CONFORMAL BOUNDS FOR THE FIRST EIGENVALUE OF
THE p-LAPLACIAN

ANA-MARIA MATEI

Abstract. Let M be a compact, connected, m-dimensional manifold without boundary and $p > 1$. For $1 < p \leq m$, we prove that the first eigenvalue $\lambda_{1,p}$ of the p-Laplacian is bounded on each conformal class of Riemannian metrics of volume one on M. For $p > m$, we show that any conformal class of Riemannian metrics on M contains metrics of volume one with $\lambda_{1,p}$ arbitrarily large. As a consequence, we obtain that in two dimensions $\lambda_{1,p}$ is uniformly bounded on the space of Riemannian metrics of volume one if $1 < p \leq 2$, respectively unbounded if $p > 2$.

MSC: Primary 58C40; Secondary 53C21

Keywords: p-Laplacian, eigenvalue, conformal volume

1. Introduction

Let M be a compact m-dimensional manifold. All through this paper we will assume that M is connected and without boundary. The p-Laplacian ($p > 1$) associated to a Riemannian metric g on M is given by

$$\Delta_p u = \delta (|du|^p - 2 du),$$

where $\delta = -\text{div}_g$ is the adjoint of d for the L^2-norm induced by g on the space of differential forms. This operator can be viewed as an extension of the Laplace-Beltrami operator which corresponds to $p = 2$. The real numbers λ for which the nonlinear partial differential equation

$$\Delta_p u = \lambda |u|^{p-2} u$$

has nontrivial solutions are the eigenvalues of Δ_p, and the associated solutions are the eigenfunctions of Δ_p. Zero is an eigenvalue of Δ_p, the associated eigenfunctions being the constant functions. The set of the nonzero eigenvalues is a nonempty, unbounded subset of \C. The infimum $\lambda_{1,p}$ of this set is itself a positive eigenvalue, the first eigenvalue of Δ_p, and has a Rayleigh type variational characterization $[15]$

$$\lambda_{1,p}(M, g) = \inf \left\{ \frac{\int_M |du|^p \nu_g}{\int_M |u|^p \nu_g} \mid u \in W^{1,p}(M) \setminus \{0\}, \int_M |u|^{p-2} u \nu_g = 0 \right\},$$

where ν_g denotes the Riemannian volume element associated to g.

The first eigenvalue of Δ_p can be viewed as a functional on the space of Riemannian metrics on M: $g \mapsto \lambda_{1,p}(M, g).$
Since $\lambda_{1,p}$ is not invariant under dilatations $(\lambda_{1,p}(M, cg) = c^{-\frac{p}{p-1}} \lambda_{1,p}(M, g))$, a normalization is needed when studying the uniform boundedness of this functional. It is common to restrict $\lambda_{1,p}$ to the set $\mathcal{M}(M)$ of Riemannian metrics of volume one on M. In the linear case $p = 2$ this problem has been extensively studied in various degrees of generality. The functional $\lambda_{1,2}$ was shown to be uniformly bounded on $\mathcal{M}(M)$ in two dimensions [7], [16], [8], and unbounded in three or more dimensions [13], [14], [12], [1], [2], [3]. However, $\lambda_{1,2}$ becomes uniformly bounded when restricted to any conformal class of Riemannian metrics in $\mathcal{M}(M)$ [4].

In the general case $p > 1$, the functional $\lambda_{1,p}$ is unbounded on $\mathcal{M}(M)$ in three or more dimensions [11]. In this paper we study the existence of uniform upper bounds for the restriction of $\lambda_{1,p}$ to conformal classes of Riemannian metrics in $\mathcal{M}(M)$:

- for $1 < p \leq m$ we extend the results from the linear case and obtain an explicit upper bound for $\lambda_{1,p}$ in terms of p, the dimension m and the Li-Yau n-conformal volume.
- for $p > m$, we consider first the case of the unit sphere S^m and we construct Riemannian metrics in $\mathcal{M}(S^m)$, conformal to the standard metric can and with $\lambda_{1,p}$ arbitrarily large. We use then the result on spheres to show that any conformal class of Riemannian metrics on M contains metrics of volume one with $\lambda_{1,p}$ arbitrarily large.

As a consequence, we obtain that in two dimensions, $\lambda_{1,p}$ is uniformly bounded on $\mathcal{M}(M)$ when $1 < p \leq 2$, and unbounded when $p > 2$.

2. The case $1 < p \leq m$: Li-Yau type upper bounds

Let g be a Riemannian metric on M and denote by $[g] = \{fg \mid f \in C^\infty(M), f > 0\}$ the conformal class of g. Let $G(n) = \{\gamma \in \text{Diff}(S^n) \mid \gamma^*\text{can} \in [\text{can}]\}$ denote the group of conformal diffeomorphisms of (S^n, can).

For n big enough, the Nash-Moser Theorem ensures (via the stereographic projection) that the set $I_n(M, [g]) = \{\phi : M \to S^n \mid \phi^*\text{can} \in [\text{can}]\}$ of conformal immersions from (M, g) to (S^n, can) is nonempty. The n-conformal volume of $[g]$ is defined by [8]:

$$V^\circ_n(M, [g]) = \inf_{\gamma \in G(n)} \sup_{\phi \in I_n(M, [g])} \text{Vol}(M, (\gamma \circ \phi)^*\text{can}) ,$$

where $\text{Vol}(M, (\gamma \circ \phi)^*\text{can})$ denotes the volume of M with respect to the induced metric $(\gamma \circ \phi)^*\text{can}$. By convention, $V^\circ_n(M, [g]) = \infty$ if $I_n(M, [g]) = \emptyset$.

Theorem 2.1. Let M be an m-dimensional compact manifold and $1 < p \leq m$. For any metric $g \in \mathcal{M}(M)$ and any $n \in \mathbb{N}$ we have

$$\lambda_{1,p}(M, g) \leq m^{\frac{2}{p-1}} (n + 1)^\frac{2}{p-1} V^\circ_n(M, [g])^{\frac{p}{p-1}} .$$

Remark 2.2. In the linear case $p = 2$, this result was proved by Li and Yau [8] for surfaces and by El Soufi and Ilias [4] for higher dimensional manifolds.

Remark 2.3. Theorem 2.1 gives an explicit upper bound for $\lambda_{1,p}$, $1 < p \leq m$, in the case of some particular manifolds: the sphere S^m, the real projective space $\mathbb{R}P^m$, the complex projective space $\mathbb{C}P^d$, the equilateral torus T^d_{eq}, the generalized Clifford torus $S^r\left(\sqrt{r/r+q}\right) \times S^q(\sqrt{q/r+q})$, endowed with their canonical metrics.
For these manifolds we have [3]: $V_n^+ (M, \{can\}) = Vol(M, \frac{\lambda_{n+2} - \lambda_n}{m} \cdot can)$ for $n + 1$ greater or equal to the multiplicity of $\lambda_{1,2}$.

Using the relationships between the conformal volume and the genus of a compact surface [5] we obtain:

Corollary 2.4. Suppose $m = 2$ and $1 < p \leq 2$. Then for any metric $g \in \mathcal{M}(M)$

$$\lambda_{1,p} (M, g) \leq k_p \left[\frac{\text{genus}(M) + 3}{2} \right]^\frac{p}{2},$$

where $[\cdot]$ denotes the integer part, $k_p = 3[\frac{p}{2} - 1](8\pi)^\frac{p}{2}$ if M is orientable and $k_p = 5[\frac{p}{2} - 1](24\pi)^\frac{p}{2}$ if not.

Remark 2.5. In the case $p = 2$ and $M = S^2$, this result is the well known Hersch inequality [7]. For higher genus surfaces, the upper bound of $\lambda_{1,2}$ in terms of the genus was obtained by El-Soufi and Ilias [5] by improving a previous result of Yang and Yau [16].

In order to prove Theorem 2.1 we need two Lemmas:

Lemma 2.6. Let $\phi : (M, g) \rightarrow (S^n, \text{can})$ be a smooth map whose level sets are of measure zero in (M, g). Then for any $p > 1$ there exists $\gamma \in G(n)$ such that

$$\int_M (|\gamma \circ \phi|_i)^p (\gamma \circ \phi)_i \nu_g = 0, \quad 1 \leq i \leq n + 1.$$

Proof of Lemma 2.6 Let $a \in S^n$ and denote by π_a the stereographic projection of pole a. Let $t \in (0, 1]$ and $H_{\frac{t}{1-t}} = e^{\frac{1-t}{t}} \cdot Id_{\mathbb{R}^n}$ (i.e. $H_{\frac{t}{1-t}}$ is the linear dilatation of \mathbb{R}^n of factor $e^{\frac{1-t}{t}}$). Let $\gamma_t^a \in G(n)$, $\gamma_t^a(x) = \begin{cases} \pi_a^{-1} \circ H_{\frac{t}{1-t}} \circ \pi_a(x) & \text{if } x \in S^n \setminus \{a\} \\ a & \text{if } x = a \end{cases}$ and consider the continuous map

$$F : [0, 1] \times S^n \rightarrow \mathbb{R}^{n+1}$$

$$F(t, a) = \frac{1}{Vol(M, g)} \left(\int_M (|\gamma_t^a \circ \phi|_i)^p (\gamma_t^a \circ \phi)_i \nu_g, \ldots, \int_M (|\gamma_t^a \circ \phi|_{n+1})^p (\gamma_t^a \circ \phi)_{n+1} \nu_g \right).$$

For any $x \in M \setminus \{\phi^{-1}(-a)\}$ we have $\lim_{t \rightarrow 0+} \gamma_t^a \circ \phi(x) = a$. Since $\phi^{-1}(-a)$ is of measure zero in M, we can extend F into a continuous function on $[0, 1] \times S^n$ by setting

$$F(0, a) = (|a_1|^{p-2} a_1, \ldots, |a_{n+1}|^{p-2} a_{n+1}).$$

The map $a \rightarrow F(0, a)$ is odd on S^n, and since $\gamma_1^n = I_{S^n}$, the map $a \rightarrow F(1, a)$ is constant. Assume $\|F(t, a)\| \neq 0$ for any $(t, a) \in [0, 1] \times S^n$. Then the map

$$G : [0, 1] \times S^n \rightarrow S^n$$

$$G(t, a) = \frac{F(t, a)}{\|F(t, a)\|}$$

gives a homotopy between the odd map $a \rightarrow G(0, a)$ and the constant map $a \rightarrow G(1, a)$, and this is impossible. Hence there exists $(t, a) \in [0, 1] \times S^n$ such that $\|F(t, a)\| = 0$, i.e. $\int_M (|\gamma_t^a \circ \phi|_i)^p (\gamma_t^a \circ \phi)_i \nu_g = 0, \quad 1 \leq i \leq n + 1. \quad \Box$
Lemma 2.7. Suppose \(g \in \mathcal{M}(M) \) and let \(\phi : (M, g) \to (S^n, can) \) be a smooth map whose level sets are of measure zero in \((M, g)\). Then there exists \(\gamma \in G(n) \) such that
\[
\lambda_{1,p}(M, g) \leq (n + 1)^{\frac{p}{\beta} - 1} \int_M |d(\gamma \circ \phi)|^p \nu_g,
\]
where \(|d(\gamma \circ \phi)| \) denotes the Hilbert-Schmidt norm of \(d(\gamma \circ \phi) \).

Proof of Lemma 2.7 Lemma 2.6 implies there exists \(\gamma \in G(n) \) such that \(\psi = \gamma \circ \phi : M \to S^n \) verifies \(\int_M |\psi_i|^p - 2 \psi_i \nu_g = 0, \ 1 \leq i \leq n + 1 \). The variational characterization for \(\lambda_{1,p}(M, g) \) implies that
\[
\lambda_{1,p}(M, g) \leq \frac{\int_M |d\psi_i|^p \nu_g}{\int_M |\psi_i|^p \nu_g},
\]
\(\lambda_{1,p}(M, g) \leq \frac{\int_M \sum_{i=1}^{n+1} |d\psi_i|^p \nu_g}{\int_M \sum_{i=1}^{n+1} |\psi_i|^p \nu_g} \).

- **Case 1:** \(p \geq 2 \). It is straightforward that
\[
(2.2) \quad \sum_{i=1}^{n+1} |d\psi_i|^p = \sum_{i=1}^{n+1} (|d\psi_i|^2) \frac{p}{2} \leq \left(\sum_{i=1}^{n+1} |\psi_i|^2 \right)^{\frac{p}{2}} = |d\psi|^p.
\]

On the other hand
\[
(2.3) \quad \sum_{i=1}^{n+1} |\psi_i|^p \geq (n + 1)^{1 - \frac{p}{2}} \left(\sum_{i=1}^{n+1} |\psi_i|^2 \right)^{\frac{p}{2}} = (n + 1)^{1 - \frac{p}{2}},
\]
where we have used the fact that \(x \to x^{\frac{p}{2}} \) is convex and that \(\sum_{i=1}^{n+1} |\psi_i|^2 = 1 \).
Replacing \(2.2 \) and \(2.3 \) in \(2.1 \) we obtain
\[
\lambda_{1,p}(M, g) \leq (n + 1)^{\frac{p}{2} - 1} \int_M |d\psi|^p \nu_g.
\]

- **Case 2:** \(1 < p < 2 \). Since \(|\psi_i| \leq 1 \) we have \(|\psi_i|^2 \leq |\psi_i|^p \) and
\[
(2.4) \quad 1 = Vol(M, g) = \int_M \sum_{i=1}^{n+1} |\psi_i|^2 \nu_g \leq \int_M \sum_{i=1}^{n+1} |\psi_i|^p \nu_g.
\]

On the other hand
\[
(2.5) \quad \sum_{i=1}^{n+1} |d\psi_i|^p = \sum_{i=1}^{n+1} (|d\psi_i|^2) \frac{p}{2} \leq (n + 1)^{1 - \frac{p}{2}} \left(\sum_{i=1}^{n+1} |d\psi_i|^2 \right)^{\frac{p}{2}} = (n + 1)^{1 - \frac{p}{2}} |d\psi|^p,
\]
where the inequality follows from the concavity of \(x \to x^{\frac{p}{2}} \). Replacing \(2.4 \) and \(2.5 \) in \(2.1 \) we obtain
\[
\lambda_{1,p}(M, g) \leq (n + 1)^{1 - \frac{p}{2}} \int_M |d\psi|^p \nu_g.
\]

Proof of Theorem 2.1 Let \(\phi : (M, g) \to (S^n, can) \) be a conformal immersion. From Lemma 2.7 we have that there exists \(\gamma \in G(n) \) such that
\[
\lambda_{1,p}(M, g) \leq (n + 1)^{\frac{p}{\beta} - 1} \int_M |d(\gamma \circ \phi)|^p \nu_g.
\]
Since $g \in \mathcal{M}(M)$, Hölder’s inequality implies
\[\int_M |d(\gamma \circ \phi)|^p \nu_g \leq \left(\int_M |d(\gamma \circ \phi)|^m \nu_g \right)^{\frac{p}{m}}. \]
On the other hand since $\gamma \circ \phi : (M, g) \to (S^n, \text{can})$ is a conformal immersion, $(\gamma \circ \phi)^* \text{can} = \frac{|d(\gamma \circ \phi)|}{m}^2 g$ and we have
\[\int_M |d(\gamma \circ \phi)|^m \nu_g = m^\frac{p}{m} \text{Vol}(M, (\gamma \circ \phi)^* \text{can}) \leq m^\frac{p}{m} \sup_{\gamma \in G(n)} \text{Vol}(M, (\gamma \circ \phi)^* \text{can}). \]
Combining the inequalities above we obtain:
\[\lambda_{1,p}(M, g) \leq m^\frac{p}{m} (n + 1)^{\frac{p}{m} - 1} \left(\sup_{\gamma \in G(n)} \text{Vol}(M, (\gamma \circ \phi)^* \text{can}) \right)^{\frac{p}{m}}. \]
Taking the infimum over all $\phi \in I_n(M, [g])$ we obtain the desired inequality. □

Proof of Corollary 2.4. In the case of surfaces, the n-conformal volume is bounded above by a constant depending only on the genus of the surface [5]. If M is orientable we have
\[V_c^n(M, [g]) \leq 4\pi \left(\text{genus}(M) + 3 \right) \]
for $n \geq 2$.

If M is non orientable,
\[V_c^n(M, [g]) \leq 12\pi \left(\text{genus}(M) + 3 \right) \]
for $n \geq 4$.

Theorem 2.1 implies now the desired result with $k_p = 3^{\frac{n}{2} - 1}(8\pi)^{\frac{n}{2}}$ when M is orientable and $k_p = 5^{\frac{n}{2} - 1}(24\pi)^{\frac{n}{2}}$ when M is non orientable. □

3. **The case $p > m$**

For the sake of self-containedness we include here the variational characterizations for the first eigenvalues for the Dirichlet and the Neumann problems for Δ_p. Let Ω be a domain in M and consider the Dirichlet problem:
\[\begin{cases}
\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases} \]
The infimum $\lambda_{1,p}^D(\Omega, g)$ of the set of eigenvalues for this problem is itself a positive eigenvalue with the variational characterization
\[\lambda_{1,p}^D(\Omega, g) = \inf \left\{ \frac{\int_{\Omega} |du|^p \nu_g}{\int_{\Omega} |u|^p \nu_g} \mid u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\}. \]
Consider now the Neumann problem on Ω:
\[\begin{cases}
\Delta_p f = |f|^{p-2} f & \text{in } \Omega \\
\frac{df}{\eta} = 0 & \text{on } \partial \Omega,
\end{cases} \]
where η denotes the exterior unit normal vector field to $\partial \Omega$. Here too, the infimum $\lambda_{1,p}^N(\Omega, g)$ of the set of nonzero eigenvalues is a positive eigenvalue with the variational characterization
\[\lambda_{1,p}^N(\Omega, g) := \inf \left\{ \frac{\int_{\Omega} |df|^p \nu_g}{\int_{\Omega} |f|^p \nu_g} \mid f \in W^{1,p}(\Omega, g) \setminus \{0\}, \int_{\Omega} |f|^{p-2} f \nu_g = 0 \right\}. \]
We consider first the case of \((S^m, [\text{can}])\):

Theorem 3.1. For any \(p > m\), \(S^m\) carries Riemannian metrics of volume one, conformal to the standard metric \(\text{can}\), with \(\lambda_{1,p}\) arbitrarily large.

Proof of Theorem 3.1. Let \(r \in [0, \pi]\), denote the geodesic distance on \((S^m, \text{can})\) w.r.t. a point \(x_0 \in S^m\). Let \(\varepsilon > 0\) and define a radial function \(f_\varepsilon : S^m \to \mathbb{R}\) by

\[
(3.1) \quad f_\varepsilon(r) = \varepsilon (r^p/(\varepsilon^m - 1)) \cdot \chi_{[0, \pi]}(\varepsilon(r)) + \chi_{(\pi, \pi + \varepsilon)}(r).
\]

Let \(\lambda_{1,p}(\varepsilon) = \inf \left\{ R_\varepsilon(u) := \frac{\int_{S^m} |du|^p f_\varepsilon^{m-p} \nu_{\text{can}}}{\int_{S^m} |u|^p f_\varepsilon^p \nu_{\text{can}}} \mid u \in W^{1,p}(S^m) \setminus \{0\} \right\}, \)

where \(V_{\text{can}} = \{ \int_{S^m} |u|^p f_\varepsilon^{m-p} \nu_{\text{can}} = 0 \} \). We will show first that

\[
(3.2) \quad \limsup_{\varepsilon \to 0} \lambda_{1,p}(\varepsilon) \cdot \varepsilon^m = \infty.
\]

Classical density arguments imply that there exists \(u_\varepsilon \in W^{1,p}(S^m) \setminus \{0\}\) with \(\int_{S^m} |u_\varepsilon|^{p-2} u_\varepsilon f_\varepsilon^p \nu_{\text{can}} = 0\) such that \(\lambda_{1,p}(\varepsilon) = R_\varepsilon(u_\varepsilon)\). Let \(u^:\varepsilon \in \mathcal{M} \to \mathcal{R}\) be a radial function defined by

\[
(3.3) \quad \check{u}_\varepsilon^p(r) = \frac{1}{V} \int_{S^m} |u_\varepsilon(r, \cdot)|^p \nu_{\text{can}}
\]

where \(V = \text{Vol}(S^m, \text{can})\). Differentiating w.r.t. \(r\) we obtain

\[
\check{u}_\varepsilon^{p-1} \check{u}_\varepsilon' = \frac{p}{V} \int_{S^m} |u_\varepsilon|^{p-2} u_\varepsilon \frac{\partial u_\varepsilon}{\partial r} \nu_{\text{can}}.
\]

By Hölder’s inequality we obtain

\[
\check{u}_\varepsilon^{p-1} |\check{u}_\varepsilon'| \leq \frac{1}{V} \int_{S^m} |u_\varepsilon|^{p-1} \left| \frac{\partial u_\varepsilon}{\partial r} \right| \nu_{\text{can}} \leq \frac{1}{V} \left(\int_{S^m} |u_\varepsilon|^p \nu_{\text{can}} \right)^{\frac{p-1}{p}} \left(\int_{S^m} \left| \frac{\partial u_\varepsilon}{\partial r} \right|^p \nu_{\text{can}} \right)^{\frac{1}{p}}.
\]

It follows that

\[
|\check{u}_\varepsilon'| \leq \frac{1}{V} \int_{S^m} \left| \frac{\partial u_\varepsilon}{\partial r} \right|^p \nu_{\text{can}} \leq \frac{1}{V} \int_{S^m} |du_\varepsilon|^p \nu_{\text{can}}.
\]

On the other hand

\[
\int_{S^m} |\check{u}_\varepsilon|^p f_\varepsilon^{m-p} \nu_{\text{can}} = V \cdot \int_0^\pi |\check{u}_\varepsilon|^p f_\varepsilon^m \sin r^{m-1} dr
\]

\[
= \int_0^\pi \left[\int_{S^m} |u_\varepsilon|^p \nu_{\text{can}} \right] f_\varepsilon^m \sin r^{m-1} dr
\]

\[
= \int_{S^m} |u_\varepsilon|^p f_\varepsilon^m \nu_{\text{can}},
\]

where the second equality follows from \((3.3)\). Similarly \((3.4)\) implies

\[
\int_{S^m} |\check{u}_\varepsilon'|^p f_\varepsilon^{m-p} \nu_{\text{can}} \leq \int_{S^m} |du_\varepsilon|^p f_\varepsilon^{m-p} \nu_{\text{can}}.
\]
In particular, we obtain that \(\bar{u}_\varepsilon \in W^{1,p}(S^m) \) and

\[
\lambda_{1,p}(\varepsilon) = R_\varepsilon(u_\varepsilon) \geq \frac{\int_{S^m_m} |\bar{u}_\varepsilon'|^p \bar{f}_\varepsilon^{m-p} \nu_{\text{can}}}{\int_{S^m_m} |\bar{u}_\varepsilon|^p f_\varepsilon^{m-n} \nu_{\text{can}}} \geq \min \left\{ \frac{\int_{S^m_m} |\bar{u}_\varepsilon'|^p \bar{f}_\varepsilon^{m-p} \nu_{\text{can}}}{\int_{S^m_m} |\bar{u}_\varepsilon|^p f_\varepsilon^{m-n} \nu_{\text{can}}} \right\},
\]

where \(S^m_+ \), \(S^m_- \) denote the hemispheres centered at \(x_0 \), respectively \(-x_0\). Without loss of generality we may assume that

\[
(3.5) \quad \lambda_{1,p}(\varepsilon) \geq \frac{\int_{S^m_+} |\bar{u}_\varepsilon'|^p \bar{f}_\varepsilon^{m-p} \nu_{\text{can}}}{\int_{S^m_+} |\bar{u}_\varepsilon|^p f_\varepsilon^{m-n} \nu_{\text{can}}},
\]

Let \(w_\varepsilon \in W^{1,p}(S^m_+) \), \(w_\varepsilon = \begin{cases} \bar{u}_\varepsilon & \text{on } [0, \frac{\varepsilon}{2} - \varepsilon] \\ \bar{u}_\varepsilon(\frac{\varepsilon}{2} - \varepsilon) & \text{on } (\frac{\varepsilon}{2} - \varepsilon, \frac{\varepsilon}{2}) \end{cases} \) and \(v_\varepsilon = \bar{u}_\varepsilon - w_\varepsilon \). Then \(v_\varepsilon = 0 \) on \([0, \frac{\varepsilon}{2} - \varepsilon]\) and \(w_\varepsilon' = 0 \) on \((\frac{\varepsilon}{2} - \varepsilon, \frac{\varepsilon}{2})\). Since \(u_\varepsilon' \) and \(w_\varepsilon' \) have disjoint supports, we have \(|\bar{u}_\varepsilon'|^p = |v_\varepsilon'|^p + |w_\varepsilon'|^p \). On the other hand \(|\bar{u}_\varepsilon|^p = |v_\varepsilon + w_\varepsilon|^p \leq 2^{p-1}(|v_\varepsilon|^p + |w_\varepsilon|^p) \). Then (3.5) and (3.1) imply

\[
\lambda_{1,p}(\varepsilon) \geq 2^{1-p} \frac{\int_{S^m_+} (|v_\varepsilon'|^p + |w_\varepsilon'|^p) \bar{f}_\varepsilon^{m-p} \nu_{\text{can}}}{\int_{S^m_+} (|v_\varepsilon|^p + |w_\varepsilon|^p) f_\varepsilon^{m-n} \nu_{\text{can}}} = 2^{1-p} \frac{\int_{S^m_+} |v_\varepsilon'|^p \nu_{\text{can}} + \varepsilon^{-\frac{2}{m}} \int_{S^m_+} |w_\varepsilon'|^p \nu_{\text{can}}}{\int_{S^m_+} |v_\varepsilon'|^p \nu_{\text{can}} + \int_{S^m_+} |w_\varepsilon|^p f_\varepsilon^{m-n} \nu_{\text{can}}}
\]

Quite to multiply \(\bar{u}_\varepsilon \) by a constant we may assume \(\int_{S^m_+} |v_\varepsilon|^p \nu_{\text{can}} + \int_{S^m_+} |w_\varepsilon|^p f_\varepsilon^{m-n} \nu_{\text{can}} = 1 \) and the inequality above becomes

\[
(3.6) \quad \lambda_{1,p}(\varepsilon) \geq 2^{1-p} \int_{S^m_+} |u_\varepsilon'|^p \nu_{\text{can}} + \varepsilon^{-\frac{2}{m}} \int_{S^m_+} |w_\varepsilon'|^p \nu_{\text{can}}.
\]

- **Case 1**: \(\limsup_{\varepsilon \to 0} \int_{S^m_+} |w_\varepsilon'|^p \nu_{\text{can}} > 0 \). Inequality (3.6) implies that \(\lambda_{1,p}(\varepsilon) \varepsilon^{\frac{2}{m}} \geq 2^{1-p} \varepsilon^{-\frac{2}{m}} \int_{S^m_+} |w_\varepsilon'|^p \nu_{\text{can}} \), and therefore (3.2) is verified.
- **Case 2**: \(\lim_{\varepsilon \to 0} \int_{S^m_+} |w_\varepsilon'|^p \nu_{\text{can}} = 0 \). Then we may find a sequence \(\varepsilon_n \to 0 \) such that \(w_{\varepsilon_n} \to c \) strongly in \(L^p(M) \), where \(c \) is a constant. In particular since \(p > m \), \(\{f_\varepsilon_n\} \) is uniformly bounded and we have \(\lim_{n \to \infty} \int_{S^m_+} f_\varepsilon_n \nu_{\text{can}} = 0 \). It follows that \(\lim_{n \to \infty} \int_{S^m_+} |w_{\varepsilon_n}|^p f_\varepsilon_n \nu_{\text{can}} = \lim_{n \to \infty} \int_{S^m_+} (|w_{\varepsilon_n}| - |c|^p) f_\varepsilon_n \nu_{\text{can}} + |c|^p \lim_{n \to \infty} \int_{S^m_+} f_\varepsilon_n \nu_{\text{can}} = 0 \). Hence for \(\varepsilon_n \)...
small enough, \(\int_{S^m} \left| v_{\varepsilon_n} \right|^p \nu_{can} = 1 - \int_{S^m} \left| w_{\varepsilon_n} \right|^p \int \frac{\nu_{can}}{2} \) and (3.6) implies (3.7)

\[
\lambda_{1,p}(\varepsilon_n) \geq 2^{1 - \frac{p}{2}} \int_{S^m} |v_{\varepsilon_n}'|^p \nu_{can} \geq 2^{1 - \frac{p}{2}} \int_{S^m} |v_{\varepsilon_n}'|^p \nu_{can} = 2^{1 - \frac{p}{2}} \frac{\int_{S^m} \left| v_{\varepsilon_n}' \right|^p \sin m^{-1} dr}{\int_{S^m} \left| v_{\varepsilon_n} \right|^p \sin m^{-1} dr} \geq 2^{1 - \frac{p}{2}} \sin (\frac{\pi}{2} - \varepsilon_n) \left| v_{\varepsilon_n}' \right|^p \frac{dr}{\int_{S^m} \left| v_{\varepsilon_n} \right|^p \sin m^{-1} dr}.
\]

Let \(\bar{v}_{\varepsilon_n} \in W_0^1, p(-\varepsilon_n, \varepsilon_n) \) be an even function such that \(\bar{v}_{\varepsilon_n}(s) = v_{\varepsilon_n}(s + \frac{\pi}{2} - \varepsilon_n) \) for \(0 \leq s \leq \varepsilon_n \). We have then (3.8)

\[
\int_{\bar{S}^m} |v_{\varepsilon_n}'|^p \bar{\nu}_{\varepsilon_n} \frac{dr}{\int_{S^m} \left| v_{\varepsilon_n} \right|^p \sin m^{-1} dr} = \int_{\bar{S}^m} \left| v_{\varepsilon_n}' \right|^p \bar{\nu}_{\varepsilon_n} \frac{dr}{\int_{S^m} \left| v_{\varepsilon_n} \right|^p \sin m^{-1} dr} \geq \lambda_{1,p}(-\varepsilon_n, \varepsilon_n) = \varepsilon_n^{-p} \lambda_{1,p}(-1, 1).
\]

Inequalities (3.7), (3.8) imply \(\lambda_{1,p}(\varepsilon_n) \geq \varepsilon_n^{-p} \lambda_{1,p}(-1, 1) \) and (3.2) is verified again.

Fix now \(\varepsilon > 0 \) and let \(\tilde{f}_\varepsilon \in C^\infty(S^m) \), radial with respect to \(x_0 \) and such that \(\tilde{f}_\varepsilon \leq f_\varepsilon \), \(\tilde{f}_\varepsilon(r) = f_\varepsilon(r) = 1 \) on \(\left[\frac{\pi}{2} - \varepsilon, \frac{\pi}{2} + \varepsilon \right] \) and \(\tilde{f}_\varepsilon(\pi - r) = \tilde{f}(r) \). Then

\[
Vol(S^m, \tilde{f}_\varepsilon can) = \int_{S^m} \tilde{f}_\varepsilon^m \nu_{can} = \int_{S^m-1} \int_{\frac{\pi}{2} - \varepsilon}^{\frac{\pi}{2} + \varepsilon} \sin m^{-1} dr \nu_{can} > V \int_{\frac{\pi}{2} - \varepsilon}^{\frac{\pi}{2} + \varepsilon} \sin m^{-1} dr > \varepsilon V \sin (\frac{\pi}{2} - \varepsilon)^{m-1}, \quad \text{where} \quad V = Vol(S^{m-1}, can).
\]

We will compare now \(\lambda_{1,p}(S^m, \tilde{f}_\varepsilon can) \) and \(\lambda_{1,p}(\varepsilon) \). Let \(\tilde{u}_\varepsilon \) be an eigenfunction for \(\lambda_{1,p}(S^m, \tilde{f}_\varepsilon can) \) and denote by \(\tilde{u}_\varepsilon^+ \), \(\tilde{u}_\varepsilon^- \) the positive, respectively, the negative part of \(\tilde{u}_\varepsilon \). Then [\#]

\[
\lambda_{1,p}(S^m, \tilde{f}_\varepsilon can) = \int_{S^m} |d\tilde{u}_\varepsilon|^p \tilde{f}_\varepsilon^m \nu_{can} = \int_{S^m} |d\tilde{u}_\varepsilon|^p \tilde{f}_\varepsilon^m \nu_{can} = \int_{S^m} |\tilde{u}_\varepsilon|^p \tilde{f}_\varepsilon^m \nu_{can}.
\]

Let \(t \in \mathbb{R} \) and \(\tilde{u}_{\varepsilon,t} = t\tilde{u}_\varepsilon^+ + \tilde{u}_\varepsilon^- \). Then there is \(t_0 \) such that \(\int_{S^m} |\tilde{u}_{\varepsilon,t_0}|^p \tilde{f}_\varepsilon \nu_{can} = 0 \) and the equation above implies (3.10)

\[
\lambda_{1,p}(S^m, \tilde{f}_\varepsilon can) = \int_{S^m} |d\tilde{u}_{\varepsilon,t_0}|^p \tilde{f}_\varepsilon^m \nu_{can} = \int_{S^m} |d\tilde{u}_{\varepsilon,t_0}|^p \tilde{f}_\varepsilon^m \nu_{can} \geq \lambda_{1,p}(\varepsilon),
\]

where the first inequality follows from the fact that \(\tilde{f}_\varepsilon \leq f_\varepsilon \) and the second from the variational characterization for \(\lambda_{1,p}(\varepsilon) \). Inequalities (3.9), (3.10) and (3.2) yield

\[
\limsup_{\varepsilon \to 0} \lambda_{1,p}(S^m, \tilde{f}_\varepsilon can) Vol(S^m, \tilde{f}_\varepsilon can) = V \tilde{f}_\varepsilon \cdot \limsup_{\varepsilon \to 0} \lambda_{1,p}(\varepsilon) \cdot \tilde{f}_\varepsilon = \infty.
\]

Finally, let \(h_\varepsilon = Vol(S^m, \tilde{f}_\varepsilon can) \frac{\varepsilon}{\tilde{f}_\varepsilon} \frac{1}{\tilde{f}_\varepsilon} \). We have then

\[
Vol(S^m, h_\varepsilon can) = 1 \quad \text{and} \quad \limsup_{\varepsilon \to 0} \lambda_{1,p}(S^m, h_\varepsilon can) = \infty.
\]

\[\square\]
We will extend the construction from \((S^m, [can])\) to \((M, [g])\) by means of the first eigenvalue for the Neumann problem for \(\Delta_p\) on a domain \(\Omega\) in \(M\).

Theorem 3.2. Let \((M, g)\) be a compact Riemannian manifold of dimension \(m\). Then for any \(p > m\), \([g]\) contains Riemannian metrics of volume one with \(\lambda_{1,p}\) arbitrarily large.

Proof of Theorem 3.2. Let \(r\) denote the geodesic distance on \((S^m, can)\) w.r.t. a point \(x_0\). Let \(f \in C^\infty(S^m)\) be a function radial w.r.t. \(x_0\), such that \(f(r) = f(\pi - r)\) and \(\text{Vol}(S^m, can) = 1\). As before, let \(S^m_+\) denote the hemisphere centered at \(x_0\). Let \(v\) be an eigenfunction for \(\lambda_1^N(S^m_+, f can)\) and let \(w \in W^1, p(S^m)\), \(w(r) = \begin{cases} v(r) & \text{if } 0 \leq r \leq \frac{\pi}{2} \\ v(\pi - r) & \text{if } \frac{\pi}{2} < r \leq \pi \end{cases}\). Then \(\int_{S^m} |w|^p - 2w f \nu_{can} = 2 \int_{S^m} |v|^p - 2v f \nu_{can} = 0\) and the variational characterization for \(\lambda_1^N(S^m, f can)\) implies

\[
\lambda_1(S^m, f can) \leq \frac{\int_{S^m} |dw|^p f \frac{m - p}{2} \nu_{can}}{\int_{S^m} |w|^p f \frac{m - p}{2} \nu_{can}} = \frac{\int_{S^m} |dv|^p f \frac{m - p}{2} \nu_{can}}{\int_{S^m} |v|^p f \frac{m - p}{2} \nu_{can}} = \lambda_1^N(S^m_+, f can)
\]

Let \(\Omega\) be a domain in \(M\) such that there exists a diffeomorphism \(\Phi : \Omega \to S^m\). We may assume \(\Omega\) is included in the open region of a local chart of \(M\). In this chart we have \(\nu_{g} = \sqrt{\text{det}(g_{ij})} dx^1 \wedge dx^2 \wedge \ldots \wedge dx^m\) and \(\nu_{\Phi^* can} = \sqrt{\text{det}((\Phi^* can)_{ij})} dx^1 \wedge dx^2 \wedge \ldots \wedge dx^m\). There exist positive constants \(c_1, c_2\) such that

\[
c_1 \sqrt{\text{det}(g_{ij})} \leq \sqrt{\text{det}((\Phi^* can)_{ij})} \leq c_2 \sqrt{\text{det}(g_{ij})}\text{ on } \Omega.
\]

We will compare now \(\lambda_1^N(S^m_+, f can)\) and \(\lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can)\). Note first that since \(\Phi\) is an isometry between \((\Omega, (f \circ \Phi)\Phi^* can)\) and \((S^m_+, f can)\) we have

\[
\lambda_1^N(S^m_+, f can) = \lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can)
\]

Let \(u\) be an eigenfunction for \(\lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can)\) and denote by \(u^+, u^-\) the positive, respectively, the negative part of \(u\). Then there is \(s \in \mathbb{R}\) such that the function \(u_s = su^+ + u^-\) verifies \(\int_{\Omega} |u_s|^p - 2u_s f \Phi \Phi^* \nu_{\Phi^* can} = 0\). Furthermore

\[
\lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can) \geq \frac{c_1}{c_2} \lambda_1^N(S^m, f can),
\]

where the first inequality follows from \((3.12)\) and the second from the variational characterization of \(\lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can)\). From \((3.11), (3.13)\) and \((3.14)\) we obtain

\[
\lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can) \geq \frac{c_1}{c_2} \lambda_1^N(S^m, f can).
\]

Let now \(\delta > 0\); there is an extension \(\widetilde{f \circ \Phi}\) of \(f \circ \Phi\) on the entire manifold \(M\) such that the metric \(\tilde{g} = \tilde{f} \circ \Phi g\) verifies \([10]\): \(\lambda_1(M, \tilde{g}) > \lambda_1^N(\Omega, (f \circ \Phi)\Phi^* can) - \delta\). Inequality \((3.15)\) implies

\[
\lambda_1(M, \tilde{g}) > \frac{c_1}{c_2} \lambda_1^N(S^m, f can) - \delta
\]
On the other hand

\begin{equation}
\text{Vol}(M, \tilde{g}) > \text{Vol}(\Omega, (f \circ \Phi)g) \geq \frac{1}{c_2} \text{Vol}(\Omega, (f \circ \Phi)\Phi^*can)
\end{equation}

\begin{equation}
= \frac{1}{c_2} \text{Vol}(S^m_+, fcan) = \frac{1}{2c_2} \text{Vol}(S^m, fcan) = \frac{1}{2c_2}.
\end{equation}

Let \(K > 0 \); from the proof of Theorem 3.1 we may assume that \(f \) is chosen such that

\[\lambda_{1,p}(S^m, fcan) > 2^{m+1}c_1^{-1}c_2^{m+1} K. \]

For \(\delta \) small enough such that \((2c_2)^{-\frac{m}{2}} \delta < K\), inequalities (3.16) and (3.17) imply

\[\lambda_{1,p}(M, \tilde{g}) \text{Vol}(M, \tilde{g})^{\frac{m}{2}} \geq \left(\frac{c_1}{c_2} \lambda_{1,p}(S^m, fcan) - \delta \right)(2c_2)^{-\frac{m}{2}} > K. \]

Finally, let \(h = \text{Vol}(M, \tilde{g})^{-\frac{m}{2}} \tilde{g} \). Then \(h \in [g] \), \(\text{Vol}(M, h) = 1 \) and \(\lambda_{1,p}(M, h) > K \).

\[\square \]

REFERENCES

[1] Bérard Bergery, L., Bourguignon J-P., Laplacians and riemannian submersions with totally geodesic fibres, Illinois Journal of Mathematics, 26 (1982), 181-200.

[2] B. Colbois, J. Dodziuk, Riemannian metrics with large \(\lambda_1 \), Proc. A.M.S., 122, n. 3 (1994), 905-906.

[3] J. Dodziuk, Nonexistence of universal upper bounds for the first positive eigenvalue of the Laplace-Beltrami operator, Geometry of the Spectrum (Seattle, Wa, 1993) 109-114 Contemp. Math., 173, Amer. Math. Soc. Providence RI, 1994.

[4] A. El Soufi, S. Ilias, Immersion minimales, première valeur propre du laplacien et volume conforme, Math Ann., 275 (1986), 257-267.

[5] A. El Soufi, S. Ilias, Le volume conforme et ses applications d’apres Li et Yau, Sémin. Théorie Spectrale et Géométrie, Inst. Fourier année 1983-1984, VII (1984).

[6] J.P. Garzia Azorero, I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian eigenvalues, Comm. Part. Diff. Equ., 12 (1987), 1389-1430.

[7] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C.R. Acad. Sci. Paris, 270 (1980), 1645-1648.

[8] P. Li, S.T. Yau, A new conformal invariant and its application to the Wilmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 209-291.

[9] A.-M. Matei, First eigenvalue for the \(p \)-Laplace operator, Nonlinear Anal., 39 (2000), 1051-1068.

[10] A.-M. Matei, The effect of perturbations on the first eigenvalue of the \(p \)-Laplacian, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 255-258.

[11] A.-M. Matei, Boundedness of the first eigenvalue of the \(p \)-Laplacian, Proc. A.M.S., 133, 7 (2005), 2183-2192.

[12] H. Muto, The first eigenvalue of the Laplacian on even dimensional spheres, Tohoku Math. J., 32 (1980), 427-432.

[13] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J., 31 (1979), 179-185.

[14] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifold, J. Math. Soc. Japan, 31 (1979), 209-226.

[15] L. Veron, Some Existence and Uniqueness Results for Solution of Some Quasilinear Elliptic Equations on Compact Riemannian Manifolds, Colloquia Mathematica Societatis Janos Bolyai, 62, P.D.E., Budapest (1991), 317-352.

[16] P.C. Yang, S.T. Yau, Eigenvalues of the Laplacian of Compact Riemann Surfaces and Minimal Submanifolds, Ann. Scuola Sup. Pisa, 7 (1980), 55-63.

Department of Mathematical Sciences, Loyola University New Orleans, USA; e-mail: amatei@loyno.edu