RIGIDITY AND VANISHING THEOREMS
ON \mathbb{Z}/k SPINc MANIFOLDS

BO LIU AND JIANQING YU

Abstract. In this paper, we first establish an S^1-equivariant index theorem for Spinc Dirac operators on \mathbb{Z}/k manifolds, and then combining this equivariant index theorem with the methods developed by Liu-Ma-Zhang and Taubes, we extend Witten’s rigidity theorem to the case of \mathbb{Z}/k Spinc manifolds. Among others, our results resolve a conjecture of Devoto.

1. Introduction

In [27], Witten derived a series of elliptic operators on the free loop space $\mathcal{L}M$ of a spin manifold M. In particular, the index of the formal signature operator on a loop space turns out to be exactly the elliptic genus constructed by Landweber-Stong [14] and Ochanine [24] in a topological way. Motivated by physics, Witten conjectured that these elliptic operators should be rigid with respect to the circle action.

This conjecture was first proved by Taubes [26] and Bott-Taubes [5]. See also [11] and [13] for other interesting cases. By the modular invariance property, Liu ([16,17]) presented a simple and unified proof of the above conjecture as well as various further generalizations. In particular, several new vanishing theorems were established in [16,17]. Furthermore, on the equivariant Chern character level, Liu and Ma ([18,19]) generalized Witten’s rigidity theorem to the family case and also obtained several vanishing theorems for elliptic genera. In [20,21], inspired by [26], Liu, Ma and Zhang established the corresponding family rigidity and vanishing theorems on the equivariant K-theory level.

In [29], Zhang established an equivariant index theorem for circle actions on \mathbb{Z}/k spin manifolds and pointed out that by combining it with the analytic arguments developed in [21], one can prove an extension of Witten’s rigidity theorem to \mathbb{Z}/k spin manifolds. The purpose of this paper is to extend the result of [29] to \mathbb{Z}/k Spinc manifolds and then establish Witten’s rigidity theorem for \mathbb{Z}/k Spinc manifolds. Recall that a \mathbb{Z}/k manifold X is a smooth manifold with boundary ∂X which consists of k disjoint pieces, each of which is diffeomorphic to a given closed manifold Y (cf. [23]). It is interesting that for a Dirac operator D on a \mathbb{Z}/k manifold, the APS-ind(D) mod $k\mathbb{Z}$ determines a topological invariant in $\mathbb{Z}/k\mathbb{Z}$, where APS-ind(D)

Received by the editors June 21, 2012 and, in revised form, June 19, 2013.
2010 Mathematics Subject Classification. Primary 58J26.

The authors wish to thank Professors Daniel S. Freed, Xiaonan Ma and Weiping Zhang for their helpful discussions. They would also like to thank the referees for valuable suggestions.

©2014 American Mathematical Society
Reverts to public domain 28 years from publication

1381
is the index of D which is imposed on the boundary condition of Atiyah-Patodi-Singer type [1]. Freed and Melrose [8] proved a mod k index theorem,

\begin{equation}
\text{APS-ind}(D) \mod k\mathbb{Z} = \text{t-ind}(D),
\end{equation}

giving APS-ind$(D) \mod k\mathbb{Z}$ a purely topological interpretation.

Assume that X is a \mathbb{Z}/k manifold which admits a \mathbb{Z}/k circle action (cf. Section 2.2). Let D be a Dirac operator on X which commutes with the circle action. Let $R(S^1)$ denote the representation ring of S^1. The equivariant topological index of D is defined by Freed and Melrose [8] as an element of $\mathbb{Z}/k\mathbb{Z} \otimes R(S^1)$, and we denote it by $\text{t-ind}_{S^1}(D)$. Then there exist $R_n \in \mathbb{Z}/k\mathbb{Z}$ such that

\begin{equation}
\text{t-ind}_{S^1}(D) = \sum_{n \in \mathbb{Z}} R_n \otimes [n],
\end{equation}

where by $[n]$ ($n \in \mathbb{Z}$) we mean the one dimensional complex vector space on which S^1 acts as multiplication by g^n for a generator $g \in S^1$.

On the other hand, by applying the equivariant index theorem for \mathbb{Z}/k manifolds established by Freed and Melrose in [8], one gets for $n \in \mathbb{Z}$,

\begin{equation}
R_n = \text{APS-ind}(D,n) \mod k\mathbb{Z}.
\end{equation}

See (2.9) for the definition of APS-ind(D,n).

The Dirac operator D on X is said to be rigid in \mathbb{Z}/k category for the circle action if its equivariant topological index $\text{t-ind}_{S^1}(D)$ verifies that for $n \in \mathbb{Z}$, $n \neq 0$, one has

\begin{equation}
R_n = 0 \text{ in } \mathbb{Z}/k\mathbb{Z}.
\end{equation}

Furthermore, we say D has vanishing property in \mathbb{Z}/k category if its equivariant topological index $\text{t-ind}_{S^1}(D)$ is identically zero, i.e., (1.4) holds for any $n \in \mathbb{Z}$.

In [7], Devoto introduced what he called mod k elliptic genus for \mathbb{Z}/k spin manifolds as an S^1-equivariant topological index in the sense of [8] of some twisted Dirac operator and conjectured that this mod k elliptic genus is rigid in \mathbb{Z}/k category.

In this paper, following the suggestion in [29, Remark 1], we present a proof of Devoto’s conjecture. Moreover, we establish our results for \mathbb{Z}/k Spinc manifolds, thus generalizing [17, Theorems A and B] to the case of \mathbb{Z}/k Spinc manifolds.

Our proof of these rigidity results consists of two steps. In step 1 (Sections 2 and 3), we extend the \mathbb{Z}/k equivariant index theorem of Zhang [29] to the Spinc case. In step 2 (Sections 4 and 5), using the mod k localization index theorem established in step 1 and modifying the process in [20, 21], we prove the main results of this paper.

This paper is organized as follows. In Section 2, we state an S^1-equivariant index theorem for Spinc Dirac operators on \mathbb{Z}/k manifolds (cf. Theorem 2.8). As an application, we extend Hattori’s vanishing theorem [9] to the case of \mathbb{Z}/k almost complex manifolds. In Section 3, we prove the S^1-equivariant index theorem stated in Section 2. In Section 4, we prove our main results (cf. Theorem 4.1), the rigidity and vanishing theorems for \mathbb{Z}/k Spinc manifolds, which generalize [17, Theorems A and B]. When applied to \mathbb{Z}/k spin manifolds, our results resolve a conjecture of Devoto [7]. Section 5 is devoted to the proof of two intermediate results, Theorems 4.6 and 4.7 which are used in the proof of our main results in Section 4.
2. Spin\(^c\) Dirac operators and a mod \(k\) localization formula

In this section, for a \(\mathbb{Z}/k\) manifold which admits a nontrivial \(\mathbb{Z}/k\) circle action, we state a mod \(k\) localization formula for \(S^1\)-equivariant Spin\(^c\) Dirac operators, whose proof will be given in Section 3. As an application, we deduce the rigidity and vanishing property for several Dirac operators on a \(\mathbb{Z}/k\) almost complex manifold. In particular, we extend Hattori’s vanishing theorem [9] to the case of \(\mathbb{Z}/k\) almost complex manifolds.

This section is organized as follows. In Section 2.1, we review the construction of Spin\(^c\) Dirac operators on \(\mathbb{Z}/k\) manifolds and the Atiyah-Patodi-Singer boundary problems. In Section 2.2, we recall the relevant facts about circle actions on \(\mathbb{Z}/k\) manifolds and present a variation formula for the indices of these boundary problems. In Section 2.3, we state the mod \(k\) localization formula for \(\mathbb{Z}/k\) circle actions. As an application, in Section 2.4, we extend Hattori’s vanishing theorem [9] to the case of \(\mathbb{Z}/k\) almost complex manifolds.

2.1. Spin\(^c\) Dirac operators on \(\mathbb{Z}/k\) manifolds. We first recall the definition of \(\mathbb{Z}/k\) manifolds introduced by Morgan and Sullivan (cf. [23]).

Definition 2.1 (cf. [29] Definition 1.1]). A compact \(\mathbb{Z}/k\) manifold is a compact manifold \(X\) with boundary \(\partial X\), which admits a decomposition \(\partial X = \bigsqcup_{i=1}^k (\partial X)_i\) into \(k\) disjoint manifolds and \(k\) diffeomorphisms \(\pi_i : (\partial X)_i \to Y\) to a closed manifold \(Y\). We use the triple \((X, Y, \pi)\) to denote this \(\mathbb{Z}/k\) manifold. We will also denote it by \(X\) for simplicity if there is no confusion.

Let \((X, Y, \pi)\) be a \(\mathbb{Z}/k\) manifold. In what follows, as in [29], we will call an object \(\alpha\) (e.g., metrics, connections, vector bundles, Spin\(^c\)-structures, etc.) over \(X\) a \(\mathbb{Z}/k\) object if there is a corresponding object \(\beta\) on \(Y\) such that \(\alpha|_{\partial X} = \pi^* \beta\).

Given a \(\mathbb{Z}/k\) manifold \((X, Y, \pi)\), one obtains a quotient space \(\overline{X}\) by identifying each of the \(k\) disjoint pieces of the boundary \(\partial X\). In this paper, by a topological object (e.g., cohomology, characteristic classes, \(K\)-group, etc.) on a \(\mathbb{Z}/k\) manifold \((X, Y, \pi)\), we will mean the corresponding object on its quotient space \(\overline{X}\).

Remark 2.2. It is of critical importance that \(\overline{X}\) has the homotopy type of a CW complex, which implies that the first Chern class \(c_1\) induces a 1-to-1 correspondence between the equivalence classes of the \(\mathbb{Z}/k\) complex line bundles over \(X\) and the elements of \(H^2(\overline{X}; \mathbb{Z})\).

We make the assumption that \((X, Y, \pi)\) is a \(\mathbb{Z}/k\) manifold, which is \(\mathbb{Z}/k\) oriented and of dimension \(2l\).

Let \(V\) be a \(\mathbb{Z}/k\) real vector bundle over \(X\) which is of dimension \(2p\) and is \(\mathbb{Z}/k\) oriented. Let \(L\) be a \(\mathbb{Z}/k\) complex line bundle over \(X\) with the property that the vector bundle \(U = TX \oplus V\) satisfies \(\omega_2(U) = c_1(L) \mod (2)\), where \(\omega_2\) denotes the second Stiefel-Whitney class and \(c_1\) denotes the first Chern class. Then the \(\mathbb{Z}/k\) vector bundle \(U\) has a \(\mathbb{Z}/k\) Spin\(^c\)-structure.

Let \(g^{TX}\) be a \(\mathbb{Z}/k\) Riemannian metric on \(X\). Let \(g^{T\partial X}\) be its restriction on \(T\partial X\). Let \(\epsilon_0 > 0\) be less than the injectivity radius of \(g^{TX}\). We use the inward geodesic flow to identify a neighborhood of the boundary with the collar \([0, \epsilon_0) \times \partial X\). We assume that \(g^{TX}\) has a product structure decomposition near \(\partial X\). That is, there is an open neighborhood \(\mathcal{U}_\epsilon = [0, \epsilon) \times \partial X\) of \(\partial X\) in \(X\) with \(0 < \epsilon \leq \epsilon_0\) such that
one has the orthogonal splitting on \mathcal{U}_e,
\begin{equation}
 g^{TX}|_{\mathcal{U}_e} = dr^2 \oplus \pi^*_eg^{T\partial X},
\end{equation}
where $\pi_e : [0, e) \times \partial X \to \partial X$ is the obvious projection onto the second factor.

Let W be the Levi-Civita connection on (TX, g^{TX}). Then ∇^{TX} is a \mathbb{Z}/k connection.

Let W be a \mathbb{Z}/k complex vector bundle over X with a \mathbb{Z}/k Hermitian metric g^W. Let ∇^W be a \mathbb{Z}/k Hermitian connection on W with respect to g^W. We make the assumption that g^W and ∇^W both have product structure decompositions near ∂X. That is, over the open neighborhood \mathcal{U}_e of ∂X, one has
\begin{equation}
 W|_{\mathcal{U}_e} = \pi^*_e(W|_{\partial X}), \quad g^W|_{\mathcal{U}_e} = \pi^*_e(g^W|_{\partial X}), \quad \text{and } \nabla^W|_{\mathcal{U}_e} = \pi^*_e(\nabla^W|_{\partial X}).
\end{equation}

Let g^V (resp. g^L) be a \mathbb{Z}/k Euclidean (resp. Hermitian) metric on V (resp. L), and ∇^V (resp. ∇^L) be a corresponding \mathbb{Z}/k Euclidean (resp. Hermitian) connection on V (resp. L). We make the assumption that g^V, ∇^V, g^L, ∇^L all have product structure decompositions near ∂X (cf. (2.2)).

By taking $\epsilon > 0$ sufficiently small, one can always find metrics g^{TX}, g^W, g^V, g^L and connections ∇^W, ∇^V, ∇^L verifying the above assumptions.

The Clifford algebra bundle $C(TX)$ is the bundle of Clifford algebras over X whose fiber at $x \in X$ is the Clifford algebra $C(T_xX)$ (cf. [15]). Let $C(V)$ be the Clifford algebra bundle of (V, g^V).

Let $S(U, L)$ be the fundamental complex spinor bundle for (U, L) (cf. [15] Appendix D). We denote by $c(\cdot)$ the Clifford action of $C(TX)$, $C(V)$ on $S(U, L)$. Let $\{e_i\}_{i=1}^{2\lceil p/2}$ (resp. $\{f_j\}_{j=1}^{2\lceil q/2}$) be an oriented orthonormal basis of (TX, g^{TX}) (resp. (V, g^V)). There are two canonical ways to consider $S(U, L)$ as a \mathbb{Z}_2-graded vector bundle.

Let
\begin{equation}
\tau_s = (\sqrt{-1})^i c(e_1) \cdots c(e_{2l}),
\end{equation}
\begin{equation}
\tau_e = (\sqrt{-1})^j c(e_1) \cdots c(e_{2l}) c(f_1) \cdots c(f_{2p})
\end{equation}
be two involutions of $S(U, L)$. Then $\tau_s^2 = \tau_e^2 = 1$. We point out here that by [3, Lemma 3.17], τ_s and τ_e are well defined. This remark applies in the remaining part where we use local (oriented) frames to define an involution. We decompose $S(U, L) = S_{\pm}(U, L) \oplus S_{\mp}(U, L)$ corresponding to τ_s (resp. τ_e) such that $\tau_s|_{S_{\pm}(U, L)} = \pm 1$ (resp. $\tau_e|_{S_{\mp}(U, L)} = \pm 1$).

We always fix an involution τ on $S(U, L)$, either τ_s or τ_e, without further notice. Let $\nabla^{S(U, L)}$ be the Hermitian connection on $S(U, L)$ induced by $\nabla^{TX} \oplus \nabla^V$ and ∇^L (cf. [15] Appendix D). Then $\nabla^{S(U, L)}$ preserves the \mathbb{Z}_2-grading of $S(U, L)$. Let $\nabla^{S(U, L) \otimes W}$ be the Hermitian connection on $S(U, L) \otimes W$ obtained from the tensor product of $\nabla^{S(U, L)}$ and ∇^W.

Definition 2.3. The twisted Spinc Dirac operator D^X on $S(U, L) \otimes W$ over X is defined by
\begin{equation}
 D^X = \sum_{i=1}^{2l} c(e_i) \nabla^{S(U, L) \otimes W}_{e_i} : \Gamma(X, S(U, L) \otimes W) \to \Gamma(X, S(U, L) \otimes W).
\end{equation}
Denote by D^X_{\pm} the restrictions of D^X on $\Gamma(X, S_{\pm}(U, L) \otimes W)$.

By [15], D^X is a formally self-adjoint operator. To get an elliptic operator, we impose the boundary condition of Atiyah-Patodi-Singer type [1].
We first recall the canonical boundary operators (cf. [3], (1.4)). For a first order differential operator $D : \Gamma(X, S(U, L) \otimes W) \rightarrow \Gamma(X, S(U, L) \otimes W)$ on X, if there exists $\epsilon > 0$ sufficiently small such that the following identity holds on \mathcal{U}_ϵ,

$$D = c \left(\frac{\partial}{\partial r} \right) \left(\frac{\partial}{\partial r} + B \right),$$

with B independent of r, then we will call B the canonical boundary operator associated to D. When there is no confusion, we will also use B to denote its restriction on $\Gamma(X, S(U, L) \otimes W)|_{\partial X}$.

We then recall the Atiyah-Patodi-Singer projection associated to a boundary operator (cf. [1]). Assume temporarily that ∇ respects so that the usual Stokes formula holds. Then using parallel transport with respect to ∇^B with ϵ sufficiently small such that the following identity holds on \mathcal{U}_ϵ,

$$D_{\partial X} \mid_{\partial X} = \sum_{i=2}^{2l} c \left(\frac{\partial}{\partial r} \right) e_i \nabla e_i \Gamma(S(U, L) \otimes W).$$

By [1], B^X is a formally self-adjoint first order elliptic differential operator intrinsically defined on ∂X, which is the canonical boundary operator associated to D^X and preserves the natural \mathbb{Z}_2-grading of $(S(U, L) \otimes W)|_{\partial X}$.

We now recall the Dirac type operator [6, Definition 1.1] as well as the boundary condition of Atiyah-Patodi-Singer type [1].

Definition 2.5. By a Dirac type operator on $S(U, L) \otimes W$, we mean a first order differential operator $D : \Gamma(X, S(U, L) \otimes W) \rightarrow \Gamma(X, S(U, L) \otimes W)$ such that $D - D^X$ is an odd self-adjoint element of zero-th order and that its canonical boundary operator B acting on $\Gamma(X, S(U, L) \otimes W)|_{\partial X}$ is formally self-adjoint. We will also call the restrictions D_{\pm} of D to $\Gamma(X, S_{\pm}(U, L) \otimes W)$ a Dirac type operator.

Now let D be a \mathbb{Z}/k Dirac type operator with its canonical boundary operator B. Obviously, B preserves the \mathbb{Z}_2-grading of $\Gamma(X, S(U, L) \otimes W)|_{\partial X}$.

Following [1], the boundary problem

$$\begin{cases}
(D_+, P_{\geq 0, +}) : \{ s \mid s \in \Gamma(X, S_+(U, L) \otimes W), P_{\geq 0, +}(s|_{\partial X}) = 0 \} \\
\Gamma(X, S_-(U, L) \otimes W)
\end{cases}$$

(2.7)
defines an elliptic boundary problem whose adjoint is \((D_-, P_{>0,-})\). Moreover, it induces a Fredholm operator \([\square]\). We will call the boundary problem \((D_+, P_{\geq 0,+})\) the Atiyah-Patodi-Singer boundary problem associated to \(D_+\). Set

\[
\text{APS-ind}(D) = \dim \ker(D_+, P_{\geq 0,+}) - \dim \ker(D_-, P_{>0,-}).
\]

2.2. \(\mathbb{Z}/k\) circle actions and a variation formula.

Definition 2.6. We will call a circle action on \(X\) a \(\mathbb{Z}/k\) circle action if it preserves \(\partial X\) and there exists a corresponding circle action on \(Y\) such that these two actions are compatible with \(\pi\). The circle action is said to be nontrivial if it is not equal to identity.

In what follows we assume that \(X\) admits a nontrivial \(\mathbb{Z}/k\) circle action.

Recall that \(V, L, W\) are \(\mathbb{Z}/k\) vector bundles. We assume that the \(\mathbb{Z}/k\) circle action on \(X\) lifts to \(\mathbb{Z}/k\) circle actions on \(V, L\) and \(W\), respectively. Without loss of generality, we may and we will assume that these \(\mathbb{Z}/k\) circle actions preserve \(g^{TX}, g^V, g^L, g^W, \nabla^V, \nabla^L, \nabla^W\) and their product structure decompositions near \(\partial X\). Here by “the circle action preserves the product structure decomposition of an object near \(\partial X\)” we mean the circle action on the object over \(\mathbb{M}_t\) is induced by the one on its restriction to \(\partial X\), where \(\epsilon > 0\) sufficiently small. We also assume that the \(\mathbb{Z}/k\) circle actions on \(TX, V\) and \(L\) lift to a \(\mathbb{Z}/k\) circle action on \(S(U, L)\) and preserves its \(\mathbb{Z}_2\)-grading.

Let \(\mathcal{E}\) be a \(\mathbb{Z}/k\) \(S^1\)-equivariant vector bundle over \(X\). Let \(\mathcal{E}_Y\) be the \(S^1\)-equivariant vector bundle over \(Y\) induced from \(\mathcal{E}\) through the map \(\pi : \partial X \to Y\). Recall that the circle action on \(\Gamma(X, \mathcal{E})\) is defined by \((g \cdot s)(x) = g(s(g^{-1}x))\) for \(g \in S^1, s \in \Gamma(X, \mathcal{E}), x \in X\). Similarly, the group \(S^1\) acts on \(\Gamma(X, \mathcal{E})|_{\partial X}\) and \(\Gamma(Y, \mathcal{E}_Y)\). For \(\xi \in \mathbb{Z}\), the weight-\(\xi\) subspace of \(\Gamma(X, \mathcal{E})\) (resp. \(\Gamma(X, \mathcal{E})|_{\partial X}, \Gamma(Y, \mathcal{E}_Y)\)) on which \(S^1\) acts as multiplication by \(g^\xi\) for \(g \in S^1\).

For any \(\xi \in \mathbb{Z}\), let \(E^\pm_\xi\) (resp. \(E^\pm_\xi, 0\), \(E^\pm_{Y, \xi}\)) be the weight-\(\xi\) subspaces of

\[
\Gamma(X, S^\pm(U, L) \otimes W)
\]

(resp. \(\Gamma(X, S^\pm(U, L) \otimes W)|_{\partial X}, \Gamma(Y, (S(U, L) \otimes W)_Y)\)).

Let \(D\) be a \(\mathbb{Z}/k\) \(S^1\)-equivariant Dirac type operator on \(\Gamma(S(U, L) \otimes W)\) with canonical boundary operator \(B\) acting on \(\Gamma(X, S(U, L) \otimes W)|_{\partial X}\). Let \(P_{\geq 0,+}\) be the orthogonal projection associated to \(B_+\). For \(\xi \in \mathbb{Z}\), let \(D_{\pm, \xi}\) and \(P_{\geq 0,+, \xi}\) (resp. \(P_{>0, -, \xi}\)) be the restrictions of \(D_\pm\) and \(P_{\geq 0,+}\) (resp. \(P_{>0,-}\)) on the corresponding weight-\(\xi\) subspaces \(E^\pm_{\xi, 0}\) and \(E^\pm_{\xi, \partial}\) (resp. \(E^\pm_{\xi, 0}\)) respectively. Then \((D_{+, \xi}, P_{\geq 0,+, \xi})\) forms an elliptic boundary problem. Set

\[
\text{APS-ind}(D, \xi) = \dim \ker(D_{+, \xi}, P_{\geq 0,+, \xi}) - \dim \ker(D_{-, \xi}, P_{>0,-, \xi}).
\]

Let \(\{D_t : \Gamma(X, S(U, L) \otimes W) \to \Gamma(X, S(U, L) \otimes W) \mid 0 \leq t \leq 1\}\) be a one parameter family of \(\mathbb{Z}/k\) \(S^1\)-equivariant Dirac type operators with the canonical boundary operators \(\{B_t \mid 0 \leq t \leq 1\}\). For any \(t \in [0, 1]\), let \(D_{t, +}^Y\) be the induced operator from \(B_{t, +}\) through the map \(\pi : \partial X \to Y\), and let \(B_{t, +, \xi}\) (resp. \(D_{t, +}^Y\)) be the restriction of \(B_{t, +}\) (resp. \(D_{t, +}^Y\)) on the weight-\(\xi\) subspace \(E^\pm_{\xi, 0}\) (resp. \(E^\pm_{Y, \xi}\)). We have the following variation formula.
Theorem 2.7 (Compare with [6] Theorem 1.2). The following identity holds:

\[\text{APS-ind}(D_1, \xi) - \text{APS-ind}(D_0, \xi) = -\text{sf} \left\{ B_{t,+}, \xi \mid 0 \leq t \leq 1 \right\} \]
\[= -k \text{sf} \left\{ D^Y_{t,+}, \xi \mid 0 \leq t \leq 1 \right\}, \]

where sf is the notation for the spectral flow of [2]. In particular,

\[\text{APS-ind}(D_1, \xi) \equiv \text{APS-ind}(D_0, \xi) \mod k\mathbb{Z}. \]

Proof. The proof is the same as that of [6, Theorem 1.2].

2.3. A mod k localization formula for \(\mathbb{Z}/k \) circle actions. Let \(\mathcal{H} \) be the canonical basis of \(\text{Lie}(S^1) = \mathbb{R} \), i.e., for \(t \in \mathbb{R} \), \(\exp(t \mathcal{H}) = e^{2\pi \sqrt{-1} t} \in S^1 \). Let \(H \) be the Killing vector field on \(X \) corresponding to \(\mathcal{H} \). Since the circle action on \(X \) is of \(\mathbb{Z}/k \), \(H|_{\partial X} \subset T\partial X \) induces a Killing vector field \(H_Y \) on \(Y \). Let \(X_H \) (resp. \(Y_H \)) be the zero set of \(H \) (resp. \(H_Y \)) on \(X \) (resp. \(Y \)). Then \(X_H \) is a \(\mathbb{Z}/k \) manifold and there is a canonical map \(\pi_{X_H} : \partial X_H \to Y_H \) induced by \(\pi \). In general, \(X_H \) is not connected. We fix a connected component \(X_{H,0} \) of \(X_H \), and we omit the subscript \(\alpha \) if there is no confusion.

Clearly, \(X_H \) intersects with \(\partial X \) transversally. Let \(g^{TX_{X_H}} \) be the metric on \(X_H \) induced by \(g^{TX} \). Then \(g^{TX_{X_H}} \) has a product structure decomposition near \(\partial X_H \). In fact, by choosing \(\epsilon > 0 \) small enough, we know \(\mathcal{U}' = \mathcal{U}_{\epsilon} \cap X_H \) carries the metric naturally induced from \(g^{TX}|_{\mathcal{U}_{\epsilon}} \).

Let \(\tilde{\pi} : N \to X_H \) be the normal bundle to \(X_H \) in \(X \), which is identified to be the orthogonal complement of \(TX_H \) in \(TX|_{X_H} \). Then \(TX|_{X_H} \) admits a \(\mathbb{Z}/k \) \(S^1 \)-equivariant decomposition (cf. [21] (1.8))

\[TX|_{X_H} = \bigoplus_{v \neq 0} N_v \oplus TX_H, \]

where \(N_v \) is a \(\mathbb{Z}/k \) complex vector bundle such that \(g \in S^1 \) acts on it by \(g^v \) with \(v \in \mathbb{Z} \setminus \{0\} \). We will regard \(N \) as a \(\mathbb{Z}/k \) complex vector bundle and write \(N_{\mathbb{R}} \) for the underlying real vector bundle of \(N \). Clearly, \(N = \bigoplus_{v \neq 0} N_v \). For \(v \neq 0 \), let \(N_{v,\mathbb{R}} \) denote the underlying real vector bundle of \(N_v \).

Similarly, let

\[W|_{X_H} = \bigoplus_v W_v, \quad V|_{X_H} = \bigoplus_{v \neq 0} V_v \oplus V_0^\mathbb{R} \]

be the \(\mathbb{Z}/k \) \(S^1 \)-equivariant decompositions of the restrictions of \(W \) and \(V \) over \(X_H \) respectively, where \(W_v \) and \(V_v \) (\(v \in \mathbb{Z} \)) are \(\mathbb{Z}/k \) complex vector bundles over \(X_H \) on which \(g \in S^1 \) acts by \(g^v \), and \(V_0^\mathbb{R} \) is the real subbundle of \(V \) such that \(S^1 \) acts as identity. For \(v \neq 0 \), let \(V_{v,\mathbb{R}} \) denote the underlying real vector bundle of \(V_v \). Denote by \(2p' = \dim V_0^\mathbb{R} \) and \(2l' = \dim X_H \).

Let us write

\[L_F = L \otimes \left(\bigotimes_{v \neq 0} \det N_v \otimes \bigotimes_{v \neq 0} \det V_v \right)^{-1}. \]

Then \(TX_H \oplus V_0^\mathbb{R} \) has a \(\mathbb{Z}/k \) Spin\(^c\)-structure since \(\omega_2(TX_H \oplus V_0^\mathbb{R}) = c_1(L_F) \mod (2) \). Let \(S(TX_H \oplus V_0^\mathbb{R}, L_F) \) be the fundamental spinor bundle for \((TX_H \oplus V_0^\mathbb{R}, L_F) \) as in Section 2.2.
Recall that $N_{v,\mathbb{R}}$ and $V_{v,\mathbb{R}}$ ($v \neq 0$) are canonically oriented by their complex structures. The decompositions (2.11), (2.12) induce the orientations of TX_H and $V_0^\mathbb{R}$ respectively. Let $\{e_i\}_{i=1}^{2^r}, \{f_j\}_{j=1}^{2^p}$ be the corresponding oriented orthonormal basis of (TX_H, g^{TX_H}) and $(V_0^\mathbb{R}, g^{V_0^\mathbb{R}})$. There are two canonical ways to consider $S(TX_H \oplus V_0^\mathbb{R}, L_F)$ as a \mathbb{Z}_2-graded vector bundle. Let

$$
\tau_s = (\sqrt{-1})^{i} c(e_1) \cdots c(e_{2^r}),
$$

$$
\tau_e = (\sqrt{-1})^{i+p} c(e_1) \cdots c(e_{2^p}) c(f_1) \cdots c(f_{2^p})
$$

be two involutions of $S(TX_H \oplus V_0^\mathbb{R}, L_F)$. Then $\tau_s^2 = \tau_e^2 = 1$. We decompose $S(TX_H \oplus V_0^\mathbb{R}, L_F) = S_+(TX_H \oplus V_0^\mathbb{R}, L_F) \oplus S_-(TX_H \oplus V_0^\mathbb{R}, L_F)$ corresponding to τ_s (resp. τ_e) such that $\tau_s|_{S_{\pm}(TX_H \oplus V_0^\mathbb{R}, L_F)} = \pm 1$ (resp. $\tau_e|_{S_{\pm}(TX_H \oplus V_0^\mathbb{R}, L_F)} = \pm 1$).

Let $C(N_{\mathbb{R}})$ be the Clifford algebra bundle of $(N_{\mathbb{R}}, g^N)$. Then $\Lambda(N^*)$ is a $C(N_{\mathbb{R}})$-Clifford module. Namely, for $e \in N$, let $e' \in N^*$ correspond to e by the metric g^N, and let

$$
c(e) = \sqrt{2} e' \wedge , \quad c(\overline{e}) = -\sqrt{2} i e, $$

where \wedge and i denote the exterior and interior multiplications, respectively. Let τ^N be the involution on $\Lambda(N^*)$ given by $\tau^N|_{\Lambda_{\text{even}}/\text{odd}(N^*)} = \pm 1$.

Similarly, we can define the Clifford action of $C(V_{v,\mathbb{R}})$ on the $C(V_{v,\mathbb{R}})$-Clifford module $\Lambda(V_v^*)$ with the involution $\tau^V_v|_{\Lambda_{\text{even}}/\text{odd}(V_v^*)} = \pm 1$.

Upon restriction to X_H, one has the following \mathbb{Z}/k isomorphisms of \mathbb{Z}_2-graded Clifford modules over X_H (compare with [21] (1.49)):

$$
(S(U, L), \tau_s)|_{X_H} \simeq (S(TX_H \oplus V_0^\mathbb{R}, L_F), \tau_s) \otimes (\Lambda N^*, \tau^N) \hat{\otimes}_{v \neq 0} (\Lambda V_v^*, \tau^V_v),
$$

where \otimes denotes the trivial involution, and

$$
(S(U, L), \tau_e)|_{X_H} \simeq (S(TX_H \oplus V_0^\mathbb{R}, L_F), \tau_e) \otimes (\Lambda N^*, \tau^N) \hat{\otimes}_{v \neq 0} (\Lambda V_v^*, \tau^V_v).
$$

Here we denote by $\hat{\otimes}$ the \mathbb{Z}_2-graded tensor product (cf. [13] p. 11). Furthermore, isomorphisms (2.16), (2.17) give the identifications of the canonical connections on the bundles (compare with [21] (1.13)). We still denote the involution on $S(TX_H \oplus V_0^\mathbb{R}, L_F)$ by τ.

Let R be a \mathbb{Z}/k Hermitian vector bundle over X_H endowed with a \mathbb{Z}/k Hermitian connection. We make the assumption that the Hermitian metric and the Hermitian connection both have product structure decompositions near ∂X_H. We will denote by $D^{X_H} \otimes R$ the twisted Spinc Dirac operator on $S(TX_H \oplus V_0^\mathbb{R}, L_F) \otimes R$ and by $D^{X_H,\alpha} \otimes R$ its restriction to $X_{H,\alpha}$ (cf. Definition 2.3).

We denote by $K(X_H)$ the K-group of \mathbb{Z}/k complex vector bundles over X_H (cf. [8] p. 285). We use the same notation as in [21] p. 128,

$$
\text{Sym}_q(R) = \sum_{n=0}^{+\infty} q^n \text{Sym}^n(R) \in K(X_H)[[q]],
$$

$$
\Lambda_q(R) = \sum_{n=0}^{+\infty} q^n \Lambda^n(R) \in K(X_H)[[q]],
$$

for the symmetric and exterior power operations in $K(X_H)[[q]]$, respectively.
Let S^1 act on $L|_{X_H}$ by sending $g \in S^1$ to g^l_c ($l_c \in \mathbb{Z}$) on X_H. Then l_c is locally constant on X_H. Following [21, (1.50)], we define the following elements in $K(X_H)[[q^{1/2}]]$:

$$R_{\pm}(q) = q^{1/2} \sum_{|v|} \dim N_v - \frac{1}{2} \sum_{v} \dim V_v + \frac{1}{2} l_c \bigotimes_{v > 0} (\text{Sym}_{q^v}(N_v) \otimes \det N_v)$$

(2.19)

$$= \sum_n R_{\pm,n} q^n,$$

$$R'_{\pm}(q) = q^{-1/2} \sum_{|v|} \dim N_v - \frac{1}{2} \sum_{v} \dim V_v + \frac{1}{2} l_c \bigotimes_{v > 0} \text{Sym}_{q^v}(N_v)$$

(2.20)

$$= \sum_n R'_{\pm,n} q^n.$$

As explained in [21, p. 139], since $TX \oplus V \oplus L$ is spin, one gets

(2.21)

$$\sum_v v \dim N_v + \sum_v v \dim V_v + l_c \equiv 0 \mod (2).$$

Therefore, $R_{\pm,\xi}(q), R'_{\pm,\xi}(q) \in K(X_H)[[q]]$.

Clearly each $R_{\pm,\xi}, R'_{\pm,\xi}$ ($\xi \in \mathbb{Z}$) is a \mathbb{Z}/k vector bundle over X_H carrying a canonically induced \mathbb{Z}/k Hermitian metric and a canonically induced \mathbb{Z}/k Hermitian connection, which have product structure decompositions near ∂X_H.

We now state a mod k localization formula which generalizes [21, Theorem 1.2] to the case of \mathbb{Z}/k manifolds. It also generalizes the \mathbb{Z}/k equivariant index theorem in [20, Theorem 2.1] to the case of Spinc-manifolds.

Theorem 2.8. For any $\xi \in \mathbb{Z}$, the following identities hold:

(2.22) \[\text{APS-ind}_{r_\alpha}(D^X, \xi) \equiv \sum_{\alpha} (-1)^{\sum_{v} \dim N_v} \text{APS-ind}_{r_\alpha}(D^{X_{H,\alpha}} \otimes R_{+,\xi}) \equiv \sum_{\alpha} (-1)^{\sum_{v} \dim N_v} \text{APS-ind}_{r_\alpha}(D^{X_{H,\alpha}} \otimes R'_{+,\xi}) \mod k\mathbb{Z}, \]

(2.23) \[\text{APS-ind}_{r_\alpha}(D^X, \xi) \equiv \sum_{\alpha} (-1)^{\sum_{v} \dim N_v} \text{APS-ind}_{r_\alpha}(D^{X_{H,\alpha}} \otimes R_{-\xi}) \equiv \sum_{\alpha} (-1)^{\sum_{v} \dim N_v} \text{APS-ind}_{r_\alpha}(D^{X_{H,\alpha}} \otimes R'_{-\xi}) \mod k\mathbb{Z}. \]

Proof. The proof will be given in Section 3.

2.4. A \mathbb{Z}/k extension of Hattori’s vanishing theorem. In this subsection, we assume that TX has a \mathbb{Z}/k S^1-equivariant almost complex structure J. Then one has the canonical splitting

(2.24) \[TX \otimes \mathbb{R} \mathbb{C} = T^{(1,0)} X \oplus T^{(0,1)} X, \]

where $T^{(1,0)} X$ and $T^{(0,1)} X$ are the eigenbundles of J corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, respectively.
Let $K_X = \det(T^{(1,0)}X)$ be the determinant line bundle of $T^{(1,0)}X$ over X. Then the complex spinor bundle $S(TX, K_X)$ for (TX, K_X) is $\Lambda(T^{* (0,1)}X)$ (cf. [13 Appendix D]).

We suppose that $c_1(T^{(1,0)}X) = 0 \mod (N)$ ($N \in \mathbb{Z}, N \geq 2$). As explained in Section 2.1, the complex line bundle $K_X^{1/N}$ is well defined over X. After replacing the S^1 action by its N-fold action, we can always assume that S^1 acts on $K_X^{1/N}$. For $s \in \mathbb{Z}$, let $D_X \otimes K_X^{s/N}$ be the twisted Spinc Dirac operator on $\Lambda(T^{* (0,1)}X) \otimes K_X^{s/N}$ defined as in (2.24).

Using Theorem 2.8, we can generalize the main result of Hattori [9] to the case of \mathbb{Z}/k almost complex manifolds.

Theorem 2.9. Assume that X is a connected \mathbb{Z}/k almost complex manifold with a nontrivial \mathbb{Z}/k circle action. If $c_1(T^{(1,0)}X) = 0 \mod (N)$ ($N \in \mathbb{Z}, N \geq 2$), then for $s \in \mathbb{Z}$, $-N < s < 0$, $D_X \otimes K_X^{s/N}$ has vanishing property in \mathbb{Z}/k category. In particular, the following identity holds:

$$
(2.25) \quad \text{t-ind}(D_X \otimes K_X^{s/N}) = 0 \quad \text{in} \quad \mathbb{Z}/k\mathbb{Z}.
$$

Proof. Using the almost complex structure on TX_H induced by the almost complex structure J on TX and by (2.11), we know that

$$
(2.26) \quad T^{(1,0)}X|_{X_H} = \bigoplus_{\nu \neq 0} N_{\nu} \oplus T^{(1,0)}X_H,
$$

where N_{ν} are complex subbundles of $T^{(1,0)}X|_{X_H}$ on which $g \in S^1$ acts by multiplication by g^ν.

We claim that for each $\xi \in \mathbb{Z}$, the following identity holds:

$$
(2.27) \quad \text{APS-ind}(D_X \otimes K_X^{s/N}, \xi) \equiv 0 \quad \text{mod} \quad k\mathbb{Z}.
$$

In fact, if $X_H = \emptyset$, the empty set, by Theorem 2.8 (2.27) is obvious.

When $X_H \neq \emptyset$, we see that $\sum_{\nu} |\nu| \dim N_{\nu} > 0$ (i.e., at least one of the N_{ν}’s is nonzero) on each connected component of X_H. From (2.26), one sees that $g \in S^1$ acts on $K_X|_{X_H}$ by multiplication by $g^{\sum_{\nu} \nu \dim N_{\nu}}$. Set

$$
\begin{align*}
\alpha_1 &= \inf_{\alpha} \left(\frac{1}{2} \sum_{\nu} |\nu| \dim N_{\nu} + \left(\frac{1}{2} + \frac{s}{N} \right) \sum_{\nu} \nu \dim N_{\nu} \right), \\
\alpha_2 &= \sup_{\alpha} \left(-\frac{1}{2} \sum_{\nu} |\nu| \dim N_{\nu} + \left(\frac{1}{2} + \frac{s}{N} \right) \sum_{\nu} \nu \dim N_{\nu} \right).
\end{align*}
$$

Consider $R_+(q), R'_+(q)$ of (2.19) and (2.20) for the case that $V = 0$ and $W = K_X^{s/N}$. The power of q in $R_+(q)$ is at least a_1, and the power of q in $R'_+(q)$ is at most a_2. Thus, we deduce that

$$
\begin{align*}
R_+, \xi &= 0 \quad \text{if} \quad \xi < a_1, \quad \text{and} \quad R'_+, \xi = 0 \quad \text{if} \quad \xi > a_2.
\end{align*}
$$

Since $-N < s < 0$, we know $a_1 > 0$ and $a_2 < 0$. By using Theorem 2.8 we see that (2.27) holds for any $\xi \in \mathbb{Z}$.

Now Theorem 2.9 follows easily from (1.11), (1.3) and (2.27).

Remark 2.10. From the proof of Theorem 2.9 one also deduces that if X is a connected \mathbb{Z}/k almost complex manifold with a nontrivial \mathbb{Z}/k circle action, then $D_X, D_X \otimes K_X^{-1}$ are rigid in \mathbb{Z}/k category.
3. A proof of Theorem 2.8

In this section, following Zhang [29] and by making use of the analysis of Wu-Zhang [28] and Dai-Zhang [6] as well as Liu-Ma-Zhang [21], which in turn depend on the analytic localization techniques of Bismut-Lebeau [4], we present a proof of Theorem 2.8.

This section is organized as follows. In Section 3.1, we recall a result from [28] concerning the Witten deformation on flat spaces. In Section 3.2, we establish the Taylor expansions of D^X and $c(H)$ (resp. B^X) near the fixed point set X_H (resp. ∂X_H). In Section 3.3 following [6, Section 3(b)], we decompose the Dirac type operators under consideration to a sum of four operators and introduce a deformation of the Dirac type operators as well as their associated boundary operators. In Section 3.4, by using the techniques of [6, Section 3(c)], [21, Section 1.2] and [4, Section 9], we carry out various estimates for certain operators and prove the Fredholm property of the Atiyah-Patodi-Singer type boundary problem for the deformed operators introduced in Section 3.3. In Section 3.5, we complete the proof of Theorem 2.8.

3.1. Witten deformation on flat spaces. Recall that \mathcal{H} is the canonical basis of $\text{Lie}(S^1) = \mathbb{R}$. In this subsection, let W be a complex vector space of dimension n with a Hermitian form. Let ρ be a unitary representation of the circle group S^1 on W such that all the weights are nonzero. Suppose W^\pm are the subspaces of W corresponding to the positive and negative weights respectively, with $\dim_{\mathbb{C}} W^- = \nu$, $\dim_{\mathbb{C}} W^+ = n - \nu$. Let $z = \{z^i\}$ be the complex linear coordinates on W such that the Hermitian structure on W takes the standard form and ρ is diagonal with weights $\lambda_i \in \mathbb{Z} \setminus \{0\}$ ($1 \leq i \leq n$), and $\lambda_i < 0$ for $i \leq \nu$. The Lie algebra action on W is given by the vector field

$$H = 2\pi \sqrt{-1} \sum_{i=1}^{n} \lambda_i \left(z^i \frac{\partial}{\partial z^i} - \bar{z}^i \frac{\partial}{\partial \bar{z}^i} \right).$$

Set

$$K^\pm(W) = \text{Sym}((W^\pm)^*) \otimes \text{Sym}(W^\mp) \otimes \text{det}(W^\mp).$$

Let E be a finite dimensional complex vector space with a Hermitian form and suppose E carries a unitary representation of S^1.

Let $\bar{\partial}$ be the twisted Dolbeault operator acting on $\Omega^{0,*}(W, E)$, the set of smooth sections of $\Lambda(\bar{\partial}^*) \otimes E$ on W. Let $\bar{\partial}^*$ be the formal adjoint of $\bar{\partial}$. Let $D = \sqrt{2}(\bar{\partial} + \bar{\partial}^*)$. Let $c(H)$ be the Clifford action of H on $\Lambda(\bar{\partial}^*)$ defined as in [21,13]. Let \mathcal{L}_H be the Lie derivative along H acting on $\Omega^{0,*}(W, E)$.

The following result was proved in [28, Proposition 3.2].

Proposition 3.1. 1. A basis of the space of L^2-solutions of $D + \sqrt{-1} c(H)$ (resp. $D - \sqrt{-1} c(H)$) on the space of C^∞ sections of $\Lambda(\bar{\partial}^*) \otimes E$ is given by

$$\left(\prod_{i=1}^{\nu} \bar{z}_i^{k_i} \right) \left(\prod_{i=\nu+1}^{n} z_i^{k_i} \right) e^{-\sum_{i=1}^{\nu} |\lambda_i||z_i|^2} d\bar{z}_{\nu+1} \cdots d\bar{z}_n \quad (k_i \in \mathbb{N})$$

$$\left(\prod_{i=1}^{\nu} z_i^{k_i} \right) \left(\prod_{i=\nu+1}^{n} \bar{z}_i^{k_i} \right) e^{-\sum_{i=1}^{\nu} |\lambda_i||z_i|^2} dz_{\nu+1} \cdots dz_n \quad (k_i \in \mathbb{N})$$
with weight \(\sum_{i=1}^{\nu} k_i |\lambda_i| + \sum_{i=\nu+1}^{n} (k_i + 1) |\lambda_i| \) (resp.
\begin{equation}
(3.4) \quad \left(\prod_{i=1}^{\nu} \tilde{z}_i^{k_i} \right) \left(\prod_{i=\nu+1}^{n} z_i^{k_i} \right) e^{-\sum_{i=1}^{\nu} \pi |\lambda_i||\tilde{z}_i|^2} d\tilde{z}_1 \cdots d\tilde{z}_\nu \quad (k_i \in \mathbb{N})
\end{equation}
with weight \(- \sum_{i=\nu+1}^{n} k_i |\lambda_i| - \sum_{i=1}^{\nu} (k_i + 1) |\lambda_i| \).

So the space of \(L^2 \)-solutions of a given weight of \(D + \sqrt{-1}c(H) \) (resp. \(D - \sqrt{-1}c(H) \)) on the space of \(C^\infty \) sections of \(\Lambda(\bar{W}^*) \otimes E \) is finite dimensional. The direct sum of these weight spaces is isomorphic to \(K^-(W) \otimes E \) (resp. \(K^+(W) \otimes E \)) as representations of \(S^1 \).

2. When restricted to an eigenspace of \(\mathcal{L}_H \), the operator \(D + \sqrt{-1}c(H) \) (resp. \(D - \sqrt{-1}c(H) \)) has discrete eigenvalues.

3.2. A Taylor expansion of certain operators near the fixed point set.

Following [1], Section 8(e)], we now describe a coordinate system on \(X \) near \(X_H \).

For \(\varepsilon > 0 \), set \(\mathcal{B}_\varepsilon = \{ Z \in N \mid |Z| < \varepsilon \} \). Since \(X \) and \(X_H \) are compact, there exists \(\varepsilon_0 > 0 \) such that for \(0 < \varepsilon \leq \varepsilon_0 \), the exponential map
\[(y, Z) \in N \mapsto \exp^X_y(Z) \in X \]
is a diffeomorphism from \(\mathcal{B}_\varepsilon \) onto a tubular neighborhood \(\mathcal{U}_\varepsilon \) of \(X_H \) in \(X \). From now on, we identify \(\mathcal{B}_\varepsilon \) with \(\mathcal{U}_\varepsilon \) and use the notation \(x = (y, Z) \) instead of \(x = \exp^X_y(Z) \).

Finally, we identify \(y \in X_H \) with \((y, 0) \in N \).

Let \(\bar{\pi}^*((S(U, L) \otimes W)|_{X_H}) \) be the vector bundle on \(N \) obtained by pulling back \((S(U, L) \otimes W)|_{X_H} \) for \(\bar{\pi} : N \to X_H \).

Let \(g^{TX} \), \(g^N \) be the corresponding metrics on \(TX_H \) and \(N \) induced by \(g^{TX} \).

Let \(\text{dv}_X \), \(\text{dv}_{X_H} \) and \(\text{dv}_N \) be the corresponding volume elements on \((TX, g^{TX}) \), \((TX_H, g^{TX_H}) \) and \((N, g^N) \). Let \(k(y, Z) \) \(((y, Z) \in \mathcal{B}_\varepsilon) \) be the smooth positive function defined by
\begin{equation}
(3.5) \quad \text{dv}_X(y, Z) = k(y, Z) \text{dv}_{X_H}(y) \text{dv}_N(y).
\end{equation}
Then \(k(y) = 1 \) and \(\frac{\partial k}{\partial Z}(y) = 0 \) for \(y \in X_H \). The latter follows from the well-known fact that \(X_H \) is totally geodesic in \(X \).

For \(x = (y, Z) \in \mathcal{U}_\varepsilon \), we will identify \(S(U, L)_x \) with \(S(U, L)_y \) and \(W_x \) with \(W_y \) by the parallel transport with respect to the \(S^1 \)-invariant connections \(\nabla^{S(U, L)} \) and \(\nabla^W \) respectively, along the geodesic \(t \mapsto (y, tZ) \). The induced identification of \((S(U, L) \otimes W)_x \) with \((S(U, L) \otimes W)_y \) preserves the metric and the \(\mathbb{Z}_2 \)-grading, and moreover, is \(S^1 \)-equivariant. Consequently, \(D^X \) can be considered as an operator acting on the sections of the bundle \(\bar{\pi}^*((S(U, L) \otimes W)|_{X_H}) \) over \(\mathcal{B}_{\varepsilon_0} \) commuting with the circle action.

For \(\varepsilon > 0 \), let \(\mathbf{E}(\varepsilon) \) (resp. \(\mathbf{E} \)) be the set of smooth sections of
\[\bar{\pi}^*((S(U, L) \otimes W)|_{X_H}) \]
on \(\mathcal{B}_\varepsilon \) (resp. on the total space of \(N \)). If \(f, g \in \mathbf{E} \) have compact supports, we will write
\begin{equation}
(3.6) \quad \langle f, g \rangle = \left(\frac{1}{2\pi} \right)^{\dim \mathbb{X}} \int_{X_H} \left(\int_N \langle f, g \rangle(y, Z) \text{dv}_N(y) \right) \text{dv}_{X_H}(y).
\end{equation}
Then \(k^{1/2}D^X k^{-1/2} \) is a (formally) self-adjoint operator on \(\mathbf{E} \).

The connection \(\nabla^N \) on \(N \) induces a splitting \(TN = N \oplus T^HN \), where \(T^HN \) is the horizontal part of \(TN \) with respect to \(\nabla^N \). Moreover, since \(X_H \) is totally
geodesic, this splitting, when restricted to X_H, is preserved by the connection ∇^{TX} on $TX|_{X_H}$. Let ∇ be the connection on $(S(U, L) \otimes W)|_{X_H}$ induced by the restriction of $\nabla^{S(U, L) \otimes W}$ to X_H. We denote by $\tilde{\nabla}$ the pullback of the connection ∇ on $(S(U, L) \otimes W)|_{X_H}$ to the bundle $\tilde{\pi}^*((S(U, L) \otimes W)|_{X_H})$.

We choose a local orthonormal basis of $TX|_{X_H}$ such that $e_1, \cdots, e_{2l'}$ form a basis of $TX|_{X_H}$, and $e_{2l'+1}, \cdots, e_{2l}$, that of $N|_{\tilde{\mathcal{R}}}$, and ∂X_H to the bundle $\tilde{\pi}^*((S(U, L) \otimes W)|_{X_H})$.

(3.7) \[D^H = \sum_{i=1}^{2l'} c(e_i)(\tilde{\nabla})_{e_i}, \quad D^N = \sum_{i=2l'+1}^{2l} c(e_i)(\tilde{\nabla})_{e_i}. \]

Clearly, D^N acts along the fibers of N, and let $\tilde{\pi}^N$ be its formal adjoint with respect to $\tilde{\pi}^N$. It is easy to see that $D^N = \sqrt{2}(\tilde{\pi}^N + \tilde{\pi}^N)$. Both D^N and D^H are formally self-adjoint with respect to (3.6).

For $T > 0$, we define a scaling $f \in E(\varepsilon_0) \rightarrow S_T f \in E(\varepsilon_0\sqrt{T})$ by

(3.8) \[S_T f(y, Z) = f \left(y, \frac{Z}{\sqrt{T}} \right), \quad (y, Z) \in \mathcal{R}_{\varepsilon_0\sqrt{T}}. \]

For a first order differential operator

(3.9) \[Q_T = \sum_{i=1}^{2l'} a^i_T(y, Z)(\tilde{\nabla})_{e_i} + \sum_{i=2l'+1}^{2l} b^i_T(y, Z)(\tilde{\nabla})_{e_i} + c_T(y, Z) \]

acting on $E(\varepsilon_0\sqrt{T})$, where $a^i_T, b^i_T, \text{ and } c_T$ are endomorphisms of

$\tilde{\pi}^*((S(U, L) \otimes W)|_{X_H})$

which depend smoothly on (y, Z), we write

(3.10) \[Q_T = O(\|Z\|^2 \partial^N + |Z| \partial^H + |Z| + |Z|^p) \]

if there is a constant $C > 0$, $p \in \mathbb{N}$ such that for any $T \geq 1$, $(y, Z) \in \mathcal{R}_{\varepsilon_0\sqrt{T}}$, we have

(3.11) \[|a^i_T(y, Z)| \leq C |Z| \quad (1 \leq i \leq 2l'), \]

\[|b^i_T(y, Z)| \leq C |Z|^2 \quad (2l' + 1 \leq i \leq 2l), \]

\[|c_T(y, Z)| \leq C(|Z| + |Z|^p). \]

Let E_0 be the set of smooth sections of $\tilde{\pi}^*((S(U, L) \otimes W)|_{X_H})$ over $N|_{\partial X_H}$. On the boundary of X_H, we choose the local orthonormal basis as in Definition 2.4. Similarly as in (2.6), we define

(3.12) \[B^H = -\sum_{i=2}^{2l'} c \left(\frac{\partial}{\partial r} \right) c(e_i)(\tilde{\nabla})_{e_i}, \quad B^N = -c \left(\frac{\partial}{\partial r} \right) D^N|_{\partial X_H} \]

on E_0 (compare with (3.7)).

Let J_H be the representation of Lie(S^1) on N. Then $Z \rightarrow J_H Z$ is a Killing vector field on N. We have the following analogue of [4 Theorem 8.18], [21 Proposition 1.2] and [28 Proposition 3.3].
Proposition 3.2. As $T \to +\infty$,
\[
S_T k^{1/2} D^k N k^{-1/2} S_T^{-1} = \sqrt{T} D^N + D^H + \frac{1}{\sqrt{T}} O(|Z|^2 \partial^N + |Z| \partial^H + |Z|), \\
S_T k^{1/2} c(H) k^{-1/2} S_T^{-1} = \frac{1}{\sqrt{T}} c(JHZ) + \frac{1}{\sqrt{T^3}} O(|Z|^3), \\
S_T k^{1/2} B^N k^{-1/2} S_T^{-1} = \sqrt{T} B^N + B^H + \frac{1}{\sqrt{T}} O(|Z|^2 \partial^N + |Z| \partial^H + |Z|).
\]

3.3. A decomposition of Dirac type operators under consideration and the associated deformation. For $p \geq 0$, let E^p (resp. E^p_0, E^p_+, E^p_0) be the set of sections of the bundles $S(U, L) \otimes W$ over X (resp. $(S(U, L) \otimes W)|_{\partial X}$ over ∂X, $\pi^*(((S(U, L) \otimes W))_{X_H}$) over N, $S(TX_H \oplus V_0^R, L_F) \otimes K^{-}(N) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{\partial X_H}$ over X_H, $(S(TX_H \oplus V_0^R, L_F) \otimes K^{-}(N) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{\partial X_H}$ over X_H) which lie in the p-th Sobolev spaces. The group S^1 acts on all these spaces (cf. Section 2.2). For any $\xi \in \mathbb{Z}$, let E^p_ξ, $E^p_{\xi, 0}$, E^p_ξ, F^p_ξ and $F^p_{\xi, 0}$ be the corresponding weight-ξ subspace, respectively.

Recall that the constant $\varepsilon_0 > 0$ is defined in the last subsection. We now take $\varepsilon \in (0, \varepsilon_0]$. Let $\rho : \mathbb{R} \to [0, 1]$ be a smooth function such that
\[
(3.13) \quad \rho(a) = \begin{cases}
1 & \text{if } a \leq \frac{1}{2}, \\
0 & \text{if } a \geq 1.
\end{cases}
\]

For $Z \in N$, set $\rho_\xi(Z) = \rho(\frac{|Z|}{\varepsilon_0})$.

By Proposition 3.1, the solution space of the operator $D^N + \sqrt{-1} T \cdot c(JHZ)$ along the fiber N_y ($y \in X_H$) is the L^2 completion of $K^{-}(N_y) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)_y$. They form an infinite dimensional Hermitian complex vector bundle
\[
K^{-}(N) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{X_H}
\]
over X_H, with the Hermitian connection induced from those on N, $V|_{X_H} \to X_H$ and $W|_{X_H} \to X_H$. Let θ be the isomorphism from
\[
L^2(X_H, K^{-}(N) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{X_H})
\]
to $L^2(N, \pi^*((((\Lambda V^* \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{X_H}))$ given by Proposition 3.1.

Let $\alpha \in \Gamma(X_H, S(TX_H \oplus V_0^R, L_F))$, $\phi \in L^2(X_H, K^{-}(N) \otimes (\bigotimes_{v \neq 0} AV_v \otimes W)|_{X_H})$, $\sigma = \alpha \otimes \phi$. We define a linear map
\[
(3.14) \quad I_{T, \xi} : F^p_{\xi} \to E^p_{\xi}, \quad \sigma \mapsto T^{-\dim N_y} \rho_\xi(Z) \pi^* \alpha \land S^{-1}_T (\theta \phi).
\]

In general, there exist $c(\varepsilon) > 0$ and $C > 0$ such that $c(\varepsilon) < \|I_{T, \xi}\| < C$.

Let the image of $I_{T, \xi}$ from F^p_{ξ} be $E^p_{T, \xi} = I_{T, \xi} F^p_{\xi} \subseteq E^p_{\xi}$, denote the orthogonal complement of $E^0_{T, \xi}$ in E^0_{ξ} by $E^{0, 1}_{T, \xi}$, and let $E^{P, \perp}_{T, \xi} = E^p_{\xi} \cap E^{0, 1}_{T, \xi}$. Let $p_{T, \xi}$ and $p^{\perp}_{T, \xi}$ be the orthogonal projections from E^0_{ξ} to $E^0_{T, \xi}$ and $E^{0, 1}_{T, \xi}$ respectively.

We denote by $((\bigotimes_{v \neq 0} AV_v) \otimes (\bigoplus_v W_v))_{\xi - \varepsilon} \bigoplus \bigoplus_{v} |v| \dim N_v$ the subbundle of
\[
(\bigotimes_{v \neq 0} AV_v) \otimes (\bigoplus_v W_v)
\]
whose weight equals $\xi - \frac{1}{2} \sum_v |v| \dim N_v$ with respect to the given circle action. Let q_ξ be the orthogonal bundle projection from the vector bundle

$$\left(\bigotimes_{v \neq 0} \Lambda N_v \right) \otimes \left(\bigotimes_{v \neq 0} \Lambda V_v \right) \otimes \left(\bigoplus_v W_v \right) \rightarrow X_H$$

to its subbundle

$$\bigotimes_{v > 0} \det N_v \otimes \left(\bigotimes_{v \neq 0} \Lambda V_v \right) \otimes \left(\bigoplus_v W_v \right) \xi - \frac{1}{2} \sum_v |v| \dim N_v \rightarrow X_H,$$

where we identify ΛN_v with ΛN_v via the metric for $v \neq 0$.

We now proceed to deduce a formula which computes $p_{T, \xi} s$ for $s \in E_\xi^0$ explicitly under a local unitary trivialization of N.

For $y_0 \in X_H$, on a small neighborhood $\mathcal{V}_{y_0} \subset X_H$ of y_0, choose a unitary trivialization $N|_{\mathcal{V}_{y_0}} \cong \mathcal{V}_{y_0} \times \mathbb{C}^n = \{(y, Z) \mid y \in \mathcal{V}_{y_0}, Z = (z_1, \cdots, z_n) \in \mathbb{C}^n \}$ such that for $t \in \mathbb{R}$,

$$\exp(t\mathcal{H}) \cdot \frac{\partial}{\partial z_i} = e^{2\pi \sqrt{-1} \lambda_i t} \frac{\partial}{\partial z_i}.$$

Without loss of generality, we assume that $\lambda_i < 0$ for $i \leq \nu$ and $\lambda_i > 0$ for $\nu < i \leq n$. For any $T > 0$, $k = (k_1, \cdots, k_n) \in \mathbb{N}^n$, and $(y, Z) \in \mathcal{V}_{y_0} \times \mathbb{C}^n$, set

$$f_{T, k}(Z) = \left(\prod_{i=1}^{\nu} z_i^{k_i} \right) \left(\prod_{i=\nu+1}^{n} z_i^{k_i} \right) e^{-T \sum_{i=1}^{n} \pi |\lambda_i| |z_i|^2},$$

$$\alpha_{T, k}(y) = \int_{N_{y_0, y}} \rho_\xi^2(Z) \prod_{i=1}^{n} \left(|z_i|^{2k_i} e^{-2T \pi |\lambda_i| |z_i|^2} \right) \frac{dv_N}{(2\pi)^{\dim N_\xi}}.$$

Computing directly, we have for $s \in E_\xi^0$ that (compare with [4, Proposition 9.2])

$$p_{T, \xi} s(y, Z) = \sum_{\bar{k}, \xi_2, \text{s.t.} \sum_{i=1}^{n} k_i |\lambda_i| + \xi_2 = \xi} \alpha_{T, k}^{-1} \rho_\xi(Z) f_{T, k}(Z)$$

$$\cdot q_{\xi_2} \int_{N_{y_0, y}} \rho_\xi(Z') f_{T, k}(Z') s(y, Z') \frac{dv_N(Z')}{(2\pi)^{\dim N_\xi}}.$$

Using (3.15), we get the following analogue of [4, Proposition 9.3].

Proposition 3.3. There exists $C > 0$ such that if $T \geq 1$, $\sigma \in F_\xi^1$, then

$$\|I_{T, \xi} \sigma\|_{E_\xi^1} \leq C(\|\sigma\|_{F_\xi^1} + \sqrt{T} \|\sigma\|_{F_\xi^1}).$$

There exists $C > 0$ such that for any $T \geq 1$, any $s \in E_\xi^1$, then

$$\|p_{T, \xi} s\|_{E_\xi^1} \leq C(\|s\|_{E_\xi^1} + \sqrt{T} \|s\|_{E_\xi^1}).$$

Given $\gamma > 0$, there exists $C' > 0$ such that for $T \geq 1$, for $s \in E_\xi^0$, then

$$\|p_{T, \xi} [Z] \gamma s\|_{E_\xi^1} \leq \frac{C'}{T^{x_0}} \|s\|_{E_\xi^1}.$$

Since we have the identification of the bundles

$$(S(U, L) \otimes W)|_{\mathcal{V}_{y_0}} \simeq \pi^* \left(S(TX_H \oplus V_{0}^R, L_F) \otimes \Lambda(N^*) \otimes \left(\bigotimes_{v \neq 0} \Lambda V_v \otimes W \right) |_{X_H} \right)|_{\mathcal{V}_{y_0}},$$

we can consider $k^{-1/2}I_{T,\xi}\sigma$ as an element of B^p_ξ for $\sigma \in F^p$. Set

\begin{equation}
(3.19) \quad J_{T,\xi} = k^{-1/2}I_{T,\xi}.
\end{equation}

We denote by $J_{T,\xi,0} : F^p_{\xi,0} \to E^p_{\xi,0}$ the restriction of $J_{T,\xi}$ on the boundary. Let $E^p_{T,\xi} = J_{T,\xi}F^p_{\xi}$ (resp. $E^p_{T,\xi,0} = J_{T,\xi,0}F^p_{\xi,0}$) be the image of $J_{T,\xi}$ (resp. $J_{T,\xi,0}$). Denote the orthogonal complement of $E^0_{T,\xi}$ (resp. $E^0_{T,\xi,0}$) in E^0_{ξ} (resp. $E^0_{\xi,0}$) by $E^0_{T,\xi,\perp}$ (resp. $E^0_{T,\xi,0,\perp}$) and let $E^p_{T,\xi,\perp} = E^p_{\xi,\perp} \cap E^0_{T,\xi}$ (resp. $E^p_{T,\xi,0,\perp} = E^p_{\xi,0,\perp} \cap E^0_{T,\xi,0}$). Let $\tilde{p}_{\xi,T}$ (resp. $\tilde{p}_{\xi,T,\partial}$) and $\bar{p}_{\xi,T}$ (resp. $\bar{p}_{\xi,T,\partial}$) be the orthogonal projections from E^0_{ξ} (resp. $E^0_{\xi,\partial}$) to $E^0_{T,\xi}$ (resp. $E^0_{T,\xi,\partial}$) and $E^0_{T,\xi,\perp}$ (resp. $E^0_{T,\xi,0,\perp}$) respectively. It is clear that $\tilde{p}_{\xi,T} = k^{-1/2}p_{T,\xi,k^{1/2}}$ (resp. $\tilde{p}_{\xi,T,\partial} = k^{-1/2}p_{T,\xi,\partial,k^{1/2}}$).

For any (possibly unbounded) operator A (resp. B) on E^0_{ξ} (resp. $E^0_{\xi,0}$), we write

\begin{equation}
(3.20) \quad A = \begin{pmatrix} A^{(1)} \\ A^{(2)} \\ A^{(3)} \\ A^{(4)} \end{pmatrix} \quad \text{ (resp. } B = \begin{pmatrix} B^{(1)} \\ B^{(2)} \\ B^{(3)} \\ B^{(4)} \end{pmatrix} \text{)}
\end{equation}

according to the decomposition $E^0_{\xi} = E^0_{T,\xi} \oplus E^0_{T,\xi,\perp}$ (resp. $E^0_{\xi,\partial} = E^0_{T,\xi,\partial} \oplus E^0_{T,\xi,0,\perp}$), i.e.,

\begin{equation}
(3.21) \quad A^{(1)} = \tilde{p}_{\xi,T}A\tilde{p}_{\xi,T}, \quad A^{(2)} = \tilde{p}_{\xi,T}A\bar{p}_{\xi,T}, \quad A^{(3)} = \bar{p}_{\xi,T}A\tilde{p}_{\xi,T}, \quad A^{(4)} = \bar{p}_{\xi,T}A\bar{p}_{\xi,T}
\end{equation}

\begin{equation}
(3.22) \quad \text{ (resp. } B^{(1)} = \tilde{p}_{\xi,T,\partial}B\tilde{p}_{\xi,T,\partial}, \quad B^{(2)} = \tilde{p}_{\xi,T,\partial}B\bar{p}_{\xi,T,\partial}, \quad B^{(3)} = \bar{p}_{\xi,T,\partial}B\tilde{p}_{\xi,T,\partial}, \quad B^{(4)} = \bar{p}_{\xi,T,\partial}B\bar{p}_{\xi,T,\partial}).
\end{equation}

For $T > 0$, set

\begin{equation}
(3.23) \quad D_T = D^X + \sqrt{-1}Tc(H), \quad B_T = B^X - \sqrt{-1}Tc \left(\frac{\partial}{\partial r} \right) c(H).
\end{equation}

Then D_T is a Dirac type operator with its canonical boundary operator B_T in the sense of Definition 2.5. Let $D_{T,\xi}$ and $B_{T,\xi}$ be the restrictions of D_T and B_T on E^0_{ξ} and $E^0_{\xi,\partial}$, respectively.

We now introduce a deformation of $D_{T,\xi}$ (resp. $B_{T,\xi}$) according to the decomposition (3.21) (resp. (3.22)).

Definition 3.4 (cf. [6] Definition 3.2, [21] (1.39))). For any $T > 0$, $u \in [0,1]$, set

\begin{equation}
(3.24) \quad D_{T,\xi}(u) = D^{(1)}_{T,\xi} + D^{(2)}_{T,\xi} + u(D^{(3)}_{T,\xi}), \quad B_{T,\xi}(u) = B^{(1)}_{T,\xi} + B^{(2)}_{T,\xi} + u(B^{(3)}_{T,\xi}).
\end{equation}

As explained in [6] (3.26)-(3.27), one verifies that the following identity holds on $\mathcal{U}_{2\epsilon/3}$:

\begin{equation}
(3.25) \quad D_{T,\xi}(u) = c \left(\frac{\partial}{\partial r} \right) \left(\frac{\partial}{\partial r} + B_{T,\xi}(u) \right), \quad u \in [0,1],
\end{equation}

where $\epsilon > 0$ small enough is given in (2.5).

We still say that $B_{T,\xi}(u)$ is the boundary operator associated to $D_{T,\xi}(u)$, although $B_{T,\xi}(u)$ are pseudo-differential operators for $u \in [0,1]$.

3.4. Various estimates of the operators as $T \to +\infty$. We continue the discussion in the previous subsection. Recall that

$$R_{\pm}(1) = \bigotimes_{v>0}(\text{Sym}(N_v) \otimes \det N_v) \otimes \bigotimes_{v<0} \text{Sym}(\overline{N}_v) \otimes \bigotimes_{v \neq 0} \Lambda_{\pm 1}(V_v) \otimes W.$$

Corresponding to the involution $\tau = \tau_s$ (resp. τ_e) on $S(U, L)$, let D_s^{XH} be the restriction of the twisted Spinc Dirac operator $D^{XH} \otimes R_{\pm}(1)$ (resp. $D^{XH} \otimes R_{-}(1)$) on F, and let B^{XH}_s be the restriction of the canonical boundary operator associated to $D^{XH} \otimes R_{\pm}(1)$ (resp. $D^{XH} \otimes R_{-}(1)$) on F^0.

With (3.15), (3.23) and Propositions 3.1, 3.2, 3.3 at our hands, by proceeding exactly as in [4, Sections 8 and 9], we can show that the following estimates for $B_{T,\xi}^{(i)}$ ($1 \leq i \leq 4$) hold.

Proposition 3.5 (Compare with [6, Proposition 3.3]). (i) As $T \to +\infty$,

$$J_{T,\xi,\partial}^{-1}B_{T,\xi,\partial}^{(1)}J_{T,\xi,\partial} = B^{XH}_{\xi} + O\left(\frac{1}{\sqrt{T}}\right),$$

where $O\left(\frac{1}{\sqrt{T}}\right)$ denotes a first order differential operator whose coefficients are dominated by C/\sqrt{T} ($C > 0$).

(ii) For each $\xi \in \mathbb{Z}$, there exists $C_1 > 0$ such that for any $T \geq 1$, $s \in E_{T,\xi,\partial}^{1,\perp}$, $s' \in E_{T,\xi,\partial}$, we have

$$\|B_{T,\xi}^{(2)}s\|_{E_{\xi,\partial}^{\perp}} \leq C_1\left(\frac{1}{\sqrt{T}}\|s\|_{E_{\xi,\partial}^{1}} + \|s\|_{E_{\xi,\partial}^{0}}\right),$$

$$\|B_{T,\xi}^{(3)}s'\|_{E_{\xi,\partial}^{\perp}} \leq C_1\left(\frac{1}{\sqrt{T}}\|s'\|_{E_{\xi,\partial}^{1}} + \|s'\|_{E_{\xi,\partial}^{0}}\right).$$

(iii) For each $\xi \in \mathbb{Z}$, there exist $\varepsilon \in (0, \frac{\xi_0}{4}]$, $T_0 > 0$, $C_2 > 0$ such that for any $T \geq T_0$, $s \in E_{T,\xi,\partial}^{1,\perp}$, we have

$$\|B_{T,\xi}^{(4)}s\|_{E_{\xi,\partial}^{\perp}} \geq C_2\left(\|s\|_{E_{\xi,\partial}^{1}} + \sqrt{T}\|s\|_{E_{\xi,\partial}^{0}}\right).$$

From here, by proceeding as in [6, Section 3(c)], we can deduce that there exist $C_3 > 0$, $T_1 > 0$ such that for $u \in [0, 1]$, $T \geq T_1$ and $s \in E_{\xi,\partial}^{1,\perp}$, the following inequality holds (compare with [6, (3.12)]):

$$\|B_{T,\xi}s - B_{T,\xi}(u)s\|_{E_{\xi,\partial}^{\perp}} \leq C_3\left(\frac{1}{\sqrt{T}}\|B_{T,\xi}s\|_{E_{\xi,\partial}^{1}} + \|s\|_{E_{\xi,\partial}^{0}}\right).$$

By the Kato-Rellich theorem [25, Theorem X. 12], we deduce that there exists $T_1 > 0$ such that for $T \geq T_1$, $u \in [0, 1]$, each $B_{T,\xi}(u)$ is self-adjoint with domain $E_{\xi,\partial}^{1}$, elliptic and has discrete eigenvalues with finite multiplicity. Let $P_{T,\xi}(u)$ be the orthogonal projection onto the nonnegative eigenspaces of $B_{T,\xi}(u)$. We still call $P_{T,\xi}(u)$ the Atiyah-Patodi-Singer projection associated to $B_{T,\xi}(u)$.

For any $T \geq T_1$ and $u \in [0, 1]$, let

$$D_{APS,T,\xi}(u) : \{s \in E_{\xi}^{1} | P_{T,\xi}(u)(s|_{\partial X}) = 0\} \to E_{\xi}^{0}$$

be the uniquely determined extension of $D_{T,\xi}(u)$.

Proposition 3.6 (Compare with [6, Proposition 3.5]). There exists $T_2 > 0$ such that for any $u \in [0, 1]$ and $T \geq T_2$, $D_{APS,T,\xi}(u)$ is a Fredholm operator.
To prove Proposition 3.6, we modify the process in [6, Section 3(d)]. For the case where s is supported in $X \setminus \mathcal{U}_c^r$ ($0 < c' < c$), we need an analogue of [6, Lemma 3.7]. As a matter of fact, using (3.15), (3.23) as well as Propositions 3.1, 3.2, 3.3 and proceeding exactly as in [4, Sections 8 and 9], we deduce the following interior estimates.

Proposition 3.7. (i) As $T \to +\infty$,

\[J_{T,\xi}^{-1} D^{(1)}_{T,\xi} J_{T,\xi} = D^{X_H}_\xi + O\left(\frac{1}{\sqrt{T}}\right), \]

where $O\left(\frac{1}{\sqrt{T}}\right)$ denotes a first order differential operator whose coefficients are dominated by $\frac{C}{\sqrt{T}}$ ($C > 0$).

(ii) For each $\xi \in \mathbb{Z}$, there exists $C'_1 > 0$ such that for any $T \geq 1$, $s \in E^{1,\perp}_{T,\xi}$, $s' \in E^{1,\perp}_{T,\xi}$ with $\text{Supp}(|s| + |s'|) \subset X \setminus \mathcal{U}_c^r$, we have

\[\| D^{(2)}_{T,\xi} s \|_{E^0_\xi} \leq C'_1 \left(\frac{\|s\|_{E^1_\xi}}{\sqrt{T}} + \|s\|_{E^0_\xi} \right), \]

\[\| D^{(3)}_{T,\xi} s' \|_{E^0_\xi} \leq C'_1 \left(\frac{\|s'\|_{E^1_\xi}}{\sqrt{T}} + \|s'\|_{E^0_\xi} \right). \]

(iii) For each $\xi \in \mathbb{Z}$, there exist $\varepsilon \in (0, \frac{4\pi}{T_0'}], T_0' > 0$, $C_2' > 0$ such that for any $T \geq T_0$, $s \in E^{1,\perp}_{T,\xi}$ with $\text{Supp}(|s|) \subset X \setminus \mathcal{U}_c^r$, we have

\[\| D^{(4)}_{T,\xi} s \|_{E^0_\xi} \geq C_2' \left(\|s\|_{E^1_\xi} + \sqrt{T} \|s\|_{E^0_\xi} \right). \]

With Propositions 3.5 and 3.7 at our hands, we can complete the proof of Proposition 3.6 in the same way as in the proof of [6, Proposition 3.5] by applying the gluing argument in [4] pp. 115-117.

3.5. A proof of Theorem 2.8 Let $D^{Y_H}_\xi$ be the induced operator from $B^{X_H}_\xi$ through π_{X_H}. We first assume that $D^{Y_H}_\xi$ is invertible, so $B^{X_H}_\xi$ is invertible. Moreover, we have the following analogue of [6, Proposition 3.8].

Proposition 3.8. If $D^{Y_H}_\xi$ is invertible, then there exists $T_3 > 0$ such that for any $T \geq T_3$, $u \in [0, 1]$, the boundary operator $B_{T,\xi}(u)$ is invertible.

By Propositions 3.6 and 3.8 we have a continuous family of Fredholm operators $\{D^{Y_H}(\xi)(u)\}_{0 \leq u \leq 1}$ when T is large enough. Furthermore, by Proposition 3.8 and Green’s formula, we know that the operators $D_{APS,T,\xi}(u)$, $0 \leq u \leq 1$, are self-adjoint. By the homotopy invariance of the index of Fredholm operators, we get

\[\text{Tr} \left[\tau \big|_{\ker(D_{APS,T,\xi}(0))} \right] = \text{Tr} \left[\tau \big|_{\ker(D_{APS,T,\xi}(1))} \right]. \]

Theorem 3.9 (Compare with [21, (1.43)]). If $D^{Y_H}_\xi$ is invertible, then there exists $T_4 > 0$ such that for any $T \geq T_4$, the following identity holds:

\[\text{APS-ind}(D_{T,\xi}) = \sum_{\alpha} (-1)^{\sum_{0 \leq s} N_{\alpha}} \text{APS-ind}(D^{X_H,\alpha}_\xi). \]
Proof. By the definitions of $\APS_{T,\xi}(u)$ and $D_{T,\xi}(u)$, we get that
\begin{equation}
\APS\text{-ind}(D_{T,\xi}) = \APS\text{-ind}(D_{T,\xi}(1)) = \Tr \left[\tau_{\ker(D_{\APS,T,\xi}(1))} \right].
\end{equation}

Let $P_{T,\xi,1}$ (resp. $P_{T,\xi,4}$) be the Atiyah-Patodi-Singer projection associated to $B_{T,\xi}^{(1)}$ (resp. $B_{T,\xi}^{(4)}$) acting on $E_{T,\xi,0}$ (resp. $E_{T,\xi,\partial}$). Let
\begin{align*}
D_{\APS,T,\xi}^{(1)} & : \{ s \in E_{T,\xi}^{1} \mid P_{T,\xi,1}(s|\partial X) = 0 \} \longrightarrow E_{T,\xi}, \\
D_{\APS,T,\xi}^{(4)} & : \{ s \in E_{T,\xi}^{1,\perp} \mid P_{T,\xi,4}(s|\partial X) = 0 \} \longrightarrow E_{T,\xi}^{0,\perp}
\end{align*}
be the uniquely determined extensions of $D_{T,\xi}^{(1)}$ and $D_{T,\xi}^{(4)}$, respectively. Using Proposition 3.5 and proceeding as in the proof of [6, Proposition 3.5], one sees that for T large enough, $D_{\APS,T,\xi}^{(1)}$ and $D_{\APS,T,\xi}^{(4)}$ are both self-adjoint Fredholm operators. Furthermore, we deduce that for T large enough, $\ker(D_{\APS,T,\xi}^{(4)}) = 0$. Thus we get
\begin{equation}
\Tr \left[\tau_{\ker(D_{\APS,T,\xi}(0))} \right] = \Tr \left[\tau_{\ker(D_{\APS,T,\xi}^{(1)})} \right].
\end{equation}

On the other hand, for T large enough and $u \in [0,1]$, set
\begin{align}
D_{T,\xi}^{XH}(u) & = u D_{\xi}^{XH} + (1 - u) J_{T,\xi}^{-1} D_{T,\xi}^{(1)} J_{T,\xi}, \\
B_{T,\xi}^{XH}(u) & = u B_{\xi}^{XH} + (1 - u) J_{T,\xi,\partial}^{-1} B_{T,\xi}^{(1)} J_{T,\xi,\partial}.
\end{align}
From (3.30), one can proceed as in [6, (3.37)-(3.39)] to see that when T is large enough, $B_{T,\xi}^{XH}(u)$ is invertible for every $u \in [0,1]$.

We denote by $P_{T,\xi}^{XH}(u)$ the Atiyah-Patodi-Singer projection associated to $B_{T,\xi}^{XH}(u)$. Using (3.26), (3.30) and applying the same gluing argument as in the proof of [11, pp. 115-117] as in the proof of [6, Proposition 3.5], one sees that when T is large enough and $u \in [0,1]$, $D_{\APS,T,\xi}^{XH}(u) : \{ s \in F_{\xi}^{1} \mid P_{T,\xi}^{XH}(u)(s|\partial X) = 0 \} \longrightarrow F_{\xi}^{0}$, the uniquely determined extensions of $D_{T,\xi}^{XH}(u)$, form a continuous family of self-adjoint Fredholm operators. Thus by the homotopy invariance of the index of Fredholm operators, one gets
\begin{equation}
\Tr \left[\tau_{\ker(D_{\APS,T,\xi}^{XH}(0))} \right] = \Tr \left[\tau_{\ker(D_{\APS,T,\xi}^{XH}(1))} \right] = \APS\text{-ind}(D_{\xi}^{XH}).
\end{equation}

From (2.16), (2.17), (3.14) and (3.19), one gets
\begin{equation}
J_{T,\xi}^{-1} \circ \tau \circ J_{T,\xi} = (-1)^{\sum_{0<s} \dim N_{s},\tau}, \quad \text{where } \tau = \tau_{s} \text{ or } \tau_{e}.
\end{equation}

From (3.38) and (3.39), one sees that (3.34) holds when T is large enough.

In general, $\dim \ker(D_{\xi}^{YH})$ need not be zero. For any $\xi \in \mathbb{Z}$, choose $a_{\xi} > 0$ to be such that
\begin{equation}
\Spec(D_{\xi}^{YH}) \cap [-2a_{\xi}, 2a_{\xi}] \subseteq \{0\}.
\end{equation}
To control the eigenvalues of $B_{T,\xi}$ near zero, we use the method in [6, Section 4(a)] to perturb the Dirac operators under consideration.

Let $\epsilon > 0$ be sufficiently small so that there exists an S^{1}-invariant smooth function $f : X \longrightarrow \mathbb{R}$ such that $f \equiv 1$ on $\mathcal{W}_{\epsilon/3}$ and $f \equiv 0$ outside of $\mathcal{W}_{2\epsilon/3}$.
Let $D_{\xi,-a_{\xi}}^{X_H}$ be the Dirac type operator defined by

$$D_{\xi,-a_{\xi}}^{X_H} = D_{\xi}^{X_H} - a_{\xi} fc \left(\frac{\partial}{\partial r} \right),$$

(3.41)

where for $\tau = \tau_s$ (resp. τ_c), $D_{\xi,-a_{\xi}}^{X_H}$ is considered as a differential operator acting on $\Gamma(X_H, S(TX_H \oplus V_0^R, L_F) \otimes R_{+\xi})$ (resp. $\Gamma(X_H, S(TX_H \oplus V_0^R, L_F) \otimes R_{-\xi})$).

By Theorem 2.7, we get

$$\text{APS-ind}(D_{\xi,-a_{\xi}}^{X_H}) - \text{APS-ind}(V_{\xi,-a_{\xi}}^{X_H}) = -sf\{ B_{\xi,-a_{\xi}}^{X_H} - a_{\xi} t \mid 0 \leq t \leq 1 \}.$$

(3.42)

By (3.40), the right hand side of (3.42) is equal to zero.

For any $T \in \mathbb{R}$, let $D_{T,-a_{\xi}}: \Gamma(X, S(U, L) \otimes W) \rightarrow \Gamma(X, S(U, L) \otimes W)$ be the Dirac type operator defined by

$$D_{T,-a_{\xi}} = D_T - a_{\xi} fc \left(\frac{\partial}{\partial r} \right).$$

(3.43)

Let $D_{T,\xi,-a_{\xi}}$ be its restriction to the weight-ξ subspace.

Let $B_{\xi,-a_{\xi}}^{X_H}$ be the canonical boundary operator of $D_{\xi,-a_{\xi}}^{X_H}$ in the sense of (2.5).

Since $D_{\xi}^{X_H} - a_{\xi}$, which is the induced operator from $B_{\xi,-a_{\xi}}^{X_H}$ through π_{X_H}, is invertible, by the proof of Theorem 3.9, we get when T is large enough,

$$\text{APS-ind}(D_{T,\xi,-a_{\xi}}) = \sum_{\alpha} (-1)^{\sum_{\alpha < e} \dim N_{\alpha}} \text{APS-ind}(D_{\xi,-a_{\xi}}^{X_H}).$$

(3.44)

By Theorem 2.7, we deduce that, for $\xi \in \mathbb{Z}$,

$$\text{APS-ind}(D_{T,\xi,-a_{\xi}}) \equiv \text{APS-ind}(D_{T,\xi}) \mod k\mathbb{Z}. $$

(3.45)

From (3.42), (3.44) and (3.45), we get for T large enough,

$$\text{APS-ind}(D_{T,\xi}) \equiv \sum_{\alpha} (-1)^{\sum_{\alpha < e} \dim N_{\alpha}} \text{APS-ind}(D_{\xi,\xi,-a_{\xi}}^{X_H}) \mod k\mathbb{Z}. $$

(3.46)

On the other hand, by Theorem 2.7, one knows the mod k invariance of APS-ind$(D_{T,\xi})$ with respect to $T \in \mathbb{R}$. By this and (3.44), (3.46), one gets

$$\text{APS-ind}(D_{T,\xi}) \equiv \sum_{\alpha} (-1)^{\sum_{\alpha < e} \dim N_{\alpha}} \text{APS-ind}(D_{\xi,\xi,-a_{\xi}}^{X_H}) \mod k\mathbb{Z}. $$

(3.47)

By taking $\tau = \tau_s$ (resp. τ_c), we get the first equation of (2.22) (resp. (2.23)). To get the second equation of (2.22) (resp. (2.23)), we only need to apply the first equation of (2.22) (resp. (2.23)) to the case where the circle action on X is defined by the inverse of the original circle action on X.

The proof of Theorem 2.8 is completed.

4. RIGIDITY AND VANISHING THEOREMS ON Z/k SPINC MANIFOLDS

In this section, by combining the S^1-equivariant index theorem we have established in Section 2 with the methods of [20], we prove the rigidity and vanishing theorems for Z/k Spinc manifolds, which generalize [17] Theorems A and B. As will be pointed out in Remark 4.3, when applied to Z/k Spinc manifolds, our results provide a resolution to a conjecture of Devoto [7]. Both the statement of the main results and their proof are inspired by the corresponding results as well as their proof for closed manifolds in [20,21]. As explained in Section 2.1, when we regard the considered Z/k manifold as a quotient space which has the homotopy type of
a CW complex, by using the splitting principle [12, Chapter 17], we can apply the topological arguments in [20, 21] in our \mathbb{Z}/k context with little modification. Thus we will only indicate the main steps of the proof of our results.

This section is organized as follows. In Section 4.1 we state our main results, the rigidity and vanishing theorems for \mathbb{Z}/k Spinc manifolds. In Section 4.2 we present two recursive formulas which will be used to prove our main results stated in Section 4.1. In Section 4.3 we prove the rigidity and vanishing theorems for \mathbb{Z}/k Spinc manifolds.

4.1. Rigidity and vanishing theorems. Let X be a $2l$-dimensional \mathbb{Z}/k manifold, which admits a nontrivial \mathbb{Z}/k circle action. We assume that TX has a \mathbb{Z}/k S^1-equivariant Spinc structure. Let V be an even dimensional \mathbb{Z}/k real vector bundle over X. We assume that V has a $\mathbb{Z}/k S^1$-equivariant spin structure. Let W be a $\mathbb{Z}/k S^1$-equivariant complex vector bundle of rank r over X. Let $K_W = \det(W)$ be the determinant line bundle of W, which is obviously a \mathbb{Z}/k complex line bundle.

Let K_X be the \mathbb{Z}/k complex line bundle over X induced by the Spinc structure of TX. Let $S(TX, K_X)$ be the complex spinor bundle of (TX, K_X) as in Section 2.1. Let $S(V) = S^+(V) \oplus S^-(V)$ be the spinor bundle of V.

Let $K(X)$ be the K-group of \mathbb{Z}/k complex vector bundles over X (cf. [8, p. 285]). We define the following elements in $K(X)[[q^{1/2}]]$ (cf. [20, (2.1)]):

\begin{align*}
R_1(V) &= \left(S^+(V) + S^-(V) \right) \otimes \bigotimes_{n=1}^{\infty} \Lambda_{q^n}(V), \\
R_2(V) &= \left(S^+(V) - S^-(V) \right) \otimes \bigotimes_{n=1}^{\infty} \Lambda_{-q^n}(V), \\
R_3(V) &= \bigotimes_{n=1}^{\infty} \Lambda_{-q^{n-1/2}}(V), \\
R_4(V) &= \bigotimes_{n=1}^{\infty} \Lambda_{q^{n-1/2}}(V).
\end{align*}

For $N \in \mathbb{N}$, let $y = e^{2\pi i/N} \in \mathbb{C}$ be an N-th root of unity. Set

\begin{equation}
Q_y(W) = \bigotimes_{n=0}^{\infty} \Lambda_{-y^{-1}q^n}(W) \otimes \bigotimes_{n=1}^{\infty} \Lambda_{-yq^n}(W) \in K(X)[[q]].
\end{equation}

Then there exist $Q_{\ell}(W) \in K(X)[[q]]$, $0 \leq \ell < N$, such that

\begin{equation}
Q_y(W) = \sum_{\ell=0}^{N-1} y^\ell Q_\ell(W).
\end{equation}

Let $H^*_S(X, \mathbb{Z}) = H^*(X \times_{S^1} ES^1, \mathbb{Z})$ denote the S^1-equivariant cohomology group of X, where ES^1 is the universal S^1-principal bundle over the classifying space BS^1 of S^1. So $H^*_S(X, \mathbb{Z})$ is a module over $H^*(BS^1, \mathbb{Z})$ induced by the projection $\pi : X \times_{S^1} ES^1 \to BS^1$. Let $p_1(\cdot)_{S^1}$ and $\omega_2(\cdot)_{S^1}$ denote the first S^1-equivariant Pontrjagin class and the second S^1-equivariant Stiefel-Whitney class, respectively. As $V \times_{S^1} ES^1$ is spin over $X \times_{S^1} ES^1$, one knows that $\frac{1}{2}p_1(V)_{S^1}$ is well defined in
$H^*_\mathbb{S}^1 (X, \mathbb{Z})$ (cf. [26, pp. 456-457]). Recall that

\begin{equation}
H^* (BS^1, \mathbb{Z}) = \mathbb{Z}[[u]]
\end{equation}

with u a generator of degree 2.

In the following, we denote by $D^X \otimes R$ the twisted Spinc Dirac operator acting on $S(TX, K_X) \otimes R$ (cf. Definition 2.3). Furthermore, for $m \in \frac{1}{2}\mathbb{Z}$, $h \in \mathbb{Z}$ and $R(q) = \sum_{m \in \frac{1}{2}\mathbb{Z}} q^m R_m \in K^1_\mathbb{S}^1 (X) ([q^{1/2}])$, we will also denote APS-ind($D^X \otimes R_m, h$) (cf. (2.9)) by APS-ind($D^X \otimes R(q), m, h$).

Now we can state the main results of this paper as follows, which generalize [17] Theorems A and B to the case of \mathbb{Z}/k Spinc manifolds.

Theorem 4.1. Assume that $\omega_2 (W)_{S^1} = \omega_2 (TX)_{S^1}$, $\frac{1}{2} p_1 (V + W - TX)_{S^1} = e \cdot \pi^* u^2$ ($e \in \mathbb{Z}$) in $H^*_\mathbb{S}^1 (X, \mathbb{Z})$, and $c_1 (W) = 0 \mod (N)$. For $0 \leq \ell < N$, $i = 1, 2, 3, 4$, consider the S^1-equivariant twisted Spinc Dirac operators

\begin{equation}
D^X \otimes (K_W \otimes K_X^{-1/2}) \otimes \bigotimes_{n=1}^\infty \text{Sym}_{q^n} (TX) \otimes R_i (V) \otimes Q_\ell (W).
\end{equation}

(i) If $e = 0$, then these operators are rigid in \mathbb{Z}/k category.

(ii) If $e < 0$, then they have vanishing properties in \mathbb{Z}/k category.

Remark 4.2 (Compare with [20, Remark 2.1]). As $\omega_2 (W)_{S^1} = \omega_2 (TX)_{S^1}$, $c_1 (K_W \otimes K_X^{-1})_{S^1} = 0 \mod (2)$. We note that in our case, $X \times S^1 ES^1$ has the homotopy type of a CW complex [22]. By [10, Corollary 1.2], the circle action on X can be lifted to $(K_W \otimes K_X^{-1})_{S^1}$ and is compatible with the circle action on $K_W \otimes K_X^{-1}$.

Remark 4.3. If X is a \mathbb{Z}/k spin manifold, by taking $V = TX$, $W = 0$ and $i = 3$ in Theorem 4.1, then the S^1-equivariant twisted spin Dirac operators

\begin{equation}
D^X \otimes \bigotimes_{n=1}^\infty \text{Sym}_{q^n} (TX) \otimes \bigotimes_{n=1}^\infty \Lambda_{-q^{n-1/2}} (TX)
\end{equation}

are rigid in \mathbb{Z}/k category. This is exactly the Devoto conjecture [7].

Actually, as in [20], our proof of Theorem 4.1 works under the following slightly weaker hypothesis. Let us first explain some notation.

For each $n > 1$, consider $Z_n \subset S^1$, the cyclic subgroup of order n. We have the Z_n-equivariant cohomology of X defined by $H^*_{Z_n} (X, \mathbb{Z}) = H^* (X \times_{Z_n} ES^1, \mathbb{Z})$, and there is a natural “forgetful” map $\alpha (S^1, Z_n) : X \times_{Z_n} ES^1 \to X \times S^1 ES^1$ which induces a pullback $\alpha (S^1, Z_n)^* : H^*_{\mathbb{S}^1} (X, \mathbb{Z}) \to H^*_{Z_n} (X, \mathbb{Z})$. We denote by $\alpha (S^1, 1)$ the arrow which forgets the S^1-action. Thus $\alpha (S^1, 1)^* : H^*_{\mathbb{S}^1} (X, \mathbb{Z}) \to H^* (X, \mathbb{Z})$ is induced by the inclusion of X into $X \times S^1 ES^1$ as a fiber over BS^1.

Finally, note that if Z_n acts trivially on a space M, then there is a new arrow $t^* : H^* (M, \mathbb{Z}) \to H^*_{Z_n} (M, \mathbb{Z})$ induced by the projection $t : M \times_{Z_n} ES^1 = M \times BZ_n \to M$.

Let $Z_\infty = S^1$. For each $1 < n \leq +\infty$, let $i : X (n) \to X$ be the inclusion of the fixed point set of $Z_n \subset S^1$ in X, and so i induces $i_{S^1} : X (n) \times S^1 ES^1 \to X \times S^1 ES^1$.

In the rest of this paper, we use the same assumption as in [20 (2.4)]. Suppose that there exists some integer $e \in \mathbb{Z}$ such that for $1 < n \leq +\infty$,

$$\alpha(S^1, \mathbb{Z}_n)^* \circ i_S^1 \left(\frac{1}{2} p_1(V + W - TX)S_1 - e \cdot \pi^* u^2 \right)$$

(4.7)

$$= t^* \circ \alpha(S^1, 1)^* \circ i_S^1 \left(\frac{1}{2} p_1(V + W - TX)S_1 \right).$$

Remark that the relation (4.7) clearly follows from the hypothesis of Theorem 4.1 by pulling back and forgetting. Thus it is a weaker hypothesis.

Let G_y be the multiplicative group generated by y. Following Witten [27], we consider the action of $y_0 \in G_y$ on W (resp. W) by multiplication by y_0 (resp. y_0^{-1}) on W (resp. W). Set

$$Q(W) = \bigotimes_{n=0}^{\infty} \Lambda_{-q^n}(W) \otimes \bigotimes_{n=1}^{\infty} \Lambda_{-q^n}(W) \in K(X)[[q]].$$

Then the actions of G_y on W and \overline{W} naturally induce the action of G_y on $Q(W)$. Clearly, $y \cdot Q(W) = Q_y(W)$. By (4.3), we know that for $0 \leq \ell < N$,

$$y_0 \cdot Q_\ell(W) = y_0 Q_\ell(W), \quad \text{where} \quad y_0 \in G_y.$$

In what follows, for $m \in \frac{1}{2} \mathbb{Z}$, $0 \leq \ell < N$, $h \in \mathbb{Z}$ and $R(q) \in K_{S^1}(X)[[q^{1/2}]]$, we will denote $\text{APS-ind}(D^X \otimes R(q) \otimes Q_\ell(W), m, h)$ by

$$\text{APS-ind}(D^X \otimes R(q) \otimes Q(W), m, \ell, h).$$

We can now state a slightly more general version of Theorem 4.1.

Theorem 4.4. Under the hypothesis (4.7), consider the $S^1 \times G_y$-equivariant twisted Spin^c Dirac operators

$$D^X \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R_\ell(V) \otimes Q(W).$$

(i) If $e = 0$, for $m \in \frac{1}{2} \mathbb{Z}$, $h \in \mathbb{Z}$, $h \neq 0$, $0 \leq \ell < N$, one has

$$\text{APS-ind} \left(D^X \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R_\ell(V) \otimes Q(W), m, \ell, h \right) \equiv 0 \mod k\mathbb{Z}.$$

(4.11)

(ii) If $e < 0$, for $m \in \frac{1}{2} \mathbb{Z}$, $h \in \mathbb{Z}$, $0 \leq \ell < N$, one has

$$\text{APS-ind} \left(D^X \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R_\ell(V) \otimes Q(W), m, \ell, h \right) \equiv 0 \mod k\mathbb{Z}.$$

(4.12)

In particular, one has

$$\text{APS-ind} \left(D^X \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R_\ell(V) \otimes Q(W), m, \ell \right) \equiv 0 \mod k\mathbb{Z}.$$

(4.13)

The rest of this paper is devoted to a proof of Theorem 4.4.
4.2. **Two recursive formulas.** Recall that $X_H = \{X_{H,\alpha}\}$ is the fixed point set of the circle action. As in [20 (2.5)-(2.6)], we may and we will assume that

\[TX|_{X_H} = TX_H \oplus \bigoplus_{v>0} N_v, \]

\[TX|_{X_H} \otimes_{R} \mathbb{C} = TX_H \otimes_{R} \mathbb{C} \oplus \bigoplus_{v>0} (N_v \oplus \overline{N_v}), \]

\[V|_{X_H} = V_0^R \oplus \bigoplus_{v>0} V_v, \quad W|_{X_H} = \bigoplus_{v} W_v, \]

where N_v, V_v, W_v are \mathbb{Z}/k complex vector bundles on which S^1 acts by sending g to g^v, and V_0^R is a real vector bundle on which S^1 acts as identity.

By (4.14), as in (2.16) and (2.17), there is a natural \mathbb{Z}/k isomorphism between the \mathbb{Z}_2-graded $C(TX)$-Clifford modules over X_H:

\[S(TX, K_X)|_{X_H} \simeq S(TX_H, K_X \otimes \bigotimes_{v>0} (\det N_v)^{-1}) \otimes \bigotimes_{v>0} \Lambda N_v. \]

For a \mathbb{Z}/k complex vector bundle R over X_H, let $D^{X_H} \otimes R, D^{X_H,\alpha} \otimes R$ be the twisted Spinc Dirac operators on $S(TX_H, K_X \otimes \bigotimes_{v>0} (\det N_v)^{-1}) \otimes R$ over $X_H, X_{H,\alpha}$, respectively (cf. Definition 2.3).

As in [20 (2.8)], we introduce the following locally constant functions on X_H:

\[e(N) = \sum_{v>0} v^2 \dim N_v, \quad d'(N) = \sum_{v>0} v \dim N_v, \]

\[e(V) = \sum_{v>0} v^2 \dim V_v, \quad d'(V) = \sum_{v>0} v \dim V_v, \]

\[e(W) = \sum_{v} v^2 \dim W_v, \quad d'(W) = \sum_{v} v \dim W_v. \]

Furthermore, we write, on X_H (cf. [20 (2.9)])

\[L(N) = \bigotimes_{v>0} (\det N_v)^v, \quad L(V) = \bigotimes_{v>0} (\det V_v)^v, \]

\[L(W) = \bigotimes_{v \neq 0} (\det W_v)^v, \quad L = L(N)^{-1} \otimes L(V) \otimes L(W). \]

Take $\mathbb{Z}_\infty = S^1$ in hypothesis (4.7). By using the splitting principle [12 Chapter 17] and computing as in [20 (2.10)-(2.11)], we get

\[c_1(L) = 0, \quad e(V) + e(W) - e(N) = 2e. \]

From Remark 2.2 and (4.18), one knows L is a trivial \mathbb{Z}/k complex line bundle over each component $X_{H,\alpha}$ of X_H, and S^1 acts on L by sending g to g^{2e}, and G_y acts on L by sending y to $y^{d'(W)}$.

Recall that $c_1(W) = 0 \mod (N)$. Then by [11 Section 8] and the proof of [20 Lemma 2.1], $d'(W) \mod(N)$ is constant on each connected component $X_{H,\alpha}$ of X_H. Thus, we can extend L to a trivial \mathbb{Z}/k complex line bundle over X, and we extend the circle action on it by sending g on the canonical section 1 of L to $g^{2e} \cdot 1$, and G_y acts on L by sending y to $y^{d'(W)}$.

For $i = 1, 2, 3, 4$, we set

\[R^i = (K_W \otimes K_X^{-1})^{1/2} \otimes R_i(V) \otimes Q(W). \]
Then by Theorem 2.8, we can express the global Atiyah-Patodi-Singer index via the Atiyah-Patodi-Singer indices on the fixed point set up to \(k\mathbb{Z} \).

Proposition 4.5 (Compare with [20, Proposition 2.1]). For \(m \in \frac{1}{2}\mathbb{Z}, h \in \mathbb{Z}, 1 \leq i \leq 4, 0 \leq \ell < N \), we have

\[
\text{APS-ind} \left(D^X \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R^i, m, \ell, h \right) \\
\sum_{\alpha} (-1)^{\sum_{v>0} \dim N_v} \text{APS-ind} \left(D^{X_H,\alpha} \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX|_{X_H}) \otimes R^i \\
\otimes \text{Sym} \left(\bigoplus_{v>0} N_v \right) \otimes \bigotimes_{v>0} \text{det} N_v, m, \ell, h \right) \mod k\mathbb{Z}.
\]

(4.20)

To simplify the notation, we use the same convention as in [20, p. 945]. For \(n_0 \in \mathbb{N}^* \), we define a number operator \(P \) on \(K_S^i(X)[[q^{1/n_0}]] \) in the following way: if \(R(q) = \bigoplus_{n \in \mathbb{N}^*} R_n q^n \in K_S^i(X)[[q^{1/n_0}]] \), then \(P \) acts on \(R(q) \) by multiplication by \(n \) on \(R_n \). From now on, we simply denote \(\text{Sym}_{q^n}(TX), \Lambda(q^n)(V) \) and \(\Lambda(q^n)(W) \) by \(\text{Sym}(TX_n), \Lambda(V_n) \) and \(\Lambda(W_n) \), respectively. In this way, \(P \) acts on \(TX_n, V_n \) and \(W_n \) by multiplication by \(n \), and the actions of \(P \) on \(\text{Sym}(TX_n), \Lambda(V_n) \) and \(\Lambda(W_n) \) are naturally induced by the corresponding actions of \(P \) on \(TX_n, V_n \) and \(W_n \). So the eigenspace of \(P = n \) is just given by the coefficient of \(q^n \) of the corresponding element \(R(q) \). For \(R(q) = \bigoplus_{n \in \mathbb{N}^*} R_n q^n \in K_S^i(X)[[q^{1/n_0}]] \), we will also denote \(\text{APS-ind}(D^X \otimes R_m, h) \) by \(\text{APS-ind}(D^X \otimes R(q), m, h) \).

For \(p \in \mathbb{N} \), we introduce the following elements in \(K_{S^i}(X_H)[[q]] \) (cf. [20] (2.14), (3.6)):

\[
\mathcal{F}_p(X) = \bigotimes_{n=1}^{\infty} \text{Sym}(TX_{H,n}) \otimes \bigotimes_{v>0} \left(\bigotimes_{n=1}^{\infty} \text{Sym}(N_{v,n}) \otimes \bigotimes_{n>npv} \text{Sym}(N_{v,n}) \right),
\]

(4.21)

\[
\mathcal{F}_p(X) = \bigotimes_{v>0} \bigotimes_{0 \leq n \leq pv} \left(\text{Sym}(N_{v,-n}) \otimes \text{det} N_v \right),
\]

\[
\mathcal{F}^{-v}(X) = \mathcal{F}_p(X) \otimes \mathcal{F}_p(X).
\]

Then from (4.14) and (4.21), over \(X_H \), one has (cf. [20] (2.15))

\[
\mathcal{F}^0(X) = \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX|_{X_H}) \otimes \text{Sym}(\bigoplus_{v>0} N_v) \otimes \bigotimes_{v>0} \text{det} N_v.
\]

(4.22)

We now state two intermediate results on the relations between the family indices on the fixed point set. These two recursive formulas will be used in our proof of Theorem 4.3 in the next subsection.

Theorem 4.6 (Compare with [20] Theorem 2.4). For each \(\alpha, 1 \leq i \leq 4, m \in \frac{1}{2}\mathbb{Z}, 1 \leq \ell < N, h, p \in \mathbb{Z}, p > 0 \), the following identity holds:

\[
\text{APS-ind} \left(D^{X_H,\alpha} \otimes \mathcal{F}^{-p}(X) \otimes R^i, m + \frac{1}{2}p^2e(N) + \frac{p}{2}d^e(N), \ell, h \right)
\]

\[
= (-1)^{pd(W)} \text{APS-ind} \left(D^{X_H,\alpha} \otimes \mathcal{F}^0(X) \otimes R^i \otimes L^{-p}, m + ph + p^2e, \ell, h \right).
\]

(4.23)

Proof. The proof will be presented in Section 5.1.
Theorem 4.7 (Compare with [20 Theorem 2.3]). For $1 \leq i \leq 4$, $m \in \frac{1}{2} \mathbb{Z}$, $1 \leq \ell < N$, $h, p \in \mathbb{Z}$, $p > 0$, we have the following identity:

$$\sum_{\alpha} (-1)^{\sum_{v>0} \dim N_v} \text{APS-ind} \left(D^{X,\alpha} \otimes F^0(X) \otimes R^{\ell}, m, \ell, h \right) \equiv \sum_{\alpha} (-1)^{pd'(N)} + \sum_{v>0} \dim N_v \text{APS-ind} \left(D^{X,\alpha} \otimes F^{-p}(X) \otimes R^{\ell}, m + \frac{1}{2} p^2 e(N) + \frac{p}{2} d'(N), \ell, h \right) \mod k \mathbb{Z}. \tag{4.24}$$

Proof. The proof will be presented in Sections 5.2-5.4.

4.3. A proof of Theorem 4.4. As $\frac{1}{2} p_1 (TX - W)_{S^1} \in H^*_{S^1}(X, \mathbb{Z})$ is well defined, one has the same identity as in [20 (2.27)],

$$d'(N) + d'(W) \equiv 0 \mod (2). \tag{4.25}$$

From (4.22), (4.25), Proposition 4.5 and Theorems 4.6, 4.7, for $1 \leq i \leq 4$, $m \in \frac{1}{2} \mathbb{Z}$, $1 \leq \ell < N$, $h, p \in \mathbb{Z}$, $p > 0$, we get the following identity (compare with [20 (2.28)):

$$\text{APS-ind} \left(D^X \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R^{\ell}, m, \ell, h \right) \equiv \text{APS-ind} \left(D^X \otimes \bigotimes_{n=1}^{\infty} \text{Sym}_{q^n}(TX) \otimes R^{\ell} \otimes L^{-p}, m', \ell, h \right) \mod k \mathbb{Z}, \tag{4.26}$$

with

$$m' = m + ph + p^2 e. \tag{4.27}$$

By (4.1), (4.2), if $m < 0$ or $m' < 0$, then either side of (4.26) is identically zero, which completes the proof of Theorem 4.4. In fact,

(i) Assume that $e = 0$. Let $h \in \mathbb{Z}$, $m_0 \in \frac{1}{2} \mathbb{Z}$, $h \neq 0$ be fixed. If $h > 0$, we take $m' = m_0$; then for p large enough, we get $m < 0$ in (4.26). If $h < 0$, we take $m = m_0$; then for p large enough, we get $m' < 0$ in (4.26).

(ii) Assume that $e < 0$. For $h \in \mathbb{Z}$, $m_0 \in \frac{1}{2} \mathbb{Z}$, we take $m = m_0$; then for p large enough, we get $m' < 0$ in (4.26).

The proof of Theorem 4.4 is completed.

5. Proofs of Theorems 4.6 and 4.7

In this section, following [20 Sections 3, 4], we prove those two recursive formulas which are stated in Section 4.2.

This section is organized as follows. In Section 5.1, by modifying the process in [20 Section 3.2], we present a proof of Theorem 4.6. In Section 5.2, we introduce the same refined shift operators as in [20 Section 4.2]. In Section 5.3, we construct the twisted Spin^c Dirac operator on $X(n_j)$, the fixed point set of the naturally induced \mathbb{Z}_{n_j}-action on X. In Section 5.4, by applying the mod k localization formula in Theorem 2.3, we prove Theorem 4.7.
5.1. A proof of Theorem 5.6. Recall that \mathcal{H} is the canonical basis of Lie(S^1) = \mathbb{R} and H is the corresponding Killing vector field on X. On the fixed point X_H, let J_H denote the operator which computes the weight of the S^1 action on $\Gamma(X_H, E|_{X_H})$ for any \mathbb{Z}/k S^1-equivariant vector bundle E over X. Then J_H can be explicitly given by (cf. [21, (3.2)])

$$J_H = \left. \frac{1}{2\pi\sqrt{-1}} \mathcal{L}_H \right|_{\Gamma(X_H, E|_{X_H})} ,$$

where \mathcal{L}_H denotes the infinitesimal action of H acting on $\Gamma(X, E)$.

Recall that the \mathbb{Z}_2-grading on $S(TX, K_X) \otimes \bigotimes_{n=1}^{\infty} \text{Sym}(TX_n)$ (resp. $S(TX_H, K_X) \otimes \bigotimes_{v>0}(\det N_v)^{-1} \otimes \mathcal{F}^0(X)$) is induced by the \mathbb{Z}_2-grading on $S(TX, K_X)$ (resp. $S(TX_H, K_X) \otimes \bigotimes_{v>0}(\det N_v)^{-1}$). Write

$$F_1^V = S(V) \otimes \bigotimes_{n=1}^{\infty} \Lambda(V_n) ,$$

$$F_2^V = \bigotimes_{n\in\mathbb{N}+\frac{1}{2}} \Lambda(V_n) ,$$

$$Q^1(W) = \bigotimes_{n=0}^{\infty} \Lambda(W_n) \otimes \bigotimes_{n=1}^{\infty} \Lambda(W_n) .$$

There are two natural \mathbb{Z}_2-gradings on F_1^V, F_2^V (resp. $Q^1(W)$). The first grading is induced by the \mathbb{Z}_2-grading of $S(V)$ and the forms of homogeneous degrees in $\bigotimes_{n=1}^{\infty} \Lambda(V_n)$, $\bigotimes_{n\in\mathbb{N}+\frac{1}{2}} \Lambda(V_n)$ (resp. $Q^1(W)$). We define $\tau_{e|F_i^V} = \pm 1$ ($i = 1, 2$) (resp. $\tau_1|Q^1(W) = \pm 1$) to be the involution defined by this \mathbb{Z}_2-grading. The second grading is the one for which F_i^V ($i = 1, 2$) are purely even, i.e., $F_i^V = F_i^V$. We denote by τ_n the involution defined by this \mathbb{Z}_2-grading. Then the coefficient of q^n ($n \in \frac{1}{2}\mathbb{Z}$) in $\mathcal{R}_1(V)$ (resp. $R_2(V)$, $R_3(V)$, $R_4(V)$, $Q(W)$) is exactly the \mathbb{Z}_2-graded \mathbb{Z}/k vector subbundle of (F_1^V, τ_e) (resp. (F_1^V, τ_1), (F_2^V, τ_e), (F_2^V, τ_1)), on which P acts by multiplication by n.

Furthermore, we denote by τ_e (resp. τ_s) the \mathbb{Z}_2-grading on $S(TX, K_X) \otimes \bigotimes_{n=1}^{\infty} \text{Sym}(TX_n) \otimes F_i^V$ ($i = 1, 2$) induced by the above \mathbb{Z}_2-gradings. We will denote by τ_{e1} (resp. τ_{s1}) the \mathbb{Z}_2-grading on $S(TX, K_X) \otimes \bigotimes_{n=1}^{\infty} \text{Sym}(TX_n) \otimes F_i^V \otimes Q^1(W)$ ($i = 1, 2$) defined by

$$\tau_{e1} = \tau_e \widehat{\otimes} \tau_1 , \quad \tau_{s1} = \tau_s \widehat{\otimes} \tau_1 .$$

We still denote by τ_{e1} (resp. τ_{s1}) the \mathbb{Z}_2-grading on $S(TX_H, K_X \otimes \bigotimes_{v>0}(\det N_v)^{-1} \otimes \mathcal{F}^{-p}(X) \otimes F_i^V \otimes Q^1(W)$ ($p \in \mathbb{N}$, $i = 1, 2$) which is induced as in (5.3).

By [11, 14], as in [11, 15], there is a natural \mathbb{Z}/k isomorphism between the \mathbb{Z}_2-graded $C(V)$-Clifford modules over X_H.

$$S(V)|_{X_H} \simeq S \left(V_0^R \bigotimes_{v>0}(\det V_v)^{-1} \right) \otimes \bigotimes_{v>0} \Lambda V_v .$$
Let $V_0 = V_0^R \otimes \mathbb{C}$.
Using (4.14) and (5.4), we rewrite (5.2) on the fixed point set X_H as follows:

$$F_1^V = \bigotimes_{n=1}^{\infty} \Lambda \left(V_{0,n} \oplus \bigoplus_{v>0} (V_{v,n} \oplus \overline{V}_{v,n}) \right) \otimes S \left(V_0^R, \bigotimes_{v>0} (\det V_v)^{-1} \right) \otimes \bigotimes_{v>0} \Lambda V_v, 0,$$

$$F_2^V = \bigotimes_{n \in \mathbb{N} + \frac{1}{2}} \Lambda \left(V_{0,n} \oplus \bigoplus_{v>0} (V_{v,n} \oplus \overline{V}_{v,n}) \right),$$

(5.5)

$$Q^1(W) = \bigotimes_{n=0}^{\infty} \Lambda(\bigoplus_v W_{v,n}) \otimes \bigotimes_{n=1}^{\infty} \Lambda(\bigoplus_v W_{v,n}).$$

We introduce the same shift operators as in [20, Section 3.2], which follows [26] in spirit. For $p \in \mathbb{N}$, we set

$$r_*: N_{v,n} \to N_{v,n+pv}, \quad r_*: N_{v,n} \to N_{v,n-pv},$$

$$r_*: V_{v,n} \to V_{v,n+pv}, \quad r_*: V_{v,n} \to V_{v,n-pv},$$

$$r_*: W_{v,n} \to W_{v,n+pv}, \quad r_*: W_{v,n} \to W_{v,n-pv}.$$

(5.7)

Using the similar $\mathbb{Z}/k S^1$-equivariant isomorphism of complex vector bundles as in [21, (3.14)] and the similar $\mathbb{Z}/k G_y \times S^1$-equivariant isomorphism of complex vector bundles as in [20, (3.15) and (3.16)], one deduces the following propositions by direct calculation.

Theorem 5.1 (Compare with [20 Theorem 3.1]). For each α, $i = 1, 2$, $\tau = \tau_{e1}$ or τ_{s1}, $m \in \frac{1}{2} \mathbb{Z}$, $1 \leq \ell < N$, $h, p \in \mathbb{Z}$, $p > 0$, the following identity holds:

$$\text{APS-ind}_r \left(D^{X_H, \alpha} \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes F^{-p} (X) \right. \left. \otimes F_\ell^\psi \otimes Q^1(W), m + \frac{1}{2} p^2 e(N) + \frac{p}{2} d'(N), \ell, h \right)$$

$$= (-1)^{pd'(W)} \text{APS-ind}_r \left(D^{X_H, \alpha} \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes F^0 (X) \right. \left. \otimes F_\ell^\psi \otimes Q^1(W) \otimes L^{-p}, m + ph + p^2 e, \ell, h \right).$$

(5.6)

We introduce the same shift operators as in [20, Section 3.2], which follows [26] in spirit. For $p \in \mathbb{N}$, we set

$$r_*: N_{v,n} \to N_{v,n+pv}, \quad r_*: N_{v,n} \to N_{v,n-pv},$$

$$r_*: V_{v,n} \to V_{v,n+pv}, \quad r_*: V_{v,n} \to V_{v,n-pv},$$

$$r_*: W_{v,n} \to W_{v,n+pv}, \quad r_*: W_{v,n} \to W_{v,n-pv}.$$

(5.7)

Using the similar $\mathbb{Z}/k S^1$-equivariant isomorphism of complex vector bundles as in [21, (3.14)] and the similar $\mathbb{Z}/k G_y \times S^1$-equivariant isomorphism of complex vector bundles as in [20, (3.15) and (3.16)], one deduces the following propositions by direct calculation.

Proposition 5.2 (Compare with [20 Proposition 3.1]). For $p \in \mathbb{Z}$, $p > 0$, $i = 1, 2$, there are natural \mathbb{Z}/k isomorphisms of vector bundles over X_H,

$$r_*(F^{-p}(X)) \simeq F^0(X) \otimes L(N)^p, \quad r_*(F_\ell^\psi) \simeq F_\ell^\psi \otimes L(V)^p.$$

(5.8)

For any $p \in \mathbb{Z}$, $p > 0$, there is a natural $\mathbb{Z}/k G_y \times S^1$-equivariant isomorphism of vector bundles over X_H,

$$r_*(Q^1(W)) \simeq Q^1(W) \otimes L(W)^{-p}.$$

(5.9)
Proposition 5.3 (Compare with [20 Proposition 3.2]). For \(p \in \mathbb{Z}, p > 0, i = 1, 2, \) the \(\mathbb{Z}/k G_y \)-equivariant isomorphism of vector bundles over \(X_H \) induced by (5.8), (5.9),

\[
\tau_0 : S(TX_H, K_X \otimes \bigotimes_{v>0} (\det N_v)^{-1}) \otimes (K_W \otimes K_X^{-1})^{1/2} \\
\otimes \mathcal{F}^{-p}(X) \otimes F_V^i \otimes Q^1(W) \\
\rightarrow S(TX_H, K_X \otimes \bigotimes_{v>0} (\det N_v)^{-1}) \otimes (K_W \otimes K_X^{-1})^{1/2} \\
\otimes \mathcal{F}^0(X) \otimes F_V^i \otimes Q^1(W) \otimes L^{-p},
\]

verifies the following identities:

\[
r_*^{-1} \cdot J_H \cdot r_* = J_H, \\
r_*^{-1} \cdot P \cdot r_* = P + pJ_H + p^2e - \frac{1}{2}p^2e(N) - \frac{p}{2}d'(N).
\]

For the \(\mathbb{Z}_2 \)-gradings, we have

\[
r_*^{-1} \tau_0 r_* = \tau_e, \quad r_*^{-1} \tau_s r_* = \tau_s, \quad r_*^{-1} \tau_1 r_* = (-1)^pd'(W)\tau_1.
\]

Theorem 5.1 is a direct consequence of Propositions 5.2 and 5.3.

5.2. The refined shift operators. We first introduce a partition of \([0, 1]\) as in [20 pp. 942–943]. Set \(J = \{ v \in \mathbb{N} \mid \text{there exists } \alpha \text{ such that } N_v \neq 0 \text{ on } X_{H,0} \}\) and

\[
\Phi = \{ \beta \in (0, 1) \mid \text{there exists } v \in J \text{ such that } \beta v \in \mathbb{Z} \}.
\]

We order the elements in \(\Phi \) so that \(\Phi = \{ \beta_i \mid 1 \leq i \leq J_0, J_0 \in \mathbb{N} \text{ and } \beta_i < \beta_{i+1} \} \). Then for any integer \(1 \leq i \leq J_0 \), there exist \(p_i, n_i \in \mathbb{N}, 0 < p_i \leq n_i \), with \((p_i, n_i) = 1 \) such that

\[
\beta_i = p_i/n_i.
\]

Clearly, \(\beta J_0 = 1 \). We also set \(p_0 = 0 \) and \(\beta_0 = 0 \).

For \(0 \leq j \leq J_0, p \in \mathbb{N}^* \), we write

\[
I_p^j = \{(v, n) \in \mathbb{N} \times \mathbb{N} \mid v \in J, (p - 1)v < n \leq pv, \frac{n}{v} = p - 1 + \frac{p_i}{n_i} \},
\]

\[
\overline{I}_p^j = \{(v, n) \in \mathbb{N} \times \mathbb{N} \mid v \in J, (p - 1)v < n \leq pv, \frac{n}{v} > p - 1 + \frac{p_i}{n_i} \}.
\]

Clearly, \(I_p^0 = \emptyset \), the empty set. We define \(\mathcal{F}_{p,j}(X) \) as in [20 (2.21)], which are analogous with (4.21). More specifically, we set

\[
\mathcal{F}_{p,j}(X) = \bigotimes_{n=1}^{\infty} \text{Sym}(TX_{H,n}) \otimes \bigotimes_{v>0}^{\infty} \text{Sym}(N_{v,n}) \\
\otimes \bigotimes_{n>(p-1)v+\frac{p_i}{n_i}v}^{n>p(v-1)} \text{Sym}(\overline{N}_{v,n}) \otimes \bigotimes_{v>0}^{\infty} \left(\text{Sym}(N_{v,-n}) \otimes \det N_v \right) \\
= \mathcal{F}_p(X) \otimes \mathcal{F}_p^{j-1}(X) \otimes \bigotimes_{(v, n) \in \bigcup_{i=0}^{j-1} I_p} \left(\text{Sym}(N_{v,-n}) \otimes \det N_v \right) \otimes \bigotimes_{(v, n) \in \overline{I}_p^j} \text{Sym}(\overline{N}_{v,n}),
\]
where we use the notation that for \(s \in \mathbb{R} \), \([s]\) denotes the greatest integer which is less than or equal to \(s \). Then

\[
(5.17) \quad \mathcal{F}_{p,0}(X) = \mathcal{F}^{-p+1}(X), \quad \mathcal{F}_{p,J_0}(X) = \mathcal{F}^{-p}(X).
\]

From the construction of \(\beta_i \), we know that for \(v \in J \), there is no integer in \(\left(\frac{p_j-1}{n_j-1}v, \frac{p_j}{n_j}v \right) \). Furthermore (cf. [20, (4.24)]),

\[
\left[\frac{p_j-1}{n_j-1}v \right] = \left[\frac{p_j}{n_j}v \right] - 1 \quad \text{if} \quad v \equiv 0 \pmod{(n_j)},
\]

\[
\left[\frac{p_j-1}{n_j-1}v \right] = \left[\frac{p_j}{n_j}v \right] \quad \text{if} \quad v \not\equiv 0 \pmod{(n_j)}.
\]

(5.18)

We use the same shift operators \(r_{j*} \), \(1 \leq j \leq J_0 \), as in [20, (4.21)], which refine the shift operator \(r_* \) defined in (5.7). For \(p \in \mathbb{N} \), set

\[
\begin{align*}
 r_{j*} : N_{v,n} &\to N_{v,n+(p-1)v+p_jv/n_j}, & r_{j*} : \overline{N}_{v,n} &\to \overline{N}_{v,n-(p-1)v-p_jv/n_j}, \\
 r_{j*} : V_{v,n} &\to V_{v,n+(p-1)v+p_jv/n_j}, & r_{j*} : \overline{V}_{v,n} &\to \overline{V}_{v,n-(p-1)v-p_jv/n_j}, \\
 r_{j*} : W_{v,n} &\to W_{v,n+(p-1)v+p_jv/n_j}, & r_{j*} : \overline{W}_{v,n} &\to \overline{W}_{v,n-(p-1)v-p_jv/n_j}.
\end{align*}
\]

For \(1 \leq j \leq J_0 \), we define \(\mathcal{F}(\beta_j) \), \(\mathcal{F}_V^1(\beta_j) \), \(\mathcal{F}_V^2(\beta_j) \) and \(Q_W(\beta_j) \) over \(X_H \) as in [20, (4.13)]:

\[
(5.20)
\]

\[
\mathcal{F}(\beta_j) = \bigotimes_{0 < n \in \mathbb{Z}} \Sym \left(TX_{H,n} \right) \otimes \bigotimes_{v > 0, \frac{p_j}{n_j} \equiv 0 \pmod{(n_j)}} \Sym \left(N_{v,n} \oplus \overline{N}_{v,n} \right) \otimes \bigotimes_{0 < n \in \mathbb{Z}^+} \Sym \left(N_{v,n} \oplus \overline{N}_{v,n} \right),
\]

\[
(5.21)
\]

\[
\mathcal{F}_V^1(\beta_j) = \Lambda \left(\bigoplus_{0 < n \in \mathbb{Z}} V_{0,n} \oplus \bigoplus_{v > 0, \frac{p_j}{n_j} \equiv 0 \pmod{(n_j)}} \bigoplus_{0 < n \in \mathbb{Z}^+} \bigoplus \bigoplus \overline{V}_{v,n} \right) \oplus \bigoplus_{0 < n' < n_j/2} \bigoplus_{v \equiv n', -n' \mod(n_j)} \left(\bigoplus_{0 < n \in \mathbb{Z}^+} \bigoplus \bigoplus \bigoplus \bigoplus \overline{V}_{v,n} \right).
\]
RIGIDITY AND VANISHING THEOREMS ON \mathbb{Z}/k SPINc MANIFOLDS

(5.22)

$$F_V^2(\beta_j) = \Lambda \left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{1}{2}} V_{0,n} \bigoplus \bigoplus_{v \equiv 0, \frac{v}{n_j} \mod(n_j)} \left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{p_j v}{n_j} + \frac{1}{2}} V_{v,n} \bigoplus \bigoplus_{0 < n \in \mathbb{Z} - \frac{p_j v}{n_j} + \frac{1}{2}} V_{v,n} \right) \right),$$

(5.23)

$$Q_W(\beta_j) = \Lambda \left(\bigoplus_v \left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{p_j v}{n_j} + \frac{1}{2}} V_{v,n} \bigoplus \bigoplus_{0 < n \in \mathbb{Z} - \frac{p_j v}{n_j} + \frac{1}{2}} V_{v,n} \right) \right).$$

Using (5.18), (5.19) and computing directly, we get an analogue of Proposition 5.2 as follows.

Proposition 5.4 (Compare with [20, Proposition 4.1]). There are natural \mathbb{Z}/k isomorphisms of vector bundles over X_H:

$$r_j^*(F_{p,j-1}(X)) \simeq F(\beta_j) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} \operatorname{Sym}(N_{v,0})$$

$$\otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det N_v)^{\left[\frac{p_j v}{n_j}\right] + (p-1)v + 1} \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det N_v)^{-1},$$

$$r_j^*(F_{p,j}(X)) \simeq F(\beta_j) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} \operatorname{Sym}(N_{v,0})$$

$$\otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det N_v)^{\left[\frac{p_j v}{n_j}\right] + (p-1)v + 1},$$

$$r_j^*(F_V^1) \simeq S\left(V_0^R, \bigotimes (\det V_v)^{-1}\right) \otimes F_V^1(\beta_j)$$

$$\otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} \Lambda(V_{v,0}) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det V_v)^{\left[\frac{p_j v}{n_j}\right] + (p-1)v},$$

$$r_j^*(F_V^2) \simeq F_V^2(\beta_j) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} \Lambda(V_{v,0}) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det V_v)^{\left[\frac{p_j v}{n_j} + \frac{1}{2}\right] + (p-1)v}.$$

There is a natural $\mathbb{Z}/k G_y \times S^1$-equivariant isomorphism of vector bundles over X_H,

$$r_j^*(Q^1(W)) \simeq Q_W(\beta_j) \otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det W_v)^{\left[\frac{p_j v}{n_j}\right] + (p-1)v + 1}$$

$$\otimes \bigotimes_{v > 0, \frac{v}{n_j} \equiv \mod(n_j)} (\det W_v)^{-1} \otimes \bigotimes_{v < 0} (\det W_v)^{\left[\frac{p_j v}{n_j}\right] - (p-1)v}. $$
5.3. The Spinc Dirac operators on $X(n_j)$. Recall that there is a nontrivial \mathbb{Z}/k circle action on X which can be lifted to the \mathbb{Z}/k circle actions on V and W.

For $n \in \mathbb{N}^*$, let $\mathbb{Z}_n \subset S^1$ denote the cyclic subgroup of order n. Let $X(n_j)$ be the fixed point set of the induced \mathbb{Z}_{n_j} action on X. Let $N(n_j) \to X(n_j)$ be the normal bundle to $X(n_j)$ in X. As in [5, p. 151] (see also [20, Section 4.1], [21, Section 4.1] or [26]), we see that $N(n_j)$ and V can be decomposed, as \mathbb{Z}/k real vector bundles over $X(n_j)$, into

$$N(n_j) = \bigoplus_{0 < v < n_j/2} N(n_j)_v \oplus N(n_j)_{n_j/2}^\mathbb{R},$$

(5.24)

$$V|_{X(n_j)} = V(n_j)_0^\mathbb{R} \bigoplus_{0 < v < n_j/2} V(n_j)_v \oplus V(n_j)_{n_j/2}^\mathbb{R},$$

(5.25)

where $V(n_j)_0^\mathbb{R}$ is the \mathbb{Z}/k real vector bundle on which \mathbb{Z}_{n_j} acts by identity, and $N(n_j)_{n_j/2}^\mathbb{R}$ (resp. $V(n_j)_{n_j/2}^\mathbb{R}$) is defined to be zero if n_j is odd. Moreover, for $0 < v < n_j/2$, $N(n_j)_v$ (resp. $V(n_j)_v$) admits a unique \mathbb{Z}/k complex structure such that $N(n_j)_v$ (resp. $V(n_j)_v$) becomes a \mathbb{Z}/k complex vector bundle on which $g \in \mathbb{Z}_{n_j}$ acts by g^v. We also denote by $V(n_j)_0$, $V(n_j)_{n_j/2}$ and $N(n_j)_{n_j/2}$ the corresponding complexification of $V(n_j)_0^\mathbb{R}$, $V(n_j)_{n_j/2}^\mathbb{R}$ and $N(n_j)_{n_j/2}^\mathbb{R}$.

Similarly, we also have the following \mathbb{Z}_{n_j}-equivariant decomposition of W, as \mathbb{Z}/k complex vector bundles over $X(n_j)$:

$$W|_{X(n_j)} = \bigoplus_{0 \leq v < n_j} W(n_j)_v,$$

(5.26)

where for $0 \leq v < n_j$, $g \in \mathbb{Z}_{n_j}$ acts on $W(n_j)_v$ by sending g to g^v.

By [20, Lemma 4.1] (which generalizes [5, Lemmas 9.4 and 10.1] and [26, Lemma 5.1]), we know that the \mathbb{Z}/k vector bundles $TX(n_j)$ and $V(n_j)_0^\mathbb{R}$ are orientable and even dimensional. Thus $N(n_j)$ is orientable over $X(n_j)$. By (5.24), $V(n_j)_{n_j/2}^\mathbb{R}$ and $N(n_j)_{n_j/2}^\mathbb{R}$ are also orientable and even dimensional. In what follows, we fix the orientations of $N(n_j)_{n_j/2}^\mathbb{R}$ and $V(n_j)_{n_j/2}^\mathbb{R}$. Then $TX(n_j)$ and $V(n_j)_{n_j/2}^\mathbb{R}$ are naturally oriented by (5.24) and the orientations of TX, V, $N(n_j)_{n_j/2}^\mathbb{R}$ and $V(n_j)_{n_j/2}^\mathbb{R}$.

By (1.14), (5.24) and (5.25), upon restriction to X_H, we get the following identifications of \mathbb{Z}/k complex vector bundles (cf. [20 (4.9) and (4.12)]): for $0 < v \leq n_j/2$,

$$N(n_j)_v = \bigoplus_{v' > 0, v' \equiv v \mod(n_j)} N_{v'} \oplus \bigoplus_{v' > 0, v' \equiv -v \mod(n_j)} \overline{N}_{v'},$$

(5.27)

$$V(n_j)_v = \bigoplus_{v' > 0, v' \equiv v \mod(n_j)} V_{v'} \oplus \bigoplus_{v' > 0, v' \equiv -v \mod(n_j)} \overline{V}_{v'},$$

for $0 \leq v < n_j$,
Also we get the following identifications of \mathbb{Z}/k real vector bundles over X_H (cf.
\cite{20} (4.11)):

\[
TX(n_j)|_{X_H} = TX_H \oplus \bigoplus_{v > 0, v \equiv n_0 \mod (n_j)} N_v, \quad N(n_j)^{\mathbb{R}}_{n_j/2}|_{X_H} = \bigoplus_{v > 0, v \equiv n_0 \mod (n_j)} N_v,
\]

\[
V(n_j)^{\mathbb{R}}_0|_{X_H} = V_0^{\mathbb{R}} \oplus \bigoplus_{v > 0, v \equiv n_0 \mod (n_j)} V_v, \quad V(n_j)^{\mathbb{R}}_{n_j/2}|_{X_H} = \bigoplus_{v > 0, v \equiv n_0 \mod (n_j)} V_v.
\]

Moreover, we have the identifications of \mathbb{Z}/k complex vector bundles over X_H as follows:

\[
TX(n_j) \otimes_{\mathbb{R}} \mathbb{C} = TX_H \otimes_{\mathbb{R}} \mathbb{C} \oplus \bigoplus_{v > 0, v \equiv 0 \mod (n_j)} (N_v \oplus \overline{N_v}),
\]

\[
V(n_j)_0 = V_0^{\mathbb{C}} \otimes_{\mathbb{R}} \mathbb{C} \oplus \bigoplus_{v > 0, v \equiv 0 \mod (n_j)} (V_v \oplus \overline{V_v}).
\]

As $(p_j, n_j) = 1$, we know that, for $v \in \mathbb{Z}$, $p_j v/n_j \in \mathbb{Z}$ if and only if $v/n_j \in \mathbb{Z}$. Also, $p_j v/n_j \in \mathbb{Z} + \frac{1}{2}$ if and only if $v/n_j \in \mathbb{Z} + \frac{1}{2}$. We remark that if $v \equiv -v' \mod (n_j)$, then $\{n | 0 < n \in \mathbb{Z} + \frac{p_j v}{n_j} \} = \{n | 0 < n \in \mathbb{Z} - \frac{p_j v'}{n_j} \}$. Using the identifications (5.20), (5.21) and (5.22), we can rewrite $F(\beta_j)$, $F^1_V(\beta_j)$, $F^2_V(\beta_j)$ and $Q_W(\beta_j)$ over X_H defined in (5.20) - (5.23) as follows (cf. \cite{20} (4.7)):

\[
F(\beta_j) = \bigotimes_{0 < n \in \mathbb{Z}} \text{Sym}(TX(n_j)_n) \otimes \bigotimes_{0 < v < n_j/2} \text{Sym}
\left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{p_j v}{n_j}} N(n_j)_v, \quad \bigoplus_{0 < n \in \mathbb{Z} - \frac{p_j v}{n_j}} N(n_j)_v, \quad \bigoplus_{0 < n \in \mathbb{Z} + \frac{1}{2}} N(n_j)_{v, n} \right),
\]

\[
F^1_V(\beta_j) = \Lambda \left(\bigoplus_{0 < n \in \mathbb{Z}} V(n_j)_0, n \oplus \bigoplus_{0 < v < n_j/2} \left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{p_j v}{n_j}} V(n_j)_v, \right) \right),
\]

\[
F^2_V(\beta_j) = \Lambda \left(\bigoplus_{0 < n \in \mathbb{Z}} V(n_j)_n, n \oplus \bigoplus_{0 < v < n_j/2} \left(\bigoplus_{0 < n \in \mathbb{Z} - \frac{p_j v}{n_j} + \frac{1}{2}} V(n_j)_v, \right) \right),
\]

\[
Q_W(\beta_j) = \Lambda \left(\bigoplus_{0 \leq v < n_j} \left(\bigoplus_{0 < n \in \mathbb{Z} + \frac{p_j v}{n_j}} W(n_j)_v, \bigoplus_{0 \leq n \in \mathbb{Z} - \frac{p_j v}{n_j}} W(n_j)_v, \right) \right).
\]

We indicate here that $F(\beta_j)$, $F^1_V(\beta_j)$, $F^2_V(\beta_j)$ and $Q_W(\beta_j)$ in (5.20) - (5.23) are the restrictions of the corresponding \mathbb{Z}/k vector bundles on the right hand side of (5.24) - (5.22) over $X(n_j)$, which will still be denoted as $F(\beta_j)$, $F^1_V(\beta_j)$, $F^2_V(\beta_j)$ and $Q_W(\beta_j)$.

We now define the Spinc Dirac operators on $X(n_j)$ following \cite{20} Section 4.1].
Consider the hypothesis in \[4.7\]. By the splitting principle [12, Chapter 17] and computing as in [5, Lemmas 11.3 and 11.4], we get

\[
\begin{align*}
\sum_{0<v<n_j} v \cdot c_1 & \left(V(n_j)_v + W(n_j)_v - W(n_j)_{n_j-v} - N(n_j)_v \right) \\
& + r(n_j) \cdot \frac{n_j}{2} \cdot \omega_2 \left(W(N_j)_{n_j/2} + V(n_j)_{n_j/2} - N(n_j)_{n_j/2} \right) \cdot u_{n_j} = 0,
\end{align*}
\]

(5.33)

where \(r(n_j) = \frac{1}{2}(1 + (-1)^{n_j}) \), and \(u_{n_j} \in H^2(B\mathbb{Z}_{n_j}, \mathbb{Z}) \cong \mathbb{Z}_{n_j} \) is the generator of \(H^*(B\mathbb{Z}_{n_j}, \mathbb{Z}) \cong \mathbb{Z}[u_{n_j}]/(n_j \cdot u_{n_j}) \). Then by (5.33), we know that

\[
\sum_{0<v<n_j} v \cdot c_1 \left(V(n_j)_v + W(n_j)_v - W(n_j)_{n_j-v} - N(n_j)_v \right) \\
+ r(n_j) \cdot \frac{n_j}{2} \cdot \omega_2 \left(W(n_j)_{n_j/2} + V(n_j)_{n_j/2} - N(n_j)_{n_j/2} \right)
\]

is divisible by \(n_j \). Therefore, we have

Lemma 5.5 (cf. [20, Lemma 4.2]). Assume that \(\text{4.7} \) holds. Let

\[
L(n_j) = \bigotimes_{0<v<n_j/2} \left(\text{det}(N(n_j)_v) \otimes \text{det}(W(n_j)_v) \right) \otimes \text{det}(W(n_j)_{n_j-v})^{(r(n_j)+1)v}
\]

be the complex line bundle over \(X(n_j) \). Then we have

(i) \(L(n_j) \) has an \(n_j \)-th root over \(X(n_j) \).

(ii) Let \(U_1 = TX(n_j) \oplus V(n_j)^R \), \(U_2 = TX(n_j) \oplus V(n_j)^R_{n_j/2} \). Let

\[
L_1 = K_X \otimes \bigotimes_{0<v<n_j/2} \left(\text{det}(N(n_j)_v) \otimes \text{det}(W(n_j)_v) \right) \otimes \text{det}(W(n_j)_{n_j/2}) \otimes L(n_j)^{r(n_j)/n_j},
\]

\[
L_2 = K_X \otimes \bigotimes_{0<v<n_j/2} \left(\text{det}(N(n_j)_v) \right) \otimes \text{det}(W(n_j)_{n_j/2}) \otimes L(n_j)^{r(n_j)/n_j}.
\]

Then \(U_1 \) (resp. \(U_2 \)) has a \(\mathbb{Z}/k \) Spin\(^c\) structure defined by \(L_1 \) (resp. \(L_2 \)).

Remark that in order to define an \(S^1 \) (resp. \(G_y \)) action on \(L(n_j)^{r(n_j)/n_j} \), we must replace the \(S^1 \) (resp. \(G_y \)) action by its \(n_j \)-fold action. Here by abusing notation, we still say an \(S^1 \) (resp. \(G_y \)) action without causing any confusion.

In what follows, by \(D^X(n_j) \) we mean the \(S^1 \)-equivariant Spin\(^c\) Dirac operator on \(S(U_1, L_1) \) or \(S(U_2, L_2) \) over \(X(n_j) \) (cf. Definition 2.3).
Corresponding to (5.35), by (5.26), we denote by (cf. [20] (4.16))

\[
S(U_1, L_1)' = S(TX_H \oplus V_0^R, L_1 \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} (\det N_v \otimes \det V_v)^{-1}) \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} \Lambda V_v,
\]

\[
S(U_2, L_2)' = S(TX_H, L_2 \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} (\det N_v)^{-1}) \otimes \bigotimes_{v > 0, v \equiv \frac{n_j}{2} \text{ mod } (n_j)} \Lambda V_v.
\]

Then by (2.16) and (2.17), for \(i = 1, 2\), we have the following isomorphisms of Clifford modules over \(X_H\):

\[
S(U_i, L_i) \simeq S(U_i, L_i)' \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} \Lambda N_v.
\]

We define the \(\mathbb{Z}_2\)-gradings on \(S(U_i, L_i)' \ (i = 1, 2)\) induced by the \(\mathbb{Z}_2\)-gradings on \(S(U_i, L_i) \ (i = 1, 2)\) and on \(\bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} \Lambda N_v\) such that the isomorphisms (5.37) preserve the \(\mathbb{Z}_2\)-gradings.

As in [20, p. 952], we formally introduce the following \(\mathbb{Z}/k\) complex line bundles over \(X_H\):

\[
L_1' = \left(L_1^{-1} \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} (\det N_v \otimes \det V_v) \otimes \bigotimes_{v > 0} (\det N_v \otimes \det V_v)^{-1} \otimes K_X \right)^{\frac{1}{2}},
\]

\[
L_2' = \left(L_2^{-1} \otimes \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} \det N_v \otimes \bigotimes_{v > 0, v \equiv \frac{n_j}{2} \text{ mod } (n_j)} \det V_v \otimes \bigotimes_{v > 0} (\det N_v)^{-1} \otimes K_X \right)^{\frac{1}{2}}.
\]

In fact, from (2.16), (2.17), Lemma 5.5 and the assumption that \(V\) is spin, one verifies easily that \(c_1(L_i'^2) = 0 \pmod{2}\) for \(i = 1, 2\), which implies that \(L_1'\) and \(L_2'\) are well-defined \(\mathbb{Z}/k\) complex line bundles over \(X_H\) (cf. Section 2.1).

Then by (5.35), (5.36) and the definitions of \(L_1, L_2, L_1'\) and \(L_2'\), we get the following identifications of \(\mathbb{Z}/k\) Clifford modules over \(X_H\) (cf. [20] (4.19)):

\[
S(U_1, L_1)' \otimes L_1' = S(TX_H, K_X \otimes \bigotimes_{v > 0} (\det N_v)^{-1}) \otimes S(V_0^R, \bigotimes_{v > 0, v \equiv 0 \text{ mod } (n_j)} (\det V_v)^{-1}) \otimes \bigotimes_{v > 0} \Lambda(V_v),
\]

\[
S(U_2, L_2)' \otimes L_2' = S(TX_H, K_X \otimes \bigotimes_{v > 0} (\det N_v)^{-1}) \otimes \bigotimes_{v > 0, v \equiv \frac{n_j}{2} \text{ mod } (n_j)} \Lambda(V_v).
\]
Lemma 5.6 (cf. [20, Lemma 4.3]). Let us write
\[L(\beta_j)_1 = L'_1 \bigotimes_{v > 0} (\det N_v) \left[\frac{p_j}{n_j} v \right] + (p-1)v + 1 \bigotimes_{v > 0} (\det V_v) \left[\frac{p_j}{n_j} v \right] + (p-1)v \]
\[\bigotimes_{v > 0, v \equiv 0 \mod(n_j)} \bigotimes_{v < 0, v \equiv 0 \mod(n_j)} (\det N_v)^{-1} \bigotimes_{v < 0} (\det W_v) \left[-\frac{p_j}{n_j} v \right] - (p-1)v \]
\[L(\beta_j)_2 = L'_2 \bigotimes_{v > 0} (\det N_v) \left[\frac{p_j}{n_j} v \right] + (p-1)v + 1 \bigotimes_{v > 0} (\det V_v) \left[-\frac{p_j}{n_j} v \right] - (p-1)v \]
\[\bigotimes_{v > 0, v \equiv 0 \mod(n_j)} \bigotimes_{v < 0, v \equiv 0 \mod(n_j)} (\det N_v)^{-1} \bigotimes_{v < 0} (\det W_v) \left[-\frac{p_j}{n_j} v \right] - (p-1)v \]
\[(\det W_v)^{-1} \]

Then \(L(\beta_j)_1 \) and \(L(\beta_j)_2 \) can be extended naturally to \(\mathbb{Z}/k G_y \times S^1 \)-equivariant complex line bundles over \(X(n_j) \) which we will still denote by \(L(\beta_j)_1 \) and \(L(\beta_j)_2 \) respectively.

Now we compare the \(\mathbb{Z}_2 \)-gradings in (5.38). Set
\[\Delta(n_j, N) = \sum_{n_j/2 < v' < n_j} \sum_{0 < v, v \equiv v' \mod(n_j)} \dim N_v + o\left(N(n_j)_{\mathbb{R}}^n_{\mathbb{R}}\right) \]
\[\Delta(n_j, V) = \sum_{n_j/2 < v' < n_j} \sum_{0 < v, v \equiv v' \mod(n_j)} \dim V_v + o\left(V(n_j)_{\mathbb{R}}^n_{\mathbb{R}}\right) \]
(5.40)

where \(o(N(n_j)_{\mathbb{Z}}) \) (resp. \(o(V(n_j)_{\mathbb{Z}}) \)) equals 0 or 1, depending on whether the given orientation on \(N(n_j)_{\mathbb{R}}^n_{\mathbb{R}} \) (resp. \(V(n_j)_{\mathbb{R}}^n_{\mathbb{R}} \)) agrees or disagrees with the complex orientation of \(\bigoplus_{v > 0, v \equiv n_j/2 \mod(n_j)} N_v \) (resp. \(\bigoplus_{v > 0, v \equiv n_j/2 \mod(n_j)} V_v \)).

By [20, p. 953], we know that for the \(\mathbb{Z}_2 \)-gradings induced by \(\tau_v \), the differences of the \(\mathbb{Z}_2 \)-gradings of (5.38) and (5.39) are both \((-1)^{\Delta(n_j, N)}\); for the \(\mathbb{Z}_2 \)-gradings induced by \(\tau_v \), the difference of the \(\mathbb{Z}_2 \)-gradings of (5.38) (resp. (5.39)) is \((-1)^{\Delta(n_j, N)} + \Delta(n_j, V) \) (resp. \((-1)^{\Delta(n_j, N)} + o(V(n_j)_{\mathbb{R}}^n_{\mathbb{R}})\))

To simplify the notation, we introduce the same functions as in [20, (4.30)], which are locally constant on \(X_H^\ast \):
\[\varepsilon_1 = \frac{1}{2} \sum_{v > 0} (\dim N_v - \dim V_v) \left(\left(\frac{p_v}{n_j} v + (p - 1)v \right) \left(\frac{p_v}{n_j} v + (p - 1)v + 1 \right) \right), \]

\[\varepsilon_2 = \frac{1}{2} \sum_{v > 0} (\dim N_v) \cdot \left(\left(\frac{p_v}{n_j} v + (p - 1)v \right) \left(\frac{p_v}{n_j} v + (p - 1)v + 1 \right) \right) \]

Then \(e(p, \beta_j, N) \) and \(d'(p, \beta_j, N) \) are locally constant functions on \(X_H \). In particular, we have

\[e(p, \beta_0, N) = \frac{1}{2} (p - 1)^2 e(N) + \frac{1}{2} (p - 1) d'(N), \]

\[e(p, \beta_{\bar{J}_0}, N) = \frac{1}{2} p^2 e(N) + \frac{1}{2} p d'(N), \]

\[d'(p, \beta_{\bar{J}_0}, N) = d'(p + 1, \beta_0, N) = p d'(N). \]

By Proposition 5.4, 5.8 and Lemma 5.6, we deduce an analogue of Proposition 5.7.

Proposition 5.7 (cf. [20] Proposition 4.2). For \(i = 1, 2 \), the \(\mathbb{Z}/k \) \(G_\nu \)-equivariant isomorphisms of complex vector bundles over \(X_H \),

\[r_{i1} : S(TX_H, K_X \otimes \bigotimes_{v > 0} (\det N_v)^{-1}) \otimes (K_W \otimes K_X^{-1})^{1/2} \]

\[\otimes F_{p,j-1}(X) \otimes F_V^i \otimes Q^1(W) \]

\[\rightarrow S(U_i, L_i)^{\nu} \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes F(\beta_j) \otimes F_V^i(\beta_j) \]

\[\otimes Q_W(\beta_j) \otimes L(\beta_j)_i \otimes \bigotimes_{v > 0, v \equiv 0 \mod (n_j)} \text{Sym}(N_v, 0), \]

\[r_{i2} : S(TX_H, K_X \otimes \bigotimes_{v > 0} (\det N_v)^{-1}) \otimes (K_W \otimes K_X^{-1})^{1/2} \]

\[\otimes F_{p,j}(X) \otimes F_V^i \otimes Q^1(W) \]

\[\rightarrow S(U_i, L_i)^{\nu} \otimes (K_W \otimes K_X^{-1})^{1/2} \otimes F(\beta_j) \otimes F_V^i(\beta_j) \]

\[\otimes Q_W(\beta_j) \otimes L(\beta_j)_i \otimes \bigotimes_{v > 0, v \equiv 0 \mod (n_j)} \left(\text{Sym} (N_v, 0) \otimes \det N_v \right). \]
have the following properties:

(i) for \(i = 1, 2, \gamma = 1, 2\),

\[
\begin{align*}
 r_{i\gamma}^{-1} \cdot J_H \cdot r_{i\gamma} &= J_H , \\
 r_{i\gamma}^{-1} \cdot P \cdot r_{i\gamma} &= P + \left(\frac{p_j}{n_j} + (p - 1) \right) J_H + \varepsilon_{i\gamma} ,
\end{align*}
\]

(5.46)

where \(\varepsilon_{i1} = \varepsilon_i + \varepsilon(W) - e(p, \beta_{j-1}, N)\), \(\varepsilon_{i2} = \varepsilon_i + \varepsilon(W) - e(p, \beta_j, N)\).

(ii) Recall that \(o(V(n_j)_{\frac{\varepsilon}{2}})\) is defined in (5.40). Let

\[
\begin{align*}
 \mu_1 &= - \sum_{v > 0} \left[\frac{p_j}{n_j} v \right] \dim V_v + \Delta(n_j, N) + \Delta(n_j, V) \mod (2) , \\
 \mu_2 &= - \sum_{v > 0} \left[\frac{p_j}{n_j} v + \frac{1}{2} \right] \dim V_v + \Delta(n_j, N) + o(V(n_j)_{\frac{\varepsilon}{2}}) \mod (2) , \\
 \mu_3 &= \Delta(n_j, N) \mod (2) , \\
 \mu_4 &= \sum_v \left(\left[\frac{p_j}{n_j} v \right] + (p - 1)v \right) \dim W_v + \dim W + \dim W(n_j)_0 \mod (2) .
\end{align*}
\]

Then for \(i = 1, 2, \gamma = 1, 2\), we have

\[
\begin{align*}
 r_{i\gamma}^{-1} \tau_e r_{i\gamma} &= (-1)^{\mu_1} \tau_e , \\
 r_{i\gamma}^{-1} \tau_s r_{i\gamma} &= (-1)^{\mu_3} \tau_s , \\
 r_{i\gamma}^{-1} \tau_1 r_{i\gamma} &= (-1)^{\mu_4} \tau_1 .
\end{align*}
\]

(5.47)

5.4. A proof of Theorem 4.7.

Lemma 5.8 (Compare with [20 Lemmas 4.4, 4.5 and 4.6]). For \(X'\), any fixed connected component of \(X(n_j)\), the following functions are independent on the connected components of \(X_H\) in \(X'\):

\[
\begin{align*}
 \varepsilon_i + \varepsilon(W) , & \quad i = 1, 2 , \\
 d'(p, \beta_j, N) + \mu_i + \mu_4 \mod (2) , & \quad i = 1, 2, 3 , \\
 \sum_{v > 0} \left[\frac{p_j}{n_j} v \right] \dim V_v + \Delta(n_j, V) \mod (2) , \\
 \sum_{v > 0} \left[\frac{p_j}{n_j} v + \frac{1}{2} \right] \dim V_v + o(V(n_j)_{\frac{\varepsilon}{2}}) \mod (2) .
\end{align*}
\]

(5.48)

Proof. The proof is the same as that of [20 Lemmas 4.4, 4.5 and 4.6].

Lemma 5.8 implies that \(d'(p, \beta_{j-1}, N) + \sum_{v < v} \dim N_v + \mu_i + \mu_4 \mod (2) (i = 1, 2, 3)\) are constant functions on each connected component of \(X(n_j)\) (cf. [20 (4.42)])).

By (5.29), (5.30), (5.31), (5.32) and Lemma 5.6, we know that the Dirac operator \(D^{X(n_j)} \otimes \mathcal{F}(\beta_j) \otimes F_v(\beta_j) \otimes Q_W(\beta_j) \otimes L(\beta_j) \otimes (i = 1, 2)\) is well defined on \(X(n_j)\). Observe that the two equalities in Theorem 2.8 are both compatible with the \(G_y\) action. Thus, by using Proposition 5.7 and applying both the first and the second equalities of Theorem 2.8 to each connected component of \(X(n_j)\) separately, we
deduce that for $i = 1, 2, 1 \leq j \leq J_0$, $m \in \frac{1}{2}\mathbb{Z}$, $1 \leq \ell < N$, $h \in \mathbb{Z}$, $\tau = \tau_{e1}$ or τ_{s1},

$$
\sum_{\alpha} (-1)^{d(p, \beta_j-1,N)} + \sum_{v>0} \dim N_v \ APS\text{-}\text{ind}_{\tau} \left(D^{X_{n_{1}}} \otimes (K_{W} \otimes K_{X}^{-1})^{1/2} \right)
\otimes F_{p,j-1}(X) \otimes F_{V}^{i} \otimes Q^{1}(W), m + e(p, \beta_j-1, N), \ell, h \right)
\equiv \sum_{\beta} (-1)^{d(p, \beta_j-1,N)} + \sum_{v>0} \dim N_v + \mu \ APS\text{-}\text{ind}_{\tau} \left(D^{X(n_{j})} \right)
\otimes (K_{W} \otimes K_{X}^{-1})^{1/2} \otimes F_{p,j} \otimes F_{V}^{i}(\beta_j) \otimes Q_{W}(\beta_j) \otimes L(\beta_j),
\quad m + e_{i} + e(W) + \left(\frac{p}{n_{j}} + (p-1)\right) h, \ell, h \right)
\equiv \sum_{\alpha} (-1)^{d(p, \beta_j,N)} + \sum_{v>0} \dim N_v \ APS\text{-}\text{ind}_{\tau} \left(D^{X_{n_{1}}} \otimes (K_{W} \otimes K_{X}^{-1})^{1/2} \right)
\otimes F_{p,j}(X) \otimes F_{V}^{i} \otimes Q^{1}(W), m + e(p, \beta_j, N), \ell, h \right) \mod k\mathbb{Z},
$$

where \sum_{β} means the sum over all the connected components of $X(n_{j})$. In (5.49), if $\tau = \tau_{s1}$, then $\mu = \mu_{3} + \mu_{4}$, and if $\tau = \tau_{e1}$, then $\mu = \mu_{i} + \mu_{4}$. Combining (5.45) with (5.49), we get (4.24).

The proof of Theorem 4.7 is completed.

References

[1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR0397797 (53 #1655a)

[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. MR0397799 (53 #1655c)

[3] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR2273508 (2007m:58033)

[4] Jean-Michel Bismut and Gilles Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. 74 (1991), ii+298 pp. (1992). MR1188532 (94a:58205)

[5] Raoul Bott and Clifford Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), no. 1, 137–186, DOI 10.2307/1990915. MR095493 (89k:58270)

[6] Xianzhai Dai and Weiping Zhang, Real embeddings and the Atiyah-Patodi-Singer index theorem for Dirac operators, Asian J. Math. 4 (2000), no. 4, 775–794. Loo-Keng Hua: a great mathematician of the twentieth century. MR1870658 (2002f:58021)

[7] Jorge A. Devoto, Elliptic genera for Z/\mathbb{k} spin^c-manifolds, I. J. London Math. Soc. (2) 54 (1996), no. 2, 387–402, DOI 10.1112/jlms/54.2.387. MR1405063 (97i:57026)

[8] Daniel S. Freed and Richard B. Melrose, A mod k index theorem, Invent. Math. 107 (1992), no. 2, 283–299, DOI 10.1007/BF01231891. MR1144425 (93c:58212)

[9] Akio Hattori, Spin^c-structures and S^1-actions, Invent. Math. 48 (1978), no. 1, 7–31, DOI 10.1007/BF01390600. MR0508087 (80e:57051)

[10] Akio Hattori and Tomoyoshi Yoshida, Lifiting compact group actions in fiber bundles, J. Math. (N.S.) 2 (1976), no. 1, 13–25. DOI 0461538 (57 #1523)

[11] Friedrich Hirzebruch, Elliptic genera of level N for complex manifolds, Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst., Ser. C Math. Phys. Sci., vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 37–63. MR0981372 (90m:57030)

[12] Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR1249842 (94k:55001)

[13] Igor Moiseevich Krichever, Generalized elliptic genera and Baker-Akhiezer functions (Russian), Mat. Zametki 47 (1990), no. 2, 34–45, 158. DOI 10.1007/BF01156822; English transl., Math. Notes 47 (1990), no. 1-2, 132–142. MR1048541 (91e:57059)
[14] Peter S. Landweber and Robert E. Stong, *Circle actions on Spin manifolds and characteristic numbers*, Topology 27 (1988), no. 2, 145–161, DOI 10.1016/0040-9383(88)90034-1. MR048178 [90a:57040]

[15] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, *Spin geometry*, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR1031992 [91g:53001]

[16] Kefeng Liu, *On modular invariance and rigidity theorems*, J. Differential Geom. 41 (1995), no. 2, 343–396. MR1331972 [96f:58152]

[17] Kefeng Liu, *On elliptic genera and theta-functions*, Topology 35 (1996), no. 3, 617–640, DOI 10.1016/0040-9383(95)00042-9. MR1396769 [97h:58149]

[18] Kefeng Liu and Xiaonan Ma, *On family rigidity theorems. I*, Duke Math. J. 102 (2000), no. 3, 451–474, DOI 10.1215/S0012-7094-00-10234-7. MR1756105 [2001j:58038]

[19] Kefeng Liu and Xiaonan Ma, *On family rigidity theorems for Spinc manifolds*, Mirror symmetry, IV (Montreal, QC, 2000), AMS/IP Stud. Adv. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2002, pp. 343–360. MR1969037 [2004a:58029]

[20] Kefeng Liu, Xiaonan Ma, and Weiping Zhang, *Spinc manifolds and rigidity theorems in K-theory*, Asian J. Math. 4 (2000), no. 4, 933–959. Loo-Keng Hua: a great mathematician of the twentieth century. MR1870666 [2002m:58036]

[21] Kefeng Liu, Xiaonan Ma, and Weiping Zhang, *Rigidity and vanishing theorems in K-theory*, Comm. Anal. Geom. 11 (2003), no. 2, 211–236. MR2016198 [2004g:58028]

[22] Takao Matumoto, *Equivalent K-theory and Fredholm operators*, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 18 (1971), 109–125. MR0290354 [44 #7538]

[23] John W. Morgan and Dennis P. Sullivan, *The transversality characteristic class and linking cycles in surgery theory*, Ann. of Math. (2) 99 (1974), 463–544. MR0350748 [50 #3240]

[24] Serge Ochanine, *Sur les genres multiplicatifs définis par des intégrales elliptiques* (French), Topology 26 (1987), no. 2, 143–151, DOI 10.1016/0040-9383(87)90055-3. MR895567 [88e:57031]

[25] Michael Reed and Barry Simon, *Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. MR0493420 [58 #1249b]

[26] Clifford Henry Taubes, *S^1 actions and elliptic genera*, Comm. Math. Phys. 122 (1989), no. 3, 455–526. MR098662 [90f:58167]

[27] Edward Witten, *The index of the Dirac operator in loop space*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181, DOI 10.1007/BFb0078045. MR0970288

[28] Weiping Zhang, *Circle actions and \mathbb{Z}/k-manifolds* (English, with English and French summaries), C. R. Math. Acad. Sci. Paris 337 (2003), no. 1, 57–60, DOI 10.1016/S1631-073X(03)00279-6. MR199396 [2004i:58034]

Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, People's Republic of China

E-mail address: boliumath@mail.nankai.edu.cn

Current address: Mathematisches Institut, Universität zu Köln, Wyertal 86-90, D50931 Köln, Germany

E-mail address: boliumath@gmail.com

Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, People's Republic of China

E-mail address: jianqingyu@gmail.com

Current address: University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China