MC22: MAPPING THE DARK MATTER DISTRIBUTION OF THE "TOOTHBRUSH" CLUSTER RX J0603.3+4214 WITH HUBBLE SPACE TELESCOPE AND SUBARU WEAK-LENSING*

M. JAMES JEE1,2, WILLIAM A. DAWSON3, ANDRA STROE1, DAVID WITTMAN2, REINOUT J. VAN WEEREN4, MARCUS BRÜGGEN5, MARUŠA BRADAC2, AND HUUB RÖTTGERING4

ABSTRACT

The galaxy cluster RX J0603.3+4214 at $z = 0.225$ is one of the rarest clusters boasting an extremely large (~ 2 Mpc) radio-relic. Because of the remarkable morphology of the relic, the cluster is nicknamed “Toothbrush Cluster”. Although the cluster’s underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio-relic morphology, its proximity to the Galactic plane $b \sim 10^\circ$ has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is comprised of complicated dark matter substructures closely tracing the galaxy distribution, however in contrast with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a $\sim 3:1$ mass ratio ($M_{200} = 6.29^{+2.24}_{-1.62} \times 10^{14} M_\odot$ and $1.98^{+1.24}_{-0.74} \times 10^{14} M_\odot$ for the northern and southern clumps, respectively). The southern mass peak is $\sim 2^\prime$ offset toward the south with respect to the corresponding X-ray peak, which has a “bullet”-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio-relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional sub-clusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.

Subject headings: gravitational lensing — dark matter — cosmology: observations — X-rays: galaxies: clusters — galaxies: clusters: individual (RX J0603.3+4214) — galaxies: high-redshift

1. INTRODUCTION

In the hierarchical structure formation paradigm, merging is among the dominant mechanisms by which galaxy clusters grow. Therefore, detailed studies of merging clusters shed light on the growth of cosmological structures. Apart from cosmological interests, merging clusters are also receiving growing attention as astrophysical laboratories, providing rare and invaluable opportunities to investigate the origin of cosmic rays (e.g., Volk et al. 1996; Berezinsky et al. 1997; Feretti et al. 2010; 2012; 2013, Govoni et al. 2001, Brunetti et al. 2008). Together with the much fainter relic found near the southern cluster edge, this asymmetric and remarkably linear feature implies that perhaps the merger might have been complex, involv-
ing more than two subclusters (Bruggen et al. 2012). This unusual radio morphology is different from that of the CIZA J2242.8+5301 cluster (van Weeren et al. 2010) possessing a similarly giant, but more symmetric "sausage"-like radio relic.

The "Toothbrush"-relic of RX J0603.3+4214 was discovered with the Westerbork Synthesis Radio Telescope (WSRT) and the Giant Metrewave Radio Telescope (GMRT) by van Weeren et al. (2012). For the "Toothbrush"-relic, van Weeren et al. (2012) detected spectral index gradient from the front (northern edge) of the "Toothbrush" relic towards the back (southern edge). The frontal part of this relic is highly polarized (~60° at 4.9 GHz), which indicates that the merger might be happening nearly in the plane of the sky (Ensslin et al. 1998).

van Weeren et al. (2012) also found a north-south elongated X-ray morphology at the location of the cluster based on archival ROSAT data. Brugge et al. (2012) carried out a numerical simulation of RX J0603.3+4214 by modeling the cluster with two large ($5 \times 10^{13} M_\odot$) and one small ($3.5 \times 10^{13} M_\odot$) halos and demonstrated that the simulation can generate a giant relic with a similar morphology. Ogrean et al. (2013) studied the cluster with XMM-Newton data, which reveal two distinct X-ray peaks. At both northern and southern edges (near the relics) of the cluster, they detected density discontinuities indicating the presence of potential shocks. Correlations between the cluster galaxy star-formation and the merger environment were studied by Stroe et al. (2014; 2015).

Despite a number of studies mentioned above on this remarkable system, no reliable mass estimation of the system has been carried out, and little is known about the spatial distribution of its mass and member galaxies. The cluster's underlying mass distribution is one of the critical pieces of information in order to infer the merger scenario responsible for the radio-relic morphology (e.g., Ng et al. 2015; Dawson 2013). Hence, in this paper, as part of our Merging Cluster Collaboration (MC²) project, we present detailed weak-lensing analysis of RX J0603.3+4214 with Subaru/Suprime Cam and Hubble Space Telescope (HST) imaging data. Because of the low galactic latitude $b \sim 10^\circ$ of the system, some observational challenges including severe extinction and stellar obscuration are present. However, in the weak-lensing study of CIZA J2242.8+5301 (Jee et al. 2015), we already demonstrated that a successful weak-lensing study is still possible when high-resolution imaging observations are carefully planned and analyzed with the state-of-the-art technique.

We launched the MC² project to study a large sample of merging clusters with a coherent approach. Our immediate goals for the current paper are 1) to map the underlying mass distribution and compare the result with the galaxies and X-ray emission and 2) to quantify the matter content of the system. These mass properties are among the critical parameters necessary to constrain the merging scenario of the system leading to such an unusual morphology in radio emission. Our long-term goals of the MC² project include detailed studies of dark matter properties through systematic investigation of the large sample and careful numerical simulations.

We present our study as follows. In §2 we describe our data and reduction. In §3 we review the basic lensing theory of weak-lensing and our technique. We present our mass reconstruction results in §4, discussing the source selection, mass distribution, and mass estimation. Discussions of our results will follow in §5 before we conclude in §6.

We assume a flat Λ cold dark matter (ΛCDM) cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$, and $\Omega_\Lambda = 0.7$. At the redshift of RX J0603.3+4214 $z \sim 0.225$, the plate scale is ~3.61 kpc$/\arcsec$ (~217 kpc$/\arcmin$).

2. OBSERVATIONS AND DATA REDUCTION

2.1. Subaru/Suprime Cam

RX J0603.3+4214 was observed with Subaru/Suprime Cam on 25 February 2013 in g, r, and i with total integrations of 720 s, 2880 s, and 720 s, respectively. We used 4 visits for g and i and 8 visits for r with varying roll angles in order to remove cosmic rays and mitigate the impact of “bleeding” trails while co-adding. As demonstrated in their analysis of CIZA J2242.8+5301 (Jee et al. 2015), this rotation of fields significantly increases the number of usable galaxies for weak-lensing study of clusters at low galactic latitude, whose shapes otherwise would have been affected by a number of “bleeding” trails and diffraction spikes.

The low level CCD processing (overscan subtraction, bias correction, flat-fielding, initial geometric distortion rectification, etc.) were carried out with the SDFRED2 package. We refined the geometric distortion

\footnote{http://www.mergingclustercollaboration.org/}

\footnote{http://subarutelescope.org/Observing/Instruments/SCam/sdfred}
and World Coordinate System (WCS) information using the SCAMP software (Bertin 2006). The Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) catalog was selected as a reference when the SCAMP software was run. We also rely on SCAMP to calibrate out the sensitivity variations across different frames. For image combination, we ran the SWARP software (Bertin et al. 2002) using the SCAMP result as inputs. We first created a median mosaic image and then used it to mask out pixels (3σ outliers) in individual frames. These masked individual frames were weight-averaged to generate the final mosaic image, which we use for our scientific analysis presented hereafter.

A very bright ($m_i \sim 7$) star was located at the approximate cluster center (i.e., between the two X-ray peaks) of RX J0603.3+4214 (ra,dec)=(6:03:17.5, 42:12:25), and from visual inspection we find that its halo is affecting a substantial area (a circular region with $d \sim 5^\prime$). In order to investigate the impact of this $m_i \sim 7$ star on our mass reconstruction, we experimented with two star-subtraction schemes. In the first method, we let SWARP determine the local sky level (thus effectively the surface brightness level of the PSF wing near the bright star) and remove it. This method removes a substantial amount of the sky-gradient and allows us to detect many galaxies within the PSF wing. However, one notable weakness of this method is that many high-frequency features remain after the subtraction because the spatial resolution of the sky estimation by SWARP is limited. In the second method, we preserve the sky level in our image reduction and only subtract the PSF from the final co-add after modeling the PSF profile. Judging from visual inspection, we believe that the second method is superior in terms of high-frequency feature removal. Nevertheless, we find that our weak-lensing results from both image reduction schemes are highly consistent not only in total mass estimation, but also in spatial mass reconstruction. The test reassures us that our analysis is robust against the details of the central stellar light subtraction.

For object detection and shape catalog generation, we refer readers to Jee et al. (2015). In brief, we run SExtractor (Bertin & Arnouts 1996) in a dual image mode using the r-band image for detection. The blending threshold parameter (BLEND_THRESH) is set to 32 with a minimal contrast of DEBLEND_MINCONT=10^{-4}. We employ redenning values from Schlafly & Finkbeiner (2011) to estimate cluster center (i.e., between the two X-ray peaks) and of RX J0603.3+4214 (ra,dec)=(6:03:17.5, 42:12:25). In order to investigate the impact of this $m_i \sim 7$ star on our mass reconstruction, we experimented with two star-subtraction schemes. In the first method, we let SWARP determine the local sky level (thus effectively the surface brightness level of the PSF wing near the bright star) and remove it. This method removes a substantial amount of the sky-gradient and allows us to detect many galaxies within the PSF wing. However, one notable weakness of this method is that many high-frequency features remain after the subtraction because the spatial resolution of the sky estimation by SWARP is limited. In the second method, we preserve the sky level in our image reduction and only subtract the PSF from the final co-add after modeling the PSF profile. Judging from visual inspection, we believe that the second method is superior in terms of high-frequency feature removal. Nevertheless, we find that our weak-lensing results from both image reduction schemes are highly consistent not only in total mass estimation, but also in spatial mass reconstruction. The test reassures us that our analysis is robust against the details of the central stellar light subtraction.

For object detection and shape catalog generation, we refer readers to Jee et al. (2015). In brief, we run SExtractor (Bertin & Arnouts 1996) in a dual image mode using the r-band image for detection. The blending threshold parameter (BLEND_THRESH) is set to 32 with a minimal contrast of DEBLEND_MINCONT=10^{-4}. We employ redenning values from Schlafly & Finkbeiner (2011) to estimate cluster center (i.e., between the two X-ray peaks) and of RX J0603.3+4214 (ra,dec)=(6:03:17.5, 42:12:25). In order to investigate the impact of this $m_i \sim 7$ star on our mass reconstruction, we experimented with two star-subtraction schemes. In the first method, we let SWARP determine the local sky level (thus effectively the surface brightness level of the PSF wing near the bright star) and remove it. This method removes a substantial amount of the sky-gradient and allows us to detect many galaxies within the PSF wing. However, one notable weakness of this method is that many high-frequency features remain after the subtraction because the spatial resolution of the sky estimation by SWARP is limited. In the second method, we preserve the sky level in our image reduction and only subtract the PSF from the final co-add after modeling the PSF profile. Judging from visual inspection, we believe that the second method is superior in terms of high-frequency feature removal. Nevertheless, we find that our weak-lensing results from both image reduction schemes are highly consistent not only in total mass estimation, but also in spatial mass reconstruction. The test reassures us that our analysis is robust against the details of the central stellar light subtraction.

2.2. Hubble Space Telescope

The two optically densest regions (Figure 1) of RX J0603.3+4214 were observed with HST using both Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) in parallel during the 2013 October 10 and 2014 January 24 periods under the program HST-GO-13343. The distance between the two instruments on the projected plane of sky is approximately 6′, which fortuitously corresponds to the separation between the two regions. Each region was imaged with two orbits of ACS

F814W, one orbit of WFC3 F606W, and one orbit of WFC3 F390W.

Charge transfer inefficiency (CTI) is an important issue when dealing with CCDs in space as high-energy particles damage the detectors and create a growing number of traps. The effect is severe in both detectors, which, if uncorrected for, would leave substantial “charge trails” and compromise our scientific capability. The current pipeline of the STScI automatically corrects for the effect using the latest pixel-based method (Ubeda & Anderson 2012), however only for ACS. Thus, for the WFC3 data, we manually applied the preliminary version of the STScI script wfc3uv_ctereverse_parallel.F to raw data to correct for the CTI effect. The importance of accurate CTI correction for HST weak-lensing analysis is discussed in the study of Jee et al. (2014), which concludes that the automatic CTI correction for ACS data by the STScI pipeline is adequate for cluster weak-lensing, although the method tends to over-correct the effect at the faint limit.

The software MultiDrizzle (Koekemoer et al. 2002) is used to rectify detector distortions, remove cosmic rays, and create stacks. A critical input to MultiDrizzle is the information regarding accurate relative offsets between images. Within each visit, the typical shift is less than a pixel. However, for different visits, the shift can become as large as a few tens of pixels. We used common astronomical objects to measure relative offsets. The estimated alignment error is ~0.01 pixel, which easily meets the cluster weak-lensing requirement. We “drizzle” images with the final pixel scale of 0.05 “pixel”^{-1} and the Lanczos3 kernel. Readers are referred to our previous paper (e.g., Jee et al. 2014) for more details regarding the HST data reduction in the context of weak-lensing. We measure object shapes only from the ACS F814W images for weak-lensing analysis, although the F606W-F814W colors are used to identify the cluster members.

2.3. Keck DEIMOS Spectroscopic Observation

Detailed description of our DEIMOS spectroscopic observation and data reductions is provided by Dawson et al. (2015). Here we only present a brief summary. We carried out a spectroscopic survey of RX J0603.3+4214 with the DEIMOS instrument during two observing runs on 2013 January 16 and 2013 September 05 using 1′ wide slits with the 1200 line mm^{-1} grating. The resulting pixel scale is 0.33 ˚A pixel^{-1} and a resolution of ~1 ˚A (50 km s^{-1}). We obtained a total of 419 spectra, of which we were able to determine reliable redshifts for 390 objects. We define 240 spectroscopic galaxies within the range 0.21< z < 0.24 as cluster members.

3. WEAK-LENSING METHOD

Although accurate measurement of subtle shape distortions of galaxy images by overcoming various sources of instrumental systematic effects is technically non-trivial, studies of galaxy clusters with weak-lensing have been firmly established as powerful methods to investigate the mass and its distribution. Readers are referred to many excellent reviews in the literature for a more complete description of the technique and issues (e.g., Bartelmann & Schneider 2002). Here we provide a summary of the theory and the data analysis method.
3.1. Theoretical Background

The coordinate transformation by gravitational lensing in a weak-lensing regime is often expressed by the following matrix A:

$$A = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix},$$

where κ and $g_{1(2)}$ are convergence and reduced shear, respectively. A positive value of g_1 stretches the shape of an object in the x-axis direction whereas a negative value elongates the object in the y-axis direction. Similarly, a positive value of g_2 is responsible for the elongation along the direction defined by the function $y = x$ (i.e., 45° with respect to the x-axis. We refer to $g = (g_1^2 + g_2^2)^{1/2}$ as a “reduced” shear in order to distinguish it from a shear γ:

$$\gamma = (1 - \kappa)g.$$

κ is the projected mass density expressed in units of the critical surface mass density:

$$\Sigma_c = \frac{c^2}{4\pi GD^2\beta^2}.$$

In Equation 3, c is the speed of light, G is the gravitational constant, and D_l is the angular diameter distance to the lens. β is the angular diameter distance ratio defined as D_{ls}/D_s, where D_{ls} and D_s are the angular diameter distances between the lens and the source, and between the observer and the source, respectively. In typical weak-lensing studies, accurate redshifts of individual galaxies are unknown, and thus it is common to estimate β for the entire source population, which inevitably contains some foreground galaxies. In this case, β is given as:

$$\beta = \max \left[\frac{D_{ls}}{D_s}, 0 \right].$$

Because the lensing kernel is non-linear, using the effective mean value β above biases the result. An analytic first-order correction is derived by Seitz & Schneider (1997), and we apply the method to our analysis.

3.2. Implementation: Shape Measurement and Point Spread Function Modeling

The matrix (eqn. 1) transforms a circle into an ellipse, and the resulting ellipticity becomes g when we define ellipticity as $e = (a-b)/(a+b)$, where a and b are the semi-major and -minor axes, respectively. Therefore, when no bias is present, the measurement of g is simply averaging object’s (ideal) ellipticities. That is,

$$g_{1(2)} = \langle e_{1(2)} \rangle$$

where e_1 and e_2 are computed by measuring a, b, and θ (angle between the semi-major and the x-axes) as follows:

$$e_1 = e \cos(2\theta)$$

$$e_2 = e \sin(2\theta).$$

Now the important question is how one measures ellipticity from observed galaxy images, which are not only complex, but also subject to distortions from non-gravitational lensing sources such as atmospheric and optical aberrations, detector anomalies, image processing artifacts, etc. Extensive discussions on these challenges are available in the literature, and for some challenges many state-of-the-art algorithms meet or exceed the requirements that many future weak-lensing surveys demand (Mandelbaum et al. 2015). Below we briefly describe our shape measurement method, which turns out to be among the best performing methods in the 3rd Gravitational Lensing Accuracy Testing (GREAT3; Mandelbaum et al. 2014; 2015). The GREAT3 challenges include realistic point spread functions (PSFs) and their spatial variations, realistic galaxy morphologies, multi-epoch data, etc.

We model an observed (smear by PSF) galaxy image with a convolution of an elliptical Gaussian function $G(x,y)$ and a PSF $P(x,y)$:

$$M(x, y) = G(x, y) \otimes P(x, y).$$

The elliptical Gaussian function $G(x,y)$ has four parameters, namely the semi-major axis a', the semi-minor axis b', the position angle θ, and the normalization m; we let the centroid remain fixed. $P(x,y)$ is computed by applying principal component analysis (PCA) to stellar images.

Our PSF modeling scheme is different between Subaru and HST. For Subaru, each CCD frame contains a sufficient number (≥ 100) of high S/N ($> 20\sigma$) stars that enables us to apply PCA directly to science images (Jee & Tyson 2011). This is not the case for HST whose small field of view (∼3′ × ∼3′) provides only 10-20 high S/N stars. Therefore, we use external stellar field images and construct PSF libraries from them (Jee et al. 2007a). Of course, it is necessary to find a matching PSF template from the library for each science frame, where we measure weak-lensing. This template matching between science and stellar fields is possible because the HST PSF pattern is repeatable, largely determined by the focus as empirically demonstrated by Jee et al. (2007a). Schrabback et al. (2010) suggest that perhaps two parameters might be needed to better characterize the PSF pattern of a given ACS exposure.

Going back to the issue of ellipticity measurement, we minimize the difference between $M(x, y)$ and the observed galaxy profile $O(x, y)$. We refer to the ellipticity from this measurement as raw ellipticity e'. This raw ellipticity e' is slightly offset from the ideal ellipticity e above, which we convert to the reduced shear by straightforward averaging. The sources of the bias include noise bias, model bias, truncation bias, etc (see Mandelbaum et al. 2015 for details). Thus, we modify the above Equation 3 as follows:

$$g_{1(2)} = m_{1(2)} \frac{1}{W} \sum_{i=1}^{N} e'_{1(2)} \mu_i$$

where μ_i is the inverse-variance weight:

$$\mu_i = \frac{1}{\sigma_{SN}^2 + (\delta e_i)^2},$$

W is $W = \Sigma \mu_i$, and $m_{1(2)}$ is the multiplicative bias, which is empirically determined from our image simulations.
and
\[\approx \]
the region where ACS colors are available, fainter clus-
gt\), and the red-sequence defined by Subaru and HST
scopically confirmed cluster members. The green box represents
relation of the red-sequence galaxies. The red circles are spectro-
RX J0603.3+4214 field. We observe a tight color-magnitude
Figure 2.
Subaru color-magnitude relation in the

Available Data	Area (arcmin\(^2\))	Density (arcmin\(^{-2}\))	Shape	Color	\(< \beta >\)	\(< \beta^2 >\)
Subaru + ACS + WFC3	14.6	59	ACS F814W	F606W-F814W	0.697	0.503
Subaru + ACS	11.0	66	ACS F814W	g – r	0.680	0.481
Subaru	384	31	Subaru r	g – r	0.472	0.495

for Subaru and
\[-0.3 < F606W - F814W < 1.49 \]
\[20 < F814W < 27 \] (12)

for HST. In addition to the above color and magnitude cuts, we also apply shape criteria cuts. Namely, the post-
seeing half light radius \(r_h \) should be greater than the
value for stars, the shape measurement error \(\delta e \) should be
less than 0.3, and the pre-seeing semi-minor axis \(b \) should be
greater than 0.3 pixels. For the region where only
ACS F814W filter is available, we use Subaru colors. The
mean number density of sources is \(\sim 31 \text{ arcmin}^{-2} \)
in the Subaru-only region whereas the source density becomes a
factor of two higher (59–66 arcmin\(^{-2}\)) in the ACS region.

In order to obtain the redshift distribution of our
source population, we use the photometric redshift cata-
log of Dahlen et al. (2010) from the Great Observatories
Origins Deep Survey (GOODS; Giavalisco et al. 2004)
data. GOODS consists of two separate fields GOODS-N and
GOODS-S, each covering \(\sim 160 \text{ arcmin}^2 \). We com-
bind both photometric redshift catalogs.

For the purpose of source redshift determination, our
weak-lensing field can be divided into the following three
regions, where the available data are 1) only Subaru
shapes and Subaru colors, 2) HST shapes and HST col-
ors, and 3) HST shapes and Subaru colors.

For the first case, we perform photometric transfor-
mation of the \(g – r \) color to match the ACS colors. We
obtain \(\beta = 0.672 \) (eqn. 4) after taking into account
the difference in depth; without this depth correction, a
slightly higher value \(\beta = 0.705 \) is estimated. The width
of the distribution should also be determined to correct
for the bias arising from the assumption that all sources
lie at the single redshift plane. We measure \(\langle \beta^2 \rangle \) to be
0.495. For the second case, we assume that our F814W
in RX J0603.3+4214 matches F775W in GOODS. With
this assumption, \(\langle \beta \rangle \) and \(\langle \beta^2 \rangle \) are estimated to be 0.697
and 0.593, respectively. Finally, for the final case, we ob-
tain \(\langle \beta \rangle = 0.680 \) and \(\langle \beta^2 \rangle = 0.481 \). These source redshift
characteristics are summarized in Table 1.

4.2. One-dimensional Analysis

A traditional method of representing weak-lensing sig-
als is a reduced tangential shear profile. This provides a
measure of how strongly source galaxies are tangentially
aligned around a reference point often chosen to be the
center of a cluster. The mathematical definition is given as:
\[g_T = -g_1 \cos 2\phi - g_2 \sin 2\phi, \]
where \(\phi \) is the position angle of the object with respect to
the reference axis.

The reduced tangential shear centered at the northern
luminosity peak of RX J0603.3+4214 is displayed in
Figure 3, we show in [4.3] that the northern halo is the

4. WEAK-LENSING RESULTS

4.1. Source Selection and Redshift Estimation

Following Jee et al. (2015), we rely on the color-
magnitude relation to select cluster members and lens-
ing sources. The so-called “4000Å break” redshifted to
the cluster at \(z = 0.225 \) is well-bracketed by the \(g – r \)
color, and it is straightforward to identify the red se-
quence of RX J0603.3+4214 with the color-magnitude
relation. Figure 2 shows that this relation appears to
continue down to \(m_r \approx 23 \), where the red-sequence tail
starts to blend into the faint “cloud”. We construct a
cluster member catalog by combining our spectroscop-
cally confirmed \(\sim 240 \) members (W. Dawson et al. in
prep.) and the red-sequence defined by Subaru and HST
photometry. For the Subaru cluster member catalog,
we select sources whose \((g – r) \) colors are between 1.4
and 1.8 and \(r \)-band magnitude is brighter than 23. In
the region where ACS colors are available, fainter clus-
ter members (F814W\(\lesssim 25 \)) are selected. We combine
the two catalogs and remove spectroscopically confirmed
non-members. In Figure 4, we use the smoothed luminosity
map created from this catalog for comparison with the
mass distribution.

We define the source population as the objects with
colors bluer than the red-sequence. Our selection criteria
are:
\[-0.2 < g – r < 1.4 \]
\[22 < r < 26.5 \] (11)

\[m_r < 22 \]
\[20 < F814W < 27 \]
\[-0.3 < F606W - F814W < 1.49 \]
\[20 < F814W < 27 \] (12)

for HST. In addition to the above color and magnitude cuts, we also apply shape criteria cuts. Namely, the post-
seeing half light radius \(r_h \) should be greater than the
value for stars, the shape measurement error \(\delta e \) should be
less than 0.3, and the pre-seeing semi-minor axis \(b \) should be
greater than 0.3 pixels. For the region where only
ACS F814W filter is available, we use Subaru colors. The
mean number density of sources is \(\sim 31 \text{ arcmin}^{-2} \)
in the Subaru-only region whereas the source density becomes a
factor of two higher (59–66 arcmin\(^{-2}\)) in the ACS region.

In order to obtain the redshift distribution of our
source population, we use the photometric redshift cata-
log of Dahlen et al. (2010) from the Great Observatories
Origins Deep Survey (GOODS; Giavalisco et al. 2004)
data. GOODS consists of two separate fields GOODS-N and
GOODS-S, each covering \(\sim 160 \text{ arcmin}^2 \). We com-
bind both photometric redshift catalogs.

For the purpose of source redshift determination, our
weak-lensing field can be divided into the following three
regions, where the available data are 1) only Subaru
shapes and Subaru colors, 2) HST shapes and HST col-
ors, and 3) HST shapes and Subaru colors.

For the first case, we perform photometric transfor-
mation of the \(g – r \) color to match the ACS colors. We
obtain \(\beta = 0.672 \) (eqn. 4) after taking into account
the difference in depth; without this depth correction, a
slightly higher value \(\beta = 0.705 \) is estimated. The width
of the distribution should also be determined to correct
for the bias arising from the assumption that all sources
lie at the single redshift plane. We measure \(\langle \beta^2 \rangle \) to be
0.495. For the second case, we assume that our F814W
in RX J0603.3+4214 matches F775W in GOODS. With
this assumption, \(\langle \beta \rangle \) and \(\langle \beta^2 \rangle \) are estimated to be 0.697
and 0.593, respectively. Finally, for the final case, we ob-
tain \(\langle \beta \rangle = 0.680 \) and \(\langle \beta^2 \rangle = 0.481 \). These source redshift
characteristics are summarized in Table 1.

4.2. One-dimensional Analysis

A traditional method of representing weak-lensing sig-
als is a reduced tangential shear profile. This provides a
measure of how strongly source galaxies are tangentially
aligned around a reference point often chosen to be the
center of a cluster. The mathematical definition is given as:
\[g_T = -g_1 \cos 2\phi - g_2 \sin 2\phi, \]
where \(\phi \) is the position angle of the object with respect to
the reference axis.

The reduced tangential shear centered at the northern
luminosity peak of RX J0603.3+4214 is displayed in
Figure 3, we show in [4.3] that the northern halo is the
...sufficiently large when one wants to minimize the bias. However, is \sim at the boundaries often present in old methods such as cal S/N. This regularization suppresses spurious features adaptively smoothed with a kernel depending on the lo-
ize the mass map. Effectively, the resulting mass map is the best-fit tangential shear ($c = 3.17 \pm 0.04$) when the results at $r > 200^\prime\prime$ are used. It appears that the cluster substructure complicates the shape of the shear profile at small radii ($r \lesssim 400$).

strongest mass peak. The signals are all positive within the displayed range $r < 1000''$ (\sim3.6 Mpc). Since these points are uncorrelated, the significance of the lensing detection is very high ($\sim$$10\sigma$). Also displayed in Figure 3 are so-called B-mode signals (diamonds), which serve as a measure of residual systematics and should be consistent with zero as observed when the systematics are under control. Fitting a single NFW profile to the tangential shears in merging clusters is not a reliable method to quantify the mass. Nevertheless, this provides a quick method to estimate the approximate total mass of the system. Typically, because of significant substructures near the center, shears at large radii are used to estimate the global mass. Using the data points at $r > 200^\prime\prime$ (\sim0.7 Mpc) and the mass-concentration relation of Duffy et al. (2008), we obtain $c = 3.17 \pm 0.04$, which translates to $M_{200} = 1.01^{+0.16}_{-0.14} \times 10^{15} M_\odot$. Our 1D analysis indicates that the total mass of the RX J0603.3+4214 cluster is not low, but certainly not as extreme as the ones in CIZA J2242.8+5301 or El Gordo (Jee et al. 2014; 2015), whose global mass approaches or exceeds $M_{200} \sim 3 \times 10^{15} M_\odot$.

4.3. Two-dimensional Mass Distribution

We present mass reconstruction results based on the maximum entropy method of Jee et al. (2007b). The method uses the “entropy” of the mass pixels to regularize the mass map. Effectively, the resulting mass map is adaptively smoothed with a kernel depending on the local S/N. This regularization suppresses spurious features at the boundaries often present in old methods such as Kaiser & Squires (1993).

In Figure 4, we show the mass reconstruction based on the Subaru data. The mass map clearly shows the north-south elongation seen in the distributions of the X-ray emission and cluster galaxies. The correlation of the weak-lensing mass with the smoothed optical light is high. We identify at least four luminosity peaks, and three of them (L1, L2, and L4) are resolved by the Subaru weak-lensing. Because of the bright ($r \sim 7$) star in the field center, there is a non-negligible chance that the substructures around the star may be affected, although we carefully subtract the stellar light profile and attempt to use as many galaxies as possible in the neighborhood. We suspect that the influence on the mass peak near L1 is minor because of its significant lensing signal (some strong-lensing features are also visible). However, interpretation of the substructure near L4 needs caution because it is very close to the star and also the peak signif-
icance is much weaker despite the apparent alignment between light and mass.

We display our HST weak-lensing results in Figure 5. The results are consistent with the Subaru results. The northern mass peak in the Subaru mass map is further resolved into two peaks thanks to the factor of two increase in the HST source density. The HST southern mass peak is in excellent agreement with the Subaru result; the two centroids are highly consistent, and both mass peaks show an extension toward North.

We also merge the HST and Subaru catalogs and perform mass reconstruction over the large Subaru area. We take into account the source redshift difference, although the difference is minor (0.672 vs. 0.697). The mass reconstruction based on this joint source catalog is presented in Figure 6. The mass map from this joint analysis is consistent with the Subaru-only result while revealing more detailed substructures where HST data are available. One potentially interesting feature that appears in this joint analysis map, but not seen in the Subaru-only mass map (Figure 5), is an overdensity near the southern X-ray peak. We find no luminous cluster members in this region, which is reminiscent of the “dark core” in A520 (Jee et al. 2014; 2012; Mahdavi et al. 2007). However, robust interpretation is difficult without full HST coverage in this area; in addition, a significant area in this region is also affected by the bright star mentioned above.

With this caveat, the result shows that the mass structure of RX J0603.3+4214 is by and large bimodal with the two mass components corresponding to the two strongest luminosity peaks. These two mass peaks are also collinear with the two X-ray peaks and the “brush” of the “Toothbrush” radio-relic.

4.4. Mass Estimation

Accurate determination of cluster masses is challenging even for relaxed systems. Various systematic errors, as well as differences in analysis method can lead to \sim10% offsets for the population mean and up to \sim50% scatters for individual systems among different studies (e.g., von der Linden et al. 2013; Merten et al. 2015; Hoekstra et al. 2015).

The issue becomes even more complex when one studies merging clusters. To say the least, merging clusters are believed to show more departure from conventional

Figure 3. Reduced tangential shear profile of RX J0603.3+4214. Filled circles are reduced tangential shears azimuthally averaged with respect to the northern halo. Diamond symbols represent the results when galaxies are rotated by 45°. These results are often referred to as “B-mode” signals and must be consistent with zero as observed when no systematics are present. The dashed line is the best-fit tangential shear ($c = 3.17 \pm 0.04$) when the results at $r > 200''$ are used. It appears that the cluster substructure complicates the shape of the shear profile at small radii ($r \lesssim 400$).

\[M_{200} = 1.01^{+0.16}_{-0.14} \times 10^{15} M_\odot \]

\[c = 3.17 \pm 0.04 \]
Figure 4. Mass reconstruction using Subaru weak-lensing. In the left panel, mass contours are overlaid on the color composite also shown in Figure 1. In the right panel, we overlay mass contours on the smoothed optical (i-band) luminosity of the cluster members. Overall, the mass distribution follows the galaxy distribution whereas we find a clear offset between X-ray and mass in the southern region.

Figure 5. Mass reconstruction using HST weak-lensing. The color composites are created by combining the ACS F814W (red), WFC3 F606W (green), and WFC3 F390W (blue) data. Refer to Figure 4 for guidance in locating the two HST fields within the larger Subaru fields. The northern mass map obtained from HST is consistent with the Subaru result, although more source galaxies in the former allows us to resolve the two components also traced by the cluster galaxies. The southern mass distribution also agrees nicely with the Subaru result. No distinct mass peak is found near the southern X-ray peak. However, note the extension of the HST mass map toward the peak of the X-ray emission.
Figure 6. Same as Figure 4 except that mass reconstruction is based on both HST and Subaru imaging. The mass map from this joint analysis is consistent with the Subaru-only result while revealing higher-resolution distributions where HST data are available. Note the improved agreement between mass and optical light compared to the Subaru-only case (Figure 4).
analytic profiles, and their lensing signals should be modeled as a superposition of a few or more halos. Often, determining how many halos should be assumed and where they are placed for a given system is not straightforward. In Jee et al. (2014; 2015), we demonstrated that catastrophic (> 50%) over- or under-estimation can arise if the traditional method, which applies a single analytic profile to azimuthally averaged lensing signals, is employed.

In mass estimation of RX J0603.3+4214, we follow the approach of Jee et al. (2014; 2015), where the merging systems are modeled as a binary system. This binary assumption can be considered questionable in RX J0603.3+4214, where the cluster galaxy and mass distributions are somewhat complex, but the inclusion of more than two halos leads to numerical instability in the current case. Nevertheless, since our final mass map based on HST and Subaru indicates that the total mass is dominated by the two strongest mass peaks associated with the two most luminous halos, we believe that the amount of bias with a two-halo model would not be substantial. In §5.1 we demonstrate that this bias, if any, is indeed small and within statistical errors by comparing this mass estimate with aperture mass densitometry, which does not require assumptions on the underlying mass distribution.

While fitting two NFW profiles simultaneously, we assume the mass-concentration relation of Duffy et al. (2008) and fix the two halo centers at the two brightest luminosity centers. Unlike CIZA J2242.8+5301, fixing the centers is necessary for RX J0603.3+4214 because of the relatively low mass (thus low amplitude of the lensing signal) of the system.

The resulting M_{200} values for the northern and southern halos are $M_{200} = 6.29_{-1.62}^{+2.24} \times 10^{14} M_\odot$ and $1.98_{-0.74}^{+1.24} \times 10^{14} M_\odot$, respectively (Table 2). This shows that RX J0603.3+4214 consists of two subclusters with an approximate mass ratio of 3:1. In merging clusters, estimation of the total mass of the entire system (e.g., M_{200} when the two halos are combined) by adding the masses of the two halos is ambiguous because the result certainly depends on the choice of the system center. If we choose the geometric mean of the two halos as the center, the total mass of the RX J0603.3+4214 system becomes $M_{200} = 9.6_{-1.5}^{+2.1} \times 10^{14} M_\odot$: we determined the value r_{200} numerically by overlapping the two halos in 3D. This mass nicely agrees with the value $M_{200} = 10.1_{-1.4}^{+1.6} \times 10^{14} M_\odot$ obtained from the tangential shear fitting discussed in §4.2 (i.e., assuming a single halo). Normally, this level of agreement should be considered surprising in merging clusters. However, because the southern cluster’s contribution to the total mass is small ($\sim 2 \times 10^{14} M_\odot$), this agreement is not totally unexpected in RX J0603.3+4214. We summarize the mass estimation results in Table 2.

5. DISCUSSION

5.1. Any Mass Left Behind?

Because we make an approximation that the mass of RX J0603.3+4214 is dominated by the two halos associated with the two X-ray peaks, it is useful to examine the validity of the assumption by an independent method. We employ aperture mass densitometry, which allows us to estimate total projected masses within a given aperture without any assumption on the number of halos and their profiles. We will compare this projected mass from aperture mass densitometry with the results from our two halo model by projecting the 3D NFW mass distribution onto the plane of sky.

Aperture mass densitometry (Fahlman et al. 1994; Clowe et al. 2000) is computed through the following equation:

$$\zeta_c(r_1, r_2, r_{max}) = \bar{\kappa}(r \leq r_1) - \bar{\kappa}(r_2 < r \leq r_{max})$$

$$= 2 \int_{r_1}^{r_2} \frac{\langle \gamma_T \rangle}{r} dr + \frac{2}{1 - r_2^2/r_{max}^2} \int_{r_2}^{r_{max}} \langle \gamma_T \rangle/dr, \tag{14}$$

where $\langle \gamma_T \rangle$ is the azimuthal average of tangential shear, r_1 is the aperture radius, and r_2 and r_{max} are the inner- and the outer-radii of the annulus. $\zeta_c(r_1, r_2, r_{max})$ provides a density contrast of the region inside $r < r_1$ with respect to the control annulus (r_2, r_{max}). We choose $r_2 = 800'' (\sim 2.9$ Mpc) and $r_{max} = 1000'' (\sim 3.6$ Mpc) for the control annulus. Projecting our NFW fitting results, we estimate the density within this annulus to be $\bar{\kappa} = 0.004$. Because the control annulus radius is large and the density there is small, the impact of adopting the NFW results on the aperture mass densitometry becomes negligible.

The input to the equation of the densitometry is a shear γ_T, not a reduced shear $\bar{\gamma}_T$. Therefore, we need to determine the aperture mass using the relation $\gamma = (1 - \kappa)/\bar{\gamma}_T$. We find that the density converges after three or four iterations. The resulting aperture mass is displayed in Figure 7. Also displayed in Figure 7 is the aperture mass estimated by projecting the NFW fitting results above. In order to obtain this estimation, we first projected each NFW profile along the line-of-sight direction and sum the two halo results. The aperture mass density masses are within the 1-σ upper limits of the NFW masses, which may hint at the possibility that the two-halo representation may not be a perfect choice. However, because the 1-σ error bars from both methods overlap, we argue that the difference should not be considered statistically significant.

5.2. Comparison with X-ray Results and Implication for the “Toothbrush” Merging Scenario

A diffuse hot plasma within a cluster is well traced by X-ray emission because the emissivity is in general proportional to the plasma density squared (given the same plasma temperature). Since the plasma consists of charged particles subject to ram pressure, the X-ray morphology of merging clusters reveals critical information that cannot be probed otherwise. Here we compare the X-ray morphology of RX J0603.3+4214 with the weak-lensing mass distribution and discuss the implication in the context of the merging scenario responsible for the observed “Toothbrush” radio-relic.

RX J0603.3+4214 has been observed with both XMM-Newton and Chandra. The 82 ks XMM-Newton data were studied by Ogrean et al. (2013), and van Weeren et al. (2015) analyzed the 237 ks Chandra data (ObsID: 15171, 15172, and 15323). Ogrean et al. (2013) showed that the intracluster medium of RX J0603.3+4214 is dominated by two components, which is confirmed by the Chandra study of van Weeren et al. (2015). In addition, a few new remarkable features are revealed in the
The southern mass peak is offset to the south by \(\sim\) spectral to the corresponding X-ray peak by the northern mass peak is offset toward the northwest with re-

estimated by a north-south collision of two components. We results suggest that the dominant merger may be approx-

imated by our hypothesized merger axis. Despite the somewhat display the comparison in Figure 8, where we illustrate

garding the merging scenario of RX J0603.3+4214. We

rent weak-lensing results provide a consistent picture re-

further temperature analysis, the density jump at the

has a triangular “bullet”-like shape. According to their

Chandra data show that the southern X-ray component

and 1

−

+0

0

5

3

2

3.17±0.04

10.1±1.4

Note. — 1. We compute the total mass of the system by adopting the geometric center of the two components as the center and estimating the combined mass (superposition of two halos) within \(r_{200}\), inside which the mean density becomes 200 times the critical density at \(z = 0.225\). 2. We use the tangential shear profile at \(r > 200\)′′ to estimate the total mass.

Figure 7. Projected masses of RX J0603.3+4214. We compare non-parametric (aperture mass densitometry) results with parametric ones (analytic projection of two NFW profiles). The band of each color shows the 1-\(\sigma\) range of statistical uncertainties. The two results are consistent with each other, and we conclude that no significant mass is excluded by modeling RX J0603.3+4214 with two NFW profiles.

high-resolution Chandra observation. First, a density jump indicating a shock is detected in the southern edge. This location coincides with the southern edge of the radio halo. Across the shock a temperature jump is also found. The two Mach numbers derived by both density and temperature jumps are consistent (\(M = 1.4^{+0.065}_{-0.058}\) and \(1.7^{+0.5}_{-0.3}\), respectively). Second, the high-resolution Chandra data show that the southern X-ray component has a triangular “bullet”-like shape. According to their further temperature analysis, the density jump at the southern edge of the bullet indicates a cold front.

The comparison of these X-ray findings with the current weak-lensing results provide a consistent picture regarding the merging scenario of RX J0603.3+4214. We display the comparison in Figure 8 where we illustrate our hypothesized merger axis. Despite the somewhat complex galaxy distribution, the X-ray and weak-lensing results suggest that the dominant merger may be approx-

imated by a north-south collision of two components. We

find offsets between X-ray and mass peaks. The northern mass peak is offset toward the northwest with re-

spect to the corresponding X-ray peak by \(\sim0.5\)′ whereas the the southern mass peak is offset to the south by \(\sim2\)′. Similar to the Bullet Cluster, the direction of the offsets favors a scenario, wherein the two components passed through each other and are still separating. Our weak-

lensing analysis shows that the northern component is more massive than the southern component by a factor of three. We believe that this mass inequality is consistent with the offset inequality, since the less massive southern component should experience more ram pressure. An-

other supporting evidence for this mass inequality is the location of the “Toothbrush”-relic. The simulation by van Weeren et al. (2011) predicts that two radio-relics are generated in a two-body encounter and travel along the merger axis with the larger relic associated with the more massive halo. The observation that the \(\sim2\) Mpc “Toothbrush”-relic is located near the northern edge of RX J0603.3+4214 is consistent with the northern component being more massive in our weak-lensing analysis. The same trend has been observed in our weak-lensing study of the “sausage” cluster CIZA J2242.8+5301 (Jee et al. 2015) and ZwCl0008.8+5215 (N. Golovich et al. in prep.). The study of ZwCl0008.8+5215 shows that the X-ray emission of the less massive system appears as a clear “bullet”-like feature, similar to the “Bullet” clus-

ter (Clowe et al. 2006), whereas the larger radio relic is found near the edge of the more massive system. The exact physical mechanism is unknown as to the question “why does the larger radio relic occur on the higher mass side?” On the other hand, X-ray observations show that distinct shock features such as density discontinu-

ities, temperature jumps, etc. are more prominent on the lower mass side unlike radio relics, which are also believed to trace the location of shock fronts.

Some may argue that the above mass inequality arg-

ument may be challenged by the X-ray luminosity of the southern peak being much higher. Needless to say, in general X-ray luminosity is positively correlated with mass. However, in active merging clusters, it is natural to suspect that this correlation between mass and X-ray luminosity can temporarily be altered for many reasons (e.g., Randall et al. 2002; Skillman et al. 2013). For example, a cool core (associated with a lower mass component) can survive a head-on collision whereas a hot core (associated with a higher mass component) can severely be disrupted after a core passthrough. The deep Chandra X-ray image of the “El Gordo” cluster at \(z = 0.87\) is a good example. The weak-lensing study shows that the system is comprised of two halos with a 2:1 mass ratio whereas only the cool core associated with the less mas-

sive system (south) is clearly visible in X-ray (Jee et al. 2014; Menanteau et al. 2012). The hydro-dynamical sim-

ulation by Molnar & Broadhurst (2015) reproduces this asymmetry in brightness between the two X-ray peaks of “El Gordo”. Another example is ZwCl0008.8+5215 (N. Golovich et al. in prep.) at \(z = 0.1\) mentioned above.

Table 1

Component	Centroid (RA,DEC)	Concentration	\(M_{200} (\times10^{14} M_\odot)\)
North	(90°81955, 42°24480)	3.30 ± 0.08	6.29±1.24
South	(90°85130, 42°15856)	3.64 ± 0.14	1.98±0.74
Total (two-component)	-	-	9.6±2.1
Total (one-component)	-	3.17±0.04	10.1±1.4

Component	Centroid (RA,DEC)	Concentration	\(M_{200} (\times10^{14} M_\odot)\)
North	(90°81955, 42°24480)	3.30 ± 0.08	6.29±1.24
South	(90°85130, 42°15856)	3.64 ± 0.14	1.98±0.74
Total (two-component)	-	-	9.6±2.1
Total (one-component)	-	3.17±0.04	10.1±1.4
Even when we treat RX J0603.3+4214 as a single halo for the northern and southern halos, respectively. Lensing masses are converted to kV and model with β into ICM. With the assumption of the isothermal model, the weak-lensing masses imply a smaller third component might have been involved as suggested by Bruggen et al. (2012). However, the mass, path, and timing of this third component are unclear. It is our hope that the weak-lensing substructures revealed in the current study aids us to reduce the volume of the parameter space that future simulations should explore.

Third, the implied collision velocity is very high. The high polarization fraction $\alpha \lesssim 60\%$ (van Weeren et al. 2012) suggests that the merger may be happening in the plane of the sky. According our redshift analysis (W. Dawson et al. in prep), the line-of-sight velocity difference between the northern and southern subclusters is ~ 1800 km s$^{-1}$. Even with the polarization prior $\alpha \sim 30\%$, the implied collision velocity is as high as ~ 3500 km s$^{-1}$, which exceeds the escape velocity of the RX J0603.3+4214 system and thus is hard to accommodate within the current ΛCDM paradigm. More detailed discussions will appear in W. Dawson et al. (in prep).

6. CONCLUSIONS

We have presented detailed weak-lensing studies of the “Toothbrush”-relic cluster RX J0603.3+4214 with HST and Subaru imaging. Together with the “Sausage”-relic cluster CIZA J2242.8+5301, RX J0603.3+4214 has been known for its giant (~ 2Mpc) radio relic, whose peculiar morphology gives the system the nickname “Toothbrush”.

Our weak-lensing study provides a high-resolution map of the cluster dark matter, which helps us to constrain the merging scenario responsible for the “Toothbrush” relic. We find that although the cluster substructure is more complicated than that of CIZA J2242.8+5301, the global mass distribution can be approximated by a bi-modal distribution with a 3:1 mass ratio. The northern mass clump encloses $M_{200} = 6.29^{+0.24}_{-0.29} \times 10^{14} M_\odot$ and coincides with the galaxy luminosity peak. The southern mass component contains $M_{200} = 1.98^{+1.24}_{-0.74} \times 10^{14} M_\odot$ and is also in an excellent spatial agreement with the southern luminosity peak. However, the southern mass peak is $\sim 2^\prime$ offset with respect to the southern X-ray peak. The two mass peaks, two X-ray peaks, two luminosity peaks, and the “brush” of the “Toothbrush”-relic are collinear, which strongly suggests that the violent merger responsible for the giant radio relic was mainly derived by the collision of the two components. How-

Figure 8. Comparison of weak-lensing mass, X-ray, and radio emission. The white contours are mass density. The background is color-coded with the intensity of adaptively smoothed X-ray emission. The green contours represent the 610 MHz radio (GMRT) intensity. The northern mass peak is more massive than the southern mass peak approximately by a factor of three whereas the X-ray emission is much stronger in the southern peak. Both X-ray peaks are offset from the corresponding mass peaks. The larger offset between the southern mass and the “bullet”-like X-ray peak is consistent with our expectation because the smaller mass must experience larger ram pressure. Note the collinearity of the two X-ray peaks, two strongest mass peaks, and the “brush” of the “Toothbrush”-relic, which we hypothesize as the merger axis and large the ZwCl0008.8+5215 cluster is also a binary merging system with one of two X-ray peaks resembling a “bullet”-like shape. The “bullet” component is brighter than the other component in X-ray whereas the mass associated with the “bullet” is found to be approximately a factor of five smaller.

5.3. Remaining Puzzles of the “Toothbrush”-relic Cluster

One of the goals of the MC^2 collaboration is to enable quantitative comparisons between observations and simulations for interesting merging clusters. RX J0603.3+4214 is a remarkably interesting system and should be followed up by careful numerical analysis. Here we discuss some of the puzzling issues of RX J0603.3+4214 that future hydrodynamic simulations should address.

First, we believe that the extremely high ICM temperature of RX J0603.3+4214 deserves our attention. van Weeren et al. (2015) constrain the temperatures of the northern and southern X-ray peaks to be $8.43^{+0.26}_{-0.25}$ keV and 9.00 ± 0.28 keV, respectively. These temperatures are substantially higher than what our weak-lensing masses imply if we neglect non-thermal energy injection into ICM. With the assumption of the isothermal β model with $r_c = 100$ kpc and $\beta_X = 0.7$, the weak-lensing masses are converted to $T_X \sim 5$ keV and ~ 2 keV for the northern and southern halos, respectively. Even when we treat RX J0603.3+4214 as a single halo with $M_{200} \sim 9.6 \times 10^{15} M_\odot$ (i.e., the sum of the two halos using the values in Table 2), the implied temperature (again with an isothermal β model) becomes only $T_X \sim 7$ keV, significantly smaller than the global X-ray temperature $T_X \sim 10$ keV. Although this discrepancy may not be considered surprising, given the common understanding that X-ray temperatures of merging clusters are biased indicators of the cluster masses, the level of discrepancy that we witness in RX J0603.3+4214 is somewhat extreme when we consider results for other clusters in the literature. For example, even for the “Bullet”-cluster, Clowe et al. (2006) find that the temperature levels of the system are consistent with their weak-lensing masses.

Second, although we argue that the two subclusters of RX J0603.3+4214 played the dominant roles in creating the current observational features such as the galaxy-mass-relic alignments, the offsets between mass/galaxy and X-ray peaks, etc., the long asymmetrically linear feature of the “Toothbrush”-relic strongly suggests that a smaller third component might have been involved as suggested by Bruggen et al. (2012). However, the mass, path, and timing of this third component are unclear. It is our hope that the weak-lensing substructures revealed in the current study aids us to reduce the volume of the parameter space that future simulations should explore.
ever, the long "handle"-relic extended northeast from the "brush" indicates that a third (or more) component might have been involved in this merger. It is interesting that our weak-lensing mass reconstruction reveals a mass clump southwest of the northern mass peak. We find that a galaxy luminosity peak coincides with this mass overdensity. Nevertheless, we have yet to carry out detailed simulations in order to quantify the possibility that this observed component might have been involved in the creation of the peculiar radio-relic morphology.

The shape of the southern X-ray peak is triangular and is reminiscent of the "Bullet" in the Bullet Cluster. A recent Chandra study reveals a shock south of this feature traced by both density and temperature jumps. Together with the aforementioned offset, these X-ray features show that we may be witnessing a post-collision, where the two cluster components are separating from each other.

The high X-ray temperatures of RX J0603.3+4214 are discrepant with what the weak-lensing masses imply. We attribute the large differences to substantial departure from the hydrostatic equilibrium. These severe discrepancies support the consensus that using X-ray temperatures is unreliable way to infer cluster masses in violent merging systems.

Galaxy clusters are receiving growing attention as cosmic particle accelerators. Although every merger case is special and deserves scrutiny, radio-relic clusters are particularly useful thanks to strong constraints on both the geometry and stage of the mergers, which enables us to reduce the parameter search space by substantial factors. Of course, careful numerical simulations should follow up the observations in order to come up with quantitatively coherent scenarios, wherein all the observed features fit together within the observational uncertainties.

Support for Program number HST-GO-13343.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. MJJ acknowledges support from NRF of Korea to CGER. AS acknowledges financial support from an NWO top subsidy (614.001.006). HR gratefully acknowledges support from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant NewClusters-321271. Part of this work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Akamatsu, H., & Kawahara, H. 2013, PASJ, 65, 16
Berezhinsky, V. S., Blasi, P., & Ptuskin, V. S. 1997, ApJ, 487, 529
Bertin, E. 2006, Astronomical Data Analysis Software and Systems XV, 351, 112
Bertin, E., Mellier, Y., Radovich, M., et al. 2002, Astronomical Data Analysis Software and Systems XI, 281, 228
Brüggen, M., van Weeren, R. J., Röttgering, H. J. A. 2012, MNRAS, 425, L76
Brunetti, G., Giacintucci, S., Cassano, R., et al. 2008, Nature, 455, 944
Brunetti, G., & Jones, T. W. 2014, International Journal of Modern Physics D, 23, 1430007
Cassano, R., & Brunetti, G. 2005, MNRAS, 357, 1313
Clowe, D., Luppino, G. A., Kaiser, N., & Gioia, I. M. 2000, ApJ, 539, 540
Clowe, D., Bradač, M., Gonzalez, A. H., et al. 2006, ApJ, 648, L109
Dawson, W. A., Wittman, D., Jee, M. J., et al. 2012, ApJ, 747, L42
Dawson, W. A. 2013, ApJ, 772, 131
Duffy, A. R., Schaye, J., Kay, S. T., & Dalla Vecchia, C. 2008, MNRAS, 390, L64
Evrard, A. E., Bialek, J., Busha, M., et al. 2008, ApJ, 672, 122
Fahnian, G., Kaiser, N., Squires, G., & Woods, D. 1994, ApJ, 437, 56
Feinstein, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, A&A Rev., 20, 54
Govoni, F., Feretti, L., Giovannini, G., et al. 2001, A&A, 376, 803
Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236
Jee, M. J., Blakeslee, J. P., Sirianni, M., Martel, A. R., White, R. L., & Ford, H. C. 2007a, PASP, 119, 1403
Jee, M. J., et al. 2007b, ApJ, 661, 728
Jee, M. J., & Tyson, J. A. 2011, PASP, 123, 596
Jee, M. J., Mahdavi, A., Hoekstra, H., et al. 2012, ApJ, 747, 96
Jee, M. J., Tyson, J. A., Schneider, M. D., et al. 2013, ApJ, 765, 74
Jee, M. J., Hoekstra, H., Mahdavi, A., & Babul, A. 2014a, ApJ, 783, 78
Jee, M. J., Hughes, J. P., Menanteau, F., et al. 2014b, ApJ, 785, 20
Kaiser, N., & Squires, G. 1993, ApJ, 404, 441
Katgert, P., Katgert-Merkelijn, J. K., Le Poole, R. S., & van der Laan, H. 1973, A&A, 23, 171
Kocevski, D. D., Ebeling, H., Mullis, C. R., & Tully, R. B. 2007, ApJ, 662, 224
Mahdavi, A., Hoekstra, H., Babul, A., Balam, D. D., & Capak, P. L. 2007, ApJ, 668, 896
Menanteau, F., Hughes, J. P., Sifón, C., et al. 2012, ApJ, 748, 7 Molnar, S. M., & Broadhurst, T. 2015, ApJ, 800, 37
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Ng, K. Y., Dawson, W. A., Wittman, D., et al. 2015, MNRAS, 453, 1531
Ogrean, G. A., Brüggen, M., van Weeren, R. J., et al. 2013, MNRAS, 433, 812
Ogrean, G. A., Brüggen, M., van Weeren, R., et al. 2014, MNRAS, 440, 3416
Ouchi, M., Shimakaski, K., Okaamura, S., et al. 2004, ApJ, 611, 660
Pratt, G. W., Croston, J. H., Arnaud, M., & Böhringer, H. 2009, A&A, 498, 361
Randall, S. W., Sarazin, C. L., & Ricker, P. M. 2002, ApJ, 577, 579
Rocha, M., Peter, A. H. G., Bullock, J. S., et al. 2013, MNRAS, 430, 81
Sarazin, C. L. 2002, Merging Processes in Galaxy Clusters, 272, 1 Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Seitz, C., & Schneider, P. 1997, A&A, 318, 687
Skillman, S. W., Xu, H., Hallman, E. J., et al. 2013, ApJ, 765, 21
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Stroe, A., van Weeren, R. J., Intema, H. T., et al. 2013, A&A, 555, A110
Stroe, A., Sobral, D., Röttgering, H. J. A., & van Weeren, R. J. 2014b, MNRAS, 438, 1377
Stroe, A., Sobral, D., Dawson, W., et al. 2015, MNRAS, 450, 646
Swarup, G., Ananthakrishnan, S., Kapahi, V. K., et al. 1991, Current Science, Vol. 60, NO.2/JAN25, P. 95, 91991, 60, 95
van Weeren, R. J., Röttgering, H. J. A., Brüggen, M., & Hoeft, M. 2010, Science, 330, 347
van Weeren, R. J., Brüggen, M., Röttgering, H. J. A., & Hoeft, M. 2011, MNRAS, 418, 230
van Weeren, R. J., Röttgering, H. J. A., Intema, H. T., et al. 2012, A&A, 546, A124
Völk, H. J., Aharonian, F. A., & Breitschwerdt, D. 1996, Space Sci. Rev., 75, 279
Yagi, M., Kashikawa, N., Sekiguchi, M., et al. 2002, AJ, 123, 66
Zwart, J. T. L., Barker, R. W., Biddulph, P., et al. 2008, MNRAS, 391, 1545