Description of the karyotype of Rhagomys rufescens Thomas, 1886 (Rodentia, Sigmodontinae) from Southern Brazil Atlantic forest

André Filipe Testoni1,5, Sérgio Luiz Althoff2, André Paulo Nascimento3, Francisco Steiner-Souza4 and Ives José Sbalqueiro1

1Laboratório de Citogenética Animal, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.
2Laboratório de Biologia Animal, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
3Laboratório de Genética, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
4Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
5Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.

Abstract

Rhagomys rufescens (Rodentia: Sigmodontinae) is an endemic species of the Atlantic forest from Southern and Southeastern Brazil. Some authors consider Rhagomys as part of the tribe Thomasomyini; but its phylogenetic relationships remain unclear. Chromosomal studies on eight specimens of Rhagomys rufescens revealed a diploid number of 2n = 36 and a number of autosome arms FN = 50. GTG, CBG and Ag-NOR banding and CMA3/DAPI staining were performed on metaphase chromosomes. Eight biarmed and nine acrocentric pairs were found in the karyotype of this species. The X and Y chromosomes were both acrocentric. Most of the autosomes and the sex chromosomes showed positive C-bands in the pericentromeric region. The X chromosome showed an additional heterochromatic block in the proximal region of the long arm. Nucleolus organizer regions (NORs) were located in the pericentromeric region of three biarmed autosomes (pairs 4, 6 and 8) and in the telomeric region of the short arm of three acrocentrics (pairs 10, 12 and 17). CMA3/DAPI staining produced fluorescent signals in many autosomes, especially in pairs 4, 6, and 8. This study presents cytogenetic data of Rhagomys rufescens for the first time.

Key words: Rhagomys rufescens, Thomasomyini, Rodentia, Atlantic forest, karyotype.

Received: October 9, 2009; Accepted: March 26, 2010.

Rhagomys rufescens (Rodentia: Sigmodontinae) is an endemic species of the Atlantic forest from Southern and Southeastern Brazil. Some authors consider Rhagomys as part of the tribe Thomasomyini; but its phylogenetic relationships remain unclear. Chromosomal studies on eight specimens of Rhagomys rufescens revealed a diploid number of 2n = 36 and a number of autosome arms FN = 50. GTG, CBG and Ag-NOR banding and CMA3/DAPI staining were performed on metaphase chromosomes. Eight biarmed and nine acrocentric pairs were found in the karyotype of this species. The X and Y chromosomes were both acrocentric. Most of the autosomes and the sex chromosomes showed positive C-bands in the pericentromeric region. The X chromosome showed an additional heterochromatic block in the proximal region of the long arm. Nucleolus organizer regions (NORs) were located in the pericentromeric region of three biarmed autosomes (pairs 4, 6 and 8) and in the telomeric region of the short arm of three acrocentrics (pairs 10, 12 and 17). CMA3/DAPI staining produced fluorescent signals in many autosomes, especially in pairs 4, 6, and 8. This study presents cytogenetic data of Rhagomys rufescens for the first time.

Key words: Rhagomys rufescens, Thomasomyini, Rodentia, Atlantic forest, karyotype.

Received: October 9, 2009; Accepted: March 26, 2010.

The subfamily Sigmodontinae (Wagner 1843) comprises 74 genera and 377 species (Musser and Carleton, 2005) and includes predominantly South American Cricetidae rodents, such as Rhagomys rufescens. This species is endemic to the Atlantic forest from Southern and Southeastern Brazil, and has already been reported in Rio de Janeiro, Minas Gerais, São Paulo, Espírito Santo and Santa Catarina (Moojen, 1952; Emmons and Feer, 1997; Eisenberg and Redford, 1999; Nowak, 1999; Percequillo et al., 2004; Pinheiro et al., 2004; Metzger et al., 2006; Par- dini and Umetzu, 2006; Steiner-Souza et al., 2008). The first record of R. rufescens in Southern Brazil was recently obtained at the Parque Natural Municipal Nascentes do Garcia (PMNMG), in the state of Santa Catarina (Steiner- Souza et al., 2008).

Rhagomys rufescens was originally described as Hesperomys rufescens, based on a female collected in Rio de Janeiro, southeastern Brazil. In the beginning of the 20th century, Thomas collected another specimen from an unknown locality, which was used for the description of the genus Rhagomys (Thomas 1917) (Percequillo et al., 2004). A second species, Rhagomys longilingua, was recently described based on a male collected in the Montana forests in southern Peru (Luna and Patterson, 2003), that was later found to reach as far as Bolivia (Villalpando et al., 2006).

Rhagomys is considered incertae sedis (Reig, 1980, 1984; McKenna and Bell, 1997; Smith and Patton, 1999; Musser and Carleton, 2005) or a “plesiomorphic Neotropical muroid”, according to Voss (1993) and Steppan (1995),...
and there is no consensus regarding its tribal position (Percequillo et al., 2004). Nevertheless, some authors included Rhagomys in the tribe Thomasomyini based on morphological characters (Pacheco, 2003) or on nuclear IRBP gene sequences (D’Elia et al., 2006, 2007). Cytogenetic studies on species of Thomasomyini have shown significant variation both in diploid number (2n = 20-82) and in the number of autosome arms (FN = 34-114) (Table 1). The species in Table 1 are grouped in “Andean” Thomasomyini, which includes genera with a predominantly Andean distribution (sensu Pacheco, 2003), and “Endemic Atlantic” Thomasomyini, an informal group named by Oliveira and Bonvicino (2002).

The objective of this study was to describe the karyotype of Rhagomys rufescens from southern Brazil after conventional and CMA 3/DAPI staining, and GTG, CBG and Ag-NOR banding. The chromosomal data presented in this work can provide additional information for studies on both taxonomic and phylogenetic relationships.

Eight specimens (five males and three females) were analyzed. They were captured at PNMNG, at “Mono” locality (27°02’59” S, 49°08’57” W), in Indaial city, in the state of Santa Catarina, southern Brazil. This park is now part of Parque Nacional da Serra do Itajaí (PNSI) (Figure 1). The animals were caught in Sherman traps placed at 3 m from the ground, according to Kierulff et al. (1991), with adaptations.

Chromosomes were obtained directly from bone marrow according to the method of Ford and Hamerton (1956), modified by Sbalqueiro and Nascimento (1996). Conventional Giemsa staining (5%) was used to determine diploid number (2n), chromosomal morphology and the number of autosomal arms (FN). At least 20 metaphase plates per individual were examined. GTG, CBG and Ag-NOR banding were performed according to Seabright (1971), Sumner (1972), and Howell and Black (1980), respectively. Chromomycin A3 (CMA3), and 4,6-diamidino-2-phenylindole (DAPI) were used according to Schweizer (1976). Chromosomes were classified as metacentric (M), submetacentric (SM), and acrocentric (A).

Skins and skulls of specimens were deposited at the Coleção Zoológica da Fundação Universidade Regional de Blumenau (CZFURB), in Blumenau, State of Santa Catarina, Brazil.

Analyses after conventional staining showed 2n = 36 and FN = 50 in all specimens (Figure 2a), with five metacentric pairs (1, 3, 6 and 8), three submetacentric (pairs 2, 4 and 5) and nine acrocentric pairs (pairs 9 to 17), decreasing gradually in size. The X chromosomes were acrocentric, indistinguishable from pair 9, whereas the Y chromosome was also acrocentric and similar in size to pair 10. All chromosome pairs, including the sex chromosomes, could be identified after G-banding. The X chromosome showed two positive bands in the medium portion of the long arm and the Y chromosome had one proximal band in the long arm (Figure 2b).

C-banding revealed pericentromeric constitutive heterochromatic blocks in most autosomes and also in the sex chromosomes. An additional interstitial C-band was present in the proximal region of the long arm of the X chromosome (Figure 2c).

NORs were detected in the pericentromeric region of pairs 4, 6 and 8, and in the telomeric region of the short arm of acrocentric pairs 10, 12 and 17 (Figure 2d). Two to twelve NORs were observed, with a mean of 7.33 ± 3.19 per cell (N = 39).

Figure 1 - “Mono” locality, data collection site of specimens at Parque Natural Municipal Nascentes do Garcia (PNMNG), part of Parque Nacional Serra do Itajaí (PNSI), state of Santa Catarina, Southern Brazil.
Table 1 - Diploid numbers (2n) and number of autosome arms (FN) of Thomasomyini species.

Species	2n	FN	Authors
“Andean” Thomasomyini species			
Aepeomys fuscatus	54	62	Gardner and Patton (1976)
Aepeomys lugens	28	48	Aguilera *et al.* (2000)
Aepeomys lugens	44	46	Gómez-Laverde *et al.* (1997)
Aepeomys sp.	44	46	Aguilera *et al.* (1994)
Aepeomys reigi	44	46	Ochoa *et al.* (2001)
Rhipidomys cearanus	44		Zanchin *et al.* (1992a)
Rhipidomys latimanus	44	48	Gardner and Patton (1976)
Rhipidomys leucodactylus	44	48	Zanchin *et al.* (1992a)
Rhipidomys leucodactylus	44	48	Andrades-Miranda *et al.* (2002)
Rhipidomys leucodactylus cytotype 1	44	52	Andrades-Miranda *et al.* (2002)
Rhipidomys mastacalis	44	74	Zanchin *et al.* (1992a)
Rhipidomys mastacalis cytotype 1	44	80	Andrades-Miranda *et al.* (2002)
Rhipidomys mastacalis cytotype 2	44	76	Andrades-Miranda *et al.* (2002)
Rhipidomys cf. mastacalis	44	52	Silva and Yonenaga-Yassuda (1999)
Rhipidomys nitela	48	68	Andrades-Miranda *et al.* (2002)
Rhipidomys selateri	44	48	Aguilera *et al.* (1994)
Rhipidomys sp.	44	48	Svartman and Almeida (1993)
Rhipidomys sp.	44	49	Svartman and Almeida (1993)
Rhipidomys sp.	44	50	Zanchin *et al.* (1992a)
Rhipidomys sp. A	44	61	Silva and Yonenaga-Yassuda (1999)
Rhipidomys sp. B	50	71,72	Salazar-Bravo and Yates (2007)
Thomasomys andersoni	44	42	Gardner and Patton (1976)
Thomasomys aureus	44	42	Gardner and Patton (1976)
Thomasomys kalinowskii	44	44	Gardner and Patton (1976)
Thomasomys laniger	42	40	Aguilera *et al.* (2000)
Thomasomys monochromos	42	42	Gardner and Patton (1976)
Thomasomys niveipes	24	42	Gomez-Laverde *et al.* (1997)
Thomasomys notatus	44	44	Gardner and Patton (1976)
Thomasomys sp.	44	42	Gardner and Patton (1976)
Thomasomys taczanowskii	44	44	Gardner and Patton (1976)
Thomasomys vestitus	44	42	Aguilera *et al.* (2000)
“Endemic Atlantic” Thomasomyini species			
Delomys collinus	82	86	Bonvicino and Geise (1995)
Delomys dorsalis	82	80	Zanchin *et al.* (1992b)
Delomys sublineatus	72	90	Zanchin *et al.* (1992b)
Phaenomys ferrugineus	78	114	Bonvicino *et al.* (2001)
Juliomys ossitenuis	20	36	Costa *et al.* (2007)
Juliomys pictipes	36	34	Bonvicino and Otazu (1999)
Juliomys rimofrons	20	34	Oliveira and Bonvicino (2002)
Juliomys sp.	32	48	Paresque *et al.* (2009)
“Other” Thomasomyini species			
Abrawayaomys ruschii	58		Pereira *et al.* (2008)
Andinomys edax	56	56	Spotorno *et al.* (2001)
Irenomys tarsalis	64	98	Ojeda *et al.* (2004)
Rhogomys rufescens	36	50	Present report
Wiedomys cerradensis	60	88	Gonçalves *et al.* (2005)
Wiedomys pyrrhorhinos	62	86	Maia and Langguth (1981)
Figure 2 - Karyotype of *Rhagomys rufescens* (male) after (a) conventional staining and (b) G-banding. Bar = 2.5 μm. (c) Metaphase of *Rhagomys rufescens* after C-banding. The arrow points to the X chromosome. (d) Metaphase after Ag-NOR staining. The arrows point to the nucleolus organizing regions. (e) Metaphase after CMA3/DAPI staining. The arrows point to the chromosomes with intense fluorescent CMA3 signals in the “p” and “q” arms (thick arrow) and pericentromeric region (thin arrow).
The double staining with the GC- and AT-specific fluorochromes, CMA3 and DAPI, respectively, showed intense fluorescent CMA3 signals in the pericentromeric region of pairs 4 and 6, and throughout the length of pair 8. Less intense signals were observed in other pairs (Figure 2e).

Rhogomys is a polytypic genus composed by R. longilingua and R. rufescens. After comparative morphological analyses, Pacheco (2003) considered it monophyletic, although the two forms show a discontinuous distribution: R. longilingua can be found in Peru and Bolivia, whereas R. rufescens occurs in southern and southeastern Brazil. The phylogenetic relationships of this genus with other Sigmodontinae are controversial and uncertain and it has been previously included in different tribes of this subfamily.

Pacheco (2003) compared morphological characters of R. rufescens to those of various species of Sigmodontinae. This author suggested a phylogenetic relationship with the tribe Thomasomyini: Abrawaayomys, Aepeomys, Chilomys, Delomys, Juliomy, Phaenomys, Rhipidomys, Thomasomys (including Erioryzomys and Inomys), Wiedomys, and Wilfredomys. R. rufescens appeared as a sister group of Abrawaayomys ruschii or within the “Andean” Thomasomyine group (Thomasomys, Aepeomys, Chilomys and Rhipidomys).

After analyses of the nuclear IRBP (Interphotoreceptor Retinoid Binding Protein) gene sequences, D’Elia et al. (2006) suggested grouping Rhagomys longilingua with the Thomasomyini species as a sister-group of Thomasomys and as part of a larger clade that also includes Aepeomys and Rhipidomys.

On the other hand, Percequillo et al. (2004), based on mitochondrial cytochrome B sequences, concluded that the position of R. rufescens within Sigmodontinae was uncertain and that Rhagomys was either closely associated to Andinomys, followed by a Thomasomys-Rhipidomys group, or closer to Juliomy, followed by Andinomys.

Therefore, all these studies suggested a phylogenetic relationship of Rhagomys with Thomasomyini species. So far, cytogenetic data have shown a significant variation in both diploid number (2n = 20-82) and FN (34-114) (Zanchin et al., 1992b Bonvicino and Geise, 1995; Bonvicino and Otazu, 1999; Oliveira and Bonvicino, 2002; Costa et al., 2007). Nevertheless, most species presented 2n = 44 and a predominance of acrocentric chromosomes, which were the cases of the species of Rhipidomys and Thomasomys (Table 1), possibly a sister group of Rhagomys (Pacheco, 2003; Percequillo et al., 2004, D’Elia et al., 2006). These results differ from our chromosome data of Rhagomys rufescens (2n = 36 and FN = 50), which had eight biarmed and nine acrocentric autosomal pairs.

The cytogenetic data of Rhagomys rufescens (2n = 36 and FN = 50) described herein are the first for this genus. Pair 9 and the X chromosome were undistinguishable after conventional staining because of their similar sizes and morphologies. However, GTG and CBG banding patterns showed significant differences allowing their individual identification. The two interstitial G-bands in the long arm of the X chromosome, characteristic of mammalian X chromosomes (Pathack and Stock, 1974), could be observed. Furthermore, an additional block of interstitial constitutive heterochromatin was present in the proximal region of the long arm of X chromosome, whereas pair 9 only presented a pericentromeric heterochromatic block. The Y chromosome, which is almost completely heterochromatic in many species of South-American rodents (Sbalqueiro et al. 1991; Andrades-Miranda et al., 2001), only presented a positive C-band in the pericentromeric region in Rhagomys rufescens.

After double fluorochrome staining, CMA3-positive and DAPI-negative signals were present in sites coincident with all AgNORs. The correlation of NORs with GC-rich sites is relatively common among vertebrates (Schmid, 1982; Amemiy and Gold, 1986; Artoni et al., 1999, among others), although the reverse correlation is not always valid. Additional GC–rich sites were also observed, mainly in the first three chromosome pairs. These sites were euchromatic domains adjacent to G-bands, known to correspond to GC-rich isochores (R-bands), especially close to the telomeric region (Bernardi, 1993; Holmquist and Ashley, 2006). However, several authors suggested the use of the silver staining technique in conjunction with FISH (rDNA probes) to confirm the number and location of NORs (Santos et al., 2001; Fagundes et al., 2003; Leite-Silva et al., 2003).

The comparison of the chromosome data presented herein to those of the other Thomasomyini species mentioned above does not allow to determine the taxonomic relationship of Rhagomys rufescens. The scarcity of cytogenetic data of a larger number of species and the lack of techniques that could show more details about chromosome structure makes further taxonomic analysis a difficult task. It is evident that several chromosome rearrangements have contributed to the karyotypic variability observed in Thomasomyini. Complementary data obtained from differential staining associated with FISH techniques, such as ZOO-FISH (Hass et al., 2008), is necessary for clarifying the mechanisms of karyotypic evolution in this group, and hence contribute to determine the taxonomic position of this genus. The data reported herein are important as a first characterization of the chromosome complement of R. rufescens because it allows the identification of some primary features of its karyotype.

Acknowledgments

The authors would like to thank Dr. Iris Hass (UFPR), Dr. Edivaldo Herculano Correa de Oliveira (UFPA), Dr. Rafael Noleto (UFPR), and Dr. Geraldo Moretto (FURB) for their critical reading of the manuscript; Rafael Pasold
and Esmeralda Dávida Ferreira da Silva for their help with the fieldwork; Guilherme Pereira Rabelo for technical assistance; Instituto Parque das Nascentes (IPAN) and IBA-MA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) for logistic support with data collection at the Parque Natural Municipal Nascentes do Garcia (PNMNG).

References

Aguilera M, Pérez-Zapata A, Martino A, Barros MA and Patton J (1999) Karyosystematics of Aepeomys and Rhipidomys (Rodentia, Cricetidae). Acta Cient Venez 48:247-248.

Aguilera M, Pérez-Zapata A, Achoa J and Soriano P (2000) Karyology of Aepeomys and Thomasonmys (Rodentia, Muridae) from the Venezuelan Andes. J Mammal 8:52-58.

Amemiya CT and Gold JR (1986) Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia 1986:226-231.

Andrades-Miranda J, Oliveira LFB, Lima-Rosa CAV, Nunes AP, Zanchin NIT and Mattevi MS (2001) Chromosomes studies in seven species of the genus Oligoryzomys (Rodentia, Sigmodontinae) from Brazil. J Mammal 82:1090-1091.

Andrades-Miranda J, Oliveira LFB, Lima-Rosa CAV, Sana DA, Nunes AP and Mattevi MS (2002) Genetic studies in representatives of genus Rhipidomys (Rodentia, Sigmodontinae) from Brazil. Acta Theriol 47:125-135.

Artoni RF, Molina WF, Bertollo LAC and Galetti Jr PM (1999) Heterochromatin analysis in the fish species Liposarcus anisit (Siluriformes) and Leporinus elongatus (Characiformes). Genet Mol Biol 22:1-6.

Bernardi G (1993) The vertebrate genome: Isochores and evolution. Mol Biol Evol 10:186-204.

Bonvicino CR and Geise L (1995) Taxonomic status of Delomys dorsalis collinus Thomas, 1917 (Rodentia, Cricetidae) and description of a new karyotype. Mamm Biol 60:124-127.

Bonvicino CR and Otazu I (1999) The Wilfredomys pictipes (Rodentia, Sigmodontinae) karyotype with comments on the karyosystematics of Brazilian Thomasomyni. Acta Theriol 44:329-332.

Bonvicino CR, Oliveira JA, D’Andrea OS and Carvalho RW (2001) The endemic Atlantic Forest rodent Phaenomys ferrugineus (Thomas, 1894) (Sigmodontinae): New data on its morphology and karyology. Bol Mus Nac 467:1-12.

Costa LP, Pavan SE, Leite YLR and Fagundes V (2007) A new species of Jaliomys (Mammalia, Rodentia, Cricetidae) from the Atlantic forest of southeastern Brazil. Zootaxa 1463:21-37.

D’Elia G, Luna L, Gonzalez EM and Patterson BD (2006) On the Sigmodontinae radiation (Rodentia, Cricetidae): An appraisal of the phylogenetic position of Rhagomys. Mol Phylogenet Evol 38:558-564.

D’Elia G, Pardiñas UFI, Teta P and Patton JL (2007) Definition and diagnosis of new tribe os Sigmodontinae rodents (Cricetidae, Sigmodontinae), and a revised classification of the subfamily. Gayana 71:187-194.

Eisenberg JF and Redford KH (1999) Mammals of the Neotropics: The Central Neotropics. v. 3. University of Chicago Press, Chicago, 609 pp.

Emmons LH and Feer F (1997) Neotropical Rainforest Mammals: A Field Guide. 2nd edition. University of Chicago Press, Chicago, 307 pp.

Fagundes V, Christoff AU, Amaro-Ghilard RC, Scheibler DR and Yonenaga-Yassuda Y (2003) Multiple interstitial ribosomal sites (NORs) in the Brazilian squirrel Sciurus aestivalis ingrami (Rodentia, Sciuridae) with 2n = 40: An overview of Sciurus cytogenetics. Genet Mol Biol 26:253-257.

Ford CE and Hamerton JL (1956) A colchicine hypotonic citrate squash sequence for mammalian chromosome. Stain Technol 31:247-251.

Gardner AL and Patton JL (1976) Karyotypic variation in oryzomyine rodents (Cricetidae) with comments on chromosomal evolution in the Neotropical cricetine complex. Occas Pap Mus Zool 49:1-48.

Gomez-Laverde M, Montenegro-Diaz O, Lopez-Arevaho H, Cadena A and Bueno ML (1997) Karyology, morphology, and ecology of Thomasonmys laniger and T. niveipes (Rodentia) in Colombia. J Mammal 78:1282-1289.

Gonzalves PR, Almeida FC and Bonvicino CR (2005) A new species of Wiedomys (Rodentia, Sigmodontinae) from Brazilian Cerrado. Mamm Biol 70:46-60.

Hass I, Sbalqueiro JJ and Muller S (2008) Chromosomal phylogeny of four Akodontini species (Rodentia, Cricetidae) from Southern Brazil established by ZOO-FISH using Mus musculus (Muridae) painting probes. Chromosome Res 16:75-88.

Holmquist GP and Ashley T (2006) Chromosome organization and chromatin modification: Influence on genome function and evolution. Cytogenet Genome Res 114:96-125.

Howell WM and Black DA (1980) Controlled staining of nucleolus organizer region with protective colloidal developer: A 1-step method. Experientia 36:1014-1015.

Kierulf MC, Stallring JR and Sabato EL (1991) A method to capture the bamboo rat (Kannabateomys ambylolys) in bamboo forests. Mammalia 55:633-635.

Leite-Silva C, Santos N, Fagundes V, Yonenaga-Yassuda Y and de Souza MJ (2003) Karyotypic characterization of the bat species Molossus ater, M. molossus and Molossops planirostris (Chiroptera, Molossidae) using FISH and banding techniques. Hereditas 138:94-100.

Luna L and Patterson B (2003) A remarkable new mouse (Muridae, Sigmodontinae) from southeastern Peru: With comments on the affinities of Rhagomys rufescens (Thomas, 1886). Fieldiana Zool 101:1-24.

Maia V and Langguth A (1981) New karyotypes of Brazilian Thomasomyni. Acta Theriol 46:241-249.

McKenna MC and Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 pp.

Moojen J (1952) Os Roedores do Brasil. Instituto Nacional do Livro e Biblioteca Científica Brasileira, Rio de Janeiro, 214 pp.

Musser GG and Carleton MD (2005) Superfamily Muroidea. In: Wilson DE and Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd edition. The Johns Hopkins University Press, Baltimore, pp 894-1531.

Nowak RM (1999) Walker’s Mammals of the World. v. 2. 6th edition. Johns Hopkins University Press, Baltimore, 1936 pp.
Ochoa GL, Aguilera M, Pacheco V and Soriano OJ (2001) A new species of Aepeomys Thomas, 1898 (Rodentia, Muridae) from the Andes of Venezuela. Mamm Biol 66:228-237.

Ojeda AA, Ríos CA and Gallardo MH (2004) Chromosomal characterization of Irenomys tarsalis (Rodentia, Cricetidae, Sigmodontinae). Mastozool Neotrop 11:95-98.

Oliveira JA and Bonvicino CR (2002) A new species of sigmodontine rodent from the Atlantic forest of eastern Brazil. Acta Theriol 47:307-322.

Paresque R, Christoff AU and Fagundes V (2009) Karyology of the Atlantic forest rodent Jumilomy (Cricetidae): A new karyotype from southern Brazil. Genet Mol Biol 32:301-305.

Pathack S and Stock AD (1974). The X chromosome of mammals: Karyological homology as revealed by banding techniques. Genetics 78:703-714.

Reig OA (1980) A new fossil genus of South American cricetid rodents allied to Wiedomys, with an assessment of the Sigmodontinae. J Zool 192:257-281.

Reig OA (1984) Distribuição geográfica e história evolutiva dos roedores muroideos Sulamericanos (Cricetidae, Sigmodontinae) in Atlantic forest of southeastern Brazil. Zootaxa 431:1-11.

Salazar-Bravo J and Yates TL (2007) A new species of Rhagomys flavescens (Rodentia, Cricetidae) in the Atlantic forest of southeastern Brazil. Acta Theriol 36:193-199.

Sbalqueiro IJ, Mattevi MS, Oliveira LFB and Solano MJV (1991) B chromosome system in populations of Oryzomys flavescens (Rodentia, Cricetidae) from southern Brazil. Acta Theriol 36:193-199.

Sbalqueiro IJ and Nascimento AP (1996) Occurrence of Akodon cursor (Rodentia, Cricetidae) whith 14, 15 and 16 chromosome cytotypes in the same geographic area in southern Brazil. Braz J Genet 19:565-569.

Schmid M (1982) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87:327-444.

Schweitzer D (1976) Reverse fluorescent chromosome banding with chromomycin an DAPI. Chromosoma 58:307-324.

Silva MIJ and Yonenaga-Yassuda Y (1999) Autosomal and sex chromosomal polymorphisms with multiple rearrangements and a new karyotype in the genus Rhipidomyys (Sigmodontinae, Rodentia). Hereditas 131:211-220.

Smith MF and Patton JL (1999) Phylogenetic relationships and the radiation of sigmodontine rodents in South America: Evidence from cytochrome b. J Mammal 6:89-128.

Steiner-Souza F, Cordeiro-Estrela P, Percequillo AR, Testoni AF and Althoff SL (2008) New records of Rhagomys flavescens (Rodentia, Sigmodontinae) in the Atlantic forest of Brazil. Zootaxa 1824:28-34.

Steppan SJ (1995) Revision of the tribe Phyllotini (Rodentia, Sigmodontinae), with a phylogenetic hypothesis for the Sigmodontinae. Fieldiana Zool 80:1-112.

Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306.

Svartman M and Almeida EJC (1993) Pericentric inversion and X chromosome polymorphism in Rhipidomyys sp. (Cricetidae, Rodentia) from Brazil. Caryologia 46:219-225.

Thomas O (1917) On small mammals from the Delta of the Parana. Ann Mag Nat Hist 8:96-97.

Villalpando G, Vargas J and Salazar-Bravo J (2006) First record of Rhagomys (Mammalia, Sigmodontinae) in Bolivia. Mastozool Neotrop 13:43-149.

Voss RS (1993) A revision of the Brazilian muroid rodent genus Delomys with remarks on “Thomasonicyme” characters. Am Mus Novit 3073:1-44.

Zanchin NIT, Langguth A and Mattevi MS (1992a) Karyotypes of Brazilian species of Rhipidomyys (Rodentia, Cricetidae). J Mammal 73:120-122.

Zanchin NIT, Sbalqueiro IJ, Langguth A, Bossle RC, Castro EC, Oliveira LFB and Mattevi MS (1992b) Karyotype and species diversity of genus Delomys (Rodentia, Cricetidae) in Brazil. Acta Theriol 37:163-169.

Internet Resources

Metzger JP, Alves LF, Pardini R, Dixo M, Nogueira AA, Negrão MFF, Montesen AC and Catharino ELM (2006) Características ecológicas e implicações para a conservação da Reserva Florestal do Morro Grande. Biota Neotrop 6, http://www.biotaneotropica.org.br/v6n2/pt/abstract?ar-ticle=bn01006022006 (February 24, 2010).

Pacheco VR (2003) Phylogenetic analyses of the Thomasonicym (Muroidea, Sigmodontinae) based on morphological data. PhD. Thesis, The City University of New York, New York. https://sites.google.com/site/departamentodemastozoologia/publicacoes (February 24, 2010).

Pardini R and Umetsu F (2006) Pequenos mamíferos não-voadores da Reserva Florestal do Morro Grande - Distribuição das espécies e da diversidade em uma área de Mata Atlântica. Biota Neotrop 6, http://www.biotaneotropica.org.br/v6n2/pt/abstract?article=bn01006022006 (February 24, 2010).

Associate Editor: Yatiyo Yonenaga-Yassuda

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.