ON HOROWITZ AND SHELAH’S BOREL MAXIMAL EVENTUALLY DIFFERENT FAMILY

DAVID SCHRITTESSER

Abstract. We show there is a closed (in fact effectively closed, i.e., \(\Pi^0_1 \)) eventually different family (working in ZF or less).

1. Introduction

A. We call a set \(E \) an eventually different family (of functions from \(\mathbb{N} \) to \(\mathbb{N} \)) if and only if \(E \subseteq \mathbb{N}^\mathbb{N} \) and any two distinct \(f_0, f_1 \in E \) are eventually different, i.e., \(\{n \mid f_0(n) = f_1(n)\} \) is finite; such a family is called maximal if and only if it is maximal with respect to inclusion among eventually different families (we abbreviate maximal eventually different family by medf).

In [2] Horowitz and Shelah prove the following (working in ZF).

Theorem 1.1 ([2]). There is a \(\Delta^1_1 \) (i.e., effectively Borel) maximal eventually different family.

This was surprising as the analogous statement is false in many seemingly similar situations: e.g., infinite so-called mad families cannot be analytic [5] (see also [9]). In a more recent, related result [1] Horowitz and Shelah obtain a \(\Delta^1_1 \) maximal cofinitary group.

In this note we present a short and elementary proof of the following improvement of Theorem 1.1:

Theorem 1.2. There is a \(\Pi^0_1 \) (i.e., effectively closed) maximal eventually different family.

To prove this we first define an medf in a simpler manner than [2] (its defining formula will be \(\Sigma^0_3 \lor \Pi^0_3 \)). We then show that we can produce from any arithmetic medf a new medf whose definition contains one less existential quantifier. The main result follows.

Note: Theorem 1.2 was announced by Horowitz and Shelah without proof in [2]; the proof in the present paper was found by the author while studying their construction of a \(\Delta^1_1 \) medf in [2].

In a related paper [8] the present author presents a further simplification of the construction and positively answers the following question of Asger Törnquist [10]: Given \(F : \mathbb{N} \to \mathbb{N} \) such that \(\lim\inf_{n \to \infty} F(n) = \infty \), is there a Borel (or even compact) medf in the restricted space \(\mathcal{N}^*_F = \{g \in \mathbb{N}^\mathbb{N} \mid (\forall n \in \mathbb{N}) g(n) \leq F(n)\} \)?

2010 Mathematics Subject Classification. 03E15, 03E25, 03E05.

Key words and phrases. effectively closed, Borel, maximal eventually different family, maximal almost disjoint family.
B. We fix some notation and terminology (generally, our reference for notation is [3]). ‘∃\infty’ means ‘there are infinitely many...’ ^N\mathbb{N} means the set of functions from \mathbb{N} to \mathbb{N} and ^s<\mathbb{N}\mathbb{N} means the set of finite sequences from \mathbb{N}; we write h(s) for the length of s when s \in ^s<\mathbb{N}\mathbb{N}. For s, t \in ^n\mathbb{N}, s \prec t is the concatenation of s and t, i.e., the unique u \in ^{\text{lh}(s)+\text{lh}(t)}\mathbb{N} such that s \subseteq u and (\forall k < \text{lh}(t)) u(\text{lh}(s) + k) = t(k).

We write f_0 = \infty f_1 to mean that f_0 and f_1 are not eventually different (they are infinitely equal). Two sets A, B \subseteq \mathbb{N} are called almost disjoint if and only if A \cap B is finite, and an almost disjoint family is a set A \subseteq \mathcal{P}(\mathbb{N}) any two elements of which are almost disjoint.

Qualifications like ‘... is recursive (i.e., computable) in...’ are applied to subsets of \mathbf{H}(\omega), the set of hereditarily finite sets. Consult [7, 4, 3] for more on the (effective) Borel and projective hierarchies, i.e., on \Pi_1^0, \Pi_1^0(F), \Delta_1^0, ... sets.

All results in this paper can be derived in ZF (or in fact, in a not so strong subsystem of second order arithmetic).

C. This note is organized as follows. In Section 2 we make some motivating observations, leading to Lemma 2.5 which gives an abstract recipe for creating maximal eventually different families. We take the opportunity to give a rough sketch of the proof of Theorem 1.1 as given by Horowitz and Shelah in [2].

We then give a simpler construction instantiating the recipe from Lemma 2.5 and yielding a medf which is \Sigma_3^0 \lor \Pi_3^0 in Section 3. Lastly, we show how to get rid of all existential quantifiers in Section 3. This requires mangling the family, but the new family is still maximal eventually different.

Acknowledgements: The author gratefully acknowledges the generous support from the DNRF Niels Bohr Professorship of Lars Hesselholt.

2. The recipe

Definition 2.1. Fix a computable (i.e., \Delta_1^0) bijection n \mapsto s_n of \mathbb{N} with ^s<\mathbb{N}\mathbb{N} and write s \mapsto \# s for its inverse. Given f: \mathbb{N} \to \mathbb{N}, let e(f): \mathbb{N} \to \mathbb{N} be the function defined by

\[
e(f)(n) = \# f \downarrow n.
\]

Clearly \{e(f) \mid f \in ^N\mathbb{N}\} is an eventually different family. At first sight, it may seem a naive strategy to make it also maximal by varying the definition of e(f) so that it leaves f intact on some infinite set. But this is just how [2] succeeds.

Definition 2.2. Let f: \mathbb{N} \to \mathbb{N}.

A. Let B(f) = \{2n + 1 \mid s_n \subseteq f\}.

B. For a set B \subseteq \mathbb{N}, let \bar{e}(f, B): \mathbb{N} \to \mathbb{N} be the function defined by

\[
\bar{e}(f, B)(n) = \begin{cases} f(n) & \text{if } n \in B, \\ \# f \downarrow n & \text{if } n \notin B. \end{cases}
\]

Remark 2.3. Note for later that f is recursive in \bar{e}(f, B(f)) as \bar{e}(f, B(f)) \upharpoonright 2\mathbb{N} = e(f) \upharpoonright 2\mathbb{N}.

The family \mathcal{E}_0 = \{\bar{e}(f, B(f)) \mid f \in ^N\mathbb{N}\} is spanning, i.e., (\forall h \in ^N\mathbb{N})(\exists g \in \mathcal{F}) h = \infty g. Interestingly, \mathcal{E}_0 is also in some sense close to being eventually different: For if
\[\hat{e}(f, B(f))(n) = \hat{e}(f', B(f'))(n) \]

for infinitely many \(n \), almost all of these \(n \) must lie in \(B(f) \cup B(f') \) and hence as \(\{ B(f) \mid f \in \mathbb{N}^{\mathbb{N}} \} \) is an almost disjoint family,

\[(\exists \infty n \in B(f)) f(n) = e(f')(n) \]

or the same holds with \(f \) and \(f' \) switched.

The brilliant idea of Horowitz and Shelah is the following: Ensure maximality with respect to \(f \) which look like \(e(f') \) on an infinite set using \(e(f') \); restrict the use of \(\hat{e} \) to \(f \) which don’t look like they arise from \(e \) on some infinite subset of \(B(f) \) to avoid the situation described above. We make these ideas precise in the following definition and in Lemma 2.5 below.

Definition 2.4. Let a function \(f : \mathbb{N} \to \mathbb{N} \) and \(X \subseteq \mathbb{N} \) be given. We say \(f \) is \(\infty \)-coherent on \(X \) if and only if there is \(f' \in \mathbb{N}^{\mathbb{N}} \) and infinite \(X' \subseteq X \) such that \(f \upharpoonright X' = e(f') \upharpoonright X' \).

We can now give a general recipe for constructing a medf.

Lemma 2.5. Suppose that \(T \subseteq \mathbb{N}^{\mathbb{N}} \) and \(C : \mathbb{N}^{\mathbb{N}} \to \mathcal{P}(\mathbb{N}) \) is a function such that

(A) If \(f \notin T \), there is an infinite set \(X' \subseteq C(f) \) and \(f' \in \mathbb{N}^{\mathbb{N}} \) such that \(f \upharpoonright X' = e(f') \upharpoonright X' \); i.e., \(f \) is \(\infty \)-coherent on \(C(f) \).

(B) If \(f \in T \), for no \(f' \in \mathbb{N}^{\mathbb{N}} \) does \(f \) agree with \(e(f') \) on infinitely many points in \(C(f) \); i.e., \(f \) is not \(\infty \)-coherent on \(C(f) \).

(C) \(\{ C(f) \mid f \in T \} \) is an almost disjoint family.

Then

\[E = \{ \hat{e}(f, C(f)) \mid f \in T \} \cup \{ e(f) \mid f \notin T \} \]

is a maximal eventually different family.

Of course the challenge here is to define \(C \) and \(T \) so that \(E \) is \(\Delta^1_1 \); before we discuss this aspect, we prove the lemma.

For the sake of this proof it will be convenient to define the map \(\hat{e} : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \) as follows: For \(f \in \mathbb{N}^{\mathbb{N}} \) let \(\hat{e}(f) \) be the function defined by

\[\hat{e}(f) = \begin{cases} \hat{e}(f, C(f)) & \text{if } f \in T, \\ e(f) & \text{otherwise}. \end{cases} \] (1)

Clearly \(E = \{ \hat{e}(f) \mid f \in \mathbb{N}^{\mathbb{N}} \} \).

Proof of Lemma 2.5. To show \(E \) consists of pairwise eventually different functions, fix distinct \(g_0 \) and \(g_1 \) from \(E \) and suppose \(g_i = \hat{e}(f_i) \) for each \(i \in \{0, 1\} \). Clearly we can disregard the set

\[N = \{ n \in \mathbb{N} \mid g_0(n) = e(f_0)(n) \text{ and } g_1(n) = e(f_1)(n) \} \]

as \(g_0 \) and \(g_1 \) can only agree on finitely many such \(n \).

If \(n \notin N \) then it must be the case that for some \(i \in \{0, 1\} \), \(f_i \in T \) and \(n \in C(f_i) \); suppose \(i = 0 \) for simplicity. By (C) we may restrict our attention to \(C(f_0) \setminus C(f_1) \) where \(g_0 \) agrees with \(f_0 \) and \(g_1 \) agrees with \(e(f_1) \). But \(f_0 \) and \(e(f_1) \) can’t agree on an infinite subset of \(C(f_0) \setminus C(f_1) \) by (B).

It remains to show maximality. So let \(f : \mathbb{N} \to \mathbb{N} \) be given. If \(f \in T \) we have \(\hat{e}(f) \upharpoonright C(f) = f \upharpoonright C(f) \) and \(\hat{e}(f) \in E \) by definition.

If on the other hand \(f \notin T \) there is \(f' \in \mathbb{N}^{\mathbb{N}} \) such that \(e(f') \) agrees with \(f \) on an infinite subset of \(C(f) \). As \(\hat{e}(f') \in E \) it suffices to show \(f = \infty \hat{e}(f') \).
If \(f' \notin T \) as well this is clear as \(\hat{e}(f') = e(f') \). If on the contrary \(f' \in T \), we have \(f \neq f' \) and so \(C(f) \cap C(f') \) is finite by (C). So \(\hat{e}(f') \) agrees with \(e(f') \) for all but finitely many points in \(C(f) \) and hence agrees with \(f \) on infinitely many points. \(\square \)

Note that letting \(T = \{ f \in \mathbb{N} \mid f \) is not \(\infty \)-coherent on \(B(f) \} \) and \(C(f) = B(f) \) the requirements of Lemma 2.5 are trivially satisfied; but the resulting \(\mathcal{E} \) will not be Borel (only \(\Pi^1_1 \vee \Sigma^1_1 \)). On the other hand if \(T \) is \(\Delta^1_1 \) and \(C: \mathbb{N} \to \mathcal{P}(\mathbb{N}) \) is \(\Sigma^1_1 \), then \(\mathcal{E} \) is \(\Delta^1_1 \), and in fact it follows that \(\mathcal{E} \) is \(\Delta^1_1 \) in this case because\(^1\) it is a medf and so

\[
h \notin \mathcal{E} \iff (\exists g \in \mathbb{N}) h \neq g \wedge h \Rightarrow g \wedge g \in \mathcal{E}.
\]

(Of course the function \(C: \mathbb{N} \to \mathcal{P}(\mathbb{N}) \) is also automatically \(\Delta^1_1 \).) We may view the task at hand to be: find a reasonably effective process producing from a function \(f \) either a subset of \(B(f) \) where \(f \) agrees with some \(e(f') \) or a set \(C(f) \subseteq B(f) \) on which \(f \) can be seen effectively to not be \(\infty \)-coherent.

From this we can sketch what is arguably the core of Horowitz and Shelah’s construction from [2]. The present author has not verified whether their construction yields an arithmetic family.

Proof of Theorem 1.1. Given \(f: \mathbb{N} \to \mathbb{N} \) define a coloring of unordered pairs from \(\mathbb{N} \) as follows (supposing without loss of generality that \(k < k' \)):

\[
c(\{k, k'\}) = \begin{cases}
0 & \text{if } lh(s_f(k)) = k, \; lh(s_f(k')) = k', \; \text{and } s_f(k) \subseteq s_f(k'), \\
1 & \text{otherwise.}
\end{cases}
\]

Let \(T \) be such that for every \(f \in T \) there is an infinite set \(X \subseteq B(f) \) which is 1-homogeneous, i.e., \(c \) assigns the color 1 to every unordered pair from \(X \), and for every \(f \notin T \) there is an infinite 0-homogeneous \(X \subseteq B(f) \). Then (A) holds. For \(f \in T \) let \(C(f) \) be some infinite 1-homogeneous \(X \subseteq B(f) \); for \(f \notin T \) let \(C(f) = B(f) \). Then (B) and (C) hold by definition and by Lemma 2.5 \(\mathcal{E} \) is a medf.

By the proof of the Infinite Ramsey Theorem, the set \(T \) can be chosen to be \(\Delta^1_1 \) and the function \(C: \mathbb{N} \to \mathcal{P}(B(f)) \) can be chosen to be \(\Sigma^1_1 \). Thus \(\mathcal{E} \) as defined in Lemma 2.5 is \(\Delta^1_1 \). \(\square \)

In the next section, we essentially replace the appeal to the Infinite Ramsey Theorem by a simple instance of the law of excluded middle.

3. **A MAXIMALLY EVENTUALLY DIFFERENT FAMILY WITH A SIMPLE DEFINITION**

We now give a simpler construction of a family satisfying the requirements of Lemma 2.5.

Definition 3.1 (The medf \(\mathcal{E} \)).

A. Let \(f: \mathbb{N} \to \mathbb{N} \). Define a binary relation \(\prec_f \) on \(\mathbb{N} \) by

\[
m \prec_f m' \iff \left(\left(lh(s_f(m)) = m \right) \right) \wedge \left(\left(lh(s_f(m')) = m' \right) \wedge \left(\left(s_f(m) \not\subseteq s_f(m') \right) \right) \right)
\]

B. Let \(T \) be the set of \(f: \mathbb{N} \to \mathbb{N} \) such that

\[
(\forall m \in B(f))(\exists m \in B(f) \setminus m)(\forall m' \in B(f) \setminus m) \sim(m \prec_f m')
\]

We also say \(f \) is **tangled** to mean \(f \in T \).

\(^1\)In this context, the much more general Theorem 1.4.23 in [2] p. 15] deserves mention; compare also [3] 35.10, p. 285].
Lemma 3.2. The set \(f \) by (i) and (ii) above. For (A), suppose
\[
E = \{ f \mid f \in \mathbb{N}^\mathbb{N} \}
\]
where \(\hat{e}(f) \) is the function defined as in (I):
\[
\hat{e}(f) = \begin{cases}
\bar{e}(f, C(f)) & \text{if } f \in \mathcal{T}, \\
e(f) & \text{otherwise.}
\end{cases}
\]

We want to call the following to the readers attention:
(i) \(\{ C(f) \mid f \in \mathbb{N}^\mathbb{N} \} \) is an almost disjoint family (as \(C(f) \subseteq B(f) \) by definition).

(ii) When \(f \) is tangled, \(C(f) \) is an infinite set by (2) and for no \(f' \in \mathbb{N}^\mathbb{N} \) does \(f \)
agree with \(f' \) on infinitely many (or in fact, just two) points in \(C(f) \) — i.e.,
\(f \) is not \(\infty \)-coherent on \(C(f) \).

Lemma 3.3. The set \(E \) is a maximal eventually different family.

Proof. We show that Lemma 2.3 can be applied. Requirements (C) and (B) hold by (I) and (II) above. For (A), suppose \(f \) is not tangled, i.e.,
\[
(\exists n \in B(f))(\forall m \in B(f) \setminus n)(\exists m' \in B(f) \setminus m) m \prec_{f} m'.
\]

Let \(m_0 \) be the least witness to the leading existential quantifier above; by recursion let \(m_{i+1} \) be the least \(m' \) in \(B(f) \) above \(m \) such that \(m_i \prec_{f} m' \). Letting \(f' = \bigcup \{ s_{f(m)} \mid i \in \mathbb{N} \} \) yields a well-defined function in \(\mathbb{N}^\mathbb{N} \) such that \(f = \infty e(f') \), i.e., \(f \)
is \(\infty \)-coherent on \(C(f) \).

It is obvious that \(E \) is \(\Delta^1_1 \). We now show a stronger result.

Lemma 3.4. The set \(E \) is in the Boolean algebra generated by the \(\Sigma^0_3 \) sets in \(\mathbb{N}^\mathbb{N} \).

Proof. By construction \(g \in E \) if and only if the following holds of \(g \) (see Remark 2.3):
(I) \((\forall n \in \mathbb{N}) \) \(\text{lht}(s_g(2n)) = 2n \), and
(II) \((\forall n \in \mathbb{N})(\forall m \leq n) s_g(2m) \subseteq s_g(2n) \), and letting \(f = \bigcup_{n \in 2\mathbb{N}} s_g(2n) \).
(III) either the following three requirements hold:
(a) \(f \) is tangled and
(b) \((\forall n \in \mathbb{N}) n \in C(f) \Rightarrow g(n) = f(n) \) and
(c) \((\forall n \in \mathbb{N}) n \notin C(f) \Rightarrow g(n) = e(f)(n) \);
(IV) or both of the following hold:
(a) \(f \) is not tangled and
(b) \((\forall n \in \mathbb{N}) g(n) = e(f)(n) \).

As \(C(f) \) is \(\Pi^1_1(f) \) for \(f \in \mathcal{T} \) and \(\Pi^1_1 \) is \(\Pi^0_3(f) \), clearly \(\Pi^1_1 \) is \(\Pi^1_0(g, f) \). Likewise
(IV) is \(\Sigma^0_3(g, f) \). As \(f \) is recursive in \(g \), \(\Pi^1_1 \) can be expressed by a \(\Pi^0_3(g) \) formula and
(IV) can be expressed by a \(\Sigma^0_3(g) \) formula (substitute each expression of the form \(f(n) = m \) by \(s_g(2n+2)(n) = m \) and \(f \upharpoonright n \) by \(s_g(2n) \upharpoonright n \)).

4. MANGLING AWAY EXISTENTIAL QUANTIFIERS

We use the following lemma to reduce the complexity of the family \(E \).

Lemma 4.1. Let \(\xi < \omega_1 \). Suppose there is a \(\Pi^0_{\xi+2} \) maximal eventually different family. Then there is a \(\Pi^0_{\xi+1} \) maximal eventually different family.
Proof. Suppose
\[f \in \mathcal{E} \iff (\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) \Psi(n, m, f), \]
where \(\Psi(n, m, f) \) is \(\Pi^0_2 \). For each \(f \in \mathcal{E} \) let \(g_f : \mathbb{N} \to \mathbb{N} \) be the function such that for each \(n \in \mathbb{N} \), \(g_f(n) \) is the least \(m \) satisfying \(\Psi(n, m, f) \).

We construct a set \(\mathcal{E}^* \) of functions from \(\mathbb{N} \) to \(\mathbb{N} \) as follows. Given \(f \in \mathcal{E} \), let \(f^* : \mathbb{N} \to \mathbb{N} \) be the following function: for \(n \in \mathbb{N} \) and \(i \in \{0, 1\} \) let

\[f^*(2n + i) = \begin{cases} f(n) & \text{for } i = 0; \\ \#(f \upharpoonright n + 1 \setminus (g_f \upharpoonright n + 1)) & \text{for } i = 1. \end{cases} \]

It is straightforward to check that \(\mathcal{E}^* \) is a medf as every function will agree with an element of \(\mathcal{E}^* \) on infinitely many even numbers.

Lastly, \(\mathcal{E}^* \) is \(\Pi^0_{\xi + 1} \): Let \(\Psi'(n, m, h) \) denote the formula obtained from \(\Psi(n, m, f) \) by replacing each occurrence of \(f(m) = n \) by \(h(2m) = n \). Clearly \(\Psi' \) is \(\Pi^0_1 \).

Let \(S_2 \) denote the recursive set \(\{m \in \mathbb{N} \mid (\forall n \in \mathbb{N}) s_m \in ^{\mathbb{N}} \mathbb{N} \} \) and given \(m \in S_2 \), write \(f_m \) for \(s_m \upharpoonright h(2m) \) and \(g_m \) for the function \(t : n \to \mathbb{N} \) given by \(k \mapsto s_m(n + k) \). In other words, if \(m = \#(f \upharpoonright n + 1 \setminus (g_f \upharpoonright n + 1)) \) as above in the definition of \(f^* \), then \(f_m = f \upharpoonright n + 1 \) and \(g_m = g_f \upharpoonright n + 1 \). Clearly \(m \mapsto f_m \) and \(m \mapsto g_m \) are both recursive on \(S_2 \).

It is straightforward to check that \(h \in \mathcal{E}^* \) if and only if for every \(n \in \mathbb{N} \) all of the following hold:

(i) \(h(2n + 1) \in S_2 \land h(2n) = f_{h(2n + 1)}(n) \)
(ii) \(\Psi'(n, g_{h(2n + 1)}(n), h) \)
(iii) \((\forall m < g_{h(2n + 1)}(n)) \neg \Psi'(n, m, h) \).

Requirement (i) is \(\Delta^0_1(h) \); (ii) is \(\Pi^0_1(h) \) and (iii) is \(\Sigma^0_1(h) \). So \(\mathcal{E}^* \) is \(\Pi^0_{\xi + 1} \).

In fact (but we have no use for this) it is possible to carry out out a similar construction as the above for limit \(\xi \). This would give a second proof that there is a \(\Pi^0_3 \) medf based on the construction of any \(\Delta^1_1 \) medf regardless of its precise complexity, and a version of the above lemma.

Corollary 4.2. There is a \(\Pi^0_3 \) maximal eventually different family.

Proof. By Lemma [3] there is an arithmetic (in fact \(\Sigma^0_3 \lor \Pi^0_3 \)) medf so we obtain a \(\Pi^0_3 \) medf by the previous lemma. \(\square \)

References

[1] Haim Horowitz and Saharon Shelah, A Borel maximal cofinitary group, \(\text{arxiv:1610.01344[math.LO]} \) October 2016.
[2] \(\text{arxiv:1610.01344[math.LO]} \) May 2016.
[3] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
[4] Richard Mansfield and Galen Weitkamp, Recursive aspects of descriptive set theory, Oxford Logic Guides, vol. 11, The Clarendon Press, Oxford University Press, New York, 1985, with a chapter by Stephen Simpson. MR 786122
[5] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 0409107
[6] Ben Miller, An introduction to classical descriptive set theory, See http://www.logic.univie.ac.at/millerb45/notes/dst.pdf 2015.
[7] Yiannis N. Moschovakis, Descriptive set theory, second ed., Mathematical Surveys and Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009. MR 2526093
[8] David Schrittesser, Compactness of maximal eventually different families, arXiv:1704.04751[math.LO] April 2017.
[9] Asger Törnquist, Definability and almost disjoint families, arXiv:1503.07577[math.LO] March 2015.
[10] personal communication, February 2017.

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
E-mail address: david@logic.univie.ac.at