This is a repository copy of *Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers*.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/172239/

Version: Accepted Version

Article:
Lopez-Charcas, Osbaldo, Pukkanasut, Piyasuda, Velu, Sadanandan E. et al. (5 more authors) (Accepted: 2021) Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. *iScience*. ISSN 2589-0042 (In Press)
Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers

Osbaldo LOPEZ-CHARCAS1, Piyasuda PU KKANASUT2, Sadanandan E. VELU2, William J. BRACKENBURY3, Tim G. HALE S4, Pierre BESSON1, Juan Carlos GOMORA5, Sébastien ROGER1,6#

1, Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France; sebastien.roger@univ-tours.fr; pierre.besson@univ-tours.fr; osbaldo.lopez@univ-tours.fr

2, Department of Chemistry, The University of Alabama at Birmingham, CHEM 280, 901, 14th Street S, Birmingham, AL 35294, USA, svelu@uab.edu; (205) 975-2478.

3, Department of Biology, York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom. william.brackenbury@york.ac.uk +44 (0) 1904 328 284

4, Institute of Academic Anaesthesia, Division of Systems Medicine, School of Medicine, the University of Dundee, DD1 9SY, Dundee, United Kingdom, t.g.hales@dundee.ac.uk; +44 (0)1382 383443

5, Instituto de Fisiología Celular, Circuito Exterior s/n Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico City, 04510 México; jgomora@ifc.unam.mx; + (5255) 5622-5752

6, Institut Universitaire de France, 75005 Paris, France

#, Correspondence to (lead contact):

Dr Sébastien Roger,

Université de Tours, EA4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine de Tours, 10 Boulevard Tonnellé, 37032 Tours, France.

E-mail: sebastien.roger@univ-tours.fr; Phone: +33 (0)2 47 36 61 30
Summary

Voltage-gated sodium (Naᵥ) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, cervix, while they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, while their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes Naᵥ channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing Naᵥ-inhibitors or developing new pharmacological and nutritional interventions.
Introduction

Voltage-gated sodium (Na\textsubscript{V}) channels, composed of pore-forming Na\textsubscript{V}\textalpha and auxiliary Na\textsubscript{V}\textbeta subunits, were initially characterized in excitable cells in which they are responsible for the triggering and the propagation of action potentials. Their physiological activity, through a transient depolarizing inward sodium current in cell types such as cardiomyocytes, skeletal muscle cells or neurons, is well characterized as being responsible for the initiation of excitation-contraction, excitation-secretion or excitation-expression couplings. As such, these ion channels are critical in numerous physiological functions and mutations in their encoding genes, as well as dysregulation of their activity, may lead to serious pathologies called “sodium channelopathies”. Na\textsubscript{V} channels are targets for multiple inhibitory molecules that are FDA-approved and clinically used in the treatment of pathologies such as cardiac angina or arrhythmias, epilepsies, chronic pain, or in anesthesiology.

While the activity of Na\textsubscript{V} channels has been characterized about 70 years ago, recent data obtained in the past five years have shed light on the protein structure, arrangement and functioning at the molecular level. Indeed, the activity of Na\textsubscript{V} channels, i.e. sodium currents (I\textsubscript{Na}), was first recorded by Hodgkin and Huxley in 1952 from the squid giant axon, using the voltage-clamp technique. These pioneering experiments led to the ionic theory of membrane excitability (Hodgkin and Huxley, 1952). However, at that time the structure of Na\textsubscript{V} channels was not known and the first evidence of molecular properties came to light at the beginning of the 1980’s with the identification of the channel proteins using radio-labeled-neurotoxins highly selective for Na\textsubscript{V} channels in combination with protein solubilization and purification methods (Agnew et al., 1980, Beneski and Catterall, 1980). Further structural insights into Na\textsubscript{V} channels were obtained by cloning and screening of cDNA libraries leading to the discovery of the amino acid sequence for these proteins and allowing for modelling of secondary structures based on aliphatic profiles (Noda et al., 1986, Noda et al., 1984). These seminal studies allowed development of a model in which the pore-forming Na\textsubscript{V} principal subunit in eukaryotes, later called Na\textsubscript{V}\textalpha-subunit, is composed of a single polypeptide chain of approximately 260 kDa containing four repeated homologous domains (I-IV) of 6 transmembrane segments (S1-S6). This protein was identified to interact with one or two single-span transmembrane auxiliary subunits, called Na\textsubscript{V}\textbeta-subunits (30-40 kDa), initially characterized as bringing regulatory functions (Isom et al., 1994, Isom et al., 1992) to the macromolecular complex of eukaryotic Na\textsubscript{V} channels (Brackenbury and Isom, 2011, Catterall, 2000).

Interestingly, understanding of protein organization and function at the molecular level substantially progressed very recently with the use of X-ray protein crystallography and cryo-electron microscopy,
first studying tetrameric prokaryotic channels sharing approximately 25-30% sequence identity with human channels. Thus information regarding the voltage-dependent gating, ion selectivity, drug binding, open, closed and inactivated states were acquired from the *Arcobacter butzleri* (NavAb) channel (Payandeh et al., 2012, Payandeh et al., 2011) (Lenaeus et al., 2017). The high-resolution crystal structure of the complete voltage-gated sodium channel (Na\textsubscript{V}Ms) from *Magnetococcus marinus* was obtained in the activated open state, associated with electrophysiological recordings (Sula et al., 2017). Recently, structural data obtained for Na\textsubscript{V}Ab provided a complete gating mechanism for voltage sensor function, pore opening, and the activation-gate (Wisedchaisri et al., 2019). The first near-atomic resolution structure of a monomeric eukaryotic channel came from the recent study of the Na\textsubscript{V}PaS from the American cockroach, while structures of human voltage-gated sodium channel Na\textsubscript{V}1.2, Na\textsubscript{V}1.4 and Na\textsubscript{V}1.7, in complex with β-subunits were recently published (Pan et al., 2018, Pan et al., 2019, Shen et al., 2019). These structural data provide important insight into mechanisms underlying Na\textsubscript{V} channelopathies and for drug discovery. Briefly, each domain presents two functional modules: S1-S4 segments comprise the voltage-sensor module (VSM) while sections (S5 - P loop - S6) constitute the pore-forming module (PM). The positively charged arginine and lysine residues, positioned at every third residue within each S4 segment in the voltage-sensor module, sense changes in the transmembrane potential and transform this electrical stimulus into a fast conformational change of the pore-forming module, allowing the opening of the conductive pore, permitting Na+ influx. One to two milliseconds after pore opening, another fast voltage-dependent mechanism happens in the Na\textsubscript{V} channel protein, occluding Na+ influx, a process known as fast inactivation.

Another recent study has challenged the initial paradigms by which functional channels contain a monomeric Na\textsubscript{V}α subunit. Indeed, Na\textsubscript{V}α-β-subunits appear to assemble as dimers and this physical interaction permits a coupled gating mechanism (Clatot et al., 2017). In humans, there are nine different genes encoding for Na\textsubscript{V}α-β-subunits, four of them clustered on chromosome 2: SCN1A (Na\textsubscript{V}1.1), SCN2A (Na\textsubscript{V}1.2), SCN3A (Na\textsubscript{V}1.3) and SCN9A (Na\textsubscript{V}1.7); three others located on chromosome 3: SCN5A (Na\textsubscript{V}1.5), SCN10A (Na\textsubscript{V}1.8) and SCN11A (Na\textsubscript{V}1.9); and two more located on chromosome 12 and 17: SCN8A (Na\textsubscript{V}1.6) and SCN4A (Na\textsubscript{V}1.4), respectively (Goldin, 2002). The amino acid sequence homology among Na\textsubscript{V} channels subtypes is higher than 70% in the transmembrane and extracellular motifs so that there are no distinct subfamilies, nonetheless, some of the isoforms are more closely related to each other, sharing chromosomal localization and sensitivity to tetrodotoxin (TTX), which has been explained by the early genomic duplication during the evolution of Na\textsubscript{V} channel genes. To date, four genes have been identified for Na\textsubscript{V}β-subunits, one on chromosome 19: SCN1B (encoding for the two splicing variants, transmembrane Na\textsubscript{V}β1 and soluble Na\textsubscript{V}β1B) and the other three on chromosome 11:
SCN2B (Na\(_{\beta2}\)), SCN3B (Na\(_{\beta3}\)) and SCN4B (Na\(_{\beta4}\)). The structure of Na\(_{\beta}\)-subunit is comprised of a N-terminal extracellular immunoglobulin-like domain, followed by an extracellular juxtamembrane region, a single transmembrane segment and a 34-44 amino acid-length intracellular domain; except for the splice variant Na\(_{\beta1B}\), which is expressed as a soluble macromolecule (Brackenbury and Isom, 2011). Furthermore, it is worth noting that Na\(_{\beta}\)-subunits not only influence Na\(_{\alpha}\)-subunit trafficking and biophysical modulation but they have also been experimentally shown to act as cell adhesion molecules (CAMs), participating in both homophilic and heterophilic interactions, with contactin, N-cadherin, NrCAM, several types of neurofascin and tenascin being the main binding proteins (Isom, 2002, Bouza and Isom, 2018).

Na\(_{\alpha}\) and Na\(_{\beta}\) subunits are differentially and developmentally expressed in several tissues and cell types (Black and Waxman, 2013, Roger et al., 2015). Initial studies identified Na\(_{\alpha}\) to be distributed in excitable tissues such as in mammalian central and peripheral nervous systems as well as in skeletal and cardiac muscle. The central nervous system channels mainly comprise the Na\(_{\alpha1.1}\), Na\(_{\alpha1.2}\), Na\(_{\alpha1.3}\) and Na\(_{\alpha1.6}\) isoforms; while the peripheral nervous system channels include Na\(_{\alpha1.7}\), Na\(_{\alpha1.8}\) and Na\(_{\alpha1.9}\). Na\(_{\alpha1.4}\) and Na\(_{\alpha1.5}\) were characterized as being the main skeletal and heart muscle isoforms, respectively (Goldin, 2001), while they also have been identified to be expressed in the brain and in the dorsal root ganglion (Wang et al., 2008, Wang et al., 2009, Wang et al., 2018a, Wang et al., 2018b, Bergareche et al., 2015). Therefore, the expression of Na\(_{\alpha}\) has long been considered as the hallmark of excitable cells. Again, this paradigm has recently changed with the identification of expression (mRNA and protein) and sometimes activity at the plasma membrane (transient sodium currents) in non-excitable tissues and cells such as in chondrocytes, endothelial cells, microglia, astrocytes, fibroblasts, keratinocytes, islet β-cells, red blood cells, T-lymphocytes, dendritic cells and macrophages, among others, in which the biological role and subcellular distribution of Na\(_{\alpha}\)s is still elusive (Black and Waxman, 2013, Roger et al., 2015).

Recently, it has emerged that Na\(_{\alpha}\) channels, as well as auxiliary Na\(_{\beta}\) subunits, are aberrantly expressed in non-excitable cancer tissues and cells from different epithelial origins such as breast, lung, prostate, colon, cervix, while they are not expressed in cognate non-cancer tissues. Their expression in carcinoma cells has been associated with cancer progression, suggesting that they could serve as cancer markers and prognostic factors. The expression and activity of Na\(_{\alpha}\) channels was shown to promote pro-cancerous properties and, importantly, to contribute to disease progression, in both in vitro and in vivo models. Recent studies shed light on the signaling pathways that are under the control of these channel proteins, coupling membrane activity to cellular properties. Furthermore, the inhibition of Na\(_{\alpha}\) channel activity, using small synthetic compounds and FDA-approved drugs as well as
with natural dietary compounds potentially opens up new therapeutic strategies. In this review, we summarize current knowledge on the expression of Na$_V$ channels in cancers, highlight the signaling pathways involved, and discuss pharmacological and nutritional strategies that represent opportunities for novel anticancer treatments.

I- The aberrant expression of Na$_V$α and Na$_V$β subunits in cancers

The expression of voltage-gated sodium channel subunits, both Na$_V$α and Na$_V$β, has been reported to be altered in several types of cancer. The channel subunits have been detected by molecular biology and biochemical techniques, and in multiple cancer types Na$_V$ activity at the plasma membrane, i.e. I_{Na}, could be recorded. Most subunits have been shown to be up-regulated in cancers, while some of them appear to be downregulated. This aberrant expression has been correlated with oncogenic properties in both in vitro and in vivo models of cancer, mostly in solid tumours including carcinomas (Figure 1).

α- Na$_V$α and Na$_V$β subunits in Prostate cancer

While early works assessing ion channel activity identified sodium currents in small-cell lung cancer cells (Pancrazio et al., 1989), the first report of the direct contribution of Na$_V$ channels in cancer properties came from work performed in prostate cancer (PCa) cells by Prof. M. Djamgoz’ group almost 25 years ago. This first study was performed in two rat prostatic tumour cell lines in which they found a differential expression of voltage-activated Na$^+$ currents: highly metastatic Mat Ly-Lu cells expressed Na$^+$ currents, whereas weakly metastatic AT-2 cell, did not express this type of current. For the first time, the functional relevance of the Na$^+$ current was demonstrated: blocking I_{Na} with nanomolar concentrations of TTX reduced by \sim30% the invasiveness of the highly metastatic Mat-Ly-Lu cells (Grimes et al., 1995). Further evidence showed that the Na$_V$1.7 pore-forming subunit, encoded by the SCN9A gene, was overexpressed in highly metastatic human and rat prostate cell lines in comparison with weakly metastatic cell lines (Diss et al., 2001). Later, this observation was confirmed in vivo by showing that Na$_V$1.7 was overexpressed approximately 20 times in PCa biopsies versus non-cancer samples (Diss et al., 2005). Finally, in a rat model, inoculation with highly metastatic Mat-Ly-Lu cells promotes prostate cancer metastasis in vivo, and blockade of Na$_V$ in primary tumours with TTX (Yildirim et al., 2012) or ranolazine (Bugan et al., 2019) reduced lung metastases by 40% and 63%, respectively. However, most of these studies were performed in cell lines and there are no systematic studies that
show a positive correlation between mRNA/protein of Na\textsubscript{v}1.7 upregulation and human PCa patient samples.

Concerning Na\textsubscript{v}β subunits, it was shown that Na\textsubscript{v}β1 mRNA was the most highly expressed in strongly invasive compared to weakly invasive PCa cell lines (Diss et al., 2008). However, there was no significant difference in the expression of Na\textsubscript{v}β1, or any other Na\textsubscript{v}β subunits, between cancer and non-cancer human prostate specimens (Diss et al., 2008). Na\textsubscript{v}β2 has been proposed to participate in prostate cancer biology. Indeed, the first experimental observation showed that the overexpression of Na\textsubscript{v}β2, fused to GFP, was properly localized at the plasma membrane of weakly metastatic LNCaP cells inducing morphological changes consistent with a bipolar and elongated migratory phenotype (Jansson et al., 2012). These changes were accompanied by an increase in cell migration and Matrigel invasion in vitro, although there was no significant change in cell proliferation. However, the in vivo properties of LNCaP cells overexpressing the Na\textsubscript{v}β2 subunit were quite unexpected as subcutaneous tumour volume was drastically reduced compared to the control group (Jansson et al., 2012). Such contrasting effects could imply different mechanisms involved in tumour formation, growth and metastatic behaviour. A novel ex vivo organotypic spinal cord co-culture with LNCaP cells revealed that overexpression of Na\textsubscript{v}β2 enhanced the association of PCa cells with nerve axons (Jansson et al., 2014). Furthermore, overexpression of Na\textsubscript{v}β2 enhanced PCa cell migration, invasion, and growth, in the presence of the neuronal CAM laminin, suggesting that the Na\textsubscript{v}β2 subunit may mediate metastatic behaviour through association with neural substrates (Jansson et al., 2014).

b- Na\textsubscript{v}α and Na\textsubscript{v}β subunits in breast and colorectal cancer

Breast cancer (BCa) is the most lethal female cancer worldwide (Bray et al., 2018) and colorectal cancer (CRCa) is the third most commonly diagnosed cancer (Arnold et al., 2017). The incidence of these cancers is gradually increasing, thus representing a serious global health problem. The main cause of patient mortality from these two types of cancers, as for the majority of carcinomas, is the development of metastases in distant organs, following the dissemination of cancer cells from the primary tumour (Figure 1).

Multiple studies have investigated the expression of Na\textsubscript{v} channels and their contribution to tumour progression and metastasis in BCa and CRCa. Knowledge about signalling pathways and cellular mechanisms induced by Na\textsubscript{v} channels have been mostly acquired from these cancers. In both cases, the major isoform identified was Na\textsubscript{v}1.5, encoded by the SCN5A gene. In BCa samples, Na\textsubscript{v}1.5 is
overexpressed as compared to normal tissues (Fraser et al., 2005). A high expression was correlated
with cancer recurrence, metastasis development and reduced patient survival (Yang et al., 2012). Most
of the mechanistic studies in BCa have been performed in human cancer cell lines like MDAMB-231
(highly metastatic) and compared with weakly metastatic cell lines like MCF-7. It has been shown
initially shown that MDA-MB-231 express a TTX-resistant Na⁺ current, lacking in MCF-7 cells (Roger et
al., 2003), which is encoded by a neonatal splice variant of the SCN5A gene (Fraser et al., 2005). This
neonatal variant is due to a switch from adult exon 6B to foetal exon 6A, which are mutually exclusive
and encode for a part of the voltage sensor, segments 3 and 4 located in the domain I of the channel.
Therefore, these two variants, called hNa\textsubscript{V}1.5 and hNa\textsubscript{V}1.5e for the adult and the neonatal channels
respectively, show different electrophysiological properties in terms of voltage-sensitivity and current
kinetics (Murphy et al., 2012, Onkal et al., 2008). These changes result in a greater Na⁺ influx for
neonatal hNa\textsubscript{V}1.5e (Onkal et al., 2008). In the heart, splicing of SCN5A is developmentally regulated,
such that the neonatal exon 6A is rapidly replaced by the “adult” exon 6B after birth (Murphy et al.,
2012) and molecular determinants explaining the abnormal expression of hNa\textsubscript{V}1.5e in cancer cells
have not been identified so far. Nevertheless, the inhibition of channel activity, by either
pharmacological (TTX, ranolazine and phenytoin) or molecular (siRNA and inhibitory antibody)
approaches, have shown its contribution to migration and invasion of BCa cell lines (Roger et al., 2003,
Fraser et al., 2005, Brackenbury et al., 2007, Driffort et al., 2014, Yang et al., 2012). There has also been
some significant progress into uncovering the mechanisms underlying the promotion of invasiveness
behaviour by Na\textsubscript{V}1.5. Experimental evidence suggested that Na\textsubscript{V}1.5 induces pro-migratory and pro-
invasive properties through a persistent activity at the membrane potential called “window current”,
and a correlated depolarisation of the membrane voltage of breast cancer cells. Particularly, Na\textsubscript{V}1.5
activity induced the allosteric modulation of the Na⁺-H⁺ exchanger type 1 (NHE-1), resulting in an
increased activity leading to the acidification of the extracellular space, thus favouring the pH-
dependent activity of proteolytic cysteine cathepsins (Gillet et al., 2009, Brisson et al., 2011). In
addition, Na\textsubscript{V}1.5 expression and activity were demonstrated to increase Src kinase activity, which
promotes the acquisition of an invasive morphology (invadopodia) in MDA-MB-231 cells. Taken
together, these observations indicate that Na\textsubscript{V}1.5 promotes invadopodia activity of breast cancer cells
and the invasion of the surrounding ECM (Brisson et al., 2013) (Figure 1). Recently, Na\textsubscript{V}1.5 was
identified as importantly promoting the epithelial-to-mesenchymal transition (EMT) and cancer cell
invasiveness through the regulation of the Salt-inducible kinase 1 (SIK1) (Gradek et al., 2019).
Furthermore, Na\textsubscript{V}1.5 activates the small GTPase Rac1 by sustaining a plasma membrane
depolarization, which as a regulator of activation, induces cytoskeletal reorganization and cellular
migration (Yang et al., 2020). In addition, in vivo experiments have shown that Na\textsubscript{V}1.5 activity promotes
metastasis in immunodeficient mice (Driffort et al., 2014, Nelson et al., 2015a, Nelson et al., 2015b). Na\textsubscript{v}1.5 activity also increases MMP9 expression and reduces apoptosis in primary tumours in vivo (Nelson et al., 2015b).

The SCN5A gene and its protein product the Na\textsubscript{v}1.5 channel have also been shown to be overexpressed in colorectal cancer biopsies, as compared to non-cancer samples (House et al., 2010). Na\textsubscript{v}1.5 was found to be expressed at the plasma membrane of tumour cells, and its activity (I\textsubscript{Na}) was recorded several carcinoma cell lines (mainly SW-480, SW-620 and HT-29) (House et al., 2010). In colon cancer cells, Na\textsubscript{v}1.5 activity promotes cancer cell invasion in vitro, in both 2- and 3-dimension models and regulates a network of invasion-promoting genes via modulation of the PKA/ERK/cJUN/ELK-1/ETS-1 transcriptional pathway (House et al., 2010, House et al., 2015, Poisson et al., 2020) (Figure 2). It was shown that, similar to BCa, the neonatal exon 6A splice variant of the Na\textsubscript{v}1.5 isoform has a predominant contribution to the invasiveness of CRCa cell lines (Guzel et al., 2019), even though both adult hNa\textsubscript{v}1.5 and neonatal hNa\textsubscript{v}1.5e splice variants could be detected (Baptista-Hon et al., 2014).

A study reported the downregulation of the SCN9A gene, encoding for Na\textsubscript{v}1.7, in CRCa (Pan et al., 2017). In this study, authors analysed genes differentially expressed in CRCa utilizing three Gene Expression Omnibus (GEO) data sets. By screening 46 biomarkers associated with cancer proliferation, drug-resistance and metastasis, i.e., genes closely associated to patient overall survival, they proposed a risk score with high prognostic value based on the expression of five genes: MET (MET proto-oncogene and receptor tyrosine kinase), CPM (carboxypeptidase M), SHMT2 (serine hydroxymethyltransferase 2), GUCA2B (guanylate cyclase activator 2B), and SCN9A. MET, SHMT2 were up-regulated while CPM, GUCA2B and SCN9A were down-regulated. Interestingly, this observation was confirmed in the human protein atlas immunohistochemistry database (www.proteinatlas.org), as the staining for Na\textsubscript{v}1.7 was lower in some CRCa sample tissues (Pan et al., 2017). There are also reports indicating the downregulation of Na\textsubscript{v}1.6, encoded by the SCN8A gene, in CRCa (Igci et al., 2015). Tumour samples from CRCa patients exhibited reduced expression of Na\textsubscript{v}1.6 compared with paired tumour-surrounding normal tissues. SCN8A mRNA levels, analysed by real-time qPCR, were significantly lower in tumour tissues and in patients aged below 45 years. Results also reveal a relationship between SCN8A expression, gender, grade of CRCa, tumour location and histopathological classification (Igci et al., 2015). On the contrary, Na\textsubscript{v}1.6 protein was highly expressed in metastatic lymph nodes from CRCa patients (Lin et al., 2019). While the reduced expression of SCN8A, encoding for Na\textsubscript{v}1.6, and SCN9A, encoding for Na\textsubscript{v}1.7 might harbour predictive values in CRCa, we are still missing clear information to assert whether they have a role, either causative or consecutive, in the carcinogenesis or whether their expression dysregulation is only correlative to cancer transformation.
or progression. Indeed, the functional activity of Na\textsubscript{v}1.6 and/or Na\textsubscript{v}1.7 at the plasma membrane of colorectal non-cancer or cancer cells has not been demonstrated so far. Furthermore, it cannot be excluded that these channels might be expressed in intracellular compartments, in which they might play diverse functions. Eventually, it is not clear at the moment whether these changes in expression levels concern epithelial cells, or non-epithelial cells in the colorectal tract, such as immune cells which are key protagonists in colorectal carcinogenesis. As such, the participation of SCN8A and SCN9A in CRCa biology will require further studies.

The expression of Na\textsubscript{v}β subunits has been studied in BCa and in CRCa. Some Na\textsubscript{v}β have been shown to be up-regulated while others are down-regulated in cancer tissues, and mostly these changes appear to correlate with the metastatic behaviour of cancer cells, in particular with cell migration and invasion. Most research performed so far studying the role of Na\textsubscript{v}β subunits in metastatic behaviour has been undertaken in BCa. Originally, it was shown that Na\textsubscript{v}β1 was more abundantly expressed in the weakly metastatic MCF-7 than in the highly metastatic MDA-MB-231 cell line. Interestingly, when MCF-7 cells were transfected with specific siRNA directed against Na\textsubscript{v}β1, cell adhesion was reduced by 35%, while migration was increased by 121%. In contrast, stable expression of Na\textsubscript{v}β1 in MDA-MB-231 cells increased process length and adhesion while reducing lateral motility and proliferation. Thus, Na\textsubscript{v}β1 was proposed to act as a cell adhesion molecule in BCa cells, negatively controlling cellular migration (Chioni et al., 2009). Later, it was found that Na\textsubscript{v}β1 was the Na\textsubscript{v}β subunit most expressed in BCa and was up-regulated (both mRNA and protein) in BCa biopsies, compared with normal breast tissue (Nelson et al., 2014, Bon et al., 2016). More importantly, by using a xenograft model of BCa, it was shown that Na\textsubscript{v}β1 overexpression increased tumour growth, metastasis, and vascularization, while decreasing apoptosis in the primary tumours. Therefore, this study was the first showing the functional role for Na\textsubscript{v}β1 in tumour growth and metastasis \textit{in vivo} (Nelson et al., 2014). Consistent with these results, the use of siRNA to specifically target Na\textsubscript{v}β1 expression in MDA-MB-231 cells inhibited cancer cell invasion (Bon et al., 2016).

The participation of Na\textsubscript{v}β3 in tumorigenesis process is poorly understood. Two missense mutations have been identified in the SCN3B gene in high grade metastatic colorectal cancer biopsies (Sjoblom et al., 2006). The first report suggested that non-mutated Na\textsubscript{v}β3 mediates a p53-dependent apoptotic pathway in Saos-2, a bone osteosarcoma cell line, after DNA damage (Adachi et al., 2004). In agreement with this, the SCN3B gene is not expressed in highly invasive MDA-MB-231 breast cancer cells (Gillet et al., 2009) or weakly invasive MCF-7 cells (Chioni et al., 2009). In non-tumour breast samples, SCN3B
expression was the lowest among all Naβ encoding genes, and was still significantly reduced in cancer samples (Bon et al., 2016).

The SCN4B gene was shown to play a critical role as a metastasis-suppressor gene in BCa (Bon et al., 2016). In this study SCN4B mRNA appeared to be significantly expressed in normal breast, colon, rectum, lung and prostate but consistently downregulated in cancer samples. Furthermore, Naβ4 protein was expressed in normal epithelial cells but significantly reduced in BCa biopsies, especially in high-grade primary and metastatic tumours. In vitro experiments showed that reducing Naβ4 expression potentiates cell migration and invasiveness though an increase in RhoA activity and the acquisition of a hybrid mesenchymal-amoeboid aggressive phenotype. This effect was independent of Naα channel activity and was prevented by overexpression of the intracellular C-terminus of Naβ4. On the contrary, SCN4B overexpression reduced cancer cell invasiveness and tumour progression. The findings are in line with previous observations showing decreased levels of SCN4B in invasive versus non-invasive PCa cells (Diss et al., 2008). Interestingly, a recent study identified dysregulated miRNA in CRCa and reported an increased miR-424-5p expression in tumour samples that was associated with poor prognosis (Dai et al., 2020). miR-424-5p was found to be elevated in the peripheral blood of CRCa patients, most probably secreted in tumour exosomes. In this study, it was demonstrated that overexpression of SCN4B inhibited HT-29 CRCa cell proliferation, migration and invasion and expression of SCN4B was directly inhibited by miR-424-5p (Dai et al., 2020). These results support the tumour-suppressor role of SCN4B in CRCa and identified miR-424-5p as a regulator of its expression in tumours.

c- Naα and Naβ subunits in Lung cancer

There are two subtypes of lung cancer, small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Early works assessing ion channel activity have been undertaken in small-cell lung cancer cells. In these pioneering works, INa was initially recorded in human H146, H69 and H128 small-cell lung cancer cell lines (Pancrazio et al., 1989), although this study did not relate the presence of Na currents to lung tumorigenesis process itself. These currents were most probably due to TTX-sensitive channels since they were fully inhibited by 5 µM TTX. While neither the molecular characterization of the channels nor their biological role were described, they were proposed to participate in a “neuroendocrine-like” tumour cell phenotype (Pancrazio et al., 1989). Later, it was shown that these sodium currents were actually able to participate in the generation of action potentials in H146 SCLC cells, thus supporting this idea. Interestingly, 5 µM TTX abolished these action potentials, which implies
the contribution of a TTX-resistant current (Blandino et al., 1995). In fact, H146 cells, sodium currents demonstrated an IC$_{50}$ to TTX of 215 nM, leading the authors to indicated that Na$_V$ channels were weakly TTX-sensitive. However, this concentration is too high to consider the channels to belong to the TTX-S category but too low to belong to TTX-R isoforms. The most likely explanation for this would be the expression of a population of different isoforms of Na$_V$ at the plasma membrane of cells, thus leading to an apparent IC$_{50}$ that would be intermediate between TTX-S and TTX-R. Nevertheless, it cannot be excluded the possibility that Na$_V$ channels expressed in these cells are variants (splice-variants or polymorphism variants) showing specific pharmacological properties.

The hypothesis of the role of Na$_V$α in the acquisition of a neuroendocrine phenotype was also proposed by M. Djamgoz’s team (Onganer et al., 2005). Unexpectedly, in this later study, the endocytic activity of SCLC cells was inhibited by using lower nanomolar concentrations of TTX, suggesting the participation of TTX-sensitive sodium channels in these SCLC cells. In addition, they found mRNA encoding for Na$_V$1.3, Na$_V$1.5 and Na$_V$1.6 in H69, H209 and H510 cell lines. The latter also showed the additional presence of Na$_V$1.9 mRNA. Thus, it remains to be elucidated which Na$_V$ subunit is responsible for the generation of TTX-resistant action potentials in H146 cells (Blandino et al., 1995), and whether a TTX-resistant Na$_V$ channels contribute to migration, invasion or some other metastatic component, other than endocytic activity (Onganer et al., 2005), in SCLC cell lines. More studies are needed investigating the expression profile and role of Na$_V$ channels in SCLC biopsy tissue.

Later analyses were also performed in non-small cell lung cancer (NSCLC) in which the Na$_V$1.7 isoform was shown to potentiate cancer cell invasion (Roger et al., 2007, Campbell et al., 2013). Although different NSCLC cell lines (H23, H460, and Calu-1) express mRNA for several Na$^+$ channel isoforms (Roger et al., 2007), the selective inhibition of Na$_V$1.7 activity (using TTX) or reduction of expression (by using small interfering RNA), reduced H460 cell invasion by up to 50%. On the contrary, weakly invasive A549 cells showed no evidence of functional Na$_V$ channels (Roger et al., 2007). In addition, exogenous overexpression of the Na$_V$1.7 subunit was sufficient to promote TTX-sensitive invasion of these cells. Interestingly, Na$_V$1.7 protein expression was found to be higher in cancerous compared to normal-matched human lung tissue (Campbell et al., 2013). It is worth noting that at least in one NSCLC cell line (Calu-1), expression of a TTX-resistant Na$_V$ channel significantly contributes to the invasion capacity of this strongly metastatic cell line. However, the molecular identity of the molecular mediator of I$_{Na}$ has not been fully characterized. Non-quantitative PCR results suggested that mRNAs encoding the three known TTX-resistant Na$_V$ channels (Na$_V$1.5, Na$_V$1.8 and Na$_V$1.9) may be more abundantly expressed in Calu-1 than in H23 and H460 cells (Roger et al., 2007). While kinetics and TTX-sensitivity of currents recorded in Calu-1 cells suggest Na$_V$1.5 activity, more studies are needed to properly
identify the molecular identity of the Na\textsubscript{V} channels mediating the Na+ current in these cells. In addition, there are currently no data correlating Na\textsubscript{V}\textalpha expression in lung cancer tissue with clinical outcome.

The expression of Na\textsubscript{V}\textbeta in LCa has been assessed in several studies but so far it is difficult to conclude a general pattern. SCN1B mRNA was found to be expressed in H460, Calu-1 and A549 but not in the H23 NSCLC cell lines. It was also expressed in non-cancer NL-20 and BEAS-2B cells. SCN2B appeared to be weakly expressed in A549 cancer and NL-20 non-cancer cells while not expressed at all in H23, H460 and Calu-1 cancer cell lines. SCN3B mRNA was found to be expressed in all these cell types with the only exception of H460. SCN4B mRNA was expressed in cancer H23 and non-cancer NL-20 and BEAS-2B, but not in H460, Calu-1 and A549 (Roger et al., 2007). In patient samples, SCN4B expression levels were downregulated in lung cancer compared with normal lung tissue and preliminary immunohistochemical analyses in lung cancer tissue microarrays showed a tendency towards decreased protein expression in high-grade primary lung tumours and metastases (Bon et al., 2016). The role of the Na\textsubscript{V}\textbeta\textsubscript{1} protein in cell adhesion was also proposed in human non-small cell lung cancer cell lines (Campbell et al., 2013). In this study, it was shown that the highly invasive H460 cells exhibited very low expression of all Na\textsubscript{V} subunit mRNAs, confirming previous results (Roger et al., 2007), whereas A549 cells expressed 8-fold higher levels of Na\textsubscript{V}\textbeta\textsubscript{1} mRNA. Accordingly, cell adhesion was two-fold higher in A549 cells compared to H460 cells (Campbell et al., 2013). Moreover, manipulation of Na\textsubscript{V}\textbeta\textsubscript{1} mRNA expression by using siRNA or cDNA targeting SCN1B in these two cell lines, confirmed the contribution of this subunit in the promotion of cell adhesion and reduced invasion (Campbell et al., 2013).

d- Na\textsubscript{V}\textalpha and Na\textsubscript{V}\textbeta subunits in gastric cancer

In gastric cancer (GCa) tissue samples and in two human GCa cell lines (BGC-823 and MKN-28 cells), it was shown that the SCN9A gene, encoding Nav1.7, is the most abundantly expressed Nav\textalpha isoform (Xia et al., 2016). A systematic evaluation of 319 GCa tumour tissue samples by immunohistochemistry revealed a correlation of Nav1.7 expression with poor prognosis, as well as correlation with the expression of the with NHE1 exchanger type 1 and the oncoprotein metastasis-associated in colon cancer-1 (MACC1). In addition, Nav1.7 suppression resulted in reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice (Xia et al., 2016). In brief, results of this study indicate that Nav1.7 promotes GCa progression through MACC1-mediated upregulation of NHE1.
e- Navα and Navβ subunits in Cervical Cancer (CeCa)

The product of the SCN8A gene, the Nav1.6 channel, has been shown to be upregulated in cervical cancer (CeCa). In a study performed by using primary cultures derived from three different patient CeCa biopsies, the presence of functional Nav channels has been identified and \(I_{\text{Na}} \) recorded. Primary cells from CeCa biopsies expressed mRNA for different TTX-sensitive Navα subunits: Nav1.1-1.4, Nav1.6 and Nav1.7 (Diaz et al., 2007). Among these, only the SCN8A gene encoding for Nav1.6 was shown to be over-expressed by about 40-fold at the mRNA level in CeCa primary cultures and biopsies in comparison with non-cancerous cervical tissue. The functional relevance of this Nav channel was demonstrated by blocking its activity with TTX as well as with the Cn2 specific toxin, which in both cases led to a significant decrease in the invasion capacity of CeCa primary culture cells, without affecting proliferative or migratory cell behaviour (Hernandez-Plata et al., 2012). This suggested a role for Nav1.6 in extracellular matrix degradation, and indeed Nav1.6-mediated invasiveness of CeCa cells specifically involved MMP-2 activity along with increased expression of the NHE1 exchanger (Lopez-Charcas et al., 2018). In addition, CeCa cell lines more abundantly express the mRNA for the Nav1.6 variant which has exon 18 deleted (\(\Delta 18 \) variant) rather than the neonatal and adult splice variants. This variant appeared to be distributed in intracellular compartments (Lopez-Charcas et al., 2018). However, the functional relevance of the \(\Delta 18 \) variant to the metastatic behaviour of CeCa cells remains to be elucidated. Another, interesting question regarding the expression of this \(\Delta 18 \) variant of Nav1.6 in CeCa cells is whether it has the same function in intracellular compartments as observed in macrophages and melanoma cells in which the channel has a role in podosome formation and activity (Carrithers et al., 2009).

The role of Navβ1 as a migration suppressor gene was demonstrated in three different CeCa cell lines (HeLa, SiHa and CaSki) in which SCN1B mRNA levels were around 3- to 6-fold higher than those of Navβ2, Navβ3 or Navβ4. However, differences in protein levels among the four Navβ subunits were more discrete; Navβ1 was again the most highly expressed in HeLa and CaSki cells, whereas in SiHa cells, protein levels for all Navβ were more uniform (Sanchez-Sandoval and Gomora, 2019). Previously, the same group had demonstrated that Navβ1 mRNA levels were also slightly higher in CeCa biopsies than in non-CeCa tissue (Hernandez-Plata et al., 2012). In addition, it was demonstrated that Navβ1 regulated SiHa cell proliferation, specifically by affecting the proportion of cells in the G0/G1 phase of
cell cycle (Sanchez-Sandoval and Gomora, 2019). Because \(\text{Nav}\beta 3 \) was proposed to have anti-cancer properties (Adachi et al., 2004), the effect of its expression in CeCa cells was tested. However, neither its overexpression nor its downregulation affected proliferation in CeCa cell lines, suggesting that the likely pro-apoptotic activity of \(\text{Nav}\beta 3 \) might not be a generalized mechanism in all cancer types or cells. In this regard, it has been suggested that the p53 protein status in CeCa cell lines is under the control of the E6 protein, the main oncogene expressed as a result of human papillomavirus (HPV) infection (the most frequent risk factor for CeCa incidence) of cervical epithelial cells. The early expression of E6 protein leads to the specific ubiquitination and degradation of p53 (Scheffner et al., 1993), therefore inactivating any pro-apoptotic effect due to the \(\text{Nav}\beta 3 \) expression in basal conditions. In line with this interpretation, \(\text{SCN3B} \) expression was increased almost 2-fold in CeCa biopsies when compared to non-cancer samples (Hernandez-Plata et al., 2012). Further studies are needed to fully understand the potential role of \(\text{SCN3B} \) as well as the mechanism involved in the pro-apoptotic effect in cancer cells. More recent observations in CeCa cell lines confirm the contribution of \(\text{Nav}\beta 4 \) to cell invasive potential as the downregulation of \(\text{SCN4B} \) leads to an increase in the percentage of invading cells in three CeCa cell lines (Sanchez-Sandoval and Gomora, 2019). However, a previous study indicated that mRNA levels for \(\text{Nav}\beta 4 \) were not significantly different between CeCa and non-CeCa biopsies tissues (Hernandez-Plata et al., 2012).

f- \(\text{Nav}\alpha \) subunits in Ovarian cancer and endometrial cancers

In ovarian cancer (OCa), the \(\text{Nav}1.5 \) isoform appears to be the main \(\text{Nav}\alpha \) subunit expressed and contributing to the migration and invasion capabilities of cancer cells (Gao et al., 2010, Liu et al., 2018), however, the splicing status of \(\text{Nav}1.5 \) in this carcinoma, is currently unknown.

In endometrial cancer tissues, a recent study identified the \(\text{SCN9A} \) gene, encoding for the \(\text{Nav}1.7 \) channel, as being the most highly expressed \(\text{Nav}\alpha \) subunit. \(\text{Nav}1.7 \) expression level was associated with tumour size, local lymph node metastasis, and 5-year and 10-year survival. Pharmacological inhibition using the PF-05089771 blocker selective for \(\text{Nav}1.7 \) and \(\text{Nav}1.8 \), induced cancer cell apoptosis and reduced cancer cell invasion (Liu et al., 2019).

g- \(\text{Nav}\beta \) in Papillary thyroid cancer

Recent results obtained in papillary thyroid cancer (PTC) show that \(\text{SCN4B} \) is downregulated at both RNA and protein level as compared with normal thyroid tissues (Gong et al., 2018). Importantly, by
using databases like the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) Thyroid Cancer (THCA), the authors found that \textit{SCN4B} expression was an independent indicator of favourable recurrence-free survival (RFS) in patients with classical PTC, further contributing to the notion of the \textit{SCN4B} as a metastases-suppressor gene (Gong et al., 2018). So far, nothing is known about the expression of Na\textsubscript{α} subunits in PTC.

\textbf{h- Na\textsubscript{α} and Na\textsubscript{β} subunits in Leukaemia cells}

While most results related to Na\textsubscript{α} in cancer were obtained from solid tumours, predominantly carcinomas, there are also some indication that Na\textsubscript{α} expression might also be dysregulated in haematological disorders such as leukaemia, in which they could bear oncogenic properties. In Jurkat leukemic T-cell lymphoblasts, original evidence showed that a small fraction of \textasciitilde{10\%} displayed \textbf{I\textsubscript{\textit{Na}}}, and mRNA encoding for Na\textsubscript{1.5}, Na\textsubscript{1.6}, and to a lesser extent Na\textsubscript{1.7} and Na\textsubscript{1.9}, were detected (Fraser et al., 2004). \textbf{I\textsubscript{\textit{Na}}} was likely carried mostly by a TTX-resistant Na\textsubscript{α} channel since an IC\textsubscript{50} of \textasciitilde{1 \mu M} was measured. Importantly, invasion was reduced by 93\% when the cells were treated with 10 \mu M TTX (Fraser et al., 2004). However, more recent data has shown that Na\textsubscript{1.6}, Na\textsubscript{1.7} and Na\textsubscript{1.3} (in that order) are the most abundant Na\textsubscript{α} isoforms in three acute lymphocytic leukaemia cell lines, including Jurkat, MOLT-4 and BALL-1 cells, as well as in peripheral blood mononuclear cells (PBMC). In this study, \textbf{I\textsubscript{\textit{Na}}} recorded from approximately 20\% of MOLT-4 cells was completely abolished by 2 \mu M TTX, indicative of TTX-sensitive channels. The same concentration of TTX decreased the invasion of MOLT-4 and Jurkat cells by 90\% (Huang et al., 2015).

Interestingly, semi-quantitative PCR results indicated the presence of both the neonatal (18N) and the \Delta18 (exon 18 skipped) isoforms of Na\textsubscript{1.6} channel in the THP-1 monocytic leukaemia cell line (Carrithers et al., 2009). Neither of these two variants form functional channels at the plasma membrane (Plummer et al., 1997). Instead, the \Delta18 Na\textsubscript{1.6} channel isoform is expressed in vesicular intracellular compartments and crucially contributes in the control of podosome and invadopodia formation (Carrithers et al., 2009). In addition, \textbf{SCN5A} (Na\textsubscript{1.5}) is expressed in the late endosome, rather than at the plasma membrane of the THP-1 cells. The intracellular Na\textsubscript{1.5} channel was shown to enhance endosomal acidification and phagocytosis (Carrithers et al., 2007), Ca2+ signalling and phenotypic differentiation in human macrophages (Carrithers et al., 2011). The same group later demonstrated that \textbf{SCN5A} was expressed as a new splice variant lacking exon 25, resulting in a deletion of 18 amino acids in domain III (Rahgozar et al., 2013), generating non-selective outward currents and small inward currents in a heterologous expression system (Jones et al., 2014).
i- Na\(\alpha\) in Ewing Sarcoma

The Ewing Sarcoma (ES) is the second most common primary malignant bone tumour in children and adolescents, following osteosarcoma (Choi et al., 2014). RING1B, a member of the Polycomb family of epigenetic regulators, is highly expressed in primary ES tumours. Depletion of RING1B with shRNA in ES cells enriched the expression of genes involved in haematological development, without affecting cellular differentiation (Hernandez-Munoz et al., 2016). Importantly, in ES cells, RING1B directly binds to the promoter of SCN8A and its depletion results in enhanced Na\(\alpha\)1.6 expression and function. In addition, the migratory speed of RING1B-depleted ES cells was attenuated, suggesting an inverse correlation between SCN8A expression and the migration capabilities of ES cells. Finally, reduced Na\(\alpha\)1.6 function appeared to protect ES cells from apoptosis by a mechanism that maintains low NF-\(\kappa\)B levels (Hernandez-Munoz et al., 2016). These findings revealed striking differences in the participation of SCN8A and its product, the Na\(\alpha\)1.6 channel, in sarcomas compared to carcinomas and leukaemia. Indeed, Na\(\alpha\)1.6 appeared to have anti-cancer properties in ES while it has pro-invasive functions in carcinomas and leukaemia. Therefore, further studies are needed to fully understand the function of SCN8A across different types of cancer.

II- Conclusions on the roles of Na\(\alpha\)\(\alpha\) and Na\(\alpha\)\(\beta\) subunits in cancers

a- **Pore-forming Na\(\alpha\)\(\alpha\) subunits**

As previously indicated, the three main Na\(\alpha\)\(\alpha\)-encoding genes found to be upregulated in cancers are SCN5A, SCN8A, and SCN9A, which encode Na\(\alpha\)1.5, Na\(\alpha\)1.6 and Na\(\alpha\)1.7 respectively. On the other hand, recent reports showed the downregulation of SCN8A and SCN9A genes in some cases. The molecular determinants explaining why these specific isoforms are overexpressed in cancers are not known and might be tissue-specific. However, it is tempting to consider the deregulation in tumours of transcription factors which normally restrict the expression of a suite of genes associated with specific tissue functioning in adult tissues, such as the repressor element silencing transcription factor (REST) which restrict the expression of Na\(\alpha\)\(\alpha\) channels in excitable cells (Bruce et al., 2004, Chong et al., 1995) or other epigenetic regulations such as histone acetylation/deacetylation (performed by Histone Acetylases HAT and Histones Deacetylases HDAC, respectively), DNA or histone methylation. Indeed, it was recently proposed that REST and HDAC2 play important role as epigenetic regulators and their inhibition in MCF-7 breast cancer cells enhanced the expression of Na\(\alpha\)1.5 and promoted invasive capacities (Kamarulzaman et al., 2017). Nevertheless, it is interesting to notice that, when specifically
studied in cancer cells, several neonatal splice variants of channels have been identified (Fraser et al., 2005, Lopez-Charcas et al., 2018, Baptista-Hon et al., 2014, Carrithers et al., 2009), thus supporting the common hypothesis of the re-expression of developmental genes in cancers.

These channels are present at the plasma membrane of cancer cells where sodium currents have been recorded. With the exception of Na\textsubscript{V}\textsubscript{1.6} in Ewing sarcoma cells (Hernandez-Munoz et al., 2016), all Na\textsubscript{V}\textsubscript{\alpha} isoforms have been shown to bear oncogenic properties, promoting cancer cell invasion \textit{in vitro}, as well as other behaviours associated with metastasis, such as the acquisition of elongated and mesenchymal-like phenotypes, directed migration, proliferation, regulation of endocytosis, control of intracellular and perimembrane pH and extracellular matrix degradation (Yang et al., 2012, Hernandez-Plata et al., 2012, Roger et al., 2003, Grimes et al., 1995, Fraser et al., 2005, Gillet et al., 2009, Mycielska et al., 2003, Djamgoz et al., 2001, Brisson et al., 2013). In addition, Na\textsubscript{V}\textsubscript{\alpha} subunits promote tumour growth, invasion, and metastasis \textit{in vivo} rodent models (Nelson et al., 2015b, Drifort et al., 2014, Baticoglu et al., 2012, Yildirim et al., 2012). Comparative studies performed in different cancer types indicate the involvement of these Na\textsubscript{V}\textsubscript{\alpha} isoforms in similar functional properties, arguing for isoform-independent signalling pathways. The activity of the channels at the plasma membrane appears to be critical. Indeed, Nav\textsubscript{\alpha} subunits are functionally active in cancer cell lines and primary tumour cells cultured \textit{in vitro}, as well as in murine tumour xenograft tissue slices \textit{in vivo} (Fraser et al., 2005, Roger et al., 2003, Hernandez-Plata et al., 2012, Nelson et al., 2015b) and their inhibition, using different drugs and small molecules such as TTX, ranolazine, phenytoin, Cn2 or PF-05089771, inhibit invasion (Nelson et al., 2015a, Nelson et al., 2015b, Drifort et al., 2014, Baticoglu et al., 2012, Yildirim et al., 2012, Lopez-Charcas et al., 2018, Roger et al., 2003, Roger et al., 2007, Liu et al., 2019).

Importantly, the membrane potential (V\textsubscript{m}) of cancer cells is typically relatively depolarised compared to terminally differentiated non-cancer cells (Yang and Brackenbury, 2013). At this range of Vm, Na\textsubscript{V}\textsubscript{\alpha} channels would be expected to be predominantly in the inactivated state. However, in cancer cells the V\textsubscript{m} is generally between -40 and -30 mV and is situated in a window of voltage which provides a small non-inactivating persistent Na+ current flowing into the cell locally increasing intracellular Na+ concentration (Yang et al., 2012, Roger et al., 2003, Campbell et al., 2013). Recently a Na+-dependent intracellular signalling pathway, involving Salt-inducible kinase 1, has been proposed to account for pro-invasive effects of Na\textsubscript{V}\textsubscript{\alpha} (Gradek et al., 2019).

The main role attributed to Na+ is to serve as a mere mediator of the membrane potential, in excitable as well as in non-excitable cells. It is also characterized to support ions (among which Na+/K+, Na+/Ca2+, Na+/K+/Cl-, Na+/HCO\textsubscript{3}-) exchanges and nutrients / metabolites transports across membranes
(Na+/glucose for example). The role of second messenger is mostly attributed to the Ca2+ ion, for which a lot of specific probes and tools have been developed over the last twenty years. In contrast, no direct and specific biological sensors for Na+ have been identified, and tools to study Na+ evolution still lack sensitivity or dynamics. Yet, there is some evidence suggesting that Na+ could act as a second messenger \textit{per se} and might regulate several important signalling pathways in normal cells. Indeed, recent data support a direct role of Na+ in controlling kinases activity (Jaitovich and Bertorello, 2010), membrane fluidity and protein diffusion through an interaction with phospholipids (Hernansanz-Agustín et al., 2020) or to induce inflammatory stress (Amara et al., 2016). Therefore, this raises the possibility that Na+ could also serve as a second messenger in cancer cells to activate signalling pathways promoting aggressiveness. To further support this hypothesis, it is worth mentioning that early studies questioned the involvement of intracellular Na+ content and the consequences on malignant cell proliferation, invasive capacities and the development of metastases (Cone, 1974). Indeed, much higher Na+ concentrations have been recorded in tumour cells, as compared to non-cancer cells by energy-dispersive X-ray microanalyses (Cameron et al., 1980) as well as by 23Na-magnetic resonance imaging (Ouwerkerk et al., 2007, Jacobs et al., 2004, Zaric et al., 2016) and was proposed to serve as an indicator of malignancy.

The inward Na+ current may also further depolarise the V_m which might also participate in promoting migration. In support of this hypothesis, it was demonstrated in breast cancer cells that Na\textsubscript{v}1.5 sustained V_m depolarization which activated the RhoGTPase Rac1, subsequently inducing cytoskeletal reorganization and cellular migration (Yang et al., 2020) (Figure 2). While there is clear evidence that Na\textsubscript{v}α channels expressed at the plasma membrane are critical in the acquisition of oncogenic properties, the discovery of splice variants with expression restricted to intracellular compartments, such as endosomes, phagosomes or lysosomes, (Lopez-Charcas et al., 2018, Carrithers et al., 2009) suggests a more complex role.

\textbf{b- (More than) Auxiliary Na\textsubscript{v}β subunits}

The main Na\textsubscript{v}β-encoding gene found to be upregulated \textit{in cancers} is \textit{SCN1B}, encoding for the Na\textsubscript{v}β1 subunit (Diss et al., 2008, Nelson et al., 2014, Bon et al., 2016, Sanchez-Sandoval and Gomora, 2019). On the other hand, there are multiple reports showing the downregulation of \textit{SCN4B} (Na\textsubscript{v}β4) (Hernandez-Plata et al., 2012, Bon et al., 2016, Diss et al., 2008, Gong et al., 2018, Sanchez-Sandoval and Gomora, 2019) and of \textit{SCN3B} (Na\textsubscript{v}β3) in some instances (Bon et al., 2016, Adachi et al., 2004).
The Navβ1 subunit has been shown to increase cancer proliferation, cell adhesion, increase neurite-like process outgrowth formation, and promote cancer cell invasion, whilst slowing migration in vitro (Nelson et al., 2014, Chioni et al., 2009, Bon et al., 2016, Sanchez-Sandoval and Gomora, 2019). In vivo, Navβ1 overexpression increases angiogenesis and reduces apoptosis, thus increasing tumour growth and metastasis (Nelson et al., 2014). Taken together, these results are in favour of a pro-cancerous role of Navβ1 and the effects appear to be dependent in part on the regulation of the Navα pore-forming subunit and as well as being dependent on the extracellular CAM motif (Nelson et al., 2014). Navβ2 expression in prostate cancer cells also increases process extension, adhesion, invasion and migration in vitro, but reduces tumour take in vivo (Jansson et al., 2014, Jansson et al., 2012). Conversely, Navβ3 and Navβ4 may function as tumour suppressors. The SCN3B gene contains p53 response elements and Navβ3 suppresses colony formation and promotes chemotherapy-induced apoptosis in a p53-dependent manner (Adachi et al., 2004). Navβ4 expression is downregulated in breast, colorectal, lung, cervical, prostate tumours and papillary thyroid cancer compared with normal tissue (Hernandez-Plata et al., 2012, Bon et al., 2016, Diss et al., 2008, Gong et al., 2018, Sanchez-Sandoval and Gomora, 2019). In addition, Navβ4 functions as a tumour and metastasis suppressor gene in vivo (Bon et al., 2016). This tumour-suppressing function occurs via β4-mediated control of RhoA GTPase activation (Bon et al., 2016) (Figure 2).

III- Navα as anticancer targets for repurposed drugs and new small inhibitory molecules

Navα are attractive drug targets because of the broad therapeutic potential of their blockers. Considering the fact that Navα are expressed in metastatic cells in various tumours, significant effort has been made to develop Navα blockers as potential drugs for cancer treatment. This section of the review focuses on such efforts that took place in the past 10 years. These efforts for blocker development can broadly be classified in to two sections. 1) Repurposing drugs that are FDA-approved for other clinical uses (local and general anaesthetics, antiepileptic and anticonvulsant, antiarrhythmic drugs). 2) Rational design and development of novel Navα blockers for cancer treatment.

a- Repurposing of FDA-approved Navα blockers

There are numerous existing Navα inhibitors licensed for clinical use. In several cases Navα inhibition is considered an off-target effect of these drugs. For example, tricyclic antidepressants, including amitriptyline, inhibit the serotonin transporter, but also inhibit several neurotransmitter receptors and voltage-activated ion channels including Navα. In other cases Navα inhibition is
considered the primary mechanism of the drug’s intended therapeutic effect. This is true for several anti-seizure medications (e.g. phenytoin and carbamazepine) and all of the local anaesthetics, although these too have additional off-target actions. Regardless of whether it is a primary or secondary effect of a licensed medication, Na\textsubscript{V\alpha} inhibition might be beneficial in patients with cancers associated with Na\textsubscript{V\alpha} expression. This raises the intriguing possibility that approved Na\textsubscript{V\alpha} inhibiting drugs might be repurposed to treat cancer.

Benefits of repurposing approved medications include prior knowledge of their mechanisms of action and the availability of toxicology and safety data, thereby avoiding the need for drug discovery and early phase clinical trials. Drawbacks include limited potential for developing intellectual property, leading to a lack of both funding potential and industry involvement (Pushpakom et al., 2019). Nevertheless, despite the potential drawbacks, there are some notable successes and a well-trodden pathway to repurposing is through the use of electronic health records to link prescribing data to potentially beneficial health outcomes. A good example of the impact of this type of retrospective clinical analysis is the identification of an association of aspirin-use with reduced risk of colon cancer (Dube et al., 2007). Similar approaches are being used in studies exploring a possible relationship between Na\textsubscript{V\alpha} inhibitors and outcomes in cancer patients.

Anti-seizure and class 1 antiarrhythmic Na\textsubscript{V\alpha} inhibitors

A recent study, using retrospective clinical analysis to explore the possibility of a beneficial effect of Na\textsubscript{V} inhibiting medications, examined several class 1 antiarrhythmic and antiseizure medications in patients with breast, bowel or prostate cancer (Fairhurst et al., 2015). The combined analysis revealed that these medications (including Class I antiarrhythmic drugs, lamotrigine, carbamazepine phenytoin, and valproate) were collectively associated with decreased median time to death compared to the control patient group, with significantly increased mortality in the drug group. This study clearly does not support the idea of repurposing antiseizure Na\textsubscript{V\alpha} inhibitors in the treatment of breast, bowel or prostate these cancers. However, as the authors pointed out, the causes of death were not available in the large primary care dataset and co-morbidities were among the likely confounding factors. In many cases, patients treated with Na\textsubscript{V\alpha} inhibiting drugs will be suffering from life-threatening disorders such as epilepsy and it is difficult to completely accommodate this confound in retrospective analyses.
Analgesic Na\textsubscript{\alpha} inhibitors

There has been considerable recent interest in the idea that anaesthetics and analgesics used during surgical tumour excision might influence subsequent cancer recurrence. Surgery can cause the release of tumour cells into the circulation and the number of postsurgical circulating cancer cells is known to be a negative prognostic indicator of disease-free survival (Yu et al., 2018). The perioperative period, i.e. immediately before, during and after surgery, may therefore be an opportune time for interventions that inhibit the potential for metastatic invasion. A variety of drugs are typically administered during surgery including general anaesthetics, analgesics, anti-muscarinic and neuromuscular blockers. Some of these, such as inhalational general anaesthetics, may have the potential to worsen outcomes by suppressing the immune response (Stollings et al., 2016). By contrast, local anaesthetics may provide more favourable outcomes. Local anaesthetics are often administered regionally to provide blockade of afferent nociceptive fibres entering the spinal cord. Several retrospective clinical studies suggest that regional analgesia during breast and prostate cancer surgery increases disease free survival (Forget et al., 2019). The use of regional anaesthesia diminishes or abolishes the need for general anaesthetic during surgery. It was therefore initially hypothesised that the general anaesthetic sparing effect of regional analgesia with local anaesthetics accounts for the apparent beneficial effect (Sessler et al., 2008). However, a recent large prospective multicentre trial comparing outcomes after breast cancer surgery under inhalational anaesthesia with or without paravertebral analgesia by ropivacaine or levobupivacaine revealed no difference in disease free survival (Sessler et al., 2019).

Most of the ongoing clinical trials exploring the impact of anaesthetic technique on cancer outcomes are predicated on the idea that the potential benefit of local anaesthetics is conferred indirectly through their inhalational anaesthetic sparing effect. However, it is possible that local anaesthetics such as lidocaine, ropivacaine and levobupivacaine provide a direct beneficial effect through Na\textsubscript{\alpha} inhibition (Baptista-Hon et al., 2014, Elajnaf et al., 2018). If this is the case then a more direct approach for administering these drugs directly onto the tumour may prove to be beneficial. Lidocaine, in addition to being a local anaesthetic, is also used intravenously as a class 1b antiarrhythmic agent and a circulating analgesic. Ongoing clinical trials will test whether lidocaine delivered directly onto breast tumours prior to excision, or intravenously during the perioperative period for colon cancer surgery will prolong postoperative disease-free survival (NCT01916317, R.A Badwe, 2013; NCT02786329, D. Ionescu, 2016). We await the outcome of these trials with interest and note that there are several other approved Na\textsubscript{\alpha} inhibiting drugs that should be examined in retrospective clinical studies for potential beneficial effects in cancer outcomes.
b- Rational design of small molecule Na\(_V\alpha\) blockers

Rational designing of Na\(_V\alpha\) inhibitors has been difficult since detailed structural information of drug binding sites for this integral membrane protein were lacking until very recently. Therefore, early effort for the discovery of Na\(_V\alpha\) blockers mainly relied on strategies such as ligand-based drug design, natural product based drug design, *in silico* screening and similarity searches. However, recent reports on the structures of human and bacterial Na\(_V\alpha\) and bound ligands shed light on their binding site (Cervenka et al., 2018, Nguyen et al., 2019, Pan et al., 2018, Payandeh et al., 2011, Shen et al., 2017, Shen et al., 2018, Shen et al., 2019). These reports will certainly aid in the structure-based design and discovery of Na\(_V\alpha\) blockers. A summary of the available reports on the identification and evaluation of Na\(_V\alpha\) blockers for potential use in cancer therapy follows.

One such effort to identify Na\(_V\alpha\) blockers used a pyrrole-imidazole marine alkaloid, clathrodin (Hodnik et al., 2013). Clathrodin was originally isolated from the *Agelas clathrodes* sponge. Several conformationally restricted analogues of clathrodin containing a 4,5,6,7-tetrahydrobenzo [d] thiazol2-amine moiety are blockers of Na\(_V\)1.3, Na\(_V\)1.4, Na\(_V\)1.5 and Na\(_V\)1.7 channels. These compounds display state-dependent inhibitory activity of these channels at low micromolar concentrations. The most active compound (4e, Figure 3) identified from this study represents a novel selective blocker of Na\(_V\)1.4 channel with an IC\(_{50}\) value of 8 µM. The use of clathrodin analogues as a template for ligand based virtual screening of commercially available ZINC library of compounds using ROCs software, identified two potent lead compounds 2 and 16 (Tomasic et al., 2013) (Figure 3). These blocked I\(_{Na}\) produced by Na\(_V\)1.7 with IC\(_{50}\) values of 7 µM and 9 µM, respectively.

Plant derived polyphenolic natural products have also been reported as Na\(_V\alpha\) inhibitors. For example, the plant phenolic, resveratrol, (Figure 3) found at high concentrations in red grapes inhibits Na\(_V\alpha\) with an IC\(_{50}\) value of 50 µM (Fraser et al., 2014). Resveratrol also suppresses lateral cell motility by up to 25%, transverse cell motility by 31%; and cell invasion by 37%, without affecting cellular proliferation or cell viability of MAT-LyLu cells. Another similar phenolic is caffeic acid phenethyl ester (CAPE, Figure 3) isolated from honeybee propolis. CAPE blocks Na\(_V\) activity in several invasive cancer cell lines including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). Motility and invasion of MDA-MB-231 cells were reduced by up to 14% and 51%, respectively by CAPE at 1 µM without affecting cell proliferative activity (Fraser et al., 2016).

Shaheen et al. used an *in silico* approach to identify Na\(_V\alpha\) blockers with superior pharmacological profile compared to phenytoin (PHT) and carbamazepine (CBZ) in 2015 (Shaheen et al., 2015). They
conducted a similarity search in the PubChem database with PHT and CBZ as query molecules using the Tanimoto based similarity search. The search was further refined by docking of these molecules into the binding site of the homology model of SCN1A using MolDock program. This study identified high affinity compounds similar to PHT and CBZ. The lead compounds were further evaluated for toxicity profiles and biological activity. Two of the best compounds identified by this study, NSC403438 and AGN-PC-0BPCBP (Figure 3) demonstrated better binding affinity to Nav\(\alpha\) compared to PHT and CBZ, with NSC403438 being a superior inhibitor of I_{Na} with lower toxicity, better IC_{50} value and optimal bioactivity.

Nav\(\alpha\) inhibitors were also derived from the natural product, crambescin (Nakazaki et al., 2016). Enantiomerically pure crambescin A, B and C carboxylic acid derivatives were synthesized and evaluated for their ability to block Nav\(\alpha\). Structure activity relationship studies revealed that the natural enantiomer of crambescin B, carboxylic acid, (Figure 3) is the most active compound with activity comparable to TTX. The cyclic guanidinium moiety present in this molecule is indispensable for its activity.

In 2018, Dutta et al. utilized a highly predictive, comprehensive 3D-QSAR model for the design of Nav\(\alpha\) blockers (Dutta et al., 2018). The Nav\(\alpha\) binding data (IC_{50}) for 67 compounds were used to train a comprehensive CoMFA model, which effectively covered 3D space and spanned over 4 orders of magnitude in biological activity. Potency predictions by this model have been highly accurate for the more than 30 compounds that were synthesized and evaluated. Five compounds shown or predicted to have low nanomolar Nav\(\alpha\) binding were further evaluated for the inhibition of hNav1.5e currents in individual breast cancer MDA-MB-231 cells. Of these, two lead compounds, 1 and 4 (Figure 3) were found to be most effective in whole cell patch-clamp studies and showed significant invasion inhibitory activities at concentrations as low as 1 µM without affecting cell viability.

Boezio et al. reported several sulfonamides with highly selective Nav1.7 blockade activity (Boezio et al., 2018). This novel series of blockers contained a triazole sulfone which served as a bioisostere for the acyl sulfonamide group. This work resulted in the discovery of a series of potent Nav1.7 blockers with selectivity over Nav1.5 and favourable pharmacokinetic properties in rodents. An example of such a blocker is compound 35 (Figure 3). In the same year, Yapa et al. reported a known inhibitor of TRPM8, N-(3-aminopropyl)-2-\(((3-methylphenyl) methyloxy)-N-(2-thienyl methyl)benzamide (AMTB, Figure 3) as a Nav\(\alpha\) blocker in breast cancer MDA-MB-231 cells (Yapa et al., 2018). AMTB decreased viable cell number in MDA-MB-231 and SK-BR-3 breast cancer cell lines and also reduced the migration of MDA-MB-231 cells. These studies provided the evidence that these effects are not related to TRPM8 inhibition, but rather caused by the Nav\(\alpha\) blockade caused by AMTB. Gumushan Aktas et al.
investigated the potential effects of a natural flavanone, naringenin (Figure 3) on the motility of MAT-LyLu cells in 2018 (Gumushan Aktas and Akgun, 2018). This study revealed that naringenin inhibited cell proliferation at higher concentrations (75 μM), whereas it decreased the movement of MAT-LyLu cells at low concentrations (5 μM and 10 μM). Moreover, naringenin inhibited cell motility by reducing the expression of the SCN9A gene at the mRNA level. In conclusion, naringenin was found to have direct or indirect blocking activity on the SCN9A encoded channel. Most recently, in 2019, Wang et al. has reported Na\textsubscript{v}1.7 channel blockers using a comparative molecular field analysis (CoMFA) model for the binding of ligand to Na\textsubscript{v}α was generated based on diverse set of compounds. No channel current blockade data was presented in the paper.

However, there was an extensive anticancer evaluation of the identified lead compounds S0154 and S0161 (Wang et al., 2019). Both showed anticancer and anti-metastatic effects against PC3 prostate cancer cells and significantly inhibited cell viability, with IC\textsubscript{50} values in the range of 5-26 μM. Both these compounds inhibited the expression of Na\textsubscript{v}α, increased the intracellular level of Na+, and caused cell cycle arrest in G2/M phase. The compounds also inhibited the invasion of PC3 cells. Furthermore, S0161 inhibited the PC3 tumour growth of by about 51% in an in vivo xenograft model (Wang et al., 2019).

In conclusion, there have been major advances in Na\textsubscript{v}α targeted drug discovery over the last decade. Specific Na\textsubscript{v}α isoforms have been implicated in the metastasis development of a variety of tumours raising the possibility of developing tumour selective drugs. Recent advances in the discovery of high-resolution crystal and cryo-EM structures of Na\textsubscript{v}α should further advance the field with structure-based drug design efforts.

IV- Na\textsubscript{v}α as targets for nutritional management of cancers

Cancer is a metabolic disease which depends on bioenergetic parameters (Penkert et al., 2016). Cancer progression is generally associated with the survival of cancer cells under conditions of low oxygen levels and nutrient deprivation, and relies on metabolic adaptations (Dumas et al., 2017, Hanahan and Weinberg, 2011). These metabolic adaptations allow cancer cells to survive the pressure of environmental conditions and to fulfil the high energy demands associated with their high anabolic activity (Payen et al., 2016, Porporato et al., 2016). Also, this metabolic switch towards an aerobic glycolysis brings selective advantages by promoting invasive activities and metastatic properties (Brisson et al., 2012, Webb et al., 2011). Furthermore, the metabolic reprogramming does not only concern tumour cells, but also multiple cell types and organs of the host, thus leading to an overall
deregulation of the energetic balance in patients, called tumour cachexia (Fearon et al., 2012). This devastating syndrome, initially triggered by the release of soluble tumour factors and the participation of a systemic inflammation, is characterized by anorexia, the loss of skeletal muscle mass, in some cases with the loss of adipose tissue mass, and a general weakening of patients, impeding their quality of life and decreasing the tolerance to antineoplastic therapies (Fonseca et al., 2020, Biswas and Acharyya, 2020). In this context, bringing a nutritional support to patients is required to allow holding the most efficient possible treatment. Nutritional interventions are mostly aimed at preventing the wasting of body compartments in patients, but could also be a source of active anti-cancer molecules. Furthermore, diet represents a controllable component of the environment and brings promising strategies to increase treatment efficacy in combination with conventional chemotherapeutics. Some dietary compounds have also been shown to decrease the risk of carcinoma development and may prolong the survival of patients (Dumas et al., 2017).

As pointed out in the previous section, several natural compounds in the diet, such as resveratrol and caffeic acid phenethyl esters, are effective at inhibiting Na\(\alpha\) subunits (Fraser et al., 2016, Fraser et al., 2014). Dietary lipids have also been proposed to inhibit Na\(\alpha\) and to modulate cancer progression. Indeed, dietary lipids incorporate into cellular membrane and alter Na\(\alpha\) or their pharmacology (Agwa et al., 2018, D’Avanzo, 2016). Among dietary lipids, long chain n-3 polyunsaturated fatty acids (n-3 PUFA) have been described in epidemiological studies to delay or prevent the appearance of breast cancer (Rose et al., 1996, Bougnoux et al., 2010). From both \textit{in vivo} and \textit{in vitro} studies, n-3 PUFA have been reported to induce multiple anti-tumour effects and their dietary consumption was associated with a lower risk of cancers, such as breast or colorectal cancers (Bougnoux, 1999, Bougnoux et al., 2010, Eltweri et al., 2016). Even though n-3 PUFA were suggested to prevent prostate cancer (Moreel et al., 2014, Li et al., 2017), their beneficial effect remains to be demonstrated through more intervention trials or observational studies (Aucoin et al., 2016). A pilot study showed that fatty acid composition of breast adipose tissue differed according to breast cancer focality: low levels of the two long chain n-3 PUFA docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) were associated with tumour multifocality, which is considered a marker of cancer aggressiveness (Ouldamer et al., 2016a). These results could indicate that differences in adipose tissue concentration, a surrogate of past dietary uptake, may contribute to mechanisms influencing cancer progression.

Long-chain n-3 PUFA have been proposed to increase tumour sensitivity to chemotherapeutic agents with no sensitization of normal tissues and no additional side effect (Bougnoux et al., 2010). As such, DHA and EPA have generated intense interest due to their ability to reduce resistance to
N-3 PUFA have also been shown to have anti-invasive and anti-metastatic properties (Blanckaert et al., 2010, Gillet et al., 2011, Rose et al., 1997, Rose et al., 1994, Bougnoux et al., 2010). On the other hand, they are capable of modulating the activity of NHE exchangers (Besson et al., 1996, Lacroix et al., 2008) and ion channels (Tillman and Cascio, 2003, Jude et al., 2003). Interestingly, in expression systems and in native rat cardiomyocytes, the activity of Na\textsubscript{v}1.5 was initially found to be inhibited by n-3 PUFA (Kang and Leaf, 1996, Kang et al., 1997), and in initial studies have proposed that these effects could be mediated by a directly binding of n-3 PUFA to specific residues of the channel (Xiao et al., 2001, Xiao et al., 1998). Therefore, n-3 PUFA could also exert their beneficial effects on cancers through a reduction of Na\textsubscript{v}1.5 (Pignier et al., 2007, Gillet et al., 2011). However, contrasting results were obtained in human breast cancer cells in which I\textsubscript{Na} was not inhibited by acute applications of n-3 PUFA, even at high concentrations (30-50 µM) (Wannous et al., 2015) at which they also have anti-proliferative effects (Barascu et al., 2005). This discrepancy might be due to the fact that cancer cells mostly express the hNa\textsubscript{v}1.5e neonatal splice variant (Fraser et al., 2005). However, growing breast cancer cells in the presence of low doses of DHA (0.5 to 10 µM) reduced SCN5A gene expression and levels of Na\textsubscript{v}1.5 proteins and I\textsubscript{Na} (Wannous et al., 2015, Isbilen et al., 2006). This inhibition of SCN5A expression was mediated by the lipid-sensitive nuclear receptor Peroxisome Proliferator Activated Receptor –β (PPAR-β). Correlatively, the inhibition of Na\textsubscript{v}1.5 activity was also responsible for a reduced activity of the downstream protagonist NHE-1, thus decreasing H+ efflux, preventing extracellular matrix degradation proteolytic activity and inhibiting breast cancer cell invasiveness (Wannous et al., 2015). A recent report also demonstrated the efficacy of EPA to reduce migration and proliferation of ovarian cancer cells by inhibiting Na\textsubscript{v}1.5 (Liu et al., 2018).

Such regulations concerning other Na\textsubscript{v}α involved in cancer properties, i.e. Na\textsubscript{v}1.6 and Na\textsubscript{v}1.7, should be investigated. It is also of interest to note that n-3 PUFA, through the activation of PPAR-γ, have been shown to down-regulate the expression of NHE-1 and reduce cancer colony growth (Kumar et al., 2009). Furthermore, incorporation of n-3 PUFA into phospholipids induces changes in the physico-chemical properties of cell membranes (Yaqoob and Shaikh, 2010) which in turn affects NHE1 activity (Dendele et al., 2014).

Further to these effects on Na\textsubscript{v} channels and downstream signalling pathways, it should be mentioned that n-3 PUFA might exert a multiplicity of actions by interfering with several signalling pathways, some of them being beneficial to the prevention or treatment of cancer. As such, a lack of specificity
is not obligatorily detrimental and pleiotropic effects might increase the efficacy of the anticancer treatment.

N-3 PUFA supplementations were proposed to have beneficial effects in reducing mammary tumour growth, by slowing down cancer cell proliferation (Barascu et al., 2005). N-3 PUFA treatment was demonstrated to inhibit cyclin B1 and the expression of the cell division cycle 25C phosphatase, which dephosphorylates cyclin-dependent kinase 1 (Barascu et al., 2005). In addition, the nuclear receptor PPARβ appeared to regulate the DHA-related inhibition of MDA-MB-231 and MCF-7 cells proliferation. This allowed identifying PPARβ as an important protagonist in the inhibition of breast cancer cell proliferation and mammary tumour growth under DHA-enriched diet (Wannous et al., 2013). N-3 PUFA have been proposed to regulate autophagy in cancer cells, and as such could be involved in both survival and apoptosis, depending on the carcinogenetic phase and on the treatment context (Ferro et al., 2020). DHA was found to induce apoptosis in cancer cells (Jing et al., 2011). DHA-induced autophagy was associated with p53 loss, with the activation of AMPK and with the decrease in the activity of mTOR. Autophagy inhibition suppressed apoptosis, and autophagy induction further enhanced apoptosis in response to DHA treatment (Jing et al., 2011). There is evidence that n-3 PUFA may inhibit the expression of EMT markers and reduce associated invasive properties in cancer cells (D’Eliseo et al., 2016, Yin et al., 2016). Altogether, these effects could bring beneficial values to delay the appearance/diagnosis of a primary tumour, and as such be of interest in primary prevention.

N-3 PUFA, which are highly peroxidizable, were also proposed to improve the efficacy of anticancer treatments by amplifying oxidative stress generated by anthracyclines or radiotherapy (Bougnoux et al., 2009). The acquisition of resistance to chemotherapeutic agents represents an important limitation in cancer. Resistance to taxanes has been proposed to depend on the induction of signalling pathways such as PI3K/Akt and ERK1/2, which promote survival and cell growth in human cancer cells. In docetaxel-treated MDA-MB-231 cells, phosphorylated-ERK1/2 levels were increased by 60% in both membrane and nuclear compartments, compared to untreated cells and ERK1/2 activation depended on PKCε and PKCδ activation. In comparison, in cells treated with DHA, docetaxel was unable to increase PKCε and PKCδ levels, thus resulting in the reduction of ERK1/2 phosphorylation and the increase in docetaxel efficacy (Chauvin et al., 2016). In addition to these effects, n-3 PUFA were proposed to increase the efficacy of the chemotherapeutic treatment by remodelling the tumour vascular network, thereby improving the delivery of anticancer drugs within the tumour (Kornfeld et al., 2012). These results support the hypothesis that n-3 PUFA, which do not induce any toxic effect, could be used as an adjuvant to cancer therapy.
V- Conclusions and perspective for the treatment of cancers

There is now clear evidence that the abnormal expression of Na\textsubscript{\textit{V}} subunits occurs during carcinogenesis is associated with cancer progression towards metastatic states. Several different Na\textsubscript{\textit{V}}\(\alpha\) play a role, including Na\textsubscript{\textit{V}}1.5, Na\textsubscript{\textit{V}}1.6 and Na\textsubscript{\textit{V}}1.7, but the intracellular signaling pathways they regulate appear to be the same or very similar in all studied cancer types, leading to the induction of invasive properties. The activity of such channels at the plasma membrane, and consequent I\textsubscript{\textit{Na}}, appear critical. Therefore, the inhibition of Na\textsubscript{\textit{V}}\(\alpha\) in cancer cells represents a new anti-cancer strategy which could be achieved in several ways alone or in combination: repurposing existing Na\textsubscript{\textit{V}}\(\alpha\)– inhibitory drugs, developing new small inhibitory molecules, and through dietary interventions. As shown above, Na\textsubscript{\textit{V}}\(\beta\) subunits also have important roles in cancer cell biology and in cancer progression, acting both as auxiliary subunits of Na\textsubscript{\textit{V}}\(\alpha\) and as CAMs. However, they do not exert a recordable activity \textit{per se} and their direct “inhibition” or “activation” would be challenging. Therefore, dietary strategies aiming at controlling their expression, \textit{i.e.} reducing the expression of SCN1B and SCN2B, while maintaining the expression of SCN3B and SCN4B, might represent powerful strategies. For this purpose, future studies aiming at unravelling transcriptional and epigenetic regulators will be of high interest.

Acknowledgements

Authors declare no conflict of Interest. This consortium was supported by a grant from LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans & Tours, France (“Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of epithelial cancers”, Grant number Y17C3). Research performed in S.R. lab was supported by the University of Tours, the “Ligue Nationale Contre le Cancer—Interrégion Grand-Ouest”, the Région Centre-Val de Loire, the “Association CANCEN”. S.R. was recipient of a prize “Prix Ruban Rose Avenir 2017” from the Charity “Ruban Rose”. O.L.-C. was recipient of a funding from the “Fondation pour la Recherche Médicale (FRM)” (SPF201909009198). WJB acknowledges funding from Cancer Research UK (A25922) and Breast Cancer Now (2015NovPhD572). J.C.G. research has been supported by CONACYT-México grant A1-S-19171 and PAPIIT-DGAPA-UNAM grant IN209820. S.E.V. acknowledges the funding from US National Institutes of Health (R21CA226491 and R21DE028349). TGH acknowledges the Stewart family for their generous support of research investigating ion channels in colon cancer.

Figures 1 and 2 were created using BioRender.com.
Author Contributions

All authors participated to the writing of the review, which was directed by SR.

Declaration of interests

Author declare no competing interest.

References

ADACHI, K., TOYOTA, M., SASAKI, Y., YAMASHITA, T., ISHIDA, S., OHE-TOYOTA, M., MARUYAMA, R., HINODA, Y., SAITO, T., IMAI, K., KUDO, R. & TOKINO, T. 2004. Identification of SCN3B as a novel p53-inducible proapoptotic gene. Oncogene, 23, 7791-8.

AGNEW, W. S., MOORE, A. C., LEVINSON, S. R. & RAFTERY, M. A. 1980. Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochem Biophys Res Commun, 92, 860-6.

AGWA, A. J., PEIGNEUR, S., CHOW, C. Y., LAWRENCE, N., CRAIK, D. J., TYTGAT, J., KING, G. F., HENRIQUES, S. T. & SCHROEDER, C. I. 2018. Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. J Biol Chem, 293, 9041-9052.

AMARA, S., IVY, M. T., MYLES, E. L. & TIRIVEEDHI, V. 2016. Sodium channel gammaENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells. Cell Immunol, 302, 1-10.

ARNOLD, M., SIERRA, M. S., LAVERSANNE, M., SOERJOMATARAM, I., JEMAL, A. & BRAY, F. 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66, 683-691.

AUCOIN, M., COOLEY, K., KNEE, C., FRITZ, H., BALNEAVES, L. G., BREAU, R., FERGUSSON, D., SKIDMORE, B., WONG, R. & SEELY, D. 2016. Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review. Integr Cancer Ther.

BAPTISTA-HON, D. T., ROBERTSON, F. M., ROBERTSON, G. B., OWEN, S. J., ROGERS, G. W., LYDON, E. L., LEE, N. H. & HALÉS, T. G. 2014. Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function. Br J Anaesth, 113 Suppl 1, i39-i48.

BARASCU, A., BESSON, P., LE FLOCH, O., BOUGNOUX, P. & JOURDAN, M. L. 2005. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells. Int J Biochem Cell Biol.

BATCIIOGLU, K., UYUMLU, A. B., SATILMIS, B., YILDIRIM, B., YUCEL, N., DEMIRTAS, H., ONKAL, R., GUZEL, R. M. & DJAMGOZ, M. B. 2012. Oxidative stress in the in vivo DMBA rat model of breast cancer: suppression by a voltage-gated sodium channel inhibitor (RS100642). Basic Clin Pharmacol Toxicol, 111, 137-41.

BENESKI, D. A. & CATTERALL, W. A. 1980. Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A, 77, 639-43.
BERGARECHE, A., BEDNARZ, M., SANCHEZ, E., KREBS, C. E., RUIZ-MARTINEZ, J., DE LA RIVA, P., MAKAROV, V., GOROSTIDI, A., JURKAT-ROTT, K., MARTIMASSO, J. F. & PAISAN-RUIZ, C. 2015. SCN4A pore mutation pathogenetically contributes to autosomal dominant essential tremor and may increase susceptibility to epilepsy. *Hum Mol Genet*, 24, 7111-20.

BESSON, P., GORE, J., VINCENT, E., HOINARD, C. & BOUGNOUX, P. 1996. Inhibition of Na+/H+ exchanger activity by an alkyl-lysophospholipid analogue in a human breast cancer cell line. *Biochem Pharmacol*, 51, 1153-8.

BISWAS, A. K. & ACHARYYA, S. 2020. Understanding cachexia in the context of metastatic progression. *Nat Rev Cancer*, 20, 274-284.

BLACK, J. A. & WAXMAN, S. G. 2013. Noncanonical roles of voltage-gated sodium channels. *Neuron*, 80, 280-91.

BLANCKAERT, V., ULMANN, L., MIMOUNI, V., ANTOL, J., BRANCQUART, L. & CHENAIS, B. 2010. Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. *Int J Oncol*, 36, 737-42.

BLANDINO, J. K., VIGLIONE, M. P., BRADLEY, W. A., OIE, H. K. & KIM, Y. I. 1995. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. *J Membr Biol*, 143, 153-63.

BOEZIO, A. A., ANDREWS, K., BOEZIO, C., CHU-MOYER, M., COPELAND, K. W., DIMAURO, E. F., FOTI, R. S., FREMEAU, R. T., JR., GAO, H., GEUNS-MEYER, S., GRACEFFA, R. F., GUNAYDIN, H., HUANG, H., LA, D. S., LIGUTTI, J., MOYER, B. D., PETERSON, E. A., YU, V. & WEISS, M. M. 2018. 1,2,4-Triazolsulfone: A novel isosteric replacement of acylsulfonamides in the context of NaV1.7 inhibition. *Bioorg Med Chem Lett*, 28, 2103-2108.

BOUZA, A. A. & ISOM, L. L. 2018. Voltage-Gated Sodium Channel beta Subunits and Their Related Diseases. *Handb Exp Pharmacol*, 246, 423-450.

BRACKENBURY, W. J., CHIONI, A. M., DISS, J. K. & DJAMGOZ, M. B. 2007. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB231 human breast cancer cells. *Breast Cancer Res Treat*, 101, 149-60.

BRACKENBURY, W. J. & ISOM, L. L. 2011. Na Channel beta Subunits: Overachievers of the Ion Channel Family. *Front Pharmacol*, 2, 53.
BRAY, F., FERLAY, J., SOERjomataram, I., SIEGEL, R. L., TORRE, L. A. & JEMAL, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.

BRIsson, L., DRIFFORT, V., BENOIST, L., POET, M., COUNILLON, L., ANTELMI, E., RUBINO, R., BEssON, P., LABBAL, F., CHEVALIER, S., RESHKIN, S. J., GORE, J. & ROGER, S. 2013. NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci, 126, 4835-42.

BRIsson, L., GILLET, L., CALAGHAN, S., BEssON, P., LE GUENNEc, J. Y., ROGER, S. & GORE, J. 2011. Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae. Oncogene, 30, 2070-6.

BRIsson, L., RESHKIN, S. J., GORE, J. & ROGER, S. 2012. pH regulators in invadosomal functioning: Proton delivery for matrix tasting. Eur J Cell Biol, 91, 847-60.

BRUCE, A. W., DONALDSON, I. J., WOOD, I. C., YERBURY, S. A., SADOWSKI, M. I., CHAPMAN, M., GOTTGENS, B. & BUCKLEY, N. J. 2004. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A, 101, 10458-63.

BUGAN, I., KUCUK, S., KARAGOZ, Z., FRASER, S. P., KAYA, H., DODSON, A., FOSTER, C. S., ALTUN, S. & DJAMGOZ, M. B. A. 2019. Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate. Prostate Cancer Prostatic Dis.

CAMeron, I. L., SMith, N. K., POOL, T. B. & SPARKS, R. L. 1980. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res, 40, 1493-500.

CAMPBELL, T. M., MAIN, M. J. & FITZGERALD, E. M. 2013. Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J Cell Sci, 126, 4939-49.

CARRITHERS, L. M., HULSEBERG, P., SANDOR, M. & CARRITHERS, M. D. 2011. The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations. FEMS Immunol Med Microbiol, 63, 319-27.

CARRITHERS, M. D., CHATTERJEE, G., CARRITHERS, L. M., OFFOHA, R., IHEAGWARA, U., RAHNER, C., GRAHAM, M. & WAXMAN, S. G. 2009. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem, 284, 8114-26.

CARRITHERS, M. D., DIB-HAJJ, S., CARRITHERS, L. M., TOKMOULINA, G., PYPAERT, M., JONAS, E. A. & WAXMAN, S. G. 2007. Expression of the voltagegated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J Immunol, 178, 7822-32.

CATTERALL, W. A. 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 26, 13-25.

CERVENKA, R., LUKACS, P., GAWALI, V. S., KE, S., KOENIG, X., RUBI, L., ZARRABI, T., HILBER, K., SANDTNER, W., STARY-WEINZINGER, A. & TODT, H. 2018. Distinct modulation of inactivation by a residue in the pore domain of voltage-gated Na(+) channels: mechanistic insights from recent crystal structures. Sci Rep, 8, 631.

CHAUVIN, L., GOUPILLE, C., BLANC, C., PINAULT, M., DOMINGO, I., GUIMARAES, C., BOUGNOUX, P., CHEVALIER, S. & MAHEO, K. 2016. Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells.
by downregulating Akt and PKCepsilon/delta-induced ERK pathways. *Biochim Biophys Acta*, 1861, 380-90.

CHIONI, A. M., BRACKENBURY, W. J., CALHOUN, J. D., ISOM, L. L. & DJAMGOZ, M. B. 2009. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. *Int J Biochem Cell Biol*, 41, 1216-27.

CHOI, E. Y., GARDNER, J. M., LUCAS, D. R., MCHUGH, J. B. & PATEL, R. M. 2014. Ewing sarcoma. *Semin Diagn Pathol*, 31, 39-47.

CHONG, J. A., TAPIA-RAMIREZ, J., KIM, S., TOLEDO-ARAL, J. J., ZHENG, Y., BOUTROS, M. C., ALTSHULLER, Y. M., FROHMAN, M. A., KRANER, S. D. & MANDEL, G. 1995. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. *Cell*, 80, 949-57.

CLATOT, J., HOSHI, M., WAN, X., LIU, H., JAIN, A., SHINLAPAWITTAYATORN, K., MARIONNEAU, C., FICKER, E., HA, T. & DESCHENES, I. 2017. Voltage-gated sodium channels assemble and gate as dimers. *Nat Commun*, 8, 2077.

CONE, C. D., JR. 1974. The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. *Ann N Y Acad Sci*, 238, 420-35.

D’AVANZO, N. 2016. Lipid Regulation of Sodium Channels. *Curr Top Membr*, 78, 353-407.

D’ELISEO, D., DI ROCCO, G., LORIA, R., SODDU, S., SANTONI, A. & VELOTTI, F. 2016. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumorexpressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. *J Exp Clin Cancer Res*, 35, 24.

DAI, W., ZHOU, J., WANG, H., ZHANG, M., YANG, X. & SONG, W. 2020. miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. *Pathol Res Pract*, 216, 152731.

DENELE, B., TEKPLI, X., HARDONNIERE, K., HOLME, J. A., DEBURE, L., CATHELINE, D., ARLT, V. M., NAGY, E., PHILLIPS, D. H., OVREBO, S., MOLLERUP, S., POET, M., CHEVANNE, M., RIOUX, V., DIMANCHEBOITREL, M. T., SERGENT, O. & LAGADIC-GOSSMANN, D. 2014. Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway. *Chem Biol Interact*, 207, 41-51.

DIAZ, D., DELGADILLO, D. M., HERNANDEZ-GALLEGOS, E., RAMIREZDOMINGUEZ, M. E., HINOJOSA, L. M., ORTIZ, C. S., BERUMEN, J., CAMACHO, J. & GOMORA, J. C. 2007. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. *J Cell Physiol*, 210, 469-78.

DISS, J. K., ARCHER, S. N., HIRANO, J., FRASER, S. P. & DJAMGOZ, M. B. 2001. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. *Prostate*, 48, 165-78.

DISS, J. K., FRASER, S. P., WALKER, M. M., PATEL, A., LATCHMAN, D. S. & DJAMGOZ, M. B. 2008. Beta-subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. *Prostate Cancer Prostatic Dis*, 11, 325-33.

DISS, J. K., STEWART, D., PANI, F., FOSTER, C. S., WALKER, M. M., PATEL, A. & DJAMGOZ, M. B. 2005. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. *Prostate Cancer Prostatic Dis*.

DJAMGOZ, M. B. A., MYCIELSKA, M., MADEJA, Z., FRASER, S. P. & KOROHODA, W. 2001. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. *J Cell Sci*, 114, 2697-705.
DRIFFORT, V., GILLET, L., BON, E., MARIONNEAU-LAMBOT, S., OULLIER, T., JOULIN, V., COLLIN, C., PAGES, J. C., JOURDAN, M. L., CHEVALIER, S., BOUGNOUX, P., LE GUENNEC, J. Y., BESSON, P. & ROGER, S. 2014. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. *Mol Cancer*, 13, 264.

DUBE, C., ROSTOM, A., LEWIN, G., TSERTSVADZE, A., BARROWMAN, N., CODE, C., SAMPSON, M., MOHER, D. & FORCE, U. S. P. S. T. 2007. The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. *Ann Intern Med*, 146, 365-75.

DUMAS, J. F., BRION, L., CHEVALIER, S., MAHEO, K., FROMONT, G., MOUSSATA, D., BESSON, P. & ROGER, S. 2017. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. *Semin Cancer Biol*, 43, 90-110.

DUTTA, S., LOPEZ CHARCAS, O., TANNER, S., GRADEK, F., DRIFFORT, V., ROGER, S., SELANDER, K., VELU, S. E. & BROUILLETTE, W. 2018. Discovery and evaluation of nNav1.5 sodium channel blockers with potent cell invasion inhibitory activity in breast cancer cells. *Bioorg Med Chem*, 26, 2428-2436.

ELAJNAF, T., BAPTISTA-HON, D. T. & HALES, T. G. 2018. Potent Inactivation-Dependent Inhibition of Adult and Neonatal NaV1.5 Channels by Lidocaine and Levobupivacaine. *Anesth Analg*, 127, 650-660.

ELTWERI, A. M., THOMAS, A. L., METCALFE, M., CALDER, P. C., DENNISON, A. R. & BOWREY, D. J. 2016. Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer. *Clin Nutr*.

FAIRHURST, C., WATT, I., MARTIN, F., BLAND, M. & BRACKENBURY, W. J. 2015. Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study. *Sci Rep*, 5, 16758.

FEARON, K. C., GLASS, D. J. & GUTTRIDGE, D. C. 2012. Cancer cachexia: mediators, signaling, and metabolic pathways. *Cell Metab*, 16, 153-66.

FERRO, F., SERVAIS, S., BESSON, P., ROGER, S., DUMAS, J. F. & BRISSON, L. 2020. Autophagy and mitophagy in cancer metabolic remodelling. *Semin Cell Dev Biol*, 98, 129-138.

FONSECA, G., FARKAS, J., DORA, E., VON HAEHLING, S. & LAINSCAK, M. 2020. Cancer Cachexia and Related Metabolic Dysfunction. *Int J Mol Sci*, 21.

FORGET, P., AGUIRRE, J. A., BENICIC, I., BORGEAT, A., CAMA, A., CONDRON, C., EINTREI, C., EROLES, P., GUPTA, A., HALE, T. G., JONES, D., JOHNSON, M., KABATA, P., KIRAC, I., MA, D., MOKINI, Z., GUERRERO ORRACH, J. L., RETSKY, M., SANDRUCCI, S., SIEKMANN, W., STEFANCIC, L., VOTTAVELLIS, G., CONNOLLY, C. & BULLY, D. 2019. How Anesthetic, Analgesic and Other Non-Surgical Techniques During Cancer Surgery Might Affect Postoperative Oncologic Outcomes: A Summary of Current State of Evidence. *Cancers (Basel)*, 11.

FRASER, S. P., DISS, J. K., CHIONI, A. M., MYCIELSKA, M. E., PAN, H., YAMACI, R. F., PANI, F., SIWY, Z., KRASOWSKA, M., GRZYWNA, Z., BRACKENBURY, W. J., THEODOROU, D., KOYUTURK, M., KAYA, H., BATTAGLIOGLU, E., DE BELLA, M. T., SLADE, M. J., TOLHURST, R., PALMIERI, C., JIANG, J., LATCHMAN, D. S., COOMBES, R. C. & DJAMGOZ, M. B. 2005. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. *Clin Cancer Res*, 11, 5381-9.
FRASER, S. P., DISS, J. K., LLOYD, L. J., PANI, F., CHIONI, A. M., GEORGE, A. J. & DJAMGOZ, M. B. 2004. T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett, 569, 191-4.

FRASER, S. P., HEMSLEY, F. & DJAMGOZ, M. B. A. 2016. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol, 71, 111-118.

FRASER, S. P., PETERS, A., FLEMING-JONES, S., MUKHEY, D. & DJAMGOZ, M. B. 2014. Resveratrol: inhibitory effects on metastatic cell behaviors and voltage-gated Na(+) channel activity in rat prostate cancer in vitro. Nutr Cancer, 66, 1047-58.

GAO, R., SHEN, Y., CAI, J., LEI, M. & WANG, Z. 2010. Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep, 23, 1293-9.

GILLET, L., ROGER, S., BESSON, P., LECAILLE, F., GORE, J., BOUGNOUX, P., LALMANACH, G. & LE GUENNEC, J. Y. 2009. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem, 284, 8680-91.

GILLET, L., ROGER, S., BOUGNOUX, P., LE GUENNEC, J. Y. & BESSON, P. 2011. Beneficial effects of omega-3 long-chain fatty acids in breast cancer and cardiovascular diseases: voltage-gated sodium channels as a common feature? Biochimie, 93, 4-6.

GOLDIN, A. L. 2001. Resurgence of sodium channel research. Annu Rev Physiol, 63, 871-94.

GOLDIN, A. L. 2002. Evolution of voltage-gated Na(+) channels. J Exp Biol, 205, 575-84.

GONG, Y., YANG, J., WU, W., LIU, F., SU, A., LI, Z., ZHU, J. & WEI, T. 2018. Preserved SCN4B expression is an independent indicator of favorable recurrence-free survival in classical papillary thyroid cancer. PLoS One, 13, e0197007.

GRADEK, F., LOPEZ-CHARCAS, O., CHADET, S., POISSON, L., OULDAMER, L., GOUPIILLE, C., JOURDAN, M. L., CHEVALIER, S., MOUSSATA, D., BESSON, P. & ROGER, S. 2019. Sodium Channel Nav1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the SaltInducible Kinase-1. Sci Rep, 9, 18652.

GRIMES, J. A., FRASER, S. P., STEPHENS, G. J., DOWNING, J. E., LANIADO, M. E., FOSTER, C. S., ABEL, P. D. & DJAMGOZ, M. B. 1995. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett, 369, 290-4.

GUMUSHAN AKTAS, H. & AKGUN, T. 2018. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother, 106, 770-775.

GUZEL, R. M., OGMEN, K., ILIEVA, K. M., FRASER, S. P. & DJAMGOZ, M. B. A. 2019. Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol, 234, 6582-6593.

HAJJAJI, N., BESSON, P. & BOUGNOUX, P. 2012. Tumor and non-tumor tissues differential oxidative stress response to supplemental DHA and chemotherapy in rats. Cancer Chemother Pharmacol, 70, 17-23.

HAJJAJI, N., SCHUBNEL, V. & BOUGNOUX, P. 2011. Determinants of DHA incorporation into tumor tissue during dietary DHA supplementation. Lipids, 46, 1063-9.

HANAHAN, D. & WEINBERG, R. A. 2011. Hallmarks of cancer: the next generation. Cell, 144, 646-74.

HERNANDEZ-MUNOZ, I., FIGUEROLA, E., SANCHEZ-MOLINA, S., RODRIGUEZ, E., FERNANDEZ-MARINO, A. I., PARDO-PASTOR, C., BAHAMONDE, M. I., FERNANDEZ-FERNANDEZ, J. M., GARCIA-DOMINGUEZ, D. J.
HONTECILLAS-PRIETO, L., LAVARINO, C., CARCABOSO, A. M., DE TORRES, C., TIRADO, O. M., DE ALAVA, E. & MORA, J. 2016. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-kappaB pathway, independently of the fusion oncprotein. Oncotarget, 7, 46283-46300.

HERNANDEZ-PLATA, E., ORTIZ, C. S., MARQUINA-CASTILLO, B., MEDINAMARTINEZ, I., ALFARO, A., BERUMEN, J., RIVERA, M. & GOMORA, J. C. 2012. Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer. Int J Cancer, 130, 2013-23.

HERNANSANZ-AGUSTIN, P., CHOYA-FOCES, C., CARREGAL-ROMERO, S., RAMOS, E., OLIVA, T., VILLA-PINA, T., MORENO, L., IZQUIERDOALVAREZ, A., CABRERA-GARCIA, J. D., CORTES, A., LECHUGA-VIECO, A. V., JADIYA, P., NAVARRO, E., PARADA, E., PALOMINO-ANTOLIN, A., TELLO, D., ACIN-PEREZ, R., RODRIGUEZ-AGUILERA, J. C., NAVAS, P., COGOLLUDO, A., LOPEZ-MONTERO, I., MARTINEZ-DEL-POZO, A., EGEA, J., LOPEZ, M. G., ELROD, J. W., RUIZ-CABELLO, J., BOGDANOVA, A., ENRIQUEZ, J. A. & MARTINEZ-RUIZ, A. 2020. Na(+) controls hypoxic signalling by the mitochondrial respiratory chain. Nature, 586, 287-291.

HODGKIN, A. L. & HUXLEY, A. F. 1952. A quantitative description of membrane current and its application to conduction in nerve. J Physiol, 117, 500-44.

HODNIK, Z., TOMASIC, T., MASIC, L. P., CHAN, F., KIRBY, R. W., MADGE, D. J. & KIKELJ, D. 2013. Novel state-dependent voltage-gated sodium channel modulators, based on marine alkaloids from Agelas sponges. Eur J Med Chem, 70, 154-64.

HOUSE, C. D., VASKE, C. J., SCHWARTZ, A. M., OBIAS, V., FRANK, B., LUU, T., SARVAZYAN, N., IRBY, R., STRAUSSBERG, R. L., HALES, T. G., STUART, J. M. & LEE, N. H. 2010. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res, 70, 6957-67.

HOUSE, C. D., WANG, B. D., CENICCOLA, K., WILLIAMS, R., SIMAAN, M., OLENDER, J., PATEL, V., BAPTISTA-HON, D. T., ANNUNZIATA, C. M., GUTKIND, J. S., HALES, T. G. & LEE, N. H. 2015. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling. Sci Rep, 5, 11541.

HUANG, W., LU, C., WU, Y., OUYANG, S. & CHEN, Y. 2015. Identification and functional characterization of voltage-gated sodium channels in lymphocytes. Biochem Biophys Res Commun, 458, 294-9.

IGCI, Y. Z., BOZGEYIK, E., BORAZAN, E., PALA, E., SUNER, A., ULASLI, M., GURSES, S. A., YUMRUTAS, O., BALIK, A. A. & IGCI, M. 2015. Expression profiling of SCN8A and NDUFC2 genes in colorectal carcinoma. Exp Oncol, 37, 7780.

ISBILEN, B., FRASER, S. P. & DJAMGOZ, M. B. 2006. Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int J Biochem Cell Biol, 38, 2173-82.

ISOM, L. L. 2002. The role of sodium channels in cell adhesion. Front Biosci, 7, 12-23.

ISOM, L. L., DE JONGH, K. S. & CATTERALL, W. A. 1994. Auxiliary subunits of voltagegated ion channels. Neuron, 12, 1183-94.

ISOM, L. L., DE JONGH, K. S., PATTON, D. E., REBER, B. F., OFFORD, J., CHARBONNEAU, H., WALSH, K., GOLDIN, A. L. & CATTERALL, W. A. 1992. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science, 256, 839-42.
JACOBS, M. A., OUWERKERK, R., WOLFF, A. C., STEARNS, V., BOTTOMLEY, P. A., BARKER, P. B., ARGANI, P., KHOURI, N., DAVIDSON, N. E., BHUJWALLA, Z. M. & BLUEMKE, D. A. 2004. Multiparametric and multinuclear magnetic resonance imaging of human breast cancer: current applications. Technol Cancer Res Treat, 3, 543-50.

JAITOVICH, A. & BERTORELLO, A. M. 2010. Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta, 1802, 1140-9.

JANSSON, K. H., CASTILLO, D. G., MORRIS, J. W., BOGGS, M. E., CZYMMEK, K. J., ADAMS, E. L., SCHRAMM, L. P. & SIKES, R. A. 2014. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach. PLoS One, 9, e98408.

JANSSON, K. H., LYNCH, J. E., LEPORI-BUI, N., CZYMMEK, K. J., DUNCAN, R. L. & SIKES, R. A. 2012. Overexpression of the VSSC-associated CAM, beta-2, enhances LNCaP cell metastasis associated behavior. Prostate, 72, 1080-92.

JING, K., SONG, K. S., SHIN, S., KIM, N., JEONG, S., OH, H. R., PARK, J. H., SEO, K. S., HEO, J. Y., HAN, J., PARK, J. I., HAN, C., WU, T., KWEON, G. R., PARK, S. K., YOON, W. H., HWANG, B. D. & LIM, K. 2011. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy, 7, 1348-58.

JONES, A., KAINZ, D., KHAN, F., LEE, C. & CARRITHERS, M. D. 2014. Human macrophage SCN5A activates an innate immune signaling pathway for antiviral host defense. J Biol Chem, 289, 35326-40.

JUDE, S., BEDUT, S., ROGER, S., PINAULT, M., CHAMPEROUX, P., WHITE, E. & LE GUENNEC, J. Y. 2003. Peroxidation of docosahexaenoic acid is responsible for its effects on I TO and I SS in rat ventricular myocytes. Br J Pharmacol, 139, 816-22.

KAMARULZAMAN, N. S., DEWADAS, H. D., LEOW, C. Y., YAACOB, N. S. & MOKHTAR, N. F. 2017. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int, 17, 74.

KANG, J. X. & LEAF, A. 1996. Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proc Natl Acad Sci U S A, 93, 3542-6.

KANG, J. X., LI, Y. & LEAF, A. 1997. Regulation of sodium channel gene expression by class I antiarrhythmic drugs and n-3 polyunsaturated fatty acids in cultured neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A, 94, 2724-8.

KORNFIELD, S., GOUPILLE, C., VIBET, S., CHEVALIER, S., PINET, A., LEBEAU, J., TRANQUART, F., BOUGNOUX, P., MARTEL, E., MAURIN, A., RICHARD, S., CHAMPEROUX, P. & MAHEO, K. 2012. Reducing endothelial NOS activation and interstitial fluid pressure with n-3 PUFA offset tumor chemoresistance. Carcinogenesis, 33, 260-7.

KUMAR, A. P., QUAKE, A. L., CHANG, M. K., ZHOU, T., LIM, K. S., SINGH, R., HEWITT, R. E., SALTO-TELLEZ, M., PERVAIZ, S. & CLEMENT, M. V. 2009. Repression of NHE1 expression by PPARgamma activation is a potential new approach for specific inhibition of the growth of tumor cells in vitro and in vivo. Cancer Res, 69, 8636-44.

LACROIX, J., POET, M., HUC, L., MORELLO, V., DJERBI, N., RAGNO, M., RISSEL, M., TEKPLI, X., GOUNON, P., LAGADIC-GOSSMANN, D. & COUNILLON, L. 2008. Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks. Biochemistry, 47, 13674-85.
LENAEUS, M. J., GAMAL EL-DIN, T. M., ING, C., RAMANADANE, K., POMES, R., ZHENG, N. & CATTERALL, W. A. 2017. Structures of closed and open states of a voltage-gated sodium channel. Proc Natl Acad Sci U S A, 114, E3051-E3060.

LI, J., GU, Z., PAN, Y., WANG, S., CHEN, H., ZHANG, H., CHEN, W. & CHEN, Y. Q. 2017. Dietary supplementation of alpha-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model. Lipids Health Dis, 16, 136.

LIN, S., LV, Y., XU, J., MAO, X., CHEN, Z. & LU, W. 2019. Over-expression of Nav1.6 channels is associated with lymph node metastases in colorectal cancer. World J Surg Oncol, 17, 175.

LIU, J., LIU, D., LIU, J. J., ZHAO, C., YAO, S. & HONG, L. 2018. Blocking the Nav1.5 channel using eicosapentaenoic acid reduces migration and proliferation of ovarian cancer cells. Int J Oncol, 53, 855-865.

LIU, J., TAN, H., YANG, W., YAO, S. & HONG, L. 2019. The voltage-gated sodium channel Nav1.7 associated with endometrial cancer. J Cancer, 10, 4954-4960.

LOPEZ-CHARCAS, O., ESPINOSA, A. M., ALFARO, A., HERRERA-CARRILLO, Z., RAMIREZ-CORDERO, B. E., CORTES-REYNOSA, P., PEREZ SALAZAR, E., BERUMEN, J. & GOMORA, J. C. 2018. The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity. Sci Rep, 8, 12995.

MOREEL, X., ALLAIRE, J., LEGER, C., CARON, A., LABONTE, M. E., LAMARCHE, B., JULIEN, P., DESMEULES, P., TETU, B. & FRADET, V. 2014. Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance. Cancer Prev Res (Phila), 7, 766-76.

MURPHY, L. L., MOON-GRADY, A. J., CUNEO, B. F., WAKAI, R. T., YU, S., KUNIC, J. D., BENSON, D. W. & GEORGE, A. L., JR. 2012. Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm, 9, 590-7.

MYCIELSKA, M. E., FRASER, S. P., SZATKOWSKI, M. & DJAMGOZ, M. B. 2003. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol, 195, 461-9.

NAKAZAKI, A., NAKANE, Y., ISHIKAWA, Y., YOTSU-YAMASHITA, M. & NISHIKAWA, T. 2016. Asymmetric synthesis of crambescin A-C carboxylic acids and their inhibitory activity on voltage-gated sodium channels. Org Biomol Chem, 14, 5304-9.

NELSON, M., MILLICAN-SLATER, R., FORREST, L. C. & BRACKENBURY, W. J. 2014. The sodium channel beta1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis. Int J Cancer, 135, 2338-51.

NELSON, M., YANG, M., DOWLE, A. A., THOMAS, J. R. & BRACKENBURY, W. J. 2015a. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer, 14, 13.

NELSON, M., YANG, M., MILLICAN-SLATER, R. & BRACKENBURY, W. J. 2015b. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget, 6, 32914-29.

NGUYEN, P. T., DEMARCO, K. R., VOROBYOV, I., CLANCY, C. E. & YAROV-YAROVYOV, V. 2019. Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc Natl Acad Sci U S A, 116, 2945-2954.
NODA, M., IKEDA, T., KAYANO, T., SUZUKI, H., TAKESHIMA, H., KURASAKI, M., TAKAHASHI, H. & NUMA, S. 1986. Existence of distinct sodium channel messenger RNAs in rat brain. *Nature*, 320, 188-92.

NODA, M., SHIMIZU, S., TANABE, T., TAKAI, T., KAYANO, T., IKEDA, T., TAKAHASHI, H., NAKAYAMA, H., KANAOKA, Y., MINAMINO, N. & ET AL. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. *Nature*, 312, 121-7.

ONGANER, P. U., SECKL, M. J. & DJAMGOZ, M. B. 2005. Neuronal characteristics of small-cell lung cancer. *Br J Cancer*, 93, 1197-201.

ONKAL, R., MATTIS, J. H., FRASER, S. P., DISS, J. K., SHAO, D., OKUSE, K. & DJAMGOZ, M. B. 2008. Alternative splicing of Nav1.5: an electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue. *J Cell Physiol*, 216, 716-26.

OULDAMER, L., GOUPILLE, C., VILDE, A., ARBION, F., BODY, G., CHEVALIER, S., COTTIER, J. P. & BOUGNOUX, P. P. 2016a. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer. *PLoS One*, 11, e0147148.

OULDAMER, L., NADAL-DESBARATS, L., CHEVALIER, S., BODY, G., GOUPILLE, C. & BOUGNOUX, P. 2016b. NMR-Based Lipidomic Approach To Evaluate Controlled Dietary Intake of Lipids in Adipose Tissue of a Rat Mammary Tumor Model. *J Proteome Res*, 15, 868-78.

OUWERKERK, R., JACOBS, M. A., MACURA, K. J., WOLFF, A. C., STEARNS, V., MEZBAN, S. D., KHOURI, N. F., BLUEMKE, D. A. & BOTTOMLEY, P. A. 2007. Elevated tissue sodium concentration in malignant breast lesions detected with noninvasive 23Na MRI. *Breast Cancer Res Treat*, 106, 151-60.

PAN, X., LI, Z., HUANG, X., HUANG, G., GAO, S., SHEN, H., LIU, L., LEI, J. & YAN, N. 2019. Molecular basis for pore blockade of human Na(+) channel Nav1.2 by the muconotoxin KIIIA. *Science*, 363, 1309-1313.

PAN, X., LI, Z., ZHOU, Q., SHEN, H., WU, K., HUANG, X., CHEN, J., ZHANG, J., ZHU, X., LEI, J., XIONG, W., GONG, H., XIAO, B. & YAN, N. 2018. Structure of the human voltage-gated sodium channel Nav1.4 in complex with beta1. *Science*, 362.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.

PAYEN, V. L., PORPORATO, P. E., BASELET, B. & SONVEAUX, P. 2016. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. *Cell Mol Life Sci*, 73, 1333-48.
fatty acids, DHA and EPA, against activation of cardiac late sodium current: a
mechanism for ischemia selectivity. Basic Res Cardiol, 102, 553-64.
PLUMMER, N. W., MCBURNYEY, M. W. & MEISLER, M. H. 1997. Alternative splicing of
the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and
non-neuronal cells. J Biol Chem, 272, 24008-15.
POISSON, L., LOPEZ-CHARCAS, O., CHADET, S., BON, E., LEMOINE, R., BRISSON, L.,
OUAISSE, M., BARON, C., BESSON, P., ROGER, S. & MOUSSATA, D. 2020. Rock
inhibition promotes NaV1.5 sodium channel-dependent SW620 colon cancer cell
invasiveness. Sci Rep, 10, 13350.
PORPORATO, P. E., PAYEN, V. L., BASELET, B. & SONVEAUX, P. 2016. Metabolic
changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid
metabolism. Cell Mol Life Sci, 73, 1349-63.
PUSHPAKOM, S., IORIO, F., EYERS, P. A., ESCOTT, K. J., HOPPER, S., WELLS, A.,
DOIG, A., GUILLIAMS, T., LATIMER, J., MCNAMEE, C., NORRIS, A., SANSEAU,
P., CAVALLA, D. & PIRMOHAMMED, M. 2019. Drug repurposing: progress,
challenges and recommendations. Nat Rev Drug Discov, 18, 41-58.
RAHGOZAR, K., WRIGHT, E., CARRITHERS, L. M. & CARRITHERS, M. D. 2013.
Mediation of protection and recovery from experimental autoimmune
encephalomyelitis by macrophages expressing the human voltage-gated sodium channel
NaV1.5. J Neuropathol Exp Neurol, 72, 489-504.
ROGER, S., BESSON, P. & LE GUENNEC, J. Y. 2003. Involvement of a novel fast inward
sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys
Acta, 1616, 107-11.
ROGER, S., GILLET, L., LE GUENNEC, J. Y. & BESSON, P. 2015. Voltage-gated sodium
channels and cancer: is excitability their primary role? Front Pharmacol, 6, 152.
ROGER, S., ROLLIN, J., BARASCU, A., BESSON, P., RAYNAL, P. I., IOCHMANN, S.,
LEI, M., BOUGNOUX, P., GRUEL, Y. & LE GUENNEC, J. Y. 2007. Voltage-gated
sodium channels potentiate the invasive capacities of human non-small-cell lung cancer
cell lines. Int J Biochem Cell Biol, 39, 774-86.
ROSE, D. P., CONNOLLY, J. M. & COLEMAN, M. 1996. Effect of omega-3 fatty acids on
the progression of metastases after the surgical excision of human breast cancer cell
solid tumors growing in nude mice. Clin Cancer Res, 2, 1751-6.
ROSE, D. P., CONNOLLY, J. M. & LIU, X. H. 1997. Fatty acid regulation of breast cancer
cell growth and invasion. Adv Exp Med Biol, 422, 47-55.
ROSE, D. P., RAYBURN, J., HATALA, M. A. & CONNOLLY, J. M. 1994. Effects of dietary
fish oil on fatty acids and eicosanoids in metastasizing human breast cancer cells. Nutr
Cancer, 22, 131-41.
SANCHEZ-SANDOVAL, A. L. & GOMORA, J. C. 2019. Contribution of voltage-gated
sodium channel beta-subunits to cervical cancer cells metastatic behavior. Cancer Cell
Int, 19, 35.
SCHEFFNER, M., HUIBREGTSE, J. M., VIERSTRA, R. D. & HOWLEY, P. M. 1993. The
HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the
ubiquitination of p53. Cell, 75, 495-505.
SESSLER, D. I., PEI, L., HUANG, Y., FLEISCHMANN, E., MARHOFER, P., KURZ, A.,
MAYERS, D. B., MEYER-TRESCHAN, T. A., GRADY, M., TAN, E. Y., AYAD, S.,
MASCHA, E. J., BUGGY, D. J. & BREAST CANCER RECURRENCE, C. 2019. Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. *Lancet*, 394, 1807-1815.

SHAHEEN, U., AKKA, J., HINORE, J. S., GIRDHAR, A., BANDARU, S., SUMITHNATH, T. G., NAYARISSENI, A. & MUNISHI, A. 2015. Computer aided identification of sodium channel blockers in the clinical treatment of epilepsy using molecular docking tools. *Bioinformation*, 11, 131-7.

SHEN, H., LI, Z., JIANG, Y., PAN, X., WU, J., CRISTOFORI-ARMSTRONG, B., SMITH, J. J., CHIN, Y. K. Y., LEI, J., ZHOU, Q., KING, G. F. & YAN, N. 2018. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. *Science*, 362.

SHEN, H., LIU, D., WU, K., LEI, J. & YAN, N. 2019. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. *Science*, 363, 1303-1308.

SHEN, H., ZHOU, Q., PAN, X., LI, Z., WU, J. & YAN, N. 2017. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. *Science*, 355.

SJOBLOM, T., JONES, S., WOOD, L. D., PARSONS, D. W., LIN, J., BARBER, T. D., MANDELKER, D., LEARY, R. J., PTAK, J., SILLIMAN, N., SZABO, S., BUCKHAULTS, P., FARRELL, C., MEEH, P., MARKOWITZ, S. D., WILLIS, J., DAWSON, D., WILLSON, J. K., GAZDAR, A. F., HARTIGAN, J., WU, L., LIU, C., PARMIGIANI, G., PARK, B. H., BACHMAN, K. E., PAPADOPOULOS, N., VOGELSTEIN, B., KINZLER, K. W. & VELCULESCU, V. E. 2006. The consensus coding sequences of human breast and colorectal cancers. *Science*, 314, 268-74.

STOLLINGS, L. M., JIA, L. J., TANG, P., DOU, H., LU, B. & XU, Y. 2016. Immune Modulation by Volatile Anesthetics. *Anesthesiology*, 125, 399-411.

SULA, A., BOOKER, J., NG, L. C., NAYLOR, C. E., DECAEN, P. G. & WALLACE, B. A. 2017. The complete structure of an activated open sodium channel. *Nat Commun*, 8, 14205.

TILLMAN, T. S. & CASCIO, M. 2003. Effects of membrane lipids on ion channel structure and function. *Cell Biochem Biophys*, 38, 161-90.

TOMASIC, T., HARTZOUVLAKIS, B., ZIDAR, N., CHAN, F., KIRBY, R. W., MADGE, D. J., PEIGNEUR, S., TYTGAT, J. & KIKELJ, D. 2013. Ligand- and structure-based virtual screening for clathrodin-derived human voltage-gated sodium channel modulators. *J Chem Inf Model*, 53, 3223-32.

WANG, J., LU, Z., WU, C., LI, Y., KONG, Y., ZHOU, R., SHI, K., GUO, J., LI, N., LIU, J., SONG, W., WANG, H., ZHU, M. & XU, H. 2019. Evaluation of the anticancer and anti-metastasis effects of novel synthetic sodium channel blockers in prostate cancer cells in vitro and in vivo. *Prostate*, 79, 62-72.

WANG, J., OU, S. W., BAI, Y. F., WANG, Y. J., XU, Z. D. & LUAN, G. M. 2018a. Downregulation of adult and neonatal Nav1.5 in the dorsal root ganglia and axon of peripheral sensory neurons of rats with spared nerve injury. *Int J Mol Med*, 41, 22252232.

WANG, J., OU, S. W., WANG, Y. J., KAMEYAMA, M., KAMEYAMA, A. & ZONG, Z. H. 2009. Analysis of four novel variants of Nav1.5/SCN5A cloned from the brain. *Neurosci Res*, 64, 339-47.

WANG, J., OU, S. W., WANG, Y. J., ZONG, Z. H., LIN, L., KAMEYAMA, M. & KAMEYAMA, A. 2008. New variants of Nav1.5/SCN5A encode Na+ channels in the brain. *J Neurogenet*, 22, 57-75.
WANG, J., OU, S. W., ZHANG, Z. Y., QIU, B. & WANG, Y. J. 2018b. Molecular expression of multiple Nav1.5 splice variants in the frontal lobe of the human brain. Int J Mol Med, 41, 915-923.

WANNOUS, R., BON, E., GILLET, L., CHAMOUTON, J., WEBER, G., BRISSON, L., GORE, J., BOUGNOUX, P., BESSON, P., ROGER, S. & CHEVALIER, S. 2015. Suppression of PPARbeta, and DHA treatment, inhibit NaV1.5 and NHE-1 proinvasive activities. Pflugers Arch, 467, 1249-59.

WANNOUS, R., BON, E., MAHEO, K., GOUPILLE, C., CHAMOUTON, J., BOUGNOUX, P., ROGER, S., BESSON, P. & CHEVALIER, S. 2013. PPARbeta mRNA expression, reduced by n-3 PUFA diet in mammary tumor, controls breast cancer cell growth. Biochim Biophys Acta, 1831, 1618-1625.

WEBB, B. A., CHIMENTI, M., JACOBSON, M. P. & BARBER, D. L. 2011. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer, 11, 671-7.

WISEDCHAISRI, G., TONGGU, L., MCCORD, E., GAMAL EL-DIN, T. M., WANG, L., ZHENG, N. & CATTERALL, W. A. 2019. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell, 178, 993-1003 e12.

XIA, J., HUANG, N., HUANG, H., SUN, L., DONG, S., SU, J., ZHANG, J., WANG, L., LIN, L., SHI, M., BIN, J., LIAO, Y., LI, N. & LIAO, W. 2016. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer, 139, 2553-69.

XIAO, Y. F., KE, Q., WANG, S. Y., AUPTOR, K., YANG, Y., WANG, G. K., MORGAN, J. P. & LEAF, A. 2001. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc Natl Acad Sci U S A, 98, 3606-11.

XIAO, Y. F., WRIGHT, S. N., WANG, G. K., MORGAN, J. P. & LEAF, A. 1998. Fatty acids suppress voltage-gated Na+ currents in HEK293t cells transfected with the alpha-subunit of the human cardiac Na+ channel. Proc Natl Acad Sci U S A, 95, 2680-5.

YANG, M. & BRACKENBURY, W. J. 2013. Membrane potential and cancer progression. Front Physiol, 4, 185.

YANG, M., JAMES, A. D., SUMAN, R., KASPROWICZ, R., NELSON, M., O'TOOLE, P. J. & BRACKENBURY, W. J. 2020. Voltage-dependent activation of Rac1 by Nav 1.5 channels promotes cell migration. J Cell Physiol, 235, 3950-3972.

YANG, M., KOZMINSKI, D. J., WOLD, L. A., MODAK, R., CALHOUN, J. D., ISOM, L. L. & BRACKENBURY, W. J. 2012. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat.

YAPA, K., DEUIS, J., PETERS, A. A., KENNY, P. A., ROBERTS-THOMSON, S. J., VETTER, I. & MONTEITH, G. R. 2018. Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels. Life Sci, 198, 128-135.

YAOQOBB, P. & SHAIKH, S. R. 2010. The nutritional and clinical significance of lipid rafts. Curr Opin Clin Nutr Metab Care, 13, 156-66.

YILDIRIM, S., ALTUN, S., GUMUSHAN, H., PATEL, A. & DJAMGOZ, M. B. 2012. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett, 323, 58-61.

YIN, X., YU, X. W., ZHU, P., ZHANG, Y. M., ZHANG, X. H., WANG, F., ZHANG, J. J., YAN, W., XI, Y., WAN, J. B., KANG, J. X., ZOU, Z. Q. & BU, S. Z. 2016. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma
progression by increasing E-cadherin expression and inhibiting beta-catenin signaling.
Mol Med Rep, 14, 3476-84.

YU, J. J., XIAO, W., DONG, S. L., LIANG, H. F., ZHANG, Z. W., ZHANG, B. X., HUANG, Z. Y., CHEN, Y. F., ZHANG, W. G., LUO, H. P., CHEN, Q. & CHEN, X. P. 2018. Effect of surgical liver resection on circulating tumor cells in patients with hepatocellular carcinoma. *BMC Cancer*, 18, 835.

ZARIC, O., PINKER, K., ZBYN, S., STRASSER, B., ROBINSON, S., MINARIKOVA, L., GRUBER, S., FARR, A., SINGER, C., HELBICHT, T. H., TRATTNIG, S. & BOGNER, W. 2016. Quantitative Sodium MR Imaging at 7 T: Initial Results and Comparison with Diffusion-weighted Imaging in Patients with Breast Tumors. *Radiology*, 280, 39-48.
Figure legends

Figure 1: Expression of Na\(\alpha\) in carcinoma and role in invadopodial activity and invasion of extracellular matrices.

Progression of precancerous into cancer cells is illustrated in the context in the malignant transformation of colon epithelium. Transformed cells have lost cell polarity, replication control, cell-cell adherent junctions and they acquired a mesenchymal pro-invasive phenotype. Migrating cancer cells develop a specialized actin-based membrane protrusions called “invadopodia” that facilitate cell invasion by providing a coupling of focal extracellular matrix (ECM) degradation together with a directional cell movement. Na\(\alpha\) channels are expressed in invadopodial structures, co-localizing with the Na\(^+\)/H\(^+\) exchanger type 1 (NHE1). Activity of Na\(\alpha\) channels enhances the extrusion of protons by NHE1 and therefore the acidification of the peri-invadopodial microenvironment, thus favouring both secretion and activity of ECM proteases such as cysteine cathepsins and matrix metalloproteinases (MMPs). Cancer cell resting potential (\(V_m\)) is around -40 mV, in a window of voltage of Na\(\alpha\) channels (overlap between activation and steady-state inactivation curves) in which a small proportion of channels are activated but non-inactivated, thus generating a small but continuous Na\(^+\) influx through a so-called “window sodium current”. Na\(\alpha\) channels are also proposed to increase the intracellular levels of Ca\(^2+\) ions by the functioning of Na\(^+\)/Ca\(^2+\) exchanger (NCX) in a “reverse mode”. Thus, the increase in the intracellular concentration of Na\(^+\), and Ca\(^2+\), sustains SRC kinase activity leading to the polymerization of acting filaments and the formation of invadopodial structure.

Figure 2: Participation of Na\(\alpha\) and/or Na\(\beta\) in pro-metastatic signalling pathways.

Na\(\alpha\) subunit over-expression and activity in cancer cells trigger biochemical or an electro-biochemical cascades leading to the acquisition of a pro-invasive cell phenotype. Na\(\alpha\) is co-localized with NHE1 in caveolin-1 (Cav-1)-containing lipid rafts and promotes the efflux of protons. Na\(\alpha\) activity can be further stimulated by the use of pharmacological activators such as veratridine (inhibitor of the inactivation phase). Activity of Na\(\alpha\) subunits leads to a CAMP-independent activation of protein kinase A (PKA) that activates the cytosolic small GTPase Ras-related protein 1 (Rap1A/B) and the extracellular signal-regulated kinases (ERK1/2). The transcription factor (TF) metastasis-associated in colon cancer 1 (MACC1) is activated by the p38/NF-\(\kappa\)B signalling while the TFs c-jun, ELK1 and ETS1 are activated by ERK1/2 and the activation of the zinc finger protein SNAI1 through a Na\(\alpha\)dependent mechanism regulating the expression of genes associated with cytoskeleton reorganization, cell motility, extracellular matrix degradation and cell invasiveness. It has been demonstrated that MACC1 upregulates the expression of the SLC9A1 gene, encoding for NHE1, thus enhancing its activity at plasma membrane. On the other hand, the electro-biochemical triggering begins with a resting potential depolarization due to the activity of Na\(\alpha\) subunits promoting the activation and recruitment of the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1) at the leading edge of migrating cells. Transforming growth factor beta 1 (TGF-\(\beta\)1) increases the expression levels of Na\(\alpha\) channels genes (SCNxαA) while ring finger protein 1 (RING1B), RE1 silencing transcription factor (REST), histone deacetylase 2 (HDAC2) and salt inducible kinase 1 (SIK-1), as well as the n-3 polyunsaturated fatty acids n-3 (PUFA), repress their expression. SIK-1 also impairs the functioning of NHE1 exchanger. The “auxiliary subunit” Na\(\beta\)4 is expressed in normal epithelial cells but is importantly down-regulated in invasive cells and high-grade metastatic tumours. The absence of this protein, but specifically the lack
of the intracellular C-terminus domain, triggers the acquisition of an amoeboid-mesenchymal hybrid phenotype dependent of the small GTPase Ras homolog family member A (RhoA). Na\(\beta\)1 proteins have a dual role in cancer cells acting as cell adhesion molecules (CAMs) reducing cell migration and proliferation. However, it has also been demonstrated that Na\(\beta\)1 promotes tumour growth, metastasis and vascularization via the proto-oncogene tyrosine-protein kinase Fyn. The Rho-associated protein kinases (ROCK1/2) negatively regulate the expression of Na\(\alpha\) subunits, therefore, silencing or inhibition of these repressors restore Na\(\alpha\) channels activity promoting an aggressive cell phenotype. Pharmacological intervention with FDA-approved drugs or new design small-molecule lead compounds against Na\(\alpha\) channels represent a promising strategy to decrease sodium channels-associated metastases.

Figure 3: Chemical structures of known Na\(\alpha\) blockers with anticancer effects.
Table and legend

Table I: Expression and identified roles of pore-forming NaVα and auxiliary NaVβ in cancer

*Cancer tissue vs non-cancerous tissue
#Highly invasive cell line vs normal immortalized cell line
†In vitro
‡In vivo
Isoform	Expression levels	Cancer type	Role in cancer, proposed mechanism	References
NaV1.1	Upregulated* (mRNA, protein)	Lymph nodes from CRC	Unknown, unknown	Lin et al., 2019
NaV1.2	Upregulated* (Protein)	Liver	Unknown, unknown	The Human protein Atlas (www.proteinatlas.org)
NaV1.3	Upregulated* (mRNA)	Ovarian	Unknown, unknown	Gao et al., 2010
NaV1.4	Upregulated* (mRNA)	Cervix	Unknown, unknown	Diaz et al., 2007
NaV1.5	Upregulated** (mRNA, protein, Ina+)	Breast	↑Invasion↑‡	
• Through an increased Src kinase activity promoting invadopodial formation and favoring an allosteric activation of NHE-1, extracellular acidification and enhanced activity of cysteine–cathepsins proteases				
• Boosting the EMT transition via SIK1				
• Generating a sustained plasma membrane depolarization that leads to Rac1 activation and cytoskeleton reorganization				
• Increasing MMP9 expression and reducing apoptosis	Roger et al., 2003, Fraser et al., 2005, Brackenbury et al., 2007, Gillet et al., 2009, Brisson et al., 2011, Yang et al., 2012, Brisson et al., 2013, Driffort et al., 2014, Nelson et al., 2015a,b, Gradek et al., 2019, Yang et al., 2020,			
		Colorectal	↑Invasion↑	
Through the regulation of the transcriptional pathway PKA/ERK/c-jun/ELK-1/ETS-1	House et al., 2010, Baptista-Hon et al., 2014, House et al., 2015, Guzel et al., 2019, Poisson et al., 2020			
Tissue	Expression	Changes	References	
-----------------	------------	---	---	
Ovarian	Upregulated	\(\uparrow\text{Migracion} \uparrow\text{Invasion} \uparrow\text{Proliferacion} \)		
\(\bullet\text{By increasing the window current and depolarization of resting potential}\)	Gao et al., 2010, Liu et al., 2018			
Leukemia	Upregulated	\(\uparrow\text{Invasion} \)		
\(\bullet\text{Endosomal acidification and enhanced phagocytosis via calcium signaling}\)	Fraser et al., 2004, Carrithers et al., 2007, Carrithers et al., 2012, Rahgozar et al., 2013, Jones et al., 2014, Huang et al., 2015			
Cervix	Upregulated	\(\uparrow\text{Invasion} \)		
\(\bullet\text{Boosted activity of MMP2 and NHE-1}\)	Diaz et al., 2007, Hernandez-Plata et al., 2012, Lopez-Charcas et al., 2018			
Leukemia	Upregulated	\(\uparrow\text{Invasion} \)		
\(\bullet\text{Invadopodial formation and enhanced activity}\)	Carrithers et al., 2009			
Melanoma	Upregulated	\(\uparrow\text{Invasion} \)		
\(\bullet\text{Invadopodial formation and enhanced activity}\)	Carrithers et al., 2009			
Lymph nodes	Unknown	Unknown, unknown	Lin et al., 2019	
from CRC				
Erwin sarcoma	Downregulated	\(\downarrow\text{Migracion} \uparrow\text{Apoptosis} \)		
\(\text{Through a repression of SCN8A by RING1B and maintaining low NF-\kappa B levels}\)	Hernandez-Munoz et al., 2016			
Colorectal	Unknown	Unknown, unknown	Igci et al., 2015	
Prostate	Upregulated	\(\uparrow\text{Invasion} \)		
\(\bullet\text{Cell motility increased via galvanotaxis}\)	Grimes et al., 1995, Diss et al., 2001, Diss et al., 2005, Yildirim et al., 2012, Bugan et al., 2019			
Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature	
--------	-----------------------------------	---	------------	
Lung (NSCLC)	↑Invasion†	Roger et al., 2007, Campbell et al., 2013		
Lung (SCLC)	Unknown	Pancrazio et al., 1989, Blandino et al., 1995, Onganer et al., 2005		
Stomach	↑Invasion↑Tumour growth†	Xia et al., 2016		
Endometrial	↑Invasion↑Tumour growth↓Apoptosis	Liu et al., 2018, Liu et al., 2019		

Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature
Downregulated* (mRNA, protein)	Unknown, unknown	Pan et al., 2017	

Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature
Na$_{\text{v}}$1.8	Upregulated* (mRNA)	Lung (NSCLC)	Roger et al., 2007
Na$_{\text{v}}$1.9	Upregulated* (mRNA)	Lung (NSCLC)	Roger et al., 2007

Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature
Na$_{\text{v}}$β1	Upregulated** (mRNA, protein)	Breast	Diss et al., 2008
Breast	↑Tumor growth†↑Vascularization↑Invasion↑↓Apoptosis	Nelson et al., 2014, Bon et al., 2016	

Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature
Breast	↑Invasion†	By decreasing cell adhesion and facilitating cell migration	Campion et al., 2009

Tissue	Dysregulation of Sodium Homeostasis	Increase of $[\text{Na}^+]_i$ and Depolarization of Cell Membrane	Literature	
Lung	↑Invasion†	By decreasing cell adhesion	Campbell et al., 2013	
Channel	Expression	Tissue	Function	Reference
---------	------------	--------	----------	-----------
Na\(\beta\)2	Upregulated\(^a\) (mRNA, protein)	Prostate	\(\uparrow\) Migration\(^†\)	
• Acting as a cell adhesion molecule				
\(\downarrow\) Proliferation\(^†\)				
• By increasing the population of cells in the G0/G1 phase in cell cycle	Sanchez-Sandoval and Gomora, 2019			
Na\(\beta\)3	Upregulated\(^a\) (mRNA, protein)	Bone	\(\uparrow\) Invasion\(^†\)	
• Promotion of bipolar cell morphology, enhanced cell adhesion and motility through association with neural substrates.				
\(\downarrow\) Tumour volume in xenograft models\(^‡\)	Jansson et al., 2012, Jansson et al., 2014			
Na\(\beta\)4	Downregulated\(^*\) (mRNA, protein)	Breast	\(\uparrow\) Invasion\(^‡\)	
• Enhanced RhoA activity				
• Mediated by the intracellular C-terminus motif				
• Acquisition of a hybrid mesenchymal-amoeboïd aggressive phenotype	Bon et al., 2016			
Lung	Unknown, unknown	Bon et al., 2016		
Cervix	\(\uparrow\) Invasion\(^†\)	Sanchez-Sandoval and Gomora, 2019		
Thyroid	Unknown			
• Its expression is an indicator of favorable recurrence-free survival | Gong et al., 2018 |
Figure 1
Figure 3
Highlights

- Voltage-gated sodium (Nav) channels are aberrantly expressed in cancers tissues
- Nav activity promotes aggressive progression of cancer cells
- Nav channels are pharmacological targets for anticancer treatments
- Nav expression / activity could be modulated by nutritional interventions