Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org
ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

NOTE

IS BOMBUS POMORUM (PANZER, 1805) (HYMENOPTERA: APIDAE) A NEW BUMBLEBEE FOR SIBERIA OR AN INDIGENOUS SPECIES?

Alexandr Byvaltsev, Svyatoslav Knyazev & Anatoly Afinogenov

26 January 2021 | Vol. 13 | No. 1 | Pages: 17574–17579
DOI: 10.11609/jott.5889.13.1.17574-17579

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Is *Bombus pomorum* (Panzer, 1805) (Hymenoptera: Apidae) a new bumblebee for Siberia or an indigenous species?

Alexandr Byvaltsev1, Svyatoslav Knyazev2 & Anatoly Afinogenov3

1 Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
2 Russian entomological society. Irtyshskaya Naberezhnaya 14, app. 16, Omsk 644042 Russia.
3 Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia.

The bumblebee fauna of Siberia has not been well studied historically, but great progress has been made in the last two decades (Konosova & Yanushkin 2000; Byvaltsev 2008, 2013; Knyazev et al. 2010; Kupianskaya et al. 2014; Byvaltsev et al. 2013, 2015, 2016). These and other data are summarized in the Annotated Catalogue of the Hymenoptera of Russia (Levchenko et al. 2017). There are 55 species in Siberia, with 52 in each of the western and eastern parts. There is information about one species newly recorded for Western Siberia – *Bombus pomorum* (Panzer, 1805) previously known only from Europe, Anatolia, the Caucasus and the Ural region.

B. pomorum is one of three species of the pomorum-group (formerly Rhodobombus) subgenus Thoracobombus Dalla Torre, 1840 (Williams 1998). The species can be distinguished from the other members of the group by its predominately brightly red coloured metasoma. There are some colour patterns of *B. mesomelas* Gerstaeker, 1869, with red hair, although in most cases the last tergum of *B. pomorum* has red hairs, whereas it has black hairs in *B. mesomelas*. There are three main colour patterns of *B. pomorum* females, which have been regarded as a subspecies by some authors (Özbek 2002; Rasmont et al. 2015b), but are considered here to all be *B. pomorum* s.l.: thorax and two first metosomal terga black (nominate taxon in Western and Central Europe, western Anatolia); thorax and first metasomal tergum yellow banded (*B. uralensis* Morawitz, 1881 in the territory of European Russia to Chelyabinsk); thorax and first metasomal tergum with the pale bands (*B. pomorum* var. *canus* Schmiedeknecht, 1883 in eastern Anatolia and the Caucasus region). Males everywhere are usually paler than females, and the variation is not so distinct.

The previous known distribution of *B. pomorum* is from Denmark, southern Switzerland (58°N) (Løken 1973), and France (Rasmont et al. 1995), to Sverdlovsk and Chelyabinsk regions in the east (Popov 1923), and to Greece (Olympus) (Anagnostopoulos 2005), northern Anatolia (Rasmont & Flagothier 1996), and Transcaucasia (Skhirtladze 1981; Kirkitadze & Japoshvili 2015) in the south. Only five specimens were recorded from Britain (Kent) between 1834 and 1864 (Jeffers 2017). These could be cases of rare migration (Alford 1975) or they

Editor: Alexander B. Ruchin, the Mordovia State Nature Reserve, Republic of Mordovia, Russia.
Date of publication: 26 January 2021 (online & print)
Citation: Byvaltsev, A., S. Knyazev & A. Afinogenov (2021). Is *Bombus pomorum* (Panzer, 1805) (Hymenoptera: Apidae) a new bumblebee for Siberia or an indigenous species? *Journal of Threatened Taxa* 13(1): 17574–17579. https://doi.org/10.11609/jott.5889.13.1.17574-17579
Copyright: © Byvaltsev et al. 2021. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.
Funding: None.
Competing interests: The authors declare no competing interests.
Acknowledgements: We are grateful to Paul H. Williams (Natural History Museum, London) for English language editing and two anonymous reviewers for valuable comments.
Bombus pomorum is a new bumblebee for Siberia

Byvaltsev et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2021 | 13(1): 17574–17579

Bombus pomorum is a meadow species in the steppe and forest–steppe zones and in the mountains, with a broad range of feeding plants. Nests are underground, frequently in small rodent holes (Skorikov 1923; Efremova 1991). Two specimens (a queen and a worker) of Bombus pomorum were collected in the forest-steppe of the West Siberian Plain by S. Knyazev and A. Afinogenov in 2017 and 2019 respectively. Label data: queen – Russia, Omsk region, Gorkovsky District, Serebryanoe vill. [village] vic. [vicinity], 55°43’0.29”N & 74°20’21.88”E [55.717°N & 74.339°E], 03.vi.2017, S.A. Knyazev leg. [Knyazev private collection, Omsk, Russia]; worker – Russia, Novosibirsk region, Agroles, 54.756°N & 83.146°E, flowerbed with Tagetes sp., 1–10.ix.2019, A. Afinogenov [Novosibirsk State University, Novosibirsk, Russia – NSU].

The queen of Bombus pomorum was sent to A. Byvaltsev by S. Knyazev with other bumblebees for determination in the winter of 2018, but we decided not to publish this information until supported by rediscovery of more specimens. A new worker was sent for determination by A. Afinogenov, so we now have no doubt about the presence of this species in Western Siberia.

Comparative material from Europe, the Caucasus, and the Ural regions including several types of related taxa, considered here to be part of Bombus pomorum s.l., were examined in Zoological Institute RAS (St. Petersburg, Russia – ZISP) by A. Byvaltsev: B. uralensis Morawitz, 1881 (replacement name for B. rufescens Eversmann, 1852), Fervidobombus oreas Skorikov, 1926, F. pomorum flavotestaceus Skorikov, 1926. Other members of pomorum–group have also been studied – several specimens of B. mesomelas from Spain and Italy and numerous specimens of B. armeniacus Radoszkowski, 1877 from different parts of its range. The queen (Image 1a) agrees closely in colour pattern with B. uralensis: metasomal terga 2–6 reddish, thorax and first segment of metasoma yellow, head, legs, and the band on the thorax between wings black. The worker specimen is paler (Image 1b) but agrees well with some workers from the European part of Russia in the ZISP collection, including having tergum sixth black.

The queen was collected on the high right bank of the Irtysh river, on the southern slope of a clay cliff with steppe meadow, where the bee was in flight (Image 2). The worker was collected visiting Tagetes sp. in the Agroles settlement near Novosibirsk.

Bombus pomorum is a new record for Siberia, and...
Bombus pomorum is a new bumblebee for Siberia

Byvaltsev et al.

17576

for the Omsk and Novosibirsk regions. Thus, the bumblebee fauna of Siberia includes 56 species, with 53 species recorded for Western Siberia. *B. wurfennii* Radoszkowski, 1859 and *B. lapidarius* (Linnaeus, 1758) were listed as “possible inhabitants” based on literature records that are probably erroneous (Byvaltsev 2008) and unconfirmed for the present for this territory, so they are not part of the fauna of Siberia. There are 39 species in the Novosibirsk region and 28 in the Omsk region. *Bombus hypnorum* (Linnaeus, 1758), *B. lucorum* (Linnaeus, 1761), *B. semenoviellus* Skorikov, 1910 are absent for the Omsk region in the catalogue (Levchenko et al. 2017), but are well known to occur there (Knyazev et al. 2010).

The new finds expand the range of *B. pomorum* eastwards by approximately 1,400km. Thus, the distribution of *B. pomorum* in Russia (Figure 1) includes the following regions from specimens examined: Kursk, Orel, Kaluga, Voronezh, Lipetsk, Tambov, Ryazan, Nizhny Novgorod, Penza, Orenburg, Tatarstan, Bashkortostan, Perm, Sverdlovsk, Chelyabinsk, North Ossetia, Karachay–Cherkessia, Stavropol, Omsk, Novosibirsk; with additional literature records – Kaliningrad (Alfken, 1912), Moscow (Panfilov 1957; Levchenko 2012), Chuvashia (Sysoletina 1967), Ulyanovsk, Samara (Efremova 1991), Belgorod (Prisnyi 2005), Saratov (Anikin & Kondratiev 2006), Ivanovo (Tikhomirov 2007), Udmurtia (Adakhovskiy 2012), Kirov (Yuferev & Levchenko 2014), Crimea (Rasmont et al. 2015a), Penza (Dobrolubova 2015), and Bryansk (Goloshchapova & Prokofiev 2016). The map with distribution in Europe and Western Asia was published by Rasmont et al. (2015a).

B. pomorum was assessed as being vulnerable in Europe using the IUCN Red List Criteria (Rasmont et al. 2015b) because of a population decline, estimated to be more than 30% over the last 10 years so that it is
Bombus pomorum is a new bumblebee for Siberia

Byvaltsev et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2021 | 13(1): 17574–17579

considered to be facing a high risk of extinction in the wild. The bee was in the Red Book of the USSR (Panfilov et al. 1984), but excluded from the main list of threatened taxa of the Red Book of the Russian Federation (2001) and moved to the “Appendix 3” as a species in need of monitoring. Federal protection is weak at present. In many regions of Russia, B. pomorum is in the regional Red Books – Kursk (Bausov 2002), Belgorod (Prisny 2005), Saratov (Anakin & Kondratiev 2006), Ivanovo (Tikhomirov 2007), Sverdlovsk (Olshvag 2008), Moscow City (Berezin 2011), Ryazan (Ananieva & Nikolaeva 2011), Tambov (Ganzha & Ishin 2012), Udmurtia (Adakhovskiy 2012), Nizhny Novgorod (Zryanin 2014), Kirov (Yuferev & Levchenko 2014), Bryansk (Goloshchapova & Prokofiev 2016), Chelyabinsk (Lagunov & Gorbunov 2017), and Moscow (Levchenko 2018). In some regions, however, this species is included only in the appendix as a species in need of monitoring – Orenburg (Belov 2019), Lipetsk (Aleksandrov et al. 2014), Ulyanovsk (Artemieva et al. 2015) or moved from the main list to the appendix – Kaluga (Antokhina 2017), or completely excluded – Rostov (Arzanov 2014), Tatarstan (Nazirov 2016). Reliable data for a significant decline in this species are available only for the Moscow region (Panfilov 1957; Berezin et al. 1996; Levchenko 2018). Based on the collection in the ZISP, B. pomorum was abundant in the beginning of the 20th century in the Orel and Ryazan regions. There are 995 among the 1,314 pinned specimens of B. pomorum in the ZISP collected between 1910 and 1924 from the Orel region and 984 of these specimens are from near the Mohovoe settlement (53.05°N & 37.35°E), 257 specimens are from the Ryazan region collected between 1899 and 1927, and most (248) are from near the Gremyachka Village (53.48°N & 39.51°E) collected by Andrey Petrovich Semyonov–Tyan–Shansky. This does not mean that the bee was rare in other regions, but only that there were no regular observations. It is likely that B. pomorum, however, is not an abundant species at present in many parts of its range, but special studies are required.

There is a question whether B. pomorum is a recent invader of the forest–steppe of Western Siberia or whether it has always lived there. There are several examples of expansion of bumblebees to the west – B. hypnorum (Goulson & Williams 2001; Prys-Jones 2019), B. semenoviellus (Smissen & Rasmont 2000; Šima & Smetana 2012), B. schrencki Morawitz, 1881 (Levchenko 2012). There is no doubt about these cases, because there is a long history of bumblebee studies in Europe. The first comprehensive faunistic review of bumblebees in the forest-steppe and steppe zones of the West Siberian Plain was done only at the end of the first decade of the current century (Byvaltsev 2008). For example, among the species listed in that paper B. sylvarum Linnaeus, 1761 was recorded for the first time for Siberia with the easternmost observation in the Kurgan region (55.11°N & 66.95°E). Later the recorded range was extended to 54.10°N & 75.02°E in the Omsk region based on two specimens collected in 1996 and 2008 (Byvaltsev 2010; Knyazev et al. 2010). After the species was found in Altai Territory in 2011 and in the Novosibirsk region in 2014, so the range was extended to 83°E (Levchenko et al. 2017). Thus, it is possible that B. sylvarum is an indigenous species for the south of Western Siberia but was not discovered until regular observations were made. Nevertheless, there is a chance that our study coincided in time with a range expansion of this species which was able to begin in the end of 20th century.

The second case is likely, because there are no specimens of B. sylvarum from Western Siberia in the collections of the Institute of Systematics and Ecology of Animals SB RAS (Novosibirsk, Russia) and NSU. The species was never collected previously in the Omsk region by S. Knyazev, although his observations in localities of known records have been annual since 2005, so the species must be very rare. There were no records of this bee during regular studies in the Altai Territory between 2005 and 2008 (Byvaltsev 2013) or in Novosibirsk and its environs between 2001 and 2006 (Byvaltsev 2009). Although the increasing of percentage of specimens of B. sylvarum during studies in 2011–2012 in the south of the Omsk region has been documented (Byvaltsev et al. 2013). The first record of this bee in Altai Territory was in near the Klepechikha Village in 2011 (Levchenko et al. 2017), but the species was not collected there in either 2005 or 2008 (Byvaltsev 2013). B. sylvarum is regularly seen near Novosibirsk since the first record in 2014. B. pomorum is not a commercially-reared bee like B. terrestris (Linnaeus, 1758), and most probably the observation is not a result of delivery of goods by people, as it has been for many pest species. The spread eastwards of European species into Siberia is documented for butterflies (Knyazev & Kosterin 2003; Knyazev et al. 2017, 2019). Thus, the discovery of B. pomorum in Western Siberia looks more likely to be a result of the natural expansion of this European and West Asian species. Further research of this question is required, including the application of modern molecular techniques of population ecology for studying the relationship between populations in Siberia and those in Europe.
Bombus pomorum is a new bumblebee for Siberia

Byvaltsev et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2021 | 13(1): 17574–17579

Rasmont, P., S. Roberts, B. Cederberg, V. Radchenko & D. Michez (2015b). Bombus pomorum. The IUCN Red List of Threatened Species 2015: e.T13356500A57368299. Downloaded on 06 February 2020.

Red Book of the Russian Federation (2001). http://www.sevin.ru/redbook/index.html Accessed 09 March 2020. [In Russian]

Shorthouse, D.P. (2010). SimpleMappr, an online tool to produce publication-quality point maps. Retrieved from https://www.simplemappr.net Accessed March 12, 2020.

Šima, P. & V. Smetana (2012). Bombus (Cullumanobombus) semenoviiellus (Hymenoptera: Apidae: Bombini) new species for the bumble bee fauna of Slovakia. Klapalekiana 48: 141–147.

Skirtladze, I.A. (1981). Cheleryn Zakavkazya (Hymenoptera, Apoidea). Metsniereba, Tbilisi, 148pp. [In Russian]

Skorikov, A.S. (1923). Les bourdons de la faune paléartique. Partie I. Biologie générale (la zoogéographie y compris), pp. 1–160. In: Bogdanov-Katjkov N.N. (ed.). Bulletin de la Station Régionale Protetctrice des Plantes à Petrograd 4(1), Peterburg, 160pp. [In Russian]

Sminis J. & P. Rasmont (2000). Bombus semenoviiellus Skorikov 1910, eine für Westeuropa neue Hummelart (Hymenoptera: Bombus, Cullumanobombus). Bembir 13: 21–24.

Sysoletina, L.G. (1967). La faune de bumble bees en Chuvashia. Uchenye Zapiski Chuvashskogo Pedagogicheskogo Instituta. Seriya Biologicheskih nauk 23: 111–121. [In Russian]

Tikhomirov, A.M. (2007). Shmel plodowy – Bombus pomerorum (Panzer, 1805), p. 70. In: Isaev, V.A. (ed.). Red Book of the Ivanovo region. Vol. 1: Animals). ivanova, 236pp. [In Russian]

Williams, P.H. (1998). An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of The Natural History Museum (Entomology) 67: 79–152. updated at www.nhm.ac.uk/bombus/ Accessed 09 March 2020.

Williams, P.H., J.M. Lobo & A.S. Meseguer (2018). Bumblebees take the high road: climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is associated with divergences of present-day Mendiacibombus. Ecography 41: 461-477. https://doi.org/10.1111/ecog.03074

Yuferev, G.I. & T.V. Levchenko (2014). Shmel plodowy – Bombus pomorum (Panzer, 1805), p. 126. In: Baranova, O.G., E.P. Lachokhi, V.M. Ryabova, V.N. Sotnikova, E.M. Tarasova, L.G. Tlsishcheva (eds.). Red Book of the Kirov region: animals, plants, fungi. Kirov, 336pp. [In Russian]

Zryanin, V.A. (2014). Shmel plodowy – Bombus pomorum (Panzer, 1805), pp. 271–272. In: Anufriev, G.A., E.P. Lachokhi, V.M. Ryabova, V.N. Sotnikova, E.M. Tarasova, L.G. Tlsishcheva (eds.). Red Book of the Nizhny Novgorod region. Nizhny Novgorod, 448pp. [In Russian]
Diversity and distribution of snakes in Trashigang Territorial Forest Division, eastern Bhutan
– Kunal Mallick, Thupten Lepcha & Sonam Lhendup, Pp. 17540–17544

Freshwater fishes of Cauvery Wildlife Sanctuary, Western Ghats of Karnataka, India
– Naren Sreenivasan, Neethi Mahesh & Rajeev Raghavan, Pp. 17470–17476

Fish communities and associated habitat variables in the upper Subansiri River of Arunachal Pradesh, India
– S. Bhuyan, S. Sengupta, R. Baruah, M. Das & G. Jha, Pp. 17477–17486

An assessment of the population status of the threatened medicinal plant Illicium griffithii Hook.f. & Thomson in West Kameng District of Arunachal Pradesh, India
– Tashi Dorjee Bupu & Giji Nimasow, Pp. 17504–17512

The discovery of a melanistic Leopard Panthera pardus delacouri (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) at Bukit Kudung in Jeli, Kelantan, Peninsular Malaysia: conservation and ecotourism
– Kamarul Hambali, Nor Fakhrin Reza, Aainaa Amir, Norashikin Faiz, Nor Hizam Hassan, Muhammad Azahar Abas, Muhammad Firdaus Abdul Karim & Ai Yin Sow, Pp. 17513–17516

On the epidemiology of helminth parasites in Hangul Deer Cervus hanglu hanglu (Mammalia: Cervidae) of Dachigam National Park, India
– Natasha Khorshid, Hidayatullah Tak, Ruqeya Nazir, Kulsum Ahmad Bhat & Naziya Khurshid, Pp. 17517–17520

Histopathological findings of infections caused by canine distemper virus, Trypanosoma cruzi, and other parasites in two free-ranging White-nosed Coatis (Nasua narica) from the Rio Grande Valley, Texas, USA
– Andrew M. Ball, P. Dinesh, I. Jothipala, S. Aravind & S. V. Nambiar, Pp. 17521–17524

On a new species of Macrobrachium Spence Bate (Decapoda: Palaemonidae) from Ayeayarwady River, Myanmar
– H.H.S. Myo, K.V. Jayachandran & K.L. Khin, Pp. 17525–17536

Review of the tiger beetle genus Colomera Motschulsky, 1862 (Coleoptera: Cicindelidae) of the Philippines
– Milton Norman Medina, Alexander Anichtchenko & Jürgen Wiesner, Pp. 17537–17547

Rediscovey of Martin’s Duskhawker Cicindela martiniana (Selys, 1879) (Coleoptera: Cicindelidae) of the Philippines
– H.U. Abhijit, Y.L. Krishnamurthy & K. Gopalakrishna Bhat, Pp. 17548–17553

A note on the current distribution of reedtail damselfly Protosticta rufostigma Kimmins, 1958 (Odonata: Zygoptera: Platystictidae) from Western Ghats, and its addition to the odonate checklist of Kerala
– Kalesh Sadasivan & Muhamed Jafer Palot, Pp. 17548–17553

Notes

First report of the Asiatic Brush-tailed Porcupine Atherurus macrourus (Linnaeus, 1758) (Mammalia: Rodentia: Hystricidae) from West Bengal, India
– Suraj Kumar Dash, Abhisek Chettri, Dipanjan Naha & Sambandam Sathyakumar, Pp. 17561–17563

Record of the world’s biggest pangolin? New observations of bodyweight and total body length of the Indian Pangolin Manis crassicaudata Gray, 1827 (Mammalia: Pholidota: Manidae) from Mannar District, Sri Lanka
– Priyan Perera, Hirusha Randimal Algawatta & Buddhika Vidanage, Pp. 17564–17568

First record of Toutil melanonotus (Wied, 1820) (Aves: Psittaciformes: Psittacidae) in Cantareira State Park, Brazil: new colonization or simply unnoticed?
– Marcos Antonio Melo & David de Almeida Braga, Pp. 17569–17573

Is Bombus pomorum (Panzer, 1805) (Hymenoptera: Apidae) a new bumblebee for Siberia or an indigenous species?
– Alexandr Byvaltsev, Svyatoslav Knyazev & Anatoly Afinogenov, Pp. 17574–17579

Some new records of scarab beetles of the genus Onthophagus Latreille, 1802 (Coleoptera: Scarabaeidae) from northern Western Ghats, Maharashtra, with a checklist
– Aparna Sureshchandra Kalawate, Banani Mukhopadhyay, Sonal Vithal Pawar & Vighnesh Durgaram Shinde, Pp. 17580–17586

Ecological importance of two large heritage trees in Moyar River valley, southern India
– Vedagiri Thirumurugan, Nehru Prabakaran, Vishnu Sreedharan Nair & Chinannasamy Ramesh, Pp. 17587–17591

Bulbophyllum spathulatum (Orchidaceae), a new record for Bhutan
– Pema Zangpo, Phub Gyeltshen & Pankaj Kumar, Pp. 17592–17596

On the occurrence and distribution of the narrowly endemic Andaman Lantern Flower Ceropogia andamanica (Apocynaceae: Ceropogieae)
– M. Uma Maheshwari & K. Karthikeyan, Pp. 17597–17600

The oat-like grass Trisetopsis aspera (Munro ex Thwaites) Röser & A.Wölk (Poaceae): a new record for the flora of central Western Ghats of Karnataka, India
– H.U. Abhiijit, Y.L. Krishnamurthy & K. Gopalakrishna Bhat, Pp. 17601–17603

Star Grass Lily Iphigenia stellata Blatter (Colchicaceae) – a new addition to the flora of Gujarat, India
– Mittesh B. Patel, Pp. 17604–17606

A new record of pyreneocarpous lichen to the Indian biota
– N. Rajaprabu, P. Ponmurugan & Gaurav K. Mishra, Pp. 17607–17610