Accumulating data have implicated that long noncoding RNA (lncRNA) plays an important role in osteoarthritis (OA), which may function as a competitive endogenous RNA (ceRNA) of microRNAs (miRNAs). lncRNA IGHCγ1 has been demonstrated to regulate inflammation and autoimmunity. Nonetheless, the altering effect of IGHCγ1 in OA remains unclear. This study is aimed at investigating the mechanism and function of lncRNA IGHCγ1 in OA. CCK-8, EdU, and transwell assays were used to estimate macrophage proliferation and migration. Fluorescence in situ hybridization (FISH) was performed to estimate the local expression of lncRNA IGHCγ1 in macrophages. Luciferase reporter assay was adopted to validate the ceRNA role of IGHCγ1 as miRNA sponge. lncRNA IGHCγ1 was primarily localized in macrophage cytoplasm and upregulated in OA. miR-6891-3p inhibited macrophage proliferation, migration, and inflammatory response by targeting TLR4, while lncRNA IGHCγ1 promoted TLR4 expression by functioning as a ceRNA for miR-6891-3p through the NF-κB signal in macrophages. This study strongly supports that lncRNA IGHCγ1 regulates inflammatory response via regulating the miR-6891-3p/TLR4/NF-κB axis in macrophages.

1. Introduction

Osteoarthritis (OA) is one of the most common degenerative diseases and a major cause of disability in older adults. It leads to a great burden on society and economy. Apart from damages in cartilage and subchondral bone, OA also causes synovitis [1, 2]. The etiology and pathogenesis of OA remain not fully understood up till now. It has been well documented that age, obesity, abnormal anatomical structure, joint trauma history, and excessive use of joints are closely related to OA [3]. Accumulated data have suggested many inflammatory cells and their produced inflammatory mediators contribute to OA pathogenesis, such as IL-6 and TNF-α [4, 5]. IL-6 and TNF-α can be produced by macrophages, synoviocytes, or articular cartilage itself, which contribute to OA by inducing the expression of metalloproteinases (MMP). In addition, the dysfunction of macrophages has been suggested to play a key role in OA pathogenesis [6]. Therefore, besides tissue engineering, biological therapies by targeting inflammation-associated genes or cells are potential therapeutic strategies for OA patients. Moreover, there are still many challenges for the regeneration of articular cartilage in OA treatment particularly under inflammatory microenvironment.
Emerging studies have shown noncoding RNAs (ncRNAs), for instance, microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are involved in OA development and progression [7–9]. A large body of data has demonstrated lncRNA and circRNA can act as competitive endogenous RNAs (ceRNAs) via miRNAs sponge, leading to suppression of miRNAs [10–12]. miRNAs are common ncRNAs involved in regulating autoimmunity and inflammation, which can decrease the expression of targeted mRNAs. Available studies have revealed a variety of miRNAs are aberrantly expressed in OA patients [13, 14]. Our previous study has shown that lncRNA IGHCγ1 (also called IGHCGamma1) is involved in regulating arthritis [15], but the altering effect of lncRNA IGHCγ1 in OA is unknown. With development in bioinformatics and molecular biology techniques, the ceRNA mechanism based on interactions among lncRNA, miRNA, and mRNA has been extensively elucidated [16, 17]. However, whether lncRNA IGHCγ1 functions as a ceRNA in regulating OA needs to be investigated. The current study is aimed at elucidating the role of lncRNA IGHCγ1 and its mechanism in OA.

2. Materials and Methods

2.1. Characteristics of Participants. 88 cases and 36 healthy controls adjusted by age and sex are enrolled from the Affiliated Hospital of Qingdao University and People's Hospital of Rizhao, Shandong Province. Patients and controls have all signed the written informed consent. Research is under supervision of the Institutional Ethics Committee of our hospital. Detailed characteristics are presented in Table 1.

| Case        | Control |
|-------------|---------|
| Number      | 88      | 36     |
| Age (years) | 52.2 ± 15.8 | 50.3 ± 13.1 |
| Gender (F/M)| 50/38   | 20/16  |
| CRP (mg/l)  | 23.8 ± 4.1 | 5.8 ± 1.7 |
| ESR (mm/h)  | 28.4 ± 5.7 | 14.1 ± 5.9 |

2.2. Isolation of Peripheral Blood Mononuclear Cells (PBMCs). We separate PBMCs from cases and controls by Ficoll-Paque density gradient centrifugation. The lymphocyte isolation reagent (Solarbio, Beijing, China) is used for isolation of PBMCs based on the protocol. Cells were harvested for subsequent experiments.

2.3. Cell Transfection. THP-1 cell is purchased from ATCC (Porton Down, Salisbury, UK), which is cultured in RPMI 1640 (Invitrogen, NY, USA) with 10% fetal serum and antibiotics. Cells are stimulated by 100 nM PMA for 48 hours and differentiated into macrophage-like cells (called pTHP-1 cells). Pcdna3.1 lentivirus vectors with upregulation or downregulation of lncRNA IGHCγ1 and TLR4 are constructed and used to transfect pTHP-1 cells. We purchase miR-6891-3p mimics, inhibitors, and controls from Ribobio (Guangzhou, China). Lipofectamine 2000 (Invitrogen, NY, USA) is adopted for transfection based on the protocol.

2.4. Real-Time Polymerase Chain Reaction (PCR). To extract cytoplasm and nuclear RNAs separately, we adopted the kit for nuclear and cytoplasmic RNA purification (Norgen Biotek, Thorold, Canada). Then, RNAs were quantified by real-time PCR. TRizol reagent (Invitrogen, CA, USA) was applied. 500 ng RNAs are used for cDNA synthesis, which are isolated from cell lines or PBMCs according to the protocol. mRNAs of IL-6 and TNF-α, TLR4, and lncRNA IGHCγ1 are assayed by PCR and normalized to GAPDH based on the reaction system. Primers for human genes are shown as follows: TNF-α: forward: ATGTGGCAAGAGATGGG GAA, reverse: CTCACACCCCCACATCTGTCT; IL-6: forward: AGTCTGATGCTCAGTTCTGC, reverse: CCAGCGCTCTC AGAAACAGA, reverse: TCCCTTCAGCATGTGAAAGG; IGHCγ1: forward: GGTACGGCTGTCGGAGAAGC, reverse: GTGTTGTCCTGGGCTTTGAT; and GAPDH: forward: AA GGAATGAATGGGCCAGCC, reverse: TAGGGAAAGCA TCACCCGGA.

2.5. Cell Proliferation Assay. Cell counting kit-8 (CCK-8) (Vazyme Biotech, Nanjing, China) is applied to evaluate the growth of cells. In brief, 2 × 10^4 cells are seeded into cell culture plate and activated by LPS (1 μg/ml) for 12, 24, and 48 hrs. The absorption is determined following the protocol of CCK-8. CellLight 5-ethynyl-2′-deoxyuridine (EdU) is also carried out by use of Apollo567 kit (Ribobio, Guangzhou, China) for cell proliferation determination after stimulation by LPS for 24 hrs.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). In brief, lncRNA IGHCγ1 or TLR4 overexpressed cells (1 × 10^5/ml) are seeded into 96-well cell culture plate in serum-free medium overnight and then treated by miR-6891-3p mimics or not for 24 hrs. The supernatant was acquired for cytokine determination by use of the ELISA kits. IL-6 and TNF-α ELISA kits (R&D, Minnesota, USA) are adopted based on the protocol as previously described [18].

2.7. Western Blot. 30 μg/channel proteins are used for analysis. We extract proteins from pTHP-1 cells, which are lysed with RIPA buffer (Beyotime Technology, Shanghai, China). Proteins are separated by gel electrophoresis and recognized by TLR4, phosphorylated NF-κB (p-NF-κB) (Santa Cruz Biotechnology, CA, USA), GAPDH (CST, Boston, USA), and β-actin antibodies (Abcam, Cambridge, UK).

2.8. Fluorescence In Situ Hybridization (FISH). We carry out FISH assay to estimate the local expression of lncRNA IGHCγ1 in pTHP-1 cells. 5 × 10^5/ml cells are fixed with paraformaldehyde (4%). After protease-K incubation, pTHP-1 cells are dehydrated in a gradient manner with diverse concentrations of ethanol and then hybridized by IGHCγ1 probe labeled by fluorescence. DAPI (Life Technologies, Carlsbad, USA) is used to stain the nucleus. The fluorescence is scanned by a microscope.
expression in cells (fig. 3(c)). LPS could also increase the copy number of lncRNA IGHCγ1 relative to miR-6891-3p in pTHP-1 macrophages (figure 3(d)). Thirdly, lncRNA IGHCγ1 was demonstrated to be negatively related to miR-6891-3p regarding their expression in macrophages determined by real-time PCR (figure 3(e)). In order to further investigate whether the two noncoding RNAs can interact with each other by base complementary binding, we performed bioinformatics analysis. lncRNA IGHCγ1 was predicted to interact with miR-6891-3p after screening in database of starBase (http://starbase.sysu.edu.cn/). It could specifically recognize the seed sequence of miR-6891-3p (figure 3(f)). We hypothesized lncRNA IGHCγ1 could act as a ceRNA of miR-6891-3p in macrophages. The dual-luciferase reporter assay revealed that lncRNA IGHCγ1 could target miR-6891-3p (figure 3(g)). Moreover, RIP assay showed IGHCγ1 could be detected in the immunoprecipitates as demonstrated by real-time PCR. Taken together, lncRNA IGHCγ1 could function as a ceRNA of miR-6891-3p in macrophages.
Figure 2: lncRNA IGHC\(\gamma\)1 promoted macrophage proliferation and migration. (a) Real-time PCR showed lncRNA IGHC\(\gamma\)1 expression after overexpression in macrophages (\(N = 3; \ast \ast \ast P < 0.001\)). (b) Real-time PCR presented IGHC\(\gamma\)1 expression after knockdown in macrophages (\(N = 3; \ast \ast \ast P < 0.001\)). (c) CCK-8 revealed that lncRNA IGHC\(\gamma\)1 enhanced the proliferation of macrophages (\(N = 3; * P < 0.05; \ast \ast P < 0.01\)). (d) siRNA of IGHC\(\gamma\)1 inhibited macrophage proliferation assayed by CCK-8 (\(N = 3\); compared with the control group, *\(P < 0.05\); \ast \ast \ast P < 0.01\)). (e) IGHC\(\gamma\)1 promoted macrophage proliferation when it was upregulated in cells assayed by EdU (representative pictures of EdU assays). (f) lncRNA IGHC\(\gamma\)1 promoted macrophage proliferation (data of three repeated EdU experiments; compared with controls, \ast \ast \ast P < 0.01\)).
3.4. Downregulation of miR-6891-3p Enhanced Cell Proliferation and Migration of Macrophages. miR-6891-3p has been reported to be a potential regulator in inflammation and immunity [19]. Significantly reduced miR-6891-3p was also demonstrated in OA PBMCs and pTHP-1 cells under stimulation of LPS (Figures 4(a) and 4(b)). To elucidate its functions in OA, we evaluated the influence of miR-6891-3p on macrophage proliferation and migration by use of inhibitors of miR-6891-3p. The real-time PCR showed inhibitors of miR-6891-3p could efficiently inhibit miR-6891-3p expression in macrophages (Figure 4(c)). After downregulation of miR-6891-3p, pTHP-1 cell proliferation was significantly promoted as demonstrated by CCK-8 analysis (Figure 4(d)). Taken together, downregulation of miR-6891-3p promoted macrophage proliferation in vitro.

![Figure 3: lncRNA IGHCγ1 functioned as ceRNA via binding miR-6891-3p. (a) Real-time PCR revealed lncRNA IGHCγ1 primarily existed in the cytoplasm of macrophages (these data represented 3 independent experiments; compared with controls, \(*** P < 0.001\); compared with the LPS-treated macrophage group, \(*** P < 0.001\)). (b) FISH also showed lncRNA IGHCγ1 was mainly expressed in pTHP-1 cytoplasm (pictures represent one of three repeated FISH assays). (c) Increased copy number gains of lncRNA IGHCγ1 in OA PBMC samples (\( N = 32 \)). (d) Increased copy number gains of lncRNA IGHCγ1 relative to miR-6891-3p in pTHP-1 cells stimulated by LPS (\( N = 3; ^* P < 0.05; ^** P < 0.01 \)). (e) As shown by real-time PCR, the expression of miR-6891-3p in macrophages was significantly reduced when lncRNA IGHCγ1 was overexpressed (\( N = 3; ^** P < 0.01 \)). (f) The seed sequence of miR-6891-3p recognized by lncRNA IGHCγ1 (data were screened in database of starBase). (g) Decreased luciferase activity in lncRNA IGHCγ1 WT transfected cells but not lncRNA IGHCγ1 MT cells (\( N = 3; ^*** P < 0.001 \)). (h) RIP assay showed IGHCγ1 in immunoprecipitates. Cell lysates were immunoprecipitated by use of Ago2 antibody and IgG. IGHCγ1 expression is determined by real-time PCR (\( N = 3; ^** P < 0.01 \)).

![Graphs showing the expression and localization of lncRNA IGHCγ1 and miR-6891-3p in macrophages and pTHP-1 cells.](image)
3.5. TLR4 Was a Target of miR-6891-3p. Here, TLR4 was predicted to be the potential targeted gene of miR-6891-3p scanned in TargetScan database (http://www.targetscan.org). The 3′UTR of TLR4 contains binding sequence of miR-6891-3p (Figure 5(a)). Downregulation of miR-6891-3p increased the expression of TLR4 in macrophages, which had been demonstrated by real-time PCR, miR-6891-3p inhibitors efficiently inhibited its expression in macrophages (N = 3; **P < 0.01). (d) CCK-8 showed elevated proliferation of pTHP-1 cells administrated with miR-6891-3p inhibitors (N = 3; *P < 0.05; **P < 0.01).

3.6. lncRNA IGHCγ1 Promoted Inflammation by Regulating miR-6891-3p/TLR4 in Macrophages. The CCK-8 assay showed that upregulation of TLR4 enhanced the proliferation of macrophages (Figure 6(a)). Besides, overexpression of TLR4 could promote IL-6 and TNF-α expression in macrophages (Figures 6(b) and 6(c)), which suggested TLR4 played a crucial role in macrophage inflammatory response. Subsequently, we performed rescue tests using miR-6891-3p mimics to rescue the intermediate effect of miR-6891-3p in the lncRNA IGHCγ1-miR-6891-3p-TLR4 axis. The upregulation of TLR4 by lncRNA IGHCγ1 could be suppressed with miR-6891-3p mimics as demonstrated by real-time PCR and western blot (Figures 6(d)–6(f)). Taken together, lncRNA IGHCγ1 aggravated TLR4-mediated inflammation by acting as a ceRNA for miR-6891-3p in pTHP-1 macrophages.

3.7. lncRNA IGHCγ1 Acted as a ceRNA for miR-6891-3p via NF-κB. NF-κB is a downstream signaling molecule and a key transcriptional factor involved in regulating TLR4-mediated autoimmune and inflammation. Therefore, the effect of lncRNA IGHCγ1 on the downstream signaling pathway of TLR4 was investigated. lncRNA IGHCγ1 enhanced NF-κB phosphorylation by sponging miR-6891-3p, while miR-6891-3p mimics could inhibit NF-κB activation by rescuing the proinflammatory effect of lncRNA IGHCγ1 in macrophages (Figures 7(a) and 7(b)). In addition, the activity of NF-κB in macrophages was estimated. As shown in Figure 7(c), NF-κB activity was significantly enhanced in pTHP-1 cells with lncRNA IGHCγ1 upregulation, whereas miR-6891-3p mimics could reduce the activation of NF-κB. Moreover, lncRNA IGHCγ1 promoted the generation of IL-6 and TNF-α cytokines in the downstream of the NF-κB pathway in macrophages (Figures 7(d) and 7(e)). As a result, it could be concluded that lncRNA IGHCγ1 acted as a ceRNA for miR-6891-3p and thus induced NF-κB activation and downstream cytokine production in macrophages.
4. Discussion

lncRNAs belong to noncoding RNAs, which do not encode proteins but possess important biological activity. Accumulating data have suggested lncRNAs are crucial noncoding RNAs involved in regulating cancer, autoimmunity, and inflammation, such as lincRNA-Cox2 and lncRNA-Dreh [20–22]. During the past few years, lncRNA has been demonstrated to be involved in OA with abnormal expression and/or dysregulated functions, particularly in inflammatory cells such as macrophages [23, 24]. Those differentially expressed lncRNAs are specific in OA and may be used as diagnostic or therapeutic targets in the future. lncRNA IGHCγ1 is an aberrantly expressed lncRNA in inflammatory arthritis [15]. However, the precise role of lncRNA IGHCγ1 in OA is not fully elucidated. In the current study, lncRNA IGHCγ1 has been found to be upregulated in OA. It enhances the proliferation of macrophages in vitro. Most interestingly, lncRNA IGHCγ1 is capable of acting as a ceRNA for miR-6891-3p in macrophages. Furthermore, lncRNA IGHCγ1 aggravates inflammation via regulating the miR-6891-3p/TLR4/NF-κB axis in macrophages. These findings are useful for investigating biological markers for OA treatment.

As a kind of noncoding RNA, lncRNA can function as ceRNA and restrain miRNA by lncRNA-miRNA sponge in cancer, cardiovascular disease, and so on [25, 26]. Several functional lncRNAs have been demonstrated to influence osteoblast differentiation and OA pathogenesis through lncRNA–miRNA–mRNA ceRNA mechanism [27–30]. Some lncRNAs can affect the degradation of the extracellular matrix of chondrocytes by functioning as ceRNAs of specific miRNAs and thus participate in the development and progression of OA, such as lncRNAs of HOTTIP, MEG3, and XIST [28, 29, 31]. Some lncRNAs have been well documented to regulate the differentiation of osteoblasts via the lncRNA-miRNA ceRNA network [27]. Besides, Fan et al. have found that DANCR can regulate the progression of OA via targeting miR-577 through ceRNA mechanism [32]. Moreover, the study by Mao et al. shows the evidence that lncRNA HOTAIR is involved in OA pathogenesis by regulating synovial inflammation and proliferation and apoptosis of synoviocytes [33]. However, whether lncRNAs regulate inflammation in OA based on the lncRNA-miRNA ceRNA network warrants to be investigated. In this study, lncRNA IGHCγ1 has been firstly revealed to be dysregulated in OA, which is capable of acting as a ceRNA for miR-6891-3p and promoting inflammation in macrophages. As a result, all
findings strongly support that the lncRNA-miRNA network plays a critical role in OA. Accumulating evidence has suggested miRNAs exert significant effects on the development of OA by regulating targeted genes at the posttranscriptional level. miRNAs are involved in articular cartilage damage and repair, extracellular matrix degradation, arthritis, and maintenance of bone homeostasis [34–36]. Some established miRNAs dysregulated in OA have been documented to regulate in a targeted manner certain toll-like receptors (TLRs), the well-known pattern recognition receptors (PRRs) participating in innate immunity [37–39]. miR-6891-3p has been implicated to regulate in a targeted manner TLRs in inflammatory arthritis [19]. Here, we hypothesize miR-6891-3p is involved in OA...
pathogenesis by targeting TLR4, because TLR4 is predicted to be the targeted gene of miR-6891-3p suggested by bioinformatics analysis. We have demonstrated that miR-6891-3p is dysregulated in OA and macrophages, and lncRNA IGHCγ1 can function as a miR-6891-3p sponge and influence the effect of TLR4 on macrophage inflammation in vitro.

It has been well documented that macrophages play a critical role in inflammatory response and autoimmunity against virus infection and tumorigenesis, which are also major cells involved in OA pathogenesis [37]. TLRs are critical PRRs mainly expressed on the membrane or in macrophages. A number of studies have implicated that TLR-PRRs mainly expressed on the membrane or in macrophages in OA, TLR-PRRs are critical in in vivo and in vitro inflammatory response in OA. The lncRNA IGHCγ1 as a ceRNA warrants being considered as a potential biomarker for OA patients.

Although lncRNA IGHCγ1 has been documented to aggravate TLR4-mediated inflammation in macrophages via sponging miR-6891-3p in vitro, the effect of lncRNA IGHCγ1 as a ceRNA warrants being confirmed in in vivo studies including animal models of OA. In addition, an IGHCγ1/miR-6891-3p/TLR4/NF-κB axis has been demonstrated in OA pathogenesis, which serves as target for the treatment of OA patients.

In summary, findings in this study will help to understand OA pathogenesis. The lncRNA IGHCγ1/miR-6891-3p/TLR4/NF-κB axis will offer potential biomarkers for OA treatment. Nevertheless, more studies are needed to fully elucidate the molecular mechanism of lncRNA IGHCγ1 in OA, especially studies in vivo.
Data Availability

Data in this study is available from the corresponding authors upon request.

Disclosure

Pengjun Zhang, Jianmei Sun, Caihong Liang, and Bingjie Gu are co-first authors.

Conflicts of Interest

All authors have no conflicts of interest to disclose.

Acknowledgments

We acknowledge funds from the China National Natural Science Foundation (81772329, 81801554, and 81800387).

References

[1] C. R. Scanzelloand and S. R. Goldring, “The role of synovitis in osteoarthritis pathogenesis,” Bone, vol. 51, no. 2, pp. 249–257, 2012.

[2] A. Mathiessenand and P. G. Conaghan, “Synovitis in osteoarthritis: current understanding with therapeutic implications,” Arthritis Research & Therapy, vol. 19, no. 1, p. 18, 2017.

[3] J. Martel-Pelletier, A. J. Barr, F. M. Cicuttini et al., “Osteoarthritis,” Nature Reviews Disease Primers, vol. 2, no. 1, p. 16070, 2016.

[4] J. C. Fernandes, J. Martel-Pelletierand, and J. P. Pelletier, “The role of cytokines in osteoarthritis pathophysiology,” Biotherapy, vol. 39, no. 1-2, pp. 237–246, 2002.

[5] T. M. Griffindand and C. R. Scanzello, “Innate inflammation and synovial macrophages in osteoarthritis pathophysiology,” Clinical and Experimental Rheumatology, vol. 37, no. 5, Supplement 120, pp. 57–63, 2019.

[6] L. Gaffney, P. Warren, E. A. Wrona, M. B. Fisher, and D. O. Freytes, “Macrophages’ role in tissue disease and regeneration,” Results and Problems in Cell Differentiation, vol. 62, pp. 245–271, 2017.

[7] S. D. Jiang, J. Lu, Z. H. Deng, Y. S. Li, and G. H. Lei, “Long noncoding RNAs in osteoarthritis,” Joint, Bone, Spine, vol. 84, no. 5, pp. 553–556, 2017.

[8] J. Huang, L. Zhao, Y. Fan et al., “The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression,” Nature Communications, vol. 10, no. 1, article 2876, 2019.

[9] Z. B. Zhou, G. X. Huang, Q. Fu et al., “Circrna.33186 contributes to the pathogenesis of osteoarthritis by sponging mir-127-5p,” Molecular Therapy, vol. 27, no. 3, pp. 531–541, 2019.

[10] B. Wei, W. Kong, X. Mou, and S. Wang, “Comprehensive analysis of tumor immune infiltration associated with endogenous competitive RNA networks in lung adenocarcinoma,” Pathology-Research and Practice, vol. 215, no. 1, pp. 159–170, 2019.

[11] S. Li, Y. Pei, W. Wang, F. Liu, K. Zheng, and X. Zhang, “Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2,” Cell Cycle, vol. 18, no. 11, pp. 1281–1291, 2019.

[12] A. C. Panda, “Circular RNAs act as miRNA sponges,” Advances in Experimental Medicine and Biology, vol. 1087, pp. 67–79, 2018.

[13] B. Xu, Y. Y. Li, J. Ma, and F. X. Pei, “Roles of microRNA and signaling pathway in osteoarthritis pathogenesis,” Journal of Zhejiang University. Science. B, vol. 17, no. 3, pp. 200–208, 2016.

[14] M. Zhang, K. Lygrisseand, and J. Wang, “Role of microRNA in osteoarthritis,” Journal of Arthritis, vol. 6, no. 2, p. 239, 2017.

[15] D. Xu, Y. Jiang, L. Yang et al., “Long noncoding rnas expression profile and functional networks in rheumatoid arthritis,” Oncotarget, vol. 8, no. 56, pp. 95280–95292, 2017.

[16] B. Y. Mo, X. H. Guo, M. R. Yang et al., “Long non-coding RNA gaplinc promotes tumor-like biologic behaviors of fibroblast-like synoviocytes as microRNA sponging in rheumatoid arthritis patients,” Frontiers in Immunology, vol. 9, p. 702, 2018.

[17] H. J. Zhang, Q. F. Wei, S. J. Wang et al., “LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway,” International Immunopharmacology, vol. 50, pp. 283–290, 2017.

[18] Y. Wang, F. Zheng, G. Gao et al., “MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis,” Journal of Cellular Biochemistry, vol. 120, no. 2, pp. 1133–1140, 2019.

[19] D. Xu, M. Song, C. Chai et al., “Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4,” Journal of Cellular Physiology, vol. 234, no. 2, pp. 1502–1511, 2019.

[20] Y. He, X. M. Meng, C. Huang et al., “Long noncoding rnas: novel insights into hepatocellular carcinoma,” Cancer Letters, vol. 344, no. 1, pp. 20–27, 2014.

[21] C. H. Li and Y. Chen, “Targeting long non-coding RNAs in cancers: progress and prospects,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 8, pp. 1895–1910, 2013.

[22] S. Carpenter, D. Aiello, M. K. Atianand et al., “A long noncoding RNA mediates both activation and repression of immune response genes,” Science, vol. 341, no. 6147, pp. 789–792, 2013.

[23] K. Qi, R. Lin, C. Xue et al., “Long non-coding RNA (lncRNA) CAIF is downregulated in osteoarthritis and inhibits LPS-induced interleukin 6 (IL-6) upregulation by downregulation of miR-1246,” Medical Science Monitor, vol. 25, pp. 8019–8024, 2019.

[24] B. He and D. Jiang, “HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis,” Cell Biology International, 2020.

[25] W. Xuan, H. Yu, X. Zhang, and D. Song, “Crosstalk between the lncrna uca1 and microRNAs in cancer,” FEBS Letters, vol. 593, no. 15, pp. 1901–1914, 2019.

[26] M. Li, L. Duan, Y. Li, and B. Liu, “Long noncoding RNA/circular noncoding RNA–miRNA–mRNA axes in cardiovascular diseases,” Life Sciences, vol. 233, article 116440, 2019.

[27] S. Hong, S. Hu, Z. Kang et al., “Identification of functional lncRNAs based on competing endogenous RNA network in osteoblast differentiation,” Journal of Cellular Physiology, vol. 235, no. 3, pp. 2232–2244, 2020.

[28] K. Chen, H. Zhu, M. Q. Zheng, and Q. R. Dong, “LncRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis,” Cartilage, 2019.
[29] T. Wang, Y. Liu, Y. Wang, X. Huang, W. Zhao, and Z. Zhao, "Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis," *International Journal of Molecular Medicine*, vol. 44, no. 2, pp. 630–642, 2019.

[30] Y. Chen, Y. Lin, Y. Bai, D. Cheng, and Z. Bi, "A long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network identifies eight lncRNA biomarkers in patients with osteoarthritis of the knee," *Medical Science Monitor*, vol. 25, pp. 2058–2065, 2019.

[31] G. Mao, Y. Kang, R. Lin et al., "Long non-coding RNA HOT-TIP promotes CCL3 expression and induces cartilage degradation by sponging miR-455-3p," *Frontiers in Cell and Development Biology*, vol. 7, p. 161, 2019.

[32] X. Fan, J. Yuan, J. Xie et al., "Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis," *Biochemical and Biophysical Research Communications*, vol. 500, no. 3, pp. 658–664, 2018.

[33] T. Mao, C. He, H. Wu, B. Yang, and X. Li, "Silencing lncRNA HOTAIR declines synovial inflammation and synoviocyte proliferation and promotes synoviocyte apoptosis in osteoarthritis rats by inhibiting Wnt/β-catenin signaling pathway," *Cell Cycle*, vol. 18, no. 22, pp. 3189–3205, 2019.

[34] T. Swingler, L. Niu, P. Smith et al., "The function of microRNAs in cartilage and osteoarthritis," *Clinical and Experimental Rheumatology*, vol. 37, no. 5, Supplement 120, pp. 40–47, 2019.

[35] L. Chen, Q. Li, J. Wang et al., "MiR-29b-3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN," *Journal of Cellular and Molecular Medicine*, vol. 21, no. 12, pp. 3347–3359, 2017.

[36] Z. Ouyang, T. Tan, C. Liu et al., "Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd₃(CO₃)₆@PDA nanoparticles via TLR-2/NF-κB/Akt signaling," *Biomaterials*, vol. 205, pp. 50–63, 2019.