Baseline cognition is the best predictor of 4-year cognitive change in
cognitively intact older adults

Jolien Schaeverbeke¹, Silvy Gabel¹, Karen Meersmans¹, Emma Luckett¹, Steffi De Meyer¹,³,
Katarzyna Adamczuk¹, Natalie Nelissen¹, Valerie Goovaerts², Ahmed Radwan⁴, Stefan
Sunaert⁴, Patrick Dupont¹, Koen Van Laere⁵, Rik Vandenberghe¹,²

¹Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Insti-
tute, KU Leuven, Leuven, Belgium;
²Neurology Department, University Hospitals Leuven, Leuven, Belgium;
³Laboratory of Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium;
⁴Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Bel-
gium;
⁵Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU
Leuven and Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium

Corresponding author: Rik Vandenberghe, Neurology Department, University Hospitals
Leuven, Herestraat 49, 3000 Leuven, Belgium, phone: ++ 32 (0)16 344280, e-mail:
rik.vandenberghe@uzleuven.be

Running title: Predictors of cognitive change in cognitively intact older adults
Abstract

Background: We examined in cognitively intact older adults the relative weight of cognitive, genetic, structural and amyloid brain imaging variables for predicting cognitive change over a 4-year time course. **Methods:** Hundred-eighty community-recruited cognitively intact older adults (mean age 68 years, range 52-80 years, 81 women) belonging to the Flemish Prevent Alzheimer’s Disease KU Leuven (F-PACK) longitudinal observational cohort underwent a baseline evaluation consisting of detailed cognitive assessment, structural MRI and 18F-flutemetamol PET. At inclusion, subjects were stratified based on Apolipoprotein E (APOE) ϵ4 and Brain Derived Neurotrophic Factor (BDNF) val66met polymorphism according to a factorial design. At inclusion, 15% were amyloid PET positive (Centiloid > 23.4). All subjects underwent 2-yearly follow-up of cognitive performance for a 4-year time period. Baseline cognitive scores were analysed using factor analysis. The slope of cognitive change over time was modelled using latent growth curve analysis. Using correlation analysis, hierarchical regression and mediation analysis, we examined the effect of demographic (age, sex, education) and genetic variables, baseline cognition, MRI volumetric (both voxelwise and region-based) as well as amyloid imaging measures on the longitudinal slope of cognitive change. **Results:** A base model of age and sex explained 18% of variance in episodic memory decline. This increased to 41.6% by adding baseline episodic memory scores. Adding amyloid load or volumetric measures explained only a negligible additional amount of variance (increase to 42.2%). A mediation analysis indicated that the effect of age on episodic memory scores was partly direct and partly mediated via hippocampal volume. Amyloid load did not play a significant role as mediator between age, hippocampal volume and episodic memory decline. **Conclusion:** In cognitively intact older adults, the strongest baseline predictor of subsequent
episodic memory decline was the baseline episodic memory score. When this score was included, only very limited explanatory power was added by brain volume or amyloid load measures. The data warn against classifications that are purely biomarker-based and highlight the value of baseline cognitive performance levels in predictive models.

Keywords: Alzheimer’s disease, cognitive decline, mediation, preclinical, aging

1 Introduction

There has been a longstanding interest in the brain mechanisms underlying cognitive aging. One of the key characteristics of cognitive aging (Blazer et al., 2015) is decline in episodic memory performance (Park et al., 2002). This decline starts around the third decade (Salthouse, 2010). The rate of decline is relatively constant within an individual under normal circumstances (Rönnlund et al., 2005; Salthouse, 2010; Staffaroni et al., 2018) but highly variable between individuals (Blazer et al., 2015). Fluid intelligence, processing speed and working memory show a similar age-related decline (Salthouse, 2010).

With the advent of Alzheimer’s Disease (AD) *in vivo* imaging biomarkers, it has become possible to test to which degree ‘asymptomatic’ (Dubois et al., 2014) or ‘preclinical’ AD (Sperling et al., 2011) contributes to the variance in episodic memory decline in older adults who fall within published neuropsychological test norms. Possibly, age-related changes in cognition in cognitively intact individuals could be driven by subclinical AD processes, for which age is the most important risk factor (Chételat et al., 2013). Increased amyloid load in cognitively intact healthy older adults is associated with slightly lower baseline cognitive scores and a higher risk of cognitive decline over the subsequent years.
(Villemagne et al., 2013; Burnham et al., 2016; Donohue et al., 2017; Mormino et al., 2017; Maass et al., 2018; Hanseeuw et al., 2019).

In this longitudinal study, we examined which variables predict the subsequent 4-year time course of cognitive functioning in older adults. Per protocol, baseline cognitive scores had to be within the normal range for inclusion. At inclusion cases were stratified for \textit{APOE} $\epsilon4$ and \textit{BDNF} codon 66 met carrier status according to a factorial design. The genetic stratification was meant to enrich the cohort for risk of developing AD as \textit{APOE} $\epsilon4$ is a highly prevalent and potent genetic risk factor for AD (Corder et al., 1993) and a predictor of the rate of cognitive decline in patients with AD (Martins et al., 2005). Moreover, recent work has indicated a higher rate of cognitive decline in \textit{BDNF} val66met carriers who are amyloid-positive (Lim et al., 2014).

Like most brain structures, apart from brainstem, hippocampal volume decreases with age (Van Petten, 2004; Raz et al., 2005; Gorbach et al., 2017; Walhovd et al., 2011). It has been hypothesized that reduced episodic memory with older age is mediated by hippocampal volume loss (Persson et al., 2006; Gorbach et al., 2017), and that the hippocampal volume loss is partly a consequence of increased brain amyloidosis (Mormino et al., 2009). We tested these hypotheses by means of mediation analysis.

2 Materials and methods

2.1 Participants

The Flemish Prevent AD Cohort KU Leuven (F-PACK) is a community-recruited longitudinal cohort of older adults who had to be cognitively intact at inclusion per protocol. The uniqueness derives from the genetic stratification at study inclusion according to
a factorial design, with two factors: *APOE* ε4 carrier status (two levels: carrier versus noncarrier) and *BDNF* val66met carrier status (two levels: carrier versus noncarrier). Stratification was done so that each cell of the factorial design contained an equal number of participants per 5-year age bin and that cells were also matched for age, educational level and sex. The data from the full cohort have been shared with the EMIF1000 cohort study (Bos et al., 2018). The current publication is the first stand-alone detailed description of the full F-PACK cohort. Substudies have been published in subgroups of the F-PACK cohort (Adamczuk et al., 2015, 2016b,a; Schaeverbeke et al., 2019).

The *a priori* target sample size was 180 cognitively intact older controls (mean age = 68.6 years, SD = 6.4 years, Table 1), who were recruited through advertisement in local newspapers and through websites for seniors, asking for healthy volunteers between 50 and 80 years of age for participation in a scientific study at the University Hospital Leuven, Belgium, involving brain imaging (*sic*). Inclusion criteria were age 50 - 80 years, Mini Mental State Examination (MMSE) (Folstein et al., 1975) ≥ 27, Clinical Dementia Rating Scale (CDR) = 0 and test scores on neuropsychological assessment within published norms. Among the exclusion criteria were a neurological or psychiatric history and focal brain lesions on structural magnetic resonance image (MRI) other than vascular white matter lesions, e.g. lesions as a result of large-vessel stroke, arachnoid cyst or surgical interventions. Recruitment took place between March 2009 and December 2015.

Following baseline, participants are followed two-yearly with a neuropsychological evaluation consisting of cognitive testing on episodic memory, language, executive functioning and attention domains for a total period of 10 years. At the time of writing of the manuscript, all subjects had completed the 4-year timepoint.
2.2 Cognition

All participants underwent detailed cognitive examination of verbal episodic memory function by means of Rey’s Auditory Verbal Learning Test (AVLT) (Ivnik et al., 1990) and the 12-item Buschke Selective Reminding test (BSRT) (Buschke, 1973). From the AVLT two performance parameters were derived: total learning (AVLT TL), i.e. the sum of items recalled across the five consecutive trials, and the percentage delayed recall (AVLT DR), i.e. the score on the 7th trial divided by the score at the fifth trial times 100.

In the BSRT (Buschke, 1973), instead of presenting all items repeatedly on each trial, only the items that have not been recalled on the immediately preceding trial are presented even though participants are instructed to recall the entire list of items on each trial. During this word-list learning test, 12 semantically and phonologically unrelated items are presented during 12 consecutive trials. From the BSRT two performance parameters were derived: The total retention (BSRT TR) and the delayed recall (BSRT DR). BSRT TR is calculated by adding the scores of the 12 consecutive trials. When a participant recalls all 12 items on each of three consecutive trials, the test is prematurely concluded and a maximum score (i.e. a score of 12) is given for the following trials. The maximum total retention score over all 12 trials is 144 points. We used the average of the total retention score as a measure of word-list learning capacity. After 30 minutes, participants were asked to recall as many items as possible (BSRT DR, expressed as an absolute score (/12)).

Language and semantic processing were assessed with Boston Naming Test (BNT) (Marien et al., 1998), Animal Verbal Fluency (AVF), Letter Verbal Fluency (LVF) and the Psycholinguistic Assessment of Language Processing in Aphasia (PALPA) item 49 which probes verbal associative-semantic processing (Kay et al., 1992). We measured
executive functioning with the Standard Raven’s Progressive Matrices (RPM) (Raven, 1962) and Trial Making Test A and B (TMT), expressed as the ratio of score B over A.

Table 1 shows average ± SD cognitive tests scores for the total sample of 180 cognitively intact older adults.

The same tests were administered at every 2-yearly longitudinal follow-up visit for a total follow-up period of 10 years. The current report is based on the 4-year data. For the list learning tasks, the same versions were used for the successive testing sessions.

2.3 Imaging

2.3.1 Structural magnetic resonance imaging

We acquired a high-resolution T1-weighted structural MRI using a 3D turbo field echo sequence on a 3 Tesla Philips Achieva system (Philips, Best, The Netherlands) (inversion time (TI)=900 ms, repetition time (TR)=9.6 ms, echo time (TE)=4.6 ms, flip angle = 8°, field of view (FOV)=250x250 mm, 182 slices, voxel size 0.98x0.98x1.2 mm³). One subject was excluded from MRI due to safety reasons (occupation welder), yielding a total of 179 subjects with T1-weighted MRI.

Pre-processing of the T1-weighted MRI scans was performed with voxel-based morphometry 8 (VBM8, http://dbm.neuro.uni-jena.de/vbmrunning) using Statistical Parametric Mapping (SPM8, Wellcome Trust Centre for Neuroimaging, London, UK, (http://www.fil.ion.ucl.ac.uk/spm) (Ashburner and Friston, 2000) in Matlab R2012b (Mathworks, Natick, USA). The resulting modulated grey matter volumes are adjusted for overall brain size by using the ‘nonlinear only’ component in the spatial normalization process for modulation of grey matter voxel intensities, as described in previous studies (Gillebert et al., 2011). This procedure generated modulated grey matter volume maps
(voxel size = 1.5 mm3) which were subsequently smoothed with an isotropic Gaussian kernel of 8x8x8 mm3 Full-width Half Maximum (FWHM) and masked with an absolute threshold of 0.1 in further voxelwise statistical analyses. Total intracranial volume (ICV) was extracted using the VBM toolbox with the individual’s segmentation parameters as input.

For region-based analyses, regional volumes were extracted by using the extended Brainnetome atlas (Fan et al., 2016) intersected with the individual’s unsmoothed modulated grey matter map. The median grey matter volume intensity was calculated for each subject and used in R statistical analyses described in subsequent paragraphs. The regions of main interest were: the hippocampus (rostral (Brainnetome area 215, 216) and caudal (Brainnetome area 217, 218), and entorhinal cortex (Brainnetome area 115, 116).

As an alternative approach, T1-weighted MRI scans were processed with FreeSurfer v6.0, for which cortical thickness as well as volumetric measures and ICV were automatically computed and extracted using the Desikan atlas (Desikan et al., 2006). FreeSurfer hippocampal and entorhinal volumes were corrected for ICV through the linear equation as used in (Maass et al., 2018; Raz et al., 2015): $\text{Vol}_{adj} = \text{Vol}_{raw}(i) - b(\text{ICV}(i) - \text{Mean ICV})$, where Vol_{adj} is the adjusted volume, $\text{Vol}_{raw}(i)$ is the original volume for an individual, b is the slope of the volumes regressed on ICVs in the study sample, mean ICV is the sample mean of ICV. ICV was divided by 1000 to be on approximately the same scale as the hippocampal/entorhinal volumes.

2.4 18F-flutemetamol amyloid-PET imaging

All participants underwent 18F-flutemetamol PET on a 16-slice Biograph PET/CT scanner (Siemens, Erlangen, Germany). The tracer was injected as a bolus in an antecubital
vein (mean activity 150 MBq, SD 5 MBq, range 134-162 MBq). Scan acquisition started 90 min after tracer injection and lasted for 30 min (Vandenberghe et al., 2010; Adamczuk et al., 2016b). Prior to PET acquisition, a low-dose CT scan of the head was performed for attenuation correction. Random and scatter correction were applied. Data were recorded in list mode and reconstructed into six five minute frames using ordered subsets expectation maximization (four iterations x 16 subsets). Processing of \(^{18}\)F-flutemetamol PET was done using SPM8 running on Matlab R2012b as described in detail elsewhere (Adamczuk et al., 2016b). A standardized uptake value ratio image (SUVR) was calculated using participant-specific cerebellar grey matter as a reference region (grey matter threshold: 0.3). Mean \(^{18}\)F-flutemetamol SUVR values were calculated for a composite region, which consisted out of five bilateral cortical regions (SUVR\(_{comp}\)): frontal, parietal, anterior cingulate, precuneus-posterior cingulate and lateral temporal. These regions were derived from the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and intersected with the participant-specific grey matter, thresholded at 0.3. In a next step, SUVR\(_{comp}\) values were converted to Centiloids (CLs) (Klunk et al., 2015) using as conversion formula CL = 127.6 x SUVR - 149. Low or absent amyloid burden was defined as CL \(\leq\) 10 CL, intermediate amyloid burden as CL between 10 and 50 and high amyloid burden as CL \(\geq\) 50 (Amadoru et al., 2020).

For whole-brain voxelwise analyses, \(^{18}\)F-flutemetamol SUVR images were smoothed with an isotropic Gaussian kernel of 8x8x8 mm\(^3\) FWHM.

Sixty-eight participants received \(^{18}\)F-flutemetamol PET prior to a major scanner upgrade (on 14/03/2012), while the remaining 112 received \(^{18}\)F-flutemetamol PET after the upgrade date. The scanner upgrade effect was included as a dummy variable in voxelwise statistical models.
2.5 Statistical analyses

All standard statistical analyses were conducted with R statistical software version 3.6.2 (2019-12-12) (The R Foundation for Statistical Computing; cran.r-project.org). Test statistics are two-tailed and the significance threshold was set at an uncorrected $\alpha < 0.05$. Voxelwise statistical analyses were conducted in SPM8 software with the default significance threshold set at voxel-level uncorrected P value < 0.001 combined with a cluster-level whole-brain Family Wise Error (FWE)-corrected threshold P value < 0.05.

We assessed whether participants that had dropped out from the study at year four and retainees differed on baseline characteristics using Mann-Whitney U tests for continuous variables or Chi square statistics for categorical baseline variables.

2.5.1 Factor analysis

On the cross-sectional cognitive dataset, we performed a factor analysis using the R package `psych` (urlhttp://personality-project.org/r/psych/) on the following baseline cognitive scores of the 180 subjects: AVLT TL and DR, BSRT TR and DR, BNT, AVF, LVF, PALPA49, RPM, and the ratio of TMT subtest B over A. Prior to factor calculations, data imputation was applied in one subject for missing data on RPM and in another subject for missing data on BSRT DR using the R package `mice` (https://amices.org/mice/).

To assess the suitability of the baseline cognitive dataset for factor analysis, we used the Kaiser-Meyer-Olkin (KMO) test for sampling adequacy (KMO value should be > 0.600) as well as the Bartlett’s test for sphericity and correlational adequacy (p value should be < 0.001). Only factors with an eigenvalue > 1.0 according to the Kaisers criterion were retained (Fabrigar et al., 1999). The factors were rotated with a variance maximizing (varimax) orthogonal rotation to obtain interpretable and uncorrelated factor loadings.
The goodness of fit of the factor model was assessed using the empirical Chi square statistic, Comparative Fit index (CFI) (>0.90) and the Root Mean Squared Error of Approximation (RMSEA) index (<0.10).

2.5.2 Latent growth curve analysis

In order to model the cognitive time course over a 4-year period, the cognitive test parameter that showed the highest loading for each factor was selected. That parameter can be considered as most 'representative' for a given factor. The longitudinal scores for this test were modeled by means of latent growth curve analysis using the R package lavaan (Rosseel, 2012) (http://www.jstatsoft.org/v48/i02/). In this model, the growth factor consists of an intercept and a slope. The intercept is considered to be constant over time points while the slope is modeled as the linear change over time points. The slope of the cognitive test was computed using scores obtained at baseline, at 2 years and at 4 years of follow-up using the maximum likelihood default estimator in the lavaan package. A more negative slope implies a steeper decline. Missing values were imputed using the CART imputation method in mice as previously described. The goodness of fit of the latent growth model was assessed using the empirical Chi square statistic, with a lower value showing a better model fit (lowest Chi square statistic for the unconstrained model reported here = 2.85).

2.5.3 Whole-brain voxelwise regression analyses

The slope of 4-year cognitive change of the most representative test score for each factor was entered as regressor in a whole-brain voxelwise regression analysis with modulated grey matter as outcome variable. The 179 modulated grey matter volume images were entered as the dependent variable and the individual slope as the independent variable.
ICV was added as covariate of no interest.

A whole-brain voxelwise regression analysis was also conducted with 18F-flutemetamol SUVR as outcome variable and the slope of the cognitive test score. PET scanner upgrade was added as a dummy variable. Statistics were calculated within an external mask created based on the full dataset of subjects, thresholded at 0.3 (Adamczuk et al., 2016b).

2.5.4 Correlation matrix

A correlation matrix was calculated between the slope of cognitive decline and age, sex, education, APOE and BDNF polymorphisms, amyloid-PET CL, and amyloid-PET SUVR in the precuneus. Baseline cognitive test scores were also included as predictors for slope of cognitive decline. To ensure independence between baseline test score and cognitive slope, the baseline measure was based on the test ranked second to the most representative cognitive test used for calculating the slope. Correlation with hippocampal volume and entorhinal volume and thickness was also determined. Visualization of the correlation matrix of data across the 179 participants was done using the R package corrplot (//github.com/taiyun/corrplot).

2.5.5 Hierarchical regression analysis

Next, the variables that reached significance at an uncorrected $P < 0.05$ in the correlation matrix were entered into a hierarchical regression analysis. The R package caret was used to compute repeated k-fold cross-validated models (http://topepo.github.io/caret/index.html). To this end, the dataset was first scaled by the scale function in R to obtain interpretable beta coefficients and then randomly split into k-subsets (i.e. k-fold). The parameter k was set at 10 with three repeats.

The base model consisted of age and sex. Next, the other variables were added one by
one according to the strength of the correlation (first the variable showing the strongest correlation coefficient and so forth). We determined whether the Root Mean Squared Error (RMSE) decreased and R-squared based on resampling, increased by adding variables. In each step, the models were compared pairwise so that the regression model that produced the lowest test sample RMSE and highest R-squared was the preferred model.

As an additional analysis, we subdivided the dataset based upon amyloid status (CL cutoff = 23.4) (La Joie et al., 2019) and assessed within amyloid-positive and amyloid-negative groups how age, baseline episodic memory (i.e. AVLT TL score) and MRI measures relate to the slope of cognitive decline.

2.5.6 Mediation analysis

It has been hypothesized that reduced episodic memory with age is mediated by hippocampal volume loss (Persson et al., 2006; Gorbach et al., 2017), and that the hippocampal volume loss is partly a consequence of increased brain amyloidosis (Mormino et al., 2009). We tested these hypotheses by means of mediation analysis. Mediation analysis was performed using the R package lavaan (Rosseel, 2012). Only variables were included in the mediation analysis that correlated significantly with episodic memory: In the absence of a correlation, no direct or indirect effect can be expected in mediation analysis. Two serial mediation analyses were computed with age as predictor variable and BSRT slope as outcome variable. In the first mediation model, we tested the hypothesis that the relation between age and episodic memory decline was mediated via hippocampal volume loss (Persson et al., 2006; Gorbach et al., 2017): The serial mediators between age and BSRT slope were hippocampal volume and AVLT TL baseline scores. In the second mediation model, we tested the hypothesis that amyloid load mediated the relationship between age, hippocampal volume, and episodic memory decline the serial mediators con-
sisted of precuneus SUVR and hippocampal volume. Using a simple mediation model, we assessed whether hippocampal volume mediated the relationship between amyloid load and cross-sectional episodic memory, using baseline BSRT scores (Mormino et al., 2009). Path-weights were displayed as β coefficients with corresponding standard errors. Significance of the indirect effect was determined using a nonparametric bootstrap method (10,000 iterations) (Preacher and Hayes, 2008). The significance threshold was set at an uncorrected $\alpha <0.05$.

3 Results

Of the 180 cognitively intact older adults, 112 (62%) showed no amyloid burden (CL range: -16.8-9.6), 58 (32%) low to intermediate (CL range: 10.3-47.8) and 10 (6%) high amyloid burden (CL range: 59.2-116.6) (Amadoru et al., 2020) (Figure 1). Based on a neuropathologically validated binary cutoff of 23.4 CLs (La Joie et al., 2019), 28 participants (15.6%) were amyloid-positive and 152 (84.4%) were amyloid-negative.

At year four, 25 individuals (13.9%) had dropped out from the study. Participants who dropped out were significantly older at baseline (dropouts: mean \pm SD = 71.1 \pm 4.9; retainees: 68.2 \pm 6.6, $P = 0.036$), had lower MMSE (dropouts: 28.7 \pm 1.0; retainees = 29.1 \pm 0.9, $P = 0.044$), lower AVLT TL scores (dropouts: 42.6 \pm 9.6; retainees = 47.9 \pm 8.9, $P = 0.012$) as well as lower RPM scores than retainees (dropouts: 39.2 \pm 7.8; retainees = 42.2 \pm 8.8, $P = 0.027$). Other baseline variables such as amyloid load or genetic polymorphisms did not differ between drop-outs and continuers (all $P > 0.065$).
3.1 Factor analysis of neuropsychological test scores

The KMO test for sampling adequacy (KMO value = 0.73) and Bartlett’s test for sphericity ($P = 3.48 \times 10^{-74}$) confirmed the suitability of the baseline cognitive dataset for factor analysis. Factor analysis of the cognitive dataset resulted in two factors explaining a total of 39% of the variance in the baseline cognitive scores (Table 2). The first factor grouped measures of verbal episodic memory. The parameter with the highest standardized factor loading was the BSRT TR, hence this parameter will be considered most representative for the first factor and used for modeling the slope in episodic memory (see below). The second factor contained the semantic and phonological verbal fluency tasks and confrontation naming as tests with highest loading. The AVF had the highest standardized factor loading on the second factor and will be considered most representative and used for modeling the verbal fluency slope.

3.2 Whole-brain voxelwise regression analysis with cognitive slope

To model the change in episodic memory, the slope of the BSRT TR over a 4-year time course was determined by means of latent growth curve analysis (in later sections referred to as the *episodic memory slope*). Next, this slope was entered in a whole-brain voxelwise regression analysis with modulated grey matter volume. Significant clusters were located in the right medial temporal cortex, mainly the entorhinal cortex, parahippocampal gyrus and hippocampus, as well as in the dorsomedial thalamus and in the left cerebellar crus II (Figure 2, Table 3). At a lower threshold of voxel-level uncorrected P value <0.001, there was an additional cluster in the left medial temporal lobe including the entorhinal cortex, parahippocampal gyrus and hippocampus.
A same procedure was applied for the verbal fluency slope: The whole-brain voxelwise regression analysis did not reveal significant clusters.

Whole-brain voxelwise regression analyses with 18F-flutemetamol SUVR images as dependent variable did not yield significant clusters for either the episodic memory slope or the verbal fluency slope at the preset significance threshold. At a lower threshold of voxel-level uncorrected P value < 0.001, steeper episodic memory decline correlated with lower volume of the precuneus.

3.3 Predictors of cognitive decline

In order to gain a better understanding of the association between the different baseline variables and the slope of episodic memory decline, a correlation matrix was calculated (Figure 3). As baseline cognitive tests for prediction, the AVLT TL was chosen as it ranked highest on the first factor behind the BSRT TR and BSRT DR, so as to avoid dependence between the test for prediction and the test for modeling the slopes of cognitive decline.

The episodic memory slope, i.e. BSRT slope, correlated negatively with age (Pearson corr. $= -0.39$, $P < 0.001$): Higher age was associated with a steeper negative slope (i.e. more episodic memory decline) (Figure 4 A). The episodic memory slope correlated strongly with the baseline AVLT TL score (Pearson corr. $= 0.62$, $P < 0.001$): The lower the baseline AVLT score, the more negative the slope, hence the steeper the episodic memory decline (Figure 4 B). Regarding volumetric MRI measures, there were also significant correlations between the episodic memory slope and hippocampal volume (Pearson corr. $= 0.30$, $P < 0.001$) (Figure 4 C) as well as with entorhinal volume (Pearson corr. $= 0.27$, $P < 0.001$). The episodic memory slope also correlated inversely with amyloid CL values.
(Pearson corr. = -0.20, \(P = 0.01\)) and precuneus SUVR (Pearson corr. = -0.21, \(P = 0.01\)) (Figure 4 D). Furthermore, there was a significant correlation between precuneus SUVR values (i.e. index for early amyloid burden) and hippocampal volume (Pearson corr. = -0.17, \(P = 0.03\)) (Figure 3). There were no significant effects of genetic \textit{APOE} or \textit{BDNF} polymorphisms on the episodic memory slope.

The verbal fluency slope only correlated with age (Pearson corr. = -0.20, \(P = 0.01\)).

3.3.1 Hierarchical regression

Each variable that showed a significant correlation with the episodic memory slope in the simple regression analyses at \(P < 0.05\) uncorrected (Figure 3) was entered into the hierarchical regression analysis in the following order. First a baseline model was tested with age and sex as only predictor variables: This model (\(F(2, 176) = 20.1, \ P < 0.001\)) accounted for 18.5\% of the variance (\(R^2\)) in episodic memory slope. Addition of the AVLT TL baseline scores increased this to 41.6\%. In the latter model (\(F(3, 175) = 39.9, \ P < 0.001\)), AVLT TL baseline scores (\(\beta = 0.54\) (SE = 0.07), \(P < 0.001\)) and age (\(\beta = -0.17\) (SE = 0.06), \(P = 0.007\)) had a significant effect while the effect of sex was no longer significant (\(P = 0.53\)). Adding any of the imaging variables hardly increased this any further (maximum 42.2\% for a model with age, sex, AVLT TL baseline and entorhinal volume).

The strong effect of an individual’s baseline episodic memory performance did not depend on the order of variables entered into the model: When hippocampal volume was added to the baseline model (age and sex), the variance explained (\(R^2\)) by this model (\(F(3, 175) = 13.6, \ P < 0.001\)) was reduced with 0.5\%. When we added AVLT TL baseline scores to the latter model (age, sex, hippocampal volume), \(R^2\) increased with 23.0\% (\(F(4, 174) = 29.9, \ P < 0.001\)). This demonstrates the explanatory power of baseline cognitive
scores regardless of the order in which imaging and cognitive variables were entered into
the regression model.

Taken together, apart from age, by far the strongest predictor for the episodic memory
slope was the baseline episodic memory score, nearly obliterating any additional effect of
the volumetric measures.

When we subdivided the dataset into two subgroups based upon amyloid status (amy-
lloid negative versus amyloid positive, CL cutoff = 23.4 (La Joie et al., 2019)), the corre-
lation of age and AVLT TL baseline score, respectively, with BSRT TR slope was present
in each of the two subgroups (in amyloid-positives: Pearson corr. with age = -0.51, \(P =
0.01 \), with baseline scores = 0.48, \(P < 0.001 \); in amyloid-negatives: Pearson corr. with
age = -0.36, \(P < 0.001 \), with baseline scores = 0.63, \(P < 0.001 \)). More specifically, within
the amyloid-positive group, a model consisting of age and AVLT TL baseline scores as
explanatory variables explained 75.6% of the variance (R²) in episodic memory slope.
Adding precuneus SUVR values or entorhinal thickness to the model increased this to
76.2% and 79.4%, respectively. In the amyloid-negative group, a model consisting of age
and AVLT TL baseline scores as explanatory variables explained 44.1% of variance in
episodic memory slope, with no additional effect of the volumetric measures or amyloid
load (Figure 5).

3.3.2 Mediation analysis

We tested two hypotheses by means of serial mediation analysis. The first hypothesis
(Persson et al., 2006; Gorbach et al., 2017) stated that the effect of age on episodic memory
scores was mediated via hippocampal volume loss. A causal model was constructed with
edges from age to hippocampal volume to baseline episodic memory score to episodic
memory slope, together with a direct path from age to baseline episodic memory score
The path model of this mediation analysis is shown in Figure 6. The direct path from age to episodic memory slope was significant, as was the indirect path via baseline episodic memory scores: This means that part of the variance in episodic memory slope that is explained by age is not mediated via hippocampal volume. However, the indirect path from age through hippocampal volume to baseline episodic memory to episodic memory slope was significant ($abc = -0.002, P=0.030$). The latter effect confirms the a priori hypothesis (Persson et al., 2006; Gorbach et al., 2017)(Figure 6 A).

In the second hypothesis, a mediating role of amyloid load was added to the model. We refuted this hypothesis: No serial mediation from amyloid load to hippocampal volume to episodic memory slope was present ($abc = 0, P=0.40$) (Figure 6 B). When we replaced episodic memory slope with baseline episodic memory scores, no serial mediation effect of amyloid load and hippocampal volume could be obtained either ($abc = 0, P=0.63$). Interestingly, when comparing the latter two models, higher amyloid load showed a nearly significant association with steeper episodic memory slope ($\beta = -0.12 (SE = -0.068), P = 0.069$), but not with lower baseline memory scores ($\beta = -0.56 (SE = 0.44), P = 0.20$). Using a simple mediation model, we showed that there was no mediation effect of hippocampal volume on the relationship between amyloid load and baseline BSRT scores in our study sample ($ab = -0.24, P=0.067$) (Mormino et al., 2009).

4 Discussion

In cognitively intact older adults, the best predictor of 4-year episodic memory decline, besides age, are the baseline episodic memory scores, with only very limited additional variance explained by imaging measures of medial temporal grey matter volume or amyloid load. Second, the effect of age on episodic memory scores at baseline and on cognitive
The decline was only partly mediated via medial temporal grey matter volume loss, without mediating effect or amyloid load. In that sense, the data can be seen as a warning against a 'biomarkers first' adagium even in the cognitively intact population.

4.1 Baseline cognitive scores as predictor

The memory test with the highest loading on the episodic memory factor was the BSRT TR. This test captured the variability in the cognitively normal older population in a better manner than the AVLT, which is conventionally used in the clinic to discriminate normal from pathological episodic memory performance. The BSRT is more demanding for healthy participants than the AVLT. This may be related to the fact that the word list is not repeated in its entirety at each trial. The BSRT differs from its derivative, the Free and Cued Selective Reminding test (FCSRT) (Grober et al., 2009), where category cues are provided during both encoding and retrieval. These category cues are assumed to result in a more pure measure of ”genuine memory” (as opposed to ”apparent memory”) that is less affected by differences in cognitive control during encoding or retrieval (Grober et al., 1987, 2009; Dubois et al., 2014). For use in a cohort of cognitively normal older adults, we opted for the BSRT as it is more demanding to the participants.

Factor analysis revealed that episodic memory test scores explained the largest amount of variance in the neuropsychological dataset. BSRT TR loaded most heavily on this first factor with highest explanatory power. Hence, it was considered the most representative test for factor 1 and used to model the slope of episodic memory decline. In order to avoid dependency between predictor and slope, we did not use BSRT parameters as predictors but used the second highest ranked test in the first factor, obtained from the factor analysis, i.e. AVLT TL. The sensitivity of AVLT TL for predicting change is in line with
the Baltimore Longitudinal Study of Aging (Bilgel et al., 2014). In another study in cognitively healthy older adults, the total learning on the California Verbal Learning Test and the Selective Reminding test predicted conversion from a CDR of 0 to a CDR of 0.5 over an 11-year time period (Blacker et al., 2007).

In a recent study including cognitively healthy individuals as well as patients who were cognitively impaired (lowest MMSE = 16) (Liem et al., 2020), the strongest predictor for cognitive decline (measured based on MMSE and CDR) were baseline episodic memory scores (Wechsler Memory Scale Logical Memory test) rather than MRI volumetric measures. The current findings confirm the predictive power of baseline cognitive scores in predicting cognitive decline in cognitively intact older adults, outweighing amyloid or volumetric MRI measures.

How can the strong effect of baseline episodic memory score on the slope of decline be explained? Baseline episodic memory scores are a snapshot that reflects the integral of the individual’s initial peak level of performance (probably situated decades before study inclusion) together with the individual’s subsequent cognitive trajectory. Evidently, for a same initial peak performance level, an individual who scores in the low normal range at study baseline will have had a steeper downward trajectory in the years before study inclusion. Accordingly, this individual will also be more likely to continue on this downward trajectory. Alternatively, one could interpret the low baseline score as a sign of low cognitive reserve which in its turn could be predictive of more rapid cognitive decline. The latter hypothesis is less likely as we did not find a correlation with educational level.
4.2 Age, medial temporal volume and episodic memory

In a simple regression, there was a clear association between hippocampal volume and subsequent cognitive decline in cognitively intact individuals, in line with previous studies (Burnham et al., 2016). Based on the Betula Prospective Cohort (Persson et al., 2006; Gorbach et al., 2017), the medial temporal lobe system has been proposed to be the primary pathway of episodic-memory decline in normal, nondemented aging. We tested this hypothesis by means of a mediation analysis. The effect of age on episodic memory slope was indeed partly mediated via hippocampal volume and baseline episodic memory scores. However, there remained also a direct effect from age to episodic memory that was not mediated by hippocampal volume. In a number of previous cross-sectional analyses (Raz et al., 2004; Van Petten, 2004), the correlation between hippocampal volume and episodic memory disappeared when correcting for age. Hence, other factors must contribute to the relation between age and episodic memory decline than medial temporal lobe volume. These could consist of age-related hippocampal alterations in the hilus of the dentate gyrus and the subiculum below the MRI detection threshold (West, 1993) or rely on non-hippocampal pathways. Rather than hippocampal volume loss, changes in functional or structural connectivity (Tisserand and Jolles, 2003) may account for the variance in episodic memory in older adults (Fjell et al., 2016). Changes in connectivity within the default mode network (DMN) predict changes in memory performance, whereas atrophy of the corresponding grey matter and hippocampal volume does not (Staffaroni et al., 2018). Changes in structural connectivity of frontostriatal circuits, the cingulum and the anterior portion of the corpus callosum have also been associated with age-related memory loss (Tisserand and Jolles, 2003; Persson et al., 2006).

Two previous studies have applied mediation analysis to examine the link between hip-
pocampal volume and episodic memory during normal cognitive aging. In an early study (Head et al., 2008), the mediators consisted of a relatively extensive series of regional volumes (including, among others, hippocampal and lateral prefrontal volume) and cognitive variables (such as processing speed and working memory (Salthouse, 2010)). Once all cognitive and neuroanatomical mediators were taken into account, no direct effect of age on episodic memory remained. In another study (Ward et al., 2015) greater hippocampal volume (31.5% of age-related variance) and greater DMN connectivity (7.3% of age-related variance) both contributed significant independent variance to memory performance. The path coefficient from age to hippocampal volume was -0.45 and from hippocampal volume to memory 0.32. However, age group remained a significant predictor of memory after accounting for each imaging marker, in line with what we found (Ward et al., 2015).

4.3 Amyloid, episodic memory and age

An effect was observed of baseline amyloid load on episodic memory decline, confirming earlier studies (Villemagne et al., 2013; Mormino et al., 2014; Burnham et al., 2016; Mormino et al., 2017; Donohue et al., 2017). The size of the effect of baseline amyloid load on episodic memory decline was relatively small, as in previous studies (Baker et al., 2017): a mean difference of 0.56 points over 4 years on the MMSE and 0.23 points on the CDR-Sum of the Boxes (Donohue et al., 2017). According to the Harvard Aging Brain Study (HABS), the survival curves start to diverge only 4.5 years after baseline (Hanseeuw et al., 2019).

Our findings are not compatible with a hypothesis that amyloid drives episodic memory decline in cognitively intact older adults through the mediating effect of hippocampal atrophy (Mormino et al., 2009). In the F-PACK cohort, the proportion of amyloid-
positive cases is 15%, which is lower than in the cohorts studied by (Mormino et al., 2009). If a cohort contains a relatively high proportion of older adults in a preclinical AD stage, amyloid load, hippocampal volume and episodic memory decline are more likely to show a correlation as one would expect in AD.

4.4 Genetic risk factors and episodic memory decline

We did not find an effect of \textit{APOE} \(\epsilon 4\) on the rate of episodic memory decline in this cognitively intact cohort. In the Longitudinal Aging Study Amsterdam, there was also no effect of \textit{APOE} \(\epsilon 4\) on 6-year change in delayed recall on the AVLT (Dik et al., 2001). In another study (Blacker et al., 2007), \textit{APOE} \(\epsilon 2\) was associated with a lower rate of conversion from CDR 0 to 0.5 in cognitively intact individuals, without any effect of \textit{APOE} \(\epsilon 4\) in this group. Other studies however showed an effect of \textit{APOE} \(\epsilon 4\) on the rate of cognitive decline in baseline cognitively intact individuals from the age of 60 onwards (Caselli et al., 2009; Kauppi et al., 2020). If amyloid biomarker status is taken into account, the effect of \textit{APOE} \(\epsilon 4\) on cognitive decline in cognitively intact older adults was seen only in the amyloid-positive subgroup (Ge et al., 2018). Taken together, these findings suggest that the effect of \textit{APOE} \(\epsilon 4\) on episodic memory decline in healthy older adults is linked to amyloid and preclinical AD.

4.5 Study implications

With the advent of amyloid and tau biomarkers, there is a move towards more and more reliance on biomarkers to characterize and diagnose individuals and predict the future course. For instance, the A/T/N scheme (Jack et al., 2016) has rapidly become popular in AD research circles. The current study highlights the value of relatively inexpensive
and broadly available cognitive assessment. The predictive value of cognitive scores out-
performed that of amyloid PET and structural MRI measures in a very clear manner.
The current findings warn against a biomarker-exclusive approach to case classification in
cognitively intact individuals and highlight the value of cognitive assessment even in an
era where much more expensive and high-tech options are available. This has practical
implications: The A/T/N scheme does not contain a cognitive dimension and assumes
that the cognitive performance level is the explanandum. The current study demonstrates
that cognitive performance level contains a huge amount of hidden variables that are not
captured adequately by the amyloid, tau and neurodegeneration scheme, let alone by a
binary division based on these variables. These hidden variables may relate to cognitive
reserve, functional brain circuitry, and many other brain variables that underly cognition.
In other words, cognitive performance is a summary measure that cannot be substituted
by a simplified binary three-dimensional scheme and comprises effects of pathophysiological
mechanisms that are missing from the A/T/N scheme.

4.6 Study limitations

As subjects entered the study between 2009 and 2015, the multimodal assessment at
baseline did not include tau PET imaging. This may be an imaging variable with higher
4-year predictive value, possibly at a level more comparable to baseline scores. A longi-
tudinal imaging study examined how changes in amyloid predict changes in the spread of
tau on PET and cognitive decline (Hanseeuw et al., 2019). Increase in amyloid predicted
increase in tau and increase in tau went along with cognitive change. A stepwise regres-
sion analysis in a group of 57 cognitively intact individuals between 60 and 92 years of age
from the Berkeley Aging Cohort study yielded entorhinal tau PET tracer retention as the
most significant predictor for subsequent cognitive decline (Maass et al., 2018), even in amyloid-negative individuals. Higher tau was related to older age and lower medial temporal grey matter volume (Maass et al., 2018). This led to the hypothesis that entorhinal tau deposition, even in the absence of amyloidosis, may explain the episodic memory loss due to ageing (Maass et al., 2018).

4.7 Conclusion

This study highlights the importance of baseline cognitive assessment as a predictor for cognitive change in a cognitively intact healthy older population.

5 Abbreviations

AAL: Automated Anatomical Labeling; AD: Alzheimer’s disease; APOE: apolipoprotein; AVF: Animal Verbal Fluency test; AVLT: Reys Auditory Verbal Learning; BDNF: Brain Derived Neurotrophic Factor; BNT: Boston Naming Test; BSRT: Buschke Selective Reminding test; CDR: Clinical Dementia Rating scale; CFI: Comparative Fit index; CL: Centiloid; DMN: default mode network; DR: delayed recall; F-PACK: Flemish Prevent Alzheimers Disease KU Leuven; FWE: Family Wise Error; FWHM: Full-width Half Maximum; HABS: Harvard Aging Brain Study; ICV: Total intracranial volume; KMO: Kaiser-Meyer-Olkin criterion; LVF: Letter Verbal Fluency test; MMSE: Mini-Mental State Examination; MNI: Montreal Neurological Institute; MRI: Magnetic Resonance Imaging; PALPA: Psycholinguistic Assessments of Language Processing in Aphasia test; PET: Positron Emission Tomography; RMSE: Root Mean Squared Error; RMSEA: Root Mean Squared Error of Approximation; RPM = Raven’s Progressive Matrices test; SPM: Statistical Parametric Mapping; SUVR: Standardized Uptake Volume Ratio; SUVR_{comp}: Stan-
Acknowledgements

We would like to thank the staff of Nuclear Medicine, Neurology, and Radiology at the University Hospitals Leuven. Special thanks to Carine Schildermans, Dorien Timmers, Kwinten Porters, Mieke Steukers, Charlotte Evenepoel and Veerle Neyens for help with the study.

Funding

Financial support was provided by the Foundation for Alzheimer Research SAO-FRMA (09013, 11020, 13007); Research Foundation Flanders (G.0660.09); KU Leuven (OT/08/056, OT/12/097); IWT VIND; IWT TGO BioAdapt AD; Belspo IAP (P7/11); Research Foundation Flanders senior clinical investigator grant to R.V. and K.V.L.; Research Foundation Flanders doctoral fellowship to K.A; and K.H. is supported by the Research Fund KU Leuven (OT/11/087 and CREA/14/023). 18F-flutemetamol was provided by GE Healthcare free of charge for this academic investigator-driven trial. JS is a junior postdoctoral fellow of the Flanders Research Foundation (FWO, 12Y1620N).
8 Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

9 Author’s contributions

R.V. contributed to the study concept and design. K.A., J.S., N.N., A.S.D.W. acquired the data. K.A., J.S. performed genotyping. J.S, K.A., S.G, A.R., E.L., and S.D.M. analysed neuroimaging data. E.D., N.N., A.S.D.W., J.S., S.G., K.M., A.H., and V.G acquired neuropsychological data. J.S. performed all statistical analyses. J.S., S.G., and R.V., drafted the manuscript. All authors contributed to the critical revision of the manuscript.

10 Ethical Approval and Consent to participate

The protocol was approved by the Ethics Committee University Hospitals Leuven. Written informed consent was obtained from all subjects in accordance with the Declaration of Helsinki.

11 Consent for publication

Not applicable.
12 Competing interests

None of the authors report disclosures relevant to the manuscript, except RV. RV has received research grants from Research Foundation - Flanders (FWO) and KU Leuven, has had a clinical trial agreement for phase 1 and 2 study between University Hospitals Leuven and GEHC, has received a non-financial support from GEHC (provision of 18F-flutemetamol for conduct of investigator-driven trial free of cost), has a clinical trial agreement (local principal investigator) between University Hospitals Leuven and Merck, Forum, Roche.

13 Author’s information

1Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium;

2Neurology Department, University Hospitals Leuven, Leuven, Belgium;

3Laboratory of Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium;

4Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium;

5Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven and Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium

References

Adamczuk K, Schaeverbeke J, Vanderstichele HMJ, Lilja J, Nelissen N, Van Laere K, et al. Diagnostic value of cerebrospinal fluid Aβ ratios in preclinical Alzheimer’s disease.
Adamczuk K, De Weer AS, Nelissen N, Dupont P, Sunaert S, et al. Functional Changes in the Language Network in Response to Increased Amyloid β Deposition in Cognitively Intact Older Adults. *Cerebral cortex (New York, N.Y. : 1991)*, 26(1):358–373, 2016a. ISSN 1460-2199. doi: 10.1093/cercor/bhu286.

Adamczuk K, Schaeverbeke J, Nelissen N, Neyens V, Vandenbulcke M, Goffin K, et al. Amyloid imaging in cognitively normal older adults: comparison between (18)F-flutemetamol and (11)C-Pittsburgh compound B. *European journal of nuclear medicine and molecular imaging*, 43(1):142–151, 2016b. ISSN 1619-7089. doi: 10.1007/s00259-015-3156-9.

Amadoru S, Doré V, McLean CA, Hinton F, Shepherd CE, Halliday G, et al. Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer’s disease. *Alzheimer’s Research and Therapy*, 2020. ISSN 17589193. doi: 10.1186/s13195-020-00587-5.

J Ashburner and K J Friston. Voxel-based morphometry: {T}he methods. *Neuro{I}mage*, 11:805–821, 2000.

Baker JE, Lim YY, Pietrzak RH, Hassenstab J, PJ Snyder, Masters CL, and Maruff P. Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis, jan 2017. ISSN 23528729.

Bilgel M, An Y, Lang A, Prince J, Ferrucci L, Jedynak B, et al. Trajectories of Alzheimer disease-related cognitive measures in a longitudinal sample. *Alzheimers Dement*, jul 2014. doi: 10.1016/j.jalz.2014.04.520. URL http://dx.doi.org/10.1016/j.jalz.2014.04.520.
Blacker D, Lee H, Muzikansky A, Martin EC, Tanzi R, McArdle JJ, et al. Neuropsychological measures in normal individuals that predict subsequent cognitive decline. *Archives of Neurology*, 64(6):862–871, jun 2007. ISSN 00039942. doi: 10.1001/archneur.64.6.862. URL https://jamanetwork.com/

Blazer DG, Yaffe K, and Karlawish J. Cognitive aging: A report from the Institute of Medicine, jun 2015. ISSN 15383598. URL https://jamanetwork.com/

Bos I, Vos S, Vandenberghe R, Scheltens P, Engelborghs S, Frisoni G, et al. The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics. *Alzheimer’s research & therapy*, 10(1):64, 2018. ISSN 1758-9193. doi: 10.1186/s13195-018-0396-5.

Burnham SC, Bourgeat P, Doré V, Savage G, Brown B, Laws S, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. *The Lancet Neurology*, 2016. ISSN 14744465. doi: 10.1016/S1474-4422(16)30125-9.

Buschke H. Selective reminding for analysis of memory and learning. *Journal of Verbal Learning and Verbal Behavior*, 12(5):543–550, 1973. ISSN 00225371. doi: 10.1016/S0022-5371(73)80034-9.

Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, et al. Longitudinal modeling of age-related memory decline and the APOE $\epsilon4$ effect. *New England Journal of Medicine*, 361(3):255–263, jul 2009. ISSN 15334406. doi: 10.1056/NEJMoA0809437.
Chételat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F, et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. *Neuroimage Clin*, 2:356–365, 2013. doi: 10.1016/j.nicl.2013.02.006. URL http://dx.doi.org/10.1016/j.nicl.2013.02.006.

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of {A}lzheimer’s disease in late onset families. *Science*, 261:921–923, 1993.

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *NeuroImage*, 31(3):968–980, jul 2006. ISSN 10538119. doi: 10.1016/j.neuroimage.2006.01.021.

Dik MG, Jonker C, Comijs HC, Bouter LM, Twisk JWR, Van Kamp GJ, et a. Memory complaints and APOE-4 accelerate cognitive decline in cognitively normal elderly. Technical report, 2001.

Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner M, Aisen PS. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. *JAMA - Journal of the American Medical Association*, 2017. ISSN 15383598. doi: 10.1001/jama.2017.6669.

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. *Lancet Neurol*, 13(6):614–629, jun 2014. doi: 10.1016/S1474-4422(14)70090-0. URL http://dx.doi.org/10.1016/S1474-4422(14)70090-0.
Fabrigar LR, MacCallum RC, Wegener DT, Strahan EJ. Evaluating the use of exploratory factor analysis in psychological research, 1999. ISSN 1082989X.

Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. *Cerebral cortex (New York, N.Y. : 1991)*, 26(8):3508–3526, aug 2016. ISSN 1460-2199. doi: 10.1093/cercor/bhw157.

Fjell AM, Sneve MH, Storsve AB, Grydeland H, Yendiki A, Walhovd KB. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity. *Cerebral cortex (New York, N.Y. : 1991)*, 26(3):1272–1286, 2016. ISSN 1460-2199. doi: 10.1093/cercor/bhv102.

Folstein MF, Folstein SE, McHugh PR. Mini-mental state: {A} practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res*, 12:189–198, 1975.

Tian Ge, Mert R. Sabuncu, Jordan W. Smoller, Reisa A. Sperling, and Elizabeth C. Mormino. Dissociable influences of APOE 4 and polygenic risk of AD dementia on amyloid and cognition. *Neurology*, 90(18):E1605–E1612, may 2018. ISSN 1526632X. doi: 10.1212/WNL.0000000000005415. URL https://n.neurology.org/content/90/18/e1605https://n.neurology.org/content/90/18/e1605.abstract.

Céline R Gillebert, Dante Mantini, Vincent Thijs, Stefan Sunaert, Patrick Dupont, and Rik Vandenberghe. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. *Brain*, 134(Pt 6):1694–1709, jun 2011. doi: 10.1093/brain/awr085. URL http://dx.doi.org/10.1093/brain/awr085.

Tetiana Gorbach, Sara Pudas, Anders Lundquist, Greger Orådd, Maria Josefsson, Alireza Salami, et al. Longitudinal association between hippocampus atrophy and episodic-
memory decline. *Neurobiology of Aging*, 51:167–176, 2017. ISSN 1558-1497. doi: 10.1016/j.neurobiolaging.2016.12.002.

Ellen Grober, Herman Buschke, and Saul R. Korey. Genuine Memory Deficits in Dementia. *Developmental Neuropsychology*, 3(1):13–36, jan 1987. ISSN 15326942. doi: 10.1080/87565648709540361. URL https://www.tandfonline.com/doi/abs/10.1080/87565648709540361.

Ellen Grober, Katja Ocepek-Welikson, and Jeanne A Teresi. The Free and Cued Selective Reminding Test: Evidence of Psychometric Adequacy. Technical Report 3, 2009.

Bernard J. Hanseeuw, Rebecca A. Betensky, Heidi I.L. Jacobs, Aaron P. Schultz, Jorge Sepulcre, J. Alex Becker, et al. Association of Amyloid and Tau with Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. *JAMA Neurology*, 2019. ISSN 21686157. doi: 10.1001/jamaneurol.2019.1424.

Denise Head, Karen M Rodrigue, Kristen M Kennedy, and Naftali Raz. Neuroanatomical and cognitive mediators of age-related differences in episodic memory. *Neuropsychology*, 22(4):491–507, 2008. ISSN 0894-4105. doi: 10.1037/0894-4105.22.4.491.

R J Ivnik, J F Malec, E G Tangalos, R C Petersen, E Kokmen, and L T Kurland. The {A}uditory {V}erbal {L}earning test (AVLT): {N}orms for ages 55 years and older. *Psychol Assess*, 2:304–312, 1990.

Clifford R. Jack, David A. Bennett, Kaj Blennow, Maria C. Carrillo, Howard H. Feldman, Giovanni B. Frisoni, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers, 2016. ISSN 1526632X.

Karolina Kauppi, Michael Rönnlund, Annelie Nordin Adolfsson, Sara Pudas, and Rolf
Adolfsson. Effects of polygenic risk for Alzheimer’s disease on rate of cognitive decline in normal aging. *Translational Psychiatry*, 10(1):1–8, dec 2020. ISSN 21583188. doi: 10.1038/s41398-020-00934-y. URL https://doi.org/10.1038/s41398-020-00934-y.

J Kay, R Lesser, and M Coltheart. *Psycholinguistic assessment of language processing in aphasia*. Hove, UK: Lawrence Erlbaum Associates Ltd, 1992.

William E. Klunk, Robert A. Koepppe, Julie C. Price, Tammie L. Benzinger, Michael D. Devous, William J. Jagust, et al. The Centiloid project: Standardizing quantitative amyloid plaque estimation by PET. *Alzheimer’s and Dementia*, 11(1):1–15.e4, jan 2015. ISSN 15525279. doi: 10.1016/j.jalz.2014.07.003.

Renaud La Joie, Nagehan Ayakta, William W. Seeley, Ewa Borys, Adam L. Boxer, Charles DeCarli, et al. Multisite study of the relationships between antemortem [11 C]PIB-PET Centiloid values and postmortem measures of Alzheimer’s disease neuropathology. *Alzheimer’s and Dementia*, 15(2):205–216, feb 2019. ISSN 15525279. doi: 10.1016/j.jalz.2018.09.001.

Franziskus Liem, Kamalaker Dadi, Denis A. Engemann, Alexandre Gramfort, Pierre Bellec, R. Cameron Craddock, et al. Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging. *bioRxiv*, page 2020.06.10.142174, jun 2020. doi: 10.1101/2020.06.10.142174. URL https://doi.org/10.1101/2020.06.10.142174.

Yen Ying Lim, Victor L Villemagne, Simon M Laws, David Ames, Robert H Pietrzak, Kathryn A Ellis, et al. Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer’s disease: a preliminary study. *PLoS One*, 9(1):e86498, 2014.
Anne Maass, Samuel N. Lockhart, Theresa M. Harrison, Rachel K. Bell, Taylor Mellinger, Kaitlin Swinnerton, et al. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. *Journal of Neuroscience*, 2018. ISSN 15292401. doi: 10.1523/JNEUROSCI.2028-17.2017.

P Marien, E Mampaey, A Vervaet, J Saerens, and P P De Deyn. Normative data for the *Boston Naming test* in native *Dutch-speaking Belgians* elderly. *Brain Lang*, 65:447–467, 1998.

C. A.R. Martins, A. Oulhaj, C. A. De Jager, and J. H. Williams. APOE alleles predict the rate of cognitive decline in Alzheimer disease: A nonlinear model. *Neurology*, 65 (12):1888–1893, dec 2005. ISSN 00283878. doi: 10.1212/01.wnl.0000188871.74093.12. URL www.neurology.org.

E C Mormino, J T Kluth, C M Madison, G D Rabinovici, S L Baker, B L Miller, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. *Brain*, 132(Pt 5):1310–1323, 2009. doi: 10.1093/brain/awn320. URL http://dx.doi.org/10.1093/brain/awn320.

Elizabeth C Mormino, Rebecca A Betensky, Trey Hedden, Aaron P Schultz, Andrew Ward, Willem Huijbers, et al. Amyloid and APOE epsilon4 interact to influence short-term decline in preclinical Alzheimer disease. *Neurology*, 82(20):1760–1767, 2014. ISSN 1526-632X. doi: 10.1212/WNL.0000000000000431.

Elizabeth C. Mormino, Kathryn V. Papp, Dorene M. Rentz, Michael C. Donohue, Rebecca Amariglio, Yakeel T. Quiroz, et al. Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β.
Denise C. Park, Gary Lautenschlager, Trey Hedden, Natalie S. Davidson, Anderson D. Smith, and Pamela K. Smith. Models of visuospatial and verbal memory across the adult life span. *Psychology and Aging*, 17(2):299–320, 2002. ISSN 08827974. doi: 10.1037/0882-7974.17.2.299.

Jonas Persson, Lars Nyberg, Johanna Lind, Anne Larsson, Nilsson LG, Martin Ingvar, and Randy L Buckner. Structure-function correlates of cognitive decline in aging. *Cerebral cortex (New York, N.Y. : 1991)*, 16(7):907–915, 2006. ISSN 1047-3211. doi: 10.1093/cercor/bhj036.

Kristopher J Preacher and Andrew F Hayes. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior research methods*, 40(3):879–891, aug 2008. ISSN 1554-351X. doi: 10.3758/brm.40.3.879.

J C Raven. *Coloured Progressive Matrices*. London: H.K. Lewis, 1962.

N Raz, K M Rodrigue, D Head, K M Kennedy, and J D Acker. Differential aging of the medial temporal lobe: a study of a five-year change. *Neurology*, 62(3):433–438, 2004. ISSN 1526-632X. doi: 10.1212/01.wnl.0000106466.09835.46.

Naftali Raz, Ulman Lindenberger, Karen M Rodrigue, Kristen M Kennedy, Denise Head, Adrienne Williamson, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. *Cerebral cortex (New York, N.Y. : 1991)*, 15(11):1676–1689, nov 2005. ISSN 1047-3211. doi: 10.1093/cercor/bhi044.
Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant. *Brain Structure and Function*, 220(5): 2663–2674, sep 2015. ISSN 18632661. doi: 10.1007/s00429-014-0817-6. URL https://link.springer.com/article/10.1007/s00429-014-0817-6.

Michael Rönnlund, Lars Nyberg, Lars Bäckman, and Lars Göran Nilsson. Stability, growth, and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study. *Psychology and Aging*, 20(1):3–18, mar 2005. ISSN 08827974. doi: 10.1037/0882-7974.20.1.3.

Yves Rosseel. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). *Journal of statistical software*, 48(2):1–36, 2012.

Timothy A Salthouse. Selective review of cognitive aging. *Journal of the International Neuropsychological Society : JINS*, 16(5):754–760, sep 2010. ISSN 1469-7661. doi: 10.1017/S1355617710000706.

Jolien Schaeverbeke, Benjamin Gille, Katarzyna Adamczuk, Hugo Vanderstichele, Emeric Chassaing, Rose Bruffaerts, et al. Cerebrospinal fluid levels of synaptic and neuronal integrity correlate with gray matter volume and amyloid load in the precuneus of cognitively intact older adults. *Journal of Neurochemistry*, 2019. ISSN 14714159. doi: 10.1111/jnc.14680.

Reisa A Sperling, Paul S Aisen, Laurel A Beckett, David A Bennett, Suzanne Craft, Anne M Fagan, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. *Alzheimers Dement*, 7(3):280–
Adam M Staffaroni, Jesse A Brown, Kaitlin B Casaletto, Fanny M Elahi, Jersey Deng, John Neuhaus, et al. The Longitudinal Trajectory of Default Mode Network Connectivity in Healthy Older Adults Varies As a Function of Age and Is Associated with Changes in Episodic Memory and Processing Speed. *The Journal of neuroscience : the official journal of the Society for Neuroscience*, 38(11):2809–2817, 2018. ISSN 1529-2401. doi: 10.1523/JNEUROSCI.3067-17.2018.

Danielle J Tisserand and J Jolles. On the involvement of prefrontal networks in cognitive ageing. *Cortex; a journal devoted to the study of the nervous system and behavior*, 39(4-5):1107–1128, 2003. ISSN 0010-9452. doi: 10.1016/s0010-9452(08)70880-3.

N Tzourio-Mazoyer, B Landeau, D Papathanassiou, F Crivello, O Etard, and N Delcroix. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the {MNI MRI} single-subject brain. *Neuroimage*, 15:273–289, 2002.

Cyma Van Petten. Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. *Neuropsychologia*, 42(10):1394–1413, 2004. ISSN 0028-3932. doi: 10.1016/j.neuropsychologia.2004.04.006.

Rik Vandenberghe, Koen Van Laere, Adrian Ivanoiu, Eric Salmon, Christine Bastin, Eric Triau, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. *Annals of Neurology*, 2010. ISSN 03645134. doi: 10.1002/ana.22068.

Victor L Villemagne, Samantha Burnham, Pierrick Bourgeat, Belinda Brown, Kathryn A Ellis, Olivier Salvado, et al. Amyloid beta deposition, neurodegeneration, and cognitive
decline in sporadic Alzheimer’s disease: a prospective cohort study. *Lancet Neurol*, 12 (4):357–367, apr 2013.

Kristine B Walhovd, Lars T Westlye, Inge Amlien, Thomas Espeseth, Ivar Reinvang, Naftali Raz, et al. Consistent neuroanatomical age-related volume differences across multiple samples. *Neurobiology of aging*, 32(5):916–932, 2011. ISSN 1558-1497. doi: 10.1016/j.neurobiolaging.2009.05.013.

Andrew M Ward, Elizabeth C Mormino, Willem Huijbers, Aaron P Schultz, Trey Hedden, and Reisa A Sperling. Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits. *Neurobiology of aging*, 36(1):265–272, 2015. ISSN 1558-1497. doi: 10.1016/j.neurobiolaging.2014.06.028.

Mark J. West. Regionally specific loss of neurons in the aging human hippocampus. *Neurobiology of Aging*, 1993. ISSN 01974580. doi: 10.1016/0197-4580(93)90113-P.
	total	%
Sex (male/female)	99/81	55
CDR 0	180	100
APOE ε4 heterozygotes	81	45
APOE ε4 homozygotes	6	3.33
APOE ε2ε3 carriers	16	8.9
BDNF codon 66 met carriers	87	48.3

	mean	S.D.	range
Age (years)	68.6	6.4	52.4-80.9
Education (years)	14.2	3.4	8.0-23.5
MMSE (/30)	29.1	0.9	27.0-30.0
AVLT TL (/75)	47.3	9.1	26.0-69.0
AVLT %DR	84.5	17.9	30.0-200.0
BSRT TR (/12)	8.1	1.3	4.8-10.8
BSRT DR (/12)	8.0	2.7	1.0-12.0
BNT (/60)	54.6	4.4	38.0-60.0
AVF (# words)	22.5	5.6	9.0-42.0
LVF (# words)	36.3	11.8	9.0-71.0
PALPA49 (/30)	27.2	1.7	20.0-30.0
RPM (/60)	41.7	8.8	15.0-58.0
TMT B/A	2.5	0.9	0.0-6.7

Table 1: Baseline characteristics of the F-PACK cohort. APOE, Apolipoprotein E; BDNF, Brain Derived Neurotrophic Factor; CDR, Clinical Dementia Rating Scale total score; MMSE, Mini Mental State Examination; AVLT, Rey Auditory Verbal Learning Test: total learning (AVLT TL) and percentage delayed recall (AVLT %DR); BSRT, Buschke Selective Reminding Test: total retention (BSRT TR) and the delayed recall (BSRT DR); BNT, Boston Naming Test; AVF, Animal Verbal Fluency; LVF, Letter Verbal Fluency Test; PALPA, Psycholinguistic Assessment of Language Processing in Aphasia (PALPA) subtest 49; RPM, Raven’s Progressive Matrices; TMT, Trail Making Test part B divided by part A.
	Factor 1	Factor 2
Eigenvalue	2.14	1.79
Variance explained (%)	21.0	18.0
Cumulative variance explained (%)	21.0	39.0
BSRT TR	**0.98**	0.12
BSRT DR	**0.79**	0.11
AVF	0.04	0.65
LVF	0.16	0.62
AVLT TL	0.59	0.32
BNT	0.01	0.58
RPM	0.30	0.47
AVLT %DR	0.28	-0.03
PALPA49	-0.05	0.41
TMT B/A	-0.13	-0.35

Table 2: Factor analysis of the baseline neuropsychological test results
First column: Tests, Column 2-3: Standardized factor loadings. Loadings greater than 0.7 are marked in bold. Abbreviations: For abbreviations see Table 1. Model fit parameters were within recommended norms: empirical Chi square 29.04, \(P < 0.31 \), Comparative Fit index = 0.98 (>0.9) and RMSEA index = 0.045.
Region	MNI coordinates	Extent	P_{FWE}	Z
Right medial temporal cortex	20 2 -39	1686	0.002	4.03
	21 -19 -23		3.98	
	32 -15 -15		3.97	
Dorsomedial thalamus	6 -9 1	1402	0.006	4.46
	3 -18 -2		4.31	
Left cerebellar crus II	-30 -72 -42	1360	0.007	3.99
	-41 -60 -45		3.74	

Table 3: Whole-brain linear regression analysis of episodic memory decline neural correlates. Peak coordinates of the whole-brain voxelwise linear regression analyses across 179 subjects with the individual modulated grey matter maps as dependent variable, and Buschke Selective Reminding Test total retention slopes as index for episodic memory decline as independent variable. ICV is used as covariate of no interest. The significance threshold was set at voxel-level uncorrected P value <0.001, with a cluster-level whole-brain FWE-corrected threshold P value <0.05. MNI coordinates (x, y and z) are in mm. Extent corresponds to the number of grey matter voxels within a cluster, of which the voxel size was 1.5 mm3.
14 Figures

Figure 1. Histogram of baseline amyloid burden across F-PACK participants
Centiloid values of the total cohort of 180 participants are plotted as index for amyloid load. Histogram binwidth = 5.25. Dashed vertical line = neuropathologically validated CL cutoff of 23.43 for binary stratification of the cohort into amyloid-positive and amyloid-negative cases.

Figure 2. Whole-brain voxelwise regression analysis of the individual modulated grey matter maps
The regression included individual grey matter maps as dependent variable and episodic memory slope, i.e. Buschke Selective Reminding Test total retention slope, as independent variable. The one-sided \(t \)-contrast is overlaid on sections of the average bias-corrected MNI normalized T1 MRI of the 179 subjects (brighter colour depicts higher \(t \) value). The significance threshold was set at voxel-level uncorrected \(P \) value <0.001, with a cluster-level whole-brain FWE-corrected threshold \(P \) value <0.05.

Figure 3. Correlation matrix for episodic memory decline
Correlation matrix assessing the relation between cognitive decline on the BSRT TR score and other variables. The color scale depicts the strength of the Pearson correlation coefficient (\(Rho \)). Superimposed text reflects the actual numerical value of the Pearson correlation coefficient. The last three cells are FreeSurfer-based imaging measures: cortical thickness as specified, as well as ICV adjusted grey matter volumes (.Fs). \(APOE \), Apolipoprotein E; \(AVLT \), Rey Auditory Verbal Learning Test, TL, total learning, DR, long term percentage delayed recall; \(BDNF \), Brain Derived Neurotrophic Factor; BSRT TR, Buschke Selective Reminding Test total retention; SUVR, standardized uptake value ratio image.

Figure 4. Predictors of episodic memory decline.
A more positive value for BSRT TR slope corresponds to less decline. Correlation between episodic memory slope and (A) age at baseline, (B) Rey Auditory Verbal Learning Test (AVLT) total learning at baseline, (C) VBM hippocampal grey matter volume and (D) precuneus SUVR as index for amyloid load. Data points have been color-coded based upon amyloid status (CL cutoff = 23.4): n = 152 amyloid-negatives (black), n= 28 amyloid-positives (blue); Note that for all variables the sample size is n = 180, except for hippocampal volumes: n = 179; Associations are plotted as least squares regression line ± 95% confidence interval; Pearson \(rho \). AVLT, Rey Auditory Verbal Learning Test; BSRT TR, Buschke Selective Reminding Test total retention; SUVR, standardized uptake value ratio image.
Correlation between episodic memory slope and (A) age at baseline, (B) Rey Auditory Verbal Learning Test (AVLT) total learning at baseline, (C) VBM hippocampal grey matter volume and (D) entorhinal thickness. Correlational plots have been divided based upon amyloid status (CL cutoff = 23.4): n = 152 amyloid-negatives, n= 27 amyloid-positives; Pearson Rho and the corresponding uncorrected P value are plotted per amyloid group. Association illustrated as least squares regression line ±95% confidence interval. Abbreviations: AVLT = Rey Auditory Verbal Learning Test; BSRT TR = Buschke Selective Reminding Test total retention.

Results of the serial mediation analyses with episodic memory slope, i.e. BSRT slope as outcome variable. (A) The first mediation model contains age as predictor and as serial mediators: hippocampal volume and AVLT TL scores for baseline episodic memory performance. (B) The second mediation model contains age as predictor and as serial mediators: precuneus SUVR as index for amyloid load as well as hippocampal volume. Path-weights are displayed as β coefficients with standard errors between brackets. Significance of the indirect effect was determined using bootstrapping with 10,000 iterations. SUVR, standardized uptake value ratio image.