Аналіз біокристалограмм досліджених зразків свідчить, що ЕКД є екологічно безпечною та не має загрози для стану довкілля або здоров'я тварин і людей. При визначенні ОВП ЕКД встановлено, що продукт легко засвоюється, оскільки володіє біологічною сумісністю з організмом тварин. Встановлено доцільність використання технологічного процесу екструдування для зниження токсичності водоростей. До складу ЕКД водорості можна вводити в кількості до 15 %.

Представлені результати біологічних досліджень ЕКД в умовах in vivo, які свідчать про високу біологічну ефективність використання водоростової кормової добавки у складі комбікормів для молодняка сільськогосподарської птиці в кількості до 25 %, оскільки підвищаються середньодобові приrostи маси тіла цурів та зменшуються витрати комбікормів.

Ключові слова: екструдована кормова добавка з водоростями, біотестування, органічність, біокристалограмма, окисно-відновлювальний потенціал.

ЛІТЕРАТURA
1. Крусір Г.В., Кіріяк А.В., Чернишова О.О. Екологічне маркування органічних комбікормів // Зернові продукти і комбікорми. 2015. Т. 15, вип. 1. С. 17-20.
2. Show more Seaweeds for livestock diets: A review / Makkar H. et al. // Journal of Animal Feed Science and Technology. 2016. Vol. 212, No. 1. P. 1-17.
3. Seaweed as a protein source for mono-gastric livestock / Angell A. et al. // Trends in Food Science & Technology. 2016. Vol. 54, No. 1. P. 74-84.
4. Rajauria G. Seaweeds: a sustainable feed source for livestock and aquaculture // Seaweed Sustainability. Food and Non-Food Applications: book/ ed. by Brijshe K. Tiwari and Declan J. Troy. Elsevier, 2015. Topic 15. P. 389-420.
5. Макаринська А.В. Технологічні способи переробки водоростей // Зернові продукти і комбікорми. 2014. Т. 14, вип. 4. С. 44-50.
6. Макаринська А.В. Морські водорості як компонент комбікормів // Зернові продукти і комбікорми. 2014. Т. 14, вип. 1. С. 18-23.
7. Fleurence J., Levine I. Seaweed in Health and Disease Prevention. 1st Edition: book. Academic Press, 2016. 476 р.
8. Мардар М.Р., Крусір Г.В., Янівська А.І. Біотестування в оцінюванні безпечності зернових пластівців // Зернові продукти і комбікорми. 2014. Т. 14, вип. 3. С. 18-23.
9. Kahl J., Busscher, N. & Meier-Ploeger, A. Ganzheitliche Untersuchungs methoden zur Erfassung und Prüfung der Qualität ökologischer Lebensmittel: Stand der Entwicklung und Validierung; projekttitel. Bonn: Geschäftsstelle Bundesprogramm Landwirtschaft und Ernährung, 2003. 265 р.
10. Standardization of the Biocrystallization Method for Carrot Samples / Busscher N. et al. // Biological Agriculture and Horticulture, Academic Publishers Printed in Great Britain. 2010. Vol. 27, No. 1. P. 1-23.
11. Шульц М.А., Писаревский А.М., Полозова И.П. Окислительный потенциал. Теория и практика : монография. Львов: Л, 1984. 168с.
12. Виноходов Д.О. Научные основы биотестирования с использованием инфузорий ; дис. на получение науч. степени докт. біол. наук: 03.00.23: защита 16.03.2007/ наук. рук. Р. Санкт-Петербург: Санкт-Петербургский технологический институт, 2007. 270 с.
sion on the growth and development of finishing pigs as well as feed costs by 1 kg of growth were obtained. It has been established that the chemical composition of chlorella suspension takes a special place among all feed additives used in farm animals feeding.

It has been established that the additional use of chlorella suspension in the ration of finishing pigs of Large White breeds contribute to the increase of average daily gains by 121.9% against the control group in which chlorella suspensions was not given. Feed conversion to obtain 1 kg of pigs live weight gain in the control group was 5.1 kg, in the experimental group - 4.2 kg and feed conversion index in the experimental group was higher by 21.4%.

Thus the results of researches indicate the positive effect of investigated chlorella suspension on the growth and development of finishing pigs.

Due to the obtained results, we can state that the chemical composition of the suspension chlorella takes a special place among all feed additives used in farm animals feeding.

Chlorella has higher indicators of chemical composition, the amount of protein, vitamins and minerals in comparison with plant fodder and crops of agricultural production.

Keywords: chlorella suspension, chemical composition of chlorella, proteins, vitamins, minerals.

Introduction

According to numerous domestic and foreign studies and practice researches, the progress in the intensity of animals and poultry growth can be achieved only through the use of complete feed with high quality that allow to provide multi-factorial balance of diets in accordance with modern feeding standards. In addition, the use of feed additives increases significantly the productive effect of feed and the transformation of nutrients into livestock products.

The use of fodder additives also helps to save feeds because the combination of biologically active substances provides the most complete digestion of nutrients in the feeds and it is confirmed scientifically.

The protein deficiency in rations and deficiency of biologically active substances including vitamins and mineral supplements are caused to search for non-conventional feed additives.

Additives are called non-conventional if they have been considered unsuitable for this purpose until now but the ration of animals can be provided with basic nutrients with the help of additives which are completely harmless or contain no harmful components in the unacceptable concentration.

Chlorella suspension is widely used in animal husbandry. In farm animals rations the use of a suspension gives positive results despite the fact that chlorella is not an important source of energy.

Chlorella has many advantages among feeds of plant origin and therefore it relates to green fodder. Chlorella can be used in a form of suspension giving a drink or moisturizing of feed in order to balance farm animals rations with a number of nutrients and biologically active substances.

The results of scientific researchers conducted by Ya.Ya.Struzh [4] have shown that the most efficient use of chlorella is in the form of suspension, because liquid chlorella has many advantages, namely, animals obtain biomass and biologically active substances through the solution.

Conducted researches by M.Ya. Salnikova [5] indicates that "the action of chlorella suspension is directed to enhance biological processes and the digestibility of gastric juice, to improve protein, vitamin and mineral metabolism in animals". As a result of these positive processes, we can observe the high energy of animal growth, the reduction in feed costs per unit of products and the improvement of general animals condition.

Therefore, the mechanism of chlorella suspension action on animals organism should be considered as a factor affecting on the whole body.

The development of scientific and practical bases for raising the productivity of animals is related with increased conversion of nutrients in feed to products. In addition, the use of biological and physiological indicators in animals is a relevant issue of modern animal husbandry.

Therefore, the system of researches was carried out to analyze chlorella suspension on the content of nutrients and biologically active substances and their suitability for feeding in farm animals diets.

Material and methods of research

The researches concerning chlorella chemical composition were carried out at the “Ukrainian Institute of Soil Protection” in "Chervonyi Khutir", Ovidiopol District, Odessa Oblast.

Scientific researches concerning chlorella suspension use (Chlorella Vulgaris) on fattening pigs were carried out at SERF "Yuzhyi" OSAGES NAAS.

The researches were carried out on two groups-analogues of young pigs Large White breed containing 12 heads in each (table 1). The equilibrium period was 15 days, after that animals of the second group were given chlorella suspension in the amount of 500 ml per head a day. The first group was control and animals of this group were not given any supplements. The main period lasted 60 days.

The basic ration during equalization period included: barley-0.7 kg, maize – 0.5 kg, wheat – 0.4 kg, peas – 0.2 kg, grass milling – 0.2 kg, combined silage - 1.4 kg. Total nutrition of ration was 2.59 feed units and 209.3g of digestible protein. According to the growth of experimental animals, the content of some feeds in the main ration increased due to the recommended, detailed
rules. The basic ration for finishing pigs was used only in the control group and in the second experimental group, chlorine suspension was used and animals were given a drink according to the experimental scheme. Feeds counting and dosage of chlorella suspension were carried out daily and animals were weighted every month.

Table 1. Scheme of experiment

Group	Number of animals, the heads	The nature of feeding	
I - control	12	BD	BD
II - experimental	12	BD	BD + suspension of chlorella (500 ml per head per day)

The results of research

We can state that the chemical composition of chlorella suspension occupies a special place among all feed additives used in feeding farm animals due to the obtained results.

If we change the composition of the nutrient environment, it will lead to changes in the conditions of cultivation, because of this we can regulate the composition of chlorella suspension. This will enable you to enrich the animal products with the necessary biologically active substances.

The results of research are given in the Table 2 and they confirm the feed value of chlorella suspension.

As the purpose of the study is to substantiate the nutritional and chemical composition of chlorella suspension, we determined this indicator in the suspension and its moisture was 99.89%.

The analysis of obtained materials shows that the chemical composition of chlorella suspension is approaching to the green mass of alfalfa. The value of this type of food is determined by the relatively high content of fat 0.09%, protein 0.0092% and fiber - 0.19% in comparison with the green alfalfa food.

Table 2. Chemical composition of suspension of chlorella

№	Controlled indicator	Indicator value in fact	The normative document concerning research method
1		99,89	State St 27548-97
2	Moisture,%	0,0092	Uk State St 7169:2010
3	Fat,%	0,09	State St 13496.15-97
4	Ash,%	0,052	State St 26226-97
5	Cellulose,%	0,19	State St 13496.2-91
6	Calcium,%	0,0012	State St 26570-95
7	Potassium,%	0,0022	State St 30504-97
8	Phosphorus,%	0,0012	State St 26657-97

There are many very important mineral substances in the composition of chlorine suspension that are necessary for farm animals such as calcium, phosphorus, potassium, the presence of which was appropriate 0.0012 - 0.0022%.

The researches have shown that during 60 days of giving a chlorella suspension, the best results were obtained in the second group, which was given a suspension of chlorella in an amount of 500 ml per head a day (table 3).

Table 3. Fat indexes of pigs

Indicator	Group
Daily dose of chlorella suspension, ml / head.	1 500
Live weight 1 head: start period, kg	60 60
Duration of the period, days	60 60
Growth of live weight: total, kg	41 50
average daily, kg	683 833
± control, %	121,9
Feed costs per 1 kg growth, feed. unit	5,1 4,2
± to control, feed. unit	-0,9
± control, %	-21,4

The results obtained during the scientific and economic experiment showed that the most significant benefits of growth intensity were found in the second experimental group in which suspension of chlorella was given in a dose of 500 ml/head. The average daily gain of pigs during the experiment was 833 g that is more significantly by 121.9% than in the control group in which chlorella suspensions was not given.

According to the data presented in the table 2, the conversion of feed to obtain 1 kg of live weight gain in pigs of control group was 5.1 kg, in experimental - 4.2 kg and feed conversion index in the experimental group was already higher by 21.4%.

When chlorella suspensions was used in the rations of experimental finishing animals, the increase of productivity indicators, feed conversion reduction and the increase of additional products as a result were observed.

Conclusions

Composition contains all nutrients and biologically active substances.

In order to increase the productivity of finishing pigs and reduce feed costs, we recommend to use chlorella suspension in doses 0.5 ml/head a day for two months.

Prospects for further research: to study the influence of chlorella suspension on morphological parameters of blood, digestibility of feed nutrients, evaluation of meat quality and economic indicators.

REFERENCES

1. Bohdanov H. O. Aktual’ni pytannya hodivli s.-h. tvaryn / H. O. Bohdanov, D. O. Mel'nichuk, I. I. Ibatulin (ta inshi). – Nauk. visnyk NAU. – 2004. – Vyp. 74. –s.11-24.
СУСПЕНЗІЯ ХЛОРЕЛА ТА ЇЇ ВИКОРИСТАННЯ В РАЦІОНАХ СВІНЕЙ НА ВІДГОВІЛІ

Анотація
У статті розглядається питання щодо хімічного складу суспензії хлорела. За останні десятиріччя поряд з преміксами, вітамінами, біодобавками кормовий раціон балансується за допомогою водоростей. До них відноситься хлорела – представник зелених мікроскопічних водоростей. Використання хлорели дозволяє забезпечити балансовість багатофакторного балансу раціону відповідно до сучасних норм годівлі, завдяки чому підвищується продуктивність дії кормів, значно збільшується трансформація поживних речовин у продукцію тваринництва. Це являється актуальною проблемою сучасного тваринництва.

Матеріалом досліджень була суспензія хлорела, що виробляє фермерське господарство «У Самвела» Біляївського району, Одеської області.

В результаті досліджень, які відбулися на базі фермерського господарства «У Самвела» Біляївського району Одеської області та ДПДГ «Южний» ОДСГДС НААН, одержано нові дані про хімічний склад, позитивний вплив досліджуваної суспензії хлорела на ріст і розвиток свиней на відгодівлі, затрати кормів на 1 кг приросту свиней. Встановлено, що за хімічним складом суспензія хлорела займає особливе місце серед усіх кормових добавок, що використовуються в годівлі сільськогосподарських тварин. В своєму складі суспензія хлорела містить всі поживні та біологічно активні речовини необхідні для обмінових процесів в організмі тварин.

Встановлено, що додаткове використання суспензії хлорела у раціоні свиней на відгодівлі м'ясної породи велика біла, сприяє підвищенню середньодобових приростів на 121,9%, по відношенню до контрольної групи яка не отримувала суспензії хлорела. Конверсія корму на отримання 1 кг приросту живої маси у свинки контрольної групи склала 5,1 кг, у дослідній 4,2 кг, а коефіцієнт конверсії корму в дослідній групі був вище на 21,4%. Таким чином, результати досліджень свідчать про позитивний вплив досліджуваної суспензії хлорела на ріст та розвиток свиней на відгодівлі.

Встановлено, що за хімічним складом, по кількості білку, вітамінів, набору мінеральних речовин хлорела має більші показники по відношенню до рослинних кормів і культур сільськогосподарського виробництва.

Ключові слова: суспензія хлорела, хімічний склад хлорела, білки, вітаміни, мінеральні речовини.

ЛІТЕРАТУРА
1. Боддован Г. О. Актуальні питання годівлі с.-г. тварин / Г. О. Боддован, Д. О. Мельник, І. І. Ібатулін (та інші). – Наук. вісник НАУ. – 2004. – Вип. 74. – с.11-24.
2. Лимар В. О. Прогресивні технології в свинарстві та їх переваги / В. О. Лимар, В. М. Волощук, І. В. Хатько (та інші) // Свинарство України. – 2012. - №7. – с. 6-7.
3. Лемешева М. М. Годівля сільськогосподарської птиці / М. М. Лемешева // Суми.Слобожанщина, 2003. – 148 с.
4. Струж Я. Я. Исследования хлореллы в рационе свиноматок / Я. Я. Струж // Культивирование и применение микро- водорослей в народном хозяйстве: материалы конф. – Ташкент: фан. УзССР, 1984.- с. 43.
5. Сельникова М. Я. Хлорела – новый вид корма / М. Я. Сельникова. – М.: Колос, 1977. – 95с.
6. Branyikova I. Microalgae - nevelhiglyiffientstaroh producers // Branyikova I., Marsalkova B., Donche J // BiotechnolBioeng. 2011 Apr: 108(4); 766-76. doi: 10/1002/bit.23016. Epub 2010 Dec 15.PMID: 21404251