The symmetries of five-dimensional minimal supergravity reduced to three dimensions

Gérard Clément *

Laboratoire de Physique Théorique LAPTH (CNRS),
B.P.110, F-74941 Annecy-le-Vieux cedex, France

4 October 2007

Abstract

The 14 Killing vectors of the target space for five-dimensional minimal supergravity reduced to three dimensions are explicitly constructed in terms of the original field variables. These vectors generate the Lie algebra of G_2. We also construct a symmetrical 7×7 matrix representative of the coset $G_{2(+2)}/((SL(2,R) \times SL(2,R))$ as a function of the same fields.

*Email: gclement@lapp.in2p3.fr
1 Introduction

A number of self-gravitating field theories in D dimensions can be dimensionally reduced to gravity-coupled sigma models in three dimensions [1, 2]. Such sigma models are harmonic maps from a 3-dimensional (Minkowskian or Lorentzian) base space to a p-dimensional target space T. The target space is generically a coset G/H, where G is the group of global isometries of T, and $H \in G$ the local isotropy subgroup. It is then possible to generate new solutions by applying a finite group transformation to the coset representative of a seed solution [3, 4]. Another fruitful application is the construction of multi-center solutions as totally geodesic submanifolds of the target space [5].

The reduction of $D = 11$ supergravity to $D = 3$ leads to the $E_8(+8)/SO(16)$ sigma model [6, 7]. More recently, it was shown that the reduction of five-dimensional minimal supergravity [8, 9] leads to the $G_{2(+2)}/SO(4)$ sigma model [10, 11, 2, 12] in the case of a Lorentzian 3-space, or $G_{2(+2)}/((SL(2,R) \times SL(2,R))$ for a Minkowskian 3-space. Matrix representations of this coset were given in these papers in terms of the 14-dimensional adjoint representation. A representation of the same coset as a 7×7 matrix was given in [13], however the parametrisation used leads to a matrix which is too complicated to be used for solution generation. The purpose of this paper is two-fold. First, we shall give an analytical construction of the 14 infinitesimal isometries (or Killing vectors) of the target space for dimensionally reduced five-dimensional minimal supergravity, and check that they generate the Lie algebra of the exceptional group G_2. Then, we shall construct a coset representative as a symmetrical 7×7 matrix.

Our reduction from five to three dimensions follows essentially the same path as in [10]. With a view for the paper to be self-contained, we outline this reduction in Sect. 2. The result is the metric (2.12) for an eight-dimensional target space T. The procedure followed in [10] to identify T as the $G_{2(+2)}/SO(4)$ coset was to construct a matrix representative of this coset in the adjoint representation of G_2, and to show that the resulting metric was isometric to (2.12). We shall instead follow a ‘bottom-up’ approach. In Sect. 3 we show that, taking into account the field-theoretical construction of (2.12), we can identify nine manifest infinitesimal symmetries of this metric. Combining this information with the assumption that the unknown symmetry group G must contain $SL(3,R)$, which is the isom-

\footnote{These Killing vectors were previously determined, using a different parametrisation, by a computer-assisted solution of the Killing equations [14].}
etry group for the vacuum sector (five-dimensional Einstein gravity reduced to three dimensions)\cite{15}, we show that the minimal Lie algebra necessarily closes to that of G_2. We solve in Sect. 4 the Lie brackets involving the five unknown generators, and determine these up to a single integration constant. We then determine the value of this constant so that these five generators are indeed Killing vectors of the metric (2.12). In Sect. 5, a symmetrical 7×7 matrix coset representative is obtained by exponentiating a Borel subalgebra. An alternative construction of the same matrix using the nine manifest Killing vectors of Sect. 3 is sketched in the Appendix.

\section{Five-to-three dimensional reduction}

The bosonic sector of five-dimensional minimal supergravity is defined by the Einstein-Maxwell-Chern-Simons action

$$ S_5 = \frac{1}{16\pi G_5} \int d^5x \left[\sqrt{|g(5)|} \left(-R(5) - \frac{1}{4} F_{\mu\nu}(5) F^{\mu\nu}(5) \right) - \frac{1}{12\sqrt{3}} \epsilon^{\mu\nu\rho\sigma\lambda} F_{\mu\nu}(5) F_{\rho\sigma}(5) A(5) A(5) \right], \quad (2.1) $$

where $F(5) = dA(5)$, $\mu, \nu, \cdots = 1, \cdots, 5$, and $\epsilon^{\mu\nu\rho\sigma\lambda}$ is the five-dimensional antisymmetric symbol. This leads to the five-dimensional Maxwell-Chern-Simons and Einstein equations

$$ \sqrt{|g(5)|} D_\mu F_{\mu\nu}^{(5)} = \frac{1}{4\sqrt{3}} \epsilon^{\nu\rho\sigma\tau\lambda} F_{\rho\sigma}(5) F_{\tau\lambda}(5), \quad (2.2) $$

$$ R^{\mu}_{\nu}(5) - \frac{1}{2} R(5) \delta^\mu_\nu = \frac{1}{2} F_{\mu\rho}(5) F_{\rho\nu} - \frac{1}{8} F_{(5)}^2 \delta^\mu_\nu, \quad (2.3) $$

where D_μ is the covariant derivative associated with the metric $g(5)^{\mu\nu}$.

Assuming the existence of two Killing vectors, one can choose adapted coordinates such that the five-dimensional metric and electromagnetic potential depend only on three coordinates x_i ($i = 1, 2, 3$) and split according to:

$$ ds^2_{(5)} = \lambda_{ab} (dz^a + a_i^a dx^i)(dz^b + a_i^b dx^i) + \tau^{-1} h_{ij} dx^i dx^j, \quad (2.4) $$

$$ A_{(5)} = \sqrt{3}(\psi_a dz^a + A_i dx^i), \quad (2.5) $$

where $a, b = 0, 1$ ($x^4 = z^0, x^5 = z^1$), and $\tau \equiv |\text{det} \lambda|$. The reduced metric h_{ij} or its inverse h^{ij} will be used to lower or raise indices i, j, k, and we will
denote by ∇_j the associated covariant derivative. The $\nu = i$ components of the Maxwell-Chern-Simons equations (2.2) can be written as

$$\nabla_j \left(\tau [F^{ij} + a^a \partial^j \psi_a - a^a \partial^i \psi_a] \right) = \nabla_j \left(\frac{1}{\sqrt{h}} \epsilon^{ijk} \psi_a \partial_k \psi_b \right),$$

(2.6)

where $F^{ij} \equiv \partial_i A_j - \partial_j A_i$. This equation allows to dualize the vector magnetic potential A_i to a scalar magnetic potential μ defined by

$$F^{ij} = \partial^a \partial^b \psi_a - \partial^a \partial^b \psi_a + \frac{1}{\tau \sqrt{h}} \epsilon^{ijk} \eta_k, \quad \eta_k = \partial_k \mu + \epsilon^a \psi_a \partial_k \psi_a.$$

(2.7)

Similarly, the $\mu = i$, $\nu = a$ components of the Einstein equations (2.3) read

$$\nabla_j \left(\tau \lambda_{ab} G^{bij} \right) = -\epsilon^{ijk} \nabla_j \left(\frac{1}{\sqrt{h}} \psi_a \left[3 \partial_k \mu + \epsilon^{bc} \psi_b \partial_k \psi_c \right] \right),$$

(2.8)

where $G^{bij} \equiv \partial_i a^j - \partial_j a^i$. This is integrated by

$$\lambda_{ab} G^{bij} = \frac{1}{\tau \sqrt{h}} \epsilon^{ijk} V_{ak}, \quad V_{ak} = \partial_k \omega_a - \psi_a \left(3 \partial_k \mu + \epsilon^c \psi_b \partial_k \psi_c \right),$$

(2.9)

where ω_a is the ‘twist’ or gravimagnetic two-potential [13]. It is then straightforward to show that the $\mu = i$, $\nu = j$ components of the five-dimensional Einstein equations (2.3) lead to the following three-dimensional Einstein equations:

$$R_{ij} = \frac{1}{4} Tr(\lambda^{-1} \partial_i \lambda \lambda^{-1} \partial_j \lambda) + \frac{1}{4} \tau^{-2} \partial_i \tau \partial_j \tau - \frac{1}{2} \tau^{-1} V_i^T \lambda^{-1} V_j$$

$$+ \frac{3}{2} \left(\partial_i \psi^T \lambda^{-1} \partial_j \psi - \tau^{-1} \eta_i \eta_j \right),$$

(2.10)

where λ is the 2×2 matrix of elements λ_{ab}, V_i the column matrix of elements V_{ai}, and R_{ij} the Ricci tensor built out of the reduced metric h_{ij}. These equations, together with the other field equations arising from the dimensional reduction of the original five-dimensional field equations, derive from the reduced action (up to a multiplicative constant)

$$S_3 = \int d^3 x \sqrt{h} \left(-R + \frac{1}{2} G_{AB} \frac{\partial \Phi^A}{\partial x^i} \frac{\partial \Phi^B}{\partial x^j} h^{ij} \right),$$

(2.11)

where the Φ^A ($A = 1, \cdots, 8$) are the eight scalar fields λ_{ab}, ω_a, ψ_a, and μ. The action (2.11) describes the three-dimensional gravity coupled sigma model for the eight-dimensional target space T with metric:

$$dS^2 \equiv G_{AB} d\Phi^A d\Phi^B = \frac{1}{2} Tr(\lambda^{-1} d\lambda \lambda^{-1} d\lambda) + \frac{1}{2} \tau^{-2} d\tau^2 - \tau^{-1} V^T \lambda^{-1} V$$

$$+ 3 \left(d\psi^T \lambda^{-1} d\psi - \tau^{-1} \eta^2 \right),$$

(2.12)
where
\[\eta = d\mu + e^{ab}\psi_a d\psi_b , \quad V_a = d\omega_a - \psi_a \left(3d\mu + e^{bc}\psi_b d\psi_c \right) . \] (2.13)

3 The symmetry algebra

The Killing equations
\[J_{A;B} + J_{B;A} = 0 \] (3.1)
for the metric (2.12) constitute a system of 36 partial derivative equations for eight unknown functions of eight variables. The analytical solution of this system is possible in principle, but represents a formidable task which is best addressed by computer [14]. However it is possible to find the Killing vectors of (2.12) without explicitly solving (3.1) by using information on the manifest symmetries coming from the field-theoretical construction of (2.12), combined with information about the hidden symmetries of five-dimensional pure gravity (the vacuum sector of five-dimensional minimal supergravity) and with the Jacobi identities.

The manifest symmetries of \(\mathcal{T} \) have two origins. First, the original gauge invariances of (2.1) — diffeomorphism invariance for the five-dimensional tensor fields \(g(5)_{\mu\nu} \) and \(A(5)_\mu \), and gauge invariance for the gauge field \(A(5)_a \) — are broken by the dimensional reduction down to the corresponding diffeomorphism invariance for the three-dimensional tensor, vector and scalar fields, together with \(GL(2, R) \) invariance (freedom of choice of two basis vectors in the two-plane \((z^0, z^1)\)) and residual gauge invariance for the ‘electric’ potentials \(\psi_a \). Second, the duality equations (2.7) and (2.9) define the cyclic coordinates \(\mu \) and \(\omega_a \) only up to translations.

The corresponding infinitesimal symmetries lead to nine Killing vectors, a \(GL(2, R) \) tensor, two vectors, and a scalar. The four components of the mixed tensor
\[M^b_a = 2\lambda_{ac} \frac{\partial}{\partial \lambda_{cb}} + \omega_a \frac{\partial}{\partial \omega_b} + \delta^b_a \omega_c \frac{\partial}{\partial \omega_c} + \psi_a \frac{\partial}{\partial \psi_b} + \delta^b_a \mu \frac{\partial}{\partial \mu} \] (3.2)
generate linear transformations in the \((z^0, z^1)\) plane obeying the \(gl(2, R) \) subalgebra,
\[[M^b_a, M^d_c] = \delta^b_c M^d_a - \delta^d_a M^b_c . \] (3.3)
The two-vector and the scalar associated with the three cyclic ‘magnetic’ coordinates:
\[N^a = \frac{\partial}{\partial \omega_a} . \] (3.4)
follow the commutation relations

\[
\begin{align*}
\left[M^b_a, N^c \right] & = -(\delta^c_a N^b + \delta^b_a N^c), \\
\left[M^b_a, Q \right] & = -\delta^b_a Q, \\
\left[N^a, N^b \right] & = 0, \\
\left[Q, N^a \right] & = 0.
\end{align*}
\]

Infinitesimal gauge transformations of the \(\psi_a \) are generated by the two-vector

\[
R^a = \frac{\partial}{\partial \psi_a} + 3\mu \frac{\partial}{\partial \omega_a} - \epsilon^{ab}_c \psi_b \left(\frac{\partial}{\partial \mu} + \psi_c \frac{\partial}{\partial \omega_c} \right)
\]

with the commutation relations

\[
\begin{align*}
\left[M^b_a, R^c \right] & = -\delta^c_b R^a, \\
\left[N^a, R^b \right] & = 0, \\
\left[Q, R^a \right] & = 3N^a, \\
\left[R^a, R^b \right] & = 2\epsilon^{ab}Q.
\end{align*}
\]

An exact solution of the five-dimensional field equations \((2.2), (2.3)\) is \(A^{(5)} = 0 \), corresponding to five-dimensional Einstein gravity. It is natural to assume that the isometry group \(SL(3, R) \) \cite{15} of the corresponding target space \((2.12) \text{ with } \psi = \mu = 0\) is a subgroup of the isometry group \(G \) of the full target space. This means that there must exist two more ‘hidden’ Killing vectors \(L_a \) completing the subalgebra \(sl(3, R) \):

\[
\begin{align*}
\left[M^b_a, L^c \right] & = (\delta^c_b L_a + \delta^b_a L_c), \\
\left[N^a, L^b \right] & = M^b_a, \\
\left[L_a, L_b \right] & = 0.
\end{align*}
\]

Adding to the known form of the \(SL(3, R) \) for five-dimensional Einstein gravity the information from \((3.16)\), we know that

\[
L_a = \omega_a \omega_b \frac{\partial}{\partial \omega_b} + 2\omega_b \lambda_{ac} \frac{\partial}{\partial \lambda_{bc}} + \omega_c \psi_b \frac{\partial}{\partial \psi_b} + \omega_a \mu \frac{\partial}{\partial \mu} + \tau \lambda_{ab} \frac{\partial}{\partial \omega_b} + \cdots
\]

(3.18)
(the omitted terms are of order 0 in ω_a). Commutation with Q,

$$[Q, L_a] = P_a,$$

(3.19)
gives two more generators

$$P_a = \omega_a \frac{\partial}{\partial \mu} + \cdots,$$

(3.20)
which now adds up to 13 generators. Finally commutation with the R^a should lead in principle to four more generators, a traceless tensor S_a^b and a scalar T,

$$[R^a, L_b] = S_a^b + \delta^a_b T.\hspace{1cm}(3.21)$$

At this stage we make the second, crucial, assumption that the algebra $Lie(G)$ is minimal and closes with a single scalar generator T ($S_a^b = 0$):

$$[R^a, L_b] = \delta^a_b T.\hspace{1cm}(3.22)$$

This gives

$$T = \omega_c \frac{\partial}{\partial \psi_c} + 3\mu \omega_c \frac{\partial}{\partial \omega_c} + \cdots.$$

(3.23)

Now the full algebra can be found using the following three constraints:

1) Commutators must respect the Jacobi identities.

2) It follows from the Jacobi identities involving the traceless part of M_a^b that the commutators of tensorial operators are tensors. The only constant tensors are the Kronecker symbol δ^a_b and the antisymmetric symbols ϵ_{ab}.

3) It also follows from the Jacobi identities involving the trace $Tr(M) \equiv M_{cc}$ that commutators must respect dimension. The degrees (logarithmic dimensions) of the various fields are, in a scale such that ω_a has degree 1,

$$[\psi_a] = 1/3,\quad [\mu] = [\lambda_{ab}] = 2/3,\quad [\omega_a] = 1.\hspace{1cm}(3.24)$$

This leads to the degrees of the various Killing vectors

$$[M_a^b] = 0,$$

$$[P_a] = 1/3,\quad [R^a] = -1/3,$$

$$[T] = 2/3,\quad [Q] = -2/3,$$

$$[L_a] = 1,\quad [N^a] = -1.$$

(3.25)
The full algebra consists of the above commutation relations (3.3), (3.6), (3.7), (3.8), (3.9), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17), (3.19), (3.22) together with

\[
\begin{align*}
[M_{ab}, P_c] &= \delta^b_c P_a, \quad (3.26) \\
[M_{ab}, T] &= \delta^b_a T, \quad (3.27) \\
[N^a, P_b] &= \delta^a_b Q, \quad (3.28) \\
[N^a, T] &= R^a, \quad (3.29) \\
[Q, P_a] &= -2\epsilon_{ab} R^b, \quad (3.30) \\
[Q, T] &= Tr(M), \quad (3.31) \\
[R^a, P_b] &= -3M^a_0 + \delta^a_b Tr(M), \quad (3.32) \\
[R^a, T] &= 2\epsilon^{ab} P_b, \quad (3.33) \\
[L_a, P_b] &= 0, \quad (3.34) \\
[L_a, T] &= 0, \quad (3.35) \\
[P_a, P_b] &= 2\epsilon_{ab} T, \quad (3.36) \\
[P_a, T] &= 3L_a. \quad (3.37)
\end{align*}
\]

This is a rank 2 algebra which can be put in the Cartan-Weyl form, with

\[
\begin{align*}
H_1 &= \frac{M_0^0 + M_1^1}{\sqrt{6}}, \quad H_2 = \frac{M_0^0 - M_1^1}{\sqrt{2}}, \\
E_1 &= M_0^1, \quad E_{-1} = M_1^1, \quad \alpha_1 = (0, \sqrt{2}), \\
E_2 &= \frac{1}{\sqrt{3}} P_0, \quad E_{-2} = \frac{1}{\sqrt{3}} R^0, \quad \alpha_2 = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{2}}), \\
E_3 &= \frac{1}{\sqrt{3}} P_1, \quad E_{-3} = \frac{1}{\sqrt{3}} R^1, \quad \alpha_3 = (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{2}}), \\
E_4 &= \frac{1}{\sqrt{3}} T, \quad E_{-4} = \frac{1}{\sqrt{3}} Q, \quad \alpha_4 = (\frac{\sqrt{2}}{\sqrt{3}}, 0), \\
E_5 &= L_0, \quad E_{-5} = -N^0, \quad \alpha_5 = (\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{2}}), \\
E_6 &= L_1, \quad E_{-6} = -N^1, \quad \alpha_6 = (\frac{\sqrt{2}}{\sqrt{3}}, -\frac{1}{\sqrt{2}}),
\end{align*}
\]

with \(\alpha_4 = \alpha_2 + \alpha_3, \alpha_1 = \alpha_2 - \alpha_3, \alpha_6 = \alpha_3 + \alpha_4, \alpha_5 = \alpha_2 + \alpha_4 = \alpha_1 + \alpha_6\). The root space diagram is that of the 14-dimensional algebra \(Lie(G_2)\). Note that the roots are arranged in order of increasing degree, and that the hidden symmetry generators \((P_a, T, L_a)\) correspond to the five roots with positive abscissa.
4 Determination of the five hidden symmetries

Our strategy is to exploit the above commutation relations to determine the uncompletely known Killing vectors \(L^a, \) \(P^a \), and \(T \). First, the commutation relations (3.29) and (3.31) can be solved to yield

\[
T = \omega_b R^b + \mu \left[2\lambda_{bc} \frac{\partial}{\partial \lambda^{cb}} + \psi_b \frac{\partial}{\partial \psi^b} + \mu \frac{\partial}{\partial \mu} \right] + X ,
\]

where

\[
\frac{\partial X}{\partial \omega_a} = 0 , \quad \frac{\partial X}{\partial \mu} = 0 .
\]

The unknown \(X \) is parametrized by

\[
X = X_A \partial A \equiv X_{\lambda^{cd}} \frac{\partial}{\partial \lambda^{dc}} + X_{\omega} \frac{\partial}{\partial \omega} + \psi \frac{\partial}{\partial \psi^c} + X_{\mu} \frac{\partial}{\partial \mu} .
\]

Then, relation (3.32) gives

\[
P_a = -3\mu^2 \epsilon^{ab} \frac{\partial}{\partial \omega^b} - 2\mu \epsilon^{ab} \frac{\partial}{\partial \psi^b} - 2\mu \psi_a \left(\frac{\partial}{\partial \mu} + \psi_b \frac{\partial}{\partial \psi^b} \right)
+ \omega_a \frac{\partial}{\partial \mu} - \psi_a \left(\lambda_{bc} \frac{\partial}{\partial \lambda^{cb}} + \psi_b \frac{\partial}{\partial \psi^b} \right) - \epsilon^{ab} \left(\frac{\partial X_A}{\partial \psi^b} - X_{\mu} \frac{\partial}{\partial \omega^b} \right)
+ \frac{1}{2} \psi_a X_{\psi} \frac{\partial}{\partial \psi^b} + \frac{1}{2} \psi_a X_{\psi} \frac{\partial}{\partial \omega^b} .
\]

Inserting this in relation (3.32) gives a system of eight second order differential equations for eight unknown functions \(X_A \) of two variables \(\psi^c \) (also depending on the three “parameters” \(\lambda^{cd} \)):

\[
[R^a, P_b] = -3\omega^b \frac{\partial}{\partial \omega_a} - 3\psi^b \frac{\partial}{\partial \psi_a} - \delta^a_b \left(\lambda_{cd} \frac{\partial}{\partial \lambda^{dc}} - \psi^d \frac{\partial}{\partial \psi^d} + \mu \frac{\partial}{\partial \mu} \right)
- \frac{1}{2} \epsilon^{bc} \left(\frac{\partial^2 X_A}{\partial \psi^b \partial \psi^c} - \frac{\partial X_A}{\partial \psi^b} \frac{\partial}{\partial \omega_a} - \frac{\partial X_A}{\partial \psi^c} \frac{\partial}{\partial \psi^a} \frac{\partial}{\partial \omega^c} \right)
+ \left(\frac{\partial X_{\psi^b}}{\partial \psi^a} - \frac{1}{2} \delta_{\psi^b} X_{\psi^a} \frac{\partial}{\partial \omega^d} \right) \left(\frac{\partial}{\partial \mu} + \psi_d \frac{\partial}{\partial \psi^d} \right)
+ \frac{\partial X_{\psi^c}}{\partial \psi^d} \left(\delta^a_d \psi_b - \frac{1}{2} \delta^a_b \psi^d \right) \frac{\partial}{\partial \omega^c} - \left(X_{\psi^b} \frac{\partial}{\partial \omega} + \frac{1}{2} \delta^a_{\psi^b} X_{\psi^a} \frac{\partial}{\partial \omega^c} \right)
= -6\lambda_{bc} \frac{\partial}{\partial \lambda^{ca}} - 3\omega^b \frac{\partial}{\partial \omega^a} - 3\psi^b \frac{\partial}{\partial \psi^a} + \delta^a_b \left(2\lambda_{cd} \frac{\partial}{\partial \lambda^{dc}} + \psi^c \frac{\partial}{\partial \psi^c} - \mu \frac{\partial}{\partial \mu} \right) .
\]

The only inhomogeneous equation is

\[
\frac{\partial^2 X_{\lambda^{cd}}}{\partial \psi^a \partial \psi^b} = 6 \epsilon^{be} \left(\delta^a_{\psi^c} \lambda^{de} - \delta^a_{\psi^c} \lambda^{de} - \delta^a_d \lambda^{ce} \right) .
\]
This is solved by

\[X_{\lambda}{}^{ab} = 6\epsilon^{cd}\lambda{}_{(ac}\psi_{b)}\psi_d + G_{ab}, \tag{4.7} \]

where the symmetric tensor \(G_{ab} \) depends only on the \(\lambda_{cd} \) (a component linear in the \(\psi_d \) will not lead to a second order tensor). The only possibility is \(G_{ab} = f(\tau)\lambda_{ab} \), and \([f] = [X] = 2/3\) means that necessarily \(f(\tau) \propto \tau^{1/2} \).

Such a fractional power can be reasonably excluded to occur in the Killings of (2.12), leading to

\[G_{ab} = 0. \tag{4.8} \]

Next, we turn to the component equation along \(\partial/\partial \psi_b \),

\[\frac{\partial^2 X_{\psi_b}}{\partial \psi_c \partial \psi_d} = 0, \tag{4.9} \]

which is solved by

\[X_{\psi_b} = F^c_b(\lambda)\psi_c. \tag{4.10} \]

(a term of degree 0 in the \(\psi_d \) would not lead to a vector). Only one mixed tensor of the correct dimension can be constructed from \(\lambda_{cd} \) (without involving fractional powers of \(\tau \)), this is \(F^c_b = \alpha\epsilon^{cd}\lambda_{bd} \) (\(\alpha \) constant). Thus,

\[X_{\psi_b} = \alpha\epsilon^{cd}\lambda_{bd}\psi_c. \tag{4.11} \]

Inserting this into the component along \(\partial/\partial \mu \) and using the identity

\[\epsilon^{ac}\lambda_{bc} = \tau\epsilon_{bc}\lambda^{ac} \tag{4.12} \]

(where the \(\lambda^{ac} \) are the elements of the matrix \(\lambda^{-1} \)) leads to the equation

\[\frac{\partial^2 X_{\mu}}{\partial \psi_a \partial \psi_b} = 2\alpha\tau\lambda^{ab}, \tag{4.13} \]

which is solved by

\[X_{\mu} = \alpha\tau\lambda^{ab}\psi_a\psi_b + \beta\tau, \tag{4.14} \]

with \(\beta \) a new integration constant. Finally, the component along \(\partial/\partial \omega_c \)

reads

\[\frac{\partial^2 X_{\omega_c}}{\partial \psi_a \partial \psi_b} = 4\alpha\tau \left[\left(\delta^b_c\lambda^{ad} + \delta^a_c\lambda^{bd} \right) \psi_d + \lambda^{ab}\psi_c \right], \tag{4.15} \]

which is solved by

\[X_{\omega_c} = 2\alpha\tau\lambda^{ab}\psi_a\psi_b\psi_c + \gamma\tau\psi_c, \tag{4.16} \]

with \(\gamma \) a third integration constant.
Now, the generators T and P_a are known up to three undetermined constants:

$$T = \left[2\mu\lambda_{bc} + 6\epsilon_{de}\lambda_{bd}\psi_c\psi_e \right] \frac{\partial}{\partial\lambda_{bc}}$$
$$+ \left[3\mu\omega_b + \gamma\tau\psi_b - \epsilon^{ce}\omega_c\psi_d + 2\alpha\tau\lambda^c\psi_b\psi_c\psi_d \right] \frac{\partial}{\partial\omega_b}$$
$$+ \left[\omega_b + \mu\psi_b + \alpha\epsilon^{cd}\lambda_{bd}\psi_c \right] \frac{\partial}{\partial\psi_b}$$
$$+ \left[\mu^2 + \beta\tau - \epsilon^{bc}\omega_b\psi_c + \alpha\tau\lambda^b\psi_b \psi_c \right] \frac{\partial}{\partial\mu},$$

(4.17)

$$P_a = \left[2\lambda_{bc}\psi_a - 6\lambda_{ab}\psi_c \right] \frac{\partial}{\partial\lambda_{bc}}$$
$$+ \left[-3\mu^2\epsilon_{ab} + \frac{3\beta - \gamma}{2}\tau\epsilon_{ab} - 2\mu\psi_a\psi_b - \alpha\epsilon^{cd}\lambda_{ad}\psi_b\psi_c \right] \frac{\partial}{\partial\omega_b}$$
$$+ \left[-2\mu\epsilon_{ab} + \frac{\alpha}{2}\lambda_{ab} - \psi_a\psi_b \right] \frac{\partial}{\partial\psi_b}$$
$$+ \left[\omega_a - 2\mu\psi_a - \frac{\alpha}{2}\epsilon^{cd}\lambda_{ad}\psi_c \right] \frac{\partial}{\partial\mu}. \quad (4.18)$$

The remaining two generators L_a can then be computed from (3.37):

$$L_a = \left[2\omega_b\lambda_{ac} + 2\mu (\lambda_{bc}\psi_a - 3\lambda_{ab}\psi_c) + 2\epsilon_{de}\lambda_{bd}\psi_a\psi_c \right] \frac{\partial}{\partial\lambda_{bc}}$$
$$+ \left[\omega_a\omega_b + \frac{\alpha\gamma}{6}\tau\lambda_{ab} - \mu^2\epsilon_{ab} + \frac{3\beta - \gamma}{2}\tau\epsilon_{ab} - \mu^2\psi_a\psi_b \right. - \alpha\epsilon^{cd}\lambda_{ad}\psi_b\psi_c + \frac{8\alpha^2 + 7(\beta - \gamma)}{6}\tau\psi_a\psi_b + \alpha\tau\lambda^c\psi_a\psi_b\psi_c\psi_d \right] \frac{\partial}{\partial\omega_b}$$
$$\left. + \left[-\mu^2\epsilon_{ab} + \frac{\alpha}{2}\mu\lambda_{ab} + \frac{7\beta - \gamma}{6}\tau\epsilon_{ab} + \omega_b\psi_a \right] \frac{\partial}{\partial\psi_b} \right. - \mu\psi_a\psi_b + \frac{\alpha}{2}\epsilon^{cd}\lambda_{bd}\psi_a\psi_c \right] \frac{\partial}{\partial\psi_b}$$
$$+ \left[\mu\omega_a - \mu^2\psi_a - \frac{\alpha}{2}\epsilon^{cd}\lambda_{ad}\psi_c + \frac{\alpha^2 + \beta - \gamma}{2}\tau\psi_a + \frac{\alpha}{2}\tau\lambda^b\psi_a\psi_b\psi_c \right] \frac{\partial}{\partial\mu}, \quad (4.19)$$

consistent with (3.15) (L_a is a vector of degree 1), (3.16) and (3.19). Computation of the commutator $[R^a, L_b]$ leads to

$$[R^a, L_b] = \delta^a_b \left\{ 2\mu\lambda_{cd} + 6\epsilon_{ef}\lambda_{ce}\psi_d\psi_f \right\} \frac{\partial}{\partial\lambda_{cd}}$$
\[+ \left[3\mu \omega_c + \left(\alpha^2 + 2\beta - \gamma \right) \tau \psi_c \right. \]
\[- \epsilon^{de} \omega_d \psi_c \psi_e + 2\alpha \tau \lambda^{de} \psi_c \psi_d \psi_e \left. \frac{\partial}{\partial \omega_c} \right] \]
\[+ \left[\omega_c + \mu \psi_c + \alpha \epsilon^{de} \lambda_{ce} \psi_d \right. \frac{\partial}{\partial \psi_c} \]
\[+ \left[\mu^2 + \frac{\alpha^2 + 5\beta - 2\gamma}{3} \tau \right. \]
\[- \epsilon^{cd} \omega_c \psi_d + \alpha \tau \lambda^{cd} \psi_c \psi_d \left. \right] \frac{\partial}{\partial \mu} \right) , \]
(4.20)

consistent with (3.22) provided
\[\alpha^2 + 2(\beta - \gamma) = 0 . \]
(4.21)

Finally there remains to check the commutation relations (3.17) (the remaining commutation relations will then be satisfied by virtue of the Bianchi identities). A lengthy computation leads to
\[[L_a, L_b] = (3\beta - \gamma) \tau \begin{cases} \lambda_{[ac} \psi_{b]} \left(8\psi_d \partial_{\lambda_{cd}} - \frac{2\alpha}{3} \partial_{\psi_c} \right) \\
- \epsilon_{ab} \left[\frac{7}{12} \alpha \tau (\alpha - \lambda^{de} \psi_d \psi_e) + \frac{1}{4} \mu^2 \right] \psi_c \partial_{\omega_c} \\
+ \frac{\alpha}{2} \tau \epsilon_{ab} \left(\frac{\alpha}{4} + \lambda^{de} \psi_d \psi_e \right) \partial_{\mu} \end{cases} , \]
(4.22)

where we have taken (4.21) into account. So (3.17) is satisfied provided
\[\beta = \gamma = \frac{\alpha^2}{3} . \]
(4.23)

We have thus obtained a realisation of \(\text{Lie}(G_2) \) depending on an arbitrary real parameter \(\alpha \). The reason for this arbitrariness may be traced to the fact that the algebra (3.3), (3.6)-(3.9), (3.11)-(3.14) of the manifest symmetries is invariant under the combined scale transformation \(\Phi^A \rightarrow \Phi'^A \) with
\[\lambda'_{ab} = \lambda_{ab} , \quad \psi'_a = k^2 \psi_a , \quad \mu' = k^2 \mu , \quad \omega'_a = k^3 \omega_a , \]
(4.24)

depending on a real parameter \(k \). The five hidden symmetries transform according to their appropriate scales \((P'_a = kP_a , \ T' = k^2 T , \ L'_a = k^3 L_a) \) provided the integration constant \(\alpha \) is also rescaled to
\[\alpha' = k^2 \alpha . \]
(4.25)
However the target space metric (2.12) is not invariant under the transformation (4.24):

\[
\begin{align*}
\frac{1}{4}T (\lambda'^{-1} d\lambda' \lambda'^{-1} d\lambda') + \frac{1}{4} \tau'^{-2} d\tau'^2 - \frac{1}{2} k^6 \tau'^{-1} V'^T \lambda'^{-1} V' \\
+ \frac{3}{2} \left(k^2 d\psi'^T \lambda'^{-1} d\psi' - k^4 \tau'^{-1} \eta'^2 \right).
\end{align*}
\] (4.26)

Let us determine the value of \(\alpha\) such that \(T\) is a Killing vector of the target space metric (2.12) (relations (3.33) and (3.37) then imply that the \(L_a\) and \(P_a\) are also Killing vectors). The action of \(T\) leads to the first order variations (written in matrix notation)

\[
\begin{align*}
\delta \lambda &= 2\mu \lambda + 3(\lambda J \psi \cdot \psi - \psi \cdot \psi J \lambda), \\
\delta \omega &= 3\mu \omega + \frac{3\alpha^2}{4} \tau \psi - (\omega J \psi) \psi + 2\alpha \tau (\psi \lambda^{-1} \psi) \psi, \\
\delta \psi &= \omega + \mu \psi - \alpha \lambda J \psi, \\
\delta \mu &= \mu^2 + \frac{\alpha^2}{4} \tau - (\omega J \psi) + \alpha \tau (\psi \lambda^{-1} \psi),
\end{align*}
\] (4.27-4.30)

with \(J^{ab} \equiv \epsilon^{ab}\). This leads to

\[
\begin{align*}
\frac{1}{4} \delta (\lambda^{-1} d\lambda)^2 &= \tau^{-1} d\tau d\mu + 3 \left(\psi \lambda^{-1} d\lambda J \psi + d\psi \lambda^{-1} d\lambda J \psi \right), \\
\frac{1}{4} \delta (\tau^{-1} d\tau)^2 &= 2 \tau^{-1} d\tau d\mu, \\
\frac{1}{2} \delta (d\psi \lambda^{-1} d\psi) &= 3 \left(\psi J d\psi \right) \left(\psi \lambda^{-1} d\psi \right) + \left(d\omega \lambda^{-1} d\psi \right) \\
&\quad + d\mu \left(\psi \lambda^{-1} d\psi \right) - \alpha \left(d\psi \lambda^{-1} d\lambda J \psi \right), \\
- \frac{1}{2} \delta (\tau^{-1} \eta^2) &= - \left[d\mu + \psi J d\psi \right] \left[\frac{\alpha^2}{4} \tau^{-1} d\tau \\
&\quad + 2 \tau^{-1} (\psi J d\omega) + 2 \alpha \left(\psi \lambda^{-1} d\psi \right) \right], \\
- \frac{1}{2} \delta (\tau^{-1} V \lambda^{-1} V) &= \tau^{-1} \left[3d\mu + (\psi J d\psi) \right] \left[\alpha (\psi J d\omega) + \frac{3\alpha^2}{4} \tau \left(\psi \lambda^{-1} d\psi \right) \right] \\
&\quad - \frac{3\alpha^2}{4} \left(d\psi \lambda^{-1} d\omega \right) + 2 \alpha \left(\psi \lambda^{-1} d\psi \right) \left(\psi \lambda^{-1} d\omega \right) \\
&\quad - \left(\psi \lambda^{-1} \psi \right) \left(d\psi \lambda^{-1} d\omega \right). \quad (4.31-4.35)
\end{align*}
\]
Collecting these, we obtain

\[
\delta(dS^2) = 3\left(1 - \frac{\alpha^2}{4}\right)\tau^{-1}d\tau \left[d\mu + \left(\psi Jd\psi\right)\right] + 3\left(1 - \frac{\alpha^2}{4}\right)\left(d\omega \lambda^{-1}d\psi\right)
\]

\[
+ 3(\alpha - 2)\tau^{-1}\left[d\mu + \left(\psi Jd\psi\right)\right] \left(\psi Jd\omega\right)
\]

\[
+ 3\left(3 - 2\alpha + \frac{\alpha^2}{4}\right)\left(\psi Jd\psi\right) \left(\psi \lambda^{-1}d\psi\right)
\]

\[
+ 3\left[(\psi \lambda^{-1}d\lambda Jd\psi) - d\psi \lambda^{-1}d\lambda J\psi \right] - \tau^{-1}d\tau \left(\psi Jd\psi\right)
\]

\[
+ 2\alpha \left[\left(\psi \lambda^{-1}d\psi\right) \left(\psi \lambda^{-1}d\omega\right) - \left(\psi \lambda^{-1}\psi\right) \left(d\psi \lambda^{-1}d\omega\right) \right]
\]

\[
- \tau^{-1}\left(\psi Jd\psi\right) \left(\psi Jd\omega\right) \right].
\]

(4.36)

The last two terms in square brackets vanish identically, while the remaining terms vanish provided

\[
\alpha = 2, \quad \beta = 1, \quad \gamma = 3.
\]

(4.37)

5 Coset representative

In this section we assume for definiteness that the original five-dimensional metric \(g_{(5)\mu\nu}\) is Lorentzian, one of the two Killing vectors of the original five-dimensional theory (2.1) being timelike (the corresponding solutions are stationary) and the other being spacelike. The reduced metric \(h_{ij}\) is then Euclidean and the matrix field \(\lambda\) has signature (+−). In the vacuum sector (\(\psi_a = 0, \mu = 0\)), the target space metric (2.12) reduces to that of the five-dimensional symmetric space \(SL(3, R)/SL(2, R) \) [15], with signature (+ + + − −). The full eight-dimensional metric (2.12), with signature (+ + + − − − −), is that of the symmetric space \(G_{2(2)}/(SL(2, R) \times SL(2, R))\). This coset was constructed in [10] in terms of the 14-dimensional adjoint representation of \(G_{2(2)}\). We present here a more convenient representation (previously published without details in [14]) in terms of symmetrical \(7 \times 7\) matrices.

The matrix representatives \(j_M\) (\(M = 1, \cdots, 14\)) of the real form of \(Lie(G_2)\) may be derived from the \(Z\) matrices of [16] by omitting \(i\)’s. Their
generic block decomposition is

\[j = \begin{pmatrix} S & \tilde{V} & \sqrt{2}U \\ -\tilde{U} & -S^T & \sqrt{2}V \\ \sqrt{2}V^T & \sqrt{2}U^T & 0 \end{pmatrix}, \quad (5.1) \]

where \(S \) is a \(3 \times 3 \) matrix, \(U \) and \(V \) are 3-component column matrices, \(U^T \) and \(V^T \) the corresponding transposed row matrices, and \(\tilde{U}, \tilde{V} \) are the \(3 \times 3 \) dual matrices \(\tilde{U}_{ij} = \epsilon_{ijk}U_k \). The matrices \(m_a^b, n^a \) and \(\ell_a \) generating \(SL(3, R) \) are of type \(S \), the corresponding \(3 \times 3 \) blocks being

\[S_{m_0^0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad S_{m_0^1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \]
\[S_{m_1^0} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad S_{m_1^1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \]
\[S_{n_0} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad S_{n_1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \]
\[S_{\ell_0} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad S_{\ell_1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \quad (5.2) \]

The matrices \(p_a \) and \(q \) are of type \(U \), the corresponding \(1 \times 3 \) blocks being

\[U_{p_0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad U_{p_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad U_q = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}. \quad (5.3) \]

The matrices \(r^a \) and \(t \) are of type \(V \), the corresponding \(1 \times 3 \) blocks being

\[V_{r_0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad V_{r_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad V_t = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \quad (5.4) \]

Due to the form of (5.1), the transposed matrices \(j_A^T \) are related to the original matrices \(j_A \) by

\[j_A^T = -K_j A K, \quad (5.5) \]
where the involution K has the block structure
\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}.
\tag{5.6}
\]

A representative $N(\Phi^A)$ of the coset G/H (here $G = G_{2(2)}$ and $H = SL(2, R) \times SL(2, R)$) transforms by global right action of G and local right action of H:
\[
N(\Phi) \rightarrow h(\Phi)N(\Phi)g
\tag{5.7}
\]
($g \in G$, $h(\Phi) \in H$). The corresponding infinitesimal transformation is
\[
J_MN(\Phi) = N(\Phi)j_M + q_M^\alpha(\Phi)k_\alpha N(\Phi),
\tag{5.8}
\]
where J_M, $M = 1, \cdots, 14$ are Killing vectors acting as differential operators, j_M are the corresponding matrices of the Lie(G) algebra, y_α, $\alpha = 1, \cdots, 6$ are generators of the isotropy subalgebra Lie(H) and $q_M^\alpha(\Phi)$ are gauge functions. The gauge can be fixed so that for a suitably chosen Borel subalgebra $M = A = 1, \cdots, 8$ the functions $q_A^\alpha(\Phi)$ vanish, and the corresponding subset of the equations (5.8) reduces to
\[
J_A N(\Phi) = N(\Phi)j_A.
\tag{5.9}
\]
From a solution $N(\Phi)$ of (5.9), one then constructs the gauge-independent symmetrical matrix,
\[
M = N^T \eta N,
\tag{5.10}
\]
where η is a constant symmetrical matrix invariant under the isotropy subgroup H,
\[
\eta^T = \eta, \quad h^T \eta h = \eta.
\tag{5.11}
\]
The matrix $M(\Phi)$ is invariant under the local action of H and transforms tensorially under the global action of G,
\[
M(\Phi) \rightarrow g^T M(\Phi) g.
\tag{5.12}
\]
The σ-model current
\[
\mathcal{J} = M^{-1}dM
\tag{5.13}
\]
constructed from the coset representative $M(\Phi)$ is invariant under the action of G. The target space metric (2.12) is given in terms of this current by
\[
dS^2 = \frac{1}{4} \text{Tr}(\mathcal{J}^2).
\tag{5.14}
Consequently, the current \mathcal{J} is conserved by virtue of the field equations deriving from the gravitating σ-model action (2.11)

$$\frac{1}{\sqrt{|h|}} \partial_i \left(\sqrt{|h|} h^{ij} \mathcal{J}_j \right) = 0.$$ (5.15)

Note that the definition of the matrix $M(\Phi)$ is not unique, as the current (5.13) is invariant under $M(\Phi) \rightarrow PM(\Phi)$ ($P \in G$). For instance a group equivalent coset representative is

$$M' \equiv KM = N^{-1}\eta'N \quad (\eta' = K\eta = \eta K),$$ (5.16)

using $N^T = KN^{-1}K$ which follows from exponentiating (5.5).

It is convenient to choose as generators of the Borel subalgebra eight of the manifest symmetry generators, i.e. three independent components of M_{ab} together with the two N^a, Q and the two R^a. A covariant solution of the first three equations (5.9) would involve trading the two-metric λ_{ab} for a zweibein ϵ^i_a. We shall bypass this by noting that, due to the structure (5.1) of the matrix generators, the vacuum ($\psi = \mu = 0$) matrix M is of the form

$$M_1 = \begin{pmatrix} \chi & 0 & 0 \\ 0 & \chi^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$ (5.17)

with χ the $SL(3,R)/SL(2,R)$ coset representative

$$\chi = \begin{pmatrix} \lambda - \tau^{-1}\omega \omega^T & \tau^{-1}\omega \\ \tau^{-1}\omega^T & -\tau \end{pmatrix},$$ (5.18)

where λ is a 2×2 block, and ω a 2-component column matrix. Thus the static ($\omega = 0$) vacuum matrix M is

$$M_0(\lambda) = N(\epsilon)^T \eta N(\epsilon) = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & -\tau^{-1} & 0 & 0 \\ 0 & 0 & \lambda^{-1} & 0 \\ 0 & 0 & 0 & -\tau \\ 0 & 0 & 0 & 1 \end{pmatrix}. $$ (5.19)

The next three equations

$$\frac{\partial}{\partial \omega_a} N = Nn_a, \quad \frac{\partial}{\partial \mu} N = Nq$$ (5.20)
are readily integrated to:

\[N(\epsilon, \psi, \mu, \omega) = N(\epsilon, \psi)e^{\mu q}e^{\omega a n^a}. \] \tag{5.21}

The exponentials in (5.21) are easily computed as the matrices \(\mu q \) and \(\omega n \equiv \omega a n^a \) are nilpotent,

\[
e^{\mu q} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \mu^2 & -\sqrt{2}\mu \\ \mu J & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -\sqrt{2}\mu & 1 \end{pmatrix}, \quad e^{\omega n} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -\omega^T & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},
\] \tag{5.22}

where again the first and third rows and columns are double, and

\[
J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\] \tag{5.23}

Let us now show that the last two equations

\[R^aN = N r^a \] \tag{5.24}

are solved by

\[N(\Phi) = N(\epsilon)e^{\psi_a r^a}e^{\mu q}e^{\omega a n^a}. \] \tag{5.25}

Again, the matrix \(\psi_a r^a \) is nilpotent, so that

\[
e^{\psi r} = \begin{pmatrix} 1 & 0 & 0 & -J \psi & 0 \\ 0 & 1 & -\psi^T J & 0 & 0 \\ \psi \psi^T & 0 & 1 & 0 & \sqrt{2}\psi \\ 0 & 0 & 0 & 1 & 0 \\ \sqrt{2}\psi^T & 0 & 0 & 0 & 1 \end{pmatrix}.
\] \tag{5.26}

This can be used to show that

\[
[R^a, e^{\psi r}] = \frac{\partial}{\partial \psi a}(e^{\psi r}) = e^{\psi r} \left[r^a + \epsilon^{abc} \psi_b (q + \psi_c n^c) \right].
\] \tag{5.27}

Using this, together with the commutator,

\[
[r^a, e^{\mu q}] = -3e^{\mu q} \mu n^a,
\] \tag{5.28}
we obtain successively
\[
R^a e^{\psi r} e^{\mu q} e^{\omega n} = e^{\psi r} \left[r^a + \epsilon^{ab} \psi_b (q + \psi, n^c) + R^a \right] e^{\mu q} e^{\omega n}
\]
\[
= e^{\psi r} \left[r^a + 3\mu N^a - \epsilon^{ab} \psi_b (Q - q + \psi_c (N^c - n^c)) \right] e^{\mu q} e^{\omega n}
\]
\[
= e^{\psi r} e^{\mu q} \left[r^a + 3\mu (N^a - n^a) - \epsilon^{ab} \psi_b \psi_c (N^c - n^c) \right] e^{\omega n}
\]
\[
= e^{\psi r} e^{\mu q} e^{\omega n} r^a.
\]
(5.29)

The final result for the matrix \(M\) is
\[
M(\Phi) = e^{\omega n T} e^{\mu q T} e^{\psi r T} M_0(\lambda) e^{\psi r} e^{\mu q} e^{\omega n}.
\]
(5.30)

It follows from (5.1) and (5.19) that the matrix \(M\) has the symmetrical block structure
\[
M = \begin{pmatrix}
A & B & \sqrt{2}U \\
B^T & C & \sqrt{2}V \\
\sqrt{2}U^T & \sqrt{2}V^T & S
\end{pmatrix},
\]
(5.31)

where \(A\) and \(C\) are symmetrical \(3 \times 3\) matrices, \(B\) is a \(3 \times 3\) matrix, \(U\) and \(V\) are 3-component column matrices, and \(S\) a scalar. It also follows from (5.5) that the inverse matrix is given by
\[
M^{-1} = KMK = \begin{pmatrix}
C & B^T & -\sqrt{2}V \\
B & A & -\sqrt{2}U \\
-\sqrt{2}V^T & -\sqrt{2}U^T & S
\end{pmatrix},
\]
(5.32)

Computation of the product (5.30), with the matrices (5.19), (5.22) and (5.26) gives the coset matrix \(M\) in the form (5.31), with
\[
A = \begin{pmatrix}
(1 - y)\lambda + (2 + x)\psi\psi^T - \tau^{-1}\tilde{\omega}\tilde{\omega}^T \\
+\mu(\psi\psi^T\lambda - J)(-\lambda^{-1}\tilde{\omega})^T \\
\tau^{-1}\tilde{\omega}^T
\end{pmatrix},
\]
\[
B = \begin{pmatrix}
(\psi\psi^T - \mu J)\lambda^{-1} - \tau^{-1}\tilde{\omega}\tilde{\omega}^T J \\
\tau^{-1}\tilde{\omega}^T J \\
\tau^{-1}\psi^T J
\end{pmatrix},
\]
\[
C = \begin{pmatrix}
(1 + x)\lambda^{-1} - \lambda^{-1}\psi\psi^T \lambda^{-1} \\
\tilde{\omega}^T\lambda^{-1} + \psi^T (z + \mu \lambda^{-1} J) \\
\lambda^{-1}\tilde{\omega} - J(z - \mu J\lambda^{-1})\psi
\end{pmatrix},
\]

19
\[
U = \left\{
\begin{array}{l}
(1 + x - \mu J \lambda^{-1}) \psi - \mu \tau^{-1} \tilde{\omega} \\
\mu \tau^{-1}
\end{array}
\right),
\]
\[
V = \left\{
\begin{array}{l}
(\lambda^{-1} + \mu \tau^{-1} J) \psi \\
\psi^T \lambda^{-1} \tilde{\omega} - \mu (1 + x - z)
\end{array}
\right),
\]
\[
S = 1 + 2(x - y),
\]
\[
(5.33)
\]
with
\[
\tilde{\omega} = \omega - \mu \psi, \quad x = \psi^T \lambda^{-1} \psi, \quad y = \tau^{-1} \mu^2, \quad z = y - \tau^{-1} \psi^T J \tilde{\omega}.
\]
\[
(5.34)
\]

6 Conclusion

We have shown that the isometry algebra of the target space for five-dimensional supergravity reduced to three dimensions is that of G_2 by combining knowledge about the manifest symmetries (gauge invariances) of the theory with the $SL(3, R)$ invariance of the vacuum sector. We have then solved the Lie brackets to determine the generators of the hidden symmetries in terms of the field variables, and constructed a symmetrical 7×7 matrix representative of the coset $G_{2(+2)}/((SL(2, R) \times SL(2, R))$ as a function of the same fields.

This coset representative was used in [14] to generate a doubly-rotating charged black ring through the action of a group transformation (5.12) on a neutral 5D black ring with two angular momenta [17][18]. After completion of the present work, several related papers appeared. The geometry of the symmetric space $G_{2(2)}/SO(4)$ was studied in great detail in [19], where in particular the Iwasawa parametrization of the coset and the Killing vectors were also given explicitly. This approach was applied in [20] to the analysis of the supersymmetry constraints associated with a number of black hole solutions to gauged and ungauged 5D supergravity. BPS and non-BPS multi-centered attractor flows were constructed in [21], following the procedure advocated in [5].

These works certainly do not exhaust the potentialities of the sigma-model approach for generating solutions of five-dimensional supergravity. In [22], it was shown that stationary solutions to the four-dimensional Einstein-Maxwell equations can be generated from static solutions by a combination of $SU(2,1)$ group transformations and global coordinate transformations. This procedure can be extended to generate new stationary solutions of five-dimensional supergravity, which contains a four-dimensional Einstein-Maxwell sector [23]. In unrelated recent work, $SL(3, R)$ transformations were also used to generate stationary solutions of five-dimensional gravity.
from static solutions [24], and to construct a static black ring with Kaluza-Klein monopole charge [25]. It would be interesting to extend these techniques to the case of five-dimensional supergravity.

Acknowledgments

This work was motivated and enriched by stimulating discussions and exchanges with Dmitry Gal’tsov. I also wish to extend my warm thanks to Paul Sorba for his continued encouragement and enlightening advice.

Appendix

We first constructed the coset representative matrix \(M(\Phi) \) using a different procedure. Dualise the Killing vectors \(J_M = J_M^A \partial / \partial \Phi^A \) to the Killing one-forms

\[
\bar{J}_M = G_{AB} J_M^A d\Phi^B,
\]

where \(G_{AB} \) is the target space metric (2.12). The matrix current (5.13) is proportional to the Killing product of these one-forms with the matrices \(j_M \):

\[
M^{-1} dM = J \equiv 8 \sum_M \eta^{MN} \bar{J}_M j_N,
\]

where \(\eta^{MN} \) is the inverse of the Killing metric \(\eta_{MN} = 4Tr(j_M j_N) \). In the present case, the current (A.2) is given by

\[
J = \left(\bar{M}_a^b - \frac{1}{3} \delta^a_b Tr \bar{M} \right) m_a^b + \bar{N} a^a n^a_T + \bar{L} a^a_T + \frac{1}{3} \left(\bar{R}^a a^a_T + \bar{P} a^a_T + \bar{Q} q_T + \bar{T} t_T \right).
\]

The target space metric can be read off from (2.12):

\[
G_{\lambda a \lambda b} = \frac{1}{2} (\lambda^{(ab} \chi^{c)} + \chi^{ac} \lambda^{bd}),
\]

\[
G_{\omega a \omega b} = -\tau^{-1} \chi^{ab} ,
\]

\[
G_{\omega a \mu} = 3\tau^{-1} \chi^{ab} \psi_b ,
\]

\[
G_{\mu \mu} = -3\tau^{-1} (1 + 3\lambda^{ab} \psi_a \psi_b) ,
\]

\[
G_{\omega a \psi b} = -\tau^{-1} \chi^{ac} \psi^d c \psi_d ,
\]

\[
G_{\mu \psi a} = 3\tau^{-1} (1 + \chi^{cd} \psi^d c \psi_d) \psi^a_b ,
\]

\[
G_{\psi a \psi b} = 3 \left[\lambda^{ab} - \tau^{-1} (1 + \frac{1}{3} \chi^{cd} \psi^d c \psi_d) \psi^a e \psi^b f \right].
\]
This leads to the Killing one-forms:

\[
\tilde{M}_a^b = b \left(\lambda^{-1} d\lambda + \tau^{-1} d\tau - \tau^{-1} \left[\lambda^{-1} d\omega^T + \omega^T \lambda^{-1} d\omega \right] \right)
- (3\mu - J\psi\psi^T)\psi^T \lambda^{-1} d\omega + 3\tau^{-1} \left[\lambda^{-1} \psi^T + \omega^T \lambda^{-1} \psi \right] d\mu
- \mu (1 + 3\psi^T \lambda^{-1} \psi) + J\psi\psi^T (1 + \psi^T \lambda^{-1} \psi) d\mu
+ 3\lambda^{-1} d\psi^T \psi^T + \tau^{-1} \left[(\lambda^{-1} \psi^T + \omega^T \lambda^{-1} \psi) \right]
- 3\mu (1 + \psi^T \lambda^{-1} \psi) + 3J\psi\psi^T (1 + \frac{1}{3} \psi^T \lambda^{-1} \psi) \psi^T Jd\psi, \right)
\]

\[
\tilde{N}_a = a \left(-\tau^{-1} \lambda^{-1} \left[d\omega - \psi (3d\mu + \psi^T Jd\psi) \right] \right), \quad (A.5)
\]

\[
\tilde{Q} = 3\tau^{-1} \left[- (1 + 3\psi^T \lambda^{-1} \psi) d\mu + \psi^T \lambda^{-1} d\omega - (1 + \psi^T \lambda^{-1} \psi) \psi^T Jd\psi \right], \quad (A.6)
\]

\[
\tilde{R}_a = a \left(3\lambda^{-1} \left[d\psi - \tau^{-1} \mu (d\omega - \psi (3d\mu + \psi^T Jd\psi)) \right] \right)
+ 3\tau^{-1} J\psi \left[(2 + 3\psi^T \lambda^{-1} \psi) d\mu - \psi^T \lambda^{-1} d\omega \right]
+ 3(2 + \psi^T \lambda^{-1} \psi) \psi^T Jd\psi, \right)
\]

(the last five Killing one-forms will not be used in the following).

We solved the system of partial differential equations \[A.2\] in special cases. In the vacuum sector \((\mu = \psi = 0)\), the symmetrical solution is the Maison matrix \[5.18\]

\[
M_1(\lambda, \omega) = e^{\omega n^T} M_0(\lambda) e^{\omega n}. \quad (A.6)
\]

In the magnetostatic sector \((\omega = \psi = 0)\), the symmetrical solution is

\[
M_2(\lambda, \mu) = e^{\mu q^T} M_0(\lambda) e^{\mu q}. \quad (A.7)
\]

We only give here details on the solution in the electrostatic sector \((\omega = \mu = 0)\). The symmetrical matrix \(M_3\) solves the equation

\[
M_3^{-1} dM_3 = J_3, \quad (A.8)
\]

where \(J_3\) is obtained from \(J\) by setting \(\omega\) and \(\mu\) as well as \(d\omega\) and \(d\mu\) to zero. This equation constrains the tensorial characters and degrees of the
various matrix elements of M to be (in 5×5 notation)

$$M = \begin{pmatrix}
M_{ab} & M_{a3} & M_{a\alpha} & M_{a3} & M_{a}
M_{3b} & M_{33} & M_{3\beta} & M_{33} & M_{3}
M_{a\alpha} & M_{a3} & M_{a\beta} & M_{a3} & M_{a}
M_{3\beta} & M_{33} & M_{3\beta} & M_{33} & M_{3}
M_{b} & M_{3} & M_{b} & M_{3} & M
\end{pmatrix} \quad \text{(A.9)}$$

(there should be no confusion between these matrix elements and the Killing vectors $M_{a\beta}$), and

$$[M] = \begin{pmatrix}
2/3 & -1/3 & 0 & 1 & 1/3 \\
-1/3 & -4/3 & -1 & 0 & -2/3 \\
0 & -1 & -2/3 & 1/3 & -1/3 \\
1 & 0 & 1/3 & 4/3 & 2/3 \\
1/3 & -2/3 & -1/3 & 2/3 & 0
\end{pmatrix}. \quad \text{(A.10)}$$

These in turn severely constrain the possible dependence of the matrix elements which must be built from the fields λ_{ab}, ψ_a, $\tau = \det \lambda$ (recall $[\lambda] = 2/3$ and $[\psi] = 1/3$), and the constant tensors ϵ_{ab}, δ^b_a and ϵ^{ab}, with dimensionless coefficients depending on the only dimensionless scalar $x \equiv \psi^T \lambda^{-1} \psi$.

Combining this information with the constraint that the matrix M_3 and its inverse are related by (5.32), we can determine this matrix by solving only part of the equations (A.8). The following matrix solves the equations (A.8) for the components $m_{a\beta}$, $n^{a\alpha}$, r^{aT} and q^{T}:

$$M_3 = \begin{pmatrix}
\lambda + (2 + x)\psi^T \psi & 0 & \psi \psi^T \lambda^{-1} & -\lambda J \psi & \sqrt{2} (1 + x) \psi \\
0 & \lambda^{-1} \psi^T \psi & -\tau^{-1} \psi^T J & 0 & 0 \\
\psi^T J \lambda & 0 & (1 + x) \lambda^{-1} - \lambda^{-1} \psi \psi^T \lambda^{-1} & 0 & \sqrt{2} \lambda^{-1} \psi \\
\sqrt{2} (1 + x) \psi^T & 0 & \sqrt{2} \psi^T \lambda^{-1} & 0 & 1 + 2x
\end{pmatrix}. \quad \text{(A.11)}$$

This is of the form (5.31) with the blocks given by (5.33), and can be split up as the product

$$M_3(\lambda, \psi) = e^{\psi r T} M_0(\lambda) e^{\psi r}, \quad \text{(A.12)}$$

where the matrix $e^{\psi r}$ is given in (5.26).

References

[1] P. Breitenlohner and D. Maison, “Explicit and hidden symmetries of dimensionally reduced (super-)gravity theories”, in Solutions of Ein-
stein's equations: techniques and results, ed. C. Hoenselaers and W. Dietz (Springer-Verlag, Berlin Heidelberg 1984) 276.

[2] E. Cremmer, B. Julia, H. Lü and C.N. Pope, “Higher-dimensional origin of $d = 3$ coset symmetries”. [arXiv:hep-th/9909099]

[3] G. Neugebauer and D. Kramer, Ann. Phys. (Leipzig) 24 (1969) 62.

[4] W. Kinnersley, Journ. Math. Phys. 14 (1973) 651.

[5] G. Clément, Gen. Rel. Grav. 18 (1986) 861; G. Clément and D. Gal’tsov, Phys. Rev. D 54 (1996) 265.

[6] B. Julia, “Group disintegrations”, in Superspace and supergravity, eds. S.W. Hawking and M. Roček (Cambridge University Press, Cambridge 1981) 331.

[7] N. Marcus and J.H. Schwarz, Nucl. Phys. B 228 (1983) 145.

[8] E. Cremmer, “Supergravities in 5 dimensions”, in Superspace and supergravity, eds. S.W. Hawking and M. Roček (Cambridge University Press, Cambridge 1981) 267.

[9] A.H. Chamseddine and H. Nicolai, Phys. Lett. 96B (1980) 89.

[10] S. Mizoguchi and N. Ohta, Phys. Lett. B 441 (1998) 123.

[11] S. Mizoguchi and G. Schroeder, Class. Quantum Grav, 17 (2000) 835.

[12] M. Possel and S. Silva, Phys. Lett. B 580 (2004) 273.

[13] N.G. Scherbluk, “Hidden symmetries in five-dimensional supergravity”, MS Thesis, Moscow State University (2006) (unpublished).

[14] A. Bouchareb, G. Clément, C-M. Chen, D. V. Gal’tsov, N. G. Scherbluk and T. Wolf, Phys. Rev. D 76 (2007) 104032.

[15] D. Maison, Gen. Rel. Grav. 10 (1979) 717.

[16] M. Gunaydin and F. Gürsey, J. Math. Phys. 14 (1973) 1651.

[17] A. A. Pomeransky and R. A. Sen’kov, “Black ring with two angular momenta”, [arXiv:hep-th/0612005]

[18] Y. Morisawa, S. Tomisawa and Y. Yasui, Phys. Rev. D 77 (2008) 064019.

[19] M. Gunaydin, A. Neitzke, O. Pavlyk and B. Pioline, “Quasi-conformal actions, quaternionic discrete series and twistors: $SU(2,1)$ and $G_{2(2)}$”, [arXiv:0707.1669]

[20] M. Berkooz and B. Pioline, “5D black holes and non-linear sigma models”, [arXiv:0802.1659]
[21] D. Gaiotto, W. Li and M. Padi, JHEP 0712:093 (2007); W. Li, “Non-supersymmetric attractors in symmetric coset spaces” arXiv:0801.2536.

[22] G. Clément, Phys. Rev. D 57 (1998) 4885; G. Clément, Grav. Cosmol. 5 (1999) 281.

[23] A. Bouchareb and G. Clément, work in progress.

[24] S. Giusto and A. Saxena, Class. Quantum Grav. 24 (2007) 4269.

[25] J. Ford, S. Giusto, A. Peet and A. Saxena, Class. Quantum Grav. 25 (2008) 075014.