TOXICITY OF β-(1→3,1→6)-ᴅ-GLUCANS PRODUCED BY Diaporthe sp. ENDOPHYTES ON Metarhizium anisopliae (METSCHNIKOFF) SOROKIN ASSESSED BY CONIDIA GERMINATION SPEED PARAMETER

ABSTRACT: We have previously reported that β-(1→3,1→6)-ᴅ-glucans produced by endophytes Diaporthe sp. G27-60 and G65-65 (GenBank accession codes JF766998 and JF767007, respectively) are promising anti-proliferation agents against human breast carcinoma (MCF-7) and hepatocellular carcinoma (HepG2-C3A) cells. However, the literature fails to describe the effects of Diaporthe exopolysaccharides (EPS) on eukaryotic healthy cells. The fungus Metarhizium anisopliae has been employed as model-system to evaluate the toxicity of pharmaceutical and agricultural-interest substances, taking into account, among other parameters, the speed of conidia germination. Current study verified the effect of different concentrations of Diaporthe β-glucans on the germination speed of M. anisopliae. Conidia were incubated with β-glucans treatments (50, 200 and 400 μg/mL) at 28°C, sampled during 24 h and analyzed by light microscopy. At the end of a 24-h incubation, the amount of germinated conidia reached ≈99% for controls and ranged between 97.7 and 98.6% for treatments. Bayesian analysis indicated that Diaporthe glucans had no toxicity on M. anisopliae and the curve of germination occurred as expected for this fungal strain. Considering the validity of filamentous fungi as model-systems, results are important data on the toxicity of endophytic EPS on healthy cells and may be associated with our previous results obtained for these polymers against tumor cells.

KEYWORDS: Bayesian analysis. Endophytic fungi. Exopolysaccharide. Fungal model-system.

INTRODUCTION

The medicinal plant Piper hispidum Sw. (called cordoncillo in Mexico and falso-jaborandi in Brazil) harbors a diversity of endophytic fungi that inhabit the interior of the host plant without causing any damage (Orlandelli et al. 2012a), which include strains that secrete compounds with antimicrobial and enzymatic activity (Orlandelli et al. 2012b, 2015, 2017a). In a previous paper (Orlandelli et al. 2016), we identified that some strains are exopolysaccharide (EPS) producers: two of them, identified as Diaporthe (= Phomopsis) sp., secrete high-molecular weight EPS characterized as β-(1→3,1→6)-ᴅ-glucans, with potent anti-proliferation effects on tumor cells: inhibition ratios up to 74.6% and 83.3% against human breast carcinoma (MCF-7) and hepatocellular carcinoma (HepG2-C3A) cells, respectively (Orlandelli et al. 2017b).

Literature data report that Phomopsis (= Diaporthe) foeniculi, a phytopathogen isolated from fennel, secreted two EPS (a galactan and a mannan) that exhibited toxic effects (i.e. chlorosis, necrosis and/or wilting) on fennel, tobacco and tomato plants (Corsaro et al. 1998). Different biological systems could be evaluated to provide an in-depth investigation on the toxic effects of these polymers on healthy cells.

In 1974, Smith and Rosazza suggested that microbial systems could be defined as those capable of mimicking the biotransformations reported in mammals (Cerniglia 1997). Once the basic principles of many cellular processes are conserved between animals and fungi, these microorganisms may be used for studying fundamental cell
Toxicity of β-(1→3,1→6)-ᴅ-Glucans… ORLANDELLI, R. C. et al.

biological issues, with the advantage of their amenability to classical and molecular techniques (Steinberg and Perez-Martin 2008). So that conidia germination may be employed as a parameter, fungal conidia are inoculated into a liquid medium; samples are periodically collected, and the number of germinated conidia is counted (Milner, Huppataz and Swaris 1991) to determine whether chemical variables influence fungal development and conidiogenesis (Rangel et al. 2004).

Metarhizium anisopliae cells may be used as model-system for toxicity assays of chemical products (Almeida et al. 2014). In this context, the germination speed of _M. anisopliae_ conidia has been employed to evaluate the effects of nutritional and physical factors, and the toxicity or compatibility of pharmaceutical and agricultural-interest substances (Rangel, Alston and Roberts 2008, Alves et al. 2011, Akbar et al. 2012, Bulla et al. 2013, Fabrice et al. 2013, Almeida et al. 2014, Mochi et al. 2017, Sohrabi et al. 2019). Current study employs _M. anisopliae_ conidia germination speed as a parameter for the evaluation of the toxicity of β-(1→3,1→6)-ᴅ-glucans secreted by _Diaporthe_ sp. G27-60 and _Diaporthe_ sp. G65-65, and expects to detect a possible toxic effect of the fungal polymers against eukaryotic healthy cells.

CONTENTS

The Mato Grosso (MT) strain of _M. anisopliae_ var. _anisopliae_ – retrieved from the Collection of Endophytic and Environmental Microorganisms, Laboratory of Microbial Biotechnology, Universidade Estadual de Maringá, Brazil (CMEA/LBIOMIC-UEM) – was used as a model-system to evaluate the possible toxic effects of different concentrations of β-glucans. The strain was grown on Petri dishes containing Complete medium (CM) (Pontecorvo et al. 1953), whilst conidia were obtained directly from seven-day-old sporulation cultures by scraping and suspended in a 0.01% Tween 80 aqueous solution (7 mL). The conidia solution was filtered through a glass funnel with autoclaved gauze and added to a saline solution (9 mL) to obtain a solution with a concentration of 3×10^7 conidia/mL. Further, 300 µL of conidia solution were inoculated into 10-mL glass flasks containing 400 µL of Liquid complete medium (LCM) (Pontecorvo et al. 1953). Each flask received 100 µL of β-glucan solution, as shown in Table 1.

Table 1. Treatments of β-(1→3,1→6)-ᴅ-glucans used in this study.

Treatment code	Concentration (µg/mL)	Glucan code	Glucan-producing endophyte
T1	50	EPS-P_D1	_Diaporthe_ sp. G27-60
T2	200	EPS-P_D1	_Diaporthe_ sp. G27-60
T3	400	EPS-P_D1	_Diaporthe_ sp. G27-60
T4	50	EPS-P_D2	_Diaporthe_ sp. G65-65
T5	200	EPS-P_D2	_Diaporthe_ sp. G65-65
T6	400	EPS-P_D2	_Diaporthe_ sp. G65-65

*Glucans were dissolved in DMSO (dimethyl sulfoxide) and diluted with Liquid complete medium (final DMSO concentration ≤1%).

The β-(1→3,1→6)-ᴅ-glucans were previously obtained by Orlandelli et al. (2017b) from submerged cultures of _Diaporthe_ sp. G27-60 and _Diaporthe_ sp. G65-65 (GenBank codes JF766998 and JF767007, respectively), two endophytes isolated from the medicinal plant _Piper hispidum_ Sw. (Orlandelli et al. 2012) and retrieved from the CMEA/LBIOMIC-UEM. Controls comprised (C1), namely, β-glucan solution replaced by same volume of water, or (C2) LCM plus dimethyl sulfoxide (DMSO; Sigma-Aldrich Co.) at concentration 1%. The three concentrations (50, 200 and 400 µg/mL) of β-glucans tested were prepared under same conditions previously described by (Orlandelli et al. 2017b) for anti-proliferation assay and, then, dissolved in DMSO and diluted with culture medium (LCM). The DMSO concentration used (≤1%) has already been reported as compatible with _M. anisopliae_ conidia germination (Schumacher and Poehling 2012, Wenzel Rodrigues et al. 2017).

All flasks remained incubated at 28±2°C for 24 h and triplicates of control and treatment samples were collected periodically (at 0, 6, 8, 10, 12 and 24 h). Conidia were counted using a Neubauer hemocytometer and light microscopy, and the percentage of germinated conidia was assessed by randomly observing 100 conidia per sample. A conidium was considered germinated when a germ-tube was projected (Milner et al. 1991).

So that possible differences could be verified in the conidia germination among treatments and control groups, incubation time and their interactions, the counting data were analyzed with statistical package BRugs for software R (R Development Core Team 2008) and the Poisson
distribution was assumed, implemented by Bayesian methodology. The Monte CarloMarkov Chain (MCMC) was composed of 10,000 samples for each parameter, with a burn-in period of 1,000 initial values and thinning interval of 10, or rather, at every 10 values generated, one belonged to the sample, with 900 values generated. Significant differences were considered at 5% level between treatments if the zero value was not included in the credibility interval of the desired contrast. A non-informative Gamma distribution was considered a priori for germination percentages data. Further, 10,000 values were generated in a MCMC process for each parameter, with a burn-in period of 1,000 initial values and thinning interval of 10, or rather, at every 10 values generated, one belonged to the sample, with 900 values generated. Significant differences were considered at 5% level between treatments if the zero value was not included in the credibility interval of the desired contrast. A non-informative normal distribution was considered a priori for parameters b_0, b_1, or rather, b_0, b_1, $b_2 \sim N(0;10^{-6})$.

When a logistic link function is considered, the conidia germination percentage is generally given by the formula (2) for quadratic regressions:

$$\theta_{ij} = \frac{\exp(b_0 + b_1 \text{time} + b_2 \text{time}^2)}{1 + \exp(b_0 + b_1 \text{time} + b_2 \text{time}^2)}$$

where θ_{ij} is the percentage of germinated conidia.

Herein, the MT conidia germination speed represented a rapid and alternative toxicity assay which significantly expanded investigation on toxicity studies. Comparative analyses of ribosomal RNA and protein sequences proved that fungi are closely related to animal cells (Baldauf and Palmer 1993, Wainright et al. 1993). Furthermore, fungi may be easily grown and manipulated under laboratory conditions for studying cellular and genetics processes (Kibbler et al. 2018), justifying the choice of current fungal model-system.

Approximately 16% of conidia were germinated at 6 h (Table 2), and significantly increased at 8 h (~66%), corroborating the curve of germination speed (Figure 1), which shows that, for all controls and treatments, the conidia germination started close to 4 - 6h of incubation. It was more apparent at 8 h, as expected for this fungal strain in the absence of toxic substances (Alves et al. 2011). At the end of 24 h of incubation, the amount of germinated conidia was >99.0% for controls, and ranged between 97.7% and 98.6% for treatments. Germination speed curve indicated that no delays on fungal germination occurred when MT conidia was treated with Diaporthe β-glucans at 50, 200 and 400 μg/mL concentrations.

Table 2. Percentage (mean of triplicates ± standard deviation) of germinated Metarhizium anisopliae conidia in control and β-glucans treatments throughout the incubation time.

Treatment	0	6	8	10	12	24
C1	0.0±0.0	18±2.0	68.0±2.0	78.3±1.5	95.0±3.0	99.7±0.6
C2	0.0±0.0	16.0±2.0	67.0±1.0	76.0±1.0	93.0±1.0	99.0±1.0
T1	0.0±0.0	15.7±2.0	66.7±2.0	75.7±0.6	93.0±1.0	98.0±1.7
T2	0.0±0.0	15.0±2.0	65.3±0.6	75.3±2.1	92.3±2.5	98.3±0.6
T3	0.0±0.0	15.0±1.0	65.0±2.7	74.7±0.6	92.0±2.0	98.3±1.5
T4	0.0±0.0	16.0±1.0	65.7±2.1	75.3±0.6	92.7±1.5	98.6±0.6
T5	0.0±0.0	15.7±1.1	65.7±1.1	75.0±1.0	92.3±2.1	98.0±1.0
T6	0.0±0.0	15.3±0.6	65.3±2.3	74.3±0.6	92.0±1.0	97.7±2.5

C1 = water, C2 = Liquid complete medium plus DMSO at the concentration of 1%. β-glucan produced by Diaporthe sp. G27-60: T1 = 50 μg/mL, T2 = 200 μg/mL, T3 = 400 μg/mL. β-glucan produced by Diaporthe sp. G65-65: T4 = 50 μg/mL, T5 = 200 μg/mL, T6 = 400 μg/mL.
The spore germination is a process that comprises a sequence of events that activate the resting spore (D’Enfert 1997). When triggered to germinate, the cell becomes hydrated and there is a marked increase in respiratory activity, followed by a progressive increase in the synthesis of protein and nucleic acids (Deacon 2006). The resting spore is subsequently converted into a rapidly growing germ-tube from which the mycelium is formed by elongation and branching (D’Enfert 1997, Deacon 2006). Water, oxygen, and carbon dioxide are universally required to activate the spore germination (D’Enfert 1997). Moreover, optimum conditions such as temperature, humidity, pH and nutrient sources are essential for conidia germination (Almeida et al. 2014). The process is directly affected by nutritional, environmental, physical and chemical factors (Rangel et al. 2004). Variations in the speed of conidia germination may be observed in response to different stress conditions (Roberts and St Leger 2004, Rangel, Alston and Roberts 2008).

The Bayesian analysis is an approach that works on datasets with true distribution, being reliable for small groups of data (Alves et al. 2011). It has been used to obtain precise estimates without needing any kind of transformation (Gomes et al. 2014). The statistical method revealed the absence of a statistically significant difference between the germination speed of controls and treatments. A Bayesian ICr of 95% is the interval in which 95% of the samples are contained, and the smaller the interval, the less dispersed is the parameter. Overall (Table 3), the means of germinated conidia in the interval 0-24 h ranged between 57.40 and 59.75%. According to these results, the β-glucans had no inhibitory effect on the *M. anisopliae* germination when compared to controls.

Table 3. Bayesian estimates for the counting of germinated *M. anisopliae* conidia in controls and β-glucans treatments.

Treatment	Mean (%)	Standard error	95% ICr	2.50%	97.50%
C1	59.75a	0.06	56.53	63.37	
C2	58.63a	0.06	55.02	62.05	
T1	58.04a	0.06	54.56	61.79	
T2	57.67a	0.06	54.27	61.19	
T3	57.40a	0.06	53.70	61.02	
T4	58.06a	0.06	54.58	61.85	
T5	57.76a	0.07	54.37	61.23	
T6	57.42a	0.06	57.36	61.12	

Same letter indicates that means of germinated conidia do not differ according to the Bayesian analysis. C1 = water, C2 = Liquid complete medium plus DMSO at the concentration of 1%. β-glucan produced by *Diaporthe* sp. G27-60: T1 = 50 µg/mL, T2 = 200 µg/mL, T3 = 400 µg/mL. β-glucan produced by *Diaporthe* sp. G65-65: T4 = 50 µg/mL, T5 = 200 µg/mL, T6 = 400 µg/mL.
Toxicity of β-(1→3,1→6)-ᴅ-Glucans… ORLANDELLI, R. C. et al.

The means of germinated conidia significantly increased through the 0 - 12 h interval, while the incubation time of 12 and 24 h was statistically equal, showing higher germination percentages that reached a mean of 97.93% of conidia germinated at 24 h (Table 4). The germination speed remained increasing between 8 and 14 h of incubation, after which it became stable. The logistic regression adjusted efficiently the conidia germination percentage over time (Table 5), showing that the germination percentage over time showed a quadratic behavior.

Table 4. Means and credibility intervals for counting of the germinated M. anisopliae conidia throughout the incubation time.

Time (h)	Mean (%)	Standard error	95% ICr	
0	00.01e	3.72e-4	2.46e-19	0.04
6	15.71d	0.03	14.26	17.33
8	65.72e	0.06	62.30	69.06
10	75.38b	0.05	72.09	78.63
12	92.37a	0.07	88.57	95.98
24	97.93ª	0.07	93.77	101.90

*a-e Different letters indicate that the means of germinated conidia differ according to the Bayesian analysis.

Table 5. Bayesian estimates for the logistic regression coefficients for controls and β-glucans treatments.

Treatment	b₀	b₁	b₂	r²
C1	-7.2940	1.1610	-0.0260	0.9805
C2	-7.3110	1.1650	-0.0280	0.9758
T1	-7.5420	1.2160	-0.0309	0.9752
T2	-7.4730	1.1920	-0.0297	0.9760
T3	-7.3670	1.1700	-0.0290	0.9754
T4	-7.2840	1.1600	-0.0282	0.9775
T5	-7.3920	1.1850	-0.0298	0.9764
T6	-7.3900	1.1830	-0.0300	0.9748

b₀ = intercept, b₁ = linear coefficient, b₂ = quadratic coefficient, r² = coefficient of regression determination. C1 = water, C2 = Liquid complete medium plus DMSO at the concentration of 1%. β-glucan produced by Diaporthe sp. G27-60: T1 = 50 µg/mL, T2 = 200 µg/mL, T3 = 400 µg/mL. β-glucan produced by Diaporthe sp. G65-65: T4 = 50 µg/mL, T5 = 200 µg/mL, T6 = 400 µg/mL.

Conidial germination may be employed to determine whether the substrate on which conidia were produced affected the endogenous reserves stored in conidia during conidiogenesis (Rangel et al. 2004). Corroborating what was reported above, Bulla et al. (2013) evaluated the toxicity of the anti-hypertensive agent perindopril on MT strain by conidia germination speed parameter; no toxicity was detected and concentrations of 200 and 20 µg/ml increased the germination speed. On the contrary, Almeida et al. (2014) reported that EPs 7630® (an ethanolic root extract from the plant Pelargonium sidoides) delayed MT conidia germination when compared to controls, although the conidia viability was preserved.

CONCLUSIONS

Current study is the first report on possible toxic effects of β-glucans from Diaporthe strains against eukaryotic healthy cells. Based on the obtained results, it may be concluded that β-(1→3,1→6)-ᴅ-glucans have no toxicity when conidia germination speed is taken as parameter. Considering the validity of filamentous fungi as model systems, these results are important data on the toxicity of fungal EPS on healthy cells and may be associated with other results already obtained for these polymers against tumor cells.

ACKNOWLEDGMENTS

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 311534/2014-7 and 447265/2014-8), Fundação Araucária (276/2014) for financial support. R.C. Orlandelli thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctoral scholarship.
RESUMO: Anteriormente, um estudo mostrou que β-(1→3,1→6)-ᴅ-glucanas produzidas pelos endófitos Diaporthe sp. G27-60 e G65-65 (códigos de acesso no GenBank JF766998 e JF767007, respectivamente) são agentes promissores com ação antiproliferativa contra células HepG2-C3A (hepatoma humano) e MCF-7 (adenocarcinoma mamário humano). No entanto, os efeitos de exopolissacarídeos (EPS) produzidos por fungos do gênero Diaporthe em células eucarióticas sadias não estão descritos na literatura atual. O fungo Metarhizium anisopliae tem sido utilizado como sistema-modelo para avaliar a toxicidade de substâncias de interesse farmacêutico e agronômico, considerando, entre outros parâmetros, a velocidade de germinação de conídios. O presente estudo teve como objetivo verificar os efeitos de diferentes concentrações de β-glucanas produzidas por Diaporthe sp. sobre a velocidade de germinação de M. anisopliae. Os conídios foram incubados com os tratamentos de β-glucanas (50, 200 e 400 μg/mL) a 28 ºC, com amostras coletadas ao longo de 24 h, e analisados por microscopia de luz. Ao final das 24 h de incubação, o total de conídios germinados nos controles foi de ≈99%, e variou entre 97,7 e 98,6% para os tratamentos. A análise bayesiana indicou que as glucanas de Diaporthe sp. não apresentaram toxicidade sobre M. anisopliae, e a curva de germinação atendeu ao esperado para essa linhagem fúngica. Considerando a validade dos fungos filamentosos como sistemas-modelo, esses resultados representam dados importantes sobre a toxicidade dos EPS de endófitos sobre células sadias e podem ser associados aos resultados anteriormente obtidos para esses polímeros em testes contra células tumorais.

PALAVRAS-CHAVE: Análise bayesiana. Fungos endofíticos. Exopolissacarídeo. Sistema-modelo fúngico.

REFERENCES

AKBAR, S., et al. Compatibility of Metarhizium anisopliae with different insecticides and fungicides. African Journal of Microbiology Research [online]. May 2012, 6 (17), 3956-3962 [cited 2019-02-27]. Available from Internet: https://doi.org/10.5897/AJMR12.417. ISSN: 1996-0808.

ALMEIDA, T. T., et al. Sensibility of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin to Pelargonium sidoides extract (EPS 7630®) assessed by conidia germination speed parameter. African Journal of Biotechnology [online]. February 2014, 13 (7), 821-826 [cited 2019-02-15]. Available from Internet: https://doi.org/10.5897/AJB2013.13235. ISSN 1684-5315.

ALVES, M. M. T. A., et al. Toxicity of the insect growth regulator lufenuron on the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin assessed by conidia germination speed parameter. African Journal of Biotechnology [online]. August 2013, 12 (35), 5452-5457 [cited 2019-02-15]. Available from Internet: https://doi.org/10.5897/AJB12.1810. ISSN 1684-5315.

CERNIGLIA, C. E. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology [online]. November 1997, 19 (5-6), 324-333 [cited 2019-02-23]. Available from Internet: https://doi.org/10.1038/sj.jim.2900459. ISSN 1476-5535.
