Abstract

Ad hoc networks are formed by intermediate nodes which agree to relay traffic. The link between nodes is broken when a node rejects to relay traffic. Various parameters like depreciation in the energy of a node, distance between nodes and mobility of the nodes play a vital role in determining the node’s rejection to relay traffic. The objective of this paper is to propose a novel model that identifies the cooperative nodes forming stable routes at the route discovery phase. The weight factor of the different parameters decides the varied type of networks where the proposed model can be applied. Hence, an Artificial Neural Network based non-deterministic generic predictive model is proposed to identify the varied types of networks based on the weight factor. This study has been substantiated by simulation using OMNET++ simulator. We are sure that this paper will give a better solution to identify cooperative nodes thereby improving the performance of the network.

References

- Johnson DB, Maltz DA, and Hu YC. "The dynamic source routing protocol for mobile ad hoc networks (DSR)." IETF draft-ietf-manet-dsr-10.txt, 2004, 07, 19.
- Perkins CE, Belding-Royer EM, and Chakreres I. "Ad hoc on demand distance vector (AODV) routing," Internet draft-perkins-manet-aodvbis-00.txt, July 2003. RFC 3561.
- Goff, T., Abu-Aahazaleh, N., Phatak, D., & Kahvecioglu, R. "Pre-emptive routing in ad hoc networks," Proceedings of MOBICOM, 2001.
- Tamilselvan, L., Sankaranarayanan, V., & Prevention of co-operative black hole attack in MANET, Journal of Networking, vol. 3, no. 5, pp. 13–2008.
- Srinivasan V, Nuggehalli P, Chiasserini C. F, Rao R. R., & Energy Efficiency of Ad Hoc Wireless Networks with Selfish Users, Proceedings of EW, 2002.
- R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi, "Signal Stability Based Adaptive Routing (SSA) for Ad-Hoc Mobile Networks," IEEE Personal Communication, vol. 4, no. 1, pp. 36-45, Feb. 1997.
- N. Shrestha and B. Mans, "Exploiting overhearing: Flow-aware routing for improved lifetime in ad hoc networks," in Proc. IEEE Int. Conf. Mobile Ad-hoc Sens. Syst., 2007, pp. 1–5.
- C. K. Toh, "Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks," IEEE Communications Magazine vol. 39, no. 6, 2001, pp. 138–147.
- V. Marbukh and M. Subbarao, "Framework for maximum survivability routing for a MANET," in Proceedings MILCOM, 2000, pp. 282–286.
- M. Maleki, K. Dantu, and M. Pedram, "Lifetime prediction routing in mobile ad hoc networks," in Proc. IEEE WCNC, 2003, pp. 1185–1190.
- A. Misra and S. Banerjee, "MRPC: Maximizing network lifetime for reliable routing in wireless environments," in Proc. IEEE WCNC, 2002, pp. 800–806.
- C. K. Toh, "Associativity-based routing for ad hoc mobile networks," Wireless Personal Communications. —Special Issue on Mobile Networking and Computing Systems, vol. 4, no. 2, pp. 103–139, Mar. 1997.
- Kozma and William, "Reactive Identification of Misbehavior in Ad Hoc Networks based on Random Audits," in Proc. IEEE Communications Society Conference, pp. 612-614, June 2008.
- Punde, J., Pissinon, N., & Makki, K. "On Quality of Service Routing in Ad Hoc Networks," LCN'03: Proceedings of the 28th Annual IEEE International Conference on Local Computer Networks, IEEE Computer Society, Washington, DC, USA, pp. 276-278, 2003.
- Sridhar, K. & Chan, M. C. "Stability and hop-count based approach for route computation in MANET," 14th International Conference on Computer Communications & Networks (ICCCN 2005), pp. 25-31, 2005.
- Beraldi, R., Querzoni, L., & Baldoni, R. "A hint-based probabilistic protocol for unicast communications in MANET," Ad-Hoc Networks 4(5):547-556, 2006.
- Dubois-Ferriere, H., Grossglauser, M., & Vetterli, M. "Age matters: efficient route discovery in mobile ad hoc networks using encounter ages," MobiHOC'03: Proceedings of the 4th ACM International Symposium on Mobile Ad hoc networking & Computing, ACM, New York, NY, USA, pp. 257-266, 2003.
- S. Agarwal, A. Ahuja, J. P. Singh, and R. Shorey, "Route-Lifetime Assessment Based Routing (RABR) Protocol for Mobile Ad-Hoc Networks," Proc. IEEE Int's Conf. Comm. (ICC '00), pp. 1697-1701, June 2000.
A Novel Predictive and Non-Predictive Cooperative Model for Routing in Ad Hoc Networks

- Lin, G. Shin, K. Lee, S. Yoon, H & Ma, J. S, "Link Stability and Route Lifetime in Ad hoc Wireless Networks", ICPPW'02: Proceedings of the 2002 International Conference on Parallel Processing Workshops, IEEE Computer Society, Washington, DC, USA, p. 116, 2002.
- Targn, J.-H., Chuang, B.-W. & Wu, F.-J. "A Novel Stability-Based Routing Protocol for Mobile Ad Hoc Networks", IEEE Transactions on Communications E90-B (4): 876-884, 2007.
- Jasmine Beulah, Sahaaya Arul Mary, "A Cooperative Communication Aware Algorithm to Identify Stable Routes in Mobile Ad hoc Networks", European Journal of Scientific Research, vol. 79, No. 1, pp. 110-118, 2012.
- Sova, O., Romanjuk, V., Minochkin, D. "Routing in Mobile Ad hoc Networks using Fuzzy Neural Networks", International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), pp. 223, February 2010.
- Heni Kaaniche and Farouk Kamoun, "Mobility Prediction in Wireless Ad Hoc Networks using Neural Networks", Journal of Telecommunications, Vol. No. 2, Issue 1, April 2010

Index Terms

Computer Science

Wireless

Keywords

Ad hoc Networks cooperative behaviour relay traffic artificial neural network non-deterministic

OMNET++ simulator.