Review on Green Synthesized Nanocomposites and Their Biological Activities

Sumit Ringwal¹ • Ankit Singh Bartwal¹ • Aditya Ram Semwal² • Satish Chandra Sati¹*

¹Department of Chemistry, H.N.B. Garhwal University (A Central University) Srinagar Garhwal, Uttarakhand, India-246174
²Department of Chemistry, DAV PG College Dehradun, Uttarakhand, India-248001

*Corresponding Author Email id: sati_2009@rediffmail.com

Received: 02.04.2021; Revised: 02.05.2021; Accepted: 15.05.2021
©Society for Himalayan Action Research and Development

Abstract: In this paper, we reviewed the present status of synthesis of nano structured materials for technological development as bimetallic, trimetallic and various organic, inorganic polymers nanocomposites in the field of nanosciences. Nanocomposites play an important role in the field of sciences, engineering and industries due to their high catalytic power, high optical, electrical and mechanical properties, which can be very useful in the field of biosensors, nano medicines and many more as social welfare factor. There are many techniques used for the preparation of nanocomposites. Among them, green method is commonly used technique for the synthesis of nanomaterials which is cost-effective, eco-friendly and less hazardous materials for the environment. Here we attempt to present an elaborate work done in the field of nanocomposites dwelling upon their advantages, challenges and future prospects.

Keywords: Nanocomposites • Bimetallic • Trimetallic • Green Method • Bioactivities

Introduction

Nowadays, researchers are taking an enormous interest in the field of inorganic as well as organic polymer nanocomposites due to their unexpected hybrid characteristics, which are synthesized by heterogeneous combinations of various components as basic reactants and among the composites layered structured nano composites have been studied extensively for last decades (Sanchez et.al., 2001; Usuki et.al., 1993). Nanocomposites exhibit improved properties namely medicinal strength, moduli, thermal stability and other properties when compared with pure polymers or conventional micro and macro size composites. The enhanced properties have been achieved by synthesis of nanoscale materials via various approaches. Nanocomposites are utilized to produce optimally efficient materials. Like if semiconductor nanoparticle is added with polymer, ceramic matrix materials or glass, there is enormous change in its optical property including absorption, fluorescence, and luminescence. In such kind of system, small size nanoparticles enhance optical properties while matrix material stabilized the particle size and growth (Burnside et al., 2000; Choi et al., 2000; Byun et al., 2001; Krikorian et al., 2002; Xie et al., 2002; Bhardwaj et al., 2002). Other applications of nanocomposite structures have resulted in transparent materials with unusually high RI, magnetic properties, and excellent mechanical properties. Nanocomposite structures provide a new method to improve the process ability and stability of materials with interesting optical properties. The applications of
such composites are extremely broad, ranging from solid-state amplifier films to transparent magnets. This review focuses on recent developments in the synthesis and applications in the field of nanocomposite and nanotechnology.

1. Green method
This is one of the most widely applied methods for the synthesis of nanocomposites because it is eco-friendly and it does not employ any toxic chemicals. Following steps are involved in green methods.

(a) Preparation of Extracts
Some amount of dried powdered plant material is added to solvent in 500 mL round bottom flask and mixed well. The preparation of extracts is done by using magnetic heating stirrer at 70°C for 30 min. The extracts obtained is centrifuged then filtered and filtrate is kept at refrigerator for further use (Sati et.al., 2020a).

(b) Green synthesis of the Metal NPs by using plant extracts
In a typical synthesis of metal NPs, plant extracts is added to the metal salt or metal oxide solution (particular molarity) with desired ratio at 80°C with constant stirring. Reduction of metal ion take place around 3 min, as monitored by UV-Vis technique. The color of the reaction mixtures gradually changes in 3 min at 80°C which indicate the formation of metal nanoparticles. The colored solution of metal NPs is then centrifuged till color completely disappear (Bartwalet.al., 2020; Sati et.al., 2020b).

(c) Synthesis of the bimetallic or trimetallic nanocomposites
For green synthesis of bimetallic or trimetallic nanocomposites some amount of metal salt or metal oxide is dispersed with few mL of plant extracts under continuous stirring. After 15 min, few mL (in a fixed ratio with respect to plant extracts) of other metal oxide or metal salt is added to this mixture and stirred at 80°C for 4 h. Finally, the prepared bimetallic or trimetallic nanocomposites as separated by a magnetic separator, is washed with suitable solvent and then dried at 90°C (Ayinde et.al., 2018; Atarod et.al., 2016; Azizi et.al., 2016; Atarod et.al., 2015).

Table 1: Nanocomposites, Morphology and their activity

S. No.	Name of plant (Common name)	Part Used	Type of NCs/morphology	\(\lambda_{\text{max}} \) (in nm)	Characterization techniques	Activity [Ref.]
1	Citrus paradise (grape-fruit red)	P	Ag-MgO spherically dispersed	AgNPs at 440 NCsat 380	UV , TEM, XRD, FTIR, SEM, EDX	Antibacterial (Ayinde et.al., 2018)
2	Withania coagulans (Paneerphool)	L	Pd/RGO/Fe\(_3\)O\(_4\)	PdNPs at 263 NCs at 270	XRD, FE-SEM, EDS, UV, VSM, TEM, FTIR, UV, TEM, EDX, XRD, FTIR.	Catalytic activity (Atarod et.al., 2016)
3	wild ginger	EO	ZnO-Ag hexagonal ZnO NPs	AgNPs at 430 NCs at 352	UV, XRD, EDS, FESEM, FT-IR.	Antibacterial, antimicrobial (Azizi et.al., 2016)
4	Euphorbia heterophylla (Mexican)	L	Ag/TiO\(_2\)	AgNPs at 250–350	FESEM, EDS, TEM, BET, XRD, FT-IR, elemental mapping, VSM, SEM, Elemental mapping, EDS, TEM,	Catalytic activity (Atarod et.al., 2016)
5	Euphorbia wallichii (Wallich spurge)	L	Cu/RGO/FeO\(_4\) Spherical	CuNPs at 550 to 580 NCs at 265	FESEM, EDS, TEM, BET, XRD, FT-IR, elemental mapping, VSM, SEM	Catalytic activity (Atarod et.al., 2016)
6	Melissa Officinalis L.	L	CuO/ZnO	CuONPs at At270	FESEM, EDS, TEM, BET, XRD, FT-IR, elemental mapping, VSM, SEM, Elemental mapping, EDS, TEM,	Catalytic activity (Bordbar et.al., 2020)
No.	Plant Species	Metal/Composite	Description	Analytical Techniques	Activity	
-----	---------------------------------------	--------------------------	--	--	------------------------------------	
7	*Euphorbia nerifolia* L. (Indian Spurge)	Pd/perlit	Extract shows bands at 368 and 281	XRD, TEM, EDS, XRD, FESEM, FT-IR	Catalytic activity (Maryami et al., 2017)	
8	*Ranunculus muricatus*, rough-fruited buttercup	Au/TiO₂	-	XRD, SEM, TEM, FT-IR	Bacterial inactivation (Tahir et al., 2016)	
9	*Acalypha indica* L. (Indian Acalypha)	Cu/sodium borosilicate	CuNPs at 558	SEM, EDS, TEM, XRD, BET, FT-IR	Catalytic activity (Nasrollahzadeh et al., 2018)	
10	*Cuscuta reflexa* L. (Giant dodder)	Cu/GO/MnO₂	CuNPs at 575	XRD, FESEM, BET, TGA, VSM, EDS, FT-IR	Catalytic activity (Naghdi et al., 2018)	
11	*Salvia persica* L. (Mustard tree)	Pd/graphene	GRO at 230, 301, PdCl₂ at 420, SP-HRG-Pd at 1280	UV, XRD, TEM, FT-IR, XPS Raman	Catalytic activity (Al-Marri et al., 2016)	
12	*Citrus paradisi* (Grapefruit)	Silk-AuNPs	AuNPs at 540	DRS, SEM, TEM, LSCM	Unique optical properties (Nolasco et al., 2013)	
13	*Euphorbia peplus* Linn	Ag/Fe₄O₄/Ag/Fe₃O₄/Fe₃O₄ spherical	AgNPs at 450	XRD, TEM, EDS, FT-IR, FE-SEM	Catalytic activity (Sajjadi et al., 2017)	
14	*Mortiño Vaccinium floribundum* (Kunth)	Ag-Graphene	broad peak in between 240-340 and 480-530	FT-IR, UV, XRD, SEM, TEM	Photo catalytic activities (Vizuete et al., 2016)	
15	*Mentha longifolia* (horse mint)	ZnO and ZnO/CuO Spherically-distributed particles	ZnO (W) at 370, ZnO (Ext) at 370	XRD, EDX, SEM, TGA, TEM, FT-IR, UV, DRS, BET	Anti-bacterial activity (Mohammadi et al., 2018)	
16	*Cylindrocladium floridanum*	Nanogold-Bio-composite Spherical	AuNPs at 540	UV–Vis XRD, SEM, EDX, TEM	Heterogeneous catalyst (Narayanan et al., 2011)	
17	*Euphorbia helioscopia* L. (sun spurge)	Ag/RGO/TiO₂ Analogous structure to TiO₂ GO/TiO₂ visible region blue shift is observed in TiO₂	CuNPs at 575	UV, TEM, XRD, SEM, EDS, ICP, FT-IR	Catalytic activity (Nasrollahzadeh et al., 2016)	
18	*Orchis mascula* L. (early spring orchis)	Cu/eggshell, Fe₃O₄/eggshell spherical shaped (size 5-15 nm)	CuNPs at 230 and 301, AgNPs at 420	UV, DTA-TGA, FT-IR, FE-SEM, EDS, XRD, BET, VSM	Catalytic activity (Nasrollahzadeh et al., 2016)	
19	*Pulicaria glutinosa*	Graphene/Ag AgNPs seems FCC	GRO at 230 and 301, AgNPs at 420	UV, XRD, EDX	Substrates for SERS activities (Al-Marri et al., 2015)	
Conclusion

Nanocomposites are one of the most important tools in the field of science, engineering, and industry also. Nanocomposites are one step advance than metallic nanoparticles because nanocomposites are like a junction between two or more nanoparticles and they have highly versatile property when compared to nanoparticles. Nanocomposites are very useful for sunlight-induced degradation of organic pollutants and wastewater treatment. Although a variety of photo catalysts have been designed toward this goal, various methods have been used in formation of bimetallic or trimetallic and various organic and inorganic polymers nanocomposites. Most of these methods are still in progressing stage.In this review paper it is concluded that nanocomposites synthesized by green method are excellent in different biological activities with high catalytic power.

References

Al-Marri AH, Khan M, Shaik MR, Mohri N, Adil SF, Kuniyil M, ... & Siddiqui MRH (2016). Green synthesis of Pd@ graphene nanocomposite: catalyst for the selective oxidation of alcohols; *Arab. J Chem*; 9(6): 835-845.

Arputha KVS, Dakshinamurthy A & Selvakumar PM(2013). Eco-friendly biocidal silver-activated charcoal nanocomposite: antimicrobial application in water purification; *Synth. React. Inor. Metal-org. NanoMet. Chem.* 43(8): 1068-1072.

Atarod M, Nasrollahzadeh M & Sajadi SM (2015). Green synthesis of a Cu/reduced graphene oxide/Fe₃O₄ nanocomposite using *Euphorbia wallichii* leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and *rhodamine B*; *RSC advances*; 5(111): 91532-91543.

Atarod M, Nasrollahzadeh M & Sajadi SM (2016). *Euphorbia heterophylla* leaf extract mediated green synthesis of Ag/TiO₂ nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water; *J Coll. Inter. Matri.* 462: 272-279.

Atarod M, Nasrollahzadeh M & Sajadi SM (2016). Green synthesis of Pd/RGO/Fe₃O₄ nanocomposite using *Withania coagulans* leaf extract and its application as

20	**Lycopersicon esculentum** (Tomato)	**Biocidal Silver-Activated Charcoal** exfoliated structure almost-transparent single layer GO	AgNPs at 410 NCs at 410	XRD, SEM, UV	antimicrobial activity, water purification (Arputha et.al., 2013)

Abbreviation (NPs – Nanoparticles; NCs – Nanocomposites; P- Peels; EO- Essential Oil; L- Leaf; WP- Whole Plant; B- Berries, RE – Root Extract; F- Fungus; RGO- Reduce Graphene Oxide, FCC- Face Centered Cubic Cell)
magnetically separable and reusable catalyst for the reduction of 4-nitrophenol; *J coll. Inter. Sci.*, 465: 249-258.

Ayinde WB, Gitari MW, Muchindu M & Samie A (2018). Biosynthesis of ultrasonically modified Ag-MgO nanocomposite and its potential for antimicrobial activity; *J Nanotech; 2018*.

Azizi S, Mohamad R, Rahim RA, Moghaddam AB, Moniri M, Ariff A, ... & Namvab F (2016). ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects; *Appl. Surf. Sci.; 384: 517-524.

Bartwal AS, Sumit & Sati SC (2020). Biosynthesis of silver nanoparticles from flowers of *Rhododenderon campanulatum* tree of Tungnath Himalaya; *Appl. Innov. Res., 2: 39-43.*

Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R, ... & Thompson AK (2002). Structure–property relationships in cross-linked polyester–clay nano composites; *Polymer; 43(13): 3699-3705.*

Bordbar M, Negahdar N & Nasrollahzadeh M (2018). *Melissa Officinalis* L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B; *Sep. Puri. Tech., 191: 295-300.*

Burnside SD & Giannelis EP (2000). *J. Polymer Sci. Part B: Polym. Physics; 38: 1595.*

Byun HY, Choi MH & Chung IJ (2001). Synthesis and characterization of resol type phenolic resin/layered silicate nanocomposites; *Chem. Mater.,13(11): 4221-4226.*

Choi MH, Chung IJ & Lee JD (2000). Morphology and curing behaviors of phenolic resin-layered silicate nanocomposites prepared by melt intercalation; *Chem. Mater.; 12(10): 2977-2983.*

Krikorian V, Kurian M, Galvin ME, Nowak AP, Deming TJ &Pochan, DJ (2002). Polypeptide- based nanocomposite: Structure and properties of poly (L-lysine)/Na-montmorillonite; *J Polymer Sci. Part B: Polymer Physics; 40(22): 2579-2586.*

Maryami M, Nasrollahzadeh M &Sajadi SM (2017). Green synthesis of the Pd/perlite nanocomposite using *Euphorbia neriifolia* L. leaf extract and evaluation of its catalytic activity; *Sep. Pur. Tech.; 184: 298-307.*

Mohammadi AR, Habibi YA, Bayrami A, Latifi NS & Asadi A (2018). Green synthesis of ZnO and ZnO/CuO nanocomposites in *Mentha longifolia* leaf extract: characterization and their application as antibacterial agents; *J Mater. Sci Matr. Electro.; 29(16): 13596-13605.*

Naghdi S, Saijadi M, Nasrollahzadeh M, Rhee KY, Sajjadi M & Jaleh B (2018). *Cuscuta reflexa* leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes; *J Taiwan Inst. Chem. Eng.; 86: 158-173.*

Narayan KB & Sakthivel N (2011). Synthesis and characterization of nano-gold composite using *Cylindrocladium floridanum* and its heterogeneous catalysis in the degradation of 4-nitrophenol; *J Haza. Mater., 189(1-2): 519-525.*

Nasrollahzadeh M, Atarod M, Jaleh B & Gandomirozubahani M (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue; *Ceramics International; 42(7): 8587-8596.*
Nasrollahzadeh M, Sajadi SM & Hatamifard A (2016). Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe₃O₄/eggshell and Cu/Fe₃O₄/eggshell nanocomposites; *Appl. Catal. B: Env.*, 191: 209-227.

Nasrollahzadeh M, Sajjadi M, Dasmeh HR & Sajadi SM (2018). Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity; *J. Alloys Comp.*, 763: 1024-1034.

Nolasco AV, Morales LR, Sánchez MV, Hinestroza JP, Castro LE & Vilchis NAR (2013). Formation of silk–gold nanocomposite fabric using grapefruit aqueous extract; *Textile Res. J.*, 83(12): 1229-1235.

Sajjadi M, Nasrollahzadeh M & Sajadi SM (2017). Green synthesis of Ag/Fe₃O₄ nanocomposite using *Euphorbia peplus* Linn leaf extract and evaluation of its catalytic activity; *J Coll. Inter. Sci.*, 497: 1-13.

Sanchez C, Soler-Illia GDA, Ribot F, Lalot T, Mayer CR & Cabuil V (2001). Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks; *Chem. of Mater.*, 13(10): 3061-3083.

Sati SC, Kour G, Bartwal AS & Sati MD (2020a). Biosynthesis of Metal Nanoparticles from Leaves of *Ficus palmata* and Evaluation of Their Anti-inflammatory and Anti-diabetic Activities; *Biochem.*, 59(33): 3019-3025.

Sati SC, Sumit, Bartwal AS & Agarwal AK (2020b). Green synthesis of silver nanoparticles from *Citrus medica* peels and determination of its antioxidant activity; *Appl. Innov. Res.*, 2: 56-60.

Tahir K, Ahmad A, Li B, Khan AU, Nazir S, Khan S & Khan SU (2016). Preparation, characterization and an efficient photocatalytic activity of Au/TiO₂ nanocomposite prepared by green deposition method; *Mater. Letters*, 178: 56-59.

Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T & Kamigaito O (1993). Swelling behavior of montmorillonite cation exchanged for ω-amino acids by caprolactam; *J Mater. Res.*, 8(5): 1174-1178.

Vizuete KS, Kumar B, Vaca AV, Debut A & Cumbal L (2016). *Moritiño (Vaccinium floribundum Kunth)* berry assisted green synthesis and photocatalytic performance of Silver–Graphene nanocomposite; *J Photochem. Photobio. Chem.*, 329: 273-279.

Xie W, Xie R, Pan WP, Hunter D, Koene B, Tan LS & Vaia R (2002). Thermal stability of quaternary phosphonium modified montmorillonites; *Chem. Mater.*, 14(11): 4837-4845.
