Discovery of dysprosium, holmium, erbium, thulium and ytterbium isotopes

C. Fry, M. Thoennessen

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Abstract

Currently, 31 dysprosium, 32 holmium, 32 erbium, 33 thulium and 31 ytterbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.
1. Introduction

The discovery of dysprosium, holmium, erbium, thulium and ytterbium isotopes is discussed as part of the series summarizing the discovery of isotopes, beginning with the cerium isotopes in 2009 [1]. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adopted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case we credited the authors with the discovery in spite of the inaccurate half-life. All reported half-lives inconsistent with the presently adopted half-life for the ground state were compared to isomers half-lives and accepted as discoveries if appropriate following the criterium described above.

The first criterium excludes measurements of half-lives of a given element without mass identification. This affects mostly isotopes first observed in fission where decay curves of chemically separated elements were measured without the capability to determine their mass. Also the four-parameter measurements (see, for example, Ref. [4]) were, in general, not considered because the mass identification was only ± 1 mass unit.

The second criterium affects especially the isotopes studied within the Manhattan Project. Although an overview of the results was published in 1946 [5], most of the papers were only published in the Plutonium Project Records of the Manhattan Project Technical Series, Vol. 9A, “Radiochemistry and the Fission Products,” in three books by Wiley in
1951 [6]. We considered this first unclassified publication to be equivalent to a refereed paper.

The initial literature search was performed using the databases ENSDF [3] and NSR [7] of the National Nuclear Data Center at Brookhaven National Laboratory. These databases are complete and reliable back to the early 1960’s. For earlier references, several editions of the Table of Isotopes were used [8–13]. A good reference for the discovery of the stable isotopes was the second edition of Aston’s book “Mass Spectra and Isotopes” [14].

2. Discovery of $^{139−169}$Dy

Thirty-one dysprosium isotopes from A = 139−169 have been discovered so far; these include 7 stable, 19 neutron-deficient and 5 neutron-rich isotopes. According to the HFB-14 model [15], on the neutron-rich side the bound isotopes should reach at least up to 217Dy while on the neutron deficient side five more isotopes should be particle stable ($^{134−138}$Dy). Five additional isotopes ($^{129−133}$Dy) could still have half-lives longer than 10^{-9} s [16]. Thus, about 58 isotopes have yet to be discovered corresponding to 68% of all possible dysprosium isotopes.

Figure 1 summarizes the year of discovery for all dysprosium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive dysprosium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), deep-inelastic reactions (DI), spontaneous fission (SF), neutron capture (NC), and spallation (SP). The stable isotopes were identified using mass spectroscopy (MS). The discovery of each dysprosium isotope is discussed in detail and a summary is presented in Table 1.

139Dy

Xu et al. first identified 139Dy in 1999 and reported the results in “New β-delayed proton precursors in the rare-earth region near the proton drip line” [17]. A 176 MeV 36Ar beam was accelerated with the Lanzhou sector-focused cyclotron and bombarded an enriched 106Cd target. Proton-γ coincidences were measured in combination with a He-jet type transport system. “A clear 221-keV γ peak and a tiny 384-keV γ peak in the proton-coincident $\gamma(x)$-ray spectrum in the 36Ar+106Cd reaction were assigned to the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ γ transitions in the ‘daughter’ nucleus 138Gd of the βp precursor 139Dy.” The observed half-life of 0.6(2) s corresponds to the currently accepted value.

140Dy

Krolas et al. observed 140Dy as reported in the 2002 article, “First observation of the drip line nucleus 140Dy: Identification of a 7 μs K isomer populating the ground state band” [18]. A 315 MeV 54Fe beam, accelerated by the Oak Ridge tandem accelerator, bombarded an enriched 92Mo target. Fusion-evaporation products were separated with the RMS (Recoil Mass Spectrometer) and detected in a microchannel plate detector in coincidence with γ-rays in the Clover Germanium Detector Array for Recoil Decay Spectroscopy CARDS. “A new 7 μs isomer in the drip line nucleus 140Dy was selected from the products of the 54Fe (315 MeV)+192Mo reaction by a recoil mass spectrometer and studied with recoil-delayed $\gamma-\gamma$ coincidences.” Less than a month later Cullen et al. independently reported excited states in 140Dy [19].
Fig. 1: Dysprosium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
In the 1984 article “Beta-delayed proton emission observed in new lanthanide isotopes” Nitschke et al. reported the first observation of 141Dy [20]. A 274 MeV 54Fe beam from the Berkeley SuperHILAC was used to form 141Dy in the fusion-evaporation reaction 92Mo(54Fe,αn). Beta-delayed protons and characteristic X-rays were measured in coincidence at the on-line isotope separator OASIS. “The ensemble of these observations lead us to the conclusion that two new beta delayed proton emitters 141Dy and 141Gd were being observed”. The measured half-life of 1.0(2) s is in agreement with the currently accepted value of 0.9(2) s.

The first observation of 142Dy was reported by Wilmarth et al. in their 1986 paper entitled “Beta-delayed proton emission in the lanthanide region” [21]. A 247 MeV 54Fe beam from the Berkeley Super HILAC bombarded a 92Mo target and 142Dy was produced in the fusion-evaporation reaction 92Mo(54Fe,2p2n). Beta-delayed particles, X-rays and γ-rays were measured following mass separation with the on-line isotope separator OASIS. “A β-delayed proton activity with a single component half-life of 1.8±0.6 s is assigned to the new isotope 142Dy, on the basis of Tb K x-rays observed in coincidence with protons. Independent analysis of the decay of the Tb x-rays and associated γ-rays results in a 142Dy half-life of 2.3±0.8 s.” This half-life agrees with the accepted value 2.3(3) s.

In 1983, 143Dy was simultaneously discovered by Nolte et al. in “Very proton rich nuclei with N≈82” [22] and by Alkhazov et al. in “New neutron deficient isotopes with mass numbers A=136 and 145” [25]. Nolte et al. used the Munich tandem and heavy-ion linear rf post accelerator to bombard 90Zr with 233–250 MeV 58Ni and 145Dy was
populated in the fusion-evaporation reaction 90Zr(58Ni,n2p). Gamma-ray singles and coincidence spectra were measured with Ge(Li) detectors. “From this fit, the half-life of 145Dy was determined to be 13.6±1 s.” Alkhazov et al. populated 145Dy by spallation of 1 GeV protons on tungsten and tantalum targets. X-rays, γ-rays and conversion electrons were measured following mass separation with the IRIS on-line mass separator facility. “The new gamma lines with the following energies and intensities: 39.7 /?/, 578.2 /100/, 639.6 /93/ and 804.3 /77/ and with the accepted half-life $T_{1/2}=18±3$ s belong to the decay of 145Dy.” These half-lives are consistent with the presently adopted value of 14.1(7) s for an isomeric state. A month earlier Gui et al. had reported the observation of γ-rays in 145Dy without giving any details [26].

146Dy

Alkhazov et al. identified 146Dy in 1981 in “New isotope 146Dy” [27]. A tungsten target was bombarded with 1 GeV protons from the Leningrad synchrocyclotron. X-rays and γ-ray spectra were measured with Ge(Li) detectors following mass separation with the IRIS on-line mass separator facility. “The second set we ascribe to the decay 146Dy→146Tb. The analysis of the decay data for Kα Tb line, gives $T_{1/2} = 31±5$ s, which is in good agreement with the value predicted by Tokahashi et al. for the half-life of 146Dy.” This value agrees with the currently accepted value of 29(3) s.

147Dy

In 1975, the discovery of 147Dy was announced in the paper “Excitation energies of the $h_{11/2}$ and $d_{3/2}$ neutron states in 145Gd and 147Dy” by Toth et al. [28]. A 141Pr target was bombarded with 124−157 MeV 14N beams from the Oak Ridge isochronous cyclotron. A capillary transport system extracted the product nuclei to a shielded area where singles and coincidence γ-ray measurements were taken with Ge(Li) detectors. “A systematic shift in the X-ray energies can be noted by comparing the three sets of spectra. Based on this and other evidence the 72 and 679 keV γ-rays are assigned to 147Dy.” Three weeks earlier Firestone et al. had mentioned a 72 keV γ-ray in 147Dy without a reference [29].

148Dy

“Method for obtaining separated short-lived isotopes of rare earth elements” was published in 1974 by Latuszynski et al. documenting their observation of 148Dy [30]. A tantalum target was bombarded with 660 MeV protons from the Dubna synchrocyclotron. Gamma-ray spectra and decay curves were measured at the end of an electromagnetic separator. “Using the method proposed for investigations in the field of nuclear spectroscopy the gamma-spectra of short-living isotopes with $T_{1/2} \leq 1$ minute have been measured. The new isotopes 161Yb (4.2 min), 148Dy (3.5 min) 132Pr (1.6 min) have been identified.” The observed half-life is used in the calculation of the currently accepted value of 3.3(2) min.

149Dy

In 1958, Toth and Rassmussen observed 149Dy as described in “Studies of rare earth alpha emitters” [31]. Praseodymium was bombarded with a beam of 14N from the Berkeley 60-in. cyclotron. Decay curves of the subsequent activities were measured. “The Tb149 growth curve indicates the presence of Dy149, which decays to Tb149. The growing-in period and the 4-hr tail are shown in [the figure], and from this curve we determine a half-life of 8±2 min for Dy149.” This half-life is almost a factor of two larger than the currently accepted value of 4.20(14) min. This discrepancy was later explained by Bingham et al. [32].
150, 151 Dy

“γ-rays following the β-decay of rare-earth α-emitters” was published by Toth and Rasmussen in 1959, describing the discovery of 150Dy and 151Dy [33]. 14N was accelerated to 140 MeV by the Berkeley heavy ion accelerator to bombard a praseodymium target forming 150Dy and 151Dy in (5n) and (4n) fusion-evaporation reactions, respectively. Alpha-particle decay curves and γ-ray spectra were measured. “In addition, the mass assignments of 150Dy and 151Dy, the 8 min and 19 min dysprosium α-emitters respectively, have been determined with certainty.” These half-lives agree with the presently adopted values of 7.17(5) min and 17.9(3) min, for 150Dy and 151Dy, respectively. Previously, Rasmussen et al. had assigned half-lives of 7(2) min and 19(4) min to dysprosium isotopes with 149≤A≤153 [34].

152, 153 Dy

Toth and Rasmussen reported the discoveries of 152Dy and 153Dy in the 1958 paper “Studies of rare earth alpha emitters” [31]. 152Gd was bombarded with 48 MeV alpha particles accelerated by the Berkeley 60-in. cyclotron. Subsequent α emission was measured following chemical separation. The mass assignment was achieved with the stacked foil technique. “The 2.5-hr isotope was seen in the first target foil at 48 Mev but was absent at 41.5 Mev. At least, it was not present in a sufficient amount to be noticed. The (α,4n) reactions, in this region, have thresholds at about 39 Mev. It seems quite reasonable to assume then that the activity was produced by an (α,4n) reaction on Gd162 and must be Dy162. The 5-hr isotope was present only in a small amount at 33.5 Mev and was absent at 23.3 Mev. Since (α,3n) thresholds are approximately at 28 Mev, one is forced to the conclusion that the 5-hr alpha emitter must have been made by an (α,3n) reaction on Gd162. It must be Dy163.” The quoted half-lives of 2.3(2) h (152Dy) and 5.0(5) h (153Dy) are consistent with the currently accepted values of 2.38(2) h and 6.4(1) h, respectively. Previously, Rasmussen et al. had assigned the half-life of 2.3(2) h to a dysprosium isotope with 149≤A≤153 [34].

154 Dy

The discovery of 154Dy was reported in the 1961 paper “Dysprosium-154, a long-lived α-emitter” by Macfarlane [35]. Gadolinium oxide samples enriched in 154Gd were irradiated with 48 MeV and 37 MeV α particles from the Berkeley 60 in cyclotron. Alpha spectra were obtained using a Frisch-grid argon-methane flow-type ion chamber following chemical separation. “From these data, the alpha half-life of 154Dy was determined to be 1×10^6 years, uncertain by a factor of three.” This value is in agreement with the currently accepted half-life 3.0×10^6 y. A previously reported half-life of 13(2) h [31] was evidently incorrect.

155 Dy

Toth and Rasmussen reported the discovery of 155Dy in the 1958 paper “Studies of rare earth alpha emitters” [31]. Natural gadolinium and enriched 154Gd were bombarded with 48 MeV alpha particles from the Berkeley 60-in. cyclotron. 155Dy was produced by (α,4n) and (α,3n) reactions on 155Gd and 154Gd, respectively. “Our mass assignment of Dy155 was accomplished in the following manner: This new isotope has a prominent gamma transition of 225 kev which was found to decay with a 10-hr half-life.” This half-life agrees with the currently accepted value of 9.9(2) h. A previously reported half-life of 20 h [36] was evidently incorrect [37].
156 Dy

“A new naturally occurring isotope of dysprosium” was published in 1948 by Hess and Inghram describing the observation of ^{156}Dy [38]. Dysprosium oxide samples were placed on a surface ionization type filament of a mass spectrometer. Three separate samples were investigated using optical spectrographic analysis at Argonne. “However, in spite of the known presence of all these impurities and consideration of other possible impurities, the peak observed at mass 156 in the metallic ion group could not be explained... We therefore conclude that dysprosium has a previously unknown isotope of mass 156 which is present to about 0.05 percent of the total.”

157 Dy

Handley and Olson discovered ^{157}Dy as reported in the 1953 paper “Dysprosium 157” [39]. Terbium oxide was bombarded with 24 Mev protons from the Oak Ridge 86-in. cyclotron. Decay curves and γ-spectra were measured following chemical separation. An excitation energy function was measured with the stacked foil technique. “From the [the figure] the high threshold of 19±1 Mev indicates a (p,3n) reaction, thus assigning the 8.2-hour activity to Dy157.”

This half-life is included in the calculation of the current value of 8.14(4) h.

158 Dy

^{158}Dy was discovered by Dempster as described in the 1938 paper “The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium” [40]. Two samples of dysprosium oxide reduced with lanthanum and another sample reduced in addition with calcium were used for the analysis in the Chicago mass spectrograph. “Both samples showed two new isotopes at masses 160 and 158... The isotope at 160 was found on 12 photographs with exposures from one-half to forty minutes, the one at 158 on 4 photographs”.

159 Dy

Butement described the observation of ^{159}Dy in “Radioactive ^{159}Dy” in 1951 [41]. A sample of dysprosium oxide was irradiated with neutrons from the Harwell pile. Decay curves and X-rays were measured following chemical separation. ^{159}Dy was also produced in the reaction $^{159}\text{Tb}(d,2n)$. “After waiting 60 days for complete decay of the ^{166}Dy, the decay of the long-lived activity was followed for 400 days, and showed a half-life of 132 days... It is concluded that the only long-lived product of neutron capture by dysprosium is ^{159}Dy.” This half-life agrees with the currently accepted value of 144.4(2) d. Butement had mentioned the observation of a half-life >50 days of ^{159}Dy in an earlier paper [42]. Previously, a 140(10) d half-life was assigned to either ^{157}Dy or ^{159}Dy [43].

160 Dy

^{160}Dy was discovered by Dempster as described in the 1938 paper “The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium” [40]. Two samples of dysprosium oxide reduced with lanthanum and another sample reduced in addition with calcium were used for the analysis in the Chicago mass spectrograph. “Both samples showed two new isotopes at masses 160 and 158... The isotope at 160 was found on 12 photographs with exposures from one-half to forty minutes, the one at 158 on 4 photographs”.
In 1934, Aston reported the first observation of stable 161Dy, 162Dy, 163Dy, and 164Dy in “The isotopic constitution and atomic weights of the rare earth elements” [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. “Dysprosium (66) gave poor spectra but sufficient to indicate that it consists of mass numbers 161, 162, 163, 164 not differing much in relative abundance.”

165Dy

In 1935, 165Dy was discovered simultaneously by Marsh and Sugden in “Artificial radioactivity of the rare earth elements” [45] and Hevesy and Levi in “Artificial radioactivity of dysprosium and other rare earth elements” [46] published back-to-back in the same issue of Nature. Marsh and Sugden irradiated dysprosium oxide with neutrons from a 400 mCi radon source in contact with powdered beryllium. In the table a half-life of 2.5(1) h is listed for 165Dy. Hevesy and Levi bombarded dysprosium oxide with neutrons from a few hundred mCi radium emanation source. “We find that dysprosium shows an unusually strong activity due to 66Dy165 under the action of slow neutrons; so far as we can ascertain, it is the strongest activity found hitherto.” In a table a half-life of 2.5 h is listed. These half-lives agree with the presently adopted value of 2.334(1) h.

166Dy

In the 1949 paper “New radioactive isotopes of dysprosium” Ketelle reported the observation of 166Dy [43]. Slow neutrons from the Oak Ridge reactor were used to irradiate dysprosium oxide. Decay curves and absorption spectra were recorded following chemical separation. “Since both the half-life and the energy of the daughter activity agree with those of Ho166, we conclude that the 80-hr. parent is Dy166.” This half-life agrees with the currently accepted value of 81.6(1) h. Just over a month later Butement independently reported a half-life of 82 h [42].

167Dy

167Dy was first observed by Wille and Fink as reported in the 1960 paper “Activation cross sections for 14.8-Mev neutrons and some new radioactive nuclides in the rare earth region” [47]. An enriched 170Er sample was irradiated with neutrons produced from the 3H(d,n)4He reaction from the Arkansas Cockcroft-Walton accelerator. Decay curves were measured with an aluminum-walled, methane-flow beta-proportional counter. “Therefore, it seems likely that the 40-sec activity is Ho170 from the Er170(n,p) reaction and the 4.4-min period is Dy167 from the Er170(n,α) reaction.” This half-life is within a factor of two of the currently accepted value of 6.20(8) min.

168Dy

In the 1982 paper “Identification of a new isotope, 168Dy” Gehrke et al. described the discovery of 168Dy [48]. Fission products from spontaneous fission of 252Cf were chemically separated and multiscaled γ-ray spectra were measured with a Ge(Li) detector. “A previously unreported nuclide, 168Dy, has been identified and found to have a half-life of 8.5±0.5 min.” This half-life is included in the calculation of the currently accepted value of 8.7(3) min.
Chasteler et al. observed 169Dy and published the results in their 1990 paper “Decay of the neutron-rich isotope 171Ho and the identification of 169Dy” [49]). The Berkeley SuperHILAC was used to bombard a natural tungsten target with a 8.5 MeV/u 170Er beam and 169Dy was produced in multinucleon transfer reactions. Beta- and gamma-ray spectra were measured following on-line mass separation with the OASIS facility. “Based on the agreement between both the experimental decay energy and half-life with the predictions, we assign the observed activity to the new isotope 169Dy with a half-life of 39(8) s as determined from the weighted average of both the γ and β half-lives.” This half-life is the currently accepted value.

3. Discovery of 140–172Ho

Thirty-two holmium isotopes from $A = 140$–172 have been discovered so far; these include 1 stable, 24 neutron-deficient and 7 neutron-rich isotopes. According to the HFB-14 model [15], on the neutron-rich side the bound isotopes should reach at least up to 223Ho while on the neutron deficient side the dripline has been crossed with the observation of the proton emitters 140Ho and 141Ho. Five additional isotopes (135–139Ho) could still have half-lives longer than 10^{-9} s [16]. Thus, about 57 isotopes have yet to be discovered corresponding to 63% of all possible holmium isotopes.

Figure 2 summarizes the year of discovery for all holmium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive holmium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), deep-inelastic reactions (DI), photo-nuclear reactions (PN), neutron capture (NC), and spallation (SP). The stable isotope was identified using mass spectroscopy (MS). The discovery of each holmium isotope is discussed in detail and a summary is presented in Table 1.

140Ho

The discovery of 140Ho was reported in “Proton emitters 140Ho and 141Ho: Probing the structure of unbound Nilsson orbitals” by Rykaczewski et al. in 1999 [50]. An enriched 92Mo target was bombarded with 315-MeV 54Fe at the Holifield Radioactive Ion Beam Facility at Oak Ridge. Reaction products were separated with the RMS recoil mass separator, identified with a position-sensitive avalanche counter and implanted in double-sided silicon strip detector DSSD. The DSSD also measured time-correlated decay events. “Two new proton emitting states in the deformed nuclei 140Ho ($E_p=1086\pm10$ keV, $T_{1/2} = 6\pm3$ ms) and 141mHo ($E_p=1230\pm20$ keV, $T_{1/2}=8\pm3$ μs) have been identified.” The quoted half-life is the currently accepted value.

141Ho

Davids et al. observed 141Ho in 1998 and published their results in “Proton radioactivity from highly deformed nuclei” [51]. 54Fe beams accelerated to 285 and 305 MeV by the Argonne ATLAS accelerator bombarded a 92Mo target and 141Ho was formed in the fusion evaporation reaction 92Mo(54Fe,p4n). Reaction products were separated with the Fragment Mass Analyzer and implanted in a double-sided silicon strip detector where subsequent protons were recorded. “The low decay energy rules out α radioactivity, and we assign this peak to proton radioactivity from 141Ho, produced with a cross section $\sigma \sim 250$ nb (at both beam energies).” The observed half-life of 4.2(4) ms is used in the calculation of the currently accepted value of 4.1(3) ms.
Fig. 2: Holmium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
In 2001 Xu et al. described the observation of 142Ho in “β-delayed proton decay of the proton drip-line nucleus 142Ho” [52]. The Lanzhou sector-focusing cyclotron was used to bombard enriched 106Cd targets with a 232-MeV 40Ca beam and 142Ho was formed in the (p3n) fusion-evaporation reaction. A combination of a He jet and tape system transported the reaction products to a counting station. Protons were measured with silicon surface barrier detectors and γ- and X-rays were detected with a coaxial HpGe(GMX) detector. “The decay curve of the 307-keV γ line coincident with 2.5-6.5 MeV protons, from which the half-life of the new nuclide 142Ho was extracted to be 0.4±0.1 s, is shown in the inset of [the figure].” The quoted half-life corresponds to the currently accepted value.

The first observation of 144Ho was reported by Wilmarth et al. in their 1986 paper entitled “Beta-delayed proton emission in the lanthanide region” [21]. A 325 MeV 58Ni beam from the Berkeley Super HILAC bombarded a 92Mo target and 144Ho was produced in the fusion-evaporation reaction 92Mo(58Ni,3p2n). Beta-delayed particles, X-rays and γ-rays were measured following mass separation with the on-line isotope separator OASIS. “A short lived proton emitter with a half-life of 0.7±0.1 s was assigned to the new isotope 144Ho on the basis of Dy K x-rays observed in coincidence with the protons.” The quoted half-life is the currently accepted value.

Goettig et al. published the observation of 145Ho in the 1987 paper titled “Decoupled bands in odd-A rare-earth nuclei below N=82” [53]. Enriched 92Mo and 96Ru targets were bombarded with 250 MeV 56Fe and 240 MeV 52Cr beams, from the Daresbury Tandem Van de Graaff accelerator, respectively, and 145Ho was produced in the (p2n) fusion evaporation reaction. Neutrons, charged particles and γ-rays were measured with a 37 element wall, a Si surface barrier telescope and four Compton suppressed Ge detectors, respectively. “In conclusion we have observed bands in the odd-proton nuclei 137Eu, 141,143Tb, 145Ho and the odd-neutron nucleus 145Dy, all of which are nuclei where no information on excited states was previously available.”

146Ho was observed by Gui et al. and the results were published in the 1982 paper “150 ms 10+ isomer in 146Dy” [26]. The Munich heavy-ion postaccelerator was used to bombard 90Zr and 91Zr targets with 233 and 250 MeV 58Ni beams. Gamma-ray spectra were measured with a coaxial and a planar Ge(Li) detector and conversion electrons were detected with a solenoidal spectrometer. “The 3.9 s activity, observed for the identified 146Dy lines in the residual activities has been attributed to the β decay of 146Ho.” This value is in agreement with the currently accepted value of 3.6(3) s.

“Very proton rich nuclei with N≈82” was published in 1982 by Nolte et al. documenting the observation of 147Ho [24]. 58Ni beams of energies of 233–250 MeV from the Munich MP tandem and heavy-ion linear rf post accelerator were used to bombard 92Mo targets forming 147Ho in the fusion-evaporation reaction 92Mo(58Ni,3p). Gamma-ray singles and coincidences were measured with coaxial and planar Ge(Li) detectors. “A half-life of 5.8±0.4 s was obtained for the new isotope 147Ho.” This half-life is the currently accepted value.
In the 1979 paper “Identification of 148Ho and 149Ho” Toth et al. reported the discovery of 148Ho and 149Ho [54]. A 10B beam was accelerated up to 101 MeV by the Texas A&M isochronous cyclotron and bombarded an enriched 144Sm target. A helium gas-jet system transported the reaction products to a counting station where γ-ray singles and coincidences were recorded with large-volume Ge(Li) detectors. “The 9-s isotope, 148Ho, was identified mainly through a 1688-keV γ-ray which: (1) was in coincidence with dysprosium K x rays, (2) increased dramatically in intensity when the 10B bombarding energy was raised from 85 to 96 MeV, and (3) remained constant (over the same range) in intensity relative to that of the 620-keV γ ray known to belong to 148Dy decay.” This half-life corresponds to an isomeric state. “The 21-s isotope, 149Ho, was found to decay primarily to a 149Dy level at 1091 keV and less intensely to the $13/2^{-}$ 1073-keV state observed in a previous in-beam γ-ray study.” This half-life is consistent with the currently accepted value of 21.1(2) s.

Macfarlane and Griffioen identified 150Ho, 151Ho, 152Ho, and 153Ho as reported in the 1963 paper “Alpha decay properties of some holmium isotopes near the 82-neutron closed shell” [55]. 16O beams were accelerated to 75–137 MeV by the Berkeley HILAC and bombarded 141Pr targets to produce holmium isotopes in the fusion-evaporation reactions 141Pr(16O,xn). A Frisch-grid ionization chamber was used to measured subsequent α decays. “Some Dy150 alpha activity was also observed on the plates, which is undoubtedly the result of Ho150 decay. From the level of Dy150 activity on the two plates, Ho150 appears to have a half-life of approximately 20 sec... This indicates that the parent, Ho151, has a half-life of approximately 30 sec which is consistent with the value obtained for the 4.51-MeV group... This means that the parent Ho152 has a half-life of approximately 1 min, a value which is consistent with the measured half-life of the 4.45-MeV alpha group... A search was made for evidence of Ho153 alpha activity by looking at products of the Pr141+O16 reaction at incident energies in the range of 70 to 90 MeV. At these low energies a small peak was observed at an alpha particle energy of 3.92 MeV which was found to decay with a half-life of 9 min.” The ~20 s and 9(2) min half-lives reported for 150Ho and 153Ho correspond to isomeric states. For 151Ho and 152Ho Macfarlane and Griffioen identified the ground states as well as isomeric states.

The first observation of 154Ho was reported by Lagarde et al. in the 1966 paper “Désintégration de quelques isotopes d’erbium et d’holmium défectifs en neutrons” [56]. Natural holmium oxide targets were irradiated with protons from the Orsay synchrocyclotron producing erbium isotopes in (p,xn) reactions. Reaction products were isotopically separated with a double-deflection magnetic separator. 154Ho was then populated in the decay of 154Er. Gamma-rays were measured with NaI(Tl) and Ge(Li) detectors and conversion electrons were measured with a silicon surface barrier detector. “La période de 154Ho est égale à 7±1 mn et le spectre γ manifeste un pic vers 350 keV.” [The period of 154Ho is equal to 7±1 mn and the γ spectrum exhibits a peak around 350 keV.] This half-life is close to the currently accepted value of 11.76(19) min.
In 1959, the discovery of 155Ho was announced by Kalyamin et al. in “New positron activities in neutron-deficient isotopes of lutetium, ytterbium, and holmium” [57]. A tantalum target was irradiated by 660-Mev protons from the Dubna synchrocyclotron. Decay curves and positron spectra were measured following chemical separation. “In the daughter fraction of dysprosium (chromatographically separated from the holmium fraction), the characteristic γ spectrum of Dy155 was found, using a scintillation γ spectrometer. This makes more plausible the supposition that the mass number of the new isotope of holmium is 155.” The quoted half-life of \sim50 min agrees with the currently accepted value of 48(1) min.

156Ho

“Nuclear spectroscopy of neutron-deficient rare earths (Tb through Hf)” was published in 1957 by Mihelich et al. describing the observation of 156Ho [36]. A dysprosium oxide target was irradiated with 22 MeV protons from the ORNL 86-inch cyclotron. The resulting activities were measured with a conversion electron spectrograph and a scintillation counter following chemical separation. “Ho156(\sim1 hr)→Dy156.—As mentioned before, there is evidence for a Ho156 activity of 1-hr half-life which decays by electron capture to a 138-kev level in Dy156.” This half-life is in agreement with the currently accepted value of 56(1) min.

157Ho

In the 1966 paper “New isotopes of Er157, Ho157, and Er156” Zhelev et al. announced the discovery of 157Ho [58]. 660-MeV protons from the Dubna synchrocyclotron irradiated a tantalum target. Gamma spectra were measured with a scintillation spectrometer following chemical separation. “We determined the Ho157 half-life from the amount of Dy157 activity accumulated from Ho157 in three successive separations. Our result was 18^{+2}_{-4} min.” This result reasonably agrees with the accepted value 12.6(2) min. Just 2 months later Lagarde and Gizon independently reported their discovery of 157Ho with a half-life of 14(1) min [56].

158Ho

158Ho was first observed by Dneprovskii in 1961 as reported in “New isotopes of holmium and erbium” [59]. Tantalum targets were bombarded with 660 MeV protons from the Dubna synchrocyclotron and 158Ho was populated by β-decay from 158Er produced in the reaction. Conversion electrons were measured with a magnetic beta-spectrograph following chemical separation. “Upon isolation of the daughter holmium isotope from the erbium fraction 2 hr after the latter was isolated from tantalum, the intensity of lines corresponding to γ transitions had dropped one-half within (27$^{\pm}$2) min. From the facts accumulated, we may ascertain the presence of the decay chain Er $^{2+4}_{-4}$ Ho $^{27_{\text{min}}}_{4}$ Dy.” This half-life corresponds to an isomeric state.

159Ho

“A new holmium activity, 159Ho” was published in 1958 announcing the discovery of 159Ho by Toth [60]. The Berkeley 60-in. cyclotron was used to bombard a Tb$_2$O$_3$ target with 48 MeV α-particles forming 159Ho through an (α,4n) reaction. Decay curves were measured with a Geiger counter and X- and γ-ray spectra were measured with a NaI(Tl) scintillation spectrometer. “From the evidence presented, one can draw the following conclusion: an activity that had at least four
characteristic γ-rays was seen in the holmium fraction at full bombarding energy. Each of the photopeaks decayed with a half-life of about 33 min. The four γ-transitions were missing in the holmium fraction when the experiment was carried out below the (α,4n) threshold. The new activity must therefore be 159Ho.” This half-life agrees with the currently accepted value of 33.05(11) min.

160Ho

Wilkinson and Hicks published the observation of 160Ho in the 1950 paper “Radioactive isotopes of the rare earths. III. Terbium and holmium isotopes” [61]. Terbium targets were bombarded with 38 MeV α-particles from the Berkeley 60-in. cyclotron. Electrons, positrons, γ-rays and X-rays were measured following chemical separation. “22.5±0.5-min Ho160: This activity was observed only in short 38-Mev α-particle bombardments of terbium together with the 4.6-hr. and 65-day activities.” This half-life is close to the currently adopted values of 25.6(3) min. Other holmium assignments reported by Wilkinson and Hicks were subsequently shown to be incorrect by Handley in 1954 [62], however, Handley confirmed the assignment of 160Ho [62].

161Ho

161Ho was discovered in 1954 by Handley and Olson in the paper “New radioactive nuclides of the rare earths” [63]. Erbium oxide was bombarded with 24-MeV protons from the Oak Ridge 86-in. cyclotron. Decay curves and γ-ray spectra were measured following chemical separation. “Decay of the holmium fraction of the second separation was followed, and a half-life of 2.5 hours was observed... This activity is assigned a mass of 161 because it is the daughter of 3.6-hour Er161.” This half-life is in agreement with the currently accepted value 2.48(5) h. A previously reported half-life of 4.6(1) h [61] was evidently incorrect [62].

162Ho

“Nuclear spectroscopy of neutron-deficient rare earths (Tb through Hf)” was published in 1957 by Mihelich et al. describing the observation of 162Ho [36]. A dysprosium oxide target was irradiated with 22 MeV protons from the ORNL 86-inch cyclotron. The resulting activities were measured with a conversion electron spectograph and a scintillation counter following chemical separation. “Ho162(67 min)→Dy162: We have listed the transitions assigned to Ho162 in [the table]. The mass assignment is made on the basis of yields from targets enriched in various masses.” This half-life agrees with the currently adopted value of 67.0(7) min for an isomeric state. A previously reported half-life of 65.0(5) d [61] was evidently incorrect [62].

163Ho

Hammer and Stewart published the observation of 163Ho in the 1957 paper “Isomeric transitions in the rare-earth elements” [64]. Holmium oxides were irradiated with x-rays from the 75 MeV Iowa State College synchrotron and 163Ho was produced in the photomuclear ($γ,2n$) reaction. Decay curves and X- and γ-ray spectra were recorded. “Since Ho is a single isotope of mass 156, the ($γ,2n$) reaction would place the isomeric state in Ho163 and the ($γ,d$) reaction would pace it at Dy163. However, Dy164 is a stable isotope and if the 0.8-sec isomeric state were in Dy163, we should have observed it from the Dy$^{164}→Dy^{163}$ reaction. Since we did not, we assume that the reaction we observed was Ho$^{166}→Hö^{163m}$.” The observed half-life of 0.8(1) s is close to the currently adopted value of 1.09(3) s for an isomeric state. A previously reported half-life of 5.20(5) d [61] was evidently incorrect [62].
The first detection of 164Ho was reported in 1938 by Pool and Quill in “Radioactivity induced in the rare earth elements by fast neutrons” [65]. Fast neutrons produced with 6.3 MeV deuterons from the University of Michigan cyclotron irradiated holmium-rich yttrium and pure yttrium targets for comparison. Decay curves were measured with a Wulf string electrometer. “The 47-min. period emits electrons and is assigned to Ho164.” This half-life is within a factor of two of the currently accepted values of 29(1) min for the ground state and 38.0(10) min for an isomeric state.

In 1934, Aston reported the first observation of stable 165Ho in “The isotopic constitution and atomic weights of the rare earth elements” [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. “Holmium (67) is quite definitely simple 165.”

166Ho was identified in 1936 by Hevesy and Levi reported in the paper “The action of neutrons on the rare earth elements” [66]. Holmium was irradiated by a 200-300 mCi radon-beryllium source and the activity was measured following chemical separation. “Holmium has one stable isotope, 165; the activity observed is therefore due to the decay of 166Ho, the intensity of the activity observed being 20 per cent of that of dysprosium.” The reported half-life of 35 h is within a factor of two of the currently accepted value 26.824(12) h. Previously, the 35 h [46] and a 33 h [67] were reported without mass assignment. The report of a 2.6(2) h half-life assigned to 166Ho [45] was evidently incorrect [66].

In 1955 Handley et al. described the discovery of 167Ho in the paper “Holmium-167” [68]. Er$_2$O$_3$ targets were bombarded with 22.4 MeV protons from the Oak Ridge 86-in. cyclotron. Decay curves, absorption spectra, and γ-ray spectra were measured with an end-window GM tube following chemical separation. “From the differences in isotopic abundance it was calculated that the 3-hour activity was produced from Er167, which would again assign to it a mass of 167. Thus, with the chemistry identifying it as holmium, it is given an assignment of Ho167. The quoted half-life agrees with the currently accepted value 3.1(1) h.

168Ho was first observed by Wille and Fink in 1960 as reported in “Activation cross sections for 14.8-Mev neutrons and some new radioactive nuclides in the rare earth region” [47]. An erbium metal target enriched in 168Er was irradiated with neutrons produced in the 3H(d,n)4He reaction from the University of Arkansas Cockcroft-Walton accelerator. Decay curves were measured with an aluminum-walled, methane-flow beta-proportional counter and γ-spectra were measured with a Na(Tl) detector. “Irradiations of 98% pure natural erbium metal exhibited a new 3.3±0.5-min half-life which could not be immediately assigned... For these reasons, we assign Ho168 to the new 3.3-min activity.” This half-life is used in the calculation of the currently accepted value of 2.99(7) min.
Miyano and Koryanagi reported the discovery of 169Ho in the 1963 paper “The new nucleide holmium-169” [69]. Erbium oxide targets enriched in 170Er were irradiated with bremsstrahlungs γ-rays produced with the JAERI electron linear accelerator and 169Ho was produced by the (γ,p) reactions. Gamma- and beta-ray spectra were measured with a scintillation spectrometer and an anthracene crystal, respectively. “Holmium-169 was produced from the 170Er(γ,p) reaction with 21 MeV bremsstrahlung... The half life of this new nuclide was determined to be $T_{1/2} = 4.8 \pm 0.1$ min.” This half-life is included in the calculation of the currently accepted value of 4.72(10) min. A previously reported half-life of 44 min [70] was evidently incorrect.

170Ho

170Ho was first observed by Wille and Fink in 1960 as reported in “Activation cross sections for 14.8-Mev neutrons and some new radioactive nuclides in the rare earth region” [47]. An erbium oxide target enriched in 170Er was irradiated with neutrons produced in the 3H(d,n)4He reaction from the University of Arkansas Cockcroft-Walton accelerator. Decay curves were measured with an aluminum-walled, methane-flow beta-proportional counter. “Therefore, it seems likely that the 40-sec activity is Ho170 from the Er170(n,p) reaction and the 4.4-min period is Dy167 from the Er170(n,\alpha) reaction.” The quoted half-life of 40(10) s is in agreement with the currently accepted value 43(2) s for an isomeric state.

171Ho

In 1988 the first observation of 171Ho was reported in “Identification of the neutron-rich isotope 174Er” by Chasteler et al. [71]. Natural tungsten targets were bombarded with a 8.5 MeV/u 176Yb beam from the Berkeley SuperHILAC and 171Ho was produced in multi-nucleon transfer reactions. X-, β- and γ-rays were measured with silicon, plastic scintillator, and germanium detector at the OASIS mass separation facility. “Based on our measurements of the Er x rays in coincidence with the β^- particles and the 171Er transitions, we can unambiguously assign the 49(5) s to the β^- decay of 171Ho and eliminate the 171mEr alternative interpretation.” This half-life agrees with the currently accepted value 53(2) s. A month later Rykaczewski et al. assigned a 47(5) s half-life to either 171Ho or 171mEr [72].

172Ho

In their 1991 paper, “Investigation of the new isotope 172Ho and of 174Er”, Becker et al. announced the discovery of 172Ho [73]. A 11.6 MeV/u 136Xe from the GSI UNILAC accelerator bombarded a target of tungsten foils enriched in 186W, and 172Ho was produced in multinucleon transfer reactions. X-, β- and γ-ray spectra were measured at the GSI on-line mass separator. “For 172Ho, the half-life was measured to be 25(3) s and a decay scheme is proposed on the basis of $\gamma\gamma$-coincidence data.” The quoted half-life is the currently accepted value.

4. Discovery of $^{144−175}$Er

Thirty-two erbium isotopes from A = 144−175 have been discovered so far; these include 6 stable, 20 neutron-deficient and 6 neutron-rich isotopes. According to the HFB-14 model [15], on the neutron-rich side the bound isotopes should reach at least up to 224Er and on the neutron deficient side five more isotopes ($^{140−144}$Er) should be particle bound. In
addition, seven more isotopes ($^{133-139}$Er) could still have half-lives longer than 10^{-9} s [16]. Thus, about 61 isotopes have yet to be discovered corresponding to 66% of all possible erbium isotopes.

Figure 3 summarizes the year of discovery for all erbium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive erbium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), deep-inelastic reactions (DI), neutron capture (NC), and spallation (SP). The stable isotopes were identified using mass spectroscopy (MS). The discovery of each erbium isotope is discussed in detail and a summary is presented in Table 1.

144 Er

In the 2003 paper “Fine structure in proton emission from 145Tm discovered with digital signal processing”, first evidence of 144Er was reported by Karny et al. [74]. A 315 MeV 58Ni beam bombarded a 92Mo target forming 145Tm which populated 144Er by proton emission. Recoil products were separated with the Oak Ridge Recoil Mass Separator RMS and implanted in a double-sided silicon strip detector which also recorded the proton decays. “Since the daughter activity is an even-even nucleus, 144Er, the interpretation of the 1.73 and 1.40 MeV lines as transitions to the $I^\pi = 0^+$ ground state and to the previously unknown $I^\pi = 2^+$ excited state at 0.33(1) MeV is obvious.” An earlier report of the observation of 144Er was only published in a conference proceeding [75].

145 Er

“Identification of 145Er and 145Ho” was published in 1989 by Vierinen et al. describing the observation of 145Er [76]. Enriched 92Mo targets were bombarded with a 283-MeV 58Ni beam from the Berkeley SuperHILAC and 145Er was formed in the (2p3n) fusion-evaporation reaction. Recoil products were separated with the On-line Aparatur for SuperHILAC Isotope Separation OASIS and 145Er was identified by measuring γ-ray and delayed proton spectra. “With the 145Dy half-life fixed at 8 s and assuming a negligible contribution from the potential 145Ho protons, a two-component analysis of the decay curves associated with the delayed protons in the 1.6- and 4-s tape cycles yielded a half-life of 0.9±0.3 s for 145Er.” The quoted half-life is the currently accepted value for the isomeric state.

146 Er

146Er was first observed by Toth et al. in 1993 as reported in “Observation of 146Er electron capture and β^+ decay” [77]. A 280 MeV 58Ni beam from the Berkeley SuperHILAC bombarded a 92Mo target and 146Er was formed in the (2p2n) fusion-evaporation reaction. Recoil products were separated with the on-line facility OASIS. Coincidences between β-delayed protons, γ rays, and x rays were recorded. “From the time distribution of the x-ray events seen in these total-projected spectra the half-life of 146Er was determined to be 1.7(6) s.” This half-life is the currently accepted value.

147 Er

In the 1992 article “Identification of the N=79 147Er nucleus through γ-recoil coincidences” de Angelis et al. reported the discovery of 147Er [78]. A 92Mo target was bombarded with a 260 MeV 58Ni beam and 147Er was formed in the (2pn) fusion-evaporation reaction. Recoil products were separated with the Legnaro Recoil Mass Spectrometer RMS and identified with γ-recoil measurements. “We have identified for the first time γ-rays in 147Er by means of γ-recoil coincidences at the Recoil Mass Spectrometer (RMS) of the Laboratori Nazionali di Legnaro (LNL).”
Fig. 3: Erbium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
148 \text{Er}

“Very proton rich nuclei with N≈82” was published in 1982 by Nolte et al. documenting the observation of 148Er [24]. 58Ni beams of energies between 233 and 250 MeV from the Munich MP tandem and heavy-ion linear rf post accelerator were used to bombard 92Mo targets forming 148Er in the fusion-evaporation reaction 92Mo(58Ni,2p). Gamma-ray singles and coincidences were measured with coaxial and planar Ge(Li) detectors. “With the help of cross bombardments and excitation functions, the two γ lines at 244.2 and 315.2 keV were tentatively assigned to the β decay of 148Er to 148Ho. The decay curve of the 244.2 keV line is also drawn in [the figure]. The corresponding half-life was found to be 4.5±0.4 s.” This half-life is used in the calculation of the currently accepted value, 4.6(2) s.

149 \text{Er}

149Er was observed by Toth et al. and the results were published in the 1984 paper “Beta-delayed proton activities: 147Dy and 149Er” [79]. A 162 MeV 12C beam from the Berkeley 88-in. cyclotron bombarded a samarium oxide target enriched in 144Sm and 149Er was produced in the (7n) fusion-evaporation reaction. A helium gas-jet apparatus was used to transport the recoil products to a collection box where γ-rays, X-rays and delayed protons were measured. “Therefore, we assign the 9-sec activity to the β decay of the hitherto unidentified isotope 149Er. Further, we assume that the 9-sec half-life is due primarily (though not exclusively) to the $h_{11/2}$ isomer rather than the $s_{1/2}$ ground state, since the high-spin species should be the predominant product in a heavy-ion induced compound nuclear reaction.” This value is in agreement with the currently accepted value of 8.9(2) s for the isomeric state.

150 \text{Er}

“Very proton rich nuclei with N≈82” was published in 1982 by Nolte et al. documenting the observation of 150Er [24]. 58Ni beams of energies between 233 and 250 MeV from the Munich MP tandem and heavy-ion linear rf post accelerator were used to bombard 94Mo targets forming 150Tm in the fusion-evaporation reaction 94Mo(58Ni,np). 150Er was then populated by the β decay of 150Tm. Gamma-ray singles and coincidences were measured with coaxial and planar Ge(Li) detectors. “With the help of measured excitation functions, cross bombardments and coincidences with x-rays, the 475.8 keV line was assigned to the β decay of 150Er to 150Ho. [The figure] shows the decay of this line after 30 s irradiations. The half-life of 150Er was found to be 18.5±0.7 s.” This half-life is the currently accepted value. Within a few months after the submission by Nolte et al. (Feb. 11), half-lives of 20(2) s (Moltz et al., May 14 [80]), 22(2) s (Toth et al., July 14 [81]), and 17(2) s (Batist et al. published in Nov. [82]), as well as a γ-ray spectrum (Helppi et al. Mar. 5 [83]) were reported independently. Helppi et al. and Batist et al. were aware of the work by Nolte et al, referring to a conference proceeding and a preprint, respectively. Previously, the observation of two isomers were assigned to either 150Ho or 150Er [84].

151 \text{Er}

The discovery of 151Er was reported in “Production of rare-earth α emitters with energetic 3He particles; new isotopes: 151Er, 156Yb, and 157Yb” by Toth et al. in 1970 [85]. Dysprosium oxide targets enriched in 156Dy were bombarded with a 102.1MeV 3He beam from the Oak Ridge isochronous cyclotron ORIC and 151Er was produced in (8n) reactions. Recoils were transported to a Si(Au) detector with a helium gastransport system where α-decay spectra were measured.
Least-squares analyses of these data indicated that the 47-sec 151mHo arises in part from the decay of a nuclide with a half-life of 23±2 sec. This new activity, based on the parent-daughter relationship, was assigned to 151Er. This half-life is included in the weighted average to attain the currently accepted value of 23.5(20) s.

$^{152-154}$Er

In the 1963 paper “Alpha-decay properties of some erbium isotopes near the 82-neutron closed shell” Macfarlane and Griffioen announced the discovery of 152Er, 153Er, and 154Er [86]. 142Nd targets were bombarded with 16O beams of 75–151 MeV from the Berkeley heavy-ion accelerator Hilac, and 152Er, 153Er, and 154Er were formed in (6n), (5n), and (4n) fusion-evaporation reactions, respectively. Recoil products were collected on a charged plate which was placed in Frisch-grid ionization chamber to detect α-particles. “Er152: ...A strong group was observed at 4.80-MeV alpha-particle energy which decays with a half-life of 10.7±0.5 sec... Er153: The second prominent erbium alpha activity that was observed has an alpha-particle energy of 4.67 MeV and a half-life of 36±2 sec... Er154: When the Nd142 target was bombarded with O16 ions at incident energies between 80 and 110 MeV, a weak alpha group was observed at 4.15-MeV alpha-particle energy which decays with a half-life of 4.5±1.0 min.” These half-lives of 10.7(5) s, 36(2) s, and 4.5(10) min agree with the presently accepted values of 10.3(10) s, 37.1(2) s, and 3.73(9) min for 152Er, 153Er, and 154Er, respectively.

155Er

Toth et al. observed 155Er and published the results in their 1969 paper “New erbium isotope, 155Er [87]. Dysprosium oxide targets enriched in 156Dy were irradiated with 72.6 MeV α particles from the Oak Ridge isochronous cyclotron and 155Er was populated in the (5n) reaction. Recoil products were collected with a beryllium catcher which was rotated in front of a Si(Au) detector to record subsequent α emission. “The 4.01-MeV α peak which decays with a 5.3-min half-life is assigned to 155Er on the basis of the following evidence: (a) The peak was not observed in 20–60-MeV proton bombardments of 156Dy... (b) The shape of the calculated 156Dy(α,5n) excitation function followed closely the experimental excitation function for the production of this 4.01-MeV peak. A mass number of 155 appears thus likely for this new α emitter.” The quoted half-life is the currently accepted value.

156Er

Ward et al. published the identification of 156Er in the 1967 paper “Gamma rays following 40Ar-induced reactions” [88]. Isotopically enriched 120Sn targets were bombarded with 40Ar beams and 156Er was populated in the fusion-evaporation reaction 120Sn(40Ar,4n). Gamma-ray spectra were studied using a lithium-drifted germanium counter. “Gamma-ray spectra from the reactions 124,122,120Sn(40Ar,4n)60,58,56Er are shown in [the figure].” The first five transition of the rotational ground-state band were measured for 156Er. Previously, only upper limits of 10–12 min [58] and <4 min [56] for the half-life of 156Er were reported.

157Er

In the 1966 paper “New isotopes of Er157, Ho157, and Er156” Zhelev et al. announced the discovery of 157Er [58]. 660-MeV protons from the Dubna synchrocyclotron irradiated a tantalum target. Gamma spectra were measured with a scintillation spectrometer following chemical separation. “We determined the half-life of Er157 from the amount of the daughter isotope Dy157 that was accumulated in successive separations. There was no need to make any assumption
regarding the decay constant of Ho\(^{157}\). The half-life of Er\(^{157}\) was 24\(^{+2}_{-4}\) min. This half-life is close to the currently accepted value of 18.65(10) min. Just 2 months later Lagarde and Gizon independently reported their discovery of \(^{157}\)Er with a half-life of 25 min [56].

\(^{158}\)Er

\(^{158}\)Er was first observed by Dņeprovskii in 1961 as reported in “New isotopes of holmium and erbium” [59]. Tantalum targets were bombarded with 660 MeV protons from the Dubna synchrocyclotron and \(^{158}\)Er was populated in spallation reactions. Conversion electrons were measured with a magnetic beta-spectrograph following chemical separation. “From the facts accumulated, we may ascertain the presence of the decay chain Er \(^{2.4\text{hr}}\rightarrow\) Ho \(^{27\text{min}}\rightarrow\) Dy... The position of the first excitation level as a function of neutron number suggests that the mass number of the nuclei belonging to the above decay chain is A=158.” This 2.4 h half-life is in reasonable agreement with the currently accepted value of 2.29(6) h.

\(^{159}\)Er

Abdurazakov et al. reported the discovery of \(^{159}\)Er in their 1961 paper “A new isotope Er\(^{159}\)” [89]. 660-MeV protons from the Dubna synchrocyclotron bombarded a tantalum target. Conversion electrons were measured from successive exposures of photographic films in the \(\beta\) spectrograph. “A new erbium isotope of mass number 159 (T\(_{1/2}\) \(\sim\) 1 hr) has been discovered.” The quoted half-life is within a factor of two of the currently accepted value of 36(1) min and Abdurazakov et al. also identified conversion lines of the daughter nucleus \(^{159}\)Ho.

\(^{160}\)Er

“Mass assignments by isotope separation” was published in 1954 by Michel and Templeton documenting the observation of \(^{160}\)Er [90]. The Berkeley 184-inch cyclotron was used to bombard tantalum targets with 350 MeV protons. The resulting activities were measured with a G-M counter and a scintillation spectrograph. “In addition, the following new isotopes formed in the spallation of tantalum with 350-Mev protons have been assigned: Tm\(^{165}\) (29 hours), Er\(^{160}\) (30 hours), Er\(^{161}\) (3.5 hours).” The quoted half-life for \(^{160}\)Er is in reasonable agreement with the currently accepted value of 28.58(91) h.

\(^{161}\)Er

\(^{161}\)Er was discovered in 1954 by Handley and Olson in the paper “New radioactive nuclides of the rare earths” [63]. Erbium oxide was bombarded with 24-MeV protons from the Oak Ridge 86-in. cyclotron. Decay curves and \(\gamma\)-ray spectra were measured following chemical separation. “Therefore, the 3.6-hour species is produced chiefly by (p,2n) with Tm\(^{161}\) species being short-lived and decaying immediately to Er\(^{161}\).” This half-life is close to the currently accepted value 3.21(3) h. Less than four months later, Michel and Templeton independently reported a half-life of 3.5 h [90].

\(^{162}\)Er

Dempster reported the discovery of \(^{162}\)Er in the 1938 paper “The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium” [40]. An erbium oxide sample reduced with lanthanum was used for analysis in the Chicago mass spectrograph. “Two new isotopes were also observed in erbium reduced with lanthanum at masses 164 and 162, the first on eleven photographs with exposures of ten seconds to twenty minutes and the second on four photographs with seven
to twenty minutes’ exposure. An example of the mass spectrum is given in [the figure]. The abundances were estimated as approximately 2 percent for the mass at 164 and 0.25 percent for the mass at 162.”

163Er

The discovery of 163Er was reported in “Erbium163 and Thulium$^{165\text{n}}$” by Handley and Olson in 1953 [91]. Holmium oxide was bombarded with 24 MeV protons from the ORNL 86-in. cyclotron and 163Er was produced in the 165Ho(p,3n) reaction. Decay curves and γ-ray spectra were measured with a scintillation spectrometer following chemical separation. “A 75-minute activity produced by bombarding Ho165 with protons is assigned to Er163.” This half-life agrees with the currently accepted value of 75.0(4) min.

164Er

Dempster reported the discovery of 164Er in the 1938 paper “The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium” [40]. An erbium oxide sample reduced with lanthanum was used for analysis in the Chicago mass spectrograph. “Two new isotopes were also observed in erbium reduced with lanthanum at masses 164 and 162, the first on eleven photographs with exposures of ten seconds to twenty minutes and the second on four photographs with seven to twenty minutes’ exposure. An example of the mass spectrum is given in [the figure]. The abundances were estimated as approximately 2 percent for the mass at 164 and 0.25 percent for the mass at 162.”

165Er

“Radioactive165Er” by Butement reported the observation of 165Er in 1950 [92]. A holmium oxide target was bombarded with 10 MeV protons from the Harwell cyclotron and 165Er was produced in the 165Ho(p,n)165Er charge exchange reaction. The subsequent decay curve was measured with a Geiger counter following chemical separation. “The radioactivity of the erbium decayed entirely with a half-life of 10.0±0.1 hrs.” This half-life is consistent with the currently accepted value of 10.36(4) h. A previous assignment of a 1.1 min half-life [65] was evidently incorrect. A 12 h half-life had been measured without a mass assignment [46] or assigned to 169Er [65].

166–168Er

In 1934, Aston reported the first observation of 166Er, 167Er, and 168Er in “The isotopic constitution and atomic weights of the rare earth elements” [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. “Erbium is not so complex as it was at first supposed to be. The early samples used were evidently contaminated. A pure sample gave three strong lines, 166, 167, 168 and a weak fourth 170.”

169Er

The identification of 169Er was described by Bisi et al. in the 1956 paper “An investigation of the first rotational level of 169Tm [93]. Erbium oxide was irradiated with slow neutrons in the Harwell reactor. Gamma- and beta-ray spectra were measured with a scintillation spectrometer and a β-ray spectrometer, respectively. “The intensity of the β-rays was followed over 30 days. The half-life was found to be $T_{1/2}=9.0±0.2$ d.” This half-life agrees with the currently accepted value of 9.392(18) d. A previous assignment of a 12 h half-life [65] was evidently incorrect.
In 1934, Aston reported the first observation of 170Er in “The isotopic constitution and atomic weights of the rare earth elements” [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. “Erbium is not so complex as it was at first supposed to be. The early samples used were evidently contaminated. A pure sample gave three strong lines, 166, 167, 168 and a weak fourth 170.”

The first identification of 171Er was reported in 1938 by Pool and Quill in “Radioactivity induced in the rare earth elements by fast neutrons” [65]. Fast and slow neutrons produced with 6.3 MeV deuterons from the University of Michigan cyclotron irradiated erbium oxide targets. Decay curves were measured with a Wulf string electrometer. “Since the 5.1-hr period is not present with fast neutron bombardment, it is assigned to 171Er.” This half-life is within a factor of two of the currently accepted values of 7.516(2) h.

The discovery of 172Er was announced in 1956 by Nethaway et al. in the paper “New isotopes: Er172 and Tm172” [94]. Erbium oxide was irradiated with neutrons from the Idaho Materials Testing Reactor and 172Er was formed by sequential neutron capture from 170Er. Decay curves were measured following chemical separation. “A least-squares analysis gave a value of 49.8 hr for the 172Er half-life. In consideration of the errors inherent in this milking technique, the probable error is set at ±1 hr.” This half-life is included in the weighted average used to obtain the currently accepted value, 49.3(3) h.

Pursiheimo et al. observed 173Er in 1972 and reported their results in “The decay of 1.4 Min 173Er [95]. 176Yb$_2$O$_3$ and Yb$_2$O$_2$ targets were irradiated with 14−15 MeV neutrons from the Helsinki SAMES T 400 neutron generator and 173Er was produced in (n,α) reactions. Gamma- and beta-ray spectra were measured with Ge(Li), NaI(Tl) and plastic scintillation detectors. “A 1.4±0.1 min activity which is assigned to the β^{-}-decay of 173Er has been produced with 14-15 MeV neutrons through the reaction 176Yb(n,α)173Er.” This half-life is the currently accepted value. A previously reported half-life of 12.0(3) min [96] was evidently incorrect.

In 1988 the first observation of 174Er was reported in “Identification of the neutron-rich isotope 174Er” by Chasteler et al. [71]. Natural tungsten targets were bombarded with a 8.5 MeV/u 176Yb beam from the Berkeley SuperHILAC and 174Er was produced in multi-nucleon transfer reactions. X-, β- and γ-rays were measured with silicon, plastic scintillator, and germanium detector at the OASIS mass separation facility. “Twelve γ rays with energies, relative intensities, and coincidences listed in [the table] are assigned to the decay of the new isotope 174Er based on the following observations: the γ rays decayed with a 3.3(2) min. half-life which does not match any of the known half-lives in this isobaric chain.” This half-life agrees with the currently accepted value 3.2(2) min.
\[^{175}\text{Er}\]

“The \(\gamma\)-decay of a new neutron-rich nucleus \(^{175}\text{Er}\)” was published in 1996 announcing the discovery of \(^{175}\text{Er}\) by Zhang et al. [97]. Ytterbium metal targets were irradiated with 14 MeV neutrons which were produced by bombarding a Ti\(^3\)H target with deuterons from the Lanzhou 600-kV Cockcroft-Walton accelerator. Two coaxial HPGe and a HPGe planar detector were used to measure \(\gamma\)-and X-rays, respectively. “A 1.2±0.3 min activity produced with 14-MeV neutrons using the reaction \(^{176}\text{Yb}(n,2p)\(^{175}\text{Er}\) has been assigned to \(\beta^-\) decay of the unreported erbium isotope \(^{175}\text{Er}\).” This half-life is the currently accepted value.

5. Discovery of \(^{145}-^{177}\text{Tm}\)

Thirty-three thulium isotopes from \(A = 145–177\) have been discovered so far; these include 1 stable, 24 neutron-deficient and 8 neutron-rich isotopes. According to the HFB-14 model [15], on the neutron-rich side \(^{228}\text{Tm}\) should be the last odd-odd particle stable neutron-rich nucleus while the odd-even particle stable neutron-rich nuclei should continue at least through \(^{231}\text{Tm}\). On the neutron deficient side the dripline has been crossed with the observation of proton emission of \(^{145–147}\text{Tm}\). Five additional isotopes (\(^{140–144}\text{Tm}\)) could still have half-lives longer than \(10^{-9}\ s\) [16]. Thus, about 58 isotopes have yet to be discovered corresponding to 64% of all possible thulium isotopes.

Figure 4 summarizes the year of discovery for all thulium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive thulium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), deep-inelastic reactions (DI), photo-nuclear reactions (PN), neutron capture (NC), and spallation (SP). The stable isotope was identified using mass spectroscopy (MS). The discovery of each thulium isotope is discussed in detail and a summary is presented in Table 1.

\[^{145}\text{Tm}\]

In the 1998 paper “Observation of the exotic nucleus \(^{145}\text{Tm}\) via its direct proton decay” Batchelder et al. announced the discovery of \(^{145}\text{Tm}\) [98]. A 315 MeV \(^{58}\text{Ni}\) beam from the Oak Ridge tandem accelerator bombarded an enriched \(^{92}\text{Mo}\) target and \(^{145}\text{Tm}\) was produced in the \(^{92}\text{Mo}(^{58}\text{Ni},p4n)\) fusion-evaporation reaction. Reaction products were separated with the Recoil Mass Spectrometer (RMS) and implanted in a double-sided silicon strip detector which also recorded subsequent proton emissions. “In summary, we have observed direct proton emission from the 0\(h_{11/2}\) ground state of \(^{145}\text{Tm}\) with \(E_p\) and \(T_{1/2}\) of 1.728(10) MeV and 3.5(10) \(\mu\)s respectively.” This half-life agrees with the currently adopted value of 3.17(20) \(\mu\)s.

\[^{146}\text{Tm}\]

“Proton radioactivity from \(^{146}\text{Tm}\). The completion of a sequence of four odd-odd proton emitters” announced the discovery of \(^{146}\text{Tm}\) by Livingston et al. in 1993 [99]. An enriched \(^{92}\text{Mo}\) target was bombarded with a 287 MeV \(^{58}\text{Ni}\) beam and \(^{146}\text{Tm}\) was populated in the \(^{92}\text{Mo}(^{58}\text{Ni},p3n)\) fusion-evaporation reaction. Reaction products were separated with the Daresbury Recoil Separator and implanted in a double-sided silicon strip detector which also recorded subsequent proton emissions. “On this basis, the two lines observed in the \(A=146\) region are assigned to proton emission from \(^{146}\text{Tm}\) with corresponding Q-values of 1127±5 keV and 1197±5 keV. The measured half-lives of these lines are 235±27 ms and 72±23 ms, indicating that the lines originate from different states of \(^{146}\text{Tm}\).” Both of these half-lives correspond to currently accepted values, 235(27) ms for the ground state, and 72(23) ms for an isomeric state.
Fig. 4: Thulium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
In 1982, Klepper et al. announced the discovery of 147Tm in “Direct and beta-delayed proton decay of very neutron-deficient rare-earth isotopes produced in the reaction 58Ni+92Mo” [100]. A 4.6 MeV/u 58Ni beam from the GSI UNILAC bombarded a 92Mo target and 147Tm was formed in the 92Mo(58Ni,p2n) fusion-evaporation reaction. Reaction products were separated with the GSI on-line mass separator and implanted into carbon foils which were placed in front of surface barrier detector telescopes recording subsequent proton emissions. “Using the reaction 58Ni+92Mo, a 1055 keV, 0.42 s proton activity was observed and preliminary assigned to 147Tm.” This half-life of 0.42(10) s is close to the currently accepted value of 0.58(3) s.

“Very proton rich nuclei with $N \approx 82$” was published in 1982 by Nolte et al. documenting the observation of 148Tm [24]. 58Ni beams of energies between 233 and 250 MeV from the Munich MP tandem and heavy-ion linear rf post accelerator were used to bombard 92Mo targets forming 148Tm in the fusion-evaporation reaction 92Mo(58Ni,np). Gamma-ray singles and coincidences were measured with coaxial and planar Ge(Li) detectors. “This activity was assigned to the new isotope 148Tm populated through the reaction 92Mo(58Ni,np). The γ intensities of the observed lines are given in [the table]. The decay curve of the 646.6 keV line is displayed in [the figure]. A half-life of 0.7±0.2 s was obtained for 148Tm.” This half-life is the currently accepted value.

“Observation of 149Tm decay to 149Er levels and β-delayed proton emission” reported the discovery of 149Tm in 1987 by Toth et al. [101]. An enriched 94Mo target was bombarded with a 259 MeV 58Ni beam from the Berkeley SuperHILAC and 149Tm was formed in the fusion-evaporation reaction 94Mo(58Ni,np). Reaction products were separated with the OASIS on-line mass separator and γ-rays, X-rays and positrons were measured. “A new activity (T$_{1/2}$=0.9±0.2 s), with at least seven γ rays following its β decay, was observed in the A=149 mass chain. It is assigned to the hitherto unknown isotope 149Tm because the γ rays are in coincidence with Er K x rays and because several of them are also in coincidence with the 111.3-keV transition seen in 149Erm isomeric decay.” This half-life is the currently accepted value.

“Very proton rich nuclei with $N \approx 82$” was published in 1982 by Nolte et al. documenting the observation of 150Tm [24]. 58Ni beams of energies between 233 and 250 MeV from the Munich MP tandem and heavy-ion linear rf post accelerator were used to bombard 94Mo targets forming 150Tm in the fusion-evaporation reaction 94Mo(58Ni,np). Gamma-ray singles and coincidences were measured with coaxial and planar Ge(Li) detectors. “This activity was consequently assigned to the new isotope 150Tm. This isotope was produced through the reaction 94Mo(58Ni,np). The decay curve of the 207.5 keV line after 6 s irradiations is plotted in [the figure]. From this, a half-life of 3.5±0.6 s was obtained for 150Tm.” This half-life is within a factor of two of the currently accepted value of 2.2(2) s and the observed γ-transitions in the daughter nucleus 150Er were identified correctly.
In the 1982 paper “Yrast \((\pi h_{1/2})^9\) excitations in proton rich N=82 nuclei” Helppi et al. identified \(^{151}\)Tm \([83]\). \(^{95}\)Mo and \(^{93}\)Nb targets were bombarded with 255 MeV \(^{58}\)Ni and \(^{60}\)Ni beams from the Argonne Tandem-Linac forming \(^{153}\)Tm and \(^{153}\)Yb, respectively. \(^{151}\)Tm was then formed in (2n) and (1p1n) fusion-evaporation reactions. Gamma-ray spectra were measured with Ge(Li) and NaI detectors. “Since in addition the lines were found to be coincident with Tm X-rays, they are assigned to the N=82 nucleus \(^{151}\)Tm. The detailed results showed that the four transitions occur in cascade, de-exciting an isomer with \(T_{1/2}=470\pm50\) ns, and they established the E2 character for the 140 keV transition.”

The discovery of \(^{152}\)Tm was published in the 1980 paper “New results in the decay of \(^{150}\)Ho and \(^{152}\)Tm” by Liang et al. \([102]\). Metallic erbium targets were bombarded with 200 MeV protons from the Orsay synchrocyclotron. Reaction products were separated with the on-line isotope separator ISOCELE II and positrons and \(\gamma\)-ray spectra were measured. “\(^{152}\)Tm: The analysis of the \(\gamma\) spectra shows four transitions with energies of 279.9, 422.5, 672.6 and 808.2 keV decaying with the half-life of \(T_{1/2}=5.2\pm0.6\) s.” This half-life is the currently accepted value of an isomeric state of \(^{152}\)Tm.

“Alpha-decay properties of some thulium and ytterbium isotopes near the 82-neutron shell” by Macfarlane announced the discovery of \(^{153}\)Tm and \(^{154}\)Tm in 1964 \([103]\). Praseodymium oxide and neodymium oxide (enriched in \(^{142}\)Nd) were bombarded with 131–195 MeV \(^{20}\)Ne and 121–185 MeV \(^{19}\)F beams from the Berkeley heavy-ion linear accelerator Hilac, respectively. \(^{153}\)Tm and \(^{154}\)Tm were formed in (8n) and (7n) fusion evaporation reactions and identified by measuring excitation functions and \(\alpha\)-decay spectra. “The highest energy \(\alpha\) group observed has an alpha-particle energy of 5.11\pm0.02\) MeV and decays with a half-life of 1.58 sec. This activity is tentatively assigned to the 84-neutron isotope \(^{153}\)Tm on the basis of alpha-decay systematics... A second Tm alpha group decaying with a half-life of 2.98 sec was observed at an alpha-particle energy of 5.04 MeV. On the basis of alpha-decay systematics the most likely mass assignment appeared to be \(^{154}\)Tm.” These half-lives 1.58(15) s and 2.98(20) s agree with the currently adopted values of 1.48(1) s and 3.30(7) s for the ground state of \(^{153}\)Tm and an isomeric state of \(^{154}\)Tm, respectively.

\(^{155},^{156}\)Tm

\(^{155}\)Tm and \(^{156}\)Tm were first observed by Toth et al. as reported in the 1971 paper “Investigation of thulium \(\alpha\) emitters; new isotopes \(^{155}\)Tm and \(^{156}\)Tm” \([104]\). The Oak Ridge isochronous cyclotron was used to bombard enriched \(^{144}\)Sm and \(^{147}\)Sm targets with \(^{14}\)N beams of up to 103 MeV and \(^{155}\)Tm and \(^{156}\)Tm were formed in (3n) and (5n) fusion evaporation reactions, respectively. A helium gas system transported recoil products in front of a Si(Au) detector where subsequent \(\alpha\)-emission was detected. “The sum of the two curves, labeled \(A_1(t)+A_2(t)\), is seen to agree with the data points; thus the decay data obtained at 65 MeV for the 4.60-MeV peak are certainly consistent with our assignment of the 4.45-MeV \(\alpha\)-particle group to \(^{155}\)Tm... Least squares analysis indicated a genetic relationship between two radioactive components, one with a half-life of 2.38 min and the other with an 80-sec half-life. Because the 2.38-min half-life is that of one of the isomers of \(^{152}\)Ho, the parent-daughter relationship establishes the existence of a new thulium nuclide, \(^{156}\)Tm.” The measured half-life of 39(3) s for \(^{155}\)Tm was subsequently questioned \([105]\), however, later Toth et al. demonstrated that
their first experiment was likely a sum of the ground state (21.6(2) s) and an isomeric state (45(3) s). The quoted half-life of 80(3) s for ^{156}Tm is used in the weighted average to obtain the currently accepted value 83.8(18) s.

^{157}Tm

Putaux et al. reported the observation of ^{157}Tm in the 1974 paper “On-line separation of thulium isotopes” [106]. Erbium targets were irradiated with 157 MeV protons from the Orsay synchrocyclotron and ^{157}Tm was produced in (p,xn) reactions. Residues were separated with the on-line ISOCELE separator and γ-ray spectra were measured with a Ge(Li) detector. “Some short-life gamma radiations are attributed to ^{157}Tm. We measured the half-life of ^{157}Tm with two well separated γ-rays (110.3 keV and 241.6 keV) and we propose the half-life (200±25) s.” The quoted half-life is included in the calculation of the currently adopted value of 3.63(9) min.

^{158}Tm

“New isotopes ^{158}Tm and ^{160}Tm” was published in 1970 documenting the observation of ^{158}Tm by de Boer et al. [107]. Erbium oxide samples enriched in ^{162}Er were irradiated with 54 MeV protons from the Amsterdam synchrocyclotron and ^{158}Tm was populated in (p,5n) reactions. Gamma-ray spectra were measured with two coaxial Ge(Li) detectors. “From the individual values the average half-lives were determined to be (9.2±0.4) min for ^{160}Tm and (4.3±0.2) min for ^{158}Tm.” The quoted half-life for ^{158}Tm is included in the weighted average for the currently accepted value of 3.98(6) min.

^{159}Tm

In 1971, Ekström et al. identified ^{159}Tm in the paper entitled “Nuclear spins of neutron deficient thulium isotopes” [108]. Stable erbium targets were irradiated with 90 MeV protons from the Uppsala synchrocyclotron. ^{159}Tm was identified with the atomic-beam magnetic resonance method. “The half-life of $T_{1/2}=9$ min of ^{159}Tm obtained in our measurements is in reasonable agreement with the value 11±3 min obtained by Gromov et al. and the 12±1 min obtained by de Boer et al.” The quoted half-life is in reasonable agreement with the currently adopted value 9.13(16) min. The previous measured half-lives of 11(3) min [109] and 12(1) min [110] mentioned in the quote were only included in internal reports.

^{160}Tm

“New isotopes ^{158}Tm and ^{160}Tm” was published in 1970 documenting the observation of ^{160}Tm by de Boer et al. [107]. Erbium oxide samples enriched in ^{164}Er were irradiated with 54 MeV protons from the Amsterdam synchrocyclotron and ^{160}Tm was populated in (p,5n) reactions. Gamma-ray spectra were measured with two coaxial Ge(Li) detectors. “From the individual values the average half-lives were determined to be (9.2±0.4) min for ^{160}Tm and (4.3±0.2) min for ^{158}Tm.” The quoted half-life for ^{160}Tm is included in the weighted average for the currently accepted value of 9.4(3) min.

^{161}Tm

Harmatz et al. reported their observation of ^{161}Tm in the 1959 paper “Nuclear spectroscopy of odd-mass (161-173) Nuclides produced by proton irradiation of Er and Yb” [111]. Enriched ^{162}Er targets were irradiated with 12–22 MeV proton beams from the Oak Ridge 86-in. cyclotron. Conversion electron spectra were measured following chemical
separation. “A target enriched in Er162 gave rise to an activity which we assign to Tm161. The half-life is 30±10 minutes and a number of internally converted gamma-ray transitions were observed to follow the electron-capture decay of Tm161.” This half-life agrees with the currently accepted value 30.2(8) min. A year later a 32-min half-life was assigned to Tm161 independently by Butement and and Glentworth [112].

\textbf{162Tm}

The observation of 162Tm was announced by Abdumalikov et al. in the 1963 paper “New Yb162 and Tm162” [113]. A tantalum target was bombarded with 660 MeV protons and 162Tm was formed in spallation reactions. Conversion electron spectra were measured with a constant homogeneous magnetic field beta-spectrograph and a triple focusing beta-spectrometer. “The data obtained are in disagreement with the data of Wilson and Pool: 1) the half-life of Tm172 according to our data is 21.5 min and not 77 min; 2) in the decay of Tm162 positrons of a sufficient intensity arise which were not noticed by Wilson and Pool.” This half-life is included in the weighted average to obtain the currently accepted value of 21.70(19) min. The 77(4) min half-life by Wilson and Pool [114] was evidently incorrect.

\textbf{163Tm}

Harmatz et al. reported their observation of 163Tm in the 1959 paper “Nuclear spectroscopy of odd-mass (161–173) Nuclides produced by proton irradiation of Er and Yb” [111]. Enriched 164Er targets were irradiated with 12–22 MeV proton beams from the Oak Ridge 86-in. cyclotron. Conversion electron spectra were measured following chemical separation. “Proton irradiation of targets enriched with Er164 gave rise to an activity of 2.0-hr half-life which, on the basis of activation data is due to Tm163.” This half-life reasonably agrees with the currently accepted value of 1.810(5) h. A year later a 2-h half-life was assigned to 163Tm independently by Butement and Glentworth [112].

\textbf{164Tm}

The 1960 paper “The decay chain Yb164 \rightarrow Tm164 \rightarrow Er164” by Abdurazakov et al. reported the discovery of 164Tm [115]. A tantalum target was irradiated with 680 MeV protons from the Dubna synchrocyclotron. 164Yb was produced in spallation reactions decaying to 164Tb. Gamma-rays, electrons and positrons were measured following chemical separation. “The value of the Tm164 half-life period, averaged by more than 10 measurements, amounts to 2.0±0.5 min.” This half-life is included in the calculation of the currently accepted value of 2.0(1) min. The decay of 164Yb to 164Tm had previously been reported but no details of the decay of 164Tm were given [116]. Later in the year a 2 min half-life was assigned to 164Tm independently by Dalkhsuren et al. [117].

\textbf{165Tm}

The discovery of 165Tm was reported in “Erbium163 and Thulium165” by Handley and Olson in 1953 [63]. Erbium oxide was bombarded with 24 MeV protons from the ORNL 86-in. cyclotron. Decay curves and γ-ray spectra were measured with a scintillation spectrometer following chemical separation. “Therefore, the 24.5-hour activity is assigned to Tm165 and it is the parent of the 10.5-hour Er165.” This is within a factor of two of the currently accepted value of 30.06(3) h. Less than five months later Michel and Templeton independently reported a half-life of 29 hr [90].
Wilkinson and Hicks reported the first observation of ^{166}Tm and ^{167}Tm in the 1948 paper “Some new radioactive isotopes of Tb, Ho, Tm, Lu, Ta, W, and Re” [118]. The Berkeley 60-in. cyclotron was used to bombard holmium with 20 and 38 MeV α-particles. Absorption measurements were performed and decay curves recorded following chemical separation. The results were only summarized in a table. The measured half-lives of 7.7 h (^{166}Tm) and 9 d (^{167}Tm) agree with the currently accepted values of 7.70(3) h and 9.25(2) d, respectively.

^{168}Tm

^{168}Tm was identified by Wilkinson and Hicks in the 1949 paper “Radioactive isotopes of the rare earths. I. Experimental techniques and thulium isotopes” [119]. A holmium target was bombarded with 38 MeV α-particles from the 60-in. Berkeley cyclotron. Electrons and γ-rays were measured following chemical separation. “The latter is reported to have no γ-radiation, and the α- and γ-radiation observed in the thulium fraction decays with a half-life of 85 days. The allocation to mass 168 on the basis of reaction yields is thus confirmed.” The quoted half-life is included in the calculation of the currently adopted value of 93.1(2) d. Previously a 100 d activity was assigned to either ^{167}Tm or ^{168}Tm [118].

^{169}Tm

In 1934, Aston reported the first observation of ^{169}Tm in “The isotopic constitution and atomic weights of the rare earth elements” [44]. The rare earth elements were analyzed with the Cavendish mass spectrograph. “Thulium (69) is simple 169.”

^{170}Tm

Neuninger and Rona discovered ^{170}Tm in 1936 as described in “Über die künstliche Aktivität von Thulium” [120]. Slow neutrons from a radon-beryllium source irradiated a thulium sample and the subsequent decay curve was measured. “Da wir nun die Aktivität seit einigen Monaten messend verfolgen, können wir die Halbwertszeit mit einem Wert von $T = 4$ Monaten mit einer Genauigkeit von $\pm 1/2$ Monaten angeben.” [Because we now measured the activity for several months, we are able to quote a half-life with a value of $T = 4$ months and an accuracy of $\pm 1/2$ months.] This half-life agrees with the presently adopted value of 128.6(3) d.

^{171}Tm

^{171}Tm was first identified by DeBenedetti and McGowan in the 1948 paper “Short-lived isomers of nuclei” [121]. Radioactive sources of ^{171}Er were produced by neutron capture in the Oak Ridge pile and delayed coincidences between the β-particles and γ-rays were measured with two Geiger counters. “Out of 60 nuclei investigated, 4 short-lived isomeric states were found. These are: Ta181* (22 µsec.), Re187* (0.65 µsec.), Tm169* (1 µsec.), and Tm161* (2.5 µsec.).” The measured half-life for this ^{171}Tm isomer agrees with the currently adopted value of 2.60(2) µs. The first observation of the long-lived ground-state was reported in the same year as a conference abstract [122] and only seven years later in the refereed literature [123].
172\textit{Tm}

The discoveries of 172Tm was announced in 1956 by Nethaway et al. in the paper “New isotopes: Er172 and Tm172” [94]. Erbium oxide was irradiated with neutrons from the Idaho Materials Testing Reactor, and 172Tm was populated by β-decay from 152Er which was formed by sequential neutron capture from 170Er. Decay curves were measured following chemical separation. “Two new isotopes, Er172 of half-life 49.8±1 hr, and Tm172 of half-life 63.6±0.3 hr, have been found.” This half-life is used in the calculation of the currently accepted value of 63.6(2) h.

173\textit{Tm}

Kuroyanagi et al. observed 173Tm in 1961 as reported in “New activities in rare earth region produced by the (γ,p) reactions” [124]. Ytterbium oxide powder was irradiated with γ-rays at the Tohoku 25 MeV betatron. Decay curves were measured with a beta ray analyzer or an end-window G-M counter and β-ray spectra were recorded with a plastic scintillator. “The 7.2-h activity is assigned to Tm173 from its decay properties and the (γ,p) yield ratios to such well known activity as Tm172.” This half-life is close to the currently accepted value of 8.24(8) h.

174\textit{Tm}

174Tm was first observed by Wille and Fink in 1960 as reported in “Activation cross sections for 14.8-Mev neutrons and some new radioactive nuclides in the rare earth region” [47]. An ytterbium target enriched in 174Yb was irradiated with neutrons produced in the $^3\text{H}(d,n)^4\text{He}$ reaction from the University of Arkansas Cockcroft-Walton accelerator. Decay curves were measured with an aluminum-walled, methane-flow beta-proportional counter and γ-spectra were measured with a Na(Tl) detector. “From 98.4% enriched Yb174, the 2.0-min activity was not found, but a new 5.5±0.5 min half-life was observed, probably due to Tm174 from the (n,p) reaction.” This half-life was included in the calculation of the currently accepted value of 5.4(1) min.

175\textit{Tm}

Kuroyanagi et al. observed 175Tm in 1961 as reported in “New activities in rare earth region produced by the (γ,p) reactions” [124]. Pure oxide powder was irradiated with γ-rays at the Tohoku 25 MeV betatron. Decay curves were measured with a beta ray analyser or an end-window G-M counter and β-ray spectra were recorded with a plastic scintillator. “From the decay characteristics and the yield of the 20-min activity, it is considered to be assigned to Tm175.” This half-life is close to the currently accepted value of 15.2(5) min. A previously reported half-life of 19 min was assigned to either 172Tm, 173Tm, or 175Tm [70]

176\textit{Tm}

The observation of 176Tm was described by Takashi et al. in the 1961 paper “Some new activities produced by fast neutron bombardments [125]. Fast neutrons produced by bombarding graphite targets with 20 MeV deuterons from the Tokyo 160 cm variable energy cyclotron irradiated a ytterbium oxide sample. Gamma- and beta-ray spectra were measured with NaI(Tl) and plastic scintillators, respectively. “A previously unknown activity of 1.5 min was observed. Similar value of half-life was found in a beta spectrum measurement. Accordingly one may tentatively assign this new isotope to Tm176.” The reported half-life agrees with the presently adopted value of 1.9(1) min.
^{177}Tm

^{177}Tm was identified by Rykaczewski et al. as reported in “Investigation of neutron-rich rare-earth nuclei including the new isotopes ^{177}Tm and ^{184}Lu” in 1989 [72]. A stack of tungsten and tantalum foils were bombarded with 9–15 MeV/u ^{136}Xe, ^{186}W, and ^{238}U beams from the GSI UNILAC accelerator. Plastic scintillators and Ge(Li) detectors were used to measure β- and γ-ray spectra, respectively following on-line mass separation. “Taking into account the results from all these experiments the half-life value of ^{177}Tm is determined to be 85^{+10}_{-15} s.” This half-life agrees with the presently adopted value of 90(6) s.

6. Discovery of $^{149–180}\text{Yb}$

Thirty-one ytterbium isotopes from $A = 149–180$ have been discovered so far; these include 7 stable, 19 neutron-deficient and 5 neutron-rich isotopes. According to the HFB-14 model [15], ^{231}Yb should be the last odd-even particle stable neutron-rich nucleus while the even-even particle stable neutron-rich nuclei should continue at least through ^{234}Yb. On the neutron deficient side five more isotopes should be particle bound ($^{145–148,150}\text{Yb}$). In addition, seven more isotopes ($^{138–144}\text{Yb}$) could still have half-lives longer than 10^{-9} s [16]. Thus, about 66 isotopes have yet to be discovered corresponding to 68% of all possible ytterbium isotopes.

Figure 5 summarizes the year of discovery for all ytterbium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive ytterbium isotopes were produced using fusion evaporation reactions (FE), light-particle reactions (LP), deep-inelastic reactions (DI), neutron capture (NC), and spallation (SP). The stable isotopes were identified using mass spectroscopy (MS). The discovery of each ytterbium isotope is discussed in detail and a summary is presented in Table 1.

149 Yb

The discovery of ^{149}Yb by Xu et al. was announced in the 2001 paper “New β-delayed proton precursor ^{149}Yb near the proton drip line” [126]. A 232 MeV ^{40}Ca beam from the Lanzhou sector-focusing cyclotron bombarded an enriched ^{122}Sn target and ^{149}Yb was formed in the $^{122}\text{Sn}(^{40}\text{Ca},3n)$ fusion-evaporation reaction. A helium-jet fast tape transport system was used to move the recoils in front of silicon surface barrier and HPGe detectors for protons-γ-ray coincidence measurements. “The decay curve of the 647 keV γ line coincident with 2.5-6.4 MeV protons is shown in the inset of [the figure] from which the half-life of ^{149}Yb was extracted to be 0.7 ± 0.2 s.” The quoted half-life is the currently accepted value.

151 Yb

In 1985 Kleinheinz et al. reported the first observation of ^{151}Yb in “Beta-decay of ^{151}Yb” [127]. A ^{86}Ru target was bombarded with a ^{58}Ni beam and ^{151}Yb was populated in the (2pn) fusion evaporation reaction. Recoil products were separated on-line and ^{151}Yb was identified by measuring γ- and X-rays. “The most precise result is obtained from the X-ray data which give $T_{1/2}(^{151}\text{Yb})=1.6(2)$ s.” This half-life agrees with the currently accepted value 1.6(1) s.
Fig. 5: Ytterbium isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have half-lives larger than $\sim 10^{-9}$ s.
152Yb

152Yb was observed by Nolte et al. and results were published in the paper “Seniority isomerism in the N=82 isotone 152Yb; favoured β transitions $\pi h_{11/2} \rightarrow \nu h_{9/2}$” [128]. An enriched 96Ru target was irradiated with 238 and 250 MeV 58Ni from the Munich MP tandem and postaccelerator and 152Yb was formed in the 96Ru(58Ni,2p) fusion-evaporation reaction. Gamma-ray singles and $\gamma-\gamma$ coincidences were measured with a coaxial Ge(Li) detector and a planar Ge detector. “β-decay schemes of 152Yb (3.2 ± 0.3 s), 152Tm (8.0 ± 1.0 s) and 151Tm (3.8 ± 0.8 s) have been derived.” This half-life for 152Yb is included in the calculation of the currently accepted value of 3.04(6) s. In an earlier report the existence of 152Yb was inferred from α-correlation measurements: “Further, correlations were measured between the α lines of 157Ta--153Tm and 156Hf--152Er that prove a β-decay of the new isotopes 153Lu, 152Yb, and 152Tm.” [129]. However, no properties of 152Yb or its decay were measured.

153Yb

The observation of 153Yb was reported by Hagberg et al. in the 1977 paper “Alpha decay of neutron-deficient ytterbium isotopes and their daughters” [130]. The CERN synchro-cyclotron was used to bombard tantalum with 600 MeV protons. 153Yb was separated with the ISOLDE on-line mass separator facility and α particles were measured with two silicon surface-barrier detectors. 153Yb was identified by the growth preceding the decay of α particles from 153Tm. “The decay data from this experiment, shown in [the figure], determined the half-life of 153Yb to be 4.0 ± 0.5 s.” The quoted half-life is included in the calculation of the currently accepted value of 4.2(2) s.

154,155Yb

“Alpha-decay properties of some thulium and ytterbium isotopes near the 82-neutron shell” by Macfarlane announced the discovery of 154Yb and 155Yb in 1964 [103]. Samarium oxide (enriched in 144Sm) and neodymium oxide (enriched in 142Nd) were bombarded with 106–151 MeV 16O and 131–195 MeV 20Ne beams from the Berkeley heavy-ion linear accelerator Hilac, respectively. 154Yb and 155Yb were formed in (xn) fusion evaporation reactions and identified by measuring excitation functions and α-decay spectra. “One of the Yb alpha emitters has an alpha-particle energy of 5.33 MeV and decays with a half-life of 0.39 sec... This result strongly suggests that this new nuclide is probably Yb154... The second Yb alpha activity that was observed has an alpha-particle energy of 5.21 MeV, and decays with a half-life of 1.65 sec. The assignment of this activity to Yb155 was made by a procedure used for Yb154, making use of excitation function data from previous work to identify the reaction producing the activity.” These half-lives of 0.39(4) s and 1.65(15) s agree with the currently adopted values of 0.409(2) s and 1.793(13) s for 154Yb and 155Yb, respectively.

156,157Yb

The discovery of 156Yb and 157Yb was reported in “Production of rare-earth α emitters with energetic 3He particles; new isotopes: 151Er, 156Yb, and 157Yb” by Toth et al. in 1970 [85]. Erbium oxide targets enriched in 162Er were bombarded with a 102.1 MeV 3He beam from the Oak Ridge isochronous cyclotron (ORIC). 156Yb and 157Yb were produced in (9n) and (8n) reactions, respectively. Recoils were transported to a Si(Au) detector with a helium gas transport system where α-decay spectra were measured. “Least-squares analysis indicated a genetic relationship between two radioactive components, one with a half-life of 24±1 sec and the other with a 9.8-sec half-life. Because this latter
value is that of 152Er, the parent-daughter relationship establishes the existence of a new ytterbium nuclide, 156Yb... The only calculated curve that was consistent with the 4.50-MeV data points was the one for a $(^3$He,$8n)$ reaction. There is a strong indication then that the 4.50-MeV α group is due to the decay of 157Yb.” The reported half-lives of 24(1) s and 34(3) s agree with the currently accepted values of 26.1(7) s and 38.6(10) s, for 158Yb and 157Yb, respectively.

158Yb

Ward et al. published the identification of 158Yb in the 1967 paper “Gamma rays following 40Ar-induced reactions” [88]. Isotopically enriched tellurium targets were bombarded with 40Ar beams and ytterbium isotopes were populated in (xn) fusion-evaporation reactions. Gamma-ray spectra were studied using a lithium-drifted germanium counter. “We have bombarded separated Sn and Te isotopes with 40Ar projectiles in order to study the (40Ar,xn) reactions and evaluated them as a means to produce excited nuclei for spectroscopic studies. This proves to be an excellent method for populating ground-band collective levels, and such levels have been identified as the 88-, 90-, and 92-neutron Er and Yb isotopes.” The first three transition of the rotational ground-state band were measured for 158Yb.

159Yb

159Yb was observed in 1975 by Trautmann et al. and published in the paper “Spectroscopy on the gamma decay of highly excited high-spin states by angular-correlation and feeding-time measurements” [131]. 18O accelerated to 74.7 MeV by the Munich MP tandem Van de Graaff irradiated a 144Sm target and 159Yb was populated in the (3n) fusion evaporation reaction. Gamma-ray spectra were measured with a NaI(Tl) γ spectrometer and a Ge(Li) detector. “Unfortunately, our values for $t_{1/2}^{\text{feed}}$ in 159Yb are only upper limits, also the intensity of E2 transitions has to be measured yet for this nucleus.” Five transitions of the $i_{13/2}$ band in 159Yb were measured. The first measurement of the half-life of 159Yb was mentioned around the same time [132], however, it was based on a conference report [133].

160Yb

Ward et al. published the identification of 160Yb in the 1967 paper “Gamma rays following 40Ar-induced reactions” [88]. Isotopically enriched tellurium targets were bombarded with 40Ar beams and ytterbium isotopes were populated in (xn) fusion-evaporation reactions. Gamma-ray spectra were studied using a lithium-drifted germanium counter. “We have bombarded separated Sn and Te isotopes with 40Ar projectiles in order to study the (40Ar,xn) reactions and evaluated them as a means to produce excited nuclei for spectroscopic studies. This proves to be an excellent method for populating ground-band collective levels, and such levels have been identified as the 88-, 90-, and 92-neutron Er and Yb isotopes.” The first five transition of the rotational ground-state band were measured for 160Yb.

161Yb

“Method for obtaining separated short-lived isotopes of rare earth elements” was published in 1974 by Latuszynski et al. documenting their observation of 161Yb [30]. A tantalum target was bombarded with 660 MeV protons from the Dubna synchrocyclotron. Gamma-ray spectra and decay curves were measured at the end of an electromagnetic separator. “Using the method proposed for investigations in the field of nuclear spectroscopy the gamma-spectra of short-living isotopes with $T_{1/2} \leq 1$ minute have been measured. The new isotopes 161Yb (4.2 min), 148Dy (3.5 min) 132Pr (1.6 min) have been identified.” The observed half-life corresponds to the present value. The previous assignment of a 82(4) min half-life to 161Yb [57] was evidently incorrect.
The observation of ^{162}Yb was announced by Abdumalikov et al. in the 1963 paper “New Yb162 and Tm162” [113]. A tantalum target was bombarded with 660 MeV protons and ^{162}Yb was formed in spallation reactions. Conversion electron spectra were measured with a constant homogeneous magnetic field beta-spectrograph and a triple focusing beta-spectrometer. “The half life of Yb162 appears to be somewhat smaller than 26 min but larger than 21.5 min.” This half-life range is close to the presently adopted value of 18.87(19) min.

The first observation of ^{163}Yb was reported by Paris in “La période de décroissance de l’ytterbium 163” in 1967 [134]. A Tm$_2$O$_3$ target was bombarded with protons from the Orsay synchrocyclotron and ^{163}Yb was populated in the (p,7n) reaction. Gamma-ray spectra were measured with a germanium detector following element and mass separation. “La désintégration $^{163}\text{Yb}\rightarrow^{163}\text{Tm}$ a été observée pour la première fois. La détermination de la décroissance de plusieurs sources séparées isotopiquement permet d’attribuer à ^{163}Yb une période $T_{1/2} = 10.9\pm 0.5$ mn.” [The decay $^{163}\text{Yb}\rightarrow^{163}\text{Tm}$ was observed for the first time. The determination of the decay of several isotopically separated sources was used to assign a half-life of $T_{1/2} = 10.9\pm 0.5$ min to ^{163}Yb.] This half-life agrees with the presently adopted value of 11.05(25) min.

In “New radioactive isotopes of the rare earth elements” Butement and Glentworth reported the discovery of ^{164}Yb in 1959 [112]. A Tm$_2$O$_3$ target was bombarded by 230 MeV protons and ^{164}Yb was produced in spallation reactions. Decay curves were measured with a Geiger counter and γ-ray spectra were recorded with a scintillation spectrometer following chemical separation. “The most probable mass assignment of the 85 min activity is to ^{164}Yb.” This half-life is close to the currently accepted value of 75.8(17) min. Less than four months later Abdurazakov et al. independently reported a half-life of 75(2) min [115, 116]. Previously, half-lives of 82(4) min and 74 min were assigned to ^{161}Yb [57] and ^{167}Yb [135], respectively.

^{165}Yb was first observed by Paris as described in the 1964 paper “Détermination des périodes des ytterbiens 165 et 164” [136]. Thulium oxide was irradiated with protons from the Orsay synchrocyclotron. ^{165}Yb was populated in (p,5n) reactions and identified by measuring decay curves after the first stage of an isotope separator. “La figure montre la décroissance de ^{165}Yb, observée à l’aide d’un compteur γ à scintillations suivi d’un discriminant et d’une échelle... La période obtenue est $T_{1/2} = 10.5\pm 0.5$ mn, beaucoup plus courte que celle admise habituellement (74 ou 82 mn).” [The figure shows the decay of ^{165}Yb, observed using a γ scintillation counter followed by a discriminator and a scaler... The obtained period $T_{1/2} = 10.5\pm 0.5$ min is much shorter than usually accepted (74 or 82 min).] This half-life agrees with the presently adopted value of 9.9(3) min. The 74 or 82 min half-lives quoted refer to previous measurements which had originally been assigned to ^{161}Yb [57] and ^{167}Yb [135], respectively.
"Mass assignments by isotope separation" was published in 1954 by Michel and Templeton documenting the observation of 166Yb [90]. The Berkeley 184-inch cyclotron was used to produce radioactive isotopes which were identified with a time-of-flight isotope separator. The resulting activities were measured with a G-M counter and a scintillation spectrograph. However, the following previously known isotopes have been assigned in the course of this work (half-lives are by direct observation of the decay of separated samples): Yb166 (58±1 hours), Yb169 (32 days), Tm166 (7.7 hours), Tm156 (9.6 days). The quoted half-life of 166Yb agrees with the currently accepted value of 56.7(1) h.

In "Ytterbium-167" Handley and Olson reported their 1954 discovery of 167Yb [137]. Tm$_2$O$_3$ was irradiated with 24 MeV protons from the ORNL 86-in. cyclotron. Decay curves were measured with a GM tube and γ-ray spectra were recorded with a NaI(Tl) scintillation spectrometer following chemical separation. Analysis of the Yb peak by decay curves and gamma spectra reveals three components: 18.5-minute Yb167, 33-day Yb169, and 9.4-day Tm167. This half-life for 167Yb is close to the currently accepted value, 17.5(2) min.

Dempster reported the discovery of 168Yb in the 1938 paper "The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium" [40]. An ytterbium oxide sample reduced with neodymium was used for analysis in the Chicago mass spectrograph. The ytterbium oxide was reduced by neodymium and also showed two new isotopes at masses 170 and 168.

The observation of 169Yb was reported by Bothe in 1946 in "Die Aktivierung der seltenen Erden durch thermische Neutonen I" [138]. Ytterbium oxide was irradiated with thermal neutrons produced by the bombardment of beryllium with deuterons. Decay and absorption curves were measured. Hiernach beruht die 33-d-Aktivität auf K-Einfang; sie ist nicht mit β-Strahlung verbunden, wie oben gezeigt. Damit ist die Zuordnung zu Yb169 eindeutig. The 33-d activity is therefore due to K-capture; there is no related β-radiation as shown above. Thus, the assignment to Yb169 is clear. This half-life agrees with the present value of 32.026(5) d.

Dempster reported the discovery of 170Yb in the 1938 paper "The isotopic constitution of gadolinium, dysprosium, erbium and ytterbium" [40]. An ytterbium oxide sample reduced with neodymium was used for analysis in the Chicago mass spectrograph. The ytterbium oxide was reduced by neodymium and also showed two new isotopes at masses 170 and 168.

In 1934, Aston reported the first observation of 171Yb, 172Yb, 173Yb, and 174Yb in "The isotopic constitution and atomic weights of the rare earth elements" [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. Ytterbium (70) appears to contain mass numbers 171,172,173, 174, 176, of which 174 is the strongest."
The identification of ^{175}Yb was reported by Atterling et al. in 1945 in “Neutron-induced radioactivity in lutecium and ytterbium” [139]. Ytterbium samples were bombarded with fast and slow neutrons produced by bombarding LiOH with 6 MeV deuterons and beryllium with 6.5 MeV deuterons from the Stockholm cyclotron, respectively. The resulting activities were measured with a Wulf string electrometer and a Geiger-Müller counter. “An initial slope of 4.2 would mean that the mother substance had a half-life of only 2.6 d and the decay curve would soon approach the 6.6 d period. We therefore assign the 4.2 d period to ^{175}Yb.” The reported half-life agrees with the currently accepted value 4.185(1) d.

In 1934, Aston reported the first observation of ^{176}Yb in “The isotopic constitution and atomic weights of the rare earth elements” [44]. Rare earth elements were analyzed with the Cavendish mass spectrograph. “Ytterbium (70) appears to contain mass numbers 171,172,173, 174, 176, of which 174 is the strongest.”

The identification of ^{177}Yb was reported by Atterling et al. in 1945 in “Neutron-induced radioactivity in lutecium and ytterbium” [139]. Ytterbium samples were bombarded with fast and slow neutrons produced by bombarding LiOH with 6 MeV deuterons and beryllium with 6.5 MeV deuterons from the Stockholm cyclotron, respectively. The resulting activities were measured with a Wulf string electrometer and a Geiger-Müller counter. “As the cross-section for the 1.9 h period is very small we can hardly expect to find the 6.6 d period in the decay curve of Yb. We therefore assign the 4.2 d period to ^{175}Yb and the 1.9 h period to ^{177}Yb.” The reported half-life agrees with the currently accepted value 1.911(3) h.

^{178}Yb was identified in 1973 by Orth et al. and published in “Decay of ^{178}Yb and the isomers of ^{178}Lu” [140]. Enriched ^{176}Yb targets were bombarded with 12-MeV tritons from the Los Alamos Van de Graaff accelerator and ^{178}Yb was formed in the $(^3\text{H},n)$ reaction. Gamma-and beta-ray spectra were measured following chemical separation. “Our value for the half-life of ^{178}Yb is, therefore, 74±3 min.” The quoted half-life is the currently adopted value.

^{179}Yb was discovered by Kirchner et al. in 1981 and reported in “New neutron-rich ^{179}Yb and $^{181,182}\text{Lu}$ isotopes produced in reactions of 9 MeV/u ^{136}Xe ions on tantalum and tungsten targets” [141]. A ^{136}Xe beam from the GSI UNILAC accelerator bombarded tungsten and tantalum targets. ^{179}Yb was identified with an online-mass separator and β-, γ-, and X-ray decay spectroscopy. “[The figure] shows a part of the γ-ray spectrum measured for mass A = 179. The lines assigned to the ^{179}Yb decay are labelled with energies. The time-analyses of β-rays (after correction for lutetium β-rays) and the 612.5 keV γ-transition agreed within a half-life value of $T_{1/2}=8.1\pm0.8$ min.” This half-life is included in the calculation of the currently accepted value, 8.0(4) min.
In 1987, Runte et al. identified 180Yb in the paper entitled “The decay of the new isotope 180Yb and the search for the r-process path to 180mTa” [142]. A 15 MeV/u 186W beam from the GSI UNILAC bombarded a tungsten/tantalum target and 180Yb was produced in multi-nucleon transfer reactions. Beta-, gamma- and X-ray spectra of recoil products mass separated with the GSI on-line mass separator were measured. “Irradiating natW Ta targets with 186W, the decay of the new isotope 180Yb was observed and its half-life determined to be 2.4(5) min.” This half-life is the currently accepted half-life.

7. Summary

The discoveries of the known dysprosium, holmium, erbium, thulium and ytterbium isotopes have been compiled and the methods of their production discussed. The identification of the isotopes of these elements was relatively easy with the exception of holmium where five isotopes ($^{161-163}$Ho, 166Ho, and 169Ho) were initially identified incorrectly. In the other elements, only the half-lives of 154,155Dy, 169Er, 173Er, 162Tm and 161Yb were at first not correct. In addition, the half-lives of several isotopes were initially reported with no or only uncertain mass assignments. These isotopes were: $^{151-152}$Dy, 159Dy, 171Ho, 150Er, 165Er, 168Tm, 175Tm, and 164Yb.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL) and PHY10-62410 (REU).

References

[1] G. Q. Ginepro, J. Snyder, M. Thoennessen, At. Data Nucl. Data Tables 95 (2009) 805.
[2] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 729 (2003) 3.
[3] http://www.nndc.bnl.gov/ensdf/ ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
[4] W. John, F. W. Guy, J. J. Wesolowski, Phys. Rev. C 2 (1970) 1451.
[5] The Plutonium Project, J. Am. Chem. Soc. 68 (1946) 2411; Rev. Mod. Phys. 18 (1946) 513.
[6] C. D. Coryell and N. Sugarman (Editors), Radiochemical Studies: The Fission Products, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951).
[7] http://www.nndc.bnl.gov/nsr/ NSR, Nuclear Science References, maintained by the National Nuclear Data Center at Brookhaven National Laboratory.
[8] J. J. Livingood, G. T. Seaborg, Rev. Mod. Phys. 12 (1940) 30.
[9] G. T. Seaborg, Rev. Mod. Phys. 16 (1944) 1.
[10] G. Seaborg, I. Perlman, Rev. Mod. Phys. 20 (1948) 585.
[11] J. M. Hollander, I. Perlman, G. T. Seaborg, Rev. Mod. Phys. 25 (1953) 469.
[12] D. Strominger, J. M. Hollander, G. T. Seaborg, Rev. Mod. Phys. 30 (1958) 585.
[13] C. M. Lederer, J. M. Hollander, I. Perlman, Table of Isotopes, 6th Edition, John Wiley & Sons 1967.
[14] F. W. Aston, Mass Spectra and Isotopes, 2nd Edition, Longmans, Green & Co., New York 1942.
[15] S. Goriely, M. Samyn, J. M. Pearson, Phys. Rev. C 75 (2007) 064312.
[16] M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187.
[17] S.-W. Xu, Z. K. Li, Y.-X. Xie, Q.-Y. Pan, Y. Yu, J. Adam, C.-F. Wang, J.-P. Xing, Q.-Y. Hu, S.-H. Li, H.-Y. Chen, T.-M. Zhang, G.-M. Jin, Y.-X. Luo, Y. E. Penionzhkevich, Y. Gangsky, Phys. Rev. C 60 (1999) 061302.
[18] W. Krolas, R. Grzywacz, K. Rykaczewski, J. C. Batchelder, C. R. Bingham, C. J. Gross, D. Fong, J. H. Hamilton, D. J. Hartley, J. K. Hwang, Y. Larochelle, T. A. Lewis, K. H. Maier, J. W. McConnell, A. Piechaczyk, A. V. Ramayya, K. Rykaczewski, D. Shapira, M. N. Tantawy, J. A. Winger, C.-H. Yu, E. F. Zganjar, A. T. Kruppa, W. Nazarewicz, T. Vertse, Phys. Rev. C 65 (2002) 031303.
[19] D. M. Cullen, M. P. Carpenter, C. N. Davids, A. M. Fletcher, S. J. Freeman, R. V. F. Janssens, F. G. Kondev, C. J. Lister, L. K. Pattison, D. Seweryniak, J. F. Smith, A. M. Bruce, K. Abu Saleem, I. Ahmad, A. Heinz, T. L. Khoo, E. F. Moore, G. Mukherjee, C. Wheldon, A. Woehr, Phys. Lett. B 529 (2002) 42.
[20] J. M. Nitschke, P. A. Wilmarth, P. K. Lennmertz, W. D. Zeitz, J. A. Honkanen, Z. Phys. A 316 (1984) 249.
[21] P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, J. Gilat, Z. Phys. A 325 (1986) 485.
[22] J. M. Nitschke, M. D. Cable, W.-D. Zeitz, Z. Phys. A 312 (1983) 265.
[23] N. Redon, T. Ollivier, R. Beraud, A. Charvet, R. Duffait, A. Emsallem, J. Honkanen, M. Meyer, J. Genevey, A. Gizon, N. Idrissi, Z. Phys. A 325 (1986) 127.
[24] E. Nolte, S. Z. Gui, G. Colombo, G. Korschinek, K. Eskola, Z. Phys. A 306 (1982) 223.
[25] G. D. Alkhazov, K. A. Mezilev, Y. N. Novikov, V. N. Panteleyev, A. G. Polyakov, V. P. Afanasyev, N. Ganbaatar, K. Y. Gromov, V. G. Kalinnikov, J. Kormicki, A. Lytushinski, A. Potempa, J. Sieniawski, F. Tarkanyi, Y. V. Yushkevich, Z. Phys. A 305 (1982) 185.
[26] S. Z. Gui, G. Colombo, E. Nolte, Z. Phys. A 305 (1982) 297.
[27] G. D. Alkhazov, E. E. Berlovinch, K. A. Mezilev, Y. N. Novikov, A. G. Polyakov, N. Ganbaatar, K. Y. Gromov, V. G. Kalinnikov, Y. Kormitski, A. Potempa, F. Tarkanyi, Acta Phys. Pol. B 12 (1981) 825.
[28] K. S. Toth, A. E. Rainis, C. R. Bingham, E. Newman, H. K. Carter, W.-D. Schmidt-Ott, Phys. Lett. B 56 (1975) 29.
[29] R. B. Firestone, R. A. Warner, W. C. McHarris, W. H. Kelly, Phys. Rev. C 11 (1975) 1864.
[30] A. Lytushinski, W. Zuk, K. Zuber, J. Zuber, A. Potempa, Nukleonika 20 (1974) 1043.
[31] K. S. Toth, J. O. Rasmussen, Phys. Rev. 109 (1958) 121.
[32] C. R. Bingham, D. U. O’Kain, K. S. Toth, R. L. Hahn, Phys. Rev. C 7 (1973) 2575.
[33] K. S. Toth, J. O. Rasmussen, J. Inorg. Nucl. Chem. 10 (1959) 198.

[34] J. O. Rasmussen, S. G. Thompson, A. Ghiorso, Phys. Rev. 89 (1953) 33.

[35] R. D. MacFarlane, J. Inorg. Nucl. Chem. 19 (1961) 9.

[36] J. W. Mihelich, B. Harmatz, T. H. Handley, Phys. Rev. 108 (1957) 989.

[37] A. N. Dobronravova, L. M. Krizhanskii, A. N. Murin, V. N. Pokrovskii, Bull. Acad. Sci. USSR Phys. Ser. 22 (1958) 809.

[38] D. C. Hess Jr., M. G. Inghram, Phys. Rev. 74 (1948) 1724.

[39] T. H. Handley, E. L. Olson, Phys. Rev. 90 (1953) 500.

[40] A. J. Dempster, Phys. Rev. 53 (1938) 727.

[41] F. D. S. Butement, Proc. Phys. Soc. A 64 (1951) 428.

[42] F. D. S. Butement, Proc. Phys. Soc. A 63 (1950) 532.

[43] B. H. Ketelle, Phys. Rev. 76 (1949) 1256.

[44] F. W. Aston, Nature 133 (1934) 327.

[45] J. K. Marsh, S. Sugden, Nature 136 (1935) 102.

[46] G. Hevesy, H. Levi, Nature 136 (1935) 103.

[47] R. G. Wille, R. W. Fink, Phys. Rev. 118 (1960) 242.

[48] R. J. Gehrke, R. C. Greenwood, J. D. Baker, D. H. Meikrantz, Z. Phys. A 306 (1982) 363.

[49] R. M. Chasteler, J. M. Nitschke, R. B. Firestone, K. S. Vierinen, P. A. Wilmarth, Phys. Rev. C 42 (1990) R1171.

[50] K. Rykaczewski, J. C. Batchelder, C. R. Bingham, T. Davinson, T. N. Ginter, C. J. Gross, R. Grzywacz, M. Karny, B. D. MacDonald, J. F. Mas, J. W. McConnell, A. Piechaczek, R. C. Slinger, K. S. Toth, W. B. Walters, P. J. Woods, E. F. Zganjar, B. Barmore, L. G. Ixaru, A. T. Kruppa, W. Nazarewicz, M. Rizea, T. Vertse, Phys. Rev. C 60 (1999) 011301.

[51] C. N. Davids, P. J. Woods, D. Seweryniak, A. A. Sonzogni, J. C. Batchelder, C. R. Bingham, T. Davinson, D. J. Henderson, R. J. Irvine, G. L. Poli, J. Uusitalo, W. B. Walters, Phys. Rev. Lett. 80 (1998) 1849.

[52] S.-W. Xu, Z.-K. Li, Y.-X. Xie, X.-D. Wang, B. Guo, C.-G. Leng, Y. Yu, C.-F. Wang, J.-P. Xing, H.-Y. Chen, T.-M. Zhang, Phys. Rev. C 64 (2001) 017301.

[53] L. Goettig, W. Gelletly, C. J. Lister, R. Moscrop, B. J. Varley, Nucl. Phys. A 475 (1987) 569.

[54] K. S. Toth, C. R. Bingham, D. R. Zolnowski, S. E. Cala, H. K. Carter, D. C. Sousa, Phys. Rev. C 19 (1979) 482.

[55] R. D. Macfarlane, R. D. Griffin, Phys. Rev. 130 (1963) 1491.

[56] P. Lagarde, J. Treherne, A. Gizon, J. Valentin, J. Phys. (Paris) 27 (1966) 116.

[57] A. V. Kalyamin, I. Y. Levenberg, B. A. Yakovlev, Sov. At. Energy 6 (1959) 435.

[58] Z. T. Zhelev, V. G. Kalinnikov, A. Kudryavtseva, N. A. Lebedev, S. P. Makarov, G. Muziol, E. Herrmann, Sov. J.
[59] I. S. Dneprovskii, Sov. At. Energy 8 (1961) 38.
[60] K. S. Toth, J. Inorg. Nucl. Chem. 7 (1958) 1.
[61] G. Wilkinson, H. G. Hicks, Phys. Rev. 79 (1950) 815.
[62] T. H. Handley, Phys. Rev. 94 (1954) 945.
[63] T. H. Handley, E. M. Olson, Phys. Rev. 93 (1954) 524.
[64] C. L. Hammer, M. G. Stewart, Phys. Rev. 106 (1957) 1001.
[65] M. L. Pool, L. L. Quill, Phys. Rev. 53 (1938) 437.
[66] G. Hevesy, H. Levi, Det Kgl. Danske Vid. Selskab., Math.-fys. Med. XIV (1936) No. 5.
[67] E. Neuminger, E. Rona, Wiener Akad. Anzeiger 72 (1935) 275.
[68] T. H. Handley, W. S. Lyon, E. M. Olson, Phys. Rev. 98 (1955) 688.
[69] K. Miyano, T. Kuroyanagi, Nucl. Phys. 49 (1963) 315.
[70] F. D. S. Butement, Nature 165 (1950) 149.
[71] R. M. Chasteler, J. M. Nitschke, R. B. Firestone, K. S. Vierinen, P. A. Wilmarth, A. A. Shihab-Eldin, Z. Phys. A 332 (1989) 239.
[72] K. Rykaczewski, K.-L. Gippert, N. Kaffrell, R. Kirchner, O. Klepper, V. T. Koslowsky, W. Kurcewicz, W. Nazarewicz, E. Roeckl, E. Runte, D. Schardt, W.-D. Schmidt-ott, P. Tidemand-Petersson, Nucl. Phys. A 499 (1989) 529.
[73] K. Becker, F. Meissner, W.-D. Schmidt-Ott, U. Bosch, V. Kunze, H. Salewski, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, K. Rykaczewski, Nucl. Phys. A 522 (1991) 557.
[74] M. Kurny, R. K. Grzywacz, J. C. Batchelder, C. R. Bingham, C. J. Gross, K. Hagino, J. H. Hamilton, Z. Janas, W. D. Kulp, J. W. McConnell, M. Momayezi, A. Pichaczek, K. P. Rykaczewski, P. A. Semmes, M. N. Tantawy, J. A. Winger, C. H. Yu, E. F. Zganjar, Phys. Rev. Lett. 90 (2003) 012502.
[75] G. A. Souliotis, Physica Scripta T88 (2000) 153.
[76] K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. M. Chasteler, A. A. Shihab-Eldin, R. B. Firestone, K. S. Toth, Y. A. Akovali, Phys. Rev. C 39 (1989) 1972.
[77] K. S. Toth, P. A. Wilmarth, J. M. Nitschke, D. C. Sousa, Phys. Rev. C 48 (1993) 445.
[78] G. de Angelis, D. Bazzacco, S. Lunardi, M. A. Cardona, M. De Poli, Y. X. Guo, D. Ackermann, S. E. Arnell, A. Atac, S. Beghini, L. Corradi, A. D’Onofrio, D. Foltescu, E. Ideguchi, A. Nilsson, S. Mitarai, G. Montagnoli, H. Moreno, D. R. Napoli, V. Roca, H. A. Roth, F. Scarlassara, G. F. Segato, C. Signorini, O. Skeppstedt, P. Spolaore, A. M. Stefanini, F. Terrasi, Z. Phys. A 343 (1992) 121.
[79] K. S. Toth, D. M. Moltz, E. C. Schloemer, M. D. Cable, F. T. Avignone III, Y. A. Ellis-Akovali, Phys. Rev. C 30 (1984) 712.
[105] P. Aguer, G. Bastin, C. F. Liang, J. Libert, P. Paris, A. Peghaire, J. Phys. (Paris) 38 (1977) 435.

[106] J. C. Putaux, J. Obert, P. Aguer, Nucl. Instrum. Meth. 121 (1974) 615.

[107] F. W. N. de Boer, M. H. Cardoso, P. F. A. Goudsmit, P. Koldewijn, J. Konijn, B. J. Meijer, Radiochim. Acta 13 (1970) 118.

[108] C. Ekstrom, M. Olsmats, B. Wannberg, Nucl. Phys. A 170 (1971) 649.

[109] K. Ya. Gromov, Zh. T. Zhelev, V. G. Kalinnikov, Z. Malek, N. Nenov, G. Pfrepper, H. Strusny, Joint Institute for Nuclear Research, Preprint P6-3945 (1968) .

[110] F. W. N. de Boer, M. H. Cardoso, P. F. A. Goudsmit, P. Koldewijn, J. Konijn and B. J. Meijer, CERN Yellow Report 70-30 (1970) and private communication .

[111] B. Harmatz, T. H. Handley, J. W. Mihelich, Phys. Rev. 114 (1959) ,1082.

[112] F. D. S. Butement, P. Glentworth, J. Inorg. Nucl. Chem. 15 (1960) 205.

[113] A. Abdumalikov, A. A. Abdurazakov, K. Y. Gromov, Z. Zhelev, N. Lebedev, B. S. Dzhelepov, A. Kudryavtseva, Phys. Lett. 5 (1963) 359.

[114] R. G. Wilson, M. L. Pool, Phys. Rev. 120 (1960) 1827.

[115] A. A. Abdurazakov, K. Y. Gromov, B. Dalkhsuren, B. S. Dzhelepov, I. Y. Levenberg, A. N. Murin, Y. Norseyev, V. N. Pokrovskii, V. G. Chumin, I. Yutlandov, Nucl. Phys. 21 (1960) 164.

[116] A. A. Abdurazakov, K. Y. Gromov, B. S. Dzhelepov, Y. Norseyev, G. Y. Umarov, V. G. Chumin, Bull. Acad. Sci. USSR Phys. Ser. 24 (1960) 266.

[117] B. Dalkhsuren, U. Y. Levenberg, A. N. Murin, Y. V. Norseev, V. P. Pokrovskii, I. A. Yutlandov, Bull. Acad. Sci. USSR Phys. Ser. 24 (1960) 1109.

[118] G. Wilkinson, H. G. Hicks, Phys. Rev. 74 (1948) 1733.

[119] G. Wilkinson, H. G. Hicks, Phys. Rev. 75 (1949) 1370.

[120] E. Neuninger, E. Rona, Wiener Akad. Anzeiger 73 (1936) 159.

[121] S. DeBenedetti, F. K. McGowan, Phys. Rev. 74 (1948) 728.

[122] B. H. Ketelle, W. C. Peacock, Phys. Rev. 73 (1948) 1269.

[123] A. Bisi, S. Terrani, L. Zappa, Nuovo Cimento 2 (1955) 172.

[124] T. Kuroyanagi, H. Yuta, K. Takahashi, H. Morinaga, J. Phys. Soc. Japan 16 (1961) 2393.

[125] K. Takahashi, T. Kuroyanagi, H. Yuta, K. Kotajima, K. Nagatani, H. Morinaga, J. Phys. Soc. Japan 16 (1961) 1664.

[126] S.-W. Xu, Z.-K. Li, Y.-X. Xie, X.-D. Wang, B. Guo, C.-G. Leng, Y. Yu, Eur. Phys. J. A 12 (2001) 1.

[127] P. Kleinheinz, B. Rubio, M. Ogawa, M. Piiparinen, A. Plochocki, D. Schardt, R. Barden, O. Klepper, R. Kirchner, E. Roeckl, Z. Phys. A 322 (1985) 705.

[128] E. Nolte, G. Korschinek, C. Setzensack, Z. Phys. A 309 (1982) 33.
[129] S. Hofmann, G. Münzenberg, F. P. Heßberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A 299 (1981) 281.
[130] E. Hagberg, P. G. Hansen, J. C. Hardy, P. Hornshoj, B. Jonson, S. Mattsson, P. Tidemand-Petersson, the ISOLDE Collaboration, Nucl. Phys. A 293 (1977) 1.
[131] W. Trautmann, D. Poetel, O. Hauser, W. Hering, F. Riess, Phys. Rev. Lett. 35 (1975) 1694.
[132] K. Y. Gromov, H. U. Siebert, V. H. Kalinnikov, G. Musiol, H. Strusny, Sov. J. Part. Nucl. 6 (1976) 393.
[133] M. Gonusek et al. in Program and Abstracts of Reports at 25th Conference on Nuclear Spectroscopy and Nuclear Structure and Nauka and Leningrad (1975) and p. 121.
[134] P. Paris, F. Perrin, Compt. Rend. Acad. Sci. 265 (1967) 510.
[135] W. E. Nervik, G. T. Seaborg, Phys. Rev. 97 (1955) 1092.
[136] P. Paris, F. Perrin, Compt. Rend. Acad. Sci. 258 (1964) 5855.
[137] T. H. Handley, E. M. Olson, Phys. Rev. 94 (1954) 968.
[138] W. Bothe, Z. Naturforsch. 1 (1946) 173.
[139] H. Atterling, E. Bohr, T. Sigurgeirsson, Arkiv Mat. Astron. Fysik 32A (1945) No. 2.
[140] C. J. Orth, W. R. Daniels, D. C. Hoffman, F. O. Lawrence, Phys. Rev. C 8 (1973) 718.
[141] R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, E. F. Zganjar, E. Runte, W.-D. Schmidt-Ott, P. Tidemand-Petersson, N. Kaffrell, P. Peuser, K. Rykaczewski, Nucl. Phys. A 378 (1982) 549.
[142] E. Runte, W.-D. Schmidt-Ott, W. Eschner, I. Rosner, R. Kirchner, O. Klepper, K. Rykaczewski, Z. Phys. A 328 (1987) 119.
Explanation of Tables

8. **Table 1. Discovery of dysprosium, holmium, erbium, thulium and ytterbium isotopes**

Isotope	Dysprosium, holmium, erbium, thulium and ytterbium isotope
Author	First author of refereed publication
Journal	Journal of publication
Ref.	Reference
Method	Production method used in the discovery:
	FE: fusion evaporation
	LP: light-particle reactions (including neutrons)
	MS: mass spectroscopy
	NC: neutron capture reactions
	PN: photo-nuclear reactions
	DI: deep-inelastic reactions
	SF: spontaneous fission
	SP: spallation
Laboratory	Laboratory where the experiment was performed
Country	Country of laboratory
Year	Year of discovery
Table 1
Discovery of dysprosium, holmium, erbium, thulium and ytterbium isotopes. See page 47 for Explanation of Tables

Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
139Dy	S.-W. Xu	Phys. Rev. C	[17]	FE	Lanzhou, China	1999	
140Dy	W. Krolas	Phys. Rev. C	[18]	FE	Oak Ridge, USA	2002	
141Dy	J.M. Nitschke	Nucl. Phys. A	[20]	FE	Berkeley, USA	1984	
142Dy	P.A. Wilmarth	Z. Phys. A	[21]	FE	Berkeley, USA	1986	
143Dy	J.M. Nitschke	Z. Phys. A	[22]	FE	Berkeley, USA	1983	
144Dy	N. Redon	Z. Phys. A	[23]	FE	Grenoble, France	1986	
145E	E. Nolte	Z. Phys. A	[24]	FE	Darmstadt, Germany	1982	
146Dy	G.D. Alkhazov	Z. Phys. A	[25]	SP	Leningrad, Russia	1982	
147G.D. Alkhazov	Acta Phys. Pol. B	[26]	SP	Leningrad, Russia	1982		
148Dy	K.S. Toth	Phys. Lett. B	[28]	FE	Oak Ridge, USA	1975	
149Dy	A. Latuszynski	Nukleonika	[30]	SP	Dubna, Russia	1974	
150Dy	K.S. Toth	Phys. Rev.	[31]	FE	Berkeley, USA	1958	
151Dy	K.S. Toth	J. Inorg. Nucl. Chem.	[33]	FE	Berkeley, USA	1959	
152Dy	K.S. Toth	J. Inorg. Nucl. Chem.	[33]	FE	Berkeley, USA	1959	
153Dy	K.S. Toth	Phys. Rev.	[34]	FE	Berkeley, USA	1958	
154Dy	K.S. Toth	Phys. Rev.	[35]	FE	Berkeley, USA	1958	
155Dy	R.D. Macfarlane	J. Inorg. Nucl. Chem.	[36]	LP	Berkeley, USA	1961	
156Dy	K.S. Toth	Phys. Rev.	[37]	FE	Berkeley, USA	1958	
157Dy	D.C. Hess	Phys. Rev.	[38]	MS	Argonne, USA	1948	
158Dy	T.H. Handley	Phys. Rev.	[39]	LP	Oak Ridge, USA	1953	
159Dy	A.J. Dempster	Phys. Rev.	[40]	MS	Chicago, USA	1938	
160Dy	F.D.S. Butement	Proc. Phys. Soc. A	[41]	NC	Harwell, UK	1951	
161Dy	A.J. Dempster	Phys. Rev.	[42]	MS	Chicago, USA	1938	
162Dy	F.W. Aston	Nature	[44]	MS	Cambridge, UK	1934	
163Dy	F.W. Aston	Nature	[44]	MS	Cambridge, UK	1934	
164Dy	F.W. Aston	Nature	[44]	MS	Cambridge, UK	1934	
165Dy	J. K. Marsh	Nature	[45]	NC	Oxford, UK	1935	
166Dy	G. Hevesy	Nature	[46]	NC	Copenhagen, Denmark	1935	
167Dy	B.H. Ketelle	Phys. Rev.	[47]	NC	Oak Ridge, USA	1949	
168Dy	R.G. Wille	Phys. Rev.	[48]	LP	Arkansas, USA	1960	
169Dy	R.J. Gehlke	Z. Phys. A	[49]	SF	Oak Ridge, USA	1982	
170Dy	R.M. Chasteler	Phys. Rev. C	[50]	DI	Berkeley, USA	1990	

140Ho K. Rykaczewski Phys. Rev. C [50] FE Oak Ridge USA 1999
| 141Ho C.S. Davids Phys. Rev. Lett. [51] FE Argonne USA 1998
| 142Ho S.-W. Xu Phys. Rev. C [52] FE Lanzhou China 2001
| 143Ho P.A. Wilmarth Z. Phys. A [21] FE Berkeley USA 1986
| 144Ho L. Goettig Nucl. Phys. A [53] FE Daresbury UK 1987
| 145Ho S.Z. Gui Z. Phys. A [26] FE Munich Germany 1982
| 146Ho E. Nolte Z. Phys. A [24] FE Munich Germany 1982
| 147Ho K.S. Toth Phys. Rev. C [54] FE Texas A&M USA 1979
| 148Ho K.S. Toth Phys. Rev. C [54] FE Texas A&M USA 1979
| 149Ho R.D. Macfarlane Phys. Rev. [55] FE Berkeley USA 1963
| 150Ho R.D. Macfarlane Phys. Rev. [55] FE Berkeley USA 1963
| 151Ho R.D. Macfarlane Phys. Rev. [55] FE Berkeley USA 1963
| 152Ho R.D. Macfarlane Phys. Rev. [55] FE Berkeley USA 1963
| 153Ho R.D. Macfarlane Phys. Rev. [55] FE Berkeley USA 1963
| 154Ho L. Lagarde J. Phys. (Paris) [56] LP Orsay France 1966
| 155Ho A.V. Kalyamin Sov. At. Energy [57] SP Dubna Russia 1959
| 156Ho J.W. Mihelich Phys. Rev. [58] LP Oak Ridge USA 1957
| 157Ho Z.T. Zhelev Sov. J. Nucl. Phys. [59] LP Oak Ridge USA 1957
| 158Ho I.S. Dneprvskii Sov. At. Energy [59] SP Dubna Russia 1966
| 159Ho K.S. Toth J. Inorg. Nucl. Chem. [60] LP Oak Ridge USA 1958
| 160Ho G. Wilkinson Phys. Rev. [61] LP Berkeley USA 1950
| 161Ho T.H. Handley Phys. Rev. [62] LP Oak Ridge USA 1954
| 162Ho J.W. Mihelich Phys. Rev. [63] LP Oak Ridge USA 1957
| 163Ho C.L. Hammer Phys. Rev. [64] LP Ames USA 1957
| 164Ho M.L. Pool Phys. Rev. [65] LP Michigan USA 1938
| 165Ho F.W. Aston Nature [66] MS Cambridge UK 1934
| 166Ho G. Hevesy Mat.-fys. Medd. No. [67] NC Copenhagen Denmark 1936
| 167Ho T.H. Handley Phys. Rev. [68] LP Oak Ridge USA 1955
| 168Ho R.G. Wille Phys. Rev. [69] LP Baltimore USA 1960
| 169Ho K. Miyano Nucl. Phys. [70] LP Tokyo Japan 1963
| 170Ho R.G. Wille Phys. Rev. [71] LP Berkeley USA 1960
| 171Ho R.M. Chasteler Z. Phys. [72] DI Berkeley USA 1989
Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
172Ho	K. Becker	Nucl. Phys. A	[73]	DI	Darmstadt	Germany	1991
144Er	M. Karny	Phys. Rev. Lett.	[74]	FE	Oak Ridge	USA	2003
145Er	K.S. Vierinen	Phys. Rev. C	[76]	FE	Berkeley	USA	1989
146Er	K.S. Toth	Phys. Rev. C	[77]	FE	Berkeley	USA	1993
147Er	G. de Angelis	Z. Phys. A	[78]	FE	Legnaro	Italy	1992
148Er	E. Nolte	Z. Phys. A	[24]	FE	Munich	Germany	1982
149Er	K.S. Toth	Phys. Rev. C	[79]	FE	Berkeley	USA	1984
150Er	E. Nolte	Z. Phys. A	[24]	FE	Munich	Germany	1982
151Er	K.S. Toth	Phys. Rev. C	[85]	LP	Oak Ridge	USA	1970
152Er	R.D. Macfarlane	Phys. Rev.	[86]	FE	Berkeley	USA	1963
153Er	R.D. Macfarlane	Phys. Rev.	[86]	FE	Berkeley	USA	1963
154Er	R.D. Macfarlane	Phys. Rev.	[86]	FE	Berkeley	USA	1963
155Er	K.S. Toth	Phys. Rev.	[87]	LP	Oak Ridge	USA	1969
156Er	D. Ward	Phys. Rev. Lett.	[88]	FE	Berkeley	USA	1967
157Er	Z.T. Zhelev	Sov. J. Nucl. Phys.	[58]	SP	Dubna	Russia	1966
158Er	I.S. Dneprvoskii	Sov. At. Energy	[59]	SP	Dubna	Russia	1961
159Er	A.A. Abdurazakov	Sov. Phys. JETP	[89]	SP	Dubna	Russia	1962
160Er	M.C. Michel	Phys. Rev.	[90]	LP	Berkeley	USA	1954
161Er	T.H. Handley	Phys. Rev.	[63]	LP	Oak Ridge	USA	1954
162Er	A.J. Dempster	Phys. Rev.	[40]	MS	Chicago	USA	1938
163Er	T.H. Handley	Phys. Rev.	[91]	LP	Oak Ridge	USA	1953
164Er	A.J. Dempster	Phys. Rev.	[40]	MS	Chicago	USA	1938
165Er	F.D.S. Butement	Proc. Phys. Soc. A	[92]	LP	Harwell	UK	1950
166Er	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
167Er	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
168Er	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
169Er	A. Bisi	Nuovo Cimento	[93]	NC	Harwell	UK	1956
170Er	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
171Er	M.L. Pool	Phys. Rev.	[65]	LP	Michigan	USA	1938
172Er	D.R. Nethaway	Phys. Rev.	[94]	NC	Berkeley	USA	1956
173Er	V. Pursiheimo	Z. Phys.	[95]	LP	Helsinki	Finland	1972
174Er	R.M. Chastekler	Z. Phys.	[71]	DI	Berkeley	USA	1989
175Er	X. Zhang	Z. Phys.	[97]	LP	Lanzhou	China	1996
145Tm	J.C. Batchelder	Phys. Rev. C	[98]	FE	Oak Ridge	USA	1998
146Tm	K. Livingston	Phys. Lett. B	[99]	FE	Darmstadt	Germany	1993
147Tm	O. Klepper	Z. Phys. A	[100]	FE	Darmstadt	Germany	1982
148Tm	E. Nolte	Z. Phys. A	[24]	FE	Darmstadt	Germany	1982
149Tm	K.S. Toth	Phys. Rev. C	[101]	FE	Berkeley	USA	1987
150Tm	E. Nolte	Z. Phys. A	[24]	FE	Darmstadt	Germany	1982
151Tm	H. Helppi	Phys. Lett. B	[85]	FE	Argonne	USA	1982
152Tm	C.F. Liang	Z. Phys. A	[102]	SP	Orsay	France	1980
153Tm	R.D. Macfarlane	Phys. Rev.	[103]	FE	Berkeley	USA	1964
154Tm	R.D. Macfarlane	Phys. Rev.	[103]	FE	Berkeley	USA	1964
155Tm	K.S. Toth	Phys. Rev. C	[104]	FE	Oak Ridge	USA	1971
156Tm	K.S. Toth	Phys. Rev. C	[104]	FE	Oak Ridge	USA	1971
157Tm	J.C. Putaux	Nucl. Instrum. Meth.	[106]	LP	Orsay	France	1974
158Tm	F.W.N. de Boer	Radiochim. Acta	[107]	LP	Amsterdam	Netherlands	1970
159Tm	C. Ekstrom	Nucl. Phys. A	[108]	LP	Uppsala	Sweden	1971
160Tm	F.W.N. de Boer	Radiochim. Acta	[107]	LP	Amsterdam	Netherlands	1970
161Tm	B. Harmatz	Phys. Rev.	[111]	LP	Oak Ridge	USA	1959
162Tm	A. Aбдумаликов	Phys. Lett.	[113]	SP	Dubna	Russia	1963
163Tm	B. Harmatz	Phys. Rev.	[111]	LP	Oak Ridge	USA	1959
164Tm	A. Aбдумаликов	Nucl. Phys.	[115]	SP	Dubna	Russia	1960
165Tm	T.H. Handley	Phys. Rev.	[91]	LP	Oak Ridge	USA	1953
166Tm	G. Wilkinson	Phys. Rev.	[118]	LP	Berkeley	USA	1948
167Tm	G. Wilkinson	Phys. Rev.	[118]	LP	Berkeley	USA	1948
168Tm	G. Wilkinson	Phys. Rev.	[119]	LP	Berkeley	USA	1949
169Tm	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
170Tm	E. Neuninger	Wiener Akad. Anzeiger	[120]	NC	Wien	Austria	1936
171Tm	S. DeBenedetti	Phys. Rev.	[121]	NC	Oak Ridge	USA	1948
172Tm	D.R. Nethaway	Phys. Rev.	[94]	NC	Berkeley	USA	1956
173Tm	T. Kuroyanagi	J. Phys. Soc. Japan	[124]	PN	Tohoku	Japan	1961
174Tm	R.G. Wille	Phys. Rev.	[47]	LP	Arkansas	USA	1960
Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
---------	--------	---------	------	--------	------------	---------	------
177Tm	T. Kuroyanagi	J. Phys. Soc. Japan	[124]	PN	Tohoku	Japan	1961
176Tm	K. Takahashi	J. Phys. Soc. Japan	[125]	LP	Tokyo	Japan	1961
177Tm	K. Rykaczewski	Nucl. Phys. A	[72]	DI	Darmstadt	Germany	1989
149Yb	S.-W. Xu	Eur. Phys. J. A	[126]	FE	Lanzhou	China	2001
150Yb	P. Kleinheinz	Z. Phys. A	[127]	FE	Darmstadt	Germany	1985
153Yb	E. Nolte	Z. Phys. A	[128]	FE	Munich	Germany	1982
153Yb	E. Hagberg	Nucl. Phys. A	[130]	SP	CERN	Switzerland	1977
154Yb	R.D. Macfarlane	Phys. Rev.	[103]	FE	Berkeley	USA	1964
155Yb	R.D. Macfarlane	Phys. Rev.	[103]	FE	Berkeley	USA	1964
156Yb	K.S. Toth	Phys. Rev. C	[85]	LP	Oak Ridge	USA	1970
156Yb	K.S. Toth	Phys. Rev. C	[85]	LP	Oak Ridge	USA	1970
156Yb	D. Ward	Phys. Rev. Lett.	[31]	FE	Berkeley	USA	1967
156Yb	W. Trautmann	Phys. Rev. Lett.	[31]	FE	Munich	Germany	1975
160Yb	D. Ward	Phys. Rev. Lett.	[38]	FE	Berkeley	USA	1967
161Yb	A. Latuszynski	Nukleonika	[30]	SP	Dubna	Russia	1974
162Yb	A. Abdumalikov	Phys. Lett.	[113]	SP	Dubna	Russia	1963
162Yb	P. Paris	Compt. Rend. Acad. Sci.	[134]	LP	Orsay	France	1967
162Yb	F.D.S. Butement	J. Inorg. Nucl. Chem.	[112]	SP	Liverpool	UK	1960
162Yb	P. Paris	Compt. Rend. Acad. Sci.	[136]	LP	Orsay	France	1964
166Yb	M.C. Michel	Phys. Rev.	[90]	LP	Berkeley	USA	1954
167Yb	T.H. Handley	Phys. Rev.	[137]	LP	Oak Ridge	USA	1954
169Yb	A.J. Dempster	Phys. Rev.	[40]	MS	Chicago	USA	1938
169Yb	W. Bothe	Z. Naturforsch.	[138]	NC	Berlin	Germany	1946
171Yb	A.J. Dempster	Phys. Rev.	[40]	MS	Chicago	USA	1938
171Yb	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
172Yb	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
173Yb	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
174Yb	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
174Yb	H. Atterling	Arkiv Mat. Astron. Fysik	[139]	NC	Stockholm	Sweden	1945
175Yb	F.W. Aston	Nature	[44]	MS	Cambridge	UK	1934
175Yb	H. Atterling	Arkiv Mat. Astron. Fysik	[139]	NC	Stockholm	Sweden	1945
178Yb	C.J. Orth	Phys. Rev. C	[140]	LP	Los Alamos	USA	1973
179Yb	R. Kirchner	Nucl. Phys. A	[141]	DI	Darmstadt	Germany	1982
180Yb	E. Runte	Z. Phys. A	[142]	DI	Darmstadt	Germany	1987