Generalized Twin Gaussian Processes using Sharma-Mittal Divergence

Mohamed Elhoseiny · Ahmed Elgammal

Received: date / Accepted: date

Abstract There has been a growing interest in mutual information measures due to their wide range of applications in Machine Learning and Computer Vision. In this manuscript, we present a generalized structured regression framework based on Sharma-Mittal divergence, a relative entropy measure, firstly addressed in the Machine Learning community in this work. Sharma-Mittal (SM) divergence is a generalized mutual information measure for the widely used Rényi, Tsallis, Bhattacharyya, and Kullback-Leibler (KL) relative entropies. Specifically, we study Sharma-Mittal divergence as a cost function in the context of the Twin Gaussian Processes (TGP) (Bo and Sminchisescu 2010), which generalizes over the KL-divergence without computational penalty. We show interesting properties of Sharma-Mittal TGP (SMTGP) through a theoretical analysis, which covers missing insights in the traditional TGP formulation. However, we generalize this theory based on SM-divergence instead of KL-divergence which is a special case. Experimentally, we evaluated the proposed SMTGP framework on several datasets. The results show that SMTGP reaches better predictions than KL-based TGP, since it offers a bigger class of models through its parameters that we learn from the data.

Keywords Sharma-Mittal Entropy · Structured Regression · Twin Gaussian Processes · Pose Estimation · Image Reconstruction
1 Introduction

Since 1950s, a lot of work has been done to measure information and probabilistic metrics. Claude Shannon (Shannon 2001) proposed a powerful framework to mathematically quantify information, which has been the foundation of the information theory and the development in communication, networking, and a lot of Computer Science applications. Many problems in Physics and Computer Science require a reliable measure of information divergence, which have motivated many mathematicians, physicists, and computer scientists to study different divergence measures. For instance, Rényi (Rényi 1960), Tsallis (Tsallis 1988) and Kullback-Leibler divergences (Gray 1990) have been applied in many computer science applications. They have been effectively used in machine learning for many tasks including subspace analysis (Learned-Miller and Fisher-III 2003; Póczos and Lörincz 2005; Van Hulle 2008; Szabó et al. 2007), facial expression recognition (Shan et al 2005), texture classification (Hero et al. 2001), image registration (Kybic 2006), clustering (Aghagolzadeh et al. 2007), non-negative matrix factorization (Wang and Zhang 2013) and 3D pose estimation (Sigal et al 2010).

In the Machine Learning community, a lot of attempts have been done to understand information and connect it to uncertainty. Many of proposed terminologies turns out to be different views of the same measure. For instance, Bregman Information (Banerjee et al. 2005), Statistical Information (DeGroot 1962), Csiszár-Morimoto f-divergence, and the gap between the expectations in Jensen’s inequality (i.e., the Jensen gap) (Jensen 1906) turn out to be equivalent to the maximum reduction in uncertainty for convex functions, in contrast with the prior probability distribution (Reid and Williamson 2011); “Mathematics is the Art of Giving the Same Name to Different Things, Henri Poincare”.

A lot of work has been proposed in order to unify divergence functions (Amari and Nagaoka 2000; Reid and Williamson 2011; Zhang 2007; 2004). Cichocki and Ichisa Amari (2010) considered explicitly the relationships between Alpha-divergence (Cichocki et al. 2008), Beta-divergence (Kompass 2007) and Gamma-divergence (Cichocki and Ichis Amari 2010); each of them is a single-parameter divergence measure. Then, Cichocki et al (2011) introduced a two-parameter family. However, we study here a two-parameter divergence measure (Sharma 1975), investigated in the Physics community, which is interesting to be considered in the machine learning community.

Aktürk et al (2007), physicists studied an entropy measure called Sharma-Mittal on thermostatics in 2007, which was originally introduced by Sharma BD et al (Sharma 1975). Sharma-Mittal (SM) divergence has two parameters (α and β), detailed later in Section 2. Aktürk et al (2007) showed that SM entropy generalizes both Tsallis ($\beta \to \alpha$) and Rényi entropy ($\beta \to 1$) in the limiting cases of its two parameters. In addition, it can be shown that SM entropy converges to Shannon entropy as $\alpha, \beta \to 1$. Aktürk et al also suggested a physical meaning of SM entropy, which is the free energy difference between the equilibrium and the off-equilibrium distribution. In 2008, SM entropy was also investigated in multidimensional harmonic oscillator systems (Aktürk et al. 2008). Similarly, SM relative entropy (mutual information) generalizes each of the Rényi, Tsallis and KL mutual

1 This work was proposed four years before Cichocki et al (2011) and It was not considered either as a prior work in the Machine learning community as far as we know.
information divergences. This work in physics domain motivated us to investigate SM Divergence in the Machine Learning domain.

A closed-form expression for SM divergence between two Gaussian distributions was recently proposed (Nielsen and Nock 2012), which motivated us to study this measure in structured regression setting. In this paper, we present a generalized framework for structured regression utilizing a family of divergence measures that includes SM divergence, Rényi divergence, Tsallis divergence and KL divergence. In particular, we study SM divergence within the context of Twin Gaussian Processes (TGP), a state-of-the-art structured-output regression method. Bo and Sminchisescu (2010) proposed TGP as a structured prediction approach based on estimating the KL divergence from the input to output Gaussian Processes, denoted by KLTGP. Since KL divergence is not symmetric, Bo and Sminchisescu (2010) also studied TGP based on KL divergence from the output to the input data, denoted by IKLTGP (Inverse KLTGP). In this work, we present a generalization for TGP using the SM divergence, denoted by SMTGP. Since, SM divergence is a two-parameter family, we study the effect of these parameter and how they are related to the distribution of the data. In the context TGP, we show that these two parameters, α and β, could be interpreted as distribution bias and divergence order in the context of structured learning. We also highlight probabilistic causality direction of the SM objective function.

More specifically, there are six contributions to this paper:

1. The first presentation of SM divergence in the Machine Learning Community
2. A generalized version of TGP based on SM divergence to predict structured outputs; see Subsections 3.2
3. A simplification to the SM divergence closed-form expression in (Nielsen and Nock 2012) for Multi-variate Gaussian Distribution, which reduced both the cost function evaluation and the gradient computation, used in our prediction framework; see Subsections 3.3 and 3.4
4. Theoretical analysis of TGP under SM divergence in Section 4
5. A certainty measure, that could be associated with each structured output prediction, is argued in subsection 4.2
6. An experimental demonstration that SM divergence improves on KL divergence under TGP prediction by correctly tuning α and β through cross validation on two toy examples and three real datasets; see Section 5

The rest of this paper is organized as follows: Section 2 presents background on SM Divergence and its available closed-form expression for multivariate Gaussians. Section 3 presents the optimization problem used in our framework and the derived analytic gradients. Section 4 presents our theoretical analysis on TGP under our framework from spectral perspective. Section 5 presents our experimental validation. Finally, Section 6 discusses and concludes our work.

2 Sharma-Mittal Divergence

This section addresses a background on SM-divergence and its closed form for the multivariate Gaussian distribution.

2 that is why it is called Twin Gaussian Processes
3 This is mainly detailed in section 4
4 This simplification could be useful out of the context TGP, while computing SM-divergence between two multi-variate distributions
2.1 SM Family Divergence Measures

The SM divergence, $D_{\alpha,\beta}(p : q)$, between two distributions $p(t)$ and $q(t)$ is defined as (Sharma 1975)

$$D_{\alpha,\beta}(p : q) = \frac{1}{\beta - 1} \left(\int_{-\infty}^{\infty} p(t)^\alpha q(t)^{1-\alpha} dt \right)^{\frac{1-\beta}{1-\alpha}} - 1), \forall \alpha > 0, \alpha \neq 1, \beta \neq 1. \quad (1)$$

It was shown in (Akturk et al 2007) that most of the widely used divergence measures are special cases of SM divergence. Each of the Rényi, Tsallis, and KL divergences can be defined as limiting cases of SM divergence as follows:

$$R_\alpha(p : q) = \lim_{\beta \to 1} D_{\alpha,\beta}(p : q) = \frac{1}{\alpha - 1} \ln \left(\int_{-\infty}^{\infty} p(t)^\alpha q(t)^{1-\alpha} dt \right), \forall \alpha > 0, \alpha \neq 1. \quad (2)$$

$$T_\alpha(p : q) = \lim_{\beta \to 1, \alpha \to 1} D_{\alpha,\beta}(p : q) = \int_{-\infty}^{\infty} p(t) \ln \left(\frac{p(t)}{q(t)} \right) dt$$

where $R_\alpha(p : q)$, $T_\alpha(p : q)$ and $KL(p : q)$ denotes Rényi, Tsallis, KL divergences respectively. We also found that Bhattacharyya divergence (Kailath 1967), denoted by $B(p : q)$ is a limit case of SM and Rényi divergences as follows

$$B(p : q) = 2 \lim_{\beta \to 1, \alpha \to 0.5} D_{\alpha,\beta}(p : q) = 2 \lim_{\alpha \to 0.5} R_\alpha(p : q) = -\ln \left(\int_{-\infty}^{\infty} p(x)^{0.5} q(x)^{0.5} dx \right).$$

While SM is a two-parameter generalized entropy measure originally introduced by Sharma (1975), it is worth to mention that two-parameter family of divergence functions has been recently proposed in the machine learning community since 2011 (Cichocki et al 2011; Zhang 2013). It is shown in (Cichocki and Ichi Amari 2010) that the Tsallis entropy is connected to the Alpha-divergence (Cichocki et al 2008), and Beta-divergence (Kompass 2007), while the Rényi entropy is related to the Gamma-divergences (Cichocki and Ichi Amari 2010). The Tsallis and Rényi relative entropies are two different generalization of the standard Boltzmann-Gibbs entropy (or Shannon information). However, we focus here on SM divergence for three reasons (1) It generalizes over a considerable family of functions suitable for structured regression problems (2) Possible future consideration of this measure in works that study entropy and divergence functions, (3) SM divergence has a closed-form expression, recently proposed for multivariate Gaussian distributions (Nielsen and Nock 2012), which is interesting to study.

Another motivations of this work is to study how the two parameters of the SM Divergence, as a generalized entropy measure, affect the performance of the structured regression problem. Here we show an analogy in the physics domain that motivates our study. As indicated by Masi (2005) in physics domain, it is important to understand that Tsallis and Rényi entropies are two different generalizations along two different paths. Tsallis generalizes to non-extensive systems.

5 Alpha and Beta divergence should not be confused with α and β parameters of Sharma Mittal divergence

6 i.e., In Physics, Entropy is considered to have an extensive property if its value depends on the amount of material present; Tsallis is an non-extensive entropy
while Rényi to quasi-linear means. SM entropy generalizes to non-extensive sets and non-linear means having Tsallis and Rényi measures as limitin cases. Hence, in TGP regression setting, this indicates resolving the trade-off of having a control of the direction of bias towards one of the distributions (i.e. input and output distributions) by changing α. It also allows higher-order divergence measure by changing β. Another motivation from Physics is that SM entropy is the only entropy that gives rise to a thermostatistics based on escort mean values and admitting of a partition function (Frank and Plastino 2002).

2.2 SM-divergence Closed-Form Expression for Multivariate Gaussians

In order to solve optimization problems efficiently over relative entropy, it is critical to have a closed-form formula for the optimized function, which is SM relative entropy in our framework. Prediction over Gaussian Processes (Rasmussen and Williams 2005) is performed practically as a multivariate Gaussian distribution. Hence, we are interested in finding a closed-form formula for SM relative entropy of distribution N_q from N_p, such that $N_p = \mathcal{N}(\mu_p, \Sigma_p)$, and $N_q = \mathcal{N}(\mu_q, \Sigma_q)$. In 2012, Frank Nielsen proposed a closed form expression for SM divergence (Nielsen and Nock 2012) as follows

$$D_{\alpha,\beta}(N_p : N_q) = \frac{1}{\beta - 1} \left[\left(\frac{\Sigma_p^{\alpha} \Sigma_q^{1-\alpha}}{|(\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1})^{-1}|} \right)^{\frac{1}{\beta(1-\alpha)}} - 1 \right]$$

$$e^{-\alpha \frac{(1-\beta)}{2} \Delta \mu^T (\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1})^{-1} \Delta \mu} - 1$$

where $0 \leq \alpha \leq 1$, $\Delta \mu = \mu_p - \mu_q$, $\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1}$ is a positive definite matrix, and $| \cdot |$ denotes the matrix determinant. The following section builds on this SM closed-form expression to predict structured output under TGP, which leads an analytic gradient of the SMTGP cost function with cubic computational complexity. We then present a simplified expression of the closed-form expression in Equation (3) which results in an equivalent SMTGP analytic gradient of quadratic complexity.

3 Sharma-Mittal TGP

In prediction problems, we expect that similar inputs produce similar predictions. This notion was adopted in (Bo and Sminchisescu 2010; Yamada et al 2012) to predict structured output based on KL divergence between two Gaussian Processes. This section presents TGP for structured regression by minimizing SM relative entropy. We follow that by our theoretical analysis of TGPs in Section 4.

We begin by introducing some notation. Let the joint distributions of the input and the output be defined as follows

$$p(X, x) = N_X(0, K_{X|x}), p(Y, y) = N_Y(0, K_{Y|y}),$$

$$K_{X|x} = \begin{bmatrix} K_X & K_X^T \\ K_X & K_X \end{bmatrix}, K_{Y|y} = \begin{bmatrix} K_Y & K_Y^T \\ K_Y & K_Y \end{bmatrix}$$

where $x_{(d_x \times 1)}$ is a new input test point, whose unknown outcome is $y_{(d_y \times 1)}$ and the training set is $X_{(N \times d_x)}$ and $Y_{(N \times d_y)}$ matrices. K_X is an $N \times N$ matrix with

7 i.e., Rényi entropy is could be interpreted as an averaging of quasi-arithmetic function [Akturk et al 2007]

8 escort mean values are useful theoretical tools, used in thermostatistics, for describing basic properties of some probability density function [Tsallis et al 2009]
\((K_X)_{ij} = k_X(x_i, x_j)\), such that \(k_X(x_i, x_j)\) is the similarity kernel between \(x_i\) and \(x_j\). \(K_X^x\) is an \(N \times 1\) column vector with \((K_X^x)_{i} = k_X(x_i, x)\). Similarly, \(K_Y\) is an \(N \times N\) matrix with \((K_Y)_{ij} = k_Y(y_i, y_j)\), such that \(k_Y(y_i, y_j)\) is the similarity kernel between \(y_i\) and \(y_j\), and \(K_Y^x\) is an \(N \times 1\) column vector with \((K_Y^x)_{i} = k_Y(y_i, y)\). Having applied Gaussian-RBF kernel functions, the similarity kernels for inputs and outputs will be in the form of \(k_X(x_i, x_j) = \exp(-\frac{\|x_i-x_j\|^2}{2\sigma_x^2}) + \lambda_X \delta_{ij}\) and \(k_Y(y_i, y_j) = \exp(-\frac{\|y_i-y_j\|^2}{2\rho_y^2}) + \lambda_Y \delta_{ij}\), respectively, where \(\rho_x\) and \(\rho_y\) are the corresponding kernel bandwidths, \(\lambda_X\) and \(\lambda_Y\) are regularization parameters to avoid overfitting and to handle noise in the data, and \(\delta_{ij} = 1\) if \(i = j\), 0 otherwise.

3.1 KLTGP and IKLTGP Prediction

Bo and Sminchisescu (2010) firstly proposed TGP which minimizes the Kullback-Leibler divergence between the marginal GP of inputs and outputs. However, they were focusing on the Human Pose Estimation problem. As a result, the estimated pose using TGP is given as the solution of the following optimization problem (Bo and Sminchisescu 2010)

\[
\hat{y} = \arg\min_y [L_{KL}(x, y) = k_Y(y, y) - 2K_Y^T u_x - \eta_x \log(k_Y(y, y) - K_Y^T(K_Y)^{-1}K_Y^y)]
\]

where \(u_x = (K_X)^{-1}K_x\), \(\eta_x = k_X(x, x) - K_X^T u_X\). The analytical gradient of this cost function is defined as follows (Bo and Sminchisescu 2010)

\[
\frac{\partial L_{KL}(x, y)}{\partial y(d)} = \frac{\partial k_Y(y, y)}{\partial y(d)} - 2u_x^T \frac{\partial K_Y}{\partial y(d)} - \eta_x \frac{\log(\frac{\partial k_Y(u, y)}{\partial y(d)}) - 2K_Y^T(K_Y)^{-1}K_Y^y}{k_Y(y, y) - K_Y^T(K_Y)^{-1}K_Y^y} (6)
\]

where \(d\) is the dimension index of the output \(y\). For Gaussian kernels, we have

\[
\frac{\partial k_Y(y, y)}{\partial y(d)} = 0, \quad \frac{\partial K_Y}{\partial y(d)} = \begin{bmatrix}
-\frac{1}{\rho_x^2} (y(d) - y_1)k_Y(y, y_1) \\
-\frac{1}{\rho_y^2} (y(d) - y_2)k_Y(y, y_2) \\
\vdots \\
-\frac{1}{\rho_y^2} (y(d) - y_N)k_Y(y, y_N)
\end{bmatrix}
\]

The optimization problem can be solved using a second order BFGS quasi-Newton optimizer with cubic polynomial line search for optimal step size selection. Since KL divergence is not symmetric, Bo and Sminchisescu (2010) also studied inverse KL-divergence between the output and the input distribution under TGP; we denote this model as IKLTGP. Equation 7 and 8 show the IKLTGP cost function and its corresponding gradient[9]

\[
\hat{y} = \arg\min_y [L_{IKL}(x, y) = -2K_X^T u_y + u_y^T K_X u_y + \eta_y (\log(\eta_y) - \log(\eta_x))], \quad (7)
\]

\[
u_y = K_Y^{-1}K_Y^y, \quad \eta_y = k_Y(y, y) - K_Y^T u_y
\]

\[
\frac{\partial L_{IKL}(x, y)}{\partial y(d)} = -2K_X^T K_Y^{-1} \frac{\partial K_Y^y}{\partial y(d)} + 2u_y^T K_X K_Y^{-1} \frac{\partial K_Y^y}{\partial y(d)} - 2(\log(\eta_y) - \log(\eta_x) + 1)K_Y^T K_Y^{-1} \frac{\partial K_Y^y}{\partial y(d)} \quad (8)
\]

[9] we derived this equation since it was not provided in Bo and Sminchisescu (2010)
From Equations 6 and 3, it is not hard to see that the gradients of KLTGP and IKLTGP can be computed in quadratic complexity, given that K_X^{-1} and K_Y^{-1} are precomputed once during training and stored, as it depends only on the training data. This quadratic complexity of KLTGP gradient presents a benchmark for us to compute the gradient for SMTGP in $O(N^2)$. Hence, we address this benchmark in our framework, as detailed in the following subsections.

3.2 SMTGP Prediction

By applying the closed-form in Equation 3 SM divergence between $p(X, x)$ and $p(Y, y)$ becomes in the following form

$$D_{\alpha,\beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left[\left(\frac{|K_{X\cup x}|^{\alpha} |K_{Y\cup y}|^{1-\alpha}}{|(\alpha K_{X\cup x} + (1-\alpha) K_{Y\cup y})^{-1}|^{1-\alpha}} \right) \frac{1-\beta}{\pi(1-\alpha)} - 1 \right]$$

(9)

From matrix algebra, $|K_{X\cup x}| = |K_X|(k_X(x, x) - K_X^T K_X^{-1} K_X^x)$ Similarly, $|K_{Y\cup y}| = |K_Y|(k_Y(y, y) - K_Y^T K_Y^{-1} K_Y^y)$. Hence, Equation 9 could be rewritten as follows

$$D_{\alpha,\beta}(p(X, x) : p(Y, y)) = \frac{|K_X|^{-\alpha(1-\beta)}}{2(1-\alpha)} \frac{|K_Y|^{-\alpha(1-\beta)}}{2} \cdot (k_X(x, x) - K_X^T K_X^{-1} K_X^x) \frac{|\alpha K_{X\cup x} + (1-\alpha) K_{Y\cup y}}{2(1-\alpha)} - 1 \frac{1}{\beta - 1}$$

(10)

$|K_X|^{-\alpha(1-\beta)} |K_Y|^{-\alpha(1-\beta)}$ is a positive constant, since K_X and K_Y are positive definite matrices. Hence, it could be removed from the optimization problem. Same argument holds for $|K_{X\cup x}| = |K_X|(k_X(x, x) - K_X^T K_X^{-1} K_X^x) > 0$, so $(k_X(x, x) - K_X^T K_X^{-1} K_X^x) > 0$ could be also removed from the cost function. Having removed these constants, the prediction function reduces to minimizing the following expression

$$L_{\alpha,\beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} (k_Y(y, y) - K_Y^T K_Y^{-1} K_Y^y)^{-\frac{1-\beta}{2}} \left[|\alpha K_{X\cup x} + (1-\alpha) K_{Y\cup y}^{-1}| \frac{1-\beta}{\pi(1-\alpha)} \right]$$

(11)

It is worth mentioning that $K_{X\cup x}^{-1}$ is quadratic to compute, given that K_X^{-1} is precomputed during the training; see Appendix A.

To avoid numerical instability problems in Equation 11 (introduced by determinant of the large matrix $(\alpha K_{X\cup x}^{-1} + (1-\alpha) K_{Y\cup y}^{-1})$, we optimized $\log(L_{\alpha,\beta}(N_X : N_Y))$ instead of $L_{\alpha,\beta}(N_X : N_Y)$. We derived the gradient of $\log(L_{\alpha,\beta}(N_X : N_Y))$ by applying the matrix calculus directly on the logarithm of Equation 11 presented below; the derivation steps are detailed in Appendix B

$$\frac{\partial \log L(\alpha, \beta)}{\partial y^{(d)}} = (1-\beta) \left[\frac{K_Y^T K_Y^{-1} \partial K_Y^y}{(k_Y(y, y) - K_Y^T K_Y^{-1} K_Y^y) + \mu_y \partial K_Y^y} + \mu_y \cdot \partial K_Y^y \right]$$

(12)

μ_y is computed by solving the following linear system of equations $\begin{pmatrix} \alpha K_{Y\cup y} K_{X\cup x}^{-1} K_{Y\cup y} + (1-\alpha) K_{Y\cup y} \end{pmatrix} \mu'_y = [0, 0, \ldots, 0, 1]^T$, μ_y is the first N elements in μ'_y, which is a vector of $N + 1$ elements. The computational complexity of the gradient in Equation 12 is cubic at test time, due to solving this system. On the other hand,
the gradient for KLTGP is quadratic. This problem motivated us to investigate the cost function to achieve a quadratic complexity of the gradient computation for SMTGP.

3.3 Quadratic SMTGP Prediction

We start by simplifying the closed-form expression introduced in [Nielsen and Nock 2012], which led to the $O(N^3)$ gradient computation.

Lemma 3.1. SM-divergence between two N-dimensional multivariate Gaussians $\mathcal{N}_p = \mathcal{N}(0, \Sigma_p)$ and $\mathcal{N}_q = \mathcal{N}(0, \Sigma_q)$ could be written as

$$D'_{\alpha,\beta}(\mathcal{N}_p : \mathcal{N}_q) = \frac{1}{\beta - 1} \left[\frac{1}{(\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1})^{-1}} - 1 \right]$$

Proof. Under TGP setting, the exponential term in Equation 3 vanishes to 1, since $\Delta \mu = 0$ (i.e. $\mu_p = \mu_q = 0$). Then, $\frac{1}{(\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1})^{-1}}$ could be simplified as follows:

$$= \frac{|\Sigma_p|^{\alpha} |\Sigma_q|^{1-\alpha}}{|(\alpha \Sigma_p^{-1} + (1 - \alpha) \Sigma_q^{-1})|^{-1}}, \text{ since } |A^{-1}| = \frac{1}{|A|}$$

$$= \frac{|\Sigma_p|^{\alpha} |\Sigma_q|^{1-\alpha}}{\Sigma_p^{-\alpha}(\alpha \Sigma_q + (1 - \alpha) \Sigma_p) \Sigma_q^{-\alpha}}$$

$$= \frac{|\Sigma_p|^{\alpha} |\Sigma_q|^{1-\alpha}}{|\Sigma_p|^{\alpha} |\Sigma_q + (1 - \alpha) \Sigma_p|^{-1} |\Sigma_q|}$$

$$= \frac{\alpha \Sigma_q + (1 - \alpha) \Sigma_p}{|\Sigma_p|^{1-\alpha} |\Sigma_q|^{\alpha}}, \text{ by rearrangement}$$

We denote the original closed-form expression as $D_{\alpha,\beta}(\mathcal{N}_p, \mathcal{N}_q)$, while the simplified form $D'_{\alpha,\beta}(\mathcal{N}_p, \mathcal{N}_q)$. After applying the simplified SM expression in Lemma 3.1 to measure the divergence between $p(X, x)$ and $p(Y, y)$, the new cost function becomes in the following form

$$D'_{\alpha,\beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left[\left(\frac{|K_{X \cup x}|^{1-\alpha} |K_{Y \cup y}|^{\alpha}}{|(1-\alpha)K_{X \cup x} + \alpha K_{Y \cup y}|} \right)^{\frac{1}{2(1-\alpha)}} - 1 \right]$$

Ignoring the multiplicative positive constants and added constants, the improved SMTGP cost function reduces to

$$L'_{\alpha,\beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left[(K_y y - K_{x y}^T K_Y^{-1} K_{x y})^{\frac{1-\beta}{2}} \right]$$

where $K_{xy} = (1 - \alpha)K_X(x, x) + \alpha K_Y(y, y)$, $K_{xy}^T Y = (1 - \alpha)K_X^T X + \alpha K_Y^T Y$. In contrast to $L_{\alpha,\beta}$ in Equation 11, $L'_{\alpha,\beta}$ does not involve a determinant of a large matrix. Hence, we predict the output y by directly minimizing $L'_{\alpha,\beta}$ in Equation 16.

10. There is no need to optimize over the logarithm of $L'_{\alpha,\beta}$ because there is no numerical stability problem.
Following matrix calculus, the analytic gradient could be computed as follows.

\[
\frac{\partial L'(\alpha, \beta)}{\partial y^{(d)}}(p(X, x): p(Y, y)) = \frac{1}{\beta - 1} \left[\frac{-(1 - \beta)}{2} (k_Y(y, y) - K_Y^{xy} T K_Y^{-1} K_Y^{yx})^{\frac{-(1 - \beta)}{2}} \right].
\]

\[
\left(\frac{\partial k_Y(y, y)}{\partial y^{(d)}} - 2 \cdot K_Y^{xy} T K_Y^{-1} \frac{\partial K_Y^{yx}}{\partial y^{(d)}} \right) + \left(K_{xy}^\alpha - K_{xy}^{yx} T ((1 - \alpha)K_X + \alpha K_Y)^{-1} K_{xy}^{yx} \right)^{\frac{1 - \beta}{2}} \cdot \frac{1 - \beta}{2(1 - \alpha)} \right] \]

\[
\left(K_{xy}^\alpha - K_{xy}^{yx} T ((1 - \alpha)K_X + \alpha K_Y)^{-1} K_{xy}^{yx} \right)^{\frac{\beta}{2}} \cdot \frac{\partial K_Y^{yx}}{\partial y^{(d)}} \right]
\]

(17)

The computational complexity of the cost function in Equation [16] and the gradient in Equation [17] is quadratic at test time (i.e., \(O(N^2)\)) on number of the training data. Since \(K_Y^{-1}\) and \((\alpha K_X + (1 - \alpha)K_Y)^{-1}\) depend only on the training points, they are precomputed in the training time. Hence, our hypothesis, about the quadratic computational complexity of improved SMTGP prediction function and gradient, is true since the remaining computations are \(O(N^2)\). This indicates the advantage of using our closed-form expression for SM divergence in lemma 3.1 against the closed-form proposed in [Nielsen and Nock 2012] with cubic complexity. However, both expression are equivalent, it is straightforward to compute the gradient in quadratic complexity from \(D'(\alpha, \beta)\) expression. The derivation steps of \(\frac{\partial L'(\alpha, \beta)}{\partial y^{(d)}}\) are detailed in Appendix C.

3.4 Advantage of \(D'_{\alpha, \beta}(N_p, N_q)\) against \(D_{\alpha, \beta}(N_p, N_q)\) out of SMTGP context

The previous subsection shows that the computational complexity of SMTGP prediction was decreased significantly using our \(D'_{\alpha, \beta}\) at test time to be quadratic, compared to cubic complexity for \(D_{\alpha, \beta}\). Out of using the SMTGP context, we show here another general advantage of using our proposed closed-form expression to generally compute SM-divergence between two Gaussian distributions \(N_p\) and \(N_q\). \(D'_{\alpha, \beta}(N_p, N_q)\) is 1.67 times faster to compute than \(D_{\alpha, \beta}(N_p, N_q)\) under \(\Delta \mu = 0\) condition. This is since \(D'_{\alpha, \beta}(N_p, N_q)\) needs \(N^3\) operations which is much less than 5\(N^3/3\) operations needed to compute \(D'_{\alpha, \beta}(N_p, N_q)\)(i.e., requires less matrix operations); see Appendix D for the proof. We conclude this section by a general form of Lemma 3.1 in Equation [18] where \(\Delta \mu \neq 0\). This equation was achieved by refactoring the exponential term and using matrix identities.

\[
D'_{\alpha, \beta}(N_p : N_q) = \frac{1}{\beta - 1} \left[\left(\frac{|\Sigma_p|^{1 - \alpha} |\Sigma_q|^\alpha}{|\alpha \Sigma_q + (1 - \alpha) \Sigma_p|} \right)^{\frac{(1 - \beta)}{2(1 - \alpha)}} \cdot e^{-\frac{\alpha(1 - \beta)}{2} \Delta \mu^T \Sigma_q (\alpha \Sigma_q + (1 - \alpha) \Sigma_q)^{-1} \Sigma_p \Delta \mu - 1} \right]
\]

(18)

In case \(\Delta \mu \neq 0\), \(D'_{\alpha, \beta}(N_p, N_q)\) is 1.5 times faster than computing \(D_{\alpha, \beta}(N_p, N_q)\). This is since \(D'_{\alpha, \beta}(N_p, N_q)\) needs 4\(N^3/3\) operations in this case which is less than
2N^3 operations needed to compute \(D_{\alpha, \beta}'(\mathcal{N}_p, \mathcal{N}_q) \) under \(\Delta \mu \neq 0 \); see Appendix D. This indicates that the simplifications, we provided in this work, could be used to generally speedup the computation of SM divergence between two Gaussian Distributions, beyond the context of TGP.

4 Theoretical Analysis

In order to understand the role of \(\alpha \) and \(\beta \) parameters of SMTGP, we performed an eigen analysis of the cost function in Equation 15. Generally speaking, the basic notion of TGP prediction, is to extend the dimensionality of the divergence measure from \(N \) training examples to \(N + 1 \) examples, which involves the test point \(x \) and the unknown output \(y \). Hence, we start by discussing the extension of a general Gaussian Process from \(K_Z \) (e.g. \(K_X \) and \(K_Y \)) to \(K_{Z\cup z} \) (e.g. \(K_{X\cup x} \) and \(K_{Y\cup y} \)), where \(Z \) is any domain and \(z \) is the point that extends \(K_Z \) to \(K_{Z\cup z} \), detailed in Subsection 4.1. Based on this discussion, we will derive two lemmas to address some properties of the SMTGP prediction in Subsection 4.2, which will lead to a probabilistic interpretation that we provide in Subsection 4.3.

4.1 A Gaussian Process from \(N \) to \(N + 1 \) points

In this section, we will use a superscript to disambiguate between the kernel matrix of size \(N \) and \(N + 1 \), i.e. \(K^N \) and \(K^{N+1} \). Let \(f(z) = \mathcal{GP}(m(z) = 0, k(z, z')) \) be a Gaussian process on an arbitrary domain \(Z \). Let \(GP^N = \mathcal{N}(0, K^N) \) be the marginalization of the given Gaussian process over the \(N \) training points (i.e. \(\{z_i\}, i = 1 : N \)). Let \(GP^{N+1} = \mathcal{N}(0, K^{N+1}) \) be the extension of the \(GP^N \) be the marginalization of \(f(z) \) over \(N + 1 \) points after adding the \(N + 1 \) point (i.e. \(z_{N+1} \)). The kernel matrix \(K^{N+1} \) is written in terms of \(K^N \) as follows

\[
K^{N+1} = \begin{bmatrix} K^N & v \\ v^T & k(z, z) \end{bmatrix}
\]

(19)

where \(v = [k(z, z_1) \cdots k(z, z_N)]^T \). The matrix determinant of \(K^{N+1} \) is related to \(K^N \) by

\[
|K^{N+1}| = \eta \cdot |K^N|, \quad \eta = k(z, z) - v^T(K^N)^{-1}v.
\]

(20)

Since multivariate Gaussian distribution is a special case of the elliptical distributions, the eigen values of any covariance matrix (e.g. \(K^N, K^{N+1} \)) are interpreted as variance of the distribution in the direction of the corresponding eigen vectors. Hence, the determinant of the matrix (e.g. \(|K^N|, |K^{N+1}| \)) generalizes the notion of the variance in multiple dimensions as the volume of this elliptical distribution, which is oriented by the eigen vectors. From this notion, one could interpret \(\eta \) as the ratio by which the variance (uncertainty) of the marginalized Gaussian process is scaled, introduced by the new data point \(z \). Looking closely at \(\eta \), we can notice

(1) \(0 \leq \eta \leq k(z, z) \), since \(|K^N| > 0, |K^{N+1}| > 0 \), and \(v^T(K^N)^{-1}v \geq 0 \).

(2) In the case of the regularized Gaussian kernel, we used in our work, \(k(z, z) = 1 + \lambda \), and hence \(0 \leq \eta \leq 1 + \lambda \)

(3) \(\eta \) decreases as the new data point get closer to the \(N \) points. This situation makes \(v \) highly correlated with the eigen vectors of small eigen values of \(K^N \), since the term \(v^T(K^N)^{-1}v \) is maximized as \(v \) points to the smallest principal component of \(K^N \) (i.e. the direction of the maximum certainty). Hence, \(\eta \) is an uncertainty

11 This is linked to the extending \(p(X) \) to \(p(X, x) \) and \(p(Y) \) to \(p(Y, y) \) by \(x \) and \(y \) respectively
Lemma 4.1. Under SMTGP, From Equation 21 and 22, we derived with the following two Lemmas.

\[\begin{align*}
\alpha & \text{maximizes the certainty of the data under } \mathcal{N}(0, K^N), \text{ which could be thought as a measurement proportional to } 1/p(z|z_1 : z_N). \text{ Computing } \eta \text{ on the input space } X \text{ makes it equivalent to the predictive variance of Gaussian Process Regression (GPR) prediction}\text{.}\end{align*} \]

Proof. \[\hat{y}(\alpha, \beta) = \arg\min_y \left[D'_{\alpha, \beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left(\frac{|K_{X, X}|^{1-\alpha} |K_{Y, Y}|^\alpha}{|\alpha K + (1-\alpha) K_X|} - \frac{1-\beta}{\beta - 1} - 1 \right) \right] \]

where \(D'_{\alpha, \beta}(\cdot, \cdot) \) is as defined in Equation 15. As detailed in Section 3, SM divergence, involves the determinant of three matrices of size \(N \times 1 \times N \), namely \(K_{X, X}, K_{Y, Y}, \) and \(\alpha K + (1-\alpha) K_X \). Hence, We have three uncertainty extensions from \(N \) to \(N + 1 \), as follows

\[\begin{align*}
|K_{X, X}| &= \eta_x \cdot |K_X|, \\
|K_{Y, Y}| &= \eta_y \cdot |K_Y|, \\
|\alpha K_{Y, Y} + (1-\alpha) K_{X, X}| &= \eta_{x,y}(\alpha) \cdot |\alpha K_Y + (1-\alpha) K_X|,
\end{align*} \]

where \(\eta_{x,y}(\alpha) = \alpha K_Y(y, y) + (1-\alpha) K_X(x, x) - v_{xy}(\alpha)^t (\alpha K_Y + (1-\alpha) K_X)^{-1} v_{xy}(\alpha), \)

\[v_{xy}(\alpha) = \alpha K_Y + (1-\alpha) K_X \]

(22)

It might not be straightforward to think about \(\alpha K_{Y, Y} + (1-\alpha) K_{X, X} \) within TGP formulation as a kernel matrix defined on \(X \times Y \) space in Equation 22. This gives an interpretation of the constraint that \(0 \leq \alpha \leq 1 \) in Equation 3

Since \(\alpha k_Y(y_i, y_j) + (1-\alpha) k_X(x_i, x_j) \) is a weighted sum of valid kernels with positive weights, then \(\alpha K_{Y, Y} + (1-\alpha) K_{X, X} \) is a valid kernel matrix on \(X \times Y \) space. From Equation 21 and 22, we derived with the following two Lemmas.

Lemma 4.1. Under SMTGP, \(\phi_{\alpha}(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^{\alpha}}{\eta_{x,y}(\alpha)} \leq \left(\int_{-\infty}^{\infty} p_Y(t)^{\alpha} p_X(t)^{1-\alpha} dt \right)^{-2}, \)

\[\left(\int_{-\infty}^{\infty} p_Y(t)^{\alpha} p_X(t)^{1-\alpha} dt \right)^{-2} = \frac{|\alpha K_Y + (1-\alpha) K_X|}{|K_X|^{1-\alpha} |K_Y|^\alpha} \geq 1 \]

Proof. Directly from the definition of SM TGP in Equation 21 and 22, SM TGP cost function could be written as,

\[\begin{align*}
\hat{y}(\alpha, \beta) &= \arg\min_y \left[D'_{\alpha, \beta}(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left(\frac{|K_{X, X}|^{1-\alpha} \eta_x^{1-\alpha} |K_{Y, Y}|^\alpha \eta_y^{\alpha}}{|\alpha K_Y + (1-\alpha) K_X| \eta_{x,y}(\alpha)} \left(\frac{1-\beta}{\beta - 1} - 1 \right) \right) \right] \end{align*} \]

Comparing Equation 1 to Equation 23, then

\[\left(\frac{|K_{X, X}|^{1-\alpha} \eta_x^{1-\alpha} |K_{Y, Y}|^\alpha \eta_y^{\alpha}}{|\alpha K_Y + (1-\alpha) K_X| \eta_{x,y}(\alpha)} \right)^{\frac{1}{2}} = \int_{-\infty}^{\infty} p_{X,x}(t)^{\alpha} p_{Y,y}(t)^{1-\alpha} dt \leq 1, \]

and since \(\eta_{x,y}(\alpha) > 0 \) and \(\eta_y > 0 \), then
\[\varphi_\alpha(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)} \leq \frac{|\alpha K_Y + (1-\alpha)K_X|}{|K_X|^{1-\alpha}|K_Y|^\alpha}, \]

and since \(\int_{-\infty}^{\infty} p_X(t)^{\alpha} p_Y(t)^{1-\alpha} dt = \left(\frac{|K_X|^{1-\alpha}|K_Y|^\alpha}{|\alpha K_Y + (1-\alpha)K_X|} \right)^2 \)

\[\int_{-\infty}^{\infty} p_X(t)^{\alpha} p_Y(t)^{1-\alpha} dt \leq 1, \]

then \(\frac{|K_X|^{1-\alpha}|K_Y|^\alpha}{|\alpha K_Y + (1-\alpha)K_X|} \leq 1. \]

Lemma 4.2. Under SMTGP and \(0 < \alpha < 1 \), \(\hat{\gamma}(\alpha, \beta) \) maximizes \(\varphi_\alpha(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)} \) and it does not depend on \(\beta \) theoretically.

Proof. We start by the claim that \(\hat{\gamma}(\alpha, 1-\tau) = \hat{\gamma}(\alpha, 1+\zeta), \) \(0 < \alpha < 1, \tau > 0, \zeta > 0 \) and both predictions are achieved by maximizing \(\left(\int_{-\infty}^{\infty} p(y,t) (t)^{\alpha} p(x,t) (t)^{1-\alpha} dt \right)^2 \)

\[= \frac{|K_X|^{1-\alpha}|K_Y|^\alpha}{|\alpha K_Y + (1-\alpha)K_X| \eta_{x,y}(\alpha)} \leq 1, \]

which is \(\varphi_\alpha(x, y) \), where \(p(x, x) = N(0, K_{X \cup x}) \)

and \(p(Y, y) = N(0, K_{Y \cup y}), \) \(p(X) = N(0, K_X) \) and \(p(Y) = N(0, K_Y) \). This claim indicates that the cost functions \(D_{\alpha,1-\tau}(p(X, x) : p(Y, y)) \) and \(D_{\alpha,1+\zeta}(p(X, x) : p(Y, y)) \) are equivalent.

Let us introduce \(Z_\alpha(y) = \frac{|K_{X \cup x}|^{1-\alpha}|K_{Y \cup y}|}{|\alpha K_Y + (1-\alpha)K_X|^\alpha} \)

\[= \left(\int_{-\infty}^{\infty} p(x,t)(t)^{\alpha} p(x,t)(t)^{1-\alpha} dt \right)^2 \leq 1. \]

From this notation, \(D_{\alpha,1-\tau}(p(X, x) : p(Y, y)) \) and \(D_{\alpha,1+\zeta}(p(X, x) : p(Y, y)) \) could be re-written as

\[D_{\alpha,1-\tau}(p(X, x) : p(Y, y)) = \frac{1}{\tau} \left[\left(Z_\alpha(y) \right)^{\frac{1}{\alpha}} - 1 \right], \]

\[D_{\alpha,1+\zeta}(p(X, x) : p(Y, y)) = \frac{1}{\zeta} \left[\left(Z_\alpha(y) \right)^{\frac{-1}{\alpha}} - 1 \right]. \]

From Equation 24 and under the assumption that \(0 < \alpha < 1 \) and \(Z_\alpha(y) \leq 1 \), then \(D_{\alpha,1-\tau}(p(X, x) : p(Y, y)) \geq 0, D_{\alpha,1+\zeta}(p(X, x) : p(Y, y)) \geq 0 \). Both are clearly minimized as \(Z_\alpha(y) \) approaches 1 (i.e. maximized, since \(Z_\alpha(y) \leq 1 \)). Comparing Equation 23 and 24 \(Z_\alpha(y) = \left(\int_{-\infty}^{\infty} p(x,t)(t)^{\alpha} p_Y(y)(t)^{1-\alpha} dt \right)^2 \)

\[= \frac{|K_{X \cup x}|^{1-\alpha}|K_{Y \cup y}|}{|\alpha K_Y + (1-\alpha)K_X|^\alpha} = \frac{|K_X|^{1-\alpha}|K_Y|^\alpha}{|\alpha K_Y + (1-\alpha)K_X|^\alpha}, \]

\(\varphi_\alpha(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)}, \) since \(|\alpha K_Y + (1-\alpha)K_X|, |K_X|, \) and \(|K_Y| \) do not depend on the predicted output \(\hat{y} \). This indicates that SMTGP optimization function is inversely proportional to \(\varphi_\alpha(x, y) \), we upper-bounded in Lemma 4.1. Hence, it is not hard to see that \(\zeta \) and \(\tau \) controls whether to maximize \(\varphi_\alpha(x, y)^{1-\alpha} \) or maximize \(-\varphi_\alpha(x, y)^{\alpha} \), which are equivalent. This directly leads to that \(\hat{\gamma}(\alpha, \beta) \) maximizes \(\frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)} \leq \frac{|\alpha K_Y + (1-\alpha)K_X|}{|K_X|^{1-\alpha}|K_Y|^\alpha} \) and it does not depend on \(\beta \) theoretically.

The proof of Lemma 4.1 shows the relationship between \(\varphi_\alpha(x, y) \) and SM divergence through a derivation that starts from SMTGP cost function. From Lemma 4.1 and 4.2 the term \(\frac{|K_{X \cup x}|^{1-\alpha}|K_{Y \cup y}|}{|\alpha K_Y + (1-\alpha)K_X|^\alpha} \leq 1 \) represents an agreement function between \(p(X) \) and \(p(Y) \). Similarly, \(\frac{|K_{X \cup x}|^{1-\alpha}|K_{Y \cup y}|}{|\alpha K_Y + (1-\alpha)K_X|^\alpha} \leq 1 \) is an agreement function between the extended distributions \(p(X, x) \) and \(p(Y, y) \). This agreement function increases as the weighted volume of the input and the output distributions (i.e. \(|K_{X \cup x}|^{1-\alpha}|K_{Y \cup y}|^{\alpha} \), weighted by \(\alpha \)) is as close as possible to the volume of the joint distribution (i.e. \(|\alpha K_Y + (1-\alpha)K_X| \)). This function reaches 1 (i.e. maximized) when the two distributions are identical, which justifies
maximizing $\varphi_\alpha(x, y)$ as indicated in lemma 4.2. From another view, maximizing $\varphi_\alpha(x, y)$ prefers minimizing $\eta_{x,y}(\alpha)$, which maximizes the $p((x, y)|(x_1, y_1), \ldots, (x_N, y_N))$, that we abbreviate as $p(x, y)$; this is motivated by our intuition in subsection 4.1. However, SMTGP maximizes $\varphi_\alpha(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)}$, this gives a probabilistic sense for the cost function when we follow our intuition that $\eta_x \propto 1/p(x)$, $\eta_y \propto 1/p(y)$ and $\eta_{x,y}(\alpha) \propto 1/p(x, y)$. Hence $\varphi_\alpha(x, y)$ could be seen as $\frac{p(x, y)}{p(x)^{1-\alpha} p(y)^\alpha}$, discussed in the following subsection. This understanding motivated us to plot the relation between $\varphi_\alpha(x, y)$ and the test error on SMTGP prediction. Figure 1 shows a clear correlation between $\varphi_\alpha(x, y)$ and the prediction error. Hence, it introduces a clear motivation to study it as a certainty measure, which could be associated with each structured output prediction.

![Graph](image)

Fig. 1: $\log(\varphi_\alpha(x, y))$ against test error on USPS dataset using SMTGP, $\alpha = 0.8$, $\beta = 0.5$

4.3 Probabilistic Interpretation of Maximizing $\varphi_\alpha(x, y) = \frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)}$

As detailed in the previous subsection, one can interpret $\eta_{x,y}(\alpha) \propto 1/p(x, y)$, $\eta_x \propto 1/p(x)$, $\eta_y \propto 1/p(y)$. Hence, $\frac{\eta_{x,y}(\alpha)}{\eta_y} \propto \eta_x$, $\frac{\eta_{x,y}(\alpha)}{\eta_x} \propto \eta_y$. Hence, what does $\frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)}$ mean?

Since $0 < \alpha < 1$, it is obvious that $\min(\eta_x, \eta_y) < f_1(\alpha) = \eta_x^{1-\alpha} \cdot \eta_y^\alpha < \max(\eta_x, \eta_y)$. Figure 2 shows the behavior of $f_1(\alpha)$ against $f_2(\alpha) = (1-\alpha) \cdot \eta_x + \alpha \cdot \eta_y$, which is also bounded between $\min(\eta_x, \eta_y)$ and $\max(\eta_x, \eta_y)$. According to this figure, $f_1(\alpha)$ behaves very similar to $f_2(\alpha)$ as $|\eta_x - \eta_y|$ approaches zero, where linear approximation is accurate. However, as $|\eta_x - \eta_y|$ gets bigger, $f_2(\alpha)$ gets biased towards $\min(\eta_x, \eta_y)$ as indicated in the left column of figure 2. Hence, $\frac{\eta_{x,y}(\alpha)}{\eta_x^{1-\alpha} \cdot \eta_y^\alpha}$ is interpreted depending on the values of $\eta_x \propto \frac{1}{p(x)}$, $\eta_y \propto \frac{1}{p(y)}$, and $\eta_{x,y}(\alpha) \propto \frac{1}{p(x,y)}$ as follows:

1. If $\eta_x \ll \eta_y$, $\frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)} \approx \frac{\eta_x}{\eta_{x,y}(\alpha)} \alpha \propto \eta_{x,y}(\alpha) \alpha \propto p(y|x)$
2. If $\eta_y \ll \eta_x$, $\frac{\eta_x^{1-\alpha} \eta_y^\alpha}{\eta_{x,y}(\alpha)} \approx \frac{\eta_y}{\eta_{x,y}(\alpha)} \alpha \propto \eta_{x,y}(\alpha) \alpha \propto p(x|y)$

\[\ast\] Indicates equivalence for optimization/prediction
3. If $\eta_y \approx \eta_x$, $\eta_{x,y}(\alpha) \approx \eta_{x,y}(\alpha) \propto p(x|y) \approx \frac{\eta_y}{\eta_{x,y}(\alpha)} \propto p(y|x)$; This is less likely to happen since $p(x) = p(y)$ in this case.

4. If $|\eta_y - \eta_x| < \epsilon$, in this case α linearly control $\eta_{x,y}(\alpha) \approx (1-\alpha)\eta_x + \alpha \eta_y \eta_{x,y}(\alpha) \propto \left(\frac{1-\alpha}{p(x|y)} + \frac{\alpha}{p(y|x)} \right)^{-1}$

Hence, SM TGP regression predicts the output of maximum certainty on $p(x, y) = N(0, (1 - \alpha)K_{X∪x} + \alpha K_{Y∪y})$, conditioned on the uncertainty extension on $p(x) = N(0, K_{X∪x})$ and $p(y) = GP(0, K_{Y∪y})$. The conditioning is biased towards $\max(p(x), p(y))$, which gives best discrimination relative to $p(x, y)$ and hence, maximize the certainty of the prediction. In case the difference between $p(x)$ and $p(y)$ is not high, the prediction is based on a weighted sum of $p(y|x)$ and $p(x|y)$, as shown in point 4 above.

Fig. 2: Left plot functions are in the form $f_1(\alpha) = \eta_{D_1}^{1-\alpha} \cdot \eta_{D_2}^{\alpha}$ and their corresponding $f_2(\alpha) = (1 - \alpha) \cdot \eta_{D_1} + \alpha \cdot \eta_{D_2}$ are on the right; rows indicate different values of η_{D_1}, η_{D_2}, where D_1 and D_2 are arbitrary two domains.
5 Experimental Results

In this section, we evaluate SMTGP on two Toy examples, USPS dataset in an image reconstruction task, and both Poser dataset (Agarwal and Triggs 2006) and HumanEva dataset (Sigal et al. 2010) for a 3D pose estimation task. It is shown in (Bo and Sminchisescu 2010; Yamada et al. 2012), that TGP outperforms Kernel Regression (KR), Gaussian Process Regression (GPR), Weighted K-Nearest Neighbor regression (Rasmussen and Williams 2005), Hilbert Schmidt independence criterion (HSIC) (Gretton et al. 2005), and Kernel Target Alignment method (KTA) (Cristianini and Kandola 2001) on a Toy example, HumanEva dataset, and Poser Dataset (i.e. Pose Estimation datasets). Hence, we extended our evaluation beyond pose estimation datasets. We compared our SMTGP with KLTGP and IKLTGP. IKLTGP stands for inverse KLTGP, which predicts the output by minimizing the KL divergence of the output probability distribution from the input probability distribution (Bo and Sminchisescu 2010). The main motivation behind this comparison is that KLTGP and IKLTGP are biased to one of the distributions, and therefore the user has to choose either to use KLTGP or IKLTGP based on the problem. In contrast, SMTGP could be adapted by α and β on the validation set, such that the prediction error is minimized. From this point, we denote the set of KLTGP, IKLTGP and SMTGP as TGPs. Our presentation of the results starts by the specification of the toy examples and the datasets in subsection 5.1. Then, we present our parameter settings and how α and β are selected in subsection 5.2. Finally, we show our argument on the performance on these tasks in subsection 5.3.

5.1 Specification of the Toy Examples and the Datasets

5.1.1 Toy Example 1 (Bo and Sminchisescu 2010)

The training set for the first toy problem predict a 1D output variable y given a 1D control x (the input). It consists of 250 values of y generated uniformly in $(0,1)$, for which $x = y + 0.3\sin(2\pi y) + \epsilon$ is evaluated with ϵ such that $\epsilon = N(\mu = 0, \sigma = 0.005)$; see Figure 3. Stars correspond to examples where KNN regression and GPR suffer from boundary/discontinuous effects as indicated in (Bo and Sminchisescu 2010). The TGPs were tested with 250 equally spaced inputs x in $(0,1)$. We used the mean prediction error to measure the performance on this example.

5.1.2 Toy Example 2

In order to introduce a more challenging situation, we generate a double S shape; see Figure 4. Toy example 2 is constructed by concatenated two S shapes, which makes the overall prediction error more challenging to reduce. In addition, we down-sampled the points by 2, such that the total number of points is the same as Toy example 1. Hence, there is less evidence on training data compared to Toy example 1. Similarly, the TGPs were tested with 500 equally spaced inputs x in $(-1,1)$. We used the same error-measure in Toy Example 1.

5.1.3 Image Reconstruction task on USPS Dataset (Hull 1994)

The image reconstruction problem (Bo and Sminchisescu 2009) is given the outer 240 pixel values of a handwritten digit (16x16) from USPS data set, the goal is to predict the 16 pixel values lying in the center. We split the dataset into in 4649 test examples and 4649 training samples (No knowledge is assumed for the label of the digit). The range of the pixel values in this dataset is in $(-1,1)$. The error
measure amounts to the root mean-square error averaged over the 16 gray-scales in the center. $\text{Error}_{\text{pose}}(\hat{y}, y^*) = \|\hat{y} - y^*\|$, where $\hat{y} \in \mathbb{R}^{16}$ is the predicted 16-values' vector lying in the center, y^* is the true 16-colors of the given outer 240 pixels values x.

5.1.4 3D pose estimation task on Poser Dataset (Agarwal and Triggs 2006)

Poser dataset consists of 1927 training and 418 test images, which are synthetically generated and tuned to unimodal predictions. The image features, corresponding to bag-of-words representation with silhouette-based shape context features. The TGPs requires inversion of $N \times N$ matrices during the training, so the complexity of the solution is $O(N^3)$, which is impractical when N is larger. Hence, in both Poser and Human Eva datasets, we applied the TGPs by finding the K_{tr} nearest neighbors ($K_{tr} \approx 800$ in our experiments). This strategy was also adopted in (Bo and Sminchisescu 2010; Yamada et al 2012). Poser dataset was generated using Poser software package, from motion capture (Mocap)data (54 joint angles per frame). The error is measured by the root mean square error (in degrees), averaged over all joints angles, and is given by: $\text{Error}_{\text{pose}}(\hat{y}, y^*) = \frac{1}{54} \sum_{m=1}^{54} \|\hat{y}^m - y^m \mod 360^\circ\|$, where $\hat{y} \in \mathbb{R}^{54}$ is an estimated pose vector, and $y^* \in \mathbb{R}^{54}$ is a true pose vector.

5.1.5 3D pose estimation task on HumanEva Dataset (Sigal et al 2010)

HumanEva dataset contains synchronized multi-view video and Mocap data. It consists of 3 subjects performing multiple activities. We use the histogram of oriented gradient (HoG) features ($\in \mathbb{R}^{270}$) proposed in (Bo and Sminchisescu 2010). We use training and validations sub-sets of HumanEva-I and only utilize data from 3 color cameras with a total of 9630 image-pose frames for each camera. This is consistent with experiments in (Bo and Sminchisescu 2010; Yamada et al 2012). We use half of the data (4815 frames) for training and half (4815 frames) for testing. In HumanEva, pose is encoded by (20) 3D joint markers defined relative to the torso Distal joint in camera-centric coordinate frame, so $y = [y^{(1)}, y^{(2)}, ..., y^{(20)}] \in \mathbb{R}^{60}$.
and \(y^{(i)} \in \mathbb{R}^3 \). Error (in \textit{mm}) for each pose is measured as average Euclidean distance:

\[
\text{Error}_{\text{pose}}(\hat{y}, y^*) = \frac{1}{20} \sum_{m=1}^{20} \|\hat{y}^m - y^*_m\|,
\]

where \(\hat{y} \) is an estimated pose vector, and \(y^* \) is a true pose vector.

5.2 Parameter Settings and Learning \(\alpha \) and \(\beta \)

As indicated in lemma 4.2, \(\beta \) does not theoretically affect the optimization function. However, in practice, \(\beta \) affects the convergence speed to predict the output, since SMTGP prediction is not in a closed-form expression and we set the maximum number of steps in the quasi-Newton optimizer to 50. Then, we used 5 fold cross validation on \(\alpha \) parameters ranging from 0 to 1 step 0.05. While, we selected three values for \(\beta \).

\(\beta \rightarrow 1 = 0.99 \) in practice, \(\beta = 1.5 \) (i.e. \(\beta > 1 \)), \(\beta = 0.5 \) (i.e. \(\beta < 1 \)). Our learning of the parameters covers different divergence measures and select the setting that minimize the error on the validation set. Finally, we initialize \(y \) in SMTGP by KLTGP prediction in [Bo and Sminchisescu 2010].

Regarding \(\lambda_X, \lambda_Y, \rho_X \) and \(\rho_Y \), we use the values selected during the training of KLTGP [Bo and Sminchisescu 2010]. Table 1 shows the parameter setting, we used for KLTGP, IKTGP, and SMTGP models. All these models share \(\rho_X, \rho_Y, \lambda_X \), and \(\lambda_Y \) parameters. However, SMTGP has \(\alpha \) and \(\beta \) as additional parameters.

Toy 1	2\(\mu^2 \), 2\(\nu^2 \)	\(\lambda_X \), \(\lambda_Y \)	\(\alpha \), \(\beta \)
Toy 2	5, 0.05	10\(^{-4}\), 10\(^{-4}\)	0.9, 1.5
USPS	2, 0.05	5*10\(^{-4}\), 5*10\(^{-4}\)	0.9, 0.99
Poser	5, 5000	10\(^{-4}\), 10\(^{-3}\)	0.7, 0.5
Heva	5, 500000	10\(^{-4}\), 10\(^{-3}\)	0.99, 0.99

5.3 Results

As can be noticed from Figures 5 and 6, SMTGP improved on KLTGP on Toy 1 dataset. Further improvement has been achieved on Toy 2 dataset, which is more challenging; see Figures 7 and 8. These results indicates the advantages of the parameter selection of \(\alpha \) and \(\beta \). From Table 2 we can notice that SMTGP improved on KLTGP by 12.70% and also on IKLTGP by 3.51% in Toy 2, which shows the adaptation behavior of SMTGP by tuning \(\alpha \) and \(\beta \). It was argued in [Bo and Sminchisescu 2010] that KLTGP performs better than IKLTGP in pose estimation. While, they reported that they gave almost the same performance on Toy 1, which we refer here by Toy 1. We presented Toy 2 to draw two conclusions. First, KLTGP does not always outperform IKLTGP as argued in [Bo and Sminchisescu 2010] in HumanEva dataset. Second, SMTGP could be tuned by cross-validation to outperform both KLTGP and IKLTGP.

Toy 1	SMTGP (18.6 sec)	0.1126 (18.6 sec)	0.116 (19.9 sec)	2.93%
Toy 2	KLTGP (Bo and Sminchisescu 2010)	0.116 (19.9 sec)	2.93%	
USPS	IKLTGP (Bo and Sminchisescu 2010)	0.126 (19.3 sec)	0.114 (25.1 sec)	3.51%
Poser	0.2587 (1001.7 sec)	0.2665 (945 sec)	0.2683 (1154 sec)	3.58%
HEva	5.4296 (104.3 sec)	5.4296 (121.6 sec)	5.4296 (121.6 sec)	2.09%

Table 2: Regression error and time of SMTGP, KLTGP, and IKLTGP, and error reduction of SMTGP against KLTGP and IKLTGP on the five datasets, imp. denotes the reduction.
Another important observation in Table 2 is that KLTGP outperforms IKLTGP on Poser and HumanEva datasets, while IKLTGP outperforms KLTGP in the toy examples (slightly in the first and significantly in the second). The interesting behavior is that SMTGP performs at least as good as the best of KLTGP and IKLTGP in all of the datasets. KLTGP and IKLTGP are biased towards one of the input and the output distributions. However, SMTGP learns from the training data the bias factor (using α) towards the input or the output distributions. These results could also be justified by the fact that SM divergence is a generalization of a family of divergence measure. A powerful property in SMTGP is that by controlling α and β, SMTGP provides a set of divergence functions to optimize for prediction. However, a member of this set is selected during training by tuning α and β on a validation set. Hence, SMTGP learns α and β to make better predictions. Finally, SMTGP has a desirable generalization on the test set; see Table 2. Table 2 also shows that SMTGP does not only have same complexity as KLTGP but also it has a similar constant factor. In four of the datasets, SMTGP is faster than IKLTGP and KLTGP. We optimized the matrix operations in

\[+/- 0.15 \]
three methods as possible. SMTGP and KLTGP have similar number of matrix operations; this justifies why they have similar computational times.

We conclude our results by reporting the performance of GPR, HSIC-KNN, KTA-KNN, and W-KNN on the five datasets; see Table 3. Comparing Table 2 to Table 3, it is obvious that TGPs outperforms GPR, HSIC-KNN, KTA-KNN, and W-KNN.

Table 3: Regression error of GPR, HSIC-KNN, KTA-KNN, and W-KNN regression models

	GPR (Rasmussen and Williams 2005)	WKNN (Rasmussen and Williams 2005)	HSICKNN (Cotton et al 2005)	KTA-KNN (Cotton and Kandas 2001)
Toy1	0.15803	0.15152	0.18986	0.19333
Toy2	0.19011	0.16986	0.21294	0.19134
USPS	0.31504	0.2731	0.26832	0.26679
Poseer (deg)	5.62	6.0753	7.1667	8.4739
HEva (mm)	46.6987	53.0884	57.8221	57.8733

6 Discussion and Conclusion

We proposed a framework for structured output regression based on SM-divergence. We performed a theoretical analysis to understand the properties of SMTGP prediction, which helped us learn α and β parameters of SM-divergence. As a part of our analysis, we argued on a certainty measure that could be associated with each prediction. We here discuss these main findings of our work as follows.

A critical theoretical aspect that is missing in the KL-based TGP formulation is understanding the cost function from regression-perspective. We cover this missing theory not only by analyzing the cost function based on KL, but instead, provide an understanding of SMTGP cost function, which covers (KL, Renye, Tsallis, Bhattacharyya as special cases of its parameters). Our claims are supported by a theoretical analysis, presented in section 4. The main theoretical result is that SM-based TGP (SMTGP) prediction maximizes a certainty measure, we name $\varphi(x,y)$, and the prediction does not depend on β theoretically. A probabilistic interpretation of $\varphi(x,y)$ was discussed as part of our analysis and it was shown to have a negative correlation with the test error, which is an interesting result; see figure 1. The figure highlights the similarity between this SMTGP certainty measure and predictive variance provided by Gaussian Process Regression (GPR) (Rasmussen and Williams 2005) for single output prediction. A computationally efficient closed-form expression for SM-divergence was presented, which leads to reducing MTGP prediction complexity from $O(N^3)$ to $O(N^2)$; this makes SMTGP and KLTGP computationally equivalent. Moreover, it reduces the number of operations to compute SM-divergence between two general gaussian distributions, out of SMTGP context; see section 3. Practically, we achieve structured output regression by tuning α and β parameters of SM-divergence through cross validation under SMTGP cost function. We performed an intensive

14 These baseline approaches was also compared in Bo and Sminchisescu 2010 against KLTGP, and our results is consistent with the conclusion that we reached from the comparison but only on Toy Example 1 and HumanEva dataset; see Bo and Sminchisescu 2010 for more about the parameters of these baselines and its selection. KNN indicates that these methods were applied to training data in K-neighborhood of the testing point.

15 N is the number of the training points.
evaluation of different tasks on five datasets and we experimentally observed a desirable generalization property of SMTGP. Our experiments reports that our resultant approach, SMTGP, outperformed KLTGP, IKLTGP, GPR, HSIC, KTA, and W-KNN methods on two toy examples and three datasets.

Appendices

Appendix A: Relationship between $K_{X∪x}^{-1}$ and K_X^{-1}

$K_{X∪x}^{-1}$ is $O(N^2)$ to compute, given that the singular value decomposition of K_X is precomputed during the training, from which K_X^{-1} and K_X^{-2} are computed as well. Then, applying the matrix inversion lemma (Alvarado 1999), $K_{X∪x}^{-1}$ could be related to K_X^{-1} as follows

$$K_{X∪x}^{-1} = \left[K_X^{-1} + \frac{1}{c_x} K_X^{-1} K_X^T K_X^{-1} \frac{1}{c_x} K_X^{-1} K_X^T \right]$$

where $c_x = K_X(x, x) - K_X^{-1} K_X^T K_X^{-1}$. Given that K_X^{-1} and K_X^{-2} are already computed, then computing $K_{X∪x}^{-1}$ becomes $O(N^2)$ using equation (25). This equation applied to any kernel matrix (i.e., relating $K_{Y∪y}^{-1}$ to K_Y^{-1})

Appendix B: SM D TGP

Cost Function

$$D_{α, β}(p(X, x) : p(Y, y)) = \frac{1}{β - 1} \left[\frac{|K_{X∪x}|^α |K_{Y∪y}|^{1-α}}{|(αK_{X∪x} + (1-α)K_{Y∪y})^{-1}|} - \frac{1-β}{2(1-α)} - 1 \right]$$

$$L_{α, β}(p(X, x) : p(Y, y)) = \frac{1}{β - 1} \left(k_Y(y, y) - K_Y^{-1} k_Y \right)^{-\frac{1-β}{2}}$$

From the matrix inversion Lemma,

$$K_{X∪x}^{-1} = \left[\begin{array}{c} K_X^{-1} + \frac{1}{c_x} K_X^{-1} K_X^T K_X^{-1} \frac{1}{c_x} K_X^{-1} K_X^T \\ \frac{1}{c_x} K_X^{-1} K_X^T \end{array} \right]$$

$$K_{Y∪y}^{-1} = \left[\begin{array}{c} K_Y^{-1} + \frac{1}{c_y} K_Y^{-1} K_Y^T K_Y^{-1} \frac{1}{c_y} K_Y^{-1} K_Y^T \\ \frac{1}{c_y} K_Y^{-1} K_Y^T \end{array} \right]$$

where $c_x = K_X(x, x) - K_X^{-1} K_X^T K_X^{-1} K_X^T$, $c_y = K_Y(y, y) - K_Y^{-1} K_Y^T K_Y^{-1} K_Y^T$

function evaluation could be computed in $O(N^2)$ where N is the number of points in the training set.

$$logL_{α, β}(p(X, x) : p(Y, y)) = \frac{-(1-β)}{2} \cdot log(k_Y(y, y) - K_Y^{-1} k_Y) +$$

$$\frac{-(1-β)}{2(1-α)} \cdot log|(αK_{X∪x} + (1-α)K_{Y∪y})^{-1}|$$
Gradient Calculation

Following matrix calculus, \(\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} \) could be expressed as follows

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -(1 - \beta) \frac{\partial k_Y(y, y)}{\partial y(d)} - 2 K_Y^T K_Y^{-1} \frac{\partial K_y^T}{\partial y(d)} + \frac{1}{2(1 - \alpha)} \text{Tr} \left(\frac{\partial K_{Y \cup y}}{\partial y(d)} \cdot (\alpha K_{X \cup x}^{-1} + (1 - \alpha) K_{Y \cup y}^{-1})^{-1} \right)
\]

(29)

Since \(\frac{\partial k_Y(y, y)}{\partial y(d)} = 0 \) for rbf-kernels and \(-\frac{(1 - \beta)}{2(1 - \alpha)}(1 - \alpha) = -\frac{(1 - \beta)}{2} \), then

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -(1 - \beta) \frac{(-2 K_Y^T K_Y^{-1} \frac{\partial K_y^T}{\partial y(d)})}{(k_Y(y, y) - K_y^T K_Y^{-1} K_y^T)} - \frac{1}{2(1 - \alpha)} \text{Tr} \left((\alpha K_{X \cup x}^{-1} + (1 - \alpha) K_{Y \cup y}^{-1})^{-1} \cdot K_{Y \cup y}^{-1} \frac{\partial K_{Y \cup y}}{\partial y(d)} K_{Y \cup y}^{-1} \right)
\]

(30)

By factorization, the gradient could be further simplified into the following form.

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -(1 - \beta) \frac{(-2 K_Y^T K_Y^{-1} \frac{\partial K_y^T}{\partial y(d)})}{(k_Y(y, y) - K_y^T K_Y^{-1} K_y^T)} - \frac{1}{2} \text{Tr} \left((\alpha K_{X \cup x}^{-1} + (1 - \alpha) K_{Y \cup y}^{-1})^{-1} \cdot K_{Y \cup y}^{-1} \frac{\partial K_{Y \cup y}}{\partial y(d)} \right)
\]

(31)

Since \((AB)^{-1} = B^{-1}A^{-1}\), where \(A\) and \(B\) are invertible matrices, then

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -(1 - \beta) \frac{(-2 K_Y^T K_Y^{-1} \frac{\partial K_y^T}{\partial y(d)})}{(k_Y(y, y) - K_y^T K_Y^{-1} K_y^T)} - \frac{1}{2} \text{Tr} \left((\alpha K_{X \cup x}^{-1} + (1 - \alpha) K_{Y \cup y}^{-1})^{-1} \cdot \frac{\partial K_{Y \cup y}}{\partial y(d)} \right)
\]

(32)

Having applied matrix multiplications, then

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -(1 - \beta) \frac{(-2 K_Y^T K_Y^{-1} \frac{\partial K_y^T}{\partial y(d)})}{(k_Y(y, y) - K_y^T K_Y^{-1} K_y^T)} - \frac{1}{2} \text{Tr} \left((\alpha K_{Y \cup y} - 1) K_{X \cup x}^{-1} + (1 - \alpha) K_{Y \cup y}^{-1})^{-1} \cdot \frac{\partial K_{Y \cup y}}{\partial y(d)} \right)
\]

(33)

Having analyzed equation 33, it is not hard to see that

\[
\frac{\partial K_{Y \cup y}}{\partial y(d)} = \begin{bmatrix} 0 & \frac{\partial K_y^T}{\partial y(d)} \\ \frac{\partial K_y^T}{\partial y(d)} & 0 \end{bmatrix}
\]
\[
Tr \left(\left(\alpha K_{Y \cup y}^{-1} K_{X \cup x}^{-1} K_{Y \cup y} + (1 - \alpha) K_{Y \cup y} \right) \frac{\partial K_{Y \cup y}}{\partial y(d)} \right)^{-1} \cdot \frac{\partial K_{Y \cup y}}{\partial y(d)} \right) = 2 \cdot \mu_y^T \cdot \frac{\partial K_y^y}{\partial y(d)}
\]

where \(\left(\alpha K_{Y \cup y}^{-1} K_{X \cup x}^{-1} K_{Y \cup y} + (1 - \alpha) K_{Y \cup y} \right) \mu_y' = [0, 0, \ldots, 0]^T \), \(\mu_y \) is a vector of all elements in \(\mu_y' \) except the last element. Hence,

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = -\frac{(1 - \beta)}{2} \left(\frac{\partial y}{K_{y}(y, y) - K_y^y T K_y^{-1} K_y^y} \right) = -\frac{(1 - \beta)}{2} \cdot 2 \cdot \mu_y^T \cdot \frac{\partial K_y^y}{\partial y(d)}
\]

Which directly leads to the final form of \(\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} \)

\[
\frac{\partial \log L(\alpha, \beta)}{\partial y(d)} = (1 - \beta) \left(\frac{K_y^y T K_y^{-1} K_y^y}{(K_y(y, y) - K_y^y T K_y^{-1} K_y^y)} + \mu_y^T \cdot \frac{\partial K_y^y}{\partial y(d)} \right)
\]

Appendix C: SM \(D' \) TGP

This derivation is much more simpler starting from our simplified closed-form expression of SM-divergence between two multivariate Gaussians. After ignoring multiplied positive constants and added constants (i.e. \(|K_X|, |K_Y|, |(1-\alpha)K_X + \alpha K_Y|\) are multiplied constants, \(-\frac{(1 - \beta)}{2} \) is an added constant), the improved SMTGP cost function reduces to

\[
L'_\alpha, \beta(p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left[\frac{K_y^y T K_y^{-1} K_y^y}{(K_y(y, y) - K_y^y T K_y^{-1} K_y^y)} \right]^{\frac{1 - \beta}{2}}
\]

where \(K_{xy}^\alpha = (1 - \alpha)K_X(x, x) + \alpha K_y(y, y) \), \(K_{XY}^{xy} = (1 - \alpha)K_X + \alpha K_Y \). Since the cost function have two factors that does depend on \(y \), we follow the rule that if \(g(y) = f(y)r(y) \), then \(g'(y) = f'(y)r(y) + f(y)r'(y) \), which interprets the two terms the derived gradient below.

\[
\frac{\partial L'_\alpha, \beta}{\partial y(d)} (p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left(\frac{(1 - \beta)}{2} \right) \left(\frac{\partial K_y^y(y, y)}{\partial y(d)} - 2 \cdot K_y^y T K_y^{-1} \frac{\partial K_y^y}{\partial y(d)} \right)
\]

\[
= \frac{1}{\beta - 1} \left(\frac{(1 - \beta)}{2} \right) \left(K_{xy}^\alpha - K_{XY}^{xy} T ((1 - \alpha)K_X + \alpha K_Y)^{-1} K_{XY}^{xy} \right) \cdot \frac{1 - \beta}{2(1 - \alpha)}
\]

\[
\left(\frac{\partial k_y(y, y)}{\partial y(d)} - 2 \cdot K_y^y T K_y^{-1} \frac{\partial K_y^y}{\partial y(d)} \right)
\]

\[
= \frac{1}{\beta - 1} \left(\frac{(1 - \beta)}{2} \right) \left(K_{xy}^\alpha - K_{XY}^{xy} T ((1 - \alpha)K_X + \alpha K_Y)^{-1} K_{XY}^{xy} \right) \cdot \frac{1 - \beta}{2(1 - \alpha)}
\]

\[
\frac{\partial L'_\alpha, \beta}{\partial y(d)} (p(X, x) : p(Y, y)) = \frac{1}{\beta - 1} \left(\frac{(1 - \beta)}{2} \right) \left(K_{xy}^\alpha - K_{XY}^{xy} T ((1 - \alpha)K_X + \alpha K_Y)^{-1} K_{XY}^{xy} \right) \cdot \frac{1 - \beta}{2(1 - \alpha)}
\]

(38)
Appendix D: Advantage of computing SM divergence between two Multivariate Gaussians using Lemma 3.1

As far as we know, an efficient way to compute $D_{\alpha,\beta}(N_p,N_q)$ in equation (3), where $\Delta \mu = 0$ requires $\approx \frac{5N^3}{3}$ operations; we illustrate as follows. Cholesky decomposition of Σ_p and Σ_q requires $\frac{2N^3}{3}$ operations, with additional $\frac{2N^3}{3}$ operations for computing Σ_p^{-1} and Σ_q^{-1} from the computed decompositions (Trefethen and Bau [1997]). Then, cholesky decomposition of $\alpha\Sigma_p^{-1} + (1 - \alpha)\Sigma_q^{-1}$ is computed in additional $\frac{N^3}{3}$ operations. From the computed decompositions, $|\Sigma_p|$, $|\Sigma_q|$ and $|\alpha\Sigma_p^{-1} + (1 - \alpha)\Sigma_q^{-1}|^{-1}$ are computed in $3N$ operations, which we ignore. Hence, the required computations for $D_{\alpha,\beta}(N_p,N_q)$ are $\frac{2N^3}{3} + \frac{N^3}{3} = \frac{5N^3}{3}$ operations if $\Delta \mu = 0$. In case $\Delta \mu \neq 0$, an additional $\frac{N^3}{3}$ operations are required to compute $(\alpha\Sigma_p^{-1} + (1 - \alpha)\Sigma_q^{-1})^{-1}$, which leads to total of $\frac{6N^3}{3} = 2N^3$ operations.

In contrast to $D_{\alpha,\beta}(N_p,N_q)$, $D'_{\alpha,\beta}(N_p,N_q)$ in lemma 3.1 could be computed similarly in only N^3 operations, if $\Delta \mu = 0$, required to compute the determinants of Σ_p, Σ_q, and $\alpha\Sigma_q + (1 - \alpha)\Sigma_p$ by Cholesky decomposition. In case $\Delta \mu \neq 0$, an additional $\frac{N^3}{3}$ operations are needed to compute $(\alpha\Sigma_q + (1 - \alpha)\Sigma_p)^{-1}$. So, total of $\frac{4N^3}{3}$ operations are needed if $\Delta \mu \neq 0$. Accordingly, $D'_{\alpha,\beta}(N_p,N_q)$ is 1.67 ($\frac{5N^2}{3} / N^3$) times faster to compute than $D_{\alpha,\beta}(N_p,N_q)$ if $\Delta \mu = 0$, and 1.5 ($\frac{2N^3}{3} / \frac{4N^3}{3}$) times faster, otherwise.

References

Agarwal A, Triggs B (2006) Recovering 3d human pose from monocular images. TPAMI 28:44–58

Aghagolzadeh M, Soltanian-Zadeh H, Araabi B, Aghagolzadeh A (2007) A hierarchical clustering based on mutual information maximization. In: ICIP

Akturk E, Bagci G, Sever R (2007) Is sharma-mittal entropy really a step beyond tsallis and rényi entropies? URL http://arxiv.org/abs/cond-mat/0703277

Aktürk OÜ, Aktürk E, Tomak M (2008) Can sobolev inequality be written for sharma-mittal entropy? International Journal of Theoretical Physics 47:3310–3320

Alvarado FL (1999) The Matrix Inversion Lemma. Tech. rep., The University of Wisconsin, Madison, Wisconsin, 53706, USA

Amari SI, Nagaoka H (2000) Methods of Information Geometry, Translations of Mathematical monographs, vol 191. Oxford University Press

Banerjee A, Merugu S, Dhillon IS, Ghosh J (2005) Clustering with bregman divergences. JMLR 6:1705–1749

Bo L, Sminchisescu C (2009) Structured output-associative regression. In: CVPR

Bo L, Sminchisescu C (2010) Twin gaussian processes for structured prediction. IJCV 87:28–52

Cichocki A, Ichi Amari S (2010) Families of alpha-beta- and gamma-divergences: Flexible and robust measures of similarities. Entropy 12:1532–1568

\(^{16}\) derived directly from the closed form in (Nielsen and Nock [2012])

\(^{17}\) There are additional N^2 (matrix vector multiplication), and N (dot product operations), which we ignore since they are not cubic

\(^{18}\) Additional $2 \cdot O(N^2.33)$ for 2 matrix multiplications are ignored
Cichocki A, Lee H, Kim YD, Choi S (2008) Non-negative matrix factorization with alpha-divergence. Pattern Recognition Letters

Cichocki A, Cruces S, Amari Si (2011) Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy 13:134–170

Cristianini J N Shawe-Taylor, Kandola JS (2001) Spectral kernel methods for clustering. In: NIPS

DeGroot MH (1962) Uncertainty, Information, and Sequential Experiments. Annals of Mathematical Statistics 33:404–419

Frank T, Plastino A (2002) Generalized thermostatistics based on the sharma-mittal entropy and escort mean values. European Physical Journal B 30:543–549

Gray RM (1990) Entropy and information theory. Springer-Verlag New York, Inc.

Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with hilbert-schmidt norms. In: International conference on Algorithmic Learning Theory

Hero AO, Ma B, Michel O, Gorman J (2001) Alpha-divergence for classification, indexing and retrieval. Tech. rep., University of Michigan

Hull JJ (1994) A database for handwritten text recognition research. TPAMI 16:550–554

Jensen JLWV (1906) Sur les fonctions convexes et les inegalits entre les valeurs moyennes. Acta Mathematica 30:175–193

Kailath T (1967) The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology 15:52–60

Kompass R (2007) A generalized divergence measure for nonnegative matrix factorization. Neural Computation 19:780–791

Kybic J (2006) Incremental updating of nearest neighbor-based high-dimensional entropy estimation. In: ICASSP

Learned-Miller EG, Fisher-III JW (2003) Ica using spacings estimates of entropy. JMLR 4:1271–1295

Masi M (2005) A step beyond tsallis and rényi entropies. Physics Letters A 338:217–224

Nielsen F, Nock R (2012) A closed-form expression for the sharmanittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical

Póczos B, Lőrincz A (2005) Independent subspace analysis using geodesic spanning trees. In: ICML

Rasmussen CE, Williams CKI (2005) Gaussian Processes for Machine Learning. The MIT Press

Reid MD, Williamson RC (2011) Information, divergence and risk for binary experiments. J Mach Learn Res 12:731–817

Rényi A (1960) On Measures Of Entropy And Information. In: Berkeley Symposium on Mathematics, Statistics and Probability

Shan C, Gong S, Mcowan PW (2005) Conditional Mutual Information Based Boosting for Facial Expression Recognition. In: BMVC

Shannon CE (2001) A mathematical theory of communication. SIGMOBILE 5:3–55

Sharma D BD Mittal (1975) New nonadditive measures of inaccuracy. In: Journal of Mathematical Sciences, vol 26, pp 584–595

Sigal L, Balan AO, Black MJ (2010) Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human mo-
Szab Z, Pczos B, Lrincz A (2007) Undercomplete blind subspace deconvolution via linear prediction. In: ECML
Trefethen LN, Bau D (1997) Numerical Linear Algebra. SIAM: Society for Industrial and Applied Mathematics
Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Statist Phys 52:479–487
Tsallis C, Plastino AR, Alvarez-Estrada RF (2009) Escort mean values and the characterization of power-law-decaying probability densities. Journal of Mathematical Physics 50(4)
Van Hulle MM (2008) Constrained subspace ica based on mutual information optimization directly. Neural Computing 20:964–973
Wang YX, Zhang YJ (2013) Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25:1336–1353
Yamada M, Sigal L, Raptis M (2012) No bias left behind: covariate shift adaptation for discriminative 3d pose estimation. In: ECCV
Zhang J (2004) Divergence function, duality, and convex analysis. Neural Computation 16:159–195
Zhang J (2007) A note on curvature of -connections of a statistical manifold. Annals of the Institute of Statistical Mathematics pp 161–170
Zhang J (2013) Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15:5384–5418