Correction to “Knotted Hamiltonian cycles in spatial embeddings of complete graphs”

Joel Foisy

Abstract. We state and prove a correct version of a theorem presented in [1].

Professor Masakazu Teragaito has recently pointed out that Theorem 3.3 of [1] is incorrect as stated. The fact that \(\mu_f(G, \Gamma; 6) = 3 \) is independent of embedding of \(K_8 \) does not necessarily imply that there are at least 3 knotted Hamiltonian cycles. For example, there could be exactly one knotted Hamiltonian cycle with \(a_2(K) = 3 \).

Professor Kouki Taniyama has further pointed out that Lemma 2, in [2], has a gap in its proof. He has proposed a rigorous proof of a weaker version Lemma 2. In this short paper, we will state and prove this weaker version of Lemma 2 in [2], and then apply it to obtain a weaker version of Theorem 3.3 of [1]. For definitions of terms, see [2] and [1]. Here is the modified version of Shimabara’s Lemma 2 that we will prove:

Lemma 0.1. Let \(\Gamma \) be a set of cycles in an undirected graph \(G \). The invariant \(\mu_f(G, \Gamma; n) \) does not depend on the spatial embedding \(f \) of \(G \) if the following two conditions hold:

1. For any edges \(A, B, E \) such that \(A \) is adjacent to \(B \),
 \(\nu_1(\Gamma; A, B, E) \equiv 0 \pmod{n} \).
2. For any pairs of non-adjacent edges \((A, B) \) and \((E, F) \),
 \(\nu_2(\Gamma; A, B; E, F) \equiv 0 \pmod{2n} \).

The difference between this new lemma and the original comes in the second condition, where the equivalence is \(\text{mod} \ 2n \), not \(n \). For the proof of Lemma 2, case 2, on p. 410 of [2], the definition of linking number used does not work. For the version of linking number used, \(\zeta(A, B) \) depends on the order of \(A \) and \(B \), whereas the equality \(\sum_{E,F \gamma \in \Gamma_1} \epsilon(c) \zeta(f_\gamma(E), f_\gamma(F)) = \sum_{E,F} (n_3 - n_4) \zeta(f(E), f(F)) \) implicitly uses the assumption that \(\zeta(A, B) = \zeta(B, A) \).

A proof of Lemma 0.1 is possible if one uses a different (but equivalent) version of \(\zeta \) and linking number. For \(A \) and \(B \) two disjoint oriented arcs or circles in \(\mathbb{R}^3 \), define \(\zeta'(A, B) = (1/2) \sum c \epsilon(c) \), with the summation being over all crossings.
between A and B. If A and B are circles, then $\zeta'(A, B)$ gives the linking number of A and B, $lk(A, B)$. It then follows immediately that $\zeta'(A, B) = \zeta'(B, A)$. The proof of Lemma 0.1 proceeds as in the proof of Lemma 2 in [2], but now ends with:

$$\delta(u) = \sum_{E, F} \sum_{\gamma \in \Gamma} \epsilon(c) \zeta(f_\gamma(E), f_\gamma(F)) = \sum_{E, F} (n_3 - n_4) \zeta'(f(E), f(F)).$$

It then follows, since each $\zeta'(f(E), f(F))$ is either an integer or an integer divided by 2, that, $\delta(u)$ is congruent to 0 mod n if $|n_3 - n_4| \equiv 0 \mod 2n$.

Now, in [1], it was shown that $\nu_2 \equiv 0 \mod 6$. It was also shown that there exists an embedding of K_8 with exactly 21 knotted Hamiltonian cycles, each with Arf invariant 1. One can also verify that each of these knotted cycles is a trefoil, with $a_2 = 1$. This embedding, together with Lemma 0.1, implies that $\mu_f(K_8, \Gamma, 3) \equiv 0$ for every spatial embedding of K_8. By Theorem 2.2 of [1], there is at least one Hamiltonian cycle with Arf invariant 1, in every spatial embedding of K_8.

We thus have the following corrected version of Theorem 3.3 from [1].

Theorem 0.2. Given an embedding of K_8, at least one of the following must occur in that embedding:

1. At least 3 knotted Hamiltonian cycles.
2. Exactly 2 knotted Hamiltonian cycles C_1 and C_2, with $a_2(C_1) \equiv 1 \mod 3$ and $a_2(C_2) \equiv 2 \mod 3$, or $a_2(C_1) \equiv 0 \mod 3$ and $a_2(C_2) \equiv 0 \mod 3$.

 Either C_1 or C_2 has non-zero Arf invariant.
3. Exactly 1 knotted Hamiltonian cycle, C with $a_2(C) \equiv 1 \mod 2$ and $a_2(C) \equiv 0 \mod 3$. (Equivalently: $a_2(C) \equiv 3 \mod 6$.)

It thus remains an open question to determine if 1 is the best lower bound for the minimum number of knotted Hamiltonian cycles in every spatial embedding of K_8.

Acknowledgments The author would like to thank Professors Masakazu Teragaito, Kouki Taniyama and Ryo Nikkuni for valuable comments and suggestions.

References

[1] P. Blain, G. Bowlin, J. Hendricks, J. LaCombe, J. Foisy, *Knotted Hamiltonian cycles in spatial embeddings of complete graphs*, New York Journal of Mathematics, 13 (2007), 11-16.

[2] M. Shimabara *Knots in Certain Spatial Graphs* Tokyo J. Math. Vol. 11, No 2, 1988.

Department of Mathematics, SUNY Potsdam, Potsdam, NY 13676
foisyjs@potsdam.edu