RESERCH ARTICLE

Out of the blue: Phototropins of the leaf vascular bundle sheath mediate the regulation of leaf hydraulic conductance by blue light

Yael Grunwald*, Sanbon Chaka Gosa*, Tanmayee Torne Srivastava, Nava Moran and Menachem Moshelion#

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel

*Both authors contributed equally to this work.
#Correspondence: menachem.moshelion@mail.huji.ac.il

Short title: Blue-light regulation of leaf hydraulics

One-Sentence summary: Blue light regulates the leaf hydraulic conductance via the bundle-sheath cells' blue light PHOT receptors which, via an autonomous signaling pathway, activate the BSCs' AHA2 H+-pump.

ABSTRACT

The Arabidopsis leaf veins bundle sheath cells (BSCs) – a selective barrier to water and solutes entering the mesophyll – increase the leaf radial hydraulic conductance (K_leaf) by acidifying the xylem sap by their plasma membrane H+-ATPase, AHA2. Based on this and on the BSCs’ expression of PHOT1 and PHOT2, and the known blue-light (BL)-induced K_leaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs’ phots activates its H+-ATPase, which, consequently, upregulates K_leaf. Indeed, under BL, the K_leaf of the knockout mutant lines phot1-5, phot2-1, phot1-5phot2-1, and aha2-4 was lower than that of the WT. BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced K_leaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such K_leaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light – ineffective in the phot1-5 mutant – acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts’ water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.
Introduction

Light, the energy source for photosynthesis, also regulates plant growth and development (Kronenberg and Kendrick, 1986) as well as physiological traits such as stomatal conductance (g_s; Zeiger and Helper, 1977; Karlsson, 1986; Talbott et al., 2003) and leaf hydraulic conductance (K_leaf; Voicu et al., 2008; Ben Baaziz et al., 2012; Aasamaa and Söber, 2012; Prado and Maurel, 2013). One of the most conserved and well-studied light-sensing mechanisms is the sensing of blue light (BL, 390–550 nm) that causes stomata to open (Grondin et al., 2015). In this signal transduction pathway in the guard cells (GCs), BL is perceived by the protein kinases phot1 and phot2 (Kinoshita et al., 2001). Their immediate phosphorylation substrate is BLUS1 (Blue Light Signaling1, At4g14480; Takemiya et al., 2013), which is a part of the earliest stomata-opening BL signaling complex with phot. Another part of this complex is the Raf-like kinase, BHP (BL-dependent H⁺-ATPase phosphorylation, At4g18950; Hayashi et al., 2017; reviewed by Inoue and Kinoshita, 2017). While none of these directly phosphorylates the guard-cell H⁺-ATPase (Hayashi et al., 2017), one of the other Raf-like kinases downstream of phot could be the target of tyrphostin 9, a kinase inhibitor that has been shown to inhibit the BL-induced phosphorylation of the penultimate threonine of the plasma membrane H⁺-ATPase (AHA) in Arabidopsis GCs (ibid). This BL-induced phosphorylation activates the AHA (Kinoshita and Shimazaki, 1999; Svennelid et al., 1999), which, in turn, hyperpolarizes the GCs and acidifies their surrounding apoplast (Kinoshita and Shimazaki, 1999; Ueno et al., 2005; Den Os et al., 2007; Elmore and Coaker, 2011, reviewed by Inoue and Kinoshita, 2017). Conversely, at night, in the dark, the guard cells’ H⁺-ATPases are deactivated, the GCs are depolarized, and their apoplast becomes alkaline (Kinoshita et al., 2001; Kinoshita and Shimazaki, 1999). These pH and membrane potential changes cause ion and water fluxes across the GCs membranes causing their osmotic swelling during the day and shrinking at night, which underlies stomata opening and closure (Assmann, 1993; Roelfsema and Hedrich, 2005; Shimazaki et al., 2007).

Both BL and white light (WL) have been shown to increase the hydraulic conductance (K_leaf) of the entire leaf in several plant species [(Voicu et al., 2008 (bur oak, Quercus macrocarpa); Voicu et al., 2009; Sellin et al., 2011 (silver birch, Betula pendula Roth); Aasamaa and Sber, 2012 (deciduous trees); Ben Baaziz et al., 2012 (walnut, Juglans regia L.)]. Interestingly, K_leaf responds more quickly to light than g_s does (Guyot...
et al., 2012). However, the molecular mechanism by which K_{leaf} increases in response to light quality is not yet fully understood.

In the past decade, it has been established that bundle sheath cells (BSCs), which form a parenchymal layer that tightly enwraps the entire leaf vasculature, can act as a dynamic and selective xylem-mesophyll barrier to water and ions, and participate in K_{leaf} regulation (Shapira et al., 2009; Shatil-Cohen and Moshelion, 2012). Moreover, we recently discovered that the BSCs’ H$^+$-ATPase proton pump, AHA2, participates in regulating K_{leaf} via changes in the xylem pH and that the positive correlation observed between AHA2-driven xylem acidification and K_{leaf} is due to an increase in the osmotic water permeability of BSCs’ membranes (Grunwald et al., 2021). AHA2 is particularly abundant in BSCs (present at a >3-fold higher level than that seen in neighboring mesophyll cells; Wigoda et al., 2017) which explains how such acidification is possible. In addition, the same BSC transcriptome analysis (ibid.) revealed substantial expression of the BL receptors phot1 and phot2 in BSCs, as well as substantial expression of the kinases BHP and BLUS1. These findings led us to hypothesize that the vascular BSCs possess a BL signal transduction pathway that is similar to the one that opens stomata and that plays a role in the regulation of K_{leaf}. In confirmation of this hypothesis, we describe here a few of the physiological and molecular mechanisms underlying the blue light-dependent regulation of K_{leaf} by BSCs.

Materials and Methods

Plant material

Plant genotypes. We used WT (wild type) *Arabidopsis thaliana* plants ecotype Colombia, Col-0 (aka Col), the T-DNA insertion AHA2 mutants *aha2*-4 (SALK_ 082786) (Col) and *aha2*-4 complemented with SCR: AHA2 (line 56) (Col), and SCR:GFP (Col) as described previously (Grunwald et al., 2021). In addition, we used WT Arabidopsis (Col) with the glabrous mutation (WT Col-gl), *phot1*-5 (*nph1*-5) (Col-gl), *phot 2*-1 (*npl1*-1 or *cav1*-1) (Col-gl) and the double mutant *phot1*-5*phot2*-1 (*nph1*-5 *npl1*-1) (Col-gl) (Kagawa et al., 2001), which were kindly provided by the Ken-Ichiro Shimazaki lab (Tokyo, Japan). The *blus1*-4 (Col) seed was a kind gift from the Takemiya lab (Yamaguchi, Japan).

Construction of SCR:amiR-PHOT1 plants. The premiR-PHOT1 or PHOT2 and synthetic genes were synthesized by Hylabs (Rehovot, Israel), based on a premiR164 backbone (Alvarez et al., 2006). We used the Web-based MicroRNA Designer (WMD,
http://wmd3.weigelworld.org) to produce a premiRNA gene MIR319a as described in WMD. After sequence verification, the premiR-PHOT1 or premiR-PHOT2 was cloned into the pDONRTM 221 and the SCR promoter into pDONRP4P1r (Invitrogen) vectors which are Gateway® compatible by BP reactions, and later cloned into the pB7M24GW (Invitrogen) two-fragment binary vector using an LR reaction, according to the manufacturer’s instructions. Each binary vector was transformed into Agrobacterium tumefaciens by electroporation and transformed into WT Col-0 using the floral-dip method (Clough and Bent, 1998). Transformants were selected based on their resistance to BASTA herbicide (glufosinate ammonium, Sigma cat # 45520), grown on plates with MS (Murashige and Skoog, Duchefa cat# M222.0050) basal medium + 1% sucrose and 20 µg/ml BASTA. DNA insertion was verified in selected lines by PCR targeting the junction of the premiR-gene and the 35S terminator with the forward primer located about 1000 bp from the 3’ end of premiR-gene and reverse primer on the 35S terminator (see primer list in Supplemental Table S1). PCR fragments were then sequenced and verified.

Construction of SCR: PHOT1 plants. Binary vectors were constructed with the PHOT1 gene as described above and then transformed into phot1-5 (Col-gl1) plants. Successful transformation was verified by PCR.

Plant growth conditions. Plants were grown in 250 ml pots, 2-3 plants per pot filled with soil (Klasmann686, Klasmann-Deilmann, Germany) + 4g/L Osmocote® 6M in a growth chamber kept at 22°C and 70% relative humidity, with an 8-h light (9:00 am–5:00 pm) /16-h dark photoperiod. During the day, the illumination, humidity and vapor pressure deficit (VPD) changed in a pattern resembling natural conditions, as in (Negin and Moshelion, 2017). The illumination intensity provided by LED lights strips [EnerLED 24 V-5630, 24 W/m, 3000 K (50%) /6000 K (50%)] reached 150–200 µmol m⁻² sec⁻¹ light at the plant level at midday. The plants were irrigated twice a week.

Preparation of detached leaves for gas-exchange measurements. Fully expanded leaves from 7- to 8-week-old plants were excised at the petiole base using a wet, sharp blade under a drop of water. Petioles were immediately submerged in 0.5-ml Eppendorf tubes with artificial xylem solution [AXS; 3 mM KNO₃, 1 mM Ca(NO₃)₂, 1 mM MgSO₄, 3 mM CaCl₂, 0.25 mM NaH₂PO₄, 90 µM EDFS (Sigma)]. The leaves were excised, shortly before the “lights off” transition (around 5:00 pm) on the evening preceding the measurements and placed in gas-sealed, transparent 25 cm × 20 cm × 15 cm plastic boxes with water-soaked tissue paper on the bottom to provide ~90% humidity. The transparent boxes were then
inserted into a larger light-proof plastic box overnight and kept in total darkness until the
start of light treatments the next morning.

Light treatments of detached leaves

All gas-exchange experiments were conducted in a dark room (<1 µmol m⁻² s⁻¹) at a constant
temperature of 22°C, between 10:00 am and 1:00 pm. The excised leaves were taken out of
the light-sealed box and placed in one of two custom-made light chambers. The total
illumination intensity in both light chambers was set to roughly 220 µmol m⁻² s⁻¹. In the
red-light chamber, the leaves were illuminated only with red light (RL, 660 nm) and in the
RL+BL chamber they were illuminated with approximately 90% RL and 10% BL (450 nm).
Leaves were exposed to either RL or RL+BL for 15 min at an ambient VPD of 1.3–1.5 kPa.
A fan circulated the air in each light chamber for uniform and constant temperature and
VPD. Next, leaves were transferred to a LI-COR 6400XT for an additional 2–3 min, under
the same illumination conditions with VPD of about 1.3kPa, until stabilization of the gas-
exchange measurements, after which a measurement was recorded. D-LED lighting with
adjustable current source (DR-SD6/12) was used as light sources (http://www.d-led.net/).
Light intensity was verified daily using a LI-250A light meter with a LI-190SA quantum
sensor (LI-COR, Lincoln, NE, USA).

Determination of gas exchange, E and gs, and hydraulic conductance, K_leaf

Following the light treatments, the leaves were immediately placed in a LI-COR 6400XT
for measurements of stomatal conductance (gs) and transpiration (E) similar to Grunwald
et al. (2021), with the following changes: All of the experiments were conducted in the dark
at 22°C and the illumination in the LI-COR cuvette was adjusted to match the preceding
light treatments. Then, the water potential (Ψ_leaf) was determined in a pressure chamber
(ARIMAD-3000; MRC Israel) and K_leaf was calculated (as in Grunwald et al., 2021) as:

\[
Eq. 1: \quad K_{\text{leaf}} = -E / (\Psi_{\text{leaf}} - \Psi_{\text{AXS}}) = -E / \Psi_{\text{leaf}}
\]

where AXS denotes artificial xylem sap (solution).

Additionally, gs was measured at the same time as above using LI-COR 6400XT
on intact leaves of whole plants left under the growth-room illumination for 2–4 h after the
lights were turned on. Illumination settings in the instrument’s cuvette were set to the same conditions as in the growth room.

Inhibition of light transduction in detached leaves

Tyrphostin 9 (ENZO, cat. # BML-EI21, 100 mM in DMSO (Sigma, cat # W387520), kept in aliquots at -18 °C) was added to the AXS to a final concentration of 10 μM. AXS with DMSO at a concentration of 100 μl/L (vol./vol.) served as a control in this set of experiments. Excised leaves were kept overnight until the measurements as described above. For surface application, 0.05% Tween 20 (J.T. Baker cat# X251-07) was added to the tyrphostin 9 and control solutions and sprayed prior to overnight perfusion with unmodified AXS. Boxes holding the sprayed leaves did not contain the damp tissue paper, and leaves were patted dry prior to placing them in the light chamber to ensure the leaf surface was dry when the leaves were placed in the LI-COR 6400xt cuvettes.

Determination of xylem sap pH in detached leaves

Leaf preparation for imaging. On the eve of the experiment, leaves from 6- to 7-week-old plants, approximately 2.5 cm long and 1 cm wide, were excised with a sharp blade and perfused (as described) with AXS containing 100 μM of the dual-excitation fluorescent pH probe, FITC-D [fluorescein isothiocyanate conjugated to 10 kD dextran, (Sigma cat. # FD10S), added from a 10 mM stock in double-distilled water]. The excised leaves were then placed in the “double box” setup (i.e., a sealed plastic box inside a dark box) and kept in the dark until measurements the next morning.

Dark-treated leaves: Leaves were taken out of the dark boxes and immediately prepared for vein imaging on a microscope slide under low light conditions (<5 μmol m⁻² sec⁻¹).

Light-treated leaves: Leaves were taken out of the dark boxes and placed in the growth chamber inside transparent gas sealed boxes (boxes as in Kleaf) for 30 min of growth room white-light illumination (see above under “Plant growth conditions”) and were subsequently imaged.

The leaves were imaged using an inverted microscope (Olympus-IX8, as detailed by Grunwald et al., 2021). Image capture and image analysis of the intra-xylem pH were as already described (ibid.).
Determination of the BSCs’ membrane potential (E_M)

Protoplasts preparation. To evaluate the protoplast membrane potential (E_M), we used a fluorescent (E_M-sensitive dual-excitation ratiometric dye, Di-8-ANEPPS (Pucihar et al., 2009), and an inverted epifluorescence microscope (Eclipse Ti-S, Nikon, Tokyo, Japan) coupled to an IXON Ultra 888 camera (Andor, UK). A Nikon 40X objective (Plan Fluor 40x/ 0.75, OFN25 DIC M/N2) was used for protoplast viewing and imaging. The experiments were performed between 10 am and 4 pm. BSC protoplasts were isolated as described (Shatil-Cohen et al., 2014) from 6- to 8-week-old SCR:GFP (Col) plants and kept in an Eppendorf vial at room temperature (22 ± 2°C) in the dark until use. A drop with a few protoplasts was added to a bath solution in an experimental chamber, containing 30 μM di-8-ANEPPS and 1% pluronic acid, with or without 10 µM tyrphostin 9 (see “Solutions” below), and protoplasts were allowed to settle for 10 min on a glass coverslip bottom. In separate control assays, we verified the viability of the tyrphostin 9-treated cells by observing that they remained capable of de-esterifying (hydrolyzing) the accumulated SNARF1-AM (see below) and retaining the fluorescent form of the dye, SNARF1, in the cytoplasm.

GFP-based selection. An individual, perfectly round BSC (25–32.5 μm diameter) was selected for imaging based on its GFP fluorescence (excitation of 490/15 nm) delivered by a xenon lamp monochromator, Polychrome II (Till Photonics, Munich, Germany), under the control of IW6.1 (Imaging Workbench 6.1) software (Indec Biosystems, Santa Clara, CA), and the emitted fluorescence was filtered via a 515 nm dichroic mirror and a 525/50 nm band-pass barrier filter.

Size-based selection. In a single set of experiments, we used a phot1-5 (Col-gl) mutant and WT (Col-gl) plants that were not labeled with GFP. BS protoplasts are about 50% smaller than mesophyll cells and contain about 50% chloroplast of compared to the mesophyll cells (Shatil-Cohen et al., 2011) and are relatively easy to detect under transmitted light. Thus, we based the BSCs selection on rejecting as “non-BSCs” protoplasts outside the above-mentioned size range (25–32.5 mm diameter). In a separately conducted experiment on protoplasts from GFP-labeled WT (Col), such size-based guesses were confirmed by GFP fluorescence in 68 out of 101 cases.

Light treatments and imaging. The selected BSC protoplast in the experimental chamber was exposed to the dark for 10-20 min (control), and a first pair of di-8-ANEPPS fluorescence images was recorded (excitation by a pair of 50 ms pulses, 438 nm then 531
nm, 3 ms apart, was delivered by the Polychrome II; the emitted fluorescence was filtered via a dichroic mirror of 570 nm and 585/20 nm emission band-pass filter; Chroma Technology Corp., Bellows Falls, VT, USA). Subsequently, the protoplast was illuminated for 5-10 min (by a home-made illuminator of crystal clear LEDs from Tal-Mir Electronics, Israel) with either RL (660 nm, 220 µmol m$^{-2}$ s$^{-1}$) or RL + BL (BL: 450 nm, 10–15% of the total intensity of 220 µmol m$^{-2}$ s$^{-1}$) and a second pair of fluorescence images was recorded as above. The images were processed using FIJI (Abràmoff et al., 2004; Schindelin et al., 2012) to yield a pixel-by-pixel fluorescence ratio, as described previously (Wigoda et al., 2017).

Fluorescence ratio calibration. BSC protoplasts incubated in di-8-ANEPPS as above were subjected to 5-s-long voltage pulses in the range of +17 to -223 mV using a patch-clamp pipette in a whole-cell configuration. A pair of images was recorded during the second half of each pulse, at a steady state. The patch-clamp imaging setup was as described in detail by Wigoda et al. (2017), except for the substitution of the abovementioned Eclipse microscope and IXON camera for the original image-acquisition instruments. This calibration confirmed the previously published positive correlation between the di-8-ANEPPS fluorescence ratio and depolarization (Supplemental Figure S1). This definitively positive correlation allows us to draw a clear conclusion about the direction of the experimentally induced change in the E_M, even if the relatively wide data distribution suggests caution in accepting the absolute E_M values.

Solutions. Di-8-ANEPPS (Molecular Probes, Life Technologies, cat. # D3167, Oregon, USA): a 10 mM stock solution in DMSO was stored in 10 µL aliquots at -20°C.

Pluronic F-127 (Molecular Probes, Life Technologies, cat. # P6867, Oregon, USA), a 20% stock solution in DMSO was stored in 100 uL aliquots at room temperature.

Bath solution (in mM): 5 KCl, 1 CaCl$_2$, 4 MgCl$_2$, 10 MES; pH 5.6; osmolality: 435 mOsm, adjusted w/ D-sorbitol.

Patch-clamp pipette solution (in mM):112 K-gluconate, 28 KCl, 2 MgCl$_2$, 10 HEPES, 328 sorbitol, pH 7.5. Osmolarity: 480 mOsm.

Tyrphostin-9 was added to the bath solution from aliquots used in the detached-leaves experiments.
Determination of the BSCs’ cytosolic pH (pH\textsubscript{CYT})

The experiments were performed between 10 am and 4 pm. BSC protoplasts were isolated according to (Shatil-Cohen et al., 2014) from 6- to 8-week-old SCR:GFP (Col) plants and kept in an Eppendorf vial at room temperature (22 ± 2°C) in the dark until use. The protoplasts were treated as described previously (Torne et al., 2021), with the following modifications: a 10 min treatment was applied, either dark or RL+BL or RL (the illumination setting was as described above for E\textsubscript{M} determination), the bath solution was used for flushing out the external SNARF-AM during the last 1 min of the dark/light treatments and the cells were imaged within the subsequent 5 min. Image acquisition and analysis to determine the pH\textsubscript{CYT} values were performed as described previously (Torne et al., 2021).

Solutions. Bath solution for protoplasts’ pH\textsubscript{CYT} determination: as for E\textsubscript{M} determination.

SNARF1-AM: Carboxy seminaphthorhodafluor-1, acetoxymethyl ester, acetate (Molecular Probes, Thermo Fisher cat. #: C-1272); a 50 µg prepackaged portion was dissolved into a 10 mM stock in DMSO, then stored in 10 µL aliquots at -20°C.

Pluronic F-127: as for E\textsubscript{M} determination.

Measuring leaf vein density

Vein density was measured as described previously (Grunwald et al., 2021).

Determination of the osmotic water permeability coefficient (P\textsubscript{f}) under different light regimes

Protoplast isolation and P\textsubscript{f} determination. These experiments were performed on SCR:GFP (Col) protoplasts as described previously (Shatil-Cohen et al., 2014; Grunwald et al., 2021), with minor modifications of equipment and protocol listed in the latter. The P\textsubscript{f} value was extracted from the image analysis of the rate of the videotaped protoplast challenged with a hypotonic solution, and a simultaneous fit of the swelling time course and the time course of the osmotic concentration change in the bath (C\textsubscript{out}) during the hypotonic challenge. The latter was reconstructed from the videotaped rate of change of optical density of a solution of black ink dissolved in the hypotonic solution flushed into the experimental bath in a separate experiment (Moshelion et al., 2004; Shatil-Cohen et al., 2014; Grunwald et al., 2021).
After their isolation, the protoplasts were divided into two: the “light-treated” protoplasts were kept in a vial under the lights of the growth chamber for the duration of the experiment (between 10 AM and 2 PM), the “dark-treated” protoplasts were kept in a vial in a light-proof box. The two types were sampled alternatingly preserving their respective conditions of illumination (using green safe light while sampling in the dark). The sampled “light-treated” protoplasts were placed in the experimental chamber and left to settle down for 10-40 min on the bench under a cool-white-LED illumination, and then, for 5-7 min on the microscope stage under the unfiltered microscope light (6 V / 30 W halogen lamp, PHILIPS 5761) during preparations and the 1 min videotaping of swelling during the osmotic challenge. The sampled “dark-treated” protoplasts were placed, under green “safe light”, in the experimental chamber, left to settle for about 10 min and after the brief location of a GFP-positive BSC they remained in total darkness for 10 min. The 1-min videotaping of the protoplast’s swelling during the hypoosmotic challenge in the dark necessitated an illumination by the microscope lamp filtered (to block out the blue light) via a red plastic band-pass filter (~600-700 nm / 30 μmol m⁻² sec⁻¹).

Determination of the pH of guttation drops

Whole, intact WT (Col) plants were covered overnight with black plastic bags to increase the relative humidity in their atmosphere and to prevent transpiration. The following morning, immediately after the growth room lights went on, guttation droplets were collected from the tips of the leaves. Ten to twenty guttation droplets were collected and pooled to reach a sample volume of approximately 20 μL in a 200-μL vial, which was immediately sealed. pH was measured within 10 min of sample collection using a micro-pH electrode MI-410 (Microelectrode, Inc., New Hampshire, USA).

Graphics and Statistics

The Box plots were drawn using ORIGIN (OriginPro, Version 2022. OriginLab Corporation, Northampton, MA, USA). The statistics was performed using JMP (JMP®Pro, Version 16.0.0 (512257). SAS Institute Inc., Cary, NC, 1989–2021).
RESULTS

phot1 and phot2 blue light receptors are involved in the regulation of K_{leaf}

Following the GC model in which the photoreceptors phot1 and phot2 transduce the blue light (BL) stomatal-opening signal, and encouraged by the substantial expression of the BL receptor genes PHOT1 and PHOT2 in the transcriptome of Arabidopsis BSCs (Wigoda et al., 2017), we explored the roles of these two light receptors in the regulation of leaf hydraulic conductance (K_{leaf}). We compared the K_{leaf} of WT plants to the K_{leaf} of knockout mutants lacking one or both light receptors (phot1-5, phot 2-1 and phot1-5 phot 2-1; Figure 1) under two light regimes, red light (RL) and RL+BL. Under RL+BL, the K_{leaf} of WT leaves was more than 3-fold higher than it was under RL treatment and more than 2-fold higher than the K_{leaf} values of the three mutants treated with RL+BL. Also, under RL+BL, the K_{leaf} of the phot2-1 mutant was about 40% higher than it was under the RL treatment. In contrast, BL did not seem to increase the K_{leaf} of the phot1-5 mutant or that of the double mutant. Under RL, there were no differences between the K_{leaf} levels of the different mutants. However, while the WT’s K_{leaf} was no different from that of the single-mutants, it was about double that of the double mutant (Figure 1). The BL response was particularly depressed in the double mutant: only 13% of the WT’s K_{leaf} BL response remained in the double mutant, as compared to 32% and 40% of the WT’s K_{leaf} in phot1-5 and in phot2-1, respectively (Figure 1), and only 35% of the WT’s g_s BL response remained in the double mutant, as compared to 57% and 71% of the WT’s g_s in phot1-5 and phot2-1, respectively (Supplemental Figure S2A).

The higher calculated K_{leaf} value of the WT under BL (as compared to RL) was due to a greatly increased (less negative) leaf water potential, Ψ_{leaf}, and an appreciably higher transpiration rate, E (Eq. 1, Materials and methods). This invites the interpretation that the BL induced a highly conductive water pathway into the leaf, enabling higher radial water influx which, in turn, was able to compensate for the BL’s enhancement of E (i.e., water efflux from the leaf via the BL-increased g_s; Supplemental Figure S2).

BSC-specific silencing of phot1 and phot2 receptors decreased K_{leaf}

To examine the specific participation of the BSCs’ light receptors in the BL-induced increase in K_{leaf}, we silenced either the PHOT1 or the PHOT2 gene using amiRNA
(artificial microRNA) under the BSC-specific promoter, SCARECROW (SCR, see Materials and Methods). Under RL+BL illumination, the K_{leaf} values of leaves of both types of transgenic plants, SCR:amiR-PHOT1 and SCR:amiR-PHOT2, were lower than the K_{leaf} values of the WT leaves (by 40–50%; Figure 2). In contrast, all of the SCR:amiR-PHOT plants had WT-like g_s and E, while their Ψ_{leaf} levels were lower than that of the WT (by 50–90%), suggesting a reduction in the radial influx of water into the leaf (Supplemental Figure S3).

BSC-specific complementation of the phot1-5 mutant with PHOT1 restored K_{leaf}

We complemented the phot1-5 (Col-gl) mutant plants with SCR:PHOT1 to restore phot1 activity exclusively in the BSCs (Materials and methods) and compared them to WT (Col-gl) plants and to phot1-5 plants. SCR:PHOT1 plants illuminated with RL+BL had their K_{leaf} restored from phot1-5 values to WT levels (Figure 3). While, as expected, BL increased the WT’s g_s, the mutant’s g_s and the g_s of the complemented mutant did not change under BL, also as expected from the main BL-receptor-devoid guard cells (Supplemental Figure S4). Under BL, the Ψ_{leaf} of the SCR:PHOT1-complemented mutant was restored to the WT level and both of those values were more than 50% greater than the mutant’s Ψ_{leaf} (Supplemental Figure S4). Thus restored Ψ_{leaf} was the major contribution to the restored high K_{leaf} of the complemented mutant, suggesting a restoration of radial water influx to the leaf.

The kinase inhibitor, tyrphostin 9, prevented the increase in K_{leaf} under blue light

The kinase inhibitor tyrphostin 9 suppresses BL-dependent H^+-ATPase phosphorylation (of the penultimate threonine) in guard cells (Hayashi et al., 2017). To examine further whether the vascular phot receptors initiate a similarly sensitive phosphorylating event in the BL-dependent K_{leaf} regulation pathway, we perfused detached WT leaves with AXS, with or without 10 μM tyrphostin 9, and exposed them to RL or RL+ BL. The K_{leaf} values of RL+BL-illuminated leaves perfused with tyrphostin 9 were about 50% lower than those of RL+BL -illuminated control leaves (without tyrphostin 9), and were no different than the K_{leaf} of leaves illuminated with only RL (with or without exposure to tyrphostin 9; Figure 4A, left panel, Supplemental Figure S5). However, g_s was not affected by the petiole-delivered tyrphostin 9 (Figure 4B, left panel). In contrast to the perfused tyrphostin 9, spraying the inhibitor on the leaf surface did not interfere with the
almost 3-fold increase in K_{leaf} that was induced by BL (Fig. 4A, right panel), but it did prevent the BL-induced increase in g_s (Figure 4B, right panel). The impaired stomatal response as a result of the application of tyrphostin 9 directly to the leaf surface is in agreement with tyrphostin 9’s previously reported inhibition of BL-induced stomatal opening in epidermal peels (Hayashi et al., 2017). Leaf transpiration, E, behaved in a pattern similar to g_s (Supplemental Figure S6A). Petiole-fed tyrphostin 9 abolished the BL-induced increase in Ψ_{leaf}, but tyrphostin 9 sprayed on the leaf surface did not prevent it (Supplemental Figure S6B).

Blue light hyperpolarizes the BSCs and raises their cytosolic pH

To investigate further whether the BSCs’ BL signal transduction pathway stimulates their plasma-membrane H^+-ATPases (as in GCs), we monitored the membrane potential of BSC protoplasts using the potentiometric dual-excitation dye di-8-ANEPPS. Indeed, 5–10 min of RL+BL illumination hyperpolarized the BSC protoplasts relative to RL alone or to the dark (absence of illumination), while 10 µM tyrphostin 9 added in the bath depolarized the BSCs irrespectively of RL+BL illumination or its absence (Figure 5A, Supplemental Figure S1), hence, apparently independently of the inhibition of AHA activity.

To further explore our hypothesis of H^+-ATPase activation by BL, we monitored the cytosolic pH (pH_{CYT}) using the ratiometric, dual-emission fluorescent pH-sensitive dye, SNARF1. The pH_{CYT} of BSCs illuminated for 10 min with RL+BL (following dark treatment) was significantly more alkaline (by 0.72 pH units) than the pH_{CYT} of dark-treated BSCs and 1.06 pH units higher than the pH_{CYT} of the BSCs that were treated with only RL (Figure 5B), consistent with BL-induced activity of H^+-ATPases, which move protons from the BSCs into the xylem.

AHA2 plays a role in the blue light-induced regulation of K_{leaf}

Recently, we reported that AHA2 plays a major role in K_{leaf} regulation by acidifying the xylem sap. To further examine whether the BSCs’ H^+-ATPase AHA2 participates in the *BL-initiated* K_{leaf} regulation, we examined the AHA2 knockout mutant *aha2*-4 and its BSC-complemented transgenic plant line *SCR:AHA2* [i.e., the *aha2*-4 mutant with AHA2 expressed only in its BSCs (Grunwald et al., 2021)] under the two light regimes (RL and RL+BL). The K_{leaf} of *aha2*-4 leaves did not respond to the RL+BL illumination and was
only about 40% of the \(K_{leaf}\) of BL-treated WT leaves. However, similar illumination increased the \(K_{leaf}\) of the AHA2-complemented (\(SCR:AHA2\)) plants to almost 65% of the WT’s \(K_{leaf}\) (Figure 6), indicating that the BL-induced increase in \(K_{leaf}\) is dependent on AHA2. In contrast, under RL+BL, the E and \(g_S\) of \(SCR:AHA2\) did not differ from the E and \(g_S\) of the aha2-4 mutant, and they remained unaffected by BL and lower than the E and \(g_S\) of the WT (Supplemental Figure S7A,B). Notably, the \(\Psi_{leaf}\) of \(SCR:AHA2\) was about 40% higher than the \(\Psi_{leaf}\) of aha2-4 and did not differ from that of the WT, suggesting a restoration of radial water influx to the leaf (Supplemental Figure S7C).

407 **Morning light after night darkness acidifies the xylem sap**

To delve further into the acidification-mediated link between light and \(K_{leaf}\), we explored the diurnal transition between the xylem sap pH in the night and in the morning. We hypothesized that the xylem sap pH would be reflected in the pH of guttation drops exuded via hydathodes from the ends of the xylem conduits. Therefore, to take a preliminary peek at the xylem sap pH at night, we measured the pH of guttation drops collected from the tips of WT leaves before the lights were turned on and found that their mean pH was 7.2 ± 0.04 (±SE, 15 biological repeats collected over 3 days). Next, we measured the pH of the xylem sap in detached leaves, comparing leaves before dawn to leaves after dawn (i.e., leaves at the end of an overnight dark treatment to leaves after a 30 min of illumination with white light in the growth chamber). This comparison included leaves of WT, phot1-5 and \(SCR:PHOT1\) plants. Illumination acidified the xylem sap in WT plants by approx. 0.6 pH units (from 6.0 to 5.4) and in the \(SCR:PHOT1\) plants by approx. 0.8 pH units (from 6.1 to 5.3), while the xylem pH in phot1-5 remained unchanged, at about 5.9 (Figure 7), suggesting that phot1 in the BSCs is necessary for light-activated xylem acidification, which, in turn, increases \(K_{leaf}\) (Grunwald et al., 2021).

423 **Light increases the osmotic water permeability, \(P_t\), of the BSCs**

To explore the link between light and \(K_{leaf}\) at the cellular level, we tested whether light affects the osmotic water permeability (\(P_t\)) of the BSC membrane. We determined the \(P_t\) of isolated BSC protoplasts from videotapes of their swelling during a hypotonic challenge after illumination with white light or after 10 min in the dark. The illuminated BSCs had higher \(P_t\) than the dark-treated ones (Figure 8), suggesting that the morning
increase in the movement of water from the xylem to the BSCs (and then, presumably, further into the mesophyll) is due to increased permeability of the BSC membranes to water.

Leaf vein density is not affected by the expression of phot1 or phot2

To resolve whether the diminished K_{leaf} of the phot receptor mutants that we observed under BL was due to differences in leaf vein density, we quantified the vein density of all of the genotypes that we studied and found no differences among them (Supplemental Figure S8).

DISCUSSION

Blue-light signal transduction in BSCs is reflected in the K_{leaf} increase

We demonstrate here an autonomous BL signaling mechanism in Arabidopsis BSCs that underlies the light-induced increase of K_{leaf}, resembling the “classical” short-term, BL-induced signaling pathway for stomatal opening mediated by the photoreceptors phot1 and phot2 (Zeiger et al., 1983; Sakai et al., 2001; Kinoshita et al., 2001). To explain the underlying mechanism, we built on our earlier findings that the receptor genes PHOT1 and PHOT2 are substantially expressed in BSCs (Wigoda et al., 2017; Supplemental Table 2). Here, we link these findings using the phot receptor mutants phot1-5 and phot2-1 and the double mutant phot1-5 phot2-1. Based on the complete abolishment of the BL-K_{leaf} response (relative to RL alone) in the phot1-5 mutant, which is presumed to possess phot2 activity, phot2 would appear completely redundant, were it not for (a) the strong depression of the BL-K_{leaf} response – compared to WT response – in the phot2-1 mutant, presumed to possess phot1 activity, and (b) even more severe impairment of the double mutant’s BL-K_{leaf} response compared to the responses of both single mutants (Figure 1).

Also the BL-gs responses that we observed in the three phot mutants were depressed to different relative degrees resembling the gradation of BL-K_{leaf} responses (Supplemental Figure S2A) and suggesting a similar dependence of BL signaling on phot1 in the two systems (BSCs and GCs). Interestingly, after 2-4 h of illumination (well beyond our usual 20 min of illumination) the phot single mutants’ g_s re-acquired the WT-like sensitivity to BL (Supplemental Figure S9), similar to an earlier report on stomatal aperture after 2-4 h of illumination with BL (Kinoshita et al., 2001). This could perhaps reflect a
gradually accumulating effect of the GCs’ AHA activity, overcoming the partially impaired phot-to-AHA signal transduction in the single phot mutants.

That the phots (and particularly phot1) are indispensable to BL signaling in the BSCs, as they are in GCs (Kinoshita et al., 2001), is additionally emphasized by our two BSCs-delimited genetic phot manipulations: (a) the severe impairment of the BL-induced K_{leaf} increase in WT plants in which either phot1 or phot2 was silenced by the respective $SCR:amiR-PHOT$ (Figure 2) and (b) the full restoration of K_{leaf} sensitivity to BL by phot1-5 complementation with $SCR:PHOT1$ (Figure 3). These manipulations, which did not affect gs (Supplemental Figures S3A, S4A), also emphasize the independence of the BSCs’ BL signal transduction from that of the GCs.

Prompted by finding BLUS1, the phots’ indispensable partner kinase in the BL-induced early-signaling complex of GCs (Takemiya et al., 2013; Hayashi et al., 2017) also in the BSCs transcriptome (Wigoda et al., 2017; Supplemental Table S2), we found that the blus1 mutant’s K_{leaf} does not respond to BL (Supplemental Figure S10), underscoring further the resemblance in BL signaling between the two systems.

Additionally, the tissue-localized effects of the kinase inhibitor, tyrphostin 9, which presumably inhibited a BL-signaling kinase downstream of phot-BLUS1, demonstrated both the similarity between the BSCs’ and the GCs’ BL signaling pathways in WT plants, and, again, the independence of the two systems. Both signaling pathways were inhibited by tyrphostin 9, but only when it was applied in close proximity to the target tissue: The BSC system was affected only by the petiole-fed tyrphostin 9, which inhibited the BL-induced increase of K_{leaf} and Ψ_{leaf} without affecting gs; whereas the GC system was affected only when tyrphostin 9 was sprayed on the leaf surface (i.e., on GCs), which abolished the BL-induced gs increase without affecting K_{leaf} (Figure 4, Supplemental Figure S6). Notwithstanding the above, the depolarization of BSCs by tyrphostin 9 both under RL+BL and in the dark (Fig. 5A), suggests an additional or an alternative underlying mechanism outside the AHA-activating BL-signaling pathway.

Recently, we reported that the BSC H^+-ATPase AHA2 plays a major role in the acidification of the xylem sap, which, in turn, increases K_{leaf} (Grunwald et al., 2021). Indeed, the H^+-ATPase mutant, aha2-4 had a diminished (compared to WT) BL-induced increase in K_{leaf} (Figure 6; likely due to a more alkaline xylem pH; Grunwald et al., 2021), as well as a diminished BL-induced increase in gs (Supplemental Figure S7). In contrast, aha2-4 plants complemented with the $SCR:AHA2$ – even though directed only to BSCs –
had their BL-induced K_{leaf} increase restored (Figure 6), while their g_s remained unaffected (Supplemental Figure S7), affirming the importance of the BSC AHA2 in mediating the BL-induced increase in K_{leaf} independently of g_s (i.e., of GCs).

Thus, with the genetic manipulation of the BL receptors phot1 and phot2 in the BSCs, the tissue-differential responses to pharmacological treatment and genetic manipulation of the AHA2 we demonstrated the independence of the BSCs’ BL signaling from the GCs’ BL signaling. This notion of independence is particularly important since the BSC layer constitutes a hydraulic valve between the xylem and the leaf, regulating water loss to the atmosphere in series with stomatal apertures.

Blue-light signal transduction in BSCs is reflected in their H$^+$-ATPase activation

Four of our findings focus on the activation of H$^+$-ATPase as the end-point of BL signaling: at the level of single isolated BSCs, (a) the BL-induced alkalinization of the BSCs cytosol (relative to dark or to RL; Figure 5B), (b) the BL-induced hyperpolarization in WT (Col) BSC protoplasts (relative to dark or to RL, Figure 5A), and also in WT (Col-gl) BSC protoplasts (Supplemental Figure S11A, Materials and Methods), (c) the absence of hyperpolarization under RL+BL treatment in the BSCs protoplasts of the phot1-5 mutant and its restoration in the phot1-5 mutant complemented with PHOT1 solely in its BSCs (Supplemental Figure S11B); at the level of the detached leaf, (d) acidification of the xylem sap by white light (relative to dark) in WT, the absence of the white light response in the phot1-5 mutant and a restoration of this response in the abovementioned PHOT1-complemented mutant (Figure 7). Taken together, both types of the pH responses (which occur by proton extrusion from the cytosol) and the hyperpolarization (which could also result from proton extrusion via the plasma membrane, resembling the hyperpolarization of GCs in response to BL (Assmann et al., 1985; Roelfsema et al., 2001), are strong evidence linking the phot receptors with the BL-induced activation of the BSCs’ AHA2 in a similar way to BL activation of the GCs’ AHA (Hayashi et al., 2017).

Light induces the increase of BSCs’ membrane water permeability, K_{leaf} and K_{ros}

Here, we report that in addition to external (experimentally imposed and constant) low pH, light also increases the P_t of isolated BSCs (Figure 8). Evidence is accumulating that P_t level reflects the underlying activity of aquaporins. For example, frog oocytes expressing AtPIP2;1 had higher P_t induced by co-expressing two of the Arabidopsis 14-3-
3 protein isoforms which bound to the AtPIP2;1 (Prado et al., 2019). Thus, it would be tempting to speculate that light increased the BSCs’ P$_f$ (Figure 8) by enhancing the activity of one or more of the 11 BSCs’ aquaporins (Supplemental Table S2).

Alternatively, or in addition, the light-induced increase in BSC P$_f$ could be due to the alkalization of the BSCs’ cytosol (Figure 5B), sensed by a histidine (His 197, conserved in all Arabidopsis PIP aquaporins; assayed in AtPIP2;2; Tournaire-Roux et al., 2003) and a leucine (Leu206 in BvPIP2;2 Fortuna et al., 2019) in the cytosol-facing D loop of the aquaporin protein. Moreover, the concurrent hyperpolarization of BSCs by BL (Figure 5A) could perhaps also contribute to the activation of the BSCs’ aquaporins, as suggested by in silico simulations (Hub et al., 2010).

The role of aquaporins in controlling K$_{leaf}$ was identified previously [in walnut, Ben Baaziz et al., 2012; in grapevine (Vitis vinifera), Vitali et al., 2016; in poplar (Populus trichocarpa), Muries et al., 2019; in Arabidopsis BSCs, Sade et al., 2014; (Prado et al., 2013)]. In particular, Prado et al. (2019) demonstrated a contribution of the abundant – also in the leaf veins – aquaporin AtPIP2;1 to the diurnal and circadian rhythms of the hydraulic conductance of the Arabidopsis rosette, K$_{ros}$, which peaked before midday. Thus, in addition to the likely P$_f$-promoting effect of the slightly acidic pH (6) perfusion solution (a link established by Grunwald et al., 2021), that Prado et al., (2019) used for their K$_{ros}$ measurements, the changes that they observed in K$_{ros}$ also reflected the effects of light and circadian rhythms (Prado et al., 2019). In particular, the circadian regulation of the AtPIP2;1 by its protein-protein interaction with a 14-3-3 protein (Prado et al., 2019), which resembles the multitude of protein-protein interactions regulating mammalian aquaporins (reviewed by Roche and Törnroth-Horsefield, 2017), suggests an additional possibility of BL regulation of the BSCs’ aquaporins: directly via a protein-protein interaction with the photos.

BL signaling increases the K$_{leaf}$ - a model

Whatever the exact underlying molecular mechanism, our results support the following model of K$_{leaf}$ increase by BL, in a GC-like, BL signal transduction pathway: the BSCs’ phot1 and phot2 perceive the BL, which, via BLUS1 and unknown downstream protein kinases (the first of which could perhaps be BHP, (Hayashi et al., 2017; Hosotani et al., 2021) activates the plasma membrane H$^+$-ATPase (AHA2), resulting in the
hyperpolarization of the BSC, the alkalization of the BCSs’ cytosol and the acidification of the xylem sap, leading to an increase in the BSCs’ P_f and a subsequent increase in K_{leaf}.

Expressed schematically:

BL \rightarrow activation of BSC photos \rightarrow phosphorylation* & activation of BLUS1 and downstream kinases \rightarrow activation of BSC H+-ATPase (AHA2) \rightarrow hyperpolarization and cytosol alkalization of BSCs and acidification of xylem sap \rightarrow increase of P_f of BSCs \rightarrow K_{leaf} increase

*We hypothesize that the abovementioned phosphorylation steps are similar to those seen in GCs (Figure 9), but this has yet to be explored in BSCs.

An early K_{leaf} response to blue light - what is the advantage?

Both the opening of the stomata and the increase in K_{leaf} occur in the early morning hours (e.g., Brodribb and Holbrook, 2004; Domec et al., 2009; Locke and Ort, 2015) when the irradiance spectrum includes relatively high levels of BL (Matthews et al., 2020, and references therein). *What is the advantage of the early [blue-]light response of stomata?*

We suggest that it allows the acquisition of CO$_2$ under sub-maximum VPD (vapor pressure deficit, a measure of the driving force for leaf water evaporation), thereby increasing water-use efficiency.

Interestingly, K_{leaf} responds to light even faster than g_s does (Guyot et al., 2012) – in an ultimate manifestation of the independence of the BSCs’ BL signal transduction from that of the GCs’. One possible advantage of this almost-simultaneity is matching the stomatal opening with the increased water flux into the leaf. Were it not for this accompanying K_{leaf} increase, the BL-induced stomata opening, which peaks in the morning hours (the “golden hour”); (Gosa et al., 2019), could lead to an imbalance in leaf water, even in the presence of a relatively low VPD, leading to a drop in the leaf water potential (Ψ_{leaf}), which, in turn, could close the stomata (Raschke, 1970; Guyot et al., 2012; Klein, 2014; Scoffoni et al., 2018) and thereby limit photosynthesis. Instead, an early morning increase in K_{leaf} elevates Ψ_{leaf}, thereby increasing and prolonging stomatal opening (ibid).

Hypothetically, under more extreme conditions (e.g., with high VPD even in the early morning), BL-increased K_{leaf} would prevent a hydraulic pathway failure when stomatal conductance is at its peak (Brodribb and Holbrook, 2004; Halperin et al., 2017; Gosa et al., 2019).
Another possible advantage of the early morning, BL-induced increase in K_{leaf} may be an increased CO$_2$ permeability of aquaporins. A few lines of evidence converge to support this hypothesis; (a) CO$_2$ can cross cell membranes through aquaporins, particularly aquaporins of the PIP1 family (Kaldenhoff and Fischer, 2006), (b) the transcripts of PIP1 family aquaporins in walnut have been shown to be upregulated concomitantly with the increase in K_{leaf} induced by a brief (15 min) exposure to white light (Ben Baaziz et al., 2012), (c) in soybean (*Glycine max*), the transcript of a PIP1 family aquaporin (PIP1;8) was found to be more abundant in the morning than at midday, in correlation with a higher K_{leaf} in the morning (Locke and Ort, 2015), (d) aquaporins control K_{leaf} (Shatil-Cohen and Moshelion, 2012; Sade et al., 2014), (e) CO$_2$ transported by xylem from the roots may be a source for the CO$_2$ assimilated into the bundle sheath and mesophyll (Janacek et al., 2009; Hubeau et al., 2019). Thus, assuming the K_{leaf} increase with the first light of day parallels the increase in the permeability of BSC aquaporins to CO$_2$, the passage from the xylem to the mesophyll of the root-originated CO$_2$ will be enhanced even before full stomatal opening. The increased availability of CO$_2$ at this time, when the photosynthetic light is already sufficient, would enhance CO$_2$ assimilation – a great advantage for the plant. This hypothesis is strengthened by the fact that (Stutz and Hanson, 2019) have shown that the xylem-transported CO$_2$ constitutes a varying proportion of the total CO$_2$ assimilated throughout the day depending on the availability of light and CO$_2$. Notably, photosynthetic CO$_2$ uptake reaches a maximum within 10 min of exposure to BL (Doi et al., 2015), which is over 3-fold faster than the full opening of stomata (Grondin et al., 2015).

The advantage of diminished AHA activity and P_f at night

The fact that the BSC P_f is low in the dark (Figure 8) may explain how the mesophyll does not get flooded at night when root pressure increases. At night, the P_f and K_{leaf} reduction likely prevent water influx into the leaf, while the buildup of root pressure is relieved via guttation. A malfunction of this mechanism is perhaps what underlies leaf flooding by the xylem sap (Shatil-Cohen and Moshelion, 2012). The inactivity of the BSCs H$^+$-ATPases, manifested here in the nightly alkalization of the xylem sap and in guttation drops, (as noted earlier, for example, also in tomatoes (Urrestarazu et al., 1996) and poplars (Aubrey et al., 2011), could be advantageous for the plant as a means of energy conservation, as ATPases operate at a high energetic cost (Palmgren, 2001).
Our findings expand the understanding of the molecular basis of the regulation of leaf water influx. The fact that BL increases K_{leaf} in several other species imparts an even more general importance to our results. A focus on the hydraulic valve in series with the stomata should provide new directions for the study of plant water relations in different environments.

AUTHOR CONTRIBUTIONS

YG and SG constructed the BSCs-directed transgenic lines: mutant complementation and PHOT silencing, planned and performed the K_{leaf} and vein pH experiments, and wrote the paper. YG planned and performed the P_f experiments. TT planned and performed the membrane potential and cytosolic pH experiments. NM and MM conceptualized and supervised the project and wrote the paper.

ACKNOWLEDGMENTS

We thank Dr. Dizza Bursztyn of the Hebrew University of Jerusalem for assisting us with the statistical analysis of this work. We thank Dr. Naama Gil and Dr. Idan Efroni for assisting in the RLM RACE amiRNA procedure.

This research was supported by the ISF grant No. 1043/20 to MM and the ISF grant No. 1312/12 to NM.
REFERENCES

Aasamaa, K. and Sõber, A. (2012). Light sensitivity of shoot hydraulic conductance in five temperate deciduous tree species. Funct. Plant Biol. 39: 661.

Abràmoff, M.D., Magalhães, P.J., and Ram, S.J. (2004). Image processing with imageJ. Biophotonics Int. 11: 36–41.

Alvarez, J.P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., and Eshed, Y. (2006). Endogenous and Synthetic MicroRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species. Plant Cell 18: 1134–1151.

Assmann, S. (1993). Signal Transduction in Guard Cells. Annu. Rev. Cell Dev. Biol. 9: 345–375.

Assmann, S.M., Simoncini, L., and Schroeder, J.I. (1985). Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285–287.

Aubrey, D.P., Boyles, J.G., Krysinsky, L.S., and Teskey, R.O. (2011). Spatial and temporal patterns of xylem sap pH derived from stems and twigs of Populus deltoides L. Environ. Exp. Bot. 71: 376–381.

Ben Baaziz, K., Lopez, D., Rabot, A., Combes, D., Gousset, A., Bouzid, S., Cochard, H., Sakr, S., and Venisse, J.-S. (2012). Light-mediated Kleaf induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. Tree Physiol. 32: 423–434.

Briggs, W.R. and Huala, E. (1999). Blue-Light Photoreceptors in Higher Plants. Annu. Rev. Cell Dev. Biol. 15: 33–62.

Brodribb, T.J. and Holbrook, N.M. (2004). Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant, Cell Environ. 27: 820–827.

Chiang, C., Olsen, J.E., Basler, D., Bânkestad, D., and Hoch, G. (2019). Latitude and Weather Influences on Sun Light Quality and the Relationship to Tree Growth. Forests 10: 610.

Clough, S.J. and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

Doi, M., Kitagawa, Y., and Shimazaki, K.-I. (2015). Stomatal Blue Light Response Is Present in Early Vascular Plants. Plant Physiol. 169: 1205–1213.
Domec, J.C., Noormets, A., King, J.S., Sun, G., McNulty, S.G., Gavazzi, M.J., Boggs, J.L., and Treasure, E.A. (2009). Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant, Cell Environ. 32: 980–991.

Elmore, J.M. and Coaker, G. (2011). The Role of the Plasma Membrane H+-ATPase in Plant–Microbe Interactions. Mol. Plant 4: 416–427.

Fortuna, C.A., Zerbetto De Palma, G., Aliperti Car, L., Armentia, L., Vitali, V., Zeida, A., Estrin, D.A., and Alleva, K. (2019). Gating in plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction in the closed state. FEBS J. 286: 3473–3487.

Gosa, S.C., Lupo, Y., and Moshelion, M. (2019). Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Plant Sci. 282: 49–59.

Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N., and Maurel, C. (2015). Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation. Plant Cell 27: 1945–1954.

Grunwald, Y., Wigoda, N., Sade, N., Yaaran, A., Torne, T., Gosa, S.C., Moran, N., and Moshelion, M. (2017). Arabidopsis leaf hydraulic conductance is regulated by xylem-sap pH, controlled, in turn, by a P-type H+-ATPase of vascular bundle sheath cells. bioRxiv: 234286.

Grunwald, Y., Wigoda, N., Sade, N., Yaaran, A., Torne, T., Gosa, S.C., Moran, N., and Moshelion, M. (2021). Arabidopsis leaf hydraulic conductance is regulated by xylem sap pH, controlled, in turn, by a P-type H+-ATPase of vascular bundle sheath cells. Plant J. 106: 301–313.

Guyot, G., Scoffoni, C., and Sack, L. (2012). Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant. Cell Environ. 35: 857–871.

Halperin, O., Gebremedhin, A., Wallach, R., and Moshelion, M. (2017). High-throughput physiological phenotyping and screening system for the characterization of plant-environment interactions. Plant J. 89: 839–850.

Hayashi, M., Inoue, S., Ueno, Y., and Kinoshita, T. (2017). A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening. Sci. Rep. 7: 45586.
Hosotani, S., Yamauchi, S., Kobayashi, H., Fuji, S., Koya, S., Shimazaki, K., and Takemiya, A. (2021). A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light. Plant Cell 33: 1813–1827.

Hub, J.S., Aponte-Santamaría, C., Grubmüller, H., and De Groot, B.L. (2010). Voltage-regulated water flux through aquaporin channels in silico. Biophys. J. 99: L97–L99.

Hubeau, M., Thorpe, M.R., Mincke, J., Bloemen, J., Bauweraerts, I., Minchin, P.E.H., De Schepper, V., De Vos, F., Vanhove, C., Vandenberghe, S., and Steppe, K. (2019). High Resolution in vivo Imaging of Xylem-Transported CO2 in Leaves Based on Real-Time 11C-Tracing. Front. For. Glob. Chang. 2: 25.

Inoue, S. and Kinoshita, T. (2017). Blue Light Regulation of Stomatal Opening and the Plasma Membrane H+ -ATPase. Plant Physiol. 174: 531–538.

Janacek, S.H., Trenkamp, S., Palmer, B., Brown, N.J., Parsley, K., Stanley, S., Astley, H.M., Rolfe, S.A., Paul Quick, W., Fernie, A.R., and Hibberd, J.M. (2009). Photosynthesis in cells around veins of the C 3 plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Plant J. 59: 329–343.

Kaldenhoff, R. and Fischer, M. (2006). Aquaporins in plants. Acta Physiol. 187: 169–176.

Karlsson, P.E. (1986). Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. Physiol. Plant. 66: 207–210.

Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). Phot1 and Phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660.

Kinoshita, T. and Shimazaki, K. (1999). Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18: 5548–5558.

Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28: 1313–1320.

Kronenberg, G.H.M. and Kendrick, R.E. (1986). The physiology of action. In Photomorphogenesis in plants (Springer Netherlands: Dordrecht), pp. 99–114.

Locke, A.M. and Ort, D.R. (2015). Diurnal depression in leaf hydraulic conductance at
ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean and possible involvement of aquaporins. Environ. Exp. Bot. 116: 39–46.

Matthews, J.S., Vialet-Chabrand, S., Lawson, T., and Evans, J. (2020). Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 71: 2253–2269.

Muries, B. et al. (2019). Aquaporins and water control in drought-stressed poplar leaves: A glimpse into the extraxylem vascular territories. Environ. Exp. Bot. 162: 25–37.

Negin, B. and Moshelion, M. (2017). The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct. Plant Biol. 44: 107.

Den Os, D., Staal, M., and Elzenga, J.T.M. (2007). Signal integration by ABA in the blue light-induced acidification of leaf pavement cells in pea (Pisum sativum L. var. Argenteum). Plant Signal. Behav. 2: 146–152.

Palmgren, M.G. (2001). Plant plasma membrane H+ATPases: Powerhouses for nutrient uptake.

Prado, K., Boursiac, Y., Tournaire-Roux, C., Monneuse, J.-M., Postaire, O., Da Ines, O., Schaffner, A.R., Hem, S., Santoni, V., and Maurel, C. (2013). Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins. Plant Cell 25: 1029–1039.

Prado, K., Cotelle, V., Li, G., Bellati, J., Tang, N., Tournaire-Roux, C., Martinière, A., Santoni, V., and Maurela, C. (2019). Oscillating aquaporin phosphorylation and 14-3-3 proteins mediate the circadian regulation of leaf hydraulics. Plant Cell 31: 417–429.

Prado, K. and Maurel, C. (2013). Regulation of leaf hydraulics: from molecular to whole plant levels. Front. Plant Sci. 4: 1–14.

Raschke, K. (1970). Stomatal Responses to Pressure Changes and Interruptions in the Water Supply of Detached Leaves of Zea mays L. Plant Physiol. 45: 415–423.

Roche, J. and Törnroth-Horsefield, S. (2017). Aquaporin Protein-Protein Interactions. Int. J. Mol. Sci. 18: 2255.

Roelfsema, M.R.G. and Hedrich, R. (2005). In the light of stomatal opening: new insights into ‘the Watergate.’ New Phytol. 167: 665–691.

Roelfsema, M.R.G., Steinmeyer, R., Staal, M., and Hedrich, R. (2001). Single guard cell recordings in intact plants: Light-induced hyperpolarization of the plasma membrane. Plant J. 26: 1–13.

Sade, N., Shatil-Cohen, A., Attia, Z., Maurel, C., Boursiac, Y., Kelly, G., Granot, D., Yaaran, A., Lerner, S., and Moshelion, M. (2014). The Role of Plasma Membrane
Aquaporins in Regulating the Bundle Sheath-Mesophyll Continuum and Leaf Hydraulics. PLANT Physiol. 166: 1609–1620.

Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., and Okada, K. (2001). Arabidopsis nph1 and np1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. 98: 6969–6974.

Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676–682.

Scoffoni, C., Albuquerque, C., Cochard, H., Buckley, T.N., Fletcher, I.R., Caringella, M.A., Bartlett, M., Brodersen, C.R., Jansen, S., and Mcelrone, A.J. (2018). The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana. 178: 1584–1601.

Sellin, A., Sack, L., Õunapuu, E., and Karusion, A. (2011). Impact of light quality on leaf and shoot hydraulic properties: A case study in silver birch (Betula pendula). Plant, Cell Environ. 34: 1079–1087.

Shapira, O., Khadka, S., Israeli, Y., Shani, U., and Schwartz, A. (2009). Functional anatomy controls ion distribution in banana leaves: Significance of Na + seclusion at the leaf margins. Plant, Cell Environ. 32: 476–485.

Shatil-Cohen, A. and Moshelion, M. (2012). Smart pipes. Plant Signal. Behav. 7: 1088–1091.

Shatil-Cohen, A., Sibony, H., Draye, X., Chaumont, F., Moran, N., and Moshelion, M. (2014). Measuring the osmotic water permeability coefficient (Pf) of spherical cells: isolated plant protoplasts as an example. J. Vis. Exp.: e51652.

Shimazaki, K., Doi, M., Assmann, S.M., and Kinoshita, T. (2007). Light Regulation of Stomatal Movement. Annu. Rev. Plant Biol. 58: 219–247.

Stutz, S.S. and Hanson, D.T. (2019). Contribution and consequences of xylem-transported CO2 assimilation for C3 plants. New Phytol. 223: 1230–1240.

Svennelid, F., Olsson, A., Piotrowski, M., Rosenquist, M., Ottman, C., Larsson, C., Oecking, C., and Sommarin, M. (1999). Phosphorylation of Thr-948 at the C Terminus of the Plasma Membrane H-ATPase Creates a Binding Site for the Regulatory 14-3-3 Protein.

Takemiya, A., Sugiyama, N., Fujimoto, H., Tsutsumi, T., Yamauchi, S., Hiyama, A., Tada, Y., Christie, J.M., and Shimazaki, K.I. (2013). Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4.
Talbott, L.D., Shmayevich, I.J., Chung, Y., Hammad, J.W., and Zeiger, E. (2003). Blue Light and Phytochrome-Mediated Stomatal Opening in the npq1 and phot1 phot2 Mutants of Arabidopsis. Plant Physiol. 133: 1522–1529.

Taylor, A.R. and Assmann, S.M. (2001). Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells. Plant Physiol. 125: 329–338.

Torne, T., Grunwald, Y., Dalal, A., Yaaran, A., and Moran, N. (2021). Stress is basic: 1 ABA alkalinizes both the xylem sap and the cytosol by inhibiting their P-type H+ -ATPase 4 and stimulating their V-type H+ +ATPase AUTHOR CONTRIBUTIONS. bioRxiv.

Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R., and Maurel, C. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393–397.

Ueno, K., Kinoshita, T., Inoue, S., Emi, T., and Shimazaki, K. (2005). Biochemical Characterization of Plasma Membrane H+ -ATPase Activation in Guard Cell Protoplasts of Arabidopsis thaliana in Response to Blue Light. Plant Cell Physiol. 46: 955–963.

Urrestarazu, M., Sanchez, A., Lorente, F.A., and Guzmán, M. (1996). A daily rhythmic model for pH and volume from xylem sap of tomato plants. Commun. Soil Sci. Plant Anal. 27: 1859–1874.

Vitali, M., Cochard, H., Gambino, G., Ponomarenko, A., Perrone, I., and Lovisolo, C. (2016). VvPIP2;4N aquaporin involvement in controlling leaf hydraulic capacitance and resistance in grapevine. Physiol. Plant. 158: 284–296.

Voicu, M.C., Cooke, J.E.K., and Zwiazek, J.J. (2009). Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance. J. Exp. Bot. 60: 4063–4075.

Voicu, M.C., Zwiazek, J.J., and Tyree, M.T. (2008). Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves. Tree Physiol. 28: 1007–1015.

Wigoda, N., Moshelion, M., and Moran, N. (2014). Is the leaf bundle sheath a “smart flux valve” for K+ nutrition? J. Plant Physiol. 171: 715–722.

Wigoda, N., Pasmanik-Chor, M., Yang, T., Yu, L., Moshelion, M., and Moran, N. (2017). Differential gene expression and transport functionality in the bundle sheath versus mesophyll – a potential role in leaf mineral homeostasis. J. Exp. Bot. 68: 3179–3190.
Zeiger, E., Assmann, S.M., and Meioner, H. (1983). The Photobiology of Paphiopedilum stomata: opening under blue light but not red light. Photochem. Photobiol. 38: 627–630.

Zeiger, E. and Helper, P.K. (1977). Light and Stomatal Function: Blue Light Stimulates Swelling of Guard Cell Protoplasts. Science (80-.). 196: 887–889.
FIGURE LEGENDS

Figure 1 The effect of blue light on the K_{leaf} of PHOT receptor mutants. K_{leaf} of fully expanded, excised leaves of WT (Col-gl) and PHOT mutants [$phot1-5$ (Col-gl), $phot2-1$ (Col-gl) and a double mutant, $phot1-5$ $phot2-1$ (Col-gl)] determined immediately after 15 min of illumination with red light (RL, red box; 220 µmol m$^{-2}$ s$^{-1}$) or red + blue light (RL+BL, blue box; 220 µmol m$^{-2}$ s$^{-1}$, consisting of 90% RL and 10% BL). The box height delimits 25-75 % of the data range, the symbols – the individual data values, the solid line – the median, x – the mean, and the whiskers delimit ±1.5 times the inter-quartile range (IQR). Different letters indicate statistically different means (ANOVA, Tukey-HSD test, P<0.05). Note the reduced response to RL+BL in the mutant lines.

Figure 2 *amiR*-silencing of PHOT1 or PHOT2 (*SCR:amiR-PHOT* plants) in the BSCs reduces K_{leaf} under RL+BL light. K_{leaf} was determined in fully expanded leaves of WT, *SCR:amiR-PHOT1* (two independent lines 1,2) and *SCR:amiR-PHOT2* (two independent lines 1,2) plants treated with RL or RL+BL (as in Figure 1). Other details are also as in Figure 1.

Figure 3 BSC-directed PHOT1 complementation of the $phot1-5$ mutant restores the normal K_{leaf}. Fully expanded leaves of WT (Col-gl), $phot1-5$ (Col-gl) and $phot1-5$ (Col-gl) plants complemented with *SCR:PHOT1* were subjected to illumination treatments, as in Figure 1. Other details are also as in Figure 1.

Figure 4 The kinase inhibitor tyrphostin 9 either abolished the BL-induced K_{leaf} increase or prevented the BL-induced stomatal opening - depending on the treatment route. Fully expanded leaves of WT (Col-gl) were pre-incubated (petiole deep) in AXS without or with tyrphostin 9 (10 µM) or sprayed with AXS with or without tyrphostin 9 (10 µM) and kept overnight in dark boxes. Immediately after dark, leaves were illuminated for 15 min with RL or RL+BL, as indicated. (A) K_{leaf}. (B) Stomatal conductance (g_{s}). Other details are as in Fig. 1. Note that K_{leaf} was reduced when tyrphostin 9 was fed via the petiole, but not when it was sprayed on the plants, and that the opposite was true for g_{s}.
Figure 5 Blue light hyperpolarizes the isolated BSC protoplasts and alkalinizes their cytosol relative to red light or darkness, and tyrphostin 9 depolarizes them. (A) Membrane potential (EM, in units of the fluorescence ratio) of BSC protoplasts, with or without bath-added tyrphostin 9 (10 µM), determined using the dual-excitation, ratiometric fluorescent dye di-8-ANEPPS. After at least 10 min in the dark, the cells were immediately imaged (dark treatment) or illuminated for an additional 5–10 min either with RL or RL+BL and then imaged (Materials and Methods). The symbols represent the mean fluorescence ratio (F438/F531, F-ratio) values from individual protoplasts (biological repeats), derived from analysis of their images captured at the indicated excitation wavelengths in three to eight independent experiments. The positive correlation between EM and the F-ratio (with depolarization indicated by the arrow) was verified in separate experiments using patch clamp (Supplemental Figure S1). Different letters denote significantly different values (ANOVA, post hoc Tukey’s test; P < 0.05). Other box plot details are as in Fig. 1.

(B) Cytosolic pH of BSC protoplasts determined using the fluorescent dual-emission pH probe SNARF1. Protoplasts were dark-treated for 10 min and then further treated with 10 min of either dark, RL or RL+BL, then imaged. Cytosolic pH values were derived from the analysis of the captured pairs of images of individual protoplasts (biological repeats); the emitted fluorescence ratio (F640/F585) values were converted to pH values based on a calibration curve (as detailed in Torne et al., 2021). The data are from at least three independent experiments. Other details are as in A.

Figure 6 The BSC H+–ATPase, AHA2, mediates the BL-induced increase in Kleaf. Fully expanded excised leaves of WT (Col0) plants, aha2-4 mutant plants (Col0) and aha2-4 plants complemented in their BSCs with SCR:AHA2 were illuminated for 15 min immediately after dark, as in Figure 1. The box-plot details are also as in Figure 1. Note the marked restoration of Kleaf in the aha2 mutant plants complemented solely in their BSCs.

Figure 7 Illumination with white light for 30 min acidified the xylem pH of WT plants and SCR:PHOT1-complemented mutants, but not that of the phot1-5 mutant. The leaves of WT (Col-gl) plants, phot1-5 (Col-gl) mutants and the SCR:PHOT1-complemented phot1-5 mutant (as in Figure 3) were illuminated with white light in the growth room (150–200 µmol m⁻² sec⁻¹). Black boxes indicate dark, white – white light. Other box plot details are as in Fig. 1.

Figure 8 White light increases the BSCs’ membrane osmotic water permeability coefficient (Pf). (A) Time course of the swelling (mean relative volume ±SE vs. time) of n bundle
sheath protoplasts from SCR:GFP plants upon exposure to a hypotonic solution under the same illumination conditions (white light or darkness) as during the light treatment preceding the assay (Materials and Methods). Inset: the mean (±SE) initial P_f values of the indicated number (n) of BSC protoplasts under two illumination regimes from five independent experiments. The asterisk indicates a significant difference (at $P < 0.05$; Student’s two-tailed, non-paired t-test). (B) Time course of the osmotic concentration change in the bath (C_{out}) during the hypotonic challenge, the arrow indicates the onset of the bath flush (Materials and Methods).

Figure 9 Proposed BSC-autonomous blue-light signal transduction pathway regulating K_{leaf}, the leaf hydraulic conductance – an artist’s rendering. (A) A leaf radial water path, from xylem to mesophyll (hollow blue arrow), via the bundle sheath cells (BSCs), which tightly envelop the xylem. GC, stomatal guard cell; MC, mesophyll cell; PD, plasmodesma. (B) Blue-light (BL) signaling pathway (blue arrowheads) in a BSC, from BL perception by the phototropin receptors (phot) complexed with the kinases, BLUS1 and BHP (Hayashi et al., 2017; Inoue and Kinoshita, 2017), through a hypothesized intermediate tyrphostin 9 (TP9)-inhibitable phosphorylation (P) of an unknown substrate X by an unknown Raf-like kinase, down to the ultimate AHA2 activation by its phosphorylation (P). AHA2 activation results in proton extrusion via the pump, hyperpolarization (charge separation across the membrane: A^- / H^+), cytosolic alkalinization (pH↑) and xylem sap acidification (pH↓; also reported in Grunwald et al., 2021), presumably, at the expense of ATP breakdown to ADP with a transient phosphorylation (P) of the catalytic site on the pump protein, as expected from a P-type H^+-ATPase. Xylem sap acidification enhances (black dotted arrow) water permeability (blue dotted arrows) of the BSC’s plasma membrane. This is presumably due to enhanced permeability of aquaporins (AQP)s and underlies the increased P_f (osmotic water permeability) of the single BSC and, in turn, also the increased K_{leaf} (Grunwald et al., 2021). P_f in a constant external pH may be further increased by light (Fig. 8), due to, among other possibilities, cytosolic alkalinization (Fig. 5B), and/or the AHA2-generated hyperpolarization (Fig. 5A), or, perhaps, even protein-protein interaction with the phots (these possibilities are not represented here). Additional details can be found in the text. Water exiting the BSC via plasmodesmata between BSCs and the neighbouring MCs or via AQPs to the apoplast (blue dotted arrows and question marks) are included for completeness, although it is currently unknown to what extent these symplastic and
apoplastic paths contribute to the radial water flow across the BSCs and whether they are also affected by BL.
SUPPLEMENTAL FIGURES AND TABLES

Supplemental Figure S1. The relationship between the di-8-ANEPPS fluorescence ratio (F-ratio, F$_{438}$/F$_{531}$) and the BSC membrane potential (E$_{M}$).

Supplemental Figure S2. Photoreceptor mutants do not show any effect of BL on their g$_{S}$, E or Ψ_{leaf}.

Supplemental Figure S3. SCR:amiR-silencing of the PHOT1 or PHOT2 genes in the BSCs reduces Ψ_{leaf} under red + blue light, but does not reduce the stomatal conductance (g$_{S}$) or the rate of transpiration (E).

Supplemental Figure S4. BSC-directed PHOT1 complementation of the phot1-5 mutant elevates the leaf water potential (Ψ_{leaf}), but not stomatal conductance (g$_{S}$) or the transpiration rate (E).

Supplemental Figure S5. Tyrphostin 9 perfused via the petiole does not affect the examined physiological parameters under red-light-only illumination.

Supplemental Figure S6. Xylem-fed kinase inhibitor tyrphostin 9 does not affect the blue light-induced increase in the transpiration rate (E), but does prevent any blue light-induced increase in leaf water potential (Ψ_{leaf}).

Supplemental Figure S7. BSC-directed AHA2 complementation of the aha2-4 mutant restores its blue light-induced leaf water potential (Ψ_{leaf}) increase, but not the blue light-induced increases in stomatal conductance (g$_{S}$) or in the transpiration rate (E).

Supplemental Figure S8. Leaf vein density does not depend on the expression of phot1 or phot2.

Supplemental Figure S9. After prolonged illumination, stomatal conductance (g$_{S}$) of intact leaves of whole plants did not differ among the different genotypes (WT, phot mutants and SCR:PHOT1).

Supplemental Figure S10. The BLUS1 kinase mutation abolishes the BL-induced K$_{\text{leaf}}$ increase.

Supplemental Figure S11. The hyperpolarization of BSCprotoplasts by BL is prevented by the phot1 mutation.

Supplemental Table S1. List of primers used in this study.
Supplemental Table S2. Expression levels of some genes found in the transcriptomes of bundle-sheath (BS) cells and mesophyll (MES) cells (Wigoda et al., 2017, GEO repository Experiment GSE85463) that are or may be related to blue-light signaling, encoding receptors, kinases, H⁺-ATPases and aquaporins.
Figure 1 The effect of blue light on the K_{leaf} of PHOT receptor mutants. K_{leaf} of fully expanded, excised leaves of WT (Col-gl) and PHOT mutants [$phot1-5$ (Col-gl), $phot2-1$ (Col-gl)] and a double mutant, $phot1-5$ $phot2-1$ (Col-gl)] determined immediately after 15 min of illumination with red light (RL, red box; 220 µmol m$^{-2}$ s$^{-1}$) or red + blue light (RL+BL, blue box; 220 µmol m$^{-2}$ s$^{-1}$, consisting of 90% RL and 10% BL). The box height delimits 25-75 % of the data range, the symbols – the individual data values, the solid line – the median, x – the mean, and the whiskers delimit ±1.5 times the inter-quartile range (IQR). Different letters indicate statistically different means (ANOVA, Tukey-HSD test, P<0.05). Note the reduced response to RL+BL in the mutant lines.
Plant genotypes / treatments

Figure 2 amir-silencing of PHOT1 or PHOT2 (SCR:amiR-PHOT plants) in the BSCs reduces K_{leaf} under RL+BL light. K_{leaf} was determined in fully expanded leaves of WT, SCR:amiR-PHOT1 (two independent lines 1,2) and SCR:amiR-PHOT2 (two independent lines 1,2) plants treated with RL or RL+BL (as in Figure 1). Other details are also as in Figure 1.
Figure 3 BSC-directed PHOT1 complementation of the phot1-5 mutant restores the normal K\textsubscript{leaf}. Fully expanded leaves of WT (Col-gl), phot1-5 (Col-gl) and phot1-5 (Col-gl) plants complemented with SCR:PHOT1 were subjected to illumination treatments, as in Figure 1. Other details are also as in Figure 1.
Figure 4 The kinase inhibitor tyrphostin 9 either abolished the BL-induced K_{leaf} increase or prevented the BL-induced stomatal opening - depending on the treatment route. Fully expanded leaves of WT (Col-gl) were pre-incubated (petiole deep) in AXS without or with tyrphostin 9 (10 μM) or sprayed with AXS with or without tyrphostin 9 (10 μM) and kept overnight in dark boxes. Immediately after dark, leaves were illuminated for 15 min with RL or RL+BL, as indicated. (A) K_{leaf} (B) Stomatal conductance (g_s). Other details are as in Fig. 1. Note that K_{leaf} was reduced when tyrphostin 9 was fed via the petiole, but not when it was sprayed on the plants, and that the opposite was true for g_s.
Figure 5 Blue light hyperpolarizes the isolated BSC protoplasts and alkalinizes their cytosol relative to red light or darkness, and tyrphostin 9 depolarizes them. (A) Membrane potential (E_M, in units of the fluorescence ratio) of BSC protoplasts, with or without bath-added tyrphostin 9 (10 µM), determined using the dual-excitation, ratiometric fluorescent dye di-8-ANEPPS. After at least 10 min in the dark, the cells were immediately imaged (dark treatment) or illuminated for an additional 5–10 min either with RL or RL+BL and then imaged (Materials and Methods). The symbols represent the mean fluorescence ratio (F_{438}/F_{531}, F-ratio) values from individual protoplasts (biological repeats), derived from analysis of their images captured at the indicated excitation wavelengths in three to eight independent experiments. The positive correlation between E_M and the F-ratio (with depolarization indicated by the arrow) was verified in separate experiments using patch clamp (Supplemental Figure S1). Different letters denote significantly different values (ANOVA, post hoc Tukey's test; $P < 0.05$). Other box plot details are as in Fig. 1. (B) Cytosolic pH of BSC protoplasts determined using the fluorescent dual-emission pH probe SNARF1. Protoplasts were dark-treated for 10 min and then further treated with 10 min of either dark, RL or RL+BL, then imaged. Cytosolic pH values were derived from the analysis of the captured pairs of images of individual protoplasts (biological repeats); the emitted fluorescence ratio (F_{640}/F_{585}) values were converted to pH values based on a calibration curve (as detailed in Torne et al., 2021). The data are from at least three independent experiments. Other details are as in A.
Figure 6 The BSC H^+-ATPase, AHA2, mediates the BL-induced increase in K_{leaf}. Fully expanded excised leaves of WT (Col0) plants, aha2-4 mutant plants (Col0) and aha2-4 plants complemented in their BSCs with SCR:AHA2 were illuminated for 15 min immediately after dark, as in Figure 1. The box-plot details are also as in Figure 1. Note the marked restoration of K_{leaf} in the aha2 mutant plants complemented solely in their BSCs.
Figure 7 Illumination with white light for 30 min acidified the xylem pH of WT plants and SCR:PHOT1-complemented mutants, but not that of the phot1-5 mutant. The leaves of WT (Col-gl) plants, phot1-5 (Col-gl) mutants and the SCR:PHOT1-complemented phot1-5 mutant (as in Figure 3) were illuminated with white light in the growth room (150–200 μmol m⁻² sec⁻¹). Black boxes indicate dark, white – white light. Other box plot details are as in Fig. 1.
Figure 8 White light increases the BSCs’ membrane osmotic water permeability coefficient (Pf). (A) Time course of the swelling (mean relative volume ±SE vs. time) of n bundle sheath protoplasts from SCR:GFP plants upon exposure to a hypotonic solution under the same illumination conditions (white light or darkness) as during the light treatment preceding the assay (Materials and Methods). Inset: the mean (±SE) initial Pf values of the indicated number (n) of BSC protoplasts under two illumination regimes from five independent experiments. The asterisk indicates a significant difference (at P < 0.05; Student’s two-tailed, non-paired t-test). (B) Time course of the osmotic concentration change in the bath (C_out) during the hypotonic challenge, the arrow indicates the onset of the bath flush (Materials and Methods).
Figure 9 Proposed BSC-autonomous blue-light signal transduction pathway regulating K_{leaf}, the leaf hydraulic conductance – an artist’s rendering. (A) A leaf radial water path, from xylem to mesophyll (hollow blue arrow), via the bundle sheath cells (BSCs), which tightly envelop the xylem. GC, stomatal guard cell; MC, mesophyll cell; PD, plasmodesma. (B) Blue-light (BL) signaling pathway (blue arrowheads) in a BSC, from BL perception by the phototropin receptors (phot) complexed with the kinases, BLUS1 and BHP (Hayashi et al., 2017; Inoue and Kinoshita, 2017), through a hypothesized intermediate tyrphostin 9 (TP9)-inhibitable phosphorylation (P) of an unknown substrate X by an unknown Raf-like kinase, down to the ultimate AHA2 activation by its phosphorylation (P). AHA2 activation results in proton extrusion via the pump, hyperpolarization (charge separation across the membrane: A^- / H^+), cytosolic alkalinization (pH↑) and xylem sap acidification (pH↓; also reported in Grunwald et al., 2021), presumably, at the expense of ATP breakdown to ADP with a transient phosphorylation (P) of the catalytic site on the pump protein, as expected from a P-type H$^+$-ATPase. Xylem sap acidification enhances (black dotted arrow) water permeability (blue dotted arrows) of the BSC’s plasma membrane. This is presumably due to enhanced permeability of aquaporins (AQP)s and underlies the increased P_f (osmotic water permeability) of the single BSC and, in turn, also the increased K_{leaf} (Grunwald et al., 2021). P_f in a constant external pH may be further increased by light (Fig. 8), due to, among other possibilities, cytosolic alkalinization (Fig. 5B), and/or the AHA2-generated hyperpolarization (Fig. 5A), or, perhaps, even protein-protein interaction with the photos (these possibilities are not represented here). Additional details can be found in the text. Water exiting the BSC via plasmodesmata between BSCs and the neighbouring MCs or via AQP to the apoplast (blue dotted arrows and question marks) are included for completeness, although it is currently unknown to what extent these symplastic and apoplastic paths contribute to the radial water flow across the BSCs and whether they are also affected by BL.