DNA Barcoding Medicinal Plant Species from Indonesia

Ria Cahyaningsih 1,2,* , Lindsey Jane Compton 1, Sri Rahayu 2, Joana Magos Brehm 1 and Nigel Maxted 1

1 School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; l.j.compton@bham.ac.uk (L.J.C.); joanabrehm@gmail.com (J.M.B.); n.maxted@bham.ac.uk (N.M.)
2 Research Center for Plant Conservation, Botanical Gardens and Forestry, National Research and Innovation Agency, Bogor 16122, Indonesia; srir005@brin.go.id
* Correspondence: ria.cahyaningsih@brin.go.id

Abstract: Over the past decade, plant DNA barcoding has emerged as a scientific breakthrough and is often used to help with species identification or as a taxonomical tool. DNA barcoding is very important in medicinal plant use, not only for identification purposes but also for the authentication of medicinal products. Here, a total of 61 Indonesian medicinal plant species from 30 families and a pair of ITS2, matK, rbcL, and trnL primers were used for a DNA barcoding study consisting of molecular and sequence analyses. This study aimed to analyze how the four identified DNA barcoding regions (ITS2, matK, rbcL, and trnL) aid identification and conservation and to investigate their effectiveness for DNA barcoding for the studied species. This study resulted in 212 DNA barcoding sequences and identified new ones for the studied medicinal plant species. Though there is no ideal or perfect region for DNA barcoding of the target species, we recommend matK as the main region for Indonesian medicinal plant identification, with ITS2 and rbcL as alternative or complementary regions. These findings will be useful for forensic studies that support the conservation of medicinal plants and their national and global use.

Keywords: DNA barcoding; medicinal plants; conservation; forensic; Indonesia

1. Introduction

Plant identification has formerly been formed using morphological characteristics that could be observed visually. Currently, DNA is also used to help species identification and to build bioinventories [1]. DNA barcoding was introduced by Hebert and colleagues in 2003 and involves the identification of species through universal, short, and standardized DNA regions [2]. DNA material for the barcoding can be obtained from living plants, herbarium specimens [3], and market products [4,5].

In plants, plastid DNA (rbcL, matK, trnL, and trnH-psbA regions) and nuclear DNA (ITS and ITS2 regions) are often used in DNA barcoding [6–8]. The rbcL and matK regions are recommended by the Consortium for the Barcode of Life (CBOL) as a standard two-locus barcode for global plant databases because of their species discrimination ability [8].

The process entails registering the DNA of identified species into a barcoding library and matching the DNA of unidentified species against the genetic data available in the library [6,9]. The library or the database can be accessed online for species identification and taxonomic clarification [10], namely through the NCBI GenBank (https://www.ncbi.nlm.nih.gov; accessed on 1 February 2022) [10] and the Barcode of Life Data (BOLD) (http://www.boldsystems.org; accessed on 1 February 2022) [11].

DNA barcoding has become an important taxonomic tool because of its accuracy, repeatability, and rapidity. It can also be used to identify species under legislative protection, or under threat of extinction, and to check the authenticity of biological products [6,9]. It is particularly powerful as identification is not influenced by the morphological diversity of species, growth phases, and environmental factors [12–15]. In the forensic field, even an inexperienced user is able to assign a taxonomic name to an unidentified plant specimen.
with relative ease [16,17]. It is an effective conservation tool as it is able to prevent substitution of important commercial species, protect species from theft [6,18], and help to define species richness in underexplored areas [6].

DNA barcoding is valuable in terms of medicinal plant (MP) species identification compared to traditional morphological identification for conservation and use, as it is able to identify species and ensure a genuine product rather than a substitute [6,18]. Identifying the plant correctly protects consumer rights [19], even with respect to small and damaged plant parts used in botanical forensics [10,20–22]. Several studies conducted on DNA barcoding of medicinal plants have indicated the effectiveness of ITS2 and matK. For example, these regions are able to distinguish *Rauvolfia serpentina* (L.) Benth. Ex Kurz, of which root extracts act as an antihypertensive drug from other species in the genus [5,23] and are able to authenticate *Eurycoma longifolia* Jack, of which all plant extracts (particularly roots) are a useful drug for cough, anticancer, and aphrodisiac activities [24]. MatK is also known to give the best identification for Philippine ethnomedicinal Apocynaceae [25]. However, DNA barcoding from only one specific sequence region has been applied for most medicinal plants. For example, the ITS2 region has been used as a DNA barcode for authenticating many medicinal plants, their relatives, and broader species [14,26], although it was found that this region could not authenticate all Chinese medicinal *Bupleurum* L. (Apiaceae) species [27]. For Indian medicinal plants (Ayurveda), the *rbcL* region has been used for DNA barcoding [19], while for medicinal plants of the Philippines, *rbcL*, matK, and *trnL*-F regions have been used based on their efficiency [28].

Indonesia is famous for its plant diversity and richness, particularly in medicinal plants and their uses [29–31]. Different forms of medicinal plants are used, regardless of being fresh or dried, for curing illness and disease [32]. Thus, the primary purpose of undergoing the barcoding process, apart from enriching the DNA barcoding database, is determining the identity of medicinal plants. DNA barcoding is an advanced technology for plant diversity inventories, and its high cost makes it both an issue and challenge for biodiversity conservation in Indonesia [33]. Nevertheless, DNA barcodes are useful for conservation and even for commercial purposes, and they will be widely used in the future as DNA sequencing technologies become simpler and cheaper [6]. This study aimed to assess how four different DNA barcoding regions (ITS2, matK, rbcL, and trnL) can aid 61 species identifications and conservation efforts, and investigate their effectiveness for DNA barcoding of Indonesian medicinal plants. The finding will allow for broader and more comprehensive use in the future with respect to medicinal plant conservation both nationally and globally.

2. Results and Discussions

2.1. Understanding the Use of DNA Barcoding for Indonesian Medicinal Plants

Of the 61 sampled Indonesian medicinal plants, 55 species are native to Indonesia (of which 29 are endemics), and six are introduced [34]. Some of the medicinal plants may need to be prioritized in terms of conservation, namely those assessed as threatened (VU, EN, CR) or near threatened (NT) according to the IUCN Red List [35], the 19 species listed in the CITES Appendices I, II, or III (UNEP-WCMC database) [36], and the 12 rare medicinal plants [37]. Two species were assessed as VU, namely *Aquilaria hirta* Ridl. [38] and *Etlingera solaris* (Blume) R.M.Sm. [39] and are considered to be facing a high extinction risk in the wild in the near future [40]. The 19 species listed in CITES II may become extinct if their trade is not controlled because they are collected from the wild and there is no sufficient data with respect to artificial propagation for commercial purposes [36]. Of the 61 sequence target species, 13 sequences were not found in BOLD, although their DNA sequence data was available in NCBI; a further 10 species did not have DNA sequences stored in either NCBI or BOLD. Detailed information for each of the 61 species is presented in Table 1.
Table 1. The Indonesian medicinal plants (n = 61) used in this study with related information from literature study.

No.	Species	Author	Family.	N/I	Important Sp.	Sp. No. per Genus	BOLD (NCBI) Database
1	Justicia gendarussa	Burm.f.	Acanthaceae	N	No	921	yes
2	Staurogyne elongata	(Nees) Kuntze	Acanthaceae	N	No	148	yes
3	Pangium edule	Reinv.	Achariaceae	N	Yes (P)	1	yes
4	Spondias malayana	Kosterm.	Anacardiaceae	N	No	19	no (yes)
5	Toxicodendron succedaneum	(L.) Kuntze	Anacardiaceae	I	No	27	yes
6	Anastrocladus tectorius	(Lour.) Merr.	Anastrocladaceae	N	No	21	yes
7	Anaxagorea javanica	Blume	Annonaceae	N	Yes (P)	25	no (yes)
8	Dasysmatschalan	(Blume)	Annonaceae	N	No	27	yes
9	Alstonia macrophylla	Wall. Ex. G.Don	Apocynaceae	N	No	44	yes
10	Alstonia scholaris	(L.) R. Br.	Apocynaceae	N	Yes (P)	106	yes
11	Alidia reinwardtii	Blume	Apocynaceae	N	Yes (P)	521	no (yes)
12	Hoya diversifolia	Blume	Apocynaceae	N	No	74	yes
13	Rauvolfia seropentina	Schott	Araceae	N	No	22	yes (yes)
14	Trevesia burckii	R.Br.	Araliaceae	N	No	8	yes (yes)
15	Cibotium barometz	(L.) J.Sm.	Cibotiacae	N	Yes (II)	10	yes
16	Decalobanthus mammosus	A.R.Simoes & Staples	Convolvulaceae	I	No	13	no (yes)
17	Erycibe malaccensis	C.B. Clarke	Convolvulaceae	N	No	70	no (no)
18	Rheedodendron macgregoriae	F. Muell.	Ericaceae	N	Yes (E)	1057	no (no)
19	Acalypha grandis	Benth.	Euphorbiaceae	N	No	428	no (no)
20	Euphorbia tirucalii	L.	Euphorbiaceae	I	Yes (II)	1976	yes
21	Millettia sericafolia	(Vent.) Benth.	Fabaceae	N	No	187	yes
22	Parkia timoria	(DC.) Merr.	Fabaceae	N	No	40	yes
23	Panthera fulva	(Korth.) Benth.	Fabaceae	N	Yes (E)	90	no (no)
24	Orthosiphon aristatus	(Blume) Miq.	Lamiaecae	N	No	44	yes
25	Premna serratifolia	L.	Lamiaecae	N	No	131	yes
26	Vitez glabrata	Gaertn.	Lamiaecae	N	No	203	yes
27	Cinnamomum rhynchophyllum	Miq.	Lauraceae	N	No	241	no (yes)
28	Ficus deltoidea	Jack	Moraceae	N	Yes (P)	874	yes
29	Myristica succedanea	Blume	Myristicaceae	N	Yes (E)	175	no (no)
30	Neophanes ampullaria	Jack	Nepentheaceae	N	Yes (P, II)	165	yes
31	Nepenthes gracilis	Korth.	Nepentheaceae	N	Yes (P, II)	yes	yes
32	Nepenthes mirabilis	(Lour.) Druce	Nepentheaceae	N	Yes (P, II)	yes	yes
33	Neophanes reinwardtiana	Miq.	Nepentheaceae	N	Yes (P, E, II)	yes	yes
34	Acriopsis liliifolia var. liliifolia	(J.Koenig)	Orchidacae	N	Yes (P, II)	10	no (yes)
35	Cymbidium aloifolium	Ormerod	Orchidacae	N	Yes (P, II)	74	yes
36	Cymbidium ensifolium	(L.) Sw.	Orchidacae	I	Yes (II)	yes	yes
37	Dendrobium crumenatum	Sw.	Orchidacae	N	Yes (P, II)	1547	yes
38	Dendrobium purpureum	Roxb.	Orchidacae	N	Yes (P, E, II)	no (no)	yes
Table 1. Cont.

No.	Species	Author	Family.	N/I	Important Sp.	Sp. No. per Genus	BOLD (NCBI) Database
40	*Dendrobium salaccense*	(Blume) Lindl.	Orchidaceae	N	Yes (P, II)		yes
41	*Grammatophyllum speciosum*	Blume	Orchidaceae	N	Yes (P, II)	13	yes
42	*Nervilia concolor*	(Blume) Schltr.	Orchidaceae	N	Yes (P, II)	77	yes
43	*Nervilia plicata*	(Andrews) Schltr.	Orchidaceae	N	Yes (P, II)		yes
44	*Oberonia lycopodioides*	Ormerod, (Lindl.) Schuit., (Y.P. Ng & H.A. Pedersen)	Orchidaceae	N	Yes (P, II)	305	no (no)
45	*Strongylaria pannea*	Y.P. Ng & H.A. Pedersen	Orchidaceae	N	Yes (P, II)	4	no (yes)
46	*Gelearia filiformis*	(Blume) Boerl., (Kurz) Callim. & Buerki	Pandaceae	N	Yes (E)	5	yes
47	*Benstonea affinis*		Pandanaeae	N	No	61	yes
48	*Phyllanthus oxyphyllus*	Miq.	Phyllanthaceae	N	No	1016	yes
49	*Arsidia complanata*	Wall.	Primulaceae	N	No	719	no (no)
50	*Arsidia crenata*	Sims	Primulaceae	I	No		yes
51	*Ventilago madraspatana*	Boerl.	Rhamnaceae	N	No	41	no (yes)
52	*Psychotria montana*	Blume	Rubiaceae	N	No	1531	no (yes)
53	*Lunasia amara*	Blanco	Rutaceae	N	Yes (P)	1	yes
54	*Melicope lunu-ankenda*	(Gaertn.) T.G. Hartley	Rutaceae	N	No	241	no (yes)
55	*Kadsura scandens*	(Blume) Blume	Schisandraceae	N	Yes (P)	17	yes
56	*Smilax calophylla*	Wall. ex A.D.C.	Smilaceae	N	No	262	yes
57	*Smilax zeylanica*	L.	Smilaceae	N	Yes (P)		yes
58	*Aquilaria hirta*	Ridl.	Thymelaceae	N	Yes (P, VU)	21	no (yes)
59	*Amomum hochreutinieri*	Valeton	Zingiberaceae	N	Yes (E)	102	no (no)
60	*Etlingera solaris*	(Blume) R.M. Sm.	Zingiberaceae	N	Yes (E, VU)	143	no (no)
61	*Meistera aculeata*	(Roxb.) Skornick. & M.F. Newman	Zingiberaceae	N	No	41	no (yes)

Note: Scientific names (1st and 2nd columns were collected from POWO (2022); Species: R for rare medicinal plant (MP), E for endemic to Indonesia, VU for Vulnerable (IUCN Red List), P for Priority, and II for CITES Appendix II; N = Native, I = Introduced.

The contribution of the DNA barcoding information from each species to DNA banks and to the correct identification of medicinal plants with high conservation status was classified using categories A–M, where category A denotes the contribution of new data to DNA banks and DNA barcoding information that can strongly assist MP conservation; at the opposite end of the spectrum, letter M denotes the least substantial contribution, where DNA barcoding needs to be clarified further before using it directly for identification. Figure 1 indicates how the four DNA barcodes are useful for the conservation and use of Indonesian medicinal plants with respect to the availability of their data in the DNA bank. The number of medicinal plant species per criteria are provided in Table A1. Sequences grouped in categories A-D can be of direct use to conservation efforts due to the correct identification of related medicinal plants. The A-B categories can be used in botanic forensics (in cases of medicinal plant adulteration and illegal trading) for medicinal plant identification [10,21–24], as the plants are listed as species that need to be prioritized in terms of conservation. There are 19 families of Indonesian medicinal plants consisting of 31 species, that could be identified accurately to the family level by DNA barcoding. Two major families of Indonesian medicinal plants that were successfully sequenced and correctly identified were Orchidaceae (13 sequences) and Apocynaceae (10 sequences). It is highlighted that correct identification was defined after the validation step, which
is cross-checked to morphological identification result by taxonomists (indicated in the species identity card).

Figure 1. Summary of DNA barcoding use for medicinal plant (MP) conservation in Indonesia. Letters represent the DNA barcoding contribution of a species to the DNA bank data and its importance in conservation in the following order; A = new DNA barcoding and can strongly assist MP conservation; B = can strongly assist MP conservation; C = new DNA barcoding and can assist MP conservation; D = can assist MP conservation; E = new DNA bank data and new DNA barcoding and may strongly assist MP conservation; F = new DNA barcoding and may strongly assist MP conservation; G = may strongly assist MP conservation; H = new DNA bank data and new DNA barcoding and may assist MP conservation; I = new DNA barcoding and may assist MP conservation; J = may assist MP conservation; K = new DNA bank data and new DNA barcoding but sequences need to be clarified further; L = new DNA barcoding, but sequences need to be clarified further; M = sequences need to be clarified further.

2.2. Understanding The Effectiveness of Each DNA Barcoding Region Used for Indonesian Medicinal Plants Identification

A total of 61 studied species were analyzed for DNA barcoding of four regions (ITS2, matK, rbcL, and trnL). There were some failures in DNA amplification and sequencing assembly, with the results of each step presented in Table 2.

Table 2. Success or failure in each DNA barcoding step.

Observed Parameter	ITS2 (%)	matK (%)	rbcL (%)	trnL (%)
No PCR amplicon obtained	1.64	27.87	1.64	16.39
Mixed sequences—no use	8.20	0	1.64	3.28
Sequence provided	90.16	72.13	96.72	80.33
Assembled consensus sequence	88.52	65.57	96.72	73.77
Unidirectional sequence	1.64	6.56	0	6.56

* 4 matK regions with the second primer excluded.
The sequence quality is based on the easily done assembly of both the forward and reverse regions into a single consensus sequence (Table 2). When both forward and reverse sequences were available and were of good quality, obtaining the assembled consensus sequence was straightforward. If one direction of the sequence was mixed, then no assembly could occur and only the unidirectional sequence could be used. The matK region, which is known to have the lowest amplification success among the regions used for DNA barcoding [3,41], could only be amplified in 72% samples, compared with successful amplification in 83–98% samples for the other regions (Table 2). This is consistent with previous work indicating matK has a lower PCR success rate than rbcL for DNA amplification of Indonesian plants [42]. The PCR amplification failure likely occurred due to a high level of sequence variation within the matK regions complementary to the primers [43].

There were only 212 sequences of ITS2, matK, rbcL, and trnL obtained from 61 Indonesian medicinal plants instead of the expected 244 sequences resulting from the sequencing (Table A2). Each species was annotated with its key information, such as whether it is native, how the species became important to be conserved, and all generated sequences from ITS2, matK, rbcL, and trnL regions with identification results from BLAST, whether correct, ambiguous, correct at genus or family level, or incorrect.

2.3. Description of ITS2, matK, rbcL, and trnL Regions of Indonesian Medicinal Plants

The descriptive statistics of the sequence regions ITS2, matK, rbcL, and trnL are portrayed in Figure 2. The minimum and maximum lengths (bp) of ITS2, matK, rbcL, and trnL regions varied between 233–984, 384–1142, 382–1122, and 416–962, respectively, for all studied species; the average lengths of each region were 591.2, 676.9, 636.1, and 735.8, respectively. The range of GC Content (%) for ITS2, matK, rbcL, and trnL regions varied between 30.94–66.83, 27.86–65.43, 27.72–63.64, and 29.26–67.74, respectively, for all Indonesian medicinal plant species, whilst the average GC contents were 48.34, 41.64, 43.52, and 39.10, respectively.

Figure 2. Box plots of the sequence length (upper) and GC content (lower) of ITS2, matK, rbcL, and trnL of Indonesian medicinal plants.
The relationships between MP species identification accuracy and sequence length (bp), GC content (%), species number per genus, and percentage of identity are presented in Figure 3. With respect to sequence length, the longer the ITS2 and \textit{rbcL} sequence regions, the lower the identification accuracy, while the other regions indicated no such relationship. With respect to GC content (%), all regions except ITS2 tended to be less accurate for identification when the GC content increased. In terms of species number per genus, \textit{matK}, \textit{rbcL}, and \textit{trnL} regions all tended to have no correlation with the species number per genus, but the ITS2 sequence region was more accurate in identification when the species number per genus was higher. However, this result will depend on the available DNA information in the data bank. All regions indicated a positive relationship of percentage identity (through a BLASTN search) with identification accuracy.

Figure 3. Scatterplot of identification accuracy vs. sequence length (bp), GC Content (%), species number per genus, and percentage of identity. Scale 0–3 represents the identification accuracy (0 = incorrect, 1 = correct at the family level, 2 = correct at the genus level, 3 = correct at the species level).

Among the sequence regions produced for Indonesian medicinal plants, ITS2 generally had the lowest minimum length, smallest average sequence, and highest GC content (Figures 1 and 2) and hence gives the highest efficiency of identification, with only a short DNA sequence needed for correct identification. After ITS2, \textit{matK} follows second with respect to having the smallest average sequence length. A short DNA sequence may make the process of DNA barcoding technically easier and more economical from extraction to sequencing, as Kress and colleagues suggested [44]. Meanwhile, in terms of GC content (%), only ITS2 had higher identification accuracy when the GC content increased. In some plant DNA sequences, GC content has a positive correlation with exon sites, i.e., the coding regions [45]. This might mean that the longer the exons, the higher the GC content; thus, DNA regions with high GC content are expected to have more accurate identification.
2.4. Identification of Indonesian Medicinal Plants Using Sequences of Their ITS2, matK, rbcL, and trnL Regions

Identification of the sequence regions resulting from the BLAST method that have been matched with samples morphologically identified are presented in Table 3. The highest correct identification in the set of medicinal plant species was reached by the \textit{matK} region, followed by ITS2 and \textit{rbcL}, although the percentage values among them were not significantly different (i.e., 31.15\% compared to 29.51\%). In contrast, \textit{trnL} had the lowest correct identification, approximately 15\% lower than that of \textit{matK}. The highest incorrect identification was reached by the ITS2 region, followed by the \textit{rbcL} region. Overall, the most accurate of the four regions was \textit{matK} because it has the highest identification rate at the species level, lowest at the family level, and resulted in no incorrect identifications [3,41,42].

Table 3. Identification success rates of each region through the BLAST method after validating with the species name from morphology identification.

Identification Measure	ITS2 (%)	\textit{matK} * (%)	\textit{rbcL} (%)	\textit{trnL} (%)
Correct identification at species level	29.51	31.15	29.51	16.39
Correct identification at genus level	32.79	47.54	52.46	55.74
Correct identification at family level	6.56	0	9.84	8.20
Incorrect identification	22.95	0	4.92	0

* 4 \textit{matK} regions with the second primer excluded.

Some ambiguous (correct at the genus and family level) and incorrect identification of Indonesian medicinal plants occurred. This might have happened because the world plant data has more than 1.2 million species names [34], while the DNA barcoding data for plants contains only 234,692 barcodes and only 5942 plants are recorded from Indonesia (http://www.boldsystems.org; accessed on 6 February 2020). As such, the available DNA bank to be cross-checked with the samples is far from complete.

The correct identification of unique species by singular regions and by combinations of regions can be visualized in the Venn diagrams (Figure 4). ITS2 was the most accurate region with unique correct identification, followed by \textit{rbcL}, \textit{matK}, and \textit{trnL}. A combination of three regions gave the same number of unique correct identifications, and a combination of all gave the highest correct identification. With respect to unique correct identification at the genus level, \textit{rbcL} gave the most accurate identification, followed by ITS2, \textit{trnL}, and finally \textit{matK}. A combination of \textit{matK}, \textit{rbcL}, and \textit{trnL} gave the best unique accurate identification compared to the other three combinations, and the combination of all gave the largest number of unique species among all possibilities. The highest unique correct species at the family level were obtained by using \textit{rbcL}, then ITS2, and finally \textit{trnL}.

Figure 4. Venn diagrams for correct identification of species at different taxonomic levels. From left to right: at the species level, at the genus level, and at the family level.
As presented in Table 4, the overall averages of the barcoding regions describing the genetic distance between the two compared species were very similar to one another, i.e., above 1.1% and below 1.2%, except for ITS2, which indicated an average of 1.29%. The lower the taxon unit relation, the lower the percentage, while the higher the taxon unit relation, the higher the percentage. Only the minimum distance of the matK region could describe species in the same genera. Nevertheless, the maximum distance of each region describes the highest level of the different species in a family. In principle, the genetic distance of interspecific related species (within the genus level and above) should be greater than that of the intraspecific species (within species level). It can be stated that more genetic distance lies between two different species with a different family than two different species with the same family. Species within the same genus have the least genetic distance.

Table 4. K2P pairwise genetic distances (%) of each region at different species levels.

Region	Observation	Value (%)	Related Species
ITS2	Overall average	1.29503	Nepenthes reinwardtiana and Nervilia concolor ***
	Minimum distance	0.00440	Nepenthes mirabilis and N. ampullaria *
	Maximum distance	2.70903	Erycibe malaccensis and Acalypha grandis ***
	Overall average	1.12567	Nepenthes reinwardtiana and Parkia timoriana ***
matK	Minimum distance	0.00615	Nepenthes mirabilis and N. ampullaria *
	Maximum distance	2.62368	Nepenthes reinwardtiana and Parkia timoriana ***
	Overall average	1.19148	Nepenthes mirabilis and N. ampullaria *
rbcL	Minimum distance	0.00350	Anomum hochreutineri and Etlingera solaris **
	Maximum distance	2.62587	Phyllanthus oxyphyllus and Galearia filiformis ***
	Overall average	1.11310	Phyllanthus oxyphyllus and Galearia filiformis ***
trnL	Minimum distance	0.02887	Alstonia scholaris and Rauvolfia serpentina **
	Maximum distance	2.59858	Millettia sericea and Cymbidium aloifolium ***

Notes: *: MP species in the same genera; **: MP species in the same family; ***: MP species in the different family.

The percentage of the sequences identified for each of the regions (ITS2, matK, rbcL, and trnL) was directly proportional to the accuracy of the identification. The higher the percentage, the more accurate the identification. MatK could correctly lead to identification of species with the highest percentages, followed by rbcL and ITS2 (Table 2). Only the matK region could differentiate species at the same genus level and species in different families compared to other regions. In contrast, ITS2 could not differentiate all species distances appropriately (Table 4).

In addition, it should be considered that using BLAST in a DNA barcoding study with any regions/primers is a basic step in identifying species [25–28,42]. BLAST analysis is the approach to the most similar species, and it depends on the species information stored in DNA bank. Therefore, the validation step to confirm the most accurate or most possible species is still required. When the used samples were clear species [42] like in this study, morphological identification by the experts was used, but when the samples were unable to be identified morphologically due to damage or derivative form or/and lack of taxonomic expert, generating a phylogenetic tree amongst medicinal plant groups such as a neighbor-joining (NJ) tree [23,25,26,42], maximum parsimony (MP), and maximum likelihood (ML) [42], and even analyzing chemical compound products [24] might be needed.

Considering Hollingsworth and colleagues’ findings with respect to DNA barcoding, it could serve two purposes. The first would be to provide information into the species-level taxon unit, and the second would be to help identify an unknown specimen to a known species. Thus, all the regions tested are valuable, depending on the purpose [43]. We emphasize that having a phylogenetic tree in the barcoding study would be beneficial, particularly when experts assume the medicinal plants are unidentified or a cryptic species. Thus, identification, authentication, and even conservation plan and action can be properly defined and applied.
3. Materials and Methods

3.1. Plant Samples and Literature Survey

This study used 61 different species of medicinal plants belonging to 30 families and 50 genera (Table 1). Plant samples were collected from a living collection with written permission from botanic gardens, including Bogor Botanic Gardens and Cibodas Botanic Gardens in Indonesia, and Hortus Botanicus Leiden in the Netherlands. All species had been taxonomically identified using morphological features as viewed on their identity card. Their scientific names were cross-checked online using POWO (2022) [34]. A leaf sample was collected from each species, except for Alstonia scholaris (L.) R. Br. and Spondias malayana Kosterm, from which bark samples were taken. This was due to A. scholaris and S. malayana Kosterm being high trees with unreachable leaves. Each sample (approximately 25 g) was collected and stored in a teabag with silica gel [46–48].

A literature study was conducted to collect all scientific information with respect to each of the sampled plant species, which can help the conservation status of every species. Information about available DNA data—i.e., whether the species already had DNA barcoding or genetic information that could be accessed from DNA banks—was identified using BOLD [11] and NCBI [10]. Data on species origin, including whether the species are native or introduced to Indonesia, and, if native, whether they are endemic, were collected from POWO (http://www.plantsoftheworldonline.org; accessed on 1 February 2022) [34]. Threatened species status was collected from the IUCN Red List of Threatened Species (https://www.iucnredlist.org; accessed on 6 February 2022), with species classified as Vulnerable (VU), Endangered (EN), Critically Endangered (CR), Extinct in The Wild (EW), or Extinct (EX) [35]. Global legislation regulating trade, i.e., based on whether the species is included in CITES Appendices I, II, or III, was collected from the UNEP-WCMC Checklist of CITES species (https://checklist.cites.org; accessed on 1 February 2022) [36]. The information on rare medicinal plants, was compiled from the Indonesian Biodiversity Strategy and Action Plan (IBSAP) National Document [37]. Endemic plants or plants mentioned in the IUCN Red List, CITES Appendices I, II, or III, endemic, and priority lists were considered to be important species that need to be prioritized for conservation [49].

3.2. Molecular Analysis

Molecular analysis was performed at the University of Guelph laboratory, Canada. The barcoding method involves genomic DNA extraction, DNA amplification, and DNA sequencing, and taxonomic identification against available DNA banks. For DNA extraction, genomic DNA was extracted from plant samples using the Maxwell® RSC Purefood GMO and Authentication Kit and the Maxwell® RSC Instrument (Promega). For DNA amplification, primers targeting the ITS2, matK, rbcl, and trnL genes of plants were used to amplify the DNA (Table 5). Each PCR reaction mix (25 µL) contained 1x HotStarTaq master mix (Qiagen), 0.4 µM of each (forward and reverse) primers, 0.15 µg of BSA and 2 µL of template DNA. PCR thermal cycling was conducted by using a GeneAmpTM PCR System 9700 (Applied Biosystems, Waltham, MA, USA). The PCR cycling conditions were as follows: 95 °C for 10 min for DNA denaturation, 45 cycles of 95 °C for 15 sec for DNA annealing with the primer, followed by 55 °C for 30 sec and 72 °C for 1 min for DNA extension, and finally 72 °C for 7 min.

PCR products were visualized on 2% agarose gels to check whether DNA amplification was successful. PCR products were then purified using a NucleoFast® 96 PCR clean-up kit (Macherey-Nagel). The purified PCR fragments were sequenced bidirectionally, using the same primers as for the PCR, with the help of an ABI 3730 Genetic Analyzer (Applied Biosystems). The retrieved sequences were analyzed using ABI Prism™ Sequencing Analysis software (Applied Biosystems) to obtain a consensus sequence (Q > 20) for each sample.
Table 5. Primers used for amplification of DNA regions of ITS2, matK, rbcL, and trnL.

Gene Region	Name	Sequence	Reference
rbcL	rbcLa-F	ATGTCACCACAAACAGAGACTAAAGC	[50]
	rbcLa-R	GCTAAATCAATCCACCCRGCG	
matK	matK472F	CCCRTYCACTGGAAATCTTGGTGTC	[41]
	matK1248R	GCCRTRATAATGAGAAAGATTTCTGC	
matK a	matKxF	TAATTTACGATCAATTCATTC	[23]
	matK5R	GTTCAGACACAGAAAGTACG	
ITS2	ITS2F	ATCGGATACCTTGGTGTAAT	[51]
	ITS3R	GACGCTTCTCCAGACTACAT	
trnL	trnL-F	ATTTGAACTGGTGACGAG	[7]
	trnL-c	CGAACATCGGTAGACGCTACG	

Note: matK a is an alternative to matK that is used when the PCR reaction fails to have an amplificon. F denotes the forward primer sequence and R is the reverse primer sequence.

3.3. Sequence Analyses and Data Interpretation

For each sample, the consensus sequence was compared with the nucleotide sequences in the BOLD species ID engine and the NCBI GenBank using BLASTN (https://blast.ncbi.nlm.nih.gov; accessed on 7 January 2022) [52] with the program selection as "Highly Similar Sequences (Megablast)" [53] for taxonomic identification. When no result was obtained from Megablast due to the sequence being too short, the sequence was queried with the program selection as, “Somewhat similar sequences (nBlast) for an alternative”.

PCR amplification, sequencing, and identification success rates were calculated as percentages. Only one best-matched species was selected from the BLASTN identification that is approached from the most similar sequence species recorded in DNA bank. Where there was more than a single match, the best-matched species was selected as the one with the lowest E value and the highest coverage; otherwise, any species was the closest-related species to the query (species). The results were then validated with studied medicinal species’ ID from botanical gardens where they have been morphologically identified by taxonomic expert.

The BLAST identification results were the initial step to identify species with DNA barcoding [25–28,42]. It was considered to be the correct species if the highest percentage of identification referred to the right species, i.e., when the species name from sequence identification matched the morphologically identified species. Otherwise, when the sequence was identified as a different species within a genus or a different species within a family, the result was considered to be an ambiguous species or genus. Ambiguous identifications were counted as correct identification, as per the study by Amandita et al. [42]. Sequences with an identification percentage of 99% or more were included in the novel sequence data for specific DNA barcoding for a species. Novel sequence data will be deposited in the GenBank database to assist in future identification.

Descriptive, statistical, and scatter plot analyses were used to gain understanding of the ITS2, matK, rbcL, and trnL regions and the relationship between factors in the BLAST analysis, with the identification being completed using the MINITAB Statistical Software.

In addition, Venn diagrams generated by Bioinformatics and Evolutionary Genomics (http://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htmpl; accessed on 2 January 2022) were used to depict how many species were correctly identified by singular regions and by multiple combinations of regions, whether or now there was a correct identification within species, genus, or family level. Information about the species number per genus was obtained from POWO [34].

Sequence alignments were performed using the Muscle program. The nucleotide composition of all sequences obtained from the ITS2, matK, rbcL, and trnL regions were computed, and their genetic distances were calculated with Kimura 2 parameters (K2P) [54]. The K2P pairwise genetic distance is the percentage of nucleotide sequence divergence that
was used by Hebert and colleagues [2]. All analyses were performed with the Molecular Evolutionary Genetics Analysis (MEGA X) software [55].

All the medicinal plant species information collected was analyzed and interpreted according to the use of the data in DNA barcoding with respect to conservation. Any correct identification can be used for DNA barcoding for related species and can be subsequently helpful for medicinal plant conservation, although the DNA barcoding can only be used for identification at species level and cannot estimate variation within species [56]. Any ambiguous identification can be used as an approach to species identification and thus may also be valuable for medicinal plant conservation.

Any new sequence or new DNA barcoding that is not available in NCBI or BOLD constitutes novel data. Species included in at least one of the following categories: IUCN Red List [40], CITES Appendixes I, II, or III [36], rare medicinal plants species [37], or Native and Endemic species [34] would require DNA barcoding more urgently than the non-listed species. Therefore the species were categorized in priority order A-M as follows: new DNA barcoding and can strongly assist medicinal plant (MP) conservation (A), can strongly assist MP conservation (B), new DNA barcoding and can assist MP conservation (C), can assist MP conservation (D), new to DNA bank data and new DNA barcoding and may strongly assist MP conservation (E), new DNA barcoding and may strongly assist MP conservation (F), may strongly assist MP conservation (G), new to DNA bank data and new DNA barcoding and may assist MP conservation (H), new DNA barcoding and may assist MP conservation (I), may assist MP conservation (J), new to DNA bank data and new DNA barcoding but sequences need to be clarified further (K), new DNA barcoding but sequences need to be clarified further (L) and sequences need to be clarified further (M).

4. Conclusions

Based on the results of this study, we conclude that no single region is perfectly ideal for DNA barcoding. Nonetheless, according to the observed criteria, we recommend \textit{matK} as the core DNA barcoding region for Indonesian medicinal plant identification. In addition, due to its unique correct species identification, we recommended the ITS2 and \textit{rbcL} regions as alternative or complementary regions to the core barcoding DNA using \textit{matK}. DNA barcoding for 33 Indonesian medicinal plant species was provided; of these 33 species, 21 species were newly DNA barcoded; of these 21 species, three contributed novel DNA barcoding data to DNA bank. In the future, this guide and associated data will facilitate a means to identify Indonesian medicinal plants, particularly those that need to be conserved strongly, to assure a valid species rather than a substitute in herbal medicines and to prevent illegal trade.

\textbf{Author Contributions:} Conceptualization, R.C, L.J.C., S.R., J.M.B. and N.M.; Data curation, R.C.; Formal analysis, R.C.; Funding acquisition, R.C.; Investigation, R.C.; Methodology, R.C., L.J.C. and S.R.; Resources, R.C.; Software, R.C.; Supervision, L.J.C., S.R., J.M.B. and N.M.; Validation, R.C.; Visualization, R.C., L.J.C. and S.R.; Writing—original draft, R.C.; Writing—review & editing, R.C., L.J.C., S.R., J.M.B. and N.M. All authors have read and agreed to the published version of the manuscript.

\textbf{Funding:} This study was funded by the Ministry of Finance of the Republic of Indonesia, grant number 20160722038259 through the Indonesia Endowment Fund for Education (LPDP) through R. Cahyaningsih’s scholarship and The APC was funded by the University of Birmingham, UK.

\textbf{Institutional Review Board Statement:} This study did not require ethical approval.

\textbf{Informed Consent Statement:} Not applicable.

\textbf{Data Availability Statement:} All data resulting from this study has been stored and could be accessed at \url{http://www.boldsystems.org} under Project-MPIN DNA BARCODING STUDY OF MEDICINAL PLANTS OF INDONESIA FOR ASSISTING THEIR CONSERVATION AND USE.

\textbf{Acknowledgments:} We thank the Registration and Nursery Subdivision of Bogor Botanic Gardens (BBG) and Cibodas Botanic Gardens (CBD), Indonesian Institute of Sciences (LIPI) and Hortus Botanicus Leiden (HBL), the Netherlands for providing the samples for DNA barcoding. Most
of samples are from BBG, except *Amomum hochreutineri* Valeton, *Etlingera solaris* (Blume) R.M.Sm., *Psychotria montana* Blume, *Rhododendron maccropogoniae* F.Muell., *Smilax calophylla* Wall. ex A.DC. and *Staurogyne elongate* (Nees) Kuntze are from CBG, and *Aglaonema commutatum* Wall., *Cymbidium ensifolium* (L.) Sw. and *Hoya diversifolia* Blume are from HBL.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. DNA barcoding regions used for medicinal plant (MP) conservation in Indonesia.

DNA Barcoding Use for MP Conservation in Indonesia	ITS2	matK	rbCL	trnL
A. new DNA barcoding and can strongly assist MP conservation				
Anaxagorea javanica	1	1	2	1
Aquilaria hirta	1			
Strongyleria pannea	1	1	1	
B. can strongly assist MP conservation	11	12	8	6
Alstonia scholaris	1	1	1	1
Algeia reinwardtii	1	1	1	
Cymbidium aloifolium	1	1	1	
Dendrobium crumenatum	1	1		
Dendrobium salacense	1		1	1
Euphorbia tirucalli				1
Ficus deltoidea				
Galenia filiformis			1	1
Kadsura scandens				1
Lunasia amara		1	1	1
Nepenthes gracilis				1
Nepenthes reinwardtiana			1	1
Nervilia plicata		1	1	1
Pangium edule			1	1
Parkia timoriana				
Rauvolfia serpentina		1	1	1
C. new DNA barcoding and can assist MP conservation				1
Aglaonema commutatum				
Meistera aculeata				
D. can assist MP conservation	5	6	7	3
Alstonia macrophylla		1	1	
Ancistrocladus tectorius		1	1	1
Ardisia crenata			1	1
Dasysmacalum dasysmacalum				1
Justicia gendarussa		1	1	1
Orthosiphon aristatus				1
Phyllanthus oxycaphylus		1		
Prema serratifolia				1
Toxicodendron sucedaneum		1	1	1
E. new to DNA bank data and new DNA barcoding and may strongly assist MP conservation	6	4	6	7
Anomum hochreutineri		1	1	
Dendrobium purpureum		1	1	1
Etlingera solaris		1	1	1
Myristica sucedanea			1	1
Obregonia lycopodioides		1	1	1
Planera fulva			1	
Rhododendron maccropogoniae		1	1	1
F. new DNA barcoding and may strongly assist MP conservation	2	3	2	2
Acriopsis liliifolia var. liliifolia		1	1	1
Anaxagorea javanica			1	
Aquilaria hirta			1	
Table A1. Cont.

DNA Barcoding Use for MP Conservation in Indonesia	ITS2	matK	rbcl	trnL
G. may strongly assist MP conservation	3	8	12	12
Alyxia reinwardtii				
Cibotium barometz				
Cymbidium aloifolium				
Cymbidium ensifolium	1	1		
Dendrobium crumenatum	1			
Dendrobium salacense	1			
Euphorbia tirucalli	1			
Ficus deltoidea	1	1	1	
Grammatophyllum speciosum	1	1		
Kadsura scandens	1	1		
Lunasia amara	1			
Nepenthes ampullaria	1	1	1	
Nepenthes gracilis	1			
Nepenthes mirabilis	1	1	1	1
Nepenthes reinwardtiana	1	1		
Nervilia concolor	1			
Pangium edule	1			
Parkia timoriana	1			
Smilax zeqlanica	1	1		
H. new to DNA bank data and new DNA barcoding and may assist MP conservation	2	2	3	3
Acalypha grandis	1	1		
Ardisia complanata	1	1	1	
Erycibe malaccensis	1	1	1	
I. new DNA barcoding and may assist MP conservation	4	6	7	6
Aglaonema commutatum	1	1		
Cinnamomum rhynchophyllum	1	1	1	
Decalobanthus mammosus	1			
Hoya diversifolia	1	1	1	
Meistera aculeata				
Melicope lunu-ankenda	1	1	1	
Psychotria montana	1	1	1	
Spondias malagana	1			
Ventilago madraspatana				
J. may assist MP conservation	7	6	8	9
Alstonia macrophylla	1	1		
Ancistroclados tectorius				
Ardisia crenata	1	1		
Benstonea affinis	1	1		
Dasymaschalon dasymaschalum	1			
Meliletta sericea	1	1	1	
Orthosiphon aristatus				
Phyllanthus oxyphyllus				
Premna serratifolia				
Smilax calophylla				
Staurogyne elongata	1	1	1	1
Trevesia burckii	1	1	1	1
Vitex glabrata	1			
K. new to DNA bank data and new DNA barcoding, but sequences need to clarify further (K)	2	1		
Acalypha grandis				
Myristica succedane				
Phanera fulva				
L. new DNA barcoding, but sequences need to clarify further	2			
Aglaonema commutatum				
Ventilago madraspatana				
Table A1. Cont.

DNA Barcoding Use for MP Conservation in Indonesia	ITS2	matK	rbcL	trnL
M. new DNA barcoding and may strongly assist MP conservation	10	2		
Benstonea affinis	1			
Cibotium barometz	1			
Dasymaschalon dasymaschalum	1			
Galeria filiformis	1			
Grammatophyllum speciosum	1			
Nervilia concolor	1			
Nervilia plicata	1			
Pangium edule	1			
Parkia timoriana	1			
Smilax calophylla	1			
Smilax zeylanica	1			

Table A2. Summary of DNA barcoding result per species.

No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum.	Notes
1	Justicia gendarussa	Burm.f.	Acanth.	ITS2	562	562	0.73	5.00E-156	0.9968	Justicia gendarussa		c
				matK	1330	1330	0.96	0	0.9986	Justicia gendarussa		c
				rbcL	1055	1055	0.97	0	1	Justicia gendarussa		c
				trnL	1487	1487	0.92	0	0.9975	Justicia gendarussa		c
2	Staurogyne elongata	(Nees)	Kuntze	Acanth.	ITS2	597	0.89	1.00E-166	0.9526	Ophiophriziphilum microcephalum		a **
				matK	1273	1273	0.97	0	0.9821	Staurogyne concinnum	a *	
				rbcL	939	939	0.91	0	0.9923	Staurogyne concinnum	a *	
				trnL	1013	1427	0.99	0	0.9732	Staurogyne trinitissi	a *	
3	Pangium edule	Reinw.	Achari.	ITS2	163	163	0.15	1.00E-35	0.9286	Celastraceae sp.	i	
				matK	1387	1387	1	0	0.9974	Pangium edule	c	
				rbcL	972	972	0.91	0	0.982	Pangium edule	c	
				trnL	1158	1741	0.98	0	0.982	Ryparosa kurrangii	a *	
4	Spondias malayana	Kosterm.	Anacardi.	ITS2	636	636	1	3.00E-178	0.9332	Spondias tuberosa	a *	
5	Toxicodendron succedaneum	(L.)	Kuntze	Anacardi.	ITS2	660	660	0.75	0	1	Toxicodendron succedaneum	c
				matK	1452	1452	0.99	0	1	Toxicodendron succedaneum	c	
				rbcL	1038	1038	0.97	0	1	Toxicodendron succedaneum	c	
				trnL	1598	1598	1	0	1	Toxicodendron succedaneum	c	
6	Ancistrocladius tectorius	(Lour.)	Merr.	Ancistroclad.	ITS2	774	774	1	0	0.9953	Ancistrocladius benemensis	c
				matK	1387	1387	1	0	0.9987	Ancistrocladius heptaneus	a *	
				rbcL	1053	1053	1	0	1	Ancistrocladius tectorius	c	
				trnL	1663	1663	1	0	0.9903	Ancistrocladius tectorius	c	
7	Anaxagorea javanica	Blume	Annon.	ITS2	1502	1502	0.97	0	0.9928	Anaxagorea luzonensis	a *	
				matK	1502	1502	0.97	0	0.9928	Anaxagorea luzonensis	a *	
				rbcL	1013	1013	0.94	0	1	Anaxagorea javanica	c	
8	Dasymaschalon dasymaschalum	(Blume)	I.M.Turner	ITS2	237	237	0.38	3.00E-58	0.9474	Acer palmatum	i	
				matK	1382	1382	1	0	0.9947	Dasymaschalon clusiflorum	c	
				rbcL	1020	1020	0.97	0	1	Demo dasymaschalum	c	
				trnL	1565	1565	0.95	0	0.9965	Dasymaschalon megalamutham	a *	
No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum.	Notes
-----	---------------------	-----------------------	-----------------	--------	-----------	-------------	-------------	---------	------------	-----------------------------	------	-------
9	Alstonia macrophylla	Wall. Ex. G.Don	Apocyn.	ITS2	763	763	0.98	0	0.9976	Alstonia scholaris	a *	
				matK	1386	1386	1	0	0.9987	Alstonia scholaris	c	13/14 is a * with the same coverage
				rbcL	857	857	1	0	0.9876	Alstonia scholaris	c	
				trnL	1557	1557	1	0	0.9908	Alstonia scholaris	a *	
				ITS2	457	457	0.62	3.00E-124	0.9772	Alstonia scholaris	c	
10	Alstonia scholaris	(L.) R. Br.	Apocyn.	matK	1380	1380	1	0	0.9887	Alstonia scholaris	c	1/9 a is a * with same coverage
				rbcL	1051	1051	1	0	0.9983	Alstonia scholaris	c	
				trnL	1589	1589	1	0	0.9977	Alstonia scholaris	c	
				ITS2	614	614	0.8	1.00E-171	0.9912	Alyxia reinwardtii	c	1/2 is a *
				matK	1317	1317	0.95	0	0.9972	Alyxia reinwardtii	c	1/2 is a * with higher coverage
11	Alyxia reinwardtii	Blume	Apocyn.	rbcL	1020	1020	0.96	0	1	Alyxia reinwardtii	c	
				trnL	1524	1524	0.98	0	0.9929	Alyxia grandis	a *	
				ITS2	507	507	0.63	3.00E-139	1	Hoya glabra	a *	
				matK	1347	1347	1	0	1	Hoya vitellinoides	a *	
				rbcL	1051	1051	0.99	0	1	Hoya petiolaris	a *	
				trnL	1539	1539	0.98	0	0.9988	Hoya sp. serpentina	c	
				ITS2	617	617	0.73	1.00E-172	1	Rauvolfia serpentina	c	
12	Hoya diversifolia	Blume	Apocyn.	matK	1380	1380	0.99	0	1	Rauvolfia serpentina	c	
				rbcL	1057	1057	0.99	0	1	Rauvolfia serpentina	c	
				trnL	1395	1395	0.89	0	0.9873	Rauvolfia serpentina	c	
13	Rauvolfia serpentina	(L.) Benth. ex Kurz.	Apocyn.	ITS2	501	501	0.59	2.00E-137	0.9964	Thunbergia coccinea	i	
				matK	1384	1384	1	0	0.9974	Aglaonema coccineum	a *	
				rbcL	1022	1022	0.97	0	1	Aglaonema commutatum	c	
				trnL	1650	1650	1	0	0.9989	Aglaonema crispum	a *	
				ITS2	745	745	0.95	1.00E-183	0.9988	Trevesia palmata	a *	
				matK	1393	1393	1	0	1	Brassiaopsis gracilis	a *	
				rbcL	1048	1048	0.98	0	0.9982	Trevesia palmata	a *	
				trnL	1668	1668	0.99	0	0.9989	Brassiaopsis ciliata	a *	
14	Aglaonema commutatum	Schott	Ar.	ITS2	501	501	0.59	2.00E-137	0.9964	Cucumis sativus	i	
				matK	1384	1384	1	0	0.9974	Cibotium barometz	i	
				rbcL	1022	1022	0.97	0	1	Cibotium barometz	i	
				trnL	1650	1650	1	0	0.9989	Cibotium barometz	a **	
15	Trevesia buckii	R.Br.	Arali.	ITS2	348	348	0.75	3.00E-91	0.9896	Merremia peltata	a *	
				rbcL	965	965	0.94	0	0.9872	Merremia peltata	a *	
16	Cibotium barometz	(L.) J.Sm.	Cibot.	trnL	1629	1629	0.96	0	0.9955	Acera tataricum	a *	
				ITS2	272	272	0.35	1.00E-68	0.9808	Acera tataricum	i	
				rbcL	1062	1062	0.99	0	1	Acera tataricum	i	
				trnL	1729	1729	1	0	0.9886	Acera tataricum	a *	

Table A2. Cont.
No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum.	Notes
21	*Euphorbia tirucalli*	L. Euphorbi.			1046	1046	0.98	0	0	*Euphorbia raulii*	a *	
					712	712	0.94	0	0	*Millettia pulchra*	a *	
					1332	1332	0.97	0	0	*Dioseteria piretata*	a *	
					1042	1042	0.97	0	0	*Millettia piretata*	a *	
					1543	1543	1	0	0	*Parkia timoriana*	c	
22	*Millettia sericea*	(Vent.) Fab.			1376	1376	0.98	0	0	*Parkia biglandulosa*	a *	
					1000	1000	0.95	0	0.9927	*Magnoliodaphya sp.*	i	
					1814	1814	0.99	0	0.99	*Parkia biglandulosa*	a *	
					475	475	0.68	7.00E-130	0.9477	*Rudinia sp.*	a *	
					1016	1016	0.96	0	0.9982	*Embryophyllum environmental*	a **	
					1404	1404	0.78	0	0.9974	*Phanaea vahlii*	a **	
					562	562	0.69	5.00E-156	1	*Orthosiphon aristatus*	c	
					1042	1042	0.98	0	1	*Clerodendranthus spicatus*	a **	
23	*Parkia timoriana*	(DC.) Merr.	Fab.		1376	1376	0.98	0	0.996	*Premna microphylla*	a *	
24	*Phanera fulva*	(Korth.) Benth.	Fab.		1040	1040	0.97	0	1	*Premna serratifolia*	c	
25	*Orthosiphon aristatus*	(Blume) Miq.	Lami.		651	651	0.91	0	0.9558	*Vitex carvalhoi*	a *	
					1587	1587	1	0	0.9968	*Vitex glabrata*	a *	
					1050	1050	1	0	0.9982	*Vitex doniana*	a *	
					1411	1411	0.94	0	0.9923	*Vitex triflora*	a *	
					1375	1375	0.99	0	0.9987	*Cinnamomum camphora*	a *	
					1055	1055	1	0	0	*Cinnamomum dubium*	a *	
					1587	1587	1	0	0	*Cinnamomum pittosporoides*	a *	
					616	616	0.78	4.00E-172	1	*Ficus deltoidea*	c	
					1051	1051	0.98	0	0.9983	*Ficus ochroleuca*	a *	
					1664	1664	0.99	0	0.9967	*Ficus benjamina*	a *	
					185	185	0.17	2.00E-42	0.9251	*Riododendron milloides*	i	
					1476	1476	0.92	0	0.9988	*Myristica fragrans*	a *	
					1057	1057	1	0	0	*Horsfieldia amygadalina*	a *	
					1371	1371	0.83	0	0.9987	*Myristica iners*	a *	
					1375	1375	0.99	0	0.9973	*Nepenthes mapuluenis*	a *	
					1042	1042	1	0	1	*Nepenthes mirabilis*	a *	
					1648	1648	1	0	0.9956	*Nepenthes mirabilis*	a *	
					1371	1371	1	0	0.9973	*Nepenthes gracilis*	c	
					1046	1046	1	0	1	*Nepenthes mirabilis*	a *	
					961	961	0.57	0	0.9962	*Nepenthes amplenularia*	a *	
31	*Nepenthes ampullaris*	Jack Nepenth.			857	857	1	0	0.9979	*Nepenthes reinwardiana*	a *	
32	*Nepenthes gracilis*	Korth. Nepenth.			1371	1371	1	0	0.9973	*Nepenthes mapuluenis*	a *	
					1038	1038	1	0	0.9965	*Nepenthes graciliflora*	a *	
					959	959	0.57	0	0.9943	*Nepenthes sanguinea*	a *	
					861	861	1	0	0.9979	*Nepenthes reinwardiana*	c	
					1376	1376	1	0	0.9965	*Nepenthes reinwardiana*	c	
					1042	1042	0.98	0	0.9965	*Nepenthes reinwardiana*	c	
					948	948	0.57	0	0.9924	*Nepenthes reinwardiana*	a *	

Table A2. Cont.
No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum. Notes	
35	Acriopsis longibracteatum var. lilifolia	(J.Koenig) Ormerod	Orchid.	ITS2	394	394	0.94	2.00E-105	0.8428	Cymbidium ensifolium	a **	
				matK	1408	1408	1	0	0.9987	Aciopsis sp.	a *	
				rbcL	911	911	1	0	0.9824	Cymbidium ensifolium	a *	
				trnL	824	1591	0.91	0	0.9265	Cymbidium ensifolium	a **	
36	Cymbidium aloifolium	(L.) Sw.	Orchid.	ITS2	468	468	0.61	1.00E-127	0.9884	Cymbidium aloifolium	c	
				matK	1386	1386	1	0	0.9987	Cymbidium aloifolium	c	
				rbcL	1048	1048	0.98	0	0.9982	Cymbidium aloifolium	c	
				trnL	989	989	0.79	0	0.953	Cymbidium aloifolium	a *	
37	Cymbidium ensifolium	(L.) Sw.	Orchid.	ITS2	387	387	0.66	4.00E-103	0.9072	Cymbidium ensifolium	a *	
				matK	1293	1293	0.99	0	0.9889	Cymbidium ensifolium	a *	
38	Dendrobium crateratum	Sw.	Orchid.	ITS2	577	577	0.7	2.00E-160	0.9968	Dendrobium crateratum	c	
				matK	1400	1400	0.99	0	0.9961	Dendrobium crateratum	c	
				rbcL	1038	1038	0.97	0	0.9982	Dendrobium crateratum	a *	
39	Dendrobium purpureum	Roxb.	Orchid.	ITS2	481	537	0.86	2.00E-131	0.9005	Dendrobium purpureum	a *	
				matK	1360	1360	1	0	0.9947	Dendrobium purpureum	a *	
				rbcL	1042	1042	0.98	0	0.9965	Dendrobium purpureum	a *	
				trnL	562	998	0.98	8.00E-156	0.9814	Dendrobium purpureum	a *	
40	Dendrobium salacense	(Blume) Lindl.	Orchid.	ITS2	627	627	0.79	2.00E-175	0.9914	Dendrobium salacense	a *	
				matK	1382	1382	0.99	0	0.9987	Dendrobium salacense	a *	
				rbcL	1031	1031	1	0	1	Dendrobium salacense	c	
				trnL	1328	1328	0.81	0	0.9959	Dendrobium salacense	c	
41	Grammatophyllum speciosum	Blume	Orchid.	ITS2	809	38152	1	0	1	Grammatophyllum papuanum	i	
				matK	1378	1378	0.99	0	0.996	Grammatophyllum papuanum	a *	
				rbcL	1037	1037	0.97	0	0.9947	Grammatophyllum papuanum	a **	
				trnL	568	1103	0.93	2.00E-157	0.9905	Grammatophyllum papuanum	i	
42	Nervilia concolor	(Blume) Schltr.	Orchid.	ITS2	828	828	1	0	1	Liparis siccitans	i	
				rbcL	1062	1062	0.99	0	1	Nervilia siccitans	i	
				trnL	1585	1585	1	0	0.9834	Nervilia siccitans	i	
43	Nervilia plicata	(Andrews) Schltr.	Orchid.	ITS2	721	721	0.88	0	0.9741	Nervilia plicata	i	
				matK	1413	1413	0.97	0	0.9987	Nervilia plicata	c	
				rbcL	1005	1005	0.94	0	1	Nervilia plicata	c	
				trnL	1663	1663	0.99	0	0.9967	Nervilia plicata	c	
44	Oberonia caulescens	(J.Koenig) Ormerod	Orchid.	ITS2	398	398	0.88	1.00E-106	0.8765	Oberonia caulescens	a *	
				matK	1205	1205	0.93	0	0.9732	Oberonia caulescens	a *	
				rbcL	922	922	1	0	0.9921	Oberonia caulescens	a **	
				trnL	592	1078	0.91	2.00E-164	0.8734	Oberonia caulescens	a **	
45	Stronganthera pauperea	(Lindl.) Schuit., Y.F.Ng & H.A.Federsen	Orchid.	ITS2	431	431	0.59	2.00E-116	0.959	Liparis lobellii	c	
				matK	1375	1375	1	0	0.996	Mycaranthes pannae	c	
				rbcL	1055	1055	1	0	0.9965	Mycaranthes pannae	c	
				rbcL	433	433	0.99	4.00E-117	0.8552	Mycaranthes pannae	c	
46	Galatia filiformis	(Blume) Boerl.	Pand.	ITS2	1393	1393	1	0	1	Populus nigra	i	
				matK	1393	1393	1	0	1	Galatia filiformis	c	
				rbcL	1042	1042	0.98	0	1	Galatia filiformis	c	
				trnL	1744	1744	1	0	0.9969	Galatia filiformis	c	
No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum.	Notes
-----	--------------	--------	------	--------	-----------	------------	-------------	---------	------------	----------------------	------	-------
47	Benstonea affinis (Kurz) Calm. & Buerki	Pandan.	ITS2	124	124	0.24	6.00E-24	0.8611		Magnolia henryi	i	
			matK	1397	1397	0.91	0	0.9935	Pandanus orbatus	a*		
			rbcL	1057	1057	1	0	1	Pandanus adindebregts	a*		
			trnL	1705	1705	1	0	0.9989	Pandanus baptistii	a*		
48	Phyllanthus oxyphyllus Miq.	Phyllanth.	ITS2	621	621	0.74	9.00E-174	0.9971		Phyllanthus oxyphyllus	c	1/2 is a * with higher coverage
			matK	1375	1375	1	0	0.9973	Phyllanthus oxyphyllus	c		
			rbcL	1059	1059	1	0	1	Phyllanthus emblica	a*		
			trnL	989	989	0.58	0	0.9945	Phyllanthus emblica	a*		
49	Ardisia complanata Wall.	Primul.	ITS2	667	667	0.78	0	0.9973	Ardisia dasypodismatica	a*		
			matK	1574	1574	1	0	0.9931	Ardisia manillata	a*		
			rbcL	1031	1031	0.99	0	0.9965	Ardisia crenata	a*		
			trnL	1483	1483	1	0	0.9951	Ardisia dasypodismatica	a*		
50	Ardisia crenata Sims	Primul.	ITS2	617	617	0.74	1.00E-172	0.997		Ardisia crenata	c	
			matK	1404	1404	0.88	0	0.9887	Ardisia cornu-dentata	c	1/2 is a *	
			rbcL	1048	1048	1	0	1	Ardisia cornu-dentata	c		
51	Ventilago madraspatana Boerl.	Rhamn.	ITS2	1476	1476	0.99	0	0.9988	Hibiscus panderformis	i		
			matK	1347	1347	1	0	0.9444	Ventilago leucarpia	a*		
			rbcL	1022	1022	0.96	0	0.9947	Ventilago leucarpia	a*		
			trnL	1574	1574	1	0	0.9722	Ventilago kurzii	a*		
52	Psychotria montana Blume	Rubi.	ITS2	1376	1376	0.99	0	0.996	Psychotria asatica	a*		
			matK	1504	1504	0.96	0	0.9826	Psychotria adenophylla	a*		
			rbcL	1029	1029	0.96	0	1	Psychotria adeniophylla	a*		
			trnL	1654	1654	0.96	0	0.9826	Psychotria asatica	a*		
53	Lunasia amara Blanco	Rut.	ITS2	579	579	0.74	6.00E-161	0.9971		Lunasia amara	c	
			matK	1243	1243	0.88	0	0.9854	Flindersia braylegana	c		
			rbcL	1026	1026	0.97	0	0.9947	Lunasia amara	c		
			trnL	1668	1668	0.95	0	0.9946	Lunasia amara	c		
54	Melicope luni-ankenda (Gaertn.) T.G. Hartley	Rut.	ITS2	787	787	1	0	0.9823	Melicope pleiophylla	a*		
			matK	1408	1408	1	0	0.9987	Melicope pleiophylla	a*		
			rbcL	1031	1031	0.98	0	0.9965	Melicope pleiophylla	a*		
			trnL	1168	1168	1	0	0.9953	Melicope grisea	a*		
			rbcL	1050	1050	0.99	0	0.986	Melicope grisea	a*		
			trnL	1635	1635	0.99	0	0.986	Melicope grisea	a*		
55	Kadsura scandens (Blume) Schisandr.	Rubi.	ITS2	558	558	0.69	7.00E-155	0.9967		Kadsura philippinensis	c	
			matK	1376	1376	1	0	0.9947	Kadsura philippinensis	c		
			rbcL	1050	1050	0.99	0	0.986	Kadsura philippinensis	c		
			trnL	1635	1635	0.99	0	0.986	Kadsura philippinensis	c		
56	Smilax calophylla Wall. ex A.DC.	Smilac.	ITS2	821	821	1	0	0.9933	Smilax micrantha	a*		
			rbcL	1048	1048	0.98	0	0.9982	Smilax micrantha	a*		
57	Smilax ceplinica L.	Smilac.	ITS2	274	274	0.35	3.00E-69	0.9809		Acer tataricum	i	
			matK	1371	1371	1	0	1	Smilax micrantha	a*		
			rbcL	1044	1044	0.98	0	1	Smilax micrantha	a*		
			rbcL	702	702	0.82	0	0.9948	Smilax ocreata	a*		
			trnL	987	987	0.67	0	0.9945	Smilax ocreata	a*		

Table A2. Cont.
Table A2. Cont.

No.	Species [38]	Author	Fam.	Region	Max Score	Total Score	Query Cover	E Value	Per. Ident	Best Matched Species	Sum.	Notes
59	Amomum hochreutineri	Valeton	Zingiber.	ITS2	616	616	0.79	4.00E-172	0.9884	Sunanamos hastilabrum	a **	
				rbcL	1044	1044	0.98	0	1	Amomum villosum var.	a *	
										xanthioides		
										Amomum fulciceps	a *	
										Horstedtia conica	a **	
										Alpinia arundelliana	a **	
				trnL	1568	1568	0.98	0	0.9311	Elingera yunnanensis	a **	
60	Elingera solaris (Blume) R.M.Sm.		Zingiber.	ITS2	656	656	0.89	0	0.9764	Amomum aculeatum	c	
				rbcL	1053	1053	0.99	0	1	Amomum daliacyti	a *	
				trnL	1622	1622	0.99	0	0.9551			
61	Meistera aculeata (Roxb.) Skornick. & M.F. Newman		Zingiber.	ITS2	592	592	0.72	7.00E-165	1	Amomum aculeatum		
				rbcL	1020	1020	0.96	0	1		c	

Note: Result summary: c = correct, a*: ambiguous or correct in genus level, a **: ambiguous or correct in family level, i = incorrect.

References

1. Miller, S.E.; Hausmann, A.; Hallwachs, W.; Janzen, D.H. Advancing taxonomy and bioinventories with DNA barcodes. *Philos. Trans. R. Soc. B Biol. Sci.* 2016, 371, 1702. [CrossRef] [PubMed]
2. Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. *Proc. R. Soc. B Biol. Sci.* 2003, 270, 313–321. [CrossRef] [PubMed]
3. CBOL Plant Working Group A DNA barcode for land plants. *Proc. Natl. Acad. Sci. USA* 2009, 106, 12794–12797. [CrossRef] [PubMed]
4. Dick, C.W.; Webb, C.O. Chapter 18 Plant DNA Barcodes, Taxonomic Management, and Species Discovery in Tropical Forests. In *DNA Barcodes: Methods and Protocols*; John Kress, W., Erickson, D.L., Eds.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2012; Volume 858, pp. 379–393, ISBN 9781617795916.
5. Eurlings, M.C.M.; Lens, F.; Pakusza, C.; Peelon, T.; Wieringa, J.J.; Gravendeel, B. Forensic Identification of Indian Snakeroot (Rauvolfia serpentina Benth. ex Kurz) Using DNA Barcoding. *J. Forensic Sci.* 2014, 58, 822–830. [CrossRef]
6. Kress, W.J.; Garcc-Robledo, C.; Uriarte, M.; Erickson, D.L. DNA barcodes for ecology, evolution, and conservation. *Trends Ecol. Evol.* 2014, 30, 25–35. [CrossRef]
7. Taberlet, P.; Coissac, E.; Pompannon, F.; Gielly, L.; Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C.; Willerslev, E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. *Nucleic Acids Res.* 2007, 35, e14. [CrossRef]
8. Fazekas, A.J.; Kuzmina, M.L.; Newmaster, S.G.; Hollingsworth, P.M. DNA Barcoding Methods for Land Plants. *Methods Mol. Biol.* 2012, 858, 223–252. [PubMed]
9. Kress, W.J.; Erickson, D.L. A Two-locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. *PLoS ONE* 2007, 2, e508. [CrossRef] [PubMed]
10. Sucher, N.; Hennell, J.; Carles, M. Plant DNA Fingerprinting and Barcoding; Humana Press: New York, NY, USA, 2012; Volume 862, ISBN 978-1-61779-608-1.
11. Ratnasingham, S.; Hebert, P.D.N. BARCODING BOLD: The Barcode of Life Data System. *Mol. Ecol. Notes* 2007, 7, 355–364. [CrossRef]
12. Newmaster, S.G.; Gruguric, M.; Shanmughanandhan, D.; Ramalingam, S.; Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. *BMC Med.* 2013, 11, 222. [CrossRef]
13. Schindel, D.E.; Miller, S.E. DNA barcoding a useful tool for taxonomists. *Nature* 2005, 435, 17. [CrossRef]
14. Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. *PLoS ONE* 2010, 5, e8613. [CrossRef]
15. Tchen, N.; Parveen, I.; Pan, Z.; Khan, I.A. DNA barcoding of medicinal plant material for identification. *Curr. Opin. Biotechnol.* 2014, 25, 103–110. [CrossRef]
16. Huda, M.K.; Price, A.; Wilcock, C.C. Identification of Medicinal Orchids of Bangladesh: DNA Barcoding Vs. Traditional Taxonomy. *J. Orchid Soc. India* 2017, 31, 33–40.
17. Hartvig, I.; Czako, M.; Kjær, E.D.; Nielsen, L.R.; Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). *PLoS ONE* 2015, 10, e0138231. [CrossRef]
18. Mishra, P.; Kumar, A.; Nagireddy, A.; Mani, D.N.; Shukla, A.K.; Tiwari, R.; Sundaresan, V. DNA barcoding: An efficient tool to overcome authentication challenges in the herbal market. *Plant Biotechnol. J.* 2016, 14, 8–21. [CrossRef]
19. Vassou, S.L.; Nithanilyal, S.; Raju, B.; Parani, M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. *BMC Complement. Altern. Med.* 2016, 16, 186. [CrossRef]
20. Ferri, G.; Corradini, B.; Ferrari, F.; Santunione, A.L.; Palazzoli, F.; Alu’, M. Forensic botany II, DNA barcode for land plants: Which markers after the international agreement? *Forensic. Sci. Int. Genet.* 2015, 15, 131–136. [CrossRef]
49. Cahyaningsih, R.; Magos Brehm, J.; Nigel, B. Setting the Priority Medicinal Plants for Conservation in Indonesia; Springer Netherlands: Amsterdam, The Netherlands, 2021; Volume 6, pp. 2019–2050, ISBN 0123456789.

50. Costion, C.; Ford, A.; Cross, H.; Crayn, D.; Harrington, M.; Lowe, A. Plant dna barcodes can accurately estimate species richness in poorly known floras. *PLoS ONE* 2011, 6, 4–11. [CrossRef]

51. Gu, W.; Song, J.; Cao, Y.; Sun, Q.; Yao, H.; Wu, Q.; Chao, J.; Zhou, J.; Xue, W.; Duan, J. Application of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta. *PLoS ONE* 2013, 8, 2–9. [CrossRef]

52. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *J. Mol. Biol.* 1990, 215, 403–410. [CrossRef]

53. Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, A.A. Database indexing for production MegaBLAST searches. *Bioinformatics* 2008, 24, 1757–1764. [CrossRef]

54. Casiraghi, M.; Labra, M.; Ferri, E.; Galimberti, A.; de Mattia, F. DNA barcoding: A six-question tour to improve users’ awareness about the method. *Brief. Bioinform.* 2010, 11, 440–453. [CrossRef]

55. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* 2018, 35, 1547–1549. [CrossRef]

56. Phillips, J.D.; Gillis, D.J.; Hanner, R.H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. *Ecol. Evol.* 2019, 9, 2996–3010. [CrossRef] [PubMed]