Abstract
Excessive abnormal tracer uptake in active tracer avid organ(s) with the suppression of physiological background tracer distribution is termed as super scan. Herein, we present an 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT), where the metabolic pattern of skeletal super scan with coexistent parathyroid tumor was seen giving rise to the suspicion of primary hyperparathyroidism. It was subsequently diagnosed as a case of parathyroid carcinoma. Very high levels of serum parathormone in parathyroid carcinoma lead to accelerated bone turn over resulting in metabolic skeletal superscan in FDG-PET/CT which is seldom observed in parathyroid adenoma.

Keywords: 18F-fluorodeoxyglucose positron emission tomography-computed tomography, metabolic bone disease, parathyroid carcinoma, primary hyperparathyroidism, super scan

A 35-year-old male presented with diffuse body ache and unexplained weight loss. 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT) scan showed extensive FDG avid (maximum standardized uptake value [SUVmax] 8.0) mixed lytic-sclerotic lesions in the skull, mandible [arrows in Figure 1a and b], maxilla, sternum, and all the ribs [arrows in Figure 1c and d correspond to posterior left 10th rib]. Diffuse FDG uptake was visualized in all the vertebrae showing generalized sclerosis [arrow heads in Figure 1c and d]. Multiple small and large osteolytic FDG avid (SUVmax 8.7) and non-FDG avid [arrows in Figure 1e and f] lesions were visualized in bilateral pelvic bones. FDG avid cortical thinning, tunneling [arrowhead in Figure 2a], and endosteal scalloping were visualized in the appendicular skeleton [arrows in Figure 2a and b]. Except for the physiological uptake in the brain, there was very low background FDG distribution. These findings together with mandibular involvement [arrow in Figure 2c] gave rise to METABOLIC SKELETAL SUPER SCAN (MSSS) pattern that would be otherwise seen in whole body skeletal scintigraphy of metabolic bone disease.

A mixed solid-cystic lesion measuring 36 mm × 32 mm was seen in the posteroinferior aspect of the left lobe of thyroid [arrows in Figure 3a and b] with very faint FDG uptake (SUV max 2.2) in the enhancing solid components [arrows in Figure 3c and d]. With the background of metabolic bone disease, this lesion was suggested to be a parathyroid tumor. The FDG avid lytic lesions were considered as brown tumors. Further evaluation revealed very high serum calcium (16 mg/ml) and parathormone (2831 pg/ml). The patient was subsequently treated with left inferior parathyroidectomy. The parathyroid specimen weighed 25 gram (measuring of 4.5 cm × 3.5 cm × 1.5 cm) and was diagnosed with parathyroid carcinoma due to lymphovascular invasion, stage pT1. With the absence of nonosseous lesions in the PET/CT, the stage was concluded as T1N0M0.

Parathyroid carcinoma is a rare malignancy generally diagnosed after the surgery for primary hyperparathyroidism (PHPT). Those patients have significantly higher serum parathyroid hormone and calcium levels compared with other causes of
PHPT. Only two cases of parathyroid carcinoma presenting as MSSS in PET/CT have been reported in the literature. In both cases, PET/CT was done for the evaluation of recurrent parathyroid carcinoma. In our case, a provisional diagnosis of PHPT was considered based on the PET/CT findings. Marrow infiltrative disorders such as leukemia and skeletal metastases from poorly differentiated solid malignancies have also been reported to cause SSS in FDG-PET/CT. In metastatic superscan of PET/CT, the distal appendicular skeleton is usually spared in adults due to the absence of red bone marrow, which is a prerequisite for primary hematological spread of tumor cells to the bone extracellular matrix.

In metabolic bone disease, the increased FDG uptake represents elevated metabolism associated with increased bone density.
turn over (osteoclastic and osteoblastic activity) and hence the entire axial and appendicular skeleton show hypermetabolism. Parathyroid carcinoma is known to be poorly FDG avid.\cite{7-9} A MSSS pattern coupled with parathyroid lesion should raise the suspicion of parathyroid carcinoma and appropriate curative treatment should be provided. Almost complete resolution of FDG uptake with improvement in cortical mineralization is observed after parathyroidectomy.\cite{2}

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Schaapveld M, Jorna FH, Aben KK, Haak HR, Plukker JT, Links TP. Incidence and prognosis of parathyroid gland carcinoma: A population-based study in The Netherlands estimating the preoperative diagnosis. Am J Surg 2011;202:590-7.
2. do Vale RH, Queiroz MA, Coutinho AM, Buchpiguel CA, de Menezes MR. 18F-FDG PET/CT Osteometabolic activity in metastatic parathyroid carcinoma. Clin Nucl Med 2016;41:724-5.
3. Gincey JB, Paydaş S, Balli HT. Super scan caused by parathyroid carcinoma observed both in 18F-FDG PET/CT scan and Tc-99m MDP bone scintigraphy. Mol Imaging Radionucl Ther 2017;26:116-9.
4. Parida GK, Soundararajan R, Passah A, Bal C, Kumar R. Metabolic skeletal superscan on 18F-FDG PET/CT in a case of acute lymphoblastic leukemia. Clin Nucl Med 2015;40:567-8.
5. Su HY, Liu RS, Liao SQ, Wang SJ. F-18 FDG PET superscan. Clin Nucl Med 2006;31:28-9.
6. Bailly M, Besse H, Kerdraon R, Metrand G, Gauvain S. 18F-FDG PET/CT superscan in prostate cancer. Clin Nucl Med 2014;39:912-4.
7. Andersen KF, Beste AE. Brown tumors due to primary hyperparathyroidism in a patient with parathyroid carcinoma mimicking skeletal metastases on (18)F-FDG PET/CT. Diagnostics (Basel) 2015;5:290-3.
8. Shim H, Kim BS. (18)F-FDG PET findings of a parathyroid cancer with cortical skeletal demineralization. Clin Nucl Med 2012;37:293-5.
9. Li M, Lu H, Gao Y. FDG-anorectic parathyroid carcinoma with FDG-avid bone metastasis on PET/CT images. Clin Nucl Med 2013;38:916-8.