STRANGE AND MULTI-STRANGE PARTICLE PRODUCTION IN Pb-Pb COLLISIONS AT $\sqrt{s_{NN}} = 2.76$ TeV WITH ALICE

ZHONGBAO YIN, FOR THE ALICE COLLABORATION

Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

Received Day Month Year
Revised Day Month Year

We present ALICE results on strange and multi-strange hadron production as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the LHC. Their transverse momentum spectra, yields and particle ratios are compared to the corresponding measurements in pp collisions to address strangeness enhancement and high p_T particle suppression. The results are also compared to measurements at RHIC and SPS energies.

Keywords: strange particles; relativistic heavy-ion collisions.

PACS numbers: 25.75.-q, 14.20.Jn, 14.40.-n, 21.65.Qr

1. Introduction

It is generally assumed that collisions of relativistic heavy-ions lead to the formation of a deconfined high temperature and density state of nuclear matter, the quark-gluon plasma. The new phase of matter exists for a short time after the collisions and ultimately hadronizes into final-state particles. Considerable efforts have been put into identifying observables that are sensitive to the properties of the early deconfined stage of the collisions. Strangeness enhancement, one of the first proposed signatures of the deconfined phase \cite{1}, has been commonly considered to be an important probe of the strongly interacting matter created in heavy-ion collisions.

By exploiting the tracking and particle identification capabilities of ALICE, strange (Λ, K^0_S) and multi-strange (Ξ^-, Ω^-) particles can be detected via their weak decay topologies and measured over a wide range of transverse momenta. In this report we present the latest ALICE results on strange (Λ, K^0_S) and multi-strange (Ξ^-, Ω^-) production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. In the next section, we present transverse momentum (p_T) spectra measured at mid-rapidity ($|y| < 0.5$) as function of centrality. We discuss in the third section the evolution

\cite{1}Some of the results presented at the workshop have, in the meantime, been finalized and these results are used in these proceedings.
of Λ/K^0_S ratio as a function of p_T, in comparison with the corresponding results in pp collisions at the LHC and in $\sqrt{s_{NN}} = 200$ GeV Au-Au collisions at RHIC. The excitation function of the strangeness enhancement from SPS to LHC energies is discussed in the fourth section. In the fifth section, the nuclear modification factors for multi-strange particles are compared with other identified particles to provide insight into particle production and energy loss mechanisms at play.

2. Strange and Multi-strange p_T Spectra in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE experiment, dedicated to study heavy-ion physics at the LHC, has excellent particle identification capability. Strange and multi-strange particles were reconstructed via their weak decay channels: $K^0_S \rightarrow \pi^+\pi^-$, $\Lambda \rightarrow p^+\pi^-$ ($\bar{\Lambda} \rightarrow \bar{p}^+\pi^-$), $\Xi^- \rightarrow \Lambda^+\pi^-$ ($\bar{\Xi}^+ \rightarrow \bar{\Lambda}^+\pi^+$) and $\Omega^- \rightarrow \Lambda^+K^-$. The combinatorial background contribution to the invariant mass distributions of the candidates for all species was reduced by applying cuts selecting specific decay topologies and using information on the specific energy loss in TPC of their decay daughters.

![Graphs showing transverse momentum spectra for K^0_S and Λ.](image)

Fig. 1. Transverse momentum spectra for K^0_S (top) and Λ (bottom) at mid-rapidity for different centrality intervals of Pb-Pb collisions shown in logarithmic (left) and linear (right) scale.

The signal was extracted, for each particle in each p_T interval, by subtracting
Strange and multi-strange particle production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE

Fig. 2. Transverse momentum spectra for Ξ^- and Ω^- (a, b) and their anti-particles (c, d) at mid-rapidity in different centrality intervals for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

from the peak population the background, which was estimated by a first or second order polynomial fit. Acceptance and efficiency was estimated via a Monte-Carlo study and applied to correct the signals. The Λ yield was further corrected for feed-down contributions from weak decays of Ξ^- and Ξ^0 (Ω contribution being negligible). The p_T spectra of strange and multi-strange particles are shown for different centrality classes in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in Fig. 1 and 2, respectively.

3. Λ/K_S^0 Ratio

When compared with the peripheral and pp results, Λ/K_S^0 and p/π ratios were observed to be enhanced at intermediate p_T in central heavy-ion collisions at both RHIC\cite{3,4,5} and SPS\cite{6}. These observations suggested that other hadronization mechanisms, such as coalescence, may open up in the deconfined medium created in heavy-ion collisions. Indeed, the so-called “baryon anomaly” could be qualitatively explained if hadrons were formed by recombination of two or three soft quarks\cite{7,8}.

Figure 3 (left) shows the Λ/K_S^0 ratios as a function of p_T for different centralities in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV\cite{9}. For comparison, also shown in the plot are the ratios measured in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV. The ratio in pp collisions always stays far below 1 and appears to be insensitive to the collision energy.
the ratio in the most peripheral Pb-Pb collisions is compatible with that measured in pp collisions, at intermediate p_T it increases with collision centrality and develops a maximum at $p_T \sim 3$ GeV/c reaching a value of about 1.6 for the 0-5% most central Pb-Pb collisions. However, at $p_T > 7$ GeV/c, the Λ/K^0_S ratio appears to be independent of collision centrality and very similar to that measured in pp collisions. This suggests that the production of Λ and K^0_S at high p_T, even in central Pb-Pb collisions, could be dominated by vacuum-like fragmentation of energetic partons.

![Fig. 3](image.png)

A comparison between LHC and RHIC measurements on Λ/K^0_S ratios is shown in the right panel of Fig. 3 for the most central (0-5%) and peripheral (60-80%) nucleus-nucleus collisions. Both Λ/K^0_S and $\bar{\Lambda}/K^0_S$ are plotted for the STAR measurements in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV considering that the anti-baryon/baryon ratio is about 0.8 instead of ~ 1 observed at LHC. As can be seen from the comparison, although the magnitude of the ratio is similar, the position of the maximum seems to shift towards higher p_T as the collision energy increases, suggesting a stronger radial-flow effect at higher collision energy.

Also shown in the right panel of Fig. 3 are theoretical model calculations for the most central collisions. As can be seen, the viscous hydrodynamical model10 describes the data well up to p_T about 2 GeV/c but deviates progressively at higher p_T. A recombination model calculation11 can approximately reproduce the shape, but overestimates the magnitude of the data by about 15%. The EPOS model12, which takes into account the interaction between jets and the hydrodynamical medium, appears to describe the data reasonably well.
4. Strangeness Enhancement

Strangeness enhancement, defined as the enhancement of the relative yield per participant in nucleus-nucleus collisions to that in pp or p-Be collisions, was proposed in the 1980s as a signature of a phase transition to quark-gluon plasma which was expected to take place in relativistic nucleus-nucleus collisions\(^1\). Indeed, the enhancement of strangeness was observed in heavy-ion collisions at the SPS\(^13,\)\(^14,\)\(^15\) and RHIC\(^16\). In particular, the enhancement is more pronounced for multi-strange baryons and decreases as the collision energy increases.

Figure 4 shows the enhancements for multi-strange baryons in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV, as a function of the mean number of participants \(\langle N_{\text{part}} \rangle\), in comparison with the corresponding measurements by NA57 at SPS\(^13\) and STAR at RHIC\(^16\). The enhancement increases with centrality and with the strangeness content of the particles as observed already at lower energies, but decreases with increasing energy, following the trend observed at lower energies. It is worth mentioning that the production of multi-strange particles in heavy-ion collisions does increase with collision energy from the SPS to the LHC. However, the increase of the multi-strange yields in smaller colliding systems (pBe or pp) used as reference, appears...
to be slightly faster, resulting in the less pronounced enhancement than at lower energies.

5. Nuclear Modification Factor

When an energetic parton traverses the hot dense QCD medium created in relativistic heavy-ion collisions, it suffers large energy loss due to gluon radiation and multiple scatterings. This parton energy loss is expected to lead to a modification of energetic jets (jet quenching), which should be reflected in the p_T spectra of hadrons, originating from the energetic partons produced in initial hard collisions. To quantify the medium modification of the measured hadron yield in nucleus-nucleus (A-A) collisions, it is compared to the expectation from an independent superposition of nucleon-nucleon collisions (binary collision scaling) by introducing the nuclear modification factor:

$$R_{AA}(p_T) = \frac{d^2N^{AA}/dydp_T}{<T_{AA}> d^2\sigma^{NN}/dydp_T},$$

(1)

where N^{AA} is the particle yield in A-A collisions, $d^2\sigma^{NN}/dydp_T$ the cross-section of particle production in pp collisions, and T_{AA} the geometric nuclear overlap function. In the absence of any nuclear modification to the incoherent hard processes, the nuclear modification factor at high p_T is expected to be unity according to the binary collision scaling.

![Graph showing R_{AA} as a function of p_T for multi-strange baryons in most central and most peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.](image)

Fig. 5. Nuclear modification factor for Ξ and Ω compared with π, K, p and ϕ in most central (left) and the most peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.

Figure 5 shows R_{AA} as a function of p_T for multi-strange baryons in most central and most peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. For comparison, also
Strange and multi-strange particle production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE

plotted in the figures are the nuclear modification factors for charged pions, kaons, protons and ϕ-mesons. At high p_T the R_{AA} for Ξ seems to follow the same trend of the proton, whereas the R_{AA} for Ω appears not to be suppressed. At intermediate p_T a mass-ordering is clearly observed among the baryons and mesons, respectively.

6. Summary

The results of several studies on strangeness production are presented to investigate the properties of the strongly interacting matter created at the LHC in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. At intermediate p_T Λ production relative to K^0_S is strongly enhanced in central Pb-Pb collisions. At high p_T however, Λ/K^0_S appears to be similar to pp results, indicating that vacuum-like fragmentation dominates there. The enhancements of multi-strange baryons relative to pp increase both with the centrality and with the strangeness content of the baryon, but decrease with increasing energy, confirming the trend observed at lower energies. The comparison of the nuclear modification factors for multi-strange baryons to lighter particles shows that, while the R_{AA} for Ξ at high p_T seems to follow the same trend as of the proton, the behavior of Ω is very different from the others.

Acknowledgments

This work is supported partly by the NSFC (10975061, 1137071 and 11020101060), the National Basic Research Program of China (2013CB837803), and the Basic Research Program of CCNU (CCNU13F026).

References

1. J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 1066 (1982).
2. ALICE Collab. (K. Aamodt et al.), JINST 3, S08002 (2008).
3. PHENIX Collab. (S. S. Adler et al.), Phys. Rev. Lett. 91, 172301 (2003).
4. STAR Collab. (J. Adams et al.), [arXiv:nucl-ex/0601042] (2006).
5. BRAHMS Collab. (I. Arsene et al.), Phys. Lett. B 650, 219 (2007).
6. NA49 Collab. (T. Schuster et al.), J. Phys. G 32, S479 (2006).
7. R. Fries and B. Müller, Eur. Phys. J. C 34, S279 (2004).
8. R. C. Hwa and C. Yang, Phys. Rev. C 70, 024905 (2004).
9. ALICE Collab. (B. Abelev et al.), [arXiv:1307.5530] [nucl-ex], 2013.
10. H. Song and U. W. Heinz, Phys. Lett. B 658, 279 (2008).
11. R. J. Fries, V. Greco and P. Sorensen, Ann. Rev. Nucl. Part. Sci. 58, 177 (2008).
12. K. Werner, Phys. Rev. Lett. 109, 102301 (2012).
13. WA97 Collab. (E. Andersen et al.), Phys. Lett. B 449, 401 (1999).
14. NA57 Collab. (F. Antinori et al.), J. Phys. G 32, 427 (2006).
15. NA57 Collab. (F. Antinori et al.), J. Phys. G 37, 045105 (2010).
16. STAR Collab. (B. I. Abelev et al.), Phys. Rev. C 77, 044908 (2008).
17. ALICE Collab. (K. Aamodt et al.), [arXiv:1307.5513] [nucl-ex], (2013).
18. ALICE Collab. (B. Abelev et al.), Phys. Lett. B 712, 309 (2012).
19. X. N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).