Genome Analysis of *Legionella pneumophila* Strains Using a Mixed-Genome Microarray

Sjoerd M. Euser¹*, Nico J. Nagelkerke², Frank Schuren³, Ruud Jansen¹, Jeroen W. Den Boer¹

¹ Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands, ² Department of Community Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates, ³ TNO Microbiology and Systems Biology, Zeist, The Netherlands

Abstract

Background: *Legionella*, the causative agent for Legionnaires’ disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of *Legionella* genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) *Legionella* species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data.

Methods: Microarray analysis was performed on a collection of 222 *Legionella pneumophila* strains, which included patient-derived strains from notified cases in the Netherlands in the period 2002–2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental.

Results: Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme.

Conclusions: The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between *Legionella* strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the *Legionella* genome, which in the future may be implemented in the daily practice of controlling *Legionella* in the public health environment.

Introduction

The bacterium *Legionella* is the causative agent for Legionnaires’ disease, an acute pneumonia that accounts for a significant amount of community-acquired pneumonias (ranging from 1.9–20%) [1–3], and proves fatal in about 6–8.5% of diagnosed cases [4,5]. *Legionella* is ubiquitous in both natural and man-made aquatic environments, and the major route of transmission is inhalation of the bacterium that is spread into the air as an aerosol from its reservoir [6]. A wide range of contaminated water systems have been identified as the source of infection for Legionnaires’ disease patients in numerous outbreak investigations, including cooling towers, saunas, and whirlpool spas. Genetic comparisons of the clinical and the environmental *Legionella* strains form an essential part of these investigations [7,8], although interpretations are often made without full understanding of the underlying distribution of genotypes in clinical and environmental strain populations [9].

In the Netherlands, a National Legionella Outbreak Detection Programme (NLODP) [10] was installed in 2002, which aimed to shorten response time between diagnosis of patients and source identification, and to improve source investigation and elimination. Together with the implementation of new governmental laws and guidelines to prevent growth of *Legionella* bacteria in potential sources, it was attempted to diminish the overall impact of Legionnaires’ disease in the Netherlands. Nevertheless, despite these excessive efforts the incidence of Legionnaires’ disease has only increased since 1999 [11]. This unexpected trend might partly be due to the unfocussed broad scope of preventive measures that do not take virulence factors into account [12–14]. Previous studies have shown that the majority (>90%) of Legionnaires’ disease cases are caused by the species *Legionella pneumophila*, and about 80% more specifically by *L. pneumophila* serogroup 1 [13,16]. However, the distribution of genotypes within these clinical strains is significantly different from the distribution found in environmental strains [16–18]. These findings suggest a discrepancy in virulence between genotypes with a possible genetic base for these
Microarray Analysis of Legionella Strains

Methods

Strain Collection

The strain collection that was described by Yerman et al. [12], was also used for the present analyses. This collection encompasses patient-derived strains from notified cases in the Netherlands in the period from 2002–2006 and the environmental strains that were collected during the source investigation for those patients. Together, microarray data were available for 257 unique Legionella strains.

For our analyses, we excluded the clinical strains (n = 34) that were derived from patients who had stayed abroad for ≥5 days during their incubation period of 2-10 days (as they might have been infected by a source situated abroad), resulting in a more correct comparison with Dutch environmental strains. Additionally, we excluded the clinical strain (n = 1) from a patient who had stayed in a hospital during the incubation period, as nosocomial Legionnaires’ disease is likely to occur due to less virulent strains.[22]. This resulted in a strain collection of 222 unique Legionella strains (49 clinical strains and 173 environmental strains) that were used in the present study (File S1).

Microarray Development

The development of the mixed-genome microarray has been described elsewhere [12]. In short, eight L. pneumophila strains were selected based on their diversity (both clinical and environmental strains were used) to provide a shotgun library. The microarray consisted of 3360 genomic fragments and was used to analyze the genomic composition of the 222 Legionella strains in our collection, by comparing labeled DNA from each strain with the library. The data for all spots were calculated as ratios between the tester strain and the reference strains.

The number of markers was reduced based on the observation that approximately 80% of the 3360 markers were present in all strains and therefore apparently encompassed the L. pneumophila core genome. The remaining 20% did show variation in presence between individual strains. Additionally, the number of relevant markers was further reduced by only selecting a limited number of representatives in those cases where multiple markers showed nearly identical patterns over the complete data set (suggesting partial overlap or close linkage in the genome). This resulted in a selection of 480 potentially relevant markers that were used in the further development of the prediction model [12].

For all of these 480 markers, Yzerman et al., determined an individual marker-dependent cut-off value to convert the linearly distributed ratios into binary values that represent the presence or absence of each marker [12]. As Random Forest allows the use of continuous predictor variables, we chose to use the continuous microarray data (ratios) to make a selection of DNA markers to enter in our prediction model.

Methodological Approaches for Marker Selection

The selection of a minimum number of relevant genetic markers that together achieve good predictive performance is one of the challenges in most gene expression studies [20]. Several methodological approaches that can cope with the high-dimensionality (more variables than observations) and noisiness of the data generated in microarray studies have been developed in recent years [23]. However, many of these approaches are not appropriate when the main objective is to obtain the smallest set of genetic markers [20,23].

Random Forest is an algorithm for classification that uses an ensemble of different classification trees [20,21]. Every single classification tree is built using a bootstrap sample of the data, and at each split in the tree the candidate set of variables is a random subset of the variables. This means that Random Forest uses both bagging (bootstrap aggregation) and random variable selection for tree building, which results in low correlation of the individual trees [20]. The Random Forest method has excellent performance in classification tasks, and several characteristics that make it well suited for the analyses of microarray data, including the following: (1) it can handle many more variables than observations; (2) it has good predictive performance even when most predictive variables are noise; (3) it does not overfit; and (4) it can handle a mixture of categorical and continuous predictors [20]. Taking this all in consideration, we chose the Random Forest method to select a minimal set of predictive markers for the L. pneumophila strain collection.

Marker Selection for L. pneumophila Strains

Although Random Forest itself makes use of cross-validation, we decided to increase the level of cross-validation as follows. The L. pneumophila strain collection in total consisted of 49 clinical isolates and 173 environmental strains. These strains were randomly assigned to 10 different training datasets, each consisting of 24 clinical strains and 87 environmental strains. For all 10 training datasets Random Forest was used to select the 25 markers with the highest rank of “importance” in the prediction of the origin of the strains (clinical or environmental). From these 250 selected markers (25 markers per training dataset) we selected the 25 genetic markers that were present in the majority of the 10 training datasets (File S2).
An eleventh training dataset was randomly constructed consisting of 24 clinical and 87 environmental strains. A logistic regression model (PASW release 18.0, IBM SPSS inc., New York, NY) was developed (forward logistic regression) with the 25 genetic markers entered as independent variables, and the origin of the strains (clinical or environmental) as dependent variable (Files S3 and S4). The choice of using logistic regression was based on the ease of adjusting this model (by changing the intercept parameter only) when prior probabilities in datasets vary. Although the followed methodological approach in general aimed to develop a correct prediction of the origin of strains with a minimal set of DNA markers, the main goal of the prediction model was the correct prediction of the clinical isolates. The incorrect prediction of a clinical isolate (false-negative) could potentially form a future risk in the public health environment, when this model will be further implemented in intervention strategies. The predictive cut-off value for the predicted probabilities was therefore adjusted to maximize the number of correctly predicted clinical isolates, while keeping the number of incorrectly predicted environmental isolates as low as possible. The predictive performance of this model was then tested with a dataset consisting of those strains that were not present in the eleventh training dataset (25 clinical strains and 86 environmental strains), the so-called test dataset (File S5).

The performance of the final prediction model is presented in 2×2 tables, with the corresponding calculations of sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). In public health interventions, and especially in laboratory screening methods, a high NPV is an important performance characteristic [24,25], and this was another reason why we attempted to correctly predict as many of the clinical isolates as possible.

Functionality of Markers

The sequences of the four markers that were selected in the final prediction model were compared with all sequences present in the NCBI database (http://www.ncbi.nlm.nih.gov) using BlastN and BlastX. These sequences included the whole genomes of Legionella longbeachae (strain NSW150) [26] and L. pneumophila strains Paris [27], Philadelphia [28], Lens [27], Corby [29], Alcoy [30], 130b [31], Lorraine [32], and HL 0604 1035 [32], and ATCC 43290 [33].

Results

Within the 250 markers with the highest rank of “importance” that were selected by the Random Forest analyses of the 10 randomly selected training datasets, 51 markers were present more
The sequence analyses of the four selected markers showed that all four markers were present in one or more of the completely sequenced Legionella isolates (Table 3). One of these markers (16E4) is probably related to cell wall synthesis (N-acetylenuraminic synthase), another (33F8) to cellular transport (Xylose symporter). Furthermore, marker 16E4 lies within the lipopolysaccharide (LPS) region that was identified by Cazalet et al. (2008) as specific for L. pneumophila serogroup 1 strains [19]. We additionally checked the eight L. pneumophila strains that were used to develop the microarray and could confirm that all four selected markers were present in one or more of these strains. This diminishes the possibility that the selection of the four markers was influenced by technical errors or contamination.

Discussion

We have successfully developed a model to predict the origin of L. pneumophila strains (clinical or environmental) using mixed-genome microarray data. In this model we used the Random Forest algorithm combined with a logistic regression model to select four genetic markers that correctly predicted 96% of the clinical strains and 66% of the environmental strains that were collected within the Dutch National Legionella Outbreak Detection Programme. The negative predictive value (NPV) of the model was relatively high (98%) which corresponds to the criteria for an adequate screening test in public health intervention that were suggested in previous studies on other pathogens (MRSA, ESBL) [24,25].

Compared with our previous study where we used Genetic Programming to select genetic markers to classify L. pneumophila strains in clinical and environmental strains, the present Random Forest model shows a similar performance with respect to sensitivity (100% for Genetic Programming vs. 96% for Random Forest), specificity (69% vs. 66%), PPV (49% vs. 45%), and NPV (100% vs. 98%). However, the five genetic markers that were selected by Genetic Programming differed from the four markers that were selected by Random Forest, which complicates the interpretation of these findings.

One of the differences between the Random Forest method and the Genetic Programming was the use of the continuous microarray data, without binarization (dichotimization) based on a somewhat arbitrary marker-dependent cut-off value. The Random Forest algorithm is well suited for the use of many continuous predictor variables [20], and allowed us to use all available discriminatory power that was present in the data for our prediction model. Furthermore, the more stringent selection criteria for the clinical isolates in our strain collection may have resulted in another set of predictive markers in the model compared to the previous study [12], although a detailed analysis of the reasons why different approaches lead to different marker selection still has to be made. The exclusion of isolates that were derived from patients who have possibly been infected outside the Netherlands, may have diminished the influence of regional differences in genotypic variation between the Dutch environmental isolates, and isolates from abroad. The prediction of the Random Forest prediction model is therefore based on the genotypic variation between clinical and environmental isolates that are representing the situation within the Netherlands, and not in other countries. Further studies using strain collection from other geographic regions, and collected in different time periods could help to determine the influence of these factors on the genotypic variation.

The analysis of the sequences of the four identified markers suggests that there are several possible biological pathways that could underlie their predictive value. The identification of marker 16E4 that lies within the previously reported LPS cluster [19] may indicate the importance of this region for further investigation of a genetic base for virulence differences between Legionella strains.

The identification of predictive genetic markers with the Random Forest model offers the possibility to further study virulence factors within the Legionella genome, which in the future

| Table 1. Prediction results for the 111 strains in the eleventh training dataset. |
|------------------|------------------|
| Training dataset | Origin of strains | Total |
| | Clinical | Environmental |
| Prediction clinical | 23 | 22 | 45 |
| Prediction environmental | 1 | 65 | 66 |
| Total | 24 | 87 | 111 |
| Sensitivity | 96% |
| Specificity | 75% |
| PPV | 51% |
| NPV | 98% |

PPV = positive predictive value; NPV = negative predictive value. doi:10.1371/journal.pone.0047437.t001

| Table 2. Prediction results for the 111 strains in the eleventh test dataset. |
|------------------|------------------|
| Test dataset | Origin of strains | Total |
| | Clinical | Environmental |
| Prediction clinical | 24 | 29 | 53 |
| Prediction environmental | 1 | 57 | 58 |
| Total | 25 | 86 | 111 |
| Sensitivity | 96% |
| Specificity | 66% |
| PPV | 45% |
| NPV | 98% |

PPV = positive predictive value; NPV = negative predictive value. doi:10.1371/journal.pone.0047437.t002
may even be implemented in the daily practice of controlling *Legionella* in the public health environment. For instance, appropriate control procedures could either be timely implemented or abandoned, based on the potential risk of the *Legionella* strains found in water samples during regular sampling investigations, although other factors such as the population at risk should always be taken into account as well.

Supporting Information

File S1 List of strains used in this study.

File S2 List the genetic markers selected by the Random Forest algorithm.

File S3 The logistic regression model.

File S4 Microarray data from the 111 strains in the 11th training dataset.

File S5 Microarray data from the 111 strains in the 11th test dataset.

Author Contributions

Conceived and designed the experiments: SE NN FS JD. Performed the experiments: SE NN FS JD. Analyzed the data: SE NN FS RJ JD. Contributed reagents/materials/analysis tools: RJ NN. Wrote the paper: SE NN FS RJ JD.

References

1. Woodhead M (2002) Community-acquired pneumonia in Europe: causative pathogens and resistance patterns. *Eur Respir J* 20: Suppl.36, 206–27a.
2. Blasi F (2004) Atypical pathogens and respiratory tract infections. *Eur Respir J* 24: 171–181.
3. Braun JF, de Graaff CS, de Goey J, Zwinderman AH, Petit PL (2004) Community-acquired pneumonia: pathways and course in patients admitted to a general hospital. *Ned Tijdschr Geneeskd* 148(17): 836–840 (in Dutch).
4. Dominguez A, Alvarez J, Sabria M, Carmona G, Torner N, et al. (2009) Factors influencing the case-fatality rate of Legionnaires’ disease. *Int J Tuberc Lung Dis* 13: 407–412.
5. Joseph CA, Ricketts KD (2010) Legionnaires’ disease in Europe 2007–2008. *Euro Surveill* 15: 1–8.
6. Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, et al. (1977) Legionnaires’ disease: description of an epidemic of pneumonia. *N Engl J Med* 297(22): 1109–1197.
7. Fry NK, Alessio-Daniel S, Bangsberg JM, Bernander S, Castellani-Pastoris M, et al. (1999) A multicenter evaluation of genotypic methods for the epidemiological typing of Legionella pneumophila serogroup 1: results from a pan-European study. *Clin Microbiol Infect* 5: 462–477.
8. Chiarini A, Bomura C, Ferraro D, Barbaro R, Cala C, et al. (2008) Genotyping of Legionella pneumophila serogroup 1 strains isolated in Northern Italy. *New Microbiol* 31: 217–228.

Table 3. Sequence location of the four predictive markers in ten available *Legionella* genomes.

Legionella strains	Predictive markers	7B8	15D6	16E4	33F8
Paris	n/a	n/a	n/a	915834–916597	1812491–1813032
Philadelphia	n/a	n/a	n/a	823175–823938	1828523–1827969
Lens	n/a	n/a	n/a	895789–896552	1794085–1793544
Corby	n/a	n/a	n/a	931999–932762	1898600–1898059
Alcoy	n/a	n/a	n/a	919333–920096	1893679–1893138
130b	n/a	n/a	n/a	899720–900483	1786224–1785683
Lorraine	713281–713837	2631852–2632252	856273–857036	1732233–1732774	
HL 060401035	n/a	n/a	n/a	882699–883462	1928802–1929343
ATCC 43290	n/a	n/a	n/a	825518–826281	1744381–1744915
L. longbeachae NSW150	n/a	n/a	n/a	2612495–2611967	2611249–2611967

n/a = not applicable.

Available: http://www.rivm.nl/bibliotheek/rapporten/210231006.pdf (in Dutch). Accessed 2012 May 20.

12. Yerman E, den Boer J, Caspers M, Almal A, Worzel B, et al. (2010) Comparative genome analysis of a large Dutch Legionella pneumophila strains collection identifies five markers highly correlated with clinical strains. *BMC Genomics* 11: 433.
13. Bollin GE, Plouffe JF, Para MF, Prior RB (1965) Difference in virulence of environmental isolates of *Legionella pneumophila*. *J Clin Microbiol* 21: 674–677.
14. Alii OA, Zink S, von Lackum NK, Abu Kwaik Y (2003) Comparative assessment of virulence traits in Legionella spp. *Microbiology* 149: 631–641.
15. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, et al. (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. *J Infect Dis* 186(1): 127–128.
16. Doleans A, Aurell H, Reyrolle M, Lina G, Frenney J, et al. (2008) Clinical and environmental distribution of *Legionella* strains in France are different. *J Clin Microbiol* 46(2): 450–460.
17. Den Boer JW, Bruin JP, Verhoef LP, Van der Zwaluw K, Jansen R, et al. (2008) Genotypic comparison of clinical *Legionella* isolates and patient-related environmental isolates in The Netherlands 2002–2006. *Clin Microbiol Infect* 14: 459–466.
18. Harrison TG, Alihar B, Doshi N, Fry NK, Lee JV. (2009) Distribution of Legionella pneumophila serogroups, monoclonal antibody subgroups and DNA sequence types in recent clinical and environmental isolates from England and Wales (2000–2005). *Eur J Clin Microbiol Infect Dis* 26(7): 781–791.
19. Cazalet C, Jarraud S, Glavats-Helm Y, Kunst F, Glaser P, et al. (2008) Multigenome analysis identifies a worldwide distributed epidemic *Legionella pneumophila* clone that emerged within a highly diverse species. *Genome Res* 18(5): 431–441.
20. Diaz-Urrati R, Alvarez de Andrés A (2006) Gene selection and classification of microarray data using random forest. *BMC Bioinformatics* 7: 3.
21. Hoffmann K, Firth MJ, Beesley AH, de Klerk NH, Kees UR (2006) Translating microarray data for diagnostic testing in childhood leukemia. BMC Cancer 6: 229–240.

22. Borchardt J, Hellwig JH, Lück PC (2008) Occurrence and distribution of sequence types among Legionella pneumophila strains isolated from patients in Germany: common features and differences to other regions of the world. Eur J Clin Microbiol Infect Dis 27: 29–36.

23. Schwender H, Ickstadt K, Rahnenführer J (2008) Classification with high-dimensional genetic data: assigning patients and genetic features to known classes. Biometrical Journal 6: 911–626.

24. Wolk DM, Picton E, Johnson D, Davis T, Pancholi P, et al. (2009) Multicentre evaluation of the Cepheid Xpert Methicillin-Resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J Clin Microbiol 47: 758–764.

25. Huang TD, Bogaerts P, Berhin C, Guisset A, Glupczynski Y (2010) Evaluation of brilliance ESBL agar, a novel chromogenic medium for detection of Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae. J Clin Microbiol 48: 2091–2096.

26. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, et al. (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet 6(2): e1000851.

27. Cazalet C, Rusniok C, Brüggerman H, Zidane N, Magrier A, et al. (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36(11): 1163–1173.

28. Chen M, Morosova I, Shi S, Sheng H, Chen J, et al. (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305(5692): 1966–1968.

29. Steiert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glöckner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297: 577–587.

30. D’Auria G, Jiménez-Hernández N, Peris-Bondia F, Moya A, Latorre A (2010) Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11: 181–193.

31. Schroeder GN, Perry NK, Mounier A, Harding CR, Vogrin AJ, et al. (2010) Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 192(22): 6001–6016.

32. Gomez-Valero L, Rusniok C, Jarraud S, Vacherie B, Rouy Z, et al. (2011) Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genomics 12: 536–559.

33. Amaro F, Gilbert JA, Owen S, Trimble W, Shuman HA (2012) Whole-genome sequence of the human pathogen Legionella pneumophila serogroup 12 strain 570-CO-H. J Bacteriol 194(6): 1633–1641.