Pressure effect on iron-based superconductor LaFeAsO$_{1-x}$H$_x$: Peculiar response of 1111-type structure

Kensuke Kobayashi1, Jun-ichi Yamaura2, Soshi Iimura3, Sachiko Maki2, Hajime Sagayama1, Reiji Kumai1,4, Youichi Murakami1,4, Hiroki Takahashi5, Satoru Matsuishi2 & Hideo Hosono2,3

A systematic study of the crystal structure of a layered iron oxypnictide LaFeAsO$_{1-x}$H$_x$ as a function of pressure was performed using synchrotron X-ray diffraction. This compound exhibits a unique phase diagram of two superconducting phases and two parent phases. We established that the As–Fe–As angle of the FeAs$_4$ tetrahedron widens on the application of pressure due to the interspace between the layers being nearly infilled by the large La and As atoms. Such rarely observed behaviour in iron pnictides implies that the FeAs$_4$ coordination deviates from the regular tetrahedron in the present systems. This breaks a widely accepted structural guide that the superconductivity favours the regular tetrahedron, albeit the superconducting transition temperature (T_c) increases from 18 K at ambient pressure to 52 K at 6 GPa for $x = 0.2$. In the phase diagram, the second parent phase at $x \sim 0.5$ is suppressed by pressure as low as -1.5 GPa in contrast to the first parent phase at $x \sim 0$, which is robust against pressure. We suggest that certain spin-fluctuation from the second parent phase is strongly related to high-T_c under pressure.

Iron pnictides are a new family of high-temperature superconductors, whose charge carriers located primarily in the two-dimensional iron plane play an active role in its superconductivity$^{1-4}$. The supporting pnictide (Pn) atoms strongly perturb the 3d multi-orbital bands of Fe atoms through hybridization between Fe-3d and Pn-p electrons$^{2-4}$. As a consequence, chemical substitution along with carrier-doping/chemical-pressure, or application of pressure on the crystal can drastically modify electronic properties, such as the superconducting transition temperature (T_c) of these materials$^{2-5}$. Based on studies on chemical substitution in iron pnictides, an empirical guideline has been established that T_c is maximised when the geometry of the FePn$_4$ unit approaches a regular tetrahedron6. The application of pressure is a direct and clean way to modify the local geometry of FePn$_4$ without the degradation of the crystal in comparison to the chemical substitution; hence, the detailed crystal structure under pressure warrants further investigation.

One of the fascinating materials in iron pnictides is LaFeAsO$_{1-x}$H$_x$, which has a ZrCuSiAs-type structure with alternating stacks of conducting FeAs$_4$ moieties and insulating (O, H)La$_4$ layers (Fig. 1a)7,8. LaFeAsO$_{1-x}$H$_x$ exhibits a unique phase diagram on hydrogen anion substitution i.e. electron doping: two superconducting domes with $T_{c,\text{max}} = 26$ K at $x \sim 0.08$ (SC1) and $T_{c,\text{max}} = 37$ K at $x \sim 0.35$ (SC2), and two parent phases at $x \sim 0$ (PP1) and $x \sim 0.5$ (PP2)$^{9-12}$. The SC2 and PP2 are rarely observed among high-T_c materials because they usually become normal metal in the heavily electron-doped region7. Takahashi et al. have recently demonstrated that the application of pressure on LaFeAsO$_{0.72}$H$_{0.18}$ induced a notable enhancement

1Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan. 2Materials Research Centre for Element Strategy, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan. 3Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan. 4Department of Materials Structure Science, The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan. 5College of Humanities and Science, Nihon University, Setagaya, Tokyo 156-8550, Japan. Correspondence and requests for materials should be addressed to J.Y. (email: jyamaura@lucid.msl.titech.ac.jp)

Received: 05 September 2016
Accepted: 24 November 2016
Published: 22 December 2016
of the T_c from 18 K at ambient pressure to 52 K at 6 GPa. Interestingly, the maximum T_c of LaFeAsO$_{1+x}$H$_x$ under pressure was similar to that of Sm1111 (55 K), the highest known T_c among iron-based superconductors.

Here, we examine the crystal structure of LaFeAsO$_{1+x}$H$_x$ ($x=0, 0.2, 0.51$), under pressure to analyse the relation between the FeAs$_4$ geometry and the T_c. The results reveal that the FeAs$_4$ unit deviates from regular tetrahedron on the application of pressure. This is an unexpected finding that breaks the hitherto believed guideline of approaching a regular FeAs$_4$ tetrahedron with an increase in T_c. Furthermore, we demonstrate that the peculiar PP2 is rapidly suppressed by pressure, while the conventional PP1 is robust against pressure. We suggest that strong spin-fluctuations, originating from an orbital-selective Mott state in the PP2, is a key for enhancing the T_c.

Figure 1. Crystal structure and lattice constants of LaFeAsO$_{1-x}$H$_x$. (a) Crystal structure of LaFeAsO$_{1-x}$H$_x$. (b) Lattice constants as a function of pressure for $x=0, 0.2$, and 0.51. The error bars represent the uncertainty in the least-squares fitting of the whole patterns in (b).

Results and Discussion

Figure 1b illustrates the lattice constants (a and c) of LaFeAsO$_{1-x}$H$_x$ for $x=0, 0.20$, and 0.51 as a function of pressure at room temperature (detailed experimental data in Supplementary Information, Table S1). No peak broadening was observed over the entire pressure range, indicating that the tetragonal systems are preserved (Supplementary Information, Fig. S1a). For each value of x, the lattice parameters a and c decrease monotonically up to ~ 8 GPa with linear compressibilities of $k_a=2.54-2.62 \times 10^{-3}$ GPa$^{-1}$ and $k_c=5.50-5.64 \times 10^{-3}$ GPa$^{-1}$. These values agree with previously reported linear compressibilities of LaFeAsO$_{0.72}$H$_{0.18}$ and SmFeAsO$_{1.8}$

$+\alpha$. k_a and k_c for all LaFeAsO$_{1-x}$H$_x$ complexes are less than and similar to the respective corresponding values of 3.5×10^{-3} GPa$^{-1}$ and 5.4×10^{-3} GPa$^{-1}$ for BaFe$_2$As$_2$. The bulk moduli (B_0) at all values of x are estimated as 100(1) GPa using the empirical Murnaghan equation of state (EOS): $V/V_0 = (1 + p(B_0/B_0))^{-1/B_0}$, where V_0 is the volume at ambient pressure and B_0 is fixed at 4.2.

The atomic positions are displayed in Fig. S1b (Supplementary Information). In Fig. 2a–c the Fe–As bond length (d_{Fe-As}), As–Fe–As bond angle ($\alpha_{As-Fe-As}$), and As height from the Fe plane (h_{As}) are plotted as a function of pressure, where the parameters are described in the inset of Fig. 2a (detailed experimental data in Supplementary Information, Table S1). The application of pressure, d_{Fe-As} and h_{As} decrease, while $\alpha_{As-Fe-As}$ increases i.e. opens up for all the compositions. The degree of pressure response of $\alpha_{As-Fe-As}$ is calculated to be $+0.049$, $+0.18$, and $+0.24$/GPa for $x=0, 0.20$, and 0.51, respectively. In contrast, that of $\alpha_{As-Fe-As}$ in BaFe$_2$As$_2$ and LiFe$_2$As$_2$ has been estimated at -0.48 and -0.29/GPa, respectively, implying that their $\alpha_{As-Fe-As}$ bond-angles reduction with pressure.

Pressure works primarily to infill the interspace between the FeAs$_4$ conduction layer and the (O, H)La$_2$ insulating layer. Figure 2d displays the La–As distances (d_{La-As}). Based on previous reports, the sum of the radii of La and As ions was found to be 3.25 Å, which provides an estimate of the interspace distance. d_{La-As} and $\alpha_{As-Fe-As}$ change from 3.308(2) Å and 111.9(2)$^\circ$ at ambient pressure to 3.211(1) Å and 113.2(1)$^\circ$ at 7.7 GPa for $x=0.20$, respectively (Fig. 2e). As d_{La-As} for $x=0.20$ is close to the interspace filling limit, the pressure response of $\alpha_{As-Fe-As}$ results in a greater shift at higher x. Though the hard sphere perspective is simple, it can yield important findings with regard to superconductivity, but it has not been defined in explicit detail previously in the La1111 system.

Furthermore, as h_{As} can be calculated as: $h_{As} = d_{Fe-As} \cos(\alpha_{As-Fe-As}/2)$, it also responds to pressure and decreases significantly in the higher x region. On the other hand, in 122-type iron arsenides with a ThCr$_2$Si$_2$ structure, the
drastic reduction of the As–As distance between the FeAs₄ layers generally causes a structural collapse with the formation of an (As–As)⁴⁻ molecule, which possibly drives the reduction of αₐs-Fe-As. This distinguishable response of 1111 and 122 compounds to pressure is attributed to the absence of an intervening blocking layer between two FeAs₄ layers in the latter class of iron arsenides.

Figure 3 exhibits the contour plots of T_c against $\alpha_{\text{As-Fe-As}}$ and $d_{\text{Fe-As}}$ under pressure, where the values of T_c in the whole map are interpolated from ref. 13. Since the thermal effect is small when compared to the pressure, it is valid to discuss the relation between the T_c and the structural parameters at room temperature. Pressure triggers
the merge of the two SC domes at ambient pressure into a single SC dome along with an increase of T_c to 52 K at 6 GPa for $x = 0.2$. After the merge, the ridge line of T_c runs along the line for $x = 0.20$ as the pressure is increased.

In iron-based superconductors, the relation between the maximum T_c and structural parameters of FeAs$_4$ has been proposed as follows: the highest T_c is achieved when $\alpha_{\text{As-Fe-As}}$ approaches 109.5° as in a regular tetrahedron of FeAs$_4$ or when $h_{\text{As}} \sim 1.38 \text{ Å}$. Theoretical argument has been advanced that antiferromagnetic spin- or orbital-fluctuation is maximised as FeAs$_4$ adopts a nearly regular tetrahedron geometry, leading to an optimum T_c. The former is strongly related to the number and topology of Fermi surfaces, while the latter is due to the electron-phonon interaction. In agreement with the above rule, SmFeAsO$_{0.78}$H$_{0.22}$, which has the highest T_c of 55 K in iron pnictides, exhibits nearly ideal values of $\alpha_{\text{As-Fe-As}} (109.3°)$ and $h_{\text{As}} (1.386 \text{ Å})$ at ambient pressure. Moreover, $\alpha_{\text{As-Fe-As}}$ for BaFe$_2$As$_2$ and LiFeAs act toward and away from the regular tetrahedron of FeAs$_4$ along with increasing and decreasing the T_c, respectively. However, our present results reveal that while $\alpha_{\text{As-Fe-As}}$ and h_{As} of LaFeAsO$_{0.8}$H$_{0.2}$ deviate from the optimum values with pressure (Fig. 3), there is a significant increase in T_c. Thus, this work highlights the inconsistencies in the guides for increasing the T_c.

In order to find the reason behind the enhancement of T_c, we next examined the parent phase under pressure. Both parent phases indicated tetragonal to orthorhombic (T–O) structural transitions (T_S) and antiferromagnetic ordering (T_N). Figure 4a shows the temperature dependence of the full width at half maximum (FWHM) of the 220 reflection for $x = 0.51$, which is a good indicator of the T–O structural transition. The transitions of T_S are indicated by arrows and are estimated from the power law fitting. At 0.5 and 0.9 GPa, there is moderate broadening of the FWHM in the high-temperature region as extensive fluctuations occur in the vicinity of the structural transition. At 1.5 GPa, the FWHM exhibits slight broadening at low-temperature, not due to the structural transition but on account of the precursory phenomenon near the phase boundary. No broadening was observed at 3.2 GPa. Takahashi et al. demonstrated that an anomaly in resistivity, corresponding to T_{ND}, for $x = 0.51$ was suppressed at ~2 GPa. This implies that the presence of T_{ND} as well as T_S, i.e. the PP2, vanished at 6 GPa for $x = 0.2$. After the merge, the ridge line of T_c runs along the line for $x = 0.20$ as the pressure is increased.

In iron-based superconductors, the relation between the maximum T_c and structural parameters of FeAs$_4$ has been proposed as follows: the highest T_c is achieved when $\alpha_{\text{As-Fe-As}}$ approaches 109.5° as in a regular tetrahedron of FeAs$_4$ or when $h_{\text{As}} \sim 1.38 \text{ Å}$. Theoretical argument has been advanced that antiferromagnetic spin- or orbital-fluctuation is maximised as FeAs$_4$ adopts a nearly regular tetrahedron geometry, leading to an optimum T_c. The former is strongly related to the number and topology of Fermi surfaces, while the latter is due to the electron-phonon interaction. In agreement with the above rule, SmFeAsO$_{0.78}$H$_{0.22}$, which has the highest T_c of 55 K in iron pnictides, exhibits nearly ideal values of $\alpha_{\text{As-Fe-As}} (109.3°)$ and $h_{\text{As}} (1.386 \text{ Å})$ at ambient pressure. Moreover, $\alpha_{\text{As-Fe-As}}$ for BaFe$_2$As$_2$ and LiFeAs act toward and away from the regular tetrahedron of FeAs$_4$ along with increasing and decreasing the T_c, respectively. However, our present results reveal that while $\alpha_{\text{As-Fe-As}}$ and h_{As} of LaFeAsO$_{0.8}$H$_{0.2}$ deviate from the optimum values with pressure (Fig. 3), there is a significant increase in T_c. Thus, this work highlights the inconsistencies in the guides for increasing the T_c.

In order to find the reason behind the enhancement of T_c, we next examined the parent phase under pressure. Both parent phases indicated tetragonal to orthorhombic (T–O) structural transitions (T_S), and antiferromagnetic ordering (T_N). Figure 4a shows the temperature dependence of the full width at half maximum (FWHM) of the 220 reflection for $x = 0.51$, which is a good indicator of the T–O structural transition. The arrows indicate the T–O structural transitions of T_S. The solid lines are guides to the eyes. Inset shows T_S as a function of pressure. (b) The T vs x phase diagram of the parent phases (PP) with structural (T_S) and magnetic (T_N) transitions, and superconducting phases (SC) at 0 and 6 GPa. The PP1 and SC at 6 GPa are blue and red, respectively. The error bars represent the uncertainty in the least-squares fitting of the peaks in (a).
low-pressure. Conversely, the PP1 could be seen up to 20 GPa (Tc,39) and 30 GPa (Tc,1) and was robust against pressure13–17. In Fig. 4b, we summarise the entire phase diagram of LaFeAsO1−xHx at ambient pressure and 6 GPa.

The distinct responses to pressure for both parent phases are unexpected and presumably arise due to their different origins. Since the origin of PP1 is interpreted as a spin density wave with Fermi surface nesting29,30, its robust behaviour of PP1 against pressure is consistent with insensitive change of the Fermi surface15,16,33. In contrast, the origin of PP2 is seemingly less relevant to the Fermi surface topology. limura et al. performed an electronic state calculation based on the molecular orbital concept for LaFeAsO1−xHx.34 In the low x region, the bonding and antibonding states of the Fe-3d and As-4p orbitals give a large gap. This gap decreases rapidly with an increase in x, namely a decrease in the hybridization of Fe and As orbitals, making the non-bonding Fe-3dxy orbital the half-filled state. The resulting state implies that the orbital selective Mott state on Fe-3dxy is realised in the higher x region, i.e., in PP2. for LaFeAsO1−xHx38. Contrary to electron doping with increasing x, the pressure induces the rapid decrease of h_{As}, as shown in Fig. 2c. Therefore, in contrast to PP1, PP2 can be easily broken by pressure.

Generally in high-\(T_c\) superconductors, the nature of the parent phase influences the superconducting state; that is, fluctuations derived from the parent phase may drive the pairing of the superconducting electrons. Thus, the origins of SC1 and SC2 adhering to PP1 and PP2, respectively, can be considered as fluctuations from PP1 and PP239. The former is the itinerant type spin-fluctuation33, and the latter is another type spin-fluctuation with a strongly localised character of the orbital selective Mott phase. Since PP2 disappears easily with pressure, the fluctuation from PP2 should also be sensitive to pressure. Thus, we suggest that the significant enhancement of \(T_c\) under pressure is mainly due to the favourable change of the latter fluctuation. The relation between the present results and the other mechanism of orbital- or charge-fluctuations remains unclear36–39. To identify the above suggestion, the further investigation on the spin/structural dynamics is required in this system.

Conclusion
We established that the FeAs₄ tetrahedron in LaFeAsO₁₋ₓHₓ deviates from the regular one with applied pressure, which is inconsistent with the conventional believed structural guides for increasing the \(T_c\). We found that the PP2 at \(x \sim 0.5\) is lost under low-pressure, contrary to the sluggish pressure reaction of PP1 at \(x \sim 0\). Pressure presumably suppresses the itinerant spin-fluctuation driving the superconductivity from PP1, but enhances another spin-fluctuation with the localised character from PP2 in 1111-type iron pnictides. These pressure responses of the FeAs₄ modification and the parent phases are previously unexplained peculiarities in 1111-type. In future, we plan to further increase the \(T_c\) by combining the effects of the regular tetrahedron geometry of FeAs₄ and the strong fluctuation state from PP2 under pressure in 1111 systems.

Methods
LaFeAsO₁₋ₓHₓ powder samples were prepared by a high-pressure solid-state reaction as reported in literature7. The hydrogen content in these systems was determined by thermal desorption spectroscopy. Synchrotron X-ray diffraction (sXRD) was performed at room temperature for pressures up to ~8 GPa at NE1A of PF-AR, KEK. Pressure was applied using a diamond anvil cell (DAC) with 600 μm culet diamond anvils and a gasket with a 300 μm hole. The DAC, in which the anvils are supported by the 45° tapered slit window without a backing plate, has the advantage of reducing the background scatter and simplifying the absorption correction of diamond (Supplementary Information, Fig. S3a). A very fine powder results in a perfect Debye ring of reflections on the two-dimensional image (Supplementary Information, Fig. S3b). The measured wavelength of λ = 0.4217 Å and the wide open angle of the DAC can approach a d-spacing of <0.7 Å, which enables accurate determination of atomic positions. The two-dimensional images collected using a RIGAKU R-Axis on the curved imaging plate were integrated to yield 2 rate determination of atomic positions. The two-dimensional images collected using a RIGAKU R-AXIS on the DAC can approach a d-spacing of <0.7 Å, which enables accurate determination of atomic positions. The two-dimensional images collected using a RIGAKU R-Axis on the curved imaging plate were integrated to yield 2-rate determination of atomic positions.

References
1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O₁₋ₓFₓ]FeAs (x = 0.05–0.12) with \(T_c = 26 K\). J. Am. Chem. Soc. 130, 3298 (2008).
2. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nat. Phys. 6, 645 (2010).
3. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589 (2011).
4. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).
5. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaFe₁₋ₓFₓAs systems. Nature 453, 899 (2008).
6. Qureshi, N. et al. Crystal and magnetic structure of the oxypnictide superconductor LaFe₄O₁₋ₓFeAs; A neutron-diffraction study. Phys. Rev. B 82, 184521 (2010).
7. Fujihara, M. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nat. Phys. 10, 300 (2014).
8. Uchida, A. et al. Detection of antiferromagnetic ordering in heavily doped LaFe₁₋ₓHₓAs pnictide superconductors using nuclear-magnetic-resonance techniques. Phys. Rev. Lett. 111, 097002 (2013).
9. Takahashi, H. et al. Superconductivity at 52 K in hydrogen-substituted LaFeAsO₁₋ₓHₓ under high pressure. Sci. Rep. 5, 7829 (2015).
10. Ren, Z.-A. et al. Superconductivity at 55 K in Iron-Based Doped Layered Quarternary Compound Sm[O₁₋ₓFₓ]FeAs. Chin. Phys. Lett. 25, 2215 (2008).
11. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).
12. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaFe₁₋ₓFₓAs systems. Nature 453, 899 (2008).
13. Qureshi, N. et al. Crystal and magnetic structure of the oxypnictide superconductor LaFe₄O₁₋ₓFeAs; A neutron-diffraction study. Phys. Rev. B 82, 184521 (2010).
14. Hirashita, M. et al. Bipartite magnetic parent phases in the iron oxypnictide superconductor. Nat. Phys. 10, 300 (2014).
15. Fukuwa, N. et al. Detection of antiferromagnetic ordering in heavily doped LaFe₁₋ₓHₓAs pnictide superconductors using nuclear-magnetic-resonance techniques. Phys. Rev. Lett. 111, 097002 (2013).
16. Takahashi, H. et al. Superconductivity at 52 K in hydrogen-substituted LaFeAsO₁₋ₓHₓ under high pressure. Sci. Rep. 5, 7829 (2015).
17. Ren, Z.-A. et al. Superconductivity at 55 K in Iron-Based Doped Layered Quarternary Compound Sm[O₁₋ₓFₓ]FeAs. Chin. Phys. Lett. 25, 2215 (2008).
15. Okada, H. et al. Superconductivity under high pressure in LaFeAsO. J. Phys. Soc. Jpn 77, 113712 (2008).
16. Kawakami, T. et al. High-Pressure 57Fe Mössbauer Spectroscopy of LaFeAsO. J. Phys. Soc. Jpn 78, 123703 (2009).
17. Kumar, R. S. et al. Pressure-induced superconductivity in LaFeAsO: The role of anionic hight and magnetic ordering. Appl. Phys. Lett. 105, 251902 (2014).
18. Calamioiu, M. et al. Pressure and doping dependent anisotropic compressibility of the SmFeAsO$_1-x$F$_x$ ($x = 0.0–0.17$) system. Physica C: Superconductivity 483, 136 (2012).
19. Mittal, R. et al. Ambient- and low-temperature synchrotron x-ray diffraction study of BaFe$_2$As$_2$ and CaFe$_2$As$_2$ at high pressures up to 56 GPa. Phys. Rev. B 83, 054503 (2011).
20. Garbarino, G. et al. Direct observation of the influence of the As–Fe–As angle on the T_c of superconducting SmFeAsO$_{1-x}$F$_x$. Phys. Rev. B 84, 024510 (2011).
21. Kimber, S. A. J. et al. Similarities between structural distortions under pressure and chemical doping in superconducting BaFe$_2$As$_2$. Nat. Mater. 8, 471 (2009).
22. Mito, M. et al. Response of Superconductivity and Crystal Structure of LiFeAs to Hydrostatic Pressure. J. Am. Chem. Soc. 131, 2986 (2009).
23. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751 (1976).
24. Nitsche, F. Jesche, A. Heidemann, E. Doert, Th. & Ruck, M. Structural trends from a consistent set of single-crystal data of RFeAsO ($R=$ La, Ce, Pr, Nd, Sm, Gd, and Tb). Phys. Rev. B 82, 134514 (2010).
25. Garbarino, G. et al. Correlated pressure effects on the structure and superconductivity of LaFeAsO$_{1-x}$F$_x$. Phys. Rev. B 78, 100507(R) (2008).
26. Mizuguchi, Y. et al. Anion height dependence of T_c for the Fe-based superconductor. Supercond. Sci. Technol. 23, 054013 (2010).
27. Kuroki, K., Usui, H., Onari, S., Arita, R. & Aoki, H. Phuctogen height as a possible switch between high-T_c nodeless and low-T_c nodal pairings in the iron-based superconductors. Phys. Rev. B 79, 224511 (2009).
28. Usui, H. & Kuroki, K. Maximizing the Fermi-surface multiplicity optimizes the superconducting state of iron pnictide compounds. Phys. Rev. B 84, 024505 (2011).
29. Saito, T., Onari, S. & Kontani, H. Orbital fluctuation theory in iron pnictides: Effects of As–Fe–As bond angle, isotope substitution, and 2π-orbital pocket on superconductivity. Phys. Rev. B 82, 144510 (2010).
30. Matsuishi, S., Maruyama, T., Iimura, S. & Hosono, H. Controlling factors of T_c dome structure in 1111-type iron arsenide superconductors. Phys. Rev. B 89, 094510 (2014).
31. Klauss, H.-H. et al. Commensurate Spin Density Wave in LaFeAsO: A Local Probe Study. Phys. Rev. Lett. 101, 077005 (2008).
32. Kuroki, K. et al. Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO$_{1-x}$F$_x$. Phys. Rev. Lett. 101, 087004 (2008).
33. Opahle, I., Kandpal, H. C., Zhang, Y., Gros, C. & Valentí, R. Effect of external pressure on the Fe magnetic moment in undoped LaFeAsO from density functional theory: Proximity to a magnetic instability. Phys. Rev. B 79, 024509 (2009).
34. Iimura, S., Matsuishi, S. & Hosono, H. Heavy electron doping induced antiferromagnetic phase as the parent for the iron oxypnictide superconductor LaFeAsO$_{1-x}$F$_x$. Phys. Rev. B 94, 024512 (2016).
35. de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-Selective Mott Transition out of Band Degeneracy Lifting. Phys. Rev. Lett. 102, 126401 (2009).
36. Kontani, H. & Onari, S. Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett. 104, 157001 (2010).
37. Yanagi, Y., Yamakawa, Y. & Ono, Y. Two types of s-wave pairing due to magnetic and orbital fluctuations in the two-dimensional 16-band p-model for iron-based superconductors. Phys. Rev. B 81, 054518 (2010).
38. Zhou, S., Kollmar, G. & Wang, Z. Extended Hubbard model of superconductivity driven by charge fluctuations in iron pnictides. Phys. Rev. B 84, 140505(R) (2011).
39. Thorsmolle, V. K., Khodas, M., Yin, Z. P., Zhang, Chenglin, Carr, V., Dai, Pengcheng & Blumberg, G. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 93, 054515 (2016).
40. Izumi, F. & Momma, K. Three-Dimensional Visualization in Powder Diffraction. Solid State Phenom. 130, 15 (2007).

Acknowledgements
We would like to thank K. Kuroki and Y. Kuramoto for their fruitful discussions. This work was supported by MEXT Elements Strategy Initiative to Form Core Research Centre and also by JSPS KAKENHI (No. 16K05434). This work is supported by approval of the Photon Factory Program Advisory Committee (Nos 2013S2–002, 2016S2–004, and 2015V002), and the Large Scale Simulation Program (No. 15/16–07 (FY2016)) at KEK.

Author Contributions
J.Y., Y.M., S.I., S. Matsuishi, H.H. conceived the study. K.K., J.Y., S. Maki, H.S. and R.K. measured the synchrotron X-ray diffraction. S.I. prepared the samples. H.T. supported the high-pressure experiments. K.K. and J.Y. co-wrote the manuscript. All the authors discussed the results and the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kobayashi, K. et al. Pressure effect on iron-based superconductor LaFeAsO$_{1-x}$F$_x$; Peculiar response of 1111-type structure. Sci. Rep. 6, 39646; doi: 10.1038/srep39646 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2016