Candida albicans and candidalysin in inflammatory disorders and cancer

Jemima Ho, Giorgio Camilli, James S. Griffiths, Jonathan P. Richardson, Nessim Kichik and Julian R. Naglik
Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
doi:10.1111/imm.13255
Received 30 June 2020; revised 5 August 2020; accepted 14 August 2020.
*Correspondence: Jemima Ho, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 1UL, UK. Email: Jemima.ho@kcl.ac.uk
Senior author: Julian Naglik

Summary
As our understanding of mycology progresses, the impact of fungal microbes on human health has become increasingly evident. Candida albicans is a common commensal fungus that gives rise to local and systemic infections, particularly in immunocompromised patients where it can result in mortality. However, C. albicans has also been quietly linked with a variety of inflammatory disorders, to which it has traditionally been considered incidental; recent studies may now provide new aspects of these relationships for further consideration. This review provides a novel perspective on the impact of C. albicans and its peptide toxin, candidalysin, on human health, exploring their contributions to pathology within a variety of diseases.

Keywords: Candida albicans; candidalysin; gut barrier; IL-17; mucosal disease.

Introduction
Candida albicans is a prevalent fungus that comprises part of the healthy human microbiota. Within such microbial communities, C. albicans often exists as a harmless commensal yeast in low-to-moderate numbers, likely kept in check by competing microbes and host immunity. Its ability to shift from commensal to infectious pathogen is of particular interest to the clinical understanding of Candida infections and remains incompletely understood. Current evidence suggests that pathogenic switching is primarily a consequence of immune compromise brought about by a variety of factors including microbial environment,1 immune-suppressive drug treatment and pre-existing infection or disease.2-4 Indeed, immunocompromised patients are particularly susceptible and exhibit mucosal candidiasis of enhanced severity and frequency, with potential to progress to systemic candidaemia. This represents a significant clinical burden, with ~2 000 000 infections in HIV+ patients and 700 000 total systemic infections recorded in 2017.5

In addition to conditions that occur as a result of persistent or severe Candida infection, such as oral and vulvovaginal candidiasis (VVC) or systemic candidaemia, an increasing number of seemingly unrelated diseases have also been reported to show association with Candida infection. Elevated incidence of candidiasis has been linked with periodontitis,6-9 inflammatory bowel disease (IBD),10,11 and skin12-14 and respiratory disorders,15-18 among others; however, the causal relationship in such circumstances remains unclear. Whilst weakened immunity occurring as a result of disease may certainly favour growth of opportunistic fungi, a role for C. albicans in perpetuating ongoing disease and promoting acute or chronic pathology may also warrant consideration, particularly in the context of its secreted toxin, candidalysin.

Candidalysin is a recently described cytolytic peptide exclusively secreted by pathogenic hyphal forms of C. albicans.19 Interestingly, candidalysin plays an important role in triggering innate antifungal immunity during infection,20,21 which is largely governed by neutrophil and interleukin (IL)-17 responses.22-25 This review will examine the variety of diseases associated with C. albicans infections and assess the role of this fungus and its toxin, candidalysin, in disease development and associated pathology.

Abbreviations: AD, atopic dermatitis; AMPs, antimicrobial peptides; CNS, central nervous system; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; IBD, inflammatory bowel disease; IL-17, Interleukin; MMPs, matrix metalloproteinases; MS, multiple sclerosis; SAFS, severe asthma with fungal sensitization; VVC, vulvovaginal candidiasis
IL-17-mediated disorders

The IL-17 signalling pathway possesses critical roles in immune regulation, and aberrant function results in a range of diseases that share a common feature of chronic inflammatory-induced pathology. This is best defined by IL-17A, the most studied IL-17 family member, which has been shown to contribute to dermatitis, psoriasis, IB, arthritis, multiple sclerosis (MS), periodontal disease, and systemic lupus erythematosus, among other inflammatory diseases. Though much is still unknown about the mechanisms of IL-17-mediated pathology, its potent induction of antimicrobial peptides (AMPs), proinflammatory cytokines and downstream neutrophil recruitment is thought to contribute. Of particular interest is the central role of IL-17A in orchestration of antifungal defences. IL-17A and associated effector molecules and cells are potently induced in response to C. albicans infection, with candidalysin accounting for robust induction of early and innate ‘natural’ Th17 cell-derived IL-17.

Notably, elevated incidence or sensitization to C. albicans is often observed in a specific group of IL-17-mediated pathologies localized at mucosal and epithelial surfaces. These include periodontitis, atopic dermatitis (AD), psoriasis, IB, myotic keratitis and severe asthma with fungal sensitization (SAFS). Moreover, evidence of improved disease outcomes following antifungal measures has been observed and suggests a role for C. albicans in contributing to disease pathology. Examples include tamoxifen-induced C. albicans inhibition to reduce severity of periodontitis in women, as well as fluconazole treatment or faecal microbiota transplantation (inhibiting C. albicans burdens) to rescue ulcerative colitis symptoms in mice. There are also limited reports of improved C. albicans-related respiratory diseases following fluconazole administration (though Aspergillus species have been better studied in airways disease). It is likely that other examples could be found by investing more research into C. albicans in this context.

Furthermore, candidalysin can directly induce IL-1β, IL-36γ and the NLRP3 inflammasome, central proinflammatory components known to significantly contribute to IL-17-mediated diseases. Together, these studies suggest a role and potential mechanisms for C. albicans in contributing to the elevated immune response and pathology observed in IL-17-mediated inflammatory diseases. However, the relationships are complex. Therapeutic blockade of IL-17, whilst beneficial in MS, arthritis and psoriasis, does not improve AD and was shown to result in exacerbation of existing and even de novo IB pathology, as well as increased incidence of C. albicans infections. Greater understanding is thus required to fully delineate the complex mechanisms underlying IL-17-mediated diseases and how C. albicans or indeed other fungal species may impact pathology.

A significant component of successful IL-17-mediated antifungal response is potent neutrophil recruitment and activation, which, at an early stage in infection, can be triggered by the presence of candidalysin. Interestingly, whilst a robust neutrophil response functions to resolve oral and central nervous system (CNS) C. albicans infections, neutrophils are found to drive pathology of VVC, Candida keratitis (GaK), systemic candidaemia and C. albicans-associated cystic fibrosis, with the latter arising from neutrophil-induced degradation of chitinase, suppressing host ability to protect against chitin containing C. albicans. These studies suggest a delicate balance and complexity of antifungal neutrophil responses, which are likely dependent on multiple components. Continued research may determine the underlying factors leading to pathology in this context.

Barrier integrity and disease

Another component often compromised in disease and particularly in infection is the epithelium. Its integrity and function as a selectively permeable barrier are dependent on cohesive contacts between neighbouring epithelial cells. This is largely provided by E-cadherin, a transmembrane glycoprotein that forms binding pairs with that of neighbouring cells, which, clustering together at adherens junctions, are supported by the cytoskeleton to form a tight belt across the epithelium that fastens cells together. In addition to structural defences, a healthy epithelium provides front-line induction of innate immune responses through release of alarmins, AMPs and immune cell chemokines, all of which are additionally compromised upon loss of barrier integrity. Notably, periodontal, gut and skin disorders are commonly associated with the loss of E-cadherin, resulting in enhanced barrier permeability and inflammatory pathology, with restoration of E-cadherin showing improvement in disease outcomes.

Candida albicans infection has also been shown to diminish E-cadherin expression in both in vivo and in vitro infection models with candidalysin highlighted as a direct contributor to epithelial damage, loss of barrier integrity and subsequent translocation of C. albicans across the intestinal epithelia. As the gut is considered the main site of C. albicans entry into the bloodstream, where it may lead to systemic candidaemia and mortality, the pathological impact of Candida and candidalysin at this organ appears highly significant. The ability of C. albicans to diminish E-cadherin expression and other cell adhesion proteins such as occludin and desmoglein-2, diminish barrier integrity, may be of particular interest in the context of IB, oral and skin disorders.
Recently, alcoholic hepatitis was found to be another potential example of the pathological impact of *C. albicans* in breaching gut barriers. The gut–liver axis describes the relationship and role of the gut microbiome in shaping healthy liver metabolism. This connection is supported by the close anatomical proximity between the gut and liver, as well as a specialized portal circulation, which permits enhanced permeability and interaction between gut-derived substances and liver-resident cells. Gut-derived bacterial components and endotoxins in particular have long been implicated in driving alcoholic liver disease. Recent studies now show a similarly significant role for *C. albicans*. Upon infection, ligation of *C. albicans* β-glucans to host dectin-1 receptors on liver-resident macrophages (kupffer cells), results in inflammatory IL-1β release and enhanced ethanol-induced liver disease in mice. A second, non-dectin-1-mediated but candidalysin-induced mechanism also drives elevated hepatic damage, steatosis and mortality in ethanol-fed *C. albicans*-infected mice.

The authors additionally observe that alcoholic hepatitis patients carry elevated levels of the candidalysin-encoding gene, *ECE1*, when compared to healthy controls. These data identify two distinct *C. albicans* mechanisms, each independently promoting alcoholic hepatitis and highlights this pathogen as a new and considerable factor for the development of alcoholic liver disease.

Dysregulated growth signalling

The ability of *C. albicans* to activate the epidermal growth factor receptor (EGFR) may also contribute to *C. albicans*-associated comorbidities. The EGFR is a transmembrane protein with a broad range of functions controlling various cell proliferative and maintenance roles, in addition to immune induction. It is often found highly dysregulated, via overexpression or constitutive activation, in a select group of cancers including head and neck, breast, lung, colon and vulvovaginal cancers. Interestingly, the majority of these EGFR-associated cancers are located at sites where *C. albicans* commonly infects, with reports providing contrasting evidence both for and against elevated incidences of candidiasis in these patients. Whilst immune suppression resulting from anticancer therapy may indeed play a role, a long-standing debate on the ability of *C. albicans* to potentiate oncogenic disease exists, primarily in oral cancer. Recent studies may now provide additional aspects for consideration.

C. albicans infection potently activates the EGFR. Upon cell adhesion, EGFR is bound and activated by the fungal cell wall protein Als3p, which initiates endocytosis of the fungus, providing an entry mechanism into host cells. Additionally, candidalysin can indirectly activate EGFR through a complex mechanism involving matrix metalloproteinases (MMPs) and EGFR ligands, resulting in downstream immune activation. Notably, MMPs and EGFR ligands are each independently implicated in a number of cancers. Other observations suggesting contribution to cancer development include the ability for *C. albicans* to activate epithelial MAPK and ERK signalling pathways, which are associated with growth and proliferation; loss of E-cadherin and occludin, observed in epithelial–mesenchymal transition (EMT); activation of angiogenesis and pro-angiogenic factors; and the ability of *Candida* to enhance production of known carcinogenic factors.

Figure 1. *Candida albicans* potential contribution to disease. Potential *C. albicans* mechanisms of contributing to disease include potent induction of IL-17 signalling, breach of gut epithelial barriers and activation of multiple cancer-associated factors.
molecules such as nitrosamines and acetaldehyde. However, clinical and in vivo evidence substantiating a direct causal or potentiating role for *C. albicans* in cancer is particularly limited. As such, the association here remains ambiguous.

Activation of MMPs is also observed in oral disease, resulting in breakdown of gingival and periodontal ligament collagen, tissue remodelling, inflammation and uncontrolled extracellular matrix (ECM) turnover, also associated with cancer. Investigation into potential links with *C. albicans* would be of great interest given the known associations of this fungus with oral disease, its ability to signal through and induce MMPs, and MMP activation being a demonstrated mechanism for disease utilized by other oral pathogens.

Conclusions

As we increase our understanding of *C. albicans* induced pathophysiology, the potential for infection to contribute to several comorbidities becomes increasingly apparent. Its natural distribution throughout the body and ability to activate events highly linked with disease may be of significant consequence. Induction of IL-17-mediated signalling, breach of epithelial barriers and activation of cancer-associated factors provide the most convincing examples of its ability to contribute to disease (summarized in Fig. 1), though greater understanding is required to fully delineate its role in these instances, as well as others, yet unknown. Further research into the association of *C. albicans* with these diseases shall undoubtedly shed light on new mechanisms of disease development, which may shift perceptions of this under-investigated microbe and its influence on human health.

Acknowledgements

J.H. conceptualised and wrote the paper; G.C. created the schematic diagram; J.G., J.P.R., N.K. and J.R.N. edited the paper. This work was supported by grants from the Wellcome Trust (214229 Z 18 Z), Biotechnology & Biological Sciences Research Council (BB/N014677/1), National Institutes of Health (R37-DE022550), King’s Health Partners Challenge Fund (R170501), the Rosetrees Trust (M680), and the NIH Research at Guys and St. Thomas’ NHS Foundation Trust and the King’s College London Biomedical Research Centre (IS-BRC-1215-20006).

Disclosures

The authors declare no conflict of interest.

Data availability statement

Not applicable. No data were generated in the making of this article.

References

1. Mallick EM, Bennett RJ. Sensing of the microbial neighborhood by *Candida albicans*. *PLoS Pathog* 2013; 9:e1003661.
2. Fekidou A, Neely M. Incidence and predictors of invasive candidiasis associated with candidemia in children. *Mycoses* 2011; 54:46–53.
3. Lerey O, Gangneux JP, Montravers P, Mitra JP, Gouin F, Sollert JP, et al. Epidemiology, management, and risk factors for death of invasive *Candida* infections in critical care: a multicenter, prospective, observational study in France (2005–2006). *Crit Care Med* 2009; 37:1612–8.
4. Toda M, Williams SR, Berkow IL, Farley MM, Harrison LH, Bonner L, et al. Population-based active surveillance for culture-confirmed candidemia - Four Sites, United States, 2012–2016. MMWR Surveill Summ 2019; 68:1–5.
5. Bongomin F, Gago S, Olatele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. *J Fungi* 2017; 3:57.
6. Duttar N, Abusulame L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, et al. On-going mechanical damage from mastication drives homoeostatic Th17 Cell Responses at the oral barrier. *Immunity* 2017; 46:133–7.
7. Ekan MA, Jotwani R, Abe T, Chimlea I, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. *Nat Immunol* 2012; 13:465–73.
8. Canabarro A, Valle C, Farias MR, Santos FB, Lazera M, Wanbe K. Association of subgingival colonization of *Candida albicans* and other yeasts with severity of chronic periodontitis. *J Periodontal Res* 2011; 46:428–52.
9. De-La-Torre J, Quinodis G, Marcos-Arias C, Marichalar-Mendaña X, Gainza ML, Erazo E, et al. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? *Rev Iberoam Micol* 2018; 35:134–9.
10. Sokol H, Leducq V, Aschard H, Pain P, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. Epidemiology of fungal diseases—estimate precision. *J Fungi* 2017; 3:57.
11. Kho J, et al. *Candida albicans* and atopic dermatitis patients. *Clin Exp Allergy* 1993; 23:332–9.
12. Park CO, Fu X, Jang X, Pan Y, Teague JE, Collins N, et al. *Candida albicans* after skin infection. *Candida albicans* and other yeasts with severity of chronic periodontitis. *J Periodontal Res* 2011; 46:428–52.
13. Khosravi AR, Bandghorai AN, Moazzeni M, Shokri H, Mansouri P, Mahmoudi M. *Candida* and atopic dermatitis. *Clin Exp Allergy* 2009; 39:125–34.
14. Savolainen J, Lintu P, Kosonen J, Kortekangas-Savolainen O, Viander M, Eraso J, et al. *Candida albicans* and other yeasts with severity of chronic periodontitis. *J Periodontal Res* 2011; 46:428–52.
15. Sokol H, Leducq V, Aschard H, Pain P, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. Epidemiology of fungal diseases—estimate precision. *J Fungi* 2017; 3:57.
26 Leonardo S, Cuppari C, Manti S, Filippelli M, Parisi GF, Borga F, et al. Serum interleukin-17, interleukin 23, and interleukin 10 values in children with atopic eczema/dermatitis syndrome (AEDS): Association with clinical severity and phenotype. Allergy Asthma Proc. 2013;34(2):87–93.

27 Koga C, Kohashi M, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128:263–30.

28 Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis - results of two phase 3 trials. N Engl J Med 2014;371:326–38.

29 Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003;52:63–70.

30 Moschen AR, Tilg H, Rainer T.I., IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol 2019;16:185–96.

31 Luberb E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 2015:11:413–5.

32 Bühler U, Heicher V, Lusti F, Renk A, Belikan P, Graetz C, et al. Role of IL-17-producing lymphocytes in severity of multiple sclerosis upon natalizumab treatment. Mult Scler 2017;23:567–76.

33 Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Rev Allergy Immunol 2015;48:379–87.

34 Wang Y, Wu X, Wu C, Jin H. IL-36y inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis. Int J Med Sci 2017;14:1002–7.

35 Yang HY, Xue JH, Lee SM, Park BH. Atopic dermatitis-like skin lesions are suppressed in at-1 transgenic mice through the inhibition of interleukins. Exp Mol Med 2018;50:1–9.

36 Yang BY, Cheng YG, Liu Y, Liu Y, Tan JY, Guan W, et al. Datura Metel L. Ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MYD88-NF-kB-NLRP3 inflammasome pathway. Molecules 2019;24:2157.

37 Sch-workers, K, Kesteren G, Schmits A, Villi K, Carlé B, et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 2019;156:1082–97.e11.

52 Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan SL, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med 2015;373:1329–39.

62 Krueng J, Wharton KA, Schäftl T, Suprun M, Torone RI, Jiang X, et al. IL-17 inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol 2019;144:750–63.

63 Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, Van Der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med 2015;373:1329–39.

64 Krueng J, Wharton KA, Schäftl T, Suprun M, Torone RI, Jiang X, et al. IL-17 inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol 2019;144:750–63.

65 Sch-workers, K, Kesteren G, Schmits A, Villi K, Carlé B, et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 2019;156:1082–97.e11.

70 Yang Y, Wu X, Wu C, Jin H. IL-36y inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis. Int J Med Sci 2017;14:1002–7.

71 Yang HY, Xue JH, Lee SM, Park BH. Atopic dermatitis-like skin lesions are suppressed in at-1 transgenic mice through the inhibition of interleukins. Exp Mol Med 2018;50:1–9.

72 Yang BY, Cheng YG, Liu Y, Liu Y, Tan JY, Guan W, et al. Datura Metel L. Ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8-MYD88-NF-kB-NLRP3 inflammasome pathway. Molecules 2019;24:2157.

73 Kückel C, Raiser H, Campos Carrascosa L, Gürkalik A, Zhang Y, et al. IL-17+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun 2019;10:5722.

74 Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, Van Der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med 2015;373:1329–39.

75 Krueng J, Wharton KA, Schäftl T, Suprun M, Torone RI, Jiang X, et al. IL-17 inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol 2019;144:750–63.

76 Hohensemberger M, Cardwell LA, Oussaid E, Feldman SR. Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. J Dermatol Treat 2018;29:13–8.

77 Huyer W, Sands BE, Lewitzky S, Vandemerebuckowec M, Reinsch W, Haggins PDB, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012;61:1693–700.

78 Smith M, Riep J, Paciaronc J, Beck P, Ferraz JG, Ijjo H. Crohn’s-like disease in a patient exposed to anti-interleukin-17 blockade (laxikumab) for the treatment of chronic plaque psoriasis: a case report. BMC Gastroenterol 2019;19:162.

79 Ungar B, Pavl AB, Li R, Kimmel G, Nia J, Hashim P, et al. Phase 2 Randomized, Double-Blind study of IL-17 Targeting with Secukinumab in atopic dermatitis. J Allergy Clin Immunol 2020;56:306:84–9.

80 Conti HR, Peterson AC, Bruce L, Hupper AR, Hernández-Santos N, Whiley N, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med 2014;211:2075–84.

81 Yano I, Lilly E, Barouss M, Fidel PL. Epithelial Cell-Derived S100 Calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 2018;86:5126–37.

82 Zhang H, Li H, Li Y, Zou T, Dong X, Song W, et al. IL-17 plays a central role in initiating experimental candida albicans infection in mouse cornea. Eur J Immunol 2013;43:2671–82.

83 Dell Fresco C, Saur-Leal P, Enamorado M, Wecalek SK, Martinez-Cano S, Blanco-Menéndez N, et al. DNGr1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 2018;362:351–6.

84 Hector A, Chotirmall SH, Lavelle GM, Mirković B, Horan D, Eichler L, et al. Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. J Allergy Clin Immunol 2016;137:1183–9.e4.

85 Guillot C, Lecuit T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 2013;340:1185–9.

86 Lee G, Kim HI, Kim HM. RhoA-JNK regulates the E-cadherin junctions of human gingival epithelial cells. J Dent Res 2016;95:284–91.

87 Abdulkareem A.A, Shelton RM, Landau G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018;53:565–74.
93 Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018;12:3–20.
94 Engkla Naurullah Satunam EAF, Ahmad H, Ramzi AB, Abdul Wahab R, Kaderi MA, Wan Harun WHA, et al. The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis. J Oral Pathol Med 2020; jop.13014.
95 Zhu W, Phan QT, Boontheung P, Solis NY, Luo JÀ, Filler SG, EGF and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci USA 2012; 109:14194–9.
96 Vandembroucke RE, Libert G. Is there new hope for therapeutic matrix metallopro¬teinase inhibition? Nat Rev Drug Discovery 2014; 13:964–27.
97 Roman N, Correia J, Prieto D, Alonso R, Pia J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. Int Microbiol 2020; 23:23–9.
98 Ashman RB, Papadimitriou JM. Endothelial cell proliferation associated with lesions of murine systemic candidiasis. Infect Immun 1994; 62:5151–3.
99 Barkin RS, Park H, Phan QT, Xu L, Homayouni R, Rogers PD, et al. Transcriptome profile of the vascular endothelial cell response to Candida albicans. J Infect Dis 2008; 198:935–202.
100 Vellanki S, Huh EY, Saville SP, Lee SC. Candida albicans morphology-dependent host fgf-2 response as a potential therapeutic target. J Fungi 2019; 5:22.
101 Krogh P. The role of yeasts in oral cancer by means of endogenous nitrosation. Acta Odontol Scand 1990; 48:85–8.
102 Krogh P, Hald B, Holmstrup P. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis 1987; 8:1543–8.
103 Alnuaimi A, Ramdzan A, Wiesenfeld D, O’Brien-Simpson N, Koler S, Reynolds E, et al. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis 2016; 22:805–14.
104 Giannina-Cirraque ML, Niminen MT, Novak Frazer L, Aguirre-Uztar JM, Moragues MD, Rautemaa R. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. J Oral Pathol Med 2013; 42:243–9.
105 Sorsa T, Tjäderhane L, Sato T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis 2014; 20:311–8.
106 Gürsoy UK, Könenin E, Tervahartiala T, Göürsoy M, Piatakén J, Torvi P, et al. Molecular forms and fragments of salivary MMP-8 in relation to periodontitis. J Clin Perio¬dent 2018; 45:1421–8.
107 Franco C, Patricia HR, Timo S, Claudia B, Marcela H. Matrix metalloproteinases as regulators of periodontal inflammation. Int J Mol Sci 2017; 18:440.
108 Yuan X, Mitchell BM, Willemsus KR. Expression of matrix metalloproteinases during experimental Candida albicans keratitis. Invest Ophthalmol Vis Sci 2009; 50:737–42.
109 Potempa J, Bambula A, Travis J. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000 2000; 20:153–92.
110 Ding Y, Haapasalo M, Kerosuo E, Lounatmaa K, Kotiranta A, Sorsa T. Release and activation of human neutrophil matrix metallo- and serine proteinases during phago¬cytosis of Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticula. J Clin Periodontol 1997; 24:237–48.