Tricyclazole Induced Alterations in Certain Biomarker Enzymes of an Indian Paddy-field Fish, *Channa punctatus* (Bloch)

D.N. Pandit¹, U. Rani¹, S.K. Sharma²

ABSTRACT

Tricyclazole, a systemic fungicide is recommended to treat diseases in irrigated rice. *Channa punctatus* (Bloch) is a freshwater fish also found in paddy fields. This maiden study was designed to evaluate acute toxicity of tricyclazole and its responses of certain biomarker enzymes in *Channa punctatus*. By regression analysis method, 24, 48, 72 and 96hr-LC₉₀ dose of tricyclazole was calculated 54.30, 36.76, 32.63 and 25.06 mg l⁻¹ respectively. The range of LC₉₀ dose indicates highly toxic nature of tricyclazole. Fish were then exposed to 0.25 and 1.25 mg l⁻¹ sublethal dose of tricyclazole for short term (24, 48 and 96 hours) and long term (15, 30 and 45 days) exposure and the alterations of enzyme activities were determined. Alkaline phosphatase activities exposed to 0.25 mg l⁻¹ were increased insignificantly (p>0.05) after 24 hours but increased significantly (p<0.05) to 0.25 and 1.25 mg l⁻¹ tricyclazole at all other treatments. Alanine transaminase and aspartate transaminase increased significantly (p<0.05) in response to tricyclazole during both exposures. These findings may be used in the assessment of the potential risk of tricyclazole on food chain and aquatic ecosystems.

Key words: Biomarker enzymes, *Channa punctatus*, Toxicity, Tricyclazole.

INTRODUCTION

Arrah is an agricultural area of Bihar dominating paddy culture especially aromatic rice. *Sonachur, Karibank, Basmati, Badshahbog* and *Kanakjeera* are the scented rice varieties of this area. During last few years, the export of Basmati rice to USA and UK has been adversely affected by the presence of residues of tricyclazole in rice.

Rice blast disease is a destructive and wide spread diseases caused by *Pyricularia oryzae* (Naik et al. 2012). Tricyclazole is recommended for to treat diseases in irrigated rice and other plants (Anwar and Bhat 2005; Mazumder et al. 2016). Studies indicated that tricyclazole has a high risk of environmental contamination (Padovani et al. 2006; Sancho et al. 2009). The toxicity test gives information about toxicity of a substance in test animals (USEPA 2002).

Channa punctatus (Bloch), a freshwater Indian air breathing fish also found in paddy fields. Studies on biomarker enzymes help in understanding the relationship of biochemical parameters to the habitat and adaptability of fish to the environment (Sancho et al. 2009). However, the toxic effect of tricyclazole on this fish is lacking in this context.

Therefore, the work was designed to evaluate LC₉₀ dose of tricyclazole and alterations in certain hepatic enzymes in *Channa punctatus*. The study will help to evaluate variation in health of the fish due to toxicity of tricyclazole, suitability of environmental conditions and relative sensitivity of fish to fungicide.

MATERIALS AND METHODS

Channa punctatus (measuring 25-30 g and 12-14 cm) were collected from local fishermen of Arrah and adjacent localities during breeding season of 2017-2019. The fishes were washed properly with dilute KMnO₄ and transferred to aquaria. The fishes were fed with fish food available in the local market. The experiments were conducted every time in between 11 AM to 1 PM. The physico-chemical features of experimental water were determined following standard method (APHA, 2005).

Tricyclazole (75% EC; mol formula: C₇H₇N₃S; mol mass: 189.24 g mol⁻¹), a fungicide manufactured by Bayer Crop Science Ltd., Gujarat, India was selected for this work. In each selected concentration of Tricyclazole, 10 fishes from the acclimatized fish stock were kept. The first set of experiment was conducted for 24hours, second for 48hours, third for 72hours and fourth for 96hours respectively. The experiments were monitored and numbers of fishes died during the experiments in each concentration was recorded. With the help of the records of dead fishes, 96hr-LC₉₀ doses were determined by Graphical method taking mortality, percent mortality and probit mortality using regression equations.

The blood samples were collected by heart puncture method. Blood were drawn and transferred into sterilized test tubes containing EDTA and maintained for coagulation.
After coagulation, the uncoagulated and coagulated part were separated and centrifuged for 10 minutes at 3000 rpm. The supernatant was used to analyze alkaline phosphatase, aspartate transaminase and alanine transaminase following the methods of Balasubaramanian (1983), Splittstoesser (1976) and Bergmeyer and Bernt (1974) respectively.

Statistical analysis was performed with the use of Graph Pad Prism 5.

RESULTS AND DISCUSSION
The temperature 26.0±2.0°C, pH: 7.14±0.08, dissolved oxygen: 6.4±0.4mg l⁻¹, total alkalinity: 56.0±4.5mg l⁻¹, hardness: 150.6±5.2mg l⁻¹ and chloride: 16.7±0.2mg l⁻¹ of experimental water was recorded to which fish were exposed.

The lethal range was determined from 0.01, 0.1, 1.0, 10.0 and 100.0 mg l⁻¹ of tricyclazole following the method of Reish and Oshida (1987). No mortality was observed in 0.01 to 10.0 mg l⁻¹ of tricyclazole. On the other hand, 100% mortalities were found in 100.0 mg l⁻¹ of tricyclazole.

The dose of tricyclazole was converted into log dose and mortality as percent mortality as probit mortality. By this method, 24, 48, 72 and 96hr-LC₅₀ of tricyclazole was calculated 54.30, 36.76, 32.63 and 25.06 mg l⁻¹ respectively (Table 1 and Fig 1-5). The range of 5-50 mg l⁻¹ of LC₅₀ dose indicates highly toxic nature of a toxicant (Loomis and Hayes 1996). The present observation indicates that tricyclazole is a highly toxic fungicide.

The LC₅₀ values were determined for Lepomis macrochirus (2460 μg l⁻¹) and Oncorhynchus mykiss (1801 μg l⁻¹) (USEPA 2013) for tricyclazole. The 96hr-LC₅₀ dose of tricyclazole of 15.00 mg l⁻¹ to Channa leucopunctatus was reported by Shilpa et al. (2009). They reported that this fungicide was used at 1000 mg l⁻¹ in the fields. Pan and Liang (1993) determined LC₅₀ of 19425 μg l⁻¹ of this fungicide in Rana limnocharis.

From this account, it may be inferred that the differences in LC₅₀ values influenced by the species, age, weight and habitat of the fish. After determining the value of 96hr-LC₅₀ dose of tricyclazole of 25.0 mg l⁻¹, a concentration of 0.25 and 1.25 mg l⁻¹ of tricyclazole was selected for this study.

From this work, range of safety level of tricyclazole was calculated from 0.2576x10⁻⁴ to 1.686 mg l⁻¹ in Channa punctatus. The range indicates that it is difficult to decide the acceptable safe concentration of tricyclazole in Channa punctatus. Moreover, 0.2576 x 10⁻⁴ to 0.1686 mg l⁻¹ and 0.2576 x 10⁻⁴ to 0.01686 mg l⁻¹ of tricyclazole allow a safe level for rat and man respectively (https://en.wikipedia.org/wiki/Toxicity). Large variations in safe levels determined by various methods have resulted in controversy over its acceptability (Pandey et al. 2005).

Fig 1: 24hr-LC₅₀ dose of tricyclazole in Channa punctatus.
Fig 2: 48hr-LC₅₀ dose of tricyclazole in Channa punctatus.
Fig 3: 72hr-LC₅₀ dose of tricyclazole in Channa punctatus.
Fig 4: 96hr-LC₅₀ dose of tricyclazole in Channa punctatus.
Tricyclazole Induced Alterations in Certain Biomarker Enzymes of an Indian Paddy-field Fish, *Channa punctatus* (Bloch)

Biomarker enzymes

The alkaline phosphatase, aspartate transaminase and alanine transaminase in controlled *Channa punctatus* was 42.15±1.25, 35.57±1.56 and 13.25±1.25 iu l\(^{-1}\) were following normal range (Tables 2, 3 and 4). The amount of alkaline phosphatase (69.05±13.04 iu l\(^{-1}\)), aspartate transaminase (265.60±56.55 iu l\(^{-1}\)) and alanine transaminase (5.65±1.18 iu l\(^{-1}\)) in *Acipenser stellatus* was observed by Shahsavani et al. (2010). The observed values were less than the values of alkaline phosphatase and aspartate transaminase but more than alanine transaminase of *Acipenser stellatus*. The difference may be due to the variations in the physiological conditions and habitat of fishes.

The tricyclazole intoxicated *Channa punctatus* showed a significant increase from 45.60±1.54 to 56.09±4.14 iu l\(^{-1}\) in alkaline phosphatase. Analytically, the alkaline phosphatase activities of fish exposed to 0.25 mg l\(^{-1}\) increased significantly after 48 hours, 96 hours and chronic exposure. But, activities of this enzyme increased significantly in fish exposed to 1.25 mg l\(^{-1}\) tricyclazole at all sampling intervals (Table 2). It was analyzed that duration of exposure has more significant effect compared to the dose of tricyclazole for alkaline phosphatase in this fish. Alkaline phosphatase plays the major role in phosphate metabolism and prevents the membrane from being damaged (Dirrieu and Tran-Minh 2002). The increased activity of alkaline phosphatase in fish is linked to the increased catabolic tissue breakdown in melanomacrophage centers (Agius and Coughman 1986). Earlier, Agarwal and Sastry (1979) have recorded significant increase in alkaline phosphatase in *Channa punctatus* after short term exposure of mercuric chloride. Observations of Edori et al. (2013) with long term sublethal concentrations of paraquat in *Clarias gariepinus* also showed that alkaline phosphatase increased significantly. These earlier findings support the observations of present work.

Aspartate transaminase and alanine transaminase in tricyclazole exposed fish showed significant increase from 51.32±8.14 to 58.08±8.78 iu l\(^{-1}\) and 17.90±0.69 to 20.56±0.51 iu l\(^{-1}\) respectively. Analytically, these enzymes in fish exposed to 0.25 and 1.25 mg l\(^{-1}\) tricyclazole increased significantly after 24 hours, 48 hours, 96 hours and chronic exposure (Table 3 and 4). It was analyzed that dose of exposure has more significant effect compared to the duration of exposure of tricyclazole for these enzymes in this fish. Increase in aspartate transaminase and alanine transaminase in *Oreochromis mykiss* and *Channa punctatus*, exposed to organophosphates, diazinon and monocrotophos respectively (Qayoom et al. 2019; Banaee et al. 2011; Agrahari et al. 2006). Observations of Edori et al. (2013) with long term sublethal concentrations of paraquat in *Clarias gariepinus* showed that aspartate transaminase increased significantly while alanine transaminase either

Table 1: Statistical relationship between dose of tricyclazole (mg l\(^{-1}\)) and mortality of *Channa punctatus*.

Exposure period (hours)	Regression equation	Lethal Concentration (mg l\(^{-1}\))	Toxicity Factor	t value	95% Confidence limit	
	y = bx + a (% mortality)	LC\(_{10}\)	1.00	3.774(p<0.05)	18.29	293.03
		LC\(_{50}\)	54.30	18.29	293.03	
		LC\(_{90}\)	89.38	52.17	460.54	
24	y = 1.143x – 11.90	LC\(_{10}\)	19.21	1.84	159.03	
		LC\(_{50}\)	54.30	18.29	293.03	
		LC\(_{90}\)	89.38	52.17	460.54	
48	y = 1.714x – 12.86	LC\(_{10}\)	13.37	0.57	44.12	
		LC\(_{50}\)	36.76	17.07	83.92	
		LC\(_{90}\)	60.15	33.57	123.72	
72	y = 1.971x – 14.29	LC\(_{10}\)	12.33	0.27	40.04	
		LC\(_{50}\)	32.63	14.83	73.54	
		LC\(_{90}\)	52.94	29.38	107.04	
96	y = 2.200x – 6.667	LC\(_{10}\)	7.58	0.74	18.27	
		LC\(_{50}\)	25.06	15.64	41.60	
		LC\(_{90}\)	43.94	30.54	64.92	
Table 2: Variations in serum alkaline phosphatase (iu l⁻¹) of *Channa punctatus* after acute and chronic exposure of two sub-lethal dose of tricyclazole.

Duration of exposure	Controlled value	Dose (mg l⁻¹)	Range	F value
		0.25	30.0 -90.0	42.15±1.25
		b=15 days	43.74±0.54*	(+3.77%)NS
		a=24 hours	46.29±0.40*	(+9.82%)*
		a=48 hours	49.48±0.33	(+17.39%)*
		a=96 hours	55.96±0.43b	(at 0.5=5.1,0.1=10.9, 30.0 -90.0)
		b=30 days	46.29±0.40	(+18.01%)*
		b=45 days	49.48±0.33	(+32.76%)*

Table 3: Variations in serum aspartate transaminase (iu l⁻¹) of *Channa punctatus* after acute and chronic exposure of two sub lethal dose of tricyclazole.

Duration of exposure	Controlled value	Dose (mg l⁻¹)	Range	F value
		0.25	30.00 -320.0	35.57±1.56
		b=15 days	43.76±0.48*	(+23.02%)*
		a=24 hours	45.87±0.86*	(+28.96%)*
		a=48 hours	49.86±0.29	(+40.17%)*
		a=96 hours	117.8*** and 1085***	
		b=30 days	45.87±0.86	(+26.99%)*
		b=45 days	49.86±0.29	(+37.64%)*
			0.01=27.0 for n₂=3	

Table 4: Variations in serum alanine transaminase (iu l⁻¹) of *Channa punctatus* after acute and chronic exposure of two sub lethal dose of tricyclazole.

Duration of exposure	Controlled value	Dose (mg l⁻¹)	Range	F value
		0.25	5.00 -90.0	13.25±1.25
		b=15 days	17.1±0.23*	(+24.36%)*
		a=24 hours	18.2±0.26*	(+32.36%)*
		a=48 hours	21.2±0.31*	(+54.58%)*
		a=96 hours	7.35* and 12.30**	(at 0.5=5.1,0.1=10.9, 5.00 -90.0)
		b=30 days	18.2±0.26	(+32.36%)*
		b=45 days	21.2±0.31	(+54.58%)*
			0.01=27.0 for n₂=3	

(***= Highly Significant, **= Moderately Significant, *= Significant, NS= Not Significant)
Tricyclazole Induced Alterations in Certain Biomarker Enzymes of an Indian Paddy-field Fish, Channa punctatus (Bloch)

decreased or increased significantly. Haider and Rauf (2014) also reported that aspartate transaminase and alanine transaminase increased significantly in Cirrhus mirgala exposed to diazinon compared to the controlled fish.

The increased levels of aspartate transaminase and alanine transaminase in Channa punctatus indicate that long-term exposure to tricyclazole caused tissue damage in fish. The reactive oxygen species produced during tricyclazole and other toxicants metabolism in fish lead to increase in the permeability of gills, hepatocytes, renal cells and cardiac cells resulting in the leakage of aspartate transaminase and alanine transaminase (Srivastava et al. 2004).

The ratio of alanine transaminase: aspartate transaminase (13.25:35.3) in tricyclazole exposed fish to be less than one indicates manifestation of pathological processes (Table 3 and 4). An increase in transaminase occurs due to amino acid input into the Krebs’ cycle in order to cope with the energy crisis during pesticide/tricyclazole based stress (Adams et al. 1996).

CONCLUSION

Therefore, it may be inferred that the activities of alkaline phosphatase, aspartate transaminase and alanine transaminase increased significantly in serum of tricyclazole exposed Channa punctatus. In this context, these enzymes are rightly considered as the pathological biomarker enzymes. Therefore, the entry of such fungicide to natural water bodies should be stopped besides ensuring their judicious application around the catchment area.

REFERENCES

Adams, S.M., Ham, M.S., Greeley, M.S., LeHew, R.F., Hinton, D.E., Saylor, C.F. (1996). Downstream gradient in bioindicator responses: point source contaminant effects on fish health. Canadian Journal of Fisheries and Aquatic Science. 53: 2177-2187.

Agius, C. and Coughman, W. (1986). Induction of enhanced alkaline phosphatase activity in the melanomacrophage centres of Oreochromis aureus (Steindachner) through starvation and vaccination. Journal of Fish Biology. 28: 87-92.

Agrahari, S., Gopal, K., Pandey, K. (2006). Biomarkers of monocrotophos in a freshwater fish Channa punctatus (Bloch). Journal of Environmental Biology. 27: 453-457.

Agrawal, M.K. and Sastry, K.V. (1979). HgCl2 induced enzymological changes in kidney and ovary of a teleost fish Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology. 22(1-2): 38-43.

Anwar, A. and Bhat, M.S. (2005). Efficacy of fungicides as seed treatment in the management of blast disease of rice in nursery bed. Agricultural Science Digest. (25):293-295.

APHA (2005). Standard methods for the examination of water and waste water, 20th ed., Clesceri, L.S., Greenberg, A.E. and Eaton, A.D. (Eds.), American Public Health Association, Washington DC.

Balasubramanian, M.P., Dhandayuthapani, S., Neelaiappan, K., Amalingam, K. (1983). Comparative studies on phospho-monoesterase in helminthes. Helminthologia. 20: 111-120.

Banaee, M., Sureda, A., Mirvaghefi, A.R., Ahmadi, K. (2011). Effects of diazinon on biochemical parameters of blood n rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology. 99: 1-6.

Durrieu, C. and Tran-Minh, C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety. 51(3): 206-209.

Edori, O.S., Dibofori-Orji, A.N., Edori, E.S. (2013). Biochemical changes in plasma and liver of Clarias ganepinus exposed to Paraquat. IOSR Journal of Pharmacy and Biological Sciences. 8(2): 35-39.

Haider, Md.J. and Rauf, A. (2014). Sub-lethal effects of diazinon on hematological indices and blood biochemical parameters in Indian carp, Cirrhus mirgala (Hamilton). Brazilian Archives of Biology and Technology. 57(6): 947-953.

Loomis, T.A. and Hayes, A.W. (1996). Loomis’s essentials of toxicology. 4th ed., Cal-fornia, Academic press. pp. 208-245.

Mazumder, N., Borah, S.K., Habibarua, P. (2016). Management of leaf spot (Alternaria poikanth) of tuberose through fungicides. Agricultural Science Digest. 36: 250-252. DOI: 10.18805/ asd.v36i3.11454.

Naik, G.R., Naik, G.B., Naik, B.T., Naika, K.R. (2012). Fungicidal management of leaf blast disease in rice. Global Journal of Bio-Science and Biotechnology. 1(1): 18-21.

Padovani, L., Capri, E., Padovani, C., Puglisi, E., Trevisan, M. (2006). Monitoring tricyclazole residues in rice paddy watersheds. Chemosphere. 62: 303-314.

Pan, D.Y. and Liang, X.M. (1993). Safety study of pesticides on bog frog, a predatory natural enemy of pest in paddy field. Journal of Hunan Agricultural College. 19(1): 47-54.

Pandey, S., Kumar, R., Sharma, S., Nagpure, N.S., Srivastava, S.K. (2005). Acute toxicity bioassays of mercuric chloride and malathion on air breathing fish, Channa punctatus (Bloch). Ecotoxicology and Environmental Safety. 61: 114-120.

Qayoom, I., Balkhi, M.H., Shah, F.A., Bhat, B.A. (2019). Impairment induced due to organophosphate compounds in some blood biochemical indices of fingerlings of Cyprinus carpio var. communis. Indian Journal of Animal Research. 53(10): 1326-1328. DOI: 10.18055/ijar.B-3662.

Reisch, D.L. and Oshida, O.S. (1987). Manual of Methods in aquatic environment research. Part 10. Short-term static bioassays. FAO Fisheries. Technical Paper No 247.

Sancho, E. (2009). Physiological effects of tricyclazole on zebrafish (Danio rerio) and post-exposure recovery. Comparative Biochemistry and Physiology. 150: 25-32.

Shahsavan, D., Mohri, M., Kanani, H.G. (2010). Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiology and Biochemistry. 36: 39-43.

Shilpa, V., Indumathi, S.P., Radha, T. (2009) Ecological risk assessment of the fungicide tricyclazole (75%) on Ophiocordulis leucopunctatus (Sykes, 1839) with respect to hepatic enzymes and pathological anamolies. Research Journal of Agriculture and Biological Sciences. 5(4): 445-451.

Splitsstoesser, W.E., Chu, M.C., Stewart, S.A., Splitsstoesser, S.A. (1976).
Alanine aminotransferase from *Cucurbita moschata* cotyledons. Plant and Cell Physiology. 17(1): 83-89.
Srivastava, A.S., Oohara, I., Suzuki, T., Shenouda, S., Singh, S.N., Chauhan, D.P. (2004). Purification and properties of cytosolic alanine aminotransferase from the liver of two freshwater fish, *Clarias batrachus* and *Labeo rohita*. Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology. 137(2): 197-207.
United State Environmental Protection Agency (USEPA) (2002).

Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms EPA-821-R-02-012. Washington D.C. (USA). U.S. Environmental Protection Agency Office of Water.

United State Environmental Protection Agency (USEPA) (2013). Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, USEPA. Washington, D.C.: EPA Office of Pesticides Program Database.