Justification of the single-mode approximation for a finite-duration laser pulse interacting with an electron

O D Skoromnik¹ and I D Feranchuk²

¹ Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg, Germany
² Belarusian State University, 4 Nezavisimosty Ave., 220030, Minsk, Belarus

E-mail: olegskor@gmail.com

Received 23 January 2014, revised 10 April 2014
Accepted for publication 14 April 2014
Published 16 May 2014

Abstract
The interaction Hamiltonian of an electron and a quasi-monochromatic pulse of a strong quantized electromagnetic field is examined. Canonical transformations of the field variables are found that allow the division of the system’s Hamiltonian into two parts. The first one describes the interaction between an electron and a single collective mode of the field. The properties of this mode are defined by the superposition of the modes corresponding to the pulse wave packet. The second part describes the field fluctuations relatively to the collective mode. The field intensity, pulse duration and transversal spread are estimated for which a single-mode approximation can be used for the system’s description.

Keywords: quantum electrodynamics, justification, single-mode approximation, exact solution of the Dirac equation

1. Introduction
The quantum electrodynamical (QED) processes in the presence of a strong electromagnetic field are commonly described in the Furry representation [1] with scattering amplitudes calculated via the ‘dressed’ external electron states [2–6] instead of the free plane waves in vacuum QED. These states are defined by the exact solutions of the Dirac equation with an external electromagnetic field that can be classical [7] or quantized [8]. In the classical case, these exact solutions can be obtained when the external field is described by a monochromatic plane wave [7] or by a function which depends only on the field phase \(\phi \), corresponding to the propagation of a free electromagnetic wave [9]. In the quantum case, they are determined for a quantized external field (single-mode approximation).

The Furry approach was successfully employed for the theoretical description of many QED processes, such as multi-photon (nonlinear) Compton scattering [10–19], electron–positron pair creation [20–24], sequential and non-sequential double ionization of atoms [25] and other problems [26, 27]. At the same time one should take into account that experimentally available laser pulses (external field) have a finite duration and a transversal spread, corresponding to a multi-mode wave packet with a non-zero spectral width and an angular divergence. As a consequence, the wave packet is not described by the exact solutions [7], [8]. Therefore, it is of great importance to formulate the accurate conditions of the applicability of the single-mode approximation in order to compare theoretical and experimental results.

An analogous problem in quantum optics is the analysis of the evolution of an atom interacting with a resonant field in a cavity. This system was initially described by Jaynes and Cummings [28] who considered the interaction between an electromagnetic field and a two-level atom inside an ideal cavity. Although a lot of various aspects of the atom-field interaction were discussed through this model (for example, [29] and references therein), in most works the external field was the single-mode cavity eigenstate. Few extensions to the model were proposed. One of them is based on the inclusion of the losses of the resonant mode through a lossy cavity [30–40]. Another one is the generalization for the case of few discrete modes interacting with an atom [41–45]. However, models taking into account a superposition of modes in the vicinity of a resonant one have been discussed only recently [46–51].
In the present paper the mathematical background of the single-mode (plane wave) approximation for the description of a relativistic electron in a quantized field of a quasi-monochromatic laser pulse is investigated for the first time. The canonical transformation of the field variables is found that allows one to separate the Hamiltonian of this system into two parts. The first term defines the interaction between an electron and a single collective mode. The parameters of this mode are related to the external field wave packet. The second part describes the field fluctuations with respect to the collective mode. Then the integral field intensity is determined for which the single-mode approximation is valid.

The paper is organized as follows. In section 2, the Hamiltonian of the system is considered and the qualitative characteristics of the laser pulse are discussed. In section 3, the canonical transformations of the field variables are performed and two of the most relevant parts in the system’s Hamiltonian are identified. In section 4, the corrections to the single-mode Hamiltonian are discussed and the field intensity is determined for which the single-mode approximation is valid.

2. Dirac equation for an electron in a multi-mode external field and characteristics of a laser pulse

Let us start with the equation for the state vector of the system which includes a relativistic electron and a multi-mode transversal quantized field ($\hbar = c = 1$)

$$i\partial \Psi \over \partial t = \left(\sum_k \omega_k a_k^\dagger a_k + \alpha \cdot (p - eA) - \beta m \right) \Psi,$$

(1)

with the vector potential

$$A = \sum_k \frac{e(\hat{k})}{\sqrt{2\omega_k V}} (a_k e^{ikr} + a_k^\dagger e^{-ikr}).$$

(2)

Equation (1) includes Dirac matrices α and β, a normalization volume V, a photon wave vector \hat{k}, a frequency ω_k and a polarization vector $e(\hat{k})$, $\cdot = e(\hat{k}) = 0$, photon annihilation and creation operators a_k and a_k^\dagger of the mode \hat{k}, an electron charge e and mass m. Equation (1) can be written in covariant form if the transformation $\Psi = e^{-i\sum_k \omega_k \beta_k \hat{\Psi}}$ is used, thus obtaining the covariant form of the Dirac equation:

$$(i\gamma^\mu \partial_\mu - \gamma^\mu eA_\mu - m) \psi = 0,$$

(3)

with the four product defined as $(\hat{k} \cdot x) = \hat{k}^0 t - \hat{k} \cdot x$, $k^0 \equiv \omega_k$, $\partial_\mu = \partial / \partial x^\mu$, the metric tensor $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$, the four potential of the field

$$A_\mu = \sum_k \frac{e(\hat{k})}{\sqrt{2\omega_k V}} (a_k e^{-i(\hat{k} \cdot x)} + a_k^\dagger e^{i(\hat{k} \cdot x)}), e^0 = 0,$$

and summations over repeated indices. With the transformation $\hat{\Psi} = e^{i\sum \omega_k \beta_k \hat{\Psi}}$, the electron coordinates can be excluded from the field operators. As a result, the operators are transformed as follows:

$$i\gamma^\mu \partial_\mu \rightarrow i\gamma^\mu \partial_\mu - \sum_k \gamma^\mu k_\mu a_k^\dagger a_k,$$

$$a_k \rightarrow a_k e^{i(\hat{k} \cdot x)}, a_k^\dagger \rightarrow a_k^\dagger e^{-i(\hat{k} \cdot x)},$$

and equation (3) leads to

$$\left(i\partial_\mu - \sum_k \hat{\beta}(k)a_k^\dagger a_k - \sum_k \hat{f}(k)(a_k^\dagger + a_k) - m \right) \chi = 0,$$

(4)

where $\hat{f}(k) = ee(\hat{k})/\sqrt{2V\omega_k}$, $e(\hat{k}) = 0$ and $\hat{f} \equiv \gamma^\mu f_\mu$ for any four-vector f. With the transformation $\chi = e^{-i\delta q \cdot \Psi}$, the coordinate dependence is separated from the field and spin degrees of freedom

$$(\hat{q} - m - H)\psi = \left(\hat{q} - \sum_k \hat{\omega}_k a_k^\dagger a_k \right.$$

$$\left. - \sum_k \hat{f}(k)(a_k^\dagger + a_k) - m \right) \psi = 0,$$

(5)

where the four-vector q can be considered as the total momentum of the system [8]. The final form of equation (5) will be used below.

Experimentally available laser pulses, can be described by a quasi-monochromatic wave packet with the central frequency ω_0 and the wave vector $\hat{k}_0 = \omega_0 \hat{n}$ (n is a unit vector) with corresponding spreads in a solid angle $\Delta \Omega$:

$$\delta \omega / \omega_0 \sim \frac{1}{\tau}, \quad \delta \hat{k}_0 \approx \omega_0^2 \Delta \Omega \sim \frac{1}{S},$$

(6)

characterizing by the duration τ and spatial width S of the laser pulse. The non-monochromaticity will be characterized via two dimensionless parameters

$$\sigma_2 = \frac{\delta \omega}{\omega_0}, \quad \sigma_1 = \frac{\delta \hat{k}_0}{\hat{k}_0},$$

(7)

For high intensity pulses, as those considering in the following all modes within the volume $\Delta = \delta \omega \delta \hat{k}_0$ in the k-space are highly populated and correspond to the large quantum numbers n_k of the field state vector.

When only one mode is included in equation (5), the single-mode approximation is recovered that leads to Berson’s solution [8] in the case of a quantized field or to Volkov’s solution [7] in the case of a classical field. This intuitive conclusion will be thoroughly justified by using the Hamiltonian (5) to consistently derive the single-mode approximation with correcting terms, appearing due to the interaction of the field modes between each other.

3. Approximating the single-mode Hamiltonian and canonical transformation for its diagonalization

In this section we employ the method of approximating the Hamiltonian described in detail in [52]. Since the nonvanishing modes of the quantized external field are inside a small volume Δ in k-space the total Hamiltonian can be written as:

$$H_k = \sum_{k-\Delta} \left(\hat{b}_0 a_k^\dagger a_k + \hat{b}_0 (a_k^\dagger + a_k) \right) + \sum_{k<\Delta} \hat{\omega}_k a_k^\dagger a_k,$$

$$H = H_k + H_1 + H_2,$$

(8)

where constant four vectors \hat{k}_0, \hat{b}_0 and a small volume Δ in k-space near \hat{k}_0 are the variational parameters of the approximating Hamiltonian and will be defined later. The sums
\[\text{and} \sum_{k \leq \Delta} \text{mean summation inside and outside the volume } \Delta, \text{respectively and the operators } H_{1,2} \text{are determined identically from equation (5)} \]
\[
H_1 = \sum_{k < \Delta} \left[(\hat{k} - \hat{k}_0) a_k^+ a_k + (\hat{b}(k) - \hat{b}_0)(a_k + a_k^+ \right], \\
H_2 = \sum_{k > \Delta} \hat{b}(k)(a_k + a_k^+).
\]
(9)

By the definition in [52], the approximating Hamiltonian \(H_A \) should quantitatively describe the system, be accurately diagonalizable and the perturbations due to the operators \(H_{1,2} \) need to be small. For the diagonalization of \(H_A \) let us utilize the method of canonical transformations, which was introduced by Bogolubov and Tyablikov for the polaron problem in the strong field limit [53]. For this purpose we go back to the coordinate representation in (8):
\[
H_A = \frac{1}{2} \hat{k}_0 \sum_{k < \Delta} (\hat{p}_k^2 + q_k^2) + \hat{b}_0 \sqrt{2} \sum_{k < \Delta} q_k + \sum_{k > \Delta} \hat{k}_0 a_k^+ a_k,
\]
\[
q_k = \frac{a_k + a_k^+}{\sqrt{2}}, \quad p_k = -i \frac{\partial}{\partial q_k} = -i a_k - a_k^+ \sqrt{2}.
\]
(11)

Following Bogolubov [53], we introduce the collective variable \(Q \) in which all field modes are added coherently and the ‘relative’ field variables \(y_k \) which define quantum fluctuations relative to the collective mode
\[
Q = \sum_{k < \Delta} q_k, \quad y_k = q_k - \frac{1}{N} Q, \quad \sum_{k < \Delta} y_k = 0, \quad N = \sum_{k < \Delta} 1,
\]
(12)

where \(N \gg 1 \) is equal to the number of modes in the volume \(\Delta \).

The transformation of the momentum operators is calculated according to its definition [53]:
\[
p_k = -i \frac{\partial}{\partial q_k} = -i \left\{ \frac{\partial Q}{\partial q_k} \frac{\partial}{\partial Q} + \sum_{l < \Delta} \frac{\partial y_l}{\partial q_k} \frac{\partial}{\partial y_l} \right\}.
\]
(13)

Calculation of the derivatives with the help of (12) gives the generalized momenta:
\[
p_k = P + p_k, \quad \sum_{\Delta k} p_{\Delta k} = 0, \quad P = -i \frac{\partial}{\partial Q},
\]
\[
p_{\Delta k} = -i \frac{\partial}{\partial y_k} + \frac{i}{N} \sum_{\Delta l} \frac{\partial}{\partial y_l},
\]
(14)

Insertion of (12) and (14) into the Hamiltonian (11) leads to the separation of the collective coordinates, the fluctuation operators \(y_k \) and the ‘external’ variables \(a_k \) and \(a_k^+ \), corresponding to \(k \) outside the \(\Delta \) volume:
\[
H_A = \frac{1}{2} \hat{k}_0 \left[\frac{1}{N} Q^2 + NP^2 \right] + \hat{b}_0 \sqrt{2} Q + \frac{1}{2} \hat{k}_0 \sum_{k < \Delta} (p_k^2 + y_k^2) + \sum_{k > \Delta} \hat{k}_0 a_k^+ a_k.
\]
(15)

We can now quantize the collective and ‘relative’ variables by introducing the new set of creation and annihilation operators
\[
Q = \sqrt{\frac{\mu}{2}} (A + A^\dagger), \quad P = -i \frac{1}{\sqrt{2N}} (A - A^\dagger), \quad [A, A^\dagger] = 1,
\]
\[
y_k = \frac{1}{\sqrt{2}} (\hat{c}_k + \hat{c}_k^\dagger), \quad p_k = -i \frac{1}{\sqrt{2}} (\hat{c}_k - \hat{c}_k^\dagger),
\]
\[
\hat{c}_k = a_k - \frac{1}{\sqrt{N}} \sum_1^\Delta a_l, \quad [a_k, a_l^+] = \delta_{kl},
\]
\[
[\hat{c}_k, \hat{c}_k^\dagger] = \delta_{kk} + 1. \quad (16)
\]

With the accuracy of \(\sim 1/N \) the Hamiltonian (15) transforms into
\[
H_A = \hat{k}_0 A^\dagger A + \hat{b}_0 \sqrt{N} (A + A^\dagger) + \hat{b}_0 \sum_{k < \Delta} \hat{c}_k^\dagger \hat{c}_k + \sum_{k > \Delta} \hat{k}_0 a_k^+ a_k
\]
\[
\equiv H_{sm} + H_f + H_c, \quad (17)
\]
\[
H_{sm} = \hat{k}_0 A^\dagger A + \hat{b}_0 \sqrt{N} (A + A^\dagger), \quad (18)
\]
\[
H_f = \hat{k}_0 \sum_{k < \Delta} \hat{c}_k^\dagger \hat{c}_k, \quad H_c = \sum_{k > \Delta} \hat{k}_0 a_k^+ a_k.
\]
(19)

where the operators are written in the normal form and the energy of ‘vacuum oscillations’ is not taken into account. In this representation the operator \(H_{sm} \) which corresponds to the single-mode approximation is completely separated from the contributions defined by the fluctuation operator \(H_f \) and by the external modes operator \(H_c \). Therefore the state vector of the system in the zeroth approximation is represented as the product:
\[
| \Psi^{(0)} \rangle = | \Psi_A \rangle | \langle n_f | \langle [n_e] |,
\]
\[
\hat{c}_k^\dagger | n_f \rangle = \sqrt{N} | n_f \rangle, \\
\hat{a}_k^+ | n_e \rangle = N | n_e \rangle
\]
(20)

where \(| n_f \rangle \) defines the state of the ‘fluctuations’, \(| n_e \rangle \) is the state of the ‘external’ modes of the electromagnetic field, which does not interact with an electron, and \(| \Psi_A \rangle \) describes the state of the electron interacting with a collective mode of the field. \(| \Psi_A \rangle \) is determined as a solution of the equation:
\[
[Q^{(0)} - m - H_A] | \Psi_A \rangle = 0 \quad (21)
\]

The Hamiltonian \(H_A \) up to the constant four vectors \(a_{\mu} \) and \(\beta_{\mu} = \hat{k}_0 f \) coincides with the Dirac equation with the only one mode of the field and can be diagonalized. Solutions of equation (21) in Bargmann representation for the creation and annihilation operators were found by Bersen [8] and their operator form were obtained in [54]:
\[
| \Psi_A (n, a, f) \rangle = C_1 \left(1 + \frac{\hat{k}_0 \sqrt{N}}{2 \pi (\gamma_{\hat{k}_0})} (A^\dagger + A) \right) Su(p_n) | n \rangle, \\
S = e^{a(A - A^\dagger)} e^{-\frac{1}{2}(A^\dagger - A)^2}, \quad A^\dagger | n \rangle = n | n \rangle
\]
(22)
\[p_n = z - k_0 \left(\sqrt{1 - \frac{2Nb_0^2}{(z \cdot k_0)^2}}(n + 1/2) - 1/2 \right) + f - \frac{(z \cdot b_0)^2 N}{(z \cdot k_0)^2} - \frac{1}{1 - 2Nb_0^2/(z \cdot k_0)}, \]
\[
\alpha = -\frac{(z \cdot b_0)}{(z \cdot k_0) \sqrt{1 - 2Nb_0^2/(z \cdot k_0)}}, \]
\[
cosh \eta = \frac{1}{2} \left(\sqrt{x^2} + \frac{1}{\sqrt{x^2}} \right), \quad x = \frac{1}{\sqrt{1 - 2Nb_0^2/(z \cdot k_0)}}, \quad (23)\]

where \(z_{\mu} = q^{(0)}_{\mu} - a_{\mu}, C_i \) is a normalization constant and \(u(p_n) \) is a Dirac bispinor.

In the general case parameters \(z \) and \(f \) in the quasi-momentum \(p_n \) depend on the form of the laser pulse (see the below equations (32)–(38)). \(p_n \) can be considered as the analogue of the dressed momentum introduced in [10, 20, 21] and depends on the intensity and polarization \(b_0 \) of the collective mode. Let us note, that in the case of modulated plane waves, i.e., waves with few Fourier components, the canonical transformation (12) needs to be modified for few collective modes and is not investigated in the present work.

The solutions (23) form a full and orthogonal basis in the Hilbert space and can be normalized in a relativistically invariant way [6, 8].

4. Perturbation theory on the operators \(H_{1,2} \)

It is supposed that the approximating eigenvectors (23) define the main contribution to the solution of the initial equation (5). In accordance with the method defined in [53] one should now consider the corrections to this solution given by the operators \(H_{1,2} \) from (9) and (10), thereby determining the optimal parameters (\(\Delta, k_0, b_0 \)) of the approximating Hamiltonian (8).

In order to build the corresponding perturbation theory let us insert a formal parameter \(\lambda \) into equation (5)
\[
|\hat{q} - m - H_A|\Psi = \lambda (H_1 + H_2)|\Psi, \quad (24)\]
and represent a solution in a form of a series:
\[
|\Psi = |\Psi^{(0)}| + \lambda |\Psi^{(1)}| + \cdots, \quad q = q^{(0)} + \lambda q^{(1)} + \cdots. \quad (25)\]

From equation (25) the first two orders of the perturbation can be found:
\[
|\hat{q}^{(0)} - m - H_A|\Psi^{(0)} = 0, \quad (26)\]
\[
|\hat{q}^{(1)}|\Psi^{(0)} + |\hat{q}^{(0)} - m - H_A|\Psi^{(1)} = (H_1 + H_2)|\Psi^{(1)}|. \quad (27)\]

Equation (26) coincides with equation (21) and has the set of eigenvectors (23) which form a full and orthogonal basis in a Hilbert space. As was shown in [8], solution of equation (26) leads to Volkov’s solution for an electron in a classical field [7] if one uses the coherent state representation instead of the Fock representation for the eigenvectors (23). In order to do this in our case we suppose that the electromagnetic field is described by a set of coherent states:
\[
|\Xi \rangle = C \exp \left\{ \sum_k [u_k a_k^* - u_k^* a_k] \right\} |0\rangle, \quad a_k |0\rangle = 0, \quad (28)\]
with the amplitudes \(u_k \) associated with a field wave packet. This wave packet is localized in \(k \)-space near the momentum \(k_0 \). The amplitudes \(u_k \) are modelled with the Gaussian distribution:
\[
u_k = \frac{\sqrt{\delta n^2}}{\sqrt{\delta n^2}} e^{-\frac{|\delta n|^2}{\delta n^2}}, \quad k = k_\perp + \omega \frac{\delta n}{\omega_0}, \quad k \cdot k_0 = 0, \quad (29)\]
where \(\sigma_2 \) and \(\sigma_1 \) are defined by equation (7) and determine a frequency and an angular spread in the laser pulse, respectively. The Gaussian wave packet describes qualitative characteristics of the finite laser pulse and is convenient for the analytical calculations. The other choice of the wave packet form can change the obtained results on the number of the order of one.

The constant \(C \) in (28) for a pulse of intensity \(I \), transversal width \(S \) and duration \(\tau \) can be obtained from the normalization on the full pulse energy \(W \):
\[
W = IS^\tau = \langle \Xi | \sum_k \omega_0^k a_k^* a_k |\Xi \rangle
= C^2 \frac{V}{8\pi^3} \int d\omega d\omega |\omega| |\omega|^2
= C^2 \frac{V}{8\pi^3} \omega_0^2 \approx \frac{8\pi^3/8IS^\tau}{\sigma_1^2 \sigma_2}, \quad (30)\]
The state (28) can be expanded in a series over the full set of states (23):
\[
|\Xi \rangle = \sum_{n,a,f} C_n(a,f)|\Psi_n(n,a,f), \quad (31)\]
with coefficients \(C_n(a,f) \), which depend not only on the collective mode quantum number \(n \), but also on the ‘fluctuating’ and the ‘external’ modes quantum numbers \(f \) and \(a \), respectively. This linear combination can be used for the description of QED processes (nonlinear Compton scattering, electron-positron pair creation) in the Furry picture, taking into account the realistic duration and angular spread of the laser pulse. In the following we show that the dependencies on \(f \) and \(a \) can be neglected if the \(k \)-space volume \(\Delta \) is chosen in a consistent way.

We can estimate the contribution of the various terms in the Hamiltonian \(H_A \) (22) using the state (28):
\[
\langle \Xi | a_0^\dagger a^1 |\Xi \rangle \approx \langle \Xi | \sum_{k<\Delta} \omega_0^k a_k^* a_k |\Xi \rangle
= \frac{\omega_0 C^2V}{(2\pi)^3} \int_{k<\Delta} dk |\mu_k|^2
= \frac{8\pi^3/8IS^\tau \sqrt{3}}{(2\pi)^3} \left(\int_0^{\frac{\Delta}{\sqrt{2}S}} dt e^{-r^2} \right)^2 \int_0^{\frac{\Delta}{\sqrt{2}S}} dt e^{-r^2}
= IS^\tau \Phi^3(\delta), \quad (32)\]
where we assumed that the volume Δ in k-space can be written as $\Delta = \Delta_1^2 \Delta_2 = \delta^2 \sigma_1^2 \sigma_2 \omega_0^3$. Here δ is a dimensionless parameter that will be defined below and $\Phi(z) = 2/\sqrt{\pi} \int_0^z e^{-r^2} dr$ is the error function. Other terms in H_A (22) are calculated in a similar way:

$$N = \frac{V}{8\pi^3} \delta^3 \sigma_1^2 \sigma_2 \omega_0^3,$$

(33)

$$\langle \Xi | f \rangle = \langle \Xi \sum_k c_k^2 \hat{e}_k | \Xi \rangle = \langle \Xi \sum_k \left[a_k^\dagger - \frac{1}{N} \sum_{l<\Delta} a_l \right] \langle \Xi | k \rangle$$

$$= C^2 \sum_{k<\Delta} \left[u_k^* - \frac{1}{N} \sum_{l<\Delta} u_l^* \right] \left[u_k - \frac{1}{N} \sum_{l<\Delta} u_l \right] + C^2 \frac{V}{(2\pi)^3} \left(\int dk |u_k|^2 - \frac{V}{(2\pi)^3 N} \int dk |u_k|^2 \right),$$

(34)

$$= C^2 \frac{V}{(2\pi)^3} \left(1 - \frac{2\pi^2 \Sigma k^3}{\delta^3} \Phi^3(\delta) \right),$$

$$\langle \Xi | a | \Xi \rangle \leq \langle \Xi | a_0 | \Xi \rangle = \langle \Xi \sum_\tilde{k} \alpha_0 \hat{a}_k^\dagger \hat{a}_k | \Xi \rangle$$

$$= C \Phi^3(\delta).$$

(35)

The contribution to the Hamiltonian H_A due to the ‘fluctuating’ modes is defined by the value $\langle \Xi | f | \Xi \rangle$ and is equal to zero if the parameter δ is chosen as the solution of the equation

$$1 - \frac{2\pi^2 \Sigma k^3}{\delta^3} \Phi^3(\delta) = 0, \quad \delta \approx 3.54.$$

(36)

It is evident that the actual value of this parameter depends on the laser pulse form but in any case it can be calculated in a similar way.

The contributions of the ‘external’ pulse modes to H_A can be neglected because they are defined by the value

$$\frac{\langle \Xi | a_0 | \Xi \rangle}{\langle \Xi | a_0 \hat{A}_k^\dagger \hat{A}_k | \Xi \rangle} = \frac{(1 - \Phi^3(\delta))}{\Phi^3(\delta)} \approx 1.64 \times 10^{-6},$$

(37)

when δ is found from (36).

A similar estimation $(1 - \Phi^3(\delta)) \approx 10^{-6}$, defines the difference between the energy accumulated in the collective mode (32) and the total energy of the laser pulse (30). It means that if the parameter Δ is chosen as

$$\Delta \approx (3.54)^3 \sigma_1^2 \sigma_2 \omega_0^3,$$

(38)

the values a and f can be omitted in the operator H_A that corresponds to the vacuum of the ‘fluctuating’ and ‘external’ modes. In this case H_A can be considered as the single-mode Hamiltonian in the zeroth order (26). The solution of this equation and its application for the analysis of the quantum corrections to the electromagnetic processes in the strong field were considered recently in our paper [54].

Now we determine the parameters $\tilde{k}_0, \tilde{b}_0, \omega_0$ of this Hamiltonian. Let us consider the first order equation (27). Using its projection on the state vector $|\Psi^{(0)}\rangle$ (we pay attention to the fact, that for the correct perturbation theory for the Dirac equation the eigenvalue $|\Psi^{(0)}\rangle$ of a zero-order is not a Hermitian conjugate to $|\Psi^{(0)}\rangle$ but is the Dirac conjugate i.e. $\langle \Psi^{(0)} | \tilde{P}^{(0)} | \Psi^{(0)} \rangle$):

$$\langle \Psi^{(0)} | \tilde{P}^{(0)} | \Psi^{(0)} \rangle = \langle \Psi^{(0)} | (H_1 + H_2) | \Psi^{(0)} \rangle.$$

(39)

According to Bogolubov [53] the stable solution of the initial equation (5) exists if the first-order correction to the eigenvalue is equal to zero and this condition allows one to find the unknown parameters $\tilde{k}_0, \tilde{b}_0, \omega_0$. In our case it leads to two equations

$$\langle \Psi^{(0)} | H_1 | \Psi^{(0)} \rangle = 0; \quad \langle \Psi^{(0)} | H_2 | \Psi^{(0)} \rangle = 0,$$

(40)

because the operators H_1 and H_2 refer to different variables. The details of the calculations of the expectation values of the Hamiltonian H_1 can be found in appendix A. The result reads

$$\langle H_1 \rangle = n_0 \left(\alpha + \frac{1}{\alpha} \right) \left(\sum_{k<\Delta} \frac{k - k_0}{N} \right) \cdot n_n$$

$$+ \frac{2\alpha \beta n_0}{\sqrt{(z \cdot k_0)}} \left(\beta (b \cdot p_0) \sum_{k<\Delta} (k \cdot k_0) \right)$$

$$- (k_0 \cdot p_n) \sum_{k<\Delta} (k \cdot b_0),$$

(41)

where α, β are n_0, n_n of this Hamiltonian. The calculation of the average value of the Hamiltonian H_2 is performed in exactly the same way

$$\langle H_2 \rangle = \langle 0 | \hat{p}^2 | \Psi^{(0)} \rangle$$

$$= \sum_{k<\Delta} \langle \Psi^{(0)} \hat{b}^\dagger | \Psi^{(0)} \rangle \langle \Xi | (a_k^\dagger \hat{a}_k^\dagger) | \Xi \rangle$$

$$= \sum_{k<\Delta} \left(2b(k) \cdot p_n + \frac{4\alpha \beta \sqrt{(z \cdot k_0)}}{(z \cdot k_0)} (b \cdot k_0 b_0 \cdot p_n) - b_0 \cdot (b \cdot k_0) \cdot p_n \right)$$

$$\times \langle \Xi | (a_k^\dagger \hat{a}_k^\dagger) | \Xi \rangle.$$
As was stated above, according to [53], the first corrections to the approximating Hamiltonian \(H_4 \) are equal to zero. This gives a condition for the determination of the variational parameters \(\Delta, b_0, k_0 \) of the Hamiltonian \(H_A \). Therefore, if we choose
\[
\omega_0 = \frac{1}{N} \sum_{k < \Delta} \omega_k, \quad k_0 = \frac{1}{N} \sum_{k < \Delta} k, \quad b_0 = \frac{1}{N} \sum_{k < \Delta} b(k),
\]
the expectation value of the Hamiltonian \(H_1 \) turns into zero. The average of the Hamiltonian \(H_2 \) vanishes according to symmetry consideration as it is not bilinear over polarization vectors \(\sum_{k < \Delta} b(k) \). The physical meaning of this choice is that the collective single-mode corresponds to an average over the modes of a quasi-monochromatic wave packet.

We have determined the variational parameters of the approximating Hamiltonian and consequently can proceed with the estimation of the field intensity for which the single-mode approximation is valid. For this purpose, the second-order correction
\[
E^{(2)}_0 = - \sum_{E \neq E_{\omega_0}} \frac{|\langle E_0 | H_1 | E_{\omega_0} \rangle|^2}{E_{\omega_0} - E_0},
\]
to the system’s energy needs to be calculated. Here \(H_1 \) is the perturbation operator (A.1).

As can be seen from equation (A.1) only the last two terms contribute to \(E^{(2)}_0 \). The state \(|E_{\omega_0}\rangle \) is the wave function
\[
|0, n_0 \rangle = \frac{\hat{u}(p) - (p \cdot \hat{k})}{\sqrt{2 \epsilon}} |n_0 \rangle |0 \rangle,
\]
where \(\epsilon \) is the electron’s energy, \(n_0 \) is the number of quanta in the ‘collective’ mode, \(|0 \rangle \) is the state of the field fluctuations and for simplicity we neglected the term proportional to \(\hat{k} \hat{b} \). Let us rewrite the Hamiltonian \(H_1 \) in the variables \(A, A^\dagger \) of the ‘collective’ mode and \(\hat{c}_k, \hat{c}^\dagger_k \) of the fluctuations, respectively

\[
H_1 = (\hat{k} - \hat{k}_0) - \frac{1}{2 \sqrt{N}} (A - A^\dagger) (\hat{c}_k - \hat{c}^\dagger_k) + (A + A^\dagger) \left(\frac{\hat{c}_k + \hat{c}^\dagger_k}{\sqrt{2}} \right) + \sqrt{2} (\hat{b}(k) - \hat{b}_0)
\]
\[
\times \left(\frac{\hat{c}_k + \hat{c}^\dagger_k}{\sqrt{2}} + \frac{A + A^\dagger}{\sqrt{2N}} \right).
\]

Now we can calculate the transition matrix element
\[
|0, n_0 \rangle \langle H_1 | n_1, n_2 \rangle = \langle 0 | n_0 | S^\dagger A^\dagger S | n_1, n_2 \rangle = \langle 0 | n_0 | S^\dagger A^\dagger S | n_1, n_2 \rangle \delta_{n_1, n_2}.
\]
\[
+ \frac{\hat{u}(p) \hat{u}(p) - (p \cdot \hat{k}) u(p)}{2 \epsilon} \langle n_0 | S^\dagger A^\dagger S | n_1, n_2 \rangle \delta_{n_1, n_2},
\]
\[
+ \frac{1}{\sqrt{N}} \langle n_0 | S^\dagger (A + A^\dagger) S | n_1, n_2 \rangle \delta_{n_1, n_2}.
\]

The use of the transformation (A.4) of the creation and annihilation operators of the ‘collective’ mode by the operator \(S \) and the calculation of the averages in a spin space yields
\[
\langle 0 | n_0 | H_1 | n_1, n_2 \rangle = \frac{(p \cdot k) - (p \cdot k_0)}{\epsilon \sqrt{N}} \delta_{n_1, n_2} + \frac{1}{2 \epsilon} \left(\sqrt{2} \epsilon - \frac{1}{\sqrt{2}} \right) \sqrt{n_0 + 1} \delta_{n_1, n_2}.
\]

Consequently we can write down the second-order correction to the system’s energy
\[
E^{(2)}_0 \approx \sum_{k < \Delta} \frac{|(v \cdot k) - (v \cdot k_0)|^2}{4N} \left(\frac{\epsilon_0^2 n_0 - \epsilon_2^2 (n_0 + 1)}{\omega_0 - \omega_k} \right),
\]
where \(\epsilon_0 = v_1 + 1/\sqrt{\epsilon}, \epsilon_2 = v_1 - 1/\sqrt{\epsilon}, v_\mu = p_\mu/\epsilon = (1, v) \) and \(v \) is an electron’s velocity: \(v = (v_z, 0, v_z) \).

Equation (48) has four terms but only two are important. The term inversely proportional to the frequency difference \(\omega_0 - \omega_k \) describes a resonance and defines the frequency renormalization and the lifetime of the collective mode. The term inversely proportional to \(\omega_k \) defines the fluctuations arising due to the interaction between an electron and an external field. The remaining two terms can be neglected as the second one is not a resonance and the fourth one is inversely proportional to the normalization volume \(V \) (\(N \sim V \) and \(b \sim 1/\sqrt{V} \)).

In order to perform a summation in \(k \)-space we firstly fix a coordinate system. Let the \(z \)-axis be directed along \(k_0 \), the \(x \)-axis along \(v_z \)—the velocity component perpendicular to the \(k_0 \). The details of the summations over \(k \) can be found in appendix B. The second-order correction to the system’s energy reads
\[
E^{(2)}_0 = \frac{n_0 \omega_0 \pi v_z^2}{4} \left(\lambda \tan^{-1} 4 \lambda - 1 + \frac{i \pi}{2} \right) \cdot \frac{\lambda}{\lambda - 1}
\]
\[
+ c_0^2 a^2 \sigma_0 (a_0^2 v^2 - v^2) + 16 \sigma^2 v^2 v_z^2,
\]

where \(\lambda = \sigma_z/\delta \).

The first term in (49) is proportional to the same quantum number \(n_0 \) as the energy of the ‘collective’ mode. Its real part defines the shift \(\Delta \omega_0 \) and the imaginary part defines the width \(\Gamma/2 \) of the resonant collective mode. One can rely on the single-mode approximation if these values are small in comparison with \(\omega_0 \):
\[
\frac{\Delta \omega_0}{\omega_0} = \frac{\pi v_z^2}{4} \left(\lambda \tan^{-1} 4 \lambda - 1 \right) \ll 1,
\]
\[
\frac{\Gamma}{\omega_0} = \frac{\pi v_z^2}{4} \cdot \frac{\lambda}{\lambda - 1} \ll 1.
\]

As stated above, the single-mode approximation is valid when the change in \(E^{(2)}_0 \) due to the fluctuations of the quantum
field are small with comparison to the ground state energy of the ‘collective’ mode (32). These fluctuations are defined by the last term in equation (49). This leads to the additional parameter
\[
\mu = e^2 \delta^2 \sigma_1^2 \sigma_2 \omega_0 \left(\sigma_1^2 (v^2 - \nu_0^2) + 16 \sigma_1^2 \nu_0^2 \right) / \left(96 \pi^2 \nu_0^2 \gamma \right) \ll 1, \tag{52}
\]
which defines the lowest pulse intensity for which the single-mode approximation can be used (see also [54]).

Modern lasers can reach nowadays high intensities [55–59] up to 10^{22} W cm^{-2} with a pulse duration of about 30 fs. Let us estimate the parameters (50), (51) and (52) for an intensity \(I = 10^{22} \) W cm^{-2}, photon frequency \(\omega = 7.8 \times 10^4 \) cm^{-1} (a corresponding wavelength of 800 nm), pulse duration \(\tau = 8.7 \times 10^{-4} \) cm^{-1} (corresponding to 30 fs) and focusing \(S = 10^{-8} \) cm^{2}.

The physical parameters \(\sigma_1 \) and \(\sigma_2 \) are connected with the characteristics of the laser pulse by equation (7), and their numerical value for the above \(I, S, \tau \) is equal to
\[
\sigma_1 = 0.127, \quad \sigma_2 = 0.014. \tag{53}
\]

An electron beam always has angular divergence \(\Delta \theta \) and \(\nu_\perp \sim \Delta \theta \sim 1 / \gamma \), where \(\gamma \) is the electron’s gamma factor. Therefore, for the moderately relativistic electrons we can consider that \(\nu_\perp \ll \sigma_1 \).

By plugging the numerical values in equations (50)–(52) one obtains
\[
\mu \sim 10^{-28}, \quad \Delta \omega / \omega_0 \sim 6 \times 10^{-4}, \tag{54}
\]
\[
\gamma / \omega_0 \sim 0.01, \tag{55}
\]
and we can conclude that the single-mode approximation is applicable.

As can be seen from equation (54) the parameter \(\mu \) and frequency shift are very small values for the intensities in the strong field QED range, i.e., \(10^{16} - 10^{22} \) W cm^{-2} and pulse duration of 30 fs. This means that the electron mainly interacts with the collective single-mode. The influence of the fluctuations is suppressed.

However, the most important parameter, which can limit the applicability of the single-mode approximation is indeed independent on the intensity, but depends on the pulse duration. It determines the width of the collective mode \(\gamma / \omega_0 \), equation (55). The decrease of the pulse duration from 30 to 3 fs, will increase its value by one order. The physical meaning of this result, corresponds to the situation that for the really short laser pulses, the collective field mode does not have sufficient time for its formation.

Concluding we can state, that the applicability of the single-mode approximation is mainly limited not by the pulse intensity, but rather by its duration and focusing size. Therefore, for a particular spectral distribution of the external laser pulse one should estimate \(\sigma_1 \) and \(\sigma_2 \), then insert their values together with the transversal electron velocity \(\nu_\perp \) into equations (50)–(52) and make the conclusion about the applicability of the single-mode approximation.

5. Conclusion

In this paper we have studied the applicability of the single-mode approximation for a relativistic electron interacting with a laser pulse of a finite duration and transversal width. The relations between parameters of the single-mode Hamiltonian and the form of the wave packet are found. In particular, the frequency of the collective mode corresponds to the average frequency of the wave packet’s modes.

The three parameters which determine the applicability of the single-mode approximation are the frequency shift and width of the collective mode, and dimensional parameter \(\mu \), which is defined as the relation of the energy of the fluctuations to the ground state energy of the collective mode. These parameters are determined by the physical parameters of the laser pulse, namely the field intensity, pulse duration and focusing size. For sufficiently long laser pulses and for experimentally available intensities the single-mode approximation is proven to be valid, however for the very short laser pulses the collective field mode does not have sufficient time to form.

The proposed approach can also be used for the analysis of the interaction between an atom and a field placed in a non-ideal cavity.

Acknowledgments

The authors are grateful to C H Keitel, K Hatsagortsyan and S Cavaletto for fruitful discussions. OS acknowledges financial support from Max Planck Institute for Nuclear Physics.

Appendix A

We start with the calculation of the average of the Hamiltonian \(H_1 \). For this purpose we need to rewrite it in the variables of a ‘collective’ mode \(A, A^\dagger \) and ‘fluctuations’ \(\tilde{c}_k, \tilde{c}_k^\dagger \)
\[
H_1 = \sum_{k < \Delta} (\tilde{c}_k^\dagger \tilde{c}_k + \tilde{c}_0^\dagger \tilde{c}_0) + \text{(collective terms)}
\]
\[
= \sum_{k < \Delta} \left(P^2 + 2Pp_{xy} + p_{xy}^2 + y_k^2 + 2 Qy_k / N + Q^2 / N^2 \right) \tilde{c}_k^\dagger \tilde{c}_k + \text{(collective terms)}
\]
\[
= \sum_{k < \Delta} \left(\tilde{c}_k^\dagger \tilde{c}_k \right) \left(P^2 + Q^2 / N^2 \right) + \sum_{k < \Delta} \left(\text{collective terms} \right)
\]
These expectation values are equal to
\[
\text{Expectation values of } H_1. \tag{A.1}
\]

The expectation value of \(H_1 \), computed with respect to the ground state of fluctuations (17) is equal to
\[\langle H_1 \rangle = \langle 0'| \sum_{k < \Delta} (\hat{A}^\dagger \hat{A} - \hat{k})/N \rangle + \left(\frac{\alpha^2 + \frac{1}{4} (\sqrt{x} - \frac{1}{\sqrt{x}})^2}{N} \right)\hat{\Lambda}^2 + \frac{\alpha}{\sqrt{X}} (\hat{A} + \hat{A}^\dagger) + \hat{\beta}, \]

where \(\hat{\beta} = \left(\frac{\alpha^2 + \frac{1}{4} (\sqrt{x} - \frac{1}{\sqrt{x}})^2}{N} \right) \). According to the definition, the collective mode has a high intensity, i.e. it is highly populated, with the quantum number \(n = n_0 \) being a large value. Therefore, the averages with respect to the field variables are

\[\langle n_0 | S^\dagger (A + A^\dagger) S | n_0 \rangle = 2\alpha, \]
\[\langle n_0 | S^\dagger (A + A^\dagger)^2 S | n_0 \rangle = \alpha (2n_0 + 1) + 4\alpha^2, \]
\[\langle n_0 | S^\dagger (A + A^\dagger)^3 S | n_0 \rangle = 6\alpha \alpha (2n_0 + 1) + 8\alpha^3, \]
\[\langle n_0 | S^\dagger (A + A^\dagger) S | n_0 \rangle = \frac{n_0}{2} \left(\frac{\alpha}{\sqrt{x}} + \frac{1}{\alpha} \right) + \beta, \]
\[\langle n_0 | S^\dagger (A + A^\dagger) A^\dagger A S | n_0 \rangle = \langle n_0 | S^\dagger (A + A^\dagger) S | n_0 \rangle = \alpha \alpha (2n_0 + 1) + \alpha \left(\frac{\alpha}{\sqrt{x}} + \frac{1}{\alpha} \right) n_0 + 2\alpha \beta, \]
\[\langle n_0 | S^\dagger (A + A^\dagger) A^\dagger A (A + A^\dagger) S | n_0 \rangle = \frac{\alpha^2}{2} \left(x + \frac{1}{x} \right)^2 n_0 + 4\alpha^2 \beta. \]

The last step is to calculate the averages in the Dirac spin space. For this purpose we will employ the electron’s density matrix \(\rho = \rho_{1/2} (\hat{\rho} + \hat{m}) (1 - \gamma^2 \hat{\alpha}) \), with \(\rho \) and \(\alpha \) being its fourth momentum and polarization, respectively. For example,

\[u_{\rho} (p_n) = \rho \left(\frac{\alpha}{N} \sum_{k < \Delta} (\hat{k} - \hat{k}_{0}) \right)_{\alpha \beta} = \text{Sp} \left(\rho \left(\frac{\alpha}{N} \sum_{k < \Delta} (\hat{k} - \hat{k}_{0}) \right) \right). \]

Inserting (A.6) and (A.7) into (A.3) we find the average value of the Hamiltonian

\[\langle H_1 \rangle = n_0 \left(\frac{\alpha}{\sqrt{x}} + \frac{1}{\alpha} \right) \left(\sum_{k < \Delta} \frac{k}{N} - k_{0} \right) \cdot p_n + 2\frac{2\alpha \alpha n_0 + \alpha (\frac{\alpha}{\sqrt{x}} + \frac{1}{\alpha}) n_0}{\sqrt{N} (z \cdot k_{0})} \left(\sum_{k < \Delta} (k \cdot b_0) \right) \]

\[- \left(\frac{\alpha}{\sqrt{x}} + \frac{1}{\alpha} \right) \frac{\left(\sum_{k < \Delta} (k \cdot b_0) \right)}{\sqrt{N} (z \cdot k_{0})} \left(b_0 \cdot p_n \right) \sum_{k < \Delta} (k \cdot k_{0}) \]

\[- n_0^2 (\alpha + \frac{1}{\alpha}) \alpha + n_0^2 (x - \frac{1}{\alpha}) \alpha \]

\[- n_0^2 (\alpha + \frac{1}{\alpha}) \alpha + n_0^2 (x - \frac{1}{\alpha}) \alpha \]

\[\times \left(\sum_{k < \Delta} b_0^2 (k \cdot k_{0}) (k_{0} \cdot p_n) + \frac{4\alpha}{\sqrt{N}} \left(\sum_{k < \Delta} (b_0 \cdot b_0) \right) (k_{0} \cdot p_n) \right) \]

\[+ 4\alpha n_0 \frac{(N b_0^2 - \left(\sum_{k < \Delta} (b_0 \cdot b_0) \right) (k_{0} \cdot p_n) + \left(b_0 \cdot p_n \right) \sum_{k < \Delta} (b_0 \cdot k_{0}) (k_{0} \cdot p_n) \right)}{\left(\sum_{k < \Delta} (k \cdot k_{0}) \right)^2} b_0^2 \]

\[\times \sum_{k < \Delta} (b_0 \cdot k_{0}) (k_{0} \cdot p_n), \]
Appendix B

Then the first term in equation (48) is

\[\sum_{k<\Delta} (\omega_k - \omega_0) (k - k_0) \cdot v^2 = \frac{V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \left((\omega_0 - \omega_k) + 2(k - k_0) \cdot v + \frac{(k - k_0) \cdot v^2}{\omega_0 - \omega_k} \right) \]

\[= \frac{V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \frac{(k - k_0) \cdot v^2}{\omega_0 - \omega_k}. \quad (B.1) \]

The first two integrals in equation (B.1) are equal to zero as integrals of an odd function over a symmetric interval. Now, we change a variable \(k \) to \(k_0 + q \). After expansion of the scalar product in (B.1), the terms linear in \(q \) also will not contribute as they are the odd functions. For this reason, one obtains

\[\frac{V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \frac{(k - k_0) \cdot v^2}{\omega_0 - \omega_k} = \frac{2\omega_0 V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \frac{q \cdot v^2}{\omega_0 - \omega_k} \]

\[= -\frac{2\omega_0 V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} v_1^2 q_1^2 + v_2^2 q_2^2 + v_3^2 q_3^2. \quad (B.2) \]

The denominator of equation (B.2) is equal to zero for \(q_{z,1} = -2\omega_0, q_{z,2} = -(q_1^2 + q_2^2)/2\omega_0 \) and needs to be regularized via [60]

\[\frac{1}{\mu} = P \frac{1}{\mu} - i\pi \delta(u), \]

with the symbol \(P \) being the principal value. Insertion of (B.3) into (B.2) gives

\[-\frac{2\omega_0 V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \left(q_1^2 (q_1 - q_{z,1}) (q_1 - q_{z,2}) + 2i\pi V \omega_0 \right) \]

\[\times \int \frac{d\mathbf{q}}{\omega_0} \left(q_1^2 q_1^2 + q_2^2 q_2^2 \right) \delta (q_1 - q_{z,1} (q_1 - q_{z,2})) \]

\[= -\frac{V v_1^2}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0} q_1^2 + \frac{2\pi v_1^2 q_1}{2\omega_0} \]

\[\times \left(q_1 + q_1^2 + \frac{q_1}{2\omega_0} \right). \quad (B.4) \]

While obtaining (B.4) we took into account that \((q_1 - q_{z,1})(q_1 - q_{z,2}) = 2\omega_0 (q_1 - q_{z,2}) \) and the terms proportional to \(v_1^2 \) can be neglected, as the integration takes place near zero, leading to \(q_1^2 \sim q_1^2 \). The integration in the first term is performed in a polar coordinate system, yielding:

\[-\frac{V v_1^2}{(2\pi)^3} \int_{\Delta} \frac{dq_1}{q_1} \frac{q_1^2}{2\omega_0} \]

\[= -\frac{V v_1^2}{(2\pi)^3} \int_{\Delta} dq_1 dq_2 dq_3 \frac{q_1^2 \cos^2 \phi}{q_1 + \frac{q_1}{2\omega_0}} \]

\[= -\frac{\pi v_1^2}{(2\pi)^3} \left(\Delta_2 \Delta_2 \omega_0 \right) \frac{\Delta_2^2 \omega_0}{8} - \frac{\Delta_2^2 \omega_0}{2} \tan^{-1} \left(\frac{4\Delta_2 \omega_0}{\Delta_1^2} \right). \quad (B.5) \]

The integration of the second term with respect to \(q_z \) yields a Heaviside function \(\theta (\omega_0 \Delta_2 - q_z^2 - q_{z,1}^2) \) as \(q_z = -(q_1^2 + q_2^2)/2\omega_0 > -\Delta_2/2 \). Therefore,

\[\frac{i\pi V v_1^2}{(2\pi)^3} \int_{\Delta} \frac{dq_1 \frac{q_1^2 + q_{z,1}^2}{2\omega_0}}{\omega_0 - \omega_k} \]

\[= \frac{i\pi V v_1^2}{(2\pi)^3} \left\{ \frac{\delta \sigma_1^2 \sigma_2}{8} - \frac{\sigma_2^2}{2} \tan^{-1} \frac{4\sigma_2}{\delta \sigma_1^2} \right\} \]

\[+ \frac{i\pi V v_1^2}{(2\pi)^3} \left\{ \frac{\delta^2 \sigma_2}{8} - \frac{\delta \sigma_1^2}{2} \right\} \frac{\Delta_1^2}{2}. \quad (B.6) \]

Combining together (B.5) and (B.6) one obtains

\[\frac{V}{(2\pi)^3} \int_{\Delta} \frac{dk}{\omega_0 - \omega_k} \frac{(k - k_0) \cdot v^2}{\omega_0 - \omega_k} = \frac{\pi V v_1^2}{(2\pi)^3} \omega_0^2 \frac{\delta \sigma_1^2 \sigma_2}{8} - \frac{\sigma_2^2}{2} \tan^{-1} \frac{4\sigma_2}{\delta \sigma_1^2} \]

\[+ \frac{\pi V v_1^2}{(2\pi)^3} \omega_0^2 \frac{\delta^2 \sigma_2}{8} - \frac{\delta \sigma_1^2}{2} \Delta_1^2. \quad (B.7) \]

At last, we come to the calculation of the remaining correction in equation (48) from the fluctuations:

\[\sum_{k<\Delta} \frac{V(b(k) - b_0)^2}{\omega_0 - \omega_k} = \frac{c^2}{2V} \sum_{k<\Delta, \alpha} \left| \frac{\omega_0 v - (e_{k,\alpha}/\sqrt{\omega_k} - e_{0,\alpha}/\sqrt{\omega_0})^2}{\omega_k} \right|. \quad (B.8) \]

In order to calculate the integral in equation (B.8), we introduce the polarization vectors

\[e_{0,2} = \frac{k_0 \times v}{\omega_0 v}, \]

\[e_{0,1} = \frac{\omega_0}{\omega_0 v} \times \frac{b_0 \times b_0}{\omega_0 v} = \frac{v \omega_0 - k_0 (k_0 \cdot v)}{\omega_0 v}, \]

\[e_{k,2} = \frac{k \times v}{\omega_k v}, \]

\[e_{k,1} = \frac{\omega_k}{\omega_k v} \times \frac{k \times v}{\omega_k v} = \frac{v \omega_k - k (k \cdot v)}{\omega_k v}. \]

Here we pay attention to the fact that \(v \cdot e_{0,2} = v \cdot e_{0,1} = 0 \). Insertion of equation (B.9) into equation (B.8) gives

\[\frac{c^2}{2(2\pi)^3} \omega_0 \int \frac{dk}{\frac{1}{\omega_0} - \frac{1}{\sqrt{\omega_0}}} \]

\[= -\frac{c^2}{2(2\pi)^3} \omega_0 \int \frac{dk}{\frac{1}{\omega_0} - \frac{1}{\sqrt{\omega_0}}} \]

\[= -\frac{c^2}{2(2\pi)^3} \omega_0 \int \left(\frac{k_0 \cdot v}{\omega_0 v} - \frac{(k_0 \cdot v)^2}{\omega_0 v} \right)^2. \quad (B.10) \]

The change of variable \(k \) to \(k_0 + q \) and the decomposition of the differences in brackets up to the first order in Taylor series in \(q \) bring us to the final result

\[\frac{c^2}{2(2\pi)^3} \omega_0 \int dq \left(\frac{v}{2\omega_0^2} + \frac{5(k_0 \cdot v)^2}{2v\omega_0^2} \right) k_0 \cdot q \]

\[- \frac{2k_0 \cdot v}{v^2} q^2 \]

\[= e^3 \delta \sigma_1^2 \sigma_2 \omega_0 \left(\sigma_2^2 \left(v^2 - v_1^2 \right)^2 + 16 \sigma_1^2 v_1^2 v_2^2 \right) \]

\[= e^3 \delta \sigma_1^2 \sigma_2 \omega_0 \left(v^2 - v_1^2 \right)^2 + 16 \sigma_1^2 v_1^2 v_2^2 \]. \quad (B.11)
References

[1] Furry W H 1951 On bound states and scattering in positron theory Phys. Rev. 81 115–24
[2] Nikishov A I and Ritus V I 1964 Sov. Phys.—JETP 19 529
[3] Goldman I 1964 Sov. Phys.—JETP 19 954
[4] Narozhny N B, Nikishov A I and Ritus V I 1965 Sov. Phys.—JETP 20 622
[5] Reiss H R 1962 Absorption of light by light J. Math. Phys. 3 59–67
[6] Ritus V I 1985 Quantum effects of the interaction of elementary particles with an intense electromagnetic field J. Russ. Laser Res. 6 497–617
[7] Volkov D M 1957 JETP 7 1286
[8] Berson I 1969 Sov. Phys.—JETP 29 871
[9] Landau L D and Lifschitz E M 1971 Quantum Electrodynamics 1st edn (Oxford: Pergamon)
[10] Krajewska K and Kamiński J Z 2012 Compton process in intense short laser pulses Phys. Rev. A 85 062102
[11] Karlovets D V 2011 Radiative polarization of electrons in a strong laser wave Phys. Rev. A 84 062116
[12] Mackenroth F and Di Piazza A 2011 Nonlinear Compton scattering in ultrashort laser pulses Phys. Rev. A 83 032106
[13] Boca M and Oprea A 2011 Thomson scattering in the high intensity regime Phys. Scr. 83 055404
[14] Seipt D and Kämpfer B 2011 Nonlinear Compton scattering of ultrashort intense laser pulses Phys. Rev. A 83 022101
[15] Mackenroth F, Di Piazza A and Keitel C H 2010 Carrier–envelope phase of intense few-cycle laser pulses Phys. Rev. Lett. 105 063903
[16] Boca M and Florescu V 2009 Nonlinear Compton scattering with a laser pulse Phys. Rev. A 80 053403
[17] Harvey C, Heinzl T and Ilderton A 2009 Signatures of high-intensity Compton scattering Phys. Rev. A 79 063407
[18] Boca M, Florescu V and Gavrilă M 2012 Generalized space-translated Dirac and Pauli equations for superintense laser–atom interactions Phys. Rev. A 85 023425
[19] Bergou J and Varro S 1981 Nonlinear scattering processes in the presence of a quantized radiation field: II. Relativistic treatment J. Phys. A: Math. Gen. 14 2281
[20] Krajewska K, Müller C and Kamiński J Z 2013 Bethe–Heitler pair production in ultrashort strong laser pulses Phys. Rev. A 87 062107
[21] Krajewska K and Kamiński J Z 2012 Breit–Wheeler process in intense short laser pulses J. Phys. B: At. Mol. Opt. Phys. 45 622101
[22] Titov A I, Takabe H, Kämpfer B and Hosaka A 2011 Enhanced subthreshold $\sigma^{+}\sigma^{-}$ production in short laser pulses Phys. Rev. Lett. 108 240406
[23] Müller T-O and Müller C 2011 Spin correlations in nonperturbative electron–positron pair creation by photowatt laser pulses colliding with a relativistic proton beam Phys. Lett. B 696 201
[24] Di Piazza A, Milstein A I and Müller C 2010 Polarization of the electron and positron produced in combined coulomb and strong laser fields Phys. Rev. A 82 062110
[25] Becker W, Liu X, Phyo J H and Eberly J H 2012 Theories of photoelectron correlation in laser-driven multiple atomic ionization Rev. Mod. Phys. 84 1011–43
[26] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Extremely high-intensity laser interactions with fundamental quantum systems Rev. Mod. Phys. 84 1177–228
[27] Ehlotzky F, Krajewska K and Kamiński J Z 2009 Fundamental processes of quantum electrodynamics in laser fields of relativistic power Rep. Prog. Phys. 72 046401
[28] Jaynes E T and Cummings F W 1963 Proc. Inst. Electr. Eng. 89 51
[29] Shore B W and Knight P L 1993 The Jaynes–Cummings model J. Mod. Opt. 40 1195–238
[30] Sachdev S 1984 Atom in a damped cavity Phys. Rev. A 29 2627–33
[31] Barnett S M and Knight P L 1986 Dissipation in a fundamental model of quantum optical resonance Phys. Rev. A 33 2444–8
[32] Purkait S and Agarwal G S 1986 Collapse and revival phenomena in the Jaynes–Cummings model with cavity damping Phys. Rev. A 33 3610–3
[33] Filipowicz P, Javanainen J and Meystre P 1986 Theory of a microscopic maser Phys. Rev. A 34 3077–87
[34] Purkait S and Agarwal G S 1987 Finite-Q cavity electrodynamics: dynamical and statistical aspects Phys. Rev. A 35 3433–49
[35] Kükliński J R and Madajczyk J L 1988 Strong squeezing in the Jaynes–Cummings model Phys. Rev. A 37 3175–8
[36] Neto A H C and Caldeira A O 1990 Quantum dynamics of an electromagnetic mode in a cavity Phys. Rev. A 42 6884–93
[37] Eiselt J and Risken H 1991 Quasiprobability distributions for the Jaynes–Cummings model with cavity damping Phys. Rev. A 43 346–60
[38] Cirac J I, Ritsch H and Zoller P 1991 Two-level system interacting with a finite-bandwidth thermal cavity mode Phys. Rev. A 44 3441–51
[39] Quang T, Knight P L and Buek V 1991 Quantum collapses and revivals in an optical cavity Phys. Rev. A 42 6092–96
[40] Gea-Banacloche J 1993 Jaynes–Cummings model with quasiclassical fields: the effect of dissipation Phys. Rev. A 47 2221–34
[41] Gou S C 1989 Quantum behavior of a two-level atom interacting with two modes of light in a cavity Phys. Rev. A 40 5116–28
[42] Joshi A and Pur R R 1990 Characteristics of Rabi oscillations in the two-mode squeezed state of the field Phys. Rev. A 42 4336–42
[43] Parkins A S 1990 Resonance fluorescence of a two-level atom in a two-mode squeezed vacuum Phys. Rev. A 42 6873–83
[44] Lai W K, Buek V and Knight P L 1991 Dynamics of a three-level atom in a two-mode squeezed vacuum Phys. Rev. A 44 6043–56
[45] Abdel-Hafez A M 1992 Degenerate and nondegenerate two-mode normal squeezing in a two-level atom and two-mode system Phys. Rev. A 45 6610–14
[46] Khanbekyan M, Knoll L, Semenov A A, Vogel W and Welsch D-G 2004 Quantum-state extraction from high-q cavities Phys. Rev. A 69 043807
[47] Di Fidio C, Vogel W, Khanbekyan M and Welsch D-G 2008 Photon emission by an atom in a lossy cavity Phys. Rev. A 77 043822
[48] Bing H, Lin Q and Simon C 2011 Cross–Kerr nonlinearity between continuous-mode coherent states and single photons Phys. Rev. A 83 053826
[49] Wickenbrock A, Hemmerling M, Robb G R M, Emary C and Renzoni F 2013 Collective strong coupling in multimode quantum opto-electronics QED Phys. Rev. A 87 043817
[50] Kennes D M, Kashuba O, Pletyukhov M, Schoeller H and Meden V 2013 Oscillatory dynamics and non-Markovian memory in dissipative quantum systems Phys. Rev. Lett. 110 1–5
[51] Rahimi-Keshari S, Kiesel T, Vogel W, Grandi S, Zavatta A and Bellini M 2013 Quantum process nonclassicality Phys. Rev. Lett. 110 160401
[52] Bogolubov N N, Sadovnikov B I and Shumovsky A S 1989 Mathematical Methods in Statistical Mechanics of Model Systems (Moscow: Nauka)
[53] Bogolubov N N 2008 Aspects of Polariton Theory (Singapore: World Scientific)
[54] Skoromnik O D, Feranchuk I D and Keitel C H 2013 Collapse-and-revival dynamics of strongly laser-driven electrons Phys. Rev. A 87 052107
[55] Bagnoud V et al 2010 Commissioning and early experiments of the PHELIX facility Appl. Phys. B 100 137–50
[56] Gerstner E 2007 Laser physics: extreme light Nature 446 16–8
[57] Yanovsky V et al 2008 Ultra-high intensity- 300 TW laser at 0.1 Hz repetition rate Opt. Express 16 2109–14

[58] ELI, Extreme Light Infrastructure 2011 www.extreme-light-infrastructure.eu/
[59] HiPER, High Power Laser Energy Research 2011 www.hiper-laser.org/
[60] Akhiezer A I and Beresteckij V B 1969 Quantum Electrodynamics 3rd edn (Moscow: Nauka)