Medical and non-medical interventions for post-operative urinary retention prevention: network meta-analysis and risk benefit analysis

Supplement tables and figures

Supplement 1: Systematic review with Direct meta-analysis

Supplement Table 1. Search term and strategies

Supplement Table 2. Characteristics, intervention detail, definition

Supplement Figure 1. Risk of bias assessment using Revised Cochrane risk-of-bias tool for randomized trials (RoB 2)

Supplement Figure 2. Forest plot of risk ratio in lowering POUR between 2 interventions

Supplement Figure 3. Forrest plot of risk ratio in lowering POUR ALP vs PLA with subgroup analysis

Supplement Figure 4. Forest plot of risk ratio in lowering UTI between 2 interventions

Supplement Figure 5. Forest plot of mean difference in lowering PVRU between 2 interventions

Supplement Figure 6. Forest plot of mean difference in lowering LUTS between 2 interventions

Supplement Figure 7. Forest plot of risk ratio in having AE between 2 interventions

Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes

Supplement 2: Network meta-analysis

Supplement Figure 9. Rankogram showing the effect of each intervention in preventing POUR

Supplement Figure 10. Contour-enhanced funnel plots of studies included in NMA for POUR outcome

Supplement Table 3. Treatment effects of direct and indirect comparison between 2 interventions for UTI, PVRU, LUTS outcomes

Supplement Figure 11 Rankogram showing the effect of each intervention in preventing UTI

Supplement Figure 12. Contour-enhanced funnel plots of studies included in NMA for POUR outcome

Supplement Figure 13. Rankogram showing the effect of each intervention in reducing PVRU

Supplement Figure 14. Contour-enhanced funnel plots of studies included in NMA for PVRU outcome
Supplement Figure 15. Rankogram showing the effect of each intervention in reducing LUTS

Supplement Figure 16. Contour-enhanced funnel plots of studies included in NMA for LUTS outcome

Supplement Figure 17. Rankogram showing the effect of each intervention in AE occurrence

Supplement Figure 18. Contour-enhanced funnel plots of studies included in NMA for AE outcome

Supplement 3: Risk benefit analysis

Supplement Figure 19. Risk-benefit plane between 2 interventions in POUR prevention

Supplement Table 4. Estimations of pooled ΔR and ΔB for AMB, ACU, CHO, OPI, ALP and NSD versus PLA using NMA with consistency model

Supplement Table 5. Estimation of percent chance that IRBR of each comparisons were less than risk-benefit acceptability thresholds ranging from 0 to 1.0

Supplement Figure 20. Acceptability curve plotting between the probability of benefit in Y axis and the clinical threshold in X-axis

Supplement Figure 21. NCB acceptability curve
Appendix 1: Systematic review with Direct meta-analysis

Supplement Table 1. Search terms and results in PubMed, SCOPUS, Thai-Journal Citation Index Centre, ClinicalTrial.gov and Cochrane Central Register of Controlled Trials

PubMed

Search term	Number
Population Domain	
#1 operation	3,168,376
#2 surgery	4,513,862
#3 surgical	3,548,614
#4 #1 OR #2 OR #3	4,853,158
Interventions domain	
I1 sub-domain: Ambulation	
#5 ambulation	100,215
#6 mobility	203,990
#7 "mobilization"	52,456
#8 #5 OR #6 OR #7	343,085
I2 sub-domain: Fluid adjustment	
#8 "fluid adjusting"	1,500
#9 "fluid restriction"	1,334
#10 "fluid adjustment"	8
#11 #8 OR #9 OR #10	2,832
I3 sub-domain: Neuromodulation	
#12 neuromodulation	9,496
#13 transcutaneous electric nerve stimulation[MeSH Terms]	8,014
#14 “Nerve Stimulation”	91,442
#15 “Bladder stimulation”	110
#16 #12 OR #13 OR #14 OR #15	27,557
I4 sub-domain: Acupuncture	
#17 Electroacupuncture	5,015
#18 acupuncture	30,293
#19 #17 OR #18	30,584
I5 sub-domain: Cholinergic drug

#	Term	Count
#20	cholinergic agents [MeSH Terms]	48,384
#21	"cholinergic agents"	217,889
#22	"cholinergic drug"	199
#23	pilocarpine	9,103
#24	urecholine	2,386
#25	neostigmine	6,073
#26	physostigmine	7,274
#27	distigmine	90
#28	carbachol	18,810
#29	#20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28	241,658

I6 sub-domain: Benzodiazepine

#	Term	Count
#30	benzodiazepine	77,983
#31	alprazolam	2,606
#32	clobazam	945
#33	clonazepam	4,406
#34	clorazepate	469
#35	chlordiazepoxide	4,765
#36	diazepam	25,566
#37	estazolam	229
#38	lorazepam	4,528
#39	oxazepam	1,918
#40	temazepam	1,089
#41	triazolam	1,741
#42	#30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41	86,085

I7 sub-domain: Antispasmodic agents

#	Term	Count
#43	Antispasmodic	48,242
#44	Anti-spasmodic	110
#45	Drotaverine	174
---	---	---
#46	buscopan	716
#47	Hyoscyamine	505
#48	#43 OR #44 OR #45 OR #46 OR #47	48,686
I8 sub-domain : opioid antagonist		
#49	"narcotic antagonists"	36,882
#50	"Methylnaltrexone bromide"	28
#51	naloxone	32,443
#52	naltrexone	9,680
#53	#49 OR #50 OR #52 OR #52	45,193
I9 sub-domain : alpha adrenergic antagonist		
#54	“alpha adrenergic blocking”	507
#55	"alpha adrenergic antagonist"	614
#56	"alpha adrenergic blockade"	673
#57	adrenergic alpha-antagonists [MeSH Terms]	16,432
#58	Phenoxybenzamine	6,545
#59	Dibenzyline	6,586
#60	Prazosin	13,559
#61	Alfuzosin	571
#62	Tamsulosin	1,829
#63	Silodosin	389
#64	#54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR #63	32,369
I10 sub-domain : NSAID		
#65	NSAID	228,920
#66	"anti-inflammatory agents, non-steroidal" [MeSH Terms]	80,078
#67	aspirin	64,673
#68	diclofenac	12,451
#69	indomethacin	44,010
#70	ibuprofen	14,084
#71	naproxen	6,617
#72	piroxicam	3,878
---	---	---
#73	mefenamic acid	1,638
#74	celecoxib	6,530
#75	etoricoxib	715
#76	ketorolac	2,992
#77	#65 OR #66 OR #67 OR #68 OR #69 OR #70 #71 OR #72 OR #73 OR #74 OR #75 OR #76	186,068

All intervention

| #78 | #8 OR #11 OR #16 OR #19 OR #29 OR #42 OR #48 OR #53 OR #64 OR #77 | 967,668 |

Outcome domain

O1 sub-domain : Urinary retention

#79	urinary retention [MeSH Terms]	4,362
#80	"voiding dysfunction"	2,249
#81	"fail spontaneous void"	4
#82	OR #79 OR #80 OR #81	6,443

O2 sub-domain : UTI

#83	urinary tract infection [MeSH Terms]	44,996
#84	“urinary tract infection”	22,385
#85	#83 OR #84	55,542

O3 sub-domain : LUTS

| #86 | luts [MeSH Terms] | 38317 |

O4 sub-domain Adverse events

#87	"Adverse events"	128931
#88	"side effect"	33503
#89	"adverse drug reaction"	11012
#90	Drug-Related Side Effects and Adverse Reactions [MeSH Terms]	110415
#91	#87 OR #88 OR #89 OR #90	271736

All Outcome

| #92 | #82 OR #85 OR #86 OR #91 | 967,668 |

Results
SCOPUS

Search Term	Number	
TITLE-ABS-KEY (surgery)	2,154,894	
TITLE-ABS-KEY surgical)	1,683,856	
TITLE-ABS-KEY ("surgical procedure")	364,192	
TITLE-ABS-KEY (Operation)	2,141,790	
TITLE-ABS-KEY (operative)	415,489	
#1 OR #2 OR #3 OR #4 OR #5	3,041,059	
TITLE-ABS-KEY ("early ambulation")	3,541	
TITLE-ABS-KEY (walking)	155,091	
TITLE-ABS-KEY (mobilization)	118,433	
TITLE-ABS-KEY (mobility)	528,781	
#7 OR #8 OR #9 OR #10	781,081	
TITLE-ABS-KEY ("fluid adjustment")	24	
TITLE-ABS-KEY ("fluid restriction")	1,749	
#12 OR #13	1,772	
TITLE-ABS-KEY (neuromodulation)	39,907	
TITLE-ABS-KEY ("Transcutaneous Electric Nerve Stimulation")	4,161	
TITLE-ABS-KEY ("Nerve Stimulation")	57,040	
TITLE-ABS-KEY ("bladder Stimulation")	144	
#15 OR #16 OR #17 OR #18	180,445	
TITLE-ABS-KEY ("acupuncture")	47,005	
Title	Description	Count
-------	-------------	-------
I5 cholinergic agent		
#21	TITLE-ABS-KEY (pilocarpine)	16,169
#22	TITLE-ABS-KEY (bethanechol)	4,701
#23	TITLE-ABS-KEY (urecholine)	510
#24	TITLE-ABS-KEY (distigmine)	358
#25	TITLE-ABS-KEY (neostigmine)	14,118
#26	TITLE-ABS-KEY (physostigmine)	13,589
#27	TITLE-ABS-KEY (carbachol)	25,900
#28	#21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27	68,528
I6 Benzodiazepine		
#29	TITLE-ABS-KEY (alprazolam)	12,383
#30	TITLE-ABS-KEY (clobazam)	6,375
#31	TITLE-ABS-KEY (clonazepam)	24,329
#32	TITLE-ABS-KEY (clorazepate)	3,991
#33	TITLE-ABS-KEY (chlordiazepoxide)	12,826
#34	TITLE-ABS-KEY (diazepam)	75,862
#35	TITLE-ABS-KEY (estazolam)	1,304
#36	TITLE-ABS-KEY (lorazepam)	24,516
#37	TITLE-ABS-KEY (oxazepam)	8,584
#38	TITLE-ABS-KEY (temazepam)	5,650
#39	TITLE-ABS-KEY (triazolam)	6,106
#40	#29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39	130,287
I7 antispasmodic agents		
#41	TITLE-ABS-KEY (drotaverine)	414
#42	TITLE-ABS-KEY (buscopan OR hyoscyamine)	3,480
#43	#41 OR #42	3,886
I8 opioid antagonist		
#44	TITLE-ABS-KEY (naltrexone)	16,093
#45	TITLE-ABS-KEY ("Methylnaltrexone bromide")	145
#46	TITLE-ABS-KEY (naloxone)	45,226
#47	#44 OR #45 OR #46	57,172
I9 Alpha blocker		
#48	TITLE-ABS-KEY (phenoxybenzamine)	13,867
#49	TITLE-ABS-KEY (dibenzyline)	786
#50	TITLE-ABS-KEY (prazosin)	24,986
#51	TITLE-ABS-KEY (alfuzosin)	2,327
#52	TITLE-ABS-KEY (tamsulosin)	5,068
#53	TITLE-ABS-KEY (silodosin)	780
#54	#48 OR #49 OR #50 OR #51 OR #52 OR #53	205,011
I10 NSAID		
#55	TITLE-ABS-KEY (aspirin)	199,735
#56	TITLE-ABS-KEY (diclofenac)	39,375
#57	TITLE-ABS-KEY (indomethacin)	47,510
#58	TITLE-ABS-KEY (ibuprofen)	49,118
#59	TITLE-ABS-KEY (naproxen)	26,460
#60	TITLE-ABS-KEY (piroxicam)	11,994
#61	TITLE-ABS-KEY ("mefenamic acid")	5,916
#62	TITLE-ABS-KEY (celecoxib)	19,809
#63	TITLE-ABS-KEY (etoricoxib)	2,590
#64	TITLE-ABS-KEY (ketorolac)	10,087
#65	#55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR #63 OR #64	336,818
O domain		
O1 POUR		
#66	TITLE-ABS-KEY ("urinary retention")	11,762
#67	TITLE-ABS-KEY ("voiding dysfunction")	2,992
#68	TITLE-ABS-KEY ("bladder dysfunction")	7,630
#69	#66 OR #67 OR #68	21,258
O2 UTI		
#70	TITLE-ABS-KEY ("urinary tract infection")	104,131
#71	TITLE-ABS-KEY (uti)	12,595
---	---	---
#72	#70 OR #71	105,785

O3 LUTS

#73	TITLE-ABS-KEY ("lower urinary tract symptoms")	12,332
#74	TITLE-ABS-KEY (luts)	6,457
#75	#73 OR #74	14,516

I4 adverse effect

#76	TITLE-ABS-KEY ("side effect")	519,323
#77	TITLE-ABS-KEY ("adverse drug reaction")	167,712
#78	TITLE-ABS-KEY ("Adverse event")	159,162
#79	#76 OR #77 OR #78	770,319

All Intervention

#80	#11 OR #14 OR #19 OR #20 OR #28 OR #40 OR #43 OR #47 OR #54 OR #65	1,512,941

All Outcome

#81	#69 OR #72 OR #75 OR #79	888,382

Results

#82	#6 AND #80 AND #81	3,479

Thai-Journal Citation Index Centre

#1	Urinary retention	13

ClinicalTrial.gov

#1	Post operative urinary retention	46

Cochrane Central Register of Controlled Trials

#1	Post operative urinary retention, RCT	18
Supplement Table 2. Characteristics of included studies

Author, Year	Intervention	Regimens of interventions	Definition of POUR	Timing of POUR measurement	Methods of PVRU measurement	Definition of UTI	Collected AE
AMB vs PLA							
Hansen, 2015	AMB vs PLA	Walk to the toilet Bedpan	urine >400 ml by bladder scan regardless of whether the patients had passed urine	within 24 hrs	bladder scan within 24 hrs after surgery	N/A	Nausea, Vomiting
Kim SB, 1999	AMB vs PLA	Walk within 24 hrs Walk after 24 hrs postoperatively	feeling of bladder fullness after urination	within 24 hrs	N/A	N/A	Spinal headache
Kim SH, 1999	AMB vs PLA	Early ambulation Bed rest	need for catheterization	not define	N/A	N/A	Postdural puncture headache
FLU vs PLA							
Bailey, 1976	FLU vs PLA	Restrict oral fluid to 250 ml Free access to oral fluids	palpable bladder	not define	N/A	N/A	N/A
Kozol, 1992	FLU vs PLA	Restrict IV fluid to 500 ml or less No intravenous fluid restriction	suprapubic pain, palpable bladder	8 hrs after surgery	8 hrs after surgery	N/A	N/A
Lee, 1999	FLU vs PLA	Restrict fluid 500 ml or less Hydration	inability to void, suprapubic pain, palpable bladder	not define	N/A	N/A	N/A
Orbey, 2009	FLU vs PLA	Restrict oral and IV No intervention	unable to void, failed to pass urine, palpable urinary bladder	after surgery, not define time	not define	N/A	Headache, Nausea, Vomiting, Vagal syncope, Postdural puncture headache
NEU vs PLA							
Butwick, 2003	NEU vs PLA	The queen's square external bladder stimulator frequency of 60 Hz for 24 hrs postoperatively, Placebo same schedule	urinary retention requiring catheterization	24 hrs after surgery	N/A	N/A	N/A
Author	Intervention	Methodology	Outcome Measures	Time	N/A	N/A	N/A
---	---	---	---	---	---	---	---
Li, 2019	NEU vs PLA	Electrical stimulation 35 Hz 200 μs and 1 Hz and 270 μs 15 to 30min each time for 3 days	cannot urinate smoothly, urine ≥ 100 ml by bladder scan	On day 14 after surgery	RU by USG	N/A	N/A
		No intervention		(catheter removal on day 14)			
Gao, 2014	ACU vs PLA	Han's acupoint nerve stimulation, 2Hz, 30min	bladder overdistention can or cannot void, urine > 600 ml by bladder scan	measure since post surgery	N/A	N/A	Overall adverse events
		No intervention		every hour until void			
Bimei, 2015	ACU vs PLA	Electroacupuncture location at spine, 50 Hz, 30 min	inability to void urine, suprapubic pain, palpable bladder	At 6-8 hrs after surgery	N/A	N/A	N/A
		No intervention					
Weimin, 2008	ACU vs PLA	Electroacupuncture 4 Hz 30 min start 8-12 day before surgery for 5 days	inability to void urine, urine > 400 ml	not define	Cath at day 14	N/A	N/A
		No intervention					
Uy, 2011	CHO vs PLA	Bethanechol 25 mg oral start 1 hr after surgery and then 4-6 hrs after surgery	inability to void, urine > 400 ml by catheterization	6-8 hrs after surgery	N/A	N/A	Overall adverse events
		No intervention					
Bowers, 1987	CHO vs PLA	Urecholine, 25 mg orally every 4 hrs for 24hrs* Urecholine, 50 mg orally every 4 hrs for 24 hrs* Urecholine, 5 mg subcutaneously every 4 hrs for 24 hrs* No medication	distended bladder	not define	N/A	N/A	Nausea, Vomiting, Sweating
Manchana, 2011	CHO vs PLA	Bethanechol 20 mg oral 3 times/day start 3 days before surgery and continue until 7 days after surgery Placebo same schedule	Fail catheter removal at 1 wk after surgery, urine > 30% of bladder capacity	at 1 wk after surgery	at 8 days after catheter removal	urine culture at 1 month after surgery	Nausea, Vomiting, Abdominal pain, Abdominal distention
Study	Intervention	Comparator	Drug/dosage	Time point after surgery	Adverse events		
------------------------------	-------------------------------	---------------------	---	--------------------------	----------------		
Walsh, 1972	CHO vs PLA Distigmine 0.5 mg IM start post op 10-12 hrs and 24 hrs Placebo same schedule	PLA	not define	after surgery, not define time	N/A		
			Urine culture at 5 days post operation				
Hershberger, 2003	BENZ vs PLA Lorazepam 1 mg start 1 hr after surgery Placebo same schedule	PLA	inability to void	6-8 hrs after surgery	N/A		
ASP vs PLA	ASP vs PLA Drotaverine 40 mg at the time of anesthesia No intervention	PLA	abdominal discomfort	after surgery, not define time	N/A		
OPI vs PLA	OPI vs PLA PCA Morphine 1 mg/ml plus naloxone 0.1 ug/ml Placebo Morphine alone	PLA	not define	24 hrs after surgery	N/A		
					Nausea, Vomiting, Pruritus		
Gallo, 2008	OPI vs PLA Naloxone 0.1 mg iv 4 hrs with PCA morphine Placebo Morphine alone	PLA	suprapubic pain, palpable bladder	8 hrs after surgery	N/A		
Zand, 2015	OPI vs PLA Methylnaltrexone 12 mg immediate post op NSS subcutaneous same schedule	PLA	inability to void, urine >600 ml by catheterization	12 hrs after surgery	N/A		
					Overall adverse events, Pruritus, Respiratory distress		
ALP vs PLA	ALP vs PLA Tamsulosin 0.4 mg 14 and 2 hrs before surgery* Placebo 12 and 2 hrs before surgery	PLA	inability to void urine, suprapubic pain, palpable bladder, urine >500 ml by catheterization	12 hrs after surgery	N/A		
Basheer, 2017	ALP vs PLA Tamsulosin 0.4mg 48 hrs and the night before surgery then continue until 1 day after surgery or until catheter removal Placebo same schedule	PLA	urine >250 ml by bladder scan	6 hrs after surgery	N/A		
Author	Study Design	Treatment 1	Treatment 2	N/A 1	N/A 2	Adverse Events	
-----------	--------------	-------------	-------------	-------	-------	----------------	
Bazzazi, 2014	ALP vs PLA	Tamsulosin 0.4 mg 7 days before surgery	Placebo same schedule	inability to void	during 12 hrs after surgery then at 24 and 72 hrs	N/A	N/A
Cataldo, 1991	ALP vs PLA	Prazosin 1mg orally at preop surgical unit then every 12 hrs Placebo same schedule	fail to void, bladder distended or uncomfortable	8 hrs after surgery	N/A	N/A	Dizziness, Nausea, Vomiting, Orthostatic hypotension, Syncope
Chung, 2015	ALP vs PLA	Tamsulosin 0.2 mg start 1 day before surgery until 6 days after surgery Placebo same schedule	not define	1 and 7 days after biopsy	not define	N/A	N/A
Goldman, 1988	ALP vs PLA	Phenoxybenzamine 10 mg 2 hrs before surgery then twice a day for 3 days after surgery No intervention	not define	not define	N/A	N/A	N/A
Gonullu, 1999	ALP vs PLA	Prazosin 1mg orally at 12 hrs and 2 hrs before surgery then 12, 24 hrs after surgery Placebo same schedule	inability to void urine, suprapubic pain, palpable bladder	within 10 hrs after surgery	N/A	N/A	Overall adverse events
Jang, 2012	ALP vs PLA	Tamsulosin 0.2 mg start on the surgery day then 0.2 mg/day until 7 days after surgery No intervention	inability to void, urine>200 ml by bladder scan	72 hrs after surgery bladder scan at 7 days after surgery	not define	N/A	
Jeong, 2014	ALP vs PLA	Tamsulosin 0.4 mg start 1 day before surgery until 14 days after surgery No intervention	inability to void urine, suprapubic pain, palpable bladder	at 5 days after surgery	not define	not define	N/A
Livne, 1983	ALP vs PLA	Dibenzyline 10 ug start 6-8 hrs before surgery then 18 hrs after first dose No intervention	inability to void	within 24 hrs after surgery	N/A	N/A	N/A
Lose, 1985	ALP vs PLA	Phenoxybenzamine 10 mg start 4 hrs post surgery then 4 hrs later and continue until day 5 post surgery Placebo same schedule	inability to void	at day 1 and day 2 after surgery catheterization at 5 days after surgery	urine culture at 5 days after surgery	Headache, Dizziness, Orthostatic hypotension, Nausea, Vomiting, Urinary incontinence	
Author	Intervention	Dosage and Administration	Inclusion Criteria	Time to Incidence	Follow-up	Adverse Events	
------------------------	--------------	---------------------------	--------------------	-------------------	-----------	----------------	
Madani, 2014	ALP vs PLA	Tamsulosin 0.4 mg start 14 hrs and 2 hrs before surgery and continue until 10 hrs after Sx Placebo same schedule	inability to void urine, suprapubic pain, palpable bladder, urine >400 ml by catheterization	within 24 hrs after surgery	N/A	Dizziness, Nausea, Vomiting	
Schubert, 2019	ALP vs PLA	Tamsulosin 0.4 mg start 5 days before surgery continue until 1 day after surgery Placebo same schedule	inability to void urine, suprapubic pain, urine >200 ml by bladder scan	within 6 hrs after surgery	N/A	Dizziness, Hypotension, Constipation, Calf pain, Alterment status, Floppy iris syndrome, Syncope, Increase joint pain, Delay wound healing, SSI, Viral infection, Pruritus, Shortness of breath, Fatigue, GI bleeding	
Mohamma di-Fallah, 2012	ALP vs PLA	Tamsulosin 0.4 mg start 6 hrs before surgery and 6-12 hr after surgery Placebo same schedule	inability to void urine, suprapubic pain	within 24 hrs after surgery	N/A	Overall adverse events	
Peterson, 1991	ALP vs PLA	Prazosin start 1 mg at 48 hrs before Sx then 2 mg every 12 hrs until discharge from the hospital No intervention(standard fluid regimen)	inability to void urine, palpable bladder	not define	not define	symptoms, urine test, urine culture at 5 days after surgery	
Shaw, 2014	ALP vs PLA	Tamsulosin 0.4 mg start 7 hrs before surgery continue until 3 days post surgery Placebo same schedule	not define	not define	N/A	Overall adverse events	
Watson, 1999	ALP vs PLA	Indoramin 20 mg twice daily start 1 day post surgery continue until discharge from the hospital Placebo same schedule	not define	2 days after surgery	N/A	sore tongue	
Woo, 1995	ALP vs PLA	Prazosin start 2 days before surgery titrate dose until 2 days post surgery	not define	not define	N/A	Overall adverse events, Headache, Hypotension,	
Study	Intervention 1	Medication 1	Medication 2	Medication 3	Discharge Criteria	Time Points	Other Events
-------------------	--------------------------------	-----------------------	-----------------------	-----------------------	-----------------------------------	--------------	--------------
Evron, 1984	ALP vs PLA	Phenoxybenzamine 10 mg start 24hrs, 2hrs before surgery then 8 and 16 hrs after surgery	No intervention	inability to void urine, suprapubic pain, palpable bladder	within 48 hrs after surgery	N/A	Hypotension
Jianggao, 2000	ALP vs PLA	Phenoxybenzamine 10 mg three times/day start 1 and 6 hrs before surgery	No intervention	not define	not define	N/A	N/A
Khan, 2015	NSD vs PLA	Diclofenac 100 mg rectal suppository immediately post operation for 1 dose	Placebo same schedule	the first 24 hrs	the first 24 hrs	N/A	N/A
Galan, 2008	NSD vs PLA	Diclofenac 100 mg rectal suppository immediate post op 1 dose	No intervention	inability to void urine, suprapubic pain	8 hrs after surgery	N/A	Overall adverse events
Burger, 1997	ALP vs COMB vs PLA	Alfuzosin 10 mg at 10 and 2 hrs before surgery Carbachol (2 mg)/diazepam (2 mg) Placebo	Placebo	no spontaneous micturation within 2 hs after taking the randomly administered medication	8 hrs after surgery	N/A	N/A
Savona-Ventura, 1991	CHO vs ALP vs PLA	Distigmine 5 mg oral start 1 day after surgery Phenoxybenzamine 10 mg twice daily start 1 day after surgery	No intervention	urine >150 ml by catheterization	3 days after surgery	N/A	N/A

*Combine same medication group into 1 group for analysis
Supplement Figure 1 Risk of bias assessment using Revised Cochrane risk-of-bias tool for randomized trials (RoB 2)

Author, Year	Randomization	deviations from intended interventions	missing outcome data	measurement of the outcome	selection of the reported result	Overall bias
AMB vs PLA						
Hansen, 2015	+	+	−	+	?	−
Kim SB, 1999	?	+	+	+	?	!
Kim SH, 1999	?	+	+	−	?	−
FLU vs PLA						
Bailey, 1976	−	?	+	−	?	−
Kozol, 1992	?	+	+	+	?	!
Lee, 1999	?	+	+	+	?	!
Orbey, 2009	+	?	+	+	?	!
NEU vs PLA						
Butwick, 2003	?	+	+	+	?	!
Li, 2019	?	+	+	−	?	−
ACU vs PLA						
Gao, 2014	?	+	+	+	?	!
Bimei, 2015	?	+	+	+	?	!
Weimin, 2008	?	+	+	+	?	!
CHO vs PLA						
Uy, 2011	?	+	+	+	?	!
Bowers, 1986	?	+	+	+	?	!
Manchana, 2011	+	+	+	+	+	+
Walsh, 1972	?	+	+	−	?	−
Study	BENZ vs PLA	ASP vs PLA	OPI vs PLA	ALP vs PLA		
-------------------------------	-------------	------------	------------	------------		
Hershberger, 2003	?		+	?		
Tomaszewski, 2015	?	-	-	?		
Cepeda, 2004	+	+	+	?		
Gallo, 2008	?	+	+	?		
Zand, 2015	?		+	+		
Akkoc, 2016	-	+	+	?		
Basheer, 2017	?	+	+	?		
Bazzazi, 2014	?	+	+	?		
Cataldo, 1997	?	?	+	?		
Chung, 2015	?	+	+	?		
Goldman, 1988	?	+	+	?		
Gonullu, 1999	?	+	+	?		
Jang, 2012	-	+	+	?		
Jeong, 2014	?	-	-	+		
Livne, 1983	?	+	+	?		
Lose, 1985	?	+	-	?		
Madani, 2014	+	-	+	+		
Schubert, 2019	+	+	+	+		
Mohammadi-Fallah, 2012	?	+	+	?		
Peterson, 1991	?	+	+	?		
Shaw, 2014	?	+	+	?		
Study	NSD vs PLA	ALP vs COMB vs PLA	CHO vs ALP vs PLA			
------------------------	------------	--------------------	-------------------			
Watson, 1999	?	+	+			
Woo, 1995	-	+	-			
Evron, 1984	?	+	-			
Jianggao, 2000	?	+	-			
Khan, 2015	?	+	+			
Galan, 2008	?	+	-			
Burger, 1997	-	+	+			
Savona-Ventura, 1991	?	+	+			
Supplement Figure 2. Forest plot of risk ratio in lowering POUR between 2 interventions

A. comparing between AMB vs PLA, B. comparing between FLU vs PLA, C. comparing between ACU vs PLA
Supplement Figure 2. Forest plot of risk ratio in lowering POUR between 2 interventions (cont.)

D. Comparing between OPI vs PLA

Study	OPI Yes	OPI No	PLA Yes	PLA No	Risk Ratio with 95% CI	Weight (%)
M. Soledad Cepeda, 2004	6	130	11	118	0.52 [0.20, 1.36]	19.75
Susan Gallo, 2008	6	46	11	34	0.47 [0.19, 1.17]	22.16
Farid Zand, 2015	12	21	17	17	0.73 [0.41, 1.28]	58.09
Overall					0.62 [0.40, 0.95]	

Heterogeneity: $I^2 = 0.00\%$, $H^2 = 0.39$

Test of $θ = 0$; $Q(2) = 0.79$, $p = 0.67$

Test of $θ = 0$: $z = -2.20$, $p = 0.03$

Fixed-effects inverse-variance model

E. Comparing between CHO vs PLA

Study	CHO Yes	CHO No	PLA Yes	PLA No	Risk Ratio with 95% CI	Weight (%)
Billy James G. Uy, 2011	3	43	14	46	0.28 [0.09, 0.92]	15.18
Fredrick J. Bowers, 1987	14	67	3	24	1.56 [0.48, 5.00]	15.42
Tarinee Manchana, 2011	10	21	19	12	0.53 [0.29, 0.94]	25.32
C. Savona-Ventura, 1991	9	13	3	25	3.82 [1.17, 12.44]	15.25
John Walsh, 1972	24	26	28	22	0.86 [0.59, 1.25]	28.83
Overall					0.88 [0.47, 1.66]	

Heterogeneity: $I^2 = 0.33$, $I^2 = 69.47\%$, $H^2 = 3.28$

Test of $θ = 0$; $Q(4) = 13.10$, $p = 0.01$

Test of $θ = 0$: $z = -0.39$, $p = 0.69$

Random-effects DerSimonian-Laird model
Supplement Figure 2. Forest plot of risk ratio in lowering POUR between 2 interventions (cont.)

Study	ALP	PLA	Risk Ratio with 95% CI	Weight
All Akkoc, 2016	7	113	0.23 [0.10, 0.54]	5.33
Azam Basheer, 2017	16	33	1.16 [0.63, 2.13]	6.44
Nooshin Bazzazi, 2014	1	31	0.06 [0.01, 0.46]	2.04
Destree H.C. Burger, 1997	33	49	1.18 [0.83, 1.68]	7.62
Peter A. Cardo, 1997	10	15	0.80 [0.43, 1.49]	6.37
Seung J. Chung, 2015	0	44	0.20 [0.01, 0.40]	1.01
Gideon Goldman, 1988	0	58	0.01 [0.00, 0.23]	1.16
Neset N. Onur, 1999	9	75	0.43 [0.21, 0.89]	5.83
Je H. Jang, 2012	11	36	1.10 [0.52, 2.34]	5.74
In G Jeong, 2014	8	101	0.42 [0.19, 0.92]	5.61
Pinhas M. Livne, 1983	10	71	0.37 [0.19, 0.71]	6.19
Gunnar Lose, 1985	7	13	0.73 [0.35, 1.55]	5.78
Ali H. Madaani, 2014	7	111	0.28 [0.13, 0.63]	5.52
Manuel F. Schubert, 2019	18	69	0.75 [0.44, 1.28]	6.81
Mohammadreza Mohammadi-Falah, 2012	1	39	0.17 [0.02, 1.32]	1.88
Michael S. Peterson, 1991	6	22	0.36 [0.17, 0.78]	5.69
C. Savona-Ventura, 1991	8	15	3.25 [0.97, 10.85]	3.85
Manoj K. Shaw, 2014	3	21	0.30 [0.09, 0.96]	4.02
H.H. Woo, 1995	2	34	4.73 [0.24, 95.09]	1.01
Samuel Evron, 1984	3	27	0.21 [0.07, 0.67]	4.09
Tang Jianguo, 2000	18	2	1.06 [0.84, 1.34]	8.02

F. comparing between ALP vs PLA

Random-effects DerSimonian-Laird model
Supplement Figure 3. Forrest plot of risk ratio in lowering POUR between ALP vs PLA with subgroup analysis

Study	ALP Yes	ALP No	PLA Yes	PLA No	Risk Ratio with 95% CI	Weight (%)
Male						
Azam Basheer, 2017	16	33	13	33	1.16 [0.63, 2.13]	6.44
Nooshin Bazzazi, 2014	1	31	17	18	0.06 [0.01, 0.46]	2.04
Seung Jun Chung, 2015	0	44	2	42	0.20 [0.01, 4.05]	1.01
Neset Nuri Gonullu, 1999	9	75	18	54	0.43 [0.21, 0.89]	5.83
In Gab Jeong, 2014	8	101	19	90	0.42 [0.19, 0.92]	5.61
Ali Hamidi Madani, 2014	7	111	24	90	0.28 [0.13, 0.63]	5.52
Manuel F. Schubert, 2019	18	69	24	63	0.75 [0.44, 1.28]	6.81
Mohammadreza Mohammadi-Fallah, 2012	1	39	6	34	0.17 [0.02, 1.32]	1.88
Michael S. Peterson, 1991	6	22	19	13	0.36 [0.17, 0.78]	5.69
Manoj K. Shaw, 2014	3	21	10	14	0.30 [0.09, 0.96]	4.02
H.H.Woo, 1995	2	34	0	34	4.73 [0.24, 95.09]	1.01
Heterogeneity: $\tau^2 = 0.23$, $I^2 = 52.12\%$, $H^2 = 2.09$					0.45 [0.29, 0.69]	
Test of $\theta_i = \theta_j$: $Q(10) = 20.89$, $p = 0.02$						
Female						
Pinhas M. Lime, 1983	10	71	25	49	0.37 [0.19, 0.71]	6.19
Gunnar Lose, 1985	7	13	10	11	0.73 [0.35, 1.55]	5.78
C.Savona-Ventura, 1991	8	15	3	25	3.25 [0.97, 10.85]	3.85
Samuel Evron, 1984	3	27	14	16	0.21 [0.07, 0.67]	4.09
Heterogeneity: $\tau^2 = 0.68$, $I^2 = 76.89\%$, $H^2 = 4.33$					0.63 [0.25, 1.60]	
Test of $\theta_i = \theta_j$: $Q(3) = 12.98$, $p = 0.00$						
Mixed gender						
Desiree H.C. Burger, 1997	33	49	47	91	1.18 [0.83, 1.68]	7.62
Je Ho Jang, 2012	11	36	10	37	1.10 [0.52, 2.34]	5.74
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$					1.17 [0.85, 1.60]	
Test of $\theta_i = \theta_j$: $Q(1) = 0.03$, $p = 0.87$						
Overall						
Heterogeneity: $\tau^2 = 0.34$, $I^2 = 67.73\%$, $H^2 = 3.10$					0.56 [0.39, 0.81]	
Test of $\theta_i = \theta_j$: $Q(16) = 49.58$, $p = 0.00$						
Test of group differences: $Q(2) = 12.38$, $p = 0.00$						

Random-effects DerSimonian-Laird model

A. Subgroup analysis by gender
Supplement Figure 3. Forrest plot of risk ratio in lowering POUR between ALP vs PLA with subgroup analysis (cont.)

Study	ALP Yes	ALP No	PLA Yes	PLA No	Risk Ratio with 95% CI	Weight (%)
Non-neurourological procedure						
Nooshin Bazzazi, 2014	1	31	17	18	0.06 [0.01, 0.46]	3.93
Neset Nuri Gonullu, 1999	9	75	18	54	0.43 [0.21, 0.89]	12.96
Ali Hamidi Madani, 2014	7	111	24	90	0.28 [0.13, 0.63]	12.10
Manuel F. Schubert, 2019	18	69	24	63	0.75 [0.44, 1.28]	15.78
Mohammadreza Mohammadi-Fallah, 2012	1	39	6	34	0.17 [0.02, 1.32]	3.59
Michael S. Peterson, 1991	6	22	19	13	0.36 [0.17, 0.78]	12.57
Manoj K. Shaw, 2014	3	21	10	14	0.30 [0.09, 0.96]	8.31
H.H.Woo, 1995	2	34	0	34	4.73 [0.24, 95.09]	1.88
Heterogeneity: $\tau^2 = 0.19$, $I^2 = 44.66\%$, $H^2 = 1.81$						
Test of $\theta_i = \theta_j$: $Q(7) = 12.65$, $p = 0.08$						

Neuourological procedure						
Azam Basheer, 2017	16	33	13	33	1.16 [0.63, 2.13]	14.67
Seung Jun Chung, 2015	0	44	2	42	0.20 [0.01, 4.05]	1.87
In Gab Jeong, 2014	8	101	19	90	0.42 [0.19, 0.92]	12.35
Heterogeneity: $\tau^2 = 0.33$, $I^2 = 57.89\%$, $H^2 = 2.38$						
Test of $\theta_i = \theta_j$: $Q(2) = 4.75$, $p = 0.09$						

Overall						
Heterogeneity: $\tau^2 = 0.23$, $I^2 = 52.12\%$, $H^2 = 2.09$						
Test of $\theta_i = \theta_j$: $Q(10) = 20.89$, $p = 0.02$						
Test of group differences: $Q_{10}(1) = 1.00$, $p = 0.32$						

| Weight (%) | 0.016 | 0.25 | 4 | 64 | | |

Random-effects DerSimonian-Laird model

B. Subgroup analysis by type of operations in male
Supplement Figure 3. Forrest plot of risk ratio in lowering POUR between ALP vs PLA with subgroup analysis (cont.)

Study	ALP	PLA	Risk Ratio with 95% CI	Weight (%)
Non-neurourological procedure				
Pinhas M. Lime, 1983	10	25	0.37 [0.19, 0.71]	28.63
Samuel Evron, 1984	3	14	0.21 [0.07, 0.67]	22.34
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$			0.32 [0.18, 0.57]	
Test of $\theta_i = \theta_j$: $Q(1) = 0.63$, $p = 0.43$				

Neurourological procedure				
Gunnar Lose, 1985	7	13	0.73 [0.35, 1.55]	27.55
C. Savona-Ventura, 1991	8	15	3.25 [0.97, 10.85]	21.47
Heterogeneity: $\tau^2 = 0.84$, $I^2 = 76.23\%$, $H^2 = 4.21$			1.43 [0.34, 6.07]	
Test of $\theta_i = \theta_j$: $Q(1) = 4.21$, $p = 0.04$				

Overall			0.63 [0.25, 1.60]	
Heterogeneity: $\tau^2 = 0.68$, $I^2 = 76.89\%$, $H^2 = 4.33$				
Test of $\theta_i = \theta_j$: $Q(3) = 12.98$, $p = 0.00$				
Test of group differences: $Q_b(1) = 3.56$, $p = 0.06$				

Random-effects DerSimonian-Laird model

C. Subgroup analysis by type of operations in female
Supplement Figure 4. Forest plot of risk ratio in lowering UTI between 2 interventions

Study	ALP Yes	ALP No	PLA Yes	PLA No	Risk Ratio with 95% CI	Weight (%)
Je H. Jang, 2012	0	47	2	45	0.20 [0.01, 4.06]	7.03
Gunnar Lose, 1985	5	15	9	11	0.56 [0.23, 1.37]	78.52
Manuel F. Schubert, 2019	2	62	0	67	5.23 [0.26, 106.89]	6.99
Samuel Evron, 1984	0	30	3	27	0.14 [0.01, 2.65]	7.46
Overall					0.55 [0.25, 1.21]	

Heterogeneity: $I^2 = 11.58\%$, $H^2 = 1.13$

Test of $\theta_i = \theta_j$: $Q(3) = 3.39$, $p = 0.33$

Test of $\theta = 0$: $z = -1.48$, $p = 0.14$

Fixed-effects inverse-variance model
Supplement Figure 5. Forest plot of mean difference in lowering PVRU between 2 interventions

Study	ALP N	Mean	SD	PLA N	Mean	SD	Mean Diff. with 95% CI	Weight (%)
Seung J. Chung, 2015	44	39.7	25.3	44	78.8	75.2	-39.10 [-62.54, -15.66]	30.07
Je H. Jang, 2012	47	53	84.8	47	33.6	59.9	19.40 [-10.28, 49.08]	27.88
In G. Jeong, 2014	105	22.7	29.1	102	27.1	42.4	-4.40 [-14.28, 5.48]	33.68
Gunnar Lose, 1985	20	70	98.2	21	232	307.5	-162.00 [-303.23, -20.77]	5.37
A. J.S Watson, 1999	25	251	400.8	24	325	287.6	-74.00 [-270.04, 122.04]	3.01
Overall							-18.75 [-54.36, 16.85]	

Heterogeneity: $\tau^2 = 954.32$, $I^2 = 82.15\%$, $H^2 = 5.60$

Test of $\theta = \theta$: $Q(4) = 15.55$, $p = 0.00$

Test of $\theta = 0$: $z = -1.03$, $p = 0.30$

Random-effects REML model
Supplement Figure 6. Forest plot of mean difference in lowering LUTS between 2 interventions

Study	ALP	PLA	Cohen's d with 95% CI	Weight (%)				
	N	Mean	SD	N	Mean	SD		
Seung J. Chung, 2015	44	12.5	8.3	44	12.8	8.7	-0.04 [-0.45, 0.38]	26.84
In G. Jeong, 2014	105	10.4	6.4	102	11.8	6.8	-0.21 [-0.49, 0.06]	40.15
Manuel F. Schubert, 2019	64	7.98	5.76	67	6.48	6.3	0.25 [-0.10, 0.59]	33.01
Overall							-0.01 [-0.30, 0.27]	

- Heterogeneity: $\tau^2 = 0.03, I^2 = 52.34\%, H^2 = 2.10$
- Test of $\theta = 0$: $Q(2) = 4.22, p = 0.12$
- Test of $\theta = 0$: $z = -0.09, p = 0.93$

Random-effects REML model
Supplement Figure 7. Forest plot of risk ratio in having AE between 2 interventions

A. comparing between AMB vs PLA, B. comparing between CHO vs PLA
Supplement Figure 7. Forest plot of risk ratio in having AE between 2 interventions (cont.)

C. comparing between ALP vs PLA

Study	ALP	PLA	Risk Ratio with 95% CI	Weight (%)
Ali A. Khoc, 2016	3	118	3.50 [0.18, 66.69]	2.65
Noosheh Bazzazi, 2014	0	32	0.36 [0.02, 8.62]	2.30
Peter A. Cataldo, 1997	4	21	1.28 [0.32, 5.13]	11.94
Neset N. Goulu, 1999	0	84	0.86 [0.02, 42.74]	1.51
Gunnar Lose, 1985	4	16	1.40 [0.36, 5.49]	12.34
Ali H. Madani, 2014	2	116	4.83 [0.23, 99.56]	2.51
Manuel F. Schubert, 2019	22	42	2.30 [1.19, 4.48]	52.15
Mohammadreza Mohammadi-Fallah,	0	40	1.00 [0.02, 49.20]	1.52
Michael S. Peterson, 1991	0	28	1.14 [0.02, 55.55]	1.52
A. J. S. Watson, 1999	1	24	2.68 [0.12, 67.53]	2.32
H.H. Woo, 1995	2	34	0.63 [0.11, 3.54]	7.72
Samuel Eyront, 1984	0	30	1.00 [0.02, 48.82]	1.52
Overall			1.72 [1.07, 2.76]	

Heterogeneity: I^2 = 0.00%, H^2 = 0.39
Test of ψ = 0; Q(11) = 4.32, p = 0.96
Test of ψ = 0; z = 2.22, p = 0.03

Fixed-effects inverse-variance model
Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes

A. studies included for POUR prevention between AMB vs PLA, B. studies included for POUR prevention between FLU vs PLA, C. studies included for POUR prevention between ACU vs PLA, D. studies included for POUR prevention between CHO vs PLA, E. studies included for POUR prevention between OPI vs PLA, F. studies included for POUR prevention between ALP vs PLA
Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes (cont.)

G. studies included for UTI prevention between ALP vs PLA
Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes (cont.)

![Funnel Plot](image)

H. studies included for PVRU lowering between ALP vs PLA
Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes (cont.)

I. studies included for LUTS lowering between ALP vs PLA
Supplement Figure 8. Funnel plots of studies included in direct meta-analysis for POUR, UTI prevention, PVUR, LUTS lowering and AE outcomes (cont.)

J. AMB vs PLA

K. CHO vs PLA

L. ALP vs PLA

J. studies included for AE risk between AMB vs PLA, K. studies included for AE risk between CHO vs PLA, L. studies included for AE risk between ALP vs PLA
Supplement 2: Network meta-analysis

Supplement Figure 9. Rankogram showing the effect of each intervention in preventing POUR
Supplement Figure 10. Contour-enhanced funnel plots of studies included in NMA for POUR outcome
Supplement Table 3. Treatment effects of direct and indirect comparison between 2 interventions for UTI, PVRU, LUTS outcomes

Outcome	Comparator	PLA	OPI	NSD	NEU	CHO	ALP	ACU
PVRU	PLA	1	-8.60	-	-20.16	-78.00	-18.24	-13.30
	OPI	8.60	1	-	-11.56	-69.40	-9.64	-4.70
	NEU	20.16	11.56	-	1	-57.84	1.93	6.86
	CHO	78.00	69.40	-	57.84	1	59.76	64.70
	ALP	18.24	9.64	-	-1.93	-59.76	1	4.94
	ACU	13.30	4.70	-	-6.86	-64.70	-4.94	1
UTI	PLA	1	-	0.38 (0.02,9.15)	-	1.16	0.57	-
	NSD	2.64	1	-	3.07	1.50	-	
	CHO	0.86	0.33 (0.01,8.20)	-	1	0.49	-	
	ALP	1.76	0.67 (0.02,17.79)	-	2.05	1	-	
LUTS	PLA	1	-	-	-2.00	-	-0.03	-
	NEU	2.00	-	-	1	-	1.97	-
	ALP	0.03	-	-	-1.97	-	1	-

PVRU and LUTS reported as mean difference (95% confidence intervals) from network meta-analysis between each pair of treatments.
UTI reported as risk ratio (95% confidence intervals) from network meta-analysis between each pair of treatments.
Bold font indicates statistical significance.

ACU = Acupuncture, ALP = Alpha adrenergic antagonist, AMB = Ambulation, ASP = Antispasmodic agents, BENZ = Benzodiazepine, CHO = Cholinergic agents, FLU = Fluid restriction, NSD = NSAIDS, OPI = Opioid antagonist agent.
Supplement Figure 11. Rankogram showing the effect of each intervention in preventing UTI
Supplement Figure 12. Contour-enhanced funnel plots of studies included in NMA for UTI outcome.
Supplement Figure 13. Rankogram showing the effect of each intervention in reducing PVRU
Supplement Figure 14. Contour-enhanced funnel plots of studies included in NMA for PVRU outcome
Supplement Figure 15. Rankogram showing the effect of each intervention in reducing LUTS
Supplement Figure 16. Contour-enhanced funnel plots of studies included in NMA for LUTS outcome
Supplement Figure 17. Rankogram showing the effect of each intervention in AE occurrence
Supplement Figure 18. Contour-enhanced funnel plots of studies included in NMA for AE outcome
Appendix 3 : Risk-benefit analysis

Supplement Figure 19. Risk-benefit plane between 2 interventions in POUR prevention

Incremental risk benefit curve showed ∆B and ∆R plot of each intervention pair along with risk-benefit acceptability thresholds at 0.2 and 0.3. The scatter plot in the right lower quadrant, corresponding to high benefit with minimal AE.
Supplement Table 4. Estimations of pooled ΔR and ΔB for AMB, ACU, CHO, OPI, ALP and NSD versus PLA using NMA with consistency model

Comparisons	ΔR (95% CI)	ΔB (95% CI)	IRBR
AMB vs PLA	-0.0030 (-0.00385 , -0.00241)	-0.2561 (-0.250534 , -0.261725)	0.0118
ACU vs PLA	-0.1355 (-0.14281 , -0.1323)	-0.1840 (-0.179877 , -0.1911)	0.7372
CHO vs PLA	0.0076 (0.006936 , 0.008448)	-0.0591 (-0.054043 , -0.062971)	-0.1290
OPI vs PLA	-0.1325 (-0.13593 , -0.1293)	-0.0940 (-0.08591, -0.09724)	1.4131
ALP vs PLA	0.0089 (.0086708 , 0.146951)	-0.1461 (-0.142305 , -0.146951)	-0.0609
NSD vs PLA	0.0009 (-0.00044, 0.001145)	-0.0943 (-0.0791 , -0.091647)	-0.0095

ΔB = the expected incremental probability of benefit, CI=confidence interval, IRBR= An incremental risk-benefit ratio. ΔR = the expected incremental probability of risk.

ACU = Acupuncture, ALP = Alpha adrenergic antagonist, AMB = Ambulation, CHO = Cholinergic agents, NSD = NSAIDS, OPI = Opioid antagonist agent.
Supplement Figure 20. Acceptability curve plotting between the probability of benefit in Y axis and the clinical threshold in X-axis

A. AMB vs PLA

B. ACU vs PLA

C. CHO vs PLA

D. OPI vs PLA

E. ALP vs PLA

F. NSD vs PLA
Supplement Table 5. Estimation of percent chance that IRBR of each comparisons were less than risk-benefit acceptability thresholds ranging from 0 to 1.0

Threshold	AMB vs PLA	ACU vs PLA	CHO vs PLA	OPI vs PLA	ALP vs PLA	NSD vs PLA
0	52.1	91.7	34.9	84.6	10.7	49.5
0.1	97.2	94.9	57.7	85.0	76.3	76.9
0.2	98.8	95.8	72.4	85.2	97.6	87.2
0.3	99.0	96.5	80.3	85.4	99.6	91.1
0.4	99.1	96.9	85.4	85.5	99.9	93.4
0.5	99.2	97.1	89.0	85.7	1	94.6
0.6	99.4	97.4	91.2	85.8	1	95.8
0.7	99.6	97.6	92.2	86.0	1	96.4
0.8	99.6	97.6	93.6	86.2	1	96.8
0.9	99.6	97.6	94.5	86.4	1	97.3
1	99.7	97.8	94.8	86.7	1	97.3
Supplement Figure 21. Net clinical benefit acceptability curve shows the probability of being the best intervention in terms of net clinical benefit.