Studies on growth parameters in quinoa
(Chenopodium quinoa Willd.)

Suresh Naik, R Paramesh, R Siddaraju, P Ravi Shankar and Mudalagiriyappa

DOI: https://doi.org/10.22271/chemi.2020.v8.i1f.8278

Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudo cereal, which belongs to family amaranthaceae. Application of chemical fertilizers improves the nutrient availability in soil and high plant growth condition is seen, thus augment the seed yield. Keeping these views, the present investigation was undertaken at ZARS, UAS, GKVK, Bengaluru during Rabi 2018. The treatment combinations were arranged in factorial randomised block design with two replications which includes two factors, spacing and nutrient application, with 4 levels of spacing and 4 levels of nutrient application. The results revealed that, the treatment with spacing of 45x10 cm and high amounts of nutrient 150:75:75 kg NPK ha⁻¹ recorded the highest growth parameters like plant height at 30 DAS (25.91 cm), 60 DAS (119 cm) and at harvest (122.28 cm), total number of branches plant⁻¹ (17.70), total number of panicles plant⁻¹ (17.63), length of glomerule (16.55 cm), where as in spacing with 55x10 cm and nutrient 150:75:75 kg NPK ha⁻¹ recorded the highest values in days to 50 per cent flowering (51.97 %), days to maturity (89.32 days), field emergence (89.17 %) respectively.

Keywords: Quinoa, growth, glomerule and field emergence

1. Introduction
Quinoa (Chenopodium quinoa Willd.) is an annual herbaceous plant belonging to family Amaranthaceae and having its origin in the Pacific slopes of the Andes in South America. It has been cultivated in the Andean region for more than 7000 years (Pearsall, 1992) [9]. The seeds may be utilised for human food, in flour purpose and in animal feed stock also (Rea et al., 2003) [12]. It has good nutritive value. It is a pseudo cereal botanically related to amaranthus (Amaranthus spp) which has the potential to grow with less inputs, water and tolerate to a variety of biotic and abiotic stresses (Rea et al., 1979) [11]. Quinoa is a fast-growing plant and grows up to 2 metres tall with different types of leaves like ovate and rhombhoidal in same plant and is similar in the appearance to common weed (Chenopodium album called as goosefoot or lambs quarter). Each inflorescence has many small achenes which are around 2 mm in diameter. It is an achene (seed like fruit with a thick seed coat) with different colours ranging from white, pale yellow, orange, red, black and brown. Quinoa has greater capacity of adaptation to soil pH, photoperiod, altitude etc. Quinoa can be grown from sea level to an altitude 3,900 meters above mean sea level and pH range of 6 to 8.5 and temperature from sub-tropical to tropical and humid areas. Quinoa can be successfully grown on marginal soils showing its low nutrient requirements (Jacobson, 2003) [7]. It is assumed to be a quantitative short day species where the length of the vegetative phase not only depends on latitude of the origin and also depends on the day length (Rishi and Galwey, 1984) [13]. Thus the global intrest generated following the declaration of 2013 as the “International year of quinoa”. The highest production of quinoa in world is Peru with 79,269 tonnes per yer followed by Bolivia with 65,548 tonnes, and Ecuador with 3903 tonnes per year (FAOSTAT of United nations 2013) [5]. Quinoa was cultivated in an area of 440 hectares with an average yield of 1,053 tonnes hectare⁻¹ (Srinivasa Rao, 2015) [17] in India. Andhra Pradesh Academy of Rural Development (APARD), Hyderabad has initiated the project called “Project Anantha”. This project had been initiated to search to substitute for ground nut crop with quinoa and thus improved the economic status of farmers in anathapur district and getting more net profit for the farmers.

Corresponding Author:
Suresh Naik
Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
They reported that quinoa (yellow colour entry) had taken 90-120 days and produced average seed yield of 760 kg ha\(^{-1}\) (APARD, 2013-14). Data from 2013-14 is not yet documented. The growing period in Greece was 110-160 days and the yield was 2000 kg ha\(^{-1}\) (Jacobsen, 2003)\(^7\)

During green revolution many hybrids and varieties were released, but indias due to scanty availability of information and lack of standardisation procedures in seed production, this research need to be addressed.

The quinoa crop is usually grown on poor fertility soil and moisture is the limiting factor for growth and development. Under these conditions, optimum nutrient supplement is necessary to minimize the effects of soil nutrient status and to promote good plant growth. However quinoa is highly responsive to soil nitrogen (Erley et al., 2005)\(^4\). Therefore, it becomes more important to find out the variations with respect to different plant density and nutrient management in relation to its growth and productivity.

2. Material and methods

Field experiments were carried out in quinoa (\textit{Chenopodium quinoa} Willd.) during Rabi, 2018 at ZARS, UAS, GKVK, Bengaluru. Quinoa cv. EC 507740 was raised during Rabi, 2018 at ZARS, University of Agricultural Sciences, Bangalore, which is situated between 13° 15’ N latitude and 77° 32’ East longitudes, at 930 m altitude above Mean Sea Level (MSL). The experiment was laid out in Fatorial randomized complete block design and replicated in two times with sixteen treatments, with four different spacings and nutrient levels. Five tagged plants were used for getting results on growth parameters.

2.1. Plant height (cm)

The plant height was measured from the base of the plant at ground level to the growing tip of the plant (base of the top leaf) at 30 DAS, 60 DAS and at harvesting stage. After emergence of the panicle, the height was taken up to the base of the panicle on the main shoot. The average plant height was worked out and expressed in centimetres.

2.2. Total number of panicles plant\(^{-1}\)

From randomly selected five plants, total number of panicles plant\(^{-1}\) was calculated at 30 DAS, 60 DAS and at harvesting stage. Data was pooled and average total number of panicles was determined.

2.3. Total number of branches plant\(^{-1}\)

From randomly selected five plants, total number of branches were counted at 30 DAS, 60 DAS and at harvesting stage. Data was pooled and average total number of branches were determined.

2.4. Length of glomerule

From randomly selected five plants, length of glomerule of panicle were measured at harvest. Recorded data was pooled and average length of glomerule was determined.

2.5. Days taken to 50 per cent flowering

Daily counts were made in each plot to know the days taken to 50 per cent flowering after vegetative stage. The date on which 50 per cent of the total plants were flowered in each plot was recorded. The number of days taken to 50 per cent maturity was computed from the date of sowing and mean was expressed as whole number.

2.6. Days taken to maturity

Daily counts were made in each plot to know the days taken to maturity after vegetative stage. The date on which 100 per cent of total plants were matured in each plot was recorded. The number of days taken to 100 per cent maturity was computed from the date of sowing and mean was expressed as whole number.

2.7. Field emergence (%)

Field emergence was calculated by sowing 100 seeds in 4 replications with 5 cm spacing between the seeds. Then number of seeds germinated and seedlings emerged with in the field were counted on 10\(^{th}\) day after sowing. The field emergence was calculated by using following formula suggested by Saha and Basu (1981)\(^1\).\(^5\)

\[
\text{Field emergence (\%)} = \frac{\text{Number of seedlings emerged}}{\text{Total number of seeds sown}} \times 100
\]

2.8. Statistical analysis

The experimental data collected on various growth and yield components of plant were subjected to Fisher’s method of Analysis of Variance technique (Gomez and Gomez,1984)\(^6\). The level of significance used in ‘F’ test was at P=0.05. Whenever F-test was significant for comparison amongst the treatments an appropriate value of critical difference (CD) was worked out. Otherwise against CD values abbreviation NS (Non-Significant) was indicated. All the data were analyzed and the results are presented and discussed at a probability level of 0.05 per cent.

3. Results

The results of growth parameters of quinoa \textit{viz.}, plant height at 30, 60 DAS and at harvest, number of branches plant\(^{-1}\), total number of panicles plant\(^{-1}\), days to 50 per cent flowering, length of glomerule, days to maturity, field emergence are represented in Table 1.

3.1. Plant height (cm)

Among the different nutrient levels and spacings significant difference was observed for plant height. At 30 DAS plant height was significantly influenced by different spacing and varied amounts of nutrients at 30 DAS. Among spacing, the highest plant height (22.57 cm) was attained in spacing S\(_4\) (55 x 10 cm). Among different amounts of nutrients N\(_4\) gave higher plant height 22.39 cm followed by N\(_3\) (21.33 cm) and lower plant height was observed in N\(_1\) (16.80 cm). Interaction of both different spacing and nutrient levels gave higher plant height in T\(_{12}\) (S\(_4\)N\(_4\)) was (25.91) cm, whereas lower plant height was seen in T\(_1\) (S\(_1\)N\(_1\)) was (12.16) cm. At 60 DAS, the maximum plant height was observed in wider spacing in S\(_1\) (45 x10 cm) (110.62 cm) and least was noticed in narrow spacing S\(_3\) (25 x 10 cm) is 95.18 cm. There was non significant difference in plant height at 60 days after sowing due to difference nutrient levels. Highest plant height was observed in N\(_1\) (125:62.5:62.5 NPK ha\(^{-1}\)) is (108.84 cm) where as lower plant height is observed in N\(_1\) (75:37.5:37.5 NPK ha\(^{-1}\)) is 98.50 cm. Interaction of both spacing and nutriters showed a non significant difference in plant height, highest was observed in T\(_{12}\) (S\(_4\)N\(_4\)) is (119 cm) followed by S\(_3\)N\(_3\) T\(_{12}\) (117.19 cm) where as lower plant height was observed in T\(_1\) (S\(_1\)N\(_1\)) is 92.36 cm. At harvest stage showed
significant difference due to spacing levels. Highest was observed in S1 (45 x 10 cm) is (117.93 cm) and least was observed in S1 (25 x 10 cm) is 100.10 cm. There was no significant difference in plant height at harvest due to difference nutrient levels. Highest was observed in N2 (125.62:5:62.5 Kg NPK ha⁻¹) is (112.03 cm) whereas lower plant height was observed in N1 (75:37.5:5 Kg NPK ha⁻¹) is 102.41 cm. The plant height showed non significantly difference by interaction of both spacing and harvest. Higher plant height was observed in T12 (S1N4) is 122.28 cm followed by T16 (S1N4) is 113.82 cm and lowest was observed in S1N1 (97.90 cm).

3.2. Total number of branches plant⁻¹
The total number of branches plant⁻¹ were significantly different as influenced by different levels of spacing. The highest total number of branches was observed in S4 (55 x 10 cm) was 15.59 whereas lower number of branches was observed in S1 (25 x 10 cm) was 8.90. The total number of branches were significantly different as influenced by different levels of nutrients. The highest total number of branches was observed in N4 (150:75:75 Kg NPK ha⁻¹) was 14.57, which as lower was observed in N1 (75:37.5:5 Kg NPK ha⁻¹) was 11.24. Interaction effect of both nutrients and spacing levels has a Non significant difference in total number of branches. The highest was observed in T12 (S1N4) is 17.70 followed by T16 (S1N4) was 15.88 whereas lower number of branches was observed in T1 (S1N1) was 6.05. This results conveyed that total number of branches were more in higher spacing of 45x10 cm and nutrient level of 150:75:75 kg NPK ha⁻¹ because of higher nutrient supply to individual plant and it absorbs more and good plant growth is seen, so more number of branches were seen. These results are in accordance to Ramesh (2016) [10] in quinoa.

3.3. Total number of panicles plant⁻¹
Total number of panicles plant⁻¹ were significantly differed with different levels of spacing. Highest number of panicles plant⁻¹ was observed in S1 (45 x 10 cm) is 15.22 whereas lower number of panicles were observed in S4 (25 x 10 cm) is 8.47. Total number of panicles plant⁻¹ differed significantly with different levels of nutrients. Highest number of panicles was observed in N4 (150:75:75 Kg NPK ha⁻¹) is 14.74 whereas lower in N1 (75:37.5:5 Kg NPK ha⁻¹) is 11.51. Interaction effect of both spacing and nutrients on the total number of panicles plant⁻¹ differed significantly. Highest total number of panicles plant⁻¹ was observed in T12 (S1N4) is 17.63 followed by T16 (S3N4) is 15.76 and lower was observed in T1 S1N1 (5.19).

3.4. Length of glomerule
The length of glomerule was observed with different levels of spacing and it was found highest in case of S3 (15.78 cm) and lowest length of glomerule is observed in S1 (9.07 cm). The length of glomerule was observed with different levels of nutrient application. It showed that highest length of gloerule was observed in N4 (16.12 cm) where as lowest length of glomerule was observed in N1 (9.41 cm). Interaction levels of different spacing and nutrient showed significant difference in length of glomerule. Highest was observed in S1N4 (16.55 cm) followed by S1N3 (16.10 cm), where as lower length of glomerule is seen in S1N1 (2.60 cm).

The results conveyed that length of glomerule was higher in wider spacing 45x10 cm and with application of higher nutrients 150:75:75 kg NPK ha⁻¹.

3.5. Days to 50 per cent flowering
Days to 50 per cent flowering with different spacing levels show significant difference. Wider spacing S4 (51.97) took more number of days and narrow spacing S1 (44.99) took less number of days for 50 per cent flowering. Days to 50 per cent flowering with different nutrient levels shown non significant difference. However application of more amount of nutrients. Nutrient levels N4 took more number of days (49.53) and lower nutrient level N1 took less number of days (48.07) for 50 per cent flowering. Interaction of spacing and nutrients showed non significant difference for days to 50 per cent of flowering. However higher number of days were taken in S1N2 (52.45) and lower number of days for 50 per cent flowering is taken in S3N1 (43.65).

3.6. Days to maturity
Days taken to maturity showed non significant difference among the spacing treatments. Wider spacing (S4) took 89.32 days and narrow spacing (S1) took 88.02 days to complete maturity stage. Days taken to maturity differed non significantly among the nutrient levels. N4 nutrient level took more number of days (91.22) to complete maturity. Whereas, N1 nutrient level took less number of days (86.88). The interaction of spacing levels and nutrient levels for days taken to maturity was found to be non significant for days taken to maturity. Highest number of days (93.45) was taken in S3N4 to complete maturity followed by S4N4 (93.45) and least number of days (86.50) taken in S1N1.

3.7. Field emergence
Statistically significant difference was found for the field emergence among the spacing treatments. However, field emergence ranges from 85.75 to 89.17 %. Field emergence was significantly affected by nutrient levels. However field emergence varies from 85.84 to 89.23 %. Field emergence showed non-significant differences due to interaction effects of spacing and nutrition. However, highest field emergence was recorded in S4N4 (91.47 %) and lowest was observed in S1N1 (84.76 %).

Table 1: Influence of spacing and nutrients on growth parameters in quinoa

Treatments	Plant height	Total number of branches plant⁻¹	Total number of panicles plant⁻¹	Length of glomerule	Days to 50 % flowering	Days taken to maturity	Field emergence		
	30 DAS	60 DAS	At harvest						
S1: 25 x 10	15.71	95.18	100.10	08.90	08.47	09.07	44.99	88.02	85.75
S2: 35 x 10	19.51	104.2	104.88	12.41	14.53	13.59	48.27	89.09	86.76
S3: 45 x 10	21.52	110.2	111.93	15.22	15.22	15.78	49.88	89.31	88.12
S4: 55 x 10	22.57	108.4	110.70	15.59	14.78	13.03	51.97	89.32	89.17
S1N1	1.11	3.32	5.44	0.482	0.48	0.305	1.31	2.578	0.393
S1N2	1.45	1.46	0.919	3.94	NS	1.18			
S1N3	1.45	1.46	0.919	3.94	NS	1.18			
S1N4	1.45	1.46	0.919	3.94	NS	1.18			
S3N1	1.45	1.46	0.919	3.94	NS	1.18			
S3N2	1.45	1.46	0.919	3.94	NS	1.18			
S3N3	1.45	1.46	0.919	3.94	NS	1.18			
S3N4	1.45	1.46	0.919	3.94	NS	1.18			
S4N1	1.45	1.46	0.919	3.94	NS	1.18			
S4N2	1.45	1.46	0.919	3.94	NS	1.18			
S4N3	1.45	1.46	0.919	3.94	NS	1.18			
S4N4	1.45	1.46	0.919	3.94	NS	1.18			

~ 395 ~
4. Discussion
Plant height is more in high nutrient applied and more spacing treatments, this might be due to the plants getting more area for absorption and more light interception for photosynthesis, more water and air for better development of growth characters. This results are in accordance with Shazhad, M.A. Basra et al. (2014) [10] in quinoa, Ramesh, k (2016) [10] in quinoa, Rishi and Galwey (1991) [14] in quinoa, Karnam Navya Jyothi et al. (2016) [8] in foxtail millet and Bhomte et al. (2016) [12] in little millet.

In case of number of branches and number of panicles the results revealed that higher number of panicles plant⁻¹ were reported in the wider spacing of 45 x 10 cm and highest level of nutrients 150:75:75 kg NPK ha⁻¹, which might lead to increased vegetative growth with increase in nutrient level and wider spacing may helped in good interception of solar light, nutrients and increased photosynthesis. These results were in accordance with the findings of Karnam Navya Jyothi et al. (2016) [8] in foxtail millet.

Length of glomerule was higher in case of spacing with 45x10 cm and nutrient application of 150:75:75 kg NPK ha⁻¹ because individual plant got good solar light interception and more nutrients to absorb, so plant growth was good and length of glomerule was increased. The results showed that days taken to 50 per cent flowering and days to maturity significantly differed. This might be due to prolonged vegetative growth with increased available nitrogen in soil due to wider spacing and high nutrient level treatments. The similar results were also reported by Chouhan et al. (2015) [30] in pearl millet.

Field emergence was higher because of wider spacing and high nutrient availability.

5. Conclusion
Plant height, total number of branches plant⁻¹, total number of panicles plant⁻¹, length of glomerule was more in spacing with 45x10 cm spacing and with higher nutrient levels 150:75:75 kg NPK ha⁻¹, whereas days to maturity, days to flowering and field emergence were higher in spacing of 55x10 cm and nutrient levels of 150:75:75 kg NPK ha⁻¹.

6. References
1. Anonymous. Annual Report, Andhra Pradesh Academy of Rural Development, 2014, 114-117.
2. Bhomte MV, Apotikar VA, Pachpole DS. Effect of different fertilizer levels on growth and yield of little millet (Panicum sumatrense) genotypes. Contemporary and Res. Ind. 2016; 6(3):2231-2137.
3. Chouhan M, Gudadhe NN, Dinesh kumar Kumawat AK, Kumar R. Transplanting dates and nitrogen levels influences on growth, yield attributes, and yield of summer pearl millet. The Bio scan. 2015; 10(3):1295-1298.
4. Erley GSA, Kaul H, Kruse M, Aufhammer W. Yield and nitrogen utilization efficiency of the pseudo cereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J Agron. 2005; 22:95-100.
5. FAOSTAT. Quinoa area and production in the World, 2013, http://www.fao.org.
6. Gomez KA, Gomez AA. Statistical procedure for Agricultural Research. John Willey and Sons Publishers, New York, 1984, 97-107.
7. Jacobson SE. The world wide potential of quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003; 19:167-177.
8. Karnanam Navya Jyothi, Sumathi V, Sunitha N. Productivity, nutrient balance and profitability of foxtail millet (Setaria italica L.) Varieties as influenced by levels of nitrogen. IOSR J of Agric. Vet. Sci. 2016; 4(9):18-22.
9. Pearsall D. The origin of plant cultivation in South America. In: Cowan, C. W., Watson, P.J., eds. The origins of agriculture. An international perspective.
10. Ramesh K. Evaluation of quinoa (Chenopodium quinoa Willd.) at different dates of sowing and varied crop geometry in semi arid regions of Telangana. M. Sc Thesis, PJTSAU., Rajendra Nagar, Hyderabad, 2016.

11. Rea J, Tapia N, Mujica A. Prácticas agronómicas. In: Quinoa y Kañiwa, Cultivos Andinos, Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica A, (eds). Rome, Italy, 1979, 83-120.

12. Repo-Carrasco R, Espinoza C, Jacobson SE. Nutritional value and use of andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Reviews Int. 2003; 19(1-2):179-189.

13. Rishi J, Galwey NW. The chenopodium grains of the Andes: Inca crops for modern agriculture. Adv. App. Biol. 1984; 10:145-216.

14. Rishi J, Galwey NW. Effect of sowing date and sowing rate on plant development and grain yield in a temperate environment. J Agric. Sci. 1991; 117:325-332.

15. Saha R, Basu RN. Maintenance of soybean seed viability by hydration-dehydration treatments. Indian Agric. 1981; 25(4):275-278.

16. Shahzad basra MA, Iqba, Afzal. Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. Int. J Agric. Biol. 2014; 16:886-892.

17. Srinivasa Rao K. Sarikotha panta quinoa, Sakshi News Paper, 2015, 10p.