Percutaneous bone biopsy for diabetic foot osteomyelitis: a systematic review and meta-analysis

Marcos C. Schechter¹, Mohammed K. Ali², Benjamin B. Risk³, Adam D. Singer⁴, Gabriel Santamarina⁵, Hannah K. Rogers⁶, Ravi R. Rajani⁷, Guillermo Umpierrez², Maya Fayfman⁵, Russell R. Kempker¹

1-Emory University School of Medicine, Grady Memorial Hospital, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, United States of America

2-Emory University, Rollins School of Public Health, Department of Global Health and Epidemiology, Atlanta, GA, United States of America

3-Emory University, Rollins School of Public Health, Department of Biostatistics and Bioinformatics, Atlanta, GA, United States of America

4-Emory University School of Medicine, Grady Memorial Hospital, Department of Radiology and Imaging Sciences, Division of Musculoskeletal Imaging, Atlanta, GA, United States of America

5-Emory University School of Medicine, Grady Memorial Hospital, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA, United States of America

6-Emory University, Woodruff Health Sciences Center Library, Information Services, Atlanta, GA, United States of America

7-Emory University School of Medicine, Grady Memorial Hospital, Department of Surgery, Division of Vascular Surgery, Atlanta, GA, United States of America

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Key points:

The proportion of culture-positive percutaneous bone biopsies among patients with suspected diabetic foot osteomyelitis in this meta-analysis was high (84%) suggesting this could be a useful diagnostic tool. However, there are several limitations to the literature.

Corresponding author: Marcos C. Schechter, Email: mcoutin@emory.edu
ABSTRACT

BACKGROUND: Diabetes is the leading cause of lower extremity non-traumatic amputation globally, and diabetic foot osteomyelitis (DFO) is usually the terminal event prior to limb loss. Though guidelines recommend percutaneous bone biopsy (PBB) for microbiological diagnosis of DFO in several common scenarios, it is unclear how frequently PBBs yield positive cultures and whether they cause harm or improve outcomes.

METHODS: We searched the PubMed, EMBASE, and Cochrane Trials databases for articles in any language published up to December 31, 2019, reporting the frequency of culture-positive PBBs. We calculated the pooled proportion of culture-positive PBBs using a random effects meta-analysis model and reported on PBB-related adverse events, DFO outcomes, and antibiotic adjustment based on PBB culture results where available.

RESULTS: Among 861 articles, 11 studies met inclusion criteria and included 780 patients with 837 PBBs. Mean age ranged between 56.6-71.0 years-old. The proportion of males ranged from 62%-86%. All studies were longitudinal observational cohorts, and 10 were from Europe. The range of culture-positive PBBs was 56%-99% and the pooled proportion of PBBs with a positive culture was 84% (95% CI 73%-91%). There was heterogeneity between studies and no consistency in definitions used to define adverse events. Impact of PBB on DFO outcomes or antibiotic management were seldom reported.

CONCLUSIONS: This meta-analysis suggests PBBs have a high yield of culture-positive results. However, this is an understudied topic, especially in low- and middle-income countries, and the current literature provides very limited data regarding procedure safety and impact on clinical outcomes or antibiotic management.
INTRODUCTION

Diabetes is the leading cause of lower extremity amputations globally, and diabetic foot osteomyelitis (DFO) is usually the terminal event prior to limb loss[1, 2]. DFO generally occurs by contiguous spread from an infected diabetic foot ulcer that typically originates from repeated microtrauma due to a combination of foot deformities, peripheral neuropathy, and/or peripheral artery disease [1]. Diabetic foot ulcers are common, with estimates of lifetime prevalence ranging from 15% to 34% among people living with diabetes, and over half of all ulcers will become infected [1]. DFO is present in over 20% of patients with a diabetic foot ulcer infection and over 80% of patients with DFO will undergo an amputation [3, 4]. Improving DFO diagnosis and treatment is needed to increase limb salvage rates.

Antibiotics are the cornerstone of DFO management among patients treated without complete resection of infected bone (amputation) [5-7]. Identifying the bacteria causing DFO is needed to allow for the selection of the narrowest spectrum and least toxic antibiotics. Several studies have shown poor correlation between cultures obtained by soft tissue and bone sampling, suggesting soft tissue samples are inadequate to guide DFO-related antibiotic therapy[8-10]. Thus, it is recommended that clinicians obtain bone specimens for microbiological analysis by percutaneous bone biopsy (PBB) for patients who are not undergoing surgery in several common scenarios (supplemental table 1)[5-7, 11].

Despite recommendations by several societal guidelines and international consensus meetings, PBBs are seldom performed [5-7, 11-13]. This may be because clinicians perceive few PBBs result in a positive culture, concerns of procedure-related harms, and/or lack of technical capability in many centers. The main goal of this study is to report on the microbiological yield of PBBs among patients
with DFO (i.e.; proportion that are culture-positive). Additionally, we sought to describe the bacterial species recovered by PBB and report on aggregated procedure-related adverse events, DFO outcomes, and antibiotic regimen adjustment according to PBB culture results.

METHODS

Search strategy and study selection

We followed the PRISMA guidelines for systematic reviews and meta-analysis (checklist in the supplemental file)[14]. We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials on February 12, 2019, to identify articles published from database inception through December 31, 2018. We used the search terms “diabetic foot” AND “osteomyelitis” AND (“biopsy” or “needle” or “aspiration” or “laboratory”) as well as other related terms (see supplemental file for details). There were no restrictions placed on the language of publication. The search was updated on January 29, 2020, to identify subsequent articles released during the 2019 calendar year.

We reviewed references listed in original articles included in this review, published reviews, and societal guidelines. We excluded case series with <5 subjects. Randomized clinical trials and observational studies were included. Conference abstracts were eligible for inclusion. Our primary objective was to determine the rate of culture-positive PBBs. Thus, we only included studies that reported the number of patients with DFO undergoing PBB (i.e.; the denominator) and not just the number of patients with DFO and culture-positive PBBs (i.e.; the numerator).
Data abstraction and study quality assessment:

Titles, abstracts, and full texts were screened by a single reviewer. We extracted data into standardized forms. Given there is no gold standard for DFO, we did not calculate the sensitivity and specificity of PBBs [15]. Instead, we report the proportion of PBB obtained from patients with suspected DFO that were culture-positive. We defined a culture-positive PBB as any positive bacterial culture not classified as a contaminant by the study authors. Other variables that may have affected the PBB bacterial culture yield and/or procedure related-adverse events were extracted, including microbiological laboratory procedures (transport media, incubating time), criteria to classify a positive culture as a contaminant, biopsy route (through the ulcer vs through intact skin), needle type and size, biopsy method (bedside vs image-guided), severity of diabetic foot infection, presence of peripheral artery disease (PAD), anatomical site biopsied (forefoot vs mid- and hindfoot, phalanges vs metatarsals), and pre-biopsy antibiotics (within the previous two weeks prior to the PBB). Included studies were reviewed for procedure-related adverse events. Despite limitations, soft tissue sampling through superficial ulcer swab or soft tissue biopsy is often used to guide antibiotic therapy for DFO. Thus, we also extracted data on concordance between PBB and soft tissue samples when available. Samples were classified as identical when all bacterial species cultured by bone and soft tissue samples were the same. Samples were classified as concordant for a single bacterial species (e.g., *S. aureus*) when both samples were culture-positive or culture-negative for that species. Lastly, we reviewed included studies for DFO outcomes and antibiotic regimen adjustments based on PBB culture results.
We assessed the quality of included studies using an adapted QUADAS-2 tool Quality Assessment of Diagnostic Accuracy Studies (supplemental file) [16]. Two domains were assessed: (1) patient selection and (2) PBB and microbiological laboratory methods. The risk for bias regarding patient selection was determined by enrollment of consecutive patients without inappropriate exclusions. Patient selection applicability to our study question was based on selection of patients for PBB based on clinical and radiological criteria that are routine practice (e.g.; probe-to-bone and X-ray).

Regarding PBB and microbiological laboratory methods, risk of bias was determined based on whether and how authors reported on the microbiology laboratory criteria used to define contaminants (e.g.; coagulase-negative Staphylococci). Applicability was determined based on use of standard PBB and microbiological laboratory methods because our goal was to describe yield of PBB in routine practice. The quality domains were scored in relation to our main outcome (PBB microbiology yield), not our secondary outcomes (procedure-related adverse events, DFO outcomes, and antibiotic regimen adjustments).

Statistical analysis

Analyses were performed with the meta package (version 4.10-0)[17] using R version 3.6.2. We calculated the pooled proportion of culture-positive PBBs using a random intercept logistic regression model via the metaprop function. We used a random effects model because between study patient populations and PBB techniques were heterogeneous. Forest plots with 95% confidence intervals (CIs) were built. The I² statistic was used to assess between study heterogeneity with p-values based on the Q-statistic. Funnel plots were built to assess for publication bias.
Senneville et al (2006) and Ashlangul et al included some patients that had >1 PBB and results from both biopsies were included in the meta-analysis. Couturier et al performed two PBBs per patient, one through intact skin and one through an ulcer. In order to minimize number of duplicate patients, we excluded the results from biopsies performed through an ulcer from our primary meta-analysis and retained the results for biopsies performed through intact skin as this is the approach usually recommended by guidelines. We performed two sub-analysis, one stratifying studies by PBB approach (though intact skin vs through an ulcer) and another stratifying studies by inclusion or exclusion of patients who received antibiotics ≤2 weeks prior to the PBB.

RESULTS

Study and patient characteristics:

Eight hundred and sixty-one unique titles were screened, and 11 studies met inclusion criteria, including two conference abstracts (figure 1) [8-10, 18-25]. Ten studies had longitudinal observational study design and one study did not report design (supplemental table 2). Ten studies were conducted in Europe, nine in France, and three were by the same first author (Table 1). The author confirmed there was no overlap between patients included in these three studies. Among included studies, the median sample size was 71 patients (range 26-144). Studies generally selected patients for PBB using well established clinical and radiological criteria for DFO [9, 26] (see supplemental table 3 for included studies’ patient inclusion and exclusion criteria).

Ten studies reported patients’ age, and the mean age ranged from 56.6 and 71.0 years-old. Five studies reported patients’ gender and the proportion of males ranged from 62%-86%. No consistent
definition of PAD was used across studies. Four studies excluded patients with advanced PAD (supplemental table 3). Six studies reported PAD prevalence among included patients (range 18%-61%), but no study reported PBB results or safety stratified by presence of PAD.

Five studies reported diabetic foot infection severity scores, but none reported PBB results or safety stratified by infection severity. Three different infection severity scores were used, and no more than two studies used the same system. Regarding use of antibiotics prior to PBB, four studies excluded patients that received antibiotics ≤2 weeks prior to the PBB and it was unclear whether patients received antibiotics ≤2 weeks prior to the PBB in four other studies. Three studies included patients that received antibiotics ≤2 weeks prior to the PBB. The proportion of patients receiving antibiotics ≤2 weeks prior to the PBB ranged between 32% to 53% in these studies. No study reported antibiotic class, spectrum, or route prior to the PBB.

Percutaneous bone biopsy characteristics:

Six studies only obtained PBBs though intact skin and three studies only obtained PBBs through an ulcer (table 1). Biopsy approach was unclear in one study. All studies used conventional microbiological culture methods, and no study used non-culture based microbiological techniques such as polymerase chain reaction. Other PBB characteristics and methods are described in supplemental tables 3 and 4. Few studies reported needle size (n=6), bone sample transport media (n=5), or culture incubation time (n=4).
Proportion of positive percutaneous bone biopsies:

On average across all studies, the proportion of culture-positive PBBs ranged from 56% to 99%. After removing the biopsies through an ulcer from Couturier et al, the sample size for the meta-analysis was 791 PBBs. The pooled proportion of culture-positive PBBs was 84% (95% CI 73%-91%) (Figure 2). Between study heterogeneity was high ($I^2=91\%$, $p<.01$) and the funnel plot was highly asymmetric. Two studies exhibited large proportion of culture-positive PBBs and we performed a sensitivity excluding these studies. After excluding these studies, the pooled proportion of culture-positive PBBs was 77% (95% CI 68%-85%). Between study heterogeneity ($I^2=82\%$, $p<.01$) funnel plot asymmetry were decreased.

Among seven studies that performed PBBs through intact skin (n=454 PBBs), the proportion of culture-positive PBBs ranged from 56% to 93%, and the pooled proportion was 80% (95% CI 69%-88%) (Figure 3). Among four studies that performed PBBs though an ulcer (n=237 PBBs), the proportion of culture-positive PBBs ranged from 66% to 99% and the pooled proportion was 96% (95% CI 81%-99%)

Among the four studies that excluded patients that received antibiotics ≤2 weeks prior to the PBB (n=238 PBBs), the proportion of culture-positive PBBs ranged from 56% to 87% and the pooled proportion was 72% (95% CI 59%-83%). All these studies performed the PBB through intact skin. Three studies included patients that received antibiotics ≤2 weeks prior to the PBB, including Couturier et al in which patients had two PBBs, one through intact skin and one through an ulcer. After removing the biopsies through an ulcer from Couturier et al, the proportion of culture-positive PBBs ranged from 83% to 99%. In this subset (n=202 PBBs), the pooled proportion of positive PBBs
was 96% (95% CI 84%-99%). The two studies other than Couturier et al performed the PBB through an ulcer.

Bias and applicability assessment:

Regarding patient selection, we classified five of the 11 studies as low risk of bias. We could not assess risk of bias in five studies (supplemental table 5). One study excluded patients with ≤12 months of follow-up and therefore was classified as high risk of bias. We determined patient selection in eight studies were applicable to our review question. There were concerns regarding applicability in two studies, one that only included patients that had a blood culture collected after the PBB and one that only included patients with very high pre-test probability of DFO and used PBB just for microbiological confirmation. We could not assess applicability in one study.

Regarding PBB and microbiological laboratory methods, one study provided a description of criteria to determine if a positive culture resulted from contamination and was deemed low risk for bias (supplemental table 4). All other studies did not provide description of criteria for contaminants and/or description of PBB technique, and we could not determine risk of bias. Ten studies used conventional PBB and microbiological methods and therefore were applicable to our study question. One study used bone marrow aspiration guided by SPECT/CT, which is not standard of care and therefore less applicable to our study question.
Bacterial species cultured by percutaneous bone biopsy

Nine studies described some or all the bacterial species recovered by PBBs. See Figure 4 for microbiology of PBBs obtained through intact skin, and supplemental figure 1 for microbiology of PBBs obtained through an ulcer. In all these studies, *S. aureus* was the most common pathogen (range 38%-67% of culture-positive biopsies). Five studies reported the presence or absence of *Pseudomonas spp.*, which were present in 4% to 37% of culture-positive PBBs (four studies were conducted in France and one in India). The highest proportion of culture-positive PBBs for *Pseudomonas spp.* occurred in the study conducted in India in which 57% of patients received antibiotics at some point prior to the PBB. In this same study, *Acinetobacter spp.* was found in 26% of culture-positive PBBs. Five studies reported the proportion with polymicrobial culture growth which were present in 4% to 76% of culture-positive PBBs. Bacterial species sometimes considered contaminants were grown frequently among studies that reported the presence or absence of *Corynebacterium spp.* (range 9.7%-17.8%) and/or coagulase-negative *Staphylococci* (range 26.8%-38.9%) (supplemental figure 2). See supplemental figure 3 for the distribution of bacterial species cultured by PBB stratified by antibiotic use ≤2 weeks prior to the biopsy.

Concordance rates between percutaneous bone biopsy and other specimens

Three studies reported the proportion of PBBs and wound swabs with identical culture results, which varied from 2.8% to 17.4% (supplemental table 6). In these studies, *S. aureus* was the bacteria with the highest proportion of concordant results (42.8% to 82.3%). One study compared culture results between PBBs obtained through intact skin to those obtained through an ulcer. The proportion of positive PBBs obtained though intact skin was lower compared to those obtained through the ulcer.
(83% and 98%, respectively p<.01) and 42% had identical results. One study collected post-PBB blood cultures and 12/80 (15.8%) were positive. Bacterial species cultured in the blood were also isolated by PBB in 11 (92%). Data on concordance between soft biopsy by needle puncture are in supplemental table 6.

Percutaneous bone biopsy safety:

No study provided a clear definition of PBB-related adverse events. Six studies did not mention if adverse events occurred, and four studies reported no PBB-related adverse events (supplemental table 5). One study reported 2 (4%) patients had minor adverse events.

DFO outcomes and antibiotic regimen adjustments:

Two studies reported DFO outcomes and antibiotic regimen adjustments following PBB (supplemental tables 8 and 9). One study performed PBBs in 26 patients and 22 were culture-positive, of which 19 had antibiotic regimen adjustment based on PBB results. Seventeen patients initiated antibiotics after PBB results were available. Among five patients started on an empiric regimen, two had antibiotics adjusted based on PBB results. DFO outcomes of the 22 culture-positive PBB patients were compared with antibiotic treated patients with culture-negative PBB (n=4) or those who had antibiotic regimen based on ulcer swab alone (n=24). Twelve-month amputation-free survival was 82% among PBB culture-positive patients and 50% among PBB culture-negative/no PBB patients (adjusted odds ratio 4.78 [95% CI 1.0-22.7]). One study (n=50) used SPECT/CT to determine need for a PBB. Patients with a negative SPECT/CT (n=13) or positive
SPECT/CT and culture-negative PBB (n=16) did not receive antibiotics. No patients with negative SPECT/CT and most (15/16) patients with positive SPECT/CT and culture-negative PBB had signs of DFO one year later. All SPECT/CT and PBB positive patients (n=24) received antibiotic regimens that were based on PBB culture results and 19 (79%) had ulcer healing or improvement defined as ≥50% reduction in ulcer size. Six studies did not report DFO outcomes and antibiotic regimen adjustment, and three studies reported DFO outcomes but not antibiotic regimen adjustment.

DISCUSSION

We performed a systematic literature search without date or language restrictions and found scarce literature regarding PBB culture yield in suspected cases of DFO. The limited available literature was especially surprising considering a diabetes-related amputation occurs every 30 seconds globally[27], most amputations are preceded by DFO[1], and PBBs are recommended by guidelines in several common scenarios[5-7]. The proportion of culture-positive PBBs in our meta-analysis was high (84%) suggesting that the perception of PBBs being low yield may be incorrect. Even after excluding studies with the highest rate of PBBs with a positive culture, the proportion of culture-positive PBBs was 77%. We noted no major differences in yield with different routes of PBB and found that defining and reporting adverse events, DFO outcomes, and antibiotic adjustment was too inconsistent to be useful. Altogether, this meta-analysis suggests PBBs are a useful and underutilized tool for the microbiological diagnosis of DFO. For comparison, image-guided biopsy for native vertebral osteomyelitis is widely used and appear to have a similar proportion of culture-positive results to (36%-91%) PBB for DFO [28].
Although we found a high rate of culture-positive PBBs, the clinical implications of this finding are unknown. Among included studies, only Senneville et al (2008) compared DFO outcomes stratified by use of antibiotic regimen guided by PBB culture results. Although use of antibiotic regimens guided by PBB was associated with increased odds ratio of amputation-free survival, the study had a small sample size (n=50) and large confidence intervals (95%CI 1.0-22.7) [18]. Another included study reported DFO outcomes among patients with positive nuclear scan (SPECT/CT) but culture-negative PBB and most (15/16) had no signs of DFO 12 months later.

Senneville et al reported outcomes among patients with suspected DFO and a culture-negative PBB and therefore excluded from the meta-analysis [29]. In this cohort, 10/41 (24%) with a culture-negative PBB developed DFO during the 2-year follow-up. While limited, this data suggests PBBs may allow for meaningful adjustments in antibiotic therapy, including withholding antibiotics when cultures are negative.

Most guidelines recommend performing the PBB through intact skin to reduce culture contamination[5-7]. Nonetheless, because of technical issues and safety concerns, PBBs are commonly performed through an ulcer. As expected, we found a higher pooled proportion of culture-positive PBBs among studies performing biopsy through the ulcer versus intact skin in our meta-analysis; however, there was insufficient data to compare safety between these two approaches. A recent meta-analysis including percutaneous and open bone biopsy for patients with various forms of osteomyelitis concluded that recent antibiotic use had no impact on the rate of culture-positive bone biopsies[30]. In our study, the pooled proportion of culture-positive PBBs was higher among studies that included patients with recent antibiotic use. These findings should be interpreted with great caution. First, most studies including patients with recent antibiotic use performed PBBs through an ulcer. Second, no study reported the proportion of positive PBBs stratified by antibiotic use and therefore the higher positivity rates could reflect study characteristics
other than antibiotic use. Finally, no study reported antibiotic route, spectrum, or duration before the PBB. Given patients with DFO often have concomitant soft tissue infections requiring immediate treatment, it is not always possible to withhold antibiotics. A sequential approach of antibiotic therapy for the soft tissue infection, followed by an antibiotic-free period, followed by a bone biopsy to guide DFO therapy led to a 68% DFO remission rate in a small single-center study[31]. Further studies describing this approach are needed. Additionally, PBBs are generally recommended when patients are failing antibiotic therapy. Thus, future studies should report results stratified by recent antibiotic use in addition to detailed antibiotic characteristics and culture results.

As expected, *S. aureus* was the most common bacteria recovered by PBB among included studies. However, bacteria other than *S. aureus* were common among culture-positive PBBs highlighting the importance of pursuing DFO microbiological diagnosis. It is well known that organisms commonly described as “skin flora” and usually considered contaminants by microbiology laboratories such as coagulase-negative *Staphylococci* and *Corynebacterium spp.* are often found in bone cultures from patients with DFO. The prevalence of coagulase-negative Staphylococci-positive cultures was up to 58% among included studies. To better understand the prevalence and role of these bacteria in DFO it is important for studies to provide a clear definition of contaminants, which only one of the included studies did. The prevalence of *Pseudomonas spp.* was generally low, except for the one study in India where these bacteria were present in 37% of culture-positive biopsies. This finding is in line with the notion that there is a higher prevalence of *Pseudomonas spp.* and other gram-negatives in diabetic foot ulcers occurring among those residing in humid climates. Given the local environment effect on DFO microbiology, increasing the geographic diversity of studies reporting PBB results would be beneficial.

Our review uncovered limitations in the PBB literature. First, studies seldom reported important technical aspects such as needle type and size and sample transport media. A better description of
procedure techniques could facilitate implementation in centers currently not performing PBBs.
Second, only five studies reported infection severity scores and no more than two studies used the
same system. This lack of standardization hampers our ability to compare studies. The diabetic foot
research community would benefit from using a single infection severity score, such as the
International Working Group on the Diabetic Foot system, which is also endorsed by the Infectious
Diseases Society of America[6, 7]. Reporting of technical aspects, detailed reports of prior antibiotic
use, and use of a single infection severity score system would allow better understanding of the
large between-study heterogeneity. Third, there is little data regarding the impact of PBB on DFO
outcomes or antibiotic stewardship. This may be especially important in countries with high rates of
diabetes and antimicrobial resistance (e.g.; India). Fourth, the PBB literature does not reflect the
global epidemic of diabetes given almost all reports are from France[2]. Finally, all studies used
conventional culture methods. A study of DFO samples obtained by percutaneous and open
approaches showed higher positivity rates by 16S rRNA assay compared to conventional cultures
suggesting this and other non-conventional microbiology techniques should be explored for
DFO[32]. This meta-analysis also has limitations. We could not include studies that reported on yield
of PBB for various forms of osteomyelitis when data for DFO was not reported separately and this
lead to the exclusion of some studies in which image-guided PBB had low yield (<35%) [33-35].
Additionally, we did not compare the yield, safety, and outcomes between percutaneous and open
bone biopsy.

In summary, we report the first meta-analysis of PBBs for DFO and found high rates of culture-
positive PBBs among included studies. We uncovered several limitations of this literature and
suggest several measures to improve our understanding of this diagnostic method. If proven to be a
safe and reliable diagnostic tool, PBBs could be of great benefit for patients with DFO as they could
help establish a microbiological diagnosis and thus clinicians to use the narrowest spectrum
antibiotics possible.
Grant support:

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant number P30-DK-111024 and Emory Medical Care Foundation

Conflicts of interest: the authors have no conflicts of interest to disclose.
References:

1. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med 2017; 376(24): 2367-75.

2. International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Available at: https://www.diabetesatlas.org.

3. Lavery LA, Ryan EC, Ahn J, et al. The Infected Diabetic Foot: Re-Evaluating the IDSA Diabetic Foot Infection Classification. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2019.

4. Lindbloom BJ, James ER, McGarvey WC. Osteomyelitis of the foot and ankle: diagnosis, epidemiology, and treatment. Foot Ankle Clin 2014; 19(3): 569-88.

5. Hingorani A, LaMuraglia GM, Henke P, et al. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J Vasc Surg 2016; 63(2 Suppl): 3S-21S.

6. Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2012; 54(12): e132-73.

7. International Working Group on the Diabetic Foot. IWGDF Guideline on the diagnosis and treatment of foot infection in persons with diabetes. Available at: https://iwgdfguidelines.org/wp-content/uploads/2019/05/05-IWGDF-infection-guideline-2019.pdf.
8. Elamurugan TP, Jagdish S, Kate V, Chandra Parija S. Role of bone biopsy specimen culture in the management of diabetic foot osteomyelitis. International journal of surgery (London, England) 2011; 9(3): 214-6.

9. Senneville E, Melliez H, Beltrand E, et al. Culture of percutaneous bone biopsy specimens for diagnosis of diabetic foot osteomyelitis: concordance with ulcer swab cultures. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2006; 42(1): 57-62.

10. Senneville E, Morant H, Descamps D, et al. Needle puncture and transcutaneous bone biopsy cultures are inconsistent in patients with diabetes and suspected osteomyelitis of the foot. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2009; 48(7): 888-93.

11. Heidari N, Kwok I, Vris A, Charalambous A. Should Treatment of Diabetic Foot Osteomyelitis Be Based on Bone Biopsies? Foot Ankle Int 2019; 40(1_suppl): 73S-4S.

12. Markanday A. Diagnosing diabetic foot osteomyelitis: narrative review and a suggested 2-step score-based diagnostic pathway for clinicians. Open Forum Infect Dis 2014; 1(2): ofu060.

13. Richard JL, Lavigne JP, Got I, et al. Management of patients hospitalized for diabetic foot infection: results of the French OPIDIA study. Diabetes Metab 2011; 37(3): 208-15.

14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7): e1000097.

15. Meyr AJ, Seo K, Khurana JS, Choksi R, Chakraborty B. Level of Agreement With a Multi-Test Approach to the Diagnosis of Diabetic Foot Osteomyelitis. J Foot Ankle Surg 2018; 57(6): 1137-9.
16. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155(8): 529-36.

17. Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019; 22(4): 153-60.

18. Senneville E, Lombart A, Beltrand E, et al. Outcome of diabetic foot osteomyelitis treated nonsurgically: a retrospective cohort study. Diabetes care 2008; 31(4): 637-42.

19. Lesens O, Desbiez F, Vidal M, et al. Culture of per-wound bone specimens: a simplified approach for the medical management of diabetic foot osteomyelitis. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2011; 17(2): 285-91.

20. Aslangul E, M’Bemba J, Caillat-Vigneron N, et al. Diagnosing diabetic foot osteomyelitis in patients without signs of soft tissue infection by coupling hybrid 67Ga SPECT/CT with bedside percutaneous bone puncture. Diabetes care 2013; 36(8): 2203-10.

21. Navratil K, Dubsky M, Jirkovska A, Woskova V. Assessment of bone biopsy provided via diabetic foot ulcer in terms of the superficial microflora contamination. Diabetes 2016; 65: A166.

22. Roxane Ducoux OT, Marwan Abou-Rjeili ,Shirley Abouth, Jean-Marc Alsac, Jean-Jacques Altman, Claire Blas-Chatelain, Jeanne-Marie Bureau, Costantino Del Giudice, Marie-Paule Fernandez-Gerlinger, Pierre Julia Cristina Leata, Emmanuel Messas ,Tristan Mirault, Marc Sapoval. Percutaneous Bone Biopsy to Identify Pathogens in Diabetic Foot Chronic Osteitis: Useful and Harmless. Wounds : a compendium of clinical research and practice 2016; 28(6).

23. Letertre-Gibert P, Desbiez F, Vidal M, et al. Blood cultures after bone biopsy in diabetic foot osteomyelitis. Diagn Microbiol Infect Dis 2017; 89(1): 78-9.
24. Couturier A, Chabaud A, Desbiez F, et al. Comparison of microbiological results obtained from per-wound bone biopsies versus transcutaneous bone biopsies in diabetic foot osteomyelitis: a prospective cohort study. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 2019; 38(7): 1287-91.

25. Féron F, Potier L, De Ponfilly GP, et al. Bedside blind bone biopsy for diagnosis of diabetic foot osteitis allows similar healing rate as conventional bone biopsy. Diabetes 2019; 68.

26. Dinh MT, Abad CL, Safdar N. Diagnostic accuracy of the physical examination and imaging tests for osteomyelitis underlying diabetic foot ulcers: meta-analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2008; 47(4): 519-27.

27. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet 2005; 366(9498): 1719-24.

28. Pupaibool J, Vasoo S, Erwin PJ, Murad MH, Berbari EF. The utility of image-guided percutaneous needle aspiration biopsy for the diagnosis of spontaneous vertebral osteomyelitis: a systematic review and meta-analysis. Spine J 2015; 15(1): 122-31.

29. Senneville E, Gaworowska D, Topolinski H, et al. Outcome of patients with diabetes with negative percutaneous bone biopsy performed for suspicion of osteomyelitis of the foot. Diabet Med 2012; 29(1): 56-61.

30. Crisologo PA, La Fontaine J, Wukich DK, Kim PJ, Oz OK, Lavery LA. The Effect of Withholding Antibiotics Prior to Bone Biopsy in Patients With Suspected Osteomyelitis: A Meta-analysis of the Literature. Wounds : a compendium of clinical research and practice 2019; 31(8): 205-12.
31. Berthol N, Robineau O, Boucher A, et al. Two-Step Sequential Approach for Concomitant Skin and Soft Tissue Infection and Osteomyelitis Complicating the Diabetic Foot. Diabetes care 2017; 40(12): e170-e1.

32. Lavery LA, Crisologo PA, La Fontaine J, Bhavan K, Oz OK, Davis KE. Are We Misdiagnosing Diabetic Foot Osteomyelitis? Is the Gold Standard Gold? J Foot Ankle Surg 2019; 58(4): 713-6.

33. Wu JS, Gorbachova T, Morrison WB, Haims AH. Imaging-guided bone biopsy for osteomyelitis: are there factors associated with positive or negative cultures? AJR Am J Roentgenol 2007; 188(6): 1529-34.

34. Hoang D, Fisher S, Oz OK, La Fontaine J, Chhabra A. Percutaneous CT guided bone biopsy for suspected osteomyelitis: Diagnostic yield and impact on patient's treatment change and recovery. Eur J Radiol 2019; 114: 85-91.

35. Said N, Chalian M, Fox MG, Nacey NC. Percutaneous image-guided bone biopsy of osteomyelitis in the foot and pelvis has a low impact on guiding antibiotics management: a retrospective analysis of 60 bone biopsies. Skeletal Radiol 2019; 48(9): 1385-91.
Table 1: Study characteristics and results

Study (Country)	Number of patients	Infection severity	Pre-biopsy antibiotics	Biopsy approach	Number of PBBs	Number (%) of culture-positive PBBs		
Senneville 2006 (France)	88	Wagner’s 1 Grade 3 80% Grade 4 20%	None 4 weeks prior to the PBB	≥2 cm from ulcer; less for toe biopsy Dorsal approach for plantar ulcers	93	81 (87)		
Senneville 2008 (France)	26	NR	Some patients received antibiotics 4 weeks prior to the PBB 2	≥2 cm from ulcer; less for toe biopsy Dorsal approach for plantar ulcers	26	22 (85)		
Senneville 2009 (France)	31	NR	None 2 weeks prior to the PBB	≥2 cm from ulcer; less for toe biopsy Dorsal approach for plantar ulcers	31	21 (68)		
Elamurugan 2011 (India)	144	Wagner’s Grade 3 60.4% Grade 4 20%	57% received antibiotics prior to PBB. Timing, duration, route and spectrum NR.	PBB through apparently normal skin	144	134 (93)		
Lesens 2011 (France)	80	NR	53% received antibiotics ≤2 weeks prior to PBB. Route, duration, and spectrum NR.	Through the ulcer	80	78 (97)		
Aslangul 2013 (France)	40	NR	None 2 weeks prior to the PBB	Through “intact uninfected skin”; aspiration of bone marrow	43	24 (56)		
Navrati 2016 (Czech Republic)	35	NR	NR	Through the ulcer	35	23 (66)		
Reference	Study Year	Study Design	Description	Antibiotic Use Before PBB	Timing, Duration, Route, and Spectrum	Ulcer Site	PBB Sites	PBB Yield (%)
----------------------------	------------	--------------	--	---------------------------	---------------------------------------	------------	-----------	----------------
Ducloux et al. 2016	2016	Case-Control	Armstrong wound grade used. Some with A and C grades, which are reserved for patients without infections	None 2 weeks prior to the PBB	≥ 2 cm from ulcer	71	71	50 (70)
Letertre-Gibert et al. 2017	2017	Case-Control	UT staging system Grade 3 stage B 70% Grade 3 stage D 30% 32% received antibiotics < 1 week prior to PBB. Timing, duration, route and spectrum NR.	Through the ulcer	76	76	75 (99)	
Feron et al. 2019	2019	Case-Control	UT staging system Grade 3 stage B 32 (70%) Grade 3 stage D 14 (30%) 42% received antibiotics ≤2 weeks prior to PBB. Route, duration, and spectrum NR.	Not reported	146	146	99 (67)	
Couturier et al. 2019	2019	Case-Control	UT staging system Grade 3 stage B 32 (70%) Grade 3 stage D 14 (30%) 42% received antibiotics ≤2 weeks prior to PBB. Route, duration, and spectrum NR.	All patients had one biopsy though intact skin (1 cm from the ulcer) and one through the wound	46 through intact skin	46 thorough intact skin	38 (83)	

Abbreviations: PAD, peripheral artery disease; PBB, percutaneous bone biopsy; NR, not reported; UT, University of Texas

1-Among culture-positive PBBs
2-Author report antibiotic use 4 weeks prior to presentation among patients that did and did not undergo PBB 12 (24%). Proportion among those that underwent PBB not reported.
3-Author report separately results of blinded biopsy at bedside [62 (64%) positive] and by fluoroscopy or surgeon [37 (77%) positive].
4-All patients in this study had paired PBB through intact skin and though the wound.
5-Author present severity score for each ulcer biopsied.
Figure 1: PRISMA flow diagram

Electronic database searches: PubMed, EMBASE, and Cochrane
n = 1,063

Records after duplicate removal:
n = 861

Titles screened:
n = 861

Excluded after title screened:
n = 778

Abstracts reviewed:
n = 83

Excluded after abstract reviewed:
n = 48

Full text assessed for eligibility:

English n = 33
French n = 2
Spanish n = 1

(n = 35)

Excluded after full text reviewed:

Case series <5 patients n = 1
Diabetic foot excluded n = 1
Does not evaluate bone biopsy n = 12
Does not evaluate percutaneous bone biopsy n = 16
Review, commentary or editorial n = 16
(n = 25)

Eligible studies:
n = 10

Identified by literature review:
n = 1

Included studies:
n = 11 (all in English)

Cannot retrieve n = 2
Case series <5 patients n = 1
Diabetic foot excluded n = 1
Does not evaluate bone biopsy n = 12
Does not evaluate percutaneous bone biopsy n = 16
Review, commentary or editorial n = 16
Case series <5 patients n = 1
Does not evaluate bone biopsy n = 4
Does not report biopsy method n = 6
Duplicate n = 3
Open biopsy n = 6
Other n = 5

Search last updated January 29, 2020 for studies published by December 31, 2019
Study not registered under PROSPERO database
Figure 2: Meta-analysis of the proportion of culture-positive percutaneous bone biopsies

Forrest plot including all studies

Study	Events Total	Proportion	95%–CI
Senneville 2006	81	0.87	[0.79; 0.93]
Senneville 2008	22	0.85	[0.65; 0.96]
Senneville 2009	21	0.68	[0.49; 0.83]
Elmurugan 2011	134	0.93	[0.88; 0.97]
Lesens 2011	78	0.98	[0.91; 1.00]
Aslangul 2013	24	0.56	[0.40; 0.71]
Navratil 2016	23	0.66	[0.48; 0.81]
Diodoux 2016	50	0.70	[0.58; 0.81]
Lete–Gibert 2017	75	0.99	[0.93; 1.00]
Feron 2019	99	0.68	[0.60; 0.75]
Coutier 2019	38	0.83	[0.69; 0.92]

Random effects model: $I^2 = 91\%$, $p < 0.01$

Events, number of positive percutaneous bone biopsies; Total, number percutaneous bone biopsies

Forrest plot excluding studies with a large proportion of positive biopsies

Study	Events Total	Proportion	95%–CI
Senneville 2006	81	0.87	[0.79; 0.93]
Senneville 2008	22	0.85	[0.65; 0.96]
Senneville 2009	21	0.68	[0.49; 0.83]
Elmurugan 2011	134	0.93	[0.88; 0.97]
Aslangul 2013	24	0.56	[0.40; 0.71]
Navratil 2016	23	0.66	[0.48; 0.81]
Diodoux 2016	50	0.70	[0.58; 0.81]
Feron 2019	99	0.68	[0.60; 0.75]
Coutier 2019	38	0.83	[0.69; 0.92]

Random effects model: $I^2 = 82\%$, $p < 0.01$

Funnel plot including all studies

Funnel plot excluding studies with a large proportion of positive biopsies

1-Senneville (2006), 2-Senneville (2008), 3-Senneville (2009), 4-Elmurugan, 5-Lesens, 6-Aslangul, 7-Navratil, 8-Diodoux, 9-Lete–Gibert, 10-Feron, 11-Coutier
Figure 3: Meta-analysis of the proportion of culture-positive percutaneous bone biopsies stratified by biopsy approach and antibiotic use prior to biopsy

Biopsy through intact skin

Study	Events	Total	Proportion	95%-CI
Serneville 2006	81	93	0.87	[0.79; 0.93]
Serneville 2008	22	26	0.85	[0.65; 0.96]
Serneville 2009	21	31	0.68	[0.49; 0.83]
Elamurugan 2011	134	144	0.93	[0.88; 0.97]
Aslangul 2013	24	43	0.56	[0.40; 0.71]
Ducoux 2016	50	71	0.70	[0.58; 0.81]
Courrier 2019	38	46	0.83	[0.69; 0.92]

Random effects model: 454
Heterogeneity: $I^2 = 81\%$, $p < 0.01$

Biopsy through an ulcer

Study	Events	Total	Proportion	95%-CI
Lesens 2011	78	80	0.98	[0.91; 1.00]
Navratil 2016	23	35	0.66	[0.48; 0.81]
Letertre-Gibert 2017	75	76	0.99	[0.93; 1.00]
Courrier 2019	45	46	0.98	[0.88; 1.00]

Random effects model: 237
Heterogeneity: $I^2 = 82\%$, $p < 0.01$

Excluded patients that received antibiotics ≤ 2 weeks prior to the biopsy

Study	Events	Total	Proportion	95%-CI
Serneville 2006	81	93	0.87	[0.79; 0.93]
Serneville 2009	21	31	0.68	[0.49; 0.83]
Aslangul 2013	24	43	0.56	[0.40; 0.71]
Ducoux 2016	50	71	0.70	[0.58; 0.81]

Random effects model: 238
Heterogeneity: $I^2 = 75\%$, $p < 0.01$

Included patients that received antibiotics ≤ 2 weeks prior to the biopsy

Study	Events	Total	Proportion	95%-CI
Lesens 2011	78	80	0.98	[0.91; 1.00]
Letertre-Gibert 2017	75	76	0.99	[0.93; 1.00]
Courrier 2019	38	46	0.83	[0.69; 0.92]

Random effects model: 202
Heterogeneity: $I^2 = 74\%$, $p < 0.01$

Events, number of positive percutaneous bone biopsies
Total, number of percutaneous bone biopsies
Figure 4: Distribution of bacteria isolated by percutaneous bone biopsy among studies performing biopsy through intact skin

Senneville 2006 (France)
No antibiotics ≤2 weeks prior to the PBB

Senneville 2008 (France)
Proportion receiving antibiotics ≤2 weeks prior to the PBB unclear

Senneville 2009 (France)
No antibiotics ≤2 weeks prior to the PBB

Elamurugan 2011 (India)
Proportion receiving antibiotics ≤2 weeks prior to the PBB unclear

Ashlangul 2013 (France)
No antibiotics ≤2 weeks prior to the PBB

Ducoux 2016 (France)
No antibiotics ≤2 weeks prior to the PBB

Couturier 2019 (France)
42% received antibiotics 2 weeks prior to the PBB

Horizontal axis, percentage of culture-positive biopsies in which the bacteria was grown
Number (%) for each bacteria on top of the bars

Abbreviations: PBB, percutaneous bone biopsy; MRSA, methicillin-resistant S. aureus; CoNS, coagulate-negative Staphylococci

1-Including MRSA
2-Proportion with polymicrobial growth not reported
3-Methicillin-susceptibility not reported
4-Proportion with methicillin-sensitive S. aureus not reported
5-Individual gram-negative species not reported; this is the sum of all gram-negatives