Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model

Submitted by Stéphanie Bouvier on Tue, 11/15/2016 - 15:55

Titre	Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model
Type de publication	Article de revue
Auteur	Le Page, Sophie [1], Niro, Marjorie [2], Fauconnier, Jeremy [3], Cellier, Laura [4], Tamareille, Sophie [5], Gharib, Abdallah [6], Chevrollier, Arnaud [7], Loufrani, Laurent [8], Grenier, Céline [9], Kamel, Rima [10], Sarzi, Emmanuelle [11], Lacampagne, Alain [12], Ovize, Michel [13], Henrion, Daniel [14], Reynier, Pascal [15], Lenaers, Guy [16], Mirebeau-Prunier, Delphine [17], Prunier, Fabrice [18]
Pays	Etats-Unis
Editeur	Public Library of Science
Ville	San Fransisco
Type	Article scientifique dans une revue à comité de lecture
Année	2016
Langue	Anglais
Date	10 Oct. 2016
Numéro	10
Pagination	e0164066
Volume	11
Titre de la revue	PLoS ONE
ISSN	1932-6203
BACKGROUND:
Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain.

OBJECTIVES:
To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries.

METHODS AND RESULTS:
We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice.

CONCLUSION:
Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity.

URL de la notice: http://okina.univ-angers.fr/publications/ua15176 [19]
DOI: 10.1371/journal.pone.0164066 [20]
Lien vers le document: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164066 [21]

Liens
[1] http://okina.univ-angers.fr/s.lepage/publications
[2] http://okina.univ-angers.fr/marjorie.niro/publications
[3] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=21174
[4] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=24179
[5] http://okina.univ-angers.fr/sophie.tamareille/publications
[6] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=25553
[7] http://okina.univ-angers.fr/arnaud.chevrollier/publications
[8] http://okina.univ-angers.fr/laurent.loufrani/publications
[9] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=25517
[10] http://okina.univ-angers.fr/rimakamel/publications
[11] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=24184
[12] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=21180
[13] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=25555
[14] http://okina.univ-angers.fr/d.henrion/publications
[15] http://okina.univ-angers.fr/pascal.reynier/publications
[16] http://okina.univ-angers.fr/guy.lenaers/publications
[17] http://okina.univ-angers.fr/delphine.prunier/publications
Publié sur Okina (http://okina.univ-angers.fr)