Ring closure activates yeast γTuRC for species-specific microtubule nucleation

Justin M Kollman1, Charles H Greenberg2–4, Sam Li5, Michelle Moritz5, Alex Zelter1, Kimberly K Fong1, Jose-Jesus Fernandez6, Andrej Sali2–4, John Kilmartin7, Trisha N Davis1 & David A Agard5,8

The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm the functional importance of the closed γTuSC, we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, thus suggesting that this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a strong preference for tubulin from the same species.

Microtubule nucleation is mediated in vivo by γ-tubulin complexes, which allow cells to control both the location and timing of new microtubule growth. The conserved core of the nucleating machinery is the γTuSC, a 300-kDa V-shaped structure with two copies of γ-tubulin and one copy each of the accessory proteins GCP2 and GCP3, which are distant homologs of each other. GCP2 and GCP3 form the elongated arms of the complex, with γ-tubulin at each tip of the V1,2. Low-resolution structural studies of isolated γTuSCs previously showed that the complex is flexible, with a hinge-like motion near the center of the GCP3 arm2. In most eukaryotes, several other accessory proteins, GCP4–GCP6, assemble with multiple γTuSCs to form the γTuRC3,4. γTuRC has long been thought to function as a template, presenting a ring of γ-tubulins from which microtubules grow1–7.

Saccharomyces cerevisiae lacks the γTuRC-specific accessory proteins found in other eukaryotes, and it nucleates microtubules from γTuSC oligomers. These oligomers are anchored to the nuclear face of the spindle pole body by the coiled-coil protein Spc110 (refs. 8,9). Isolated γTuSCs have a weak propensity to self-assemble, and the N-terminal domain of Spc110 (Spc1101–220) stabilizes these interactions to promote the formation of extended spiral-shaped oligomers that have 13 γ-tubulins per turn10, a number matching the protofilament number of in vivo microtubules11. Extended γTuSC polymers have not been observed at spindle pole bodies12, and although some estimates of the subunit number have been made13, the overall size and organization of the functional γTuSC oligomer in vivo is unclear.

Although the nucleation activity of yeast γTuSC is entirely dependent on its oligomerization, unexpectedly the oligomers are configured with microtubule-like γ-tubulin lateral contacts only between γTuSCs, while within each γTuSC the two γ-tubulins are held apart in an open conformation2,10. A consequence of the staggered lateral γ-tubulin interactions is a γTuSC ring with a pitch ~25 Å larger than that of microtubules (Supplementary Fig. 1). This conformation seems inconsistent with γTuSC assemblies acting as efficient microtubule templates; indeed, microtubule nucleation experiments showed only a modest enhancement over background. Because of the flexibility observed within individual γTuSCs2, however, we proposed that an allosterically regulated conformational change could result in a precise match to microtubule geometry, thus forming a template with increased nucleating activity5,10.

Here, we set out to determine the structure of the functional state of γTuSC rings. We demonstrate that in vivo the minus ends of microtubules are anchored to the spindle pole body via a γTuSC ring that is in a closed conformation and has a defined number of subunits. Although the in vivo drivers of ring closure are unknown, we could trap a closed state of γTuSC oligomers by disulfide cross-linking, and we determined its structure at 6.9-Å resolution by cryo-EM. The closed state closely resembles the structure observed at minus ends, and conformational changes within each γTuSC result in a nearly perfect match between the γ-tubulin ring and 13-protofilament-microtubule geometries. The closed state is more active than the open state, thus confirming that γTuRC activity can be conformationally regulated. We also show that yeast γTuSC is much more active with yeast tubulin than with vertebrate tubulin, demonstrating the importance of species specificity in nucleating activity. The high-resolution

1Department of Biochemistry, University of Washington, Seattle, Washington, USA. 2Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA. 3Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, USA. 4California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, California, USA. 5Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA. 6Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain. 7Medical Research Council Laboratory of Molecular Biology, Cambridge, UK. 8Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, USA. Correspondence should be addressed to D.A.A. (agard@msg.ucsf.edu).

Received 23 July 2014; accepted 12 December 2014; published online 19 January 2015; doi:10.1038/nsmb.2953
structure of the closed state allowed us to generate a pseudoatomic model that provides a more detailed view of the interactions of components within the γTuSC and of the nature of assembly contacts between γTuSCs.

RESULTS

γTuSC binds microtubules in a closed conformation

A key question is whether or not γTuSCs can actually form a structure that better matches symmetry first. To answer this, we determined the conformational state of γTuSC rings interacting with microtubules at the spindle pole. We examined the in situ structure of microtubule minus ends attached to the nuclear faces of purified spindle pole bodies by using cryo-electron tomography (Fig. 1a). We averaged 1,156 individual capped microtubule minus ends to generate a structure at 38-Å resolution (0.5 Fourier shell correlation (FSC) cutoff criterion). The structure reveals an asymmetric cap in which individual γTuSC subunits can be discerned in most directions. The γTuSCs form a lock washer–shaped spiral that rises 120 Å (Fig. 1b and Supplementary Movie 1), a value similar to the pitch of 13-protofilament microtubules14. This pitch is in contrast to the 147-Å pitch of reconstituted γTuSC–Spc1101–220 spirals15, thus indicating that when bound to microtubules in vivo the conformation of the γTuSC ring is different than that observed for our unbonded rings in vitro16,17.

Spc110 promotes formation of a defined yeast γTuRC

The structure of capped minus ends also reveals the number of γTuSC oligomers in vivo. It has been assumed that functional γTuSC oligomers would have six copies (with 12 γ-tubulins and a gap at the 13th position) or seven copies (with an overlapping, inaccessible 14th γ-tubulin at the end) or would be variable in number6,15,16. In the minus-end structure, the last γTuSC overlaps vertically with the first γTuSC (Fig. 1b), thus indicating that the ring is formed from seven subunits. Unlike these defined seven-subunit rings, in vitro assembly of γTuSC and Spc1101–220 yields extended spirals10, however, we found that a longer Spc110 fragment (residues 1–401), with an additional 180 residues of predicted coiled coil, limited γTuSC assemblies to single rings and smaller oligomers, thus suggesting that Spc110 sterically interferes with addition of more than seven γTuSCs (Fig. 1c,d). Thus, Spc110 both promotes γTuSC assembly and limits oligomer size, forming well-defined yeast γTuRCs.

γTuSC oligomers trapped in a closed state

Because γTuSCs adopts a closed, microtubule-like geometry when interacting with microtubules, we sought to trap this closed state with engineered disulfide bonds to test the functional consequences of closure. Assuming that in a closed state γ-tubulin makes lateral contacts between the M and H1-S2 loops similar to those observed in the microtubule lattice13 or γ-tubulin crystals17,18 (Fig. 2a), we designed four sets of paired cysteine mutations: Asn57 Gly288; Ser58 Gly288; Asp128 Ser291; and Arg161 Arg341. We predicted the sites to be juxtaposed at the inter-γTuSC assembly interface but widely separated at the intra-γTuSC interface (Fig. 2a). Thus, under oxidizing conditions a disulfide bond should readily form between γ-tubulins from adjacent γTuSCs but should form only between γ-tubulins within the same γTuSC if that γTuSC samples a closed state. We observed disulfide-bond formation only in the N57C G288C and S58C G288C mutants. Of the two, S58C G288C was better behaved in terms of oligomeric assembly, so we pursued structural and functional characterization of this complex, which we refer to as γTuSCCC. The γTuSCCC mutations, introduced into yeast on the only copy of γ-tubulin, did not affect viability or metaphase spindle organization (Supplementary Fig. 2). Thus, the mutations do not impair γTuSC function in the context of the cell.

Under reducing conditions, individual γTuSCCC had the same overall structure as the wild-type complex2 (Supplementary Fig. 3a). Wild-type γTuSC has a weak propensity to self-assemble into ring-like oligomers under a narrow range of salt concentrations (<200 mM KCl) and pH values (6.4–7.0). After removal of reducing reagents, however, γTuSCCC spontaneously assembled into large oligomers at pH 7.6 and 500 mM KCl, conditions that strongly disfavor spontaneous assembly of wild-type γTuSC (Supplementary Fig. 3b). This suggested that inter-γTuSC disulfide bonds stabilize weak interactions between γTuSCs. SDS-PAGE of nonreduced γTuSCCC revealed a ladder of cross-linked γ-tubulin oligomers, indicating that disulfide cross-links had formed both within and between γTuSCs (Supplementary Fig. 3c). The presence of γ-tubulin oligomers with more than two chains means that both inter- and intra-γTuSC disulfide cross-links were formed, thus indicating trapping of a new conformation of γTuSC that allowed formation of intra-γTuSC disulfide.

Next, we copurified the γTuSCCC–Spc1101–220 complex and observed that under reducing conditions it formed filaments similar to those in the wild-type complex. Under weakly oxidizing conditions, however, there were clearly two populations of filaments in the sample: one similar to the open wild-type filaments (Fig. 2b, blue arrows) and the other a new, more compact or closed form with a different helical pitch (Fig. 2b, orange arrows). The power spectrum of single filaments of the open form had a strong layer line at 147 Å, corresponding to the pitch of the wild-type filament, whereas the closed form had a layer line at 122 Å, very close to the pitch of a 13-protofilament microtubule (Fig. 2c). Single filaments appeared to be predominantly

Figure 1 The yeast γTuRC is formed from seven γTuSCs and is limited in size by Spc110. (a) A slice from a tomogram of isolated spindle pole bodies clearly showing the capped minus ends of microtubules (arrows). (b) Subtomogram-averaged structure of microtubule (MT) minus end. Red arrows indicate the position of the half-subunit overlap between the first and seventh γTuSC (outlined in yellow and orange, respectively). The 120-Å longitudinal rise of the γTuSC ring is indicated. (c) Micrograph showing assembly of extended filaments by γTuSC when bound to Spc1101–220. Spc110 binds the outer surface of γTuSC and fits within the groove of the filament (cartoon). (d) Micrograph showing that Spc1101–401 promotes assembly of γTuSC rings but prevents extension beyond a single ring.
of one form or the other, thus suggesting a cooperative transition from the open to the closed morphology.

The structure of closed γTuSC oligomers

We determined the structure of the closed form of γTuSCCC–Spc1101−220 filaments by cryo-EM and iterative helical real-space reconstruction19. To minimize heterogeneity in filament morphology, we extensively dialyzed γTuSCCC–Spc1101−220 against an oxidizing buffer to promote full disulfide cross-linking (Supplementary Fig. 3d,e). We determined an initial structure at 9.4-Å resolution, from about 94,400 γTuSC subunits. To eliminate residual open-closed heterogeneity in the filaments, we sorted the data set by comparing filament segments to the initial γTuSCCC and the open wild-type structures and omitted segments that matched better to the open structure (Supplementary Fig. 3f). This yielded a final data set with about 76,000 γTuSC subunits, and a structure at 6.9-Å resolution (Supplementary Fig. 3g); the map appears to have anisotropic resolution, with the core density (N-terminal domains of GCP2 and GCP3) more well defined than peripheral densities (C-terminal domains of GCP2 and GCP3, and γ-tubulin).

The closed conformation enhances nucleation activity

The similarity to the microtubule lattice suggested that the nucleating activity of γTuSC would be enhanced in the closed state. We tested the difference in activity between the open and closed states with solution nucleation assays. We previously tested the nucleation activity of γTuSC in the context of filaments formed in the presence of Spc1101−220 (ref. 10). This probably underestimated the full activity because only γTuSCs at the end of a filament would have been accessible for interaction with αβ-tubulin. Here, we used individual γTuRCs in which all of the γ-tubulin is available for interaction with αβ-tubulin, formed with the longer Spc1101−401 construct that promotes assembly but blocks filament extension (Fig. 1d).

We compared nucleating activity of reduced and oxidized single rings of γTuSC–Spc1101−401 and γTuSCCC–Spc1101−401. Assays performed with mammalian brain tubulin showed only a two- to three-fold increase in activity over buffer controls when we used assembled yeast γTuSCs10. Given the quality of the symmetry match, we became concerned that there could be some problem in using mammalian tubulin with yeast γTuSCs. So, despite general assumptions of strong conservation of tubulins across species, we repeated these assays with wild-type γTuSC and purified recombinant S. cerevisiae αβ-tubulin20. With yeast tubulin we observed an approximately 300-fold increase in the number of microtubules (Fig. 3c,d), results indicating a remarkably strong species-specificity in the γTuSC–αβ-tubulin interaction (Supplementary Fig. 4a).

We tested the activities of γTuSC and γTuSCCC under reducing (open) and oxidizing (closed) conditions. Wild-type γTuSC had similar nucleation rates under both conditions, whereas γTuSCCC nucleation was similar to that of wild-type under reducing conditions, but it doubled under oxidizing conditions (Fig. 3c,d). Thus, artificially forcing the geometry of the γTuSC ring to better match that of the microtubule results in enhanced nucleating activity. Although the improvement demonstrates the importance of geometric fidelity, the modest increase suggests that other conformational changes, such as a curved-to-straight transition within the γ-tubulin19, may be required to fully activate the complex.

Pseudoatomic model of γTuSC

We generated a pseudoatomic model of γTuSC by fitting and refining homology models of γ-tubulin, GCP2 and GCP3 into the cryo-EM density of a single closed-state γTuSC subunit (Fig. 4a,b) and the
In the closed state, γTuSC matches microtubule symmetry and has increased nucleation activity. (a) The open-state γTuSC filament, closed-state γTuSCCC filament and 13-protofilament microtubule structure. γ-tubulin is highlighted in gold in the γTuSC structures, and the pitch of the three-start helix in the microtubule is highlighted in cyan. Refined helical pitch and rotation per subunit are indicated. (b) Superposition of the open and closed γ-tubulin rings (gold) on the microtubule (cyan). The γ-tubulin indicated by the arrow is superimposed on a β-tubulin from the microtubule. (c) Fluorescence images of solution microutubule nucleation experiments, representative of ten images per experimental condition. (d) Fold increase over buffer controls, plotted for reduced (red.) and oxidized (oxid.) states. Microtubules were counted for five fields per experiment. n = 4 independent experiments; error bars, s.e.m. Significant differences between activity of Microtubules were counted for five fields per experiment. n = 4 independent experiments; error bars, s.e.m. Significant differences between activity of γTuSCCC complexes under oxidizing and reducing conditions (P ≤ 0.013) or between mutant and wild-type (P ≤ 0.055) were confirmed by two-tailed t test. The activity of γTuSCs alone was similar to buffer controls, with only a few microtubules on the entire coverslip (data not shown).

lower-resolution open state that we determined previously10. We faced several challenges in generating the model: the very low sequence identity between GCP2 and GCP3 with GCP4 (the only homolog with a crystal structure determined) made generating reliable homology models difficult; GCP2 and GCP3 are in different conformations than GCP4; and the anisotropic resolution of the EM structure led to less reliable fitting of the C-terminal domains of GCP2 and GCP3 and γ-tubulin. We developed several new tools to perform the modeling and to validate the model; the approach is outlined below in Online Methods, and a full description of the modeling procedure will be described elsewhere.

GCP2 and GCP3, which have similar overall shapes, have been distinguished by previous labeling experiments11. The primary difference between the open and closed states is the degree of flexing in GCP2 and GCP3. Both change conformation, with GCP3 straightening by about 9° and GCP2 bending by about 8° in the closed state (Supplementary Fig. 5a). In the closed state, GCP2 and GCP3 are similar to each other and to the human GCP4 crystal structure, whereas GCP2 and GCP3 are in different flexed conformations in the open state (Supplementary Fig. 5b–e).

Density in the EM map that we previously suggested corresponds to part of Spc110 (ref. 10) is more easily resolved in the new higher-resolution map, and it clearly resembles a two-stranded coiled coil. The model includes 44 residues of Spc110 as a generic two-stranded coiled coil (Fig. 4a). This density makes contacts with N-terminal regions of GCP2 and GCP3, with the closest contacts near the base of GCP2 and the side of the coiled coil. Near the top (as depicted in Supplementary Fig. 5f), the Spc110 density splays apart, with one strand bending back toward GCP3 and the other extending away from GCP2 toward a γ-tubulin in the next layer of the helix. This model accounts for about 20% of the mass of the Spc110\textsubscript{1–220} construct. Much of the remainder of the molecule is probably near the center of the filament, where the ordered density on the outer surface connects to disordered density that runs through the core of the structure (Supplementary Fig. 5g). This positioning of Spc110 is consistent with the fact that longer lengths of coiled coil inhibit...
Figure 5 Pseudoatomic model of γTuRC and its interactions with microtubules. (a) Pseudoatomic model of a complete yeast γTuRC with seven γTuSCs. (b) A model of yeast γTuRC interacting with the minus end of a microtubule. (c) A potential contact between the last γ-tubulin in the ring, which is not directly interacting with the microtubule, and Spc110 bound to the first γTuSC (arrow) in the γTuSC^{CC} structure. (d) Magnified view of interactions between the first γTuSC and the microtubule. Known phosphorylation sites on γTuSC that could potentially modulate lateral interactions with αβ-tubulin are indicated with red spheres.

A single turn of the γTuSC^{CC} closed state provides a model for the full γTuRC (Fig. 5a). From this, we extrapolated a structural model of γTuRC bound to a microtubule, assuming that longitudinal contacts between γ-tubulin and α-tubulin are similar to the α-tubulin–β-tubulin contacts (Fig. 5b and Supplementary Movie 3). This model, in both overall morphology and helical symmetry, is remarkably similar to the microtubule minus end that we observed in SPBs. In the model, 13 γ-tubulins make contact with the microtubule; a 14th γ-tubulin, bound to GCP2 in the terminal γTuSC, lies directly below the first γ-tubulin but does not make contact with the microtubule. Intriguingly, a new interaction appeared between one end of the ordered Spc110 density and the H6-H7 loop of the 14th γ-tubulin, suggesting a possible role for Spc110 in stabilizing the γTuRC ring at this overlapping position (Fig. 5c). In addition to the 13 longitudinal contacts between γ-tubulin and α-tubulin around the ring, the model predicts a single lateral contact between α-tubulin and γ-tubulin at the first position in the ring; a lateral interaction between the GCP3 C-terminal domain and an adjacent β-tubulin may also occur here (Fig. 5d).

A large number of phosphorylation sites have been identified on γ-tubulin, GCP2 and GCP3 in <i>S. cerevisiae</i>^{25–30}. Phosphorylation at a few sites has been shown to affect organization of the mitotic spindle^{28,30,31}, but the functional roles of most sites remain unknown. Mapping of the sites on the γTuRC model shows that they fall broadly into three categories: on the exterior of the γTuRC, at the exposed plus end of γ-tubulin and on the interior of the γTuRC (Supplementary Fig. 6). Exterior sites may be involved in modulating γTuRC interaction with binding partners, potentially affecting localization or activation. Sites at the plus end of γ-tubulin would probably be inaccessible to kinases when γTuRC is bound to a microtubule, thus suggesting that phosphorylation at these sites occurs when γTuRCs are unoccupied or possibly before assembly of γTuSCs into γTuRC, and it may serve to downregulate nucleation activity.

The transition from an open to a closed state is likely to provide an allosteric mechanism for modulating γTuSC activity. It remains to be seen what factor or factors are involved in promoting this transition.
in vivo, and post-translational modification of γTuSC components or direct binding by regulatory proteins may be required. Regulation of γTuRC at the levels of γTuSC assembly, post-translational modification and open-to-closed conformation are all likely to be involved in providing precise control of nucleating activity.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. The structures of the capped microtubule end and γTuSC–Spc1101 filament have been deposited in the Electron Microscopy Data Bank under accession numbers EMD-5989 and EMD-2799, respectively.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

The authors are grateful to M. Braunfeld and X. Li for assistance with cryo-EM data collection and L. Rice for help with overexpression and purification of yeast tubulin. This work was funded by the Howard Hughes Medical Institute and by US National Institutes of Health grants R01 GM031627 to D.A.A., R01 GM040506 to T.N.D. and T32 GM07270 to K.K.F.

AUTHOR CONTRIBUTIONS

J.M.K. prepared samples, collected cryo-EM data, performed three-dimensional reconstructions, analyzed data and wrote the paper. C.H.G. performed molecular modeling, analyzed results and contributed to writing the paper. S.L. prepared samples, collected tomographic data, performed tomographic reconstructions and analyzed data. M.M. performed microtubule nucleation assays and analyzed data. A.Z. generated expression constructs and optimized protein expression. K.K.F. performed yeast viability assays and spindle morphology experiments and analyzed data. J.-F. assisted with subvolume averaging. A.S. analyzed data and contributed to writing the paper. I.K. provided samples and analyzed data. T.N.D. analyzed data and contributed to writing the paper. D.A.A. analyzed data and contributed to writing the paper.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Choy, R.M., Kollman, J.M., Zelter, A., Davis, T.N. & Agard, D.A. Localization and orientation of the γ-tubulin small complex components using protein tags as labels for single particle EM. J. Struct. Biol. 168, 571–574 (2009).
2. Kollman, J.M. et al. The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell 19, 207–215 (2008).
3. Degen, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).
4. Zheng, Y., Wong, M.L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).
5. Kollman, J.M., Merdes, A., Mourey, L. & Agard, D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).
6. Moritz, M., Braunfeld, M.B., Guenebaut, V., Heuser, J. & Agard, D.A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370 (2000).
7. Oakley, B.R., Oakley, C.E., Yoon, Y. & Jung, M.K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301 (1990).
8. Kilmartin, J.V. & Goh, P.Y. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J. 15, 4952–4962 (1996).
9. Sundberg, H.A. & Davis, T.N. A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. Mol. Biol. Cell 5, 2575–2590 (1997).
10. Kollman, J.M., Polka, J.K., Zelter, A., Davis, T.N. & Agard, D.A. Microtubule nucleating γTuSC interacts with actin, tubulin and cofilin. J. Cell Biol. 177, 603–616 (2007).
11. Tilney, L.G. et al. Microtubules: evidence for 13 protofilaaments. J. Cell Biol. 59, 267–275 (1973).
12. D’Ooero, E.T., Winey, M. & McIntosh, J.R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2017–2031 (1999).
13. Ermelmann, S. et al. An extended γ-tubulin ring function as a stable platform in microtubule nucleation. J. Cell Biol. 197, 59–74 (2012).
14. Sui, H. & Downing, K.H. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 18, 1022–1031 (2010).
15. Keating, T.J. & Borisov, G.G. Immunoelectron structural evidence for the template mechanism of microtubule nucleation. J. Cell Biol. 197, 59–74 (2012).
16. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358–364 (2000).
17. Aidas, H., Rice, L.M., Stearns, T. & Agard, D.A. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435, 523–527 (2005).
18. Rice, L.M., Montabana, E.A. & Agard, D.A. The lattice as allosteric effector: structural studies of αβ- and γ-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl. Acad. Sci. USA 105, 5378–5383 (2008).
19. Egelman, E.H. The iterative helical real space reconstruction method; surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007).
20. Johnson, V., Ayaz, P., Huddleston, P. & Rice, L.M. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50, 8636–8644 (2011).
21. Vih, D.B., Kern, J.W., Hancock, W.O., Howard, J. & Davis, T.N. Reconstitution and characterization of budding yeast γ-tubulin complex. Mol. Biol. Cell 13, 1144–1157 (2002).
22. Choi, Y.K., Liu, P., Sze, S.K., Dai, C. & Qi, R.Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).
23. Lowe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1051 (2001).
24. Ravelli, R.B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).
25. Holt, L.J. et al. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009).
26. Albuquerque, C.P. et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics 7, 1389–1396 (2008).
27. Holinger, E.P. et al. Budding yeast centrosome duplication requires stabilization of Spc29 via Mps1-mediated phosphorylation. J. Biol. Chem. 284, 12949–12955 (2009).
28. Keck, J.M. et al. A cell cycle phosphoproteome of the yeast centrosome. Science 322, 1567–1571 (2008).
29. Lin, T.C. et al. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS ONE 6, e19700 (2011).
30. Vogel, J. et al. Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 11, 621–631 (2001).
31. Nazarova, E. et al. Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly. Mol. Biol. Cell 24, 3238–3250 (2013).
32. Samejima, I., Miller, V.J., Grocock, L.M. & Sawin, K.E. Two distinct regions of Mito1 are required for normal microtubule nucleation and efficient association with the γ-tubulin complex in vivo. J. Cell Sci. 121, 3971–3980 (2008).
33. Goshima, G., Mayer, M., Zhang, N., Stuurman, N. & Vale, R.D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421–429 (2008).
ONLINE METHODS

Spindle pole body purification and imaging. Spindle pole bodies from Saccharomyces cerevisiae were purified according to previously published procedures14,15. The purified SPB sample, initially in a high concentration of sucrose, was first dialyzed at 4 °C overnight in a buffer containing 10 mM bis-Tris-Cl, pH 6.5, 0.1 mM MgCl₂, and 20% (v/v) DMSO. The next day, after being mixed with 10 mM colloidal gold, the sample was applied onto either a homemade holey carbon grid or a Quantifoil grid (PSI) in a humidity chamber, then blotted and plunged into liquid ethane with either a homemade plunger or a Vitrobot (FEI). Frozen grids were stored in liquid nitrogen before use. Tomography data were collected on a Polara electron microscope (FEI) running at 300 kV. A postcolumn Frozen grids were stored in liquid nitrogen before use. Tomography data were converged after about five rounds of iterations.

Subvolume averaging of capping minus ends. For averaging γTuRC, the minus-end caps of microtubules attached to the nuclear face of the spindle pole body were identified manually. A total of 1,156 subtomograms containing the MT end caps of microtubules attached to the nuclear face of the spindle pole body were selected from 61 tomograms. They were boxed out and subjected to reference-free alignment and refinement of the unbinned images. Resolution was assessed by the FSC 0.5 criterion. Volumes were viewed and segmented with Chimera46.

Generation of γTuSC/C and Spc110Δ40 expression vectors. Spc110Δ40 was generated from Spc110 and GST DNA from the Spc110-GST pFastBac vector12. Primers were designed to amplify the Spc110Δ40 coding sequence while adding a BamHI site immediately upstream of the open reading frame and a PstI site immediately downstream of the 401st Spc110 codon. Primers were designed to amplify the GST coding sequence while adding a PstI site followed by a TEV-cleavage site immediately upstream of the GST open reading frame as well as a HindIII site immediately downstream of the GST stop codon. The resulting PCR products were cloned into the Invitrogen Zero Blunt TOPO vector according to the manufacturer’s instructions. BamHI and PstI were used to excise Spc110Δ40, and HindIII and PstI were used to excise TEV-GST from their respective TOPO vectors. The resulting fragments were ligated into pFastBac (Invitrogen) linearized with HindIII and BamHI. The Bac-to-Bac baculovirus expression system (Invitrogen) was used to produce protein from S9 cells according to the manufacturer’s instructions with SF-900 II SFM liquid medium (Invitrogen) supplemented with 2.5% FBS.

To generate γTuSC/C, SS8 and G288 of γ-tubulin were mutated to cysteines with the QuickChange Multi Site-Directed Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions. The resulting mutant sequence was PCR amplified and cloned into the Invitrogen Zero Blunt TOPO vector according to the manufacturer’s instructions. BamHI and HindIII were used to excise the mutant Tubα sequence. The resulting fragment was ligated into pFastBac (Invitrogen) linearized with HindIII and BamHI. The Bac-to-Bac baculovirus expression system (Invitrogen) was used to produce protein from S9 cells according to the manufacturer’s instructions with SF-900 II SFM liquid medium (Invitrogen) supplemented with 2.5% FBS.

For viability testing, integrating vectors based on the pRS306 (ref. 39) backbone were constructed. These contained either wild-type or mutant (SS8 G288C) Tub4. 432 bp of upstream and 334 bp of downstream flanking genomic DNA sequence were included in the vector surrounding the Tub4 coding sequence.

Preparation of recombinant γTuSC and γTuSC complexes. γTuSC or γTuSC/C was coexpressed with GST-tagged Spc110 constructs in S9 cells and purified as previously described16. Briefly, cell lysate was incubated with glutathione resin, washed in H100 (40 mM HEPES, pH 7.6, 100 mM KCl, 1 mM EGTA, and 1 mM MgCl₂) and eluted from the resin by cleavage of the GST tag with TEV protease as the final purification step. For cryo-EM, γTuSC/C-Spc110Δ40 filaments were at 2 mg/ml total protein in H100 and 1 mM oxidized glutathione. Negative-stain samples were prepared as previously described40 in 0.75% uranyl formate, and cryo-EM samples were prepared on C-FLAT holey carbon grids11 with a Vitrobot (FEI).

Imaging and three-dimensional reconstruction of γTuSC and γTuSC complexes. Negative-stain samples were imaged on a Tecnai Spirit G2 Biotwin electron microscope (FEI) operating at 120 kV, and images were recorded on an Ultracan 4000 CCD detector (Gatan). Cryo-EM images were recorded on a Tecnai TF20 electron microscope operating at 200 kV, and images were recorded on an 8,000 × 8,000 TemCam-F816 camera (TVIPS, GmbH) with a pixel size of 0.94 Å/pixel. Images were acquired in a defocus range of 0.8–2 μm. Defocus was determined with CTFIND44, and each micrograph was corrected by application of a Wiener filter. Particles were boxed out in 48×5-Å segments, overlapping by 48 Å. After several initial rounds of unstrained alignment search, the particles were centered with respect to the helix axis by integer pixel shifts.

Iterative helical real-space reconstruction was performed essentially as previously described by Egeland43 and Sashe et al44, with a low-pass-filtered cylinder used as the initial reference volume. Initial helical symmetry parameters were taken from the open-state γTuSC filament (~54.3° rotation, 22.2-Å rise per subunit) and refined at each iteration with hsearch_lorentz43. Initial centering of the particles was carried out on 4x-binned images, with subsequent refinement on 2x-binned images. An initial structure was determined at ~9-Å resolution. To reduce open-to-closed heterogeneity in the data set, cross correlations were calculated for each helical segment to the initial reconstruction and the original open-state structure15, and particles matching better to the open state were omitted from further rounds of refinement. After sorting, five rounds of unstrained alignment search were carried out with the 2x-binned images. To minimize effects of bending in the helix, each segment was masked to 200 Å along the helical axis and 340 Å perpendicular to the axis with a cosine-edged mask. These masked particles were then subjected to five rounds of local refinement of the unbinned images. Resolution was assessed by the FSC0.5 criterion. Volumes were viewed and segmented with Chimera46.

Fluorescence imaging of yeast cells carrying the γTuSC/C mutation. All yeast strains were derived from W303. Fluorescent tags were introduced by PCR as described (http://depts.washington.edu/yeastrc/pages/plasmids_protocols.html), and Tub4 (S58C G288C) was integrated at the TUB4 locus into glr1Δ cells, which carry a deletion for the gene encoding glutathione reductase and have high levels of oxidized glutathione47. The glr1Δ strain was used to increase the favorability of forming disulfides in the TUB4 mutant. Live cells were mounted for microscopy on a 1% agarose pad48. Images were acquired at a single focal plane, with 1x1 binning, with a U Plan Apo 100x objective lens (1.35 NA), an Olympus IX70 inverted microscope, and a CoolSnap HQ digital camera (Photometrics) managed by softWorX software (Applied Precision). Exposures were 0.4 s for both mCherry and GFP. The images were processed as previously described49 with custom Matlab programs (available upon request) to identify and quantify mCherry and GFP fluorescence intensities.

Yeast strains used. All yeast strains also have ade2-1oc ade3A-100 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 except as shown. Yeast strains used were KFY36-13C, MATα LEU2::GFP-TUB1 lys2a::HIS3 SPC42::mCherry::hphMX; KFY42-1C, MATα LEU2::GFP-TUB1 lys2a::HIS3 glr1Δ::TRP1 SPC42::mCherry::hphMX; KFY91, MATα LEU2::GFP-TUB1 lys2a::HIS3 glr1Δ::TRP1 SPC42::mCherry::hphMX TUB4(S58C G288C); KFY135-8B, MATα lys2a::HIS3 TUB4(S58C G288C)\,:URA3::tub4a::kanMX glr1Δ::TRP1 SPC42::mCherry::hphMX; KFY135-47A, MATα glr1Δ::TRP1 SPC42::mCherry::hphMX NUFD2::GFP::kanMX; and KFY138-5A, MATα NUFD2::GFP::kanMX SPC42::mCherry::hphMX.

Microtubule nucleation assays. Yeast tubulin was overexpressed and purified as previously described50. Pure γTuSC-Spcl10, γTuSC alone, or buffer control (40 mM K-HEPES, pH 6.9, 100 mM KCl, 1 mM EGTA, 1 mM MgCl₂, 20% glycerol, 100 mM GTP, and 100 µM oxidized or reduced glutathione) and a stock of S. cerevisiae tubulin were diluted at the appropriate concentrations into microtubule assembly buffer (80 mM K-PIPES, pH 6.9, 125 mM KCl, 20% glycerol, 1 mM EGTA, 1 mM MgCl₂, 1 mM GTP, and 100 µM oxidized or reduced glutathione) on ice. Reactions were incubated at 30°C for 20 min, fixed 3 min in ten volumes of 1% glutaraldehyde in BRB80 (80 mM K-PIPES, pH 6.9, 1 mM EGTA, and 1 mM MgCl₂) and then diluted ten times into BRB80 (final volume 1.5 ml). 1 ml of the resulting fixed reactions was layered onto 20% glycerol/BRB80 cushions and centrifuged for 45 min, at 24,000 g, on 18-mm round coverslips.
Microtubules were visualized on the coverslips by immunofluorescence with FITC-labeled mouse anti–α-tubulin (Sigma F2168, validation provided on manufacturer's website) at 1:500 dilution, and 5–10 fields of microtubules were counted for each experiment.

Homology modeling and flexible fitting. Models of γTuSC were computed with a combination of comparative protein structure modeling and flexible fitting into the EM density map of the closed state. To create a template structure for γTuSC, we rigidly docked two copies of the crystal structure of human GCP4 into the density map with UCSF Chimera. Independently, initial alignment of the sequences in the TUBGCP family was performed with Promals3D. Next, we produced an initial homology model of the GCP2–GCP3 dimer based on the initial alignment and the GCP4 template, with MODELLER 9.13 (ref. 51). The alignment was then iteratively refined by hand to improve the fit of the model into the density map. With the final alignment, 200 homology models of the dimer were produced. We completed each dimer into a model of γTuSC by rigidly docking two copies of γ-tubulin and a coiled-coil fragment of Spc110. An additional neighboring copy of the complete γTuSC structure was added to model the inter-γTuSC interface. Subsequently, each γTuSC dimer was flexibly fitted into the density map with MDFF, with additional restraints to preserve helical symmetry, secondary structure, and conformation of the γ-tubulin domains. The best-scoring model, as defined by the highest cross-correlation coefficient between the model and the map, was subjected to additional local sampling to reoptimize the structures. The above process was repeated for the open state, with the open-state EM density map and the final alignment from the modeling of the closed state.

34. Donaldson, A.D. & Kilmartin, J.V. Yeast spindle pole body components. Cold Spring Harb. Symp. Quant. Biol. 56, 687–692 (1991).
35. Donaldson, A.D. & Kilmartin, J.V. Spc42p; a phosphorylated component of the S. cerevisiae spindle pole body (SPB) with an essential function during SPB duplication. J. Cell Biol. 132, 887–901 (1996).
36. Zheng, Q.S., Braunfeld, M.B., Sedat, J.W. & Agard, D.A. An improved strategy for automated electron microscopic tomography. J. Struct. Biol. 147, 91–101 (2004).
37. Scheres, S.H.W., Meiler, R., Valle, M. & Carazo, J.-M. Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 17, 1563–1572 (2009).
38. Förster, F., Pruggnaller, S., Seybert, A. & Frangakis, A.S. Classification of cryo-electron sub-tomograms using constrained correlation. J. Struct. Biol. 161, 276–286 (2008).
39. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).
40. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification - powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34 (2004).
41. Quispe, J. et al. An improved holey carbon film for cryo-electron microscopy. Microsc. Microanal. 13, 365–371 (2007).
42. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
43. Egelman, E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).
44. Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007).
45. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, San Diego, 1996).
46. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
47. Muller, E.G. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7, 1805–1813 (1996).
48. Muller, E.G. et al. The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell 16, 3341–3352 (2005).
49. Shimogawa, M.M., Widlund, P.O., Riffle, M., Ess, M. & Davis, T.N. Bir1 is required for efficient manipulation of DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 2295–2300 (2008).
50. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
51. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).
52. Quispe, J. et al. An improved holey carbon film for cryo-electron microscopy. Microsc. Microanal. 13, 365–371 (2007).
53. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
54. Egelman, E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).
55. Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007).
56. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, San Diego, 1996).
57. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
58. Muller, E.G. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7, 1805–1813 (1996).
59. Muller, E.G. et al. The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell 16, 3341–3352 (2005).
60. Shimogawa, M.M., Widlund, P.O., Riffle, M., Ess, M. & Davis, T.N. Bir1 is required for efficient manipulation of DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 2295–2300 (2008).
61. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
62. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).