Short proof and generalization of a Menon-type identity by Li, Hu and Kim

László Tóth
Department of Mathematics, University of Pécs
Ifjúság útja 6, 7624 Pécs, Hungary
E-mail: ltoth@gamma.ttk.pte.hu

Abstract

We present a simple proof and a generalization of a Menon-type identity by Li, Hu and Kim, involving Dirichlet characters and additive characters.

2010 Mathematics Subject Classification: 11A07, 11A25
Key Words and Phrases: Menon’s identity, Dirichlet character, additive character, arithmetic function, Euler’s totient function, congruence

1 Motivation and main result

Menon’s classical identity states that for every $n \in \mathbb{N}$,

$$\sum_{\substack{a=1 \\ (a,n)=1}}^{n} (a-1,n) = \varphi(n)\tau(n), \quad (1.1)$$

where $(a-1,n)$ stands for the greatest common divisor of $a-1$ and n, $\varphi(n)$ is Euler’s totient function and $\tau(n) = \sum_{d|n} 1$ is the divisor function. Identity (1.1) was generalized by several authors in various directions. Zhao and Cao [7] proved that

$$\sum_{a=1}^{n} (a-1,n)\chi(a) = \varphi(n)\tau(n/d), \quad (1.2)$$

where χ is a Dirichlet character (mod n) with conductor $d \ (n \in \mathbb{N}, \ d \mid n)$. If χ is the principal character (mod n), that is $d = 1$, then (1.2) reduces to Menon’s identity (1.1). Generalizations of (1.2) involving even functions (mod n) were deduced by the author [6], using a different approach.

Li, Hu and Kim [4] proved the following generalization of identity (1.2):
Theorem 1.1 ([4, Th. 1.1]). Let \(n \in \mathbb{N} \) and let \(\chi \) be a Dirichlet character \((\text{mod } n)\) with conductor \(d \) \((d \mid n)\). Let \(b \mapsto \lambda_\ell(b) := \exp(2\pi i w_\ell b/n) \) be additive characters of the group \(\mathbb{Z}_n \), with \(w_\ell \in \mathbb{Z} \) \((1 \leq \ell \leq k)\). Then

\[
\sum_{a,b_1,\ldots,b_k=1}^n (a-1,b_1,\ldots,b_k,n)\chi(a)\lambda_1(b_1)\cdots\lambda_k(b_k) = \varphi(n)\sigma_k((n/d,w_1,\ldots,w_k)),
\]

where \(\sigma_k(n) = \sum_{d \mid n} d^k \).

Note that in (1.2) and (1.3) the sums are, in fact, over \(1 \leq a \leq n \) with \((a,n) = 1\), since \(\chi(a) = 0 \) for \((a,n) > 1\). In the case \(w_1 = \cdots = w_k = 0 \), identity (1.3) was deduced by the same authors in paper [3]. For the proof, Li, Hu and Kim computed first the given sum in the case \(n = p^t \), a prime power, and then they showed that the sum is multiplicative in \(n \).

It is the goal of this paper to present a simple proof of Theorem 1.1. Our approach is similar to that given in [6], and leads to a direct evaluation of the corresponding sum for every \(n \in \mathbb{N} \). We obtain, in fact, the following generalization of the above result. Let \(\mu \) denote the M"obius function and let \(*\) be the convolution of arithmetic functions.

Theorem 1.2. Let \(F \) be an arbitrary arithmetic function, let \(s_j \in \mathbb{Z} \), \(\chi_j \) be Dirichlet characters \((\text{mod } n)\) with conductors \(d_j \) \((1 \leq j \leq m)\) and \(\lambda_\ell \) be additive characters as defined above, with \(w_\ell \in \mathbb{Z} \) \((1 \leq \ell \leq k)\). Then

\[
\sum_{a_1,\ldots,a_m,b_1,\ldots,b_k=1}^n F((a_1 - s_1,\ldots,a_m - s_m,b_1,\ldots,b_k,n))\chi_1(a_1)\cdots\chi_m(a_m)\lambda_1(b_1)\cdots\lambda_k(b_k)
\]

\[
= \varphi(n)^m\chi_1^*(s_1)\cdots\chi_m^*(s_m) \sum_{e \mid (n/d_1,\ldots,n/d_m,w_1,\ldots,w_k)} \frac{e^k(\mu * F)(n/e)}{\varphi(n/e)^m}.
\]

where \(\chi_j^* \) are the primitive characters \((\text{mod } d_j)\) that induce \(\chi_j \) \((1 \leq j \leq m)\).

We remark that the sum in the left hand side of identity (1.4) vanishes provided that there is an \(s_j \) such that \((s_j,d_j) > 1\). If \(F(n) = n \) \((n \in \mathbb{N})\), \(m = 1 \) and \(s_1 = 1 \), then identity (1.4) reduces to (1.3). We also remark that the special case \(F(n) = n \) \((n \in \mathbb{N})\), \(m \geq 1 \), \(s_1 = \cdots = s_m = 1 \), \(k \geq 1 \), \(w_1 = \cdots = w_k = 0 \) was considered in the quite recent preprint [2]. Several other special cases of formula (1.4) can be discussed.

See the papers [3, 4, 5, 6, 7] and the references therein for other generalizations and analogues of Menon’s identity.

2 Proof

We need the following lemmas.
Lemma 2.1. Let \(n, d, e \in \mathbb{N} \), \(d \mid n, e \mid n \) and let \(r, s \in \mathbb{Z} \). Then

\[
\sum_{a=1\atop (a,n)=1}^{n} 1 = \begin{cases}
\varphi(n)/(d,e), & \text{if } (r,d) = (s,e) = 1 \text{ and } (d,e) \mid r - s, \\
0, & \text{otherwise.}
\end{cases}
\]

In the special case \(e = 1 \) this is known in the literature, usually proved by the inclusion-exclusion principle. See, e.g., [1, Th. 5.32]. Here we use a different approach, in the spirit of our paper.

Proof of Lemma 2.1. For each term of the sum, since \((a,n) = 1\), we have \((r,d) = (a,d) = 1\) and \((s,e) = (a,e) = 1\). Also, the given congruences imply \((d,e) \mid r - s\). We assume that these conditions are satisfied (otherwise the sum is empty and equals zero).

Using the property of the M"obius function, the given sum, say \(S \), can be written as

\[
S = \sum_{a=1\atop a \equiv r \pmod{d}}^{n} \sum_{\delta \mid (a,n)} \mu(\delta) = \sum_{\delta \mid n} \mu(\delta) \sum_{j=1\atop \delta j \equiv r \pmod{d}}^{n/\delta} 1. \tag{2.1}
\]

Let \(\delta \mid n \) be fixed. The linear congruence \(\delta j \equiv r \pmod{d} \) has solutions in \(j \) if and only if \((\delta,d) \mid r \), equivalent to \((\delta,d) = 1 \), since \((r,d) = 1 \). Similarly, the congruence \(\delta j \equiv s \pmod{e} \) has solutions in \(j \) if and only if \((\delta,e) \mid s \), equivalent to \((\delta,e) = 1 \), since \((s,e) = 1 \). These two congruences have common solutions in \(j \) due to the condition \((d,e) \mid r - s \). Furthermore, if \(j_1 \) and \(j_2 \) are solutions of these simultaneous congruences, then \(\delta j_1 \equiv \delta j_2 \pmod{d} \) and \(\delta j_1 \equiv \delta j_2 \pmod{e} \). Since \((\delta,d) = 1 \), this gives \(j_1 \equiv j_2 \pmod{[d,e]} \). We deduce that there are

\[
N = \frac{n}{\delta [d,e]}
\]
solutions \(\pmod{n/\delta} \) and the last sum in (2.1) is \(N \). This gives

\[
S = \frac{n}{[d,e]} \sum_{\delta \mid n \atop (\delta,de)=1} \frac{\mu(\delta)}{\delta} = \frac{n}{[d,e]} \frac{\varphi(n)/n}{\varphi(de)/(de)} = \frac{\varphi(n)}{\varphi(de)}(d,e).
\]

The next lemma is a known result. See, e.g., [6] for its (short) proof.

Lemma 2.2. Let \(n \in \mathbb{N} \) and \(\chi \) be a primitive character \(\pmod{n} \). Then for any \(e \mid n, e < n \) and any \(s \in \mathbb{Z} \),

\[
\sum_{a=1\atop a \equiv s \pmod{e}}^{n} \chi(a) = 0.
\]
Now we prove

Lemma 2.3. Let \(\chi \) be a Dirichlet character \(\mod n \) with conductor \(d \) \((n \in \mathbb{N}, d \mid n) \) and let \(e \mid n, s \in \mathbb{Z} \). Then

\[
\sum_{a=1}^{n} \chi(a) = \begin{cases} \varphi(n) \chi^*(s), & \text{if } d \mid e \text{ and } (s, e) = 1, \\ 0, & \text{otherwise}, \end{cases}
\]

where \(\chi^* \) is the primitive character \(\mod d \) that induces \(\chi \).

Proof of Lemma 2.3. We can assume \((a, n) = 1\) in the sum. If \(a \equiv s \mod e \), then \((s, e) = (a, e) = 1\). Given the Dirichlet character \(\chi \mod n \), the primitive character \(\chi^* \mod d \) that induces \(\chi \) is defined by

\[
\chi(a) = \begin{cases} \chi^*(a), & \text{if } (a, n) = 1, \\ 0, & \text{if } (a, n) > 1. \end{cases}
\]

We deduce

\[
T := \sum_{a=1}^{n} \chi(a) = \sum_{a=1}^{n} \chi^*(a) = \sum_{r=1}^{d} \chi^*(r) \sum_{a \equiv s \mod (d, e)} 1,
\]

where the inner sum is evaluated in Lemma 2.1. Since \((s, e) = 1\), as mentioned above, we have

\[
T = \sum_{r=1}^{d} \chi^*(r) \frac{\varphi(n)}{\varphi(de)}(d, e) = \frac{\varphi(n)}{\varphi(de)}(d, e) \sum_{r=1}^{d} \chi^*(r) = \frac{\varphi(n)}{\varphi(de)}(d, e)\chi^*(s),
\]

by Lemma 2.2 in the case \((d, e) = d\), that is \(d \mid e\). We conclude that

\[
T = \frac{\varphi(n)}{\varphi(de)} d\chi^*(s) = \frac{\varphi(n)}{\varphi(e)} \chi^*(s).
\]

If \(d \nmid e \), then \(T = 0 \).

Proof of Theorem 1.2. Let \(V \) denote the given sum. By using the trivial identity \(F(n) = \sum_{e \mid n} (\mu \ast F)(e) \), we have

\[
V = \sum_{a_1, \ldots, a_m, b_1, \ldots, b_k} \chi_1(a_1) \cdots \chi_m(a_m) \lambda_1(b_1) \cdots \lambda_k(b_k) \sum_{e \mid (a_1 - s_1, \ldots, a_m - s_m, b_1, \ldots, b_k, n)} (\mu \ast F)(e)
\]

\[
= \sum_{e \mid n} (\mu \ast F)(e) \sum_{\substack{a_1=1 \\atop a_1 \equiv s_1 \mod e}}^{n} \chi_1(a_1) \cdots \sum_{\substack{a_m=1 \\atop a_m \equiv s_m \mod e}}^{n} \chi_m(a_m) \sum_{\substack{b_1=1 \\atop e \mid b_1}}^{n} \lambda_1(b_1) \cdots \sum_{\substack{b_k=1 \\atop e \mid b_k}}^{n} \lambda_k(b_k).
\]

4
Here for every $1 \leq \ell \leq k$,
\[
\sum_{\substack{b_\ell=1 \\ e|b_\ell}}^{n} \lambda_\ell(b_\ell) = \sum_{c_\ell=1}^{n/e} \exp\left(2\pi iw_\ell c_\ell/(n/e)\right) = \begin{cases} \frac{n}{e}, & \text{if } \frac{n}{e} \mid w_\ell, \\ 0, & \text{otherwise,} \end{cases}
\]
and using Lemma 2.3 we deduce that
\[
V = \chi_1^*(s_1) \cdots \chi_m^*(s_m) \sum' (\mu * F)(e) \left(\frac{\varphi(n)}{\varphi(e)}\right)^m \left(\frac{n}{e}\right)^k,
\]
where the sum \sum' is over $e \mid n$ such that $d_\ell \mid e$, $(e, s_\ell) = 1$ for all $1 \leq \ell \leq m$ and $n/e \mid w_\ell$ for all $1 \leq \ell \leq k$. Interchanging e and n/e, the sum is over e such that $e \mid n/d_\ell$, $(e, s_j) = 1$ for all $1 \leq j \leq m$ and $e \mid w_\ell$ for all $1 \leq \ell \leq k$. This completes the proof.

3 Acknowledgement

This work was supported by the European Union, co-financed by the European Social Fund EFOP-3.6.1.-16-2016-00004.

References

[1] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer, 1976.

[2] M. Chen, S. Hu, and Y. Li, On Menon-Sury’s identity with several Dirichlet characters, Preprint, 2018, arXiv:1807.07241 [math.NT].

[3] Y. Li, X. Hu, and D. Kim, A generalization of Menon’s identity with Dirichlet characters, *Int. J. Number Theory*, accepted.

[4] Y. Li, X. Hu, and D. Kim, A Menon-type identity with multiplicative and additive characters, *Taiwanese J. Math.*, accepted.

[5] L. Tóth, Menon’s identity and arithmetical sums representing functions of several variables, *Rend. Sem. Mat. Univ. Politec. Torino* 69 (2011), 97–110.

[6] L. Tóth, Menon-type identities concerning Dirichlet characters, *Int. J. Number Theory* 14 (2018), 1047–1054.

[7] X.-P. Zhao and Z.-F. Cao, Another generalization of Menon’s identity, *Int. J. Number Theory* 13 (2017), 2373–2379.