TWISTING OF PARAMODULAR VECTORS

JENNIFER JOHNSON-LEUNG
BROOKS ROBERTS

Abstract. Let F be a non-archimedean local field of characteristic zero, let (π, V) be an irreducible, admissible representation of $\text{GSp}(4, F)$ with trivial central character, and let χ be a quadratic character of F^\times with conductor $c(\chi) > 1$. We define a twisting operator T_χ from paramodular vectors for π of level n to paramodular vectors for $\chi \otimes \pi$ of level $\max(n + 2c(\chi), 4c(\chi))$, and prove that this operator has properties analogous to the well-known $\text{GL}(2)$ twisting operator.

1. Introduction

Let k and M be positive integers, and let χ be a quadratic Dirichlet character mod C. If $f \in S_k(\Gamma_0(M))$ is a cusp form of weight k with respect to $\Gamma_0(M)$ with Fourier expansion

$$f(z) = \sum_{m=1}^{\infty} a(m) e^{2\pi i m z},$$

then the twist f_χ of f by χ is the element of $S_k(\Gamma_0(MC^2))$ with Fourier expansion

$$f_\chi(z) = \sum_{m=1}^{\infty} \chi(m) a(m) e^{2\pi i m z}.$$

See, for example, Proposition 3.64 of [S]. In fact, twisting of cusp forms is a local operation when cusp forms are identified as automorphic forms on the adeles of $\text{GL}(2)$ over \mathbb{Q}.

Let F be a nonarchimedean local field of characteristic zero with ring of integers \mathfrak{o} and maximal ideal \mathfrak{p}, let (π, V) be a smooth representation of $\text{GL}(2, F)$ for which the center of $\text{GL}(2, F)$ acts trivially, and let χ be a quadratic character of F^\times. For n a non-negative integer, we let $V(n)$ and $V(n, \chi)$ be the spaces of $v \in V$ such that $\pi(k)v = v$ and $\pi(k)v = \chi(\det(k))v$, respectively, for $k \in \Gamma_0(p^n)$; here $\Gamma_0(p^n)$ is the subgroup of $\text{GL}(2, \mathfrak{o})$ of elements which are upper triangular mod \mathfrak{p}. For $v \in V$, define the χ-twist $T_\chi(v)$ of v as in (2). The main result about $\text{GL}(2)$ twisting is summarized by the following known theorem. See section 2 for further definitions and section 3 for a proof.

Theorem (GL(2) twisting). Let (π, V) be a smooth representation of $\text{GL}(2, F)$ for which the center of $\text{GL}(2, F)$ acts trivially, and let χ be a quadratic character of F^\times with conductor $c(\chi) > 0$. Let n be a non-negative integer and define $N = \max(n, 2c(\chi))$. If $v \in V(n)$, then $T_\chi(v) \in V(N, \chi)$. Moreover, assume that π is generic, irreducible and admissible with Whittaker model $W(\pi, \psi)$. Let $W \in V(n)$. The χ-twisted zeta integral (3) of $T_\chi(W)$ is

$$Z(s, T_\chi(W), \chi) = (1 - q^{-1}) G(\chi, -c(\chi)) W(1).$$

For $n \geq N_\pi$, the image of $T_\chi : V(n) \rightarrow V(N, \chi)$ is spanned by the non-zero vector $T_\chi(\beta^n - N_\pi W_\pi)$, where W_π is a newform for π.

1
The goal of this paper is to construct an analog of quadratic twisting for paramodular vectors in representations of GSp(4, F) with trivial central character. Let \((\pi, V)\) be a smooth representation of GSp(4, F) for which the center of GSp(4, F) acts trivially. Let \(V(n)\) and \(V(n, \chi)\) be the spaces of \(v \in V\) such that \(\pi(k)v = v\) and \(\pi(k)v = \chi(\lambda(k))v\), respectively, for \(k\) in the paramodular subgroup \(K(p^n)\) of GSp(4, F) of level \(p^n\). For \(v \in V\), we define the \(\chi\)-twist \(T_\chi(v)\) of \(v\) as in (9). Our main result is the following theorem. We refer to section 2 for more definitions and section 4 for the proof.

Main Theorem. Let \((\pi, V)\) be a smooth representation of GSp(4, F) for which the center of GSp(4, F) acts trivially, and let \(\chi\) be a quadratic character of \(F^\times\) with conductor \(c(\chi) > 0\). Let \(n\) be a non-negative integer and define \(N = \max(n + 2c(\chi), 4c(\chi))\). If \(v \in V(n)\), then \(T_\chi(v) \in V(N, \chi)\).

Moreover, assume that \(\pi\) is generic, irreducible and admissible with Whittaker model \(W(\pi, \psi_{c_1, c_2})\) where \(c_1, c_2 \in \sigma^\times\). If \(W \in V(n)\), then the \(\chi\)-twisted zeta integral (7) of \(T_\chi(W)\) is

\[
Z(s, T_\chi(W), \chi) = (q - 1)q^{c(\chi)2}G(\chi, \sigma(c(\chi)))W(1).
\]

For \(n \geq N\), the image of \(T_\chi : V(n) \to V(N, \chi)\) is spanned by the non-zero vector \(T_\chi(\theta^n_{N\pi}W_\pi)\), where \(W_\pi\) is a newform for \(\pi\).

In another work we will consider the application of the paramodular twisting operator \(T_\chi\) to Siegel modular forms and the resulting Fourier coefficients. One reason that Siegel paramodular forms of degree 2 are of interest is that their conjectural connection to abelian surfaces over \(Q\). This is discussed in [BK]; see also [PY].

We note that the integer \(N\) in the Main Theorem is optimal in the following sense. We may identify the space \(V(n, \chi)\) with the space \(V_{\chi\otimes\pi}(n)\) of \(K(p^n)\) fixed vectors in the twisted representation \(\chi\otimes\pi\). Then there exist generic, irreducible, and admissible representations \(\pi\) such that \(N = N_{\chi\otimes\pi}\).

For example, if \(n\) is a type I representation \(\chi_1 \times \chi_2 \times \sigma\) with \(\chi_1, \chi_2\) and \(\sigma\) unramified, then \(N_{\chi\otimes\pi} = 4c(\chi) = \max(0 + 2c(\chi), 4c(\chi))\). Further, suppose that \(\pi\) is a type X representation \(\pi_1 \times \sigma\) with \(\pi_1\) having trivial central character, \(\sigma\) unramified, and \(2c(\chi) < N_{\pi_1}\). Then \(N_{\chi\otimes\pi} = N_{\pi} + 2c(\chi) = \max(N_{\pi} + 2c(\chi), 4c(\chi))\). It is interesting to observe, as in this last example, that \(N_{\chi\otimes\pi} > N_{\pi}\) no matter how large \(N_{\pi}\) is.

2. Notation and preliminaries

In this paper \(F\) is a nonarchimedean local field of characteristic zero, with ring of integers \(\mathfrak{o}\) and generator \(\varpi\) of the maximal ideal \(p\) of \(\mathfrak{o}\). We fix a non-trivial continuous character \(\psi\) of \((F, +)\) such that \(\psi(\mathfrak{o}) = 1\) but \(\psi(p^{-1}) \neq 1\). We let \(q\) be the number of elements of \(\mathfrak{o}/p\) and we use the absolute value on \(F\) such that \(|\varpi| = q^{-1}\). We use the Haar measure on the additive group \(F\) that assigns \(\varpi\) measure 1 and the Haar measure on the multiplicative group \(F^\times\) that assigns \(\varpi^x\) measure \(1 - q^{-1}\). Throughout the paper \(\varpi\) is a quadratic character of \(F^\times\) with conductor \(c(\chi)\), i.e., \(c(\chi)\) is the smallest non-negative integer \(n\) such that \(\chi(1 + p^n) = 1\), where we take \(1 + p^0 = \varpi^x\).

If \(n\) is a non-negative integer, then we let \(\Gamma_0(p^n)\) be the subgroup of \(GL(2, \mathfrak{o})\) of elements which are upper triangular mod \(p^n\); we will also write \(\Gamma_0(p^n)\) for the analogous subgroup of \(SL(2, \mathfrak{o})\) when there is no risk of confusion. Let \((\pi, V)\) be a smooth representation of \(GL(2, F)\) for which the center of \(GL(2, F)\) acts trivially, and let \(n\) be a non-negative integer. The subspace \(V(n)\) consists of the vectors in \(V\) fixed by \(\Gamma_0(p^n)\) and \(V(n, \chi)\) is the subspace of vectors \(v \in V\) such that \(\pi(k)v = \chi(\det(k))v\) for \(k \in \Gamma_0(p^n)\). We define the level raising operators \(\beta, \beta' : V(n) \to V(n + 1)\) and \(\beta, \beta' : V(n, \chi) \to V(n + 1, \chi)\) by \(\beta(v) = \pi(1\varpi)v\) and \(\beta'v = v\). If \(\pi\) is generic, irreducible and admissible, then \(V(n)\) is non-zero for some \(n\); we let \(N_{\pi}\) be the smallest such \(n\). The space \(V(N_{\pi})\) is one-dimensional; if \(W_\pi\) is a non-zero element of \(V(N_{\pi})\) so that \(V(N_{\pi}) = \mathbb{C} \cdot W_\pi\), then
we refer to W_π as a newform. The space $V(n)$ for $n \geq N_\pi$ is spanned by the vectors $\beta^i \beta^j W_\pi$ where i and j are non-negative integers with $i + j = n - N_\pi$. If W_π is viewed as an element of the Whittaker model $W(\pi, \psi)$ of π, then $W_\pi(1) \neq 0$. As usual, the elements W of $W(\pi, \psi)$ satisfy $W([1 \quad \xi]) g = \psi(x)W(g)$ for $x \in F$ and $g \in \text{GL}(2, F)$. See [C] and [D].

The theory of paramodular newforms is developed in [RS], and we will use the notation of [RS] concerning GSp$(4, F)$. We recall some necessary definitions and results. In particular, GSp$(4, F)$ is the subgroup of $g \in \text{GL}(4, F)$ such that

$$\begin{align*}
g \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \lambda(g) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{for some } \lambda(g) \in F^\times.
\end{align*}$$

If n is a non-negative integer, we let $\text{Kl}(p^n)$ (respectively $\text{K}(p^n)$) be the subgroup of $k \in \text{GSp}(4, F)$ such that $\lambda(k) \in \pi^\times$ and

$$k \in \begin{bmatrix} 0 & 0 & 0 & 0 \\ p^n & 0 & 0 & 0 \\ p^n & 0 & 0 & 0 \\ p^n & p^n & p^n & 0 \end{bmatrix} \quad \text{resp. } k \in \begin{bmatrix} 0 & 0 & 0 & p^{-n} \\ p^n & 0 & 0 & 0 \\ p^n & 0 & 0 & 0 \\ p^n & p^n & p^n & 0 \end{bmatrix}.$$

The group $\text{Kl}(p^n)$ is called the Klingen congruence subgroup of level p^n and $\text{K}(p^n)$ is called the paramodular subgroup of level p^n. For $a, b, c, d \in F^\times$, we set

$$\text{diag}(a, b, c, d) = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}.$$

This element is in GSp$(4, F)$ if and only if $ad = bc$. Let (π, V) be a smooth representation of GSp$(4, F)$ such that the center of GSp$(4, F)$ acts trivially. If n is a non-negative integer, then $V_{\text{Kl}}(n)$ and $V(n)$ are the subspaces of vectors fixed by the Klingen congruence subgroup $\text{Kl}(p^n)$, and paramodular subgroup $\text{K}(p^n)$, respectively; additionally, we let $V_{\text{Kl}}(n, \chi)$ and $V(n, \chi)$ be the subspaces of vectors v in V such that $\pi(k)v = \chi(\lambda(k))v$ for $k \in \text{Kl}(p^n)$ and $k \in \text{K}(p^n)$, respectively. Also, we define

$$\eta = \begin{bmatrix} \omega^{-1} & 1 & 1 \\ 1 & \omega & 1 \end{bmatrix}, \quad \tau = \begin{bmatrix} 1 & \omega^{-1} & 1 \\ \omega & 1 & \omega^{-1} \end{bmatrix}, \quad t_n = \begin{bmatrix} 1 & -\omega^{-n} \\ \omega^n & 1 \end{bmatrix}. \quad (1)$$

Sometimes we will write η and τ for $\pi(\eta)$ and $\pi(\tau)$, respectively. We define the level raising operators $\eta : V(n) \to V(n+2)$ and $\theta, \theta' : V(n) \to V(n+1)$ as in [RS]. Let (π, V) be an irreducible, admissible representation of GSp$(4, F)$ with trivial central character. If $V(n)$ is non-zero for some non-negative integer n then we say that π is paramodular and let N_π be the smallest such integer. It is known that if π is paramodular, then $V(N_\pi)$ is one-dimensional; if W_π is a non-zero element of $V(N_\pi)$ so that $V(N_\pi) = \mathbb{C} \cdot W_\pi$, then we refer to W_π as a newform. The space $V(n)$ for $n \geq N_\pi$ is spanned by the vectors $\theta^i \theta^j \eta^k W_\pi$ where i, j and k are non-negative integers with $i + j + 2k = n - N_\pi$. It is known that if π is generic, then π is paramodular; in general, all paramodular, irreducible, admissible representations of GSp$(4, F)$ with trivial central character have been classified. If π is a generic, irreducible, admissible representation of GSp$(4, F)$ with trivial central character then we let $W(\pi, \psi_{c_1, c_2})$ be the Whittaker model of π with respect to the character ψ_{c_1, c_2} of the unipotent
The lemma now follows from the fact that the function o and similarly \int

Proof. Let n be a positive integer such that $f(x + p^n) = f(x)$ for $x \in o^\times$. We have

$$\int_{o^\times} f(u(1 + bu^{-1}w^t)) \, du = q^{-n} \sum_{u \in o^\times/(1 + p^n)} f(u(1 + bu^{-1}w^t)).$$

and similarly

$$\int_{o^\times} f(u) \, du = q^{-n} \sum_{u \in o^\times/(1 + p^n)} f(u).$$

The lemma now follows from the fact that the function $o^\times/(1 + p^n) \to o^\times/(1 + p^n)$ defined by $u \mapsto u(1 + bu^{-1}w^t)$ is a well-defined bijection. \qed

The following lemma about Gauss sums is well-known.

Lemma 2.2. Let χ be a character of o^\times with conductor $c(\chi)$, and let k be an integer. Define

$$G(\chi, k) = \int_{o^\times} \chi(u)\psi(uw^k) \, du.$$

If χ is ramified, then $G(\chi, k)$ is non-zero if and only if $k = -c(\chi)$.

3. Twist in genus 1

Let (π, V) be a smooth representation of $GL(2, F)$ for which the center of $GL(2, F)$ acts trivially, let χ be a quadratic character of o^\times with conductor $c(\chi)$, and let n be a non-negative integer. For $v \in V(n)$ we define

$$T_\chi(v) = \int_{o^\times} \chi(b)\pi\left[\begin{array}{c} 1 \\ b w^{-c(\chi)} \end{array} \right] v \, db. \quad (2)$$

If χ is unramified, then $T_\chi(v) = (1 - q^{-1})v$ for $v \in V(n)$. Thus, we will usually assume that χ is ramified. Assume further that π is generic, irreducible and admissible with Whittaker model $W(\pi, \psi)$. For $W \in W(\pi, \psi)$ we define the χ-twisted zeta integral of W as

$$Z(s, W, \chi) = \int_{F^\times} W\left(\begin{array}{c} t \\ 1 \end{array} \right) |t|^{s-1/2} \chi(t) \, dt. \quad (3)$$

Theorem 3.1. Let (π, V) be a smooth representation of $GL(2, F)$ for which the center of $GL(2, F)$ acts trivially, let χ be a quadratic character of o^\times with conductor $c(\chi) > 0$, and let n be a non-negative integer. Let $N = \max(n, 2c(\chi))$. If $v \in V(n)$, then $\pi(k) T_\chi(v) = \chi(\det(k)) T_\chi(v)$ for $k \in \Gamma_0(p^N)$. Moreover, assume that π is generic, irreducible and admissible with Whittaker model $W(\pi, \psi)$. For $W \in V(n)$. The χ-twisted zeta integral of $T_\chi(W)$ is

$$Z(s, T_\chi(W), \chi) = (1 - q^{-1}) G(\chi, -c(\chi)) W(1).$$
For $n \geq N_\pi$, the image of $T_\chi : V(n) \to V(N, \chi)$ is spanned by the non-zero vector $T_\chi(\beta^n - N_\pi W_\pi)$.

Proof. The group $\Gamma_0(p^N)$ is generated by the elements contained in the sets
\[
\begin{bmatrix}
 o^x & o^x \\
 1 & 1 \\
 1 & p^N \\
\end{bmatrix},
\]
It is easy to verify that $\pi(k)T_\chi(v) = (\chi(\det(k))T_\chi(v)$ for generators k of the first two types. Let $y \in p^N$. Noting that $N - c(\chi) \geq c(\chi) > 0$ and $N \geq n$, we have
\[
\pi\left(\begin{bmatrix} 1 \\ y \\ 1 \end{bmatrix}\right) \int_{o^x} \chi(b)\pi\left(\begin{bmatrix} 1 \\ b\omega^{-c(\chi)} \\ 1 \end{bmatrix}\right)v \, db
\]
\[=
\int_{o^x} \chi(b)\pi\left(\begin{bmatrix} 1 \\ 1 + \omega^{-c(\chi)}y \\ 1 \end{bmatrix}\right)\pi\left(\begin{bmatrix} 1 \\ b\omega^{-c(\chi)}y \\ 1 \end{bmatrix}\right)v \, db
\]
\[=
\int_{o^x} \chi(b)\pi\left(\begin{bmatrix} 1 \\ 1 + \omega^{-c(\chi)}y \\ 1 \end{bmatrix}\right)\pi\left(\begin{bmatrix} 1 \\ b\omega^{-c(\chi)}y \\ 1 \end{bmatrix}\right)v \, db
\]
\[=
\int_{o^x} \chi((1 + \omega^{-c(\chi)}y)b^{-1})\pi\left(\begin{bmatrix} 1 \\ 1 + \omega^{-c(\chi)}y \\ 1 \end{bmatrix}\right)v \, db
\]
\[=
\int_{o^x} \chi(b)\pi\left(\begin{bmatrix} 1 \\ b\omega^{-c(\chi)} \\ 1 \end{bmatrix}\right)v \, db
\]
\[= T_\chi(v).
\]
For the penultimate equality we applied Lemma 2.1. Assume now that π is generic, irreducible and admissible as in the statement of the theorem. Then:
\[
Z(s, T_\chi(W), \chi) = \int_{F^x} T_\chi(W)(\begin{bmatrix} t \\ 1 \end{bmatrix})|t|^{s-1/2}\chi(t) \, d^\times t
\]
\[=
\int_{F^x} \int_{o^x} \chi(b)W(\begin{bmatrix} t \\ 1 \\ 1 + b\omega^{-c(\chi)} \\ 1 \end{bmatrix})|t|^{s-1/2}\chi(t) \, db \, d^\times t
\]
\[=
\int_{F^x} (\int_{o^x} \chi(b)\psi(tb\omega^{-c(\chi)}) \, db)W(\begin{bmatrix} t \\ 1 \end{bmatrix})|t|^{s-1/2}\chi(t) \, d^\times t
\]
\[=
\int_{o^x} (\int_{o^x} \chi(b)\psi(tb\omega^{-c(\chi)}) \, db)W(\begin{bmatrix} t \\ 1 \end{bmatrix})\chi(t) \, d^\times t
\]
\[=
\int_{o^x} \chi(t)G(\chi, -c(\chi))W(\begin{bmatrix} t \\ 1 \end{bmatrix})\chi(t) \, d^\times t
\]
\[=
(1 - q^{-1})G(\chi, -c(\chi))W(1).
\]
Here, we have used Lemma 2.2. \qed
4. Twist in genus 2

Let \((\pi, V)\) be a smooth representation of GSp\((4, F)\) for which the center of GSp\((4, F)\) acts trivially. Let \(\chi\) be a quadratic character. For \(v \in V\) we define

\[
v^\chi = \int \int \int \chi(ab)\pi\left(\begin{bmatrix} 1 & -aw^{-c(\chi)} & b w^{-2c(\chi)} & z \\ -aw^{-c(\chi)} & 1 & b w^{-2c(\chi)} & a w^{-c(\chi)} \\ b w^{-2c(\chi)} & 1 & a w^{-c(\chi)} & z \\ a w^{-c(\chi)} & b w^{-2c(\chi)} & z & 1 \end{bmatrix}\right) d^c(\chi) v \, dz \, da \, db.
\] (4)

Evidently, if \(\chi\) is unramified, then \(v^\chi = (1 - q^{-1})^2 v\).

Lemma 4.1. Let \((\pi, V)\) be a smooth representation of GSp\((4, F)\) for which the center of GSp\((4, F)\) acts trivially. Let \(\chi\) be a quadratic character with \(c(\chi) > 0\). Let \(n\) be a non-negative integer. Let \(v \in V_{Ki}(n)\). We have \(\pi(k)v^\chi = \chi(\lambda(k))v^\chi\) for the subgroup of \(k \in GSp(4, F)\) such that \(\lambda(k) \in \o^\times\) and

\[
k \in \begin{bmatrix} 0 & o & o & p^{-2c(\chi)} \\ 0 & o & o & 0 \\ p^{2c(\chi)} & 0 & o & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
\]

Proof. The subgroup in the statement of the lemma is generated by the elements of the form \(\text{diag}(w_1 w_2 w, w_1 w, w_2 w, w)\) for \(w, w_1, w_2 \in \o^\times\), and elements of the subgroups

\[
\begin{bmatrix} 1 & p^{-2c(\chi)} & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix},
\]

Using \(v \in V_{Ki}(n)\), the definition of \(v^\chi\) and Lemma 2.1 one can verify that \(\pi(k)v^\chi = \chi(\lambda(k))v^\chi\) for each type of generator \(k\). As an illustration, let \(x \in \o\). Then

\[
\pi\left(\begin{bmatrix} 1 & -x & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & x & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}\right)v^\chi
\]

\[
= \int \int \int \chi(ab)\pi\left(\begin{bmatrix} 1 & -a w^{-c(\chi)} - x & b w^{-2c(\chi)} & z - x b w^{-2c(\chi)} \\ -a w^{-c(\chi)} & 1 & b w^{-2c(\chi)} & a w^{-c(\chi)} + x \\ b w^{-2c(\chi)} & 1 & a w^{-c(\chi)} & z \\ a w^{-c(\chi)} & b w^{-2c(\chi)} & z & 1 \end{bmatrix}\right) d^c(\chi) v \, dz \, da \, db
\]

\[
= \pi v^\chi.
\]

This completes the proof. \(\square\)

Lemma 4.2. Let \((\pi, V)\) be a smooth representation of GSp\((4, F)\) for which the center of GSp\((4, F)\) acts trivially. Let \(\chi\) be a quadratic character and let \(n\) be a non-negative integer. Let \(v \in V_{Ki}(n)\)
and define v^x as in (4). Then v^x is invariant under the subgroup

$$GSp(4, F) \cap \begin{pmatrix}
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{p} & 0 \\
0 & 0 & 0 & 1
\end{array}
\end{pmatrix}.$$

Proof. This is clear if χ is unramified; assume that $c(\chi) > 0$. Let $a, b \in o^x$ and $c \in o$, and set

$$g = \begin{bmatrix}
1 & -aw^{-c(\chi)} & bw^{-2c(\chi)} & cw^{-2c(\chi)} \\
0 & 1 & \frac{b}{aw^{-c(\chi)}} & \frac{c}{aw^{-c(\chi)}} \\
0 & 0 & 1 & \frac{a}{aw^{-c(\chi)}} \\
0 & 0 & 0 & 1
\end{bmatrix}^{c(\chi)}.
$$

Let L be an integer and $y \in o$. We have the following identities:

$$\begin{bmatrix}
1 \\
yw^L \\
1 \\
yw^L
\end{bmatrix} g = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & acyw^{-4c(\chi)} & bcyw^{-3c(\chi)} & cyw^{-4c(\chi)} \\
0 & 1 & -bcyw^{-3c(\chi)} & -cyw^{-4c(\chi)} \\
0 & 0 & 1 & cyw^{-4c(\chi)} \\
0 & 0 & 0 & 1
\end{bmatrix}.
$$

These identities prove that v^x is invariant under the group

$$GSp(4, F) \cap \begin{pmatrix}
\begin{array}{cccc}
p \max(n+c(\chi),3c(\chi)) & 1 & 0 & 0 \\
0 & p \max(n+c(\chi),3c(\chi)) & 0 & 0 \\
0 & 0 & p \max(n+c(\chi),3c(\chi)) & 1 \\
0 & 0 & 0 & p \max(n+c(\chi),3c(\chi))
\end{array}
\end{pmatrix}.$$

To prove the remaining invariance, set $L = \max(n + c(\chi), 3c(\chi))$. A calculation shows that

$$\begin{bmatrix}
1 \\
yw^L \\
yw^L
\end{bmatrix} g = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
1 & abyw^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}.$$
for some $k \in \text{Kl}(p^n)$ with $u = 1 + by\omega L^{-2c(\chi)}$. Therefore,

$$
\pi(\begin{bmatrix}
1 & 1 \\
y\omega^L & y\omega^L
\end{bmatrix}) v^\chi = q^{2c(\chi)} \int \int \int \chi(ab) \pi(\begin{bmatrix}
1 & -a\omega^{-c(\chi)} & b\omega^{-2c(\chi)} & y\omega L^{-4c(\chi)} \\
1 & c\omega^{-2c(\chi)} & b\omega^{-2c(\chi)} & 1
\end{bmatrix}) \tau^c(\chi)
$$

Taking $v = (-2byc + ab^3y^2\omega L^{-3c(\chi)}u^{-2}\omega L^{-4c(\chi)})$ and χ be a quadratic character, we obtain v^χ.

Let (π, V) be a smooth representation of $\text{GSp}(4, F)$ for which the center of $\text{GSp}(4, F)$ acts trivially, let χ be a quadratic character, and let n be a non-negative integer. For $v \in V_{\text{Kl}}(n)$ we define

$$
T^\text{Kl}_{\chi}(v) = \int \pi(\begin{bmatrix}
1 & 1 \\
x & 1
\end{bmatrix}) v^\chi \, dx + \int \pi(\begin{bmatrix}
1 & -1 \\
y & 1
\end{bmatrix}) v^\chi \, dy.
$$

(5)

Here, v^χ as in (4). If χ is unramified, then $T^\text{Kl}_{\chi}(v) = (1 + q^{-1})(1 - q^{-1})^2 v$.

Lemma 4.3. Let (π, V) be a smooth representation of $\text{GSp}(4, F)$ for which the center of $\text{GSp}(4, F)$ acts trivially, let χ be a quadratic character, and let n be a non-negative integer. Let $v \in V_{\text{Kl}}(n)$. Then

$$
\pi(k) T^\text{Kl}_{\chi}(v) = \chi(\lambda(k)) T^\text{Kl}_{\chi}(v)
$$

(6)

for $k \in \text{Kl}(p^N)$ where $N = \max(n + 2c(\chi), 4c(\chi))$. Moreover, $\pi(k) T^\text{Kl}_{\chi}(v) = T^\text{Kl}_{\chi}(v)$ for $k \in \text{GSp}(4, F)$ such that

$$
k \in \begin{bmatrix}
p^{N-2c(\chi)} & 1 \\
p^{N-2c(\chi)} & p^{N-2c(\chi)}
p^{N-2c(\chi)} & p^{N-2c(\chi)}
p^{N-2c(\chi)} & 1
\end{bmatrix}.
$$
Proof. The group $Kl(p^N)$ is generated by its elements contained in the sets
\[
\begin{bmatrix}
1 & 1 & 1 \\
p^N & p^N & p^N \\
p^N & p^N & p^N
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
\sigma^x & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & \sigma^x
\end{bmatrix},
\]
and there is a disjoint decomposition
\[
SL(2, \mathfrak{o}) = \bigsqcup_{x \in \mathfrak{o}/\mathfrak{p}^{2c(x)}} \Gamma_0(p^{2c(x)}) \sqcup \bigsqcup_{y \in \mathfrak{p}/\mathfrak{p}^{2c(x)}} \left[-1 \begin{bmatrix} 1 & 1 \\ y & 1 \end{bmatrix} \Gamma_0(p^{2c(x)}) \right].
\]
The lemma follows from these two facts, Lemma 4.1, and Lemma 4.2. □

Let (π, V) be a generic, irreducible, admissible representation of $GSp(4, F)$ with trivial central character with Whittaker model $W(\pi, \psi_{c_1, c_2})$; we take $c_1, c_2 \in \mathfrak{o}^\times$. Let χ be a quadratic character of F^\times. If $W \in W(\pi, \psi_{c_1, c_2})$ we define the zeta integral of W twisted by χ to be
\[
Z(s, W, \chi) = \int_{F^\times} \int_{F^\times} W\left(\begin{bmatrix}
t & 1 \\
z & 1
\end{bmatrix} \right) |t|^{s-3/2} \chi(t) dt dt.
\]
This is the same as the zeta integral of W in the twist $\chi \otimes \pi$ of π by χ. See [RS].

Lemma 4.4. Let (π, V) be a generic, irreducible, admissible representation of $GSp(4, F)$ with trivial central character with Whittaker model $W(\pi, \psi_{c_1, c_2})$; we take $c_1, c_2 \in \mathfrak{o}^\times$. Let χ be a quadratic character of F^\times such that $c(\chi) > 0$. Let n be a non-negative integer. Let $W \in V_{Kl}(n)$, and define $T_{\chi}^{Kl}(W)$ as in (5). We have
\[
Z(s, T_{\chi}^{Kl}(W), \chi) = (1 - q^{-1}) q^{c(\chi)} \chi(c_2) G(\chi, -c(\chi))^3 W(1).
\]
In particular, if W is the newform of π, then $T_{\chi}^{Kl}(W) \neq 0$.

Proof. To begin, we note that by Lemma 4.1.1 of [RS] we have
\[
Z(s, T_{\chi}^{Kl}(W), \chi) = \int_{F^\times} T_{\chi}^{Kl}(W)\left(\begin{bmatrix}
t & 1 \\
p & 1
\end{bmatrix} \right) |t|^{s-3/2} \chi(t) dt dt.
\]
Therefore, the first part of $Z(s, T_{\chi}^{Kl}(W), \chi)$ is:
\[
\int_{F^\times} \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \int_{\mathfrak{p}^{-2c(\chi)}} W\left(\begin{bmatrix}
t & 1 \\
z & 1
\end{bmatrix} \begin{bmatrix}
1 & x & 1 \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
1 & \sigma & 0 \\
\sigma & \sigma^x & 0 \\
\sigma & 0 & \sigma^x
\end{bmatrix} \begin{bmatrix}
1 & \sigma & 0 \\
\sigma & \sigma^x & 0 \\
\sigma & 0 & \sigma^x
\end{bmatrix} \right) |t|^{s-3/2} \chi(t) \chi(ab) dt da db dx dt.
\]
By Lemma 2.2 the integral in the b variable is zero unless $v(x) = c(\chi)$. Continuing,

$$= q^{2c(\chi)} \int_{F^\times} \int_{\phi^\times} \int_{\phi^\times} W(t) \begin{bmatrix} t & 1 & 1 \\ t & 1 & x \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ w^{-c(\chi)} \\ \chi \end{bmatrix} \int |t|^{s-3/2} \chi(t) \chi(ab) da \, db \, dx \, d^xt$$

Continuing,

$$= q^{c(\chi)} \int_{\phi^\times} \chi(a) \psi(-c_1 a w^{-c(\chi)}) da \int_{\phi^\times} \chi(b) \psi(-c_1 b x w^{-c(\chi)}) db \int_{F^\times} W(t) \begin{bmatrix} t & 1 & 1 \\ t & 1 & x \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ w^{-c(\chi)} \\ \chi \end{bmatrix} \int |t|^{s-3/2} \chi(t) d^xt dx$$

$$= q^{c(\chi)} G(\chi, -c(\chi))^2 \int_{\phi^\times} \chi(x) \int_{F^\times} W(t) \begin{bmatrix} t & 1 & 1 \\ t & 1 & x^{-1} w^{-c(\chi)} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -x^{-1} w^{-c(\chi)} \\ -x w^{-c(\chi)} \end{bmatrix} \int |t|^{s-3/2} \chi(t) d^xt dx$$

$$= q^{c(\chi)} G(\chi, -c(\chi))^2 \int_{\phi^\times} \chi(x) \int_{F^\times} W(t) \begin{bmatrix} t & 1 & 1 \\ t & 1 & x^{-1} w^{-c(\chi)} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -x^{-1} w^{-c(\chi)} \\ -x w^{-c(\chi)} \end{bmatrix} \int |t|^{s-3/2} \chi(t) d^xt dx$$
Finally, we prove that the second part of $Z(x, c(x))$ is zero unless $v(t) = 0$. Thus, our quantity is:

$$
= q^{c(x)}G(x, -c(x))^2 \int_{\mathbb{A}} \chi(x) \int_{\mathbb{F}^\times} \psi(c_2 t x^{-1} \varpi^{-c(x)}) W\left(\begin{bmatrix} t & t \\ 1 & 1 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \, d^x t \, dx
$$

Again, by Lemma 2.2 the integral in the x variable is zero unless $v(t) = 0$. Thus, our quantity is:

$$
= q^{c(x)}G(x, -c(x))^2 \int_{\mathbb{A}} \chi(x) \psi(c_2 t x \varpi^{-c(x)}) \, dx \int_{\mathbb{F}^\times} \chi(t) \chi(x) \psi(c_2 x \varpi^{-c(x)}) \, dx \, W(1) \chi(t) \, d^x t
$$

$$
= q^{c(x)} \chi(c_2)G(x, -c(x))^3 \int_{\mathbb{A}} W(1) \, d^x t
$$

$$
= (1 - q^{-1})q^{c(x)} \chi(c_2)G(x, -c(x))^3 W(1).
$$

Finally, we prove that the second part of $Z(s, T^{KL}(W), \chi)$ is zero:

$$
= q^{2c(x)} \int_{\mathbb{A}} \psi(-c_2 ty) W\left(\begin{bmatrix} t & t \\ 1 & 1 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \chi(ab) \, dz \, da \, db \, dy \, d^x t
$$
\[
q^{2c(\chi)} \int_{F^\times} \int_p \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \psi(-c_2 t y) \psi(c_1 b \omega^{-2c(\chi)}) \left(\begin{array}{cc}
t & t \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) T_{\chi}(v) \left(\begin{array}{c}
1 \\
\omega^{-c(\chi)} \\
\omega^{-c(\chi)} \\
1 \end{array} \right) |t|^{s-3/2} \chi(t) \chi(ab) \, da \, db \, dy \, dz
\]

\[
= 0.
\]

The last equality holds because \(\chi \) is ramified by assumption.

Let \((\pi, V)\) be a smooth representation of \(\text{GSp}(4, F) \) for which the center of \(\text{GSp}(4, F) \) acts trivially, let \(\chi \) be a quadratic character, and let \(n \) be a non-negative integer. Define \(N = \max(n + 2c(\chi), 4c(\chi)) \). For \(v \in V_{\text{Kl}}(n) \) we define

\[
T_{\chi}(v) = q \int_v \pi(\begin{array}{c}
1 \\
1 \\
1 \\
1 \end{array}) \left(\begin{array}{cccc}
1 & z \omega^{-N} & & \\
1 & 1 & & \\
1 & 1 & & \\
1 & 1 & & \\
\end{array} \right) T_{\chi}^{\text{Kl}}(v) \, dz + \pi(t_N) \int_v \pi(\begin{array}{c}
1 \\
1 \\
1 \\
1 \end{array}) \left(\begin{array}{cccc}
1 & z \omega^{-N+1} & & \\
1 & 1 & & \\
1 & 1 & & \\
1 & 1 & & \\
\end{array} \right) T_{\chi}^{\text{Kl}}(v) \, dz. \quad (9)
\]

Here, \(T_{\chi}^{\text{Kl}}(v) \) is defined as in (5). Explicitly,

\[
q^{-2c(\chi)} T_{\chi}(v)
\]

\[
= q \int_v \int_p \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \chi(ab) \pi(\begin{array}{c}
1 \\
x & 1 \\
1 & 1 \end{array}) \left(\begin{array}{cccc}
1 & -a \omega^{-c(\chi)} & b \omega^{-2c(\chi)} & z \omega^{-N} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \end{array} \right) \tau^{c(\chi)} v \, da \, db \, dx \, dz
\]

\[
+ q \int_v \int_p \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \chi(ab) \pi(\begin{array}{c}
1 \\
-1 & 1 \\
1 & 1 \end{array}) \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & y & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \end{array} \right) \tau^{c(\chi)} v \, da \, db \, dy \, dz
\]

\[
+ \int_v \int_p \int_{\mathfrak{o}^\times} \int_{\mathfrak{o}^\times} \chi(ab) \pi(t_N) \pi(\begin{array}{c}
1 \\
x & 1 \\
1 & 1 \end{array}) \left(\begin{array}{cccc}
1 & -a \omega^{-c(\chi)} & b \omega^{-2c(\chi)} & z \omega^{-N} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \\
1 & 1 & 1 & a \omega^{-c(\chi)} \end{array} \right) \tau^{c(\chi)} v \, da \, db \, dx \, dz
\]

\[
(12)
\]
\[
+ \int_{\mathfrak{o} \times \mathfrak{o} \times \mathfrak{o}} \int \pi(t_N) \begin{bmatrix}
1 & 1 & 1 & 1
-1 & y & 0 & 0
0 & 0 & 1 & 1
-a_\mathfrak{m}^{-c(\chi)} & b_\mathfrak{m}^{-2c(\chi)} & z_\mathfrak{m}^{-N+1} & 1
b_\mathfrak{m}^{-2c(\chi)} & a_\mathfrak{m}^{-c(\chi)} & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1
0 & 0 & 1 & 1
0 & 0 & 1 & 1
0 & 0 & 1 & 1
\end{bmatrix}
\] (13)

Lemma 4.5. Let \((\pi, V)\) be a smooth representation of \(\text{GSp}(4, F)\) for which the center of \(\text{GSp}(4, F)\) acts trivially and let \(\chi\) be a quadratic character. Let \(n\) be a non-negative integer and define \(N = \max(n + 2c(\chi), 4c(\chi))\). Let \(v \in V_{\text{Kl}}(n)\).

i) We have \(\pi(k)T_\chi(v) = \chi(\lambda(k))T_\chi(v)\) for \(k \in \text{K}(\mathfrak{p}^N)\).
ii) Assume that \(c(\chi) > 0\). If \(T_\chi(v)\) is invariant under under the elements

\[
\begin{bmatrix}
1 & r_1_\mathfrak{m}^{-1} & r_2_\mathfrak{m}^{-1} & 1
1 & 1 & -r_1_\mathfrak{m}^{-1} & 1
1 & r_2_\mathfrak{m}^{-1} & 1 & 1
1 & 1 & 1 & 1
\end{bmatrix}
\] (14)

for \(r_1, r_2 \in \mathfrak{o}\), then \(T_\chi(v) = 0\).

Proof. i) Fix a Haar measure for the group \(\text{GSp}(4, F)\). By Lemma 3.3.1 of [RS] there is a disjoint decomposition

\[
\text{K}(\mathfrak{p}^N) = \bigsqcup_{z \in \mathfrak{o}/\mathfrak{p}^N} \begin{bmatrix}
1 & z_\mathfrak{m}^{-N}
1 & 1
1 & 1
1 & 1
\end{bmatrix}
\text{Kl}(\mathfrak{p}^N) = \bigsqcup_{z \in \mathfrak{o}/\mathfrak{p}^{N-1}} \text{Kl}(\mathfrak{p}^N) = \bigsqcup_{z \in \mathfrak{o}/\mathfrak{p}^{N-1}} t_N \begin{bmatrix}
1 & z_\mathfrak{m}^{-N+1}
1 & 1
1 & 1
1 & 1
\end{bmatrix}
\]

Here, the second disjoint union is not present if \(N = 0\). Therefore, by (6),

\[
\int_{\text{K}(\mathfrak{p}^N)} \chi(\lambda(k))\pi(k)T_\chi^{\text{Kl}}(v) \, dk = \text{vol(\text{Kl}(\mathfrak{p}^N))} \sum_{z \in \mathfrak{o}/\mathfrak{p}^N} \pi(\begin{bmatrix}
1 & z_\mathfrak{m}^{-N}
1 & 1
1 & 1
1 & 1
\end{bmatrix})T_\chi^{\text{Kl}}(v)
\]

\[
+ \text{vol(\text{Kl}(\mathfrak{p}^N))} \sum_{z \in \mathfrak{o}/\mathfrak{p}^{N-1}} \pi(t_N \begin{bmatrix}
1 & z_\mathfrak{m}^{-N+1}
1 & 1
1 & 1
1 & 1
\end{bmatrix})T_\chi^{\text{Kl}}(v)
\]

\[
= \text{vol(\text{Kl}(\mathfrak{p}^N))} q^N \int_{\mathfrak{o}} \pi(\begin{bmatrix}
1 & z_\mathfrak{m}^{-N}
1 & 1
1 & 1
1 & 1
\end{bmatrix})T_\chi^{\text{Kl}}(v) \, dz
\]

\[
+ \text{vol(\text{Kl}(\mathfrak{p}^N))} q^{N-1} \int_{\mathfrak{o}} \pi(t_N \begin{bmatrix}
1 & z_\mathfrak{m}^{-N+1}
1 & 1
1 & 1
1 & 1
\end{bmatrix})T_\chi^{\text{Kl}}(v) \, dz.
\]

This is a positive multiple of \(T_\chi(v)\), and thus implies the desired transformation rule.
ii) Assume that $T_\chi(v)$ is invariant under the elements in (14). Then

$$T_\chi(v) = \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & r_1 \omega^{-1} & r_2 \omega^{-1} \\ 1 & r_2 \omega^{-1} & -r_1 \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) T_\chi(v) \, dr_1 \, dr_2$$

$$= q \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & r_1 \omega^{-1} & r_2 \omega^{-1} \\ 1 & r_2 \omega^{-1} & -r_1 \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) T^{KL}_\chi(v) \, dr_1 \, dr_2 \, dz$$

$$+ \pi(t_N) \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & 1 & r_2 \omega^{-N-1} \\ -r_1 \omega^{-N-1} & 1 & 1 \\ z \omega^{-N+1} & -r_1 \omega^{-N-1} & -r_2 \omega^{-N-1} \end{array} \right) T^{KL}_\chi(v) \, dz \, dr_1 \, dr_2.$$ \hfill (15)

We claim that the first summand of (15) is zero. Now

$$\int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & r_1 \omega^{-1} & r_2 \omega^{-1} \\ 1 & r_2 \omega^{-1} & -r_1 \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) T^{KL}_\chi(v) \, dr_1 \, dr_2 \, dz$$

$$= \int_0^1 \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & 1 & 1 \\ x & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & (r_1 + x r_2) \omega^{-1} & r_2 \omega^{-1} \\ 1 & 1 & -(r_1 + x r_2) \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) v^x \, dr_1 \, dr_2 \, dx \, dz$$

$$+ \int_0^1 \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 1 & 1 \\ y & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & (r_1 y - r_2) \omega^{-1} & r_1 \omega^{-1} \\ 1 & 1 & -(r_1 y - r_2) \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) v^x \, dr_1 \, dr_2 \, dy \, dz$$

$$= \int_0^1 \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & 1 & 1 \\ x & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & r_1 \omega^{-1} & r_2 \omega^{-1} \\ 1 & r_2 \omega^{-1} & -r_1 \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) v^x \, dr_1 \, dr_2 \, dx \, dz$$

$$+ \int_0^1 \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 1 & 1 \\ y & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & r_2 \omega^{-1} & r_1 \omega^{-1} \\ 1 & 1 & -(r_1 y - r_2) \omega^{-1} \\ 1 & 1 & 1 \end{array} \right) v^x \, dr_1 \, dr_2 \, dy \, dz.$$
Moreover,
\[
\int_0 \int_0 \int_0 \pi(\begin{bmatrix} 1 & r_1 \omega^{-1} & z \omega^{-N} \\ \frac{1}{r_2 \omega^{-1}} & 1 & r_2 \omega^{-1} \\ \frac{1}{r_1 \omega^{-1}} & \frac{1}{-r_1 \omega^{-1}} & 1 \end{bmatrix}) \)v^\chi \ dr_1 \ dr_2 \ dz \\
= q^{2c(\chi)} \int_0 \int_0 \int_0 \int_0 \int_0 \chi(ab) \pi(\begin{bmatrix} 1 & -a u_1 \omega^{-c(\chi)} & bu_2 \omega^{-2c(\chi)} & z \omega^{-N} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & 1 & bu_2 \omega^{-2c(\chi)} & (a - r_1) \omega^{-c(\chi)} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & \frac{1}{-r_1 \omega^{-c(\chi)}} & 1 & 1 \end{bmatrix}) \)v \ dr_1 \ dr_2 \ dz \ da \ db
\]

with
\[
u_1 = 1 - r_1 a^{-1} \omega^{-c(\chi)^{-1}} \quad \text{and} \quad u_2 = 1 + b^{-1} r_2 \omega^{-2c(\chi)^{-1}}.
\]
Assume first \(c(\chi) = 1\). Then this integral is:
\[
\int_0 \int_0 \int_0 \int_0 \int_0 \chi(ab) \pi(\begin{bmatrix} 1 & - (a - r_1) \omega^{-c(\chi)} & bu_2 \omega^{-2c(\chi)} & z \omega^{-N} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & 1 & bu_2 \omega^{-2c(\chi)} & (a - r_1) \omega^{-c(\chi)} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & \frac{1}{-r_1 \omega^{-c(\chi)}} & 1 & 1 \end{bmatrix}) \)v \ dr_1 \ dr_2 \ dz \ da \ db
\]
\[
= 0.
\]
Assume that \(c(\chi) > 1\). Changing variables in \(r_1\) and then in \(a\), this integral is:
\[
\int_0 \int_0 \int_0 \int_0 \int_0 \chi(ab) \pi(\begin{bmatrix} 1 & -a(1 + r_1 \omega^{-c(\chi)^{-1}}) \omega^{-c(\chi)} & bu_2 \omega^{-2c(\chi)} & z \omega^{-N} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & 1 & bu_2 \omega^{-2c(\chi)} & a(1 + r_1 \omega^{-c(\chi)^{-1}}) \omega^{-c(\chi)} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & \frac{1}{-r_1 \omega^{-c(\chi)}} & 1 & 1 \end{bmatrix}) \)v \ dr_1 \ dr_2 \ dz \ da \ db
\]
\[
= \int_0 \int_0 \int_0 \int_0 \int_0 \chi(a(1 + r_1 \omega^{-c(\chi)^{-1}}) b) \pi(\begin{bmatrix} 1 & -a \omega^{-c(\chi)} & bu_2 \omega^{-2c(\chi)} & z \omega^{-N} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & 1 & bu_2 \omega^{-2c(\chi)} & a \omega^{-c(\chi)} \\ \frac{1}{bu_2 \omega^{-2c(\chi)}} & \frac{1}{-r_1 \omega^{-c(\chi)}} & 1 & 1 \end{bmatrix}) \)v \ dr_1 \ dr_2 \ dz \ da \ db
\]
\[
= 0.
\]
This proves that the first summand of (15) is zero, as claimed. We now have:
\[
T_{\chi}(v) = \pi(t_N) \int_0 \int_0 \int_0 \pi(\begin{bmatrix} 1 & r_2 \omega^{-N-1} & 1 \\ -r_1 \omega^{-N-1} & 1 & r_2 \omega^{-N-1} \\ -r_1 \omega^{-N-1} & -r_2 \omega^{-N-1} & 1 \end{bmatrix})
\]
Applying \(\pi(t_N)^{-1} \) to both sides and using the invariance of \(T_\chi(v) \) under \(t_N \in K(p^N) \) from i), we see that \(T_\chi(v) \) is:

\[
\int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & r_2 z & r_2 z \\ 0 & -r_2 z & -r_1 z \\ 0 & 0 & 1 \end{array} \right) T^{K\ell}_{\chi}(v) \, dz \, dr_1 \, dr_2 = \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & z \omega^{-N+1} \\ 0 & r_2 z & r_2 z \\ 0 & -r_2 z & -r_1 z \\ 0 & 0 & 1 \end{array} \right) T^{K\ell}_{\chi}(v) \, dz \, dr_1 \, dr_2
\]

where we have used the invariance properties of \(T^{K\ell}_{\chi}(v) \) from Lemma 4.3. By assumption, \(T_\chi(v) \) is invariant under the elements of the form (14); integrating again over these elements we have

\[
T_\chi(v) = \int_0^1 \int_0^1 \int_0^1 \pi \left(\begin{array}{ccc} 1 & r_1 -1 & r_2 -1 \\ 0 & 1 & z \omega^{-N+1} \\ 0 & 1 & 1 \end{array} \right) T^{K\ell}_{\chi}(v) \, dz \, dr_1 \, dr_2 \, dr.
\]

This integral is zero by an argument analogous to the one above proving that the first term of (15) is zero. The proof is complete. \(\square \)

Theorem 4.6. Let \((\pi, V)\) be a smooth representation of \(\text{GSp}(4, F) \) for which the center of \(\text{GSp}(4, F) \) acts trivially, and let \(\chi \) be a quadratic character of \(F^\times \) with center of \(\chi > 0 \). Let \(n \) be a non-negative integer and define \(N = \max(n + 2c(\pi), 4c(\pi)) \). If \(v \in V(n) \), then \(T_\chi(v) \in V(N, \chi) \). Moreover, assume that \(\pi \) is generic, irreducible and admissible with Whittaker model \(W(\pi, \psi_{c_1, c_2}) \) where \(c_1, c_2 \in \mathfrak{o}^\times \). If \(W \in V(n) \), then the \(\chi \)-twisted zeta integral (7) of \(T_\chi(W) \) is

\[
Z(s, T_\chi(W), \chi) = (q - 1)^{c(\pi)} \chi(c_2) G(\chi, -c(\chi))^3 W(1).
\]

For \(n \geq N_\pi \), the image of \(T_\chi : V(n) \to V(N, \chi) \) is spanned by the non-zero vector \(T_\chi(\theta^n W_{\pi}) \), where \(W_{\pi} \) is a newform for \(\pi \).

Proof. The first assertion was proven in i) of Lemma 4.5. Assume now that \(\pi \) is generic and irreducible. We work in the Whittaker model \(W(\pi, \psi_{c_1, c_2}) \) with \(c_1, c_2 \in \mathfrak{o}^\times \). By Lemma 4.1.1 of [RS] we have

\[
Z(s, T_\chi(v), \chi) = \int_{F^\times} T_\chi(v)(\begin{array}{c} t \\ 1 \end{array}) |t|^{s-3/2} \chi(t) \, d^\times t.
\]

By the definition of \(T_\chi(v) \), this is
We assert that the second summand is zero; it will suffice to prove that the integrand is zero. Let \(t \in F^\times \) and \(z \in \mathfrak{o} \). Let \(x \in \mathfrak{o} \). Then

\[
q \int_{F^\times} \int_{\mathfrak{o}} T_{\chi}^{Kl}(v) \left(\begin{bmatrix} t \\ 1 \\ t \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \, dz \, d^\times t
\]

\[
= \int_{F^\times} \int_{\mathfrak{o}} T_{\chi}^{Kl}(v) \left(\begin{bmatrix} t \\ 1 \\ t \\ 1 \\ t_N \\ 1 \\ 1 \\ 1 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \, dz \, d^\times t.
\]

where the last equality follows from the invariance properties of Lemma 4.3. Since \(\psi(p^{-1}) \neq 1 \), this implies that the integrand is zero. The first summand is

\[
q \int_{F^\times} \int_{\mathfrak{o}} T_{\chi}^{Kl}(v) \left(\begin{bmatrix} t \\ 1 \\ 1 \\ 1 \\ z^w/2 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \, dz \, d^\times t
\]

\[
= q \int_{F^\times} \int_{\mathfrak{o}} T_{\chi}^{Kl}(v) \left(\begin{bmatrix} t \\ 1 \\ 1 \\ 1 \end{bmatrix} \right) |t|^{s-3/2} \chi(t) \, dz \, d^\times t.
\]
\[
= q \int_{\mathbb{F}^\times} T_{\chi}^{Kl}(v)(\begin{bmatrix} t & t \\ 1 & 1 \end{bmatrix}) |t|^{s-3/2} \chi(t) dt
= q Z(s, T_{\chi}^{Kl}(v), \chi).
\]

The formula (16) follows now from (8). To prove the final assertion, we note first by Theorem 7.5.7 of [RS] that the space \(V(n) \) is spanned by the vectors \(\theta^i \theta^j \eta^k W_\pi \) with \(i + j + 2k = n - N_\pi \). The formula (3.7) of [RS] implies that

\[
Z(s, T_{\chi}(\theta^{n-N_\pi} W_\pi), \chi) = (q - 1) q^{c(\chi)} \chi(c_2) G(\chi, -c(\chi))^{3}(\theta^{n-N_\pi} W_\pi)(1)
= (q - 1) q^{c(\chi) + n-N_\pi} \chi(c_2) G(\chi, -c(\chi))^{3}W_\pi(1),
\]

and this is non-zero. To complete the proof, it will suffice to prove that \(T_{\chi}(\theta^{i} \theta^j \eta^k W_\pi) = 0 \) if \(j > 0 \) or \(k > 0 \). Let \(W = \theta^i \theta^j \eta^k W_\pi \) with \(j > 0 \) or \(k > 0 \). The \(\chi \)-twisted zeta integral of \(W \) is a constant times \((\theta^i \theta^j \eta^k W_\pi)(1) \); this quantity is zero by the definitions of \(\eta, \theta \), and Lemma 4.1.2 of [RS]. Since \(Z(s, T_{\chi}(W), \chi) = 0 \), by Theorem 4.3.7 of [RS] there exists \(W' \in V(N-2, \chi) \) such that \(T_{\chi}(W) = \eta W' \). This implies that \(T_{\chi}(W) \) is invariant under the elements in (14). Therefore, by ii) of Lemma 4.5, \(T_{\chi}(W) = 0 \).

\[\square\]

References

[BK] Brumer, A., and Kramer, K. (2010). Paramodular abelian varieties of odd conductor. Retrieved from arXiv:1004.4699.

[C] Casselman, W. (1973). On some results of Atkin and Lehner. Math. Ann., 201, 301–314.

[D] Deligne, P. (1973). Formes modulaires et représentations de GL(2). In: Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics, 349) (pp. 55–105). Berlin: Springer.

[PY] Poor, C., and Yuen, D. S. (2009). Paramodular cusp forms. Retrieved from arXiv:0912.0049.

[RS] Roberts, B., and Schmidt, R. (2007). Local Newforms for GSp(4) (Lecture Notes in Mathematics 1918). Berlin: Springer.

[S] Shimura, G. (1971). Introduction to the Arithmetic Theory of Automorphic Functions. Princeton, New Jersey: Princeton University Press.