha \) and \(r_0 \) is the radius for stress-free crystals. As described later, the fundamental equations of the \(\cos \alpha \) method do not require the exact value of stress-free diffraction angle to determine the stress. They only require relative difference of the radius of D-S rings. Therefore, the distance \(L \) between the IP and the specimen in Eq. (8) can be approximated by the value \(L_m \) which is calculated from the mean radius, \(r_m \), of D-S rings by
\[L_m = r_m / \tan 2\eta_0 \]
where \(2\eta_0 = \pi - 2\theta_0 \). The strain, \(\varepsilon_a \), is now determined by
\[\varepsilon_a = \frac{\cos^2 2\theta_0}{2L_m \tan \theta_0} (r_a - r_0) \]

\[(8) \]

\[(9) \]

\[(10) \]

2.2 Determination of in-plane biaxial stresses by the \(\cos \alpha \) method

In this section, the principle of the \(\cos \alpha \) method for in-plane biaxial stress analysis is described. Since the penetration depth of X-rays below the surface is shallow (see Fig. 8), the stress state in most cases can be assumed to be biaxial, i.e., \(\sigma_z = \tau_{yz} = \tau_{zx} = 0 \). Furthermore, material is assumed to be isotropic and to have a uniform stress within the penetration depth of X-rays below the surface.

In the \(\cos \alpha \) method, a special technique of data acquisition is adopted to minimize possible experimental error (Taira et al., 1978). As shown in Fig. 4, a set of four strains, \(\varepsilon_\alpha, \varepsilon_{\alpha+\pi}, \varepsilon_{\alpha-\pi}, \varepsilon_{\alpha-\pi} \), are measured for each \(\alpha \) from the radius of D-S rings using Eq. (10). Two subtractions of strains, \((\varepsilon_\alpha - \varepsilon_{\alpha+\pi}) \) and \((\varepsilon_\alpha - \varepsilon_{\alpha-\pi}) \), are used to determine the following two strain parameters. The first parameter is the mean of \((\varepsilon_\alpha - \varepsilon_{\alpha+\pi}) \) and \((\varepsilon_\alpha - \varepsilon_{\alpha-\pi}) \):
\[\varepsilon_{a1} = \left[(\varepsilon_\alpha - \varepsilon_{\alpha+\pi}) + (\varepsilon_\alpha - \varepsilon_{\alpha-\pi}) \right] / 2 \]

\[(11) \]

The second one is half the difference:
\[\varepsilon_{a2} = \left[(\varepsilon_\alpha - \varepsilon_{\alpha+\pi}) - (\varepsilon_\alpha - \varepsilon_{\alpha-\pi}) \right] / 2 \]

\[(12) \]

Note that both \(\varepsilon_{a1} \) and \(\varepsilon_{a2} \) are determined from the relative difference of diffraction angles or radii and not directly dependent on stress-free value of \(\theta_0 \) or \(n_0 \), as seen from the following expression for \(\varepsilon_{a1} \).
\[\varepsilon_{a1} = \frac{\theta_\alpha - \theta_{\alpha+\pi}}{2} + \frac{\theta_\alpha - \theta_{\alpha-\pi}}{2} \cos \theta_0 = \frac{\cos^2 2\theta_0}{4L_m \tan \theta_0} \left[(r_a - r_{\alpha+\pi}) + (r_a - r_{\alpha-\pi}) \right] \]

\[(13) \]

This is very important for the accuracy of stress measurements since it is in most cases difficult to determine exactly the diffraction angle of stress-free state.

For the case of rotation angle \(\phi_0 = 0 \), the first strain parameter is related only to the normal stress \(\sigma_z \) as
\[\varepsilon_{\alpha 1} = \frac{1 + \nu}{E} \sigma_x \sin 2\eta \sin 2\psi_0 \cos \alpha \]

(14)

From this relation, the normal stress \(\sigma_x \) is determined from the slope, \(M_1 \), of the linear relation between \(\varepsilon_{\alpha 1} \) and \(\cos \alpha \) as

\[\sigma_x = K_1 \frac{\partial \varepsilon_{\alpha 1}}{\partial \cos \alpha} = K_1 M_1 \]

(15)

\[K_1 = \frac{E}{1 + \nu \sin 2\eta \sin 2\psi_0} \]

(16)

The second strain parameter is related to the shear stress \(\tau_{xy} \) as

\[\varepsilon_{\alpha 2} = \frac{2(1 + \nu)}{E} \tau_{xy} \sin 2\eta \sin \psi_0 \sin \alpha \]

(17)

Similarly, the shear stress \(\tau_{xy} \) is determined from the slope, \(M_2 \), of the linear relation between \(\varepsilon_{\alpha 2} \) and \(\sin \alpha \) as follows:

\[\tau_{xy} = K_2 \frac{\partial \varepsilon_{\alpha 2}}{\partial \sin \alpha} = K_2 M_2 \]

(18)

\[K_2 = \frac{E}{2(1 + \nu) \sin 2\eta \sin \psi_0} \]

(19)

In the above equations, \(K_1 \) and \(K_2 \) are called the stress constant; \(K_1 \) is negative and \(K_2 \) is positive.

Figure 5 illustrates \(\cos \alpha \) and \(\sin \alpha \) diagrams. From the slope of the regression line, the normal and shear stresses are determined. For a tensile stress, the slope \(M_1 \) of \(\cos \alpha \) diagram is negative. The strain parameter \(\varepsilon_{\alpha 1} \) is zero at \(\cos \alpha = 0 \) and minimum at \(\cos \alpha = 1 \). For a positive shear stress, the slope \(M_2 \) of \(\sin \alpha \) diagram is positive. The strain parameter \(\varepsilon_{\alpha 2} \) is zero at \(\sin \alpha = 0 \), and is maximum at \(\sin \alpha = 1 \). The deviation from the regression line can be used as an indicator of reliability of the measured stress.

Sasaki and Hirose (1995a) proposed a method to determine all three stress components of in-plane biaxial stress field from a D-S ring obtained by single exposure. Further, Miyazaki and Sasaki (2015) noticed that \(\varepsilon_{\alpha 2} \) was given as a linear combination of \(\cos \alpha \), \(\sin \alpha \), \(\cos 2\alpha \), \(\sin 2\alpha \), and proposed a method to determine stresses, \(\sigma_x \) and \(\tau_{xy} \), on the bases of Fourier analysis of the relation of \(\varepsilon_{\alpha 2} \) as a function of \(\alpha \). They claimed their Fourier method applicable to imperfect D-S rings (Fujimoto et al., 2015).

The elastic constant, \((1 + \nu)/E \), in stress constants \(K_1 \) and \(K_2 \) is the X-ray value, often called diffraction elastic constant, which is usually different from mechanical value and dependent on the diffraction plane as well as crystals. When reliable data of the X-ray elastic constant is not available, the value can be calculated by the Kröner’s model (1958) from single crystal elastic constants. Experimentally, the X-ray elastic constant, \((1 + \nu)/E \), is determined from the change of slope \(M_1 \) with the applied stress, \(\sigma_A \), by using the following equation (Shimize et al., 2014):

\[\frac{1 + \nu}{E} = -\frac{1}{\sin 2\eta \sin 2\psi_0} \frac{\partial M_1}{\partial \sigma_A} \]

(20)
2.3 Determination of triaxial stresses by the cos\(\alpha\) method

The stress measured by X-rays is the weighted average of the stress distributed within the penetration depth of X-rays below the surface (Tanaka et al., 2006). In X-ray stress measurements, non-zero values of out-of-plane stresses, \(\sigma_x\), \(\tau_{xy}\) and \(\tau_{xz}\), are often measured for composite materials (Tanaka et al., 1992), uni-directionally machined surfaces (Hanabusa and Fujiwara, 1982, Wakashima et al., 1983), and bearing surfaces fatigued by rolling contact (Kamura et al., 2015, 2018). For triaxial stress cases, the first and second strain parameters at the rotation angle \(\varphi_0 = 0^\circ\) in Fig. 3 are related to the stress as follows (Sasaki and Hirose, 1995b, Sasaki et al., 2009):

\[
\varepsilon_{a1} = -\frac{1+\nu}{E} \left((\sigma_x - \sigma_z)\sin 2\psi_0 + 2\tau_{\alpha x}\cos 2\psi_0 \right) \sin 2\eta \cos \alpha
\]

\[
\varepsilon_{a2} = \frac{1+\nu}{E} \left(\tau_{\alpha x} \cos \psi_0 + \tau_{\alpha z} \cos \psi_0 \right) \sin 2\eta \sin \alpha
\]

For normal incidence, \(\psi_0 = 0\), the first term in the square bracket of the above two equations disappears, and then following equations are derived (Sasaki et al., 2009):

\[
\tau_{\alpha x} = -\frac{E}{2(1+\nu)} \frac{1}{\sin 2\eta} \left(\frac{\partial \varepsilon_{a1}}{\partial \cos \alpha} \right) = K_0 \left(\frac{\partial \varepsilon_{a1}}{\partial \cos \alpha} \right)
\]

\[
\tau_{\alpha z} = \frac{E}{2(1+\nu)} \frac{1}{\sin 2\eta} \left(\frac{\partial \varepsilon_{a2}}{\partial \sin \alpha} \right) = -K_0 \left(\frac{\partial \varepsilon_{a2}}{\partial \sin \alpha} \right)
\]

\[
K_0 = -\frac{E}{2(1+\nu)} \frac{1}{\sin 2\eta}
\]

where \(K_0\) is the stress constant. Out-of-plane shear stresses, \(\tau_{\alpha x}\) and \(\tau_{\alpha z}\), are determined from \(\cos \alpha\) and \(\sin \alpha\) diagrams.

In order to determine the other stress components, we have to obtain D-S rings for four arrangements, IP-2, IP-3, IP-4 and IP-5, as shown in Fig. 6 (Sasaki et al., 2009). IP-1 is for normal incidence, and the other four, IP-2 to IP-5, are for oblique incidence. The rotation angle \(\varphi_0\) is set to be four values: 0, 90, 180, and 270\(^\circ\). For the case of \(\varphi_0 = 0^\circ\), the slopes of the cos\(\alpha\) and sin\(\alpha\) diagrams are related to stresses as follows:

\[
\sigma(0) = (\sigma_x - \sigma_z) + 2\tau_{\alpha x} \cot \psi_0 = K_1 \frac{\partial \varepsilon_{a1}}{\partial \cos \alpha}(0) = K_1 M_1(0)
\]

\[
\tau(0) = \tau_{\alpha y} + \tau_{\alpha z} \cot \psi_0 = K_2 \frac{\partial \varepsilon_{a2}}{\partial \sin \alpha}(0) = K_2 M_2(0)
\]

where \(\sigma(0)\) and \(\tau(0)\) are used for stresses determined from \(\cos \alpha\) and \(\sin \alpha\) diagrams in order to distinguish them from those of the biaxial case, and (0) attached is to indicate the values for \(\varphi_0 = 0^\circ\). The stress constants, \(K_1\) and \(K_2\), are defined by Eqs. (16) and (19). Similar equations are derived for the case of \(\varphi_0 = 180^\circ\). From these relations for the 0-180\(^\circ\) pair, three components of stresses, \(\sigma_x\), \(\sigma_y\), \(\tau_{xy}\), \(\tau_{xz}\), are determined by

![Fig. 6 Arrangement of five IPs for triaxial stress measurement.](image-url)
\[
\sigma_z - \sigma_c = \frac{1}{2} \left[\sigma(0) + \sigma(180) \right]
\]
\[
\tau_{xy} = \frac{1}{2} \left[\tau(0) + \tau(180) \right]
\]
\[
\tau_{xz} = \frac{1}{2} \left[\tau(0) - \tau(180) \right] \tan \psi_0 / 2
\]

(28)

Similar relations are derived for the case of the 90-270° pair,

\[
\sigma_y - \sigma_c = \frac{1}{2} \left[\sigma(90) + \sigma(270) \right]
\]
\[
\tau_{xy} = -\frac{1}{2} \left[\tau(90) + \tau(270) \right]
\]
\[
\tau_{xy} = -\frac{1}{2} \left[\tau(90) - \tau(270) \right] \tan \psi_0 / 2
\]

(29)

On the basis of the reliability of measured stresses, \(\tau_x \) and \(\tau_z \) are better determined from \(\sin \alpha \) diagrams of the 0-180° pair, and \(\tau_y \) and \(\tau_z \) are from those of the 90-270° pair (Tanaka, 2018). For \(\tau_y \), the mean of two calculated values is adopted. The out-of-plane shear stresses, \(\tau_x \) and \(\tau_y \), are also determined from D-S rings obtained for normal incidence.

The out-of-plane normal stress, \(\sigma_z \), has to be measured to determine in-plane normal stresses, \(\sigma_x \) and \(\sigma_y \), because only deviatoric components of the normal stress are obtained from \(\cos \alpha \) and \(\sin \alpha \) diagrams. Tanaka (2018) proposed a method to determine \(\sigma_z \) using double exposure under normal incidence of X-rays as described below.

The mean strain along the whole circumference of D-S ring is determined by

\[
\bar{\varepsilon}_a = \frac{1}{2\pi} \int_0^{2\pi} \varepsilon_a d\alpha
\]

(30)

The relation between the stress \(\sigma_z \) and the mean strain \(\bar{\varepsilon}_a \) for normal incidence is obtained as

\[
\sigma_z = \frac{E}{1-2\nu} \bar{\varepsilon}_a - \frac{(1+\nu) \cos^2 \theta_0 - 2\nu}{2(1-2\nu)} \left[(\sigma_x - \sigma_z) + (\sigma_y - \sigma_z) \right]
\]

(31)

The terms of normal stress difference, \((\sigma_x - \sigma_z) \) and \((\sigma_y - \sigma_z) \), are already obtained by the \(\cos \alpha \) method described above, so the mean strain has to be measured to determine \(\sigma_z \). From Eqs. (10) and (30), the mean strain is determined from the difference in radius between the mean value, \(r_m \), of the D-S rings and the stress-free value, \(r_o \), as

\[
\bar{\varepsilon}_a = \frac{\cos^2 2\theta_0}{2L_m \tan \theta_o} (r_m - r_o) = -\frac{\sin 4\theta_0}{4L_m \tan \theta_o} (L_m - L_o) = \frac{\sin 4\theta_0}{4 \tan \theta_o} \left(\frac{L_0}{L_m} - 1 \right)
\]

(32)

where \(L_0 \) is the true value of IP-specimen distance, \(L_0 = r_o/\tan 2\eta_0 \), and \(L_m \) is the distance calculated from the mean radius \(r_m \) by Eq. (9). Figure 7 illustrates IP recording D-S rings at normal incidence in a double-exposure experiment.

![Fig. 7 Double exposure for out-of-plane normal stress determination before and after specimen movement. \(L_o \) is the true value of IP-specimen distance and \(L_m \) is the converted distance from the mean radius \(r_m \). \(2\eta \) is the complimentary angle of the diffraction angle \(2\theta \) and suffix 0 indicates those of stress-free values.](image-url)
After the first D-S ring has been recorded, the specimen is moved by distance Δz and the second D-S ring is recorded. By using the difference of the radii of two D-S rings, Δr_m, and $\Delta L_m = \Delta r_m / \tan 2\eta$, L_0 is expressed as

$$L_0 = r_m / \tan 2\eta = (\Delta z / \Delta r_m) \cdot r_m = (\Delta z / \Delta L_m) \cdot L_m$$

The substitution of Eq. (33) into Eq. (32) gives

$$\varepsilon_\alpha = \frac{\sin 4\theta_0}{4 \tan \theta_0} \left(\frac{\Delta z}{\Delta L_m} - 1 \right)$$

3. Measurement procedure
3.1 Experimental setup and the determination of distance between IP and specimen

The strain is calculated from the radius of D-S rings recorded on an IP which is placed perpendicular to the incident X-ray beam (see Fig. 4). In strain measurement, the center of D-S rings should be located precisely. The distance between the IP and the specimen is required for strain calculation. In published reports, standard powders were sometimes used to determine the center and the IP-specimen distance. For example, in strain measurements using Fe 211 diffraction, Cr powder (Taira et al., 2018) or Ag powders (Akiniwa et al., 2004) were recorded on the same IP, because the diffractions of Cr 211 or Ag 311 were close to Fe 211 diffraction. In commercial $\cos \alpha$-based analyzers, the distance is calculated from the mean radius of D-S rings using Eq. (9).

3.2 Penetration depth and Lorenz polarization factor

Before determining the diffraction angle or strain, the measured profile of X-ray diffraction intensity is corrected by Lorenz polarization (LP) and absorption factors, and also by geometrical factor (Tanaka, 2017). The penetration depth of X-rays for the $\cos \alpha$ method is obtained as

$$T(\psi_0, 2\theta, \alpha) = \frac{1}{\mu} \left[\frac{1}{\cos \psi_0} + \cos 2\theta \cos \psi_0 + \sin 2\theta \sin \psi_0 \cos \alpha \right]^{-1}$$

where μ is the linear absorption coefficient. Figure 8 show the change of the penetration depth with azimuthal angle α for Fe 211 diffraction by Cr-Kα radiation calculated using $\mu = 890$ cm$^{-1}$. The depth decreases with increasing incident angle ψ_0, and for a given ψ_0 it is the maximum at $\alpha = 0^\circ$ and 360° (-η side) and the minimum at $\alpha = 180^\circ$ (+η side).

Measured diffraction profiles are the convolution of diffractions by Kα1 and Kα2. In stress measurements, smoothing of profiles is normally carried out. Then, angular resolution is decreased and doublet peak of diffractions is not separated. The peak position of profiles is determined as a single peak. The method of the determination of peak position in Japanese standard JSMS-SD-10-05 (2005) is the center of the full-breadth at half-maximum.

![Fig. 8](image)

Fig. 8 Variation of penetration depth with tilt angle ψ_0 of X-ray incidence (Tanaka, 2018).

4. Applications of the $\cos \alpha$ method
4.1 Advantages of the $\cos \alpha$ method

In comparison with the other methods of X-ray stress measurement, the advantages of the $\cos \alpha$ method using two-dimensional detectors are listed as follows:
The exact value of the stress-free diffraction angle is not required for stress determination.

By single exposure of X-rays, in-plane normal and shear stresses can be obtained from the slopes of $\cos \alpha$ and $\sin \alpha$ diagrams, respectively. The linearity of these diagrams indicates the reliability of measured stress values.

Because of single exposure, the optical system is simple and does not require scanning mechanism of goniometer. Stress analyzers become smaller, lighter, and more convenient to use for on-site or field measurements.

The time required for one measurement is shorter, because of single exposure.

It is suitable for stress measurement at local small area and narrow portion of structures, because the irradiated area does not change owing to single exposure.

Measurement of triaxial residual stresses is much simpler and quicker, compared with the Dölle-Hauk method based on the $\sin^2 \psi$ method.

Features of D-S rings provide microstructural information such as grain sizes and texture.

Since a pinhole collimator is adopted in the optical system in $\cos \alpha$-based stress analyzers, the irradiated area of X-rays is around a few millimeters in diameter. Continuous D-S rings are sometimes difficult to obtain for the cases of coarse grained materials. The limited irradiated area of the $\cos \alpha$ method sometimes hampers accurate stress determination of coarse grained materials. Various oscillation techniques are used to overcome this difficulty as described later.

Figure 9 shows examples of D-S rings of Fe 211 taken from a carbon steel (JIS-S50C) using Cr-Kα radiation under normal incidence, where the full-width at half-maximum (FWHM) averaged around the whole circumference of rings is indicated in the caption of each figure (Tanaka, 2017, 2018). In (a) for annealed surface steel, the variation of intensity around the circumference is large because of coarse grains. The intensity variation is reduced very much in (b) fine-particle bombarded (FPB) surface, suggesting no texture development by FPB. In contrast, some texture development is detected by non-uniform intensity distribution of D-S rings as seen in (c) milled surface and (d) planed surfaces. The FWHM is smallest for annealed surface, and increases with increasing degree of plastic deformation.

4.2 Reliability of the measured stress value

One way to judge the reliability of the stress measured by the $\cos \alpha$ method is to compare the measured stress value with that determined by the $\sin^2 \psi$ method. Another way is to measure the stress on the surface of four-point bent specimens, and to compare the stress data with those calculated elastically from the applied load. In the early stage of the development of the $\cos \alpha$ method, the equipment was built up in each laboratory, while, in recent years, commercial $\cos \alpha$-based analyzers are used. The accuracy of stress measurement by the $\cos \alpha$ method is proved to be equivalent to that by the $\sin^2 \psi$ method for various metallic materials, such as steels (Shimizu et al., 2014, Kohri et al., 2014, Maruyama et al., 2015, Ling and Lee, 2015, Ramírez-Rice et al., 2016), stainless steels (Kohri et al., 2014), nickel alloys (Kohri et al., 2014), and aluminum alloys (Kohri et al., 2014, Nozue et al., 2015).
The stress on the polished surface of fine-particle bombarded (FPB) S50C steel plate was measured by the cos\(\alpha\) method under the application of four-point bending load (Tanaka, 2017). Diffraction of Fe 211 by Cr-K\(\alpha\) was used for stress measurement. Figure 10 shows cos\(\alpha\) diagrams taken at several applied stresses, \(\sigma_{st}\). Good linearity between \(\sigma_{st}\) and cos\(\alpha\) is seen at each stress, even though there is a small deviation. The linear regression line is inclined upward to the right, indicating the compressive stress. The slope is decreased with increasing applied tensile stress. The stress value, \(\sigma_t\) (MPa), calculated from the slope multiplied with the stress constant \(K_1 = 465 \text{ GPa}\) is plotted against the applied stress, \(\sigma_A\) (MPa), in Fig. 11. The linear regression gives

\[
\sigma_t = 0.98\sigma_A - 362
\]

(36)

where the constant term, -362 MPa, is the compressive residual stress due to FPB. The proportional constant of 0.98 confirms the accuracy of the stress measurement by the cos\(\alpha\) method. Similar good correlation between the shear stress determined from sin\(\alpha\) diagrams and the applied shear stress has been reported (Tanaka, 2017). In these experiments, it should be noted that the proportional constant in the relation between the X-ray measured stress and the applied stress is very sensitive to the roughness of the specimen surface.

Fig. 10 The cos\(\alpha\) diagram of FPB peened steel subjected to tension (Tanaka, 2017).

Fig. 11 Change of X-ray stress, \(\sigma_t\), with applied stress for FPB peened steel (Tanaka, 2017).

4.3 Stress measurement of coarse-grained materials

The cos\(\alpha\) method assumes D-S rings continuous. However, D-S rings are sometimes spotty when the irradiated area does not contain enough number of grains because of coarse grain sizes or small irradiated area. To obtain continuous D-S rings, the irradiated area has to contain enough number of diffracting grains. For the case of the sin\(^2\psi\) method using zero-dimensional detectors, the minimum number of grains within X-ray irradiated area required for reliable stress measurements is known to be around 1000 to 5000 (Tominaga and Akiniwa, 2014). This number may depend on grain misorientation and measurement conditions. Since it is rather difficult to expand the irradiated area in the cos\(\alpha\) method, several oscillation techniques have been used to overcome the difficulty of stress measurement due to spotty rings.

Four techniques have been proposed to increase the number of diffracting grains.

1. The oscillation of azimuthal angle \(\alpha\) on D-S rings recorded by two-dimensional detectors (software oscillation) (Sasaki et al., 1997, Tanaka, 2017).
2. Back-and-forth planer motion of the specimen during exposure of X-rays at the fixed angle (Sasaki et al., 1997), or in-plane averaging of X-ray intensity data (Hayashi et al., 2014) or of strain data (Miyazaki et al., 2016).
3. The oscillation of the specimen within a small angle range around the specimen axis during X-ray exposure at the fixed X-ray incidence (Takizawa and Soyama, 2013, Tominaga and Akiniwa, 2014).
4. The oscillation of the incident X-ray beam within a small angle range during X-ray exposure on the fixed specimen (Miyazaki et al., 2015, Tanaka, 2017).

Using recorded D-S rings, the strain data can be averaged within a small range of azimuthal angle \(\alpha\) during data processing. This \(\alpha\)-oscillation does indeed reduce the deviation of the stress data. However, averaging over a large angle range can decrease the measured value. The range of \(\alpha\)-oscillation should be below 10° to 15° (Tanaka, 2017). Back-and-forth planer motion of the specimen during exposure can increase the number of diffracting grains. Sasaki et al. (1997) used planer motion during exposure of X-rays at the fixed angle to measure the stress of coarse-grained steels. Planer oscillation is illustrated in Fig. 12(a). As an alternative, D-S rings are recorded at several positions, and
then X-ray intensity distribution data at each azimuthal angle are averaged to determine the strain (Hayashi et al., 2014) or the strain data are averaged to determine the stress (Miyazaki et al. 2016). Basically, these in-plane averaging techniques are equivalent to the averaging technique by back-and-forth planer motion. They are only applicable to the region with uniform residual stresses, not applicable for the region with stress gradient like near cracks or notches.

The oscillation of the specimen under fixed X-ray incidence is possible around three axes of goniometers. Figure 12(b) shows three oscillation axes: \(\phi \)-oscillation is around the specimen normal, \(\omega \)-oscillation is around the axis perpendicular to the diffraction plane made by the incident X-rays and the surface normal, and \(\chi \)-oscillation is around the line intersected by the diffraction plane and specimen surface. A proper range of oscillation is around twice FWHM. In the stress measurement based on the \(\sin^2 \psi \) method, Tominaga and Akiniwa (2014), and Takizawa and Soyama (2013) reported that \(\alpha \)-oscillation is more effective than \(\phi \)- or \(\chi \)-oscillation.

In stress measurements of large structures, the oscillation of structures is difficult, so \(\alpha \)-oscillation of D-S data is first recommended. The oscillation of the incident X-ray beam is possible around three axes of \(\phi, \chi \), and \(\omega \). Figure 12 (c) illustrates \(\phi_0 \)-oscillation of X-ray incidence, which is equivalent to \(\omega \)-oscillation in (b). In the \(\cos \alpha \) method, \(\phi_0 \)-oscillation was confirmed to be very powerful to improve the reliability of stress data (Miyazaki et al., 2015, Tanaka, 2017). Proper oscillation techniques have to be selected depending on actual measurement conditions.

![Fig. 12 Various oscillation techniques to increase the number of diffracting grains](image)

4.4 Influences of stress gradient and texture on stress measurement

The influence of steep stress gradient on \(\sin^2 \psi \)-diagrams and \(\cos \alpha \)-diagrams are different. In \(\sin^2 \psi \)-diagrams, steep stress gradient makes \(\sin^2 \psi \)-diagrams nonlinear (Tanaka et al., 2006), while nonlinearity rarely appears in \(\cos \alpha \)-diagrams. In the \(\cos \alpha \) method, the penetration depth changes with the azimuthal angle as shown in Fig. 8. The strain parameter \(\epsilon_{\alpha} \) and \(\epsilon_{\omega} \) are determined from the difference between strains at different penetration depths. Therefore, the steep stress gradient does not have a direct influence on the linearity of \(\cos \alpha \) and \(\sin \alpha \)-diagrams. When there is a steep gradient of residual stress beneath surfaces, the stress value obtained at different title angles may change in the \(\cos \alpha \) method, because the penetration depth decreases with increasing tilt angle (Tanaka, 2018).

With respect to the influence of texture on stress determination, not much work has been conducted with the \(\cos \alpha \) method, compared with the \(\sin^2 \psi \) method. The degree of texture can be estimated from the intensity distribution around the circumference of D-S rings. Stress measurements may be possible from the strain data obtained from the profile with enough intensity. Future studies are required for the influence of texture on stress measurement.

4.5 Triaxial residual stress measurement

The out-of-plane shear stress was measured on uni-directionally machined surfaces (Hanabus and Fujisawa, 1982, Wakashima et al., 1983), and bearing surfaces fatigue by rolling contact (Kamura et al., 2015, 2018). In the \(\sin^2 \psi \) method, out-of-plane shear stresses induce so-called \(\psi \)-splitting, which has been analyzed by Dölle-Hauk method (Dölle & Hauk, 1976). The triaxial stress analysis by the \(\cos \alpha \) method is much simpler and quicker. Even when the out-of-plane shear stress exists, both \(\cos \alpha \) and \(\sin \alpha \)-diagrams are linear, and stresses are determined by the slope of the linear relation of \(\cos \alpha \) and \(\sin \alpha \)-diagrams as described in section 2.3.

Sasaki and Hirose (1995b) measured the triaxial residual stress on machined surfaces and found that the accuracy of the \(\cos \alpha \) method was equivalent to that of the Dölle-Hauk method (Dölle & Hauk, 1976) of the \(\sin^2 \psi \) method. Kamura et al. (2015, 2018) measured triaxial residual stresses on the bearing race fatigued by rolling contact. Sasaki et al. (2016)
conducted the measurement of triaxial residual stresses in rails in service to detect the progress of damages.

Tanaka (2018) measured triaxial residual stresses on uni-directionally machined surfaces of carbon steel. Figure 13 shows examples of \(\cos \alpha \) and \(\sin \alpha \) diagrams of the milled surface of a carbon steel (JIS-S50C). Both diagrams show some irregularity because of coarse grains and texture. Linear regression lines are drawn in the figure. From the slope of linear regression lines, stresses were calculated. The measured stresses of the milled surface are summarized in Table 1, together with the standard deviation of the linear regression as an indicator of the reliability of measurement. On the basis of the standard deviation, recommendations regarding the experimental conditions are proposed. The out-of-plane shear stress is accurately determined by \(\cos \alpha \) and \(\sin \alpha \) diagrams measured under normal incidence of the X-ray beam. For stress determination by oblique incidence, the incident angle \(\psi_0 \) is recommended to be above 35°. The out-of-plane shear stress along the cutting direction, \(\tau_{zx} \), is positive. A positive value of the out-of-plane shear stress is characteristic of uni-directionally machined surfaces and increases according to the degree of cutting severity in the order of grinding, milling and planning (Hanabusa and Fujiwara, 1982, Wakashima et al., 1983). In-plane normal stresses were compressive, and the magnitude of compression was larger in the direction perpendicular to the cutting direction.

The out-of-plane normal stress \(\sigma_z \) should be zero on the free surface because of force balance. In X-ray measurement of out-of-plane residual stresses in uni-directionally machined surface of steels, Hanabusa and Fujiwara (1982) reported compressive residual stress in ferrite phase and tensile stress in cementite phase. Compressive residual stresses measured in ferrite may be balanced by tensile stresses in cementite to give rise to zero macro-stress perpendicular to the surface. Similar balance of out-of-plane shear stresses, \(\tau_{zx} \) and \(\tau_{zy} \), may be satisfied between constituent phases.

Fig. 13 The \(\cos \alpha \) and \(\sin \alpha \) diagrams of milled surface of carbon steel (Tanaka, 2018).

Table 1 Residual stress and standard deviation of milled surface of carbon steel (n/a = not applicable, SD = standard deviation) (Tanaka, 2018).

Specimen	\(\psi_0 \) degree	\(\sigma_z, \sigma_y \) MPa	SD	\(\sigma_z, \sigma_y \) MPa	SD	\(\tau_{zx} \) MPa	SD	\(\tau_{zy} \) MPa	SD	\(\tau_{zx} \) MPa	SD
Milled surface	0	n/a	6	6	50	4					
	15	-210	24	-391	27	8	26	5	30	59	22
	25	-303	9	-375	9	11	14	7	15	48	13
	35	-298	7	-367	12	5	8	1	8	63	9
	45	-263	9	-410	9	3	8	-5	9	65	7
	55	-298	11	-517	13	2	7	-5	6	70	8

4.6 Applications to on-site and field measurements

Residual stress measurements of welded structures are one of mostly demanded fields. Since welded parts are sometimes accompanied with grain growth and texture, D-S rings are often spotty or have highly non-uniform intensity distribution. Various oscillation techniques described in section 4.3 are used to reduce intensity variation of D-S rings. The stress is sometimes determined from the data of limited azimuthal angle ranges of D-S rings.

Wang et al. (2014) developed their own system of the \(\cos \alpha \) method to measure local area of welded parts inside large scale pressure vessels made of Ni-base super alloy. The diffraction of Ni 311 by Mn-K\(\alpha \) radiation was used for stress analysis. Though there was intensity variation in D-S rings, they succeeded in obtaining the stress data which were equivalent to those by the \(\sin^2 \psi \) method using a part of circumference of D-S ring with high intensity. After calibration
of the accuracy of measured stress, they applied the system to large engineering structures.

The application of the cosα method to circular cylinders was studied by Oguri et al. (2016). The influence of the curvature of the cylinder surface on the stress value is small when the irradiated area is below the one-sixth of the radius of curvature of the surface. This limitation is about the same as the sin²ψ method.

For on-site or field measurements, analyzers need to be portable, small, light, handy, and quick in obtaining stress with high accuracy. A recent cosα-based stress analyzer takes only 60 s for one stress measurement. Such portable analyzers do not require water supply because X-ray tube is air-cooled, and only need household power of 100V-240V and 130 W. The X-ray tube, IP and IP reader are mounted as a unit, and the stress is calculated from in-situ reading of the whole D-S rings in the unit (Maruyama et al., 2015). In each measurement, the IP-specimen distance is determined from the mean radius of measured D-S rings, which minimizes the positioning error (Nozue et al., 2015). Because of these advantages, portable analyzers are now widely used in various fields, including on-site mapping of residual stress distribution in engineering structures (Tsutsumi, 2016). Figure 14 shows an example of mapping of the longitudinal residual stress distribution near weld measured by the cosα method (Gadallah et al., 2015). The weld is V-shaped with the line width of 12 mm on the welding surface, and the longitudinal residual stress was measured across the weld line on both welding surface and back surfaces. X-ray data are used to examine the accuracy of the prediction of residual stress distribution by the thermal elastic-plastic finite element method (TEP-FEM) and the contour method (CM).

Two-dimensional mapping of residual stresses will be effective for the area with a large variation of microstructures and residual stresses. A global picture of residual stress distributions obtained by areal mapping will provide valuable information to improve the performance of engineering structures.

![Fig. 14 Residual stress distribution perpendicular to weld bead. Longitudinal stresses, σx, in the direction of bead are measured across the weld line by the X-ray method, and are used to check the accuracy of the prediction by the thermal-elastic-plastic finite element method (TEP-FEM) and the contour method (CM) (Gadallah et al., 2015).](image)

5. Concluding remarks

The cosα method utilizes the whole strain data around the circumference of D-S rings recorded on two-dimensional detectors such as imaging plates (IPs). In biaxial stress cases, normal and shear stresses can be determined from cosα and sinψ diagrams by single exposure. The accuracy of the cosα method is equivalent to that of the conventional sin²ψ method. The simple optical system makes stress analyzers portable, smaller, lighter, handier to obtain the stress in short time. Because of these advantages, the method has wide application fields, such as in-situ measurement of changing stresses or on-site stress measurement at narrow and multiple parts. In combination with robotic technology, mapping of areal distribution of residual stress can be carried out automatically. For triaxial residual stress analysis, the cosα method is far simpler than the sin²ψ method and has equivalent accuracy of the stress data. The cosα method is rather new, so its applications are yet rather limited. In the near future, a large expansion of application fields is expected.

The measurements by the cosα method is quick as well as accurate for fine-grained materials such as those shot-peened or quenched and tempered, because their D-S rings have rather uniform intensity showing less preferred orientation. Stress measurements can be difficult for materials with coarse grains or high texture, because their D-S rings are spotty or have high non-uniformity of the intensity around the circumference of D-S rings. To overcome such difficulty, several oscillation techniques have been proposed.

Features of D-S rings recorded on IP itself will provide microstructural information, such as grain size and texture. This information will be valuable for a nondestructive evaluation of material microstructures. The FWHM is a useful
parameter to indicate the degree of plastic deformation of materials.

Parallel with the above-mentioned studies, an activity of the standardization of stress measurement by the \(\cos \alpha \) method is in progress in the X-ray Committee of the Society of Materials Science, Japan, which will promote further developments and wider applications of the method to various engineering fields.

References

Akiniwa, Y., Kimura, H. and Tanaka, K., Measurement of stress distribution near notch and fatigue crack in ultra-fine grained steel by synchrotron radiation, Journal of the Society of Materials Science, Japan, Vol. 53, No. 7 (2004), pp. 752-757 (in Japanese).

Dölle, H. and Hauk, V., Röntgenographische Spannungsmessung für Eignspannungs-systeme allgemeiner Orientierung, Härterei-Technische Mitteilungen, Vol.31 (1976), pp. 165-168.

Fujimoto, Y., Miyazaki, T. and Sasaki, T., X-ray stress measurement of ferritic steel using Fourier analysis of Debye-Scherrer ring, Journal of the Society of Materials Science, Japan, Vol. 64, No. 7 (2015), pp. 567-572 (in Japanese).

Gaddallah, R., Tsutsumi, S., Hiraoka, K. and Murakawa, H., Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method, Marine Structures, Vol. 44 (2015), pp. 232-253.

Hanbusa, T. and Fujiwara, H., Relation between \(\psi \)-splitting and microscopic residual shear stresses in X-ray stress measurement on uni-directionally deformed layers, Journal of the Society of Materials Science, Japan, Vol. 31, No. 342 (1982), pp. 227-233 (in Japanese).

Hayashi, T., Sakaia, Y. and Hayakawa, K., Residual stress measurement of high-tensile strength steel after leveling using \(\cos \alpha \) method, Proceedings of the 48th Symposium on X-Ray Studies on Mechanical Behavior of Materials, The Society of Materials Science, Japan (2014), pp. 100-103 (in Japanese).

JSMS, Standard Method for X-Ray Stress Measurement, JSMS-SD-10-05 (2005) Kyoto, J. Soc. Mater. Sci. Japan.

Kamura, N., Fujita, T. and Sasaki, T., Evaluation of rolling contact fatigue by X-ray diffraction ring, NTN Technical Review, No. 83 (2015), pp. 63-74 (in Japanese).

Kamura, N., Fujita, T. and Sasaki, T., Evaluation of peeling by using an analyzer of X-ray diffraction ring, Journal of the Society of Materials Science, Japan, Vol. 67, No. 7 (2018), pp. 694-699 (in Japanese).

Kohri, A., Nakashiro, M., Takaku, Y. and Suzuki, K., Evaluation of residual stress measured using \(\cos \alpha \) and \(\sin^2 \psi \) methods in the elastic region in four-point bending testing, Proceedings of the 48th Symposium on X-Ray Studies on Mechanical Behavior of Materials, The Society of Materials Science, Japan (2014), pp. 22-25 (in Japanese).

Kröner, E., Berechnung der elastischen Konstanten der Vielkristalle aus den Konstanten des Einkristalls, Zeitschrift für Physik, Vol. 151 (1958), pp. 504-518.

Lin, J. and Lee, S. Y., Characterization of a portable X-ray device for residual stress measurement, Advances in X-Ray Analysis, Vol. 59 (2015), pp. 153-161.

Macherauch, E. and Müller, P., Das \(\sin^2 \psi \)-Verfahren der röntgenographischen Spannungsmessung, Zeitschrift für angewandte Physik, Vol.13 (1961), pp. 305-312.

Maruyama, Y., Miyazaki, T. and Sasaki, T., Development and validation of an X-ray stress measurement device using an imaging plate suitable for the \(\cos \alpha \) method, Journal of the Society of Materials Science, Japan, Vol. 64, No. 7 (2015), pp. 560-566 (in Japanese).

Miyazaki, T., Fujimoto, Y. and Sasaki, T., Improvement in X-ray stress measurement from a Debye-Scherrer ring by oscillation of the X-ray incident angle, Powder Diffraction, Vol. 30 (2015), pp. 250-255.

Miyazaki, T., Fujimoto, Y. and Sasaki, T., Improvement in X-ray stress measurement using Debye-Scherrer rings by in-plane averaging, Journal of Applied Crystallography, Vol. 49 (2016), pp. 241-249.

Miyazaki, T. and Sasaki, T., X-ray stress measurement from an imperfect Debye-Scherrer ring, International Journal of Materials Research, Vol. 106, No. 3 (2015), pp. 237-241.

Noyan, I. C. & Cohen, J. B. (1987). Residual Stress. Measurement by Diffraction and Interpretation, Springer.

Nozue, H., Maruyama, Y. and Uchiyama, M., Verification of installation margin in the field application of X-ray stress measurement device using the \(\cos \alpha \) method, Proceedings of the 49th Symposium on X-Ray Studies on Mechanical Behavior of Materials, The Society of Materials Science, Japan (2015), pp. 95-99 (in Japanese).

Oguri, T., Tanaka, T., Okano, T., Murata, K., Kawakami, H. and Sato, Y., X-ray stress measurement of the cylindrical surface by the \(\cos \alpha \) method, Journal of the Society of Materials Science, Japan, Vol. 66, No. 7 (2014), pp. 488-494 (in Japanese).

Ramirez-Rico, J., Lee, S. Y., Ling, J. J. and Noyan, I. C., Stress measurement using area detectors: A theoretical and
experimental comparison of different methods in ferritic steel using a portable X-ray apparatus, Journal of Materials Science, Vol. 51, (2016), pp. 5343-5355.

Robinson, J. S. and W. Redington, W., The influence of alloy composition on residual stresses in heat treated aluminum alloys, Materials Characterization, Vol. 105 (2015), 47-55.

Sasaki, T and Hirose, Y., Single incidence X-ray stress measurement for all plane stress components using imaging plate of two-dimensional detector, Journal of the Society of Materials Science, Japan, Vol. 44, No. 504 (1995a), pp. 1138-1143 (in Japanese).

Sasaki, T. and Hirose, Y., X-ray triaxial stress analysis using whole diffraction ring detected with imaging plate, Transaction of the Japan Society of Mechanical Engineers, Series A, Vol. 61, No. 590 (1995b), pp. 2288-2295 (in Japanese).

Sasaki, T., Hirose, Y. and Yasukawa, S., X-ray stress measurement of coarse grained polycrystalline materials by imaging plate method, Transaction of the Japan Society of Mechanical Engineers, Series A, Vol. 63, No. 607, (1997), pp. 533-541 (in Japanese).

Sasaki, T., Inui, N. and Itoh, H., X-ray triaxial stress measurement of rails suffered from rolling contact fatigue, Proceedings of the 50th Symposium on X-Ray Studies on Mechanical Behavior of Materials, The Society of Materials Science, Japan (2016), pp. 25-28 (in Japanese).

Sasaki, T., Lin, Z. and Hirose, Y., X-ray measurement of macro- and micro-stresses using imaging plate and its application to ferritic and austenitic dualphase stainless steel, Transaction of the Japan Society of Mechanical Engineers, Series A, Vol. 62, No. 604 (1996), pp. 2741-2749 (in Japanese).

Sasaki, T., Takahashi, S., Sasaki, K. and Kobayashi, Y., A study on improvements in multiaxial stress analysis with area detector type diffraction method, Transaction of the Japan Society of Mechanical Engineers, Series A, Vol. 75, No. 570 (2009), pp. 219-227 (in Japanese).

Shimizu, T., Sakaida, Y., Hayakawa, K. and Yashiro, S., Evaluation of X-ray elastic constant of carbon steel using cosα method, Proceedings of the 48th Symposium on X-Ray Studies on Mechanical Behavior of Materials, The Society of Materials Science, Japan (2014), pp. 10-13 (in Japanese).

Taira, S., Tanaka, K. and Yamasaki, T., A method of X-ray microbeam measurement of local stress and its application to fatigue crack growth problems, Journal of the Society of Materials Science, Japan, Vol. 27, No. 294 (1978), pp. 251-256 (in Japanese).

Takakuwa, O. and Soyama, H., Optimization of the conditions for residual stress measurement using a two-dimensional XRD method with specimen oscillation, Advances in Material Physics and Chemistry, Vol. 3 (2013), pp. 8-18.

Tanaka, K., X-ray stress measurement by the cosα method using two-dimensional detector, Part I, Fundamentals of measurements and Part II, Measurement procedure and applications, Journal of the Society of Materials Science, Japan, Vol. 66, No. 7 (2017), pp. 470-478, pp. 479-487 (in Japanese).

Tanaka, K., X-ray measurement of triaxial residual stress on machined surfaces by the cosα method using a two-dimensional detector, Journal of Applied Crystallography, Vol. 51, No. 5 (2018), pp. 1329-1338.

Tanaka, K., Matsui, M., Shikata, R. and Nishikawa, Y., X-ray measurement of triaxial residual phase stress in Zirconia-Alumina composite ceramics, Journal of the Society of Materials Science, Japan, Vol. 41, No. 464 (1992). pp. 593-599 (in Japanese).

Tanaka, K., Suzuki, K. and Akiniwa, Y., Evaluation of residual stresses by X-ray diffraction (2006) Yokendo (in Japanese). Tominaga M. and Akiniwa, Y., Influence of measurement conditions on the accuracy of measured stress using X-ray 2D detector, Journal of the Society of Materials Science, Japan, Vol. 63, No. 7 (2014), pp. 521-526 (in Japanese).

Tsutsumi, S., Handy residual stress measurement technology, Journal of the Japan Welding Society, Vol. 85, No. 2 (2016), pp. 24-27 (in Japanese).

Wakashima, M., Nakayama, M. and Tamamura, K., Study on residual stresses in uni-directionally machined layers - Influence of machining methods-, Journal of the Japan Society of Precision Engineering, Vol. 49, No. 9 (1983), pp. 1202-1208 (in Japanese).

Wang, Y., Hato, H., Kikuchi, T. and Chiba, A., In service residual stress measurement technique with two-dimensional X-ray diffraction for weld metal in structural components, Journal of the Society of Materials Science, Japan, Vol. 63, No. 5 (2014), pp. 409-416 (in Japanese).

Yoshioka, Y. and Ohya, S., X-ray analysis in a localized area by use of imaging plate, Advances in X-Ray Analysis, Vol. 35A (1992), pp.537-543.