Identification of the Activity-based Hazards/risks Involved in the IBS Construction Process: Case Study of Project That Uses Prefabricated Steel Framing System and Prefabricated Timber Framing System

Mohamad Ariff Mohd Amin¹, Nor Haslinda Abas¹*, Azreen Harina Azman² and Siti Khatijah Mohamad²

¹Jamilus Research Centre, Faculty of Civil and Environment Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
²Civil Engineering Department, Politeknik Sultan Mizan Zainal Abidin, KM 8, Jalan Paka, 23000 Dungun, Terengganu
*Corresponding author: nhaslin@uthm.edu.my

Abstract. Construction industry is known for its hazardous physical working environments and high accident risks. In reducing risk at the workplace, Occupational Safety and Health (OSH) is an important aspect. It is a standard which are set in legislation with the purpose to eliminate and reduce hazards at workplace. The objectives of this paper are to identify the major activities of the construction process in IBS residential and the OSH risks associated throughout the construction. This study involved a field observation to two different methods and two factory that use IBS as construction method which are ‘prefabricated timber framing system’, and ‘prefabricated steel framing system’. This involved interview to the executive staff, operatives and supervisors, and observing and documenting operations. In achieving this, four case study were descriptively analysed and availing a revelation exposure to UV and mobile plant risks as the major risk in IBS construction site. This paper intends to contribute in providing a way for designers to integrate construction process knowledge into design to eliminate or reduce hazards during construction. It will effectively address the designer’s role in making decisions in their designs and further illuminate the level of OSH risk their designs pose.

1. Introduction

The construction industry is known for its hazardous physical working conditions and high accident risks. It is one of the most hazardous industry compared to other industries due to the nature of activities at the worksites [1-2]. The construction industry is one of the four major contributing industries in the workplace. Despite, the average five years of death for this industry in Malaysia is 99 employees per year from 2011 to 2015. The death rate for 100,000 construction workers in 2015 was 10.94, higher than the average mortality rate for five years 2011-2015 of 8.17. The trend of fatal injuries to construction workers has risen since 2012, and 140 construction workers have died in 2015, the highest since 2001 and the highest in the 21st century.

As shown in Figure 1, the number of fatal injuries to workers in all industries, overall showed a decline, but the number of fatal injuries of workers in the construction industry showed an increase. The five-year average from 1999 to 2003, number of fatal injured workers in all industries was 898,
while the average five years from 2011 to 2015 was 639. The five-year average for the deaths of all industry workers showed a 28.8% decline. Besides, the five-year average from 1999 to 2003, the number of fatal injured workers in the construction industry was 115, while the average five years from 2011 to 2015 was 99. Five-year average for the fatal injuries of all industry workers showed a decrease, but at lower rates at 13.9%.

![Figure 1. Accident statistics for construction and overall industry from 1999-2015 [3].](image)

Accidents do regularly occur on construction site, though some of the accident causation or prevention models have failed to mention the types of accident on building site, whereas it is domineering to expose the various types of accident occurring on building sites[4]. Building site accidents range from fall-related accidents [5], fire outbreak [6], explosion [7], electrocution/electrical incidents [8], vehicle accidents [9], roof construction falls [10], fall of heavy objects during lifting, and contact with electric current [11]. Additionally, different types of accident on construction sites among many others to be: falls from roof, scaffold, stairs, ladder, ramp, and elevator shaft; crane accident; struck by moving vehicle, struck by an operating machine or defective machines (boilers, bulldozers, backhoes), run over by operating equipment; equipment/tools-related accident; slips and trips; electrocutions/electricity; and explosions [12].

Due to frequent accidents, IBS construction has been suggested as a replacement to traditional construction methods of the many initiatives that could be implemented to improve OSH performance [13-14]. The Malaysian government is actively promoting the adoption of IBS and encouraging a paradigm shift in the construction process, from a traditional to an industrialized approach [15]. This is demonstrated by the promulgation of the Construction Industry Master Plan (CIMP) 2006-2015 [13], which specifically mentions IBS and its implementation through IBS Roadmaps.

IBS is contrary from that traditional processes in term of the nature of activities that consist of four stages which manufacturing, delivery, component installation and in situ works [2]. IBS is an industrialized process in which components of a building are conceived, planned, and fabricated, and then transported to and erected on site [15][16]. Compared to the traditional method, IBS or more specifically offsite construction are claims can reduce site accidents [17-20][15].

This paper presents the findings of the risk involved in a construction process that use IBS as the construction method. This finding of the study is presented by showing the list of the hazards involve in the construction building wall for several IBS method which pre-fabricated steel framing and pre-fabricated timber framing.

2. Methodology

This study involved a field observation on two different IBS system construction sites and two factory of IBS component. Two sites have been visited, which represent IBS types which are ‘prefabricated
timber framing system’ and ‘prefabricated steel framing system’. This involved talking to the managerial staff, operatives and supervisors, and observing and documenting operations.

This study focused on the major activities of the construction process in IBS residential construction that only cover for structure and building envelope. Data has been collected on on-going construction projects, which used the selected construction approaches to observe the process involved and to identify the associated OSH risks.

3. Result
This study was completed through a combination of field observation, interviews and document analysis. These served to identify the construction process in terms of activities and the risks associated with the process. This section summarizes the data from field observation and the interviews.

3.1. Prefabricated steel framing system
This type of IBS classification is commonly used with pre-cast concrete slabs, steel columns and beams. Steel framing systems have always been the popular choice, used extensively in the fast-track construction of skyscrapers. Recent development in this type of IBS includes the increased usage of light steel trusses consisting of cost-effective profiled cold-formed channels and steel portal frame systems as alternatives to the heavier traditional hot-rolled sections [21].

The project was a government project with the contract worth about RM 430,000.00. The system used for the construction of the building uses pre-fabricated steel framing system, by integrating assembling components of a structure in a factory or other manufacturing site and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. The connection system used for this project is a combination of bolt and screw and welding joint.

The main risks were associated with the lifting component of materials to the required position, for example site conditions and the stability of materials. In addition, radiation and thermal also highlighted during installation of H-column and I-beam. The risks were then categorized into damaging energies for evaluation. Table 1 provides a clearer view of the risks involved in each activity.

Table 1. Activities and risks on prefabricated steel framing system [15].

Process	Activities	Risk/Hazard and description		
Manufacturing	Material preparation	MSDs		
	Forcing pliable metal through large rollers;	MSDs, Exposure to UV, Electrical shock, Dermatitis		
	Heat hot-rolled beam above the recrystallization point	Heat from the burning point, MSD, RSI, Mechanical handling, Inappropriate material handling method		
	Cutting of metal	MSD, Excessive noise		
	Assemble of component	Mechanical handling		
	Transferring the components to stockyard	Inappropriate stacking method		
Delivery	Load component onto truck	Mobile plant risks (vehicle injury), Musculoskeletal Disorder (MSD), Repetitive Strain Injury (RSI)		
Step	Mobile plant risks	Road traffic risks	Instability of materials	
---	--	--	--------------------------	
Transport and deliver materials		Mobile plant risks		
Off-load materials on-site	Mobile plant risks (vehicle injury)	MSD, RSI		
Stacking component		Mobile plant risks		
Pre-in situ	Instillation of BRC for slab	MSD, RSI		
	Castiong and Vibrating	MSD, RSI	Dermatitis	
			Hand-arm vibration (HAVs)	
			Exposure to UV	
Installation	Lifting component	Excessive noise from mobile plant		
		Exposure to UV	Craneage risk	
	Instillation of H-column	Craneage risk, working at height, Due		
		to inappropriate installation		
		Vehicle injury		
		MSD, Hand injury		
		Excessive noise from mobile plant		
		Exposure to UV		
		Exposure to welding heat		
	Instillation of I-Beam	Craneage risk, working at height, Due		
		to inappropriate installation		
		Vehicle injury		
		MSD, Hand injury		
		Excessive noise from mobile plant		
		Exposure to UV		
		Exposure to welding heat		
	Adjusting component to required position	Craneage risk		
		Vehicle injury		
		MSD, hand injury		
		Exposure to UV		
	Instillation of bracing or propping	HAVs		
		Electrical shock		
		From machine		
		Due to inappropiate propping		
		Exposure to UV		
In-situ	Prepare for bricklaying	MSD, RSI		
	Transfer brick	Mobile plant risk		
		Lifting equipment risk		
	Moving brick to workface	MSD		
	Mix mortar	Dermatitis		
		MSD, RSI		
		Exposure to UV		
	Cut brick	Electrical shock		
3.2. Timber framing system

Prefabricated timber framing systems consist of timber building frames and timber roof trusses. While the latter are more popular, timber building frame systems also have niche markets; offering interesting designs from simple dwelling units to buildings requiring high aesthetic values such as chalets for resorts [21].

The project was a private project with the cost about RM 150,000.00. The system used for the construction of the building uses timber framing system, by integrating assembling components of a structure in a factory or other manufacturing site and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be located. The connection system used for this project is a combination of bolt and screw.

The OSH risks highlighted were mainly associated with the ergonomic-related risks, and exposure to UV. The cutting timber involved RSI due to repetitive works. The use of chemicals was identified in the activities planning works. In mortise and tenon cutting, the main OSH risks highlighted were MSD and manual handling. Mobile plant risks were identified in moving and storing the panels. The risks associated with the activities are depicted in Table 2.

Table 2. Activities and risks on timber framing system method [15].

Process	Activities	Risk/Hazard and description
Manufacturing	Material preparation	-
	Wooden log split	Cuts
		Excessive noise from cutting machine
		Electrical shock
		RSI
	Timber cutting	Cuts
		Excessive noise from cutting machine
		Electrical shock
		RSI
	Planing the timber	Cuts
		Excessive noise from cutting machine
Activity	Risks/Injuries	
----------------------------------	---	
Transfer to mortise place	Electrical shock, RSI, Dermatitis	
Mortise and tenon cutting	Road traffic risk, Stability of material	
Drilling hole for connection	Cuts, Excessive noise from cutting machine, Electrical shock, RSI	
Delivery	Load component onto truck, Mobile plant risks (vehicle injury), Musculoskeletal Disorder (MSD), Repetitive Strain Injury (RSI), Mobile plant risks	
Transport and deliver materials	Road traffic risks, Instability of materials	
Off-load materials on-site	Mobile plant risks (vehicle injury), MSD, RSI, Mobile plant risks	
Stacking component	Collapse of elements/materials	
Pre-in situ	Installation of BRC for slab, MSD, RSI, Exposure to UV	
Casting and Vibrating	MSD, RSI, Dermatitis, Hand-arm vibration (HAVs), Exposure to UV	
Installation	Lifting component, Excessive noise from mobile plant, Exposure to UV, MSD	
Installation of timber column	Working at height, MSD, Hand injury, Excessive noise, Exposure to UV	
Adjust the position of the column	MSD, Hand injury, Exposure to UV	
Installation of timber beam	Working at height, MSD, Hand injury, Excessive noise, Exposure to UV	
Adjusting component to required position	MSD, Hand injury, Exposure to UV	
Installation of bracing or propping	HAVs	
From machine		
Due to inappropriate propping		
Exposure to UV		
Bolt and screw the connection between beam and column	MSD	
Installation of timber plank	MSD	
Nails the end of the plank	Excessive noise from hammer	
Exposure to UV		
Working at height		
Finishing	Exposure to chemical compound	
Working at height		

4. Results and Discussions

From the table above, the delivery stage provides likenesses in the process for most construction approaches; pre-fabricated steel framing system; and pre-fabricated timber framing system. This likeness provides general of the processes. However, there are differences in element nature between the approaches, whether it is timber component or steel framing. The difference is designed by the way the process is done and the physical feature of the element which will eventually give a different risk. Besides, manufacturing stage, pre-fabricated steel framing shown that MSD is the major risk due to were manual handling activities. Pre-fabricated timber framing shown RSI is the major risk due to repetitive work on manufacturing stages. For installation of component, exposure to UV were the major risk for both constructions approaches due to exposed to sun during the installation activities. For instance, ‘lifting component’ activities for both construction approaches shown that exposure to UV and excessive noise from the mobile plant were the risk which provides likenesses in the process. The in-situ stages provide similarities in the activities which will eventually give a same risk for both construction approaches.

5. Conclusion

This paper had identified and discussed the activities and risk associated in IBS construction in Malaysian construction industry. The level of safety in IBS industry in the construction industry was still low even though the government had seriously promoted and encouraged the use of IBS to have a better practice in the construction industry. The risk on IBS construction site faced by the workers had been discussed and mainly revolves around UV exposure, MSD, working at height, excessive noise and mobile plant risk. Despite the negative perspective concerning IBS method, this does not mean the future for adoption of IBS method by the prospects would be low. Future research is sought for more investigation to be done for the qualitative stakeholders’ perspectives on the factors that impede the IBS adoption in the construction industry.

6. References

[1] Hassanein A A G and Hanna R S 2008 Safety Performance in the Egyptian construction industry J. of Construction Engineering and Management 134 451–456
[2] Rahman R A 2015 Managing safety at work issues in construction works in Malaysia : A proposal for legislative reform Moder Applied Science 9(13) 108–121
[3] Department of Occupational Safety and Health 2014 Accident Statistics (Kuala Lumpur: Ministry of Human Resources)
[4] Ng K, Laurlund A, Howell G and Lancos G 2012 Lean safety: Using leading indicators of safety incidents to improve construction safety. Proc. for the 20th Annual Conf. of the Int. Group for Lean Construction: Are We Near a Tipping Point? (San Diego: Int. Group on Lean Construction)

[5] Orji S E 2016 Hazards in building construction sites and safety precautions in Enugu Metropolis, Enugu State Imperial J. of Interdisciplinary Research 2(1) 282–289

[6] Health and Safety Executive 2006 Health and Safety in Construction (London: Health and Safety Executive)

[7] Hovden J 2010 Is there a need for new theories, models and approaches to occupational accident prevention? Safety Science 48(8) 950–956

[8] Nkem A N 2015 Relationship between unsafe acts/ condition and accidents in construction company in Nigeria J. Teknologi 75(6) 73–77

[9] Edwards D J and Nicholas J 2002 The state of health and safety in the UK construction industry with a focus on plant operators Structural Survey 20(2) 78–87

[10] Weeks J L 2011 Health and Safety Hazards in the Construction Industry Retrieved from http://www.iloencyclopedia.org/component/k2/item/518

[11] Umeokafor N, Evaggelinos K, Lundy S, Isaac D, Allan S, Igwegbe O, Umeokafor K and Umeadi B 2014 The pattern of occupational accidents, injuries, accident causal factors and intervention in Nigerian factories Developing Country Studies 4(15) 119–127

[12] Asanka W A and Ranasinghe M 2015 Study on impact of accident on construction project Proc. 6th Int Conf. on Structural Engineering and Construction Management (Kandy, Sri Lanka) p 58–67

[13] Construction Industry Development Board 2008 Master Plan for Occupational Safety and Health in the Construction Industry 2005-2010 Retrieved from https://www.cidb.gov.my/cidbv4/images/pdf/OHSAS2006v2.pdf

[14] Construction Industry Development Board 2007 Malaysian Construction Outlook 2007 (Kuala Lumpur: Construction Industry Development Board)

[15] Abas N, Blismas N and Lingard H 2011 Development of a knowledge-based energy damage model to assess occupational health and safety (OSH) construction risks in Malaysia Proc. of Prevention: Means to the End of Construction Injuries, illnesses, and Fatalities (Virginia Tech: Washington) p 1–16

[16] Junid S M S 1986 Industrialized building systems. Proc. of a UNESCO/FEISEAP Regional Workshop (Serandang: Universiti Pertanian Malaysia)

[17] Alistair G F G 1999 Off-site Fabrication: Prefabrication, Pre-assembly and Modularisation (United Kingdom: Whittles Publishing Services)

[18] Toole T M and Gambarotse J 2008 The trajectories of prevention through design in construction J. of Safety Research 39(2) 225–230

[19] Gangolettes M, Casals M, Forcada N, Roca X and Fuertes A 2010 Mitigating construction safety risks using prevention through design J. of Safety Research 41 107–122

[20] McKay L J 2010 The Effect of Offsite Construction on Occupational Health and Safety (United Kingdom: Loughborough University)

[21] Construction Industry Development Board 2003 Survey on the Usage of Industrialised Building Systems (IBS) in Malaysian Construction Industry (Kuala Lumpur: Construction Industry Development Board)

Acknowledgement
This paper was partly sponsored by the Research Management Centre (RMC), Universiti Tun Hussein Onn Malaysia (UTHM). (Vot No. U784)