Phenomenology of Transverse-Spin and Transverse-Momentum Effects in Hard Processes

Vincenzo Barone

Università del Piemonte Orientale “A. Avogadro”

INFN, Gruppo Collegato, Alessandria, Italy
Transverse spin effects at high energies are often suppressed (e.g., in DIS), but...

There are high-energy hadronic processes where this is not true, and transverse polarization gives a leading contribution: e.g., transversely polarized Drell–Yan production [Ralston and Soper 1979; Artru and Mekhfi 1990; Jaffe and Ji 1991]

[The third (leading twist) quark distribution function: transversity distribution]

Transverse spin naturally couples to transverse momenta. Many possible correlations between k_T, S_T and S_{qT} [Mulders et al., Kotzinian, ...: 1993-98]

k_T-dependent distributions (TMDs) give rise to single-spin asymmetries and azimuthal asymmetries in unpolarized reactions

Experiments in the last decade [HERMES, COMPASS, JLab] have shown that the asymmetries generated by the TMDs are sizable

Hadroproduction experiments [FNAL, RHIC] have provided beautiful data but their phenomenology is unclear
Transverse polarization \equiv Transversity

A chirally-odd distribution:

$$h_1(x) = \int \frac{d\xi^-}{4\pi} e^{ixP^+\xi^-} \langle P, S|\bar{\psi}(0)\gamma^+\gamma_\perp\gamma_5\psi(\xi)|P, S\rangle \bigg|_{\xi^+=\xi^T=0}$$

[In light-cone gauge, $A^+ = 0$, Wilson line reduces to 1]

To observe transversity, helicity must flipped twice, so one needs at least two hadrons (hadron-hadron scattering or semi-inclusive DIS).

No gluonic transversity distribution for spin-$\frac{1}{2}$ hadrons.

Non-singlet type evolution known up to NLO
Transverse-momentum distributions (TMDs)

k_T-dependent quark correlation matrix:

$$\Phi(x, k_T) = \int \frac{d\xi^-}{2\pi} \int \frac{d^2\xi_T}{(2\pi)^2} e^{ixP^+\xi^-} e^{-ik_T \cdot \xi_T} \langle P, S | \bar{\psi}(0) \mathcal{W}[0, \xi] \psi(\xi) | P, S' \rangle |_{\xi^+ = 0} ,$$

SIDIS: $\mathcal{W}[0, \xi] = \mathcal{W}^- [0, \infty] \mathcal{W}^T [0_T, \infty_T] \mathcal{W}^T [\infty_T, \xi_T] \mathcal{W}^- [\infty, \xi]$.

Diagram:

- C is connected
- P is momentum
- ξ, ξ_T are variables
Transverse links survive in light-cone gauge and describe final-state interactions that generate “T-odd” TMDs [Brodsky, Hwang & Schmidt 2002; Belitsky, Ji & Yuan 2003]

Leading-twist structure of the k_T-dependent quark correlator:

$$
\Phi(x, k_T) = \frac{1}{2} \left\{ f_1 \gamma_+ - f_{1T} \frac{\epsilon^{ij} k_T i S_T j}{M} \gamma_+ + \left(S_L g_{1L} + \frac{k_T \cdot S_T}{M} g_{1T} \right) \gamma_5 \gamma_+ \right. \\
+ h_{1T} \frac{[S_T, \gamma_+] \gamma_5}{2} + \left(S_L h_{1L} + \frac{k_T \cdot S_T}{M} h_{1T} \right) \frac{[k_T, \gamma_+] \gamma_5}{2M} + i h_{1} \frac{[k_T, \gamma_+]}{2M} \right\}
$$

8 independent TMDs, three of which survive upon k_T integration
“T-odd” distributions f_{1T}^\perp and h_{1}^\perp

f_{1T}^\perp and h_{1}^\perp measure T-odd correlations: $(\hat{P} \times k_T) \cdot S_T$ and $(\hat{P} \times k_T) \cdot S_{qT}$

Sivers distribution function

$$f_{q/p\uparrow}(x, k_T) - f_{q/p\uparrow}(x, -k_T) = 2 \frac{(k_T \times \hat{P}) \cdot S_T}{M} f_{1T}^\perp(x, k_T^2)$$

Azimuthal asymmetry of unpolarized quarks inside a transversely polarized proton

Boer-Mulders distribution function

$$f_{q/p\uparrow\downarrow}(x, k_T) - f_{q/p\downarrow\uparrow}(x, k_T) = \frac{(k_T \times \hat{P}) \cdot S_{qT}}{M} h_{1}^\perp(x, k_T^2)$$

Spin asymmetry of transversely polarized quarks inside an unpolarized proton

Due to the Wilson line structure, time reversal invariance does not imply $f_{1T}^\perp = 0$, but rather [Collins 2002]

$$f_{1T}^\perp(x, k_T^2)_{\text{SIDIS}} = -f_{1T}^\perp(x, k_T^2)_{\text{DY}}$$
Fragmentation functions

Unpolarized fragmentation function D_1 (couples to f_{1T}^\perp)

Collins fragmentation function

$$ D_{h/q\uparrow}(z, P_{hT}) - D_{h/q\downarrow}(z, P_{hT}) = 2 \frac{\left(\hat{\kappa}_T \times P_{hT}\right) \cdot S_{qT}}{zM_h} H_{1T}^\perp(z, P_{hT}^2) $$

Fragmentation of transversely polarized quarks into an unpolarized hadron

Collins function H_{1T}^\perp couples either to transversity h_1 (in transversely polarized SIDIS), or to the Boer-Mulders function h_{1T}^\perp (in unpolarized SIDIS)
Phenomenology: present status

Focus on three distribution functions: h_1 (transversity), h_1^\perp (Boer-Mulders), f_{1T}^\perp (Sivers). The first two combine in SIDIS with H_1^\perp (Collins)

Enforcing physical bounds (positivity, Soffer’s inequality) reduces the number of parameters

Transverse-momentum dependence: Gaussian type (supported by lattice studies (see talk by Musch) and phenomenological analyses of SIDIS and DY [Schweitzer et al.]

High-x tails and antiquark distributions largely unconstrained

Processes:

- $e p^\uparrow \rightarrow e' \pi X$ (Collins and Sivers effects with different angular distributions)
- $e p \rightarrow e' \pi X$, $pp \rightarrow \mu^+ \mu^- X$ (azimuthal asymmetries, Boer-Mulders effect)
- $e^+ e^- \rightarrow \pi \pi X$ (azimuthal asymmetries, Collins effect)
SIDIS cross section: 18 structure functions

\[
\frac{d^6 \sigma}{dx_B dy dz_h d\phi_h dP^2_{h \perp} d\phi_S} = \frac{\alpha^2_{em}}{x_B y Q^2} \left\{ (1 - y + \frac{1}{2} y^2) F_{UU,T} + (1 - y) F_{UU,L} \\
+ (2 - y) \sqrt{1 - y} \cos \phi_h F_{UU}^{\cos \phi_h} + (1 - y) \cos 2\phi_h F_{UU}^{\cos 2\phi_h} + \lambda_\ell y \sqrt{1 - y} \sin \phi_h F_{LU}^{\sin \phi_h} \\
+ S_{||} \left[(2 - y) \sqrt{1 - y} \sin \phi_h F_{UL}^{\sin \phi_h} + (1 - y) \sin 2\phi_h F_{UL}^{\sin 2\phi_h} \right] \\
+ S_{||} \lambda_\ell \left[y(1 - \frac{1}{2} y) F_{LL} + y \sqrt{1 - y} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\
+ S_{\perp} \left\{ \sin(\phi_h - \phi_S) \left((1 - y + \frac{1}{2} y^2) F_{UT,T}^{\sin(\phi_h - \phi_S)} + (1 - y) F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\
+ (1 - y) \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + (1 - y) \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\
+ (2 - y) \sqrt{1 - y} \sin \phi_S F_{UT}^{\sin \phi_S} + (2 - y) \sqrt{1 - y} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right\} \\
+ S_{\perp} \lambda_\ell \left[y(1 - \frac{1}{2} y) \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + y \sqrt{1 - y} \cos \phi_S F_{LT}^{\cos \phi_S} \\
+y \sqrt{1 - y} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}
\]
SIDIS asymmetries:

\[A^{w(\phi_h, \phi_S)}(x_B, y, z_h, P_{h \perp}) \equiv 2 \frac{\int d\phi_h \int d\phi_S \ w(\phi_h, \phi_S) \ d\sigma(\phi_h, \phi_S)}{\int d\phi_h \int d\phi_S \ d\sigma(\phi_h, \phi_S)} \]

\[= K(y) \frac{F^{w(\phi_h, \phi_S)}}{F_{UU}} \]

Structure functions in the extended parton model:

Collins
\[F^{\sin(\phi_h + \phi_S)}_{UT} = C \left[\hat{h} \cdot \kappa_T \frac{1}{M_h} h_1 H_1^\perp \right] \]

Sivers
\[F^{\sin(\phi_h - \phi_S)}_{UT,T} = C \left[\hat{h} \cdot \kappa_T \frac{1}{M} f_{1T} D_1 \right] \]

Boer – Mulders
\[F^{\cos^2 \phi_h}_{UU} = C \left[- \frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot \kappa_T) - k_T \cdot \kappa_T}{MM_h} h_1^\perp H_1^\perp \right] \]

Cahn
\[F^{\cos^2 \phi_h}_{UU, Cahn} = \frac{M^2}{Q^2} C \left[(2(\hat{h} \cdot k_T)^2 - k_T^2) \frac{1}{M^2} f_1 D_1 \right] \]
Extended parton model is the zeroth-order approximation of the TMD factorization theorem, valid for $P_{h \perp}(Q_T) \ll Q$ [Ji, Ma, Yuan]:

\[
F \sim \int \, d^2 k_T \int \, d^2 \kappa_T \int \, d^2 l_T \, \delta^2(k_T - \kappa_T + l_T + q_T) \\
\times f(x_B, k_T^2) \hat{H}(Q^2) \, U(l_T^2) \, D(z_h, \kappa_T^2)
\]

At high transverse momenta, $P_{h \perp}(Q_T) \gg \Lambda_{QCD}$, the twist-three collinear factorization theorem holds [Qiu, Sterman]:

\[
d\sigma \sim \int \frac{dx}{x} \int \frac{dz}{z} \delta \left(\frac{Q_T^2}{Q^2} - \left(1 - \frac{x}{x_B}\right) \left(1 - \frac{z}{z_h}\right) \right) \\
\times \left[x \frac{dG_F(x, x)}{dx} \hat{H} + G_F(x, x') \hat{H}' \right] \, D(z) + \ldots
\]

In the intermediate region, $\Lambda_{QCD} \ll P_{h \perp}(Q_T) \ll Q$, there is a relation between k_T-moments of TMDs and quark-gluon correlation functions

→ Evolution equations of TMDs (see Cherednikov’s talk)
Collins asymmetries in SIDIS

Combined fit of SIDIS (HERMES, COMPASS) and e^+e^- (Belle) [Anselmino et al.]

\[A_{\text{Coll}}^+ (p) \sim e_u^2 h_1^u H_1^{\perp\text{fav}} + e_d^2 h_1^d H_1^{\perp\text{unf}} \]

\[A_{\text{Coll}}^- (p) \sim e_u^2 h_1^u H_1^{\perp\text{unf}} + e_d^2 h_1^d H_1^{\perp\text{fav}} \]

$A_{\text{Coll}}^+ > 0$, $A_{\text{Coll}}^- < 0$: consistent with h_1^u positive, h_1^d negative

$|A_{\text{Coll}}^-| \simeq |A_{\text{Coll}}^+|$ implies $|H_1^{\perp\text{unf}}| \simeq |H_1^{\perp\text{fav}}|$
Extraction of tranversity [Anselmino et al.]

\[h_1^q(x) = N x^\alpha (1 - x)^\beta [f_1^q(x) + g_1^q(x)], \] Gaussian \(k_T \) dependence, no antiquark
Prediction for COMPASS data with transversely polarized proton [Anselmino et al.]
Sivers asymmetries in SIDIS

[Anselmino et al.]

Burkardt sum rule \(\sum_{a=q,\bar{q},g} \int_0^1 dx \ f_{1T}^{\perp(1)} a (x) = 0 \) saturated by quarks and antiquarks: no room for gluons.

Signs and magnitudes \((f_{1T}^{\perp u} \simeq -f_{1T}^{\perp d}) \) in agreement with chiral models, impact-parameter approach and large \(N_c \)
Boer-Mulders asymmetries in SIDIS [VB, Melis, Prokudin]

Three sources of $\langle \cos 2\phi \rangle$: pQCD (negligible), Boer-Mulders and Cahn (both relevant)

Prediction of $A_{\pi^-}^{\cos 2\phi} > A_{\pi^+}^{\cos 2\phi}$ confirmed by data (first evidence of BM)

Signs and magnitudes ($h_{1u}^+ \sim 2f_{1T}^u$, $h_{1d}^+ \sim -f_{1T}^d$) in agreement with theoretical expectations (impact-parameter + lattice, large N_c)
At small Q_T, the $\cos 2\phi$ asymmetry in DY production (ν parameter) is dominated by the Boer-Mulders contribution

\[
\frac{d^6\sigma_{UU}}{d^4q \, d\Omega} = \frac{\alpha_{em}^2}{6sQ^2} \left\{ (1 + \cos^2 \theta) W_{UU}^1 + \sin^2 \theta W_{UU}^2 + \sin 2\theta \cos \phi W_{UU}^{\cos \phi} + \sin^2 \theta \cos 2\phi W_{UU}^{\cos 2\phi} \right\}
\]

\[
\nu = \frac{2 W_{UU}^{\cos 2\phi}}{W_{UU}^1 + W_{UU}^2}
\]

\[
W_{UU}^{\cos 2\phi} = \frac{1}{3} C \left[\frac{2(\hat{h} \cdot k_1T)(\hat{h} \cdot k_2T) - k_1T \cdot k_2T}{M_1 M_2} h_1^+ \bar{h}_1^+ \right]
\]

E866/NuSea data vs. [VB, Melis & Prokudin] (see also [Lu & Schmidt])
Phenomenology: perspectives

- Implement evolution of transverse momentum distributions
- Move towards global fits (take all perturbative and non-perturbative effects into account, fit simultaneously polarized and unpolarized cross sections, etc.)
- Enlarge datasets with:
 - More SIDIS data (JLab, EIC): neutron target, wider x range, etc.
 - Polarized DY measurements
 Probe various combinations of h_1, f_{1T}^+ and h_1^+
 No fragmentation functions involved
Future Drell-Yan experiments

Experiment	Particles	Beam	\sqrt{s} (GeV)	x_1 or x_2 range
COMPASS	$\pi^\pm + p^\uparrow$	160 GeV	17.4	0.2 – 0.3
PAX	$p^\uparrow + \bar{p}^\uparrow$	collider	14	0.1 – 0.9
PANDA	$\bar{p} + p^\uparrow$	15 GeV	5.5	0.2 – 0.4
J–PARC	$p^\uparrow + p$	50 GeV	10	0.5 – 0.9
NICA	$p^\uparrow + p$	collider	20	0.1 – 0.8
RHIC	$p^\uparrow + p$	collider	500	0.05 – 0.1
RHIC IT	$p^\uparrow + p$	250 GeV	22	0.25 – 0.4
Direct determination of \(h_1 \) from \(p^\uparrow p^\uparrow, \ p^\uparrow \bar{p}^\uparrow \)

More information on \(h_1^\perp \) and \(f_{1T}^\perp \) from \(pp^\uparrow \)

Determination of antiquark distributions

Test of modified universality: SIDIS = - DY
Summary

- Transverse-spin and transverse-momentum physics is a rapidly evolving field.
- Many important experimental (single-spin asymmetries) and theoretical (identification of TMDs, relation with twist-three, evolution equations, lattice) results.
- Phenomenology is growing. It will come to maturity (global fits) with the advent of polarized DY data.
EXTRA SLIDES
Evolution of h_1 known at NLO. At small x suppressed compared to helicity.
Semi-inclusive DIS
SSAs in inclusive hadroproduction

\[p + p^\uparrow \rightarrow h + X \]