Sizes of atmospheric particulate matters determine the outcomes of their interactions with rainfall processes

Relotilwe Maboa¹, Kowiyou Yessoufou¹*, Solomon Tesfamichael¹ & Yegnanew A. Shiferaw²

Environmental sustainability remains at risk, given the coupled trends of economic development with air pollution. The risk is even greater in the water-stressed world, given the potential suppression effects of air pollutants on rain formation. Here, since these suppression effects remain debated, we tested the hypothesis that air pollutants suppress rainfall in the water-stressed South Africa. This was done by fitting generalized linear models to a 21-year historical dataset of rainfall and air pollutants. We found that some gaseous pollutants and PM$_{10}$ show a significant negative correlation with rainfall, perhaps due to the temperature inversion they cause, which might prevent the upward rise of humid air and convective clouds to grow high enough to produce rain. Surprisingly, as opposed to PM$_{10}$, we found a rather positive significant effect of PM$_{2.5}$. Altogether, our study supports the hypothesis of rain prevention by pollutants but provides some nuances that are dependent on the size of air particle matters. To achieve environmental sustainability while growing the economy, we can only rely on emission purification technologies to strike this trade-off.

Water scarcity—the lack of sufficient water in certain parts of the world—has plagued the twenty-first century¹,². Water scarcity across the globe is a threat to human health, the environment, food supplies and socio-economic development⁴. Around 1.2 billion people do not have access to safe drinking water in the Global South, and an additional 700 million people are expected to be displaced in the world due to water scarcity⁵. The International Water Management Institute predicted a severe water scarcity by 2025 for multiple countries in the Global South, due to increasing population growth and man-made pollution⁶. Also, approximately 4 billion people worldwide are predicted to be affected by water scarcity by 2050⁷,⁸, and the severity of the impacts of water scarcity may be worse than currently observed due to the exponential growth of human population.

Indeed, we have entered the Anthropocene, an epoch that started in the 1800s when man-made activities began to significantly impact the planet’s climate, ecosystems and environmental resources⁹. In this epoch, the impacts of human pressures on the environment are outrunning those of natural environmental processes that have been shaping the environment over the past geological times⁹. One key feature of the Anthropocene is the unprecedented increase in the use of fossil fuels¹¹,¹², leading to massive and frequent air pollution that is putting human health at risk and jeopardizing the Earth system’s ability to provide clean drinking water to human¹³. According to Rosenfeld¹¹, anthropogenic air pollution may be aggravating water scarcity issues by suppressing rainfall processes¹²,¹³,¹⁴,¹⁵. For example, an early study reported a reduction in rainfall in Jiului Valley (Romania) following a period of poor air quality driven by particulate matters generated by thermoelectric power plants and coal mining fields¹⁶. Records of rainfall suppression in the Haifa Bay region, Israel, was attributed to air pollution, since rainfall delays are notably pronounced during the periods of massive urbanization and heavy industrial activities¹⁷. The region of Haifa Bay harbours major pollution sources consisting of coal-fired power plants, refineries, several industrial activities, and a dense population¹⁷. Furthermore, Jirak and Cotton¹⁸ investigated the effect of air pollution on rainfall along the Front Range of the Colorado Rocky Mountains (United States) and reached a similar conclusion. Similarly, in Australia, urban and industrial air pollution were reported to have completely suppressed precipitation from 2.5-km deep clouds¹⁹, whilst heavy smoke from forest fires suppress rainfall from 5-km-deep tropical clouds²⁰,²¹. The mechanism proposed to explain the suppression of rainfall by air pollutants is that aerosols serve as small cloud condensation nuclei (CCN) that form large concentrations of

¹Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa. ²Department of Statistics, University of Johannesburg, Johannesburg, South Africa. *email: kowiyouy@uj.ac.za
small cloud droplets, which in turn prevent the collision and coalescence of droplets, without which rainfall-forming processes are disrupted\(^1\),\(^2\),\(^11\),\(^12\).

However, if the hypothesis of rainfall suppression by air pollution holds, we would expect that cloud seeding in a polluted environment would accelerate the conversion of cloud water to precipitation, and thus enhance rainfall amounts. Unfortunately, polluted areas are not generally drier, and rain enhancement by cloud seeding remains inconclusive in some geographies\(^2\),\(^3\),\(^21\). Even the study commissioned by the World Meteorological Organization and the International Union of Geodesy and Geophysics on the hypothesis was clear in its conclusion: “it is difficult to establish clear causal relationships between aerosols and precipitation and to determine the sign of the precipitation change in a climatological sense. Based on many observations and model simulations the effects of aerosols on clouds are more clearly understood (particularly in ice-free clouds); the effects on precipitation are less clear”\(^2\),\(^4\). Therefore, the hypothesis of rainfall suppression needs further investigation\(^11\), and the present study aims to contribute to furthering our knowledge on this front, particularly in the water-stressed world, e.g., South Africa.

South Africa is, indeed, one of the most water-stressed countries listed amongst the prominent southern African regions predicted to undergo severe water scarcity by 2025\(^2\),\(^5\),\(^6\). The annual average rainfall in South Africa is 465 mm, which is approximately half of the global annual average rainfall of 860 mm\(^2\),\(^6\),\(^7\). The Vaal Triangle region in South Africa is of environmental concern, due to alarming records of air pollutant concentrations coupled with both an increase in population growth and urbanization\(^3\),\(^8\),\(^9\). Comparative to the examples of Haifa Bay in Israel and Jiuliu Valley in Romania, elevated air pollution concentrations in the Vaal Triangle are driven by man-made activities such as industrial processes, power generation, mining, fossil fuel burning, biomass burning, transportation, waste incineration, domestic fuel burning, water treatment works and agricultural practices\(^9\),\(^10\),\(^11\). The present study aims to test the hypothesis that air pollutants prevent or reduce rainfall, using the Vaal Triangle in South Africa as the model system. This was done using firstly the full year data and secondly the rainy season data over 21 years. South Africa relies heavily on dirty energy sources, e.g., coal-power plants, to drive its economic growth, resulting in several air pollution hotspots in the country causing various public health issues.

Results

In terms of rain quantity, only PM\(_{10}\) among all the pollutants tested, correlates negatively and significantly with the quantity of rain (Fig. 1), irrespective of the period considered: full year (\(\beta = −0.037 ± 0.007, P < 0.001\); Fig. 1a; Table 1) or rainy season (\(\beta = −0.059 ± 0.016, P = 0.0003\); Fig. 1b; Table 2). To better understand the relationships between PM\(_{10}\) and rainfall, we reconstructed the temporal changes in both variables, and this not only confirms the negative relationships between both variables such that when rainfall quantity decreases, PM\(_{10}\) concentrations increase and vice versa, irrespective of the period: full year (Fig. 2a) and rainy season (Fig. 2b).

Furthermore, in terms of rainfall occurrence, our analysis of the full-year data shows a negative effect of CO (\(\beta = −0.713 ± 0.215, P = 0.0009\); Fig. 3a; Table 3), SO\(_2\) (\(\beta = 0.055 ± 0.017, P = 0.001\); Fig. 3b; Table 3), and NO (\(\beta = −0.071 ± 0.031, P = 0.02\); Fig. 3c; Table 3) and PM\(_{10}\) (\(\beta = −0.04 ± 0.004, P < 0.001\); Fig. 3d; Table 3). Interestingly, the effect of PM\(_{2.5}\) on rain occurrence was positive (\(\beta = 0.015 ± 0.004, P = 0.001\); Table 3).

Using the rainy season dataset, we confirm the negative significant effect of SO\(_2\) (\(\beta = −0.072 ± 0.018, P = 0.0001\); Table 4) and PM\(_{10}\) (\(\beta = −0.036 ± 0.0051, P < 0.001\); Table 4) on rain occurrence, implying that higher concentrations of SO\(_2\) and PM\(_{10}\) tend to correspond to the absence of rain (rain prevention). However, as opposed to PM\(_{10}\), we found a rather positive and significant relationship between PM\(_{2.5}\) and rain occurrence (\(\beta = 0.022 ± 0.005, P < 0.0001\); Table 4), suggesting that higher concentrations of PM\(_{2.5}\) tend to drive rain occurrence (rain promotion).

Nonetheless, the positive significant correlation between rainfall and PM\(_{2.5}\), irrespective of whether full-year or rainy season data was used, was not found in univariate models (involving only PM\(_{2.5}\) as predictor) but in multi-variate models (involving PM\(_{2.5}\) and other pollutants). For example, with rainy season dataset, we found no significant effect of PM\(_{2.5}\) on rain quantity (\(\beta = −0.018 ± 0.016, P = 0.251\)) or on rain occurrence (\(\beta = −0.0003 ± 0.0009, P = 0.735\)), suggesting that the positive effect reported above for PM\(_{2.5}\) is mediated by other pollutants.

Discussion

Our key objective in the present study was to test the hypothesis that air pollution suppresses rainfall forming processes. Overall, we found support for this hypothesis but with some nuances. Specifically, some pollutants, e.g., PM\(_{10}\), show a parallel dynamic relationship with rainfall such that the increase in PM\(_{10}\) corresponds to the decrease of rainfall and vice versa. Further pollutants, essentially three colourless gases (CO, SO\(_2\), NO) also show negative correlation with rainfall (quantity or occurrence). How could these negative relationships be explained?

Air pollutants or aerosols, particularly particulate matters (here PM\(_{10}\)), play the role of cloud condensation nuclei (CCN) which attract cloud droplets by adsorption. Then, adsorbed droplets may collide and coalesce to form larger drops that are big enough to fall as rain. It is worth mentioning that cloud droplets form when humid air rises and becomes supersaturated with liquid water. Then, water vapour condenses onto surfaces provided by CCN aerosols\(^3\). Aerosol particles, acting as CCN, lead to numerous smaller cloud droplets in areas of elevated air pollution concentration\(^11\),\(^2\),\(^3\),\(^23\),\(^25\). The smaller droplet size then suppresses precipitation formation due to a reduction of the droplet collision–coalescence process, which leads to a longer cloud lifetime as well as reduction and delay in precipitation occurrence\(^12\).

If the collision and coalescence of droplets are prevented (e.g., due to temperature inversion), then there wouldn’t be rain (rain prevention) or instead of being prevented, if they rather occur rarely or infrequently, there might be rain but in small quantity (rain reduction), thus leading to the negative relationships we found between PM\(_{10}\) concentrations and rainfall amount/occurrence\(^1\),\(^2\),\(^11\),\(^12\). Such negative relationships have been reported in

Note: The content above is a summary of the information provided in the scientific paper. For a more detailed understanding, please refer to the original paper. The values and statistics mentioned are indicative and should be cross-referenced with the original data sources.
When the rainfall increases, there is a concomitant fall in PM10 concentrations (rainfall scavenging). This coupling dynamic of both pollutants and rainfall could only be explained by firstly the beneficial effects of PM10 on rain formation processes as explained above, i.e., adsorption of cloud droplets on CCN (here PM10), collision and coalescence of droplets causing rainfall, and secondly the negative scavenging effects of rainfall wiping out PM10 from the atmosphere, thus causing the fall of atmospheric PM10 concentrations concomitantly to the increase of rainfall. Various studies have showed that atmospheric PM10 concentrations are negatively correlated with rain formation and precipitation. The study found a significant decrease in precipitation with increasing aerosol load, due to suppression of the warm-rain formation processes. Interestingly, our study revealed a parallel temporal dynamic between PM10 and rainfall such that an increase in PM10 corresponds to a decrease in rainfall and when the rainfall increases, there is a concomitant fall in PM10 concentrations (rainfall scavenging). This coupling dynamic of both pollutants and rainfall could only be explained by firstly the beneficial effects of PM10 on rain formation processes as explained above, i.e., adsorption of cloud droplets on CCN (here PM10), collision and coalescence of droplets causing rainfall, and secondly the negative scavenging effects of rainfall wiping out PM10 from the atmosphere, thus causing the fall of atmospheric PM10 concentrations concomitantly to the increase of rainfall. Various studies have showed that atmospheric

	Estimate	Std. Error	t value	P value
CO	-0.571498	0.431249	-1.325	0.185
NOx	-0.008458	0.033366	-0.253	0.800
SO2	-0.034845	0.033605	-1.037	0.300
NO	-0.008458	0.033366	-0.253	0.800
NO2	-0.010244	0.013441	-0.762	0.446
NO3	0.025066	0.040241	0.623	0.533
PM2.5	0.009395	0.009188	1.023	0.307
PM10	-0.034845	0.033605	-1.037	0.300

	Estimate	Std. Error	t value	P value
CO	-0.571498	0.431249	-1.325	0.185
NOx	-0.008458	0.033366	-0.253	0.800
SO2	-0.034845	0.033605	-1.037	0.300
NO	-0.008458	0.033366	-0.253	0.800
NO2	-0.010244	0.013441	-0.762	0.446
NO3	0.025066	0.040241	0.623	0.533
PM2.5	0.009395	0.009188	1.023	0.307
PM10	-0.034845	0.033605	-1.037	0.300

Table 1. Coefficients of the GLM model fitted to the full year rainfall quantity data (2000–2021).
pollutants concentrations can be naturally controlled by precipitation through the process of wet removal from the atmosphere. Specifically, Zhou et al. showed a size-dependency of the effectiveness of the removal of aerosol particles by rainfall. They showed that it is relatively easier for the rain to remove particles of sizes 2.5–10 μm from the atmosphere while those of 0.2–2 μm were more difficult to be removed. They also indicated that the efficiency of aerosol removal was significantly affected by precipitation intensity such that short-term heavy precipitation helped remove particles of diameter < 2.2 μm, but long-term weak precipitation facilitated the removal of particles > 2.2 μm. The complexity of the removal effectiveness is further confirmed in a recent study which showed that the removal of aerosol particles by rainfall is influenced by meteorological conditions, raindrop diameter, and aerosol particle size.

Similar to our finding for PM10, we also found that gaseous pollutants (CO, SO2, NO) showed negative effects on rainfall (quantity and occurrence). We put forward two possible explanations. First is temperature inversion, which is characterised by a layer of cool air in the troposphere being overlain by a layer of warmer air (the opposite characterises the normal conditions). We suggest that pollutants, including gaseous pollutants, cause the temperature increase of the air layer covering underneath the cool air in the troposphere (temperature inversion). As a support for this is a recent study that demonstrated that when PM10 is low, rainfall is above normal and temperature inversion is less intense than normal whereas high PM10 corresponds to below-normal rainfall and stronger than normal temperature inversion. These findings suggest that pollutants, not only decrease rainfall but they also cause intense temperature inversion. We further suggest that this abnormality, i.e., the inversion, may act as a cap or barrier preventing the upward movement of the air as well as the diffusion of particle matters. In so doing, temperature inversion prevents convective clouds to grow high enough to produce rain, thus justifying the negative effects we found for gaseous pollutants on rainfall. Secondly, gaseous pollutants can naturally be converted into airborne particle matters through nucleation and condensation and this gas-to-particle conversion can be facilitated by atmospheric base species such as ammonia (NH3) especially at lower gas-phase acid concentrations. The conversion of gas to particle therefore increases the amount of particle matters in the air, which may, following the same processes presented above for PM10, lead to rain prevention.

The negative effects of gaseous pollutants on rain were also reported elsewhere, e.g., India, where Shukla et al. reported that SO2 and NOx from various households and industrial activities decrease or prevent rainfall. Interestingly, the removal of gaseous pollutants from the atmosphere can occur naturally when the atmospheric gases are absorbed and particulate matters are trapped in rain droplets falling on the ground (i.e., rainfall scavenging). Again, the efficiency of this rainfall scavenging process depends on the rain droplet size and rainfall intensity, thus the relationship between the rainfall and gaseous pollutants may vary depending on the properties of the precipitation and pollutants in the atmosphere.

Surprisingly, we also found that, as opposed to PM10, PM2.5 correlates positively with rainfall, but this positive effect is only found when PM2.5 is included in a multi-variate (rather than univariate) model where other pollutants are added. This suggests that the positive effect of PM2.5 is aided by other pollutants. Other studies also
reported that PM_{2.5} effects are mediated by other pollutants: a reduction in CO_{2} by 10,000 t results in a reduction in PM_{2.5} by 3.3 t35. How is the aided effect of PM_{2.5} possible? Zhou et al.38 showed that it is easier for rain to scavenge particles of sizes 2.5–10 μm from the atmosphere than those of 0.2–2 μm (except in case of heavy rain; see also39). This means that PM_{2.5} persists longer in the air than PM_{10} when rains fall. As such, while PM_{10} have been scavenged by precipitation and PM_{2.5} persists, the collision-coalescence process of droplets35 around PM_{2.5} becomes more efficient, leading to rain formation, and thus the positive effect of PM_{2.5} observed in our study.
Table 4. Coefficients of the Binomial GLM model fitted to the rainy season rainfall occurrence data (2000–2021).

Pollutant	Estimate	Std. Error	t value	P value
CO	−0.256753	0.244281	−1.051	0.293233
NO	−0.058337	0.036365	−1.610	0.107461
PM10	−0.036670	0.005143	−7.130	<0.0001
O3	0.006655	0.006508	1.023	0.306514
NO2	0.039687	0.035663	1.113	0.265783
NOX	0.055381	0.033464	1.655	0.097836
PM2.5	0.022271	0.005339	4.171	<0.0001
SO2	−0.072155	0.018901	−3.817	0.000155

Overall, our study confirms the hypothesis that pollutants may prevent or reduce rainfall. What appears to be the contribution of our study is our finding that PM2.5 may promote rainfall instead of preventing it, but this positive effect may be aided by other pollutants. Our study therefore reveals the ground for cloud seedings to provoke rainfall. However, poor air quality in our study area, driven by dust and gaseous pollutants generated by thermoelctric power plants, coal mining fields and other industrial activities, is a public health concern that needs to be addressed. On this front, several environmental management initiatives have been undertaken by the South Africa’s Department of Environmental Affairs since 2006, including identification of industries causing concerning levels of atmospheric emission, setting of atmospheric emissions limits and standard, improved air quality monitoring programs, and awareness workshops promoting effective implementation of the Air Quality Management Plan. Unfortunately, there is still no compliance that meets the acceptable standard of emissions. This is not surprising given the need for economic growth which, unfortunately, relies on coal-based dirty energy that increases pollution. For example, a recent study reported a decrease in Gross Domestic Product (GDP) following a decrease in PM2.5 in China. While we call for a ‘just transition’ towards clean energy across the globe, we highlight that in the context of urgent need for economic development which calls for industrialisation in the global south, we can only rely on technology progress, e.g., emission purification technologies, if we are to strike a trade-off between economic growth and environmental sustainability.

Methodology

Study area. South Africa is a water-stressed country with an annual rainfall representing half of the world’s average. South Africa shares this water stress status with several other countries in various continents around the world as well as its dirty energy based economic development pathways, resulting various air pollution hotspots. One of these hotspots, the Vaal Triangle region (Fig. 4), covers a region of over 4900 km² located 60 kms south of the city of Johannesburg, stretching from Randvaal to Sasolburg in the southwest. It is an industrial region plagued by persistently high concentrations of air pollutants comprising major areas such as Soweto, Johannesburg, Lenasia, Ennerdale, Orange Farm, Evaton, Sebokeng, Vereeniging and Meyerton. The population of the Vaal Triangle is 3,127,907. On average, the annual rainfall ranges from 671 mm in Vereeniging to 751 mm in Johannesburg. The promulgation of the National Environmental Management Air Quality Act (NEM:AQA) in South Africa resulted in the declaration, in 2006, of the Vaal Triangle as the Vaal Triangle Priority Area (VATPA), i.e., a pollution hotspot due to alarming levels of atmospheric emissions (i.e., SO2, benzene and particulate matters) from industrial sources such as chemical industries, petrol refiners, fertiliser production and coal mining operations.

Data collection. Historical rainfall amount and ambient air pollutant concentrations for the VATPA were collected from 2000 to 2021. Specifically, data on daily rainfall totals (quantity) were collected by the South African Weather Service (https://www.weather.co.za/home/aboutclimateatsaws, accessed August 2020) in four air pollution monitoring stations in the VATPA, including Meyerton, Sasolburg, Vereeniging and Zuurebekom. We converted these daily data into monthly rainfall quantity over a 21-year period (2000–2021). In addition, we coded monthly rainfall quantity as 1 when rainfall quantity > 0 and 0 when rainfall quantity = 0; this coded data is referred to as ‘rainfall occurrence’ data. In each of the 21-year period covered by our data, both rainfall data (quantity and occurrence) were considered firstly across the full year (i.e., Jan–Dec.) and secondly for only the rainy season. The pollutants concerned in the present study are SO2, NO, NOx, NO2, CO, O3, PM10 and PM2.5.

All data collected per monitoring station were combined to represent the data for the entire VATPA region. These data are available online at https://figshare.com/s/51736de2184f8b61e65e.
Data analysis. To test the hypothesis that pollutants prevent or reduce rainfall, we fitted the GLM model to the data collected, using rainfall as the response variable and pollutants as the predictors. Rainfall was measured in two ways: quantity of rain (continuous data) and rain occurrence defined as a binary variable coded 1 (there is rain) versus 0 (no rain). Therefore, we fitted gamma GLM and binomial GLM for rainfall quantity and occurrence data, respectively.

The gamma regression model. Our rainfall data is positively skewed; the gamma distribution fits well with this type of data. We can model the relationship between the positively skewed response variable (that is, the quantity of rain) and potential explanatory variables (pollutants) using the gamma regression model explained below.

For \(y \) that follows a gamma distribution, the probability density function is given as:
\[f(y; \mu, \nu) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu} \right)^\nu y^{\nu-1} e^{-\frac{\nu y}{\mu}}, \quad y > 0 \]

(1)

where parameter \(\nu > 0 \) is the shape parameter and \(\mu > 0 \) is the scale parameter. To estimate model parameters, we used the maximum likelihood estimation method with the log-likelihood function as follows:

\[\ell(y; \mu, \nu) = -\log \Gamma(\nu) + \nu \log \nu + (\nu - 1) \log y - \nu \log \mu - \frac{\nu y}{\mu} \]

(2)

where the mean function of \(y \) for the gamma regression with log link function is \(E(Y_i) = \mu_i = \theta_i = e^{x_i \beta} \) with \(x = (x_{i1}, x_{i2}, \ldots, x_{ip}) \), \(i = 1, \ldots, n \), where \(p \) is the number of pollutants, \(n \) is the sample size and \(\beta = (\beta_0, \beta_1, \ldots, \beta_p) \) is the regression coefficient.

The logistic regression models. Here, the dependent variable \(y \) is binary, taking value 1 if it possesses some attribute and 0 otherwise. Since rain occurrence was defined as a binary variable coded as 1 (rain) versus 0 (no rain), the logistic regression model is ideal for modelling the relationship between the binary response variable (i.e., rain occurrence) and pollutants.

Suppose \(y \) has the binomial distribution with probability density function:

\[f(y) = \binom{n}{y} \pi^y (1 - \pi)^{n-y}, \quad y = 0, 1, 2, \ldots, n. \]

(3)

Consider the response variable \(y_i; i = 1, \ldots, n \) that follows a known probability distribution that depends on a parameter \(\theta \). If we can write the function in the following form (Eq. 4), it belongs to the exponential family:

\[f(y; \theta) = \exp \{ a(y) b(\theta) + c(\theta) + d(y) \}, \]

(4)

where \(b(\theta) \) represents the link function which is also called the natural parameter of the distribution; \(a(y) = y; \) \(c(\theta) \) is the cumulant, and \(d(y) \) refers to the normalization term.

The binomial distribution given in Eq. (3) can be written in the general exponential form (4) as follows:

\[f(y; \pi) = \exp \left\{ y \ln \left(\frac{\pi}{1 - \pi} \right) + n \ln (1 - \pi) + \ln \left(\frac{n}{y} \right) \right\} \]

(5)

where the coefficient of \(y \) is the canonical parameter which is the logit of \(\pi \) as shown below:

\[b(\pi) = \ln \left(\frac{\pi}{1 - \pi} \right) = \logit(\pi). \]

In this case, the probability of the rain occurrence is dependent on the series of pollutants:

\[\pi(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p \]

(6)

where \(\pi \) is the probability of rain, \(\beta_0, \beta_1, \ldots, \beta_p \) are the \(\beta \) coefficients for each pollutant \(x_1, x_2, \cdots, x_p \). The probability \(y \) (rain occurrence) will take value 1 (rain) is

\[P(y = 1) = \pi(x) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p}}. \]

(7)

The probability \(y \) (rain occurrence) will take value zero (no rain) is

\[P(y = 0) = 1 - \pi(x) = \frac{1}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p}}. \]

(8)

Like the gamma regression, the maximum likelihood estimation method was used to estimate the model parameters in the logistic regression model. All the above analyses were implemented in R®.

Data availability

All the data analyzed in the present study as well as the R script used for the analysis are available online at https://figshare.com/s/571736de2849be615e.

Received: 11 May 2022; Accepted: 17 October 2022

Published online: 19 October 2022

References

1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. *Sci. Adv.* 2, e1500323 (2016).
2. He, C. et al. Future global urban water scarcity and potential Solutions. *Nat. Commun.* 12, 4667 (2021).
3. Liu, J. et al. Water scarcity assessments in the past, present, and future. *Earth's Future* 5, 545–559 (2017).
4. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell' Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. *Sci. Adv.* 6, 1–10 (2020).
5. Hameeteman, E. *Future Water (In)security: Facts, Figures, and Predictions* (Global Water Institute, 2013).
6. IWMI. *World Water Demand and Supply, 1990 to 2025: Scenarios and Issues, Research Report 19* (1996).
7. du Plessis, A. *Current and Future Water Scarcity and Stress. In: Water as an Inescapable Risk*. Springer Water. Springer, Cham (2019).
8. McNally, A. et al. Acute water-scarcity monitoring for Africa. Water 11, 1968 (2019).
9. Mikhail, A. Enlightenment anthropocene. Eighteenth-Cent. Stud. 49(2), 211–231 (2016).
10. Crutzen, P. J. & Stoermer, E. F. The ‘Anthropocene’. Glob. Change Newslett. 41, 17–18 (2000).
11. Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793–1796 (2000).
12. Rosenfeld, D. & Andreae, M. O. Aerosol–cloud–rainfall interactions: Part 1: the nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89, 13–41 (2008).
13. United Nations. Independent Group of Scientists appointed by the Secretary-General, Global Sustainable Development Report 2019: The Future is Now—Science for Achieving Sustainable Development (2019).
14. Dore, M. H. I. Climate change and changes in global rainfall patterns: What do we know? Environ. Int. 31, 1167–1181 (2005).
15. Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., White, L. L., ed. (2014). Climate Change: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), United Kingdom and New York, NY, USA Cambridge University Press, Cambridge (2014).
16. Traštė, E., Ionicia, M. & Barbu, O. Correlations Between the Air Pollution And The Rainfall Composition In Jului Valley Area. Studia Universitatis Babeş-Bolyai, Geologia XLVIII(2), 95–100 (2003).
17. Givati, A. & Rosenfeld, D. Separation between cloud seeding and air pollution effects. J. Appl. Meteorol. Climatol. 44, 1298–1314 (2005).
18. Irak, I. L. & Cotton, W. R. Effect of air pollution on rainfall along the Front Range of the Rocky Mountains. J. Appl. Meteorol. Climatol. 45, 236–245 (2005).
19. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).
20. Rosenfeld, D. & Woodley, W. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Chapter: Spaceborne Inferences of Cloud Microstructure and Rainfall Processes: Synthesis, Insights and Implications (Meteorological Monographs, American Meteorological Society, 2003).
21. Borys, R. D. et al. Chemical and microphysical properties of marine stratiform clouds in the North Atlantic. J. Geophys. Res. 103, 73–22085 (1998).
22. Borys, R. D., Leventhal, D. H., Cohn, S. A. & Brown, W. O. J. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett. 30, 538 (2003).
23. National Research Council. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties (National Academies Press, 2005).
24. Levin, Z. & Cotton, W. Aerosol Pollution Impact on Precipitation: A Scientific Review: Report from the WMO/IUSSG International Aerosol Precipitation Science Assessment Group (IAPASG) (World Meteorological Organization, 2007).
25. Mukheibir, P. & Sparks, D. Water Resource Management and Climate Change in South Africa: Visions, Driving Factors and Sustainabe Development Indicators (University of Cape Town, 2003).
26. DWA. Annual National State of Water report for The Hydrological Year 2012/2013. Pretoria: Department of Water Affairs (2014).
27. Rolda, S. N. et al. Water security in South Africa: Perceptions on public expectation and municipal obligations, governance and water re-use. Water SA 42, 456–465 (2016).
28. Bornman, R., Liebenberg-E enslin, H. & Von Gruenewaldt, R. Spatial Techniques for regional-scale air quality model evaluation—revisiting the Vaal Triangle Air-shed Priority Area baseline results (2016).
29. Geig, F., Garland, R. M., Naid, S., Maluleke, A. & Van der Merwe, M. Assessment of changes in concentrations of selected criteria pollutants in the Vaal and Highveld priority areas. Clean Air J. 29, 1–13 (2019).
30. DEAT. Government Notices: Notice of Intention to establish The Vaal Triangle Air-shed Priority Area Air Quality Management Plan in terms of Sec On 19(1) of the National Environmental Management: Air Quality Act,2004 (Act No. 39 of 2004) (2008).
31. Kleynhans, E. H. Spatial and temporal distribution of trace elements in aerosols in the Vaal Triangle, North-West University, South Africa (accessed 6 April 2020); https://repository.wnu.ac.za/handle/10394/1082 (2008).
32. Campos Braga, R., Rosenfeld, D., Weigel, R., Jurkat, T., Andreae, M. O., Wendisch, M., Pöschl, U., Voigt, C., Mahnke, C., Borrmann, S., Albrecht, R. I., Molleker, S., Vila, D. A., Machado, I. A. T. & Grulich, L. Aerosol concentrations determine the height of warm rain and ice initiation in convective clouds over the Amazon basin. Atmospheric Chem. Phys. 17 (2017).
33. Zhang, L., Fu, M-T., Tian, H., Y, Chen, J-P., Tsai, T-C., Tsai, I-C., Meng, Z. & Yang, X. Anthropogenic aerosols significantly reduce mesoscale convective precipitation and precipitation over Southern China in April. Geophys. Res. Lett., 47 (2020).
34. Gettelman, A., Gagne, D. J., Chen, C-C., Christensen, M. W., Lebo, Z. J., Morrison, H. & G. Gantos. J. Adv. Model. Earth Syst. 13 (2021).
35. Barthlott, C., Zarbooo, A., Matsunobu, T. & Christian Keil, C. Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation. Atmos. Chem. Phys. 22, 2153–2172 (2022).
36. Bodor, K., Bodor, Z., Keresztesi, A. & Szęp, R. PM10 concentration reduction due to the wet scavenging in the Ciuc Basin, Romania. Atmos. Environ. 37, 1–8 (2003).
37. Liu, Z. et al. Analysis of the influence of precipitation and wind on PM2.5 and PM10 in the atmosphere. Adv. Meteorol. 2020, 1039613 (2020).
38. Zhou, Y., Yue, Y., Bai, Y. & Zhang, L. Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Adv. Meteorol. 2020, 2398146 (2020).
39. Ragsdale, K. M., Barrett, B. S. & Testino, A. P. Variability of particulate matter (PM10) in Santiago, Chile by phase of the Madden-Julian Oscillation (MJO). Atmos. Environ. 81, 304e310 (2013).
40. Srivastava, R. C., Miller, C. A., Erickson, C. & Jambhekar, R. Emissions of sulfur trioxide from coal-fired power plants. J. Air Waste Manag. Assoc. 54, 750–762 (2004).
41. Rönkkö, T. et al. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics. Environ. Sci. Technol. 47, 11882–11889 (2013).
42. Viana, M. et al. Impact of maritime transport emissions on coastal air quality in Europe. Atmosphere Environ. 90, 96–105 (2014).
43. Olenius, T., Heitto, A., Roldin, P., Yli-Juuti, T. & Duwig, C. Modeling of exhaust gas cleaning by acid pollutant conversion to aerosol particles. Fuel 290, 120044 (2021).
44. Shukla, J. B., Misra, A. K., Sundar, S. & Naresh, R. Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math. Comput. Model. Dyn. Syst. 48, 832–844 (2008).
45. Andrachne, C. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 3, 131–143 (2003).
46. Zhang, L. M. et al. Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys. 13, 10005–10025 (2013).
47. Zhao, S. P. et al. Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China. Atmos. Chem. Phys. 22, 2153–2172 (2022).
48. Luan, T., Guo, X., Zhang, T. & Guo, L. Below-Cloud Aerosol scavenging by different-intensity rains in Beijing City. J. Meteorol. Res. 33, 126–137 (2019).
49. Jylhä, J. The scavenging of air pollutants by precipitation, and its estimation with the aid of weather radar, Academic Dissertation, Department of Meteorology, University Of Helsinki, Unioninkatu (2000).
50. Dong, F., Yu, B. & Pan, Y. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. *J. Clean. Prod.* **223**, 759771 (2019).
51. DEA. Declaration of certain printing industry activities as controlled emitters and establishment of emission standards (2016) (accessed 9 February 2022); https://www.gov.za/sites/default/files/gcis_document/201611/40402gon1373.pdf
52. Hao, Y. et al. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. *J. Clean. Prod.* **172**, 743e757 (2018).
53. Ding, Y., Zhang, M., Chen, S., Wang, W. & Nie, R. The environmental Kuznets curve for PM2.5 pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data approach. *J. Clean. Prod.* **220**, 984e994 (2019).
54. Molden, D., De Fraiture, C. & Rijjsberman, F. Water scarcity: The food factor. *Issues Sci. Technol.* **23**, 39–48 (2007).
55. Fanteso, B. & Yessoufou, K. Diversity and determinants of traditional water conservation technologies in the Eastern Cape Province, South Africa. *Environ Monit Assess* **194**, 161 (2022).
56. Muyemeki, L., Burger, L. & Pikelh, S. J. Evaluating the potential of remote sensing imagery in mapping ground-level fine particulate matter (PM2.5) for the Vaal Triangle Priority Area. *Clean Air J.* 30 (2020).
57. StatsSA (Statistics South Africa). Community Survey. Pretoria: StatsSA (2016).
58. Uusipaikka, E. Confidence intervals in generalized regression models. Chapman and Hall/CRC (2008).
59. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).

Acknowledgements

We thank the National Research Foundation Incentive Funding for Rated Researchers Grant # 146104. We thank two anonymous reviewers who contributed to improve an early draft of the present paper.

Author contributions

K.Y. designed the project; R.M collected the data under the supervision of K.Y., S.T. and Y.A.S; K.Y., R.M., S.T. and Y.A.S. did the analyses; K.Y., S.T. and R.M. prepared the Figures; All authors wrote the manuscript; K.Y. oversaw the entire process.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to K.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022