Clinical study of \textit{MAP2K1}-mutated Langerhans cell histiocytosis in children

Ying Yang1 \textsuperscript{\ding{51}} · Chanjuan Wang2 · Dong Wang1 · Lei Cui2 · Na Li2 · Hongyun Lian1 · Honghao Ma1 · Yunze Zhao1 · Liping Zhang1 · Wei Liu3 · Yizhuo Wang4 · Wanshui Wu5 · Rui Zhang1 · Zhigang Li2 · Tianyou Wang1

Received: 1 August 2021 / Accepted: 17 September 2021 / Published online: 30 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

\textbf{Purpose} To analyze the genetic and clinical features of children with \textit{MAP2K1}-mutated Langerhans cell histiocytosis (LCH).

\textbf{Methods} We compared the clinical features of 37 children with \textit{MAP2K1}-mutated LCH with those of the \textit{BRAF}V600E mutation group (\(n = 133\)) and no known mutation group (\(n = 59\)) in the same period.

\textbf{Results} We found 13 mutations of the \textit{MAP2K1} gene, which were mainly concentrated at p.53–62 and p.98–103. The most common mutation site was c.172_186del (12/37). Compared with the \textit{BRAF}V600E mutation group, the patients with \textit{MAP2K1} mutations were mainly characterized by single-system multiple bone involvement (\(P = 0.022\)), with later disease onset (\(P = 0.029\)) as well as less involvement of risk organs, especially liver (\(P = 0.024\)). There was no significant difference in clinical features compared with the no known mutation group. The 2-year progression-free survival rate of first-line treatment (ChiCTR1900025783, 07/09/2019) in \textit{MAP2K1}-mutated patients was 65.6\% ± 9.5\%. The prognosis of patients with lung involvement was poor [HR (95\% CI) = 6.312 (1.769–22.526), \(P = 0.005\)]. More progression or relapses could be found in patients with bony thorax involvement (8/17 vs. 2/20, \(P = 0.023\)), yet involvements in other sites of bones, such as craniofacial bone involvement (8/26 vs. 2/11, \(P = 0.688\)) and limb bone involvement (5/12 vs. 5/25, \(P = 0.240\)), were not correlated to disease progression or relapse.

\textbf{Conclusion} The children with \textit{MAP2K1}-mutated LCH have specific clinical features requiring clinical stratification and precise treatment. \textit{MAP2K1}-mutated patients with lung involvement (especially with bony thorax involvement) had poor prognosis.

Keywords \textit{MAP2K1} · Mutation · Langerhans cell histiocytosis · Children

Abbreviations

\begin{tabular}{ll}
AD & Active disease \\
ALT & Alanine aminotransferase \\
AST & Aspartate aminotransferase \\
CNS & Central nervous system \\
CRP & C-reactive protein \\
CT & Computed tomography \\
DCR & Disease control rate \\
FFPE & Formalin-fixed paraffin-embedded \\
HLH & Hemophagocytic lymphohistiocytosis \\
LCH & Langerhans cell histiocytosis \\
MS & Multisystem \\
NAD & Nonactive disease \\
ORR & Objective response rate \\
PFS & Progression-free survival \\
PLT & Platelet \\
RO & Risk organ \\
SS & Single-system \\
WBC & White blood cell
\end{tabular}

Ying Yang, Chanjuan Wang and Dong Wang authors contributed equally to this work.

* Rui Zhang
ruizh1973@126.com

* Zhigang Li
ericlzg70@hotmail.com

* Tianyou Wang
wangtianyou@bch.com.cn

Extended author information available on the last page of the article
Introduction

Langerhans cell histiocytosis (LCH) is a rare clonal disease characterized by the expansion of Langerhans cells derived from myeloid precursors and is more common in children than in adults (Allen et al. 2018). Various clinical manifestations of LCH can be found with many systems involved, such as bone, skin, lung, liver, spleen, etc. Among them, the prognosis of patients with risk organ (RO) involvement, including the liver, spleen and hematopoietic system, is generally poor. The risk of sequelae of the central nervous system (CNS) and disease reactivation is higher in patients with CNS-risk lesions (including craniofacial bone, eye, ear and oral involvement) (Chow et al. 2017).

At present, some studies have found that there is a clear correlation between the MAPK pathway and the pathogenesis of LCH. BRAFV600E is the most common gene mutation, identified in more than 60% of LCH patients. MAP2K1 is another common mutant gene whose mutation frequency varies from 8.6 to 46% (Lian et al. 2019). The activated coding product of the MAP2K1 gene, MAP2K1 kinase, can activate its downstream ERK kinase, which in turn affects the proliferation, differentiation and other functions of cells (Hayase et al. 2020).

In this study, the gene mutation sites, clinical features and prognosis of patients with the BRAFV600E mutation or no known mutation of the MAPK pathway were compared with that of newly treated patients with MAP2K1-mutated LCH to provide evidence for the clinical diagnosis and treatment of MAP2K1-mutated LCH.

Materials and methods

Patients

MAP2K1 mutation group

This was a single-center retrospective case–control study. All children newly diagnosed with MAP2K1-mutated LCH who were admitted to Beijing Children’s Hospital, Capital Medical University, between July 1, 2017, and October 31, 2020, were enrolled. The inclusion criteria were as follows: (1) the age of disease onset was less than 18 years old; (2) diagnosed with LCH according to the pathological examinations of biopsied tissue: positive staining of the lesion cells with CD1a and/or CD207 (Langerin), or Birbeck granules could be found under an electron microscope; (3) MAP2K1 mutation was detected in biopsied tissue before treatment; (4) newly treated patients; (5) accepted regular follow-up and evaluation of treatment response on time. The exclusion criteria were as follows: (1) the clinical data at the time of initial diagnosis could not be obtained, and (2) they had received chemotherapy or targeted drug treatment before enrolment or did not follow the treatment regimen of our center.

BRAFV600E mutation group and no known mutation of the MAPK pathway group

In the same period, all LCH patients with the BRAFV600E mutation or no known mutation of the MAPK pathway in biopsied tissue were included as the control groups. Except for the gene mutation, the other inclusion and exclusion criteria were the same as those for the MAP2K1 mutation group.

Regimen of treatment and follow-up

First-line treatment

Before September 2019, all patients diagnosed with LCH were treated with the LCH-III regimen developed by Histioyte Society (HS) (Histiocyte Society. 2009) except that methotrexate was not used in this regimen, and those diagnosed after September 2019 were treated with the CCHG-LCH-2019 regimen of our center (ChiCTR1900025783), in which patients were treated with the same dosage and course of prednisone as the LCH-2009 regimen combined with vincristine 1.5 mg/m^2, vindesine 3 mg/m^2 or vinblastine 6 mg/m^2. Patients with isolated disease located in functionally critical anatomical sites, such as vertebral lesions with intraspinal soft tissue extension or craniofacial bone involvement with intracranial soft tissue extension, were also treated with systemic therapy (Histiocyte Society. 2009). The treatment response was evaluated at the 6th, 12th, 25th and 52nd weeks during chemotherapy and at the 3rd month, 6th month, 1st year, 2nd year and 3rd year after drug withdrawal.

Second-line treatment

The patients who met one of the following criteria were given second-line treatment: (1) the patients without RO involvement (RO−) who were evaluated as having disease progression (active disease-worse, AD-Worse) at the 6th week of first-line chemotherapy; or were evaluated as AD-Worse or intermediate response (active disease-mixed, AD-Mixed) at the 12th week of first-line chemotherapy; (2) patients with pulmonary or pituitary involvement who had no improvement of pulmonary and pituitary lesions at the 6th or 12th week of first-line chemotherapy; (2) patients with pulmonary or pituitary involvement who had no improvement of pulmonary and pituitary lesions at the 6th or 12th week of first-line chemotherapy compared with the previous response assessment; (3) patients with RO
involvement (RO+) who had no significant improvement in risk organs (the enlarged part of the liver and spleen reduced less than half, or there was still primary disease-related fever or hematocytopenia), primary disease-related organ dysfunction, or whose overall response was evaluated as AD-Worse or AD-Mixed at the 6th and 12th week of first-line chemotherapy; and (4) the lesions of the risk organs, CNS-risk sites, CNS system or lung were aggravated during maintenance chemotherapy or after drug withdrawal. Before September 2019, patients received HS-LCH salvage treatment if they met one of the criteria above; after September 2019, patients were treated with second-line chemotherapy with CCHG-LCH-2019 (cytarabine ± cladribine, with the same dosages and courses as HS-LCH salvage treatment). The treatment response was evaluated every four courses during second-line chemotherapy. The evaluation after withdrawal was the same as that with first-line chemotherapy.

Follow-up

Each evaluation was conducted by ultrasound (abdominal organs, thyroid gland, lymph nodes and soft tissue), X-ray film (limb bones), computed tomography (lung, skull bone) and magnetic resonance imaging (pituitary, brain and spinal marrow), according to the Histiocyte Society Evaluation and Treatment Guidelines (2009). Follow-up was continued until December 1, 2020, or until the patient died.

Laboratory examinations

Determination of mutations in biopsied tissue

Genomic DNA was extracted from 10 × 5 μm unstained sections of formalin-fixed paraffin-embedded tissue using the QIAamp DNA formalin-fixed paraffin-embedded Tissue Kit (Qiagen, Hilden, Germany). Next-generation sequencing of whole exomes was used to detect mutations in the MAPK pathway (using the HiSeq 4000 sequencing platform before 2018 and the Illumina NovaSeq 6000 sequencing platform after 2018). The genomic DNA of oral mucosal cells was taken as a normal control from 61 patients, and the remaining patients had only biopsied tissues sampled.

Cytokine measurement

At initial diagnosis, serum was separated from 2 mL non-anticoagulated peripheral blood by centrifugation at 3000 rpm for 10 min. The levels of IFN-γ, TNF-α, IL-10, and IL-6 in serum were measured by FACSCalibur (BD, USA) with human Th1/Th2 cytokine detection kit (Jiangxi Cellgene Biotech Co., LTD, China) according to the manufacturer’s instruction.

Statistical analysis

IBM SPSS (23.0) software was used for the statistical analysis. The measurement of data with normal distribution was expressed as mean ± SD, while the measurement of data with nonnormal distribution was expressed as the median (upper and lower quartile). For continuous variables, data were analyzed using the t test and Mann–Whitney U test, depending on the data distribution. The count data were expressed as the number of cases or percentages, and the chi-square test was used for the categorical variables. The objective response rate (ORR) after 6 weeks of first-line chemotherapy was defined as the percentage of patients with nonactive disease (NAD) and AD-Better among all patients at the 6-week evaluation of first-line chemotherapy, and the disease control rate (DCR) after 6 weeks of first-line chemotherapy was defined as the percentage of patients with NAD, AD-Better and AD-Stable among all patients at the 6-week evaluation of first-line chemotherapy. Progression-free survival (PFS) was estimated from the date of diagnosis to the date of one of the following events: AD-Mixed or AD-Worse; relapse or reactivation after drug withdrawal or death, whichever came first; the last contact with the patient. Survival curves were estimated using the Kaplan–Meier method, and the log-rank test was used to estimate the differences among the groups. A Cox proportional hazards model was used to analyze the independent prognostic factors of the MAP2K1 mutation group. A P value of < 0.05 was considered statistically significant.

Results

Characteristics of MAP2K1 gene mutation

In this study, 13 MAP2K1 mutations were detected in 37 patients with LCH (Table 1), accounting for 11.1% (37/334) of all patients. The most common mutation was c.172_186del (p.Q58_E62del), accounting for approximately 32.4% (12/37); the nucleotide mutations of c.165_179del (p.Q56_V60del), c.166_180del (p.Q56_V60del), c.294_311del (p.I99_K104del), and c.389A > G (p.Y130C) have not been reported in the literature, but the amino acid mutation of p.Q56_V60del caused by the first two nucleotide mutations has been reported (Hayase et al. 2020).

In 81.1% (30/37) of the patients, the mutations were concentrated in amino acids 53–62, which were located in the negative regulatory region of MAP2K1 kinase; in the other 7 cases (18.9%), the mutations were concentrated in amino acids 98–103, which were located in the catalytic core of MAP2K1 kinase. There were two point mutations in one patient, p.I103N and p.Y130C; the latter was not reported.
Clinical and laboratory characteristics of patients with MAP2K1 mutation

The male-to-female ratio of the 37 patients with a MAP2K1 mutation was 1.31:1, and the median age at disease onset was 4.56 (1.54, 9.42) years old. The median follow-up time was 17.67 (4.82, 24.92) months. The BRAFV600E mutation group and no known mutation of the MAPK pathway group included 133 patients and 59 patients, respectively. There were more boys than girls in the three groups, but there was no significant difference in the sex ratio among the groups (Table 2). The age at disease onset in the MAP2K1 mutation group was higher than in the BRAFV600E mutation group (Z = −2.179, \(P = 0.024\); log-rank test, Table 2), but there was no difference compared with the no known mutation group (\(P > 0.05\), Table 2).

A significantly lower incidence of multisystem (MS) involvement (with or without RO involvement, MS-RO+/MS-RO−) and a higher incidence of single-system (SS) involvement were found in the MAP2K1 mutation group than in the BRAFV600E mutation group (\(\chi^2 = 5.892, P = 0.015\)). Only one MAP2K1-mutated patient (2.7%) had RO involvement, with hemophagocytic lymphohistiocytosis (HLH). The incidence of RO involvement was significantly lower than that of the BRAFV600E mutation group (\(\chi^2 = 7.653, P = 0.006\)), especially in liver involvement (2.7% vs. 17.3%, \(P = 0.024\)). In addition, more patients with SS-multiple bone involvement (48.6% vs. 28.6%, \(P = 0.022\)) and fewer patients with skin involvement (2.7% vs. 25.6%, \(P = 0.002\)) were found in the MAP2K1 mutation group than in the BRAFV600E mutation group. There was no significant difference in other clinical features between the two groups (\(P > 0.05\), Table 2).

Compared with the BRAFV600E mutation group, the levels of C-reactive protein (CRP), IFN-γ, IL-10 and IL-6 in the MAP2K1 mutation group were significantly lower (\(P < 0.05\), Table 2, Fig. 1A–C), however, TNF-α level was comparable between these two groups (\(P = 0.299\), Table 2, Fig. 1D). There was no significant difference in other laboratory examinations (\(P > 0.05\), Table 2).

No significant difference in clinical characteristics or laboratory examinations was found between the MAP2K1 mutation group and the no known mutation of the MAPK pathway group (\(P > 0.05\), Table 2).

Analysis of treatment response and prognosis in the MAP2K1 mutation group

In the MAP2K1 mutation group, one patient, in whom only the left femur was involved, did not require chemotherapy according to the regimen and got improvement during the follow-up period, while the other 36 patients received first-line chemotherapy after diagnosis. Except for the patient who was not evaluated at the 6th week as planned, the ORR was 48.6% (17/35), and the DCR was 85.7% (30/35) after 6 weeks of first-line chemotherapy. In the same period, the ORR and DCR of the BRAFV600E mutation and the no known mutation of the MAPK pathway groups were 52.8% (65/123) and 84.6% (104/123) and 56.4% (31/55) and 94.5% (52/55), respectively. There was no significant difference in ORR and DCR after 6 weeks of first-line chemotherapy among the three groups (\(P > 0.05\), Table 2).

We compared the prognosis of the three groups after first-line treatment and analyzed the prognosis of the patients who received second-line chemotherapy in the three groups. Although the 2-year PFS of the BRAFV600E mutation group was significantly lower than that of the no known mutation of MAPK pathway group (56.2% ± 4.8% vs. 70.1% ± 6.6%, \(\chi^2 = 4.545, P = 0.033\), log-rank test), there was no significant difference in 2-year PFS between the MAP2K1 mutation group and the other two groups after first-line treatment (\(P > 0.05\), Table 2, Fig. 2A). In terms of the efficacy of second-line chemotherapy, there was no significant difference in 2-year PFS between the MAP2K1 mutation group and the core domain group (\(\chi^2 = 7.409, P = 0.006\); log-rank test, Table 2; Fig. 2B).

Clinical characteristics, treatment response and prognosis between different mutated domains of the MAP2K1 mutation group

The 37 patients with MAP2K1 mutations were divided into 2 groups: the mutation of the negative regulatory domain group (n = 30) and the mutation of the catalytic core domain group (n = 7). We compared the clinical and laboratory characteristics of the two groups and found

Table 1 Mutation sites of MAP2K1

Nucleotide position (number of cases)	Amino acid position
Negative regulatory domain	
c.159_173del (4)	p.F53_Q58delinsL
c.165_179del (1)	p.Q56_V60del
c.166_180del (2)	p.Q56_V60del
c.167_181del (3)	p.Q56_G61delinsR
c.168_182del (2)	p.K57_G61del
c.169_183del (1)	p.K57_G61del
c.170_184del (5)	p.Q58_E62del
Kinase domain	
c.294_311del (1)	p.I99_K104del
c.302_307del (4)	p.E102_I103del
c.304_309del (1)	p.E102_I103del
c.308T>A; c.389A>G (1)	p.I103N; p.Y130C
c.308_309del (1)	
c.302_307del (4)	
c.304_309del (1)	
c.308T>A; c.389A>G (1)	
that there was no significant difference in clinical features (including age, sex, and organs involved) or laboratory examinations ($P > 0.05$). In addition, no significant difference in 2-year PFS was found between the two groups after first-line treatment ($61.7\% \pm 10.7\%$ vs $85.7\% \pm 13.2\%$, $\chi^2 = 0.528, P = 0.468$, log-rank test). A total of 7 patients in the negative regulatory domain group received second-line treatment, yet three of them had progression or relapse, and the 2-year PFS was $35.7\% \pm 26.7\%$. No patient in the catalytic core domain mutation group received second-line chemotherapy. However, there was no statistical difference in the rate of switching to second-line treatment between the two groups (23.3% vs. $0\%, P = 0.306$).

Table 2: Comparison of clinical features, laboratory examinations and prognosis among the MAP2K1 mutation group, BRAFV600E mutation group and no known mutation of the MAPK pathway group

	MAP2K1 mutation group ($n = 37$)	BRAFV600E mutation group ($n = 133$)	P value	No known mutation of the MAPK pathway group ($n = 59$)	P value
Sex (boy)	21 (56.8%)	73 (54.9%)	0.840a	37 (62.7%)	0.561a
Age at disease onsetb	4.56 (1.54, 9.42)	2.20 (1.08, 5.09)	0.029b	3.75 (1.44, 5.68)	0.297b
Fever before treatment	3 (8.1%)	28 (21.1%)	0.071a	8 (13.6%)	0.626c
Clinical classification					
MS-RO$^+$ LCH	1 (2.7%)	30 (22.6%)	0.014a	1 (1.7%)	0.726a
MS-RO$^-$ LCH	7 (18.9%)	28 (21.1%)			
SS LCH	29 (78.4%)	75 (56.4%)			
Liver involvement	1 (2.7%)	23 (17.3%)	0.024a	1 (1.7%)	> 0.999d
Spleen involvement	1 (2.7%)	19 (14.3%)	0.100c	0 (0%)	0.385d
Hematopoietic system involvement (complicated with HLH)	1 (2.7%)	12 (9.0%)	0.352c	0 (0%)	0.385d
Lung involvement	5 (13.5%)	15 (11.3%)	0.932c	4 (6.8%)	0.458c
Bone involvement					
Single bone	12 (32.4%)	43 (32.3%)	0.428a	22 (37.3%)	0.198a
Multiple bone	24 (64.9%)	78 (58.6%)			
SS-multiple bone involvement	18 (48.6%)	38 (28.6%)	0.022a	26 (44.1%)	0.661a
Skin involvement	1 (2.7%)	34 (25.6%)	0.002c	8 (13.6%)	0.157d
Lymph node involvement	4 (10.8%)	9 (6.8%)	0.639c	2 (3.4%)	0.201d
Pitiutary involvement	1 (2.7%)	9 (6.8%)	0.593c	1 (1.7%)	$>$ 0.999d
CNS-risk sites involvement	15 (40.5%)	71 (53.4%)	0.167a	18 (30.5%)	0.314a
AST (U/L)b	33.20 (24.95, 40.33)	31.80 (25.90, 42.30)	0.701b	32.60 (23.40, 40.60)	0.987b
ALT (U/L)b	15.35 (12.83, 21.90)	14.20 (11.30, 21.90)	0.561b	13.70 (11.30, 18.90)	0.178b
WBC (109/L)b	8.36 (7.11, 10.05)	8.66 (6.90, 10.35)	0.526b	8.73 (7.40, 10.49)	0.360b
PLT (109/L)b	338.5 (300.5, 422.3)	361.0 (290.0, 456.0)	0.847b	349.0 (295.0, 424.0)	0.878b
CRP (mg/L)b	2.24 (1.24, 7.67)	8.00 (5.00, 23.00)	$<$ 0.001b	1.95 (1.34, 4.39)	0.976b
IFN-γ (pg/ml)b	0.22 (0.12, 1.67)	0.90 (0.26, 2.81)	0.009b	0.30 (0.10, 1.01)	0.825b
TNF-α (pg/ml)b	0.74 (0.04, 9.05)	1.40 (0.45, 8.32)	0.299b	0.66 (0.39)	0.647b
IL-10 (pg/ml)b	2.43 (1.30, 4.32)	3.81 (2.44, 7.64)	0.004b	3.08 (2.06, 5.09)	0.320b
IL-6 (pg/ml)b	5.03 (2.37, 5.26)	24.10 (6.46, 118.40)	0.003b	17.64 (3.36, 81.53)	0.158b

aPearson Chi-Square, bMann–Whitney U test, ccontinuity correction, dFisher’s exact test, ethe number at the 6th week evaluation of first-line chemotherapy: 35 patients in the MAP2K1 mutation group, 123 patients in the BRAFV600E mutation group, 55 patients in the no known mutation of the MAPK pathway group, flog-rank test, gthe number of patients treated with second-line chemotherapy: 7 patients in the MAP2K1 mutation group, 34 patients in the BRAFV600E mutation group and 12 patients in the no known mutation of the MAPK pathway group, hmedian (upper and lower quartile). AST aspartate transaminase, ALT alanine transaminase, WBC white blood cell, PLT platelet.
Analysis of prognostic factors in the MAP2K1 mutation group

We further explored the prognostic factors of MAP2K1-mutated patients. Except for age at disease onset, which was grouped according to the median, other clinical features were grouped according to presence/absence, and laboratory examinations were grouped according to the normal reference range. Statistical differences in 2-year PFS after first-line treatment among different groups were compared. Univariate analysis showed that MS-LCH, lung involvement and elevated CRP were associated with poor prognosis in the MAP2K1 mutation group ($P<0.05$, Table 3).

The statistically significant factors above were included in the multivariate Cox proportional hazards model. After adjusting for confounding factors, lung involvement was an independent risk factor for poor prognosis in patients with MAP2K1-mutated LCH [Hazard ratio (95% CI) = 6.312 (1.769–22.526), $P = 0.005$] (Table 3). It was unusual that lung involvement was significantly associated with bony thorax involvement (5/17 vs. 0/20, $P = 0.014$; Table 4; Supplementary Figs. 1, 2, 3, 4 and 5). In addition, more progression or relapses could be found in patients with bony thorax involvement (8/17 vs. 2/20, $P = 0.023$), yet involvements in other sites of bones, such as craniofacial bone involvement (8/26 vs. 2/11, $P = 0.688$) and limb bone involvement (5/12 vs. 5/25, $P = 0.240$), were not correlated to disease progression or relapse. Thus, the independent prognostic significance of lung involvement in MAP2K1 positive patients may be possibly due to the co-occurrence of bony thorax involvement.

Discussion

MAP2K1 kinase is an important component of the MAPK pathway, which is activated by upstream RAF kinase and further activates downstream ERK kinase to regulate the growth and proliferation of cells. MAP2K1 mutations occur in more than 1% of neoplastic diseases, with a higher mutation frequency in diseases such as histiocytic disorders, melanoma and hairy cell leukemia. Studies have shown that point mutations in MAP2K1 are predominant in melanoma and hairy cell leukemia (Williams et al. 2020), while deletion mutations are common in LCH (Nann et al. 2019; Chakraborty et al. 2014). The study presented here included the largest number of patients with MAP2K1-mutated LCH to date. The results showed that MAP2K1 mutations were concentrated at p.53–62 and p.98–103, located in the negative regulatory region and catalytic core domain of MAP2K1 kinase, respectively. Therefore, these mutations lead to abnormal activation of MAP2K1 kinase, which further activates ERK kinase and induces LCH (Alayed et al. 2016).

In this study, two point mutations in MAP2K1 were detected in one patient in the same biopsied tissue. Kamiñe et al. (Kamionek et al. 2016) reported that two point mutations were also found in the same pulmonary nodule in a patient with LCH (p.A26T, p.S24N), but only one point mutation (p.A26T) was found in another pulmonary nodule in the same patient, which may indicate clonal evolution of independent nodules arising from a common progenitor cell. Because single-cell sequencing of the biopsied tissue of this patient was not performed and the mutations of other lesions were not detected, it is not clear whether the two mutations originated from one or two clones.

By comparing the clinical features of patients with MAP2K1 mutation and the $BRAF^{V600E}$ mutation, it was found that $BRAF^{V600E}$-mutated LCH occurred earlier with a younger age of disease onset, and most of the patients
Fig. 2 Prognosis of patients with LCH with different genetic characteristics. A 2-year PFS after first-line treatment ($\chi^2 = 5.040, P = 0.080$, log-rank test). B 2-year PFS after second-line treatment ($\chi^2 = 7.553, P = 0.023$, log-rank test)
had RO (especially liver) and skin involvement, while the patients with MAP2K1 mutation mostly had SS-multiple bone involvement. These results are similar to those of previous studies (Cai et al. 2019).

The differences in the above clinical features are related to the functional characteristics of the MAP2K1 and BRAF mutation sites. The BRAFV600E mutation is a RAS-independent kinase activation mutation (class I BRAF mutation), causing high-level BRAF kinase activity that is not regulated by upstream signals and highly activates downstream ERK kinase (Yaeger et al. 2019). Mutations of amino acids 53–62 of MAP2K1 kinase are located in the negative regulatory region and are RAF-regulated mutations (class II MAP2K1 mutations). Thus, the activity of MAP2K1 mutated at these sites is regulated by upstream RAF kinase, and the phosphorylation level of ERK kinase is not as high as that which results from the BRAFV600E mutation. Mutations of amino acids 98–103 are located in the catalytic core of MAP2K1 kinase and are RAF-independent mutations (class III MAP2K1 mutations). MAP2K1 mutated at these sites is not regulated by upstream signals and highly activates downstream ERK kinase (Gao et al. 2018). Therefore, patients with the BRAFV600E mutation often have multiple system or RO involvement, a stronger inflammatory response and disease activity, such as high levels of CRP, IFN-γ, IL-10 and IL-6, and fever, all of which are related to the poor efficacy of chemotherapy (Kobayashi et al. 2018; Heritier et al. 2016). However, we did not find a difference in prognosis between the MAP2K1 mutation group and the BRAFV600E mutation group or the relationship between the two mutated domains of MAP2K1 kinase and the clinical features and prognosis. This is probably due to the influence of short follow-up time and small sample size, especially only seven patients carried mutations in the catalytic core domain. Thus, more samples with mutations in the catalytic core domain were needed to explore the effects of the two mutated domains on clinical characteristics and prognosis. In addition, BRAF kinase is located upstream of MAP2K1 kinase, and its substrate also includes MAP2K2 kinase, which may affect the clinical characteristics and prognosis and needs further study. However, it was noted that 7 out of 30 patients with mutations in negative regulatory region had progression during first-line chemotherapy and switched to second-line chemotherapy, moreover, 3 patients had progression or relapse. Although no statistical significance was found between patients with mutations in the two domains possibly due to small sample size, it still suggested the association of mutations in negative regulatory region with tolerance to chemotherapy. MEK inhibitors may be novel choices for these patients (Gao et al. 2018).

In this study, the clinical and laboratory characteristics, response rate after 6 weeks of first-line treatment and 2-year PFS of first-line treatment in the MAP2K1 mutation group were not significantly different from those in the no known mutation of the MAPK pathway group, which may be related to the greater heterogeneity of the latter. Those patients may

Table 3

Analysis of prognostic factors in patients with MAP2K1 mutations
Univariate analysis
2-year PFS of first-line chemotherapy
Cox regression
P value
Age at disease onset
< 4.56 years old
≥ 4.56 years old
Fever before treatment
Presence
Absence
Clinical classification
MS-LCH
SS-LCH
Lung involvement
Presence
Absence
SS-multiple bone involvement
Presence
Absence
CRP (mg/L)
Elevated (> 10 mg/L)
Normal (≤ 10 mg/L)

Springer
carry other types of genetic aberrations which need to be identified. These aberrations may contribute to pathogenesis of LCH by activating MAPK pathway and affect the clinical and biological features of LCH. On the other hand, the observation that second-line chemotherapy resulted in a 2-year PFS of 100% in the patients without known mutations, which was significantly higher than that in the patients with $BRAF^{V600E}$ and $MAP2K1$ mutations, implies usefulness of second-line chemotherapy in treatment these patients. Thus, our findings suggest that further identification of new genetic mutations in LCH is of great significance for clinical stratification and precise treatment.

In LCH, somatic and heterogenic mutations within the MAPK pathway affect myeloid progenitor and lead to the activation of kinases, which affects the recruitment of monocytes/macrophages and the differentiation of T cells by regulating the activities of many transcription factors and enzymatic proteins and can ultimately lead to the formation of pulmonary lesions (Radzikowska et al. 2017). There is a clear correlation between lung involvement and tobacco exposure in adolescents and adults with LCH, and more than 2/3 of these patients have respiratory symptoms, such as cough and dyspnea (Rodriguez-Galindo et al. 2020). However, only 10% of children with lung involvement have respiratory symptoms, which are diagnosed mainly by high-resolution computed tomography (Wang et al. 2018). This lack of symptoms may delay diagnosis in the absence of routine radiological monitoring. In this

| Table 4 Details of MAP2K1-mutated patients with lung involvement |
|------------------|-----------------|----------------|------------------|----------------|------------------|
Age	Gender	Clinical classification	Lesions	Amino acid position	Sites of progression or relapsed	Figures	
Patient 1	1.48	girl	MS-RO^+	Lung, left parietal bone, C1, C4, C6, T1, T2, T4, T10, L5, S2, left femur	p.F53_Q58delinsL C6, T1	Supplementary Fig. 1	
Patient 2	0.20	boy	MS-RO^+	Lung, right parietal bone, maxilla, mandible, frontal bone, occipital bone, sphenoid bone, bilateral temporal bone, sternum, multiple ribs, bilateral clavicle, C1, C2, T7, T11, L2, bilateral scapula, left humerus, skin, bilateral cervical and inguinal lymph nodes	p.Q58_E62del	Parietal bone, occipital bone	Supplementary Fig. 2
Patient 3	0.73	boy	MS-RO^+	Liver, spleen, hematopoietic system (complicated with HLH), lung, frontal bone, bilateral parietal bone, bilateral temporal bone, occipital bone, sphenoid bone, bilateral orbital wall, right external auditory canal, mandible, right clavicle, right scapula, bilateral humerus, multiple ribs, T4, T9-10, bilateral ilium, left ischium, left pubis, bilateral femur, left fibula, bilateral cervical lymph nodes	p.Q58_E62del	N/A	Supplementary Fig. 3
Patient 4	0.83	girl	MS-RO^+	Lung, bilateral temporal bone, left maxilla, left zygomatic bone, left orbital wall, sternum, bilateral cervical lymph nodes	p.Q58_E62del	Lung	Supplementary Fig. 4
Patient 5	2.50	boy	MS-RO^+	Lung, C2, T2-4, T9, T11, L1, L3, left fifth rib, frontal bone, left orbital wall, left sphenoid bone, bilateral parietal bone	p.I103N; p.Y130C	Parietal bone	Supplementary Fig. 5
study, the five MAP2K1-mutated LCH patients with lung involvement had no history of tobacco exposure, and only one of them had a mild cough. The rest were diagnosed by high-resolution computed tomography, manifesting as scattered/bilateral cystic changes or reticulonodular changes. Interestingly, in this study, lung involvement is an independent risk factor for poor prognosis in patients with MAP2K1 mutations. As lung involvement may occur mostly in patients with bony thorax involvement and more progression or relapses could be found in patients with bony thorax involvement, the involvement of bony thorax may contribute to the poor prognosis of patients with lung involvement, the underlying mechanisms of which remaining to be further studied. In addition, the sample size of this study is small and does not meet the requirements of the events per variable, so the results may not be robust enough, and the reliability needs to be confirmed by further research.

In this study, the efficacy of second-line chemotherapy with cytarabine as the main drug in the MAP2K1 mutation group was significantly worse than that in the no known mutation of the MAPK pathway group. Three of seven patients with MAP2K1-mutated LCH had progression or relapse during the third course of second-line chemotherapy, 3 months after drug withdrawal, or maintenance chemotherapy. This suggests the application value of MEK-targeted inhibitors such as trametinib in patients with MAP2K1 mutations, especially in patients with poor response to conventional chemotherapy (Baiocchi et al. 2014). Lorillon et al. (Lorillon et al. 2018) reported a patient with MAP2K1-mutated LCH (p.E102_I103del) with lung involvement. The pulmonary lesion progressed consistently during the treatment with cladribine and improved after treatment with trametinib with good tolerance. Papapanagiotou et al. (Papapanagiotou et al. 2017) reported a pituitary-involved patient with MAP2K1-mutated LCH (p.E102_I103delinsE1). During treatment with trametinib, the dosage of desmopressin to control diabetes insipidus was reduced, and the relapsed lesion could be quickly reduced by the reuse of trametinib. However, it has been found that p.Q56_G61delinsR, p.C121S/G128D, and p.98_104delinsQ mutations (of which only the first was found in this study) may be related to resistance to trametinib (Nelson et al. 2015; Azorsa et al. 2018), so the efficacy and safety of targeted therapy need to be further studied.

In conclusion, MAP2K1 mutations are concentrated at amino acids 53–62 and 98–103, and c.172_186del is the most common mutation site in pediatric LCH. Compared with patients with the BRAFV600E mutation, patients with the MAP2K1 mutation were mainly characterized by more SS-multiple bone involvement, less RO and skin involvement and later disease onset. The prognosis of patients with lung involvement is poor and should be given more attention in future studies.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00432-021-03810-4.

Acknowledgements The authors would like to thank all study patients and their family members.

Author contributions RZ, ZL and TW participated in the study concept and design, revising this article critically for important intellectual content, and final approval of the version to be published. YY, CW and DW carried out study design, the acquisition of data, analysis and interpretation of data, and drafted the manuscript. All authors contributed to revising the article, have agreed on the journal to which the article will be submitted, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Funding This work was supported by the National Natural Science Foundation of China (No. 82070202), the Capital’s Funds for Health Improvement and Research (No. 2020-2-2093 and 2020-2-1141), the Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority (No. XTZD20180201), National Science and Technology Key Projects (No. 2017ZX09304029004), and Funding for Reform and Development of Beijing Municipal Health Commission (Genetic and immunological pathogenesis of pediatric histiocytosis and its guiding role in clinical diagnosis and treatment).

Availability of data and materials The data that support the findings of this study are available on request from the corresponding authors. CCHG-LCH-2019 regimen is available from http://www.chictr.org.cn/index.aspx.

Code availability Not applicable.

Declarations

Conflicts of interest No potential conflicts of interest were disclosed.

Ethics approval Written informed consent was obtained from the parents or guardians of the children who served as subjects of the study. This study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board (IRB) of Beijing Children’s Hospital, Capital Medical University (Number: [2021]-E-035-R). CCHG-LCH-2019 regimen has been registered as a clinical trial (ChiCTR1900025783).

References

Alayed K et al (2016) BRAF and MAP2K1 mutations in Langerhans cell histiocytosis: a study of 50 cases. Hum Pathol 52:61–67. https://doi.org/10.1016/j.humpath.2015.12.029

Allen CE, Merad M, McClain KL (2018) Langerhans-cell histiocytosis. N Engl J Med 379:856–868. https://doi.org/10.1056/NEJMra1607548

Azorsa DO et al (2018) Clinical resistance associated with a novel MAP2K1 mutation in a patient with Langerhans cell histiocytosis. Pediatr Blood Cancer 65:e27237. https://doi.org/10.1002/hpc.27237
Baiocchi RA (2014) Driving toward targeted therapy for LCH. Blood 124:1546–1548. https://doi.org/10.1182/blood-2014-07-58378

Cai J et al (2019) A novel fusion gene PLEKHA6-NTRK3 in langerhans cell histiocytosis. Int J Cancer 144:117–124. https://doi.org/10.1002/ijc.31636

Chakraborty R et al (2014) Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124:3007–3015. https://doi.org/10.1182/blood-2014-05-577825

Chow TW et al (2017) Late outcomes in children with Langerhans cell histiocytosis. Arch Dis Child 102:830–835. https://doi.org/10.1136/archdischild-2016-312185

Gao Y et al (2018) Allele-specific mechanisms of activation of MEK1 mutants determine their properties. Cancer Discov 8:648–661. https://doi.org/10.1158/2159-8290.CD-17-1452

Hayase T et al (2020) Analysis of the BRAF and MAP2K1 mutations in patients with Langerhans cell histiocytosis in Japan. Int J Hematol. https://doi.org/10.1007/s12185-020-02940-8

Heritier S et al (2016) BRAF mutation correlates with high-risk langerhans cell histiocytosis and increased resistance to first-line therapy. J Clin Oncol 34:3023–3030. https://doi.org/10.1200/JCO.2015.65.9508

Histiocyte Society (2009) LCH Evaluation and Treatment Guidelines. Available from https://histiocytosociety.org/document.do?id=290

Kamionek M et al (2016) Mutually exclusive extracellular signal-regulated kinase pathway mutations are present in different stages of multi-focal pulmonary Langerhans cell histiocytosis supporting clonal nature of the disease. Histopathology 69:499–509. https://doi.org/10.1111/his.12955

Kobayashi T et al (2018) Fever and skin involvement at diagnosis predicting the intractable Langerhans cell histiocytosis: 40 case-series in a single center. J Pediatr Hematol Oncol 40:e148–e153. https://doi.org/10.1097/MPH.0000000000001080

Lian T, Li C, Wang H (2019) Trametinib in the treatment of multiple malignancies harboring MEK1 mutations. Cancer Treat Rev 81:101907. https://doi.org/10.1016/j.ctrv.2019.101907

Lorillon G et al (2018) Response to trametinib of a pulmonary Langerhans cell histiocytosis harboring a MAP2K1 deletion. Am J Respir Crit Care Med 198:675–678. https://doi.org/10.1164/rccm.201802-0275LE

Nann D et al (2019) Pediatric Langerhans cell histiocytosis: the impact of mutational profile on clinical progression and late sequelae. Ann Hematol 98:1617–1626. https://doi.org/10.1007/s00277-019-03678-y

Nelson DS et al (2015) MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer 54:361–368. https://doi.org/10.1002/gcc.22247

Papapanagiotou M et al (2017) Trametinib-induced remission of an MEK1-mutated Langerhans cell histiocytosis. JCO Precis Oncol 1:1–5. https://doi.org/10.1200/PO.16.00070

Radzikowska E (2017) Pulmonary Langerhans’ cell histiocytosis in adults. Adv Respir Med 85:277–289. https://doi.org/10.5603/ARM.a2017.0046

Rodriguez-Galindo C, Allen CE (2020) Langerhans cell histiocytosis. Blood 135:1319–1331. https://doi.org/10.1182/blood.2019000934

Wang D et al (2018) Clinical research of pulmonary Langerhans cell histiocytosis in children. Chin Med J (engl) 131:1793–1798. https://doi.org/10.4103/0366-6999.237400

Williams EA et al (2020) Melanoma with in-frame deletion of MAP2K1: a distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations. Mod Pathol 33:2397–2406. https://doi.org/10.1038/s41379-020-0581-5

Yaeger R, Corcoran RB (2019) Targeting alterations in the RAF-MEK pathway. Cancer Discov 9:329–341. https://doi.org/10.1158/2159-8290.CD-18-1321

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Ying Yang1 · Chanjuan Wang2 · Dong Wang1 · Lei Cui2 · Na Li2 · Hongyun Lian1 · Honghao Ma1 · Yunze Zhao1 · Liping Zhang1 · Wei Liu3 · Yizhuo Wang4 · Wanshui Wu5 · Rui Zhang1 · Zhigang Li2 · Tianyou Wang1

1 Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishi Road, Xicheng district, Beijing 10045, China

2 Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56, Nanlishi Road, Xicheng district, Beijing 10045, China

3 Department of Hematology Oncology, Children’s Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China

4 Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China

5 Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China