REVIEW
COLD AIR-PROVOKED RESPIRATORY SYMPTOMS: THE MECHANISMS AND MANAGEMENT

Heikki Olavi Koskela

Department of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland

Received 8 January 2007; Accepted 19 March 2007

ABSTRACT

Objectives. To describe the mechanisms and management of cold air-provoked respiratory symptoms.

Study design. A literature review.

Methods. The review includes human epidemiological studies, human and animal experimental studies, as well as human studies about management of the cold air-provoked respiratory symptoms.

Results. Cold air is unlikely to be a causal factor initiating respiratory diseases but a symptom trigger. In the present review, the airway responses beyond these symptoms were divided into three types. The short-term responses are those that develop within minutes in response to sudden cooling of the airways. Subjects with asthma or rhinitis are especially prone to these responses. The long-term responses are those that develop in response to repeated and long-standing cooling and drying of the airways, usually in endurance athletes. Finally, there are the physiological, reflex-mediated lower-airway responses to cooling of the skin or upper airways.

Conclusions. The mechanisms beyond cold air-provoked respiratory symptoms vary considerably and mainly depend on the individual’s susceptibility and the ventilation level during the cold exposure. An understanding of these mechanisms is essential for successful management of the symptoms. (Int J Circumpolar Health 2007; 66(2) 91-100)

Keywords: cold climate, signs and symptoms, respiratory, rhinitis, asthma, chronic obstructive pulmonary disease
INTRODUCTION

Cold air-provoked respiratory symptoms are frequent in countries with a cold climate. Approximately 50% of healthy and allergic subjects report cold air-induced rhinorrhea (“the skier’s nose”) (1,2). In Lapland, the northernmost province of Finland, 10-19% of healthy subjects experience shortness of breath (SOB) during exercise in cold weather, with smoking being an important risk factor (3). The prevalence of such symptoms is markedly higher among subjects with respiratory disorders. In Lapland, 78-82% of asthmatic subjects experience SOB during exercise in cold weather and similar prevalence rates have been reported in Sweden (4). Among subjects with chronic bronchitis living in Lapland, 27-59% experience SOB during exercise in cold weather (3). At present, there are no epidemiological studies about the prevalence of cold air-provoked SOB in subjects with moderately to severe chronic obstructive lung disease (COPD).

Given the high prevalence of breathing difficulties in cold weather, one might assume that obstructive lung diseases might be more common in areas with cold climates compared with areas with more temperate climates. However, this seems not to be the case. Physician-diagnosed asthma is as common in the southernmost part of Finland compared to Lapland (5). Neither do international comparisons support the assumption that asthma would be extraordinarily prevalent in countries with a cold climate (6,7). A study in Canadian Arctic region suggested that cold climate might cause a condition similar to COPD (8), but later studies have shown that differences in COPD prevalence rates mainly reflect smoking habits of the populations investigated (5,9).

Taken together, it seems that cold climate may not be a causal factor initiating lung diseases but a symptom trigger. Therefore, the present review focuses on the various ways that cold ambient air under normobaric conditions may provoke respiratory symptoms. Several physiologic responses to cold air (effects on respiratory rate and mucociliary function, etc.) are not discussed. In this review, adequate clothing and normothermia of the body is assumed. Hypothermia-induced changes in respiratory function have been reviewed elsewhere (10).

EFFECTS OF COLD AIR ON THE SKIN AND THE AIRWAYS

Cooling of the skin can be enhanced not only by cooling of the ambient air but also by increasing the movement of air across the skin (11). In the airways, the equivalent for wind is hyperpnea; the cooling of the airways is enhanced by increasing the airflow within the airways. Breathing of +20°C air at a minute-ventilation level of 15 l/min decreases the tracheal temperature to 34°C whereas breathing similar air at 100 l/min decreases this temperature to 31°C (12). Therefore, hyperpnea of temperate air shares similar effects to the inhalation of cold air.

The special feature of an airway is that it is lined by a thin layer of liquid, the airway surface fluid (ASL). Hyperpnea of cold air may cause the ASL to evaporate more rapidly than it can be replaced (13,14). This would lead to drying and hypertonicity of the ASL. Of note, the absolute water content of subfreezing air is always near zero regardless of the level of saturation (15). Therefore, while the effect of cold air on the skin is mainly cooling, the effect on the airways is cooling and drying. It
is often impossible to define which one of the two phenomena is the final trigger for various airway responses.

THE POSSIBLE TRIGGER SITES FOR COLD AIR-PROVOKED AIRWAY RESPONSES

For an adequately clothed person, only the skin on the face is exposed to subfreezing temperatures. Cooling of the facial skin down to 10°C takes place at -5°C ambient temperature with 5 m/s wind (16). At rest and during light exercise, humans preferentially breathe through the nose (17). Even subfreezing air is almost completely saturated and warmed to near body temperature when it has passed the nasal cavity (15,18,19). Therefore, at rest and during light exercise the possible trigger sites for cold air-provoked respiratory symptoms include the facial skin and the nasal mucosa but not the lower airways (20).

Exercise is associated with hyperpnea. A shift from nose to combined nose-and-mouth breathing takes place when the ventilation level exceeds approximately 30 l/min (21). When the ventilation level further increases, incompletely conditioned air can reach the pharynx, larynx and lower airways (12). Therefore, during heavy exercise the possible trigger sites for cold air-provoked respiratory symptoms include facial skin, nasal mucosa, oral mucosa, pharynx, larynx and the lower airways.

CLASSIFICATION OF COLD AIR-PROVOKED AIRWAY RESPONSES

In this review, the potentially harmful cold air-provoked airway responses are divided into three types (Table I). The magnitude and nature of the responses depend on the level of ventilation during the exposure, the frequency of the exposure and the susceptibility of the subject.

COLD AIR-PROVOKED SHORT-TERM RESPONSES

Nasal breathing of cold air induces an engorge-ment of the venous sinuses in the submucosa (22,23), which leads to congestion, sneezing and, especially, rhinorrhea both in healthy and rhinitic subjects (1,24). However, these responses are greater in subjects with rhinitis than in healthy subjects (25) and greater in subjects with asthma and rhinitis than in subjects with rhinitis alone (26). The cold

| Table I. Classification of the potentially harmful cold air-provoked airway responses. |
|---|---|
| **Type** | **Trigger** | **Response** |
| 1. Cold air-provoked short term responses | Nasal breathing of cold air | Rhinorrhea, congestion, sneezing |
| | Cold air hyperpnea | Bronchoconstriction in asthmatic subjects, cough |
| 2. Cold-air-provoked long term responses | Repeated cold air hyperpnea | Damage of the airway epithelium and changes in airway wall structure and function |
| 3. Cold air-provoked reflex lower airway responses | Cooling of the facial skin | Slight bronchoconstriction |
| | Cooling of the upper airways | Slight bronchoconstriction (?) |
air-provoked nasal congestion is reversed by exercise due to the vasoconstrictor effects of circulating noradrenaline and adrenaline (22). Unfortunately, exercise does not inhibit the cold air-provoked rhinorrhea (1), probably due to the fact that this symptom is partly mediated via a neural reflex which is independent of the state of the venous sinuses (2).

Cold air-provoked nasal symptoms can be effectively treated by nasal decongestants (22), but their long-term use is discouraged. Anticholinergic nasal sprays markedly decrease cold-air-provoked rhinorrhea (1,24,27) but do not affect nasal congestion or sneezing. These drugs are well tolerated even in long-term use and are therefore suitable for cold air-provoked rhinorrhea. The cold air-provoked nasal symptoms are poorly controlled by histamine-1 receptor antagonists (28) and topical corticosteroids (29).

Cold air hyperpnea provokes bronchoconstriction in asthmatic subjects (30), especially in children and young adults (31,32). The pathophysiological mechanism beyond this response has been a matter of considerable debate. Studies about the direct effect of cooling on the airway’s smooth muscle have been conflicting (33-37). Certain lower-airway sensory receptors can be sensitive to cold and capable of inducing bronchoconstriction in animals (38,39). Cooling of the lower airways may induce vasoconstriction in the bronchial mucosa, followed by reactive hyperemia and edema, which would narrow the airways after hyperpnea (40,41). Perhaps the most popular hypothesis suggests that cold air hyperpnea leads to hyperosmolarity of the ASL, which induces a mediator release from cells within or along the airway mucosa (42-44). The cells that respond to hyperosmolarity could be the eosinophilic cell or the mast cell and the mediators may be leukotrienes, prostaglandins and histamine. Importantly, exercise-provoked bronchoconstriction does not induce eosinophilic airway inflammation or non-specific airway hyperresponsiveness in subjects with asthma (45). This finding suggests that regular exercise does not worsen asthma over time.

Cold air hyperpnea-provoked bronchoconstriction can be effectively attenuated by heat- and moisture-retaining masks. These masks may be regarded as the best physiological way to treat this problem: as the user exhales, heat and moisture are trapped within the mask. During the subsequent inhalation, cold air is warmed and humidified as it travels through the mask. These masks are as effective as a pre-treatment with inhaled β₂-adrenergic agonists (46,47), and when combined they virtually abolish the response (46).

Among the various anti-asthma drugs, inhaled β₂-adrenergic agonists (46,48-50), nedocromil sodium (50-52) and leukotriene receptor antagonists (49,53,54) are capable of attenuating cold-air hyperventilation-provoked bronchoconstriction. The histamine-1 receptor antagonists (55,56) and anticholinergic drugs (57) seem to be rather ineffective in this setting. A long-term treatment with inhaled corticosteroids attenuates the response to cold air (58-61), indicating that this response is associated with the degree of asthmatic inflammation in the lower airways.

As inhaled long-acting β₂ agonists rapidly loose their protective effect on exercise-provoked asthma when used on a regular basis (62-64), their use may not be advocated in subjects who exercise regularly in cold weather. For those subjects, leukotriene receptor antagonists may be more suitable since they are as effective as long-acting β₂ agonists in this setting (49,65).
and do not lose their protective effect when used on a regular basis (63-65). In addition, the response to rescue short-acting β_2 agonists after exercise is fully maintained during regular treatment with leukotriene receptor antagonists, which may not be true during treatment with regular β_2 agonists (65,66).

Besides bronchoconstriction, cold air hyper-ventilation also provokes coughing in susceptible persons (48,67). Coughing and bronchoconstriction seem to be independent responses since pre-treatment with salbutamol blocks cold air-provoked bronchoconstriction but has no effect on cold air-provoked coughing (48). One study suggested that inhaled ipratropium bromide might be more effective than salbutamol in relieving cold air-provoked coughing in asthmatic subjects (68).

COLD AIR-PROVOKED LONG-TERM RESPONSES

In horses, exercise at cold ambient temperatures induces an increase in epithelial cells in bronchoalveolar lavage fluid (69). Accordingly, in humans, nasal cold air breathing increases the number of epithelial cells in nasal lavage fluid (70). Furthermore, cold exposure induces an increase in bronchoalveolar lavage fluid granulocytes in healthy humans (71). Animal studies have shown that repeated cooling and desiccation of peripheral airways leads to a loss of ciliated epithelium, thickening of the lamina propria with increased concentrations of inflammatory cells, hyperresponsiveness and airway obstruction (72,73). Thus, experimental studies suggest that cooling and drying can damage the airway epithelium and, if repeated, can lead to changes in the airway’s wall structure and function. These phenomena may represent a physiological adaptive response to an abnormal stress on airways (74).

Repeated cooling and drying of the airways are likely to take place in endurance athletes who frequently exercise at elevated ventilation levels. Indeed, a high prevalence of respiratory symptoms and airway hyperresponsiveness has been found in skiers, swimmers and long-distance runners (75). Endobronchial biopsies of elite, competitive skiers demonstrate elevated numbers of clustered lymphocytes, neutrophils and macrophages (76,77). The increased expression of tenascin possibly reflects ongoing healing and repair processes and remodeling of the airways (77). The mucosal cellular infiltrate in the skiers’ airways differs from that in asthma, with a greater number of neutrophils and a lesser number of eosinophils, mast cells and macrophages (77). Therefore, the term “ski asthma” (78) should probably be avoided. In this review, the term “athletes’ airway disorder” is used.

Recreational skiing was not associated with asthma or respiratory symptoms in a large epidemiological study (3), probably reflecting the lesser intensity of the cold exposures. Also, outdoor work in cold weather seems not to increase the risk of asthma (3). However, there are studies reporting a high prevalence of non-specific respiratory symptoms and airflow limitation among subjects with daily exposure to a cold occupational environment (3,79).

A randomized, double-blind, placebo-controlled study failed to show any benefit from inhaled budesonide on elite skiers’ respiratory symptoms and airway hyperresponsiveness (80). In another high quality study, a leukotriene receptor antagonist, montelukast, failed to affect ice hockey players’ respiratory symptoms, airway hyperresponsiveness,
sputum inflammatory cell counts and exhaled nitric oxide concentration (81). As these drugs are effective in asthma, these negative studies again highlight the differences in the pathophysiology between athletes’ airway disorder and asthma.

A study with competitive swimmers suggested that stopping high-level training decreases airway hyperresponsiveness (82). An experimental study with dogs showed that virtually all structural airway changes induced by repeated dry air challenges vanished after cessation of the challenges (73). Furthermore, a large questionnaire study showed that the prevalence of asthma and other airway disorders in former elite endurance athletes is less than that in controls (83). These findings consistently suggest that stopping the high-level training can reverse the structural and functional abnormalities associated with the athletes’ airway disorder.

COLD AIR-PROVOKED LOWER-AIRWAY Reflex RESPONSES

It has been known for decades that cooling of the facial skin by ice packs triggers slight bronchoconstriction in humans (84,85). Facial cooling caused by -5 to -20°C ambient air combined with wind provokes an immediate 3-10 % fall in FEV₁, in healthy subjects as well as in subjects with asthma and COPD (16,20,86). Thus, this response can be considered a physiological response to a physiological stimulus. The facial cooling-provoked bronchoconstriction seems to increase with age (87), possibly due to age-related loss of function of the inhibitory muscarinic M₂ receptors, which has been reported in the human heart (88).

The studies on the effect of nasal cooling on the lower airways are contradictory. Some investigators have found cooling of the nose to provoke a slight bronchoconstriction (89-91). The magnitude of the increase in airway resistance in response to nasal breathing of cold air was found to be equal between healthy subjects, asthmatic subjects and subjects with COPD (89,92,93). This again highlights the physiological nature of the reflex responses to cold air. However, other investigators have not detected any changes in FEV₁ in response to nasal breathing of subfreezing air (20,23). This discrepancy may reflect different methods to cool the nose and to measure the bronchoconstriction. The fact that nasal breathing instead of oral breathing strongly diminishes cold air hyperventilation-provoked bronchoconstriction in asthmatic subjects (23,94) suggests that the possible nasal cooling-provoked lower-airway reflex bronchoconstriction is of minor clinical importance.

Cooling of the oral cavity seems not to be capable of provoking bronchoconstriction (89) but cooling of the pharynx and larynx provokes bronchoconstriction in cats (38). The larynx is a densely innervated organ and cold-sensitive receptors have been identified there (95). However, the fact that upper-airway local anesthesia does not attenuate cold air hyperpnea-provoked bronchoconstriction in asthmatic subjects (96) suggests that the possible laryngeal cooling-provoked lower-airway reflex bronchoconstriction is of minor clinical importance.

It seems that the reflex bronchoconstriction provoked by facial or upper-airway cooling is too mild to cause breathing difficulties in a person with near-normal lung function. However, for a subject with severely impaired lung function these responses may be of clin-
Cold air provoked respiratory symptoms

Cold ambient air is unlikely to be a causal factor initiating lung diseases but a symptom trigger. The mechanisms beyond cold air-provoked respiratory symptoms vary considerably and mainly depend on the individual susceptibility and the ventilation level during the cold exposure. Understanding of these mechanisms is essential for successful management of the symptoms. In future, the role of the cold air-provoked reflex lower-airway responses should be studied in more detail. The mechanisms of cold air-provoked coughing merit investigation. Also, more studies are needed on the prevalence, mechanisms and management of cold air-provoked excessive exercise dyspnea among subjects with COPD.

REFERENCES

1. Silvers WS. The skier’s nose: a model of cold-induced rhinorrhea. Ann Allergy 1991;67:32-36.
2. Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol 2006;118:999-1016.
3. Kotaniemi JT, Latvala J, Lundback B, Sovijarvi A, Has si J, Larsson K. Does living in a cold climate or recreational skiing increase the risk for obstructive respiratory diseases or symptoms? Int J Circumpolar Health 2003;62:142-157.
4. Millqvist E, Bengtsson U, Bake B. Occurrence of breathing problems induced by cold climate in asthmatics – a questionnaire survey. Eur J Respir Dis 1987;71:444-449.
5. Kotaniemi JT, Pallasaho P, Sovijarvi AR, Laitinen LA, Lundback B. Respiratory symptoms and asthma in relation to cold climate, inhaled allergens, and irritants: a comparison between northern and southern Finland. J Asthma 2002;39:649-658.
6. Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J 1996;9:687-695.
7. ISAAC. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998;351:1225-1232.
8. Schaefer O, Eaton RD, Timmermans FJ, Hildes JA. Respiratory function impairment and cardiopulmonary consequences in long-time residents of the Canadian Arctic. Can Med Ass J 1980;123:997-1004.
9. Hurd S. The impact of COPD on lung health worldwide: epidemiology and incidence. Chest 2000;117:1S-4S.
10. Mallet ML. Pathophysiology of accidental hypothermia. Qjm 2002;95:775-785.
11. Guyton AC, Hall JE. Medical Physiology. 9th ed. Philadelphia: W. B. Saunders Company 1996.
12. McFadden ER, Jr., Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N et al. Thermal mapping of the Airways in humans. J Appl Physiol 1985;58:564-570.
13. Davikas E, Gonda I, Anderson SD. Mathematical modeling of heat and water transport in human respiratory tract. J Appl Physiol 1990;69:362-372.
14. Freed AN, Davis MS. Hyperventilation with dry air increases airway surface fluid osmolality in canine peripheral Airways. Am J Respir Crit Care Med 1999;159:1101-1107.
15. Cole P. Further observations on the conditioning of respiratory air. J Laryngol Otol 1953;67:669-681.
16. Gavhed D, Makinen T, Holmer I, Rintamäki H. Face temperature and cardiorespiratory responses to wind in thermoneutral and cool subjects exposed to -10 degrees C. Eur J Appl Physiol 2000;83:449-456.
17. Seaton A, Seaton D, Leitch AG. Crofton & Douglas’s Respiratory Diseases. 4th ed. London: Blackwell Scientific Publications 1989.
Cold air provoked respiratory symptoms

18. Webb P. Air temperatures in respiratory tracts of resting subjects in cold. J Appl Physiol 1951;4:378-382.

19. Ingelstedt S. Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol 1956;131 (Suppl):1-80.

20. Koskela H, Tukiainen H. Facial cooling, but not nasal breathing of cold air, induces bronchoconstriction: a study in asthmatic and healthy subjects. Eur Respir J 1995;8:2088-2093.

21. Anderson SD, Togias AG. Dry air and hyperosmolar challenge in asthma and rhinitis. In Busse WW, Holgate ST, editors. Asthma and Rhinitis. 1st ed. Boston: Blackwell Scientific Publications 1995. pp. 1178-1195.

22. Cole P, Forsyth R, Haight JS. Effects of cold air and exercise on nasal patency. Ann Otol Rhinol Laryngol 1983;92:196-198.

23. McLane ML, Nelson JA, Lenner KA, Hejal R, Kotaru C, Skowronski M et al. Integrated response of the upper and lower respiratory tract of asthmatic subjects to frigid air. J Appl Physiol 2000;88:1043-1050.

24. Bonadonna P, Senna G, Zanon P, Cocco G, Dorizzi R, Gani F, et al. Cold-induced rhinitis in skiers – clinical aspects and treatment with ipratropium bromide nasal spray: a randomized controlled trial. Am J Rhinol 2001;15:297-301.

25. Braat JPM, Mulder PG, Fokkens WJ, van Wijk RG, Rijntjes E. Intranasal cold air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med 1998;157:1748-1755.

26. Hanes LS, Issa E, Proud D, Togias A. Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy 2006;36:26-31.

27. Cruz AA, Togias AG, Lichtenstein LM, Kagey-Sobotka A, Proud D, Naclerio RM. Local application of atropine attenuates the upper airway reaction to cold, dry air. Am Rev Respir Dis 1992;146:340-346.

28. Togias A, Proud D, Kagey-Sobotka A, et al. Nasal challenge with cold, dry air. Am Rev Respir Dis 1986;133:1133-1139.

29. Togias AG, Naclerio RM, Peters SP, Nimmacadda I, Proud D, Kagey-Sobotka A, et al. Local generation of sulfidopeptide leukotrienes upon nasal provocation with cold, dry air. Am Rev Respir Dis 1986;133:1133-1137.

30. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol 1984;73:660-665.

31. Gauvreau GM, Ronnen GM, Watson RM, O’Byrne PM. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med 1998;158(11):3919-3929.

32. Nielsen KG, Bisgaard H. Hyperventilation with cold versus dry air in 2- to 5-year-old children with asthma. Am J Respir Crit Care Med 2005;171:238-241.

33. Souhrada M, Souhrada JF. The direct effect of temperature on airway smooth muscle. Respir Physiol 1981;44:311-323.

34. Jongejan RC, De Jongste JC, Raatgeep RC, Bonta IL, Kerrebijn KF. Effect of cooling on responses of isolated human airways to pharmacologic and electrical stimulation. Am Rev Respir Dis 1991;143:369-374.

35. Freed AN, Fuller SD, Stream CE. Transient airway cooling modulates dry-air-induced and hypertonic aerosol-induced bronchoconstriction. Am Rev Respir Dis 1991;144:358-362.

36. Freed AN, Stream CE. Airway cooling: stimulus specific modulation of airway responsiveness in the canine lung periphery. Eur Respir J 1991;4:568-574.

37. Mustafa SM, Pilcher CW, Williams KL. Cooling-induced bronchoconstriction: the role of ion-pumps and ion-carrier systems. Pharmacol Res 1999;39:125-136.

38. Jammes Y, Barthelemy P, Delpierre S. Respiratory effects of cold air breathing in anesthetized cats. Respir Physiol 1983;54:41-54.

39. Giesbrecht GG, Pisarri TE, Coleridge JCG, Coleridge HM. Cooling the pulmonary blood in dogs alters activity of pulmonary vagal afferents. J Appl Physiol 1993;74:24-30.

40. Gilbert JA, Fouke JM, McFadden ER, Jr. Heat and water flux in the intrathoracic airways and exercise-induced asthma. J Appl Physiol 1987;63:1681-1691.

41. McFadden ER, Jr. Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990;335:880-883.

42. Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson NF, Jr., Kagey-Sobotka A, et al. Nasal challenge with cold, dry air results in release of inflammatory mediators. J Clin Invest 1985;76:1375-1381.

43. Togias AG, Naclerio RM, Peters SP, Nimmacadda I, Proud D, Kagey-Sobotka A, et al. Local generation of sulfidopeptide leukotrienes upon nasal provocation with cold, dry air. Am Rev Respir Dis 1986;133:1133-1137.

44. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol 1984;73:660-665.

45. Gauvreau GM, Ronnen GM, Watson RM, O’Byrne PM. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med 2000;162:1302-1307.

46. Millqvist E, Bengtsson U, Lowhagen O. Combining a beta2-agonist with a face mask to prevent exercise-induced asthma. J Allergy Clin Immunol 1995;8:2088-2093.

47. Beutler DA, Martin RJ. Efficacy of a heat exchanger mask in cold exercise-induced asthma. Chest 2006;129:1188-1193.

48. Banner AS, Chausow A, Green J. The tussive effect of hyperpnea with cold air. Am Rev Respir Dis 1985;131:362-367.

49. Coreno A, Skowronski M, Kotaru C, McFadden ER, Jr. Comparative effects of long-acting beta2-agonists, leukotriene receptor antagonists, and a 5-lipoxygenase inhibitor on exercise-induced asthma. J Allergy Clin Immunol 2000;106:500-506.
Cold air provoked respiratory symptoms

50. Pfleger A, Eber E, Weinhandl E, Zach MS. Effects of nedocromil and salbutamol on airway reactivity in children with asthma. Eur Respir J 2002;20:624-629.

51. Wonne R, Monkhoff M, Ahrens P, Hofmann D. [Study of the protective action of nedocromil sodium with bronchial cold-air provocation in children with bronchial asthma]. Pneumologie 1990;44:1193-1195.

52. Oseid S, Mellbye E, Hem E. Effect of nedocromil sodium on exercise-induced bronchoconstriction exacerbated by inhalation of cold air. Scand J Med Sci Sports 1995;5:88-93.

53. Bisgaard H, Nielsen KG. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children. Am J Respir Crit Care Med 2000;162:187-190.

54. Rundell KW, Spiering BA, Baumann JM, Evans TM. Effects of montelukast on airway narrowing from eu- capnic voluntary hyperventilation and cold air exercise. Br J Sports Med 2003;39:232-236.

55. Weibicke W, Poynteer MT, Montgomery M, Cherkov V, Pazerkamp H. Effect of terfenadine on the response to exercise and cold air in asthma. Pediatr Pulmonol 1988;4:225-229.

56. Gong H, Jr., Tashkin DP, Dauphinee B, Djahed B, Wu TC. Effects of oral cetirizine, a selective H1 antago- nist, on allergen- and exercise-induced bronchocon- striction in subjects with asthma. J Allergy Clin Immunol 1990;85:632-641.

57. Poppius H, Sovijärvi ARA, Tammilehto L. Lack of pro- tective effect of high-dose ipatropium on bronchoconstriction following exercise with cold air breathing in patients with mild asthma. Eur J Respir Dis 1986;68:319-325.

58. Claussen M, Sili V. [Modification of nonspecific bronchial hyperreactivity to cold air hyperventilation and carbachol by nedocromil and budesonide]. Pneumologie 1993;47:209-214.

59. Pennings HJ, Wouters E. Effect of inhaled beclomethasone dipropionate on isocapnic hyperventilation with cold air in asthmatics, measured with forced oscillation technique. Eur Respir J 1997;10:665-671.

60. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med 2000;162:1500-1506.

61. Koskela HO, Hyvarinen L, Brannan JD, Chan HK, Anderson SD. Sensitivity and validity of three bronchial provocation tests to demonstrate the effect of inhaled corticosteroids in asthma. Chest 2003;124:1341-1349.

62. Ramage L, Lipworth BJ, Ingram CG, Cree IA, Dhillon DP. Reduced protection against exercise induced bronchoconstriction after chronic dosing with salmeterol. Respir Med 1994;88:363-368.

63. Villaran C, O’Neill SJ, Helbling A, van Noord JA, Lee TH, Chuchalin AG, et al. Montelukast versus salmeterol in patients with asthma and exercise-induced bronchoconstriction. Montelukast/Salmeterol Exercise Study Group. J Allergy Clin Immunol 1999;104:547-553.

64. Edelman JM, Turpin JA, Bronsky EA, Grossman J, Kemp JP, Ghannam AF, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med 2000;132:97-104.

65. Storms W, Chervinsky P, Ghannam AF, Bird S, Hustad CM, Edelman JM. A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir Med 2004;98:1051-1062.

66. Hancox RJ, Subbarao P, Kamada D, Watson RM, Hargreve FE, Inman MD. Beta2-agonist tolerance and exercise-induced bronchospasm. Am J Respir Crit Care Med 2002;165:1068-1070.

67. Cho YS, Park SY, Lee CK, Lee EY, Shin JH, Yoo B, et al. Enhanced cough response to hyperpnea with cold air challenge in chronic cough patients showing increased cough sensitivity to inhaled capsaicin. Allergy 2003;58:486-491.

68. Laitinen LA, Poppius H, Haaheta T. Comparison of ipatropium bromide and salbutamol in a long-term trial in asthmatic and bronchitic patients in a cold climate. Scand J Respir Dis 1979:103:163-169.

69. Davis MS, Lockard AJ, Marlin DJ, Freed AN. Airway cooling and mucosal injury during cold weather exercise. Equine Vet J 2002; (Suppl):413-416.

70. Cruz AA, Naclerio RM, Proud D, Togias A. Epithelial shedding is associated with nasal reactions to cold, dry air. J Allergy Clin Immunol 2006;117:1351-1358.

71. Larsson K, Tornling G, Gavhed D, Muller-Suur C, Palmberg L. Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. Eur Respir J 1998;12:825-830.

72. Davis MS, Freed AN. Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs. Am J Respir Crit Care Med 2001;164:785-789.

73. Davis MS, Schofield B, Freed AN. Repeated peripheral airway hyperpnea causes inflammation and remodeling in dogs. Med Sci Sports Exerc 2003;35:608-616.

74. Bonsignore MR, Morici G, Vignola AM, Riccobono L, Bonanno A, Profita M et al. Increased airway inflammatory cells in endurance athletes: what do they mean? Clin Exp Allergy 2003;33:14-21.

75. Helenius I, Lumme A, Haaheta T. Asthma, airway inflammation and treatment in elite athletes. Sports Med 2005;35:565-574.

76. Sue-Chu M, Karjalainen EM, Altraja A, Laitinen A, Laitinen LA, Naess AB et al. Lymphoid aggregates in endobronchial biopsies from young elite cross-country skiers. Am J Respir Crit Care Med 1998;158:597-601.

77. Karjalainen EM, Laitinen A, Sue-Chu M, Altraja A, Bjerner M, Laitinen LA. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med 2000;161:2086-2091.

78. Sue-Chu M, Larsson L, Moen T, Rennard SI, Bjerner L. Bronchoscopy and bronchoalveolar lavage findings in cross-country skiers with and without “ski asthma.” Eur Respir J 1999;13:626-632.

International Journal of Circumpolar Health 66:2 2007
Cold air provoked respiratory symptoms

79. Jammes Y, Delvolgo-Gori MJ, Badier M, Guillot C, Gazazian G, Parlenti L. One-year occupational exposure to a cold environment alters lung function. Arch Environ Health 2002;57:360-365.

80. Sue-Chu M, Karjalainen EM, Laitinen A, Larsson L, Laitinen LA, Bjerner L. Placebo-controlled study of inhaled budesonide on indices of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsies in cross-country skiers. Respiration 2000;67:417-425.

81. Helenius I, Lumme A, Ounap J, Obase Y, Rytipilta P, Sarna S et al. No effect of montelukast on asthma-like symptoms in elite ice hockey players. Allergy 2004;59:39-44.

82. Helenius I, Rytipilta P, Sarna S, Lumme A, Helenius M, Remes V et al. Effect of continuing or finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: a 5-year prospective follow-up study of 42 highly trained swimmers. J Allergy Clin Immunol 2002;109:962-968.

83. Kujala UM, Sarna S, Kaprio J, Koskenniemi M. Asthma and other pulmonary diseases in former elite athletes. Thorax 1996;51:288-292.

84. Josenhans WT, Melville GN, Ulmer WT. The effects of facial cold stimulation on airway conductance in healthy man. Can J Physiol Pharmacol 1968;47:453-457.

85. Berk JL, Lenner KA, McFadden ER, Jr. Cold-induced bronchoconstriction: role of cutaneous reflexes vs. direct airway effects. J Appl Physiol 1987;63:659-664.

86. Koskela HO, Koskela AK, Tukiainen HO.Bronchoconstriction due to cold weather in COPD. The roles of direct airway effects and cutaneous reflex mechanisms. Chest 1996;110:632-636.

87. Koskela H. Effects of cold air on lung function in obstructive lung diseases. The roles of direct airway effects and cutaneous reflex mechanisms. Thesis. Kuopio University, Kuopio 1997.

88. Brodde OE, Konschak U, Becker K, Ruter F, Poller U, Jakubetz J et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest 1998;101:471-478.

89. Fontanari P, Burnet H, Zattara-Hartmann MC, Jammes Y. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals. J Appl Physiol 1996;81:1739-1743.

90. Johansson A, Bende M, Millqvist E, Bake B. Nasobronchial relationship after cold air provocation. Respir Med 2000;94:1119-1122.

91. Millqvist E, Johansson A, Bende M, Bake B. Effect of nasal air temperature on FEV1 and specific airways conductance. Clin Physiol 2000;20:212-217.

92. Fontanari P, Zattara-Hartmann MC, Burnet H, Jammes Y. Nasal eupnoeic inhalation of cold, dry air increases airway resistance in asthmatic patients. Eur Respir J 1997;10:2250-2254.

93. On LS, Boonyongsunchai P, Webb S, Davies L, Calverley PM, Costello RW. Function of pulmonary neuronal M(2) muscarinic receptors in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:1320-1325.

94. Griffin MP, McFadden ER, Jr., Ingram RH. Airway cooling in asthmatic and nonasthmatic subjects during nasal and oral breathing. J Allergy Clin Immunol 1982;69:354-359.

95. Widdicombe JG. Sensory innervation of the lungs and airways. Prog Brain Res 1986;67:49-64.

96. Caire N, Cartier A, Ghezzo H, L'Archeveque J, Malo JL. Inhaled lignocaine does not alter bronchial hyperresponsiveness to hyperventilation of dry cold air in asthmatic subjects. Clin Exp Allergy 1989;19:65-70.

97. Koskela H, Pihlajamaki J, Pekkarinen H, Tukiainen H. Effect of cold air on exercise capacity in COPD: increase or decrease? Chest 1998;113:1560-1565.

98. Melville GN. Cold II: Nervous pathways in the respiratory response to facial cold. Environ Physiol Biochem 1972;2:179-187.

Heikki Koskela, MD
Department of Respiratory Medicine
Kuopio University Hospital
P. O. Box 1777, 70211 Kuopio
FINLAND
Email: heikki.koskela@kuh.fi