INTRODUCTION

Systemic lupus erythematosus is an unknown autoimmune disease which exhibits clinical and immunological heterogeneity. Genetic factors have been known to play some role in its pathogenesis. Though the genes involved in SLE have not yet been identified with certainty, most studies have focussed on the genes within the major histocompatibility complex (MHC). It is also well known that the distribution of HLA antigens is different according to races. In Caucasians, the most consistent associations that have been reported are those with HLA-B8, DR2, DR3, DQw1 and null alleles of the second and fourth component of the complement (C2). However, among American Blacks,
association has been variously described with DR3, both DR2 and DR3 and DR7, though these too have not been consistent. The genes with in the mhc have also been found to influence clinical heterogeneity and immunological responses in these patients. The purpose of this study was to determine the contribution of the HLA class II antigen in disease susceptibility and also to determine whether they play a role in expressing the clinical manifestations and immunological responses in SLE patients.

MATERIALS AND METHODS

The patient group consisted of 56 Malay patients with SLE, made up of 52 (93%) females and 4 (7%) males, giving a female: male ratio of 13:1. The patients are those attending the SLE Clinic of the National University Hospital of Malaysia and who met the American College of Rheumatology classification criteria for SLE (formerly American Rheumatism Association). Their mean age at study entry was 35±11 years (mean±SD), ranging from 14-61 years of age, while the mean disease duration was 7±5 years. Controls were taken from 59 healthy unrelated students of the College of Medical Laboratory Technologists at the Institute for Medical Research, Kuala Lumpur, with no history of any rheumatic diseases and who were ethnically matched. A complete physical and laboratory examination was performed on each patient, while past medical history was taken from previous records. Symptoms noted were; arthritis; mucocutaneous symptoms of malar rash, photosensitivity, oral ulcers and alopecia and renal involvement. Immunological abnormalities noted were antibodies to Sm/RNP, SSA(Ro)/SSB(La) and ds DNA. The age of onset of symptoms were also recorded where patients were divided into 2 groups: below 30 years and at/above 30 years of age. Data were entered into a database while blood samples were obtained for serum and genomic DNA.

1. HLA typing

Genomic DNA was purified from peripheral blood leukocytes using the salting-out method. DNA typing for "broad" DR groups (DR 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) were determined by PCR while DQA1, DQB1 and DPB1 alleles genotyping was performed by a modified PCR-RFLP, as previously described.

2. Measurement of antiENA and anti ds DNA antibodies

Sera from patients were tested for the presence of autoantibodies to extractable nuclear antigens (including antiSm, antiU1RNP, antiSSA (Ro), antiSSB (La)) and anti ds DNA antibodies using commercial ELISA kits (IMMCO Diagnostics, USA).

3. Statistical analysis

The allele frequency in patients and controls were compared using a 2×2 contingency analysis (X2 test) with Yates correction for each allele or Fishers exact test where appropriate using the EPI-INFO statistical program (Centres for Disease Control, Atlanta, GA). The relative risk was determined by the odds ratio. P value of less than 0.05 was taken to be significant. P corrected (p corr) were determined by multiplying p value with the number of HLA alleles tested. Statistical associations between the clinical and immunological findings and HLA antigens in patients with SLE (antibody positive patients with SLE, antibody negative patients with SLE and controls) were determined by Fishers exact test.

RESULTS

Among our group of 56 Malay patients with SLE, a positive association with SLE was observed for HLA-DR2 (48 of 56, 85.7%, p corr=0.03, rr=3.83) (Table 1). DQB1*0501 (p corr=0.0036, rr=4.56) and DQB1*0601 (p corr=0.0048, rr=6.0) (Table 2). There was, however, no DPB specificity linked to SLE disease susceptibility (Table 3). There was a weak decrease of DQA1*0601 and DQB1*0301 in the patient group with a weak increase of DQB1*0201 and DPB1*0901 which did not remain significant after correcting for multiple comparisons made.

Table 1. Frequency of HLA DR antigens in Malay SLE patients and healthy ethnically matched controls

DR	SLE Patients (n=56)	Controls (n=59)	p value	p corr	n
1	48(85.7)	36(61)	0.003	0.03*	3.83
2	8(14.3)	9(15.3)	ns	ns	ns
3	6(10.7)	7(11.9)	0.39	0.63	0.0
4	38(67.9)	38(67.8)	0.05	0.0	1.0
5	7(12.5)	9(15.3)	0.79	0.47	0.79
6	4(7.1)	9(15.3)	ns	ns	ns
7	1(1.8)	0(0)	ns	ns	ns
8	3(5.3)	5(8.5)	0.61	0.36	0.61
9	2(3.6)	5(8.5)	0.4	0.0	0.4

* p<0.05
ns: non significant
p corr: p corrected
n: relative risk
Table 2. Frequencies of HLA-DQA1 and DQB1 alleles in Malay patients with SLE and controls

DQA1	SLE patients (n=59)	Controls (n=59)	p value	p corr	n
0102	32 (55)	29 (49.2)	ns	0.62	
0601	7 (12.5)	16 (27.1)	0.05	ns	0.38
0501	9 (16.1)	5 (8.5)	ns	2.07	
0301	9 (16.1)	8 (13.6)	ns	1.22	
0103	4 (7.1)	1 (1.7)	ns	4.46	
0201	16 (28.6)	20 (33.9)	ns	0.78	
0401	3 (5.4)	2 (3.4)	ns	1.06	
0102	4 (6.8)	0 (0)	ns	0.0	

DQB1	SLE patients (n=59)	Controls (n=59)	p value	p corr	n
0501	27 (48.2)	10 (16.9)	0.0003	0.0036*	4.56
0502	5 (8.9)	10 (16.9)	ns	0.48	
0503	18 (31.6)	23 (39)	0.012	ns	0.34
0601	20 (35.7)	5 (8.5)	0.0004	0.0048*	6.0
0602	4 (7.1)	2 (3.4)	ns	2.19	
0603	1 (1.8)	4 (6.8)	ns	0.25	
0301	8 (14.3)	20 (33.8)	0.014	ns	0.32
0302	10 (17.6)	16 (27.1)	ns	0.58	
0303	2 (3.6)	7 (11.9)	ns	0.28	
0201	24 (42.9)	14 (23.7)	0.03	ns	2.41
0401	1 (1.8)	3 (5.1)	ns	0.34	
0402	0 (0)	4 (6.8)	ns	0.00	

Table 3. HLA-DPB1 allele frequencies in Malay SLE patients and healthy controls

DPB1	SLE patients (n=59)	Controls (n=59)	p value	p corr	n
0101	9 (16.1)	10 (16.9)	ns	2.07	
0201	6 (10.7)	10 (16.9)	ns	0.59	
0202	0 (0)	0 (0)	ns	0.00	
0301	5 (8.9)	8 (13.6)	ns	0.63	
0401	14 (25)	22 (37.3)	ns	0.56	
0402	8 (14.3)	11 (18.6)	ns	0.73	
0501	3 (5.4)	4 (6.8)	ns	0.78	
0601	2 (3.6)	5 (8.5)	ns	0.4	
0801	3 (5.4)	12 (20.3)	0.04	ns	0.27
0901	18 (33.9)	83 (6)	0.0005	ns	3.27
1001	2 (3.6)	10 (16.9)	ns	0.18	
1201	1 (1.8)	1 (1.7)	ns	1.05	
1301	1 (1.8)	9 (15.3)	ns	1.21	
1401	2 (3.6)	3 (5.1)	ns	0.69	
1501	0 (0)	1 (1.7)	ns	0.00	
1601	2 (3.5)	1 (1.7)	ns	2.15	
1701	0 (0)	0 (0)	ns	0.00	
1801	0 (0)	0 (0)	ns	0.00	
1901	0 (0)	0 (0)	ns	0.00	

1. HLA association with clinical manifestations

Several clinical manifestations were noted and 24 (43%) were found with arthritis, 38 (68%) with mucocutaneous symptoms of malar rash, 28 (50%) with photosensitivity, 20 (36%) with oral ulcers, 36 (64%) with alopecia, 38 (68%) with renal involvement. However, immunological abnormalities were seen in several patients: 21 (38%) with antibodies to Sm/RNP, 34 (61%) with SSA/Ro/SSB/La and 39 (70%) with anti ds DNA antibodies. Twenty patients (36%) were in the younger age group (below 30 years) while thirty-six (64%) were in the older age group (at/above 30 years old).

We analysed the patients who were subgrouped to determine whether a particular HLA type correlated with the expression of specific clinical manifestations (Table 4). There were positive associations; DR2 with renal involvement (90% vs 78%), DR8 with arthritis (33% vs 3%) when compared to patients without renal involvement and arthritis respectively. However, when comparison was done with healthy controls, there was a positive association of renal involvement with HLA DQB1*0501 (p corr=0.00084, r=6.74), arthritis with DQB1*0501 (p corr=0.00048, r=9.8), malar rash with DQB1*0501 (p corr=0.0121, r=4.41), oral ulcers with DQB1*0601 (p corr=0.0036, r=7.2) and alopecia with DQB1*0501 (p corr=0.00096, r=6.13). There was no particular HLA specificity with photosensitivity.

DQB1*0501 was also found to be slightly increased (non significant) in the patients with renal involvement compared to those without. However, when similar comparison was made, HLA-DQA1*0501 was slightly decreased (non significant). DR8 and DQB1*0501 was found to be strongly increased in the patients with arthritis compared to those without, but the latter was non significant (p corr=0.03, r=15.5 and p corr=0.00) when corrected for the number of comparisons made. A negative association was found between arthritis and HLA DQB1*0601 and *0201 though these associations did not remain significant after correction. Similarly, a negative association was noted between malar rash and DQA1*0501 (nonsignificant association) compared to those without, but when compared to healthy controls no significant association could be observed. HLA DQB1*0501 was non significantly associated with photosensitivity (p corr=0.18), no other significant associations were observed between genetic factors studied and clinical manifestations seen. We found a weak positive association (nonsignificant) with HLA DPB1*0501 in those with earlier onset disease compared to those patients with a later onset.

2. HLA association with immunological abnormalities

Twenty-one (37.5%) of 56 patients had anti Sm, anti RNP.
Table 4. HLA DR, DQ and DP allelic frequency (%) in controls and SLE patients divided according to their clinical manifestations and age of onset (number of alleles in parentheses)

HLA	SLE	Control	Renal	Arthritis	Malar rash	Photo	Ulcers	Alopecia	Onset<30 yrs
DR									
2	86	61	90**	88	82	89	90	89	75
3	14	15	13	13	13	7	15	14	20
4	11	12	11	4	11	14	15	11	15
5	34	48	34	42	37	39	45	28	30
8	2	0	3	33**	0	0	0	0	0
9	5	9	5	8	0	0	5	6	5
DQA1									
0601	13	27	13	4	53	11	20	11	25
0501	16	9	8	13	16	14	25	11	5
0103	7	2	11	4	16	4	10	6	5
DQB1									
0501	48	17	58*	67*	47*	36	40	56*	65
0502	9	17	5	8	8	11	15	6	0
0503	18	30	13	25	24	32	20	11	25
0601	36	9	37	17	29	32	40*	42	25
0301	34	34	13	21	16	14	20	17	10
0201	43	24	50	25	45	43	50	42	5
DPB1									
0101	16	9	24	21	16	20	5	17	20
0201	11	17	8	13	8	7	10	14	10
0301	9	14	13	13	8	11	15	8	20
0001	34	4	37	38	40	36	25	25	25

*: pc significant vs controls
**: pc significant vs antibody negative patients

antibodies or both; 34 (60.7%) had antiSSA (Ro) antibodies, antiSSB (La) antibodies or both. Since there is known to be close similarities between the Ro and the La antigens and between the Sm and the RNP antigens (17, 18), we have chosen to distinguish between antibody responses to these 2 different, non-cross reactive nucleoprotein families. The association between HLA antigens and immunological abnormalities was also analysed to determine if the presence of a particular DR, DQ or DP specificity correlated with autoantibody expression (Table 5). We did not find any correlation of antiSm/RNP and antiRo/La autoantibodies with HLA DR, DQ or DP specificities between antibody positive and antibody negative patients. However, when comparison was made with healthy controls, the prevalence of HLA DQB1*A0601 was found to be significantly increased in antiSm/RNP positive patients (p cor=0.0036, rr=8.20), HLA DQA1*A0601, DQB1*A0501, *0503 and DPB1*A0101 whose frequency in positive patients was 5% vs 27%, 43% vs 17%, 10% vs 39% and 29% vs 9%, respectively, compared with controls but did not reach significance after correction. When the Ro/La positive patients were compared with healthy controls, we found that the prevalence of the HLA DR2 (p cor=0.04, rr=6.6) and DQB1*A0601 (p cor=0.0098, rr=7.56) were significant in the patient group. There was a slight decrease of HLA DQA1*A0601 and DQB1*A0503 in the patient group when compared to controls but it was not significant after correction was made. Comparing with controls, DR2 was found to be increased in patients with antiRo alone and antiLa alone (p=0.03, and 0.004, respectively, uncorrected) (data not shown). HLA DQB1*A0501 was strongly increased, but DQB1*A0503 was decreased in patients with antiLa alone. When anti-ds-DNA positive patients were compared with healthy controls, we found a strong correlation of HLA DR2, DQB1*A0501, *0601 (p cor=0.04, rr=5.59, p cor=0.0012, rr=6.34, and p cor=0.048, rr=5.4, respectively), with SLE. However, DQB1*A0503 and *0301 were found in excess in the control group but did not
Table 5. HLA DR, DQ and DP allele frequencies (%) in controls and SLE patients divided according to their autoantibody specificities

HLA	SLE N=56	Controls N=59	Sm/RNP N=21	Ro/La N=34	DNA N=89
DR					
2	86	61	86	91*	90*
3	14	15	10	15	15
4	11	12	10	9	5
5	34	48	33	35	33
8	2	0	5	3	3
9	5	9	10	6	5

DQA1					
0601	13	27	5	6	10
0501	16	9	19	15	21
0103	7	2	10	12	8

DQB1					
0501	48	17	43	41	56*
0502	9	17	14	9	10
0503	18	39	10	15	13
0601	36	9	48*	41*	33*
0301	14	34	14	21	13
0201	43	24	29	38	41

DPB1					
0301	16	9	29	23	21
0201	11	17	10	12	10
0301	9	14	19	6	5
0001	34	4	33	35	39

*: pc significant vs control
**: pc significant vs antibody negative patients

reach statistically significant value after correction for multiple comparisons made.

DISCUSSION

Since genetic factors play a role in the predisposition to the disease arising from the high concordance rate for SLE in identical twins and the tendency for familial aggregation in SLE and that the MHC has been linked to this, it is of interest whether clinical manifestations and/or the expression of autoantibodies are associated with the HLA antigens. Here, in this present study, we have set to examine whether the HLA complex genes (HLA class II antigens) are implicated in the predisposition to SLE and to determine whether these loci correlate with the presence of clinical manifestations and immunological abnormalities.

We found a significantly increased frequency of DR2, DQB1*0501 and DQB1*0601 in patients with SLE compared to normal controls. However, DQA1*0601 and DQB1*0503 and *0301 were found to be nonsignificantly decreased while DQB1*0201 and DPB1*0101 were nonsignificantly increased in SLE. Our finding of the association of the DR2 with SLE is in agreement with that found by others, while DR3 antigens were found to be associated with the Caucasian population and Black SLE patients. However, other did not observe any HLA association with SLE.

The association of particular HLA specificities and clinical and immunological expression and/or severity of disease have been reported before with inconsistent results. A study on HLA DR and DQ alleles showed a strong association SLE with DR3 and DQw2.1 but no DR or DQ gene associations could be found with clinical manifestations in Caucasians. Few studies have examined the associations of DP antigens and disease, probably because of the difficulties in typing by cellular methods. HLA DP antigens are expressed in lower densities on the cell surface than DR and DQ and, therefore, the last of the functional HLA class II loci to be described. They were initially defined at the cellular level by primed lymphocyte typing.

In our study, we found some positive and negative association between HLA antigens and manifestations of clinical and immunological features. There was a strong positive association of DR2 and DQB1*0501 in patients with renal involvement with a weak decrease of DQA1*0501. An increase frequency of DR2 was reported in patients with lupus nephritis in Caucasian (American), Blacks, Asians and Pacific Islanders. However, a significant decrease of DR2 was seen in patients with renal involvement. A weak association of DR3 with renal involvement, almost due to the linkage of DR5 to DRw52b haplotypes, was also found. In another study, no association of DR2 or 3 or any other DR or DQ specificity with renal involvement was noted.

DR8 was strongly associated with our group of patients with arthritis, while DQB1*0601 with oral ulcers and DQB1*0501 with malar rash, but no association with photosensitivity. Our observation of an association of DQB1*0501 with alopecia was different from that found by Hong et al. where his association was with DR9. We found that there were non significant associations of DQB1*0501, 0601 and 0201 with arthritis, DQA1*0103 with malar rash, DQB1*0503 with photosensitivity. Therefore, it is probable that the majority of these associations resulted from coincidence. Positive associations of photosensitivity with DRB1*0405 and/or DQB1*0401, malar rash with DPB1*0201, oral ulcers with DRB1*0901 and alopecia with...
with or without La antibodies, as compared with patients without these antibodies and with healthy controls, was observed in another study³⁰.

We did not observe any DR or DQ association with early or late disease onset. Only HLA DPB1*0901 was found to be non significantly associated with patients in the earlier onset disease in our group of patients. An increased frequency of DR3 in late onset SLE was not observed by Davies et al.²⁸ who instead found the situation to be reversed, with DQA1*0501, DR3 frequencies elevated in those patients with onset before the age of 30 years compared to those above 30 years of age and DR5, which is in linkage disequilibrium with DQA1*0501 was also found to be non significantly elevated in those with earlier onset SLE. In his group of patients, DR4 was more common in those patients with later onset SLE but this was statistically nonsignificant. These differences in the immunogenetic profiles of early and late onset SLE, with the classical markers particularly prevalent in those with onset before the age of 30 years, may help explain some of the differences between early and late onset SLE³⁰.

Associations of the presence of SSA (Ro) and SSB (La) antibodies with DR and DQ antigens have been reported¹⁰ - ¹², ³⁹. We found a significant association of the DR2 with the Ro/La antibody complex with a non significant decrease of DQA1*0501 and DQB1*0503. DR2 was also found to be associated with Ro/La antibodies previously⁴⁰ but was negated by others⁴¹. Others have found HLA DR3 to be associated with antiRo antibodies in SLE³⁰. As for the DQ genes, both DQw2 and DR3 were found to be increased in the antiRo/La subgroup, while in the antiSm/RNP subgroup DQw2 and DR4 were found to be increased⁴². Thus, it is apparent that both DR and DQ antigens may play a role in antibody production in SLE but does not necessarily mean that a cooperation has to exist between these DR and DQ alleles. Very few patients in his study with antiRo/La or antiSm/RNP antibodies had DR3 or DR4, respectively, with DQw2. The various genetic associations in different races may be partially due to their different genetic background which could contribute to the pathogenesis and clinical course of disease.

We did not observe any DP specificity in patients positive for antiRo/La antibodies. Two groups have reported the results for an association between Ro and La antibodies and DPB1 alleles⁴³, ⁴⁴. A slightly higher frequency of *0101 in anti Ro/La negative patients, which was nonsignificant, was noticed⁴⁵. However, a non significant increase of *0101 in antiRo positive patients with or without La antibodies, as compared with patients without these antibodies and with healthy controls, was observed in another study³⁰.

Though several studies have noticed the association of DR2 or DR4 with either antiSm or RNP antibodies³⁰ - ³³. We and two other groups of investigators⁴⁶ - ⁴⁸ could not confirm this. Our analysis of correlation between HLA and antiSm/RNP antibodies revealed the association of DQB1*0601 in our study. However, there was a nonsignificant increase of DQA1*0501, DQB1*0501 and *0503 which could have occurred by chance. There was no HLA association with antiSm alone but we found a significant association of DQB1*0601 with antiRNP alone. AntiSm or antiRNP or both were found to be associated with DR4 and somewhat more strongly with the presence of DR4 or DR1 or both³⁰. The low frequency of DR3 (known to be closely associated with antiRo/La) noted by Akanatos et al.²⁸ indicated that the expression of antiSm/RNP is genetically different from that of antiRo/La. The molecular structures of the related antigens Ro and La differ from the structure of the related antigens Sm and RNP and that antiLa almost always occurs together with antiRo, whereas antiSm is very often accompanied by antiRNP³⁰ - ³¹. DR5 was found to be related to the absence of these autoantibodies and thus appeared to protect against their expression. A positive association between antiRNP and DQB1*0410 was found⁴⁹.

The role of the DPB locus has also been studied in antiSm and RNP autoantibody production. DPB1*0401 has been reported as being associated with the presence of antibodies to RNP⁴⁰ in connective tissue disease patients. We found a weak (nonsignificant) association of DPB1*0901 with antiSm/RNP antibodies. AntiRNP was frequently found in those with DPB1*0301 (statistically insignificant due to the small number of SLE patients in this group) while another study found an increased frequency of DPB1*0301 and *1401 in SLE patients with antiSm/RNP⁷.

A strong correlation of DR3 with antibodies to dsDNA was earlier reported⁴¹. However, we observed a strong association of DR2, DQB1*0501 and *0601 in our SLE patients. Others reported high levels of anti DNA antibodies associated with DR2 and possibly DQ⁴⁸ while Schur et al.²³ noted DR7 to be increased in anti dsDNA positive patients. There was a trend toward an increase of DR2, DQB1*0501 and *0601 in patients with antibodies to DNA²⁷. These findings were in contrast with others⁴¹. This could be due to ethnic/racial differences and clinical heterogeneity of the patients in the different study groups.
Our data suggest that a marked clinical and immunogenetic heterogeneity of SLE have been demonstrated and that these clinical and immunological expressions may be controlled by the genes within the major histocompatibility complex.

ACKNOWLEDGEMENTS

This work was partially supported by the IRPA grant 06-05-01-0121. We would like to thank the Director of the Institute for Medical Research for permission to publish this article.

REFERENCES

1. Gibofsky A, Winchester RJ, Pattarno M, Forino M, Kankel HG. Disease associations of the k-like human alloantigens. J Exp Med 148:1728-1732, 1978
2. Reinertsen JL, Klippel JH, Johnson AH, Steinberg AD, Decker JL, Mann DL. B-lymphocyte alloantigens associated with systemic lupus erythematosus. New Engl J. Med 299:55-58, 1978
3. Black CK, Welsh KL, Fiedler A, Hughes GRV, Batchelor JR. HLA antigens and Bf allotypes in SLE: evidence for the association being with specific haplotypes. Tissue Antigens 9:115-120, 1982
4. Schur PH, Meyer I, Garovoy M, Carpenter CB. Associations between systemic lupus erythematosus and the major histocompatibility complex: clinical and immunological considerations. Clin Immunol Immunopathol 24:263-275, 1982
5. Howard PF, Hochberg MC, Bas WB, Amett FC, Mclear RH. Relationship between C4 null genes, HLA-D region antigens, and genetic susceptibility to systemic lupus erythematosus in Caucasian and Black Americans. Am J Med 81:887-893, 1986
6. Gladman DD, Tennakone PI, Park MS, Iskak Y, Louis S, Quismorio FP, Barnett EV, Libling MR. Increased frequency of HLA-DRw2 in SLE. Lancet 2:902, 1979
7. Akarell A, Ahearn JM, Provost T, Dorsch CA, Stevens MR, Bas WB, Amett FC. Relationship of HLA-DR, and MT antigens to autoantibody expression in systemic lupus erythematosus. Arthritis Rheum 25:1031-1040, 1982
8. Hochberg MC, Boyd RE, Ahearn JM, Provost TT, Stevens MB, Bas WB, Amett FC. Systemic lupus erythematosus: A review of clinicolaboratory features and immunogenetic markers in 50 patients with emphasis on demographic subsets. Medicine 64:285-295, 1985
9. Kachru RB, Sequeira W, Mital KK, Siegel ME, Telsch M. A Significant increase of HLA-DR3 and DR2 in systemic lupus erythematosus among Blacks. J Rheumatol 11:471-474, 1984
10. Bell DA, Maddison PJ. Serologic subsets in SLE: an examination of autoantibodies in relationship to clinical features of disease and HLA antigens. Arthritis Rheum 23:269-273, 1980
11. Ahearn JM, Provost TT, Dorsch CA, Stevens MB, Bas WB, Amett FC. Intermolecular associations of HLA-DR, MB, and MT phenotypes, k autoantibody expression and clinical features in systemic lupus erythematosus. Arthritis Rheum 25:1031-1040, 1982
12. Akarellas A, Ahearn JM, Provost T, Dorsch CA, Stevens MR, Bas WB, Amett FC. Relationship of HLA-DR, and MT antigens to autoantibody expression in systemic lupus erythematosus. Arthritis Rheum 26:1353-1355, 1983
13. Tan EM, Cohen AS, Fries JF, Masi AT, McShane D, Rothfield NF, Schaller J, Talal N, Winchester R. The 1982 revised criteria for the classification of SLE. Arthritis Rheum 25:271-277, 1982
14. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acid Res 16:535, 1988
15. Ota M, Seki T, Nomura S, Sugimura K, Mizuki N, Fukushima H, Tsuji K, Inoko H. Modified PCR-RFLP method for HLA-DPB1 and DQA1 genotyping. Tissue Antigens 38:60-71, 1991
16. Nomura N, Ota M, Tsuji K, Inoko H, HLA-DQB1 genotyping by a modified PCR-RFLP method combined with group-specific primers. Tissue Antigens 36:33-39, 1991
17. Headrick JP, Wolin S, Rinke J, Lerner MR, Stenz JA. "Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins are a subclass of La ribonucleoproteins:" further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1:1138-1149, 1981
18. Takano M, Golden SS, Sharp GC, Agnis PF. Molecular relationships between two nuclear antigens, ribonucleoprotein and Sm: purification of active antigens and their biochemical characterization. Biochem 21:5929-5935, 1981
19. Block SR, Winfield JB, Lockshin MC. Studies of twins with systemic lupus erythematosus: a review of the literature and presentation of 2 additional sets. Am J Med 95:533-552, 1975
20. Buckman KJ, Moore SK, Ebbin AJ, Cox MB, Dubois EJ, Famili ALE. Arch Intern Med 138:1674-76, 1978
21. Hong GH, KLam HY, Takeuchi F, Nakano K, Yamada I, Matsuta K, Hahn N, Tokunaga K, Ito K, Pau K. Association of complement C4 and HLA DR alleles with systemic lupus erythematosus in Koreans. Journal Rheumatol 2:142-47, 1988
22. Doherty DG, Ireland RO, Demaine AG, Wang F, Veenap W, Welb RR, Vergani D. Major histocompatibility complex genes and susceptibility to systemic lupus erythematosus in Southern Chinese. Arthritis Rheumatol 35:641-646, 1992
23. Hawkins BR, Wong KL, Wong RWS, Chan KH, Dukley H, Serjeantson SW. Strong association between the major histocompatibility complex and systemic lupus erythematosus in Southern Chinese. J Rheumatol 14:1128-1131, 1987
24. Rudwaleit M, Tikly M, Gibson K, Pik R, Wordsworth P. HLA class II antigens associated with systemic lupus erythematosus in black South Africans. Annals of Rheum Dis 54:678-680, 1995
25. Marintchev LM, Naumova EJ, Rashkov RK, Arnett FC, Revell JD, Anderson KL, Reveille JD, Schroenloher RD, Acton RT, Barger BO. Restriction fragment length polymorphism analysis of HLA-DR and DQ alleles in Italian patients with systemic lupus erythematosus: evidence for association with autoantibody responses to extractable nuclear antigens. Ann Rheum Dis 46:457-462, 1987
26. Lulli P, Sebastiani GD, Trabace S, Passiu G, Cappelacci S, Pozzi O, Morlini M, Cutrupi F, Poretti V, Fricke M, Kalden JR, Peter HH, Schendel D, Seelig HP. The genetic basis of Ro and La antibody formation in SLE. Rheumatol Int. 12:169-173, 1992
27. Galeazzi M, Sebastiani GD, Passiu G, Angelini G, Delfino L, Asherson RA, Khamashta MA, Revell JD, Anderson KL, Reveille JD, Seelig HP and the members of the SLE Rheumatol 46:457-462, 1987
28. Arnett FC, Olsen M, Anderson KL, Revell JD, McLoed-St. Clair M, Durban 130
E. HLA-DPB1 alleles and autoantibody subsets in systemic lupus erythematosus, Sjogren’s syndrome and progressive systemic sclerosis: a question of disease relevance. Tissue Antigens 40:45-48, 1992

43. Hoffman RW, Rettenmaier LJ, Takeda Y, Hewett JE, Petterson I, Nyman J, Luger AM, Sharp GC. Human autoantibodies against the 70-kd polypeptide of U1 small nuclear RNP are associated with HLA-DR4 among connective tissue disease patients. Arthritis Rheum 33:666-673, 1990

44. Hsu KC, Hill DL, Hoffman RW. HLA DPB1*0401 is associated with the presence of autoantibodies reactive with the U1-70kD polypeptide antigen of U1 small nuclear ribonucleoprotein among connective tissue disease patients. Tissue Antigens 39:272-275, 1992

45. Griffing WL, Moore SM, Luthra HS, McKenna CH, Fathman CG. Association of antibodies to native DNA with HLA DR23: a possible major histocompatibility linked human immune response gene. J Exp Med 152:3 85-205, 1980