A Compact Quick-Start Sub-mW Pulse-Width-Controlled PLL with Automated Layout Synthesis using a Place-and-Route Tool

Wang Jing¹, Tetsuya Iizuka¹, ², Zule Xu², and Toru Nakura³

Abstract This paper demonstrates the design flow of a quick-start pulse-width-controlled PLL with automated layout synthesis using a place-and-route tool. The quick-start PWPLL converts the internal state into an analog-digital mixed signal called soft-thermometer-code (STC) and stores them into memory before PWPLL is turned off in order to enhance the start-up in the next turn-on. Our chip fabricated with TSMC 65nm shows 220ns settling time (13 reference clock cycles), 858μW power consumption under 1V nominal supply voltage with 59μm × 58μm silicon area. The measurement results demonstrate that the design-automated PLL realizes the FoM of -221.7dB, which is roughly the same value as that of the manually-designed one with the same target specification.

key words: Phase locked loop, pulse-width-controlled PLL, quick start, layout automation, place and route

Classification: Integrated circuits (Analog)

1. Introduction

Phase Locked Loop (PLL) has been one of the critical building blocks in modern communication systems, which synchronizes an output signal with a reference signal in frequency as well as in phase. PLL is also widely used in the field of power systems and power electronics, e.g. custom power controllers, flexible AC transmission systems, motor control, grid synchronization and uninterruptible power systems [1–7]. PLL can provide instantaneous detection and accurately track the voltage phase, which is vitally important in power systems. It is also used in a variety of signal estimation applications such as peak, frequency, phasor, harmonics, intermodulations, active and reactive power, sequence components, interference and transients [8–12].

A pulse width controlled PLL (PWPLL) works in the time domain and it is composed of mostly digital circuits [11]. The PWPLL is superior to other PLL structures in many aspects, such as its area efficiency and friendliness to the lowered power supply voltage, and is especially suitable for standard-cell-based design that enables automatic layout generation using a place-and-route (P&R) tool [13]. This is actually a good property of the PWPLL because analog circuit building blocks, which are typically designed manually, often request much more design burden. For a typical analog component, its layout has to be manually re-designed every time the specification changes even slightly. Recently, synthesizable or automated designs of analog building blocks have been widely studied in order to relax the burden of manual analog designs [14–23]. In addition, in some applications such as IoT (Internet of Things) [24], these devices are typically highly duty-cycled, hence sleep and startup power consumption often dominates the total power budget. Thus quick-start and low power consumption [25] of the PLL are crucial issues.

In this research, therefore, we aim to achieve automated layout synthesis of quick-start PWPLL and to implement quick start PWPLL with P&R tool in order to relax its design burden.

2. Quick-Start PWPLL

As shown in Fig. 1, the PWPLL mainly consists of three parts, a PFD (Phase Frequency Detector), a PWCO (Pulse Width Controlled Oscillator) and a divider [11]. At every reference cycle, phase difference is translated by the PFD into a pulse, and the pulse width is converted by the TSTC (Time to Soft Thermometer code Converter) to tune the frequency of the R.Osc (Ring Oscillator). The STC (Soft Thermometer Code) is an N-bit thermometer code but its 1-bit is an analog value in between logic 0 and 1. The position of this analog bit depends on the locked frequency and phase.

Fig. 1: Block diagram of the quick start PWPLL.
A quick start method was originally proposed in [26]. The principle of the quick start function is briefly explained as follows: the internal state of the locked condition is digitized and stored before the PWPLL goes into its sleep mode, then restores the stored data so that the PWPLL can start from the state close to lock [26]. The PWPLL used D flip-flops as memory circuits, and used a TDC (time-to-digital converter) and a DTC (digital-to-time converter) to digitize and memorize the phase of the locked condition.

Since most building blocks of the PWPLL are designed with standard cells, it is highly motivated to implement the design in an automated P&R flow to reduce the design time and thus the cost. However, to realize such implementation, the generally-custom-designed passgates and capacitors in the PWCO including the TSTC and the dedicated ring oscillator need to be incorporated to the automated P&R flow. In this work, we propose the implementation method for these cells, and improve these building blocks, enabling a fully automated P&R, fast-lock, and small-area PLL.

3. Circuit Design

3.1 Requirements for the PWCO

A schematic and a timing diagram of the TSTC in the PWCO are shown in Fig. 2. The FED (Fall Edge Deccerator) in Fig. 2(a) generates a short pulse at the end of the input pulse, which is used to sample the voltage \(V_{ak} \). Then \(V_{ak} \) are held as the STC as shown in Fig. 2(b). We make that 1-bit analog value in STC by sampling and holding the output voltage of the slow inverter on the falling edge. In order for the PWPLL to be implemented with an automatic P&R tool, we need to prepare dedicated slow inverter and passgate cells, as highlighted in red in Fig. 2(a).

The analog value in the STC changes between VDD and GND, resulting in a mild change in the output frequency. We designed the analog value in the STC to be only one or two bit. To ensure there is at most two analog values in STC, the falling edge of the slow inverter of two adjacent stages of the TSTC must have an overlap. We use \(t_{\text{invslow}} \) and \(\tau_{\text{Delay}} \) to indicate the fall time of the slow inverter and the delay time of the buffers of each TSTC stage, respectively.

As shown in Fig. 3(a), there will be no analog value in STC if \(t_{\text{invslow}} < \tau_{\text{Delay}} \). Therefore, we set \(t_{\text{invslow}} > \tau_{\text{Delay}} \) so that there is at least one analog value in STC. In addition, to ensure that there is at most two analog values in STC, \(t_{\text{invslow}} < 2\tau_{\text{Delay}} \), as shown in Fig. 3(b).

As a result, an input pulse width \(PW \) is defined by the time difference between two \(PW \)s that makes STC all 1 and that makes it all 0, which is equal to \((N - 1) \cdot \tau_{\text{Delay}} + t_{\text{invslow}}\) in an automated P&R flow to reduce the design time and thus the cost. However, to realize such implementation, the generally-custom-designed passgates and capacitors in the PWCO including the TSTC and the dedicated ring oscillator need to be incorporated to the automated P&R flow.

In this work, we propose the implementation method for these cells, and improve these building blocks, enabling a fully automated P&R, fast-lock, and small-area PLL.
two relationships must be satisfied:

\[\tau_{\text{Delay}} < t_{\text{invslow}} < 2\tau_{\text{Delay}} \quad (2) \]
\[\frac{1}{2} \frac{\Delta f_{\text{out}}}{f_{\text{ref}} \cdot f_{\text{out}}} < (N - 1) \tau_{\text{Delay}} + t_{\text{invslow}} \quad (3) \]

In order to satisfy the condition (2) and (3), we designed \(\tau_{\text{Delay}} \) to be 5ns by adjusting the number of buffer cells, and designed \(t_{\text{invslow}} \) to be 6ns, which will be realized with the custom-designed inverter cell.

Though the above discussion assumes the ideal situation where \(K_{\text{PWCO}} \) has a constant value, in practice the relationship between \(f_{\text{out}} \) and \(PW \) is not linear and has a curve like as shown by the green line in Fig. 5(b). Thus as shown in Fig. 5(c), within the output frequency range \(K_{\text{PWCO}} \) may have larger value than \(4\pi f_{\text{out}} \), which violates (1). To satisfy (1) all over the target output frequency range, the number of series passgates in the TSTC as in Fig. 2(a) has to be carefully chosen as it has an impact on PWCO linearity as summarized in Fig. 5. Fig. 5(a) and (b) respectively show the conceptual waveforms of \(V_{ak} \) and the relationship between the output frequency and the input pulse width when we change the number of passgates.

As shown by the purple lines in Fig. 5(a) and (b), if the transition of \(V_{ak} \) is too fast, the output frequency will have almost discrete trend to \(PW \) because the STC code rarely has an analog value between 0s and 1s. When we make the transition of \(V_{ak} \) slower by increasing the number of passgates as shown by the green and black lines in Fig. 5(a), the output frequency changes more smoothly as the STC becomes more likely to have an analog value. Then the relationship between the input pulse width and the output frequency will be closer to the ideal situation as shown in Fig. 5(b). The dotted line in Fig. 5(c) represents the ideal situation where the PWCO has constant \(K_{\text{PWCO}} \). The red line indicates the value of \(4\pi f_{\text{out}} \) as in (1). The PWPLL will lose lock at the frequencies where \(K_{\text{PWCO}} \) is above the red line because the condition (3) is not satisfied. When we use slow transition in

3.2 Frequency Range of the Ring Oscillator

The schematic of our ring oscillator is shown in Fig. 6. Its frequency is tuned by the STC by changing the load seen from each inverter stage using the passgate and the capacitor cells as in the TSTC. We use these cells to tune the output frequency range of the oscillator. The effect of the capacitance \(C_L \) and parallel passgates on the relationship between the STC and output frequency is illustrated in Fig. 7. \(C_L \) actually changes only the lower limit as shown in Fig. 7(a), because it determines the maximum load capacitance seen from the inverters in the ring oscillator. On the other hand, the number of parallel passgates changes both the upper and lower limits as shown in Fig. 7(b), because the ON resistance and parasitic capacitance of the passgate change the impact of \(C_L \) on the inverter delay. Thus we can first fix the number of parallel passgates to meet upper limit of the output range, then tune \(C_L \) to meet the lower limit.

3.3 Custom Cell Designs

Based on the discussion in the previous subsections, we need to introduce the passgate and capacitor cells to the automated P&R flow. As the analog cells such as passgates and capacitors are typically not included in a standard-cell library, we have to add custom cells to the library. The schematic and layout images of our additional passgate and capacitor cells are shown in Fig. 8(a) and (b), respectively. Both the cells are designed by modifying the smallest inverter in the library so that we can easily realize these custom cells with P&R.
compatibility. The passgate cell is realized by changing the connection between the PMOS and NMOS devices so that they are connected in parallel. The capacitor cell is realized only with the NMOS gate capacitance by removing the PMOS device in order to have fine capacitance tunability. When the specification changes, we can adjust the number of these cells to meet the design conditions instead of re-designing these cells.

In addition, to realize the 6ns transition time of the slow inverter that is required for the TSTC, we investigated two possible ways: one is to add capacitors at the output of a standard inverter cell and the other is using a custom inverter cell by changing the gate length L_s. Because the former way will significantly increase the area than the latter, we chose to make a custom inverter cell with large L_s as shown in Fig. 8(c). This custom cell is also designed based on the smallest inverter in the library by increasing its L by 20 times. As this modification changes the cell width, we need to take care of the minimum tile width for the P&R compatibility for this customization. Fortunately, even when the design specification changes, we can adjust $L_{s_{\text{invslow}}}$ and adjust τ_{Delay}, which is realized with standard buffer cells, to meet the condition (2) instead of re-designing a new custom inverter cell.

4. Measurement Results

Our quick-start PWPLL was designed and fabricated using TSMC 65nm standard CMOS process. We used Synopsys IC-Compiler [28] as a P&R tool to automatically generate the layout of the PWPLL. The chip micrograph is shown in Fig. 9, where the core occupies 59μm \times 58μm. The target specification for the fabricated PWPLL is set to be the same as that of the manually-designed one [26]. Though the manually-designed chip in [26] was fabricated using 180nm process, we re-designed and fabricated the manually-designed chip with TSMC 65nm process for a fair performance comparison.

We measured two PWPLLs in the same measurement environment. The measurement setup is illustrated in Fig. 10. The control signals are generated by Arduino uno. The reference clock is fed by Tektronix AFG 31000 SERIES arbitrary function generator. We used Keysight B2901A to provide power and to measure the current. Keysight 86100D Infinium DCA-X sampling oscilloscope, N9030A PXA signal analyzer and DSO-X 93304Q real time oscilloscope are used to measure the jitter, phase noise and locking process of the PWPLL output signal, respectively.

The measured locking process is shown in Fig. 11. We defined the lock time of the PLL as the time until the median of the output frequency falls within 0.5% of the target value. According to this definition, the lock time is 570ns without preset and 220ns with preset. This demonstrates that the quick start functionality works appropriately.

The jitter measurement result is shown in Fig. 12, which shows $\sigma = 8.89$ps. Measured phase noise of $L_{\text{PW PLL}} = -103.3\text{dBc/Hz}$ at 1MHz is shown in Fig. 13. The performance comparison between two PWPLLs is summarized in Table I. The nominal output frequency of both the PWPLLs is designed to be 960MHz. The lock time of the P&R PWPLL is 220ns (13 reference clock), which is 3 cycles slower than the manual PWPLL. The possible reason of this is that our PWPLL has slightly different loop gain.
from the manually-designed PWPLL and affect the step response. The power of the P&R PWPLL is 858μW and the area is 3454μm², which are comparable to the manual PWPLL. As the core utilization was slightly relaxed in order to pass the design rule check (DRC), the area of our PWPLL is 12% larger than the manual PWPLL. A PLL FoM, which is defined as:

\[\text{FoM}_{PLL} = 10 \log \left(\frac{\sigma_{PLL}}{\text{1s}} \cdot \frac{P_{PLL}}{\text{1mW}} \right) \]

is −221.7 dB for the P&R PLL. The similar FoM as that of the manually-designed PWPLL is realized as shown in Table I. The design man-hours of the two PWPLLs are also compared. The automated flow takes only a few hours to complete the design once the custom-designed cells are prepared, while the manual design takes roughly a week. Note that these numbers are based on this specific design experience and may vary depending on the cases. Especially in the case of the specification changes, the proposed flow relaxes the design burden a lot as it can be completed just by changing the design parameters given to the automated script. These results verify that even with the automated design flow, we can realize the quick-start PWPLL design with comparable area and power efficiency, while it drastically reduces the design burden.

Table I: Performance comparison of manual and P&R designs of PWPLL.

Parameter	Manual [26]	P&R
Architecture	PWPLL	PWPLL
Supply voltage	1.0V	1.0V
Ref. Freq. [MHz]	60	60
Output Freq. [MHz]	960	960
Lock Range [MHz]	755 ~ 1050	848 ~ 1321
Lock Time [ns]	170ns (10CLKs)	220ns (13CLKs)
Power [μW]	882	858
Area [μm²]	3084	3454
Jitter [ps]	7.80	8.89
FoM [dB]	−222.7	−221.7
Design man-hours	∼80	∼2

Table II: Comparison of this work and other PLLs.

	[29]	[30]	[31]	[32]	This work
Architecture	Digital	Digital	Digital	Digital	PWPLL
Layout Flow	P&R	P&R	manual	P&R	P&R
Ref. Freq. [MHz]	10MHz	80MHz	9MHz	4MHz	60MHz
Output Freq. [MHz]	2.5GHz	2.06GHz	2.45GHz	600MHz	960MHz
Lock time [µs]	–	1µs	0.5µs	220ns	
Process [nm]	65	26	65	180	65
Area [μm²]	42000	4300	83000	75000	3454
Power [mW]	13.7	6.95	0.25	14.5	0.86
Jitter [ps]	3.2	2.13	58	9.37	8.89
FoM [dB]	−218.5	−225.0	−210.8	−209.0	−221.7

5. Conclusion

We designed the quick-start PWPLL with automated layout synthesis using a P&R tool to relax the burden of the layout design, and achieved almost the same performance as that of the manual design. Our PWPLL has advantages in area and power efficiency, and realizes competitive FoM compared with prior works.

Acknowledgments

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) and is partly supported by JSPS KAKENHI Grant Number 17H03244. The VLSI in this work was designed through the support of VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Synopsys, Inc., Cadence Design Systems, Inc., and Mentor Graphics, Inc.

References

[1] M. Karimi-Ghartemani et al., “Derivation and Design of In-Loop Filters in Phase-Locked Loop Systems”, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 4, April 2012 (DOI: 10.1109/TIM.2011.2172999).

[2] M. Karimi-Ghartemani et al., “A signal processing system for extraction of harmonics and reactive current of single-phase systems,” IEEE Trans. Power Del., vol. 19, no. 3, pp. 979-986, Jul. 2004 (DOI: 10.1109/TPWRD.2004.829942).
[3] R. Santos Filho et al., “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2923-2932, Aug. 2008 (DOI: 10.1109/TIE.2008.924205).

[4] F. Xiong et al., “A novel PLL for grid synchronization of power electronic converters in unbalanced and variable-frequency environment,” in Proc. 2nd IEEE Int. Symp. PEDG, 2010, pp. 466-471 (DOI: 10.1109/PEDG.2010.5545832).

[5] A. Nagliero et al., “Synchronization techniques for grid connected wind turbines,” in Proc. 35th IEEE IECON, 2010, pp. 4606-4613 (DOI: 10.1109/IECON.2009.514859).

[6] S. Chung, “A phase tracking system for three phase utility interface inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, May 2000 (DOI: 10.1109/63.844502).

[7] P. Rodriguez et al., “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, Mar. 2007 (DOI: 10.1109/TPEL.2006.890000).

[8] M. Karimi-Ghartemani and M. Iravani, “Measurement of harmonics/inter-harmonics of time-varying frequencies,” IEEE Trans. Power Del., vol. 20, no. 1, pp. 23-31, Jan. 2005.

[9] A. Sarkar and S. Sengupta, “Second-degree digital differentiator-based power system frequency estimation under non-sinusoidal conditions,” IET Sci., Meas. Technol., vol. 4, no. 3, pp. 105-114, May 2010 (DOI: 10.1049/iet-sm.2008.0138).

[10] M. Karimi-Ghartemani and M. Iravani, “Robust and frequency-adaptive measurement of peak value,” IEEE Trans. Power Del., vol. 19, no. 2, pp. 481-489, Apr. 2004 (DOI: 10.1109/TPWRD.2004.824764).

[11] T. Nakura and K. Asada, “Low Pass Filter-less Pulse Width Controlled PLL Using Time to Soft Thermometer Code Converter,” IEICE Transactions on Electronics, Vol.E95-C, No.2, pp. 297-302, March 2012 (DOI: 10.1587/trans.e95.c.297).

[12] M. Karimi-Ghartemani and M. Iravani, “Wide-range, fast and robust estimation of power system frequency,” Elect. Power Syst. Res., vol. 65, no. 2, pp. 109-117, May 2003 (DOI: 10.1016/S0378-7796(02)00223-7).

[13] N. Tohge et al., “A Pulse Width Controlled PLL and its Automated Design Flow,” IEEE ICECS, pp.5-8, Dec. 2013 (DOI: 10.1109/ICECS.2013.6815331).

[14] D. Yang et al., “A fully synthesizable injection-locked PLL with feedback current output DAC in 28nm FDSOI,” IEICE Electron. Express, vol.12, no.15, 20150531, Aug. 2015 (DOI: 10.1587/transle.e12.150531).

[15] N. Ojima et al., “A Synthesizable Digital Low-Dropout Regulator Based on Voltage-to-Time Conversion,” IFIP/IEEE VLSI-SoC, vol.561, October 2018 (DOI: 10.1109/VLSI-SoC.2018.8644879).

[16] N. Ojima et al., “A 65nm CMOS Synthesizable Digital Low-Dropout Regulator Based on Voltage-to-Time Conversion with 99.6% Current Efficiency at 10mA Load,” IFIP/IEEE VLSI-SoC, pp. 1-3, 2019 (DOI: 10.1007/978-3-030-23425-6_1).

[17] Huy cu Ngo et al., “8.5 A 0.42ps-jitter -241.7dB FoM synthesizable injection-locked PLL with noise-isolation LDO,” ISSCC, pp.150-151, 2017 (DOI: 10.1109/ISSCC.2017.7870305).

[18] W. Deng, et al., “A 0.0066-mm² 780-uW Fully Synthesizable PLL with a Current Output DAC and an Interpolative-Phase Coupled Oscillator using Edge Injection Technique,” ISSCC, pp. 266-267, 2014 (DOI: 10.1109/ISSCC.2014.6757428).

[19] W. Deng, et al., “A 0.048-mm² 3-mW Synthesizable Fractional-N PLL with a Soft Injection-Locking Technique,” ISSCC, pp. 252-253, 2015 (DOI: 10.1109/ISSCC.2015.7063021).

[20] W. Kim, et al., “A 0.032mm² 3.1mW Synthesized Pixel Clock Generator with 30psrms Integrated Jitter and 10-to-630MHz DCO Tuning Range,” ISSCC, pp. 250-251, 2013 (DOI: 10.1109/ISSCC.2013.6487721).

[21] Y. Li et al., “A Novel Fully Synthesizable All-Digital RF Transmitter for IoT Applications,” IEEE TCAD, vol. 37, No. 1, January 2018 (DOI: 10.1109/TCAD.2017.2684097).

[22] D. Yang et al., “A 0.0055mm² 480µW Fully Synthesizable PLL Using Stochastic TDC in 28nm FDSOI,” IEICE TRANSACTIONS on Electronics, Vol.E99-C, No.6, pp.632-640, June 2016 (DOI: 10.1587/tras.e99.c.632).

[23] N. Ojima et al., “A 0.0053-mm² 6-Bit Fully-Standard-Cell-Based Synthesizable SAR ADC in 65nm CMOS,” IEEE NEWCAS, Jun. 2019.

[24] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787-2805, October 2010 (DOI: 10.1016/j.comnet.2010.05.010).

[25] Ching-Che Chung et al., “A 0.52/1 V Fast Lock-in ADPLL for Supporting Dynamic Voltage and Frequency Scaling,” IEEE Trans. on VLSI Systems, vol. 24, pp.408-412, January 2016 (DOI: 10.1109/TVLSI.2015.2407370).

[26] T. Nakura et al., “Quick-start pulse width controlled pll with frequency and phase presetting”, IEICE Transactions on Electronics, Vol. E101-C, No.4, pp. 218-223, April 2018 (DOI: 10.1587/trasle.e101.c.218).

[27] T. Nakura et al., “A PLL Compiler from Specification to GDSII,” IEICE Trans. Fundamentals, vol.E100-A, No. 12 December 2017 (DOI:10.1587/transfun.E100.A.2741).

[28] D. Lockhart, “Place and Route using Synopsys IC Compiler,” ECE5745 Tutorial3, January 30, 2016.

[29] Y. Park et al., “An All-Digital PLL Synthesized from a Digital Standard Cell Library in 65nm CMOS," CICC, pp.1-4, October 2011 (DOI: 10.1109/CICC.2011.6055347).

[30] M. Lee et al., “A 0.3-to-1.2V frequency-scalable fractional-N ADPLL with a speculative dual-referenced interpolating TDC,” ISSCC, pp.122-124, February 2018 (DOI: 10.1109/ISSCC.2018.8310214).

[31] S. Hong et al., “A 250-fJ 2.4-GHz Fast-Lock Fractional-N Frequency Generation for Ultralow-Power Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.64, pp.106-110, February 2017 (DOI: 10.1109/TCSII.2016.2551598).

[32] C. Wu et al., “A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.57, pp.430-434, June 2010 (DOI: 10.1109/TCSI.2010.2048358).