Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, and in-situ tuning of parameters. We show how to realise strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realised by dynamic tuning of the cavity resonances. We demonstrate the existence of Fractional Quantum Hall states by computing topological invariants, phase transitions between topologically distinct states, and Laughlin wavefunction overlap.

PACS numbers: 42.50.pq, 73.43.-f, 32.80.Qk

Quantum systems with highly correlated states exhibit an exponential growth of Hilbert space with the number of particles, making the study of arbitrary states of even modest systems computationally intractable. This problem has motivated efforts in the field of quantum emulation[1]. A quantum emulator is designed to replicate the physics of some target system. Such emulators require scalable and convenient state preparation and measurement, and control over single and many-body interactions. Proposals for emulation platforms include ultra cold-atoms, superconductors, and superfluids[2–4]. Another interesting platform is coupled atom-cavity systems[5–9] and there has been significant progress towards realising this goal[10–13]. Here we explore the physics of the Fractional Quantum Hall Effect (FQHE) as it relates to atom-cavity systems.

Thirty years after their discovery, the Integer[14] and Fractional[15] Quantum Hall Effects are still the focus of intense theoretical and experimental attention[16, 17]. The FQHE relies on the presence of particle-particle interactions to form highly correlated states. These states can exhibit anyonic, and sometimes non-abelian, excitations which are explicitly non-local. As such, the investigation of large systems suffers strongly from the exponential explosion in Hilbert space. While there exist exact solutions for some FQHE systems, such as the Laughlin ansatz[18], these have yet to be observed directly in experiment. For this reason, emulation of the FQHE, particularly emulating the strong magnetic fields required, has become a major topic of interest in the scientific community[19–22].

Here we show the existence of FQHE states in the Jaynes-Cummings-Hubbard (JCH) model[5–7] in the presence of an artificial magnetic field. These states constitute new, strongly correlated states of light. A JCH lattice consists of an array of coupled photonic cavities, with each cavity mode coupled to a two-level atom [see Figs. 1(a) and (b)]. JCH systems promise unparalleled control and readout of the full quantum mechanical wavefunction. The JCH model is predicted to exhibit a number of solid state phenomena, including Mott/superfluid phases[6], semi-conductor physics[23], Josephson effect[24], metamaterials properties[25], and Bose-glass phases[20].

We begin by introducing the JCH model, and discuss how an artificial magnetic field can be created in a photonic cavity system. To demonstrate FQHE physics, we compute the groundstates for small systems. These groundstates are compared to a modified Laughlin ansatz, and their topology investigated.

Each cavity in the JCH lattice is described by the

$$V = \left| V^{DC} + V^{AC} \sin (\omega \tau + \Delta \phi) \right| x (x \text{ and } y \text{ in units of the lattice spacing})$$

applied to the cavities (indicated by green arrows) by dynamically tuning ω. The phase offset, Δφ, results in the synthetic magnetic field seen in (a).
Jaynes-Cummings (JC) Hamiltonian
\[ H^{JC} = \omega L + \Delta \sigma^+ \sigma^- + \beta (\sigma^+ a + \sigma^- a^\dagger), \tag{1} \]
where \( a \) is the photonic annihilation operator, \( \sigma^\pm \) are the atomic raising and lowering operators, \( \Delta \) the atom-photon detuning, \( \beta \) the coupling energy and \( \hbar = 1 \). The states \( |g(e), n\rangle \), where \( n \) is the number of photons, and \( g(e) \) are the ground (excited) state of the atom, form the single cavity basis. \( H^{JC} \) commutes with the total excitation number operator, \( L = a^\dagger a + \sigma^+ \sigma^- \). Therefore the total excitations in the cavity, \( \ell \), is a good quantum number. The eigenstates of Eq. (1) are termed polaritons, superpositions of atomic and photonic excitations, and are a function of \( \ell \) and \( \Delta/\beta \).

The JCH model describes a tight-binding JC lattice:
\[ H^{JCH} = H^{JC} + K = \sum_i^{N} H_i^{JC} - \sum_{<i,j>} \kappa_{ij} a_i^\dagger a_j \tag{2} \]
where \( \kappa_{ij} \) is the tunneling rate between cavities \( i \) and \( j \) and the sum over \( (i, j) \) is between nearest neighbors only.

For large detuning \(|\Delta| \gg \beta\), eigenstates separate out into either atomic or photonic modes. In this limit, the photonic or atomic mode can be adiabatically eliminated. Eliminating the atomic modes, the photonic mode has a weak Kerr-type photon-photon repulsion[8] and the exchange of energy between atomic and photonic modes is strongly suppressed. However, virtual processes lead to effective interactions in the photonic and atomic sub-manifolds. Photons have an atomic mediated non-linear interaction, resulting in effective interactions in the photonic and atomic sub-manifolds. Photons do not respond to electric fields, however, a gradient in the cavity frequency has an equivalent effect. Recently, cavities with tunable resonances have been fabricated[33, 34]. This is achieved by the inclusion of an intra-cavity Josephson junction, which changes the cavity boundary conditions, and can be tuned via a magnetic field. Transmission line resonator experiments[33] have shown \( \omega_R \) can be driven at \( O(10^3) \) times the cavity dissipation frequency. This ratio provides sufficient time to observe FQH physics.

A magnetic field is defined by a vector potential \( A(x) \), and is introduced into the Hamiltonian via the minimal substitution, \( p \to p - q A(x) \). On a tight-binding lattice, a vector potential \( A \) gives rise to a complex hopping rate \( \kappa_{ij} \to \kappa_{ij} e^{i2\pi \theta_{ij}} \), where \( 2\pi \theta_{ij} = \int_{ij} A(r) \cdot dr \). As in the continuum case, gauge symmetry implies that the only physically important parameter is the total phase, \( 2\pi \alpha \), picked up around a closed loop, where \( \alpha = \Phi/\Phi_0 \) is the fraction of flux quanta through the loop. A constant magnetic field in the \( z \) direction corresponds to a constant \( \alpha \) for all plaquettes on the lattice. Factors of \( 2\pi \) in the phase around a loop are physically inconsequential, so we only need consider \( \alpha \in [0, 1] \). In a lattice, the effect of larger magnetic field strengths saturates, as distinct from the continuum case, where the cyclotron frequency, proportional to the magnetic field, has no upper bound.

Ignoring the JC term in Eq. (1), the spectrum for the kinetic term, \( K \), is given by solutions to Harper’s equation, resulting in the famous Hofstadter Butterfly[26], a fractal structure, which has \( q \) bands at \( \alpha = p/q \), \( (p,q) \in \mathbb{Z} \). For a single excitation on the JCH lattice, the Shrödinger Equation is
\[ \sum_i E_i \phi_i = \sum_i \left[ H_i^{JC} \phi_i - \kappa K_{ij} \phi_j \right]. \tag{3} \]
Substituting an eigenvector \( \phi_i^K \) of \( K \) with energy \( k_i \) into
Table 1. Results for systems of size $L_x \times L_y$, sites with $N_p$ particles. All systems have $C_1 = 1/2$ below the transition strength $\Delta = \Delta_c$. Also shown is the Hilbert space dimensions $\text{Dim}(H)$, and the Laughlin overlap.

| $L_x \times L_y$ | $N_p$ | Dim($H$) | $\alpha$ | Laughlin Transition($\Delta_c$) overlap |
|------------------|------|----------|----------|-------------------------------------|
| i | 4 x 4 | 2 | 512 | 0.25 | 0.89 | NA |
| ii | 5 x 5 | 2 | 1250 | 0.16 | 0.99 | -1.1 |
| iii | 6 x 6 | 2 | 2592 | 0.11 | 0.99 | 2.5 |
| iv | 4 x 4 | 3 | 5472 | 0.37 | 0.29 | -9.1 |
| v | 5 x 5 | 3 | 20850 | 0.24 | 0.98 | -3.8 |
| vi | 6 x 6 | 3 | 62232 | 0.17 | 0.99 | NA |

Eq. 3 yields a single site Hamiltonian:

$$H^{JC}(k) = H_0^{JC} + k_x a_x^\dagger a_x,$$

which is transformed to $H_0^{JC}$ by $\Delta \rightarrow \Delta + k_i$. Thus the energies and eigenstates are:

$$E_{i, \pm} = -(\Delta + E_{i}^p)/2 \pm \sqrt{\beta^2 + (\Delta - E_{i}^p)^2}/4$$

$$\psi_{i, \pm} = \psi_{i}^{0} \otimes \psi_{i}^{JC}(\Delta - k_i k_i).$$

When the detuning is small ($\Delta \approx 0$), there are two squashed Hofstadter butterflies with a gap [Fig. 2(a)]. As the relative JC interaction strength $\beta$ decreases, the two parts converge to recover the original butterfly.

As previously discussed, a large detuning separates out the atomic and photonic states, as shown in Fig. 2. The spectrum is a butterfly with width $\pm 4\kappa$ centered around $-\beta^2/\Delta$, corresponding to the photonic part, and one with width $\pm 4\kappa^2/\Delta$ centered around $\Delta + \beta^2/\Delta$ [Fig. 2(b)].

The FQHE occurs for systems at sufficiently low temperatures where the flux filling factor, $\nu = N_p/N_\phi$, is some non-integral rational $\nu = p/q$, with $N_p$ excitations and $N_\phi$ total flux quanta. Here, particles lie predominately in the lowest Landau level (LLL). When there is an inter-particle interaction the groundstate has long range off-diagonal order and an energy gap.

We study the FQHE on a JCH lattice with periodic boundary conditions, to avoid edge effects, and focus on the $\nu = 1/2$ state, which is the most stable and accessible fraction for bosons, compared to the $\nu = 1/3$ found in the electronic case. Choosing a lattice of dimensions $L_x$ and $L_y$, and the number of excitations, $N_p$, fixes $\alpha = 2N_p/L_x L_y$. As the state space grows quickly, we are constrained to the small systems in Table 1.

The simplest FQHE states are described by the Laughlin ansatz, which is an exact solution for particles in a magnetic field with a contact interaction, and $\nu = 1/q$. Thus for a lattice, where the inter-particle interaction is only on site, such wavefunctions can be very good approximations to the true groundstate. The excitations of these states have abelian anyonic statistics. The Laughlin wavefunction with periodic boundary conditions is:

$$\Psi_L(z) \propto F_{cm}(Z) f_{rel}(\bar{z}) \prod_i \psi_i^L,$$

where $F_{cm}(Z)$ is a function of the centre of mass $Z = \sum_i N_p z_i$, and $f_{rel}(\bar{z})$ depends only on the relative particle separations:

$$F_{cm}(Z) = \theta \left[ N_p/q + (N_\phi - 2)/2q \right] \left( q \frac{Z}{L_x} \right)^{N_p} \frac{(N_\phi - 2)/q}{(N_\phi - 2)/q},$$

$$f_{rel}(\bar{z}) = \prod_{i < j} \psi_i^L \left( z_i - z_j \right)^{q} \left( \frac{z_i}{L_x} \right)^{N_p} \left( \frac{z_j}{L_y} \right)^q,$$

where $\theta$ is the generalized Jacobi theta function, and $\psi_i^L$ are the single particle states $e^{-\phi_i^L/4}$ of the LLL.

For bosons (fermions) $q$ must be even (odd) so that $\Psi$ has the appropriate symmetry. We define a version of the Laughlin wavefunction for states on a JCH lattice by replacing the single particle Landau wavefunctions $\psi_i^L$ with a corresponding single polariton JCH wavefunction. This approximation allows the computation of the overlap between the explicit groundstate of $H^{JC}(\alpha)$ and the Laughlin ansatz. Direct product states of single JCH states are not defined at points with multiple excitations, however, as $\Psi(\bar{z}) = 0$ for any $z_i = z_j$, the issue is avoided.

Significant overlap between our numerical results and the Laughlin ansatz can be a good indication of the FQHE. In Fig. 3(b) the overlap is shown as a function of $\Delta$ for each configuration. In the hardcore boson limit
transition to a fractional state. Shown in Table I for a range of lattice configurations $(i - vi)$ is the Laughlin wavefunction overlap and the location of the value of $\Delta$ at which the transition occurs. We find that in the case of configurations $i$ and $vi$, no such transition occurs due to an exact degeneracy in the single particle energy spectrum. Before the transition, the ground state Chern number is 1/2. The Chern number changes discretely when the gap closes, to the non-interacting state. The Chern number for the system is then the sum of Chern numbers for single particles, given by solutions to the Diophantine equation $C_1 = sq/p − 1/q$. \( \{s, C_1\} \in \mathbb{N} \). We find this to be the case for configurations $ii, vii$ and $v$. For $iii, C_1$ is undefined due to the presence of level crossings, as we have also observed in the case of the BH model. The question of whether these transitions persist in the thermodynamic limit is still an open question.$^{[37]}$

The proposed system can potentially be implemented in any cavity QED framework. However, circuit QED systems are the most promising as they exhibit the largest atom-photon interactions, relative to cavity Q. With coherence times for qubits approaching $10\mu s$, and coupling strengths $\approx 10^2$MHz, QFHE states on small lattices, on the order of 15 sites, could be produced.

We have shown that many of the phenomena associated with the FQHE can be realistically emulated in cavity QED systems. Cavity lattices allow direct inspection of quantum states, which offers an unprecedented window into the physics of the QHE and topological phases. The cavity QED framework also allows for very broad control over the system’s parameters and is readily extensible to more complicated configurations. For example, by including a three level atom with evenly spaced levels, the photons can be given an effective 3-body contact interaction, for which the well studied Pfaffian states are solutions.$^{[43]}$ These states have non-abelian statistics, and are a basis for the description of the $\nu = 5/2$ Quantum Hall plateau. An implementation of the system considered here is an exciting prospect for the near future and will provide crucial insight into the physics of the Quantum Hall Effect.

A.D.G. acknowledges the Australian Research Council for financial support (Project No. DP0880466).

References

[1] I. Buluta and F. Nori, Science 326, 108 (2009).
[2] M. Lewenstein et al., Adv. Phys. 56, 243 (2007).
[3] A. van Oudenaarden and J. E. Mooij, Phys. Rev. Lett. 76, 4947 (1996).
[4] S. Mostame and R. Schützhold, Phys. Rev. Lett. 101, 220501 (2008).
[5] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Nat. Phys. 2, 849 (2006).
[6] A. D. Greentree et al., Nat. Phys. 2, 856 (2006).
[7] D. Angelakis, M. Santos, and S. Bose, Phys. Rev. A 76
(2007).
[8] N. Na et al., Phys. Rev. A 77, 031803 (2008).
[9] S.-C. Lei and R.-K. Lee, Phys. Rev. A 77, 033827 (2008).
[10] K. M. Birnbaum et al., Nature 436, 87 (2005).
[11] A. A. Houck et al., Nature 449, 328 (2007).
[12] M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741 (2008).
[13] G. Lepert et al., New. J. Phys. 13, 113002 (2011).
[14] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[15] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[16] Bolotin et al., Nature 462, 196 (2009).
[17] M. Storni, R. H. Morf, and S. Das Sarma, Phys. Rev. Lett. 104, 076803 (2010).
[18] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[19] D. Jaksch and P. Zoller, N. J. Phys. 5, 56 (2003).
[20] A. Sørensen, E. Demler, and M. Lukin, Phys. Rev. Lett. 94 (2005).
[21] A. R. Kolovsky, EPL 93, 20003 (2011).
[22] A. Fetter, J. Low Temp. Phys. 161, 445 (2010).
[23] J. Quach et al., Phys. Rev. A 80, 063838 (2009).
[24] S.-C. Lei, T.-K. Ng, and R.-K. Lee, Opt. Exp. 18, 14586 (2010).
[25] J. Q. Quach et al., Opt. Exp. 19, 11018 (2011).
[26] D. Rossini and R. Fazio, Phys. Rev. Lett. 99, 186401 (2007).
[27] M. Hohenadler et al., Phys. Rev. A 84, 041608 (2011).
[28] M. Makin et al., Phys. Rev. A 80 (2009).
[29] J. Cho, D. Angelakis, and S. Bose, Phys. Rev. Lett. 101 (2008).
[30] Fang et al., Phys. Rev. B 84 (2011).
[31] J. Koch et al., Phys. Rev. A 82 (2010).
[32] A. Nunnenkamp et al., New J. Phys. 13, 095008 (2011).
[33] M. Sandberg et al., Phys. Scripta T137, 014018 (2009).
[34] J. Johansson et al., Phys. Rev. Lett. 103 (2009).
[35] D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[36] N. Read and E. Rezayi, Phys. Rev. B 54, 16864 (1996).
[37] M. Hafezi, Phys. Rev. A 76 (2007).
[38] R. Tao and F. D. M. Haldane, Phys. Rev. B 33, 3844 (1986).
[39] Y. Hatsugai, J. Phys. Society Japan 73, 2604 (2004).
[40] N. Goldman, J. Phys. B 42, 055302 (2009).
[41] H. Paik et al., Phys. Rev. Lett. (2011).
[42] L. S. Bishop et al., Nat Phys 5, 105 (2009).
[43] M. Greiter et al., Nuclear Physics B 374, 567 (1992).