A GEVREY MICROLOCAL ANALYSIS OF
MULTI-ANISOTROPIC DIFFERENTIAL OPERATORS

CHIKH BOUZAR AND RACHID CHAILI

Abstract. We give a microlocal version of the theorem of iterates
in multi-anisotropic Gevrey classes for multi-anisotropic hypoellip-
tic differential operators.

1. Introduction

A fundamental result of Gevrey microlocal regularity due to Hörmander
is

(1.1) \(WF_s(u) \subset WF_s(P(x, D)u) \cup \text{Char}(P) \),

where \(P(x, D) \) denotes a differential operator with analytic coefficients
in \(\Omega \), \(\text{Char}(P) \) its set of characteristic points \((x, \xi) \in \Omega \times \mathbb{R}^n \)
and \(WF_s(u) \) is the Gevrey wave front of the distribution \(u \in \mathcal{D}'(\Omega) \).

Let \(WF_s(u, P(x, D)) \), see [2], be the Gevrey wave front of the distri-
bution \(u \in \mathcal{D}'(\Omega) \) with respect to the iterates of the operator \(P(x, D) \),
then the result (1.1) is made more precise by the following inclusion

(1.2) \(WF_s(u) \subset WF_s(u, P(x, D)) \cup \text{Char}(P) \),

since

(1.3) \(WF_s(u, P(x, D)) \subset WF_s(P(x, D)u) \).

Various extensions and generalizations of results (1.1) and (1.2) have
been obtained, according as one considers the classes of elliptic or hy-
opeelliptic differential operators or one considers different notions of
homogeneity associated to these classes of operators, see e. g. [2], [3],
[8], [15], [16] and [17].

In [14] a microlocal analysis of the so called inhomogeneous Gevrey
classes [15], see also [6], has been introduced. The \(\varphi \)–inhomogeneous
Gevrey wave front of a distribution \(u \in \mathcal{D}'(\Omega) \), denoted \(WF_\varphi(u) \), is
defined with respect to a weight function \(\varphi \).

1991 Mathematics Subject Classification. 35H10, 35A18, 35H30.

Key words and phrases. Wave front; Gevrey-microlocal analysis; Newton’s
polyhedron; Multiquasielliptic differential operators; Gevrey spaces; Gevrey-
Hypoellipticity.
The method of Newton’s polyhedron, see [2] or [1], permits to approach differential operators with respect to their multi-quasihomogeneity. In this situation the $\varphi-$inhomogeneous Gevrey wave front $WF_{\varphi}(u)$ is characterized by a weight φ equals to the function $|\xi|_P$ defined by the Newton’s polyhedron P of the operator $P(x, D)$ and it is denoted by $WF_{s,P}(u)$.

An interpretation of the $\varphi-$inhomogeneous Gevrey microlocal analysis to the multi-anisotropic case is given in the paper [8], where a theorem in the spirit of the result (1.1) for a class of multi-quasihomogeneous hypoelliptic differential operators is obtained.

The aim of this paper is to obtain a result in the spirit of (1.2) for a class of multi-anisotropic hypoelliptic differential operators including the classes of operators studied in [2], [4], [7], [8], [10], [16] and [17]. The section 2 is an adapted modification of the $\varphi-$inhomogeneous Gevrey wave front of Liess-Rodino, see [14] and [8], to our multi-anisotropic case in the spirit of [13] and [16]. In section 3 we introduce and study the multi-anisotropic Gevrey wave front with respect to the iterates of an operator $P(x, D)$ and its Newton’s polyhedron P, denoted $WF_{s,P}(u, P(x, D))$, the following section 4 gives the microlocal result of type (1.2) for the studied class of differential operators. This class is microlocally characterized by the following definition.

Definition 1. Let $x_0 \in \Omega, \xi_0 \in \mathbb{R}^n \setminus \{0\}$ and $P(x, D)$ be a differential operator with coefficients in the anisotropic Gevrey class $G^{s,q}(\Omega)$, we say $(x_0, \xi_0) \notin \sum_{\rho, \delta, s}^{\mu, \mu'} P$ if there exists an open neighbourhood $U \subset \Omega$ of x_0, an open q-quasiconic neighbourhood $\Gamma \subset \mathbb{R}^n \setminus \{0\}$ of ξ_0 and a constant $c > 0$ such that $\forall (x, \xi) \in U \times \Gamma$,

$$
\begin{align*}
|\xi|_{P}^\mu &\leq c |P(x, \xi)|, \\
|D_x^\alpha D_\xi^\beta P(x, \xi)| &\leq c^{\alpha+1} < \alpha, q >^{s\mu < \alpha, q>} |P(x, \xi)||\xi|^{|\xi|_{P}^\delta|\alpha| - \rho|\beta|},
\end{align*}
$$

where the numbers ρ, δ, μ' and μ satisfy $0 \leq \delta < \rho \leq 1$ and $\delta \mu < \mu' \leq \mu$.

The principal result of this work is the following theorem.

Theorem 1. Let $u \in \mathcal{D}'(\Omega)$, $P(x, D)$ a differential operator with coefficients in $G^{s,q}(\Omega)$ and ρ, δ, μ', μ such that $0 \leq \delta < \rho \leq 1$ and $\delta \mu < \mu' \leq \mu$, then

$$
WF_{s',P}(u) \subset WF_{s,P}(u, P) \cup \sum_{\rho, \delta, s}^{\mu, \mu', \rho} (P),
$$

where $s' = \max \left(\frac{s \mu}{\mu' - \delta \mu}, \frac{s}{\rho - \delta} \right)$.

2. Multi-anisotropic Gevrey wave front

This section is an adaptation with a slight modification of the inhomogeneous Gevrey microlocal analysis introduced in [14], see also [15] and [8], to the multi-anisotropic case.

Let Ω be an open subset of \mathbb{R}^n and let $P(x, D)$ be a linear partial differential operator with coefficients in $C^\infty(\Omega)$,

$$P(x, D) = \sum_{\alpha \in \Lambda} a_\alpha(x) D^\alpha,$$

where Λ is a finite subset of \mathbb{Z}^n_+.

Definition 2. Let $x_0 \in \Omega$, the Newton's polyhedron of the operator $P(x, D)$ at the point x_0, denoted $P(x_0)$, is the convex hull of

$$\{0\} \cup \{\alpha \in \mathbb{Z}^n_+, a_\alpha(x_0) \neq 0\}.$$

Remark 1. A Newton's polyhedron P is always characterized by

$$P = \cap_{a \in A} \{\alpha \in \mathbb{R}^n_+, <\alpha, a> \leq 1\},$$

where $A(P)$ is a finite subset of \mathbb{R}^n.

Definition 3. The Newton's polyhedron P is said to be regular if for any $a = (a_1, ..., a_j, ..., a_n) \in A$ we have $a_j > 0, \forall j = 1, ..., n$.

Definition 4. The operator $P(x, D)$ is said regular if it satisfies the following conditions:

1. $P(x_0) = P, \forall x_0 \in \Omega.$
2. P is a regular polyhedron.

Remark 2. In this paper we consider only regular operators.

Let P be a regular polyhedron, we set

$$V(P) = \{s^0 = 0, s^1, .., s^m\}$$

the set of the vertices of P.

$$\mu_j = \max a_j^{-1}, a \in A.$$

$$\mu = \max \mu_j.$$

$$q = \left(\frac{\mu}{\mu_1}, ..., \frac{\mu}{\mu_n}\right).$$

$$k(\alpha) = \inf \{t > 0, t^{-1} \alpha \in P\} = \max_{a \in A} <\alpha, a>.$$

$$|\xi|_P = \left(\sum_{i=1}^{m} (\xi^2 s^i)^{1/\mu}\right)^{1/2}.$$

$$|\xi|_q = \left(\sum_{j=1}^{n} (\xi_j^2 q_j)^{1/2}\right)^{1/2}.$$
Definition 5. Let $s \geq 1$ and \mathbb{P} be a regular polyhedron, we denote $G^{s,\mathbb{P}}(\Omega)$ the space of functions $u \in C^\infty(\Omega)$ such that $\forall K$ compact of Ω, $\exists C > 0, \forall \alpha \in \mathbb{Z}^n_+$,

$$\sup_K |D^\alpha u| \leq C^{|\alpha|+1} k(\alpha)^{\mu k(\alpha)}.$$ (2.1)

Example 1. If the operator P is l-quasi-elliptic of order m, with the weight $l = (l_1, ..., l_n)$, so its Newton’s polyhedron \mathbb{P} is the simplex of vertices $\{0, m_je_j, j = 1, ..., n\}$, which is obviously regular. In this case the set A coincides with the vector $\sum_{j=1}^n m_j e_j$, and we have $\mu_j = m_j$, $\mu = m$, $l = q = (\frac{m}{m_1}, ..., \frac{m}{m_n})$. If $\alpha \in \mathbb{Z}^n_+$, then $k(\alpha) = m^{-1} < \alpha, q >$ and we obtain $G^{s,\mathbb{P}}(\Omega) = G^{s,q}(\Omega)$ the anisotropic Gevrey space, i.e. the space of functions $u \in C^\infty(\Omega)$ such that $\forall K$ compact of Ω, $\exists C > 0, \forall \alpha \in \mathbb{Z}^n_+$,

$$\sup_K |D^\alpha u| \leq C^{|\alpha|+1} \alpha_1^{q_1} ... \alpha_n^{q_n}.$$

The following lemma, obtained in [8], gives the existence of a truncation sequence, following the fundamental lemma 2.2 of [13] in the multi-anisotropic case. The quasihomogeneous case is a result of [16, lemma 1.2].

Lemma 1. Let K be a compact set of \mathbb{R}^n and let $s \geq 1$, then there exists a sequence $(\chi_N) \subset C^\infty_0(\mathbb{R}^n)$ such that $\chi_N = 1$ on K and

$$|D^\alpha \chi_N| \leq C (CN^{\mu})^{<\alpha,a>} \text{ if } <\alpha,a> \leq N, \forall a \in A, N = 1, 2,$$ (2.2)

A characterization of $G^{s,\mathbb{P}}(\Omega)$ using the Fourier transform is given by the following theorem.

Theorem 2. Let $x_0 \in \Omega$ and $u \in \mathcal{D}'(\Omega)$, then u is $G^{s,\mathbb{P}}$ in a neighbourhood of x_0 if, and only if there exists a neighbourhood U of x_0 and a sequence (u_N) in $\mathcal{E}'(\Omega)$ such that

i) $u_N = u$ in U, $N = 1, 2,$

ii) u_N is bounded in $\mathcal{E}'(\Omega)$.

iii) $|\hat{u}_N(\xi)| \leq C \left(\frac{CN^\mu}{|\xi|^\mu}\right)^{\mu N}$, $N = 1, 2,$

Proof. See [14] and [8].

We give now a microlocalization of the definition [5] It is an adapted modification, in the spirit of [13] and [16], of the φ-inhomogeneous Gevrey wave front of Liess-Rodino, see [14] and [8], to our multi-anisotropic case. It coincides exactly with the classical definition of the quasihomogeneous case.
Definition 6. Let \(x_0 \in \Omega, \xi_0 \in \mathbb{R}^n \setminus \{0\} \) and \(u \in \mathcal{D}^\prime(\Omega) \), we say that \(u \) is \(G_{s,P} \)-microregular at \((x_0, \xi_0)\), if there exists \(C > 0 \), a neighbourhood \(U \) of \(x_0 \) in \(\Omega \), a \(q \)-quasiconic neighbourhood \(\Gamma \) of \(\xi_0 \) in \(\mathbb{R}^n \setminus \{0\} \) and a sequence \((u_N) \subset E_{\Omega}^\prime\) such that

i) \(u_N = u \) in \(U, \ N = 1, 2, ... \).

ii) \(u_N \) is bounded in \(E_{\Omega}^\prime \).

iii) \(|\hat{u}_N(\xi)| \leq C \left(\frac{CN_s}{|\xi|_P} \right)^\mu_N, \ N = 1, 2, ..., \xi \in \Gamma \).

Remark 3. The definition \(\ref{def:GsP} \) coincides exactly with the quasihomogeneous case, see \([16]\), if the polyhedron \(\mathcal{P} \) is the simplex of vertices \(\{0, m_j e_j, j = 1, ..., n\} \).

Using the truncation sequence \((\chi_N)\) we obtain the following lemma, see \([8]\).

Lemma 2. Let \(u \in \mathcal{D}^\prime(\Omega) \) and \((x_0, \xi_0) \notin WF_{s,P}(u) \) and let \(U, \Gamma \) be as in definition \(\ref{def:GsP} \). If \(K \) is a compact neighbourhood of \(x_0 \) in \(U \), \(F \) is a \(q \)-quasiconic compact neighbourhood of \(\xi_0 \) in \(\mathbb{R}^n \setminus \{0\} \) equal to 1 on \(K \) satisfying \(\ref{eq:2.2} \), then there exists \(p_0 \in \mathbb{Z}_+, N_0 \in \mathbb{Z}_+ \) such that the sequence \((\chi_{p_0 N_0 + N_0} u)\) satisfies i)-iii) in \(K \) and \(F \).

We define the \(G_{s,P} \)-singsupp\((u)\) as the complementary of the biggest open subset of \(\Omega \) where \(u \) is \(G_{s,P} \). The relation between the multi-anisotropic Gevrey wave front and the multi-anisotropic Gevrey singular support is given by the following proposition.

Proposition 1. Let \(u \) be a distribution in \(\Omega \), then the projection of \(WF_{s,P}(u) \) on \(\Omega \) is the \(G_{s,P} \)-singsupp\((u)\).

Proof. It follows the similar proof of \([8]\). \(\square \)

The microlocal property of the differential operator \(P(x,D) \) with respect to the \(G_{s,P} \)-wave front \(WF_{s,P}(u) \) is given by the following theorem.

Theorem 3. Let \(u \in \mathcal{D}^\prime(\Omega) \) and \(P(x,D) \) be a differential operator with coefficients in \(G_{s,q}(\Omega) \), then

\[
(2.3) \quad WF_{s,P}(Pu) \subset WF_{s,P}(u).
\]

Proof. See \([14]\) and \([15]\). \(\square \)
Lemma 3. The space of Gevrey vectors of distributions $u \in \mathcal{D}'(\Omega)$ such that $\forall \chi \in \mathcal{E}'(\Omega)$, and $f \in G^{s,p}(\Omega)$, then $gf \in G^{s,p}(\Omega)$, see [11]. This justifies the optimal choice of the regularity of the coefficients of the operator $P(x,D)$.

3. Multi-anisotropic Gevrey wave front with respect to the iterates of a differential operator

The Gevrey microlocal analysis with respect to the iterates of a differential operator has been introduced for the first time by P. Bolley and J. Camus in [2] in the homogeneous case. L. Zanghirati in [16] has adapted it to the quasihomogeneous case. The aim of this section is to extend this analysis to the multi-quasihomogeneous case.

Definition 7. Let $r \in \mathbb{R}$ and $s \geq 1$, we denote $G^{s,p}_r(\Omega, P)$ the space of distributions $u \in \mathcal{D}'(\Omega)$ such that $\forall K$ compact of Ω, $\exists C > 0$, $\forall N \in \mathbb{Z}_+$,
\[
\left\| P^N u \right\|_{H^r(K)} \leq C (CN^s)^{\mu N}.
\]
The space of Gevrey vectors of the operator P is by definition
\[
G^{s,p}(\Omega, P) = \bigcup_{r \in \mathbb{R}} G^{s,p}_r(\Omega, P).
\]

The space of Gevrey vectors $G^{s,p}(\Omega, P)$ of the operator P is described with the help of the Fourier transform in the following lemma.

Lemma 3. Let $x_0 \in \Omega$ and $u \in \mathcal{D}'(\Omega)$, then $u \in G^{s,p}(V, P)$ for a neighbourhood V of x_0 if, and only if, there exists a neighbourhood U of x_0, $U \subset V$, $C > 0$, $M \in \mathbb{R}$ and a sequence (f_N) in $\mathcal{E}'(V)$ such that
\begin{enumerate}[(i)]
\item $f_N = P^N u$ in U, $N = 0, 1, \ldots$
\item $\left| \hat{f}_N(\xi) \right| \leq C (CN^s)^{\mu N} (1 + |\xi|^M)$, $\xi \in \mathbb{R}^n, N = 0, 1, \ldots$
\end{enumerate}

Proof. It follows the proof of proposition 1.4 of [2].

Remark 4. The product of two functions of the space $G^{s,p}(\Omega)$ does not belong in general to $G^{s,p}(\Omega)$, but if $g \in G^{s,q}(\Omega)$ and $f \in G^{s,p}(\Omega)$, then $gf \in G^{s,p}(\Omega)$, see [11].
Proof. It is sufficient to see at first that $G^{s,q}(\Omega) \subset G^{s,\mu u}(\Omega)$, $\forall a \in A$ and for any $a, b \in Z$ in C and apply after lemma 2.3 of [16] or adapt lemma 5.3 of [13]. □

\[(\mu < \alpha, a >)^{(\mu < a, a >)} \leq (\mu^2 < \alpha, b >)^{(\mu^2 < a, b >)}, \alpha \in Z^+ \]

and apply after lemma 2.3 of [16] or adapt lemma 5.3 of [13]. □

Thanks to the truncation sequence (χ_N), if $u \in \mathcal{D}'(\Omega)$, the sequence $u_N = \chi_N u$ is bounded in $\mathcal{E}'(\Omega)$ and then $\exists C > 0$, $|\widehat{u_N}(\xi)| \leq C (1 + |\xi|)^M$, $\xi \in \mathbb{R}^n, N \in \mathbb{Z}_+$. In the problem of iterates this property is precised by the following result.

Lemma 5. Let K be a compact subset of Ω and let (χ_N) be a sequence in $C^\infty_0(K)$ satisfying \(2\), then $\forall u \in \mathcal{D}'(\Omega)$, $\exists p_0 > 0, \forall p > p_0, \forall r \in \mathbb{Z}_+$, the sequence $f_N = \chi_{pN+r}P^N$ satisfies
\[
\widehat{f_N}(\xi) \leq C (C (N^{s\mu} + |\xi|_p))^\mu N^M, \xi \in \mathbb{R}^n, N \in \mathbb{Z}_+.
\]

Proof. It does not differ substantially from its quasihomogeneous similar lemma 2.4 of [16]. □

The belonging to the space $G^{s,F}(\Omega,P)$ is microlocally characterized by the following definition.

Definition 8. Let $u \in \mathcal{D}'(\Omega)$, $(x_0, \xi_0) \in \Omega \times \mathbb{R}^n \setminus \{0\}$ and $P(x,D)$ be a differential operator with coefficients in $G^{s,q}(\Omega)$. We say that u is $G^{s,F}$-microregular with respect to the iterates of $P(x,D)$ at (x_0, ξ_0), we denote $(x_0, \xi_0) \notin WF_{s,F}(u,P)$, if there exists $C > 0, M \in \mathbb{R}$, a neighbourhood U of x_0 in Ω, a q-quasiconic neighbourhood Γ of ξ_0 in $\mathbb{R}^n \setminus \{0\}$ and a sequence $(f_N) \subset \mathcal{E}'(\Omega)$ such that
\[
\begin{align*}
\text{i)} f_N = P^N u & \quad \text{in } U, N \in \mathbb{Z}_+ . \\
\text{ii)} |\widehat{f_N}(\xi)| & \leq C (C (N^{s\mu} + |\xi|_p))^\mu N^M, \xi \in \mathbb{R}^n, N \in \mathbb{Z}_+ . \\
\text{iii)} |\widehat{f_N}(\xi)| & \leq C (C N^s)^\mu N (1 + |\xi|)^M, \xi \in \Gamma, N \in \mathbb{Z}_+ .
\end{align*}
\]

The following proposition gives the link between the $G^{s,F}$-singularities of a distribution $u \in \mathcal{D}'(\Omega)$ with respect to the iterates of $P(x,D)$ and the wave front $WF_{s,F}(u,P)$.

Proposition 2. Let $u \in \mathcal{D}'(\Omega)$ and $P(x,D)$ be a differential operator with coefficients in $G^{s,q}(\Omega)$, then the projection of $WF_{s,F}(u,P)$ on Ω is the complement of the biggest open subset Ω' of Ω where $u \in G^{s,F}(\Omega',P)$.

Proof. It follows the steps of the proofs of the classical theorems in the homogeneous case, see [2], and the quasihomogeneous case, see [16], and makes use essentially of the following lemma.
Lemma 6. Let \(u \in {\mathcal{D}}' (\Omega) \) and \((x_0, \xi_0) \notin WF_{s,p} (u, P) \), \(U \) and \(\Gamma \) be as in the definition \(K \) a compact neighbourhood of \(x_0 \) in \(U \), \(F \) be a \(q \)-quasiconic compact neighbourhood of \(\xi_0 \) in \(\Gamma \) and \((\chi_N) \subset C_0^\infty (U) \) be a sequence equals to 1 on \(K \) satisfying \((2.4) \), then there exists \(p_0 \in \mathbb{Z}_+ \), \(N_0 \in \mathbb{Z}_+ \) such that the sequence \((\chi_{p_0N+N_0}P^Nu) \) satisfies \(jjj \) in \(F \).

The microlocal property of the operator \(P(x, D) \) with respect to the wave front \(WF_{s,p} (u, P) \) is the following result.

Theorem 4. Let \(u \in {\mathcal{D}}' (\Omega) \) and \(P(x, D) \) be a differential operator with coefficients in \(G^{s,q} (\Omega) \), then

\[
WF_{s,p} (u, P) \subset WF_{s,p} (Pu) \subset WF_{s,p} (u)
\]

Proof. Suppose that \((x_0, \xi_0) \notin WF_{s,p} (u) \), then there exists a neighbourhood \(U \) of \(x_0 \), a \(q \)-quasiconic neighbourhood \(\Gamma \) of \(\xi_0 \) and a bounded sequence \((u_N) \in \mathcal{E}' (\Omega) \) such that \(u_N = u \) in \(U \) and \(|\hat{u}_N (\xi)| \leq C \left(\frac{CN_N}{|\xi|^\mu} \right) \), \(N = 1, 2, \ldots, \xi \in \Gamma \). Let \(K \) be a compact neighbourhood of \(x_0 \) in \(U \), \(F \) be a \(q \)-quasiconic compact neighbourhood of \(\xi_0 \) in \(\Gamma \) and let \((\chi_N) \subset C_0^\infty (U) \) equal to 1 on \(K \) satisfying \((2.2) \). Choose \(p \geq p_0 + N_0 \) and set \(f_N = \chi_{pN}P^Nu \), we will show that this sequence satisfies \(jjj \) since \(j \) is true and \(jj \) is fulfilled according to lemma \(5 \).

We have

\[
\hat{f}_N (\xi) = \int e^{-i<x,\xi>} \chi_{pN}P^Nu dx = \int u \, ^tP^N (e^{-i<x,\xi>}) \chi_{pN} \, dx.
\]

Set \(^tP (x, D) = \sum_{\alpha \in \mathbb{Z}_+^n \cap \mathbb{P}} a'_\alpha (x) D^\alpha \) and let \(0 = k_0 < k_1 < \ldots < k_r = 1 \), be the elements of the set \(\{ k = k (\alpha), \alpha \in \mathbb{Z}_+^n \cap \mathbb{P} \} \). Then

\[
^tP (e^{-i<x,\xi>}) \chi_{pN+r} = e^{-i<x,\xi>} |\xi|^\mu P \chi_{pN+r},
\]

where \(R (x, \xi, D) = R_0 + \ldots + R_r \) and

\[
R_l (x, \xi, D) = \sum_{\alpha \in \mathbb{Z}_+^n \cap \mathbb{P}} \sum_{\beta \leq \alpha \atop k(\beta) = k_l} (-1)^{|\beta|} a'_\alpha (x) \frac{\xi^\beta}{|\xi|^\mu} D^{n-\beta}.
\]

By iteration we find

\[
^tP^N (e^{-i<x,\xi>}) \chi_{pN} = e^{-i<x,\xi>} |\xi|^\mu \sum_{0 \leq l_1 \leq \ldots \leq r \leq N} R_{l_1} \ldots R_{l_N} \chi_{pN}.
\]
Since the coefficients of R_l are in $G^{s,a} (\Omega)$, $\forall \xi \in \mathbb{R}^n$, then from lemma 2, we obtain for $< \alpha, a > \leq N, a \in \mathcal{A},$

$$|D^a R_l ... R_l \chi_{pN+r}| \leq C_1^{N+1} N \left(\sum_{1 \leq i \leq N} \sum_{\mu} k_i \right) \left(\sum_{1 \leq i \leq N} k_i \right),$$

since $|\xi|^\beta \leq |\xi|^\mu$, $\forall \beta \in \mathbb{Z}_+$. Then for $|\xi|^\rho \geq N^{s\mu}, < \alpha, a > \leq N, a \in \mathcal{A}$, we get

$$(3.5) \quad |D^a \left(R^N \chi_{pN} \right) | \leq C_2^{N+1} N^{s\mu}. $$

From (5.3), (5.4), (5.5) and lemma 2, we obtain

$$\left| \hat{f}_N (\xi) \right| = \left| \left((R^N \chi_{pN}) u \right)^{\rho} (\xi) \right| \leq C \left(C N^s \right)^{\rho}, \xi \in F, |\xi|^\rho \geq N^{s\mu},$$

so $(x_0, \xi_0) \notin WF_{s,q} (u, P)$, hence $WF_{s,p} (u, P) \subset WF_{s,p} (u)$.

Since

$$WF_{s,p} (u, P) = WF_{s,p} (Pu, P) \subset WF_{s,p} (Pu)$$

and $WF_{s,p} (Pu) \subset WF_{s,p} (u)$, according to theorem 3, so the proof of theorem 4 is complete.

4. THE MULTI-ANISOTROPIC GEVREY MICROLOCAL REGULARITY

We obtain in this section a result of Gevrey microlocal regularity for a class of multi-anisotropic hypoelliptic differential operators characterized by the following definition.

Definition 9. Let $x_0 \in \Omega, \xi_0 \in \mathbb{R}^n \setminus \{0\}$ and $P (x, D)$ be a differential operator with coefficients in $G^{s,a} (\Omega)$, we denote $(x_0, \xi_0) \notin \sum_{\rho, \delta, s} \mu (P)$ if there exists an open neighbourhood $U \subset \Omega$ of x_0, an open q-quasiconic neighbourhood $\Gamma \subset \mathbb{R}^n \setminus \{0\}$ of ξ_0 and a constant $c > 0$ such that $\forall (x, \xi) \in U \times \Gamma$,

$$(4.1) \quad \left\{ \begin{array}{ll}
|\xi|^{\mu} / c \leq c |P (x, \xi)|, \\
D^a D^\beta P (x, \xi) / c^{a+1} \leq c^{q < \alpha, \rho > |P (x, \xi)| |\xi|^{\mu} - |\rho|^{\delta} |, \\
\end{array} \right.$$

where the numbers ρ, δ, μ and μ' satisfy $0 \leq \delta < \rho \leq 1$ and $\delta \mu < \mu' \leq \mu$.

We need the following lemma which is a modification of the similar result of 2 lemm 3.8.

Lemma 7. Under the notations of definition 2, if $\chi_N \in C_0^\infty (U)$ satisfies (2.2), so there exists $C > 0$ such that for $(x, \xi) \in U \times \Gamma, h_1, ..., h_j \in$
$\mathbb{Z}_+, a \in \mathcal{A}, \alpha < \alpha_1 + .. + \alpha_j, a > \leq N, \beta_1, .., \beta_{j-1} \in \mathbb{Z}_+^n$:

$$\left| D^{\alpha_1} P_{h_1} P^{(\beta_1)} ... D^{\alpha_{j-1}} P_{h_{j-1}} P^{(\beta_{j-1})} D^{\alpha_j} P_{h_j} \chi_N \right| \leq C^{N+1+|h_1|+..+|h_j|} < \alpha, a >^{s_{\alpha,a}} \left| P(x, \xi) \right|^{h_1+..+h_j+j-1} |\xi|_{P}^{\beta_a} - \rho|\beta|,$$

where $\alpha = \alpha_1 + .. + \alpha_j, \beta = \beta_1 + .. + \beta_{j-1}$.

The principal result of this work is the following theorem.

Theorem 5. Let Ω be an open subset of \mathbb{R}^n, $u \in \mathcal{D}'(\Omega)$ and $P(x, D)$ be a differential operator with coefficients in $G^{s,q}(\Omega)$ and let ρ, δ, μ' and μ be real numbers satisfying $0 \leq \delta < \rho \leq 1$ and $\delta \mu < \mu' \leq \mu$, then (4.2)

$$WF_{s',P}(u) \subset WF_{s,P}(u, P) \cup \sum_{P,\delta,s}^{\mu,\mu',P}(P),$$

where $s' = \max \left(\frac{s_{\mu}}{\mu'-\delta \mu}, \frac{s}{\rho-\delta} \right)$.

Proof. Let $(x_0, \xi_0) \notin WF_{s,P}(u, P) \cup \sum_{P,\delta,s}^{\mu,\mu',P}(P)$, then there exists $C > 0, M \in \mathbb{R}$, a neighbourhood U of x_0 in Ω, a q-quasiconic neighbourhood Γ of ξ_0 in $\mathbb{R}^n \setminus \{0\}$ and a sequence $(f_n) \subset \mathcal{E}'(\Omega)$ such that the conditions j), j)), and j)) of definition 8 are fulfilled. Let K be a compact neighbourhood of x_0 in U, Γ a $q-$quasiconic compact neighbourhood of ξ_0 in Γ such that (4.1) is hold and let $\chi_N \in C_0^\infty(U), \chi_N = 1$ on K satisfying (2.2) and p a large enough integer. Set $u_N = \chi_{pN} u$ and let’s prove that this sequence satisfies iii) since i) and ii) are fulfilled. We write

$$tP \left(e^{-i<x,\xi>} w \right) = e^{-i<x,\xi>} \left(tP(x, -\xi) (I - R) \right) w,$$

where

$$-R(x, \xi, D) = \sum_{\beta \neq 0} \frac{1}{\beta!} tP^{(\beta)}(x, -\xi) D^\beta.$$

By iteration we get

$$tP^N \left(e^{-i<x,\xi>} w \right) = e^{-i<x,\xi>} \left(tP(x, -\xi) (I - R) \right)^N w.$$

The fact that we can divide by $tP(x, -\xi)$ is due to the following lemma which can easily be proved.

Lemma 8. If $(x_0, \xi_0) \notin \sum_{P,\delta,s}^{\mu,\mu',P}(P)$, then $(x_0, -\xi_0) \notin \sum_{P,\delta,s}^{\mu,\mu',P}(tP)$.

Set

$$w_N = \sum_{h_1+..+h_N \leq \frac{\mu'}{\mu-\delta} N} R^{h_1} \left(tP \right)^{-1} ... R^{h_N} \left(tP \right)^{-1} \chi_{pN},$$
where \(tP = tP(x, -\xi) \). Then this function satisfies
\[
(tP (I - R))^N w_N = \chi_{pN} - e_N,
\]
where
\[
e_N = \sum_{j=1}^{N} (tP (I - R))^N \sum_{h_j+h_{N}=k} tP \rho_{j,h_{N}}^{-1} \cher_{N}^{-1} \chi_{pN}.
\]

Hence
\[
(4.3) \quad \hat{u}_N(\xi) = w_N \hat{f}_N(\xi) + \hat{e}_N u(\xi), \quad \xi \in F.
\]

We will estimate both terms of the second member of (4.3). Let \(a \in A \) and \(0 = k_0 < k_1 < \ldots < k_r = 1 \), be the elements of the set \(\{k = < \alpha, a >, \alpha \in \mathbb{Z}^n_+ \cap \mathbb{P} \} \). We write \(R = R_1 + \ldots + R_r \) where
\[
-R_i(x, \xi, D) = \sum_{\beta, \alpha = k_i} \frac{tP(\beta) (x, -\xi)}{\beta!} (tP (x, -\xi))^{P (\beta)} D^\beta,
\]
then we have
\[
w_N = \sum_{h_1+\ldots+h_N=k} \sum_{h_1} \ldots \sum_{h_N} (R_{1_1} \ldots R_{1_{h_1}}) \ldots (R_{N_1} \ldots R_{N_{h_N}}),
\]
Since \(< \alpha, a > = |\alpha| \leq \mu < \alpha, a > \), so from lemma \(4 \) we have for \(< \alpha, a > \leq N, a \in A \),
\[
|D^\alpha (R_{1_1} \ldots R_{1_{h_1}}) \ldots (R_{N_1} \ldots R_{N_{h_N}}) | \leq C^{N+1} N^{\mu < \alpha, a >} \ldots (tP (x, \xi))_{N}^{-|\alpha| - |\beta|} |\xi|^{|(\mu - \mu')^N|},
\]
where \(\sum^* \) means the sum over \(1 \leq l \leq N, 1 \leq i \leq h_i, 1 \leq i \leq r \). Since the number of terms in the sum \(w_N \) is bounded from above by \(C_0 \), so \(\exists C > 0 \) such that, for \(< \alpha, a > \leq N, \xi \in \mathbb{F} \), \(\xi |^{|(\mu - \mu')^N|} \geq N^\mu \), we have
\[
|D^\alpha w_N| \leq C^{N+1} N^{\mu < \alpha, a > \ldots (tP (x, \xi))_{N}^{-|\alpha| - |\beta|} |\xi|^{|(\mu - \mu')^N|},
\]
from lemma \(4 \) we obtain for \(\xi |^{|(\mu - \mu')^N|} \geq N^\mu \),
\[
\left| \hat{w}_N \hat{f}_N(\xi) \right| \leq C_1 (C_1 N^{\mu} |\xi|^M) \xi |^{(\mu - \mu')^N} \chi_{pN},
\]

\[
(4.4) \quad \leq C_2 \left(\frac{C_2 N^{\mu} |\xi|^M}{|\xi|_{P}} \right)^{\mu N} \chi_{pN}.
\]

\[
|\chi_{pN},
\]
By the same procedure in the estimate of w_N, we get for e_N,\[|D^\alpha e_N| \leq C_3^{N+1} N^{s\mu} \langle \frac{N^{\rho-\delta}}{|\xi|^P} \rangle^{(\rho-\delta)\mu N}, \quad \langle \alpha, a \rangle \leq N, |\xi|^P \geq N^{s\mu}. \]

Let M_1 be the order of the distribution u in K, so
\[
|\widehat{ue_N}(\xi)| \leq C_4^{N+1} |\xi|M_1 \left(\frac{N^{\rho-\delta}}{|\xi|^P} \right)^{(\rho-\delta)\mu N}.
\]

From (4.3), (4.4) and (4.5) we easily obtain that
\[
(x_0, \xi_0) \notin WF_{s', P}(u).
\]

\[\square\]

5. CONSEQUENCES

This section gives some corollaries of the obtained result.

Corollary 1. If $P(x, D)$ is a differential operator with analytic coefficients, satisfying (4.1) with $|\xi|^P = |\xi|_q$, then theorem [2] coincides with the principal theorem 5.1 of Bolley-Camus [2], i.e. $\forall s \geq 1$,
\[
WF_s(u) \subset WF_s(u, P) \cup \sum_{\rho, \delta, s} \mu, \mu' (P).
\]

Remark 5. The results of [7] and [10] can be included in this corollary.

Corollary 2. If the differential operator $P(x, D)$ is q-quasihomogeneous with coefficients in $G^{n,q}(\Omega)$, then $|\xi|^P = |\xi|_q$ and
\[
\sum_{\mu, \mu, P}(P) = \{(x, \xi) \in \Omega \times \mathbb{R}^n \setminus \{0\} : P_q(x, \xi) = 0\},
\]
where $P_q(x, \xi)$ is the principal q-quasihomogeneous part of $P(x, \xi)$. Consequently theorem [2] coincides with the principal theorem of [16], i.e. $\forall s \geq 1$
\[
WF_{s,q}(u) \subset WF_{s,q}(u, P) \cup \{(x, \xi) \in \Omega \times \mathbb{R}^n \setminus \{0\} : P_q(x, \xi) = 0\}.
\]

Definition 10. The operator $P(x, D)$ is said multi-quasielliptic in Ω, if it is regular and $\forall x_0 \in \Omega$,
\[
\exists C > 0, \exists R \geq 0, (|\xi|^P)^{\mu(P)} \leq C |P(x_0, \xi)|, \forall \xi \in \mathbb{R}^n, |\xi| \geq R.
\]

The multi-anisotropic Gevrey regularity of the solutions of multi-quasielliptic differential equations, see [17] and [4], is obtained easily from the following microlocal result.
Corollary 3. Let $u \in \mathcal{D}'(\Omega)$ and $P(x, D)$ be a multi-quasielliptic differential operator with coefficients in $G^{s,q}(\Omega)$, then $\forall s \geq 1$, we have

$$WF_{s,P}(u) = WF_{s,P}(u, P) = WF_{s,P}(Pu).$$

Acknowledgements: The authors thank Professor Luigi Rodino for the useful discussions on the subject of this paper.

References

[1] P. Boggiato, E. Buzano, L. Rodino, Global hypoellipticity and spectral theory, Academic Verlag, 1996.
[2] P. Bolley, J. Camus, Régularité Gevrey et itérés pour une classe d’opérateurs hypoelliptiques, Comm. in Partial Differential Equations, 6:10, (1981), 1057-1110.
[3] P. Bolley, J. Camus, L. Rodino, Hypoellipticité analytique-Gevrey et itérés d’opérateurs, Ren. Sem. Mat. Univ. Politec. Torino, vol. 45:3, (1989), 1-61.
[4] C. Bouzar, R. Chaïli, Gevrey vectors of multi-quasielliptic systems, Proc. Amer. Math. Soc. 131, no. 5, (2003), 1565-1572.
[5] C. Bouzar, R. Chaïli, Une généralisation de la propriété des itérés, Archiv Math., Vol. 76, N 1, (2001), 57-6.
[6] D. Calvo, A. Morando, L. Rodino, Inhomogeneous Gevrey classes and ultradistributions, J. Math. Anal. Appl. 297 (2004), no. 2, 720-739
[7] D. Calvo, G. H. Hakobyan, Multianisotropic Gevrey hypoellipticity and iterates of operators, Preprint N 35, Università di Torino, 2003.
[8] A. Corli, Un teorema di rappresentazione per certe classi generalizzate di Gevrey, Boll. U.M.I., Serie VI, Vol. 4, N. 1, (1985), 245-257.
[9] S. Gindikin, L. R. Volevich, The Method of Newton’s Polyhedron in the Theory of Partial Differential Equations, Kluwer, 1992.
[10] G. H. Hakobyan, Estimates of the higher order derivatives of the solutions of hypoelliptic equations, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 61, no. 4, (2003), 443-459.
[11] G. H. Hakobyan, V. N. Markaryan, Gevrey class solutions of hypoelliptic equations, J. Contemp. Math. Anal. 33, N. 1, (1998), 35-47.
[12] L. Hörmander, The analysis of linear partial differential operators, I, Springer-Verlag, Berlin, 1983.
[13] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., Vol. XXIV, (1971), 671-704.
[14] O. Liess, L. Rodino, Inhomogeneous Gevrey classes and related pseudodifferential operators, Boll. U.M.I., Serie VI, Vol. 3, N. 1, (1984), 233-323.
[15] L. Rodino, Linear partial differential operators in Gevrey spaces, World Scientific, 1993.
[16] L. Zanghirati, Iterati di operatori e regolarità Gevrey microlocale anisotropa, Rend. Sem. Mat. Univ. Padova, Vol. 67, (1982), 85-104.
[17] L. Zanghirati, Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Boll. U.M.I., vol. 1, suppl., (1980), 177-195.
Department of Mathematics, Oran-Essenia University, Algeria
E-mail address: bouzar@univ-oran.dz; bouzar@yahoo.com

Department of Mathematics, University of Sciences and Technology of Oran, Algeria
E-mail address: chaili@univ-usto.dz