Risk factors and antihypertensive medications for mortality in elderly hospitalized hemodialysis patients: a multicenter retrospective study in China

Yu-Huan SONG (✉ syuhuan@163.com)
Aerospace Central Hospital https://orcid.org/0000-0002-7015-6196

Guang-Yan Cai
Chinese PLA General Hospital

Yue-Fei Xiao
Aerospace Center Hospital

Jie-qiong Liu
Chinese PLA General Hospital

Shuang Liang
Chinese PLA General Hospital

Xiang-Mei Chen
Chinese PLA General Hospital

Research article

Keywords: Elderly; Hemodialysis; Mortality; Antihypertensives; Renin-Angiotensin System Blockade

Posted Date: August 28th, 2019

DOI: https://doi.org/10.21203/rs.2.13665/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background Elderly Hemodialysis patients are increasing yearly. Antihypertensive medications are commonly prescribed to hemodialysis patients but the optimal regimens to prevent morbidity and mortality are unknown. The goal of our study was to compare the association of routinely prescribed antihypertensive regimens with outcomes and analyze the risk factors in elderly hemodialysis patients.

Methods This study was a retrospective cohort study based on data from adult hemodialysis patients (≥18 years old) admitted to 15 hospitals in China between 1 January 2009 and 31 December 2011. The characteristics of elderly hemodialysis patients (≥60 years old) were analyzed. Antihypertensive drugs into the following regimens: β-blockers, calcium channel blockers, renin–angiotensin system (RAS) blocking drugs and α-blockers. Logistic regression analysis was used to explore the risk factors for death adjusting for clinical and laboratory values and antihypertensive medications.

Results A total of 7135 patients on maintenance hemodialysis including 2738 elderly patients were enrolled in this study. The mean levels of hemoglobin, albumin, blood calcium, phosphorus and parathyroid hormone (PTH) in elderly group were lower than the younger group. We compared the characteristics of 2492 survived elderly maintenance hemodialysis patients and 246 patients who died. Aging (OR = 1.59, 95% CI: 1.13-2.24), central venous catheter (OR = 1.62, 95% CI: 1.53-1.72) and Charlson comorbidities index >3(OR=1.97,95% CI: 1.49-2.60) were independently risk factors of mortality in elderly maintenance hemodialysis patients. High levels of hemoglobin (OR=0.76, 95%CI: 0.73-0.79), albumin (OR=0.87, 95%CI: 0.77-0.98), uric acid(OR=0.90,95%CI: 0.84-0.96)and those taking angiotensin-converting enzyme inhibitor (ACEI) or an angiotensin II receptor blocker (ARB) (OR=0.77, 95%CI: 0.58-0.90) had a lower risk of mortality.

Conclusions Age, Charlson Comorbidities index >3, anemia and malnutrition, the use of central venous catheters and low serum uric acid level are risk factors for mortality in elderly maintenance hemodialysis patients. Taking ACEI/ARB can reduce the mortality of elderly maintenance hemodialysis patients.

Background

With development of hemodialysis technology and aging of population, patients who need renal replacement therapy are increasing and getting older [1-2]. There are many prognostic factors impacting dialysis patients’ mortality, such as: patient-related and therapy-related factors. Age, malnutrition and comorbidities are mainly patient-related factors. Antihypertensive drugs, serum uric acid level and vascular access type are, at least partly, therapy-related factors [3].

Hypertension is common and contributes to adverse outcomes in patients undergoing dialysis. Antihypertensive drugs are prescribed to hemodialysis patients commonly but the contribution to life span are unclear. The benefits of RAS blocking drugs are well-established in the general population, particularly among those with diabetes, congestive heart failure (CHF), or coronary artery disease (CAD). However, conflicting evidence from trials and concerns about hyperkalemia limit RAS blocking drugs use
in hemodialysis patients, relative to other antihypertensive agents, including beta blockers and calcium channel blockers[4-5]. This study was to investigate the association of different kinds of antihypertensive drugs with mortality in Chinese elderly hemodialysis patients.

Methods

Patients

A multicenter, retrospective cohort of maintenance hemodialysis (MHD) patients (aged ≥18 years old) in 15 tertiary hospitals in China from 1 January 2009 to 31 December 2011 was recruited. The inclusion criteria were as follows: definite diagnosis of stage of chronic kidney disease 5 stage and undergoing hemodialysis treatment for more than 3 consecutive months. Patients with acute kidney injury, received a kidney transplant or undergone nephrectomy were excluded. The Medical Ethics Committee of the Chinese PLA General Hospital approved the study protocol and waived patient consent.

Demographic and Clinical Data

Finally included in the study were 7135 patients, who were divided into 3 groups according to age: 4397 patients aged less than 60 years; 1808 elderly patients between 60 and 75; and 930 very elderly patients aged over 75. 2738 elderly MHD patients including 2492 survived patients and 246 patients who died. The following information: name, age, gender, hospital number, primary diseases of renal failure, cause of admission, discharge diagnosis, vascular access type and the cause of death were collected from electronic medical records and laboratory databases. Laboratory indicators consisted of albumin, hemoglobin, calcium, phosphorus and PTH levels. Types of vascular access for hemodialysis were divided into two different groups: the CVC group, which included both tunneled and non-tunneled catheters, and the AV group, which included AVF and AVG. The Charlson comorbidity index (CCI) score was calculated for each patient according to their comorbidity profile [6]. We classified antihypertensive drugs into the following regimens: \(\beta \)-blockers, calcium channel blockers, renin–angiotensin system blocking drugs and \(\alpha \)-blockers.

Statistical Analysis

SPSS software (version 22.0) was applied to Statistical analysis. Continuous variables were expressed as mean ± standard deviation. Categorical variables were expressed as n(%). One-way ANOVA or the Kruskal-Wallis test was used for continuous variables. The \(\chi^2 \) test was used for categorical variables. Logistic regression analysis was used to explore the risk factors for death in the elderly MHD patients. All tests were two-sided tests and a P value < 0.05 was considered statistically significant.

Results

The average age of hospitalized hemodialysis patients was 53.0 ± 17.8 years old, male patients accounted for 51.1% (table 1). The top three primary diseases in elderly dialysis patients were diabetic
nephropathy, hypertension and glomerulonephritis. The top two reasons for the hospitalization of elderly patients were infection and cardiovascular disease (table 2). The central venous catheters was accounted for 27.9%, 67.5% and 75.7% for patients aged < 60, 60-74 and ≥75 years respectively (P <0.05). As age increased, the mean value of hemoglobin, albumin, serum calcium, phosphorus and PTH were decreased (P <0.05).

We analysed the characteristics of 2738 elderly MHD patients by comparing 2492 survived patients with 246 patients who died (table 3). Aging (OR = 1.59, 95% CI: 1.13-2.24), central venous catheter (OR = 1.62, 95% CI: 1.53-1.72) and CCI3(OR=1.97,95% CI: 1.49-2.60) were independently risk factors of mortality in elderly maintenance hemodialysis patients. High levels of hemoglobin (OR=0.76, 95%CI: 0.73-0.79), albumin (OR=0.87, 95%CI: 0.77-0.98), uric acid(OR=0.90,95%CI: 0.84-0.96) and those taking ACEI/ARB (OR=0.77, 95%CI: 0.58-0.90) had a lower risk of mortality (table 4).

Discussion

Many elderly hemodialysis patients suffer from various complications and have to be hospitalized, and even require repeated hospitalizations. The high hospitalization rate not only aggravates the financial burden and psychological pressure of elderly hemodialysis patients, but also greatly increases the mortality rate [7]. We found that the proportion of secondary kidney diseases such as diabetes and hypertension in elderly hemodialysis patients was high, which is consistent with the results of other studies [8-9]. The incidence of anemia and hypoalbuminemia was high in elderly hemodialysis patients. A study of 78,420 dialysis patients found that hemodialysis patient's hospitalization risk is increased by 67% for every 1 g/dL decrease in albumin and increased by 9% for each 1 g/dL drop in hemoglobin [10]. Therefore, we must pay great attention to the nutritional problems in elderly hemodialysis patients in order to reduce the hospitalization rate and improve the quality of life.

Elderly hemodialysis patients often suffer from decreased bone synthesis and reabsorption, and PTH secretion is inhibited [11]. They have degenerative function of hormone secretion and activity, decrease expression of anti-aging Klotho gene and uremic toxins [12]. The intake of phosphorus decreases and hypophosphatemia develops, causing a decrease in PTH levels. The specific mechanism of low transport bone disease in elderly hemodialysis patients remains to be further explored [13]. There is a positive correlation between serum PTH levels and serum albumin, creatinine and total cholesterol concentrations in elderly hemodialysis patients [14]. The main therapeutic goal of low-transplant renal bone disease is to reduce calcium ion and vitamin D load, avoid excessive inhibition of PTH, maintain PTH activity and improve the quality of life of hemodialysis patients [15].

Studies have confirmed that hypophosphatemia can increase the all-cause mortality and infection-related mortality of hemodialysis patients compared with the range of serum phosphorus recommended by the kidney disease outcomes quality initiative (KDOQI) [16-18]. Other studies have found that hypophosphatemia increases the mortality of hemodialysis patients over 65 years old [19]. Hypophosphatemia was an independent risk factor for infection, especially in elderly dialysis patients.
[20]. Hypocalcemia is an independent predictive risk factor for left ventricular diastolic dysfunction in chronic kidney disease patients.

Elderly hemodialysis patients have a higher mortality rate, and many factors affect their risk of death. Patients with more comorbidities had higher hospitalization costs, lower survival rates, and a higher risk of death. Age, CCI, malnutrition, serum uric acid level, and CVC are known factors associated with the risk of mortality among hemodialysis patients [21-23]. Hur et al discussed that low serum uric acid is associated with higher mortality [24].

The treatment of hypertension in dialysis patients is complex and there is no relevant guide [25-28]. There are mainly four kinds of antihypertensive drugs commonly used in maintenance hemodialysis patients: RAS blockers, calcium ion antagonists, β-blockers and α-blockers.

RAS blockers are mainly divided into angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists. These drugs have great advantages in dialysis patients due to their low dialysis clearance rate, stable hemodynamics, definite antihypertensive effect and cardio-cerebral organ protection [29].

The prevalence of microinflammation in hemodialysis patients is an important predictor of cardiovascular disease and death in MHD patients [30]. ARB drugs can directly participate in the regulation of the body's immune system and significantly reduce the level of serum inflammation indicators in hemodialysis patients [31-32].

Dialysis patients taking RAS blockers had a reduction in all-cause mortality and cardiovascular mortality compared with beta-blockers [29]. ARBs can reduce the overall mortality and cardiovascular mortality of hemodialysis patients, but the use of ACEI did not find its impact on mortality. Combination of ACEI and ARB increases the mortality of hemodialysis patients [33-35]. However, some studies have found that ARB drugs cannot reduce the risk of cardiovascular events and total mortality in long-term dialysis patients compared with other antihypertensive drugs [36-37]. Therefore, large-scale clinical trials are needed to verify the advantages and disadvantages of ACEI/ARB in dialysis patients.

Although the proportion of calcium ion antagonists used in elderly hemodialysis patients is large, the correlation analysis in this study showed no significant effect on the mortality of elderly hemodialysis patients. One study divided 130 dialysis patients into two groups according to whether they used calcium antagonists and found that hemoglobin was low in hemodialysis patients who used calcium antagonists, probably because calcium antagonists attenuate the activity of erythropoietin [38-40].

A 10-year follow-up study of long-term hemodialysis patients receiving various antihypertensive drug treatments found that beta-blockers can significantly reduce all-cause mortality in hemodialysis patients [41]. A recent study found that hemodialysis patients who used a combination of beta-blockers and renin-angiotensin system antagonists had the lowest mortality rates [42].
Although we conducted a large-scale study of the clinical features about the hospitalized elderly hemodialysis patients, there are still some problems and deficiencies: First, this study is a retrospective case data, cross-sectional survey design and there was no follow up and we used logistic regression instead of cox regression. Second, the patient list here is extracted from inpatient data. This makes things very different from an outpatient hemodialysis database study. Inpatients are unwell and hemoglobin, phosphate, calcium, these are naturally deranged while patients are acutely unwell. For example: a lower inpatient hemoglobin would be naturally associated with more acute diseases and possibly longer hospital stay. Third, there was a lack of blood pressure values that could heavily influence clinicians’ antihypertensive prescription decisions. In addition, there is still a lack of data on dialysis.

Conclusions

Age, CCI> 3, anemia and malnutrition, use of central venous catheters and low level of serum uric acid are the risk factors for mortality in elderly maintenance hemodialysis patients. Renin-Angiotensin System Blockade might provide a benefit in protecting elderly hemodialysis patients from mortality.

Abbreviations

CVD: cardiovascular disease; CCI: Charlson comorbidities index; CKD: chronic kidney disease; ESRD: end-stage renal disease; MHD: maintenance hemodialysis; PTH: parathyroid hormone; ACEI/ARB: angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. RAS: renin–angiotensin system; BMI: body mass index; CHF: congestive heart failure; CAD: coronary artery disease; KDOQI: kidney disease outcomes quality initiative.

Declarations

Ethics approval and consent to participate

The Medical Ethics Committee of the Chinese PLA General Hospital approved the study protocol and waived patient consent.

Competing interests

The authors declare that they have no competing interests

Consent for publication

Not applicable.

Funding
Authors’ contributions

Each author contributed to the design of the study and interpretation of the data. YHS, GYC, YFX, JQL and SL conceived and designed the study. YHS and GYC participated in the literature searches data analysis and interpretation. YHS drafted the manuscript. GYC and XMC revised the final manuscript. All authors read and approved the final manuscript.

Acknowledgments

There are no conflicts of interest to declare.

Availability of data and materials

All the data supporting the conclusions of this article are contained within the manuscript. The individual patient-level dataset was not made publically available due to containing potentially identifying patient data; however, the study dataset may be made available from the authors upon request.

Author details

1 Department of Nephrology, Aerospace Center Hospital (Peking University Aerospace School of Clinical Medicine), 15 Yuquan Road, Beijing 100049, China.

2 Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing 100853, China.

References

[1] Hall RK, Luciano A, Pieper C, Colón-Emeric CS. Association of Kidney Disease Quality of Life (KDQOL-36) with mortality and hospitalization in older adults receiving hemodialysis. BMC Nephrol. 2018, Jan 15;19(1):11.

[2] Venturelli C, Bandera A, Zubani R, Movilli E, Veniero P, Gaggiotti M, et al. Vascular access in older patients: an Italian survey. J Nephrol. 2013 Nov-Dec;26(6):1122-1127.

[3] Jhee JH, Park J, Kim H, Kee YK, Park JT, Han SH, et al. The Optimal Blood Pressure Target in Different Dialysis Populations. Sci Rep. 2018, Sep 20; 8(1):14123.

[4] Karaboyas A, Xu H, Morgenstern H, Locatelli F, Jadoul M, Nitta K, et al. DOPPS data suggest a possible survival benefit of renin angiotensin-aldosterone system inhibitors and other antihypertensive medications for hemodialysis patients. Kidney Int. 2018, Sep; 94(3):589-598.
[5] Luño J, Varas J, Ramos R, Merello I, Aljama P, Martin Malo A, et al. The Combination of Beta Blockers and Renin-Angiotensin System Blockers Improves Survival in Incident Hemodialysis Patients: A Propensity-Matched Study. Kidney Int Rep. 2017, Mar 7;2(4):665-675.

[6] Beddu S, Bruns FJ, Saul M, Seddon P, Zeidel ML. A simple comorbidity scale predicts clinical outcomes and costs in dialysis patients. Am J Med. 2000;108:609-13.

[7] Glaudet F, Hottelart C, Allard J, Allot V, Bocquentin F, Boudet R, et al. The clinical status and survival in elderly dialysis: example of the oldest region of France. BMC Nephrol. 2013 Jun, 25(14):131.

[8] Amaral TLM, Amaral CA, Vasconcellos MTL, Monteiro GTR. Prevalence and factors associated to chronic kidney disease in older adults. Rev Saude Publica. 2019;53:44.

[9] Modi ZJ, Lu Y, Ji N, Kapke A, Selewski DT, Dietrich X, et al. Risk of Cardiovascular Disease and Mortality in Young Adults With End-stage Renal Disease: An Analysis of the US Renal Data System. JAMA Cardiol. 2019 Mar 20. doi: 10.1001/jamacardio.2019.0375. [Epub ahead of print]

[10] Lacson E Jr, Wang W, Hakim RM, Teng M, Lazarus JM. Associates of mortality and hospitalization in hemodialysis: potentially actionable laboratory variables and vascular access. Am J Kidney Dis. 2009 Jan; 53(1):79-90.

[11] Ersoy FF. Osteoporosis in the elderly with chronic kidney disease. Int Urol Nephrol. 2007, 39(1):321-331.

[12] Mehrotra R, Supasyndh O, Berman N, , Kaysen G, Hurst L, Leonard M et al. Age-related decline in serum parathyroid hormone in maintenance hemodialysis patients is independent of inflammation and dietary nutrient intake. J Ren Nutr. 2004, Jul; 14(3):134-142.

[13] Granjon D, Bonny O, Edwards A. Coupling between phosphate and calcium homeostasis: a mathematical model. Am J Physiol Renal Physiol. 2017, 313(6):F1181-F1199.

[14] Lu JR, Yi Y, Tian J, Xiong CX, Wang XH, Hu J, et al. Prevalence and determinants of parathyroid dysfunction in elderly patients on hemodialysis. Blood Purif. 2014, 37(2):119-124.

[15] Taniguchi M, Fukagawa M, Fujii N, Hamano T, Shoji T, Yokoyama K, et al. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther Apher Dial. 2013, Apr; 17(2):221-228.

[16] Li D, Zhang L, Zuo L, Jin CG, Li WG, Chen JB. Association of CKD-MBD Markers with All-Cause Mortality in Prevalent Hemodialysis Patients: A Cohort Study in Beijing. PLoS One. 2017, Jan 3;12(1):e0168537.

[17] Liu Y, Lee WC, Cheng BC, Li LC, Lee CH, Chang WX, et al. Association between the Achievement of Target Range CKD-MBD Markers and Mortality in Prevalent Hemodialysis Patients in Taiwan by Using the Kidney Disease: Improving Global Outcomes Clinical Guidelines. Biomed Res Int. 2016;2016:1523124.
[18] Lee JE, Lim JH, Jang HM, Kim YS, Kang SW, Yang CW, et al. Low serum phosphate as an independent predictor of increased infection-related mortality in dialysis patients: A prospective multicenter cohort study. PLoS One. 2017, Oct 3;12(10):e0185853.

[19] Lertdumrongluk P, Rhee CM, Park J, Lau WL, Moradi H, Jing J, et al. Association of Serum Phosphorus Concentration with Mortality in Elderly and Non-Elderly Hemodialysis Patients. J Ren Nutr. 2013, Nov; 23(6):411-421.

[20] Miller JE, Koveshy CP, Norris KC, Mehrotra R, Nissenson AR, Kopple JD, et al. Association of cumulatively low or high serum calcium levels with mortality in long-term hemodialysis patients. Am J Nephrol. 2010, 32(5):403-413.

[21] Zhang W, Mei C, Chen N, Ding X, Ni Z, Hao C, et al. Outcomes and practice patterns with hemodiafiltration in Shanghai: a longitudinal cohort study. BMC Nephrol. 2019, Feb 1;20(1):34.

[22] Lin YT, Wu PH, Kuo MC, Lin MY, Lee TC, Chiu YW, et al. High cost and low survival rate in high comorbidity incident elderly hemodialysis patients. PLoS One. 2013, Sep 9;8(9):e75318.

[23] Zhang Y, Hu C, Bian Z, Chen P. Impact of timing of initiation of dialysis on long-term prognosis of patients undergoing hemodialysis. Exp Ther Med. 2018, Aug; 16(2):1209-1215.

[24] Hur I, Choi SJ, Kalantar-Zadeh K. Serum uric acid and mortality risk among maintenance hemodialysis patients. Kidney Res Clin Pract. 2017, Dec; 36(4):302-304.

[25] Bansal N, McCulloch CE, Rahman M, Kusek JW, Anderson AH, Xie D, et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the chronic renal insufficiency cohort study. Hypertension. 2015, Jan; 65 (1):93-100.

[26] Agarwal R, Satyan S, Alborzi P, Light RP, Tegegne GG, Mazengia HS, et al. Home blood pressure measurements for managing hypertension in hemodialysis patients. Am J Nephrol. 2009, 30 (2):126-134.

[27] Shafi T, Zager PG, Sozio SM, Grams ME, Jaar BG, Christenson RH, et al. Troponin I and NT-proBNP and the association of systolic blood pressure with outcomes in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for ESRD (CHOICE) Study. Am J Kidney Dis. 2014, Sep; 64 (3):443–451.

[28] Bakris GL, Burkart JM, Weinhandl ED, McCullough PA, Kraus MA. Intensive Hemodialysis, Blood Pressure, and Antihypertensive Medication Use. Am J Kidney Dis. 2016, Nov; 68(5S1):S15-23.

[29] Thai DJ, Lim TW, James MT, Manns BJ, Tonelli M, Hemmelgarn BR. Cardiovascular effects of angiotensin converting enzyme inhibition or angiotensin receptor blockade in hemodialysis: a meta-analysis. Clin J Am Soc Nephrol. 2010, Apr; 5(4): 623-630.
[30] Schindler R. Causes and therapy of microinflammation in renal failure. Nephrol Dial Transplant. 2004, Aug; 19(Suppl5):V34-40.

[31] Marshall TG, Lee RE, Marshall FE. Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b. Theor Biol Med Model. 2006, Jan 10(3):1.

[32] Kido R, Akizawa T, Fukagawa M, Onishi Y, Yamaguchi T, Fukuhara S. Interactive Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers or Their Combination on Survival of Hemodialysis Patients. Am J Nephrol. 2017, 46(6):439-447.

[33] Wu CK, Yang YH, Juang JM, Wang YC, Tsai CT, Lai LP, et al. Effects of angiotensin converting enzyme inhibition or angiotensin receptor blockade in dialysis patients: a nationwide data survey and propensity analysis. Medicine (Baltimore). 2015, Jan; 94(3):e424.

[34] Shireman TI, Mahnken JD, Phadnis MA, Ellerbeck EF, Wetmore JB. Comparative Effectiveness of Renin-Angiotensin System Antagonists in Maintenance Dialysis Patients. Kidney Blood Press Res. 2016, 41(6):873-885.

[35] Kido R, Akizawa T, Fukagawa M, Onishi Y, Yamaguchi T, Fukuhara S. Interactive Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers or Their Combination on Survival of Hemodialysis Patients. Am J Nephrol. 2017, 46(6):439-447.

[36] Iseki K, Arima H, Kohagura K, Komiya I, Ueda S, Tokuyama K, et al. Olmesartan Clinical Trial in Okinawan Patients Under OKIDS (OCTOPUS) Group. Effects of angiotensin receptor blockade (ARB) on mortality and cardiovascular outcomes in patients with long-term haemodialysis: a randomized controlled trial. Nephrol Dial Transplant. 2013, Jun; 28(6):1579-1589.

[37] Agarwal R, Sinha AD, Pappas MK, Abraham TN, Tegegne GG. Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial. Nephrol Dial Transplant. 2014, Mar; 29(3):672-681.

[38] Cikrikcioglu MA, Ozdemir AA, Sekin Y, Yalcin B, Altay M, Gundogdu A, et al. Association of calcium antagonist use with lower hemoglobin levels in hemodialysis patients. Minerva Urol Nefrol. 2015, Sep; 67(3):187-196.

[39] Cheung JY, Zhang XQ, Bokvist K, Tillotson DL, Miller BA. Modulation of calcium channels in human erythroblasts by erythropoietin. Blood. 1997, Jan 1; 89(1):92-100.

[40] Cikrikcioglu MA, Karatoprak C, Cakirca M, Kiskac M, Zorlu M, Cetin G, et al. Association of calcium channel blocker use with lower hemoglobin levels in chronic kidney disease. Eur Rev Med Pharmacol Sci. 2013, Sep; 17(18):2530-2537.

[41] Tang CH, Wang CC, Chen TH, Hong CY, Sue YM. Prognostic Benefits of Carvedilol, Bisoprolol, and Metoprolol Controlled Release/Extended Release in Hemodialysis Patients with Heart Failure: A 10-Year
Cohort. J Am Heart Assoc. 2016, Jan 5(1):pii: e002584.

[42] Luño J, Varas J, Ramos R, Merello I, Aljama P, MartinMalo A, et al. The Combination of Beta Blockers and Renin-Angiotensin System Blockers Improves Survival in Incident Hemodialysis Patients: A Propensity-Matched Study. Kidney Int Rep. 2017, Mar 7; 2(4):665-675.

Tables

Table 1. The clinical characteristics of hospitalized elderly maintenance hemodialysis patients

	Total	<60 years	60-74 years	≥75 years	P value
Patient cases	7135	4397	1808	930	
Age (years)	53.0±17.8	41.3±11.4	68.1±3.7	79.0±4.1	0.05
Male	51.1%	54.0%	45.9%	47.6%	0.05
Primary disease [%]					0.05
Chronic glomerular disease	40.2	52.2	18.3	10.5	
Diabetic nephropathy	21.3	17.5	38.3	43.1	
Hypertensive kidney damage	17.3	15.7	18.2	23.3	
Other/Unknown	21.2	14.6	25.2	23.1	
Central venous catheter	34.4%	27.9%	67.5%	75.7%	0.05
Albumin (g/L)	36.4±5.6	38.4±4.6	34.4±3.8	32.3±4.2	0.05
Hemoglobin (g/L)	96.0±17.9	101.1±15.6	95.4±16.9	82.2±18.3	0.05
PTH(pg/mL)	278.1±201.3	321.9±168.3	259.4±114.2	234.2±109.2	0.05
Calcium (mmol/L)	2.09±0.63	2.15±0.31	2.05±0.46	1.99±0.33	0.05
Phosphorus (mmol/L)	1.99±0.43	2.05±0.78	1.89±0.53	1.65±0.44	0.05

Table 2. The reasons for the hospitalization of elderly maintenance hemodialysis patients
Reasons for hospitalization	cases	ratio(%)
Infection	668	24.4
Coronary heart disease	580	21.2
Heart failure	274	10.0
Electrolyte and acid-base balance disorders	178	6.5
Crebrovascular disease	144	5.3
Dysfunction of hemodialysis access	127	4.6
Hypertension	126	4.6
Arrhythmia	120	4.4
Tumor	112	4.1
Gastrointestinal bleeding	96	3.5
Fracture	90	3.3
Secondary hyperparathyroidism	78	2.8
Serous cavity fluid	23	0.8
Hypotension	21	0.8
Intestinal obstruction	10	0.4
Other and unknown reasons	91	3.3

Table 3. Characteristics of 2738 elderly hospitalized maintenance hemodialysis patients
Table 4. Logistic regression analyses for mortality in elderly maintenance hemodialysis patients
	Univariate analysis		Multivariate analysis	
	OR (95% CI)	P value	OR (95% CI)	P value
Age (years)	1.26 (1.09-1.46)	<0.01	1.59 (1.13-2.24)	<0.01
Male	1.10 (0.94-1.28)	0.23	1.02 (0.89-1.17)	0.78
Hemodialysis (months)	0.71 (0.45-1.13)	0.12	0.86 (0.53-1.40)	0.54
Central venous catheter	1.58 (1.01-2.48)	<0.05	1.62 (1.53-1.72)	<0.05
CCI®3	2.04 (1.64-2.54)	<0.01	1.97 (1.49-2.60)	<0.01
Hemoglobin (g/L)	0.77 (0.68-0.87)	<0.001	0.76 (0.73-0.79)	<0.001
Albumin (g/L)	0.85 (0.78-0.93)	<0.01	0.87 (0.77-0.98)	<0.01
Calcium (mmol/L)	0.87 (0.63-1.20)	0.40	0.89 (0.72-1.10)	0.37
Phosphorus (mmol/L)	0.96 (0.43-2.14)	0.92	0.96 (0.43-2.14)	0.86
serum uric (umol/L)	0.91 (0.86-0.96)	<0.01	0.90 (0.84-0.96)	<0.01
triglyceride (mmol/L)	0.90 (0.79-1.03)	0.11	0.98 (0.81-1.19)	0.84
cholesterol (mmol/L)	0.58 (0.49-0.69)	<0.001	0.92 (0.81-1.04)	0.20
serum creatinine (umol/L)	0.98 (0.89-1.08)	0.68	0.86 (0.68-1.09)	0.21
PTH (mg/dl)	1.08 (0.73-1.60)	0.70	1.02 (0.64-1.63)	0.70
α-blockers	0.84 (0.57-1.25)	0.40	0.83 (0.54-1.27)	0.39
β-blockers	1.30 (0.98-1.72)	0.07	1.27 (0.98-1.63)	0.06
calcium ion antagonists	1.18 (0.90-1.55)	0.21	1.16 (0.91-1.49)	0.09
ACEI/ARB	0.76 (0.58-0.99)	<0.01	0.77 (0.58-0.90)	<0.01