Contribution of cardiovascular magnetic resonance in the evaluation of coronary arteries

Sophie Mavrogeni, George Markousis-Mavrogenis, Genovefa Kolovou

Abstract
Cardiovascular magnetic resonance (CMR) allows the non-radiating assessment of coronary arteries; to achieve better image quality cardiorespiratory artefacts should be corrected. Coronary MRA (CMRA) at the moment is indicated only for the detection of abnormal coronary origin, coronary artery ectasia and/or aneurysms (class I indication) and coronary artery bypass grafts (class II indication). CMRA utilisation for coronary artery disease is not yet part of clinical routine. However, due to lack of radiation, it is particularly useful for children and women. A combined CMR protocol, including CMRA and stress perfusion-fibrosis evaluation may offer a non-invasive assessment of cardiovascular profile in high risk patients.

INTRODUCTION
Coronary artery disease (CAD) with its sequelae including myocardial infarction and heart failure, is the main cause of increased mortality in our days. The usual way for CAD assessment is the use of invasive coronary angiography; however, the high incidence of CAD and...
the queries of invasive assessment necessitate the use of a noninvasive evaluation of coronaries [11-13].

Cardiovascular magnetic resonance (CMR) can provide a combined approach including coronary arteries, cardiac function and stress myocardial perfusion-fibrosis evaluation. Coronary magnetic resonance angiography (CMRA) has been already used for assessment of coronary anatomy and vessels’ wall, providing useful information in CAD [5-7].

In this review we provide an update of clinical applications of CMRA, discussing the current limitations and the challenges for future applications.

INDICATIONS FOR CMRA

The clinical indications of CMRA are at the moment limited only to the detection of abnormal origin of coronary arteries, coronary ectasia and/or aneurysms (class I indication) and coronary bypass grafts (CABG) evaluation (class II indication). The routine application of CMRA for diagnosis of CAD is not at the moment part of clinical practice [8,9].

CORONARY VESSELS ABNORMALITIES

AND ANEURYSMS (CLASS I INDICATION)

CMRA assesses precisely the abnormal coronary arteries and the location and dimensions of coronary aneurysms. The larger caliber and the proximal location of the coronary artery aneurysms (CAA) facilitate their imaging. The most important benefit of CMRA is the absence of ionizing radiation, which is of special clinical value for children and women [8,10]. Clinical entities, characterized by ectatic or aneurysmatic coronary arteries, include Kawasaki disease, autoimmune vasculitis and coronary artery ectasia [10-13].

KAWASAKI DISEASE AND OTHER AUTOIMMUNE VASCULITIS

In Kawasaki disease, CMR can diagnose lesions both in acute and chronic phase. During the acute phase, a complete evaluation of the coronary anatomy, left and right ventricular function, myocardial inflammation and myocardial fibrosis either due to inflammatory process or due to myocardial infarction is essential.

The presence of CAA needs serial evaluation for patients’ risk stratification. Although transthoracic echocardiography is usually sufficient in young children, the visualization of the coronary arteries becomes progressively more difficult as children grow up. According to previous publications, coronary magnetic resonance, using navigator techniques, has an excellent correlation with X-ray coronary angiography using both Pearson coefficient and Bland-Altman analysis and can be used as a reliable alternative for KD patients [13,14]. Recently, the application of free-breathing techniques in children with KD using the whole-heart approach detected successfully not only the abnormalities of coronary lumen, but also the abnormally thickened vessel wall and improved risk stratification and monitoring of therapy [15]. In parallel with coronary assessment, during the same examination, an evaluation of function and wall motion of both ventricles can be also performed using the standard SSFP sequence [16]. However, only anatomic evaluation is not sufficient to successfully risk stratify KD patients. Previous studies in patients with atherosclerotic coronary artery disease proved that maybe a severe anatomic lesion could not provoke severe myocardial ischemia and in contrary, a marginal coronary lesion can induce significant myocardial ischemia [17].

Magnetic resonance (MR) first-pass myocardial perfusion imaging during hyperemia, due to the vasodilating agent adenosine, demonstrates a high diagnostic performance of MR perfusion imaging for the detection of anatomically defined coronary artery stenoses [18].

Other autoimmune vasculitides that can potentially develop coronary aneurysms include polyarteritis nodosa, microscopic polyangiitis and Wegener granulomatosis [19]. In these diseases the application of coronary MRA with simultaneous assessment of myocardial oedema-fibrosis may reveal disease activity and pathophysiology of heart lesion noninvasively and without radiation [20].

CORONARY ARTERY ECTASIA

Coronary artery ectasia (CAE) represents a form of atherosclerosis, detected in 3%-8% of subjects during X-ray coronary angiography. Sluggish blood flow is produced within the ectatic segments, leading to chest pain in effort and myocardial infarction, independently of the significance of coexisting stenosis. CAE is the dilatation of an artery 1.5 times greater than the normal coronary artery and is assessed in 5% of angiographic and in 0.22%-1.4% of autopsy cases [21-24]. It may involve the entire vessel or be localized in a specific part of the vessel. If it involves the entire vessel, it is called “ectasia”. It is due to atherosclerosis in > 50% of cases. Ectasia coexists with coronary artery disease in the majority of patients. Only 10%-20% of CAE coexist with systemic diseases such as scleroderma, Ehlers-Danlos syndrome, different types of antineutrophil cytoplasmic antibody (ANCA)-related vasculitis, syphilitic aortitis and Kawasaki disease [25-29].

The differentiation between congenital and acquired coronary aneurysms is rather difficult. Acquired CAE should also be differentiated from aneurysms due to different coronary procedures. The correct follow up of ectatic vessels demands repeated angiograms and CMRA offers an excellent alternative for the evaluation of the initial part of left main, left anterior descending and right coronary arteries [30]. CMRA has been already proved a valuable clinical tool for diagnosis of abnormal coronary origin, and is in some cases superior to X-ray coronary angiography; however, it is still under investigation for the assessment of the CAD [31]. Our group proved that CMRA is equal...
to quantitative coronary angiography for evaluation of ecstatic/aneurysmatic disease. Furthermore, it is a non-invasive, nonradiating technique\(^4\). Compared with CT, CMRA does not need use of a contrast agent. CMRA can also give additional data about vessels' blood flow and stress perfusion-fibrosis pattern\(^{33}\).

CORONARY BYPASS-GRAFTS (CLASS II INDICATION)

Bypass grafts can be assessed very well by coronary MRA, because they are relatively immobile and have larger diameter compared to coronary arteries. Different imaging ways have been already used, including spin echo\(^{34,35}\) and gradient echo techniques. The application of contrast agents for better imaging of the blood signal\(^{38,39}\) increased the sensitivity to 95%.

However, metallic clips in grafts constitute the commonest limitation of coronary bypass MRA. Coronary MRA can be used at some special centers to detect lesions in bypass grafts\(^8\).

CORONARY MAGNETIC RESONANCE ANGIOGRAPHY FOR ASSESSMENT OF CAD

Coronary MRA assesses the initial part of the coronary arteries in almost 100% of patients, with excellent results acquired for the left anterior descending (LAD) and the right coronary artery (RCA); the left circumflex (LCX), due to its peculiar way, is at a increased distance from the cardiac coil, and therefore its visualization is of inferior quality. According to top reviews studies, the imaged length for LAD is 50 mm, for RCA is 80 mm and for LCX is 40 mm\(^{40-47}\). An excellent agreement between the proximal parts of coronary arteries measured by MRA and by invasive angiography was assessed by previous studies\(^4\).

Unfortunately, the resolution of CMRA remains lower compared with invasive coronary angiography and does not allow the evaluation of stenosis in small coronary arteries. This is the reason of the low specificity documented in a recent international multicenter study\(^{48}\); however, CMRA was shown to have a high sensitivity (92%) for the detection of CAD and its diagnostic performance was ameliorated. In a subanalysis of left main or three vessel disease, a sensitivity of 100% and a negative predictive value of 100% was documented. These findings were also supported by smaller single-center studies\(^{40,49-57}\).

Recently, a meta-analysis compared coronary MRA and multi-slice computed tomography (CT) for assessment of significant CAD\(^{34}\). CT was more accurate than MRA and therefore CT was suggested as the preferred non-invasive alternative to X-ray coronary angiography. However, the superiority of CMRA is that it can offer more data about the patient, including cardiac anatomy, function, inflammation, stress perfusion and fibrosis evaluation.

Recently, a multicenter study showed that whole-heart CMRA at 1.5 T can detect significant CAD with high sensitivity (88%) and moderate specificity (72%). Additionally, a negative predictive value (NPV) of 88% indicates that this technique can effectively be used to exclude the presence of significant CAD\(^{58}\). We should mention that this NPV reported by this trial is identical to the NPV of the CORE-64 CTA multicenter study\(^{59}\). Proving the value of CMRA to rule out CAD in patients with low pre-test probability (< 20%)\(^{60}\).

Finally, in a direct comparison between CMRA and CTA no significant difference was proved for the detection of CAD between 3 T MR and 64-slice CTA\(^{61}\). A comparison between coronary MRA, CTA and invasive coronary angiography (CA) is shown in Table 1.

CORONARY VESSEL WALL ASSESSMENT

The initial CMR images of the coronary vessel wall were taken using fast spin echo techniques\(^{62,63}\). A double inversion recovery preparation was used to take black-blood images improving the contrast between blood and vessel wall\(^{64}\). Recently, the double inversion recovery prepulse has been combined with fast gradient echo\(^{33}\), spiral\(^{65}\)
and radial acquisitions[67]. Various studies documented the capability of vessel wall imaging to detect remodeling of coronary arteries in CAD and increased vessel wall thickness in type 1 diabetes with abnormal renal function[68,69]. It was also documented by Jansen et al[70] that non-contrast enhanced T1-weighted MR visualized thrombus in acute myocardial infarction.

Recently, new techniques using delayed gadolinium enhancement facilitated the direct assessment of inflamed plaques in the coronary arteries. Clinically used contrast agents showed non-specific uptake in plaques of patients with chronic angina[71]. Acute coronary syndromes[72] and systemic lupus erythematosus[73]. The contrast enhancement by CMR, assessed in patients with stable angina, was associated with calcified or mixed plaques on MSCT, while in ACS it was transient, probably due to inflammatory process.

New contrast agents have been already used in animals and their accumulation in blood was associated with increased endothelial permeability and/or increased neovascularization[74]. Additionally, increased accumulation of iron-oxide particles (USPIO) was indicative of increased endothelial permeability and vessel wall inflammation, due to intraplaque macrophages[75,76].

Such molecules have been used as targets for new molecular contrast agents that allowed the assessment of inflammatory indexes, such as intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) or matrix metalloproteinase (MMP)[77,78]. Furthermore, thrombi labeling using a fibrin-specific contrast agent[79,80] and evaluation of extracellular matrix remodeling, using targeting elastin is a new promising molecular imaging technique[81,82] for early detection of plaque vulnerability[83].

CONCLUSION

CMR is a non-invasive, non-radiating technique for evaluation of coronary arteries and coronary wall. Its major advantage is the potential of a combined protocol, including coronary arteries, cardiac anatomy, function, inflammation and stress perfusion-fibrosis in the same study in CAD and/or heart failure.

CMRA current indications include: (1) assessment of abnormal coronary arteries, coronary ectasia and/or aneurysm (class I indication); and (2) coronary bypass grafts (class II indication). In the future, it may be used to exclude CAD in selected patients. However, further improvements are needed to support its use for routine assessment of high risk populations.

REFERENCES

1. Ford ES, Ajanji UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, Giles WH, Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med 2007; 356: 2388-2398 [PMID: 17554120 DOI: 10.1056/NEJMsa053935]
2. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenland KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Manolio A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Taran TN, Turner MB, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 2011; 123: e18-e209 [PMID: 21160056 DOI: 10.1161/CIR.0b013e3182009701]
3. Patel MR, Peterson ED, Dai S, Brennan JM, Redberg RF, Anderson HV, Britulis RC, Douglas PS. Low diagnostic yield of elective coronary angiography. N Engl J Med 2010; 362: 886-895 [PMID: 20220183 DOI: 10.1056/NEJMoa0907272]
4. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001; 345: 1863-1869 [PMID: 11756576 DOI: 10.1056/NEJMoa010866]
5. Spuentrup E, Botnar RM. Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriogenesis. Eur Radiol 2006; 16: 1-14 [PMID: 16132919 DOI: 10.1007/s00330-005-2886-7]
6. Chiribiri A, Kelle S, Götzte K, Kristeslis C, Thoutet T, Tangcharoen T, Paetsch I, Schnackenburg B, Fleck E, Nagel E. Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol 2008; 101: 407-412 [PMID: 18257610 DOI: 10.1016/j.amjcard.2007.08.049]
7. Chiribiri A, Kelle S, Köhler U, Tops LF, Schnackenburg B, Bonamini R, Bas JF, Fleck E, Nagel E. Magnetic resonance cardiac vein imaging: relation to mitral valve annulus and left circumflex coronary artery. JACC Cardiovasc Imaging 2008; 1: 729-738 [PMID: 19556509 DOI: 10.1016/j.jcmg.2008.06.009]
8. Hundley WG, Blumeke DA, Finn JP, Flamm SD, Fogel MA, Friedman MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ, Patel M, Pohost GM, Stillman AE, White RD, Wooward PK. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010; 55: 2614-2626 [PMID: 20513610 DOI: 10.1016/j.jacc.2009.11.011]
9. Chiribiri A, Ishida M, Nagel E, Botnar RM. Coronary imaging with cardiovascular magnetic resonance: Current state of the art. Prog Cardiovasc Dis 2011; 54: 240-252 [DOI: 10.1016/
Mavrogeni S et al. CMR of the coronaries
state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 2004; 232: 669-676 [PMID: 15284430 DOI: 10.1148/radiology.2320301225]

26 Maintz D, Aepfelbacher FC, Kissingler KV, Botnar RM, Danias PG, Heindel W, Manning WJ. Coronary MR angiography: comparison of quantitative and qualitative data from four techniques. AJR Am J Roentgenol 2004; 182: 515-521 [PMID: 14736693 DOI: 10.2214/ajr.182.2.1820515]

27 Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993; 328: 828-832 [PMID: 8288929 DOI: 10.1056/NEJM199302233280832]

28 Ozugun M, Hoffmeier A, Kouwenhoven M, Botnar RM, Stuber M, Scheld HH, Manning WJ, Heindel W, Maintz D. Comparison of 3D segmented gradient-echo and steady-state free precession coronary MRI sequences in patients with coronary artery disease. AJR Am J Roentgenol 2005; 185: 103-109 [PMID: 15972408 DOI: 10.2214/ajr.185.1.15972408]

29 Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 2006; 48: 1946-1950 [PMID: 17126921 DOI: 10.1016/j.jacc.2006.07.055]

30 Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino K, Koyama N, Van Cauteren M, Takeda K. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 2005; 237: 316-321 [PMID: 16126921 DOI: 10.1148/radiol.2371040850]

31 Schuetz GM, Zachariopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 2010; 152: 167-177 [PMID: 20124233 DOI: 10.7326/0003-4819-152-3-201002200-00008]

32 Kato S, Kitagawa K, Ishida N, Ishida M, Nagata M, Ichikawa Y, Katahira K, Matsumoto Y, Seo K, Ochiai R, Kobayashi Y, Sakuma H. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 2010; 56: 983-991 [PMID: 20828652 DOI: 10.1016/j.jacc.2010.01.071]

33 Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lando AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359: 2324-2336 [PMID: 19038897 DOI: 10.1056/NEJMoa0806076]

34 Nagel E. Magnetic resonance coronary angiography: the condemned live longer. J Am Coll Cardiol 2010; 56: 992-994 [PMID: 20828653 DOI: 10.1016/j.jacc.2010.02.069]

35 Hamdan A, Asbach P, Wellnhofe E, Klein C, Gebker R, Kelle S, Kiliyan H, Huppertz A, Fleck E. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 2011; 4: 50-61 [PMID: 21232704 DOI: 10.1016/j.jcmg.2010.10.007]

36 Botnar RM, Stuber M, Kissingler KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2005; 110: 2582-2587 [PMID: 1585960 DOI: 10.1161/01.CIR.210.25.2822]

37 Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Heldt G, Aquinaldo JG, Badimon JJ, Sharma SK. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000; 102: 506-510 [PMID: 1092061 DOI: 10.1161/01.CIR.102.5.506]

38 Edelman RR, Chien D, Kim D. Fast selective black blood MR angiography. Radiology 1991; 181: 655-660 [PMID: 19470777 DOI: 10.1148/radiology.181.3.19470777]

39 Botnar RM, Stuber M, Lamerichs R, Smink J, Fischer SE, Harvey F, Manning WJ. Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla.
Mavrogeni S et al. CMR of the coronaries

J Cardiovasc Magn Reson 2003; 5: 589-594 [PMID: 14664136 DOI: 10.1081/JCMR-12002532]

Botnar RM, Kim WY, Börnert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 2001; 46: 848-854 [PMID: 11675634 DOI: 10.1002/mrm.1268]

Katoh M, Spuentrup E, Buecker A, Schaefetter T, Stuber M, Günther RW, Botnar RM. MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging. AJR Am J Roentgenol 2006; 186: 841-846 [PMID: 16714616 DOI: 10.2214/AJR.04.1864]

Kim WY, Stuber M, Börnert P, Kiessinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002; 106: 296-299 [PMID: 12199242 DOI: 10.1161/01.CIR.0000025629.85631.1E]

Kim WY, Astrup AØ, Stuber M, Tarnow L, Falk E, Botnar RM, Simonsen C, Pietraszek L, Hansen PR, Manning WJ, Anderson NT, Parving HH. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation 2007; 115: 228-235 [PMID: 1790865 DOI: 10.1161/CIRCULATIONAHA.106.633359]

Jansen CH, Perera D, Makowski MR, Wiethoff AJ, Phnikikidou A, Razavi RM, Marber MS, Greil GF, Nagel E, Maintz D, Redwood S, Botnar RM. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 2011; 124: 416-424 [PMID: 21747055 DOI: 10.1161/CIRCULATIONAHA.110.965442]

Yeon SB, Sabir A, Clouse M, Martinezclark PO, Peters DC, Hauser TH, Gilbert CM, Nezaft R, Maintz D, Manning WJ, Botnar RM. Delayed-enhancement cardiovascular magnetic resonance coronary artery wall imaging: comparison with multislice computed tomography and quantitative coronary angiography. J Am Coll Cardiol 2007; 50: 441-447 [PMID: 17662597 DOI: 10.1016/j.jacc.2007.03.052]

Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, Manning WJ, Schömg J, Schwaiger M, Botnar RM. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging 2009; 2: 580-588 [PMID: 19442944 DOI: 10.1016/j.jcmg.2008.12.029]

Puntmann VO, D’Cruz D, Taylor PC, Hussain T, Indermuhle A, Butzbach B, Botnar R, Nagel E. Contrast enhancement imaging in coronary arteries in SLE. JACC Cardiovasc Imaging 2012; 5: 962-964 [PMID: 22974810 DOI: 10.1016/j.jcmg.2012.03.017]

Phnikikidou A, Andis M, Prott A, Indermühle A, Shah A, Smith A, Warley A, Botnar RM. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation 2012; 126: 707-719 [PMID: 22753191 DOI: 10.1161/CIRCULATIONAHA.112.092098]

Koo ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107: 2453-2458 [PMID: 12719280 DOI: 10.1161/01.CIR.0000068315.98705.CC]

Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, U-King-Im JM, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zawelski A, Gillard JH. The ATEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 2009; 53: 2039-2050 [PMID: 19477353 DOI: 10.1016/j.jacc.2009.03.018]

Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 1504-1511 [PMID: 17000004 DOI: 10.1161/CIRCULATIONAHA.106.646388]

Nahrendorf M, Kelifier E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, Aikawa E, Kelly K, Libby P, Weissleder R. 18F-FV for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2009; 2: 1213-1222 [PMID: 19833312 DOI: 10.1016/j.jcmg.2009.04.016]

Botnar RM, Buecker A, Wiethoff AJ, Parsons EC, Katoh M, Katsimagis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ, Spuentrup E. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 2004; 110: 1463-1466 [PMID: 15238457 DOI: 10.1161/01.CIR.0000134960.31048.7]

Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ, Johnstone MT. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 2004; 109: 2023-2029 [PMID: 15066940 DOI: 10.1161/01.CIR.0000127034.50006.0]

Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CH, Nagel E, Razavi R, Onthunk DC, Cesati RR, Marber MS, Schaefetter T, Smith A, Robinson SP, Botnar RM. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 2011; 17: 383-388 [PMID: 21336283 DOI: 10.1038/nm.2510]

von Bary C, Makowski M, Preissel A, Keithahn A, Warley A, Spuentrup E, Buecker A, Lazewatsky J, Cesati R, Onthunk D, Schickl N, Schachoff S, Hausleiter J, Schömg J, Schwaiger M, Robinson S, Botnar R. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging 2011; 4: 147-155 [PMID: 21378029 DOI: 10.1161/CIRCIMAGING.109.895607]

Chiribiri A, Botnar RM, Nagel E. Magnetic resonance coronary angiography: where are we today? Curr Cardiol Rep 2013; 15: 328 [PMID: 23307168 DOI: 10.1007/s11866-012-0238-0]

P- Reviewer: Ueda H S- Editor: Song X L- Editor: A E- Editor: Wu HL
