Ethnobotanical study of plants used as antimalarial in traditional medicine in Bagira in Eastern RD Congo

Bashige Chiribagula V, Bakari Amuri S, Okusa Ndjolo Philippe, Kahumba Byanga J, Duez Pierre and Lumbu Simbi JB

DOI: https://doi.org/10.22271/phyto.2020.v9.i4a.11661

Abstract
This transversal descriptive study was carried out to collect plants and recipes used in Bagira to treat malaria. Direct interview with field enquiries allowed collecting ethnobotanical data. Eighty-four Informants (age 46.9 ± 12.0 years, sex ratio: 2.0, experience 12.1 ± 5.1 years) reported 53 species belonging to 24 families dominated by Fabaceae (22.6%) and Asteraceae (20.7%). Antiplasmodial activity was previously reported for 34 plants and 16 species are first cited as antimalarial plants among which *Ekebergia benguelensis* (18.8%), *Dalbergia katangensis* (14,1%) and *Dialium angolense* (14,1%), are the most cited. From these plants come 83 anti-malarial recipes of which 67 use a single plant and the other combine two to four plants. Leaf (≥52%) and decoction (≥58%) respectively constitute organ and preparation methods most used. Several plants are used in traditional medicine in Bagira against malaria, some of which deserve to be studied more to isolate new antimalarial compounds.

Keywords: Bukavu, phytomedecine, malaria, ethno pharmacology

1. Introduction
Malaria is a major global health scourge [1] responsible for nearly 200 million cases each year. In 2018, 155 million cases, of which 93% in the Africa region, were recorded worldwide and an upsurge was noted with regret in the DRC, with cases ranging from 60.644 million in 2006 [2] to 97,2 million in 2018 [3]. In Bukavu, where the city of Bagira represents 23.9% of the city's workforce, 52,403 cases were recorded in 2017 [4]. In addition to this high prevalence, which is constantly increasing, there is unfortunately a low accessibility to the health care [5] and the emergence of resistance from both vector [6] and parasite [7]. In addition, the RTS, S® vaccine, which is in the process of being marketed, offers only very modest protection in the order of 30% [8]. There is therefore a need to find new drugs that are both effective and accessible.

Apart from the fact that the two current first-line antimalarial compounds, come from traditional medicine: Quinine, isolated from *Cinchona officinalis* L. [9] from traditional Peruvian medicine and artemisinin, isolated from the leaves *Artemisia annua* L. [10], formerly used in traditional Chinese medicine; previous work reports that traditional African medicine has provided improved traditional medicines such as Malarial 50® [11], Malaria® [12] currently use in DR Congo. In addition, traditional medicine offers strong compliance as long as more than 80% of the world population uses it as a first line [13]. It would therefore constitute a very credible alternative in malarial control. Several ethnobotanical studies have been reported in sub-Saharan Africa [14,15], particularly in DR Congo [16] on anti-malarial plants. In Bukavu, the only works reported are those of Kasali et al [17] and Manya et al [18] which, however, did not report all the knowledge of anti-malarial plants in Bukavu, particularly from the Bagira county. In addition to these works, in this study we report the various plants used in traditional medicine in Bagira in the management of malaria by situating them in the overall ethno medical knowledge of the region.

2. Material and Methods
2.1 Study area
With an area of 37.6 km² or 65.9% of the city of Bukavu, the city of Bagira is located between 2° (28-30) south latitude and 28° (48-50) east longitude with an altitude ranging from 1488 to 2008 meters. It is bounded to the north by the Nyamuinha River, to the south by the Tshula River, to the east by Lake Kivu and to the west by the Mbongwe mountain range.
With an average annual temperature of 20 ± 2 °C, it experiences a humid tropical climate with two dry and rainy seasons, the latter being the longest with 7 months. Its predominantly young population (5 to 49 years old), estimated at 123,214 inhabitants in 2014 and distributed in six sectors (Chikera, Ciriri, Kasha, Mulambula, Lumumba and Nyakavogo), has an ethno cultural mixture including Shi (71%) and rega (26%) constitute the majority ethnical groups [19].

2.2 Data collection
Ethnobotanical survey was carried out by direct interview using a guide questionnaire containing socio-demographic characteristics of the informant’s practitioners of traditional medicine (IPTMs), their knowledge of malaria and of the plants informed, as well as the antimalarial recipes based on these plants. All the subjects informed as a plant-based caregiver in the city of Bagira were contacted (n = 111). Data collection was a consequence of the availability of subjects after informed consent (n=84). The harvesting and use of personal data have followed the principle of anonymization as stated in the Helsinki Declaration [20].

2.3 Harvest and identification of species
Plants were harvested in company of IPTMs and identified at the foot of the plant; GPS coordinates were taken, and a specimen was deposited at Kipopo herbarium in Lubumbashi where identification was made.

2.4 Data analysis
Graph Pad Prism version 6 was used where descriptive statistical methods were employed. The data obtained through the survey were analyzed and expressed as a percentage. Ring and sector graphics were used to express the following parameters: Morphological types, biological types, Phytogeographical distribution and harvest site. Fidelity level (FL), an index varying from 0 to 100, was obtained by dividing the number of informants who mentioned using the plants species (Ei) by the total number of informants participating in the survey: N and express in % [21].

3. Results and Discussion
3.1 Socio-demographic profiles of traditional healers and knowledge of malaria
Eighty-four IPTMs, mostly traditional healers (65.9%), age (46.9 ± 12.0; Extremes: 19-79 years) and sex ratio (Male ÷ Woman): 2.0, was interviewed. More than 69% of them have a low level of classical education. They had long experience (12.1 ± 5.1 years Extremes: 3-25) and the knowledge of most of them (63.5%), was transmitted by their ancestors; mashi (70.6%) and Swahili (94.1%) are the most widely spoken languages (table 1).

In most sub-Saharan African societies women are engaged in field work, thus leaving men the latitude to practice traditional medicine [22, 23] and may justify the sex ratio observed during this study (Table 1); the fact that mastering the practice of traditional medicine requires time and concentration, may justify the low level education observed with IPTMs and a long experience enjoyed by IPTMs, as reported in previous works [22, 23], may some extent justify the credibility of information from ethnobotanical surveys.
Table 1: Socio-demographic characteristics of IPTMs

Class	E_i	F_i (%)
Age (ans)		
[18-27]	4	4.7
[27-37]	16	18.8
[37-47]	11	12.9
[47-57]	45	52.9
>57	9	10.6
Experience (ans) as TPM		
[1-5]	4	4.7
[6-10]	16	18.8
[11-15]	11	12.9
[16-20]	45	52.9
>20	9	10.6
Gender:		
F	28	32.9
M	57	67.1
Studies		
Graduate	10	11.8
Postgraduate	12	14.1
Primary	28	32.9
No one	31	36.5
Professional	4	4.7
Category		
Witch	2	2.4
Healer	27	31.8
Traditional healer	56	65.9
Dream	12	14.1
spirits	4	4.7
Ancestors	54	63.5
Another healer	6	7.1
Self-Study	9	10.6
Traditional Medicine learning pathway		
Spoken languages		
French	40	47.1
Bangubangu	2	2.4
Fulero	6	7.1
Havu	23	27.1
Nande	7	8.2
Rega	16	18.8
Vira	9	10.6
Lingala	20	23.5
Shi	60	70.6
Swahili	80	94.1
Tshiluba	4	4.7

Mean age 46.9 ± 12.0 (range, 19-79 years); sex ratio: 2.0 in favor of men. Average experience 12.1 ± 5.1 (range: 3-25 years). F_i = citation frequency = $n * 100 / N$, $n =$ simple; $N =$ total workforce.

Shi are the majority (more than 50%) ethic group and in most cases, IPTMs "diagnose" malaria using different signs and symptoms such as aches, fever and headaches (Figure 2). The preponderance of shi can be justified by the fact that they are majority and indigenous ethic group of the region [17, 18]. In addition, the observation of various signs evoked by the IPTMs to diagnose malaria, suggests that they treat simple malaria.

![Fig 2: Signs of malaria diagnoses by IPTMs and ethical group of IPTMs](image.png)
3.2 General characteristics of plants recorded

3.2.1 Morphological types, biological types, Phytogeographical distribution and harvest site

The plants listed in this survey are in most cases trees (32%), Microphanerophytes (32.1%) which are generally endemic to Tropical Africa TA (39%) as previously funding [17]. Few works of accessible literature evoke the question of the biological types of plants used in traditional medicine in the region. It would be difficult to have a definite point of view on the issue. About morphological type, the analysis of several ethnobotanical studies of the region [17, 24, 28] show, as in this study, that most of the plants used in traditional medicine in Bukavu are trees (figure 3).

![Fig 3: Morphological types, biological types, Phytogeographical distribution and harvest site.](image)

3.2.2 Identification of species and their Classification according to the literature data

In our ethnobotanical survey, 53 plants from 43 genera and 23 families were reported as anti-malarial plants used in Bagira. These plants have several vernacular names dominated by mashi (88.7%), Swahili (18.9%), Kinyarwanda (13.2%) and 66% of them are already studied from the point of view of antimalarial activity. It should also be noted that the consensus on use as an antimalarial is higher in Cinchona ledgeriana (Fl = 54.1%) for all plants and in Ekebergia benguelensis (Fl=18%, 8%), Dalbergia katangensis and Dialium angolense with 14.1% of Fl, each among 18 plants not studied, (Table 2).

No	Species [Synonym] (Family)	Vernacular name (ethnic group)	Reference of use as antimalarial	Evaluated antimalarial activity reference	Fl (N=84)	Herbarium code
1	Acacia polyacantha [Senegalia polyacantha (Willd.) Seigler & Ebinger (2013)] (Fabaceae)	Irangi (kihavu); Hibomo (hemb)	[18]	[29]	3.5	KIP0012
2	Aframomum laurentii [Aframomum giganteum (Oliv. & D. Hanb.) K. Schum.] (Zingiberaceae)	Amatimbiri (kinyarwanda), Ntiru (mashi)	[30]		12.9	KIP0013
3	Ageratum conyzoïdes [Chromolaena corymbosa (Aubl.) R.M. King & H. Rob.] (Asteraceae)	Kahyole, (mashi), Ruhera (kinyarwanda).	[18]	[31]	4.7	KIP0014
4	Artemisia annua [Artemisia gmelinii Weber ex Stechm.] (Asteraceae)	Artemizia (mashi), Atremisia (swahili).	[18]	[32]	29.4	KIP0015
5	Azadirachta indica [Melia Azadirachta L. (1753)] (Meliaceae)	Maruramu (mashi), Mwarubaini (swahili).	[18]	[33]	27.1	KIP0016
6	Bidens pilosa [Kerneria pilosa (L.) Lowe (1868)] (Asteraceae)	Kashisha (mashi), Nyasa (regi)	[18]	[34]	37.6	KIP0017
7	Bobgunia madagascariensis [Swartzia madagascariensis Desv.] (Fabaceae)	Mpampi (tsilulu); Ndake (mashi)	[35]	[35]	14.1	KIP0018
8	Cajanus cajan [Cyrtisus cajan L. (1753)] (Fabaceae)	Cishimbo c'eluciga (mashi) Ngolisiolo (tabwa).	[18]	[36]	4.7	KIP0019
9 Carica papaya L.(Caricaceae) Ipapayi (mashi), Papai (bembe). [18] [37] 31,8 KIP0020
10 Cassia occidentalis [Senna occidentalis (L.) Link (1829)] (Fabaceae) Mushgemanjoka (mashi), Mujangajanga (fulero). [18] [38, 39] 14,1 KIP0021
11 Catharanthus roseus [Vincia rosea L. (1759)] (Apocynaceae) vinylk (swahili); Mwilu (mashi). [40] [41] 4,7 KIP0022
12 Chenopodium ambrosioides [Teloxys ambrosioides] (L.) W. A. Weber (Chenopodiaceae) Mugunduzimu (mashi), Kahusu (reg). [42] [43] 14,1 KIP0023
13 Chenopodium opulifolium [Chenopodium erosum] Benth. (1866) (Chenopodiaceae) Gombe (mashi), Umugome (kinyarwanda). 12,9 KIP0024
14 Cinchona ledgeriana [Cinchona officinalis (L.) Steud. (1846)] (Rubiaceae) Kankina (shi); Kenkina (swahili). [44] [45] 54,1 KIP0025
15 Clematis villosa [Clematopsis scabiosifolia (DC.) Hutch.] (Ranunculaceae) Kanyiza (mashi); Kizua (shi). 1,2 KIP0026
16 Crossocephalus montuosus [Senecio montuosus] S. Moore (1902) (Asteraceae) Cifula (shi), Bapamba (bembe), Anata (bembe). 2,4 KIP0027
17 Crossocephalus picridifolium [Senecio acutidentatus] A. Rich.] (Asteraceae) Mfubwidi (shi). 1,2 KIP0028
18 Cymbopogon citratus [Andropogon citratus] DC.] (Poaceae) Cahi (shi), Lunyasi (swahili). [46] [46] 32,9 KIP0029
19 Dalbergia katangensis Lechenaud (Fabaceae) Mungobole; Nifu (shi); Munyereza (fulero). 14,1 KIP0030
20 Dialium angolense [Dialium evrardi Steyaert (1960)] (WELW EX BETH) Harms (Fabaceae) Kizimya (shi), Cituzo (hauv); Mbindula (fulero). 14,1 KIP0031
21 Dialopsis africana RADCK (Sapindaceae) Munyembe (shi); Mpangula (shi). 1,2 KIP0032
22 Ekebergia benguellensis WELW EX CDC (Meliaceae) Mutuzya (shi); Ntuli (shi). 18,8 KIP0033
23 Eleusine indica [Cynosurus indicus] L. (1753)] (L) GAERTN (Poaceae) Mutuzya (shi). [47] 1,2 KIP0034
24 Entada abyssinica [Entadopsis abyssinica (Steud. ex A. Rich.) G.C.C. Gilbert & Boutique] STEUD. ex A. RICH. (Fabaceae) Chishangi (shi). [48] [48] 11,8 KIP0035
25 Erythrina abyssinica [Chirocalyx abyssinicus (Lam. ex DC.) Hochst. (1846)] LAM. Ex DC (Fabaceae) Cigohwa (shi); Igiko (reg). [49] [49] 14,1 KIP0036
26 Euphorbia hirta [Hamaeyece hirta] (L.) Millsp. (1909)] L. (Euphorbiaceae) Eforbia (shi) et Dieza di nkandi (kikongo). [50] [51] 32,9 KIP0037
27 Fueggea virosa [Phyllanthus virous] Roxb. ex Willd. (1805)] (ROXB. Ex WILLD.) VOIGT (Phyllanthaceae) Kashugishugi (shi); Mkwama (swahili). [52] [53] 11,8 KIP0038
28 Hypoestes triflora [Justicia triflora Forssk.] (FORSKK) ROE, & SCHULT (Acanthaceae) Mageru (shi); Pindula (swahili). 1,2 KIP0039
29 Isoberlinia angolensis [Berlinia angolensis] Welw. ex Benth. (1866)] (WELW. Ex BENTH.) HOYLE & BRENAN (Fabaceae) Mahunire (shi), Mboza (swahili). [54] 1,2 KIP0040
30 Isoberlinia tomentosa [Berlinia tomentosa Harms (1901)] (HARMS) CRAIB & STAPF (Fabaceae) Mbaru (shi). 1,2 KIP0041
31 Jatropha curcas [Jatropha afrorcurcas Pax (1909)] L. (Euphorbiaceae) Lubonobono (shi); Umukoni (fulero). [55] [56] 9,4 KIP0042
32 Julbernarda paniculata [Berlinia paniculata] Benth. (1866)] (BENTH.) TROUPIN (Fabaceae) Gigeu (shi) Ashindambuka (fulero). 14,1 KIP0043
33 Lantana camara [Camara vulgaris Benth.] L. (Verbenaceae) Kashukashuha (shi); makereshe (nande). [18] [57] 36,5 KIP0044
34 Leucas martincensec [Clinopodium martincensec Jaq.] (JACQ.) R. BR. (Lamiaceae) Kanyakafundwe (shi), Namafunfo (fulero). [58] [58] 4,7 KIP0045
35 Mangifera indica [Mangifera amba Forssk.] L. (Anacardiaceae) Mwembe (shi); Hembre (swahili). [59] [60] 18,8 KIP0046
36 Moringa oleifera [Hyperanthera decandra Willd.] LAM. (Moringaceae) Muringa (shi). [60] 10,6 KIP0047
37 Ochna schweinfurthiana [Diporidium] Musengoseng (shi), [61] 18,8 KIP0048
Asteraceae and Fabaceae constitute respectively the second and the third family of flowering plants known worldwide [73] and Fabaceae only, the largest family of trees in tropical dry forests of Africa [74]. In addition, ethnobotanical studies carried out in the region [17, 18, 24, 25, 27, 75, 76] report the preponderance of Fabaceae and Asteraceae with very variable frequencies (5-23%); The results observed in this study (table 1) are therefore part of the general trend. Note also that this preponderance of Fabaceae accounts not only for the importance of this family in traditional Congolese medicine for the management of several pathologies such as diabetes [77], sickle cell anemia [78], schistosomiasis [79], dental caries [80] or diarrhea [81].

Regarding vernacular nomenclature (table 1), note that the frequency of Kinyarwanda (11%) sometimes higher than the designation in some languages originating in the province of South Kivu such as Bembe (7.5%) or rega (5.6%) suggests the influence of Rwanda, in the practice of traditional medicine in Bagira and suggests that many other people share the knowledge of the Bagira IPMTs. Names in vernacular languages also report that some names translate the action or the effect of the plant. This is the case of kizimya, designation of Dialium angolense in mashi, which means: "that which extinguishes" or the case of nfuma, designation of Dalbergia katangensis in mashi, which means: "I am cured". On the other hand, other plants such as Artemisia annua or Cinchona officinalis do not have a real name in the vernacular of the region suggesting that they are imported plants. There are also plants that have vernacular names common to other plants. This is the case of Dalbergia katangensis which some informants called "Mungobole", the name given to Dalbergia lactea Vatke (Fabaceae), according to studies carried out in Kivu by the team of Chifundera [26]. This situation constitutes a probable source of confusion in the practice of traditional medicine and reveals that very often the vernacular names of plants in traditional medicine are based more on the genus than on the species thus raising in ethno pharmacological practice, I importance of identification at the base of the plant along with the IPMT during harvest.

According to literature data, these 53 species can be grouped in four class (A to D). Class A comprises 15 plants for which no evaluation of anti-malarial activity has been reported. These plants are Chenopodium opulifolium,
Clematis villosa, Crassocephalum montuosum, Crassocephalum picridifolium, Dalbergia catangensis, Dialium angolense, Diplopsis africana, Ekebergia benguellensis, Hypoestes triflora, Isoberlinia tomentosa, Julbernardia paniculata, Psorospermum corymferum, Rothmannia engleriana, Senecio cineraria and Solanecio cydonitifolius, Class B includes 2 plants, Aframomum laurentii and Isoberlinia angolensis, previously used in traditional medicine as antimalarials but for which no activity has been evaluated to date; Class C comprises a plant, Eleusine indica, known for other ethnobotanical uses than antimalarials and for which no previous study to assess antimalarial activity has been reported and. Class D contains 35 plants for which no pharmacological studies have been reported, compounds with beneficial ethnobotanical antimalarial activity and suggests that studies of these 18 plants were evaluated for anti-malarial activity.

3.3 Ethnopharmacological data collected during the survey

The 53 plants listed in the survey are used to prepare 83 recipes, of which 67 use a single plant (R1-R67) and 16 combine two, three (R68-R83) or four plants (R72 and R75). Overall, one-plant recipes have higher quotient rates than multi-plant recipes. Among the recipes that use a single plant (R1-R67), nine plants have two recipes and are the most cited. Among them, Artemisia annua (R4 and R5) with 10 occurrences is the most cited. In recipes based on several plants, R72 based on the leaves of Ageratum conyzoides, Bidens pilosa, Carica papaya and Senna occidentalis is the most quoted with five occurrences. Several organs are solicited among which the leaf (≥ 52%) constitutes the most organ used, which is taken in the form of handle (65 ± 15 g). There are several ways of preparing the recipe including maceration, infusion, decoction, and decoction (≥ 50%) is the most used. The recipe is administered per os using Kibuyu (1.5 ± 0.2 L) as a dosage unit. These plants are involved in the management of 80 other pathologies including amoebiasis, diarrhea and intestinal worms, with 14 quotes each, constipation with 11 quotes and snakebite with nine quotes, are the most cited. Biden’s pilosa and Mangifera indica with 14 indications each constitute the plants with the highest use values. (Table 3).

Species	Antimalarial Recipe	E	Other Indication (organ)				
Acacia polyacantha	R1: Infusion of a tablespoon of the powder of the leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	1	Irritation of the skin (F), Pneumonia (F), Diabetes, Toothache (ER), Amoebiasis (ER), Spasms, diarrhea (ER), Hypotension (Fr)				
Aframomum laurentii	R2: Infusion of two handles of the aerial parts in 1L of water. Drink 1 glass 3x / day for 7 days.	1	Amoebiasis (F), syphilis (F), fungal (F).	**Catharanthus roseus**	R12: Infusion of a handful of fresh leaves in 1.5L of water. Drink 0.5 glass 2 x / d for 4 days.	1	Intestinal worms, fever (F), Hemorrhaged, uterine pain (F), Epistaxis (T) and tuberculosis (F)
Ageratum conyzoides	R3: Decoction of two fresh leaves in 1.5x2L of water. Drink 1 glass 3x / day for 7 days.	1	Snake bite (PE), helmithin & pneumonia (F)	**Cassia occidentalis**	R11: Maceration of two handfuls of freshly crushed leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	12	Diabetes (F), Amoebiasis, indigestion (PE), Diarrhea and gastritis (R).
Artemisia annua	R4: Decoction of two fresh leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	10	Cold, pneumonia, Intestinal worms Hepatitis, gonorrhea (F), Intestinal worms (ER), Amoebiasis (ET), Syphilis (ET), Lice (Fl).				
R5: Infusion of a tablespoon of dried leaf powder into 1L of water. Drink 1 glass 3x / day for 7 days.	10		**Cassia occidentalis**	R11: Maceration of two handfuls of freshly crushed leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	12	Diabetes (F), Amoebiasis, indigestion (PE), Diarrhea and gastritis (R).	
Azadirachta indica	R6: Maceration of two handfuls of fresh leaves crushed in 1.5L of water. Drink 1 glass 3x / day for 7 days.	1	pneumonia, urinary tract infection (F), Amoebiasis, anemia (F), Typhoid fever (F), Poisoning (PE), Amoebiasis, wound, diarrhea (PE), Mycosis, dysentery (PE), Tuberculosis, myomas (PE), Syphilis (PE).				
Bidens pilosa	R7: Infusion of two handfuls of fresh leaves in 1/2x2L. Drink 1 glass 2x / d for 4 days.	6	Convulsion, pains (ER), Abdominal, epilepsy, meningitis (ER), Typhoid fever (ER), Gonorrhea, tooth decay (ER).				
Bobgania madagascariensis	R8: Decoction of three pieces of crushed root peel in 1.5L of water. Drink 1/2 glass of filtrate 2x / day for 4 days.	2	Diarrhea, food poisoning (F), Kwashiorkor, measles (F), Stomach cancer, leukemia (F), Dysentery (ER).				
Cajanus cajan	R9: Decoction of two handfuls of fresh leaves in 1.5L of water. Drink 2 glasses 3x / d for 3 days.	1	Bronchitis (Fl), wounds (S), verminosis (Gr), purulent wound (Fr), Dyspepsia, diphtheria (Fr), Snake bite (ET), Amoebiasis: R + F pour Persea americana + PE pour Euphorbia birta, Jaundice and asthma (F)				
Carica papaya	R10: Infusion of two handfuls of leaves in 1L of water. Drink a glass 3x / day for 7 days.	12	Constipation, dysmenorrhoea (R), Placental retention (R), Snake bite, fungal, intestinal worms (F), Amoebiasis (F), tuberculosis & pneumonia (Gr)				
Cassia occidentalis	R11: Maceration of two handfuls of freshly crushed leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	12	Diabetes (F), Amoebiasis, indigestion (PE), Diarrhea and gastritis (R).				
Catharanthus roseus	R12: Infusion of a handful of fresh roots in 1.5L of water. Drink 0.5 glass 2 x / d for 4 days.	1	Intestinal worms, fever (F), Hemorrhaged, uterine pain (F), Epistaxis (T) and tuberculosis (F)				
Chenopodium abrosioides	R13: Decoction of a handful of leaves in 1L of water. Drink 0.5 x 2x day for 4 days.	1	Food poisoning (R), Placental retention (R), Childbirth, hemorrhage (R), Snake bite and wounds (F)				
Chenopodium opulifolium	R14: Decoction of fresh aerial parts in 1.5L of water. Drink 0.5 glass 2x / day for 4 days.	8	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F),				
Cinchona ledgeriana	R15: Decoction of 2 handles of the leaves in 0.5x2L of water. Drink: 1/2 glass 2x / day for 4 days.	5	Headache, cough (F), Cataract (Fl)				
Clematis scabiosifolia	R16: Maceration of two handfuls of freshly crushed leaves in 1L of water. Drink 1 glass 3x / day for 7 days.	1	Mental disorders, convulsion (R), Intestinal worms, wounds (F), Gonorrhea, diarrhea, sprain (F), Ulcer and				
Plant Name	Prepared Material	Duration	Uses				
----------------------------------	--	----------	--				
Crassocephalum montuosum	R17: Maceration of two handfuls of crushed roots in 0.5x2L of water. Drink 0.5 glass 2 x / day for 4 days.	1	Stomach, flu, diabetes (F), Hemorrhoids (F), Gonorrhea, hepatitis, goiter (R), Cataract and purulent otitis (R).				
Crassocephalum picridifolium	R18: Decoction of a handful of fresh leaves in 1L of water. Drink a glass3x / day for 7 days.	1	Schistosomiasis, Amoebiasis (F), Intestinal worms, hyper gastralgia (F), Tuberculosis (F) Urethritis and Amoebiasis (F).				
Cymbopogon citratus	R19: Decoction of three handles of fresh leaves in 1L of water. Drink 2 glasses3x / d for 3 days.	3	Headache, fever (R), Gastric ulcer, tuberculosis (R), Belly ache (R), Conjunctivitis and wounds (F)				
Dalbergia katangensis	R21: Infuse three handfuls of fresh root bark into 1.5 L of water. Drink 1 glass 3x / day for 7 days.	2	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Dialium angolense	R23: Decoction of a handful of fresh leaves in 1.5L of water. Drink 1 glass 3x / day for 7 days.	9	Vaginitis, bacillary dysentery (ER), Cholera, hyper gastralgia (ER), Round (ER), Furuncle, abscess (ET), Hemorrhoids and wounds (ET), Headache, fever, ulcer (ET), Tuberculosis (ET), conjunctivitis (F), Wounds and stomachaches (ER).				
Dialopsis africana	R24: Decoction of a handful of dry root bark in 1L of water. Drink 1 glass 3x / day for 7 days.	3	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Ekebergia benguellensis	R25: Decoction of a handful of fresh root bark in 1.5L of water. Drink 0.5 x 2 / day for 4 days.	16	Dental caries, sexual asthma, hernia, low back pain 5R, Dysmenorrhea (ET), tily of the valley (F), Hepatitis, goiter (F), Cataracts and purulent otitis (Ft).				
Eleusine indica	R26: Decoction of a handful of fresh roots in 1L of water. Drink 0.5x2x / d for 4 days.	10	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Entada abyssinica	R27: An infusion of 2 handles in 1L. Drink 1 glass 3 x / l d for 7 days.	2	Splenomegaly, intestinal worms, and abdominal colic (ER).				
Erythrina abyssinica	R28: Maceration for 48 hours of two handfuls of fresh fruit in 1.5L of water. Drink 1 glass 3x / day for 7 days.	3	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Euphorbia hirta	R30: Decoction of three handfuls of fresh whole plant in 1L. Drink 1/2 glass 2x / d for 4 days.	14	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Flueggea virosa	R31: Decoction of two handfuls of leaves in 1L of water. Drink 1/2 glass 2x / d for 4 days.	1	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Hypoestes triflora	R32: Maceration of three handles of roots in 1.5L of water. Drink 1 glass 3x / day for 7 days.	1	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Isoberlinia angolensis	R33: Maceration of a handful of fresh roots in 1L of water. Drink 1/2 glass 2x / d for 4 days.	1	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Isoberlinia tomentosa	R34: Decoction of two handfuls of crushed roots in 1.5L of water. Drink 1/2 glass 2x / d for 4 days.	1	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Jatropha curcas	R35: Decoction of three handles of fresh leaves in 1.5L. Drink 1/2 glass 2x / d for 4 days.	1	Constipation, madness (R), Malnutrition (G), Severe malnutrition (Gr), Angina, kwashiorkor with (F) from mukuzanya: Clerodendrum myricoides + Munyenenyenge: Sessania seshan + Mucumucumu: Leonotis nepataefolia, Snake bite (F), Diarrhea and wounds (R).				
Julbernardia paniculata	R36: Take 0.5L of the latex from the root and apply it at the neck 1/2 glass x2 / day for 4 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
Lantana camara	R37: Take 0.5L of the latex from the stem barks and apply it at the neck 1/2 glass x2 / day for 4 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
Leucas martinensis	R38: Infusion of three handfuls of fresh leaves in 1L of water for 20 minutes. Drink 1/2 glass 2 x / day for 4 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
Mangifera indica	R40: Decoction of three handfuls of fresh whole plant in 1.5L. Drink 1/2 glass 2x / d for 4 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
M. oleifera	R41: Decoction of a handful of fresh leaves in 1.5L of water. Drink 2 glasses 3x / d for 3 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
Ochna schweinfurthiana	R42: Decoction of a handful of fresh leaves in 1.5L of water. Drink 2 glasses 3x / d for 3 days.	1	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
Ocimum gratissimum	R43: Decoction of a handful of fresh stem bark in 1.5L of water. Drink 2 glasses 3x / d for 3 days.	8	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				
~ 8 ~		4	Gingivitis, indigestion (ER), Food poisoning (ER), Splenomegaly (ER), Wounds (ER), purulent urethritis (ET), Gastritis (F).				

http://www.phytojournal.com
Common Name	Description	Conditions & Other Notes
Phyllanthus muellerianus	Decoction of a handful of fresh leaves in 1.5L of water. Drink 2 glasses 3x/d for 7 days.	Tuberculosis, Gonorrhoea (R), Hemorrhoid (F).
Phyllanthus niruri	Decoction of a handful of fresh leaves in 1.5L of water. Drink 2 glasses 3x/d for 7 days.	Gastritis, fever, cough, wounds (ER), Asthenia (ER).
Physalis angulata	Decoction of two handfuls of leaves in 1L of water. Drink 2 glasses 3x/d for 4 days.	Snake bite, constipation (PE), Intestinal worms (PE).
Piliostigma thonningii	Decoction of a handful of fresh leaves in 1.5L of water. Drink 1 glass of filtrate 3x/d for 7 days.	Headaches, mycosis (ET), Dysmenorrhoea (ET).
Psidium guajava	Decoction of a handful of fresh leaves in 1L of water. Drink 1 glass 3x/d for 7 days.	Psoriasis (F), back pain (with Igwara: Cyathula uncinulata), intestinal worms, dermatitis (F), bacillary dysentery (F), Constipation and immunodeficiency (F).
Rothmannia englerianna	Decoction of a handful of fresh leaves in 1L of water. Drink 1.5L of water (or immature banana wine: ecibabe). Drink 1 glass 3x/d for 7 days.	Irritation of the skin (F), Pneumonia (F), Diabetes, Toothache (ER), Amoebiasis (ER), Spasms, diarrhoea (ER), Hypotension (Fr).
Senecio cineraria	Decoction of a handful of fresh leaves in 1L of water. Drink 1 glass 3x/d for 7 days.	Cold, pneumonia, Intestinal worms (F).
Solanecio stuhlmannii	Decoction of a handful of fresh leaves in 1L of water. Drink 1 glass 3x/d for 4 days.	Intestinal worms (ER), Amoebiasis (ET), Syphilis (ET), Hepatitis, gonorrhoea (F), Lice (F).
Spilanthes mauritiana	Decoction of a handful of fresh leaves in 1L of water. Drink 1 glass 3x/d for 7 days.	Pneumonia, urinary tract infection (F), Amoebiasis, anemia (F), Typhoid fever (F), Poisoning (PE), Amoebiasis, wound, diarrhoea (PE), Mycosis, dysentery (PE), Tuberculosis, myomas (PE), Syphilis (PE).
Syzygium cordatum	Decoction of a handful of leaves in 1L of banana juice. Drink 1 glass 3x/d for 7 days.	Convulsion, pains (ER), Abdominal, epilepsy, meningitis (ER), Typhoid fever (ER), Gonorrhoea, tooth decay (ER).
Tagetes minuta	Decoction of two handfuls of leaves in 1L of water. Drink 1 glass 3x/d for 7 days.	Diabetes (F), Amoebiasis, indigestion (PE), Diarrhoea and gastritis (R).
Tithonia diversifolia	Decoction of leaves of fresh ground leaves in 1L of water. Drink ½ glass filtrate 2x/d for 4 days.	Intestinal worms, fever (F), Hemorrhage, uterine pain (F), Epistaxis (T) and tuberculosis (F).
Trema orientalis	Decoction of a handful of crushed stem barks in 1.5x2L of water. Drink 1 glass 3x/d for 7 days.	Food poisoning (R), Placental retention (R), Childbirth, hemorrhage (R), Snake bite and wounds (F).
Vernonia amygdalina	Decoction of a handful of leaves in 1L of water. Drink 1 glass 3x/d for 4 days.	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F).
Hypoestes triflora (PE) Ekebergia benguellensis (F) Ageratum conyzoides (F).	Decoction of a handful of leaves of freshwater mixed handles and pounded in proportions 1 ÷ 1 ÷ 2. Filter and drink 1 glass 3x/d for 3 days.	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F).
Mangifera indica (F) Azadirachta indica (F).	Decoction of a handful of leaves of each plant in proportions 1 ÷ 1. Pound together and infuse for 25 minutes in 1.5x2L of water. Drink 1 glass of filtrate 2x/d for 4 days.	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F).
Catharanthus roseus (F), Cinchona ledgeriana (ER), Senna occidentalis (F).	Decoction of a handful of the organ of each plant in proportions 1 ÷ 1 ÷ 2. Make a decoction in 1x2 liters of water for 30 minutes. Drink 1 glass 3x/d for 3 days.	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F).
Tithonia diversifolia (F).	Decoction of a handful of leaves of each plant in proportions 1 ÷ 1 ÷ 2. Filter and drink 1 glass 3x/d for 3 days.	Splenomegaly, asthenia (F), Cold, constipation and anorexia (F).
These preponderances of leaf and decoction in herbal recipes are reported in several ethnobotanical surveys conducted on antimalarial plants [17, 18, 25, 35, 82]. According to the consulted IPTM, the recourse to the decoction would aim not only the extraction of the active principle but also its activation. It must be remembered, however, that this practice would be as beneficial as it is harmful. Indeed, as much as it could facilitate the release of certain active principles often present in the plant in the glycoside form, as much it could not only release some toxic forms of secondary metabolites like cyanogenic glycosides [83] or deteriorate the active compounds. This practice therefore remains to be assessed on a case-by-case basis and only experimental work could determine its fair value as appropriate.

In addition, ethnobotanical studies carried out in DR Congo [77, 80, 82, 84] whatever the most often oriented towards a specific pathology, do not report plants used as an antidote to poisons, particularly against snake bites with a frequency comparable to that observed in the present study (17%); The population of Bagira would therefore have a particular knowledge of poisons. Note also that the results related to the pathologies treated by these plants are in the same line as that of work carried out in other regions of the country (24,35), which have established that most of the pathologies taken care of in traditional Congolese medicine are of infectious origin.

4. Conclusion

This study identified 53 plants used in traditional medicine in Bagira (DRC) for the treatment of malaria. These plants belong to 43 genera from 24 families dominated by Asteraceae and Fabaceae. They participate in 83 antimalarial recipes of which 67 use a single plant and the other associates two, three or four plants where the leaf is the most used organ in the form of a decoction. This study cites for the first time Chenopodium opulifolium, Clematis villosa, Crassocephalum montuosum, Crassocephalum picridifolium, Dalbergia
katangensis, Dialium angolense, Dialopsis africana, Ekebergia benguellensis, Hypoestes triflora, Isoberlinia tomentosa, Julbernardia paniculata, Psorospermum corymbiferum and Rothmannia engleriana as antimalarial plants and thus constitutes a database for further investigative investigations that may include the isolation of antimalarial compound or the production of improved traditional drugs.

5. Acknowledgements
The authors thank the various traditional healers who agreed to share their knowledge.

Competing Interests
Authors have declared that no competing interests exist.

Authors’ Contributions
Bashige chiribagula valentin collected the first data by conducting ethnomedical surveys; designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. ‘Bakari Amuri Salvius and Okusa Ndjolo Philippe managed the analyzes of the study and the literature searches, Kahumba Byanga, Duez Pierre and Lumbo Simbi, supervised project and have corrected the manuscript. All authors read and approved the final manuscript.

6. References
1. Rahi M, Das P, Sharma A. Perspective Piece Novel Coronavirus Disease (COVID-19) Mitigation Steps Provide a Blueprint for Malaria Control and Elimination. Am J Trop Med Hyg. 2020; 1(1):1-3.
2. WHO. World malaria report 2008. Geneva; 2008.
3. World Health Organization. World Malaria Report [Internet]. Vol. WHO/HTM/GM, World Health. Geneve; 2019. Available from: https://www.who.int/publications-detail/world-malaria-report-2019
4. PNLP-SK. Rapport annuel des Zones de santé de Bukavu. Bukavu, 2018.
5. Laokri S, Soelaeman R, Hotchkiss DR. Assessing out-of-pocket expenditures for primary health care: how responsive is the Democratic Republic of Congo health system to providing financial risk protection? BMC Health Serv Res. 2018; 18(2018):1-19.
6. Tchouakui M, Miranda JR, Mugenzi LJM, Djonabaye D, Wondji MJ, Tchoupo M et al. Cytochrome P450 metabolic resistance (CYP6P9a) to pyrethroids imposes a fitness cost in the major African malaria vector Anopheles funestus. Heredity (Edinb) [Internet]. 2020; 124(1):621–32. Available from: http://dx.doi.org/10.1038/s41437-020-0304-1
7. Xie SC, Ralph SA, Tilley L, K13, the Cytoosome, and Artemisinin Resistance. Trends Parasitol [Internet]. 2020; 36(6):533-44. Available from: https://doi.org/10.1016/j.pt.2020.03.006
8. Laurens MB. RTS,S/AS01 Vaccine (Mosquirrix™): An overview. Hum Vaccin Immunother [Internet]. 2019; 16(3):480-489. Available from: http://dx.doi.org/10.1080/21655155.2019.1669415
9. Gal J, Louis Pasteur, Chemist: An Account of His Studies of Cinchona Alkaloid. Helv Chim Acta. 2019; 102(3):1-18.
10. Fu X, He Y, Li L, Zhao L, Wang Y, Qian H et al. Overexpression of blue light receptor AaCRY1 improves artemisinin content in Artemisia annua L. Biotechnol Appl Biochem. 2020; 1(1):1-19.
11. Dénoü A, Togola A, Innjgerdingen KT, Zhang B, Ahmed A, Dafam DG et al. Immunomodulatory activities of polysaccharides isolated from plants used as antimalarial in Mali. J Pharmacogn Phyther. 2019; 11(2):35-42.
12. Mandoko PN, Sinou V, Mbongi DM, Mumba DN, Mesia GK, Likwela JL et al. Access to artemisinin-based combination therapies and other anti-malarial drugs in Kinshasa. Med Mal Infect [Internet]. 2018; 48(4):1-9. Available from: https://doi.org/10.1016/j.medmal.2018.02.003
13. Byeon CJ, Ahn J Bin, Jang SW, Lee S-E, Choi J-S, Park J-S. Recent formulation approaches to oral delivery of herbal medicines. J Pharm Invest [Internet]. 2019; 49(1):17–26. Available from: http://dx.doi.org/10.1007/s40005-018-0394-4
14. Cock IE, Selesho MI, Vuuren SF Van. A review of the traditional use of southern African medicinal plants for the treatment of malaria. J Ethnopharmacol [Internet]. 2019; 245(2019):112176. Available from: https://doi.org/10.1016/j.jep.2019.112176
15. Oladeji OS, Oluory AP, Bankole DT, Afolabi TY. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. Scientifica (Cairo). 2020; 2020(1):1-20.
16. Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the democratic republic of Congo: A review. J Ethnopharmacol [Internet]. 2015; 169(1):76–98. Available from: https://doi.org/10.1016/j.jep.2015.03.075
17. Kasali FM, Mahano AO, Nyakabwa DS, Kadima NJ, Misakabu FM, Tshibangu DST et al. Ethnopharmacological Survey of Medicinal Plants Used against Malaria in Bukavu City. European J Med Plants. 2014; 4(1):29-44.
18. Mboni HM, Keymeulen F, Ngezahayo J, Amuri SB, Mutombo EK, Byanga JK, et al. Antimalarial herbal remedies of Bukavu and Uvira areas in DR Congo: An ethnobotanical survey. J Ethnopharmacol [Internet]. 2019; 249(1):112422. Available from: https://doi.org/10.1016/j.jep.2019.112422
19. Kiwanuka S-M. Origine et histoire politique de la commune de Bagira (1955-1965). Press univ. Universite nationale du Zaire, Campus de Lubumbashi, Faculte des sciences sociales politiques et administratives, editor. Lubumbashi, 2017, 314.
20. Williams JR. The Declaration of Helsinki and public health. Bull World Health Organ. 2008; 86(8):650-2.
21. Idm’hand E, Msanda F, Cherifi K. Ethnobotanical study and biodiversity of medicinal plants used in the Tarfaya Province, Morocco. Acta Ecol Sin. 2020; 40(2):134-44.
22. Zougagh S, Belghiti A, Rochd T, Zerdani I, Mouslim J. Medicinal and Aromatic Plants Used in Traditional Treatment of the Oral Pathology: The Ethnobotanical Survey in the Economic Capital Casablanca, Morocco (North Africa). Nat Products Bioprospect [Internet]. 2019; 9(1):35-48. Available from: https://doi.org/10.1007/s13659-018-0194-6
23. Avana-Tientcheu M-L, Sime CH, Tsobou R, Tchoundjue Z. Diversity, Ethnobotanical Potential and Sustainability Assessment of Plants Used by Traditional Healers to Treat Cancer in Boyo Division, North-West Region, Cameroon. European J Med Plants. 2019; 27(3):1-22.
24. Karthagomba IB, T AM, Mushagalusa TB, Nabino VB, Koh K, Kim HS. The cultivation of wild food and
medicinal plants for improving community livelihood: The case of the Buhozi site, DR Congo. Nutr Res Pr. 2013; 7(6):510-8.

25. Mangambu MJDD, Kasali MF, Kadima NJ. Contribution à l’étude photochimique de quelques plantes médicinales antialbitéiques de la ville de Bukavu et ses environs (Sud-Kivu, R. D. Congo). J Appl Biosci. 2014; 75:6211–20.

26. Chifunda K. Contribution to the inventory of medicinal plants from the Bushi area, South Kivu Province, Democratic Republic of Congo. Fitoterapia. 2001; 72(4):351-68.

27. Schneider E. Contribution à l’étude de l’ethnobotanique et de la médecine traditionnelle du Bushi (Kivu, Zaïre). Anthropos [Internet]. 1996; 91(1):53-74. Available from: https://www.jsjtor.org/table/40465272

28. Nyakawba M, Gapusi R. Plantes médicales utilisées chez les Banyamulenge de Fizi au Sud-Kivu (Zaïre). Afr Study Monogr [Internet]. 1990; 11(5):101–14. Available from: http://www.africa.kyoto-u.ac.jp/asm/normal/asm_11-2.html

29. Atindehou KK, Schmid C, Brun R, Kone MW, Traore D. Antitrypanosomal and antiplasmodial activity of medicinal plants from C’ote d’ Ivoire. 2004; 90:221-7.

30. Terashima H, Kalala S, Ngandu M. Ethnobotany Of The Lega In The Tropical Rain Forest Of Eastern Zaïre: Part One, Zone De Mwenga. Afr Study Monogr. 1991; 15(S1):1-61.

31. Jonville MC, Kodja H, Strasberg D, Pichette A, Ollivier E, Frédérich M et al. Antiplasmodial, anti-inflammatory and cytotoxic activities of various plant extracts from the Mascarene Archipelago. J Ethnopharmacol [Internet]. 2011; 136(3):525-31. Available from: http://dx.doi.org/10.1016/j.jep.2010.06.013

32. Czechowski T, Rinaldi MA, Famodimu MT, Veelen M Van, Larson TR, Winzer T et al. Flavonoid Versus Artemisinin Anti-malarial Activity in Artemisia annua Whole-Leaf Extracts. Front Plant Sci. 2019; 10(984):1-11.

33. Srivastava SK, Agrawal B, Kumar A, Pandey A. Phytochemicals of AzadirachtaIndica Source of Active Medicinal Constituent Used for Cure of Various Diseases: A Review. J Sci Res. 2020; 64(1):285-90.

34. Laryea MK, Borquaye LS. Antimalarial Efficacy and Toxicological Assessment of Extracts of Some Ghanaian Medicinal Plants. J Parasitol Res. 2019; 2019(1):1-9.

35. Bashige CV, Bakari-Amuri S, Mbuyi-Kaloni S, Kahumba-Byanga J, Dyez P, Lumbu-Simbi JB et al. Étude ethnobotanique, phytochimique et évolution de l’activité antiplasmodiale de 13 plantes réputées antipaludéennes dans la commune du Kenya (Lubumbashi, RDC). Phytotherapie, 2017, 1-10.

36. Abbas A, Muhammad I, Bilbis L, Saidu Y, Ounu A. In Vitro antimalarial activity of some Nigerian medicinal plants. J Pharmacoct Phytochem. 2017; 6(6):885-8.

37. Teng W-C, Chan W, Suwanarusk R, Ong A, Ho H-K, Russell B et al. In Vitro Antimalarial Evaluations and Cytotoxicity Studies of Carica papaya Leaves and Carpaine. Nat Prod Commun. 2019; 14(1):33-6.

38. Daskum AM, Godly C, Qadeer MA. Effect of Senna occidentalis (Fabaceae) leaves extract on the formation of β - hematin and evaluation of In Vitro antimalarial activity. Int J Herb Med. 2019; 7(3):46-51.

39. Singh H, Chahal P, Mishra A, Kumar A. An up - to - date review on chemistry and biological activities of Senna occidentalis (L.) Link Family: Leguminosae. Orient Pharm Exp Med [Internet]. 2019; 19(1):1–16. Available from: https://doi.org/10.1007/s13596-019-00391-z

40. Sylla Y, Silué DK, Ouattara K, Kone MW. Etude ethnobotanique des plantes utilisées contre le paludisme par les tradithérapeutes et herboristes dans le district d’ Abidjan (Côte d ’ Ivoire). Int J Biol Chem Sci. 2018; 12(5):1380–400.

41. Chenniapan K, Kadarkarai M. In Vitro antimalarial activity of traditionally used Western Ghats plants from India and their interactions with chloroquine against chloroquine-resistant Plasmodium falciparum. Parasitol Res. 2010; 107(1):1351-64.

42. Jiofack T, Fokunang C, Guedje N, Kemeuze V. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. African J Pharm Pharmacol. 2009; 3(4):144-50.

43. Cyse D, Fortes TS, Reis AS, De B, Ribeiro P, Ferreira S et al. Antimalarial potential of leaves of Chenopodium ambrosioides L. Parasitol Res [Internet]. 2016; Available from: http://dx.doi.org/10.1007/s00436-016-5216-x

44. Suntar I. Importance of ethnopharmaceutical studies in drug discovery: role of medicinal plants. Phytochem Rev. 2019; 9:1-11.

45. Karle JM, Bhattacharjee AK. Stereoelectronic Features of the Cinchona Alkaloids Determine Their Di € erential Antimalarial Activity. Bioorg Med Chem. 1999; 7:1769-1774.

46. Melariri P, Campbell W, Etusim P, Smith P. Journal of Natural Products In Vitro and In Vivo antiplasmodial activities of extracts of Cymbopogon citratus Stapf and Vernonia amygdalina Delile leaves. J Nat Prod. 2011; 4:164-72.

47. Okokon JE, Odomena CS, Imabong E, Obot J, Udobang J. Antiplasmodial and antidiabetic activities of Eleusine indica. Int J Drug Dev Res. 2010; 2(3):493-500.

48. Obbo C, Kariuki S, Gathriwa J, Olaho-Mukan W, Cheplogo P, Mwangi E et al. In Vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: refocusing into multi-component potentials. J Ethnopharmacol [Internet]. 2019; 229:127–36. Available from: https://doi.org/10.1016/j.jep.2018.09.029

49. Onyango DW, Midiwo JO. In Vivo Evaluation of Antimalarial Activity of Stem and Root Extracts of Erythrina abyssinica. European J Med Plants. 2019; 27(4):1-5.

50. Ghosh P, Ghosh C, Das S, Das C. Botanical Description, Phytochemical Constituents and Pharmacological Properties of Euphorbia hirta Linn : A Review. Int J Heal Sci Res, 2019; 9(3):273-86.

51. Ajayi EIO, Adeleke MA, Adewumi TY, Adeyemi AA. Antiplasmodial activities of ethanol extracts of Euphorbia hirta whole plant and Vernonia amygdalina leaves in Plasmodium berghei -infected mice. Integr Med Res [Internet]. 2017; 11(6):831–5. Available from: https://doi.org/10.1016/j.jimrsc.2017.01.008

52. Omoboyowa DA. Ethno-Botanical Survey of Anti-Malarial and Anti-Diabetic Plants Use In Ebonyi State, South-East, Nigeria. Asian J Adv Res. 2020; 3(2):15-22.

53. Singh VS, Manhas A, Kumar Y, Mishra S, Shanker K, Khan F et al. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomed Pharmacother [Internet]. 2017; 89:761-71. Available from: http://dx.doi.org/10.1016/j.biopharma.2017.02.056
82. Mbuyi KS, Kalunga MR, Kalonda M, Cimanga CC, Numbi WI, Kahumba BJ et al. Aperçu ethnobotanique de plantes réputées antipaludéennes utilisées dans la ville de Lubumbashi et ses environs, dans le Haut-Katanga en RD Congo. Ethnopharmacologia. 2019; 61:75-83.

83. Ballhorn DJ. Cyanogenic Glycosides in Nuts and Seeds. In: Preedy VR, Watson RR PV, editor. Nuts and Seeds in Health and Disease Prevention [Internet]. Academic P. London: Elsevier Inc, 2011, 129-36. Available from: http://dx.doi.org/10.1016/B978-0-12-375688-6.10014-3

84. Mbayo KM, Kalonda ME, Tshisand TP, Kisimba KE, Mulamba M, Richard MK et al. Contribution to ethnobotanical knowledge of some Euphorbiaceae used in traditional medicine in Lubumbashi and its surroundings (DRC). J Adv Bot Zool. 2016; 4(2):1-16.