Effects of Abscisic Acid on ex vitro Acclimatization of Aronia arbutifolia (L.) Pers.

Wilfredo Colón-Guasp1, Terril A. Nell1, Michael E. Kane3, and James E. Barrett2
Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611

Additional index words. leaf carbon assimilation, micropropagation, nonstructural carbohydrates, woody plant

Abstract. The use of abscisic acid (ABA) as an in vitro prehardening treatment to enhance ex vitro acclimatization of Stage III Aronia arbutifolia plantlets was explored. Effects of ABA (0-4 mg·liter−1) pretreatment on ex vitro shoot growth, leaf carbon assimilation (LCA) and nonstructural carbohydrate content were evaluated during plantlet acclimatization under two photosynthetic photon flux (PPF) levels (450 and 650 µmol·m−2·s−1). Stage III plantlets rooted in the presence of ABA exhibited both shoot growth inhibition and transient negative LCA rates at time of transfer ex vitro. Regardless of treatment, maximum LCA rates were achieved by day 20 post-transplant. Pretreatment with ABA had no effect on stem or leaf starch content at time of transplant, however, leaf and stem soluble sugar content was higher in ABA-treated plantlets than controls. Further suppression of shoot growth and alteration in the pattern of stem starch utilization occurred at the higher irradiance level. These results indicate that ABA pretreatments provide no physiological advantage that would facilitate ex vitro acclimatization of Aronia plantlets.

The ultimate success of shoot culture (in vitro propagation) depends on the ability to transfer and reestablish vigorously growing plants from in vitro to ex vitro conditions. This involves acclimatizing or hardening-off plantlets to conditions of lower relative humidity and higher light levels. During the acclimatization process, tissue cultured plantlets undergo changes in both leaf anatomy (Capellades et al., 1990) and physiology (Grout and Millam, 1985), which confer the plants with a greater potential for survival ex vitro. Even when acclimatization procedures are followed, transplant survival can be low due to the inability of plantlets to maintain adequate water relations or fully transition from a mistrophic to a photautotrophic mode of nutrition (Grout and Aston; 1978, Wardle et al., 1983).

A composite of anatomical, morphological, and physiological features, characteristic of plants cultured in vitro under low light intensity and high relative humidity, contribute to the decreased survival of plantlets often observed immediately following transplanting. These features include reduction in leaf epicuticular wax deposition, abnormal stomate function, poorly developed stem to root vascularization, and limited photosynthetic competence (Brainard and Fuchigami, 1982; Preece and Sutter, 1991). The modifications in leaf development and photosynthetic competence that typically occur during ex vitro acclimatization appear to be inducible. In vitro culture of plantlets under conditions of higher light levels and lower relative humidity conditions induce anatomical modifications of foliar epicuticular wax, stomata, and epidermal cells similar to those produced on acclimatized greenhouse-grown plants (Capellades et al., 1990). However, the physiological mechanisms regulating acclimatization remain obscure.

Induction of similar changes in leaf developmental patterns following abscisic acid treatment in vivo (Zeevaart and Creelman, 1988) and in vitro (Jarret and Gawel, 1991; Kane and Albert, 1989) suggest a possible role of endogenous ABA in the acclimatization process. In a previous study (Colon et al., 1990) we reported that plantlets of the woody shrub Aronia arbutifolia (Rosaceae), produce leaves with morphological and anatomical features similar to greenhouse-grown plants when cultured in vitro in the presence of ABA. Conceivably, medium supplementation with ABA during microcutting rooting (Stage III) could serve as an in vitro prehardening treatment to prematurely induce developmental and physiological changes, which decrease water loss, increase photosynthetic capacity and thus increase the ability of the plantlet to survive ex vitro.

The consequence of ABA pretreatment in vitro on subsequent transpiration, nonstructural carbohydrate content, and leaf carbon assimilation rates (LCA) of rooted microcuttings during ex vitro acclimatization is unknown. Transient reductions in transpiration and photosynthesis have been reported for plants following ABA application in vivo (Arteca et al., 1985). In some cases, greater reductions in transpiration than net photosynthetic rate have been observed in ABA-treated plants (Blake et al., 1990). Where examined, sucrose/starch synthesis ratios are not significantly affected by ABA treatment in vivo (Sharkey et al., 1985). The objective of this study was to characterize the effects of ABA pretreatment in vitro on subsequent changes in shoot growth, LCA, and nonstructural carbohydrate content of A. arbutifolia plantlets during acclimatization.

Materials and Methods

Stage 1/11: Culture establishment and shoot multiplication. Stems with lateral buds of A. arbutifolia were cut from actively growing and sexually mature plants, divided into 15-mm lengths with two to three lateral buds and rinsed in tap water for 1 h. Lateral buds were surface sterilized by repeated immersion in 50% (v/v) ethanol for 1 min and then in 1.05% (v/v) sodium hypochlorite for 12 rein, followed by three 5-min rinses in sterile deionized water (Kane et al., 1991). The sterilized nodal explants were transferred to 25 × 150-mm culture tubes containing 15 ml of medium consisting of woody plant medium (WPM), salts and vitamins (Lloyd and McCown, 1980), 3% (w/v) sucrose, 2 mg·liter−1 N’-benzylaminopurtrine (BA) and solidified with 1.0% (w/v) TC agar (JRH Biosciences, Lenexa, Kan.). The medium pH was adjusted to 5.5 with 0.1 N KOH before autoclaving at 1.2 kg·cm−2 pressure for 20 min at 121 C. All cultures were placed under a 16-h photoperiod provided by cool-white fluorescent lamps at 45 µmol·m−2·s−1. Air temperature was maintained at 25 ± 2C.

Stock cultures were maintained by subdividing shoots (15 mm long bearing three axillary buds with attached subtending leaves)
and transferring them onto fresh WPM every 5 to 7 weeks.

Stage III: Microcutting rooting and treatments. Rooted microcuttings were prepared by cutting 5-week-old shoots into 10-mm stem segments consisting of two or three nodes. Fifteen microcuttings were transferred into 473-ml clear polypropylene culture vessels (Better Plastics, Kissimmee, Fla.) containing 100 ml of agar-solidified WPM supplemented with 2 mg·liter\(^{-1}\) of indole-3-butyric acid (IBA) but without BA. Synthetic ABA (90% mixed isomers, Sigma Chemical, St. Louis) was prepared as a concentrated aqueous stock solution and sterilized by Millipore filtration (pore size: 0.22 µm) before being added to molten (40°C) sterile medium. All cultures were maintained under the aforementioned conditions.

Stage IV: Ex vitro establishment. After 30 days, ABA treated and control Stage III rooted microcuttings were transplanted into plug trays (50 cells per tray) containing sterile Rootcubes (Smithers-Oasis, Kent, Ohio). Rooted microcuttings were fertilized weekly with a 20N–8.8P–16.6K soluble fertilizer (200 mg·liter\(^{-1}\)) from Oasis, Kent, Ohio. Rooted micro-cuttings were placed under two PPF treatments (450 µmol·m\(^{-2}\)·s\(^{-1}\) and 650 µmol·m\(^{-2}\)·s\(^{-1}\)). PPFequivalent was provided by polypropylene shade cloths. At transplanting, humidity domes were placed over the trays and progressively opened until fully removed at 10 days. Plants were watered as needed to maintain substrate moisture.

Abscisic acid levels of 0, 2, or 4 mg·liter\(^{-1}\) were applied in vitro in Stage I11 culture in a randomized complete block design with four replications. Ten plants were chosen as subsamples for determination of LCA. LCA rates were determined at 0, 10, 20, and 27 days after transfer with a Clark-type oxygen electrode (Hanastech, Norfolk, England). Immediately before measurement, leaves were cut and transferred to a leaf cuvette. Oxygen evolution was recorded using an oxygen electrode mounted in a cooling jacket (LD2: Hanastech) connected to a temperature controlling bath and light was supplied by a red diode light source (600 nm). Carbon dioxide was maintained at a constant level by adding 1 ml 1 M NaHCO\(_3\) to the mat under the leaf disc (Delieu and Walker, 1983). The leaf material was illuminated for 4 min at a PPF of 450 µmol·m\(^{-2}\)·s\(^{-1}\) and oxygen evolution was measured when steady state was reached.

In another experiment 2 mg·liter\(^{-1}\) IBA and ABA at 0, 1, 2, or 3 mg·liter\(^{-1}\) were incorporated into the medium in Stage III culture in a randomized complete block design with five replications. At the end of 30 days of in vitro growth and at 5, 10, 20, and 30 days post transplant, rooted microcuttings were assayed for nonstructural carbohydrate content (leaf and stem soluble sugars and starch) and shoot growth.

Soluble sugars and starch content of leaf and stem tissue were extracted and analyzed with the phenol-sulfuric technique (Dubois et al., 1956). Whole plants were collected at 1500 h and placed in an oven at 60°C. Dried and ground leaf and stem material (0.01 g) was extracted with 8 ml of 80% (v/v) ethanol at 95°C for 20 min. After cooling, the samples were filtered through glass microfibre filters (Whatman, Maidstone, England). The dried pellet recovered from the filtrate was hydrated with 2 ml of 0.1 M acetate buffer (pH 5.6) in a water bath at 85°C for about 1 h. After cooling to 37°C, 3 ml of enzyme solution (31 units alpha amylase/ml with 25.5 units of amyloglucosidase/ml, and 0.44 mg CaCl\(_2\)/ml) was added and incubated in a shaking water bath for 24 h at 37°C. Samples were diluted to obtain a soluble sugar concentration between 15 and 25 µg·ml\(^{-1}\). An aliquot of 1 ml was taken and 1 ml of 5% phenol was added and agitated. Finally, 5 ml of concentrated sulfuric acid was added and the samples were placed for 20 minutes in a water bath at 25°C. Standard solutions of glucose ranging in concentrations from 10 to 70 µg·ml\(^{-1}\) were prepared and treated in the same manner. The amount of soluble sugars present in the plant extracts was determined spectrophotometrically (Lambda 3A; Perkin-Elmer, Norwalk, Conn.) at 490 nm.

Chlorophyll determinations were made following the procedure outlined by Bruinsma (1963). After 30 days of in vitro growth, fully expanded leaves were excised, weighed, dried in a freeze drier, pulverized, and added to 10 ml of 80% acetone. Solutions were placed in a refrigerator in the dark at 4°C for 24 h, after which optical densities were measured at 663, 645, and 652 nm for chlorophyll a, b, and total, respectively. Carotenoid content was determined spectrophotometrically at a wavelength of 480 nm.

Data were analyzed by analysis of variance by SAS General Linear Model procedure. First (linear) or second (quadratic) order polynomials were fitted to the data by regression analysis.

Results and Discussion

There was no significant PPF × ABA interaction on shoot growth or nonstructural carbohydrate content of planted during ex vitro acclimatization (Tables 1 and 2). Plantlets grown in vitro for 30 days on ABA-supplemented medium exhibited reduced shoot growth ex vitro compared to control plants (Table 1). Shoot growth was further inhibited at the higher irradiance level. Root growth was also reduced in the presence of ABA (data not shown). Plantlets cultured on ABA-free medium exhibited positive but very low LCA at the time of transfer to ex vitro conditions (Fig. 1 A and B). This indicates a capacity for rapid conversion to the photoautotrophic state upon transfer since Aronia plantlets exhibit negative LCA during in vitro culture (Colon et al., 1990). Leaf carbon assimilation rates were initially negative in plantlets pre-cultured with ABA (Fig. 1 A and B). However, ABA-induced suppression of LCA was transient. With respect to LCA, maximum acclimatization was achieved by day 20 regardless of treatment. Survival of Aronia plantlets ex vitro was 100% regardless of initial LCA at time of transplant.

The physiological basis for the greater initial suppression of LCA in ABA-treated plantlets is not apparent. Low photosynthetic capacity of plantlets in vitro is attributed to several factors including low chlorophyll content, reduced ribulose bisphosphate carboxylase activity and non-stomatal inhibition of photosynthesis following starch accumulation in chloroplasts (Capellades et al., 1991; Grout and Aston, 1978). No significant differences in chlorophyll or carotenoid content were observed between control and ABA-treated plantlets (data not shown).

Depression of LCA in ABA treated plantlets may be the consequence of increased stomatal resistance resulting from ABA-induced stomatal closure. Stomata in leaves produced in vitro are often nonfunctional but become responsive following 4 to 5 days acclimation to reduced relative humidity (Brainierd and Fuchigami, 1981, 1982; Shackel et al., 1990). Leaves produced in vitro on Aronia plantlets cultured in the presence of ABA have epidermal features, including stomata, that are structurally similar to those produced on greenhouse-grown plants (Colon et al., 1990). Conceivably, these stomata are functional but initially closed during acclimatization. However, a direct affect of ABA on carbon fixation can not be ruled out (Zeevaart and Creelman, 1988).

Abscisic acid treatment had a significant main effect on plantlet leaf and stem soluble sugar content and leaf starch content over the acclimatization period (Table 2). There was also a significant main effect of PPF level on leaf and stem soluble sugar content and on stem starch content (Table 2). After 30 days in vitro
Table 1. Effects of ABA (0, 1, 2, and 3 mg·liter⁻¹) on shoot length (mm) of Aronia arbutifolia rooted microcuttings grown ex vitro under 450 and 650 µmol·m⁻²·s⁻¹ PPF for 5, 10, 15, 20, 25, and 30 days.

Treatment	Shoot length (mm)	Days post-transplant					
PPF ABA							
(µmol·m⁻²·s⁻¹) (mg·liter⁻¹)	0	5	10	15	20	25	30
450							
0	15	18	23	28	37	59	93
1	14	17	21	24	30	49	75
2	13	14	17	19	24	38	61
3	13	14	17	19	23	39	61
Linear	NS	NS	NS	NS	NS	NS	NS
Quadratic	NS	NS	NS	NS	NS	NS	NS
650							
0	16	20	24	28	35	46	61
1	12	13	16	17	20	30	44
2	12	13	15	16	20	26	35
3	11	12	15	16	20	29	41
Linear	NS	*	NS	NS	NS	NS	NS
Quadratic	NS	NS	NS	NS	NS	NS	NS

PPF × ABA | NS | * | NS | NS | NS | NS | NS |

*NS, *Significant or nonsignificant at P ≤ 0.05 or 0.01, respectively.

(0 days after transfer ex vitro), ABA pretreatments had no significant effect on leaf or stem starch content (Fig. 2 A and B and Fig. 3 A and B) as determined at the time of transfer. Starch content rapidly increased before and then declined after day five post-transplant in both leaf and stem tissues. The accumulation of starch from new photosynthate is unlikely since LCA were low or negative during this period. The possibility of carbohydrate translocation from the roots was not examined. Stem starch utilization was delayed in plantlets pre-cultured with ABA and maintained at the higher PPF (Fig. 3B).

Leaf (Fig. 2 C and D) and stem (Fig. 3 C and D) soluble sugar levels were greater in ABA-treated plantlets than in control plantlets at the time of transfer. Under the higher PPF, transient elevations in soluble sugar levels were observed in both leaf (Fig. 2D) and stem (Fig. 3D) tissues of ABA-treated plantlets. However, no differences between treatments were observed by 20 days after transfer. Beyond 10 days post-transplant the increased shoot growth observed (Table 1) was perhaps due to remobilization of carbohydrate from leaf and stem carbohydrate reserves to areas of active growth.

Based on starch utilization, Stage III Aronia rooted plantlets remain highly dependent on carbohydrate reserves for sustained growth and development of photosynthetically competent leaves during initial acclimatization. Starch reserves became depleted within the first 20 days. Lack of sufficient energy reserves for both adventitious root formation and growth maintenance would explain the poor ex vitro survival of unrooted Stage II Aronia microcuttings (Kane et al., 1991). Treatments that increase stem starch content might facilitate ex vitro survival of more problematic species. While in vitro application of ABA induced starch deposition in other plants (Smart and Trewavas, 1983), no such

Table 2. F values from GLM of ABA (0, 1, 2, 3 mg·liter⁻¹) and PPF (450 and 650 µmol·m⁻²·s⁻¹) two factor experiment on leaf and stem soluble sugar and starch content (mg·g⁻¹ dry weight) after transfer from an in vitro to an ex vitro environment.

Plant part	Sugar	Starch	Model	Source	df	F value	Model	Source	df	F value
Leaf			R²				R²			
ABA	0.67**	ABA	3	11**		0.77**	ABA	3	7.53**	
PPF	0.55**	PPF	1	16**		0.28**	PPF	1	82**	
DAT	4	DAT	30**				DAT	4	82**	
PPF × ABA	0.55**	PPF × ABA	3	0.55**		0.58**	PPF × ABA	3	1.34**	
DAT × PPF	4	DAT × PPF	2.68*				DAT × PPF	4	0.82**	
DAT × ABA	12	DAT × ABA	3.02**				DAT × ABA	12	1.05**	
Stem			R²				R²			
ABA	0.53**	ABA	3	5**		0.76**	ABA	3	6**	
PPF	1	PPF	29**				PPF	1	74**	
DAT	4	DAT	6**				DAT	4	4**	
PPF × ABA	3	PPF × ABA	0.67**				PPF × ABA	3	0.49**	
DAT × PPF	4	DAT × PPF	8**				DAT × PPF	4	1.00**	
DAT × ABA	12	DAT × ABA	1.56**				DAT × ABA	12	1.00**	

*Photosynthetic photon flux.
†Days after transfer.
**NS, *Significant or nonsignificant at P ≤ 0.05, or 0.01, respectively.
response was observed in Aronia.

Although development of cutinized greenhouse-type leaves are
induced in vitro in the presence of ABA, the suppression of shoot
growth and LCA that occur provide no physiological benefit that
would facilitate ex vitro acclimatization of Aronia plantlets. How-
ever, studies of the ABA effects on acclimatization of more
problematic species could prove useful.

Literature Cited

Arteca, R.N., D. Tsai, and C. Schlaghaufner. 1985. Abscisic acid effects on photosyn-
thesis and transpiration in geranium cuttings. HortScience 20:370–372.
Blake, T.J., W. Tan, and S.R. Abrams, 1990. Antitranspirant action of abscisic acid
ten synthetic analogs in black spruce. Physiol. Plant 80:365–370.
Brainerd, K.E. and L.H. Fuchigami. 1981. Acclimatization of aseptically cultured
apple plants to low relative humidity. J. Amer. Soc. Hort. Sci. 106:515–518.
Brainerd, K.E. and L.H. Fuchigami. 1982. Stomatal functioning of in vitro and greenhouse
apple leaves in darkness, mannitol, abscisic acid, and CO\textsubscript{2}. Exp. Bot. 33:388–392.
Bruinsma, J. 1963. The quantitative analysis of chlorophylls a and b in plant extracts.
Photochem. Photobiol. (Chlor. Metabol. Symp.) 2:241–249.
Capellades, M., R. Fontarnau, C. Carulla, and P. Debergh. 1991. Effects of sucrose on starch
accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue
Organ Cult. 25:21–26.
Colon, W., M. E. Kane, and D. L. Ingram. 1990. Effects of abscisic acid on
photosynthesis, growth and development of Stage III Aronia arbutifolia (Ros-
aceae). Proc. Fla. State Hort. Soc. 103: 178–182.
Delieu, T.J. and D.A. Walker. 1983. Simultaneous measurement of oxygen evolution
and chlorophyll fluorescence from leaf pieces. Plant Physiol. 73:534–541.
Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric
methods for determination of sugars and related substances. Analytical Chem.
28:350-356.
Grout, B.W.W. and M.J. Aston. 1978. Transplanting of cauliflower plants regenerated
from meristem culture. II. Carbon dioxide fixation and the development of photosynthetic ability. Hort. Res. 17:65–71.
Grout, B.W.W. and S. Millam. 1985. Photosynthetic development of micropropag-
gated strawberry plantlets following transplanting. Annu. Bot. 55:129–131.
Jarret, R.L. and N. Gawel. 1991. Abscisic acid-induced growth inhibition of sweet potato
(Ipomea batatas L.) in vitro. Plant Cell, Tissue, and Organ Culture. 24:13-18.
Kane, M.E. and B. McCown. 1980. Commercially-feasible micropropagation of
mountain laurel Kalina latifolia, by use of shoot-tip culture. Proc. Intl. Plant Prop.
Soc. 30:421–427.
Preece, J.E. and E.G. Sutter. 1991. Acclimatization of micropropagated plants to
greensward and field. p. 71-93. In: P.C. Debergh and R. H. Zimmerman (eds.).
Micropropagation Technology and Application. Klwer Acad. Publ., Boston.
Shackel, K.A., V. Novello, and E.G. Sutter. 1990. Stomatal function and cuticular
conductance in whole tissue-cultured apple shoots. 1990. J. Amer. Soc. Hort. Sci.
115:468–472.
Sharkey, T.D., J.A. Berry, and K. Raschke. 1985. Starch and sucrose synthesis in
Phaseolus vulgaris as affectedly light, CO\textsubscript{2}, and abscisic acid. Plant Physiol.
77:617–620.
Smart, C.C. and A.J. Trevawas. 1983. Abscisic acid-induced turion formation in
Spirodela polyrhiza L. 1. production and development of the turion. Plant Cell
Environ. 6:507–514.
Wardle, K., E.B. Dobbs, and K.C. Short. 1983. In vitro acclimatization of aseptically
cultured plantlets to humidity. J. Amer. Soc. Hort. Sci. 108:386–389.
Zeevaart, J.A.D. and R.A. Creelman. 1988. Metabolism and physiology of abscisic
acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439473.