Gated silicon nanowire for thermo-electric power generation and temperature sensing

Ali Hamid* and Kristel Fobelets**

Department of Electrical & Electronic, Imperial College London, SW7 2AZ London, United Kingdom

E-mail: a.hamid16@imperial.ac.uk and k.fobelets@imperial.ac.uk

Received 11 May 2021, revised 1 September 2021
Accepted for publication 13 September 2021
Published 12 October 2021

Abstract
Gate-all-around Si FETs are predicted to be the future of integrated CMOS circuits (ICs). The reduction in size of the Si channel, surrounded by oxide and a gate causes increased self-heating effects due to a reduction in thermal conductivity of the Si channel. Although, this degrades performance, we demonstrate that this can be exploited for localized thermoelectric power generation and temperature sensing that help reduce energy waste and increase IC lifetime. We show, using Sentaurus TCAD simulations, that unbiased gated intrinsic Si nanowires (NWs) can generate 2.2 times higher output power than doped NWs by choosing the correct metal gate work function. In addition, the voltage on the gate of the NW can be used to sense the temperature at the hot-spot in gate-all-around ICs. Among the studied gated NWs, the double gated structure with 30 nm gate length shows higher sensitivity to the change of temperature.

Keywords: carrier modulation, thermo-electric power generation, temperature sensing, undoped thermo-electric material

(Some figures may appear in colour only in the online journal)

1. Introduction

Aggressive downscaling of the gate length of Si FETs has led to novel devices such as gate-all-around FETs [1–4] and nanosheet (NS) FETs [5–7]. Simultaneously, nano-structuration of Si bulk was shown to improve its thermoelectric characteristics [8–11]. The reduction in thermal conductivity in nanostructured Si leads to increased hot-spot temperatures (as high as 353 K) in nanowire (NW)-based FETs but also increased thermoelectric performance of Si NWs [12–14]. These seemingly conflicting findings can be exploited for heat sensing and thermal management in integrated circuits (ICs) that are based on NW/NS (NW/NS) devices. In thermo-electric materials (TEMs), the Seebeck effect is used for thermo-electric power generation [15] and temperature sensing [16–18]. The Seebeck coefficient, S is defined as $S = \frac{\Delta V}{\Delta T}$ (1) with ΔT the temperature difference and ΔV the voltage due to ΔT. Ideally, low thermal, κ and high electrical, σ conductivity are required to preserve ΔT and high conduction of carriers, respectively [15]. The figure of merit (ZT) evaluates the performance of TEMs by correlating thermal and electrical properties [21]:

$$ZT = \frac{\sigma S^2 T}{\kappa}. \quad (2)$$

As seen in equation (2), high ZT can be achieved when the thermo-electric power factor (σS^2) is high and thermal...
conductivity is low. In bulk TEMs, optimization of ZT is challenging due to the Wiedemann–Franz law [19, 22]. Shrinking TEMs to nanoscale partially de-couples the electrical and thermal properties and resolves this bottleneck. κ reduces significantly due to increasing boundary scattering and phonon confinement [8–10]. Conventionally, optimizing the doping concentration maximizes σS^2 [23]. However, increased doping leads to increased impurity scattering [24]. Significant improvement in σS^2 has been reported via modulation doping [24], applying a gate voltage on gated TEMs [25–29], or generation of a strong internal electric field (E_{int}) as the result of core/shell structures [30–33]. Reproducibility and precision of doping profiles become challenging as NWs are downscaled [34] while applying a gate voltage requires additional circuitry and power. Previously, E_{int} at interfaces of i-Ge (core)/i-Si (shell) [33] and i-GaN (core)/i-AlN (shell)/i-Al GaN (shell) [32] structures have led to accumulation of holes and electrons in the core respectively, where i stands for intrinsic. However, one has to find an approach to accumulate carriers on a dopant-free abundant material with low-cost fabrication processes, like Si [9]. In our previous work [35], the effect of gate length and applying gate voltage on thermo-electric properties of NiSi$_2$/n-Si/NiSi$_2$ core structure with Schottky–Ohmic and Ohmic–Ohmic contacts were studied. In the mentioned paper, carrier density optimisation is mainly achieved by applying a voltage to the Ti gate. In this work, we present an alternative method to optimize σS^2 in Si NWs and evaluate its implementation for both power generation as well as temperature sensing. TCAD simulations [36] are conducted to study the effect of using an appropriate gate metal work function to modulate the carrier concentration across an intrinsic silicon NW. We use Sentaurus TCAD’s ability to simulate circuits around novel semiconductor device structures, together with its electrical and thermal simulation abilities.

2. Simulation models

Accurate modelling of the thermoelectric performance of nano-devices can be done by choosing appropriate models available in Sentaurus TCAD. The hydrodynamic model is used to simulate coupled thermo-electrical transport that allows carrier temperature to diverge from lattice temperature. In addition, we have used PhuMob, Enormal, and HighFieldSat models to simulate effects of lattice temperature, acceptor concentration, donor concentration, electron–hole scattering, acoustic phonon scattering, surface roughness scattering, and high field saturation on the overall mobility. The Boltzmann statistics for carrier density, and a lattice temperature-dependent model for the effective density of states are implemented [36]. The lattice thermal conductivity of Si (κ_{Si}) as a function of Si diameter (d_{Si}) is extracted from [10] and the thermal conductivity of SiO$_2$ is kept constant at $\kappa_{SiO2} = 0.014$ W (cm K)$^{-1}$ [37]. Carrier thermal conductivities are computed within the hydrodynamic model.

The hydrodynamic model was developed for studying electrical and thermal properties of sub-micron devices [36]. The equations were evaluated against experimental results [36, 38–41]. Their validity for thermo-electric simulations has been investigated in different contexts. For instance, Myeong et al [42] used the hydrodynamic model in Sentaurus TCAD to analyse self-heating effects in vertical FinFETs with a rectangular cross section of 6 nm \times 46 nm. Comparison between simulations and measurements in [42] shows that the ‘Hydrodynamic model well describes the thermal characteristics in the current equation’. In addition, Weber et al [34] also demonstrate a good fit between simulation and experimental result of a NW with 20 nm Si thickness. Their simulation results show radial dependence of the mobility of a Si NW with 12 nm cross section. Weber et al [34] states ‘this confirms that mobility is highest in the centre of the NW’. In our study, we have used hydrodynamic model and different temperature dependent material modules to study thermoelectric properties of NWs with comparable dimensions as in these references. Therefore, we assume that the validity of the models used in this work can be seen in to [34, 42, 43].

3. Thermo-electric power generation

Carrier modulation and its effect on the generated power are studied by tuning the work function of the metal gate (ϕ_m) wrapped around an undoped Si NW with circular cross section. This approach is similar to threshold voltage tuning in MOSFETs as the energy bands bend due to the work function difference between the metal gate and the Si, leading to accumulation/depletion of charges. The cross section of the structure and metal/SiO$_2$/Si band diagram is shown in figure 1. The Si NW length and the thickness of the SiO$_2$ wrapping (d_{SiO2}) are 220 nm and 8 nm, respectively, and are kept constant. The diameter of the Si NW (d_{Si}) varies in this investigation. The contacts are Al with work function $\phi_{Al} = 4.1$ eV, within the range of 4.06 eV–4.28 eV reported in [43]. The work function of the metal gate is varied between 3.7 eV $\leq \phi_m \leq 4.2$ eV. All metal layers are defined as surfaces without thickness. The temperature gradient (ΔT) is imposed by having a hot source T_h and cold sink $T_c = 300$ K as shown in figure 1.

Figure 2 shows the influence of ϕ_m on the carrier density and mobility. Figures 2(a) and (b) illustrate the non-homogeneous variation of these parameters in the cross section of the NW. This is different to homogenous doping and will lead to non-homogeneous power generation across the cross section of the NW. Therefore, equation (2) is no longer a representative quality factor for these structures.

Figures 2(c) and (d) give the variation of the carrier density and mobility as a function of ϕ_m as well as d_{Si}. As expected, increasing ϕ_m decreases the electron concentration at the interface and increases the mobility, while higher carrier concentration (lower mobility) is achieved for smaller d_{Si}. The mobility degradation is a consequence of the internal electric field perpendicular to the SiO$_2$ interface.
The non-homogeneous electron concentration (n_e) in the cross-sectional area of the NW (figure 2(c)) leads to a non-homogenous Seebeck coefficient (S) across the NW. S is highest at the core (C), and reaches a minimum at the interface, showing the expected inverse proportionality between n_e and S. This relation is also seen in the variation of the average value of $<n_e>$ and $<S>$ as a function of NW diameter and metal gate work function (see figure 3(a)). For smaller diameters the modulation effect increases $<n_e>$ and thus decreases $<S>$. This leads to a maximum in power factor (see figure 3(b)), especially apparent for the narrow NW. The voltage difference (ΔV) and generated current (I_g) obtained for a temperature difference of $\Delta T = 15$ K shows a relationship consistent with the variation of $<S>$ and $<n_e>$ with NW diameter (see figure 3(c)).

The maximum output power, P_{max}, is simulated by varying the load resistance to determine the point where $R = R_L$. This point will be different for each GAA NW implementation as the variation of ϕ_m modulates both the carrier concentration as well as the mobility non-linearly. Simulations of power density as a function of ϕ_m are done for $T_H - T_C = \Delta T = 15$ K. Figure 4 shows the results for three values of d_{Si}: 12, 37 and 62 nm. To illustrate the impact of scattering processes, simulations are done with and without the mobility scattering model and are also compared to the performance of the doped NW with different doping levels. In figure 4(a) we investigate the influence of ϕ_m for $d_{Si} = 12$ nm and $d_{ox} = 8$ nm. This confirms an optimum is achieved at $\phi_m \approx 4.1$ eV. Comparison with the simulations without scattering degradation shows that the scattering processes decrease P_{max} by 32%.

Power density for higher d_{Si} is achieved for lower ϕ_m, as the optimal carrier concentration is achieved for lower ϕ_m as shown in figure 3(b). Figure 4(b) shows that mobility degradation in doped NWs causes a decrease of power density by 74%, compared to gated NWs. The interface mobility of the gated structure with $\phi_m = 4.1$ eV ($n_e = 1.03 \times 10^{18}$ cm$^{-3}$ at the interface) is 2.44 times larger than the doped NW with similar concentration. Consequently, power density for gated NWs ($d_{Si} = 12$ nm) is 2.20 times larger than the doped structure ($d_{Si} = 12$ nm). Within the range of simulated NW diameters, we find that higher diameters lead to higher P_{max} where of constant and steady temperature difference is present. However, at the instance (time = 0 s) that the heat source is lost, higher thermal conductivity of larger diameters, reduces the time that ΔT is preserved. Figure 5 shows the response of power and ΔT to complete heat source loss at time = 0 s, while T_C is set to a fixed temperature ($=300$ K) in the simulation. Time taken for the gated thermo-electric power generator with $d_{Si} = 12$ nm to lose 14 K of temperature difference is 76% and 88% more than $d_{Si} = 37$ nm and 62 nm, respectively (figure 5(b)). Figure 5(a) shows longer energy harvesting time for NWs with lower diameter.

Figure 1. (a) Front view, and (b) cross section of a gate all around (GAA) thermoelectric power generator. (c) Schematic energy band diagram along the dashed line in (b) for $\phi_{Si} > \phi_m$ giving accumulation of electrons.

Figure 2. (a) Electron density (n_e) and (b) electron mobility (μ_e) of an intrinsic GAA NW with $d_{Si} = 12$ nm and $d_{ox} = 8$ nm. Both for the cross section midway between the contacts. (c) Electron density, and (d) electron mobility as a function of metal work function (ϕ_m) and NW diameter, d_{Si}, with $d_{ox} = 8$ nm. All at $\Delta T = 0$ K. Labelling: int refers to the interface and C to the middle of the NW.
Comparing the performance of a GAA to a \(\Omega\)-gated NW \[44\] for \(\phi_m = 4.1\) eV, \(d_{ox} = 8\) nm and \(\Delta T = 15\) K gives an output power for the \(\Omega\)-gated NW 0.09%, 3.47% and 4.30% smaller than that of the GAA NW with \(d_{Si} = 12\) nm, 37 nm, and 62 nm respectively. This is because the bottom part of the semi-covered channel in \(\Omega\)-gated NW is away from the metal gate.

The effect of interface trapped charge \((Q_i)\) and fixed charge \((Q_f)\) has been extensively studied in \[45–47\]. Amongst these two charges, \(Q_i\) has a considerable effect on carrier concentration across the NW. A typical density range is \(10^{10} < D_{it} < 10^{12} \text{ cm}^{-2} \text{ eV}^{-1}\) \[45\]. Simulations (figure 6) show a sharp decrease in \(P_{\text{max}}\) for \(D_{it} \geq 2 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}\). However, if a work function of \(\phi_m = 3.9\) eV is used rather than 4.1 eV, then the maximum output recovers at the value of \(D_{it} \approx 8 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}\).
at this voltage results in equal output power to the case when
the optimized carrier concentration. The carrier concentration
is most sensitive to the meter of the most sensitive to
meter of D_{ox} applying a gate voltage (ΔV_{G} is 4.1 eV and 3.9 eV work functions, respectively. ΔV_{G} is set to $\phi_m = 4.1$ eV and $D_{\text{it}} = 0$ cm$^{-2}$eV$^{-1}$ for all simulations in this section. The gap between the gates is 10 nm. $V_{\text{PG}} = 0$ V at all times, while V_{CG} is varied. $T_h = \text{variable}$ and $T_c = 300$ K, setting up a variable temperature difference ΔT. The simulations are set up in the same way as in section 2. The variation of the conduction band as a function of control gate lengths (L_{CG}) is shown in figure 7(b) for different values of V_{CG}. A potential barrier (ϕ_B) is generated between the two Al contacts by the work function difference between the Si NW and the gate metal. Applying a V_{CG} in DG (or SG) GAA NWs, tunes the height of ϕ_B and thus controls the current that can flow through the channel. Since the DG structure is conducting electrons at $V_{\text{CG}} = 0$ V, a negative V_{CG} will decrease the electron flow as it increases the potential barrier. When T_h is increasing, the density of carriers at energy levels higher than ϕ_B increases, increasing the current, I_g. Temperature, T_h sensing can be done in either two steps for higher accuracy, or a single step. T_h can be sensed by, (a) using the linear relation between I_g and T_h at $V_{\text{CG}} = 0$ V for DG (SG) (figure 8(a)), and (or) (b) by adapting V_{CG} to keep I_g constant and equal to I_{gref} under changing T_h, where I_{gref} is the constant reference current. The value of V_{CG} to maintain I_{gref} is then the reading of T_h, I_{gref} is the generated current for the case in which $T_h = 301$ K and $T_c = 300$ K at zero gate bias ($V_{\text{CG}} = 0$ V).

Figure 8(a) shows a linear variation of the current, I_g as a function of T_h for SG NWs with different d_{Si} at $V_{\text{CG}} = 0$ V. Since the gap between the gates of the DG is small (< 10 nm), I_g as a function of ΔT for DG is similar to SG. The formula of I_g as a function of ΔT (equation (3)) can be derived based on equations of current in [22, 48–50].

For completeness, we also study the influence of applying a gate voltage (V_{CG}) to optimise P_{max} when $D_{\text{it}} = 10^{12}$ cm$^{-2}$ eV$^{-1}$ and $\phi_m = 4.1$ eV. A channel diameter of $d_{\text{Si}} = 12$ nm is chosen for this investigation as it is the most sensitive to V_{CG}. A $V_{\text{CG}} = 0.25$ V is required to reach the optimized carrier concentration. The carrier concentration at this voltage results in equal output power to the case when $\phi_m = 4.1$ eV and $D_{\text{it}} = 0$ cm$^{-2}$eV$^{-1}$ (ideal).

Figure 5. (a) Power-time, and (b) ΔT-time. φ_m is 4.1 eV, 3.9 eV, and 3.9 eV for $d_{\text{Si}} = 12$ nm, 37 nm, and 62 nm, respectively.

Figure 6. Maximum output power as a function of interface charge density for GAA with $d_{\text{ox}} = 8$ nm, $d_{\text{Si}} = 12$ nm, and two metal work function values at $\Delta T = 15$ K. The grey and black lines are for 4.1 eV and 3.9 eV work functions, respectively.

Figure 7. (a) Schematic of a DG temperature sensor with control gate (CG) and program gate (PG). (b) The conduction band E_c along the length of the SG and DG GAA NW for $-0.4 \leq V_{\text{CG}} < 0$ V and CG lengths of 30 or 50 nm. $d_{\text{Si}} = 12$ nm and the NW length is 220 nm.

4. Gated structure for temperature sensing

Single gated (SG) (figure 1) and double gated (DG) (figure 7(a)) GAA NWs can also be used as hot spot temperature sensor. The core of the DG structures is an Al/i-Si/Al NW wrapped with 8 nm of SiO$_2$. In the DG configuration one gate controls the carrier density (CG) and the other programs (PG) the carrier type in the NW. The work function of the gates is set to $\phi_m = 4.1$ eV and $D_{\text{it}} = 0$ cm$^{-2}$eV$^{-1}$ for all simulations in this section. The gap between the gates is 10 nm. $V_{\text{PG}} = 0$ V at all times, while V_{CG} is varied. $T_h = \text{variable}$ and $T_c = 300$ K, setting up a variable temperature difference ΔT. The simulations are set up in the same way as in section 2. The variation of the conduction band as a function of control gate lengths (L_{CG}) is shown in figure 7(b) for different values of V_{CG}. A potential barrier (ϕ_B) is generated between the two Al contacts by the work function difference between the Si NW and the gate metal. Applying a V_{CG} in DG (or SG) GAA NWs, tunes the height of ϕ_B and thus controls the current that can flow through the channel. Since the DG structure is conducting electrons at $V_{\text{CG}} = 0$ V, a negative V_{CG} will decrease the electron flow as it increases the potential barrier. When T_h is increasing, the density of carriers at energy levels higher than ϕ_B increases, increasing the current, I_g. Temperature, T_h sensing can be done in either two steps for higher accuracy, or a single step. T_h can be sensed by, (a) using the linear relation between I_g and T_h at $V_{\text{CG}} = 0$ V for DG (SG) (figure 8(a)), and (or) (b) by adapting V_{CG} to keep I_g constant and equal to I_{gref} under changing T_h, where I_{gref} is the constant reference current. The value of V_{CG} to maintain I_{gref} is then the reading of T_h, I_{gref} is the generated current for the case in which $T_h = 301$ K and $T_c = 300$ K at zero gate bias ($V_{\text{CG}} = 0$ V).
where q is charge, n is carrier density, μ is mobility, x is cross sectional area of the channel, and L (=220 nm) is length of the NW. As seen in equation (3), n, μ, and area change the response of I_g to T_h. d_{Si} has significant impact on I_g, as it will affect n and μ (figure 2) as well. n reduces and μ increases as d_{Si} increases.

The sensitivity ($\Delta I_{IK} = \frac{\Delta I_g}{\Delta T}$ with $\Delta T = 1$ K) of I_g to T_h depends on d_{Si}; $\Delta I_{IK} = 0.63$ nA K$^{-1}$, 3.40 nA K$^{-1}$, 7.22 nA K$^{-1}$ for $d_{Si} = 12$ nm, 37 nm, and 62 nm, respectively. Figure 8(b) gives the variation of I_g as a function of V_{CG} at $\Delta T = 1$ K for the SG structure and the DG structure with two different L_{CG}.

The CG length (L_{CG}) has a strong influence on charge carrier flow since it controls the depletion width and ϕ_B at $V_{CG} < 0$ V (see figure 7(b)). The effect of L_{CG} (30 nm and 50 nm) on temperature sensing is studied for $d_{Si} = 12$ nm, 37 nm, and 62 nm and compared to the SG structure with gate length equal to the NW length. The variation of I_g as a function of V_{CG} is exponential over a wide gate voltage range, similar to a FET in weak inversion. As in FETs, this characteristic can be expressed in terms of subthreshold swing [51]:

$$SS = \left(\frac{d\log(I_g)}{dV_{CG}} \right)^{-1}.$$

SS is given in table 1. While in signal FETs, SS needs to be near 60 mV dec$^{-1}$ [52], SS for temperature sensing should be high. This is confirmed in figure 9 that gives the value of V_{CG} for constant $I_g = I_{gref}$ for changing T_h. The slope of V_{CG} versus T_h is highest for the longest SS. I_{gref} is different for different d_{Si}, namely 0.65 nA, 3.51 nA, and 7.51 nA for $d_{Si} = 12$ nm, 37 nm, and 62 nm, respectively.

In the two-step temperature sensing implementation, first I_g in (i) can be used to find the required V_{CG} in (ii) to maintain $I_g = I_{gref}$. In this approach, the device is pre-calibrated to apply a specific V_{CG}, based on generated I_g as a function of T_h in case (i). After applying the required V_{CG}, achieving $I_g = I_{gref}$ in

$$V_{CG} = \frac{ab + cP_1}{b + P_1^2}$$

where a, b, and c are constants that are dependent on gate length and d_{Si}. These parameters for the simulated structures are shown in table 2.

Figure 8. (a) The generated current (I_g) as a function of hot side temperature (T_h) in the SG NW for $d_{Si} = 12$ nm, 37 nm, and 62 nm. (b) The variation of the sensor current as a function of the control voltage (V_{CG}) for the SG and DG NWs at a $\Delta T = 1$ K and $d_{Si} = 12$ nm.

Table 1. Subthreshold swing ($SS_{x,y}$) as a function of ΔT and d_{Si}. $x =$ SG, DG for single, double gate, respectively; $y =$ 30, 50 for the control gate length L_{CG} in nm.

d_{Si} (nm)	ΔT (K)	SS_{SG} (mV dec$^{-1}$)	$SS_{DG,50}$ (mV dec$^{-1}$)	$SS_{DG,30}$ (mV dec$^{-1}$)
12	1	62	65	74
12	5	63	66	75
12	10	63	67	76
37	1	63	84	124
37	5	63	84	124
62	1	64	115	199

Table 2. Specific parameters for the simulated structures.

d_{Si} (nm)	a	b	c
12	0.65	3.51	7.51
30	0.65	3.51	7.51
50	0.65	3.51	7.51
5. Conclusion

In order to optimize the thermoelectric performance of GAA NWs, the metal gate work function (ϕ_m) was used to modulate the carrier density of the intrinsic Si NWs for maximum output power. NWs with different diameters, d_{Si}: 12 nm, 37 nm, and 62 nm were studied, and it was found that the NW with $d_{Si} = 62$ nm generated the best output at a presence of constant and steady temperature difference (ΔT). However, NWs with lower diameter show higher reliability in preserving ΔT when the heat source’s temperature varies, due to their lower thermal conductivity. It was shown that significant power degradation occurs due to interface roughness scattering and interface trapped charges. Using metals with lower ϕ_m can compensate for this. In addition, single and DG structures, can be used for temperature sensors by modulating the carrier concentration with a gate voltage. SG and DG structures show that the temperature sensor can operate in two different modes to insure the correctness of the detected temperature. It was shown that gated structures with higher diameters or smaller control gate length require higher operational voltage, if a two-step temperature sensing is implemented. The DG NW with $d_{Si} = 62$ nm and control gate length of 30 nm show higher sensitivity to temperature changes.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This project is funded by international consortium of nanotechnology (ICON) based at University of Southampton and funded by Lloyds Register Foundation.

ORCID iDs

Ali Hamid https://orcid.org/0000-0002-5771-6523
Kristel Fobelets https://orcid.org/0000-0001-5607-8243

References

[1] Sacchetto D, Ben-Jamaa M H, DeMicheli G and Leblebici Y 2009 Fabrication and characterization of vertically stacked gate-all-around Si nanowire FET arrays 2009 Proc. European Solid State Device Research Conf. (IEEE) pp 245–8
[2] Zhou X et al 2016 Scalability of InGaAs gate-all-around FET integrated on 300mm Si platform: demonstration of channel width down to 7nm and I沟 down to 36nm 2016 IEEE Symp. on VLSI Technology (IEEE) pp 1–2
[3] Wang T, Lou L and Lee C 2013 A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications IEEE Electron Device Lett. 34 478–80
[4] De Marchi M, Sacchetto D, Zhang J, Frache S, Gaillardon P-E, Leblebici Y and De Micheli G 2014 Top–down fabrication of gate-all-around vertically stacked silicon nanowire FETs with controllable polarity IEEE Trans. Nanotechnol. 13 1029–38
[5] Yakimets D et al 2017 Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology 2017
Semicond. Sci. Technol. 36 (2021) 115012

IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 20–24

[6] Jang D, Yakimets D, Eneman G, Schuddinck P, Bardon M G, Raghavan P, Spessot A, Verkest D and Mocuta A 2017 Device exploration of nanosheet transistors for sub-7-nm technology node IEEE Trans. Electron Devices 64 2707–13

[7] Yoon J-S, Jeong J, Lee S and Baek R-H 2018 Multi-via strategies of 7-nm node nanosheet FETs with limited nanosheet spacing IEEE J. Electron Devices Soc. 6 861–5

[8] Kikuchi A, Yao A, Mori I, Ono T and Samukawa S 2017 Extremely low thermal conductivity of high density and ordered 10 nm-diameter silicon nanowires array Appl. Phys. Lett. 110 091908

[9] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Enhanced thermoelectric performance of rough silicon nanowires Nature 451 163–7

[10] Shi L 2012 Thermal and thermoelectric transport in nanostructures and low-dimensional systems Nanoscale Microscale Thermophys. Eng. 16 79–116

[11] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J-P and Gogna P 2007 New directions for low-dimensional thermoelectric materials Adv. Mater. 19 1043–53

[12] Li Y, Buddharaju K, Tinh B C, Singh N and Lee S J 2012 Improved vertical silicon nanowire based thermoelectric power generator with polypimide filling IEEE Electron Device Lett. 33 715–7

[13] Snyder G J, Soto M, Alley R, Koester D and Conner B 2006 Hot spot cooling using embedded thermoelectric coolers Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symp. (IEEE) pp 135–43

[14] Wang P, Bar-Cohen A, Yang B, Sobolrenko G L and Shakouri A 2006 Analytical modeling of silicon thermoelectric microcrocspot J. Appl. Phys. 100 014501

[15] Ehsheikh M H, Shnawah D A, Sabri M F M, Said S B M, Hassan M H, Bashir M B A and Mohamad M 2014 A review on thermoelectric renewable energy: principle parameters that affect their performance Renew. Sustain. Energy Rev. 30 337–55

[16] Bakker F, Flipse J and Van Wees B 2012 Nanoscale temperature sensing using the Seebeck effect J. Appl. Phys. 111 084306

[17] Rebenklau L, Gierth P, Paproth A, Irgang K, Lippmann L, Wodtke A, Niedermeyer L, Augsburg K and Bechtold F 2015 Temperature sensors based on thermoelectric effect 2015 European Microelectronics Packaging Conf. (EMPC) (IEEE) pp 1–5

[18] Xin Y, Zhou J and Lubineau G 2019 A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits J. Mater. Chem. A 7 24493–501

[19] Goldsmid J 2017 The Physics of Thermoelectric Energy Conversion (San Rafael, CA: Morgan & Claypool Publishers)

[20] Enescu D 2019 Thermoelectric energy harvesting: basic principles and applications Green Energy Advances (London: IntechOpen) pp 1–38

[21] He R, Schierning G and Nielsch K 2018 Thermoelectric devices: a review of devices, architectures, and contact optimization Adv. Mater. Technol. 3 1700256

[22] Zhao D and Tan G 2014 A review of thermoelectric cooling: materials, modeling and applications Appl. Therm. Eng. 66 15–24

[23] Bennett N S 2017 Thermoelectric performance in n-type bulk silicon: the influence of dopant concentration and dopant species Phys. Status Solidi a 214 1700307

[24] Neophytou N and Thersbeg M 2016 Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor J. Comput. Electron. 15 16–26

[25] Curtin B M, Codedico E A, Kramer S and Bowers J E 2013 Field-effect modulation of thermoelectric properties in multi-gated silicon nanowires Nano Lett. 13 5503–8

[26] Bejenari I, Kantsv E and Balandin A A 2010 Thermoelectric properties of electrically gated bismuth telluride nanowires Phys. Rev. B 81 075316

[27] Tian Y, Sakr M R, Kinder M J, Liang D, MacDonald M J, Qui R L, Gao H-J and Gao X P 2012 One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires Nano Lett. 12 6492–7

[28] Liang W, Hochbaum A I, Fardy M, Rabin O, Zhang M and Yang P 2009 Field-effect modulation of Seebeck coefficient in single PbSe nanowires Nano Lett. 9 1689–93

[29] Moon J, Kim J-H, Chen Z C, Xiang J and Chen R 2013 Gate-modulated thermoelectric power factor of hole gas in Ge–Si core–shell nanowires Nano Lett. 13 1196–202

[30] Dayeh S, Gin A and Picraux S 2011 Advanced core/multi shell germanium/silicon nanowire heterostructures: morphology and transport Appl. Phys. Lett. 98 163112

[31] Lauthon L J, Gudiksen M S, Wang D and Lieber C M 2002 Epitaxial core–shell and core–multi shell nanowire heterostructures Nature 420 57–61

[32] Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom D A and Lieber C M 2006 Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors Nano Lett. 6 1468–73

[33] Li L, Smith D, Madras P, Dailey E, Drucker J and McCartney M 2010 Hole accumulation in Ge/Si core/shell nanowires studied by electron holography Microsc. Microanal. 16 566–7

[34] Weber W, Heinzig A, Trommer J, Martin D, Grube M and Mikolajick T 2014 Reconfigurable nanowire electronics—a review Solid State Electron. 102 12–24

[35] Hamid A, Foebelets K and Velázquez-p’erez J E 2017 Thermoelectric power generators using gated silicon nanowires 2017 European Modelling Symp. (EMS) (IEEE) pp 168–73

[36] Sentaurus T 2012 Sdevice user guide, ver. G-2012.06 Synopsys

[37] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New York: Wiley)

[38] Klaassen D 1992 A unified mobility model for device simulation? i. model equations and concentration dependence Solid State Electron. 35 953–9

[39] Lombardi C, Manzini S, Saporito A and Vanzi M 1988 A physically based mobility model for numerical simulation of nonplanar devices IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 7 1164–71

[40] Reggiani S, Valdinioc M, Colalongo L and Baccarani G A unified analytical model for bulk and surface mobility in Si n-and p-channel MOSFET’s 29th European Solid-state Device Research Conf. vol 1 (IEEE) (September 1999) pp 240–3

[41] Green M A 1990 Intrinsic concentration, effective densities of states, and effective mass in silicon J. Appl. Phys. 67 2944–54

[42] Myeong I, Jeon J, Kang M and Shin H 2019 Analysis of self heating effect in vertical-channel field effect transistor 2019 20th Int. Conf. on Thermal, Mechanical, and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (Eurosim) (IEEE) pp 1–5

[43] Michaelson H B 1977 The work function of the elements and its periodicity J. Appl. Phys. 48 4729–33
[44] Barraud S et al 2012 Performance of omega-shaped-gate silicon nanowire MOSFET with diameter down to 8 nm *IEEE Electron Device Lett.* **33** 1526–8

[45] Schmidt V, Senz S and Goñele U 2007 Influence of the Si/SiO$_2$ interface on the charge carrier density of Si nanowires *Appl. Phys. A* **86** 187–91

[46] Mertens H et al 2015 Si-cap-free SiGe p-channel FinFETs and gate-all-around transistors in a replacement metal gate process: interface trap density reduction and performance improvement by high-pressure deuterium anneal 2015 *Symp. on VLSI Technology (VLSI Technology)* (IEEE) pp T142–43

[47] Najam F, Yu Y S, Cho K H, Yeo K H, Kim D-W, Hwang J S, Kim S and Hwang S W 2013 Interface trap density of gate-all-around silicon nanowire field-effect transistors with TiN gate: extraction and compact model *IEEE Trans. Electron Devices* **60** 2457–63

[48] Mahan G 1997 Good thermoelectrics *Solid State Physics* vol 51 (New York: Academic Press) pp 81–157

[49] Wang X-D, Huang Y-X, Cheng C-H, Lin D T-W and Kang C-H 2012 A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field *Energy* **47** 488–97

[50] P´erez-aparicio J L, Palma R and Taylor R 2012 Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers *Int. J. Heat Mass Transfer* **55** 1363–74

[51] Amiri I S, Mohammadi H and Hosseinghadiry M 2019 *Device Physics, Modeling, Technology, and Analysis for Silicon MESFET* (Cham, Switzerland: Springer International Publishing)

[52] Maiti C K 2017 *Introducing Technology Computer-Aided Design (TCAD): Fundamentals, Simulations, and Applications* (Singapore: Pan Stanford Publishing)