SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning

8 May 2023

Abdulhakim Alnuqaydan
University of Kentucky
Outline

- Introduction
- SYMBA (Symbolic Computation of Squared Amplitudes)
- Future
Sequence to sequence (seq2seq):

- Machine learning model that maps an input sequence (words, symbol,...) to an output of sequence

- Used in:
 - Natural language processing (NLP) tasks: translation, summarizations, text generations (GPT-3/GPT-4)
 - Image captioning
 - Symbolic mathematical calculations (Integrations, solving ODEs, ...) [Lample, Charton, 2019]

- One of the most powerful model: **Transformer Model**
A transformer Deep learning model that adapts the mechanism of self-attention, differentially weighting the significance of each part of the input data.

It was introduced in 2017 by a team at Google Brain. (Vaswani et al, 2017)
SYMBA (Symbolic Computation of Squared Amplitudes)

We use Transformer model to compute symbolically the square of the particle interaction amplitude, a key element of a cross section calculation.

Abdulhakim Alnuqaydan
PhD student
University of Kentucky

Sergei Gleyzer
Professor
University of Alabama

Harrison Prosper
Professor
Florida State University
Squared amplitude and cross section:

$$\sigma \sim |M|^2$$

Polarization Averaging
Lorentz index
Color factors
Matrix multiplication
Dirac algebra
Traces
Integration
Dataset:

- Generate 2→2 processes in all Standard Model at tree-level and compute their squared amplitudes using MARTY
- Generate 2→3 processes in QED and QCD at tree-level and compute their squared amplitudes using MARTY

Pairs of two types:

(amplitude, squared amplitude)

(Feynman diagram, squared amplitude)
Data Preparation:

Simplifying squared amplitude:

Tokenization:

- The amplitudes are tokenized by operator (tensor) and its indices
- The squared amplitudes are tokenized by each mass, product of momenta and numerical factor
- Exclude expressions longer than 264 tokens
Training:

- The model has 6 layers and 8 attention-heads, with 512 embedding dimensions.
- We use sparse categorical crossentropy as the loss function, the Adam optimizer with a learning rate of 0.0001 and a batch size of 64.
- The training was performed for 50-100 epochs on two CASCADE-NVIDIA V100 GPUs which took about 12-24 hours.
We assessed the accuracy of the trained model in the standard way, namely by applying the model to a test dataset consisting of 500 amplitudes that were not used to train the model. Three measures of accuracy were considered:

1. **Sequence Accuracy:**
 The relative number of squared amplitudes correctly and exactly predicted.

2. **Token Score:**
 The relative number of tokens (i.e., symbols) that were predicted correctly in the right place in the sequence:

\[
\text{Token Score} = \frac{n_c - n_{ex}}{n_{act}} \times 100, \]

where:
- \(n_c\) is the number of correct tokens,
- \(n_{ex}\) is the number of extra tokens,
- \(n_{act}\) is the total number of actual tokens.
3. **Numerical Error:**
Random numbers between \{10, 100\} are plugged into the variables (momenta) in the squared amplitude and we compare the predicted numerical value of the squared amplitude with the actual numerical value:

\[
\text{Numerical Error} = \frac{x_{act} - x_{pred}}{x_{act}},
\]
Results:

	Data size	Sequence Accuracy
QED (amplitude)	251K	99%
QCD (amplitude)	140K	97%
EW 2to2 (amplitude)	285K	90%
QED (diagram)	258K	99%
QCD (diagram)	142K	73%
EW 2to2 (diagram)	259K	93%

Average time of inference ≤ 2 sec
Remarks:

- High dependency on: **sequence length** and **data size**

Model performance on different sizes of QCD and QED dataset

- QCD
- QED

Model performance on different sequence lengths of QCD and QED datasets

- QCD
- QED
Future:

- Improve decoding (beam search, dimensional decoding)
- Uncertainty
- Include more theories, more final states and higher orders
- Transformer for long sequence

Thank you ..
Back-up
- The amplitude \(ee \rightarrow ee \gamma\):

\[
i\mathcal{M} = \frac{i}{2} e^{3} (p_{3} \gamma^{\mu} \gamma_{\nu} A_{\nu}^{\mu}(p_{5}) e_{\nu}^{*} (p_{4}) e_{\nu}^{*} (p_{2}) e_{\lambda} (p_{3}) e_{\lambda} (p_{1})) - \frac{i}{2} p_{\alpha, \mu} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\lambda} A_{\rho}^{\nu} (p_{5}) e_{\lambda}^{*} (p_{4}) e_{\lambda}^{*} (p_{2}) e_{\lambda} (p_{3}) e_{\lambda} (p_{1}))((m_{e}^{2} - \not{p_{5}} \not{p_{4}}) \ast \not{p_{3}} \not{p_{1}})
\]

- The squared amplitude \(ee \rightarrow ee \gamma\):

\[
|\mathcal{M}|^{2} = \frac{e^{6}}{((p_{3} \cdot p_{5})^{2} + (m_{e}^{2} - \not{p_{2}} \not{p_{4}}))^{2}}(2m_{e}^{6} + m_{e}^{4} * (-p_{1} \cdot p_{3} - p_{1} \cdot p_{5} - p_{2} \cdot p_{4} + 2p_{3} \cdot p_{5}) + m_{e}^{2} * (p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} + p_{1} \cdot p_{2} \cdot p_{3} + p_{1} \cdot p_{4} + p_{2} \cdot p_{3} + p_{1} \cdot p_{5} + p_{2} \cdot p_{5} + p_{3} \cdot p_{4} - p_{2} \cdot p_{4} \ast p_{3} \cdot p_{5}) - p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{5} \ast p_{4} \cdot p_{5} - p_{1} \cdot p_{4} \ast p_{2} \cdot p_{5} \ast p_{3} \cdot p_{5})}
\]
Results:

Model Description	Training Size	Sequence Acc.	Token Score	RMSE
QED (sequence)	251K	98.6%	99.7%	1.3×10^{-3}
QCD (sequence)	140K	97.4%	98.9%	8.8×10^{-3}
(QED + QCD) on QED	391K	99.0%	99.4%	2.5×10^{-3}
(QED + QCD) on QCD	391K	97.6%	98.8%	6.8×10^{-3}
QED (diagram)	258K	99.0%	99.7%	9.3×10^{-4}
QCD (diagram)	142K	73.4%	82.0%	0.3

Table 1: Amplitude-squared amplitude Model results