Asymmetry in repeated isotropic rotations

Malte Schröder and Marc Timme
Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, TU Dresden, 01062 Dresden, Germany and Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany

Random operators constitute fundamental building blocks of models of complex systems yet are far from fully understood. Here, we explain an asymmetry emerging upon repeating identical isotropic (uniformly random) operations. Specifically, in two dimensions, repeating an isotropic rotation twice maps a given point on the two-dimensional unit sphere (the unit circle) uniformly at random to any point on the unit sphere, reflecting a statistical symmetry as expected. In contrast, in three and higher dimensions, a point is mapped more often closer to the original point than a uniform distribution predicts. Curiously, in the limit of the dimension $d \to \infty$, a symmetric distribution is approached again. We intuitively explain the emergence of this asymmetry and why it disappears in higher dimensions by disentangling isotropic rotations into a sequence of partial actions. The asymmetry emerges in two qualitatively different forms and for a wide range of general random operations relevant in complex systems modeling, including repeated continuous and discrete rotations, roto-reflections and general orthogonal transformations.

Random operations ubiquitously appear in complex systems models where they often reflect a statistical or approximate symmetry of the real system [1–10]. Such operations play a special role in physics and are the basic objects of random matrix theory [9, 11]. Random matrix theory asserts that spectral and statistical properties of complex physical systems are well described by those of random operators given (statistically) the same symmetry. Applications started with Eugene Wigner explaining the spacing statistics of energy levels in atomic nuclei [1], and today cover fields as diverse as quantum chaos [3], traffic dynamics [8], economics [10] and neurophysics [4, 12, 13] as well as generic complex systems [5–7].

Orthogonal transformations, and in particular rotations, are a special class of these operations with fundamental importance across physics, where they reflect rotational invariance resulting from rotational symmetry (isotropy) of the system under consideration. Examples range from a gravitational potential forcing a planet to revolve around a star and the classical dynamics of the spinning top to the dynamics of isotropic fluids, exactly rotationally invariant spin systems and nearly isotropic superconductors. Furthermore, rotational invariance enters various fundamental theories in physics, for instance the cosmological principle, essentially assuming an isotropic universe, and Noether’s theorem, relating rotational invariance to conservation of angular momentum.

Mathematically, rotations are described by orthogonal matrices $Q \in \mathbb{R}^{d \times d}$ satisfying $Q^{-1} = Q^T$ and $\det Q = 1$. Each given Q maps one orientation of the unit sphere S^{d-1} in d dimensions to one other orientation, and each point on the sphere to another point on the sphere. Random isotropic rotations appear particularly simple and are characterized by rotation matrices drawn uniformly from the space of all such matrices $Q \in \mathbb{R}^{d \times d}$ defined above. While the theoretical foundations and mathematical descriptions of rotations and related random operations are well established, some paradoxical properties of random rotations still lack an intuitive, descriptive explanation. In this article, we give an intuitive explanation of an asymmetry emerging from the repeated action of isotropic (uniformly random) rotations first presented in 2002 in the context of signal transmission and encoding [14] and quantitatively analyzed in 2009 using measure theory [15]. By decomposing the isotropic rotation into two sequential elementary rotations, we illustrate the geometric basis for the emergence of this asymmetry for isotropic rotations in particular and orthogonal transformations in general.

Asymmetry from repeated isotropic rotations — Consider a rotation R in $d = 2$ dimensions. It maps a point on a circle at angle ϕ to an angle $\phi' = \phi + \alpha$. For a rotation R drawn uniformly at random, α is distributed uniformly in $[0, 2\pi)$. Consequently, after the rotation the point $\phi' = \phi + \alpha \mod 2\pi$ is distributed uniformly on the circle,

$$R\phi \sim \text{Uniform}[0, 2\pi),$$ \hfill (1)

see Fig. 1(a,b). Applying the identical rotation R again maps the point to an angle $RR\phi = R^2\phi = \phi + 2\alpha \mod 2\pi$. Also after this second rotation the image is uniformly distributed on the circle,

$$R^2\phi \sim \text{Uniform}[0, 2\pi),$$ \hfill (2)

see Fig. 1(c,d).

In dimensions $d \geq 3$, however, the result is qualitatively different. Applying a uniformly random (isotropic) rotation R (now denoting a rotation matrix) maps the “north pole” $e_x = (1, 0, 0)^T \in \mathbb{R}^3$ to a random point Re_x. By definition, the image is uniformly distributed on the unit sphere [Fig. 1(e,f)]. Applying the
Asymmetry from repeated isotropic rotations. (a,c,e,g) Realizations of the image of the north pole \mathbf{e}_x under isotropic rotations R and double rotations R^2 in two and three dimensions. (b,d,f,h) Distribution of the angle θ of the images with respect to \mathbf{e}_x. Images on the northern hemisphere are shaded dark red. The distribution is non-uniform for repeated isotropic rotations in three dimensions. (i) Probability p_{north} of finding the image $R^2\mathbf{e}_x$ on the northern hemisphere (compare [15]). The asymmetry appears first in three dimensions and disappears again as the dimension approaches $d \to \infty$.

TABLE I. Asymmetry from repeated isotropic rotations. Probability $p_{\text{north}}(R^2) = \text{Prob}(\mathbf{e}_x^T R^2\mathbf{e}_x > 0)$ of finding the image $R^2\mathbf{e}_x$ of the north pole \mathbf{e}_x on the northern hemisphere after applying the same random isotropic rotation R twice in different dimensions d. Decimal values rounded to two significant digits (compare [15]).

d	p_{north}
2	$1/2$
3	0.71
4	0.68
5	0.66
10	0.62
20	0.59
50	0.56
100	0.54
500	0.52
∞	$1/2$

Disentangling repeated isotropic rotations — The isotropy of a rotation R is defined by the rotational invariance of its distribution, i.e., the fact that applying any given rotation before or after does not change its distribution, $\mathcal{L}(R) = \mathcal{L}(Q \circ R) = \mathcal{L}(R \circ Q')$, where Q and Q' are arbitrary rotations and $\mathcal{L}(-)$ denotes the distribution (“probability density”) of its argument. It follows that the same holds for the distribution of the images $R\mathbf{x}$ when the rotation is applied to any vector $\mathbf{x} \in S^{d-1}$. Since $\mathcal{L}(R\mathbf{x}) = \mathcal{L}(R \circ Q'\mathbf{x})$ and Q' can be any arbitrary rotation, the resulting distribution cannot depend in any way on the original point. Therefore, as intuitively expected, $\mathcal{L}(R\mathbf{x})$ must be the distribution reflecting the uniform Lebesgue measure on S^{d-1}, as illustrated in Fig. 1(a,b,e,f). As the action of isotropic rotations is independent of the specific initial point \mathbf{x}, we consider, without loss of generality, the “north pole”, i.e., the unit vector of the first Cartesian coordinate $\mathbf{e}_x = (1,0,\ldots)^T \in \mathbb{R}^d$ as our original point.

The first question is now why applying the same random rotation twice results in an asymmetric distribution of images $\mathcal{L}(R^2\mathbf{x})$ in $d \geq 3$ dimensions [Fig. 1(g,h)]?

To understand the action of an isotropic rotation, we explicitly construct it. Specifically, in three dimensions with Cartesian coordinates x,y, and z, we use the following idea: an isotropic rotation must re-orient the three coordinate axes uniformly to any orientation. Notably, the direction of the z-axis is defined by the direction of the other two axes and the right-handedness of the coordinate system. In order to orient the remaining x- and y-axes, we first fix the new direction of the x-axis by uniformly choosing a point \mathbf{v} on the unit sphere and applying the rotation $R_{\mathbf{e}_z \rightarrow \mathbf{v}}(\theta_\mathbf{v})$ that maps \mathbf{e}_z to \mathbf{v} in the most direct way, i.e., the rotation with the smallest possible angle $\theta_\mathbf{v} = \arccos(\mathbf{e}_z^T \mathbf{v})$ in the plane spanned by \mathbf{e}_z and \mathbf{v}. The y-axis can then be oriented by choosing a direction perpendicular to the (new) x-axis uniformly at random. Equivalently, we can apply an isotropic rotation in two dimensions around the (new) x-axis, i.e., around \mathbf{v}. This rotation will map the y-axis to a uniformly distributed random direction perpendicular to \mathbf{v}. As we saw above, this is simply a rotation around \mathbf{v} (in the subspace \mathbb{R}_y^3 orthogonal to \mathbf{v}) by an angle α chosen uniformly in $[0,2\pi]$.
gether, this defines an isotropic rotation of $S^2 \subset \mathbb{R}^3$ as

$$R = R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v)$$

(3)

orienting first the x-axis and then the y-axis to a uniformly chosen orientation of the sphere. We can visualize the action of the above construction on a globe in 3-dimensional space: we first position the globe such that the north pole is pointing in a uniformly random direction and then turn the globe around its north-south axis by a random angle α drawn from a uniform distribution on $[0, 2\pi]$. The entire construction selects one orientation of the globe and thus one rotation uniformly from all possible rotations. Importantly, this construction is independent of the explicit choice of e_x as our north pole. Moreover, the same idea can be used recursively in higher dimensions and is, in a more general setting, known from the subgroup algorithm for generating uniform random variables [10].

Armed with this construction we explain the emergence of asymmetry by explicitly following how each step of

$$R^2 = R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v) \circ R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v)$$

affects the north pole e_z: (i) The first elementary rotation (the rightmost part) moves the north pole e_x to its first image v by the rotation with angle θ_v [Fig. 2(a)]. (ii) The second rotation then rotates around v, leaving the image v of the north pole unchanged. Applying the same rotation again, (iii) v is first mapped to a new position $w = R_{e_x \rightarrow \hat{v}} (\theta_v)^2 e_x$, effectively rotating e_x by an angle $2\theta_v$ [Fig. 2(b)]. (iv) The last rotation of w around v yields the final second-iterate image $R^2 e_x$ of the north pole. This final image is a point at angle θ_v to v, i.e., a random point uniformly distributed on the circle centered at v through w. We note that both e_x and w form the same angle θ_v with v, thus both points lie on this circle [Fig. 2(c)]. Overall, we find

$$R^2 e_x = R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v) \circ R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v) e_x$$

$$= R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v) \circ R_{\hat{v}} (\alpha) e_x$$

$$= R_{\hat{v}} (\alpha) e_x$$

(4)

where $\alpha' = \alpha + \pi \mod 2\pi$. Since the rotation $R_{\hat{v}} (\alpha)$ around v is isotropic, we can equivalently rotate e_x by an angle α' drawn from the uniform distribution on $[0, 2\pi)$ around the random axis v and obtain the same distribution, $\mathcal{L} (R^2 e_x) = \mathcal{L} (R_{\hat{v}} (\alpha') e_x)$.

The final image is thus uniformly distributed on a circle on the sphere through e_x centered at v. Since all these circles cross in the point e_x, independent of v, the image of the north pole is more likely to be close to the original direction e_x on the northern hemisphere than away from it, close to $-e_x$ on the southern hemisphere. Only if v is exactly on the equator, defined by $e_x^T v = 0$, are the images distributed equally between northern and southern hemisphere.

FIG. 2. Repeated isotropic rotation in three dimensions. Using the explicit construction of an isotropic rotation R Eq. (3), we illustrate the action of the repeated rotation R^2 on the north pole e_x step by step [compare (Eq. 4)]. (a) The first application of $R = R_{\hat{v}} (\alpha) \circ R_{e_x \rightarrow \hat{v}} (\theta_v)$ maps e_x to a random point $v = R_{e_x \rightarrow \hat{v}} (\theta_v) e_x$ (red) uniformly distributed on S^2, rotating it by an angle θ_v. The rotation $R_{\hat{v}} (\alpha)$ around v leaves it unchanged. (b) The second application first rotates v again by the same angle θ_v to the point $w = R_{e_x \rightarrow \hat{v}} (\theta_v)^2 e_x$ (blue). (c) The final rotation around v by an angle $\alpha \in [0, 2\pi)$ leaves the angle θ_v between v and w constant, mapping w to a point uniformly distributed on the circle through w and e_x through v (green). For almost all points v on the sphere, this resulting image $R e_x$ is more likely on the northern hemisphere. Only if v is exactly on the equator, defined by $e_x^T v = 0$, are the images distributed equally between northern and southern hemisphere.

Decay of asymmetry with increasing dimension — It remains to answer the second open question: why does the asymmetry become less pronounced as the dimension increases? An explicit construction similar to the above explicates isotropic random rotations in arbitrary dimensions $d \geq 3$. As for $d = 3$, a point on the sphere S^{d-1} is selected uniformly at random as the first image $v = R e_x$ of the north pole $e_x \in S^{d-1} \subset \mathbb{R}^d$. As the second step, an isotropic rotation of e_x “around” v (in the subspace \mathbb{R}^d_v transverse to v) is applied. The main difference now is that for $d > 3$ the second rotation $R_{\hat{v}}$ is itself an isotropic rotation of S^{d-2} in $d-1 > 2$ dimensions and thus cannot be parameterized by a single angle α. Repeating the argument given above, we find an analogous result: we obtain the same distribution when applying R^2 as when simply applying an isotropic rotation in $d-1$ dimensions around v. The resulting image of e_x is distributed on the northern or southern hemispheres with equal probabilities only if v lies on the equator of the unit sphere $S^{d-1} \subset \mathbb{R}^d$, i.e., if $v^T e_x = 0$. Otherwise, more weight is given to the northern hemisphere.
Now, similar to the fact that an increasing fraction of the volume of a sphere in d dimensions is located arbitrarily close to its surface as d increases, an increasing fraction of points on the surface is located arbitrarily close to the equator of that sphere as d increases: consider a random vector $\mathbf{x} = (x_1, x_2, \ldots, x_d)^T$ on the unit sphere S^{d-1} in d dimensions. It has a squared length $x_1^2 + x_2^2 + \cdots + x_d^2 = 1$. On average, each $\langle x_i^2 \rangle = 1/d$ and, for large d, the individual coordinates x_i are distributed approximately following a normal distribution with mean 0 and variance $1/d$ [17, 18], see Fig. 3(a). In particular, this holds for the first coordinate x_1. Consequently, as the dimension increases, the random vector \mathbf{x} is more and more likely to be close to the equator, $x_1^2 \sim 1/d \to 0$. Thus, in high dimensions, a uniformly chosen direction \mathbf{v} is very likely (almost) perpendicular to \mathbf{e}_x and the final image $R^2\mathbf{e}_x$ of a repeated isotropic rotation is (almost) equally distributed between northern and southern hemisphere.

The explicit construction explained above suggests a geometric way to exactly calculate the probability p_{north} for any dimension d by evaluating the fraction of images of the $d-1$ dimensional isotropic rotation above the equator. The detailed integrals of such a geometric construction yield a scaling with dimension of the form

$$p_{\text{north}} \sim 1/2 \sim \frac{1}{\sqrt{2\pi d}}$$

as $d \to \infty$ [Fig. 3(b)], quantitatively explaining the slow decay observed in Figure 2(i). Details of the calculations are presented in the appendix.

Discussion — In summary, we have explicated and intuitively explained the mechanism underlying an asymmetry in repeated random rotations that emerges in $d = 3$ dimensions and disappears again with higher dimensions. Intriguingly, the naively expected 50:50 split of the image of an original point occurs both in dimension $d = 2$ and again in the limit $d \to \infty$, but not in any other dimension.

Such asymmetries emerge not only for continuous rotations. Repeating other random operations results in different types of asymmetry. (a,b) Repeating the same isotropic orthogonal transformation O, i.e., rotation or rotoreflection, twice results in the same distribution of the image as repeating an isotropic rotation R as the reflection inverts itself. (c,d) Repeating O three times results in a 50-50 split between the two hemispheres, but with a non-uniform distribution of the images.
discrete symmetry. We hope that this article helps to build a better intuition about how basic and ubiquitous symmetry operations act in the physical world around us and about why the three dimensions we live in might be especially interesting.

Appendix: Geometric calculation of \(p_{\text{north}} \)

The construction explained above suggests a geometric way to exactly calculate the probability \(p_{\text{north}}(d) \) for any dimension \(d \) by evaluating the fraction of images of the \(d-1 \) dimensional isotropic rotation above the equator. These correspond to fractions of the surface of \(d-2 \) dimensional spheres. For example, in \(d = 3 \) dimensions we need to calculate the fraction of a \(d-2 = 1 \) dimensional sphere (a circle) that is located above the equator [compare the green circle in Fig. 2(c)]. We then integrate this fraction over all possible directions \(v \) to obtain the final probability. We distinguish two mutually exclusive cases:

(i) If \(v \) forms an angle \(\theta_v < \pi/4 \) with \(e_x \), all the images of double rotations \(R^2 \) lie on the northern hemisphere. This set of vectors \(v \) forms the cap \(S^{(d-1)}(\theta_{\text{max}}) \) of the \(d-1 \) dimensional unit sphere and is defined by its opening angle \(\theta_v < \theta_{\text{max}} = \pi/4 \) or its height \(h_1 = 1 - \cos(\theta_{\text{max}}) \) [illustrated in Fig. 3(a)]. The cap has an area \(19 \)

\[
A_1^{(d-1)} = \int_{S^{(d-1)}(\pi/4)} dA = \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)} I_{\frac{d}{2}} \left(\frac{d - 1}{2}, 1 \right),
\]

where \(\Gamma(x) \) denotes the Gamma function and \(I_x(a, b) \) denotes the regularized incomplete Beta function. Since \(v \) is distributed uniformly on the unit sphere \(S^{d-1} \subset \mathbb{R}^d \), we have to weight the area of the cap relative to the total area of the unit sphere

\[
A_1^{(d-1)} = \frac{2 \pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}\right)}. \tag{7}
\]

Due to symmetry, the same is true if \(v \) is on the southern hemisphere, \(\theta_v \in \left[\frac{3\pi}{4}, \pi\right] \), giving a factor 2 in the final evaluation.

(ii) If \(\pi/4 \leq \theta_v < \pi/2 \), only a fraction of the images will be on the northern hemisphere. This fraction corresponds to the surface of a \(d-2 \) dimensional sphere with a cap missing. We describe it as one minus the fraction of points on the southern hemisphere, where the points on the southern hemisphere belong to a cap with height \(h_2 = 2 \sin(\theta_v) - \frac{1}{\sin(\theta_v)} \) of a sphere with radius \(r = \sin(\theta_v) \) in \(d-2 \) dimensions [illustrated in Fig. 3(b)].

\[
A_2^{(d-2)}(r, h_2) = \frac{\pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} r^{d-2} I_{\frac{d-2}{2}}\left(\frac{d - 2}{2}, 1 \right), \tag{8}
\]

and we calculate the fraction relative to the total area of the sphere

\[
A_{\text{tot}}^{(d-2)}(r) = \frac{2 \pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} r^{d-2}. \tag{9}
\]

We again weight each possible \(v \) with respect to the total area of the unit sphere \(S^{d-1} \subset \mathbb{R}^d \) [Eq. (7)]. As the first case, this argument is also symmetric with respect to the rotation axis \(v \) on the southern hemisphere, \(\theta_v \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \).

We calculate the total probability by integrating the corresponding fraction over all directions \(v \), where \(v \) is distributed uniformly on the \(d-1 \) dimensional sphere. The probability of finding the image of \(R^2 \) on the northern hemisphere is then given by

![FIG. 5. Geometric calculation of \(p_{\text{north}} \). Following the argument in the text, we calculate \(p_{\text{north}} \) by integrating over all possible directions \(v \) with the corresponding fraction of images on the northern hemisphere. (a) If \(v \) forms an angle \(\theta_v < \pi/4 \) with \(e_x \) (that means if \(v \) is located on the red part of the sphere), the image \(R^2e_x \) (green) is always on the northern hemisphere [Eq. (6) and (7)]. (b) Otherwise, if \(\pi/4 < \theta_v < \pi/2 \) (red), only a fraction of the final images \(R^2e_x \) lies on the northern hemisphere (green). A fraction corresponding to a \(d-2 \) dimensional spherical cap with height \(h_2 \) is mapped to the southern hemisphere [Eq. (8) and (9)]. Both arguments are symmetric with respect to \(v \) on the southern hemisphere.](image)
\[p_{\text{north}}(d) = \frac{A_{(d-1)}^{(d-1)}}{A_{\text{tot}}^{(d-1)}} + 2 \frac{1}{A_{\text{tot}}^{(d-1)}} \int_{\theta_\nu \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]} 1 - \frac{A_{(d-2)}^{(d-2)}(r, h_2)}{A_{\text{tot}}^{(d-2)}(r)} dA \]

\[\text{case (i)} \]

\[= 2 I_{1/2} \left(\frac{d-1}{2}, \frac{1}{2} \right) + \frac{2}{A_{\text{tot}}^{(d-1)}} \int_{\pi/4}^{\pi/2} 1 - \frac{1}{2} I_{2h_2 - h_2^2} \left(\frac{d-2}{2}, \frac{1}{2} \right) dA(\theta_\nu) \]

\[\text{case (ii)} \]

\[= 1 - \frac{2}{A_{\text{tot}}^{(d-1)}} \int_{\pi/4}^{\pi/2} 1 - \frac{1}{2} I_{2h_2 - h_2^2} \left(\frac{d-2}{2}, \frac{1}{2} \right) dA(\theta_\nu) , \]

\[= 1 - \frac{\Gamma \left(\frac{d}{2} \right)}{\sqrt{\pi} \Gamma \left(\frac{d-1}{2} \right)} \int_{\pi/4}^{\pi/2} I_{2 \sin^2(\theta_\nu)} \left(\frac{d-2}{2}, \frac{1}{2} \right) \sin^{d-2} \theta d\theta \approx \frac{1}{2} + \frac{1}{\sqrt{2\pi d}}, \quad (10) \]

where the surface element \(dA(\theta_\nu) = \frac{2\pi \frac{d-1}{2}}{\Gamma \left(\frac{d}{2} \right)} \sin^2(\theta_\nu) \sin \theta d\theta \) describes the area of the \(d-2 \) dimensional sphere at angle \(\theta_\nu \). For example, in \(d = 3 \) dimensions this describes the circumference of a circle of latitude with radius \(\sin(\theta_\nu) \) multiplied by \(d\theta \). The last step describes the scaling for large dimensions \(d \to \infty \) obtained via numerical evaluation of the integral. Evaluating this expression gives the results presented in Tab. I and shown in Fig. 1(i) and Fig. 3(b) (compare also [15]).

We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2068 – 390729961 – Cluster of Excellence Physics of Life, the Cluster of Excellence Center for Advancing Electronics at TU Dresden.

[1] E. P. Wigner, SIAM Review 9, 1 (1967).
[2] R. M. May, Nature 238, 413 (1972).
[3] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
[4] M. Timme, F. Wolf, and T. Geisel, Phys. Rev. Lett. 92, 074101 (2004).
[5] V. K. Jirsa and M. Ding, Phys. Rev. Lett. 93, 070602 (2004).
[6] J. N. Bandyopadhyay and S. Jalan, Phys. Rev. E 76, 026109 (2007).
[7] S. Jalan and J. N. Bandyopadhyay, Phys. Rev. E 76, 046107 (2007).
[8] P. Šeba, J. Stat. Mech. 2009, L10002 (2009).
[9] G. Livan, M. Novaes, and P. Vivo, Introduction to Random Matrices: Theory and Practice (Springer International Publishing, 2018).
[10] J. Moran and J.-P. Bouchaud, Phys. Rev. E 100, 032307 (2019).
[11] M. L. Mehta, Random Matrices (Academic Press, New York, 1991).
[12] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Phys. Rev. Lett. 61, 259 (1988).
[13] G. Wainrib and J. Touboul, Phys. Rev. Lett. 110, 118101 (2013).
[14] T. L. Marzetta, B. Hassibi, and B. M. Hochwald, IEEE Transactions on Information Theory 48, 942 (2002).
[15] M. L. Eaton and R. J. Muirhead, Stat. Probab. Lett. 79, 1878 (2009).
[16] P. Diaconis and M. Shahshahani, Probab. Eng. Inf. Sci. 1, 15 (1987).
[17] M. Spruill, Elec. Comm. in Probab. 12, 234 (2007).
[18] A. Blum, J. Hopcroft, and R. Kannan, Foundations of data science (Preprint of a textbook, 2018) available at https://www.cs.cornell.edu/jeh/book.pdf.
[19] S. Li, Asian J. Math. Stat. 4, 66 (2011).