The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin ion channel family, which also includes the bile acid-sensitive ion channel (BASIC). So far little is known about the effects of bile acids on ENaC function. ENaC is probably a heterotrimer consisting of three well characterized subunits (αβγ). In humans, but not in mice and rats, an additional δ-subunit exists. The aim of this study was to investigate the effects of chenodeoxycholic, cholic, and deoxycholic acid in unconjugated (CDCA, CA, and DCA) and tauro-conjugated (t-CDCA, t-CA, t-DCA) form on human ENaC in its αβγ- and δβγ-configuration. We demonstrated that tauro-conjugated bile acids significantly stimulate ENaC in the αβγ- and in the δβγ-configuration. In contrast, non-conjugated bile acids have a robust stimulatory effect only on δβγENaC. Bile acids stimulate ENaC-mediated currents by increasing the open probability of active channels without recruiting additional near-silent channels known to be activated by proteases. Stimulation of ENaC activity by bile acids is accompanied by a significant reduction of the single-channel current amplitude, indicating an interaction of bile acids with a region close to the channel pore. Analysis of the known ASIC1 (acid-sensing ion channel) crystal structure suggested that bile acids may bind to the pore region at the degenerin site of ENaC. Substitution of a single amino acid residue within the degenerin region of βENaC (N521C or N521A) significantly reduced the stimulatory effect of bile acids on ENaC, suggesting that this site is critical for the functional interaction of bile acids with the channel.

The physiological role and mechanism of ENaC activation by bile acids remain to be elucidated. In particular, it has not yet been shown whether bile acids also affect the function of human ENaC, which can occur in at least two configurations (αβγ or δβγ) in different tissues. Therefore, the aim of this study was to investigate whether major human bile acids (chenodeoxycholic, cholic, and deoxycholic acid) modulate human ENaC in its αβγ- and δβγ-configuration. We demonstrate that...
Activation of Human ENaC by Bile Acids

bile acids can activate human ENaC, probably by specifically interacting with the degenerin region.

Results

Bile Acids Are More Potent Activators of ENaC in the δβγ- than the αβγ-Configuration—To test the effect of bile acids on ENaC function, human αβγ- or δβγENaC was heterologously expressed in *Xenopus laevis* oocytes. Amiloride-sensitive whole-cell currents (\(I_{\text{amo}}\)) were measured using the two-electrode voltage clamp technique. Representative current traces for αβγ- or δβγENaC-expressing oocytes are shown in Fig. 1, A and C and Fig. 1, B and D, respectively. Whole-cell current recordings were started in the presence of amiloride in a concentration of 2 or 100 μM to inhibit αβγENaC or δβγENaC, respectively (22). Wash-out of amiloride revealed an ENaC-mediated sodium inward current. Interestingly, the current response to superfusion with chenodeoxycholic acid (CDCA) was different in αβγENaC-expressing oocytes when compared that in δβγENaC-expressing oocytes. CDCA reduced αβγENaC currents by about 10% but resulted in 2.7-fold increase of δβγENaC currents (Fig. 1, A and B). In contrast, tauro-deoxycholic acid (t-DCA) stimulated ENaC in both subunit configurations (Fig. 1, C, D, and E). The effects of bile acids were reversible within about 2 min after wash-out. Re-addition of amiloride returned the whole-cell current toward the initial baseline level. The rapid onset and reversibility of the bile acid effect suggest that it is not caused by a permanent chemical modification of the channel or by a gradual accumulation of bile acids in the lipid bilayer of the plasma membrane. Control experiments demonstrated that bile acids had no effect on whole-cell currents in non-injected oocytes and that in ENaC-expressing oocytes the current stimulated by t-DCA was fully blocked by amiloride (data not shown). These control experiments confirm that the observed current responses are mediated by the effects of bile acids on ENaC activity. In addition to CDCA and t-DCA, we also tested the effect of cholic (CA), tauro-cholic (t-CA), deoxycholic (DCA), and tauro-chenodeoxycholic (t-CDCA) acid in similar experiments. Normalized data from these experiments are summarized in Fig. 1E. Interestingly, δβγENaC currents were stimulated more than 2-fold by non-conjugated as well as tauro-conjugated bile acids. In contrast, only the tauro-conjugated forms of bile acids (t-CA, t-DCA, and t-CDCA) markedly stimulated αβγENaC currents with t-DCA producing the largest effect (about 2-fold). The non-conjugated bile acids CA and DCA had a stimulatory effect of about 20% on αβγENaC currents, whereas CDCA even inhibited αβγENaC currents on average by more than 20%. Thus, a robust stimulatory effect on αβγENaC was only observed with tauro-conjugated bile acids (Fig. 1E).

The marked difference between the effects of DCA and t-DCA on αβγENaC may result from a lower binding affinity of DCA to the channel or from DCA binding without major effect on channel function. To address this question, we performed experiments in which we first applied DCA and subsequently applied t-DCA in the presence of DCA (Fig. 2A) or first applied t-DCA and subsequently applied DCA in the presence of t-DCA (Fig. 2C). As summarized in Fig. 2B, DCA stimulated ENaC-mediated currents by about 30%, whereas subsequent application of t-DCA in the presence of DCA resulted in a stimulation of ENaC activity by more than 2-fold. In contrast, when ENaC was first activated by t-DCA, subsequent DCA application did not further activate the channel (Fig. 2D). Importantly, the combined stimulatory effects of DCA and t-DCA on αβγENaC were similar in both cases (DCA followed by t-DCA: 2.18 ± 0.08-fold, \(n = 20\), \(N = 2\); t-DCA followed by DCA: 2.15 ± 0.09-fold, \(n = 20\), \(N = 2\)) and were not significantly

Activation of Human ENaC by Bile Acids

Different from that of t-DCA applied alone (2.11 ± 0.08-fold, n = 20, N = 2; Fig. 2, B and D). Thus, the effects of DCA and t-DCA were not additive. These data suggest that DCA and t-DCA modify channel activity by the same mechanism. The finding that an initial application of DCA does not reduce the stimulatory effect of t-DCA applied in the presence of DCA suggests that DCA does not prevent t-DCA binding to the channel. Thus, t-DCA is likely to have a higher binding affinity to the channel than DCA and binding of DCA may have a stronger stimulatory effect on αβγENaC than binding of t-DCA.

Taken together, these findings demonstrate that t-DCA modifies channel activity by the same mechanism. The finding that an initial application of DCA does not reduce the stimulatory effect of t-DCA applied in the presence of DCA suggests that DCA does not prevent t-DCA binding to the channel. Thus, t-DCA is likely to have a higher binding affinity to the channel than DCA and binding of DCA may have a stronger stimulatory effect on αβγENaC than binding of t-DCA.

Tauro-deoxycholic Acid Activates Human αβγENaC by Increasing Open Probability (P_o) of Active Channels but Not by Recruiting Additional Near-silent Channels—Our whole-cell current measurements demonstrated that the effects of bile acids on human ENaC in both αβγ-subunit and δβγ-subunit configurations were rapid and reversible. This makes it unlikely that insertion of new channels in the plasma membrane contributes to the stimulatory effect of bile acids on ENaC. Instead, bile acids probably stimulate ENaC by increasing the P_o of channels that are already present in the plasma membrane. Two functionally distinct ENaC populations are thought to be present in the plasma membrane: active channels with an average P_o of about 0.5 and so-called near-silent channels with an extremely low P_o (31, 39–41). Thus, bile acids may further increase the P_o of the active channel population or may recruit additional near-silent channels by converting them into active channels. To investigate the biophysical mechanisms of ENaC activation by bile acids, we performed single-channel recordings in outside-out patches of ENaC-expressing oocytes and tested the effect of bile acids on ENaC. Fig. 3A shows a representative recording from an outside-out patch excised from an oocyte expressing αβγENaC. The initial wash-out of amiloride revealed single-channel activity with up to three apparent channel levels (Fig. 3A). After t-DCA application, the same number of active channels in the patch was observed. However, N_P_o was moderately increased from 1.04 to 1.64 (where N is the number of channels and P_o is single-channel open probability), and the single-channel current amplitude (i) was reduced from 0.39 to 0.37 pA (Fig. 3A, insets 1 and 2). The observed increase in N_P_o is consistent with the stimulatory effect of t-DCA on ENaC whole-cell currents in oocytes expressing αβγENaC (Fig. 1E). Upon wash-out of t-DCA, N_P_o and i returned approximately to their initial values (0.88 and 0.39 pA, respectively; Fig. 3A, inset 3). It is well established that proteolytic activation of ENaC is associated with the recruitment of near-silent channels (31, 39, 41, 42). Indeed, subsequent application of the serine protease chymotrypsin led to the recruitment of additional channel levels and a strong increase of N_P_o from 0.88 to 5.28 (Fig. 3A, inset 4). The single-channel amplitude remained unchanged at 0.39 pA. On average, t-DCA reduced the single-channel current amplitude from 0.380 ± 0.003 to 0.35 ± 0.01 pA (p < 0.001; N = 4; n = 7), increased N_P_o by about 1.6-fold from 0.82 ± 0.17 to 1.36 ± 0.25 (p < 0.05; N = 4; n = 7), and did not significantly change the number of apparent channel levels 2.4 ± 0.5 versus 2.7 ± 0.6 (n.s.; N = 4; n = 7) (Fig. 3B). In contrast, chymotrypsin did not significantly change the single-channel current amplitude and increased both N_P_o (by about 4-fold from 0.86 ± 0.18 to 3.72 ± 0.87 (p < 0.01; N = 4; n = 7)) and the number of apparent channel levels from 2.1 ± 0.5 to 5.4 ± 1.2 (p < 0.01; N = 4; n = 7).

In some experiments with very low initial αβγENaC activity, the difference in the effects of t-DCA and chymotrypsin was particularly impressive (Fig. 3C). In this experiment, only a few, extremely brief single-channel openings were observed prior to the application of t-DCA (N_P_o < 0.01), which indicates that in this outside-out patch, only near-silent channels with a very low P_o are present. Interestingly, application of t-DCA had no significant effect on channel activity in this patch, which suggests that near-silent channels are not markedly affected by t-DCA. In contrast, application of chymotrypsin resulted in the expected conversion of near-silent channels into active channels as evidenced by the appearance of up to four channel levels with long channel openings (N_P_o = 2.52). In summary, our single-channel data indicate that t-DCA stimulates αβγENaC activity by increasing the P_o of active channels without recruiting additional near-silent channels, which distinguishes the effect of t-DCA from that of channel-activating proteases. Moreover, the small but significant reduction of single-channel current amplitude in the presence of t-DCA indicates a possible interaction of bile acids with a region close to the channel pore.

Chenodeoxycholic Acid Reduces the Single-channel Current Amplitude of δβγENaC—In outside-out patches from oocytes expressing δβγENaC, we confirmed our previously reported finding that for unknown reasons δβγENaC shows a high basal P_o close to 1 (Fig. 4, A and B) (22). Indeed, in outside-out patches, the channel resides almost all the time in its open state.
with only brief closing events (Fig. 4, inset 1 demonstrating part of the trace on an expanded time scale). Under these conditions, it is not surprising that application of CDCA had no additional stimulatory effect on P_o despite the large stimulatory effect of CDCA observed on ENaC whole-cell currents (Fig. 1B). However, the single-channel current amplitude of $\delta\beta\gamma$ENaC was slightly reduced from 0.95 to 0.84 pA (Fig. 4A, inset 2). The single-channel current amplitude of $\delta\beta\gamma$ENaC returned to its initial value upon wash-out of CDCA (Fig. 4A, inset 3). In outside-out patches, chymotrypsin also had no detectable effect on P_o and single-channel current amplitude of $\delta\beta\gamma$ENaC (Fig. 4A, inset 4), which is consistent with our previously reported data (22). Importantly, the small but significant and reversible reduction of the single-channel current amplitude of $\delta\beta\gamma$ENaC by CDCA (Fig. 4C) suggests that CDCA interacts with $\delta\beta\gamma$ENaC in a similar way as t-DCA interacts with $\alpha\beta\gamma$ENaC (Fig. 3B). This further supports the hypothesis that bile acids interact with a region in ENaC close to the channel pore.

Analysis of the Crystal Structure of the Transmembrane Domains of ASIC1 Suggests a Putative Binding Site for Bile Acids in the Degenerrin Region of ENaC—To identify a putative bile acid binding site, we analyzed the crystal structure of ASIC1 transmembrane domains. Analysis revealed the presence of hydrophobic crevices in the membrane-spanning region of the channel occupied by three maltose groups of the detergent n-dodecyl-β-D-maltoside used for channel isolation from the
plasma membrane before crystallization (Protein Data Bank (PDB) ID 2QTS (3)) (Fig. 5A). Two of the putative detergent binding sites are located on the outer side of the transmembrane domains and are probably occupied by membrane lipids. Interestingly, the third site is located within the pore region formed by the second transmembrane domains (TM2) of all three subunits and is accessible from the extracellular solution. Bile acids are amphiphilic substances and can behave as detergents (43). Therefore, we hypothesized that maltoside detergent may mimic the effect of bile acids on ENaC function.

Indeed, similar to CDCA, application of maltoside in a non-solubilizing concentration (10 μM) significantly stimulated δβγENaC by about 1.5-fold and inhibited αβγENaC by about 10% (Fig. 5, C–E). Thus, it is tempting to speculate that bile acids may bind to ENaC at sites corresponding to those identified for maltoside detergent co-crystallized with ASIC1. Among the three putative binding sites, the site located within the pore region appeared to be the most likely candidate for bile acid binding, because of the rapid onset and reversibility of the bile acid effect on P_o and single-channel current amplitude. Estimating the energy of interaction (MolDock score (44) using Molegro Molecular Viewer 2.5.0 from CLC bio) between the maltose group and the channel reveals that the aspartate residue in position 433 (Asp^{433}) makes the highest contribution to binding at this site. Using protein sequence alignment, we identified residues homologous to ASIC1 Asp^{433} in all four human ENaC subunits (Fig. 5B). The homologous residues are Asn^{550}, Ala^{527}, Asn^{521}, and Asn^{530} in α-, δ-, β-, and γ-ENaC, respectively (Fig. 5B). Interestingly, these residues belong to the degenerin region known to play an important role in ENaC gating (1, 8, 10, 13). Thus, we hypothesized that the amino acid residues in ENaC subunits homologous to ASIC1 Asp^{433} may be functionally important sites for the interaction between bile acids and ENaC.

Mutating the Asparagine Residue βAsn^{521} to Cysteine or Alanine Reduces the Stimulatory Effect of Bile Acids on δβγENaC—As shown above, bile acids activate δβγENaC more potently than αβγENaC. Therefore, we initially focused on ENaC in its δβγ-configuration to investigate whether the amino acid residues homologous to Asp^{433} in ASIC1 are involved in bile acid-mediated activation of ENaC. The homologous amino acid residues δAla^{527}, βAsn^{521}, and γAsn^{530} were mutated to cysteines. The substitution of these residues by cysteine was chosen, because cysteine does not change substantially the size and charge of the amino acid side chain. Moreover, the cysteine residue can be covalently modified by the sulfhydryl reagent...
Activation of Human ENaC by Bile Acids

FIGURE 5. Analysis of the crystal structure of the transmembrane domains of ASIC1 suggests a putative binding site for bile acids in the degenerin region of ENaC. A, ribbon diagram of the transmembrane domains of chicken ASIC1 (gASIC1) with three maltose groups of the co-crystallized detergent maltoside. The arrow points to the aspartate residue (Asp433), the amino acid residue with the highest contribution to the total energy of interaction between ASIC1 and the detergent in the degenerin region. B, sequence alignment of chicken ASIC1, DEG-1 from *C. elegans* (c.DEG-1), and human ENaC subunits (h.αENaC, h.δENaC, h.βENaC, and h.γENaC) corresponding to the first part of the second transmembrane domains (TM2). Amino acid residues homologous to Asp433 in chicken ASIC1 are indicated by bold characters in red. C and D, maltoside detergent reversibly inhibits αβγENaC (C) and reversibly activates δβγENaC (D). Representative whole-cell current traces of oocytes expressing wild-type αβγENaC (C) or δβγENaC (D) are shown. Amiloride (Ami, 2 μM (C) or 100 μM (D)) and n-dodecyl-β-D-maltoside (MALT, 10 μM) were present in the bath solution as indicated by corresponding bars. E, normalized amiloride-sensitive current values (I_{amil/MALT}/I_{amil/initial}) obtained from similar experiments as shown in C and D (mean ± S.E. and individual data points; N = 2; 14 ≤ n ≤ 20; *** p < 0.001; unpaired ratio t test).

(2-(trimethylammonium)ethyl) methanethiosulfonate bromide (MTSET). Thus, treatment with MTSET can be used as a tool to alter the function of mutant channels by chemical modification of the introduced cysteine residue (1, 8, 10, 13, 22, 41, 45). Each mutant subunit was co-expressed in oocytes with two complementary wild-type ENaC subunits (δAsp527Cβγγ, δβN521Cγγγ, and δβN530CγγENaC). For unknown reasons, no channel function was observed in experiments with mutant subunits δAsp527C or γN530C (data not shown). In contrast, co-expression of δβN521C with wild-type δ- and γ-subunits (δβN521CγγENaC) resulted in measurable ENaC currents. Moreover, in oocytes expressing δβN521CγENaC, application of MTSET acutely and irreversibly increased ENaC currents (Fig. 6, B and D). This stimulatory effect of MTSET was similar to that observed with the δβS520C mutation (Fig. 6, C and D), which is consistent with previous studies (22). This indicates that both βAsn521 and βSer520 are accessible to MTSET when mutated to cysteine and form part of the degenerin region in the δβγ-configuration of ENaC.

Next, we tested whether the substitution of βAsn521 by cysteine modulates the stimulatory effect of bile acids on δβγENaC. As shown in Fig. 7A, application of CDCA to control oocytes expressing δβγENaC without a mutation resulted in a more than 2-fold increase of ENaC-mediated currents consistent with the findings shown in Fig. 1. Subsequent application of chymotrypsin (2 μg/ml) in the presence of CDCA did not...

FIGURE 6. MTSET activates mutant channels with cysteine residues in the degenerin region but not wild-type δβγENaC. A–C, representative whole-cell current traces of oocytes expressing wild-type (δβγ) or a mutant ENaC (δβN521Cγ or δβS520Cγ). D, normalized amiloride-sensitive current values (I_{amil/MTSET}/I_{amil/initial}) obtained from similar experiments as shown in A–C (mean ± S.E. and individual data points; N = 2; n = 12; *** p < 0.001; one-way ANOVA with Bonferroni post hoc test). Amiloride (Ami, 100 μM) and MTSET (1 mM) were present in the bath solution as indicated by corresponding bars.
cause a further current increase. We have previously shown that chymotrypsin in this concentration maximally activates ENaC by proteolytic cleavage, increasing channel P_o from about 0.5 to almost 1 consistent with a 2-fold increase of ENaC-mediated whole-cell currents (22). We confirmed in the present study that chymotrypsin alone caused a 2-fold increase of ENaC-mediated whole-cell currents (data not shown) similar to the effect observed with CDCA alone or with CDCA in combination with chymotrypsin. Thus, our findings suggest that both chymotrypsin and CDCA can increase the P_o of wild-type ENaC from about 0.5 to almost 1. Importantly, substitution of Asn521 by cysteine ($\Delta\beta_521C\gamma\gamma ENaC$) reduced the stimulatory effect of CDCA by about 50%. Subsequent application of chymotrypsin to $\Delta\beta_521C\gamma\gamma ENaC$ resulted in an additional stimulatory effect (Fig. 7, B and I). These findings indicate that the $\Delta\beta_521C$ mutation partially prevents the stimulatory interaction of CDCA with the channel, whereas proteolytic channel activation is preserved.

The significant inhibitory effect of the $\Delta\beta_521C$ mutation on ENaC stimulation by CDCA was confirmed by regression analysis of normalized current data (Fig. 8A) taken from similar experiments as shown in Fig. 7, A and B. This analysis demonstrates that ENaC currents measured in the presence of CDCA are proportional to those measured in the presence of both CDCA and chymotrypsin. Importantly, the proportionality coefficient was close to 1 for the wild-type channel (0.94 ± 0.01; $N = 3; n = 38$), confirming that chymotrypsin has no additional stimulatory effect on $\Delta\beta_521C\gamma\gamma ENaC$ after channel activation by CDCA. In contrast, the proportionality coefficient for $\Delta\beta_521C\gamma\gamma ENaC$ was significantly smaller (0.48 ± 0.01; $p < 0.001$, n.s., not significant; repeated measures two-way ANOVA with Bonferroni post hoc test).

Next, we tested whether substitution of Asn521 by other amino acids also affected the stimulatory effects of bile acids. Substituting Asn521 by alanine appeared to decrease basal P_o, $\Delta\beta_521D\gamma\gamma ENaC$.
Activation of Human ENaC by Bile Acids

A

![Graph showing the effect of bile acids on ENaC]

B

![Graph showing the effect of bile acids on ENaC]

because the maximal current reached in the presence of CDCA and chymotrypsin was almost 6-fold larger than the baseline current (Fig. 7C). Under the assumption that the mutant channel reaches a P_o of almost 1 in the presence of CDCA and chymotrypsin, it can be concluded that the baseline P_o of the channel containing the βN521A mutation is considerably lower than that of wild-type $\delta\beta\gamma$ENaC. This conclusion is consistent with the finding that basal I_{basal} in oocytes expressing $\delta\beta_{N521A}$γENaC was significantly lower than that of $\delta\beta\gamma$ENaC (0.28 ± 0.03 μA, n = 33 versus 0.84 ± 0.08 μA, n = 20, N = 2; p < 0.01). The lower initial P_o of $\delta\beta_{N521A}$γENaC could explain why the relative stimulatory effect of CDCA on the mutant channel was larger than that on the wild-type channel (Fig. 7I). Importantly, the stimulation achieved by CDCA did not reach the level obtained by subsequent exposure to chymotrypsin. Thus, similar to the βN521C mutation, the βN521A mutation also resulted in a reduced stimulatory effect of CDCA on ENaC in the $\delta\beta\gamma$-configuration (Fig. 8B). In contrast, the mutant channel $\delta\beta_{N521S}$γENaC behaved like the wild-type channel (Figs. 7, D and I, and 8B), and basal I_{basal} of $\delta\beta_{N521S}$γENaC was similar to that of $\delta\beta\gamma$ENaC in matched oocytes (0.81 ± 0.10 μA, n = 24 versus 0.84 ± 0.08 μA, n = 20, N = 2; n.s.), arguing against a nonspecific effect of mutating βAsn521. Furthermore, substitution of βAsn521 by aspartate (βN521D) resulted in a large reduction of the stimulatory effect of both CDCA and chymotrypsin (Fig. 7, E and I). The decreased responsiveness of this mutant channel to two different stimuli suggests that introducing a negative charge at this site increased baseline P_o close to 1. This conclusion is consistent with the finding that basal I_{basal} in oocytes expressing $\delta\beta_{N521D}$γENaC was significantly larger than in matched oocytes expressing wild-type $\delta\beta\gamma$ENaC (2.04 ± 0.20 μA, n = 23 versus 0.84 ± 0.08 μA, n = 20, N = 2; p < 0.001). In addition, we introduced a cysteine residue in the neighboring position (δβN520CγENaC). The mutant $\delta\beta_{N520C}$γENaC behaved like the wild-type channel in response to CDCA (Figs. 7, F and I, and 8B), supporting the specific functional importance of the position βAsn521 for the interaction of bile acids with the channel in the $\delta\beta\gamma$-configuration. This interaction may be only partially prevented by mutating βAsn521 to cysteine or alanine, which may explain the incomplete inhibition of the CDCA effect by these mutations. Alternatively, the incomplete inhibition may be due to an interaction of CDCA with additional sites. Candidate sites in the δ- and γ-subunits are δAla527 and γAsn530, respectively, which correspond to βAsn521 in the β-subunit. As stated above, no channel function was observed when δAla527 or γAsn530 were mutated to cysteine. In contrast, functional channel expression was preserved when mutating δAla527 and γAsn530 to aspartagine and alanine, respectively. However, in oocytes expressing δA527N- or δβγN530AENaC, the stimulatory effect of CDCA was similar to that observed in oocytes expressing wild-type δβγENaC, and an additional stimulation by chymotrypsin was also absent (Figs. 7, G–I, and 8B). These findings do not support the hypothesis that δAla527 or γAsn530 contribute to the functional interaction of bile acids with the channel. However, this possibility and the existence of additional interaction sites cannot be ruled out.

Substitution of Asparagine Residue βAsn521 by Alanine Decreases the Relative Stimulatory Effect of t-DCA on $\alpha\beta\gamma$ENaC—We wondered whether βAsn521 also plays a role in bile acid-mediated activation of $\alpha\beta\gamma$ENaC. Co-expression of the βN521A and βN521S with wild-type α- and γ-subunits resulted in measurable ENaC currents, whereas in this configuration, no functional channels were detected with the βN521C subunit. First inspection, the stimulatory effect of t-DCA on $\alpha\beta_{N521A}\gamma$ENaC appeared to be similar to that on wild-type $\alpha\beta\gamma$ENaC (Fig. 9). However, subsequent application of chymotrypsin in the presence of t-DCA revealed a larger additional increase of $\alpha\beta_{N521A}$γENaC currents when compared with that of wild-type $\alpha\beta\gamma$ENaC currents (Fig. 9, B and C). Thus, the increased stimulatory effect of chymotrypsin on $\alpha\beta_{N521A}$γENaC after pre-stimulation with t-DCA may be interpreted as a reduced relative stimulatory effect of t-DCA on the mutant channel when compared with its effect on the wild-type.
Activation of Human ENaC by Bile Acids

In summary, these findings support the concept that the βAsn^{521} residue in the degenerin region is involved in mediating the stimulatory effect of bile acids on αβγENaC as well as on δβγENaC.

Discussion

In this study, we demonstrated that physiologically relevant bile acids activate human ENaC in the αβγ- and δβγ-configurations. Moreover, we found that substitution of a single amino acid residue within the degenerin region of βENaC (Asn^{521}) significantly reduced this stimulatory effect. This indicates that the degenerin region is critical for the functional interaction of bile acids with ENaC.

To study the mechanism by which bile acids stimulate human ENaC activity, we used outside-out patch clamp recordings. We could demonstrate that t-DCA stimulated human αβγENaC by increasing single-channel P_o without recruiting additional near-silent channels in the patch. Our findings confirm recent results reported for rat αβγENaC (34). In outside-out patches, baseline P_o of ββγENaC was close to 1 and therefore could not be further stimulated by CDCA. The reason for this high baseline P_o of ββγENaC in our patch clamp recordings is presently unknown but is in good agreement with previous findings (22). Importantly, our whole-cell recordings demonstrated that δβγENaC was activated by bile acids to a similar extent as by chymotrypsin, which is known to increase P_o of δβγENaC to about 1 (22). Thus, our findings suggest that the stimulatory effect of bile acids on ENaC in the δβγ-configuration is also mediated by an increase in single-channel P_o.

The increase of ENaC P_o may be caused by direct interaction of bile acids with a specific binding site of the channel or by changing the plasma membrane properties, thereby modifying the interaction of the channel protein with membrane lipids. Changes in physical properties of the plasma membrane, such as plasma membrane thickness, intrinsic monolayer curvature, or elastic properties of the lipid bilayer, are known to regulate various membrane proteins including ion channels (46). Indeed, it has been proposed that activation of rat bile acid-sensitive ion channel by bile acids is likely to be caused by an alteration of the membrane environment (47). Interestingly, a significant portion of ENaC has been reported to be associated with lipid rafts, which are thought to be important for channel function and regulation (48–51). In model lipid systems such as liposomes (68) or giant plasma membrane vesicles (52), bile acids bind more efficiently to non-raft (lipid-disordered) than to raft (ordered) membrane fractions. Thus, the ability of bile acids to modify the lipid environment of ENaC localized in lipid rafts may be limited. However, at present, the possibility that bile acids modulate ENaC activity indirectly by modifying the properties of the plasma membrane in the vicinity of the channel cannot be ruled out.

Alternatively, bile acids may interact directly with the channel protein through specific binding sites. Modification of protein function by bile acid binding to specific sites is a known phenomenon. The list of examples includes the specific nuclear receptor farnesoid X receptor (FXR), G protein-coupled receptor TGR5, bile salt export pump (BSEP), and Na^+ /taurocholate co-transporting polypeptide (NTCP) (53). We demonstrated

FIGURE 9. Substitution of asparagine residue βAsn^{521} by alanine decreases the relative stimulatory effect of t-DCA on αβγENaC. A and B, representative whole-cell current traces of oocytes expressing wild-type (αβγ) or mutant ENaC (αβN521γ). Amiloride (Ami, 2 μM), t-DCA (250 μM), and chymotrypsin (Chym, 2 μg × ml⁻¹) were present in bath solution as indicated by corresponding bars. Dashed lines distinguish the stimulatory effect of t-DCA from that of chymotrypsin. C, normalized amiloride-sensitive current values I/Ami (t-DCA or t-DCA + Chym/Ami initial) obtained from similar experiments as shown in A and B (individual data points belonging to the same experiment are connected with solid lines, N = 3–18 ≤ n ≤ 20; ***, p < 0.001; unpaired ratio t test). D, linear regression coefficients (k) were calculated in the same way as illustrated in Fig. 8A in oocytes expressing wild-type αβγENaC (αβγ) or different αβγENaC mutants: βN521A (αβN521Aγ), βN521S (αβN521Sγ), αN520A (αN520Aβγ), and γN530A (αβγN530A) ENaC (k ≤ S.E.; N = 2–3; 18 ≤ n ≤ 20; ***, p < 0.001, *, p < 0.05 when compared with wild-type αβγENaC (αβγ); n.s., not significantly different when compared with wild-type αβγENaC (αβγ); one-way ANOVA with Bonferroni post hoc test).
that ENaC in the $\alpha\beta\gamma$-configuration is activated by tauro-conjugated bile acids, whereas application of non-conjugated CA and DCA only moderately stimulated $\alpha\beta\gamma$ENaC and CDCA even had an inhibitory effect. Thus, slight differences in the chemical structure of bile acids are sufficient to modulate the effect of bile acids on $\alpha\beta\gamma$ENaC. This favors the interpretation that bile acids interact with specific binding sites of the channel protein, which may have a preference for certain types of bile acids. Based on the reported co-crystallization of the detergent maltoside within the degenerin region of ASIC1 (3), we hypothesized that bile acids may interact with the degenerin region of ENaC. Our findings, that maltoside mimicked the effect of bile acids on ENaC and that mutations in the degenerin region (βN521C and βN521A) significantly reduced the stimulatory effect of bile acids on ENaC, strongly support this hypothesis.

The discovery of the functional importance of the degenerin site for channel gating was initially made in the context of identifying MEC-4 and DEG-1 mutations, which cause neurodegeneration in Caenorhabditis elegans (12, 14, 15). The introduction of bulky amino acid residues to homologous sites in other ENaC/degenerin channels mimics the gain-of-function effect of naturally occurring mutations and results in hyperactivity of the mutant channels (13, 37, 38, 54, 55). The gain-of-function effect of degenerin mutations on ENaC can be reproduced by introducing a cysteine residue at the degenerin site of the β-subunit. Subsequent covalent modification of this cysteine residue by sulfhydryl reagents, e.g. MTSET, activates the mutant channel and has been used as a tool to experimentally increase ENaC P_o close to 1 (1, 10, 13, 41). Under these conditions, MTSET increases P_o of active $\alpha\beta\gamma$ENaC without recruiting additional near-silent channels (41). Moreover, the stimulatory effect of MTSET on P_o is accompanied by a small reduction in the single-channel current amplitude (1, 10, 13). Interestingly, these effects of MTSET are similar to the bile acid effects on ENaC observed in the present study. In the light of these findings, it is tempting to speculate that MTSET and bile acids share a similar mechanism of action. Thus, binding of bile acids to the degenerin site may stabilize the open state of the channel by inducing a conformational change in the outer vestibule of ENaC, mimicking the effect of covalent modification of the degenerin site by MTSET. The concomitant small reduction of the single-channel current amplitude is consistent with the interpretation that bile acids bind to a region in close proximity to the channel pore. As discussed above, we observed some differential effects of bile acids on ENaC function in the $\alpha\beta\gamma$- versus the $\delta\beta\gamma$-configuration of the channel. These findings may be explained by subtle structural differences in the degenerin regions of $\alpha\beta\gamma$ versus $\delta\beta\gamma$ENaC. However, at present this remains a speculation, because a crystal structure of ENaC would be needed to analyze this further.

It has been proposed that bile acids may play a role in ENaC regulation under physiological and pathophysiological conditions. For example, $\alpha\beta\gamma$ENaC is expressed in human and mouse cholangiocytes (56), indicating that bile acids may be physiologically relevant modulators of ENaC function in bile ducts. Moreover, δENaC is expressed abundantly in different brain regions (26, 27, 57), and CDCA may also be accumulated or locally produced in the brain (58). Thus, it is conceivable that CDCA can affect $\delta\beta\gamma$ENaC in the brain. Our finding that bile acids and the detergent maltoside have similar effects on ENaC raises the possibility that other endogenous amphiphilic substances may modulate ENaC activity in a similar way. Such endogenous substances, capable of binding to the degenerin region of the channel, may act as local modulators of ENaC function in a tissue-specific manner, but they remain to be identified. In conclusion, our results highlight the potential role of the degenerin region as a regulatory site involved in the functional interaction of bile acids and possibly other naturally occurring amphiphilic substances with ENaC.

Experimental Procedures

Materials—The sulfhydryl reagent MTSET was obtained from Biotium (Hayward, CA). Amiloride hydrochloride, sodium chenodeoxycholate and tauro-chenodeoxycholate, sodium deoxycholate and tauro-deoxycholate, sodium taurocholate and tauro-cholate, and α-chymotrypsin type II from bovine pancreas were purchased from Sigma-Aldrich (Taufkirchen, Germany). n-Dodecyl-β-d-maltoside was obtained from Thermo Fisher.

Plasmids—Full-length cDNAs for human α-, β-, and γENaC and for the short isoform of δENaC were kindly provided by H. Cuppens (Leuven, Belgium) and by R. Waldmann (Valbonne, France), respectively. They were subcloned into the pTLN vector (59). Linearized plasmids were used as templates for cRNA synthesis using T7 RNA polymerases (mMESSAGE mMACHINE, Ambion, Austin, TX). Mutants in which critical residues in the degenerin region of α-, β-, γ-, and δENaC were individually replaced by cysteine, alanine, serine, aspartate, or asparagine were generated by site-directed mutagenesis (QuikChange II site-directed mutagenesis kit (Stratagene, La Jolla, CA)). Sequences were confirmed by sequence analysis (LGC Genomics, Berlin, Germany).

Isolation of Oocytes and Two-electrode Voltage Clamp Experiments—Defolliculated stage V-VI oocytes were obtained from ovarian lobes of adult female X. laevis in accordance with the principles of German legislation, with approval by the animal welfare officer for the University of Erlangen-Nürnberg, and under the governance of the state veterinary health inspectorate. Animals were anesthetized in 0.2% ethyl 3-aminobenzoate methanesulfonate (MS-222) (Sigma), and ovarian lobes were obtained by a small abdominal incision. Isolation of oocytes and two-electrode voltage clamp experiments were performed essentially as described previously (22, 45, 60–63). Oocytes were injected with cRNA using the same amount of cRNA per ENaC subunit per oocyte in the range of 0.1 to 5 ng. Injected oocytes were incubated in ND96 solution (in mM: 96 NaCl, 2 KCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 5 HEPES, pH 7.4, with Tris) supplemented with 100 units/ml sodium penicillin and 100 μg/ml streptomycin sulfate. Unless stated otherwise, oocytes were studied 48 h after cRNA injection. I_{ON} were determined by subtracting the current values recorded in the presence of amiloride (2 and 100 μM for $\alpha\beta\gamma$ENaC- and $\delta\beta\gamma$ENaC-expressing oocytes, respectively) from those recorded in the absence of amiloride.

Single-channel Recordings in Outside-out Patches—Oocytes injected with $\alpha\beta\gamma$ENaC or $\delta\beta\gamma$ENaC cRNA were stored in
ND96 solution. Single-channel recordings in outside-out membrane patches of ENaC-expressing oocytes were performed 48 h after cRNA injection essentially as described previously (35, 41, 45) using conventional patch clamp technique. Patch pipettes were pulled from borosilicate glass capillaries and had a tip diameter of about 1–1.5 μm after fire polishing. Pipettes were filled with potassium gluconate pipette solution (in mM: 90 potassium gluconate, 5 NaCl, 2 Mg-ATP, 2 EGTA, and 10 HEPES, pH 7.2, with Tris). Seals were routinely formed in a low sodium NMDG-Cl bath solution (in mM: 95 NMDG-Cl, 1 NaCl, 4 KCl, 1 MgCl₂, 1 CaCl₂, 10 HEPES, 7.4 pH, with Tris). In this bath solution, the pipette resistance averaged about 7 megarhos. After seal formation, the NMDG-Cl solution was switched to a NaCl bath solution in which NMDG-Cl (95 mM) was replaced by NaCl (95 mM). For continuous current recordings, the holding potential was set to −70 mV. Using a 3 M KCl flowing boundary electrode, the liquid junction potential occurring at the pipette/NaCl bath junction was measured to be 12 mV (bath-positive) (35). Thus, at a holding potential of −70 mV, the effective trans-patch potential was −82 mV. This value is close to the calculated equilibrium potential of CI⁻ (E_cl = −77.4 mV) and K⁺ (E_K = −79.4 mV) under our experimental conditions. Experiments were performed at room temperature (23 °C). Single-channel current data were initially filtered at 1.25 kHz and sampled at 5 kHz. The current traces were re-filtered at 250 Hz to resolve the single-channel current amplitude (i) and channel activity. The latter was derived from binned amplitude histograms as the product N_p,i (35, 41, 45, 64). The current level at which all channels are closed was determined in the presence of 2 μM amiloride for αβγENaC and of 10 μM amiloride for δβγENaC. The apparent number of active channels (apparent N) in a patch was determined by visual inspection of the current traces. Single-channel data were analyzed using the program Nest-o-Patch written by Dr. V. Nesterov (Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany).

Statistical Methods—Data are presented as mean ± S.E., individual data points, and bar diagrams as appropriate. Statistical significance was assessed by the appropriate version of ANOVA (with Bonferroni post hoc test) or Student’s t test. N indicates the number of different batches of oocytes, and n indicates the number of individual oocytes studied. Statistical and regression analysis was performed using GraphPad Prism 5.04.

Author Contributions—A. I. and A. D. performed the experiments, analyzed the data, and prepared the figures. A. L., A. D., C. K., and S. H. designed the study, interpreted the data and wrote the paper. All authors approved the final version of the manuscript.

Acknowledgments—We thank Prof. Dr. Heinrich Sticht (Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany) for helpful discussions and valuable comments. The expert technical assistance of Ralf Rinke is gratefully acknowledged.

References
1. Kellenberger, S., Gautschi, I., and Schild, L. (2002) An external site controls closing of the epithelial Na⁺ channel ENaC. J. Physiol. 543, 413–424
2. Canessa, C. M. (2007) Structural biology: unexpected opening. Nature 449, 293–294
3. Fasti, J., Furukawa, H., Gonzales, E. B., and Gouaux, E. (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323
4. Stockand, J. D., Staruschenko, A., Pochynyuk, O., Booth, R. E., and Silverthorn, D. U. (2008) Insight toward epithelial Na⁺ channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60, 620–628
5. Stewart, A. P., Haerteis, S., Diakov, A., Korbmacher, C., and Edwards, J. M. (2011) Atomic force microscopy reveals the architecture of the epithelial sodium channel (ENaC). J. Biol. Chem. 286, 31944–31952
6. Kellenberger, S., Gautschi, I., and Schild, L. (1999) A single point mutation in the pore region of the epithelial Na⁺ channel changes ion selectivity by modifying molecular sieving. Proc. Natl. Acad. Sci. U.S.A. 96, 4170–4175
7. Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E., and Schild, L. (1999) On the molecular basis of ion permeation in the epithelial Na⁺ channel. J. Gen. Physiol. 114, 13–30
8. Snyder, P. M., Olson, D. R., and Boucher, D. B. (1999) A pore segment in DEG/ENaC Na⁺ channels. J. Biol. Chem. 274, 28484–28490
9. Kellenberger, S., Auberson, M., Gautschi, I., Schneeberger, E., and Schild, L. (2001) Permeability properties of ENaC selectivity filter mutants. J. Gen. Physiol. 118, 679–692
10. Sheng, S., Li, J., McNulty, K. A., Kieber-Emmons, T., and Kleyman, T. R. (2001) Epithelial sodium channel pore region. structure and role in gating. J. Biol. Chem. 276, 1326–1334
11. Schild, L., Schneeberger, E., Gautschi, I., and Firsov, D. (1997) Identification of amino acid residues in the α, β, and γ subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J. Gen. Physiol. 109, 15–26
12. Chalfie, M., and Wolinsky, E. (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345, 410–416
13. Snyder, P. M., Boucher, D. B., and Olson, D. R. (2000) Gating induces a conformational change in the outer vestibule of ENaC. J. Gen. Physiol. 116, 781–790
14. Tavernarakis, N., and Driscoll, M. (1997) Molecular modeling of mecha-notransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59, 659–689
15. Driscoll, M., and Chalfie, M. (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593
16. Garty, H., and Palmer, L. G. (1997) Epithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77, 359–396
17. Alvarez de la Rosa, D., Canessa, C. M., Yufe, G. K., and Zhang, P. (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62, 573–594
18. Rossier, B. C., Pradervand, S., Schild, L., and Hummeler, E. (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu. Rev. Physiol. 64, 877–897
19. Kellenberger, S., and Schild, L. (2002) Epithelial sodium channel/degen-erin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767
20. Waldmann, R., Champigny, G., Bassilana, F., Voilley, N., and Lazdunski, M. (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na⁺ channel. J. Biol. Chem. 270, 27411–27414
21. Ji, H. L., and Benos, D. J. (2004) Degenerin sites mediate proton activation of δβγ-epithelial sodium channel. J. Biol. Chem. 279, 26939–26947
22. Haerteis, S., Krueger, B., Korbmacher, C., and Rauh, R. (2009) The δ-subunit of the epithelial sodium channel (ENaC) enhances channel activity and alters protoporey ENaC activation. J. Biol. Chem. 284, 29024–29040
23. Yamamura, H., Ugawa, S., Ueda, T., Nagao, M., and Shimada, S. (2004) Capsazepine is a novel activator of the δ subunit of the human epithelial Na⁺ channel. J. Biol. Chem. 279, 44483–44489
Activation of Human ENaC by Bile Acids

24. Yamamura, H., Ugawa, S., Ueda, T., Nagao, M., and Shimada, S. (2005)
IcIlIn activates the β-subunit of the human epithelial Na⁺ channel. Mol.
Pharmacol. 68, 1142–1147

25. Yamamura, H., Ugawa, S., Ueda, T., Nagao, M., and Shimada, S. (2008)
Epithelial Na⁺ channel β subunit mediates acid-induced ATP release in
the human skin. Biochem. Biophys. Res. Commun. 373, 155–158

26. Giraldez, T., Afonso-Oramas, D., Cruz-Muros, I., Garcia-Marín, V., Pagel,
P., González-Hernández, T., and Alvarez de la Rosa, D. (2007) Cloning
and functional expression of a novel epithelial sodium channel β subunit iso-
form differentially expressed in neurons of the human and monkey telen-
cephalon. J. Neurochem. 102, 1304–1315

27. Giraldez, T., Domínguez, J., and Alvarez de la Rosa, D. (2013) ENaC in the
brain: future perspectives and pharmacological implications. Curr. Mol.
Pharmacol. 6, 44–49

28. Loffing, J., and Korbmacher, C. (2009) Regulated sodium transport in
the renal connecting tubule (CNT) via the epithelial sodium channel (EnaC).
Pflügers Arch. 458, 111–135

29. Rossier, B. C. (2014) Epithelial sodium channel (ENaC) and the control of
blood pressure. Curr. Opin. Pharmacol. 15, 33–46

30. Kellenberger, S., and Schild, L. (2015) International Union of Basic and
Clinical Pharmacology. XCI. Structure, function, and pharmacology of
acid-sensing ion channels and the epithelial Na⁺ channel. Pharmacol. Rev.
67, 1–35

31. Haerteis, S., Krappitz, M., Diakov, A., Krappitz, A., Rauh, R., and Korbm-
acher, C. (2012) Plasmin and chymotrypsin have distinct preferences for
channel activating cleavage sites in the γ-subunit of the human epithelial
sodium channel. J. Gen. Physiol. 140, 375–389

32. Collier, D. M., and Snyder, P. M. (2009) Extracellular protons regulate
human ENaC by modulating Na⁺ self-inhibition. J. Biol. Chem. 284,
792–798

33. Snyder, P. M. (2002) The epithelial Na⁺ channel: cell surface insertion and
retrieval in Na⁺ homeostasis and hypertension. Endocr. Rev. 23, 258–275

34. Wiemuth, D., Lefèvre, C. M., Heidtmann, H., and Grünner, S. (2014) Bile
açides increase the activity of the epithelial Na⁺ channel. Pflügers Arch.
466, 1725–1733

35. Lefèvre, C. M., Diakov, A., Haerteis, S., Korbmacher, C., Grünner, S.,
and Wiemuth, D. (2014) Pharmacological and electrophysiological character-
ization of the human bile acid-sensitive ion channel (bASIC). Pflügers Arch.
466, 253–263

36. Wiemuth, D., Sahin, H., Falkenburger, B. H., Lefèvre, C. M., Wasmuth,
H. E., and Grünner, S. (2012) B ASIC—a bile acid-sensitive ion channel
highly expressed in bile ducts. FASEB J. 26, 4122–4130

37. Schaefer, L., Sakai, H., Mattei, M. G., and Lazdunski, M. (1996) The human
dermegren DMEG, an amiloride-sensitive neuronal cation channel,
is localized on chromosome 17q11.2–17q12 close to the microsatellite
D17S798. Genomics 37, 269–270

38. Adams, C. M., Snyder, P. M., Price, M. P., and Welsh, M. J. (1998) Protons
activate brain Na⁺ channel 1 by inducing a conformational change that
exposes a residue associated with neurodegeneration. J. Biol. Chem. 273,
30204–30207

39. Li, Q., Krege, C., Bugde, A., Lamphere, M., Park, Y. J., and Feranchak, A. P.
(2016) Regulation of mesosensitive biliary epithelial transport by the
epithelial Na⁺ channel. Hepatology 63, 538–549

40. Wensch, D., Miranda, P., Afonso-Oramas, D., Althaus, M., Castro-Hernán-
dez, J., Domínguez, J., Morty, R. E., Claus, W., González-Hernández, T.,
Alvarez de la Rosa, D., and Giraldez, T. (2010) The neuronal-specific
gene regulates δ-epithelial Na⁺ channel independently of PY
motifs and couples it to phospholipase C signaling. Am. J. Physiol. Cell
Physiol. 299, C779–C790

41. Mano, N., Sato, Y., Nagata, M., Goto, T., and Goto, J. (2004) Bicarbonate-
transport NA channels with novel properties. Proc. Natl. Acad. Sci. U.S.A.
93, 13362–13366

42. Diakov, A., Nesterov, V., Mokrushina, M., Rauh, R., and Korbmacher, C.
(2010) Protein kinase B (PKB) stimulates the epithelial sodium channel
(ENaC) heterologously expressed in Xenopus laevis oocytes by two dis-
tinct mechanisms. Cell Physiol. Biochem. 26, 913–924

43. Haerteis, S., Krappitz, A., Krappitz, M., Murphy, J. E., Bertog, M., Krueger,
Nacken, R., Chung, H., Hollenberg, M. D., Knecht, W., Bunnell, N. W.,
and Korbmacher, C. (2014) Proteolytic activation of the human epithelial
sodium channel by trypsin IV and trypsin I involves distinct cleavage sites.
J. Biol. Chem. 289, 19067–19078

44. Haerteis, S., Schaal, D., Brahuer, F., Brüschke, S., Schneider, H., Rauh, R.,
Sticht, H., Rösch, P., Schwarzinger, S., and Korbmacher, C. (2012) An inhibitory
peptide derived from the α-subunit of the epithelial sodium channel
(ENaC) shows a helical conformation. Cell Physiol. Biochem. 29,
761–774
63. Haerteis, S., Krappitz, M., Bertog, M., Krappitz, A., Baraznenok, V., Henderson, I., Lindström, E., Murphy, J. E., Bunnett, N. W., and Korbmacher, C. (2012) Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflügers Arch. 464, 353–365
64. Korbmacher, C., Volk, T., Segal, A. S., Boulpaep, E. L., and Frömter, E. (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membr. Biol. 146, 29–45
65. Ilyaskin, A., Haerteis, S., Korbmacher, C., and Diakov, A. (2014) Tauro-conjugated bile acids activate the human epithelial sodium channel in its αβγ subunit configuration. Acta Physiol. (Oxf.) 210, Suppl. 695, P344
66. Diakov, A., Ilyaskin, A., Korbmacher, C., and Haerteis, S. (2014) Replacing the α-subunit of the human epithelial sodium channel by the δ-subunit favours channel activation by unconjugated bile acids. Acta Physiol. (Oxf.) 210, Suppl. 695, OS1–06
67. Ilyaskin, A., Haerteis, S., Sticht, H., Korbmacher, C., and Diakov, A. (2015) Bile acids activate the human epithelial sodium channel probably by interacting with its degenerin site Acta Physiol. (Oxf.) 213, Suppl. 699, P80, OS1–08
68. Mello-Vieira, J., Sousa, T., Coutinho, A., Fedorov, A., Lucas, S. D., Moreira, R., Castro, R. E., Rodrigues, C. M., Prieto, M., and Fernandes F. (2013) Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. Biochim. Biophys. Acta 1828, 2152–2163