Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes

Ewa Leśniewska† and Magdalena Boguta†

Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland

MB, 0000-0002-1545-0691

RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.

1. Introduction

Transcription of nuclear DNA in eukaryotes is carried out by at least three different RNA polymerases (Pols), designated Pol I, II and III. Each RNA Pol catalyses the transcription of a specific set of genes. The set of transcripts synthesized by Pol II is extremely complex, because it includes all the different protein-coding mRNAs (from several thousand to tens of thousands in different eukaryotes) and many non-protein-coding RNAs, such as snRNAs, snoRNAs and micro (mi)RNAs. By contrast, Pol I and Pol III are specialized in high-level synthesis of protein-non-coding RNA species, rRNA and tRNA, which are fundamental components of the translation machinery. tRNA and rRNA genes are highly transcribed, leading to the production in yeast of 3 million tRNAs per generation and 300,000 ribosomes, compared with about 60,000 molecules of mRNA.

Within the past decade, substantial progress has been made to understand the unique features of Pol III transcription machinery. This review gives a comprehensive overview of the mechanisms, which have potential impact on the levels of Pol III transcripts. We concentrate mostly on regulation of tRNA synthesis in budding yeast, the simplest and well-recognized model of the eukaryotic cell. Starting from the biogenesis of Pol III complex, we describe promoter recognition by Pol III general factors and the cascade of DNA–protein interactions leading to recruitment of Pol III to their genes. In the context of the recently solved structure of Pol III complex and genome-wide analysis of actively transcribing enzyme, we discuss the mechanisms of transcription...
initiation, elongation and termination. Finally, we summarize the data on Pol III control by Maf1, a general negative regulator, and by phosphorylation of Pol III subunits.

Several interesting aspects of Pol III regulation are, however, beyond the scope of this review. One topic which is not covered is the chromatin connections of Pol III-transcribed genes, but there is an excellent review available on the subject [1]. Another aspect of Pol III control not discussed here is non-uniform regulation of tRNA genes that can shift the translation profiles of key codon-biased mRNAs. For this topic, the readers may be referred to other recent reviews [2,3].

2. Biogenesis of RNA polymerase III

Pol III, composed of 17 subunits of total mass approximately 700 kDa, is the largest of the three Pols in yeast. An atomic model of the yeast Pol III elongation complex has been built by reconstruction of the cryo-electron microscopy structure at 3.9 Å resolution [4]. The structural core of Pol III consists of 10 subunits: C160 and C128, forming the active centre cleft; AC40 and AC19, which are common between Pol III and Pol I; C11, involved in transcription termination; and five small subunits, ABC27, ABC23, ABC14.5, ABC10β and ABC10α, shared between Pol I, Pol II and Pol III. On the periphery of the core enzyme are additional subunits, which form Pol III-specific subcomplexes, C82-C34-C31 and C53-C37, which function in transcription initiation and termination. Additionally, C17 and C25 form a Pol III stalk involved in transcription initiation [5]. Pol III enzymes are highly conserved between organisms. The structure and biogenesis of Pol III are studied mostly in yeast; the exception is structural analysis of Rpc32 [6].

The larger subunits of Pol III core are conserved in sequence, structure and function. C160 and C128 are related to the β′ and β components of αββ′ω bacterial RNA polymerase, and AC40 with AC19 have local similarities to bacterial α subunits [7].

A hypothetical model of Pol III assembly is based on the relatively well-recognized analogous process for prokaryotic RNA polymerase. It starts with the formation of the αα dimer [8], which interacts with β subunit [9], and then β′ subunit is recruited [10]. The existence of intermediate complexes in the process of Pol III assembly is suggested by mass spectrometry analysis of Pol III disassembly. This analysis has revealed stable subcomplexes C128-AC40-AC19-ABC10β-ABC10α (analogue of ααβ bacterial core subcomplex) and C160-ABC14.5-ABC27 (β′—like module), suggesting their formation in the initial step of complex assembly [11]. The relatively easy in vitro dissociation of C25-C17, C37-C53 and C82-C34-C31 modules from Pol III suggests that the peripheral subunits are added as Pol III-specific subcomplexes later in the Pol III assembly [11,12].

Numerous studies on Pol II complex biogenesis (reviewed in [13]) have led to a model in which Pol II is assembled in the cytoplasm with the help of assembly factors and transported to the nucleus as a complex together with a specific adaptor which, following dissociation from Pol II in the nucleus, is exported back to the cytoplasm. Probably, Pol I and Pol III core enzymes use a similar assembly pathway [13].

As Pol III functions in the nucleus, as do other Pols, all 17 of its subunits must be imported to the nucleus, either individually or as part of larger multisubunit assemblies. Nuclear import of a protein requires a nuclear localization signal (NLS) within its sequence but among the Pol III subunits only C128 has a weak NLS. Remarkably, deletion of the NLS-containing region in C128 brings about cytoplasmic localization not only in C128 itself, but also some other Pol III subunits (C160, C53 and C11), without affecting the nuclear localization of C25, C82 and AC40 [14].

This again suggests that the Pol III core could be assembled in the cytoplasm, whereas additional complexes, in particular C17–C25 and C82–C34–C31, would only bind the core in the nucleus [14]. It is therefore likely that besides factors common to all three Pols, the assembly of Pol III requires specific auxiliary proteins (figure 1).

One candidate Pol III assembly factor is Bud27, an unconventional prefoldin protein, which contains both NLS and NES (nuclear export signal) sequences, and shuttles between nucleus and cytoplasm [15]. As shown by co-immunoprecipitation and mass spectrometry, Bud27 interacts directly with some subunits of Pol III (C160, C128, C25, AC40, ABC27 and ABC10β), plays a role in Pol III assembly and may serve as a shuttling adaptor for nuclear transport of Pol III [15,16]. It is also required for proper incorporation of the ABC27 and ABC23 subunits to all three RNA Pols [15] (figure 1).

Another candidate is the Rbs1 protein identified by genetic suppression of a missense mutant defective in Pol III assembly [17]. Reduced interactions between subunits of the complex in the assembly Pol III mutant were corrected by overproduction of Rbs1. Rbs1 was found experimentally to interact with AC40, AC19 and ABC27 subunits [17]. Additionally, Rbs1 interacts with the exportin Crm1, and shuttles between the cytoplasm and the nucleus (figure 1).

All these data suggest that Rbs1 binds to Pol III holocomplex or a subcomplex, facilitates its translocation to the nucleus and is exported back to the cytoplasm by Crm1 [17].

Gpn2 and Gpn3, members of a poorly characterized but evolutionarily conserved family of small GTPases, could also be involved in Pol III biogenesis. GPN2 and GPN3 mutants are defective in nuclear localization of Pol III subunits C53 and C160 [18] (figure 1).

Ssa4, a heat shock protein of Hsp70 family, which also shuttles between nucleus and cytoplasm, is yet another player in Pol III biogenesis. It interacts with C160 in a Bud27-dependent manner, and in ssa4Δ cells C160 is partially mislocalized to the cytoplasm [16]. The Ssa4 export from the nucleus requires the Msn5 exportin [19] and MNS5 deletion resulted in partial mislocalization of C160 to the cytoplasm because of nuclear accumulation of Ssa4 [16] (figure 1).

The last putative Pol III assembly/import factor, Iwr1, contains an NLS in the N-terminal region and was initially implicated in the nuclear import of Pol II [20]. However, further studies have revealed that Iwr1 interacts weakly with C160 [21] and iwr1Δ strains are defective in nuclear localization of other Pol III subunits (C53, C37, C160 and AC40) [18]. According to the proposed model, Iwr1 acts downstream of the GTPases involved in the assembly of both Pol II and Pol III [18] (figure 1). Interestingly, Iwr1 also plays an important role in preinitiation complex formation by all three nuclear RNA Pols in yeast [21]. Another interesting link between polymerase assembly and transcription regulation is sumoylation of C82 subunit important for interaction between subunits but also required for efficient transcription of Pol III genes in optimal growth conditions [22].
3. Pol III transcriptome

The history of identification of the yeast genes transcribed by Pol III is summarized in figure 2. It has long been known that Pol III transcribes tRNA and 5S rRNA. Sequencing of the *Saccharomyces cerevisiae* genome has revealed 275 nuclear genes encoding tRNA, which are dispersed on all chromosomes. By several criteria, all yeast tRNA genes can be considered active [23]. The same set of genes, including tRNA gene t(XXXX)D of unknown specificity, but very similar to serine tRNA, was predicted using search algorithms, such as Pol3scan or tRNAscan-SE, based on consensus sequence motifs inside tRNA genes [24–26]. The length of tRNA genes varies between 72 and 133 nt, and only a minority of them (61 genes) have an intron. The primary transcripts of all tRNA genes must undergo maturation at both ends and, when needed, intron excision to generate mature tRNA. Yeast tRNA genes are grouped into 42 families of distinct codon specificity [25,26].

Other short protein-non-coding RNAs, detected as Pol III transcripts a long time ago, include SNR6-encoded U6 snRNA, which mediates catalysis of pre-mRNA splicing and the RNA component of RNase P involved in maturation of tRNA primary transcripts encoded by RPR1 [27,28]. Later RNA170 of unknown function and the RNA subunit of signal recognition particle (SRP) encoded by SCR1 gene were identified as Pol III transcripts [29,30]. First attempts at genome-wide identification of the yeast Pol III transcriptome employed chromatin immunoprecipitation (ChIP) [31–33]. In three independent analyses performed in different laboratories, all tRNA genes were found to be occupied by Pol III and general transcription factors TFIIIB and TFIIIC, but the absolute levels of occupancy varied among them. It was therefore inferred that all yeast tRNA genes are actively transcribed, but with different efficiency. Essential components of the Pol III machinery were also identified on the SNR52 gene encoding snR52 snoRNA, which serves as a methylation guide for rRNA and was further confirmed as a Pol III transcript [31–33]. Moreover, two loci, YGR033C and YML089C, were occupied by all three components of the Pol III machinery, and four others, YGR258C, YOR228C, YBR154C and YOL141W, by TFIIIC only [32]. A region near YML089C was also occupied by all three components of Pol III machinery and was named zone of disparity (ZODI) [33]. It was shown later that ZODI is an ancient gene for tRNA-Ile and is weakly transcribed by Pol III [34]. Similarly, YGR033C derives from a tDNA-Arg ancestor [34]. Another analysis identified eight loci occupied only by TFIIIC, called ETCl-8 for extra TFIIIC [33]. Probably, the occupancy by TFIIIC included the four loci listed above and the slightly different
RNA170 gene. In standard growth condition, RNA170 is identified as an extra TFIIIC site [35]. A proportional increase in occupancy by the transcription machinery [34] is observed when RNA170 is increased expression of RNA170 and ZOD1 upon nucleosome depletion is not paralleled by a proportional increase in occupancy by the transcription machinery [34]. Those authors suggest therefore that the derepression of ZOD1 and RNA170 transcription upon nucleosome depletion involves activation of poised Pol III.

Presently, transcriptomes are defined and investigated using next generation sequencing (NGS)-based approaches. The human Pol III transcriptome verified by the ChIP-seq method contains 522 predicted tRNA genes and 109 pseudo-genes [37]. In contrast, with the yeast genome, where all tRNA genes reside in a nucleosome-free region, only about half of the tRNA genes are Pol III-occupied or nucleosome-free in higher eukaryotes. Besides tRNAs, 5S rRNA, U6 snRNA and 7 SL RNA, human Pol III also transcribes short interspersed nuclear elements SINEs, 7SK RNA, RNase MRP RNA, vault RNAs and Y RNAs [37,38].

Two novel techniques employed for studies on eukaryotic transcriptomes are native elongating transcript sequencing (NET-seq) [39–41] and the UV cross-linking and analysis of cDNA (CRAC) [36]. Both CRAC and NET-seq provide single nucleotide resolution, and CRAC was used earlier to identify yeast transcripts bound by nuclear RNA surveillance factors [42]. For the yeast Pol III transcriptome, CRAC confirmed the association of Pol III with the previously known Pol III transcripts and revealed six potential new ones called TLT (tRNA-like transcripts). Expression of TLT5 and TLT6 loci was confirmed by Northern hybridization. The function of these transcripts is so far unknown. Interestingly, distinct Pol III-associated transcripts were located within the Pol I-transcribed RDN37 rDNA [36]. The coexistence of Pol I and Pol III in the region of 18S rDNA deserves future studies. Moreover, numerous non-coding RNA that are generally transcribed by Pol II showed greater than twofold increase transcription by Pol III under stress conditions [36]. These results suggest that upon stress some Pol II transcripts are increasingly transcribed by Pol III. The development of new, more sensitive techniques and the already noted increased expression of some genes in other than standard conditions (e.g. RNA170 and ZOD1) provide open questions concerning the Pol III transcriptome in the simplest eukaryotic cell.

4. Recognition of Pol III promoters by TFIIIC

Unlike Pol II, the Pol III machinery recognizes conserved promoter elements located within the transcribed region. In most Pol III genes, these are the so-called box A and box B sequences, which at the RNA level contribute to the universally conserved D- and T-loops in the tRNA structure. The internally located A- and B-boxes are the main cis-acting control elements for transcription of tRNA genes (with the exception of the serine/tyrosine tRNA gene). In 61 tRNA genes, the A- and B-boxes are separated by an intron; therefore, the distance between these two promoter elements varies from 31 to 93 nt. Assuming that the 5’-end of mature tRNA corresponds to position ‘0’, the A-box starts at position +8 downstream and the transcription start site is usually located between 10 and 12 nt upstream. In SCR1, the longest Pol III gene in S. cerevisiae, the A- and B-boxes are also located in the region encoding the mature transcript, whereas in the RPR1 and SNR52 genes these promoter elements sit in 5’ leader sequences. By contrast, the SNR56 gene promoter comprises a TATA box upstream of the transcription start site, the A-box in the coding region and the B-box in the 3’ trailer [38]. Finally, the RDN5 gene, present in multiple copies, contains the A-box, an intermediate element and the C-box, all located in the transcribed region.

The conserved promoter elements in DNA are recognized by the general transcription factors specific to Pol III. The A- and B-box together form a bipartite binding site for the
six-subunit basal transcription factor TFIIIC. Recruitment of TFIIIC to the RDN5 gene, lacking the B-box, is dependent on TFIIIA factor, which binds to the C-box and acts as an adaptor [43]. The association of TFIIIC with DNA initiates a cascade of DNA–protein interactions: TFIIIC-directed recruitment and assembly of the three subunits of the TFIIIB factor and subsequent recruitment of the Pol III enzyme to the transcription start site. Pol III genes are generally short and transcription terminates on a stretch of T-residues variably located less than 20 nt from the 3’-end of the mature RNA.

TFIIIC is composed of two subcomplexes, α and β, connected by a linker. Owing to its naturally elastic structure, TFIIIC can cope with the variable distance between A- and B-boxes in Pol III genes, allowing their binding by α and β, respectively [35]. The main determinant of both the selectivity and stability of TFIIIC–DNA complexes is the αβ binding to the B-box whereas the A-box involvement in transcription initiation is more subtle [44]. The αβ module comprises α138 (Tfc3), α91 (Tfc6) and α60 (Tfc8), while α binds α-complex of α131 (Tfc4), α95 (Tfc1) and α75 (Tfc7). Although only Tfc1 and Tfc3 bind DNA directly, all six subunits of TFIIIC are essential in vivo. Tfc4 contains an N-terminal TPR array domain, which binds an unstructured, central region of Tfc3 providing the α-β linker within TFIIIC complex [45]. The transcription termination region in Pol III genes is flexibly accommodated within the TFIIIC–DNA complex regardless of variable distance from B-box, which explains why the whole gene sequence is protected by TFIIIC; moreover, this interaction delimits the 3’-boundary of the transcription unit [35].

5. Role of TFIIIC in recruitment of general transcription factor TFIIIB

Transcription initiation is regulated by TFIIIC-dependent recruitment of TFIIIB factor composed of three subunits. Early genetic and biochemical studies (reviewed in [44]) suggested that the Tfc4 subunit of TFIIIC, positioned upstream of the transcription start site, recruits two subunits of TFIIIB, Brf1 and Bdp1, whereas the Tfc8 subunit of TFIIIC interacts with the third subunit of TFIIIB, TBP. More recently, high-resolution structure determination revealed distinct regions of Brf1 and Bdp1 binding on Tfc4 [45]. Importantly, the site of Bdp1 interaction overlaps that of Tfc3, resulting in binding competition. As a consequence, Tfc4 of the αβ module cannot simultaneously recruit Bdp1 and form the linker with αβ module by its interaction with Tfc3 subunit. According to the proposed model [45], the assembly of TFIIIB is initiated by the recruitment of Brf1 to Tfc4, probably by the completed assembly of TFIIIC on a tRNA gene. The second TFIIIB component, namely TBP, is then recruited via binding sites on Brf1 and via the Tfc8 subunit. The final step of TFIIIB recruitment is Bdp1 binding to Tfc4, which, however, requires dissociation of Tfc3 and the displacement of the αβ module, causing a conformational change of the TFIIIC complex. This model, in which Bdp1 induces the displacement of the αβ module as a regulatory mechanism essential for the initial round of Pol III transcription [45], is supported by in vitro data showing that TFIIIC is only required for assembling TFIIIB but is dispensable for Pol III transcription [46]. Other in vitro data suggest, however, that TFIIIC is not released from the DNA template once it is bound: pre-incubation of TFIIIC with one tRNA gene, followed by the addition of a second template as a competitor and then of all the other necessary components, led exclusively to transcription of the first gene [47].

Whether TFIIIC becomes displaced or disassembled during transcription initiation in vivo is currently unknown. Perhaps TFIIIC contacts the internal promoters even during Pol III elongation, as discussed below.

6. Recruitment of Pol III by TFIIIB and promoter melting

Among the three subunits of TFIIIB, only Bdp1 has no counterpart in the Pol II or Pol I transcription systems. Brf1 is a functional and structural analogue of TFIIA, and interacts with TBP and Bdp1 [48,49]. Despite the conserved TFIIA-like architecture, Brf1 harbours an additional functionality in its C-terminal extension. By C-terminal domain (CTD) Brf1 interacts with C34 subunit of Pol III and recruits Pol III to the transcription start site [50].

C34, C31 and C82 are the Pol III-specific subunits, which form a heterotrimer involved in Pol III initiation; the heterotrimer carries sequence motifs homologous to TFIIIE, a general transcription factor of Pol II machinery. Additionally, Bdp1 has been reported to interact with C37, which together with C33 subunit forms a TFIIIF-like subcomplex within Pol III [51]. In contrast with Pol II, where TFIIIE and TFIIIF participate in preinitiation complex formation by binding only transiently, the initiation of Pol III transcription is facilitated by its permanently bound TFIIIE-like and TFIIIF-like subcomplexes.

A major advance in understanding the unique features and peculiarities of the transcription initiation by S. cerevisiae Pol III has come from cryo-electron microscopy studies. The obtained structures showed two different conformations of the Pol III enzyme, allowing reconstruction of the two stages of the initiation process corresponding to the closed and open complexes. In the open conformation, the distance between the stalk and the C82–C34–C31 heterotrimer is smaller and a cleft is more open; therefore, the polymerase can better associate with the target DNA, whereas the closed conformation is similar to the structure of the elongating Pol III complex with a narrow cleft. Notably, even in the open conformation the cleft is narrower in Pol III than in other Pols [4].

The Pol III-specific subunit C34 contains winged helix (WH) domains by which it interacts with DNA and participates in DNA opening [48,52–55]. The promoter melting also involves the activity of C82, another Pol III-specific subunit which positions four WH domains on the clamp domain of the largest Pol III subunit C160 [4]. A rearrangement of two WH domains of C82 towards downstream DNA changes the orientation of the C82–C34–C31 subcomplex and remodels the active centre to produce the elongation complex [4].

7. Pol III elongation: uneven distribution of polymerase on transcription units

Although Pol III genes are short, a recent genome-wide analysis of nascent transcripts attached to Pol III revealed a strikingly uneven polymerase distribution along the transcription units [36]. Inspection of individual tRNA
genes showed a predominant pattern with high density of nascent transcripts over the 5'-end and a weaker peak before the 3'-end of the gene (figure 3). A minority of genes showed similar 5' and 3' peaks. Such uneven distribution of Pol III along the transcription unit suggests regional slowdown of elongation or transient pausing of the polymerase. Because on highly transcribed genes the 5' peak is predominant, the initiation site clearance seems to be rate limiting during Pol III transcription. Interestingly, the 5' and 3' peaks of transcribing Pol III coincide, respectively, with the beginning of the A-box and of the B-box of the internal promoter (figure 3). The same was true for intron-containing genes, in which the distance between A-box and B-box is variable as they are separated by the intronic sequence. This suggests that TFIIIC bound to the A- and B-boxes could slow down the Pol III elongation rate leading to transient pausing.

While in vitro studies indicate that the TFIIIC–DNA interactions must be disrupted during Pol III elongation [56], a ChIP study [57] has revealed low but consistent TFIIIC occupancy at all transcriptionally active genes. The complex of TFIIIB and TFIIIC occupies a DNA length similar to that in nucleosomes, which are absent from rRNA genes [35,58]. Notably, the abundance of both α and β modules of TFIIIC on Pol III genes increases greatly during acute repression [59,60], indicating that transcription by Pol III partially displaces TFIIIC from its binding sites located in the transcribed region. This need to remove TFIIIC could explain the observed crowding of elongating Pol III exactly at the 5' that transcription by Pol III partially displaces TFIIIC from its bound by this transcription factor.

8. Transcription termination and read-through of termination signal

Several excellent reviews about Pol III termination have been recently published [61–64], so here this topic will be described only briefly.

The signal for Pol III termination is an oligo(T) track in the non-transcribed DNA strand [65–67]. In humans, four thymidines are sufficient for Pol III termination, in Schizosaccharomyces pombe five and in S. cerevisiae six [66,67]. Furthermore, both in vitro and in vivo data show a correlation of termination efficiency by yeast Pol III with the length of the oligo(T) tract [36,68].

Three subunits of Pol III are important for termination: C53, C37 and C11. C53 and C37 form a heterodimer and are engaged in the recognition of the termination signal [69], while C11 is required for RNA cleavage [70–72]. Pol IIIΔ (lacking C11, C37 and C53) terminates on oligo(T) less efficiently than the wild-type enzyme because of an increased elongation rate; addition of the C53–C37 subcomplex reduces the global elongating rate and corrects the terminator recognition defect of Pol IIIΔ [69,72–74].

The C53–C37 subcomplex dissociates easily from Pol III and has been detected in the free form [12]. In the Pol III structure, it sits across the cleft, near the presumed location of downstream DNA [75], and the residues involved in transcription termination position close to the non-template DNA strand [4]. The C37 subunit extends towards the DNA-binding cleft where its flexible loop contacts the C34 subunit involved in transcription initiation and the TFIIIB subunit Bdp1 [4]. The C-terminal part of C37 was localized within the Pol III active centre [4,51,76] and its deletion leads to a loss of subunits C11 and C53 upon purification [69].

The C11 subunit is composed of two domains, both crucial for Pol III functioning: the N-terminal domain is homologous to Rpb9, a subunit of Pol II, and the C-terminal one shows homology to the TFIIS factor of Pol II [70]. The N-terminal domain is required for terminator recognition and pausing [77] as well as transcription reinitiation [69]. Structure analysis has shown that it is mobile, located next to the C53–C37 subcomplex and only temporarily recruited to the catalytic centre [4,75]. The C-terminal TFIIIS-homologous domain in C11 is responsible for 3' RNA cleavage that occurs during terminator pausing [69,77]. The function of the C-terminal domain of C11 in Pol III termination was supported by experiments in vitro exploiting C11 point mutants [74].

In in vitro experiments wild-type Pol III from S. cerevisiae terminated efficiently on 7T and 9T terminators, while Pol IIIΔ recognized only the 9T terminator [72]. This prompted the authors to propose two mechanisms of Pol III termination [72]. The core mechanism would be C57–C37- and C11-independent and would require at least eight thymidines for destabilization of oligo(rU·dA) heteroduplex and efficient termination, while a holoenzyme mechanism operating in the presence of the C53–C37 heterodimer and C11 subunit would also recognize short oligo(T) tracks. The core mechanism autonomously destabilizes the complete Pol III elongating complex [72–74], leaving Pol IIIΔ terminator-arrested [72]. The authors suspected that the terminator arrest involves backtracking. A role of Pol III backtracking in termination has also been suggested by an independent study [78]. Supplementation by cleavage activity of the C11 subunit rescues the backtracked Pol IIIΔ; however, to prevent terminator arrest, the C11 subunit cooperates with the N-terminal domain of C53 [72]. The holoenzyme termination
mechanism is based on slowing down elongation on the oligo(A) track in the template strand and preventing terminator arrest [72]. Further analysis has revealed that formation of a metastable pre-termination complex (PTC) is required for transcript release by Pol III [73]. To convert the elongation complex to the PTC, Pol III subunits C53, C37 and C11 act together with the third and fourth T residues of the non-template strand. Then the C-terminal region of C37 and T5 of the non-template strand contribute to transcript release [73]. Cryo-EM structural data have confirmed these results—five amino acid residues from the flexible loop in the C37 subunit interact with the first four thymidines of the non-template DNA strand to effect a switch towards PTC, while the fifth (thymidine) brings about transcription termination [4]. All these data show that Pol III termination, which looks quite simple at first, is more complicated when studied in detail.

Another initially unanticipated aspect of Pol III termination is read-through (RT) of the termination signal. RT of terminator signal is quite common in human cells [79]. Several reports have described terminator RT in vivo in Pol III termination mutants in the C11 and C37 subunits in S. pombe [74,77,80]; however no RT of 8T terminator has been observed in a wild-type strain [74]. Other in vitro experiments showed that the strength of 5T terminator in S. cerevisiae depends on the sequence downstream of the terminator; a CT sequence acts as a weakening element, while an A or G following the terminator increases its efficiency [67]. Notably, studies in human cells showed that Pol III occupies the region downstream from the 3′-end of many tRNA genes [37,79]. Additionally, downstream nucleosome mobility towards tRNA gene may inhibit transcription by restricting the access of Pol III to the gene terminator. Under a repressed state, a downstream nucleosome shows mobility towards tRNA gene [58]. This is consistent with our recent data indicating reduced transcription for nearly all tRNAs under stress conditions [36]. A recent genome-wide analysis of active Pol III in S. cerevisiae confirmed effective termination on 7T and 8T tracts [36]. Importantly, this analysis showed substantial RT of termination signal on many tRNA genes, typically extending 50–200 nt beyond the expected terminator (figure 3). The presence of 3′-extended Pol III transcripts was confirmed by Northern blotting, but these extended transcripts were rapidly processed or degraded. An average RT level for all tRNA genes was about 10%, but reached over 40% for some tRNA genes [36]. Termination generally occurs at the canonical terminator, but its efficiency is highly variable and RT levels were negatively associated with the oligo(T) length: for genes with more than 25% RT, more than 60% have 6T tracts as the longest termination signal, whereas for genes with less than 5% RT, 60% have 8T tracts. RT levels in vivo show additional correlation with uracil abundance in the 3′-extended tRNA transcripts but not with the sequence directly downstream of the terminator [36]. Independent studies identified long RT of termination signal in tRNA genes of S. pombe mutant lacking a mediator complex subunit, Med20 [81]. These extended transcripts were polyadenylated and targeted for degradation by the exosome. It seems therefore that the RT of the termination signal is a feature of Pol III in many organisms.

Recent studies have revealed that proteins involved in mRNA biogenesis are important in regulation of Pol III transcription. Nab2 protein, known as nuclear polyadenylated RNA-binding protein, required for maturation and export of mRNA, interacts with Pol III, TFIIIB and Pol III transcripts. During transcription elongation, Nab2 remains associated with Pol III and/or the nascent transcript, and may also participate in surveillance of 3′ extended pre-tRNAs [36,82]. Moreover, experiments in fission yeast have shown that Swd2.2 and Sen1 act directly at Pol III-transcribed genes to limit the association of condensin. It was shown that at least active Pol III transcription is not an obstacle for the binding of condensin [83]. However, in S. cerevisiae, Sen1 was not identified as a Pol III-interacting protein [84].

9. Regulation of Pol III by Maf1

Pol III is specifically regulated by a global negative effector Maf1, originally identified in Saccharomyces cerevisiae by a classical genetic approach [85]. One of the yeast mutants selected in a screen for tRNA-mediated suppressors accumulated high tRNA levels and additionally had a growth defect. That allowed cloning of the gene for yeast Maf1, which turned out to be the founding member of a new class of Pol III negative effectors [86]. Several research groups showed that, apart from yeast, Maf1 orthologues function as Pol III repressors in mammals, flies, worms, plants and parasites [87–91]. Maf1 proteins from diverse organisms share N- and C-terminal regions of homology.

Maf1 is targeted by several signalling pathways modulating its phosphorylation status and thereby mediates various stress signals to Pol III [92]. Under favourable growth conditions, Maf1 is phosphorylated and in this form is localized to the cytoplasm. Upon a shift to repressive conditions, Maf1 is dephosphorylated and imported to the nucleus, where it binds directly to the Pol III complex, preventing Pol III-directed transcription [60,93].

Analysis of the Pol III structure in complex with Maf1 [55] showed that Maf1 binds to the Pol III clamp at the rim of the left and re-arranges the structure of the C82–C34–C31 trimer over the active centre. By relocating a specific WH domain of the C34 subunit, Maf1 weakens the interaction of C34 with the Brf1 subunit of the TFIIIB initiation factor and thereby impairs Pol III recruitment to promoters [55,94].

Exactly how Maf1 is recruited to Pol III during ongoing transcription is unknown. Maf1 does not bind to a preassembled Pol III–Brf1–TBP–DNA initiation complex and the interactions of Pol III with Maf1 and Brf1-TATA-DNA are mutually exclusive [55,95]. Significantly, Maf1 does not impair Pol III elongation to the end of the template [55]. No effect of Maf1 on the Pol III distribution along the transcription units has been detected either [36].

It is noteworthy that Maf1 alone is not sufficient to repress Pol III which is also directly regulated by posttranslational modifications of its specific subunits: Pol III is repressed by phosphorylation of C53 whereas sumoylation of C82 leads to Pol III activation [22,96]. Moreover, Pol III is also regulated by differential phosphorylation of Bdp1 subunit of TFIIIB transcription factor [97].

The rate of Pol III transcription increases at least fivefold through a process known as facilitated recycling, which couples the termination of transcription with reinitiation [98]. An accepted model assumes Maf1 binding to the Pol III elongation complex at each transcription cycle and its dissociation prior to the initiation of the next cycle [99]. CK2 kinase, which is associated with the Pol III-containing chromatin, ensures a high rate of transcription through phosphorylation of Maf1, TFIIIB and potentially also other Pol III
components [100,101]. Conversely, when cells encounter unfavourable growth conditions, the CK2 catalytic subunit dissociates from the Pol III complex and is no longer able to stimulate transcription. Moreover, dephosphorylated Maf1 is imported from the cytoplasm increasing its concentration in the nucleus. This is the time when Maf1 takes over control and inhibits transcription. This mechanism ensures constant monitoring of the environment and a transcription shut-down immediately after the conditions become adverse.

Interestingly, Maf1 regulates the levels of different tRNAs to various extents [102,103]. Recently, relative transcription intensity by Pol III was compared over all nuclear tRNA genes under near optimal growth conditions and following transfer to stress conditions known to repress tRNA expression. Although under stress conditions reduced transcription was observed for nearly all tRNAs, the degree of the repression was highly variable among the tRNA genes, a subset of tRNA genes being markedly less repressed [36] (figure 4). This conclusion is broadly consistent with a previous microarray analysis which revealed that the levels of mature tRNAs were reduced to variable extents by stress conditions [102]. Similarly, Pol III shows different enrichment on isogenes and indicates different transcriptional activity on gene copies within family. Additionally, in wild-type strain tRNA levels are different across the families, and show different response to starvation [58]. The heterogeneity in the tRNA repression seen in the wild-type is substantially reduced in a mutant lacking Maf1. This provides genome-wide evidence that Maf1 does not simply down-regulate all tRNAs, but affords an additional layer of gene-specific Pol III regulation. A subset of tRNA genes shows low responsiveness to Maf1.

10. Perspectives

The past decade has seen substantial progress in delineating the mechanisms by which Pol III-mediated tRNA gene transcription is controlled. The unique features of Pol III that distinguish it from other polymerases and novel insights on its functional characteristics have been incorporated in and also draw from atomic models of Pol III in different conformations. However, the mode of Pol III interaction with general negative regulator Maf1 is known in outline only and the mechanism of the repression deserves future studies. The differential specificity of Maf1 towards various genes probably relies on additional factors interacting with Pol III chromatin, which need to be elucidated.

Findings regarding the Pol II system have revealed that much transcription regulation occurs after recruitment of the polymerase to promoter through controlling pausing and elongation. Recently, pausing of Pol III has been documented by mapping of the transcriptionally active enzyme at nucleotide resolution [36]. The intriguing hypothesis that the pausing and elongation of Pol III is controlled by association of TFIIIC factor with internal promoter sequences should be validated experimentally. Pol II uniquely employs the so-called mediator complex and carries an extra CTD on its largest subunit, Rpb1. The CTD undergoes dynamic phosphorylation during the progression from initiation through elongation to termination and transcription arrest triggers Rpb1 ubiquitination [105,106]. Although the largest Pol III subunit has no CTD, several components of Pol III apparatus undergo phosphorylation or sumoylation, and ubiquitination...
is also considered [22,96,97,107,108]. Nothing is known, however, about a possible involvement of phosphorylation, or any other as yet unknown type of modification in the progression of different stages of Pol III transcription. Possibly unknown modifications of Pol III component exist that mark the stage of transcription cycle.

Authors’ contribution. Both authors contributed equally on preparation of text and figures.

Competing interests. We have no competing interests.

Funding. This work was supported by National Science Centre (UMO-2012/04/A/NZ1/00052) and Foundation for Polish Science (MISTRZ 7/2014).

References

1. Bhargava P. 2013 Epigenetic regulation of transcription by RNA polymerase III. Biochim. Biophys. Acta BBA Gene Regul. Mech. 1829, 1015 – 1025. (doi:10.1016/j.bbagrm.2013.05.005)

2. Arimbasseri AG, Maraia RJ. 2016 RNA polymerase III: insights into mechanism and regulation. Biochem. Soc. Trans. 44, 1367 – 1375. (doi:10.1042/BST20160060)

3. Turowski TW, Tollervey D. 2016 Transcription by RNA polymerase III: likely unknown modifications of Pol III component exist that mark the stage of transcription cycle.

4. Boissier F, Dumay-Odollet H, Teichmann M, Fribourg S. 2015 Structural analysis of human Pol IIIβ – Pol IIIγ complex. J. Struct. Biol. 192, 313 – 319. (doi:10.1016/j.jsb.2015.09.004)

5. Lalo D, Carles C, Sentenac A, Thuriaux P. 1993 Interactions between three common subunits of yeast RNA polymerases I and III. Proc. Natl Acad. Sci. USA 90, 5524 – 5528. (doi:10.1073/pnas.90.12.5524)

6. Kimura M, Ishihama A. 1993 Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acid substitution within the amino-terminal assembly domain. J. Mol. Biol. 254, 342 – 349. (doi:10.1006/jmbi.1995.0621)

7. Karmen N, Chander P, Ghosh P, Vishveshwara S, Chatterji D. 2001 Stabilizing interactions in the dimer interface of alpha-subunit in Escherichia coli RNA polymerase: a graph spectral and point mutation study. Protein Sci. Publ. Protein Soc. 10, 570 – 578. (doi:10.1100/ps.262001)

8. Wang Y, Severinov K, Loizos N, Fenyo D, Heyduk E, Heyduk T, Chait BT, Darst SA. 1997 Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J. Mol. Biol. 270, 648 – 662. (doi:10.1006/jmbi.1997.1139)

9. Lane LA et al. 2011 Mass spectrometry reveals stable modules in holo and apo RNA polymerases I and III. Struct. Lond. Engl. 1939 19, 90 – 100. (doi:10.1006/jmbi.2010.1109)

10. Lorenzen K, Vannini A, Cramer P, Heck AJR. 2007 Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Struct. Lond. Engl. 1939 15, 1237 – 1245. (doi:10.1016/j.str.2007.07.016)

11. Wang Y, Severinov K, Loizos N, Fenyo D, Heyduk E, Heyduk T, Chait BT, Darst SA. 1997 Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J. Mol. Biol. 270, 648 – 662. (doi:10.1006/jmbi.1997.1139)

12. Lorenzen K, Vannini A, Cramer P, Heck AJR. 2007 Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Struct. Lond. Engl. 1939 15, 1237 – 1245. (doi:10.1016/j.str.2007.07.016)

13. Turowski TW, Tollervey D. 2016 Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem. Soc. Trans. 44, 1367 – 1375. (doi:10.1042/BST20160060)

14. Boissier F, Dumay-Odollet H, Teichmann M, Fribourg S. 2015 Structural analysis of human Pol IIIβ – Pol IIIγ complex. J. Struct. Biol. 192, 313 – 319. (doi:10.1016/j.jsb.2015.09.004)

15. Lalo D, Carles C, Sentenac A, Thuriaux P. 1993 Interactions between three common subunits of yeast RNA polymerases I and III. Proc. Natl Acad. Sci. USA 90, 5524 – 5528. (doi:10.1073/pnas.90.12.5524)

16. Kimura M, Ishihama A. 1993 Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acid substitution within the amino-terminal assembly domain. J. Mol. Biol. 254, 342 – 349. (doi:10.1006/jmbi.1995.0621)

17. Karmen N, Chander P, Ghosh P, Vishveshwara S, Chatterji D. 2001 Stabilizing interactions in the dimer interface of alpha-subunit in Escherichia coli RNA polymerase: a graph spectral and point mutation study. Protein Sci. Publ. Protein Soc. 10, 570 – 578. (doi:10.1100/ps.262001)

18. Wang Y, Severinov K, Loizos N, Fenyo D, Heyduk E, Heyduk T, Chait BT, Darst SA. 1997 Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J. Mol. Biol. 270, 648 – 662. (doi:10.1006/jmbi.1997.1139)

19. Lane LA et al. 2011 Mass spectrometry reveals stable modules in holo and apo RNA polymerases I and III. Struct. Lond. Engl. 1939 19, 90 – 100. (doi:10.1006/jmbi.2010.1109)
architectures of the yeast TFIIIB–TFIIIC transcription complex in vivo. Nucleic Acids Res. 41, 8135 – 8143. (doi:10.1093/nar/gkt1611)

36. Turowski TW, Lesinewska E, Delan-Fonco C, Sayou C, Boguta M, Tollery D. 2016 Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended RNA transcripts. Genome Res. 26, 933 – 944. (doi:10.1101/gr.205492.116)

37. Canella D, Prad P, Reina JH, Cousin P, Hernandez N. 2016 Identification of RNA polymerase III-transcribed genes in eukaryotic genomes. Biochim. Biophys. Acta BBA Gene Regul. Mech. 1829, 296 – 305. (doi:10.1016/j.bbagrm.2012.09.010)

38. Churchman LS, Weissman JS. 2011 Nascent transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Mol. Cell. Biol. 31, 2715 – 2728. (doi:10.1128/MCB.01511-11)

39. Turowski TW, Lesinewska E, Delan-Forino C, Sayou C. 2016 Specialization versus conservation: how Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription 7, 127 – 132. (doi:10.1080/21512240.2016.1203628)

40. Joo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. 2003 Crystal structure of a transcription factor IIIb core interface ternary complex. Nature 422, 534 – 539. (doi:10.1038/ nature01534)

41. Wu C-C, Lin Y-C, Chen H-T. 2011 The TFIIIC-like Rpo37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol. Cell. Biol. 31, 5071 – 5080. (doi:10.1128/MCB.01534)

42. Kumar Y, Bhargava P. 2013 A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes. BMC Genomics 14, 368 – 373. (doi:10.1186/1471-2164-14-402)

43. Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns CW. 2016 Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5, e27639. (doi:10.4161/tms.27369)

44. Kassavetis GA, Rijal K, Maaria RJ. 2013 Structural biology: a transcriptional specialist resolved. Nature 528, 204 – 205. (doi:10.1038/nature16137)

45. Kassavetis GA, Maaria RJ. 2015 A high density of cis-information terminates RNA polymerase III on a 2-track rail. RNA Biol. 13, 166 – 171. (doi:10.1080/15476286.2015.1116677)

46. Campbell FE, Setzer DR. 1992 Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition. Mol. Cell. Biol. 12, 2260 – 2272. (doi:10.1128/MCB.12.5.2260)

47. Hamada M, Sakulich AL, Koduru SB, Maaria RJ. 2000 Transcription termination by RNA polymerase III in fission yeast a genetic and biochemically tractable model system. J. Biol. Chem. 275, 29 076 – 29 081. (doi:10.1074/jbc.M003980200)

48. Khoo B, Brophy B, Jackson SP. 1994 Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev. 8, 2879 – 2890. (doi:10.1101/gad.8.23.2879)

49. Hoffmann NA, Sadan Y, Tafur I, Kosinoki J, Müller CW. 2016 Specialization versus conservation: how Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription 7, 127 – 132. (doi:10.1080/21512240.2016.1203628)

50. Kumar Y, Bhargava P. 2013 A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes. BMC Genomics 14, 368 – 373. (doi:10.1186/1471-2164-14-402)

51. Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns CW. 2016 Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5, e27639. (doi:10.4161/tms.27369)

52. Kassavetis GA, Rijal K, Maaria RJ. 2013 Structural biology: a transcriptional specialist resolved. Nature 528, 204 – 205. (doi:10.1038/nature16137)

53. Kassavetis GA, Maaria RJ. 2015 A high density of cis-information terminates RNA polymerase III on a 2-track rail. RNA Biol. 13, 166 – 171. (doi:10.1080/15476286.2015.1116677)

54. Campbell FE, Setzer DR. 1992 Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition. Mol. Cell. Biol. 12, 2260 – 2272. (doi:10.1128/MCB.12.5.2260)

55. Hamada M, Sakulich AL, Koduru SB, Maaria RJ. 2000 Transcription termination by RNA polymerase III in fission yeast a genetic and biochemically tractable model system. J. Biol. Chem. 275, 29 076 – 29 081. (doi:10.1074/jbc.M003980200)

56. Bruglia P, Pecuradi R, Dieci G. 2005 Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J. Biol. Chem. 280, 19 551 – 19 562. (doi:10.1074/jbc.M412238200)

57. Allison DS, Hall BD. 1985 Effects of alterations in the 3′ flanking sequence on in vivo and in vitro expression of the yeast SUP4-o tRNATyr gene. EMBO J. 4, 2657 – 2664.

58. Landreux E, Allic N, Ducrot C, Acker J, Riva M, Carles C. 2006 A complex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J. 25, 118 – 128. (doi:10.1038/sj.emboj.7600915)

59. Chédin S, Riva M, Schultz P, Sentenac A, Carles C. 1998 The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIIS-like subunit and is important for transcription termination. Genes Dev. 12, 3857 – 3871. (doi:10.1101/gad.12.24.3857)

60. Huang Y, Intine RV, Mozian A, Hasson S, Maaria RJ. 2005 Mutations in the RNA polymerase III subunit Rpo31p that decrease RNA 3′ cleavage activity increase 3′-terminal oligo(U) length and La-dependent tRNA processing. Mol. Cell. Biol. 25, 621 – 636. (doi:10.1128/MCB.25.2.621-636.2005)

61. Arribaselli AG, Maaria RJ. 2013 Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol. Cell. Biol. 33, 1571 – 1581. (doi:10.1128/MCB.01773-12)

62. Arribaselli AG, Maaria RJ. 2015 Mechanism of transcription termination by RNA polymerase III utilizes a non-template strand sequence-specific signal element. Mol. Cell 58, 1124 – 1132. (doi:10.1016/j.molcel.2015.04.002)
74. Rijal K, Maria RA. 2016 Active center control of termination by RNA polymerase III and tRNA gene transcription levels in vivo. PLoS Genet. 12, e1006253. (doi:10.1371/journal.pgen.1006253)

75. Fernández-Tornero C, Böttcher B, Riva M, Carles C, Steuerwald U, Rigoruk RW, Sentenac A, Müller CW, Schoehn G. 2007 Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. Mol. Cell 25, 813–823. (doi:10.1016/j.molcel.2007.02.016)

76. Hu H-L, Wu C-C, Lee J-C, Chen H-T. 2015 A Region of Bdp1 necessary for transcription initiation that is located within the RNA polymerase III active site cleft. Mol. Cell. Biol. 35, 2831–2840. (doi:10.1128/MCB.00263-15)

77. Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. 2011 Widespread occurrence of non-canonical transcription termination by RNA polymerase III. Nucleic Acids Res. 39, 6100–6113. (doi:10.1093/nar/gkr182)

78. Niehren S, Yuzenkov Y, Zenkin N. 2013 Mechanism of Eukaryotic RNA polymerase III transcription termination. Science 340, 1577–1580. (doi:10.1126/science.1237934)

79. Orioli A et al. 2011 Positive regulation of transcription initiation by RNA polymerase III. Nucleic Acids Res. 39, 5499–5512. (doi:10.1093/nar/gkt074)

80. Rijal K, Maria RA. 2013 RNA polymerase III mutations in TFIIF-like C37 that cause transcription termination by TBP that affects transcription levels in vivo. PLoS Genet. 10, e1004794. (doi:10.1371/journal.pgen.1004794)

81. Legros P, Malapert A, Niinuma S, Bernard P, Vanoosthuyse V. 2014 RNA processing factors Smw2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes. PLoS Genet. 10, e1004794. (doi:10.1371/journal.pgen.1004794)

82. Nguyen N-T-T, Saguez C, Conesa C, Lefebvre O, Acker J. 2015 Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 556, 51–60. (doi:10.1016/j.gene.2014.07.070)

83. Bagorda M, Czernik K, Žižak T. 1997 Mutation in a new MAF1 target affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 185, 291–296. (doi:10.1016/S0378-1119(96)00669-5)

84. Sluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Bagorda M. 2001 Maflp, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 5031–5040. (doi:10.1128/MCB.21.15.5031-5040.2001)

85. Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. 2007 Mammalian Mafl is a negative regulator of transcription by all three nuclear RNA polymerases. Mol. Cell 26, 367–379. (doi:10.1016/j.molcel.2007.03.021)

86. Rideout EJ, Marshall L, Grewal SS. 2012 Drosophila RNA polymerase III repressor Mafl controls body size and developmental timing by modulating tRNA/met synthesis and systemic insulin signaling. Proc. Natl Acad. Sci. USA 109, 1139–1144. (doi:10.1073/pnas.1113111109)

87. Cai Y, Wei Y-H, Cai Y, Wei Y-H. 2016 Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by maf-1/mafl deletion. Oncotarget 7, 10 812–10 826. (doi:10.18632/oncotarget.7769)

88. Soprano AS, Abe VY, Smetana JHC, Benedetti CE. 2016 Mutation in a transcription elongation factor of RNA polymerase III. Mol. Biol. Cell 27, 51–60. (doi:10.1091/mbc.E15-06-008)

89. Towpik J, Graczyk D, Gajda A, Lefebvre O, Boguta M. 2001 Maf1p, a negative effector of RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNA/met synthesis and systemic insulin signaling. Proc. Natl Acad. Sci. USA 108, 15 655–15 665. (doi:10.1074/jbc.M807538200)

90. Desai N, Lee J, Upadhyay R, Chu Y, Moir RD, Willis IM. 2005 Two steps in Mafl-dependent regulation of transcription by RNA polymerase III. J. Biol. Chem. 280, 6455–6462. (doi:10.1074/jbc.M412375200)

91. Čabart P, Lee J, Willis IM. 2008 Facilitated recycling protects human RNA polymerase III from repression by Mafl in vitro. J. Biol. Chem. 283, 108–117. (doi:10.1074/jbc.M70157200)

92. Lee J, Moir RA, Willis IM. 2015 Differential phosphorylation of RNA polymerase III and the initiation factor TFIIB in Saccharomyces cerevisiae. PLoS ONE 10, e0127225. (doi:10.1371/journal.pone.0127225)

93. Dieci G, Bosio MC, Fermi B, Ferrani R. 2013 Transcription reinitiation by RNA polymerase III. Biochim. Biophys. Acta Rna Gene Regul. Mech. 1829, 331–341. (doi:10.1016/j.bbamrm.2012.10.009)

94. Boguta M, Graczyk D. 2011 RNA polymerase III under control: repression and de-repression. Trends Biochem. Sci. 36, 451–456. (doi:10.1016/j.tibs.2011.06.008)

95. Graczyk D, Debski J, Muszynska G, Bregler M, Lefebvre O, Boguta M. 2011 Casein kinase II-mediated phosphorylation of general repressor Mafl triggers RNA polymerase III activation. Proc. Natl Acad. Sci. USA 108, 4926–4931. (doi:10.1073/pnas.1010010108)

96. Schlesier M et al. 2007 Mafl is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol. Cell. Biol. 27, 7693–7702. (doi:10.1128/MCB.01051-07)

97. Arimbasseri AG, Blewett NH, Iben JR, Lamichhane TN, Cherkasova V, Hafner M, Maria RA. 2015 RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet. 11, e1005671. (doi:10.1371/journal.pgen.1005671)

98. Orioli A, Praz V, Lhôte P, Hernandez N. 2016 Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Genome Res. 26, 624–635. (doi:10.1101/gr.110400.115)

99. Buratowski S. 2009 Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546. (doi:10.1016/j.molcel.2009.10.019)

100. Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Sveistrup JQ. 2007 Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129, 57–68. (doi:10.1016/j.cell.2007.01.046)

101. Domanska A, Kamińska J. 2015 Role of Rps5 ubiquitin ligase in biogenesis of tRNA, mRNa and tRNA in yeast. RNA Biol. 12, 1265–1274. (doi:10.1080/15476286.2015.1094604)

102. Lesmanavicius V, Weinert BT, Choudhary C. 2014 Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol. Cell. Proteomics 13, 799–1992. (doi:10.1074/mcp.0113.035683)