An Improved Firefly Algorithm Integrated with Recurrent Neural Network (RNN) for Face Recognition

Indranil Lahiri¹, Hiranmoy Roy²

¹M.Tech, Department of Electronics and Communication Engineering, College, Heritage Institute of Technology, Anandapur, Kolkata - 700107, India; ²Assistant Professor, Department of Information Technology, RCC Institute of Information Technology, Beliaghata, Kolkata-700015, India

ABSTRACT

Background: Face recognition (FR) is a promising biometric trait widely used for authentication in several applications like finance, military, security, surveillance and so on in daily life. Deep learning involves several processing layers for learning data representations with feature extraction at multiple levels. Hence, deep FR techniques with hierarchical architecture which puts pixels together to represent invariant face has drastically improved the recognition performance and promoted real-time applications successfully.

Objective: In this research, an Improved Firefly (IFF) algorithm is developed to recognize face whose performance is estimated by the integration of RNN network.

Method: Based on the selected dataset, RNN involved in analysis of facial features with inclusion of improved firefly algorithm (RnnIFF).

Result: The results stated that proposed approach provides higher value of accuracy, precision and sensitivity expressing 90%, 90% and 91% respectively. Also, Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) is evaluated and comparatively examined with existing techniques. The simulation results illustrated that proposed RnnIFF exhibits significant performance for recognition of faces.

Key Words: Recurrent Neural Network, Improved Firefly, Facial parts, Facial features, Classification, Peak signal to noise ratio, Alexnet, Convolutional neural networks

INTRODUCTION

Face recognition (FR) is extensively used in applications like security and financial sectors, say electronic payments. In the recent decades, FR has attracted the researchers. At the beginning, several classical approaches encountered bottlenecks due to some limitations like computing power and capability of the model designed. As recurrent neural networks (RNNs) were introduced and due to the increase in hardware capability, several limitations were eliminated rapidly, and thus various FR approaches based on RNNs were developed. The fundamental concepts of FR are feature extraction and their classification. Feature extraction discovers several discriminative features from the input which helps the classifiers to have a greater impact on recognition rate.

In the training set, due to the redundant facial images, the samples are exemplified by the low dimensional features extracted from face. By using these extracted features, computational cost is reduced and recognition rate of the classifiers is improved.

For real-time applications, changes in illumination, occlusions, facial expressions and varying pose are noted in a probe which makes the extracted features inefficient. An image can be represented effectively by the process of segmentation which retains the informative regions of the image. Neural network based approaches can provide better classification accuracy. But, these methods are in need of numerous training samples. Further, it is believed that few feature extraction techniques namely Principle Component Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminate Analysis (LDA), contribute less towards classifications, as they are linear representation approaches. Hence, there arises a necessity to develop a classifier for the FR system that uses the more discriminative information of
Lahiri et al: An improved firefly algorithm integrated with recurrent neural network (rnn) for face recognition

The probe image is varying and corrupted situations. Generally, the less number of grayscale or color images limits the discriminating ability of FR system. Moreover, with PCA, Gabor filter or Support Vector Machine (SVM), spatial parameters extracted from grayscale or color images, are poor if the image has pose and illumination variations and hence thereby results in low accuracy. Many researchers use hyperspectral imaging facial datasets as they have large volume of images. Hyperspectral imaging approach provides better FR results by capturing spectral features from face images which provide additional information for classification. The accuracy of the image is increased which depends on the spatial based approaches; moreover, the facial space distance are minimized by inter-object distance. At this circumstance, hyperspectral imaging approach helps to improve the performance as several features were used.

The traditional deep FR system generally aligns the faces first using simple affine transformations which is then fed into convolutional neural networks (CNNs) for extracting identity-preserving features. As this transformation removes only pose variations related to in-plane, still out-plane pose variations exists thereby causes misalignments in faces. Consequently, the accuracy of the FR system is very low when out-plane pose variations are more. To deal with this issue, one of the two following options can be used; aligning images with some additional technology like 3D face alignment or improving the capability of CNN’s to extract pose-invariant features.

LITERATURE REVIEW

After investigating the face recollection approaches of image processing, it is found that few methods were successful and those are described here below. In the visible light destination approach was introduced for identifying the visual system, least squares were employed for grouping the various poses. The approach was liable to noise. In large-scale face recognizer was suggested which was capable of responding to the complexity of document asymmetry. For producing, productive universal dataset, a novel approach was presented image recognition by incorporating fluctuations of data where more effective useful features were extracted.

In a novel approach to authenticate face was developed which was capable to handle a various pose combinations. A mutual Bayesian adaptation approach was suggested for modifying GMM to precisely predict the inconsistencies in facial expressions. In a broad space gradient inclusion method which focused on a novel Frenet picture to accept 3-D silhouette-invariant face and posture. Additionally, defined only one image in the permanent collection to implement a novel approach to detect face with smiling as well as appearance patterns. A 3D Stochastic Facial Emotion Recognition Synthetic Adjustable model was designed and implemented for repeating a 3D method from the original human image using a full 2D anterior image either with expressions or without expressions. In the near future, the envisaged FR system can be used in uncontrolled face recognition which is stable to a wide range of patterns related to faces. In an auto encoder was introduced which had the ability to produce a stronger level ethnicity characteristics from posture inconsistencies. Next, empowered personality features by displacing mechanical auto encoders’ target principles to generic transmissions. A tri-task CNN was considered for facial recognition in which classification and identification were the major role and other functions were projections of illuminations and poses. In changes within the image were examined based on the pixel density, amplification etc., and revealed a training approach for compensating body transition.

PROPOSED METHODOLOGY

An overview of the proposed approach for identification and recognition of facial features is discussed in this section. To enhance the recognition rate, the proposed system incorporates facial parts and features included for facial recognition. Figure 1 illustrates the working of the proposed RnnIFF for facial recognition.
Proposed RNN with Improved FireFly (RnnIFF)

RnnIFF comprises of three stages namely partness map generation, candidate window ranking using the faceness scores, face proposal refinement to detect face. In the beginning, as demonstrated in Figure 2, the five layers of RNNs takes a full image as input. To reduce the computational time, deep layers are shared by all these RNNs. At the top convolutional layer, by averaging, the weights of all the label maps, every RNN generates a partness map. Every partness maps specifies the position of a particular component in the facial image like eyes, mouth, nose, hair and beard, represented as h_e, h_m, h_n, h_h and h_b respectively. All of the above partness maps are combined as a face label map h_f which specifies the locations of the face clearly.

Figure 2: Conversion in RNN for facial features extraction.

In the second stage, windows are ranked based on their faceness scores. These scores were extracted from partness maps relating to the configurations of the various facial parts, as depicted in Figure 2. As an example, considering as in Figure 3, the local region of h_h is covered by the candidate window applied in convolution layer 1–7 whose faceness score is obtained by dividing the upper part values with its lower part values. This is because hair is present at the top region of face. The final faceness score is the average of all the scores of these parts.

Figure 3: Facial Features Identification in RNN.

Improved FireFly (IFF)

Firefly algorithm (FA) is a familiar stochastic approach for optimization which was introduced by Liu. This algorithm depends on the illumination of firefly where most of them are bright. This illuminations helps in attracting the prey and opposition. Each firefly sends illumination signals to other firefly. Generally, FA is based on attractiveness and brightness which are familiar rules of FA.

a) As fireflies are unisex, it attracts all other fireflies irrespective of sex.

b) The Attraction between two fireflies is directly proportional to Intensity of light or luminance hence brighter ones are more attractive. Firefly having low light intensity moves towards brighter ones.

c) Brightness of the firefly is achieved through cost function or fitness function which is used for searching purpose.

Mathematically, FA is represented as follows. Brighter firefly i attracts firefly j whose movement is obtained by

$$x'_i = x_i + \beta(x_j - x_i) + \text{random Parameters}$$ (1)

$$\beta = \beta_0 e^{-\gamma i}$$

$$x'_i (i = 1, 2, 3, ..., N)$$ (2)

Where, x_i and x_j represent the position of firefly i and firefly j respectively. x'_i is the updated position and $\beta (x_j - x_i)$ is the initial position of firefly. γ is considered as attractive force between firefly. r^2 is the relative distance between two fireflies.

Multilevel thresholding for the grayscale image is a very challenging task. Metaheuristic algorithm can be used to obtain the threshold value within range $[0, L-1]$. Firefly is one of the best metaheuristicalgorithm for maximizing the entropy measure of histogram. FA can be effectively used with levy flight to find optimum threshold value.

Step 1: Generate the population $X_i (i=1, 2, 3, ...)$ randomly within the range.

Step 2: Define the Kapoor’s Entropy method as Objective function.
Step 3: Initialize Absorption coefficient γ, Maximum Attraction β_0, Step Size as levy Flight, maximum iteration

Step 4: Calculate the fitness value for each firefly using

$$[th_1, th_2, ..., th_n] = \arg \max_{Th} F_{apopt}(Th)$$ \hspace{1cm} (4)

Step 5: Firefly updates its position towards brighter one using

$$x_i = x_i + \beta(x_j - x_i) + \text{random Parameters}$$ \hspace{1cm} (5)

Step 6: Repeat step 3 to 5 until maximum iteration is reached.

Step 7: Estimate the optimum threshold value with which the facial parts are segmented.

Among several segmentation evaluation metrics Peak-signal-to-noise ratio (PSNR) provides significant performance measure. Moreover, computational time and values of objective function are also used as parameters to determine the quality of the image segmented. Usually, PSNR is utilized for approximating the supremacy of the image and the relativity between the original and segmented image.

Facial Part Identification

A deep network which is trained on common objects, for example AlexNet\(^{16}\), is unable to provide precise location of faces. There exists several ways to learn partness maps but the most direct one is using the image as input and its pixelwise segmentation label map as target which is broadly used in image labeling\(^{5}\). Another is classifying faces and non-faces at image-level which is well suited for training images that are well-aligned.

However, complex background disorder occurs as the supervisory information is insufficient for face variations. The feature maps with more noise overwhelm the original position of faces. As an example, an ‘Asian’ face is differentiated from that of a ‘European’. As the attributes of hair are related, they are grouped together. Likewise the other regions too as in Table 1. Various CNNs are involved in modeling different facial regions. Thereby, if one region is occluded, the other regions can be identified by CNNs.

Face Detection

The windows proposed for this approach achieved by face-ness have a greater recall. For further improving it, these windows are refined by face classification and bounding box regression with the help of RNN whose function is similar to AlexNet\(^{16}\). Particularly, AlexNet is fine-tuned using AFLW and PASCAL VOC 2007 face images\(^{21}\). For classification, the window is assigned a positive label and the ground truth bounding box is greater than 0.5; or else negative. For false positive values, RNN produces a vector $[-1, -1, -1, -1]$.

EXPERIMENTAL ANALYSIS

Training datasets: CelebFaces dataset is used for training attribute-aware networks with 87,628 web-based images. All the images are labelled with 25 facial attributes which are divided into five categories as in Table 1. Around 75,000 images were randomly selected for training while the rest was reserved for validation. For detecting face, 13,000 facial images were chosen from AFLW dataset with pose variations and 5,700 images from the PASCAL VOC 2007 dataset. From LFW dataset, 2,900 images were selected as it manually provides hair as well as beard superpixel labels. With 68 dense facial landmarks, boxes for eye, nose and mouth are labeled manually.

Intersection over Union (IoU) was used as a metric for evaluating the algorithm. IoU threshold is fixed to 0.5. Particularly, an object is detected when IoUs are more than 0.5. Detection rate, precision and recall were involved to evaluate the effectiveness of the algorithm. Figure 4 presents the overall flow of proposed RnnIFF in face recognition. In figure 5, faces identified from the available dataset are presented.

Table 1: Facial Recognition Features

Facial regions	Attributes
Hair	Brown, Black, Gray or Blond hair, Bald, Straight or Wavy hair, Bangs, Receding hairline
Eye	Bushy or Arched eyebrows, Bags under eyes, Narrow eyes, Eyeglasses
Nose	Big or Pointy nose
Mouth	Big lips, Smiling, Mouth slightly open, lips with lipstick
Beard	No beard, Mustache, shadow, Goatee, Sideburns

Figure 4: Face Recognition Process in RnnIFF.

Figure 5: Identified Facial Recognition using RnnIFF.
Figure 4, 5 illustrates that this approach significantly outperforms conventional approaches. In Table 2, parameters measured for various input images like accuracy, precision and specificity are presented.

Table 2: Parameters of Facial Features

Images	Accuracy (%)	Precision (%)	Specificity (%)
Image 1	91	89	94
Image 2	89	91	89
Image 3	93	87	88
Image 4	86	93	92

Figure 6: Accuracy graph for the proposed RnnIFF technique. The figure 6 shows the accuracy calculated for the entire input image. X-axis gives the image representation and Y-axis gives accuracy measurement. It denotes that accuracy for proposed technique ranges between 85 and 90. This is the optimized accuracy attained by our proposed technique.

The figure 7 shows the precision calculated for the input images. X-axis gives the image representation and Y-axis gives precision measurement. It denotes that precision for proposed technique ranges between 85 and 95. This is the optimized precision attained by our proposed technique.

Figure 8: Specificity graph for the proposed RnnIFF technique. The above figure 8 shows the specificity calculated for the entire input image. X-axis gives the image representation and Y-axis gives specificity measurement. It denotes that specificity for proposed technique ranges between 85 and 90. This is the optimized specificity attained by our proposed technique.

Partial occlusion are explicitly handled in this approach by gathering the face likeliness via part responses. The speed was achieved by sharing the layers from conv1 to conv5 as part responses of the face were captured only in the layer conv7 as depicted in figure 2. The speed of this approach is comparatively lower than\(^9\). Particularly, this method shows that a CNN structure enjoys a 2.5\(\times\) speedup without accuracy loss. This method is also benefited from the latest model compression technique\(^8\). In Table 3 PSNR measured for different images are presented.

Table 3: Comparison of PSNR

Techniques	Image 1	Image 2	Image 3	Image 4
Bilateral Filter	55.7566	55.4563	48.466	52.456
Adaptive Filter	62.4675	48.8763	46.4236	56.466
Granular Filter	56.466	58.466	53.4632	62.5463
Gaussian Filter	68.485	53.485	64.4669	71.4539
Proposed RnnIFF	74.7669	72.7668	78.4853	82.4961

In Table 2 comparative PSNR values of existing filters and proposed RnnIFF facial recognition method is presented. The observed results demonstrated that proposed RnnIFF approach exhibits higher PSNR value rather than conventional filtering concept. The performance of RnnIFF technique for all 4 images are 20% higher than that of the conventional filtering facial recognition technique.
From Figure 9, it is observed that the proposed RnnIFF exhibits higher PSNR value than bilateral filter, adaptive filter, granular filter and Gaussian filter. In Table 3 MSE measurement of the existing and proposed RnnIFF approaches are presented.

Table 4: Comparison of MSE

Techniques	Image 1	Image 2	Image 3	Image 4
Bilateral Filter	23.7486	23.4855	31.7967	28.4766
Adaptive Filter	24.7965	27.7937	33.4833	38.4963
Granular Filter	0.7566	4.84526	6.746563	9.4863
Gaussian Filter	0.02466	0.046656	0.0058665	1.79666
Proposed RnnIFF	0.02466	0.046656	0.0058665	1.79666

The above Table 4 illustrates the MSE performance of existing filtering and the proposed RnnIFF approaches. The RnnIFF approach provides a minimal MSE value of 0.02466, 0.046656, 0.0058665 and 1.79666 for images 1 to 4 through which it is considered that proposed RnnIFF approach exhibits superior performance rather than existing techniques. In Figure 10, comparethe proposed RnnIFF with the existing bilateral filter, adaptive filter, granular filter and Gaussian filter.

From Figure 10, it is observed that proposed RnnIFF exhibits superior performance with minimal MSE value compared with existing techniques.

CONCLUSION

Facial recognition has been utilized in vast range of application due to its security features. In the past, approaches based on neural network were widely applied to locate faces. In this paper, a RNN based approach for facial recognition is proposed. The proposed approach incorporated RNN with improved firefly algorithm (RnnIFF) for identification of faces. By identification of facial parts, the proposed RnnIFF approach estimated the facial features to perform facial recognition. The evaluation of proposed RnnIFF exhibited that through significant training and testing process facial features were effectively identified. The proposed RnnIFF achieved the accuracy level of 90%, precision value of 90% and specificity value of 91%. The comparative analysis of PSNR and MSE with existing techniques states that the proposed RnnIFF expressed higher PSNR level of approximately 20% and MSE of approximately 10%. The facial features of image expressed that proposed RnnIFF provides improved performance rather than conventional techniques.

ACKNOWLEDGMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references to this manuscript. The authors are also grateful to authors / editors / publishers of all those articles, journals, and books from which the literature for this article has been reviewed and discussed.

Conflict of Interest: Nil

Source of Funding: Nil

Author’s Contribution:

I / We both have equally contributed to this article in terms of data collections and research methodologies.

REFERENCES

1. AbdAlmageed W, Wu Y, Rawls S, Harel S, Hassner T, Masi I and Nevatia R, “Face recognition using deep multi-pose representations IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1-9, 2016.
2. Agarwal A, Singh R, Vatsa M and Ratha N, “Are image-agnostic universal adversarial perturbations for face recognition difficult to detect?”, IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1-7, 2018.
3. Antipov G, Baccouche M and Dugelay J. L, “Boosting cross-age face verification via generative age normalization”, IEEE International Joint Conference on Biometrics (IJCB), pp. 191-199, 2017.
4. Bansal A, Castillo C, Ranjan R and Chellappa R, “The do’s and don’ts for cnn-based face verification”, Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2545-2554, 2017.
5. Bao J, Chen D, Wen F, Li H and Hua G, “Towards open-set identity preserving face synthesis”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6713-6722, 2018.
Lahiri et al: An improved firefly algorithm integrated with recurrent neural network (RNN) for face recognition

6. Cao Q, Shen L, Xie W, Parkhi O. M and Zisserman A, “Vggface2: A dataset for recognising faces across pose and age”, 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67-74, 2018.

7. Cao K, Rong Y, Li C, Tang X and Change Loy C, “Pose-robust face recognition via deep residual equivariant mapping”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5187-5196, 2018.

8. Chen B, Deng W and Du J, “Noisy softmax: Improving the generalization ability of dcnn via postponing the early softmax saturation”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5372-5381, 2017.

9. Deng W, Hu J and Guo J, “Compressive binary patterns: Designing a robust binary face descriptor with random-field eigenfilters”, IEEE transactions on pattern analysis and machine intelligence, vol.41, no.3, pp.758-767, 2018.

10. Deng W, Hu J and Guo J, “Face recognition via collaborative representation: Its discriminant nature and superposed representation”, IEEE transactions on pattern analysis and machine intelligence, vol.40, no.10, pp.2513-2521, 2017.

11. Kotia J, Bharti R, Kotwal A and Mangrulkar R, “Application of Firefly Algorithm for Face Recognition”, Applications of Firefly Algorithm and its Variants, pp.147-171, 2020.

12. Duong C. N, Quach K. G, Jalata I, Le N and Luu K, “Mobiface: A lightweight deep learning face recognition on mobile devices”, arXiv preprint arXiv:1811.11080, 2018.

13. Goel A, Singh A, Agarwal A, Vatsa M and Singh R, “Smartbox: Benchmarking adversarial detection and mitigation algorithms for face recognition”, IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp.1-7, 2018.

14. Goswami G, Ratha N, Agarwal A, Singh R and Vatsa M, “Unravelling robustness of deep learning based face recognition against adversarial attacks. Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

15. He L, Li H, Zhang Q Sun Z, “Dynamic feature learning for partial face recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

16. Howard A. G, Zhu M, Chen B, Kalenichenko D, Wang W, Wey and T and Adam H, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv preprint arXiv:1704.04861, 2017.

17. Hu L, Kan M, Shan S, Song X and Chen X, “LDF-Net: Learning a displacement field network for face recognition across pose”, 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp.9-16, 2017.

18. Lezama J, Qiu Q and Sapiro G, “Not afraid of the dark: Nir-vis face recognition via cross-spectral hallucination and low-rank embedding”, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.6628-6637, 2017.

19. Li Q, Jin S and Yan J, “Mimicking very efficient network for object detection”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.6356-6364.

20. Liu W, Wen Y, Yu Z and Yang M, “Large-margin softmax loss for convolutional neural networks”, International Conference on Machine Learning, vol.2, no.3, 2016.

21. Liu W, Zhang Y. M, Li X, Yu Z, Dai B, Zhao T and Song L, “Deep hyperspherical learning”, Advances in neural information processing systems, pp.3950-3960, 2017.