Retrospective study of prognostic factors in pediatric invasive pneumococcal disease

Nan-Chang Chiu, Hsin Chi, Chun-Chih Peng, Hung-Yang Chang, Daniel Tsung-Ning Huang, Lung Chang, Wei-Te Lei, Chien-Yu Lin

1 Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
2 MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
3 MacKay Medical College, New Taipei, Taiwan
4 Department of Medical Technology, Jen-Teh Junior college of Medicine, Nursing and Management, Miaoli, Taiwan
5 Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan

Corresponding Author: Chien-Yu Lin
Email address: mmhped.lin@gmail.com

Streptococcus pneumoniae remains the leading causative pathogen in pediatric pneumonia and bacteremia throughout the world. The invasive pneumococcal disease (IPD) is known as isolation of S. pneumoniae from a normally sterile site (eg, blood, cerebrospinal fluid, synovial fluid, pericardial fluid, pleural fluid, or peritoneal fluid). The aim of this study is to survey the clinical manifestations and laboratory results of IPD and identify the prognostic factors of mortality. From January 2001 to December 2006, a retrospective review of chart was performed in a teaching hospital in Taipei. The hospitalized pediatric patients with the diagnosis of pneumonia, arthritis, infectious endocarditis, meningitis or sepsis were recruited. Among them, 50 patients were pneumococcal infections proved by positive culture results or antigen tests. Clinical manifestations, laboratory data and hospitalization courses were analyzed. The median age was 3.5-year-old and there were 30 male patients (60%). Eight patients (16%) had underlying disease such as leukemia or congenital heart disease. Hemolytic uremic syndrome (HUS) was observed in ten patients and extracorporeal membrane oxygenation (ECMO) was performed in three patients. Leukocytosis, elevated C-reactive protein and AST level were noted in most of the patients. The overall mortality rate was 10%. We found that leukopenia, thrombocytopenia and high CRP level were significant predictors for mortality. In conclusion, S. pneumoniae remains an important health threat worldwide and IPD is life-threatening with high mortality rate. We found leukopenia, thrombocytopenia, and high CRP levels to be associated with mortality in pediatric IPD, and these factors are worthy of special attention at admission. Although we failed to identify a statistically significant prognostic factor in multivariate analysis due to relatively small sample size, we suggest an aggressive antibiotic treatment in patients with these factors at admission.
Further large-scale studies are warranted.
Retrospective study of prognostic factors in pediatric invasive pneumococcal disease

Nan-Chang Chiu\(^{1,2,3}\), Hsin Chi\(^{1,2,3}\), Chun-Chi Peng\(^{1,2,3}\), Hung-Yang Chang\(^{1,4}\), Daniel Tsung-Ning Huang\(^{1,2}\), Lung Chang\(^{1,2}\), Wei-Te Lei\(^{5}\) and Chien-Yu Lin\(^{5}\)

1 Department of Pediatrics, MacKay Children’s Hospital, Taipei
2 MacKay Junior College of Medicine, Nursing and Management, Taipei
3 MacKay Medical College, New Taipei
4 Department of Medical Technology, Jen-Teh Junior college of Medicine, Nursing and Management, Miaoli
5 Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu City

Correspondence: Dr. Chien-Yu Lin, Hsinchu MacKay Memorial Hospital, Hsinchu city. No.690, Sec. 2, Guangfu Rd, East Dist, Hsinchu City 30071, Taiwan (e-mail: mmhped.lin@gmail.com)

Nan-Chang Chiu and Hsin Chi contribute to this work equally.
Abbreviations: AST = aspartate aminotransferase, CRP = C-reactive protein, CSF = cerebrospinal fluid, ECMO = extracorporeal membrane oxygenation, HUS = hemolytic uremic syndrome, IPD = invasive pneumococcal disease, MIC = minimal inhibitory concentration, PD-1 = programmed cell death 1 protein, T-Ag = Thomsen-Friedenreich antigen.
Abstract

*Streptococcus pneumoniae* remains the leading causative pathogen in pediatric pneumonia and bacteremia throughout the world. The invasive pneumococcal disease (IPD) is known as isolation of *S. pneumoniae* from a normally sterile site (e.g., blood, cerebrospinal fluid, synovial fluid, pericardial fluid, pleural fluid, or peritoneal fluid). The aim of this study is to survey the clinical manifestations and laboratory results of IPD and identify the prognostic factors of mortality. From January 2001 to December 2006, a retrospective review of chart was performed in a teaching hospital in Taipei. The hospitalized pediatric patients with the diagnosis of pneumonia, arthritis, infectious endocarditis, meningitis or sepsis were recruited. Among them, 50 patients were pneumococcal infections proved by positive culture results or antigen tests. Clinical manifestations, laboratory data and hospitalization courses were analyzed. The median age was 3.5-year-old and there were 30 male patients (60%). Eight patients (16%) had underlying disease such as leukemia or congenital heart disease. Hemolytic uremic syndrome (HUS) was observed in ten patients and extracorporeal membrane oxygenation (ECMO) was performed in three patients. Leukocytosis, elevated C-reactive protein and AST level were noted in most of the patients. The overall mortality rate was 10%. We found that leukopenia, thrombocytopenia and high CRP level were significant predictors for mortality, although they are not statistically significant is multivariate analysis. In conclusion, *S. pneumoniae* remains an important health threat worldwide and IPD is life-threatening with high mortality rate. We found leukopenia, thrombocytopenia, and high CRP levels to be associated with mortality in pediatric IPD, and these factors are worthy of special attention at admission. Although we failed to identify a statistically significant prognostic factor in multivariate analysis due to relatively small sample size, we suggest an aggressive antibiotic treatment in patients with these factors at
admission. Further large-scale studies are warranted.
**INTRODUCTION**

*Streptococcus pneumoniae*, a Gram-positive diplococcus, remains the leading causative pathogen in pediatric pneumonia and bacteremia worldwide. (Jroundi et al. 2014; Tan 2012) Colonization with *S. pneumoniae* is common and contributes to invasive disease. (Hamaluba et al. 2015) In 2000, *S. pneumoniae* reportedly caused 14.5 million episodes of serious disease and 11% of all deaths in children younger than 5 years. (O'Brien et al. 2009) Invasive pneumococcal disease (IPD) is defined as isolation of *S. pneumoniae* from a normally sterile site (e.g., blood, cerebrospinal fluid [CSF], synovial fluid, pericardial fluid, pleural fluid, or peritoneal fluid). (Levine et al. 1999) The mortality rate associated with IPD is high, ranging from approximately 5.3 to 27.5%, and identification of high-risk groups is important. (Berjohn et al. 2008; Chen et al. 2009; Gomez-Barreto et al. 2010; Marrie et al. 2011; Ruckinger et al. 2009; Rueda et al. 2010; Shariatzadeh et al. 2005; Ulloa-Gutierrez et al. 2003) Some factors associated with outcome include breastfeeding, passive smoking, antimicrobial resistance, pneumococcal serotype, and prompt use of antibiotics. (Berjohn et al. 2008; Haddad et al. 2008; Ruckinger et al. 2009; Tan 2012) The emerging resistance of *S. pneumoniae* brings challenges to successful treatment. (Ibrahim et al. 2000; Minami et al. 2015) The aim of this study was to survey the clinical manifestations and laboratory results of IPD in children and identify the prognostic factors of mortality.

**METHODS**


Study Design and Study Population

This study was approved by the Ethics Committees of MacKay Memorial Hospital, Taiwan (IRB No.: 16MMHIS035e). MacKay Memorial Hospital is a tertiary teaching hospital in Taipei, Taiwan. From January 2001 to December 2006, a retrospective chart review of hospitalized pediatric patients were performed. Patients younger than 18 years old hospitalized for infectious etiologies, eg. pneumonia, meningitis, or sepsis, were enrolled in the study. Patients admitted for noninfectious causes were excluded, such as preterm delivery, diabetes mellitus, epilepsy, cardiovascular diseases, or scheduled chemotherapy. Since chronic underlying illness is a risk factor of IPD, patients with underlying diseases were not excluded in our analysis. The clinical history and laboratory tests were investigated to identify those with IPD. IPD is also a communicable disease in Taiwan and physicians have to report to Centers for Disease Control, Taiwan about patients with IPD. We also search the database of communicable diseases to detect patients with IPD. The electronic charts were also reviewed using the ICD-9-CM coding system to reduce missing patients with IPD. Only laboratory-confirmed cases were enrolled for investigation and analysis.

In total, 13,141 patients were admitted for infectious etiologies during the study period and enrolled in our screen. Among them, 50 (0.4%) patients with pneumococcal infections proven by positive culture results or antigen tests were detected. Five patients (10%) died and the clinical manifestations, laboratory data, and hospitalization courses were compared between the survival and mortality groups.

Laboratory Tests

Upon admission, blood tests including complete blood count, C-reactive protein (CRP) and
blood cultures were routinely obtained. Spinal tap, pleurocentesis and video-assisted thoracoscopic surgery were selectively performed according to the patients’ clinical conditions and the judgement of physicians. Data from blood, CSF, and pleural fluid cultures performed using aseptic technique according to manufacturer’s instructions were reviewed. Urine pneumococcal antigen, a reliable tool with a moderate sensitivity and good specificity to detect *S. pneumoniae*, was also investigated (Binax NOW *S. pneumoniae* urinary antigen test; Binax, Portland, Maine). (Roson et al. 2004) Complete blood count, CRP, Thomsen-Friedenreich antigen, and biochemistry results were also reviewed. Virus studies were also performed and analyzed. Antibiotic susceptibility testing interpretation was based on Clinical and Laboratory Standards Institute 2010 criteria.

**Statistical Analysis**

The statistical analysis was performed using SPSS version 15.0 (SPSS, Chicago, IL). Categorical variables were compared using the chi-square test and Fisher’s exact test. Continuous variables were compared using the t test. Variables with a *p*-value < 0.05 were included into multivariate analysis. Log regression was performed for multivariate analysis. A *p*-value < 0.05 was considered statistically significant.

**RESULTS**

Of the 50 patients (median age, 3.5 years) included in the study, 30 (60%) were males (Table 1). Eight patients (16%) had underlying diseases, such as leukemia or congenital heart disease. IPD
was more common in cold seasons (36 patients, 72% in autumn and winter) and pneumonia was
diagnosed in 46 patients (92%). Twenty-eight patients (56%) had sepsis and four (8%) had
meningitis. Three patients had concurrent involvement of pneumococcal meningitis, sepsis, and
pneumonia. Concurrent virus infection was noted in two patients (echovirus 6 and respiratory
syncytial virus, respectively) and both of them survived. Hemolytic uremic syndrome (HUS) was
observed in ten patients and extracorporeal membrane oxygenation (ECMO) was performed in
three patients. Leukocytosis and elevated levels of CRP and aspartate aminotransferase were
noted in most of the patients. Median hospital stay was 15 days and the overall mortality rate was
10%.

Comparing the clinical manifestations, laboratory data, and hospital course between the survival
and mortality groups, we found that leukopenia (white blood cell < 4,000/μL), thrombocytopenia
(platelet count < 100,000/μL), and high CRP levels (CRP > 20 mg/dL) were significant
predictors for mortality (Table 2). Antibiotic resistance was not associated with mortality. The
multivariate analysis showed no significant single prognostic factor.

**DISCUSSION**

*S. pneumoniae* is the most important bacterial pathogen in both invasive and mucosal disease
worldwide.(Jroundi et al. 2014; O'Brien et al. 2009; Tan 2012; Wei et al. 2015) In 2000, it was
estimated to cause 14.5 million episodes of serious disease and 11% of all deaths in children
younger than 5 years.(O'Brien et al. 2009) The carrier rate is high and is influenced by a number
of factors, including age, race, exposure to cigarette smoke, and day care attendance.(Ebruke et
In a cross-sectional observational study conducted in the United Kingdom, the carrier rate in children was 47% (Hamaluba et al. 2015). High prevalence of nasopharyngeal carriage were also observed in many areas, such as Taiwan (21%) and Egypt (29.2%) (Chiou et al. 1998; El-Nawawy et al. 2015).

Followed by the high prevalence of nasopharyngeal carriage, *S. pneumoniae* is the most common pathogen in children with severe infection (Jroundi et al. 2014). In hospitalized children with acute respiratory infections, *S. pneumoniae* was the most frequently detected bacteria (14.4%) (Wei et al. 2015). In patients with IPD, the mortality rate is high in both children and adults, and the findings of some important studies are summarized in Table 3. Most of IPD developed in young children and our study is consistent with previous report (Prevention 2010). Only 2 patients were older than 6 years old and both of them survived. Although the mortality rate varies in different countries, time, and study, IPD remains an important health issue. Prompt diagnosis and timely treatment are important. The burden of disease is heavy and *S. pneumoniae* remains the most important health threat worldwide.

Pneumococcal pneumonia with empyema is the most common form of IPD. Infectious endocarditis is a rare form of IPD, with a mortality rate 20.7% (de Egea et al. 2015). Most cases of infectious endocarditis occur in adults with underlying disease; there were no children with pneumococcal infectious endocarditis in our study group. The presence of pneumococcal carriage and IPD is multifactorial. The presence of an underlying chronic illness is a risk factor, whereas breastfeeding has protective effect against IPD (Chen et al. 2009; Haddad et al. 2008; Lee et al. 2003; Levine et al. 1999). Race and group child care attendance also play a role in IPD (Pilishvili et al. 2010). In patients with IPD, prompt and timely use of antibiotics is
associated with favorable outcome; apparently, antimicrobial resistance does not affect outcome. (Berjohn et al. 2008; Kumashi et al. 2005) The findings in our study are consistent with those in previous reports. Upon admission, the presence of cytopenia and meningitis may indicate unfavorable outcome. (Chen et al. 2009) In addition, we found thrombocytopenia and high CRP levels to be associated with mortality. ECMO use and the presence of meningitis were indicative of more severe disease and were associated with poor outcome. The presence of HUS was not suggestive of poor prognosis in our study. Increased resistance of S. pneumoniae has been reported and prompt and adequate antimicrobial treatment is essential for successful treatment. (Ibrahim et al. 2000; Minami et al. 2015) For patients with suspected IPD, bacterial cultures are the gold standard and provide tailored guidance to antibiotics use. It is important to obtain specimens before initiating antimicrobial agents. However, cultures are time-consuming and adequate empirical antibiotics regimen remains a challenge for primary physicians. Based on the finding of our study, we suggest an aggressive antibiotic treatment and early surgical intervention if needed in patients with leukopenia, thrombocytopenia and elevated CRP level at admission.

The host immune responses to infections are regulated by a mixture of pro-inflammatory and anti-inflammatory mediators. In addition to traditionally laboratory tests, genes encoding these mediators are associated with disease progression and outcomes of patients with sepsis and are regarded as a prognostic factor of severe infection. As medicine advances, mounting evidences show that patient-specific genetic polymorphism contributes to disease prognosis and potential for treatment. (Holmes et al. 2003) Various single nucleotide polymorphisms of genes that encode cytokines, cell surface receptors, lipopolysaccharide ligands, mannose-binding lectin, heat shock protein 70, angiotensin I-converting enzyme, plasminogen activator inhibitor, and
caspase-12 are associated with increased susceptibility to infection and poor outcomes. (Frantz et al. 2007) For example, programmed cell death 1 protein (PD-1) is a negative costimulatory molecule and involved in the host responses to sepsis. Patients with G homozygotes of PD-1 rs11568821 had higher risk of mortality, sepsis score and a higher demand of vasopressor therapy than A allele carriers. (Mansur et al. 2014) Similarly, CD14 plays a crucial role in initiating and perpetuating the pro-inflammatory processes during sepsis. Compared with the C-allele carrier of CD14 rs2569190, TT-homozygous patients had a favorable outcome in sepsis. (Mansur et al. 2015) The importance of genetic polymorphism and infectious disease warrants our attention. Association between genetic polymorphisms and IPD is also reported. (Brouwer et al. 2009; Lundbo et al. 2016; Rautanen et al. 2016) For instance, in Kenya children, polymorphism in a lincRNA was associated with a doubled risk of pneumococcal bacteremia. (Rautanen et al. 2016) Genetic counselling was performed in our study patients but genetic susceptibilities were not tested. Further studies are warranted to elucidate the relationship between genetic polymorphism and IPD and genetic polymorphism may serve as a valuable prognostic factor in patients with IPD.

Our study has some limitations. First, the sample size was too small that the multivariate analysis showed no significant single prognostic factor. IPD is a severe and relatively rare disease and the estimated incidence of IPD was approximate 12.9/100,000. (Prevention 2010) Our study demonstrated three prognostic factors of unfavorable outcome of IPD, but no statistically significant prognostic factor was identified in multivariate analysis due to relatively small sample size. Further large-scale, prospective studies are warranted. Second, the pneumococcal serotype was not investigated. Association between pneumococcal serotypes and patient outcomes has been reported. (Ciruela et al. 2013; Kapatai et al. 2016; Ruckinger et al. 2009; Weinberger et al.
However, serotype identification is not always available in most hospitals and, therefore, its clinical use is limited. Furthermore, our study was conducted before the introduction of pneumococcal conjugate vaccination in Taiwan and the protective effects of pneumococcal vaccination were not investigated. The introduction of pneumococcal conjugate vaccination has dramatically decreased the incidence of IPD.(2010; Abdelnour et al. 2015; Pilishvili et al. 2010; von Gottberg et al. 2014) In the era of post-heptavalent pneumococcal conjugate vaccine, serotype replacement and breakthrough infection are of global concern.(Abdelnour et al. 2015; Park et al. 2010; Tan 2012) The vaccine coverage rate differs among different countries; for example, the coverage rate is approximately 90% in the United States and 10% in Shanghai, China.(Boulton et al. 2016; Hill et al. 2015) Therefore, the protective effect of vaccination is influenced by the coverage rate and is difficult to evaluate. Finally, this study is a retrospective study and conducted in one teaching hospital in northern Taiwan. Some tests were not always available and there were some missing data. For example, spinal tap and pleurocentesis were not performed in all patients. The prevalence, managements, outcomes and findings may be different in different hospitals, areas, countries and eras.

In conclusion, *S. pneumoniae* remains an important health threat worldwide, and IPD is a life-threatening disease with a high mortality rate. Pneumococcal vaccination should be encouraged and physicians should maintain high alertness toward patients with IPD. We found leukopenia, thrombocytopenia, and high CRP levels to be associated with mortality in pediatric IPD, and these factors are worthy of special attention at admission. Although we failed to identify a statistically significant prognostic factor in multivariate analysis due to relatively small sample size, we suggest an aggressive antibiotic treatment in patients with these factors at admission. Further large-scale studies are warranted.
REFERENCES

2010. Invasive pneumococcal disease in young children before licensure of 13-valent pneumococcal conjugate vaccine - United States, 2007. MMWR Morb Mortal Wkly Rep 59:253-257.

Abdelnour A, Arguedas A, Dagan R, Soley N, Porat N, Mercedes Castrejon M, Ortega-Barria E, Colindres R, Pirçon J-Y, DeAntonio R, and Van Dyke MK. 2015. Etiology and Antimicrobial Susceptibility of Middle Ear Fluid Pathogens in Costa Rican Children With Otitis Media Before and After the Introduction of the 7-Valent Pneumococcal Conjugate Vaccine in the National Immunization Program: Acute otitis media microbiology in Costa Rican children. Medicine 94:e320. 10.1097/md.0000000000000320

Berjohn CM, Fishman NO, Joffe MM, Edelstein PH, and Metlay JP. 2008. Treatment and Outcomes for Patients With Bacteremic Pneumococcal Pneumonia. Medicine 87:160-166. 10.1097/MD.0b013e318178923a

Boulton ML, Ravi NS, Sun X, Huang Z, and Wagner AL. 2016. Trends in childhood pneumococcal vaccine coverage in Shanghai, China, 2005-2011: a retrospective cohort study. BMC Public Health 16:109. 10.1186/s12889-016-2785-7

Brouwer MC, de Gans J, Heckenberg SG, Zwinderman AH, van der Poll T, and van de Beek D. 2009. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 9:31-44. 10.1016/s1473-3099(08)70261-5

Chen CJ, Lin CL, Chen YC, Wang CW, Chiu CH, Lin TY, and Huang YC. 2009. Host and microbiologic factors associated with mortality in Taiwanese children with invasive pneumococcal diseases, 2001 to 2006. Diagn Microbiol Infect Dis 63:194-200. S0732-8893(08)00437-9 [pii] 10.1016/j.diagmicrobio.2008.10.006

Chiou CC, Liu YC, Huang TS, Hwang WK, Wang JH, Lin HH, Yen MY, and Hsieh KS. 1998. Extremely high prevalence of nasopharyngeal carriage of penicillin-resistant Streptococcus pneumoniae among children in Kaohsiung, Taiwan. J Clin Microbiol 36:1933-1937.

Ciruela P, Soldevila N, Selva L, Hernández S, García-García JJ, Moraga F, de Sevilla MF, Codina G, Planes AM, Esteva C, Coll F, Cardeñosa N, Jordan I, Batalla J, Salleras L,
Muñoz-Almagro C, and Domínguez A. 2013. Are risk factors associated with invasive pneumococcal disease according to different serotypes? *Human Vaccines & Immunotherapeutics* 9:712-719. 10.4161/hv.23270

de Egea V, Muñoz P, Valerio M, de Alarcón A, Lepe JA, Miró JM, Gálvez-Acebal J, García-Pavía P, Navas E, Goenaga MA, Fariñas MC, Vázquez EG, Marin M, Bouza E, and Group atGS. 2015. Characteristics and Outcome of Streptococcus pneumoniae Endocarditis in the XXI Century: A Systematic Review of 111 Cases (2000–2013). *Medicine* 94:e1562. 10.1097/md.0000000000001562

Ebruke C, Roca A, Egere U, Darboe O, Hill PC, Greenwood B, Wren BW, Adegbola RA, and Antonio M. 2015. Temporal changes in nasopharyngeal carriage of Streptococcus pneumoniae serotype 1 genotypes in healthy Gambians before and after the 7-valent pneumococcal conjugate vaccine. *PeerJ* 3:e903. 10.7717/peerj.903

El-Nawawy AA, Hafez SF, Meheissen MA, Shahtout NM, and Mohammed EE. 2015. Nasopharyngeal Carriage, Capsular and Molecular Serotyping and Antimicrobial Susceptibility of Streptococcus pneumoniae among Asymptomatic Healthy Children in Egypt. *Journal of Tropical Pediatrics* 61:455-463. 10.1093/tropej/fmv060

Frantz S, Ertl G, and Bauersachs J. 2007. Mechanisms of disease: Toll-like receptors in cardiovascular disease. *Nat Clin Pract Cardiovasc Med* 4:444-454. 10.1038/ncpcardio0938

Gomez-Barreto D, Espinosa-Monteros LE, Lopez-Enriquez C, Jimenez-Rojas V, and Rodriguez-Suarez R. 2010. Invasive pneumococcal disease in a third level pediatric hospital in Mexico City: epidemiology and mortality risk factors. *Salud Publica Mex* 52:391-397.

Haddad MB, Porucznik CA, Joyce KE, De AK, Pavia AT, Rolfs RT, and Byington CL. 2008. Risk factors for pediatric invasive pneumococcal disease in the Intermountain West, 1996-2002. *Ann Epidemiol* 18:139-146. 10.1016/j.annepidem.2007.09.006

Hamaluba M, Kandasamy R, Ndiham S, Morton R, Caccamo M, Robinson H, Kelly S, Field A, Norman L, Pusted E, Thompson BAV, Zafar A, Kerridge SA, Lazarus R, John T, Holmes J, Fenlon SN, Gould KA, Waight P, Hinds J, Crook D, Snape MD, and Pollard AJ. 2015. A Cross-Sectional Observational Study of Pneumococcal Carriage in Children, Their Parents, and Older Adults Following the Introduction of the 7-Valent Pneumococcal Conjugate Vaccine. *Medicine* 94:e335. 10.1097/md.0000000000000335

Hill HA, Elam-Evans LD, Yankey D, Singleton JA, and Kolas M. 2015. National, State, and Selected Local Area Vaccination Coverage Among Children Aged 19-35 Months - United States, 2014. *MMWR Morb Mortal Wkly Rep* 64:889-896.

Holmes CL, Russell JA, and Walley KR. 2003. Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. *Chest* 124:1103-1115.
Ibrahim EH, Sherman G, Ward S, Fraser VJ, and Kollef MH. 2000. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. *Chest* 118:146-155.

Jroundi I, Mahraoui C, Benmessaooud R, Moraleda C, Tligui H, Seffar M, Kettani SC, Benjelloun BS, Chaacho S, Maaroufi A, Hayes EB, Álvarez-Martinez MJ, Muñoz-Almagro C, Ruiz J, Alonso PL, and Bassat Q. 2014. The Epidemiology and Aetiology of Infections in Children Admitted with Clinical Severe Pneumonia to a University Hospital in Rabat, Morocco. *Journal of Tropical Pediatrics* 60:270-278. 10.1093/tropej/fmu010

Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP, Harrison TG, and Fry NK. 2016. Whole genome sequencing of *Streptococcus pneumoniae*: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. *PeerJ* 4:e2477. 10.7717/peerj.2477

Kumashi P, Girgawy E, Tarrand JJ, Rolston KV, Raad II, and Safdar A. 2005. *Streptococcus pneumoniae* Bacteremia in Patients With Cancer: Disease Characteristics and Outcomes in the Era of Escalating Drug Resistance (1998-2002). *Medicine* 84:303-312.

Lee CY, Chiu CH, Huang YC, Chung PW, Su LH, Wu TL, and Lin TY. 2003. Invasive pneumococcal infections: a clinical and microbiological analysis of 53 patients in Taiwan. *Clin Microbiol Infect* 9:614-618.

Levine OS, Farley M, Harrison LH, Lefkowitz L, McGeer A, and Schwartz B. 1999. Risk factors for invasive pneumococcal disease in children: a population-based case-control study in North America. *Pediatrics* 103:E28.

Lundbo LF, Harboe ZB, Clausen LN, Hollegaard MV, Sorensen HT, Hougaard DM, Konradsen HB, Norgaard M, and Benfield T. 2016. Genetic Variation in NFKBIE Is Associated With Increased Risk of Pneumococcal Meningitis in Children. *EBioMedicine* 3:93-99. 10.1016/j.ebiom.2015.11.048

Mansur A, Hinz J, Hillebrecht B, Bergmann I, Popov AF, Ghadimi M, Bauer M, Beissbarth T, and Mihm S. 2014. Ninety-day survival rate of patients with sepsis relates to programmed cell death 1 genetic polymorphism rs11568821. *J Investig Med* 62:638-643. 10.2310/jim.0000000000000059

Mansur A, Liese B, Steinau M, Ghadimi M, Bergmann I, Tzvetkov M, Popov AF, Beissbarth T, Bauer M, and Hinz J. 2015. The CD14 rs2569190 TT Genotype Is Associated with an Improved 30-Day Survival in Patients with Sepsis: A Prospective Observational Cohort Study. *PLoS ONE* 10:e0127761. 10.1371/journal.pone.0127761

Marrie TJ, Tyrrell GJ, Garg S, and Vanderkooi OG. 2011. Factors Predicting Mortality in Invasive Pneumococcal Disease in Adults in Alberta. *Medicine* 90:171-179. 10.1097/MD.0b013e31821a5a76
Minami M, Sakakibara R, Imura T, Morita H, Kanemaki N, and Ohta M. 2015. Antimicrobial susceptibility patterns of multi-drug resistant Streptococcus pneumoniae at general hospital in Japan. *J Microbiol Immunol Infect* 48:S65-S66. 10.1016/j.jmii.2015.02.229

O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, and Cherian T. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. *Lancet* 374:893-902. 10.1016/s0140-6736(09)61204-6

Park SY, Van Beneden CA, Pilishvili T, Martin M, Facklam RR, and Whitney CG. 2010. Invasive pneumococcal infections among vaccinated children in the United States. *J Pediatr* 156:478-483.e472. 10.1016/j.jpeds.2009.10.008

Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R, Nyquist AC, Vazquez M, Bennett NM, Reingold A, Thomas A, Jackson D, Schuchat A, and Whitney CG. 2010. Risk factors for invasive pneumococcal disease in children in the era of conjugate vaccine use. *Pediatrics* 126:e9-17. 10.1542/peds.2009-2150

Prevention CfDCa. 2010. Active Bacterial Core Surveillance (ABCs) report, Emerging Infections Program Network Streptococcus pneumoniae, 2010. *http://www.cdc.gov/abcs/reports-findings/survreports/spneu10-origpdf.*

Rautanen A, Pirinen M, Mills TC, Rockett KA, Strange A, Ndungu AW, Naranbhai V, Gilchrist JJ, Bellenguez C, Freeman C, Band G, Bumpstead SJ, Edkins S, Giannoulatou E, Gray E, Dronov S, Hunt SE, Langford C, Pearson RD, Su Z, Vukcevic D, Macharia AW, Uyoga S, Ndila C, Mturi N, Njuguna P, Mohammed S, Berkley JA, Mwangi I, Mwarumba S, Kitsao BS, Lowe BS, Morpeth SC, Khandwalla I, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Duncanson A, Jankowski J, Markus HS, Mathew CG, Palmer CN, Plomin R, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Deloukas P, Peltonen L, Williams TN, Scott JA, Chapman SJ, Donnelly P, Hill AV, and Spencer CC. 2016. Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children. *Am J Hum Genet* 98:1092-1100. 10.1016/j.ajhg.2016.03.025

Roson B, Fernandez-Sabe N, Carratala J, Verdaguer R, Dorca J, Manresa F, and Gudiol F. 2004. Contribution of a urinary antigen assay (Binax NOW) to the early diagnosis of pneumococcal pneumonia. *Clin Infect Dis* 38:222-226. 10.1086/380639

Ruckinger S, von Kries R, Siedler A, and van der Linden M. 2009. Association of serotype of Streptococcus pneumoniae with risk of severe and fatal outcome. *Pediatr Infect Dis J* 28:118-122. 10.1097/INF.0b013e318187e215

Rueda AM, Serpa JA, Matloobi M, Mushtaq M, and Musher DM. 2010. The Spectrum of Invasive Pneumococcal Disease at an Adult Tertiary Care Hospital in the Early 21st
Shariatzadeh MR, Huang JQ, Tyrrell GJ, Johnson MM, and Marrie TJ. 2005. Bacteremic Pneumococcal Pneumonia: A Prospective Study in Edmonton and Neighboring Municipalities. *Medicine* 84:147-161.

Tan TQ. 2012. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. *Clin Microbiol Rev* 25:409-419. 10.1128/cmr.00018-12.

Ulloa-Gutierrez R, Avila-Aguero ML, Herrera ML, Herrera JF, and Arguedas A. 2003. Invasive pneumococcal disease in Costa Rican children: a seven year survey. *Pediatr Infect Dis J* 22:1069-1074. 10.1097/01.inf.0000101475.45195.b1.

von Gottberg A, de Gouveia L, Tempia S, Quan V, Meiring S, von Mollendorf C, Madhi SA, Zell ER, Verani JR, O’Brien KL, Whitney CG, Klugman KP, and Cohen C. 2014. Effects of Vaccination on Invasive Pneumococcal Disease in South Africa. *New England Journal of Medicine* 371:1889-1899. doi:10.1056/NEJMoa1401914.

Wei L, Liu W, Zhang X-A, Liu E-M, Wo Y, Cowling BJ, and Cao W-C. 2015. Detection of Viral and Bacterial Pathogens in Hospitalized Children With Acute Respiratory Illnesses, Chongqing, 2009–2013. *Medicine* 94:e742. 10.1097/md.0000000000000742.

Weinberger DM, Harboe ZB, Sanders EA, Ndiritu M, Klugman KP, Ruckinger S, Dagan R, Adegbola R, Cutts F, Johnson HL, O’Brien KL, Scott JA, and Lipsitch M. 2010. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. *Clin Infect Dis* 51:692-699. 10.1086/655828.
Table 1 (on next page)

Table 1

Clinical manifestations of patients with IPD
Table 1 Clinical manifestations of patients with IPD

|                          | Overall (n=50) | Survival (n=45) | Mortality (n=5) | p-value |
|--------------------------|---------------|----------------|-----------------|---------|
| Age, y                   | 3.5 ± 0.82    | 3.6 ± 0.92     | 2.7 ± 1.5       | 0.083   |
| Male, n (%)              | 30 (60)       | 26 (57.8)      | 4 (80)          | 0.63    |
| Cold seasons, n (%)      | 36 (72)       | 34 (75.6)      | 2 (40)          | 0.248   |
| Underlying disease, n (%)| 8 (16)        | 7 (15.6)       | 1 (20)          | 0.70    |
| Involved organ            |               |                |                 |         |
| Lung, n (%)              | 46 (92)       | 42 (93.3)      | 4 (80)          | 0.862   |
| Blood, n (%)             | 28 (56)       | 27 (60)        | 1 (20)          | 0.217   |
| CNS, n (%)               | 4 (8)         | 2 (4.4)        | 2 (40)          | 0.056   |
| Hospital days, d         | 14.56         | 15 ± 2.76      | 10.2            |         |
| ECMO use, n (%)          | 3 (6)         | 1 (2.2)        | 2 (40)          | 0.017*  |
| HUS, n (%)               | 10 (20)       | 9 (20)         | 1 (20)          | 0.72    |
| Laboratory tests         |               |                |                 |         |
| Hb, g/dl                 | 11.37 ± 0.48  | 11.92 ± 2.03   | 11.3 ± 0.5      | 0.441   |
| WBC, /µL                 | 16004 ± 2861  | 16824 ± 2966   | 8624 ± 5227     | 0.084   |
| Platelet, /µL            | 311.8 ± 54.9  | 322.7 ± 56.7   | 215.6 ± 283.5   | 0.239   |
| CRP, mg/dl               | 17.95 ± 4.28  | 16.63 ± 4.61   | 29.06 ± 6.99    | 0.071   |
| AST, IU/L                | 70.25 ± 29.23 | 62.26 ± 31.5   | 100.6 ± 102.94  | 0.28    |
| Creatinine, mg/dl        | 0.86 ± 0.28   | 0.9 ± 0.36     | 0.74 ± 0.45     | 0.667   |
| Na, meq/L                | 135.3 ± 1.6   | 135.5 ± 1.7    | 134.4 ± 5.9     | 0.599   |
| Resistant to Penicillin  | 16 (37.2)     | 15 (37.5)      | 1 (33)          | 0.63    |

For categorical variables, the results are expressed as number (percentage); for continuous variables, the results are expressed as mean ± standard deviation. A p-value less than 0.05 is considered statistically significant and indicated by an asterisk (*).
Table 2

Table 2

Prognostic factors of patients with IPD
### Table 2 Prognostic factors of patients with IPD

|                      | Overall (n=50) | Survival (n=45) | Mortality (n=5) | p-value |
|----------------------|----------------|-----------------|-----------------|---------|
| Age ≤ 2 y            | 17 (34)        | 15 (33.3)       | 2 (40)          | 0.842   |
| Hb ≤ 10 g/dL         | 9 (18)         | 8 (17.8)        | 1 (20)          | 0.624   |
| WBC ≤ 4,000 /μL      | 7 (14)         | 4 (8.9)         | 3 (60)          | 0.015*  |
| WBC ≥ 20,000 /μL     | 15 (30)        | 14 (31.1)       | 1 (20)          | 1.00    |
| Plt ≤ 100,000 /μL    | 7 (14)         | 4 (8.9)         | 3 (60)          | 0.014*  |
| CRP ≥ 20 mg/dL       | 22 (44)        | 17 (37.8)       | 5 (100)         | 0.029*  |
| Meningitis n (%)     | 4 (8)          | 2 (4.4)         | 2 (40)          | 0.056   |
| ECMO use, n (%)      | 3 (6)          | 1 (2.2)         | 2 (40)          | 0.017*  |

For categorical variables, the results are expressed as number (percentage); for continuous variables, the results are expressed as mean ± standard deviation. A p-value less than 0.05 is considered statistically significant and indicated by an asterisk (*).
### Table 3

Reported mortality in patients with IPD
| Authors          | Ulloa-Gutierrez | Ruckinger | Gomez-Barreto | Shariatzadeh | Marrie | Rueda | Berjohn | Chen | Current study |
|------------------|-----------------|-----------|---------------|--------------|--------|-------|---------|------|---------------|
| **Age**          | Children        | Children  | Children      | Adults       | Adults | Adults| Adults   | Adults| Children      |
| **Study period** | 1995-2001       | 1997-2003 | 1997-2004     | 2000-2002    | 2000-2004| 2000-2008| 2001-2004| 2001-2006| 2001-2006   |
| **Country**      | Costa Rica      | Germany   | Mexico        | Canada       | Canada | United States | United States | Taiwan | Taiwan       |
| **IPD**          | All IPD         | All IPD   | All IPD       | Pneumonia, bacteremia | All IPD | All IPD | Pneumonia, bacteremia | All IPD | All IPD       |
| **Mortality (%)**| 14.4            | 5.3       | 27.5          | 9.3          | 14.1   | 16.2 | 10      | 8.1  | 10        |