Causality in Spin Foam Models

Sameer Gupta*

Center for Gravitational Physics and Geometry, Physics Department
The Pennsylvania State University
104 Davey Laboratory, University Park, PA 16802, USA

August 5, 1999

Abstract

We compute Teitelboim’s causal propagator in the context of canonical loop quantum gravity. For the Lorentzian signature, we find that the resultant power series can be expressed as a sum over branched, colored two-surfaces with an intrinsic causal structure. This leads us to define a general structure which we call a “causal spin foam”. We also demonstrate that the causal evolution models for spin networks fall in the general class of causal spin foams.

1 Introduction

In any theory of quantum gravity, classical space-time is likely to arise only as an approximate concept. This problem is especially obvious in canonical quantum gravity. In particular, there is no notion of time in quantum gravity. Hence, it may seem like the causal structure of the classical metric is absent in the quantum theory as well.

However, we can incorporate the causal structure at the fundamental level in a theory of quantum gravity. In a path-integral formulation of quantum gravity, we express the transition amplitude from one quantum three-geometry to another as a sum of histories. Causality can be included by limiting the sum to only those histories which have a well-defined causal structure. This has been suggested as early as [1] by Teitelboim. There has been further work in this direction in mini-superspace models [2]. Similar ideas have also been explored in the work on causal evolution of spin networks [3, 4] and in two space-time dimensions [5]. In this paper, we explore some of these ideas more concretely in the context of loop quantum gravity. We shall construct a formal power series expansion of Teitelboim’s causal propagator in canonical (loop) quantum gravity. We show that each term in the power series has a fixed causal structure which suggests that each of the terms may admit an

*Email address: gupta@gravity.phys.psu.edu
interpretation as a quantum Lorentzian space-time. We then define a more general object — a “causal spin foam” — which incorporates the key features which allow us to do so.

Causal spin foams are an extension of spin foam models which have been introduced in the quantization of Euclidean gravity [6, 7, 8]. These are space-time models which have a close connection with the loop approach to canonical quantum gravity. We shall also relate causal spin foams to the work on causal evolution of spin networks which was proposed as a model for Lorentzian quantum gravity.

The rest of this paper is organized in the following manner. We begin with a brief introduction to spin networks and canonical loop quantum gravity, spelling out the main ideas that we use later. Then, in section 3, we give the details of the construction of the propagator. Following that, we give the general definition of a causal spin foam and show how the causal evolution model relates to it. Finally, we end the paper with a discussion of some open and interesting issues.

2 Spin Networks in Canonical Quantum Gravity

Canonical general relativity (GR) can be written as a theory of a real SU(2) connection A_i^a over a compact three-manifold Σ [3, 4]. The conjugate variable to the connection is the densitized triad \tilde{E}_i^b which takes values in the Lie algebra $su(2)$. Using these variables, the constraints of GR are three Gauss constraints which impose $SU(2)$ invariance, three diffeomorphism constraints which impose diffeomorphism invariance on Σ, and the Hamiltonian constraint, which is the generator of coordinate time evolution. A review with the details of and references for the construction of the quantum theory can be found in [11]. In this section, we present a brief summary of the key results we shall use in this paper.

2.1 The Kinematical Hilbert Space

The kinematical Hilbert space of $SU(2)$ invariant states, H_{kin}, has a convenient orthonormal basis called the spin network basis [12]. A spin network state is constructed as follows: consider an oriented, closed graph γ which is embedded in the spatial manifold Σ. To each edge of γ assign a representation j_e of $SU(2)$ and to each node of the graph, assign an intertwiner I_n such that

$$I_n : \bigotimes_{\text{incoming edges}} j_e \longrightarrow \bigotimes_{\text{outgoing edges}} j_e.$$

A spin network is then defined by the triplet $S = (\gamma, \vec{j}, \vec{I})$. A spin network state is then defined as

$$\psi_S(A) = \prod_e \prod_n I_n R^{(j_e)}(U(e, A))$$

where $R^{(j_e)}(U(e, A))$ is the holonomy of the connection A along the edge e in the representation j_e of $SU(2)$. The inner product between two spin network states ψ_S and ψ_S' is given by

$$\langle \psi_S, \psi_{S'} \rangle = \delta_{\gamma,\gamma'} \delta_{\vec{j},\vec{j}'} \delta_{\vec{I},\vec{I}'}$$

2
In this basis, geometric operators such as area and volume are diagonal and have discrete spectra (This has been discussed by a number of authors. See for example references [13]). Spin network states can thus be thought of as describing discrete three-geometries.

2.2 The Diffeomorphism Constraint

The group of spatial diffeomorphisms acts on the states in \(\mathcal{H}_{\text{kin}} \) in a natural fashion. The action of a finite diffeomorphism \(\phi \) on a spin network state for example is given by

\[
\hat{U}(\phi)\psi_S(A) = \psi_S(\phi^{-1}A) = \psi_{\phi S}(A).
\] (3)

This simply means that the action of the diffeomorphism is to send the state to one which is based on the shifted graph.

The space of solutions of the diffeomorphism constraint of the theory, \(\mathcal{H}_{\text{diff}} \), is defined by \(s \)-knot states which are diffeomorphism equivalence classes of spin networks. \(\mathcal{H}_{\text{diff}} \) is a subset of the algebraic dual of \(\mathcal{H}_{\text{kin}} \), so every \(s \)-knot state acts on spin networks

\[
\langle s| S \rangle \neq 0 \quad \text{iff} \quad s \in \{S\}
\] (4)

where \(\{S\} \) is the diffeomorphism equivalence class to which \(|s\rangle \) belongs. We can use this to define an inner product on diffeomorphism invariant states:

\[
\langle s| s' \rangle = \langle s| S' \rangle
\] (5)

where \(|S'\rangle \) is a representative of the diffeomorphism equivalence class defined by \(|s'\rangle \).

2.3 The Hamiltonian Constraint

The Hamiltonian constraint is the least understood piece of the dynamics of canonical GR. One of the reasons for this is that it has no obvious geometrical interpretation like the Gauss and diffeomorphism constraints. The smeared Hamiltonian

\[
\hat{H}[N] = \int d^3x \; N(x,t)\hat{h}H(x),
\] (6)

where \(N(x,t) \) is the lapse function and \(\hat{H}(x) \) is the Hamiltonian constraint, can be thought as the generator of coordinate evolution in canonical gravity.

Many versions of the Hamiltonian constraint operator (HCO) have been proposed [14, 15, 16]. We describe here only the features of the operator defined in [16] which we shall need in the next section. However, the results we derive there can easily be adapted to any other regularization of the HCO. The Lorentzian HCO can be written as a sum of two operators

\[
\hat{C}[N] = \hat{C}_E[N] + \hat{T}[N]
\] (7)

where \(\hat{C}_E[N] \) is the HCO for the Euclidean version of the theory. The action of the Euclidean HCO can be described graphically as follows — the operator acts on the nodes of
the spin network state. For every pair of edges at a node, it adds a new edge between them and changes the spins of the edges at the node. The precise location of the new edge is unimportant. The graphical action of the second term $\hat{T}[N]$ is less well understood, but it can heuristically be thought of adding two non-intersecting edges at every node. These new edges can either be added between the same pair of edges or between two different pairs of edges at the node. Figure 1 shows the graphical actions of both the terms.

The non-symmetric operator defined in [16] only creates new edges. We take here the symmetrized version $\hat{H}_E[N] = \hat{C}_E[N] + \hat{T}_S[N]$ of the operator which both adds and removes edges. We have denoted by $\hat{H}_E[N]$ and $\hat{T}_S[N]$, the symmetric versions of $\hat{C}_E[N]$ and $\hat{T}[N]$ respectively. The matrix elements of the symmetric HCO are given by

\[
\langle s' | \hat{H}[N] | s \rangle = \langle s' | \hat{C}[N] | s \rangle + \langle s' | \hat{C}[N] | s \rangle = \langle s' | \hat{C}_E[N] | s \rangle + \langle s' | \hat{C}_E[N] | s \rangle + \langle s' | \hat{T}[N] | s \rangle + \langle s' | \hat{T}[N] | s \rangle.
\]

(8)

The action of $\hat{C}_E[N]$ can be written using the notation of [17] as follows:

\[
\hat{C}_E[N] | s \rangle = A_i^{\beta}(s) | s_i^{\beta}; i, N \rangle
\]

where the index i runs over the nodes of the spin network $|s\rangle$, and β runs over pairs of edges at every node and over a sign (\pm) for each of those edges. There is an implied summation over both i and β. The object on the right hand side is defined by

\[
\langle s; i, N | S \rangle = N(x_{S,i}) \langle s | S \rangle
\]

where $N(x_{S,i})$ is the value of the lapse function at the point x which the position of the ith node in the spin network $|S\rangle$. It is important to note that this is the only non-diffeomorphism invariant part in the definition of the Hamiltonian constraint. There is a regularization choice to be made about the positions of the new vertices y, y' and y'' which are created by the action of the operator. We choose that all of these are distinct from the position of initial

1We ignore the issues regarding the existence of a self-adjoint extension of \hat{T} [16].
point \(x \). This is an arbitrary choice, but is the most general one that can be made. In an analogous fashion, we can write the action of the second term in eq. (4) as

\[\hat{T}[N] |s\rangle = B_{i}^{\beta\beta'}(s) |s_{i}^{\beta\beta'}; i, N\rangle \]

where once again the indices \(\beta \) and \(\beta' \) run over pairs of edges at every node and over a sign (\(\pm \)) for each of those edges. The coefficients \(A \) and \(B \) are functions only of the spins of the edges and can be calculated explicitly. An interesting point to note is that with the above regularization, the states which result from the actions of the two pieces of the HCO are in based on different graphs. Combined with the inner product defined in eq. (5), this implies that there do not exist states \(|s\rangle \) and \(|s'\rangle \) such that both the terms of the HCO have non-zero matrix elements between them.

3 Sum over Histories

We want to study the dynamics of quantum gravity in a sum over histories approach. The key object in this formalism is the transition amplitude from one three-geometry to another which is given by a path integral which sums over all histories (or four-geometries in the case of GR) which connect the two given three-geometries. As we have already seen, in canonical GR, the spatial or three-geometry is described by (diffeomorphism invariant) \(s \)-knot states. In other words, given an initial \(s \)-knot states \(|s'\rangle \) and a final one \(|s\rangle \) we would like to calculate:

\[A[s, s'] = \sum_{\text{quantum 4-geometries } G} A_{G}, \]

where the sum is over all (suitably defined) quantum four-geometries (histories) which interpolate between the initial and final states and \(A_{G} \) is the amplitude for each history.

Since the transition amplitude is composed of many histories, we can consider the history to be a more elementary concept than the amplitude. Each history can be thought of as a quantum four-geometry, hence, it is reasonable that causality should be incorporated into each history before we calculate the transition amplitude by performing the sum over histories. Then, each history should have an interpretation as a quantum Lorentzian space-time with a well defined causal structure. In the rest of the section, we will see how some of these formal notions can be made more precise.

3.1 The Propagator

The finite evolution operator which propagates a state from an initial spatial hypersurface \(\Sigma_{i} \) a time \(t = 0 \) to the final spatial hypersurface \(\Sigma_{f} \) at time \(t = 1 \) is got by exponentiating the smeared Hamiltonian constraint of eq. (3) and integrating over the lapse function,

\[K = \int [DN] \exp(-i \int dt \int d^{3} x N(x, t)H(x)), \]

where \([DN]\) is the (formal) measure over the lapse. In our calculations, we use the normalized measure on scalar functions which was constructed in [17]. The key properties of this measure
are that it is well defined for cylindrical functions of the lapse (i.e. functions which depend only on the value of the lapse at a finite number of points) and that it is invariant under the action of spatial diffeomorphisms. The matrix elements of K between two three-geometries define the transition amplitudes between them.

We can rewrite eq. (10) in the simpler form

$$K = \int [DT] \exp(-i \int d^3x T(x)H(x)),$$

where $T(x)$ is proper time elapsed between the initial and final spatial slices and is given by

$$T(x) = \int_{t=0}^T dt N(x,t).$$

In [1], the requirement that causality be incorporated into the propagator is imposed by demanding that we include in the path integral only those histories in which Σ_f lies to the complete future of Σ_i. This can be incorporated into the propagator directly by restricting the range of integration over $T(x)$ to only positive proper times. We call the propagator evaluated with this restriction, the **causal propagator**.

Before we present the details of the operator K, we would like to discuss the restriction on the proper time in some more detail. Recall that in the canonical decomposition of classical GR, the choice $N(x) = 0$ is not allowed since it leads to a degenerate space-time metric. Thus, assuming that the lapse is a continuous function, it must either be positive everywhere or negative everywhere. In other words, the range of $T(x)$ is divided into two disjoint classes, $T(x) > 0$ and $T(x) < 0$. The crucial assumption is that the transition amplitude corresponds to integration over only one of these. This is motivated by the case of the relativistic point particle where a similar restriction leads to the Feynman propagator [18]. The particular choice of positive proper time is a matter of convention.

Since we are free to calculate the propagator in any gauge, let us now fix the gauge using the proper time gauge conditions [18]. In particular, these require $N(x,t) = N(x)$. With this condition, we have $T(x) = N(x)$. The causal propagator can then be written as

$$K = \int_{N(x)>0} [DN] \exp(-i \int d^3x N(x)H(x)).$$

(11)

Notice that in this form, the causal propagator is formally similar to the projector over physical states as defined in [17]. However, in that case, the range of integration over $N(x)$ is unrestricted. We would like to emphasize that while the projector can be defined purely at the level of canonical gravity, the propagator is a path-integral. We shall explore the similarities and differences between the two operators in greater detail in a future work. For the present, we exploit the computational techniques developed in [17] to evaluate the causal propagator.

We wish to calculate transition amplitude which is the matrix element of K between two s-knot states, namely $\langle s | K | s' \rangle$. Let us start by limiting the range of integration of N such that

$$0 < N(x) < T.$$
This can be thought of putting an infra-red regulator. The propagator is then recovered by taking the limit \(T \to \infty \). We denote by \(K_T \) the propagator where the upper limit of integration for \(N(x) \) is \(T \). Thus, we have

\[
\langle s| K_T |s' \rangle = \int_{0<N(x)<T} [DN] \langle s| \exp \left(-i \int d^3x N(x) H(x) \right) |s' \rangle.
\]

(12)

Following [17], we note that the above expression is formally three-diffeomorphism invariant and we can introduce an extra integration of the diffeomorphism group:

\[
\langle s| K_T |s' \rangle = \mathcal{N} \int_{Diff} [D\phi] \int_{0<N(x)<T} [DN] \langle U(\phi)S| e^{-i\hat{H}[N]} |s' \rangle,
\]

(13)

where \(U(\phi) \) is the finite diffeomorphism corresponding to \(\phi \), \(\mathcal{N} \) is the normalization factor introduced in the integration over Diff and \(|S\rangle \) belongs to the diffeomorphism equivalence class of \(|s\rangle \). The integration over the diffeomorphism group is needed later to take care of the non-diffeomorphism invariant parts of the action of the HCO. We now expand the exponential as a formal power series

\[
\langle s| K_T |s' \rangle = \mathcal{N} \int_{Diff} [D\phi] \int_{0<N(x)<T} [DN] \langle U(\phi)S| \sum_{n=0}^{\infty} \frac{(-i\hat{H}[N])^n}{n!} |s' \rangle.
\]

(14)

The \(n \)th power of the Lorentzian HCO can be expanded as

\[
(\hat{H}_E[N] + \hat{T}^S[N])^n = (\hat{H}_E[N])^n + (\hat{T}^S[N])^n - 1 (\hat{T}^S[N])^n + \cdots + (\hat{T}^S[N])^n
\]

(15)

where \(:(...) : \) indicates all possible orderings of the operators. We can evaluate the matrix elements for each of the \(2^n \) terms the right hand side of eq. (15). Each action of the one of the \(n \) operators in the term leads to either the addition or deletion of one or two edge(s) and a multiplication by a numerical coefficient and a factor of \(N(x) \) corresponding to the point where the operator acted. Thus, for the first term, we get

\[
\mathcal{N} \frac{(-i)^n}{n!} \int_{Diff} [D\phi] \int_{0<N(x)<T} [DN] \langle U(\phi)S| (\hat{H}_E[N])^n |s' \rangle
\]

\[
= \mathcal{N} \frac{(-i)^n}{n!} \int_{Diff} [D\phi] A_{1i}^{\beta_1}(s') \cdots A_{112\ldots i_n}^{\beta_1\beta_2\ldots \beta_n}(s_{i_1i_2\ldots i_n-1}) \langle U(\phi)S| s_{1i_12\ldots i_n}^{\beta_1\beta_2\ldots \beta_n}
\]

\[
\times \int_{N(x)>0} [DN] N(x_{i_1},U(\phi)S) N(x_{i_2},U(\phi)S) \cdots N(x_{i_n},U(\phi)S).
\]

Similar expressions can be written down for all the other terms as well. However, they all share the following properties: (1) for a non-zero result, the state \(|s' \rangle \) must lie in the same diffeomorphism class as the state that results after \(n \) actions of the HCO on the state \(|s\rangle \); (2) the functional dependence of the expression on \(N(x) \) is now cylindrical. It is just the product of the values of the lapse at a finite number of points. The functional integral over \(N \) can be performed in a simple fashion using the normalized measure on scalar functions

7
constructed in [17]. It can simply be replaced by a finite number of ordinary integrals over the values of N at the points where the operator acted. Since the measure is diffeomorphism invariant, the integral over Diff can be performed trivially as well. Thus, each term in the formal power series can then be calculated and is finite. In fact, each term in the power series has the general form

$$A(s', s'_1, \ldots, s'_{n-1}) \langle s|s'_n\rangle I_n$$

where s'_k is a shorthand for the s-knot state generated after k actions of the HCO (that is, either $\tilde{H}_E[N]$ or $\tilde{T}^S[N]$), $A(s', s'_1, \ldots, s'_{n-1})$ is the product of the numerical coefficients for each action and

$$I_n = \frac{1}{T^n} \int dN(x_{i_1})N(x_{i_1}) \int dN(x_{i_2})N(x_{i_2}) \cdots \int dN(x_{i_n})N(x_{i_n})$$

is the remaining integral over the lapse. To evaluate I_n, we need to specify the limits of integration for the integrals. Teitelboim’s original proposal is to perform the integration for all positive lapses. However, a naïve integration following [17] ignores the causal structure induced by multiple actions of the constraint operator. We show how this should be taken into account in evaluating the propagator.

Intuitively, the idea is as follows: Any time there are two or more actions of the HCO, there is a possibility that a particular action takes place at a vertex which was created or affected by a previous action. Thus, viewed from a space-time point of view, it lies to the causal future of the other action. This fact must be reflected in the propagator amplitude.

To do this more precisely, let us now look at the second order ($n = 2$) term of the propagator in more detail. The matrix element for this is

$$\frac{(-i)^2}{2!} N \int [D\phi] \int [DN] \langle U(\phi)S|\tilde{H}[N]\tilde{H}[N]|s'\rangle$$

$$= \frac{(-i)^2}{2!} N \int [D\phi] \int [DN] \left(\langle U(\phi)S|\tilde{H}_E[N]\tilde{H}_E[N]|s'\rangle + \langle U(\phi)S|\tilde{H}_E[N]\tilde{T}[N]|s'\rangle + \langle U(\phi)S|\tilde{T}[N]\tilde{H}_E[N]|s'\rangle + \langle U(\phi)S|\tilde{T}[N]\tilde{T}[N]|s'\rangle \right).$$

For the discussion, let us consider the first of the four terms on the right hand side of eq. (17), but the same considerations apply to all the four terms. Let the first action of the Euclidean HCO take place at a node x of the spin network $|s'\rangle$. Let us suppose that the action is the addition of an edge. Let y be the position of the node after the action and let y' and y'' be the positions of the nodes where the edge was added. There are two distinct possibilities for the second action of the Hamiltonian. It can either act at one of the three nodes y, y' and y'' or it can act at some other node of the spin network. Let us study these two possibilities in more detail.

If the second action takes place at a node which is one of y, y' or y'', then in a sense, it is to the future of the first one. Otherwise, it is causally unrelated to the first action and they

\[\text{footnote}{The HCO defined in [16] cannot act at the vertices y' and y'', but this can be traced back to the choice of the volume operator in that reference. Choosing a different volume operator fixes this issue.}\]
commute. Thus, there is a partial order between the two actions of the Hamiltonian. We would like to identify this partial order with a discrete notion of causality. This is motivated by the fact that in standard quantum field theory, operators at spatially separated points commute, whereas ones at causally related points do not. Since, we do not have a background metric to define the causal structure, we suggest that the commutativity of the actions of the HCO should define causality. In other words, non-commuting actions correspond to causally related points whereas commuting actions correspond to space-like separated points.

A naive functional integration over positive lapses does not capture this feature. If we are to follow Teitelboim’s basic idea of incorporating causality in each history, then we must further modify the propagator to include this discrete causality. This is our key observation.

Let us now look at one particular way of achieving this3. We would like to emphasize that it is by no means obvious that this choice is unique. The scheme we propose is the following: Since the points \(x \) and \(y \) lie to the future of \(x \) (we denote this by \(x < y \)), the domain of integration for the proper time should reflect this. This can be understood as follows: Suppose the second action takes place at \(y \). The domain of integration of \(T(y) \) can be split into two parts \(0 < T(y) < T(x) \) and \(T(y) > T(x) \). The first integral vanishes because the node at \(y \) does not exist for \(T(y) < T(x) \). Thus, the only contribution is from the second integral. That is, the domain of integration can be restricted to such that proper time at the second action is greater than that at the first action if the second action takes place at one of the nodes created by the first action. In the proper-time gauge, this translates to a condition on the domain of integration of the lapse. Intuitively, we can think of the points \(y, y' \) and \(y'' \) as having been created by the action of the constraint operator at \(x \) and thus being in future of this action in every history in this class. On the other hand, if the second action takes place at some other node \(z \) which is not a product of the first action then there is no limitation on the domain of integration over the lapses — we integrate over strictly positive lapses at both \(x \) and \(z \). This can be thought of as the analogue of time-ordering in the absence of a background space-time metric.

We can now calculate the functional integrals over \(N(x) \) for the two cases. When the second action is causally unrelated to the first one, then we have

\[
\frac{(-i)^2}{2!} N \int [D\phi] \int [DN] \langle U(\phi) S | \hat{H}_E[N] \hat{H}_E[N] | s' \rangle \\
= \frac{A_{\beta_1}^{\beta_2}(s') A_{\beta_1}^{\beta_2}(s'_{i_1})}{T^2} \int_0^T dN(x) N(x) \int_0^T dN(x) N(x) \langle s | s'_{i_1 i_2} \rangle \\
= \left(\frac{1}{T} \right)^2 \int_0^T dN N \left. \right| A_{i_1}^{\beta_1}(s') A_{i_2}^{\beta_2}(s'_{i_1}) \langle s | s'_{i_1 i_2} \rangle \\
= \frac{T^4}{4} A_{i_1}^{\beta_1}(s') A_{i_2}^{\beta_2}(s'_{i_1}) \langle s | s'_{i_1 i_2} \rangle.
\]

If the second action is to the future of the first one, we can repeat the above calculation and we get

\[
\frac{(-i)^2}{2!} N \int [D\phi] \int [DN] \langle U(\phi) S | \hat{H}_E[N] \hat{H}_E[N] | s' \rangle
\]

3We would like to emphasize that it is by no means obvious that this choice is unique.
\[
\begin{align*}
&= \frac{A_{i_1}^{\alpha_1}(s')A_{i_2}^{\beta_2}(s'^{\beta_1})}{T^2} \int_0^T dN(x)N(x_{i_1}) \int_{N(x_{i_1})}^T dN(x_{i_2})N(x_{i_2}) \langle s \mid s'^{\beta_1}\beta_2 \rangle^i_{i_1i_2} \\
&= \left(\frac{1}{T^2} \int_0^T dN_1N_1 \int_{N_1}^T dN_2N_2 \right) A_{i_1}^{\alpha_1}(s')A_{i_2}^{\beta_2}(s'^{\beta_1}) \langle s \mid s'^{\beta_1}\beta_2 \rangle^i_{i_1i_2} \\
&= \frac{T^4}{8} A_{i_1}^{\alpha_1}(s')A_{i_2}^{\beta_2}(s'^{\beta_1}) \langle s \mid s'^{\beta_1}\beta_2 \rangle^i_{i_1i_2}.
\end{align*}
\]

\(N_1\) and \(N_2\) are just shorthand notations for \(N(x_{i_1})\) and \(N(x_{i_2})\) respectively. Notice the numerical coefficient of the two terms are different. Note that we have made the choice that none of the nodes \(y, y'\) and \(y''\) which result from the action of the Hamiltonian at \(x\) actually coincide with \(x\). As stated earlier, this is a choice in the regularization of the operator. Since each term in eq. (17) has the form of a numerical coefficient which is a function of the spin network state acted upon times the value of the lapse function at the vertex where the action took place. The functional integral over the lapse then contributes a factor of \(T^2/4\) or \(T^2/8\) depending upon the causal relation between the two actions.

This calculation can be extended to all the terms in the power series. For any given set of causal relations between the vertices, the functional integral over the lapse can be calculated as follows: Consider a set of vertices \((x_1, x_2, \ldots, x_n)\) with causal relations “\(\prec\)” between them. Then,

\[
I_n = \frac{1}{T^n} \int_0^T dN_1N_1 \int_0^T dN_2N_2 \cdots \int_0^T dN_nN_n = c_n(\{x_i\}, \prec) \left(\frac{T}{2} \right)^n,
\]

where the lower limits of the integrals are chosen such that if \(x_i \prec x_j\), then \(N_j > N_i\) is the domain of integration. The causal factor \(c_n(\{x_i\}, \prec)\) is a fraction smaller than 1 which can be expressed as a product of local causal factors at each vertex

\[
c_n(\{x_i\}, \prec) = \prod_{x_i} \frac{1}{1 + k_i}
\]

where \(k_i\) is the number of operator actions to the future of \(x_i\). In table 1, we present the values of \(c_n(\{x_i\}, \prec)\) for the first few orders in the power series. We have used a diagrammatic notation to indicate the causal relations: Two unrelated vertices are denoted by disjoint points, whereas a causal relation is indicated by drawing an arrow from the past point to the future point.

We would like to point out one very interesting feature of the causal structure generated by multiple actions of the HCO. Namely, each vertex where the action takes place can have at most one vertex to immediate past. This means that causal diagrams such as \(\tilde{\Lambda}\) cannot appear among the terms of the power series\(^4\). This is a consequence of the fact that the action of the HCO is always localized at one vertex and can be regarded as a manifestation of the ultra-local character of the HCO\(^13\). We shall return to this issue briefly in the next section.

\(^4\)This is true for the symmetric HCO, not just the non-symmetric version.
This completes our calculation of the causal propagator except for the limit $T \to \infty$. For any finite value of T, each term in the power series is finite. Since the causal propagator is essentially a time-ordered exponential, it is clear that the limit $T \to \infty$ should be divergent. We should point out that this is an infra-red divergence which may be regulated by adding a small imaginary piece to the HCO analogous to the case of the Feynman propagator. We shall not attempt to take this limit here, but we will discuss it some more at the end of the paper.

3.2 Sum over Surfaces Representation

A very powerful way of keeping track of the terms in the power series expansion in terms of branched two-surfaces was introduced in [6]. We use the same basic ideas, but also incorporate the causal structure which we discussed in the previous subsection.

Each term in the power series for $\langle s| K_T | s' \rangle$ is a sequence of s-knots $\mathcal{F}_n = \{s, s_1, \ldots, s_n\}$ with local causal relations between the nodes of successive spin networks in the sequence corresponding to the action of the Hamiltonian constraint. We can represent this sequence by a branched, colored two-surface \mathcal{F}_n as follows:

1. Construct the finite two surface generated by taking the topological product of the graph for the initial spin network with an interval.

n	Causal Structure	$c_n(\{x_i\}, \prec)$	n	Causal Structure	$c_n(\{x_i\}, \prec)$
2	* *	$\frac{1}{2}$	4	* * * *	$\frac{1}{2}$
	\downarrow			\downarrow	
3	* * *	$\frac{1}{2}$		* \\(\cup\)	$\frac{1}{3}$
	\downarrow			\downarrow	$\frac{1}{4}$
	\downarrow	$\frac{1}{3}$		\downarrow	$\frac{1}{6}$
	\downarrow	$\frac{1}{6}$		\downarrow	$\frac{1}{8}$
	\downarrow	$\frac{1}{12}$			$\frac{1}{24}$

Table 1: Causal factors $c_n(\{x_i\}, \prec)$ for the lowest order terms in the power series.
2. Represent the first action of the Hamiltonian constraint by a branching of the world-line of the node where the action took place.

3. Patch this onto a two surface generated by a finite piece of the “world-sheet” of the graph of the next spin network.

4. Repeat the above steps for all the remaining s-knots in the sequence.

There is a natural local causal structure built into this surface because of the partial order in the various actions of the Hamiltonian constraint. The two-surface can be sliced by “equal-time slices” which are simply the spin networks of the sequence. The faces in the two-surface carry SU(2) spin labels and the lines carry intertwiners. The vertices or branching points of the two surface correspond to the action of the HCO. Thus, the dynamics can be thought of as being localized at the vertices. These can be thought of as being analogous to vertices in Feynman diagrams. We refer to each of these two-surfaces as a causal spin foam.

Each causal spin foam can be assigned the amplitude

\[A(\mathcal{F}_n) = \frac{1}{n!} \prod_{v=1}^{n} \frac{A(v)}{1 + k_v} \]

where \(A(v) \) is the numerical coefficient for the action of the HCO which takes \(s_{i-1} \) to \(s_i \) and \(k_v \) is the number of operator actions in the causal future of the vertex \(v \). The transition amplitude \((12)\) can be then written as a sum over causal spin foams as follows:

\[\langle s \mid K_T \mid s' \rangle = \sum_{n=0}^{\infty} T^n \sum_{\mathcal{F}_n : \partial \mathcal{F}_n = s \cup s'} A(\mathcal{F}_n). \quad (20) \]
Thus, the final form of the sum over histories can be expressed as a sum over branched, colored two-surfaces. Besides the topological information, these two-surfaces have one additional property, namely, the causal relations between their vertices. Based on the formal expression (9), we can identify these two-surfaces as being quantum, Lorentzian four-geometries. In the next section, we give a general definition for causal spin foams, and discuss some of their properties.

4 Causal Spin Foams

We can generalize the results of the previous section in a natural way. Instead of considering two-surfaces which are generated by the action of the Hamiltonian constraint, we consider more general branched, colored two-surfaces and prescribe amplitudes for all possible branchings in them. This can be thought of as an inverse prescription of the quantum Hamiltonian constraint. For example, we can modify the ultra-local nature of the HCO by allowing more general causal structures in the branched surfaces. The requirement that the theory have the right classical limit, viz. classical general relativity, will then choose the correct set of amplitudes. We shall now try to define the basic structure which enables us to start addressing some of these problems. Many of the ideas in this section are closely based on [8].

From now on, we shall consider only piecewise-linear (PL) two-surfaces. The advantage of doing so is that we can formulate the entire theory in a purely combinatorial fashion without reference to a background manifold. We begin by giving an intuitive discussion of what properties that these surfaces should satisfy. Firstly, they should relate to spin networks in a natural way. This means that they interpolate between an initial spin network to a final one. Also, the notion of causality which arose in the previous section should be incorporated in these two-surfaces. This causality should also give us a prescription for “slicing” a two-surface and getting a spin network. We now make these notions more precise.

Consider a oriented two-dimensional cellular complex κ. It consists of a collection of point (0-cells), edges (1-cells) and faces (2-cells). Let $V(\kappa)$ denote the set of vertices of the complex, $E(\kappa)$ the set of edges and $F(\kappa)$ the set of faces. Since, we have an oriented complex, for every edge $e \in E(\kappa)$, there exist maps s and t that map e to its source and target in $V(\kappa)$.

Next, we need to include causality. This is done by imposing be a partial order \prec among the elements of $V(\kappa)$. That is, for all $x, y, z \in V(\kappa)$:

\[
\begin{align*}
x \prec y \text{ and } y \prec z & \Rightarrow x \prec z \\
x \prec y \text{ and } y \prec x & \Rightarrow x = y
\end{align*}
\]

These properties state that the order on the set is transitive and reflexive. Such sets are referred to as causal sets in the physics literature [20]. Further, since each term we consider has a finite number of vertices, the vertex set satisfies the local finiteness requirements that are usually imposed on causal sets. In particular, the partial order \prec gives us relations between any two vertices which are joined by an edge. We shall call an edge “causal” if we
have the condition

\[s(e) \prec t(e) \quad \text{or} \quad t(e) \prec s(e), \tag{21} \]

otherwise we shall call it “acausal” or “space-like”. We adopt the convention that the orientation of a causal edge is always future-directed, that is, \(s(e) \prec t(e) \).

Only faces which have at least one causal edge are non-empty (i.e., belong to the foam). This corresponds to the intuitive notion that the “world-sheet” of the edges of the spin networks should be causal surfaces. Also, every space-like edge can belong to at most two faces of \(\kappa \). This is because the dynamics defined by the action of the HCO is localized at vertices. We would like to retain this feature. Further, we assign to every face \(f \) in \(\kappa \) which has at least one causal edge, a representation \(j_f \) of \(\text{SU}(2) \) and to every edge which belongs to at least two faces we shall assign an intertwiner \(I \) which defines the map

\[I : \bigotimes_{f_i \in \text{incoming faces}} j_{f_i} \rightarrow \bigotimes_{f_o \in \text{outcoming faces}} j_{f_o}. \]

A face is considered to be incoming if the orientation it induces on the edge agrees with the intrinsic orientation of the edge and considered outgoing otherwise. This in particular means that the faces which meet at space-like edges have the same spin and the intertwiner associated with such an edge is identity. The causal spin foam \(F_C \) is then defined as the object \((\kappa, \prec, \vec{f}, \vec{I}) \).

We started by requiring that a causal spin foam give us an history between some initial and some final spin network. This translates into a requirement on the boundary of \(F_C \). The boundary of \(\kappa \) consists of all edges \(e_{\partial \kappa} \) which lie in only one face and the vertices that form the endpoints of these. Since the foam is supposed to be the interpolation between two spatial spin networks, we need to specify further properties of the boundary \(\partial \kappa \) of \(\kappa \) such that this is satisfied. It is sufficient to require that the set of vertices \(V_{\partial \kappa} \) which belong to the boundary of \(\kappa \) consists of two disjoint sets \(V_{\gamma_1} \) and \(V_{\gamma_2} \) such that for any \(v \in V_{\gamma_1} \) there is some \(u \in V_{\gamma_2} \) such that \(v \prec u \) and that there are no causal relations between any two elements of each of the sets \(V_{\gamma_1} \) and \(V_{\gamma_2} \). \(V_{\gamma_1} \) is then the set of vertices of the graph \(\gamma_1 \) on which the initial spin network is based. The edges \(e_{\partial \kappa} \) are labeled by the same representation of the group as the face they border, while the vertices in \(V_{\partial \kappa} \) are labeled by the intertwiners which labeled the edges which end on them. Hence, a causal spin foam \(F_C \) can be regarded as a mapping from an initial spin network to a final one.

Intermediate spin networks should correspond to spatial slices of the foam. Any acausal, connected, closed subset of the 1-skeleton of \(\kappa \) (i.e. the set of all 0-cells and 1-cells which belong to \(\kappa \)) can be chosen as a graph on which a spin network is based. Since all space-like edges have at most two faces incident on them, we assign the representation \(j \) associated with either of those faces to the edge. Generically, we can also assign the intertwiner of the causal edge passing through every vertex to the vertex itself. Thus, in general, this will give us a spin network. We cannot slice through vertices where more than two causal edges meet as there is no unambiguous definition of the intertwiner for these vertices. Slicing to the past and future of these vertices gives us different spin networks. Thus these are the “Feynman vertices” of the theory where the dynamics is effectively localized.
This completes our characterization of a causal spin foam. To summarize the key points, we give a definition:

Definition 1 A causal spin foam $\mathcal{F}_C = \{\kappa, \prec, \vec{j}, \vec{I}\}$ is a map from a spin network $s_1 = \{\gamma_1, \vec{j}_1, \vec{I}_1\}$ to a spin network $s_2 = \{\gamma_2, \vec{j}_2, \vec{I}_2\}$ such that

1. κ is an oriented two-dimensional cellular complex;
2. \prec is a partial order on the vertex set $V(\kappa)$;
3. an edge of κ is called causal if its endpoints are related by \prec, otherwise it called acausal;
4. every face $f \in F(\kappa)$ has at least one causal edge;
5. every face of κ is labeled by a representation j_f of SU(2);
6. every edge of κ is labeled by an intertwining tensor I_e such that

\[I_e : \bigotimes_{f \in \text{incoming faces}} j_{f_i} \longrightarrow \bigotimes_{f \in \text{outcoming faces}} j_{f_o} \]

7. the boundary of κ, $\partial \kappa = \gamma_1 \cup \gamma_2$ and for every vertex $v \in V(\kappa \cap \gamma_1), \exists u \in V(\kappa \cap \gamma_2)$ such that $v \prec u$ and γ_i are acausal sets;
8. the spins \vec{j}_i and intertwiners \vec{I}_i of s_i agree with those on the faces and edges of \mathcal{F}_C which intersect the boundary.

Dynamics can be considered as the assignment of amplitudes $A(\mathcal{F}_C)$ to each foam. In particular, this amplitude can be written as

\[A(\mathcal{F}_C) = \prod_{v \in \mathcal{F}_C} A_v(v) \quad (22) \]

where the amplitude assigned to each vertex is a local quantity, that is, it depends only upon the spins and intertwiners in the neighborhood of the vertex. Based on the result for the previous section, this amplitude should also contain a factor which depends upon the causal structure of the vertex. A specification of the amplitude $A_v(v)$ for all possible vertices in the theory can be regarded as being equivalent to giving the definition of the HCO.

In the next section, we give an example of a specific causal spin foam model which does not arise from any Hamiltonian constraint.

5 **The causal evolution model as a causal spin foam.**

The causal evolution model \[4\] can be viewed as causal spin foam model. We shall start by giving a brief review of our understanding of the essential features of this model.

Start with a (abstract) three-dimensional simplicial complex $^3\Delta$ in which every face is labeled by a spin j (representation of SU(2)) and every tetrahedron is labeled by an intertwiner which defines the map from $\otimes_{\text{faces}} j$ to the trivial representation. This is supposed to correspond to a spatial slice. The dual one-skeleton of the complex $^3\Delta$ is a four-valent
spin network (the model restricts to spin networks based on four-valent graphs). Now the amplitude between an initial state \((3\Delta_1) \) and a final state \((3\Delta_2) \) can be written as

\[
A_{3\Delta_1 \rightarrow 3\Delta_2} = \sum_{\text{all 4-simplicial complexes }} \left(\prod_{\text{4-simplices}} A_{4-\text{simplex}} \right),
\]

where we consider all the four-dimensional simplicial complexes \(4\Delta \) which have as their boundaries \(3\Delta_1 \cup 3\Delta_2 \). Each four-simplex in \(4\Delta \) consists of 5 tetrahedra and 10 faces. The causal evolution model further specifies that the 4-simplex has a particular causal structure, that is, \(k \) of the tetrahedra lie in the past of the remaining \((5 - k) \). Thus, the amplitude \(A \) which corresponds to every 4-simplex is a function in the space \(\text{Inv}(j_1 \otimes j_2 \otimes \cdots \otimes j_{10}) \) which reflects this causal structure.

The contact with spin networks was made in the case of the three-simplex by looking at the dual one-skeleton of \(3\Delta \). We may expect that the causal spin foam may be recovered by considering the dual two-skeleton of the four-complex.

Let us consider one four-simplex in the interior of a particular \(4\Delta \). The dual two-skeleton can be constructed by assigning a 0-cell to the 4-simplex itself, a 1-cell to every tetrahedron in the 4-simplex and a 2-cell to every face of the 4-simplex. By assigning the labels of every element in the simplex to its dual element, we can generate a 2-dimensional cellular complex whose faces are labeled by spins and whose edges are labeled by intertwiners. The only things that remains to be checked is that every face in the dual two-skeleton has a time like edge in its boundary. To verify this, we observe that the edges in the dual 1-skeleton correspond to joining the centers of neighboring 4-simplices. Since, these 4-simplices have causal relations between them, the dual edges are obviously causal. (In the language of causal evolution, there is an order in which we placed the 4-simplices to generate \(4\Delta \) and this is identified as a causal order).

There is certain amount of subtlety associated with taking the duals of the three-complexes that form the boundary. The way to define this is to first construct the dual one-skeleton of the boundary 3-complex by associating an edge to every face in it. Next, construct the duals for these faces in the four-dimensional sense, considering only the parts of these surfaces which are inside the four-complex. These will then be bounded by the one-skeleton of the boundary. Thus, the boundary of the dual two-skeleton is in fact the union of the graphs on which the initial and final spin networks are based.

Thus, the causal evolution model satisfies all the conditions in Definition 1. In fact, the causal evolution model can be viewed as a causal spin foam model in which only two-surfaces which are dual 2-skeletons of a 4-complex and the causal structures which are local to each 4-simplex are included in the sum over histories. It is worth noting that the causal evolution model also gives a method for constructing (a limited class of) causal spin foams.

6 Discussion

In this paper, we have shown two main results. We have constructed the causal propagator in canonical quantum gravity as a formal power series. This was made possible by the use
of spin network states and the existence of a diffeomorphism invariant measure for the lapse function. We found that it was necessary to modify the original proposal in [1] to include the discrete causality that was introduced by multiple actions of the HCO. In fact, we used the non-commutativity of the HCO to define a causal structure. This was our first key result.

The other key result is that the power series for the propagator can be represented as a sum over colored, branched two-surfaces which we call causal spin foams. We gave a general definition for a causal spin foam and showed that the causal evolution model [4] can be regarded as a causal spin foam model.

We shall conclude this paper with a discussion of some of the open issues that remain to be understood. These are listed below in no particular order.

- The propagator which we have considered is motivated by studying the Feynman propagator for the point particle. However, the role that it plays in quantum gravity is not completely understood. In particular, its relation to the projector onto physical states needs to be clarified.

- We have presented a particular concrete proposal to incorporate the causal structure which results from the multiple actions of the HCO. The four-diffeomorphism invariance of this proposal deserves to be better understood. In particular, we have suggested, that the non-commutativity of the HCO defines the causal structure of the quantum space-time. This should be studied in greater detail by coupling the gravity to matter fields and verifying that our definition of causality is consistent with that in usual quantum field theory.

Also, we have concentrated on the range on integration for the lapse. The dependence on the measure chosen for the lapse is unclear. We should emphasize though, that the discrete causal structure will determine the range of integration for the lapse, once the measure is chosen.

- The limit \(T \to \infty \) needs further study. There are two different avenues which can be explored in this regard. As we suggested, it may be possible to regulate this in a fashion analogous to the case of the Feynman propagator for the relativistic point particle. Another proposal is that this limit should only be taken in physically relevant quantities where it may make sense [17].

- The details of the calculation in section 3 depend on a particular regularization of the HCO. However, given any other regularizations of the operator, we can repeat the calculation for them. However, we would like to point out that we gave an example of a model which can be viewed as an inverse definition of the constraint operator. The causal spin foam models and the Hamiltonian constraint should be viewed as two sides of the same problem — a better understanding of one will help in the study of the other.

- The appearance of causal spin foams in the path integral for Lorentzian quantum gravity indicates that they may be thought of as quantum Lorentzian space-times.
This aspect needs to be studied in greater detail. In particular, the relation of this work to [21], where the authors try to construct a spin foam model for Lorentzian gravity based on the representation theory of the Lorentz group, requires further investigation. It is interesting to note that in three dimensions, a path integral model based on the group SO(2,1) can be constructed in which each term has a consistent causal structure [22].

- A related issue, which arises in a natural fashion, is the choice of causal spin foams that should be included in the sum over histories. It may be that it is sufficient to limit the sum to a subset of all causal spin foams (for example, the ones which arise in the causal evolution model). It may even turn out that this question is irrelevant in the classical limit — i.e., there may be more than one class of models for which classical GR is recovered [5]. Further work is needed before this question can be answered in a definite way.

This work adds to the understanding of the role that causality plays in the dynamics of quantum gravity. However, many issues are still unclear and further work needs to be done before answers to physical questions can be extracted.

Acknowledgements

I would like to thank Lee Smolin, Fotini Markopoulou, Laurent Freidel and Michael Reisenberger for numerous helpful discussions and suggestions. This work was supported in part by NSF grant PHY-9514240 to the Pennsylvania State University, a Miller fellowship from the Physics Department, and a gift from the Jesse Phillips Foundation.

References

[1] C. Teitelboim, Phys. Rev. Lett., 50 705 (1983).
[2] R. Laflamme and J. Louko, Phys. Rev. D43, 2730 (1991).
[3] F. Markopoulou and L. Smolin, Nucl. Phys. B508, 409 (1997).
[4] F. Markopoulou, gr-qc/9704013.
[5] J. Ambjørn and R. Loll, Nucl. Phys. B536 407 (1998).
[6] M. Reisenberger and C. Rovelli, Phys. Rev. D56, 3490 (1997).
[7] M. Reisenberger, gr-qc/9711052. J.W. Barrett and L. Crane, J. Math. Phys. 39, 3296 (1998).
[8] J.C. Baez, Class. Quant. Grav. 15, 1827 (1998).

\footnote{For an approach to defining the HCO based on requiring the correct classical limit, see 23}
[9] A. Ashtekar, Phys. Rev. Lett., 57 2244 (1986); Phys. Rev. D36, 1587 (1987).

[10] F. Barbero, Phys. Rev. D49, 6935 (1994); Phys. Rev. D51, 5507 (1995).

[11] C. Rovelli, Living Rev. Relativ. 1, article 1 (1998).

[12] C. Rovelli and L. Smolin Phys. Rev. D53, 5743 (1995); J.C. Baez, in “The Interface of Knots and Physics”, ed. Louis Kauffman (American Mathematical Society, Providence, 1996), pp. 167-203.

[13] L. Smolin, in “Quantum Gravity and Cosmology, the Proceedings of the 1991 GIFT International Seminar on Theoretical Physics”, (World Scientific, Singapore, 1992); C. Rovelli and L. Smolin, Nucl. Phys. B442, 593 (1995); A. Ashtekar and J. Lewandowski, J. Geom. Phys. 17, 191 (1995); R. De Pietri and C. Rovelli, Phys. Rev. D54, 2664 (1996).

[14] C. Rovelli and L. Smolin, Phys. Rev. Lett. 72 446 (1994).

[15] R. Borissov, Phys. Rev. D55 6099 (1997).

[16] T. Thiemann, Class. Quant. Grav. 15, 839 (1998); Class. Quant. Grav. 15, 875 (1998).

[17] C. Rovelli, Phys. Rev. D59, 104015 (1999).

[18] C. Teitelboim, Phys. Rev. D25, 3159 (1982).

[19] L. Smolin, gr-qc/9609034.

[20] L. Bombelli, J. Lee, D. Meyer, and R.D. Sorkin, Phys. Rev. Lett. 59, 521 (1987); R.D. Sorkin, “Spacetime and Causal Sets” in Proceedings of SILARG VII (1990).

[21] J.W. Barrett and L. Crane, gr-qc/9904023.

[22] L. Freidel, in preparation.

[23] R. Borissov and S. Gupta, Phys. Rev. D60 024002 (1999).