Convective quenching of stellar pulsations

T. Gastine and B. Dintrans

Laboratoire d’Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse, France

January 4, 2011, accepted for publication

ABSTRACT

Context. We study the convection-pulsation coupling that occurs in cold Cepheids close to the red edge of the classical instability strip. In these stars, the surface convective zone is supposed to stabilise the radial oscillations excited by the κ-mechanism.

Aims. We study the influence of the convective motions onto the amplitude and the nonlinear saturation of acoustic modes excited by κ-mechanism. We are interested in determining the physical conditions needed to lead to a quenching of oscillations by convection.

Methods. We compute two-dimensional nonlinear simulations (DNS) of the convection-pulsation coupling, in which the oscillations are sustained by a continuous physical process: the κ-mechanism. Thanks to both a frequential analysis and a projection of the physical fields onto an acoustic subspace, we study how the convective motions affect the unstable radial oscillations.

Results. Depending on the initial physical conditions, two main behaviours are obtained: (i) either the unstable fundamental acoustic mode has a large amplitude, carries the bulk of the kinetic energy and shows a nonlinear saturation similar to the purely radiative case; (ii) or the convective motions affect significantly the mode amplitude that remains very weak. In this second case, convection is quenching the acoustic oscillations. We interpret these discrepancies in terms of the difference in density contrast: larger stratification leads to smaller convective plumes that do not affect much the purely radial modes, while large-scale vortices may quench the oscillations.

Key words. Hydrodynamics - Convection - Instabilities - Stars: oscillations - Methods: numerical - Stars: Variables: Cepheids

1. Introduction

The cold Cepheids located near the red edge of the classical instability strip have an important surface convective zone that affects their pulsation properties (e.g. the reviews of Gough 1977; Buchler 2009). The first calculations, done without any convection-pulsation modelling, predicted red edges much cooler than the observed ones. In fact, predicting the red edge location requires a non-adiabatic treatment of this coupling (e.g. Dupret et al. 2005).

Several time-dependent convection (TDC) models have then been introduced to address this coupling (Unno 1967; Gough 1977; Stellingwerf 1982; Kuhfuß 1986; Xiong 1989).

More recently, these different models have been largely improved and have succeeded in reproducing the correct location of the red edge, despite their disagreements with the physical origin of the mode stabilisation (e.g. Bono et al. 1999; Wuchterl & Feuchtinger 1998; Yecko et al. 1998; Grigahcène et al. 2005; Dupret et al. 2005).

However, these models rely on many free parameters (e.g. the seven dimensionless α coefficients used by Yecko et al. 1998) that are either fitted to the observations or hardly constrained by theoretical values such that they give almost identical results for different parameters sets (see also Kolláth et al. 2002).

Despite their own limitations (weak density or pressure contrasts, for instance), 2-D and 3-D direct numerical simulations (DNS) are a good way to investigate the convection-pulsation coupling as the essential nonlinearities are fully taken into account. The purpose of this paper is to present the results of two-dimensional DNS of the convection-pulsation coupling in which the acoustic oscillations are sustained in a self-consistent way by the κ-mechanism that is responsible for the radial oscillations of Cepheids (Muthsam et al. 2010).

In Gastine & Dintrans (2008a) and Gastine & Dintrans (2008b) (hereafter Papers I and II), we have modelled the κ-mechanism in Cepheids by a simplified approach, that is, the propagation of acoustic waves in a layer of perfect gas in which the ionisation region is shaped by a hollow in the radiative conductivity profile. We recall that the instability of Cepheid variables relies on the blocking of the emerging radiative flux near the opacity bumps that are due to the ionisation of light elements like H or He. As the radiative conductivity is proportional to the inverse of opacity, a conductivity hollow therefore mimics such an opacity bump. By performing the linear stability of this simplified model, we have precisely determined in Paper I the physical conditions that are required to obtain unstable radial modes excited by κ-mechanism: (i) the conductivity hollow must be sufficiently deep; (ii) this hollow must be also located in a precise zone inside the star, called “the transition region” (Zhevakin 1963; Cox 1980), that defines the limit where the acoustic mode period II is close to the local thermal timescale τ_{therm} as

$$\Psi = \frac{\tau_{\text{therm}}}{\tau_{\text{dyn}}} = \frac{\langle c_s T_0 \rangle \Delta m}{\Pi L} \approx 1,$$

where the $\langle c_s T_0 \rangle \Delta m$ term denotes the amount of internal energy embedded above the ionisation region and L is the star luminosity (the ratio between the two defining the thermal time needed for radiating this internal energy towards the surface).

By starting from the most linearly-unstable setups, we have performed in Paper II the corresponding nonlinear study by the means of direct numerical simulations. Thanks to a powerful method that involves several projections of the computed fields onto suitable subspaces (e.g. Bogdan et al. 1993), both the am-

Send offprint requests to: thomas.gastine@ast.obs-mip.fr
plitude and energy of each acoustic mode oscillating in the simulation have been extracted. Their temporal evolutions have then emphasised the strong nonlinear coupling existing between the (unstable) fundamental acoustic mode and the (stable) second overtone. This preferential coupling relies on a 2:1 resonance as the fundamental period is twice the second overtone one (e.g. Simon & Schmidt 1976; Klapp et al. 1985; Buchler & Kovacs 1986). It participates to the nonlinear saturation of the system and is also responsible for the well-known “Hertzsprung’s progression” observed in the luminosity curves of bump Cepheids (see Paper II for more details).

Following these first two papers devoted to the purely radiative case, we next address in this work the possible influence of convection onto the acoustic oscillations excited by κ-mechanism. We have first slightly modified the initial physical setup to get a convective zone that overlaps with the hollow in radiative conductivity. We have then computed the corresponding 2-D nonlinear simulations and shown that a coupling between the convective motions and pulsations can indeed occur (§ 2). Thanks to a frequential analysis (§ 3), we have next emphasised the qualitative discrepancies between two specific simulations that strongly differ from the role played by convection: in one simulation, the fundamental acoustic mode excited by κ-mechanism seems to be not influenced by the underlying convective motions while in the other simulation, convection almost cancels it.

In order to measure in more details the acoustic oscillations in these simulations, we have next applied a projection method similar to the one used previously in the purely radiative case. That is, we have determined the contribution of acoustic oscillations and convective motions to the energy budget (§ 4). The obtained results show again two opposite behaviours: (i) either the amplitude of the linearly-unstable acoustic mode is large and the nonlinear saturation seems similar to what was observed in radiative simulations; (ii) or the amplitude of pulsations remains very weak and strongly modulated, while the bulk of kinetic energy lies in convective motions. In this second case, the convective plumes are quenching the oscillations in a similar way to what is expected to occur close to the red edge of the Cepheid instability strip.

The last part of this study focus on the physical conditions suitable for the quenching of the oscillations by convective motions (§ 5). We investigate the role of both the convective flux and the density stratification onto the mode amplitude and we show that a key parameter for the mode stabilisation could be the density contrast across the whole layer. Indeed, this stratification has an impact on the typical size of the convective plumes, as a weak (strong) stratification leads to large (small) vortices. A clear correlation between the integral scale of convection and the kinetic energy contained in acoustic modes is found, that suggests a screening-like effect of the mode pattern by convective plumes. We finally conclude in § 6 by discussing some interesting outlooks of this work in the direction of time-dependent convection theories.

2. The model

2.1. The convective setup

Our system represents a local zoom around an ionisation region. It is composed of a 2-D layer \((L_x \times L_z) \) filled with a monatomic and perfect gas with \(\gamma = c_p/c_v = 5/3 \) and \(R^* = c_p - c_v \), the ideal gas constant \((c_p \text{ and } c_v \text{ being the specific heats}) \). As we are dealing with local simulations, the vertical gravity \(g = -\rho g \), and the kinematic viscosity \(\nu \) are assumed to be constant. Following Papers I and II, the ionisation region is represented by a temperature-dependent radiative conductivity profile that mimics an opacity bump:

\[
K(T) = K_{\text{max}} \left[1 + \mathcal{A} \frac{-\pi/2 + \arctan(\sigma T^+ T^-)}{\pi/2 + \arctan(\sigma e^2)} \right],
\]

with

\[
\mathcal{A} = \frac{K_{\text{max}} - K_{\text{min}}}{K_{\text{max}}}, \quad T^+ = T - T_{\text{bump}} + e,
\]

where \(T_{\text{bump}} \) is the position of the hollow in temperature and \(\sigma \) and \(\mathcal{A} \) denote its slope, width and relative amplitude, respectively. We assume both radiative and hydrostatic equilibrium, that is

\[
\begin{align*}
\frac{dp_0}{dz} &= -\rho g, \\
\frac{dT_0}{dz} &= -\frac{F_{\text{bot}}}{K_0(T_0)},
\end{align*}
\]

where \(F_{\text{bot}} \) is the imposed bottom flux. Following paper I and II, we choose the vertical dimension \(L_z \) as the length scale, i.e. \([x] = L_z\), the top density \(\rho_{\text{top}} \) and top temperature \(T_{\text{top}} \) as density and temperature scales, respectively. The velocity scale is then \((c_p T_{\text{top}})^{1/2}\) while time is given in units of \([t] = L_z/(c_p T_{\text{top}})^{1/2}\).

As our aim is to investigate the convection-pulsation coupling, we must ensure that convection will develop around the conductivity hollow. It means that our model should satisfy to the well-known Schwarzschild’s criterion for the convective instability given by

\[
\frac{dT}{dz} > \frac{dT}{dz}_{\text{adia}} \quad \text{with} \quad \frac{dT}{dz}_{\text{adia}} = \frac{g}{c_p}.
\]
Using Eqs. (4), it defines the following minimum value for the imposed bottom flux F_{bot}:

$$F_{\text{bot}} \geq \frac{gK_0(T_0)}{c_p}$$ \hspace{1cm} (6)

This criterion thus implies either a decrease in the gravity g or an increase in the imposed bottom flux F_{bot}. However, we have shown in Paper I that one crucial criterion needed to obtain unstable modes excited by κ-mechanism is that the ratio of a local thermal timescale over the mode period is approximately $O(1)$, this is the relation (1) already given in the Introduction. Because of this timescale criterion, the most favourable setups were found to require large values in the gravity g to obtain a sufficient stratification (see Paper I for further details). As a consequence, the only acceptable way to have a convective zone in our model – while keeping the efficiency of κ-mechanism – is not decreasing the gravity g but rather increasing the bottom flux such that to satisfy Eq. (6).

Figure 1 is a sketch of our convective model. The blue curve denotes the radiative conductivity profile, Eq. (2) that fulfills Schwarzschild’s condition (Eq. 6, represented by the dashed black line), leading to the appearance of a convective zone shaped by the large red rolls where $K_0(T_0) \leq c_pF_{\text{bot}}/g$. Nevertheless, the need to increase the bottom flux to get a convective zone leads to a numerical difficulty that was not present in the pure radiative case. Indeed, we can roughly estimate the typical velocity u_{conv} of a convective element by using a mixing-length argument of the form

$$u_{\text{conv}} \sim (F_{\text{bot}}/\rho_0)^{1/3}.$$ \hspace{1cm} (7)

With the typical values used in the former papers without convection, that is $\rho_{\text{top}} = 2.5 \times 10^{-7}$ and $F_{\text{bot}} = 2 \times 10^{-2}$, one thus gets $u_{\text{conv}} \sim 2$ and therefore a Mach number $M = u/c_T > 1$, with $c_T = \sqrt{g\kappa T}$ and $T_{\text{top}} = 1$. It means that the parameters used in these radiative setups cannot be generalized to convective simulations as they imply supersonic flows and shocks.

To avoid such intricate shocks in the simulation, one should reduce the Mach number of the flow by both increasing the sound speed and decreasing the typical convective velocity. Increasing c_T is done simply doubling the value of the top temperature, that is, $T_{\text{top}} = 2$. As Schwarzschild’s criterion (6) imposes a large value of the bottom flux F_{bot}, we then decrease the convective velocity u_{conv} by increasing the top density to $\rho_{\text{top}} = 10^{-2}$, then a factor 4 compared to the one in the radiative case. We have also doubled the vertical extent of the layer to $L_x = 2$ in order to satisfy the timescale criterion (1) while ensuring that the convective zone is deep enough. Finally, concerning the horizontal extent L_y of the layer, the two following constraints remain to be taken into account:

1. If the aspect ratio L_x/L_y is too small, the convective motions are too much constrained. Indeed, it is well known that a minimum horizontal wavenumber k_x is needed to trigger the convective instability (e.g. Gough et al. 1976). As a consequence, dealing with small aspect ratio L_x/L_y can lead to a convective pattern too close to the Rayleigh-Bénard one, that is, some large periodic rolls along the horizontal direction. In order to get a small-scale and as realistic as possible convective pattern, one should therefore consider domains with large aspect ratios.

2. Nevertheless, dealing with a large aspect ratio has an important numerical cost. Indeed, with a sixth-order finite-difference code as the one we are using, the mesh Reynolds number $Re \sim u\delta x/\nu$ should not empirically be larger than ~ 5. It means that for a given viscosity ν and spatial resolution, the horizontal extent is anyway limited.

Within these limits, the aspect ratio is kept constant in every simulation discussed in this work, with $L_x/L_y = 4$ for $L_x = 2$ (thus $L_y = 8$).

Concerning the parameters of the conductivity profile, the central temperature T_{cent}, has been adjusted to satisfy the criterion given in Eq. (1), that is $\Psi = 1$ at the location of the hollow. As in Papers I and II, its relative amplitude λ_1 is kept constant with the same value, that is, $\lambda_1 = 0.7$. At last, the slope σ and the width ϵ of this profile are then set up to get as similar as possible profiles in the different DNS computed in this study.

Table 1 summarizes the properties of the main numerical simulations performed to study the convection-pulsation coupling. The two coloured DNS, the G8 and G88H8 ones, are highlighted because we will mainly focus on them in the following. The penultimate column of this table contains the value of the frequency ω_{g} of the fundamental unstable radial mode excited by κ-mechanism, that lies between 3 and 4 for every DNS computed in this study. The last column gives the value of the Rayleigh number that quantifies the strength of the convective motions and it is given by

$$Ra = \frac{L_x^4 F_{\text{com}}}{\gamma \kappa c_p} \left| \frac{dz}{dx} \right|,$$ \hspace{1cm} (8)

where L_x is the width of the convective zone, $\chi = K_0/\rho_c c_p$ the radiative diffusivity and s the entropy. Tab. 1 shows that Rayleigh’s numbers of the DNS presented in this paper are close to 10^6. This is well above the common critical values Ra_{c} of this number from which strong convection is known to develop, e.g. $Ra_{\text{c}} \sim 10^4$ for polytropic stratifications (Gough et al. 1976).

2.2. Dimensional values of the physical quantities

The numerical simulations computed in this work are performed in dimensionless units and can thus accommodate to a range of physical models. We can nevertheless redimension our units to determine if they are close enough to the realistic values of a typical Cepheid star. We assume that the top of our layer is located under the surface at a temperature of 12000 K, it thus leads to the temperature scale $[T] = 6000 K$. For the G8 simulation given in Tab. 1, we have approximately $T \in [21,31]$, meaning that our layer covers a temperature range from 12000 K to 78000 K, that well encompasses the second Helium ionisation zone. For a 5 M$_\odot$ Cepheid star with parameters close to the ones of δ-Cephei (i.e. $R \sim 40 R_\odot$, $L \sim 2000 L_\odot$ and $T_{\text{eff}} \sim 6000 K$), such a temperature range represents approximately 10% of the star radius, leading to a length scale $[z] = 1.9 \times 10^9$ m. The density that corresponds to the temperature of 12000 K is approximately 4×10^{-2} kg/m3, giving a density scale $[\rho] = 4 \times 10^{-3}$ kg/m3 for the G8 simulation. In such a star, one has $\rho_{\text{bot}}/\rho_{\text{top}} = 170$, while our model has a slightly smaller density contrast of about $\rho_{\text{bot}}/\rho_{\text{top}} \approx 140$.

The timescale that corresponds to the G8 simulation can then been computed with the scaling $d/\sqrt{\rho_0 T_{\text{top}}}$, leading to $[t] = 1.3 \times 10^5$ s. It means that a frequency $\omega_{\text{g}} \approx 3.85$ for the fundamental acoustic unstable mode corresponds in dimensional units to a mode period of 2.5 days. This value is of the same order than the period of δ-Cephei, that is 5.36 days.

1 The values have been taken in a 5 M$_\odot$ stellar model provided by the Helas network on http://www.astro.up.pt/helas/stars/.
The gravity $g = 8$ in our units then reads $g = 0.84 \text{ m/s}^2$. This value is very close to an estimate of the surface gravity $g = GM/R^2$, that leads to $g = 0.8 \text{ m/s}^2$ for δ-Cephei. Concerning the fluxes, $F_{\text{bot}} = 4.5 \times 10^{-2}$ then becomes $5.2 \times 10^{12} \text{ J/s/m}^2$. A good estimate of the real flux is obtained with $F = L/4\pi R^2$, leading for δ-Cephei to $7.7 \times 10^{12} \text{ J/s/m}^2$. Our simple model thus overestimates the heat flux but in a rather moderate way with respect to what is usually done in global DNS (e.g. Brandenburg et al. 2000). Such an accuracy in the heat flux is in fact inherent in the study of the κ-mechanism as the thermal timescale has to be close enough to the dynamical one to fulfill the criterion (1).

We can roughly estimate the kinematic viscosity of δ-Cephei with the following law $\nu \approx 1.2 \times 10^{-12} T^{3/2} / \rho \text{ m}^2/\text{s}$ (see Chapman 1954), that gives $\nu = 2.5 \times 10^{-3} \text{ m}^2/\text{s}$ in the layer we focus on. A value $\nu_{\text{DNS}} = 2.5 \times 10^{-5}$ in the DNS becomes $\nu_{\text{DNS}} = 6 \times 10^8 \text{ m}^2/\text{s}$. We thus overestimate the viscosity by a factor 10^{12}. Such an enormous value is a limitation of every DNS that cannot account for the small scale of convection because of the limited numerical resolution (e.g. Chan & Sofia 1986). As a consequence, the viscosity is overestimated and leads to significantly lower Rayleigh and Reynolds numbers than the real ones.

Table 2 sums up the differences between the stellar parameters of a Cepheid of 5 M_\odot with the dimensional units of our local DNS. We notice that the values of our parameters are self-consistent as we both recover temperature and density variations that are compatible with the real ones, while keeping oscillation period, flux and gravity close enough to their stellar counterparts.

2.3. Numerical methods

As in Papers I and II, the linear stability analysis of the initial setup (4) has been computed thanks to the LSB code (Linear Solver Builder, Valdettaro et al. 2007). This spectral solver, based on the iterative Arnoldi-Chebyshev algorithm (Arnoldi 1951), gives both the complex eigenvalues $\lambda = \tau + i\omega$ and corresponding eigenfunctions $\tilde{\psi}$ of a generalized eigenproblem of the form

$$A\tilde{\psi} = \lambda B\tilde{\psi},$$

where the sparse matrices A and B result from the projection of the differential operators on the Gauss-Lobatto grid. We especially focus on the acoustic modes that are found to be linearly excited by the κ-mechanism, that is those of which the real part of the eigenvalue is positive, $\tau > 0$. Furthermore, this linear stability analysis has been computed without the consideration of the convective flux perturbations. This approximation, called the frozen-in convection, means that only the radiative contribution of the total flux perturbation is allowed to change during the mode pulsation. We will see further that this approximation is well-suited in our case as the computed eigenfunctions overlap quite well with the vertical profiles extracted from the nonlinear simulation done with convection.

Concerning the DNS, we have used again the Pencil Code\footnote{See \url{http://www.nordita.org/software/pencil-code/} and Brandenburg & Dobler (2002).}. This non-conservative code is an high-order finite-difference code (sixth order in space and third order in time) that conserves the physical quantities up to the discretization errors of the scheme. On multiprocessor clusters, it takes advantage of the MPI libraries (Message Passing Interface) that allow to distribute the computing tasks on several processors having their own memory. This code is fully explicit, except for the radiative diffusion term that is solved implicitly thanks to an Alternate Direction Implicit scheme (hereafter ADI) of our own already discussed in Paper I. However, this new study has needed an improvement of this implicit solver as the convective motions that develop in our simulations require its parallelisation because of:

1. the weakness of the mode growth rates $\tau \sim 10^{-3}$ computed from the new setups that imposes to carry out the simulations until a much longer time than in the purely radiative case.
2. the convection itself that requires now a larger aspect ratio ensuring an efficient development of all additional spatial

DNS	Gravity g	Flux F_{bot}	Conductivity K_{max}	T_{bump}	Width ϵ	Slope σ	Viscosity ν	Frequency ω_{DNS}	Rayleigh
G8	8	4.5×10^{-2}	10^{-2}	6	1	1	2.5×10^{-4}	3.85	10^3
G8V5	8	4.5×10^{-2}	10^{-2}	6	1	1	5×10^{-4}	3.85	5×10^4
G8H95	8	4.5×10^{-2}	9.5×10^{-3}	6.5	1	1	5×10^{-4}	3.84	8×10^4
G8H9	8	4.5×10^{-2}	9×10^{-3}	7	1	1	5×10^{-4}	3.83	10^3
G8H8	8	4.5×10^{-2}	8×10^{-3}	7.5	1	1.1	5×10^{-4}	3.80	2×10^5
G7	7	4×10^{-2}	10^{-2}	5.5	1.5	0.8	2.5×10^{-4}	3.62	8×10^4
G6	6	4×10^{-2}	10^{-2}	5.7	1.5	0.8	5×10^{-4}	3.35	8×10^4
G6F7	6	3.7×10^{-2}	10^{-2}	5.5	1.5	0.8	3.5×10^{-4}	3.36	9×10^4
G6F7	4	3.7×10^{-2}	10^{-2}	5.5	1.5	0.8	4×10^{-4}	3.36	8×10^4
G6F5	6	3.5×10^{-2}	10^{-2}	5.5	1.5	0.8	3×10^{-4}	3.36	9×10^4
G6F5	4	3.5×10^{-2}	10^{-2}	5.5	1.5	0.8	4×10^{-4}	3.36	7×10^4

Fig. 2. Sketch of the parallelisation of the ADI scheme. a) the initial domain decomposition of the Pencil Code for a two-dimensional domain in the (x, z) plane. The coloured lines denote the data owned by the first processor (blue lines) and by the second one (green lines). b) the domain decomposition after the transposition needed to use the ADI solver.

Table 1. Parameters of the numerical simulations done in this work. The two colored bold-typed ones emphasised the two simulations discussed in the following. For all these simulations, we assume $T_{\text{top}} = 2, \rho_{\text{top}} = 10^{-2}, A = 0.7$ and $L_x/L_z = 4$.

displays a sketch explaining how the parallelisation of shows the re-
displays a snapshot of the modulus of the vorticity of the data based on huge communications between processors.
cal one) is more tricky to parallelise as it needs a transposition of our ADI solver (the horizontal one) well fits in this topology.
keep the original domain decomposition back. With this pow-
in the second direction, one transposes once again the data to
mented in the Pencil Code (see Fig.
With the parallel ADI solver for the radiative di-
Concerning the temperature, a perfect conductor at the bottom (i.e. flux imposed) and a perfect insulator at the top (i.e. temper-
ervation periods of the fundamental unstable acoustic mode.
oscillation periods of the fundamental unstable acoustic mode. As a consequence, no
oscillation periods of the fundamental unstable acoustic mode. It suggests a lower value of the Péclet number in

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Physical quantity & DNS dimensionless values & Scaling & DNS dimensional values & Stellar values \\
\hline
Length L & 2 & d & 1.9×10^{9} m & 1.9×10^{9} m \\
T_{top} & 2 & T_{top} & 12000 K & 12000 K \\
T_{bot} & 13 & T_{top} & 78000 K & 78000 K \\
ρ_{top} & 10^{-2} & ρ_{top} & 4×10^{-3} kg/m3 & 4×10^{-3} kg/m3 \\
ρ_{bot} & 1.4 & ρ_{top} & 5.7×10^{-3} kg/m3 & 7×10^{-3} kg/m3 \\
Oscillation period & 1.63 & $d/\sqrt{c_{f}T_{\text{top}}}$ & 2.52 days & 5.36 days \\
Gravity g & 8 & $c_{f}T_{\text{top}}/d$ & 0.84 m/s2 & 0.8 m/s2 \\
Flux & 4.5×10^{-2} & $\rho_{\text{top}}(c_{f}T_{\text{top}})^{1/2}$ & 5.2×10^{8} J/s/m2 & 7.7×10^{8} J/s/m2 \\
Viscosity ν & 2.5×10^{-4} & $d/\sqrt{c_{f}T_{\text{top}}}$ & 6×10^{8} m2/s & 2.5×10^{8} m2/s \\
\hline
\end{tabular}
\caption{Comparison between the main physical quantities given in both the dimensionless units of the DNS and the corresponding dimensional values, and their stellar counterparts for a 5 M$_{\odot}$ Cepheid.}
\end{table}

2.4. 2-D DNS of the κ-mechanism with convection

With the parallel ADI solver for the radiative diffusion implemented in the Pencil Code (see Fig. 2), we advance in time the following hydrodynamic equations:

\begin{align}
\frac{D \ln \rho}{Dt} &= - \text{div} \, u, \\
\frac{Du}{Dt} &= - \frac{1}{\rho} \nabla p + g + 2\nu(\nabla \cdot S + S \cdot \nabla \ln \rho), \\
\frac{DT}{Dt} &= \frac{1}{\rho \epsilon} \text{div} \, K \nabla T = (\gamma - 1) T \text{div} \, u + 2\rho \nu \nabla^2,
\end{align}

where ρ, u and T denote the density, velocity and temperature, respectively. The operator $D/Dt = \partial/\partial t + u \cdot \nabla$ is the usual total derivative, while S is the (traceless) rate-of-strain tensor given by

\begin{align}
S_{ij} &= \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \text{div} \, u \right).
\end{align}

Finally, we impose that all fields are periodic in the horizontal direction, while stress-free boundary conditions (i.e. $u_{z} = 0$ and $\partial u_{z}/\partial x_{z} = 0$) are assumed for the velocity in the vertical one. Concerning the temperature, a perfect conductor at the bottom (i.e. flux imposed) and a perfect insulator at the top (i.e. temperature imposed) are applied.

In order to ensure that both the nonlinear saturation and thermal relaxation are well achieved, the simulations were performed until very long times, typically $t \simeq 3000$. With the eigen-frequencies computed from the linear stability analysis, that is $\omega_{00} \simeq 3 - 4$ (see Tab. 1), this approximately corresponds to 1500 oscillation periods of the fundamental unstable acoustic mode.

Figure 3 displays a snapshot of the modulus of the vorticity field (i.e. $|\nabla \times u|$) at a given time for the two simulations emphasised in Tab. 1, the G8 (Fig. 3a) and G8H8 ones (Fig. 3b). The vorticity field highlights the convective motions that are, as expected by the sketch in Fig. 1, superimposed to the radiative conductivity hollow located approximately in the middle of the layer. Moreover, one notes that the typical size of the convective plumes differs in the two simulations as the eddies have a smaller scale in the G8 simulation than in the G8H8 one. Accordingly, the overshooting of convective elements into the bottom stably stratified layer is also more important in the G8H8 case than in the G8 one. It suggests a lower value of the Péclet number in that case as a faster thermalisation of the convective plumes at the interface between the convective/radiative regions is associated with a larger penetration extent (Dintrans 2009).

Beyond the qualitative differences seen in the vorticity field, a good way to compare the DNS is to study the temporal evolution of average quantities, such as the vertical mass flux (ρu_z), where the brackets (·) denote a global average. Indeed, as we are doing simulations where both convective motions and oscillations of acoustic modes are present, it is instructive to use a simple diagnostic that roughly separates their relative contributions. As the convective plumes have both ascending and descending movements, the average vertical mass flux removes quite well their contribution and one then gets a good tracer of the amplitude of the acoustic modes only. Figure 4 shows the resulting temporal evolution of $\langle \rho u_z \rangle$ for the G8 simulation (blue line) and the G8H8 one (green line). As displayed in the zoom in the bottom left corner, the time evolution shows an oscillating behaviour in both cases due to the radial oscillations of the fundamental (and unstable) acoustic mode excited by κ-mechanism. In the G8 simulation, the amplitude experiences first an exponential growth until reaching the nonlinear saturation regime for time $t \sim 1000$. One notes that the transient duration is well compatible with the growth rate of this mode that is about $\tau \sim 10^{-3}$. At first glance, the temporal evolution of $\langle \rho u_z \rangle$ in the G8 simulation is similar to what has been observed in the purely radiative simulations of Paper II, that is, a linear growth of the amplitude before a saturation on a finite value on a timescale $\sim 1/\tau$. On the contrary, the dynamics of the G8H8 simulation radically differs as the amplitude remains low compared to the radiative case and is highly modulated in time. As a consequence, no
clear nonlinear saturation is observed in this case and this kind of behaviour has not been found in the purely radiative models. It means that the acoustic oscillations are more influenced by convective motions in the G8H8 simulation than in the G8 one. To study further the physics involved in this coupling, we next perform a frequential analysis of these simulations.

3. Frequential analysis

3.1. Fourier decomposition

An efficient tool to determine the modes that are present in a numerical simulation consists in taking first a double Fourier transform in space and time of the vertical mass flux

\[\rho u_z(x, z, t) \implies \hat{\rho u_z}(k_x, z, \omega), \]

where \(k_x = (2\pi/L_x)\ell \) denotes the horizontal wavenumber, with \(\ell = [0, 1, 2, \ldots] \), while \(\omega \) is the frequency. Second, one plots the power spectrum of \(\hat{\rho u_z} \) in the plane \((z, \omega)\) for each value of \(\ell \) and “shark fin profiles” emerge about definite frequencies corresponding to eigenmodes (Dintrans & Brandenburg 2004). The last operation requires an integration over the vertical direction \(z \) to get the final mean spectra for each \(\ell \) of the initial field \(\rho u_z \).

Figure 5 displays the results of this Fourier analysis applied to the G8 simulation, with the power spectrum of \(\hat{\rho u_z} \) for the first three values of \(\ell \) on the left side, and the corresponding mean spectra on the right one. Many discrete peaks about given frequencies are clearly noticed in the radial plane \(\ell = 0 \) but also in the non-radial one \(\ell = 1 \), even the amplitudes are weaker by
One first recovers the signature of some acoustic mode in the \((z, \omega)\) plane, especially in the radial \(\ell = 0\) one where the fundamental mode is well visible around the frequency \(\omega_0 = 3.80\). But the disappearance of the harmonics whatever the value of \(\ell\) means that the corresponding amplitudes of eigenmodes are much lower than in the G8 case. And indeed, the amplitude of the fundamental mode in the Fourier space is weaker by an order of magnitude in the G8H8 simulation.

The differences in amplitude obtained previously in the time series in Fig. 4 are thus confirmed by the results obtained in this Fourier analysis: a high amplitude of the unstable acoustic mode, observed in the G8 simulation, goes with numerous harmonics and significant frequentional signatures, while a weaker amplitude of this mode, observed in the G8H8 simulation, is coupled with the disappearance of these harmonics.

3.2. Harmonic analysis

In order to visualize the structure of an eigenmode oscillating in a direct numerical simulation, hydrodynamists have developed a diagnostic tool called the “harmonic analysis”. This method has been for instance used to visualize internal wave attractors propagating in a non-separable container (e.g. Hazewinkel et al. 2008; Grisouard et al. 2008). The idea is to filter out the vertical velocity \(u_z\) at a given frequency \(\omega\) following the relation

\[
\hat{U}_\omega(x,z) = \frac{2}{T} \int_{t_1}^{t_2} u_z(x,z,t)e^{i(\omega t - z\omega)}dt,
\]

where \(t_2 = t_1 + nT\), with \(n\) an integer, and \(T = 2\pi/\omega\) is the period. The obtained 2-D (complex) field \(\hat{U}\) thus gives the pattern that evolves in time in the simulation like \(\cos\omega t\) or \(\sin\omega t\).

In Grisouard et al. (2008), the chosen frequency was imposed by a forcing term of the form \(\cos\omega_{\text{forc}}t\) such that internal waves propagating in their simulation were necessarily at this single frequency \(\omega_{\text{forc}}\) (or its harmonics \(2\omega_{\text{forc}}, 3\omega_{\text{forc}}, \ldots\)). In our case, the filtering frequency is of course given by the acoustic modes excited by \(x\)-mechanism and the resulting field \(\hat{U}_\omega(x,z)\) should correspond to the eigenvectors that are solutions of the linear eigenvalue problem (9). We apply this method to the two simulations G8 and G8H8 for a filtering frequency equal to the fundamental mode one, then \(\omega = 3.85\) and \(\omega = 3.80\) for the G8 and G8H8 simulation, respectively (see Tab. 1). The resulting modulus \(|\hat{U}_\omega(x,z)|\) is displayed in the figures 7 (G8) and 8 (G8H8).

For the G8 simulation, the two-dimensional field \(|\hat{U}_{\text{core}}|\) shows only variations in the vertical direction and has a quasi-periodic behaviour in the horizontal one (upper panel in Fig. 7). This well corresponds to the pattern that we are expecting for a radial acoustic mode. Moreover, the convective plumes appear merely as very faint hints under the form of several small wiggles. It means that the vertical motions at the frequency \(\omega_{\text{core}}\) are dominated by the acoustic radial mode. A definitive confirmation comes from the comparison between the theoretical eigenvector and the horizontal average of \(|\hat{U}_{\text{core}}|\) given by

\[
|\hat{U}_{\text{core}}(z)| = \frac{1}{L_z} \int_0^{L_z} |\hat{U}_{\text{core}}(x,z)|dx.
\]

The result is shown in the bottom panel in Fig. 7 (solid black line). This vertical profile is then compared to the eigenfunction \(u_z\) computed in the linear stability analysis (dashed blue line): the two lines overlap almost perfectly, meaning that the motions at the frequency \(\omega_{\text{core}}\) in the DNS have a vertical structure that corresponds to the unstable fundamental mode.

Fig. 6. Left : temporal power spectrum for the vertical mass flux \(\rho u_z\) in the \((z, \omega)\) plane for the G8H8 simulation. Right : the resulting spectrum after integrating over depth.
and the lower Fourier amplitude of the filtered velocity normalised vertical profile of the horizontal average of the bottom amplitude of the modulus of the filtered velocity (Fig. 7). The harmonic analysis developed in this section (Fourier decomposition in the plane (z, ω) and the harmonic filtering) confirms the discrepancies that were observed in the temporal evolutions of the mean vertical mass flux $\langle \rho u_z \rangle$ (Fig. 4): the acoustic oscillations are not influenced by convection in the G8 simulation, whereas the convective motions have a strong effect on the modes evolution in the G8H8 simulation. We will now investigate in more details this effect by the means of projections onto an acoustic subspace that give the temporal evolution of the kinetic energy embedded in the pulsations.

4. Energy of oscillations

4.1. The projection method

We have already used a projection method onto an acoustic subspace to determine the energy contained in the acoustic modes of radiative simulations (Paper II). This acoustic subspace was built from both normal and adjoint eigenmodes that were solutions of the linear equations for the perturbations. The need to consider the adjoint problem, and not only the regular one, was imposed by the non-hermiticity of the oscillations operator. The radiative diffusion was indeed so large at the surface of the equilibrium models that strong non-adiabatic effects made the regular eigenmodes non-orthogonal (see also Bogdan et al. 1993). However, in the current 2-D simulations with convection, the setup has significantly changed and the radiative diffusivity $\chi \propto 1/\rho$ is smaller than in the non-convective case (the top density has been multiplied by a factor 4 in the convection setup, see § 2.1). The corresponding non-adiabatic effects at the surface are then weaker and we use a simpler approach than the one in Paper II. This method, based on the adiabatic eigenvectors, has been validated in Dintrans & Brandenburg (2004) by measuring the wave field generated by the oscillations of an entropy bubble in an isothermal atmosphere.

To use this approximation, we must first ensure that the vertical velocity profiles in our 2-D DNS are sufficiently close to the adiabatic eigenfunctions of the linear problem for the perturbations. This is done in Fig. 9 where we compare the vertical profile obtained in the previous harmonic analysis of the G8 simulation, whereas the convective motions have a strong effect on the modes evolution in the G8H8 simulation. We will now investigate in more details this effect by the means of projections onto an acoustic subspace that give the temporal evolution of the kinetic energy embedded in the pulsations.

4. Energy of oscillations

4.1. The projection method

We have already used a projection method onto an acoustic subspace to determine the energy contained in the acoustic modes of radiative simulations (Paper II). This acoustic subspace was built from both normal and adjoint eigenmodes that were solutions of the linear equations for the perturbations. The need to consider the adjoint problem, and not only the regular one, was imposed by the non-hermiticity of the oscillations operator. The radiative diffusion was indeed so large at the surface of the equilibrium models that strong non-adiabatic effects made the regular eigenmodes non-orthogonal (see also Bogdan et al. 1993). However, in the current 2-D simulations with convection, the setup has significantly changed and the radiative diffusivity $\chi \propto 1/\rho$ is smaller than in the non-convective case (the top density has been multiplied by a factor 4 in the convection setup, see § 2.1). The corresponding non-adiabatic effects at the surface are then weaker and we use a simpler approach than the one in Paper II. This method, based on the adiabatic eigenvectors, has been validated in Dintrans & Brandenburg (2004) by measuring the wave field generated by the oscillations of an entropy bubble in an isothermal atmosphere.

To use this approximation, we must first ensure that the vertical velocity profiles in our 2-D DNS are sufficiently close to the adiabatic eigenfunctions of the linear problem for the perturbations. This is done in Fig. 9 where we compare the vertical profile obtained in the previous harmonic analysis of the G8 simulation, whereas the convective motions have a strong effect on the modes evolution in the G8H8 simulation. We will now investigate in more details this effect by the means of projections onto an acoustic subspace that give the temporal evolution of the kinetic energy embedded in the pulsations.
tion (the solid black line in the lower panel in Fig. 7 and then also in Fig. 9) to the adiabatic eigenfunction α_i (the dashed blue line in Fig. 9). The agreement between these two profiles is rather comfortable, indicating that we can shape our acoustic subspace from the adiabatic eigenvectors with a good confidence. This approach has the main advantage to simplify the computation of the kinetic energy contents as Lynden-Bell & Ostriker (1967) have demonstrated that adiabatic eigenvectors are mutually orthogonal for this particular scalar product

$$\langle \psi_1, \psi_2 \rangle = \int \psi'_1 \cdot \psi_{2\rho} d\zeta,$$

(14)

where the symbol \dagger denotes the Hermitian conjugate. The acoustic subspace is then given by the following relation

$$\hat{u}_i(z, t) = \sum_{n=0}^{\infty} c_{i\ell n}(t) \psi_{i\ell n}(z) \quad \text{with} \quad \langle \psi_{i\ell n'}, \psi_{i\ell n} \rangle = \delta_{\ell\ell'} \delta_{nn'}.$$

(15)

This defines the projection of the Fourier transform $\hat{u}_i(z, t)$ of the velocity onto the adiabatic eigenvector $\psi_{i\ell n}(z)$ of degree ℓ and radial order n. The complex and time-dependent coefficient $c_{i\ell n}(t)$ entering in this projection is computed from

$$c_{i\ell n}(t) = \langle \psi_{i\ell n}, \hat{u}_i \rangle = \int_0^{L_z} \rho_0 |\psi_{i\ell n}|^2 \hat{u}_i d\zeta.$$

(16)

As an example, when a given eigenmode (ℓ, n) is present in the simulation, this projection method leads to a projection coefficient that behaves as $c_{i\ell n}(t) \propto e^{\omega_{i\ell n} t}$, with $\omega_{i\ell n}$ the mode frequency.

4.2. The kinetic energy content

The Parseval equality written in the Fourier space reads

$$\int \rho_0 \dot{u}(x, y, z) dV = \int \rho_0 |\hat{u}(k)|^2 d^3 k,$$

(17)

where $\hat{u}(k)$ denotes the Fourier transform of space of u. In our case, we only perform a Fourier transform of the velocity field in the horizontal direction, therefore

$$E_{\text{kin}}^{\text{tot}} = \int_0^{L_x} \rho_0 \ddot{u}(x, y, z) dxdydz = \int_0^{L_x} \sum_{\ell=0}^{\infty} \rho_0 |\hat{u}_\ell(z)|^2 dz.$$

(18)

with still $k_x = (2\pi/L_x) \ell$. With Eqs. (15-18), this leads to

$$E_{\text{kin}}^{\text{tot}}(t) = \sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} |c_{i\ell n}(t)|^2.$$

(19)

This last equation means that the kinetic energy content of a single acoustic mode is simply equal to the square of its amplitude coefficient. In the 2-D simulations with convection, we have

$$E_{\text{kin}}^{\text{tot}}(t) = E_{\text{kin}}^{\text{modes}}(t) + E_{\text{kin}}^{\text{conv}}(t),$$

(20)

where $E_{\text{kin}}^{\text{modes}}$ and $E_{\text{kin}}^{\text{conv}}$ are the kinetic energy embedded in acoustic modes and convective motions, respectively. In our setup, the fundamental radial mode ($\ell = 0, n = 0$) is the only one that is excited by κ-mechanism therefore the acoustic energy is contained in low-degree and low-order modes (accordingly with the power spectra in Fig. 5). We can thus restrict the analysis to these modes only in the summations entering in Eq. (19), leading to

Figure 10 displays the temporal evolution of this ratio $R(t)$ for the two simulations G8 (solid blue line) and G8H8 (dashed green line) according to Eq. (22).

$$E_{\text{kin}}^{\text{tot}}(t) = \sum_{\ell=0}^{3} \sum_{n=0}^{5} |c_{i\ell n}(t)|^2 + E_{\text{kin}}^{\text{conv}}(t).$$

(21)

The ratio of the kinetic energy contained in acoustic modes can then be defined as

$$R(t) = \frac{\sum_{\ell=0}^{3} \sum_{n=0}^{5} |c_{i\ell n}(t)|^2}{E_{\text{kin}}^{\text{tot}}(t)},$$

(22)

On the contrary, the acoustic energy ratio remains very weak in the G8H8 simulation. Indeed, despite some transient increases during which non-trifling values $R \approx 10\%$ are obtained, the average ratio is $R \leq 1 - 5\%$ and convective motions are responsible for the bulk of the kinetic energy content. In this case, the radial oscillations excited by κ-mechanism are thus quenched by convective plumes. This situation is relevant to the red edge of the classical instability strip, where the unstable acoustic modes are supposed to be damped by the surface convective motions.

4.3. Mean-field analysis

Beyond the temporal evolution of the energy ratio displayed in Fig. 10, it is interesting to precisely locate the zones where kinetic energy is due to acoustic modes and convective motions, respectively. Towards this goal, a simple mean-field analysis is a
valuable tool to separate the mean-field component of the motion (the acoustic oscillations in our setup) from its fluctuating part (here the convective plumes). Such approach have been used for instance to check the mixing-length theory of convection thanks to velocity correlations (Chan & Sofia 1987).

In our simulations, we are interested in the mean-field velocity correlations that can account for the acoustic modes and the convective plumes. We first separate the vertical velocity field into a mean part and a fluctuating one

\[u_c = \langle u_c \rangle + u'_c, \]

where \(\langle \cdots \rangle \) is an horizontal average. We then square this expression and average along the horizontal direction to get

\[\langle u'_c \rangle^2 = \langle u_c \rangle^2 + \langle u'_c \rangle^2. \]

This equation is the mean square velocity that can be split between an acoustic contribution and a convective one, i.e. \(\langle u'_c \rangle^2 = \text{acoustic} + \text{convection} \). To separate these different contributions, we recall that \(\langle u_c \rangle \) is a good proxy to measure the acoustic oscillations, as the vertical convective motions almost vanish after their averaging in the horizontal direction (ascending and descending plumes are comparable). The acoustic contribution to Eq. (24) thus reads

\[\delta u'^2_{\text{acous}}(z) = \langle u'_c \rangle^2. \]

With Eq. (24), we then extract the contribution of the convective motions to the mean square velocity field as

\[\delta u'^2_{\text{conv}}(z) = \langle u'_c \rangle^2 = \langle u'_c \rangle^2 - \langle u'_c \rangle^2. \]

Fig. 11 displays the vertical profiles of \(\delta u'^2_{\text{acous}} \) and \(\delta u'^2_{\text{conv}} \) for the simulations G8 (blue lines) and G8H8 (green lines). In both simulations, one notes that the maximum of the convective contribution (dashed lines) is approximately located at the layer middle, corresponding to the radiative conductivity profile displayed in Fig. 1, while the acoustic part (solid lines) reaches its maximum close to the surface because of the eigenvector shape.

However, the acoustic contribution to the velocity correlation for the G8 simulation is larger than the convective one and a profile similar to the velocity eigenfunction is obtained (see Fig. 9 for instance). On the contrary, for the G8H8 simulation, this acoustic part \(\delta u'^2_{\text{acous}} \) is much more weaker than the one due to convective motions.

These trends can easily be linked to what was obtained previously with the projection formalism (see Fig. 10). Indeed, the vertical profiles in Fig. 11 can be integrated to get a ratio between the acoustic oscillations and the (total) mean square velocity \(\langle u'_c \rangle^2 \) as

\[R_{\text{lim}} = \frac{\int_0^{L_z} \delta u'^2_{\text{acous}} \, dz}{\int_0^{L_z} \langle u'_c \rangle^2 \, dz}. \]

This last equation, derived from a mean-field analysis, contains the same physical information than in Eq. (22) as the obtained ratio is very close to the one computed with the projection method in the saturated regime (Fig. 10): \(R_{\text{lim}} \approx 75\% \) for the G8 simulation and \(R_{\text{lim}} \approx 3\% \) for the G8H8 one. The second-order correlations \(\delta u'^2_{\text{acous}} \) and \(\delta u'^2_{\text{conv}} \) are thus also a good tool to separate and locate the different contributions to the flow velocity.

The amount of energy contained in convective motions and in oscillations has been studied thanks to both the projection formalism already used in purely radiative simulations, and the second-order correlations of velocity. One recovers the main physics underlined in the frequential analysis, that is, in the G8 simulation the mode amplitude is strong and the oscillations clearly dominate the motions in the flow, in opposition to the G8H8 simulation in which convection is dominant.

5. The mode quenching

We are now going to focus on the physical process that lead to the different behaviours obtained in our different DNS. In fact, as presented in Tab. 1, the main physical parameters of these simulations are very close: for instance, concerning the G8 and G8H8 simulation, there is mainly a 20% variation of the mean radiative conductivity \(k_{\text{max}} \). Some of the parameters of the conductivity hollow (e.g. \(T_{\text{bump}} \) and \(\sigma \)) also differ as they have been adjusted to satisfy the criterion given in Eq. (1) in each DNS. We can classify the simulations given in Tab. 1 in three different categories:

- First, the simulations similar to the G8 one, in which the amplitude of the unstable acoustic mode is important (\(R \gtrsim 70\% \)) and that doesn’t seem much affected by convection. This case concerns the simulation G7 of Tab. 1.
- The second category, similar to G8H8, contains the DNS, in which the amplitude of the acoustic mode is very weak (\(R \lesssim 10\% \)). In this case, the oscillations are quenched by convective plumes that dominate the flow. This case concerns also the G6 and G6F7 simulations of Tab. 1.
- At last, there are intermediate simulations, in which the amplitudes of oscillations and convection are comparable (\(R \approx 30 \sim 50\% \)). These simulations also show important temporal modulation of the amplitude of oscillations: i.e. the standard deviation of the ratio of energy is larger than in previous categories. It mainly concerns the simulations G8H9 and G6F5 of Tab. 1.
A first attempt in explaining these differences in the amount of heat transported by turbulent transport of enthalpy usually defined as the convective flux (e.g. Hurlburt et al. 1984), while the second one corresponds to enthalpy transported by the acoustic modes. This second contribution is usually negligible in simulations of compressible convection because of the weakness of modes that are driven by turbulent fluctuations in pressure (Bogdan et al. 1993). In our case, the modes can efficiently be excited through the κ-mechanism and their contribution to the heat transport should be taken into account. In order to determine the net contribution of the acoustic modes to the total flux, we thus separate the usual turbulent enthalpy flux due to the convective plumes (hereafter denoted \(F_{\text{conv}} \)) from the enthalpy transport due to modes (hereafter \(F_{\text{mod}} \)). By taking the average in time of Eqs. (28) and using Eq. (32), one finally gets

\[
\begin{align*}
F_{\text{conv}}(z) &= -\langle K(T)\nabla T \rangle, \\
F_{\text{mod}}(z) &= c_p \langle \rho u_c T' \rangle, \\
F_{\text{kin}}(z) &= \frac{1}{2} \langle (u_c^2 + u''^2) \rangle \rho u_c, \\
F_{\text{rad}}(z) &= c_p \langle \rho u_c \rangle \theta.
\end{align*}
\]

The vertical profiles of these fluxes (normalised to the imposed bottom value \(F_{\text{hot}} \)) are given in Fig. 12 for the G8 (upper panel) and G8H8 (lower panel) simulations. For both DNS, the bulk of the total flux is transported by the radiative flux, except in the convective zone where \(F_{\text{conv}} \) reaches 15% of the total flux for the G8 simulation and 40% for the G8H8 one. We also notice a larger overshooting in the second DNS, as the downdrafts penetrating in the radiative zone are stronger (see Fig. 3). As expected, this significant penetration is associated with both a negative convective flux and a small value of the kinetic flux (~ 5%). The convective fluxes in our DNS are nevertheless relatively weak compared to what is expected to occur in Cepheid stars (see e.g. Yecko et al. 1998). These limited values are a direct issue of the rather moderate Rayleigh number numerically affordable in such kind of DNS.

Concerning \(F_{\text{mod}} \), one notes that it is hardly as important as the convective flux in the G8 simulation, while it is almost vanishing in the G8H8 one. In the G8 simulation where the amplitude of the unstable acoustic mode is the largest, about 10% of the heat flux is carried out by acoustic modes. This quantity is thus another good tracer of the significance of the amplitude of the acoustic modes compared to the convective motions, as \(F_{\text{mod}} \) becomes significant when the amplitude of the acoustic oscillations is strong enough.

The differences in the amount of heat transported by turbulent convection may be a first hint on the physical origin of the mode quenching observed in our DNS. To confirm this hypothesis, we have thus gathered the values of the maximum of the normalised convective flux for all the DNS in Tab. 1. Figure 13 displays the amount of energy contained in acoustic modes with respect to these maximum values. For moderate to stronger convective fluxes, we recover a significant relation between the fraction of \(F_{\text{conv}} \) and the efficiency of the κ-mechanism, that is, the energy ratios in acoustic modes become smaller with increasing convective fluxes. But this correlation disappears in the region of smaller convective fluxes with \(F_{\text{conv}} \lesssim 20\% \). Indeed, one observes here that the efficiency of the κ-mechanism is independent of the value of the convective flux as the modes may be either quenched or excited for similar values of \(F_{\text{conv}} \).

Fig. 12. Mean vertical profiles of radiative \(F_{\text{rad}} \) (solid blue line), turbulent enthalpy \(F_{\text{conv}} \) (dashed green line), kinetic \(F_{\text{kin}} \) (dotted black line), modes \(F_{\text{mod}} \) (dot-dashed magenta line) and total \(F_{\text{tot}} \) (dotted red line) fluxes for the G8 (a) and G8H8 (b) simulations. All fluxes have been normalised with respect to the bottom value \(F_{\text{hot}} \).

5.1. The role of the convective flux

A first attempt in explaining these different physical behaviours is to compare the heat transport between the various DNS that are summarised in Tab. 1. Especially, the study of the respective amount of heat carried out by convection and radiation may lead to a natural explanation to the mode quenching observed in the G8H8 simulation as, from an intuitive point of view, the higher the convective flux the stronger the quenching.

The vertical heat transport is ensured by the radiative \(F_{\text{rad}} \), enthalpy \(F_{\text{ent}} \) and kinetic \(F_{\text{kin}} \) fluxes given by (e.g. Hurlburt et al. 1984)

\[
\begin{align*}
F_{\text{rad}}(z, t) &= -\langle K(T)\nabla T \rangle, \\
F_{\text{ent}}(z, t) &= c_p \langle \rho u_c T' \rangle, \\
F_{\text{kin}}(z, t) &= \frac{1}{2} \langle (u_c^2 + u''^2) \rangle \rho u_c,
\end{align*}
\]

where the brackets denote an horizontal average. The enthalpy flux \(F_{\text{ent}} \) can be developed in mean and fluctuating components from the following decomposition for the total temperature \(T \)

\[
T(x, z, t) = \langle T \rangle(z, t) + T'(x, z, t),
\]

where \(\langle T \rangle \) is the hydrostatic background temperature profile, \(\theta \) is the temperature eigenfunction of the unstable acoustic mode and \(T' \) is the turbulent fluctuating temperature around the horizontal average \(\langle T \rangle \). The enthalpy flux then reads

\[
F_{\text{ent}}(z, t) = c_p \langle \rho u_c T' \rangle + c_p \langle \rho u_c \rangle (T_{\text{HS}} + \theta).
\]

We now average in time this last expression over a multiple of the mode period to get

\[
\overline{F_{\text{ent}}}(z) = \overline{F_{\text{ent}}(z, t)} = \overline{c_p \langle \rho u_c T' \rangle} + c_p \overline{\langle \rho u_c \rangle} \theta + c_p T_{\text{HS}} \overline{\langle \rho u_c \rangle}.
\]

Finally, as there is no average mass flux over an oscillation period (i.e. \(\langle \rho u_c \rangle = 0 \)), the enthalpy flux carried by both the convection and acoustic oscillations is given by

\[
F_{\text{ent}}(z) = c_p \overline{\langle \rho u_c T' \rangle} + c_p \overline{\langle \rho u_c \rangle} \theta + c_p T_{\text{HS}} \overline{\langle \rho u_c \rangle}.
\]

The first term of the right hand side denotes the turbulent transport of enthalpy usually defined as the convective flux (e.g. Hurlburt et al. 1984), while the second one corresponds to enthalpy transported by the acoustic modes. This second contribution is usually negligible in simulations of compressible convection because of the weakness of modes that are driven by turbulent fluctuations in pressure (Bogdan et al. 1993). In our case, the modes can efficiently be excited through the κ-mechanism and their contribution to the heat transport should be taken into account. In order to determine the net contribution of the acoustic modes to the total flux, we thus separate the usual turbulent enthalpy part due to the convective plumes (hereafter denoted \(F_{\text{conv}} \)) from the enthalpy transport due to modes (hereafter \(F_{\text{mod}} \)). By taking the average in time of Eqs. (28) and using Eq. (32), one finally gets

\[
\begin{align*}
F_{\text{conv}}(z) &= -\langle K(T)\nabla T \rangle, \\
F_{\text{mod}}(z) &= c_p \langle \rho u_c T' \rangle, \\
F_{\text{rad}}(z) &= \frac{1}{2} \langle (u_c^2 + u''^2) \rangle \rho u_c,
\end{align*}
\]

 especialmente weak compared to what is expected to occur in Cepheid stars (see e.g. Yecko et al. 1998). These limited values are a direct issue of the rather moderate Rayleigh number numerically affordable in such kind of DNS.

Concerning \(F_{\text{mod}} \), one notes that it is hardly as important as the convective flux in the G8 simulation, while it is almost vanishing in the G8H8 one. In the G8 simulation where the amplitude of the unstable acoustic mode is the largest, about 10% of the heat flux is carried out by acoustic modes. This quantity is thus another good tracer of the significance of the amplitude of the acoustic modes compared to the convective motions, as \(F_{\text{mod}} \) becomes significant when the amplitude of the acoustic oscillations is strong enough.

The differences in the amount of heat transported by turbulent convection may be a first hint on the physical origin of the mode quenching observed in our DNS. To confirm this hypothesis, we have thus gathered the values of the maximum of the normalised convective flux for all the DNS in Tab. 1. Figure 13 displays the amount of energy contained in acoustic modes with respect to these maximum values. For moderate to stronger convective fluxes, we recover a significant relation between the fraction of \(F_{\text{conv}} \) and the efficiency of the κ-mechanism, that is, the energy ratios in acoustic modes become smaller with increasing convective fluxes. But this correlation disappears in the region of smaller convective fluxes with \(F_{\text{conv}} \lesssim 20\% \). Indeed, one observes here that the efficiency of the κ-mechanism is independent of the value of the convective flux as the modes may be either quenched or excited for similar values of \(F_{\text{conv}} \).

T. Gastine and B. Dintrans: Convective quenching of stellar pulsations 11
thus emphasises that the physical origin of the mode quenching does not solely rely on the amount of the convective flux, as the acoustic oscillations are also damped in DNS where the convective transport is inefficient. This result indicates that other underlying physical processes are involved in this mode quenching.

5.2. The role of the stratification

The differences between the physical parameters of the DNS given in Table 1 seem at a first look negligible. However the variations of gravity g, flux F_{bot} and radiative conductivity K_{max} lead to significantly modified equilibrium fields, especially concerning the density profile. The mean vertical profile of density is close to the hydrostatic equilibrium, that reads

$$\frac{d \ln \rho}{dz} \approx \frac{1}{T} \left(\frac{F_{\text{bot}}}{K(T)} - \frac{g}{R_*^2} \right).$$

where the radiative conductivity $K(T)$ is given by Eq. (2). Increasing $\beta = F_{\text{bot}}/K_{\text{max}}$, or decreasing the gravity g then leads to a weaker derivative of the density. Fig. 14 displays the mean vertical density profile for the simulations G8 (solid blue line) and G8H8 (dashed green line). It shows that a 20% change of the radiative conductivity leads to significantly different density values, especially at the bottom of the layer where one notes a factor of two between the simulations.

To compare the differences in the density stratification between the simulations of Tab. 1, we may use an analytical approximation of the density scale $H_p \equiv -(d \ln \rho/dz)^{-1}$ at the layer middle. Starting from Eq. (34), one can approximate the temperature profile by

$$\frac{dT}{dz} = -\frac{F_{\text{bot}}}{K(T)} \quad \Rightarrow \quad T(z) \approx -\beta(z - L_c) + T_{\text{top}},$$

where we suppose that the mean temperature profile is linear, that is the conductivity profile is neglected and assumed to be $K(T) \approx K_{\text{max}}$. The hydrostatic equilibrium then reads

$$\frac{d \ln \rho}{dz} \approx -\beta \frac{1}{T_{\text{top}}} (\beta - \frac{g}{R_*^2}).$$

We can then approximate the density scale H_p at the layer middle by

$$H_{p,{\text{middle}}} \approx \frac{\beta L_c}{2} + \frac{T_{\text{top}}}{\beta - \frac{g}{R_*^2}}.$$

This approximation allows us to compare the different simulations of Tab. 1. The results given in Tab. 3 emphasises a correlation between the density profile and the ratio of energy contained in acoustic modes. On the contrary acoustic modes are quenched by convective motions if the value of H_p increases (simulations G8H8 or G6 for instance). We can also extract the real values of H_p directly from the DNS field in order to check that the results obtained in Tab. 3 are confirmed without the constant radiative conductivity profile approximation done in Eq. (37). Fig. 15 displays the ratio $R(t)$ as a function of the mean density scale $(H_p(t))$ for the different DNS. Blue dots corresponds to $R(t)$ (temporal average) and vertical bars to the standard deviation of $R(t)$. We recover the correlation between the value of the density scale and the significance
of pulsations compared to the convective motions. What’s more, Fig. 15 emphasises the three different behaviours presented before, as one gets the two extrema (high amplitude of modes or mode-quenching by convection) but also “mixed”-simulations with $R \approx 30 - 50\%$ and very large standard deviations meaning that an important modulation of pulsations occurs.

5.3. Spectrum and integral scale

Fig 15 seems to indicate that the density stratification plays an important role on the stabilisation of acoustic modes excited by κ-mechanism. According to the mixing length theory (Vitense 1953; Böhm-Vitense 1958), more important values of $H\rho$ means that the typical size of convective eddies increases. This assumption is besides displayed on Fig. 3, where the differences between the size of the vortices in the G8 and G8H8 simulations are noticeable. To determine the role played by the different scales of the flow onto the pulsations, we now focus on the power spectra of the different DNS.

The power spectrum is obtained with a Fourier transform of the kinetic energy along the horizontal direction:

$$E(k, z) = \int_0^{L_x} \rho (u_x^2 + u_z^2) e^{-ikx} dx.$$ \hfill (38)

The normalised power spectrum at the middle of the convective layer ($z \approx 1.2$) is then displayed on Fig. 16 for the two simulations G8 and G8H8. One notes that the solid blue line, corresponding to G8, reaches its maximum to an higher value of k_x than the dashed green line (G8H8). The energy spectrum is thus shifted to smaller scale in the G8 simulation than in the G8H8, in which the kinetic energy is stored in larger scales. It corresponds to what is observed on the vorticity fields of Fig. 3, where the convective eddies are larger in the G8H8 simulation than in the G8 one.

We can also mention that we recover in the kinetic energy spectra a scaling law $E(k) \sim k^{-3}$. This result corresponds to the standard dimensional analysis of the enstrophy cascade in two-dimensional turbulence (e.g. Lesieur 1997).

From Eq. (38), we can determine the integral scale, that is the scale associated with the most energetic structures of the flow.

$$\ell_{int}(z) = \frac{\int_0^{\infty} E(k, z) k^{-1} dk}{\int_0^{\infty} E(k, z) dk}. \quad (39)$$

Once again, we compute the integral scale at the middle of the convective zone for the different DNS of Tab. 1. Fig. 17 displays the value of ℓ_{int} with respect to the integral scale ℓ_{int}. The vertical gray bars emphasize the standard deviation of ℓ_{int}. Fig. 17 illustrates the same trend as in Fig. 15: the larger the integral scale, the smaller the energy ratio. The integral scale is in fact another way to get the information obtained with the $H\rho$.
length scale, but relies on the properties of the turbulence of the flow.

The comparison of these length scales in our DNS is a first hint on the physics responsible for the mode quenching. In the light of Figs. 15-17, the density stratification seems to have an important impact on how the oscillations develop in the presence of convection. With the increase of the size of the eddies (increase of ℓ_{edd}), the acoustic part in the energy budget is gradually vanishing.

We may explain this mode quenching by the spatial distribution of the convective plumes: large eddies entail an important “screening effect” onto the acoustic radial mode. One can imagine that the amplitude of such mode is affected by the motions that are not coherent to its vertical structure: in this case large eddies with significant amount of energy distributed both in radial and non-radial motions is incoherent with the “main” velocity field due to the radial purely pulsations. In the less stratified simulations, such as G8H8, the convective plumes are large enough and present an important horizontal filling-factor that leads to a velocity field incompatible with the acoustic mode structure.

Such screening effect, or such spatial distribution of the convective plumes, have been already found to be responsible of the modulation and quenching of gravity modes in DNS of the penetrative convection (Dintrans et al. 2005). In our DNS, where oscillations are sustained by a physical process acting continuously, the amplitude of pulsations (and their nonlinear saturation) may thus be ruled by the extent of the screening of large vortices onto the purely radial velocity field.

6. Conclusion

In this paper, we have investigated the convection-pulsation coupling thanks to nonlinear two-dimensional direct numerical simulations (DNS). Despite their intrinsic limitations (weak pressure contrasts across the computational domain or the need of large viscosities leading to unrealistic values of Rayleigh’s number, see e.g. Brandenburg et al. 2000), DNS are without a doubt an important way to address this interaction as they fully account for the nonlinearity.

This study follows our former work on the κ-mechanism in purely radiative simulations, where we studied both the instability and its nonlinear saturation (Gastine & Dintrans 2008a, b, Papers I and II, respectively). We have then again modelled the ionisation region responsible for the oscillations of classical Cepheids by a hollow in the radiative conductivity profile and local simulations of a perfect gas layer centered around this ionisation bump have been performed. The initial physical setup has been however slightly modified to get a convective zone superimposed with the hollow in radiative conductivity. Furthermore, some important numerical improvements have been developed (mostly the parallelisation of the ADI solver) as the taking into account of strong convective motions coupled with acoustic oscillations requires larger spatial resolutions than the ones used in the purely radiative case.

Using this parallel solver, we have performed 2-D DNS of the convection-pulsation coupling in which the oscillations are sustained by a continuous physical process based on the κ-mechanism. Convective motions that develop in these simulations lead to various impacts onto the acoustic modes:

- In a first set of DNS, the instability behaves in a similar way than observed in purely radiative simulations: there is a linear growth and a nonlinear saturation of the acoustic oscillations. The bulk of kinetic energy is embedded in acoustic motions, while convection participates up to 20% to the energy budget. However, on the contrary to what was observed in Paper II, the nonlinear saturation does not involve any resonance between modes. The frequential analysis emphasises numerous harmonics of the fundamental acoustic mode that are probably indicative of a mono-mode saturation. In this case, the convection does not affect much the oscillations.

- In a second category of DNS, the convective motions have a stronger influence onto the acoustic oscillations. There is no clear nonlinear saturation of the κ-instability while the amplitudes of acoustic modes remain very weak. Moreover, the kinetic energy is almost entirely due to the downward-directed convective eddies. The vanishing of harmonics in the frequential analysis is a further evidence of the weakness of the mode amplitudes. In this case, convective plumes are quenching the oscillations and this physical phenomenon looks like to what is expected to occur in the coldest Cepheids close to the red edge of the instability strip. In these stars, the large surface convective zone is indeed suspected to stabilise the global radial oscillations.

The various behaviours obtained in these local simulations of the κ-mechanism with convection have been further studied in the last part of this paper, where we have given some hints to explain the physical conditions that lead to the mode quenching. Both the influence of the amount of heat carried by convection and the density contrast across the layer have been investigated. We have first shown that even in the inefficient regime where convection only carries 10 – 15% of the total heat flux, the convective plumes may cancel the radial oscillations, indicating that the strength of convection is not the only parameter that explains the mode quenching. The density contrast seems on the contrary to play an important role on the dynamics of acoustic modes. In fact, weaker stratifications (that is, higher values of the density scale H_ρ) correspond to bigger vortices. It means that the scale of the more powerful structure in the flow is larger when the stratification is weaker. In the less stratified simulations, where the acoustic modes appear to be strongly quenched by convection, the size of convective plumes is indeed larger and that leads to an important horizontal filling-factor. In our DNS, the amplitude of radial pulsations (and their nonlinear saturation) may thus be governed by the screening effect of large convective vortices.

The 2-D DNS of the κ-mechanism with convection presented in this paper are a first step in our study of the convection-pulsation coupling occurring in the coldest Cepheid stars with an outer convective zone. They are based on a simplified physical model that keeps the main physics responsible for the excitation of acoustic modes by the κ-mechanism. The opacity bump is for instance modelled by a hollow in the radiative conductivity profile whom the shape is adjusted to get unstable acoustic modes superimposed with convection. One of the main prospects of this pioneering work is to improve this model toward more realistic stellar conditions (e.g. inputs from tabulated opacities or coding of a free-surface boundary condition for the velocity). Such developments are however challenging as they will require huge numerical improvements in the Pencil Code.

Another interesting prospect is the comparison between our 2-D DNS and the prescriptions of different time-dependent convection (TDC) models (e.g. Stellingwerf 1982; Kuhfuß 1986; Yecko et al. 1998). In fact, even if our simplified model of the κ-mechanism is far from the realistic stellar parameters, it could be interesting to compare in our simulations the temporal evolution of the convective and kinetic fluxes modulated by acoustic oscillations with their TDC counterparts. We will check the validity.
of such approaches and give some constraints on the multiple dimensionless α coefficients involved in these 1-D models.

Acknowledgements. This work was granted access to the HPC resources of CALMIP under the allocation 2010-P1021. It is also a pleasure to thank Jérôme Ballot for his fruitful help on hydrostatic stellar models.

References
Arnoldi, W. E. 1951, QApMa, 9, 17
Baker, N. & Kippenhahn, R. 1965, ApJ, 142, 868
Bogdan, T. J., Cattaneo, F., & Malagoli, A. 1993, ApJL, 407, 316
Böhm-Vitense, E. 1958, Zeitschrift für Astrophysik, 46, 108
Bono, G., Marconi, M., & Stellingwerf, R. F. 1999, ApJS, 122, 167
Brandenburg, A. & Dobler, W. 2002, CoPhC, 147, 471, [arXiv:astro-ph/0111569]
Brandenburg, A., Nordlund, Å., & Stein, R. F. 2000, Geophysical & Astrophysical Convection, ed. P. A. Fox & R. M. Kerr (New York: Gordon and Breach Science Publishers)
Buchler, J. R. 2009, in American Institute of Physics Conference Series, Vol. 1170, American Institute of Physics Conference Series, ed. J. A. Guzik & P. A. Bradley, 51–58
Buchler, J. R. & Goupil, M.-J. 1984, ApJ, 279, 394
Buchler, J. R. & Kovács, G. 1986, ApJ, 303, 749
Chan, K. L. & Sofia, S. 1986, ApJ, 307, 222
Chan, K. L. & Sofia, S. 1987, Science, 235, 465
Chapman, S. 1954, ApJ, 120, 151
Cox, J. P. 1980, Theory of stellar pulsation, ed. Cox, J. P.
Dintrans, B. 2009, CoAs, 158, 45, [arXiv:astro-ph/1001.0843]
Dintrans, B. & Brandenburg, A. 2004, A&A, 421, 775, [arXiv:astro-ph/0311994]
Dintrans, B., Brandenburg, A., Nordlund, Å., & Stein, R. F. 2005, A&A, 438, 365, [arXiv:astro-ph/0502138]
Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, A&A, 435, 927
Gastine, T. & Dintrans, B. 2008a, A&A, 484, 29, [arXiv:astro-ph/0711.1276], Paper I
Gastine, T. & Dintrans, B. 2008b, A&A, 490, 743, [arXiv:astro-ph/0804.0145], Paper II
Gautschy, A. & Saio, H. 1996, ARA&A, 34, 551
Gough, D. O. 1977, ApJ, 214, 196
Gough, D. O., Moore, D. R., Spiegel, E. A., & Weiss, N. O. 1976, ApJ, 206, 536
Grigahcène, A., Dupret, M.-A., Gabriel, M., Garrido, R., & Scuflaire, R. 2005, A&A, 434, 1055
Grigouard, N., Staquet, C., & Piaud, I. 2008, Journal of Fluid Mechanics, 614, 1
Hazewinkel, J., van Breevoort, P., Dalziel, S. B., & Maas, L. R. M. 2008, Journal of Fluid Mechanics, 598, 373
Hurlburt, N. E., Toomre, J., & Massaguer, J. M. 1984, ApJ, 282, 557
Klapp, J., Goupil, M. J., & Buchler, J. R. 1985, ApJ, 296, 514
Kolláth, Z., Buchler, J. R., Szabó, R., & Csürby, Z. 2002, A&A, 385, 932, [arXiv:astro-ph/0110075]
Krogdahl, W. S. 1955, ApJ, 122, 43
Kuhfuß, R. 1986, A&A, 160, 116
Lesieur, M. 1997, Turbulence in Fluids (Dordrecht, Boston, London: Kluwer Academic Publishers)
Lynden-Bell, D. & Ostriker, J. P. 1967, MNRRAS, 136, 293
Muthsam, H. J., Kupka, F., Mundprecht, E., et al. 2010, ArXiv e-prints
Simon, N. R. & Schmidt, E. G. 1976, ApJ, 205, 162
Stellingwerf, R. F. 1982, ApJ, 262, 330
Takeuti, M. & Aikawa, T. 1981, Sci. Rep. Tohoku Univ. Eighth Ser. 2, 106
Unno, W. 1967, PASJ., 19, 140
Valdettaro, L., Reutord, M., Braconnier, T., & Fraysse, V. 2007, JCoAM, 205, 382, [arXiv:physics/06064219]
Vitense, E. 1953, Zeitschrift für Astrophysik, 32, 135
Wuchterl, G. & Fuchsinger, M. U. 1998, A&A, 340, 419
Xiong, D. 1989, A&A, 209, 126
Yecko, P. A., Kolláth, Z., & Buchler, J. R. 1998, A&A, 336, 553, [arXiv:astro-ph/9804124]
Zhevakin, S. A. 1963, ARA&A, 1, 367