The Impact of Environmental Factors on Skin Cancer

Saiedeh Haji-Maghsoudi 1, Mahmood Farshchian 2, Majid Sadeghifar 3, Ghodratollah Roshanaei 4 and Hossein Mahjub 1, *

1Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
2Department of Dermatology, Psoriasis Research Center, Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
3Department of Statistics, Faculty of Basic Sciences, Bu-Ali Sina University, Hamadan, Iran
4Department of Biostatistics, Modeling of Non-communicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

*Corresponding author: Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran. Email: mahjub.h@gmail.com

Received 2021 September 28; Revised 2022 September 04; Accepted 2022 October 17.

Abstract

Background: Skin cancer, as one of the most common cancers, is partly associated with environmental conditions.

Objectives: The main purpose of this study was to investigate the effect of environmental factors on the incidence of skin cancer.

Methods: The dataset contains the age-standardized incidence rate (ASR) of skin cancer in all provinces of Iran during a six-year period of time. Also, there were meteorological variables for a 29-year period for the provinces. We used the mean of meteorological variables for the 29-year period for each province as predictors. The ASR of skin cancer in each province in six years was considered as the response variable. Also, gender, latitude, altitude, wind speed, relative humidity, cloudy hours duration, and maximum air temperature in each province were considered independent variables. A mixed effects polynomial regression model was applied to data analysis.

Results: Based on the applied model, the trend of ASR of skin cancer in different provinces was statistically significant (P < 0.001). The ASR of skin cancer for males was more than the females (P < 0.001). Furthermore, the positive linear effect of latitude was significant (P = 0.002). However, the quadratic term showed a deceleration in the growth rate of skin cancer incidence with increasing latitude. Furthermore, there was a positive significant impact of altitude on skin cancer incidence (P = 0.045).

Conclusions: Health policymakers in their prevention planning should consider geographical conditions as influencing factors on skin cancer incidence. Moreover, men should be given more attention as the main group at risk for this cancer.

Keywords: Skin Cancer, Incidence, Latitude, Altitude, Trend

1. Background

In the present century, non-communicable diseases are the main leading cause of death in most countries, among them, cancer is a main cause of death and the most important obstacle to increasing life expectancy worldwide. According to the World Health Organization (WHO) estimation, in more than half of the world, cancer is the first or the second cause of death in people aged younger than 70 years (1). The epidemiological pattern of cancer in developing countries is increasing (2).

Depending on the climatic conditions in different geographical regions, different diseases are spread in that area. Skin cancer is one of the most common cancers in different regions (3). According to previous studies, one out of every five people has a chance of developing one type of skin cancer (4). It is more common in developed countries such as Australia, New Zealand, and the United States. But the mortality of this disease is higher in developing countries (5, 6). Most skin cancers are the result of modern human migration and the mismatch between skin pigmentation and geography or lifestyle (7-9). Although the trend of cancer rate is declining, different types of skin cancer have an increasing growth (10, 11).

In Iran, a developing country with diverse climates and different ethnic groups (12), cancer is the third cause of mortality (13). The lifestyle of the people in the country depends on some factors such as living area and ethnic group. These lead to differing cancer incidence rates in various areas (14, 15).

Skin cancer has been increasing in Iran (5). According to the national report of the cancer registry of Iran, non-melanoma skin cancer has been the third most common cancer in the country based on age-standardized rates. This cancer was the second most common cancer among men and the third most common cancer among women (16).

The relative risk of skin cancer varies in different cli-
2. Objectives

The aim of this study was to investigate the impact of latitude, altitude, wind speed, humidity, and maximum air temperature on age-standardized incidence rates (ASR) of skin cancer in different provinces of Iran.

3. Methods

The present study is ecological. In order to assess the effects of the meteorological parameters and geographical factors on skin cancer incidence in Iran, we used panel data from all provinces as subjects over a six-year period of time. In this study, the average of the maximum air temperature, relative humidity, and wind speed of all provinces were calculated by the Islamic Republic of Iran Meteorological Organization (IRIMO) for a 29-year period. The ASR of skin cancer for all provinces was obtained from reports of the national cancer registry of the Iranian Ministry of Health and Medical Education. Based on these reports, ASR of skin cancer was available from 2004 to 2008 and 2015.

The incidence of skin cancer is affected by many factors. In the present study, for each province, the averages of meteorological parameters for 29 years were considered as covariates. In addition, gender and geographical parameters of latitude and altitude were used as other covariates. The annual ASR of skin cancer was the response variable. In this study basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and basosquamous carcinoma were considered skin cancer.

To evaluate the impact of meteorological and environmental factors on the incidence of skin cancer, the mixed effects polynomial regression model was applied to the data. Also, different structures of the covariance matrix of error were evaluated for the applied model. The best structure of the covariance matrix was chosen based on the lowest Bayesian information criteria (BIC). Data analysis was performed in the environment of R freely software version 3.5.2 using the “nlme” package.

4. Results

Figure 1 represents the relationship between ASR of skin cancer, and climatic and geographic variables. The figure shows that some geographical and climatic factors have an impact on the ASR of skin cancer. It shows a non-linear association between latitude and skin cancer incidence.

We applied a mixed-effects polynomial regression model with an unstructured covariance matrix of error. This model was chosen based on the BIC. Based on the results, the linear part of the ASR trend of skin cancer was negatively significant ($P < 0.001$). Also, the quadratic part of the ASR trend was positively significant ($P < 0.001$). However, the positive sign of the quadratic term reveals the deceleration in the rate of skin cancer incidence. The cubic term of time was positively significant ($P < 0.001$). This suggests upward trend reverses with increasing time. ASR of skin cancer for males was more than the females ($P < 0.001$). The positive linear effect of latitude was significant ($P = 0.002$), but there was a negative quadratic effect of latitude on skin cancer incidence ($P = 0.002$). This means,
although skin cancer incidence increased with rising latitude there was a deceleration in the growth rate of skin cancer incidence by increasing the latitude. Furthermore, there was a positive significant association between skin cancer incidence and altitude ($P = 0.045$). The wind speed, number of cloudy hours, air temperature, and relative humidity were not associated with skin cancer incidence ($P > 0.005$) (Table 1).

5. Discussion

In the present study, we determined the effects of gender, climatic parameters, and geographical factors on skin cancer incidence. Findings showed that there was a decreasing linear trend of skin cancer in Iran. Based on the results, the incidence rate of skin cancer for males was more than the females. This difference seems quite natural. Because the protective measures and clothing differ for men and women. Also, men are more exposed to the risk factors of skin cancer because of the type of job they do. In addition, men take fewer protective measures against the sun’s harmful rays. This finding is consistent with the global burden of cancer study (GLOBOCAN 2018) estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Based on this report, the ASR of non-melanoma skin cancer for men was greater than of females from different regions of the world (33).

There are controversies about the association between latitude and skin cancer incidence. Based on the Madan et al. study, there was an inverse association between latitude and the incidence of skin cancer (34). Wakeford indicated that a reduction of latitude is associated with increasing an incidence of skin cancer in white people of the same race (27). Whereas, in 2017, Rivas et al. found that there was a strong positive correlation between latitude and melanoma skin cancer mortality and a negative asso-
Table 1. The Impact of Meteorological and Environmental Factors on Skin Cancer Incidence

	Coefficient	SE	P-Value
Intercept	-285.397	87.311	0.001
Time (y)	-2.841	0.973	0.004
Quadratic form of time	0.926	0.211	< 0.001
Cubic form of time	-0.058	0.012	< 0.001
Gender (male)	5.147	0.320	< 0.001
Latitude	17.582	5.104	0.002
Quadratic form of latitude	-0.268	0.078	0.002
Altitude (m)	0.005	0.002	0.045
Number of cloudy hours	0.210	1.856	0.911
Average of relative humidity	0.137	0.100	0.187
Average of wind speed (m/s)	-0.286	1.014	0.785
Average of maximum temperature (°C)	0.025	0.305	0.937

We found a positive effect of altitude on skin cancer incidence. It may be due to the positive association of ultraviolet radiation dose with altitude (28). Unprotected prolonged exposure to sunlight is one of the important risk factors for skin cancer due to the sun’s ultraviolet radiation. That is the result of the thinning of the ozone layer. In addition to inappropriate diets, genetic characteristics of people are known as individual factors affecting on skin cancer (7, 15, 24, 40, 41). The ultraviolet radiation of sunlight that passes through the atmosphere is absorbed by ozone and water vapor. Environmental factors such as sun height, latitude, cloud cover, altitude, and ground reflection effect ultraviolet radiation. Higher altitude, proximity to the equator, higher sun height (occurs at solar noon), ozone depletion, and presence of reflectors such as snow increase the amount of ultraviolet radiation. Ultraviolet radiation is high in the sky without cloud (42).

We would like to thank the Iranian Meteorological Organization for offering the data. Also, we would like to thank the Vice-Chancellor for Research and Technology of Hamadan University of Medical Sciences, Iran.

5.1. Conclusions

According to the results of this study, the incidence of skin cancer in the central regions of Iran is more than in the south and the north. As altitude increases, skin cancer incidence increases. Furthermore, the incidence of skin cancer for males was more than the females. In the aim of the preventive intervention, one most important determinant is individual behavior which should be attention. Therefore, health policymakers in their planning should consider geographical factors as influencing factors for skin cancer. Moreover, more training programs for the male target group for prevention and protection measures are needed.

Acknowledgments

We would like to thank the Iranian Meteorological Organization for offering the data. Also, we would like to thank the Vice-Chancellor for Research and Technology of Hamadan University of Medical Sciences, Iran.

4 Int J Cancer Manag. 2022; 15(10):e119906.
Footnotes

Authors' Contribution: Study concept and design: H. M. and S. H.; analysis and interpretation of data: H. M. and S. H.; drafting of the manuscript: All authors; critical revision of the manuscript for important intellectual content: All authors; statistical analysis: S. H.

Conflict of Interests: The authors declare that they have no competing interests.

Ethical Approval: This study was approved by Hamadan University of Medical Sciences, Iran with approved ethical code: IR.UMSHA.REC.1396.648.

Funding/Support: This work was supported by Hamadan University of Medical Sciences, Iran (No 9609286096).

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. [PubMed: 30207593].

2. Pilleron S, Sarfati D, Janssen-Heijnen M, Vignat J, Ferlay J, Bray F, et al. Global cancer incidence in older adults, 2012 and 2035: A population-based study. Int J Cancer. 2019;144(1):49-58. doi: 10.1002/ijc.32664. [PubMed: 29978474].

3. Fierrez CA, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al; Global Burden of Disease Cancer Collaboration, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749-68. doi: 10.1001/jamaoncol.2019.2996. [PubMed: 31560378]. [PubMed Central: PMC677273].

4. Valachovic E, Zurbenko I. Multivariate analysis of spatial-temporal scales in melanoma prevalence. Cancer Causes Control. 2017;28(7):733-43. doi: 10.1007/s10552-017-0895-x. [PubMed: 28466608].

5. Farhood B, Geraily G, Alizadeh A, et al; Global Burden of Disease Cancer Collaboration, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749-68. doi: 10.1001/jamaoncol.2019.2996. [PubMed: 31560378]. [PubMed Central: PMC677273].

6. Pakzad R, Soltani S, Salehiniya H. Epidemiology and trend in skin cancer mortality in Iran. J Res Med Sci. 2015;20(9):922-9. doi: 10.4103/1735-4426.146170. [PubMed: 26759582]. [PubMed Central: PMC4696380].

7. Ruan L, Cheng SP, Zhuo QX. Dietary Fat Intake and the Risk of Skin Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer. 2020;72(3):398-408. doi: 10.1080/01635383.2019.1673910. [PubMed: 32198947].

8. Roffman D, Hart G, Girardi M, Ko CJ, Deng J. Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network. Sci Rep. 2018;8(1):14701. doi: 10.1038/s41598-018-19907-9. [PubMed: 29749166]. [PubMed Central: PMC5736038].

9. Jablonski NG, Chaplin G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A. 2000;97(7): Suppl 2:8962-8. doi: 10.1073/pnas.991462807. [PubMed: 20445093]. [PubMed Central: PMC3004016].

10. Antonijevic A, Rancic N, Ilic M, Kocic B, Stefanovic J, Milic M. Trends in incidence of non-melanoma and melanoma skin cancers in central Serbia. Srp Arh Celok Lek. 2018;136(7-8):391-5. doi: 10.2298/sarh18f30022a.

11. Tazval J, Ghaffari M, Robati MR. Threat appraisal for skin cancer among rural farmers in Ilam, Iran. Int J Dermatol. 2015;54(4):422-7.
27. Wakeford R. The cancer epidemiology of radiation. *Oncogene*. 2004;23(38):6404–28. doi: 10.1038/sj.onc.1207896. [PubMed: 15322514].
28. Rivas M, Araya MC, Cabá F, Rojas E, Calaf GM. Ultraviolet light exposure influences skin cancer in association with latitude. *Oncol Rep*. 2011;25(4):1153–9. doi: 10.3892/or.2011.1164. [PubMed: 21272226].
29. van der Leun JC, Piacentini RD, de Gruijl FR. Climate change and human skin cancer. *Photochem Photobiol Sci*. 2008;7(6):730–3. doi: 10.1039/b719302e. [PubMed: 18528559].
30. Wright CY, Norval M, Kapwata T, du Preez DJ, Wernecke B, Tod BM, et al. The Incidence of Skin Cancer in Relation to Climate Change in South Africa. *Atmosphere*. 2019;10(10):634. doi: 10.3390/atmos10100634.
31. Soltani M, Laux P, Kunstmann H, Stan K, Sohrabi MM, Molanejad M, et al. Assessment of climate variations in temperature and precipitation extremes over Iran. *Theor Appl Climatol*. 2016;126(3-4):775–95. doi: 10.1007/s00704-015-1609-5.
32. Alizadeh-Choobari O, Najafi MS. Extreme weather events in Iran under a changing climate. *Clim Dyn*. 2018;50(1-2):249–60. doi: 10.1007/s00382-017-3602-4.
33. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. *Eur J Cancer*. 2018;103:356–87. doi: 10.1016/j.ejca.2018.07.005. [PubMed: 30100160].
34. Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. *Lancet*. 2010;375(9725):873–85. doi: 10.1016/S0140-6736(09)60996-X.
35. Ezzamir K, Abdolali Khalroodi A, Javanbakht M, Rahimi M. Analyzing the Temporal and Spatial Variation of Fog Days in Iran. *Pure Appl Geophys*. 2011;169(5-6):1165–72. doi: 10.1007/s00024-011-0126-y.
36. Zamanian A, Farschian M, Meheralian A. A 10-year study of squamous cell carcinoma in Hamedan in the west of Iran (1993-2002). *Int J Dermatol*. 2006;45(1):37–9. doi: 10.1111/j.1365-4632.2005.02316.x. [PubMed: 16428371].
37. Cahoon EK, Wheeler DC, Kimlin MG, Kwok RK, Alexander BH, Little MP, et al. Individual, environmental, and meteorological predictors of daily personal ultraviolet radiation exposure measurements in a United States cohort study. *PLoS One*. 2013;8(2). e54983. doi: 10.1371/journal.pone.0054983. [PubMed: 23405002]. [PubMed Central: PMC3566166].
38. Yadav N, Banerjee M. Epidemiological Aspects of Photocarcinogenesis. In: Ray R, Haldar C, Dwivedi A, Agarwal N, Singh J, editors. *Photocarcinogenesis & Photoprotection*. Singapore: Springer; 2018. p. 53–63. doi: 10.1007/978-981-10-5493-8_6.
39. Leung VKY, Dobbinson SJ, Goodman DJ, Kanellis J, Chong AH. Skin cancer history, sun-related attitudes, behaviour and sunburn among renal transplant recipients versus general population. *Australas J Dermatol*. 2018;59(2):e106–13. doi: 10.1111/ajd.12591. [PubMed: 28332995].
40. Peters CE, Kim J, Song C, Heer E, Arrandale VH, Pahwa M, et al. Burden of non-melanoma skin cancer attributable to occupational sun exposure in Canada. *Int Arch Occup Environ Health*. 2019;92(8):1151–7. doi: 10.1007/s00420-019-01454-z. [PubMed: 31270593].
41. Narayanan DL, Saladi RN, Fox J. Ultraviolet radiation and skin cancer. *Int J Dermatol*. 2010;49(9):978–86. doi: 10.1111/j.1365-4632.2010.04474.x. [PubMed: 20882261].
42. Mofidi A, Tompa E, Spencer J, Kalcevich C, Peters CE, Kim J, et al. The economic burden of occupational non-melanoma skin cancer due to solar radiation. *J Occup Environ Hyg*. 2018;15(6):481–91. doi: 10.1080/15459624.2018.1447118. [PubMed: 29695213].