INTRODUCTION

Caesalpinia sappan Linn., locally known as "Fang," is used as a medicinal plant in Thailand. A decoction of the heartwood of *C. sappan* has been used in Thai folk medicine to treat tuberculosis, diarrhea, dysentery, skin infections, and anemia [1,2]. Moreover, this plant has long been used in Thai folk medicine to treat tuberculosis, diarrhea, dysentery, skin infections, and anemia [1,2]. In addition, the heartwood of *C. sappan* has also been used as one of Thai folk medicine recipes for the treatment of tuberculosis, diarrhea, dysentery, skin infections, and anemia [1,2]. Moreover, the heartwood of *C. sappan* has long been used in Thai folk medicine to treat tuberculosis, diarrhea, dysentery, skin infections, and anemia [1,2].

Several types of secondary metabolites isolated from *C. sappan* have been reported such as xanthones [2,3], coumarins [3], chalcones [3], flavones [4], homoioflavonoids [3-7], and diterpenes [8]. Although many chemical constituents and pharmacological activities of *C. sappan* have been reported such as anti-inflammatory [4,5,9,10], antioxidant [11,12], antibacterial activities [12], cytotoxicity against human cell lines [13,14], and cardioactive effect [15], there have been no records about cytotoxicity against leukemia cell lines as well as gas chromatography-mass spectrometry (GC–MS) analysis of phytochemicals in dichloromethane extract that could contribute the medicinal property of this plant.

In this report, the investigation of dichloromethane extract by GC–MS and column chromatography is described together with the cytotoxic effects of isolated compounds on KG1 and KG1a cells. This study provides scientific data of active compounds which confirm the traditional medical use of this plant for the treatment of BPH in Thailand. Moreover, GC–MS analysis of dichloromethane extract and cytotoxicity activity of chemical constituents from *C. sappan* is revealed for the 1st time.

MATERIALS AND METHODS

Plant material

The heartwood of *C. sappan* was collected from Lamphun province, Thailand, and identified by Assist. Prof Dr. Aungkana Inta and a voucher specimen (CMUB39873) has been deposited at the Ethnobotanical Research Section, Chiang Mai University Biology Herbarium, Chiang Mai University, Thailand.

General procedure

Melting points (m.p.) were measured on a melt point apparatus (SANYO 1.0 A, 220/240 v, 50 (65) w). 1H and 13C NMR spectra were recorded on a Bruker DRX 400 spectrometer. IR spectra were obtained using Fourier-transform infrared 4796 spectrometer (Bruker, TENSOR 27). Ultraviolet (UV) spectra were recorded using a Lambda 25 UV/Vis spectrometer (PerkinElmer Instruments). Column chromatography was performed using silica gel 60 (Merck No. 9385, 0.040–0.063 mm). Thin-layer chromatography (TLC) was carried out using Merck silica gel 60 F254 precoated on an aluminum plate, and the compounds were visualized by UV light under the wavelength at 254 nm and sprayed with p-anisaldehyde reagent.

Extraction and isolation

The air-dried and finely powdered heartwood of *C. sappan* (1.00 kg) was extracted with dichloromethane at room temperature, successively twice over a period of 3 days. Removal of solvent under reduced pressure afforded the dichloromethane extract (12.67 g) of *C. sappan*.

The dichloromethane extract (10.63 g) was separated by column chromatography over silica gel, using a stepwise gradient elution of...
hexanes-acetone (400 ml each). Elution started with hexanes, gradually enriched with acetone in hexanes to 100% acetone, followed by an increasing amount of methanol in acetone, and finally with 100% methanol. Fractions were collected and combined with TLC behavior under UV light at 254 nm. The solvents were evaporated to dryness to give 14 fractions (A1–A14). Fraction A5 (1.20 g) was further separated by column chromatography on silica gel using hexanes: dichlormethane (8:2) as eluent to afford four subfractions (B1–B4). Fraction B4 contained a mixture of compounds 3 and 4 (52.6 mg). Fraction A6 (5.00 g) was fractionated by column chromatography and afforded eight subfractions (C1–C8). Subfraction C6 was found to contain red gum of compound 1 (289.2 mg). Subfraction B1 was further purified on silica gel column, eluting with hexanes-acetate (9:1) to afford compound 2 (17 mg).

Identification of compounds by GC–MS analysis
GC–MS analysis of the dichloromethane extract was carried out using a high resolution on a mass spectrometer of Agilent 199095-433E 325°C Max. Compounds were separated on HP-5MS capillary column (30.0 m×250 µm) coated with 0.25 µm film thickness of 5% phenyl methyl siloxane. The oven temperature was 60–280°C at 5°C/min. The split injection was conducted with a split ratio of 50:1. Helium was used as the carrier gas at flow rate 1.0 ml/min. MS condition performed with ionization mode, ion source of 230°C, mass range 29-500 amu. As the carrier gas at flow rate 1.0 ml/min. MS condition performed with ionization mode, ion source of 230°C, mass range 29-500 amu. The results of three experiments were drawn to the average relation graphs between concentrations and percent cell viability.

RESULTS
The phytochemical compounds in dichloromethane extract from the heartwood of C. sappan were analyzed by the GC–MS method. The mass analysis revealed the presence of 14 compounds as shown in Table 1.

The dichloromethane extract was further investigated by column chromatography. The investigation resulted in the isolation of two compounds (1–2) and one mixture of compounds 3 and 4. The isolated compounds were identified by spectroscopic methods together with the comparison with those data previously reported in the literature. Their structures are shown in Fig. 1.

The isolated compounds from C. sappan, compounds 1–2 as well as the mixture of 3 and 4, were evaluated for their cytotoxic effect on KG1 and KG1a cells.

After leukemic cell lines were treated with compounds 1–4 at various concentrations for 48 h, the cytotoxic effects were investigated using MTT assay. Cytotoxicity of compounds 1–4 was determined by IC50 values. The IC50 values of compounds 1–2 and the mixture of 3 and 4

Compounds	Retention time (min)	% Relative peak abundance	
Phenolics			
3-Allyl-6-methoxyphenol	25.6	0.25	
4-Hydroxy-3-methoxybenzaldehyde	27.3	0.22	
Squalene	71.0	1.22	
Friedelan-3-one	87.8	5.80	
alpha-Tocopherol	77.6	0.33	
Fatty acid	41.5	0.94	
Tetradecanoic acid	48.5	7.46	
n-Hexadecanoic acid	53.9	14.9	
(9Z,12Z)-Octadeca-9,12-dienoic acid	81.7	13.1	
Ethers			
p-Methoxycinnamic acid ethyl ester	40.8	0.10	
Benzyl benzoate	41.1	0.32	
Sterols			
Campesterol	79.4	3.84	
Stigmasterol	80.1	4.58	
Stigmasterol	22.25-Dihydrostigmasterol	81.7	13.1
(3β,5a)-22,23-Dihydrostigmasterol	81.7	13.1	

The comparison of compounds 1–2 and the mixture of 3 and 4 on KG1 and KG1a cell lines

Compounds	IC50 (µg/ml)	
KG1	KG1a	
1	13.30±0.49	12.24±1.08
2	>100	>100
3 and 4	>100	>100

Data are the mean values±SEM of three independent experiments. SEM: Standard error of mean

Fig. 1: Structures of compounds 1–4 isolated from the heartwood of C. sappan
on KG1 cells were 13.30 ± 0.49, >100, and >100 µg/ml, respectively. The IC50 values on KG1a were very close to KG1 cells with the values of 12.24 ± 1.08, >100, and >100 µg/ml, respectively (Table 2).

DISCUSSION

In this study, 14 compounds have been detected in the dichloromethane extract from the heartwood of *C. sappan* by GC–MS analysis. Linoleic acid and β-sitosterol were found to be the major compounds presenting in 14% and 13%, respectively. Linoleic acid has possessed many biological activities such as anti-inflammatory, hypcholesterolemic cancer preventive, nematicide insectifuge, hepatoprotective, antihistamines, anti-tumor, anti-bacterial, 5-alpha-reductase inhibitor, ant androgenic, and anti cancerous [16]. While the β-sitosterol also found the major compound in this plant has been reported the ability in the reduction of the growth and the multiplication on prostate cancer cell lines [17–19]. From the GC–MS analysis results, these major compounds could be responsible for the medicinal properties which support *C. sappan* for the treatment of BPH.

For the further phytochemical investigation, the dichloromethane extract was separated by column chromatography to afford compounds 1–2 and the mixture of 3 and 4.

Compound 1 was isolated as red gum. The 1H NMR signals at δ 2.27 (d, 1H) and 2.97 ppm (d, 1H) assigned to methylene protons of the cyclopentene ring which were confirmed by the geminal coupling constant of 15.7 Hz. The methylene protons of C-2 attached to the oxygen atom of pyran ring were resonated at δ 3.67 (d, 1H) and 3.90 ppm (d, 1H) with the geminal coupling constant of 11.2 Hz. The group of aromatic proton signals at δ 7.16 (d, 1H, J = 8.3 Hz), 6.45 (dd, 1H, J =8.3, 2.5 Hz), 6.26 (d, 1H, J =2.5 Hz), 6.61 (s, 1H), and 6.73 ppm (s, 1H) was referred to H-5, H-6, H-8, H-2', and H-5', respectively.

The 13C NMR spectrum displayed 16 signals for 16 carbons, which were confirmed the molecular formula of C11H13O, of brazilin. Compound 1 was proved to be brazilin by comparison of its 1H and 13C NMR spectral data with the literature [27].

Compound 2 was obtained as white amorphous solid, m.p. 210–212°C. The 1H NMR (400 MHz, CDCl3) spectrum displayed the presence of seven tertiary methyl groups at δ 0.76 (s, 24–CH3), 0.79 (s, 28-CH3), 0.83 (s, 25–CH3), 0.94 (s, 27-CH3), 0.97 (s, 29-CH3), 1.01 (s, 26-CH3), and 1.60 ppm (s, 30-CH3). The signal at δ 5.20 ppm (dd, 1H, J =5.2, 11.1 Hz) indicated the presence of methine proton H-3 connected with a hydroxyl group and the signal at δ 2.38 ppm (dt, 1H, J =5.7, 11.0 Hz) was referred to H-19. The olefinic methylene protons appeared at 6.45 ppm (s, 1H, H-29a) and 4.69 ppm (s, 1H, H-29b). These results suggested that compound 2 was lapedol, a pentacyclic triterpenoid, by comparison of its 1H NMR data with those previously reported in the literature [20].

The mixture of compounds 3 and 4 was obtained colorless plates which were characterized as β-sitosterol and stigmasterol, respectively, by analysis of 1H NMR spectrum. The signal at δ 5.37 ppm (d, 1H, J=5.2 Hz) was assigned as olefinic proton H-6, and the signal appeared at δ 3.55 ppm (m, 1H) was assigned to H-3 connected to the hydroxyl group for both β-sitosterol and stigmasterol. The signals at δ 5.17 ppm (dd, 0.49H, J=15.1, 8.6 Hz) and 5.03 ppm (dd, 0.49H, J=15.2, 8.0 Hz) were assigned to H-22 and H-23 of stigmasterol. The ratio of the mixture of β-sitosterol and stigmasterol was estimated around 1:1 by determining the integration of H-6, H-22, and H-23 which appeared in the ratio of 1.00:0.47:0.48. The mixture of compounds 3 and 4 was proved to contain β-sitosterol and stigmasterol by comparison of their 1H NMR data with those previously reported in the literature [21,22].

The isolated compounds 1–4 were evaluated for cytotoxic activity on KG1 and KG1a cells. Among these compounds, brazilin (1), a homoisoflavonoid, showed the most cytotoxic effect on both leukemic cell lines. Hung et al. [23] revealed that the methanol extract of *C. sappan* exhibited cytotoxic activity against several of the cancer cell lines. Moreover, sappanchalcone, a flavonoid isolated from *C. sappan*, has been reported to inhibit oral cancer cell growth and caesalpinaphenol G–H, two phenolic compounds isolated from Vietnamese *C. sappan*, displayed potent inhibitory activity against HL-60 cancer cell lines [13]. Brazilin and its analogs have also been reported cancer-preventive qualities toward several human cancer cell lines such as HT29, A549, HEL, and K562 in MTT assay [24]. Our results were agreed with the previous reports. The extract and isolated compounds, especially phenolic compounds, from *C. sappan* showed an ability to inhibit the growth of several cancer cell lines [13,23,2,4]. Therefore, this study presents that brazilin (1) could be a potential anticancer property against leukemia cells and reveals the first analysis of isolated compounds from *C. sappan* with cytotoxicity on leukemic cell lines.

CONCLUSION

The GC–MS analysis of the dichloromethane extract from *C. sappan* revealed many groups of phytochemical compounds, including phenolics, terpenoids, fatty acid, esters, and sterols. Linoleic acid and β-sitosterol found to be the major compounds. Moreover, the β-sitosterol has been reported to possess anti-BPH property which confirms the traditional medicinal use in Thailand. The brazilin (1), a major compound from *C. sappan*, shows cytotoxicity on leukemia cells, which could be a potential anticancer property.

ACKNOWLEDGMENT

We would like to thank the Department of Chemistry and Faculty of Science, Chiang Mai University, for the financial support. We are also grateful to Assist. Prof. Dr. Aungkana Inta, Department of Biology, Chiang Mai University, for identification of plant material.

REFERENCES

1. Sireratamong S, Piyanthan P, Singhalaj T, Wongkrajong Y, Temsrinrikkul K, Punsriat J, et al. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai 2010;93 Suppl 7:S50-7.
2. Nirmal NP, Rajput MS, Prasad RG, Ahmad M, Brazilin from *Caesalpinia sappan* heartwood and its pharmacological activities: A review. Asian Pac J Trop Med 2015;8:421-30.
3. Chen YP, Liu L, Zhou YH, Wen J, Jiang Y, Tu PF. Chemical constituents from *Sappan* lignum. J Chin Pharm Sci 2008;17:82-6.
4. Pawar CR, Landage AD, Surana SJ. Phytochemical and pharmacological aspects of *Caesalpinia sappan*. J Pharm Res 2008;1:131-8.
5. Zhao MB, Li Ji, Shi SP, Cai CQ, Tu PF, Tang L, et al. Two new phenolic compounds from the heartwood of *Caesalpinia sappan*. Molecules 2014;19:1-8.
6. Namkoshi M, Nakata H, Saihoh T. Homoisoflavonoids from *Caesalpinia sappan*. Phytochemistry 1987;26:1831-3.
7. Namkoshi M, Nakata H, Yamada H, Nakai M, Saihoh T. Homoisoflavonoids and Related compounds II. 1) Isolation and absolute configurations of 3, 4-dihydroxylated homoisofavan and brazils from *Caesalpinia sappan* L. Chem Pharm Bull 1987;35:2761-73.
8. Nguyen HX, Nguyen MT, Nguyen TA, Nguyen NY, Phan DA, Thi PH, et al. Cleistanthane diterpene from the seed of *Caesalpinia sappan* and their ant austerity activity against PANC-1 human pancreatic cancer cell line. Fitoterapia 2013;91:148-53.
9. Jeong IX, Jin CH, Park YD, Lee HJ, Choi DS, Byun MW. Anti-inflammatory activity of an ethanol extract of *Caesalpinia sappan* L. in LPS-induced RAW 264.7 cells. J Food Sci Nutr 2008;13:253-8.
10. Sasaki Y, Hosokawa T, Nagai M, Nagumo S. *In vitro* study for inhibition of NO production about constituents of *Sappan* lignum. Biol Pharm Bull 2007;30:193-6.
11. Saffrata R, Tarinaga P, Freisleben HJ, Rumampak RJ, Murakami A. Antioxidant activity in vitro of two aromatic compounds from *Caesalpinia sappan*. L. BioFactors 2003;19:71-7.
12. Kadchumsang S, Siriord-F P, Sokokeel S, Chansakaow S. Antibacterial and Antioxidant activities of lanna medicinal plants used in mahoog preparations of 3, 4-dihydroxylated homoisofavan and brazils from *Caesalpinia sappan* L. Chem Pharm Bull 1987;35:2761-73.
13. Ngernnak et al. Asian J Pharm Clin Res, Vol 11, Issue 2, 2018, 336-339. BioFactors 2003;19:71-7.
14. Laksmani NP, Sussidari RA, Meiyanto E. Brazilin increases the sensitivity of doxorubicin on MCF-7 resistant doxorubicin (MCF-7/
DOX) cells through inhibition of HER-2 activation. Int J Pharm Pharm Sci 2015;7:525-8.

15. Nugraheni K, Saputri FC. The effect of secang extract (Caesalpinia sappan Linn) on the weight and histology appearance of white male rats’ heart induced by isoproterenol. Int J Appl Pharm 2017;9:59-61.

16. Sermakkani M, Thangapandian V. GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res 2012;5:90-4.

17. Bennani H, Drissi A, Giton F, Kheuang L, Fiet J, Adlouni A. Antiproliferative effect of polyphenols and sterols of virgin Argan oil on human prostate cancer cell lines. Cancer Detect Prev 2007;31:64-9.

18. Klippel KF, Hiltl DM, Schipp B. A multicentric, placebo-controlled, double-blind clinical trial of beta-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. German BPH-Phyto study group. Br J Urol 1997;80:427-32.

19. Wilt TJ, MacDonald R, Ishani A. Beta-sitosterol for the treatment of benign prostatic hyperplasia: A systematic review. BJU Int 1999;83:976-83.

20. Fotie J, Bohle DS, Leimanis ML, Georges E, Rukunga G, Nkengfack AE. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J Nat Prod 2006;69:62-7.

21. De-Eknamkul W, Pothuang B. Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 2003;62:389-98.

22. Forgo P, Kover KE. Gradient enhanced selective experiments in the 1H NMR chemical shift assignment of the skeleton and side-chain resonances of stigmasterol, a phytosterol derivative. Steroids 2004;69:45-50.

23. Hung TM, Dang NH, Dat NT. Methanol extract from vietnamese Caesalpinia sappan induces apoptosis in HeLa cells. Biol Res 2014;47:1-5.

24. Lee DY, Lee MK, Kim GS, Noh HJ, Lee MH. Brazilin inhibits growth and induces apoptosis in human glioblastoma cells. Molecules 2013;18:2449-57.