Comparison between phenotypic and PCR for detection of OXA-23 type and metallo-beta-lactamases producer Acinetobacter spp.

Vergleich zwischen Phänotypisierung und PCR für den Nachweis von OXA-23 Metallo-beta-Lactamase produzierenden Acinetobacter spp.

Abstract

Background: Resistance to carbapenems is developing around the world and can cause many problems for treatment of patients. Production of metallo-beta-lactamase (MBL) is one of the main mechanism for this type of resistance. So, detection of MBL-producer microorganisms can prevent the spread of this type of resistance.

Materials and methods: In this study 94 Acinetobacter spp. were investigated. Resistance to imipenem was conducted after purification and identification. Combination disc (CD) and Double Disc Synergy Test (DDST) were performed for phenotypic detection of MBL and the molecular PCR method was done for vim-1, vim-2, imp-1 and OXA-23 genes.

Results: According to TSI, SIM and oxidation-fermentation (OF) test and PCR assay 93 Acinetobacter baumannii and one strain Acinetobacter lwoffii were identified. 85% of them were resistant to imipenem. 34% of them have a positive combination disc test (CD) while Double Disc Synergy Test (DDST) was negative for all of them. The vim-1, vim-2 and imp-1 genes were not detected in PCR molecular method, however in 74% of strains with positive results in combination disc, were positive for the OXA-23 gene after PCR test. This study shows that the blaOXA-23 resistance determinant may become an emerging therapeutic problem.

Discussion: According to the results, it seems that combination disc does not have enough specificity for detection of MBL-producer Acinetobacter and using Double Disc Synergy Test (DDST) can be more convenient.

Keywords: metallo-beta-lactamase, Acinetobacter, combination disc Test, Double Disc Synergy Test, OXA23

Zusammenfassung

Hintergrund: Die Resistenz gegen Carbapeneme nimmt weltweit zu und verursacht viele Probleme bei der Behandlung von Patienten. Die Produktion von Metallo-beta-Lactamasen (MBL) ist einer der Hauptmechanismen dieser Resistenz. Daher kann die Erkennung vom MBL-bildenden Mikroorganismen die Ausbreitung dieses Resistenztyps verhindern.

Materialien und Methoden: In der Studie wurden 94 Acinetobacter spp. untersucht. Nach Reinigung und Identifizierung der Isolate wurde die Imipenem-Resistenz bestimmt. Der Combination Disc Test (CD) und der Double Disc Synergy Test (DDST) wurden zum phänotypischen Nachweis der MBL durchgeführt. Zum Nachweis der Gene vim-1, vim-2, imp-1 und OXA23 wurde die molekularbiologische PCR eingesetzt.

Ergebnisse: Es wurden mittels TSI-Medium, SIM, Oxidations-Fermentations-Test und PCR-Untersuchung 93 Acinetobacter baumannii und ein Acinetobacter lwoffii identifiziert. 85% waren resistent gegenüber Imipenem. 34% von diesen zeigten einen positiven Combination Disc Test.
Introduction

The emergence of carbapenem-resistant Acinetobacter spp. in the last decade has become a serious problem in the health community [1], [2]. The ability of producing Carbapenemases enzymes such as metallo-beta-lactamase (MBL) are the most common resistant mechanism to carbapenem. The class B beta-lactamase (MBL) which is hydrolyzing carbapenem and other beta-lactams except Monobactam can cause resistance to this antibiotic family [3], [4], [5]. Transferring of mobile genetic elements like plasmids is the main reason for spreading of this resistance mechanism in gram negative bacteria [6], [7]. Several phenotypic methods for detection of MBL-producer iso-lates have been suggested by using chelating agents nevertheless the specificity and sensitivity of this method are diverse [8], [9]. The Combination Disc assay (CD) and Double Disc Synergism Test (DDST) by use of imipenem and EDTA as an MBL inhibitor are the most widespread phenotypic methods which are used in numerous studies [10], [11], [12]. Molecular method PCR with different primers have been used for confirmation of phenotypic assay since, blaVIM and blaIMP are the most common MBL, so detection of these gene use for evaluation of phenotypic methods [3]. Because resistance to carbapenems is an increasing problem among Acinetobacter baumannii strains by specific primers for OXA-51-like gene (Table 1) [13], [14], [15], [16]. Acinetobacter baumannii ATCC 19606 was used as positive control. PCR program followed by: Initial denaturation 94 °C for 5 min, denaturation 94 °C for 45 seconds, annealing 58 °C for 1 min, extension 72 °C for 1 min, this program repeated for 30 cycles and the final extension 72 °C for 5 min.

Antibiotic susceptibility test

The antibiotic susceptibility test was carried out according to CLSI 2011 recommendation and MAST company antibiotic discs. Strains by ≤13 mm zone size of inhibition were considered as imipenem-resistant. MIC was performed by macro dilution between the range of 0.5–128 µg/ml according to CLSI recommendation. MIC ≥16 µg/ml considered as an imipenem-resistant strain.

Phenotypic detection of metallo beta-lactamase

At first 0.5 M of EDTA reached by dissolving 186.1 grams in one liter distilled water and PH adjusted [8] by NaOH, then EDTA 750 µg/disc and 930 µg/disc were prepared. The inhibition zone of each disc was measured solitary. In the next step the DDST conducted by imipenem and EDTA distinctly for each disc with 750 and 930 µg/disc, which were placed on both sides of imipenem with a distance of 20 mm center to center, for eventual synergism effectiveness. Strains with increasing size in the imipenem inhibition zone towards EDTA are considered as MBL producers in DDST. In the CD assay usage of imipenem alone and imipenem plus EDTA in two concentrations are considered as MBL producer.

PCR molecular test for detection of MBL (blaVIM-1, blaVIM-2 and blaIMP-1)

Strains with at least one positive phenotypic test that explained above were examined for blaVIM-1, blaVIM-2 and blaIMP-1 genes by PCR [9]. In this study also detection of OXA-23 gene which is known as one of the common car-
bapenemase in Acinetobacter spp., was done by PCR for survey of false positive responds in CD assay. The Primers and PCR program were used in this study are shown in Table 1 and Table 2. Polymerase chain reaction was performed for each sample with the following compounds. 1X concentration Specific PCR buffer, 0.4 mM of dNTPs mix, 0.7 mM of MgCl$_2$, 1.6 M of each primer, one unit of Taq polymerase enzyme, 2 µl of DNA and sterile distilled water to get 25 µl as a final volume. Finally, the PCR products were evaluated on a 1% agarose gel.

Results

Ninety-three strains were identified as *Acinetobacter baumannii* by specific biochemical test and confirmed by PCR. According to CLSI 2011 guideline, 80 (85%) strains were resistant to imipenem. MIC verified these results (MIC 16 µg/ml: 20%, MIC 32 µg/ml: 26%, MIC 64 µg/ml: 46% and MIC 128 µg/ml: 8%). 31 (34%) of imipenem-resistant strains were positive in the CD test with 750 and 930 µg/disc concentration of EDTA. Simultaneously, 750 and 930 µg/disc EDTA alone made the inhibition zone up to 13 mm and 20 mm respectively (Figure 1). None of them had synergistic effects between these two charges of EDTA alone and imipenem alone. In the molecular test there was not detected any VIM1, VIM2 and IMP1 genes in expected size after gel electrophoresis. Conversely, OXA-23 gene was observed in 25 out of 31 strains in positive CD test (Figure 2).

Table 1: Primer sequences and amplicon sizes

Gene	Primer sequences	Amplicon size (bp)	Reference
OXA-51-likeF	TAATGCTTTTAGTGCCCCTTG	353 bp	[13]
OXA-51-like-R	TGGATTGCACTTCTAGTTTGG		
blaVIM-1-F1	ATGTTAAAAGTTAGTTAGT	801 bp	[14]–[15]
blaVIM-1-R1	CTTACTGAGCTGAGCTGAT		
blaVIM-2-F2	CTACTCAACGACTGAGCGAT	801 bp	[15]
blaVIM-2-R2	ACCGCA GCA GAG TGT TGT CC		
blaIMP-1-F1	ACCGCA GCA GAG TGT TGT CC	587 bp	[16]
blaIMP-1-R1	ACA ACC AGT TTT GCC TTA CC		
blaOXA-23-F	GAT GTG TCA TAG TCG TCGT	1058 bp	
blaOXA-23-R	TCA CAA CAA CTA AAA GCA CTG T		

Table 2: The PCR program for **bla**VIM-1, **bla**VIM-2, **bla**IMP-1 and OXA-23

PCR steps	Gene	Temperature	Time
Initial denaturation	**bla**VIM-1, **bla**VIM-2, **bla**OXA-23	95°C	5 min
Denaturation	**bla**VIM-1, **bla**VIM-2, **bla**OXA-23	95°C	60 sec
Annealing	**bla**VIM-1, **bla**VIM-2, **bla**OXA-23	25°C	60 sec
Extension	**bla**VIM-1, **bla**VIM-2, **bla**OXA-23	72°C	60 sec
Final Extension	**bla**VIM-1, **bla**VIM-2, **bla**OXA-23	72°C	5 min
Discussion

The ability of producing metallo-beta-lactamase enzymes in gram-negative bacteria is one of the resistance mechanisms, consequently the several methods have been suggested for phenotypic identification of metallo-beta-lactamase enzymes [2], [3], [7]. CD and Double Disc Synergism DDST methods with EDTA and imipenem are known as the most ordinary methods for phenotypic recognition of metallo-beta-lactamase [8], [9]. In the Eser and colleagues' study which was done on 124 strains of Acinetobacter baumannii in Turkey in 2009, 80% imipenem-resistant strains were detected as CD positive, however the results of PCR molecular tests for detection of bla_{VIM} and bla_{IMP} were negative [11]. Results of recent studies are exactly similar to ours while the bla_{IMP}, bla_{VIM} and bla_{VAP} genes in CD positive strains didn't distinguish, therefore our data shows that this technique is not specified for the detection of MBL. It is notable that the specificity of CD test was reported 98% in another study on Enterobacteriaceae family in Greece in 2008 [7], despite that the EDTA concentration was 2.5 times higher than ours. On the other hand in 2012 a Malaysian study was conducted on imipenem-resistant Pseudomonas aeruginosa. The results showed that the specificity of the CD test in 43% of the strains was confirmed by molecular method while the specificity of DDST 97% and E-Test 62% reported respectively [8]. In 2008, a Brazilian study on gram-negative bacilli to identify the MBL enzyme using different inhibitors was performed. Test results showed that the CD test could not classify Acinetobacter species [10]. In the present study, no synergistic effect was observed in DDST techniques and molecular tests for the presence of genes VIM1, VIM2 and IMP1 was negative. According to the study, it was shown that EDTA alone was tested for Acinetobacter strains has an inhibition zone from 13 mm for 750 µg/disc and up to 20 mm for 930 µg/disc. Therefore, an increase of 7 mm zone of inhibition between imipenem alone and imipenem with EDTA cannot explain the synergistic effect of these two materials. In 2011 in Iran the DDS test for the detection of MBL in Pseudomonas spp. showed that phenotypic tests for MBL detection was confirmed by molecular testing [3]. In 2002 in Italy 28 Acinetobacter imipenem-resistant strains were studied that 16 strains with DDST were positive for MBL production and the results confirmed by PCR. Maybe using CD test by other MBL inhibitors can partially compensate the problems caused by the use of Imipenem and EDTA simultaneously. MBL mediated imipenem resistance in Acinetobacter baumannii is a cause for concern in the treatment of infected burns patients. The rate of imipenem resistance due to MBLs was increased dramatically [8], [17]. The clinical significance of OXA-23 isolates, which were widespread [18], [19] in burn unit, is of great importance, since clinicians are advised against the use of extended-spectrum cephalosporins, aztreonam, cephemycins, imipenem, and aminoglycosides. In 2010 in China, an outbreak of OXA-23 producer A. baumannii was reported [18]. In 2013 in Nigeria 60% of imipenem-resistant isolated A. baumannii positive for OXA-23 [20]. This observation emphasizes the importance of having effective control measures in Iranian burn hospitals, such as early detection of colonized patients, isolation procedures, and a judicious use of antibiotics.

Conclusions

According to the results of this study and other studies, it seems that the DDS test for MBL detection is more specific than the CD test. On the other hand, using different charges of EDTA and zone inhibition in CD test is another reason that proves this phenotypic method is unreliable in the detection of MBL producing strains. It appears that the different species of bacteria and geographical area have important role in determining the specificity of the CD, also the variety of used concentrations and variables methods which have been applied in any of the studies mentioned above, confirm the instability of conditions and impossibility of standardization of the CD by EDTA tests. In addition, because the 80% of CD test responses in imipenem-resistant strains were fake, the
OXA-23 gene was detected instead of metallo-beta-lactamase.

Notes

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by a grant (M/T 91-01-13-16573) from Tehran University of Medical Sciences, Tehran, Iran.

References

1. Owlia P, Azimi L, Gholami A, Asghari B, Lari AR. ESBL and MBL-mediated resistance in Acinetobacter baumannii: a global threat to burn patients. Infez Med. 2012 Sep;20(3):182-7.
2. Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, Rossolini GM, Chong Y. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genospecies 3 from Korea: identification of two new integrons carrying the bla(VIM-2) gene cassettes. J Antimicrob Chemother. 2002 May;49(3):837-40. DOI: 10.1093/jac/dkf043
3. Peymani A, Nahael MR, Farajnia S, Hasani A, Mirsalehi A, Sohrabi N, Abbasi L. High prevalence of metallo-beta-lactamase-producing Acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis. 2011;64(1):69-71.
4. Rastegar Lari A, Azimi L, Rahbar M, Faliagh Farah F, Alaghehbandan R. Phenotypic detection of Klebsiella pneumoniae carbapenemase among burns patients: first report from Iran. Burns. 2013 Feb;39(1):174-6. DOI: 10.1016/j.burns.2012.02.025
5. Azimi L, Rastegar Lari A, Alaghehbandan R, Alinejad F, Mohammadpoor M, Rahbar M. KPC-producer gram negative bacteria among burned infants in Motahari Hospital, Tehran: first report from Iran, Ann Burns Fire Disasters. 2012 Jun;25(2):74-7.
6. Henrichfreise B, Wiegand I, Sherwood KJ, Wiegand I, Sherwood KJ, Wiedemann B. Detection of metallo-beta-lactamase in Pseudomonas aeruginosa from Germany. Antimicrob Agents Chemother. 2005 Apr;49(4):1668-9. DOI: 10.1128/AAC.49.4.1668-1669.2005
7. Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarelou H. Evaluation of different laboratory tests for the detection of metallo-beta-lactamase production in Enterobacteriaceae. J Antimicrob Chemother. 2006 Mar;61(3):548-53. DOI: 10.1093/jac/dkm535 DOI: 10.1093/jac/dkm535
8. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-beta-lactamase in imipenem-resistant Pseudomonas aeruginosa. ScientificWorldJournal. 2012;2012:654939. DOI: 10.1100/2012/654939
9. Fiett J, Baraniak A, Mroźka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Sarnet A, Hnyriezicz W, Gnaidkowski M. Molecular epidemiology of acquired-metallo-beta-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother. 2006 Mar;50(3):880-6. DOI: 10.1128/AAC.50.3.880-886.2006
10. Picão RC, Andrade SS, Nicoletti AG, Campaña EH, Moraes GC, Mendes RE, Gaines AC. Metallo-beta-lactamase detection: comparative evaluation of double-disc synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol. 2008 Jun;46(6):2028-37. DOI: 10.1128/JCM.00818-07
11. Eser OK, Ergin A, Hasçelik G. Erişkin hastalardan izole edilen Acinetobacter türlerinde antimikrobiyal direnç ve metallo-beta-laktamaz varlığı [Antimicrobial resistance and existence of metallo-beta-lactamase in Acinetobacter species isolated from adult patients]. Mikrobiyol Bul. 2009 Jul;43(3):383-90.
12. Bou G, Cerveró G, Domínguez MA, Quereda C, Martínez-Beltrán J. PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2000 Dec;6(12):635-43. DOI: 10.1016/j.jcmi.2000.01.081
13. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 2006 Aug;44(8):2974-6. DOI: 10.1128/JCM.01021-06
14. Fiett J, Baraniak A, Mroźka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Sarnet A, Hnyriezicz W, Gnaidkowski M. Molecular epidemiology of acquired metallo-beta-lactamase-producing Acinetobacter baumannii strain of sequence type ST75. J Bacteriol. 2012 Nov;194(21):6000-1.
15. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, Kato H, Kai K, Arakawa Y. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003 Dec;41(12):5407-13. DOI: 10.1128/JCM.41.12.5407-5413.2003
16. Jeon BC, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, Lee JH, Song JS, Lee SH. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 beta-lactamase in Korea. J Clin Microbiol. 2005 May;43(5):2241-5. DOI: 10.1128/JCM.43.5.2241-2245.2005
17. Kouda S, Ohara M, Onodera M, Fujiiyama Y, Sasaki M, Kohara T, Kashiyama S, Hayashioka S, Harino T, Tsuji T, Itaka H, Gotoh N, Matsubara A, Usui T, Sugai M. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother. 2009;64(1):61-6. DOI: 10.1093/jac/dkp142
18. Liu S, Wang Y, Xu J, Li Y, Guo J, Ke Y, Yuan X, Wang L, Du X, Wang Z, Huang L, Zhang N, Chen Z. Genome sequence of an OXA23-producing, carbapenem-resistant Acinetobacter baumannii strain of sequence type ST75. J Bacteriol. 2012 Nov;194(12):6000-1. DOI: 10.1128/JB.01440-12
19. Thapa B, Tribuddharat C, Sirungfungs S, Diraphuta C. High prevalence of bla(OXA-23) in oligoclonal carbapenem-resistant Acinetobacter baumannii from Siriraj Hospital, Mahidol University, Bangkok, Thailand. Southeast Asian J Trop Med Public Health. 2010 May;41(3):625-35.
20. Olaitan AO, Berrazeg M, Fagade OE, Adelowo OO, Alli JA, Rolain JM. Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase, Nigeria. Int J Infect Dis. 2013 Jun;17(6):e469-70. DOI: 10.1016/j.ijid.2012.12.008
Corresponding author:
Abdolaziz Rastegar Lari, PhD
Antimicrobial Resistance Research Center, Iran University of Medical Sciences, P.O. Box 14515-717, Tehran, Iran,
Phone/Fax: +98-21-86703183
lari@tums.ac.ir

Please cite as
Azimi L, Lari AR, Talebi M, Namvar AE, Jabbari M. Comparison between phenotypic and PCR for detection of OXA-23 type and metallo-beta-lactamases producer Acinetobacter spp.. GMS Hyg Infect Control. 2013;8(2):Doc16.
DOI: 10.3205/dgkh000216, URN: urn:nbn:de:0183-dgkh0002163

This article is freely available from
http://www.egms.de/en/journals/dgkh/2013-8/dgkh000216.shtml

Published: 2013-11-06

Copyright
©2013 Azimi et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.