A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O’Brien, Are Olsen, Karl M. Smith, Catherine E. Cosca, Sumiko Harasawa, Stephen D. Jones, et al.

To cite this version:
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O’Brien, et al.. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, Copernicus Publications, 2016, 8, pp.383-413. 10.5194/essd-8-383-2016 . hal-01373436

HAL Id: hal-01373436
https://hal-univ-perp.archives-ouvertes.fr/hal-01373436
Submitted on 4 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A multi-decade record of high-quality fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas (SOCAT)

Dorothee C. E. Bakker¹, Benjamin Pfeil²,³, Camilla S. Landa²,³, Nicolas Metzl⁴, Kevin M. O’Brien⁵,⁶, Are Olsen²,³, Karl Smith⁵,⁶, Cathy Cosca⁵, Sumiko Harasawa⁷, Stephen D. Jones²,³, Shin-ichiro Nakaoka⁷, Yukihiro Nojiri⁷, Ute Schuster⁸, Tobias Steinhoff⁹, Colm Sweeney¹⁰,¹¹, Taro Takahashi¹², Bronte Tilbrook¹³,¹⁴, Chisato Wada⁷, Rik Wanninkhof¹⁵, Simone R. Alin¹², Carlos F. Balestrini¹⁶, Leticia Barbero¹⁵,¹⁷, Nicholas R. Bates¹⁸,¹⁹, Alejandro A. Bianchi¹⁶, Frédéric Bonou²⁰,¹¹, Jacqueline Boutin⁴, Yann Bozec²¹, Eugene F. Burger³, Wei-Jun Cai²², Robert D. Castle¹⁵, Liqi Chen²³,²⁴, Melissa Chierici²⁵,²⁶, Kim Currie²⁷, Wiley Evans⁵,²⁸,²⁹, Charles Featherstone¹¹, Richard A. Feely⁵, Agneta Fransson³⁰, Catherine Goyet³¹,³², Naomi Greenwood³³, Luke Gregory³⁴, Steven Hankin⁵,⁶, Nick J. Hardman-Mountford³⁵, Jérôme Harlay³⁶, Judith Hauck³⁷, Mario Hoppema³⁷, Matthew P. Humphreys¹⁹, Christopher W. Hunt³⁸, Betty Huss¹⁵, J. Severino P. Ibáñez³⁹,²⁰, Truls Johannessen²³,⁴⁰, Ralph Keeling³¹, Vassilis Kitiidis³², Arne Körtzinger⁴⁰, Alex Kozyr⁴¹, Evangelia Krasakopoulou⁴², Akira Kuwata³⁸, Peter Landschützer⁴⁰, Siv K. Lauvset⁴³,⁴⁰,²,³, Nathalie Lefèvre³, Claire Lo Monaco³, Ansley Manke³, Jeremy T. Mathis³, Liliane Merlivat¹, Frank J. Millero⁴⁷, Pedro M. S. Monteiro³⁴, David R. Munro⁴⁸, Akihiko Murata⁴⁹, Timothy Newberger¹⁰,¹¹, Abdirahman M. Omar⁴⁰,², Tsuneo Ono⁵⁰, Kristina Paterson¹³, David Pearce³³, Denis Pierrot¹⁵,¹⁷, Lisa L. Robbins⁵¹, Shu Saito³², Joe Salisbury³⁸, Reiner Schlitzer³⁷, Bernd Schneider⁵³, Roland Schweitzer⁵⁴, Rainer Sieger³⁷, Ingunn Skjelvan⁵⁰,², Kevin F. Sullivan¹⁵,¹⁷, Stewart C. Sutherland¹², Adrienne J. Sutton⁵,⁶, Kazuaki Tadokoro⁴⁵, Maciej Telszewski⁵⁵, Matthias Tuma⁵⁶, Steven M. A. C. van Heuven⁵⁷, Doug Vandemark³⁸, Brian Ward⁵⁸, Andrew J. Watson³, and Suqing Xu²³

¹Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
²Geophysical Institute, University of Bergen, 5020 Bergen, Norway
³Bjerknes Centre for Climate Research, 5017 Bergen, Norway
⁴Sorbonne Universités (UPMC, Univ Paris 06), CNRS, IRD, MNHN, LCE/IPS/Laboratory, 75005 Paris, France
⁵Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA 98115, USA
⁶Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98105, USA
⁷National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
⁸College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QE, UK
⁹GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
¹⁰Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
¹¹Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305-3337, USA
¹²Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
¹³CSIRO Oceans and Atmosphere, Hobart, Tasmania 7001, Australia
¹⁴Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania 7001, Australia
¹⁵Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
Abstract. The Surface Ocean CO$_2$ Atlas (SOCAT) is a synthesis of quality-controlled f CO$_2$ (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million f CO$_2$ values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million f CO$_2$ values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water f CO$_2$ values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water f CO$_2$ has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.

Data coverage and parameter measured

Repository references:

Individual data set files and synthesis product:
doi:10.1594/PANGAEA.849770

Gridded products:
doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

Available at http://www.socat.info/

Coverage: 79° S to 90° N, 180° W to 180° E

Location name: Global Oceans and Coastal Seas

Date/time start: 21 October 1957

Date/time end: 4 October 2014

1 Introduction

The oceans represent a vast reservoir for carbon, mainly in the form of dissolved inorganic carbon (DIC), made up of the species bicarbonate, carbonate and dissolved carbon dioxide (CO$_2$). This carbon reservoir is in contact with the much smaller reservoir of CO$_2$ in the atmosphere via air–sea gas exchange.

Emissions of CO$_2$ by human activity, such as fossil fuel burning, cement manufacturing and changes in land use, are rapidly increasing the atmospheric concentration of this long-lived greenhouse gas. The oceans are taking up about 26% of the global CO$_2$ emissions with ocean uptake estimated at 2.6 ± 0.5 Pg C yr$^{-1}$ for the time period 2005 to 2014 (Le Quéré et al., 2015b). This ocean carbon sink slows down the rate of climate change caused by human activity. Ocean carbon uptake changes ocean carbonate chemistry, notably by reducing ocean pH and the carbonate ion concentration, a process known as ocean acidification and sometimes referred to as “the other CO$_2$ problem” (Turley, 2005; Henderson, 2006; Doney et al., 2009a). These changes in ocean chemistry are expected to affect key physiological processes of marine organisms, such as calcification, growth, development and survival (Kroeker et al., 2013). Ocean acidification is likely to have far-reaching impacts on marine organisms and marine biodiversity, with the effects expected to first be felt in the polar oceans (Orr et al., 2005).

The annual change in marine carbonate chemistry resulting from net ocean carbon uptake is small in comparison to its natural variation. A mean annual increase of 1.5 µatm has been estimated in surface ocean f CO$_2$ (fugacity of CO$_2$) for the period from 1970 to 2007 (Takahashi et al., 2009), which is superimposed on large seasonal variation, here defined as
the difference between winter and summer values of, for example, 120 µatm in the seasonally ice-covered Southern Ocean and 160 µatm in the Georgian Basin (E. M. Jones et al., 2015). The annual increase also occurs against a background of large spatial variation of, for example, 140 µatm in different regions of the Southern Ocean in spring (Bakker et al., 2008; E. M. Jones et al., 2015). Similarly, seasonal variation of 0.04 in surface pH in the subtropical North Atlantic Ocean (González-Dávila et al., 2007) is 20 times the mean annual decrease in surface ocean pH at a rate of $-0.002 \, \text{yr}^{-1}$ (Feely et al., 2009; Lauvset et al., 2015).

Seasonal and spatial variation in surface water fCO$_2$ and pH tend to be larger in coastal waters than in the open ocean, as a result of relatively strong tidal forces, large temperature changes, freshwater and other terrestrial inputs, and strong primary production in coastal waters (e.g. Simpson and Sharples, 2012). This is illustrated by an fCO$_2$ decrease of 250 µatm from winter to summer at a coastal site near Antarctica (Legge et al., 2015) and spatial variation of up to 200 µatm within the North Sea (Thomas et al., 2004; Omar et al., 2010). Arctic coastal and shelf seas equally have large spatial (> 500 µatm within the region in summer), seasonal (300 µatm) and year-to-year variation (100 µatm) in surface water fCO$_2$ (Fransson et al., 2006, 2009). Surface water fCO$_2$ may range from less than 200 to 800 µatm (or even 1200 µatm) over short time (days) and space scales (less than 10 nm) in the upwelling system of the US west coast (Hales et al., 2005, 2012; Harris et al., 2013, supplemental figure.)

The annual changes in surface ocean fCO$_2$ and pH exhibit spatial and temporal variation. Basin-specific rates in the fCO$_2$ increase vary from 1.2 to 2.1 µatm yr$^{-1}$ for the years 1970 to 2007 (Takahashi et al., 2009), with higher rates of 2.3 to 3.3 µatm yr$^{-1}$ at different mooring sites in the equatorial Pacific Ocean for the more recent period of 1997 to 2011 (Sutton et al., 2014a). The annual pH decreases at rates of $-0.0013 \, \text{yr}^{-1}$ in the South Pacific Ocean (for 1998 to 2012) to $-0.0026 \, \text{yr}^{-1}$ in the Irminger Sea (for 1982 to 2006) (Bates et al., 2014), while annual pH changes vary from -0.0018 to $-0.0026 \, \text{yr}^{-1}$ for moorings in the equatorial Pacific Ocean for 1997 to 2011 (Sutton et al., 2014a). Here it is worth noting that such rates of change vary with the start date and period used for the calculation as a result of interannual to decadal variability (McKinley et al., 2011).

Modelling has long been a primary tool for quantification of the ocean carbon sink (e.g. Le Quéré et al., 2014) and ocean acidification (Orr et al., 2005). The availability of large surface ocean CO$_2$ data synthesis products, such as the Lamont-Doherty Earth Observatory (LDEO) surface ocean pCO$_2$ (partial pressure of CO$_2$) database (Takahashi et al., 2009, 2014) and the Surface Ocean CO$_2$ Atlas (SOCAT) (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014; this study), now enables data-based estimates of the ocean carbon sink, as well as direct model-to-data comparison for surface ocean fCO$_2$ and ocean carbon sink estimates (Le Quéré et al., 2014, 2015a, b; Séférian et al., 2014; Turi et al., 2014). A challenge for data-based estimates of the ocean carbon sink is the gap-filling required for times and locations without surface ocean fCO$_2$ data. Different techniques and assumptions are applied for doing this; however, the resulting estimates of the ocean carbon sink differ considerably between the methods, especially in data-sparse regions, such as the South Pacific Ocean (Rödenbeck et al., 2015). Recent data-based studies highlight large year-to-year, decadal and longer-term variation in surface ocean fCO$_2$ with consequent variation in the global ocean CO$_2$ sink (Fay and McKinley, 2013; Fay et al., 2014; Landschützer et al., 2014, 2015; Rödenbeck et al., 2014, 2015). Several model-to-data comparison studies suggest that models underestimate the spatial and temporal variation in surface ocean fCO$_2$ and the ocean carbon sink (Séférian et al., 2014; Turi et al., 2014; Rödenbeck et al., 2015). Such results could only be achieved because of the huge progress that has been made in data collection efforts like SOCAT.

The Global Carbon Budget provides an annual estimate of the carbon sinks and sources for the atmosphere (Le Quéré et al., 2014, 2015a, b). The land carbon sink is determined as a residual of the other terms in the budget, namely the atmospheric and ocean components and land-use change. Thus, quantification of the ocean carbon sink is critical to resolving the Global Carbon Budget. Ocean carbon sink estimates based on the LDEO and SOCAT synthesis products have been included in recent versions of the Global Carbon Budget (Sect. 7.3) (Le Quéré et al., 2014, 2015a, b).

The above highlights the need for long-term sustained, accurate observations over the entire surface ocean and synthesis of the marine carbonate chemistry measurements for quantification of trends in the ocean carbon sink and ocean acidification. This has been eloquently expressed for in situ observations of the climate system by Carl Wunsch and colleagues (Wunsch et al., 2013):

No substitute exists for adequate observations. [...] Models will evolve and improve, but, without data, will be untestable, and observations not taken today are lost forever. [...] Today’s climate models will likely prove of little interest in 100 years. But adequately sampled, carefully calibrated, quality controlled, and archived data for key elements of the climate system will be useful indefinitely.

In 2007, the international marine carbon community decided to create a quality-controlled, publicly available synthesis product of surface ocean CO$_2$ for the global oceans and coastal seas (IOCCP, 2007; Doney et al., 2009b). The Surface Ocean CO$_2$ Atlas provides regular updates of (1) a synthesis product of surface ocean fCO$_2$ measurements and (2) a gridded product of surface ocean fCO$_2$ values (without interpolation to grid cells with no measurements).

Both SOCAT data products cover the global oceans and coastal seas. Version 1 of SOCAT was made available in 2011 (Pfeil et al., 2013; Sabine et al., 2013), followed by
the release of version 2 in 2013 (Bakker et al., 2014) and of version 3 in 2015 (this study). The Surface Ocean CO\textsubscript{2} Atlas (http://www.socat.info/) provides a key synthesis data set of surface ocean \(f \text{CO}_2 \) for global and regional scientific studies of the ocean carbon sink and ocean acidification.

The SOCAT data collection only contains original surface water CO\textsubscript{2} data, as reported by the data originator, as input values. Thus, the SOCAT data collection does not contain CO\textsubscript{2} values processed by secondary data sources. The SOCAT data products only contain surface water \(f \text{CO}_2 \) values from \(x \text{CO}_2 \) (mole fraction), \(p \text{CO}_2 \) or \(f \text{CO}_2 \) measurements (Pfeil et al., 2013). SOCAT does not include surface water \(f \text{CO}_2 \) calculated from the other seawater carbonate system parameters, such as pH, dissolved inorganic carbon or total alkalinity. Almost all \(f \text{CO}_2 \) values in SOCAT have been collected on ships by determination of the CO\textsubscript{2} concentration in the headspace of an equilibrator with a continuous seawater flow (Pfeil et al., 2013; Bakker et al., 2014). Shipboard systems for equilibrators generally use gas chromatography or infrared detection to determine the CO\textsubscript{2} concentration in headspace air (Pierrot et al., 2009).

SOCAT versions 2 and 3 also have data sets from fixed moorings and drifting buoys with measurements made by an equilibrator system with infrared detection or by a membrane spectrophotometer. The SOCAT data collection includes a small number of historical, discrete surface water \(f \text{CO}_2 \) measurements.

Two large surface ocean CO\textsubscript{2} data synthesis products, the LDEO and SOCAT synthesis products, are now available (Takahashi et al., 2009, 2014; Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014; this study). While there is substantial overlap in the data sets they contain, the LDEO and SOCAT synthesis products are independent and differ in their data treatment and quality control. There is no intention to merge the LDEO and SOCAT synthesis products, which from a SOCAT perspective would not meet its aim of full documentation and coherence of data treatment and quality control. That said, the SOCAT data managers regularly check which data sets are in the LDEO data product, but are not (yet) included in SOCAT, and invite the data providers to submit their original data sets to SOCAT. In reverse, SOCAT expects data providers to make their original data sets public as part of the submission to SOCAT or upon publication of the SOCAT version of which these data sets are part (Sect. 6.1). The frequent SOCAT releases therefore increase the data availability in general, including for the LDEO data product. Overall, both data products reinforce each other. Furthermore, the existence of the two data products with slightly different time lines enables the use of independent data from the LDEO data set (i.e. data not (yet) included in SOCAT) in testing interpolation methods built using SOCAT (Landschützer et al., 2015) and vice versa.

SOCAT version 3 was made public during the SOCAT and SOCOM (Surface Ocean \(p \text{CO}_2 \) Mapping Intercomparison) Event on 7 September 2015 (SOCAT and SOCOM, 2015). The event was part of the Surface Ocean Lower Atmosphere Study (SOLAS) Open Science Conference in Kiel, Germany. This manuscript documents SOCAT version 3, while highlighting the key differences with respect to version 2 (Sect. 2). The SOCAT Fair Data Use Statement is presented in Sect. 3. This is followed by a description of data upload, quality control (Sect. 4) and the data products available for version 3 (Sect. 5). We also look forward towards ongoing developments affecting future SOCAT versions, notably automated data upload, inclusion of additional parameters and annual releases (Sect. 6). The article ends with an assessment of the impact and scientific applications of SOCAT to date (Sect. 7) and concluding remarks (Sect. 8). This publication will be updated regularly using the format of the ESSD (Earth System Science Data) “living data” to document the SOCAT versions and significant changes in the data collection, data upload, quality control and data products. This is the first version of the SOCAT “living data” and is closely associated with earlier ESSD publications describing SOCAT versions 1 (Pfeil et al., 2013; Sabine et al., 2013) and 2 (Bakker et al., 2014).

2 Characteristics of SOCAT version 3 and key differences to version 2

Version 3 of the Surface Ocean CO\textsubscript{2} Atlas includes 14.7 million surface water \(f \text{CO}_2 \) values over the time period 1957 to 2014 for the oceans and coastal seas around the world (Figs. 1 and 2; Table 1). The \(f \text{CO}_2 \) values are from 3646
Table 1. Key differences between SOCAT versions 2 and 3. See text and Table 2 for further detail and an explanation of cross-overs and standard operating procedures (SOPs). Calculation of “recommended f\textsubscript{CO$_2$}” (f\textsubscript{CO$_2$}rec) is explained in Sect. 4.2.

Description	Version 2	Version 3
Description	Bakker et al. (2014)	This study.
Fair Data Use Statement	Data policy on web pages.	Renamed to Fair Data Use Statement. Phrased more strongly and given more prominence on the SOCAT web sites.
Data coverage	1968 to 2011, 10.1 million surface water f\textsubscript{CO$_2$} values, 2660 data sets with a WOCE flag of 2.	1957 to 2014, 14.7 million surface water f\textsubscript{CO$_2$} values from 3646 data sets (3640 with a WOCE flag of 2 and 6 with a flag of 3).
Time stamp	The time stamp includes seconds for all data sets. When equal time stamps occurred, evenly distributed artificial seconds were added to time stamps.	Artificial seconds were added for concurrent entries. A WOCE flag of 4 was given to duplicate times in data sets with less than 50 equal time stamps (Table 7).
Upload Dashboard	Not available.	Single platform for data upload, f\textsubscript{CO$_2$}rec calculation and automated data checks.
Calculation of f\textsubscript{CO$_2$}rec	In Matlab, prior to bulk data upload.	On the Upload Dashboard with Ferret scripts for all data in versions 1, 2 and 3.
Automated data checks	Not available.	Automated checks after calculation of f\textsubscript{CO$_2$}rec for all new and updated data sets. WOCE flags of 4 were assigned in specific cases (Table 7).
Quality Control Editor	As in version 1.	After automated checks. Upgraded search options and graphical interface. Data set QC flag needs to match QC criteria (tick boxes).
Data set QC flags in data products	Flags of A–D.	Flags of A–E. Revised data set QC criteria (Table 2) applied to all new and updated data sets.
Flag A	Needs a cross-over (an acceptable comparison with other data).	Needs a high-quality cross-over.
Flags A, B	Accuracy equilibrator pressure \leq 0.5 hPa. Six other SOP criteria apply.	Accuracy equilibrator pressure \leq 2 hPa. Six other SOP criteria apply.
Flag C	Did not follow approved methods or SOP criteria	Did or did not follow approved methods or SOP criteria.
Flags C, D	Accuracy f\textsubscript{CO$_2$}rec not specified.	Accuracy f\textsubscript{CO$_2$}rec \leq 5 µatm.
Flag E	Not available.	Accuracy f\textsubscript{CO$_2$}rec \leq 10 µatm, mainly for alternative sensors and platforms with in situ calibration and full documentation.
WOCE flags for f\textsubscript{CO$_2$}rec	Flag of 2 (good) as a default. Manual entry of flags of 3 (questionable) and 4 (bad).	Flag of 2 as a default. Flags of 4 given during automated data checks (Table 7). Quality control comment added during manual entry of flags of 3 and 4.
Parameter	NCEP (2012) atmospheric pressure, atmospheric CO$_2$ mole fraction from GLOBALVIEW-CO2 (2012).	NCEP (2014) atmospheric pressure, atmospheric CO$_2$ mole fraction from GLOBALVIEW-CO2 (2014).
Synthesis products	Data sets with flags of A–D and f\textsubscript{CO$_2$}rec with a WOCE flag of 2 in synthesis and gridded files and as default elsewhere.	Data sets with flags of A–E made public (Table 8). Data sets with flags of A–D and f\textsubscript{CO$_2$}rec with a WOCE flag of 2 in synthesis and gridded files. Data sets with a flag of E and f\textsubscript{CO$_2$}rec with a flag of 2 in a separate synthesis file. Contents of files downloadable from the Data Set Viewer have been streamlined (Table 9).
Gridded products	Missing grid cells in cruise-weighted gridded products (versions 1 and 2). A gridded product of means per climatological month is available.	Correction of data-set-weighted gridded products (version 3). No gridded product of means per climatological month.
Data Set Viewer and Gridded Data Viewer	On different software platforms.	On a single software platform with a powerful graphical interface, following the move of the Data Set Viewer.
Terminology	Terms in version 1: cruises, ships, Cruise Data Viewer, Table of Cruises, cruise-weighted means.	New terms to accommodate sensors and platforms: data sets, platforms, Data Set Viewer, Table of Datasets, data-set-weighted means.
data sets, collected on ships (3504 cruises), moorings (123) and drifters (19). The 3646 data sets include 3640 data sets with a WOCE (World Ocean Circulation Experiment) flag of 2 (good), available in all data products, as well as six data sets with a WOCE flag of 3 (questionable), only available in some data products, if selected. Version 3 is an update of version 2 with an additional 4.6 million fCO2 values from 986 data sets. Version 3 takes the start of the data record backwards from 1968 to 1957 by adding four historic cruises. It also extends the data collection forward by adding 1.8 million fCO2 values for 2012 and 2013, as well as a small number of values from 2014 (Fig. 2). Version 3 also increases the number of fCO2 values for many years between 1989 and 2011. It adds 50 % more fCO2 values for 2008 to 2010, while doubling the available data for 2011. The year 2006 has the largest number of fCO2 values, closely followed by 2009 and 2011.

New in version 3 is an accuracy criterion for all surface ocean fCO2 values, described by data set quality control (QC) flags of A to E, for accuracies of 2 (A, B), 5 (C, D) and 10 µatm (E) (Table 2) (Sect. 4.4) (Wanninkhof et al., 2013b; Olsen et al., 2015). Flag A now also requires a high-quality cross-over with another data set. The introduction of a lower-accuracy, data set quality control flag of E (accuracy of fCO2 values better than 10 µatm) enables the inclusion of calibrated fCO2 measurements made by alternative sensors and on alternative platforms (Wanninkhof et al., 2013b; Olsen et al., 2015). Version 3 has significantly more data sets from fixed moorings (123 data sets) and drifting buoys (19) than version 2 (28 and 3 data sets, respectively). These measurements were made by an equilibrator system with infrared detection (e.g. Johengen, 2010; Sutton et al., 2014b) or a membrane spectrophotometer (e.g. Boutin and Merlivat, 2009; Merlivat et al., 2015).

Overall, the quality of the data is comparable to that of version 2, with a small improvement in the documentation of the individual data sets. In version 3, 14 % of the data sets (509 data sets) received a quality control flag of A, 35 % (1260 data sets) a flag of B, 23 % (840) a flag of C and 27 % (990) a flag of D. This compares to 17 % (454 data sets), 31 % (834), 18 % (491) and 33 % (881), respectively, in version 2. The percentage of data sets receiving a flag of A or B is remarkably similar between both versions (49 % in version 3, 48 % in version 2). The small reduction in the percentage of data sets with a flag of D (27 % in version 3, 33 % in version 2), which implies incomplete metadata, highlights an improvement in the documentation accompanying individual data sets. A total of 41 data sets (1 %) received a flag of E; most of these are sensor data, but they also include a small number of valuable historic data sets with an accuracy deemed better than 10 µatm.

Version 3 represents a major step towards the automation of the SOCAT data and metadata upload and quality control in future versions. A new interface, the SOCAT Upload Dashboard, hosts data and metadata upload, (re)calculation of fCO2, automated data checks, data visualisation and submission to the quality control system in a single application (Table 1). A prototype of the SOCAT Upload Dashboard was used for data upload for version 3 (Sect. 4.1) and (re)calculation of fCO2 (Sect. 4.2). All data sets were run across a newly developed, automated data checker for identification of values that were out of range (Sect. 4.3). As a result, issues identified during data upload were already corrected prior to entry on the quality control system. The search capabilities and graphical interface of the quality control system and the associated Data Set Viewer (previously known as the Cruise Data Viewer) were upgraded (Sects. 4.4 and 5.4). Version 4 will see enhanced implementation of SOCAT automation by enabling data providers to upload their data using the SOCAT Upload Dashboard and submission onto the SOCAT QC Editor (Sect. 6.1).

The publicly accessible, user-friendly and interactive Data Set Viewer now allows selection of fCO2 values by data set, year, month, region, data provider, vessel or platform name, country of the vessel’s or platform’s flag, data set quality control flag, WOCE flag and SOCAT version, as well as setting of limits on data ranges. The graphical tools of the Data Set Viewer (access via http://www.socat.info/) for SOCAT version 3 have been extended (Figs. 1, 3 and 4). Users can now set fixed colour scales and create high-quality, publishable images.

A small error was detected in the gridded data products of SOCAT versions 1 and 2 (Sect. 5.5). In short, the data-set-weighted fCO2 values (formerly known as cruise-weighted fCO2 values) in these products were found to have missing values for a small number of grid cells, as a result of an inconsistency between the algorithms used for computing the
weighted and unweighted gridded products. This was both in time and in position. This error was corrected in the gridded data products for version 3. Note that this error remains present in the gridded products for versions 1 and 2.

In summary, SOCAT version 3 is a significant update of version 2. It provides a 58-year record (1957–2014) of 14.7 million surface ocean fCO2 values for the global oceans and coastal seas. It has higher-quality data with better documentation than version 2. Addition of a flag of E has enabled inclusion of calibrated fCO2 values from alternative sensors and platforms. All surface ocean fCO2 values now have an accuracy estimate, embedded in the data set QC flag. Automated quality control checks during version 3 data upload have identified outliers. The graphical interface of the Data Set Viewer has been vastly improved. These characteristics of version 3 are described in more detail in Sects. 4 to 6.

Table 2. Data set quality control (QC) flags in version 3 (Wanninkhof et al., 2013b; Olsen et al., 2015). All criteria need to be met for assigning a flag of A to E. Data sets with flags of A to E have been made public. Data sets with a flag of A to D are included in the global synthesis and gridded products (Table 8). Changes relative to versions 1 and 2 are in bold. Flag (ID) refers to the data set quality control flag with its numerical identifier (ID) provided between brackets. Calculation of “recommended fCO2” (fCO2rec) is explained in Sect. 4.2.

Flag (ID)	Criteria for version 3
A (11)	(1) Accuracy of calculated fCO2rec (at SST) is better than 2 µatm.
	(2) A high-quality cross-over1,2 with another data set is available.
	(3) Followed approved methods/SOP criteria.
	(4) Metadata documentation complete.
	(5) Data set QC was deemed acceptable.
B (12)	(1) Accuracy of calculated fCO2rec (at SST) is better than 2 µatm.
	(2) Followed approved methods/SOP criteria.
	(3) Metadata documentation complete.
	(4) Data set QC was deemed acceptable.
C (13)	(1) Accuracy of calculated fCO2rec (at SST) is better than 5 µatm.
	(2) Did or did not follow approved methods/SOP criteria.
	(3) Metadata documentation complete.
	(4) Data set QC was deemed acceptable.
D (14)	(1) Accuracy of calculated fCO2rec (at SST) is better than 5 µatm.
	(2) Did or did not follow approved methods/SOP criteria.
	(3) Metadata documentation incomplete.
	(4) Data set QC was deemed acceptable.
E (17)	Primarily for alternative sensors
	(1) Accuracy of calculated fCO2rec (at SST) is better than 10 µatm.
	(2) Did not follow approved methods/SOP criteria.
	(3) Metadata documentation complete.
	(4) Data set QC was deemed acceptable.
S (15) (Suspend)	(1) More information is needed for data set before flag can be assigned.
	(2) Data set QC revealed non-acceptable data.
	(3) Data are being updated (part or the entire data set).
X (15) (Exclude)	The data set duplicates another data set in SOCAT.
N (No flag)	No data set flag has yet been given to this data set.
U (Update)	The data set has been updated.
	No data set flag has yet been given to the revised data.

1 A cross-over between two data sets is defined as an equivalent distance of less than 80 km (Pfeil et al., 2013). This criterion combines distance and time as \(\sqrt{(\Delta x^2 + (\Delta t \times 30)^2)} \leq 80 \) with distance \(\Delta x \) in kilometres and time \(\Delta t \) in hours. One day of separation in time is equivalent (heuristically) to 30 km of separation in space. 2 A high-quality cross-over is defined as a cross-over between two data sets with a maximum cross-over equivalent distance of 80 km, a maximum difference in sea surface temperature of 0.3 K and a maximum fCO2 difference of 5 µatm. Inconclusive cross-overs with the temperature or fCO2 rec difference between the data sets exceeding 0.3 K or 5 µatm, respectively, do not receive a flag of A. High-quality cross-overs are rare in coastal waters, near sea ice and in regions of freshwater influence, as a result of high spatial variation, not for lack of measurement quality (Sect. 4.4). 3 Seven approved methods or SOP (standard operating procedure) criteria need to be fulfilled for a data set quality control flag of A and B (Sect. 4.4) (after Pfeil et al., 2013). In version 3, the accuracy requirement for equilibrator pressure has been relaxed to 2.0 hPa from 0.5 hPa in earlier SOCAT versions. The six other criteria are the same in SOCAT versions 1, 2 and 3.
3 Fair Data Use Statement for SOCAT version 3

The Surface Ocean CO₂ Atlas provides access to a vast amount of surface ocean CO₂ data from the global oceans and coastal seas, painstakingly collected by marine carbon scientists around the world over 58 years. These data sets represent an important scientific output by these scientists. Individual researchers and the marine carbon community make these data public in SOCAT, such that they are available for scientific research and for informing policy (Sects. 7 and 8). Nonetheless, it is important that the data providers receive credit for the data that they collected. This will provide data providers with vital evidence of how their data are being used, enabling successful funding applications for future data collection.

Furthermore, the assembly, quality control and archiving of SOCAT data products involve many data managers and scientists (Tables 3 and 4). Planning meetings and community events have proved effective in informing SOCAT contributors and users, in discussing SOCAT progress and in setting SOCAT strategy (Table 5).

The SOCAT Fair Data Use Statement therefore contains an urgent request to generously acknowledge the contribution by SOCAT data contributors and investigators. Ideally users will invite large data providers to contribute to regional studies and, if they do, to co-author relevant papers. Citation of relevant scientific articles by data providers is a good scientific practice. The following Fair Data Use Statement applies to SOCAT data products (SOCAT, 2016): the synthesis and gridded SOCAT products are a result of scientific effort by data providers, data managers and quality controllers. It is important that users of the SOCAT products fairly acknowledge this effort. This will help generate funding for continuation of observational products and promote further sharing of data.

We expect the following from users of SOCAT data products:

1. To generously acknowledge the contribution of SOCAT data providers and investigators in the form of invitation to co-authorship, reference to relevant scientific articles by data providers or by naming the data providers in the acknowledgements. Specifically, in regional studies, users should invite large data providers, who frequently possess valuable expert knowledge on data and region, to collaborate at an early stage, which may lead to an invitation of co-authorship. We recognise that co-authorship is only justified in the case of a significant scientific contribution to a publication and that provision of data on its own does not warrant co-authorship.

2. To cite SOCAT and its data products as follows:
 version 3: this study;
 version 2: Bakker et al. (2014);
 version 1 (synthesis data products): Pfeil et al. (2013);
 version 1 (gridded data products): Sabine et al. (2013) and Pfeil et al. (2013).

3. To include the following text in the acknowledgement: “The Surface Ocean CO₂ Atlas (SOCAT) is an international effort, endorsed by the International..."
Table 3. Activities and participants in SOCAT version 3 and the automation (after Bakker et al., 2014). Regional group leads are in Table 4.

Activity	Participants
Global group	Bakker (chair), Currie, Kozyr, Metzl, O’Brien, Olsen, Pfeil, Pierrot, Telszewski
Data retrieval, upload, fCO₂ calculation	Landa, Pfeil, Olsen, Smith
Live Access Server for data upload, quality control and data viewers	Smith, O’Brien, Manke, Hankin, Schweitzer
Inclusion of sensors	Wanninkhof, Steinhoff, Bakker, Bates, Boutin, Olsen, Sutton
Automation (version 3)	O’Brien, Smith, S. D. Jones, Landa, Manke, Olsen, Pfeil, Schweitzer, Bakker
Automation (metadata, version 4)	As automation for version 3, plus Shrestha, Ranjeet
Quality control	Alin, Bakker, Barbero, Bonou, Castle, Cosca, Currie, Evans, Featherstone, Green-wood, Harasawa, Hauck, Humphreys, Hunt, Ibáñez, Lefèvre, Metzl, Nakaoka, Pa-terson, Schuster, Skjelvan, Steinhoff, Sullivan, Sutton, Tilbrook, Wada
Data products, archiving	Pfeil, Smith, Kozyr, Manke, O’Brien, Schlitzer, Sieger
Matlab code for reading products	Pierrot, Landschützer
Website	Pfeil, Bakker, Landa, Metzl
Meetings	Bakker, Cosca, O’Brien, Steinhoff, Telszewski

Table 4. Regions with their leads in version 3 (after Bakker et al., 2014). The regions are the same as in version 2.

Region	Definition	Lead(s)
Coastal and marginal seas	< 400 km from land; 70° N to 30° S for 100° W to 43° E; 66° N to 30° S elsewhere	Alin
Arctic Ocean	North of 70° N for 100° W to 43° E; north of 66° N elsewhere, incl. coastal waters	Mathis
North Atlantic	70 to 30° N	Schuster
North Pacific	66 to 30° N	Nojiri
Tropical Atlantic	30° N to 30° S	Lefèvre
Tropical Pacific	30° N to 30° S	Cosca
Indian Ocean	North of 30° S	Sarma
Southern Ocean	South of 30° S, incl. coastal waters	Tilbrook, Metzl

Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER), to deliver a uniformly quality-controlled surface ocean CO₂ database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT.”

4. To report problems to submit@socat.info.

5. To inform submit@socat.info of publications in which SOCAT is used.

The Fair Data Use Statement (SOCAT, 2016) replaces the earlier “SOCAT Data Policy” (SOCAT, 2013a; Bakker et al., 2014). The text has been phrased more strongly and examples of the application of the Fair Data Use Statement have been added. The Fair Data Use Statement is available in full on the SOCAT web pages (e.g. http://www.socat.info/SOCAT_fair_data_use_statement.htm). The revision follows concerns raised by SOCAT data providers and discussions among SOCAT scientists at two recent community events (SOCAT, 2014a; SOCAT and SOCOM, 2015).

4 Data assembly and quality control in version 3

4.1 Data retrieval and data upload on the SOCAT Upload Dashboard

In version 3, new and updated data sets were obtained from the Carbon Dioxide Information Analysis Centre (CDIAC), PANGAEA® and public websites. In addition, many data sets were directly submitted to SOCAT. As well as 887 new data sets, version 3 also contains 1258 updated version of data sets previously submitted to versions 1 and 2, with revised metadata or data. Some of these were updates of data sets previously suspended from SOCAT (e.g. Table 10 in Bakker et al., 2014).
Table 5. Meetings for SOCAT version 3 and the ongoing SOCAT automation. The meeting reports are available on the SOCAT website (http://www.socat.info/meetings.html).

Timing	Meeting	Location	Reference
May 2012	Automation planning meeting	NOAA-PMEL, Seattle, USA	SOCAT (2012a)
July 2012	Progress meeting	Epochal Centre, Tsukuba, Japan	SOCAT (2012b)
June 2013	SOCAT side event, release of version 2	9th International Carbon Dioxide Conference, Beijing, China	SOCAT (2013b)
June 2014	Community event	IMBER Open Science Conference, Bergen, Norway	SOCAT (2014a)
October 2014	Automation meeting	NOAA-PMEL, Seattle, USA	SOCAT (2014b)
September 2015	SOCAT and SOCOM event, release of version 3	SOLAS Open Science Conference, Kiel, Germany	SOCAT and SOCOM (2015)

As in previous versions, all new and updated data sets were put in a uniform format (Pfeil et al., 2013). Similar to version 2, an expocode was assigned to all data sets, including moorings and drifters (Bakker et al., 2014). In general, an expocode consists of 12 characters, describing the country, the vessel or platform, and the data set start day (Swift, 2008). The expocode 320620090306, for example, indicates a data set collected on the US (32) ship R/V Nathaniel B. Palmer (06) with the first day of the cruise on 6 March 2009. There are a few exceptions to this. If two American mooring data sets (which always start with 3164) have the same start date, they will end with “-1” and “-2”, corresponding to an expocode of 14 characters.

In version 3, the SOCAT data managers used the new SOCAT Upload Dashboard for upload of data and metadata (Table 1). All data sets previously included in versions 1 and 2 were also uploaded, automatically screened for obvious outliers and added to version 3 via the SOCAT Upload Dashboard (Table 1). This new capability is an important step in the ongoing SOCAT automation effort and integrates data and metadata upload, (re)calculation of CO_2, automated data checks, data visualisation and data submission in a single application which is tightly coupled to the SOCAT QC Editor. Once fully operational in version 4, the Upload Dashboard will allow data providers to upload, verify and submit their data for SOCAT quality control.

Not all data sets had time stamps which included seconds. In such cases, multiple occurrences of a time stamp were often present. Artificial seconds were added to data sets with 50 or more duplicate time stamps. For these data sets, evenly distributed artificial seconds were added for each equal time stamp. However, if there were less than 50 duplicate times in a data set, a WOCE flag of 4 was generated for the CO_2 values (or “recommended” CO_2 values; see Sect. 4.2) with duplicate time stamps during the automated data checks (Sect. 4.3). Adding artificial seconds is time-consuming and there was insufficient time available for adding artificial seconds to all duplicate times in all data sets.

4.2 (Re)calculation of CO_2

Data providers reported CO_2 values as $x\text{CO}_2$, $p\text{CO}_2$ and/or $f\text{CO}_2$, at the equilibration temperature (Tequ) and/or the sea surface temperature (SST or intake temperature). In order to ensure a coherent SOCAT synthesis product, surface water $f\text{CO}_2$ values at sea surface temperature were recalculated from the reported CO_2 values using a strict calculation protocol with the following procedure (quoting Pfeil et al., 2013):

1. when possible, (re)calculate $f\text{CO}_2$;
2. the preferred starting point for the calculations is $x\text{CO}_2$, then $p\text{CO}_2$, and finally $f\text{CO}_2$;
3. minimise the use of external data required to complete the calculations.

In total, 14 algorithms were used for (re)calculating these “recommended” $f\text{CO}_2$ ($f\text{CO}_2\text{rec}$) values from the $x\text{CO}_2$, $p\text{CO}_2$ and/or $f\text{CO}_2$ values reported by the data providers (Table 6). The particular algorithm used for a given data set is included in the data products (Sect. 5). Equations recommended by Dickson et al. (2007) were applied for the conversion of the dry CO_2 mole fraction to $p\text{CO}_2$, for the calculation of the water vapour pressure and for the correction of $p\text{CO}_2$ to $f\text{CO}_2$ (Pfeil et al., 2013). The temperature correction suggested by Takahashi et al. (1993) was used to correct for temperature change between the seawater intake and the equilibrator. Atmospheric pressure from reanalysis and climatological values of salinity were used in the calculation if in situ values had not been reported (Table 6). The 2014 version of the atmospheric pressure data product was used (NCEP, 2014), which is an update of the 2012 data product used in the previous SOCAT version (NCEP, 2012). Sea surface salinity was from the World Ocean Atlas (WOA) 2005 (Antonov et al., 2006). Full details on the external pressure and salinity products are in the footnotes of Table 9. Note that the use of external atmospheric pressure data would rule out data set quality control flags of A and B during subsequent quality control, while use of external salinity values would not affect the data set quality control flag (Sect. 4.4).
An important change relative to earlier versions is that the (re)calculation in version 3 took place using Ferret scripts on the new SOCAT Upload Dashboard after data upload (Sect. 4.1), rather than in Matlab before the bulk upload of the data (Table 1). The implementation of the Ferret scripts enables full integration of SOCAT data submission, (re)calculation of \(f^r \) and quality control on a single software platform. This streamlines and simplifies the SOCAT data flow. The Matlab code used for the (re)calculation in versions 1 and 2 was transferred to Ferret scripts on the Upload Dashboard for version 3. The new Ferret scripts were checked by comparing \(f^r \) values in version 2 calculated using Matlab and new values calculated using Ferret. Almost all new values were within 0.01 \(\mu \text{atm} \) of the value calculated in Matlab, if not identical to it. Significant changes (smaller than 5 \(\mu \text{atm} \)) for less than 200 data points were attributed to changes in atmospheric pressure from reanalysis (Table 1).

4.3 Automated data checks

A newly developed, automated data checker performed checks on parameters directly influencing the position, time or calculation of \(f^r \) values (Tables 1 and 7). A WOCE flag of 4 (meaning a bad data point) was assigned to all \(f^r \) values with an incorrect position or time stamp or otherwise identified as inaccurate. These automated checks were carried out on all data in version 3 after (re)calculation of \(f^r \) and before submission to the quality control system.

Unintentionally, WOCE flags of 4 were also assigned for values which were out of range in parameters which do not directly affect \(f^r \) values, such as wind speed and ship direction (Table 7). This resulted in a WOCE flag of 4 being given to some good-quality \(f^r \) values in newly added and updated data sets in version 3. The criteria for the automated checks will be reconsidered for version 4.

Automated data checks were also performed for data sets previously included in versions 1 and 2 (and not updated in version 3). For these data sets all WOCE flags of 4 assigned by the automated data checker, other than for duplicate time stamps, were removed to preserve the data sets as reported for version 2.

4.4 Secondary quality control

Secondary quality control is a key part of the creation of a high-quality data synthesis product. During secondary quality control, scientists, also known as quality controllers, assess the quality of each new and updated data set by following a checklist of specific criteria, while also examining the documentation of the data, known as metadata, for completeness. The quality controllers assign a data set quality control flag to each data set, based on their findings (Table 2).

The SOCAT quality control system has been upgraded (Table 1), as part of the ongoing SOCAT automation. In particular, the ease of use, search options and visualisation tools have been improved. Other modifications are that the quality control criteria used for setting the data set quality control flag now must be specified (by a tick box system) and that a comment needs to be entered when assigning a WOCE flag (Table 1). Text relating to the tick boxes and the comments accompanying WOCE flags are incorporated into the quality control comments.

Table 6. Algorithms and surface water CO\(_2\) parameters used in the calculation of recommended \(f^r \) (f\(\text{CO}_2^r \)) at sea surface temperature in version 3 (after Pfeil et al., 2013). Algorithm 1 was the preferred method, followed by algorithm 2 and so forth. The algorithm used for each data set is stated in the output files (Table 9). In the case of incomplete reporting, NCEP (National Centers for Environmental Prediction) atmospheric pressure (Kalnay et al., 1996; NCEP, 2014) and WOA (World Ocean Atlas) 2005 salinity (Antonov et al., 2006) were applied.

Algorithm	CO\(_2\) parameter	Unit	Data set percentage (%)	Extra variable
1	\(x_{\text{CO}_2 \text{water equi dry}} \)	\(\mu \text{mol mol}^{-1} \)	59.1	–
2	\(x_{\text{CO}_2 \text{water SST dry}} \)	\(\mu \text{mol mol}^{-1} \)	12.5	–
3	\(p_{\text{CO}_2 \text{water equi wet}} \)	\(\mu \text{atm} \)	7.2	–
4	\(p_{\text{CO}_2 \text{water SST wet}} \)	\(\mu \text{atm} \)	3.0	–
5	\(f_{\text{CO}_2 \text{water equi}} \)	\(\mu \text{atm} \)	0.4	–
6	\(f_{\text{CO}_2 \text{water SST wet}} \)	\(\mu \text{atm} \)	12.2	–
7	\(p_{\text{CO}_2 \text{water equi wet}} \)	\(\mu \text{atm} \)	0.4	NCEP pressure
8	\(p_{\text{CO}_2 \text{water SST wet}} \)	\(\mu \text{atm} \)	6.1	NCEP pressure
9	\(x_{\text{CO}_2 \text{water equi dry}} \)	\(\mu \text{mol mol}^{-1} \)	2.9	WOA salinity
10	\(x_{\text{CO}_2 \text{water SST dry}} \)	\(\mu \text{mol mol}^{-1} \)	3.1	WOA salinity
11	\(x_{\text{CO}_2 \text{water equi dry}} \)	\(\mu \text{mol mol}^{-1} \)	0.3	NCEP pressure
12	\(x_{\text{CO}_2 \text{water SST dry}} \)	\(\mu \text{mol mol}^{-1} \)	0.5	NCEP pressure
13	\(x_{\text{CO}_2 \text{water equi dry}} \)	\(\mu \text{mol mol}^{-1} \)	0.05	NCEP pressure, WOA salinity
14	\(x_{\text{CO}_2 \text{water SST dry}} \)	\(\mu \text{mol mol}^{-1} \)	0.2	NCEP pressure, WOA salinity

1. Atmospheric pressure was not reported in the original data file.
2. Salinity was not reported in the original data file.
The definitions of the data set quality control flags in version 3 have been revised relative to versions 1 and 2 (Tables 1 and 2) (Wanninkhof et al., 2013b; Olsen et al., 2015). These revised QC criteria were applied to all new and updated data sets in version 3, but not retrospectively to data sets included in earlier versions, unless data providers had updated these. Version 3 has data set quality control flags of A to E and WOCE flags of 2, 3 and 4 for individual \(f/CO_2 \)rec values. For a data set to obtain a data set quality control flag, it needs to meet all the criteria of that specific data set flag (Table 2).

All data set flags now have an accuracy requirement for the \(f/CO_2 \)rec values. Previously, flags of C and D did not have an accuracy requirement (Pfeil et al., 2013; Bakker et al., 2014). In version 3, requirements are an accuracy of better than 2 \(\mu \)atm for flags of A and B, and of better than 5 \(\mu \)atm for flags of C and D and of better than 10 \(\mu \)atm for a flag of E (Table 2). The accuracy requirement takes precedent over the criteria that follow (Wanninkhof et al., 2013b; Olsen et al., 2015), implying that, if the accuracy requirement is not met, a data set is given a data set flag with a lower accuracy requirement, appropriate to the accuracy of the data set.

Seven approved methods or SOP (standard operating procedure) criteria need to be met for a data set quality control flag of A and B (after Pfeil et al., 2013):

1. The data are based on \(xCO_2 \) analysis, not \(f/CO_2 \) calculated from the other carbon parameters pH, total alkalinity and dissolved inorganic carbon.
2. Continuous \(CO_2 \) measurements have been made, not discrete \(CO_2 \) measurements.
3. The \(CO_2 \) detection is based on an equilibrator system and is performed by infrared analysis or gas chromatography.
4. The calibration has included at least two non-zero gas standards, traceable to World Meteorological Organization (WMO) standards.
5. The equilibrator temperature has been measured to within 0.05 \(^\circ \)C accuracy.
6. The intake seawater temperature has been measured to within 0.05 \(^\circ \)C accuracy.
7. The equilibrator pressure has been measured to within 2.0 hPa accuracy.

The requirement regarding the accuracy of the equilibrator pressure has been relaxed to an accuracy of 2.0 hPa in version 4 (Sect. 4.3).

Table 7. Criteria for the automated data checks and the action taken in version 3. In the case of duplicate time stamps, artificial seconds were generated. If there were less than 50 duplicate times in the data set, a WOCE flag of 4 was given. For other parameters, a flag of 4 was automatically assigned to the \(f/CO_2 \)rec value if their values were outside a specified range. Criteria not directly affecting \(f/CO_2 \)rec values will be revised for version 4 (Sect. 4.3).

Parameter	Unit	Criteria	Action
Time	–	Duplicate times	Artificial seconds added; flag of 4 if < 50 duplicate times in data set.
Sampling depth, water	m	< −20 or > 20	flag of 4
Salinity	–	< 0 or > 50	flag of 4
Sea surface temperature	°C	< −8 or > 50	flag of 4
Equilibrator temperature	°C	< −10 or > 45	flag of 4
Atmospheric pressure	mbar	< 800 or > 1200	flag of 4
Equilibrator pressure	mbar	< 800 or > 1200	flag of 4
\(xCO_2 \), \(pCO_2 \), \(f/CO_2 \) water	\(\mu \)mol mol\(^{-1}\) or \(\mu \)atm	< 0 or > 10 000	flag of 4
\(xCO_2 \), \(pCO_2 \), \(f/CO_2 \) air	\(\mu \)mol mol\(^{-1}\) or \(\mu \)atm	< 0 or > 10 000	flag of 4
\(\Delta xCO_2 \), \(\Delta pCO_2 \), \(\Delta f/CO_2 \)	\(\mu \)mol mol\(^{-1}\) or \(\mu \)atm	< −10 000 or > 10 000	flag of 4
\(xH_2O \) equilibration	\(\mu \)mol mol\(^{-1}\)	< 0 or > 200	flag of 4
WOCE flag, from PI	–	< 1 or > 9	flag of 4
Air temperature	°C	< −35 or > 60	flag of 4
Relative humidity	%	< 0 or > 100	flag of 4
Specific humidity	–	< 0 or > 40	flag of 4
Wind direction	°	< 0 or > 360	flag of 4
Wind speed	\(m s^{-1}\)	< 0 or > 50	flag of 4
Ship direction	°	< 0 or > 360	flag of 4
Ship speed, from PI	\(km h^{-1}\)	< 0 or > 100	flag of 4
Ship speed, calculated	\(km h^{-1}\)	> 720	flag of 4 for following point
In version 3, a high-quality cross-over has become a prerequisite for a data set flag of A, replacing the earlier requirement of “an acceptable comparison (or cross-over) with other data” (Wanninkhof et al., 2013b; Olsen et al., 2015). As in previous versions, a cross-over is defined by an equivalent distance of less than 80 km between two data sets (Pfeil et al., 2013). This criterion combines distance and time as \(\left(\Delta x^2 + (\Delta t \times 30)^2 \right)^{0.5} \leq 80\) with distance \(x\) in kilometres and time \(t\) in days. One day (or 24 h) of separation in time is equivalent (heuristically) to 30 km of separation in space. According to this definition, the maximum time separation (at a spatial distance of 0 km) is 64 h for a cross-over to occur. The new definition of a high-quality cross-over between two data sets requires that differences in sea surface temperature and \(f\text{CO}_2\text{rec}\) between the data sets do not exceed 0.3 \(\degree\)C and 5 \(\mu\text{atm}\), respectively. These criteria reflect the test for a high-quality cross-over between two data sets with a flag of A or B, i.e. each with an accuracy for \(f\text{CO}_2\text{rec}\) of better than 2 \(\mu\text{atm}\) or a joint accuracy of better than 4 \(\mu\text{atm}\) with 1 \(\mu\text{atm}\) added to account for differences in time and space. A temperature difference of 0.3 \(\degree\)C roughly corresponds to an \(f\text{CO}_2\) difference of 5 \(\mu\text{atm}\). “Inconclusive” cross-overs, where differences in temperature or \(f\text{CO}_2\text{rec}\) exceed these values, do not qualify for a data set flag of A in version 3.

It is worth noting that meaningful high-quality cross-overs are rarely found in coastal waters, near sea ice and in regions of freshwater influence (ROFIs), as a result of high spatial variation in sea surface temperature and \(f\text{CO}_2\text{rec}\), not for lack of measurement quality. Even if a small number of sea surface temperature and \(f\text{CO}_2\text{rec}\) values are within 0.3 \(\degree\)C and 5 \(\mu\text{atm}\), this tends to be a coincidence rather than a meaningful correspondence between data sets. This can be illustrated for the US research ships Nathaniel B. Palmer and the Lawrence M. Gould, which have frequent high-quality cross-overs in the open Southern Ocean but few high-quality cross-overs near Palmer station, where they both make port calls.

In version 3, a data set with a flag of C “did or did not follow approved methods or SOP criteria” (Wanninkhof et al., 2013b; Olsen et al., 2015). This is an amendment from the earlier requirement that the data set “did not follow approved methods or SOP criteria” (Pfeil et al., 2013; Bakker et al., 2014). The new flag of E enables inclusion of \(f\text{CO}_2\) values from calibrated alternative sensors and platforms (Wanninkhof et al., 2013b; Olsen et al., 2015). A flag of E requires complete metadata and a demonstrable accuracy for \(f\text{CO}_2\text{rec}\) of better than 10 \(\mu\text{atm}\) by in situ calibration of the sensor. The WOCE flags for individual \(f\text{CO}_2\text{rec}\) values are defined as 2 (good), 3 (questionable) and 4 (bad) in versions 1, 2 and 3 (Pfeil et al., 2013). New is the requirement to add a comment when assigning WOCE flags of 3 and 4 (Table 1).

As in version 2, five additional guidelines were considered for open-ocean \(f\text{CO}_2\text{rec}\) values, away from sea ice. The guidelines were used for assigning data set quality control flags and WOCE flags (after Pfeil et al., 2013, and Bakker et al., 2014):

1. warming between the seawater intake and the equilibrator should be less than 3 \(\degree\)C;
2. warming rate should be less than 1 \(\degree\)C h\(^{-1}\), unless a sharp temperature front is apparent;
3. warming outliers should be less than 0.3 \(\degree\)C, compared to background data;
4. cooling between the seawater intake and the equilibrator is unlikely in high-latitude oceans for an indoor measurement system;
5. zero or constant temperature difference between the equilibrator and seawater intake usually indicates the absence of SST values.

As for SOCAT version 2, quality controllers were organised into eight regions, each with a group lead (Table 4). The eight regions included the coastal and marginal seas, the Arctic Ocean, the North and tropical Atlantic, the North and tropical Pacific, the Indian Ocean, and the Southern Ocean. The quality controllers gave data sets a quality control flag for each region they crossed. As a final step, the data set quality control flags for the different regions had to be reconciled.

5 Data products in version 3
5.1 Overview of data products

In essence, the data products and data platforms are the same as for earlier SOCAT versions with some modifications (Table 8). Improvements include a major upgrade of the search and visualisation capabilities of the Data Set Viewer (previously known as the Cruise Data Viewer) and uniform contents for the files downloadable from the Data Set Viewer (Tables 1 and 9). Access to the data products is via the SOCAT website (http://www.socat.info/) and the web addresses for the individual data platforms (Table 8).

Quality-controlled recommended surface ocean \(f\text{CO}_2\) measurements in a uniform format are available in individual data set files, in regional and global synthesis files and in gridded form (Table 8). These three data products can be accessed via the user-friendly, interactive online Data Set Viewer and Gridded Data Viewer, by downloading data files, or in Ocean Data View (Schlitzer, 2015). Similar to earlier versions, data sets with a quality control flag of A to D and recommended \(f\text{CO}_2\) values with a WOCE flag of 2 (good) are included in the synthesis files and gridded products. Data sets with a flag of E are available in a separate synthesis file. Data set flags of A to E and a WOCE flag of 2 for
Table 8. Key characteristics of the SOCAT data products in version 3 (Sect. 5) (after Bakker et al., 2014). Data products differ in whether they include data sets with flags of A to D or A to E and fCO$_2$ values with a WOCE flag of 2 only or 2 to 4. Two data products provide access to metadata. Quality control comments are available via the Table of Datasets in the Data Set Viewer. The SOCAT website (http://www.socat.info) and the web links in the footnotes provide access to the data products.

Data product	Characteristics	Data set QC flag	WOCE flag	Metadata	QC entries	Format and access
Individual data set files	All original CO$_2$ values and (re)calculated fCO$_2$ values for data sets with flags of A–E.	A–E	2–4	Yes	No	Text files1
Synthesis data set (i)	Global and regional synthesis files.	A–D only	2 only	No	No	Text files2
Synthesis data set (ii)	Global synthesis file.	E only	2 only	No	No	Text file2
Synthesis data set (iii)	Global synthesis file.	A–D only	2 only	Optional	No	ODV3
Subset of synthesis data set (j)	Interactive. Data sets with flags of A–E and fCO$_2$ values with flags of 2–4 can be selected.	A–E default	2 default; 2–4 if selected	No	No	Text and NetCDF files4
Subset of synthesis data set (jj)	All original CO$_2$ values and calculated fCO$_2$ values for data sets with flags of A–E.	A–E default	2 default; 2–4 if selected	Yes	Yes	Text and NetCDF files5
Gridded data set	Gridded unweighted and data-set-weighted means of fCO$_2$ values on a $1^\circ \times 1^\circ$ grid without any interpolation. Means are per decade, per year and per month. A monthly $0.25^\circ \times 0.25^\circ$ gridded data set exists for coastal regions.	A–D only	2 only	No	No	NetCDF files$^6, 7$, ODV3

1 PANGAEA®: https://doi.org/10.1594/PANGAEA.849770. 2 CDIAC: http://cdiac.ornl.gov/ftp/oceans/SOCATv3/. 3 Ocean Data View: https://odv.awi.de/en/data/ocean/socat_fco2_data/ 4 Data Set Viewer: http://ferret.pmel.noaa.gov/SOCAT_Data_Viewer/; select “Data Set”, then “Cruise data” and “SOCAT v3 data collection”. 5 Table of Datasets via the Data Set Viewer: http://ferret.pmel.noaa.gov/SOCAT_Data_Viewer/; select “Table of Datasets”. 6 CDIAC: http://cdiac.ornl.gov/ftp/oceans/SOCATv3/SOCATv3_Gridded_Data/ 7 Gridded Data Viewer: http://ferret.pmel.noaa.gov/SOCAT_Data_Viewer/; select “Data Set”, then “Current Version Gridded (v3)”.

Table 9. Content of the individual data set files (IF) and the synthesis files in SOCAT version 3 (after Bakker et al., 2014). The global synthesis product is available as zip text files (ZIP) at CDIAC and in Ocean Data View (ODV) format (Table 8). Subsets of the global synthesis data set can be created via the Data Set Viewer (DSV), both in the main menu and via the Table of Datasets. The first column lists column headers for the parameters in the files.

Column header	IF	ZIP	DSV	ODV	Unit	Description
Expocode/Cruise	√		√			Twelve-character expocode
Version	√					Most recent SOCAT version in which data set was added (N) or updated (U)
SOCAT.DOI						Digital object identifier for the individual data set and metadata
QC_Flag						Data set quality control flags A, B, C, D and E
Date/Time/Datetime	√					yyyy-mm-dd / hh:mm:ss (ISO8859 and other formats)
yr/Year						Year (UTC)*
mon					Month	Month (UTC)*
day					Day	Day (UTC)*
hh/Minute					Minute	Minute (UTC)*
ss/Second					Seconds	Seconds (may include decimals)*
Day of Year		√				Day of year (UTC) with 1 January, 00:00, as 1.0.
Longitude					°E	Longitude (0 to 360°–180 to 180°)*
Latitude					°N	Latitude (–90 to 90)*
Depth water/Depth					m	Water sampling depth*
Sal/Salinity						Salinity on practical salinity scale*
Temp/SST					°C	Sea surface temperature*
Tequ/Temperature_Equi					°C	Equilibrator chamber temperature*
PPPP/Pressure_Atm					hPa	Atmospheric pressure*
Pequ/Pressure_Equi					hPa	Equilibrator chamber pressure*
Sal/water/WWA_SSS						Salinity from WOA
PPPP interp/NCEP_SLP					hPa	NCEP atmospheric pressure*
Bathy_depth/ETOPO2_depth					m	ETOPO2 bathymetry
Distance/dist-to-land					km	Distance to major land mass
xCO2air_interp/GVCO2					µmol mol⁻¹	Atmospheric xCO₂ from GLOBALVIEW-CO2 (2014)\(^5\)
xCO2water_equ_drty					µmol mol⁻¹	xCO₂ (water) at sea surface temperature (dry air)*\(^a\)
fCO2water_SST_wet					µatm	fCO₂ (water) at sea surface temperature (air at 100% humidity)*\(^b\)
pCO2water_SST_wet					µatm	pCO₂ (water) at sea surface temperature (air at 100% humidity)*\(^b\)
xCO2water_SST_dry					µmol mol⁻¹	xCO₂ (water) at sea surface temperature (dry air)*\(^b\)
fCO2water_equ_wet					µatm	fCO₂ (water) at equilibrator temperature (air at 100% humidity)*\(^b\)
pCO2water_equ_wet					µatm	pCO₂ (water) at equilibrator temperature (air at 100% humidity)*\(^b\)
fCO2rec					µatm	Recommended fCO₂ calculated following the SOCAT protocol
Algorithm/fCO2_source						Algorithm for calculating fCO₂ rec (0; not generated; algorithm 1–14, Table 6)
Flag/WOCE.CO2_Water						WOCE flag for fCO₂ rec (2: good; 3: questionable; 4: bad)\(^b\)
fCO2 in wet air					µatm	fCO₂ (air) calculated for sea surface temperature and 100% humidity from GVCO2
Ocean – Air /fCO2 Difference					µatm	fCO₂ difference between water and air
Vessel						Name of vessel or platform

\(^a\) Available. \(^b\) If reported by the data originator. \(^1\) If the intake depth has not been reported by the data originator, an intake depth of 5 m has been assumed. \(^2\) Sea surface salinity on the practical salinity scale extracted from the World Ocean Atlas (WOA) 2005 (Antonov et al., 2006), available at http://www.nodc.noaa.gov/OC5/OWA/05/woa05nc.html, using the data set std2121.nc from the “monthly” link at http://data.nodc.noaa.gov/opendap/woa/OWA05nc/ (last access: 1 September 2015). This data set is identical to that in SOCAT version 2. \(^3\) Atmospheric pressure extracted from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) 40-Year Reanalysis Project on a 6-hourly, global, 2.5° latitude by 2.5° longitude grid (Kalnay et al., 1996; NCEP, 2014). This is an update relative to the 2012 data set (NCEP, 2012) used in SOCAT version 2. \(^4\) Bathymetry extracted from ETOPO2 (2006) 2 min Gridded Global Relief Data. This data set is identical to that in SOCAT version 2. \(^5\) GLOBALVIEW-CO2 (2014), downloading the “surface” reference type gives the sine function of latitude versus time for the reference marine boundary layer. This is an update relative to the 2012 version used in SOCAT version 2. \(^6\) Individual data set files contain all fCO2rec data. Synthesis files at CDIAC and via ODV contain data sets with a flag of A–D and fCO2rec values with a WOCE flag of 2 (Table 6).
Table 10. Gridded products and parameters reported for each grid cell in SOCAT version 3 (after Sabine et al., 2013). Version 3 does not have a monthly climatology.

Parameter	Unit	Decadal mean	Annual mean	Monthly mean	Monthly 1/4° × 1/4° coastal
Number of data sets	–	✓	✓	✓	✓
Number of observations	–	✓	✓	✓	✓
f\textsubscript{CO}\textsubscript{2} unweighted mean	µatm	✓	✓	✓	✓
f\textsubscript{CO}\textsubscript{2} data-set-weighted mean	µatm	✓	✓	✓	✓
f\textsubscript{CO}\textsubscript{2} max	µatm	✓	✓	✓	✓
f\textsubscript{CO}\textsubscript{2} min	µatm	✓	✓	✓	✓
f\textsubscript{CO}\textsubscript{2} SD unweighted	µatm	–	–	✓	✓
f\textsubscript{CO}\textsubscript{2} SD weighted	µatm	–	–	✓	✓
Latitudinal average offset from cell centre	° N	–	–	✓	✓
Longitudinal average offset from cell centre	° E	–	–	✓	✓

\textsubscript{fCO}_2 values is the default setting for the Data Set Viewer. Quality control comments can be accessed via the Data Set Viewer (Table 8). While the SOCAT data products include seawater temperature and salinity, as these are required for (re)calculation of \textsubscript{fCO}_2, these two parameters have not been quality-controlled to the high standards required by the physical oceanographic community (SOCAT, 2014a).

As in earlier versions, each individual data set has a digital object identifier (DOI), which provides a direct link to the metadata, including the name and affiliation of the data provider. This DOI for the data set is available for each recommended surface ocean \textsubscript{fCO}_2 value in the synthesis files. This enables users to easily identify the data provider and to gain access to the original data set and to detailed information on the data set, including any relevant peer-reviewed journal articles that we are aware of. The Data Set Viewer now enables to search the data collection by data provider. Data providers are also prominently displayed in the Table of Datasets (access via the Data Set Viewer) (Table 8). A more detailed description of the data products follows.

5.2 Individual data set files

Individual data set files are available for all data sets with flags of A, B, C, D and E. Each individual data set has a DOI. The files contain all original CO\textsubscript{2} measurements and recommended \textsubscript{fCO}_2 values with a WOCE flag of 2 (good) for data sets with flags of A, B, C and D (Table 8). A separate synthesis file is available for data sets with a flag of E. Each line of the global and regional synthesis files contains the DOI for the corresponding individual data set, as archived at PANGAEA®, thus enabling retrieval of metadata, name of the data provider and the original CO\textsubscript{2} values reported by the data provider (Table 9) (Sect. 5.2). Global and regional files are available as compressed zip text files via CDIAC (http://cdiac.ornl.gov/ftp/oceans/SOCATv3/). Matlab code is available for reading these text files. Regional files for the SOCAT regions (Table 4) only contain data for a specific region with no overlap, so that many data sets on moving ships are split between several regional files. The global synthesis product for data sets with flags of A to D is also available in Ocean Data View format (https://odv.awi.de/en/data/ocean/socat_fCO2_data) (Schlitzer, 2015).

5.3 Global synthesis product

The global and regional synthesis files contain recommended \textsubscript{fCO}_2 values with a WOCE flag of 2 (good) for data sets with flags of A, B, C and D (Table 8). A separate synthesis file is available for data sets with a flag of E. Each line of the global and regional synthesis files contains the DOI for the corresponding individual data set, as archived at PANGAEA®, thus enabling retrieval of metadata, name of the data provider and the original CO\textsubscript{2} values reported by the data provider (Table 9) (Sect. 5.2). Global and regional files are available as compressed zip text files via CDIAC (http://cdiac.ornl.gov/ftp/oceans/SOCATv3/). Matlab code is available for reading these text files. Regional files for the SOCAT regions (Table 4) only contain data for a specific region with no overlap, so that many data sets on moving ships are split between several regional files. The global synthesis product for data sets with flags of A to D is also available in Ocean Data View format (https://odv.awi.de/en/data/ocean/socat_fCO2_data) (Schlitzer, 2015).

5.4 Subsetting the global synthesis product

The interactive Data Set Viewer (http://ferret.pmel.noaa.gov/SOCAT_Data_Viewer/) has powerful search capabilities and an attractive graphical interface following the upgrade for version 3 (Tables 1 and 8). The SOCAT Data Viewer now hosts the Data Set Viewer and the Gridded Data Viewer on a single software platform. The move of the Data Set Viewer onto this platform in version 3 streamlines access to the SOCAT synthesis and gridded products via a Live Access Server (LAS). The move and upgrade of the Data Set Viewer accompany that of the closely associated SOCAT quality control system (Sects. 2 and 4.4).

The Data Set Viewer enables subsetting of the global SOCAT data collection. The default setting is for data sets with flags of A to E and “valid” \textsubscript{fCO}_2 values with a WOCE flag of 2 for years 1957 to 2014, corresponding to 3640 data sets for version 3. Recommended \textsubscript{fCO}_2 values with flags of 3
and 4 can also be selected. In the Data Set Viewer, the user can select data sets by, for example, year, month, region, platform/vessel, “valid” values, data provider, data set flag, WOCE flag and SOCAT version. It is also possible to define limits for the values shown. Maps of surface ocean fCO$_2$ demonstrate the data distribution, as well as temporal and spatial variation in surface ocean fCO$_2$ for the selected data sets (Figs. 1, 3 and 4). High-quality figures can be rapidly created for scientific presentations to fellow scientists, funding agencies and policy makers. Scatter plots or property-property plots, available via the Correlation Viewer, can be used to depict any two variables of a data set or data sets, enabling further investigation. Examples are figures of fCO$_2$ or sea surface temperature as a function of time, salinity or latitude.

The data shown on the Data Set Viewer have been subsampled for system efficiency, such that only part of the data are shown. Visual display of these data sets on maps in the Data Set Viewer is subject to further improvement, as the interpolation of sparse data ignores topographic features. As a result cruise tracks occasionally appear to cross land. This issue does not affect the data sets themselves. The Table of Datasets (previously known as the Table of Cruses) can be accessed from the Data Set Viewer. It provides access to the original CO$_2$ measurements: fCO$_2$ values with a WOCE flag of 2, 3 and 4; metadata; comments entered during quality control; and thumbnail plots (Table 8) (Sect. 4.4). Thumbnail plots consist of a series of scatter plots for key parameters in an individual data set and are useful for obtaining a quick overview of a data set. Both the Data Set Viewer and the Table of Datasets allow download of data sets in NetCDF and text format (Tables 8 and 9). All downloadable files now contain the same parameters (Table 9).

The performance speed of the Data Set Viewer may be slower if the full SOCAT data collection is accessed. Subsetting the data collection by decade or region considerably improves the system speed of the Data Set Viewer. Updates of web browsers occasionally result in less than perfect web access to the Data Set Viewer. In such cases, another web browser may provide better access. The web manager (socat.support@noaa.gov) may have useful advice.

5.5 Gridded products

The protocol for the creation of gridded fCO$_2$ products in version 3 follows that for versions 1 and 2, as described by Sabine et al. (2013). The gridded products have a 1° latitude by 1° longitude resolution with a higher resolution of 0.25° latitude by 0.25° longitude for coastal seas. Recommended surface ocean fCO$_2$ values from 1970 to 2014 with a WOCE flag of 2 from data sets with flags of A to D have been used for the gridded products. The gridded products have no interpolation – i.e. there is no gap-filling and grid cells without fCO$_2$ values are empty. No correction is made for the long-term increase in surface ocean fCO$_2$.

Gridded fCO$_2$ values are reported as unweighted means and as data-set-weighted means (Sabine et al., 2013). In an unweighted mean, all fCO$_2$ values in a grid cell have equal weight for calculating the mean. In a data-set-weighted mean, averages of the fCO$_2$ values are calculated per data set for each grid cell, before calculating averages of these data set means. In version 3, a small error was corrected in the procedure for creating the gridded data products. This resulted in a small reduction in the number of grid cells with data in the data-set-weighted product for versions 1 and 2. This problem was corrected in gridded files in version 3 with the revised gridded data set made public on 2 November 2015.

Gridded products are available per decade, per year and monthly per year (Table 10). A monthly climatological fCO$_2$ product has not been made available for version 3, out of concern, that such a product without a correction for the long-term increase in fCO$_2$ could be misinterpreted. Gridded fCO$_2$ values may have temporal bias, for example, if only summertime fCO$_2$ values are available for a grid cell in the annual gridded product. Several auxiliary variables are reported per grid cell, for example the number of data sets and observations and the standard deviation in the unweighted and weighted fCO$_2$ mean values (Table 10).

Gridded products are available in NetCDF format at CDIAC (http://cdiac.ornl.gov/ftp/oceans/SOCATv3/SOCATv3_Gridded_Data/) (Table 8). Matlab code is available for reading the files. The Gridded Data Viewer (http://www.socat.info/, select “Gridded Data Viewer”) provides easy access to the gridded data products, as well as comparison to gridded products from earlier versions. Figures 5 and 6 have been made with the gridded data product.

6 Future developments

6.1 Direct data upload and annual SOCAT releases

The SOCAT automation system was formally launched on 7 September 2015 (SOCAT and SOCOM, 2015). Data providers can now directly upload, check and submit their data on the SOCAT quality control system for future SOCAT versions. The SOCAT automation was first discussed at the 2011 Data2Flux Workshop in Paris (SOCAT, 2011). The automation system was designed at the 2012 Automation Planning Meeting (SOCAT, 2012a) and approved shortly afterwards by global and regional group leads (SOCAT, 2012b) (Table 5). The automation system has been implemented in the background, with all the work for the biannual SOCAT releases of versions 2 and 3 taking place in the foreground (Bakker et al., 2014, this study). This considerable achievement has been made possible by the hard work and planning of the NOAA-PMEL and University of Washington Live Access Server team and other members of the SOCAT automation team (Table 3).
The new automation system allows data providers to upload their data, to check their data with the automated data checker and to visualise their data. Finally, if the data provider deems the data of good quality, he or she can submit them to the SOCAT quality control system. As part of the data submission to SOCAT, the data provider is encouraged to make the original data set public, for example at CDIAC (SOCAT and SOCOM, 2015), either immediately or upon the release of the SOCAT version of which the data set is part. The automation system will enable annual SOCAT releases. The timetable for future SOCAT versions envisages that data upload will end in late January of each year and quality control in late March for a release in summer later that year. With the new system it is now possible to upload and submit data to SOCAT, while quality control of previously submitted data sets is in progress. Thus, both data upload and quality control can now be carried out in parallel. Data upload and quality control for the next SOCAT version will start as soon as they have finished for the preceding version. Thus, the automation system will enable rolling, continuous data upload and quality control, as well as annual SOCAT releases. The system for automated data upload is under continuous improvement. Metadata templates and upload will be integrated into the SOCAT data upload system. Other planned improvements include searchable information for funding agency and entry of preliminary data set flags by the data provider. A number of additional features are being considered for future SOCAT versions, some of which may be implemented as early as version 4. These are discussed below.

6.2 Atmospheric CO₂ values

Data providers can now submit measurements of atmospheric CO₂ mole fraction, made in parallel to surface water /CO₂ A separate WOCE flag will be created for measurements of the atmospheric CO₂ mole fraction in future SOCAT versions. Once quality control has been carried out on the atmospheric CO₂ measurements, such values will be included in the SOCAT data products.
In future, atmospheric fCO$_2$ will be calculated from atmospheric xCO$_2$ values, both from the measurements and from GLOBALVIEW-CO$_2$ (2014) values. New graphics will enable comparison of surface ocean fCO$_2$ values to atmospheric fCO$_2$ values. The graphs will become an important quality control tool. Future data products will contain atmospheric fCO$_2$ values calculated from atmospheric measurements and from GLOBALVIEW-CO$_2$, in addition to the atmospheric mole fractions from GLOBALVIEW-CO$_2$ already part of the SOCAT data products (Table 9).

6.3 Additional surface water parameters

In 2014, SOCAT scientists decided to allow inclusion of additional surface water parameters accompanying surface water fCO$_2$ values in SOCAT data output files (SOCAT, 2014a). Such additional parameters might include dissolved inorganic carbon, total alkalinity, pH, nutrients, methane (CH$_4$) and nitrous oxide (N$_2$O) concentrations. SOCAT scientists will not carry out quality control on these additional parameters, but would welcome collaboration with other communities taking responsibility for this. These additional parameters will be made public in parallel to the official SOCAT releases. The extra parameters will be posted in separate data files to emphasise that they have not been quality-controlled. A SOCAT and MEMENTO (MarinE MethanE and NiTrous Oxide; Bange et al., 2009) working group is considering the way forward for surface water CH$_4$ and N$_2$O measurements (SOCAT and SOCOM, 2015).

7 Impact and scientific highlights of SOCAT

7.1 A multi-decade record of surface ocean fCO$_2$ values

SOCAT provides a record of the history of surface ocean CO$_2$ research (Fig. 3). Initial, exploratory surface water CO$_2$ measurements in the late 1950s, 1960s and 1970s were followed by more frequent CO$_2$ data collection on research ships in the 1980s and large (inter)national research programs, such as the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS) and the Tropical Atmosphere Ocean (TAO) network in the 1990s. The operation of CO$_2$ instruments on ships part of the Carbon Voluntary Observing Ships (Carbon VOS) programme, also referred to as the Ships Of Opportunity Programme (SOOP), strongly increased the number of available fCO$_2$ values from the 1990s onwards. Data availability in the SOCAT collection has increased 4-fold from 0.2 to 0.4 million fCO$_2$ values per year for the years 1995 to 2000 to 1.0 to 1.2 million values per year for 2005 to 2012. Nevertheless, large gaps are notable in the data collection since the year 2000, e. g. in the Indian Ocean, the South Pacific Ocean, the Mediterranean Sea, the East China Sea, the Malay Archipelago and the Sea of Okhotsk. Elsewhere, in the Arctic Ocean, measurements are being reported for the first time.

The seasonal distribution of surface ocean fCO$_2$ values in the relatively data-rich decade from 2000 to 2009 is shown in Fig. 4. This figure highlights the lack of winter data in the high-latitude oceans, as well as the opposing seasonal cycle of surface ocean fCO$_2$ in the subtropical and temperate oceans (Takahashi et al., 2002). The distribution of surface ocean fCO$_2$ values per decade clearly shows the long-term increase in surface ocean fCO$_2$ (Fig. 5), while suggesting that surface ocean fCO$_2$ has increased slower than the atmospheric CO$_2$ concentration since the 1990s. Figure 6 visualises the data availability as the number of months in each 1° latitude by 1° longitude grid cell with fCO$_2$ values since 1970, both as unique months and as total months.

7.2 Impact of SOCAT

SOCAT and its data products are cited or named in influential international reports, in more than 100 peer-reviewed scientific publications, PhD and master’s theses, book chapters and numerous other publications, as listed on the SOCAT website (http://www.socat.info/publications.html). Figure 7 shows the rapid increase in such publications, since the initiation of SOCAT in 2007 (IOCCP, 2007) and the first SOCAT release in 2011 (Pfeil et al., 2013; Sabine et al., 2013). The SOCAT data collection forms the basis of several data products (http://www.socat.info/products.html) and diverse scientific applications. These include a dozen mapping products of surface ocean pCO$_2$ and air–sea CO$_2$ fluxes for the global oceans (see overview in Rödenbeck et al., 2015). The SOCAT gridded product and one data product based on SOCAT (Landschützer et al., 2015) are integrated with the ESMValTool (Eyring et al., 2016) for routine evaluation of Earth system models. For the same purpose, the SOCAT gridded product is currently being integrated into the Obs4MIPs (Observations for Model Intercomparison Projects) data repository (Ferraro et al., 2015). Citation of SOCAT in high-impact reports, scientific applications of SOCAT and scientific findings based on SOCAT are discussed below.

The importance of the SOCAT synthesis is highlighted by its citation in three categories of high-impact reports, notably reports on ocean observing systems, assessments of climate change and global carbon budgeting, including carbon observing strategies, and ocean acidification studies.

- Reports on ocean observing systems include publications from OceanObs’09 (Borges et al., 2010; Monteiro et al., 2010), the Framework for Ocean Observing (FOO, 2012), the Tropical Pacific Observing System 2020 (Mathis et al., 2014) and the 2nd International Indian Ocean Expedition (Hood et al., 2015).
- Assessments of climate change and global carbon budgeting citing SOCAT are the 2013 IPCC (Intergovernment-
7.3 Scientific applications of SOCAT

SOCAT is used for a variety of scientific applications (Fig. 7b), some of which imply a wider relevance for SOCAT data products than envisaged during the creation of SOCAT (IOCCP, 2007). Scientific applications of SOCAT include:

- figures of surface ocean CO\textsubscript{2} observations;
- use of SOCAT tools and protocols;
- use of surface ocean fCO\textsubscript{2} in diverse environmental studies;
- model–data comparison, model evaluation and data assimilation;
- detection of ocean acidification trends;
- regional process studies of surface ocean fCO\textsubscript{2};
- quantification of coastal ocean carbon sinks and sources;
- quantification of the ocean carbon sink and its variation;
- quantification of the land carbon sink.

These applications are roughly listed in order of the increasing importance of the SOCAT synthesis for the studies. The use of the SOCAT data collection in peer-reviewed, scientific publications is evolving. Initial publications made reference to the ongoing synthesis activity. Actual use of the SOCAT data collection started as soon as version 1 was released in 2011 (Pfeil et al., 2013; Sabine et al., 2013). Studies that heavily rely on SOCAT data products, such as modelling, ocean acidification trend analysis and carbon budgeting, represent one-third to half of the scientific publications citing or naming SOCAT from 2013 onwards.

Examples of scientific applications of SOCAT are given below. There is no strict separation between the different types of applications identified here, with several studies belonging to more than one type of application. Many of the studies use surface ocean pCO\textsubscript{2} values, derived from the fCO\textsubscript{2} values reported in SOCAT data products.

Figures of surface ocean CO\textsubscript{2} observations. Newly created figures based on the SOCAT data collection and existing figures from SOCAT publications have been used in scientific publications. Such figures generally highlight the availability or lack of surface ocean CO\textsubscript{2} data in specific regions or seasons or over time (Chierici et al., 2012; Regnier et al., 2013; Wanninkhof et al., 2013a; Ciais et al., 2014; Majkut et al., 2014a; Brévière et al., 2015; Hofmann et al., 2015).

Use of SOCAT tools and protocols. A variety of tools and protocols has been developed in SOCAT. One of these is the definition of a continental margin mask which defines coastal waters as waters within 400 km from land (Pfeil et al., 2013). Evans and Mathis (2013) and Evans et al. (2015) use this continental margin mask. Other studies have adopted SOCAT...
protocols for calculation of \(f_{\text{CO}_2} \) (Ulfåbo et al., 2014) and quality control (Sutton et al., 2014b).

Use of surface ocean \(f_{\text{CO}_2} \) in diverse environmental studies. Regional \(f_{\text{CO}_2} \) values from SOCAT are used in diverse environmental studies with topics ranging from ocean acidification to genomics, gas transfer velocity and evaluation of independent measurements (Blomquist et al., 2014; Larsen et al., 2014; Holding et al., 2015; Marrec et al., 2015; Bonou et al., 2016; Reum et al., 2016). Reum et al. (2016) assess the co-variance between \(p_{\text{CO}_2} \), pH and other environmental parameters with the aim to improve the design of future ocean acidification incubation experiments. Larsen et al. (2014) establish a significant correlation between gene expression for the relative turnover (synthesis or consumption) of \(\text{CO}_2 \) and surface ocean \(f_{\text{CO}_2} \). \(f_{\text{CO}_2} \) values are also used for evaluation of surface ocean \(f_{\text{CO}_2} \) estimates from eddy correlation (Blomquist et al., 2014) or from other carbonate parameters (Bonou et al., 2016) and for evaluation of regression parameterisations (Marrec et al., 2015; Xu et al., 2016).

Model-to-data comparison, model evaluation and data assimilation. SOCAT data products are used for model-to-data comparison, model evaluation and data assimilation in coupled and ocean-only biogeochemical models. Model-to-data comparisons of surface water \(f_{\text{CO}_2} \) have been carried out for seasonal (Tjiputra et al., 2012; Arruda et al., 2015) to multi-year timescales (Tjiputra et al., 2014; McKinley et al., 2016). In several studies, model data are subsampled to surface ocean \(p_{\text{CO}_2} \) observations from SOCAT (Séférian et al., 2014; Tjiputra et al., 2014; Turi et al., 2014). Cooley et al. (2015) evaluate surface ocean \(p_{\text{CO}_2} \) values from an integrated assessment model with \(p_{\text{CO}_2} \) observations from SOCAT and other sources. SOCAT data products are supporting model evaluation in context of the Coupled Model Intercomparison Project (CMIP) and beyond (Eyring et al., 2016). The SOCAT data collection is used for assimilation of surface ocean \(p_{\text{CO}_2} \) values in global ocean biogeochemical models (While et al., 2012; Simon and Bertino, 2013, as cited in Gehlen et al., 2015). Ocean biogeochemical models have many applications, such as quantification and attribution of trends in the ocean carbon sink (Le Quéré et al., 2014, 2015a, b; Séférian et al., 2014) and forecasting population dynamics of sea scallops, which are the basis of important commercial fisheries (Cooley et al., 2015).

Detection of ocean acidification trends. A number of studies estimate trends in surface ocean pH or the carbonate concentration by combining SOCAT \(f_{\text{CO}_2} \) values with another carbonate parameter (Lauvset and Gruber, 2014; Freeman and Lovenduski, 2015; Lauvset et al., 2015).

Regional process studies of surface ocean \(f_{\text{CO}_2} \). Several authors investigate regional processes driving temporal or spatial variation in surface ocean \(f_{\text{CO}_2} \) and \(\text{CO}_2 \) air–sea fluxes. Examples are for the Subantarctic Indian Ocean (Lourantou and Metzl, 2011) and the eastern equatorial Pacific Ocean (Walker Brown et al., 2015).

Quantification of coastal ocean carbon sinks and sources. SOCAT data products are used for quantification of \(\text{CO}_2 \) sources and sinks in coastal seas. Such studies are regional or global in extent (Chen et al., 2013; Signorini et al., 2013; Laruelle et al., 2014, 2015).

Quantification of the ocean carbon sink and its variation. An important application of the SOCAT data collection is quantification of the ocean carbon sink on seasonal to multi-year timescales with a mapping or gap-filling method. Such studies may be regional or global in extent. Studies tend to be either for the coastal seas (Signorini et al., 2013) or for the open ocean (Rödenbeck et al., 2015). The studies interpolate sparse \(p_{\text{CO}_2} \) data from a SOCAT or LDEO synthesis product in time and space by a gap-filling method. Approaches include statistical interpolation (Rödenbeck et al., 2013; Goddijn-Murphy et al., 2015; S. D. Jones et al., 2015), multiple linear regression (Schuster et al., 2013; Signorini et al., 2013; Iida et al., 2015), neural network approaches (Landschützer et al., 2013, 2014; Nakaoka et al., 2013; Sasse et al., 2013; Zeng et al., 2014) and model-based regression and tuning (Valsala and Maksyutov, 2010; Majkut et al., 2014b). Mapping methods may be specific to individual regions (“biomes”) (Signorini et al., 2013; Landschützer et al., 2014) or may apply to the full (global) domain (e.g. Rödenbeck et al., 2013; S. D. Jones et al., 2015). Most of these approaches use additional parameters with good data coverage during the gap-filling process, for example satellite-derived sea surface temperature and chlorophyll \(a \), as well as sea surface salinity and mixed layer depth from reanalysis. Many mapping methods use a time-dependent variable, such as time itself or the steadily increasing atmospheric \(\text{CO}_2 \) mole fraction, in order to be able to reproduce a long-term increase in surface ocean \(p_{\text{CO}_2} \).

The Surface Ocean \(p_{\text{CO}_2} \) Mapping Intercomparison (http://www.bgc-jena.mpg.de/SOCOM/) compares the surface ocean \(p_{\text{CO}_2} \) distribution and air–sea \(\text{CO}_2 \) fluxes in 14 data-based mapping products, 10 of them using SOCAT (Rödenbeck et al., 2015). The methods vary in their characteristics, making them suitable for different space and timescales. The SOCOM initiative aims to quantify uncertainties and to identify common features in the gap-filling methods. The first SOCOM results highlight considerable differences between mapping products, especially in data-sparse regions (Rödenbeck et al., 2015).

The high-profile Global Carbon Budget uses ocean biogeochemical models for estimating trends in the global ocean carbon sink (Le Quéré et al., 2014, 2015a, b). Recent budgets also consider observation-based estimates of the ocean carbon sink using the LDEO and SOCAT synthesis products (Park et al., 2010; Landschützer et al., 2014, 2015; Rödenbeck et al., 2014). The 2015 Global Carbon Budget assesses the uncertainty in the ocean carbon sink by comparing model results to observation-based estimates (Le Quéré et al., 2015b).
Quantification of the land carbon sink. Quantification of the ocean carbon sink is critical to resolving the Global Carbon Budget and underpins the estimate of the land carbon sink (Le Quéré et al., 2014, 2015a, b). In addition, quantification of ocean–atmosphere CO$_2$ fluxes in space and time provides priors for atmospheric inversion, thus improving estimates of the land carbon sink (Rödenbeck et al., 2014; Van der Laan et al., 2014; S. D. Jones et al., 2015).

7.4 Scientific findings obtained using the SOCAT data collection

This section provides an overview of scientific findings obtained using the SOCAT data collection.

Model-to-data comparison. Schuster et al. (2013) carry out a comparison of CO$_2$ air–sea fluxes for the Atlantic Ocean from data-based methods, ocean biogeochemical models, ocean inversion, and atmospheric inversions. The seasonal cycle and year-to-year variation in the fluxes differ between the various methods for most Atlantic regions.

Two studies subsample model pCO$_2$ data to surface ocean pCO$_2$ observations derived from SOCAT. The authors conclude that ocean biogeochemical models on average underestimate the spatial and temporal variation in regional and global surface ocean pCO$_2$ by 10 to 40% (Séférian et al., 2014; Turi et al., 2014). This corroborates the SOCOM finding that ocean biogeochemical models underestimate the year-to-year and decadal variation in the global air–sea CO$_2$ flux (Rödenbeck et al., 2015). However, at least one model-to-data comparison study concludes that the Community Earth System Model captures the annual to 30-year variability in the ocean carbon cycle at regional to global scales (McKinley et al., 2016). Landschützer et al. (2015) demonstrate how ocean carbon observations are delivering new insights into large and globally significant decadal changes in the ocean carbon sink. The variability in the ocean carbon sink in regions like the Southern Ocean is not apparent in modelled estimates of ocean carbon uptake or from atmospheric inverse calculations (e.g. Lenton et al., 2013).

Detection of ocean acidification trends. SOCAT-based research indicates a decrease in global surface ocean pH at a rate of $-0.0018 ^\pm 0.0004$ yr$^{-1}$ for 1991 to 2011 with significant decreases in 70% of all ocean regions (Lauvset et al., 2015).

Data-based carbon budgeting. Using SOCAT and other data sources, Regnier et al. (2013) estimate that anthropogenic activities may have increased open-ocean outgassing of land-derived carbon by 0.1 Pg C yr$^{-1}$. The global CO$_2$ sink in continental shelf seas has been estimated as 0.4 Pg C yr$^{-1}$ (Chen et al., 2013) and 0.19 \pm 0.05 Pg C yr$^{-1}$ (Laruelle et al., 2014).

Several mapping studies highlight large year-to-year variation in air–sea CO$_2$ fluxes in the tropical Pacific Ocean (Landschützer et al., 2014; Rödenbeck et al., 2014, 2015). This variation is closely related to the El Niño–Southern Oscillation (ENSO) (Feely et al., 1999, 2002; Inoue et al., 2001; Rödenbeck et al., 2014). The variation in the equatorial Pacific Ocean roughly corresponds to 40% of the interannual variation in the global ocean carbon sink (Rödenbeck et al., 2014), which has been estimated as 0.31 Pg C yr$^{-1}$ (Rödenbeck et al., 2015).

The SOCOM comparison of mapping methods identifies an increase in global ocean carbon sink by 1 Pg C decade$^{-1}$ since 2000 (Rödenbeck et al., 2015). About half of this increase in the global ocean carbon sink originates south of 35°S in the Southern Ocean (Landschützer et al., 2014, 2015).

8 Conclusions

SOCAT version 3 represents an important release of the SOCAT data collection, by creating a 58-year data record and by adding many additional data sets for recent years. The new data set flag of E in version 3 now enables inclusion of calibrated surface ocean fCO$_2$ measurements from alternative sensors (with an accuracy of better than 10 µatm) made on alternative platforms, such as moorings and drifters, in remote and less remote ocean regions. This article provides an ESDD “living data” update of SOCAT version 3. The launch of the SOCAT automation system will enable annual SOCAT releases from version 4 onwards.

The rapid growth of scientific publications using SOCAT (Fig. 7) demonstrates the importance of this synthesis activity by the international marine carbon community. The SOCAT data collection is being used in high-impact, scientific applications such as evaluation of ocean biogeochemical models, carbon budgeting, and trend analysis of the ocean carbon sink and ocean acidification. SOCAT-based studies have informed the Paris climate negotiations, as the 2015 Global Carbon Budget was released at the 21st Conference of the Parties of the United Nations Framework Convention on Climate Change (Le Quéré et al., 2015b).

However, despite much progress in data synthesis, major uncertainties remain in observation-based studies of the ocean carbon sink and ocean acidification due to (1) inadequate spatial and seasonal data coverage, (2) short data records, and (3) uncertainty in the correction for “natural”, pre-industrial oceanic outgassing of land-derived CO$_2$ (Jacobson et al., 2007) and any anthropogenic perturbation of this outgassing (Regnier et al., 2013). Data coverage is particularly poor in the Indian Ocean, the Southern Hemisphere oceans and coastal seas and in the high-latitude oceans, notably in ice-covered regions and in winter (Figs. 3, 4 and 6).

The above reinforces the need for the continuing collection and synthesis of accurate, well-calibrated and well-documented observations and investment in high-quality surface ocean CO$_2$ measurements on autonomous platforms. Adequate resources need to continue to be made available for data collection, quality control and data synthesis. Sys-
tems should be automated whenever possible. The SOCAT data synthesis highlights the success of a bottom-up approach with buy-in from the international marine carbon community and endorsement by IOCCP, SOLAS and IMBER.

9 Data availability

This manuscript describes how the synthesis product has been created (Sect. 4) and how the individual data set files, synthesis files and gridded products can be accessed (Sect. 5) (Table 8). Individual data set files, all combined forming the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. Global and regional files are available as compressed zip text files via CDIAC (http://cdiac.ornl.gov/ftp/oceans/SOCATv3/). The global synthesis product for data sets with flags of A to D is also available in Ocean Data View format (https://odv.awi.de/en/data/ocean/socat_IC02_data). The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID. Further details are in Sects. 4 and 5.

Acknowledgements. Research vessel Tiglax in Columbia Bay, Alaska, is shown on the website for SOCAT version 3. The Columbia Glacier can be seen at the head of the bay, as well as calved ice from the glacier. The photo was taken by Wiley Evans. Pete Brown (National Oceanography Centre Southampton, UK) designed the SOCAT logo. IOCCP (via a US National Science Foundation grant (OCE-124 3377) to the Scientific Committee on Oceanic Research), IOC-UNESCO (International Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization), SOLAS and IMBER provided travel and meeting support. Funding was received from the East Anglia (UK), the Bjerknes Centre for Climate Research (Norway), the Geophysical Institute at the University of Bergen (Norway) and the University of Washington (US). The US National Oceanic and Atmospheric Administration (NOAA) made important financial contributions via the Climate Observation Division of the Climate Program Office, the NOAA Ocean Acidification Program, the NOAA Pacific Marine Environmental Laboratory (PMEL), the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and the NOAA Earth System Research Laboratory. Funding was also received from Oak Ridge National Laboratory (US), PANGAEA® Data Publisher for Earth and Environmental Science (Germany), the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Germany), the Antarctic Climate and Ecosystems Cooperative Research Centre (Australia), the National Institute for Environmental Studies (Japan) and Uni Research (Norway). Research projects making SOCAT possible included the European Union projects CarboChange (FP7 264879), GEOCARBON (FP7 283080) and AtlantOS (633211), the UK Ocean Acidification Research Programme (NE/H017046/1; funded by the Natural Environment Research Council (NERC) and the Departments for Energy and Climate Change and for Environment, Food and Rural Affairs (Defra)) and the UK Shelf Sea Biogeochemistry Blue Carbon project (NE/K00168X/1; funded by NERC and Defra). Numerous government and funding agencies financially supported SOCAT, notably the Australian International Marine Observing System, the U.S. Geological Survey, the National Aeronautics and Space Administration (NASA) (US), the European Space Agency, the German Federal Ministry of Education and Research (BMBF projects 01LK1224J, 01LK1101C, 01LK1101E, ICOS-D), the Japanese Ministry of the Environment, the Royal Society of New Zealand via the New Zealand–Germany Science and Technology Programme, the Norwegian Research Council (SNACS, 229752), the Swedish Research Council (project 2004-4034) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas, project 2004-797). This is PMEL contribution number 4441. Finally, we thank the two anonymous reviewers for their thoughtful, constructive and insightful reviews.

Edited by: F. Schmitt
Reviewed by: two anonymous referees

References

Antonov, J. J., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2005, in: Volume 2: Salinity, edited by Levitus, S., NOAA Atlas NESDIS 62, US Government Printing Office, Washington, DC, 182 pp., 2006.

Arruda, R., Calil, P. H. R., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G.: Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study, Biogeosciences, 12, 5793–5809, doi:10.5194/bg-12-5793-2015, 2015.

Bakker, D. C. E., Hoppe, M., Schröder, M., Geibert, W., and de Baar, H. J. W.: A rapid transition from ice covered CO2-rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre, Biogeosciences, 5, 1373–1386, doi:10.5194/bg-5-1373-2008, 2008.

Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O’Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppe, M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kåttilis, V., Körtzting, A., Landschützer, P., Lauvset, S. K., Lefévre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, doi:10.5194/essd-6-69-2014, 2014.

Bange, H. W., Bell, T. G., Cornejo, M., Freie, A., Uber, G., Upstill-Goddard, R. C., and Zhang, G.: MEMENTO: A proposal to develop a database of marine nitrous oxide and methane measurements, Environ. Chemistry, 6, 195–197, 2009.

Bates, N.R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F.,
Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO₂ and ocean acidification, Oceanography, 27, 126–141, doi:10.5670/oceanog.2014.16, 2014.

Blomquist, B. W., Huebert, B. J., Fairall, C. W., Bariteau, L., Edson, J. B., Hare, J. E., and McGillis, W. R.: Advances in air-sea CO₂ flux measurement by eddy correlation, Bound.-Lay. Meteorol., 152, 245–276, doi:10.1007/s10546-014-9926-2, 2014.

Blunden, J. and Arndt, D. S. (Eds.): State of the Climate in 2014, B. Am. Meteorol. Soc., 96, S1–S267, available at: http://journals.ametsoc.org/pdf/doi/10.1175/2015BAMSStateoftheClimate.1 (last access: 8 December 2015), 2015.

Bonou, F. K., Noriega, C., Lefèvre, N., and Araujo, M.: Distribution of CO₂ parameters in the Western Tropical Atlantic Ocean, Dynam. Atmos. Oceans, 73, 47–60, doi:10.1016/j.dynatmoce.2015.12.001, 2016.

Borges, A. V., Alin, S. R., Chavez, F. P., Vlahos, P., Johnson, K. S., Holt, J. T., Balch, W. M., Bates, N., Brainard, R., Cai, W.-J., Chen, C. T. A., Currie, K., Dai, M., Degrandpré, M., Delille, B., Dickson, A., Evans, W., Feely, R. A., Friederich, G. E., Gong, G.-C., Hales, B., Hardman-Mountford, N., Hendee, J., Hernandez-Ayon, J. M., Hood, M., Huertas, E., Hydes, D., Ianson, D., Krasakopoulou, E., Litt, E., Luchetta, A., Mathis, J., McGillis, W. R., Murata, A., Newton, J., Olafsson, J., Omar, A., Perez, F. F., Sabine, C., Salisbury, J. E., Salm, R., Sarma, V. V. S. S., Schneider, B., Sigler, M., Thomas, H., Turk, D., Vandemark, D., Wanninkhof, R., and Ward, B.: A global sea surface carbon observing system: Inorganic and organic carbon dynamics in coastal oceans, in: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, edited by: Hall, J., Harrison, D. E., and Stammer, D., Vol. 2, Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.07, 2010.

Butin, J. and Merlivat, L.: New in situ estimates of carbon biological production rates in the Southern Ocean from CARICO drifter measurements, Geophys. Res. Lett., 36, L13608, doi:10.1029/2009GL038307, 2009.

Brévière, E. H. G., Bakker, D. C. E., Bange, H. W., Bates, T. S., Bell, T. G., Boyd, P. W., Duce, R. A., Garçon, V., Johnsson, M. T., Law, C. S., Marandino, C. A., Olsen, A., Quack, B., Quinn, P. K., Sabine, C. L., and Saltzman, E.: Surface ocean – lower atmosphere study: Scientific synthesis and contribution to Earth System science, Anthropocene, 12, 54–68, doi:10.1016/j.anscience.2015.11.001, 2015.

CEOS: Carbon strategy for carbon observations from space, The Committee on Earth Observation Satellites (CEOS) response to the Group on Earth Observations (GEO) Carbon Strategy, available at: http://ceos.org/document_management/Publications/WGClimate_CEOS-Strategy-for-Carbon-Observations-from-Space_Apr2014.pdf, (last access: 8 December 2015), 2014.

Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO₂ in the world’s coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-6509-2013, 2013.

Chierici, M., Signorini, S. R., Mattsdotter-Björk, M., Fransson, A., and Olsen, A.: Surface water fCO₂ algorithms for the high-latitude Pacific sector of the Southern Ocean, Remote Sens. Environ., 119, 184–196, doi:10.1016/j.rse.2011.12.020, 2012.

Ciais, P., Dolman, A. J., Dargaville, R., Barrie, L., Bombelli, A., Butler, J., Canadell, P., and Moriyama, T.: GEO Carbon Strategy, GEO (Group on Earth Observations) Secretariat Geneva / Food and Agriculture Organization of the United Nations, Rome, available at: http://www.globalcarbonproject.org/global/pdf/GEO_CARBONSTRATEGY_20101020.pdf (last access: 8 December 2015), 48 pp., 2010.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and other biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, available at: http://www.ipcc.ch/report/ar5/wg1/ (last access: 3 January 2015), 2013.

Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. N., Miller, C., Goñi, N., Kinderman, G., Marshall, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luysaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S.-L., Poulter, B., Plusman, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Yang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, doi:10.5194/bg-11-3547-2014, 2014.

Cooley, S. R., Rheuban, J. E., Hart, D. R., Luu, V., Glover, D. M., Hare, J. A., and Doney, S. C.: An Integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming, PLoS ONE, 10, e0124145, doi:10.1371/journal.pone.0124145, 2015.

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO₂ measurements, PICES Special Publication 3, IOCCP Report 8, 191 pp., 2007.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The other CO₂ problem, Annu. Rev. Mar. Sci., 1, 169–192, doi:10.1146/annurev.marine.010908.163834, 2009a.

Doney, S. C., Tilbrook, B., Roy, S., Metzl, N., Le Quéré, C., Hood, M., Feely, R. A., and Bakker, D. C. E.: Surface Ocean CO₂ Variability and Vulnerability. Deep-Sea Res. Pt. II, 56, 504–511, doi:10.1016/j.dsr2.2008.12.016, 2009b.

ETOP02: 2-minute Gridded Global Data (ETOP02v2), National Geophysical Data Center, National Oceanic and Atmospheric Administration, US Dept. of Commerce, available at: http://www.ngdc.noaa.gov/mgg/global/global.html (last access: 1 September 2015), 2006.

Evans, W., and Mathis, J. T.: The Gulf of Alaska coastal ocean as an atmospheric CO₂ sink, Cont. Shelf Res., 65, 52–63, doi:10.1016/j.csr.2013.06.013, 2013.
Evans, W., Mathis, J. T., Cross, J. N., Bates, N. R., Frey, K. E., Else, B. G. T., Papakyriakou, T. N., DeGrandpre, M. D., Islam, F., Cai, W.-J., Chen, B., Yamamoto-Kawai, M., Carmack, E., Williams, W. J., and Takahashi, T.: Sea-air CO$_2$ exchange in the western Arctic coastal ocean, Global Biogeochem. Cy., 29, 1–20, doi:10.1002/2015GB005153, 2015.

Eyring, V., Righi, M., Lauer, A., Evalds, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ebbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulf, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747–1802, doi:10.5194/gmd-9-1747-2016, 2016.

Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO$_2$ from in situ data. Global Biogeochem. Cy., 27, 541–557, doi:10.1002/gbc.20051, 2013.

Fay, A. R., McKinley, G. A., and Lovenduski, N. S.: Southern Ocean carbon trends: Sensitivity to methods. Geophys. Res. Lett., 41, 6833–6840, doi:10.1002/2014GL061324, 2014.

Feely, R., Boutin, J., Cosca, C., Dandonneau, Y., Etcheto, J., Inoue, H., Ishii, M., Le Quéré, C. L., Mackey, D., McPhaden, M., Metzl, N., Poisson, A., and Wanninkhof, R.: Seasonal and interannual variability of CO$_2$ in the Equatorial Pacific, Deep-Sea Res. Pt. II, 49, 2443–2469, doi:10.1016/S0967-0645(02)00444-9, 2002.

Feely, R. A., Wanninkhof, R., Takahashi, T., and Tans, P.: Influence of El Niño on the equatorial Pacific contribution to atmospheric CO$_2$ accumulation, Nature, 398, 597–601, 1999.

Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean acidification: Present conditions and future changes in a High-CO$_2$ world, Oceanography, 22, 36–47, doi:10.5670/oceanog.2009.95, 2009.

Ferraro, R., Waliser, D. E., Gleckler, P., Taylor, K. E., and Eyring, V.: Evolving Obs4MIPs to support Phase 6 of the Coupled Model Intercomparison Project (CMIP6), B. Am. Meteorol. Soc., 96, ES131–ES133, doi:10.1175/BAMS-D-14-00216.1, 2015.

FOO: A Framework for Ocean Observing, Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO, 2012, IOC/INF-1284 rev., doi:10.5270/OceanObs09-FOO, available at: http://www.jodc.go.jp/info/ioc_doc/INF/211260e.pdf (last access: 28 November 2015), 2012.

Fransson, A., Chierici, M., and Nojiri, Y.: Increased net CO$_2$ outgassing in the upwelling region of the southern Bering Sea in a period of variable marine climate between 1995 and 2001, J. Geophys. Res., 111, C08008, doi:10.1029/2004JC002759, 2006.

Fransson, A., Chierici, M., and Nojiri, Y.: New insights into the spatial variability of the surface water CO$_2$ in varying sea ice conditions in the Arctic Ocean, Cont. Shelf Res., 29, 1317–1328, doi:10.1016/j.csr.2009.03.008, 2009.

Freeman, N. M. and Lovenduski, N. S.: Decreased calcification in the Southern Ocean over the satellite record, Geophys. Res. Lett., 42, 1834–1840, doi:10.1002/2014GL062769, Supplement, 2015.

GCOS: Status of the Global Observing System for Climate, GCOS-195, 358 pp., available at: http://www.wmo.int/pages/prog/gcos/Publications/GCOS-195_en.pdf (last access: 09 February 2016), 2015.

Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., Lehodey, P., Perruche, C., Samuelsen, A., and Simon, E.: Building the capacity for forecasting marine biogeochemistry and ecosystems: Recent advances and future developments, J. Operational Oceanogr., 8, 168–187, doi:10.1080/1755876X.2015.1022350, 2015.

GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide, 2012 version, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA, available at: http://www.esrl.noaa.gov/gmd/ccgg/globalview/ (last access: 26 June 2013), 2012.

GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide, 2014 version, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA, available at: http://www.esrl.noaa.gov/gmd/ccgg/mlb/data.php (last access: 29 October 2015), 2014.

Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D., and Donlon, C.: The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO$_2$ fugacity in support of air–sea gas flux studies, Ocean Sci., 11, 519–541, doi:10.5194/os-11-519-2015, 2015.

González-Dávila, M., Santana-Casiano, J. M., and González-Dávila, E. F.: Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean, Geophys. Res. Lett., 34, L07608, doi:10.1029/2006GL028145, 2007.

Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO$_2$ uptake by a coastal upwelling system, Global Biogeochem. Cy., 19, GB1009, doi:10.1029/2004GB002295, 2009.

Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and Chavez, F.: Satellite-based prediction of pCO$_2$ in coastal waters of the eastern North Pacific, Prog. Oceanography, 103, 1–15, doi:10.1016/j.pocean.2012.03.001, 2012.

Harris, K. E., DeGrandpre, M. D., and Hales, B.: Aragonite saturation state dynamics in a coastal upwelling zone, Geophys. Res. Lett., 40, 2720–2725, doi:10.1002/grl.50460, 2013.

Henderson, C.: Ocean acidification: The other CO$_2$ problem, New Scientist, 2 August 2006, available at: http://environment.newscientist.com/article/mg19125631.200 (last access: 19 January 2016), 2006.

Hofmann, E., Bundy, A., Drinkwater, K., Piola, A. R., Avril, B., Robinson, C., Murphy, E., Maddison, L., Svendsen, E., Hall, J., and Xu, Y.: IMBER research for marine sustainability: Synthesis and the way forward, Anthropocene, 12, 42–53, doi:10.1016/j.ancene.2015.12.002, 2015.

Holding J. M., Duarte, C. M.,Sanz-Martin, M., Mesa, E., Arrieta, J. M., Chierici, M., Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux, A., Delgado, A., Reigstad, M., Wassmann, P., and Agusti, S.: Temperature dependence of CO$_2$-enhanced primary production in the European Arctic Ocean, Nature Climate Change, 5, 1079–1082, doi:10.1038/nclimate2768, 2015.

Hood, R. R., Bange, H. W., Beal, L., Beckley, L. E., Burkill, P., Cowie, G. L., D’Adamo, N., Ganssen, G., Hendon, H., Hermes, J., Honda, M., McPhaden, M., Roberts, M., Singh, S., Urban, E., and Yu, W.: Science Plan of the Second International Indian Ocean Expedition (IOE-2): A Basin-Wide Research Program. Scientific Committee on Oceanic Research, Newark, Delaware, USA, avail-
able at: http://www.iioe-2.incois.gov.in/IIOE-2/pdfviewer.jsp?docname=IIOE-2-SciencePlan-2015-2020.pdf (last access: 25 February 2016), 2015.

ICES (International Council for the Exploration of the Sea): Chemical aspects of ocean acidification monitoring in the ICES marine area, ICES Cooperative Research Report, 319, 1–86, 2013.

ICES (International Council for the Exploration of the Sea): Final Report to OSPAR of the Joint OSPAR/ICES Ocean Acidification Study Group (SGOA), ICES CM 2014:ACOM: 67, 141 pp., available at: http://ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2014/SGOA/sgota_finalOSPAR_2015.pdf (last access: 18 January 2016), 2014.

Iida, Y., Kojima, A., Takatani, T., Nakano, T., Sugimoto, H., Midorikawa, T., and Ishii, M.: Trends in pCO$_2$ and sea–air CO$_2$ flux over the global open oceans for the last two decades, J. Oceanography, 71, 637–661, doi:10.1007/s10872-015-0306-4, 2015.

Inoue, H., Ishii, M., Matsueda, H., Saito, S., Aoyama, M., Tokieda, T., Midorikawa, T., Nemoto, K., Kawano, T., Asanuma, I., Ando, K., Yano, T., and Murata, A.: Distributions and variations in the partial pressure of CO$_2$ in surface waters (pCO$_2$sy) of the central and western equatorial Pacific during the 1997/1998 El Niño event, Mar. Chem., 76, 79–95, 2001.

IOCCP: Surface Ocean CO$_2$ Variability and Vulnerabilities Workshop. UNESCO, Paris, France, 11–14 April 2007, IOCCP Report 7, available at: http://www.ioccp.org/ (last access: 1 May 2013), 2007.

Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J., and Gloor, M.: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results, Global Biogeochem. Cy., 21, GB1020, doi:10.1029/2006GB002703, 2007.

Johengen, T.: Performance demonstration statement PMEL MAPCO2/Battelle Seaology pCO$_2$ monitoring system, Alliance for Coastal Technologies report, ACT DS10-02, available at: http://www.act-us.info/Download/Evaluations/pCO2/PMEL_MAPCO2_Battelle_Seaology/ (last access: 10 January 2014), 2010.

Jones, E. M., Bakker, D. C. E., Venables, H. J., and Hardman-Mountford, N.: Seasonal cycle of CO$_2$ from the sea ice edge to island blooms in the Scotia Sea, Southern Ocean, Mar. Chem., 177, 490–500, doi:10.1016/j.marchem.2015.06.031, 2015.

Jones, S. D., Le Quéré, C., Rödenbeck, C., Manning, A. C., and Olsen, A.: A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data, J. Adv. Modeling Earth Syst., 7, 1554–1575, doi:10.1002/2014MS000416, 2015.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, B., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–470, 1996.

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, doi:10.1111/gcb.12179, 2013.

Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, doi:10.5194/bg-10-7793-2013, 2013.

Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent variability of the global ocean carbon sink, Global Biogeochem. Cy., 28, 927–949, doi:10.1002/2014GB004853, 2014.

Landschützer, P., Gruber, N., Bakker, D. C. E., Haumann, F. A., Rödenbeck, C., Van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221–1224, doi:10.1126/science.aab2620, 2015.

Larsen, P. E., Scott, N., Post, A. F., Field, D., Knight, R., Hamada, Y., and Gilbert, J. A.: Satellite remote sensing data can be used to model marine microbial metabolite turnover, ISME J., 9, 166–179, doi:10.1038/ismej.2014.107, 2014.

Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global budget of the CO$_2$ exchange at the air-water interface in continental shelf seas, Global Biogeochem. Cy., 28, 1199–1214, doi:10.1002/2014GB004832, 2014.

Laruelle, G. G., Lauerwald, R., Rotschi, J., Raymond, P. A., Hartmann, J., and Regnier, P.: Seasonal response of air–water CO$_2$ exchange along the land–ocean aquatic continuum of the northeast North American coast, Biogeosciences, 12, 1447–1458, doi:10.5194/bg-12-1447-2015, 2015.

Lauvset, S. K. and Gruber, N.: Long-term trends in surface ocean pH in the North Atlantic, Mar. Chem., 162, 71–76, doi:10.1016/j.marchem.2014.03.009, 2014.

Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J.: Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12, 1285–1298, doi:10.5194/bg-12-1285-2015, 2015.

Legge, O. J., Bakker, D. C. E., Johnson, M. T., Meredith, M. P., Venables, H. J., Brown, P. J., and Lee, G. A.: The seasonal cycle of ocean-atmosphere CO$_2$ flux in Ryder Bay, West Antarctic Peninsula, Geophys. Res. Lett., 42, 2934–2942, doi:10.1002/2015GL063796, 2015.

Lenton, A., Tilbrook, B., Law, R. M., Bakker, D., Doney, S. C., Gruber, N., Ishii, M., Hoppema, M., Lovenduski, N. S., Matear, R. J., McNeil, B. I., Metzl, N., Mikaloff Fletcher, S. E., Monteiro, P. M. S., Rödenbeck, C., Sweeney, C., and Takahashi, T.: Sea–air CO$_2$ fluxes in the Southern Ocean for the period 1990–2009, Biogeosciences, 10, 4037–4054, doi:10.5194/bg-10-4037-2013, 2013.

Le Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arment, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. L., Jain, A. K., Jones, D. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G.-H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Sweeney, C., and Takahashi, T.: Sea-air CO$_2$ fluxes in the Southern Ocean for the period 1990–2009, Biogeosciences, 10, 4037–4054, doi:10.5194/bg-10-4037-2013, 2013.
R. A., House, J. I., Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Norijiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Vievy, N., Wang, Y.-P., Wanninkhof, R., Wilshite, A., and Zeng, N.: Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85, doi:10.5194/essd-7-47-2015, 2015a.

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arndt, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoaka, S., Norijiri, Y., O’Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van der Werf, P., Wang, Y.-P., Wanninkhof, R., Wilshite, A., and Zeng, N.: Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349–396, doi:10.5194/essd-7-349-2015, 2015b.

Lourantou, A. and Metzl, N.: Decadal evolution of carbon sink within a strong bloom area in the subantarctic zone, Geophys. Res. Lett., 13, 23608, doi:10.1029/2011GL049614, 2014a.

Mathis, J. T., Feely, R. A., Sutton, A., Carlson, C., Chai, F., Chavez, F., Church, M., Cosca, C., Ishii, M., Mordy, C., Murata, A., Resing, J., Strutton, P., Takahashi, T., and Wanninkhof, R.: White paper 6: Tropical Pacific biogeochemistry: Status, implementation and gaps, Tropical Pacific Observing System 2020, available at: http://topos2020.org/wp-content/uploads/WP06_Tropical_Pacific_biogeochemistry.pdf (last access: 3 January 2015), 2014.

McKinley, G. A., Fay, A. R., Takahashi, T., and Metzl, N.: Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales, Nat. Geosci., 4, 606–610, doi:10.1038/NGEO1193, 2011.

McKinley, G. A., Pilcher, D. J., Fay, A. R., Lindsay, K., Long, M. C., and Lovenduski, N. S.: Timescales for detection of trends in the ocean carbon sink, Nature, 530, 469–472, doi:10.1038/nature16958, 2016.

Meroilval, L., Boutin, J., and Antoine, D.: Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA rCO2, J. Marine Syst., 147, 9–20, doi:10.1016/j.jmarsys.2014.04.015, 2015.

Monteiro, P. M. S., Schuster, U., Hood, M., Lenton, A., Metzl, N., Olsen, A., Rogers, K., Sabine, C. L., Takahashi, T., Tilbrook, B., Yoder, J., Wanninkhof, R., and Watson, A. J.: A global sea surface carbon observing system: Assessment of changing sea surface CO2 and air-sea CO2 fluxes, in: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, edited by: Hall, J., Harrison, D. E., and Stammer, D., Vol 2, Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.64, 2010.

Nakaoaka, S., Telszewski, M., Norijiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and Usui, N.: Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique, Biogeosciences, 10, 6093–6106, doi:10.5194/bg-10-6093-2013, 2013.

NCEP: 40-Year Reanalysis Project on a 6-hourly, global, 2.5° latitude by 2.5° longitude grid (Kalnay et al., 1996) by the National Centers for Environmental Prediction and the National Center for Atmospheric Research, available at: http://www.esrl.noaa.gov/ds.gap/data/griddata.ncep.reanalysis.surface.html (last access: 1 May 2013), 2012.

NCEP: 40-Year Reanalysis Project on a 6-hourly, global, 2.5° latitude by 2.5° longitude grid (Kalnay et al., 1996) by the National Centers for Environmental Prediction and the National Center for Atmospheric Research, available at: http://www.esrl.noaa.gov/ds.gap/data/griddata.ncep.reanalysis.surface.html (last access: 29 October 2015), 2014.

Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.: Global Ocean Acidification Observing Network: Requirements and Governance Plan, 60 pp., available at: http://goa-on.org/docs/GOA-ON_plan_print.pdf (last access: 23 December 2015), 2014.

Olsen, A., Bakker, D. C. E., and Pfeil, B.: Second version of the Surface Ocean CO2 Atlas (SOCAT) to be released this summer for climate research, SOLAS News, 15, p. 21, 2013.

Olsen, A., Metzl, N., Bakker, D. C. E., and O’Brien, K.: SOCAT quality control cookbook – For SOCAT Version 3, available at: http://www.socat.info/upload/2015_SOCAT_QC_Cookbook_v3.pdf, last access: 11 December 2015.

Omar, A. M., Olsen, A., Johannessen, T., Hoppema, M., Thomas, H., and Borges, A. V.: Spatiotemporal variations of /CO2 in the North Sea, Ocean Sci., 6, 77–89, doi:10.5194/os-6-77-2010, 2010.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouquet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686, 2005.

Park, G.-H., Wanninkhof, R., Doney, S. C., Takahashi, T., Lee, K., Feely, R. A., Sabine, C. L., Triñanes, J., and Lima, I. D.: Variabil-
ity of global net sea-air CO$_2$ fluxes over the last three decades using empirical relationships, Tellus B, 62, 352–368, 2010.

Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hopwood, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lennon, A., Lourantou, A., Merlivat, L., Midorikawa, T., Minton, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbur, J., Sarma, V. V., S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Œtesdo, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface Ocean CO$_2$ Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, doi:10.5194/essd-5-125-2013, 2013.

Pierrrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Læger, H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.: Recommendations for autonomous underway pCO$_2$ measuring systems and data reduction routines, Deep-Sea Res. Pt. II, 56, 512–522, doi:10.1016/j.dsr2.2008.12.005, 2009.

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Lyuassert, S., Andersson, A. J., Arndt, S., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddér, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Splan, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, doi:10.1038/NGEO1830, 2013.

Reum, J. C. P., Alin, S. R., Harvey, C. J., Bednarsek, N., Evans, W., Feely, R. A., Hales, B., Loney, N., Mathis, J. T., McElhaney, P., Newton, J., and Sabine, C. L.: Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen, ICES J. Mar. Sci., 73, 582–595, doi:10.1093/icesjms/fsu231, 2016.

Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean pCO$_2$ and sea-air CO$_2$ flux variability from an observation-driven ocean mixed-layer scheme, Ocean Sci., 9, 193–216, doi:10.5194/os-9-193-2013, 2013.

Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea-air CO$_2$ flux variability from an observation-driven ocean mixed-layer scheme, Biogeosciences, 11, 4599–4613, doi:10.5194/bg-11-4599-2014, 2014.

Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sa, T. P., Schuster, U., Shuttler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO$_2$ Mapping intercompari-

son (SOCOM), Biogeosciences, 12, 7251–7278, doi:10.5194/bg-12-7251-2015, 2015.

Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lennon, A., Lourantou, A., Merlivat, L., Midorikawa, T., Minton, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrrot, D., Poisson, A., Rios, A. F., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Œtesdo, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: Surface Ocean CO$_2$ Atlas (SOCAT) gridded data products, Earth Syst. Sci. Data, 5, 145–153, doi:10.5194/essd-5-145-2013, 2013.

Sasse, T. P., McNeil, B. I., and Abramowitz, G.: A new constraint on global air-sea CO$_2$ fluxes using bottle carbon data, Geophys. Res. Lett., 40, 1594–1599, doi:10.1002/gRL.50342, 2013.

Schlitzer, R.: Data analysis and visualization with Ocean Data View, CMOS Bulletin SCMO 43 (1), 9–13, Canadian Meteorological and Oceanographic Society/Société canadienne de météorologie et d’oceanographie, available at: http://cmos.ca/site/cmos_bulletin (last access: 6 March 2016), 2015.

Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefévre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Rödenbeck, C., Santana-Casiano, J. M., Takahashi, T., Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic and Arctic sea–air CO$_2$ fluxes, 1990–2009, Biogeosciences, 10, 607–627, doi:10.5194/bg-10-607-2013, 2013.

Secretariat of the Convention on Biological Diversity: An updated synthesis of the impacts of ocean acidification on marine biodiversity, edited by: Hennige, S., Roberts, J. M., and Williamson, P., Montreal, Canada, CBD Technical Series, 75, 99 pp., available at: https://www.cbd.int/doc/publications/cbd-ts-75-en.pdf (last access: 23 December 2015), 2014.

Séférian, R., Ribes, A., and Bopp, L.: Detecting the anthropogenic influences on recent changes in ocean carbon uptake, Geophys. Res. Lett., 41, 1–10, doi:10.1002/2014GL061223, 2014.

Signorini, S. R., Mannino, A., Najjar Jr., R. G., Friedrichs, M. A., Cai, W.-J., Salisbur, J., Wang, Z. A., Thomas, H., and Shadwick, E.: Surface ocean pCO$_2$ seasonality and sea-air CO$_2$ flux estimates for the North American east coast. J. Geophys. Res.-Oceans, 118, 5439–5460, doi:10.1002/jgo.20369, 2013.

Simon, E. and Bertino, L.: Optimized parameters of mathematical formulation with respect to observations. First attempt to optimize biogeochemical-governing parameters through EnKF, SKD Biofeedback project deliverable D2.3, Bjerknes Center, Bergen, Norway, 2013.

Simpson, J. H. and Sharples, J.: Introduction to the physical and biologic oceanography of shelf seas. Cambridge University Press,
tiple approaches, Global Biogeochem. Cy., 28, 1129–1148, doi:10.1002/2014GB004833, 2014.

Valsala, K. V. and Maksyutov, S.: Simulation and assimilation of global ocean pCO$_2$ and air-sea CO$_2$ fluxes using ship observations of surface ocean pCO$_2$ in a simplified biogeochemical offline model, Tellus, 62B, 821–840, 2010.

Van der Laan, S., Van der Laan-Luijkx, I. T., Rödenbeck, C., Varlagin, A., Shironya, I., Neubert, R. E. M., Ramonet, M., and Meijer, H. A. J.: Atmospheric CO$_2$, delta(O$_2$/N$_2$), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia, Atmos. Environ., 97, 174–181, doi:10.1016/j.atmosenv.2014.08.022, 2014.

Walker Brown, C., Boutin, J., and Merlivat, L.: New insights into fCO$_2$ variability in the tropical eastern Pacific Ocean using SMOS SSS, Biogeosciences, 12, 7315–7329, doi:10.5194/bg-12-7315-2015, 2015.

Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983–2000, doi:10.5194/bg-10-1983-2013, 2013a.

Wanninkhof, R., Bakker, D. C. E., Bates, N., Olsen, A., Steinhoff, T., and Sutton, A. J.: Incorporation of alternative sensors in the SOCAT database and adjustments to dataset Quality Control flags, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, available at: http://cdiac.ornl.gov/oceans/Recommendationnewsensors.pdf (last access: 23 December 2015), doi:10.3334/CDIAC/OTG.SOCAT_ADQCF, 2013b.

While, J., Totterdell, I., and Martin, M.: Assimilation of pCO$_2$ data into a global coupled physical-biogeochemical ocean model, J. Geophys. Res., 117, C03037, doi:10.1029/2010JC006815, 2012.

Wunsch, C., Schmitt, R. W., and Baker, D. J.: Climate change as an intergenerational problem, Proc. Nat. Acad. Sci. USA, 110, 4435–4436, doi:10.1073/pnas.1302536110, 2013.

Xu, S., Chen, L., Chen, H., Li, J., Lin, W., and Qi, D.: Sea-air CO$_2$ fluxes in the Southern Ocean for the late spring and early summer in 2009, Remote Sens. Environ., 175, 158–166, doi:10.1016/j.rse.2015.12.049, 2016.

Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka, S.: A global surface ocean fCO$_2$ climatology based on a feed forward neural network, J. Atmos. Ocean Tech., 31, 1838–1849, 2014.