Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer’s disease

Michael Tran Duong1,2,79, Sandhitsu R. Das3,4,79, Xueying Lyu2, Long Xie1, Hayley Richardson5, Sharon X. Xie4,5, Paul A. Yushkevich1,2,4, Alzheimer’s Disease Neuroimaging Initiative (ADNI)*, David A. Wolk2,3,4✉ & Ilya M. Nasrallah1,2,4✉

Alzheimer’s disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better correlated to neurodegeneration (N). However, T and N have complex regional relationships in part related to non-AD factors that influence N. With machine learning, we assessed heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the Alzheimer’s Disease Neuroimaging Initiative. We identified six T/NM clusters with differing limbic and cortical patterns. The canonical group was defined as the T/NM pattern with lowest regression residuals. Groups resilient to T had less hypometabolism than expected relative to T and displayed better cognition than the canonical group. Groups susceptible to T had more hypometabolism than expected given T and exhibited worse cognitive decline, with imaging and clinical measures concordant with non-AD copathologies. Together, T/NM mismatch reveals distinct imaging signatures with pathobiological and prognostic implications for AD.
Alzheimer’s disease (AD) causes cognitive impairment with substantial between-patient variability in clinical presentation as well as the burden and distribution of pathology. This clinicopathologic heterogeneity is both a challenge and opportunity for systematic, biomarker-based studies to refine our understanding of AD biology, diagnosis and management. AD hallmark pathologies begin with accumulation of amyloid (A) plaques, followed by deposition of tau (T) tangles and subsequent neuronal injury/neurodegeneration (N). A and T aggregates are bound by specialized radiotracers for in vivo positron emission tomography (PET) imaging (such as 18F-Florbetapir for T tangles). N may be assessed via neuronal hypometabolism (NM) with 18F-fluorodeoxyglucose (18F-FDG) PET or structural atrophy (N) with magnetic resonance imaging (MRI). Additional polypathologies contribute to clinical progression in AD, including vascular and inflammatory etiologies, α-synucleinopathy and TAR DNA-binding protein-43 (TDP-43) diseases, many of which do not currently have specific in vivo measures.

To address this complexity and provide a biological, rather than clinical, definition of AD, the National Institute on Aging and Alzheimer’s Association proposed the ATN research framework. These criteria designate the global presence (+) or absence (−) of three AD dimensions: A, T and N. Patients with A+ status are included in the Alzheimer’s continuum while a research diagnosis of AD necessitates both A+ and T+. Consistent with the definition of AD neuropathologic change on autopsy. This model consolidates various pathological interactions in the Alzheimer’s continuum to classify heterogeneous groups by a panel of dichotomized biomarkers. Such categorical approach has already shed light on differential rates of memory decline and clinical risks/outcomes in patients with certain ATN combinations.

Neurodegeneration in AD is largely thought to be driven by T neurofibrillary tangles and neuronal hypometabolism (NM), a relative decoupling of T and NM (NM ~ T), a relatively decoupling of the relationship between T and NM, and subsequent neuronal injury/neurodegeneration (N). A and T aggregates are bound by specialized radiotracers for in vivo positron emission tomography (PET) imaging (such as 18F-Florbetapir for T tangles). N may be assessed via neuronal hypometabolism (NM) with 18F-fluorodeoxyglucose (18F-FDG) PET or structural atrophy (N) with magnetic resonance imaging (MRI). Additional polypathologies contribute to clinical progression in AD, including vascular and inflammatory etiologies, α-synucleinopathy and TAR DNA-binding protein-43 (TDP-43) diseases, many of which do not currently have specific in vivo measures.

To address this complexity and provide a biological, rather than clinical, definition of AD, the National Institute on Aging and Alzheimer’s Association proposed the ATN research framework. These criteria designate the global presence (+) or absence (−) of three AD dimensions: A, T and N. Patients with A+ status are included in the Alzheimer’s continuum while a research diagnosis of AD necessitates both A+ and T+. Consistent with the definition of AD neuropathologic change on autopsy. This model consolidates various pathological interactions in the Alzheimer’s continuum to classify heterogeneous groups by a panel of dichotomized biomarkers. Such categorical approach has already shed light on differential rates of memory decline and clinical risks/outcomes in patients with certain ATN combinations.

Here, we developed a machine learning-based clustering method to identify mismatch between T and NM using symptomatic patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. We posited that mismatch analyses from PET markers of T and NM would reveal imaging signatures of patient groups including a typical or canonical T/NM relationship as well as unique patterns of resilience and susceptibility to T. We hypothesized for a given level of T, susceptible patients with greater than expected NM have worse cognitive decline compared to participants with canonical T/NM relationships, potentially due to more concomitant non-AD pathologies than the canonical group (Fig. 1a). Given that AD autopsy studies reveal widespread prevalence of non-AD copathology, we predicted that some of the dissociation between T and NM is attributable to a spectrum of mixed disease burden. The NM > T scenario may encompass patients with metabolic vulnerability to T along with the presence of non-AD copathologies such as α-synuclein and TDP-43 that contribute to NM independently of T and at levels greater than the canonical group. Moreover, we expected that the canonical group likely has some intermediate amount of mixed disease, while resilient groups may have less copathology and slower cognitive decline.

To this end, we evaluated T/NM mismatch and its relation to clinical features, cognitive progression and supportive evidence for copathologies. Since non-AD pathologies and risk factors are expected to be present in both A+ and A− individuals, we performed post hoc analyses in the whole cohort and A+ or A− groups. Our findings were replicated with a cohort of cognitively normal older adults in the Harvard Aging Brain Study (HABS). Overall, we demonstrate the utility of T/NM mismatch in modeling AD heterogeneity, predicting progression and providing pathophysiological insight for cognitive impairment.

Results

T/NM mismatch defines groups by regional residual patterns. We measured the relationship between T and NM (Fig. 1a) by regressions of 18F-FDG vs. tau standardized uptake value ratios (SUVRs) for each region-of-interest (ROI) and individual. Within our ADNI cohort (n = 289, Supplementary Table 1), clustering on T/NM regression residuals resulted in six groups with sizes ranging from 16 to 89 members. These groups were labeled based on the relative spatial pattern of metabolic resilience or vulnerability to T, which we describe below. As an example, group identity (the cluster to which a participant belongs) was mapped onto graphs for regions such as inferior temporal gyrus (Fig. 1b).

This ROI is involved in early symptomatic stages of AD progression and is a representative of between-group differences in T/NM relationships. We assessed the consistency of our clustering across different visualization methods. A principal component analysis (PCA) (Fig. 1c) and t-distributed stochastic neighbor embedding (t-SNE) method (Supplementary Fig. 1) map the 104 ROI dimensions onto two axes and both corroborated the between-group separation of clusters. A dendrogram visualized the within-group similarity across clustered patients (Fig. 1d). Therefore, the consistency of these groups across several dimensionality reduction methods substantiates this clustering approach.

There was no significant between-group difference in A status. Despite this lack of statistically significant difference, some groups appeared more enriched in A+ individuals, so we covaried by A status, as well as for sex, age, education level and T burden in the inferior temporal gyrus in subsequent omnibus and between-group analyses. There were between-group differences, including significant differences in sex and education, across all participants (Table 1) and specifically among A+ (Table 2) or A− patients (Supplementary Table 2). There were no significant differences in age. The groups had similar average tau SUVRs across all regions; the distribution of individuals with regional T patterns that correspond to AD Braak stages were also similar across groups for all participants (Fig. 2). Hence, these groups likely do not depict distinct stages of AD progression but instead appear to represent unique spatial patterns of the relationship between T pathology and its functional consequences.

Herein, we characterize our six T/NM mismatch groups. The largest group of individuals (89/289) were found close to the regression line across most regions, with the smallest residuals. This canonical group defines the condition where relative NM was statistically commensurate to the level of T (NM ~ T). The other five groups were compared to the canonical group by T/NM residuals in three- and two-dimensional regional maps across all participants (Fig. 2a), visualizing regions where NM is greater or less than what is observed in the canonical group given the T level. Groups derived from clustering all participants showed...
Fig. 1 T/NM mismatch by clustering of the whole cohort. a Schematic of proposed relationship between tau (T) and neurodegeneration (N) by neuronal hypometabolism (N\textsubscript{NM}). b Regression model of 18F-FDG vs. log tau SUVR in the inferior temporal gyrus, a typical tau staging region in AD. Solid line represents the model, with dashed lines denoting standard deviation-based thresholds (n = 289 participants). N\textsubscript{NM} < T denotes points above the line and N\textsubscript{NM} > T depicts points below the line. Circles are A+; Diamonds are A− participants. Source data are provided as a Source Data file. Consistent clustering by T/NM mismatch of all regional and patient residuals is visually demonstrated by (c) principal component analysis and (d) dendrogram.

distinct neuroanatomical patterns; these patterns were similar across subcohorts of A+ patients (Fig. 2b) and A− patients (Supplementary Fig. 3).

There were 3 groups with less N relative to their T level compared to the canonical group (positive residuals), thus classified as resilient to T (Fig. 2). The resilient groups had relative differences in spatial patterns of T/NM mismatch corresponding to prominent regions either throughout the cerebral cortex, termed the cortical resilient groups, or limbic areas, termed the limbic resilient group. Cortical resilient patterns stratified into two groups based on either high or low magnitude residuals. The high cortical resilient group (50/289) had higher T/ N\textsubscript{NM} residuals across most cortical and limbic ROIs compared to the canonical group and was the first group to split in clustering (Fig. 1d). The low cortical resilient group (62/289) had positive residuals throughout the cortex compared to the canonical or limbic resilient groups. While both cortical resilient groups had similar T levels (Supplementary Fig. 2), the high cortical resilient group had greater T/N\textsubscript{NM} residuals (Fig. 2). Both high and low cortical resilient groups had similar distributions of positive residuals but the low cortical resilient group had lower magnitude residuals, especially in limbic structures. The limbic resilient group (16/289) had high positive T/N\textsubscript{NM} residuals localized to the medial temporal lobe (MTL), anterior temporal and orbitofrontal regions compared to the canonical or other resilient groups, while other cortical regions had lower residuals here relative to the canonical group.

Two groups had worse N than typical for their level of T (negative residuals) and were considered susceptible to T (Fig. 2). These groups also had a relative predition for spatial patterns involving predominantly cortical or limbic regions, though these regional distributions were less distinct compared to those in the resilient groups. The cortical susceptible group (47/289) had lower residuals generally in cortical regions, with lesser extent in limbic regions than other groups. The limbic susceptible group (25/289) had a pattern of low residuals in primarily limbic and anterior frontotemporal areas.

T/NM groups have differences in N but not T markers. We evaluated whether clustering in T/N\textsubscript{NM} residuals was generally driven by either tau or 18F-FDG SUVR. Notably, our groups did not significantly vary by T burden (Supplementary Fig. 2), indicating that residual-based clustering was more influenced by between-group 18F-FDG SUVR differences, even after covarying for sex, age, education, A status and T level. Among resilient groups, T/N\textsubscript{NM} residual patterns (Fig. 2) were not linked to regional differences in tau SUVR (Fig. 3a), but rather 18F-FDG SUVR (Fig. 3b). The high cortical resilient group had significantly higher covariate-adjusted 18F-FDG SUVR across several representative regions compared to the canonical and other resilient groups (p’s < 0.005). Significant differences between covariate-adjusted 18F-FDG SUVR in the limbic and low cortical resilient groups matched the group differences in T/N\textsubscript{NM} residuals. Compared to the canonical group, the limbic resilient group had significantly higher 18F-FDG SUVR in MTL structures while the low cortical resilient group had elevated 18F-FDG SUVR throughout the cortex (p’s < 0.005). Likewise, across susceptible groups, there were no regional differences in tau SUVR (Fig. 3c), but instead 18F-FDG SUVR (Fig. 3d). Compared to the canonical group, the limbic susceptible group had lower 18F-FDG SUVR in limbic areas while the cortical susceptible group had worse 18F-FDG SUVR in other cortical regions (p’s < 0.005). Regional resilience and susceptibility patterns across the cohort (Fig. 3a–d) were replicated in subgroups of A+ patients (Fig. 3e–h) and A− patients (Supplementary Fig. 4).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28941-1 | www.nature.com/naturecommunications
Additionally, mean cortical thickness differed among groups (Tables 1 and 2). In the whole cohort, thickness was greater in the low cortical resilient (2.10 mm, \(p = 0.01 \), unadjusted) and high cortical resilient group (2.09 mm, \(p = 0.04 \), unadjusted) compared to the canonical group (1.87 mm).

T/NM clustering shows consistency across internal and external validation. We aimed to internally validate our clustering approach within those participants demonstrating AD pathologic change. We performed clustering on A+ participants only, who overall also demonstrate higher T burden (since 87% of A+ participants were T+). Indeed, groups generated from A+ participants alone resembled groups formed from clustering all participants, in overall patterns and group identity (Supplementary Fig. 5). Then, we compared the robustness of clustering on subsets of 150 randomly selected participants over ten folds. Clustering was stable across folds (Supplementary Fig. 6). About 90% of participants had a match between their original group identity and the group identity endorsed by a majority of folds, while 9% of participants had group identity shift in the same residual direction (such as between high and low cortical resilience). These experiments demonstrate the robustness of our clustering.

Because clustering was similar across A+ and A− cognitively impaired ADNI participants, next we corroborated clustering in the external HABS cohort of cognitively normal older adults with lower levels of A and T pathology (Supplementary Tables 3 and 4). Six T/NM groups were generated from the whole HABS cohort, demonstrating similar regional patterns to those found in symptomatic ADNI participants: canonical, high and low cortical resilience, limbic resilience, cortical susceptibility and limbic-susceptible participants. These results were replicated with additional global cognitive measures (Mini-Mental Status Exam (MMSE) and Clinical Dementia Rating sum of boxes (CDR-SOB)). For cross-sectional assessments, both ADAS-Cog and Dementia Rating sum of boxes (CDR-SOB) were noted between the canonical and low cortical resilient groups (2.10, 2.09 mm, respectively). Though ADAS-Cog slopes in resilient groups did not significantly differ from the canonical group, the high cortical

T/NM groups exhibit different cognitive trajectories. We hypothesized that relative hypometabolism for a given level of T may be associated with differences in cross-sectional and longitudinal cognitive measures. Although T and N markers both strongly associate with cognitive impairment, we predicted that susceptible participants may have additional copathologies contributing to N and leading to greater cognitive decline than predicted by T. We found significant cross-sectional group differences across the cohort for various cognitive tests at the time of 18F-FDG scan even after controlling for covariates such as sex, age, education, baseline cognition, A status and T level (Table 1). In absolute terms, the canonical group had mid-range impaired ADAS-Cog (22.9), while resilient groups had better scores (25.6, 26.0). These results were replicated with additional global cognitive measures (Mini-Mental Status Exam (MMSE) and Clinical Dementia Rating sum of boxes (CDR-SOB)). For cross-sectional covariance-adjusted pairwise comparisons, significant differences were noted between the canonical and low cortical resilient groups on the ADAS-Cog (\(p = 0.0003 \)) and MMSE (\(p = 0.002 \)). Such differences were also seen in the A+ cohort (Table 2).

Then, we compared longitudinal cognitive trajectories by linear mixed effects models with covariates (Fig. 4 and Supplementary Table 5). Across groups, the canonical group had mid-range decline on ADAS-Cog (+0.8 points/year) (Fig. 4a). The resilient groups (high cortical, limbic, low cortical) had the slowest progression on ADAS-Cog (−0.07, +0.6, +0.6 points/year, respectively). Though ADAS-Cog slopes in resilient groups did not significantly differ from the canonical group, the high cortical

Table 1 T/NM mismatch clustering across all participants.

Group	Cognition	ADAS-Cog	CDR-SOB	MMSE	CDR-SOB
MCI/+	27.8 (2.6)	27.8 (2.6)	16.3 (2.6)	7.4 (1.7)	0.001
MCI−/	20.3 (7.6)	17.7 (2.0)	16.3 (2.6)	7.4 (1.7)	0.001
Limbic +	22.9 (8.8)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001
Limbic −	26.0 (8.4)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001
Cortical +	33.5 (5.6)	26.0 (8.4)	16.5 (2.6)	7.4 (1.7)	0.001
Cortical −	32.0 (8.4)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001

Table 2 Mismatch clustering across all participants.

Group	Cognition	ADAS-Cog	CDR-SOB	MMSE	CDR-SOB
MCI/+	27.8 (2.6)	27.8 (2.6)	16.3 (2.6)	7.4 (1.7)	0.001
MCI−/	20.3 (7.6)	17.7 (2.0)	16.3 (2.6)	7.4 (1.7)	0.001
Limbic +	22.9 (8.8)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001
Limbic −	26.0 (8.4)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001
Cortical +	33.5 (5.6)	26.0 (8.4)	16.5 (2.6)	7.4 (1.7)	0.001
Cortical −	32.0 (8.4)	25.1 (3.0)	16.5 (2.6)	7.4 (1.7)	0.001
Table 2 T/N_M mismatch clustering across A+ patients.

Group	MCI/Dem	F/M	Age (y)	Educ (y)	Cognition	Cortical thickness (mm)
High cortical resilient	19/4	11/12	74.5 (6.8)	16.5 (2.5)	22.5 (8.6) 2.0	27.1 (3.4) 2.05
Limbic resilient	5/2	4/3	70.4 (11.5)	15.6 (2.3)	23.5 (9.0) 2.4	24.7 (4.7) 1.95
Low cortical resilient	31/5	20/16	73.4 (7.4)	15.0 (2.1)	20.7 (5.8)** 2.0**	27.1 (2.2)** 2.08**
Canonical	26/23	19/30	75.6 (7.4)	16.6 (3.6)	26.5 (8.4) 3.0	25.6 (3.1) 1.77
Cortical susceptible	14/17	10/21	74.3 (15.6)	15.6 (3.1)	28.4 (8.4) 4.0	24.2 (3.6) 1.78
Limbic susceptible	7/11	11/7	78.8 (5.3)	15.7 (2.2)	28.0 (9.6) 3.3	24.7 (4.4) 1.64
Group p val	0.03	0.01				<0.0001 0.01 <0.05 0.005

Diagnosis (MCI/dementia) and sex (F/M) are in frequencies. Mean (standard deviation) values are shown for age/education (years), ADAS-Cog, CDR-SOB, MMSE, and global cortical thickness (mm). The last row depicts group difference p values by likelihood ratio tests after adjusting for covariates. Significant differences in pairwise comparisons between a non-canonical and canonical group with covariate adjustment are annotated. For pairwise comparisons, ** denotes p < 0.005 after multiple tests adjustment and + denotes p < 0.05 before multiple tests adjustment. Covariates include sex, age, education and inferior temporal gyrus tau SUVR. Sample sizes and p values are listed in Supplementary Data 1.

Fig. 2 Brain maps visualize T/N_M mismatch relationships and spatial patterns.
Three- and two-dimensional renderings of mean T/N_M relation regional residuals are shown for a all participants and b A+ patients. Compared to the canonical (N_M ~ T) group, resilient (N_M < T) and susceptible (N_M > T) groups have limbic vs. cortical involvement (arrowheads). Color scale represents the mean T/N_M residual (in 18F-FDG SUVR). R right, L left, A anterior, P posterior.
resilient group showed less decline on CDR-SOB than the canonical group ($p = 0.04$, uncorrected). In contrast, there was significantly steeper decline on ADAS-Cog in the cortical susceptible ($+2.4$ points/year, $p = 0.002$) and limbic susceptible groups ($+3.9$ points/year, $p < 0.0005$) than the canonical group (Fig. 4a). Significant differences between canonical and susceptible trajectories were also found for CDR-SOB and MMSE (Fig. 4b,c). Among A+ participants (Fig. 4d–f) and A− patients only (Supplementary Fig. 8), between-group differences in cognitive progression rates were comparable to the whole cohort.

Akin to cognitively impaired ADNI participants, cognitively normal HABS participants had a significant group difference in...
Fig. 4 Differential cognitive decline based on T/NF mismatch. Longitudinal cognitive trajectories differ by group identities among (a-c) all participants and (d-f) A+ participants. Decline rates are shown for (a, d) AD Assessment Scale Cognitive 13 item (ADAS-Cog, higher score is worse), (b, e) Clinical Dementia Rating Sum of Boxes (CDR-SOB, higher is worse) and (c, f) Mini-Mental Status Exam (MMSE, lower is worse) by linear mixed effects models with amyloid status, baseline score, education, sex, age and T level as covariates. Lines show the mixed effect model and error bands show ±1 propagated standard error. Significant differences in pairwise comparisons of cognitive decline between a non-canonical and canonical group by linear mixed effects analysis with multiple test (Benjamini–Hochberg) adjustment are denoted as *p < 0.05, **p < 0.005. + denotes p < 0.05 before multiple test adjustment. Sample sizes and p values are provided in Supplementary Data 1. Source data are provided as a Source Data file.
cross-sectional MMSE ($p = 0.008$) (Supplementary Table 4). On MMSE, groups corresponding to T/N_M susceptibility had significantly lower baseline scores. Together, our data suggests that the decoupling of T and N_M may relate to factors affecting cognitive outcomes in both symptomatic and asymptomatic individuals across the distribution of T level.

Exploratory analysis of copathology factors driving T/N_M mismatch. Since susceptible groups had greater N than expected given their T and faster cognitive progression, we considered potential roles of copathology in driving advanced N (Fig. 5a). The cortical and limbic susceptible groups had significantly greater number of vascular clinical risk factors than the canonical group ($p = 0.0003$, $p = 0.04$, respectively) (Fig. 5b). The limbic susceptible group had significantly higher average subcortical infarct burden than the canonical group ($p = 0.04$) (Fig. 5c). White matter hyperintensity (WMH) volumes were higher in susceptible groups compared to the canonical group though such trends were not significant (Supplementary Fig. 9A). We also explored APOE, a gene harboring a common variant linked to dementia. APOE4 risk allele frequency was higher in the susceptible groups than other groups but not significantly different than the canonical group (Supplementary Fig. 9B).

Next, we studied how mixed proteinopathies may contribute to susceptible groups. While there are no definitive imaging or cognitive markers for the presence of α-synuclein or TDP-43, we assessed the consilience of several suggestive imaging and...
cognitive tests to provide some indication for what additional copathologies may be present in the setting of T/NM mismatch.

We tested imaging and clinical markers of α-synuclein (Lewy body) pathology in the cortical susceptible group. A well-studied, potential indicator of Lewy Body Disease (LBD) is the cingulate island sign in the posterior cingulate cortex relative to precuneus and cuneus. There was significantly higher cingulate island ratio in the cortical susceptible group compared to the limbic susceptible and canonical groups ($p < 0.005$, Fig 5a). Differences were also significant in A+ and A− cohorts. We also assessed cognitive features linked to LBD, such as visuospatial impairment17. Compared to the canonical group, the cortical susceptible group had significantly worse copathology-adjusted Clock Drawing scores ($p = 0.03$) and other visuospatial markers (Fig 5e and Supplementary Fig. 9C) and trended toward higher proportion of patients with hallucinations on the Neuropsychiatric Inventory (NPI) and worse visuospatial z-scores (Fig 5f, g). Thus, these imaging and cognitive results suggest potential α-synuclein pathology in the cortical susceptible group.

We analyzed the possibility of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) copathology in the limbic susceptible group given a pattern of severe anterior temporal/MTL hypometabolism relative to T (Figs 2 and 5a). We utilized the I/MTL/FSO ratio, defined as worse MTL and frontal supraorbital (FSO) hypometabolism relative to inferior temporal gyrus (I). Higher I/MTL/FSO ratio signifies worse MTL hypometabolism and correlates to LATE in clinicopathologic studies. The limbic susceptible group had significantly higher MTL asymmetry in 18F-FDG SUVR and thickness (Fig 5i, j). We further evaluated memory phenotypes linked to LATE compared to the canonical group, the limbic susceptible group had worse semantic memory with significant copathology-adjusted differences in category fluency ($p = 0.02$) (Fig 5k), Multilingual Naming Test ($p = 0.008$) (Supplementary Fig. 9D) and ADNI domain z-scores for language and memory ($p's < 0.05$) (Fig 5l, m). These imaging and cognitive profiles imply possible TDP-43 pathology in the limbic susceptible group.

Overall, these findings suggest that symptomatic susceptible groups had more copathology-related factors than the canonical group. Cognitively normal groups resembling T/NM susceptible patterns in the HABS cohort also demonstrate copathology-adjusted biomarker elevations consistent with greater non-AD pathology (Supplementary Fig. 10). When we evaluate the same biomarkers of copathology in the resilient groups, we generally observed less evidence of mixed pathology burden than the canonical group, particularly the cingulate island ratio as well as I/MTL/FSO ratio and MTL thickness asymmetry (Supplementary Fig. 11). Overall, non-AD pathology biomarkers convey higher burden in susceptible groups and lower burden in resilient groups compared to the canonical group, indicating that relative levels of mixed copathologies contribute to T/NM mismatch and that canonical patients have some degree of copathology concordant with their commonality in autopsy series.

Discussion

We leveraged paired tau and 18F-FDG PET studies to assess the in vivo dissociation of T and N M relationships in cognitively impaired individuals in the ADNI dataset. Clustering identified six groups of patients, including a canonical group that defines the expected relationship between T and N M (N M ≈ T) and additional groups that were either more resilient (N M < T) or susceptible (N M > T) to T, defined by less or greater N M than expected for a given level of T, respectively. We also clustered residuals from the T/NM relationship across ten folds on random subsets of participants, and with A+ participants only, which did not impact overall clustering. Groups resembling our six T/NM groups in symptomatic ADNI participants appeared in the asymptomatic HABS cohort, further validating the spatial patterns presented here.

Our T/NM groups had significant differences in 18F-FDG and not tau SUVR at a group level (Fig 3). This fact does not necessarily signify that T/NM clustering was solely driven by 18F-FDG, but rather that clustering depends on variation in 18F-FDG relative to tau SUVR at an individual level. Certain participants can be identified with similar cortical 18F-FDG SUVR, but vastly different tau SUVR. For instance, a patient with high tau SUVR may have lower N M (more metabolism) than expected given their level of T and may be placed in the low cortical resilient group, whereas a patient with low tau SUVR may have higher N M (less metabolism) than expected given their T and may fall in the cortical susceptible group. Compared to clustering on just N M, T/NM clustering enables regional and relative comparisons of N M given a level of T and promotes the evaluation of factors beyond AD stage or pathology that may not be captured from N M alone.

Relative to the canonical group, the resilient groups had better baseline cognitive scores whereas susceptible groups had faster cognitive decline over time. Metabolic and cognitive phenotypes in the T/NM resilient and susceptible groups were shared across A+ and A− cohorts. The observations of impaired cognition and hypometabolism in A− susceptible groups strengthen the notion that factors influencing the T/NM relationship in AD (like copathology) are also present in non-AD symptomatic patients. In other words, the A+ group may reflect AD plus additional factors, including copathologies, whereas the A− group may have these non-AD factors alone affecting this clustering. Our results support the use of T/NM mismatch as a complement to direct measures of ATN biomarkers to study disorders of AD and non-AD pathology.

It is important to note that T/NM groups also differed with regard to cortical atrophy (Tables 1 and 2). Since N S and N M are linked, it is reasonable to predict that T/N S and T/N M relationships are also associated. Indeed, clustering with T/N S approaches yields groups with relative resilience or vulnerability to T25. The median regional correlation coefficient between T/N S and T/N M residuals was 0.29, suggesting that while T/N S and T/N M relationships are similar, they may provide some unique information. For example, metabolism may be more sensitive to Lewy body pathology than structure18,19. Likewise, metabolism may reflect aspects of functional reserve and synaptic activity not captured by structural markers while, alternatively, structure may be less affected by non-disease related functional variability than metabolism. Thus, it is likely the case that T/N S and T/N M mismatch each offer complementary, yet unique characterizations.

Intriguingly, both resilient and susceptible groups appeared to divide along patterns roughly involving either limbic or cortical regions. Several studies demonstrate similar spatial separation. For example, heterogeneity in either T or N alone has been examined by regional involvement and disease trajectories. Here, we investigate the variability in relationships between T and N M biomarkers with an integrative approach that evinces consistent patterns of neuroimaging and cognitive measures within the disentangling of N M relative to T. To some extent, this dividing line between limbic vs. cortical involvement perhaps parallels the dissociable MTL networks described by29–32. This previous work supports the existence of the anterior temporal network, most akin to the limbic regions described here, and a
posterior-medial network that largely conforms to the default mode network. Prior research has also suggested differential changes within these networks across the AD continuum.39,33,34 Non-AD pathologies, such as TDP-43, might also split along this anterior-posterior axis.35 Though we observed two cortical resilient groups (high and low), it is unclear what factors beyond metabolism distinguish high and low cortical resilience. These T/NM differences were enough for these groups to strongly cluster separately since the high cortical resilient group was the first group to separate in terms of dendrogram distance (Fig. 1d). That said, these two groups may reflect a continuum of cortical resilience. Together, our findings may indicate differentially connected networks harbor not only dissociable vulnerabilities to accumulation of different pathologies, but also relative resiliencies to these pathological states.

We probed several factors that may influence the link between T and NM, including association of surrogate markers for three copathologies (vascular disease, \textalpha-synuclein and TDP-43). While our groups did not differ in mean tau SUVR burden or inferred Braak stage distribution (Fig. 3 and Supplementary Fig. 2), they did separate in terms of cognitive profiles, progression, and copathology-associated markers, suggesting that non-AD pathologies contribute to the dissociation of T and NM and, thus, to the cognitive trajectory beyond Braak stage. In fact, longitudinal group differences were found even when covarying for baseline tau SUVR, which further suppresses effects of AD severity. Other aspects of resilience or vulnerability outside copathology also may influence outcomes beyond Braak staging. To this point, there was evidence of greater burden of vascular disease, a common copathology in AD,3 in the susceptible patients, suggesting that the elevated levels of cerebrovascular disease compared to the canonical group are a factor in their relative vulnerability.

AD can present with multiple proteinopathies, including \textalpha-synuclein18 and TDP-43 inclusions.23 While there are not yet well-established biomarkers for these pathologies, 18F-FDG PET studies have provided patterns probabilistically related to both entities.19–22 We emphasize that this analysis was exploratory and requires further comprehensive validation. The cortical susceptible group harbored higher cingulate island ratio and worse visuospatial processing and trended toward greater frequency of episodic memory impairment associated with TDP-43 pathology.36–38 The limbic susceptible group had the worst categorical and naming fluency. While these features are correlative and not comprehensive, the convergence of imaging, cognitive and clinical evidence support a potential contribution of copathology to susceptible groups with greater hypometabolism than expected given their level of T.

Resilience and susceptibility as defined here by NM > T and NM < T, respectively, may be thought of as a combination of separate yet related factors, including relative levels of copathology and factors that directly influence the neuronal and glial responses to T pathology. Currently, it is more straightforward to assess the former, but the latter may reflect intrinsic resilience or vulnerability to T, perhaps related to genetic/epigenetic factors. Our copathology analyses suggest that susceptible groups have mixed cognitive impairment with more evidence of copathologies than the canonical group to contribute to hypometabolism not accounted for by T alone. Given the frequency of mixed disease on autopsy,16 non-AD pathologies may represent an orthogonal axis along which canonical groups have intermediate levels of copathology, while resilient and susceptible groups have less or more mixed pathology, respectively (Fig. 5 and Supplementary Fig. 11). In the context of AD, these copathologies may be synergistic as non-AD proteinopathies can influence how neurons and glia respond to T.39–42 Additional differences in non-disease related genetic, lifestyle and environmental factors also decouple the T/NM relationship, representing attributes that affect how neurons respond to injury perhaps related to or distinct from copathology. The metabolic and cognitive profiles in resilient and susceptible groups were shared across A+ and A−cohorts and in symptomatic and asymptomatic patients. The observations of similar patterns of T/NM mismatch and impaired cognition between A+ and A−susceptible groups are expected, as factors influencing the T/NM relationship in AD may also be present in non-AD symptomatic patients. Given current constraints of in vivo biomarkers, autopsy data must confirm these hypotheses regarding specific copathology.

The study had several limitations. First, neuropathological validation is important for this work, but currently no datasets with tau PET, 18F-FDG PET and autopsy were available to us. Analyses in symptomatic individuals were performed on one cohort (ADNI) which includes multiple sites but with well-established data harmonization methods. Given the ADNI inclusion/exclusion criteria, this sample may not be representative of the broader population of cognitively impaired patients that harbor more mixed pathology, particularly vascular disease. A more heterogeneous sample might show more phenotypes/groups. However, the HABS dataset offers corresponding evidence of T/NM dissociation patterns in cognitively normal older adults known to harbor significant regional relationships between tau and 18F-FDG PET.42 Notably, these similar T/NM groups arose with use of two distinct processing methods (ANTs for ADNI data and FreeSurfer for HABS data), indicating robustness of clustering to specific processing pipelines. Despite this, the separation of susceptible groups by imaging and cognitive factors associated with copathology highlight the non-trivial amount of copathology in ADNI participants. To this point, autopsy study of an ADNI subset demonstrated that \textalpha-synuclein and TDP-43 polypathology are frequently present in ADNI patients and correlate with antemortem imaging markers.16 The canonical group is a statistical designation and does not quantify the absolute amount of AD vs. non-AD pathology. However, the canonical group does provide a relative benchmark for the population. While there was not much available data to study resilience-related factors, our initial analysis of resilient and susceptible groups supports the continued search for genetic, epigenetic and pathophysiological features that influence these relationships. Note that resilient groups had significantly higher APOE2 carrier frequency and the susceptible groups trended toward higher APOE4 frequency, though these differences were not seen after adjusting for A status (Supplementary Fig. 9B). Investigations into additional AD-associated features, such as glial and immune cell-mediated inflammation as well as blood brain barrier dysfunction, may also be warranted.4,43,44

Despite these limitations, the T/NM mismatch approach may hold utility for biomedical research, specifically allowing clinical trials to measure heterogeneity across the Alzheimer’s continuum. For instance, the group of NM > T susceptible patients may have mixed pathologies, which could reduce study power and complicate the assessment of investigational treatments designed to target single pathways. Consequently, future trials for anti-amyloid or anti-tau therapies might intentionally recruit patients or stratify findings based on T/NM groups.

Overall, we define PET-based T/NM mismatch measurements to evaluate the varying relationships of neuronal metabolism to T pathology in participants with cognitive decline. Dissociation in
the T/NM relationship demonstrates distinct groups with some showing resilience and others depicting susceptibility to T in terms of regional distributions of hypometabolism, cognition and pathological factors. T/NM mismatch provides a quantitative spatial approach to assess neuroanatomical patterns of metabolic states affected by T pathology. This may improve our understanding of the biology and prognostication of subgroups in the Alzheimer’s and non-AD continuums. Additional studies may elucidate the heterogeneity of cellular metabolic responses to AD features as a step toward the successful implementation of precision medicine in AD.

Methods

Patient cohort. From the ADNI cohort database (http://adni.loni.usc.edu), we included participants with a 18F-flortaucipir (tau) PET and 18F-FDG PET performed within 1 year of each other, along with a measure of amyloid (A) status and a MRI scan (within about 1 year of PET scans). Of these, 289 participants with a diagnosis of mild cognitive impairment (MCI) or dementia were found. Evaluation of A status utilized 18F-flortaucipir (n = 182) or 18F-florbetaben (n = 105) amyloid PET or Eccoli cerebrospinal fluid (CSF) Aβ assay (n = 2). Median time between 18F-FDG vs. tau PET in the cohort was 12 days. Stratification by A was based on Aβ positivity in the ADNI cohort (n = 164) and those with likely non-AD (n = 125) pathology. Additional cohort details are listed in Supplementary Table 1. In the cognitively normal HABS cohort (data release 2.0; https://habs.mgh.harvard.edu/)45, we included 115 participants with tau PET. 18F-FDG PET, 11C-Pittsburgh compound B (amyloid) PET and MRI with the same criteria as above. Median time between 18F-FDG vs. tau PET in the HABS sample was 105 days (63% of cases within 5 months). See details in Supplementary Table 3. For the ADNI data, human subjects approval was obtained by the ADNI investigators to compile with the Institutional Review Board; a complete listing of ADNI sites is provided at the end of the article file. All ADNI participants provided written informed consent. ADNI data was accessed according to the policies of the ADNI data sharing and publications committee. For the HABS data, HABS protocols were approved by the Partners Human Research Committee, the Institutional Review Board for the Massachusetts General Hospital and Brigham and Women’s Hospital, and all participants gave informed consent. HABS data was accessed according to the policies of the HABS data committee.

Imaging data. Post-processed PET images from the ADNI data archive (http://adni.loni.usc.edu/data-samples/access-data/) were obtained46. Tau PET imaging was original performed using the ADNI protocol with 30-min brain scans (six 5-min frames) starting 75 min after intravenous administration of ~10.0 mCi 18F-Flortaucipir. 18F-FDG PET imaging consisted of a 30-min scan (six 5-min frames) at 30 min after 5.0 mCi 18F-FDG injection. For amyloid PET, a 20-min brain scan (four 5-min frames) was performed 50 min after ~10.0 mCi 18F-Florbetapir or 90 min following ~8.1 mCi 18F-Florbetaben injection. Processed PET images with uniform isotropic resolution (8 mm full-width-at-half-maximum) were obtained. All ADNI PET images used in this publication were obtained from the ADNI database archive described in Supplementary Note 2. Post-processed PET images were generated in SPM12 and 3D Slicer. PET images were aligned in 3D space and processed using the ANTs (v2) pipeline47 for inhomogeneity correction, brain extraction, template Size, Uniform Resolution. ADNI MRI included a T1-weighted structural scan (ADNI_UCD_WMTH_DICT_09_01_20, accessed 1/2021). Apolipoprotein E (ApoE) e4 allele frequency was analyzed (APOE2, accessed 7/2021). In follow-up analyses, we calculated 18F-FDG PET measures which are thought to map to different non-AD pathologies. The cerebellar island sign represents metabolic sparing of posterior cingulate cortex relative to precuneus and cuneus and has been associated with a synuclein pathology. It was quantified as the ratio of posterior cingulate/precuneus/cuneus 18F-FDG SUVR; higher cingulate SUVR ratio is linked to α-synucleinopathy19,20. The presence of TDP-43 pathology has been associated with reduced TMTL and FSOG SUVRs in frontal and temporal lobes (I). The UMTL/FSO ratio was calculated as the ratio of inferior temporal gyrus/MTL/ECOgyrus SUVR. Higher UMTL/FSO ratio is associated with TDP-43 disease11,22. An MTL asymmetry index was calculated as [left−right]−(left−right) for 18F-FDG SUVR and cortical thickness as23 an additional potential marker of TDP-43 pathology2.

Statistical analysis. Statistical analysis was performed in R (v4.0.5). All statistical tests were two-sided. Comparisons for variables such as cognition or tau and 18F-FDG SUVRs were performed with likelihood ratio tests by linear regression. Covariates included sex, age, education, amyloid status (A+/A−) and tau SUVR in the inferior temporal gyri, a region where T correlates with disease severity3,17. Multiple test adjustment by Benjamini–Hochberg correction with false discovery rate (FDR) was conducted for pairwise comparisons with the canonical group. Box plots show the data points as dots, mean as an X symbol, median as the middle box line, first quartile (Q1) and third quartiles (Q3) as box edges (denoting the

Definition of regional T/NM mismatch by clustering. Spatial patterns of T/NM mismatch were investigated by clustering of the residuals on a regression model of 18F-FDG vs. tau SUVR. Robust linear regressions of individual 18F-FDG SUVR vs. a log transform of tau SUVR (to ameliorate effects of a skewed distribution of T) across all patients were performed in each of the 104 gray matter ROIs (Fig. 1) to yield T/NM mismatch residuals (in units of 18F-FDG SUVR). A bi-square weighting function minimized the influence of outliers in robust regression. To attempt to identify the effect of outliers on clustering regression residuals for tau ROI and individual were discretized into a vector based on whether the residual was greater than 0.6 SD from the regression line (a cutoff that identifies the farthest ~25% of points above or ~25% of points below the regression line) and if the residual was negative or positive, generating an array of 104 ROIs across 289 participants where each entry was −1, 0, or 1. Discretized residuals were inputs for Ward’s agglomerative hierarchical clustering48 with the hclust and cluster packages on R (v4.0.5) to create T/NM mismatch groups. The number of clusters was selected by elbow and silhouette analysis9, which both suggested that k = 6 clusters optimizes within-cluster similarity. These methods did not agree on lower values, which would appear to capture much broader variation in T/NM mismatch. Dimensionality reduction on discretized residuals was performed by PCA (Fig. 1) and t-SNE (Supplementary Fig. 1A). Regional mean residuals were visualized in cohort-based heatmaps, brain maps and three-dimensional renderings by ITK-SNAP49 and MRicroGL50. Clustering validation was performed across 10-folds of 10 randomly selected ADNI participants, which showed stable group patterns and identities.

Cognitive evaluation. ADNI and HABS performed cognitive testing using unified methodologies (accessed 8/2021 and 11/2021, respectively). We selected cognitive testing sessions closest to the 18F-FDG scan along with longitudinal follow-up testing. Global measures included AD Assessment Scale-Cognition 13 item (ADAS, higher score is worse)51, Clinical Dementia Rating sum of boxes (CDR-SOB, higher is worse)52 and Mini-Mental Status Exam (MMSE, lower is worse)53. Exploratory analysis was pursued with additional measures based on mismatch group findings and included the use of the Clock Drawing Test54, NPI56 item B for proportion of patients with hallucinations after scan, ADNI z-scores for visuospatial, language and memory domains57,58, categorical fluency of animals59, Everyday Cognition test60 and Multilingual Naming Test61.

Exploratory assessment of features associated with brain copathologies. Available vascular risk factors assessed at initial medical history were obtained from ADNI (INTIHEALTH, accessed 4/2021), including presence of hypertension, hyperlipidemia, type 2 diabetes, arrhythmia, cerebrovascular disease, endovascular management of head/neck vessels, coronary artery disease (angina or acute coronary), interventional coronaries (sten, bypass graft), heart failure, structural heart defects and peripheral artery disease. Number of subcortical infarcts (>3 mm in size) were centrally measured from MRI scans22 performed up to 18F-FDG scan (MRI INFARCTS_01_29_21, accessed 4/2021). Infarcts mostly localized to cerebral white matter, basal ganglia and cerebellum. White matter hyperintensity (WMH) volumes were measured from ADNI analysis of FLAIR MRIs73 (ADNI_UCD_WMH_DICT_09_01_20, accessed 1/2021). Apolipoprotein E (APOE) e4 allele frequency was analyzed (APOE2, accessed 7/2021).
interquartile range, IQR), whiskers as the minimum/maximum points and outliers based on thresholds $Q1 - 1.5(IQR)$ or $Q3 + 1.5(IQR)$. Exploratory analyses (such as for copathology biomarkers) were also performed without multiple test adjustment. Genotype frequency comparisons were performed with χ^2 tests. Longitudinal cognitive trajectories were assessed with linear mixed effects models to account for participant-specific random intercepts with baseline cognitive score at scan, time from scan, cluster and cluster*time interaction as independent variables and sex, age, education and A status as covariates. Slopes of annual cognitive change for each cluster were defined as the sum of the time from scan slope and cluster*time interaction slope. Differences in decline rates were assessed by significance of the slope of the cluster*time interaction.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The raw and processed data including the participant scans and spreadsheets described above are available on the data archives of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu) and the Harvard Aging Brain Study (https://habs.mgh.harvard.edu/). Supplementary Material is available online. Additional information can be provided by the authors upon reasonable request. Source data are provided with this paper.

Code availability

Relevant code can be found at: http://stnava.github.io/ANTs/. This includes links to scripts on brain extraction (https://github.com/ANTsX/ANTs/blob/master/ImageSegmentation) and segmentation (https://github.com/ANTsX/ANTs/tree/master/ImageRegistration) and registration (https://github.com/ANTsX/ANTs/tree/master/Tree/master). Additional information can be provided by the authors upon reasonable request.

Received: 14 September 2021; Accepted: 11 February 2022; Published online: 21 March 2022

References

1. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr 64, 146–148 (1907).
2. Fischer, O. Militære Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmäßige Veränderung der Hirnrinde bei seniler Demenz. Monatschr Psychiatr Neurol 22, 361–372 (1907).
3. Jack, C. R. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
4. De Strooper, B. & Karran, E. The cellular phase of Alzheimer’s disease. J. Patol 223, 1–15 (2010).
5. Keleman, A. et al. Falls associate with neurodegenerative changes in Alzheimer’s disease. Neurology 85, e23–e34 (2020).
6. Cousins, K. A. Q. et al. ATN status in amnestic and non-amnestic Alzheimer’s disease. Neurology 95, e1301–e1311 (2020).
7. La Joie, R. et al. Prospective longitudinal atrophy in Alzheimer’s disease. Brain 142, 1503–1527 (2019).
8. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies fourth consensus report of the DelB consortium. Neurology 89, 1–13 (2017).
9. Teipel, S. J., Fritz, H.-C. & Grothe, M. J. for the Alzheimer’s Disease Neuroimaging Initiative. Neuropathological features associated with baseline amyloid-pet positivity in Alzheimer’s disease. Neurology 95, e1301–e1311 (2020).
10. Maass, A. et al. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. Neuroimage 157, 448–463 (2017).
11. Hammond, T. C. et al.利腰elin and Tau pathology in PD-MCI: an analysis of copathology with MRI hypoperfusion. Brain 144, 153–155 (2021).
12. Buc, K. et al. Utility of FDG-PET in diagnosis of Alzheimer-related TDP-43 proteinopathy. Neurology 85, e23–e34 (2020).
13. Botha, H. et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 141, 1201–1217 (2018).
14. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).
15. Lew, C. J. et al. 11C-FCWAY and 11C-FDG PET in MRI negative temporal lobe epilepsy. Epilepsia 52, 234–239 (2009).
16. Das, S. R. et al. Tau- atrophic variability reveals phenotypic heterogeneity in Alzheimer’s disease. Ann. Neurol. 90, 751–762 (2021).
17. Vogel, I. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021).
18. Young, A. L. et al. Examining the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat. Commun. 9, 4273 (2018).
19. Junior, F. S. et al. FAS-700303 ameliorates tau and amyloid elevations in an AD transgenic mouse model. Cell 192, 1452–1465 (2022).
20. Wiepert, D. A. et al. A robust biomarker of large-scale network failure in Alzheimer’s disease. Alzheimers Dement. 6, 152–161 (2017).
21. Berron, D., van Westen, D., Ossenkoppele, R., Strandberg, O. & Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143, 1233–1248 (2020).
22. Botha, H. et al. FDGPET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 141, 1201–1217 (2018).
23. Berron, D., van Westen, D., Ossenkoppele, R., Strandberg, O. & Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143, 1233–1248 (2020).
24. Maass, A. et al. Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain 142, 2492–2509 (2019).
25. de Flores, R. et al. Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer’s disease. Alzheimers Dement. 16, 843–852 (2020).
26. Wilson, R. S. et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 70, 1418–1424 (2013).
27. Josephs, K. A. et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 127, 441–450 (2014).
28. Nas, S. et al. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol. Commun. 6, 33 (2018).
29. Robinson, J. et al. The development and convergence of copathologies in Alzheimer’s disease. Brain 144, 953–962 (2021).
30. Colom-Cadena, M. et al. Confluence of a-Synuclein, Tau, and β-amyloid pathologies in dementia with Lewy bodies. J. Neuropathol. Exp. Neurol. 72, 1203–1213 (2013).
31. Latiomer, C. S. et al. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical tau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun. 7, 91 (2019).
32. Hanseuew, B. et al. Fluoroexoxyglucoside metabolism associated with tau-amyloid interaction predicts memory decline. Ann. Neurol. 81, 583–596 (2017).
33. Duong, M. T. et al. Astrocyte activation imaging with 11C-acetate and amyloid PET in mild cognitive impairment due to Alzheimer pathology. Nucl. Med. Comm. 2021. https://doi.org/10.1093/NMN/100000000000001460 (2021).
34. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).
35. Bagley, A. et al. Harvard aging brain study: dataset and accessibility. Neuroimage 144, 255–258 (2017).
36. Das, S. et al. Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake. Neurobiol. Aging 66, 49–58 (2018).
37. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
38. Das, S. R., Avants, B. B., Grossman, M. & Gee, J. C. Registration based cortical thickness measurement. Neuroimage 45, 867–879 (2009).
49. Tustison, N. J. et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. *Neuroimage* **99**, 166–179 (2014).

50. Wang, H. et al. Regression-based label fusion for multi-atlas segmentation. *IEEE Conf. Comput. Vis. Pattern Recognit. Work* **20**, 1113–1120 (2011).

51. Landman, B. & Warfield, S. MICCAI 2012 workshop on multi-atlas labeling. *Medical Imaging Computing and Computer Assisted Intervention MICCAI* (Springer, 2012).

52. Sapiro, G. Hierarchical organization of tau and amyloid deposits in the cerebral cortex. *JAMA Neurol.* **74**, 813–820 (2017).

53. Kimura, N. et al. Association of modifiable lifestyle factors with cortical amyloid burden and cerebral glucose metabolism in older adults with mild cognitive impairment. *JAMA Neurol.* **64**, 70–77 (2017).

54. Jack, C. R. et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. *Neuroimage* **99**, 166–179 (2014).

55. Landman, B. & Warfield, S. MICCAI 2012 workshop on multi-atlas labeling. *Medical Imaging Computing and Computer Assisted Intervention MICCAI* (Springer, 2012).

56. Landau, S. M. et al. Amyloid-β PET and predict clinical progression: a study of fully automated immunomaps in BioFINDER and ADNI cohorts. *Alzheimers Dement.* **14**, 1470–1481 (2018).

57. Maass, A. et al. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. *Neuroimage* **157**, 448–463 (2017).

58. Ward, J. H. Hierarchical grouping to optimize an objective function. *J. Am. Stat. Ass.* **58**, 236–244 (1963).

59. Thorndike, R. L. Who belongs in the family? *Psychometrika* **18**, 267–276 (1953).

60. Yushkevich, P. A., Piven, J. & Hazlett, H. C. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. *Neuroimage* **31**, 1116–1128 (2006).

61. Rorden, C. & Brett, M. Stereotaxic display of brain lesions. *Behav. Neurol.* **12**, 191–200 (2000).

62. Mohs, R. C. et al. Development of cognitive instruments for use in clinical trials of antideementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. *Alz. Dis. Assoc. Dis. Di.* **11**, S13–S21 (1997).

63. O’Byrant, S. E. et al Staging dementia using clinical dementia rating scale sum of boxes scores: a Texas Alzheimer’s Research Consortium Study. *Arch. Neurol.* **65**, 1091–1095 (2008).

64. Folstein, M. F., Folstein, S. E. & McHugh, P. R. Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. *J. Psychiatr. Res.* **12**, 189–197 (1975).

65. Critchley, M. The Parietal Lobes (The Williams and Wilkins Company, 1953).

66. Cummings, J. L. ed. The Neuropsychiatry of Alzheimer’s Disease and Related Dementias. (Martin Dunitz, 2003).

67. Choi, S.-E. et al. Development and validation of language and visuospatial composite scores in ADNI. *Alzheimers Dement.* **6**, e12072 (2020).

68. Crane, P. K. et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), *Brain Imaging Behav*. **6**, 502–516 (2012).

69. Henley, N. M. A psychological study of the semantics of animal terms. *J. Verbal Learn. Verbal Behav.* **8**, 176–184 (1969).

70. Tomaszewski Farias, S. et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. *Neuropsychology* **22**, 531–544 (2008).

71. Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I. & Cera, C. M. Self-ratings of spoken language dominance: a multi-lingual naming test (MINT) and preliminary norms for young and aging Spanish-English bilinguals. *Bilingualism* **15**, 594–615 (2012).

72. DeCarli, C. et al. Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. *Neurobiol. Aging* **26**, 491–510 (2005).

73. Fletcher, E., Singh, B., Harvey, D., Carmichael, O. & DeCarli, C. Adaptive image segmentation for robust measurement of longitudinal brain tissue change. *Proc. Annua. Int. Conf. IEEE Eng. Med. Biol. Soc.* **2012**, 5319–5322 (2012).

Acknowledgements

This work presented in this manuscript was funded by the University of Pennsylvania Alzheimer’s Disease Core Center grant (National Institute on Aging P30 AG072979). The authors thank our lab members for helpful discussions and the ADNI/HABS investigators, staff, participants and families for their support. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A listing of ADNI consortium investigators can be found at the end of the article. Data collection and sharing for the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was funded by the National Institutes of Health (NIH U01 AG024944) and the Department of Defense (DOD ADNI award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: AbbVie; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Aradon Biotech; Bioclinica, Inc.; Biogen; Bristol-Myers Squibb Company; Ceretrip, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; Eurofirmsm; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Luminost; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health [www.fnih.org]. The ADNI grantee organization is the Northern California Institute for Research and Education and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuroimaging at the University of Southern California. Additional data used in the preparation of this article were obtained from the Harvard Aging Brain Study ([HABS—P01AG036694]; https://habs.mgh.harvard.edu). HABS was launched in 2010, funded by the National Institute on Aging, and is led by principal investigators R.A.S., MD and K.A.J., MD at Massachusetts General Hospital/Harvard Medical School in Boston, MA.

Author contributions

M.T.D., S.R.D., D.A.W. and I.M.N. conceptualized the study and developed the methods. M.T.D., S.R.D., X.L. and P.A.Y. processed the data. M.T.D. analyzed the data with statistical assistance from H.R. and S.X.X. M.T.D. wrote the initial manuscript with input and feedback from S.R.D., D.A.W. and I.M.N. M.T.D., S.R.D., D.A.W. and I.M.N. interpreted the findings. All authors revised the manuscript and provided critical feedback. D.A.W. and I.M.N. supervised the study.

Competing interests

D.A.W. reports grants from Merck, Biogen, Eli Lilly/Avid and additional fees from GE Healthcare, Functional Neuromodulation and Neuroxion, all outside of this work. I.M.N. reports fees from Biogen outside this work. All remaining authors have no disclosures to report.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28941-1. Correspondence and requests for materials should be addressed to David A. Wolk or Ilya M. Nasrallah.

Peer review information *Nature Communications* thanks Clifford Jack, Ivan Keychev, Niklas Mattsson-Carlsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022
Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Michael Weiner6, Paul Aisen7, Ronald Petersen8, Clifford R. Jack Jr8, William Jagust9, John Q. Trojanowski10, Arthur W. Toga11, Laurel Beckett12, Robert C. Green13, Andrew J. Saykin14, John C. Morris15, Leslie M. Shaw10, Enchi Liu16, Tom Montine17, Ronald G. Thomas7, Michael Donohue7, Sarah Walter7, Devon Gessert7, Tamie Sather7, Gustavo Jimenez-Maggiora7, Danielle Harvey12, Matthew Bernstein8, Nick Fox18, Paul Thompson11, Norbert Schuff6, Charles DeCarli12, Bret Borowski8, Jeff Gunter8, Matt Senjem8, Prashanthi Venmuri8, David Jones8, Kejal Kantarci8, Chad Ward8, Robert A. Koepp19, Norm Foster20, Eric M. Reiman21, Kewei Chen21, Chet Mathis22, Susan Landau9, Nigel J. Cairns15, Erinn Householder11,15, Lisa Taylor-Reinwald15, Virginia M-Y Lee10, Magdalena Kereczka10, Michal Figurski23, Karen Crawford11, Scott Neu11, Tatiana M. Foroud14, Li Shen10,14, Kelley Faber14, Sungeun Kim14, Kwangsik Nho14, Zaven Khachatourian24, Richard Frank25, Peter J. Snyder26, Susan Molchan27, Jeffrey Kaye28, Joseph Quinn28, Betty Lind28, Raina Carter28, Sara Dolen28, Lon S. Schneider11, Sonia Pawluczyn11, Mauricio Becerra11, Liberty Teodoro11, Bryan M. Spann11, James Brewer26, Helen Vanderswag26, Adam Fleisher21,26, Judith L. Heidebrink19, Joanne L. Lord19, Sara S. Mason8, Colleen S. Albers8, David Knopman8, Kris Johnson8, Rachelle S. Doody29, Javier Villanueva-Meyer29, Munir Chowdhury29, Susan Rountree29, Mimi Dang29, Yaakov Stern30, Lawrence S. Honig30, Karen L. Bell30, Beau Ances15, Maria Carroll15, Sue Leon15, Mark A. Mintun15, Stacy Schneider15, Angela Oliver31, Randall Griffith31, David Clark31, David Geldmacher31, John Brockington31, Erik Roberson31, Hillel Grossman32, Effie Mitsis32, Leyla deToledo-Morrell33, Raj C. Shah33, Ranjan Duara34, Daniel Varon34, Maria T. Greig34, Peggy Roberts34, Marilyn Albert35, Chiadi Onyike35, Daniel D’Agostino II35, Stephanie Kielb35, James E. Galvin36, Dana M. Pogorelec36, Brittany Cerbone36, Christina A. Michel36, Henry Rusinek36, Mony J. de Leon36, Lidia Glodzik36, Susan De Santi36, P. Murali Doraiswamy37, Jeffrey R. Petrella37, Terence Z. Wong37, Christopher M. Clark10, Steven E. Arnold10,38, Jason H. Karlawish10, David A. Wolk2,4, Charles D. Smith39, Gregory Jicha39, Peter Hardy39, Partha Sinha39, Elizabeth Oates39, Gary Conrad39, Oscar L. Lopez22, Donna M. Simpson22, Anton P. Porsteinsson40, Bonnie S. Goldstein40, Kim Martin40, Kelly M. Makino40, M. Saleem Ismail40, Connie Brand40, Ruth A. Mulnard41, Gaby Thai41, Catherine McAdams-Ortiz41, Kyle Womack42, Dana Mathews42, Mary Quiceno42, Ramon Diaz-Arrastia10,42, Richard King42, Myron Weiner42, Kristen Martin Cook42, Michael Devous42, Allan I. Levey43, James J. Lah43, Janet S. Cellar43, Jeffrey M. Burns44, Heather S. Anderson44, Russell H. Swerdlow44, Liana Apostolova23, Kathleen Tintus23, Ellen Woo23, Daniel H. S. Silverman23, Po H. Lu23, George Bartzokis23, Neil R. Graff-Radford45, Francine Parfitt45, Tracy Kendall45, Heather Johnson45, Martin R. Farlow14, Ann Marie Hake14, Brandy R. Matthews14, Scott Herring14, Cynthia Hunt14, Christopher H. Dyck44, Richard E. Carson44, Martha G. MacAvoy46, Howard Chertkow47, Howard Bergman47, Chris Hosein47, Sandra Black48, Bojana Stefanovic48, Curtis Caldwell48, Ging-Yuek Robin Hsiung49, Howard Feldman49, Benita Mudge49, Michele Assaly49, Andrew Kertesz50,51, John Rogers50,51, Charles Bernick52, Donna Munic52, Diana Kerwin53, Marek Marsel Mesulam53, Kristine Lipowski53, Chuang-Kuo Wu53, Nancy Johnson53, Carl Sadowsky54, Walter Martinez54, Teresa Villena54, Raymond Scott Turner55, Kathleen Johnson55, Brigid Reynolds55, Reisa A. Sperling13, Keith A. Johnson13, Gad Marshall13, Meghan Frey13, Jerome Yesavage56, Joy L. Taylor56, Barton Lane56, Allyson Rosen56, Jared Tinklenberg56, Marwan N. Sabbagh57, Christine M. Belden57, Sandra A. Jacobson57, Sherye A. Sirrel57, Neil Kowall58, Ronald Killiany58, Andrew E. Budson58, Alexander Norbash58, Patricia Lynn Johnson58, Thomas O. Obisesan59, Saba Wolday59, Joanne Allard59, Alan Lerner60, Paula Ogrocki60, Leon Hudson60, Evan Fletcher61, Owen Carmichael61, John Olichney61, Smita Kittur62, Michael Borrie63, T.-Y. Lee63, Rob Bartha63, Sterling Johnson64, Sanjay Asthana64,
Cynthia M. Carlsson64, Steven G. Potkin65, Adrian Preda65, Dana Nguyen65, Pierre Tariot21, Stephanie Reeder21, Vernice Bates66, Horacio Capote66, Michelle Rainka66, Douglas W. Scharre67, Maria Kataki67, Anahita Adeli67, Earl A. Zimmerman68, Dzintra Celmins68, Alice D. Brown68, Godfrey D. Pearson69, Karen Blank69, Karen Anderson69, Robert B. Santulli70, Tamar J. Kitzmiller70, Eben S. Schwartz70, Kaycee M. Sink71, Jeff D. Williamson71, Pradeep Garg71, Franklin Watkins71, Brian R. Ott72, Henry Querfurth72, Geoffrey Tremont72, Stephen Salloway26,73, Paul Malloy73, Stephen Correia73, Howard J. Rosen6, Bruce L. Miller6, Jacobo Mintzer74, Kenneth Spicer74, David Bachman74, Elizabeth Frazier51, Stephen Pasternak51, Irina Rachinsky51, Dick Drost51, Nunzio Pomara75, Raymundo Hernandez75, Antero Sarrael75, Susan K. Schultz76, Laura L. Boles Ponto76, Hyungsub Shim76, Karen Ekstam Smith76, Norman Relkin77, Gloria Chiang77, Lisa Ravdin77, Amanda Smith78, Kristin Faragher78 & Balebail Ashok Raj78

6University of California San Francisco, San Francisco, CA, USA. 7University of California San Diego, San Diego, CA, USA. 8University of Southern California, Los Angeles, CA, USA. 9University of California Davis, Davis, CA, USA. 10Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 11Indiana University, Bloomington, IN, USA. 12Washington University St. Louis, St. Louis, MO, USA. 13Janssen Alzheimer Immunotherapy, South San Francisco, CA, USA. 14University of Washington, Seattle, WA, USA. 15University of London, London, UK. 16University of Michigan, Ann Arbor, MI, USA. 17University of Utah, Salt Lake City, UT, USA. 18University of Alzheimer’s Disease and Related Disorders, Chicago, IL, USA. 19Alzheimer’s Association’s Ronald and Nancy Reagan’s Research Institute, Chicago, IL, USA. 20General Electric, Boston, MA, USA. 21Banner Alzheimer’s Institute, Phoenix, AZ, USA. 22University of Pittsburgh, Pittsburgh, PA, USA. 23University of California, Los Angeles, CA, USA. 24Khachaturian, Radebaugh & Associates, Inc and Alzheimer’s Association’s Ronald and Nancy Reagan’s Research Institute, Chicago, IL, USA. 25University of California, Irvine, CA, USA. 26Brown University, Providence, RI, USA. 27National Institute on Aging/National Institutes of Health, Bethesda, MD, USA. 28Oregon Health and Science University, Portland, OR, USA. 29Baylor College of Medicine, Houston, TX, USA. 30Columbia University Medical Center, New York, NY, USA. 31University of Alabama Birmingham, Birmingham, MO, USA. 32Mount Sinai School of Medicine, New York, NY, USA. 33Rush University Medical Center, Chicago, IL, USA. 34Wien Center, Vienna, Austria. 35Johns Hopkins University, Baltimore, MD, USA. 36New York University, New York, NY, USA. 37Duke University Medical Center, Durham, NC, USA. 38Massachusetts General Hospital, Boston, MA, USA. 39University of Kentucky, Lexington, KY, USA. 40University of Rochester Medical Center, Rochester, NY, USA. 41University of Iowa, Iowa City, IA, USA. 42University of Texas Southwestern Medical School, Dallas, TX, USA. 43Emory University, Atlanta, GA, USA. 44University of Kansas, Medical Center, Lawrence, KS, USA. 45Mayo Clinic, Jacksonville, FL, USA. 46Yale University School of Medicine, New Haven, CT, USA. 47McGill University, Montreal Jewish General Hospital, Montreal, WI, USA. 48Sunnybrook Health Sciences, Toronto, ON, Canada. 49University of British Columbia Clinic for AD and Related Disorders, British Columbia, BC, Canada. 50Cognitive Neurology St. Joseph’s, Toronto, ON, Canada. 51St. Joseph’s Health Care, Toronto, ON, Canada. 52Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA. 53Northwestern University, Evanston, IL, USA. 54Preeeminent Research Institute Palm Beach Neurology, West Palm Beach, FL, USA. 55Georgetown University Medical Center, Washington, DC, USA. 56Stanford University, Santa Clara County, CA, USA. 57Banner Sun Health Research Institute, Sun City, AZ, USA. 58Boston University, Boston, MA, USA. 59Howard University, Washington, DC, USA. 60Case Western Reserve University, Cleveland, OH, USA. 61University of California, Davis, Sacramento, CA, USA. 62Neurological Care of CNY, New York, NY, USA. 63Parkwood Hospital, Parkwood, CA, USA. 64University of Wisconsin, Madison, WI, USA. 65University of California, Irvine BIC, Irvine, CA, USA. 66Dent Neurologic Institute, Amherst, MA, USA. 67Ohio State University, Columbus, OH, USA. 68Albany Medical College, Albany, NY, USA. 69Hartford Hospital, Olin Neuropsychiatry Research Center, Hartford, CT, USA. 70Dartmouth Hitchcock Medical Center, Albany, NY, USA. 71Wake Forest University Health Sciences, Winston-Salem, NC, USA. 72Rhode Island Hospital, Providence, RI, USA. 73Butler Hospital, Providence, RI, USA. 74Medical University South Carolina, Charleston, SC, USA. 75Nathan Kline Institute, Orangeburg, SC, USA. 76University of Iowa College of Medicine, Iowa City, IA, USA. 77Cornell University, Ithaca, NY, USA. 78University of South Florida: USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA.