Fire safety design for tall buildings

Citation for published version:
Cowland, A, Bittern, A, Abecassis-Empis, C & Torero, J 2013, 'Fire safety design for tall buildings', Procedia Engineering, vol. 62, pp. 169-181. https://doi.org/10.1016/j.proeng.2013.08.053

Digital Object Identifier (DOI):
10.1016/j.proeng.2013.08.053

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Procedia Engineering

Publisher Rights Statement:
Open Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract

In any subject area related to the provision of safety, failure is typically the most effective mechanism for evoking rapid reform and an introspective assessment of the accepted operating methods and standards within a professional body. In the realm of tall buildings the most notable failures in history, those of the WTC towers, widely accepted as fire induced failures, have not to any significant extent affected the way they are designed with respect to fire safety. This is clearly reflected in the surge in numbers of Tall Buildings being constructed since 2001. The combination of the magnitude and time-scale of the WTC investigation coupled with the absence of meaningful guidance resulting from it strongly hints at the outdatedness of current fire engineering practice as a discipline in the context of such advanced infrastructure. This is further reflected in the continual shift from prescriptive to performance based design in many parts of the world demonstrating an ever growing acceptance that these buildings are beyond the realm of applicability of prescriptive guidance. In order for true performance based engineering to occur however, specific performance goals need to be established for these structures. This work seeks to highlight the critical elements of a fire safety strategy for tall buildings and thus attempt to highlight some specific global performance objectives. A survey of tall building fire investigations is conducted in order to assess the effectiveness of current designs in meeting these objectives, and the current state-of-the-art of fire safety design guidance for tall structures is also analysed on these terms. The correct definition of the design fire for open plan compartments is identified as the critical knowledge gap that must be addressed in order to achieve tall building performance objectives and to provide truly innovative, robust fire safety for these unique structures.

Keywords: Tall Buildings; Fire safety strategies; Performance based design

1. Introduction

The number of tall buildings constructed is increasingly ever more rapidly (Fig. 1). They are evolving in height, construction materials, use, and compartmental composition. The evolution of height is staggering when it is considered that until January of 2010, the tallest completed building (Taipei 101) stood at 508 m, a mantle now held by the Burj Khalifa at 828 m. The increasing number of 600 m+ buildings being conceived has led to the recent coining of the term mega-tall. According to statistics from the Council on Tall Buildings and Urban Habitat [1], 17 of the tallest 100 buildings in the world, as of the end of 2011, were completed within that year. The driving forces behind this progression are inevitably financial, political and environmental, but it is modern technological developments, both structural and material, which have truly enabled the continued evolution of these buildings. The tall building of today is a completely different entity to that of a decade ago with the propensity for change even greater in the immediate future. Advancements in structural engineering have arisen to make possible the increase in height, size and complexity, the reduction of cost and carbon footprint as well

* Corresponding author. Tel.: +44 131 650 5723.
E-mail address: j.torero@ed.ac.uk.
as architectural imagination and economic versatility of these buildings. In what is coming to be considered the era of the
tall building, the recent explosion in numbers has caused a number of engineers and governmental organizations to look at
this genre with specific focus, not least from the perspective of fire safety [2].

Fig. 1. The plot demonstrates the evolution in number of tall buildings completed of greater than 200 and 300 m. Statistics have been taken from the Council on Tall Buildings and Urban Habitat database [1].

The only recorded structural failures in tall buildings in the last 30 years are earthquake and fire related, and in the case
of mechanical failure resulting from earthquakes, it was failure to adhere to building code requirements or accepted
engineering practices that ended with the undesired result. Where strong code enforcement and/or adequate engineering is
prominent, major earthquakes have resulted in no significant damage to tall structures, thus there is a strong feeling that
structural design, in particular with respect to seismic loading, is evolving in step with the transformation of tall buildings.
The case of fire failures is clearly different with the last decade or so seeing the collapses of tall buildings of different
structural forms as a result of fire. In this period we have seen the collapses of steel buildings such as the World Trade
Center buildings 1, 2, 5 & 7 (USA) [3, 4], of buildings of mixed construction such as the partial collapse of the Windsor
Tower (Spain) [5, 6], and of concrete buildings such as the Delft University office (Netherlands) [7] and Caracas “Central”
tower (Venezuela) [8]. Furthermore, we have seen how classic prescriptive solutions failed to manage smoke (Cook County
Building (USA) [9] and Camberwell fire (UK)) [10] and modern buildings using state-of-the-art fire engineering failed to
contain the full propagation of a fire (TVCC, China) [11].
Forensic analyses of these fires [3, 4, 6, 7, 12, 13, 14] have indicated that the needs of modern tall buildings are beyond
the scope of applicability of current fire safety codes and engineering practices. The fire that burned an entire 28-storey
residential building in Shanghai (15/11/10), killing 58 people [15] clearly illustrates the disastrous consequences of fire not
being adequately considered or integrated into the design process. The fire spread rapidly via the external façade through the
entire building disabling egress. The material allowing for the fast spread was external insulation being installed as part of a
government pilot scheme to boost energy efficiency. This failure emphasises the lack of proper design tools required to
ensure safety in a rapidly evolving construction industry where issues other than fire safety (in this case energy) are the
main drivers for innovation. Analyses of several of these failures [3, 4, 6, 12] and current design practises reveal that fire
safety codes are no longer capable of providing implicit safety for the rapidly evolving needs of modern tall buildings and
are being extensively substituted by non-validated performance based design methods. This work endeavours to provide an
assessment of the state-of-the-art of fire safety engineering for tall buildings. It seeks to define the specific performance
objectives to enable a successful tall building fire safety strategy, and assesses failure statistics which provide an indica-
tion of our current ability to successfully engineer the principle issues identified.

2. From prescription to performance: the tools of the fire safety engineer

The most successful investigations are those conducted in an atmosphere where all those involved have sufficient
knowledge to make the most of the investigation and to transfer that new knowledge into the design process. Possibly the
greatest leap forward in fire engineering knowledge came as a result of such a failure investigation [16]. In this instance
however it was the extensive research carried out by both sides during World War II, specifically with the intention of the
creation of failure. The extensive development of understanding of methods by which failure could be induced by fire meant
that later, following a wide ranging international research collaboration, this could be translated into state-of-the-art design
guidance [17]. This example is also typical of how social responsibility associated to fire safety has historically been translated into codes and standards establishing prescriptive requirements for buildings.

Prescriptive requirements induce safety factors by constraining design output to pre-established bounds. A specific form has been studied, and its range of performance established. An acceptable performance objective is identified thus so is the extent to which the form can be changed whilst still achieving the performance objective. This methodology forms the bounds that are then implied by prescriptive rules. If a designer follows these rules, they will fall within the bounds and the safety of the design will be implicit. The implemented solution will inherently carry a significant safety factor because it has to be robust to the variations permitted within the bounds of the prescriptive rules. The magnitude of this safety factor is however, never explicitly defined. Critically, this system is founded on the initial form identified for analysis; change the system drastically, and the safety factor can no longer be implied. There have been periods in which codes and standards had enough embedded knowledge that they could respond to all variants of innovation in construction. In these periods infrastructure can be comprehensively classified into some group that is fully addressed by a specific set of rules. Few exceptions appear outside the codes and standards and require individualised solutions. The post WWII period was perhaps the most significant example of this. In periods of great urban or technological development, codes and standards do not envelop the evolution imposed by the drivers of the construction industry and performance based solutions are necessary.

Performance based design allows practitioners to apply a rational engineering approach to provision of life safety and property protection goals. This is accomplished by identification of specific goals, functional objectives and performance requirements [18]. An engineer is then given license to demonstrate the required performance using an acceptable solution, approved calculation method or performance based alternative design. Achievement of the specified goals is then defined explicitly. The WTC epitomised innovation and most of the technical solutions involved were evaluated using the most sophisticated engineering tools of the time; a time when Fire Safety was still established in a purely prescriptive manner. In the aftermath of the WTC collapses, the Tall Buildings community turned towards the investigation to derive the necessary lessons that would enable an adequate performance based analyses. Nevertheless, extracting requisite knowledge from a failure and conveying that knowledge into the design process requires a minimum level of understanding of what went wrong and how it can be adequately guarded against in future designs. The unprecedented magnitude and novelty of the WTC failures caught the fire safety and structural communities unprepared for the investigation. Somewhat ominously, while it has taken the professional communities the better part of a decade to produce the science necessary to unveil many of the phenomena, and while they are still to find the capability to transform the knowledge into relevant design methodologies and tools, this lack of capability has gone widely unnoticed by the wider construction community, and the last decade has been a period of great all-round innovation for Tall Buildings with numbers soaring (Fig. 1).

This strongly indicates the insignificance of fire safety engineering practice as an overall driver in the wider construction industry. Likewise, it reveals the practice’s inability to demonstrate the relevance of our solutions to that industry. As a consequence, new requirements have emerged, not always because they were needed or because the community was ready to define them, but mainly because society demanded an answer in some form. Tall buildings are the optimal example of innovation outstripping prescribed (implicit) safety. A one size fits all approach cannot be considered for scenarios so complex and unique. This is becoming an increasingly accepted fact in most facets of modern fire safety engineering, evidenced by the recent shift in many parts of the world towards a performance based framework. As tall buildings are such a unique scenario, it is essential that specific, tall building relevant performance objectives are defined before an attempt to perform such a design is made. Only then can practitioners understand what they are actually required to achieve, establish the goals of the performance based hierarchy [18], and assess the level of performance of the system that they are proposing. To identify the critical tall building performance objectives, it is first essential to define the specific fire safety problems inherent in tall buildings.

3. Fire safety strategies for tall buildings

A holistic Fire Safety Strategy for a tall building is essentially a function of time. It contains two principle components; egress strategy and building performance. Building performance can be further broken down into structural performance and fire spread mitigation e.g. compartmentation. The evacuation strategy is concerned with defining the time required to safely evacuate all building occupants. Building performance concerns the time that the structure can withstand the effects of the fire and the compartmentation remain in place and functional. In everyday design scenarios, the two components can usually be dealt with separately. Times associated to evacuation are typically of the order of minutes while structural / compartmentation times are more typically of the order of hours. It is thus usually inherent that the structure and compartmentation will remain intact for a period that comfortably allows for the implementation of the egress strategy. This is not the case however for tall buildings. The ever exaggerated heights combined with the limited number of vertical escape routes results in these two components becoming coupled. Evacuation times are extended to an order of magnitude
comparable with that of the heating times of structural elements and by extension, the potential failure times of these structures. Evacuation and structural / compartmentation failure are therefore at risk of overlapping as was the case of the WTC towers. This problem will only be further exacerbated as buildings become taller and more complex. These principle components are discussed here along side data collected from reports of some 50 tall building fires occurring internationally. This survey has been made in order to assess trends associated to the fire safety strategy and to help establish if the base assumptions made in design are credible. A list of the events surveyed is described in Appendix A.

3.1. Survey of tall building fire events

In total this survey considered 50 buildings reaching from 10 to 110 storeys, the first building being completed in 1924, with the majority being completed in the last 30 years. The majority of the fire incidents occurred in the last 20 years, in countries including UK, USA, Thailand, Hong Kong, China, Canada, Spain, and Venezuela. A list of the buildings included in the survey along with the selection of details relevant to this paper, is presented in the appendix at the end of the paper. It is important to recognize that this selection is highly influenced by the availability of information, thus the examples are geographically skewed towards locations where information is freely available and does not reflect in any way on the level of safety provided by the regulations in those locations, rather the proactive nature of the authority to learn and improve. In North America particularly, the USA National Fire Protection Association has commissioned fire investigations into several high rise building fires, with the fire investigation reports being publicly available. The Federal Emergency Management Agency had conducted several fire investigations for high rise buildings, with the reports being publicly available. Another source of information was the Line of Duty Death Investigation reports undertaken by various fire authorities in the USA. The quality, quantity and detail contained in the fire investigation reports varied considerably, but overall they contained general details on the building construction including fire protection features, fire incident including cause and origin, fire and smoke spread, fire fighting operations including search and rescue. Although some reports did provide outline details of the fire protection systems, a degree of caution had to be applied in that it could not be assumed that just because a feature was not addressed by the report, it did not necessary mean that it was not present, and secondly the majority of the reports did not investigate the design criteria, installation or maintenance of such features.

3.2. Evacuation

Safety, with respect to evacuation, is measured in time, predominantly the time required for all occupants to reach the outside of a building. The shorter this time, the safer the building is deemed to be. The height of many modern tall buildings, combined with the limited number of vertical escape routes, extend travel times such that the stairwells must act as the outside. They must be designated a ‘safe zone’ which should guarantee the safety of occupants once reached and allow safe transit to a place of refuge, within or outside the building. In effect the tall building becomes a collection of single storey buildings. This then allows for different evacuation philosophies (staged, phased, total) to be applied to tall buildings. Furthermore these travel distances extend evacuation times to a magnitude comparable with that of the heating times of structural elements and, by extension, comparable with potential failure times. An increase in vertical escape provisions (stair numbers and widths) and novel technologies (egress lifts, etc.) will not yield sufficient impact to prevent this overlap. The considerable time that occupants spend within the stairwells means that for any fire strategy to be successful, stairwells must remain smoke and heat free and the entire building structurally sound. Without adequate protection the number and width of stairwells is irrelevant, as smoke-logged stairwells are unusable and the Fire Safety Strategy is therefore void. Fig. 2 shows the rates of premature loss of stairwell tenability levels i.e. significant levels of smoke within at least one stairwell whilst still being used for egress by occupants, reported in the surveyed fire investigations and reports. One significantly reoccurring theme reported was that failure occurred early in the evacuation process although exact failure times were not given. Another was that fire fighting activities were associated to approximately a third of the reported failures.

A common method to ensure smoke free stairwells is the provision of pressurisation systems. Stair pressurisation was developed in the 1960-70s through experimental work [19]. This work identified criteria that enabled the definition of a pressure range (upper and lower bounds). Systems are then designed such that the pressure difference between the stairwell and its surroundings remains within this range under both everyday and operational conditions in order to maintain the smoke free requirement. The upper bound pressure exists to ensure that occupants never struggle to open doors leading to a stair, thus not hindering evacuation. This pressure is usually defined by the force that an average person can exert. The lower bound pressure is designed to maintain gas flow from the stairwell to its surroundings. It is therefore defined in terms of the pressures and temperatures produced by the fire. If the pressures induced by the effects of the fire are greater than those of the lower bound, smoke will flow through doors and smaller gaps and openings into the stairwell thus rendering it unusable. It is therefore crucial to correctly determine the pressures that a typical fire might produce. While this model has
been expanded to account for the complexities brought about by modern stairwell geometries [20], the resulting pressurisation systems have been shown to be limited by their narrow ranges of operation [21] and the uncertainties associated to the nature of the fire. The experiments [22] on which this approach is based were conducted in a 10 storey tower, with surrounding compartment floor area of approximately 18 m² containing a propane burner. The experiments tested a variety of stair pressurization systems to assess the effects of doors opened into the stairwell during evacuation on the ability of the systems to continue to keep smoke out of that stair. Clearly, a fire in a large, open plan environment containing combustible furniture may have considerably different fire dynamics, thus the lower bound pressure definition used for these systems has little relevance for modern open plan scenarios. Reported failure rates for stairwell smoke control systems from the fire report surveys are shown in Fig. 3 and account for 90% of cases where such systems were mentioned. This implies that safe stairwell tenability levels are currently not guaranteed, thus the cornerstone of contemporary tall building fire safety design may not be valid. A fundamental component for the success of this element of the Fire Safety Strategy is the correct definition of the lower bound pressure, and thus also the exact nature of the fire.

3.3. Building performance

3.3.1. Structural performance

The structural design of modern tall buildings is governed by the need to efficiently transfer loading, particularly that from wind, whilst providing increasingly complex building functionality. The development of complex, inspired and highly optimised structural framing systems [23-25] (often deemed tall building technologies) has enabled efficient load transfer mechanisms, thus, in the event of a fire, locally induced deformations and resultant loading will be effectively redistributed throughout the structure. While this could help maintain structural integrity, research has demonstrated that these structural systems are particularly sensitive to the size and nature of the fire [4, 12].

Fire resistance has traditionally been defined as a function of a standard temperature time curve [26], with structural elements tested as single elements and their ratings defined as the time to attain a pre-specified failure criteria, traditionally
a critical temperature. More recently, through the Cardington Tests [27], it has been recognised that this is not a realistic way of determining the performance of structures in fire. Post-Cardington analyses have used parametric temperature vs time fire curves and time equivalence concepts as input to the structure showing significant effect of the heating rates, period and cooling. Furthermore, numerous studies have emphasised that the presumed “worst case” fire loading imposed by homogeneous heating might not represent the most onerous scenario. Systems with long span light-weight floors where the load is shared by a stiff core and external structure are particularly vulnerable to multiple fire loads [12]. While for regular I-beams homogeneous heating seems to be a “worst case” condition, it is not for light-weight cellular beams which are vulnerable to localised heating [28]. In the analysis of WTC-7, NIST [4] concluded that long spans can induce progressive collapse if the detailing of the connections and the symmetry of the beam arrangement is not adequately characterised. Finally, the potential for failure during cooling has been identified in many of these modern systems [29], showing the need for a heterogeneous heating/cooling assessment as an essential component of a detailed analysis of the behaviour of a structure in fire. The advocating of performance-based design for tall and innovative buildings acknowledges the inability of furnace testing for individual structural elements to assure the provision of adequate structural fire safety.

The survey conducted showed that there was some degree of structure failure in 13 of the 50 buildings. While the literature reviewed was often lacking on the specific details of structural failures, there were numerous mentions of localized failures, such as sagging of beams, failures of connections, collapsing of decking, and deformation of fire rated compartmentation assemblies and some more extensive failures such as the partial collapse observed at the Windsor Tower or in the cases of the WTC buildings, total collapse. Such behavior could be identified at the design stage through true performance assessment. Such an assessment requires an understanding of the likely fire conditions. Continuing to design for a uniform or standard fire when the greatest challenge to the structure might be a “traveling fire” is potentially flawed, especially when for many tall buildings the latter case could be the most realistic. Thus again it is clear that the correct definition of the fire is essential to maintain structural integrity and preserve the Fire Safety Strategy.

3.3.2. (Vertical) compartmentation performance

As discussed above, the extended egress times intrinsic to tall buildings combined with the limited vertical evacuation routes force the evacuation strategy to operate in stages or phases. Occupants not immediately adjacent to the floor of fire origin are left in-situ while those in more immediate danger are evacuated. Fire Fighters may also then make use of the vertical passages in order to fight the fire from within should it be situated out with the reach of their ladders / platforms. In order that occupants can remain safely in-situ, adequate vertical compartmentation must be provided in support of the evacuation strategy. It is essential that the fire be prevented from spreading upwards or downwards from the floor of origin, endangering the lives of those waiting on more remote floors.

![Fig. 4. The images show an idealized representation of the change in floor slab-façade connection from (a) the pre-curtain wall method where the slab formed a continuous barrier between floors, and (b) the modern approach where the façade system is the continuous barrier.](image)

Internally, the floor slab provides a robust barrier so long as it remains firmly supported by the structure. Historically, an extension of the floor slab past the external façade would provide a means of inhibiting external fire spread (Fig. 4(a)). However changes in building technologies to meet architectural, sustainable and economic objectives has seen the wholesale introduction of the use of curtain walling offering compartmentation challenges which the construction industry
has not fully accounted for. Not only has the curtain wall transformed the method by which vertical compartmentation is achieved; it has also introduced flammable materials into both the wall linings and external cladding. The methodologies used to define the fire resistance of these systems have not evolved since the late 1970’s and these standardized methods do not take into account deformations possible with evolving fires (Fig. 4(b)).

Fig. 5. The chart demonstrates the occurrence of multiple-floor fires, indicating the number of floors reached by the fire beyond the floor of origin. The 18 cases of spread beyond the floor of origin represents just over a third of the surveyed buildings.

The deformation of the system as a whole when exposed to fire can expose gaps and flammable materials which can lead to spread both upwards through flaming, and downwards through dripping molten materials. Once fire starts spreading away from the floor of origin the safety of the occupants is compromised. Fig. 5 below demonstrates the number of instances of reported vertical fire spread. The data demonstrated some ten cases of fire spreading to three or more floors. The most severe cases reported were:
- Las Vegas Hilton, USA: 22 Storeys in approximately 25 minutes
- Caracas Tower, Venezuela: 17 floors in a 24 hour period
- Windsor Tower, Spain: 19 floors, ~7 hours for spread, 24 hours total fire duration
- TVCC Tower, China: 44 floors, around 15 minutes

In the case of the TVCC Tower, fire spread was predominantly external following an ignition in the cladding from a firework. In the case of the Windsor Tower, spread was a mixture of internal and external, travelling both upward and downward [6]. Upward fire spread was reported at a rate of approximately 6.5 minutes per floor, whereas downward was a slower 20-30 minutes per floor. Generally though, vertical fire spread was attributed to spread internally (ducts, shafts, penetrations etc.). A fire of this nature will generally propagate extremely quickly without any hope of being controlled by sprinklers and has the potential of almost simultaneously compromising the life of everyone remaining within the building. Thus the thermal loading imposed by the fire and the mechanical forces generated by the thermally induced deformations of the structure is key to understanding holistic façade system performance. Once again, correctly defining the design fire as an input for this design process becomes a necessity for the provision of a fire safety strategy.

4. Guidance for tall building fire safety design

In the ten years following the collapse of the WTC towers, society has demanded answers as to why such a catastrophic outcome could occur. The unprecedented nature of the event resulted in the largest forensic investigation in the history of fire safety engineering. As alluded to earlier, this has resulted in societal pressure to produce guidance on fire safety design for tall buildings. The most recent and significant guidance produced (Guidelines for Designing Fire Safety in Very Tall Buildings) [2] is analysed here in comparison to these authors’ current conceptualisation of the problem and resulting performance objectives. The most striking aspect of this guidance, is that it fails to define the principle issues and thus the clear global performance objectives for tall buildings in the event of a fire. While defining every single issue that could occur in any building in the event of a fire together with a comprehensive list of tools at the disposal of the fire safety engineer, it does not provide the context of the problem in which the resulting strategy is required to operate.

In discussion of emergency egress, the SFPE guide highlights a wide range of options available to an engineer forming a egress strategy, in each case discussing the potential gain with respect to total egress time reduction associated to each strategy. The chapter relates that tall buildings result in exaggerated egress times so the engineer should consider pooling all available strategies in order to minimise egress times as far as possible. It does not however discuss the concept of egress times in terms of the wider context of the fire safety strategy, i.e. that the associated times will always be comparable to those of structural failure and thus the two are inevitably interlinked. Instead, it describes reliance on ever increasing levels
of strategy and management complexity that the engineer could employ in an attempt to achieve reductions in overall egress times. It also advises of the significant potential for strategy failure, either complete or in part, generally for reasons associated to heat and smoke infiltration, and unknowns associated to occupant behaviour and breakdown in management. The overall message is one of a necessity for reliance on a complex solution with significant potential to lack robustness. Another source of egress guidance [30] focuses specifically on the justification of the use of elevators as a primary method of egress. The author proposes that this should enable the use of a single stair system for an unlimited building height given the appropriate occupancy and egress strategy/philosophy. Regardless of the level of correctness behind the justification given for this solution, it remains fundamentally reliant on vertical compartmentation, successful occupant management, and core robustness.

As discussed by these authors, a tall building fire safety strategy needs to be built on the understanding that evacuation will take a significant length of time, akin to that of structural system failure times, no matter how well optimised the procedure(s) in place. The SFPE guidance alludes to this principle, “In order to make use of any of these strategies, it is important that a structural analysis of the building design is also completed to demonstrate that the integrity of the building and its systems during design fires/events under consideration.” This is a hugely important statement acknowledging that every element of the egress strategy becomes null and void if the structure does not stand, yet it is not afforded significant discussion, and only mildly reflected in the chapter on fire resistance. This statement also alludes to the importance of the design fire in providing this underpinning element of emergency egress while likewise failing to adequately address its importance.

From a structural performance perspective, an important lesson resulting from the WTC failures [3, 4, 12], which reinforced the lessons that came out of the Cardington Fire Tests [27], is that prescriptive fire resistance ratings of individual building elements do not guarantee a building system that as a whole will perform adequately. As identified above, extended evacuation times necessitate holistic structural performance. The SFPE guidance document repeatedly alludes to this fact yet does not state clearly and definitively that this the case and thus that design solely by means of resistance ratings implies acceptance of ignorance with respect to the level of structural performance in fire. Indeed, while repeated making such allusions and declining to make a definitive statement, the document does state that, “Catalogues of fire tested elements are available (such as the UL Fire Resistance Directory), and it is possible to assemble a complete building from such components.” By failing to clearly formulate and describe the critical role that adequate structural performance plays in a complete and integrated design of a tall building fire safety strategy, the weight that this statement carries combined with the lack of emphasis of the limitations of such a system is a significant omission. Again there is discussion of the potential for a variety of fire types to exist and acknowledgement that they may induce different behaviours in the structure. There is also recognition of the potentially detrimental effects of both heating and cooling as well as other fire induced behaviours such as concrete spalling. With this in mind, it is illogical that prescriptive design by fire resistance ratings can be presented alongside holistic performance-based analysis as a method to provide an adequately fire resistant structural system.

A similar pattern emerges when discussing façade performance. The SFPE document provides a thorough and clear description of the mechanisms that can lead to vertical fire spread when considering modern configurations. It clearly describes the variables with respect to façade configurations that affect flame behaviour at the building perimeter and the considerations. Like other chapters though, it lacks the context describing the critical importance of preventing vertical fire spread within the overall fire safety strategy and the effect of failure on the egress strategy and the structural resistance. While discussing at length the various individual elements of the fire safety strategy deemed critical by the current authors, the new (2012) SFPE Guidelines [2] do not discuss and convey the importance of the interrelatedness of these problems and as such, their importance in the context of the global fire safety strategy is lost. In failing to conceptualize the interrelatedness of the issues affecting tall building fire safety, the document thus also fails to identify essential performance objectives. Given the highly optimized and engineered nature of the tall building system, only an optimized, holistic performance based solution, addressing each aspect of the problem in consideration of the others, will be capable of providing adequate safety. Such a solution requires a proper understanding of the problem. The guide instead advocates an extended application of traditional prescriptive solutions; the engineer needs to provide extra levels of redundancy and prescriptive complexity when considering a tall building system, rather that attempt to quantify the overall system performance. A decision as to which of the multitude of available options to use and why one may be more relevant given the context is left to the designer. This equates to an unspecified level of protection. Extra protection may be being provided where it is not required while critical issues may be being missed entirely. The critical issue is that purely prescriptive design, while having the potential to be perfectly safe, does not verify whether that potential has been realized.
5. A design fire for the design of tall buildings

The common theme underpinning the robust provision of the fire safety strategy for tall buildings is the description of the fire. If not adequately provided, the fire safety strategy cannot be sufficiently optimised and still be said to be robust. The results of the Cardington Tests [27] and the subsequent increase in sophistication of finite element modelling (FEM) showed that structural systems need to be analysed holistically in order to truly understand how a system will perform under fire loading. Crucially though, while the structural analysis side of this process evolved with this new knowledge, the fire loading that is prescribed during this holistic modelling still adopts the same forms such as the Standard Fire [26] and Pettersson’s Parametric Curves [31], which are neither realistic nor necessarily conservative.

The experimental basis upon which all these methods were founded uses a small cubic compartment (generally ~4m side), and thus has little relevance when applied to large open floorplans. Majdalani et al. [32] in their revisiting of literature on post-flashover fires have demonstrated that initially, two regimes of post-flashover compartment fires were identified [33]. Regime 1, the under-ventilated post-flashover fire, is typical of a smaller compartment with basic (limited) openings. Regime 2, the over-ventilated post-flashover fire is likely to occur in larger spaces with larger openings and thus plenty of air to feed the fire. Regime 1 being both better understood from a technical point of view and more typical of the smaller compartmentation of the time at which the underpinning research was completed, became the basis of the description of compartment fire dynamics. Regime 2 was far less physically understood and far less likely to occur in practice, thus was sidelined as a direction for research where it has largely remained. Crucially now though its irrelevance can no longer be justified, as open floorplans with highly glazed perimeters have become the norm and innovation has moved the typical scenario away from our base description of under-ventilated post-flashover compartment fire dynamics.

The WTC fires, in particular WTC-7, showed that fully developed fires in open floorplan offices travel through large compartments generating both areas of intense localised heating, and of slow pre-heating, as well as areas of cooling. These occur simultaneously within the floor naturally producing both “long-cold fires” and “short-hot fires” (per the nomenclature of Lamont et al. [34]) as well as asymmetries introduced through differential thermal expansion. All these scenarios have been demonstrated to induce unique structural behaviour and it is the combinations of these characteristics that provide the true test of a structure’s performance. An assessment of existing compartment fire data by Stern-Gottfried et al. [35] provides evidence that significant spatial temperature gradients exist even in small compartments. Jowsey et al. [36] demonstrate that the effects of these heterogeneities are emphasised when translating temperature into heat fluxes to define the thermal loading.

With the acceptance of performance based design solutions in complex infrastructure, there followed a rush to define alternatives to the standard fire curves, driven largely by industry desire to optimise designs. While stop-gap methodologies have been established [37] that incorporate travelling and heterogeneous fires to the calculation of the boundary condition for structural FEM analyses and potentially provide an adequate approach for design, the fundamental basis of these tools is in correlations derived from small compartment fire data, analysed and extrapolated via CFD models that have not been validated for that purpose. NIST followed a similar approach in their forensic study of WTC 1, 2 & 7 [3, 4] but using video images to calibrate the model. While this approach can provide an accurate description a posteriori, it cannot be used for design. The method developed by Rein et al. [37] offers a further methodology that divides the compartment into near and far field. The result is a family of curves that pose different challenges to the design. Again though, this method uses models and simplifications that have not been validated for or developed within the framework of the open plan scenarios typically posed by tall buildings and indeed the majority of modern infrastructure. Nevertheless, the industrial entities that drove the creation of these works have adopted them in state-of-the-art fire safety engineering practice under the justification that such tools are essential to define true building performance. A lack of investment in fundamental research however means that as a community, we are still unable to establish if this current state-of-the-art represents true progress.

6. Conclusions

Failure provides a great motivation for us to assess the limitations of our tools. These tools can be anything from best practice guidelines to prescriptive codes, analytical expressions to complex computational models. If we never lose perspective of the limitations of these tools, we will always recognise in advance when we need to refine or even redefine them. The limitations of our tools are defined by the knowledge and scenarios on which they are based and our knowledge of how these tools can be scaled to larger problems.

Despite the events at the WTC complex in 2001, the numbers of tall and very tall buildings are increasing year upon year. As ever, society demands that an acceptable level of safety is provided, thus the political pressure to produce an explanation of events post-9/11 resulted in the biggest forensic investigation in history. Ten years on, a comprehensive technical explanation has been compiled and is only now finally being converted into design guidance. Despite this wait, the most
significant guidance unveiled thus far fails to conceptualise the implications that tall buildings present to traditional fire safety solutions, a process that requires acceptance that traditional fire safety methods (furnace derived fire resistance, sprinklers as the primary strategy etc.) cannot provide the requisite levels of safety. The unique challenge that tall buildings present are too far removed from the basis on which prescriptive requirements were founded. Thus inevitably, performance based design becomes essential.

A performance based design is only relevant given a complete assessment of the problem i.e. the goals that the design must achieve. When the strategy as a whole is dissected, it is evident that the ability to provide such performance hinges on our ability to describe the fire dynamics in the spaces typical of tall buildings. Historically, an atypical regime of fire dynamics was identified (over-ventilated post-flashover), but at the time deemed irrelevant given the conventional compartmentation of the era. Prescriptive fire safety tools were thus built on a regime that has since become somewhat archaic (especially in the context of tall buildings), and replaced by the previously marginalized regime. Only once we understand fires in modern compartments can we truly assess the critical components of the fire safety strategy and begin to provide relevant, refined, innovative fire safety that truly reflects the nature of tall buildings. The period post 9/11 has demonstrated however that such knowledge cannot be produced under pressure to protect political and / or commercial interests. Further delay will result in below par, commercially driven methodologies and guidelines (and the vested interests that they entail) becoming accepted practice.

Acknowledgements

The authors would like to acknowledge funding from EPSRC for the ‘Real Fires for the Safe Design of Tall Buildings’ project together with the generous support of the multiple project partners.

References

[1] The Skyscraper Centre, The Global Tall Building Database of the CTBUH, http://skyscrapercenter.com/, last accessed 05 April 2012.
[2] Society of Fire Protection Engineers, Guidelines for Designing Fire Safety in Very Tall Buildings, Public Review Draft, March 2012.
[3] Federal Building and Fire Safety Investigation of the World Trade Center Disaster – Final Report of the National Construction Safety Team on the Collapses of the World Trade Center Towers, NIST, NIST NCSTAR 1, 2005.
[4] Federal Building and Fire Safety Investigation of the World Trade Center Disaster – Final Report on the Collapse of World Trade Center Building 7, NIST, NIST NCSTAR 1A, Nov 2008.
[5] Parker, D., 2005. Madrid Tower Designer Blames Missing Fire Protection for Collapse, New Civil Engineer.
[6] Fletcher I. A., 2009. Tall Concrete Buildings Subject to Vertically Moving Fires: A Case Study Approach, PhD thesis, University of Edinburgh.
[7] Meacham, B. et al., 2009. “Collection of Data on Fire and Collapse, Faculty of Architecture Building, Delft University of Technology, National Science Foundation”, CMML, Research and Innovation Conference.
[8] Blaze Consumes Caracas Skyscraper, BBC News, October 2004, http://news.bbc.co.uk/1/hi/world/americas/3751790.stm.
[9] Madrzykowski, D. et al., 2003. Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois: Heat Release Rate Experiments and FDS Simulations, NIST SP-1021.
[10] Knight, K., 2009. Report to the Secretary of State by the Chief Fire and Rescue Adviser on the Emerging Issues Arising from the Fatal Fire at Lakanal House, Camberwell on 3 July 2009, Communities and Local Government.
[11] China TV Network Apologizes for Fire, New York Times, February 2009, http://www.nytimes.com/2009/02/31/world/asia/11beijing.html.
[12] Usmani A. S. Chung Y. C., Torero J. L., 2003. How Did the WTC Collapse: A New Theory, Fire Safety Journal 28, p. 501.
[13] Meacham, B. et al., 2010. “Fire and Collapse, Faculty of Architecture Building, Delft University of Technology: Data Collection and Preliminary Analysis’, 8th Int Conference on Performance-Based Codes and Fire Safety Design Methods.
[14] Madrzykowski, D., et al., 2003. Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois: Heat Release Rate Experiments and FDS Simulations, NIST SP-1021.
[15] Shanghai Police Round Up Fire Mourners, Wall Street Journal, December 2010, http://blogs.wsj.com/chinarealtime/2010/12/20/shanghai-police-round-up-fire-mourners/.
[16] Hotell, H. C., 1984. Stimulation of Fire Research in the United States after 1940 (A Historical Account), Combustion Science and Technology 40, 1-4, p. 1.
[17] Thomas, P. H., 1986. Design Guide: Structural Fire Safety CIB W14 Workshop Report, Fire Safety Journal 10 (2), p. 77.
[18] Buchanan, A. H., 2002. Structural Design for Fire Safety, Wiley and Sons, ISBN 0-471-89060-X.
[19] Tamura G. T., Review of the DBR/NRC Studies on Control of Smoke from a Fire in High Buildings, DBR Paper No.1164, Division of Building Research, NRC 23054.
[20] Kline J. H., Mike J. A., 1992. Design of Smoke Management Systems, ASHRAE.
[21] Bellido C., Quiroz A., Panizo A., Torero J. L., 2009. Performance Assessment of Pressurized Stair in High Rise Buildings, Fire Technology 45, p. 189.
[22] Tamura, P. E., Fire Tower Tests of Stair Pressurization Systems with Overpressure Relief, NRC 32360, 1960.
[23] Carroll, C., et. al., 2006. China Central Television Headquarters - Structural Design, Steel Structures 6, p. 387.
[24] Abdelrazaq, A., 2010. “Design and Construction Planning of the Burj Khalifa”, Dubai, UAE, ASCE Structures Congress, pp. 2993-3005.
[25] Moon, K-S., et al., 2007. Diagrid Structural Systems for Tall Buildings: Characteristics and Methodology for Preliminary Design, The Structural Design of Tall and Special Buildings 16, p. 205.
[26] Babrauskas V. & Williamson R. B. 1978. The Historical Basis of Fire Resistance Testing – Part 1, Fire Technology 14, p. 184; and Part 2, Fire Technology 14, p. 304.
Appendix A. Survey details

Buildings surveyed to establish failure rates of the critical elements of tall building fire safety strategies

Building Name	Location	Floors	Pressurisation / Extraction	Smoke in Stair	Vertical Fire Spread	Structural Damage				
Alexis Nihon Plaza	Montreal, Canada	15	No	Yes	Yes	Localised				
Schomberg Plaza	New York, USA	35	Unknown	No	Yes	No				
One Meridian Plaza	Philadelphia, USA	38	No	Yes	Yes	Localised				
Interstate Bank Building	L.A., USA	62	Yes	Yes	Yes	Localised				
New York City Bank Building	New York, USA	42	Yes	Yes	Yes	Localised				
High Rise Office	Atlanta, USA	10	No	Yes	No	No				
Clearwater Condominium	Clearwater, USA	11	No	Yes	Yes	No				
Residential High Rise	New York, USA	29	No	Yes	No	No				
Prudential Building	Boston, USA	52	Yes	Yes	No	No				
Rockefeller Centre	New York, USA	11	Yes - 1 Stair	Yes - Not in Pressurised	Yes	No				
Howard Johnson Hotel	Orlando, USA	14	No	Yes	Yes	No				
Alexander Hamilton Hotel	Paterson, USA	8	Unknown	Yes	No	No				
Cook County Administration Building	Chicago, USA	37	Yes	Yes	No	No				
John Sevier Centre Johnson City, USA	11	Yes	Yes	Yes	No					
Building Name	City, Country	Floor	Occupied	Fire Exit	Collapse	Damage				
--------------------------------	---------------------	-------	----------	-----------	----------	--------				
MGM Grand Hotel	Las Vegas, USA	21	Yes	Yes	No	Localised				
Garley Office Building	Honk Kong	16	Unknown	No	Yes	No				
Royal Jomtien Resort	Thailand	17	No	Yes	No	No				
Windsor Tower	Madrid, Spain	32	Unknown	Yes	Yes	Partial Collapse				
Parque Central East Tower	Caracas, Venezuela	56	No	Unknown	Yes	Localised				
TVCC Tower	Beijing, China	44	Unknown	Unknown	Yes	Unknown				
Four Leaf Tower Condominium	Houston, USA	41	Yes	Yes	Yes	No				
Westin Hotel	Boston, USA	38	Yes	Yes	No	No				
Howard Johnson Hotel	Cambridge, USA	11	Unknown	Unknown	No	No				
Lakanal House	Camberwell, USA	12	Unknown	Unknown	Yes	No				
Toryglen Residential Tower	Glasgow, UK	20+	Unknown	Unknown	No	No				
Great Western Road	Glasgow, UK	12	Unknown	Unknown	No	No				
Waddell Court	Glasgow, UK	18	Unknown	Unknown	No	No				
Las Vegas Hilton	Las Vegas, USA	30	Yes	Yes	Yes	No				
50 St Apartment Building	New York, USA	10	No	Yes	Yes	Localised				
Dupont Plaza Hotel	San Juan, Puerto Rico	20	No	Yes	No	Localised				
Alexandria Condominium	Alexandria, USA	18	Unknown	Yes	No	No				
Vandalia Avenue Apartment Building	New York, USA	10	Unknown	Unknown	No	No				
Apartment Block	Missouri, USA	27	Unknown	Unknown	No	No				
Great Thornton St	Hull, UK	15	Unknown	Unknown	No	No				
Montrose Avenue	New York, USA	16	Unknown	Unknown	No	No				
La Frak City Apartments	New York, USA	16	Unknown	Unknown	No	No				
Park Avenue, Bronx	New York, USA	20	Unknown	Unknown	No	No				
Beach Channel Drive	New York, USA	13	Unknown	Unknown	No	No				
Lincoln Place	New York, USA	42	Unknown	Unknown	No	No				
Location	City	Floor	Name	City	Floor	Name	City	Floor	Name	Collapse Status
---------------------------	---------------	-------	----------------	---------------	-------	----------------	---------------	-------	----------------	----------------
West 60th Street	New York, USA	51	Unknown	New York, USA	51	Unknown	New York, USA	Yes	No	
Waterside Plaza	New York, USA	37	Unknown	New York, USA	37	Unknown	New York, USA	No	No	
Confucius Place	New York, USA	44	Unknown	New York, USA	44	Unknown	New York, USA	No	No	
Beach Channel Drive	New York, USA	13	Unknown	New York, USA	13	Unknown	New York, USA	No	No	
Moshulu Parkway	New York, USA	41	Unknown	New York, USA	41	Unknown	New York, USA	Yes	No	
Bedford Avenue	New York, USA	25	Unknown	New York, USA	25	Unknown	New York, USA	No	No	
Grand Avenue	New York, USA	26	Unknown	New York, USA	26	Unknown	New York, USA	No	No	
Shutter Avenue	New York, USA	22	Unknown	New York, USA	22	Unknown	New York, USA	No	No	
WTC 1	New York, USA	110	No	N/A	No	Complete collapse				
WTC 2	New York, USA	110	No	N/A	No	Complete collapse				
WTC 7	New York, USA	47	Unknown	Unknown	No	Complete collapse				