A Simple Sequence Repeat Marker Linked to the Susceptibility of Apple to Alternaria Blotch Caused by *Alternaria alternata* Apple Pathotype

Ying Li
College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095 P.R. China

Liyi Zhang
Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province, 125100 P.R. China

Zhen Zhang
College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095 P.R. China

Peihua Cong
Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province, 125100 P.R. China

Zong-Ming Cheng
College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095 P.R. China; and the Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4500

ADDITIONAL INDEX WORDS. disease resistance, genetics, *Malus*, molecular marker

ABSTRACT. *Alternaria alternata* apple pathotype (previously *A. mali*) causes alternaria blotch disease of apple (*Malus* ×*domestica*), which may result in leaf spots and up to 70% premature leaf drop in serious cases. This disease is of worldwide importance but is most serious in eastern Asia (Japan, Korea, and China) and in parts of the United States. The excessive use of fungicides not only adds cost to apple growers, but also pollutes the environment. In this study, we characterized a 5-year F1 population from a cross of a resistant cultivar (Huacui) and a susceptible cultivar (Golden Delicious) consisting of 110 individuals along with 14-year-old parent trees (10 each). A field evaluation of disease severity was conducted in 2008 and 2009 under the natural conditions in Liaoning, China (lat. 40°37′ N, long. 120°44′ E). Based on the field data, 110 F1 plants were divided into five groups. Artificial inoculation was carried out both on the living trees and on the detached leaves in 2009 to ensure that *A. alternata* apple pathotype was the causative agent. Eighty primer pairs of simple sequence repeat (SSR) were screened against the four genomic DNA pools, respectively, from six highly susceptible F1 plants, six most resistant F1 plants, one tree of the seed parent, and the one tree of the pollen parent. One pair of primers (CH05g07) was shown to be linked to the DNA pools of susceptible F1 and the parent tree, but not to the DNA pools of resistant F1 and parent trees. This primer pair was then used to screen all 103 individuals (97.3%) with the marker matched the field disease resistance rating. This marker was further screened with 20 cultivars with known susceptibility or resistance to *A. alternata* apple pathotype and its linkage to susceptibility was validated. These results suggest that this marker can be used in marker-assisted selection for resistance/susceptibility to alternaria blotch disease in apple.

Alternaria blotch can cause very serious damage in susceptible apple trees (Sawamura, 1990). The disease is caused by *Alternaria alternata* apple pathotype and was first reported in the United States (Roberts, 1924) but then was not considered a serious pathogen (Filajdic, 1995). Currently, the disease is of global significance and is one of the most serious fungal diseases affecting apple in Japan (Saito et al., 2001; Sawamura, 1990; Sekiguchi, 1976), Korea (Lee and Lee, 1972), the United States (Filajdic and Sutton, 1991), and China where nearly 50% of the world’s apple is produced (Zhao et al., 2008). *Alternaria alternata* apple pathotype can cause symptoms on leaves, young shoots, and fruit. Lesions appear first on the leaves in late spring or early summer as small round brownish...
or blackish lesions, gradually enlarging, with a brownish purple border (Zhang et al., 2004). When becoming serious, the disease can result in up to 70% premature defoliation (Filajdic and Sutton, 1991). The fungus can overwinter as mycelium on dead leaves, in mechanically injured twigs, or in dormant buds. Primary infection takes place 1 month after petals fall. The disease spreads further by conidia with the help of wind, rain, or insects. The quality of *A. alternata* apple pathotype-infected apple can be reduced without commercial value. Nearly all major globally important cultivars, like Fuji, Red Delicious, Golden Delicious, and Starkrimson, are highly susceptible; and older cultivars, like Rails, have also shown increasing susceptibility in recent years (Zhao et al., 2001). Dickens and Cook (1995) found that isolates of “toxigenic” *A. alternata* apple pathotype from U.S.-only infected leaves of cultivars Indo and Red Gold. Abe et al. (2010) did an evaluation of apple genotypes and *Malus* species for resistance to alternaria blotch and established a modified six-class disease scale for the rating system.

Although use of fungicides such as mancozeb, ziram, thiram, oxine-copper, or Table 2. Eighty primer pairs used in screening of polymorphic simple sequence repeat markers related to resistance of *Alternaria alternata* apple pathotype in apple.

Primer pair	Forward/reverse primer sequences
CH01a07b	AACCCATGAAACACAATCCCGGAACTCAGACG
CH01F02	ACCACATTAGAGCAGTTGACGTTTCCAGGAG
CH01H10	TGCAAAGATAGGTAGATATATGCAGATGGAG
CH02B03b	ATAAGGATACAAAAACCTACGACGACGACG
CH02B10	CAAGGAAATCATCAAGATGTCATGTCATG
COLa	AGGAGAAAGGCGTTTACCTCAAGATGTCATG
CH01d09	GCCATCTGAACAGAATGTGCCTATGTCATG
CH01f03b	GAGAAGCAAATGCAAAACCCCTCCCCGCTC
CH02b07	CCAGACAAGTCACTACACACTACATGTCATG
CH02g09	TCGAGGAAAGGGAATCGTACACATGTCATG
CH01e08	TACGTGTGCTATTCTCACACACGACGACG
CH01c11	AAATCTAAAACACAGAAGAAACGACGACG
CH01d03	CCACTTGGAATGACCTCCTCCACGACGACG
CH01d07	AAATCCAGTTCCTCCTCCTCCACGACGACG
CH01e09b	CCATACCACTACTCCTCCTCCTCCACGACG
CH01f09(1)	ATGTGACATGAAAGGTGAGATGACGACGACG
CH02b07	CCAGACAAGTCACTACACACTACATGTCATG
CH02b11	ACCTATCTGTCAGGAGAGAGAGAGAGAGAG
CH02e02a	CTTCAGTTCATACACGACGACGACGACGAC
CH02e06(1)	TGAGGAAATCCACTACTAATGACGACGACG
CH02e09	TTATGACATGAAAGGTGAGATGACGACGACG
CH02e02	CTCATCTGTCAGGAGAGAGAGAGAGAGAG
CH02e12	CCACTTGTGCTATTCTCACACACGACGACG
CH02g04	TTTATGACATGAAAGGTGAGATGACGACGACG
CH02g09	TCGAGGAAAGGGAATCGTACACATGTCATG
CH02h07	TGAGGCTGAAAGGTGAGATGACGACGACGACG

The evaluations were conducted on 20 June in 2008 and 2009 when the disease was most severe. For each individual tree, 120 leaves were sampled.

The overall rating of resistance or susceptibility for each tree was calculated by the percentage of diseased leaves accounted for the total surveyed leaves.
iminoctadine, difenoconazole, tebuconazole, chlorothalonil, and polyoxin B against alternaria blotch has been reported and shown quite effective (Filajdic and Sutton, 1992; Gullino et al., 2000; Reuveni et al., 2002), multiple applications of

Table 2. Continued.

Primer pair	Forward/reverse primer sequences
CH02h11b	GGAGCTAAG

fngicide burden apple growers with considerable production cost, risk of fngicide residue in the environment, and with chemical residue on fnal fruit products. Alternatively, environment-friendly methods for chemical control of A. alternata apple pathotype have not been intensively studied in apple but are urgently needed (Jung, 2007). Saito et al. (2001) irradiated several cultivars with X- or γ-rays and produced mutants resistent to alternaria blotch disease as assayed in vitro by resistance to chemically synthesized AM-toxin I of A. alternata.

Breeding for disease resistance is one of the most effective alternatives, an alternative to fngicide use for apple disease management. Molecular markers are powerful tools in early selection for breeding disease-resistant apple; however, the effort has mainly focused on a few major diseases. Molecular markers have been identified to link to at least 10 diferent genes for apple scab (Bus et al., 2002; Erdin et al., 2006; Gygax et al., 2004; Hemmat et al., 2003; Patocchi et al., 2005; Tartarini and Sansavini, 2002). Molecular markers and/or quantitative trait loci have also been found to link to powdery mildew [Podosphaera leucotricha (Calenge and Durel, 2006; Dunemann et al., 1999; Evans and James, 2003; James et al., 2004; Markussen et al., 1995)]. Others include fire blight [Erwinia amylovora (Janick et al., 1996; Khan et al., 2006)] and crown gall [Rhizobium radiobacter (Moriya et al., 2009)]. A random amplifed polymorphic DNA (RAPD) molecular marker (S428-854) was linked to a gene resistant to alternaria leaf spot in apple (Zhao, 2008).

In this study, we conducted a feld survey for 2 years on an F1 population from the cross of ‘Golden Delicious’ (susceptible) and ‘Huacui’ (resistant Chinese cultivar derived from ‘Golden Delicious’× ‘Megumi’) under natural conditions. We also conducted artifcial inoculation in planta and in detached leaves to confrm the pathogenesis. We screened a set of SSR markers in the population, and one SSR marker was linked to alternaria blotch susceptibility. This marker has also been verified in the entire F1 population and 20 known susceptible and resistant cultivars, therefore validating the broad use of this SSR marker.
Materials and Methods

Field Evaluation for A. Alternata Susceptibility and Resistance. A 5-year segregating population consisting of 110 individuals derived from the cross of 'Golden Delicious' and 'Huacui,' along with 10 each of mature parent trees (14 years old), were evaluated for alternaria resistance and susceptibility. The trees were grown in an experimental orchard of the Institute of Pomology, Chinese Academy of Agricultural Sciences [Xingcheng, China (lat. 40°37′ N, long. 120°44′ E)]. Based on general disease severity in 2007, the evaluations were done in 2008 and 2009 on 20 June when the disease was most severe. No fungicide was applied and standard cultural practices were applied. The classification of disease rating was based on guidelines from the Institute for the Control of Agrochemicals (2000). For each individual tree, 120 leaves were sampled, and the overall rating of resistance or susceptibility for each tree was calculated by the percentage of diseased leaves accounting for the total surveyed leaves. Assignment of each tree for resistance or susceptibility is given as: highly resistant (10% or less disease leaves), resistant (11% to 25% diseased leaves), susceptible (26% to 40% diseased leaves), moderately susceptible (41% to 50% diseased leaves), or highly susceptible (50% or greater diseased leaves) (Table 1).

To confirm the pathogenicity of A. alternata apple pathotype by artificial inoculation. To confirm that the symptoms observed in the field were caused by A. alternata apple pathotype, fungus was isolated from the infected leaves of apple trees in the Fruit Plant Protection Research Center, Institute of Pomology (Xingcheng, China). Conidia were harvested from potato dextrose agar plates by adding 5 mL of double distilled water (ddH2O) to each plate and gently rubbing the sporulating mycelial mast with a bent glass rod. Spore concentration was adjusted with a hemocytometer to 10^5 spores/mL. The mature leaves showing no symptoms (10 from each tree) were brought to the laboratory on 10 June, washed briefly, and blotted dry with a paper towel. Spores were inoculated onto the back of leaves by even smearing. The inoculated leaves were placed on trays containing wet filter paper, covered with plastic bags to maintain high humidity, and held in a growth chamber (26 °C, 12 h of light per day) for 7 d. The disease symptoms were described and disease severity for each leaf was scored and averaged for 10 leaves from each tree.

Inoculation was also done in the tree on 25 June 2009. Shoots were inoculated by spraying conidial spores on the back of leaves on each shoot. After the inoculation, the shoots were maintained with high humidity by covering with wet plastic bags and removed the next morning. Control shoots were sprayed with distilled water. The rating of each leaf and the entire tree was the same as that used in the field disease evaluation.

Establishment of Resistance and Susceptibility DNA pools. Based on the field evaluation of resistance and susceptibility in 2008 and 2009, six most resistant and six most susceptible individual plants in the F1 population form resistant and susceptible DNA pools, respectively. One seed and one pollen parent tree were used to establish the parental DNA pools. Young leaves free of alternaria blotch were harvested from each individual tree and used immediately for DNA extraction or were frozen and stored at −70 °C until use.

DNA extraction followed the procedure of DNeasy Plant Mini Kit (Qiagen, Shanghai, China). The concentration was determined by spectrophotometer (Shimadzu, Kyoto, Japan) at the absorbent wavelength of 260 and 280 nm. Gel electrophoresis (1.0% agarose) was used to determine the DNA purity with a single sharp band being considered pure. All individual DNA concentrations were adjusted to 100 ng·µL⁻¹ with ddH2O. DNA (30 ng) of an equal amount from six individual resistant or susceptible plants was mixed to form the resistance DNA pool or susceptible DNA pool, respectively.

Screening of polymorphic simple sequence repeat markers. Eighty primer pairs (Table 2) were chosen from the 140 primer pairs, which were used by Liebhard et al. (2002) in seven cultivars and one breeding selection in the European D.A.R.E. project (Kellerhals et al., 2000). These 80 pairs were selected based on their high degree of polymorphism in other studies (Gygax et al., 2004; Khan et al., 2007; Silfverberg-Dilworth et al., 2006; Yamamoto et al., 2001; Yan, 2005). Primers were purchased from Shanghai Sangon Biological Engineering Technology and Services Co. (Shanghai, China). These 80 primer pairs were used in the first screening against the resistance and susceptibility DNA pools.

Each polymerase chain reaction (PCR) (20 µL) contained 2.0 µL of 10 × PCR buffer (Takara, Dalian, China), 2 µL of

Table 3. Apple cultivars that were verified the resistance of Alternaria alternata apple pathotype with the primer pair CH05g07.

Cultivar	Resistant (R) or susceptible (S) to A. alternata apple pathotype	Country of origin	Amplification with the primer pair CH05g07
Åkagi	R	Japan	No
Bayuesu	S	China	Yes
Belld de Boskoop	S	Netherlands	Yes
Cuihong	R	China	No
Dongguang	R	China	No
Fushuai	R	China	No
Huadao	S	China	No
Huangguniang	S	China	Yes
Huashuai 1	S	China	Yes
Jinhong	R	China	No
Jonathan	S	USA	Yes
Kitanosach	R	Japan	No
Kogetsu	S	Japan	Yes
Liaofu	R	China	No
McIntosh	R	USA	No
Orin	S	Japan	Yes
Senshu	S	Japan	Yes
Tsugaru	R	Japan	No
Zaojinguan	R	China	No
Zipingguo	S	China	Yes

The polymerase chain reactions were done in a manner similar to those reported in the Figure 3.
2.5 mmol·L⁻¹ each dNTPs (Takara), 0.2 μL of 5 U·μL⁻¹ Taq DNA polymerase (Takara), 1.6 μL of a 10 μmol·μL⁻¹ solution of each primer, 2 μL of 50 ng·μL⁻¹ genomic DNA, and 10.2 μL of ddH₂O. The PCR amplification was carried out in a T-gradient PCR (Whatman Biometra, Goettingen, Germany) with the following program: pre-denaturation at 94 °C for 4 min, 33 cycles of denaturation at 94 °C for 30 s, annealing at 52 °C for 50 s, and extension at 72 °C for 1 min followed by a final extension at 72 °C for 10 min. The PCR products were resolved by 6% polyacrylamide gel electrophoresis. Before loading, the samples were denatured at 94 °C for 5 min. The gel was stained with silver nitrate (Bassam et al., 1991) to view the products, and the sizes of the bands were determined by comparison with the 100-bp DNA ladder (Takara).

Validation of the CH05g07 Simple Sequence Repeat Marker. After the initial screening, the primer pair of CH05g07 was found to be polymorphic for distinguishing the resistance and susceptibility pools and seed and pollen parent DNA pools. This pair of primers was then further verified by testing all individual F₁ populations and 20 cultivars (Table 3) in which resistance or susceptibility to alternaria blotch was known (Lu and Jia, 1999). The DNA extraction, PCR reaction, and gel electrophoresis were same as described previously.

Results

Using the standard established in the field evaluation in 2007, the disease severity was fully evaluated in the field in 2008 and 2009. In 2008, 66 and 44 plants were classified to be, respectively, resistant (highly resistant and resistant) and susceptible (susceptible, moderately, and highly susceptible) in the 110 individuals of F₁ population of ‘Golden Delicious’ × ‘Huacui’. In 2009, 63 and 47 plants were scored to be resistant and susceptible, respectively. Among these plants, three trees (Trees 9, 17, and 33) were classified as resistant in 2008 but were rated as susceptible in 2009. The chi-square test ($\chi^2 = 4.4$) showed that the ratio of resistant trees to susceptible trees evaluated in 2008 did not conform to the 1:1 segregation ratios ($\chi^2_{0.05,1} = 3.84$), but the ratio in 2009 was in accordance with 1:1 segregation ($\chi^2 = 2.34; \chi^2_{0.05,1} = 3.84$).

To confirm the disease symptoms to be caused by the *A. alternata* apple pathotype, the pathogen was isolated and re-inoculated back to detached leaves and intact leaves in trees. Figure 1 shows the color features and the types of disease spots with two different inoculation procedures. When the leaves were inoculated directly in the trees, lesions colored lighter, and the sizes of lesions were smaller than those in the leaves that were inoculated in the illumination box. Despite the symptomatic differences, it was confirmed that *A. alternata* apple pathotype was the causative agent, which caused the same disease symptoms observed in natural conditions.

Among the 80 primer pairs, 14 produced polymorphic PCR bands between the resistance and the susceptibility DNA pools with approximately five to 10 fragments being scored per primer pair (Fig. 2). However, only CH05g07 primer pair consistently generated a 163-bp band in the susceptibility DNA pool but not in the resistance DNA pool. This fragment was also amplified from the susceptible parent ‘Golden Delicious’ but not from the resistant parent ‘Huacui’ (Fig. 3). The additional weak band seen from Lane 3 in Figure 3 was estimated to be 180 bp and was therefore not the same band shown in the susceptible DNA pool. When CH05g07 was used to screen 110 F₁, individuals, 44 of 47 susceptible plants that were evaluated in the field or inoculation test in 2009 showed the CH05g07-163 fragment, and all 63 resistant individuals did not produce the band. The chi-square test ($\chi^2 = 3.28$) showed the segregation ratio was in accordance with 1:1 segregation ($\chi^2_{0.05,1} = 3.84$). The CH05g07 primers were further tested in 20 different apple cultivars. The resistant cultivars showed absence of the band and the susceptible cultivars showed the band.

Using Mapmaker/Exp software [Version 3.0b (Lander et al., 1987)], the CH05g07-163 SSR molecular marker was linked to the alternaria blotch-susceptible gene in apple; the distance of the marker to the susceptibility trait locus is ≈5.6 cM.

Discussion

Alternaria blotch is a serious apple disease worldwide, which could cause up to 70% premature defoliation. Although fungicide application is effective in managing the disease, it adds considerable cost to apple production and potential risks of polluting the environment. Breeding for resistance would be the
A. alternata used in this study were evaluated for unsuccessful infection conditions. For this reason, the plants symptoms can be the result of true genetic resistance or true for the rating of resistant plants, in which lack of disease usability of the bulked segregation analysis strongly relies on accelerating the breeding program for disease resistance in preferable strategy. Marker-assisted selection is a useful tool in accelerating the breeding program for disease resistance in apple (Bus et al., 2010, and references therein). In this study, one SSR marker that linked to the susceptibility to alternaria blotch was identified by using bulk segregation analysis. The CH05g07 SSR marker has been tested with 20 cultivars; the results showed that it was consistent with their field performance for alternaria blotch resistance or susceptibility. Previously, a S428-854 RAPD molecular marker linked to the alternaria blotch-resistant gene in apple was detected (Zhao, 2008). Therefore, it is now possible to use molecular markers to perform early screening of a breeding population for alternaria blotch resistance or susceptibility. With availability of many genomic resources, like BAC and YAC libraries and whole genome sequences to be released soon, it may be possible to link the marker further to the susceptibility or resistance gene and eventually lead to the isolation of the resistance or susceptibility gene.

Saito and Takeda (1984) suggested that the susceptibility to alternaria blotch in apple might be controlled by a single dominant gene, and most susceptible cultivars are heterozygous. The segregation ratios for alternaria blotch resistance/susceptibility based on the disease rating in the field in 2009 and on the CH05g07 SSR marker show the expected 1:1 segregation. This seems to support the assumption that the susceptibility to blotch is controlled by a dominant gene, and in the case of this study, the resistant parent, ‘Huacui’, used in generating the segregation population, is homozygous recessive, and the susceptible parent, ‘Golden Delicious’, is heterozygous dominant.

Literature Cited

Abe, K., H. Iwanami, N. Kotoda, S. Moriya, and S. Takahashi (Sumiyoshi). 2010. Evaluation of apple genotypes and Malus species for resistance to alternaria blotch caused by Alternaria alternate apple pathotype using detached-leaf method. Plant Breed. 129:208–218.

Bassam, B.J., G. Caetano-Anolle, and P.M. Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196:80–83.

Fig. 2. Polymorphic simple sequence repeat patterns in the resistance and susceptibility DNA pools of F1 ‘Golden Delicious’ × ‘Huacui’ apple trees amplified by 14 primer pairs: CH01c08 [Lane a = resistance DNA pool/Lane a’ = susceptibility DNA pool (Lanes similar designations are used in this figure for primer pairs in Lanes b/b’ to n/n’); CH05e05 (Lanes b/b’), CH02e02a (Lanes c/c’), CH02b07 (Lanes d/d’), CH05d11 (Lanes e/e’), CH02e09 (Lanes f/f’), CH04f06 (Lanes g/g’), CH03b06 (Lanes h/h’), CH04e05 (Lanes i/i’), CH01b07a (Lanes j/j’), CH01c08 (Lanes k/k’), CH05d11 (Lanes l/l’), CH05g07 (Lanes m/m’), CoLa (Lanes n/n’).

Fig. 3. Simple sequence repeat patterns showing the presence or absence of the CH05g07-163 fragment in apple, which can distinguish the resistance and susceptibility pools of Alternaria alternata apple pathotype and seed and pollen parent DNA pools; m = marker, 100-bp ladder, Lanes 1–6 = individuals in resistance bulk from the cross ‘Golden Delicious’ × ‘Huacui’; Lanes 7–12 = individuals in susceptible bulk from the cross ‘Golden Delicious’ × ‘Huacui’, R = bulk made of six resistant progenies, S = bulk made of six susceptible progenies, P1 = the susceptible parent (‘Golden Delicious’), P2 = the resistant parent (‘Huacui’). Arrows show the unique bank linked to the susceptibility DNA pool and the parent tree, not to the resistance DNA pool or parent tree.
Bus, V., H. Bassett, D. Bowatte, D. Chagné, C. Ranatunga, D. Ulluwisewa, C. Wiedow, and S. Gardiner. 2010. Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated mildew immune selection. Tree Genet. Genomes 6:477–487.

Bus, V.G., P.A. Alspach, M.E. Hofstee, and L.R. Brewer. 2002. Genetic variability and preliminary heritability estimates of resistance to scab (Venturia inaequalis) in an apple genetics population. N. Z. J. Crop Hort. Sci. 30:83–92.

Calenge, F. and C.E. Durel. 2006. Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol. Breed. 17:329–339.

Dickens, J.S.W. and R.T.A. Cook. 1995. Alternaria pear black spot and apple blotch. Organisation Européenne et Méditerranéenne pour la Protection des Plantes/European and Mediterranean Plant Protection Organization (OEPP/EPPO) Bul 25.

Dunemann, F., G. Bräcker, T. Markussen, and P. Roche. 1999. Identification of molecular markers for the major mildew resistance gene Pl2 in apple. Acta Hort. 484:411–416.

Erdin, N., S. Tartarini, G.A.L. Broggini, F. Gennari, S. Sansavini, C. Gessler, and A. Patocchi. 2006. Mapping of the apple scab-resistance gene Vb6. Genome 49:1238–1245.

Evans, K. and C. James. 2003. Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor. Appl. Genet. 106:1178–1183.

Filadjić, N. 1995. The influence of European red mites on intensity of alternaria blotch of apple and fruit quality and yield. Plant Dis. 79:683–690.

Filadjić, N. and T.B. Sutton. 1991. Indentification and distribution of Alternaria mali on apples in North Carolina and susceptibility of different cultivars of apples to alternaria blotch. Plant Dis. 75:1045–1048.

Filadjić, N. and T.B. Sutton. 1992. Chemical control of alternaria blotch of apples caused by Alternaria mali. Plant Dis. 76:126–130.

Gullino, M.L., P. Leroux, and C.M. Smith. 2000. Uses and challenging of novel compounds for plant disease control. Crop Prot. 19:1–11.

Gygax, M., L. Gianfranceschi, R. Liebhard, M. Kellerhals, C. Gessler, and A. Patocchi. 2004. Molecular markers linked to the apple scab resistance gene Vb6 derived from Malus baccata jackii. Theor. Appl. Genet. 109:1702–1709.

Hemmatt, M., S.K. Brown, H.S.aldwinckle, S.A. Melehenbacher, and N.F. Weeden. 2003. Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hanssen’s baccata #2’. Acta Hort. 622:153–161.

Institute for the Control of Agrochemicals. 2000. Guidelines for field trials of pesticide. Ministry of Agriculture GB/T 17980.124. Standards Press of China, Beijing, China.

James, C.M., J.B. Clarke, and K.M. Evans. 2004. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor. Appl. Genet. 110:175–181.

Janick, J., J.N. Cummings, S.K. Brown, and M. Hemmat. 1996. Apples, p. 1–77. In: Janick, J. and J. Moore (ed.). Fruit breeding. Vol. 1. Tree and tropical fruits. Wiley, New York, NY.

Jones, A. and H. Allen (ed.). 1999. Compendium of apple and pear diseases. APS Press, St. Paul, MN.

Jung, K.H. 2007. Growth inhibition effect of pyrolineic acid on pathogenic fungus, Alternaria mali, the agent of alternaria blotch of apple. Biotechnology 12:318–322.

Kellerhals, M., L. Gianfranceschi, N. Seglias, and C. Gessler. 2000. Marker-assisted selection in apple breeding. Acta Hort. 521:255–261.

Khan, M.A., B. Duffy, C. Gessler, and A. Patocchi. 2006. QTL mapping of fire blight resistance in apple. Mol. Breed. 17:299–306.

Khan, M.A., C.E. Durel, B. Duffy, D. Drouet, M. Kellerhals, C. Gessler, and A. Patocchi. 2007. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577.

Koller, B. 1994. DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol. Biol. 26:597–602.

Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln, and L. Newburg. 1987. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.

Lee, D.H. and G.E. Lee. 1972. Studies on causal agents, overwintering of organisms and control of alternaria leaf spot of apple. J. Korean Soc. Hort. Sci. 11:41–47.

Liebhard, R., L. Gianfranceschi, B. Koller, C.D. Ryder, R. Tarchini, E. Van De Weg, and C. Gessler. 2002. Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breed. 10:217–241.

Lu, Q.-N. and D.-X. Jia. 1999. Fruit trees of china-apple. China Agriculture Press, Beijing, China [in Chinese].

Markussen, T., J. Krüger, H. Schmidt, and F. Dunemann. 1995. Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl (1) from Malus robusta in cultivated apple. Plant Breed. 114:530–534.

Moriya, S., H. Iwamani, S. Takahashi, K. Suzuki, T. Yamamoto, and K. Abe. 2009. Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet. Genomes 6:195–203.

Patocchi, A., M. Walser, S. Tartarini, G.A. Broggini, F. Gennari, S. Sansavini, and C. Gessler. 2005. Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636.

Reuveni, M., D. Sheglov, N. Sheglov, R. Ben-Arie, and D. Prusky. 2002. Sensitivity of red delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. Eur. J. Plant Pathol. 108:421–427.

Roberts, J.W. 1924. Morphological characters of Alternaria mali Roberts. J. Agr. Res. 27:699–708.

Saito, A., N. Nakazawa, and M. Suzuki. 2001. Selection of mutants resistant to alternaria blotch from in vitro-cultured apple shoots irradiated with X- and [gamma]-rays. J. Plant Physiol. 158:391–400.

Saito, K. and K. Takeda. 1984. Studies on breeding of apple. VIII genetic analysis of resistance to alternaria blotch (Alternaria mali Roberts) in apple. Jpn. J. Breeding 34:197–207 [in Japanese].

Sawamura, K. 1990. Alternaria blotch, p. 24–25. In: Jones, A. and H. aldwinckle (ed.). Compendium of apple and pear diseases. APS Press, St. Paul, MN.

Sekiguchi, A. 1976. Studies on the alternaria leaf spot disease of apples caused by Alternaria mali Roberts. Bul. Nagono Hort. Expt. Sta. 1:63.

Silfverberg-Dilworth, E., C. Matasci, W. Van de Weg, M. Van Kaauwen, M. Walser, L. Kødde, V. Soglio, L. Gianfranceschi, C. Durel, F. Costa, T. Yamamoto, B. Koller, C. Gessler, and A. Patocchi. 2006. Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet. Genomes 2:202–224.

Tartarini, S. and S. Sansavini. 2002. The use of molecular markers in pome fruit breeding. Acta Hort. 622:129–140.

Yamamoto, T., T. Kimura, Y. Sawamura, K. Kotobuki, Y. Ban, T. Hayashi, and N. Matsuta. 2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102:865–870.

Yan, Z. 2005. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor. Appl. Genet. 110:766–777.

Zhang, S., Y. Zhang, H. Liu, and J. Han. 2004. Isolation of Alternaria mali Roberts and its sensitivities to four fungicides. J. Shanxi Agr. Univ. (Natural Sci. Ed.) 24:382–384 [in Chinese].

Zhao, J., L. Liu, X. Gong, and K. Wang. 2001. Resistance differentiation of some apple genus plants to leaf blotch. Northern Fruits 3:15 [in Chinese].

Zhao, L. 2008. Detection of RAPD marker linked to the resistance gene to alternaria leaf spot in apples. Northwest A&F University Press, Yang Ling, China [in Chinese].

Zhao, L., Z.Y. Zhao, Z.G. Dang, and X.C. Zhang. 2008. Heredity analysis on the hybrid of ‘Qinguan’ and ‘Fuji’ apple resistance to early defoliation disease. Acta Agriculturae Boreali-occidentalis Sinica 17:197–201 [in Chinese].