The role of GIGANTEA in flowering and abiotic stress adaptation in plants

Jeny JOSE1 – Zsófia BÁNFALVI2

1: Szent István University, Faculty of Agricultural and Environmental Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary; E-mail: jenyjose0116@gmail.com
2: NARIC Agricultural Biotechnology Institute, Szent-Györgyi A. u. 4., 2100 Gödöllő, Hungary

Abstract: GIGANTEA (GI) is a clock-regulated, nuclear-localised plant protein. It invaluably contributes as a core element with pleiotropic functions in the cardinal plant physiological pathways including flowering time regulation, circadian clock control, abiotic stress tolerance, and miRNA processing. This review aims to highlight the importance of GI and elucidate on the participatory mechanism it follows to regulate plant responses. An attempt is made to concisely present the pivotal functions of GI in Arabidopsis drawing an analogy with the functions of the paralogs in other species underlining its conserved nature. This paper also strives to draw attention to the possibility of considering GI as a candidate gene for modulation to enhance tolerance against abiotic stresses.

Keywords: GIGANTEA, flowering time regulation, circadian clock control, GI orthologs, abiotic stress adaptation

Received 20 October 2018, Revised 02 January 2019, Accepted 01 March 2019

Introduction

Several abiotic factors have been hindering agricultural production by affecting the stages of germination, vegetative and reproductive growth stages (Zhu, 2002; Sivakumar et al., 2005; Rengasamy, 2010; Lobell and Gourdji, 2012). The embolisms resulting from the restraining environmental conditions amend the plants’ ability to combat the stress and acclimatize within the prevalent conditions for instance by conserving water under water deficit conditions (Chaves et al., 2003). One of the many methods to achieve the ultimate goal of sustainable crop production is genetic modification using known abiotic stress-related genes from other species or precise gene identification of the plants and up-regulating or down-regulating existing genes to either escape or tolerate adverse conditions by harnessing the plants’ own defence mechanisms (McKay et al., 2003; Kim et al., 2011; Verslues and Juenger, 2011; Tao et al., 2015; Ke et al., 2017). Plants are inherently designed to evaluate the environment around them and resume growth when the conditions are in their favour (Zeevaart, 2006). They measure variables such as day length and temperature to transform to flowering stages followed by reproduction under normal conditions and thereby adapt to the naturally occurring fluctuations gradually by their system of signalling pathways (Jung and Müller, 2009; Sawá and Kay, 2011). The flowering pathway could follow three directional effectors: photoperiod, vernalisation (cold) and autonomous (endogenous factors as hormones) effectors to modulate flowering as a response to environmental cues (McClung, 2006; Andrés and Coupland, 2012; Song et al., 2015; Bouché et al., 2017; Cheng et al., 2017).

Effect of photoperiod on flowering

Photoperiodism, which refers to the rhythms of biological processes that are based on day-length changes, is one of the most stressed parameters due to its cyclic periodicity and dependability that governs the transitions in crop growth. The duration of daylight is measured in the photoperiodic flowering pathway by CONSTANS (CO), which is a B-box-type zinc finger protein that shares identity with GATA transcription factors (Samach et al., 2000; Suarez-Lopez et al., 2001; Yanovsky and Kay, 2002; Imaizumi and Kay, 2006; Corbesier and Coupland, 2006). The stability of CO protein is regulated by light and under long day conditions (LD) (16 h of light and 8 h of darkness) it activates florigen genes, which are peptide hormones genes, and TWIN SISTER OF FT (TSF) in the phloem companion cells (An et al., 2004; Valverde et al., 2004; Yamaguchi et al., 2005; Jang et al., 2009). It then progresses towards
shoot apical meristem (SAM) and activates the *FLOWERING LOCUS T* (*FT*) inducing accelerated flowering (Valverde et al., 2004; Abe et al., 2005; Wigge et al., 2005; Corbesier et al., 2007; Jaeger and Wigge, 2007; Mathieu et al., 2007). Under short day conditions (SD) (8 h of light and 16 h of darkness), the peak time of *CO* expression occurs after dusk rendering the CO protein unstable and resulting in incongruent activation of *FT* (Yanovsky and Kay, 2002; Valverde et al., 2004). Thus the timing of *CO* expression is a cardinal factor in the photoperiodic flowering pathway which is under the influence of several associated genes and interactions which eventually send signals to the SAM to shift from vegetative to reproductive stage (Bernier et al., 1993).

Several transcription factors constituting the circadian clock ensure the systemic functioning of the central signal pathway and control not only flowering but also the rhythmic expression of abiotic stress-responsive genes (Grundy et al., 2015). One such closely associated gene with the circadian clock functioning is *GI* (Takada and Goto, 2003).

Latitudinal gradient influences *GI* expression by providing varying day lengths and in turn varying photoperiods to respond to. *GI* being sensitive to longer photoperiods has a delayed expression in *Arabidopsis* accessions originating from varying latitudes and exposed to LD conditions. The rate of change in day length conferred by latitudinal positions also influences *GI* expression and is regulated differently in the northern and equatorial

Figure 1. Flowering pathway under long day (LD) and short day (SD) conditions. *GI* interacts with FKF1 through the Light, Oxygen or Voltage domain (LOV) and forms a complex which then degrades the *CONSTANS (CO)* repressor CYCLING DOF FACTOR (*CDF1*). *CDF1* is repressed by PSEUDO RESPONSE REGULATOR proteins (PRRs) but is activated by the clock proteins CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LEH) which control *GI* peaks and negatively regulate the transcription of *TIMING OF CAB1 (TOC1)*, which acts as a negative feedback. The CO then activates *FLOWERING LOCUS T (FT)* which then induces early flowering under LD and late flowering under SD conditions. Bold arrows indicate activation. Normal arrows indicate transcriptional activation. Perpendicular lines indicate transcriptional repression. The model is based on the publication by Johansson and Staiger (2015).
regions. The changes in GI expression impact plant growth rate presumably by regulating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) expression (de Montaigu and Coupland, 2017).

Effect of GI-FKF1 interaction on flowering

GIs are large plant proteins exclusively belonging to plants and possess several functional domains that can actively influence the signalling pathways such as circadian control by light signalling, flowering, response to abiotic stresses and circadian rhythm (Kim et al., 2013a; Mishra and Panigrahi, 2015). They are required for phytochrome B signalling pathway as an intermediate in the photoperiodic control of flowering. Under LD conditions gi mutants flower comparatively late and under SD conditions they flower earlier than the wild type and the phenotypical changes are characteristic to the reception of red light (Huq et al., 2000). In Arabidopsis, GIs were originally identified due to their contribution to photoperiodic flowering and circadian clock regulation (Fowler et al., 1999; Suarez-Lopez et al., 2001; Martin-Tryon et al., 2007; Mishra and Panigrahi, 2015).

The function of GI in the photoperiodic flowering and in circadian rhythms has been extensively studied from monocot to dicot plants and is observed to have highly conserved functions which involve three negative feedback interlocked cycles: the morning-expressed CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCHOTYL (LEH), and the evening-expressed TIMING OF CAB (TOC) (Mouradov et al., 2002; Song et al., 2010; Kim et al., 2012). GIs are predominantly nuclear localised particularly in the nucleoplasm and are also present in the cytosol and many plant tissues including vascular bundles, mesophyll, apical shoot meristem and root (Huq et al., 2000). GI acts in the LD flowering pathway upstream of CO and FT (Tseng et al., 2004). As shown in Figure 1, GI forms a complex with

![Figure 1. GI forms a complex with other factors in the flowering pathway.](image1)

Figure 2. The alternate flowering pathway. GI regulates the amount of miR172 which further interferes with the mRNA of several FT repressors like TARGET OF EAT 1 (TOE1), SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ). SMZ apart from directly repressing FT also regulates APETALA1 (AP1) and SUPPRESSOR OF CONSTANS OVEREXPRESSION (SOC1). SOC1 represses CONSTANS (CO) transcription. Arrows indicate transcriptional activation. Perpendicular lines indicate transcriptional repression. The model is based on the publication by Jung et al. (2007).

DOI: 10.18380/SZIE.COLUM.2019.6.1.7
the FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) protein which controls daytime CO transcription in a light-dependent manner by degrading a key CO repressor, CYCLING DOF FACTOR 1 (CDF1) expressed only in the vascular bundles (Fornara et al., 2009). Under LD conditions the expression of GI and FKF1 peaks simultaneously, leading to the optimal formation of the GI-FKF1 complex, and since CO expression is stable, creating an ambient and desirable condition for flowering. Whereas, under SD conditions, the expression of GI peaks before the peak of FKF1 expression by few hours resulting in a lower amount of GI-FKF1 complex. In turn, the degradation of CDF1 is disrupted (Sawa et al., 2007, 2008).

Effect of GI-miR172 interaction on flowering

Genetic analysis of the flowering pathway has suggested an alternate pathway for flowering which could be merging into the CO-FT pathway or could be possibly running individually and is regulated by GI (Mizoguchi et al., 2005). It was reported that GI is capable of regulating FT expression independent of CO by interfering with miR172 levels (Mizoguchi et al., 2005; Jung et al., 2007) as depicted in Figure 2. As the transcriptional factors targeted by miR172 actively partake in flowering such as TARGET OF EAT (TOE1, TOE2 and TOE3) which is involved in the induction of FT expression, SCHLAFMUTZE (SMZ) and its paralog SCHNARCHZAPFEN (SNZ) which represses FT, it makes the GI-miR172 interaction, where GI influences the amount of miR172, as one of the interesting facets in regulating flowering mostly due to their shared similarities in chromatin-binding pattern (Sawa and Kay, 2011).

Effect of GI-Zeitlupe interaction on flowering

Further partaking in the circadian rhythm, GI interacts with the F-box protein ZEITLUPE (ZTL), which is a blue-light photoreceptor found in the cytosol. As presented in Figure 3, the interaction is through the amino-terminal flavin-binding LIGHT, OXYGEN or VOLTAGE (LOV) domain of ZTL in a direct protein-protein interaction. The immature ZTL is carried by the molecular chaperon HSP70. The interaction between GI and ZTL results in maturing of ZTL facilitated by the chaperon HSP90. The mature ZTL dissociates from the complex (Cha et al., 2017). ZTL maintains a normal circadian period by regulating the proteolytic degradation of the central circadian oscillator, TIMING OF CAB 1 (TOC1) and PSEUDO RESPONSE REGULATOR 5 (PRR5) (Kim et al., 2007). Hence, the GI-ZTL interaction has a strong influence on TOC1 and in turn the circadian clock (Froehlich et al., 2002; Harper et al., 2003; Martin-Tryon et al., 2007; Cha et al., 2017).

Conservation of GI function in flowering

Though the GI gene has gone through many intraspecific gene duplications like the four known paralogs of soybean (GmGI 1a, GmGI 1b, GmGI 2 and GmGI 3), and the two GI-like genes (AcGIa and AcGIb) involved in flowering promotion in onion (Taylor et al., 2010; Watanabe et al., 2011), the functions of the GI seem to be conserved. Poplar being a woody plant differs from Arabidopsis in several ways but in poplar varieties, the
GI paralogues, PagGIs, are similar in their physiological functions. However, the regulation of PagGIs is different (Baurle and Dean, 2006; Jansson and Douglas, 2007; Ke et al., 2017). As in Arabidopsis, PagGIs regulate the circadian rhythms through a protein-protein interaction with the PagZTLs, which is vital for the proteasomal degradation of PagTOC1 (Kim et al., 2007, 2013b). PagGIs also appear to regulate flowering in a similar manner in poplar like in Arabidopsis by having an impact on the functioning of the homolog of CO, PagCO2 and progressing through the PagGI-PagCO2-PagFT pathway possibly playing a role in the regulation of both flowering time and the timing of growth cessation (Böhlenius et al., 2006; Ke et al., 2017).

Despite the similarities shared by GI homologues, there is a difference in the pattern of flowering regulation mediated by GI initiation in LD and SD crops. In SD crops such as rice the CO homolog OsHd1 when regulated by OsGI, the GI homolog, inhibited the expression of the FT homolog OsHD3a leading to delayed flowering phenotype (Hayama et al., 2003). Whereas in LD Arabidopsis, GI activates CO under LD conditions and CO further activates FT resulting in blooming. The delayed flowering observed in soybean, maize and morning glory on the overexpression of GI homologs due to down-regulation of FT homologs consolidates the idiosyncrasy of SD crops and LD crops and the difference in the effect of GI expression (Higuchi et al., 2011; Bendix et al., 2013; Li et al., 2013). Sweet potato, an SD crop having the GI gene paralog IbGI, shares more than 70% identity with other GI paralogues AtGI (Arabidopsis thaliana), StGI (Solanum tuberosum), PnGI (Ipomoea nil) and SlGI (Solanum lycopersicum). IbGI is also majorly nuclear-localised and has evident circadian rhythms with variation under LD and SD conditions. Furthermore, it

Figure 3. GI-ZTL interaction. GI interacts with Zeitlupe protein via the Light, Oxygen or Voltage (LOV) domain in a protein-protein interaction. HSP90 chaperone carries GI and HSP70 chaperone carries nascent ZTL. The ZTL-GI complex is formed with the help of HSP90 in light. The mature ZTL exits the complex and proteolytically degrades TIMING OF CAB1 (TOC1) and PSEUDO RESPONSE REGULATOR 5 (PRR5), a repressor of CYCLING DOF FACTOR 1 (CDF1). PSEUDO RESPONSE REGULATOR 3 (PRR3) interacts with the N terminus of TOC1 competing with ZTL, therefore during less light and low levels of ZTL, it prevents TOC1 from degradation. Arrows indicate transcriptional activation. Perpendicular lines indicate transcriptional repression and bold arrows indicate the transport and change in conformation. The model is based on the publication by Cha et al. (2017).
can restore the AtGI function in gi-2 mutant (Tang et al., 2017).

StGI and StFKF1, the GI and FKFI orthologues in *Solanum tuberosum*, regulate *StCO1* and *StCO2*. Activity of *StCO* genes repress tuber formation under LD in abundance of StCDF1. StCDF1 down-regulates *StCO1* and *StCO2* and the proteins encoded by them suppress the transcription of the potato *FT* homologue, *StSP5G*, enabling synthesis of the mobile *StSP6A* signal and resulting in the induction of tuber development at the stolon termini (Kloosterman et al., 2013).

Effect of GI on abiotic stress adaptations

Flowering time alterations are an evolutionary strategy imbibed by plants to maximize the probability of reproduction under varying stress conditions (Kazan and Lyons, 2015) and the transition occurs when reproduction coincides with suitable external conditions (Andrés and Coupland, 2012; Blümel et al., 2014). Different plants have their own inherent response to external stresses. Varieties within crop species also have varying photoperiod sensitivities generated via environmental adaptations or through breeding (Coles et al., 2010; Gómez-Ariza et al., 2015). As seen in Figure 4, GI plays an active role in abiotic stress regulation conferring tolerance to plants under unfavourable conditions.

GI functions in conferring salt tolerance to crops through the Salt Overly Sensitive (SOS) signalling pathway which maintains ion homeostasis conserved in dicot plants such as *Arabidopsis* and *Brassica nigra* (Zhu, 2002; Tang et al., 2015). Under saline conditions, the Na$^+$ levels are modulated via three known pathways:

1. **Salt Tolerance**
 - GI interacts with the Salt Overly Sensitive SOS2 and SOS3 proteins. Under salt stress conditions, GI undergoes proteolytic degradation, SOS2 phosphorylates SOS3 forming a complex which in turn activates SOS1 to exchange ions and maintain ion homeostasis.
 - GI represses cold responsive genes. In gi mutants, the cold repressive genes are upregulated conferring cold tolerance to crops, while the higher levels of superoxide dismutase and peroxidase provide tolerance to oxidative stress. GI confers osmotic tolerance by inhibiting stomatal opening regulated by H$^+$-ATPase following multiple pathways. GI-CDF-CO-FT is one of the interfering pathways as FT maintains the H$^+$-ATPase activity. Under drought stress, the GI represses *CDF* thereby promoting *CO* expression which in turn upregulates *FT* and *TSF*. ABA also promotes florigen gene expression resulting in early flowering hence drought escape. In addition, GI regulates miR172 levels which represses *WRKY44*. *WRKY44* participates in sugar signalling which eventually brings about drought tolerance. Arrows represent activation. Perpendicular lines indicate inhibition. Bold arrows indicate the impact.

2. **Cold Tolerance**
 - The model is based on the publication by Kazan and Lyons (2015).

Figure 4. Abiotic stress regulation by GI. GI interacts with the Salt Overly Sensitive SOS2 and SOS3 proteins. Under salt stress conditions, GI undergoes proteolytic degradation, SOS2 phosphorylates SOS3 forming a complex which in turn activates SOS1 to exchange ions and maintain ion homeostasis. GI represses cold responsive genes. In gi mutants, the cold repressive genes are upregulated conferring cold tolerance to crops, while the higher levels of superoxide dismutase and peroxidase provide tolerance to oxidative stress. GI confers osmotic tolerance by inhibiting stomatal opening regulated by H$^+$-ATPase following multiple pathways. GI-CDF-CO-FT is one of the interfering pathways as FT maintains the H$^+$-ATPase activity. Under drought stress, the GI represses *CDF* thereby promoting *CO* expression which in turn upregulates *FT* and *TSF*. ABA also promotes florigen gene expression resulting in early flowering hence drought escape. In addition, GI regulates miR172 levels which represses *WRKY44*. *WRKY44* participates in sugar signalling which eventually brings about drought tolerance. Arrows represent activation. Perpendicular lines indicate inhibition. Bold arrows indicate the impact. The model is based on the publication by Kazan and Lyons (2015).
constituents: calcium-binding protein SOS3, protein kinase SOS2 and plasma membrane Na\(^+\)/H\(^+\) antiporter SOS1. GI contributes to the pathway by binding to SOS2 kinase and preventing the phosphorylation that occurs between SOS2 and SOS3 thereby interfering with the activation of SOS1 under normal conditions (Halfter et al., 2000; Guo et al., 2001; Ji et al., 2013; Kim et al., 2013a). However, in the presence of high salt, GI undergoes proteasomal degradation by 26S and the unbound SOS2 interacts with SOS3 to form an active SOS2-SOS3 protein kinase complex, which subsequently activates the plasma membrane localised Na\(^+\)/H\(^+\) antiporter SOS1. As a result, sodium ions are exported from the cell and salt tolerance is established (Kim et al., 2013a).

Drought arrests floral development and induces sterility (Su et al., 2013). Water availability impacts flowering time and to escape drought period many plants are observed to accelerate their flowering (Franks, 2011). With respect to drought escape, GI seems to have a prominent role in regulating plant response. During LD, drought stress incites induction of FT and TSF in a GI-regulated pathway whereas under SD, floral repressors are activated (Riboni et al., 2013). The phytohormone abscisic acid (ABA) is also required for the drought escape response, by promoting the transcriptional up-regulation of the florigen genes (Riboni et al. 2016). It was also found that WRKY44, a member of the WRKY DNA-binding family proteins, was down-regulated by the combined activity of GI and miRNA172 (Han et al., 2013). The WRKY44 participates in sugar metabolism. Thus, the GI-miRNA172–WRKY44 may regulate drought tolerance by affecting sugar signalling in Arabidopsis (Haydon et al., 2017; Frank et al., 2018).

Mutations of GI in rice (OsGI) confer tolerance to osmotic stress created by polyethylene glycol (PEG) (Xiong et al., 2012). The osgi mutants were observed to maintain a higher water content than wild type plants by modulating stomatal closure, enhancing water utilisation and limiting transpiration leading to ‘drought avoidance’ (Kooyers, 2015). It is supposed that not the GI alone but the GI-CO-FT flowering time pathway controls stomata movement (Kinoshita et al., 2011; Ando et al., 2013). It is interesting to note that OsGI is unaffected by osmotic stress at the transcriptional level but it is regulated at the protein level (Li et al., 2016).

Mutation of the OsGI gene in rice, activated several antioxidant genes including thioredoxin, superoxide dismutase and peroxidase making the osgi plants strong Reactive Oxygen Species (ROS) scavengers concordant with Arabidopsis, where gi mutants had increased peroxidase and superoxide levels and tolerance to paraquat and H\(_2\)O\(_2\) (Kurepa et al., 1998; Cao et al., 2006; Li et al., 2016). Increased expression of chaperone genes in osgi leaves has been shown to improve plant tolerance to water deficits (Wang et al., 2004).

In vernalisation-sensitive Arabidopsis plants, exposure to cold for long duration promotes flowering via the vernalisation pathway. In contrast, a delayed flowering phenotype by the effect of FLC is observed on exposure to short-term cold or on overexpression of cold responsive genes (Seo et al., 2009; Jung et al., 2012, 2013). The gi mutants exhibit increased freezing tolerance along with up-regulation of cold-responsive genes. Freezing tolerance phenotype in the gi mutants is dependent on transcription of CDF. The gi, cdf double mutants are cold sensitive (Fornara et al., 2015).

Conclusions

All the above mentioned examples underline the importance of GI not only in flowering but also in the abiotic stress adaptation process. The GI genes have functions of invaluable importance and must be explored more considering their influences both directly and indirectly in the interconnected regulatory pathways. The conserved functions of GI genes throw light on the possibility of their modification by genetic means in order to breed the crops that are susceptible to adverse abiotic stresses. Since GI is one of the core proteins that synchronises or indirectly impacts the level of expression of several other proteins and repressive factors that take part in plant physiological pathways, it can be concluded that GI is a strong candidate for genetic modification by modulation of its expression.
Reference

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinokii, H., Notaguchi, M., Goto, K., Araki, T. (2005): FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 309: 1052-1056. https://doi.org/10.1126/science.1115983

An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., Coupland, G. (2004): CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development. 131: 3615-3626. https://doi.org/10.1242/dev.01231

Ando, E., Ohnishi, M., Wang, Y., Matsushita, T., Watanabe, A., Hayashi, Y. (2013): TWIN SISTER OF FT, GI-GANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. Plant Physiology. 162: 1529-1538. https://doi.org/10.1104/pp.113.217984

Andrés, F., Coupland, G. (2012): The genetic basis of flowering responses to seasonal cues. Nature Review Genetics. 13: 627-639.https://doi.org/10.1038/nrg3291

Baurle, I., Dean, C. (2006): The timing of developmental transitions in plants. Cell. 125: 655-664. https://doi.org/10.1016/j.cell.2006.05.005

Bendix, C., Mendoza, J.M., Stanley, D.N., Meeley, R., Harmon, F.G. (2013): The circadian clock-associated gene gigantea affects maize developmental transitions. Plant Cell and Environment. 36: 1379-1390. https://doi.org/10.1111/pce.12067

Bernier, G., Havelange, A., Houssa, C., Petitjean, A., Lejeune, P. (1993) Physiological signals that induce flowering. The Plant Cell. 5: 1147-1155. https://doi.org/10.2307/3869768

Blümel, M., Dally, N., Jung, C. (2014): Flowering time regulation in crops - what did we learn from Arabidopsis? Current Opinion in Plant Biology. 32C: 121-129. https://doi.org/10.1016/j.copbio.2014.11.023

Bouché, F., Woods, D.P., Amasino, R.M. (2017): Winter memory throughout the plant kingdom: Different paths to flowering. Plant Physiology. 173: 27-35. https://doi.org/10.1104/pp.16.01322

Böhlenius, H., Huang, T., Charbonnel-Campaa, L. Brunner, A.M., Jansson, S., Strauss, S.H., Nilsson, O. (2006): CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science. 312: 1040-1043. https://doi.org/10.1126/science.1126038

Cao, S., Jiang, S., Zhang, R. (2006): The role of GIGANTEA gene in mediating the oxidative stress response in Arabidopsis. Plant Growth Regulation. 48: 261-270. https://doi.org/10.1007/s10725-006-0012-8

Cha, J.Y., Kim, J., Kim, T.S., Zeng,Q., Wang, L., Lee, S.Y., Kim, W.Y., Somers, D.E. (2017): GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nature Communications. 8: 3. https://doi.org/10.1038/s41467-016-0014-9

Cheng, J.Z., Zhou, Y.P., Lv, T.X., Xie, C.P., Tian, C.E. (2017): Research progress on the autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of Plants. 23: 477-485. https://doi.org/10.1007/s12298-017-0458-3

Chaves, M.M., Maroco, J.P., Pereira, J.S. (2003): Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology. 30: 239-264. https://doi.org/10.1071/fp02076

Coles, N.D., McMullen, M.D., Balint-Kurti, P.J., Pratt, R.C., Holland, J.B. (2010): Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics. 184: 799-812. https://doi.org/10.1534/genetics.109.110304

Corbesier, L., Coupland, G. (2006): The quest for florigen: a review of recent progress. Journal of Experimental Botany. 57: 3395-3403. https://doi.org/10.1093/jxb/erl095

Corbesier, L., Vincent, C., Jang, S., Formara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gislot, L., Turnbull, C., Coupland, G. (2007): FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 316: 1030-1033. https://doi.org/10.1126/science.1141752

de Montaigu, A., Coupland, G. (2017) The timing of GIGANTEA expression during day/night cycles varies with the geographical origin of Arabidopsis accessions. Plant Signaling and Behavior. 3: e1342026. https://doi.org/10.1080/15592324.2017.1342026

Formara, F., de Montaigu, A., Sánchez-Villarreal, A., Takahashi, Y., Ver-Loren-van, Themaat-E., Huettel, B., Davis, S.J., Coupland, G. (2015): The GI-CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal. 81: 695-706. https://doi.org/10.1111/tpj.12759

DOI: 10.18380/SZIE.COLUM.2019.6.1.7
Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., Coupland, G. (2009): Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Developmental Cell. 17: 75-86. https://doi.org/10.1016/j.devcel.2009.06.015

Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Coupland, G., Putterill, J. (1999): GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal. 18: 4679-4688. https://doi.org/10.1093/emboj/18.17.4679

Franks, S.J. (2011): Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytologist. 190: 249-257. https://doi.org/10.1111/j.1469-8137.2010.03603.x

Froehlich, A.C., Liu, Y., Loros, J.J., Dunlap, J.C. (2002): White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science. 297: 815-819. https://doi.org/10.1126/science.1073681

Gómez-Ariza, J., Galbiati, G., Goretti, D., Brambilla, V., Shrestha, R., Pappolla, A., Courtois, B., Fornara, F. (2015): Loss of floral repressor function adapts rice to higher latitudes in Europe. Journal of Experimental Botany. 66: 2027-2039. https://doi.org/10.1093/jxb/erv004

Guo, Y., Halfner, U., Ishitani, M., Zhu, J.K. (2001): Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. The Plant Cell. 13: 1383-1400. https://doi.org/10.2307/3871302

Halfter, U., Ishitani, M., Zhu, J.K. (2000): The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America. 97: 3735-3740. https://doi.org/10.1073/pnas.040577697

Han, Y., Zhang, X., Wang, Y., Ming, F. (2013): The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One. 8: e73541. https://doi.org/10.1371/journal.pone.0073541

Harper, S.M., Neil, L.C., Gardner, K.H. (2003): Structural basis of a phototropin light switch. Science. 301: 1541-1544. https://doi.org/10.1126/science.1086810

Hayama, R., Yokoi, S., Tamaki, S., Yano, M., Shimamoto, K. (2003): Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature. 422: 719-722. https://doi.org/10.1038/nature01549

Haydon, M.J., Mielezrek, O., Frank, A., Román, A., Webb, A.A.R. (2017): Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiology. 175: 947-958. https://doi.org/10.1104/pp.17.00592

Higuchi, Y., Sage-Ono, K., Sasaki, R., Odaka, H., Hoshino, A., Iida, S., Kamada, H., Ono, M. (2011): Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Petunia hybrida, a typical short-day plant. Plant and Cell Physiology. 52: 638-650. https://doi.org/10.1093/pcp/pcr023

Huq, E., Quaife, J.M., Quail, P.H. (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 97: 9789-9794. https://doi.org/10.1073/pnas.010214097

Imaizumi, T., Kay, S.A. (2006): Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science. 11: 550-558. https://doi.org/10.1016/j.tplants.2006.09.004

Jaeger, K.E., Wigge, P.A. (2007): FT protein acts as a long-range signal in Arabidopsis. Current Biology. 17: 1050-1054. https://doi.org/10.1016/j.cub.2007.05.008

Jang, S., Torti, S., Coupland, G. (2009): Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. The Plant Journal. 60: 614-625. https://doi.org/10.1111/j.1365-313x.2009.03986.x

Jansson, S., Douglas, C.J. (2007): Populus: a model system for plant biology. Annual Review of Plant Biology. 58: 435-458. https://doi.org/10.1146/annurev.arplant.58.032806.103956

Ji, H., Pardo, J.M., Batelli, G., Van-Oosten, M.J., Bressan, R.A., Li, X. (2013): The salt overly sensitive (SOS) pathway: established and emerging roles. Molecular Plant. 6: 275-286. https://doi.org/10.1093/mp/sst017

DOI: 10.18380/SZIE.COLUM.2019.6.1.7 | 15
Johansson, M., Staiger, D. (2015): Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany. 66: 719-730. https://doi.org/10.1093/jxb/eru441

Jung, C., Müller, A.E. (2009): Flowering time control and applications in plant breeding. Trends in Plant Science. 14: 563-573. https://doi.org/10.1016/j.tplants.2009.07.005

Jung, J.H., Park, J.H., Lee, S., To, T.K., Kim, J.M., Seki, M., Park, C.M. (2013): The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. The Plant Cell. 25: 4378-4390. https://doi.org/10.1105/tpc.113.118364

Jung, J.H., Seo, P.J., Park, C.M. (2012): The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress. Journal of Biological Chemistry. 287: 43277-43287. https://doi.org/10.1074/jbc.m112.394338

Jung, J.H., Seo,Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., Park, C.M. (2007): The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant Cell. 19: 2736-2748. https://doi.org/10.1105/tpc.107.054528

Kazan, K., Lyons, R. (2015): The link between flowering time and stress tolerance. Journal of Experimental Botany. 67: 47-60. https://doi.org/10.1093/jxb/erv441

Ke, Q., Kim, H.S., Wang, Z., Ji, C.Y., Jeong, J.C., Lee, H.S., Choi, Y.J., Xu, B., Deng, X., Yun, D.J., Kwak, S.S. (2017): Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnology Journal. 15: 331-343. https://doi.org/10.1111/pbi.12628

Kim, W.Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., Ning, L., Park, H.C., Lee, S.Y., Bressan, R.A., Pardo, J.M., Bohnert, H.J., Yun, D.J. (2013a): Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications. 4: 1352. https://doi.org/10.1038/ncomms2846

Kim, W.Y., Fujiwara, S., Suh, S.S, Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., Somers, D.E. (2007): ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 449: 356-360. https://doi.org/10.1038/nature06132

Kim, Y., Han, S., Yeom, M., Kim, H., Lim, J., Cha, J.Y., Kim, W.Y., Somers, D.E., Putterill, J., Nam, H.G., Hwang, D. (2013b): Balanced nucleocytoplasmic partitioning defines a spatial network to coordinate circadian physiology in plants. Developmental Cell. 26: 73-85. https://doi.org/10.1016/j.devcel.2013.06.006

Kim, Y.H., Kim, M.D., Choi, Y.I., Park, S.C., Yun, D.J., Noh, E.W., Lee, H.S., Kwak, S.S. (2011): Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnology Journal. 9: 334-347. https://doi.org/10.1111/j.1747-6583.2010.00551.x

Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., Ahn, J.H. (2012): The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology. 159: 461-478. https://doi.org/10.1104/pp.111.192369

Kinosita, T., Ono, N., Hayashi, Y., Morimoto, S., Nakamura, S., Soda, M. (2011): FLOWERING LOCUS T regulates stomatal opening. Current Biology. 21: 1232-1238. https://doi.org/10.1016/j.cub.2011.06.025

Kloosterman, B., Abelenda, J. A., Gomez, M.D.M.C., Oortwijn, M., De Boer, J.M., Kowitwanich, K., Horvath, B.M., Van Eck, H.J., Smaczniak, C., Prat, S., Visser, R.G.F., Bachem, C.W.B. (2013): Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature. 495: 246-250. https://doi.org/10.1038/nature11912

Kooyers, N.J. (2015): The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science. 234: 155-162. https://doi.org/10.1016/j.plantsci.2015.02.012

Kurepa, J., Smalle, J., Van-Montagu, M., Inzé, D. (1998): Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. The Plant Journal. 14: 759-764. https://doi.org/10.1046/j.1365-313x.1998.00168.x

Li, X., Lawas, L.M., Malo, R. (2015): Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell and Environment. 38: 2171-2192. https://doi.org/10.1111/pce.12545

Li, S., Yue, W., Wang, M., Qiu, W., Zhou, L., Shou, H. (2016): Mutation of OsGIGANTEA leads to enhanced tolerance to polyethylene glycol-generated osmotic stress in rice. Frontiers in Plant Science. 7: 465. https://doi.org/10.3389/fpls.2016.00465

Li, F., Zhang, X., Hu, R., Wu, F., Ma, J., Meng, Y., Fu, Y. (2013): Identification and molecular characterization of FK1 and GI homologous genes in soybean. PLoS One. 8: e79036. https://doi.org/10.1371/journal. one.0079036
Lobell, D.B., Gourdji, S.M. (2012): The influence of climate change on global crop productivity. Atmospheric Environment. 40: 3156-3173.

Martin-Tryon, E.L., Kreps, J.A., Harmer, S.L. (2007): GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiology. 143: 473-486. https://doi.org/10.1104/pp.106.088757

Mathieu, J., Yant, L.J, Mürdter, F., Küttner, F., Schmid, M. (2009): Repression of flowering by the miR172 target SMZ. PLoS Biology. 7: e1000148. https://doi.org/10.1371/journal.pbio.1000148

Mathieu, J., Warthmann, N., Küttner, F., Schmid, M. (2007): Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology. 17: 1055-1060. https://doi.org/10.1016/j.cub.2007.05.009

McCrlng, C.R. (2006): Plant circadian rhythms. The Plant Cell. 18: 792-803.

McKay, J.K., Richards, J.H., Mitchell-Olds, T. (2003): Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Molecular Ecology. 12: 1137-1151. https://doi.org/10.1046/j.1365-294x.2003.01833.x

Mishra, P., Panigrahi, K.C. (2015): GIGANTEA - an emerging story. Frontiers in Plant Science. 6: 8.

Mizoguchi, T., Wright, L. Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Fowler, S., Kamada, S., Putterill, J., Coupland, G. (2005): Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell. 17: 2255-2270. https://doi.org/10.1105/tpc.105.033464

Mouradov, A., Cremer, F., Coupland, G. (2002): Control of flowering time. The Plant Cell. 14: 111–130.

Qian, H., Han, X., Peng, X., Lu, T., Liu, W., Fu, Z. (2014): The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. Journal of Plant Physiology. 171: 92-98. https://doi.org/10.1016/j.jplph.2013.11.011

Reagansamy, P. (2010): Soil processes affecting crop production in salt-affected soils. Functional Plant Biology. 37: 613-620. https://doi.org/10.1071/fp09249

Riboni, M., Galbiati, M., Tonelli, C., Conti, L. (2013): GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiology. 162: 1706-1719. https://doi.org/10.1104/pp.113.217729

Riboni, M., Robustelli Test, A., Galbiati, M., Tonelli, C., Conti, L. (2016): ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. Journal of Experimental Botany. 67: 6309-6322. https://doi.org/10.1093/jxb/erw384

Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., Coupland, G. (2000): Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 288: 1613-1616. https://doi.org/10.1126/science.288.5471.1613

Sawa, M., Kay, S.A. (2011): GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 108: 11698-11703. https://doi.org/10.1073/pnas.1106771108

Sawa, M., Kay, S.A., Imaizumi, T. (2008): Photoperiodic flowering occurs under internal and external coincidence. Plant Signaling and Behavior. 3: 269-271. https://doi.org/10.4161/psb.3.4.5219

Sawa, M., Nusinow, D.A., Kay, S.A., Imaizumi, T. (2007): FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science. 318: 261-265. https://doi.org/10.1126/science.1146994

Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., Lee, I. (2009): Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. The Plant Cell. 21: 3185-3197. https://doi.org/10.1105/tpc.108.063883

Sivakumar, M.V.K., Das, H.P., Bruniini, O. (2005): Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. Climatic Change. 70: 31-72. https://doi.org/10.1007/s10584-004-2161-7

Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., Imaizumi, T. (2015): Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology. 66: 441-464. https://doi.org/10.1146/annurev-arplant-040314-115555

Song, Y.H., Ito, S., Imaizumi, T. (2010): Similarities in the circadian clock and photoperiodism in plants. Current Opinion in Plant Biology. 13: 594-603. https://doi.org/10.1016/j.pbi.2010.05.004

DOI: 10.18380/SZIE.COLUM.2019.6.1.7
Su, Z., Ma, X., Guo, H., Sukiran, N., Guo, B., Assmann, S.M., Ma, H. (2013): Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. The Plant Cell. 25: 3785-3807. https://doi.org/10.1105/tpc.113.115428

Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G. (2001): CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 410: 1116-1120. https://doi.org/10.1038/35074138

Takada, S., Goto, K. (2003): TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. The Plant Cell. 15: 2856-2865. https://doi.org/10.1105/tpc.016345

Tang, W., Yan, H., Su, Z.X., Park, S.C., Liu, Y.J., Zhang, Y.G., Wang, X., Kou, M., Ma, D.F., Kwak, S.S., Li, Q. (2017): Cloning and characterization of a novel GIGANTEA gene in sweet potato. Plant Physiology and Biochemistry. 116: 27-35. https://doi.org/10.1016/j.plaphy.2017.04.025

Tang, X., Mu, X., Shao, H., Wang, H., Brestic, M. (2015): Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology. 35: 425-437. https://doi.org/10.3109/07388551.2014.889080

Tao, J.J., Chen, H.W., Ma, B., Zhang, W.K., Chen, S.Y., Zhang, J.S. (2015): The role of ethylene in plants under salinity stress. Frontiers in Plant Science. 6: 1059. https://doi.org/10.3389/fpls.2015.01059

Tseng, T.S., Salomé, P.A., McClung, C.R., Olszewski, N.E. (2004): SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. The Plant Cell. 16: 1500-1563. https://doi.org/10.1105/tpc.019224

Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G. (2004): Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 303: 1003-1006. https://doi.org/10.1126/science.1091761

Taylor, A., Massiah, A. J., Thomas, B. (2010): Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant and Cell Physiology. 51: 1638-1647. https://doi.org/10.1093/pcp/pcq120

Verslues, P.E., Juenger, T.E. (2011): Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology. 14: 240-245. https://doi.org/10.1016/j.pbi.2011.04.006

Wang, W., Vinocur, B., Shoseyov, O., Altman, A. (2004): Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science. 9: 244-252. https://doi.org/10.1016/j.tplants.2004.03.006

Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Tabata, S., Kitamura, K., Harada, K. (2011): A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 188: 395-407. https://doi.org/10.1534/genetics.110.125062

Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D. (2005): Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 309: 1056-1059. https://doi.org/10.1126/science.114358

Xiong, J., Zhang, L., Fu, G., Yang, Y., Zhu, C., Tao, L. (2012): Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. Journal of Plant Research. 125: 155-164. https://doi.org/10.1007/s10265-011-0417-y

Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., Araki, T., 2005: TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiology. 46: 1175-1189. https://doi.org/10.1093/pcp/pcv151

Yanovsky, M.J., Kay, S.A. (2002): Molecular basis of seasonal time measurement in Arabidopsis. Nature. 419: 308-312. https://doi.org/10.1038/nature00996

Zeevaart, J.A. (2006): Florigen coming of age after 70 years. The Plant Cell. 18: 1783-1789. https://doi.org/10.1105/tpc.106.043513

Zhu, J.K. (2002): Salt and drought stress signal transduction in plants. Annual Review of Plant Biology. 53: 247-273.