Introduction

Infectious diseases caused by viruses have been the most challenging problem in human health. The diseases with high infectivity and mortality are particularly feared, and in the past, people have regarded such diseases as a disaster or a punishment [1]. However, improvements in identifying the etiology of viral infections and knowledge about microbiology, which were followed by the development of various vaccines, have enabled humankind to overcome the irrational fear of death. The invention of vaccination is regarded as one of the biggest triumphs in the history of medicine. Vaccination has saved millions of lives and its importance is still growing.

Although numerous efforts have focused on producing qualified and effective vaccines, there are insufficient barriers to protect populations from diseases that may cause epidemics or pandemics (e.g., the Ebola virus epidemic in 2014) [2-4]. Thus, researchers are trying to increase the numbers of diseases that can be prevented by vaccines and, by doing so, to expand the target populations that will receive the benefits of vaccination in the future. In addition, vaccine development strategies are being tailored to the particular economic and health requirements of specific countries. The products under development and the numbers and types of clinical trials are influenced directly by this trend. This is why physicians and others involved in vaccine development should be alert to the current paradigm.
This review article briefly summarizes the past and present trends in clinical vaccine development. Its aim is to increase understanding about vaccine development by providing up-to-date information.

History of Clinical Vaccine Development

The history of the development and application of ‘vaccine-like’ substances to humans started in ancient times. Hilleman [1] depicted this history in a concise diagram (Fig. 1). According to this diagrammatic outline, we are living in the modern era of vaccine development, which is more successful and productive than any other period in history. This progress has been dependent on the abundant financial support received (left column).

Using knowledge based on experience and observation, people in the 12th to 15th centuries practiced ‘variolation’ [1,5], the first known method of human immunization. Powdered scabs or fluid from the pustules of a smallpox patient were inserted into superficial scratches made in the skin of the recipient. Many variations of this technique were used in China, the Middle East, and Africa, and they spread widely throughout Europe in the 17th century. The first scientific investigation of this technique was made by Edward Jenner in 1796 when he used cowpox virus rather than smallpox scabs in a human experiment based on doctrines of the enlightenment. This was the origin of the term ‘vaccine’ and the beginning of vaccinology [1,6].

Despite the historic achievement of Jenner, because of insufficient fundamental knowledge about microbiology, no new vaccines were developed for more than a century. In the late 19th century, heroic scientists such as Louis Pasteur, Robert Koch, Emil von Behring, and Paul Ehrlich discovered the basic principles and developed the experimental methodology of immunology and immunotherapy that led to the next stage of vaccinology [1]. Following their seminal investigations, many other studies were performed and led to improved regulations (e.g., The Biologics Control Act of 1902), which resulted in the development of valid live and/or attenuated vaccines. New vaccines against diseases including rabies, typhoid fever, diphtheria, shigellosis, tuberculosis, tetanus, and pertussis were developed by 1930 [1,7,8]. However, during this period, vaccine research was limited to the areas of public and/or military need (World War I) because of restricted funding resources.

In 1931, an important transition to vaccine mass produc-

Fig. 1. Rise of vaccinology by Hilleman [1]. *H. influenzae, Haemophilus influenzae.*

http://dx.doi.org/10.7774/cevr.2015.4.1.46

http://www.ecevr.org/
tion began with Good pasture’s findings of viral growth in embryonated hens’ eggs. Various manufacturing techniques were developed on this basis. In addition, the number of large-scale human tests with improved scientific validity increased during this period. The methodologies of randomization, blinding, and use of control groups helped increase the accuracy of the evaluation of the safety and effectiveness of vaccines. Between 1930 and 1950, and especially during World War II, military purpose remained a powerful motivation for vaccine development. Support from other bodies including public agencies and foundations (e.g., the World Health Organization [WHO] and the Rockefeller Institute) has arisen since then [1]. Vaccines against adenovirus, polyomavirus, Japanese B encephalitis virus, and influenza virus were developed in this stage [9,10].

In the second half of the 20th century, defined by Hilleman [1] as the modern era, scientific improvements related to the screening and manufacturing of vaccine products enabled the development of new types of vaccines. Plotkin and Plotkin [11] regarded the same period as the ‘golden age’ of vaccine development. This age began with the development of three classical attenuated-virus vaccines against measles, mumps, and rubella (MMR) in the 1960s [12] followed by the varicella zoster virus vaccine and inactivated Japanese encephalitis virus vaccine in the 1970s. All of these vaccines involved cell culture techniques under controlled conditions for a certain purpose (i.e., attenuation) in their manufacturing processes. Inactivated whole hepatitis A virus and cell culture-derived rabies viruses were also developed as vaccine products using similar methodology.

It was not until the 1980s that the conjugation of bacterial capsular polysaccharides to proteins was applied in a real-world setting, although it had been proposed in the 1930s by Avery and Goebel [13]. Thanks to this technology, bacterial vaccines against Haemophilus influenzae type b, meningococcus, and pneumococcus were introduced. Multivalent vaccines for various bacterial serotypes were also developed [14,15]. The development of recombinant viral vaccines using genetic engineering is another important step in the evolution of vaccinology. The first example of this type of vaccine was the vaccine against hepatitis B virus [16]. The human papillomavirus vaccine is another important example [17]. These kinds of vaccines brought dramatic improvement in vaccine safety, mitigating the risk of using purified inactivated antigens obtained from infected patients.

Current Clinical Evaluation Vaccines

To meet society’s need for safe and efficacious vaccines, the clinical vaccine development process has been refined for more than a century. Similar to that of chemical drugs, the clinical evaluation of a vaccine typically comprises three phases (Fig. 2). The entire process takes 10-15 years and requires a budget of about 1 billion US dollars. A vaccine-specific developmental plan should be clearly established to ensure the efficient and successful development before clinical evaluation.

![Fig. 2. Current pathway of vaccine development. BLA, Biologic License Application; IND, investigational new drug; M USD, million United States dollars.](http://www.ecevr.org/)
This includes the following contents: 1) identification of the target population (mostly healthy people with particular demographic characteristics) and their sociocultural factors; 2) risk assessment of the target disease and the vaccine itself; 3) understanding of the incidence of the target disease and environmental factors; 4) identification of the dose and route of administration; 5) plans to induce herd immunity; and 6) regulatory strategies. The general characteristics of clinical vaccine development compared with those of conventional drug development are summarized in Table 1.

Human studies of the acceptable safety and reactogenicity of a vaccine candidate are achieved in ‘Phase I’ clinical trials [18]. In this phase, safety and tolerability are evaluated at both the local and systemic levels as the primary endpoint. Dose-ranging and/or repeated-dose studies are often performed. Preliminary information on immunogenicity and efficacy may be collected [18,19]. These trials are often designed as randomized, double-blind, placebo-controlled, single-center studies. According to the characteristics of the product, either a crossover or parallel design may be chosen. The statistical analysis is generally descriptive and exploratory in nature because the trials involve only small numbers of participants (20-80), and thus sufficient information needed for confirmatory tests cannot be obtained [19]. In the ‘first-in-human’ setting, more attention should be given to live attenuated vaccines because the risks tend to be higher than those of killed vaccines [20].

In ‘Phase II’, the ‘proof-of-concept’ (PoC) of the vaccine product should be ensured. Clinical trials of this phase are conducted to demonstrate the immunogenicity of the relevant active component(s) and the safety profile of a candidate vaccine within the target population and to define the optimal dose, initial schedule, and safety profile of a candidate vaccine [19]. Theses purposes are often achieved by separating clinical trials into ‘Phase IIA’ and ‘Phase IIB.’ In designing these clinical trials, multiple variables associated with the host immune response are considered. Determinants of clinically applicable vaccine regimens are also included, such as the dose and number of doses, sequence/interval between doses, and route of administration. Vaccine efficacy may be evaluated using well-defined surrogate parameters. Most of these clinical trials include parallel group comparisons with placebo/active control groups. Prospective and confirmatory statistical analyses are performed, and the percentage of responders should be defined and described based on predefined criteria of an immune response (e.g., antibodies and/or cell-mediated immunity).

The final step in the clinical evaluation before product license is the ‘Phase III’ trial. This stage is intended to provide a pivotal conclusion needed for marketing approval, and the efficacy and safety of formulation(s) of the immunologically active component(s) must be assessed in the large-scale target population [18,21]. The clinical outcome is strongly recommended as a parameter for comparing efficacy (e.g., with placebo/active control groups). Therefore, serological data are usually collected from at least a subset of the immunized population at predefined intervals. The designs of Phase II and Phase III clinical trials are similar, but the size of a Phase

| Table 1. The characteristics of clinical development of vaccines compared with those of clinical development of conventional drugs |
|--------------|---------------------------------|
| **Vaccine** | **Drug** |
| Database | 15,000-100,000 subjects |
| Safety focus | Solicited short-term AEs; unsolicited AEs; long-term rare events |
| Acceptance of AE | Lower |
| Specific RA competence | WHO prequalification, FDA, EMA, few others |
| Manufacturing challenges | Biologics, clinical bridging trials (lot-to-lot comparison) |
| RA license issues | Manufacturing and clinical |
| Goals | Prevention of disease, death, sequelae |
| Public health benefit | Herd effect in nonvaccinees |
| Proof of efficacy | Immunological surrogates |
| Serumological tests | Reproducible results prerequisite for license, interlaboratory comparability lower |
| Outcome studies | Often granted, cost saving |

AE, adverse event; RA, regulatory affairs; WHO, World Health Organization; FDA, United States Food and Drug Administration; EMA, European Medicines Agency; QoL, quality of life.
III trial is much larger. In consideration of the modern vaccination strategy—administration of multiple vaccines at the same time—interaction and/or interference with other vaccines are evaluated routinely. It is sometimes not possible to conduct a confirmatory study to determine the protective efficacy of products containing the same antigens that are already used commonly and/or whose target disease has a very low incidence [21].

The information obtained during the developmental processes mentioned above are summarized and filed for submission to regulatory authorities in support of an application for marketing approval. The WHO and each regulatory authority have their own guidelines to ensure the quality of the information provided [21,22]. As an example, the United States Food and Drug Administration (FDA) calls the process ‘Biologics License Application’ (BLA). The multidisciplinary FDA review team reviews the efficacy and safety information needed to make a risk-benefit assessment and is advise by Vaccines and Related Biological Products Advisory Committee (VRBPAC). The appropriateness of label contents and the reliability of the manufacturing process are also reviewed [23]. Even though a vaccine may be licensed, the safety information provided for licensure is regarded as insufficient, because at that point, only a few thousand people have likely been exposed to the vaccine. Thus, many vaccines undergo postlicensure (‘Phase IV’) studies. In the United States, the Vaccine Adverse Event Reporting System (VAERS) was established to detect possible signals of adverse events associated with vaccines [24].

Age groups

Pre-birth	Infants and children
Cytomegalovirus	Diphtheria
Group B streptococcus	Group A streptococcus
Hepatitis B virus	H. influenzae type b
Meningococcus serogroups A, B, C, Y and W135	Helicobacter pylori
Pertussis	Herpes simplex virus
Respiratory syncytial virus	Influenza virus
Tetanus	Measles
V. vulnificus	Meningococcus serogroups A, B, C, Y and W135
Pneumococcus	Mumps
Respiratory syncytial virus	Pertussis
Rotavirus	Pertussis
Rubella	Pneumococcus
Tetanus	Respiratory syncytial virus
V. vulnificus	Rotavirus
V. vulnificus	Tetanus
V. vulnificus	V. vulnificus

Special target groups

Travelers	Patients with chronic diseases	Patients with HIV	Emerging infections	Poverty	
Cholera	Cytomegalovirus	Influenza virus	AIDS	Cholera	
Dengue	Fungal infections	Pneumococcus	Anthrax	Dengue	
Enterotoxigenic E.coli	Influenza virus	Pneumocystis	Avian influenza	Enterotoxigenic E.coli	
Hepatitis A virus	Parainfluenza	Tuberculosis	Diphtheria	Cholera	
Hepatitis B virus	Parainfluenza	Ebola virus disease	Diphtheria	Dengue	
Influenza virus	Parainfluenza	EV 71	Diphtheria	Dengue	
Malaria	Parainfluenza	Malaria	Ebola virus disease	Diphtheria	
Meningococcus serogroups A, B, C, Y and X	Respiratory syncytial virus	Meningococcosterogroup X	Plague	Diphtheria	
Paratyphoid fever	Tetanus	Plague	Meningococcus serogroup X	Plague	Paratyphoid fever
Shigella spp.	Tuberculosis	SARS	Salmonella spp.	Rabies	
Tick-borne encephalitis virus	Typhoid fever	smallpox	Smallest	Rotavirus	
Tuberculosis	Typhoid fever	Swine influenza	Tuberculosis	Salmonella spp.	
Typhoid fever	Yellow fever	Tuberculosis	Typhoid fever	Shigella spp.	

Fig. 3. Target population for vaccines in the 21st century by Rappuoli et al. [25]. (A) The most important vaccines for each age group are reported. (B) Special target groups for vaccination in the 21st century. The most important vaccines for each target group are reported. The lists of vaccines reported are indicative and are not intended to be exhaustive. *C. difficile*, *Clostridium difficile*, *E. coli*, *Escherichia coli*, EV71, enterovirus 71; *H. influenzae*, *Haemophilus influenzae*, *K. pneumoniae*, *Klebsiella pneumoniae*, *P. aeruginosa*, *Pseudomonas aeruginosa*, *S. aureus*, *Staphylococcus aureus*, AIDS, acquired immune deficiency syndrome; SARS, severe acute respiratory syndrome.
Current Issues and Conclusion

One of the most important aspects of vaccinology in the 21st century is the extension of the target population by the development of new vaccines against emerging infections, tumors, and chronic diseases. Ultimately, the goal of modern vaccination may be expressed as to prevent or to cure as many diseases with vaccination as possible. Rappuoli et al. [25] presented this concept in a simple figure (Fig. 3). Meeting this challenge requires increasing both the number of vaccine clinical trials in nontraditional populations worldwide and the scientific expertise necessary for the successful development of new vaccines [26]. Many initiatives have been launched recently including the Decade of Vaccines, the Millennium Development Goals, and the US Institute of Medicine consensus study Identifying and Prioritizing New Preventive Vaccines for Development.

Another focus is to improve the efficacy and safety of vaccines even further beyond the overwhelming successes of vaccines in the past several centuries. The most important keyword from the efficacy viewpoint is ‘adjuvant’ [25]. A number of vaccine products are licensed or under development in the form of a mixture of a vaccine and a certain adjuvant (Table 2). Most of the currently licensed adjuvanted vaccine products target influenza. The emphasis on the importance of adjuvants is gradually increasing with the aging of the population. Because they facilitate the immune response to vaccination in older people, many experts expect that adjuvants will be an essential component for widespread vaccine use in entire populations.

In the traditional paradigm, disease caused by vaccination has been a serious problem [27]. Rappuoli [28] has stressed the methodological approaches used to overcome the risks of vaccination in the 21st century (Table 3). In addition, thanks to improvements in genomic techniques, new vaccine-design methods, such as reverse vaccinology [29], have enabled the high-throughput screening of vaccine candidates with greater confidence in their safety profiles.

Table 2. Vaccine adjuvants

Adjuvant name (year licensed)	Adjuvant class	Components	Vaccine (disease)
Alum (1924)	Mineral salts	Aluminum phosphate or aluminum hydroxide	Various
MF59 (Novartis, 1997)	Oil-in-water emulsion	Squalene, polysorbate80 (TWEEN 80; ICI Americas), sorbitan trioleate (Span 85; Croda International)	Fluad (seasonal influenza), Focetria (pandemic influenza), Aflunov (pre-pandemic influenza)
AS03 (GlaxoSmithKline, 2009)	Oil-in-water emulsion	Squalene, TWEEN 80, α-tocopherol	Pandemrix (pandemic influenza), Pre pandrix (pre-pandemic influenza)
Virosomes (Berna Biotech, 2000)	Liposomes	Lipids, hemagglutinin	Pandemrix (pandemic influenza), Prepandrix (pre-pandemic influenza)
AS04 (GlaxoSmithKline, 2005)	Alum-absorbed TLR4 agonist	Aluminum hydroxide, MPL	Fendrix (hepatitis B), Cervarix (human papilloma virus)

Vaccine adjuvants tested in humans but not licensed for use

Adjuvant class	Components	Vaccine (disease)
TLR9 agonist	CpG oligonucleotides alone or combined with alum/emulsions	-
TLR7 and TLR8 agonist	Small molecules	-
TLR3 agonist	Double-stranded RNA analogues	-
TLR2 agonist	Lipopeptide	-
TRIL agonist	Bacterial protein linked to agonist	-
Combination	Saponin, cholesterol, dipalmitylophosphatidylcholine	-
Combination	Liposome, MPL, saponin (QS21)	-
Combination	Oil-in-water emulsion, MPL, saponin (QS21)	-
Oil-in-water emulsion	Squalene, Montane 80, Eumulgin B1 PH	-
Combination	Liposome, DDA, TDB	-
Combination	Oligonucleotide, cationic, peptides	-

Adapted from the article by Rappuoli et al. [25].

TLR, Toll-like receptor; MPL, monophosphoryl lipid A; poly(I:C), polyinosinic-polycytidylic acid; Pam3Cys, tripalmitoyl-S-glyceryl cysteine; AFG3, adjuvant formulation 03; CAF01, cationic adjuvant formulation 01; DDA, dimethyldioctadecylammonium; TDB, trehalose dibehenate.

Adjuvants licensed in the United States.
Table 3. New strategies for improving vaccine safety

Strategy	Details
Screening for sequences homologous to proteins encoded by the human genome	To remove sequences mimicking self-antigens
Immunohistochemistry to check cross-reactions with human tissues	
Multiple cytokine induction to profile the Th1/Th2 immune response	And the potential for autoimmunity
Availability of well-controlled cell lines to avoid the use of whole animals	(smallpox) and primary monkey kidney cells (polio Sabin), which may induce autoimmunity or contain undefined viral/prion contaminants
Control of cell lines for prion proteins	
Simulation of immune response data from different immunization regimens	
Mathematical models of disease, biomarkers, immune response kinetics, efficacy, and safety	
Mouse-human crossover studies to understand the role of Toll-like receptors (TLRs)	
Animal and *in vitro* models to test disease enhancement (RSV, influenza, and measles)	
Large Phase III and Phase IV studies to exclude statistically rare events	

of vaccine recipients are also considered, and there is much focus on developing ways to personalize vaccination, which is termed ‘vaccinomics’ [30].

Without doubt, the quantity and quality of clinical vaccine development will improve greatly in the future. Simultaneously, the coverage of vaccines against diverse diseases will be broadened faster than ever. Integration of knowledge about microbiology and immunology, establishment of efficient vaccine development strategies, and streamlining of regulatory approval processes may facilitate this trend. Doing so will increase the chances that human society will experience the continued benefits of vaccination.

ORCID

Seunghoon Han http://orcid.org/0000-0002-9976-5120

References

1. Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. J Hum Virol 2000;3:63-76.
2. Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis 2006;12:9-14.
3. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 2000;287:443-9.
4. Gostin LO, Lucey D, Phelan A. The Ebola epidemic: a global health emergency. JAMA 2014;312:1095-6.
5. Leung AK. “Variolation” and vaccination in late Imperial China, Ca 1570-1911. In: Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p.5-12.
6. Plotkin SA. Introduction. In: Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p.1-4.
7. Wever PC, van Bergen L. Prevention of tetanus during the First World War. Med Humit 2012;38:78-82.
8. Malito E, Rappuoli R. History of diphtheria vaccine development. In: Burkovski A, editor. Corynebacterium diphtheriae and related toxigenic species: genomics, pathogenicity and applications. Dordrecht: Springer; 2014. p.225-38.
9. Lyons A, Longfield J, Kuschner R, et al. A double-blind, placebo-controlled study of the safety and immunogenicity of live, oral type 4 and type 7 adenovirus vaccines in adults. Vaccine 2008;26:2890-8.
10. Hoyt K. Vaccine innovation: lessons from World War II. J Public Health Policy 2006;27:38-57.
11. Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol 2011;9:889-93.
12. Hilleman MR. The development of live attenuated mumps virus vaccine in historic perspective and its role in the evolution of combined measles-mumps-rubella. In: Plotkin SA, editor. History of vaccine development. New York: Springer; 2011. p.207-18.
13. Avery OT, Goebel WE. Chemo-immunological studies on conjugated carbohydrate-proteins: V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III Pneumococcus with foreign protein. J Exp Med 1931;54:437-47.
14. Fitzwater SP, Chandran A, Santosham M, Johnson HL. The worldwide impact of the seven-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 2012;31:501-8.
15. Tan LK, Carlone GM, Borrow R. Advances in the development of vaccines against Neisseria meningitidis. N Engl J Med 2010;362:1511-20.
16. Adkins JC, Wagstaff AJ. Recombinant hepatitis B vaccine: a review of its immunogenicity and protective efficacy against
hepatitis B. BioDrugs 1998;10:137-58.
17. Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991;185:251-7.
18. Goetz KB, Pfeiderer M, Schneider CK. First-in-human clinical trials with vaccines: what regulators want. Nat Biotechnol 2010;28:910-6.
19. Vaccine development, testing, and regulation [Internet]. Philadelphia: The College of Physicians of Philadelphia; 2014 [cited 2014 Nov 1]. Available from: http://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation.
20. Different types of vaccines [Internet]. Philadelphia: The College of Physicians of Philadelphia; 2014 [cited 2014 Nov 1]. Available from: http://www.historyofvaccines.org/content/articles/different-types-vaccines.
21. World Health Organization. Guidelines on clinical evaluation of vaccines: regulatory expectations [Internet]. Geneva: World Health Organization; 2004 [cited 2014 Nov 2]. Available from: http://www.who.int/biologicals/publications/trs/areas/vaccines/clinical_evaluation/en/.
22. Committee for Human Medicinal Products (CHMP) of European Medicines Agency (EMA). Note for guidance on the clinical evaluation of vaccines. EMA/CHMP/VWP/164653/2005. London: European Medicines Agency; 2005.
23. U.S. Food and Drug Administration. Vaccine product approval process [Internet]. Silver Spring: U.S. Food and Drug Administration; 2014 [cited 2014 Nov 2]. Available from: http://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/BiologicsLicenseApplicationsBLAProcess/ucm133096.htm.
24. U.S. Food and Drug Administration. Vaccine adverse events [Internet]. Silver Spring: U.S. Food and Drug Administration; 2014 [cited 2014 Nov 2]. Available from: http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/ReportaProblem/VaccineAdverseEvents/.
25. Rappuoli R, Mandl CW, Black S, De Gregorio E. Vaccines for the twenty-first century society. Nat Rev Immunol 2011;11:865-72.
26. Rappuoli R, Medaglini D. Big science for vaccine development. Vaccine 2014;32:4705-7.
27. Thomas RE, Lorenzetti DL, Spragins W. Mortality and morbidity among military personnel and civilians during the 1930s and World War II from transmission of hepatitis during yellow fever vaccination: systematic review. Am J Public Health 2013;103:e16-29.
28. Rappuoli R. Twenty-first century vaccines. Philos Trans R Soc Lond B Biol Sci 2011;366:2756-7.
29. Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann NY Acad Sci 2013;1285:115-32.
30. Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 2011;13:438-44.