THE CONTINUITY EQUATION WITH CUSP SINGULARITIES

YAN LI

Abstract. In this paper we study a special case of the completion of cusp Kähler-Einstein metric on the regular part of varieties by taking the continuity method proposed by La Nave and Tian. The differential geometric and algebro-geometric properties of the noncollapsing limit in the continuity method with cusp singularities will be investigated.

1. Introduction

The Yau-Tian-Donaldson conjecture for Fano manifolds has revealed deep connections among complex Monge-Ampère equation, metric geometry and complex algebraic geometry. Some specialists develop many techniques to deal with the celebrated conjecture, see [22] or [6], [7], [8]. These methods also play an important role in studying many other problems. For instance, in [21], J. Song proves that the metric completion of the regular set of Calabi-Yau varieties and canonical models of general type with crepant singularities is a compact length space which homeomorphic to the original variety. In [18], G. La Nave and G. Tian introduce a new continuity equation to consider the analytic minimal model program. Later in [19], G. La Nave, G. Tian and Z. L. Zhang study the differential geometric and algebro-geometric properties of the noncollapsing limit in the continuity equation. These fundamental results focus on the compact Kähler manifolds. For noncompact case, let us recall some facts. Suppose M is a compact complex manifold, D is an effective divisor with only normal crossings and $K_M + D$ is ample, where K_M is the canonical line bundle over M. A well known result achieved by Kobayashi [16] and Tian-Yau [23] asserts that there exists a complete negative Kähler-Einstein metric on $M \setminus D$. Recently, in [2], two authors generalize this result. For the convenience, this consequence is stated as following (Theorem C [2])

Theorem 1.1. Let \overline{M} be a compact Kähler manifold and D is a simple normal crossings \mathbb{R}-divisor on \overline{M} with coefficients in $[-1, +\infty)$ such that $K_{\overline{M}} + D$ is semi-positive and big. Then there exists a unique ω in $c_1(K_{\overline{M}} + D)$ which is smooth on a Zariski open set U of \overline{M} and such that

$$\text{Ric}(\omega) = -\omega + [D].$$

More precisely, U can be taken to the $\overline{M} \setminus (D \cup S)$, where S is the intersection of all effective \mathbb{Q}-divisors E such that $K_{\overline{M}} + D - E$ is ample.

Motivated by [21], a natural problem is to ask what the completion of (U, ω) is. In this article, a special case is investigated. More precisely, suppose \overline{M} is a projective manifold, D is a smooth hypersurface and $K_{\overline{M}} + D$ is big and semi-ample. According to the Kawamata base point free theorem, there exists an integer $K \in \mathbb{Z}^+$ such that an orthonormal basis of $K(K_{\overline{M}} + D)$ gives a holomorphic map

$$\Phi : \overline{M} \to \mathbb{C}P^N.$$
where \(N = \dim H^0(\overline{M}, K(\overline{M} + D)) - 1 \). The mainly result in this article is that the completion of \((U, \omega)\) in the sense of Theorem 1 homeomorphic to \(\Phi(\overline{M} \setminus D)\). If the divisor \(D\) is simple normal crossing with coefficients 1, then there is a similar result. To dealing with this problem, the continuity method is taken proposed by G. La Nave and G. Tian in [18].

To begin with, let \(\overline{M}\) be a projective manifold with a Kähler metric \(\omega_0\) and \(D\) be a smooth hypersurface in \(\overline{M}\) such that \(K_{\overline{M}} + D\) is big and semi-ample. \(h_D\) is denoted by the hermitian metric on \(L_D\), the associated line bundle of \(D\) such that \(\omega_0 - \sqrt{-1} \partial \overline{\partial} \log \log_2 |s_D|_{h_D}^2 > 0\), where \(s_D\) is the defining section of \(D\). The following 1-parameter family equations are considered:

\[
(1 + t)\omega = \omega_0 - \sqrt{-1} \partial \overline{\partial} \log \log_2 |s_D|_{h_D}^2 - t(\operatorname{Ric}(\omega) - [D]),
\]

where \([D]\) is the current of integration along \(D\).

Recall that \(\omega\) is said to have cusp singularities along \(D\) if, whenever \(D\) is locally given by \((z_1 = 0)\), \(\omega\) is quasi-isometric to the cusp metric

\[
\omega_{\text{cusp}} = \frac{\sqrt{-1} d z_1 \wedge d \overline{z}_1}{|z_1|^2 \log^2 |z_1|^2} + \sum_{k=2}^n d z_k \wedge d \overline{z}_k.
\]

Since \(\omega_0 - \sqrt{-1} \partial \overline{\partial} \log \log_2 |s_D|_{h_D}^2\) is a Kähler metric on \(\overline{M} \setminus D\) with cusp singularities, the equation (1.2) essentially state the variation of cusp Kähler metric along \(t\). Therefore, the equation (1.2) is called the cusp continuity equation.

Theorem 1.3. The cusp continuity equation (1.2) is solvable for all \(t \in [0, +\infty)\).

\(\omega_t\) is denoted by the solution of (1.2), then we have the following convergence result.

Theorem 1.4. \(\omega_t\) converge to a unique weakly Kähler metric \(\omega_1\) such that \(\omega_1\) is smooth on \(\overline{M} \setminus (D \cup S)\) and satisfies

\[
\operatorname{Ric}(\omega_1) = -\omega_1, \text{ on } \overline{M} \setminus (\overline{S_{\overline{M}}} \cup D),
\]

where

\[
S_{\overline{M}} = \bigcap \{E|E\text{ is an effective divisor such that } K_{\overline{M}} + D - \rho E > 0 \text{ for some } \rho > 0\}.
\]

If \(G\) is a big divisor, we denoted \(B_+(G)\) by the intersection of all effective \(\mathbb{Q}\)-divisors \(E\) such that \(G - E\) is ample. Then \(S_{\overline{M}}\) appeared in Theorem 1.4 is \(B_+(K_{\overline{M}} + D)\). Observing that \(\Phi : (\overline{M}, D) \to (\Phi(\overline{M}), \Phi(D))\) can be viewed as a resolution of \((\Phi(\overline{M}), \Phi(D))\) and \(K_{\overline{M}} + D = \Phi^*(K_{\Phi(\overline{M})} + \Phi(D))\).

According to Theorem 0-3-12 [15], \(K_{\Phi(\overline{M})} + \Phi(D)\) is ample. Let \(\Phi(\overline{M})_{\text{reg}}\) be the regular part of \(\Phi(\overline{M})\) and \(\Phi(\overline{M})_{\text{sing}}\) be the singular part of \(\Phi(\overline{M})\). The following Proposition illustrate the connection between \(B_+(K_{\overline{M}} + D)\) and \(\Phi(\overline{M})_{\text{sing}}\), due to Proposition 2.3 [3].

Proposition 1.5. Let \(\pi : X \to Y\) be a birational morphism between normal projective varieties. For any big \(\mathbb{R}\)-divisor \(G\) on \(Y\) and any effective \(\pi\)-exceptional divisor \(\mathbb{R}\)-divisor \(F\) on \(X\), then we have

\[
B_+(\pi^* G + F) = \pi^{-1}(B_+(G)) \cup \text{Exc}(\pi),
\]

where \(\text{Exc}(\pi) \subset X\) is the set of points \(x \in X\) such that \(\pi\) is not birregular.

From Theorem 1.4 and Proposition 1.5 the following Corollary is derived immediately.

Corollary 1.6.

\[
S_{\overline{M}} = B_+(K_{\overline{M}} + D) = \Phi^{-1}(B_+(K_{\Phi(\overline{M})} + \Phi(D))) \cup \text{Exc}(\Phi) = \Phi^{-1}(\Phi(\overline{M})_{\text{sing}})
\]
and
\[\overline{M \setminus (S_M \cup D)} = \overline{M_{\text{reg}} \setminus D}, \]

where \(\overline{M_{\text{reg}}} \) represents \(\Phi^{-1}(\Phi(M)_{\text{reg}}) \). Furthermore the metric \(\omega_1 \) is smooth on \(\overline{M_{\text{reg}} \setminus D} \).

Remark 1.7. If the codimension of \(\Phi(D) \) is not 1, then \(D \) is an exceptional divisor of the resolution \(\Phi \). Thus, \(\overline{M \setminus (S_M \cup D)} = \overline{M_{\text{reg}}} \).

\(M \) is denoted by \(\overline{M \setminus D} \). The next result states that the limit space \((M, \omega_t, x) \) converge to in the Gromov-Hausdorff topology has more regular properties, such as metric structure, algebraic structure.

Theorem 1.8. The following results are hold.

1. \((M, \omega_t, x) \) converges in the Gromov-Hausdorff topology to a length space \((M_1, d_1, x_1) \) which is the metric completion \((M_{\text{reg}} \setminus D, \omega_1) \).
2. \(M_1 = R \cup S \) and \(R = M_{\text{reg}} \setminus D \), where \(R \) is the regular part and \(S \) is the singular part.
3. \(R \) is geodesically convex and \(S \) is closed set which has codimension \(\geq 2 \).
4. \(M_1 \) homeomorphic to a normal quasi-subvariety \(\Phi(M \setminus D) \).

Acknowledgement: The author would like to thank Professor Gang Tian for his constant help, support and encouragement.

2. Preliminaries

In this section, we list some fundamental definitions and results which will be used in the later.

Definition 2.1. Let \(V \) be an open set in \(\mathbb{C}^n \). A holomorphic map from \(V \) into a complex manifold \(M \) of complex dimension \(n \) is called a quasi-coordinate map if it is of maximal rank everywhere in \(V \).

This open set \(V \) is called a local quasi-coordinate of \(M \).

Definition 2.2. Let \(M \) be a complete Kähler manifold and \(\omega \) is the Kähler form. \((M, \omega) \) is called bounded geometry if there is a quasi-coordinates \(\Gamma = \{(V; v^1, \ldots, v^n)\} \) which satisfies the following three conditions:

1. \(M \) is covered by the image of \((V; v^1, \ldots, v^n) \).
2. The complement of some open neighborhood of \(D \) is covered by a finite of \((V; v^1, \ldots, v^n) \) which are local coordinates in the usual sense.
3. There exist positive constants \(C \) and \(A_k \) \((k = 0, 1, 2, \ldots) \) independent of \(\Gamma \) such that at each \((V; v^1, \ldots, v^n) \), the inequalities

\[
\frac{1}{C} \delta_{ij} < (g_{ij}) < C \delta_{ij},
\]

\[
\left| \frac{\partial^{p+q}}{\partial v^p \partial \bar{v}^q} g_{ij} \right| < A_{|p|+|q|}, \quad \text{for any multiindices } p
\]

hold, where \(g_{ij} \) denote the component of \(\omega \) with respect to \(V \).

Now we define the Hölder space of \(C^{k,\lambda} \)-functions on a complete Kähler manifold \((M, \omega) \) which cover by the image of quasi-coordinates. For a nonnegative integer \(k \), \(\lambda \in (0,1) \) and \(u \in C^k(M) \), we
define
\[
||u||_{k,\lambda} = \sup_{V \in \mathcal{F}} \left\{ \sup_{z \in V} \left(\sum_{|p|+|q| \leq k} \left| \frac{\partial |p|+|q|}{\partial v^p \partial \bar{v}^q} u(z) \right| \right) \right\} + \sup_{z,z' \in V} \left(\sum_{|p|+|q| = k} \left| z - z' \right|^{-\lambda} \left| \frac{\partial |p|+|q|}{\partial v^p \partial \bar{v}^q} u(z) - \frac{\partial |p|+|q|}{\partial v^p \partial \bar{v}^q} u(z') \right| \right).
\]

The function space $C^{k,\lambda}(M)$ is, by definition,
\[
C^{k,\lambda}(M) = \{ u \in C^k(M); ||u||_{k,\lambda} < \infty \},
\]
which is a Banach space with respect to the norm $|| \cdot ||_{k,\lambda}$.

Next we state the generalized maximum principle, due to Yau (Proposition 1.6 [9]).

Theorem 2.3. Suppose (M,ω) is a complete Kähler manifold with bounded geometry and f is a function on M which is bounded from above. Then there exists a sequence x_i in M such that $\lim_{i \to \infty} f(x_i) = \sup f$, $\lim_{i \to \infty} |\nabla f(x_i)| = 0$ and $\lim_{i \to \infty} \text{Hess}(f)(x_i) \leq 0$, where the Hessian is taken with respect to ω.

Now we introduce the Bochner formula on a general line bundle. Let (M,ω) be a Kähler manifold of dimension n and (L,h) be a Hermitian Line bundle over M. Let Θ_h be the Chern curvature form of h. Let ∇ and ∇ denote the $(1,0)$ and $(0,1)$ part of a connection respectively. The connection appeared in this paper is usually known as the Chern connection or Levi-Civita connection.

For a holomorphic section $\tau \in \mathcal{H}^0(M,L)$ we write for simplicity
\[
|\tau| = |\tau|_h, \quad |\nabla \tau|_{h \otimes \omega} = |\nabla \tau|,
\]
and
\[
|\nabla \nabla \tau|^2 = \sum_{i,j} |\nabla_i \nabla_j \tau|^2, \quad |\nabla \nabla \tau|^2 = \sum_{i,j} |\nabla_i \nabla_j \tau|^2.
\]

By direct computation we have

Lemma 2.4. (Bochner formulas). For any $\tau \in \mathcal{H}^0(M,L)$ one has
\[
\Delta_\omega |\tau|^2 = |\nabla \nabla \tau|^2 - |\tau|^2 \cdot tr_\omega \Theta_h \tag{2.5}
\]
and
\[
\Delta_\omega |\nabla \tau|^2 = |\nabla \nabla \tau|^2 + |\nabla \nabla \tau|^2 - \nabla_j(\Theta_h)_{ij} \langle \tau, \nabla_i \tau \rangle - \nabla_j(tr_\omega \Theta_h)(\nabla_i \tau, \tau) + R_{ij}(\nabla_j \tau, \nabla_i \tau) - 2(\Theta_h)_{ij}(\nabla_j \tau, \nabla_i \tau) - |\nabla \tau|^2 \cdot tr_\omega \Theta_h \tag{2.6}
\]
where R_{ij} is the Ricci curvature of ω, $\langle \cdot, \cdot \rangle$ is the inner product defined by h.

3. Existence and uniqueness of cusp continuity equation

This section is devoted to prove the Theorem [1.3]. When $t = 0$ the equation [1.2] has a solution $\omega(0) = \omega_0 - \sqrt{2dI(\partial \log \log^2 |S_{D_{h_0}}|)}$. For a fixed $t \neq 0$, we reduce [1.2] to a scalar equation. First, the background metric will be constructed. Since $K_M + D$ is semi-ample, the Kawamata base point free Theorem claims that there exists an integer K_0 such that $K_0(K_M + D)$ has no base point. Then a basis of $\mathcal{H}^0(M,K_0(K_M + D))$ gives a holomorphic map
\[
\Phi : \mathbb{M} \to \mathbb{C}P^N
\]
where \(N = \text{dim} H^0(M, K_0(K_M + D)) - 1 \). \(\omega_{FS} \) is denoted by the Fubini-Study metric on \(\mathbb{CP}^N \). Set \(\eta_l = \frac{1}{\log \omega_{FS}} \). Since \(\eta_l \in C^1(K_M + D) \), there exist a smooth volume form \(\Omega \) on \(M \) and hermitian metric \(h_D^l \) on \(L_D \) such that \(\eta_l = -\text{Ric}(\Omega) + \Theta h_D^l \) and \(\frac{1}{\log \omega_{FS}} \eta_l \in -10 \text{grad} \log^2 |s_D|_{h_D^l} > 0 \) for \(t' \in [0, t] \), where \(\Theta h_D^l \) is the curvature form of \(L_D \) with the metric \(h_D^l \). Set \(l = \frac{t}{1-t} \), then \(\tilde{\eta}_l := (1-t)\omega_0 + t\eta_l - \sqrt{-1} \partial \bar{\partial} |s_D|_{h_D^l}^2 \) is chosen as the background metric. Therefore the equation (1.2) is reduced to the following scalar equation

\[
(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l)^n = e^{ul} \frac{\Omega_l}{|s_D|_{h_D^l}^2 \log^2 |s_D|^2},
\]

where \(|s_D|_{h_D^l}^2 \) is denoted by \(|s_D|_{h_D^l}^2 \) and \(\Omega_l = \Omega \left(\frac{\log^2 |s_D|_{h_D^l}^2}{\log^2 |s_D|^2} \right)^{\frac{1}{1-t}} \) is a smooth volume form on \(M \). For the convenience, we simplified the notation of the above equation as following

\[
(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l)^n = e^{ul} e^{\varepsilon F} \cdot \tilde{\omega}_l^n. \tag{3.1}
\]

To get a complete metric, we define an open subset \(U \) in \(C^{k,\lambda}(M) \) by

\[
U = \{ v \in C^{k,\lambda}(M) | \frac{1}{\Omega} \tilde{\omega}_l < \tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} v < C \tilde{\omega}_l, \text{ for some positive constant } C \},
\]

where \(M = \overline{M} \setminus D \). If \(u_l \) belongs to \(U \) and satisfies (3.1), then \(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l \) is a complete Kähler metric.

Now we take the continuity method to solve the equation (3.1). Consider the following equations

\[
(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_{l,s})^n = e^{ul_s} \cdot e^{\varepsilon F} \cdot \tilde{\omega}_l^n, \tag{3.2}
\]

where \(F = \frac{\Omega_l}{\tilde{\omega}_l^n |s_D|^2 \log |s_D|^2} \). We consider

\[
\text{We consider the } C^0 \text{ map } \Psi : C^{k,\lambda}(M) \to C^{k-2,\lambda}(M) \text{ defined by } \Psi(v) = e^{-ul_s} \cdot \frac{(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} v)^n}{\tilde{\omega}_l^n}. \text{ Define}
\]

\[
S = \{ s \in [0, 1] | \text{there is a solution } u_{l,s} \text{ satisfies } \Psi(u_{l,s}) = e^{sF} \}.
\]

Obviously, \(0 \in S \). To prove \(1 \in S \), it is sufficient to show that \(S \) is open and closed. The inverse mapping theorem implies the openness. The Fréchet derivative \(\Psi'(u_{l,s}) : C^{k,\lambda}(M) \to C^{k-2,\lambda}(M) \) at \(u_{l,s} \in U \) is given by

\[
h \to e^{\varepsilon F} (\triangle u_{l,s} h - \frac{h}{t}),
\]

where \(\omega_{l,s} = \tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_{l,s} \). Due to Kobayashi [16], \(F \in C^{k-2,\lambda}(M) \). Therefore, we have to show that, for any \(w \in C^{k-2,\lambda}(M) \),

\[
\triangle u_{l,s} h - \frac{h}{t} = w \tag{3.3}
\]

can be solved for \(h \in C^{k,\lambda}(M) \) and that \(|h|_{C^{k,\lambda}} \leq C |w|_{C^{k-2,\lambda}} \) for some constant \(C \) independent of \(w \).

We first to show that there is at most one function \(h \in C^{k,\lambda}(M) \) solving the equation (3.3). It suffices to verify that \(\triangle u_{l,s} h - \frac{h}{t} = 0 \) and \(h \in C^{k,\lambda}(M) \) imply \(h \equiv 0 \). Note that \(\omega_{l,s} \) is complete Kähler metric with bounded geometry due to Lemma 2 [16] and Proposition 1.4 [9]. For such a metric we can use the generalized maximum principle. Suppose \(h \in C^{k,\lambda}(M) \), \(h \) is in particular bounded. The generalized maximum principle implies that there exists a sequence of points \(\{x_i \} \) in \(M \) such that
\[\lim_{i \to \infty} h(x_i) = \sup h \text{ and } \lim_{i \to \infty} \Delta_{\omega_{l,s}} h(x_i) \leq 0. \] We immediately see that \(\sup h \leq 0 \) according to the equation \(\Delta_{\omega_{l,s}} h - \frac{h}{l} = 0 \). Similarly, \(\inf h \geq 0 \) and \(h \equiv 0 \).

Now we prove the existence of \(h \). Let \(\{ \Omega_i \} \) be an exhaustion of \(M \) by compact subdomains. Suppose \(w \in C^{k-2,\lambda}(M) \) and let \(h_i \) be the unique solution to

\[\Delta_{\omega_{l,s}} h_i - \frac{h_i}{l} = w \text{ in } \Omega_i, \]
\[h_i = 0 \text{ on } \partial \Omega_i. \]

The maximum principle applied to \(\Omega_i \) shows that

\[\sup_{\Omega_i} |h_i| \leq l \cdot \sup_{\Omega_i} |w|. \]

Interior Schauder estimates shows that a sequence of \(h_i \) converge to some \(h \in C^{k,\lambda}(M) \) which solves the equation (3.3) and that the estimate

\[|u| \leq C \text{ on } \Omega_i \]

Next, it remains to show that \(S \) is closed. Assume that \(\{ s_i \} \subset E \) is a sequence with \(\lim_{i \to \infty} s_i = \bar{s} \) and \(u_{l,s_i} \) is the solution of (3.2) with \(s = s_i \). We want to prove \(\bar{s} \in E \). It amounts to getting a prior \(C^{k,\lambda}(M) \)-estimate for each \(u_{l,s_i} \). By applying the generalized maximum principle to (3.2), we have

\[\sup_{M} |u_{l,s_i}| \leq l \cdot s_i \sup_{M} |F| \leq C \sup_{M} |F|. \]

So we have the \(C^{0} \)-estimate due to Lemma 1 [16]. For the \(C^{2} \)-estimate, since \((M, \bar{\omega}_l) \) is a bounded geometry, by the standard calculation we have

\[\text{Ric} \left(\omega_{l,s_i} \right) = -\frac{1}{l} \omega_{l,s_i} + \frac{1}{l} \bar{\omega}_l - s_i \sqrt{-1} \partial \bar{\partial} F + \text{Ric} \left(\bar{\omega}_l \right) \leq -\frac{1}{l} \omega_{l,s_i} + C \bar{\omega}_l \]

and

\[\Delta_{\omega_{l,s_i}} \log \text{tr} \bar{\omega}_{l,s_i} \geq \frac{1}{\text{tr} \bar{\omega}_{l,s_i}} \left(-g^{il} \left(\bar{\omega}_l \right) R_{ij}(\omega_{l,s_i}) + g^{il} \left(\omega_{l,s_i} \right) g_{kl}(\omega_{l,s_i}) R_{ij}^{kl}(\bar{\omega}_l) \right). \]

Then

\[\Delta_{\omega_{l,s_i}} \log \text{tr} \bar{\omega}_{l,s_i} \geq - a \text{tr} \omega_{l,s_i} \bar{\omega}_l - \frac{A}{\text{tr} \bar{\omega}_{l,s_i}} - C, \]

where \(-a\) is the lower bound of holomorphic bisectional curvature of metric \(\bar{\omega}_l \). Note that

\[\Delta_{\omega_{l,s_i}} u_{l,s_i} = n - \text{tr} \omega_{l,s_i} \bar{\omega}_l. \]

Let \(H = \log \text{tr} \bar{\omega}_{l,s_i} - (a + 1) u_{l,s_i} \), then

\[\Delta_{\omega_{l,s_i}} H \geq \text{tr} \omega_{l,s_i} \bar{\omega}_l - \frac{A}{\text{tr} \bar{\omega}_{l,s_i}} - C. \]

By the generalized maximum principle, there exists a sequence \(\{ x_i \} \) such that \(\lim_{i \to \infty} H(x_i) = \sup H \) and \(\lim_{i \to \infty} \sqrt{-1} \partial \bar{\partial} H(x_i) \geq 0 \). So we have a subsequence also denoted by \(\{ x_i \} \) such that

\[\lim_{i \to \infty} \text{tr} \bar{\omega}_{l,s_i} \left(\text{tr} \omega_{l,s_i} \bar{\omega}_l - C \right)(x_i) \leq A. \]

Nota that \((\text{tr} \bar{\omega}_{l,s_i})^{\frac{1}{n-1}} \leq C' \text{tr} \omega_{l,s_i} \bar{\omega}_l \). Then we get

\[\lim_{i \to \infty} \text{tr} \bar{\omega}_{l,s_i} \left(\frac{1}{C'} (\text{tr} \bar{\omega}_{l,s_i})^{\frac{1}{n-1}} - C \right)(x_i) \leq A. \] \hspace{1cm} (3.4)

If

\[\lim_{i \to \infty} (\text{tr} \bar{\omega}_{l,s_i})^{\frac{1}{n-1}}(x_i) \leq 2C'C, \]
then we see
\[
\lim_{i \to \infty} tr_{\tilde{\omega}_i} \omega_{l,s_i}(x_i) \leq C.
\]

Otherwise
\[
\lim_{i \to \infty} (tr_{\tilde{\omega}_i} \omega_{l,s_i})^{1/2}(x_i) \geq 2C'C,
\]
then by (3.4) we have
\[
\lim_{i \to \infty} tr_{\tilde{\omega}_i} \omega_{l,s_i}(x_i) \leq C.
\]

Therefore, \(H \leq C \). This implies \(tr_{\tilde{\omega}_i} \omega_{l,s_i} \leq C \). Furthermore by a standard inequality, we get \(C^{-1} \tilde{\omega}_i \leq \omega_{l,s_i} \leq C \tilde{\omega}_i \).

For the 3-order estimate, let \(T = \sum_{i} \omega_{l,s_i} \omega_{l,s_i} \omega_{l,s_i} \), where \(\tilde{\omega}_i \) and \(\omega_{l,s_i} \) represent Riemannian metrics associated with Kähler forms \(\tilde{\omega}_i \) and \(\omega_{l,s_i} \). By a standard computations (c.f. Proposition 4.3 [9]), we have
\[
\Delta_{\omega_i}(T + C\omega_i \omega_i) \geq C_1 T - C_2.
\]

By the Laplace estimate of \(u_{l,s_i} \) and generalized maximum principle, we get \(T \leq C \). Thus, by taking a subsequence if necessary, \(u_{l,s_i} \) \(C^{2,\lambda} \)-converge to a solution with \(s = \tilde{s} \). This implies \(S \) is closed.

Next we prove the uniqueness of equation (3.1). Suppose that \(u_{l,1} \) and \(u_{l,2} \) are solutions to (3.1). Set \(\omega_2 = \tilde{\omega}_1 + \sqrt{-1} \partial \bar{\partial} u_{l,2} \), then we have
\[
\frac{(\omega_2 + \sqrt{-1} \partial \bar{\partial} (u_{l,1} - u_{l,2}))^n}{\omega_2^n} = e^{u_{l,1} - u_{l,2}}.
\]

Since \((M, \omega_2)\) is a complete Kähler manifold with bounded geometry (c.f. Proposition 1.4 [9]), applying the generalized maximum principle, there exists a sequence \(\{x_i\} \) such that \(\lim_{i \to \infty} (u_{l,1} - u_{l,2})(x_i) = \sup_M (u_{l,1} - u_{l,2}) \) and \(\lim_{i \to \infty} \text{Hess}(u_{l,1} - u_{l,2})(x_i) \leq 0 \). Furthermore, we obtain \(u_{l,1} \leq u_{l,2} \). By the same argument, we have \(u_{l,1} \geq u_{l,2} \). Therefore, the equation (3.1) has only one solution. Finally, the cusp continuity equation is solvable for all \(t \in [0, \infty) \) i.e., \(l \in [0, 1) \).

4. Convergence of Cusp Continuity Equation

In this section we investigate the regular properties of limit metric.

Lemma 4.1. Let \(F \) be a divisor on \(\overline{M} \). If \(F \) is nef and big, then there is an effective divisor \(E = \sum_i a_i E_i \) such that \(F - \epsilon E > 0 \) for all sufficiently small \(\epsilon > 0 \).

By the assumption that \(K_{\overline{M}} + D \) is big and semi-ample, there exists an effective divisor \(E = \sum_i a_i E_i \) such that \(K_{\overline{M}} + D - \epsilon E > 0 \) for all sufficiently small \(\epsilon > 0 \) according to Lemma 4.1. Thus we choose a volume form \(\Omega \), a hermitian metric \(h_D' \) on \(L_D \) and hermitian metrics \(h_{E_i} \), such that
\[
-\text{Ric}(\Omega) + \Theta' - \sum_i \epsilon a_i \Theta_{E_i} > 0,
\]

where \(\Theta' \) and \(\Theta_{E_i} \) represent curvature forms of line bundles \(L_D \) and \(L_{E_i} \) associated with metrics \(h_D' \) and \(h_{E_i} \) respectively. \(s_D \) and \(s_{E_i} \) are denoted by the defining sections of \(L_D \) and \(L_{E_i} \). For simplicity, we write \(log |s_E|^2 = \sum_i a_i log |s_{E_i}|^2 \). By taking appropriate \(\Omega \), \(h_D' \) and \(h_{E_i} \), we can assume that
\[
-\text{Ric}(\Omega) + \Theta' - \sum_i \epsilon a_i \Theta_{E_i} > 0,
\]

and
\[
\omega_{\ell, E} := (1 - l) \omega_0 + l(-\text{Ric}(\Omega) - \sqrt{-1} \partial \bar{\partial} \log |s_D|^2_{h_D'} + \epsilon \sqrt{-1} \partial \bar{\partial} \log |s_E|^2) - \sqrt{-1} \partial \bar{\partial} \log |s_D|^2_{h_D'} > 0
\]
for $l \in [1/2, 1]$. Let $\tilde{\omega}_l := (1 - l)\omega_0 + l(-\text{Ric}(\Omega) + \Theta_D) - \sqrt{-1} \partial \bar{\partial} \log^2 |s_D|_{h_D}^2$ (may not be a metric), where the hermitian metric h_D is defined as $\omega(0) = \omega_0 - \sqrt{-1} \partial \bar{\partial} \log^2 |s_D|_{h_D}^2 > 0$ and Θ_D is the curvature form of h_D. Then the equation (4.2) is written as

$$\left(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l\right)^n = e^{\frac{\Omega}{s_D|_{h_D}^2 \log^2 |s_D|_{h_D}^2}}.$$

This equation is also equivalent to

$$(\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l)^n = e^{\frac{\Omega}{s_D|_{h_D}^2 \log^2 |s_D|_{h_D}^2}} + \frac{\Omega}{s_D|_{h_D}^2 \log^2 |s_D|_{h_D}^2}.$$

where $w_l = u_l - \epsilon l \log |s_E|^2 + l \log \frac{|s_D|_{h_D}}{|s_D|_{h_D}^2} + \log \frac{\log^2 |s_D|_{h_D}^2}{\log^2 |s_D|_{h_D}^2}$ and $\Omega_l = \Omega + \Omega \left(\frac{\log^2 |s_D|_{h_D}^2}{\log^2 |s_D|_{h_D}^2}\right)^\frac{\epsilon}{l}$.

Lemma 4.4. There exists a constant C independent of l such that $-C \leq w_l \leq C - \epsilon \log |s_E|^2$.

Proof. For the lower bound, we note that $\tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l = (1 - l)\omega_0 + l(-\text{Ric}(\Omega) + \Theta_D - \sum_i \epsilon a_i \Theta E_i) - \sqrt{-1} \partial \bar{\partial} \log^2 |s_D|_{h_D}^2$ is a complete Kähler metric with bounded geometry on M. Applying the generalized maximum principle to (4.3), we get $w_l \geq -C - \epsilon \log |s_E|^2 \geq -C$.

For the upper bound, we differentiate l at both side of equation (4.2), then

$$\nabla \omega \tilde{u}_l + \frac{n+1}{l} \nabla \omega u_l \geq \frac{1}{l} (u_l - \frac{u_l}{l}).$$

where $\omega_l = \tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l$.

By the simple calculation, we get

$$\nabla \omega_l \left(\frac{u_l}{l} - n \log l\right) \geq \frac{1}{l} (\frac{u_l}{l} - n \log l)'.$$

According to the generalized maximum principle, $(\frac{u_l}{l} - n \log l)$ decrease when l tends to 1. Therefore, there exists a constant C such that $u_l \leq C$. By the definition of w_l, we see $w_l \leq C - \epsilon \log |s_E|^2$.

Lemma 4.5. There exist two constants C and a independent of l such that $C^{-1}|s_E|^{2l(a+1)}\tilde{\omega}_l \geq \omega_l := \tilde{\omega}_l + \sqrt{-1} \partial \bar{\partial} u_l \leq C|s_E|^{-2l(a+1)(n-1)}\tilde{\omega}_l$.

Proof. Since $\text{Ric}(\omega) \geq -\frac{1}{l} \omega_l$, by Yau’s Schwarz Lemma [25], we have

$$\nabla \omega \log \text{tr} \omega \tilde{\omega}_l \geq -a \cdot \text{tr} \omega \tilde{\omega}_l - \frac{1}{l},$$

where a is a positive upper bound of the holomorphic bisectional curvature of $\tilde{\omega}_l$ for $l \in [0, 1]$. Put $H = \log \text{tr} \omega \tilde{\omega}_l - (a+1)\tilde{u}_l$, then we get

$$\nabla \omega H \geq \text{tr} \omega \tilde{\omega}_l - C.$$

By the generalized maximum principle, there exists a sequence $\{x_i\}$ such that $\lim_{i \to \infty} H(x_i) = \sup_M H$ and $\lim_{i \to \infty} \Delta \omega H(x_i) \leq 0$. Thus by the Lemma [16, 3] we have $H \leq C$. This implies

$$\text{tr} \omega \tilde{\omega}_l \leq \frac{C}{|s_E|^{2l(a+1)}}.$$

Note that

$$\text{tr} \omega \tilde{\omega}_l \leq \frac{1}{(n-1)!} \left(\text{tr} \omega \tilde{\omega}_l\right)^{n-1} \cdot \omega_{\tilde{\omega}_l}^n \leq \frac{C}{|s_E|^{2l(a+1)(n-1)}}.$$

Hence this Lemma is proved.

\square
According to Lemma 4.3 we know that for any compact subset $K \subset M \setminus (D \cup \text{Supp}E)$, there exists a constant $C_K > 0$ independent of l such that $C_K^{-1}\omega_l \leq \omega_l \leq C_K\omega_l$, i.e., $|\Delta\omega_l u_l| \leq C_K$. By Theorem 17.14 of [14], we have $|u_l|_{C^{2,\lambda}} \leq C_K'$ on $K \times [\frac{1}{2}, 1]$. Furthermore, by the standard bootstrapping argument, for any $m > 0$, $|u_l|_{C^{m,\lambda}} \leq C_{K,m}$ on $K \times [\frac{1}{2}, 1]$. By the standard diagonal argument and passing to a subsequence $\{l_i\}$ such that $u_{l_i} \stackrel{C^\infty}{\longrightarrow} u$ on each compact K when l_i tends to 1. The monotonicity of $\left(\frac{d}{dr} - n \log l\right)$ implies that $u_l \stackrel{C^\infty}{\longrightarrow} u$ on each compact K when l tends to 1. Therefore, the Theorem 1.3 is proved.

5. Algebraic structure of the limit space

5.1. Gromov-Hausdorff convergence: global convergence. In this subsection we consider a family of manifolds (M,ω_l) on which the lower bound of Ricci curvature can be controlled, i.e., $\text{Ric}(\omega_l) \geq -\frac{1}{l}\omega_l$ for $l \in [\frac{1}{2}, 1)$. By Gromov precompactness theorem [4], passing to a subsequence $l_i \to 1$ and fix $x_0 \in M_{\text{reg}} \setminus D$, we may assume that $(M,\omega_{l_i},x_0) \stackrel{d_{GH}}{\longrightarrow} (M_{1},d_{1},x_1)$.

The limit (M_{1},d_{1}) is a complete length metric space. It has a regular/singular decomposition $M_{1} = \mathcal{R} \cup \mathcal{S}$, a point $x \in \mathcal{R}$ iff the tangent cone at x is the Euclidean space \mathbb{R}^{2n}. The following lemma is the same as Lemma 3.3 in [19].

Lemma 5.1. There is a sufficiently small constant $\delta > 0$ such that for any $l \in [\frac{1}{2}, 1)$, if a metric ball $B_{\omega_l}(x,r)$ satisfies $\text{Vol}(B_{\omega_l}(x,r)) \geq (1-\delta)\text{Vol}(B^0_r)$, where $\text{Vol}(B^0_r)$ is the volume of a metric ball of radius r in $2n$-Euclidean space, then $\text{Ric}(\omega_l) \leq (2n-1)r^{-2}\omega_l$ in $B_{\omega_l}(x,\delta r)$.

Lemma 5.2. The regular set \mathcal{R} is open in the limit space (M_{1},d_{1},x_{1}).

Proof. If $x \in \mathcal{R}$, then by Colding’s volume convergence theorem [10], there exists $r = r(x) > 0$ such that $\mathcal{H}^{2n}(B_{d_{1}}(x,r)) \geq (1-\frac{\delta}{2})\text{Vol}(B^0_r)$, where \mathcal{H}^{2n} denotes the Hausdorff measure. Suppose $x_i \in M$ satisfying $x_i \stackrel{d_{GH}}{\longrightarrow} x$, then by the volume convergence theorem again, $\text{Vol}_{\omega_{l_i}}(B_{\omega_{l_i}}(x_i,r)) \geq (1-\delta)\text{Vol}(B^0_r)$ for sufficiently large i. According to Lemma 5.1 and Anderson’s harmonic radius estimate [4], there is a constant $\delta' = \delta'(\alpha)$ for any $0 < \alpha < 1$ such that the $C^{1,\alpha}$ harmonic radius at x_i is bigger than $\delta'\delta r$. Passing to the limit, it gives a harmonic coordinate on $B_{d_{1}}(x,\delta'\delta r)$. This implies $B_{d_{1}}(x,\delta'\delta r) \subset \mathcal{R}$. So \mathcal{R} is open with a $C^{1,\alpha}$ Kähler metric $\omega_{\mathcal{R}}$, moreover ω_{l_i} converges to $\omega_{\mathcal{R}}$ in $C^{1,\alpha}$ topology on \mathcal{R}. \hfill \Box

Since \mathcal{R} is dense in M_{1}, so we have the following Lemma.

Lemma 5.3. $(M_{1},d_{1}) = (\mathcal{R},\omega_{\mathcal{R}})$, the metric completion of $(\mathcal{R},\omega_{\mathcal{R}})$.

Lemma 5.4. \mathcal{R} is geodesically convex in M_{1} in the sense that any minimal geodesic with endpoints in \mathcal{R} lies in \mathcal{R}.

Proof. It is simply a consequence of Colding-Naber’s Hölder continuity of tangent cones along a geodesic in M_{1} [11]. Actually, if $x,y \in \mathcal{R}$, then for any minimal geodesic connecting x and y, a neighborhood of endpoints lies in \mathcal{R}, so the geodesic will never touch the singular set. \hfill \Box
Let \(\overline{D} \) be any divisor in \(\overline{M} \) such that \(D \cup S_M \subset \overline{D} \). Define the Gromov-Hausdorff limit of \(\overline{D} \)

\[
\overline{D}_1 := \{ x \in M | \text{there exists } x_i \in \overline{D} \text{ such that } x_i \xrightarrow{d_{GH}} x \}.
\]

Proposition 5.5. \((M_1, d_1)\) is isometric to \((\overline{M} \setminus \overline{D}, \omega_1) \), where \(\omega_1 \) is defined as Theorem 1.4.

Proof. First, we prove the following Claim.

Claim 5.6. \(\overline{D}_1 \setminus S \) is a subvariety of dimension \((n - 1)\) if it is not empty.

Proof. Let \(x \in \overline{D}_1 \setminus S \) and \(x_i \in \overline{D} \) such that \(x_i \xrightarrow{d_{GH}} x \). By the \(C^{1,\alpha} \) convergence of \(\omega_i \) around \(x \), there are \(C, r > 0 \) independent of \(i \) and a sequence of harmonic coordinates in \(B_{\omega_i}(x_i, r) \) such that \(C^{-1} \omega_E \leq \omega_i \leq C \omega_E \) where \(\omega_E \) is the Euclidean metric in the coordinates. Furthermore, according to Lemma 3.11 [24], any \(x_i \in M \) converging to \(x \) has a holomorphic coordinate \((z^1, z^2, \ldots, z^n)\) on \(B_{\omega_i}(x_i, r) \) such that \(C^{-1} \omega_E(\partial/\partial z^1, \partial/\partial z^2) \leq \omega_i(\partial/\partial z^1, \partial/\partial z^2) \leq C \omega_E(\partial/\partial z^1, \partial/\partial z^2) \). Since the total volume of \(\overline{D} \) is uniformly bounded for any \(\omega_i \), the local analytic \(\overline{D} \cap B_{\omega_i}(x_i, r) \) have a uniform bound of degree and so converge to an analytic set \(\overline{D}_1 \cap B_{d_1}(x, r) \).

From the above Claim we know that \(\dim_M(\overline{D}_1) = \dim_M(S \cup (\overline{D}_1 \setminus S)) \leq 2n - 2 \). By the argument of [20], \((M_1 \setminus \overline{D}_1, \omega_1)\) homeomorphic and locally isometric to \((\overline{M} \setminus \overline{D}, \omega_1)\). Since \(M_1 \) is a length space and \(\dim_M(\overline{D}_1) \leq 2n - 2 \), \((M_1 \setminus \overline{D}_1, \omega_1)\) isometric to \((\overline{M} \setminus \overline{D}, \omega_1)\). Furthermore, we have

\[
(M_1, d_1) = (\overline{M}_1 \setminus \overline{D}_1, \omega_1) = (\overline{M} \setminus \overline{D}, \omega_1).
\]

A direct corollary is

Corollary 5.7. \((M, \omega_1, x_0)\) converges globally to \((M_1, d_1, x_1)\) in the Gromov-Hausdorff topology as \(l \to l \).

Corollary 5.8. Let \(M_{\text{reg}} = M_{\overline{\text{reg}}} \setminus D \), then \(\omega_1 \) is smooth on \(M_{\text{reg}} \). \((M_1, d_1)\) is isometric to \((M_{\overline{\text{reg}}}, \omega_1)\).

Proof. Note that \(M_{\overline{\text{reg}}} \setminus (\overline{M} \setminus \overline{D}) = M_{\text{reg}} \cap \overline{D} \) has real codimension larger than 2 in \((M_{\overline{\text{reg}}}, \omega_1)\). So \(\overline{M} \setminus \overline{D} \) is dense in \(M_{\text{reg}} \). We conclude

\[
(M_1, d_1) = (\overline{M} \setminus \overline{D}, \omega_1) = (M_{\overline{\text{reg}}}, \omega_1).
\]

Proposition 5.9. \(M_{\text{reg}} = \mathcal{R} \), the regular set of \(M_1 \).

Proof. Since \(M_{\text{reg}} \) has smooth structure in \(M_1 \), we have \(M_{\text{reg}} \subset \mathcal{R} \). Next we show the converse. We argue by contradiction. Suppose \(p \in \mathcal{R} \setminus M_{\text{reg}} \), then there exists a family of points \(p_i \in M_{\text{sing}} \) such that \(p_i \xrightarrow{d_{GH}} p \), where \(M_{\text{sing}} = (\Phi^{-1}(\overline{M}(\overline{\mathcal{S}}(\Phi)))) \setminus D \). By \(C^{1,\alpha} \) convergence on \(\mathcal{R} \), there exist \(C, r > 0 \) independent of \(l \) and a sequence of harmonic coordinates on \(B_{\omega}(p_i, r) \) such that \(C^{-1} \omega_E \leq \omega_i \leq C \omega_E \) where \(\omega_E \) is the Euclidean metric in this coordinate. Furthermore, the sequence of harmonic coordinate can be perturbed to a holomorphic coordinate on \(B_{\omega_i}(p_i, r) \) [24]. Denote \(m = \dim_{\mathcal{C}}(M_{\text{sing}}) \). Then

\[
\text{Vol}_{\omega_i}(M_{\text{sing}} \cap B_{\omega_i}(p_i, r)) = \int_{M_{\text{sing}} \cap B_{\omega_i}(p_i, r)} \omega_i^m
\geq \int_{M_{\text{sing}} \cap B_{\omega_E}(C^{-\epsilon}r)} (C^{-1} \omega_E)^m
\]

Let \(\mathcal{D} \) be any divisor in \(\overline{M} \) such that \(D \cup \overline{S_M} \subset \mathcal{D} \). Define the Gromov-Hausdorff limit of \(\mathcal{D} \)

\[
\mathcal{D}_1 := \{ x \in M | \text{there exists } x_i \in \mathcal{D} \text{ such that } x_i \xrightarrow{d_{GH}} x \}.
\]
which has a uniform lower bound. However, this contradicts with the degeneration of the limit metric \(\eta_1 \) along \(M_{\text{sing}} \):

\[
\text{Vol}_{\omega}(M_{\text{sing}} \cap B_{\omega}(p_l, r)) \leq \text{Vol}_{\omega}(M_{\text{sing}})
= \int_{M_{\text{sing}}} \omega^m = \int_{M_{\text{sing}}} ((1 - l)\omega_0 + l\eta)^m
\]

which tends to 0 as \(l \to 1 \), where the last equality bases on a Lemma \([16] P410\). So we have \(M_{\text{reg}} \supset R \).

5.2. \(L^\infty \) estimate and gradient estimate to holomorphic sections. In this subsection we obtain the \(L^\infty \) estimate and gradient estimate to holomorphic section \(s \in H^0(R, k(K + D)) \). \(h = \omega_1^{-nk} \) is chosen as the Hermitian metric of line bundle \(k(K + D) \), where \(k \in \mathbb{Z} \). The curvature form \(\Theta_h \) of Hermitian metric \(h = \omega_1^{-nk} \) is \(k\omega_1 \). By Lemma \([2,4] \) we have the following formulas.

Lemma 5.10. For \(s \in H^0(R, k(K + D)) \), there exists a constant \(C \) such that

\[
\Delta_{\omega_1} |s|^2 = |\nabla s|^2 - kn|s|^2
\]

and

\[
\Delta_{\omega_1} |\nabla s|^2 \geq |\nabla \nabla s|^2 + |\nabla \nabla s| - Ck|\nabla s|^2 - k\nabla_j(\omega_1)_{ij}(s, \nabla_i s).
\]

Proof. Since on \(R \), \(\text{Ric}(\omega_1) = -\omega_1 \). So these formulas are directly derived from Lemma \([2,4] \). □

In order to applying Moser iteration, the Sobolev inequality on \(R \) is needed. The following two Lemmas are due to Song (Lemma 3.7 and 4.6 \([21] \)).

Lemma 5.11. There is a family of cut-off functions \(\rho_\epsilon \in C_0^\infty(R) \) with \(0 < \rho_\epsilon < 1 \) such that \(\rho_\epsilon^{-1}(1) \) forms an exhaustion of \(R \) and

\[
\int_R |\nabla \rho_\epsilon|^2 \omega_1^n \to 0.
\]

Lemma 5.12. Fix any \(0 < r < R \), the Sobolev constant on \(B_{\omega_1}(x, r) \) is uniformly bounded by a constant \(C_S \) depending on upper bound \(R \), \(R^{-1} \) and \((R - r)^{-1} \). More precisely, for any \(l \in [\frac{1}{2}, 1) \) and \(f \in C_0^1(B_{\omega_1}(x, r)) \),

\[
C_S \left(\int_{B_{\omega_1}(x, r)} |f|^{\frac{2n}{n-1}} \omega_1^n \right)^{\frac{n-1}{n}} \leq \int_{B_{\omega_1}(x, r)} (|f|^2 + |\nabla f|^2) \omega_1^n.
\]

Fix \(0 < r < R \) such that \(B_{\omega_1}(x, r) \subset B_{\omega_1}(x, 2r) \subset B_{\omega_1}(x, R) \).

Lemma 5.13. If \(f \in C_0^1(B_{\omega_1}(x, r) \cap R) \), then there exists a constant \(C \) depending on \(R \), \(R^{-1} \) and \((R - r)^{-1} \) such that

\[
C \left(\int_{B_{\omega_1}(x, r) \cap R} |f|^{\frac{2n}{n-1}} \omega_1^n \right)^{\frac{n-1}{n}} \leq \int_{B_{\omega_1}(x, r) \cap R} (|f|^2 + |\nabla f|^2) \omega_1^n.
\]

Proof. Let \(f_\epsilon = \rho_\epsilon f \), where \(\rho_\epsilon \) is constructed as Lemma \([5,11] \) and \(\Omega_\epsilon = \text{Supp} f_\epsilon \). Then \(\omega_1 \) uniformly converge to \(\omega_1 \) on \(\Omega_\epsilon \) as \(l \) tends to 1 for a fixed \(\epsilon \). Therefore \(\Omega_\epsilon \subset B_{\omega_1}(x, r) \) for \(l \) sufficiently close to 1. By Lemma \([5,12] \) we have

\[
C_S \left(\int_{B_{\omega_1}(x, r)} |f_\epsilon|^{\frac{2n}{n-1}} \omega_1^n \right)^{\frac{n-1}{n}} \leq \int_{B_{\omega_1}(x, r)} (|f_\epsilon|^2 + |\nabla f_\epsilon|^2) \omega_1^n.
\]
Let \(l \to 1 \), the above inequality gives

\[
CS \left(\int_{B_{r^l}(x,r)} |f_\epsilon|^\frac{2n}{n-1} \omega_1^n \right)^{\frac{n-1}{n}} \leq \int_{B_{r^l}(x,r)} (|f_\epsilon|^2 + |\nabla f_\epsilon|^2) \omega_1^n.
\]

Note that by letting \(\epsilon \to 0 \), we get

\[
\int_{B_{r^l}(x,r)} |f_\epsilon|^{\frac{2n}{n-1}} \omega_1^n \to \int_{B_{r^l}(x,r)} |f|^{\frac{2n}{n-1}} \omega_1^n
\]

and

\[
\int_{B_{r^l}(x,r)} |f_\epsilon|^2 \omega_1^n \to \int_{B_{r^l}(x,r)} |f|^2 \omega_1^n.
\]

By some calculations we have

\[
\left| \int_{B_{r^l}(x,r)} |\nabla f_\epsilon|^2 \omega_1^n - \int_{B_{r^l}(x,r)} |\nabla f|^2 \omega_1^n \right| = \left| \int_{B_{r^l}(x,r)} (|\nabla \rho_1|^2 |f|^2 + (|\rho_1|^2 |\nabla f|^2 - |\nabla f|^2)) \omega_1^n \right|
\]

which tends to 0. So this Lemma is proved. \(\square \)

Lemma 5.14. There exists a constant \(C \) independent of \(k \) such that if \(s \in H^0(\mathcal{R}, k(K_{\mathcal{M}} + D)) \), then

\[
\int_{B_{r^l}(x,\frac{7}{4}r) \cap \mathcal{R}} |\nabla s|^2 \omega_1^n \leq Ckr^{-2} \int_{B_{r^l}(x,2r) \cap \mathcal{R}} |s|^2 \omega_1^n
\]

and

\[
\int_{B_{r^l}(x,\frac{7}{4}r) \cap \mathcal{R}} (|\nabla \nabla s|^2 + |\nabla \nabla s|^2) \omega_1^n \leq Ck^2r^{-4} \int_{B_{r^l}(x,2r) \cap \mathcal{R}} |s|^2 \omega_1^n.
\]

Proof. Let \(\vartheta \in C_0^\infty (B_{r^l}(x,\frac{15}{8}r) \cap \mathcal{R}) \) be any cut-off function such that \(0 \leq \vartheta \leq 1 \), \(|\nabla \vartheta| \leq 10r^{-2} \) and \(\vartheta = 1 \) on \(B_{r^l}(x,\frac{7}{4}r) \cap \mathcal{R} \), then by Bochner formula we have

\[
\int_{\mathcal{R}} \vartheta^2 |\nabla s|^2 \omega_1^n = nk \int_{\mathcal{R}} \vartheta^2 |s|^2 \omega_1^n + \int_{\mathcal{R}} \vartheta^2 \Delta |s|^2 \omega_1^n.
\]

Note that

\[
\int_{\mathcal{R}} \vartheta^2 \Delta |s|^2 \omega_1^n = -2 \int_{\mathcal{R}} \vartheta \nabla_i \vartheta \langle \nabla_i s, \bar{s} \rangle \omega_1^n \leq \frac{1}{2} \int_{\mathcal{R}} \vartheta^2 |\nabla s|^2 \omega_1^n + 2 \int_{\mathcal{R}} |\nabla \vartheta|^2 |s|^2 \omega_1^n.
\]

Therefore,

\[
\int_{B_{r^l}(x,\frac{7}{4}r) \cap \mathcal{R}} |\nabla s|^2 \omega_1^n \leq Ckr^{-2} \int_{B_{r^l}(x,2r) \cap \mathcal{R}} |s|^2 \omega_1^n.
\]

For the second inequality, also by the Bochner formula

\[
\int_{\mathcal{R}} \vartheta^2 (|\nabla \nabla s|^2 + |\nabla \nabla s|^2) \omega_1^n \leq \int_{\mathcal{R}} \vartheta^2 (|\nabla \nabla s|^2 + Ck|\nabla s|^2 + k \nabla_j (\omega_1)_{ij} \langle s, \nabla_i \bar{s} \rangle |s|^2 \omega_1^n.
\]

Note that

\[
\int_{\mathcal{R}} \vartheta^2 \Delta |\nabla s|^2 \omega_1^n = -2 \int_{\mathcal{R}} \vartheta \nabla_i \vartheta \nabla_i |s|^2 \omega_1^n \leq \frac{1}{4} \int_{\mathcal{R}} \vartheta^2 (|\nabla \nabla s|^2 + |\nabla \nabla s|^2) \omega_1^n + C \int_{\mathcal{R}} |\nabla \vartheta|^2 + |s|^2 \omega_1^n
\]
and
\[
\int_R k \partial^2 \nabla_j (\omega)_{ij}(s, \nabla_i s) \omega^n_1 = -k \int_R \partial^2 (\omega)_{ij}(s, \nabla_i s) + \langle s, \nabla_j \nabla_i s \rangle \omega^n_1 - 2k \int_R \partial \nabla_j \partial (\omega)_{ij}(s, \nabla_i s) \omega^n_1
\]
\[
\leq \frac{1}{4} \int_R \partial^2 (|\nabla s|^2 + |\nabla s|^2) \omega^n_1 + Ck \int_R \partial^2 |s|^2 \omega^n_1 + Ck \int_R \partial^2 |s|^2 \omega^n_1
\]
\[
+ Ck \int_R |\nabla \partial^2 |s|^2 \omega^n_1
\]

Summing up these estimates we have
\[
\int_{B_{\omega_1}(x, 2r) \cap R} (|\nabla s|^2 + |\nabla s|^2) \omega^n_1 \leq Ckr^{-2} \int_{B_{\omega_1}(x, 2r) \cap R} |s|^2 \omega^n_1 + Ck \int_{B_{\omega_1}(x, 2r) \cap R} |s|^2 \omega^n_1.
\]

Applying the first inequality we obtain the second estimate.

Proposition 5.15. There exists a constant \(C(R, r) \) independent of \(k \) such that if \(s \in H^0(R, k(K_{\overline{M}} + D)) \), then
\[
\sup_{B_{\omega_1}(x, 2r) \cap R} |s|^2 \leq C(R, r)k^n p^{-2n} \int_{B_{\omega_1}(x, 2r) \cap R} |s|^2 \omega^n_1
\]
and
\[
\sup_{B_{\omega_1}(x, r) \cap R} |\nabla s|^2 \leq C(R, r)k^{n+1} r^{-2n-2} \int_{B_{\omega_1}(x, 2r) \cap R} |s|^2 \omega^n_1.
\]

Proof. Choose a cut-off function \(\vartheta \in C^\infty_0(B_{\omega_1}(x, 2r) \cap R) \). Then for any \(p \geq \frac{n}{n-1} \), by Lemma 5.10 we have
\[
\int_R \vartheta^2 |s|^2 |\nabla |s|^2 \omega^n_1 = \frac{p^2}{4(p-1)} \int_R \vartheta^2 |\nabla |s|^2| |s|^2 |\nabla s|^2 \omega^n_1
\]
\[
= \frac{p^2}{4(p-1)} \int_R (\vartheta^2 |s|^2 |\nabla |s|^2| |s|^2 |\nabla s|^2 \omega^n_1 - 2 \vartheta \cdot \nabla |s|^2 |\nabla s|^2 \omega^n_1
\]
\[
\leq \frac{p^2}{4(p-1)} \int_R (\vartheta^2 |s|^2 |\nabla s|^2 \omega^n_1 + nk \frac{p^2}{4(p-1)} \int_R \vartheta^2 |s|^2 |\nabla s|^2 |\nabla s|^2 \omega^n_1
\]
\[
+ \frac{p^2}{4(p-1)} \int_R \vartheta \cdot \nabla \vartheta \cdot |s|^2 |\nabla s|^2 \omega^n_1
\]

By Cauchy-Schwarz inequality,
\[
\int_R \vartheta \cdot |\nabla \vartheta| \cdot |s|^2 |\nabla s|^2 \omega^n_1 \leq \int_R \vartheta^2 |s|^2 |\nabla s|^2 \omega^n_1 + \frac{1}{4} \int_R |\nabla \vartheta|^2 |s|^2 |\nabla s|^2 \omega^n_1
\]

Therefore
\[
\int_R \vartheta^2 |s|^2 |\nabla |s|^2 \omega^n_1 \leq Cpk \int_R (\vartheta^2 + |\nabla \vartheta|^2) |s|^2 |\nabla s|^2 \omega^n_1.
\]

By Lemma 5.13
\[
\left(\int_R (\vartheta |s|^p)^{\frac{2n}{n-1}} \omega^n_1 \right)^{\frac{n-1}{n}} \leq Cpk \int_R (\vartheta^2 + |\nabla \vartheta|^2) |s|^2 |\nabla s|^2 \omega^n_1.
\]
Put $p_j = \nu^{j+1}$ for $j \geq 0$, where $\nu = \frac{n}{n-1}$. Define a family of radius inductively by $r_0 = \frac{3}{2}r$ and $r_j = r_{j-1} - 2^{-j-1}r$. B_j is denoted by $B_{\omega_j}(x, r_j) \cap \mathcal{R}$. We choose a family of cut-off functions $\vartheta_j \in C_0^\infty(B_j)$ such that

$$0 \leq \vartheta_j \leq 1, \quad |\nabla \vartheta_j| \leq 2^{j+2}r^{-1} \text{ and } \vartheta_j = 1 \text{ on } B_{j+1}.$$

Thus (6.2) gives, by setting $\vartheta = \vartheta_j$

$$\left(\int_{B_{j+1}} |s|^{2p_j+1}\omega_1^n \right)^{\frac{1}{p_j+1}} \leq (C p_j k)^{\frac{1}{p_j+1}} 2^{j+1} r^{-1} \left(\int_{B_j} |s|^{2p_j} \omega_1^n \right)^{\frac{1}{p_j}}.$$

By the iteration argument, we see

$$\sup_{B_{\omega_1}(x, r) \cap \mathcal{R}} |s|^2 \leq C k^{n-1} r^{-2(n-1)} \left(\int_{B_0} |s|^{\frac{2n}{n+1}} \omega_1^n \right)^{\frac{n+1}{2n}} \leq C k^{n-1} r^{-2(n-1)} \int_{B_0} (|s|^2 + |\nabla s|^2) \omega_1^n.$$

According to Lemma [5.14] we get the first estimate.

Next we prove the second inequality. Let ϑ and p as above. By Lemma [5.11] we have

$$\int_{\mathcal{R}} \vartheta^2 |\nabla |s| |s|^2 |\nabla s|^2 \omega_1^n = \frac{p^2}{4(p-1)} \int_{\mathcal{R}} \vartheta^2 \cdot |\nabla |s| |s|^2 \cdot |\nabla_s| |s|^2 \omega_1^n$$

$$= \frac{p^2}{4(p-1)} \int_{\mathcal{R}} (-\vartheta^2 |\nabla s|^2(\omega_1^n) \Delta |s|^2 - 2\vartheta \cdot \nabla \vartheta \cdot |\nabla |s| |s|^2) \omega_1^n$$

$$\leq \frac{p^2}{4(p-1)} \int_{\mathcal{R}} \left(-\vartheta^2 |\nabla s|^2(\omega_1^n) \Delta |s|^2 + |\nabla s|^2 \right) + k \nabla_j(\omega_1)_{ij} \langle s, \nabla_i \bar{s} \rangle \cdot \vartheta^2 |\nabla s|^2(\omega_1^n)$$

$$+ C k \vartheta^2 |\nabla s|^2(\omega_1^n) \Delta |s|^2 - 2\vartheta \cdot \nabla \vartheta \cdot |\nabla |s| |s|^2 \cdot |\nabla_s| |s|^2 \omega_1^n.$$

The term $\int_{\mathcal{R}} k \nabla_j(\omega_1)_{ij} \langle s, \nabla_i \bar{s} \rangle \cdot \vartheta^2 |\nabla s|^2(\omega_1^n)$ can be estimate by integration by parts as follows

$$\int_{\mathcal{R}} k \nabla_j(\omega_1)_{ij} \langle s, \nabla_i \bar{s} \rangle \cdot \vartheta^2 |\nabla s|^2(\omega_1^n)$$

$$= -k \int_{\mathcal{R}} (\omega_1)_{ij} \left(\vartheta^2 |\nabla s|^2(\omega_1^n) (\langle \nabla_j s, \nabla_i \bar{s} \rangle + \langle s, \nabla_j \nabla_i \bar{s} \rangle) + (p - 1) \vartheta^2 |\nabla s|^2 |\nabla_j s|^2 \langle s, \nabla_i \bar{s} \rangle
ight.$$

$$+ 2\vartheta \nabla_j \vartheta |\nabla s|^2(\omega_1^n) \langle s, \nabla_i \bar{s} \rangle\right)$$

$$\leq -\frac{1}{2} \int_{\mathcal{R}} \vartheta^2 |\nabla s|^2(\omega_1^n) (|\nabla \nabla s|^2 + |\nabla \nabla s|^2) \omega_1^n + C(p - 1)^2 k^2 \int_{\mathcal{R}} \vartheta^2 |\nabla s|^2(\omega_1^n)$$

$$+ C k \int_{\mathcal{R}} (|\nabla \vartheta|^2 |\nabla s|^2(\omega_1^n) + \vartheta^2 |\nabla s|^2(\omega_1^n).$$

Note that

$$\int_{\mathcal{R}} \vartheta \cdot \nabla \vartheta \cdot |\nabla s|^2(\omega_1^n) \cdot |\nabla s|^2(\omega_1^n) \leq \frac{1}{2} \int_{\mathcal{R}} \vartheta^2 |\nabla s|^2(\omega_1^n) (|\nabla \nabla s|^2 + |\nabla \nabla s|^2) \omega_1^n + C \int_{\mathcal{R}} |\nabla \vartheta|^2 |\nabla s|^2(\omega_1^n).$$

Summing up these estimates we conclude

$$\int_{\mathcal{R}} |\nabla |s| |s|^2 |\nabla s|^2(\omega_1^n \leq C k^3 \int_{\mathcal{R}} \left(k \vartheta^2 |\nabla s|^2(\omega_1^n) \cdot |\nabla s|^2 + |\nabla \vartheta|^2 |\nabla s|^2(\omega_1^n + \vartheta^2 |\nabla s|^2 + |\nabla s|^2(\omega_1^n).$$

Applying the Lemma [5.13]
By setting

Case 1: If

Then (5.17) gives

Put \(p_j = \nu^{j+1} \) for \(j \geq 0 \), where \(\nu = \frac{n}{n-1} \). Define a family of radius inductively by \(r_0 = \frac{3}{2}r \) and \(r_j = r_{j-1} - 2^{-j-1}r \). \(B_j \) is denoted by \(B_{\omega_1}(x, r_j) \cap \mathcal{R} \). We choose a family of cut-off functions \(\vartheta_j \in C_{0}^{\infty}(B_j) \) such that

By setting \(\vartheta = \vartheta_j \), the above inequality gives

Case 1: If \(\left(\int_{B_j} |\nabla s|^{2p_j} \omega_1^n \right)^{\frac{1}{p_j}} \geq k \left(\int_{B_j} |s|^{2p_j} \omega_1^n \right)^{\frac{1}{p_j}} \) for all \(j \geq 0 \). Then

Then (5.17) gives

By iteration argument we get

By Lemma 5.13 and a cut-off argument, we have

According to Lemma 6.14 we get

Case 2: There exists \(j_0 \) such that \(\left(\int_{B_j} |\nabla s|^{2p_j} \omega_1^n \right)^{\frac{1}{p_j}} \geq k \left(\int_{B_j} |s|^{2p_j} \omega_1^n \right)^{\frac{1}{p_j}} \) for all \(j > j_0 \), but

Then

\[\int_{B_{j_0}} k|\nabla s|^{2(p_{j_0} - 1)}|s|^{2} \omega_1^n \leq k \left(\int_{B_{j_0}} |\nabla s|^{2p_{j_0}} \omega_1^n \right)^{\frac{p_{j_0}-1}{p_{j_0}}} \left(\int_{B_{j_0}} |s|^{2p_{j_0} \omega_1^n} \right)^{\frac{1}{p_{j_0}}} \leq k^{p_{j_0}} \int_{B_{j_0}} |s|^{2p_{j_0} \omega_1^n} \]
By the iteration argument and (5.17), we have

\[\sup_{B_{r_0}(x,r) \cap R} |\nabla s|^2 \leq C(kr^{-2})^{m/n}(\int_{B_{r_0}} |s|^{2p_j \omega_1^n})^{1/p_j}. \]

The supremum of $|\nabla s|$ follows from

\[\left(\int_{B_{r_0}} |s|^{2p_j \omega_1^n} \right)^{1/p_j} \leq \left(\sup_{B_{r_0}} |s| \right)^{2p_j \omega_1^n} \left(\int_{B_{r_0}} |s|^{2 \omega_1^n} \right)^{1/p_j} \leq C(kr^{-2})^{n-\omega} \int_{B_{r_0}} |s|^{2 \omega_1^n}. \]

Case 3: If \(\left(\int_{B_j} |\nabla s|^{2p_j \omega_1^n} \right)^{1/p_j} \leq k \left(\int_{B_j} |s|^{2p_j \omega_1^n} \right)^{1/p_j} \) for infinite \(i \), then

\[\sup_{B_{r_1}(x,r) \cap R} |\nabla s|^2 \leq k \sup_{B_{r_1}(x,r) \cap R} |s| \leq C(k^{n+1}\nu^{-2n}) \int_{B_{r_1}(x,2r) \cap R} |s|^2 \omega_1^n. \]

\[\square \]

5.3. \(L^2 \) estimate. In order to construct global holomorphic section on line bundle \(k(K_{\overline{M}} + D) \), we need the following version of \(L^2 \)-estimate due to Demailly (Theorem 5.1 [12]).

Theorem 5.18. Let \((M, \omega)\) be a \(n \)-dimensional complete Kähler manifold and \(L \) be a holomorphic line bundle over \(M \) equipped with a smooth hermitian metric such that \(\Theta_h \geq \delta \omega \). Then for every \(L \)-value \((n, 1)\) form \(\tau \) satisfying

\[\bar{\partial} \tau = 0, \quad \int_M |\tau|^2_{h, \omega} \omega^n < \infty, \]

there exists a \(L \)-valued \((n, 0)\) form \(u \) such that \(\bar{\partial} u = \tau \) and

\[\int_M |u|^2_{h, \omega} \omega^n \leq \frac{1}{\delta} \int_M |\tau|^2_{h, \omega} \omega^n. \]

For the singular hermitian metric \(h \) on \(L \), by the approximation argument, we have

Corollary 5.19. Let \((M, \omega)\) be a \(n \)-dimensional complete Kähler manifold and \(L \) be a holomorphic line bundle over \(M \) equipped with a singular hermitian metric such that \(\Theta_h \geq \delta \omega \) in the current sense. Then for every \(L \)-value \((n, 1)\) form \(\tau \) satisfying

\[\bar{\partial} \tau = 0, \quad \int_M |\tau|^2_{\tilde{h}, \omega} \omega^n < \infty, \]

there exists a \(L \)-valued \((n, 0)\) form \(u \) such that \(\bar{\partial} u = \tau \) and

\[\int_M |u|^2_{\tilde{h}, \omega} \omega^n \leq \frac{1}{\delta} \int_M |\tau|^2_{\tilde{h}, \omega} \omega^n. \]

Proposition 5.20. \((\mathcal{R} = M_{reg}, k\omega_1)\) is a Kähler manifold (not complete). \(k(K_{\overline{M}} + D) \) is a holomorphic line bundle over \(\mathcal{R} \). Choosing a hermitian metric \(h = \omega_1^{-nk} \), then the curvature form \(\Theta_h = k\omega_1 \). For any smooth \(k(K_{\overline{M}} + D) \)-valued \((0, 1)\) form \(\tau \) satisfying

\[\bar{\partial} \tau = 0, \quad \text{Supp} \tau \subset \mathcal{R} \]

there exists a \(k(K_{\overline{M}} + D) \)-valued section \(\zeta \) such that \(\bar{\partial} \zeta = \tau \) and

\[\int_\mathcal{R} |\zeta|^2_{h, k\omega_1} \omega_1^n \leq \int_\mathcal{R} |\tau|^2_{h, k\omega_1} (\omega_1^n). \]
Proof. Since $K_M + D$ is big and semi-ample over M, by Lemma 4.1, there exists an effective divisor E on M such that $K_M + D - \epsilon E$ is ample for all sufficiently small $\epsilon > 0$. Let s_E be the defining section of E and h_E be a smooth hermitian metric satisfying $\eta_1 - \epsilon \Theta_E > 0$, where η_1 is constructed as section 3 and Θ_E is the curvature form. We consider the following Monge-Ampère equation

$$(\eta_1 - \epsilon \Theta_E - \sqrt{-1}\partial\overline{\partial} \log \log^2 |s_D|^2 + \sqrt{-1}\partial\overline{\partial} u_{1,\epsilon})^n = e^{u_{1,\epsilon}} \cdot \frac{\Omega}{|s_D|^2 \log^2 |s_D|^2}.$$

Fixed a small $\alpha > 0$, this equation is rewritten as

$$((1 - \alpha)\eta_1 + \alpha(\eta_1 - \frac{\epsilon}{\alpha} \Theta_E) - \sqrt{-1}\partial\overline{\partial} \log \log^2 |s_D|^2 + \sqrt{-1}\partial\overline{\partial} u_{1,\epsilon})^n = e^{u_{1,\epsilon}} \cdot \frac{\Omega}{|s_D|^2 \log^2 |s_D|^2}.$$

By the same argument of subsection 5.5, we know that $\omega_{1,\epsilon} = \eta_1 - \epsilon \Theta_E - \sqrt{-1}\partial\overline{\partial} \log \log^2 |s_D|^2 + \sqrt{-1}\partial\overline{\partial} u_{1,\epsilon} C^{c\omega}(M_{\text{reg}})$-converge to ω_1 as ϵ tends to 0. Now we define a family of hermitian metric

$$h_\epsilon = e^{-ku_{1,\epsilon}} \left(\frac{\Omega}{|s_D|^2 \log^2 |s_D|^2} \right)^{-k} e^{-\epsilon k \log |s_E|^2}.$$

By a direct calculation, $\text{Ric}(h_\epsilon) \geq k\omega_{1,\epsilon}$ in the current sense. τ has compact support and

$$\lim_{\epsilon \to 0} \int_{M = M \setminus \hat{D}} |\tau|_{h, k\omega_{1,\epsilon}}^2 (k\omega_{1,\epsilon})^n = \int_M |\tau|_{h, k\omega_{1}}^2 (k\omega_{1})^n < \infty.$$

So by the above corollary, there exists ζ_ϵ on M such that

$$\partial_\epsilon \zeta_\epsilon = \tau, \quad \int_M |\zeta_\epsilon|^2_{h_{1, k\omega_{1,\epsilon}}} (k\omega_{1,\epsilon})^n \leq \int_M |\tau|_{h, k\omega_{1,\epsilon}}^2 (k\omega_{1,\epsilon})^n$$

for each ϵ. This also implies

$$\int_M |\zeta_\epsilon|^2_{h_{1, k\omega_{1}}} (k\omega_{1})^n < \infty.$$

Hence we can take a subsequence of ζ_ϵ converging weakly in $L^2(M, (k\omega_{1})^n)$ to ζ and

$$\partial_\epsilon \zeta = \tau, \quad \int_M |\zeta|^2_{h_{1, k\omega_{1}}} (k\omega_{1})^n \leq \int_M |\tau|_{h, k\omega_{1}}^2 (k\omega_{1})^n$$

on M. The proof is complete after pushing ζ to M_{reg}.

\qed}

5.4. local separation of points. Recall that $\Phi : \overline{M} \to \Phi(\overline{M})$ is defined as in section 3. Naturally, Φ induce a map $\Phi : R \to \Phi(\overline{M})$. If $s \in H^0(R, k(K_M + D))$, then by Proposition 5.14 we know that s is local bounded and local Lipschitz. So s can be continuous extended to the limit space M_1. Furthermore, the map $\Phi_1 : (R, \omega_1) \to (\Phi(\overline{M}), \omega_{FS})$ defined by Φ can be continuously extend to $\Phi_1 : (M_1, d_1) \to (\Phi(\overline{M}), \omega_{FS})$. This subsection is devoted to demonstrate that this map is injective. First we recall some notations and results which originate from [13].

Definition 5.21. We consider the following data $(p_*, O, U, J, g, L, h, A)$ satisfying

1. (p_*, O, U, J, g) is an open Kähler manifold with a complex structure J, a Riemannian metric g and a base point $p_* \in O \subset U$ for an open set O.

2. $L \to U$ is a hermitian line bundle equipped with a hermitian metric h and A is the connection induced by the hermitian metric h on L, with its curvature $\Theta(A) = \omega$ which is a Kähler form of g.

The data $(p_*, O, U, J, g, L, h, A)$ is said to satisfy the H-condition if there exist a constant C and a compactly supported smooth section $\sigma : U \to L$ such that
For any integer $Y \leq \frac{n}{2}$, we have

\[
\|\mathbf{L}_{2}(\mathbf{U})\| \leq C(||\mathbf{L}_{2}^{2+1}(\mathbf{O}) + ||\mathbf{L}_{2}^{2}(\mathbf{O})||).
\]

(4) $H_{4}: ||\mathbf{L}_{2}(\mathbf{U})|| < \min\left(\frac{1}{2^{|\psi|}}, 10^{-20}\right)$,

(5) $H_{5}: ||\mathbf{L}_{2}^{2+1}(\mathbf{O}) < \frac{1}{2}G$.

Fix any point p in M_{1}, $(M_{1}, p, k_{d_{1}})$ converges in pointed Gromov-Hausdorff topology to a tangent cone $C(Y)$ over the cross section when $k \to \infty$. We still use p for the vertex of $C(Y)$. Let Y_{reg} and Y_{sing} be the regular part and singular part of Y respectively. By [4], Y_{sing} has Hausdorff dimension equal or less than $2n-2$. $C(Y_{reg})\{p\}$ has a natural complex structure induced from the Gromov-Hausdorff limit and the cone metric g_{C} on $C(Y)$ is given by

\[
\omega_{C} = \frac{1}{2}\sqrt{-1}\partial \bar{\partial}r^{2},
\]

where r is the distance function for any point $z \in C(Y)\setminus p$. According to Proposition 5.23, the singular set S of M_{1} must be a locally analytic set by taking the limit of a divisor on M. So we also have the following cut-off function on Y.

Proposition 5.22. For any $\epsilon > 0$, there exists a cut-off function γ on Y such that

1. $\gamma \in C^{\infty}(Y_{reg})$ and $0 \leq \gamma \leq 1$,
2. γ is supported in the ϵ neighborhood of Y_{sing},
3. $\gamma = 1$ on a neighborhood of Y_{sing},
4. $\||\mathbf{L}_{2}(Y_{reg})\| < \epsilon$.

We consider the trivial line bundle L_{C} on $C(Y)$ equipped the hermitian metric $h_{C} = e^{-|z|^{2}}$, where $|z|^{2} = r^{2}$. Then the curvature coincides with ω_{C}. A_{C} is denoted by the connection of L_{C} with metric h_{C}.

Lemma 5.23. Let $p_{*} \in C(Y_{reg})\{p\}$ such that $\frac{1}{2} < e^{-|p_{*}|^{2}}$. Then there exists $U \subset C(Y_{reg})\{p\}$ and an open neighborhood $O \subset U$ of p_{*} such that $(p_{*}, O, J_{C}, g_{C}, L_{C}, h_{C}, A_{C})$ satisfies the H-condition.

From the construction in [13], U is a product in $C(Y_{reg})\{p\}$ i.e., there exists $U_{Y} \subset Y_{reg}$ such that $U = \left\{ z = (y, r) \in C(Y) | y \in U_{Y}, r \in (r_{U}, R_{U}) \right\}$. For $m \in \mathbb{Z}^{+}$ defined as [13] (P79), we define

\[
U(m) = \left\{ z = (y, r) \in C(Y) | y \in U_{Y}, r \in (m^{-\frac{1}{2}}r_{U}, R_{U}) \right\}.
\]

For any integer t and $1 \leq t \leq m$, $\mu_{t} : U \to U(m)$ is defined by $\mu_{t}(z) = t^{\frac{1}{2}}z$. The following proposition is due to [13].

Proposition 5.24. Suppose $(p_{*}, O, U(m), J_{C}, g_{C}, L_{C}, h_{C}, A_{C})$ constructed as in Lemma 5.23 satisfies the H-condition. If $(p_{*}, O, U(m), J, g, L, h, A)$ satisfies H-condition and there exists a small constant $\epsilon > 0$ such that

\[
\|g - g_{C}\|_{\mathbf{C}_{0}(U(m))} + ||J - J_{C}\|_{\mathbf{C}_{0}(U(m))} < \epsilon
\]

Then we can find some $1 \leq t \leq m$ such that $(p_{*}, O, U, \mu_{t}^{*}J, \mu_{t}^{*}(tg), \mu_{t}^{*}(L^{t}), \mu_{t}^{*}(h^{t}), \mu_{t}^{*}(A^{t}))$ satisfies H-condition.
Fix any point p, we can assume that $(M_1, k_r^2 d_1, p)$ converge to a tangent cone $C(Y_\rho)$ for some sequence k_r in pointed Gromov-Hausdorff topology. For an open set $U \subset \subset C(Y_{reg}) \setminus \{p\}$, there is an embedding $\chi_{k_r}: U \to \mathcal{R} = M_{reg}$. Note that $d_1|\mathcal{R} = \omega_1$. The following Lemma follows from the convergence of $(M_1, k_r^2 d_1, p)$.

Lemma 5.25. There exist v and $\epsilon > 0$ such that we can find an embedding χ_{k_r} which satisfies

1. $\frac{1}{2}|z| \leq k_r^2 d_1(p, \chi_{k_r}(z)) \leq 2|z|$,
2. $||\chi_{k_r}^*(k_r \omega_1) - \omega_C||_{C^0(U)} + ||\chi_{k_r}^*(J_{R}) - J_{C}||_{C^0(U)} < \epsilon$.

Proposition 5.26. For any two distinct points p and q in M_1, we have

$\Phi_1(p) \neq \Phi_1(q)$.

Proof. Step 1: For any two distinct points p and q, there exist r and R such that $p, q \in B_{d_1}(x_1, r) \subset B_{d_1}(x_1, 2r) \subset B_{d_1}(x_1, R)$. Suppose $C(Y_p)$ and $C(Y_q)$ are two tangent cones of p and q after rescaling (M_1, d_1) at p by $k_{v_p} \to \infty$ and at q by $k_{v_q} \to \infty$. Then according to Lemma 5.23 we can construct two collection of data $(p_*, O_p, U_p(m_p), J_p, g_1, L_p, h_p, A_p)$ and $(q_*, O_q, U_q(m_q), J_q, g_q, L_q, h_q, A_q)$ which satisfy the H-condition, where $U_p(m_p) \subset C(Y_p)$ and $U_q(m_q) \subset C(Y_q)$. In addition, we can always assume that

1. the constant C appeared in the H-condition for $U_p(m_p)$ and $U_q(m_q)$ are the same,
2. $k_{v_p} = k_{v_q} = k_{v_{p,q}}$,
3. $r_{p_*} := d_{C(Y_p)}(p, p_*)$ and $r_{q_*} := d_{C(Y_q)}(q, q_*)$ are small enough, which define below.

Step 2: From Lemma 5.26 there exist $k_{v_{p,q}}$ such that $\chi_{p,k_{v_{p,q}}} : U_p(m_p) \to \mathcal{R} \text{ and } \chi_{q,k_{v_{p,q}}} : U_q(m_q) \to \mathcal{R}$ satisfy the following:

1. $\frac{1}{2}|z| \leq k_{v_{p,q}}^2 d_1(p, \chi_{p}(z)) \leq 2|z|$,
2. $\frac{1}{2}|z| \leq k_{v_{p,q}}^2 d_1(q, \chi_{q}(z)) \leq 2|z|$,
3. $\chi_{p}(U_p(m_p)) \cap \chi_{q}(U_q(m_q)) = \emptyset$,
4. $||\chi_{p}^*(k_{v_{p,q}} \omega_1) - \omega_p||_{C^0(U_p(m_p))} + ||\chi_{p}^*(J_{R}) - J_p||_{C^0(U_p(m_p))} < \epsilon$,
5. $||\chi_{q}^*(k_{v_{p,q}} \omega_1) - \omega_q||_{C^0(U_q(m_q))} + ||\chi_{q}^*(J_{R}) - J_q||_{C^0(U_q(m_q))} < \epsilon$.

where for the convenience, $\chi_{p,k_{v_{p,q}}}$ and $\chi_{q,k_{v_{p,q}}}$ are denoted by χ_p and χ_q, respectively.

Step 3: By the Proposition 5.24 and sufficiently small ϵ in Step 2, there exists $1 \leq t_p \leq m_p$ such that $(p_*, O_p, U_p, \mu_{t_p} \chi_{p}(J_{R}), \mu_{t_p} \chi_{p}^*(k_{v_{p,q}} \omega_1), \mu_{t_p} \chi_{p}(L_{p}^{t_p}), \mu_{t_p} \chi_{p}^*(h_{p}^{t_p}), \mu_{t_p} \chi_{p}^*(A_{p}^{t_p}))$ satisfies the H-condition. Thus there is a compactly smooth section σ_p such that σ_p has properties H_1, H_2, H_4 and H_5. By the same argument, there exists $1 \leq t_q \leq m_q$ such that $(q_*, O_q, U_q, \mu_{t_q} \chi_{q}(J_{R}), \mu_{t_q} \chi_{q}^*(k_{v_{p,q}} \omega_1), \mu_{t_q} \chi_{q}^*(L_{q}^{t_q}), \mu_{t_q} \chi_{q}^*(h_{q}^{t_q}), \mu_{t_q} \chi_{q}^*(A_{q}^{t_q}))$ satisfies the H-condition. Thus there is a compactly smooth section σ_q such that σ_q has properties H_1, H_2, H_4 and H_5.

Step 4: There is an embedding from $(\mu_{t_p} \chi_{p}^*(L_{p}^{t_p}), U_p)$ to $(k_p(K_M + D), \mathcal{R})$, where $k_p = t_p k_{v_{p,q}}$. So σ_p can be viewed as a compactly smooth section of $k_p(K_M + D)$. We now apply Proposition 5.24 to $\tau_p = \tilde{\sigma}_p$. Then there exists a $(k_p(K_M + D))$ valued section ς_p solving the $\tilde{\sigma}$ equation $\tilde{\sigma}_p = \tau_p$ with $\int_{\mathcal{R}} |\varsigma_p|^2(k_p \omega_1)^n \leq \int_{\mathcal{R}} |\tau_p|^2(k_p \omega_1)^n \leq \min \left(\frac{1}{8\sqrt{2}C}, 10^{-20} \right)$.

Let $z_{p_*} = \chi_{p}(p_*)$, then from H_3 and H_5, we have:

$$\varsigma_p(z_{p_*}) \leq C(||\tilde{\sigma}_p||_{L^{2n+1}(O_p)} + ||\varsigma_p||_{L^2(O_p)}) \leq \frac{1}{8\sqrt{2}C} + \frac{1}{8C} \leq \frac{1}{4}.$$
Set $\sigma'_p = \sigma_p - \varsigma_p$. Then σ'_p is a holomorphic section of $k_p(K_M + D)$ over \mathcal{R} and from Proposition 5.15, σ'_p can be continuously extended to M_1. By the H-condition, we have the following relations:

1. $|\sigma'_p(z_p)| > \frac{1}{2}$,
2. $||\sigma'_p||_{L^2(\mathcal{R}, k_pomega_1, h^{kp}_p)} \leq 2(2\pi)^{\frac{n}{2}},$
3. $||\sigma'_p||_{L^2(\mathcal{R}\setminus U_p, k_pomega_1, h^{kp}_p)} = ||\sigma_p||_{L^2(\mathcal{R}\setminus U_p, k_pomega_1, h^{kp}_p)} \leq \min\left(\frac{1}{8\sqrt{2C}}, 10^{-20}\right)$.

Then by Proposition 5.15,

$$|\sigma'_p(p)| \geq |\sigma'_p(z_p)| - \sup_{B_{d_1}(x_1, r)} |\nabla \sigma'_p| h^{kp}_p d_1(p, z_p) \geq \frac{2}{3}$$

when r_δ is sufficiently small.

Now we restrict σ'_p on U_q. By H_3,

$$|\sigma'_p(z_q)| \leq C||\sigma'_p||_{L^2(\mathcal{R}|U_p, k_pomega_1, h^{kp}_p)} \leq C \min\left(\frac{1}{8\sqrt{2C}}, 10^{-20}\right).$$

Similarly,

$$|\sigma'_p(q)| \leq |\sigma'_p(z_q)| + \sup_{B_{d_1}(x_1, r)} |\nabla \sigma'_p| h^{kp}_p d_1(q, z_q) \leq 2C \min\left(\frac{1}{8\sqrt{2C}}, 10^{-20}\right),$$

when r_δ is sufficiently small.

Step 5: By the same argument of Step 4, let $q_k = t_q k_{p,q}$, we construct a holomorphic section σ'_q such that

$$|\sigma'_q(q)| \geq \frac{2}{5}, \quad |\sigma'_q(p)| \leq 2C \min\left(\frac{1}{8\sqrt{2C}}, 10^{-20}\right).$$

Step 6: Set $K = t_q k_p = t_p k_q$. Then $(\sigma'_p)^{t_q}$ and $(\sigma'_q)^{t_p}$ are holomorphic section of $K(K_M + D)$ which can be continuously extended to M_1. Modifying the constant 10^{-20} as small as enough, we have $|(\sigma'_p)^{t_q}(p)| \gg |(\sigma'_q)^{t_p}(q)|$ and $|(\sigma'_q)^{t_q}(q)| \gg |(\sigma'_p)^{t_p}(q)|$. Therefore, we conclude that Φ_1 is injective. \qed

5.5. Surjectivity of Φ_1. In this subsection we will complete the proof of Theorem 1.8. Let u_1 be the solution to the following equation in the current sense

$$(\eta_1 - \sqrt{-1} \partial \bar{\partial} \log \log^2 |s_D|^2 + \sqrt{-1} \partial \bar{\partial} u_1)^n = e^{u_1} \frac{\Omega}{|s_D|^2 \log^2 |s_D|^2}.$$

Since $K_M + D$ is big and semi-ample, there exists an effective divisor $E = \sum a_i E_i$ such that $K_M + D - \epsilon E > 0$ for all sufficiently small $\epsilon > 0$.

Let $p \in \text{Supp} E \setminus D$ and $\pi : \overline{M} \rightarrow M$ be the blow up at p with exceptional divisor $\pi^{-1}(p) = F$. Set $\tilde{D} = \pi^{-1}(D)$ and $\tilde{E} = \sum a_i E_i$, where $\tilde{E}_i = \pi^{-1}(E_i) - F$. $s_{\tilde{E}_i}$, s_F and s_D are denoted by the defining sections of line bundles $L_{\tilde{E}_i}$, L_F and L_D respectively. Let χ be fixed Kähler metric on \overline{M}. We choose appropriate hermitian metrics $h_{\tilde{E}_i}$ and h_F such that

$$\pi^* \eta_1 + \delta \sqrt{-1} \partial \bar{\partial} \log |s_F|^2 + \delta \sum a_i \sqrt{-1} \partial \bar{\partial} \log |s_{\tilde{E}_i}|^2 \geq \mu \chi$$
for some small constants \(\delta \) and \(\mu \). Note that \(\widetilde{\Omega} = \frac{\pi^*\Omega}{(s_F)_B} \) defines a smooth volume form on \(\widetilde{M} \). We consider the following Monge-Ampère equation on \(\widetilde{M} \):
\[
(\tilde{\eta}_1 + \epsilon \chi + \sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon})^n = e^{\varphi_{\epsilon}} (\epsilon^2 + |s_F|^2)^{n-1} \frac{\widetilde{\Omega}}{|s_D|^2 h_B \log^2 |s_D|^2 h_B},
\]
where \(\tilde{\eta}_1 = \pi^* \eta_1 - \sqrt{-1} \partial \bar{\partial} \log |s_D| h_B^2 \) and \(h_B = \pi^* h_D \). By Theorem 1 of [10], the equation has a unique smooth solution \(\varphi_{\epsilon} \) for each \(\epsilon \); moreover
\[
\tilde{\omega}_{\epsilon} := \tilde{\eta}_1 + \epsilon \chi + \sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon}
\]
is a smooth complete Kähler metric on \(\widetilde{M} \setminus \bar{D} \).

Lemma 5.28. For any \(\delta \) and \(\epsilon \), there exist two constants \(C(\delta) \) and \(C \) independent of \(\epsilon \) such that
\[
-C(\delta) + \delta \log |s_F|^2 + \delta \sum_i a_i \log |s_{E_i}|^2 \leq \varphi_{\epsilon} \leq C + \log |s_D|^2 h_B^2.
\]

Proof. For the upper bound, let
\[
V_\epsilon = \int \frac{(\epsilon^2 + |s_F|^2)^{n-1} \frac{\widetilde{\Omega}}{|s_D|^2 h_B \log^2 |s_D|^2 h_B}}{\Omega},
\]
so we have \(V_1 \geq V_\epsilon \geq V_0 \). Hence \(V_\epsilon \) is uniformly bounded. Denote \((\epsilon^2 + |s_F|^2)^{n-1} \frac{\widetilde{\Omega}}{|s_D|^2 h_B \log^2 |s_D|^2 h_B} \) by \(\widetilde{\Omega}_\epsilon \), then we have the following calculation
\[
\frac{1}{V_\epsilon} \int \varphi_{\epsilon} \widetilde{\Omega}_\epsilon = \frac{1}{V_\epsilon} \int \log \left(\frac{\tilde{\omega}_{\epsilon}^n}{\Omega} \right) \widetilde{\Omega}_\epsilon \leq \log \int \tilde{\omega}_{\epsilon}^n - \log V_\epsilon
\]
\[
= \log \int (\pi^* \eta + \epsilon \chi)^n - \log V_\epsilon \leq C,
\]
where the third equality bases on a Lemma ([10] P410). Since \(\varphi_{\epsilon} - \log |s_D|^2 h_B^2 \in PSH(\widetilde{M}, \pi^* \eta + \epsilon \chi) \), the mean inequality implies
\[
\sup \varphi_{\epsilon} \leq C + \log |s_D|^2 h_B^2.
\]

For the lower bound, we set \(\varphi_{\epsilon, \delta} = \varphi_{\epsilon} - \delta \log |s_F|^2 - \delta \sum_i a_i \log |s_{E_i}|^2 \) and denote \(|s_D|^2 h_B^2 = |s_D|^2 \delta \), then the equation (5.27) is equivalent to
\[
(\eta_1^{\delta} + \delta \sqrt{-1} \partial \bar{\partial} \log |s_F|^2 + \delta \sum_i a_i \sqrt{-1} \partial \bar{\partial} \log |s_{E_i}|^2 + \epsilon \chi + \sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon, \delta} + \sqrt{-1} \partial \bar{\partial} \log \frac{|s_D|^2 h_B^2}{|s_D|^2})^n
\]
\[
= e^{\varphi_{\epsilon, \delta} + \frac{\log |s_D|^2 h_B^2}{|s_D|^2}} \prod_i |s_{E_i}|^{2a_i \delta} \cdot |s_F|^2 \delta \cdot (\epsilon^2 + |s_F|^2)^{n-1} \cdot \frac{\widetilde{\Omega}'}{|s_D|^2 h_B^2 \log^2 |s_D|^2 h_B^2}.
\]
where $\eta^\delta = \pi^* \eta_1 - \sqrt{-1} \partial \bar{\partial} \log |s_D|^2$ satisfying $
abla^\delta - \delta \sqrt{-1} \partial \bar{\partial} \log |s_F|^2 + \delta \sum_i a_i \sqrt{-1} \partial \bar{\partial} \log |s_{E_i}|^2 > 0$ and $\widetilde{\Omega}' = \frac{|s_D|^2}{|s_D|^2} \widetilde{\Omega}$. We introduce the following equation

$$(\eta^\delta - \delta \sum_i \Theta_{E_i} - \delta \Theta_F + \epsilon \chi + \sqrt{-1} \partial \bar{\partial} \psi_{\epsilon, \delta})^n = \epsilon^{\psi_{\epsilon, \delta}} \cdot (\epsilon^2 + |s_F|^2)^{n-1} \cdot \frac{\widetilde{\Omega}'}{|s_D|^2 |s_D|^2}.$$

By the generalized maximum principle, there exists a sequence $\{x_i\}$ such that $\lim_{i \to \infty} \psi_{\epsilon, \delta}(x_i) = \inf \psi_{\epsilon, \delta}$ and $\lim_{i \to \infty} \sqrt{-1} \partial \bar{\partial} \psi_{\epsilon, \delta}(x_i) > 0$. Then we have

$$\inf \psi_{\epsilon, \delta} \geq (n-1) \log \frac{1}{\epsilon^2 + |s_F|^2} + \log \frac{|s_D|^2 |s_D|^2 (\eta^\delta - \delta \sum_i \Theta_{E_i} - \delta \Theta_F + \epsilon \chi)^n}{\Omega'} \geq -C(\delta).$$

Set $H_{\epsilon, \delta} = \varphi_{\epsilon, \delta} - \psi_{\epsilon, \delta}$ and $v^\delta = \eta^\delta - \delta \sum_i \Theta_{E_i} - \delta \Theta_F + \epsilon \chi$, then

$$\log \left(\frac{v^\delta + \sqrt{-1} \partial \bar{\partial} \psi_{\epsilon, \delta} + \sqrt{-1} \partial \bar{\partial} H_{\epsilon, \delta} + \sqrt{-1} \partial \bar{\partial} \log \frac{|s_D|^2 |s_D|^2}{|s_F|^2}}{v^\delta + \sqrt{-1} \partial \bar{\partial} \psi_{\epsilon, \delta}} \right)^n = H_{\epsilon, \delta} + \log \frac{|s_D|^2 |s_D|^2}{|s_F|^2} + \delta \log |s_F|^2 + \delta \sum_i a_i \log |s_{E_i}|^2.$$

By the generalized maximum principle again

$$\inf \left(H_{\epsilon, \delta} + \log \frac{|s_D|^2 |s_D|^2}{|s_F|^2} \right) \geq -C(\delta).$$

Note that $\log \frac{|s_D|^2 |s_D|^2}{|s_F|^2}$ is a smooth function on \widetilde{M}, so it can be bounded by $C(\delta)$. Moreover we get the lower bound of φ_{ϵ}.

Lemma 5.29. There exists a constant C independent of ϵ such that on $\widetilde{M} \setminus \bar{D}$, we have

$$\text{Ric}(\tilde{\omega}_e) \leq -\tilde{\omega}_e + C \chi.$$

Proof. We observe some following consequences:

1. $\pi^* \eta_1 \leq C \chi$,
2. Since Ω is a smooth volume form, $\text{Ric}(\Omega) \leq C \chi$,
3. $\Theta_{\bar{D}} \geq -C \chi$,
4. $\sqrt{-1} \partial \bar{\partial} \log (\epsilon^2 + |s_F|^2) \geq -C \chi.$

Thus by a simple calculation we get the Lemma.

Set $\chi' = \chi - \sqrt{-1} \partial \bar{\partial} \log \frac{|s_D|^2}{|s_D|^2}$, then by a calculation we have

$$\chi' = \chi - 2 \sqrt{-1} \partial \bar{\partial} \log \frac{|s_D|^2}{|s_D|^2} + 2 \frac{\sqrt{-1} \partial \bar{\partial} \log |s_D|^2 \wedge \bar{\partial} \log |s_D|^2}{\log^2 |s_D|^2}.$$

Take an appropriate hermitian metric $|\cdot|$, we can assume that

$$\frac{1}{2} \chi \leq \frac{1}{2} \chi + 2 \frac{\sqrt{-1} \partial \bar{\partial} \log |s_D|^2 \wedge \bar{\partial} \log |s_D|^2}{\log^2 |s_D|^2} \leq \chi' \leq 2 \chi + 2 \frac{\sqrt{-1} \partial \bar{\partial} \log |s_D|^2 \wedge \bar{\partial} \log |s_D|^2}{\log^2 |s_D|^2}.$$
So, by Lemma 5.29 we have
\[\text{Ric}(\tilde{\omega}_\epsilon) \leq -\tilde{\omega}_\epsilon + C\chi'. \]

On the other hand, we can choose a sufficiently large \(A' \), a sufficiently small \(\alpha \) and a hermitian metric \(|.| \) such that
\[
\begin{align*}
A'\pi^*\eta_1 - \Theta_F - \sum a_i\Theta_{\tilde{E}_i} - A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2 &
\geq 3\chi - 2A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2 + 2A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2 \\
&\geq 2\chi + 2A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2 \geq \alpha'.
\end{align*}
\]

From now on we always assume that the hermitian metric \(|.| \) on \(L_{\tilde{D}} \) satisfy \(A'\pi^*\eta_1 - \Theta_F - \sum a_i\Theta_{\tilde{E}_i} - A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2 \geq \alpha' \).

Lemma 5.30. There exist \(C \) and \(\lambda \) independent of \(\epsilon \) such that
\[
\tilde{\omega}_\epsilon \leq \frac{C(\log |s_{\tilde{D}}|^2)^C}{|s_{\tilde{D}}|^{2\lambda} \cdot |s_{\tilde{F}}|^{2\lambda^2} \cdot \prod |s_{\tilde{E}_i}|^{2\lambda^2} \chi'}.
\]

Proof. By Yau’s Schwarz Lemma [25] and Lemma 5.29 we have
\[
\Delta_{\tilde{\omega}_\epsilon} \log tr_{\chi'}\tilde{\omega}_\epsilon \geq -Ctr_{\chi'}\chi' - \frac{C}{tr_{\chi'}\tilde{\omega}_\epsilon}.
\]

There is a fact that is
\[
\Delta_{\tilde{\omega}_\epsilon} \varphi \leq n - tr_{\tilde{\omega}_\epsilon}(\pi^*\eta_1 - \sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2).
\]

Let \(H = \log(|s_{\tilde{D}}|^{2A} \cdot |s_{\tilde{F}}|^{2A^2} \cdot \prod |s_{\tilde{E}_i}|^{2A^2} \cdot tr_{\chi'}\tilde{\omega}_\epsilon) - A^2 A' \varphi \), where \(A' \) is chosen as above and \(A \) is defined below. Then on \(\overline{M \setminus (\tilde{D} \cup F \cup \text{Supp}E)} \), we have
\[
\Delta_{\tilde{\omega}_\epsilon} H \geq -Ctr_{\tilde{\omega}_\epsilon}A' - A^2 A'n + Atr_{\tilde{\omega}_\epsilon}(AA'\pi^*\eta_1 - A\Theta_F - A \sum a_i\Theta_{\tilde{E}_i} - \Theta_{\tilde{D}} - AA'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2).
\]

When \(A \) is sufficiently large we observed that
\[
Atr_{\tilde{\omega}_\epsilon}(A(A'\pi^*\eta_1 - \Theta_F - \sum a_i\Theta_{\tilde{E}_i} - A'\sqrt{-1}\tilde{\omega}_\epsilon \log |s_{\tilde{D}}|^2) - \Theta_{\tilde{D}}) \geq (C + 1)\chi'.
\]

Therefore
\[
\Delta_{\tilde{\omega}_\epsilon} H \geq tr_{\tilde{\omega}_\epsilon}A' - \frac{C}{tr_{\chi'}\tilde{\omega}_\epsilon} - A^2 A'n.
\]

By the generalized maximum principle, there exists a sequence \(\{x_i\} \) such that \(\lim_{i \to \infty} H(x_i) = \sup H \) and \(\lim_{i \to \infty} \sqrt{-1}\partial\bar{\partial} H(x_i) \leq 0 \). Thus,
\[
\lim_{i \to \infty} tr_{\chi'}\tilde{\omega}_\epsilon \cdot (tr_{\tilde{\omega}_\epsilon}A' - A^2 A'n)(x_i) \leq C.
\]

Since
\[
\tilde{\omega}_\epsilon^n = e^{\varepsilon_s} \frac{\Omega}{|s_{\tilde{D}}|^{2\log^2 |s_{\tilde{D}}|^2}} \leq C \log^2 |s_{\tilde{D}}|^2 (\chi')^n,
\]
then we have
\[
\frac{1}{\log^2|s_D|^2} \left(\frac{1}{C} \log^2 |s_D|^2 (tr_{\tilde{\omega}_t})^{\frac{1}{n-1}} \right) \leq Ctr_{\tilde{\omega}} \chi'.
\]
Furthermore,
\[
\lim_{i \to \infty} tr_{\tilde{\omega}_t} \left(\frac{1}{C} \log^2 |s_D|^2 (tr_{\tilde{\omega}_t})^{\frac{1}{n-1}} - A^2 A'n \right)(x_i) \leq C.
\] (5.31)

If
\[
\lim_{i \to \infty} (tr_{\tilde{\omega}_t})^{\frac{1}{n-1}}(x_i) \leq \lim_{i \to \infty} 2A^2 A'nC \log^2 |s_D|^2(x_i),
\]
then
\[
\lim_{i \to \infty} (tr_{\tilde{\omega}_t})(x_i) \leq \lim_{i \to \infty} (2A^2 A'nC)^{n-1}(\log^2 |s_D|^2)^{n-1}(x_i).
\]
Otherwise
\[
\lim_{i \to \infty} (tr_{\tilde{\omega}_t})^{\frac{1}{n-1}}(x_i) \geq \lim_{i \to \infty} 2A^2 A'nC \log^2 |s_D|^2(x_i).
\]

From (5.31) we know
\[
\lim_{i \to \infty} A^2 A'ntr_{\tilde{\omega}_t}(x_i) \leq C.
\]

In general we have
\[
\lim_{i \to \infty} (tr_{\tilde{\omega}_t})(x_i) \leq \lim_{i \to \infty} C(\log^2 |s_D|^2)^C(x_i).
\]

By the definition of \(H \) and Lemma 5.28, we have
\[
H(x) \leq \lim_{i \to \infty} \left(\log (|s_D|^{2A} \cdot |s_E|^{2A} \cdot \prod_i |s_{E_i}|^{2A^2} \cdot C(\log^2 |s_D|^2)^C) + A^2 A'C(\delta) - A^2 A'\delta \log |s_E|^2 - A^2 A' \delta \sum_i a_i \log |s_{E_i}|^2 \right)(x_i) \leq C
\]
when choosing \(A >> A' \) and sufficiently small \(\delta \). So we get this Lemma from the upper bound of \(\varphi_t \).

Let \(B \) be a disk in \(M \setminus D \) centered at \(p \). Denote \(f_1, f_2, \ldots, f_N \) by the defining functions of divisors \(E_1, E_2, \ldots, E_N \) on \(B = \pi^{-1}(B) \). From Lemma 5.30, we obtain the following corollary.

Corollary 5.32. There exist \(C \) and \(\lambda \) independent of \(\epsilon \) such that
\[
(tr_{\tilde{\omega}_t})_{|\partial B} \leq \frac{C}{\prod_i |f_i|^{2\lambda^2}} .
\]

Let \(\tilde{\chi} \) be the pull back of the Euclidean metric \(\sqrt{-1} \sum_j dz_j \wedge d\bar{z}_j \) on \(B \). Then \(\tilde{\chi} \) is a smooth closed nonnegative \((1, 1)\) form and is a Kähler metric on \(\tilde{\mathcal{B}} \setminus F \). The following Lemma is due to Song [21].

Lemma 5.33. There exist a constant \(C > 0 \), a sufficiently small \(\epsilon_0 > 0 \) and a smooth hermitian metric \(h_F' \) on \(L_F \) such that on \(\tilde{B} \)
\[
C^{-1} \tilde{\chi} \leq \chi' \leq C \frac{\tilde{\chi}}{|s_F|_{h_F'}^2}
\]
and
\[
\pi^* \eta_1 - \sqrt{-1} \partial \bar{\partial} \log |s_D|^2 - \epsilon_0 \Theta_{h_F'} > C^{-1} \chi'.
\]
Lemma 5.34. There exist $0 < \beta < 1$, $C > 0$ and $\Lambda > 0$ independent of ϵ such that

$$\tilde{\omega}_\epsilon \leq \frac{C}{|s_F|_{h_p}^{2(1-\beta)} \cdot \prod_i |f_i|^{2\Lambda} \chi'}, \text{ in } \tilde{B}.$$

Moreover, we have

$$\pi^* \omega_1 \leq \frac{C}{|s_F|_{h_p}^{2(1-\beta)} \cdot \prod_i |f_i|^{2\Lambda} \chi'}, \text{ in } \tilde{B},$$

where $\omega_1 = \eta_1 - \sqrt{-1} \partial \bar{\partial} \log log^2 |s_D|^2 + \sqrt{-1} \partial \bar{\partial} u_1$.

Proof. Let $H = \log \left(|s_F|_{h_p}^{2(1+r)} \cdot \prod_i |f_i|^{2\lambda^2} \cdot tr_\chi \tilde{\omega}_\epsilon \right) - A \varphi_\epsilon$ for some sufficiently large A and sufficiently small r. There are some facts on $\tilde{B}\setminus(F \cup \text{Supp}\ E)$:

1. $\Delta_{\tilde{\omega}_\epsilon} \log |s_F|_{h_p}^2 = -tr_\tilde{\omega}_\epsilon \Theta_{h_p}$,
2. $\Delta_{\tilde{\omega}_\epsilon} \log \prod_i |f_i|^{2\lambda^2} = 0$,
3. $\Delta_{\tilde{\omega}_\epsilon} \varphi_\epsilon = n - tr_{\tilde{\omega}_\epsilon} (\pi^* \eta_1 - \sqrt{-1} \partial \bar{\partial} \log log^2 |s_D|^2) - c tr_{\tilde{\omega}_\epsilon} \chi$,
4. $\Delta_{\tilde{\omega}_\epsilon} tr_\chi \tilde{\omega}_\epsilon \geq \frac{c tr_\chi (\text{Ric}(\tilde{\omega}_\epsilon))}{tr_\chi \tilde{\omega}_\epsilon} \geq 1 - \frac{C}{|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon}$.

Thus, on $\tilde{B}\setminus(F \cup \text{Supp}\ E)$, we have

$$\Delta_{\tilde{\omega}_\epsilon} H \geq 1 - \frac{C}{|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon} - An - (r + 1) tr_{\tilde{\omega}_\epsilon} \Theta_{h_p} + A tr_{\tilde{\omega}_\epsilon} (\pi^* \eta_1 - \sqrt{-1} \partial \bar{\partial} \log log^2 |s_D|^2)$$

$$\geq c tr_{\tilde{\omega}_\epsilon} \chi' - \frac{C}{|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon} - C,$$

where the last inequality bases on Lemma 5.33 and choosing sufficiently large A and small r. By Yau’s Schwarz Lemma [25],

$$\Delta_{\tilde{\omega}_\epsilon} \log tr_\chi \tilde{\omega}_\epsilon \geq -C_1 tr_{\tilde{\omega}_\epsilon} \chi' - \frac{C_1}{tr_\chi \tilde{\omega}_\epsilon}.$$

Let $G = H + \frac{c}{2tr_\chi \tilde{\omega}_\epsilon} \log \left(\prod_i |f_i|^{2\lambda^2 + 2} \cdot tr_\chi \tilde{\omega}_\epsilon \right)$. Then

$$\Delta_{\tilde{\omega}_\epsilon} G \geq c tr_{\tilde{\omega}_\epsilon} \chi' - \frac{C}{|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon} - C - \frac{c}{2} tr_{\tilde{\omega}_\epsilon} \chi' - \frac{c}{2tr_\chi \tilde{\omega}_\epsilon}$$

$$\geq \frac{c}{2} tr_{\tilde{\omega}_\epsilon} \chi' - \tilde{C} - \frac{C}{|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon}.$$

For a fixed sufficiently large $\lambda > 0$, there exists a constant $C > 0$ such that

$$\sup_{\partial \tilde{B}} G \leq C$$

from the estimate in Corollary 5.32 and Lemma 5.28.

So we can assume that

$$\sup_{\tilde{B}} G = G(p_{\text{max}})$$

for some $p_{\text{max}} \in \tilde{B}\setminus(F \cup \text{Supp}\ E)$. Then at p_{max}, we have

$$|s_F|_{h_p}^2 tr_\chi \tilde{\omega}_\epsilon (c tr_{\tilde{\omega}_\epsilon} \chi' - 2\tilde{C})(p_{\text{max}}) \leq C.$$
Note that
\[
\frac{1}{\log^2|s_D|^2} (tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}} \leq C tr_{\omega} \chi'.
\]
Then according to the boundedness of \(\frac{1}{\log^2|s_D|^2} \) in \(\tilde{B} \), we get
\[
|s_F|_{h_F'}^2 tr_{\chi'} \tilde{\omega}_e(\chi'(tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}} - 2\tilde{C})(p_{\max}) \leq C. \tag{5.35}
\]
If \((tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}}(p_{\max}) \leq \frac{2\tilde{C}}{3} \), then \(G \) is bounded from above by a uniform constant.
Otherwise \((tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}}(p_{\max}) \geq \frac{2\tilde{C}}{3} \), i.e., \(C \leq \frac{2\tilde{C}}{3} (tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}}(p_{\max}) \). Then by equation (5.35) we get
\[
|s_F|_{h_F'}^2 \cdot tr_{\chi'} \tilde{\omega}_e \cdot \frac{C'}{3} (tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}}(p_{\max}) \leq C,
\]
i.e.
\[
\log |s_F|_{h_F'}^2 + \log tr_{\chi'} \tilde{\omega}_e + \frac{1}{n-1} \log tr_{\chi'} \tilde{\omega}_e(p_{\max}) \leq C.
\]
According to the definition of \(G \), Lemma \[3.28\] and Lemma \[3.30\] we have \(G \leq C \) when we choose large \(C_1 \).

In sum, in all cases, we have \(G \leq C \). Then
\[
|s_F|_{h_F'}^2(2^{1+r}) \cdot \prod_i |f_i|^2 \lambda^2 + \frac{2\tilde{C}}{3} (2\lambda^2 + 2) \cdot tr_{\chi'} \tilde{\omega}_e \cdot (tr_{\chi'} \tilde{\omega}_e)^{\frac{1}{n-1}} \leq C.
\]
Note that \(tr_{\chi'} \tilde{\omega}_e \geq C^{-1} tr_{\chi'} \tilde{\omega}_e \), then we observe
\[
(tr_{\chi'} \tilde{\omega}_e)^{1+\frac{2\tilde{C}}{3}} \leq \frac{C}{|s_F|_{h_F'}^2(2^{1+r}) \cdot \prod_i |f_i|^2 \lambda^2 + \frac{2\tilde{C}}{3} (2\lambda^2 + 2)}.
\]
If we choose \(r = \frac{\tilde{C}}{12\lambda^2} \), then \(1 - \beta = \frac{1 + \tilde{C}}{12\lambda^2} \) for some \(\beta \in (0, 1) \). Furthermore, there exists a constant \(\Lambda > 0 \) such that
\[
\tilde{\omega}_e \leq \frac{C}{|s_F|_{h_F'}^2(2^{1-\beta}) \cdot \prod_i |f_i|^2 \chi'}. \tag{5.36}
\]

From now on we turn to the Gromov-Hausdorff convergence. Recall
\[
\overline{D_1} := \{ x \in M_1 | \text{there exists } x_i \in \overline{D} \text{ such that } x_i \xrightarrow{d_{GH}} x \},
\]
where \(\overline{D} \) is a divisor such that \(D \cup S_M \subset \overline{D} \). By the Proposition \[5.34\] \((M \setminus \overline{D}, \omega_1)\) is isometric to \((M \setminus \overline{D}, \omega_1)\).

Lemma 5.36. \(\Phi_1 : M_1 \setminus \overline{D_1} \rightarrow \Phi(M \setminus \overline{D}) \) is bijective.

Proof. Note that \((M_1 \setminus \overline{D_1}) \subset R = M_{\text{reg}} \) and \(\Phi|_{M_{\text{reg}}} \) is biholomorphic, so \(\Phi_1 \) is bijective. \(\square \)

Lemma 5.37. \(\Phi_1 : \overline{D_1} \rightarrow \Phi(\overline{D}) \) is surjective.

Proof. For any \(x' \in \overline{D_1} \), there exists a curve \(\gamma : [0, 1] \rightarrow M \setminus \overline{D} \) with \(\gamma(0) = x' \) and \(\gamma([0, 1]) \subset M \setminus \overline{D} \) such that \(\int_0^1 |\gamma'|_{\omega_1} dt < \infty \) by Lemma \[5.34\]. The curve \(\gamma(t) \) gives a curve \(\tilde{\gamma}(t) \) for \(0 < t < 1 \) through an isometry from \((M \setminus \overline{D}, \omega_1)\) to \((M_1 \setminus \overline{D_1}, \omega_1)\). Hence there is a limit \(x'' = \lim_{t \to 0} \tilde{\gamma}(t) \) in \(M_1 \). Then
\[
\Phi_1(x'') = \lim_{t \to 0} \Phi_1(\tilde{\gamma}(t)) = \lim_{t \to 0} \Phi(\gamma(t)) = \Phi(x').
\]
Therefore, Φ_1 is surjective.

References

[1] M. Anderson, *Convergence and rigidity of manifolds under Ricci curvature bounds*, Invent. Math. **102** (1990), 429-445.

[2] R. J. Berman and H. Guenancia, *Kähler-Einstein metrics on stable varieties and log canonical pairs*, Geom. Funct. Anal. **24** (2014), 1683C1730.

[3] S. Boucksom, A. Broustet, and G. Pacienza, *Uniruledness of stable base loci of adjoint linear systems via Mori theory*, Math. Z. **275** (2013), 499C507.

[4] J. Cheeger, *Degeneration of Riemannian Metrics under Ricci Curvature Bounds*, Lezioni Fermiane. Scuola Normale Superiore, Pisa (2001).

[5] J. Cheeger and T. H. Colding, *On the structure of spaces with Ricci curvature bounded below II*, J. Diff. Geom. **54** (2000), 13-35.

[6] X.X. Chen, S. Donaldson, and S. Sun, *Kähler-Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities*, J. Amer. Math. Soc. **28** (2015), 183-197.

[7] S. Donaldson and S. Sun, *Kähler-Einstein metric on Fano manifolds, II: Limits with cone angle less than 2π*, J. Amer. Math. Soc. **28** (2015), no. 1, 199-234.

[8] S. Donaldson and S. Sun, *Kähler-Einstein metric on Fano manifolds, III: Limits as cone angle approaches 2π and completion of the main proof*, J. Amer. Math. Soc. **28** (2015), no. 1, 235-278.

[9] S. Y. Cheng and S. T. Yau, *On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation*, Communication on Pure and Applied Mathematics **XXXIII** (1980), 507-544.

[10] T. H. Colding, *Ricci curvature and volume convergence*, Annal. of Math. **145** (1997), 477-501.

[11] T. H. Colding and A. Naber, *Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications*, Annal. of Math. **176** (2012), 1173-1229.

[12] J. P. Demailly, *Analytic methods in algebraic geometry*.

[13] S. Donaldson and S. Sun, *Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry*, Acta. math. **213** (2014), 63-106.

[14] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer, 1983.

[15] Y. Kawamata, K. Matsuda, and K. Matsuki, *An Introduction to the Minimal Model Problem*, Advanced Studies in Pure Mathematics **10** (1987), 283C360.

[16] R. Kobayashi, *Kähler-Einstein metric on an open algebraic manifold*, Osaka1. Math. **21** (1984), 399-418.

[17] J. Kollar and F. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, 1998.

[18] G. La Nave and G. Tian, *A continuity method to construct canonical metrics*, arXiv:1410.3157.

[19] G. La Nave, G. Tian, and Z. L. Zhang, *Bounding diameter of singular Kähler metric*, arXiv:1503.03159v1.

[20] X.C. Rong and Y.G. Zhang, *Continuity of extremal transitions and flops for Calabi-Yau manifolds*, J. Diff. Geom. **89** (2011), 233-269.

[21] J. Song, *Riemannian geometry of Kähler-Einstein currents*, arXiv:1404.0445.

[22] G. Tian, *K-stability and Kähler-Einstein metrics*, Commun. Pure Appl. Math **LXVIII** (2015), 1085-1156.

[23] G. Tian and S. T. Yau, *Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry*, Adv. Ser. Math. Phys. **1**, 1 (1987), 574-628.

[24] G. Tian and Z. L. Zhang, *Convergence of Kähler Ricci flow on lower dimension algebraic manifold of general type*, arXiv:1501.01038.

[25] S. T. Yau, *A general Schwarz lemma for Kähler manifolds*, Amer. J. of Math. **100** (1978), 197-208.

Yan Li

Beijing International Center for Mathematical Research,

Peking University,

100871 Beijing, China

E-mail address: liyandota@hotmail.com