Extremus adstrictus from a dolomite wall in Poland: the first report outside Mallorca

Magdalena Owczarek-Kościelniak*

Article info
Received: 13 Oct. 2020
Revision received: 8 Nov. 2020
Accepted: 18 Nov. 2020
Published: 29 Dec. 2020

Associate Editor
Marcin Piątek

Abstract. Most species belonging to the Extremaceae family are rock-inhabiting fungi (RIF), which have a deteriorative potential towards colonized substrate. *Extremus adstrictus* originally isolated from limestone formations in Mallorca is reported from a dolomite wall in Poland. It is the first non-Spanish documented occurrence of this species. Identification of the strain is supported by morphological and molecular analyses. Sequences of uncharacterized fungal cultures and environmental data are analyzed in order to verify probable distribution of *Extremus adstrictus*.

Key words: Extremaceae, rock-inhabiting fungi, ITS, LSU, phylogeny

Introduction

Rock-inhabiting fungi (RIF) are a group of a poikilotolerant fungi (Gorbushina & Krumbein 2000) with geographical distribution being nearly as wide as rock itself (Friedmann 1982; Staley et al. 1982; Ruibal et al. 2005, 2008; Selbmann et al. 2005, 2008, 2014; Sert et al. 2007; Onofri et al. 2014; Egidi et al. 2014; Su et al. 2015; Isola et al. 2016; Brewer & Fierer 2018; Owczarek-Kościelniak et al. 2020; Sun et al. 2020). RIF, forced to withstand harsh environmental conditions, have developed a number of adaptations needed for survival. These small, slow growing fungi are able to reside under various climatic conditions, including ambient temperatures, high solar irradiation, osmotic stress, low water availability and limited nutrient source (Sterflinger & Krumbein 1995; Selbmann et al. 2005; Dadachova & Casadevall 2008; Onofri et al. 2012; Tesei et al. 2012; Isola et al. 2013; Zakharova et al. 2013).

The family Extremaceae, where most of the described species are RIF, was introduced in 2014 (Quaedvlieg et al. 2014) as a result of resolving a clade formerly known as Teratosphaeriaceae II. Currently, Extremaceae accommodates the following genera: Extremus, Petrophila, Saxophila, Staninwardia, Pseudoramichloridium, Vermiconidia (Wijayawardene et al. 2018), Castanedospora, Paradevriesia (Hongsanan et al. 2020; Wijayawardene et al. 2020) and Neohortaea (Delgado et al. 2018). All type species of these genera, except Staninwardia, are sequenced. Most of the species of the Extremaceae family were isolated from rock samples from sites located in Mallorca and Antarctica. The genera Staninwardia, Pseudoramichloridium, Castanedospora and Neohortaea originate from plant, soil and lignite material.

The genus Staninwardia was first introduced with *Staninwardia breviuscula* from *Eucalyptus* leaves (Sutton 1971). The second *Staninwardia* species discovered, *S. suttoni*, was isolated from *Eucalyptus robusta* in Australia (Summerell et al. 2006) and remains the only sequenced representative of the genus. The genus *Pseudoramichloridium* was first introduced in 2009 (Cheewangkoon et al. 2009) when *Pseudoramichloridium henryi* was isolated from *Corymbia henryi*. Simultaneously, originally described in 2007 as *Ramichloridium brasiliatinum*, an isolate from forest soil, was recombined and introduced as a second representative of the *Pseudoramichloridium* genus. The third species of the genus, *Pseudoramichloridium xinjiangense*, was isolated from soil and described in 2017 (Jiang et al. 2017), but was not sequenced. The genus *Castanedospora* includes a single species, *Castanedospora pachyanthicola*, originating from dead leaves of *Pachyanthus poirettii* and *Sabal palmetto* in Cuba and the USA (Delgado et al. 2018). The genus *Neohortaea* accommodates a single species, *Neohortaea acidophila*, isolated from lignite (Hölker et al. 2004; Quaedvlieg et al. 2014).

The genera *Petrophila* and *Saxophila* are each represented by a single species – *Petrophila incerta* and *Saxophila tyrrenica*, respectively, isolated from stone and a stone monument located in the Mediterranean (Egidi et al. 2014; Isola et al. 2016; Crous et al. 2019). *Vermiconidia* (Crous et al. 2019), originally published as a *Vermiconia* (Egidi et al. 2014) includes four species, *Vermiconidia antarctica* isolated only from Antarctica,
V. calcicola found at various sites in Italy, V. flagrans reported from the Mediterranean and V. foris originating from Italian Alps. All described species and strains of Vermiconidida were isolated from stone substrates. Similarly, the two described species of the genus Extremus are a rock-inhabiting fungi with E. antarcticus isolated from McMurdo Valleys in Antarctica and E. adstrictus from limestone formations in Mallorca (Ruibal et al. 2005; Quaedvlieg et al. 2014; Crous et al. 2019).

The genus Paradevriesia was introduced by Crous et al. (2019) and originally transferred to a new family, Paradevriesiaceae. Paradevriesia is comprised of Paradevriesia compacta from rocks, P. americana from air and P. pseudoamericana from Malus domestica fruit (Crous et al. 2019). The family Paradevriesiaceae is now regarded as a synonym of Extremaceae (Hongsanan et al. 2020; Wijayawardene et al. 2020).

In this work, the strain isolation of Extremus adstrictus from a second location, a dolomitic wall in the center of Kraków, Poland, is reported. Morphological and molecular characteristics of this new specimen are provided.

Materials and methods

Located in southern Poland, the city of Kraków is the second largest city in the country. The climate of Kraków is moderately humid continental with cold winters and warm to hot summers (Grøntoft 2017). Small fragments of a dolomite retaining wall situated in the center of Kraków, Poland (Fig. 1) were steriley collected in May 2018 and transferred to small tubes. In laboratory conditions, wall fragments were crushed in a mortar under sterile conditions and scattered on malt extract agar (MEA) medium as inoculum as described in Owczarek-Kościelniak et al. (2020). After 12 weeks of growth on MEA medium at 15°C, colonies were used for morphological description and molecular analyses. The isolated strain was deposited in the culture collection of the Westerdijk Fungal Biodiversity Institute (CBS) and as a dried voucher specimen in fungal collection of the W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków (KRAM F).

Culture characteristics were studied on MEA medium. Measurements and photographs of the colonies were taken using 6 month old cultures. Micromorphological
observations were made on 3 month old and 6 month old cultures. Slides were mounted with Shear’s medium and observed with a Nikon Eclipse 80i light microscope at a magnification of 1000X. The microscopic structures were measured and photographed using NIS-Elements BR 3.0 imaging software.

DNA extraction was performed following the Gerrits van den Ende and de Hoog (1999) protocol optimized by Owczarek-Kościelniak and Sterflinger (2018). The PCR reactions were performed in a 25 μl volume containing 1X buffer (with MgCl2), 200 μM dNTP, 5 pmol forward and backward primers and 0.05 U Taq polymerase (Sigma Aldrich). Primers selected for the reaction were ITS-1F (5’-CTT GGT CAT TTA GAG GAA GTA A-3’) (Gardes & Bruns 1993) and ITS-4 (5’-TCC TTC GCT TAT TGA TAT GC-3’) (White et al. 1990) for the ITS1–5.8S–ITS4 rDNA (ITS) region, and NL1 (5’-GCA TATCAA TAG TAA CTG GAT TAT GC-3’) (Gardes & Bruns 1993) for the D1-D2 domains of the 28S rDNA (LSU) gene. ITS amplification

Table 1. Fungal sequences used in phylogenetic reconstruction. Sequences generated in this study are shown in bold. T – type strain; ET – ex-type strain.

Species	Strain	Source	Country	NCBI accession number
Castanedospora pachyanthicola	HKUCC 10835	–	China	–
Castanedospora pachyanthicola	CBS 140347T	Sabal palmetto	USA	MH036004
Cladosporium fusiforme	CBS 119414T	hypersaline water	Slovenia	NR_119608
Cladosporium iridis	CBS 138.40ET	Iris sp.	Netherlands	–
Extremus adstrictus	CBS 118292 = TRN96ET	rock sample	Spain	–
Extremus adstrictus	W3	rock sample	Poland	MW206772
Extremus antarcticus	CCFEE 5312	rock sample	Antarctica	KF309979
Extremus antarcticus	CBS 136104 = CCFEE 5207	rock sample	Antarctica	–
Extremus antarcticus	CBS 136103T = CCFEE 451	rock sample	Antarctica	NR_138389
Extremus sp.	CBS 119436 = CCFEE 5177	rock sample	Antarctica	–
Extremus sp.	CCFEE 5551	–	–	–
Extremus sp.	CBS 118300 = TRN137	rock sample	Spain	–
Neohortaea acidophila	CBS 113389	–	Germany	GU214636
Paradevriesia americana	CPC 117726ET	air sample	USA	NR_159866
Paradevriesia compacta	CBS 118294 = TRN111ET	rock sample	Spain	–
Paradevriesia pseudomexicana	CPC 16174T	Malus domestica	Germany	GU570527
Petrophila incerta	CBS 118287 = TRN77	rock sample	Spain	–
Petrophila incerta	CBS 118305 = TRN62	rock sample	Spain	–
Petrophila incerta	CBS 118608 = TRN139ET	rock sample	Spain	–
Polychaetum citri	CBS 116435	Citrus aurantium	Iran	GU214649
Pseudolamarichloridium brasiliannum	CBS 283.92ET	forest soil	Brazil	EU041797
Pseudolamarichloridium henryi	CBS 124775 = CPC 13121ET	Corymbia henryi	Australia	–
Saxophila tyrhenica	TRN66	rock sample	Spain	AY559337
Saxophila tyrhenica	CBS 139725 = CCFEE 5935T	rock sample	Italy	NR_145013
Staninwardia suttonii	CBS 120061 = CPC 13055ET	Eucalyptus robusta	Australia	NR_137111
Toxicocladosporium protecum	CBS 126499 = CPC 15254ET	Protea burchelli	South Africa	NR_152321
Toxicocladosporium irritans	CBS 128777 = CPC 18471ET	Phaeoconoma prolifer	South Africa	MH865133
Toxicocladosporium rubrigenum	CBS 124158 = CPC 15375ET	Eucalyptus calamudensis	Madagascar	NR_152319
Vermiconidium antarctica	CBS 136108 = CCFEE 5489	rock sample	Antarctica	KF309983
Vermiconidium antarctica	CBS 136107 = CCFEE 5488ET	rock sample	Antarctica	–
Vermiconidium calcicola	CCFEE 5905	rock sample	Vatican	KP791756
Vermiconidium calcicola	CCFEE 5898	rock sample	Vatican	KP791757
Vermiconidium calcicola	CCFEE 5714	rock sample	Italy	KP791760
Vermiconidium calcicola	CBS 140080 = CCFEE 5770	rock sample	Italy	NR_132888
Vermiconidium flagrans	CCFEE 5922	rock sample	Vatican	KP791753
Vermiconidium flagrans	CBS 118283 = TRN124	rock sample	Spain	AY559359
Vermiconidium foris	CBS 136106T = CCFEE 5459	rock sample	Italy	KP309981
Verrucocladosporium dirinae	CBS 112794T	Dirina massiliensis	UK	NR_152317
was performed in a touchdown-PCR according to Owczarek-Kościelniak and Sterflinger (2018). LSU PCR reaction was conducted using the following steps: initial denaturation at 95°C for 2 min, 35 cycles in the following order 95°C – 35 s, 56°C – 1 min and 72°C – 1 min, and the final elongation in 72°C for 10 min. Exo-BAP kit (Eurox, Poland) was used for enzymatic purification of amplicons.

Bidirectional sequencing was performed at Macrogen Europe B.V. (Amsterdam, The Netherlands). Reads were assembled and trimmed in Geneious Prime® 2020.0.4. Generated sequences were deposited at the NCBI’s GenBank nucleotide database (Table 1).

BLASTn query was performed in order to verify fungus identity and to find sequences of the closest relatives. Sequences showing high similarity with newly generated sequences, as well as sequences of other related species were downloaded from GenBank and aligned with the MAFFT algorithm (Katoh et al. 2005) as implemented in Geneious Prime® 2020.0.4. In Geneious Prime® 2020.0.4, a dataset of three concatenated loci, ITS, LSU and RPB2, was prepared. Polychaeton citri CBS 116435 was used as an outgroup. The best partitioning model was determined separately for each loci by PartitionFinder 2.1.1 (Lanfear et al. 2016). Analyses were performed for each loci and for the concatenated datablock at the CIPRES Science Gateway (Millet et al. 2010) using maximum likelihood (ML) analyses using RAxML (Stamatakis 2014) with 1,000 bootstrap replicates and the Bayesian Inference (BI) using MrBayes (Ronquist et al. 2012) in two concurrent runs of four chains for 2,000,000 generations. Final phylogenetic trees were prepared with FigTree 1.4.3. Estimates of the average evolutionary divergence over sequence pairs within groups were calculated in MEGA X (Kumar et al. 2018).

Results and discussion

The MEA cultures of *Extremus adstrictus* W3 strain from Kraków were mostly consistent with the original type strain description (Fig. 2). Colonies on MEA grew slowly, reaching up to 12.5 mm in diameter after 2 months of growth. Colonies were oval, compact, black with distinct margins and embedded in the medium, reverse was black. Hyphae were septate, sparsely branched, pale brown to brown, and 1.0–4.5 μm wide. Conidia were intercalary, one-septate, brown, several in chains, rarely single, and 6.0–9.5 × 2.5–4.5 μm. Chlamydospores were produced singly and were brown, globoid to ovoid, growing intercalary or apically, one to two, rarely three-celled, and 6.0–11.0 × 5.0–10.0 μm. Colony diameter formed by the isolate from Poland was smaller than colony diameter of type strain of *E. adstrictus*. Furthermore, chlamydospores

Figure 2. *Extremus adstrictus* W3 on MEA. A – colony morphology; B – hyphae and conidia in chain (arrow); C – dark-walled hyphae and conidia; D – hyphae, conidia and two and three-celled chlamydospores (arrows). Scale bars: A = 1 cm; B–D = 10 μm. Photographs: A – M. Owczarek-Kościelniak; B–D – M. Piątek.
were not reported in the original description of the species (Egidi et al. 2014).

Successfully amplified ITS and LSU loci from new Extremus adstrictus W3 strain were 514 bp and 575 bp for ITS and LSU, respectively. BLASTn searches confirmed a close affinity of the analyzed sequences to the sequences of the type strain of Extremus adstrictus, showing 98.27% (8 bp difference) and 100% identity for the ITS and LSU loci, respectively. Overall, 38 ITS sequences from the Extremaceae were downloaded from the GenBank. Extremus adstrictus and E. antarcticus similarity was checked in a distance matrix of the aligned ITS datablock. Type strains of these species were 95.09% identical. The number of Extremaceae sequences used in phylogenetic tree reconstruction was reduced to 31 by the elimination of the sequences which similarity to Extremus adstrictus was lower than 95.09%. Using MegaX, the average evolutionary divergence over sequence pairs within Extremus adstrictus group was calculated using the Tajima-Nei model. The rate variation among sites was modeled with a gamma distribution. The divergence within the group was 0.02, whereas in the Petrophila and Saxophila group it was 0.06 and 0.00, respectively.

The reconstructed phylogenetic tree of concatenated ITS, LSU and RPB2 datablocks (Fig. 3) confirms affinity of the isolate from Kraków to the genus Extremus and the identification of the Polish strain W3 as Extremus adstrictus is well supported. Several sequences of uncharacterized cultures and environmental sequences showed affinity to sequences of Extremus adstrictus obtained from type culture and the strain W3 from Kraków that is presented in supplementary files (Fig. S1, Table S1). Considering morphological characteristics of the type strain and isolate W3 from Kraków, it seems probable that most of the unclassified cultures also represent Extremus adstrictus.

The sequence from culture TRN80 from limestone and the sequence from an uncultured Devriesia clone 10S50C15 (from soil) form an unsupported clade between Extremus adstrictus and E. antarcticus (Fig. S1). The sequence from the alpine soil, fungal sp. MKOTU91, also has an inconclusive position, visible here as basal to the previous sequences. The specific affinities of these three sequences are unresolved.

Among analyzed sequences related to Extremus adstrictus, only one sequence, from uncultured fungus clone 4248_135 closest to isolate from Kraków, does not originate from the stone material, but from irrigation water from a pond in Lithuania (Marčiulynas et al. 2020). All uncharacterized cultures from the TRN collection originate from limestone material in Spain, TRN433 from the Central Mountain System and the remainder from Mallorca (Ruibal et al. 2005, 2008). Interestingly, all stone isolates of Extremus adstrictus are from substrates rich in calcium from limestone and dolomite in Spain and Poland.

Extremus species are classified as rock-inhabiting fungi. RIF are considered potentially harmful towards inhabited substrate. Not many RIF were reported from a temperate climate of the Central Europe, thus the discovery of Extremus adstrictus is noteworthy. Among other RIF reported from a temperate climate zone in Europe are Knufia marmoricola, Neocatenulostroma germanicum, Constantinomyces oldenburgensis (Sterflinger & Piñar...
Acknowledgements

This study was supported by the statutory funds of the W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Supplementary electronic material

Figure S1. Maximum likelihood consensus tree of a concatenated ITS-LSU-RPB2 loci of Extremaceae. Numbers above branches indicate bootstrap support values (ML) and posterior probabilities (BI).

Table S1. Additional fungal ITS sequences used in phylogenetic reconstruction. T – type strain; eT – ex-type strain. Download file

References

Breitenbach, R., Silbernagl, D., Toepel, J., Sturm, H., Broughton, W. J., Sassiaki, G. L. & Gorbushina, A. A. 2018. Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knofia petricola. Extremophiles 22: 165–175.

Brewer, T. E. & Fierer, N. 2017. Tales from the tomb: the microbial ecology of exposed rock surfaces. Environmental Microbiology 20: 985–970.

Cheewangkoon, R., Groenewald, J. Z., Summerell, B. A., Hyde, K. D., Crous, P. W., Schumacher, R. K., Akulov, A., Thangavel, R., Hernán, M. Owczarek-Kościelniak: Extremus adstriclus from a dolomite wall in Poland: the first report outside Mallorca

Gardes, M. & Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizas and rusts. Molecular Ecology 2: 113–118.

Gerrits, R., Pokharel, R., Breitenbach, R., Radnik, J., Feldmann, I., Schuessler, J. A., von Blankenburg, F., Gorbushina, A. A. & Schott, J. 2020. How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment. Geochimica et Cosmochimica Acta Volume 282: 76–97.

Gerrits, R., Wirth, R., Schreiber, A., Feldmann, I., Knabe, N., Schott, J., Benning, L. G. & Gorbushina A. A. 2021. High-resolution imaging of fungal biofilm-induced olivine weathering. Chemical Geology 559: 119902. [Available online 24 September 2020]

Gerrits van den Ende, A. H. G. & de Hoog, G. S. 1999. Variability and molecular diagnostics of the neurotropic species Cladosiphola phantana. Studies in Mycology 43: 151–162.

Gorbushina, A. A. & Krumbein, W. E. 2000. Subaerial microbial mats and their effects on soil and rock. In: Riding, R. & Awramik, S. (eds), Microbial sediments, pp. 161–170. Springer, Berlin.

Gronstorf, T. 2017. Conservation-restoration costs for limestone façades due to air pollution in Krakow, Poland, meeting European target values and expected climate change. Sustainable Cities and Society 29: 169–177.

Hölker, U., Bend, J., Pracht, R., Tetsch, L., Müller, T., Höfer, M. & de Hoog, G. S. (2004). Hortae acidiphila, a new acid-tolerant black yeast from lignite. Antonie van Leeuwenhoek 86: 287–294.

Hongsanan, S., Hyde, K. D., Phookamsak, R., Wanasinghe, D. N., McKenney, E. H. C., Sarma, V. V., Boonmeene, S., Lücking, R., Bhat, D. J., Liu, N. G., Temmakoon, D. S., Pen, D., Karunarathna, A., Jiang, S. H., Jones, E. D. G., Phillips, A. J. L., Manawasinghe, I. S., Thipromma, S., Jayasiri, S. C., Sandamali, D. S., Jayawardena, R.S., Wijayawardene, N. E., Ekanayaka, A. H., Jeewon, R., Lu, Y. Z., Dissanayake, A. J., Zeng, X. Y., Luo, Z. L., Tian, Q., Phukhamsakda, C., Thambugalama, K. M., Dari, A. D., Chethana, K. T. W., Samarakoon, M. C., Ertz, D., Bao, D. F., Doilom, M., Liu, J. K., Pérez-Ortega, S., Suija, A., Senwanna, C., Wijesinghe, S. N., Konta, S., Niranjan, M., Zhang, S. N., Aniyawsana, H. A., Jiang, H. B., Zhang, J. F., Norphanphoun, C., de Silva, N. L., Thiyagaraja, V., Zhang, H., Bezerra, J. D. P., Miranda-González, R., Aptroot, A., Kashwadihan, H., Harishchandara, D., Sérusiaux, E., Althumuhandiram, J. V. S., Abeywickrama, P. D., Devadatha, B., Wu, H. X., Moon, K. H., Geeudan, C., Schumm, F., Bundhun, D., Mapook, A., Monkai, J., Chonnunt, P., Suetrong, S., Chaiworn, N., Dayarathe, M. C., Yang, J., Rathnayaka, A. R., Bhunsu, C. S., Xu, J. C., Zheng, J. S., Liu, G., Feng, Y. & Xie, N. 2020. Renamed fungi of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11: 1553–2107.

Isola, D., Selbmann, L., de Hoog, G. S., Feneice, M., Onofri, S., Prenafeta-Boldu, F. X. & Zucconi, L. 2013. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175: 369–379.

Isola, D., Zucconi, L., Onofri, S., Caneva, G., de Hoog, G. S. & Selbmann, L. 2016. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Diversity 76: 75–96.

Jiang, Y. L., Wu, Y. M., Yang, B., Xu, J. J., Zhang, Z. G., Kong, J. H. & Zhang, T. Y. 2017. Cladosporium, Phialophora, Pseudoramichloridium & Ticogloea spp. nov. from China. MycotaXon 132: 677–684.

Katoh, K., Kuma, K., Toh, H. & Miyata, T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. 2016. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773.
Marciulytės, A., Marciulytė, D., Lynciūnė, J., Gedminas, G., Vaičiūnienė, M. & Menkis, A. 2020. Fungi and Oomycetes in the Irrigation Water of Forest Nurseries. Forests 11: 459.

Marvai, M., Donarumma, F., Frandi, A., Matstreomi, G., Sterflinger, K., Tiano, P. & Perito, B. 2012. Black microcolonial fungi as detergent-gens of two famous marble statues in Florence, Italy. International Biodeterioration and Biodegradation 68: 36–44.

Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1–8, New Orleans, LA.

O’Donnell, K. 1993. Fusarium and its near relatives. In: Reynolds, D. R. & Taylor, J. W. (eds), The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, pp. 225–233. Wallingford, CAB International.

Onofri, S., de la Torre, R., de Vera, J. P., Ott, S., Zucconi, L., Selbmann, L., Scali, G., Venkateswaran, K. J., Rabbot, E., Sánchez Iglio, F. J. & Honeck, G. 2012. Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12: 508–516.

Onofri, S., Zucconi, L., Isola, D. & Selbmann, L. 2014. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosystems 148: 384–391.

Ovczarek-Kościelnik, M. & Sterflinger, K. 2018. First records of Knufia marmorolisa from limestone outcrops in the Wżyna Kraśnicko–Częstochowska Upland, Poland. Phytologia 357: 94–106.

Ovczarek-Kościelnik, M., Krezwicka, B., Piątek, J., Kolodzieczyk, L. M. & Kapusta, P. 2020. Is there link between the biological colonization of the gravestone and its deterioration? International Biodeterioration & Biodegradation 148: 104879.

Quaedvlieg, W., Binder, M., Groenewald, J. Z., Summerell, B. A., Carnegie, A. J., Burgess, T. I. & Crous, P. W. 2014. Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542.

Ruibal, C., Platias, G. & Bills, G. F. 2005. Isolation and characterization of melanized fungi from limestone formations in Mallorca. International Biodeterioration & Biodegradation 58: 227–235.

Ruibal, C., Platias, G. & Bills, G. F. 2008. High diversity and morphologically diverse melanized fungi from limestone outcrops in the Wyżyna Krakowsko–Częstochowska Upland, Poland. Mycotaxon 102: 175–190.

Ruibal, C., Selbmann, L., de Hoog, G. S., Gerrits van den Ende, A. H. G., Ruibal, C., Tieri, P., Nagahashi, N., Sánchez-Iglesias, M., Sun, W., Sun, J., Liu, B., Fu, R., Wu, B., Liu, X., Cai, L., Guo, L. & Xiang, M. 2020. Unveiling the Hidden Diversity of Rock-Inhabiting Fungi: Chaetothyriales from China. Journal of Fungi 6: 187.

Sutton B. C. 1971. Staining varidella gen. nov. (Mellonconiales) on Eucalyptus. Transactions of the British Mycological Society 57: 539–542.

Sun, W., Lu, S., Yang, S., Sun, J., Liu, B., Fu, R., Wu, B., Liu, X., Cai, L., Guo, L. & Xiang, M. 2020. Survival of rock-colonizing or extremotolerant fungi. In: Innis, M. A., Gelfand, D. H. (eds). PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Academic Press: London.

Wijayawardene, N. N., Hyde, K. D., Lumbsch, H. T., Liu, J. X., Marčiulynas, A., Marčiulynienė, D., Lynikienė, J., Gedminas, G., Vaičius, P. & Šarapov, S. 2018. Roof-Inhabiting Cousins of Rock-Inhabiting Fungi: A Life in Constant Drought? Mycosphaerella H. A., Tian Q. & Phookamsak, R. 2018. Outline of Ascomycota: 2017. Fungal Diversity 88: 167–263.

Wijayawardene, N. N., Hyde, K. D., Al-Ani, L. K. T., Pedersso, L., Haelewaters, D., Rajeshkumar, K., Crous, P. W., He, M. Q., Flakus, A., Rodriguez-Flakus, P., Alvarado, P., Li, D. W., Kušan, I., Matočec, N., Mešić, A., Staley, J. T., Palmer, F., Adams, B. 1982. Microcolonial fungi: common characteristics and model choice across a large model space. Systematic Biology 167–263.

Yamada, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1–8, New Orleans, LA.

Zakharova, K., Tesei, D., Marzban, G., Zakharevich, K., Isola, D., Selbmann, L. & Sterflinger, K. 2012. Alteration of protein patterns in black rock-inhabiting fungi as a response to different temperatures. Fungal Biology 116: 932–940.

White, T. J., Bruns, T. D., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H. (eds). PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Academic Press: London.