Room temperature ferromagnetism in N-implanted MgO: synergistic effects of intrinsic and extrinsic defects

Xingyu Wang1, Chunlin Ma2, Xiaoxiong Wang3, Weiping Zhou4 and Weishi Tan4,5,6 \textcopyright

1 School of Science, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
2 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an 223001, People’s Republic of China
3 College of Information and Electronic Engineering, Hunan City University, Yiyang 413002, People’s Republic of China
4 School of Materials Science and Engineering, Nanchang University, Nanchang, 330031, People’s Republic of China

E-mail: tanweishi@njust.edu.cn

Keywords: magnetism, composite defects, ion implantation

Abstract

N-implanted MgO single crystals were prepared and their magnetic properties were studied. High Resolution x-ray diffraction, photoluminescence, and x-ray photoelectron spectroscopy measurements confirmed that both intrinsic defects (Mg vacancies, oxygen vacancies) and extrinsic defects (N-related defects) were presented in the implanted samples. Ferromagnetism was detected in the samples. The saturation magnetization (M_s) of the samples increases with the concentrations of Mg vacancies and N-related defects. We conclude that the enhanced M_s should be ascribed to the synergistic effects of intrinsic and extrinsic defects. The magnetic properties of various composite defects were also studied by first principle calculations. The results suggest that the ferromagnetism is mainly originated from the configurations of V_{Mg} (Mg vacancy) + N_O (N substituting for O).

1. Introduction

Since Datta et al1 proposed the theoretical simulation of a spin field-effect-transistor, semiconductor-based spintronics has undergone decades of development. The essential factor for achieving spintronics devices is to manipulate the degrees of freedom of spin and charge synchronously in one material [2]. That means the materials can contain both ferromagnetic and semiconducting characteristic. And researchers have acquired many novel achievements, such as spin field-effect transistors fabricated from the CdSe colloidal nanowires [3], electric-field controlled FM in MnGe quantum dots [4], nonvolatile memory devices [5] and so on. The major challenge for semiconductor-based spintronics applications is to obtain stable ferromagnetism above room temperature (RTFM). A usual way to accomplish this is to dope transition metal (TM) elements in semiconductors (DMSs). Actually, numerous studies have shown that DMSs can preserve ferromagnetism at room temperature [6–8]. However, TM nanoparticles are inevitably present in the DMSs [9]. These nanoparticles may lead to non-uniform spin density, which will be an obstacle to realize spintronic applications [10]. One approach to solve this problem is doping nonmagnetic elements instead of TM elements to achieve ferromagnetism. Since Pan et al11, experimentally observed RTFM in C-doped ZnO, RTFM has been detected in a wide range of oxides, including C-doped SnO$_2$, N-implanted TiO$_2$, and N-implanted MgO et al12–14.

Due to its special physical and chemical properties, MgO has been recognized as an ideal material for spintronic devices [15]. There have been many theoretical and experimental studies regarding RTFM in MgO [16–19]. However, the mechanisms contributing to the ferromagnetism are still under debate. Li et al16 observed room temperature ferromagnetism in MgO thin film prepared by pulsed laser deposition, and the magnetization decreased with the increasing substrate temperature. XPS and PL results showed that the induced ferromagnetism was correlated with Mg vacancies. Nevertheless, Mishra et al17 reported that oxygen vacancy enhanced the RTFM in Al-doped MgO, F^- and F^{2-} (color center) mediated ferromagnetism had also been reported in MgO nanosheets [18]. Apart from the intrinsic defects, a few groups suggested that the doping elements were a driving factor for magnetic
To study the magnetic properties of N-implanted MgO, the magnetic
3.1. Magnetic measurement
3. Result and discussion
resultant magnetic order results from the synergistic effects of all defect types in the material. Thus, it is essential to
investigate the magnetic properties of composite defects in MgO.

Ion implantation is a non-equilibrium and reproducible method to introduce defects. The concentration
and depth of defects can be controlled, therefore, this process is widely used in semiconductor technology.
Implanting nonmagnetic elements such as C and N is a reliable strategy to introduce ferromagnetism in oxides,
which has been verified by many groups [23, 24]. In this paper, we implanted N ions into MgO single crystal to
obtain room temperature ferromagnetism. The defect types including V_{Mg}, V_{O}, N_{O}, and N_{int} were investigated
through various measurements. First-principles calculation revealed that the ferromagnetism is correlated to the
composite defects.

2. Experimental details

To minimize the nanoscale effect, MgO single crystals with a thickness of 0.5 mm were prepared through arc
melting method. The samples were obtained commercially from Hefei Kejing Materials Technology Co., Ltd.
The sample was cut into a size of 10 × 5 mm². Implantation experiment was carried out at the Institute of
Semiconductors, CAS, Beijing. N ions were accelerated to 70 keV and injected into MgO samples with the dose
of 3 × 10^{16} \text{ cm}^{-2} and 2 × 10^{17} \text{ cm}^{-2}. The implants were performed at an angle 7° off normal to minimize the
channeling effect. The base pressure of the implantation processes was maintained at about 2 × 10^{-5} \text{ Pa} at room
temperature. The microstructures of samples were characterized by High Resolution x-ray Diffraction
(HRXRD) in Beijing Synchronous Radiation Facility (BSRF). Qualitative analysis of total elements experiment was
conducted by x-ray electron spectroscopy (XPS, PHI Quantera) with monochromatic Al Kα, x-ray radiation. The
magnetization measurements were carried out by superconducting quantum interference device (SQUID,
Quantum Design) at room temperature. The photoluminescence (PL) emission spectra were carried out by
using the 235 nm laser diode (LD) as an excitation source with a spectrofluorometer (F55, Edinburgh
Instruments, UK).

3. Result and discussion

3.1. Magnetic measurement

To study the magnetic properties of N-implanted MgO, the magnetic field dependence of magnetization (M-H)
of pristine and as-implanted samples was measured at room temperature. The M-H curves are shown in figure 1.
All of the curves are corrected by subtracting the diamagnetic background. As we can see, pristine MgO shows
typical diamagnetic properties. Nevertheless, N ion implantation leads to a significant change in magnetic
behavior. For the sample with a dose of 3 × 10^{16} \text{ ions cm}^{-2}, both ferromagnetic and paramagnetic behaviors
were observed. The M-H curve shows distinct ferromagnetic properties by further increasing the N ion
implantation dose to 2 × 10^{17} \text{ cm}^{-2}. The saturation magnetization (Ms) is approximately 1.1 × 10^{-4} \text{ emu g}^{-1},
nearly 2.5 times as that of 3 × 10^{16} \text{ cm}^{-2} implanted MgO. This magnetic measurement result definitely
demonstrates that N-implantation plays a crucial role in introducing ferromagnetism in MgO single crystal. A
high implantation dose can enhance the Ms values, which means the total magnetic moments increase with the
increasing implantation dose. It is clear that N-implantation produces a high concentration of defects, and
researchers have reached a consensus that the defect induced ferromagnetism has a positive correlation with the
defect concentration in the material [25]. However, in the process of N-implantation, besides the implanted N
ions and N-related defects, the collision ions can also create different kinds of defects. The effects of other types
of defects on magnetic properties should also be considered.

3.2. Structural properties

To evaluate the N-implanted effect on the crystal structure, the samples were detected by HRXRD. As shown in
figure 2, both pristine and as-implanted samples presented highly (200) oriented single crystal structure. No
peak corresponding to extrinsic impurities or secondary phase was observed. The inset shows that with the
increasing implantation dose, the diffraction intensity decreases obviously. This indicates that N implantation
introduces numerous lattice defects. Meanwhile, the shift of (220) peaks toward the lower angle is also observed
in the as-implanted samples, implying that the introduced defects lead to a lattice expansion. The calculation results indicated that N substituted O (NO) can expand the lattice [26], and the interstitial N (Nint) can cause greater lattice expansion than substitute defects do. The peak shift value from pristine to 10^{16} cm$^{-2}$ is 0.139°. With increasing the implantation dose from 10^{16} to 10^{17} cm$^{-2}$, the shift value decreases to 0.086°. This may prove that the incident N ions prefer to occupy the VO site at high defect concentrations.

3.3. PL measurement

However, HRXRD results can only reflect the average effect of the crystal field. PL is a reliable tool to investigate the defect information in material, and there have a considerable amount of researches which can be used as a reference. Figure 3 shows the PL spectra of pristine and as-implanted samples under the excitation wavelength of 255 nm. The emission peaks located at 400–500 nm are primarily associated with VO (F+, F, or F-centers). An exhibit violet peak at 409 nm is attributed to the F$^+$ centers [27]. The peaks centered at 433 and 455 nm are associated with F$^+$ and F centers [18, 28]. Obviously, the intensity of all these VO-related peaks increases after N-implantation, which indicates that the implantation introduces higher Vo concentration. However, with the implantation dose increasing to 2×10^{17}, the VO-related emission intensity tends to decrease. This phenomenon may be partially due to the suppressed PL efficiency by the increasing implantation-induced defects [19]. More importantly, since the emission peaks located at 400–500 nm are primarily associated with VO (F+, F or
F-centers), the decrease of intensity can be attributed to the implanted N ions or the interstitial defects substituting the Vo site, resulting in the reduction of Vo-related luminescence centers. Besides, the peak at 373 nm has been attributed to Mg vacancy defects [16]. As is displayed, the peak intensity continuously increases with the increasing implantation dose, suggesting that the concentration of Mg vacancy increases with implantation dose.

3.4. XPS analysis
To further investigate the chemical structure and composition of the samples before and after N-implanted, x-ray photoelectron spectroscopy (XPS) measurement for both pristine and implanted samples was carried out. Figures 4(a)–(c) shows the XPS spectra of N 1 s peak of pristine, 3×10^{16} N-implanted, and 2×10^{17} N-implanted MgO samples, respectively. Before N-implantation, the N 1 s spectrum reveals a single symmetrical peak at about 398 eV, which can be ascribed to the molecular nitrogen (α-N$_2$) [29]. After N-implantation, the N 1 s peak appears to be broadened and asymmetric, indicating the coexistence of multiple nitrogen valences. As displayed in figures 4(b)–(c), both the N 1 s peak of N-implanted samples can be fitted into two symmetric peaks: N_a located at 398.0 ± 0.1 eV and N_b located at 398.8 ± 0.1 eV. The N_a can be obviously assigned to α-N$_2$ as the peak in pure MgO. Since XPS is sensitive to the surrounding chemical environment, the N_b is difficult to be assigned unambiguously. However, note that the N_b peak occurs after N-implantation, and the N_b peak intensity contribution to the total increases significantly with the increasing of N-implantation dose. Hence, referring to literature [30], we conclude that N_b peak can be ascribed to N-related vacancies, such as NO and N$_{int}$. Noticeably, the binding energy of N_b is higher than N_a, indicating the N-Mg bond barely exists, which means defect pairs such as Mg vacancy and N substituting O coexist in the N-implanted samples. Figures 4(e)–(f) shows the O 1 s XPS spectra of pristine and N-implanted MgO. The O 1 s peak can be fitted into two symmetrical peaks: O_a at about 530.3 eV and O_b at about 531.5 eV. The O_a is ascribed to oxygen bound to Mg in MgO [17]. The O_b is associated with oxygen vacancy [31]. Thus, the peak area of O_b is positively correlated with the concentration of oxygen vacancies. As can be compared in figure 4, the O_b relative area is obviously enlarged after 10^{16} ions cm$^{-2}$ N-implantation, but with the implantation dose increasing to 10^{17} ions cm$^{-2}$, the O_b relative area slightly decreases. This indicates that the relative content of oxygen vacancy is declining from 10^{16} N-implanted sample to 10^{17} N-implanted sample, which agree well with the PL results.

3.5. First principle calculations
The experimental results confirm the coexistence of VMg, VO, and N-related defects. To further investigate the correlation between the coexistence vacancies and magnetization, density functional theory was applied on the N-MgO system. The Perdew-Burke-Ernzerhof exchange-correlation function is used to produce the density of states. We used a $2 \times 2 \times 2$ supercell containing 64 atoms to study various vacancies. Both lattice parameters and atomic positions were relaxed until the force on each atom was less than 0.01eV. The electronic structure and magnetic properties were calculated with a $9 \times 9 \times 9$ mesh.
The ion implantation process is non-equilibrium. A series of cascade collisions can directly generate various defects, including VMg, VO, NO, Nint, and anti-site defects. However, the anti-site defects may occur in negligible amounts due to their high formation energy \([32]\). Firstly, we calculated the magnetic moment induced by single point defects. As displayed in Table 1, both VMg and N-related defects can give rise to magnetic moment. Although the experimental results suggest that the concentration of VMg and N-related defects have the same increase tendency with the Ms values, but this is not enough to explain the generation and enhancement of ferromagnetism. In a real crystal field, the direction of spin induced by single defect is random. The

![Figure 4. XPS spectra of N 1 s and O 1 s for (a), (d) the pristine, (b), (e) \(3 \times 10^{16}\) ions cm\(^{-2}\), and (c), (f) \(2 \times 10^{16}\) ions cm\(^{-2}\).](image)

System	VMg	VO	NO	Nint	VMg-VO	VMg-NO	VMg-Nint	VO-NO	VO-Nint
\(m(\mu_B)\)	1.83	0.00	0.98	3.00	3.00	0.98	0.99	2.99	
ferromagnetism originates in the exchange-correlation of these spins, thus it is essential to explore the interaction of different defect types.

Based on the above-mentioned experimental results, we considered the following configurations: VO–NO, VO–Nint, VMg–NO, VMg–Nint. Figure 5 shows the Density of State (DOS). All of the four configurations can contribute to magnetic moment in the N-MgO system. The asymmetry of spin polarized density mainly comes from the O 2p and N 2p orbitals, indicating the introduction of N ions changes the local electronic structure. For the VO–N0 and VO–Nint configurations, the total induced magnetic moment is 0.99 μ_B and 2.99 μ_B, with little change than the single N0 and Nint defect. This is because VO can not induce any local magnetization, thus has no correlation interaction with the magnetic moment induced by N-related defects. For the VMg–N0, VMg–Nint configurations, as is shown in figures 5(c)–(d), the EF passes through the spin states, presents a half-metallic characteristic. Furthermore, the calculation results indicate that there is an apparent magnetic coupling between VMg and N-related defects. In the case of VMg+NO configuration, the total magnetic moment increases significantly compared to single VMg and NO, which means that the magnetic moment induced by VMg and NO favors parallel spin alignment. While for VMg+Nint, the induced magnetic moment by single VMg and Nint is suppressed by each other, indicating that the exchange interaction favors the unpaired electrons with anti-parallel spins. These results demonstrate that the VMg+NO configuration can contribute to both magnetic moment values and ferromagnetism, while the VMg+Nint configuration may only contribute to the magnetic moment values. Previous literature reported that Nint was not stable in MgO system \[33\]. We also calculated the total energy of VMg–NO (−367.55 eV), VMg–V0–Nint (−365.22 eV) and VO–N0 (−366.56 eV), VM0–V0–Nint (−356.06 eV). The results suggest that in the presence of VMg–V0 or VO–V0–Nint prefers to occupy the VO site. Accordingly, we speculate that the configuration of VMg–N0 and VO–N0 are most likely exist in N-implanted MgO. Obviously, comparing with VO–N0, the magnetic coupling in VMg–N0 can make more contribution to the magnetization. This is inconsistent with our experimental results.

According to the experimental and calculation results, the induced ferromagnetism in N-implanted MgO can be explained by Heisenberg exchange model. Ion implantation introduces large amounts of intrinsic and extrinsic defects, generating unpaired electrons that can hold magnetic moment. There is no exchange correlation between unpaired electrons at low defect concentration, therefore the material is paramagnetic. With the increasing implantation dose, more defects are introduced, thus the Ms values enhance. Meanwhile, the defects exist in the form of composite defects. Take VMg+NO for example, the exchange interaction favors the unpaired electrons with parallel spins, resulting local magnetic ordering. In an external magnetic field, N-implanted MgO shows ferromagnetic characteristics.

4. Conclusion

In summary, ferromagnetism was observed in N-implanted MgO single crystal at room temperature. The HRXRD, PL, and XPS results showed the coexistence of VMg, VO, and N-related defects. The experimental results...
also indicated that the concentration of VMg and N-related defects had the same increasing tendency with the M value. The first-principle calculations reveal that the configuration of VMg+N0 play a leading role in mediating the ferromagnetism in MgO. This work provides a new perspective to understand the effect of composite defects on the magnetic properties.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Project No.: U1332106)

ORCID iDs

Weishi Tan https://orcid.org/0000-0002-8114-9266

References

[1] Datta S and Das B 1990 Electronic analog of the electro-optic modulator Applied Physics Letter 56 665–7
[2] Li Z, Du A J, Sun Q, Aliada M, Zhu Z H and Lu G Q M 2012 Field-effect transistors fabricated from diluted magnetic semiconductor colloidal nanowires Nanoscale 4 1263–6
[3] Lo S S, Devadas M S, Major T A and Hartland G V 2013 Optical detection of single nano-objects by transient absorption microscopy Analyst 138 25–31
[4] Ogale S B 2010 Dilute doping, defects, and ferromagnetism in metal oxide systems Adv. Mater. 22 3125–55
[5] Awschalom D D, Basset L C, Dzurak A S, Hu E L and Petta J R 2013 Quantum spintronics: engineering and manipulating atom-like spins in semiconductors Science 339 1174–9
[6] Wang Q, Wu W, Zhang W, Zhang J, Zhu G, Wang X and Cong R 2019 Tunable optical and magnetic properties of Tm-doped AlN nanostructures J. Magn. Magn. Mater. 487 165395
[7] Wang Y, Tseng L T, Murmu P P, Bao N, Kennedy J, Jonesc M, Ding J, Li S and Yi J 2017 Defects engineering induced room temperature ferromagnetism in transition metal doped MgO Mater. Des. 121 77–84
[8] Patel S K and Gajbhiye N S 2013 Oxygen deficiency induced ferromagnetism in Cr-doped TiO2 nanorods J. Magn. Magn. Mater. 330 21–4
[9] Andronenko S I and Misra S K 2015 A review of EPR studies on magnetization of nanoparticles of dilute magnetic semiconductors doped by transition-metal ions Appl. Magn. Reson. 46 693–707
[10] Davis B A, Chakraborty B, Kalanikikal N and Ramaniah L M 2020 Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: a DFT study J. Magn. Magn. Mater. 502 166503
[11] Pan H, Yi J, Shen L, Wu R, Yang J, Lin J, Feng Y, Ding J, Van L and Yin J 2007 Room-temperature ferromagnetism in carbon-doped ZnO Phys. Rev. Lett. 99 127201
[12] Hoa Hong N, Song J-H, Raghavender A, Asaeda T and Kurisu M 2011 Ferromagnetism in C-doped SnO2 thin films Appl. Phys. Lett. 99 052505
[13] Luiliet H, Chakrabarti S, Sarkar A, Dechoudhury S, Bhowmick D, Naik V and Sanjal D 2018 Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50KeV nitrogen implanted rutile TiO2 Mater. Res. Express 5 025610
[14] Chun-Ming L, Hai-Quan G, Xia X, Yan Z, Yong J, Meng C and Xiao-Tao G 2011 Optical and magnetic properties of nitrogen ion implanted MgO single crystal Chin. Phys. B 20 047505
[15] Singh J P and Chae K H 2017 d' ferromagnetism of magnesium oxide Condensed Matter 2 36
[16] Li J, Jiang Y, Li Y, Yang D, Xu Y and Yan M 2013 Origin of room temperature ferromagnetism in MgO films Appl. Phys. Lett. 102 072406
[17] Mishra D, Mandal B P, Mukherjee R, Naik R, Lawes G and Nadgorny B 2013 Oxygen vacancy enhanced room temperature magnetism in Al-doped MgO nanoparticles Appl. Phys. Lett. 102 182404
[18] Kumar A, Kumar J and Priya S 2012 Defect and adsorbate induced ferromagnetic spin-order in magnesium oxide nanocrystals Appl. Phys. Lett. 100 192404
[19] Azzara S, El-Hilo M, Narayanan S, Vijaya J J, Mamouni N, Benyousef A, El Kenza A and Bououdina M 2014 Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles Mater. Chem. Phys. 143 1500–7
[20] Pathak N, Gupta S K, Prajapati C, Sharma S, Ghosh P, Kanrar B, Pujari D and Kadam R 2017 Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states Phys. Chem. Chem. Phys. 19 11975–89
[21] Rani N, Chahal S, Kumar P, Kumar A, Shukla R and Singh S 2020 MgO nanostructures at different annealing temperatures for d0 ferromagnetism Vacuum 179 109539
[22] Zhang Y F, Feng M, Shao B, Yu Y, Liu H and Zuo X 2014 Ab initio calculations on magnetism induced by composite defects in magnesium oxide J. Appl. Phys. 115 17A926
[23] Kumar P, Malik K H, Ghosh A, Thangavel R and Asokan K 2018 An insight to origin of ferromagnetism in ZnO and N implanted ZnO thin films: experimental and DFT approach J. Alloys Compd. 768 323–8
[24] Kumar P, Chand F and Asokan K 2017 Enhancement of ferromagnetism in C ion implanted CeO2 thin films Mater. Res. Express 4 036403
[25] Chakraborty B, Nandi P K, Kawazoe Y and Ramaniah L M 2018 Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: a density functional theory study Physical Review B 97 184411
[26] Liu G, Ji S, Yin L, Fei G and Ye C 2010 An investigation of the electronic properties of MgO doped with group III, IV, and V elements: trends with varying dopant atomic number J. Phys. Condens. Matter 22 046402
[27] Mageshwari K, Malis S, Sathyamoorthy R and Patil P S 2013 Template-free synthesis of MgO nanoparticles for effective photocatalytic applications Powder Technol. 249 456–62
[28] Kumar A, Thota S, Varma S and Kumar J 2011 Sol–gel synthesis of highly luminescent magnesium oxide nanocrystallites J. Lumin. 131 640–8
[29] Shinn N and Tsang K L 1991 Strain-induced surface reactivity: low temperature Cr/W (110) nitridation Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9 1558–62
[30] Tabet N, Faiz M and Al-Oteibi A 2008 XPS study of nitrogen-implanted ZnO thin films obtained by DC-magnetron reactive plasma J. Electron Spectrosc. Relat. Phenom. 163 15–8
[31] Yang G, Gao D, Zhang J, Zhang J, Shi Z and Xue D 2011 Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles The Journal of Physical Chemistry C 115 16814–8
[32] Araujo C M, Kapilashrami M, Jun X, Jayakumar O D, Nagar S, Wu Y, Århammar C, Johansson B, Belova L and Ahuja R 2010 Room temperature ferromagnetism in pristine MgO thin films Appl. Phys. Lett. 96 232505
[33] Pesci M, Gallino F, Di Valentin C and Pacchioni G 2010 Nature of defect states in nitrogen-doped MgO The Journal of Physical Chemistry C 114 1350–6