Efficacy of dexamethasone for lung maturity in preterm delivery in association with lamellar bodies count

Ni Made Sumiartini, Hendra Santoso, Wayan Retayasa, Made Kardana

Abstract

BackgroundOrgan immaturities in preterm infants may result in perinatal death. One of the diseases is respiratory distress syndrome (RDS) which is caused by lung immaturity. Dexamethasone is often used to accelerate maturity of infant lungs.

ObjectiveTo determine the efficacy of dexamethasone on lung maturity measured by lamellar bodies count.

MethodsA quasi experimental study was done at Perinatology Division, Department of Child Health, Medical School, Udayana University, Sanglah Hospital, Denpasar. We recruited 72 subjects; 36 subjects were given four times intramuscular dexamethasone 5 mg every twelve hours before delivery. Thirty six subjects who did not receive dexamethasone belonged to control group. Infants' lungs maturity assessment was performed using lamellar bodies count taken from amniontic fluid.

ResultsThe gestational age ranged between 28 to 36 weeks, with the mean gestational age in dexamethasone group was 32.2 (SD 1.76) weeks and that in control group was 31.7 (SD 2.65) weeks. The efficacy of dexamethasone therapy on lung maturity was significant with Fisher’s exact test P<0.0001, 95%CI 2.546; 11.173. Using multivariate logistic regression analysis, there was significant correlation between dexamethasone and lung maturity measured by lamellar bodies count [OR=239.39; P<0.0001, 95%CI 22.12;526.53].

ConclusionAdministration of dexamethasone in pregnant women during preterm delivery significantly improves lung maturity measured by lamellar bodies count. [Paediatr Indones 2007;47:115-119].

Keywords: Preterm delivery, dexamethasone, lamellar bodies, lung maturity
Methods

This was a single blind quasi experimental clinical study conducted at Perinatology Division, Department of Child Health, Medical School, Udayana University, Sanglah Hospital, Bali, from January to November 2004. The inclusion criteria were (1) pregnancy with gestational age between 28-37 weeks; (2) single birth; (3) premature rupture of the membrane <6 hours, and (4) a signed informed consent. The exclusion criteria were (1) medical diseases such as asthma, congenital heart disease, diabetes mellitus, fever, preeclampsia, eclampsia; (2) the infant had congenital abnormality; (3) mother suffered from chorioamnionitis; (4) amniotic fluid contaminated by maternal blood or meconium and (5) fetal distress. Amniotic fluid sampling was performed in the delivery room in Sanglah Hospital and lamellar bodies test was carried out in the laboratory of Obstetric and Gynecology Department, Dr. Sutomo Hospital, Surabaya. This study was approved by Research Committee of Sanglah Hospital.

The number of subjects needed for each group was 36. Subjects were allocated in consecutive order and divided into two groups. The study subjects were not in partu and received 5 mg intramuscular dexamethasone every 12 hours for four times, with the total dose of 20 mg. The control group received no treatment.

Amniotic fluid specimen was collected in the delivery room at Sanglah Hospital. This was done by transvaginal puncture with insertion of nasal canule no. 22 through the cervical canal. Lamellar bodies test was done in Obstetric and Gynecology laboratory, Dr Sutomo Hospital Surabaya. Statistical analysis was performed using SPSS for Windows v. 13.00. Relative risk and X2 test were used to compare proportion of lung maturity between dexamethasone and control group. Independent t-test was used to compare lamellar bodies count between dexamethasone and control groups. Multivariate logistic regression analysis was used to find any association of dexamethasone therapy, lamellar bodies and confounding variables. A P value of less than 0.05 was considered statistically significant.

Table 1. Efficacy of dexamethasone in maturity of lungs

Group	Mature	Immature	Total
Dexamethasone	34 (94%)	2 (6%)	36 (100%)
Control	8 (22%)	28 (78%)	36 (100%)
Total	42	30	72
Discussion

Preterm birth is the main cause of morbidity and mortality in neonatal period. Immaturity of the lungs commonly occurs in preterm infants and may lead to RDS caused by the deficiency of surfactant called as HMD.3,8,11,15-19

Because of its efficacy, our hospital policy recommends the use of prenatal dexametason for women at risk of preterm delivery.20 Antenatal dexamethasone therapy may decrease the incidence of RDS caused by HMD in preterm infants.

In preterm pregnancy, intramuscular dexamethasone will reach fetal blood circulation through the placenta. In lungs, dexamethasone binds to receptor III in pneumotocyte cell type II and then after passing through the cytoplasm, it will bind to receptor III in nuclear cell. Dexamethasone stimulates the production of several enzymes such as cholinephosphotransferase enzyme, phosphatidate phosphatase enzyme and phosphatidate cytidyltransferase.9 -11

The ideal method for assessing lung maturity is lung profile. This is a modified method that combines lecithine/sphynomyelene (L/S) ratio and chromatography method. Basically, it divides phospholipids into small components and then each component is counted. This method is a gold standard for lung maturity but this method is very invasive.4,13

In this study, we used lamellar bodies count to assess lung maturity. The basic principle of this test is to detect surfactant secreted by pneumotocyte II by assessing lamellar bodies. The lamellar bodies count is associated with gestational age and lung maturity.

We found strong association between dexamethasone and lung maturity ($P<0.0001$). In nuclear cell, dexamethasone stimulates the production of some enzyme such as cholinphosphotransferase enzyme, phosphatidate phosphatase enzyme and phosphatidate cytidyltransferase that increase production of surfactant which is important for lung maturity.21-24 This result was in accordance with previous study done by Scottish Neonatal Consultants Collaboration25 in their meta analysis of 11 randomized trials using the same method as our study. They reported a decrease mortality rate of 70% of HMD after given antenatal dexamethasone for 24h or more in infants born before 37 weeks of gestational age ($X^2=12.0; P<0.001$). Junara23 with shake test had suggested the benefit of antenatal dexamethasone for lung maturity. We also found significant effect of dexamethasone for lung maturity associated with lamellar bodies count using independent t-test with mean different of 8.68. With the same method Henderson24 found an increase of lamellar bodies count in parallel with lung maturity.

Tarnow and Mordi26 compared the efficacy of antenatal dexamethasone, betamethasone and hydrocortisone for lung maturity in preterm delivery measured by shake test. They found dexamethasone had greater beneficial effect on lung maturity [OR=32.02; 95% CI I5.38; 190.57; $P<0.001$]. Sinclair27 found from metaanalysis of randomized trial a decreased mortality of 65% of HMD after given antenatal dexamethasone therapy for 24h.

The effect of confounding factors like birth weight, gestational age and mode of delivery can be reduced by comparable distribution of both groups. Logistic regression analysis showed no significant association between confounding factors and lung maturity. Henderson24 reported similar results in his study of 132 premature infants.

In conclusion, dexamethasone administered in pregnant women during preterm delivery significantly improves lung maturity as measured by lamellar bodies count.

Acknowledgments

We are grateful to DR. Dr. Ery Gumilar, SpOG, staff of Obstetric and Gynecology Departement, Medical Faculty of Airlangga
References

1. Hamid A. Penatalaksanaan bayi kurang bulan. In: Hamid A, editor. Neonatologi I. Denpasar: Lab IKA FK UNUD; 1990. p. 25-7.
2. Iams JD. Obstetric Inertia: An obstacle to the prevention of prematurity. Am J Obstet Gynecol 1998;256:796-9.
3. Levin LD. Hyaline membrane disease. In: Levin LD, Morris CF, Moore CG, editors. A practical guide to Pediatric Intensive care. 2nd ed. Princeton: The CV Mosby Company; 1984. p. 222-31.
4. Overall CJ. Hyaline membrane disease. In: Behrman ER, Vaughan CV, Nelson EW, editors. Nelson textbook of pediatrics. 13th ed. Philadelphia: WB Saunders Company; 1987. p. 394-8.
5. Haslam R. Neonatal respiratory distress. In: Marnoto W, Satoh K, Sakata H, Nishuijima S. Assessment of fetal lung maturity using newly developed immunological measurement of fetal pulmonary surfactant apoprotein – A in amniotic fluid. Cited 2002 October 15. Available from: URL: http://www.atlanta-mfm.com.
6. Karsono B, Wiknyosastro GH. Pemeriksaan surfaktan cairan pada neonatus. Naskah Forum Ilmiah Tahunan ke V RSAB SpPD dan Dr. I.B. Subanada, SpA from Medical Faculty of Udayana University/Sanglah Hospital Denpasar for their contribution on statistical analysis.
7. Narere AA. Kematian perinatal di RS Sanglah Denpasar. Standar diagnosis dan terapi. Denpasar. Standar diagnosis dan terapi. Denpasar: FKUI; 1991. p. 303-7.
8. Albert MD, Morison JC. Glucocorticoids and fetal pulmonary surfactant apoprotein – A in amniotic fluid. Cited 2002 October 15. Available from: URL: http://scientific.sysmex.co.jp/spa/paper_e/214086.htm.
9. Albert MD, Morison JC. Glucocorticoids and fetal pulmonary surfactant apoprotein – A in amniotic fluid. Cited 2002 October 15. Available from: URL: http://scientific.sysmex.co.jp/spa/paper_e/214086.htm.
10. Albert MD, Morison JC. Glucocorticoids and fetal pulmonary surfactant apoprotein – A in amniotic fluid. Cited 2002 October 15. Available from: URL: http://scientific.sysmex.co.jp/spa/paper_e/214086.htm.
11. Well LR, Papile LA, Gardner MO, Hartenberger CR, Merker L. Impact of antenatal corticosteroid therapy in very low birth weight infant on chronic lung disease and other morbidities of prematurity. J Perinatol 1999;19:578-81.
12. Amirullah A, Akib A. Penyakit membran hialin. In: Markum A,H, Ismael S, Alatas H, Akib A, Firmansyah A, Sastroasmo S, editors. Buku ajar ilmu Kesehatan Anak Jilid I. Jakarta: FKUI; 1991. p. 303-7.
13. Lubchenco LO. The preterm infant. In: Scaffer Aj, editor. The high risk Infant. Philadelphia, London, Toronto: WB Saunders; 1976. p. 125-48.
14. Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD. Williams’s Obstetrics. 21st ed. New York: Mc Graw-Hill; 2000. p. 690-718.
15. Atlanta Maternal-Fetal Medicine. Clinical discussional; Abreach of pneumatic maturity: lamellar body count predicts lung in good shape. 1996. Cited 2002 October 12. Available from: URL: http://www.atlanta-mfm.com.
16. Cunningham FG. Hyaline membrane disease. In: Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD, editors. Williams’s Obstetrics. 21st ed. New York: Mc Graw-Hill; 2000. p. 568-609.
17. Cunningham FG. The risk preterm infant. In: Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD, editors. Williams’s Obstetrics. 21st ed. New York: Mc Graw-Hill; 2000. p. 16-29.
18. Leveno KJ. The prevention of neonatal respiratory distress syndrome. In: Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD, editors. Williams’s Obstetrics. 21st ed. New York: Mc Graw-Hill; 2000. p. 486-506.
19. Cunningham FG. The preterm pregnancy. In: Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC, Hauth JC, Wenstrom KD, editors. Williams’s Obstetrics. 21st ed. New York: Mc Graw-Hill; 2000. p. 538-57.
20. Lab/SMF Obstetri dan Ginekologi FK UNUD/RSUP Sanglah Denpasar. Standar diagnosis dan terapi. Denpasar: FK UNUD; 2003. p. 12-20.
21. Roberts WE, Morrison JC. Pharmacologic induction of fetal lung maturity. Clin Obstet Gynecol 1991;34:319-27.
22. Eriksen NL, Blanco JD. The role of corticosteroids management in patients with preterm premature rupture of the membranes. Am J Obstet Gynecol 1991;34:694-701.
23. Junara P. Antenatal corticosteroid therapy and fetal behaviour: a randomized study. Presented at the 13th National Congress of Pediatrics, Bandung; July 4-8, 2005.
24. Henderson-Smart DJ, Duck-Chong CG. Fetal lung maturation assessment after administration of glucocorticoid. Med J Aus 1991;2:535-6.
25. Scottish Neonatal Consultants’ Collaborative Study Group. Trends and variations in use of antenatal corticosteroids to...
prevent neonatal respiratory distress syndrome: recommendation for national and international comparative audit. Br J Obstet Gynaecol 1996;103:534-40.

26. Tarnow, Mordi W. Trends and variation in use of antenatal corticosteroid to prevent neonatal respiratory distress syndrome: recommendation for national and international comparative audit. Br J Obstet Gynaecol 1996;103:534-40.

27. Sinclair JC. Meta-analysis of randomized controlled trials of antenatal corticosteroid for the prevention of respiratory distress. Am J Obstet Gynecol 1995;24:335-44.